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Vorwort

Die mit diesem Band vorliegende Aufgabensammlung ist eine wesentliche Erginzung
der Biinde 1 bis 5 der Studienbiicherei — Mathematik fiir Lehrer. Der Leser erhilt
hiermit — geordnet nach den Kapiteln der genannten Bande — ein recht umfang-
reiches Aufgabenmaterial sowie Kontrollfragen, mit deren Hilfe er die einzelnen Stoff-
komplexe iiberdenken und sein erworbenes Wissen iiberpriifen sollte.

In der Mathematik ist das Losen von Ubungsaufgaben eine sehr wichtige Form des
Selbststudiums. Durch die selbstindige Bearbeitung geeigneter Aufgaben wird das
erworbene Wissen gefestigt und aktiviert sowie das Bediirfnis nach weiterfiilhrendem
Wissen geweckt. Die meisten Aufgaben dieser Aufgabensammlung nehmen direkt
Bezug auf die in den Binden 1 bis 5 behandelten Stoffinhalte und oftmals auch auf
die Art der Stoffvermittlung. Das Losen dieser Aufgaben erfordert ein gewisses Ver-
stindnis und Beherrschen entsprechender Begriffe, Bezeichnungen, Sitze und Ver-
fahren, also ein Grundwissen, welches vorher erarbeitet werden muB. Die Erfolge
beim selbstindigen Losen der gestellten Aufgaben bilden den wichtigsten Grad-
messer fiir das im Selbststudium erworbene Wissen.

Einige Aufgaben wurden mit vollstindigen Losungen versehen. Vielfach lassen
sich weitere Aufgaben genauso oder in dhnlicher Weise bearbeiten, so daB die vor-
gestellten Losungen teilweise den Charakter einer Musterlésung (es muB allerdings
nicht immer die kiirzeste oder eleganteste sein) fiir bestimmte Aufgabentypen hahen
und damit eine sehr direkte Hilfe darstellen. Manchmal soll durch die formulierte
Losung (nur) verdeutlicht werden, wie bekannte Ergebnisse und Verfahren genutzt
bzw. verschiedene Beweismethoden wirksam werden konnen. Bei seinen eigenen For-
mulierungen moge sich der Leser anfangs an diesen Musterlsungen orientieren. Die
lngegebenen Ergebnisse der Aufgaben dienen lediglich der Kontrolle fiir den Leser.
Aufgaben, die nach unserer Meinung besonders hohe Anforderungen an den Studie-
renden stellen, wurden durch einen Stern (*) gekennzeichnet.

Es sind eine ganze Reihe von Aufgaben eingearbeitet, die aus Schiilerolympiaden
oder Olympiadevorbereitungen stammen. Wir miissen immer wieder feststellen, daB
viele unserer Studenten bei der Losung dieser Aufgaben Schwierigkeiten haben. Was
ist das aber fiir ein (zukiinftiger) Lehrer, der Aufgaben, die seine Schiiler in der
Olympiade selbstindig losen sollen, selbst nicht 15sen kann? Andere Aufgaben sind
aus anderen Aufgabensammlungen iibernommen bzw. auf unterschiedlichstem Wege
an die Autoren gelangt. Die Autoren konnen also nur bei wenigen Aufgaben als
Autoren der Aufgaben angesprochen werden. In den meisten Fillen waren sie nur
Sammler oder Auswiihlende.



6 Vorwort

Wir empfehlen ‘den Studenten und den die Ubu.ngen leitenden Lehrkriften, Auf-
gaben aus friiheren Teilen der Vorlesung kontinuierlich in die weitere Ausbildung ein-
zubauen. Hierzu sind eine nicht geringe Anzahl der hier vorgelegten Aufgaben gut
geeignet. Insbesondere sollte dem Studenten dabei zu BewuBtsein kommen, da8 ihm
die Lésung von Aufgaben, die ihm z. B. im ersten Semester noch unheimlich schwer
erschien, im Laufe der Zeit immer leichter féllt. Wir meinen, daB diese Form der
immanenten Wiederholung sowohl an der Schule als auch an der Hochschule viel zu
wenig genutzt wird.

Wir méchten die Nutzer bitten, uns auf eventuell vorhandene Fehler hinzuweisen
und uns fiir spitere Auflagen weiteres gutes Ubungsmaterial zur Verfiigung zu stellen.

Unser Dank gilt dem Herausgeber Herrn Prof. Dr. W. ENGEL fiir zahlreiche Hin-
weise hinsichtlich der inhaltlichen Gestaltung dieser Aufgabensammlung. Ferner
danken wir dem VEB Deutscher Verlag der Wissenschaften, insbesondere der Fach-
gebietsleiterin Frau Dipl.-Math. E. AsNpr, fiir die gute Zusammenarbeit sowie den
Mitarbeitern des VEB Druckhaus ,,Maxim Gorki‘, Altenburg, fiir die sorgfiltige
Drucklegung.

Qiistrow, im Friihjahr 1980 Die Autoren
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Aligemeine Grundlagen

Grundbegriffe der Mengenlehre

Kontrollfragen

. Was beinhalten das Mengenbildungs- und das Extensionalitétsprinzip?
. Wie ist {z: H(z)) erklart?
. Was versteht man unter dem Durchschnitt, der Vereinigung, der Differenz und

der symmetrischen Differenz von Mengen M,, M, bzw. Mengensystemen I,
Mot

. Wie lassen sich die Booleschen Mengenoperationen durch Tabellen beschreiben?

Wie sind sie durch Eulersche Kreise (Venn-Diagramme) zu veranschaulichen?

. Wie lauten die wichtigsten Rechengesetze fiir die Booleschen Operationen?
. Wann nennt man Mengen M,, M, bzw. ein Mengensystem I disjunkt?
. Wann nennt man die Menge M, eine Teilmenge (echte Teilmenge, Obermenge,

echte Obermenge) der Menge M,?

Welches sind die wichtigsten Eigenschaften der Inklusion?

Was versteht man unter der Potenzmenge einer Menge M?

Welche Bedeutung haben {a}, {a, b}, {a, b, c}, {a,, ay, ..., a,}? Was ist bei diesen
Bildungen zu beachten?

Was versteht man unter dem Durchschnitt und der Vereinigung eines Mengen-
systems bzw. einer Mengenfamilie?

Wie lauten die wichtigsten Recheng fiir die verallgemeinerten Booleschen
Operationen?

Aufgaben

. Man bestiitige die folgenden Mengengleichungen durch Angabe der vollen Werte-

tabelle fiir die Zugehérigkeit eines Elementes z zur Menge auf der linken bzw.
rechten Seite dieser Gleichung und veranschauliche diese Mengengleichungen
durch Eulersche Kreise:

a) (M, n M) v My = (M, v My) n (M, 0 My),

b) (M, A M) 0 My = (M, n M) A (My 0 My),

c) My\ (M, 0 M) = (M, \ M) v (M, \ My),

d) (M, \ M)\ My =M, \ (M, v My),

e) MiAM,=(M,\ M) u(M,\ M,).
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1. Alligemeine Grundlagen

Da die Tabellen zum Nachweis der Gleichheit von Mengen, die aus gegebenen
Mengen M,, ..., M, mittels der Booleschen Operationen zusammengesetzt sind,
mit der Anzahl n der gegebenen Mengen und der Anzahl der Verkniipfungen sehr
rasch anwachsen, beweist man kompliziertere Mengengleichungen durch lo-
gische Umformung der die Mengen auf der linken bzw. rechten Seite der Gleich
charakterisierenden Eigenschaften oder durch Riickfiihrung auf schon bewiesene
Gesetze der Mengenlehre. Die folgenden Beispielaufgaben mégen das erldutern:

. Man zeige, daB fiir beliebige Mengen M,, M,, M,, M, folgendes gilt:

() (M, \ M) n (M3 \ M,) = (M, \ M) n (M3\ M,).

Beweis: Nach dem Ex ionalitétsprinzip sind Mengen genau dann gleleh wenn sie
dieselben Elemente enthalten. Daher genugt es zum Beweis von (¢) zu zeigen, da8 fiir
beliebiges = folgendes gilt:

z€E(My\ My)n (Mg \ M) z€ (M, \ M) n (M, \ My).

“Ist z € (M, \ M,) n (M, \. M,), s0 ist nach Definition des Durchschnitts z € M, \ 1,

und z € M, \\ M,, und hi folgt nach Definition der Differenz

(i) ze€M,, (i) z4¢M,, (ii)) z€M,, (iv) z4 M,.

Aus (i) und (iv) folgt

(v) z€ M, \ M,,

und aus (iii) und (ii) folgt

(vi) z€M,\ M.

Alsogiltz € (M, \\ M,) n (Ms\\ M,). Mithin ist jedes Element von (M, \ M,) n (M, \ M)
auch Element der Menge (M, \ M,) n (M, \\ M,).

Zum Beweis der Umkehrung, daB jedes Element der Menge (M, \ M,) n (M, \ M,)
zu (M, \\ M,) n (M, \ M,) gehort, geniigt es entweder zu bemerken, daB alle obigen
Schliisse umkehrbar sind bzw. da8 die Umkehrung die bewiesene Implikation mit ver-
tauschtem M, und M ist.

. Man zeige, daB fiir beliebige Mengen M,, My, M,, M, folgendes gilt:

(xx) (M, n M)\ (Mau M) = (M, \ M) n (M3 N\ M)).
Beweis: Wir benutzen das Assoziativ- und das Kommutativgesetz fiir den Durchschnitt
(in kombinierter Form), die Mengengleichungen 1.4.(21), 1.4(24), 1.4.(17) und die in der
vorangehenden Aufgabe 2 bewiesene Gleichung (»):

(My n My) \ (M, v M)

= (M, \ (Myu M,)n(My\ (M,u M,) (1.4.(21))

= ((My, \ My) n (M, \ M) n((My \ M) n (M, \ M) (1.4.(24))

= (M, \ My) 0 (M, \ M) 0 (M, \ M) n (M, \ M) (Assoziativ- und

Kommutativgesetz)
= (M, \ M) n (M, \ M) ((+), 1.4.(17)).
Bemerkung: Namrhch kann man (s¢) such ohne Mihe nach dem bei Aufgabe 2 be-
nutzten Verfahren b . Der v hend Bewom ist ein Beispiel fiir die Bestitigung
einer Mengengleich durch algebraische U gen nach Regeln der sogenannten
Booleschen Algebrn

. Man beweise die folgenden Mengengleichungen:

a) My n (M;\ M;) = (M, n M;) \ My,
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b) My \ (M, v My) = (M, \ My) n (M, \ M),

o) My AM, = (M,uvM,)\ (M,nM,),

d) (M, A My)\ My = (M, v My) A (M, v My),

e) M, \ (M, A M;) = [M,\ (M, v My)]u[M, n M, 0 My].

. Man untersuche die folgenden Mengengleichungen auf ihre Giiltigkeit fiir beliebige
Mengen. Die giiltigen Gleichungen sind zu beweisen, die nicht fiir beliebige Men-
gen giiltigen Gleichungen sind durch Gegenbeispiele zu widerlegen:

a) MAMAM=M,
b) (M, \ M) v (M \ M,) = (M, v M)\ (M;\ M,),
c) M\AM, AM, = (M,uMyuM;)\ (M,n M, 0 M),
d) M, A M, AM, =[M,\ (M, uM,;)]v[M,\ (M, v M,)]
U [My\ (M v M) v M, n M, 0 M),
e) (M, v Myu M)\ (M, 0 M, 0 My) = [(M, v M)\ Ms]u[(M, v M)\ M,]
u [(M; v M)\ M,].

. a) Man zeige, daB die Differenzmenge M \ N die eindeutig bestimmte Losung X

des folgenden ,,Gleichungssystems‘* ist:

XnN=g, XuN=M.
b) Es seien X, Y beliebige Mengen, so daB fiir eine gewisse Menge 4 die Glei-
chungen 4 n X =4 n Yund 4 u X = 4 v Y erfiillt sind. Man zeige, da8 dann
X =7 ist.

. Man beweise die folgenden Gesetze fiir die Inklusion:

a) Die Vereinigung M, u M, ist die beziiglich der Inklusion kleinste gemeinsame
Obermenge von M, und M,, und M, v M, ist durch diese Eigenschaft eindeutig
bestimmt.

b MMy, M nM,=M,.

c) Ist M eine beliebige Menge und a ¢ M, so ist M u {a} oberer Nachbar von M
beziiglich der Inklusion.

. Man beweise die folgenden Gesetze fiir die Pot ge
) M SN = PH) S BN):
b) B(H n N) = B(H) n B(N);
) B(H) v BN) S B(M v N);
d) sind die Mengen M und N beziiglich der Inklusion unvergleichbar, so gilt so-
gar B(H) u BA) = B u ).
. Man beweise die folgenden Rechengesetze fiir den Durchschnitt und die Ver-
i g eines Mengensy :
a) U(@uiy)=UDuvudy,
b) M STH=>U M SU M,

4
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I. Aligemeine Grundlagen

10.

11.

12.

-

Man zeige, daB die Menge N M die beziiglich der Inklusion groBte Menge ist, die
Teilmenge jeder Menge X des Mengensystems It ist, und daB8 N M durch diese
Eigenschaft eindeutig charakterisiert ist.

Man zeige, daB fiir jedes Mengensystem 9t und jede Menge N folgendes gilt :
NINuX:XeM}=NuNM.

Dabei bedeutet {N u X: X ¢ M} das System N aller Vereinigungen N u X mit
XeMm.

Beweis: a) Essei z€ N {NuX:X € M}. Dann ist 2 € Nu X fiir alle X € M. Wir
unterscheiden folgende beiden Fille:

1. Fall: z€ N. Dannistz€ NuN M wegen N S N uN M.

2. Fall: z ¢ N. Dann ist z € X fiir alle X € M (wegen z € N uX und z ¢ N), also ist

z€N Mund somit z€ NuN M.
Folglich ist

NINVX: XeMSNuvNWM.

b) Es sei nun umgekehrt z € N u N\ M. Dann ist z € N oder z € N WM. Im ersten Fall ist
z€NuX firalle X ¢ M (wegen N & N v X) und mithin z€ N {NuX:X € M}. Im
zweiten Fall ist z € X fir alle X € I und damit erst recht z € N u X fiir alle X € I,
also ebenfalls 2 € N{N u X:X € M}. Folglich ist

NunMSN{NuX:XeMm.
Aus a) und b) folgt auf Grund der Antisymmetrie der Inklusion die Behauptung.
Man beweise die folgenden Gesctze fiir den Durchschnitt und die Vereinigung eines
Mengensystems:
a) NoUM=U(NnX:XeM},
D) NN NM=UN\X:XeM},
¢) NNUM=N(N\X:XeM,
A UMnUR=UXnY:XeMAYeN),
e) NMuNN=N{XuvY:XeMaYecR.

Grundbegriffe der Abbildungstheorie

Kontrollfragen

. Wie lautet die grundlegende Eigenschaft des geordneten Paares, des Tripels und

allgemein des n-Tupels, und welcher Unterschied besteht zur Zweiermenge,
Dreiermenge, Menge aus » Elementen? Was sind die Komponenten eines geord-
neten Paares bzw. n-Tupels?

. Was versteht man unter dem kartesischen Produkt M, X M, von Mengen M,, M,,

wie kann man es sich veranschaulichen und was sind seine wichtigsten Eigen-
schaften?
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10.
11.

12.
13.
14.
15.

. Was ist eine Korrespondenz, eine Abbildung, eine eindeutig umkehrbare Korre-

spondenz, eine eineindeutige Abbildung, eine Permutation?

. Was versteht man unter den Begriffen Bild, volles Bild, Urbild, volles Urbild,

Definitionsbereich, Wertebereich, Korrespondenz (Abbildung) aus — in, aus — auf,
von — in, von — auf?

. Wann sind Korrespondenzen bzw. Abbildungen gleich und was ist dabei zu be-

achten?

. Was ist die Inverse einer Korrespondenz bzw. Abbildung, was die Verkettung

(das Produkt) von Korrespondenzen bzw.: Abbildungen? Was fiir allgemeine
GesetzmiiBigkeiten gelten hierfiir?

. Was versteht man unter Permutationen, welche Eigenschaften besitzen diese?
. Welcher Unterschied besteht zwischen Relation und Operation?
. Wann nennt man eine Relation reflexiv, irreflexiv, transitiv, symmetrisch, asym-

metrisch, antisymmetridch?

Was ist eine Aquivalenzrelation und was ist iiber diese bekannt?

Was ist eine teilweise Ordnung, was eine totale Ordnung? Welcher Zusammen-
hang besteht zwischen der reflexiven und der irreflexiven Form einer solchen
Ordnung?

Wann nennt man eine Operation kommutativ, assoziativ, distributiv, monoton?
Welche Problematik tritt bei der Umkehroperation auf?

Was beinhaltet das Auswahlaxiom?

Was sind endliche Mengen?

Aufgaben

. Man zeige, daB fiir

(@, b) := {la, b, {al}
die charakteristische Eigenschaft des geordneten Paares erfiillt ist.

. Man beweise die folgenden Rechengesetze fiir das kartesische Produkt :

a) (MynMy) XN = (M, XN)r(MyXN),

b) (My\ M) XN = (M; X N)\ (M, X N),

) MyS M;=> M, XNS M,XN,

d M, xXM,=0 M, =0vM, =0,

e) M\iXNS M, XNAN+0O=>M S M,,

f)y M, X N=M,XNAN+QI=>M =M,.

Beweis von b): Auf Grund von 1.5.(5) geniigt es zu zeigen, daB folgendes gilt:
&) (M \ M;) < NS (M, xN)\ (M, xN),

B) (My> N) N\ (Myx N) S (M, \ M) x N.
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1. Allgemeine Grundlagen

Zum Beweis von «) sei (z, y) € (M, \ M,) X N. Dann gilt
(1) ze M\ My, und (2) y€N.
Aus (1) folgt
(3) z€M, und (4) z¢ M,
Aus (3) und (2) bzw. (4) und (2) folgt
®) (y)€EM, XN und (6) (z,y)¢§ MyxN.
Aus (5) und (8) folgt (z, y) € (M, X N) \\ (M, X N).
Zum Beweis von p) sei (2, y) € (M; X N) \\ (M, X N). Dann gilt
(1) (zy) e M;xN und (2) (z,y)§ MyxN.
Aus (1) folgt
() z€M, und (4) y€EN.
Aus (2) folgt
(6) z¢ My oder (6) y4 N.
Da (4) gilt, kann (8) nicht gelten. Also gilt (5). Aus (3) und (5) folgt
() ze M, \ M,
Aus (7) und (4) folgt (z, y) € (M, \ M,) X N.

. Es sei F die Menge aller Paare (z, y) von natiirlichen Zahlen, die folgenden Un-

gleichungen geniigen:
10z — 2y =0,
10y — 22 =0,
z+ys12.

Offenbar ist F eine Korrespondenz aus N in N.

a) Man nenne fiinf Paare (z, y) mit zFy.

b) Man bestimme Bg(0), Br(1), B(2), Br(5), Br(6), Bp(10), Bp(12), Bp(15).
¢) Man bestimme Up(0), Uz(1), Up(2), Us(5), Ux(8), Ux(10), Ug(12), Ux(15).
d) Man bestimme D(F) und W(F).

e) Man beschreibe F durch eine 0, 1-Matrix.

1) Man bestimme F-1.

g) Man bestimme F2 = Fo F.

. Man beweise:

a) Ist f Abbildung von M auf N, g Abbildung von N auf P, so ist g o f Abbil-
dung von M auf P.

b) Ist f 1-1-Abbildung von M in N, g 1-1-Abbildung von N in P, so ist go f 1-1-
Abbildung von M in P.

c) Ist f Abbildung von M in N, g Abbildung von N in P und g o f Abbildung von
M auf P, so ist auch g Abbildung von N auf P. (Ist dann stets auch f surjektiv?)
d) Ist f Abbildung von M in N, g Abbildung von N in P und g ¢ { eineindeutig, so
ist auch f eineindeutig. (Ist dann stets auch g eineindeutig?)
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5. * Man beweise :
a) Eine Abbildung f von M in N ist genau dann surjektiv, wenn fiir beliebige
Abbildungen g,, g; von N in P gilt:
fqof=gpof=>q=2a-

b) Eine Abbildung f von M in N ist genau dann injektiv, wenn fiir beliebige
Abbildungen g,, g, von P in M gilt:
feqp=fom=>pn =g
(P ist dabei eine beliebige Menge).
c) Man beweise ¢) und d) aus Aufgabe 4 mittels a) und b).
Beweis von a):
«) Es sei f Abbildung von M auf N, und es seien g,, g, Abbildungen von N in P mit

g, 0 f = g3 0 |. Zu zeigen ist g; = g,, d. h. g,(z) = g,(z) fiir alle z € N. Es sei dazu z ein

beliebiges Element aus N. Da f surjektiv ist, gibt es ein z € M mit z = f(z). Dann gilt
@ 0N () = alfx) = 9=2), (G20 () = %s(f() = 0a(2)-

Wegen g,0f =g;0f ist (g, 0/) () = (g2 0 /) () und folglich g,(z) = gy(=), was zu be-

weisen war. .

B) Es sei nun umgekehrt f eine Abbildung von M in N, so daB fiir beliebige Abbildungen

g1 gy von N in P aus g, o f = g, o f stets g, = g, folgt. Zu zeigen ist, daB f surjektiv ist.

Angenommen, es gibt ein y, € N, das nicht Bild eines gewissen Elementes aus M ist. Dann

seien a,, a, zwei verschiedene Objekte, und fiir § = 1, 3 sei

[y for yeNN W,
0y = { o far y=y,.
Offenbar sind g,, g, Abbildungen von N in N v {a,, 6y} mit ¢, & g,, aber g0 f =g, 0f,
im Widerspruch zur Voraussetzung.
6. Fir eine beliebige reelle Zahl z bezeichne [z] die groBte in z enthaltene ganze
Zahl, d. h., es sei [z] € Z mit [z] < z < [z] + 1.
a) Man bestimme
1 1
[—15), [—3], 03, (13, [y2], [2,5), (), [3;].
b) Man zeige, da8 fiir beliebiges g € Z und z € R folgendes gilt:

g +=21=9+[=]
[g-2)=g-[z], fallsg =0 ist.

c) Welche Beziehungen bestehen zwischen

[z + ylund [z] + [y] bzw. [z-y]und [2]-[y]*
d) Man analysiere die durch

/(=) :=[2]
definierte Abbildung von R in Z.
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* Man analysiere die fiir z, y € N durch

c(z,y) = w'
1[V8z+1+1]||V8z+1—1
cy(x) i=2 -3 2 2 s

Ca(Z) 1= []8:+1.+ 1] (1+[ Se+1- l])—z—l

2 2
definierten Abbildungen (wobei [...] die in Aufgabe 6 erklirte Bedeutung hat).
a) Man zeige, daB ¢? die 1-1-Abbildung von N X N in N ist, die die Paare natiir-
licher Zahlen in folgender Reihenfolge ,,durchnumeriert‘:

(= y) Az, y) Bemerkung

(0,0) 0 z+y=0

(0,1)
(1,0)

0,2)
1,1)
2,0

0,3)
1,2)
2,1)
(3,0

}z+y=l

}z+y=2

z+y=3

WO I®D | Gl W | N

(Cantor-Numerierung).
b) Fiir beliebiges z, y € N gilt
enlc¥a 9) =2, en(eHm y) =y, Hen(@), cnla)) = =.
¢) Was kenn man von den Funktionen
Az, y, 2) := Xc¥z, y), 2),
() := 021(521(3)) ) Cag(x) i= c22(¢2l(z)) y C33(x) 1= Caa(2)
behaupten?
d) Man definiere analoge Funktionen c*und ¢;; (1 <+ < k) firk = 4.

. Man analysiere die fiir z, y € N durch

=, y):= 22y + 1)
definierte Abbildung von N XN in N.

Bemerkung: Der kleine Unterschied zu den Resultaten fiir c? aus Aufgabe 7 ist beabsich-
tigt; wie miBte man die Definition abindern, damit dieser Unterschied verschwindet?
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10.

11.

12.

13.

14.

. Man analysiere die fiir (z, y) < R X R durch

/(z'y):= 1—y1—2
definierte Abbildung.
a) Es sei F die Menge aller Paare der Form ((a, b, ¢), z) mit a, b, ¢, z € R und
az? + bz + ¢ = 0. Was kann man iiber F aussagen?
b) Es sei F die Menge aller Paare der Form ((a,,b,, €y, @y, by, &), (2, y)) mit
ay, by, ¢y, ag, by, €2, 7,y € R, a2 + by = ¢y, asz + byy = ¢, Was kann man iiber
F aussagen?
¢) Es sei F die Menge aller Paare der Form ((», g), (,y)) mit p,¢, 2,y € R,
z 4+ y = 2p, -y = ¢. Was kann man iiber F aussagen?
a) Man konstruiere eine 1-1-Abbildung von M = (1, 2, 3, 5, 6, 10, 15, 30} auf
die Menge B({0, 1, 2}), so daB fiir beliebige m, n ¢ M folgendes gilt:

m|n & fim) S fin).
b) Man veml]gemeinen_a dieses Resultat auf die Menge B({0, 1, ..., k}) (k€ N).

Hinweis: Bei b) darf benutzt werden, daB es unendlich viele Primzahlen gibt und eine
natirliche Zahl sich bis auf die Reihenfolge der Faktoren nur auf eine Weise als Produkt
von Primzahlen darstellen laSt.

a) Man berechne die Potenzen f, /2 = fof,f* = fo fo/, ... der Permutation

1234
/=(4123)‘

b) Es sei M die endliche Menge (1,...,2} (n € N), f€ T(M) (in diesem Fall
nennt man T (M) auch die symmetrische Gruppe &,). Man zeige, daB es eine
natiirliche Zahl k£ > 0 gibt, so daB f* = e, ist (die kleinste derartige Zahl & wird
die Ordnung von f genannt).

Hinweis: Beim Beweis von b) darf benutzt werden, daB die Menge T(M) endlich ist.

Man stelle die folgenden Permutationen als Produkt von elementefremden Zyklen
und als Produkt von Transpositionen dar
a (1234567 8910)
4562137108 9)°
1 2345678910
) (2109761834 5)'

Es sei

12 ...n
/=(. . )
Uy Ty eee 2y

eine Permutation der Menge {1, ..., n}. Man sagt, da8 die Zahlen %, 7, in f in In-
version stehen, wenn 4 < v und 4, > 7, ist. Mit I(f) werde die Anzahl der Zahlen-
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15.

16.

paare (4, %,) bezeichnet, die in f in Inversion stehen. f heiBt gerade oder ungerade
Permutation, je nachdem, ob I(f) gerade oder ungerade ist.

a) Man ermittle I(f) fiir die Permutationen aus Aufgabe 13 und stelle fest, ob
diese Permutationen gerade oder ungerade sind.

b) Man zeige, daB jede Transposition eine ungerade Permutation ist.

c) Ist f eine gerade (ungerade) Permutation und ¢ eine Transposition, so sind
f ot und 7 cf ungerade (gerade) Permutationen.

d) Eine Permutation f ist genau dann gerade (ungerade), wenn sich f als Produkt
einer geraden (ungeraden) Anzahl von Transpositionen darstellen lagt.

e) Ein Produkt zweier gerader oder zweier ungerader Permutationen ist gerade;
ein Produkt aus einer geraden und einer ungeraden Permutation ist ungerade.

f) Es gibt genauso viele gerade wie ungerade Permutationen (falls » > 1 ist).

* Bei dem bekannten 1Ger Spiel sind 15 mit den Zahlen 1 bis 15 numerierte
Téfelchen in der in der Abbildung angegebenen Weise in einem quadratischen
Rahmen verschiebbar angebracht (das 16. Feld ist frei). Durch horizontale oder
vertikale Verschiebung eines Téfelchens in das jeweils freie Feld kann die Reihen-
folge der Tifelchen permutiert werden. Welche Permutationen sind méglich?

1 2 3 4

5 6 7 8

9110 |11 |12

13 |14 115

Hinweis: Man ordne einer beliebigen Stellung & der Téfelchen die Zahl x(s) := I(f,) + &,
zu, wobei I(f,) die Anzahl der Inversionen in der durch Aneinanderreihen der Zeilen ent-
stehenden Permutation f, der Zahlen 1, ..., 15 ist und k, die Nummer der Zeile bezeichnet,
in der sich in der Stellung & das frele Feld befindet. Dann gilt: Eine Stellung s kann
genau dann aus der h Anfa llung‘* durch Verschiebungen erhalten

werden, wenn y(s) gerade ist.

Es seien M, N, M,, M,, M,, N,, N, beliebige Mengen. Man zeige, daB folgendes
gilt:

a) MXN~NXM,

b) My X (M X My) ~ (M, X M3) X M3,

c) Mi~M,AN,~N,=> M, XN, ~M;XN,,

d) M, n M, = @ = NMiWMs  NMix NMs,

e) NMixMo o (NM)Ms,  f) (N, X N,)¥ ~ N¥ x N¥,

g) M~N = BM)~B(N), h) M ~N = I(M)~IN),

i) M,~M,AN, S M, AN, S My AN, ~N,=>M,\ N, ~M,\ N,.
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17.

18.

Anleitung zu e): DefinitionsgemaB ist NM:*xM: die Menge aller Abbildungen von
M, X M, in N. Es sei f € NM:x¥s, Dann ordnet f jedem Paar (z, y) mit z € M,, y €/M,
ein eindeutig bestimmtes Element f(z, y) der Menge N zu. Es sei nun y, ein beliebiges Ele-
ment aus M,. Dann ist ’

/y.:= {(2; 1z, y0)): z € Mx}

eine Abbildung von M, in N mit f,(z) = f(z, y,) far z€ M,, d. h. f,, € N¥:. Hieraus
folgt, daB

D= {y, fy): y € My}

eine Abbildung von M, in NM: mit &(y) = f, fir y € M, ist, d. h. &, € (N¥1)¥:, Dann ist
aber

O := {(f, B)): f € NMuxMy

eine Abbildung von NMixMs jpn (N¥:)Ms, und man beweist, daB @ eine 1-1-Abbildung
von NMixMs guf (NM1)Ms jgt.

Analog konstruiert man in den Aufgaben d) und f) die als existent nachzuweisenden
1-1-Abbildungen.

Man konstruiere in der Menge M = (1, 2, 3, 4} Relationen R,, R,, R;, R,, fiir die
folgendes gilt:

a) R, ist reflexiv in M, R, ist transitiv, R, ist nicht symmetrisch.

b) R, ist reflexiv in M, R, ist nicht transitiv, R, ist symmetrisch.

¢) R, ist reflexiv, Ry ist nicht transitiv, R, ist asymmetrisch.

d) R, ist nicht reflexiv in M, R, ist nicht irreflexiv in M, R, ist transitiv, R, ist
symmetrisch.

e) Man bilde einige weitere Méglichkeiten.

Es bezeichne @, (n) die Quersumme der Dezimaldarstellung der natiirlichen Zahl n.
Es sei ferner M eine beliebige nichtleere Menge von natiirlichen Zahlen. Mit Ry,
werde die folgende Relation in M bezeichnet:

(%, Y) € By :© 2,y € M A Quo(z) = Quoly).

a) Ry ist fiir jedes M mit & — M < N eine Aquivalenzrelation in M.

b) Man beschreibe die Zerlegung By, in den Fillen ¥ = N, (0, 1, ..., 1000},
(35:i¢ NJ.

¢) Man gebe eine unendliche Menge M an, bei der 85, endlich ist (z. B. aus 11
Elementen besteht).

d) Man gebe eine unendliche Menge M an, bei der alle Restklassen endlich sind.

e) Man gebe eine Menge M au, bei der alle Restklassen endlich sind und zu jeder
natiirlichen Zahl n = 1 genau eine Restklasse aus genau n Elementen existiert.
f) Man gebe eine Menge M an, bei der zu jeder natiirlichen Zahl » = 1 genau eine
Restklasse aus genau » Elementen und genau eine unendliche Restklasse exi-
stieren.

g) Man bilde selbst weitere Beispiele.
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19.

20.

21.

Man charakterisiere die durch die folgenden Zerlegungen 3 der Menge R der
reellen Zahlen definierten Aquivalenzrelationen:

a) 8 ={lz, —=):z€ Ry},

b) 3={lg+=z:0=sz<l:g€Z},

) 3={lg+=g9eZ):0=sz<1}.

Man beschreibe die kanonische Zerlegung f = g o f der folgenden Funktionen:
a) f(x):=sinz (z€ R),

b) f(x):=2® (z€R),

o) fmy)=8z+4y O=<zy=1).

A

—
YRR
c=0 cz=4 c=8 €=12

Lﬁsnng zu ¢): Wertebereich der Funktion f(z, y) = 8z + 4y iiber dem ,,Einheitsquadrat**

= {(z,9): 0 < z, y < 1} ist des Intervall [0, 12]). Fiir einen gegebenen Wert ¢ aus diesem
Inurvoll besteht das volle Urbild Uy(c) aus allen Punkten (z, y) aus @ mit 8z + 4y = c.
Far beliebiges ¢ € R stellt in einem rechtwinkligen Koordmntanaystem die Menge aller

Punkte (2, y) mit 8z + 4y = c die Gerade y, durch den Punkt — der z-Achse mit dem

Anstieg —2 dar. Folglich besteht das Restsystem Q/R, aus aHen nichtleeren Durch-
schnitten von derartigen Geraden mit @ (vgl. Abb.). Dxe Abbildung f ordnet einem be-
liebigen Punkt (z, y) aus @ die ,,Strecke @ n y, auf der Geraden y, mit 0 < ¢ < 12 zu,
die durch (z, y) geht, und g ordnet einer solchen Strecke @ n y, den ,,Parameter* ¢ der
entsprechenden Geraden y, zu.

* Es sei M eine beliebige nichtleere Menge, R eine binire Relation in M. Unter
der transitiven Hiille von R werde die folgendermafen definierte Relation z(R)
verstanden:
(R):=N{S:SS MUXMARZS S transitiv}.

Man beweise :
a) RE(R)SMXM,
b) z(R) ist transitiv,
) NS MXMARESS AS transitiv = (R) S 8)

8

d) R transitiv & 1(R) = R,



Grundbegriffe der Abbild heorie 21

22.

e) B, R, SMXMAR SR, = (R) S t(Ry),

1) =(x(R) = =(R),

g) fiir beliebige z, y ¢ M gilt (z, y) € 7(R) genau dann, wenn eine endliche Folge
(Zgs Zy5 -+, ) (n = 1) von Elementen aus M existiert, so da 2, = v,z, = y
und (z;, Z44;) € Rist fir:=0,...,n — 1.

h) «(R) = Ru R2u R®u Rty

Bemerkung: Die Bedingungen a) bis c) beinhalten, daB r(R) die kleinste R umfassende
transitive Relation ist.

Eine Mengenabbildung (!) z, die die Bedingungen a), e) und f) erfiillt, nennt man einen
Hillenoperator (im vorliegenden Fall in M x M) Ist v ein Hullenoperawr, 80 nennt man die
Mengen X, fiir die 7(X) = X ist, die z-ab Damit beinhaltet d), daB
die 7-abgeschlossenen Mengen fiir den Operator der transitiven Hiille gerade die transi-
tiven Relationen sind. g) gibt eine explizite Charakterisierung der Relation z(R). h) ist nur
eine andere Formulierung fiir g).

Beweis: Das Mengensystem {S: S & M x M A R S8 A 8 transitiv) werde zur Abkiirzung
mit E(R) bezeichnet. Da alle Relationen S aus C(R) die Relation R umfassen, umfaBt nach
1.6.(10) auch der Durchschnitt (R) von &(R) die Relation R, und da alle S aus S(R) in
M x M enthalten sind, ist auch 7(R) in M x M enthalten. Es gilt also a). Zum Beweis von
b) seien z, y, z Elemente aus M mit (z, y) € 7(R) und (y, z) € t(R). Dann gehéren (z, y)
und (y, z) zu allen Relationen S aus S(R). Da alle diese Relationen transitiv sind, ge-
hért dann auch (z,z) zu jeder Relation S aus S(R). Folglich gehért (z, z) zum Durch-
schnitt t(R). Zum Beweis von c) sei S, eine beliebige Relation in M, die transitiv ist und
R umfaBt. Dann gehért S, zu E(R), und es ist wegen 1.6.(9) nun 7(R) S §,. Ist R tran-
sitiv, so ist R in E(R) enthalten, also 7(R) S R und damit wegen a) sogar (R) = R. Und
wegen b) ist im Fall z(R) = R die Relation R transitiv. Es gilt also d). Zum Beweis von e)
seien Ry, R, Relationen in M mit R, S R,. Dann ist das System &(R,) Teilsystem von
&(R,), und nach 1.6.(7) gilt T(R,) S 7(R,). Da 7(R) transitiv ist, gilt wegen d) auch f). Zum
Beweis von g) sei #(R) die Relation in M, die auf ein Paar (z, y) von Elementen aus M
genau dann zutrifft, wenn es eine endliche Folge (z, z,, ..., z,) (2 = 1) von Elementen
sus M gibt, so daB z, = 2, z, = y und (z;, z;y,) € R fiir i = 0, ..., n — 1 gilt. Offenbar
gilt R S #(R) S M x M, und #(R) ist transitiv (Beweis!). Daher gehért #(R) zu S(R)
und es gilt 7(R) S #(R). Es sei nun umgekehrt (z, y) € 7(R), und es sei (o, ..., Z,) (n = 1 .
eine Folge von Elementen aus M mit 2, = 2,2, = y und (2}, z;4,) € R fir £ =0, ...)°
n — 1. Es sei ferner § eine beliebige Relation aus S(R). Wegen R S 8 gilt (z;, 2j4,) € §
firi =0,...,n — 1, und auf Grund der Transitivitit von S folgt aus (z,, z,) € 8, (z;, z,)
€8, (x4 %3) €8, ..., (Tyiys Ty) € S der Reihe nach (2, 7,) € S, (Zy, Z3) € S, ..., (2o, Zy) € 8,
d. h. (z,y) € 8. Also ist #(R) in jeder Relation S aus &(R) enthalten, und folglich gilt
auch #(R) S t(R).

Es sei M eine beliebige nichtleere Menge, R eine biniire Relation in M. Unter der
symmelrischen Hiille von R werde die folgendermaBen definierte Relation o(R)
verstanden:

o(R):=N{S:SS MXMARES S AS symmetrisch}.
Man beweise.
a) o(R) ist die kleinste R umfassende symmetrische Relation.
b) o ist Hiillenoperator in M X M.
c) R symmetrisch & R cs-abgeschlossen (d. h. ¢(R) = R).
d) o(R) = RuR-1.
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23.

265.

26.

27.

Es sei
ou(R):=N(S:SS MXMARZS S reflexiv in M}

(reflexive Hiille von R). Man formuliere und beweise die einschligigen Eigenschaf-
ten.

. Es sei M eine beliebige Menge, R eine beliebige Relation in M. Es bezeichne z(R),

o(R), gu(R) die transitive, symmetrische bzw. reflexive Hiille von R. Man beweise :
a) U(t(R)) =1(o(R)), olen(R)) = en(o(R)), t(eu(R)) = ou(*(R))
(d-h.cor=700,000y =0x00, TOQy =0onOT).
b) a(t(R)) ist die kleinste symmetrische und transitive Relation, die R umfat
(analog fiir o(ou(R)), 7(em(R)))-
€) 607, 00 gy, 70 oy sind Hiillenoperatoren in M X M.
d) oo t(R) = R & R symmetrisch und transitiv (analog fiir ¢ 0 gy und 7 gy).
e) Fiir beliebige =,y ¢ M gilt (z,y) € a(r(R)) genau dann, wenn eine endliche
Folge (zo, 2y, ..., 2,) (n = 1) von Elementen aus M existiert, so daB z, =z,
2, = y und (z;, Z;,;) € R oder (2.4, z;) € R fiir 0 < 7 < n gilt.
f) Man charakterisiere o 0 g und 7 o gy analog zu e).
Es sei M eine beliebige nichtleere Menge, R eine beliebige Relation in M. Es sei
ferner

w(R):= N{8:8 S M XM AR S 8 S Aquivalenzrelation in M}.

Man beweise:
a) o(R) ist die kleinste Aquivalenzrelation in M, die R umfaBt.
b) w ist Hiillenoperator in M X M.
¢) o(R) =toc0gu(R).
d) R Aquivalenzrelation in M & w(R) =
e) Fiir beliebiges z, y € M gilt (z, y) € w(R) genau dann, wenn z = y ist oder eine
endliche Folge (z,, ,, ..., z,) (» = 1) von Elementen aus M existiert, so daB
Zo = x, 2y, = y und (z;, T;4,) € R oder (zi,,, z;) € R fiir 0 <7< n gilt.
f) o(B, n B;) = o(R)) r. w(Ry)
(gilt Analoges auch fiir die Vereinigung?).
a) Man bilde die transitive Hiille der folgenden biniren Relation Rin M = {0, 1,
2,3,4):
R ={(0, 1), (1, 2), (2, 3), (4, 2)}.
b) Man bilde die kleinste Aquivalenzrelation in M, die R umfaBt.

Es seien R,, R,, R; Relationen iiber M (d. h. Teilmengen von M X M). Man zeige,
daB folgendes gilt:

8) (R, nR) =R n B,

b) (B, \ R;)! = Rfl'\ R,
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29.

30.

c) Byo(RyuRs) = (R oR)u (R ORy),

d) (ByuRy)o R, = (R, 0 Ry) u (Ryo Ry),

©) Byo(RynRy) S (ByoRy)n (R0 Ry),

f) (RynR)oR, S (RyoR)n(RyoR)),

g8) RioR;\R,oRy S R o(R,\Ry),

B) RyoR\BoR, S (R \R)OR,. |

Man zeige ferner, da die umgekehrten Inklusionen in e) bis h) im allgemeinen
falsch sind.

. Es sei M eine beliebige Menge, R & M X M, R reflexiv in M und R transitiv. Es

sei T die fiir z, y ¢ M durch
zTy :¢ zRy AyRz
definierte binire Relation in M. Man beweise:
a) T ist Aquivalenzrelation in M.
b) Es bezeichne [x] die Restklasse des Elements z ¢ M modulo 7. Dann gilt:
zRy Az, € [z] Ay, € [y] = 2By,
(d. h., stehen zund y inder Relation R, so auch alle Elemente z; < [z] und y,€ [y]).
¢) Daher wird durch
[z)R[y):© zRy (z,y € M)
eine binire Relation in M/T definiert. Diese ist eine reflexive teilweise Ordnung
in M/T.

Es seien M,, M, beliebige nichtleere Mengen, und es bezeichne It das System
aller Paare (X, ¥Y) mit X S M,, Y S M,. In M werde die folgende binire
Relation betrachtet:

(X, V)X )i XY, EXo0Y, (X, X, SEM,;Y,Y,SM,).
a) Man zeige, daB < eine Quasiordnung in It ist.
b) Wann und nur wann ist < eine teilweise Ordnung?
¢) Man fiihre in diesem Beispiel die Uberlegungen der Aufgabe 28 durch.
d) Man illustriere das Verfahren am Beispiel
M,=(0,1,2,3}, M,={(0,24).
Es sei M eine beliebige nichtleere Menge, R eine reflexive teilweise Ordnung in M.
Fiir ein beliebiges y € M sei
R,:= (z:2€ M AzRy).
Ferner sei
Mg := (R,:y € M}.
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31

Man beweise:
a) Die Zuordnung
Fly):=R, (yeH)
ist eine 1-1-Abbildung von M auf Mz, und es gilt bei beliebigem y,, y, € M
uiRy, & F(?h) S F(ys).
b) Fiir jedes z, € M ist
R, =N(R,:y€ Maz;c R}
c) Die Relation R ist genau dann linear, wenn fiir beliebige ¥,y € M ein
ys € M existiert, so daB
R, R, =R,
gilt (d. h., wenn My mit zwei Mengen X,, X, stets auch deren Vereinigung ent-
hilt).
Nach Aufgabe 30 besitzt fiir jede reflexive teilweise Ordnung R in M das System
M = Mg der Mengen
R,:= {x: 2 € M A zRy}
die folgenden Eigenschaften:
(i) Fiir jedes z, € M gilt
N{X: XeMnaz,€ X} M.
(ii) Zu jedem X, € M existiert genau ein z, € M mit
Xo=N{(X:XeMArz,€ X}.
Man zeige, da8 umgekehrt zu jedem Mengensystem I & B(M), das die Eigen-
schaften (i) und (ii) besitzt, genau eine reflexive teilweise Ordnung R existiert,
s0 daB M = My, ist. Diese teilweise Ordnung ist genau dann eine totale Ordnung,

wenn I Vereinigungs-abgeschlossen ist, d. h., zusitzlich die folgende Eigenschaft
besitzt:

(i) A(XKEMAX,eM=>X,uX,eM).
XXy

Anleitung: Man zeigt, daB die durch
ZRy:@zeN{X: XeMarye X}

definierte Relation das Verlangte leistet.

Bemerkung: Das in den Aufgaben 30 und 31 erhal Resultat kann als Gegenstiick
zum Haup iber Aquival lati fir teilweise und totale Ordnungen angesehen
werden.

. Es sei R, eine binire Relation in M,, R, eine binire Relation in M,. Unter R, * R,

werde die folgendermaBen definierte Relation in M, X M, verstanden:
(Z1, Y1) By * Ry (22, 92) 1 o Ryzy A Yy Royy (71, 72 € M5 91, 92 € M).
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33.

Man beweise :
a) Ist R, reflexiv in M, R, reflexiv in M,, so ist R, * R, reflexiv in M, X M,.
b) Sind R, und R, transitiv, so ist auch R, * R, transitiv.
c) Sind R, und R, symmetrisch, so ist auch R, * R, symmetrisch.
d) Sind R, und R, antisymmetrisch, so ist auch R, * R, antisymmetrisch.
e) Ist R, Aquivalenzrelation in M,, R, Aquivalenzrelation in M,, so ist R, * R,
Aquivalenzrelation in M, X M,. Man beschreibe das Restsystem M, X M,/R, * R,.
f) Ist R, reflexive teilweise Ordnungin M,, R, reflexive teilweise Ordnung in M,,
80 ist R, * R, reflexive teilweise Ordnung in M, X M,. Gilt Analoges fiir totale
Ordnungen?
Es sei M, die Menge aller Zweierpotenzen (2°, 21,28, 28, ...}, R, die iibliche
=-Relation in N, eingeschrinkt auf M,. Analog sei M, die Menge aller Dreier-
potenzen {3°, 31, 32, 33, ...}, R, die Einschrinkung der Relation ,,<‘ auf M,.
Dann sind R;, R, totale Ordnungen in M, bzw. M,. Man beweise, daB folgendes
gilt:
a) Die Abbildung

Pz, y):=2-y (x€M,yeM,)
ist eine 1-1-Abbildung von M, X M, in N (genauer: auf die Menge M aller Pro-
dukte 2¢- 3! mit 7, j € N).
b) (21, 1) By * R, (25, y2) © Py, 1) | P2, y2)
(vgl. Aufgabe 32).
c) Die Teilbarkeitsrelation ist in M keine totale Ordnung.
d) Folglich (!) ist auch R, * R, keine totale Ordnung in M, X M,.
Bemerkung: Die Beding a) und b) besagen, daB die Abbildung & ein Isomorphis-

mus der durch R, s R, teilweise geordneten Menge M, X M, auf die durch die Ein-
kung der Teilbarkeitarelation teilweise geordnete Menge M ist. In d) soll aligemein
gezeigt werden, daB von zwei isomorphen teilweise geordneten Mengen entweder beide

total geordnet sind oder keine total geordnet ist.

Es sei M eine nichtleere Menge, die mindest. drei El 1te enthalte, und R
eine irreflexive totale Ordnung in M. Mit {z werde die folgende ternire Relation
in M bezeichnet:

(%, ¥, 2) € (g (xRy AyRz) v 2Ry AyRx) (2,y,2€ M).
Man nennt { die von R erzeugte Zwischenrelation. Offenbar ist (g = {p-.. Man
beweise, daB fiir {z folgende Eigenschaften gelten:
a) (T, p,2)ELr>zFy+zF7,
b) (@, v,2) € Lr=> (2, ¥, 2) € S
¢) (%,9,2) €Lr=> (2,2, 9) § Lry
dztyFz+o>@,92) €LV (Y 22) €V (5Y) €L,
e) (ty,2)€Elprutanufyrustz=> (2,yu) €LV (4, Yy, 2)€ L.
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* Es sei nun umgekehrt { eine ternire Relation in M, die folgende Eigenschaften
besitzt (eine abstrakte Zuwischenrelation):
() @my2)el>z+y+2z+2,
G) (zy2)€l> @y )L,
(ili) (z,9,2)€L=> (2, 2,9) 4L,
(iv) s+ yFz+z>@myAElvznrelviznny el
W @y eElavtkarutyrutz=>(2,y,w) €LV (0, y,2)€L.
Es seien ferner o, ¢ Elemente aus M mit o 3 e. Wir betrachten die folgende
binére Relation <, in M (man veranschauliche sich die Relation <, an
einem Zahlenstrahl).
2<eay:® [@oelal(oe)etalzmy ael)
vy=ov(@oy) el
viz=onllo,y,e)€lvy=ev(oey) €l
v[e,ze)etal(0y. )€l zy) el
’ vy=ev(z,e,y)€(’]]
viz=-en(o,e1y)€ ]
vioe,z)€LA(ez,y) €]
1 1
I L) 1
x 0 y e
Man beweise:
8) <(o, it eine irreflexive totale Ordnung in M.
b) Ist { = {z, wobei R eine gegebene irreflexive totale Ordnung in M ist, so
stimmt <, im Fall (0, ¢) € R mit R und im Fall (0, ¢) ¢ R (@ (e, 0) € R) mit
R-1 iiberein.

¢) {,,, stimmt mit { iiberein.

Anleitung: Es empfiehlt sich, aus (i) bis (v) dchst die folgend i Eigen-
von { herzuleiten:
(vi) (@, y,2) €CA (Y, 2w €L (2,2, W) €L,
(vii) (2, 9,2) €L A (W, 2, w) €L > (2w, w) €L,
(viii) (@, 9, 2) €L A (7, 2, W) €L (0, 2, w) €0,
(ix) (@, y,2) €L A (z, 2, 8) €L > (2 4, w) €L
Entsprechend der Definition von <, erfordert der Beweis eine groSe Anzahl von Fall-
unterscheidungen.

Zusatzaufgabe: Unter Voraussetzung von (i) bis (iv) gilt:

(v) & (vi) A (viii)
& (vii) A (ix).
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Es sei M eine nichtleere Menge, die wenigstens drei Elemente enthalte, und R
eine irreflexive totale Ordnung in M. Es sei ferner » ¢ M und gz die folgende
terniire Relation in N = M v {w}:
or:={@92):2,y,2E MA(z,y) € RA(y,2) € R}
vi(z,9,2):2,y,2€ MA(y,2) € RA(2,2) € R}
vz 9,2):2,926E MA(2,z) € RA(2,9) € R}
i@y, @):7,y€ M A(z,9) € R)
uf(@,w,y):2,y€ MA(y z)€R)
vi(w z,9): 7,y € M A(z,y) € R).
Man nennt g die von R erzeugte zyklische Ordnung (vgl. Abb,).

z

y
Man beweise, daB gy folgende Eigenschaften besitzt (a, b, ¢, d sind jetzt beliebige
Elemente aus N = M u {w}):
a) (@ bc)€er>axbFc+a,
b) (a,b,¢) € or=> (a, ¢, b) ¢ gr,
c) (a,b,¢) € er=> (b: ¢, a) € gr,
d)a+b+cta=(abc)cerv(dac)€er
e) (@, bc)copad+andF+bad+c=>(a,bd)Egpv(db,c)€er-

* Es sei nun umgekehrt ¢ eine in der Menge N definierte ternire Relation, die
folgende Eigenschaften besitzt (eine abstrakte zyklische Ordnung):

(i) (@bdbe)co=>a+bxc+a,
(i) (a,b,¢)€e= (a,c,b) o,
(iii) (a,d,¢)€e=> (b,c,a)€ 0,
(iv) abd+c+a=>(a,bc)cpv(bac)€o,
(v) (@bc)cornd+and+bad+c=(a,0,d)€ov(dbec)€o.
Es sei ferner w ein beliebiges, aber festes Element aus N. Wir betrachten die
folgende biniire Relation <, in M = N \ {0)}:
<,y : & (@ yw)ce (x,y€M).
Man beweise :
a) <, ist eine irreflexive totale Ordnung in M.
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39.

b) Ist o = gg, Wobei R eine gegebene irreflexive totale Ordnungin M ist und w
das bei Bildung von N zu M hinzugenommene Element, so stimmt <, mit R
iiberein.

¢) g, stimmt mit g iiberein.

Anleitung: Es empfiehlt sich, aus (i) bis (v) ichst die folgende weitere Eigenschaft
von g herzuleiten:

(vi) (@ b,c)€erdd,c)€e= (a,bd)€Een(adc)€e.
Zusatzaufgabe: Man zeige, daB unter Voraussetzung von (i) bis (iv) folgendes
gilt:

(v) & (vi).
* Es sei N eine nichtleere Menge und g eine zyklische Ordnung in N (vgl.
Aufgabe 37). Man zeige, daB dann auch die durch

ieti={(a,bc): (b ac) €l

definierte Relation eine zyklische Ordnung in N ist, die man die zu g inverse zy-
klische Ordnung nennt. Man zeige, daB fiir eine beliebige irreflexive totale Ord-
nung R stets

er = 7'
gilt (vorausgesetzt, daB gz und gz beide in N = M u {w) mit w ¢ M gebildet
werden).

* Es sei N eine nichtleere Menge, dic wenigstens vier Elemente enthalte, und ¢
eine abstrakte zyklische Ordnung in N. Mit 7, bezeichnen wir die folgende qua-
terniire Relation in N:

(@,b;c,d)€r,: [(a,b,c)ég/\(b,a,d)e elv i ac)conl(abdd)cpo]
(gelesen: a, b trennt c, d).

d
a
b
c
Offenbar ist
T = Tgpre

Man zeige, daB 7, folgende Eigenschaften besitzt:

a) (a, b;¢,d) € 7,=> a, b, c, d paarweise verschieden,
b) (a,b;¢,d) € 7,= (b,a;¢,d) € 7, A (¢, d; a,B) € 7,
c) (a,b;¢c,d)€t,=> (a,¢;b,d) 4 7,
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d) a, b, ¢, d paarweise verschieden
= (a,b;c,d) €, v(c,a;bd)ct,v(bc;a,d)ET,,
e) (@ b;c,d)€r,A (b, c;d e) €1, (c,d;e,a) € 7,

. * Es sei nun umgekehrt v eine abstrakte Trennbarkeitsrelation in N, d. h. eine

quaternire Relation in N, die die Eigenschaften a) bis e) aus Aufgabe 39 erfiillt,
und w ein beliebiges festes Element aus N. Dann wird durch
@y, €le:® @2y, €T (2,926 M =N\ (o)),

eine abstrakte Zwischenrelation in M definiert (vgl. Aufgabe 35). Die von dieser
Zwischenrelation induzierten zueinander inversen irreflexiven totalen Ordnungen
erzeugen zueinander inverse zyklische Ordnungen, die ihrerseits gemi8 Aufgabe 39
zu 7 zuriickfiihren.

Es sei M eine beliebige nichtleere Menge und R eine reflexive teuweise Urdnung
in M. Es sei ferner 4 eine nichtleere Teilmenge von M und z € M. Dann defi-
niert man:
(i) z ist eine obere Schranke von A beziiglich R
@A\ (yed= yRa),
v

(ii) z ist eine untere Schranke von A beziiglich R
& A\ (y € 4= zRy),
v

(iii) z ist eine obere Grenze von A beziiglich R
:& z ist obere Schranke von A beziiglich R
A A (y obere Schranke von 4 = xRy),
”

(iv) z ist eine untere Grenze von A beziiglich R
:& z ist untere Schranke von A beziiglich R
A A (y untere Schranke von 4 = yRxz),
v

(v) z ist ein groftes Element von A beziiglich R
:oz€ AAA\(y€ A= yRx),
v
(vi) x ist ein kleinstes Element von A beziiglich R
oz€AAN(y€ A= xRy),
v
(vii) z ist ein mazimales Element von A beziiglich R
oz2z€AA—\/(y€EAAry +2ArRy),
' v
(viii)  ist ein minimales Element von A beziiglich R

oz€AAN_\V(WEAry £ xAryRa).
v

Statt ,,groBtes Element‘, ,kleinstes Element®, ,,obere Grenze“ und ,,untere
Grenze‘‘ sagt man auch ,,Maximum®, , Minimum®, ,,Supremum*, , Infimum*.
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Offenbar sind die Begriffe (ii), (iv), (vi), (viii) in dem Sinne ,,dual‘‘ zu den Be-
griffen (i), (iii), (v), (vii), daB bei Ubergang zu R-1sich die Begriffe paarweise ver-
tauschen.
Man beweise :
a) z obere Schranke von A beziiglich R A zRz’

= z’ obere Schranke von A beziiglich R.
b) z groBtes Element von 4 beziiglich R

= z obere Grenze von 4 beziiglich R.
¢) = groBtes Element von A beziiglich R

= z maximales Element von 4 beziiglich R.
d) z, obere Grenze von A beziiglich R

A 3 obere Grenze von A beziiglich R= z, = z,.
e) x, groBtes Element von 4 beziiglich R

A 4 groBtes Element von A beziiglich R= z, = z,.
f) Man formuliere die dualen Sétze.
Aus d) und e) folgt, daB das Supremum (Infimum) und das Maximum (Minimum),
wenn sie existieren, eindeutig bestimmt sind, so daB hier der Gebrauch des be-
stimmten Artikel (das Supremum usw.) gerechtfertigt ist. Bei oberer Schranke
und maximalem Element ist das im allgemeinen nicht der Fall, so da8 man hier
den unbestimmten Artikel (eine obere Schranke, ein maximales Element) ver-
wenden muB.
g) Man belege durch Beispiele, daB teilweise Ordnungen existieren, beziiglich
denen Mengen ohne obere Schranken, mit oberen Schranken, aber ohne obere
Grenze, mit oberer Grenze, aber ohne Maximum, mit mehreren maximalen Ele-
menten existieren.
h) Ist Reine totale Ordnung, so fallen die Begriffe ,,groBtes Element* und ,,maxi-
males Element‘‘ zusammen (analog ,kleinstes El 1t und ,,minimales Ele-
ment*‘).
i) Bei einer totalen Ordnung R enthilt jede nichtlecre endliche Teilmenge ein
groBtes (und ein kleinstes) Element.

* Es sei M eine beliebige nichtleere Menge, R eine teilweise Ordnung in M. Man
sagt, daf M beziiglich R einen Verbund bildet, wenn in M zu beliebigen Elementen
z,y € M fiir die Zweiermenge {z, y} das Supremum und das Infimum existieren.
Das Studium dieser Strukturen bildet den Gegenstand eines eigenen Gebietes
der Mathematik, der sogenannten Verbandstheorie. Spezielle und besonders wich-
tige Verbiinde sind die sogenannten Booleschen Algebren.

a) Man verifiziere, daB die Menge %B(E) aller Teilmengen einer gegeb Menge
E beziiglich der Inklusion ,, & einen Verband bildet. Dieser Verband ist sogar voll-
stindig, d. h., in P(E) existieren nicht nur zu allen Zweiermengen {X,, X,} mit
X,, X; ¢ B(E) (also X,, X, S E) das Supremum und das Infimum, sondern
sogar zu jedem Teilsystem ¥ von $B(E). Was ist in diesem Fall das Supremum
bzw. Infimum?
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b) Man konstruiere simtliche Typen von Verbiinden aus 1, 2, 3, 4, b Elementen.

Bemerkung: Endliche Verbinde und allgemeine teilweise geordnete Mongen ver-
anschaulicht man sich gern durch ihre ten Hasse-Di
symbolisiert das folgende Diagramm die teilweise Ordnung {(0, 0), o, l), (o, 2). (0, 3),
(0, 4), (1,1), (1, 2), (1, 3), (1, 4), (2,2), (2,4), (3,3), (3,4), (4,4)} in der Menge {0, 1,2, 3, 4},
d. h. die reflexiv-transitive Hiille der Relation

10, 1), (1, 2), (1, 3), (2, 4), (3, 4)}
aus allen den Paaren (g, b), zu denen im Diagramm ein Pfeil von a nach b existiert.

4

1

0

c) Man zeige, daB die Menge E(M) aller Aquivalenzrelationen in M beziiglich
der Inklusion einen Verband bildet. Infimum zweier Aquivalenzrelationen R,, R,
in M ist die Aquivalenzrelation (!) R, n R,, Supremum die Aquivalenzrelation
(R, v R,) (vgl. Aufgabe 25).

d) Man beweise:

M, Verband beziiglich R, A M, Verband beziiglich R,
= M, X M, Verbend beziiglich R, * R,

(vgl. Aufgabe 32).
Es sei E eine beliebige Grundmenge. Dann kann man in der Menge B(E) X B(E)
auf mannigfache Weise binire Operationen einfiihren, z. B.

(M), N)) 0y(My, Ny) := (M, n My, Ny n N,),

(M), Ny) 0y(My, Np):= (M, 0 My, Ny u N,),

(M, Ny) 0f(My, Ny) := (M u Ny, Ny 0 M),

(M, Ny) 0y(M, Ny):= (M, ¢ Ny, My 0 Ny).

Man studiere diese und analoge Operationen (auch solche mit ,,\‘‘ und ,,A*)
auf ihre Eigenschaften.

. Es sei o, eine binire Operation in M, o, eine binire Operation in M,. Mit o, , sei

die folgenderma Ben definierte Operation in M, X M, bezeichnet:

(1 1) 01,3(%2, Y2) := (210173, Y103Y2) (1, 22 € My Y1, 42 € My).
Man beweise:
a) Mit o,, o, ist auch o,,; kommutativ.
b) Mit o,, o, ist auch o, ; assoziativ.
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45.

46.

47.

48.

¢) Mit o,, 0, ist.auch o, , idempotent.
d) Ist e, neutral fiir o, und e; neutral fiir o0,, 80 ist (e,, €;) neutral fiir o, 5.
e) Ist o, distributiv beziiglich o] und o, distributiv beziiglich o;, so ist o,
distributiv beziiglich of 5.
f) Man nenne Beispiele mit M; = M, = R.
Es sei M eine beliebige nichtleere Menge und o eine bindre Operation in M. In
der Menge M¥ aller Abbildungen von N in M werde die folgende Operation § be-
trachtet:

(fog) () := f(z)og(x) (z€ N;f, g€ M").
Wie iibertragen sich die Eigenschaften von o auf 4?

Fiir beliebiges «, § € R sei o, 4 die durch

zo,y:=ox+ Py (z,y€R)

definierte binire Operation in R. Man untersuche o, ; auf Assoziativitit, Kommu-
tativitdt, links- bzw. rechtsseitige Distributivitdt in bezug auf Addition, Multi-
plikation sowie o, (y, € R), Monotonie beziiglich < und <, Existenz von links-
bzw. rechtsseitig neutralen Elementen.

Anmerkung: Man beachte, daB die Antwort wesentlich von der Wahl der Parameter
«, B abhingt!

In der Menge aller Paare (z, y) von reellen Zahlen werden die folgenden Operatio-
nen betrachtet:
(@1 ) + (22 ¥2) = (%1 + %2 41 + ¥2)»
(21 91) * (T2, ¥3) 1= (T1%3 — Y1¥2 Ty + Tat)-
Man untersuche diese Operationen auf Kommutativitit, Assoziativitat, Distri-
butivitit, Existenz neutraler Elemente, Kiirzbarkeit und Umkehrbarkeit.
* Man beweise die folgenden Behauptungen:
a) M endlich (R) A N & M = N endlich (R),
b) M endlich (R)=> P(M) endlich (R),
¢) M endlich (R) A N endlich (R)=> M¥ endlich (R),
d) M endlich (D) A N & M= N endlich (D),
e) M endlich (D)= M v {z} endlich (D),
f) M unendlich (D)= ‘B(M) unendlich (D),
g) M unendlich (D) A N &= @ = M X N unendlich (D).
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13.

14.

15.

16.

Das System der natiirlichen Zahlen

Kontrollfragen

. Was beinhaltet das Peanosche Axiomensystem?
. Wie lautet die Beweismethode der vollstindigen Induktion und die der ordnungs-

theoretischen Induktion?

. Welches ist die Problematik der induktiven Definitionen?
. Wie lauten die Rekursionsgleichungen zur Definition der Addition, der Multipli-

kation, der Pc ierung, der allgemeinen 8 und des allgemeinen Produkts?

. Wie lauten die wichtigsten Recheng fiir die Addition, Multiplikation und

Potenzierung, und wie kann man diese beweisen?

. Wie wird die Ordnung der natiirlichen Zahlen iiber die Addition eingefiihrt, und

welches sind die wichtigsten Eigenschaften dieser Ordnungsrelation?

. Was versteht man unter z!, was unter (:)'
Man gebe einige Rechengesetze fiir die Binomialkoeffizi an.
. Welche wichtigen Anzahlbeziehungen fiir endliche Mengen gibt es?

. Wie ist die Teilbarkeitsrelation definiert und welche elementaren Eigenschaften

besitzt sie; welche Analogien bestehen zur <-Relation, welche zur Inklusion von
Mengen?

. Was ist Division mit Rest?
. Was versteht man unter dem gréBten gemeinsamen Teiler und dem kleinsten

gemeinsamen Vielfachen zweier natiirlicher Zahlen, wie steht es mit deren Exi-
stenz, und wie kann man sie berechnen?

Was sind die wichtigsten Eigenschaften des groBten gemeinsamen Teilers und
des kleinsten gemeinsamén Vielfachen?

Was sind Primzahlen, und welche Rolle spielen sie im System der natiirlichen
Zahlen?

Was bedeutet die Schreibweise a = b mod m? Welche Eigenschaften besitzt
diese Relation?

Was versteht man unter dem Positionsprinzip der Zahldarstellung? Auf welchem
allgemeinen Satz beruht die Dezimaldarstellung und allgemeiner die g-adisch
Darstellung der natiirlichen Zahlen? Wie spiegeln sich in der systematischen Zahl-
darstellung die Grundrechenarten wider?

Aufgaben

. Man zeige, daB es genau eine binire Operation ,,- im Bereich der natiirlichen

Zahlen gibt, die den folgenden Rekursionsgleichungen geniigt:
m-0=0, m-qg(n)=(m-n)+m.
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. Man beweise die folgenden Rechengesetze fiir die Multiplikation natiirlicher

Zahlen (unter B g der Recheng: fiir die Addition!):
8)0.m=0, b)l-m=m, ) (n-n) -ny=mn-(n-n),
) mng=my-my, ©) (a+m) g =17 + 775

. Man beweise die folgenden Monotoni tze fiir die Addition bzw. Multipli-

()

kation natiirlicher Zahlen:
8) m<m=>n+mn+m,
by m<nmAam+0=>n-m< ny-m.

. Man beweise auf der Grundlage der Rekursionsgleichungen fiir die Potenz die
folgenden Potenzgesetze :
a) mmtM =m™ . m™, b) m™™ = (m™)", c) (m-mg)" =m] -m3.
Man beweise die folgenden Monotoniegesetze fiir die Potenzoperation:

a) m Sm=>m} =mj, b)m <mant0=>m)<m],
) mEmamFEOISmmSIm™, d) n<mam>1=Dm™ < m™.

. Man bestimme alle Paare (z, y) von natiirlichen Zahlen, fiir die folgendes gilt :

a)z+y=z-y, byz+y=2, c)z-y=2a, d) o7 =y".

. Man beweise:
o Z@+b=Fa+In.
re=] reu =
b) a-z-'a,=z.'(a~a,).

y=1 y=1
c) Fiir jedesn € N ist)f't‘: (Z"i)'.

=1 i=1
d) Fiir beliebiges m, n € N ist z‘!(’" +”) =(m +:+ 1).

=0 v

¢) Fiir beliebiges n € N ist [T (2% + 1) = 2 — 1.
j=0

f) Fiir beliebiges n € N ist 3" (")2 = (2").

o0 \¥ n

g) Man berechne Z-' ».

»=0

h) Man beweise das Additionstheorem fiir die Binomialkoeffizienten.

. Bekanntlich gilt fiir die Vereinigung endlicher (nicht notwendig disjunkter)

Mengen M, N die folgende Anzahlformel:
|M uN|=|M|+|N| —|MnN|

a) Man verallgemeinere diese Formel auf die Vereinigung von k Mengen
My, .. M,
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11.

b) Mittels des Resultats aus a) bestimme man die Anzahl aller Permutationen
der Menge M = {1, ..., »}, die keinen ,,Fixpunkt‘‘ haben, d. h., fiir die kein ¢
mit 1 < 7 < » und /(i) = ¢ existiert.

Anleitung: Die Menge P aller dieser Permutationen ist offenbar gleich der Menge
(M) \ (P, v - uP,), wobei P; die Menge aller der Permutationen ist, die das Ele-
ment s als Fixpunkt haben (s = 1, ..., n). Man zeige, daB |P;| = (n — 1)! ist.

¢) Wie viele Permutationen von M gibt es, bei denen genau 1, ...,k (1 < k < n)
fest bleibent

d) Wie viele Permutationen von M gibt es, die genau k Fixpunkte haben?

. Bei Anzahluntersuchungen leistet hiufig das folgende sogenannte Dirichletsche

Schubfachprinzip gute Dienste :

Es seierr M, N nichtleere endliche Mengen mit | M| = m > n = |N|. Es sei ferner F
eine beliebige Abbildung von M in N. Dann gibt es igstens zwei El t
z,y € M, 80 daB z 5 y und F(z) = F(y) ist.

a) Man beweise, daB dies richtig ist.
b) Man suche eine Erklirung fiir die Bezeich ,Schubfachprinzip*‘.

Man beweise mit Hilfe des Schubfachprinzips, daB folgendes gilt:

a) Unter n + 1 natiirlichen Zahlen a,, a,, ..., a, gibt es immer wenigstens zwei,
deren Differenz durch = teilbar ist.

b) Unter k natiirlichen Zahlen a,, ..., a; gibt es stets Zahlen a;, ..., a;(1 <<
=j =k),so0daB a; + --- + a; durch k teilbar ist.

c) Unter n 4 1 natiirlichen Zahlen ay, @y, ..., @, mit 0 < @y < @; < -+ < Ggyy
< 2n kann man stets drei Zahlen a, a;, a; finden, so daB a, + a; = a, ist.

d) In einem quadratischen Waldgebiet mit einer Fliche von einem Quadrat-
kilometer stehen 4500 Baume mit einem Stammdurchmesser von 50 cm. Dann
gibt es eine rechteckige Fliche von 10 m X 20 m, die frei von Biaumen ist.

