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Vorwort

,»Wenn man mit einer Theorie nicht rechnen
kann, dann taugt die ganze Theorie nichts.*
Hermann Ludwig Schmid

Das vorliegende Buch ist entstanden aus Arbeitsgemeinschaften, Seminaren und Vor-
lesungen, die ich an der Humboldt-Universitét Berlin, der Martin-Luther-Universitéit
Halle-Wittenberg und der Piadagogischen Hochschule ,,Karl Liebknecht* Potsdam
gehalten habe, zuletzt vor Lehrerstudenten im Rahmen der wahlweise-obligatorischen
Ausbildung im Direktstudium sowie der differenziert-obligatorischen Ausbildung
im Fernstudium. Es soll auch weiterhin fiir diese beiden Veranstaltungsreihen Ver-
wendung finden.

Im Rahmen dieser Ausbildungen diirfte die Vertiefung des Wissens auf einem
Spezialgebiet Vorrang vor der Vermittlung von Uberblickswissen haben, iiber dessen
Effektivitit mancher Zweifel angemeldet werden kann. Somit miissen grundsitzliche
Begriffe und Gedankengiinge als solche zum Ausdruck kommen, ohne da8 die
Moglichkeit der Verweisung auf Analogien besteht. Hierdurch und durch die Ver-
wendung als Lehrmaterial im Fernstudium ist die Breite der Darstellung im vor-
liegenden Band motiviert. Lediglich in den letzten beiden Kapiteln wird hiervon
etwas abgegangen; insbesondere sollen die dort haufigeren Literaturverweisungen
Anregungen fiir das Hiniiberwechseln der Studierenden zur Originalliteratur geben.

Dieses Buch kniipft konsequent an die schon erschienenen Binde der Reihe
,»Mathematik fiir Lehrer (MfL) an; dies bedeutet einmal eine Fortfilhrung der dort
verwendeten Zeichen und Bezeichnungen und ferner, da8 keine anderen als die dort
vermittelten Kenntnisse vorausgesetzt werden und auf die entsprechenden Stellen
(vor allem im Band 3) laufend verwiesen wird. Die dadurch gegebenen Einschriin-
kungen bei der Darstellung und Beweisfiihrung werden besonders im zweiten und
dritten Kapitel sichtbar, wo bei der Einfiihrung des Dimensionsbegriffes der Begriff
,»Transzendenzgrad‘ nicht zur Verfiigung stand. Hier wird der fachkundige Leser
moglicherweise ein Unbehagen empfinden. Fehlende Vorkenntnisse zwangen auch




6 Vorwort

zum Verzicht auf eine Darstellung von Primiridealketten und der Kroneckerschen
Eliminationstheorie; ersteres kommt im sechsten Kapitel bei Satz 25 zum Tragen,
withrend die Existenz von Nullstellen fiir P-Ideale, die vom Einheitsideal verschieden
sind, iiber die Existenz allgemeiner Nullstellen von Primidealen und die Lasker-
Noetherschen Sitze nachgewiesen wird.

Die Stoffauswahl wurde auBerdem durch das Grundanliegen bestimmt, eine Ein-
fithrung in die Theorie der Polynomideale zu geben und dafiir zugleich einige prak-
tische Verfahren vorzulegen, welche zum Teil mit fritheren Diplomanden entwickelt
worden sind. Unter diesen méochte ich vor allem die Arbeit von Frau Dr. RENATE
KummER (Halle) iiber Potenzproduktideale erwihnen, auf die im Text wiederholt
Bezug genommen wird. Erst dadurch ist es moglich, die vielen Begriffe der Ideal-
theorie laufend durch Beispiele zu illustrieren, wobei ein Teil der Rechnungen jeweils
dem Leser iiberlassen wird. Auf weitere Ubungsaufgaben konnte daher im Text
verzichtet werden; die am Schluf angegebenen Beispiele bieten dafiir ein weiteres
Betitigungsfeld, sollen aber auch den in der Forschung titigen Kollegen ein gewisses
Material liefern. Dasselbe gilt fiir die Formeltabellen im ersten Kapitel, die zum
groBten Teil von Herrn Prof. Dr. O.-H. KrLLER (Halle) stammen.

Die historische Entwicklung der Theorie der Polynomideale als Anwendung der
abstrakten Idealtheorie brachte es wohl mit sich, daB in der bisherigen Literatur
Analogien und Unterschiede zwischen linearen und nichtlinearen Gleich
systemen 'nicht herausgearbeitet worden sind, welche hier neben der Entwncklung
praktischer Verfahren im Vordergrund stehen. Dem letztgenannten Aspekt dient
auch das im AnschluB an die Literatur gegebene ,,Verzeichnis der praktischen
Methoden*, welches neben der detaillierten Untergliederung dem Leser das Auf-
finden bestimmter Textstellen erleichtern soll.

Dadurch wird auch der nur fachinteressierte Leser in diesem Buch trotz oder wegen
der Breite der Darstellung manches finden, was in anderen Lehrbiichern bisher
unerwahnt blieb: so etwa die strenge Unterscheidung zwischen quasipriméren und
primiiren Idealen, die vielfach verwischt und bei HopcE und PEDOE ganz aufgehoben
wird, und die Notwendigkeit der Unterscheidung zwischen Minimalbasen und Basen
minimaler Linge bei P-Idealen. Letzteres rechtfertigt es auch, Sitze fir P- und
H-Ideale gesondert zu formulieren und die Bezeichnungen strikt zu differenzieren;
80 werden grundsitzlich inhomogene Polynome mit kleinen, Formen mit groBen
Buchstaben gekennzeichnet.

Mit diesen Bemerkungen hoffe ich, die Konzeption des Buches ausreichend erlautert
zu haben. Innerhalb des damit abgesteckten Rahmens wird es gewiB noch manche
Moglichkeit zur Verbesserung geben. Fiir diesbeziigliche Hinweise werde ich stets
dankbar sein.

An dieser Stelle gilt mein Dank vor allem meinen Lehrern, den Herren Prof.
Dr. O.-H. KerLER (Halle) und Prof. Dr. W. GROBNER (Innsbruck), die mir nach dem
Tode meines Doktorvaters in vielfacher Weise geholfen haben, so weit zu kommen,
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daB ich es wagen konnte, Lehrerstudenten an diese schéne Theorie heranzufiihren.
Gleichzeitig méchte ich ein ehrendes Gedenken fiir meinen am 16. April 1956 im
Alter von 48 Jahren verstorbenen Berliner Lehrer Prof. Dr. HERMANN Lubpwie
ScEMID zum Ausdruck bringen (vgl. Hassk [1]), durch den ich die Idealtheorie im
Sommersemester 1950 in einer vierstiindigen Vorlesung iiber algebraische Geometrie
an der Berliner Humboldt-Universitit- } lernte und welcher bereits im An-
schlufl daran die Zielrichtung meiner Arbeiten im wesentlichen bestimmte.

Mein Dank gebiihrt ferner dem Direktor der Sektion Mathematik/Physik der
Pidagogischen Hochschule ,,Karl Liebknecht Potsdam, Herrn Prof. Dr. G. JuNe-
HAHNEL, und dem Leiter des Lehrkollektivs Algebra, Herrn Prof. Dr. H. LUGOWSKI,
die mir die arbeitsmiBigen Bedingungen fiir das Schreiben verschafften.

Ohne einzelne Na gen danke ich den ehemaligen Fernstudenten der
Gruppen B 2 und B 3 Magdeburg fiir das kritische Durcharbeiten des Manuskriptes
und zugleich allen ehemaligen Diplomanden und Staatsexamenskandidaten, die durch
ihre Arbeiten zu manchem Beispiel und zu mancher Erkenntnis verholfen haben,
sowie allen denjenigen, die mir ermoglichten, das Manuskript in relativ kurzer Zeit
fertigzustellen.

Den Herausgebern der Reihe MfL, vor allem Herrn Prof. Dr. W. ENgEL (Rostock),
Herrn Prof. Dr. S. Beeumer (Potsdam), Herrn Prof. Dr. H. WussiNg (Leipzig)
sowie abermals Herrn Prof. Dr. Lugowskr und insbesondere Herrn Dr. D. NESSELMANN
(Rostock) danke ich fiir viele wertvolle Hinweise.

Dem Lektorat Mathematik des VEB Deutscher Verlag der Wissenschaften, vor
allem Friulein Dipl.-Math. Errka ArNDT, danke ich fiir Geduld und Verstindnis,
dem Druckhaus ,,Maxim Gorki‘ in Altenburg fiir den iibersichtlich angelegten und
sorgfiltig ausgefiihrten Satz.

SchlieBlich und endlich danke ich meiner lieben Frau ERIka iiber das in der
Madelungschen Widmung zum Ausdruck Gebrachte hinaus fiir das Auszeichnen und
kritische Erstlesen des Manuskriptes, die Zeichnung der Abbildungen, die Anfer-
tigung des Registers und fiir das Mitlesen der Korrekturen.

Potsdam, im November 1976
Bopo RENSOHUCH
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Uberblick iber die wichtigsten im vorliegenden Band
eingefiihrten Zeichen

Die in Band 1 der Reihe ,,Mathematik fiir Lehrer* (MfL) eingefiihrten Zeichen
werden beibehalten und nicht noch einmal aufgefiihrt ; hier werden daher im folgenden
nur neu bzw. in den Béinden 2 und 3 der Reihe MfL erstmals eingefiihrte Bezeich-
nungen notiert.

K: beliebiger Korper.

K: algebraisch abgeschlossener Korper der Charakteristik 0.

Die in MfL. Bd. 1 eingefiihrten Symbole anb fiir den groBten gemeinsamen
Teiler (g.g.T.) von @ und b sowie e u b fiir das kleinste gemeinsame Vielfache (k.g.V.)
werden hier auch fiir den g.g.T. bzw. das k.g.V. von Potenzprodukten (im zahlen-
theoretischen Sinne) verwendet.

Mit [1], [2], ... sind Verweisungen auf das Literaturverzeichnis am SchluB des
Buches gekennzeichnet. Daneben verwenden wir [a], [4], ... im Beweis von Kap. 2,
Satz 8, und in Kap. 3, Satz 9, als Restklassensymbole; diese Bezeichnung wurde
bemlt.s in MfL Bd. 2 und 3 verwendet. Die von EMmMy NoeTHER und ihren Schiilern

ich [f] bzw. [f]; fiir Gradzahlen von Polynomen werden hier

)

nicht iibernommen.
() bzw. f(z,, ..., z,), entsprechend g, A, ...: inhomogene Polynome.

F(zo, @), ..., %), entsprechend @, H, ..., §, ¥, ...: Formen, d. h. homogene Poly-
nome.

s h

abweichend fiithren wir fiir H-Ideale

Von dieser B

a < K[z, 24, ..., Z4]
die folgenden inhomogenen Anzahlfunktionen ein:
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V(t; a): Volumfunktion.

A(t; ) 1= V(t; (20, Ty, +e0y Z0))-

H(t; a): Hilbertfunkiion und die damit zusammenhingenden Hilfsfunktionen
A(t; a), B(t; a) und C(¢; a).

P(t; a) = hy (d‘) + ke (di 1) + -+ + hy: charakteristisches Polynom.

ho(a): Ordnung von a.

Anaslog zu MfL Bd. 3 setzen wir fiir Gradzahlen:

k(f) = h{f(z1, ..., z,)): Grad von f in allen Variablen ,, ..., Z,.

k(f)s = h(f(21, ..., 2y))i: Grad von fin 2y, ..., 2y (1 S 4 <m).

h(F) = h(F (2o, %, ..., %,)): Grad von F in allen Variablen 2y, z;, ..., Zy-

h(F); = h(F (2o, 2y, ..., Z4));: Grad von F in 2y, 2y, ..., 2; (0 <4 <n).

Soll ein Polynom f(z,, ..., z,) in allen Variablen zi, ..., z, tdentisch verschwinden,
8o schreiben wir:

f@y, ooy @) =0id.in 2y, ..., Z,,
entsprechend )

F(z, 2y, .., 24) = 0 id. in 2y, 2y, ..., 2, fiir Formen F(zy,2,, ..., Z,).
Die Gleichheit f = g zweier Polynome bzw. F = @ zweier Formen F, G ist dann durch
das identische Verschwinden von f — g bzw. F — @ erklirt.

Nullstellen von inhomogenen Polynomen f(z;,...,z,) werden mit (y;,...,¥ys)
bezeichnet. Hingen die Nullstellenkoordinaten y,,...,y, noch von Parametern
b, ..., t5 &b, 8o bedeutet demgemis f(y,, ..., y,) = 0 das identische Verschwinden in
den Parametern ¢, ..., {3, also:

W ..y 9s) =0id.in ¢y, ..., 4.
Entsprechend gilt fiir Nullstellen (¥, 91, -+, ¥s) Yon Formen F(z, z,, ..., z,) mit den
Nullstellenparametern ¢, ¢, ..., &:

F(Yo, Y1, o+, ¥n) =01id.in to, 8y, ..o, by
Das in der Literatur mitunter fiir Identititen eingefiihrte Zeichen = wird hier aus-
schlieBlich fiir Idealkongruenzen verwendet.

Uy, Vix: Matrizen vom Format (k, 1) bzw. (j, k).

h(Uy): Gradmatrix von Uy, d. h. Matrix der Gradzahlen von Up,.

UT, V7. transponierte Matrizen.

W, 8, S, hy, w;: einspaltige Matrizen (Spaltenvektoren, n-Tupel); insbesondere
sind

8, 8;: Syzygien (Kap. 5, Definition 5).
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h,: Hauptklassensyzygien (Kap. 5, Definition 11).

W), sT,sT,w,T: transponierte Vektoren (Zeilenvektoren).

RW]), h(8T), k(8,T), h(w;T): Gradvektoren (Zeilenvektoren).

Ideale werden mit kleinen Frakturbuchstaben a,b,¢, b, g, %, L, [, m,n,p,q,t,0, 0
bezeichnet. Bei der abstrakten Idealtheorie im ersten und zweiten Kapitel werden
auf diese Weise abstrakte Ideale gekennzeichnet, vom dritten Kapitel an nur noch
H-Ideale, also homogene Ideale aus K[z, «y, ..., Z,]. Zur Unterscheidung hiervon
werden P-Ideale, also inhomogene Polynomideale aus K[z, ..., ,], mit (a), (b), (¢), ---
bezeichnet; dementsprechend wird bei Hauptidealen, Idealsummen und Ideal-
kongruenzen noch eine weitere Klammer hinzugefiigt.

Fiir Potenzproduktideale, die wir hier grundsitzlich als H-Ideale aus

K[Zg, Ty, vy Zp]

auffassen wollen, schreiben wir a,, by, c,, ... Es bedeuten insbesondere:

(a): Hauptideal, das ist die Gesamtheit der El te ra mit beliebigem r € R.

(0): Nullideal, besteht nur aus der Null.

(1): Einheitsideal, besteht aus allen Ringelementen, also (1) = R.

a = (@, ..., a,): Basisdarstellung fiir das Ideal a.

gi(a): s-tes Grundideal eines H-Ideals a = K[z, 2y, ..., ,] (Kap. 4, Definition 4,
(64)).

8i((a): i-tes Grundideal eines P-Ideals (a) = K[z;, ..., z,] (Kap. 4, Definition 5,
(565)).

§: Ideale der Hauptklasse.

| = (L, ..., L,): H-Ideal mit lauter Linearformen als Basiselementen.

) =, ..., 4): P-Ideal mit lauter linearen Polynomen als Basiselementen.

m: maximales Ideal.

p: Primideal.

Pr = (%, 2y, ..., @,): triviales Primideal.

q: Primarideal.

qr: T-Ideal, d. h. triviales Ideal.

t: quasipriméres Ideal.

V4m: Veronesesches Ideal.
p{fsJ-++): Veronesesches Projektionsideal.
Das Zeichen = wird fiir Idealkongruenzen verwendet:

a=bmodaswa—bea.
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Die Kurzschreibweise a = b (a) anstelle von @ = b mod a wird nur verwendet, wenn
Verwechslungen mit P-Idealen (a), (b), ... nicht auftreten kénnen. Kongruenzen
fiir P-Ideale, bei denen @ = b ((a)) zu schreiben wire, werden nicht benutzt.

a+ b = (a,b): Idealsumme.

ab = a - b: Idealprodukt.

a nb: Idealdurchschnitt.

a:b: Idealquotient.

Rad a = Va: Radikal des Ideals a; das ist fiir a = R die Gesamtheit derjenigen
Elemente von R, von denen eine Potenz in a liegt.

a~b:© Rad a = Rad b (Aquivalenz von Idealen, vgl. Kap. 1, Definition 38).

M(¢; a): K-Modul der Formen ¢-ten Grades aus einem H-Ideal

a < K[z, 2y, o0y Ty

¥V: homogener Vektormodul (Kap. 5, Definition 3).

NG((a)): Nullstellengebilde eines P-Ideals (a) = K[z, ..., %,] (Kap.3, Defini-
tion 2).

NG(a): Nullstellengebilde eines H-Ideals a < K[z, 2y, ..., z,] (Kap. 3, Defini-
tion 3). ’

Dim (a): Dimension des P-Ideals (a) = K[z,, ..., z,] (vgl. 4.3., 4.5.).

Dim a: Dimension des H-Ideals a = K[z, 2y, ..., Z4] (vgl. 4.3., 4.5.).

Kodim (a) :=n — Dim (a) (Kap. 4, Definition 1).

Kodim a :=n — Dim a (Kap. 4, Definition 1).

L(a): Linge der Syzygienkette des H-Ideals a = K[z, 2,, ..., Z,].



1. Grundbegriffe und Rechenoperationen der abstrakten
Idealtheorie in Noetherschen Ringen

11.  Einleitung

Die Idealtheorie entstand historisch aus der Beschiftigung von ErRNsT EDpUARD
KuMMER (1810—1893) mit der groBen Fermatschen Vermutung der Zahlentheorie;
mit den von ihm eingefiihrten ,;idealen Zahlen* erzwang er eindeutige Zerlegungen
in algebraischen Zahlkorpern. Daraus wurde der Begriff ,,Ideal“ von RicHARD
DEpERIND (1831—1916) geprigt.

Den heute iiblichen abstrakten Aufbau der Idealtheorie verdanken wir der Mathe-
matikerin EMMY NoETHER (1882—1935), welche dabei an Uber]egu.ngen des (zweiten)
Schachweltmeisters EMANUEL LASKER (1868—1941) ankniipfte (vgl. Lasker [1]).
Emmy NorTHER wirkte hauptsichlich in Gottingen. Sie stammte aus einer jiidischen
Gelehrtenfamilie und verlor daher 1933 nach der Errichtung der faschistischen
Diktatur in Deutschland ihre Lehrerlaubnis und emigrierte nach den USA. Zur
niheren Information iiber Leben und Personlichkeit dieser ungewohnlichen Frau sei
auf entsprechende Literatur verwiesen (vgl. Drck [1], FRaNZER und GONTHER [1],
VAN DEB WAERDEN [4] und WussiNG [2]).

Emmy NoETHER erkannte die Bedeutung der abstrakten Idealtheorie fiir die
exakte Grundlegung der algebraischen Geometrie, als deren Schopfer ihr Vater
Max NoETHER (1844—1921) angesehen wird. Diese Grundlegung war Gegenstand
einer Vorlesung von EmMy NoOETHER im Jahre 1924; zur gleichen Zeit gewann
VAN DER WAERDEN, der damals noch nicht zum Noether-Kreis gehorte, vollig unab-
hiingig davon dieselben Resultate.

AvucusTE Dick schreibt dazu in [1]: »»In kongenialer Weise hatten van der Waerden und
E. Noether unabhingig voneinander aus einer Theorie dieselben wesentlichen Begriffsbildungen klar
h stellt und dieselben Schlisse gezogen. Emmy Noether erhob keinen Anspruch auf Prioritdt
und M‘Gﬂ die Publikation dem jungen Kollegen." (vgl. vAN DER WAERDEN [1] und auch [8],
Kap. 13, bzw. [9], Kap. 14, bzw. [10], Kap. 16). VAN DER WAERDEN #uBert sich in [11] hierzu
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folgendermaBen: “I wrote a paper (gememt ist [1]) ... and showed it Emmy Noether. She at once
ted it for the Mathemats. w#hou”dhngmthauhehadpfeaeﬂedthesamldmma
oouree of lectures before I came to Géttingen. I heard it later from Grell, who had attended her course.**

Diese historische Entwicklung ist als Beispiel zur Erkenntnisgewinnung in der
Mathematik gewi von grundsitzlichem Interesse. Wie schon im Vorwort gesagt
wurde, traten jedoch dadurch Beziehungen zwischen nichtlinearen und linearen
Gleichungssystemen sowie rechnerische Verfahren in den Hintergrund.

Bevor darauf eingegangen wird, wollen wir uns in den ersten beiden Kapiteln mit
der Noetherschen abstrakten Idealtheorie beschiftigen, in welche jedoch zahlreiche
Beispiele eingeflochten sind, u. a. die von RENATE KuMMER und dem Verfasser ent-
wickelte Theorie der Potenzproduktideale (vgl. KumMER und RENScHUCH [1, 2]).

1.2. Idealdefinitionen, Restklassen nach Idealen, Kongruenzrechnung

In Zusammenhang mit der Einfilhrung der Grundbegriffe der abstrakten Algebra,
die hier als bekannt vorausgesetzt werden (vgl. MfL Bd. 3), wird der Begriff , Ideal
zumeist bei der Betrachtung des Kernes eines Ringhomomorphismus definiert (vgl.
MIL Bd. 3, 13.4., Definition 2). Dem schlieBen wir uns hier an:

Definition 1. Es sei R ein Ring. Dann definieren wir:
a Ideal von R :& a Unterring von R AA (ra S anar S a).
r€R

Ein Ideal ist also gleichzeitig Unterring von R und R-Modul.
In vielen Biichern findet man stattdessen die

Definition 2. In dem Ring R heiBt eine nichtleere Untermenge a Ideal von R,
wenn gilt:

acanbea>a—be€aq, (1)
a€arr€E R=>rac€anarca.

Zum Aquivalenzbeweis haben wir offensichtlich nur zu zeigen, da8 aus (1) die
Unterringeigenschaft folgt. Da a — R in Definition 2 vorausgesetzt wird, ist die
Erfiillung der Rechengesetze fiir Ringe gesichert; 0 € a folgt aus (1) fiir b = @, mithin
—beaaus (1) fira=Ounda + b€ aaus (1) wegena + b =a — (—bd) € a.

Ideale werden mit kleinen Frakturbuchstaben a, b, ¢, b, g, 5, %, 1, m,n,p, g, 1, 9, 10
bezeichnet; die Wahl des Buchstabens ergibt sich oftmals aus anderen Zusammen-
ha,ngen, beispielsweise g fiir Grundideale, Y) fiix Hauptklassenideale, ¥ fiixr Kompo-

ideale, m fiir imale Ideale, n fiir Kerne (lat. nucleus = Kern), p fiir Prim-




1.2. Tdealdefiniti Reatkl ® h 19

ideale, q fir Primdrideale (weil p schon fiir Primideale verwendet wurde), ¢ fiir
quasiprimdre Ideale (weil q bereits fiir Primdrideale vergeben ist), v fiir Veronesesche
Ideale und w fiir daraus durch Umindizierung gewonnene Ideale.

Setzen wir voraus, daB R ein kommutativer Ring ist, so vereinfachen sich die
Definitionen 1 und 2 wie folgt:

Definition 3. Es sei R ein kommutativer Ring. Dann definieren wir:

a Ideal von R :< a Unterring von RA A (ra S a).

reR

Definition 4. In dem kommutativen Ring R heiBt eine nichtleere Untermenge
a Ideal von R, wenn gilt:

acarbeca=a—bea, 1)

a€arr€eR=>raca. @)
In analoger Weise zum Beweis von a + b € a folgt aus (1) und (2):

aGdAbedAfGRI\JGR%‘ﬂl-l-Sbﬁa. 3)

Enthélt der kommutative Ring R iiberdies ein Einselement 1, mithin auch —1, so
kann auch umgekehrt von (3) auf (1) und (2) geschlossen werden; wir haben also den

Satz 1. In dem kommutativen Ring R mit Einsek ¢ ist eine nichtleere Unter-
menge a Ideal von R, wenn gilt:

aeaAbeaArQRA.;eR:)ra-}-sbea. (3)
Aus (3) folgt unmittelbar (vgl. MfL Bd. 3, 13.4.):

Satz 2. In dem kommutativen Ring R mit Einselement bilden fiir alle k € R die
Vielfachen ka eines Ringelementes a € R ein Ideal.

Definition 5. Das aus den Vielfachen eines Ringel tes a € R bestehend
Ideal eines ke tativen Ringes R mit Einsel t heiBt das von a erzeugte
Hauptideal §) = (a).

Hier gibt es offenbar zwei Extremfille.

Definition 6. Das nur aus dem Nullelement bestehende Ideal heit Nullidead
und wird mit (0) bezeichnet.

Definition 7. Das vom Einselement erzeugte Hauptideal (1) heit Einheitsideal.
Offenbar ist (1) = R.

Satz 3. In einem Korper K existieren nur das Nullideal und das Einheitsideal.
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Beweis. Ist R = K und a = (0), so existiert wenigstens ein Element a € K mit

a + 0 und a € a. Nach (2) ist dann auch S -a=1E¢€ a,alsoa=(1),q.ed.
a

Definition 8. Ein Integrititsbereich mit Einselement, in dem jedes Ideal ein
Hauptideal ist, heiBt Hauplidealring (HIR; vgl. MfL Bd. 3, 13.5.).

Durch die zusitzliche Forderung, daB der Ring mit Einselement ein Integritéts-
bereich ist, gelten in jedem Hauptidealring die Sitze vom gréBten gemeinsamen
Teiler und von der eindeutigen Zerlegung in Primelemente ((ZPE); vgl. dazu MfL
Bd. 3, 13.5.). Definiert man hingegen Hauptidealringe okne die Voraussetzung, daB R
Integrititsbereich ist (was teilweise in der Literatur geschieht), so muB die Null-
teilerfreiheit zusdtzlich gefordert werden, um die Giiltigkeit der genannten Sitze zu
sichern.