* Essei U = (uy, ..., u,) eine endliche Folge, deren Glieder nur die Werte +1
oder —1 haben. Es sei ferner

PU) = (uy - Uy - Uy ooy Uy Uy U * Uy),

PHU) = p(p(V)),

p(U):= p(p¥ D)), --.
Man zeige, daB folgendes gilt:
a) Ist m = 2* (n € N), so existiert ein ¥ < 2* mit pX(U) = (1, 1, ..., 1).
b) Ist m ungerade und existieren u;, u; mit u; = +1, u; = —1, so gibt es kein k&
mit pXU) = (1, 1, ..., 1).
¢) Man bestimme fiir gegebenes m € N, m = 1, simtliche Folgen U = (u,, ..., %),
zu denen ein k mit p¥(U) = (1, 1, ..., 1) existiert.
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12.

13.

14,

15.

* Fiir eine Folge N = (n,, ..., ;) von natiirlichen Zahlen sei

AN) 1= (Ing — 0y, Ing — g, ..., e — myy], 10y — ),
d¥(N) := d(d(N)),
d(N):= d(d*(])), ...
Man zeige, daB es im Fall k = 2" (n € N) stets ein 8 ¢ N gibt mit
d"(N) = (0,0, ..., 0).
Anleitung: Man benutze die Resultate aus Aufgabe 11.
Gegeben seien 2n natiirliche Zahlen mit 0 < e, < @; < -+ < ay,. Wie muB mar
sie zu Paaren zusammenfassen, damit
a) die Summe der Produkte der Paare maximal wird,
b) die Summe der Produkte der Paare minimal wird,
¢) das Produkt der Summen der Paare maximal wird,
d) das Produkt der Summen der Paare minimal wird?
Lésung von a):
Behsuptung: Fiir die Paarungen ¢,a, + a2, + -+ + @3,-,8;, Nimmt die Summe den maxi-
malen Wert an.
Der Beweis erfolgt durch vollstindige Induktion iiber ». Fiir » = 1 ist die Behauptung

trivialerweise richtig. Wir nehmen an, die Behauptung sei fiir 2z Zahlen schon bewiesen,
und zeigen, daB sie dann auch fir 2(z + 1) Zahlen

0<a; <ay< - <aya < Ogp < Ogaiy < Ggpig
richtig ist. Dazu seien t, j beliebige Indizes mit i % j und 1 < 4,7 < 2n 4 1. Dann gilt
0 < (Bgn1 — @) (Tan4a — @) = BaniiBrn4e + Ai0; — GiBapsy — Bjlgpys
also
@;0; + Ggn1102n43 > Gifgni1 T Bj03n4a-
Es ist also ,,giinstiger", in eine Summe die Paarungen ¢;a; + ;04184442 aufzunehmen, als
die Paarungen a;4,4; + @;dge+a- Es brauchen nun nur noch die restlichen Zahlen a,,
«eey @3y 80 gepaart zu werden, daB die Summe maximal wird, und das geschieht nach
Induktionsvoraussetzung bei a,a, + --- + @gp-12s,-
Es seien M, N endliche Mengen mit |M! = m, |N; = n.
a) Wie viele Korrespondenzen aus M in N gibt es?
b) Wie viele Korrespondenzen von M in N gibt es?’
c) Wie viele Abbildungen aus M in N gibt es?
d) Wie viele Abbildungen von M in N gibt es?
e) Wie viele Abbildungen von M auf N gibt es?
f) Wie viele 1-1-Abbildungen aus M in N gibt es?
g) Wie viele 1-1-Abbildungen von M in N gibt es?
h) Wie viele 1-1-Abbildungen von M auf N gibt es?
Es sei S(n, k) die Anzahl der Zerlegungen einer Menge N von z Elementen in k
Klassen (1 < k < n).
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16.

17.

18.

a) Man zeige, daB die Funktion S den folgenden Rekursionsgleichungen geniigt :
S(n,1)=1, Sn,n)=1,
S+ 1,k + 1) = S, k) + (k + 1) S(n, & + 1).

b) Man stelle nach dem Muster des Pascalschen Dreiecks (3.5.(22)) ein Berech-
nungsschema fiir die Funktion S(», k) fir 1 < k < n < 10 auf.

¢) Man zeige fiir beliebiges #, kmit 1 <k <n

k
Sn, k) = % ;.‘ (—1y (:‘) (k — »).

d) Man bestimme die Anzahl aller Abbildungen von einer Menge M mit m Ele-
menten in eine Menge N mit n Elementen, deren Wertebereich genau k Elemente
enthilt.

a) Man bestimme die Anzahl der Tipméglichkeiten beim Tele-Lotto (,,5 aus 356%).
b) Man bestimme die Anzahl der Tipmoglichkeiten beim Zahlenlotto (,,5 aus 90%),
die bei einer Ziehung von fiinf Zahlen einen Vierer bilden.

c) Man bestimme die Anzahl der Tipmdglichkeiten beim Tele-Lotto, die bei einer
Ziehung von fiinf Zahlen nur falsche Nummern enthalten.

d) Man bestimme die Anzahl der Tipméglichkeiten beim FuBball-Toto, bei denen
das Zusatzspiel und genau ein weiteres Spiel richtig angekreuzt sind.

Ein Studienjahr besteht aus 26 ménnlichen und 38 weiblichen Studenten, unter
denen drei Ehepaare sind. Fiir die minnlichen Studenten stehen sechs 4-Bett-
Zimmer, fiir die Studentinnen zwélf 3-Bettzimmer und fiir die Ehepaare drei
2-Bettzimmer zur Verfiigung.

a) Wie viele verschiedene Einweisungen in die Zi sind méglich?
b) Auf wie viele yerschiedene Weisen kénnen ,,Zimmerbesatzungen‘‘ gebildet
werden?

Hinweis: Man dricke diese Anzahlen mit Hilfe ,,kombi ischer Funkti “ aus
und berechne sie niherungsweise unter B g der Stirlingschen Formel
aln V27n (T")'I ,

wobei e die Basis der natiirlichen Logarithmen ist (e ~ 2,7182).

a) Es sind zehn unterschiedliche elektrische Gerite an fiinf unterschiedliche
Verteilerwiirfel anzuschlieBen, von denen drei Wiirfel drei AnschluBmdglich-
keiten und zwei Wiirfel vier AnschluBméglichkeiten haben. Wie viele Moglich-
keiten gibt es?

b) Bei einem SchieBwettkampf gibt jeder Schiitze fiinf Schiisse auf eine 10er
Scheibe ab. Sein Resultat besteht in der Angabe der bei den einzelnen Schiissen
erzielten Ringe, wobei es nicht auf die Reihenfolge ankomme, in der die Ringe
erzielt werden. Wie viele Resultate sind méoglich?
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19.

20.

21.

22.

¢) Von fiinf FuBballspielen soll eine Fernsehiibertragung gesendet werden. Es
stehen acht Reporter zur Verfiigung. Wie viele Moglichkeiten des Einsatzes gibt es?
d) Wie viele 10stellige Zahlen gibt es, in deren Dezimaldarstellung dreimal die
Ziffer 1, zweimal die Ziffer 2, zweimal die Ziffer 3, zweimal die Ziffer 4 und einmal
die Ziffer 5 auftritt?

e) Auf wie viele Weisen 148t sich die Zahl 30030 als Produkt @ - b von zwei natiir-
lichen Zahlen a, b > 1 darstellen, auf wie viele Weisen als Produkt von endlich
vielen natiirlichen Zahlen? Dabei werde von der Reihenfolge und der Klamme-
rung der Faktoren abgesehen.

f) Wie viele Aquivalenzrelationen giht es in einer Menge von sieben Elementen?

a) Esseineine beliebige natiirliche Zahl. Wie viele Losungen in positiven natiir-
lichen Zahlen z,, ..., z; hat die Gleichung

Z, + o+ 2 = nl

b) Wie viele paarweise nicht kongruente Dreiecke mit ganzzahliger Seitenlinge
gibt es, deren Umfang 200 cm ist?

a) In der (euklidischen) Ebene seien n Geraden gegeben, von denen keine zwei
parallel sind und keine drei durch einen Punkt gehen. In wie viele Teile zerlegen
sie die Ebene?

b) Man beweise, da8 n Ebenen in allgemeiner Lage (keine zwei sind parallel,
keine drei haben eine gemeinsame Gerade, keine vier gehen durch einen Punkt)

den Raum in %(n‘ + Bn) + 1 Teile zerlegen.

a) Auf k + 1 Feldern, die mit den Zahlen 0, 1, ..., k bezeichnet sind, liegen wahl-
los k Marken, die mit 1, ..., k bezeichnet sind. Ein Feld ist leer. Ein ,,Zug‘‘ besteht
darin, daB man eine Marke von einem beliebigen Feld auf das leere Feld legt. In
maximal wie vielen Ziigen kann man die Marken auf die gleichbezeichneten Felder
bringen? .

Anmerkung: Es ist die optimale Losung gesucht, d. h., es ist zu zeigen, daB es eine
Anfangsverteilung gibt, bei der man mit weniger Ziigen nicht zum Ziel kommt.

b) k Marken, die mit 1, 2, ..., k bezeichnet sind, liegen in der Reihenfolge 12... %
nebeneinander. Eine ,,Umordnung‘‘ bestehe darin, daB eine bestimmte Anzahl
von Paaren von Marken ihren Platz vertauscht. Man zeige, daB man im Fall k = 3
durch zwei derartige Umordnungen die Reihenfolge k12 ... k — 1 herstellen kann,
jedoch eine einzelne Umordnung nicht zum Ziel fiihrt.

a) * Gegeben sei eine Menge N von 7 Jungen und eine Menge M von m Méidchen.
Fiir je k Jungen aus N (1 < k < n) sei die Gesamtzahl der Middchen aus ¥,
die mit wenigstens einem der k Jungen befreundet sind, mindestens gleich .
Man zeige, daB man jeden Jungen mit einem befreundeten Midchen verheiraten
kann. Man formuliere diesen Satz als Satz iiber Abbildungen von Mengen-
systemen.
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23.

24.

25.

b) An einem Tanzabend hat jeder der anwesenden Herren mit mindestens einer
der den Damen g t und jede der anwesenden Damen mit mindestens
einem der anwesenden Herren. Kein Herr hat mit jeder der Damen und keine
Dame mit jedem der Herren getanzt. Man zeige, daB es unter den Anwesenden
zwei Damen und zwei Herren gibt, so daB jede der beiden Damen mit genau
einem der beiden Herren und jeder der beiden Herren mit genau einor der
beiden Damen getanzt hat. Man formuliere auch diesen Satz als Satz iiber Ab-
bildungen.

Man zeige:

a) Ein gewéhnliches 8 X 8-Schachbrett kann mit einem Springer nicht so durch-
laufen werden, da8 man in der linken oberen Ecke beginnt, in der rechten unteren
Ecke endet und auf jedem Feld genau einmal absetzt.

b) Ein 4 X 5-8chachbrett kann in der unter a) g ten Weise durchlaufe
werden.

c) Ein 4 X n-Schachbrett kann durch einen Springer nicht so durchlaufen wer-
den, daB man zu jedem Feld genau einmal gelangt und mit dem letzten Zug zum
Anfangspunkt zuriickgelangt.

Auf ein kariertes Papier, dessen Karos Quadrate der Seitenlinge 1 (cm) sind, ist
ein Rechteck aus m X 7 Karos gezeichnet. Aus den Linien des Quadratnetzes soll
ein geschlossener Polygonzug gebildet werden, welcher genau einmal durch jeden
Knoten des Netzes geht, der innerhalb oder auf dem Rande des Rechtecks ge-
legen ist und der das Rechteck nicht verlaBt.

a) Fiir welche Werte von m und # ist dies méglich?

b) Wie lang ist dieser Polygonzug?

c) Welchen Inhalt hat die vom Polygonzug umrandete Fliche?

Anmerkung: Bei b) und c) ist zu beweisen, daB die ermittelten Werte bei allen Polygon-
ziigen dieselben sind.

Auf ein kariertes Papier, dessen Karos Quadrate der Seitenlinge 1 (cm) sind, ist
ein Rechteck aus m X n Karos gezeichnet. Aus den Linien des Netzes ist ein ein-
facher Polygonzug zu bilden, der die linke untere Ecke des Rechtecks mit der
rechten oberen Ecke des Rechtecks verbindet und der das Rechteck nicht ver-
LiBt.

a) Wie viele derartige Polygonziige der Linge m + n gibt es?

b) Wie gro8 ist im Fall m = n die Anzahl derartiger Polygonziige der Linge 2n,
deren simtliche Ecken mit Ausnahme von Anfangs- und Endpunkt unterhalb
der Diagonalen liegen?

c) Wie gro8 ist im Fall m = n die Anzahl derartiger Polygonziige der Linge 2n,
die die Diagonale in genau einem inneren Punkt schneiden?

d) Wie groB ist im Fall m = n die Anzahl derartiger Polygonziige der Linge 2n,
die die Diagonale in genau einem inneren Punkt berithren (ohne zu schneiden)?
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26.

[
-1

* Auf ein kariertes Papier, dessen Karos die Seitenlinge 1 (cm) haben, soll ein
geschlossener Polygonzug der Linge 2n gezeichnet werden, dessen Seiten Linien
des Netzes sind und dessen Anfangs- und Endpunkt in einem festen Knoten des
Netzes liegt. Dabei kann der Polygonzug gewisse Knoten des Netzes mehrfach
durchlaufen und auch ein und dieselbe Strecke mehrmals enthalten. Auf wie viele
Weisen 18t das moglich?

Anleitung: Man benutze das Resultat aus Aufgabe 7).

. In dem ,,Liber abaci‘‘ des beriihmten italienischen Mathematikers LEONARDO

voN Pisa, der sich auch FrBonaccr (,,filius Bonacei = Sohn des Bonacci)
nannte, wird folgende Aufgabe behandelt:

»Wie viele Kaninchenpaare werden in jedem Jahr von einem Paar erzeugt?
Dabei wird vorausgesetzt, jedes Kaninchenpaar bringe monatlich ein neues Paar
zur Welt, und die Kaninchen wiirden vom zweiten Monat nach ihrer Geburt an
gebiren. Man 16se diese Aufgabe.

Es bezeichne 1w, uy, uy, 43, ... die durch %, =0,u, = 1, g = %, + Upyy
(n = 0) rekursiv definierte Folge der Fibonaccischen Zahlen (d.h. die Folge
0,1,1,23,5,8,13,...).

Man beweise, daB folgendes gilt:

a) .Z“i + 1=, b) S iy = uan,
i=1

i=1 i

n n

c) '2“26+1=“2n+1: d):";;:“n‘“nu.
1
=

€) Upsm = Up-1Um + UpUms (7

3

— 2
f) up = Uy — Y n—1?

a1 g) Uz, = uh_, +ul —u
2n—1
h) u},, = vaupe + (=), 1) 2w = u3,,
i=1
n

2 "
) Yuw, =4, ,—1, k) J(n—i4 1) u;=up,— (n+3),
= is1

i=1
(455
) u,= 2 2 (Formel von BINET).

3

Hinweis: Da die Folge der Fibonaccischen Zahlen eindeutig durch ihre Rekursions-
gleichungen festgelegt ist, geniigt es zu zeigen, daB die Zahlen u, aus der Formel von
Br~ET diesen Rekursionsgleich i

gen genug

" 1
m) Z"at = E (23ns2 — 1),
fs

n) Bl = - (g + (1) Bupy — 1).

1 10
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Beweis von m): Mit a=%(1 +15), ﬂ=%(l — V5 wird nach 1)

z.u“ =L(“a+al+m +atu_ﬁ:_ﬂc_... _ﬂll)
51 Vs
_1 adMi_ o3 pnes _ o
(e )
1 [ad™+3 — an ﬁinu _ ﬂl
r( =)
2V_ (adms — gamiz __ o2 + £
%("auu —U) = %(“anz =1

G b Q '3 1

(beim Ubergang von der ersten zur zweiten Zeile wurde die g
verwendet, und beim Ubergang von der zweiten zur dritten Zeile wurden die Identititen
a® — 1 = 2a, f# — 1 = 2f benutzt).

. Eine nichtleere Teilmenge I der Menge Z aller ganzen Zahlen heift Ideal in Z,
wenn sie folgende beiden Bedingungen erfiillt :
(i) e,beI=>a+becl,
(i) acIangeZ—>gacl.
Men zeige, daB folgendes gilt:
a) {0} und Z sind Ideale in Z.
b) Fiir jedesg € Z ist (g) := (g - k: h € Z) Ideal in Z. (Man nennt (g) das von der
Zahl g erzeugte Hauptideal.)
c) Es seien g, g, beliebige ganze Zahlen; dann ist die Menge

(ogy + Bga: 7B € Z)
Ideal in Z.
d) Essei I ein beliebiges Ideal in Z und I = {0). Es sei ferner n die kleinste posi-
tive natiirliche Zahl in I. Dann ist I = (n) (d. h., alle Ideale in Z sind Haupt-
ideale).

Hinweis: Der Beweis von d) benutzt wesentlich die Division mit Rest!

e) Esseienm, n beliebige natiirliche Zahlen, die nicht beide Null sind, und I(m, n)
das Ideal in Z aus allen ganzen Zahlen der Form am + fn («, § € Z) (vgl. c)).
Nach d) existiert ein d € Z, d > 0, so daB I(m,n) = (d) ist. Man zeige, daB d
groBter gemeinsamer Teiler von m und = ist.

(Man vergleiche diesen Beweis mit dem im Buch dargestellten Beweis (wie hingen
I(m, n) und das dortige D(m, n) zusammen?).)

{) Man verallgemeinere das Resultat aus Aufgabe c) so, daB die Anwendung von
d) die Existenz des groBten gemeinsamen Teilers von k Zahlen n,, ..., %, und
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29.

31.

32.

33.

seine Darstellbarkeit als

amy 4 e+ um (x4, .. 00 € Z)
liefert (vgl. 3.7.(15")).

Man beweise die folgenden Eigenschaften der Operationen ,,n* und ,,u*:

a) mnn=nnm, b)nnn=n,

c)m|neomnn=m, d mun=num,

€) MUy umg) = (my Umg) Uiy,

f) nun=n, g m|nemun =mn,

h) (mum)nm =mny, i) (mnng)un, =n,.

(Man beachte, daB diese Beweise allein die Definitionen 3.7.(14) und 3.7.(32) er-
fordern.)

. Man beweise, daB das kleinste gemeinsame Vielfache von k positiven Zahlen

ny, ..., 7 gegeben wird durch

MU ny =T
my e Nmy
mit
My=y ey Mgy My (E=1,..., k).

Man bestimme mit Hilfe des Euklidischen Algorithmus den gro8ten gemeinsamen
Teiler der folgenden Paare, Tripel bzw. Quadrupel von natiirlichen Zahlen und
stelle ihn dar als an, 4 fny(+yny + n,) mit «, f(,,8) € Z:

a) 35684, 497; b) 4823, 976;

c) 33 803 6504, 478 547; d) 2123, 825, 1045;

e) 27324, 113 022, 44 054, 62 244.

Man besti das kleinste gemeinsame Vielfache der folgenden Paare, Tripel
bzw. Quadrupel von natiirlichen Zahlen:

a) 3584, 497; b) 4173, 143;

c) 2123, 825, 1045; d) 16 562, 693, 3773, 286.

Man zeige, daB bei beliebigem m, » € N mitm > 0,7 > Ound p € P (P = Menge
der Primzahlen) folgendes gilt:

) expy(m - n) = expy(m) + exp,(n),

b) exp,(m nn) = min{exp,(m), exp,(n)},

) expy(m un) = max{exp,(m), exp,y(n)},

dym|n :)P/G\P(exp,(m) < exp,(n)).

. Man zeige, daB folgendes gilt:

a) anblanbe, b)anc=1=>anbc=anb,
¢) ble>anb=(a+c)nb.



Das System der natiirlichen Zahlen 43

35.

36.

37.

38.

39.

* Man beweise die Distributivgesetze

(M ung) Nmy = (A A g) U (7y N 7y),

(7 Nmg) Ly = (7 L) 1 (M Ly
Hinweis: Jedes der beiden Distributivgesetze kann aus dem anderen durch elemen-
tare Schliisse gewonnen werden, die nur die Definition der Operationen ,,u* und ,,n* ver-
wenden. Daher geniigt es im wesentlichen, eines der beiden Gesetze zu beweisen. Hierfiir
ist dann entweder der Satz iiber die eindeutige Primzahlzerlegung oder der zu seinem

Beweis benotigte Satz 3.7.(30) erforderlich, der auf dem Satz dber die Darstellbarkeit
des groBten gemeinsamen Teilers als Vielfachendifferenz beruht.

Man lése die Aufgaben 31 und 32 unter B g der Primzahlzerlegungen der
auftretenden Zahlen.

* Fiir z, y, z € N sei
Tz, y,2):=r(z, =+ )y + 1),
wobei r(n, m) der Rest bei der Division von z durch m ist.
a) Man zeige, daB fiir jede endliche Folge a,, a,, ..., a, von natiirlichen Zahlen
das Gleichungssystem
I'(z, y, 0) = a,,
Iz, y,n) =a,
~enigstens eine Losung (z, y) hat.
b) Was kann man folglich von der fiir z ¢ N durch

1(z) := (Plen(2), e3a(2), 0), ..., Tlen(2), exa(), €xa(2)))
definijerten Funktion behaupten (C31, C320 Ca3 Seien dabei die Umkehrfunktionen
der Cantor-Numerierung c® der Tripel natiirlicher Zahlen)?
¢) Man konstruiere Funktionen, die Analoges wie f leisten.
Hinweis: Man befiutze den Satz iber die eindentige Primzahlzerlegung oder die Dusl-
darstellung. Hierbei ist die Sonderrolle der Zahl 0 zu 2 beachten.

Man zeige, daB jede natiirliche Zahl » = 1, die keine Primzahl ist, einen Prim-
teiler p besitzt, fiir den p? < = ist.

Man bestimme mit dem Sieb des ERATOSTHENES alle Primzahlen p mit p < 1000.
Man ermittle aus der erhaltenen Primzahltabelle alle Primzahlzwillinge unterhalb
1000. Man bestimme fiir n = 50, 100, 150, 200, ..., 950, 1000 die Anzahl n(n) der

Primzahlen unterhalb » und vergleiche diesen Wert mit %

. Man zeige, daB folgendes gilt:

) M\ 2m=> (n=nmodm s m|n —n),
b) n,=n,modm=>n, + k=n, + kmodm,
¢) ,my=nmodm=>n,-k=mn,-kmodm,
d) 7, = n, mod m = nf = nf mod m.
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41.

42.

43.

45.

46.

47.

48.
49.

50.

Man beweise :

a) Fiir jede Primzahl p = 5 ist p* — 1 durch 24 teilbar.

b) Fiir jedes n € N mit n = 2 ist n* + 4 eine zusammengesetzte Zahl.
c) Fiir jedes n € N ist 7#*—42* durch 33 teilbar.

d) Fiir jedes n € N mit n = 1 ist 52"+1 4 3»+3. 21 durch 19 teilbar.

Man beweise:
a) 32" — 1 ist durch 2*2 und nicht durch 2"+ teilbar.
b) 23" 4 1 ist durch 3*! und nicht durch 3*+2 teilbar.

Man beweise, da folgendes gilt:

a) Bei beliebigem n ¢ N sind die Zahlen 22 + 1,2% +1,..., 2% 4 1 paar-
weise teilerfremd.

b) Es sei p eine beliebige Primzahl. Dann ist »! fiir kein » € N durch p" teilbar.
c) Es ist stets (n1)! durch (n!)"~1! teilbar.

. Man zeige, daB 2™ — 1 und 2* — 1 genau dann teilerfremd sind, wenn m und »

teilerfremd sind.
Anleitung: Man bestimme (2™ — 1) r (2® — 1).

Es seien m, n natiirliche Zahlen mit m r:n = 1. Man bestimme alle Paare (z, y)
von natiirlichen Zahlen, fiir die 2™ = y® ist

Man zeige, daB folgendes gilt:

(2))

Kann man auf die Voraussetzung n n k = 1 verzichten?

A (nnk:l:}n
nkeN

Gibt es natiirliche Zahlen n, die sich auf zwei verschiedene Weisen in der Form
n = ny! + n,! mit 7y, 7, € N, 0 < n; < 1y, darstellen lassen?

Man bestimme simtliche Primzahlen der Form z# + 434 (z, y € N).
Man zeige, daB folgendes gilt:

Z-'a; =30 Zn,'a?,

i=1 i=1

b)6la+b+c=>6|a%+ b3+ 3.

a) 30

a) Fiir welche Werte von % ist 2" — 1 bzw. 2® + 1 eine Quadratzahl?

b) Gesucht sind notwendige Bedingungen dafiir, daB 2* — 1 bzw. 2* + 1 eine
Primzahl ist.

. Man zeige, daB es unendlich viele natiirliche Zahlen gibt, die nicht Summe aus

einer Primzahl und einer Quadratzahl sind.
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62. a) Man zeige, daB es unendlich viele Primzahlen gibt, die bei Division durch 4
den Rest 3 lassen.

b) Man zeige, daBl es unendlich viele Primzahlen gibt, die bei Division durch 6
den Rest 5 lassen.

c) Man verallgemei diese Resultat

53. Auf einem unendlichen Schachbrett steht ein (m, n)-Springer (das ist eine Figur,
welche umm Felder horizontal und n Felder vertikal oder » Felder horizontal und
m Felder vertikal zieht).
a) Man charakterisiere die Felder, die der Springer von einem gegebenen Feld
aus erreichen kann.

Anleitung: Man zeige, daB man sich im wesentlichen auf den Fall mnn =1 be-
schrinken kann, wobei in diesem Fall Zahlen a, b ¢ N mit am — bn = 1 existieren.

b) Fiir welches » kann man mit einem (1, n)-Springer von einem festen Feld aus
alle anderen Felder erreichen?

c) Man zeige, daB bei einem (m, n)-Springer jedes erreichbare Feld entweder
durch eine gerade oder durch eine ungerade Anzahl von Ziigen erreichbar ist.
Achtung: Was bedeutet: entweder — oder?

54. Man beweise die folgenden Teilbarkeitseigenschaften der Fibonaccischen Zahlen
(vgl. Aufgabe 27):
8) m|n=> up|up, b) Upynu, =1,
C) Uy NUy =Uypy, 4d) Up|u=>m|n,
e) 2|u, ©3in, 3|u, 4|7, 4lu,o6|n, 5|y, ©5|n, T|uy,o8|n
usw.
) AVEEm2am|w).
m i

Beweis von c¢): Esseio. B.d. A. m > n. Wir wenden auf die Zahlen m, n den Euklidi-
schen Algorithmus an:

m=gqn+r,, 0<r,<n,
=gyt + 13, 0< <y,
T =G+ Ty 0 < ey < 7
Tk = TenTk+1e
Dannist 7y = m ri n. Damit gilt u, N %, = %g,,.¢,M %, Hieraus folgt nach Aufgabe 27¢)
Uy 0 Uy = (UgupyUyp, + UgnUr, ;1) N U%,. )
Nun ist # | ¢;n. Also gilt nach a) u, | u,,,. Hieraus folgt nach Aufgabe 34c)
(%gun—1¥r, + %gultry 1) © g = Ug,q_ythy, N Uy
Nach b) gilt 4,4y N %y, = 1. Folglich ist wegen u,, | u,,, auch ug,_, n%, = 1. Also gilt
nach Aufgabe 34b) u,,_,u,, N u, = ¥, "%, Damit erhalten wir

Up T Uy = Uy DUy,
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566.

56.

67.

Analog folgt

Uy M Uy, = U, N Uy,

Urp Nlhy, = Up, N¥r,,
und

Bry M Uryyy = Ygparpnr 1 Yrpyy = Yrpyy = Ymnne
Insgesamt gilt also u,, N %, = ¥mna, Was zu beweisen war.

Man zeige, daB die Funktionen q(n, m) und 7(n, m) (Quotlent. und Rest bei der
Division von n durch m) den folgenden simultanen Rekursionsglei gen ge-
niigen :

q0,m) =0, r0,m)=0,

q(n + 1, m) = g(n, m) + y(r(n, m) + 1,m),

r(n + 1, m) = (r(n, m) + 1) - x(r(n, m) + 1, m),
wobei x und y die folgende Bedeutung haben:

_f1 fur z<y,
“=y) = {0 fir z2y,
1 fir z=y,

Yy = { 0 fir z3y.

Man berechne allein nach diesen Rekursionsgleichungen schrittweise g(5, 3)
und 7(5, 3). Man beachte, daB man hierbei keinerlei Wissen iiber die konkrete
Bedeutung der Funktionen benétigt, d. h., daB diese Rechnung auch rein schema-
tisch von einem Automaten durchgefiihrt werden kann.
Man charakterisiere den Werteverlauf der folgenden Funktionen:
8) a(n, m):=y(r(n, m), 0),
b) »(n,0) =0, »(n,m + 1) =»n,m) + a(n,m + 1),
¢) =(n) = »(n, n),
d) n(n) = y(x(n), 2);
dabei sei
1 fir z=y,

&) ={0 fir z4y.

Im folgenden bedeutet [z, ... %], die g-adische Darstellung mit den Ziffern z,, ...,
2y, wihrend z, ... 2, die Dezimaldarstellung bezeichnet.

a) Man stelle die Zahlen 4149, 2138, 749, 10 538 im Dualsystem, im Ternér-
system, im Oktalsystem, im Duodezimalsystem und im 60er System dar.
b) Man stelle die Zahlen

[110101101],, [201201201],, [670170]s, [1A0B71A],,
1m Dezimalsystem dar.
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58.

59.

61

62.

63.

c) Fiir welches g ist

[4231), = 566, [778], = 1282,

[987], = [1011000011000]),, [631], = [202021],?
a) Wie hingen allgemein die g-adische und die g"-ndische Darstellung einer
Zahl n miteinander zusammen?
b) Man erliutere dies genauer am Beispiel & = 3.
¢) Man stelle [101101011101], im Oktalsystem dar, man stelle [716327]; im Dual-
system dar.
Man fithre die folgenden Rechnungen im jeweiligen Zahlensystem durch und
kontrolliere sie durch Transformation in das Dezimalsystem:
a) [120121], + [22122],, b) [343],- [2114]s, c) [101101];: [101],.

. a) Man zeige, daB eine natiirliche Zahl n genau dann durch 2¢ (k = 1) teilbar

ist, wenn die durch die letzten k Ziffern der Dezimaldarstellung von n gebildete
Zahl durch 2* teilbar ist.

b) Man verallgemeinere a) auf die g-adische Darstellung.

c) Was ist von folgender Teilbarkeitsregel zu halten: Von einer im Dezimal-
system geschriebenen Zahl z, die mindestens zweistellig sei, wird die letzte Ziffer
gestrichen und von der erhaltenen Zahl das Doppelte der gestrich Zahl
subtrahiert. Die so entstandene (evtl. negative) Zahl ist genau dann durch 7 teil-
bar, wenn z durch 7 teilbar ist?

. a) Man zeige, daB bei beliebigem k¥ = 1 die Zahl

1...1
——
>
durch 3%+, aber nicht durch 3+ teilbar ist.

b) Man zeige, daB alle Zahlen der Form 1331, 1030301, 1003003001, ... Kubik-
zahlen sind.

¢) Setzt man vor eine dreistellige Zahl ihr Doppeltes, so entsteht eine sechs- oder
siebenstellige Zahl, die durch 23 und 29 teilbar ist.

d) Man konstruiere analoge Aufgaben.
a) Man berechne

44...460 + 11...1 — 44 ... 442,
k k E
b) Man iibertrage dieses Resultat auf die g-adische Zahldarstellung.
Anmerkung: Es sind unterschiedliche Ubertragungen mdglich!

a) Auf welche Ziffer endet die Dezimaldarstellung der Zahl 2197
b) Auf welche Ziffer endet die Dezimaldarstellung von-22* + 1 fiir n > 1?
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w N

=3

N

©

11.

12.

13.

14.

15.

16.

c) Wie lauten die letzten beiden Ziffern der Dezimaldarstellung von 3%% — 2%%97
d) Wie lauten die letzten beiden Ziffern der Dezimaldarstellung von

7y

e) Man konstruiere analoge Aufgaben.

Der Bereich der gebrochenen Zahlen

Kontrollfragen

. Mit welcher Zielstellung erfolgt die Erweiterung des Bereiches der natiirlichen

Zahlen zum Bereich der gebrochenen Zahlen?

. Was versteht mdn unter den Begriffen Bruch und gebrochene Zahl?
. Was versteht man unter der Bruchdarstellung gebrochener Zahlen?
. Wie ist die Anordnung gebrochener Zahlen definiert und welche Eigenschaften

besitzt sie?

. Man beweise die Dichtheit der Menge der gebrochenen Zahlen beziiglich der

Ordnung und begriinde die Unendlichkeit dieser Menge.

. Wie ist die Addition im Bereich der gebrochenen Zahlen definiert und welche

Eigenschaften besitzt sie?

. Was versteht man unter einer Differenz gebrochener Zahlen?
. Wie lautet die Definition der Multiplikation im Bereich der gebrochenen Zahlen

und welche Eigenschaften hat diese Operation?

. Was versteht man unter einem Quotienten gebrochener Zahlen?
. Inwiefern kann man den Bereich der gebrochenen Zahlen als Erweiterung des

Bereiches der natiirlichen Zahlen ansehen?

Welche wichtige Regeln fiir das Rechnen mit Quotienten und Potenzen im Bereich
der gebrochenen Zahlen gibt es?

Man beschreibe den Divisionsalgorithmus als ein Verfahren zur Begriindung und
Berechnung der Dezimalbruchdarstellung gebrochener Zahlen.

Wie a8t sich dic Periodizitdt der Dezimalbruchdarstellung einer gebrochenen
Zahl begriinden?

Wie gewinnt man die Bruchdarstellung einer gebrochenen Zahl aus ihrer Dezi-
malbruchdarstellung?

Wie sind Anordnung, Addition und Multiplikation gebrochener Zahlen in der
Dezimalbruchdarstellung beschreibbar?

Wie sind die Begriffe Vorperiode, Periode, Vorperioden- und Periodenlinge
sowie primitive Vorperioden- und primitive Periodenlinge eines unendlichen
periodischen g-adischen Bruches erklirt?
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17. Wie kann man die primitive Vorperiodenlinge und die primitive Periodenlinge
berechnen? Man gebe dazu Beispiele an.

18. Was versteht man unter der Kettenbruchdarstellung einer gebrochenen Zahl?

19. Wie sind die Begriffe Niherungsbruch und Zwischenbruch erklart?

20. Welches ist die Problematik der besten Approximation?

21. Wie kann man den Bereich der gebrochenen Zahlen algebraisch charakterisieren?

Aufgaben

1. Man beweise, daB die Quotientengleichheit eine Aquivalenzrelation in der Menge
N X N* ist.

3

. Es seien k und ! von O verschiedene natiirliche Zahlen. Mit kN werde die Menge
{kn:n € N}, mit IN* entaprechend die Menge {In:n ¢ N*} bezeichnet. Man
zeige:

a) Die Einschrinkung der Quotientengleichheit auf die Menge kN XIN* ist
eine Aquivalenzrelation.

b) Wird jeder Aquivalenzklasse von kN XIN* (beziiglich der Einschrinkung
der Quotientengleichheit) die sie enthaltende Aquivalenzklasse von N XN*
(beziiglich der Quoti leichheit) zugeordnet, so wird damit eine 1-1-Ab-
blldung von der Menge aller Aquxvalenzkla,ssen von kN X IN* auf die Menge @,
definiert.

3. Es bezeichne ~ eine Relation in der Menge N X N* mit folgenden Eigenschaften:
(8) ~ ist eine Aquivalenzrelation,
(b) (m,n) ~(k,n)=>m =k,
(¢) (m,n) ~ (mk,nk) fir k> 0.
Man beweise, daB es genau eine solche Relation ~ gibt.

loichheit @ih

Anleitung: Man zeige,daB die Relation ~ mit der Quoti g

4. a) Man veranschauliche die Menge N X N* in der Ebene unter Nutzung eines
kartesischen Koordinatensyst (Gitterpunktdiagramm).
b) Durch geeignetes Hervorheben kennzeichne man Gitterpunkte, die zur glei-
chen Aquivalenzklasse beziiglich der Quotientengleichheit gehoren.
¢) Alle Punkte, die zu derselben Aquivalenzklasse gehéren, liegen auf einer vom
Nullpunkt ausgehenden Halbgeraden. Man wihle die Schnittpunkte dieser Halb-
geraden mit der Halbgeraden y = 1, z = 0 zur Veranschaulichung von @,. Man
vergleiche diese Veranschaulichung mit der in MfL Bd. 2, 4.3., angegebenen.

5. Man fiihre den Nachweis der Reprisentantenunabhingigkeit fiir die Definition
der Multiplikation gebrochener Zahlen (vgl. MfL Bd. 2, 4.5.(1)). Man erldutere
die Notwendigkeit des Nachweises fiir diese und bei éhnlichen Definitionen.
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6. Fiir beliebige gebrochene Zahlen a, b, ¢, d beweise man:
a) asbrc<d>a+c<b+d,
b)asbarc<d=>ac < bd,
c) ab>0sa>0Ab>0.
7. Fiir das Rechnen mit Differenzen im Bereich der gebrochenen Zahlen beweise man
die folgenden Regeln:
a) @—bd) +(c—d)y=(@a+¢)—(b+d), wenn a =b und ¢ = d;
b)(@—b)—(c—d)=(a+d)— (b+¢c), wenn a 2b,c =d und
a+d=b+4c;
c) (@ — b) (¢ — d) = (ac + bd) — (bc + ad), wenn a = b,c =d.

Beweis von a): Wegen a + ¢ = b + d ist die Gleichung b +d + z=a + ¢ im Be-
reich der gebrochenen Zahlen 15sbar. Ihre (eindeutig bestimmte) Lésung wird mit (a + ¢)
— (b + d) bezeichnet. Aus
G+d+(@e—b+(c—d)=b+@—-b+d+(c—d) =a+c
folgt daher (@ — b) + (¢ — d) = (@ + ¢) — (b + d).
8. Man begriinde die Giiltigkeit folgender Gleichungen fiir gebrochene Zahlen a,
b (b == 0) bzw. natiirliche Zahlen m,n (n = 0):

m a a a 1
—=m:n, bj—=a:b, Z—a-b1, —_——a.—.
a.)n m:n )b a:b c)b a-b d)b a b

9. Man beweise die folgenden Regeln fiir das Rechnen mit Quotienten im Bereich
der gebrochenen Zahlen:

o)

ol
[
e

CHEY

10. Zu 31956 und % finde man die kleinste gebrochene Zahl (+0), die bei der

Division durch jede dieser gegebenen Zahlen eine natiirliche Zahl ergibt.
Lésung: Die gesuchte Zahl ist das Mini der Menge

396 207
M—{z.:G°+AZ*OAZ'§ENAZ~—2?€N}-

Eine Zahl = (==0) mit mnn =1 gehort genau dann zu M, wenn die vier Bedingungen
n
S . . 351128
35 | m, 28 | m, n | 396, n | 297 erfiillt sind. Die gesuchte Zahl ist daher 6597

11. Zu % und 1—3:- finde man die groBte gebrochene Zahl, so daB bei der Division

der gegebenen Zahlen durch diese eine natiirliche Zahl entsteht.



Der Bereich der gebrochenen Zahlen 51

12.

13.

14.

15.

16.

17.

18.

19.

1 1 1
b+c c+a’ a+d
einer arithmetischen Folge erster Ordnung sind, dann sind auch a?, b, c? auf-
einanderfolgende Glieder einer solchen Folge.

Man beweise: Wenn

drei aufeinanderfolgende Glieder

Es seien k, I, m natiirliche Zahlen griBer als 0. Man zeige, daB

2.2
2 _ 2 2
l_ll+_m. L_ 3 . ! m +(k+[+m)i
N W I R R
1 m m  km K

eine natiirliche Zahl = 9 ist.

Es ist zu beweisen, daB jede gebrochene Zahl genau eine reduzierte Bruchdar-
stellung besitzt.

Man bestimme die reduzierte Bruchdarstellung der folgenden gebrochenen Zahlen:
2904 2. 273 4 16-4°- 94

*) 3234° - 20 F 1219.3

o 5.418.99 _ 4.3%.8° q) m® — 1
(5-2°-61° —7.29.27%) .5’ mt 4+ md 1’

o 8in® — 1 44n3 + 1003 — 22n — B
16203 + 9n — 3’ 66n° + 1473 — 33n — 7’

9 2nt 4 n® — 3n2 — 2n 4 2

4nd 4 2n8 — 6 —dnd +2n 4 17

Wie lautet der Nenner der reduzierten Bruchdarstellung von

2* + 1 3" — 1

) —m D Hm

1

Wie lautet der Zihler der reduzierten Bruchdarstellung von
1 1 1 133
—_— ¢ ———, b) ———— %
R TR T R T T

Es sei = die reduzierte Bruchdarstellung der gebrochenen Zahl a kleiner 1.
n
Man bestimme die reduzierte Bruchdarstellung der gebrochenen Zahl 1 — a.

Man zeige, daB die folgenden Bruchdarstellungen genau dann reduziert sind,
wenn die natiirlichen Zahlen m und = teilerfremd sind:

a) 2m+n' b) m(35m+4n), 0 2m + n )

Tm + 3n Im +n m(m + n)

Beweis von b): Es gilt m(35m + 4n) = 4m(9m + n) — m*. Die gegebene Bruchdarstel-

lung léBt sich daher genau dann durch eine Primzahl p kiirzen, wenn p ein Teiler von
9m + n und m ist. Das ist jedoch genau dann der Fall, wenn p ein Teiler von m und n ist.
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20.

21.

—_

22.

25.

26.

. Man vergleiche die in Aufgabe 22 auftretenden Zahlen

Man beweise: L 9 3
a) (Il::;Bmchdarsbellung n(’;l;r2k)-|(-n2-)+-(2l)c (_t::) ) kann durch 24 gekiirzt wer-
bm + 3n Lo
b) Die Bmchda,retallungen — und —————— kénnen durch die gleichen Zahlen
gekiirzt werden. 13m + 8n

Die gebrochenen Zahlen a, b vergleiche man hinsichtlich ihrer GroBe:

a) a= Ll p=",

n 4+ 1 n
5 5 7 6

b)a=14 b=d4+—-—+—=—+—-+—;

)e=4+ — + + +8" +8+8’+8’+8‘
) a= 6678901234 _ 5678901235

T 6789012345° 6789012347’
d) a_100'°+1 b= 1001 4 1
T100%4 10 1000 17

o).a= 2,000004 b= 2,000002

“7 7 1,000004% 4 2,000004 ' 1,000002% + 2,000002 *
Lésung von c): Ist -'1 die gegebene Bruchdarstellung von a, so ist :’::; diejenige
von b. Wegen _>m:-2 & 2m > n, gilta > b.
Man beweise: ‘

m;
T Tk Ty

moom M mtmy g

m, m; m. m,
RPN L Rl L WLy

ny g ny "N, ny
my o+ my mny+ mymy

hinsichtlich ihrer GréBe. n + M mny

. Esseien a, b gebrochene Zahlen mit a < b. Man bestimme eine unendliche Menge

gebrochener Zahlen ¢ mit @ < ¢ < b.
Es seien a, b, ¢, d gebrochene Zahlen mit a > 0, b > 0, ¢ % d. Man zeige:

(@ + b)cd <ac+bd
ad + be a+b’

Es seien a, b beliebige gebrochene Zahlen. Man zeige :

MatbZlsa bz, batbzisdiBz o,
b—a. b — a?

c)0<a<b$b+ m.
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27.

28.

29.

31

Fiir gebrochene Zahlen @, b mit a = ﬂ, b=

a + b = 2. Wann gilt die Gleichheit? ™

(also ab = 1) beweise man

3=

Jede gebrochene Zahl a erfiillt die Ungleichung
2
_v - l.
1+at™ 2

Es ist zu beweisen, daB fiir beliebige gebrochene Zahlen a, b, ¢ aus der Bedingung
a-b-c=1die Ungleichung (1 + a) (1 + b) (1 + ¢) = 8 folgt.

. Man beweise die Giiltigkeit folgender Ungleichungen:

nt—3n2 4 1
—— >
a) n‘—n’—2n—1<l (n€ N,n =2),

13

1 1 1

—_—t——t = >— (n>1).

n+1 n+2+ +2n 24 ( )

Hinweis: Man benutze das Beweisverfahren der vollstdindigen Indukti

1 1 1 1 1 1 1
c) I+E+E+-7-+E+3+l—o<2,

1 + 1 +....J.L+ 1
n+1 n42 "3n 3m+1

1 1 1
aritarzt o tet
Hinweis: Man benutze die Umformung

1 1 1
2n+!+((2n+l)-—l+(2n+l)+l)

b) ——+

d)

<2,

1

1< Ern e

1 1 1 1
+((2u+1)—2f(2u+ 1)+2)+ '"+((2n+1)—u+(2n+ 1)+n)
der auftretenden Summe.

135 9 1

Hinweis: Man multipliziere das links stehende Produkt mit dem Produkt

Fiir von 0 verschiedene natiirliche Zahlen k, I, m zeige man die Giiltigkeit der
Ungleichungen
2k 2 2m > B+ PB4 mt

p pra e A wr

Hinweis: Man zeige zuniichst k2 + I* + m?* = M + Im + mk.

1 1 1
>4+ -+ —.
—k+l+m
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32. Man beweise
k !
E 1 m o n_
l m n k

Beweis: Ist 1;— > 1, so ist die Giltigkeit der Ungleichung klar. Es werde also % =1
vmuagmtzt. Dann gilt

Fiir den Fall n > 1 bleibt nichts weiter zu beweisen. Es sei also noch n < 1. Wir er-
halten k k

E ol mo ok 1ok Im k1 _Bir
T R B S R I S
-~ B —2d (—1p
=2+ = =2+ H =2>1
(vgl. Aufgabe 27).
33. Fiir welche natiirlichen Zahlen k, I gilt
1 1 2
—4—==1
k +l 7
34. Fiir welche natiirlichen Zahlen k, [, m gilt
1 1 1 1 1 13
- bl — =1, b —_— =1
Vet Tt % +l+m 12

Lésung von b): Wir beschrinken uns auf k¥ <! < m. Die fibrigen Moglichkeiten er-
hilt man durch Umbenennung
3

Aus — + +—S—, also 2§-k— folgt 13k < 36. Wir haben daher die Fille k = 1
undk—2zu bet.rachten
7 1 7 1 1 2 12 24
k = 2: Wir erhalten — L_T 4 —S—=—4—=<=folgt —=I=—.
ir erhalten + 2T = l+m—x°g 7=l=7
Es gibt fir (I, m) also nur dle Méaglichkeiten (2, 12) und (3, 4).
k=1: Wn'erha.lben—+——l—2 Aus l<é—i+ §— folgt 12 <1< 24.
And ite muB die natiirliche Zahl m die Gleichung m=l12 T erfillen. Man hat

also nachzuprifen, fir welche der moglichen I noch ! — 12 | 12 - I gilt. Das kann durch Pro-
bieren erfolgen. Ein anderer Weg ist folgender: Es sei p ein Primteiler von ! — 12, wobei
1 — 12121 gelte. Dann gilt auch p | 12-1. Aus p |1 — 12 und p | 12 - I folgt p | 12. Wir
konnen also ! — 12 in der Form ! — 12 = 27 - 3% ansetzen. Damit erhalten wir die zu
1 — 12|12 - I gleichwertige Bedingung 27 - 3°| 12 - 27 3* 4 144. Diese ist genau dann er-
fillt, wenn 27 - 3¢ | 144 und daher r < 4, s < 2 gilt. Aus 12 < < 24 folgt schlieBlich
12 < 27 3% 4 12 < 24, als0 0 < 27+ 3* < 12. Wir erhalten fir I — 12 = 27 - 3¢ die Mog-
lichkeiten 1, 2, 3, 4, 6, 8, 9, 12. Das liefert fiir (I, m) die Paare (13, 156), (14, 84), (15, 60),
{18, 48), (18, 36), (20, 30), (21, 28), (24, 24).
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35.

317.

38:

39.

41.

. Es seien k, I, m natiirliche Zahlen gréBer als 1. Man bestimme die

Man bestimme alle natiirlichen Zahlen =, fiir die die folgenden gebrochenen Zah-
len natiirliche Zahlen sind :

6 __ n? — 1) 3 3
a)n n, b)(n 12 4+ 2 +(n+1)’
10 10
n? n® + 1ln 74 3n—n —3
c) — + -+ g d) 8 , ©) Ty .
. Es sei a eine gebrochene Zahl mit 0 < a < 1. Man zeige, daB — — akeine natiir-
liche Zahl sein kann.

Man beweise, daB die Gleichung z(z + 1) = y*
a) in N keine Losung besitzt,
b) in @, losbar ist.
Man zeige, daB fiir jede natiirliche Zahl » wenigstens eine der beiden gebrochenen
Zahlen

m4+3n+7 nt—8

10 ! 26

keine natiirliche Zahl ist.

Es seien m und n teilerfremde natiirliche Zahlen groBer als 1. Man beweise :
a) Zwei gebrochene Zahlen der Form

Bmtm) Um+m o om—150=1,.0n—1)

m n

konnen nicht gleich sein.
b) Keine der unter a) penannten gebrochenen Zahlen ist eine natiirliche Zahl.
¢) Fiir die m + n — 2 gebrochenen Zahlen

m+n 2(m + n) (m — 1) (m + n)

» »
m m m

m+n 2(m+n) (n—1)(m +n)
S e -

gilt: Zwischen zwei aufeinanderfolgenden natiirlichen Zahlen %,k 4 1 mit
1 <k <m + n — 2 liegt genau eine dieser gebrochenen Zahlen.

PRI IR

K+ l km +1 Im + 1
[
Fiir eine beliebige natiirliche Zahl g iiberpriife man die Giiltigkeit der Gleichung

1+ +¢+¢+¢ _1-g+@—g+¢
T+g+g+g +g 1—g g

Moglichkeiten, so daB zugleich natiirliche Zahlen sind.
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42.

43.

46.

47.

Daran ankniipfend ist
101010101 _ 10101110101 _ 1010111110101 _
110010011 11001110011 1100111110011

zu beweisen, wenn Zihler und Nenner in der g-adischen (g = 2) Darstellung ge-
geben sind.

Es seien a und b beliebige gebrochene Zahlen. Man zeige:
a) Gilt b > 1, so existiert eine natiirliche Zahl 7 mit a < b".
b) Gilt @ > 0 und b < 1, so existiert eine natiirliche Zahl m mit b™ < a.

Men formuliere den Divisionsalgorithmus fiir eine beliebige Basiszahl g = 2 und
erklire damit die g-adische Bruchdarstellung einer gebrochenen Zahl.

. Man bestimme die g-adische Bruchdarstellung der in der Form 2 (deznma!)
gegebenen gebrochenen Zahlen
23311 8473
,g=1T, b —, =5; —, g=12.
® 33 Yo =% 9 e ¢
Das folgende Rechenschema zur Gewinnung der Bruchdarstellung aus der Dezi-

malbruchdarstellung @q,a, ... @a;,; ... @, einer gebrochenen Zahl a ist zu be-
griinden:

a=ay+ 0,a,...40;.; ... Csp,

100-a=10"-ag + @y ... @ oy + 0841 --- Qe =M + z,

m z
10F- 2 = @4y - QuisBisy -+ Grsk = Qpsy -+ G + T,

_ Qa1 --- Bk 10)

10 —1
Q141 - sk (10)
r TS
- 10!

. Man formuliere und beweise eine Umrechnungsformel fiir die Gewinnung der

Bruchdarstell

g einer gebroch Zahl aus der g-adischen Bruchdarstellung.

Man besti die reduzierte Bruchdarstellung der folgenden in der Dezimal-
bruchdarstellung gegeb gebrochenen Zahlen:
a) 0,36; b) 0,36; ¢) 0,763;

d) 0,142887; o) 247,4135421.
Es ist die Gleichheit der folgenden gebroch Zahlen zu begriinden (ohne
Rechnung):

23 2323 232323

a=— =—, =

99’ 9999’ 999999
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49.

51.

52.

53.

Man zeige, daB die gebrochenen Zahlen

r = 0,018,050, 1, = 0,0,0,0505,
73 = 0,a38,040;, 7, = 0,0,030,0,

in der reduzierten Bruchdarstellung alle den gleichen Nenner haben.

Hinweis: Man bestitige die Beziehungen 10r, = a, + r,, 10ry = @y + 7, 10r; = uy + 15,
10r, = a, + r, und benutze diese zum Nachweis von ¢, | ¢s, 93 | 93, 9s | 94> 94 | ¢, fiir die
Nenner g; der reduzierten Bruchd 11 von r;.

. Man bestimme die primitive Vorperiodenlinge und die primitive Periodenlinge

von der Dezimalbruchdarstellung der folgenden gebrochenen Zahlen:

1 3 1 5 25

&)E. b) 78" ¢) STIETL d) T e) 7
4 1 - 1 1

f) —, , h i .

Vo 9571 YTmoar ) Fomoa

Lésung von g): Die primitive Vorperiodenlinge I, ergibt sich als kleinste natiirliche
Zahl ], fiir die 10 = 0 mod 5 erfiillt ist, also [, = 1. Die primitive Periodenldnge k, ist die
kleinste natirliche Zahl k, fir die 10 =1 mod 7-19 und k¥ = 1 gilt. Wegen 7-19 | m
& 7|mA19|m konnen wir statt der einen Kongruenz 10* = 1 mod 7 - 19 die beiden
Kongruenzen 10* = 1 mod 7, 10* = 1 mod 19 betrachten. Nach Aufgabe a) ist 18 die
kleinste natiirliche Zahl k = 1, fiir die die zweite Kongruenz erfillt ist. Da ¢(7) = 6 ein
Teiler von 18 ist, gilt auch 10'® = 1 mod 7. Somit ist &k, =

a) Wie groB kann die minimale Vorperiodenlinge einer echt gebrochenen Zahl
a= % mit ¢ < 1000 hachstens sein?

b) Man bestimme alle ¢ mit 2 < ¢ < 100, fiir die die minimale Periodenlinge
von der Dezimalbruchdarstellung der gebroch Zahl -;- gleich ¢ — 1 ist.

Man beweise unmittelbar unter Verwendung der Umrechnungsformel fiir die
Gewinnung einer Bruchdarstellung aus der g-adischen Bruchdarstellung folgende
Aussage (vgl. ML Bd. 2, 4.9., Satz 1):

Die g-adische Bruchdarstellung der gebrochenen Zahl a = 2 (md\morte Bruch-
darstellung) ist

a) reinperiodisoh genau dann, wenn g und g teilerfremd smd,

b) endlich genau dann, wenn jeder Primteiler von g auch ein Primteiler von g ist.

Fiir welche Zahlen g ist die g-adische Bruchdarstell der gebroch Zshl
% endlich?

. Fiir die reduzierte Bruchdarstelling —~ der gebrochenen Zahl @ < 1 gelte
n

m +n = B80. Ferner sei die Dezimalbruchdarstellung von a endlich. Welche
Moglichkeiten kommen fiir die gebrochene Zahl a in Frage?
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65.

56.

b67.

68.

59.

Fiir die folgenden gebrochenen Zahlen besti man die Kettenbruchdarstel
lung. Man berechne ferner die Niherungsbriiche P sowie die Fehler, die beim
q:

£
Ersetzen der gebrochenen Zahlen durch diese Naherungsbriiche entstehen:
571 1882 2341
a) ==, b) —, ¢) .
359 1661 1721
Man finde die reduzierte Bruchdarstellung der in der Kettenbruchdarstellung
gegebenen gebrochenen Zahlen:

a) [1;1,2,3,4], b)[2;5,3,2,1,4,2,3], ¢)[1;23,1,2,3,1,2,3].

In einem Zahnradgetriebe wird ein Ubersetzungsverhéltnis von 587:113 be-
nétigt, wobei ein Fehler von 40,001 zuldssig ist. Die Realisierung soll durch
zwei Zahnriider mit moglichst wenig Zihnen erfolgen.

a) Zu welchem Ergebnis kommt man unter alleiniger Nutzung der Néherungs-
briiche?

b) Kenn eine weitere Verbesserung bei Verwendung der Zwischenbriiche erzielt
werden?

c) Man gebe analoge Beispiele an, bei denen

— bereits die Niaherungsbriiche zur optimalen Lésung fithren,

— die optimale Losung durch Zwischenbriiche erreicht wird.

Man berechne die Kettenbruchdarstellung von Zm2 gowie die Niherungs-
,

m+l
briiche dieser Zahl. Man bestitige damit, daB zwei aufeinanderfolgende Fibo-
naccische Zahlen teilerfremd sind. (Vgl. die Aufgaben 27 und 54 des vorher-
gehenden Abschnittes.)

Es sei £ die (reduzierte) Bruchdarstellung und [ay; ay, ..., @] (@ > 1) die

Kettenbruchdarstellung der gebrochenen Zahl a > 1. Man beweise die Un-
gleichung ., < ¢g. Wann gilt die Gleichheit?

Hinweis: Man vergleiche die beim Euklidischen Algorithmus auftretenden Reste 1y,
415 .. mit den Fibonaccischen Zahlen u;, u,, ...

. * Unter den gleichen Vora gen wie in Aufgabe 59 beweise man, daB die

Anzahl k der Teilnenner hichstens fiinfmal so groB sein kann wie die Anzahl der
Ziffern der Zahl g im Dezimalsystem. Bei welchen Zahlen a kommt die Anzahl &
nahe an die genannte Schranke heran?

Folgerung: Die Anzahl der Divisionen beim Euklidischen Algorithmus zur
Berechnung des groBten gemeinsamen Teilers zweier natiirlicher Zahlen ist nicht
groBer als das 5fache der Stellenzahl der kleineren der beiden Zahlen in der
Dezimaldarstellung.

Hinweis: Man zeige zunéchst %,y > 10u,, %4 > 100, firn =2,3,..;1=1,2,...
Unter Nutzung der Aufgabe 59 gelangt man damit zum Ergebnis.



Der Bereich der gebrochenen Zahlen 59

61.

62.

63.

Eine algebraische Struktur (4, +, -) wird ein Halbring genannt, wenn die Struk-
turgesetze (A0), (A1), (A3); (MO), (M1), (M4) (vgl. MfL Bd. 2) sowie die Regulari-
tit beziiglich der Addition:

(A2) ae+z=a+ty>z=y

gelten. Wird dariiber hinaus die Regularitit beziiglich der Multiplikation:

M2) a-z=a-yszr=9y

(wobei a 3= 0, wenn ein Nullelement O existiert) gefordert, so wird (4, +, -) ein
regulirer Halbring genannt. Fiir diese und weitere Aufgaben werden hier iiber-
sichtemiiB8ig einige algebraische Strukturen mit den sie definierenden Struktur-
gesetzen (vgl. MfL Bd. 2) zusammengestellt :

Halbring (A0), (A1), (A2), (A3); (MO); (M1); (M4)
regulirer Halbring (A0), (A1), (A2,), (A3); (MO), (M1), (M2,); (M4)
Halbring mit Null (A0), (A1), (A2,), (A2,), (A3); (MO), (M1); (M4)

Halbring mit Eins (A0), (A1), (A2,), (A3); (MO), (M1), (M2,); (M4)
kommutativer Halbring (A0), (A1), (A2,), (A3); (MO), (M1), (M3); (M4)
Halbkorper (A0), (A1), (A2,), (A3); (MO), (M1), (M2,), (M2,),

(M 3); (M4)
geordneter Halbring  (AO0), (A1), (A3); (MO), (M1); (M4); (O1), (02), (03).
Man erklire die genannten Strukturen unter Einbeziehung der durch die Struk-
turgesetze geforderten Eigenschaften.
(Muster: Eine algebraische Struktur (4, +, -) mit zwei algebraischen Operatio-
nen — genannt Addition bzw. Multiplikation — wird ein Halbring genannt, wenn
die Addition assoziativ, kommutativ und regulir, die Multiplikation assoziativ
sowie beziiglich der Addition distributiv ist.)

Man beweise:

a) Jeder Halbkorper ist ein regulirer kommutativer Halbring.

b) Jeder geordnete Halbring ist ein regulirer Halbring.

c) * Jeder endliche regulire kommutative Halbring ist ein Halbkorper.

Es sei A(+, -) ein Halbkorper und B(+, -) ein Halbring mit Null und Eins. Man

zeige: Ist B(+, -) ein Teilhalbring von 4(+-, -) (Schreibweise: B(+-, -) S 4(+, *),
vgl. MfLL Bd. 2, 8. 56), so ist B(+, -) ein regularer kommutativer Halbring.

. * Gilt B(4-,-) £ A4 (+,-) und ldBt sich jedes Element z des Halbkérpers 4 in

der Form 2 =a-b1= % (a, b € B) darstellen, so heiBt 4(+4,) ein Quo-

tientenhalbkorper des Halbringes B(+, -).
Beispiel: @,(+, -) ist Quotientenhalbkérper von N(+, -).
Man beweise :

a) Zu je zwei Quotientenhalbkérpern A(+,-), 4'(+,-) von B(+,-) gibt es
genau einen Halbkérperisomorphismus von 4 auf A’, bei dem die Elemente von
B fest bleiben (Eindeutigkeit des Quotientenhalbkérpers).
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b) Zu jedem regyliren kommutativen Halbring gibt es einen Quotientenhalb-
korper (Existenz des Quotientenhalbkérpers).

Hinweis: Man iibertrage sinngemiB das Verfahren fiir die Konstruktion von @, aus N.

65. * Es sei B(+, -) ein regulidrer kommutativer Halbring mit Null und Eins. Ferner
bezeichne f einen Halbringisomorphismus von B(+,:) in einen Halbkérper
A(+, -). Man zeige, daB f zu einem Halbkérperisomorphi des Quotient:
halbkérpers von B(+,-) in A(+, -) fortgesetzt werden kann (Minimalitit des
Quotientenhalbkérpers).

66. * Mit B(+, -, <) werde ein geordneter kommutativer Halbring mit Null und
Eins bezeichnet.

a) Man zeige, daB die Ordnung auf genau eine Weise auf den Quotientenhalb-
korper von B fortgesetzt werden kann, so daB der Quotientenhalbkorper ein ge-
ordneter Halbkérper wird.

b) Man beweise, daB der (geordnete) Quotientenhalbkérper eines geordneten
Halbringes B minimal unter allen geordneten Halbkorpern ist, die B als Teil-
struktur enthalten (vgl. Aufgabe 65. Halbringisomorphismus ist durch Isomor-
phismus geordneter Halbringe zu ersetzen.).

67. * Man untersuche die Méglichkeit der Quotientenhalbkérperbildung fiir regu-
lire kommutative Halbringe, die keine Null bzw. Eins besitzen.

68. * Man bilde den Quotientenhalbkérper des Halbringes der geraden natiirlichen
Zahlen.

Hinweis: Vgl. Aufgabe 2.

Der Bereich der rationalen Zahlen

Kontrollfragen

1. Auf welche Weise li8t sich der Bereich der rationalen Zahlen mit Hilfe der
Differenzengleichheit von geordneten Paaren konstruieren?

2. Wie kann man den Bereich der rationalen Zahlen algebraisch charakterisieren?

3. Welche Rechenregeln fiir das Umformen von Ungleichungen gibt es?

4. Wie sind die Begriffe beschrinkte und unbeschrinkte Menge, Schranke, Maxi-
mum, Supremum und Infimum definiert? Man gebe Beispiele an.

5. Was versteht man unter dem absoluten Betrag einer rationalen Zahl? Welche
wiohtigen Regeln fiir Rechnungen mit absoluten Betriigen gibt es?

6. Wie laBt sich der Bereich der ganzen Zahlen charakterisieren?
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7.

8.

©

10.

11.

12.

Wie lauten die Eigenschaften der Teilbarkeitsrelation und wie sind die Begriffe
groBter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches im Bereich
der ganzen Zahlen definiert?

Was versteht man unter Restklassen? Wie sind die Addition und Multiplikation
von Restklassen erklirt? Man charakterisiere die Menge aller Restklassen be-
ziiglich dieser Operationen.

Wie 1aBt sich eine lineare Kongruenz l6sen?

Wie sind die Potenzen mit ganzzahligen Exponenten definiert und welche wich-
tigen Eigenschaften haben sie?

Was versteht man unter einer diophantischen Gleichung? Man gebe Ldsungs-
verfahren fiir diophantische Gleichungen mit zwei Unbekannten an.

Welche verschiedenen Wege zur Konstruktion der rationalen Zahlen gibt es?

Aufgaben

. Es sei @ die Menge der Aquivalenzklassen beziiglich der Relation

(@, d) ~(c,d):©oa+d=0b+c.

a© b sei die Aquivalenzklasse, die das Paar (g, b) enthilt. Man beweise die Un-
abhéngigkeit von den Reprisentanten bei folgenden Definitionen in @:

a) a@b<cOd:vat+d<b+ec,
b) @O b) + (cOd):=(a+c)O (b +d).

. Es sei @_ eine zu @, gleichmichtige Menge mit @, n @_ = {0} und / eine einein-

deutige Abbildung von @, auf @_ mit f(0) = 0. Fiir a,b € @, wird a + f(b)
durch folgende Festlegung erklirt:

e—b fir a20, abcQ,,
b) =
o +/®) {/(b—a) fir @ <b.
Man zeige, da8 sich jedes Element von @ in der Form a + f(b) (a, b € @,) dar-
stellen 1d8t und dabei
a+fb)=a +fb)sa+b =a +b
gilt.

. Man zeige, daB folgende Definitionen in @ = @, u @_ reprisentantenunab-

hiingig sind (vgl. Aufgabe 2):

a) e+ fb)<c+f@d):oa+d<c+0b,

b) (a + /) + (c + /(d)) := (a + ¢) + f(b + d),
¢) (a+ /() - (¢ + /(@) := (ac + bd) + f(ad - bc).
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o

10.

11.

12.

. Man beweise, da3 @ mit den in Aufgabe 3 definierten Operationen und der defi-

nierten Relation einen geordneten Korper bildet.

. Man zeige, daB die Zuordnung

(B2 1(-3)--2

(vgl. MfL Bd. 2, S. 68) einen Isomorphismus von @(<, +, -) in einen geordneten
Korper K(<, +, ) definiert.

. Es sei M die Menge der Restklassen modulo 6. Man zeige, daB in M keine irre-

flexive totale Ordnung definiert werden kann, so da8 ein geordneter Kérper ent-
steht.

Losung: Es sei M = {g,, a,, a,, a,, a;} die Menge der Restklassen. Unter der Annahme,
daB in M eine irreflexive totale Ordnung existiert, existiert dann auch in M o. B. d. A.
die Kette

@ < 6, < 8y < 4y < a5.

‘Wir zeigen, daB (02) nicht erfillt ist. Es sei a; < a, mit k 3= 5. Wir addieren a; = a;, — q;
und erhalten ¢; + (a5 — ;) < @; + 6; und daraus

@Gy <a+a=q mit 0<I<5.

. Es sei K’ ein Teilkorper eines Korpers K. Man beweise, daB K’

a) das Nullelement von K als Nullelement,
b) das Einselement von K als Einselement
enthalt.

. Man beweise, daB der Durchschnitt beliebig vieler Teilkorper eines Korpers K

selbst wieder ein Teilkérper von K ist.

. Man zeige, daB die Relation

(@d)=(d):oa+d=b+c
eine Aquivalenzrelation auf N XN ist.

Mit m © n werden die Aquivalenzklassen beziiglich der in Aufgabe 9 eingefiihrten
Relation bezeichnet. Auf folgende Art und Weise werden eine Ordnung und eine
Addition bzw. Multiplikation in N XN definiert:

(i) a@b>c@Qd:®a+d>b+ec,

(i) @Ob)+(cOd:=@+)O O’ +ad),
(iii) (@O b)-(cOd):= (ac + bd) © (bc + ad).
Man zeige, daB diese Definitionen reprisentantenunabhingig sind.

Man zeige, daB die Menge N X N mit den in Aufgabe 10 eingefiihrten Operationen
und der Relation fiir die Aquivalenzklassen einen geordneten Ring Z bildet.

Man beweise, da8 N isomorph in Z enthalten ist.
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13. Diese Eigenschaft gestattet es, Z als eine Erweiterung von N anzusehen und den

14.

15.

16.

18.

19.

zu N igomorphen Teilhalbring von Z mit N zu identifizieren. Dieser so konstru-
ierte Ring Z ist der kleinste Ring, der N enthilt, d. h., daB kein echter Teilring
von Z existiert, der N enthilt. Man bezeichnet Z als Differenzenring von N.
Man beweise die Minimalitit von Z.

Man zeige, daB die Relation
(a,b) ~ (c,d) & ad = cb
eine Aquivalenzrelation in Z X N* ist.
Man zeige, daB folgende Definitionen reprisentantenunabhangig sind. Mit %

werden dabei die Aquivalenzklassen beziiglich der in Aufgabe 14 eingefiihrten
Aquivalenzrelation bezeichnet.

. a c
m;>7@w>¢
L@ c ad + ¢cb
@ g+ ="
(i) 1.i-=fﬁ.
b d bd

Mit den Definitionen aus Aufgabe 15 bildet die Menge der Aquivalenzklassen
von Z X N* einen geordneten Kérper @, den Quotientenkérper von Z.

. Man beweise, da8 Z isomorph in Q enthalten ist.

Man beweise, daB @ und @ isomorph sind (vgl. Aufgabe 1).
Hinweis: Die Abbildung wird folgendermaBen definiert:

—ed
a@blL‘W €
dg

mit a=§ und b=i(c,e€Nundd,g€N‘).
g

Man kann @ also auf zwei Wegen konstruieren:

1. aus N den Differenzenring Z und aus Z dann den Quotientenkérper @,

2. aus N den Quotientenhalbkorper @, und daraus dann den Differenzenring @.
Dieser Differenzenring ist auf Grund der Eigenschaften von N ein Korper.

Der Differenzenring eines Quotientenhalbkorpers @(H) ist ein Kérper, wenn der
zugrunde liegende kommutative und regulire Halbring H folgende Eigenschaft
erfiillt:

(i) Fiir je zwei verschiedene Elemente a und b aus H ist wenigstens eine der
Gleichungen b + z = a oder @ + y = b in H lésbar.
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Dann gilt:

a) Mit H erfiillt auch Q(H) die Bedingung (i).

b) Mit H ist auch D(H) regulir.