Hauptidealringe sind beispielsweise Z und K[z], nicht aber K[z, ...,z,] mit
n = 2. Um dies zu zeigen, stellen wir die folgenden Uberlegungen an, welche zugleich
den entscheidenden Bezug zur algebraischen Geometrie herstellen: Es sei y,(¢y, - .., t),
Yoty <oes ta)s oo, Ynltys +.o, tg) eine rationale Parameterdarstellung einer d-dimen-
sionalen algebraischen ,,Varietit* (fiir d = 1 Kurve, fiir d = 2 Fliche) im n-dimen-
sionalen affinen Raum. Wir fragen wie im linearen Fall (vgl. MfL Bd. 3, 5.3.) nach
,,parameterfreien Gleichungen‘‘, d. h. nach allen Polynomen f(z,, ..., Z,), die (¥, - - ., ¥s)
als Nullstelle haben, fiir die also f(y,, ..., ¥,) = O identisch in¢,, ..., ¢; ist (unabhingig
von der Wahl der Parameter ¢, ..., t;), abgekiirzt

{1 oeer Yn) =0id.in by, ..., bg. 4)
Die Gesamtheit dieser Polynome f(z, ..., z,) bildet nun ein Ideal p, welches definiert
ist durch:

l(xlx'-'xxn)epKi),(yl»“')yn) =0. (6)
Ist nimlich g(z,, ..., z,) ein weiteres Polynom mit g(y,, ..., ¥s) = 0, so ist auch
(F—9) W ¥a) =fW1s oo ¥n) — (%1, 0, ¥) =0 — 0 =0id.in ¢y, ..., 4,
also

(F = 9) @1 oo Ta) = (@15 +e0s ) — 921, -0, T0) €D,
also (1) erfiillt. Ist A(z,, ..., 2,) ein beliebiges Polynom, so ist jedenfalls

(h/) (yh seey yu) = h(ylr LR yn) * f(yli ERE) .'/.) =0id.in bty
auch fiir A(yy, ..., y,) = 0; also ist

(Rf) (@15 e Tp) = B(Zyy ovey @) - f(@1y .., TR) €D,
und folglich gilt auch (2). Mithin ist p ein Ideal (die Bezeichnung p werden wir in 2.2.
rechtfertigen), aber fiir d < n — 1 kein Hauptideal. Das einfachste Beispiel liefern

Geraden im dreidimensionalen affinen Raum, zu deren Darstellung als Schnitt-
gebilde aber zwei Ebenen, also zwei lineare Gleichungen, unbedingt erforderlich sind.
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Wir wollen nun eine Kongruenzrechnung nach Idealen einfiithren. Dies ist eine
direkte Ubertragung der Kongruenzrechnung in Z (vgl. MfL Bd. 2, 5.6. im AnschluB
an Satz 2), die ihrerseits eine Ubertragung der Kongruenzrechnung in N* war (MfL
Bd. 1, 3.7., (63)ff.) und sich in die allgemeine Definition als Spezialfall fiir Haupt-
ideale einordnet.

Fiir a, b, m aus Z bedeutete a = b mod m, daB m |a — b gilt und umgekehrt
(MfL Bd. 1, 3.7., (64), MfL Bd. 2, 5.6., (7)). Nun ist aber m | @ — b wiederum damit
gleichwertig, daB a — b ein ganzzahliges Vielfaches von m, also Element des Haupt-
ideals (m) ist; die Kongruenzrechnung in Z kann also auch charakterisiert werden
durch

a=>bmod (m):&a —be (m). (6)
Statt (6) schreibt man auch noch kiirzer:
a=b(m):eoa—be (m). (7

Entsprechend definieren wir allgemein:

Definition 9. Ist a ein Ideal eines kommutativen Ringes R mit Einselement, so
heiBen zwei Ringel te a, b kongruent nach a oder kongruent modulo a, wenn
a — b € a ist, in Zeichen

a=bmoda:®a—b€a (8)
oder kurz
a=b(a):©a—bca. (9)
Hieraus folgt leicht
a,=b (a)ra;=b; (0)=>a, + a, = b, + b, (a). (10)

Beweis. (b, + b)) — (@, + a;) = (b, — a;) + (b, — a,) € a gemiB (3).
Entsprechend gilt:
a, = b, (a) A @, = b, (a) = aya, = byd, (a). (11)

Beweis. bb, — a,a; = by(b, — @) + a,(b, — a,) € a gemiB (3).
Aus (10) und (11) ergeben sich durch mehrmalige Anwendung

a=0b;(a) fir t=1,...,8=>a, + - +a,=b + -+ b, (a) (12)
und
a;=0b;(a) fir i=1,...,8=>a,---a,=b,--- b, (a). (13)

Aus (13) folgt weiterhin
a=b(a)=>a*="b (a) mit hec N* (14)
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sowie

a="b(a) Ac=d (a)=> alc* = Bd* (a) mit &, k€ N*; (15)
Entsprechendes gilt fiir drei und mehr Faktoren. Die Formeln (14) und (15) werden
wir des 6fteren bendtigen.

Hierzu betrachten wir ein Beispiel. Es sei a ein Ideal mit zyzy — 2,2, € a und z,2,? — z,* € q,
also zxy = z,7, (a) und z,z,* = z,? (a). Dann ist auch

T2, P — 24 = (202,%)° (7,7,7)° — (2,)° (z') € @
wegen z,7,* = ,* (a) und zy2,® = z,7,7,® = 7, (a).
In Kongruenzen nach einem Ideal darf jedoch nicht immer gekiirzt werden;
beispielsweise ist 156 = 5 (10), aber 3 == 1 (10).
Satz 4. Kongruenzen nach Idealen sind Aquivalenzrelationen (vgl. MfL Bd. 1,
2.4., (22)).
Beweis. Reflexivitit: Es ist a=a (a) wegena —a =0¢€ a.
Transitivitit: a=>b (a) Ab= ¢ (a) = a = ¢ (a); wegen
c—a=(—b) + (b — a) € anach (3).
Symmetrie: a=>b (a) > b=a (a); wegena — b = — (b — a) € a nach (2).
Wir kénnen also durch (8) Restklassen definieren und haben offenbar
Satz 5. Die Restklassen nach einem Ideal a eines kommutativen Ringes R mit
Einselement bilden einen Ring, den Restklassenring R/a (vgl. MfL Bd. 3, 13.4.2.).

Zur Frage der Anzahl der Restklassen nach Hauptidealen sei auf MfL Bd. 1, 3.7.,
(68) und (69), verwiesen. Bei Restklassenringen nach beliebigen Idealen kann man
nur weit schwichere Aussagen machen; fiir homogene Polynomideale sei dazu auf
das sechste Kapitel iiber die Hilbertfunktion verwiesen.

1.3.  Idealbasen, Minimalbasen, Basen minimaler Linge,
Ringe mit Basisbedingung
Es sei B wieder ein kommutativer Ring mit Einselement. Sind a,, ..., @, 8 heraus-

gegriffene Ringelemente, so bildet die Gesamtheit der Elemente ra, + :-- + ra,
wegen (3) ein Ideal. Wir definieren:

Definition 10. Es sei R ein kommutativer Ring mit Einselement. Ein Ideal
a R, das aus simtlichen Ringelementen

a=ro+ - +ra, (16)
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mit festen Ringel ten @y, ..., a, entsteht, wobei 7y, ..., r, unabhingig voneinander
alle Ringel te durchlaufen, wird mit
a=(a...,a,) (n

bezeichnet. Die Elemente a,, ..., a, bilden dann eine Basis von a.

Ein Ideal a heiBt gegeben, wenn von ihm eine Basis bekannt ist.

Ein Ideal a zu berechnen heiBt, eine Basis von a zu berechnen.

Fiir den Fall, daB s = 1 gewiihlt werden kann, heiBt a ein Hauptideal (vgl. Defi-
nition 5).

Definition 11. Eine Basis (17) heiBt Minimalbasis oder reduzierte Basis von a,
wenn keines der Elemente a,, ..., a, iiberfliissig ist, wenn also

@2y <2y @y, @) S @, (@,85,...,8) S
und (18)
(@1 +vs Bicyy Biayy o0y 8) < a fiir 2 =2,3,...,8—1

gilt.

Definition 12. Eine Basis (17) heiBt Basis minimaler Linge von a, wenn folgendes
zutrifft:

Fiir jede weitere Basis a = (by, ..., b;) ist k = s. (19)

Es ist ittelbar einleuchtend, da8 jede Basis minimaler Linge eine Minimal-
basis ist. Die Umkehrung ist jedoch keineswegs immer richtig. Sie trifft, wie wir im
Satz 22 sehen werden, zwar fiir homogene Polynomideale (H-Ideale) zu, nicht jedoch
fiir inhomogene Polynomideale (P-Ideale), worin die eigentliche Ursache h
bei P-Idealen erschwerten Beweisfiilhrung gesehen werden kann. Wir wollen uns hier
mit einem Beispiel begniigen : Wir betrachten die drei Basisdarstellungen in K[z,,;,5]:

(21, %3, %) (20)
(1 + 75, 21 + T, 2120, 2,° + 77), (21)
(“’l + @3, 712 + @, BTy, (23 + 1) (22° + 21), z8(2,® +- «"1))~ (22)

Hier ist zunéichst klar, daf man aus den Elementen der ersten Basis alle Elemente
der zweiten und dritten Basis gewinnt. Es ist auch unmittelbar zu sehen, wie man von
der zweiten zur dritten Basis gelangt und auch umgekehrt (man subtrahiere die
beiden letzten Basiselemente der dritten Basis und hat das letzte Basiselement der
zweiten Basis). Um zu wissen, daB alle drei Basisdarstellungen dasselbe Ideal
definieren, némlich (z,, %,, ;), brauchen wir also nur noch zu zeigen, da8 aus der
zweiten Basisdarstellung die erste folgt, d.h., wir miissen z,, z,, 2, durch die Elemente
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der zweiten Basis ausdriicken:
2 =0z + 23) + (—z1) (@* + @) + 12,2, + 1(=z,® + 2y),

2y = 0(z; + 23) + (2,2 + 1) (2.2 + @) + (—31) 2172 + (—21) (2,° + 2)
und

23 = 1(@1 + @) + @;(x,? + @) + (—1) 3yzp + (—1) (2,2 + 2y).
Aus diesen Darstellungen wird plausibel, da8 (21) und (22) Minimalbasen sind (den
exakten Beweis werden wir im fiinften Kapitel fiihren); daB (20) eine Basis mini-
maler Linge ist, ist evident. Wir haben zusammenfassend den

Satz 6. Eine Minimalbasis kann aus einer Basis stets durch Streichungen gewonnen
werden.

Die Begriffe ,,Minimalbasis“ und ,,Basis minimaler Linge® fallen im allgemeinen
nicht zusammen. Eine Basis minimaler Linge kann aus einer Mintmalbasis im all-
gemeinen nicht allein durch Streichungen gewonnen werden.

Definition 13. Ein kommutativer Ring R mit Einselement heit Ring mit
Basisbedingung, wenn die folgende Bedingung (B) gilt:

(B) :& Jedes Ideal a — R besitzt eine endliche Basis. (23)

,,Endliche Basis* bedeutet dabei, daB die Anzahl s der Basiselemente eine endliche
Zahl ist.

Die vorangegangenen Betrachtungen lassen erkennen, daB der Basisbegriff
gegebenenfalls Schwierigkeiten in sich bergen kann; allein daher ist es gerechtfertigt,
zu versuchen, die Bedingung (B) durch équivalente Bedingungen zu ersetzen. Damit
wollen wir uns in den niichsten Abschnitten befassen.

1.4.  Oberideale, Unterideale, Teilerketten, Teilerkettenbedingung,
Maximalbedingung

Definition 14. Es sei R ein kommutativer Ring mit Einselement. Ist a S b, so
heiBt a Unterideal oder Vielfaches von b, und b heiBt Oberideal oder Teiler von a.

Ist a = b, so heilt a echtes Unierideal oder echtes Vielfaches von b und b echtes
Oberideal oder echter Teiler von a.

Die aus der historischen Entwicklung der Idealtheori tstand Bezeich ,,Viel-

8

faches* und ,,Teiler* kann man durch Beispiele in Z leicht erkliren: Beispielsweise ist

2/4 & (4) = (2) usw.
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Entaprechendes gilt fiir Teilerketten:
1/3/15/30/60 < (60) = (30) = (15) = (3) = (1).
Wir definieren daher:

Definition 15. Eine Folge {a;} von Idealen, von denen jedes Ideal Oberideal
des vorhergehenden Ideals ist, heiBt eine Teilerkette oder aufsteigende Idealkette. Eine
Teilerkette ist mithin durch

GRS SaSam S (24)
gegeben. Steht in (24) nirgends das Gleichheitszeichen, gilt also

G CaC SO C Ay Sy (25)
so spricht man von einer echten Teilerkette.

Ist R ein Hauptidealring, so kann jede echte Teilerkette (256) nur endlich viele
Glieder enthalten; dies besagt der Teilerkettensatz (vgl. MfL Bd. 3, 13.5.2., Satz 4).
Aus ihm folgt fiir Hauptidealringe der ZPE-Satz (vgl. ML Bd. 3, 13.5.2., Satz 5).

Fiir beliebige kommutative Ringe R mit Einselement stellt die Aussage des Teiler-
kettensatzes eine Bedingung dar, die zusitzlich gefordert werden musB.

Definition 16. Ein kommutativer Ring R mit Einselement heiSt Ring mit
Teilerkettenbedingung oder Ring mit aufsteigender Kettenbedingung, wenn die folgende
Bedingung (T) erfiillt ist:

(T) :«> Jede Teilerkette hat die Bauart
§6ERSE - SGEUME - E Qo (26)
=Gy = Oy = v =0y = *0v0

Notieren wir von (26) nur die echten Oberideale, so geht (26) iiber in

0, Ca,C ChYqg SO =0y =+ =0y ="+

mit 1S54 <t <--<k—1. (27)
Wir kénnen diesen Sachverhalt gleichwertig auch so formulieren:

(T,) :¢ In (24) gilt ,,c** nur an endlich vielen Stellen
oder

(Ty) :¢> In (24) gilt von einem bestimmten Index an stets das Gleichheits-
zeichen.

Definition 17. Es sei M eine nichtleere Menge von Idealen in einem kommu-
tativen Ring R mit Einselement. Ein Ideal i € M heiBt mazimal beziiglich M, wenn
es kein Ideal a € M mit i  a gibt.



26 1. Grundbegriffe

Definition 18. Es sei M eine nichtleere Menge von Idealen in einem kommuta-
tiven Ring R mit Einselement. Ein Ideal m € M heit minimal beziiglich M, wenn es
kein Ideal a € M mit a — m gibt.

Definition 19. Ein kommutativer Ring R mit Einselement heiBt Ring mit
Mazimalbedingung, wenn die folgende Bedingung (M) erfiillt ist:

(M) : Jede nichtleere Menge M von Idealen aus R enthilt wenigstens ein
mazximales Ideal.

Satz 7. Ist R ein kommulativer Ring mit Einselement, so gilt:
R ist ein Ring mit (T) & R ist ein Ring mit (M).

Beweis. (=) (indirekt): Angenommen, es wire M eine Menge von Idealen okne
maximales Ideal; dann existiert zu jedem a, € M wenigstens ein a, € M mit a, < a,,
zu a; wiederum ein a; € M mit a, — a, usw. So wiirde eine nicht abbrechende Teiler-
kette (25) im Widerspruch zu (T) entstehen. Hierbei wurde das Auswahlprinzip
benutzt (vgl. MfL Bd. 3, 2.8., sowie KErTESz [2], Kap. III).

(<) (indirekt): Aus der Annahme der Existenz einer nicht abbrechenden echten
Teilerkette ergibt sich, daB die durch die Folge {a;} gegebene Menge M von Idealen
kein maximales Ideal besitzt.

Homhodi

In analoger Weise definiert man eine Vielfachenk ng oder
Kettenbedingung und Ringe mit Minimalbedingung, welche auch Artinsche Ringe
genannt werden. Die Aquivalenz beider Begriffe kann man in analoger Weise be-
weisen. Die Forderung der Giiltigkeit der Vielfachenkettenbedingung ist jedoch eine
recht starke Voraussetzung, aus der allerdings viel gefolgert werden kann; fiir eine
zusammenfassende Darstellung sei auf KERTESZ [1] verwiesen.

Petoss A,
¢4

1.5.  Der Aquivalenzsatz von Emmy Noether, Noethersche Ringe

Es handelt sich dabei um den grundlegenden
Satz 8. Ist R ein kommulativer Ring mit Einselement, so gilt:
R 1st ein Ring mit (T) & R ist ein Ring mit (B).

Beweis. (=): In dieser Beweisrichtung benétigen wir wieder das Auswahlprinzip
aus MfL Bd. 1, 2.8. Es sei a ein beliebiges Ideal aus R und es gelte (T). Es sei a, € a.
Ist a = (a,), so sind wir fertig. Andernfalls existiert wenigstens ein Element a, € a
mit a, ¢ (a,). Ist a = (a,, a3), 8o sind wir fertig. Andernfalls existiert a; € a mit
a3 ¢ (a1, a;). Ist @ = (ay, @y, a3), s0 sind wir fertig, andernfalls wird das Verfahren
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fortgesetzt. Der Fall a = (a,, a, ..., a,) muB nach endlich vielen, etwa s, Schritten
eintreten, weil andernfalls eine nicht abbrechende echte Teilerkette (25) entstehen
wiirde im Widerspruch zur Voraussetzung (T).

(<) (indirekt): Angenommen, es existiert eine nicht abbrechende echte Teiler-
kette

G AT TSy S Sy S oo (28)

Jedes dieser unendlich vielen Ideale hat eine endliche Basis. Wir betrachten das-
jenige Ideal a, welches von allen diesen Basiselementen erzeugt wird, fiir welches
also a; < a fiir alle 4, insbesondere

a,ca (29)

gilt. Nach der Voraussetzung (B) geniigen zur Erzeugung von a jedoch bereits end-
lich viele Basiselemente, a = (a,, @y, ..., a;). Jedes dieser ¢ Basiselemente ist in einem
der Ideale der Kette (28) erstmals enthalten; es sei a, dasjenige Ideal, in welchem als
erstem a,, @y, ..., 4, simtlich enthalten sind. Dann gilt aber a S a, im Widerspruch
zu (29). Mithin war die Annahme der Existenz der nicht abbrechenden echten
Teilerkette (28) falsch, q.e.d.

Wir kénnen also Satz 7 und Satz 8 zusammenfassen zum

Satz 9. In einem kommutativen Ring R mit Einselement sind die drei zusdtzlichen
Bedingungen (T), (M) und (B) dquivalent.

Diese Zusammenhinge wurden erstmals von EMMy NoETHER erkannt; wir wollen
daher im folgenden solche Ringe als Noethersche Ringe bezeichnen.

Definition 20. Kommutative Ringe R mit Einselement, die den dquivalenten
Bedingungen (T), (M), (B) geniigen, heiBen Noethersche Ringe.

1.6. Der Hilbertsche Basissatz

Wir hatten zu Beginn darauf hingewiesen, da8 fiir Hauptidealringe der Teilerketten-
satz gilt; Hauptidealringe sind also Noethersche Ringe. Der Hilbertsche Basissatz,
den wir im folgenden beweisen wollen, sagt nun aus, da8 Polynomringe iiber Noether-
schen Ringen wieder Noethersche Ringe sind. Wir beweisen zunichst

Satz 10 (Spezieller Hilbertscher Basissatz). Ist R ein Noetherscher Ring, so auch
R[z).

Beweis. Der Ring R[x] besteht aus Polynomen
f@) =80+ @@ + -+ + @aF + -+ + @uz™ mit a; € R. (30)
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Fiir festen Grad m (m =0, 1, 2, ...) bilden die hochsten Koeffizienten a,, offenbar
ein Ideal a,, — R, weil (1) und (2) erfiillt sind. Es sei nun a — R[z] ein Ideal. Mit
f(x) € a ist dann wegen (3) auch zf(z) € a, 2%(z) € a, ... usw. Daraus folgt:

Jedes a4 € a, ist auch Element von ay, ag, ag, ay, ...,
jedes a, € a, ist auch Element von  a,, a, ay, ...,

jedes a, € a, ist auch Element von Qg, Ogy ... USW.;
wir erhalten also eine Teilerkette (24) von Idealen in R, welche nach Vor t
die Bauart (26) haben muB Die Basis von a — R[z] wird nun durch die Gesamtheit
der im folgenden besch El te gebildet:

(a) alle Elemente von a,,

(b) alle linearen Polynome @,z + ¢, mit a, € a;, @, ¢ a, und ¢, beliebig aus a,,

(c) alle quadratischen Polynome a,2% + kyz + k, mit a, € a;, a, § a;, k; beliebig
aus a;, und entsprechend fiir h6here Gradzahlen.

Wegen der vorausgesetzten Endlichkeit der Basen der Ideale a; sind dies jeweils
nur endlich viele Elemente.

Ist umgekehrt ein Polynom f(z) € a = R[z] durch (30) gegeben, so liegen wegen
(26) zuniichst a,, € 0y, @p—; € G, ..., @ € ;. Damit 1éBt sich f(z) mit Hilfe der kon-
struierten Basiselemente auf ein Polynom (k—1)-ten Grades reduzieren, dessen
hdchster Koeffizient in a,; liegt; dieses Polynom konnen wir weiter auf ein Polynom
(k—2)-ten Grades reduzieren, dessen hichster Koeffizient in a,_, liegt; ... usw., bis
wir bei Elementen von a, angelangt sind, g.e.d.

Wegen R[z,, 2y, ..., Ziy, 2] = (B[, 23, ..., ;1)) [#;] folgt durch n-malige An-
wendung der

Satz 11 (Allgemeiner Hilbertscher Basissatz). Ist R ein Noetherscher Ring, so auch
R[z,, ..., 2,]).

Nun sind Korper stets Noethersche Ringe, denn in einem Kérper sind (0) und (1)
die einzigen Ideale; wir haben also den

Satz 12. Der Polynomring K[z, ..., x,] iber einem Korper K ist ein Noetherscher
Ring.

Alle Polynomideale besitzen also eine endliche Basis. Mit ihnen wollen wir uns im
niichsten Abschnitt beschaftigen.
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1.7.  Polynome, Formen, Polynomideale, P-ldeale, H-Ideale,
Potenzproduktideale

Bei den geometrischen Anwendungen wird der Koeffizientenkorper K der zu be-
trachtenden Polynome in der Regel der Korper € der komplexen Zahlen sein. Fiir
die Nullstellentheorie der Polynomideale ist jedoch wesentlich, daB K (wie eben
beispielsweise C) ein algebraisch abgeschlossener Korper ist, den wir mit K be-
zeichnen wollen (vgl. MfL Bd. 3, 14.7., Schlu8).

Definition 21. Mit K werde ein algebraisch abgeschlossener Korper bezeichnet,
mit K[z, ..., z,] bzw. K[z, 2y, ..., 2,] Polynomringe, deren Polynome Koeffizienten
aus dem algebraisch abgeschlossenen Korper K haben.

Zur Definition von Polynomen in einer bzw. in mehreren Unbestimmten sei auf
M{L Bd. 3, 14.1. bzw. 14.6., verwiesen. In Anlehnung an MfL Bd. 3, 14.2.1., geben
wir die

Definition 22, Sind f(z,,...,2,) € K[2),..., T4, F(Zo, 21, .., 2,) € K[, 2y, ..., Zp)
Polynome, so bezeichne

h(f) := h(f(=1, ..., ¥,)) := Grad von f in allen Variablen ,, ..., Z,, (31)
B(f)i := h(f(@s, ..., @a))s :=Grad von f in 2, ..., 2 (1 S <n), (32)
k(F) := h(F(Zo, -, 2,)) := Grad von F in allen Variablen y, ..., Z,, (33)
h(F); := b(F(a,, ..., %,)); := Grad von F in 2y, ..., 0Si<m), (34)

h(0) := jedes beliebige Element aus N. (35)
In der Literatur smd hleriur die Bm:chnungen . [F] bzw [f)i» [F]; tblich, welche wir hier
zur Ve id von V h wollen. Die Schreibweise

h(f); anstelle von h,(f) wurde gewahlt, um Verwechslungen mit den Hilbertschen Koeffizienten
auszuschliefen (vgl. Kap. 6).

DaB dem Polynom O gemaB (35) jede natiirliche Zahl (einschlieSlich der Null)
als Grad zugeschrieben werden kann, wird sich im folgenden als sinnvoll erweisen.

Beispiel. Ist f(z,, 2y, z3) = 32,24® — 2z,%z,, dann ist h(f) = 3, k{f)y = 2, h(f); = 1.
Definition 23. Ausdriicke der Gestalt ez (i, .0, e €N) bzw.
P = xoxyt oo 28 (bg, 1y, ..., 1y € N) heiBen Potenzprodukte.

Satz 13. Die Qlieder von Polynomen aus K[:c,, ooy 2] bzw. K[z, ..., 4] sind mit
El ten aus K multiplizierte Potenzp

Definition 24. Ein Polynom in mehreren Unbestimmten heiBt komogen, wenn
alle auftretenden Glieder (also nach Satz 13 alle auftretenden Potenzprodukte) den-
selben Grad haben, andernfalls heiBt es inkomogen. Homogene Polynome werden
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kiirzer als Formen bezeichnet und mit groSen Buchstaben F, @, H, ... geschrieben,
inhomogene Polynome mit kleinen Buchstaben f, g, %, ... (vgl. MfL Bd. 3, 14.6.1.,
SchluB). Potenzprodukte werden 0.B.d.A. als spezielle Formen aufgefaft.

Beispiel 1. F(z,, 7y, 7,) = 2,® + 22,%z, — 37,2z, + 42,7, ist homogen, da alle Glieder den
Grad 3 haben.