¢) Mit H ist auch D(H) ein kommutativer Halbkérper und damit Kérper.
Beweis: Zu a) Da zwei beliebige Elemente von Q(H) stets mit gleichem Nenner dar-
gestellt werden kénnen, seien % und % zwe. verschiedene Elemente aus Q(H). Wir haben

zu zeigen, daB wenigstens eine der beiden Gleichungen

‘—;-+z=% bzw. %+y=%
in Q(H) 16sbar ist.
Nach Voraussetzung ist wenigstens eines der beiden Elemente
zZ,=6—¢, Zy=c—a
in H enthalten. Daraus folgt, da8 wenigstens eines der Elemente
a—c
b

z=2= und y=

in Q(H) enthalten ist.
Zu b). Wir betrachten in D(H) die Gleichung
@—0b)(c,—d)=(a—b)(cq—dy) mit a—b=+0.
Nach (i) gilt wenigstens eine der beiden Gleichungen
26, — dy) = 2(ey —dy), —yley — ) = —yles — dy)
mit £ € H und y € H. In jedem Fall gibt es aber ein z € H mit z(c, — d;) = z(c, — d).
Daraus folgt aber z(c, + dy) = z(c, + d,) und daraus wegen der Regularitit von H
6 +dy=cy+d.
Das bedeutet aber, da8 ¢, — d, = ¢, — d, gilt.
Analog zeigt man, da8 aus
—d)@—b=(a—d)@a—b) mit a—b+0
ebenfalls ¢, — d; = ¢; — d, folgt.
Zu c). Das Einselement des Halbkérpers H ist auch das Einselement von D(H) (vgl. MfL
Bd. 2, 8. 61). Damit bleibt zu zeigen, daB jedes Element a — b < 0 aus D(H) ein Inverses

in D(H) besitzt und daB die Multiplikation in D(H) auch kommutativ ist.
Wegena — b = z oder a — b = —y mit z € H bzw. y € H gilt aber

(@—bl=2z"1 oder (@ —b)'=—y?
mit 21 € H bzw. y -1 € H,d. h. —y~! € D(H).
Zur Kommautativitit:
(@ — b) (¢ — d) = (ac + bd) — (ad + bc) = (ca + db) — (da + ¢b)
= (ca + db) — (cb + da) = (¢ — d) (a — b).

. Man beweise folgenden Satz: Es sei H ein (nichttrivialer) kommutativer regulérer

Halbring mit der Eigenschaft (i) aus Aufgabe 19. Dann liBt sich die Differenzen-
ring- und Quotientenhalbkérperbildung in beiden Reihenfolgen nacheinander
ausfiihren, und es gilt

Q(D(H)) =2 D(Q(H)).



Der Bereich der rationalen Zahlen 85

21.

22.

23.
. Man beweise: Ist |b — a| < |b], dann haben a und b das gleiche Vorzeichen.

25.

26.

27.

Die Menge aller ganzrationalen Ausdriicke

L
@+ o+ o+ et = Jaan,

=0
die sich mit der transzendenten Zahl » € R und Koeffizienten @ € N bilden lassen,
ist ein Unterhalbring H von R. Man bilde D(H), Q(H), Q(D(H)) und D(Q(H)) und
zeige, daB D(Q(H)) ein echter Unterring von Q(D(H)) ist.

Man beweise :
a) la-b =lal- b, D) |a" = [a|*.

Man beweise: Aus a < ¢ < b folgt |¢|] < max (|al, [b]).

Anleitung: Man beweise die Kontraposition dieser Aussage.

Man beweise :
S mexle+y— 2z — g =z —zl+ly— .
Man zeige:
a) max(a,b):a_w, b) min(a'b)=a+b—2|a—b|‘

Es sei g: @ - Q, eine eindeutige Abbildung mit den Eigenschaften
(1) ¢l@a) =0&a=0,
2) ola-b)=gp(@)-¢b), (3) pla+b) < gla)+ ¢b).
Dann gelten folgende Eigenschaften:
@ on=1. ®¢(3)=7 0.
- \a ¢la)
®) o(—1)=1, (7) ¢(—a)= gla),
(8) gla—1) = Ipla) — p(d)].
Man zeige, daB die genannten Eigenschaften in folgenden Fillen erfiillt sind:

. i aco,
8) gl@):=lal. b) w(a):={(l’ o e

¢) Es sei p eine Primzahl. Jede von O verschiedene Zahl a ¢ Z besitzt eine ein-
deutige Darstellung der Form a = p*a’ mit £ = 0 und a’ np = 1. Man setzt

p(a) =pt, @,(0) =0

undﬁira=£€0,b,c€ z,
c

. b b
ula) = @, (?) = ;’—‘(C; .
P
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28.

29.

31.

32.

Man beweise durch vollstindige Induktion die Bernoullische Ungleichung
(1+a*>1+na fir a>—1l,a+0undn>1.
Man beweise die Ungleichung

1+a+a’+m+a'<—ll—, 0O<a<li.
—a

. Man beweise die Abschitzung

1 -1 l L]
/\(1+—) <(1+-—)<3.
neN n—1 n
22

Anleitung: Zum Beweis der ersten Ungleichung forme man diese in eine bekannte Un-
gleichung um. 1

Zum Beweis der zweiten Ungleichung verwende man die Abschitzung — < i und
die Ungleichung aus Aufgabe 29. "" 2

Man he, fiir welche n die Ungleichung »n**! < (» + 1)* und fiir welehe
n die Ungleichung n**1 > (n + 1) gilt.

Man beweise, daB fiir alle rationalen Zahlen @, b,¢c,dmit 0 <a <b<c=d

ist. Man gebe eine notwendige und hinreichende Bedingung dafiir an, da8 in (i)
das Gleichheitszeichen gilt.

Hinweis: Man forme die Ungleichung so um, daB auf der einen Seite der Ungleichung
ein Produkt und auf der anderen Seite Null entsteht.

. Man untersuche, ob unter allen Paaren (a, b) positiver rationaler Zahlen solche

existieren, tiir die
a ')
/(a.b)=b—‘+;-———+—-+—

einen klei Wert anni Wenn ja, dann ist dieser kleinste Wert anzu-
geben.

. Es seien z;,y, ({ =1, ..., n) rationale Zahlen, und es gelte z, =2z, = --- = z,

und y; = ys = - = ya- Es sei 2, 2,...,2, irgendeine Anordnung der Zahlen
Y1s ---» Ya- Man beweise die Abschitzung

Z.‘ @—y)rs 23‘ (@i — z)*.

Lésung: Da Z vi= Z 2z} ist, folgt nach Aufldsung der Klammern der obigen Unglei-
i-
chung, da8 sie iqmnlent. ist zu

(@ ): Yy 2 _Z zE-
=1 =1



Der Bereich der rationalen Zahlen 67

36.

37.

38.

39.

Da es nur endlich viele Umordnungen fir die y; geben kann, konnen nur endlich viele Werte
fiar die rechte Seite von (i) auftreten; unter diesen existiert ein groBter Wert. Wir werden
zeigen, daB dieser nur dann angenommen wird, wenn y; = z, firi = 1, ..., n gilt.

Es gilt

.
(i) Fzzi=zz+ - +zz+ - +azt o+ 2aza.
i=1

Gilt in (ii) z; = 7, und 2; < 2, 8o ver hen wir die S den z;z; und z,2,.
Es sei nun in (ii) z; > z; und z; < 2. Dann gilt (z; — z;) (; — %) < 0 und damit

(i) zz + 7z < 2z + B2

Aus (iii) folgt, daB 2 z;z fiir diesen Fall kleiner ist als in einer Anordnung, in der z; und z;
mlmmander vertauscht wurden. Gilt far alle (z, z;) mit | < k die Relation z; = z,, so
nimmt 2 z,;2; seinen groBten Wert an. Dann muB aber die Anordnung z,, ..., z, — bis auf

die Anordnung eventuell gleicher z;, die dann auch vertauscht werden diirfen — mit y,, Yo
Y3» +--» Yy libereinstimmen. Damit ist (i) und somit auch die Giltigkeit der v
Ungleichung bewiesen.

8O

. Man untersuche die Losbarkeit der Gleichung

1 1 1 1
ALY

im Bereich der rationalen Zahlen.

Man beweise die Ahschitzung

9
o.béﬂ. a+b+c
Man beweise: Ist % < % und b > 0 und d > 0, dann gilt
a at+c _ ¢
b b+d-d’

Man beweise: Fiir alle a; € @ und alle b; ¢ Q3 gilt
»
2o
min (%: 121 n) =< "_‘ < max(a

( Zbi

1<1Sn)
i

Man bestimme 7 rationale Zahlen, deren Summe gleich der Summe ihrer Qua-
drate ist.

Lésung: Es seien ¢,, ¢, ..., ¢, beliebige rationale Zahlen, wobei mindestens zwei vonein-
ander verschieden sina:

Gt+eg+ - +eg=a+0 und c+ci+--+ck=8%0.

Gesuchte Zahlen sind z; = ¢; -% fairi=1,..,n
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41,

Beweis: Esist

x ol
z, G+ - Feg) = =—,
En=t "ﬁ ]
22—(c+ +0') —ﬁ—=
1= o
Ist c=c,=~--=c,4=0, dann gilt « = nc und f = nc®. Daraus folgt z_1 und
c
daraus 2, = Z3 = - =1z, = 1. Ist ¢; + ¢; + - + ¢4 = @ = 0, aber f = 0, dann gilt
Ty, =Ty = =T, .
. Man zeige

%n’<1’+2’+-~+"’<§'("+1)’ fir n=1.

Beweis: Der Beweis wird mittels vollstindiger Induktion gefihrt.
Induktionsanfang:
1 1 8
=1 —<l<—2=—,

n=1 3 <1< 3 3
Induktionsvoraussetzung:

n=k %v< EIIPC I +L~’<-;—(l:+ 1.
Induktionsbehauptung:

Bkt TR DI U< S 2
Induktionsbeweis:

1. Linke Ungleichung

1 L1 1 1 2

= - k2 — 2 k-

g+ =g BBkt =P (B2 )~k
=%—k‘+(k+l)’—(l¢+1‘)<l+ CE B k41

2. Rechte Ungleichung
1 3 1 8 1 1 7
—_ =—k3 k2 4 4k + —=—§ B kE4+ — L 3k 4 —
3(k+2) g2k 3=z ot+tEe+ +3+(lc“3l+3)

-_——;-(I:+l)’+(k’+2k+1)+(k+%)
=—;-(lc+1)‘+(lc+1)2+(k+%)>1’+---+k’+("+1)’-
Man beweise
1 ML 1P 4 2P 4 o P < ! (n + 1)1
r+1 ?+1

firn = 1und n € N.
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42.

43.

46.

47.

48.

49.

Man beweise: Fiir beliebige rationale Zahlen a 4= 0, b 3 0 und beliebige ganze
Zahlen n, m gelten folgende Potenzgesetze :
E) a™ = (a—l)- o (an)-!’ b) (ab)- = a-b-’

a\" a™
aﬂ
e) — =a™*, f) (a™)* =a™.
a'
Man beweise: Fiir beliebige Zahlen m, n, p, ¢ € Z mit m — p 3 ) gilt:

m — p | mq + np dann und nur dann, wenn m — p | mn + pq ist.

Man zeige, daB die Zahlen 25, —20, 16, 46, —21, 18, 37, —17 ein vollstindiges
Repri yst: dulo 8 bilden.

d

. Man zeige, daB die Zahlen 19, 23, 25, —19 ein primes Restsystem modulo 12

bilden.

Man gebe ein vo]]stﬁ.nd.igés Reprisentantensystem fiir die Restklassen und die
primen Restklassen beziiglich folgender Moduln an:

a)m=9, bym=8, c)m=13,
dm=12, ey m=17, f) m=10.
Auf wieviel verschiedene Weisen 1Bt sich die Nullrestklasse [0],¢ als Produkt

zweier von [0],, verschiedener Restklassen schreiben? Man gebe alle diese Pro-
duktdarstellungen an.

Man beweise durch vollstindige Induktion
" »
2 [aila [bda = [za.b.-] :
i=1 i=l L]
Man beweise

[a]n — [b]n = [@ — B]a-

Man zeige, wenn p > 3 und p und 2p + 1 Primzahlen sind, dann ist 4p + 1
keine Primzahl.

Losung: Nach Voraussetzung gilt pn3 =1 und (2p+4 1)n3 = 1. Daraus folgt
#* = 1mod 3 und (2p + 1)* = 1 mod 3. Multiplikation der ersten Kongruenz mit 4 er-
gibt unter Beachtung von

4p* + 4p + 1 =1mod 3
die Kongruenz
4p+ 1= —-3=0mod3.
Das ist gleichbedeutend mit 3 | 4p + 1, und daraus folgt, daB 4p -+ 1 keine Primzahl ist.

. Man zeige, daB 8p® 4 1 (p ist Primzahl) nur dann eine Primzahl ist, wenn p = 3

ist.
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62.

53.

57.

58.

59.

61.

Es seien m, n natiirliche Zahlen. Man zeige, daB die Kongruenz
a* 4 g* = 0mod 7

nur gilt, wenn a ein Vielfaches von 7 ist.

Lésung:

1.a=0mod 7.
Daraus folgt a*® = 0 mod 7 und a®® = 0 mod 7. Addition der beiden Kongruenzen liefert

a* 4 g*® =0mod 7.

2.a%0mod7.

Daraus folgt a 17 = 1. Nach dem Satz von FEBMAT gilt dann
6*=1mod7.

Daraus folgt a*™ = 1 mod 7 und a** = 1 mod 7. Addition der beiden Kongruenzen liefert
a%™ | g% = 2mod 7.

Man zeige, daB fiir eine beliebige ganze Zahl z die Kongruenz z? = z mod 42 gilt.

Anleitung: Man zerlege 42 in ein Produkt und untersuche die Kongruenzen beziiglich
dieser Faktoren.

. Man bestimme die letzten zwei Ziffern der Zahl 21,
5.

Man bestimme die Reste bei folgenden Divisionen in Z:
a) 38317 durch 45, b) 109%5 durch 14,

c) 4391 durch 60, d) 293%* durch 48,

e) 66'7 durch 7, f) 1178 durch 11.

. Welchen Rest 148t eine natiirliche Zahl a bei der Division durch 73, wenn die

Zahlen a1 — 2 und a°! — 69 durch 73 teilbar sind?

Ist z = (112 4 78)% — 4271%(47% — 132%)7 durch 17 teilbar?

1 18a .
ﬁ-l;-—% sei eine ganze Zahl. Man zeige, daB dann auch -—%& eine ganze
Zahl ist.

Man zeige: Gelten die beiden Koneruenzen

ac=bdmodm, a=bmodm

und @ nm = 1, dann kann man gliedweise die erste Kongruenz durch die zweite
dividieren und erhilt

c=dmodm.
. Man beweise, daB n® — 1= 0 mod 8 gilt} wenn 7 eine ungerade Zahl ist.
Anleitung: Man besti ein vollstindiges Restay dulo 8 und wende an-
hlieBend Fall heidung an.

8

Es sei p eine Primzahl. Man zeige, daB aus @ = b mod p* die Giiltigkeit der
Kongruenz a? = b?.mod p"*1 folgt.
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62.

63.

65.

Man leite eine Regel fiir die Teilbarkeit a) durch 3, b) durch 9 her.
Loésung zu a): Angenommen, es ist 3 | a,a,_, ... ,a,a,. Dann gilt
G,10" + a,_,10% 4 ... 4 a,10% + @,10 + a, = O mod 3.
Das ist gleichwertig mit
Gy 4+ ayy + - +ay+a, + 6 =0mod3.
Das bedeutet, daB eine Zahl durch 3 teilbar ist, wenn ihre Quersumme durch 3 teilbar ist.

Man leite eine Regel fiir die Teilbarkeit a) durch 4, b) durch 8, ¢) durch 11, d)
durch 7 her.

. Man beweise folgende Aussagen:

a) Jede Losung z der linearen Kongruenz az = b mod m ist auch Losung der

durch d = a nm ,,gekiirzten‘ linearen Kongruenz a’'z= b’ mod m’ und um-

gekehrt, wobei also a = da’, m = dm’, b = db’ und o' nm’ = 1 gilt.

b) In Z ist die Gesamtheit aller Losungen der linearen Kongruenz
adz=b'modm’ mit a'nm’ =1

genau die Menge aller modulo 7’ zu z kongruenten Elemente von Z. Man erhilt
also aus einer bereits bekannten Losung z, die allgemeine Lisung als Restklasse
[%o]m- Nach a) ist dies auch die allgemeine Losung jeder linearen Kongruenz
az=>bmodm mit enm = d und d| b, die durch , Kiirzen* in die obige Glei-
chung iibergefiihrt werden kann.

c) Jeder linearen Kongruenz entspricht eine Gleichung im Restklassenring Z/R,,.
Diese Gleichung ist eindeutig losbar, wenn @ nm = 1 ist.

Entsprechend kann man eine beliebige Kongruenz

ez=bmodm mit anm=d und d|b
als eine Gleichung im Restklassenring Z/R, betrachten:
[a)u [z]m = [b]a-

Die allgemeine Lisung dieser Kongruenz-ist aber nach b) nur als Restklasse
[%o]ms mit m == dm’ in Z/R,,. gegeben. Es gilt aber, daB jede Restklasse [2]a- in
Restklassen [z, + rom'], zerfillt, wobei r, ein vollstindiges Reprisentanten-
system modulo d durchlauft.

Men bestimme alle Losungen folgender Kongr durch Rechnung in den
entsprechenden Restklassenringen:

a) 7z=16mod3, b) 13z= 5mod 17,

¢) 22= Tmod 15, d) bz= 2modS8,

e) T7z= 2mod 13, f) 13z= 5 mod 47,

g) 3z=23mod37, h) 3z=1mod5,

i) 3z=1 mod13, j) 2z= Tmod15,
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67.

k) 122=1mod 7, ) 8=1mod5,
m) 6z=3mod 7, n) 6z4+5=6mod?7,
0) 3z+4=2mod5, p) 16z + 4= Tmod 11.
Lésungsbeispiel: Der Kongruenz
8z = 2 mod 11
tapricht im entsprechenden Restklassenring die Gleichung [81;, [2);; = [2];,- Multipli-
kation mit [7],, ergibt [58),, [);, = [14],,. Daraus folgt
(1] [#]y = [8ly  bzw. [z} = [3],-
Das bedeutet, daB jede Zahl z = 3 + 11r mit r € Z Losung der obigen Kongruenz ist.

. Man l6se folgende Kongruenzen analog zu Aufgabe 65:

a) 12z= 9mod 15, b) 12z= 9mod 18,
¢) 20z= 10 mod 25, d) 10z = 26 mod 35,
e) 8z=3mod 14, f) 39z = 84 mod 93,
g) 90z + 18=0mod 138, h) 376z = 195 mod 501,
i) 14z= 22mod 36, j) 78z =42 mod b1,
k) 114z= 42 mod 87, 1) 6zx=05mod9.

Lésungsbeispiel: Gegeben sei die Kongruenz
10z = 5 mod 15.
Da 1015 = 5 und 5| 5 gilt, ist die Kongruenz 18sbar. Ihr entspricht folgende durch
»Kiirzen entstandene Kongruenz 2z = 1 mod 3. Dieser entspricht wiederum die Glei-
chung (2], [z], = [1),. Multiplikation mit [2], ergibt [4], [z]; = [2];, und daraus folgt
[1]s (zls = [2]s.
Dies ist die allgemeine Losung, dargestellt im Restkl ing Z/Ry. In Z/R,; erhilt man
daraus folgende Losung:
[z1his = [2)s»
[Zshs = [2 + 3}y = [6hs»
[Za)is = [2 + 6)y5 = [8)s.
[#)is = [2 + 8%y = [11])y5,
[Z)is = [2 + 12]y5 = [14];,.
Man besti die Losungen der folgenden linearen Kongruenzen mit Hilfe der
Eulerschen Funktion:
a) 3z= 1modb6, b) 52=6mod7,
¢) bz= Tmod 10, d) 3z=8mod 13,
e) 26z= 16 mod 17, f) 292= 3 mod 12,
g) 5z=26mod 12, h) 4x= 7mod8.

Losungsbeispiel: Die Kongruenz
8z = 6 mod 16
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69.

70.

71.

ist équivalent zu der Kongruenz 3z = 2 mod 5. Es ist ¢(5) = 4, und daraus folgt
3¢=1mod5, 3¢-2=2mod5 und 3(3*.2)=2mod5.
Daraus ergibt sich als allgemeine Losung
z=23.2+4+6r=54+6r mit reZ.
Man l6se folgende lineare Kongruenzen mit Hilfe von Kettenbriichen:
a) T7z= 4mod19, b) 13z= 1mod?27,
c) 37r= 26mod 117, d) 113z= 89 mod 311,
e) 221z = 111 mod 360, f) 23z= 667 mod 613,
g) 143z= 41mod 221, h) 9lz= 143 mod 222,
i) 271z= 26 mod 119, j) 13z= 178 mod 163.
Losungsbeispiel (vgl. MfL Bd. 2, S. 85): Gegeben sei die Kongruenz
9z = 4 mod 17.

Die Entwicklung von % als Kettenbruch ergibt

L PR My WINE S SIS S SR L
17 17 1 1
= + = 14— 1+
’ ’ 0 oL
8 8

also in abgekiirzter Schreibweise S [0;1, 1, 8). Daraus ergeben sich die Naherungs-
briiche 17

1 1 9

8 =0, ‘|=T: ’l=?’ 33=ﬁ.
Als eine spezielle Losung folgt damit z, = (—1)*! - 2 - 4 = 8. Die allgemeine Losung laute
dann

z=8+4+17r mit reZ.
Man lése folgendes System von Kongruenzen:

3y, + 4y, = 0mod 5,

4y, + y2=3mod 5.
Man finde Zahlen a,,, a3, as,, @2, by, b, € Z, fiir welche das System der Kon-
gruenzen

a7 + 6457, = b, mod 7,

@7 + G357y = bymod 7
mit 2,7, €Z,0 <z, < 7,0 < 2, <7 a) keine Lisung, b) genau eine Ldsung,
c) mehr als eine Losung hat.
Man lése folgende diophantische Gleichungen:
a) 3z+ 4=13, b) 8z—13y=263,
c) Tx—19y =23, d) 39z — 22y =10,
e) 17z — 26y =117, f) 432437y =21,



74 I. Allgemeine Grundlagen

g) B3z+ 47y=11, h) 46z — 37y =25,
i) Slz— 48y =33, j) 26+ 34y =13,
k) 1227 + 120y = 2, 1) 258z — 172y = B6.

72. Man ermittle alle positiven g hligen Losungen des Gleichungssyst
Tz + 11y + 13z = 3000,
3z + Ty + 17z = 3000.

Der Bereich der reellen Zahlen

Kontrollfragen

1. Aus welchen Griinden ist es notwendig, den Zahlenbereich der rationalen Zahlen
zu erweitern?

2. Wie lautet das allgemeine Prinzip zur Konstruktion einer stetigen Erweiterung
von @ und welcher Weg wird in MfL 'Bd. 2 eingeschlagen?

3. Wie lautet die Definition fiir einen Dezimalbruch? Man vergleiche die Mengen
R, R?, R, und Q..

4. Wie ist die Ordnung in R, definiert? Man erlautere Eigenschaften dieser Relation
(Eigenschaften der Ordnung ,,<‘, Dichtheit von @, in R,, Archimedizitit und
Stetigkeit von R,).

6. Wie sind die Addition und die Multiplikation in R, definiert?

6. Wie erhilt man, ausgehend von R,, den Bereich der reellen Zahlen? (Man be-
schreibe das Vorgehen in groBen Ziigen und wiederhole dazu die Konstruktion
von @ aus Q,.)

7. Welche Grundeigenschaften (Strukturgesetze) kennzeichnen R als einen stetigen
Koérper?

8. Welche weit Eigenschaften des Rech mit reellen Zahlen sind wichtig?

9. Was versteht man unter den Begriffen Dedekindscher Schnitt, Intervallschach
telung und Fundamentalfolge in einem beliebigen geordneten Korper?

10. Man veranschauliche sich die logischen Abhingigkeiten folgender Aussagen iiber
geordnete Korper K:
(1) K ist archimedisch geordnet.
(2) K ist stetig.
(3) K ist vollstindig.
(4) In K besitzt jede Intervallschachtelung ein Limeselement.

11. Auf welche verschiedenen Weisen kann man einen stetigen Korper charakteri-
sieren? Wie viele stetige Korper gibt es?
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12. Wie 1iBt sich die Konstruktion des stetigen Korpers R unter Verwendung von
Dedekindschen Schnitten und Fundamentalfolgen skizzieren? Warum sind durch
diese Konstruktionen im Prinzip alle anderen angegeb Maglichkeiten mit
erfaBt?

Aufgaben

Bemerkung: Bei den folgenden Aufgaben stelle man sich auf den Standpunkt, man
habe den Bereich der reellen Zahlen nach irgendei der zueinander équival Ver-
fahren bereits konstruiert. Da man (bis auf Isomorphie) einen einzigen den Kérper der
rationalen Zahlen @ umfassenden stetigen Kérper R erhilt, werden nur die charakteristi-

schen Eigenschaften eines igen Korpers v g In Aufgabe 10 wird der Zu-
sammenhang mit den in MfL Bd. 2 verwendeten Dezimalbriichen hergestellt.
1. Man beweise:

a) Fiir reelle Zahlen a und b sowie eine natiirliche Zahln = 1gilt: Aus0 <a <bd
folgt a® < b".
b) Fiir positive reelle Zahlen a und b und eine natiirliche Zahl » = 1 ist die Un-

»
gleichung (a, ; ) <z ;_ L erfiillt. Wann gilt das Gleichheitszeichen?

¢) DasProdukt der positiven reellen Zahlen a; (1 < 7 < ) sei gleich 1. Dann gilt
L
X a; = n. Das Gleichheitszeichen trifft genau dann zu, wenna; = 1 (1 < ¢ < n)

im1
ist.
d) Fiir beliebige positive reelle Zahlen a, (1 <i<n) ist 22422 4 o 4 22
= n. Wann gilt das Gleichheitszeichen? G @
» L

e) Fiir positive reelle Zahlena; (1 < ¢ < n)gilt Ya;- 2 al = nt

i=1 i=1 @4
f) * Bezeichnet man die Summe der positiven reellen Zahlen a; (1 7= n)
a

»
mit 8, dann gilt fiir » = 2 die Ungleichung J’ = .

im18—a; n—1

Hinweis: Die Aufgaben a), b), ¢) und e) kann man durch vollstindice Induktion be-
weisen.

2. In eine Tabelle mit m Zeilen und n Spalten seien reelle Zahlen eingetragen wor-
den. Man darf bei allen Zahlen ein und derselben Zeile oder ein und derselben
Spalte gleichzeitig das Vorzeichen éndern. Man zeige, da8 man durch mehrmalige
Anwendung dieser Operationen erreichen kann, daB die Summe der Zahlen in
jeder Reihe (Zeile oder Spalte) der Tabelle positiv oder O ist.

Lésung: Ist die Summe der Zahlen einer Reihe negativ, so wird durch das Anwenden der
genannten Operation auf diese Reihe die Summe S aller Zahlen der Tabelle vergroBert. Da
sich keine Zahl der Tabelle dem Betrag nach bei den Operationen éndert, gibt es nur endlich
viele Mglichkeiten fir §. Beim Auftreten der maximalen Summe Sp, hat die Tabelle die
geforderte Eigenschaft.
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a) * Es seien 27 voneinander verschiedene positive reelle Zahlen gegeben. Wie
muB man diese Zahlen numerieren, damit die Summe |a, — a,| + |a; — @3] + -+
+ |asy — a;] moglichst groB wird?

b) Die reellen Zahlen a; (1 < ¢ < n) mdgen diec Bedingungen @, = a, = 0 und
@y — 2a; + a4y, =0 fiilr 1 <7 <n — 1 erfilllen. Man weise nach, daB diese
Zahlen nicht positiv sind.

. Gegeben seien positive reelle Zahlen a; (1 < ¢ < m) und b; (1 < j < n), die der

m
Gleichung 2 a; = 2 b; geniigen. Man weise nach, daB man in eine Tabelle mit m
=1

Zeilen und n Sp&lben héchstens m + n — 1 positive reelle Zahlen so eintragen
kann (an den iibrigen Stellen soll 0 stehen), daB die Zeilensummen jeweils gleich
a,, ay, ..., G, und die Spaltensummen jeweils gleich b,, bs, ..., b, sind.

. &) Ineine Tabelle mit n Zeilen und = Spalten werden reelle Zuhlen so eingetragen,

daB die Summe der Zahlen in einem ,,Kreuz* Za,, + Zu., —ay=2a(l=5k

< n,1 <1 < n) ist. Welches ist die klemstmogllche Summe aller Zahlen in der
Tabelle?

b) * Ineine Tabelle mit » Zeilen und n Spalten werden natiirliche Zahlen so ein-
getmgen, daB im Fall a;; = 0 die Summe der Zahlen im zugehdrigen ,,Kreuz*
Za,i, + Za,, =n ist. Man zeige, daB dann die Summe aller Zahlen in der

-1
Tabelle mcht kleiner als -:— n3 ist.

P

. Man beweise die folgenden Aussagen:

a) Fiir beliebige reelle Zahlen a;, b; (1 < 7 < n) gilt
(Z““f) (i‘b?) = (Zn'alba)2 = 3 (ab; —ab)?
i i=1

i=1 =1 1Si<js»
(Lagrangesche Identitit).
b) (z':‘ a}) (Z" bf) = (Z-‘ a‘b,)z gilt genau dann, wenn a; = 0 (1 < ¢ < n) oder
i1

i=1 f=1 -
b ='0 (1 g'i < n) ist oder ein k 3 O existiert. so daBl a; = kb; (1 < ¢ < n) ist.
c) Fir beheblge reelle Zahlen «;, b; (1 <7 < n) ist die Ungleichung (Za,b)

=1
= ( pH a}‘) ( X bf) erfiillt (Cauchy-Bunjakovskijsche Ungleichung). '
=1 =1

Bemerkung: Die Lagrangesche Identitit kann durch vollstindige Induktion b
werden.
. (Aufgaben zur Anwendung des binomischen Satzes). Man zeige, daB fiir beliebige

natiirliche Zahlen n > 1 die folgenden Aussagen gelten (man iiberlege sich, wann
n = 1 zuléssig ist):
a) Ab—a*=(b—a) Z b-tat-1,

a.beR k=1
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10.

b) A na"i(b —a) < b* — a* < nb*1(b — a).
a,beR,

) A VO<e<an(@+er—a"<ena—(a—c)<eg).
a.e€R® ceR

Hinweis: Man setze K > max {(:) 1<k n} und wihle dann

L3
K@+ - +a+1)f

d A V @<bdb>a<rm<d).
abeR, reQ@Y

c< min{l,a.

Hinweis: Ist k = max {i: i€ NA* < a < (5 + 1)", dann gibt es zu jedem m € N*
eine eindeutig besti tiirliche Zahl j, fir die 0 < j < m und a'—(k+ )Sa
< (k + it l) = r® gilt. Auf r und s wende man b) an.

. Man beweise (O 4) © (0 4').

(O 4) Jede nichtleere nach oben beschrinkte Menge reeller Zahlen besntzt ein
Supremum.

(O 4') Jede nichtleere nach unten beschrinkte Menge reeller Zahlen besitzt ein
Infimum.

(Es sollen dabei nur Eigenschaften benutzt werden, die R als einen geordneten
Korper kennzeichnen.)

. Es sei 4 eine nichtleere nach oben beschriinkte Menge reeller Zahlen. Man zeige :

a) Fir die Menge M = {r:7 € @ A \/7 < a} gilt sup M = sup 4.
b) Zu jeder natiirlichen Zahl n = 10 :ibt es rationale Zahlen r, und s,, fiir die
8y — T < % und 7, < sup 4 < s, gilt.
Hinweis: Die Menge M = {k: keZ A“\!‘% < a} ist nach oben beschrinkt. Man setze
ky . ko + 1 1
n

ky = max M und r, = — sowie s, = =r, +—.
n n

¢) Man bestimme rationale Zahlen 7, und s, fiir
=(a:a=0ra?<?2) und 17 <4,

(Dezimaldarstellung reeller Zahlen). Ein echter Dezimalbruch ist eine Folge
(a,),en natiirlicher Zahlen mit a, = 0 und 0 < a, < 9 fiir alle » = 1. Man schreibt
abkiirzend 0,a,a,a, ... Jedem echten Dezimalbruch werden durch

=0, nu=rn+ o GENY),

=1+ — (€ N)
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11.

zwei Folgen (r,),en und (8,),¢n, die Folgen der endlichen Néherungsdezimalbriiche,
zugeordnet. Man zeige:

a) Fiir jede natiirliche Zahl » gilt 10*r, € N, 10"s, € N (d. h., die endlichen

Niiherungsdezimalbriiche sind gebrochene Zahlen) und 8,y — 744y = 1—10
b) Fiir beliebige natiirliche Zahlen m und » gilt r4 < 8, und falls m < n ist,
gilt 7y < r, und 8 = 4,.

(82 — 74)-

¢) Zu jedem echten Dezimalbruch (a,),cn gibt es genau eine reelle Zahl a, so daB
fiir alle » € N die Ungleichungen r, < a < s, gelten.

Hinweis: Man weise nach, daB {r,: » € N} nach oben beschrinkt ist; fir a = sup {r,:
vEN)giltr,<a=<s (véN), und falls r, < b < 5, (v € N) ist, muB b = g sein.

d) Ein echter Dezimalbruch hat genau dann keine Neunerperiode (d. h.

AV a,+9),wennr, < a<s,firalle »€ N ist.
€N weN

©) Zu jeder reellen Zahl a mit 0 < a < 1 gibt es genau einen echten Dezimalbruch
ohne Neunerperiode, so da r, < a < s, fiir alle » € N gilt.

Hinweis: Man zeige: Wenn ein echter Dezimalbruch mit den geforderten Eigenschaften
existiert, muB @, = r, = 0 und @, = max {k: keNAr,_,+ k - < ap fir » 2 1 sein.

Daraus folgen die Eindeutigkeit sowie Bedi fiir die induktive Definition der Folgen
(ry)sen und (s,),en. Es gilt 0 <a,<9 undes tritt keine Neunerperiode auf.

f) Es gibt eine 1-1-Abbildung der Menge aller reellen Zahlen auf die Menge der
Dezimalbriiche ohne Neunerperiode.

Hinweis: Zu b = 1 findet man eine ganze Zah! k, so da8 0,1 < a < 1 fiir a = 10%b gilt.
Dann kann man e) anwenden. Ist b < 0, 8o betrachte man zunéchst —b.

(g-adische Darstellung reeller Zahlen). Es sei g€ N,g> 1, fest vorgegeben.
AuBerdem sei (a,),cn eine Folge natiirlicher Zahlen mit ¢, =0 und 0 <a, <g
fiir » = 0. SchlieBlich seien nicht von einer gewissen Stelle an alle a, gleich g — 1.
Man setze =0 und r,,, =r, + a,:: fir » = 0. Es ist nachzuweisen, da8

folgende Eigenschaften gelten:

a) Die Folge (r,),en ist nach oben beschrinkt. Bezeichnung: a = sup (r,: v € N}.
b) Fiir jede natiirliche Zahl ngilt 0 <a —r, < %.
c) Fiir jede natiirliche Zahl n gilt a,,, = [9"*!a] — g{g*«]).

Beweis: Aus 0<a—r, <% folgt g®r, < g"a < g"r, + 1, also g%, = [g"a]. Aus

Gt =
Tars — Tn = F erhilt man

Guyy = @ rayy — 9%y = gMre — g(g™ra)
= [g"*a] — glg"a] fir jedes n = 0.
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12.

13.

14.

d) Ist a eine reelle Zahl mit der Eigenschaft 0 < a < 1 und setzt man a,,,
= [g**1a] — g{g"a] fiir jede natiirliche Zahl n = 0, dann gilt sup {r,: » € N} = a.
e) Zu jeder reellen Zahl a mit 0 < a < 1 gibt es genau eine Folge (a,),cq mit den
eingangs dieser Aufgabe genannten Eigenschaften und a = sup [r,:» € N}.

f) Falls es natiirliche Zahlen [ und k (k = 1) gibt, so daB a, = a,, fiiralle v > !
gilt, stellt (a,),n eine gebrochene Zahl dar. (Man schreibt dann gewohnlich
0,010 ... 8111 Gper)

Bemerkung: Die Uberlegungen zeigen unter anderem, daB es eine 1-1-Abbildung der
reellen Zshlen 0 < a < 1 auf die Menge der g-adischen Briiche 0,a,a,4, ... gibt, bei denen
nicht von einer gewissen Stelle an alle a, gleich g — 1 sind.

(Existenz und Eindeutigkeit der n-ten Wurzel). Jede Gleichung z* = a mit

a€ R}, n € N und n>1 hat genau eine nichtnegative Lésung zo€ R (fiir a = 0

oder n = 1 erhélt man z, = a). Dazu zeige man:

a) Die Menge 4 = {z: z € R, A 2* < a] ist nach oben beschrinkt, auBerdem gilt

A = 8. Man setze z, = sup A. Die reelle Zahl z, ist positiv.

b) Es gilt 2§ = a.

Hmweu Falls z} < a ist, gibt es nach Aufgabe 7c) eine reelle Zahl ¢ mit 0 < ¢ < a,

sa dAB (z¢+c)"-="<e=a—z;' ist. Man erhilt (z, + ¢)* < & + z} = a, was der
ition von z, widerspricht. Analog betrachte man z3 > a (vgl. MfL Bd. 2, 5.4.).

c) Eine positive reelle Zahl zy mit z, 3= z; ist nicht Losung der Gleichung 2* = a.

(Whurzelgesetze). Fiir positive reelle Zahlen a und b sowie natiirliche Zahlen m
und n (m, » = 2) zeige man, daB folgende Gleichungen gelten:

1 » 2. V‘T:-}IEW:

s V- ()
5. Yo =Ya, e.'i/'ﬁ=

L) " L]
Beispiel: m ist die reelle Zahl z > 0, fir die z* = ab ist. Es gilt aber (Y; ﬁ)

" L)
=Va"- V5" =a-b, wobei ein Potenzgesetz fir natirliche Exponenten sowie die Defi-
nition fir die n-te Wurzel benutzt wurden.

- silt w1

Man zeige:
(0<a<b=>}’—<}/_)
n("‘ c,b
b A Vet Voo -y s 2t Ee
l.hecl'

o AVFI-fa<im-faT.
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15.

16.

SR CE e TR
a*A A @+ (FYa—1) salfa—1),

2eN*  aeRY
&+ Va2 — —Va® —

D oA (a*zb:VaiVLV“ . i‘/“ ),

a.beRY. = <

2

g A A (ma.x{a,l}=c=> l'}‘/;— l| §°—|a— ll).

neN® aeR% a n
Losung zu d): A dung des bi ischen Satzes ergibt

(ﬁ—l)"=aﬁ—b (a, b € N) fir n ungerade

bzw.

(ﬁ — 1)" =c—d¥2 (c,d€N) fiir n gerade.
Es sei n gerade und n = 2k. Wir fihren den Beweis durch vollstindige Induktion iiber
k=1. Fiar k=1 erhalten wir (ﬁ —l)'=3—2}’§= ﬁ—— VE Es gelte nun fir
(ﬁ - l)" =c—d2 =V — V28 die Bedingung ¢? — 2d* = 1 (Induktionsvoraus-
setzung). Daraus folgt

(V2 — 1) = 3¢ + 4d) — (3 + 20) V2 = V(B¢ + 4d)* — V232 + 20
sowie

(3c + 4d)* — 2(3d + 2c)* = 1.
Ahnlich verléuft der Beweis fir n = 2k + 1.

Man ermittle alle reellen Zahlen z, die folgende Beziehungen erfiillen:
a)¥p+z+yp—=z==z, peR],

b) Vz+}/;— v:—ﬁ=%1/fv-_;,

1 1
€) —— 21,
Vi+z V1—=z
QZ_2 3 pens,
P z

2
e)}a+z—|/#=y2¢z+1, a € R.

Lésung zu a): Falls eine Losung z, existiert, muB 0 < z, < p sein. Durch zweimaliges
Quadrieren und Ordnen erhilt man 2§ + z3(4 — 4p) = 0. Wegen p > 0 kommt z, = O als
Lésung nicht in Frage; aus z3 = 4(p — 1) erkennt man, da8 sogar p > 1 sein muB. Daher
kann fir p > 1 hochstens z, = 2fp — 1 eine Losung sein.

Setzt man z, = 2)p — 1 in die Gleichung ein, so entsteht firr 1 < p < 2 ein Widerspruch.
Fir p = 2 ist die Gleichung erfiillt, in diesem Fall gibt es daher genau eine Losung.

Es seien a,, a,, ..., a, gegebene reelle Zahlen. Jede reelle Zahl, die zwischen der
kleinsten und der gréBten der reellen Zahlen a,, a,, ..., a, liegt, werde ein Mittel
dieser Zahlen genannt.



Der Bereich der reellen Zahlen 81

17.

Sind alle Zahlen a; (1 < ¢ < =) positiv, dann definiert man:
_@tae+t +ta, (arithmeticch

a: (ar Mittel),
n

g:= .'ya, c Ay Gy (geometrisches Mittel),

b — (harmonisches Mittel),

1 1 1
_+_+...+_
@ az Qq

g:=12 tat-ta, (quadr hes Mittel).

n

Man zeige:

a) Die reellen Zahlen a, g, A und ¢ sind Mittel der positiven reellen Zahlen a;
1<i<n).

b) Esgilt h < g < a < ¢. Wann trifft jeweils das Gleichheitszeichen zu?

Man zeige durch Anwendung der Beziehungen zwischen den Mitteln, daB folgende
Aussagen gelten:

a) A (a*b:)waﬁ-<a+"b).

abeR n+1
B A nns(”+ )
neN® 2

c) A A (1+a)">1+na (Bernoullische Ungleichung),
a€RY neN®

QA A (éa.=p=>2'?/a;+1sn+1).

a€eRS npeN® \i=1 i=1

o Afw—1(frri-ya—1)=1,
nEN®

) 2 ot

AN AN
a.beRY neN* ('i/; + '}[b_).
Lésung zu e): Aus der Annahme der Giltigkeit dieser Ungleichung folgt durch Multi-
plikation mit ¥n + 1 + ¥» — 1 und weitere Umformungen

Wi+ —n—1)sVati+¥n—1,
Warhm—n-2sfati+in—1,
P s LT

Aus der giltigen Beziehung g < a erhilt man durch Umkehrung der Umf gen den
geforderten Beweis.




82 1. Allgemeine Grundlagen

18. a) Man beweise, daB es kein Tripel (z, y, z) positiver reeller Zahlen z, y, z gibt,
fiir das die folgende Gleichung erfiillt ist:

22 + P + 2 = 2zyz.

b) Es seien z; (1 < 7 < 6) nichtnegative reelle Zahlen, und a sei eine positive
reelle Zahl. Man untersuche, ob das folgende Gleichungssystem Lésungen hat:

(1) =z =at,

2 B+t z+2=3a
(3) =z + x5 = 2z,

4) zzex, = a®.

c) Man gebe alle reellen Lisungen des folgenden Gleichungssystems an:

(1) 2*+y* =38,

(2) 2z —2z*=16,

3) 2*—2y=2.

Hinweis: Auf Glelohung (2) kann man beispielsweise den Vergleich von g h
und quad Mittel an d

19. * Man zeige, daB das Produkt a'l"a2 --a™ (2, €R}, meN*, 1<i<n)
bei konstanter Summe @, + a; + --- + a, seinen groBten und die Summe
a; + a3 + - + a, bei konstantem Produkt aMaP ... P~ ihren kleinsten Wert -
genau dann annimmt, wenn L R

m My My

Beispiele: 1. Fir welches 2 mit —1 < z < 7 hat das Produkt (1 + z)® (7 — z)® seinen
groBten Wert?
2. Eine gegebene reelle Zahl a > 0 ist so in drei positive Summanden z, y und z zu zer-
legen, daB der Ausdruck z™y®zP (m, n, p € N*, gegeben) méglichst groB wird.

3. Man bestimme die kleinste positive reelle Zahl, die der Ausdruck at + 12

nehmen kann.

20. (Irrationale Zahlen). Man zeige:
a) Wenn a eine irrationale Zahl und r (r 3= 0) eine rationale Zahl ist, dann sind

(@€R*)an-

a r s
die Zahlen @ 47, a — r, r — a, ra, —, — und V; irrational.
r a

b) Summen und Produkte irrationaler Zahlen kénnen rational sein (d. h., die
Menge irrationaler Zahlen ist beziiglich der Addition und Multiplikation reeller
Zahlen nicht abgeschlossen).

¢) Wenn a und b irrationale Zahlen sind, a 4 b aber rational ist, dann sind bei-
spielsweise @ — b und a + 2b irrationale Zahlen.

3
d) Die Zahlen J2, ¥3, 16, /16 und J2 sind irrationale Zahlen.
Beispiel: J2 ist die eindeutig bestimmte nichtnegative Ldsung der Gleichung z* = 2.
Es sei ﬁ eine rationale Zahl, also ﬁ = % (P,g€Z,g>0,png=1). Ist p eine gerade
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22.

Zahl (p = 2m, m € Z), s0o mull ¢ ungerade (g = 2n + 1, n € Z) sein. Dann gilt p* = 4m?
+ 4(2n% 4 2n) + 2 = 2¢%. Ist p eine ungerade Zshl (p = 2m 4 1, m € Z), dann gilt

2
p* = 2(2m? 4 2m) + 1 # 2¢*. In beiden Fillen ist also % + 2.

e) Falls fiir eine natiirliche Zahl » > 1 die Zerlegung » = ab mit positiven
rationalen Zahlen a und b gilt und }/n eine irrationale Zahl ist, dann ist auch
V2 + V¥ eine irrationale Zahl. Beispiele: }2 + 3, V5 + ¥3.

f) Die Zahl 2]/3 + V5 13 + V48 st irrational.

Hinweis: Man wende Aufgabe 14f) an.

Bemerkung: Vielfach wird die Irrationalitit vorgegebener reeller Zahlen mit Mitteln
der Algebra oder der Analysis nachgewiesen.

Beispiel 1: Die reelle Zahl z, = Ig 6 ist die eindeutig bestimmte Loqung der Gleichung
10% = 6. Aus der Annahme, daB z, eine rationale Zahl, also z, = 2 (g €Z,q> 0) ist,

folgt nach Potenzieren und Primzahlzerlegung 2757 — 107 — 69 = 29379, Nach MfL Bd. 2,
5.6., Satz 3, ist das ein Widerspruch.

Beispiel 2: Im Fall der reellen Zahl n zeige man zunichst, daB die k-ten Ableitungen
(k € N*) der Funktion f: z > f(z) = 1%:"(1 — z)* an den Stellen 0 und 1 ganzzahlig
sind. Mittels partieller Inwgration beweise man dann die Identitat

13000) + f#01)
3t

F1 f f(z) 8in nz dz = Z( 1)

i=0

Aus der Annahme 72 = £ ergibt sich schlieBlich ein Widerspruch.
q9

Beispiel 3: Der Limes der Folge (a,)sene, die durch a, = % und @,y =a, + '217' fir
n 2 1 definiert wird, ist eine irrationale Zahl. Aus der Annahme 2 21 =2 folgt
q9

1 q
. i _
p-2" —gq- 22- q 2 S _q‘):l 2,(,,,,,, =gmn_1

Fir hinreichend groBes n ist die rechte Seite eine positive reelle Zahl kleiner als 1, die linke
Seite dagegen eine ganze Zshl. (Man vergleiche mit dem Beweis der Irrationalitit der
Eulerschen Zahl ¢; MfL Bd. 4, 2.2.8.)

Die Aufgaben 21 bis 25 enthalten eine elementare Theorie der rationalen Néherun-
gen fiir eine irrationale Zahl.

. Zu jeder irrationalen Zahl a gibt es eine eindeutig bestimmte ganze Zahl g mit

der Eigenschaft (a — g| < -;—-

Zu jeder irrationalen Zahl a und jeder natiirlichen Zahl ¢ = 1 gibt es eine ratio-

nale Zahl r = ¥ (p,g€ Z,q> 0), fiir die die Abschitzung |a — 2 < L
q9 q9

29
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23.

25.

gilt. (Man zeige, daB man p ¢ = 1 im allgemeinen nicht verlangen kann, und
bestimme fiir a = 2 und 1 < ¢ < 10 rationale Naherungen mit der angegebenen
Eigenschaft.)

Zu jeder irrationalen Zahl a und jeder natiirlichen Zahl k£ = 1gibt eseine rationale

Zahl £ (p,g€ Z, 1 < g <k), die die Ungleichung (a — L% —IL- erfiillt.
q q| gk

(Man bestimme fiir a = }/2— solche Niherungen mit k = 2, 4, 6, 8, 10.)

Hinweis: Man teile das Intervall ([0, 1] in k Intervalle der Linge %, auBerdem zerlege
man die Zahlen Og, 1a, ..., ka in der Form la = [la] ¥ r; (0 < I < k). Zwei Reste, etwa r,
und r¢ (8 < ¢), liegen in einem der erhaltenen Intervalle der Lénge e Mansetzeq = ¢ — n

Zu jeder irrationalen Zahl a gibt es unendlich viele rationale Zahlen 2 (g€ Z,
q9

¢>0,png = 1), die die Bedingung |a — 2
solche Niherungen fiir 7.) g

Man zeige zusitzlich:

< -l; erfiillen. (Man suche drei
q

a) Unter den genannten rationalen Zahlen r gibi', es zwei, fiir die ¢ = 1 ist.

b) Bis auf eine einzige erfiillen alle diese Zahlen auch die Bedingung
1

am z|
q
< —.
29 r
c¢) Fiir rationale Zahlen ¢ = — (r n 8 = 1) gilt der Satz nicht.
8

Im AnschluB an Aufgabe 24 kénnte man im Sinne einer Verbesserung der Nahe-

rungen fiir die irrationale Zahl a die Ungleichung ‘a - ﬂ‘ < i’ mit ¢ < 1 be-
q q

trachten. Es gibt jedoch z. B. fiir a = }/5 und ¢ = % keine rationale Zahl -E,
q

die den Bedingungen p, ¢ € Z,p ng = 1 und

P 1 .
ﬁ— =—| < — geniigt.
q | 5¢*
Beweis: Man nehme an, die rationale Zahl f sei eine solohe Zahl, dann erhilt man
Poyzr-tco unda 2> ﬁ+%> 1.
q 5¢* q 3q

Aus 0 < 2__L <¥2< 2 + Lﬁ erhilt man durch Quadrieren und Multiplizieren
mit ¢* sowie unter Beriicksichtigung von 2~ 2 schlieBlich

P-1<2<p+1. ‘
Da 2¢2 aber eine ganze Zahl ist, muB 2¢> = p* sein. Daraus folgt V2= 2,

q
Man untersuche |}’§ - l| < Lﬁ und ﬁ — —p-l < L
q 4q q ¢
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26.

27.

Algebraische und transzendente Zahlen (Aufgabe 26 bis 31):

Man nennt eine Gleichung g,a* + gnp32*' + - + 1 + go = 0 mit ganz-
zahligen Koeffizienten go, gy, ..., ga (ga & 0) eine algebraische Gleichung n-ter
Ordnung.

Eine reelle Zahl a heiBt algebraische Zakl der Ordnung n oder vom Grade %, wenn
a Losung einer algebraischen Gleichung n-ter Ordnung, aber nicht Losung einer
algebraischen Gleichung kleinerer als n-ter Ordnung ist. Eine reelle Zahl, die
keiner algebraischen Gleichung geniigt, wird eine transzendente Zahl genannt.

a) Jede rationale Zahl ist eine algebraische Zahl der Ordnung 1 (daher sind tran-
szendente Zahlen stets irrational).

b) Man weise nach, daB die irrationale Zahl i@ eine algebraische Zahl der
Ordnung 3 ist.

3
Loésung zu b): Wir fithren den Beweis indirekt, indem wir die Annahme, z = }2 ist
Lésung einer Gleichung az® + bz + ¢ = 0 (@, b,¢ € Z,a > 0), zum Wldenpmch fihren.
Zuniichst folgt b* > 4ac aus der Annahme, denn diese Bedi ist g und hin-
reichend fiir die Existenz einer reellen Losung der quadratischen Gleichung. Wegen =2
gilt weiterhin 2a + bz® + ¢z = 0. Aus den Gleichungen

abz® + b3z + bc = 0, aba® + acz + 20 =0
folgt

(b* — ac) z = 2a% — be.
Da z irrational ist, muB * — ac = 2a% — bc = 0 und daher ac = b* 2 4ac gelten. Es folgt
¢ =1b = 0 und daher z® = 0 (Widerspruch).

Man beweise die folgenden Sitze:

a) Eine reelle Zahl a, die Lésung einer Gleichung a,z* + -+ + a;z + @ = 0 mit
rationalen Koeffizienten a; (0 < ¢ < n) ist, ist auch Ldsung einer algebraischen
Gleichung mit g hligen Koeffizient

b) Gilt fiir die ganzen Zahlen %, v, w mit x ~v = 1 und eine natiirliche Zahl
n 2 1 die Beziehung « | v*w, dann ist » | w.

Hinweis: Man kann die Primzahlpotenzdarstellung von %, v und w benutzen. Der Satz
ist eine Verallgemeinerung von MfL Bd. 1, 3.7.(30).

c) Falls die rationale Zahl 2 (pg€ Z,g =1, png=1) Lésung einer Glei-
q

chung a,2" + -+ +a,z +a; =0 (a; € Z, 0 < ¢ < n) ist, gilt p|a, und ¢ a,.
d) Falls die Gleichung 2" + a, 2*! + - + @z + 8 =0 (g€ Z, 0=¢
< n — 1) eine rationale Losung hat, ist diese Lésung sogar eine ganze Zahl und
ein Teiler von a,.

e) Falls die reelle Zahl a Losung einer algebraischen Gleichung a,,:“ + -t az
+ap=0(a; € Z,0 < ¢ < n) ist, gibt es ganze Zahlen b, by, ..., ba-y, 80 daB

a2 4+ o + 0,z + @y = (z — a) (bpy2™t + - + bz + bo)

gilt. (Man iiberlege sich, daB der Beweis zu MfL Bd. 2, 7.4., Satz 4, auf den vor-
liegenden Fall iibertragbar ist.)
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1. Allgemeine Grundlagen

28.

29.

. (Konstruktion einer transzendenten Zahl). Es sei —

f) Die algebraische Zahl a der Ordnung = > 1 geniige der algebraischen Glei-
chung ay2" + - +a;2 + a =0 (a; € Z, 0 < ¢ < 7, a, + 0). Diese Gleichung
hat auBerdem keine rationale Losung.

Hinweis: Man wende e) an.

g) Falls ¢ eine transzendente und r eine rationale Zahl ist, ist ¢ 4 7 eine tran-
szendente Zahl.

Hinweis: Aus der Annahme, daB ¢ + r eine algebraische Zahl ist, folgt die Existenz einer
algebraischen Gleichung, die ¢ + r als Lésung besitzt. Setzt man in diese Gleichung ¢ + r
ein und ordoet nach Potenzen von ¢, so erhilt man den gewiinschten Widerspruch.

a) Man zeige, daB 'i/;n_ fiir », m € N* entweder eine irrationale oder eine ganze
Zahl ist.

b) Man zeige mit Hilfe der Methoden von Aufgabe 27, daB i/g, }/E«i-ﬁ
4‘/1—6——3’ i/f - }/§ irrationale Zahlen sind.

Beispiel: Aus z — (ﬁ + 1’5) =0 folgt z — ﬁ = —ﬁ und nach zweimaligem Qua-
drieren und Ordnen 2* — 1022 + 1 = 0. Eine rationale Losung der letzten Gleichung ist
ganzzahlig und ein Teiler von 1, also eine der Zahlen + 1. Durch Einsetzen iiberzeugt man
sich aber, daB weder +1 noch —1 Losung ist. (Es reicht nachzuweisen, da ﬁ + }’5 + +1
ist.)

Man beweise folgenden Satz von LIouviLLE: Zu jeder algebraischen Zahl a der
Ordnung = >> 1 gibt es eine positive reelle Zahl 1, so da8 fiir alle rationalen Zahlen

P A
a— =| = — gilt.
T

£ (p, ¢ € Z, ¢ > 0) die Ungleichung
q

Anleitung: Falls die Zahl a der algebraischen Gleichung f(z) = a,z™ + --- + @,z + ¢, =0
@€EZL,0<i<n, a,, = 0) geniigt, gilt nach Aufgabe 27e) f(z) = (z — a) f,(z). Fir

elne rationale Zshl £ mit a — 1 < 2 <a+1 und g =sup{lfy():a—1<z<aitl]
q q

ERE

a—llglg
q

y
a—=|-f=|a
q

_£|.
q

Liegt 2 nicht zwischen @ — 1 und a + 1, 8o gilt Man setze dann

A= min{l,%}.

1
i
Px

eine gegebene rationale

Zahl mit p, n ¢, = 1. Dann setze man a, = n_ i und bl =214 —. Jetzt
g

G Q@ 1 @
withle man ein P (PN =1, ¢ <) mit a, < al < b, und setze wieder
1 2 1 3
a, = P _ — sowie b, = P + —- Sind @, und b, bereits konstruiert,

9 'H 92 '



Der Bereich der reellen Zahlen 87

31.

32.

33.

so wiihle man ein 22 (Pangn =1, gy < @) mit a,, < B < bp-y und setze
n n

a, = Pa _ —1_— und b, = P + i‘ Man zeige, daB die durch Fortsetzung
qn qn n n

dieses Prozesses entstehenden Folgen (a,),cne und (b,),¢ne eine Intervallschachte-

lung bilden, deren Limeselement eine transzendente Zahl a ist. (Zu vorgegebenen

Zahlen 2> 0 und 7 € N* wihle man eine natiirliche Zahl k¥ > n so gra8, daB

1~ iist. Danngilt |a— P&| < i vgl. Aufgabe 29.)

¢ - | g

Die durch den Dezimalbruch ! = 0,11000100 ..., der genau an den Stellen k!

(k = 1) nach dem Komma eine 1 und sonst Nullen enthilt, dargestellte reelle

Zahl ist transzendent (Liouvillesche Zahl).

Anleitung: Fallslecine algebraische Zahl der Ordnung n ist (» > 1, da [ irrational), gibt
es ganze Zahlen ay,...,a, (a, = 0), so daB a,l® + -+ + al + a, = 0 ist. Man setze

« = %) + ot + -+ # (aber k wird spiter verfiigt), f = aya® + - + a,x + a,
und betrachte 4 = || - 10"*!. Die Zahl A ist ganz. Andererseits schlieBe man aus der
Zerlegung
B=F—0=aya" — 1"+ + e — 1)
= (& — 1) (bp-id™! + - + bl + b)

auf 4 > 0. Aus 0<a<l<a+w(kL.m<lerhiltman

2c
Bl @ — o™ lagl + - + =@l S (= @) e < o
wenn man #n |a,] + --- + |a,| = ¢ setzt. Wihlt man nunein k € N so, da8 10%+1-®! > 2¢
ist, dann folgt 4 < 1.

Bemerkung: Man kann zum Beweis der Transzendenz von ! auch den Satz von LiouvILLE
(Aufgabe 29) anwenden.

Eine Menge M heiBt abzihklbar, wenn M und die Menge N der natiirlichen
Zahlen gleichméchtig sind (MfL Bd. 1, 2.4.(21)). Gleichwertig damit ist, daB sich
die Elemente von M als Folge (m,),n schreiben lassen. Wei man von einer Menge,
daB sie endlich oder abzéhlbar ist, so spricht man von einer kéchstens abzihlbaren
Menge. Eine unendliche Menge, die nicht ahzéhlbar ist, wird iberabzihibar ge-
nannt.

Man gebe jeweils eine Vorschrift an, nach der die nachstehenden Mengen als
Folge (m,),en geschrieben werden konnen: a) Menge der Primzahlen, b) Menge
der geraden natiirlichen Zahlen, c) Menge der geraden ganzen Zahlen, d) Menge
der ganzen Zahlen, e) Menge der Fibonaccischen Zahlen.

Man beweise folgende Aussagen:

a)- Jede Teilmenge der Menge der natiirlichen Zahlen, allgemeiner jeder abzihl-
baren Menge, ist héchstens abzihlbar. .

b) Die Menge N X N, allgemeiner jede Menge M X M mit abzihlbarer Menge M,
ist abzihlbar.
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Hinweis: Man betrachte beispielsweise die Abbild

fiiNXN—>N mit fym,n) = w

(Cantor-Numerierung, vgl. S. 16, Aufgabe 7) oder
Ji:NXN >N mit fy(m, n) = max {m?, 2% + max {m,n} + n — m.

Folgarun g: Die Mengen der gebrochenen Zahlen, der rationalen Zahlen, der algebraischen
erster Ordnung az + b =0 (3,b € Z, @ > 0), der reellen Zahlen der Form

a+b)3 (a,be @), der nbgelchlouenan Intervalle (¢, 5] (g, b € @) sind abzéhlbar.
c) Die Menge M®, wobei M selbst eine abzihlbare Menge ist, ist abzihlbar (vgl.
MfL Bd. 1, 2.2.).

d) Die Vereinigung hochstens abzihlbar vieler Mengen, von denen jede hichstens
abzihlbar ist, ist ebenfalls héchstens abzihlbar.

Hinweis: Man orienti sich an folgend Sch (Diagonalverfahren von CAUCHY):

M ml ml oml ml
i iy gl il
My mig myy myy My ...
M,/m,,/m“ My Myy ...
My o My tay My ..

e) Die Menge aller algebraischen Gleichungen
43" + @y 2" + -+ 2 =0 (q€Z1=sv=n,0,>0)
ist abzihlbar.
Bemerkung: Man erhilt die Menge der algehrmachan Gleichungen unmittelbar als Folge,

indem man k =n + a, + |a,,| + - + |ao| alle von Null verschiedenen natirlichen
Zahlen durchlau.fen 1dBt und far Jedes h die zugehérigen Gleich in beliebiger (oder
nooh b g ) Reihenfolge notiert, also etwa folgendermaBen

h=1:

h=2: z=0;

h=3: 22=0, 2¢=0, zL1
h=4: =0, 222=0, 2*+ =0, 224+1=0, 3z2=0, 224+ 1=0,
z4+2=0.

f) Die Menge der reellen algebraischen Zahlen ist abzihlbar.

. Man beweise folgende Aussagen:
a) Die Menge der reellen Zahlen z mit 0 < z < 1 ist iiberabzihlbar.
Beweis (Diagonalverfahren von CANTOR): Jede reelle Zahl z mit 0 < z < 1 laBt sich

auf genau eine Art als unendlicher Dezimalbruch ohne Neunerperiode schreiben. Wire diese
Menge abzihlbar, so konnte man sie als Folge

AN
a, = 0,a,a1405...
Gy = 0,85,0940,;...
ay = O,a,,a,,az,\.. .
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36.

schreiben. Fiir einen unendlichen Dezimalbruch d = 0, d,d, ..., der mit dem Dezimalbruch
0,81,854a5, ... in keiner Stelle hinter dem Komma iibereinstimmt und bei dem hinter dem
Komma die Ziffern 0 und 9 nicht vorkommen, gilt 0 < d < 1. Er miBte dann mit einem
der Briiche der Folge (a,),¢Ne in allen Ziffern iibereinstimmen. Das ist aber ein Widerspruch,
da d fiir jedes ¥ von dem y-ten Dezimalbruch in der v-ten Ziffer abweicht.

b) Die Menge der reellen Zahlen z mit a < z < b (e, b € R), die Menge aller
reellen Zahlen und die Menge der reellen Zahlen z mit 0 < z < 1 sind gleichmiichtig.
c) Ist die Menge M nicht abzihlbar und N eine beliebige Menge, dann ist die
Menge M u N nicht abzihlbar.

d) Ist die Menge M nicht abzihlbar und N eine abzihlbare Menge, dann ist die
Menge M \ N eine nicht abzihlbare Menge.

e) Die Menge der irrationalen sowie die Menge der reellen transzendenten Zahlen
sind nicht abzihlbar.

. (Anwendung des Archimedischen Axioms).

a) Es sei K ein geordneter Kérper, der den Kérper der rationalen Zahlen @ um-
faBt. K ist genau dann archimedisch geordnet, wenn jedes Element von K Grenz-
wert einer Folge rationaler Zahlen ist.

b) Es sei K ein geordneter Korper, der @ umfat. Wenn jede konvergente
Fundamentalfolge mit Elementen aus @ auch in K konvergiert, ist K archime-
disch geordnet.

c) Der Korper der reellen Zahlen ist der groBte archimedisch geordnete Korper
(d. h., der Bereich der reellen Zahlen kann durch Hinzufiigung neuer Elemente
nicht so erweitert werden, daB auch fiir die Elemente des erweiterten Systems
alle Grundgesetze der Arithmetik giiltig bleiben)

Losung zu a): Es sei K archimedisch geordnet, a ein beliebiges Element aus K. Nach MfL

Bd. 2, 8.3.1.(2), existiert zu jedem n € N* eine rationale Zahl r, mita — l <r,<ea-+ 1 .
n n
Es gilt lim r, = a. Es sei K nicht archimedisch geordnet und a’ eine obere Schranke von

#—>00
N. Dann gilt fir a = a’ 4+ 1 und jede rationale Zahl r die Beziehung [a —r| =a — r
=Za—n,>a—a =1 (hierbei bezeichne n, eine iirliche Zahl Zr) Es existiert also
keine gegen a konvergente rationale Folge.

(Reell-quadratische Zahlenkéorper). Der geordnete Korper K umfasse den Korper
der rationalen Zahlen @, d sei eine quadratfreie natiirliche Zahl =2, und }/d_
gehore zu K. Man setze L = {r + sYd:r, 8¢ Q} (die Forderung, daB die Prim-
zahlzerlegung von d kein Quadrat irgendeiner Primzahl enthalte, ist also keine
Einschrinkung der Allgemeinheit). Man beweise folgende Sitze:

a) L ist beziiglich der Einschrinkung der Operationen von K ein geordneter
Korper zwischen @ und K (offenbar ist L 5+ @).

Bemerkung: Man kann ohne Bezugnahme auf K einen derartigen Korper L auch un-

mittelbar konstruieren, indem man zunichst L’ = {(a, b): a, b € @} setzt und durch fol-
gende F gen zwei Operati erklirt:

(@1, b)) @ (@, by) := (a; + @, b, + by),
(a1, 5y) © (a3, b,) := (3,05 + bibod, a;b; + azby).
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1. Allgemeine Grundlagen

37.

38.

Dann ist (L'; @, @) ein zu L isomorpher Kérper. Man bezeichnet derartige Kérper im all-
gemeinen mit G(ﬁ)

b) Zu jedem &« =17 + aﬁé G(}/Z), « =+ 0, gibt cs eine eindeutig bestimmte
algebraische Gleichung a2® + bz +¢ =0 (a,b,c€ Z,a>0,anb=anc=1),
fir die « und & =7 — ¢ }/d Losungen sind. Man nennt & die zu &« =7 + s}d
konjugierte Zahl.

e) Die Diskriminante D(x) = b® — 4ac (siehe b)) jeder irrationalen Zahl « von
O(]/Z) 1Bt sich in der Form m2d (m € N*) darstellen (insbesondere ist also
D(x) > 0).

d) Zu jeder gegebenen Zahl D ¢ N* gibt es nur endlich viele reduzierte Zahlen
in Q(]/d— ), deren Diskriminante gleich D ist. (Eine Zahl x heiBt reduziert, wenn
«>1lund —1 < & < 0 ist.)

e) D(a) >0Ange ZAB=a+ g= D) = D(B),

D(a) > OAﬁ—MI: (@,b,c,d € Z,ad — bc = +1)= D(«) = D(f).
(Dedekindsche Schnitte). Es sei (M ; <) eine mit einer irreflexiven totalen Ord-
nung versehene geordnete Menge. Man definiert in (3 ; <) Dedekindsche Schnitte
und deren Schnittelemente wie in MfL Bd. 2, 6.3.2.(11), (13).

Ein Dedekindscher Schnitt (4, B) in (M ; <) heiBt ein Schnitt

erster Art, wenn in (M; <) 4 ein Maximum, B aber kein Minimum,

zweiter Art, wenn in (M ; <) A kein Maximum, B aber ein Minimum,

dritter Art, wenn in (M ; <) A kein Maximum und B kein Minimum und
vierter Art, wenn in (M; <) A ein Maximum und B ein Minimum

haben. Man nennt (M; <) dicht, wenn die Eigenschaft von MfL Bd. 2, 4.3,
Satz 2, erfiillt ist. Eine dichte Menge wird stetig genannt, wenn jede nichtleere
nach oben beschrinkte Teilmenge von M in (M; <) ein Supremum hat.

a) Man diskutiere das Vorkommen von Schnitten erster bis vierter Art in den
Zahlenbereichen N, @ und R.

b) Eine Menge A < M ist genau dann Unterklasse eines Dedekindschen Schnit-
tesin (M; <),wenn(1)A =M, (2)A =+ @ und (3) /\ (@cdnra =a>a € 4)
ist. Dann hat man B = M \ A zu setzen.

c) Man zeige, daB fiir zwei Schnitte (4,, B,) und (4,, B;) folgende drei Eigen-
schaften gleichwertig sind: 4, — 4,, 4; n B, & @ und B, > B,.

d) (M; <) ist genau dann eine dichte Menge, wenn es in (M ; <) keine Schnitte
vierter Art gibt.

e) Eine geordnete Menge (M ; <) ist genau dann stetig, wenn jeder Dedekindsche
Schnitt (4, B) in (M; <) ein Schnitt erster oder zweiter Art ist.

(Stetige Hiille einer geordneten Menge). Zu jeder dichten Menge (M ; <), die weder
ein Minimum noch ein Maximum besitzt, gibt es eine minimale stetige Ober-
menge. '
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—

Anleitung: Es sei 8’ die Menge aller Schnitte zweiter oder dritter Art in (M; <). Dann
setze man

(41, By) < (A, By):6> 4, = 4,.