Beispiel 2. f(z;, 2y, 23) = 2 + 32, — 423 + 52,2 — 62,37 + Tz;® — 2%, ist inhomogen vom
Grad 3, da Glieder mit den Gradzahlen 0, 1, 2, 3 auftreten.
Homogener Bestandteil 3. Grades: 7z,® — 2y3z,,
B dteil 2. Grades: 52,2 — 62,75,
homogener Bestu.ndwll 1. Gredos 3z, — 4z,,
10.G : 2.

Beispiel 3. f(z,, zy, ..., Ty) = Gy + 012, + G3%y + -+ + @42, ist homogen vom Grad 1 fiir

= 0 (Linearform) und inhomogen fir a, = 0. Das steht im Einklang mit der Homogenitéts-
definition der linearen Algebra (vgl. MiL Bd 3, 5.1.). Zur Anp g an die nichtli Algebra
wiire fiir lineare Gleick eine Schreibweise a;z; + -+ + @;3Zy + a4 =0(s =1, ..., m)
anstelle von a;,z; + - + 8%y = by ( = 1, ..., m; gy = —b;) vorzuziehen (vgl. Kap. 3).

Beispiel 4. Es sei
f(@1 23y 23) = 2 + T2y — 425 + 202,° — day2y — T3 + bayzy + 82,° — 92z3° (36)

wiederum ein inhomogenes Polynom dritten Grades, also A(f) = 3.

Fiihren wir nun eine neue Variable z, ein und multiplizieren jedes Potenzprodukt von (36) mit
einer Potenz von z, zur ,,Auffillung®, d. h. derart, daB insgesamt der Grad 3 herauskommt, so
entsteht eine Form

F(2o, 21, 730 T3) = 22° + Ty — 417y + 20252,% — dxg7i2y — Tagty? + 5202y + 82y° —
37

Um fiir diesen Proze8, den man Homogenisierung nennt, eine allgemeine Formel
zu gewinnen, klammern wir in (37) den Faktor z,® aus und haben im Quotienten-
korper K(x, 24, ..., z,) (vgl. MfL Bd. 3, 13.6.)

2
P, o, zal2s) = 28 (2 + 72 — +2o__4ﬂ_7&
b Zo £ eSS

3

+622 4 8 -"—8)
Zo
= =} (""1 & ﬂ) 2 MOf (z, & ﬂ)
To To %o To To %o
Allgemein gilt die

Definition 25. Unter der Homogenisierung eines (inhomogenen oder homogenen)
Polynoms f(zy, ..., z,) versteht man den Ubergang von f(z,, ..., z,) zur dquivalenten
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Form F(z,, ..., z,) mit

F(o, Ty, - vy ) := 2 (ﬂ, e ﬂ) (38)
o o
Der umgekehrte ProzeB wird als Enthomogentsierung b hnet
F(1, 2y, ..., 2) :=f(&1, .0, Zy) . (39)

Ist f(=,, ..., z,) bereits in ,,..., 2z, homogen, so fiihrt dieser ProzeB zu nichts
Neuem, d. h., es gilt dann f(z,, ..., 2,) = F(x, 21, ..., Z,); beispielsweise ist

(@, 3, 25) = 32y° + 22,22, — 5212575

3 2

=z (3 2 I W T W B 3 = F(%o, %1, %z, T3)-
2 T Xy Ty Zy %o

Insbesondere tritt also bei Potenzprodukten keine Anderung ein, womit die Fest-

legung in Definition 24 gerechtfertigt ist. Wir brauchen also im folgenden bei den

Polynomen f, g, ... aus K[z,, ..., z,] die (zufillige) Homogenitét nicht auszuschlieSen.

Sind f(z,, ..., z,) und g(,, ..., z,) zwei Polynome, so gilt (vgl. MfL Bd. 3, 14.1.,
Satz 1)

h(fg) = R(f) + k(g) (40)
und entsprechend fiir Formen F(z, ..., Z,), G(Zo, - .-, Za)
WFG) = k(F) + k(G). (41)
Fiir den Grad der Summe f -+ g miissen wir offenbar zwei Fille unterscheiden:
k(f) = hig) = h(f + g) = Max (A(f), h(g)}, (42)
h(f) = hg) = k(f + 9) S A(f). (43)

Entsprechendes gilt fiir die Differenz f —g wegen f — g = f + (—g).

In (43) tritt nun das <-Zeichen dann auf, wenn sich die Bestandteile hochsten
Grades gegeneinander wegheben. Dies hat Konsequenzen fiir die Idealtheorie in
Polynomringen. Dazu geben wir zunichst die

Definition 26. Ideale im Polynomring K[z,, ..., z,] heiBen tnkomogene Polynom-
ideale, kurz P-Ideale, und werden im folgenden mit (a) bezeichnet.

Die Bezeichnung ,,inhomogene Polynomideale® soll nur bedeuten, da8 in solchen
Idealen inhomogene Polynome enthalten sind (in gewissem Gegensatz zu den noch
zu definierenden homogenen Idealen).

Nun folgt die angekiindigte Folgerung aus (43) fiir P-Ideale: Sind f,, ..., f; Poly-
nome aus einem Ideal (a) — K[z, ..., z,J und sind g, ..., g; Polynome aus K[z,...,2,],
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8o ist auch f = g;f, + -+ + gift € (a), und es gilt wegen (43) und (40)
h(f) < Max (hig) + h(f)) fir i=1,...,a. (44)
Hierzu geben wir zwei Beispiele an.

Beispiel 1. (a) = (f;, fo) = K[z] mit f; = 4z — 1, f; = 2z — 5; dann ist
19z — 18 = (z + 1) (4z — 1) + (—2= + 3) (2z — 5)
und
Mg) +Mf)=2 far i=1,2,
aber h(19z — 16) = 1. Dieses Beispiel ist jedoch insofern nicht ubemugand dn (’p /.) keine
Basis minimaler Liinge sein kann, weil K[z] als euklidischer Ring ein Haup st (vgl.
MfL Bd. 3, 13.5., Satz 6); bei diesem Beispiel ist

(8) =z — 1,22 — 5) = ((4= — 1) (22 — 5))

des Einheitsideal wegen 1 — % 4z — 1)+ (— %) @z —5).

Beispiel 2. Dieses Beispiel stammt von Maoavray (vgl. [2], 8. 39). (a) = (f1, f3) = K[2;, 2y T5]
mit f, = 2,%, fy = 23 + 2,7, Dann ist
% = (—%) 2, + 2,(7; + 1%,),
Ag) +d(f) =3 far ¢=1,2,
hingegen A(z,z,) = 2 und entsprechend

= (@) 2, + (@3 — 2.17,) (@3 + 2,%3),
hg) +h(f) =4 far §=1,2 und h(z?) =2.

Derartige Gradiiberschreitungen sind beim Rechnen mit P-Idealen sehr lastig.
Man konnte daran denken, durch geeignete Wahl der Basis in (44) doch stets das
Gleichheitszeichen zu erzwingen. Solche Basen nennt MaoAuLAY H-Basen:

Definition 27. Eine Basis (f,, ..., };) eines P-Ideals (a) heiBt H-Basis, wenn fiir
jedes f € (a) die Darstellung f = g,f, + -+ + g:f; so gewihlt werden kann, daB k(f)
= Max {h(g)) + R(f))} gilt.

Die Frage nach der Existenz von H-Basen werden wir auf dem Umweg iiber die
Existenz équivalenter H-Ideale gleich positiv beantworten (Satz 14).

Mit Hilfe der Syzygientheorie werden wir in Kapitel 5 zeigen kénnen, daB im Fall
des zweiten Beispiels (f,, f,, ,,, ,?) eine H-Basis ist. Hier entsteht also die H-Basis
durch Verlingerung der Ausgangsbasis, worauf auch schon MacAuLAY hinweist (vgl.
[2], 8. 39).

Doch kann es vorkommen, daf durch die hinzukommenden Elemente eine Strei-
chung friiherer Basiselemente méglich wird. Dies ist beispielsweise bei den Idealen
(21) und (22) der Fall, wo die Berechnung der H-Basis auf ;, 2,, z, fiihrt, mit deren
Hilfe alle urspriinglichen Basiselemente ausgedriickt und mithin gestrichen werden
konnen. In diesen Fillen hat die H-Basis nach der Streichung weniger Elemente als
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die Ausgangsbasis; diese Moglichkeit bleibt bei MacAuLAY unerwihnt. Bei den
Idealen (21) und (22) fiihrt die H-Basis sogar zu einer Basis minimaler Linge; ob
dies allgemein eine Methode zur Gewinnung von Basen minimaler Linge darstellt,
konnte noch nicht entschieden werden.

Es sei noch erwihnt, da man gegebenenfalls H-Basen nur beziiglich bestimmter
Elemente z,, ..., z; (§ < n) benétigt; hierzu beachte man die von EMmy NOETHER
angeregte und betreute Dissertation von GRETE HERMANN (vgl. [1], Satz 4).

Ausgangspunkt dieser Komplikationen war die Moglichkeit des Auftretens des
<-Zeichens in (43). Um dies auszuschlieBen, muB man zu Formen F, G gleichen
Grades iibergehen, was gemi8 (38) geschehen kann. Dann gilt:

WF) = h(@) = W(F + G) = h(F). (45)

Fiir @ = —F, also F + G =0, ist 2(0) = h(F) wegen (35) formal auch zutreffend.

Nun ist zwar das Produkt FQ zweier Formen stets wieder eine Form, Summe
(und Differenz) zweier Formen ergeben aber nur bei Gradgleichheit wieder eine Form.
Will man sich auf Formen beschrinken, so ergeben sich offenbar zwei Moglichkeiten :

(A) Man liBt Addition und Subtraktion von Formen nur bei Gradgleichheit zu.
Das bedeutet eine Verletzung der Ring- und Idealeigenschaften. Man spricht daher
dann auch von gestuften oder graduierten Ringen und von gest oder graduierten
Idealen (vgl. GRGBNER [9], § 4, III).

(B) Wir lassen das Auftreten inhomogener Polynome bei Operationen mit Formen
zwar zu, verlangen aber, daB dann mit einem Polynom auch alle homogenen Be-
standteile bereits zum Ideal gehéren sollen. Damit gleichwertig ist offenbar die Eigen-
schaft, daB eine Basis aus lauter Formen existieren soll.

49
(

Wir wollen uns hier — um die Ringeigenschaften nicht einzuschrianken — auf den
Standpunkt (B) stellen, zumal bei unseren Anwendungen die Berechnung von Basen
im Vordergrund stehen wird. Wir geben also die

Definition 28. Ein Ideal a im Polynomring K[z, «,, ..., z,] heiBt homogenes
Polynomideal, kurz H-Ideal, wenn fiir a wenigstens eine Basis aus lauter Formen
besteht, was genau dann eintritt, wenn mit jedem inhomogenen Polynom aus a
alle homogenen Bestandteile bereits zu a gehdren.

Definition 29. Ein Ideal a, = K[z, ,, ..., z,] heit Potenzproduktideal, wenn
fiir a, wenigstens eine Basis aus lauter Potenzprodukten existiert; Schreibweise:
Ay = (gflxllx:lzl oo ghrm alnglen ... z:;;l:)

Imy? 0t Ta1ve2 (46)
mit ¢, =1 und zy € (z, 2y, ..., Tp).
Die Ausschaltung der 0 als Exponent in (46) erweist sich fiir das weitere Rechnen
mit, Potenzproduktidealen als unumgénglich.



34 1. Grundbegriffe

Die Gesamtheit derjenigen Formen F(zg, 2y, ..., Z,), @(%o, Z;, ..., Z,) aus dem Poly-
nomring K[z, «,, ..., Z,], die nach Enthomogenisierung in einem vorgegebenen P-
Ideal (a) = K[z,, ..., z,] liegen, liefert ein H-Ideal a < K[z, 2;, ..., Z,] Wegen:

F(l, 2, ..., 2,) € (@) AG(L, 2y, ..., 2,) € (a) = (F — @) (1, 24, ..., 7,) € ()
und
F(l, 2y, ..., z4) € (@) AH(L, @y, ..., 74) € K[y, ..o, 7] = (HF) (1, 25, .., 24) € (0);

a enthilt alle durch Homogenisierung (38) entstehenden Formen F(xy, 2y, ..., Z,)
und Produkte z,*F(zo, 2, ..., Z,) mit k€ N (vgl. vAN bER WAERDEN 3], § 3, Satz 7, 8),
also alle Formen der Gestalt (vgl. GROBNER [2], 124.4b)
ZEF (g, Ty oy ) 1= DS (ﬂ, i) ke N. 1)
To o
Definition 30. Das aus einem P-Ideal (a) = K[z,, ..., z,] gemiB (47) hervor-
gehende H-Ideal a = K[, %), ..., z,] heiBt das zu (a) dquivalente H-Ideal a.

In der Literatur wird das dquivalente H-Ideal hiufig mit a, bezeichnet (vgl.
GROBNER [2, 8, 9]). Einleuchtend ist auch die Bezeichnung
(@) = alzpz, (48)
die den Sachverhalt von (47) und Definition 30 am kiirzesten wiedergibt.
Da wir in einem Noetherschen Ring sind, besitzt a eine endliche Basis
a= (Fi(f‘o, Ty e Tp)s ooy Fol@o, @y oee -T.)), (49)
und nach Eigenschaft der H-Ideale treten keine Gradiiberschreitungen mehr auf,
d.h, aus F = G\F, + --- + G,F, folgt
h(F) = h(G) + k(F,) = --- = h(G,) + h(F,).
Mithin ist durch Fy(1, z,, ..., &), ..., Fy4(1, 2y, ..., 2,) eine H-Basis fiir das inhomogene
P-Ideal (a) gegeben.
Satz 14. Eine H-Basis fiir ein inhomogenes P-Ideal (a) = K[z,, ..., x,] entsteht durch
Enthomogenisierung der Basisformen des dquivalenten H-Ideals a — [Kzy, 24,..., T,).
Damit dringt sich die Frage auf, wie man dquivalente H-Ideale berechnen kann.
Auf diese Aufgabe werden wir in Abschnitt 1.16. iiber Idealquotienten und in Ka-
pitel b iiber Syzygientheorie eingehen. Weiterhin werden wir auf dquivalente H-Ideale
in Kapitel 4 zuriickkommen.
Bei der Behandlung linearer Gleichungssysteme
‘Gt aum b+ @, =0 (= 1,..,m; ap = —by) (50)
fiihrt die Homogenisierung (38) zu

@i + @@y + -+ + Qiy =0 (6 =1,...,m; ap = —by), (61)
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und in der Literatur spricht man dann vom ,,homogen machen‘ (vgl. NE1ss [1], § 29,
Anfang; dort wird wie manchmal in der ilteren Literatur z,,, anstelle von z, ge-
setzt). Doch lohnt sich das nicht so recht, da man den entscheidenden Gaupsch
Algorithmus auch bei inhomogenen linearen Gleichungssystemen anwenden kann;
man gewinnt lediglich die Aussage: (50) ist genau dann unldsbar, wenn z, = 0 fiir
alle Losungen von (51) gilt.

Der entscheidende Grund zur Einfiihrung von H-Idealen ist aus algebraischer Sicht
die Moglichkeit, den GauBschen Algorithmus iibertragen und damit verschiedene
Rechenprozesse effektiv durchfiihren zu konnen. Die geometrische Interpretation
durch die projektive Geometrie (vgl. MfL Bd. 7) steht dazu nicht im Widerspruch,
wenn man bedenkt, daB gewisse durch Rechenprozesse zu bewiltigende Probleme
erst in projektiven Ridumen sinnvoll werden.

Grundlage fiir die Ubertragung des GauBschen Algorithmus bilden die beiden
folgenden Sitze.

Satz 15. Alle Formen eines festen Grades t aus K[z, x;, ..., z,) bilden einen K-
Modul M(t; (o, 1, - - -, Zn))-

Beweis. Die Differenz F—@ zweier Formen ¢-ten Grades ist wieder eine Form
t-ten Grades; das Produkt von F mit einem Kérperelement ist wieder vom Grad ¢,
wenn F den Grad ¢ hat.

Satz 16. Eine linear unabhingige Modulbasis von M(t; (o, 21, .., Z,)) wird durch
alle Potenzprodukte t-ten Grades in 2o, xy, ..., T, gegeben.

Beweis. DaB die Potenzprodukte ¢-ten Grades in 2, 2y, ..., &, eine Basis bilden,
ist evident; die lineare Unabhingigkeit folgt aus der Verschiedenheit der Potenz-
produkte.

Hieraus folgt sofort

Satz 17. Alle Formen eines festen Grades t aus einem H-Ideal a = K[z, zy, ..., Z,]
bilden einen Modul M(t; a), der ein Untermodul von ‘JR(t; (@05 ++ s z,.)) wst.

Satz 18. Eine linear unabhingige Modulbasis von M (t; a) kann aus einer Basis
von a mit Hilfe des Gaupschen Algorithmus in endlich vielen Schritten berechnet werden.

Beweis. Wir numerieren die Potenzprodukte p,, p,, ... in irgendeiner Weise (vgl.
7.1. bis 7.4.) und fithren nach diesen Potenzprodukten den GauBischen Algorithmus
durch wie in der linearen Algebra nach z,, x,, ... (vgl. MfL Bd. 3, 5.4.). Demzufolge
gilt auch

Satz 19. Alle linear bhingigen Modulb von M(¢; a) bestehen aus der gleichen
Anzahl von Elementen.
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Satz 20. Ist a = K[z, 2y, ..., x,] ein H-Ideal, so kann eine Minimalbasis von a
aus der vorgegebenen Basis von a in endlich vielen Schritten bestimmt werden.

Beweis. Esseia = (F, ..., F,) eine Basisdarstellung und o0.B.d. A.
my:=h(F) SKF)<--sMkF,)=:M (52)
(mo Minimalgrad, M Maximalgrad).

Wir bilden nun nacheinander M(m,; a), M(my + 1; a), ..., M(M ; a). Zu M(m,; a) ge-
héren alle Basisformen mq-ten Grades. Ob diese linear unabhingig sind, kann mit
Hilfe des GauBschen Algorithmus fiir ¢ = m, entschieden werden. Zu M(m, + 1; a)
gehoren alle jeweils mit 2, 2, ..., z, multiplizierten Elemente aus M(m,; a) und die
Basiselemente (m,+ 1)-ten Grades (falls solche existieren), von denen die linear ab-
hiingigen gestrichen werden konnen. So fiahrt man fort bis zum Grad M.
Beispiel. Es sei a = (Fy, Fy, Fy, F,, Fg) mit

Fy = z25 — 2,73, Fy = zg’z, — 2,

Fy = zgzy* — 2%, Fy = 2z — 2,2, Fy = zi23* — 7,°.
Hier ist mg = 2, M = 3. M(2; a) wird gebildet aus F, allein, welches mithin linear unabhiingig
ist. Zur Aufstellung von %(3; a) benutzen wir nun 7.2. Dann ist

ZFy = Py — e nFy =p; — pia» 3y = py — Prov 7Fy = py — Pus»

Fy=py — pu» Fy =pg — P1s» Fy=p, — p1» Fy = pig — Pys-
Wir ordnen nach den ersten Potenzprodukten:

Fy=ps — pu» zoFy = py — Pe» Fy = p; — Pra» Fy = pg — p1s»

2pFy = py — Puus Fy=py — s 23Fy = pio — Pus» Fs=p1s — 1
und hieraus ist F, = 2,F, sofort ersichtlich. Mithin kann F gestrichen werden, und (F,, F,, Fy, Fy)

ist eine Minimalbasis.

Aus dem Beweisverfahren folgt, daB in zwei verschiedenen Minimalbasen fiir ein
und dasselbe H-Ideal a die Gradzahlen m, und M iibereinstimmen und die Anzahl
der Basisformen mit den Gradzahlen m,, my+1, ..., M in beiden Minimalbasen je-
weils gleich ist. Um dies einfacher formulieren zu konnen, fiihren wir eine Bezeich-
nung ein, die wir spiter ohnehin bendtigen werden.

Definition 31. Ist a = K[z, 2y, ..., z,] ein H-Ideal mit der Minimalbasis
a=(F,...,F,), (63)
80 heifit
((Fy), ..., B(F ) (54)
der zu (53) gehorige Gradvektor.
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Dann gilt also der

Satz 21. Alle Minimalb ein und desselben H-Ideals a = K[z, 2,, ..., 4] haben
bei Anordnung der Bm/mn nach steigenden Gfadzahlen gemap (52) uberetmtum-
mende Gradvektoren. I d habenalaoalleM Ib von a dieselbe Linge.

Daraus folgt unmittelbar der

Satz 22. Bei H-Idealen fallen die Begriffe ,,Minimalbasis‘‘ und ,,Basis minimaler
Linge* zusammen.

1.8. Die Idealsumme

Wir wollen nun Rechenoperationen fiir Ideale einfiihren. Dazu wollen wir R als
Noetherschen Ring voraussetzen, auch wenn dies fiir die zu betrachtenden Opera-
tionen nicht erforderlich ist.

Ausgehend von der gentheoretischen Betracht ise konnte man dabei
chst an die Vereinigung ge aub im mengentheoretlschen Sinne denken.
Aber a u b ist noch kein Ideal, denn ista € a,a 4 b, b4 a,b€b,s0ista+bdauvb
im Widerspruch zur Idealeigenschaft (3). Um das kleinste Oberideal zu erhalten,
welches a u b umfaBt, miissen alle Summen a + b mit a € a und b € b mit beriick-
sichtigt werden. Dies reicht aber schon aus, denn die fiir kommutative Ringe R mit
Einsel t charakteristische Bedingung (3) ist erfiillt:

acanbeb=>racansbeb;
mithin ist ra + sb aus dem zu definierenden Ideal.

Definition 32. Unter der Idealsumme a + b := (a,b) zweier Ideale a,b aus
einem Noetherschen Ring R versteht man die Gesamtheit der Elemente a + b mit
a€a und b€b; entsprechend werden mehrgliedrige Idealsummen a 4 b 4, ...
usw. definiert.

Nach dem vorher Gesagten gilt dann der

Satz 23. Sind a und b Ideale aus einem Noetherschen Ring R, so st a + b ebenfalls
ein Ideal aus R.

Die Basisschreibweise
a=(a,..., a) (65)

steht in Einklang mit der Schreibweise (a, b) fiir die Idealsumme. Die Schreibweise
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(55) bedeutet doch, daB alle Elemente aus a in der Gestalt rya, + --- + r,a, darstell-
bar sind; es ist also

a=(a) + (@) + - + (a) = ((@1), (@2), .., (@),

womit die Schreibweise (55) motiviert ist. Umgekehrt ist die Schreibweise (a, b)
fiir a + b durch die Schreibweise (55) gerechtfertigt.

Aus diesen Betrachtungen ergibt sich unmittelbar der
Satz 24. Hat a die Basisdarstellung

a=(a,...,a,) (65)
und b die Basisdarstellung
b=(b,...,b), (56)
80 hat a + b = (a, b) die Basisdarstellung
a+56=(ab)=(a,...,a by, ..., by). (57
Aus Satz 24 folgt unmittelbar
Satz 26. Die Ideal. zweser Potenzproduktideale ist wieder ein Potenzprodukt-

ideal.
Satz 26. Ist (ay, ..., a,) eine Minimalbasis fiir a und ist (by, ..., b;) eine Minimal-
basis fiir b, so braucht (a,, ..., @y, by, ..., b;) keine Minimalbasis fiir a + b zu sein.
Beispiel 1.
@ = (2, + Ty, ToTy, Ty — 2,7), b = (2, + 23 297 28 — 261,
a + b = () + Ty TyT3, Ty? — 2T, 7y + Ty, T7y, T — TP);
hier tritt das Element z, + z; doppelt auf und kann einmal gestrichen werden.
Beispiel 2.
Q= (2, + 2y, Ty, 7" — 2,%), €= (2! — %, 27y, 7 — 75Y),
@+ ¢ = (2, + Ty, Ty, 7' — 2T5, 2, — T}, 270 2 — TY);

hier kann z,2 — z,? gestrichen werden wegen z,2 — z,® = (z; — %3) (2; + Z) = (%; — %y) @,.

Aus (57) folgt ferner
Satz 27. Die Bildung von Ideal st k tativ und tativ; es gilt also
a+b=b+a (68)
und

(@+18) +¢) =(a+ 6+ 0). (69)
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Unmittelbar einzusehen ist auch
Satz 28. Fiir Oberideale c gilt

bSc>a+bSa+ec. (60)

Wie die beiden Beispiele von oben zeigen, kann dabei der Fallb cc=>a+b=a+c
durchaus eintreten.

1.9.  Das Idealprodukt

Wir gehen hierbei aus von der Menge aller Elemente ab mit a € a und b € b und
stellen @hnliche Uberlegungen an wie beim Ubergang von der Vereinigungsmenge
zweier Ideale zur Idealsumme. Die Gesamtheit der Elemente ab kann kein Ideal
bilden, weil die Idealeigenschaft (1) und damit die Idealeigenschaft (3) nicht erfiillt
sind. Es muB also zusitzlich gefordert werden, daB mit a)b;,, by, ..., @ b;, auch
alle endlichen Summen a,b; + ad;, + -+ + a,,b;, zu unserer Menge gehéren
miissen, damit diese ein Ideal wird. DaB dies geniigt, folgt aus der Giiltigkeit von (3).
Wir haben also die

Definition 33. Unter dem Idealprodukt ab zweier Ideale a, b aus einem Noether-
schen Ring R versteht man die Gesamtheit der Elemente a,b; + --- + a, b; mit
ay, € a und b;, € b; entsprechend werden mehrgliedrige Idealprodukte abc, ... usw.
definiert.

Satz 29. Sind a und b Ideale aus einem Noetherschen Ring R, so ist ab ebenfalls ein
Ideal aus R.

Gelten fiir a und b wieder die Basisdarstellungen (55) und (56) und driicken wir
die Elemente a,, durch a, ..., @, und die Elemente b;, durch b,, ..., b; aus, so ergibt
sich durch Zusammenfassen gleicher Produkte a;b, der

Satz 30. Hat a die Basisdarstellung (55) und b die Basisdarstellung (56), so hat ab
die Basisdarstellung

ab = (a;by, a1by, ..., a1by, @sby, ..., @by, ..o, @by, ..o, aby). (61)
In (61) stehen st Basiselemente a;b, (i =1, ...,8; k =1, ..., ¢). Aus (61)folgt sofort

Satz 31. Das Idealprodukt zweier Potenzproduktideale ist wieder ein Potenzprodukt-
ideal.