Auf diese Weise wird in 3’ eine irreflexive Ordnungsrelation definiert. Die geordnete Teil-
menge aller Schnitte zweiter Art ist zu (M; <) isomorph. Durch Identifizierung dieser
beiden Mengen entsteht dann eine geordnete Obermenge (S; <) von (M; <). Man zeige,
daB jeder Schnitt zweiter oder dritter Art genau ein Schnittelement in (S; <) hat und jedes
Element von (8; <) Schnittelement genau eines Schnittes (4, B) zweiter oder dritter Art
von (M ; <) ist. Die geordnete Menge (S; <) hat weder ein Maximum noch ein Minimum,
(M; <) liegt dicht in (8; <) (vgl. ML Bd. 2, 6.2.1., Satz 1), woraus gefolgert werden kann,
daB (8; <) minimale stetige Obermenge von (M; <) ist. AbschlieBend weise man nach,
daB je zwei minimale stetige Ober von (M; <) zueinander isomorph sind. Die damit
wesentlich eindeutige stetige Obermenge von (M; <) wird die stetige Hiille von (M; <)
genannt.

Bemerkung: Man kann im Fall der Zahlenbereiche @ bzw. @, in den zugehérigen ste-
tigen Hillen in eindeutiger Weise eine Addition und eine Multiplikation definieren, so da
man dadurch stetige Oberkdrper von @ bzw. @, erhilt (vgl. MfL Bd. 2, 6.3.3., L.).

Der Bereich der komplexen Zahlen

Kontrollfragen

. Welches sind die Griinde fiir die Erweiterung des Bereiches der reellen Zahlen?

Welche algebraischen Forderungen stellt man an den Erweiterungsbereich und
welche Forderungen lassen sich nicht realisieren? Wie lautet das Ergebnis des
Erweiterungsprozesses?

. Welche verschiedenen Moglichkeiten zur Darstellung komplexer Zahlen gibt es?

Wie lassen sich die komplexen Zahlen in der GauBschen Zahlenebene veran-
schaulichen?

. Wie sind die algebraischen Operationen in € definiert? Wie spiegeln sich Addition,

Subtraktion, Multiplikation und Division komplexer Zahlen in der GauBschen
Zahlenebene wider?

. Wie ist der absolute Betrag einer komplexen Zahl z definiert und welche Eigen-

schaften besitzt er? Was versteht man unter der zu z konjugiert komplexen Zahl
und durch welche Eigenschaften zeichnet sie sich aus?

. Welche Eigenschaften hat die Gleichung 2" = a (a € C)? Wie sind die n-ten

Einheitswurzeln definiert und welche besonderen Eigenschaften lassen sich iiber
sie formulieren?

. Welche Eigenschaften besitzen algebraische Gleichungen mit komplexen Koef-

fizienten?

. Man diskutiere die algebraischen Gleichungen zweiten, dritten und vierten Grades

(Lésungen sowie deren Anzahl in Abhingigkeit von den Koeffizienten der Glei-
chungen).
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L. Allgemeine Grundiagen

-

w

Aufgaben

. Man stelle folgende komplexen Zahlen in der Form z + yi (z, y € R) dar:

8) i (meZ), b)(1+20, o (14208 — (1— 2,

r+e (L4202 — (1 -3
) —— (he0), e) Groar—cri
(1472 1+
f) a—q g T (meN,n=2),
h) V2, i) V=8, 13-4,
k) Y48 + 6¢ (4 Aufgaben), ) Y1—q3,

4
my4+7+Y4—2, n) }y—1.
- - -
Losung zu j): Aus 3 — 4i = z + yifolgt3 — 4i = (22 — y?) + 2zyi,alsoz® — y2 =3
und 2zy = —4. Durch Quadrieren und Addieren erhilt man
(@ — ) + 4ty = (2 + ¢*)* =25

und daraus z? + y* = 5. Zusammen mit z* — y* = 3 ergibt sich 2> =4 und 2 = 1.
Wegen 22y = —4 mii zundy hiedliches Vorzeichen haben, so daB man schlie8-

lich ¥3 — 4i = 4-(2 — 1) erhilt.
-

. Man gebe eine notwendige und hinreichende Bedingung dafiir an, da8 das Pro-

dukt zweier komplexer Zahlen die Form y: hat.

. Man ermittle alle komplexen Zahlen, die zu ihrem Quadrat (bzw. zu ihrer dritten

Potenz) konjugiert sind.

. Man beweise: Ist @ + bi = (r + 81)" (» € N¥), so gilt @ + b = (r* + &¥)*.

. Es sei Ya + bi = +(r + 8). Man bestimme } —a — b:.
.

. Man stelle folgende Terme in der Form r(cos ¢ + % sin ) dar:

a) 1, —1,7, —1, b) +1 +7 (4 Aufgaben), ,

) +1+ 137, Q2+13+7, e) (14 9%,

f Leptimmg (——1 +”/.§)“, h) (1 _PB- i)".
cosp — i8ing 1—2 2

i 1A, i) E=5.

a) Unter welchen Bedingungen ist der Betrag der Summe zweier komplexer
Zahlen gleich der Differenz (bzw. der Summe) der Betrige der Summanden?
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10.

11.

12.

13.

14.

b) Man beweise:
A |z + 2l + |20 — 2 = 2(1z|* + |z[%),
2,2,€C
A [0 =Vem= l + i = [ | 4 |22 ),
1.3,6C . | 2 2
1 . . 3
NG <—=>|(1+z)z*+u|<—).
2€C 2 4
A =tnst -1 o= 7E0).
2€C reR 1—-m
Man zeige, daB aus z + 1_ 2 cos ¢ die Gleichung 2* + i.‘ = 2 cos ng folgt
(n € N*). z z

Hinweis: Man wende die Moivresche Formel an.

. Man l6se die folgenden Gleichungen :

8) 1+2)z+@—8)y=1—3 (ycR),
b) g —z=1+2, o jd+z=2+7

Man leite eine Formel zur Lésung der biquadratischen Gleichung z¢ 4 p2* + ¢ =0
mit reellen Koeffizienten p und g unter der Bedingung %’ — ¢ <0 her.
Man wende die Cardanosche Formel an:

a) 8 —6249=0, b) 2 + 12z + 63 =0,
¢) 28+ 928 + 182 + 28 = 0, d) 23 + 62® + 30z + 26 = 0,
e) 3 +6:+2=0, f) 22 — 6iz + 4(1 — 5) =0,

g) 2 — 3abz +a® + b3 = 0.

Mit Hilfe der Cardanoschen Formel zeige man, daB fiir die Losungen z,, z3 und z,
der Gleichung 2z* + pz + ¢ =0 die Beziehung (z; — 2,)% (2, — 2)* (23 — 2)?
= —4p® — 27¢? erfiillt ist.

Anleitung: Man verwende MfL Bd. 2, 7.5.(4), (6).

Man leite ¢ine Formel zur Losung der Gleichung 28 — Baz® + Ba% — 2b =0
(a, b € R) her.

Anleitung: Man mache den Ansatz z = u + v.
. 1 »
Essei ¢ = _E+ %ﬁ Man berechne:

a) 1+e+¢€, b)e, c)(1+¢"* (meN),
d) (ae® + be) (be? + ae), e) & + &*.
(Bei ¢) und e) gebe man das Ergebnis in trigonometrischer Darstellung an.)
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16.

16.

17.

18.

19.

Man bestimme die n-ten Einheitswurzeln fiir » = 5, 6, 8 und 12 in der Form
Z + 1y (7, y € R), in diesen Fillen alle primitiven n-ten Einheitswurzeln (e heiBt
eine primitive n-te Einheitswurzel, wenn & erzeugendes Element der zyklischen
Gruppe aller n-ten Einheitswurzeln ist, wenn also die Menge {e, ¢2, ..., & = 1} alle
n-ten Einheitswurzeln enthilt) und zeige, daB es fiir beliebige natiirliche Zahlen n
genau g(n) (vgl. MfL Bd. 1, 3.7.(76)) primitive n-te Einheitswurzeln gibt.

Es sei ¢ eine primitive n-te Einheitswurzel. Man berechne
»—1 n—1
a) Y'¢, b) Yem (meN),
k=0 k=0
-1 n—1
c) J(k+1)e, d) X (k+ 1)2ek.
k=0 k=0
Anleitung: Bei a), c) und d) multipliziere man zunéchst mit 1 — ¢, bei b) unterscheide
man die Félle » | m und ¥ m.
Man l6se die Gleichungen
a) + 1) —(z—1)*"=0 (nec N¥),
b) 4+ —(z—1)"=0 (n€ N¥),
c) z=2"1 (n € N¥).
1442

"
Man zeige, daB die Gleichung (—) = a fiir a € C und || = 1 genau n ver-
hiedene reelle Lisungen hat. \' — "4

Man berechne die folgenden Summen von Binomialkoeffizienten (vgl. MfL Bd. 1,
3.5.(23)—(25)):

3 (-G -62 506+
(L)l a())be
2 ()-30)+3(0)-50)+-

Hinweis: Beia) berechne man (1 + 7)® sowohl nach dem binomischen Satz als auch nach

R L
der Moivreschen Formel, bei ¢) gehe man von (l + ty—:-) aus.



Algebra

Der n-dimensionale Zahlenraum, der Begriff des Vektorraumes

Kontrollfragen

. Was versteht man unter dem R*? Wie ist im R* die koordinatenweise Addition

und Multiplikation mit einem Skalar erklért?

. Wie lauten die Grundeigenschaften der koordinatenweisen Addition und Multi-

plikation mit einem Skalar im R*?
Man verwende fiir die Antwort eine Beschreibung unter Benutzung mathemati-
scher Symbolik sowie auch eine Beschreibung in Worten.

. Was meint man mit der Aussage: Der R* bildet beziiglich der koordinatenweisen

Addition eine abelsche Gruppe?

. Was meint man mit der Aussage: Der R bildet beziiglich der koordinatenweisen

Addition und Multiplikation mit reellen Skalaren einen reellen Vektorraum?

. Wie unterscheiden sich die Definitionen reeller und komplexzer Vektorrdume?
. Man nenne Beispiele aus der Physik oder aus anderen Wissensbereichen, wo zur

Beschreibung von Sachverhalten Punkte des R* benutzt werden. (MaBsysteme
sollen dabei nicht weiter erértert werden) (Druck-Temperatur, Ort-Impuls, An-
teile verschiedener Salze in einer Losung, VerbrauchsgroBen verschiedener
Materialien in einem Betrieb usw.)

. Man erlidutere die Bezeichnung: Addition nach dem Krifteparallelogramm.

Aufgaben

. Fiir beliebige zwei Punkte &, y € R" gebe man fiir die nachfolgend aufgefiihrten

Punktmengen eine geometrische Deutung beziiglich der euklidischen Veran-
schaulichung:

M =(x-c+p-y:a20,=20,a+8=1},
M={a-®+f-y:0,fE R, a +f=1]},

1
M:={;(z+y)}-

Hinweis: Es treten auf: ein spezieller Punkt (welcher?) auf der Verbindungsstrecke von
& und y, eine spezielle Strecke (welche?) und eine spezielle Gerade (welche?).

. Die Addition in R und Multiplikation in R sind besondere Abbildungen +: R X R

— R und -: R X R — R. Man begriinde: Beide Abbildungen sind surjektiv, aber
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keine ist injektiv. Weiterhin verschaffe man sich eine Einsicht in die Urbild-
mengen

+ )=z y):x+y=r71), "Nr)={(u,v):u-v=r].

(Skizze!)

Sind die Urbildmengen +-1(r) und --1(r), r € R (die sogenannten Punktefasern)
symmetrisch beziiglich der Winkelhalbierenden des ersten und dritten Quadran-
ten? Die Kommutativitit der Addition + und der Multiplikation - driicke man
durch eine geometrische Eigenschaft der Punktefasern +-(r), -~!(r) aus.

. Man begriinde die Aussage: Ein reeller (oder komplexer) Vektorraum, der wenig-

stens zwei verschiedene Punkte (Vektoren) enthilt, besitzt auch stets unendlich
viele Punkte.

Hinweis: Man betrachte die skalaren Vielfachen.

. Fiir eine beliebige nichtl Menge X bezeichne RX die Menge aller reellen Funk-

tionen auf X. (Welche Griinde gibt es fiir die Wahl dieser Bezeichnungsweise?
Aligemein bezeichnet man fiir nichtleere Mengen A4, B mit B4 die Menge |f: /:
A — B), fiirendliche Mengen 4, B ist nimlich Anzahl (B4) = (Anzah] B)Asablt4))
Mit der punktweisen Addition von Funktionen und punktweisen Multiplikation
einer Funktion mit einem reellen Skalar wird RX zu einem reellen Vektorraum.
Entsprechend wird €X zu einem komplexen Vektorraum. Der Vektorraum R® ist
hierzu der Spezialfall R!*2--*. Man benutze fiir die El te von R® die Ver-
anschaulichung durch Funktionsgraphen. Damit mache man sich noch einmal die
»faserweise Veranschaulichung‘‘ des R® klar.

. Es sei n eine fixierte natiirliche Zahl. Simtliche reelle Polynome vom Grade < n

bilden beziiglich der punktweisen Operationen einen reellen Vektorraum. (Ent-
sprechendes gilt im } 1 Fall))

2

. Es bezeichne C([a, b], R) das System aller stetigen reellen Funktionen auf dem

abgeschlossenen Intervall (a,b] — R. Beziiglich der punktweisen Operation bildet
C((a,b], R) einen reellen Vektorraum. Fiir den Fall ¢ = b kann man diesen Vektor-
raum und den R! als gleich ansehen. (Genauer: Beide Vektorrdume sind isomorph
zueinander.)

. D((a, b], R) (entsprechend D(R, R), D(Je, b, R)) — die Menge aller auf (e, b]

definierten differenzierbaren reellen Funktionen — bildet beziiglich der punkt-
weisen Operationen einen reellen Vektorraum. Welcher Zusammenhang besteht
zwischen D([a, bJ, R) und C((a, b]. R)?

. I({a, b], R) (entsprechend I(R, R), I(Ja, b7, R)) — die Menge aller auf [a, ]

definierten Riemann-integrierbaren (bzw. uneigentlich Riemann-integrierbaren)
reellen Funktionen — bildet beziiglich der punktweisen Operationen einen
reellen Vektorraum. Welcher Zusammenhang besteht zwischen C([a, b], R) und
I((a, b, R)?
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Es bezeichne L die Menge aller auf R, \ {0} = (z: z € R, z > 0} definierten Log-
arithmenfunktionen inklusive der Nullfunktion, d. h. f € L & f(z) = O fiir alle
z > 0 oder aber

f(z) = log z fiir alle z > 0 mit einer Basisa > 0,a % 1.

L bildet beziiglich der punktweisen Funktionenaddition und Multiplikation mit
einem reellen Skalar einen reellen Vektorraum.
Hinweis: Man zeige, daB 1. « - f fiir « € R, & 5 0, wieder eine Logarithmenfunktion ist,
sofern f eine war.
2. f + g wieder eine Logarithmenfunktion ist, sofern f und g welche waren.
Hierzu verwende man die Umrechnungsformel von einer Logarithmenbasis in eine
andere:

dlog z = %log b-Plogz, @,b>0, b+1.
Es sei E das System aller Exponentialfunktionenauf R, d.h. £ = {f:/:R —> R,
und es gibt ein @ > 0 mit f(z) = a?}. In E betrachte man die punktweise Funk-
tionenmultiplikation: (f - g) () = f(z) - g(z). Man zeige, daB E beziiglich dieser
Operation eine abelsche Gruppe ist. (We]che Potenzgesetze werden dabei be-

notigt?)
Kann men auch noch fiir E eine geeignete Multiplikation mit reellen Skalaren
definieren, so daB damit E beziiglich der soeben betrachteten Grupp ti

ein reeller Vektorraum wird? Die iibliche Multiplikation mit Skahren, d. h.
(2, f) > - f bei « € R, f € E, fiihrt nicht zum Ziel, da nicht stets wieder ein Ele-
ment von E herauskommt. Definiert man jedoch eine Multiplikation mit Skalaren
in der nachfolgend aufgefiihrten Weise, so erhilt man einen reellen Vektorraum:
(2, f) = f, d. h., als skalares Vielfaches (Skalar «) von f(z) = a* nimmt man die
Funktion g(z) = (a®)*. Dieser soeben ermittelte Vektorraum kann auch wegen der
Strukturgleichheit der Gruppe E mit der multiplikativen Gruppe der positiven
reellen Zahlen (Isomorphie von E mit (R, \ {0}, -)) so umgedeutet werden, da8 die
Velktoren des zu betrachtenden Vektorraumes die strikt pasitiven reellen Zahlen
sind, die Vektoraddition deren Multiplikation bedeutet und schlieBlich die Multi-
phka.tnon eines Vektors z mit einem reellen Skalar « das Potenzieren z* bedeutet.

Es sei ¥ ein komplexer oder reeller Vektorraum. Aus den Grundregeln der Vek-
toraddition in ¥ und der Multiplikation von Vektoren mit Skalaren zeige man die
Giiltigkeit folgender Gleichungen:

(x — p)* = o — px, «,f Skalare, x Vektor,

x(® — y) = ax — oy, o Skalar, &, y Vektoren.
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Linearformen auf dem n-dimensionalen reellen Zahlenraum
(bzw. auf aligemeinen Vektorraumen)

Kontrollfragen

. Welche reellen Funktionen f: R* — R bezeichnet man als Linearformen auf dem

R*¢
Unterscheidet sich der Begriff des linearen Funktionals auf dem R" von dem Be-
griff der reellen Linearformen auf dem R*?

. Was versteht man unter den Komponenten einer reellen Linearform in » Varia-

blen? Ist eine reelle Linearform in # Variablen eindeutig durch ihre Koeffizienten
bestimmt oder gibt es verschiedene Linearformen, die das gleiche Koeffizienten-
tupel haben?

. Was versteht man unter der Additivitit und der Homogenitét einer Linearform

auf dem R*?

. Wie sehen die Funktionsgraphen von reellen Linearformen auf dem R! und dem

R? bei Benutzung der euklidischen Veranschaulichung aus?

. Das System .#(R*) aller reellen Linearformen auf dem R" ist eine Teilmenge des

Systems aller moglichen reellen Funktionen & (R*) auf dem R". Handelt es sich
um eine echte Teilmenge? Ist die punktweise Summe von reellen Linearformen
auf dem R* wieder eine reelle Linearform auf dem R*? Gilt etwas Entsprechendes
auch fiir das skalare Vielfache einer Linearform?

hge LR)=>f+ge LR

1€ LR, s € R>a-fe L(RY)?

. Welcher Zusammenhang besteht zwischen der punktweisen Addition und der

Multiplikation mit Skalaren in #(R*) und den entsprechenden Operationen der
zugehorigen Koeffiziententupel?

. Unter einer Linearform bzw. einem linearen Funktional f auf einem beliebigen

Vektorraum V versteht man eine Abbildung in den Skalarenkéorper R bzw. C, so
daB f beziiglich der Vektoraddition additiv ist und beziiglich der Multiplikation
mit Skalaren homogen.

Ist dasSystem Z(V)(genauver (¥, R)bzw. £(V, C))aller reellen (bzw. komplexen)
Linearformen auf einem reellen (bzw. komplexen) Vektorraum V beziiglich der
punktweisen Funktionsoperationen ein Vektorraum? Kann man in dieser all-
gemeinen Situation auch immer von einem Koeffiziententupel eines linearen
Funktionals f sprechen?

. Was versteht man unter dem Kern ker f einer Linearform f € #(R")? Kann man

auch fiir den allgemeinen Fall f € #(V) bei gegebenem Vektorraum V in gleicher
Weise den Kern von f ker f — V definieren?

. Was haben Linearformen f,, ..., /o € £(R") mit linearen Gleichungssystemen zu

tun?
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Kann man den Inhalt des Satzes iiber die lineare Struktur des Kerns ker f,
f € £(R*), auch so auffassen, daB man sagt: ker f ist mit den Operationen des
R" wieder ein Vektorraum? Gilt etwas Entsprechendes auch im Fall f € #(V) bei
beliebigen Vektorraumen V'?

. Wie miiBte man in voller Analogie zum R" den Begriff eines linearen Teilraumes

eines allgemeinen Vektorraumes ¥ definieren? Sind dann fiir diesen Fall auch der
Durchschnittssatz fiir lineare Teilriume und der Begriff von der linearen Hiille
einer Teilmenge eines Vektorraumes giiltig?

Was bedeuten die Begriffe ,,Linearkombination‘‘ bzw. ,linear kombinierbar* im
R*? Lassen sich diese Begriffe auch auf den allgemeinen Fall eines beliebigen
Vektorraumes V iibertragen?

Aufgaben

. Die Menge 2 aller reellen Polynome werde mit der punktweisen Addition und

Multiplikation mit reellen Skalaren ausgestattet. Es entsteht damit ein reeller
Vektorraum. Welche der beiden folgenden reellen Abbildungen f: # — R und
g: 2 — R ist ein lineares Funktional auf #:

i=0

» »
/(P) = X a;, sofern P(z) = ' a; - &,
i=0
g(P) = P(,), 7, beliebige fixierte reelle Zahl?

Losung: a) f ist additiv und homogen, was man direkt bestitigt. Man kann aber auch
beachten, daB es sich bei f um einen Spezialfall des anderen Teiles b) der Aufgabe handelt,
indem man nimlich fir z, den Punkt 1 nimmt.
b) Die Funktion g ist fur beliebiges z, € R ein lineares Funktional, da ja in & die Opera-
tionen punktweise gemeint sind. Es seien P, @ € 2. Dann gilt

(P + Q) (@):=PE) +Qz), z€R,

(«P) (z):=aP(z), z€R, a€cR.
Also .

9(P + @) = (P + @) () = P(x,) + @(zo) = 9(P) + 9(Q),

9(aP) = («P) (%) = aP(z,) = ag(P).

. Die Menge M :=((z,y):z,y€ R,2*+ (y— 1)*=1, y+ 2} (die Kreislinie

eines Kreises vom Radius 1 mit den Mittelpunkt (0, 1), aus der der Nordpol
herausgestochen ist) soll mit einer gewissen ,,Addition‘‘ und einer ,Multipli-
kation mit reellen Skalaren‘‘ derart ausgestattet werden, daB man damit eine
gewisse Veranschaulichung fiir den Raum der Linearformen auf dem R! erhilt.
Wie hat das zu geschehen?

. Man betrachte eine nichtausgeartete Linearform f auf dem R?, ihr Koeffizien-

tentupel sei (a,, a;). Man versuche, eine geometrische Lagebeziehung zwischen
dem Kern der Linearform (als Gerade in der euklidischen Veranschaulichung auf-
gefaBt) und der Ursprungsgeraden durch (a,, a,) herauszufinden.
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Losung: Es gilt ker f = {(§,, &;): a, - §; + a5 - §; = 0}. Also liegen die Punkte (—a,, a,)
und (a,, —a,) in ker f. Daraus entnimmt man zundchst: Wenn (a,, a,) auf der z-Achse
gelegen ist, 8o ist ker f die y-Achse und umgekehrt. Diese beiden Geraden stehen also senk-
recht aufeinander. Testet man auch noch den Fall, daB (a,, a,) auf der Winkelhalbierenden
des ersten und dritten bzw. zweiten und vierten Quadranten liegt, so erhélt man wiederum,
daB die Ursprungsgerade durch (a,, a,) und ker f senkrecht aufeinander stehen. Auch im
allgemeinen Fall bestitigt sich diese Relation. Das lineare Funktional f mit dem Koeffi-
ziententupel (a,, a;) # (0, 0) sowie das lineare Funktional & - f, & = 0, liefern stets den-
selben Kern. Folglich kann man voraussetzen, da8 (a,, a,) auf dem Einheitskreis um den
Ursprung liegt, d. h., es gilt a} + a} = 1, andernfalls betrachte man anstclle von (a,, a,)

den Punkt ———— - (a;, a,). Dann gibt es genau einen Winkel 0 < ¢ < 27 mit (a,, a,)

a +a} .
= (cos @, sin @). Der Punkt (—a,, a,) liegt eb auf dem Einheitskreis. Es gibt daher

fall

genau einen Winkel 0 < ¢ < 2z mit (cos y, sin ) = (—sin @, cosg). Alsoisty = ¢ + % .

. Auf dem R” heillen die n Abbildungen #;: R" - R mit z;(z) = x;, sofern z

= (Zy, Ty -.» Ty), T =1,2,...,,7, ist, die kanonischen bzw. natiirlichen i-ten
Koordinatenprojektionen. Man zeige, daB =; eine Linearform auf dem R" ist
und sich jedes Element f € #(R") aus den x;, 7,, ..., 7, linear kombinieren 1a8t.

. Bezeichnet ¢ die Menge aller konvergenten reellen Zahlenfolgen, dann ist ¢ be-

ziiglich der gliedweisen Folgenaddition und der gliedweisen Multiplikation mit
einem reellen Skalar ein reeller Vektorraum.

Es sei 2 € ¢, d. h., Z = (Za)pen» 2a € R, lim 2, existiert. Man betrachte die Zu-
ordnung z > lim z,, und beweise, da damit durch lim: ¢ — R ein lineares Funk-
tional auf ¢ gegeben ist.

Tei hed:

Losung: Die Vektorraumstruktur von ¢ und die Funkti ft von lim
gerade gewisse Grundgesetze iiber konvergente Folgen. Mit Zwei konvergenten Folgen
und y sind niémlich auch die Folgen z + y und « - z, « € R, konvergent, und es gilt
lim(zr +y)=limz + limy, lima-z=a-limz.
Hinsichtlich der Multlpllkanon mlt einem reellen Skalar handelt es sich nur um einen
Spezialfall des all : Mit zwei konvergenten Folgen z, y ist auch
deren gliedweises “Produkt z - y= (z,, y,,),.gn eine konvergente Folge, und es besteht die
Limesbeziehung
limz.-y=limz-limy.

. Auf dem Vektorraum %/([a, b]) der stetigen recllen Funktionen iiber dem Inter-

vall [(a, b] betrachte man folgende Zuordnung:
%((a,b))5/ M, d. h., jeder Funktion f € ¢({a,b]) wirddie Ordinate

des Mittelpunktes der Sekante durch den Anfangspunkt und Endpunkt des
Funktionsgraphen zugeordnet.

1. Es handelt sich um ein lineares Funktional auf ¢((a, bJ).

2. Dieses Funktional stelle man als Summe zweier anderer Funktionale dar.

3. Der Kern des Funktionals besteht aus allen Funktionen f € €((a, bJ) mit
fla) = —f(b).

. Die Vereinigung zweier linearer Teilriume des R" ist nicht notwendig wieder ein
Die V gung 1 Teil des R" ist nicht notwendig wied

linearer Teilraum des R* (Beispiele!). Welche gegenseitige Lagebeziehung miissen
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zwei lineare Teilriume eines allgemeinen Vektorraumes V erfiillen, damit ihre
Vereinigung ein linearer Teilraum wird?
Hinweis: 1. Im R* betrachte man beispielsweise L, := {(z, 0): z € R} und L, := {(0, y):

y € R}. Dann ist L, u L, kein linearer Teilraum.
2. Einer muB im anderen enthalten sein.

. LaBt sich das Element (1, 1, 1) des R? aus den Elementen (1, —1,0), (2,3, 1)

linear kombinieren?

Hinweis: Es ist nach «, f € R gefragt mit (1,1, 1) = «(1, —1,0) + (2,3,1), d. h., es
miBte 1 =a + 2, 1 = —a + 36, 1 = § gelten. Das kann nicht sein!

Im R*® seien die Elemente &, &y, ..., #; gegeben. Welches rechnerische Anliegen
hat man bei der Frage zu bewiiltigen, ob &, zu dem von den Elementen ,, 2;, ...,
&, aufgespannten linearen Teilraum L({&,, &, ..., T;}) gehort?

Hinweis: Es ist nach reellen Zahlen a,, ..., a; gefragt, fir welche

Ty = 0Ty + gy + -+ + Ty

gilt. Es ist also ein li Gleich in den Unbek & zu loeen.

Kann der lineare Teilraum L({x}), & € R3, der also von einem einzigen Element ®
des R? aufgespannt wird, Kern einer Linearform sein?

Lineare Unabhingigkeit

Kontrolifragen

. Was heiBt lineare Abfiingigkeit eines El tes & des R* von einer Teilmenge U

des R*? Was hat dies mit dem Begriff ,,lineare Kombination‘‘ zu tun?

. Ist eine entsprechende Ubertragung der Begriffe , linear abhiingig‘* bzw. , linear

unabhiingig*‘ auf beliebige Vektorriume méglich?

. Was versteht man unter einer Basis des R*? Welche Kennzeichnung der Basen

gibt es mittels der linearen Unabhingigkeit?

. Was versteht man unter der natiirlichen Basis des R*?
. Haben die Basen des R" stets die gleiche Anzahl von Basiselementen?
. Kann man jede linear unabhiingige Teilmenge des R® zu einer Basis des R® er-

ginzen?

. Wie miiite man m entsprechender Analogie zum R* verfahren, wenn man die

Di ion eines al inen Vektorraumes definieren will und dahei zunichst
die Einteilung der Vektorrume wie folgt vornimmt:

1. Ein Vektorraum V heiBt endlichdimensional genau dann, wenn er eine end-
liche Teilmenge besitzt, die den ganzen Vektorraum aufspannt.
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2. Ein Vektorraum ¥ heiBt unendlichdimensional genau dann, wenn er keine end-
liche Teilmenge besitzt, die ihn aufspannt.

8. Welche Teilrdaume des R* kommen fiir die Kerne von nichtausgearteten linearen
Funktionalen in Frage?

9. Was versteht man unter der Koordinatendarstellung eines Vektors des R® in
bezug auf eine Basis?

10. Welches Koordinatentupel ergibt sich fiir einen Vektor des R in bezug auf die
natiirliche Basis?

11. Welche Operationen miissen mit den Koordinatentupeln von Vektoren des R"
beziiglich einer Basis vollzogen werden, um das Koordinatentupel des Summen-
vektors und das eines skalaren Vielfachen zu bekommen?

12. Wie miiBte man die Isomorphie von zwei allgemeinen Vektorraumen definieren?

13. Ist die Dimension eines Vektorraumes eine Invariante beziiglich Isomorphie,

_d. h,, gilt dim ¥, = dim V,, wenn ¥, und V, isomorphe Vektorriume sind?

Aufgaben

1. Im Vektorraum der reellen Polynome weise man die Menge der Elementarpoly-
nome P,(z) := z*, n ganze Zahl > 0, als linear unabhiingig nach.

Hinweis: Ein vom Nullpolynom verschiedenes Polynom hat nur endlich viele Null-
stellen. Der Vektorraum der reellen Polynome ist also unendlichdimensional, denn er hat
eine unendliche linear unabhingige Teilmenge.

2. Der Vektorraum ¥((a, bJ), a < b, aller reellen stetigen Funktionen ist unendlich-
dimensional.

3. Zwei Elemente & = (2,, 2;), ¥ = (¥, ¥2) des R? sind genau dann linear abhingig,
wenn z,y, = Zyy, gilt.

4. Folgt im R fiir die drei Elemente & = (z,, 2;, Z35), ¥ = (Y1, ¥a» ¥3)» & = (21, 22, Z5)
stets aus dem Bestehen der Beziehung z,y,z; = Z,32, = Z,¥,2, die lineare Ab-
hingigkeit von 2, y, 21

Hinweis: Nein! Man gebe ein Beispiel an.

5. Man weise die Elemente & = (1, 2, 3), y = (4, 5, 8) des R® als linear unabhiingig
nach und ergiinze sie durch ein weiteres Element zu einer Basis des R3.

Lésung: Eine lineare Kombinutio’n «-x+ f-y =0 liefert

«+48=0,
2x + 66 =0,
3a + 68 = 0.

Also folgt aus der ersten und zweiten Zeile 88 = 5, d. h. § = 0, und damit & = 0. Das
Element z = (1, 0, 0) kann als Erginzungselement dienen. Die Menge (z, y, 2} ist némlich
linear unabhingig und bildet demzufolge eine Basis, weil in R® jede linear unabhéngige
Menge mit drei Elementen eine maximale linear unabhiingige Teilmenge ist. Die lineare
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Unabhéngigkeit erschlieBt man aus dem Bestehen der Beziehung

a+4f+y=0,
2 +58 =0,
3a+6f =o.

Aus den beiden letzten Gleichungen erhilt man durch Subtraktion & + § =0, also
2x + 2f = 0, und damit 38 =0, d. h. § =0, « = 0, y = 0. Nimmt man aber etwa an-
stelle von z den Vektor w = (7, 8, 9) zu &,y hinzu, so hat man ein linear abhingiges
System &, y, w0; denn es 1Bt sich das Gleichungssystem
a+4f+ Ty =0,

2a 4 6+ 8y =0,

3x+68+9y=0
durch (x, 8, ) = (1, —2, 1) nichttrivial 15sen, worauf man durch Subtraktion der dritten
und zweiten und darauffolgend mit der ersten Gleichung dee Systems gefiihrt wird.

Es seien L, und L, zwei lineare Teilrdume eines endlichdimensionalen Vektor-
raumes V. Welche Beziehung liBt sich zwischen den Werten dim (L(L, v Ly)),
dim L,, dim L, und dim (L, n L,) ableiten?

Hinweis: Es gilt dim (L(Z, u Ly)) + dim (L, n L,) = dim L, + dim L,.

. Man ermittle alle Punkte des R?, deren Koordinatenvektoren (£, 7) beziiglich der

Basis B: (1, 0), (1, 1) der ,,Kreisgleichung*‘ £2 4 * = 1 geniigen.
Hinweis: Die gesuchte Menge besteht aus allen Punkten (z, y) mit (z — y)* + y* = 1.

. Die Elemente £ = (cos ¢, sin ¢), y = (—sin ¢, cos ¢) des R? weise man fiir jedes

@ € R als linear unabhingig nach. Man bestiuume zu den Elementen (1, 0), (0, 1)
und (1, 1) jeweils die Koorainatenvektoren in bezug auf die Basis B: &, y.

. In Vektorraum #(R®) der reellen Linearformen auf dem R* bilden die kanonischen

Koordinatenprojektionen z;: R* > R mit m((z,, gy ooy Tiy ovny z,)) = z; eine
Basgis B: 7, 7, ..., Tp.

. Der auf 8. 97, Aufgabe 10, betrachtete reelle Vektorraum E der Exponential-

funktionen und der in der Aufgabe 9 betrachtete reelle Vektorraum L der Log-
arithmenfunktionen sind beide eindimensional (und damit isomorph zum R?).

Hinweis: Man braucht nur zu zeigen, daB E und L jeweils von jedem von Null verschie-
denen Element erzeugt werden.

In jedem unendlichdimensionalen Vektorraum ¥ gibt es eine aufsteigende Folge
VicV,< - < V, < - von linearen Teilriumen mit dim ¥V, = =.

. Es seien L, und L, zwei lineare Teilriume des gegebenen Vektorraumes V. Ihre

Vereinigungsmenge mége den ganzen Vektorraum V aufspannen: V = L(L, v L,).

Dann gilt:

LynL,= {0}« Jedes Element £¢ V hat genau eine Summendarstellung
=&, +&; mitx, € L, und &, € L,.
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13. Es sei X eine nichtlineare Teilmenge und ¥ = X® der Vektorraum aller reellen
Funktionen auf X, wobei die punktweise Funktionenaddition als Vektoraddition
und die punktweise Multiplikation mit Skalaren fungiert. Dann ist in ¥ die fol-
gende ,,Vektormenge‘‘ (= Funktionenmenge) linear unabhingig:

M:={x:xcV,zc Xmitx(y) := 1firy =z und &(y) = 0 firy + z}.

Diese Menge M ist genau dann eine Basis von ¥V, wenn X endlich ist.
Wie sieht der von M aufgespannte lineare Teilraum L(M) in V aus?

14. Essei®B:&,,X,, ..., &, eine Basisim R". Gibt es dann stets ein lineares Funktional f :
R* > R, das fiir die Vektoren &,,&,, ..., &, vorgeschriebene Werte «, ..., a,
annimmt?

15. Es seien 8,: &,, &y, ..., ®,und B,: Y;, 5, ..., Y, zwei Basen des R*. Diese Basen
sind genau dann voneinander verschieden, d. h., es gibt wenigstens ein 7 € (1,
2,...,n} mit &; & y;, wenn es einen Vektor & € R* gibt, dessen Koordinaten-
vektor beziiglich 8, von dem Koordinatenvektor beziiglich ¥, verschieden ist.

18. Esseien @,, &, ..., &, endlich viele verschiedene Vektoren eines reellen Vektor-
raumes V. Bei linearer Abhingigkeit dieser Vektoren &8t sich mindestens einer
durch die iibrigen linear kombinieren. Man gebe ein Beispiel dafiir, daB sich dann
aber kein weiterer Vektor aus &,, &,, ..., &, durch die iibrigen kombinieren la8t.
Zum anderen gebe man ein Beispiel, da8 sich jeder Vektor aus &,, &,, ..., Z,
durch die iibrigen linear kombinieren 1i8t. *

17. Es sei V ein Vektorraum. Zwei nichtleere Teilmengen M;, M, von V kann man

linear unabhingig nennen, wenn sich der Nullvektor nur trivial mittels von Null
verschiedener Vektoren aus M, und M, linear kombinieren li8t. Entsprechendes
ibertrigt sich auf endlich viele nichtleere Teilmengen M,, M,, ..., M; von V.
Also bedeutet die lineare Unabhingigkeit von M,, M,, ..., M,, deB aus dem Be-
stehen der Beziehung 0 = &, - &, + &, - &3 + -+ + & - &, fiir beliebige x; € M,
@®; & 0, stets «; = O fiiralle + = 1, 2, ..., k folgt. Lineare Abhingigkeit der Vek-
toren &,, ..., &, &; + 0, bedeutet in diesem Sinne die lineare Abhéngigkeit der
Mengen M, = (x,), M, = (&,}, ..., M, = {x,}.
Man zeige: Fiir die nichttrivialen linearen Teilrdame L,, L,, ..., L; des Vektor-
raumes V gilt: L,, Ly, ..., L; sind genau dann linear unabhingig, wenn jeder Vek-
tor & aus L(L, v L, u --- v L) genau eine Darstellung * =2, + &, + - + &
mit &, € L, fiir alle 1 = 1, 2, ..., k besitzt.

18. Im Vektorraum £ aller reellen Polynome bilden die Elementarpolynome 1, z, 22,
23, ..., 2% ... eine Basis. Man zeige, daB fiir beliebiges a € R die Polynome 1,
(z — a), (z — a)%, ..., (x — a)*,... ebenfalls eine Basis in & bilden.
Wie berechnen sich die Koordinaten von einem Polynom P(z) beziiglich der neuen
Basis?
Loésung: Essei0 =ay + &, - (z —a) + - + &y - (z — a)* fur alle z € R, n € N. Wenn
aq =+ 0ist, steht rechts ein Polynom vom Grade n. Solch ein Polynom hat aber héchstens n

Nullstellen. Links steht aber das Nullpolynom, das iiberall den Wert 0 annimmt. Folglich
verbleibt nur die Moglichkeit «, = 0, was schlieBlich fir alle «,, ..., x, den Wert 0 ergibt.



L sofalsiolaito 13 Gleich ¥ 105

19.

—

Damit sind die Polynome 1, (z — a), (z — a)?, ..., (z — a)®, ... als linear unabhiingig in
nachgewiesen. Es muB noch L({1, (z — a). (z — a)3, .... (z — a)", ...}) = 2P bestétigt wer-
den. Dazu wiederum reicht wegen der Baswseigenschaft der Polynome 1,z,2%, ..., z*, ...
der Nachweis

e L({l, (x —a), ..., (z —a)"...})

aus. Das kann durch vollstindige Induktion nach n geschehen. Es ist z € L({t, (z — a), ...,
(x — a)*",...}), denn man hat dxe Darstellung = = (z — a) + a - 1. Wenn fir z" eine Dar-
stellung der Gestalt

=a-lta-(z—a)+ - Fay-(z—a)r
existiert, muB eine entsprechende D llung fir 2%+ ittelt werden. Es ist z"+!
= z™(z — a) + a - z". Also hat man
M=y (x—a) + - (2 — @)} + - + ay- (z— a)*
+a-a-1+a-a,-(z—a)+ - +a-ay-(z—a)*
=a-ay-1+(x+a-a)(z—a)+(x+a-a)(z—a)P+
+ (g1 + 8- ap) (z — @) + &y - (z — @)

Die Baslodarumllung eines Pclynomu P(z) hinsichtlich der Basis 1, (z — a), (z — a)?, .
(zx—a)%,...b das A den der Koeffizi Ogs Bpp ooy O i

P@)=oay+ oy (—a)+ag-(z—a) + - + oy (z —a)*.
Unter Hennmehu.ng der Differentialrechnung findet man o« = P(a), &, = P'(a),
Oy = — P"(a), vy Oy = — P(")(a), wobei P’ die erste Ableitung, P’ die zweite Ablei-

PR

tung und entsprechend P("’ die n-te Ableitung von P b

Im Vektorraum & aller reellen Polynome bilden die Elementarpolynome 1, z,
a3 ..., z", ...eine Basis. Man bestimme fiir das Polynom P(z) - Q(z) die Koordi-

X7 tell beziiglich der angegeb Basis, wenn (&, «y, ..., «,) der Ko-
ordma.tenvektor von P(z) und (B, By, - .., Bm) der Koordinatenvektor von Q(z)
ist.

Lésungsmannigfaltigkeiten linearer Gleichungssysteme

Kontrollfragen

. Was versteht man unter einem (reellen) linearen Gleichungssystem mit m Glei-

chungen und » Unbekannten?

. Ist der Kern einer reellen Linearform als Losung ge eines li Glei-

chungssystems aus einer Gleichung aufzufassen?

. Was bedeuten bei einem linearen Glelchungssystem die folgenden Zusiitze: ho-

mogen, inhomogen, lésbar, unlésbar, besti und unb ?

. Was versteht man unter dem zu einem inhomogenen linearen Gleichungs-

system gehorigen homog linearen Gleichungssystem?

. Was bedeutet die Aquivalenz von zwei linearen Gleichungssystemen?
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10.

11.

12.

13.

14.

16.

16.

17.

18.

19.

21.

. Was hat die Losungsmenge eines homogenen li Gl

. Konnen dquivalente lineare Gleichungssysteme aus einer unterschiedlichen An-

zahl von Gleichungen bestehen?

. Wie driickt sich die Aquivalenz von zwei gegebenen homogenen linearen Glei-

chungssystemen in dem Raum der linearen Funktionale aus?

Z88Y mit
dem Begriff des linearen Teilraums im R* zu tun?

. Kann jeder lineare Teilraum des R™ Losungsmenge eines geeigneten linearen

Gleichungssystems mit » Unbekannten sein?

Was versteht man unter dem Rang eines linearen Gleichungssystems? Welcher
Zusammenhang besteht zwischen dem Rang eines homogenen linearen Glei-
chungssystems und der Dimension des Losungsraumes?

Fiir Teilmengen des R* ist die Komplexsumme bzw. Komplexdifferenz definiert.
Was hat diese Begriffsbildung mit dem Begriff der linearen Mannigfaltigkeit im
R* zu tun?

Lassen sich die in der vorstehenden Frage genannten Begriffe ganz analog auch
fiir beliebige Vektorrdume definieren?

Wie sehen die linearen Mannigfaltigkeiten des R? und des R? in bezug auf die
euklidische Veranschaulichung aus?

Wie ist die Dimension einer linearen Mannigfaltigkeit definiert? Was versteht
man unter einer Hyperebene des R*?

Welcher Zusammenhang besteht zwischen den Hyperebenen des R* und den
Linearformen auf dem R"?

Wie verhalten sich lineare Mannigfaltigkeiten des R* (bzw. allgemeiner Vektor-
rdume) gegeniiber der Durchschnittsbildung?

Welche Beziehung besteht zwischen linearen Mannigfaltigkeiten des R*® und den

L g igfaltigkeiten von linearen Gleichungssyst in 7 Unbek ?

Welche Beziehungen bestehen zwischen den Durchschnitten von endlich vielen
Hyperebenen und den Ldsungsmannigfaltigkeiten von linearen Gleichungs-
systemen?

Was versteht man unter den ren Umfor gen eines Gleichung!
systems und was will man mit solchen Umformungen erreichen?

1 "

. Welche Entscheidung kann man mittels des GauBschen Algorithmus iiber ein

lineares Gleichungssystem treffen?

Kann der GauBsche Algorithmus auch zur Entscheidung der linearen Abhingig-
keit bzw. linearen Unabhiingigkeit eines vorgelegten endlichen Vektorsystems
benutzt werden?

Aufgaben

. Im R? bestimmt jede Gleichung f(®) = &« mit nichtausgeartetem f € #(R?®) und

« € R eine Gerade. (Bei Zugrundelegung der euklidischen Veranschaulichung des
R? macht die Losungsgesamtheit der genannten Gleichung eine Gerade aus.) Man
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(3]

ermittle Bedingungen dafiir, daB die Gerade parallel zur z-Achse verliuft (aus-
gedriickt durch das Koeffiziententupel von f und den Wert «).

Lésung: Die 2-Achse ergibt sich dann als Kern der gesuchten Linearform f, d. h. ker f
= {(¢,0):a,- £+ ay-n= 0}, also muB a, =0 und a; + 0 sein. Wir wihlen a, = 1.
Dann wird di gewiinschte Gerade durch die Gleichung 7 = x geliefert (a, = 0,4, = 1,
« € R).

. Wann und nur wann haben zwei Geraden im R?%, die durch die Gleichungen

f(®) =« und g(x) = B mit f,g € L(R?), «, B € R, beschrieben werden, genau
einen Schnittpunkt?

Hinweis: Die LlneArlormen { und g mogen die Koeffiziententupel (a,, a;) bzw. (b,, by)

haben. Die Frage ist glei d mit der eindeutigen Ldsbarkeit des Gleichungs-
systems

a-b+a-n=a,

b b+ b-n=5.
Die Ibsu.ngamnnmgfalugkelt muB also nulldi ional sein. D folge muB also der
Rang des h 2 sein. Als notwendige und hinreichende Be-

dingung ergibt sich deshalb die lineare Unabhingigkeit von (a,, a,). (by, by).

. Man bestimme alle Elemente ® = (z,, ;, 2;) des R?, die auf der Hyperebene

liegen, welche die Elemente (1, 0, 0), (0, 1, 0), (0, 0, 1) enthilt. Man ‘gebe eine
Hyperebenengleichung fiir die gewiinschte Hyperebene an.

Hinweis: Die Hyperebenengleichung lautet z, + z, + 23 = 1.

. Das folgende Gleichungssystem ist in Abhéingigkeit von 4 zu lésen:

4+ y+ z= 1,
—z4+Ay+ z= 7,

—z— y+iz=—2

Lésung: Der GauBsche Algorithmus komme auf das umgeordnete System

4+ y—Az2=A24,
—z+Ay+ z2=14,
i+ y+ z=1

zur Anwendung.

Die Umformung auf Trapezform sieht dann wie folgt aus:

z y z z y 2
(1) 1 1 —A| 2 (1) 1 1 —A a
@ | -1 2 1] 2 @) + (1) I4+1 | —A4+1| 22
(3) Al 1 11 (3) — A(1) 1—2- 142 | 12
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Eine weitere Umstellung ist zunichst zweckmang. um stets emen von Null verschiedenen

Koeffizienten an der ersten Stelle der zwei g zu
z z vy
1) 1 —A 1 A
) 142 | 1-2 |1-2
3) 1—2 | 142 | 22
z z Yy
) 1 |-2 |1 2
(@) 12 1-2 1—a
1—2 (1— A2 1—
- — (2 14+4— 2A———(1-2
3) 1+A’() + T +A'( )

Oder noch weiter vereinfacht

z z Y
[TV 3 I O Y T 1
(@) 144812 |t1—n
@ B+l B2+r4+31—1
1+ 2 1+ 2

Daraus entnimmt man, daB das Gleichungssystem fir 2 = 0 nicht l3sbar ist. Fiir 4 = 0 ist
das Gleichungssystem stets losbar, und es ergibt sich

B4 B M- At
2432 T AR +3) (1 + ) ’

g MM WAt RAELN-L
@+3)(1+ M A+ 3)

5. Man bestimme eine Basis des Losungsraumes des Gleichungssystems
z+z,—23+2 =0,
z —2y+z3+7 =0,
3z, + 2, — 23 + 32,=0,
Z, — 7y =0.

Hinweis: Eine Basis des Losung ist etwa gegeben durch die beiden Vektoren
(1,1,1, —1) und (0, 1, 1, 0).

6. Sind die Elemente & = (1, —2,1),y = (3, —1,2),2 = (2, 1, 2) des R?® linear
unabhiingig?

Hinweis: Der Rang ist 3, d. h., das gegebene Vektorsystem ist linear unabhingig.
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7. Man ermittle drei Hyperebenengleichungen im R?, so daB der Durchschnitt der
Hyperebenen gerade nur aus dem El t (1, 1, 1) besteht
Losung:
1. Geometrische Argumentation: Man lege die euklidische Vi haulich des R® zu-
grunde. Jeder Punkt & € R? ist dann der Durchschnitt der drei Ebenen, dxe zu den Ko-
ordinatenebenen parallel sind. Die z,,z,-Ebene ist Kern des linearen Funktionals f, mit
dem Koeffiziententupel (0, 0, 1). Also ist die durch den Punkt (1, 1, 1) verlaufende parallele
Ebene beschrieben durch die Gleichung z; = 1.
Die z,,2;-Ebene ist Kern des linearen Funlmonals fs mit dem Koefflzlententupel (1,0,0).
Also ist die durch den Punkt (1, 1, 1) verlauf parallele Ebene b ieben durch die
Gleichung z;, = 1. Die z,,z,-Ebene ist Kern des li Funktionals f; mit dem Koeffizi
tentupel (0, 1, 0). Also ist die durch den Punkt (1, t, 1) verlaufende parallele Ebene be-
schrieben durch die Gleichung z; = 1.

2. Arithmetische Arg ion: Es ist ein inh li Gleich y in drei
Unbesti: mit.drei Gleich ht 80 daB die Imungsmsnmgfaltlgkelt genau
aus dem Punkt (l 1, 1) besteh Dle drei Gl gen eines solchen Systems sind dann die

h drei Hypereb
Es handelt sich um ein bestimmtes lineares Gleichungssystem, es muB also den Rang 3
haben. Man kann daher von drei beliebigen linear unabhiingigen El ten T, y, z des R?
ausgehen, z. B. waren die drei El te der vorhergehenden Aufgabe linear unabhiingig:
x= (l —2,1),y=(3, —1, 2), z2=(2,1,2). Diese Vektoren &, y, # nehme man als die
K ktoren der gew h linearen Funktionale f,, f;, /5. Es sind jetzt noch
Werte «,, &y, &3 € R zu ermitteln, so da8 (1, 1, 1) einzige Losung ist von

h(@) =0, fo(2) = a5, f5(2) = a5,
Es miissen lediglich die Werte f,(1, 1, 1), fs(1, 1, 1), f4(1, 1, 1) berechnet werden, was nach-
einander

AL L1)=1-14(—2)-141-1=0,

LL1L,1)=3-14(—1)-14+2-1=4,

H1,1,1)=2-14+1-142-1=5
ergibt. Damit haben wir den Punkt (1, 1, 1) als einzige Lésung des bestimmten inhomogenen
linearen Gleichungssystems

z — 2z, + 7,=0,

3z, — z,+ 22, =4,

2z, + x4 2z, = 5.
Geht man anstelle der obigen &, y, 2 von den drei Basisvek der k ischen Basis B:
(1,0,0), (0, 1, 0), (0, 0, 1) aus, so erhidlt man gerade die in der geometrischen Argumen-
tation angefallenen Gleichungen

EN =1,
EA =1,
T3 = 1.
8. Welche Figur entsteht im R? (bei euklidischer Veranschaulichung), wenn man die
Komplexsumme der folgenden Mengen A4, B betrachtet:
1. A=((z,2):2+2}<1,B=4,
2. 4=z, %,): ;| S 1,|z| = 1}, B= 4,
3 A ={(x, z): 2} +22=1},B=4,
=f{ax + (1 —a)-y: @,y € R? fixiert, x € R, B = {(2},2,): 22 + 22 < 1)?
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Hinweis:

1. Es handelt sich bei 4 um die Kreisscheibe mit dem Radius 1 und dem Ursprungspunkt
als Mittelpunkt. Es ist A + 4 = {(z, z): 2} + 2§ < 4}.

2. Es handelt sich bei 4 um ein uchlenparallelel Quadrat der Seitenlinge 2 mit dem Ur-
spr kt als Mittelpunkt. Es t fir 4 4+ A ein achsenparalleles Quadrat der

g8p

Seltenlange 4 mit dem Ursprungspunkt als Mittelpunkt:
A+ 4= |z2)nS2 % 2.

3. Es handelt sich bei A um die Kreislinie vom Radius 1 mit dem Ursprungspunkt als
Mittelpunkt. Die Gleichung 4 + A = & + A fiihrt zu der Feststellung, daB 4 + 4 die

@ed

gleiche Menge ergibt wie in 1., d. h., es entsteht eine ganze Kreisscheibe vom Radius 2 mit
dem Ursprung als Mittelpunkt.
4. Es handelt sich bei 4 im Fall £ = y nur um den Punkt & und im Fall® 4 y um die
durch & und y verlaufende Gerade. Es ist A + B also im ersten Fall die Kreisscheibe vom
Radius 1 um den Punkt &, und im zweiten Fall ist A + B die Vereinigung aller Kreisschei-
ben vom Radius 1 um die Punkte der Geraden 4. Im zweiten Fall entsteht demnach ein
Parallelstreifen um die Gerade 4 der Breite 2.

. Fiir einen vom Nullraum verschiedenen reellen Vektorraum ¥V untersuche man

in der um die leere Menge @ reduzierten Potenzmenge P(V) \ (@} die Operation

der Komplexaddition + auf Giiltigkeit der Grundeigenschaften der Vektor-

operationen.

Lésung: Die reduzierte Potenzmenge werde mit P, bezeichnet. Es ist dann +: Py X P,

— P,, und auBerdem ist eine Multiplikation mit reellen Skalaren in P, erklirt vermoge
(, A)>ad = faz:z € A} fir a€R, A€ P,.

Fir diese Operationen gilt:

1. A + B = B + A, die Kommutativitit. Dennesist z + y =y + z firallez,y € V.

2.(A + B) 4+ C = A4 + (B + C), die Assoziativitit. Denn es gilt dies fir die Vektoren.

3. Es gibt ein Element 0 € P, mit 0 + A = A4 fiir alle Py, némlich 0 = {o} erfallt dies.

Es gibt auch kein weiteres Element 0 ¢ P, mit 0 + A = 4 fiir alle 4 € P,, denn fir

A = {z} erschlieBt man, da 0 notwendig einpunktig sein muB. Es verbleibt dann auch

nur noch 0 = {o}.

4. Aber nicht zu jedem 4 € P, gibt esein 4 € P, mit A + 4 = 0. Denn fiir alle B € P,

ist V+B=7V.

Fiir die Multiplikation mit einem Skalar gilt aber wieder:

5.1-4 = Afiralle 4 € P,

6. (x-p) A = a(fA) firallex, B € R, 4 € P,.

7. Hingegen ergibt sich firr a, 8 € R und 4 € Py im allgemeinen nur (x + f) 4 cad
+ PA. Bei A = {x, —x)} mit £ &= 0 und « = f =1 hat man (« + f) 4 = {2z, —2x},
withrend a4 + fA aus den 3 Vektoren 2x, 0 und —2& besteht.

8. Fir o« € R und 4, B € P, ist aber wieder stets a(4 + B) = a4 + aB.
Im R? bzw. R? findet man bei Zugrundelegung der euklidischen Veranschauli-
chung, daB die Gerade durch die Punkte x, y, * = y, beschrieben wird durch
g@, y) = {ax + (1 — x) y: « € R). Man definiert daher fiir einen allgemeinen
reellen Vektorraum ¥ als Gerade g(x, y) durch die beiden Punkte x,y, * + y,
ebenfalls die Menge aller Elemente ax + (1 — x)y, x € R, aus V.
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Man zeige iiber die Verbindungsgeraden:

1. Fiir ¢ & y gilt stets g(x, y) = g(y, ).

2. Fiir x 5 y gilt stets g(x, y) = * + L(x — y), insbesondere ist also der von
einem Vektor & 3= 0 aufgespannte lineare Teilraum gleich der Verbindungs-
geraden f(0, x).

3. Fir @ & y und u + v gilt stets:

g, y) n\g(u, v) & 0 = g(&, y) n g(u, ) ist einpunktig oder

g(@, y) = g(u, v).
Uber lineare Teilriume bzw, lineare Manniglaltigkeiten von ¥V beweise man fol-
gende Kennzeichnungen mittels der Verbindungsgeraden:
1. Es sei M eine nichtleere Teilmenge von V. M ist genau dann ein linearer Teil-
raum von ¥V, wenn a) 0 € M und b) M mit je zwei verschiedenen Punkten &, y
auch stets die Verbindungsgerade g(x, y) enthilt, d. h.

nyeMz+y>g@y) M.
2. Es sei M eine nichtleere Teilmenge von V. M ist genau dann eine lineare

Mannigfaltigkeit von ¥, wenn M mit je zwei verschiedenen Punkten &, y auch
stets die Verbindungsgerade g(x, y) enthilt, d. h.

TYEM, z+y=>g@y)c M.

Lineare Abbildungen des n-dimensionalen reellen Zahlenraumes.
Matrizen (Lineare Abbildungen von allgemeinen Vektorraumen)

Kontrolifragen

. Durch welche beiden charakteristischen Eigenschaften ist eine lineare Abbil-
dung 4 von R* in den R™ bestimmt?

. Wie hat man in Analogie zu dem R", R™ eine lineare Abbildung 4: V — W eines
allgemeinen reellen Vektorraumes V in einen reellen Vektorraum W zu definieren?

. Ist ein lineares Funktional f: R* — R eine lineare Abbildung?

. Esseien fy, f», ..., fm lineare Funktionale auf dem reellen Vektorraum V. Ist dann
die Abbildung 4: V — R™ mit A(x) = (f,(), fo(X), -.., /u(T)) eine lineare Ab-
bildung?

. Es sei V ein reeller Vektorraum und 4 € R. Die Abbildung 4: V — ¥V mit A(x)
= Jzfiiralle & € V, ifixiert, heit die Homothetie von ¥ mit dem Koeffizienten 1.
Ist eine Homothetie eine lineare Abbildung?

. Sind die aus der Geometrie her bekannten Abbildungen, die Parallelprojektion
im R? lings einer Ursprungsgeraden auf eine Ursprungsgerade und die axiale
Streckung im R? in bezug auf eine Ursprungsgerade lings einer anderen Ur-
sprungsgeraden, lineare Abbildungen im R}
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10.
11.

12.

13.

14.
15.

16.

17.

18.

19.

21.

22.
23.

26.

. Was versteht man unter einer reellen Matrix vom Typ n X m?
. Man erklire fiir eine reelle Matrix die kennzeichnenden GréBen der Matrix wie:

Typ (Zeilen und Spalten) und allgemeines Matrixelement.

. Ist eine gegebene reelle Matrix eine Abbildung einer gewissen endlichen Menge

in R?

Was versteht man unter der Gleichheit von zwei Matrizen?

Welche Bedeutung kommt den reellen Matrizen fiir die Beschreibung von linearen
Abbildungen vom R® in den R™ zu?

Es sei 4: R* — R™ eine lineare Abbildung, und ®B: b,, ..., b,,€: ¢,, ..., ¢, seien
Basen im R® bzw. R™. Wie berechnet sich bei Kenntnis der assoziierten Matrix
A von A beziiglich (B, €) der Koordinatenvektor von A(x) beziiglich € aus dem
Koordinatenvektor von & beziiglich B8?

Im R*" gei ein Basispaar (B, B) fixiert. Welche lineare Abbildung 4: R* — R* hat
beziiglich des Basispaares (%, 8) die Einheitsmatrix als assoziierte Matrix?
Was versteht man unter dem Kronecker-Symbol?

Fiir lineare Abbildungen vom BR* in den R™ kann man die punktweise Addition
und Multiplikation mit reellen Skalaren erkliren. Wird die Menge #(R", R™)
aller linearen Abbildungen vom R*" in den R™ beziiglich dieser Operationen ein
reeller Vektorraum?

Man iibertrage sinngemiB die punktweise Addition und Multiplikation mit reellen
Skalarenauf das System #(V, W) aller linearen Abbildungen eines reellen Vektor-
raumes V in einen reellen Vektorraum W. Bildet #(V, W) beziiglich dieser Opera-
tionen einen reellen Vektorraum?

Was versteht man unter dem Matrizenkalkiil? Warum ist die Entwicklung eines
Matrizenkalkiils niitzlich?

Wann kann man zwei lineare Abbildungen 4: R* — R™, B: R* — R’ zusammen-
setzen zu einer Abbildung Bo 4: R — R"?

Ist fiir beliebige Matrizen A, B ein Matrizenprodukt A - B erklirt? Was hat die
Verkettung von Matrizen fiir das Matrizenprodukt zu bedeuten?

. Wie lautet die Merkregel fiir die Matrizenmultiplikation (Zeilen-Spaltenprodukte)?

Bildet das System .# (m X n) aller reellen Matrizen vom Typ m X n beziiglich der
Matrizenaddition und Multiplikation mit reellen Skalaren einen reellen Vektor-
raum? Welche Dimension hat dieser Vektorraum?

Welche Grundeigenschaften hat die Matrizenmultiplikation?
Was versteht man unter einem Zeilenvektor bzw. Spaltenvektor?

. Wie sind Kern und Bildraum einer linearen Abbildung definiert?
. Handelt es sich bei dem Kern und Bildraum einer linearen Abbildung immer um

Vektorriume?

Was versteht man unter dem Rang einer linearen Abbildung 4: R* — R™? Wel-
che Beziehung besteht zwischen der Dimension des Kernes von 4 und dem Rang
der linearen Abbildung?
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27.

28.

29.

31.

32.

- 3]

Wie hiingen die beiden Begriffe Zeilenrang einer Matrix und Spaltenrang einer
Matrix mit dem Rangbegriff einer linearen Abbildung zusammen?

Wie kann man die Eineindeutigkeit einer linearen Abbildung 4: R* - R™ durch
den Abbildungsrang kennzeichnen?

Was meint man mit der Feststellung, daB die linearen Abbildungen des R® in
sich beziiglich der Addition und Hintereinanderschaltung eine Algebra bilden?

. Was versteht man unter einer invertierbaren linearen Abbildung 4: R* — R*?
Wie ist dle Invertxerbnrkelt einer lmeuren Abblldung A:R" —> R* durch Zu-
sa ungseigenschaften gel et ?

Was versteht man unter einer invertierbaren Matrix?
Welches Berechnungsverfahren fiir die Invertierbarkeit von Matrizen bzw. zur
Ermittlung der Inversen steht zur Verfiigung?

. Wann und nur wann ist eine quadratische zweizeilige Matrix invertierbar?
. Welcher Zusammenhang besteht zwischen Basiswechsel im R® und linearen Ab-

bildungen?

. Wie verindern sich die assoziierten Matrizen von linearen Abbildungen, wenn

man einen Basiswechsel vornimmt?

Aufgaben

. Man besohreibe die Ldsbarkeit eines inhomogenen linearen Gleichungssystems

@)%y + Ga%3 + o0 + G1aTa = by,
3%y + GuaZy + o+ + 30Ty = by,
Gp1Z) + GusTy + - + GunZn = by

durch eine Eigenschaft der dem Gleichungssystem zugeordneten linearen Ab-
bildung.

Lésung Mxt dem Gleich 'y ist die folgende lineare Abbildung 4: R* - R™ ver-
: 4 ha iglich der natirlichen Basen im R*, R™ die assoziierte Matrix

G Gy oo Gy
A=|% % - O
Gmi Omg -+ Oma
Es sind alle & € R* geuuoht mit A(z) = bmit b = (b, ..., b,). Die Losbarkeit des Glei-
ist gl d mit b € im 4.

'8

. Inder Einheitsmatrix I der Ordnung m vertausche man die i-te Zeile mit der j-ten

Zeile. Die entstehende Matrix T der Ordnung m ist invertierbar. Welcher Spalten-
vektor entsteht aus dem Spaltenvektor b mit den m Komponenten by, by, ..., by
durch Multiplikation mit T? (Man vergleiche also b mit Tb.)



114

II. Algebra

b
Hinweis: Aus dem Vektorb = ( El) entsteht durch Multiplikation mit T der Vektor
b,
b, "

b, | i-te Koordinate
TO=| :

b j-te Koordinate.

b

Fir die Matrix T ist die Gleichung T* = I erfiillt. Demnach gilt T = T-%.

. Die beim GauBschen Algorithmus vorkommenden elementaren Zeilenumfor-

mungen eines gegebenen linearen Gleichungssystems

@y, %) + Gye%; + o + G147, = by,
any '+ @g%; + -+ + GgaZ0 = by,
Gp1%) + 2Tz + ¢ + GpuaZs = Dm

(in Matrixform Az = b), die bekanntlich in der Vertauschung zweier beliebi;
Zeilen, der Multiplikation einer Zeile mit einem Skalar oder nuch in der Addmon
einer Zeile zu einer anderen bestehen, beschreibe man jeweils durch Multipli-
kation mit einer Matrix T als Ubergang zu dem Gleichungssystem TAz = Tb.

. Gibt es quadratische Matrizen A der Ordnung = (n = 2) mit den Eigenschaften

A*(=A-A)=1TIund A 4 It Man interpretiere diese Aufgabenstellung .fiir
lineare Abbildungen.

Loésung: Es sind also lineare Abbildungen des R" in sich gesucht, deren Hi inand
schaltung mit sich lelber die Identitét ergibt. Solche Ahbl.ldu.ngon nennt man mvolutonsch
Offenbar sind die 8 ) an Urspr den bzw.am Ursprung (= Drehung um den
Unpmng mit emem Drehwinkel ) mvolntonsch Wu- geben die entsprechenden Matrizen
im R?* fiir die Spiegelungen an den ,,Koordi “ sowie die zentrale Spiegelung an:

wnp ) a3 m()

. Fiir eine beliebige quadratische Matrix (z y) gelte stets fiir die fixierte Matrix
uv

(4
(4 oA R A Tl

Man leite daraus (“ f) =2- (1) 2) her. Es ist also in .#(2 X 2) zu beweisen,
4

daB genau die skalaren Vielfachen der Einheitsmatrix mit allen Elementen aus
(2 X 2) kommutierbar sind.



Lineare Abbildungen. Matrizen 115

6. Im R* betrachte man die Projektion P;: R* — R* auf die i-te Achse, d. h.
Pix)=(0,0,...,2;,0,0,...) firalle s = 1, 2, ...,n. Man gebe beziiglich der natiir-
lichen Basis die assoziierte Matrix P; an.

7. Durch folgende Festsetzung werde ,,Positivitdt'* von quadratischen Matrizen der
Ordnung n > 2 erklirt: Gegeben sei 4 = (a;); .

A heiBt ,,positiv’ (4 = 0 :& a;; = O0fiiralle,j=1,..., 7.
Damit ist dann in #(n X n) ein Vergleich von Matrizen erklirt:

A=2B:A—-B=0.

Welche der folgenden fiir die reellen Zahlen und ibre natiirliche Ordnung ,,=*
1 bekannten Grundregeln gelten dann in .#(n X n) hinsichtlich ,,=‘?

a) (Reflexivitit) 4 = A fiir alle A € #(n X n)?

b) (Antisymmetrie) A = Bund B = A & A = Bfiiralle A, B€ .#(n Xn)?

c) (Transitivitit) A = Bund B 2 C = A > Cfiiralle 4, B, C € #(n Xn)?

d) (Monotonie der Addition) A =B=>A4 + C =B + C fiir alle 4, B, C

€ M(nXn);

e) (Monotonie der Multiplikation) 4 = O, B = O = AB = O fiir alle A, B

€ M(nXn)?

f) (Positivitit der Quadrate) A2 = O fiir alle A € #(n X n)?

Lésung: Esgilt A = B genau dann, wenn a;; = b;; fur alle s, j = 1, ..., n ist. Der ,,Gré-

Benvergleich* von Matrizen erfolgt also gemaB dieser Erklirung elementeweise, damit sind

die Eigenschaften a), b), c), d) erfiillt. Es verbleibt noch die Uberprifung der Monotonie
der Multiplikation und die Positivitdt der Quadrate. Bei a;; = 0 und b;, = 0 ist aber auch

"
stets 3’ ay; - by = 0, d. h., es gelten auch die Eigenschaften e) und f).
i=1

8. Fiir die quadratischen Matrizen A, B, T zeige man:
a) A= T BT = A* = T-'B'T.
b) AB = BA = (AB)* = (BA)".
.
c)AB=BA=(A+ By =3 (:) A*-*B*, wobei unter A9, B® die Einheits-
k=0
matrix verstanden werden soll.

Hinweis: Man wende vollstindige Induktion nach » an.

9. Von den beiden folgenden Matrizen entscheide man die Invertierbarkeit und be-
rechne gegebenenfalls die Inverse :

3 —2 1
1 2 2 s 1
2 1 -2, 2
2 —2 1 1
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10.

12.

13.

Hinweis: Die erste Matrix ist invertierbar, die Inverse lautet

1 1 2 2
ry 2 1 -2
2 -2 1

Sie ist also lediglioh ein skalares Vielfaches der Ausgangsmatrix.
Die Inverse der Ausgangsmatrix ist gleich

13 “ 3
L[ s 1
108 -3 3 10
35 58
3 73 M
Von der Matrix
A 10
A=|0 11
0 0 2
berechne man A* und A? und ermittle sodann induktiv einen Ausdruck fiir A*.
Hinweis: A 1 0\ /A 10 2 22 1
A*=10 2 l) 0 i l)=(0 a2 21),
0 0 a/\0 0 2 o 0 2
A2 21 1 A 10 Ad 31 34
A = (0 a2 22){o 2 t)=|0 2 3/1').
0 0 a/\0 0 2 o o A
Es gilt
PSS (”) LAn-
A= 2
0o A A%
o 0 i
. Wie groB ist der Rang der in Aufgabe 10 angegebenen Matrix A (in Abhingigkeit

von 2)? Man gebe den Kern und den Bildraum der durch A beziiglich des natiir-
lichen Koordinatensystems im R?* beschrieb li Abbildung an.

Welche Bedingungen sind an die natiirlichen Zahlen » und m zu stellen, damit fol-
gendes gilt?