Satz 32. Ist (ay, ..., a,) eine Minimalbasis fir a und ist (by, ..., b;) eine Minimal-
basis fiir b, so braucht (a,b,, azd,, ..., ab;) keine Minimalbasis fir ab zu sein.
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Beispiel 1.
6 = (2%, 2,75, 75%), b = (2175, 737,),
ab = (2,°2y, 1" 2y%s, 212y, 7179757, T125°%, 24°%5);
hier tritt das Element z,2zy2, doppelt auf und kann einmal gestrichen werden.
Beispiel 2.
= (2 22 %), b= (T2 27%,),
ab = (2,°2;, 2,247y, T1Ty"Ty T3225T0, TyTa%st, T75%)
hier kann z,z4z,? als Vielfaches von z,z,z, gestrichen werden.

Aus (61) folgt
Satz 33. Die Bildung von Idealprodukten ist k tativ und tativ; es gilt also
ab =ba (62)
und
((ab)¢) = (a(be)). (63)

Unmittelbar einzusehen ist
Satz 34. Fiir Oberideale gilt -
aSbh=>ac S be. (64)
Aus (57) und (61) folgt ferner
Satz 35. Die Bildung von Idealsummen und Idealprodukten ist distributiv:
(a +b)c = ac + bc, (65)
ab + ¢) = ab + ac. (66)
Dabei ergibt sich (66) aus (65) und (62) und umgekehrt.
Es sei nun ¢ ein beliebiges Element aus ab. Wegen (61) gilt dann
¢ =y + riaayd; + -+ rpade + - + 18,
=(rubi+ - + b a + o + (b + - + ruba, € a
= (rud + -+ + ra@)b + -+ + (rua + -+ + rua)b €6,

mithin gilt
Satz 36. Fiir Idealprodukte gilt
abSa, (67)
ab S0, (68)

ab4+c2(@+¢)® + ). (69)
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Dabei folgt (69) unschwer aus (67) und (68). Als Beispiel fiir das Auftreten von >
in (69) betrachte man

a=(@), b=@), ¢c=(@+z), a+c=b+c=(z,2),
also
(@+¢) (b + ¢) = (2, 2,7, ;%) < (2173, @1 + 73) = ab +¢.

Definition 34. Bei gleichen Faktoren in Idealprodukten (b = a,c =b = ausw.)
spricht man von Idealpotenzen a3, a3, ... Ferner gilt

o= (1).
Aus (61) folgt unmittelbar
Satz 37. Ist a = (a,, ..., a,) die Basis eines Ideals, so gilt fiir die Idealpotenzen

a = (a8, ayay, ..., 0\8,, B2, A0y, ..., 020, ..., A B,, G,F), (70)
a® = (a,%, a,%a;, ..., 4,02, a;%, a,%a, - @18t af), (71)
™ = (a,", 0, ay, ..., e8>, ", ..., @007, 0,"). (72)

Ist durch (55) eine Minimalbasis gegeben, so brauchen (70), (71), (72) keine Minimal-
basen zu sein; dafiir geben wir ein Beispiel an.
Beispiel. a = (a,, ay, 65, @,) mit @, = 2,%, ay = 2,7,, @y = 2,7, @, = Z3%y. Bei der Berechnung

von a* gemi (70) tritt z,2z,x, zweimal auf wegen a,a, = a,a, = 2,%,7y, kann also einmal ge-
strichen werden.

Aus (67) folgt
Satz 38. Fiir Idealpotenzen gilt
a2a2a22---. (73)

Beispielsweise fiir Polynomideale aus Cz,, ..., z,] ist (73) eine echte Vielfachen-
kette, die mithin nicht abbricht; dies unterstreicht die vorerwihnte Bedeutsamkeit
fiir Artinsche Ringe.

Zum AbschluBl der Betrachtungen iiber Idealprodukte und ankniipfend an MfL
Bd. 3, 13.5.1., wollen wir noch anhand eines Beispiels die historische Entwicklung
zur Idealtheorle andeuten. In R =Z [l/—] hat 10 die beiden verschiedenen Zer-
1 in Primelemente 10 =2-5 und 10 =10 - Y10. Mit Hilfe der Ideal-
theorie ergibt sich die eindeutige Zerlegung als Idealprodukt

(10) = (2, y10)" - (5, 10)" (74)
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von vier Idealen. Je nachdem, wie man dies als Produkt von zwei Faktoren zu-
sammenfaBt, ergibt sich die eine oder die andere Zerlegung wegen

(2, V10) = (4, 2¥10, 10) = (2,2Y10) = @),
(5, Y10) = (25,5710, 10) = (5, 5Y10) = (5),
(YT 5 70) = 10,5 Y7, V70 (1,70 = /)

Fiir diese zahlentheoretische Richtung der Idealtheorie sei auf HECkE [1] und
ErcHLER [1] verwiesen.

1.10. Das Radikal eines Ideals

Wenn man von Idealen Potenzen bilden kann, so liegt die Frage nahe, ob man auch

kehrt Wurzelziehen kann. Dazu wird der Begriff ,,Radikal eingefiihrt, der auf
Kmn.n (1931) zuriickgeht, in die Lehrbuchliteratur aber erst 1953 von NorTHCOTT [1]
aufgenommen wurde. Inzwischen sind hierzu moderne Theorien entwickelt worden
(vgl. Kerrfsz [2], Szdsz [1]), Satz 31.1, S. 151).

Definition 35. Ist R ein Noetherscher Ring, so versteht man unter dem Radikal

Rad a = J/a eines Ideals a — R die Gesamtheit derjenigen Ringelemente w, von
denen eine gewisse Potenz in a liegt:

Rad a = }/E {w V w?® € a} (75)
zeN
Der kleinste Exponent z mit w? € a heit Exponent des Elementes w:
o(w) Exponent von w: & we®-1¢ a A we® ¢ a. (76)
Satz 39. Rad a ist ein Ideal aus R.

Beweis. Es ist (3) nachzuweisen. Wir zeigen das gleich fiir mehrgliedrige Aus-
driicke

w =W, + rw, + - + raw. (77)
Es sei also
weEa, wrea, .., wrea, (78)

und es ist die Existenz natiirlicher Zahlen z nachzuweisen mit

w® = (rw; + 1wy + -+ + naw)® € a. (79)
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Multiplizieren wir (79) aus, so erhalten wir homogene Polynome vom Grad z in
w,, ..., w, mit Potenzprodukten der Bauart w,w,%-.-w,* und i, + i3+ --- + 4 =2.
Wenn nun w® ¢ a ist, existiert wenigstens ein Potenzprodukt w,w,’---w;' ¢ a,
fiir welches wegen (78)

h=e—1, 6<e—1, .., ¥Se—1 (80)

gelten muB. Ausw® ¢ afolgt mithind, + 4, + -+ =<+ 0+ -+ o — k.
Ist also

z27 mit vi=g+e+--ta—k+1, (81)
8o ist (79) erfiillt, q.e.d.
Da a ein Ideal in einem Noetherschen Ring ist, existiert eine endliche Basis, etwa
Rad a = (wy, ..., ). (82)
Mit dem soeben gefiihrten Beweis haben wir dann auch den

Satz 40. Ist a ein Ideal in einem Noetherschen Ring R, so existieren Exponenten x
mit
(Rad )* S a S Rad a. (83)

Satz 40 wird sich als einer der bedeutungsvollsten Sitze der Idealtheorie heraus-
stellen. Die Teilaussage a S Rad a von (83) folgt unmittelbar aus Definition 35.

Definition 36. Ist a ein Ideal in einem Noetherschen Ring R, so heifit der
kleinste Exponent g, fiir den (83) gilt, der Exponent von a:

o Exponent von a :< (Rad a)e-1 € aa (Rad a)f S a; (84)
insbesondere gilt also
esT. (85)
Aus Definition 35 ergeben sich unmittelbar die folgenden Rechenregeln fiir Radikale :
Satz 41. Fiir die Radikalbildung gelten:

Rad (Rad a) = Rad a, (86)
Rad (a¥) = Red a, 87)
Rad (a, b*) = Rad (a,b), (88)
a S b= Rada S Radb. (89)

In (89) ist folgendes méglich: a — b = Rad a = Rad b.
Beispielsweise gilt dies fiir geeignete b und a = b2.
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Ist ein Ideal a gegeben, also eine Basis von a bekannt, so kann Rad a, also die
Basis von Rad a, nur unter gréten Anstrengungen und Schwierigkeiten berechnet
werden. Lediglich bei Potenzproduktidealen ist es mdglich, aus der Basis von a,
die Basis von Rad a, unmittelbar anzugeben.

Satz 42. Ist a, ein Potenzproduktideal mit der Basis (48), so ist Rad a, gegeben
durch

Rad g, = (ZnZiz2 > Timyp +++» TarZo2 *** Tom,)+ (90)
Beweis. Es sei
Bri= (ZnZ12 - Timys 03 Ta%z = Tom,) s
ferner
¢ i=Max{e,,} (4 =1,...,m), ..., ¢,:=Max{c,,} (4,=1,...,m,),
dann gilt
(@11 1) € Qny oovy (g *0 Tom)* € O,

also b,* S a, mit T =¢, + ¢, + --- + ¢, — 8 + 1 nach (81); weiterhin ist offenbar
a, S b,, also insgesamt

b S a, S b, (91)
Mit (87) und (89) folgt aus (91) aber Rad b, S Rad a, S Rad b,, also
Rad a, = Rad b,. (92)

Da in b, alle Variablen der Basiselemente nur in der ersten Potenz auftreten, ist
Rad b, =b,, wegen (92) also insgesamt Rad a, = b,, q.e.d.

Zwei Schliisse aus diesem Beweis wollen wir noch allgemein formulieren. Dazu
geben wir die
Definition 37. Ideale a mit Rad a = a heiBen halbprim oder semsprim.

Semiprime Ideale stellen eine Verall g der Primideale dar, welche wir in 2.2. ein-
f\uhron werden. Dne anchnu.ng ,.hulbprun“ wurde von KBULL gepragt; neuerdings ist die

& 23 &

Satz 43. Sind a und b zwei Ideale aus einem Noetherschen Ring R, dann gilt:

S aSbh=>Rada =Radb, 93)
b semiprim Ab* S a S b= Rada =b. (94)

Es erweist sich als bedeutungsvoll, nach der Umkehrung von (93) zu fragen. Dies
fiihrt zur Bildung von Klassen von Idealen mit demselben Radikal.
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Definition 38. Zwei Ideale a und b eines Noetherschen Ringes heiBen dquivalent,
wenn jhre Radikale iibereinstimmen:

a~Db:< Rada =Radb. (95)
Offenbar gilt:
Satz 44. Durch (95) ist eine Aquivalk lation gegeben (vgl. MEL Bd. 1, 2.4., (22)).
Aus a & Rad a (vgl. (83)) folgt

Satz 45. In jeder der durch (95) gegebenen Aquivalenzklassen ist das Radikal das
mazximale Ideal.

Offene Frage (Verallgemeinerung des Problems von KRONECKER und PERRON): Wie
findet man in jeder Aquivalenzklasse ein Ideal, dessen Basis aus moglichst wenig
Elementen besteht?

Das dritte und vierte der nachfolgenden Beispiele zeigen, daB das maximale Ideal
Rad a diese Bedingung nicht erfiillt.

Beispiel 1. a = (2,2, 2,%ry, 2,7,%, 2,2,3, 7,325, Z.7,), also
Rad a = (10, Wy, Wy) = (2,23, 7473, T323),

also 8 = 3. Der Leser priife selbst nach, daBl o, =g, =gy =2, 8l807=2+2+2—-341=4
ist. Dagegen ist o = 2 wegen (Rad a)* — a, wie man schnell nachrechnet. Hier nimmt also ¢ den
kleinstméglichen Wert an.

Beispiel 2. a = (2,7, 2,°%y, 7;7,°, 2,2y, 2,°7,, 7,2,°), also
Red a = (wy, 0, 0y) = (2,2;, 2175, 2373),
also s = 3.DurchNa.ohrechnenbesﬁtigtderImre, =0 =0=31=3+3+3-3+1=17.
Zur Besti g von g b gt man ichst (Rad a)® & a wegen z,%z,%2,® = wywaw, ¢ a, also

ist auch (Rad a)‘ < a wegen (73) Der Leser moge (Rad a)* — a selbst bestitigen. Hier ist also
© = 4 und damit gréBer als der kleinstmégliche Wert, jedoch immer noch kleiner als 7.

Beispiel 3. b = (Fy, Fy, F,, F,) mit

Fy =2yt — 242y, Fy =20, — 2%, Fy=an? — 20, Fi= 220 — 2. (96)

Dieses erstmals von MAOAULAY in and Z h gegeb Ideal scheint in seinen
Auswer oglichkei schier hopflich; wir werden es , auch ofter heranziehen. Der
Leser moga lm Augenbl.lck glauben. daB b semlpnm ist (wir werden darauf in Kapitel 6 eingehen
und die Pri ft dann beweisen), daB also Rad b = b gilt. Wir betrachten daneben

das Ideal a = (F,, Fy, F,). Esist dann jedenfalls a = b. Zum Nachweis von Rad a = b gemi8 (94)
zeigen wir b2 — a. Wegen F; € a fiir § = 1, 2, 4 bleibt nur noch F\? € a zu zeigen. Der Leser moge
dazu Fy? = —22,2%2,2F, + z,%F, + z,°F, selbst bestitigen. Es ist also g, = 2, dagegen g, = g,
=p,=1wegen F;€afiri=1,2,4. Esist hieralsor=14+14+24+1—4+4+1=2, also
b? < a, was zu zeigen war. Hier ist ¢ = 7 = 2. Die Frage, ob es zu diesem Ideal b Ideale ¢ gibt,
fiir die ebenfalls Rad ¢ = b gilt und bei denen ¢ eine zweigliedrige Basis besitzt, ist zur Zeit noch
nicht entschieden.
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Beispiel 4. b = (F,, Fy, Fy) und a = (F,, F,) mit

Fy =z, — 2%, Fy = 22y — 2175, Fy = a2y — 2,

Fy = 2Fy — 2,F5 = zgzs® — 22,2575 + 23°. ©7
Auch dieses b ist ein in der Li oft diskutiertes Primideal; der Leser moge also an dieser
Stelle wiederum die Richtigkeit von Rad b = b voraussetzen. Wegen F, = z,Fy — 2,F, ist
a — b evident. Weiterhin ergibt sich, was der Leser selbst nachrechnen mége: F, € a, Fy?€ a
wegen Fy? = —2,2F; + 2, F, und Fy? € a wegen Fy2 = —z,3F, + z,F,; wir haben also o, = 1,
=0 =28BoT=1+2+2—3+ 1=3, also b* — a und wegen (94) mithin Rada = b.
Hier ist jedoch ¢ = 2; dazu ist wegen b? = (F\2, F\F,, F\F,, F.?, F,F,, Fy? nach (70) nur noch
F,F, € a zu zeigen, was wegen F,Fy = —z,2,F, + z,F, zutrifft.

Wir wollen nun noch einige niitzliche Formeln fiir Radikale herleiten.

Rad (a + b) ist die Gesamtheit der Elemente ¢ mit ¢¢© € a + b S a 4 Radb,
also gilt zunichst

Rad (a + b) S Red (a + Red b). (98)

Ist umgekehrt d € Rad (a + Rad b), so existieren Exponenten z mit d* =a + B
mit @ € a und B € Rad b, also existieren Exponenten y mit BY = b € b. Dann wird

v =(d*W=(@a+BY=(+++-+yaB)+ B :=ra+ B'ca+bh,
also gilt
Rad (a + Rad b) S Rad (a + b);
zusammen mit (98) folgt
Rad (a 4 b) = Rad (a + Rad b). (99)
Durch Vertauschung von a und b folgt aus (99) sofort
Rad (a + b) = Rad (Rad a + b)
und durch Ersetzen von b durch Rad b und Benutzung von (99) schlieBlich
Rad (a + b) = Rad (a + Rad b) = Rad (Rad a + b)
= Rad (Rad a + Radb). (100)
Nun wollen wir eine analoge Formel fiir Radikale von Idealprodukten herleiten.
Es sei
Rada = (4,,...,4;), Radb = (B,,...,B)
mit
Ae:=a €a, ..., 42:=aq€a, Bo:=b€b, ..., Bo:=b¢€b;
dann ist
(Rad a) - (Rad b) = (4,B,, 4,B,, ..., A:B)).
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Ist rj; =Max ool i =1,...,k;j=1,...0), 1=ty 41+ -+ — K+ 1,
s0 ist fiir alle z = 7 sicher

((Rad a) - (Rad b))" < ab,
also
(Rad a) - (Rad b) S Rad (ab).
Weiter ist offenbar ab < (Rad a) - (Rad b), also insgesamt

ab S (Rad a) - (Rad b) S Rad (ab). (101)
Gehen wir in allen drei Termen zur Radikalbildung iiber, so folgt wegen (86) sofort
Rad (ab) = Rad ((Rad a) - (Rad b)). (102)

SchlieBlich wollen wir auf (69) beiderseitige Radikalbildung unter Benutzung von
(100) anwenden. Dann wird

Rad ((a + ¢) (b + ¢)) = Rad (ab + ¢ + ac + be)
= Rad (Rad (ab) + Rad (c*) + Rad (ac) + Red (bc))
= Rad (Rad (ab) + Rad ¢) = Rad (ab + ¢)
wegen (87), (68), (89) und (100), also
Rad (ab + ¢) = Rad ((a +.¢) (6 + ¢)). (103)

Der durch (103) gegebene Tatbestand, daB durch Radikalbildung Gleichheiten ent-
stehen, wird uns noch 6fter begegnen und ist in der algebraischen Geometrie von Be-
deutung. '

1.11. Der Idealdurchschnitt

Definition39. Unterdem Idealdurchschnitta nb = [a, b] zweier Ideale aus einem
Noetherschen Ring R versteht man die Gesamtheit derjenigen Elemente aus R, die
sowoh! aus a als auck aus b sind; entsprechend werden mehrgliedrige Idealdurch-
schnitte a nb n ¢, ... usw. definiert.

Die Bezeichnungsweise [a, b] lehnt sich an die vielfach iibliche Bezeichnung [m, n]
fiir das kleinste gemeinsame Vielfache zweier natiirlicher Zahlen an (vgl. die Bei-
spiele).

Satz 46. Sind a und b Ideale aus einem Noetherschen Ring R, so ist a n'b ebenfalls
ein Ideal aus R, also das umfassendste Ideal, das Unterideal sowohl von a wie auch
von b ist.
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Beweis. Wegen a € a und b € a ist auch ra + sb € a, wegen a € b und b € b ist
auch ra 4 8b € b, also ra 4 sb € a n b, also ist (3) erfiillt.

Satz 47. Fiir Idealdurchschnitte gilt:

abSanb, (104)
aSbh=>ancEShne, (105)
aShb=>anb =a. (108)

Beweis. (104) ist eine Zusammenfassung von (67) und (68); (105) und (108) er-
geben sich unmittelbar aus Definition 39.

Ebenso ist unmittelbar einsichtig der

Satz 48. Die Bildung von Idealdurchschnitten ist k tativ und 1ats
anb=bna, (107)
(@nb)nc=an(nc). (108)

Wie wir im folgenden zeigen wollen, ist die Situation beziiglich der Giiltigkeit von
Distributivgesetzen ungiinstiger. Wir beweisen zunichst

(@nb) +cS(a+c)n(d+r0), (109)
cSancSh=>(anb)+c=(a+c)n( +¢c). (110)
Beweis. (a nb) + ¢ ist die Gesamtheit der Elemente @ + ¢ mit a € a nb und
c€c,(a+c)n (b + c)ist die Gesamtheit der Elemente a + ¢ =b 4 ¢* mit a € a,
beb,c€c, c*€c, zu denen also auch die Elemente aus (a nb) + ¢ gehoren. Ist
cSa,s0istb=a+c—c*ca,alsobeanb,b+ c* € (anb)+ c. Entsprechend
schlieBt man bei ¢ S b.
In (109) kann das —-Zeichen auftreten:

a=(@)Ab=(@)Ac=(z, +2)=> (anb) +c=(a+c)n(b+rc), (111)

denn esist a + ¢ =b + ¢ = (z;, 7,), dagegen (a nb) + ¢ = (2,23, 2, + 3).

Gehen wir auf beiden Seiten von (109) zu den Radikalen iiber, so tritt die Gleich-
heit ein. Bevor wir dies beweisen kénnen, miissen wir noch einige Beziehungen fiir
die Radikale von Durchschnitten bereitstellen.

Ist c€ Rad an Radb,sogiltcec aundc? € b;istetwap = 0,80 ist c® € aund ¢* € b,
also ¢? € a n b, folglich ¢ € Rad (a nb), also gilt

Rad a nRad b S Rad (a nb).

Ist ¢ € Rad (anb), so gilt c* €aundce€ b, folglich c€ Rad a und ¢ € Rad b, mithin
c€ RadanRadb, also Rad (a nb) S Rad a n Rad b. Zusammen mit dem zuvor
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Bewiesenen folgt daraus
Rad (anb) =RadanRadb. (112)

Ist ¢ € Rad (a n b), so gilt ¢ € a und ¢ € b, folglich ¢% € ab, mithin ¢ € Rad (ab),
also gilt

Rad (a nb) S Rad (ab).
Aus (104) folgt durch Radikalbildung Rad (ab) S Rad (a n b), also insgesamt
Rad (a nb) = Rad (ab).
Zusammen mit (112) folgt daraus der wichtige
Satz 49. Fiir Radikale gilt
Rad a n Rad b = Rad (a nb) = Rad (ab). (113)

Nunmehr kénnen wir die angekiindigte Gleichheit bei der Radikalbildung in (109)
beweisen, nimlich

Rad ((a nb) + ¢) = Rad ((a + ¢) n (b + ¢)) = Rad ((ab) + ¢). (114)
Wir benutzen dazu (100), (113) und (103) und erhalten
Rad ((a nB) + ¢) = Rad (Red (a nb) + Rad )

= Rad (Rad (ab) + Rad ¢) = Rad ((ab) + ¢)
und
Rad ((@ + ¢) n (6 + ¢)) = Rad ((a + ¢) - (6 + ¢)) = Rad ((ab) + ).

Analog zu (109) und (110) beweisen wir nunmehr
@+b)nc2(nc)+ (Bnc), (115)
c2ave2b=>(a+b)nec=(anc)+(bnec). (116)

Beweis. (anc)+ (b nc)ist die Gesamtheit der Elementea + bmita € a,a € c,
beb, b e c; hingegen ist (a + b) n ¢ die Gesamtheit der Elemente a +- b mit a € a,
beb, a+bec, also eine Obermenge. Ist ¢2a, so ist auf jeden Fall
b=(a+b) —accwegena+ b€ cundac€ c; entsprechend schlieft man im Fall
c2b.

In (115) kann das D-Zeichen auftreten:
a=@Z)Ab=@)Ac=(x;, +x)=>(@+Db)ncD(anc)+ (bnc), (117)
denn es ist

(@+b)nc= (2 + 2) n (@ + 2) =z + z),
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dagegen
(anc)+ (bnc) = (22 + 2125, 212, + ) < (1 + 22).
Auch bei (115) tritt Gleichheit bei der Radikalbildung ein; es gilt nimlich
Red ((a +5) nc) =Rad ((anc) + (6 n c)) = Rad ((@ + b)c). (118)

Der Beweis verliuft ganz analog zu dem Beweis von (114) und bleibe dem Leser
iiberlassen.

Wir vermerken noch
(@b)nc2(anc)(dnc). (119)

Beweis. (ab) n ¢ ist die Gesamtheit der El te a,b; + .-+ + @b, mit a; € a,
b €D, (@b, + -+ + a;b;) € ¢ und offenbar Obermenge von (a nc) (b nc) als Ge-
samtheit der a,b, + -+ + @;b, mit ¢; € a,a;€ ¢, b;€b, b; € c.

a=(r,)Ab=(@)Ac=(@2)=>(ab)ncD(anc)(bnc) (120)
wegen a n¢ =c¢ =b nc = ¢ = (2,2;), mithin (a n ¢) (b n c) = (z,22,2), hingegen
(ab) n ¢ = (z;%3) N (2)23) = (T1%2) D (71%2,%).
Auch in (119) tritt Gleichheit bei Radikalbildung ein:
Rad ((ab) n ¢) =Read((anc) (6 nc)) =Rad (anb nc) =Rad (abc), (121)
wie der Leser selbst beweisen mage.
(anb)-c < (ac) n (be), (122)
Red ((a nb) - ¢) = Rad ((ac) n (bc)) = Rad (abc). (123)

Beweise. (anb)-c S ac, (anb)-c S be, mithin (a nb) - ¢ S (ac) n (be), q.e.d.;
den Beweis von (123) iiberlassen wir wieder dem Leser, der auch folgendes be-
stitigen moge:

a=(2)Ab = (%) Ac = (7, 2;) = (a nb) - c = (ac) n (bc). (124)

Zur Erholung geben wir noch zwei einfache Beispiele an.

Beispiel 1. a=(8)Ab=(9) > anb=(8u8) = (72) = ab.
Beispiel 2. a = (6) Ab = (10) 2 anb = (8 10) = (30) D ab.

Im Gegensatz zu diesen simplen Beispielen ist es jedoch im allgemeinen nicht
moglich, wie bei Idealsummen und Idealprodukten die Basis des Idealdurchschnitts
sofort hinzuschreiben. Wir wollen uns daher im niichsten Abschnitt mit der Frage
der BerechHffung der Basis des Idealdurchschnitts befassen.
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1.12.  Zur Berechnung von Idealdurchschnitten, Beispiele
Esseia = (ay,...,a,), b = (b, ..., b), also nach (57)

a5 =(ay,a,...; 80 by, by, .., By).

Dann ist a n b die Gesamtheit aller derjenigen Elemente ¢, zu denen es Ringelemente
T1s T2y oevs T4y 81, 83, ++0, 8¢ gibt mit

C =110, + 18y + +++ + 1,8, = 81Dy + 80y + -+ + aidy, (125)
also mit

718y + 198y + oo+ 18 + (—81)by + (—82)by + -+ + (—8)b = 0. (126)
Zur Losung von Gleichungen der Gestalt (126) in R bestimmt man zuerst eine
Minimalbasis (¢y, ..., ¢;) von a+b und driickt ay, ..., @, by, ..., b; durch die ¢y, ..., ¢;
aus; dabei ist es hiufig (aber nicht immer) zweckmiBig, ¢,, ..., ¢; aus den a,, ..., a,,

by, ..., by zu wihlen. Unser Problem ist also auf die Aufgabe reduziert, in R Glei-
chungen der Gestalt

Usly + Usly + -+ + U0, =0 (127)
zu lésen, bei denen (¢,, ..., ¢;) eine Minimalbasis des Ideals ¢ = (c,, ..., ¢;) ist. Jeder
U
Losungsvektor { : | von (127) heiBt dann eine Syzygie von ¢; jede Identitdt (127)
U
heiBt eine Passivitatsbedingung.
Da wir uns im folgenden hauptsichlich mlt Polynomidealen beschn.ftlgen wollen,
wird uns also iiberwiegend die Syzygientheorie Poly ideale i i Wie

aber schon in 1.3. angedeutet wurde, st58t dabei bereits die Berechnung von Minimal-
basen fiir inhomogene P-Ideale auf Schwierigkeiten, weshalb hier die Syzygientheorie
der H-Ideale im fiinften Kapitel ausfiihrlicher untersucht werden wird.

Diese Andeutungen sollen jetzt nur die zuvor gemachte Bemerkung erliutern, da8
es fiir die Basis des Idealdurchschnitts a nb keine allgemein giiltige formelméiBige
Darstellung gibt, wie wir sie fiir die Idealsumme durch (57) und fiir das Idealprodukt
durch (61) kennengelernt haben. Fiir H-Ideale a, b kann immerhin eine Basis von
anb in endlich vielen Schritten mit Hilfe der Syzygientheorie berechnet werden.
Wie dies geschieht, soll im folgenden an zwei Beispielen (unter Vorwegnahme von
Ergebnissen der Syzygientheorie) angedeutet werden.

Beispiel 1. In R = K[z, z,, Z,, 2;) seien a = (Fy, F,), b = (Fy, F,) mit

F = — 2%y, Fy=2l2, — 2, Fy=zm — 0%, Fy=mznz?—z0 (96)
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Hier bilden (F,, Fy, Fy, F,) eine Minimalbasis von a + b. Dann ist a nb die Gesamtheit der
Formen G mit

@ = G\F, + GF, = GyFy + G,F,; (128)
es gilt also
G\Fy + GyFy + (—Gy) Fy + (—G) Fy = 0. (129)

In der Syzygientheorie der H-Ideale wird gezeigt:
D22y — 2173) + Po(2% — %) + Py(2e2s® — 2:°%p) + Py(#1%5* — %y") = 0 (130)
hat die vollstindige Losung
D= W' + Pem; + Vixzy + Piat,
Dy = —¥iz, —¥p,,
Py= Yz, +¥ —V¥a, —¥a,
D = —¥, —¥,

mit beliebigen Parametern ¥, ¥;, ¥,, ¥,, also mit beliebigen Formen ¥,, ¥;, ¥;, ¥, geeigneten
Grades. Aus (129), (130) und (131) folgt dann

G = &= Wa'+ Vau, + ¥z + Yo,
G= @,=—Y¥z, — ¥z,
Gy=—0y= Wz, — ¥, + ¥z + ¥z,
G=—-P, = Yoz, + ¥
Dies in (128) eingesetzt und nach ¥, ¥,, ¥;, ¥, geordnet, gibt
G = W(—2" + 2o2,"7y) + Py —Zo2y2s* + 2,°%3) + Py(@otizs® — 21%057) + Wi(3e2s2y — 2,74%);
mithin ist
aNnb = (2’24 — 262’7y, 2T Ts? — 2,°%y, T2 st — T,%0aTs, TeyZy — T)Ty%).
Beispiel 2. Wir éndern dazu das erste Beispiel nur leicht ab. F,, F;, Fy, F, seien dieselben

Formen wie im ersten Beispiel und Fg = z,F; = 2,2y — 242,23, a = (F,, F,), ¢ = (Fy, Fy, F,).
Jetzt ist also a n ¢ die Gesamtheit der Formen @ mit

G = G,F, + GF, = GyFy + G,Fy + G4F,,

(131)

folglich
G\F, + GyFy + (—Gy) Fg + (—G) Fy + (—Gy) F, = 0.

Wegen Fy = z,F, bilden in diesem Fall (F,, F,, Fy, F,, Fy) keine Minimalbasis von a + ¢; wir
miissen daher Fig = z,F, einsetzen und erhalten

(@, — %@y) Fy + GyFy + (—G) Fy + (—G;) F, = 0.
Jetzt konnen wir wieder (130) und (131) anwenden und erhalten
G — 2y = Oy = Wz?+ ¥, + Yooz + Yo,
G= D=-Vaz, — ¥z,
G=—Py= Yz, — ¥z, + ¥z + ¥z,
Gy = —P, = Y2y + ¥em.
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Fir G, kann irgend etwas gesetzt werden, etwa G, := ¥;. Dann wird
G, = Whz,® + Wyzez, + Pinizs + Pix + Yz,
Nach ¥, ¥,, ¥, ¥, ¥, geordnet, folgt
G = Py(ae'ay — aizs) + Vo —2'zs® + zoti’y) + Va(—2miz® + o1'%)
+ Hylamizst — 2'0m) + Vilzy'ss — 212y').
(Der Leser priife diese Ergebnisse durch Nachrech nach.) Als Endergebnis haben wir

@ 0B = (2,725 — 2y%1Z5, 2°25* — 22Ty, TT1Tp® — 2Ty, ToTyTs® — 0Ty ToTy'Ty — TysY).

1.13.  Idealdurchschnitte von Potenzproduktidealen

R. KUMMER ist es gelungen (vgl. KuMMER und RENscHUCH [1], Satz 3), fiir Ideal-
durchschnitte von Potenzproduktidealen eine geschl Formel geben, die
jetzt hergeleitet werden soll.

Wir erinnern hierzu an den Beweis von

(@+B)ne2(@anc)+ (Bnc). (115)

Das o-Zeichen konnte auftreten wegen: a + b € c 4> a € ¢ A b € ¢. Da nun aber bei
Potenzproduktidealen mit einem Polynom jedes auftretende Potenzprodukt bereits
in dem Potenzproduktideal enthalten sein muB, gilt jetzt:a + b€ c,=>a€ e, Ab€ ¢,
mithin:

a,, by, ¢, Potenzproduktideale = (a, + b,) n ¢, = (a, n¢,) + (b, nc,). (132)
Vertauschung und Umbenennung in (132) liefert

a4, 0 (by + ¢;) = (a nby) + (a5 nCs). (133)
Aus (132) und (133) folgen fiir den Durchschnitt mehrgliedriger Idealsummen
(@, + -+ 02) 0 (Bn, + -+ + b,) = (@, 1 B,) + (a5, 052) + o+ + (8, 0By, .

(134)

Aus (134) ergeben sich fiir Hauptideale und damit fiir Idealbasen (vgl. (55)ff.)

s t
(D1 Pas oo Ps) 0 (G15 G2 o5 G2) =‘2 X () n (g))- (135)
=1 j=1
Durch (135) wird die Problematik auf die Besti g des Idealdurchschnitts von

Potenzprodukthauptidealen zuriickgefiihrt. Dies ist nun aber einfach; ist beispiels-
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weise p; = 2,%,®, ¢; = 2,%,%,%, 80 ist (p)) n (¢;) = 2,%,°%;®. Allgemein ist offenbar

(@) n(g) = (Diugy), (136)
wobei p;u g; das kleinste gemeinsame Vielfache der Potenzprodukte p; und g; ist.
Setzen wir (136) in (135) ein, so haben wir den angekiindigten

Satz 50. Sind a, und b, Potenzproduktideale aus K[z, 2y, ..., Z,], 80 gilt:
Ay = (P1; o0, Pa) A D2 = (q15 .-, 1)
S0 by = (DU PIUGL oy DUy, oeny PaUGe)e (137)
Dabei braucht (137) keine Minimalbasis zu sein.
Beispiel.
8, = (2%, 2,7,°%y, 2,25%5% %), b, = (@:2%, 228 73°)
a, n b, = (2,%24% z,%,23, ,%23, 2,2,%2%, 7,2,°2,72, 7,7,37,2,
TET, BT, Tt BT Tty TP

und hierin kann das dritte, vierte, fiinfte, sechste, achte, neunte Potenzprodukt gestrichen
werden, wie sich der Leser selbst iiberzeugen mage.

1.14.  Der Idealquotient

Wie bei der Quotientenbildung in der Arithmetik liegt auch diesem Begriff der
Gedanke der Umkehrbarkeit der Produktbildung zugrunde. Geht man etwa von der
Idealgleichung (2) - (3) = (6) aus, so steht also eine Art Auflésung nach (2) oder (3)
zur Debatte. Um hier weiterzukommen, geben wir zunichst die

Definition 40. Unter ¢b mit ¢ € B, b = R werde die Gesamtheit der El t
¢b € R verstanden, bei der b alle Elemente des Ideals b durchléuft.

Nunmehr kénnen wir Idealquotienten definieren.

Definition 41. Der Idealquotient ¢:=a:b ist erklirt als Gesamtheit aller
¢ € Rmit ch S a:
c:=a:b:={c:c€ Rachb S a}. (138)
Beispiel 1. a=(8), b =(3), a: b= (8):(3) = (2).

Beispiel 2. a = (7),b = (3), a: b = (7) : (3) ist die Gesamtheit der ¢ mit ¢(3) S (7), muB also
ein Vielfaches von (7) sein, also (7) : (3) = (7); in diesem Beispiel ist also a: b = a.

Beispiel 3. a = (14), b = (16), a:b = (14): (16) = (14) = a.

Beispiel 4. a = (z,%), b = (,%, 7,%), a: b = (2,?) : (x,%, z,?) = (2,%) = a wegen z,* € b. Hin-
gegen ist b: a = (2,2, %) : (2,}) = (1).
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Satz 51. Ist R ein Noetherscher Ring, so ist mit a und b auch ¢ = a:b ein Ideal
wn R.

Beweis. Ist ¢, € a:b, so auch ric, € a:b wegen ¢,b S a, folglich r,c,b = ¢,(r;b)
S ¢;b S a. Entsprechend ist mit ¢, € a:b auch ryc; € a:b. Dann ist aber auch
716, + 7202 € a: b wegen

(ri0r + 1) b =rieb - 1reesb Sa+a=a.

Mithin ist (3) erfiillt.
¢b < aist in jedem Fall fiir alle ¢ € a erfiillt; wir haben also

a:b2a. (139)
Definition 42. Gilt in (139) das Gleichheitszeichen, so heiBt b relativ prim zu a:
b relativ prim zu a :& (a:b) = a. (140)

Im allgemeinen braucht dann nicht gleichzeitig a relativ prim zu b zu sein, wie das
vierte Beispiel lehrt.

Satz 52. Fiir Idealquotienten gilt:

bSasa:b=()=R, (141)
a:a=(1)=R, (142)
a:(0) =(1) =R, (143)
a:(1) =a, (144)
(a:6)b Sa, (145)
b = (b) Hauptideal = (a: (b)) - (b) = a a (b), (146)
bbSa=>a:b2bdbAaa:d2H, (147)
aShb=>a:dSh:o, (148)
aShb=>b:bSbH:a, (149)
ab:b2a, (150)
R Integrititsbereich Ab = (b) Hauptideal = a(d) : (b) = a. (151)

Beweise. (141) folgt aus (1) - b S a; (142) und (143) sind Spezialfiille von (141).
Die Gleichung (144) folgt aus (151) fiir b = 1. — Nach (138) ist ¢b S a; wegen
¢ = a:b folgt mithin (145).

Zum Beweis von (146) nehmen wir fiir a die Basisdarstellung a = (a, ..., a,) an.
Dann bedeutet ¢ € an (b), daB ¢ =rb =rna, + --- + r,a, gilt, mithin r € a: (b)
und ¢ =rb € (a: () - (3), also a n (B) S (a: (b)) - (). Ist umgekehrtc € (a: (b)) - (B),
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80 kann aus jedem ¢ der Faktor b ausgeklammert werden, mithin ist ¢ € (b); auBer-
dem ist ¢ € a nach (145), insgesamt also (a : (b)) - () S @ n (b). Daraus folgt mit dem
zuvor Bewiesenen die Giiltigkeit von (146).

Die Aussagen von (147) sind mit b S a:b und b S a : b gleichwertig, und dies ist
sofort aus (138) abzulesen; dasselbe gilt fiir (148) und (149) unter Beriicksichtigung
von (64).

ab : b ist die Gesamtheit der ¢ mit cb S ab, was fiir ¢ € a sicher erfiillt ist, also ist
a €S ab : b, womit (150) bewiesen ist.

Zum Beweis von (151) nehmen wir fiir a wieder die Basisdarstellung a = (ay, ..., a,)
an. Wegen (150) brauchen wir nur noch a(b) : (b) S a zu zeigen. a(b) : (b) ist die
Gesamtheit der Elemente ¢ mit ¢rb € (a,d, ..., a,b), wobei r ein beliebiges Ring-
element ist; insbesondere kann r = 1 sein. Daraus aber folgt in Integrititsbereichen
¢ € a und mithin a(d) : () E aq, q.e.d.

Um ein Beispiel fiir das Auftreten des Zeichens > in (150) zu finden, darf also in
Integrititsbereichen b kein Hauptideal sein. Wir ziehen dazu das dritte Beispiel von
1.10. heran. Dort war

Fy = 2ty — 2,273, Fy = 2%, — 2,%,
Fy =z — ofzy, Fy =23 —2°, a=(F, Fy, F)).

Das dort ebenfalls eingefiihrte Ideal b wollen wir jetzt b nennen, b = (Fy, Fy, Fy, Fy).
Der Leser mége selbst nachrechnen, daB dann gilt:

ZoFy = —2,2F) + 2,F3 € a - (%o, 21, 22, Tp),
21 Fy = —a@eFy + x3F3 € a - (%o, 21, T, 3), (152)
T Fy = @@F) — 2o € a - (%o, 21, o, T4),
3y = 2P, — 2, F € a- (2, T), Ty, X3) .

Wir erinnern ferner an b > a. Wir zeigen nun, da
a - (%o, Ty, Ty, Tg) = D+ (¥, 21, Tp, T3)
= (@oFy, 2 Fy, 2, Fy, 23Fy, @oFy, 2,Fy, 2,F5, 23F,,
zoFy, 2, Fy, 2,Fy, 23Fy)
gilt. Das ist wegen (152) richtig, da die bei der Basisaufstellung von b - (2o, 2;, 2, Z5)

auftretenden Basiselemente zoFy, x,F;, 2,F,, 2,F; wegen (152) gestrichen werden
konnen. Aus

- (o, Ty, Tg, T3) = D + (o, Ty, T, X3)
folgt
(a + (%o, 21, Ty, za)) t (%o, 21, g, X3) = (b + (2o, @1, Ty, Ia)) 1 (g, @1, Ty, %3) 2D

nach (150). Wegen d > a folgt mithin ab : b D a fiir b = (2, z;, 25, %),
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Bei diesem Beispiel tritt zufillig Gleichheit bei beiderseitiger Radikalbildung ein,
die aber nicht allgemein bewiesen werden kann. Der Ubergang zu Radikalen fiihrt bei
Quotientenbildung zu Schwierigkeiten; dies beinhaltet der

Satz 53. Fiir Radikale gilt

Rad (a:b) S (Rad a) : (Rad b), (153)
a=(z,2) Ab = (z;) = Rad (a:b) = (Rad a) : (Rad b). (154)

Beweis. Ist ¢ € Rad (a:b), so gilt ¢¢ € a : b, mithin ¢*b S a, also ¢*b € a fiir alle
b€ b. Fir jedes B € Rad b existiert nun ein ¢ mit B°:=0b¢€ b, also ¢?B° € a. Ist
t = Max {, 0}, so gilt ¢*B* = (cB)* € a, also ¢B € Rad a. Dabei war B beliebig aus
Rad b, also ¢- Rad b S Rad a, mithin ¢ € (Rad a) : (Rad b), womit (153) bewiesen
ist. Zu (154) bemerken wir a : b = (z,), also Rad (a : b) = (=), dagegen Rad a = (z,),
Rad b = (2,) und mithin (Rad a) : (Rad b) = (1) nach (144).

Dieses Ergebnis 1a8t bereits ahnen, daB es bei distributiven Beziehungen fiir
Idealquotienten nicht méglich ist, eine nicht vorhandene Gleichheit durch beider-
seitige Radikalbildung allgemein beweisen zu kénnen.

Wir wollen dennoch auch hier alle moglichen distributiven Beziehungen unter-
suchen.

(@a+b):c2(a:c)+ (b:c). (155)
Beweis. (a:c) + (b:c) ist die Gesamtheit der Elemente a + b mit ac S a
Abc Sb. Dann gilt (@ + b) ¢ S a + b, mithina + b€ (a +b):c.
Beispiel fir ©-Zeichen:
a=(z, ) Ab = (22 2Z)Ac= (2, 2) > (a+b):cD(azc)+ (b:c). (1566)
Dies gilt wegen a + b = (2,, ;) = ¢ und (a + b) : ¢ = (1) nach (142) und anderer-
seits
a:c=(2,%), b:c=(z, %), (a:c)+ (b:c) = (z;, ) =(1).
Dieses zeigt zugleich, daB auch bei beiderseitiger Radikalbildung in (155) nicht
generell das Gleichheitszeichen zu gelten braucht. Dieser Tatbestand bedeutet eine
Erschwernis fiir das praktische Rechnen mit Idealquotienten.
(a-B):c2a-(b:c). (157)
Beweis. a-(b:c) ist die Gesamtheit der Elemente ad mit dc S b, adc S a-b,
ad € (a-b):c. Auch in (167) gilt nicht immer das Gleicheitszeichen:
a=(@)Ab= (2, m)Aac=(2)=>(a-b):c>a-(b:c). (168)

Dies gilt wegen a - b = (2,2, 2,,), (a - b) : ¢ = (2,, &), andererseits b : ¢ = (1) wegen
¢ — b gemiB (141).
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(@anb):c=(a:c)n(b:c). (159)
Beweis.
de(anb):cedcSanbediSandcSh
sdea:cadeb:code(a:c)n(b:c);

jedes Element der linken Seite von (159) ist auch Element der rechten und umgekehrt,
woraus die Gleichheit (159) folgt.

Aus (159) ergibt sich durch mehrmalige Anwendung
Satz 54. Fiir Idealquotienten gilt
(anagn--on @) :b=(a,:6)n(az:b) n--- n(ag:b). (160)

Fiir Durchschnittsdarstellungen von Idealquotienten werden wir (160) im néchsten
Kabpitel ofter heranziehen.

Wir zeigen als nichstes
(a:b):¢c=a:(bc). (161)
Beweis. Wir verfahren dazu in analoger Weise wie beim Beweis von (159):
de(a:b):codcSa:bodb SaedicSasdea:(be).
(a:b) +c S (a+bc):b, (162)
b=0®)=>(a:(®)+c=(a+®)c):®). (163)
Beweise. Ersetzen wir b in (155) durch bc und ¢ durch b, so folgt
(@+bc):b2(a:b)+ (bc:b) 2(a:b) +¢

wegen (150), mithin gilt also (162). — Zum Beweis von (163) ist wegen (162) nur noch
(a4+@®¢c):(®) S(a:(®)+c zuzeigen, was der Leser mit Hilfo von Basisdarstel-
lungen fiir a und ¢ selbst beweisen mége.

Um (162) zu verallgemeinern, benétigen wir eine Verallgemeinerung von (150),
nimlich

(ab) : (bb) 2 a:b. (164)
Beweis. cca:boch S a=>chbd S ab o ¢ € (ad) : (bd).
(a@:b) + (c:b) S (ab + be) : bbd. (165)

Beweis. Dazu ersetzen wir in (165) a durch ab, b durch be, ¢ durch bd und erhalten
mit (164)
(ab + Bc) : b 2 ((ad) : (65)) + ((be) : (6b)) 2 (a: b) + (c: b),
q.e.d.
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Fiir b = (1) geht (165) in (162) iiber.

(@a:B)-¢ S (ac):b (166)
folgt direkt aus (157) durch Seitenvertauschung und Umbenennung;
(a:b)nc S (anbc):b (167)

ergibt sich aus (169) und (150).

Da die Quotientenbildung nicht kommutativ ist, miissen wir noch Bildungen der
Gestalt a : (boc) untersuchen.

a:(b+c¢)=(a:b)n(a:c). (168)
Beweis.
dea:b+c)edb+c)Saedi+dSascdbSandeSa
sSdea:badeca:code(a:b)n(azc).
Durch mehrmalige Anwendung von (168) folgt der wichtige
Satz 55. Fiir Idealquotienten gilt
a:(By + 4 Bp) = (@:By) n e n(a:by), (169)
a:(by, b)) =(a:(®d))neenfa:d) (170)

Dabei folgt (170) aus (169) fiir m = ¢ und Hauptideale b; = (;). Die Bedeutung
von (170) vermerken wir in

Satz 58. Vermdge (170) lipt sich die Berechnung von Idealquotienten zuriickfikren
auf die Ber von Idealquotienten der Bauart a: ), wobet (b) ein Hauptideal ist.

Wir untersuchen nun noch a:(6-¢),a:(bnc)unda:(b:c).
a:(bc) =(a:b):c (171)
folgt durch Seitenvertauschung von (161).
a:(bnc)2(a:b) + (a:c), (172)
a=@@)Ab=@)Ac=(2)=>a:(bnc)D(a:b)+ (a:c). (173)
Beweis. Fir die G theit der El te a + b aus (a:b) + (a:c) gilt
ab SanbcSa=>abnc)Sanbbdne)Sa
S@+d@®ne)Sa
Sa+bea:(bng),
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g.e.d. — (173) folgt wegen b nc = (2,2,), a: (b nc) = (1), a:b = (x), a:¢c = (x,),
(a:B) + (a:¢) = (z,, T).

a:(b:c) 2 (ac):b, (174)

a=(@)Ab=(@)ac=(x)=>a:(b:c)>(ac):b. (175)

Beweis. Istb:=b:c,dannist a: (b:c) = a:b die Gesamtheit der Elemente d

mit dd S a=> dbc S ac A dbc S db (wegen dc S b). Beide Bedingungen sind speziell
erfiillt im Fall db < ac, also fiir € (ac) : b. — Zu (175): Es ist

bie=(2): (@) =@), a:(b:¢)=(=x):(@)=(),

ac = (zy23), (ac) : b = (3y2,) : (7)) = (z3) = (1).

1.15. Zusammenstellung der GesetzmiBigkeiten bei distributiven
idealtheoretischen Operationen

Der Gedanke hierzu geht auf meinen hallischen Lehrer, Herrn Prof. Dr. O.-H. KerL-
LER, zuriick, von dem auch der groBte Teil der Gegenbeispiele stammt (vgl. [2],
8. 114). Statt der einen Tabelle von O.-H. KELLER wollen wir hier zwei Tabellen A
und B (vgl. 8. 62/63) anlegen, dieerste fiir (a0,b) 0,c und die zweite fiir ao,(bo,c). Die
Operationen o, sind links untereinander aufgefiihrt, die Operationen o, oben neben-
einander, jeweils in der Reihenfolge +, -, n, :.

1.16.  Aquivalente H-ldeale als Idealquotienten

Wir kniipfen dazu an Definition 30 an. Dort war f(z,, ..., z,) ein inhomogenes Poly-
nom aus einem P-Ideal (a) = K|z, ..., z,] und F(2y, 2y, ..., z,) die zu f(z,, ..., z,)
dquivalente Form aus dem zu (a) dquivalenten H-Ideal a = K[z, 2,, ..., z,], welches
als Gesamtheit der durch

T F (Lo, Ty, o1y Tq) 1= ZEHOf (ﬂ —), kEN, “n
Zo

gegebenen Formen charakterisiert war. a enthilt dann auch die durch Gradiiber-

schreitung und anschlieBende Homogenisierung gewonnenen Formen. Wir wollen

dies nochmals an dem zweiten Beispiel (im AnschluB an (44)) erldutern: Dort war

(@) = (fy, fo) mit fy = 2%, f, =z, + %2y, ferner

2,3y = (—%) B + @y(x; + 2125) = (—Ts) L + Tif2
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und

2.2 = (25?) 2.2 + (72 — %1%3) (72 + 2125) = 2Ph + (@2 — 22) fo-
Homogenisieren wir nun f,, f, zu F, = 2,2, F, = %%, + %5, so erhalten wir
bei beiderseitiger Homogenisierung und Multiplikation mit z,® bzw. 2.* daraus oz,
= —z3Fy + 2, F; und 22,2 = 22F, + (%4%; — %,%3) F,. Nach (138) bedeutet dies
x%p € (Fy, Fy) 1 (z0) bzw. 2,2 € (Fy, Fy) : (x?) = ((Fn Fy): (-"o)) : (zo) nach (161).
In unserem Beispiel ist dann offenbar

(Fy, Fp) = (Fy, Fy) : (%) = (Fy, Fo) : (%)

Man bel t also alle El te des zu (f,, f,) dquivalenten H-Ideals durch Betrach-
tung der Ideale der Teilerkette

(Fy, Fy) = (Fy, F) : (z0) < (Fy, Fy) : (%) S (Fr, Fo) : (&%) E -+,

welche gemiB (27) nach endlich vielen Schritten abbrechen muB. Wir haben also so
viele Idealquotienten zu berechnen, bis erstmals der Fall

(Fy Fy) : (zt*t) = (Fy, Fy) @ (x%)

eintritt, was in diesem Beispiel fiir k¥ = 2 wirklich eintritt, an dieser Stelle jedoch
noch nicht bewiesen werden kann. Das zu (a) = (f,, f,) dquivalente H-Ideal ist also
durch a = a3 = (F,, F,) : (z,?) gegeben.