8) Zu gegebenem linearen Teilraum L des R" 1iBt sich eine lineare Abbildung
A:R* > R* finden mit ker 4 = L. *

b) Zu gegebenem linearen Teilraum L des R™ liBt sich eine lineare Abbildung
A: R* > R* finden mit im 4 = L.

Fiir zwei vorgeschriebene lineare Abbildungen 4: R* -~ R™ und B:R*—> R"
gelte ker 4 = ker B. Folgt daraus im allgemeinen die lineare Abhingigkeit der
beiden Elemente 4, B aes #(R®, R™)?
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14.

15.

16.

[CI

oo

Hinweis: Im Fall m = 1 ist ker A = ker B gleichwertig mit der linearen Abhingigkeit
von 4, B. Im Fall m = 1 braucht das nicht mehr zu gelten.

de Matr leich

Man l6se folg Matr g g

1
a) 1—2—.zy=23,

-1 0 u v 65

1
b)l3.zy=1§.
26 v 10

Es sei 4 eine lineare Abbildung des R* in den R* und O die Nullabbildung des R®
in den R* (d. b. im O = {0}). Die Lésungsgesamtheit {X: X € #(R™, R¥), X 0 4
= O} ist als linearer Teilraum von #(R®, R*) nachzuweisen. Man bestimme aufer-
dem fiir den Fall n = m = k = 2 die Dimension dieses linearen Teilraumes in
Abhiingigkeit vom Rang der Abbildung 4.

Im R? betrachte man die Basen B: (1, 0), (0, 1); €: (1, 1), (0, 1); D: (—1,0),
(—1, —1) und ermittle die Matrizen T, S fiir den Basiswechsel 8 > €, € > D.
Man iiberzeuge sich davon, daB die Matrix fiir den Basiswechsel 8 > D von der
Produktmatrix ST verschieden ist.

Warum ist folgende Argumentation nicht stichhaltig?

Dem Basiswechsel 8 > € entspricht eine lineare Abbildung 4,: R? — R?, die B
in € iiberfilhrt. Dem Basiswechsel € > D entspricht eine lineare Abbildung
4,;: R?* > R?, die € in D iiberfiihrt. Die beschreibende Matrix von 4, ist T, die be-
schreibende Matrix von 4, ist S. Sodann muB nach dem Satz iiber das Produkt
von linearen Abbildungen und seine Beschreibung durch Matrizen fiir die dem
Basiswechsel 8 > D entsprechende lineare Abbildung 4, o 4, auch ST die be-
schreibende Matrix sein.

Das Skalarprodukt auf dem n-dimensionalen reellen Zahlenraum

Kontrollfragen

. Wie ist das Skalarprodukt auf dem R" als Abbildung von R" X R" in R definiert?
. Welche Eigenschaften des Skalarproduktes auf dem R® meint man mit den Be-

griffen: Linearitdt in jedem seiner Argumente, Symmetrie, positive Definitheit?

. Was ist eine Bilinearform auf dem R*?
. Ist das Skalarprodukt auf dem R" unter allen symmetrischen Bilinearformen ein-

deutig gekennzeichnet?

. Bei welchen elementaren geéometrischen Fragestellungen tritt das Skalarprodukt

in Erscheinung?
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6. Was versteht man unter der aus dem Skalarprodukt abgeleiteten Norm im R"?

10.

11.

12.

14.

15.
16.

17.

18.

19.

20.

. Esseid = (a.,),

. Welche geometrische MeBgroBe wird durch den Normwert fiir einen Vektor er-

faBt?

. Was versteht man unter der Dreiecksungleichung fiir die Norm? Wodurch recht-

fertigt sich diese Bezeichnungsweise?

. Wie kann eine Normierung im R" durch eine positiv-definite, symmetrische Bi-

linearform erfolgen?

Was bedeutet die Orthogonalitit im R* beziiglich einer positiv-definiten, symme-
trischen Bilinearform?

Welche Zusammenhiinge bestehen zwischen den Begriffen lineare Unabhingig-
keit und Orthonormalsystem?

Kann man jedes linear unabhiingige System in ein dazu équivalentes Orthonor-
malsystem umwandeln?

. Wann sind Orthonormalsysteme Basen?

Veriindert sich der Wert des Skalarprodukteszweier Vektoren im R® bei Ubergang
zu einer anderen Orthonormalbasis?

Was versteht man unter einer orthogonalen linearen Abbildung im R*?

Was versteht man unter einer orthogonalen Mat1ix, und wie hingen solche Ma-
trizen mit den orthogonalen linearen Abbildungen zusammen?

Sind orthogonale Matrizen invertierbar, und wie berechnet sich einfach die In-
verse?

Welche besonderen Eigenschaften haben die den orthogonalen linearen Abbil-
dungen assoziierten Matrizen?

Welche algebraische Struktur bilden die orthogonalen Matrizen beziiglich der
Multiplikation?
Welche orthogonalen linearen Abbildungen im R? gibt es?

Aufgaben

- eine Matrix vom Typ m X n.

Unter der transpomerten Matrix AT von A verstehe man die Matrix vom Typ
n X m mit AT = (b;;);- - wobei stets b;; = a;; ist. Dann gilt hinsichtlich der

L..
Produktbildung (AB)T = B"'AT

Losung: Es sei A€ .#(m > n), B € .#(k x l). Wenn AB bildbar ist, miissen A, B ver-
kettet sein, d. h., es ist n = k. Es sei

(a,,):-l ..... ms B =(bp)j=1..n-
S | r=L...d

Dann ist

[ n
AR = (z ui,bj,);
=R
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Weiterhin ist AT ¢ #(n x m), BY € 4(I X n) und

»
BTAT = (2 b;.a;,),-l ,,,,, 1> d.h  (AB)T =BTAT.
j=1 i=1,..m

. Was bedeutet fiir #, y € R" das Matrizenprodukt zyT?
Hinweis: 2yT bedeutet den Wert des Skalarproduktes fir , y.

. a) Es sei B eine beliebige quadratische Matrix der Ordnung 7. Man zeige, daB die
folgende Abbildung B: R* X R* — R mit dem Verlauf B(x,y) = *By" eine
Bilinearform auf dem R" ist.

b) Beziiglich einer geeignet gewiihlten Basis im R™ kann man eine vorgegebene
Bilinearform des R" auch immer in dem Sinne des Teiles a) beschreiben. Man gebe
eine genaue Formulierung fiir diese Aussage und bestiitige sie. 2 _1

c) Ist die Bilinearform B: R? X R? — R mit dem Verlauf B(x,y) =& ( - ) y'
fiir @, y € R? positiv-definit und symmetrisch? 13

d) Was bedeutet die Symmetrie einer Bilnearform B: R* X R* — R mit dem Ver-
lauf B(x, y) = By hinsichtlich der Matrix B?

. Welcher Zusammenhang besteht zwischen den beiden Operationen -~1: GL(n)
— GL(n), -T: GL(n) - GL(n) — der Inversenbildung und dem Transponieren —
in der generellen linearen Gruppe?

Es ist AT invertierbar, und es gilt (A7)~ = (4-Y)T.

. Fiir die Basise, = (1,1,2),a, = [—1, 3, ——;—), a, = (—4, —1,0) des R? bringe

man das Gram-Schmidtsche Orthonormierungsverfahren hinsichtlich des ge-
wohnlichen Skalarproduktes zur Anwendung. Welche Basis erhéilt man?

Ldsung:

La=(,12), lej=VI+1+4=18, b,=yi§u.1,2).
2. b3 =a, — (@ by by, (@.b)=—(—1+3—1)=—
Ye

N

1 1 1 1
by =(—1,8 —=)——(1,1,2)= — (=7, 17, —5), |4l = — ,
A ( 2) g (L 12 == (=717, -5), b3l 6V49+289+25

b= L (741,
i3l ~ V363

by = ay — (a,,b,) - b, — (a5, by) - by,

1 1 1 1
by =(—4,—1,0) — — (=4 —1)- = (1,1,2) — — (28 — 17) - —— (=7, 17 — 5)
® B 1363

1 13 Y363
1] 11 1
= (—4, —1, —(1,1, - = (=717, =b) = — (— y — 3 .
(=4 —1,0) + = (1L, 1,2) — 22 (=7, 17, —5) = — (~2145, —405, 1320)

. Man gebe eine geometrische Interpretation der Bedingung |lz + yl| = |zl + |yl
(etwa im R?).
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7.

12.
13.
14.

15.

cosd sind
sin # —cos &
natiirlichen Basis im R? beschriebene Abbildung S erweise man als Spiegelung an

Die Matrix S := ( ist orthogonal. Die durch S hinsichtlich der

der Ursprungsgeraden mit einem Neigungswinkel %, indem man die natiirliche

Basis in eine geeignete Lage dreht, die Spiegelung dann hinsichtlich der neuen
Basis auf einfachste Weise durch eine Matrix beschreibt und auBerdem die Uber-
gangsmatrix von der ersten zur zweiten Basis benutzt.

. Im R® ermittle man die assoziierte Matrix (beziiglich der natiirlichen Basis) der

linearen Abbildung D: R® — R3, die den Einheitswiirfel zuerst um die y-Achse

um % nach ,links‘‘ kantet und darauf den entstandenen Wiirfel um die z-Achse

um% nach ,,vorne‘‘ kantet (Zeichnung!).

-

Determinanten

Kontrollfragen

. Was versteht man unter einer Permutation der Ordnung n?

. Durch welche Diagrammformen kann man Permutationen vera nschaulichen?

. Was versteht man unter dem Produkt von Permutationen?

. Welche algebraische Struktur meint man mit dem Begriff ,,symmetrische Gruppe

vom Grade n* bzw. ,,volle Permutationsgruppe‘‘?

. Aus wieviel Elementen besteht die symmetrische Gruppe vom Grade n?
. Was versteht man unter einer Inversion in einer Permutation, und wie hangt dieser

Begriff mit dem Signum einer Permutation zusammen?

. Wieviel gerade und wieviel ungerade Permutationen in der vollen Permutations-

gruppe gibt es?

. Durch welchen Summenausdruck ist nach LErBN1z die Determinante det A einer

quadratischen Matrix A definiert?

. Welche Grundeigenschaften hat die Determinante det: .#(n X n) — R?
10.
11.

Was hat die Determinante mit dem Begriff der Multilinearform auf dem R" zu tun?
Kann man die Invertierbarkeit einer quadratischen Matrix A mittels der Deter-
minante kennzeichnen?

Was besagt der Produktsatz fiir die Determinanten?

Wie verhilt sich die Determinante gegeniiber dem Transponieren einer Matrix?
Was leistet der GauBsche Algorithmus zur Berechnung der Determinante einer
Matrix?

Wie lautet die Cramersche Regel zur Lisung eines linearen Gleichungssystems
mit quadratisch oeffizi trix?




Determinanten 121

16.

17.
18.

19.
. Ist das Vektorprodukt im R?® kommutativ und assoziativ?
21.

22.
23.

24.

26.

Wie kann man den Matrizenrang einer Matrix von nicht notwendig quadratischer
Form mittels Unterdeterminanten kennzeichnen?

Welche Operationen im R?® meint man mit dem Vektorprodukst?

Hat die Merkregel zur Bﬂdu.ng des &uBeren Produkts im R® eine Beziehung zum
Deter twicklungssatz?

Welches sind die algebraischen Grundeigenschaften des Vektorprodukts?

Welche Grundeigenschaft fiir das Vektorprodukt:rechtfertigt die Bezeichnung
»»Produkt*‘?

‘Was versteht man unter den metrischen Grundeigenschaften des Vektorprodukts?
Welche Zahlenwerte meint man mit der Gmmschen Determinante fiir zwei Vek-
toren?

Gibt es eine Kennzeichnung der linearen Abhanglgken; zweier Vektoren des R?
durch das Vektorprodukt?

. Fiir welche durch die Vektoren & und y des R? gebildete geometrische Figur miBt

der Normwert des Vektorprodukts den Flicheninhalt?
Aus drei Vektoren des R? kann man ein Spat bzw. Parallelepiped aufbauen. Wie
erhélt man den Rauminhalt des Spates?

Aufgaben

. Von den simtlichen Permutationen vom Grade 4 bestimme man das Signum.

Wie verhiilt sich das Signum gegeniiber der Produktbildung von Permutationen?

Losung: Es gibt 4! = 24 Permutationen vom Grade 4.

Fiir beliebige Permutationen x, v € S, gilt sgn (x o ») = sgn x - sgn ». (Das Signum sgn: S,
— {41, —1} ist ein Gruppenhomomorphismus der Gruppe 8, auf die multiplikative
Gruppe {+1, —1}.)

. Unter einer Transposition versteht man eine Permutation, die alle bis auf zwei

Elemente festhiilt. (Es werden nur zwei Elemente miteinander vertauscht!) Man
2eige, daB jede Transposition eine ungerade Permutation ist.

. Es sei n eine gegebene Permutation vom Grade » = 2. In der Menge (i, ..., n}

werden zwei Elemente ¢, j fixiert. Die Abbildung »:{1,...,n} — (1, ..., n} mit
v(k) := a(k) fiir k ¢ {+,7] und ¥(?) := a(j), ¥(j) := =(?),

ist dann wieder eine Permutation vom Grade 7. v entsteht, indem man zuerst
ausfithrt und dann noch die Elemente z(¢) und #(j) vertauscht. Es gilt dann
sgnv = — sgn n. Man stelle eine Beziehung zur Aufgabe 2 her.

. Von den folgenden Matrizen berechne man die Determinanten:

1 2 2 210
ayd=2 1 -2}, pyB=[(0 2 1
2 —2 1 00 2
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Permutation 2ykltndiqgmmm Inversionen sgn
1234
' 1234 cCeeQ|- +1  4Fixpunkte
1234 o C' N
2 4,3 )
1243 < (@
3 1234 QY Q (4,3),(4,2), 4
1432 @ 2)
1234 [y Q
4 L) (3, 2) 4
1324 J
1234 (4, 20, (4, 3)
Sla23n @ % 1,(2,1), 4 p2Fixpunkie
3,1
1234 | /A 5.2, G,
° 3214 ‘é'/ Q (2, 1 -1
1234
7 Q Qe )
2134 O (2, 1) 1 J
1234 | @y
¢ 3, 2), (6,2
1342 o |6 w2 +
1234
11423 @ @ (4, 2),(4,3) 1
1234 “, 2), (6,1),
10 46213 @ (4, 3), (2,1) +1
al 1234 | O (3,2), (3, 1), 1
2261 | SO | nwn + s e
ixpun
1234 |~ Ty | @063,
12 2431 v %, 1,03, 1) A
sl 234 @ (4, 1,6, 3),
Plet3a “, 2),(3,2 +
1234
3
Wlosre | T Claneny |4
1234
15 3124 @ O (3, 1,03, 2 " J
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Permutation | Zyklendiagramm | Inversionen sgn
6?2 34 (4,1 1 )
2341 @ g -
1234 3,1, (3,2,
13142 Q/‘ , 2) -
1234 4, 1), (4,2)

s oD |y -
®lii123 (4, 3) 1
o |123% | ey | 2, 4
2413 ~ A 6,0, 6,9
123% (3,2), 3,1),
Sl PP @ “,2), 41, |- &kaineFixpunk&e
(2,1
1234 %,3), G 1N
z @ w2, @1, |-
4312 2, 3, 1),
3,2)
1234
2, . | < S en ey v
1234 (3,1, (3,2),
23
3412 @ (4,1), 4,2) +
1234 4, 3), 4,2),
214321 @ @1, @2, |+
3,1, (2,1 )
Loésung:

a) Nach der Sarrusschen Regel ergibt sich

1 2 2 1 2
N NI\ 7 7

2 N7 NN
/\_ /N /\
27 27 M N2 Y

Also ist det A = —27.
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b) B ist eine Dreieck trix, unter der Hauptdi len stehen lauter Nullen, also ist
det B = 2.

. Von den quadratischen Matrizen der Ordnung » = 2, 3, 4, 5, die in sukzessiver

Aufeinanderfolge die ersten #? natiirlichen Zahlen 1, 2, ..., n% als Elemente ent-
halten, berechne man die Determinanten.

Ldsung:

1
a) det (3

2
4) —14-2.3=—2,
123
h)det(4 5 0) =1.6-9+2-6.-7+3-4-8—7-5-3—-8-6-1—-9-4.2=0.
7 8 9,
¢) Zur Berechnung der weiteren Determinanten wendet man den GauBschen Algorithmus
an, man bringt die Matrix auf Dreieckaform.
Aus der ersten Umformung entnimmt man aber schon, da8 die drei entstehenden neuen
Zeilen linear abhiingig eind, aleo ist die Determinante gleich 0.

. Von den orthogonslen quadratischen Matrizen berechnet sich die Determinante

entweder zu 41 oder —1.

Im Zusa hang mit dem Lapl hen Entwicklungssatz bestitige man, daB
sich die Inverse einer reguliren quadratischen Matrix A wie folgt berechnet:
1 .
Al = —— ((—1)*idet Ay);
Gora (YAt Ay
. Fiir die sogenannte Vandermondesche Determinante
1 1 R |
E AT S A
A(@y, Ty, .. pxy) = det | 22 22 ... 22
;—l I;«l I:-l

bestitige man
Ay, Zgy .oy &) = [T (2 — ;).
i>f

Loésung: Man wende vollstindige Induktion nach n an. Fir A(z,, z,) ergibt sich der Wert
z, — z;. Far n > 2 fihrt man ichst eine Zeil formung durch:

1 1 1
z Zy Zn
2 | | | =

zp-1 | 2371 e | z82
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1 1 1 1

0 Zy— T Ty — T, Ty — T

o |ad-25 r—— - [s—ea

0 |z l—2zp%z |2pt—2t.a o | 2pl—zRtez

‘Eine Entwicklung nach der ersten Spalte ergibt

Ty — 2, z, — O

A(Zyy Zyp oo Tg) = dot (23 — 2)) 2y [CRENEN R C e VN

(@ —2) 2] (@ —z) 2 . (FZ—z) 2!

Nun ziehe man aus den Spalten jeweils den Faktor z; — z, heraus: Das ergibt

1 O | 1
Ay 2y o Zg) = (@ — 7) (7 — 7)) -+ (@ — ) et | 2 Tt T
g a

= (23 — 7)) (T3 — 7)) - (Ty — T,) A(Zy, Ty, .-, Zy)-

Man bestimme eine Matrix (a" Tz a,,) mit den Werten
21 G2 Qo
det ("“ "") =b, det ("“ ““) =e, dec("" “") =d.
@21 Q23 a3z Gz Q22 Qg3
Von der Matrix
1 2 3 4
5 6 7 8
4= 9 10 11 12
13 14 15 16

berechne man mittels der Unterdeterminanten den Rang.

Hinweis: det ; § =6 — 10 = —4. Damitistrang A = 2. Die Unterdeterminanten

dritter Ordnung sind simtlich gleich 0, denn die suk ve Zeil bstraktion ergibt die
Matrix

S
FrNEY)

1 4
4 4
4 4
4 4 4 4

. Bildet das System aller quadratischen Matrizen der Ordnung » mit verschwin-

dender Determinante einen linearen Teilraum von . (n X n)?



126 II. Algebra

12. Fiir den R? zeige man, daB die Hintereinanderausfiihrung von zwei Drehungen
wieder eine Drehung liefert und die Hintereinanderausfiihrung von zwei Spiege-
lungen eine Drehung liefert.

Lésung: Beziglich der natirlichen Basis 8B: (1, 0), (0, 1) werden die Drehungen um den
Ursprungspunkt mit einem Drehwinkel # durch die Matrizen

D % 0 450,
—sind® cosd
beschrieben. Die Spiegelungen werden beachrieben durch Matrizen
S= \0?00 sin &' .
sin® —cosd,

Man hat fiir die Zusammensetzung D, o D, von zwei Drehungen D,, D, mit den Matrizen
D,, D, eine Abbildung mit der Matrix
cos &, sind, cos #, sind,
—sin®, cosd,/ \—sind, cosd,
_ oos )y - cosfy —sind, - sind; cos &, - sin &, + sin &, - cos 6,
—sind, -cosd; —cosd -sin¥; —sind, -sind, 4 cosd, - cosd,
- ( cos (B, + B,) sin (B, + ":))
—sin (6, + 8,) cos (6, + By)
Das ist die Matrix einer Drehung mit dem Drehwinkel #, 4 #, mod 2. Man hat fiir die
Zusammensetzung §, o 8, von zwei Spiegelungen §,, §; mit den Matrizen S,, S, eine Ab-
bildung mit der Matrix
008 0, sind,\ fcosd;  sin O,
sind;, —cosd,/ \sind, —cosd,

cos ), - cos &, + sin &, -sin By  cos ?, sin #, — sin B, - cos B,
sin 9, - cos #; — cos #, - sin ¥,  sin &, sin &, + cos B, - cos B,
= cos (B, — 9,) sin (6, — B,)
—sin (9, — 8,) cos (9, — )/
Das ist die Matrix einer Drehung.

Algebraische Strukturen

Kontrollfragen

1. Es bezeichne ¥ ein Axiomensystem.
a) Was versteht man unter einem Modell von %?
b) Wann heiBt % kategorisch (oder monomorph)?
c) Was bedeutet die relative Widerspruchsfreiheit von % (beziiglich @)?
d) Wann ist ein Axiom aus % unabhiingig von den iibrigen Axiomen des Systems %?
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. Was versteht man unter a) einer zweistelligen (allgemein: n-stelligen (n € N*))

Operation in einer Menge M, b) einer algebraischen Struktur$

. Welchen Axiomen mu8 eine algebraische Struktur geniigen, um a) Gruppoid,

b) Halbgruppe, ¢) Gruppe, d) (assoziativer) Ring, e) Schiefkorper, f) Kérper,
g) Verband zu sein?

. Fir jeden in Frage 3 genannten Strukturtyp sind mind zwei Beispiel

P

(Modelle) anzugeben.

. Wann nennt man in einem Gruppoid (M, o) ein Element

a) neutrales Element, b) zu einem gegebenen Element z € M invers?
Welche Aussagen iiber die Existenz und Eindeutigkeit solcher Elemente gelten in
c) Gruppoiden, d) Halbgruppen, e) Gruppen?

. Was ist nachzuweisen, wenn gezeigt werden soll, da8

a) die Menge M aller n-reihigen quadratischen Matrizen mit Elementen aus Z
und der Matrizenmultiplikation als Operation,

b) die Menge S aller Abbildungen einer Menge M = @ in sich mit der Hinterein-
anderausfiihrung o als Operation eine Halbgruppe bildet? Wo werden in den Lehr-
biichern MfL entsprechende Nachweise gefiihrt?

. &) Welcher Zusammenhang besteht zwischen den Verbénden (M, A, v) und den-

jenigen geordneten Mengen (M, <), in welchen zu allen El a,b € M auch
inf (a, b) und sup (a, b) existieren?

b) Zur Ilustration betrachte man den Verband (N*, n, u). Welche zweistellige
Relation erscheint in diesem Fall als Ordnungsrelation?

Aufgaben

. Man zeige, daB8 die im Lehrbuch angegeb Axiome, welche ein Gruppoid (M, o)

erfilllen muB, um eine Gruppe zu sein, voneinander unabhingig sind. Dazu
gebe man in einer dreielementigen Menge M = {a, b, c) solche zweistelligen
Operationen o an, daB (M, o) jeweils genau einem dieser Axiome nicht geniigt.
Wieviel verschied Moglichkeiten gibt es, in M = {a, b, ¢} eine zweistellige
Operation o so zu erkliren, da (M, o) eine Gruppe ist?

Anmerkung: Zwei Gruppen (¥, o) und (M, ©) gelten dabei nicht als verschieden, wenn
es eine soloche 1-1-Abbildung ¢ von M auf M gibt, daB p(z o y) = p(z) © p(y) fir slle
z, y € M gilt. (In diesem Fall heiBen die Gruppen (M, o) und (M, ®) isomorph).

Lésung: Ein Gruppoid (M, o) ist genau dann eine Gruppe, wenn folgende Axiome er-
fiillt sind:

(1) A (@od)oc=ao(boc),
a.b.ceM

(2 A Vaocz=0,
a.beM zeM

@) A Vyoa=hb.
a.beM yeM
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Durch dié nachstehenden Multiplikati bellen (vgl. MfL Bd. 3, 12.3.) werden drei zwei-
stellige Operationen in der Menge M = {a, b, c} festgelegt:
° | a b ¢ . | a b ¢ (0] | a b ¢
ala b ¢ a|a a a albdb a ¢
bla b ¢ bbb b b ble b a
cla b ¢ clec ¢ ¢ cla ¢ b

In (M, o) gilt (1) (Jedes Produkt ist gleich seinem rechten Faktor!) und (2) (In jeder Zeile
der Multiplikationstabelle kommt jedes Element von M einmal vor!), aber nicht (3), denn
nicht in jeder Spalte der Multiplikationstabelle kommt jedes Element von M vor.
Analog erkennt man, daB in (M, ») (1) und (3) gelten, (2) aber nicht erfillt wird. In (M, @)
gilt (2) und (3), wegenc =a @ c=@ O Oc+a® (b O c¢) =a O a =b aber nicht
).

In einer Gruppe (M, o) gibt es ein neutrales Element. Ohne Beschrink der Allgy
heit sei dies . Wegen (2) und (3) muB jedes Element aus M in jeder Zeile und in )eder Spalte

der Multiplikationstabelle von (M, o) einmal vorkommen. Daher ist ({a, b, ¢}, o) genau dann
eine Gruppe mit dem neutralen Elementa, wenn die Multiplikationstabelle

o|abc

a
b
¢

o o8

b
c
a

oR o

lautet. Gibt man eine Multlpllhtlonst&belle an, in der ein anderes Element als neu-
tnle- Element fnnglen, 80 orhnlz man eine zu (M o) lsomorphe Gruppe. Es glbt also (nach

g des El ) nur eine Maglichkeit, in M = {a, b, ¢} eine zweistellige
Opomtlon 080 zu erklarcn, daB (M, o) eine Gruppo ist.

. Es sei M eine nichtleere Menge und o eine zweistellige Operation in M. (M, o)

heiBt genau dann Quaagmppe wenn zu je zwei Elementena, b€ M
(1) genau ein z € M existiert, so daBa oz = b und

(2) genau ein y € M existiert, so daB yoa = b ist.

a) Ist dieses Axiomensystem kategorisch?

b) Ist es relativ widerspruchsfrei (beziiglich @)?

c) Sind die beiden Axiome unabhiingig voneinander?

Hinweis: Es sind geeignete Modelle zu suchen.

. In einer vierelementigen Menge M gebe man eine solche zweistellige Operation o

(z. B. in Gestalt einer Multiplikationstabelle) an, daB (M, o) eine Quasigruppe
(vgl. Aufgabe 2), aber keine Gruppe ist.

. Eine Halbgruppe (M, o) mit einem neutralen Element wird Monoid genannt.

Wieviel verschiedene Monoide mit drei Elementen gibt es? Man beschreibe sie
durch Angabe von Multiplikationstabellen.

Anmerkung: Verschiedenheit ist wie bei den Gruppen in Aufgabe 1 zu verstehen.

Hinweis: Es fiehlt sich, die Fall heid daB in (M, o) zu a) drei, b) genau
zwei, c) genau einem Element inverse Elemente existieren.
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. Eine Quasigruppe (vgl. Aufgabe 2), die ein neutrales Element e besitzt, wird Loop

genannt. Man gebe in einer Menge M aus fiinf Elementen eine solche zweistellige
Operation o an, mit der (M, o) eine Loop, aber keine Gruppe ist.

. Man zeige, daB Quasigruppen aus zwei Elementen und Loops aus drei Elementen

(vgl. die Aufgaben 2 und 5) Gruppen sind.

. Die Menge aller zweireihigen qudratischen Matrizen mit Elementen aus N bildet

beziiglich der Matrizenmultiplikation eine Halbgruppe. Man zeige, da8 es darin
Matrizen 4 und B glbt fiir die 4 - X = B unendlich viele Losungen, Y- 4 = B
dagegen keine Losung besitzt.

. Eb sei (M, o) eine Halbgruppe mit dem neutralen Element e. Man beweise: Gibt

es zu u € M Elemente z,y ¢ M, firdiex-u =u-y =egilt,soist z = y.

In der Menge M aller linearen Polynome f(x) = az + b mit Koeffizienten a
(= 0) und b aus @ wird durch f(z) o g(z) := /(g(z)) eine zweistellige Operation o
erklirt. Man beweise, daB (M, o) eine nichtkommutative Gruppe ist, gebe ihr
neutrales Element an und bestimme das zu f(z) inverse Element.
Losung: Mit zwei Elementen f(z) = az + b und g(z) = cz + d (ac + 0) von M ist auch
f(z) o g(z) = f(g(z)) = a(cz + d) + b = acz + (ad + b) ein Element von M, denn es ist
ac € @ \ {0} und ad + b € @. Also ist o eine Operation in M.
Bezeichnet h(z) = sz + ¢ (s + 0) ein weiteres Element von M, so ist
" (f(z) 0 g(2)) o h(z) = ac(sz + t) + (ad + b) = acsz + (act + ad + b)
1(z) o (g(z) o h(z)) = a(csz + ¢t + d) + b = acsz + (act + ad + b).

In (M, o) gilt also das Assoziativgesetz.
Die Gleichung f(z) o é(z) = g(z) wird zu gegebenen Elemenwn f(z) =az + b (a % 0) und

g(x) =cz-+d (c+0) aus M gelost durch &(z) = —z + a-b € M, die Gleichung
a

n(z) o f(z) = g(z) durch r;(z)c —z+ —d-’ € M. Es liegt nlso eine Gruppe vor.

Diese ist nicht kommutativ, dennesmt (= + l) o224+ 1)=2z+2und(2z + 1) o (z + 1)
=2z 4+ 3. Das neutrale Element ist das Polynom e(z) =z, und zu f(z) =az + b

(a % 0) ist f(z) = % z — % invers.

. Es sei (M, o) ein Monoid (vgl. Aufgabe 4), U eine nichtleere Teilmenge von M.

Man zeige, daB die Teilmenge C := (c:c € MA A\ com = moc mit der (auf C
meM
eingeschrinkten) Operation o ein Monoid (C, o) bildet.

In einer dreielementigen Menge M = {a, b, c) gebe man solche zweistelligen Ope-
rationen +, - (z. B. durch Tabellen) an, daB (M, +, -) ein Ring ist. Wieviel ver-
schiedene Moglichkeiten gibt es?

Anmerkung: Verschiedenheit ist wie bei den Gruppen in Aufgabe 1 zu verstehen.

Gilt in dem Ring (M, +, -) neben den Ringaxiomen auchnoch \/ Aa-e=e-a

eEM aeM
= a, so heiBt (M, +, -) Ring mit Einselement e. Im Axiomensystem fiir einen
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13.

14.

15.

16.

solohen Ring ist die Kommutativitit der Addition eine Folgerung aus den iibrigen
Axiomen (sogar auch schon ohne das Axiom der Assoziativitét der Multiplikation).

Hinweis: MfL Bd. 3, 11.3.(14)—(16) beachten!

In jedem Verband (M, A, ) wird durch die Festlegung a <b:®aAb=a
(@, b € M) eine Ordnungsrelation < definiert. Man beweise, da8 fiir diese sup (g, b)
=a v bgilt.

In einer Menge M sei eine Ordnungsrelation < erklirt, fiir die zu allen a, b € M
auch inf (e, b) und sup (e, b) in M existieren. Man beweise: inf (mf (a,b), ¢
= inf (a, inf (b, ¢)) und sup (sup (a, b), ¢) = sup (g, sup (b, ¢)).

Wieviel Ordnungsrelationen kann man in der Menge M = {a, b, ¢} so erkléren,
daB zu je zwei Elementen aus M das Infimum und das Supremum existieren?
In einem Fall gebe man die durch eine solche Ordnungsrelation festgelegten
Operationen A und v, mit denen (M, A, \) ein Verband ist (vgl. MfL. Bd. 3,
11.3.(27)), in Tabellenform an.

Es seien z =z + iy und w = u + 1 (2, y, », v € R) komplexe Zahlen. Durch
z2<-w:$ z < u Ay < v wird eine zweistellige Relation < - in € beschrieben. Man
zeige:

a) <. ist eine Ordnungsrelation in C,

b) zu allen Zahlen z, w € € existieren in (C, <-) inf (2, w) und sup (2, w).

c) Man gebe die durch <- festgelegten Operationen A und v an, mit denen
(€, A, v) ein Verband ist und z <- w <z A w =2z gilt. Wie kénnen diese
Operationen in der GauBschen Zahlenebene veranschaulicht werden?

Gruppen

Kontrollfragen

. Was hat man nachzuweisen, wenn man von einer vorgelegten Struktur zeigen will,

daB sie eine Gruppe ist?

. Welche Folgerungen fiir die Rechnung ergeben sich aus der Giiltigkeit des

Assoziativgesetzes in einer Gruppe G?

. Was ist die Ordnung einer Gruppe?
. Es sei @ eine Gruppe. Was versteht man unter

a) einem Komplex K von G, b) einer Untergruppe U von G, c) dem Erzeugnis
(K) eines Komplexes K von G, d) einem Erzeugendensystem von G, e) dem Zen-
trum Z(G) von G, f) einer zyklischen Gruppe G?

. Wie ist die Ordnung eines Gruppenelements definiert?
. a) Was versteht man unter einem Isomorphismus von einer Gruppe @ auf eine

Gruppe G?
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b) Welche Eigenschaften hat ein solcher Isomorphismus?

c) Welche Isomorphismen werden Automorphismen, welche innere Automor-
phismen von @ genannt?

. a) Wann heiBt eine Gruppe zyklisch?

b) Essind alle abstrakten zyklischen Gruppen anzugeben und durch je ein Beispiel
zu realisieren.

c) Welche Untergruppen besitzt eine zyklische Gruppe?

. Was bedeuten die Begriffe: a) Homomorphismus von einer Gruppe G in eine

Gruppe H, b) Faktorgruppe, c) natiirlicher Homomorphismus?

. Welche Aussagen enthilt der Homomorphiesatz fiir Gruppen?
10.

a) Wie sind die Kommutatorgruppen einer Gruppe G definiert?

b) Welcher Zusammenhang besteht zwischen der Auflésbarkeit und den Kommu-
tatorgruppen von G

Was versteht man unter einer charakteristischen Untergruppe einer Gruppe?
Durch welche Definitionen kann das direkte Produkt zweier Gruppen erklirt
werden?

Wann nennt man Permutationsgruppen a) éhnlich, b) transitiv, c) regulir?
Welcher Zusammenhang besteht zwischen dem Grad und der Ordnung einer tran-
sitiven Permutationsgruppe?

. Was versteht man unter einer Darstellung einer Gruppe?

Aufgaben

. Man zeige, daB die Menge R X Rx R mit der durch

(21, 3, T3) + (Y1 Y2» ¥s) 1= (1 + Y1) T2 + Y2, T3 + Y1)

((z3, %2, 73) € RX RXR, (41, %2, y3) € R X R X R) erklrten Operation eme abel-
sche Gruppe ist.

In dieser bilden die Elemente der Form (a, a + b, b) (a ¢ R, b € R) eine Unter-
gruppe, welche die aus den Elementen (3¢, 4c, ¢) (¢ € R) bestehende Untergruppe
echt enthilt.

Losung: Die oben erklirte Addition von Tripeln reeller Zahlen ist eine zweistellige
Operation in RX RX R, denn sie bildet jedes geordnete Paar von Tripeln auf ein eindeutig
bestimmtes Tripel reeller Zahlen ab.

Fir die Tripeladdition gilt das Assoziativgesetz, weil die bei der Tripeladdition in den ein-
zelnen Komponenten auszufiihrende Addition reeller Zahlen assoziativ ist. (RxRXR, +)
enthilt (0, 0, 0) als (einziges) neutrales Element und zu jedem Element (2, 24, 2;) das
inverse Element (—z,, —Zy, —Z). Die Tripeladdition ist ki iv, weil far die
Addition der reellen Zahlen in den Komp ten das K ivgesetz gilt. Daher
ist (RxRxR, +) eine abelsche Gruppe.
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Weil
(@6 +b,b) +(—d, —(@+3),—b)=(a —d,(a+b) —(@+38),b—b)
=(@—6(@@—a) +®—05),b—1b)
gilt, ist der aus allen Elementen der Form (a,a + b,b) (a € R, b € R) bestehende Kom-
plex U eine Untergruppe von (RxRXR, +). Da (1,2, 0) nicht in U liegt, ist U eine

echte Untergruppe von (RX RxR, +).
Aus

(3¢, 4¢, ¢) + (—3¢, —48, —&) = (3¢ — 3¢, 4c — 46,¢ — &)
=(3(c —¢),4(c — &), ¢c —¢)
ergibt sich, daB der aus allen Elementen der Form (3¢, 4, ¢) (c € R) bestehende Komplex V

eine Untergruppe von (RXRXR, +) ist. Da offenbar U 2 V und (1, 2, 1) € U, aber
‘1,2,1) ¢ V gilt, ist sogar U S V.

2. Es bezeichne ¥ eine additiv geschriebene abelsche Gruppe und R einen Ring mit
Einselement 1. Ferner sei eine Abbildung von R X ¥ in V gegeben, durch die
jedem Paar («, vy € R XV ein Element av € V zugeordnet wird. Gelten fiir be-
liebige Elemente z, y aus ¥ und «, # aus R die Axiome
D al@+y) =oz+ay, (@) (x+pz=oz+pr,

(3) (af) = = apa), @ 1z=z,

8o nennt man V einen R-Modul. (Ist R sogar ein Korper, so wird ¥V auch als
Vektorraum iiber R bezeichnet. Speziell ergibt sich mit R = R ein reeller Vektor-
raum.)

Es sei R ein Teilring von R mit Einselement (z. B. Z, @, R). Man zeige, da8 die
drei in der vorigen Aufgabe genannten abelschen Gruppen mit der Festsetzung

(%1, Ty, T3) 1= (ay, &%y, T3)
fiir beliebige Elemente (z,, z;, 7;) € R X R X R und « € R R-Moduln sind.

3. Es seien 4, B Teilmengen einer gegehenen Menge M. Man zeige, daB die Potenz-
menge ‘B(M) mit der durch

AoB:=(M\(4uB)u(4nB)
erklirten Operation eine Gruppe bildet.
4. a) Aus welchen Matrizen besteht die von

010 0 0 010
-100 0 0 00 1
A= 500 1) "™ B=|_; o0 o0
001 0 0 —10 0

erzeugte Gruppe G, in welcher die Matrizenmultiplikation die Operation ist?

b) Durch welche definierenden Relationen kann die Rechnung in dieser Gruppe
vollstindig beschrieben werden?

c) Welche Ordnung hat diese Gruppe?



Gruppen 133

o

*

~

oo

Lésung: Durch Berech der Matri dukte bestitigt man die Galtigkeit der
Relationen A¢ = I, B = A‘ BA = A°B. Aus ihnen ergibt sich, daB die acht Matrizen
AiB¥ (i =0,1,2,3; k = 0, 1) beziiglich der Matrizenmultiplikation eine Gruppe bilden
(Quaternionengruppe).

. a) Die Menge aller Drehungen, welche einen gegebenen Wiirfel mit sich zur

Deckung bringen, bilden beziiglich der Nacheinanderausfiihrung eine Gruppe G.
b) Welche Ordnung hat G?

c) Jede Drehung d € @ permutiert die vier Diagonalen des Wiirfels untereinander
und wird umgekehit durch diese Permutation n(d) der vier Wiirfeldiagonalen
eindeutig bestimmt.

d) Welche Permutationen n(d) der Gruppe S, aller Permutationen der Wiirfel-
diagonelen treten bei dieser Beschreibung der Elemente d € @ auf? Welche Unter-
gruppe von S, ist also zu @ isomorph?

Welche Ordnung hat die (multiplikative) Gruppe der primen Restklassen mo-
dulo 97 Man zeige, daB8 sie zyklisch ist und gebe simtliche erzeugenden Elemente
dieser Gruppe an. Ist auch die (multiplikative) Gruppe der primen Restklassen
modulo 8 zyklisch?

. Es ist zu zeigen, daB die Matrizen der Form

(cf)sap — gin qz) @€ER)
sin ¢ cos @

beziiglich der Matri Itiplikation eine abelsche Gruppe @ bilden.
In einer euklidischen Ebene mit einem kartesischen Koordinatensystem wird
durch die Matrizengleichung

u\ _f[cosp —sing z

v] sin ¢ cosg)/ \y
jedem Punkt P mit den Koordinaten (z, y) ein Punkt Q mit den Koordinaten
(u, v) als Bildpunkt zugeordnet. Welche Bewegung der Ebene wird dadurch be-
schrieben?

Gibt es in @ eigentliche Untergruppen von endlicher und solche von unendlicher
Ordnung?

. Welche Ordnung hat die Gruppe B,p eines Pentagramms? Durch welche Per-

mutationen der fiinf Ecken der Figur konnen die Elemente von B;p angegeben
werden?
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10.

11.
12.

13.

14.
15.

16.

Man bestimme samtliche Untergruppen von B,p und beschreibe die Gruppe durch
Angabe erzeugender Elemente und definierender Relationen.

. Als Streifen sei dasjenige Stiick einer Ebene bezeichnet, welches zwischen zwei

parallelen Geraden dieser Ebene liegt. Die in der Mitte zwischen ihnen verlaufende

Parallele heiSt Lingsachse des Streifens. Die Strecken zwischen den Rand-

geraden, die auf der Lingsachse senkrecht stehen, werden Querachsen genannt.

Es ist zu zeigen, da8 die folgenden 1-1-Abbildungen eines Streifens auf sich be-
iiglich der Nacheinand fiihrung eine Gruppe bilden:

1. die Translationen in Richtung der Lingsachse,

2. die Spiegelung und die Gleitspiegelungen an der Lingsachse,

3. die Spiegelungen an Querachsen,

4. die Drehungen um Punkte der Lingsachse um 180°.

Ist diese Gruppe abelsch?

Es sei @ eine Gruppe mit dem neutralen Element e. Es ist zu zeigen, daB fiir
vertauschbare Elemente a, b aus G gilt:

(*) a*=b"=¢e=> (ab)®*=¢ (m,neN).

Man gebe ein Beispiel an, fiir das (+) im Fall ab 3 ba nicht gilt.

Losung: Wegen ab = ba gilt (ab)™u® = gmUnb™U", Ist a™ = b® = ¢, s0 gilt auch
(ab)ymun = ¢,

Fir die Elemente r und s = pr der symmetrischen Gruppe S, gilt (vgl. MfL Bd. 3, 12.2.)
72 = (pr)* = e. Es ist aber (r(pr))* = (P2 = (p") =p +e.

Fiir beliebige Elemente a, b einer Gruppe @ gilt |a| = |a~!| und |ab| = |ba|.
Man gebe Beispiele fiir unendliche Gruppen an, in denen

a) jedes Element endliche Ordnung hat,

b) jedes Element = e unendliche Ordnung hat,

c) Elemente = e von endlicher Ordnung und Elemente unendlicher Ordnung ent-
halten sind.

Ist a das einzige Element der Ordnung 2 in einer Gruppe G, so liegt a im Zentrum
von G.

Gilt fiir jedes Element g der Gruppe @ die Gleichung g* = ¢, so ist G abelsch.

In der durch Aufgabe 4 beschriebenen Gruppe G werden folgende Komplexe be-
trachtet: K = {4, B, AB) und L = (4, A*B)}. Aus welchen Matrizen besteht a) das
Komplexprodukt KL, b) der zu K inverse Komplex K% Ist K in G ein normaler
Komplex?

Man bestimme simtliche Untergruppen der in Aufgabe 4 angegebenen Gruppe G
und zeichne den Untergruppengraphen von G. Welche Elemente bilden das
Zentrum von G? Es ist eine Nebenklassenzerlegung von G nach dem Zentrum
anzugeben. Gibt es eine Untergruppe U von G, fiir die sich die Zerlegung von @
in Rechtsnebenklassen nach U von der Zerlegung in Linksnebenklassen unter-
scheidet?



Gruppen 135

17.

18.

19.
20.

21.

22.

b

Sind 4 und B endliche Untergruppen der Gruppe G, so enthilt der Komplex AB
|4]-|B|
40 B

Losung: Fir Elemente a,, a, aus 4 und b,, b, aus B ist

verschiedene Elemente.

b, = agby & a7la; = bdr! S aplad, = b,

Sind also b, und b, aus hied Rechtsnebenkl, von B nach A n B, so ist a,b,

= a,b,. Sind aber b, und b, aus derselben Rechtsnebenkl von B nach 4 n B, so ist

Ab, = Ab, Dahor ist die Anzahl der verschiedenen Elemente in AB gleich der Anzahl

der El te in 4, multipliziert mit der Anzahl der verschiedenen Rechts-
1Bl _ 141-1B|

nebenklassen von B nach 4 n B, d.h. gleich |4] - B 1AnB
Sind p und ¢ Primzahlen und ist » < ¢, so kann eine Gruppe G der Ordnung pg
keine zwei verschiedenen Untergruppen der Ordnung g enthalten.

Hinweis: Aussage von Aufgabe 17 verwenden!
Der Index [@ : Z(G)] des Zentrums einer Gruppe @ ist niemals eine Primzahl.

Es sei 11 die Menge aller Untergruppen einer gegebenen Gruppe G. Durch U A V
:=UnVund U~ V:=(Uu V) fiir beliebige U, ¥V aus I werden in 11 binire
Operationen definiert. Man zeige, da8 (lI, A, v) ein Verband ist.

Fiir die zyklische Gruppe der Ordnung 4 und die Kleinsche Vierergruppe be-
schreibe man diese Untergruppenverbinde durch Angabe a) der Operationen in
Tabellenform, b) der Untergruppendiagramme.

Die komplexen Zahlen 1, 3, —1, —1 bilden beziiglich der Multiplikation eine
Gruppe. Man zeige, daB sie zur additiven Gruppe der Restklassen modulo 4 iso-
morph ist. Ist sie auch zur Gruppe der primen Restklassen modulo 8 isomorph?

Von den Matrizen A* -—'( (: (1)) und B* = (0 (f) (#* = —1) wird (beziiglich
— %

der Matrizenmultiplikation als Operation) eine endliche Gruppe erzeugt. Sie ist
zu der in Aufgabe 4 angegebenen Matrizengruppe isomorph.

Losung: Durch Matrizenmultiplikation weist man die Giltigkeit der Relationen A** = I,
B*: = A%}, B*A* = A*®B* nach. Aus ihnen folgt, daB die acht Matrizen A%B** (s = 0,
1,2,3; k = 0, 1) eine Gruppe bilden. Da fiir die Matrizen A und B aus Aufgabe 4 ent-
sprechende Relationen gelten, ist die Abbildung f: A*B** - A‘B¥ (i =0,1,2,3; k = 0,1)
ein Isomorphismus.

. Man bestimme alle abstrakten Gruppen der Ordnungen 4 und 6.

. In der symmetrischen Gruppe S; erzeugen verschied El auch ver-

schiedene innere Automorphismen, und jeder Automorphismus der Gruppe S,
ist ein innerer Automorphismus.

Losung: Fir beliebige Elemente z, y aus S, gilt:

Arlgz =ylgy o A (zy“)“ glay™) =g & (ay?) € Z(S,).,
9€Ss



136 II. Algebra

Weil aber das Zentrum Z(S,) nur aus dem neutralen Element e besteht (vgl. Aufgabe 19),
verschied te z, y verschiedene innere Automorphmmen von S;.

Die Gruppe 8, kann durch ein Element p der Ordnung 3 und ein Element r der Ordnung 2

erzeugt werden (vgl. MfL Bd. 3, 12.2.). Bei jedem Automorphismus von S, wird p auf eines

der zwei Elemente der Ordnung 3 und r auf eines der drei Elemente der Ordnung 2 von S

abgebildet. Daher kann es hochstens sechs Automorphismen von 8, geben. Die sechs inne-

ren Automorphismen miissen also schon alle Automorphismen von S, sein.

26. Man bestimme die Automorphismengruppe A(V) der Kleinschen Vierergruppe
= (a, b) mit den definierenden Relationen a* = b* = e und ab = ba.

26. Man zeige, daB die durch ein festes n € N* bestimmte Abbildung v:q > ng
(g € Q) ein Automorphismus deradditiven Gruppe (@, +) der rationalen Zahlen
ist.

27. Man beweise, da8 die additive Gruppe (@, +) der rationalen Zahlen keine echte
Untergruppe von endlichem Index enthalt.

28. Es bezeichne B,q die Gruppe aller Bewegungen, die ein Quadrat auf sich abbilden
(vgl. ML Bd. 3, 12.1.2.12. und 12.2.). Man zeige, da8 B,gq ihrer Automorphismen-
gruppe isomorph ist.

29. Man zeige, daB die inneren Automorphismen einer Gruppe G eime Untergruppe
1(@) der Automorphismengruppe von @ bilden und da8 I(G) == G/Z(G) ist. (Z(Q)
bezeichnet das Zentrum von G.)

30. Man bestimme die Gruppe der inneren Automorphismen der Quaternionengruppe
(vgl. MfL Bd. 3, 12.3.).

31. Man zeige, daB K := [(a,b):a € GAb€E @A \/ g-lag = b] eine Aquivalenz-
9€G

relation in der Menge der Elemente einer Gruppe @ ist. Die zugehérigen Aqui-
valenzklassen werden Klassen konjugierter Elemente genannt.

32. Man gebe die Zerlegung der Quaternionengruppe (vgl. MfL Bd. 3, 12.3.) in Klassen
konjugierter Elemente an.

33. Ist U eine von G verschiedene Untergruppe der endlichen Gruppé G, so enthilt
U ¢ Uy nicht alle Elemente von G.
9€G
34. Eine endliche Gruppe mit genau zwei Klassen konjugierter Elemente hat die
Ordnung 2.

Hinweis: Zu a € @ sind genau k¥ = [@: Ng(a)] Elemente aus @ konjugiert.

35. Es hezeichne U eine Untergruppe, M und N seien Normalteiler der Gruppe G. Es
ist zu beweisen:
a) UN ist Untergruppe von G,
b) MN und M n N sind Normalteiler von G.
An einem Beispiel zeige man, daB das Produkt zweier Untergruppen von G keine
Untergruppe zu sein braucht.
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36.

37.

38.

39.

Es sei @ eine Gruppe der Ordnung pg (p < g Primzahlen). Man zeige, da in @
eine Untergruppe der Ordnung ¢ sogar Normalteiler ist.

Hinweis: Aussage von Aufgabe 18 beachten!

a) Es sind simtliche Untergruppen der (abstrakten) zyklischen Gruppe der Ord-
nung 12 anzugeben und fiir jede Untergruppe alle moglichen erzeugenden Ele-
mente zu bestimmen.

b) Man illustriere die Ergebnisse an der additiven Gruppe der Restklassen mo-
dulo 12.

Zu jeder natiirlichen Zahl ¢ < 6 gebé man a) in der zyklischen Gruppe der Ord-
nung 6, b) in der symmetrischen Gruppe S, simtliche Elemente z an, fiir die
2 = e gilt.

a) Auf welche (abstrakten) Gruppen kann die Quaternionengruppe @ (vgl. MfL
Bd. 3, 12.3.) homomorph abgebildet werden?

b) Fiir welche Zahlen m € {5, 6, 8} ist die Gruppe der primen Restklassen mod m
homomorphes Bild von @? In den méglichen Fillen ist je eine Abbildung an-
zugeben.

Lésung: a) Fir die Quaternionengruppe @, = (a, b) gelten die definierenden Relationen
at =e, b* = a’ ba = a%. Die Untorgmppen von Q sind aus dem angegebenen Unter-

ablesbar. Sie sind si h Normalteiler von Q. Die Faktorgruppen sind
den moghchen homomorphen Bildern isomorph. Q/(e) ist zur Quaternionengruppe iso-
morph, Q/(a®) hat die Ordnung 4. Die vom neutralen Element (a?) verschiedenen Elemente
(a*) a, (a%) b, (a%) ab haben simtlich die Ordnung 2. Daher ist @/(a?) isomorp zur Klein-
schen Vierergruppe V = («x, f) mit den definierenden Relationen a? = f* = e und af =
(vgl. Aufgabe 23). Q/(a), Q(b), @/(ab) haben die Ordnung 2 und sind daher zur zyklischen
Gruppe Z, von der Ordnung 2 isomorph. Q/Q ist die Gruppe der Ordnung 1.

<@a> ./QI;\
N\

'y o(b)
e

o’las>

e L8>

b) Die Gruppe der primen Restklassen modulo 5 ist zyklisch von der Ordnung 4. Sie tritt
nicht als homomorphes Bild von @ auf. Die Gruppe der primen Restklassen modulo 6 be-
steht nur aus den Elementen [l] und [5]. Sie ist zyklisch von der Ordnung 2. Die Abbildung f:
a* > [1), a*b > [5] (k € {0, 1, 2, 3}) ist ein Homomorphismus von Q auf die Gruppe der
primen Restklassen modulo 6.

Die von [1] verschiedenen Elemente [3], [5], [7]) der Gruppe der primen Restklassen modulo 8
haben die Ordnung 2. Daher ist diese Gruppe zur Kleinschen Vierergruppe isomorph.
Ein Homomorphismus von Q auf diesec Gruppe ist die Abbildung

fra® s (1], a*+1>[3), at*bi>[5], a**b>[T] (k€ P, 1}).
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40.

41.

42.

43.

46.

46.

47.

Man gebe eine homomorphe Abbildung der Gruppe B, (vgl. ML Bd. 3, 12.1.2.12.)
auf die multiplikative Gruppe der Zahlen 1 und —1 an.

Man bestimme simtliche Untergruppen der Gruppe der primen Restklassen
modulo 15 und veranschauliche ihre gegenseitige Lage durch einen Untergruppen-
graphen.

Welche abstrakten Gruppen treten als homomorphe Bilder der Gruppe der pri-
men Restklassen mod 15 auf?

Es sind alle homomorphen Abbildungen der Gruppe der primen Restklassen
modulo 15 auf die Gruppe der vierten Einheitswurzeln ({z, —1, —¢, 1}, ) an-
zugeben.

. Man gebe eine homomorphe Abbildung der Gruppe (Z, +) auf die Gruppe

({+, —1, —?, 1}, -) der vierten Einheitswurzeln an und bestimme den zugehérigen
Kern.

Welche Ordnung hat die Gruppe B,s aller Bewegungen einer euklidischen Ebene,
die ein regelmé Biges Sechseck dieser Ebene auf sich abbilden? Welche natiirlichen
Zahlen treten als Ordnungen von' Elementen dieser Gruppe auf?

Man beschreibe die EI te der Gruppe durch Angabe der Permutationen,
denen die Eckpunkte bei den einzelnen Abbildungen unterworfen werden. Man
gebe mindestens drei verschiedene nichttriviale Untergruppen dieser Gruppe an.

Man gebe simtliche Normalteiler der Gruppe B;g (vgl. Aufgabe 45) an und be-
stimme (bis auf Isomorphie) alle homomorphen Bilder dieser Gruppe.

a) Es sind Beispiele fiir charakteristische Untergruppen anzugeben.

b) Man beweise: Ist N ein Normalteiler der Gruppe @ und C charakteristische
Untergruppe von N, so ist C Normalteiler von G.

. Eine endliche Folge @ =G, 2 G, 2 G; 2 --- 2 G, = (¢) ineinander liegender

Untergruppen G; (+ =0, 1, ..., I) der Gruppe @, die mit G beginnt und mit (e)
endet, heiBt Subnormalreike von @, wenn jede Untergruppe G; Normalteiler von
G, (t=1,2,...,1) ist. Die G_,/@, heiBen Faktorgruppen der Subnormalreihe.
Man beweise, daB @ genau dann auflésbar ist, wenn @ eine Subnormalreihe mit
abelschen Faktorgruppen besitzt.
Lésung: 1. Es sei G aufldsbar. Dann gibt es eine natiirliche Zahl n, fir die G™ = (¢) ist.
In der Reihe der Kommutatorgruppen @ = G0 D ¢’ D @7 D --- D (-1 D GM = (¢)
von @G ist jedes Glied @) (i = 1, 2, ..., n) charakteristische Untergruppe von Gt-1 (vgl.
Mf{L Bd. 3, 12.6.). Erst recht ist dann G) Normalteiler von GG —1), Also ist

@D @ DE D ... DE-1DGM = (¢)
einc Subnormalreihe von @, deren simtliche Faktorgruppen Gii—1/G® abelsch sind (vgl.
MfL Bd. 3, 12.6., Satz 1).
2. Esse1 @ =Gy 26, 2 G, 2 - 2 G, = (¢) eine Subnormalreihe von @ mit abelschen
Faktorgruppen G;_,/@; (s = 1,2,...,1). Fir jedes i € {1,2,...,1} gilt daher G; 2 G;_,
(vgl. MfL Bd. 3, 12.6., Satz 1). Insbesondere ist G, 2 G5 2 @'. Mittels vollstindiger In-
duktion nach ¢ erhiilt man daraus @; 2 @5_; 2 GW (s = 1, 2, ..., }). Aus der Voraussetzung
G| = (e) ergibt sich daher Q) = (e). Also ist G auflosbar.
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49.

b1,

52.

Man beweise, daB es in einer Gruppe @ der Ordnung pg (p < ¢ Primzahlen) eine
Untergruppe der Ordnung ¢ gibt. Sie ist charakteristische Untergruppe von G.

Hinweis: Ist @ nicht abelsch, so betrachte man die Elementezahlen in den Klassen kon-
jugierter Elemente.

. Man bestimme die Kommutatorgruppe der Quaternionengruppe @ (vgl. MfL

Bd. 3, 12.3.).

Man schreibe die Quaternionengruppe @ (vgl. MfL Bd. 3, 12.3.) als Produkt von
zwei eigentlichen Untergruppen. Li8t sich @ auch als direktes Produkt solcher
Untergruppen darstellen?

Esseien 4 und B gegebene Gruppen mit den neutralen Elementen e, bzw. 5. Man
zeige, daB die Menge G := ((a,d):a € 4 Ab € B} beziiglich der fiir El t
(a,b), (& b) aus @ durch (g, b)(a, d) := (aa, bd) festgelegten Operation eine
Gruppe und die Teilmengen 4 := {(a, e5): a € 4} und B := {(e,, b): beB)zud
bzw. B isomorphe Untergruppen bilden, fiir die @ = 4 x B gilt.

. Man fiihre die in der vorigen Aufgabe angegebene Konstruktion aus, indem man

fiir A die Gruppe der primen Restklassen modulo 10 und fiir B die Gruppe der
dritten Einheitswurzeln (—-;— + % }/5) verwendet.

a) Welche Gestalt haben die Elemente von G
b) Fiir welche abstrakte Gruppe ist G ein Modell?

. Das Produkt der Permutationen

1 23 456 789101112
(812310911172 6 4 5)
und
(1 2345678 9101112)

610365847111 212 9

ist als Produkt ziffernfremder Zyklen und als Produkt von Transpositionen
darzustellen.

. Man bestimme die regulire Darstellung a) der Kleinschen Vierergruppe, b) der

symmetrischen Gruppe S,.
Lésung: a) Die Kleinsche Vierergruppe V wird von zwei Elementen a, b erzeugt, die den

definierenden Relationen a? = b* = ¢ und ab = ba genugen Be1 der regul.nn Darstel-
lung werden die vier Elemente von V auf die folgenden Per abgebil
e

b ab\_fe a b ab
ee be abe] \e a b ab)’

ar =(¢abub_¢ubab
Po=\ea aa ba aba) "\a e ab b )

”"Pu=(

gﬁ
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be>p a b ab e a b ab

’ebabbbabb b ab e a

b _f¢e a b ab \_[fe a b ab
P =\eab aab bab abab)  \ab b a e )

Anmerkung Man kann die Permutationen auch durch ,,Permutationsmatrizen* (das
sind quad he Matri deren Reih hl gleich dem Grad der Permutationen ist und
die in )eder Zeile und jeder Spalte genau eine Eins und sonst Null enthalten) beschreiben
und erhiilt dann die regulire Darstellung in Matrizenform.

Bezeichnet g die Spalte der Elemente der Gruppe @ in irgendeiner festen Reihenfolge, z. B.
fiir die Vierergruppe V:

9=\ )
ab,
80 werde fiir ein beliebiges Element z aus G mit gz che]emge Spalte bezeichnet, welche aus
g entsteht, wenn darin jedes Element mit z multip pielsweise ist fir die
Vierergruppe
ea a
_f[aa Y _[e
9=1ta |~ |\a
aba b

Geht man also von einer festen Reihenfolge der Elemente von G aus und schreibt die Ele-
mente in dieser Reihenfolge als Spalte g, 8o kann man die Permutation p, aus der regularen
Dmlhmg auch du:ch die Spalte 9z beechrelben Die Spalte gz kann mittels einer ein-

deutig besti Xg ben werden als gz = Xg. Beispielsweise
ist fir die Vlerergruppe
0100
_f1000
99=10001])9
0010
Man rechnet sofort nach, da88 die Menge dieser Matrizen X beziiglich der Matri: Iti

plikation eine zur Gruppe G (und dann auch zur Gruppe der Permutationen aus der regu-
liren Darstellung von G) isomorphe Gruppe bildet. Die isomorphe Abbildung wird durch
z> X besohrieben

Diese Mat. uppe wird ebenfalls als regulire Darstellung der Gruppe @ bezeichnet. Sie
lautet fir die Kleuuche Vierergruppe:

1000 0100
_f[o100 1000

e»I=10010) °*~4=l0001)
0001 001

0010 0001

_fooo01 _foo10

bB=| 000) ®4B={5100

0100 1000

Teil b) der Aufgabe kann analog bearbeitet werden.
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-

[

=N oo

]

jo=

. Man gebe transitive Permutationsgruppen der Grade 4 und 6 an, die von Ele-
menten a, b, ¢ erzeugt werden, welche den Relationen

at=bt=c*=e, ab=0ba, ca=bc, cb=abc
geniigen.

Ringe, Integrititsbereiche, Kérper

Kontrollfragen

. Welche Axiome miissen von einer nichtleeren Menge M und zwei darin erklirten
biniren Operationen + und - erfiillt werden, damit die Struktur (M, +, -) a) ein
Ring, b) ein Integrititsbereich, c) ein Koérper ist?

. Was versteht man unter einem Nullteiler eines Ringes R? Wie wirkt sich die
Existenz von Nullteilern auf die Arithmetik im Ring R aus? Man nenne Beispiele
fiir Ringe mit Nullteilern und iiberpriife daran die Aussagen.

. Es sei I ein Integrititsbereich mit Einselement e. Was versteht man unter einer
Einheit von I?

. Es ist der Isomorphiebegriff bei Gruppen und bei Ringen zu vergleichen. Wie
wiire dieser Begriff allgemein fiir algebraische Strukturen zu erkliren?

. Was versteht man unter einem Ideal eines Ringes?

. Welche Aussagen sind im Homomorphiesatz fiir Ringe enthalten?

. Es sind simtliche homomorphen Bilder des Ringes Z der ganzen rationalen Zah-
len (bis auf Isomorphie) anzugeben.

. Was versteht man unter einem Hauptideal? Welche Ringe werden Hauptideal-
ringe genannt? Was ist ein Primideal eines kommutativen Ringes R?

. Was versteht man unter einem unzerlegbaren Element, was unter einem Prim-

element eines Integrititsbereiches I mit Einsel t? Welcher Zusa hang

besteht zwischen den Begriffen unzerlegbares El t und Primel t in I?

Welcher Zusammenhang besteht, wenn I sogar Hauptidealring ist?

Welcher Zusammenhang besteht in einem Hauptidealring I zwischen Prim-

idealen und Primelementen?

. Welche Aussagen enthilt a) der Satz vom groften gemeinsamen Teiler, b) der
Satz von der eindeutigen Primel legung? In welchen Ringen gelten beide
Siitze sicher?

Aufgaben

. Man priife nach, daB die Menge der Restklassen modulo 10 beziiglich der Rest-
klassenaddition und Restklassenmultiplikation einen kommutativen Ring bildet.
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2.

o

©

10.

Es sei L ein Integritiitsbereich mit Einsel t 1 und I ein vom Nullring ver-
schiedener Teilintegrititsbereich von L mit dem Einselement 1. Man zeige, daB
dann 1 = 1 ist.

. Man bestimme das Zentrum des Ringes aller zweireihigen quadratischen Matrizen

aus rationalen Zahlen.

. Man zeige, daB die Menge {a, + a, ¥2: ao € Z A a, € Z} beziiglich der Addition

und Multiplikation der reellen Zahlen einen Integritéitsbereich I bildet, und be-
ti dessen Einheit,

Hinweis: a, + a, V2 ist genau dann Einheit von I, wenn a} — 20} = 41 ist.

. Man bestimme simtliche Einheiten des Ringes Z[Y—3] (vgl. MfL Bd. 3, 135.1.).

In diesem Ring ist 2 ein Teiler des Produktes (1 +V-3 (1 —7=3) =4. Man
zeige, daB aber weder 1 + J—3noch 1 — J—3in Z[V —3| durch 2 teilbar ist.

Lésung: z[}’—_:’.] ist ein Teilintegrititsbereich des Korpers der komplexen Zahlen mit
dem Einselement 1 + 0 V:E = 1. Jede von Null verschiedene Zahl z =a + b }/—_3 aus
Z[}'—_:i] hat mindestens den Betrag 1, weil |z|* = a? 4 3b*=> 1 ist. Daher kdonnen nur
solche Zahlen a + b }'—_3 (a, b € Z) Einheiten von Z[V—_3] sein, deren Betrag 1 ist. Das
sind nur die Zahlen 1 und —1. Sie sind auch tatsichlich Einheiten von Z| V’——3]

Wiire 2 in Z[}/—_a] Teiler von 1 + ¥ —3, so miiBte es ganze Zahlen a und b geben, fir die
2(a +bY=3) =1+ V=3, also 22 = 2b = 1 ist.

. Es sind simtliche Einheiten des aus den Zahlena + b }/5 % (a, b € Z) bestehenden

Teilrings des Korpers der komplexen Zahlen zu bestimmen.

. Man zeige, daB die Matrizen der Form

a b ¢
A=[0 a b| (a.bceZ)
0 0 a
beziiglich der Matri ddition und Multiplikation einen kommutativen Ring

I bilden. Welche Matrizen sind Nullteiler dieses Ringes? Zu welchen Matrizen 4
liegt auch A-'in R?

. In einem Integrititsbereich I kann jede Gleichung az® 4+ bxr + ¢ =0 (a,b,¢c

€ I; a #+ 0) hichstens zwei Losungen haben.

. Man bestimme simtliche Lésungen der Gleichung z* = —1 im Schiefkérper der

Quaternionen (vgl. MfL Bd. 3, 13.2.).

Unter Verwendung der Addition + und Multiplikation - in der Menge der ratio-
nalen Zahlen @ werden in dem kartesischen Produkt

M=QXQ:=|(ab):ac @arbe @}



Ringe, Integrititsbereiche, Korper 143

11.

12.

durch

(a,b) + (&, 8):= (6 +a,b + d),

(a, b) o (@, b) := (ad, ab + ab),

(@,b) ® (@, b) := (ad + db + b, ab + bb)

|

((a, b), (8, B) € M) zweistellige Operationen -+, o, @ erklirt. Man beweise, da8
(M, +, o) ein kommutativer Ring ist, der einen zum Kérper der rationalen Zahlen
isomorphen Teilkérper enthélt, und bestimme die Nullteiler dieses Ringes. (1, 0)
ist Einselement von (M, 4, 0). Zu welchen Elementen von M gibt es (beziiglich
der Multiplikation o) inverse Elemente im ‘Ring? SchlieBlich zeige man, daB
(M, 4, ®) kein Ring ist.
Lésung: Man erkennt sofort, daB (M + eine abelsche Gruppe und o eine kommutative
Operation in M ist. Die Giiltigkeit des g fiir o und des Distributivgesetzes
far 4 und o kann durch Rech.nung nachgewiesen werden.

Die Abbildung f: a > (3, 0) (a € @) ist ein Isomorphismus von (@, +, -) in (M, 4, o),
denn es gilt fiir beliebige Elemente a, b aus @

fla + ) = (@ + 8,0) = (2, 0) + (5, 0) = f(a) + 1(}),
fa-b) = (@-b,0) = (a,0) o (b, 0) = f(a) o (b).

Daher bilden die Elemente der Form (g, 0) aus M einen zam Korper der rationalen Zahlen
isomorphen Teilkérper von (M, 4, o). Das Element (s, b) € M ist genau dann Nullteiler
von (M, 4, 0), wenna = O und b + 0,ist. Zu (a, b) € M existiert genau dann ein inverses

Element in (M, +, o), wenn & = 0 ist. In diesem Fall ist nimlich (a, b) (:. — %) =(1,0).
In (¥, +, ®) gilt das Assoziativg fir die Operation ® nicht:

LHU2L DL D]=(11,8), (LN DI, 1)=(9,7).
Mit «, B, { seien die folgenden reellen bzw. komplexen Zahlen bezeichnet :

1 1 3=
c=—;+?}/§. =12, f=al.

a) Es ist nachzuweisen, daB die Mengen

R ={zo+ 2 + 20320 € LAz, € ZAz,€Z},

R, ={ag+a1x +aa*:a0€ Zra, € Zra,€ Z},

Ry ={by + b8 + boS2: b, € ZAb, € ZAby€ Z)
beziiglich der Addition und Multiplikation der reellen bzw. komplexen Zahlen
Integrititsbereiche bilden.

b) Welche dieser drei Ringe sind zueinander isomorph? Man gebe Isomorphismen
zwischen ihnen an.

c) Welche Automorphismen besitzt der Ring R,?
Man beweise, daB der identische Automorphismus, der jedes Element eines Ringes

auf sich abbildet, fiir simtliche Restklassenringe modulo m (m € N*) und den
Ring der ganzen Zahlen Z der einzige Automorphisms ist.
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Es sei a=i/§. Die Menge R = {a + ba +cat:a€ ZAabe Zace Z} bildet
beziiglich der Addition und Multiplikation der reellen Zahlen einen Integritits-
bereich (vgl. Aufgabe 11). [z] bezeichne diejenige Restklasse modulo 2, in der
z € Z liegt. Man zeige, daB

([al [ [0])

fia+bx+cat>[[0] [a] [B)] (@ + bx 4+ ca®€ R)

[0] (0] [a]

ein Homomorphismus von R auf einen Matrizenring R ist. (Als Operationen in R
benutzt man die iibliche Addition und Multiplikation der Matrizen, beachtet
aber bei der Rechnung, daB die Matrixelemente Restklassen modulo 2 sind.)
Man gebe den Kern von f, diec Restklassen nach dem Kern und zu jeder Rest-
klasse diejenige Matrix an, auf welche die Elemente der Restklasse bei dem Homo-
morphismus f abgebildet werden. Ist der Kern von f ein Hauptideal von R? Ist
der Kern von f ein Primideal von R?