Diese Uberlegungen lassen sich leicht allgemein formulieren.

Satz 57 (Satz von VAN DER WAERDEN, vgl. [3], Satz 8, S. 507). Ist (a) = (fy, ..., fr)
< K[z, .. ,:c,] ein inh Poly ideal, geht f, bei Homogenisierung (38) in F,

iber (¢ =1, ...,¢t) und ist

6y :=(Fy, ..., F) < Ko, .., %], Gip:i=05: (%) (6=1,2,...), (176)

80 tst das zu (a) dquivalente H-Ideal a — K[z, ,, ..., ,] das Schlufglied der echten
Teslerkette

A Cay e (177)

In unserem Beispiel ist as das zu (a) = (f;, f;) dquivalente H-Ideal, wihrend a,

und a; zwar H-Ideale sind, jedoch keine zu einem P-Ideal (a) &quivalenten H-Ideale;
aus (176) folgt vielmehr der

Satz 58. Ein H-Ideal a = K[z, ,, ..., x,) ist genau dann das zum enen
P-Ideal (a) = a |5,~; < K[y, ..., %, dquivalente H-Ideal, wenn
a:(zg) =a (178)

gilt.
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Tabelle A
+
+|(@+Bb)+c=a+b+c (69) | (@ + B) - ¢ = ac + be (85)
(@-B)+c2@+¢)-(b+¢ (89) | (a-b)-c=abe (63)
Red ((a-B) + ¢) = Rad ((a + ¢) - (b + ¢)) (103)
nl(@nb)+cS(@a+cyn(db+c) (108) | (a n B) - ¢ & (ac) n (be) (122)
Read ((a nb) + ¢)=Rad ((a +¢) n (b +¢)) Rad ((a n b) - ¢) = Rad ((ac) n (bc))
= Rad ((ab) + ¢) (114) = Rad (abc)  (123)
(@a:b)+cS(a+be): b (162) | (a:b)-c S (ac): b (166)
(a: () + c=(a+(b)): (b) (163)
Tabelle B
+
+{e+(®+c)=a+b+ec (69) [a+(®-c)2(a+Db)-(a+c) (69)
Rad(a + (b-¢)
=Rad((a +5)-(a+¢) (103)
a-(b+c)=ab+ac 66) | a-(b-c)=abc (63)
nfan(d+c)2(anb)+ (anc) (118) fan(b-c) 2(anb)-(anc) (119)
Rad(an (b + ¢)) =Rad((anb) + (anc) Rad(an(b-c)) =Rad((anb)-(anc)
= Rad (a(b + ¢)) (118) =Rad(abc)  (121)
a:(b+c)=(a:b)n(a:c) (168) ja:(b-c)=(a:b):¢ 171)
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n
(@+Bnc2(anc)+(Bnc) (115) | (@+DB):c2(a:c)+ (b:c) (166)
Rad((@a+b)nc)=Rad((anc)+ (bnc)
=Rad((a+ b)) (118)
(@a-B)nc2(anc)-(bnc) (119) | (a-B):c2a-(b:c) (167)
Rad((a-b)nc)=TRad((@anc)-(bnc))
= Rad (abc) (121)
(anb)nc=anbne (108) | (anb):c=(a:c)n(b:c) (169)
(@:B)ncES(anbc):b (167) | (a:b):c=a:(bc) (161)
n
at+®Bnrne)S(a+b)n(a+c) (109) | a+ (b:c) S(ac+b): ¢ (162)
Rad (a + (b n ¢)) = Rad((a + b) n (a + ¢)) a4+ (6:(c) = (a(e) + b): (¢) (163)
= Rad((a + (bc)) (114)
a-(bnc)S (ab) n (ac) (122) | a-(b:c) S (ab): ¢ (166)
Rad (a - (b n ¢)) = Rad ((ab) n (ac))
= Rad (abc) (123)
an(bne)=anbne (108) | an(b:c) S (acnb):c (187)
a:(bnc)2(a:b)+ (a:c) (172) | a:(b:¢c) 2(ac): b (174)
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Mit Satz 57 wird eine erste praktische Anwendung des Begriffes ,,Idealquotient*
gegeben. Im nichsten Kapitel wird das Bilden von Idealquotienten ein wesentliches
beweistechnisches Hilfsmittel darstellen. Wir wollen uns daher auch bei diesem
Begriff im folgenden Abschnitt der Frage nach der praktischen Berechnung einer
Basis fiir Idealquotienten zuwenden.

1.17. Zur Berechnung von Idealquotienten, Beispiele

Nach Satz 56 geniigt es, Idealquotienten vom Typ
a:(b) =(ay,...,a,): (b) (179)

berechnen zu kénnen. Nun ist a : (b) die Gesamtheit der ¢ mit ¢b = r,a, 4 -+ + r,a,,
also

ray + o + ra, + (—€) b =0. (180)

Wiire nun b € a, so wire nach (141) a: (b) = (1) und dieser Fall ist uninteressant.
Wir kénnen also b ¢ a annehmen; iiberdies sei (g, ..., @,, b) eine Minimalbasis und
(180) gemiB (127) eine Passivititsbedingung; die Losungsvektoren von (180) sind
Syzygien der Art

b, N
P, T2
P, Ts
[ —c.

von denen hier also nur jeweils die letzte Koordinate interessiert.
Beispiel.
0 = (2% — T1Zy Tty — T 2T — %), b= (b) = (@t — 2y).
(180) geht iber in
G227y — TaZy) + Gy(2o’zs — 2,°) + Galams® — 2'2y) — (1T — 2,") = 0.

Hier konnen wir nun (130) und (131) verwenden und finden —¢ = @, = — ¥z, — ¥,z,, mithin
ist a: b = (29, 7,).
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1.18.  Idealquotienten von Potenzproduktidealen

Auch hierfiir gelangte R. KumMER (vgl. KuMMER und RENScHUOH [1]) zu geschlos-
senen Ausdriicken. Dazu beweisen wir als erstes:

p, ¢ Potenzprodukte = (p) : (g) = ( L ) (181)

png,

Beweis. (p): (q) ist die Gesamtheit der ¢ mit
oq = kp, (182)

worin 0.B.d. A. ¢ und % ebenfalls Potenzprodukte sind. Fiir die vorgegebenen Potenz-
produkte p und ¢ sei nun

p=(ngp*, ¢=(pngg*. (183)
Setzen wir (183) in (182) ein und kiirzen p n ¢ heraus, so folgt

cg* = kp* mit p*ng* =1; (184)
die Losung von (184) ist

c=rp* und k=rg*, r beliebig. (185)

Setzen wir (183) in (185) ein, so folgt (181), q.e.d.
Wir wollen nun zeigen, da8 in
(@+b):c2(a:c)+(b:c) (155)

das Gleichheitszeichen fiir den Fall gilt, da8 a und b Potenzproduktideale sind und
¢ ein Potenzprodukthauptideal ist, also:

(ax +b,) : (@) = (04 : (@) + (B4 : (@) (186)
Dazu geniigt wegen (165) der Nachweis von
(8 + B4) : (@) S (022 (9)) + (622 (@) (187)

Beweis. (a, + b,):(g) ist die Gesamtheit der d mit d(kg) € a, + b, mit beliebigem k.
Mithin kann o.B.d.A. k = 1 gesetzt werden; dann aber folgt die Giiltigkeit fiir
beliobiges & sus der Idealeigenschaft (2). Ist a, = (Py, --., B, by = (@1, - ), 50 st
dq € a, + b, mit dg € (py, ..., Pus Q1> --+» i) gleichbedeutend. Da p;, ..., Dy, @y, - -y ¢
und ¢ Potenzprodukte sind, ist 0. B.d. A. auch d ein Potenzprodukt; damit aber ergibt
sich die Gesamtheit der in Frage kommenden d aus den Gleichungen

dg =npy,...,dg =1,p, (188)

dg =819y, ..., dg = 8,qy, (189)

und
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welche analog (182) zu losen sind. (188) bedeutet nun aber dg € a,, und (189) be-
deutet dg €b,, also gilt d € a,:(g),d €b,:(g), mithin d € (a,:(q)) + (bx:(9)s
also gilt (187) und mithin (186), q.e.d.

Durch mehrfache Anwendung von (186) folgt

(Prs oo Do) 1 (@) = ((B1) : (@) + -+ + (@) : (@) (190)
mit (181) folgt
ailg) = (L L) (191)
mng p.ng

und mit (170) schlieBlich

Satz 69. Fir Idealquotienten von Potenzproduktidealen gilt

a;:0, = (Pryoe0s Po) 2 (15 -+ os Q1)
=( v )n -.n( v ) (192)
P2ars PN @y g PN

Aus (192) ist die weitere Berechnung sukzessiv nach (137) méglich.
DemgemiB ist iibrigens auch die Angabe einer geschlossenen Formel moglich (vgl.
Kummer und RENSOHUCH [1], Satz 6, S. 85), worauf hier aber verzichtet werden soll.

Beispiel 1. a, = (z,%, 2,25, 2;2), b, = (2,2;, 2,7,). Dann wird
0y 1 (2120) = (30, 2 Zo) = (@0 T0 T)s O (@) = (3% 21y Ty) = (20, 20),
Ayt by = (2, Tg, Ty) 0 (2, 23) = (23, 75)-

Beispiel 2. a, = (2;, 2;2,, %?), b, = (2,23, Z,7,). Hier wird

Ayt (1y7g) = (1), Ay 2 (29T3) = (T, Ty, T3) = (21, Ty 2y)
und
8y by = (1) 0 (21, 2 2) = (21, 273, 7))

Beispiel 3. a, = (2’7, 2,273%,, 7,7,%, 2,2,7,%, 2°%3), b, = (2,2, 2,24, 7,?) gibt (jeweils nach
Streichung iberfliissiger Basiselemente)
0y (7)) = (T2 24Ty T°) = 0y 1 (3173), Ayt (25) = (&0 1%y 2T, 21Ty, T3Ty)
also auch (a, : (2,%) n (a, : (#,2)) = (2,23, Z52s, 7,*) und endlich
81Dy = (a5 : (72) 0 (a5 2 (31T) 0 (0, : (231))
= (@T 2% 237) 0 (2170 ZaTy 25 21Ty, T23Y) = (BT To%a)

bei der letzten Durchschnittsbildung konnen in der Tat 13 der 15 Potenzprodukte gestrichen
werden. Die Einzelausrechnungen seien dem Leser als Ubungsaufgabe iberlassen.
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21.  Einleitung

Ziel dieses Kapitels ist eine Zerlegungstheorie fiir Ideale. Dabei wird man zunichst
an die Zerlegung natiirlicher Zahlen als Produkt von Primzahlpotenzen und analoge
Produktdarstellungen fiir Polynome f(z) in einer Variablen denken. Andererseits
traten u. a. bei den zuletzt behandelten Beispielen Durchschnittsdarstellungen von
Idealen auf; in Spezialfillen kann der Idealdurchschnitt mit dem Idealprodukt
iibereinstimmen (vgl. (104)).

Fiir Polynomideale ist das jedoch im allgemeinen nicht der Fall. Wir betrachten
dazu als Beispiel das zu einem Geradenpaar gehérige Ideal. Bleiben wir in der Ebene,
betrachten das Ideal also in K[z, 2;, z,], 80 haben wir

(@? — %) = (21 — 2a) (¥ + %) = ((xl — ) (21 + xl))-

Sind wir dagegen im dreidimensionalen Raum, so benétigen wir zur Darstellung des
Geradenpaares nunmehr die beiden Gleichungen 2,2 — 2,2 = 0 und z; = 0, haben
also als zugehdriges Ideal in K[z, z,, 2,, 2;] das Ideal

(2% — 2%, @) = (21 — @3, T3) 0 (T) + 25, T5)
O (21 — Za, Zo)+ (21 + %, 7)) = (212 — T4?, 283, Zas, Zg)-

Dieses einfache Beispiel zeigt, daB wir also um Durchschnittsdarstell bemiiht
sein miissen. In Analogie zur Zerlegungstheorie in Z miissen wir dazu erst geeignete
Analoga zu den Begriffen ,,Primzahl“ und ,,Primzahlpotenz‘‘ prigen. Dies werden
die Begriffe ,,Primideal* und ,,Primérideal sein, die wir neben den quasiprimiren
Idealen zu Anfang einfiihren wollen. Damit werden wir die Existenz einer Durch-
schnittszerlegung nachweisen konnen. Dieser ,.erste Zerlegungssatz'‘ wird meistens
E. LasgxEr zugeschrieben (vgl. [1], Satz VII), dabei aber nicht erwihnt, daB LASKER
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in seinem Satz VII die Existenz der Durchschnittsdarstellung nur fiir H-Ideale
herleitet, withrend EMmMy NoETHER diesen und die folgenden Zerlegungs- und Ein-
deutigkeitssiitze unter Benutzung der Teilerkettenbedingung (T) (vgl. Kap. 1, (26)),
also fiir beliebige Noethersche Ringe, beweist (vgl. NoETHER [1], §§ 2—7).
Die praktische Durchfiihrung der Zerlegung wird uns wiederum im Fall der Potenz-
produktideale gelingen (vgl. 2.22.). In 2.23. wollen wir dann den AnschluB an Pro-
1. h, +all,

Anlet
duk

BUE

2.2.  Primideale

Eine Primzahl p ist dadurch charakterisiert, daB sie nur die Teiler 1, —1, p, —p
besitzt, daB also (1) das einzige Oberideal von (p) ist. Die daran ankniipfende Ver-
allgemeinerung (auf die wir im Beispiel 6 von 2.3. eingehen werden) erweist sich als zu
einschrinkend. Dazu folgende Uberlegung: Bei der Zerlegung eines Polynoms in
Linearfaktoren sind die linearen Polynome die Primelemente. Geht man davon aus,
80 wird man beispielsweise das Ideal (x,, z,) sicher als primes Ideal in dem noch zu
definjerenden Sinne ansehen, obwohl es die (dhnlich gebauten) echten Oberideale
(Zos 1y Ta)s « s (Toy 21y + 0y Ty) Wit (Zg, 2,) < (g, Ty, Tg) < +++ < (T, Zy5 +++, Tp) hate

Wir miissen also eine solche Charakterisierung fiir Primzahlen geben, die eine fiir
uns sinnvollere Verallgemeinerung induziert.

Neh wir beispielsweise das Ideal (6) und das Element ¢ =24 = 3.8 ¢ (6).
Hier ist 3 ¢ (6) und 8 ¢ (6), aber 3-8 € (6). Betrachten wir dagegen alle echten
Zerlegungen der Zahl 42 € (7) als Produkt zweier Zahlen, so haben wir 42 = 2. 21
=3.14=6-7=17-6=14-3 =21 -2, und jeweils ein Faktor ist durch 7 teilbar.
Wiire dies nicht der Fall, wire also ¢ = a - b mit a ¢ (7) und b ¢ (7), so wire auch
a - b ¢ (7). Damit haben wir bereits eine fiir alle Primzahlen charakteristische Eigen-
schaft E, gefunden:

E,;: Fiiralle Elemente a, b aus Z mit a ¢ (p) und b ¢ (p) folgt ab ¢ (p).
Die Kontraposition von E, ist '

E,: Firr alle Elemente a, b aus Z mit ab € (p) folgt a € (p) oder b € (p).
Mit E, gleichwertig ist offenbar

E;: Der Restklassenring Z/(p) ist; nullteilerfrei, also ein Integritatsbereich.

DaB dann Z/(p) sogar ein Kérper ist, wurde bereits in MfL Bd. 3, 13.2. (Folgerung
aus Satz 1) gezeigt.

Die im ersten Kapitel vor Satz 4 gemachte Feststellung, da8 in Kongruenzen nach
einem Ideal nicht immer gekiirzt werden darf, kann fiir Z wegen E; dahingehend
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prizisiert werden, daB in Kongruenzen modulo (m) genau dann gekiirzt werden darf,
wenn m = p eine Primzahl ist.
Nunmehr ist es leicht, den Begriff ,,Primideal* zu definieren.

Definition 1. Ein Ideal p aus einem Noetherschen Ring R heiBt Primideal, wenn
eine der drei folgenden Eigenschaften erfiillt ist:

Fiir alle @, b aus R mit a ¢ p und b ¢ p folgt ab ¢ p. (1)
Fiir alle @, b aus R mit ab € p folgt a € p oder b € p. (2)
Der Restklassenring R/p ist nullteilerfrei, also ein Integrititsbereich.  (3)

Durch Ubergang zu Restklassen folgt unmittelbar die Aquivalenz von (2) und (3);
ferner ist (2) die Kontraposition von (1) und umgekehrt. Wir haben damit den

Satz 1. Die Eigenachaften (1), (2) und (3) sind dquivalent.

Damit haben wir den AnschluB an den letzten Abschnitt von 13.4.2. in MfL Bd. 3
gefunden.

Unsere anfangs gemachten Bemerkungen zeigten uns die Existenz von Teilerketten
von Primidealen. Dazu geben wir die

Definition 2. Teilerketten von Primidealen heiBen Primidealketten.
Das Beispiel (o, 1) = (o, %1, Z3) < -+ < (%o, 21, -+, Zs) beweist den

Satz 2. In Noetherschen Ringen existieren Primidealkett

Die groBe Bedeutung der Primidealketten wurde von KRULL erkannt; wir konnen
uns hier jedoch nicht néher mit ihnen beschiftigen.

Nunmehr wollen wir einige Eigenschaften von Primidealen herleiten.
Satz 3. Istp ein Primideal in einem Noetherschen Ring R, so gilt fiir Ideale a — R,
bcR
ab Sprakp=>bSy, (4)
abSpAbEp=>alyp. (5)
Beweis. Offenbar geniigt der Nachweis von (4), denn (5) folgt aus (4) durch Ver-
t hung und Umb g. Wegen a & p existiert ein @ € a mit a ¢ p; dann ist

ab — ab < p. Nach Definition 40 von Kapitel 1 bedeutet ab S p, daB ab € p fiir alle
b € b gilt; wegen a ¢ p folgt nach (2) also b € p fiiralle b€ b, also b S, q.e.d.

Satz 4. Istp ein Primideal und a ein beliebiges Ideal esnes Noetherschen Ringes R,
so gilt

0" Sp fir z€ N*=>aCp. (6)
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Beweis (indirekt). Angenommen, es wire a & p. Wir benutzen jetzt zur Kon-
struktion eines Widerspruchs das Abbauprinzip fiir die Exponenten:
Ausa®=aqa-a*1Sp und agyp folgt a*'Sp nach(4),
aus a*l!=a-a*2Sp und aLp folgg a*2Sp nach (4),... usw.,
schlieBlich:
aus a®*=a-a?Sp und agp folgt a® Sp nach (4),
aus a®=a-aSp und agp folgt aSyp mnach (4)im Wider-
spruch zu a ¢ p.
Diese Annahme war also falsch, mithin gilt (6).
Aus Satz 4 folgt unmittelbar
Satz 6. Istp ein Primideal eines Noetherschen Ringes und a € R, so gilt
a*cyp firxe N*>acyp. (7)

Nach Kap. 1, (83), gilt fiir Radikale (Rad a)* S a S Rad a, also fiir Primideale
(Rad p)* S p und p S Rad p. Wegen (6) gilt (Rad p)* S p = Radp S p, zusammen
mit p S Rad p folgt

Satz 6. Fiir Primideale gilt
Radp =p. (8

Primideale sind also spezielle semiprime Ideale (vgl. Kap. 1, Definition 37); des-
gleichen Durchschnitte von Primidealen (vgl. Kap. 1, (113)).

2.3.  Beispiele fiir Primideale

¥ Beispiel 1. Wie nun schon mehrfach erwihnt, sind in Z alle Ideale p = (p) Primideale, bei
denen p eine Primzahl ist.

Beispiel 2. Ist R ein ZPE-Ring, so sind entsprechend alle Hauptideale p = (p) Primideale,
bei denen p ein Primel t ist. Insb dere sind in Polynomrmgen alle dxe)omgen Ha.upt-
ideale p = (f(zy, ..., z4)) bzw. p = (F(zy, 2, ..., 7)) Primideal bei
denen f ein irreduzibles Polynom bzw. F' eine irreduzible Form 1st

Beispiel 3. Primideale entstehen in Polynomringen durch Vorgabe von Nullstellen. Dies haben
wir fiir inhomogene Polynome schon im ersten Kapitel behandelt. Dort war (y;, ..., ¥,) als Null-
stelle vorgegeben, und es wurde gezeigt, daB alle Polynome f(z,, ..., z,) mit f(y;, ..., y,) = 0 ein
Ideal bildeten (vgl. Kap. 1, (4), (5)), welches wir dort bereits p nannten. Wir haben also nur noch
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die Primidealeigenschaft nachzuweisen. Ist ein Polynom ¢(z,, ..., Z,) zerlegbar in
C(Zyy oer Tn) = B(Zgy o0 Zp) + {Z1s oo s Zp)»

gilt ferner ¢(y;, ..., y,) = 0, 8o ist also A(yy, ..., ¥p) - f(¥1, ---» ¥s) = 0, und hier muB wenigstens
einer der beiden Faktoren verschwinden, was mit k(zy, ..., Z,) € p oder f(z, ..., Z,) € p gleich-
wertig ist. Mithin ist p nach (2) ein Primideal.

Wir werden bei den Anwendungen diese Aussage vornehmlich im homogenen Fall
benutzen und deshalb dafiir einen Satz formulieren.

Satz 7. Die Gesamtheit der Formen in x,, %, ..., T,, welche an einer vorgegebenen
Nullstelle (yo, ..., Yn) verschwinden (wobei die y; im allgemeinen noch von Purametern
bhingen), bildet ein homogenes Primideal p oder primes H-Ideal p.

Dieser Satz wird dadurch an Bedeutung gewinnen, daB auch seine Umkehrung gilt
und auf diesem Wege bei einem vorgegebenen H-Ideal entschieden werden kann, ob
es ein Primideal ist oder nicht.

Beispiel 4. Wir betrachten in K[z, ,, 2,, z;] wieder einmal (vgl. Kap. 1, (86)ff.) die vier
Formen

Fy = oyzy — 2,75, Fy = 2’2y — 2%, Fy = 22y — 2’7, F(=zz? — 20

und behsupten, daB (F,, F, Fy, F,) ein Primideal ist. Zunichst mége der Leser selbst durch
Einsetzen bestitigen, daB (F,, F;, Fy, F,) die Nullstelle

Yo = bo*s 4=t Y = tohy®, ¥ =1t*
hat. Schwieriger ist schon der Nachweis, daB jede Form F(z,, z,, 25, %,) mit der obigen Nullstelle
aus dem Ideal (F,. Fy, Fy, F,) ist. Dies kann mit Hllfe der Kongmenzrochnung fu.r Ideale ge-
schehen, wie sie in 1.2, entwickelt wurde. Die damit verbund R

ist
aber etwas langwierig. Um den Gedank nicht zu unterbrechen, wollen wir dies bis zum
hsten Kapitel zuriickstell

Beispiel 6. Sind I, ...,y § = @y + @;,2, + ++-+ @iy, linear unabhingige lineare Poly-
nome, mt ferner (I, ..., 1,) * (1), so ist (3, ..., 1,) ein Primideal. Dies folgt aus der Existenz
Lo

einer | igfaltigkeit mit n —r P fiir das Gleich L, =0,
wie in der linearen Algebn gmngt wird (vgl. MfL Bd. 3, Kap. 5). Gehen wir von einer solchen
,,allgemeinen‘* Nullstelle mit » — r Parametern aus, so gelangen wir wieder zum Ideal (4, ..., ),

welches mithin ein Primideal ist.

Beispiel 6. Teilerlose Ideale. Wir erinnern hierzu an Kap. 1, Definition 17: Dort gingen wir
von einer Menge M aus, welche eine nichtleere Menge von Idealen sein sollte. Ein Ideal it € M
heiBt maximal beziiglich M, wenn es kein Ideal a € M mit fii — a gibt. Es sei nun M S Rund R
ein Noetherscher Ring. Wir betrachten jetzt den Spezialfall ¥ = R und maximale Ideale beziig-
lich R.

Definition 3. Beziiglich B maximale Ideale m aus R heifen teilerlos oder
schlechthin mazimal.

Da wir im AnschluB an 2.15. den Begriff ,,maximal* fiir Mengen M — R benétigen
werden, soll zur Vermeidung von Verwechslungen im folgenden die Bezeichnung
,teilerlos verwendet werden.
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Es gilt dann der

Satz 8. Ist m = R ein teilerloses Ideal eines Noetherschen Ringes R, so ist R/m
ein Korper.

Beweis. Wegen m — R existiert wenigstens ein Element a € R mit a § m; wegen
der Teilerlosigkeit von m muB dann (m, @) = R sein. Insbesondere ist also 1 € (m, a).
Es existieren also Elemente m € m und b € R mit 1 = m + ba. Dabei ist b ¢ m, denn
wiire b € m, so auch 1 € m und mithin m = (1) = R im Widerspruch zur Voraus-
setzung m — R. In R/m gilt also [1] = [0] + [b] - [a]. In R/m ist also die Gleichung
[4] - [a] = [1] fiir alle [a]= [0] und [b] == [0] uneingeschrinkt lésbar; RB/m ist mithin
ein Korper, g.e.d.

Da ein Korper nullteilerfrei ist, folgt aus (3) unmittelbar der
Satz 9. Teilerlose Ideale sind Primideale.

Von Satz 8 gilt iibrigens auch die Umkehrung; fiir einen Beweis sei auf O.-H. KEL-
LER [2], 3.2.2.1., Satz 10, verwiesen.

2.4.  Prime Potenzproduktideale

Es sei p, ein primes Potenzproduktideal und zyoz," --- zir-iz,’» irgendein Potenz-
produkt aus p,, auf welches wir das ,,Abbauprinzip* des Beweises von Satz 4,
0.B.d. A. von rechts beginnend, anwenden wollen. Aus z, ¢ p, folgt zyez,’ -+ zin}
€ Py, ist zin-1 4 P, s0 folgt z' -+ zin-2 € p, usw. Irgendwann muB einmal der Fall
2* € p, und damit z; € p, wegen (7) eintreten, ungiinstigstenfalls fiir ¥ = 0,
d. h. z, € p,. Wir untersuchen dann alle in p, enthaltenen Potenzprodukte, welche z,
nicht enthalten. Fiihren wir dort dasselbe Abbauprinzip durch, so gelangen wir zu
Z; € p, mit j = 1 usw. Basiselemente von p, sind also gewisse der Variablen z,, x,, ...,
T, O6WA Py = (Tpyy iy ++os Ty, ) it 0 S Ky < Ky < -+ < Ky < m. Wir konnen also
0.B.d.A. p, = (%, 2y, ..., %) annehmen:

Satz 10. Ein Potenzproduktideal p, — K[x,, 2, ..., Z,] 15t genau dann ein Prim-
ideal, wenn p, von der Bauart

Pr = (Zo, Tt ooy T) 9)
tat.
Die Beweisrichtung (<) folgt aus dem Beispiel 5 von 2.3.
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2.5.  Quaslprimire |deale

In Umkehrung von Satz 8 wollen wir nun solche Ideale betrachten, die zwar nicht
prim zu sein brauchen, bei denen aber das Radikal ein Primideal ist. Diese Theorie
wurde 1946 von dem ungarischen Mathematiker L. Fucns [1] durch Einfiihrung der
,»quasiprimiren Ideale* begriindet. FucHs ging es darum, alle diejenigen Polynom-
ideale zu charakterisieren, die zu irreduziblen algebraischen Varietéiten fithren. Wie
wir im nichsten Kapitel sehen werden, ist dies gerade fiir zugehérige Polynomideale
mit Rad t =p der Fall. Aber auch unabhiingig von dieser Anwendung scheint es
dem Verfasser gerechtfertigt, diesen Begriff erstmals in ein Lehrbuch aufzunehmen,
nicht zuletzt deshalb, um dadurch die Unterschiede zu dem anschlieBend einzufiihren-
den Begriff ,,Primiirideal* klarer formulieren zu konnen, als dies ohne diesen Begriff
moglich ist (vgl. NOETHER [1], vAN DER WAERDEN [8, 9, 10], GROBNER [2, 8]). Wir
benétigen dazu den Begriff ,,nilpotent’‘, den wir vorab einfiihren wollen:

Definition 4. Ein Element a eines Ringes S heiBt nilpotent, wenn ein g existiert
mit a¢ = 0. Ist @ 3= 0, so heilt a ein nilpotenter Nulltesler.

Definition 5. Ein Ideal r eines Noetherschen Ringes R heiBt quasiprimdr, wenn
eine der folgenden fiinf Eigenschaften gilt:

Rad r = p ist ein Primideal p. (10)
Es existiert ein Primideal p und ein Exponent g mitp¢e St S p. (11)
Sind @ und b Ringelemente und gilt fiir alle natiirlichen Zahlen 2, y

stets a* ¢ rund b? § t, so ist ab ¢ t. (12)

Aus a - b € ¢ folgt: Entweder ist a oder b Element von t. Ist aber
a ¢ r und b ¢ r, dann existiert ein p mit a¢ € t, oder es existiert ein o

mit b7 € ¢. (13)
Sind [a] = [0], [b] =+ [0] Elemente aus R/r mit [a] - [b] = [0], so ist
wenigstens einer der beiden Nullteiler [a], [b] nilpotent. (14)

Definition 6. p = Radt heit das zu r gehorige Primideal; ¢ heiBt p-quasi-
primdr.

Bevor wir die Aquivalenz der Bedingungen (10) bis (14) nachweisen, wollen wir
(13) erldutern durch eine Aufzihlung aller moglichen Fille von (13):

acraber, (13a)
adgraber, (13b)
actabgr, (13¢)
adgrabdraatcrabicr, (134)
adrabdraatdrabocr, (13e)
adrabdraatcrabvdr. (13f)

Dabei bezeichnen g, o geeignete, z, y beliebige Exponenten aus N*.
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Satz 11. Die fiir quasiprimére Ideale charakteristischen Eigenschaften (10), (11),
(12), (13), (14) sind dquivalent.

Beweis. Die Aquivalenz von (10) und (11) folgt wegen Kap. 1, Satz 40, (83). Die
Aufstellung der sechs Fille von (13) verdeutlicht die Aquivalenz von (10) und (13).
(12) ist die Kontraposition von (13) und umgekehrt. Die Aquivalenz von (14) mit
(10) ist ebenfalls unmittelbar einzusehen.

Aus (10) und Kap. 1, (100), folgt:
t it p-quasiprimir = Rad (v + b) = Rad (p + b). (15)

2.6.  Beisplele fiir quasiprimire Ideale

Beispiel 1. Primidealpotenzen. Hier gilt wegen (11) offenbar
Satz 12, Jede Primidealpotenz pe ist p iprimér.

Beispiel 2. Wir betrachten in K[z, z,, ,, Z,] wieder einmal die vier Formen
Fy =2ty — 22y, Fy = zlny — 2%, Fy = 22y — 2pzy, Fy=zmzg? — 2.

GemiB dem Beispiel 4 von 2.3. war p = (Fy, Fy, Fy, F,) ein Primideal. Im dritten Beispiel von
1.10. wurde daneben das H-Ideal (F,, F,, F,) betrachtet und p* — (Fy, Fy, F,) — p nachgewiesen.
Mithin ist ¢ = (F,, F,, F,) gemiB (11) quasiprimar.

Beispiel 3. Entsprechendes gilt fiir das Beispiel 4 von 1.10. Hier ist wieder

R = K[z, 2;, T, T3], p = (Fy, Fy, Fy), t=(Fy, F,), pPcrchy
und

Fy = 22, — 2%, Fy = 223 — 2,25, Fy =22y — a?,

Fy = z,Fy — 23Fy = agzy® — 22,2975 + 2,0
(vgl. Kap. 1, (97)), und nach (11) ist ¢ mithin p-quasiprimér.

Beispiel 4. Essei R = K[z,, 2,,...,2,] undp ein Primideal aus R. Dann ist (zy, 2y, ..., 2,) - P
quasiprimir. Denn wegen Kap. 1, (113) und (108), ist

Red (7o, 2y, ++» Z4) + §) = Rad ((Zo) %1y ..» 25) 1) = Radp = p.

Beispiel 5. Entsprechend folgt, da alle Ideale (z4%, 2,01, ..., Z4@) - p mit gy = 1 quasiprimir
sind.

Beispiel 8. Ganz analog folgt, daB alle Ideale p-b und p nb quasiprimér sind, sofern
Rad b O p gilt.

Beispiel 7. Ebenso folgt die noch etwas allgemeinere Aussage:
1 i8¢ p-quasiprimdr A Rad b D p = v n b iat p-quasiprimar. (16)
Entsprechend fiir ¢ - b.
Die Beziehung (16) werden wir noch fter aufgreifen.
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2.7.  Quasiprimire Potenzproduktideale

Nach (9) nehmen wir wieder 0.B.d. A. an, daB das zu t, gehorige Primideal Rad t,
=P, = (%o, 1, -+, Trm) i8t. Ist g, der Exponent von z,, also z,% € t,, z%1 ¢ 1o,
s0 ist also % ein Basiselement von t,, Entsprechendes gilt fiir z,%, 2,9, ..., 22
Es ist also 1, = (2%, 2,%, ..., %3, ...). Daneben kann die Minimalbasis noch Potenz-
produkte in z, z,, ..., —; enthalten, also Potenzprodukte der Bauart

Py 1= 2o, *r et 4::—11, (17)
nicht aber Potenzprodukte der Bauart
Ty 1= X Ty, (18)

die nur von «,, ..., 2, abhingen. Wohl aber kann die Minimalbasis von t, noch Potenz-
produkte der Bauart

Q=27 mit py+1 (19)
enthalten, bei denen also alle Variablen z,, z,, ..., 2, enthalten sein kénnen, aber
wenigstens eine der Variablen %, z;, ..., %, auftreten muB, denn es ist =; ¢ t,

wegen P, = (%o, Z1, +++, &r-1). Mithin gilt
Satz 13. Quasiprimére Potensproduktideale haben die Basisdarstellung
Te = (T% 21, ooy ZF, Py oovs Pos Qasts +or D) (20)

wobei die p;, ¢ durch die Bedingungen (17), (18) und (19) eingeschrinkt sind und
Rad t, =p, = (o, 2y, -+, T0y) 8L

DaB umgekehrt das durch (20) gegebene Ideal quasiprimiir ist, folgt sofort nach
(10) und (9).

2.8.  Primirideale
Ein Spezialfall der quasiprimiiren Ideale sind solche, bei denen die Fille (13e) und
(131) nicht auftreten; dies sind gerade die Primérideale. Wir haben also die

Definition 7. Ein Ideal q eines Noetherschen Ringes R heilt Primérideal,
wenn eine der folgenden beiden Eigenschaften gilt:

Aus ab € q folgt: Entweder ist a oder b Element von q. Ist aber
a ¢ qund b ¢ q, dann existieren Exponenten g, ¢ mit a? € q (21)
und b € q.

In R/q ist jeder Nullteiler nilpotent. (22)
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Vollig analog zur Aquivalenz von (13) und (14) ergibt sich

Satz 14. Die fiir Primdrideale charakteristischen Eigenschaften (21) und (22) sind
dquivalent.

Da Primirideale spezielle quasiprimére Ideale sind, gelten alle Eigenschaften
quasiprimérer Ideale auch fiir Primirideale ; wir haben also gemi8 (10), (11), (15) den

Satz 15. Ist q ein Primdirideal, so it

Rad g = p ein Primideal, (23)
PSSy, (24)
Rad (q + b) = Read (p + b). (25)

Die Eigenschaften (23) und (24) sind zu (21) und (22) keineswegs #quivalent; es
gibt also quasiprimire Ideale, welche nicht primér sind. Dazu werden wir im folgen-
den Beispiele angeben.

Definition 8. p mit Rad q = p heiBt das zu q gehdrige Primideal. q heiBt p-primdr.
Ist pe S q, ! & q, so heiBt o der Exponent von q (vgl. Kap. 1, (76)).

Analog zu (13a) bis (13f) geben wir (wie bei den quasipriméren Idealen) auch fiir
Primiiridesale eine Aufzihlung aller moglichen Fille von (21):

acqabeq, (21a)
agqabeq, (21b)
acqnabdq, (21¢c)
adqgabdagrateqabieq. (214d)

Die uninteressanten Fille (21a), (21b), (21c) bleiben in der Literatur bei der
Definition von Primiridealen zumeist unerwihnt, und (21d) wird nur fiir einen der
beiden Faktoren beschrieben; die hier benutzte ausfiihrlichere Formulierung kann
dann aus der zumeist ebenfalls aufgefiihrten Eigenschaft (22) gewonnen werden. Zur
unmiBverstindlichen Unterscheidung der Primirideale von den quasiprimiren
Idealen wurde hier die Formulierung (21) gewahit.

Wir wollen als niichstes den Durchschnitt zweier Primérideale untersuchen. Es sei
also a = q; n g,. Ist q; S gy, 80 folgt a = q,, ist g, E q;, 80 folgt a = gy. Um solche
Fille auszuschlieBen, geben wir die

Definition 9. a =b n¢ heit unverkiirzbarer Durchschnitt, wenn b ¢ ¢ und
¢ &b gilt.

Satz 16. Ist q = q, n q; ein unverkiirzbarer Durchschnitt und sind q, und q. beide
p-primdre Ideale, so ist auch q ein p-primdires Ideal.
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Beweis. Zunichst ist Radq = Rad (g, nq;) =Radq; nRadq, =p np =p,
also ist q jedenfalls p-quasiprimdr. DaB q iiberdies primir ist, sehen wir so: Ist ab € q
und a ¢ q und b ¢ g, so ist a ¢ q, oder a ¢ q,. Es sei a § q,. Aus der Primirideal-
eigenschaft; von q, folgt dann:

dbeqoqradq=>01€q=>bcRadg =p =Radqe,

also existiert ein Exponent o, mit 5™ € q,. Ist nun o := Max {0}, 05}, s0 gilt also
b° € q; n g3 = q. Analog verlduft der Beweis fiir a ¢ g, sowie fiir b ¢ ¢ mit den
Moglichkeiten b ¢ q, oder b ¢ q,, was der Leser selbst zu Ende rechnen mage.

Satz 17. Ist a = q, n qp ein unverkiirzbarer Durchschnitt zweier Primérideale g, q;
mit Rad g, = p,, Rad q; =, und p, = ,, so i8¢t a = qy n q, nicht primdr.

Beweis. Zuniichst ist nach Kap. 1, (113) und (23),
Rad a = Rad (g, n q;) = Rad q; nRad g, =p, np,.

Ist dies ein unverkiirzbarer Durchschnitt, so kann Rad a kein Primideal sein, nach
(23) mithin a kein Primirideal. Ist dagegen Rad a =, nyp, kein unverkiirzbarer
Durchschnitt, so gilt also (bei geeigneter Numerierung) p, np, =p,. Wegen der
Voraussetzung p, §=p; muB dann p, > p, sein. Jedenfalls ist dann Rad a =y, ;
a ist also quasiprimir, und wir haben zu zeigen, daB a nicht primér ist. Es sei a € q;,
aber a ¢ q,; solch ein Element existiert, da g, n g, als unverkiirzbarer Durchschnitt
vorausgesetzt worden war. Ferner sei b € q;, aber b ¢ p, und folglich auch b ¢ q;;
ein solches Element b existiert wegen p, = p,. Dann ist ab€ q; nq, und @ ¢ q; n g,
und b ¢ q; n go. Nunista € q; = p, = Rad (g, n g,), also existiert ein Exponent o mit
a® € q; n g, Dagegen ergibt sich fiir b folgendes: Wegen b ¢ p,, also b ¢ Rad (q, n q,)
ist fiir alle z stets b ¢ q, n q,. Mithin ist a = q, n gy zwar quasiprimér, aber nicht
primir.

2.9.  Beispiele zur Definition der Primarideale

Beispiel 1. Beispiel fir eine nichiprimdre Primidealpotenz. Nach Satz 12 war jede Primideal-
potenz quasiprimir. Mehr kann jedoch im allgemeinen mcht ausgesagt werden. Wir wollen dazu
ein primes H-Ideal p angeben, bei welchem p? zwar q ar, aber nicht primir ist. Fiar den
enthomogenisierten Fall wurde dieses Beispiel bereits von VAN DER WAERDEN in [10], S. 168,
Aufgabe 3, behandelt. Wir betrachten also das Primideal p, das gemaB Satz 7 durch die Nullstelle

Yo = 14", 4= t?, = toh*, =4
vorgegeben lut Dies mc eme algebr&lsche Raumkurve funfter Ordnung mit der Bezeich vy,
eine sog! Vi he Projektionsvarietit. Das zugehbnge Ideal p hat — ww

wir spiter beweisen werden — die Basis p = (F,, F,, F;) mit
Fy = 27y — 2%, Fy = 2223 — 2%, Fy =zt — 2%z,.
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Dann ist nach Kap. 1, (70), p? gegeben durch p? = (Fy2, F,Fy, F\Fy, F,3, FoF,, F,?), und es ist
F := F + z,F,Fy € p*. Der Leser mnge selbst ausrechnen, daB dann F =z, - B gilt mit
B := 2*25% — 3z47,%2,7y + Zyz,2,® + 2,5, und wir wollen untersuchen, ob B(z, z,, Z,, 2,) € p®
gilt. In B kann der Summand z,2z,* nur durch 2z, F,, der Summand z,* nur durch —z,?F, ge-
wonnen werden, 8o daB fir B € p die Darstellung

B = —amimyFy — #;'Fy + 22aFy

(bis auf Passivititsbedi gen) eindeutig ist. Wire B € p?, so kiimen aus Gradgrinden nur
Darstellungen der Bauart

B = kyzoFy? 4 bty Fy? + kszoFoy* + kgsFy® + ksF1Fy + kW FyFy

mit k; € K in Frage, was mithin unméglich ist. Wir haben also F = z, - B€ p?, z, ¢ p%, B¢ p?,
aber B3¢ p? und B € p = Rad (p?) und z, § p = Rad (p?), also ist z,% § p® fur alle z€ N*.
Mithin ist p? zwar quasiprimir, aber nicht primar.

Dieses Bolsplel wirft mhlrelcho Fragen auf, u denen dem Verfasser die Antworten bislang
nicht bel t sind. Beispi ise: Im vorigen Beispiel war p? nicht primir; kann es dann eine
natiirliche Zahl m = 3 gaben, 80 daBl p™ wieder primiir ist? Oder gilt: Ist p™ nicht primir, so
auch p' fir alle £ = m? Ist woméglich bereits das Verhalten von p? entscheidend fir alle p™
mit m = 3? Das Rechnen von Beispielen wird durch die beim P i schnell hsend
Anzehl der Basisformen sehr erschwert.

Beispiel 2. Zur effekts: Entscheid: aber die Primdres haft. Abgesehen von den
Potanzproduktldmlen ergibt sich- aus den Definitionen fir Primirideale keine Moglichkeit, zu

tscheiden, ob ein vorgegeb Ideal primir ist. Lediglich negative Entscheidungen konnen
damit getroffen werden, wie das vorige Beispiel zeigt. Damit haben wir dieselbe Situation wie
bei der Definition fir Primideale. Dort half uns fir H-Ideale der Satz 7 weiter. Eine analoge Be-
dingung wollen wir nun fir primiire H-Ideale angeben. Dazu spezialisieren wir in (16) das quasi-
primére Ideal ¢ zu einem Primirideal q und haben

q ist p-primdr A Rad b D p = q n b ist quasiprimdr. (26)

Aus dem Lasker-Noetherschen Satz und den Eindeutigkeitssitzen wird nun folgen, daB auf diese
Weise jedes quasiprimire Ideal darstellbar ist. Ein quasipriméres H-Ideal ist dann und nur dann
primér, wenn eine solche ,,eingebettete Komponen “ b nicht auftritt, wenn also das quasi-

imére Ideal gemischt' ist; dariiber mehr im vierten Kapitel. Auf diese Weise liBit sich
mlgen, daB das Ideal q = (F,, F,) mit

Fy=zy— 2, Fy= 22" — 20207, + 2°
ein Primirideal ist (vgl. Beispiel 3 von 2.6.).

2.10. Primidre Potenzproduktideale

Dazu gehen wir von der Basisdarstellung (20) fiir quasiprimire Potenzproduktideale
T, aus. Zur Basis gehorten auch Potenzprodukte gu(%o, ..., Z,), fiir die gemiB der
Bedingung (19) ¢, = p; - #; mit p;==1 oder py(zy, ..., Zr—1), #4(, ..., %) galt. Wegen
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Rad 1, = (%, 3, ..., %p;) War dann p; € Rad t,, aber z; ¢ Radr,; das war zwar
mit der Eigenschaft ,,quasiprimér vertriglich, ist aber bei Primiridealen nicht
zuldssig. Mithin konnen Potenzprodukte g¢; in einer Basis fiir primire Potenzpro-
duktideale nicht auftreten; analog zu Satz 13 haben wir also

Satz 18. Primire Polenzproduktideale haben die Basisdarstellung

G = (Zo%, 2%, ..., zg'__fx P1s -+ Do) 27)

mit Rad q, =P, = (2o, 23, ..., Z,,) und beliebigen Potenzprodukten p;, welche nur von
Zg, Xy, - -+, Ty-y abhingen.

Die Potenzprodukte p;, ..., p, hingen zwar nur von z,, ..., %, ab, sind aber
ansonsten beliebig. Demzufolge werden primire Potenzproduktideale g, im all-
gemeinen keine Primidealpotenzen sein; mithin gilt

Satz 19. Primirideale sind im allgemeinen keine Primidealpok

2.11. Der Idealquotient q: a

Dieser Quotient wird hiufiger bendtigt. Nach der Definition des Idealquotienten ist
q : a die Gesamtheit der ¢ mit ca S q; diese Bildung wirft zunichst die Frage nach
dem Zusammenhang zwischen den Beziehungen a S q und a S p auf. Hier ergeben
sich formal die folgenden vier Moglichkeiten:

1. a S qAaa Sp. Dieser Fall ist moglich. Wegen (24) gilt p¢ S q S p; daraus
folgt die Implikation ¢ S q=> a Sp; zur Kennzeichnung der Fallunterscheidung
geniigt also der Hinweis a S q.

2. a S qgAaEp. Dieser Fall ist demzufolge sinnlos.

3. a £ g A a Sp. Dieser Fall ist dagegen sinnvoll, wenn (24) in der verschirften
Form pe S q < p gilt.

4. a & q A a g p. Dieser Fall ist sinnvoll, und wegen q S p gilt die Implikation:
a & p=> a g q; als Fallunterscheidung geniigt mithin a & p.

Wir haben also die drei Fallunterscheidungen

(4) agky,
(B) asSpradaq,
(©€) aSq

und untersuchen q : a fiir diese drei Fille.
Zu (C): Wegen Kap. 1, (141), gilt: a S g=>q:a = (1).
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Zu (A): q: a ist die Gesamtheit der ¢ mit ca S g, also ca € g fiir alle a € a. Wir
testen die vier Fille von (21) fiir ca durch:

(21a) besagt: ¢ € q A a € q; nicht moglich wegen: a ETp=>a L q,

(21b) besagt: ¢ § q A a € q; nicht moglich wegen: a Ep=>a L q,

(21d) besagt: c ¢ gAa § ACREqAA’E q=> ¢ EP Aa€ P, nicht moglich wegen
a g p. Es bleibt also nur noch (21c): c€ gAaad q iibrig. ¢ € q bedeutet aber
q:a S q; allgemein gilt (vgl. Kap. 1, (139)) q : a 2 ¢; mithin muB in unserem Fall
q:a = q sein.

Zu (B): In (24),p® S q S p, sei g der Exponent; esgilt also p¢ S q und pe-!  q;
es existiert also wenigstens ein Element ¢* mit ¢* € pe-! und ¢* ¢ q. Aus a S p und
c* € p-1 folgt c* - a S p¢ < q; mithin ist c* € g : a; wegen c* ¢ q gilt also

aSpragqg>q:aDq. (28)

Wir wollen zeigen, daB q : a quasiprimér ist mit Rad (q : @) = p und einem kleineren

Exponenten g. Wir zeigen dazu gemi (11)

prlcSq:acSy. (29)
Der Exponent g ist definiert durch

¢ Exponent von g: a:©p? S q:anptlEq:a. (30)
Unter Annahme von (29) gilt dann pecperr Sp? S q:a Sp, also p>p—1
= @ = 1, mithin — wie angekiindigt —

g<e. (31)

Nun kommen wir zum Beweis von (29). Wegen (B) gilt a S, a & q; daher
ergibt die Durchmusterung der vier Fille von (21) fiir ca S q folgendes:

(21a) besagt: ¢ € q A a € q; nicht moglich wegen a & g,

(21Db) besagt: ¢ ¢ q A a € q; nicht moglich wegen a & ¢,

(21¢) besagt: ¢ € q A a ¢ q; dieser Fall ist moglich und liefert

cEqSH. (32)

(21d) besagt: cd qaad gace € gAa’ € q; daraus folgt ¢ € pund @ € p. Dieser
Fall ist wegen a & q und a S p moglich. Zusammen mit (32) folgt: Firallec€q:a
gilt ¢ € p, also

q:aSp, (33)
womit der rechte Teil von (28) bewiesen ist. Fiir den noch fehlenden Nachweis von
prlcSq:a (34)

schlieBen wir so: Nach Kap. 1, (64), gilt a S ¢, also ab S ¢b; mit a S p gibt dies
pel.a Spel.p =pe S q,alsope-! S q: a, womit (34) und (29) bewiesen ist.
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AbschlieBend wollen wir zeigen, daB q : a sogar primér ist. Wir gehen aus von
becq:aundbgq:aundcqdq:a. Aus bec€ q:a und b4 q:a folgt abec S q und
ab & q; es existiert also ein Exponent v mit ¢* € q wegen der Primiridealeigenschaft
von q. Wegen q < q: a gemiB (28) folgt c' € q:a. Ausbc € q:aund ¢ ¢ q: a folgt
ach S q und ac & q; es existiert also ein Exponent ¢ mit b° € q < q : a, mithin ist
q : a ein p-primires Ideal.

Zusammenfassend haben wir also den

Satz 20. Ist in einem Noetherschen Ring R q ein p-primires Ideal und a ein be-
liebiges Ideal, so gilt:

(A) aEpeqia=q,
(B) aSpragEqeqgegiac(l), (35)
(C) aSqgeq:a=(1);
im Fall (B) ist § := q : a ebenfalls p-primdr mit g < o.
Der Beweis der Giiltigkeit von (&) folgt indirekt unmittelbar.

Die Bedeutung des Satzes 20 ergibt sich einmal daraus, da8 wir ihn beim Beweis
des Lasker-Noetherschen Satzes hiufig benutzen werden, zum anderen ist durch (B)
die Moglichkeit gegeben, Ketten von p-priméren Idealen zu konstruieren,

=S qGC " CQ1Sq =9,
die ihrerseits eine Bedeutung, u. a. in der Multiplizitdtstheorie, haben. Auf diese, von
W. GROBNER (vgl. [2] und [9]) entwickelte Theorie kénnen wir hier leider nicht
eingehen.

2.12. Reduzible und irreduzible Ideale, Zusammenhang mit Primar-
idealen und reinen Potenzproduktidealen
Definition 10. Ist @ = b n ¢ mit a b und a ¢, so heiBt a reduztbel ; andernfalls
heiBt a ein irreduzibles Ideal.
Satz 21. Jedes Primideal ist irreduzibel.

Beweis (indirekt). Angenommen, es wire p = anb mit p — a und p =b. Nun
gilt nach Kap. 1, (104), ab Sanb, also ab Sp und mithin a Sp oder b Sp
im Widerspruch zup c aundp < b.