Im Ring Z der ganzen rationalen Zahlen bestimme man das mengenmiBig

kleinste Ideal n, welches die Zahlent 546, 498 und 210 enthélt, und gebe die Ele-

mente des Restklassenringes Z/n an.

Lésung: Simtliche Ideale von Z sind Hauptideale (vgl. MfL Bd. 3, 13.4.4.). Daher ist

n = (546 N 498 N 210) = (8). Die Elemente von Z/n sind die Restklassen (6), (6) + 1,

‘(iﬁ)l+82. (6) + 3,(6) + 4, (6) + 5, und Z/n ist isomorph zum Ring der Restklassen mo-
ulo 0.

Man zeige, da 8 die Menge {z +yV—2:z € Z Ay € Z} mit der Addition und Multi-
plikation der komplexen Zahlen einen euklidischen Ring Z[V —2] bildet. Welche
Zahlen sind Einheiten dieses Ringes? Ist auch Z[Y —3] ein euklidischer Ring?
Lésung: Beziiglich der Addition bildet die angegebene Menge offensichtlich eine abelsche
Gruppe. Wegen

(z+9V=2) (o + 0V =2) + (=0 — 2y0) + v + 20) V=2 (=, 9 v, w € Z)

ist auch das Produkt zweier Elemente der Menge wieder in der Menge enthalten. Deshalb
bildet sie einen Teilintegrititsbereich des Kérpers der komplexen Zahlen.

140 }’-—_2 =1 ist Einselement dieses Integritatsbereiches Z[V—_2] Wie in Aufgabe 5
zeigt man, daB 1 und —1 die einzigen Einheiten von Z[}/:El sing.

Fiir beliebige Zahlen b = z + y}’——_Z unda =v + w }’——2 %+ 0 aus Z[}/—_2] ist

b a4+ 2y w5
e " v tze Torme! 2

und es gibt Zahlen k,. k, € Z, fir die

yv — 2w

pomw Gl oL
0 4 20t

=

2
gilt. Die Zahleng =k, + k, V—2undr=b —ag =a (% - q) liegen in Z[V—-—2]
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Die Abbildung h: z + y V—2 > bz + y Y—2) := 2* + 24* von Z[Y—2] in N bildet jede
Zahl aus Z[@] auf das Quadrat ihres Betrages ab. Genau dann ist h(z +y¥—2) =0,
wenn z 4+ y¥—2 = 0 ist. Es gilt die Ungleichung

Mr) =h (a (% - q)) = h(a)

Dabher ist Z[}'—_2] ein euklidischer Ring.

Der Beweis lat sich nicht suf den Ring Z[}—3] bertragen, da die letate Ungleichung in
diesern Fall nicht mehr gilt. Tatsachlich ist Z[{—3] kein euklidischer Ring, denn das in
Z[Y=3) unzerlegbare Element 2 ist nach Aufgabe & kein Primelement. (Vgl. ML Bd. 3,
13.5., Sitze 6 und 3.)

b s 1 1
2 —ql s o) (3 +27) <.

Es sind die groBten gemeinsamen Teiler von 924, 780 und 315 in Z anzugeben
und als Vielfachsumme dieser drei Zahlen darzustellen.

h disoh 1

Losung: B
924 = 1.780 + 144,
780 = 5-144 + 60,
144=2. 60 + 24,
60=2. 24+ 12,
24=2. 12.
Also ist 924 N 780 = 12.
3156=26-12 + 3,
12=4.3.
Also ist 31612 = 3.
Daraus folgt 924 1780 N 3156 = 3. Weil 1 und —1 die Einheiten des Ringes Z sind, ist
auch —3 graBter gemeinsamer Teiler der drei gegebenen Zahlen.
Vielfachsummendarstellung des groBten gemeinsamen Teilers 3:
3 =315 — 26(60 — 2-24) = 3156 — 26 - 60 + 52 - 24
=315 — 26 - 60 + 52(144 — 2 - 60) = 315 | 52 - 144 — 130 - 60
= 316 + 52 - 144 — 130(780 — 5 - 144)
= 3156 — 130 - 780 + 702 - 144
= 315 — 130 - 780 + 702(924 — 1 - 780)
=702 - 924 — 832780 + 1. 315.

Man stelle die groBten gemeinsamen Teiler der Zahlen 20 706, 651 170 und 66 0456
in Z als Vielfachsummen dar.

g mit dem eukli Algori

Im Ring der GauBschen ganzen komplexen Zahlen bestimme man die groBten
g men Teiler der El te 2 + 47 und b + 57 und stelle sie als Vielfach-
summen dar.

Man gebe die Primelementzerlegungen von 2 + 47 und 6 + 52 :m Ring der JauB-
schen ganzen ko:uplexen Zahlen an.

. Man zeige, daB8 die Menge aller rationalen Zahlen der Formr = % ze€e Z,n eN)
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beziiglich der Addition und Multiplikation der rationalen Zahlen einen Inte-
gritétsbereich I bildet.

a) Was bedeutet Teilbarkeit in I?

b) Welche Zahlen sind Einheiten von I?%

c) Es sind Primel te von I anzugeben, die keine Primzahlen sind.

d) Gibt es eine Primzahl, die in I nicht Primelement ist?

Man bestimme den Quotientenkérper des Ringes der GauBschen ganzen kom-
plexen Zahlen.

Wieviel Korper aus genau zwei, drei und vier Elementen gibt es (bis auf Iso-
morphie)? Man stelle in jedem Fall die Additions- und Multiplikationstabellen auf.

Polynome

Kontrollfragen

. Es sei I ein Integritdtsbereich mit Einselement. Was versteht man unter einem

beziiglich I transzendenten Element?

. Wie kann die Adjunktion einer Unbestimmten z zu einem Integrititsbereich 7

mit Einselement konstruktiv ausgefiihrt werden?

. Welche Elemente des Polynomringes I[z] iiber einem Integrititsbereich I mit

Einsel t sind Einheiten von I{z]?

Es bezeichne I einen Integrititsbereich mit Einsel und L einen I um-
fassenden Integrititsbereich. Welcher Zusammenhang besteht zwischen dem
Ring der ganzen rationalen Funktionen mit Koeffizienten aus I iiber dem Defi-
nitionsbereich L und dem Polynomring I[z]?

. Welche Eigenschaften besitzt der Polynomring R[z], wenn R a) ein Integritits-

bereich mit Einsel t, b) ein Integrititsbereich mit Einselement und eindeu-
tiger Primelementzerlegung, c) ein Korper ist?

. Es sei I ein Integrititsbereich mit Einselement. Wann nennt man ein Polynom

aus I[z] irreduzibel?

. Es seien I & L Integrititsbereiche mit Einselement. Wann heiBt ein Element

& € L k-fache Nullstelle (k € N*) eines Polynoms f(z) € I[z]?

. Wie kann man zu einem gegebenen Polynom f(z) € @[z] ein Polynom g(z) € @[z]

berech das dieselben Nullstellen besitzt wie f(z), jede aber nur mit der Viel-
fachheit 12

. Was leistet die Lagrangesche Interpolationsformel? Wie lautet sie?

Welche Einzelschritte werden bei der Konstruktion einer einfachen transzenden-
ten Erweiterung eines Korpers K ausgefiihrt? Wieviel solche Erweiterungen von
K gibt es (bis auf Isomorphie)?
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Wie erfolgt die Konstruktion einer einfachen algebraischen Erweiterung K(&)
eines gegebenen Korpers K? Kann man zu jedem Korper K eine einfache al-
gebraische Erweiterung K(#) konstruieren, die K echt umfaBt?

Was versteht man unter einer (beziiglich @) algebraischen Zahl, was unter einer
transzendenten Zahl?

Man gebe die Definition und Beispiele fiir den Begriff ,,symmetrisches Polynom**
an.

Was versteht man unter einem Zerfillungskorper eines Polynoms?

Welche Aussage wird als Fundamentalsatz der Algebra hezeichnet? Wie kann
diese Aussage unter Verwendung des Begriffs ,,Zerféllungskorper formuliert
werden?

Wann heiBt eine Gleichung der Form a,2* + -+ + @,z + @ =0 (ag, ..., 2, € C,
a, % 0, n € N*) auflosbar durch Radikale? Was besagt der Satz von ABEL iiber
die Auflésbarkeit solcher Gleichungen durch Radikale?

Aufgaben

. Es bezeichne Z/(3) den Korper der Restklassen modulo 3.

a) Wieviel verschiedene Funktionen iiber dem Definitionsbereich Z/(3) gibt es,
deren Funktionswerte in Z/(3) liegen? Man zeige, daB sie alle ganze rationale
Funktionen mit Koeffizienten aus Z/(3) sind.

b) Wieviel verschiedene Polynome gibt es in Z/(3) [z], deren Grad hichstens 3 ist?
(Das Nullpolynom sei Element dieser Menge von Polynomen.)

c) Man bestimme den Kern des in MfLL Bd. 3, 14.1., angegebenen Homomorphis-
mus F von Z/(3) [z] auf den Ring der ganzen rationalen Funktionen mit Koef-
fizienten aus Z/(3) iiber dem Definitionsbereich Z/(3).

. Man bestimme einen gro8ten gemeinsamen Teiler der Polynome z® — 224 — z

+ 2 und z* — 52% + 72 — Bz 4 6 und stelle ihn in Q[z]als Vielfachsumme dar.

. Man bestimme in Z/(3) [z] einen groBten gemeinsamen Teiler der Polynome

a(z) = [1]2° + [1]2* + [2] und b(2) = (2] 2* + [2]2* + [1] = + [1].

. Es sei L ein den Kérper K umfassender Kérper. An Beispielen zeige man, daB ein

in K[z] irreduzibles Polynom zerlegbar sein kann, wenn es als Element von L[z]
aufgefaBt wird.

. Welche Aussage macht der Satz von Gauss (vgl. MfL Bd. 3. 14.2.2.) fiir Poly-

nome mit Koeffizienten aus Z? Insbesondere beweise man: Hat das Polynom
Hz) =2 + ap 2™t + - +az+a, (MEN*;ap,,...,0,€ Z)
eine Nullstelle « € @, so liegt « bereits in Z.
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_Es sei I ein Integrititsbereich mit Einselement und habe die Charakteristik 0.

Ferner bezeichne L einen Integrititsbereich, der Erweiterungsring von I ist.
& € L sei eine Nullstelle des vom Nullpolynom verschiedenen Polynoms f(z) aus
I[z]. Man beweise : Ist « eine (¢ — 1)-fache Nullstelle von f'(z), so ist « eine k-fache
Nullstelle von f(z) (k € N¥).

. Es sei p eine Primzahl. Man gebe in Z/(p) [z] vom Nullpolynom verschiedene

Polynome an, die an simtlichen Stellen « € Z/(p) den Wert [0] besitzen.

. Man bestimme in Z[z] ein Polynom g(z), das dieselben Nullstellen besitzt wie

f(x) = 28 + z* — 82® — 12, jede aber nur mit der Vielfachheit 1. f(z) ist jeweils
als Produkt von Primpolynomen aus @[z], R[z], C[z] darzustellen.

Lésung: (Vgl. MfL Bd. 3, 14.3.2. und 14.2.2., Satz 3.) [(z) 8z + 42* — 162. Berech-
nuang von f(z) N f’(z) nach dem Euklidischen Algorithmus

z‘+z‘—8:"—12=(61‘+4t'—-lﬁz)?z+%(z‘—lﬂz’—3ﬁ).

6% + 42° — 16z = %(z‘ — 16z* — 36) 18z + 100(z° + 2z),
4 — 1622 — 38 = (& + 22) z — 18(2? + 2),
D+ 2 =(2+ 2z

Also ist f(z) nf'(z) = 2* + 2. Daher besitzt f(z) sicher die Nullstellen i}2 und —iy2
in €. Das Polynom

f(z) _ a4z — 822 — 12
f@nf 2+ 2
hat dieselben Nullstellen wie f(z), jede aber nur mit der Vielfachheit 1. Insbesondere
sind iﬁ und —1}2 Nullstellen von g(z). Daher ist g(z) teilbar durch 22 4- 2, d.h., es gilt
g(x) = (2* - 3) (2 + 2). Dann ist f(z) = (2 — 3) (z* + 2) (2* + 2). Die Faktoren sind
Primpolynome von @[z]. In R[z] lautet die Darstellung von f(z) als Produkt von Prim-
polynomen

f@ = (z — 13) (= + V3) == + 2.

In C[z] ist f(z) dann folgendermaBen als Produkt von Primpolynomen darstellbar:

f@ = (z — V3) (= + ¥3) (= — i¥2)? (= + iV2).

=2 —22—86

glz) =

. Hat das Polynom f(z) = 2% — 3z* + 4 mehrfache Nullstellen? Gegeb falls

bestimme man ein Polynom, das genau dieselben Nullstellen wie f(z) besitzt, aber
jede mit der Vielfachheit 1.

. Ein Polynom mit Koeffizienten aus einem Ring mit Nullteilern kann mehr Null-

stellen besitzen, als sein Grad betrigt. Als Beispiel gebe man etwa ein quadra-
tisches Polynom mit Koeffizienten aus Z/(6) an, das wenigstens drei Nullstellen
in diesem Ring besitzt.

Fiir jede Nullstelle von f(z) = [1]z7 + [1]2® + [2] x + [2] aus Z/(3) [z] be-

stimme man die Vielfachheit. AnschlieBend herechne man g(x) = L
fz) m f(x)
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und vergleiche das Ergebnis mit der in MfL Bd. 3, 14.3.2., fiir Polynome mit
Koeffizienten aus einem Korper der Charakteristik 0 angegebenen Aussage.

Man stelle das Polynom 62° — 122% — 6z + 12 als ein Produkt von Primele-
menten aus Z[z] dar.

. Man zerlege die Polynome f(z)=2z®— 32% 4+ 4 und g(z) = z° — 42* + 228

— 82% + = — 4 in Produkte von Primpolynomen aus @[z] und gebe siamtliche
Nullstellen beider Polynome an.

Welches Polynom f(z) € @[z] erfiillt die Bedingungen f(—3) = —63, f(—1)
= —1, (1) = 13, /(3) = 75 und Grad f(z) < 3?

Lésung: Nach der Lagrangeschen Interpolationsformel erhilt man
@+1)@—1)(z—3) (+3)(—1(x—3)

L g e Y e g g e R
E+NEtDE=3  E+IE+DE—1,
1+3)(1+1)1-3) B+3B+1)EB—-1)

= 243 + bz + 6.
. Man bestimme in @[z] dasjenige Polynom f(z) mit Grad f(z) < 4, fiir welches

(—2) =18, {(—1) = 2, f(0) = 0, /(1) = 4, /(2) = 32 gilt.

Man bestimme in R[z] diejenigen Polynome f,(z) vom Grade 1 und f,(z) vom
. . n ] }/5 z\ _ A\ _ %

Grade 2, fir die f, (I) = sin =3 " 0,707, f, (;) =h (E) = sin 3

3 ; . - . 2
= }/? ~ 0,866 und f, (%) =/ (%) = sin % =1 ist. Wie gro8 sind f, (?")
und /, (2?”)1 Man vergleiche diese durch lineare bzw. quadratische Interpolation

gewonnenen Zahlen mit dem Wert fiir sin 2 aus dem in der Schule verwendeten
Tafelwerk. 5

Mit Hilfe des Verfahrens von KRONECKER beweise man, daB das Polynom
f(x) = z* + b2° + 1022 + 10z + 5 in Z[z] irreduzibel ist.

Losung: Es ist f(—2) =1, f(—1)=1, f(0)=5. Wenn f(z) = g(z) - h(z) das Pro-
dukt zweier Polynome g(z) und h(z) aus Z[z] ist, kann 0.B.d.A. Grad g(z) < 2und g(0) = 0
angenommen werden. Weil g(x) | f(x) fir jedes o € Z ist. gibt es nur acht Mdglichkeiten far
das Zahlentripel

(¢) 9(—=2)=a, g(—-1)=0b, g(0)=c.

Da es genau ein Polynom g(z) aus @[z] gibt, fiir das (¢) gilt und Grad g(z) < 2 ist, namlich

@tz Ty E+Et
[ Ty o ey i Ay N E

9(z) =

(& _p, & & _ gy 3
(2 b+2)z'+(2 2b,2 z+ec,
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kommt fiir g(z) nur eines der folgenden acht Polynome in Betracht:

a b c g(z)

(1) 1 1] 1 1

(@) 1 1| 5 2% 4 6z + 5
3) 1] -1 1 223 + 4z + 1
(4) 1| -1 5 43+ 102+ 5
(5) —1 1| 1 ——z+1
© | -t 1| s 245245
") -1 | -1 1 2+3z+1
® | -1 -1] s 32t 492+ 5

Man rechnet sofort nach, daB keines dieser von 1 verschiedenen Polynome in @[z] (und
erst recht nicht in Z[z]) Teiler von f(z) sein kann. Beispielsweise ist

z‘+51"+102’+102+5=(2z’+61+5)(%z’+z+%)+(%+%).

Daher muB f(z) in Z[z] irreduzibel sein.

. Mit Hilfe des Verfahrens von KRONECKER beweise man, daB die Polynome

fi(@) = 2* — 2z + 2 und fy(z) = 2° — 2? 4 1 in Q[z] irreduzibel sind.

Die Elemente des Restklassenkorpers K = Z/(2) seien mit [0] und [1] bezeich-
net. Das Polynom p(x) = [1] 2® + [1] z + [1] ist in K[z] irreduzibel. Man kon-
struiere K[z]/(p(z)) und stelle fiir diese algebraische Erweiterung von K die
Additions- und Multiplikationstabellen auf (vgl. S. 146, Aufgabe 22)).

. Welche Beziehungen bestehen zwischen den Koeffizienten und den Nullstellen

eines Polynoms f(z)? Die Aussage ist am Beispiel der Polynome f(z) = 2* — 1 und
gz) =(x — 1) (x — 2) (x — 3) (x — 4) aus Z[z] zu iiberpriifen.
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Analysis

Einige grundlegende Begriffsbildungen der Analysis

Kontrollfragen

. Wie lassen sich die reellen Zahlen als stetiger archimedisch geordneter Korper

charakterisieren?

. Wie lassen sich die Mengen N, Z und @ als Teilmengen der Menge der reellen

Zahlen charakterisieren?

. Es sind die wichtigsten Regeln fiir das Rechnen mit Ungleichungen anzugeben.
. Welche Arten von Intervallen gibt es?
. Wie sind die Begriffe obere (untere) Schranke, nach oben (unten) beschrinkt,

Maximum (Minimum), Supremum (Infimum) definiert? Man gebe Beispiele an.

. Welcher Zusammenhang besteht zwischen den Begriffen obere (untere) Schranke,

Maximum (Minimum) und Supremum (Infimum)?

. Man klassifiziere die nach oben (unten) beschrinkten Mengen rationaler bzw.

reeller Zahlen beziiglich ihrer oberen (unteren) Schranken.

. Was versteht man unter dem ,,gréBten Ganzen‘ einer reellen Zahl?
. Wie ist der absolute Betrag einer reellen Zahl definiert? Welche Rechenregeln

fiir absolute Betrige gibt es?

Wie kann man die komplexen Zahlen als einen Korper charakterisieren? Welche
Beziehung besteht zwischen dem Bereich der reellen Zahlen und dem Bereich
der komplexen Zahlen? Kann man im Kérper € der komplexen Zahlen eine Ord-
nungsrelation erkliren, so daB € damit ein geordneter Kérper wipd?

Was versteht man unter der Basisdarstellung einer komplexen Zahl? Essind die
Regeln fiir das Rechnen mit komplexen Zahlen unter Verwendung der Basis-
darstellung anzugeben.

Wie ist der absolute Betrag einer komplexen Zahl definiert? Wie lauten die wich-
tigsten Regeln fiir das Rechnen mit Betrigen?

. Was versteht man unter der zur komplexen Zahl z konjugiert komplexen Zahl z?

Wie lauten die Rechenregeln fiir den Ubergang zur konjugiert komplexen Zahl?
Lassen sich die im Bereich der reellen Zahlen eingefiihrten Begriffe obere
(untere) Schranke, Maximum (Minimum), Supremum (Infimum) auf den Bereich
der komplexen Zahlen iibertragen?

Wie kann man.die komplexen Zahlen in der GauBschen Zahlenebene veran-
schaulichen? Wie kann manden Betrag einer komplexen Zahl geometrisch deuten?
Was versteht man unter einer Funktion von n Variablen (n € N, n = 1)? Wie
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17.

18.

19.

21.

22.

sind die Begriffe Definitionsbereich und Wertebereich einer Funktion, Umkehr-
korrespondenz, Umkehrfunktion, Einschriinkung und Fortsetzung einer Funktion
definiert?

Wie ist eine Folge in einer Menge M definiert? Was versteht man unter einer
reellen (komplexen) Zahlenfolge?

Wie sind die folgenden Eigenschaften reeller Funktionen erklirt: nach unten
(oben) beschriinkt, beschrinkt, periodisch, gerade, ungerade, monoton wachsend
(fallend), streng monoton wachsend (fallend)? Welche dieser Eigenschaften bleiben
fiir reell- (komplex-)wertige Funktionen sinnvoll?

Wie lauten die Definitionen folgender Verkniipfungen von reellwertigen bzw.
komplexwertigen Funktionen: Zusammensetzung, Vielfaches, Summe, Diffe-
renz, Produkt und Quotient?

. Man nenne Kriterien fiir das Vorliegen einer umkehrbar eindeutigen Funktion.

Was 1iBt sich iiber die Umkehrfunktion einer streng monoton wachsenden (fal-
lenden) reellen Funktion beziiglich der Monotonie aussagen?

‘Was versteht man unter einer reellen (komplexen) ganzrationalen bzw. rationalen
Funktion?

. Man gebe je ein Beispiel einer Funktion an, die algebraisch bzw. nicht algebraisch

ist.

24. Wie lautet die Definition des Begriffes der Potenz a® firz € N, z € Z,zcQ,

8 8B

27.

28.

z € Q? Welche Basen sind jeweils zulissig?
Man gehe auf die Existenz der n-ten Wurzel aus einer nichtnegativen reellen
Zahl ein.

. Welche Eigenschaften hat die Funktion f:r > af (r € @, a > 0)?
. Unter welchen Vorausset kann eine streng monotone Funktion, deren

&

Definitionsbereich nur aus einer Teilmenge der Punkte eines Intervalls besteht,
auf genau eine Weise zu einer auf dem ganzen Intervall definierten streng monoto-
nen Funktion fortgesetzt werden?

Wie ist die Exponentialfunktion zur Basis a definiert? Welches sind die wichtig-
sten Eigenschaften dieser Funktion (Definitionsbereich, Wertebereich, Monoto-
nieeigenschaften, Funktionalgleichung)?

Wie ist die Logarithmusfunktion zur Basis a definiert? Welche Eigenschaften be-
sitzt die Logarithmusfunktion?

29. Man gebe die Funktionalgleichung der Logarithmusfunktion und deren Be-

deutung an. Es sind weitere Logarithmen- und Potenzgesetze zu formulieren.

. Was versteht man unter dem p-dimensionalen euklidischen Raum R,?
. Was versteht man unter einem metrischen Raum?
. Welche Begriffe konnen in metrischen Raumen mit Hilfe des Abstandsbegriffes

definiert werden?

. Welche Eigenschaften besitzt die Norm eines Elementes z aus R,?
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S

36.

37.

39.

41,

—

2.

. Wie lautet die Schwarzsche Ungleichung? Wie lautet die Dreiecksungleichung?
. Wie konnen die Koordinaten eines Punktes z ¢ R, mit Hilfe der Norm und die

Norm mit Hilfe der Koordinaten abgeschitzt werden?

Wie sind die Begriffe Verbindungsstrecke zweier Punkte, konvexe Punktmenge,
sternférmige Punktmenge definiert?

Mit welcher Metrik wird die Menge der reellen Zahlen bzw. der euklidische Raum
R, ein metrischer Raum?

. Wie sind die Begriffe e-Umgebung, punktierte e-Umgebung, Durchmesser einer

Menge, beschrinkte Menge im euklidischen Raum R, definiert?

Wie sind die Begriffe innerer Punkt, duBlerer Punkt, Begrenzungspunkt, Hiu-
fungspunkt, isolierter Punkt einer Menge im euklidischen Raum R, definiert? Man
erliutere diese Begriffe durch Beispiele.

Was versteht man unter int M, ext M?

. Was versteht man unter einer offenen bzw. abgeschlossenen Menge im Raum R,?

Man gebe je ein Beispiel fiir eine offene Menge, fiir eine abgeschlossene Menge
und eine Menge, die weder abgeschlossen noch offen ist.

Was versteht man unter einem Gebiet im euklidischen Raum R,?

Aufgaben

» 2
. Man beweise die Ungleichung: ( 2z ! ) < —;-

=1+

Beweis: Nach der Schwarzachen Ungleichung gilt

(b it
inty] TS+ 0
Weiterhin gelten dic Beziehungen

. B ! =nz'[ ! -L]
=1(n + )7 ym1(n+v—1)(n+v) =1 n4+rv—1 n4v
L 1 1
_"[,‘,"—"1n+v—l_.£n+v]
n —1
I TN T, STy

n ,oen+v—1 ,Jin+v 2n

1 d 1 " 1 1 1
="[:+,£2——n+y_1 —.-zn—ﬂ_r;,] =lm3=3
Man ermittle alie reellen Zahlen z, fiir die
1 1 2 1 1 2 1 1 2
a);-l-:x:-l—1> 1’ b);+z+l= 1’ c):+z+1< 1
z+; z+; r+;

gilt.
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Lésung: Dié Losung der Aufgabe ist der Untersuchung iiquivalent, wann der Ausdruck
1 1 1 1
— + — e — S ep———
AP S 9 PR ) A
2 2
positiv, gleich Null bzw. negativ ist. Der Ausdruck ist nur firz + 0,z + — % undz # —1

definiert und wird far keinen Wert von z gleich Null, also gilt b) fiir keinen Wert von z.
Der Ausdruck ist genau dann positiv bzw. negativ, wenn der Ni positiv bzw. negati

ist. Es gilt 2z (z+ % (z 4+ 1) > 0 genau dann, wenn 1.z > 0 oder 2.2 > —1 und
r< — —;—- ist, d. h., a) gilt far alle z mit

—l<z<——;— oder 0 < z< +oo.

Esgilt 2z (z + —;— (z + 1) < Ogenaudann, wenn 1.z < —1oder2.z < Ound z > —%
ist, d. h., c) ist fiir alle z aus den Intervallen —oco0 < 2 < —1 oder ——;— < z < 0 erfiillt.

. Fiir welche reellen Zahlen besteht die Ungleichung |z — 2| < |z — 3|?

Hinweis: Man quadriere die Ungleichung oder wende Fallunterscheidung an.

4. Aus b=—2 folgt |b| <1 und a = b (Beweis durch Fallunterschei-
dung). 1+l 1=l
6. Man beweise folgende Ungleichungen'
a)n(l—a,)>1—-2'a, mn=220<a<1firv=12...,n),
=)
b) ;‘ 1 1 ) 2° d) 2.
y——x<1, c)2">n, =<
=1 v+ 1) £1 »
Hinweise: Man beweise a) durch vollstindige Induktion. Bei b) beachte man, daB
_1 1 1 . . . . . .
v(v T =5 m gilt. Die Aufgabe ¢) kann mit Hilfe des binomischen Lehr-
satzes bzw. durch vollstindige Induktion bewi werden. Die Aufgabe d) kann durch
eine Abschiétzung unter Zuhilfenahme von b) bewiesen werden.
6. Fiir alle reellen Zahlen a,, a,, ..., a, gilt Z‘ e < Z lail .
i=1
7. Man beweise, daB fiir positive reelle Zahlen a und b stets % + i = 2 ist.
a
8. Man beweise die verallgemeinerte Bernoullische Ungleichung: Es seien aj,
a,, ..., a, reelle Zahlen mit a; > —1 firt=0,1,. ,n Ferner gelte a; - a, > 0
fir j,k=0,...,n. Dann gilt H(l +a)=1 +Za,
i=0
9

. Fiir welche reellen Zahlen a, b ist

a? -;b’g(a-f—b)?

2
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10.

11

12.

13.

14.

15.
16.

17.

18.

19.

Man ermittle alle ganzzahligen Paare (z, y), fiir dle — + > — und z > 2,
y > 2 gilt. 2

Fiir alle reellen Zahlen a,b und ¢t mita <b,0<t<lgita<ta+ (1—¢)b
<b.

Man ermittle alle reellen Zahlen, fiir die
z 1 z 1 T 1
, b)y—— =1, 1
a)z+1 z—1 )z+l+z—l c):19+1+z:---l<
gilt.
Man zeige, daB die Menge M = {z: 2 € @, A 2® > 2} kein Minimum besitzt.

Beweis: Wir werden zeigen, daB es zu jedem r € M ein r’ € M gibt, so daB v’ < r ist. Es
sei r € M beliebig, d. h. r ¢ @, und r* > 2. Wir zeigen nun, daB fir natiirliche Zahlen n

L]
3 stets (r - % > 2 gilt. Nach dem Archimed.ischen Axiom gibt es
. Dann folgt % — 2—-

. 2r
it
mit > <=

mindestens eine derartige natirliche Zahl. Es sei also n > r‘

>2 Wegenr—2 L4 tsp_olis (r-L) =r=_2—+—>2;r——‘-
n  n? n n n n? n

ist ein Element von M, da r — -l— > 0ist (1» ist mindestens 1, weil ',2' 3 > 0) . An-
n _

dererseits ist r — -;1‘- < r. Setzen wir r' = r — —:.— so sind die Bedingungen erfiillt.

Es seien M und N nichtleere nach oben heschrinkte Mengen reeller Zahlen.
Dann gilt sup (M v N) = max {sup M, sup N}.

Es sei inf M = h und &, sei untere Schranke von M. Dann gilt k, < k.

Jede nichtleere nach unten beschrinkte Menge M hesitzt eine groBte untere
Schranke.

Hinweis; Die Menge M*:= {z: — z € M) liegt auf der Zahlengeraden spiegelbildlich zu
M beziglich 0. Auf diese Menge wende man das Grundgesetz der Stetigkeit an.

Es seien M und N nichtleere nach unten beschrinkte Mengen reeller Zahlen.
Dann ist die Menge M u N nach unten beschrinkt, und es gilt inf (M v N)
= min {inf M, inf N}.

Es sei M eine beschrinkte Zahlenmenge und N := {—z:z € M). Dann gilt
sup N = —inf M und inf N = —sup M.

Man beweise, daB fiir alle reellen Zahlen a,, a,, ..., a, und fiir alle reellen Zahlen
by, by, .oey b

max {a, + by, Gy + by, ..., @y + byl
< max {a,, @y, ..., @,} + max {by, b,, ..., bal

gilt.
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20. Man zeige, daB die Menge M = {z: z ¢ @, A 2? < 2} kein Maximum besitzt.
21. Man beweise:

a) sup Ja, b{ = b, inf Ja, b =a.

b)FﬁrM:{z:z: 1_

5 _:_ lAn € N‘}giltsupM:m&xM:%, infM=0.

o) Fﬁru={z:z=lAne N‘}giltinfM=04
n

22. Esist |z — a| < ¢ genau dann, wenna — ¢ <z < a + ¢ ist.

Beweis: Essei|z —a| < e Wegen +-(z — a) < |z — a| ist 3-(x — a) S &. Aus —(z — a)
Sefolgta —e<z. Ausz —a=<cfolgtz<a+e¢dh,esista —c<z=<a+e
Umgekehrtseia —e < z<a + ¢ Dannista —z<cundz—a=<¢ Aust(zx—a)<¢
folgt aber |z — a| < &.

23. Man veranschauliche die Relation
R={(z,y):2,y € RA|z| + |y] =< 1} in der z,y-Ebene.

Lésung:
1. 220 und y=0. Dannfolgt z+y=<1.
2.2=20und y<0. Dannfolgt z—y=1.
3.z<0und y<0. Dannfolgt —z—y=1.
4.2<0und y=0. Dannfolgt —z+y=<1.
Offenbar ergibt sich als g trische V haulich das Innere und der Rand des
Quadrates mit den Eckpunkten (1, 0), (0, 1), (—1, 0) und (0, —1).
24. Fir alle komplexen Zahlen z gilt
1
19
Losung: Es sei z =1z + iy, also Rez =2z und Imz = y. Stets gilt (|z| — |y[)* = 0.
Daraus folgt 2|z| |y| < 2® + y® und
(I + ly)* = 2* + 2lz| ly| + 9* < 2(=* + »*).
Durch Wurzelziehen ergibt sich |z| + |y] = |[Rez| + [Imz] < ﬁ |z], also

(IRez| + |Imz|) < |z| < |Rez| + [Im 2.

1

— (IRez| + [Imz}) < |2|.

ﬁ g
Damit ist die erste der beiden Behauptungen bewiesen. Die zweite Behauptung wird
folgendermaBen bewiesen: Fir alle z, y € R gilt 2|z| |[y] = 0. Durch Addition von z* und
ydergibtsich 28 + 2|z| |y| + y* = 2° + ¥, also (|z| + ly|)* = 2* + y> SchlieBlicherhalten
wir

|2l + |yl = IRe z] + [Im 2| = |z|.

25. Man beweise folgende Rechenregeln fiir komplexe Zahlen:
a)z k=242, bz un=2z-2
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26.

27.

29.

c)(’_')=’:‘ (m+0), d i]=ﬂ (2 +0),

Z2 2z 2 Iz

e) oLzl S lal+lzl, ) lz-zl=lzl- |zl

Wo liegen die Zahlen z in der GauBschen Zahlenebene, fiir die

a)lz+3 <2 b “—“l= 1, ¢ Rezg%, d) Re (%) = a (reell)
— .
gilt. A
Es seien z,, z,, z; Punkte in der GauBschen Zahlenebene, fiir die zy + 2z, + 2, = 0

uand |z,| = |z,| = [a] =1 gzlt Man zeige, daB z,, z,, 2, die Ecken eines dem Ein-
heitskreis einbesch g itigen Dreiecks bilden.

. Es sei z eine von 0 verschiedene komplexe Zahl. Welche komplexe Zahl entspricht

dem Spiegelbild von z a) am Nullpunkt, b) an der Achse des Reellen, c) an der
Achse des Imaginiren, d) an der Winkelhalbierenden des ersten Quadranten,
c¢) an der Winkelhalbierenden des zweiten Quadrantent

Wo liegen alle Zahlen z in der GauBschen Zahlenebene, fiir die |z — 2| > |2z — 1|
gilt?
Lésung: Wir werden zeigen, da8
f2:2€CAjz—2|> |22 — 1]} = z:2€ CAz| < 1}
ist, d. h., die Punkte z bilden das Innere des Einheitskreises. Die auf der linken Seite der
obigen Gleichung stehende Menge ist nicht leer, da z. B. z = % aus dieser Menge ist.
Fir z € Cgilt [z — 2| > |2z — 1] genau dann, wenn |z — 2|* > |2z — 1|2 bzw.
Z—2E—2>@—1)@2z-1)

ist. Durch elementare Umformungen der beiden Seiten der Ungleichung kommen wir zu
der iquivalenten Ungleichung z-%2 —2(z +2) +4>42-2 —2(z+32) +1 bzw. zu
2:2<1 oder [z| < 1. Damit ist die Gleichheit der beiden Mengen bewiesen.

. Man ermittle alle komplexen Zahlen z mit 2% = 1.

Lésung: Esseiz=a + b (2,5 €R) und
2 = (a + bi)® = a° + 3a%hi — 3ab? — ib® = i.
Hieraus folgt a(a® — 3b%) = 0, b(3a® — b%) = 1.
Fall 1: Es ist ¢ = 0. Dann ist —b* = 1, und dies tritt nur fir b = —1 ein. z;, = —i ist
ein Zahl mit z§ = 1.
Fall2: Esista + 0. Dann ist a® — 3b* = 0, und aus der zweiten Gleichung folgt 85 = 1,

b=%. Fﬁraergibtsich%ﬁ oder——;—ﬁ. Somitistz,=%ﬁ+%i, = —%}’5

+%t’,undesgiltz:=z§=i.

31.* Wann liegen drei Punkte z,, z,, 2, € € auf einer Geraden?

Hinweis: Man betrachte den Quotienten Z-—22 .
33— 2%
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32. Ist @y2® + @y 42" ! + - + @)z + @ = O eine Gleichung mit reellen Koeffizien-
ten a,, so ist mit jeder komplexen Zahl z = a + b? auch die konjugiert komplexe
Zahl Z = a — by Losung dieser Gleichung.

Hinweis: Durch die Zuordnung z -2 ht ein A hi des Korpers der
komplexen Zahlen.

33. Sind a, b, ¢ komplexe Zahlen mit ¢ = 0, 8o besitzt die Gleichung az* + bz 4 ¢ =
im Bereich der komplexen Zahlen im Fall b* = 4ac genau éine und im Fall
b & 4ac genau zwei verschiedene Lisungen.

s B
Hinweis: Man gehe zu der iquivalenten Gleichung (z + ) b_:_a_c dber und
hlieBe durch Fall heid weiter. 44’

34. Im Koérper C der komplexen Zahlen kann man keine Ordnungsrelation erkléren,
80 daB € damit ein geordneter Korper wird.

Hinweis: Man fihre den Beweis indirekt.
35. Man bestimme den (gréBtméglichen) Definitionsbereich D(#) und den Werte-

bereich W(f) der reellen Funktion f(z) = _V_’=

1— 2
Losung: Die Besti des Definitionsbereiches von f ist gleichbedeutend mit der
Frage nach der Menge der reellen Zahlen z, fir die 1 — 2% > 0 ist. Offensichtlich ist

D(f)y = J—1, +1[.
Zur Bestimmung des Wertebereiches W(f) ist zu untersuchen, fir welche Werte a € R

die Gleichung a =

eine Losung besitzt. Wenn es eine Zahl z, gibt mit
z, - 2
6 = —=%—, dann folgt a® =

==
Werte fiir z,:

g OrEf

- Aus der letzten Gleich ben sich folgend
)

Zg =

a
und z, = ———.

1+4at 1+ a®

Durch Einsetzen der fiir z, erhaltenen Werte in die Ausgangsgleichung erkennt man, da8

fire

und es ist f(z;) = a. Damit ergibt sich W(f) =

nur z, = Lésung ist. Wegen —1 < z, < 1 gilt z, € D(f) fiir alle reellen Zahlen a,

36. Man untersuche, ob die Funktion f(z) = in J—1, +1[ monoton ist.

T
y1 — 2
Ldsung: Firalle0 < z < 1ist f(z) = 0, und fiiralle —1 < z < 0 ist f(z) < 0. Daher er-
hilt man aus 7, < z, mit z; < Ound z, > 0

1(z)) < f(=z).
Ist nun 0 £ 2, < 7, < 1, 80 folgt

0sd<zni<l, —-1Ssd-1<zi-1<0, 1;1-:’>1—z’>o,

1 1 z,
12— >i—-z>0, 0< < , =
' * -2 1i-= v:-:r} T—=
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317.

38.

d. h. f(z,) < f(z,). SchlieBlich gelte —1 < 2, < 2, <0. Dann ist 0 < —2, < —2, < 1,

und sus dem Bewiesenen folgt 0 < — =1 < ——=b—, d.h., es ist
i—zs Vi—=

z, z
i<

Die betrachtete Funktion / ist in J—1, +1[[ streng monoton wacnsend.

Fiir positive reelle Zahlen a, b,c mit a, b+ 1 gilt die Identitit log, b log,c
= log, c.

Beweis: Es sei z = logyc und y = log,c. Dann ist ¢ = b* = a¥. Wir logarithmieren beide
Seiten der Gleichung b* = a¥ zur Basis a und erhalten z log,b = y. Somit gilt log,b log,c
= logge.

Gegeben sei folgende Funktion aus R in R:
Iz — 1]
V*—22+2
a) Man bestimme den Definitionsbereich D(f).
b) Man zeige, da8 f in [[1, - streng monoton wachsend ist.
¢) Man zeige, daB W(f) = [0, 1[ ist.
d) Man beweise, daB der Graph axialsymmetrisch ist.

flx) =

Losung:
a) Fir alle reellen z gilt 2* — 2z + 2 = (z — 1) + 1 > 0. Also gilt D(f) = R.
b) Es sei 1 < z, < ,. Es folgt

0SSz —1<z,—1, (5 — 1< (7 — 1)8,

@ — 1+ (@ — 1)@ — 1P < (7 — 1) + (2, — 1)} (7 — D)3,

(@ — 1)1+ (2 — 1)< (@ — 1?1 + (z, — 1)},

(2, — 1) (2 — 1) Iz — 1] < Iz — 1]

1+@m—10 1+@&—10 Y-t +1 Vm—1F+1
also f(z;) < f(z).
c) Es ist f(1) = 0. Fiir alle z == 1 gilt

e—1 1

Ve—1r+1 1
Yoo

Mithin gilt W(f) S [0, 1. Ist y € JO, 1 beliebig, so gilt fir z > 1 die Beziehung
1

y . .
y = ——————genaudann, wennz = 1 + ist. Daher gilt W(f) = [0, 1 -
14 1 i—y
(z — 1)
d) Fir alle reellen a gilt
PR g R b By R
a% 4 1 at + 1

Die Gerade z = 1 ist also die Symmetrieachse des Graphen der Funktion f.
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39.

41,

42.

43.

46.

Man bestimme den gréBtméglichen Definitionsbereich und den Wertebereich
der reellen Funktion f(z) = Jr* — z* (r > 0).

. Man ermittle den gréBtméglichen Definitionsbereich folgender reeller Funk-

tionen:
8 hie) = VT — 1=, b) hiz) = 2 f: (@>0),
) hha) =12 + 4z + 6, d)fx) = Vz' —z—

Man zeige, daB die Funktion f(z) = -:T (4z — 2) auf J<, 2] streng monoton
wachsend und auf (2, —{ streng monoton fallend ist.

Man beweise :

a) Essei¢ € R, f eine Funktion aus R in R und f auf D(f) monoton wachsend. Die
Funktion ¢f ist dann fiir ¢ > 0 monoton wachsend und fiir ¢ < 0 monoton fallend.

b) Es seien f, g zwei Funktionen aus R in R, D(f) = D(g) = 4. Dann ist die Funk-

tion f + g auf A monoton wachsend (fallend), wenn f und g auf 4 monoton wach-
send (fallend) sind.

c) Es seien f, g zwei Funktionen aus R in R, D(f) = D(g) = 4. Wenn f(z) > 0
und g(z) > O fiir alle z aus 4 und / und g auf 4 monoton wachsend (fallend) sind,

ist auch f - g auf 4 monoton wachsend (fallend).

Wenn f(z) < 0 und g(z) < O fiir alle z € 4 und f und g auf 4 monoton wachsend
(fallend) sind, ist f - g auf 4 monoton fallend (wachsend).

Es sei f eine Funktion aus R in R. f sei auf D(f) monoton, [(a, b] < D(f). Man
zeige, daB f auf [(a, b] ein Maximum und ein Minimum besitzt und gebe diese Werte
an.

. Man bestimme von der Funktion f(z) = az® 4 bz + ¢ (a € R*) a) den Defi-

nitionsbereich D(f), b) den Wertebereich W(f) und c) die Monotonieintervalle.

Hinweis: f(z) =a z+ P 4““‘ s . Man hy
der Normalparabel (Graph der Funktion g(z) = 2%) entsteht.

wie der Graph von f aus

. Man untersuche, ob die folgenden Funktionen von R in R gerade oder ungerade

sind:

2 5 —
o) @) = Pognz, b)f(z) = otZ zti 6

FETX ) fa(@) = 1+
Man stelle f; als Summe einer geraden und einer ungeraden Funktion dar.

Man untersuche die folgenden Funktionen aus R in R auf Beschrinktheit :
a) h(z) =

1 1
T €, DA = eRY,

c) hr(z) = 1 @>-1, d) fuz) =z 2| (z€R).
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47.

49.

51.

52.

53.

54.

Man beweise folgende Aussagen:

a) Das Produkt einer geraden und einer ungeraden Funktion ist eine ungerade
Funktion.

b) Das Produkt zweier gerader (ungerader) Funktionen ist eine gerade Funktion.
c) Eine ungerade Funktion, die an der Stelle z = 0 definiert ist, besitzt dort den
Funktionswert Null.

. Es seien f, g monotone Funktionen. Es gelte W(f) S D(g). Dann ist die Funktion

g - / monoton. Es ist

2) g -/ monoton wachsend, wenn f und.g monoton hsend bzw. t
fallend sind,

b) g - f monoton fallend, wenn eine der beiden Funktionen monoton wachsend
und die andere Funktion monoton fallend ist.

Man zeige, daB die Funktion f(z) = 2z — [z] (= € R) periodisch mit der Periode
p=1ist.

. Ist f eine periodische Funktion mit der Periode p, so ist auch = - p fiir jedes

n € N* Periode.

Es sei f eine Funktion aus R in R und D(f) = R. Weiterhin erfiille f fiir alle z € R
die Bedingungen f(a + z) = f(a — z) und f(b + 2z) = f(b — 2),0 < @ < b. Man
zeige, daB f eine periodische Funktion mit der Periode p = 2(b — a) ist.
Gegeben sei die Funktion f(z) =2? — 4z + 1 (z € (2, »{). Man beweise die
Existenz der Umkehrfunktion und gebe diese an.

Fiir welche reellen Zahlen z sind die folgenden Gleichungen erfiillt:
a)Jr+2+Y2x—4=14 (ze[2,—>[),
D)z +r3+12m—3=6 (ze[%,—»[),

c)lg(2x+3)—1lg8z—2)=2 (zE]%,»[),

1
d) log, {21og, [1 + log, (1 + 3 log, )]} = >

e) logygz + log,z + loggz =17, f) 914 3+*2 —324 =0,
g) (a35-0)8s-3 (gb=+3)3s-1 — (q8=-B)B=+2 (qds-7)4r-3 g positive reelle Zahl, a = 1.

Es sei a eine von Null verschiedene reelle Zahl und f eine Funktion aus R in R mit
folgenden Eigenschaften:

a) Ist die Funktion f an der Stelle z definiert, so ist sie auch an den Stellen
z + a und z — a definiert.

14 /(=)

b) Fiir alle z, fiir die die Funktion f definiert ist, gilt f(x + a) = )
— (=
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b7.

58.

Es ist zu beweisen, daB die Funktion / periodisch ist, d. h., daB es eine von Null
verschiedene Zahl A gibt, so daB f(z) = f(z + k) fiir alle 2 des Definitions-
bereiches und fiir alle ganzen Zahlen k gilt.

Hinweis: Zunichst zeige man durch volistindige Induktior, daB wegen a) mit z auch
stets z + ka mit allen hligen k zum Definitionsbereich gehért. Wegen b) ergibt sich

Hz + 2a) = —/(_lzi' woraus sich f(z + 4a) = f(z) ergibt.

. Es seien f, g fiir alle positiven reellen Zahlen z erklirte Funktionen. Fiir alle

z € Ry gelte f(z + 1) = (z + 1) - f(z), f(z) + 0. Man beweise: Die Funktion
@(z) = f(z) - g() erfiillt genau dann fiir alle positiven reellen Zahlen z die Glei-
chung ¢(z + 1) = (z + 1) p(z), wenn g(z) = g(= + 1) fiir alle z € R}, ist.

. Es sei @, b,c€ R und |a| # |b]. Man ermittle alle Funktionen f, die fiir alle

reellen Zahlen z definiert sind und der Gleichung
a-flz—1)+b-f(1 —z)=cz

geniigen. Ferner diskutiere man den Fall |a| = [b|.

Hinweis: Man setze in die gegebene Gleichung fiir z zuniichst 1 + z und danach 1 — z.
Aus dem sich ergebenden Gleichungssy erhilt man im Fall |a| 3 |b] fiir alle reellen =

die Funktion f(z) = °

z + ——:—b Deann untersuche man die Fille |a| = |8 und
a

a—b
¢c+0,a=b+0undc=0,a=—b+0undc=0,a=b=c=0.
Es sei ¢ eine Metrik auf einer Menge M. Man zeige, daB g(z, y) = M
ebenfalls eine Metrik auf der Menge M ist. 1+ ey

Lésung:

a) Wegen o(z, y) = 0 folgt 1 + o(z, y) > 0. Also ist g(z, y) = 0 fur alle z, y € M.
b) 1. Es sei g(z, y) = 0. Dann gilt g(z, y) = 0. Daraus folgt z = y.

2. Es sei z = y. Dann folgt wegen g(z, y) = 0 sofort g(z, y) = 0.

c) Aus o(z, ¥) = o(y, z) folgt sofort

d) Wir betrachten die Funktion f(4) = fiir 2 = 0. Diese Funktion ist monoton

A
1+4
wachsend. Fiir alle Elemente z, y, z der Menge M gilt o(z, ¥) < o(z, 2z) + ¢(2, y). Daraus
ergibt sich

oxy) _ _olz.2) +e@yY)

) = T ey = T+e@a) + e w)
- oz, 2) + oz y)
1+0z,2) +elzy) 1+ e2)+ezy)
e, 2) ez y)

S Tremn T Treey (0 Heey:

Es sei z, ein beliebiger Punkt des R, und r eine positive reelle Zahl. Man zeige,
daB jeder Punkt z, mit o(z, z,) = r Haufungspunkt der Menge U,(z,) ist.
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Loésung: Es sei z, = (a, b) € R, beliebig und z, = (¢, d) € R, ein Punkt mit o(z,, z,)

= |lty — z,ll = V(@ — ¢)* + (b — d)* = r. Wir haben nun zu zeigen, daB jede Umgebung
Uia) ={@y: Ve —oF + 5 — D < &}

mindestens einen Punkt z, = (e, f) enthilt, far den z, € U/(z,) und z, =+ z, gilt. Hierzu

wiihlen wir eine natiirliche Zahl ¥ mit & > — und setzen Tyi=2, + — 3 l:r (o — 7,). Dann
T
it 3, + 7 und gy — Bl = = 5 — 7l = = < & 8lso 2 € U, (). Wegen
2kr 2k

z,—zo=z,—zo+;:7(z,—z,)=( 2kr)(z‘ z) und 1>2_Icr>o

gilt
Iy == (1= ) oo — =l <.
d. h., es ist z, € U(x,).

59.* Es sei g eine Metrik auf der Menge X, M eine Teilmenge von X. Man zeige fiir

die Funktion g(z, M) := inf g(z, z) (Abstand eines Punktes z von der Menge M)
die folgende Beziehung: ¢

le(z, M) — o(y, M)| < o(z,y) fir z,y€ X.

60.* Es sei X = R X R. Fiir heliebige z = (2,, 7;) aus X und y = (y,, y;) aus X

61.

62.

63.

setzen wir

a(@y) =z —yl + 17: — 9l @2, y) = (@1 — n)* + (2. — 2)°
0s(z, y) = max {|z, — yl, |22 — yal),
1 — wl + |22 — Yol .
Ltz —wyl 1+ 12—yl
Man untersuche, welche dieser Funktionen von X X X in R die Menge X zu
einem metrischen Raum macht.

Wo liegen alle Punkte z = (z,, z,), die vom Koordinatenursprung O = (0, 0)
den Abstand g;(z, 0) = 1 (¢ = 1, 3) haben?

ez y) =

Es sei (X, o) ein metrischer Raum. Man zeige:

a) Der Durchschnitt endlich vieler offener Mengen ist eine offene Menge.

b) Die Vereinigung endlich vieler abgeschlossener M:ngen ist eine abgeschlossene
Menge.

Es sei (X, o) ein metrischer Raum. Unter der Kugel K ,(z,) mit dem Mittelpunkt
2o und dem Radius 7 verstehen wir die Menge aller Punkte z mit z € X, deren

Abstand vom Punkt z, nicht groBer als 7 ist. Mun zeige, daB jede Kugel K ()
eine abgeschlossene Menge ist.

Hinweis: Man zeige, daB jeder nicht zu K ,(z,) gehorende Punkt kein Haufungspunkt von

K, (z,) ist.

Man zeige, daB jede Umgebung und jede Kugel im R, konvexe Mengen sind.
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64.

10.

11.

Fiir alle z, y mit z, y € R, gilt die Parallelogrammgleichung
iz + 9l + llz — yi* = 2(ll=[* + 1%
Man gebe eine geometrische Deutung dieser Gleichung im R,.

Der Grenzwertbegriff

Kontrollfragen

. Welche Méoglichkeiten besbehen, reelle bzw. komplexe Zahlenfolgen graphisch

llen? Man gebe Beispiele an.

. Welche Begriffe, die von Funktionen her bekannt sind, lassen sich auf reelle bzw.

komplexe Folgen iibertragen? (Beschrinktheit, Monotonie)

. Auf welche verschiedenen Weisen kann man den Begriff Nullfolge definieren?

Man gebe mehrere Beispiele an.

. Welche Rechenregeln und Kriterien fiir Nullfolgen gibt es? Man wende diese auf

selbstgewiihlte Beispiele an.

. Der Begriff der Konvergenz ist auf den Begriff der Nullfolge zuriickzufiihren.

Dabei sind auch die Begriffe Grenzwert und Divergenz zu erléutern.

. Welche Rechenregeln fiir konvergente Zahlenfolgen gibt es? Wie kann man be-

weisen, daB die Summenfolge und die Produktfolge zweier konvergenter Folgen
konvergent sind? Man gebe Beispiele an, in denen man die Berechnung von Grenz-
werten mit Hilfe der Grenzwertsitze auf bekannte Grenzwerte zuriickfiihrt.

. Man gebe mehrere Beispiele fiir konvergente, divergente und bestimmt diver-

gente Folgen an.

. Wie kann man die Definition der reellen Nullfolge und Sitze iiber reelle Null-

folgen auf den euklidischen Raum R, und auf komplexe Zahlenfolgen iibertragen?
Man gebe Beispiele fiir Nullfolgen komplexer Zahlen und Nullfolgen im Raum R,
an.

. Wie kann man die Begriffe der Konvergenz und des Grenzwertes auf komplexe

Folgen bzw. auf Folgen im euklidischen Raum R, iibertragen? Wie ist der Kon-
begriff in beliebigen metrischen Réumen definiert? Welche der fiir kon-

vergente reelle Nullfolgen giiltigen Sitze bleiben bestehen?

Wie lautet ein notwendiges und hinreichendes Kriterium fiir die Konvergenz von
Folgen im Raum R,? Was laBt sich iiber den Grenzwert aussagen?

Wie lautet ein notwendiges und hinreichendes Kriterium fiir die Konvergenz
monotoner Zahlenfolgen?

. Welche Aussagen konnen iiber die Konvergenz bzw. Divergenz monotoner Zah]en-

folgen gemacht werden? Was versteht man unter einer Intervallschachtelung?
Es ist eine Intervallschachtelung fiir die Zahl e anzugeben.
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13.

14.

15.

16.

17.

18

19.

20.

Wie lautet der Satz iiber Intervallschachtelungen? Worin besteht die Bedeutung
dieses Satzes?

Wie kann man die Funktionen y = In z und y = ef durch monotone Zahlenfolgen
darstellen?

Wie ist der Begriff des Hiufungswertes einer reellen Zahlenfolge definiert? Warum
kann der Haufungswert einer Zahlenfolge als Verallgemeinerung des Grenzwert-
begriffes angesehen werden?

Welche Zusammenhiinge bestehen zwischen den Begriffen Grenzwert, Hiufungs-
wert und groBter Hiaufungswert? Man gebe Beispiele an.

Wie 1Bt sich der Satz von BoLzaNo-WEIERSTRASS aus dem folgenden Satz ab-
leiten:

Jede reelle Zahlenfolge besitzt eine monotone Teilfolge?

Zum Beweis welcher Sitze aus der Analysis wird der Satz von BoLzANO-WEIER-
STRASS benétigt?

Was versteht man unter einer Fundamentalfolge, und wie lautet das Konvergenz-
kriterium von CaucHY? Worin ist die Bedeutung dieses Kriteriums bei Kon-
vergenzuntersuchungen zu sehen?

Wie 1Bt sich der Begriff der Fundamentalfolge auf allgemeine metrische Réume
iibertragen?

Wann heiBt ein metrischer Raum vollstindig?

21.* Man untersuche metrische Riéume auf Vollstindigkeit.
22.* Wie lautet die als Satz von CANTOR bezeichnete Verallgemeinerung des Satzes

23.

31.
32.

iiber Intervallschachtelungen? Was besagt der Satz von HEINE-BOREL?

Wie ist eine Reihe definiert? In diesem Zusammenhang sind die Begriffe Glied
einer Reihe, Partialsumme einer Reihe, Rest einer Reihe und Ausschnitt einer
Reihe zu erliutern.

. Wann heiBt eine Reihe konvergent, divergent bzw. bestimmt divergent? Man gebe

Beispiele an.

. Man erléutere anhand von Beispielen das Konvergenz- und das Summenproblem

bei Reihen.

. Welche Konvergenzsitze fiir Reihen gibt es?
. Man gebe ein (nur) notwendiges und ein notwendiges und hinreichendes Kon-

vergenzkriterium fiir Reihen mit beliebigen (mit nichtnegativen) Gliedern an.

. Man untersuche das Konvergenzverhalten der geometrischen Reihe.

. Man erléutere am Beispiel des Satzes J (a, 4 b,) = Y a, + 3 b, das Beweis-
prinzip fiir Konvergenzsitze iiber Reih
. Welchem Kriterium fiir Zahlenfolgen entspricht das notwendige und hinreichende

Kriterium fiir Reihen mit nichtnegativen reellen Gliedern?
Wie lautet das Leibnizsche Konvergenzkriterium fiir alternierende Reihen?
Was beinhaltet das Prinzip der Fehlerabschétzung bei alternierenden Reihen?
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33. Was versteht man unter einer absolut konvergenten Reihe? Welcher Zusammen-

35.
36.

317.
38.

39.

41.
42.

43.

45.

46.

47.

48.

49.

50.

hang besteht zwischen absoluter Konvergenz und Konvergenz einer Reihe?

. Welches sind die wichtigsten Kriterien fiir die absolute Konvergenz?

L
Es ist zu beweisen, daB die Reihe ' f? fiir alle z € R absolut konvergiert.
=0 7

Was versteht man unter den Begriffen bedingt konvergente bzw. unbedingt
konvergente Reihe? Worin besteht die Bedeutung des kleinen Umordnungssatzes?

Man gebe ein Beispiel fiir eine bedingt konvergente Reihe an.

Kann man zu jeder bedingt konvergenten Reihe und zu jeder reellen Zahl eine
Umordnung dieser Reihe angeben, so daB deren Summe gleich dieser reellen Zahl
ist?

Welche Einteilungsprinzipien fiir unendliche Reihen gibt es?

. Was besagt der groBe Umordnungssatz? In diesem Zusammenhang sind die

Begriffe Doppelfolge, Doppelreihe, lineare Anordnung fiir die Glieder einer
Doppelfolge zu erliutern. Was versteht man unter der Cauchyschen Produkt-
reihe zweier Reihen?

Welche verschiedenen Darstellungen der Zahl e gibt es? e

Man gebe zwei équivalente Definitionen fiir die Stetigkeit einer reellen (bzw.
komplexen) Funktion an der Stelle a an. Wie kann man den Begriff der Stetig-
keit geometrisch deuten? Wann heiBt eine reelle (bzw. komplexe) Funktion in
der Menge M stetig? Wann heiBt eine reelle (bzw. komplexe) Funktion stetig?
Wie 1a8t sich folgende Aussage formulieren: Die Funktion f ist an der Stelle a
nicht stetig? Man gebe Beispiele fiir Funktionen, die an der Stelle a stetig bzw.
nicht stetig sind. Welche Fille konnen dabei auftreten?

. Wie 148t sich der Begriff der Stetigkeit einer reellen (bzw. komplexen) Funktion

an der Stelle a auf Funktionen aus einem metrischen Raum X in einen metri-
schen Raum Y iibertragen?

Auf welche Klasse von Folgen kann man sich beim Nachweis der Stetigkeit reeller
Funktionen beschrinken?

Was 1iB¢ sich iiber die Umkehrfunktion einer auf einem Intervall definierten und
streng monotonen Funktion aussagen?

Man gebe zwei dquivalente Definitionen fiir den Grenzwert einer Funktion an
der Stelle a. Welche Zusammenhiinge bestehen zwischen den Begriffen Grenzwert
und Swtngkexﬂ Wie kann man den Grenzwertbegriff auf Funktionen aus einem
metrischen Raum X in einen metrischen Raum Y verallgemeinern?

Welche Grenzwertsitze und Sétze iiber Verkniipfungen stetiger Funktionen gibt
es?

Wie ist das Verhalten einer reellen ganzrationalen Funktion fiir £ — 4 oo
charakterisiert?

Wie kann mandas Verhalten der Funktion f(z) = % fiir £ — O charakterisieren?
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51.

52.
53.

&R

56.

57.

58.

59.

66.

67.

69.

70.

Wie sind die Begriffe linksseitige (rechtsseitige) Stetigkeit und linksseitiger
(rechtaseitiger) G: t definiert?

Man gebe Beispiele fiir stetige reelle Funktionen an.

Man gebe ein Beispiel fiir eine Funktion an, die in einem Punkt a einen einseitigen
Grenzwert, aber keinen Grenzwert besitzt.

. Man nenne Sitze iiber Funktionen, die auf abgeschlossenen Mengen stetig sind.
. Wie lautet ein auf dem Satz von BoLzaNo beruhendes einfaches Verfahren zur

Berechnung von Nullstellen einer Funktion?

Wie kann man begriinden, daB der Zwischenwertsatz eine Verallgemeinerung
des Satzes von BoLzaNo darstellt?

Wann heiBt eine Teilmenge eines metrischen Raumes kompakt? Man gebe ein
notwendiges und hinreichendes Kriterium dafiir an, daB eine Teilmenge des
euklidischen Raumes R, kompakt ist.

Wann heiBt eine reelle Funktion gleichmiBig stetig? Welcher Zusammenhang be-
steht zwischen der Stetigkeit und der gleichmiiBigen Stetigkeit?

Es ist zu beweisen, daB die Funktion f(z) = az + b auf ihrem gesamten Defi-
nitionsbereich gleichmiBig stetig ist (a, b € R, a = 0).

. Wie liBt sich der Begriff der gleichmiBigen Stetigkeit auf Funktionen aus R, in

R, iibertragen?

. Man formuliere die Aussage: Die reelle Funktion f ist nicht gleichmi8ig stetig.
. Welche Siitze iiber Nullstellen ganzrationaler Funktionen gibt es? Man gehe dabei

besonders auf den Fundamentalsatz der klassischen Algebra ein.

. Wie lautet der Satz iiber die Zerlegung einer ganzrationalen Funktion in Linear-

faktoren bzw. in Linearfaktoren und quadratische Faktoren ohne reelle Null-
stellen?

. Wie lautet der Fixpunktsatz von BanacE? Wie sind die Begriffe ,,Fixpunkt einer

Funktion‘* und , kontrahitrende Funktion* definiert? Wie 1iBt sich der Banach-
sche Fixpunktsatz auf vollstindige metrische Riume verallgemeinern?

. Man gebe Beziehungen an, die eine Fehlerabschiitzung nach Anwendung des

Banachschen Fixpunktsatzes ermdglichen.

Wie kann man die trigonometrischen Funktionen definieren? Man gehe dabei auf
die jeweiligen Definitionsbereiche, Wertebereiche und Graphen ein.

Welche Stetigkeits- bzw. Monotonieeigenschaften besitzen die trig trischen
Funktionen?
. Wie lauten die Additionstheoreme der trigonometrischen Funktionen? Man leite

aus ihnen Formeln fiir cos # 4 cos y und sin z + sin y her.

Welche Grenzwertformel ist fiir die Differentiation der trigonometrischen Funk-
tionen von grundlegender Bedeutung?

Wie sind die zyklometrischen Funktionen definiert und welche wichtigen Eigen-

schaften besitzen diese Funktionen (Definitions- und Wertebereiche, Stetigkeits-
eigenschaften, Graphen)?
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71.

—

72.

73.

4.

75.

76.

1.

8.

79.

81.

82.
83.

86.

Was versteht man unter der trigonometrischen Darstellungeiner komplexen Zahl?
Wie lautet die komplexe Zahl z = —l/3‘—— % in der trigonometrischen Form?
Man gebe eine Regel fiir die Multiplikation bzw. fiir die Division von komplexen
Zahlen mit Hilfe der trigonometrischen Darstellung komplexer Zahlen an.

Wie lautet die Eulersche Relation? Nach welchem Prinzip kann man aus ihr die
Formeln von MoIveE ableiten?

Man gebe alle Nullstellen der ganzrationalen Funktion f(z) =2* — 1 in der
trigonometrischen Form an? Wo liegen diese Nullstellen in der k 1
Zahlenebene?

Wie sind die hyperbolischen Funktionen definiert und welche wichtigen Eigen-

schaften besitzen diese (Definitions- und Wertebereiche, Reihendarstellungen,
Stetigkeitseigenschaften, Graphen, Additionstheoreme, Monotonieintervalle)?
Welche Analogien ergeben sich zwischen den trigonometrischen und den hyper-
bolischen Funktionen?

Man gebe durch Auflésung der Gleichung z = sinh y eine Darstellung der Funk-
tion y = arsinh z an.

Wie kann man die komplexen Funktionen cos z, sin z, cosh z und sinh z durch
Reihen definieren?

Wie ist die punktweise und die gleichmiBige Konvergenz fiir Folgen reeller oder
komplexer Funktionen definiert? Welcher Zusammenhang besteht zwischen
beiden Begriffen?

Man erliutere geometrisch die Anniherung der Folgenglieder einer gleichmiBig
konver Folge reeller Funktionen an die Grenzfunktion.

&

&

. Wie lautet das Kriterium von WEIERSTRASS fiir die Untersuchung von Reihen

auf gleichmiBige Konvergenz? Man wende es auf Reihen der Form

L 0o

Y a,sinnz und 3 a,cosnr

=1 n=1
an.
Man erliutere die Aufgabenstellung der Interpolation von Funktionen durch
ganzrationale Funktionen. Was kann man iiber die Existenz und Eindeutigkeit
des Interpolationspolynoms aussagen?
Was versteht man unter linearer Interpolation?
Wie kann man die Einzigkeit des Interpolationspolynoms mit Hilfe des Funda-
mentalsatzes der Algebra beweisen, wenn man annimmt, es gibe zwei Inter-
polationspolynome P, und P,, und deren Differenz betrachtet?

. Was versteht man unter einem trigonometrischen Polynom. Welche Eigenschaf-

ten haben die trigonometrischen Polynome?

Wie lauten die beiden Siitze von WEIERSTRASS iiber die gleichmiiBige Approxi-
mation von stetigen Funktionen?
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Aufgaben

auf Monotonie und Be-

1. Man untersuche die Zahlenfolge (a,) mit a, = Z"
schrinktheit. antk

Losung: Fir alle n = 1 gilt
n+l 1 a1 22 » 1

R - LT Ry
= 1 1 1 1 L] 1
SEaritmai T kil hntk

_ Lttt o,
2n4+1 2n+2 n+4+1 2n+1 2n+2

S, . _ 1 o
Mithin ist die Folge (a,) streng monoton wachsend. Ferner gilt a, —.{,‘l oA |
< 1 fiir alle n = 1. Die Folge (a,) ist also nach oben beschriénkt. a, = —;- ist eine untere
Schranke. Stete gilt a, ¢ [ 5-» 1], die Folgo iat also beachrankt.

1 "
2. Man zeige, daB die Zahl 3 eine obere Schranke der Folge (a,) mit ¢, = (1 + -1:)
ist.
Beweis: Nach dem binomischen Lehrsatz gilt
n\ [1\¥
() =E6) )
Andererseits gilt
n\ (1\E 1 1 2 kE—1
@G =5 (-5 -2) - (-F)sm=a

Nun folgt

(1+i)'=1+1+z()isx+1+2#—1+i <t42=3
n rmg \k/ 0% = =T =1 - .

1
2k-1

Damit haben wir (l + —1-),l < 3firallen = 1.
n

3. Man zeige, daB die Folge (a,) mit a, = ::: :_ : eine Nullfolge ist.

Beweis: Fiir alle natirlichen Zahlen n mit n = 1 folgt aus

3n —2
n’+3

stets n < % Setzen wir also N(e) = ~3—, so folgt aus n = N(c) stets |a,| < e.

4. Man beweise, daB die Zahlenfolge ( ) eine Nullfolge ist.
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Beweis: Fir alle natarlichen Zahlen n mit n > 4 gilt
_nt nt 5! nt

a+ae (_n)=u(u—1)(n—~2)(n-3)(n—4)'
5

nt
2|~

Wir benutzen nun die fiir alle natdrlichen Zahlen p, ¢ und g > p giltige Ungleichung

q
—p =2 und erhalten
B ET
5! nt 5! nt _ 6y
-1 (r—2)(n=3N(—4)" nnnn = .

2345
]

Nach dem Vergleichskriterium ist die Folge 1. eine Nullfolge.

. Es sei (a,) eine Folge positiver reeller Zahlen, fiir die lim — Zant =g <1 gelte.

Man zeige, daB die Folge (a,) eine Nullfolge ist. rooo Ga

Beweis: Wir setzen c,:= —**! fiir alle n. Nach Voraussetzung gilt dann lim c, =gq.
¢
Wir wiihlen eine Zahl p mit ¢ < p < 1. Es sei ¢ = p — ¢. Wegen limc, = ¢ glbt s eine
>0

natérliche Zahl N mit |¢, — g < ¢ fiir n = N. Also gilt ¢, < p fir alle n = N, d. h.
Gga4y S P-a, < agfiirn = N. Aus derletzten Ungleichung laBt sich ableiten, daBay,; < p'ay
fir+ =0, 1,2,... gilt. Ist n = N, dann gibt es eine natiirliche Zahl ¢ mit N 4 ¢ = n. Far
alle n = N gilt

ay
G = Byiu-n) = Gysi S play =" o

Damit haben wir 0 < a, < p" —L fir n = N. Nach dem Vergleichskriterium gilt
lima, = 0. ¥
n—>00

. Man zeige, da8 die Zahlenfolge (a,) mit den induktiv definierten Folgengliedern

a,=0,a,=1,a,, = % (@y + @yy) fir n =2

eine Fundamentalfolge ist.

Beweis: Die Unt hung der Diff zweier aufeinanderfolgender Glieder fihrt zu
der Vermutung
1 -
(1) dyi=a,, —¢.=(—l)"‘-2: fair n2>1,
die durch vollstindige Induktion bewi wird.

1. Die Gleichung (1) gilt fir n = 1.
2. Induktionsannshme: (1) gelte fiir n = k.
Induktionsbehauptung: (1) gilt far n = k + 1.
Beweis:
iy = Opyy — Gpyy = i(‘hu +a) — =i(¢t —G) = ——l"in- = (—1)"l~
. 2 2 2 2*
Damit ist die Vermutung bewiesen.
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10.

11.

L i
. Man untersuche die Zahlenfolgen (a,) mit a) @, = % 1 b)a, =3

Es seien m und n zwei natirliche Zahlen mit m > x. Dann gilt

Gy — Gy = (Gpy1 — @) + (@p43 — Bps1) + - + (G — Gm-a)s

lom — a4l = |“-+| - °-| + lpse — ¢w1| + -+ l“- — G|

1 1
+ =t + v—ry 2._( + + - +2.'_|)
1 1\ 1 -
gF(l—(?) )<F far m> n.

Es sei s > 0 beliebig vorgegeben. Dann gibt es eine reelle Zahl N(e), so da8 2—:_-‘ <egist

fir n = N(e). Mithin ist |a,, — a,| < & fiir m > n & N(¢). Damit ist gezeigt, daB (a,) eine
Fundamentalfolge ist.

. Man stelle fest, welche der Zahlenfolgen (a,) monoton wachsend bzw. monoton
fallend sind:

a)a.=;,—21—1, ba,="—1, 9a=2"1

Yo =2 da—="—r Da=ifa @>0
Da=h  Wa=tl

. Es sei (a,) eine streng monoton wachsende Zahlenfo]ge': Dann gilt a, < a,, fir

alle natiirlichen Zahlen » und m mit » < m.

Hinweis: Den Beweis fihre man durch vollstindige Induktion nach m.

auf

x| =

Morotonie und Beschrénktheit. i=ok! - Em
Man priife, ob folgende Zahlenfolgen (a,) Nullfolgen sind:

n 1 (=1

VETwry T de=
- E !
d)a.=u, e)a,,=£——3-, f)a.,.=",
n n  nt n*

g) a, =(1 +i)‘, h)a.=<—l+£v—)., i) a.=(—l+iﬁ)-.
2 3 n
) a,,=Vn+l—ﬁ, k)a,:%.

Man beweise: Ist (a,) eine Nullfolge und a eine reelle Zahl mit |a| < a, fiir alle 7,
80 fo]gt a=0.

Hinweis: Man fiihre den Beweis indirekt.
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12. Es sei (a,) eine Nullfolge, und a, b seien reelle Zahlen mit a < b + a, fiir alle .
Man zeige, daB dann a < b gilt.

Hinweis: Man fithre den Beweis indirekt.
13. Ist (a,) eine Nullfolge, so ist ((—1)" a,) ebenfalls eine Nullfolge.

14. Man ermittle den Grenzwert der Folge (a,) mit a, =

logan (o5 1.
n

Z o
15. Es sei (a,) eine Nullfolge. Man zeige, daB dann auch die Folge (b,) mit b, = L
eine Nullfolge ist.

16. Man gebe jeweils ein allgemeines Glied a, so an, daB die folgenden Zahlen die
ersten Glieder der Zahlenfolge (a,) sind:

12 3 4 5'79

20w n Pt T Ea

wlm

c) 1,1.3,
2’3

17. Man untersuche folgende Zahlenfolgen (a,) auf Konvergenz und bestimme ge-
gebenenfalls den Grenzwert:

Il)uu=n‘+3ﬂ.—2. b)a, = (n+l)(n+2)(n 3)’
3?46 4+ a4 1
c)%=L |n'+2' dya, =Vnt +1—n,
n—n+41
Si Zi
e)a, = Yin® + bn + 2 — 2n, f)a,:%, g) a, = + %’
h)a, = 7 — Y — 17, i)a.=1"7(1—l). =2 (- )
k=2 kt
g+ _ 7
k)a, = —— e l)a"=ﬁ(yn+l—ﬁ).

18. Man berechne den Grenzwert der Folge mit dem allgemeinen Glied
=VFreT

Hinweis: Man zeige zuniichst, daB 7 < .VS' +60+ < 73’5&: alle n =1 gilt.
Dann wende man das Vergleichskriterium an.

19. Man zeige, daB die Zahlenfolge (a,) mit den induktiv definierten Folgengliedern
1
a;, =0, a=1, a, =§(a,,_, + apg) (n=3)

den Grenzwert % besitzt.
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21.

22.

23.

24.

—1\"
Hinweis: Man beweise zunichst a, — 2_Cr % firn = 1 durch vollstindige

Induktion. 3

. Man untersuche das Konvergenzverhalten folgender Zahlenfolgen:

s 1 » 1
a)a, = E, b)an=2

o] =1 YRk + 1)

Hinweis: Beia) zeige man, daB die Folge monoton wichst und nach oben beschrinkt ist.

Bei b) beachte man, da8 die Folge (a,) mit e, = Z" 1
=1 k+1

Man gebe solche Zahlenfolgen (a,) und (b,) an, daB gilt:

a) @, - oc, by - 00, @, + b, - 0, b)a, - o00,b, > —oc,a, + b, > —o0,

bestimmt divergent ist.

¢) @y —> 00, by > — 0, @, + by, ¢ (beliebig reell),

d) a, - o0, by > 00, a, + b, unbestimmt divergent,

e)a, > 0,b, > o0, a, b, > o0, f)a,—0,b,—>o0,a,- b, >—o0,

g) @y —0,b, - 00, a, - b, >¢ (beliebig reell),

h) ay -0, b, > o0, @, - b, unbestimmt divergent.

Es seien (a,) und (b,) konvergente Folgen mit lim @, = @ und lim b, = b. Die

Folgen (c,) und (d,) seien definiert durch ¢, := m.a_:{a., b,} und d::: min {a,, b,}.
Man zeige, daB die Folgen (c,) und (d,) konvergent sind und da8 lim ¢, = max {a, b}
und lim d, = min {a, b} gilt. Lnead

n—00

Hinweis: Man benutze die Beziehungen
max {a, b} = —;—[a +b+|a—>3] und min{g, b} =%[a+b — |a — b]].

Man berechne die Grenzwerte der Folgen (a,):
a)a, =nP-¢" (pEN*0=¢g<1),

q* . . L
b)a, = T (g nicht negativ), c)a, = V;q" O<g<1).

n
Hinweis: Man benutze das Ergebnis der Aufgabe 5, S. 170.

Es seien m positive Zahlen a,, ay, ..., a,, gegeben. Man zeige, daf3

n
limYa} + a3 + --- + ap = 4 := max {ay, ay, ..., @)
n—>00
ist.
Hinweis: Man beweise die Ungleichung 4 < ‘Va',‘ +ai+--t+ans4d l}'r—n

25.* Die Fibonaccische Zahlenfolge (a,) ist rekursiv gegeben durch @, =0, a, =1

und @p., = Gy + Ggyy (# = 1). Man zeige, daB sich das allgemeine Glied in der
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26.

27.

28.

29.

Form

_L 1+}/Eu—l I_Vgn-l
- e ) s
darstellen la8t.

h

Hinweis: Man ohne die Anfangsbedi a; = 0 und a, = 1 zu beachten,
eine geometrische Folge Gy =a- -q"lzu finden, die der Rekunmnsglelchu.ng Gy =0y + Guyy

geniigt. Man erhilt zwei Folgen ag® und a’g’®, die der Gleichung geniigen; ebenfalls genagt
die Summe dieser beiden Folgen dieser Gleich\mg. Die Konstanten ¢ und @’ wihle man so,
daB die Anfangsbedingungen ¢, = 0 und a, = 1 erfiillt sind.

Man weise nach, da8 (a,/b,) eine Intervallschachtelung ist, wenn a,, b, wie folgt
lauten:

n—1 n+41 3nt—4 3n2 42
a)a, = > be = » b St pra Wil ey g
s-1 n 4
T >
_ =1 _ =1
°) e ==3 e

d) Es seien a,, b, reelle Zahlen mit 0 < @, < b, und
@pyy = Y@y - by, bpny = — (ﬂu +b) (n=1).

Es seien a,, b, reelle Zahlen mit 0 < a, < b, und

2a,b, an + b
a, + b, 2
Man beweise, daB (a,/b,) eine Intervallschachtelung ist und daB der durch sie
bestimmte Grenzwert gleich Vagb, ist.

Ay = by = (n=0).

Hinweis: Man beachte die Bezieh zwischen arithmetisch ha. isch und
geometrischem Mittel.

Die Folge (a,) sei gegeben durch a, = J2 und ¢, = J2 + @,, (n=2). Man
untersuche das Konvergenzverhalten und bestimme gegebenenfalls den Grenz-
wert.

Hinweis: Man zeige zunichst, daB die Folge (a,) t hsend ist. Sod zeige
mm, daB die Zahl 2 eine obere Schranke ist. Nachdem man so bewiesen hat, daB der
t existiert, besti man ihn aus der Gleichung a} = 2 + a,,.

Bemerkung: Die Aufgabenstellung li8t sich folgend Ben verall inern: a, = Ve

Yéc+1 +1
—_—

(¢> 0),6,= Ve + ap; (n = 2). Als Grenzwert erhilt man

Es sei a, eine reelle Zahl mit 0 < a, < 1. Die Folge (a,) sei induktiv definiert
durch a, = @,4(2 — a,;) (» = 1). Man untersuche das Konvergenzverhalten
dieser Folge und bestimme gegebenenfalls den Grenzwert.

Hinweis: Man wende das Hauptkriterium iiber monotone Funktionen an.
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30.

31.

32.

33.

34.

Gegeben seien die Zahlenfolgen (a,) mit den Gliedern:
1 fiir gerade n,
8) @y = orr fiir ungerade =, b) @, =m,

c)a, =2+ 20", d)a,=—n, e)a, =..l_,
n

3
2 fir n=2%
= C o keN),
h o {3* far n=2k41 TN

g) 8y = (—1)* (1— a%) (€ R,a>0),

! (n=1).

n— 1

h)a.=n-—-3[

Man bestimme jeweils den Limes inferior und den Limes superior.

Man beweise, daB die Folge (a,) mit ay, =1+ (;:)-

ist.

eine Fundamentalfolge

Hinweis: Zunichst zeige man, daB |a,,, — a,| < L ist. Sodann weise man nach, daB
n
alle auf a,,, folgenden Glieder zwischen a, und a,,, liegen. Dann gilt fir beliebige n,

> =
™ 8
[Gn, — Gn,| S [Ba41 — By < &.

"
Man weise nach, daB die Folge (a,) mit a, =}, i das Cauchysche Konvergenz-
kriterium nicht erfiillt. B k

Hinweis: Man wihle ¢ mit 0 < & <— Dann gibt es zu jedem ny zwei Zahlen #,, 5y > n,,
fir die |as, — ag,| > € ist.

1
Man zeige, daB8 die Reihe ——————— konvergent ist, indem man die
8 -go(“*l)("+2) i
Summe dieser Reihe berechnet.

Beweis: Wir berechnen
n 1 L 1 1
8, = T T o —_— )=l
A e R e -'+2) by
1

oo
Ni ilt lim 8, =1= —_—
ke Zetoere

Mit dem Konvergenzkriterium von CAvucHY ist die Konvergenz der Reihe

=1
S — nachzuweisen.
ol
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Beweis: Fir alle n, k= 1 gilt

1 1 1
18ni1 + Bpsa + o+ Bl = o+ 1)g+ n+2p + ot n + &k
1 1 1
< + .
n(n + 1) (ﬂ+1)(ﬂ+2)+ +(ﬂ+k—1)(l+k)
Die Summanden der letzten S ké jeweils in Diffe zerlegt werden, so daB
1 1 1
[8as2 + Gusa + o+ + Baual < (7_11 +1) (n +l_n +2)
1 1
e e ———
+ ' (n +k—1 =2+ k)
_1__t _1
T n a4k n

folgt.
Es sei e > 0 beliebig vorgegeben. Wihlen wir N(e) > —, so gilt fiir alle natiirlichen Zahlen

n, kmit k=1 und n > N(e) stets |ay,, + -~ + a,.,.l < &. Die vorgelegte Reihe ist also
konvergent.

A=l

. a2l n 41
. Man untersuche die Reihe ' {— — In - auf Konvergenz.
n

Loésung: Es gilt bekanntlich In (1 + 2) <z (z £ 0, —1 < z < o). Mit Hilfe dieser
Ungleichung erhilt man

lnn+l=ln(1+—l—)<-1-.
n n n

Andererseits ist

il _® =—lnLl_l-=—-ln(l——-l—)>—l .
n n+1 n+1 n+1 n+1
Demzufolge gilt
1 n+1 1 1 1 1
o<1 ———— e < =~
< o n <n n+1 nr+1) n?

Die Reihe 2 ”— ist als konvergent bekannt. Nach dem ersten Majorantenkriterium ist

die vorgolegta Reihe konvergent.

. Man zeige, daB die GauBsche hypergeometrische Reihe

aa+1)--(a+n—1)bbdb+1)--(b+n—1) _
F@bez) =1 +£. nlcc+ 1)--(c+n—1) z

fir jz| < 1 absolut konvergiert, sobald a, b, ¢ = 0 und keine negativen ganzen
Zahlen sind.

Beweis: Man verwendet das Quotientenkriterium und erhilt
=+ 1) LI
n n

)

n n

lagnl _|@+n) b + )|
Bl |+ De+m)|

jzf.  lim laaul _
nros |l
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37.

39.

Also ist die hypergeometrische Rexhe ﬁu ]z[ < 1 absolut konvergent und fir [z] > 1
divergent. Fir |z| = 1 sind g g g

Fiir welche reellen Zahlen z mit x & — 1 ist die Reihe Z =
w=1(1+2)(1 427 (1+2%)

konvergent?
Losung: Man wendet das Quoti kriterium an und erhilt
|| fir —1<z<1,
M=-’L, limM= 1 e z= s
laal |1 + a1 oo |Gal 2
0 fir |z| > 1.

Damit konvergiert die gegebene Reihe absolut fir alle Werte z & —1.

. Man untersuche die Konvergenz der alternierenden Reihe

1 1
—1) .
,{l( )[ n’+l+ +(n+l)’—1]
Losung: Man beweist leicht die Ungleichung < 1 + SIS
n+4+1 nat nat4d n+1)2—1

< % fir n = 1. Die Absolutbetrige der Glieder der Reihe bilden also eine monotone
Nullfolge. Nach dem Leibnizschen Kriterium ist die gegebene Reihe konvergent.

Man zeige, da8 die Cauchysche Produktreihe der beiden Reihen 2 ; una
® (=1 a 07 +

konvergent ist.
m=0m + 1 e

Beweis: Die Reihe 2 5! _:) ist nach dem Leibnizschen Kriterium konvergent. Sie
ist aber bekanntlich nlcht absolut konvergent. Wir bilden die Cauchysche Produktreihe
o k ( ) ‘)k-f _ o k (— 1)'
Zobirt P .ﬁf T+ 0E=TD
E 1
= ).:o;+1 k—f+l]
£,
T a=ok j=01 + t
Die Cauch ysche Produktreihe ist alternierend. Wir wollen das Leibnizsche Kriterium an-
—_q1)k2 &
wenden: Wir setzen ¢, = (2 X - ! Nun ist zu zeigen, daB lim |c;] = O gilt.
E+2 jSoj+1° [
Ferner gilt |¢| < |ep—y| fiir k£ = 1, 2, 3, ..., denn sicher ist die Ungleichung
1 1 Lo l

it

(k+1)(k+2) = (k + 1) (k + 2)j=0
fir k =1, 2, 3, ... richtig.
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41.

42.

Es gelten nun folgende Beziehungen:

1 S( 11 )'F:' 1
k+1)(E+2) " \k+1 kE+2/i05+1"

(B ) st
E+2\Soj+1 E+1)/TE+155+1"
2 L | 2 k1
S e EE TR
lesl = legal-
lhn neht, daB die Aboolute Konvergenz der Rel.han fiir die Konvergenz der Cauchyschen
ihe zwar h aber nicht g ist.

. Es sei (v,) eim konvergente Zahlenfolge mit lim v, = g, und es sei @, = v, — vy,;.
o0

Dnnnmtz‘a.—v., g

Man berechne die Summen der folgenden Reihen:

1 hd 2n+ 1 ® 2n+1
- b )1
’.‘::. monern D&y YA we i
1 2
Qr 595 u

LB Br+ DG+ 4 @ —D@n+ 1) @2 +3)
Hinweis: Bei d) und e) zerlege man das aligemeine Glied der Reihe in Partislbriiche.
Man untersuche die Reihen

nE—— T b)2"+2. 9 —— ©O<as1
Y (1 + _) =1 a1 + a*
auf Konvergenz.

. Man untersuche das Konvergenzverhslten folgender Reihen mit Hilfe des Kri-

teriums von CAUCHY :

8) 2‘9' (lgl < 1), b) 2‘ (_l)uﬂ_l_
n=0 1 n

Hinweise:
¥
8 [ous + o+ aual  fgior 2 < g 2
— gl 1—|al
1
b) lagyy + - +Gpul = +l<:'

. Man untersuche die Konvergenz folgender Reihen mit Hilfe des Kriteriums fiir

Reihen mit nichtnegativen Gliedern:
G)Z— by w C)Z;;. d)2'3-;. e) X

=1 7 =1 Ll a=1 a=1

Elie
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47.

48.

49.

. Man untersuche die Konvergenz folgender Reihen mit Hilfe des Leibnizschen

Konvergenzkriteriums :
a)zl(—lr-l P s

(=1 L
°’;§.(2n 1)-' @9 X (—1) (1= ) @>o.

Man priife, ob das Leibnizsche Konvergenzkriterium fiir die Reihe

1 1 1 1 1 1 1 1
g ete pte nteE T
erfiillt ist.
Wieviel Glieder der Reihe J’ (—1)'-“—1- geniigen, um die 8 auf vier
A= ﬁ

Dezimalen genau zu erhalten?

Man untersuche das Konvergenzverhalten folgender Reihen mit Hilfe vonVer-
gleichskriterien:

> n* 2 n! 1 1
nZo P °)2(4n—3+4n—1—5)'
® 1
d 1— , _, f . —
)2 (fa+1—Vm), o 51 = "2 —
= (nl)?

7
8).é; nt 4 6n + 1’ h)-é; (2n)! ’

Man untersuche das Konvergenzverhalten folgender Reihen mit dem Quotienten-
kriterium oder dem Wurzelkriterium:
(2n)! n?

= 2%l
&)2—,. )Z ) )Z;(n-{-l):‘s"

n=1

4 X nl ( ) @>0), o) (n) 2% (« % 0, keine natiirliche Zahl),
=0

1
n,
2 ety @70 9L = }/_1)

h)Zn‘(l)‘ (« € R), 1)2("-*-“)(5)- (x> 0),

=1 a=1

(@>1),

i 1\ — [1)\2%+1
j) z,‘a,, mit @, = 1, ay, = k? (?) ) Gy = Yk (E) k=12...),

A=l

KX nbs (k¢ N,0<b< ).

n=1
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50.

51.

62.

. C@) = ZPW ﬂﬂ=§hﬂ“

Fiir welche Werte von z sind die folganden Reihen konvergent:
fad © 1 n L
.)znw-, b)z sy c) 3 ) , d)Zl(—l)'nz-.

Pt (2n 1)!
z"n!

9FZ, 0 EE e+, 9F
A=l A=l W

=1

Man untersuche die Konvergenz bzw. die Divergenz folgender Reihen, indem man
die Partialsummenfolgen auf Konvergenz bzw. Divergenz untersucht:
1
0z
st +n) (@ +n+ 1) (x+n+p)
—3, ... verschiedene Zahl, p = 1),

mzm0+).®£ 2 e+,

a=1

(« beliebige reelle, von —1, --2,

Man bilde von den folgenden absolut konverg Reihen jeweils die Cauchy-
sche Produktreihe und gebe deren Grenzwert an:

nfnf¢<m<n.m§m+nn§¢<w<u

xim-1
(2n)l @m — 1!

a) Man beweme mit Hilfe des Quotientenkriteriums, da8 beide Reihen fiir alle
Werte von z absolut konvergieren.
b) Durch Multiplikation dieser beiden Reihen leite man die folgenden Beziehungen
her:

C(z + y) = O(z) C(y) — 8(z) Sly), S(z + y) = S(z) Cly) + C(=) S(y).
Men beweise mit Hilfe der Umgebungsdefinition die Stetigkeit der Funktion

L]
f@) =Yz (a2 1).
Beweis: Zuniichst weisen wir die Giiltigkeit folgender Aussage nach: Fiir alle reellen

Zablen a,bmit a > 0,6> 0 und a + bgilt o — b 5 o= (4 _ 1,2, ). Be
kanntlich gilt fir alle reellon Zshlen a, b b

O bh (@ —b) Taml (n=1,2,...).
k=1

Da wira + b g hatten, k wir
Ll z"- an-kpk-1
a—>b o
schreiben. Weiterhin gilt wegen ¢ > 0 und b > 0
a® — bl L
—_—= an-kpk1 =b1>0.
a—b k=)
a- —_ b.
Also gilt b | = b*1. Aus der letzten Ungleichung folgt die Behauptung
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56.

Es sei ¢ > 0 beliebi ben und a eine beliebige, aber feste positive reelle Zahl. Fir
alle z aus dem Intervnll [0, —[ gilt dann
¥z - Va| < 2=l )

(&)™
Diese letzta Ungleichung gilt auch fir z = 0 bzw. z = a. Wir wihlen nun § mit 0 < &
< s(}/_) und zeigen: Firalle z € [0, ->[ mit |z — a| < 6 gxltl}’; - }’_l < e. Es sei
T€ [0 —>[ und |z —a| << t(?r).—l. Dann ist

< e, und wegen () gilt

ll’z - }r,< & Dumt ist die Sfahgkext der Fn.nktxon I(z) }’z an allen Stellen a mit
>0 g . Von der Stetigkeit im Nullp ib ge sich der Leser selbst.

. Man zeige, daB die Funktion f(z) = 1 an jeder Stelle des Intervalls J0, —>{ stetig
z

ist.

a

Beweis: Zum Nachweis der Suhgkext ver wir die Umgeb definition. Es sei
& > 0 beliebig vorgegeben und a eine beliebige, aber feste positive reelle Zahl, Wir betrach-
ten die GréBen f(a) + ¢ und f(a) — ¢. Es sei & < f(a). Wir bestimmen Zahlen z,, z, mit
f(z1) = f(8) + &, {(z2) = f(a) — e.

Es ergeben sich z, =

und z, = i % . Fr 8 nohmen wir die kleinere der beiden
— ae

als
. Auch far den Fall, daB

Zahlen z, — a und @ — z,, d. h., wir setzen § =

14 ae
f(a) < ¢ gilt, wird fiir § die Zahl I 2%  verwendet. Wir zeigen nun: Far alle z € J0, -»[
as
und |z—a|<l_¢: ; < e. Es gilt
a’e a’e
0 - .
<a l+u<z<u+l+“
Es folgen die Ungleichungen
1ttt 1t 1t 1
a+4é z a—28" a+8 a z a a—2§6 a’
= 1 1 et Ll 1o oae 1oL,
a?® + 2a% z a ’ 142 =z a ’ z a :
Man kann die Stetigkeit der Funktion im g Definitionsbereich zeigen. Dann
2
nimmt man fir & den Wert ———— .
1+ lale

Man zeige, daB fiir jede reelle Zahl a
im 2= pamt m=1,2,..)
2 T—Q

ist.

Beweis: a ist Hiufungspunkt des Definitionsbereiches der Funktion

fz) =

”-":' (zeR\ {a}).
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Aus z, € D(fy (n €N) und limz, =a folgt
00

. zP —a™ L]
lim f(z,) = lim == =lim 3 k. a*1 = ma™L,
hinaad n00 Ty — G  mroo k=1

3
57. Man bestimme den Gr pim ILEZ =1

z—0 z

3,
n L st D(p = [—1. 0

iches. Um den G t

Lésung: Der Definitionsbereich der Funktion f(z) =

U]O —>[ DieStelle z = 0 ist Hiuf: kt des Definiti
konnen wir verschiedene Wege inschl
s) Wir fiithren eine neue Verinderliche  ein: ¥ = 1 4 z. Dann erhalten wir

3
IimVl+z—l_. “—l—lim % —1
250 z 1 —1 L a(u—1)@+u+1)

+z —
z
h

-1
-3

b) Wir erweitern den Bruch mit }’(1 + z)? + ;’l +z+1:
3,
im 2=ty z

m
=0 F z(}’1+z)'+}'1+z+1)

3 -
58. Man besti den G ‘ulimzi(}/z+1+)/z—l—2}/;).
20
Loésung:

EFI+1E—T—21e=(rT1—13) - (1 — 17 =)

w|.—

_ 1 _ 1
Veti+lz Ve+l¥r—1
I = B s
Tt e o)
—2

Tlerit @+ (e—1+Vz+1)
limaz* (fz+1—Vz—1—2Va)

—2(2)
e e B N A e ¥ g By

i —2

D

59. Men zeige mit Hilfe der Definition, daB die Funktion f(z) = 2* auf dem Intervall
[a, b)) mit 0 < a < b gleichméBig stetig ist.

-1
-1
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61.

Beweis: Zu beliebigem & > 0 wihlen wir 6 = %. Dann gilt fiir alle z, 2’ € (a, b)) mit

Iz — 2| < =
2b

ifz) — &) = |22 — 2 = |z + 2] |z — 2’| < |& + 2| % <e.

. Man ermittle niherungsweise eine Nullstelle der Funktion

gz)=2>—99z + 1
mit Hilfe des Banachschen Fixpunktsatzes.
Lésung: Wir suchen eine Losung der kubischen Gleichung 2* — 99z + 1 = 0. Wir setzen
/(z)=z'—+:—0ii. Die Funktion f hat folgende Eij haften: (1) f ist eine stetige

Funktion, (2) / bildet das Intervall [0, 1] in sich ab und (3) / ist kontrahierend.
Beweis zu (2): Aus 0 Sz <1 folgt 0 <2* <1 und schlieBlich 1 <2* + z 4+ 1<3.

1 3
Also gilt — =< < — fir all , 1.
so gil 100_’(2)—100 ar alle z € [0,1]

Beweis zu (3): Wegen
Wtex) — ol = gg5 12t — =t + 5 — =
= s e — ) e + 5y 2D + (21— 22
= ool — ml el + 2+ o+
S oo e =l (all + Il + 1l + 1)

4
= 100 |2, — 2| (21,24 € [0, 1))

ist f kontrahierend mit dem Kontraktionsfaktor ¢ = 0,04. Die Voraussetzungen des Ba-
nachschen Fixpunktsatzes sind erfillt, und f besitzt demzufolge genau einen Fixpunkt
a € [0, 1] Dieser Fixpunkt ist Losung der kubischen Gleichung, denn aus f(a) = a folgt
g(a) = 0.

Mit dem Startwert a, = 0 erhalten wir ¢, = f(a,) = 0,01, a, = f(a,) = 0,01010001.

Die Fehlerabschitzung ergibt |a — a,| < % 0,00010001 < 0,000005.
Man untersuche die Funktionen

a)j(@) =1z —1] (z€R), b)g(z)={f’—lfﬁr z<1,

R),
1—z firz>1 @eh

2z firosz<l1,
= = , 2]),
o) M=) {3—zﬁir1§z§2 (e (02D
. 2? fir z < —1,
d = R
) () {z+2ﬁirz_2_—1 (zeR)

in ihren Definitionsbereichen auf Stetigkeit.

Hinweis: Man wende die Folgendefinition an.
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62.

67.

. Man weise nach, daB die Funktion f(z) = llm

Man ermittle diejenigen Werte von z, fiir die die Funktion
8) f(z) = }/; - [V;] eine Unstetigkeitsstelle besitzt (z = 0).

-1
e * firz$0,

b) Besitzt die Funktion f(z) = N (z € R) Unstetigkeitsstellen?
0 firz=0

. Man untersuche, ob die Funktion f mit f(z) = [z] (z € R) in allen Punkten stetig

ist.
Hinweis: Man mache eine Fallunterscheidung, indem man zuniichst die Untersuchung
fir ein z € R \Zunddonnﬁroinzeldu.rchﬁ:hn

—1 an den Stellen 41 und
—1 unstetig ist (z € R). 1

. Man untersuche, in welchen Punkten ihres Definitionsbereiches die reellen Funk-

tionen

&)f(z)_V1+3z—Vl+7z b)g(z)_2z’+3v:c’—2+yz—l

z—2Yz+1 z—3Yz +6

stetig sind.

. Gegeben seien die Funktionen
2z fir 0z %,
g(@) = (z € [0.1)),

21 — z) fiir %gzél
h(z) = g(z — [z]),

1
h(—] fi ,
flz) = (z) ir 2+ 0 (= € R).
0 fir z =0
Man zeige, daB die Funktion f an der Stelle z = 0 eine Unstetigkeit besitzt.

Man bestirnme folgende Grenzwerte :

—b6z+46

lim o b)1
°),T,z'—7 T ),’_'f‘.z!—zs

22— 122 + 36 24 + 322
lim —m8M—, d)lim ————,
Ry R e e g
e) lim Mi, ) lim (m und » ganz),
21 (2—1)' 2 T® —

(@ — 1) (@1 — 1) e @1 — 1)
@—)@ 1 (@—1)

1 3
B ki -,
):]_l:(l—z 1-:.*)

g) lim (e,neN,0<k=n),
-1
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69.

70.

1.

72.

73.

Hinweis: Man kiirze Zihler und Nenner durch z — a, falls Zihler und Nenner an der
Stelle a verschwinden.

. Man bestimme folgende Grenzwerte:

a) lim
z—0

L] _ 3 _
}'1+: 1 =1, b)llm y1+z+z 1
5z d) I V2+x—y3z

° l:-l:lﬂ }/m — }/T x—»ﬁ Y4z + 1 — b6z —
Man besti folgende G rte :

ol 25, min B o i 225
4 lim pal = Lo lim or— e

Hinweis: Man beachte, daB hm L2 e fund limE=" —na (a > 0) gilt.
1 z20 T

Man bestimme folgende Gmnzwerhe.
2 _ V
—21‘ 37 b) lim ol

a) lim ,
o0 T — zste0 T 41

¢) lim (Yz(z + a) — z), dlim (Yt +1-12 —1),
e) lim z(Vz' +1— x).

Bekanntlich gibt es zu jeder ganzrationalen Funktion f und zu jedem z, € D(f)
eine eindeutig bestimmte positive natiirliche Zahl p und eine eindeutig bestimmte
ganzrationale Funktion g mit

f(@) = f@o) + (z — 2)? g(x) und y(z) + 0.
Man gebe diese Darstellung fiir die Funktion f(z) = 2* — 62® + 1022 — 62 + 14
(z € R) fiir z, = 3 an.

Die Funktion f(z) = 2% — z* + 82® — 822 4 16z — 16 hat bei z = 27 eine dop-
pelte Nullstelle. Man gebe die restlichen Nullstellen dieser Funktion an.

s

Man bestimme die ganzrationale Funktion niedrigsten Grades, die bei z; = 1
und 2, = —2 einfache Nullstellen, bei z; = 2 eine doppelte Nullstelle hat und
deren Graph durch den Punkt (3, 20) geht.

. Man zerlege die ganzrationale Funktion f(z) = 23 — 62? + 21z — 26 (z € R) in

Linearfaktoren und quadratische Faktoren ohne reelle Nullstellen.

. Man ermittle niherungsweise eine Nullstelle der Funktion f(z) =e¢* —z + 2

a) mit dem Halbierungsverfahren (vgl. MfL Bd. 4, Beweis von 2.4.2., Satz 2),
b) mit dem Banachschen Fixpunktsatz.
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76.

7.

78.

79.

a) Man zeige, daB durch f(z) = % z+ —2—) eine stetige und kontrahierende
x

Funktion gegeben ist, die das Intervall [1, 2] in sich abbildet und 2 gema8
der Vorschrift a,,; = f(a,) (» =0, 1,2,...) iterativ berechnet werden kann.

b) Indem man a, = 1,4 setzt, berechne man einige Niaherungswerte und fiihre

hlieBend eine Fehlerabschitzung durch.
Man zeige, daB ]lm cos-g- cos —;’; - cos g-; =2B® . @ ist dabei eine be-

liebige von Null verschxedene reelle Zahl.

Losung: Aus dem Additionstheorem fiir die Sinusfunktion erhilt man die Beziehung
sin g = 2ai.n-§ . cou%. die fiir alle reellen Zahlen ¢ giiltig ist. Mittels vollstindiger

Induktion beweist man nun fiir alle natirlichen Zshlen n =1 die Galtigkeit der Glei-

chung sin ¢ = 2% . cos 2 o8 ... cos % - sin ; Der interessierende Ausdruck kann

somit in der Form 2 2
8in @ _ sing g@/2*%
2* . sin /2" @ sin @/2*

geschrieben werden. Wegen lim £ = 0 und lim 225 = 1 st hm —Zﬂ = 1. Daher
gilt die Behauptung. o 27 0 Z sin @/2"
sin 3z
Man berechne lim ——.
2. tan bz

Losung: Man nutzt die Bezneh\mg lu:n s_m_z =1 (vgl. MfL Bd. 4) aus und erhilt

i ten z . sinz 1
im =lim — — =1.
=0 Z z T cCOBZ
Sodann setzt man fiir z den Wert & + u ein und 1aBt » gegen Null streben. Dann erhilt
man

8in 3u
lim 8in 3z - lim %2 (37 4 3u) — |jm =80 3u = _lim 3u _1= __fi_
2—x tan bz ._.otan(5n+5u) u—o tan5u «—0 tan5u 5 5
In ta o
Man berechne lim i z'
2% €08 2z
1
Lésung: lim ——— In (l +2) hm In(1 4+ z)‘— 1.
20
Diese Beziehung uunuuend, erhslten wir
In tanz — lim In(1 4 (tanz — 1)] (1 + tantz)
g1 00822 (1 — tan?z)
i [
= Inft+(tenz = O] (oapygy— —1.

a(unz—l) (tanz + 1)
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80.

81.

et

82.

Man ermittle alle Paare (z, y) von reellen Zahlen z und y, fiir die die Gleichung
sin (z + y) = sin z + sin y erfiillt ist.

Losung: Wegen der fiir alle reellen o und g giiltigen Beziehungen

athB L xtB

sinz's=25ini-c<m1 und sin«x + sinf = 2-sin 2 2

2 2

ist sin (z + y) = sin 2 + sin y dquivalent mit
Lzt y z+y z-y

1 Ty - =0.

(1) 2sin 2 (eos s cos 2 ) 0

Da fiir alle reellen « und g

a+B «a—8

cosx — cos f = —28in 2 - 8in

gilt, ist (1) dquivalent mit

z+y
2

R Lz .y
—4 — = =0.
sin sin - sin 5

den Redi:

Die letzte Gleichung gilt genau dann, wenn igl eine der folg er-
fallt ist:

oder

“2""=0, d.hz+y=2kn

[}
B
IE
I

0, d. h.z=2k
oder

sin 0, d hy=2kr mitk<Z.

e
I

. . sinz .
Man zeige, daB lim —— = 0 ist.
2—>00
Beweis: Die Funktion f(z) = S2% ist far alle = 0 erklrt. Da stets |22 < L
z z

. z
oder —l < sinz < L ist, liegt der Graph dieser Funktion zwischen den beiden
z z

z
Hyperbeln, die durch die Gleichungen y = -1 und y = 1 dargestellt werden. Zu be-
x x
liebigem & > 0 wihlen wir > ~-. Dann gilt F“‘—‘ < efurallez > k.
€

sin (n + -;—) z

n
Man beweise, da —————=% + X cos kz ist (z = 2kn, k € Z).
.z 2 k=1
2 8in —
2
Beweis: Esist
sinzn—+l-z=sin—z—+£'(sin 2k +1 r — sin 2k —1 z).
2 2 k=1 2

Auf die rechte Seite der Gleichung wenden wir das fiir alle reellen « und g giiltige Additions-
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86.

87.

dworemlina-—sinﬂ=2sina ;‘ﬂm“ ;’ﬂan. Wir erhalten dann

2n 41
2
Aus der letzten Gleich folgt die Beh

sin

S L oz (1 .
z—m? +.£2nn?-coskz—2sm?[2 +k§looab].

ptung.

Man berechne gegebenenfalls die Grenzwerte
a) lim—l_mz, b) lim Sin 42 c) lim z cot z,
20 3 >0 Z 20
d) lim CO8 mx —’ CO8 Nx e) lim tan z — sin z]
z—0 x 0 z
f)limsi.n(u-g—:n:)—six:.(a—::)
250 z ’
. Man priife, ob die Funktionen
.1 1
f@) = sm;ﬁlr z+0, o@) = z-sm;fur z+0,
0 fir z =0, 0 fir z=0,
1 ..
Mz) = a.ruta,n: fir z 4 0,

0 fir z =0
an der Stelle 0 stetig sind.

=a.
Man stelle die folgenden Funktionen graphisch dar:

a)/(z):sin% fiir a=%, 1,2,
b) g(x) = A -sinz fiir A=—;—, 1,2
c)h(z)=2~ai.n(3z+%), d)k(z)=%sin(—2:c—%),

e) l(z) = sin l, fym@)==z- si.nl.
z z

. Man berechne die Grenzwerte

a)l.i.ma‘ — 1' b) lim Intanz . ¢ lim In cos 2:,

= z =t 1 —cotz z-0 Incosz

4

QtimE=Y, ¢)limzm 22,

0 z >0 a

. . _
Unter Benutzung der Beziehung lim S0% _ 1 beweise man lim PN sinu
z0 T n—00 k=1
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89.

91.
92.

93.

95.

96.

. Man ermittle alle reellen Zahlen z mit 0 < z < =, fiir die

tan 2z 2cot,2a:S
tan z cotz

gilt.

Hinweis: Man zeige, daB firz = k- — (h =1, 2,3) die gegebene Ungleichung équi-
valent ist mit der Ungleichung

2 4+ tan®z — tan'z
A T P T <.
1 —tan*z =

Man ermittle fiir die Funktion f(z) = —l— (@+0,b30) den
a%sin® z + bicostz

groBtmaoglichen Definitionsbereich und untersuche, ob dort Unstetigkeiten vor-

handen sind.

. Man beweise die Gleichungen

a) arctan ¢ + amhnl=1 fir z>0, b)arctanz 4 arctan 1 =_Z
fir z < 0. z 2 . z 2
Dabei ist fiir arctan = und arctan — stets der Hauptwert zu wihlen.

z

Man beweise die Gleichung arctan z + arctan y = arctan lz ty fir zy < 1.
—zy

Man beweise die folgenden Gleich

a) cosh (z + y) = cosh zcoshy + smh zsinhy,
b) sinh (z 4 y) = sinh z cosh y + cosh z sinh y,
¢) coshz — sinh*z =1,

d) cosh z + coshy—2cosh-ﬂ oshTy,
e) ooshx—eoshy—zsmhz+y51nhx2_y,

f) sinhx-,.sinhy=2ainh’ﬂ

z + y T —vy
inh PR
Man beweise die Gleichung sinh 3z = 3 sinh z + 4 sinh® z.
Man gebe alle Nullstellen der ganzrationalen Funktion f(z) in der trigonometrischen
Form an:
a)fz)=2— (141), b)fz)=20+1.
Man gebe die trigonometrische Darstellung fiis die komplexen Zahlen
z1=1412= 1+i}/§,z,= —1+}/§i,z4=lan.
14 31
241"

g) sinh z — sinh y = 2 cosh ——

Man ermittle den Betrag und das Argument von
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97. Man lose die quadratische Gleichung 22 + (5 — 27) z + (6 — 51) = 0.

2% 23(k-1)
98. Man untersuche die Reihe ———— auf punktweise Konver-
ké; (1 + zzk 1 + z!(k-l)) P
genz.
Losung: Esist sy(z) = -i+ = und somit gilt
8: W= et T g
% far |z> 1,
lim s,(2) = 0 fir z=1,
00 l
—5 for <1

Die Reihe ist fir alle z mit 2 € R konvergent.
99. Man leite die Lagrangesche Interpolationsformel her (vgl. MfL Bd. 4, 2.7.2.).
Lésung: Zuniichst werden die n + 1 Polynome n-ten Grades J(z) mit

1 fir k=1,

L(z;) = k,+=0,1,...,

(i) {0 fir k4 (L n)
bestimmt. Da 2o, z,, ..., Zgy, Zg41, - --» T, Nullstellen des Polynoms I;(z) sind, muB dieses
die Form

W(z) =c(z — 2) (T — 7))+ (& — Zpy) (T — Zpqq) > (T — Zy)
haben. ¢t wird aus der Bedi g L(z;) = 1 besti Man erhilt dann fir §(z) den fol-
genden Ausdruck:

) = BB E ) e m) @ m) )
— 20 (@ — ) - () (% — Z) - @ — Fen)

Das gesuchte Interpolationspolynom P(z) schreibt sich nun in der Form P(z) = 2 Fze) h(z).

In der Summe P(z;) = z-' /(%) Y(z;) werden alle Summanden Null, in denen k + ¢ ist.
k=0

Wegen Ij(z;) = 1 gjlt P(z)) = f(z;). Die Polynome /() heiBen Lag he Koeffizi

100. Es ist das Lagrangesche Interpolationspolynom vierten Grades fiir die folgenden
1 Werte auf; tellen :

2o =1,f(o) = 17; z, =2, f(m;) = 27,6; =, =3, [(z;) =T6;
z3 =4, f(z;) = 210,6; z, =7, f(z,) = 1970.

Lésung: Wir setzen die gegebenen Werte in die Lagrangesche Interpolationsf 1 ein
und erhalten

P(z)=”(z—2)(z—3)(z—4)(z—7)

E-NE—3@E—9E-1
=21 -3 (-1 -7 e-nNE—3E-492-1
E-D@E—2E—49@E~7 SE=DE—2E—3E-1
Be-ne—26-06-n e ne-—ne-na-"
u—uw—mu—mu—ﬂ
+ 1070 -DNT-2)(71-3)(1—49)
=z‘-—2:'+6:‘—8,52+20,6.

+ 27,6

+
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101. Man berechne gegebenenfalls die Grenzfunktionen der Folgen (f,) mit
Iy =2 (z€R,|z| 1),

nx
nzd 4 1

fa(z) = (€R), fulz)= (z€R).

_r
n3zd + 1
Man untersuche die Grenzfunktionen auf Stetigkeit und iiberpriife im Fall der
Stetigkeit, ob gleichmiBige Konvergenz vorliegt.

102* Man zeige, da8 die Reiben Y (=2 >N chmas;
A ge, PRy &+ ar uBS a:’ g
in R konvergieren. Dariiber hinaus zeige man, daB die Reihe —_—
zwar konvergiert, aber nicht gleichmaBig. =t (1+27)
Hinweis: Man b das Konvergenzkriterium von LErsNiz fur alternierende Reihen
und schi den Absolutbetrag des Reih ab (vgl. MfL Bd. 4, 2.2.3.).

103.* Man beweise, daB durch eine lineare Transformation der Verinderlichen z die
Form der Lagrangeschen Koeffizienten nicht geindert wird.

Hinweis: Man substituiere z = at + b,z =af + b (k=0,1,...,n).

104. Man leite die Lagrangesche Interpolationsformel fiir dquidistante (gleich-
abstindige) Stiitzstellen her.

Hinweis: Mansetzez, =z, + 48 (k=0,1,...,n;8 = kfark=0,1,...,n;h % 0).

105. Man bestimme durch kubische Interpolation einen Néherungswert fiir e%1®
= 1,16183 aus den vier Werten

2, =0, f(zo) =1; =z, =0,1, f(z;) = 1,10617;
2z, = 0,2, f(z3) = 1,22140; =z, = 0,3, f(z;) = 1,34086.
Man ‘vergleiche den Néherungswert mit dem exakten Wert.
106. Aus dem Ansatz
P(2) = co + &a(z — zo) + &a(z — zo) (x — 21) + -
+ Ca(Z — Zo) -+ (2 — Zn1)

ist das Interpolationspolynom P(z) zu bestimmen.

. ]
107. Man interpoliere die Funktion f(z) = 27 durch eine Funktion r(z) = w—b
wobei man Gleichheit von /() und r(z) fiir z = 0, 1, 2, 3 verlangt. cz+d

Bemerkung: Nach den Poly sind die rationalen Funkti far numerische
Rechnungen am geeig; Men ist daher auch an Interpolation durch rationale Funk-
tionen interessiert.
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-

[

10.

11.
12.

13.

14.

15.

168.
17.

18.
19.

Differentialrechnung

Kontrollfragen

. Man erliutere den Begriff des Differentialquotienten g trisch und gebe eine

4

exakte Definition an.

Wie lautet die WeierstraBsche Zerlegungsformel und wie kann sie geometrisch
interpretiert werden? Welche Differentiationsregeln konnen mit Hilfe der Weier-
straBschen Zerlegungsformel bewiesen werden?

. Was versteht man unter der Tangente des Graphen einer an der Stelle a diffe-

renzierbaren reellen Funktion im Punkt P(a, f(a))?

. Man leite eine Gleichung der Normalen der Funktion f(z) = sinz in dem zu

z= % gehorenden Kurvenpunkt her.

. Welcher Zusammenhang besteht zwischen der Stetigkeit und der Differenzier-

barkeit einer Funktion? Beweis!

. Man gebe ein Beispiel fiir eine Funktion an, die stetig, aber nicht an jeder Stelle

ihres Definitionsbereiches differenzierbar ist.

. Man beweise die Regel fiir die Differentiation des Produktes zweier differenzier-

barer Funktionen.

. Man bilde die Ableitung der Logarithmusfunktion f(z) = In z mit Hilfe der Regel

fiir die Differentiation der Umkehrfunktion.

. Man gebe ein Beispiel fiir eine zusa ngesetzte Funktion an und differenziere
diese Funktion.
Was versteht man unter dem Begriff logarithmische Ableitung? In welchen Fil-

len wird diese zweckmiiBig angewendet?

Wie lautet der Satz von RoLLE? Man skizziere den Beweisgedanken.

Man gebe den Mittelwertsatz der D).ffemntla]rechnung in zwei verschiedenen
Formen an. Wie kann man diesen Satz g trisch interpretieren?

Welcher Zusammenhang besteht zwmchen dem Satz von ROLLE und dem Mittel-
wertsatz der Differentialrechnung?

Man gebe Lehrsitze an, die Riickschliisse aus den Eigenschaften der Ableitung
f'(z) auf Eigenschaften von f(z) erméglich

Wie sind die Begriffe Kurve, Kurvenstiick, geschlossene Kurve definiert! Man
gebe Beispiele an.

‘Was versteht man unter einer glatten Kurve?

Was versteht man unter einer partiellen Ableitung einer Funktion von zwei
(bzw. p) Variablen?

Wann heiBt eine Funktion z = f(z, y) im Punkt (a, b) € D(f) differenzierbar?

Ist die Existenz der partxe].len Ableitungen einer Funktion z = f(z, y) fiir die
Diff iorbarkeit hinreich
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21.

22.

24.
25.

26.

. Wie lautet die Gleichung der Tangentialebene im Punkt (Zo, Yo, /(o> 3o)) 81 den

Graphen der Funktion f(z, y) = Jr* — 28 — y* (#} + 3 < r¥)?
Wie kann af 3(2; v®) berechnet werden (verallgemeinerte Kettenregel)? Man

gebe ein Beispiel an.
Wie sind die Begriffe Gradient und Richtungsableitung einer Funktion w
= f(z, y, 2) definiert?

. Wann heiBt eine Punktmenge des Raumes R; ein Flichenstiick? Man erliutere

in diesem Zusammenhang die Begriffe glattes Flichenstiick und Tangentialebene
der Fliche.
Wie ist die n-te Ableitung einer reellen Funktion einer Variablen definiert?

. Wie lautet die Leibnizsche Produktformel fiir die n-te Ableitung eines Produkts

zweier reeller Funktionen?
‘Was besagt der Satz von H. A. ScEWARZ!?

27.* Wie lautet die Zielstellung der Taylorentwicklung einer Funktion? Wie lautet

28.

die Taylorsche Formel mit dem Restglied von LAGRANGE?

Inwiefern kann der Mittelwertsatz der Diffe ialrechnung als besonderer Fall
des Taylorschen Satzes angesehen werden? Warum muBte trotzdem ein geson-
derter Beweis des Mittelwertsatzes gegeben werden?

29. Was versteht man unter der MacLaurinschen Form des Taylorschen Satzes? Wie

lautet das Restglied von LAGRANGE fiir die MacLaurinsche Form?

30. Wie lautet die Taylorentwicklung der Funktion f(z) = J1 — z mit dem Rest-

31.

32.

glied zweiter Ordnung?

Welche Besonderheit weist der Taylorsche Satz bei Anwendung auf ganze ratio-
nale Funktionen auf?

Unter welchen Vora ngen kann man von der Taylorschen Formel zur
Taylorschen Reihe iibergehen? Man gebe ein notwendiges und hinreichendes Kri-
terium fiir diesen Sachverhalt an.

. Wie kann man die Potenzreihenentwicklung der Tangensfunktion erhalten?

34. Wie lautet die Taylorsche Formel fiir eine Funktion von zwei Verinderlichen mit

dem Restglied zweiter Ordnung?

356. Man gebe Definitionen fiir die verschiedenen Formen von Extremwerten an.

36.

37.

Wann liegt ein Wendepunkt bzw. Stufenpunkt vor?

Man gebe (notwendige bzw. hinreichende) Bedingungen fiir das Auftreten von
Extremwerten bzw. Wendepunkten an.

Wie kann man das lokale Verhalten einer m-mal stetig differenzierbaren Funktion
mit f(™)(g) 3= 0 fiir wenigstens ein m > 2 mit Hilfe der Taylorentwicklung cha-

rakterisieren?
Liohen Finoel b

. Man stelle die bei'einer Kurvendiskussion g

zusammen.
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39.

41.

42.

43.

46.

47.

49.

51.

52.

53.

Man gebe (notwendige bzw. hinreichende) Bedingungen fiir das Auftreten von
Extremwerten bei einer differenzierbaren Funktion von zwei Variablen an.

. Was versteht man unter unbestimmten Ausdriicken der Form % bzw. —=1
oo

Man erliutere an Beispielen die verschiedenen Formen der Regel von BER-
NourLr und DE L’Hosprran. Wie fiihrt man unbestimmte Ausdriicke der Form
0 00, 00 — 00, 0% 1%, 0o usw. auf die Grundform der Regel von BERNOULLI und
DE L’HosPrraL zuriick?

Unter welchen hinreichenden Vc tzungen iiber die Funktionen f und g gilt die
. f(z) . ()
Regel lim —— = lim ——
e T )

Was versteht man unter der Potenzreihendarstellung einer Funktion f an der
Stelle a?

Wie sind die Begriffe Konvergenzbereich und Divergenzbereich einer Potenz-
reihe mit dem Mittelpunkt a definiert?

. Welche Fille sind fiir den Konvergenzbereich einer Potenzreihe mit dem Mittel-

punkt @ moglich? Man gehe dabei auf den Begriff Konvergenzradius ein.

. Man gebe eine Methode zur Bestimmung des Konvergenzradius einer Potenz-

reihe mit dem Mittelpunkt a an.

Welche Beziehung besteht zwischen dem Konvergenzbereich und dem Kon-
vergenzkreis einer Potenzreihe mit dem Mittelpunkt a? Welche Fille sind bei
reellen Potenzreihen fiir den Konvergenzbereich moglich, wenn der Konvergenz-
radius von Null verschieden ist?

Wann heiBt eine Funktion im Punkta ihres Definitionsbereiches analytisch?
Inwiefern ist jedes Polynom in jedem Punkt analytisch?

. Wie wird eine durch eine Potenzreihe dargestellte Funktion im Innern des Kon-

vergenzkreises differenziert?

Man gebe ein notwendiges und hinreichendes Kriterium dafiir an, da8 eine Funk-
tion im Punkt a ihres Definitionsbereiches analytisch ist.

. Welche Aussagen gelten fiir die Verkniipfungen analytischer Funktionen?

Man gebe eine hinreichende Bedingung dafiir an, daB eine in einem abgeschlos-
senen Intervall differenzierbare Funktion genau einen Fixpunkt in diesem Inter-
vall besitzt.

Wie lautet das Verfahren von NEwWTON zur Nullstellenermittlung einer Funktion?
Man gebe eine hinreichende Bedingung fiir die Konvergenz der Folge der Nahe-
rungswerte gegen die Nullstelle der Funktion an.

Man zeige durch Betrachtung der Funktion f(z) = 2? — ¢ (¢ > 0), daB durch

Ty =€, Tayy = %z, + L eine Niherungsfolge fiir Ve gegeben ist.
xﬂ

. Man gebe ein Kriterium dafiir an, da8 sich die Folge der Newton-Niherungen

von oben bzw. von unten einer Losung z, von f(z) = 0 nahert.
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65.

56.

58.

Wie lautet das sogenannte modifizierte Newton-Verfahren zur Nullstellen-
bestimmung? Welche Vor- und Nachteile besitzt dieses Verfahren gegeniiber dem
eigentlichen Newton-Verfahren?

Wie lautet der Satz iiber implizit definierte Funktionen? Man erldutere diesen
Satz an einem Beispiel.

. Man gebe eine zum modifizierten Newton-Verfahren analoge Methode an, mit

deren Hilfe Funktionswerte der ,,aufgelésten‘‘ Gleichung y = f(z) der Gleichung
F(z, y) = 0 mit jeder gewiinschten Genauigkeit berechnet werden konnen.

Was versteht man unter einer Niveau- oder Hohenlinie der Funktion z = f(z, y)?
Man gebe einige Beispiele an.

Aufgaben
. Man bestimme die erste Ableitung der Funktion f(z) = -V.z_ an der Stelle z =a
(@€ R,a>0).
" "
Losung: 1@ =1@ _ Ve — Vo
z—a z—a

Wegen z — a = (-}/; - 'Y;)‘é'l ("}/;)“_t ('i’;)k—‘ (vgl. MiL Bd. 4, 1.1.1.(7)) gilt
1’; — -}/; _ z—a _ 1
z—a @— a)ﬁé‘] (l}/;)n-k (uV;)t—l ké.'l (Vz_)u-k (V;)k-n *
Aus der letzten Beziehung folgt

. f@) — fa) 1 1 .
lim == = f(a).
s T—a s (,ra‘) R o=y

k=1

. Man untersuche die foigenden Funktionen auf Differenzierbarkeit:

a)fz) =2* (z€C), b)f(z) =Rez (z€C).
Lésung: a) Fir alle z € C und & % 0 gilt

fe+h) — Hz) _ (z+h)P —2°
b - »

=32 4 32h + M,

und somit ist lim /(z-{——h;-& = 322. Die Funktion f(z) = 2? ist stetig differenzierbar.
A0

b) Fir alle z € € und & 3 0 gilt
fz+h) — I(z)_Re(z+h)—Rez_Rez-}-Reh—Rez_R«eh
h n h - ] TR
Die Funktion g(k) = -R;—h (h € € \\ {0}) besitzt an der Stelle » = 0 keinen Grenzwert,

denn fiir die Nullfolge (k,) mit k, = —'; bzw. h, = % ist lim g(h,) = O bzw. lim g(k,) = 1.
—>00 n—co

n
Die Funktion f(z) = Re z ist somit an keiner Stelle z differenzierbar.
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3. Nach der Zahlentafel ist In 720 — 6,6793. Man ermittle mit Hilfe des Mittelwert-
satzes einen Niherungswert fiir In 721.

Losung: Mita = 720 und A = 1 gilt

f@a+A)=In721 =In720 + 1- O<d<1).

1
720 1 6
Far #=0 bzw. #=1 ist — — = —1 000138 baw. —1 — — L

- U 720 +9 720 7120+ 721

= 0,001386. Da & zwischen O und 1 liegt, die Werte L und — jedoch erst in der

720 721
hsten Dezimal i der abweichen, ist wegen der Monotonie von T die
genaue Kenntnis von & gar nicht erforderlich. Man erhilt In 721 ~ 6,6793 + 0,0013

= 6,568086.
4. Man ermittle die Ableitungen der folgenden Funktionen:
9)f@) =31z @cRz>0),
Bz =" @cR),
Z'_l -3
o
=1 Yoz

d) /(z) = 2®sinz (z € R).

'3)/(2)=%'+ (ze R,n>2),

5. Man beweise, daB die Funktion f(z) = }’; (z = 0) an der Stelle z = 0 nicht diffe-
renzierbar ist.

6. Folgende Funktionen sind auf Stetigkeit und Differenzierbarkeit zu untersuchen:

2% 4 2z fir z < -2,

Bf@=lz—2 @cR), bmz)={0 e s

7. Gegeben seien die Funktionen

1
z’-sinlﬁirz*o, z - sin — fiir x 3= 0,
x X

hiz) = fo(z) =

0 fir z =0, 0 fir z = 0.
Man untersuche die Funktionen auf Stetigkeit und gebe D(f) und D(f;) an.

8. Die an den Graphen der Funktion f(z) = 1 (x 5 0) im Punkt P(x,, yo) ge-
x

legte Tangente bildet mit den Koordinatenachsen ein Dreieck. Man zeige, daB
der Flicheninhalt des Dreiecks unabhingig von der Wahl des Punktes P ist.

9. Vom Punkt P(z,, y,) des Graphen der Funktion f(x) = e* wird das Lot auf die
Abszissenachse gefillt; der FuBpunkt sei L. Die Tangente an den Giraphen von

/ im Punkt P schneide die Abszisscnachse in T. Man zeige, dan TL = 1 fiir
jeden Punkt P gilt.
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10.

11.

12.

13.

14.

15.

Man beweise, daB bei der Kettenlinie f(z) = a cosh Z die Ordinate dasgeome-
trische Mittel der Normalen und der Grige a ist.

Gegeben seien die Funktionen
a) f(z) = e, B)f(z)=Inz,2>0, c)f(z)=sinz, d)f(z)=cosz.

Man gebe die Gleichungen der Normalen fiir diejenigen Punkte der Graphen der
Funktionen an, in denen die Tangente den Anstieg 1 besitat.

Man gebe die Ableitung der folgenden Funktionen an:

_ 241 _ z 7

a) f(z) = 213"’ b)/(z)—(—z_l)(z+3)
_[2rmy _sinz

ot =[El. o =22

e) f(x) = 3sinz.cos*z, f) f(z) =3cos?z,
_ sin(z 4 1)* _1 — sint*z

8) /(=) ==x1 h)/(z)——1 g

i) f(z) = In (sin3z + 1).
Man gebe die Ableitungen der folgenden Funktionen an:

)

a) flz) = "7HIH, b) /(z) = a'™* 4 tan a®,
1
o) f(z) = o™=, d) f() = sinh 22 — 2 cosh z,
e) f(z) = (tenhz — 1)¢, 1) f(z) = arcsin %‘f‘z_’:_;
1--2%
9@ = 0H, ) =em @>o0),
i) fl@) = (nzps (2> 1), j) /(@) = (z cos z)*+ooue (o <z< -’2’-)

k) f(z) = zarsinhz — J2* + 1, 1) f(z) = zarcothz + %ln(z'— 1),

m) f(z) = In V“ﬂ

1 +sinz’

Aus der Beziehung 1 4 )_:,' =

Z%1 — 1
-1 k=1 z—1
die Summe 1 + 3 (k ;- 1) z* her.

k=1

(z % 1) leite man eine Formel fiir

1 . sin (n + —) z
Aus der Gleichung 3 + Y coskx = ——————"— leite man eine Formel
k=1 .z
fiir z" k sin kz her. 2 sin F)
k=1
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16.

17.

18.

19.

23.

24.

25.

Man bestimme fiir die folgenden Funktionen f aus R den (gr68tméglichen) Defi-
nitionsbereich D(f) und ermittle die Ableitungen der Funktionen. Man gebe
jeweils D(f') an.

a) f(z) =2zY1 —2*, b)f(z)=In(nz),
9 fie) = VT ooz, dfte) =t Z=2=2,
e) f(z) = sin [(32* — 2z + 7).

Man zeige, daB die Nullstellen der Ableitung des Polynoms fiinften Grades
P(z) = z(z — 1) (z — 2) (z — 3) (z — 4) reell gind, und stelle fest, zwischen wel-
chen Grenzen sie liegen.

Man untersuche die Funktion f(z) =

z auf Monotonie.
14 22
Man zeige, daB die Funktion f(z) = z"* (n € N*) fiir alle z mit 0 < z < » mono-
ton wichst und fiir alle z mit z > » monoton féllt.

z
14z
Hinweis: Man wende den Mittelwertsatz an.

Man beweise die Ungleichung

<In(1+42) <zfirz>0.

. Man ermittle 3 aus f(z + k) = f(z) + kf'(z + 9h) fiir die Funktionen

a) f(z) =€*, b)f(z) =Inz.

. Man bestimme mit Hilfe des Mittelwertsatzes zwei Zahlen a, b mit ¢ < V% <b,

indem man # = 0 und # = 1 setzt und geeignet abschitzt.
, 11—

142
meterdarstellung des Kreises um den Koordinatenursprung mit dem Radius »
gegeben ist.

Man zeige, deB durch r(f) = (f %ﬂ. ). —00 <t < 400, eine Para-

Hinweis: Man eliminiere den Parameter &.

Durch t(t) = (a cos®t, asin®t), 0 < ¢t < 2n, ist die Parameterdarstellung einer
sogenannten Astroide gegeben.

a) Man skizziere den Kurvenverlauf der Astroide.

b) Man eliminiere den Parameter ¢.

Man gebe die Tangentengleichung der durch die folgenden Parameterdarstellun-
gen gegebenen Kurven an:

a) t(t) = (@ cos’t, asin®t), 0=<¢< 2=,

b)t(t) = (t — cost, t —sint), —oo <t < +o00.

. Man berechne die Tangenteneinheitsvektoren der Kurve

) = (sin’ ?:- cost, sin® % sin t), 0t < 3,
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27.

28.

in den Punkten mit den Parameterwerten ¢, ¢+ =z, ¢ + 2n (0 <t< %) und
zeige, daB die Tangenten in den zugehérigen Kurvenpunkten ein gleichseitig,
Dreieck bilden.

Man untersuche die Funktion

z-y ..
—— fiir (=, 0, 0),
c=fmy) =Bt (z, y) + (0,0)
0 fiir (z,y) = (0, 0)
im Punkt P(0, 0) auf Stetigkeit.
Losung: Es sei o eine fost gewihlte reelle Zahl. Es wird die Folge (z,, ya) = (l, l) be-
n "
trachtet. Offenbar gilt lim ((2,, y,)) = O fir jedes fest gewihlte a. Wegen f(z4, ya
= % Giltlim f(zn g0) = —2—
Ty e 8= T

Fir alle a 5= 0 ergibt sich demnach ein vom Funktionswert verschiedener Grenzwert. f ist
im Punkt P(0, 0) nicht stetig.

Es sei

By
e fiir (z, y) + (0,0),
0 fir (z,y) = (0,0).
Man zeige, daB die Funktion / stetig differenzierbar ist.

Lésung: Fir alle (z, y) + (0, 0) gilt

=, y) =

_ Bty Aoy
e R A =

Die Funktionen f; und f, sind fir (z, y) + (0, 0) stetig. Ferner ist

10,0 = lim 120 10.0)

=0, /,00,00=0.
Es muB nun gmxgt werden, daB die Funktionen f. und f, -uch an der Stelle (0, 0) stetig
sind. Setzen wir x = r - cos @, y = r - sin @, 80 gilt

15, y) = r - sin @ (cos* ¢ — sin' @ + 4 cos® ¢ - sin' p).
Da aus (z, y) — (0, 0) stets r — 0 folgt, haber wir

lim  f(z,y) =0 = £,(0,0).

(2.9)(0.0)
Analog zeigt man, da8 f,(z, y) an der Stelle (0, 0) stetig ist. f ist also stetig differenzierbar.
Eine im Bereich B S R, definierte reellwertige Funktion f wird homogen vom Grad » ge-
nannt, wenn sich bei der Maultiplikation der einzelnen Argumente mit dem Faktor ¢ die
Funktion mit dem Faktor ¢* multipliziert, d. h., wenn die Gleichung

2y, ..., t25) = t™(z,, ..., z5)
identisch erfillt ist. Der Einfachheit halber nehmen wir an, z,, .. cr und ¢ seien positiv.
e]

Der Bereich B mége mit jedem Punkt (z,, ..., z,) auch alle Punkta r Form (tzy, ..., tz,)
fir alle ¢ mit 0 < @ <t < b enthalten.
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29. Die Funktion u = f(z, y, z) sei homogen vom Grad = (n eine beliebige reelle Zahl).

31

1 habe im offenen Bereich B < R, stetige partielle Ableitungen f_, f,, f,. Man zeige,
da8 die Beziehung zf, + yf, + 2/, = nf(z, y, 2) gilt (Eulersche Formel).
Beweis: Es sei (%, ¥q, ) € B S R, beliebig. Dann gilt fir jedes ¢t > 0
120, tyes b20) = ¢%(Zos Yo» 29) -
Durch Differentiation erhalten wir )
12(tZqs tyss t20) Zo + 1y (820, Y0 120) Yo + f.(8Z0, 8Y0s 120) 20 = ME% (o, Yo Z0) -
Fir ¢ = 1 folgt
f=(%or Yor 20) Zo + fy(%os Yo 20) Yo + F:(Zor Yo» 20) 20 = 7f(Zes Yo» 20)-
Also gilt fiir jeden Punkt (z, y, z)
2z, 9, 2) + Yhy(2, 9, 2) + 2felz, ¥, 2) = nf(z, ¥, 2).

Gegeben sei eine Funktion f(z), und P,(z) sei ein Interpolationspolynom n-ten
Grades mit /(z.) = Py(z;) fir =0, 1, ..., n; 2 + 7 fiir ¢+ 3 k. Ry\y(2) := f(2)
— P,(x) wird Restglied der Interpolation genannt. Fiir eine auf einem Intervall 7
(n + 1)-mal stetig differenzierbare Funktion filhre man eine Abschitzung des
Restgliedes durch.
Losung: Essei z 4 z; ( =0, 1, ..., n) ein fest gewihlter Punkt aus I. Wir betrachten
die Funktion F(t), die definiert ist durch
F(t) = Rypa(t) — k(t — z5) (¢ — 7,) -+ (¢ — z,)

mit

- Rain(z) .

(Z — %) (x — ) - (x — )

Dann gilt F(z;) = 0firs = 0, 1, ..., » und F(z) = 0. Die Funktion besitzt also mindestens
n + 2 verschiedene Nullstellen in I. Nach mehrfacher Anwendung des Satzes von RoLLE
ergibtsich dann, daB die (s + 1)-te Ableitung der Funktion F(¢) mindestens eine Nullstelle
besitzt, wobei { in dem kleinsten Intervall liegt, das die Punkte z, Z,, z,, ..., Z, enthilt.
Also ist Fi8+)(() = f(*+1)(Z) — k(n + 1)! = 0, d. h. nach Definition von k

’(l+l)((‘)
o+ 1)

Die Funktionen f und g mégen an der Stelle @ Ableitungen bis zur #-ten Ordnung
besitzen. Dann existiert auch die n-te Ableitung des Produkts beider Funktionen,
und es gilt

U-om @ =F (1) 1 @,
k=0 k

Rypu(z) = @ — 2o} (2 — &) = (2 — 2).

Die letzte Beziehung heiBt Leibnizsche Produktregel.

Beweis: Die Beziehung gilt fiir n = 1. Unter der Annahme, daB die Beziehung fiir ein
beliebiges n = 1 gilt, zeigen wir, daB

(f - 9™+ (a) = E‘l(" :‘ l) n1-9)(g) g¥)(a)
k=0
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gilt. Aus der Induktionsannahme folgt
w-omar =[ £ (3) e o]
k=0 \k
Aus der letzten Beziehung erhalten wir

(’ g)(-*"l)(a) ( ) U(.#l—l‘)(a) v(.)(a) + ’(.—‘,(G) g(kfl)(a)]
=Z (1) 1m-0ier 60) + 120900 gt
k=1 \k
=1 /p!
+ Z (3) 1oter 9420 + fo) 9%o000)
= reni@ge + E[(3)+(, 2 )] 1o o) + iy g

= 1@ o) + 2 (* 1 F) 100-00) 1) + f) 9*e00e)
k=1
= 'f;‘ (" + '7 fin+1-0)g) gk(g)
k=0 \ k
32. Die Funktion y = f(z) sei im Intervall I differenzierbar, die Ableitung f'(z) seiin I

beschrinkt. Dann ist die Funktion y = f(2) in I gleichmiBig stetig.
Beweis: Es gibt eine reelle Zahl K > 0 mit |f(z)| < K firalle z € I. Zu jedem positiven ¢
ist dann auch 6 = LK positiv. Fir alle z’, 2’ € I mit |’ — z”’| < § ergibt sich nach dem

Mittelwertsatz der Differentialrechnung zunichst f(z’) — f(z”') = f(#) (z' — z”). SchlieB-
lich folgt

@) — @) = If®)] |z" — =] < Ké = e.
33. Man gebe die Taylorentwicklung der Funktion f(z) = a* (a > 0) an der Stelle 0 an.
Lésung: Aus f(z) = a*® folgt /"™ (z) = (In a)" a*. Es gilt somit

(In n) (In a)* (In a)*+1 g%

£ = 224 .. 4 097, (Oa)TF a7 ..

@ t4+lnaez + —— 2>+ + n z* + Y
Es wird nun gezeigt, daB fiir alle z € R

(z - Ina)*+?
hmR 0,2) = limads 2220 —
wl0n2) =l e
1

gilt. Fir alle z € R gibt es ein X mit 0 < a%* s K fir 0 < ¢ < 1. Die Folge Cakd ist
fiir alle z € R eine Nullfolge. Die gesuchte Tayl icklung lautet (= + 1!

a* = 2(Ina)'I —-
n=0 n!
34. Man entwickle die Funktion f(z, y) = cos z cosy in der Umgebung des Null-
punktes mit einem Restglied dritter Ordnung.
Lasung: Die Funktion f ist in R, beliebig oft diff ierbar. Fir alle (z, y) € R, gilt

fz,y) = cosz cos y, 10,0) =1,
z(%,y) = —sinz-cos y, 1+(0,0) =0,
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fy(z,y) = —cos zsiny, 14(0,0) =0,
2z, y) = —cosz cOB Y, f2£(0,0) = —1,
fzy(%,y) = einzsiny, 124(0,0) =0,
t"(z,y) = —coszoo8y, fyy(0,0) = —1,
f222(z, y) = sinz cos y, fz2y(®, y) = 08 zsiny,
fyy(@ y) =sinz cos 9, fypy(@ y) = coszsiny.

36.

Es gibt ein 4 mit 0 < & < 1, so daB
1z, y) = 0, 0) + 2£,(0, 0) + y/4(0,0) + ';— [2%2:(0, 0) i+ 22yf.,(0, 0) + y7,,(0, 0)]

+ o (120a02,09) + 310y (52,09) + 351,102, 09) + ¥ypy(05,00)]

gilt. Die gesuchte Tayl ioklung in der Umgebung des Nullpunktes lautet

ooszoosyal—%z-'—-;—y'

+ = [o*sin (82) cos (By) -+ 3a% cos (9) sin (By)
+ 3zy* sin (82) cos (By) + ¥* cos (62) sin (By)).

. Gegeben seien n Punkte (z;,y;) (: = 1,2, ...,7). Man bestimme einen Punkt

(, y), fiir den die Funktion f(z, y) = Z.' [(zi — 2)* + (y; — v)?] ein lokales Mini-
mum besitzt. i=1

Lésung:
- »
fs= X 2(z — z), fy=Z2y—y)
i=-1 =1

fez = 2n, ’" = 2n, f:, =0.

Fur =Bt ftotse Gttt gy gy = fny) =0

n n
Ferner gilt f:+(z, Y) - fyy(2, ¥) — (fzy(, ¥))* = 472 > 0, so daB [ im Punkt (z,y)
_ (At t - t+ T t Yt tYa

10k 1okal B

einen eig Ex t

n n
besitzt. Da f,, > 0 ist, liegt ein eigentliches lokales Mini vor.

Man zeige unabhiingig von den Ergebnissen des Lehrwerks MfL Bd. 5, 3.3.3.(26),
daB

-~
n=0

gilt.
d
Beweis: Zunichst ist klar, daB die Reihe 3 *) 2» tar alle z mit |z| < 1 absolut kon-
n=0
vergent ist. Wir setzen T'(z) = E‘ (:) z®. Fir alle z mit |z| < 1 gilt
n=0

v ("‘) @ = (1 + 2)° fiir || < 1 (« € R beliebig)

T RS STAER{

n+1 =0 n
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37.

38.

39.

Durch Multiplikation mit 1 + z folgt
(1 +2) T(2)

= [E(T) AL D) = ACT) 2 EC D)

g G (W i g o CR{ Wi B

Fir alle z mit —1 < z < 1 gilt also (1 4 z) T(z) = «T'(z). Es sei f(z):= 41':)_‘

(lz| < 1). Dann gilt 1 + z)

T@(+2r—al@ U+ TEU+2)—TEA+) 0
1+ 2y 1+

Aus dem Mittelwertsatz der Differentialrechnung folgt, da8 f(z) =a fir z € ]—l, +l[ ist.

Aus T'(z) = a(1 + z)*und T'(z) = z‘ : z® folgt, indem man z = 0 setzt, a =1. Da-

n=0

mit ist gezeigt worden, daB T'(z) — (1 + ) = 3 (:) 2% fir 2] < 1 ist.
n=0

f(z) =

Man bestimme den (gréStméglichen) Definitionsbereich und den Wertevorrat
der folgenden Funktionen:

a)z=flz,y) =Y4—2'—y%, Db)z={f(z,y) =2+ 2,
c)z=f(z,y) =

1

(e
Man untersuche die Funktion

e Sy | T fir G+ 0.0,

0_ fiir (z, y) = (0, 0)

im Punkt P(0, 0) auf Stetigkeit.
Man berechne die partiellen Ableitungen /., f, der Funktionen:
8) fz,y) =2* + 3 — 32y, b)flx,y) = 22° — 2% + 3,
o) flz.y) ==, @) fiz,9) = arcten =,
o) flay) = e, 1) fa, y) = eoussn 4 aiem,
/@y =V —at =3,  h)f(z,y) = cos (z + y) cos (z — y).

. Man berechne die partiellen Ableitungen f, f,, /. der Funktionen:

a) f(z,y,2z) = z° + 623y — 22%yz + 3y2?,
b)f(z,y,2) = e*Iny + 2*cosy, o) fl@,y,2) = (z-y),
d) f(z, y,2) = In (z + y + 2).
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41.

42,

43.

45.

47.

49.

Man bestimme das totale Differential folgender Funktionen:

8) z = f(z, y) = sin (22 + 9", b)==/(=.y)=1mn§,
¢) f(z, y) = arctan %, dyu=f=z1y2 =)=+ y* + 2.

Man bilde il 1(2" y(®) mit Hilfe der verallgemeinerten Ket 1:

8) f(z,y) =sin(z-y), )= (),
b) f(z,y) = zsin(z-y), ) = (% In(* + 1)).

Man iiberpriife an folgenden Beispielen die Giiltigkeit der Eulerschen Beziehung
durch ittelbare Berechnung der partiellen Ableitungen:

Ve p) =VF TP TP b fmys) =6,

y
o) flz, y,2) = V=t + y'+z'1n-;i.

. Man berechne den Gradienten der Funktionen

&)/(z.y.=)=4z+%, b) f(z, y,2) = zy + yz + zz + 10,

Az y)=VPF o +2, Ay =%+§+%_

3
Man bestimmme fiir die Funktion f(z,y, 2z) = % - % - % im Punkt (a, b, c)

die Ableitung in Richtung des Ortsvektors dieses Punktes.

. Wie gro8 ist die Richtungsableitung der Funktion z = f(z, y) = ¢* sin y im Punkt

(%o, Yo) in beiden Richtungen der Geraden y — y, = (2, — 7) tan y,?

Man bestimme fiir die Funktion f(z,y) = z* — y* in den Punkten (1, 1) und
(—1, 1) die Ableitung in Richtung der Winkelhalbierenden des ersten Quadranten.

. Man berechne eine Gleichung der Tangentialebene fiir a) die Halbkugel

z = Jr® — 23 — 4%, b) das Rotationsparaboloid z = z* + 9, c) die Sattelfliche
z =2z -y in dem zu (z,, y,) gehorenden Flichenpunkt.

Man berechne div b und rot v fiir

.)n=(—‘—— y ———)
VFre+2 VB e+ VE+v 2/
b)o = (0,2, z8in (z* + y*), ¢) b = (2,4, 2).
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51.

62.

53.

54.

57.

. Man bestimme durch vollstindige Induktion die n-te Ableitung der Funktionen

Die =15 Bf@=2% of@=(1+ar GeR),
142
1—=z

Ist M eine obere Schranke fiir f(*+1)(z) im Intervall I, so gilt fiir das Restglied der
Interpolation

|Runi(2)] <

d) f(z) = In

, e)f(z) =sin?z.

M -
muz—zo)(z—_z,)---(z—z.)[ firalle z¢I.

Wie gro8 ist der groBtmogliche Fehler bei linearer Interpolation?

Es sei eine fiinfstellige Tafel fiir den dekadischen Logarithmus f(z) = log,, =
= Ig z fiir z € (1, 10] mit einem Abstand der Stiitzstellen von % = 10-2 gegeben.
Ist bei linearer Interpolation der Interpolationsfehler kleiner als 5 - 10-5?

Man bestimme mit Hilfe der Leibnizschen Formel folgende Ablei
a) (2 cos az)(®, b) (2 - €)@, c) (e*sinz)™.

In den folgenden Aufgaben sind die angegebenen partiellen Ableitungen zu be-
stimmen:

1
a) fen /:p /n; fz, y) = E In (22 + v?),

B) fons fap i (2 9) = srotan = ot

€) fozy fir f(z,9) =In(z +y), d)/fsy. fir flz,y,2) = .

. Man beweise folgende Identititen:
-
[ A Ly, 2) = In (2® - ,
8)fetfy+ /s L flz,y,2) =In (2 + ¢ + 2° — 3zy2)

4na®

Worvis

b) fzs +/" +/::=0; fl,y,2)=

. Man bestimme die ganze rationale Funktion sechsten Grades aus den Angaben

f(0) = f(0) = 2, /*(0) = 0, {""(0) = —4, f(0) = 6, f®(0) = f(0) = 1.
Man entwickle das Polynom
P(z)=2' — 522 522 + 2+ 2 bzw. Py(zr) =28+ 28 — 22+ 2z + 1

nach Potenzen von z — 2 bzw. z + 1.

. Folgende Funktionen sind an den Stellen @ == 0 und @ = 1 his zur dritten

Potenz zu entwickeln. Eine Restgliedform ist jeweils anzugeben.

a) flz) =€, b)f(z) =In(2 + ), ¢)f(x)=V1+ a2
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III. Anslysis

59.

61.

62.

67.

a) Man zeige, daB lim R,(0, z) fiir sinh z und cosh z gilt, und gebe die Reihenent-

>0
wicklungen an der Stelle a = 0 fiir beide Funktionen an.

b) Man benutze die Entwicklungen von e und e* fiir die Reihenentwicklungen
der hyperbolischen Funktionen.

. Man entwickle f(z) = log,(1 + z) nach Potenzen von z unter Benutzung der Um-

rechnungsbeziehung von Logarithmen.

Mit Hilfe der binomischen Reihe beweise man die Entwicklung
1 1-3-6

= 2.4.6

1 1-3
=14 —22 z 8 vy 1.
+2z+2.4 + z* + ,lz|<

Man zeige, daB fiir [z] < 1 die folgenden Entwicklungen gelten:
1 ® 1 ® (k+1)(k+2)
—_— = (k+ 1)z, = k.
11—z té;( +1 1 —z)® k{'; 2

. Man entwickle die folgenden Funktionen nach Potenzen von z:

a) Y1 + =z, b)lna+z, ¢)ln (a + z).

a—zx

. Man entwickle die Funktionen /,(z) = sin z cos  und f,(z) = sin? z in MacLau-

rinsche Reihen.

. a) Man entwickle die Funktion f(z,y) = 2® — y® 4 sinzcosy an der Stelle
(=, y) = (%, 13’-) mit einem Restglied zweiter Ordnung.

b) Man bestimme nach dieser Entwicklung den Wert /(% +h, %—+ k) fiir

h = 0,01 und k = 0,02 unter Vernachlissigung der Glieder von héherer als
erster Ordnung.

. Die Funktion f(z, y) = sin (¢ — y) ist mit Hilfe der MacLaurinschen Formel nach

Potenzen von z und y zu entwickeln.

Man bestimme die Extrema der folgenden Funktionen:
2 32 9 "
3)/(2)——13—T+4~’=+1. b) f(z) = (z — a)®,

c) f(z) =cosz + %, d) f(z) = cosz + cosh z, e) f(z) = Yz(z* — 9).

. Man diskutiere den Verlauf der Graphen der folgenden Funktionen:

1+ 2 _=z
= /M@=

90 =2, bf@=l 4) fe) = z — sin-.
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69.

70.

1.

Unter welchem Winkel « muB ein Kérper mit der Anfangsgeschwindigkeit v,
geworfen werden (ohne Beriicksichtigung des Luftwiderstandes), damit die
horizontale Wurfweite ein Maximum wird?

Einem gegebenen Zylinder mit dem Radius a sei ein Zylinder so einbeschrieben,
daB seine Achse die Achse des gegebenen Zylinders unter einem rechten Winkel
schneidet. Wann hat ein solcher Zylinder den gréBten Inbalt und wie groB ist
dieser?

Man bestimme bei den folgenden Funktionen die Punkte, in denen die notwen-
digen Bedingungen fiir das Vorliegen eines lokalen Extremwertes erfiillt sind, und
untersuche, ob in ihnen die hinreichenden Bedingungen erfiillt sind :

28
o fm ) =5 +y— b2+ L -,
b)f(@,y) =2+ 2y + 9y — 13z — 11y + 7,

o) fle, y) = 28 + ¥° — 6z, d)/(z,y)="°:;”’ @y >0).

72.* Eine positive Zahl w ist so in drei Summanden zu zerlegen, daB das Produkt zyz

73.

74.

ein Maximum wird.

Man bestimme die folgenden Grenzwerte:

1 5 1
lim {—— — —— lim (—— —cot z],
”;2(:—2 z*+x—6)’ b),lz(sinz coz)
c) hm—x—- d) ]iml(cotz—i),
0% +sinz’ 0 T z
1
e) lim £-7 f) lim 2122
1 z—00 x

/ 2
g) lim 1+= arctan z, h) lim (cot z)®®=,
zt0 a? z0

Xz
i) lim P j) lim (i - ;), k) lim (27 — 1)tin=,
e* 1 zl0

zh 0\ T

Man bestimme die Konvergenzradien der folgenden Potenzreihen :

9iZ wif 03 o, 95>

o2 nmo 7! =0 1Y + 1 "
9% Le @>0, 0 F (1+i)"z~.

a=0 N ne=l n
g) Z )2

=0 (2n)l =1 n’ 10"
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75.

76.

.

78.

79.

o
Man bestimme den Konvergenzradius der Potenzreihe 3’ a,z*, wenn

n=1

1 -
(ke N), b)a, = z fiir » = 2k, (ke N)

{2* fiir n = 2k,
a) a, =
klnk fir n =2k 4+ 1

7| 3¢ fiir n =2k +1
ist.
Fir |z| < 1gilt E‘ ™ = l—l Man zeige a) durch sukzessive Multiplikation

a=0 -z
und b) durch mehrmaliges gliedweises Differenzieren, daB
1 = (n+k = [n+k

R — ™ = »

T —ap £o( n ) .éo( k )"
gilt.
Es sei [ eine fiir |z| < r apalytische Funktion und }’ a,z* die Potenzreihen-

=0
entwicklung von f im Punkt 0. Ist f eine gerade Funktion, dann gilt ay,, =0
(k € N), und ist f eine ungerade Funktion, dann gilt ay = 0 (k € N).

Man berechne
a)(f z—.)’ @eR), B (“)z-f (ﬂ) @ (<R, 7 <1).
a0 ! a=0 \7 n=0 \7

Die Gleichung z* — 32® + 76z — 10000 = 0 besitzt eine Wurzel zwischen — 11
und —10 und eine weitere zwischen 9 und 10. Man bestimme beide Wurzeln mit
einer Genauigkeit von 0,01.

. Man bestimme die zwischen 2 und 3 liegende Wurzel der Gleichunglgz* — 1 =0

nach dem Newton-Verfahren. Als Startwert nehme man a, = 2 und berechne die
Niherungswerte a, und a,. Man fiihre eine Fehlerabschitzung durch.

81.* a) 23 4 y® — 3azy = 0. Man bestimme y' fiilr z = y.

82.

b) ¥ = y*. Man bestimme y' fiir z + y.

c) z sin y — cos y + cos 2y = 0. Man bestimme y'.

Man zeichne die Niveaulinien der folgenden Funktionen:
a)F(z,y)=}/4—z'—y’ firc=0,c=1undc=2,
b) F(z,y) = 2% + 2y® fir c=Ound ¢ = 4.

2 2
83.* Man zeichne die Niveaulinien der Funktion F(z, y) = z_ % firc =1 und

84.

9
¢ = 2 und zeige, daB der Gradient in den zu z = 5 und z = 8 gehérenden Punk-
ten auf den Niveaulinien senkrecht steht.
=1
Man bestimme die Punktmenge, in der die komplexe Funktion f(x) = e'*l ana-
lytisch ist.
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Losung: Wir werden ulgen, daB f in keinem Punkt dlfferenuerbu' also erst recht
nicht analytisch ist. Es sei z, ame beliebige von Null v plexe Zahl. Wir
hen den Diff
L L
Izl I=l

q'

e —e
Zy— 2%
fiir 2 > Z,. Ist |2| = |z,|, dann strebt der Differenzenquotient fiir z — z, gegen 0. Ist z = re'?,
Zo = ro¢*? und r # r,, dann strebt fiir r — r, der Differenzenquotient
1 1 1 1

e —e " ef—e¢ T 1

(ro — 1) €f® =71 ( l)‘f.f

1
en — ¢ '* . ¢~i? 3= 0. Die Funktion f ist also in keinem t ferenzierbar.
geg :' i 7 % 0. D I kei Punkt diff ierba:
o

Integralrechnung

Kontrollfragen

1.* Wann heiBt eine beschrinkte Teilmenge des Raumes R, quadrierbar? Es sind

die Schritte und Begriffsbildungen, die zur Definition des Riemannschen oder
Peano-Jordanschen Inhalts einer beschrinkten Teilmenge des Raumes R, fiihren,
zu erléutern.

2.* Wie lautet ein notwendiges und hinreichendes Kriterium fiir die Quadrierbarkeit

einer Punktmenge?

3.* Man gebe Eigenschaften quadrierbarer Punktmengen an.
4.* Welche Formeln zur Berechnung der Inhalte eines Rechteckbereiches und eines

Zylinderbereiches gibt es?

5.* Wie berechnet sich der Inhalt einer Punktmenge M*, die aus einer quadrier-

oo

baren Menge M durch einé lineare Abbildung hervorgeht? Wie lautet die Formel
zur Berechnung des Inhalts der Punktmenge M* fiir den Fall, daB M* aus M
durch eine Kongruenztransformation bzw. durch eine zentrische Streckung her-
vorgeht?

. Es sind die Schritte und Begriffsbildungen, die zur Definition des Riemannschen

Integrals fiihren, zu erldutern (Zerlegung, Durchmesser emer Zerlegung, susge-
zeichnete Zerlegungsfolge Untersumme, Obersumme, Zw
Integral, oberes Integral hes Integral).

. Man gebe ein Belsplel fiir den Fall I(f; a, b) < I(f; a, b) an.
. Wie lautet das Riemannsche Integrabilitatskriterium?
. Wie konnen Integrale mit Hilfe von ausgezeichneten Folgen von Zwischensum-

men berechnet werden? Man gebe ein Beispiel an.
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1II. Analysis

10.
11.

12.
13.

14.

16.

16.

17.

18.

19.

21

22.

Welche Klassen integrierbarer Funktionen gibt es?

Es sind Eigenschaften Riemannscher lntegrale geben: Homogenitit und
Additivitdt beziiglich des Integranden, Additivitit beziiglich des Integrations-
intervalls.

Man gebe Abschitzungen und Ungleichungen fiir Riemannsche Integrale an.
Wie kann man mit Hilfe von Riemannschen Integralen Flicheninhalte berech-
nen?

Wie lautet der Mittelwertsatz der Integralrechnung und wie kann er geometrisch
interpretiert werden? Wie lautet seine Verallgemeinerung?

Wie lautet die Definition des Riemannschen Integrals mit Hilfe von Zwischen-
summen?
Unter welchen Vora ungen ist es moglich, den Begriff der Integrierbarkeit

auf Funktionen zu erweitern, die auf halboffenen bzw. offenen Intervallen erklirt
sind? In diesem Zusammenhang ist der Begriff des uneigentlichen Integrals zu
erliutern.

Wie sind die Begriffe Stammfunktion und bestimmtes Integral als Funktion der
oberen Grenze definiert?

Wie lautet der Hauptsatz der Differential- und Integralrechnung und seine Um-
kehrung (Beweis!)? Welche Bedeutung haben diese Sitze (Losbarkeit des Umkehr-
problems der Differentialrechnung fiir die Klasse der auf abgeschlossenen Inter-
vallen stetigen Funktionen, numerische Berechnung von bestimmten Integrajen)?
Wie ist der Begriff des unbestimmten Integrals definiert? Man gebe einige Grund-
integrale an.

. Was versteht man unter einer in einem offenen Intervall elementar integrier-

baren Funktion? Man gebe Beispiele fiir Funktionen an, die in keinem offenen
Intervall elementar integrierbar sind.

Wie lautet die Regel fiir die partielle Integration (Beweis!)? Man gebe einige
Beispiele an. Wie lautet die Regel der partiellen Integration fiir bestimmte Inte-
grale?

Wie lauten die Regeln fiir die Integration durch Substitution fiir unbestimmte und
bestimmte Integrale und wie lassen sie sich beweisen? Man gebe einige Beispiele an.

23. Wie wird eine rationale Funktion integriert? Es sind die einzelnen Rechenschritte

anzugeben. .

24. Wie lautet eine hinreichende Bedingung dafiir, daB man bei einer Folge von auf

26.

dem abgeschlossenen Intervall [a, b] stetigen Funktionen die Reihenfolge von
Grenzwertbildung und Integration vertauschen darf? Man gebe ein Beispiel an.

. Wie lautet eine hinreichende Bedingung dafiir, daB man eine Folge von auf dem

Intervall [a, b] stetig differenzierbaren Funktionen ,,gliedweise differenzieren‘
darf?

Welche Anwendungen der Integralrechnung gibt es? In diesem Zusammenhang
sind die Begriffe Rektifizierbarkeit, Bogenlinge, Kriimmung, Rotationskorper,
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Oberfliche des Mantels eines Rotationskorpers und Rauminhalt eines Rotations-
korpers zu erliutern. Man gebe die entsprechenden Berechnungsformeln an.

27.* Wie lautet das Prinzip von CAVALIERI?

28.* Wie kann die Berechnung von mehrdimensionalen Integralen auf die sukzessive
Berechnung von eindi ionalen Integralen zuriickgefiihrt werden? Wann darf
die Reihenfolge der Integration vertauscht werden? In diesem Zusammenhang ist
der Begriff des Normalbereiches zu erliutern.

29.* Wie lauten die Transformationsformeln fiir mehrfache Integrale?

Aufgaben

a
1. Man berechne das Integral fz‘ dx(a =1, a€R).
1

e
Lésung: Fir a =1 gilt f z*dz = 0. Wir setzen a % 1 voraus und verwenden geometri-

n_ n\k-1 &

sche Zerlegungsfolgen z(" (}/_) (j=0,1,...,n). Wegen ya > 1 ist(ﬁ) < (VE)

bzw. z{®) < z{™ firk = 1,2,...,n. Da d(;"") =a (l — ——) ist, gilt limd(3'™) = 0. Die
a R—00

Folge von Zerlegungen 3™ ist also eine ausgezeichnete Zerlegungsfolge. Nun berechnen

wir die Zwischensumme S(f, 3'™), (™), wobei als Zwischenwerte die Endpunkte der Teil-
intervalle gewihlt werden:

» » 1 g—1 8
80,56 = £ 1) = 50 = £ (g o (1=7) =5 Zaern
j=1
mit ¢ = }r Die hierin auftretende endhche geometnsche Reihe Z (¢**!)! mit dem Quo-
tienten ¢*+! veranlaBt uns zu folgender Fal :

1. o = —1. Wegena =+ 1 ist g * 1 und ¢**! =+ 1. Fiir die Relhe erglbt sich dann der Wert
PN C e et W q“lu‘“ — 1.

et -1
Far dle anschensumme ergibt sich

z (@) = g

S(f, 3(.)- ;(l)) = gat — 1) 9:1“__1 .

Wegen lim ¢ = 1 und hm —_— ilt
gen i = o — 1 + P
limS , 3™, ¢ =a___— = [z dz.

(3 £ = =—— f

2.a=—11In dlmm Fall ist ¢**! = 1. Fiir die Reihe ergibt sich nun )_’,‘ (¢**Y)f = n. Also

j=
ist S(f, 3™, S™) = — (ll Hn= L "T SchlieBlich erhalten wir
q

n—rco

.
lim S(f, 3™, &™) = Ina = f e
1
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2. Man berechne das Integral der Funktion f(z) = 2? iiber ein Intervall [, b].

3w a3 Zarl fol
9 &

Losung: Wir ver

,}.)=a+,-b%“ G=01,..n).

2 ist, gilt lim d(3'™) = 0. Somit liegt eine ausgezeichnete Zerlegungs-

Da dg) = 2=

R0
folge vor. Fir die Zwischensumme erhalten wir, wenn wir jeweils den rechten Endpunkt
als Zwischenpunkt wiihlen:
- ) 2p—
* =X (a +7 ) b-e
j=1

n

St Mo £y 02 1)

n

(7,3, 2) =})51 fiap 2

] e Fe+0(a+ )
=(b—a) (a’ +a(b—a) (l + %) + %(b —a)'(l + —}‘-)(1 + 21”»
Folglich ist
b 2 —
f iz =limS(/, 4™, 2) = (b — a) #=If_a_“’
AbschlieBend wollen wir das Integral der Funktion /(z) z‘ iiber ein Inurvnll [a, 8]
(0 < a < b) berech indem wir g ische Zerl ver . Die Zer-

e
legung sei ben durch die n + 1 Punkte zi" =a i (G=0,1,...,n). Der Leser
gege 7] 2

iiberzeuge sich selbst davon, daB die Beziehungen z{® < z{® far k=1,2,...,n und
lim d(3™) = 0 gelten.

Lmaad

Fir die Zwischensumme erhalten wir, wenn wir jeweils den rechten Endpunkt als Zwischen-
-

punkt wihlen und V—%— = c setzen:

S(t, 3, E) = F f(z) (@ — z) = 5 (ach ael — oY)
j=1 =

B

& ¢ —1

3
[ % dz = lim 8(f, 3, t) = L Y [(i)' _ 1] -3
a R0 3 a 3
3. Man beweise, daB eine Funktion, die aus einer iiber das Intervall [(«, b] integrier-
baren Funktion f durch Abinderung der Funktionswerte an andlich vielen Stellen
entsteht, iiber dieses Intervall integrierbar ist.
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&

*

Beweis: Die Funktion g, ist die Differenz der monotonen Funktionen

@ = 0 fir z<e, 0 fir z=<e¢,
o 1 fir z2¢ 1 fir z>¢

und damit integrierbar. Jede Funktion, die aus / durch Abiénderung an endlich vielen Stel-

‘““‘i 9a(z) = {

len entsteht, kann in der Form g(z) = f(z) + Z t,gc,(x) dargestellt werden, und mit f ist
auch g integrierbar.

. Das Integral fz' dz existiert fiir alle « < —1, aber nicht fiir x > —1.

+1
Bowou Fir jedes b > lundu*—lutfz‘dc-b. T 11. Ferner gilt fir b > 1 stets
-3
f——lnb Fir &« < —1 ist nun
+1
limjz-dz=|im"' 1___t
» N » a+1 «+1
o0
also f:'dz = ————. Fir « > —1 ist aber lim **! = oo, ebeneo ist lim In b = oo
+1 b0 b—00

Fur a« = —1 existiert das Integral also nicht.

Man berechne das Iritegral der Funktion f(z) = z° uber das Intervall [0, 1].
Hinweis: Es gilt Z" 2= ("(H—H)a

=0 2
Man berechne mit Hilfe der Identitit

N - 7 « «(2n + 1)
2sin — 3 'sin—+ = — —cos——*
" ié; S 08 g —cos———

das Integral der Funktion y = sin z iiber das Intervall [0, —"—].
2

. Man berechne mit Hilfe der Identitit

2sin-’ii‘cos(a+ih)= sin(a+ (n+—1-)h)—sin(a, +ih)
2;_1 2 2

das Integral der Funktion f(z) = cos z iiber ein Intervall [a, 5.

. Man berechne das Integral der Funktion f(z) = e* iiber ein Intervall [0, a].

Hinweis: Es gllt lim —an =1

af(e” — 1)

. Mit Hilfe der Beziehung

2 — 1 = (2% — 1)'[_7](:2—2zcosﬁ+ 1)
n

k=1 \
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beweise man

® 0 fiir 2| < 1,
In (1 — 2: 2 =
oj n (1 - 2zcosp +a) dp {nln(z‘) fiir |z > 1
(Poissonsches Integral).

Hinweis: Bericksichtigt man die Werte der zweiten Einheitswurzeln, so hat die Zer-
legung von 2®* — 1 in Linearfaktoren die Gestalt

z"'—l=;?(z—m£‘ —t'!ink—").
n n

k=1

wobei ¢ die imaginire Einheit ist. Trennt man die Faktoren z + 1 und z — 1 ab (sie ent-
sprechen den Werten & = —n bzw. k = 0) und faBt die konjugiert komplexen Faktoren zu-
sammen, 80 ist

—1
o — 1 = (22 — l)}] (z—coez—isink—“) (z—cos‘l'J.-isinE)
k=1 n n n n

= (=t — 1)'1-71(1 — 22008 &7 +z‘).
k=1 n

Wegen (1 — |2|)® < 1 — 2z cos ¢ + 23 erkennen wir, wenn wir |z| 3 1 voraussetzen, da
der Integrand stetig ist. Zur Bereohnung des Integrals verwendet man die dquidistante Zer-

legungsfolge z{™ = k& % (k=0,1,...,m).
10.* Man beweise: Ist eine iiber das Intervall [a, b] integrierbare Funktion f(z) posi-
3
tiv und gilt a < b, so ist f f(z)dz > 0.
a

Hinweis: Man fihre den Beweis indirekt.
11. Tst die stetige Funktion f auf dem Intervall ((a, b)) nicht negativ und gilt f f(z) dx
=0, so0 ist f(z) = O fiir alle z € [a, b].
Hinweis: Man fiihre den Beweis indirekt.
12. Es sei / eine iiber das Intervall [(a, b] integrierbare Funktion. Esgelte |f(z); < C
3

fiir alle z € (@, b]. Man beweise, da 1 f/(z) dz‘ < C|b— q| gilt.
a
13. Man zeige, daB = max (|pa + g|, |pb + ¢l} b — a gilt.
/3
14. Man gebe eine untere und eine obere Schranke des Integrals I = f Veos x dz
an. 1

f(p2+q)h

1
16. Man beweise, daB [sin*zdz < % ist.
[]

1
16. Man beweise, daB f cos®xdz = % ist.
0
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17

18.

19.

21.

Gegeben seien die Funktionen f(z) = 2% und g(z) = 2 — z% Man berechne den
Inhalt der Punktmenge

I=(zy):—1<z<1Aflz) Sy <g).
Man beweise die folgenden Ungleich

& )

1 200
a)0<fi/1_:1-.—x‘dz<%' b)0<f2;_:za<$.
o 0
Nach dem Mittelwertsatz der Integralrechnung gibt es fiir eine auf dem Intervall
[a, b] stetige Funktion f ein { € [a, b)) mit fh J(z) dz = f(Z) (b — a). f({) heiBt
Mittelwert der Funktion f im abgesohlossenen Intervall [a, 5.
Man bestimme den Mittelwert der folgenden Funktionen:

8) f(z) = o* im Intervall [a, ), b) f(z) = f im Intervall (1, 3,

¢) f(z) = sin z im Intervall [0, zJ.

. Man berechne die folgenden Integrale:

a) —}.coszdz, b)f’(::‘—3z’+z—7)dz,
+ sin?z
)f prr dz, )fl g e)frcostdt,
it
0 [ s)fzﬁdz,

dz z’—3z+4 z—z+1
h) | —, dz,
[ 5= D[S e g[S
k)f 2 _ i, l)fr’dz.

z—1

Man berechne folgende Integrale durch partielle Integration:
al2

a)fz’lnzdz, b)fzcoshzda:, c) fzsinzdz,
0
d) [ (#* +2)In (= + 1) d=, e)fz’sinzdz, f) [2ln (@ — 1) dz,
g)flnzdz, h)len’zdz, i) fzarct&nzdz,
2 28
j) fz"lnzdz, k)f(z’— 1) coszdz, 1) fz’eoszdz,
1 1]

m) [ sin®z dz.
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22. Man beweise, daB die Integrale
a) f:c"e' dz, b) fz" coszdz, c) fz'sinzdz
fiir natiirliche Zahlen 7 el tar integrierbar sind und fiir negative ganzzahlige
n auf die (nicht elementar auswertbaren) Integrale

s)f—dz, b)f—dz. fsmz

zuriickgefiihrt werden konnen.

xl2
23. Man berechne das Integral I, = f sin® z dz (n eine natiirliche Zahl).
[

Lésung: Pmielle Integration ergibt

=/2
I,= f 8in™* 2 d(—cos 2) = —sin™? z cos |32 + (n — 1) f sin™* z cos? z dz.
Der erste S d hwindet beim Eins von = und 0. Ersetzen wir im zweiten
Summanden coe* z d\u'oh 1 — ein? z, 8o erhalten wir
ale

=(m—1)[(sin**z —sin"z)dz = (n — 1) [, , — (n — 1) I,.
[}

Aus der letzten Beziehung folgt
n—1

I,= Ina.

Mit Hilfe dieser Rekursionsformel kann das Integral I, durch I, o. I, ausgedriickt wer-

den.

Fir n = 2m gilt némlich

2m—1)(2m —3) .- 3-1
2m(2m — 2) ---4-2

=2
Ly = [sin™zdz = H
°

fir n = 2m + 1 gilt

=z,
2

2m(2m — 2) .- 4-2

=2
— [ gint®+1 - cmem—g e
Limn of’m = e )@ —1) 31

Zur kiirzeren Schreibweise fithren wir das Symbol n!! ein. Es bezeichnet das Produkt der
geraden natiirlichen Zahlen < n, falls n gerade ist, oder das Produkt der ungeraden natiir-
lichen Zahlen < n, falls n ungerade ist. Wir erhalten dann

(n—1)!! =n
a2

(n — 1)1
n!!

a2 fir n gerade,
[sintzdz =

° fir n ungerade.

24. Man entwickle eine Rekursionsformel fiir folgende Integrale:

i g
a)fsm zdz, b’f(z’-}-a’)“ (n € N).
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26. Man beweise die Formeln
2
a) [cos®zcos (n + 2)zdzx =0, b)j cos'zsin(z+2)zdz=n—l—,
o 0

+1
. nm
. sin -
c)j‘sin"zcos(n+ 2)zdz = —n+ 1
26. Man berechne mit Hilfe bestimmter Integrale die Grenzwerte der folgenden
Summen:
R—1
a) lim —, b) lim — ¢) lim , d)lim sin 22
-m;é; +7 ).—'O]Z; )-m)z ’+7‘ -——cnnié;

27. Man berechne die folgenden Integrale:

)fcoe‘(4z )’ b)fsm(az+b)dz (a % 0),

°)f¢'+ e (a<$0), d)fsinmzsmnxdz (m, n € N*, m % n),

6z 4 4
e)fcos dz, f’f3z’+:z4—7 s

f sin z f z._%
n
T i ,. h —_—dz,
8 a+bcoszdz @+05+0),. h 1623 — 5z + 7 z
[
1
1
f arctan z f sin (In z) ary
i j ——dz, k dz,
i) k) L R o

m) {' arta.nh 3z

f}”H’r

28. Man berechne folgende Integrale:

z—a 2a 3z
e — T i,
a)fz+a ’ b)faa_z:dz’ C)f(2+3z’)'z
et
- R A— Ve + 1 d=z,
d)fa:'+4z+5' e)fe’—e-’ d f)f el
dz cos z
]/:_ —_ i —_——d2
g)f ¢~ 1ldz, h)fl—oosx' n_/.1+2si.nz

j) {cos’zsinzdz, )[ l)feosh’:sinh’zh.
J cosh z’
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29.

31.

32.

Man berechne folgende Integrale:

E
a) | VY23 + atdz (a > 0), bf c)f dz,
)f ( ) ) Yot — 2 Yot — a®

f e)f——.
sinz’ 1+ cosz

Man berechne die folgenden Integrale:

al2
a) j(cos z)In (1 + sin z) dz b) f (2z + 2 cos z) e=*+28I0% g

c)fz‘(l+z“)‘d:, d)feﬁdz,
-1 [

1
e)fl
[

Man bestimme den Mittelwert der folgenden Funktionen:

2
z‘dz, f)fsin ‘Vz— l1dz.
1

a) f(z) = tan z im Intervall [0, %], b) f(z) = In z im Intervall (1, €],
¢) f(z) = 1 1m Intervall [—1, 41].

Vgl. die Vorbemerkungen zur Aufgabe 19.
Gegeben sei die Funktion f(z) = In 2. Man bestimme eine Zahl { mit
e
1 < ¢ < e, fiir die ff(z)dz =f(0) (e — 1) gilt.
1

. Man berechne folgende Integrale:

Fdz F iz F o F dz
3)/‘;;- b)_/-m’ C)fze dzx, d)fm.
1 1 0 h

. Die Funktion f sei durch

bsinz 43z firz=<1,

fe) = —1-+3z’ fir z > 1
z

5
gegeben. Man berechne das Integral f f(z) dz.
-2

. Man berechne den Inhalt der Fliche F, die durch die Graphen der Funktionen

f(z) =2*Inz, g(r) = —(Inz)? (1 < z < e) und die Gerade = = e begrenzt wird.
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36.

37.

38.

39.

41.

42.

Man zeige, da8 die Graphen der Funktionen
f@)=2+22+)1I—2* (—-1szs<1),
ge) =2+ —J1—28 (—1sz=s1)
den Rand einer Flache F bilden, und bestimme den Inhalt von F.
Die Fliche, die von der y-Achse, der z-Achse und vom Graphen der Funktion
f(z) =cos z (0 s=z=< %) begrenzt wird, soll durch eine Parallele zur y-Achse

halbiert werden. In welchem Abstand von der y-Achse ist die Parallele zu ziehen?
Mean berechne die folgenden Integrale:

a) z—5 iz, b) —31:+94 dz,
z’+2z—8 r‘+4z’ 19z 4 14
24 z—1 224 + 623 — Tz + 2

0)‘/1‘—:' dz, d)f RN pp— dz,
2 + 16z + 8 224 + B2 — 222 + 3z

)fz'—:;z* % )f 7 + 62 + 9z da,

62% + 1322 + 101z — 7 z’+1
g) | ——————————dz, h) dz,
(@ + 1) (2* + 4z + 20) &+ 1

y [P tat Gz, =z
F—szro@+a oV @mro

Man berechne die folgenden Integrale:

cus Z dz
a)fl—cos:dx' b)f5—3cosz'

. Man gebe eine Potenzreinenentwicklung folgender Funktionen an:

z z
) .
a)f‘Ta @>0), b)f"'i” &
1 0

Man gebe die Potenzreihenentwicklung folgender Funktionen mit Hilfe des Ver-
fahrens der gliedweisen Integration an:

a) f(z) = arcsinz, b)g(z) =In 1 , ¢©) h(:):ln‘/ﬁj.
1—2 1—=z

Man berechne die Bogenlinge der durch die folgenden Gleichungen gegebenen
Kurven zwischen den Punkten mit den Abszissen z = a und z = b:

a) y = V/2® (Neilsche Parabel); a =0,b=4,
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b)y=Inz; a=V3,5=18,

c)y=1—Incosz; a.—.—.O,b:%,

43. Man berechne die Bogenlinge folgender ebener Kurven bzw. Raumkurven:
a)z =acos®t,y =asin®t im Intervall 0 < z < a,
b)z =acost,y =asin¢, z=>5 im Intervall 0 < ¢ < ¢,,
c)z=e'cost,y =e'sint, z=e' im Intervall —oo <t < 0.

44.* Man bestimme die groBte Kriimmung fiir die Kurve t(f) = (a cos¢, bsint)
0=t=<2n).

45.* Bei Rotation einer durch die Gleichung z® + (y — 8)* = a? (0 < a < b) be-
stimmten Kreisfliche um die z-Achse wird ein sogenannter Torus erzeugt. Man
berechne die Oberfliche O(M) und das Volumen u(M) des Torus.

46.* Man berechne f f(z, y) d(z, y) fir
B
a) f(z, y) = xy® und B die Fliche zwischen den Graphen der Funktionen y = z?
und y = 2z,
b) f/(z, y) = 2* und B die obere Hiilfte des Einheitskreises,
3

c) fz, y) = x_’ und B die Fliche, die von den Geraden z = 2, y = z und der

Yy
Hyperbel zy = 1 begrenzt wird.

47.* Man berechne f zy d(z, y), wenn B durch folgende Ungleichungen charakterisiert
wird: B

n)05zga,ogy§b(1'—i). B)0szsa,0sysb,
a

¢)0<2=<q0=y=xb- l/l— ;_:
a

48.* Man bestimme das Volumen desjenigen Korpers, den der Zylinder 22 + 3% = rz
aus der Kugel 22 + 4 + 22 =7* h hneidet (Vivianischer Korper).

Hinweis: Man fihre Polarkoordinaten ein und wende die Transformationsformel fiir
mehrfache Integrale an.

Einiges iiber Differentialgleichungen

Kontrollfragen

1. Was versteht man unter einer gewdhnlichen Differentialgleichung n-ter Ord-
nung? Wie sind die Begriffe Losung, Lésungsmannigfaltigkeit und Lisungskurve
definiert?
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(=

-3

. Wie ist der Begriff des Richtungselementes fiir eine explizite gewshnliche Diffe-

rentialgleichung erster Ordnung definiert? Was versteht man unter einer Iso-
kline einer expliziten gewdhnlichen Differentialgleichung erster Ordnung? Man
gebe ein Beispiel an.

. Wie lautet die zum Anfangswertproblem y’ = F(z, y) und y(a) = b dquivalente
Integralgleichung?
. Wie lautet der Exi und Einzigkeitssatz fiir explizite gewohnliche Diffe-

rentialgleichungen erster Ordnung? Es ist ein Verfahren zur Konstruktion der
Losung des Anfangswertproblems y' = F(z, y), y(a) = b anzugeben.

. Die Methode der Trennung der Variablen zur Losung der Anfangswertprobleme

¥ =gz)hy), y(@) =bundy =F (l), y(a) = b ist an je einem Beispiel zu er-
ldutern. z

. Wie lauten die Schritte, die zur Lésung des Anfangswertproblems y’ + g(z) y

= h(), y(a) = b fiihrent

. Welche Rechenschritte fiihren zur Lésung des Anfangswertproblems y'’ + a,y"’

+ asy’ + azy = 0, y(a) = by, y'(a) = b,. y"(a) = by? Dabei sind die folgenden
Fille zu unterscheiden: das charakteristische Polynom hat nur reelle, einfache
Nullstellen; es hat nur reelle, aber mehrfache Nullstellen; es besitzt auch
komplexe Nullstellen.

Aufgaben

. Man lése das Anfangswertproblem

y' +ay=0, y0) =2, y©0)=3
durch Potenzreihenansatz.

oo
Lésung: Wir macnen den Ansatz y = X ¢z, aus dem sofort ¢, = 2 und ¢, = 3 folgt.
E

=0
Wir setzen die Potenzreine in die Differentialgleichung ein und erhalten
[ Rd
T k(k — 1) gat-3 + ¥ gt =0.
k=2 =

Koeffizientenvergleich ergibt

[ 1 1 ¢

R i L i e s oy Bl

= S % 1 - & __ a1

° 5.6 2.3.5.6 3.66 6-7 3.4.6.-7 4.6.7

Allgemein ergibt sich
1 1

=0, ep=(—1f —————————— = (=
1 =N s o Y T e
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2. Man lése die folgenden Anfangswertprobleme:
By +ay =0,y1) =0,  bay =yhyyn=2
oy'sinz=ylnyy0) =1, dy =zyl)=1,
o)y +2z+2=0y1)=—1.

7. Man 16se die folgenden Anfsngswertproble.me:

a)y'+1 - +20=0,40) =1, b)y’+%+===0.ym=o.

4. Man l6ee die folgenden Anfangswertprobl
8) ¥ + 8y + 17y + 10y = 0, y(1) = 8, y'(1) = 0, y"(1) =0,
b) 4@ — 3y"" — 2y" + 2y’ + 12y = 0, y(0) = 1, y'(0) = 0, y"(0) = —1,
y"'(0) =0,
o)y + 6y” + 12y’ 4+ 8y = 0, y(0) = 1, y'(0) = —2,y"(0) = 4.



12.

13.
14.
19.
26.

5. d)

Lésungen (Auswahl)

I. Alilgemeine Grundlagen

Grundbegriffe der Abbildungstheorie

- b) Bp(0) = {0},

Bp(1) = {1,2,3,4,5} usw. Bg(15) =4;

¢) Up(f) = Bp(s) fir alle ¢ € N;
d) D(F) = W(F)={0,1,2,...,10}; f) F'=F;
g) F*={(0,0) v{(z9):1=zy<10}.

n)/'=(

. a) —2,—1,0,1,1,2,3,3.

1234
3412/

_(1234

R B e il

a) (1425)(63)(8109); b)(121056) (39478).

a) 8 (gerade), 13 (ungerade).

a) ZRyez+y=0;

b) zRy & [zl =[y); ¢) zRyS |z —yl € Z.

a) 7(R) = {(0, 1). (0, 2). (0, 3), (1, 2), (1, 3). (2, 3), (4, 2), (4, 3)};
b) w(R) = Mx M

Das System der natiirlichen Zahlen

L)z ty=z.ySz=y=0Vzr=y=2;

bzty=2"@x=1Ay=0Vz=y=2;
c)z-y=2'S(xz=0Ay=1)VEz=1Ay=1)Vz=y=2;
d) ?=y*Sz=yV(@E=2Ay=4)V(z=4Ay=2).

BSIETR R o= SERTy
o ¥! ’

u—k(_])v n_!'_'(—l)'

»! i k! ,Zo !

=0

. a) 2™ b) (2* — 1)®; ¢) (n+ 1)™; d) n™;

e) 2".“ (=1y ("') (n — »)™, falls m = n (sonst 0);
r=0 v

min(m,n}

»=0

(-

L—S(rn,k)fﬁrlgkéngm.
(n— k)!

. n) 324632;

m
v

b) 425;

)(:)v!; 8) (::.)Aﬂ!; h) n!.falllm=n('aonat0).

c) 142508; d) 2048.
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18.

19

20.

21.

25.

31.

32.
36.

417.

53.

241 38
®) Gy s Y O26 - 10
241. 36!
b) T TR T TR 4,137 - 103,
a) 903000; b) 8003; o) 6720; d) 75600; e) 31 bzw. 101; ) 877.

. 8) (:: :) b) 833.

a) %n(ﬂ+l)+1.

—1! sk ungerade ist.

a) k+%.f&llskgerade, u.ndk+k

. 8) Mindestens eine der Zahlen m, n muB ungerade sein;

B (m+ D+ D; o Fm+Dm+ D1

o (") GI)-(Gs)

owmaa 22 (B2~ (¥22) (B 285 - (02050

(2)

. 371.

a)d="7a=10,f=—177; b)d=13,a = —19.8 = 74;
o) d = 43, a = —263882, § = 1978217;
d)d=11,0=2328=0,y= —65;

e) d=2,0 =0, = 124982, y = 437, 6 = —227240.

a) 254464; b) 45903; o) 3026275; d) 562395834.

a) 3584 =2°-7,497T=17.171;
b) 4823 =7.13.53; 975 = 3 - 5* - 13; usw.

Lz=1% y=t"mitteN.

Nein!
5.

. a) n=1bzw.n = 3; b) n ist die Primzahl, bzw. » ist Potenz von 2.

a) Ist m 4 » ungerade, so kann der (m, n)-Springer jedes Feld erreichen, ist m 4 n ge-
rade, 8o erreicht er genau die Felder, die bei iiblicher Firbung des Brettes dieselbe Farbe
wie das Ausgangsfeld haben.

b) Fiir gerades #; in diesem Fall kann jedes Nachbarfeld in # + 1 Ziigen erreicht werden.

. q(0,5) =0, r(0,5) =0,

q(1, 5) = q(0, 5) + #{(r(0,5) + 1,5) =0 + »(1,5) = 0,
(1, 5) = (70, 5) + 1) - x(7(0, 5) + 1,5) = 1 - (1, 5) = 1 usw.
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226

57.

16.

16.
17.

2 &

8

g

&

5

. 8) a(m, m) = {

'3

1, falls m | & gilt,
0 sonst;
b) ¥, m)=|fi:1SisSmAd|n);
o) Im) =|{i: 1S i<nAi|n);

1, falls » Primzahl ist,
) n(n)={
0 sonst.

a) 4149 = [1000000110010]}, = [12200200], = [100653]), = [2498),y = [199]yy; usw.

o) [4231], = 566; usw.

. ¢) [101101011101], = [5535); [716327], = [111001110011010111],.
. a) [120121], + [22122], = [220020], (321 + 233 = 654);

b) [345], - [2114]; = [1342312], (98 - 284 = 27832);
c) [101101], : [101], = [1001], (45:5 = 9).

. a) 6; b)7; o) 79; d) 00.

Der Bereich der gebrochenen Zahlen

1 2 m— 1
s) —; b) o 95 d)

» mm—1) + 1
o 1 pBnts 20% 4 30 — 2
Hon T D41 3w+ 7T P amt remw i —_an 1
a) 3; b)2.
a) 8409; b) 1.
n—m
==
. k=4,7,28

. 8) (2,4, 4),(4,2,4),(4,4,2),(2,3,6),(2,6,3), 3,2,6),

(3,6,2),(6,2,3),(6,3,2),(3,3,3).

. a) allen; b) allen mit 10|n; c) allen; d)allen; e) n ungerade.
. a) l,=9; b)17,17,19, 23, 29, 47, 59, 61, 97.

6lg.
1
=
P _ 185
o 136
73
. a) s

a) 187:36; b) 161:31.

Y13 _ [, 1,...,1]; Nherungsbrache: 1,2, >, 2, &
S [1, 1,...,1]; Niherungsbriiche RN
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47. [2]yq - [8)1s und [4)yq - [4]he-

54. 76.

55.8) 32; b)1; c) 19; d) 29;
56. 71.

57. Nein.

85.a)z= 14 3r,rcZ;

67.

68.

Der Bereich der rationalen Zahlen

o) z=114+15r,r€ Z;
e) z= 44+ 13r,rcZ;
g) z2=20+43T,r€cZ;
i) z= 9+ 13r,rcZ;
k)z= 3+ Tr,reZ;
m)z= 4+ Tr,reZ;
o)z= 14 br,reZ;
a) 2= 24 16r,7r€Z,
= T+ 16r,r€eZ,
=124 16r,r € Z;
)z, = 3+26r,rcZ,
zy= 84 26r,r€cZ,
z,=13 4 26r,r€Z,
2, =18 + 26r,r€ Z,
=234 26r,r€cZ;

©) nicht 15ebar;

gz = 9+138r,reZ,
z,= 324 138r,re Z,
zy= 85+ 138r,r€ Z,
z,= 18+ 138r,r€c Z,
zg =111+ 138r,r € Z,

z, =124+ 138r,r € Z;

i) 2, =17+36rr€eZ,
=35+436r,rc Z;

k)z,= 8+ 8T,rcZ,
2, =237+ 87r,r€c Z,
2,=66+87Tr,rc Z;
a)z= 2+ br,reZ;
¢) nicht l6ebar;

e)z= 44+ 17r,rcX;

g) z=104+12r,re Z;
a)z= 6+ 18r,r€Z;
¢)z= T4+ 1rreZ;
e) z= 51+ 360r,rcZ;
g) nioht ldebar;

i) z= 286+ 119r,r € Z;

1) 3.

b)z= 3+ 17r,r€Z;
dyz= 2+ 8nreZ;
f) z= 4+ 4Ir,rc Z;
h)yz= 24 6r,r€eZ;
) z=11416r,r€eZ;
) z= 2+ 6r,reZ;
nz= 6+ TrreZ;
pz= 9+ 1lr,reZ.
b) nicht 16ebar;

d)yz,= 6436rrecZ,
2, =134 36r,r € Z,
2, =20+ 3br,r€ Z,
2, =27+3r,rcZ,
2, =34+ 36r,reZ;
f) 2,=264+93r,r€Z
z,=57+93r,reZ,
z, =88+ 93r,r€ Z;
h)z,= 74+ 501r,r € Z,
z, =241 + 501r, r € Z,
z, = 408 + 501r, r € Z;
i) =11 +4+8lr,reZ,
2 =28+51r,re¢ Z,
z, =45+ 5lr,r € Z;
1) nicht l5sbar.

b)z= 4+ b6r,reZ;
dyz= T+ 13r,recZ;
f) z= 3+ 12r,reZ;
h) nicht l5sbar.

b)z= 254+ 2Ir,reZ;
d) 2 =266+ 311r,r€ Z;
f) z 20 + 613r,r € Z;
h) z 656 + 222r,r € Z;
j) = 49 + 163r,rc Z.



69.
n.

72.

-

o

e

©

. a) 0; c¢)

y=4+6ry,=2+6rrcZ.

a) z=—13 4+ 4r,reZ, b) z= 3—13r,reZ,
y= 13— 3r; y= —3— 8r;
c)z= 6—19r,rcZ, dz= 20—-22r,r€cZ,
y= 14 8r; y= 35—38r;
e)z= 1—25rr€cZ, f) z=—164+37r,r€ Z,
y= —4—17r; . y= 18 —43r;

g z= —6+4Ir,rcZ, hyz= 17— 3r,r€eZ,
y= 7 — 53r; y= 20— 45r;
)z= 1-—16r,reZ, j) nicht ldsbar;

y= 1 — 24r;
k)z= 56+ 129r,7r€Z, 1) nicht l3ebar.

y= —52 — 122r;
z —30 + 64
L=3ly]=1650 —5d
z 120 + d

Der Bereich der reellen Zahlen

esdsm,dez}.

.b)z:g- c) —1<z= — }/1—2—-3;

16’
d)0<z<p(l+ﬁ).z<y(l—ﬁ);
e) a > 0:keine Losung, ¢ =0:2>0, a<0:z= —2a.

. ¢) (2,2,0),(—2,2,0).

Der Bereich der komplexen Zahlen

L b) 117+ 44i; o) —765; d) =42y

Pt 24

2 _5 . ; _— 0
e) 150 318" f) 2; g) 2% h) +(1 +4);

. . 3 1, vz,
0 +£@-2); )+ (V;— V; o), n+ >+ ?ﬁ (4 Werte).
+(—s+n)

b

dr=2V2+V3,p=15; ¢ 2“ﬁ(cos’% +isin—); f) cos 2¢ + 1 sin 2p.

4
b)z=-§-—26.

. a8) 0; ¢) eos%n-}—iuin?; d) a® + b2 — ab; e) 2emz?"n.

n

e—1"
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17. a) z= %, wobei ¢ die n-ten Einheitswurzeln durchlauft; b) z = ¢ : + :; c)z=¢.
19. a) (¥2)* ons (% a) .

Il. Algebra

Algebraische Strukturen
2. a) Nein; b) ja; c) ja.

w
[y
L]
)
LY

<
=
]
)
==
&

-(i o)

0 1
11. Es gibt (nach Festlegung des Nullel ts) fir + nur eine Moglichkeit (vgl. Aufgabe 1),
fiir - zwei Moglichkeiten:
+ l a b ¢ . I a b ¢ . | a b e
al a b ¢ al aaa,p  a|laada (Zerc;ring bzw. Restklassen-
b| b ¢ a b| a a a b| a b ¢ ring modulo 3).
c|l ¢ a b c| a aa c| a c b
16.asb=<ec.
A I a b ¢ v I a b ¢
a |aaa a |a b c
b la b b b |b b ¢
c b ¢ c lc cc
Ver hung der El te liefert isomorphe Verbande.

16. inf (2, w) = min {z, 4} + ¢ min {y, v}, sup (z, ) = max {zr, u} + i max {y, v}.

Aimugin&ire Achse

reelle Achse
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Gruppen

5.b) |Gl =24; d) G=38,.

o

°

23.

25.

32.
41.

42.
45.

51.

-

53.

. Gruppenordnung: @(9) = ¢(3%) = 3 - (3 — 1) = 6; erzeugende Elemente: [2] und [5].

. Die fir ¢ = %bzw. fir ¢ = 2 erhaltenen Matrizen erzeugen eine endliche bzw. un-

2

endliche Untergruppe von G.
Die Gruppe ist nicht abelsch.

Ordnung 4: zyklische Gruppe und Kleinsche Vim;'gruppe,
Ordnung 6: zyklische Gruppe und symmetrische Gruppe S,.

A(V) = 8,.

Die Gruppe der i A
Vierergruppe isomorph.

{te). fa%), fa, a%, b, a%}, {ab, a’l}}.

2Dy

h

phi der Q uppe ist zur Klei

()~ ay<ty <y <B4

<X \/(
w07 N\

"o
(1)
Zy X Zy, Zyy Zy X Zy, Z4, (¢) (wWobei Z,, die zyklische Gruppe der Ordnung m bezeichnet).
|Bys| = 12, auf de E dnungen: 1, 2, 3, 6.
Q' = (a?).

Q = (a) (b). @ 1aBt sich nicht als direktes Produkt eigentlicher Untergruppen darstellen,
da der Durchschnitt je zweier eigentlicher Untergruppen von @ immer (af) ist.

8) ((3), &%) mit s = —-;— ! %)’5 z€0,1,2,3), ye0,1,2;

b) zyklische Gruppe der Ordnung 12.
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54.
56.

e e -

11.
13.

17.

18.

19.

21.
22.

-

-

(2,9, 10, 4) (5, 11) (7, 12, 8) = (4, 2) (4, 9) (4, 10) (5, 11) (7, 12) (7, 8).

Die genden El te ko durch folgende P i dargestellt werden:
o (1234 1234) (1234
(2143 3412/ 1423

ors (123456) , (1234586
124365/ 214358/

o (1231456
345612/

Ringe, Integrititsbereiche, Kérper

Allo Zablen der Form (—1)® (1 + ¥2)* (m € 0, 1}, n € Z) sind Einheiten von I.

1 und —1.

Samtliche Quaternionen der Form 0 + a4 + a,j + a,k, fur die ai + a3 + a} = 1 ist.
b) R, = R,, R, ist nicht zu R, und R, isomorph.

n:=Kern f = {22 + 2 + 2cat:a € ZAb € Z Ac € Z}. R wird durch n in acht Rest-
klpssen modulo n zerlegt: R = {J (n + (r + sa L ta?)). Bei f werden alle Elemente der

r.4.0€{0.1)

Restklasse n + (r + sx + tx?) (r, 8, t € {0, 1}) auf die Matrix

[r] [ [

[0 1] [a

[0 [0] [r]
abgebildet. n = (2) ist Hnupndeal n ist kein Primideal, denn (n + a?) € R/n ist wegen
(n + a?)? = n Nullteilef von R/n.
660451351170 120706 = 119, 119 =1.66045 — 4709 - 51170 L 11634 - 20706.

3+i=1-(5+468) —1°(2 + 4i). Weil 1,4, —1, —i dic Einheiten des Ringes sind, er-
kennt man sofort die ib groBten gemeinsamen Teiler und deren Vielfachsummendar-
stellungen.

5+65i=(1+)2—)@+)2+4=(1+2—1).
(Die Faktoren sind bis auf die Einheiten 1, 1, --1, —/ eindeutig bestimmt.)

Teilkorper von € aus allen Zahlen der Form g + ri (g.r € Q).

Je einen (bis auf Isomorphie).

Polynome

. a) 27, darstellbar in der Form /: x > f(z) = ap -~ 0,2 =~ ¢,%® (2. ¢p. 4y, a5 € Z/(3));

b) 81; c¢) das Hauptideal ([1] z* + (2] z) von Z/(3) {z].

:r’—-2:.-’+:—2=—;—(r’—-2z‘—z+2)——;—(r-'— %) (2t — 523 L 7a* — bz 4 6).
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LA o

-

*

©

j=+[1].
9(@) =[kK)2* +[p—klz (k€{t,2,...p — 1}).

ﬁ und —}/2- sind zweifache Nullstelien von f(z). Das Polynom 2* — z* — 2 hat dieselben
Naullstellen wie f(z), jede aber nur mit der Vielfachheit 1.

. /(z) hat die Nullstellen {1] und [2] mit den Vielfachheiten 3 bzw. 4, g(z) = [1]z + 1 hat
nur noch die Nullstelle [2].

L 62 — 1204 — B2 + 12 =2-3(z + 1) (z — 1) (z — 2) (2* + 1).
L f@) =@+ 1) (-2 g@) =@+ 1) (z—4).

. fz) = A + 2 + 2%, ’

. h (%") =0,9196, f, (2%') = 0,9491, sin% =0,9511.

Die Elemente von K(#) sind

0:=[0)8 4 (01 =(0), e:=[018 + (1]=[1], a:=[1]6 +[0], b:=[119 + [1].
Operationstabellen :

+|0¢ab -lOeah
0|0 e a b 0{0 0 00O
ele 0 b a e|0 e a b
ala b 0 e a[0 a b ¢
blb a e O b[0 b e a

lil. Analysis
Einige grundlegende Begriffsbildungen der Analysis

5
. —o <z < —2-
. Die Ungleichung gilt genau dann, wenn @ + b = 0 oder wenn a = b ist.

. (3, 3), (3, 4), (3, 5), (4,3), (5,3).

' . &) Krei ipherie und Kreisi um (—3, 0) mit dem Radius 2;

b) Mittelsenkrechte auf der Strecke mit den Endpunkten z,, z,;
c) Halbeb inschlieBlich der Randgerad z=%;

d) Hyperbel far a + 0 bzw. Geradenpaar fir a = 0.

38. a) —z; b) 3; ¢) —%; d) 1Z; e) —iz.

. Dann und nur dann, wenn der Quotient 2——=2 recll ist.
2 —2

. D(fy =[—r, +r]. W(H=[0,r].
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40.

45.
46.

14.
17.

8) D(fy) = [_1- +1]; b) D(fy) = [-“: a[;

¢) D(fy) =R; d) D(fy) = J—, —2J v (3, >

a) [, ist gerade; b) f, ist weder gerade noch ungerade; c) f, ist ungerad

8) f; ist beschriinkt, eine Schranke ist 4;

b) /, ist nach oben, aber nicht nach unten beschrinkt (0 ist eine obere Schranke);
¢) f, ist nach unten, aber nicht nach oben beschriénkt (0 ist eine untere Schranke);
d) , ist nicht beschrénkt.

. a) 2=10; b) z=86; c)zng; d):=2'; e)z=16; ) 2=3; g) z=—2.

Der Grenzwertbegriff

0.
Alle Folgen sind konvergent. Die Grenzwerte sind:

1 5 1 L 1 L 2

8) 3 b) 0; ¢)3; d)0; e) Iy f 2 8 -3 h) 0; i) R i) 3 k) 3:
1

N3

23. Simtliche Folgen sind Nullfolgen.
29. Der Grenzwert ist 1.
30. l limsupa, |liminfa, lim sup a, I lim inf a,
—>00 #—+00 R—>00 00

a) 1 [} e) 0 o

b)| oo oo f) oo oo

c) | o 2 g | o 0

d) —o0 —o0 h) 3 1

1 1

41.&)3—?, b)S=1; ¢)8=1; d)S—i, e) § = —

42.

47.

Sémtliche Reihen sind divergent.

. a) Bestimmt divergent; b) S, < 2, konvergent; g) 8, < 3, konvergent;

d) 8, < 2, konvergent; e) bestimmt divergent, S, > }’;

. Siamtliche Reihen sind konvergent.

4 - 10* 4 2 Glieder.

48. a), d) divergent; b), c), e), f), g), h) konvergent.

62. a) Firz =n? (n € N*); b) fist uberall stetig.

85. f und g stetig.
1 1 1 3 m n

s b o 95 96 0% g (1) w1
1 1 15

88.a) = b) 55 o 25 A3

o0t L gl LM g2 g4y,



0.0 % b £ o 55 40 o %

M. fl2) = 6+ (z — 3 (& + 1).

72. —2 (doppelte Nullstelle) und 1.

73. f(z) = 2z — 1) ( + 2) (= — 2)".

4. f(z) = (z — 2)[(z — 2* + 9].

5. 2= 2, z, = 2120028, |z — =z, < 5-10-".

nt — m?
2

83. a) —;-; b) 4; ¢)1; d) ;o) %; f) 2c08a.
85.a) Ina; b)1; o) 4 d)Ina—Inbd; e)a. ‘
94.&):,=;’§(eu%+l’lin%),z,=‘ﬁ(ooi%x+“in%-ﬂ):
b)z.=l(ooc1:-+isin%). z,=l(eol—:-n+l'!in%’l)-
z,=l(eos%n+isin%n), z,=l(eo-%a+ini.n—:-n\
96. r = 12, ¢=%.

97. 2, = —2+1i, z=—3+i.
107.3=3, b=6, c=—1, d=8.
Differentialrechnung

11. Die Gleichungen der Normalen lsuten:
a) y=—z+1; bly=—z+1; o)y=—z+2kn(bgem); d)y=—z+@k—13

(k ganz).
oy _ D62 — 1 oy _ =2+ 14z + 11
12. a) f'(2) = =13’ b) f(z) = PRI
o) = _p[EHTE] 2 e 28
o re = —o[ZA ] EATELR,
d) f(z) = ‘%__ﬂ €) f'(z) = 3(coe® z — 2 sin® z cos z);
f) /() = —9cos*zsinz; g) f(z) =2cos (z + 1)* —i"l(lz(:_—-:):)’;
h) ’,(z)=_45inzeo|z (z)=2-inzoosz

Tramap O

. 243 yorm
13. 8) f(z) = ————a—— ¢ ;
2122 £ 3z + 4

sintz 4+ 1



17.
22.

agtan & a*
b) f(z) = In (a) E+m];

1
lnacosz a3,
:

o) fla) = ——
smn*z
d) /'(z) = 2(cosh 2z — sinh z);
1—3%
o Fy = _2me rron(EE)

1+2
h) f'(z) = ains (eoczlnz+ “‘Tz B

i) f(z) = (Inx)sins [eol zln(lnz) + ;%:—z];

§) f(x) = (zooaz)=+°°“[(l — sin z) In (z c0s z) + z-}-_eo:: (cos z — zainz)];
k) f(z) = arsinh z; 1) f(z) = arcothz; m) f(z) = — e:':,

0<<1<z2,<2<7,<3<z,<4.
8,9375 < 180 < 8,9445.

. a) t3c08 8 4 208 cos £;

51.

52.
53.

b) [sin (¢ In (2 + 1)) + ¢ In (¢ 4 1) cos (2 In (¢* + 1))] 2¢ + ¢ cos (2 In (#* + l))‘.%l-.
3
o
Beide Richtungsableitungen haben den Wert Null.
8) 2al1 — 2)*1; b) ("",:—L (lnz -1 -% —_— %)

c) n! (:) Q4207 d—1)[1—2)"+ (- (1 +2)*);
o) 2"‘&:(2:-{-%33)‘
@ =)
8
|Ry(2)| < 61074 far alle z € (1, 10].
a) a%[(2450 — a%z%) 008 az — 100az sin az]; b) 2%3%(22? 4 100z + 1225).
2 1 1 1
f@) =2+ 20— 2 + 72 + o2 + o2

! L3 l‘+lz'
°&(|+’)—G—ak£(—l) =’ 1<z,
=

1]
I,(z)=z—-32-v-z' +-§—:=‘—%z"+— « (r€R),

3 1] 7
M=t —Tar Ta_Bay o aen.
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70.

72.

73.

74.

5.

9.

19.

21,

-

26.

Zu Kapitel ITI
-— - 3 —_ 5 —_ 7
,in(z_y)==“g_(za!v) +& 5!y) _ ﬂy) +
a=Z
e
2
h==.
B
z=’=z=-‘£
T

1 1 1 1
a) 5 b) 0; o) u d) -3 e) - f) 0; g) —1;

R R

8) 2; b) co; c¢) oo; d)%; e) R=oofir0<a<1,R=0fira>1; f)%;

g) oo; h) 0.
a) R=g; b) R=0.

7, = —10,26, z,=09,88.

. a, = 2,641, a, = 2,608, [a — a, = 0,000 (aexakter Wert).

Integralrechnung
attabt bt , 03 2
a) 3 3 b) 3 c) =
a)%ln[zl—%+0; b) xsinhz — coshz + C,
o1 d)zi'-:—wln(z+l) [E+——:+ln(z+l)]+0

e) —z'oosz+2:linz+2wlz+0
9 %(z’—l)ln(z'—l)—z':l +6;

g) z(lnz —1) + C; h) i(In’z—ln:cJ-—) +C;
+!

i)
k) (z'—3)|i.nz+2zeocz+0; 1) 122%;

tmunz—? +C; j) ?(l —1In2);

m) %(z—sinzcoaz)+0.

1 — cosan

a)In2; b)2; ¢ %; d) -
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27. a) %un((z—Z) + C; b) —%m(u+b)+0; o) %amun%+0;

31.

32.

33.

g

31.

TR L a3,
d)miﬂn(m—ﬂ)z—mm(m+n)z+0. e) —;

f) In|32% + 4z + 7|+ C; g)% n G‘:b

l; n L ln|15z' 5247+ C;
) 2 ) —cos(nz) +0; k) —sin - +C;
32 . z

% (V(z + 1)y — }’;‘) + C; m) —;- (artanh 3z)* + C.

=

. 8) 2In2—1; b) e —1; ¢ % ) 20%(Y2 — 1) + 2;

e) 7; f) 20cos 1 — 12sin 1.
3n2 1 n
8) > b) by c) e

1

es—1,

R

.6(00.2—oocl)+ln5+119+%.

2
TEe-0+e

2

o|a

s %lnlz——25+%ln|z+4l+0;
b) —8Injz—1|+4lmnjz—~2(+5mh|z+ 7+ C;
c) llnlzl—ilnlx+l| +—5-ln|z—2|+0;

d) 2* + — ln]z—l]——ln|z+l|+ In]:+3I+C;
I.

e) ———2In]z+l[+3|n|z—5|+0; f)z2*—Tz4+22In|z + 3| + C;

z+1

P Inlz"+l|+ |n|;4+4z+2o1——mm""2

4
z

+C; h)—=;
272
+ 4
+ 4

i) Inlz'—4z+5|—In|z‘+4|—i-aurcun£—

1
2 8 +C

%

i) PR A— l nrcmn —_
) Gy T 3"
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42.

&

47.

. 8) y=

8 (0 1,3 3n
.)5(10710—1). b) 1+ 5 lng; o Inten 2.

. a) %a‘; b) % Va? + b% c) V§

%(a>b)inden"‘, kten der Hauptach

P

O(M) = 4abn®, u(M) = 2a%=nd.

o EwE oo

5

a) ;—411’6'; b) %a’b’; c) %a’b’.

ar — — .

|
©|w

Einiges (iber Differentialgleichungen

a)y=0; b)y=eMn2; c)y=1; d)y=1z; e) y=—z.

4 3
1= _Z
4 3

1
—_— = e [— — .
142 P by ¢ (z l)

.8)y = 15e—(5—1) — 10e~E -1 f =Sz D;

1 4 . 25 15
= — 2T — — 3¢ = L = si . =3,
§)y 2 e l7¢ +¢"‘( cos:z. 2 smz), c)y=e