Wir beweisen nun den wichtigen

Satz 22. Jedes nicht primire Ideal eines Noetherschen Ringes R ist reduzibel.
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Beweis. Da a nicht primir ist, existieren zwei Ringel te b, ¢ mit be € a,
b4¢a,c4a,c®q afiralle x € N*. Wir bilden die Teilerkette

a:(c)Sa: (@) ca:(F)S--ca: () =a: () =--, (36)

bei welcher nach der Teilerkettenbedingung von k an das Gleichheitszeichen gilt.
Dann ist

a = (a,b)n(a,c). (37)

Nach unseren Voraussetzungen stellt (37) jedenfalls einen unverkiirzbaren Durch-
schnitt dar, und es gilt offenbar a S (a, b) n (a, ¢*). Es bleibt zum Beweis von (37) zu
zeigen, daB jedes Element « des Durchschnittes Element von a ist. Fiir u gilt also

u=a,+n-b=ajt+r-c¢ mt a,q€a und r,r€R; (38)

mit ¢ multipliziert, folgt einerseits cu = ca, -+ r,bc; dabei ist rechts a, € a, bc € a;
mithin ist also

cu€a. (39)

Andererseits ist cu = cag + r, - ¢**1, mithin 7, . ¥ = cu — ca;. Wegen (39) und
a, € a ist also 7, - ¥+ € q, also r, € a: (c**1); wegen (36) ist a: (¢**1) = a : (c*), also
r3 € a: (), folglich

ra-FEa. (40)
Wegen a, € a folgt » € a aus (40) und (38), q.e.d.
Wichtig ist fiir uns vor allem die Kontraposition von Satz 22, also der
Satz 23. Jedes irreduzible Ideal ist primér.

Dadurch wird die Bedeutung der Primarideale fiir die von uns ins Auge gefafBten
Durchschnittsdarstellungen erkennbar.

Wir wollen nun irreduzible Potenzproduktideale charakterisieren.

Definition 11. Ein Potenzproduktideal heiBt ein reines Potenzproduktideal,
wenn gilt:

Reines Potenzproduktideal :<> q, = (z%, 2,2, ..., 2%3). (41)
Da (41) ein Spezialfall von (27) ist, gilt der
Satz 24. Jedes reine Potenzproduktideal (41) 13t p - primdr mitp, = (Zo, 21, +++y Zpy)-
Von R. KumMMER (vgl. KuMMER und RENscHUCH (1], Satz 11) stammt nun der

Satz 25. q, tst etn reines Potenzproduktideal < q, ist esn irreduzibles Potenz-
produkitideal.
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Beweis. (<): Esseiq, = (1), etwa g, = (p1, Pq, ---» Ps), €in irreduzibles Potenz-
produktideal, und wir nehmen indirekt an, q, wire nicht rein. Dann wire etwa

=%z -p mit =21, ¢ =1,

PNz =pnz =1,

Gu1 i= (%™ P, Pay --» Do) Gn2 i= (817 * P, Pay - Do)
es ist also q, = G,y und gy gy, mithin g, n q,, ein unverkiirzbarer Durchschnitt,
und nach Kap. 1, (137), ist g, = qx; N Ge- Das aber ist ein Widerspruch zur voraus-
gesetzten Irreduzibilitit von q,.

(=): Ist q, rein und nehmen wir indirekt an, q, wire reduzibel, so miite q, nach
den Sitzen 16 und 17 Durchschnitt von p,-primiren Idealen sein, der sich gemiB
Satz 16 auf den Durchschnitt q, = q.; n q.s zZusammenziehen laBt; aus (27) und
Kap. 1, (137), folgt aber durch Gradvergleich, daB dann q, kein reines Potenz-
produktideal sein kann im Widerspruch zur Voraussetzung bei dieser Beweis-
richtung.

Beispiel. qu = (2%, z1), Gas = (%, 21%), Gu1 0 Gea = (%% T4, 2o%2y).

Wir haben damit als Nebenresultat den

Satz 26. Es gibt reduzible Primérideale.

2.13. Die beiden Zerlegungssitze

Satz 27 (Erster Zerlegungssatz oder sogenannter Laskerscher Satz). Jedes Ideal a
aus einem Noetherschen Ring R tst als Durchschnitt endlich vieler irreduzibler Ideale
darstellbar:

a=jnjgn--nj und j, srreduzibel fiir A =1,2,...,1. (42)

Beweis. Ist airreduzibel, so sind wir fertig. Ist dagegen a = a,, n a;y und a = ay,
und a,, reduzibel, also a,; = ag; n az, und a,; < a,, und ay, rezuzibel, also a;, = ag,
n agg und ag < ay, usw. Es entsteht also eine echte Teilerkette a — a,; < a5, < ag

-, die nach endlich vielen Schritten abbrechen muB. Entsprechend schlieBt man
fiir a,,, gy, 03y, ..., woraus schlielich (42) folgt.

Dieser Satz ist ein ausgesproch: Exist: ; nur im Fall der Potenzprodukt-
ideale fiihrt er zu einer konstruktlven Methode. Dort wird sich auBerdem zeigen, da8
die damit gewonnene Darstellung noch ,,verkiirzbar‘ sein kann, d. h., es kénnen mit-

unter noch ein oder mehrere der j; gestrichen werden. Wir geben daher die

Definition 12. Die Dé,rstel]u.ng (42) heiBt unverkiirzbar, wenn kein j; gestrichen
werden darf.
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Es konnen aber immer noch verschiedene der j; dasselbe zugehorige Primideal
besitzen. Daher wollen wir die j; nach diesen zugehérigen Primidealen ordnen und
deshalb mit Doppelindizes versehen:

a=fyo--njy 0jnnenjy, 0o nj 0 njy, mit Redja=bp,, (43)

wobei die Primideale p,, ps, ..., p; alle voneinander verschieden sind. Nach Satz 16
ist dann

Qy:=1ju N -+* Ny, ein p,-primires Ideal,

Qs 1= fa1 0 -+ N ja, €in po-priméres Ideal,

Qe i=1k N -+ 0ju, ein p,-primires Ideal.
Somit haben wir

Satz 28 (Zweiter Zerlegungssatz von EMMY NOETEER). Zu jedem Ideal a aus einem
Noetherschen Ring R existiert eine unverkiirzbare Darstellung durch grofte Primdr-
komponenten

a=qn@n-+nq, mit Radgqg, =9, (x=1,...,k); (44)

dabei sind die ,,groften Primirkomponenten’ qy, ..., qx Primdrideale derart, daf thre
2ugehorigen Primideale p,, ..., p; alle voneinander verschieden sind.

Wegen Kap. 1, (112), folgt aus (44)
Rada =p;npygn--- np,. (45)

Dazu ist allerdings zu bemerken, daB aus der Unverkiirzbarkeit der Darstellung
(44) nicht auf die Unverkiirzbarkeit der Darstellung (45) geschlossen werden kann;
welche Primideale in (45) gestrichen werden kénnen, wird sich aus Satz 31 ergeben.

Aus (45) folgt auch eine Erklirung fiir die Bezeichnung ,,semiprim* in Kap. 1,
Definition 37.

214. Ein Kriterium fira:6=a

Aus dem zweiten Zerlegungssatz folgt der
Satz 29. Besitzt a die unverkiirzbare Darstellung (44), so gilt
a:b=aebgy, firalle x =1,2,..., k. (46)
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Beweis. («): Nach Kap. 1, (160) und (35 A), folgt dann
a:b=(q:0)n(q2:B)n--n(q:B) =q1ngen---ng =a.
(=): Wegen der vorausgesetzten Unverkiirzbarkeit der Darstellung (44) ist
Gz n-een@eDa. (47)
Wegen a : b = a gilt weiterhin
bSa>cSa. (48)

Wir nehmen nun indirekt an, die rechte Seite von (46) wiirde nicht gelten, es wire
also 0.B.d.A.

bSh (49)
und mithin
be S gy (50)

Aus (50) und Kap. 1, (104), folgt be(qz n-+- nq) Sbengen--- nq S a, also
5(5"1 (20 n q.)) Sa.

Wegen (48) ist dann be-? - (g, n -+ n g;) S a. Setzen wir damit das Verfahren fort,
so ergibt sich be-2. (g n--- nq) S a usw., schlieBlich b-(g2n+--nq) S a und
daraus g, n++ n g S a im Widerspruch zu (47). Also war die Annahme (49) falsch,
q.e.d.

Dieser Satz wird sich im folgenden als auBerordentlich wichtig erweisen. Die
Bedingungen b & p, fiir alle x = 1, 2, ..., k werfen die Frage nach der Eindeutigkeit
von p,, Py, ..., P; auf, die in den nichsten Abschnitten bewiesen werden wird.

Mitunter benétigen wir Satz 29 in der Kontraposition:

Satz 30. Besitzt a die unverkiirzbare Darstellung (44), so gilt:

a:b>aob Sy, fir wenigstens ein x € (1,2, ..., k). (51)

2.15. Isolierte und eingebettete Primirkomponenten, Hilfssitze

Definition 13. Besitzt a die unverkiirzbare Darstellung durch groBte Primir-
komponenten (44), so werden eingebettete und isolierte Primdrkomponenten wie
folgt definiert:

q; heiBt in q; eingebettet :< p, > p; A q, P a;. (52)
Existiert in (44) kein solches g; fiir q;, so heiBt q, eine isolierte Primdiirkomponente.
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Anstelle von (45) kann damit eine unverkiirzbare Darstellung fiir Rad a angegeben
werden: Sind die in (44) auftretenden Primirideale so numeriert, daB die Primir-
komponenten qj, ..., G, t90liert und Gy, ---, Qi eingebettet sind, so ist

Rada=p, n--- npy,,
in Worten:
Satz 31. Das Radikal eines Ideals a ist der Durchschnitt derjenigen Primideale,

die zu 1solierten Primdrkomponenten von a gehéren (vgl. auch Szisz [1] Satz 2.6.2,
S. 132).

Wir kniipfen nun an die im Kapitel 1 gegebenen Definitionen 17 und 18 fiir maxi-
male und minimale Ideale beziiglich einer Menge M an und wollen diese beiden
Definitionen auf den Spezialfall der endlichen Menge

M, := {P1, P2 o+ Pis P1, P2y -0, Byl (53)

von Primidealen anwenden; dies gibt:

p, mazimal beziiglich M, :& p; & p, AP, E P

(54)
x=2,..,k v=1,...1)
und

P, minimal beziiglich M, :<>p, 9, AP, £ 9y

. (65)
x=2,...k T=1,..,,0
Hieraus folgt unmittelbar

Hilfssatz 1. In (44) gilt:

P, 18t mintmal beziiglich M, < q, 1t tsolierte Primérkomponente von (44). (56)
Hilfssatz 2. Es gilt:

PrEPAPS CP=> P P (57)
Beweis. (57) folgt aus (6) fiir a =p, und p =y, und wegen p; = p,.

Hilfssatz 3. Sind q,, q Primdrideale mit den zugehirigen Primidealenp,,p aus M,,
so gilt:

P1 P AP, mazimal beziiglich M, = q:q, = q. (58)

Beweis. Wir untersuchen q : q, gemiB Satz 20.

Fall (C): Wegen p, & p miiBte g, = q sein; aus p* S q, Sp, undpe S qSp
folgt daraus p,» S q, = q Sp, also p,* —p, und nach (57) ergibt sxch mithin
p1 = p im Widerspruch dazu, daB p, maximal beziiglich M, vorausg war.
Fall (C) scheidet also aus.
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Fall (B): Aus q, S p und g, & q wiirde p,”* S p und nach (57) wieder p, S p
folgen; wegen p, =+ p wiire dann sogar p, — p im Widerspruch dazu, daB p, maximal
beziiglich M, ist. Fall (B) scheidet also ebenfalls aus.

Es bleibt also Fall (A), und mithin gilt (58).
SchlieBlich erinnern wir nochmals an die im Kap. 1, (160), hergeleitete Beziehung

(@ nagn---na):b=(a:b)n(az:6)n---n(a:b),

die wir gleich des 6fteren anwenden werden.

2.16. Der erste Eindeutigkeitssatz

Satz 32 (Erster Eindeutigkeitssatz von EMMy NOETHER). Besitzt a die unverkiirzbare
Darstellung durch grofte Primdrkomponenten (44), so sind die zugehorigen Primideale
1, Pay - -+, P eindeutig bestimmd.

Beweis. Angenommen, a besitzt zwei unverkiirzbare Darstellungen
A= NGeNn--NQe =0 Nnqg N+ NGy (59)

mit den zugehérigen Primidealen py, p,, ..., Py, Py, P2, +-+, Pr. Zu zeigen ist ¢ = k und
Pi =, bei geeigneter Numerierung.

Dazu sei 0.B.d.A. p, maximal beziiglich M,. Wir fithren den Beweis indirekt und
nehmen an, p, komme unter den Primidealen p,, ..., b; nicht vor. Wegen der voraus-
gesetzten Unverkiirzbarkeit beider Darstellungen (59) ist jedenfalls

G2 N Qg n-- 0> a. (60)

Wir berechnen nun a: g, auf zweierlei Weise. Einmal ist nach Kap. 1, (160), und
ferner wegen P, == p, und G, == g, nach (58)
G =@nq0n-nT):iq =@ :q)n@:q)n-n(@:q)
=§Haden--nfe=a,
also
a:q, =a. (61)
Entsprechend folgt
a:q=(quNnGan-+0qe):q =(q:q) 0 (G2:q1) 0+ N (qe 2 )
=M)ngn--nq,
mit (61) gibt dies a = gz n -+ n q; im Widerspruch zu (60).
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Also war die Annahme, da8 p, unter den Primidealen p,, ..., b, nicht vorkommt,
falsch. Bei geeigneter Numerierung ist also

P =0 (62)

Wir beweisen nun

_ 1) fir x=1,
: = 63
Qe * Q11 {q. fir x 41 (63)
und
- _ (1) fir z=1,
: = 64
Ge : Q11 { 3 fir t1. (64)

Aus Kap. 1, (171) und (58), folgt zunichst

o e )@ =(1) fir x=1,
q.-qm—(q.-qx)-m—{q':al fiir x4 1
und

o e [M)r@=(1) fir T=1,
q.~q1q.—(qi-q;)-q‘—{a':al fir T+1,
und hieraus folgen (63) und (64) aus (58), da §, ein Primirideal mit dem zugehérigen
beziiglich M, maximalen Primideal p, ist.

Wir berechnen nun a: q,3, auf zweierlei Weise. Einmal ist nach Kap. 1, (160)

und (63),

G = (qnqan s nqe): quly
=@ : @) N (G2 Q) 00 (Q:@T) =) ngen---ngy,
also
a:qd; =0qzn--naq (65)

zum anderen ist nach Kap. 1, (160) und (64),

a:qG =@ nG2n - nq):quly
=@ @) n@:qd@) - n(@e:q@m) =(1)nGen--- 0y,

also

a:q@y =q2 N0 NG (66)
Aus (65) und (66) ergeben sich mithin zwei Darstellungen fiir a : q,§,. Mit diesem
Ideal fithren wir nun dieselbe SchluBweise nochmals durch. Wir nehmen dazu
0.B.d.A. an, p, (oder B;) ist mazimal beziiglich M, := {p,, ..., Py, P2, +.., Pe}, und
schlieBen dann auf P, =p,. Entsprechend folgt Py =p;,..., 0 =p, und ¢t =£%,
q.e.d.
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2.17. Der zweite Eindeutigkeitssatz

Satz 33 (Zweiter Eindeutigkeitssatz von EMmy NoETHEB). In der Darstellung (44)
sind neben den zugehiorigen Primidealen auch die uoherten Primdrkomponenten eindeutig
bestsmmd, nicht aber die eingebetteten Primdrk

Beweis. Angenommen, a besitzt zwei unverkiirzbare Darstellungen
A=qNQeN--NG=0qeNGan-+- N g (67)

mit den zugehdrigen Primidealen p,, ps, ..., p;, also gemiB Satz 32 Rad q, = Red §,
=9y, ..., Rad g = Rad §; = p, und

pipy fir i (68)

Wir denken uns die Darstellungen (67) jetzt so geordnet, daB g, und §, isolierte
Primirkomponenten sind ; nach Hilfssatz 1, (56), ist dann p, ein minimales Primideal
beziiglich M,.

Wir setzen nun zur Abkiirzung

Ci=qg N Ny (69)
und

C:=Geneee N Qe (70)

Wiire fiir x = 2, ..., k nun q, S p,, so folgte p,* < q, S p,, also p,* S p,, mithin
P S 9y nach (57). p, =p, (x =2,..., k) ist wegen (68) nicht méglich; p, = p, ist
nicht méglich, da p, als minimal vorausgesetzt worden war. Die Annahme q, S p,
fithrt also auf einen Widerspruch; mithin ist g, & p, (x = 2, ..., k). Es existieren also
Elemente g, (x = 2, ..., k) mit g, € g, und g, ¢ p,. Nach Kap. 1, (104) und (69), ist
dann gugs ++- gk € 020 ++* G S ¢; Wegen g, ¢ p, ist andererseits gogs + - ¢ ¢ 9, also gilt

¢ Ep:. (71)
Ganz analog folgt
TED. (72)

Damit und mit Kap. 1, (160), und Satz 20, Fall (A), berechnen wir a:c und a:¢.
Zuniichst ist wegen (69) und (70) a =g, n¢ = @, n €, also
=(qnc):c
=@nd):ic=

II
3."

ron:e)=qn(l)=aq

i) n@:e)=q{n(E:0) S,
also

qSa. (73)
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Entsprechend erhalten wir
=(0,:¢)n(C:

a:T=(G,n?):
= (g =(@:0)n(c:

)=&n(1)=0
ne): Ch

3
T ne:8)Sa,

o e

also

6 Sa. (74)
Aus (73) und (74) folgt §, = q,. Entsprechend kann §; = q, fiir alle isolierten Primar-
komponenten q;, §; bewiesen werden; die Beweisfiihrung fiir ¢ = 1 war nur eine
Frage der Schreibtechnik, denn aus (56) folgt die Minimalitit aus der vorausgesetzten
Isoliertheit von q; und umgekehrt; statt ¢ bzw. ¢ hitte man dann g, n-+- n 4y
OGN0 bzw. §n-nqiuy NJuan+e-nf und x=1,2,...,¢s — 1,8 + 1,
«++, k zu setzen.

Fiir den Beweis der restlichen Behauptung von Satz 33 vergleiche man 2.20.

2.18. Ein Kriterium fiir zugehérige Primideale

Satz 34. Besitzt a keine eingebetteten Komp ten, so gilt:

P tritt in der Zerlegung von a

c .
als zugehdriges Primideal auf } Saspaapoa

Beweis. (=): Istetwap =p,,sofolgta =g, n--- nqs S q, Sp,. Nach Kap. 1,
(139), gilt allgemein a : p, 2 a; der Fall a : p, = a scheidet aber wegen Satz 29, (46),
aus, womit schon alles bewiesen ist. Bei dieser Beweisrichtung wurde die Isoliertheit
der Primirkomponenten iiberhaupt nicht benétigt.

(&): Aus a S p und (44) folgt .92+ qx S G NGz n---n g S P, alsonach Prim-
idealeigenschaft q; S p fiir wenigstens ein ¢, 0.B.d.A. q, S, also p,* S g, Sp,
mithin

PpEY (75)
nach (6). Wir benutzen nun die zweite Voraussetzung a :p > a. Es ist

AP =(q0qen--nqe):p =(q:p)n(g:p)n---n(qe:p)>a.
Wiire p & p,, fiir alle x =1,2,..., k, so wiirde g, :p = q nach Satz 20, Fall (A),
und daraus a :p = a folgen im Widerspruch zur Voraussetzung a : p > a. Also gilt
fiir wenigstens ein s € (1,2, ..., k)

PSP (76)
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Aus (75) und (76) folgt nunp, S p,;. Wire nunyp, < p, fiir wenigstenseins € {2, ..., k},
80 wiire g in @, eingebettet. Nach Voraussetzung sollten aber simtliche Primar-
komponenten isoliert sein; mithin ist p, S p; nur fiir ¢ = 1 erfiillbar, d. h. also
p; =p,. Dieses in (76) eingesetzt, ergibt

pEM. ()
Aus (75) und (77) folgt p =p,, q.e.d.

2.19.  Durchschnittsdarstellungen fiir quasiprimare Ideale

Ein Ideal r hie nach (10) quasiprimir, wenn Radt =y ein Primideal ist. Es sei
nunt = g n gy n--- n g, die unverkiirzbare Darstellung von t durch gréB8te Primir-
komponenten. Gemd8 Satz 31 nehmen wir an, da8 darin q, ..., g, alle isolierten
und qus1, -+ qi 2lle eingebetteten Komponenten sind; dann ist

Radrt=p,np20n- NPy (78)
Nach (10) ist aber andererseits Rad t =9, also bleibt wegen der Verschiedenheit

vony,,...,p, nur m = 1, also

Radr =p, (79)
und
T=0gqn(qan- 00, (80)

wobei @y, ..., q; in g, eingebettet sind, d. h., es gilt P, D P, Ps DO P1, .., P DO P1,
also auch p, npg n--- np, > 9, und gz =P qy, 43 D 1, -+ G P 1. Setzen wir nun
b:=@gynqgsn--- nqg 80ist also Radb =P, npyn--- npy D P,, also

Radb o p,;; (81)
weiter folgt durch Einsetzen in (80) die Darstellung
t=gq;nb; (82)

fiir quasiprimire Ideale gelten also (82) und (81). Das ist aber gerade die angekiindigte
Verschirfung von (26), mithin gilt der

Satz 35. Ein Ideal t aus einem Noetherschen Ring R ist genau dann quasiprimdr,
wenn (81) und (82) gelten.

Damit ergibt sich dann auch der nach (26) angekiindigte

Satz 36. Ein Ideal q aus einem Noetherschen Ring R ist dann und nur dann primdr,
wenn es quassprimdr ist und keine eingebetteten Komp ten besitzt.
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2.20. Mehrdeutigkeit der eingebetteten Komponenten

nicht eindeutig sind. Die Methode von HENTZELT und G. HERMANN (vgl. HEEMANN

[1], Satz 12) liefert bereits unendlich viele Moglichkeiten fiir eingebettete Kom-

ponenten. Im folgenden zweiten Beispiel wird gezeigt, da8 damit die Moglichkeiten

fiir die eingebetteten Komponenten keineswegs ausgeschopit sind; dies stellte erst-

mals R. Kmmn fest (vg] KummeR und RENScHUCH [1], Beispiel 3). Eine Methode,
Iche alle moglich ngebetteten Komponenten liefert, ist unbekannt.

Beispiel 1. Wir betrachten die nach Satz 18, (27), priméren Potenzproduktideale
G = (%o} 7%, Ze21), G = (2% 7% 2s)  und  Gupe = (%", 315 2%, TeZy%s)

mit den zugehdrigen Primidealen p,, = (zy, 2;) und P, = (%o, 2), 2;). Nach Kap. 1, Satz 50,
(137), ist, wie der Leser selbst nachrechnen mége,

Ga1 N Oam = Gy N Greg = 0, Wit 0, = (7% 2%, 2g7125);

nach Satz 13, (20), ist a, quasiprimér. Dabei sind gy, und q,g, in q,, eingebettet wegen
Prs D Pars Gam P Gz1s Gras P Gay. Wir vermerken noch, daB hier

Grss & Gam (83)

gilt, worauf wir noch zuriickkémmen werden.

Im folgenden soll an Beispielen gezeigt werden, daB die eingebetteten K t

Beispiel 2.
Pu1 = (@ 2))s Pas = (To» 21 Z3) DO P1»
U = (%% 2% 2eZ1)s  Qam = (%% 214 22%) D G
Qusa = (%0%, 2oy, 2'2y%, T2y, o2’y 11, 11%25%, 2125° 25%) D Oy
und
Q1 0 Gay = Gpy N Guge = G Mt ap = (2%, 20°y, 2?25 2,4, 2,%2%)

Nach der zitierten Theorie von HENTZELT und G. HERMANN folgt nun in unserem Fall, daB fir
gentgend groBes m die Ideale qugm:= (a,, p!™) Primidrideale mit a, = G N Gqep sind. Fir
m =1,...,5 ist das nicht richtig, sondern trifft erstmals fir m = 6 zu; der Leser mége dies
durch Nuhrechnen bestatlgen Fiir m 2 6 gewinnen wir mlt Gaam unend.hch vwle moghche ein-

ten, aber kei gs alle, wie die moglich g Primérkomp
ten (L, \md q,,,, zeigen. Es gilt dann
S Oazmtt © Gaam & 00 & Gy & Gz & Q22 & G- (84)
Dadurch wird unterstrichen, da8 hier Grm in emer noch zu prizisierenden Weise die einfachst
Zerlegung liefert, also die ,,beste* ei Primi te ist. Und gerade diese wird
durch die Theorie von HENTZELT und G. HERMANY nicht gewonnen
Beispiel 3. Wir bestiitigen die Durchschnittsd 11
a = (2% 2¢%y) = (%) n (2% azy + 2,) faralle a€ K. (85)

Fiir alle Elemente des Durchschnittes gilt G,z, = G,z,* + Gy(az, + 2,), also
Zo(Gh — Opzp — Gya) = Gy,
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folglich Gy = Hz,, mithin G; — Gz, — Haz, = Hz, und G, = Gyz, + H(az, + z,). Dann wird
Gy2y = Goxy? + H(az® + %pz;) mit Gy, H beliebig,

also
(%0) 0 (%o%, azy + 7) = (2%, azg® + 2o7,) = (%", Zo%1) = a.
Hier ist
P1=(%), G=(@han+z)Pa, P1= (@)D,
also 15'; a quuxpnmar Im Gegensatz zu den beiden vorigen Beispielen ist es hier nicht méglich,
die eing qq durch Oberideale zu ersetzen. Enthilt K unendlich viele

Elemente, die fu.r a in Fra.ge kommen kénnen, so sind durch g, unendlich viele eingebettete
Primirkomponenten gegeben.

Der Leser wird es als unbefriedigend empfunden haben, daB bei allen drei Bei-
spielen Durchschnittsdarstellungen vorgegeben waren, die dann bestitigt wurden.
Die Frage, wie man zu diesen Durchschnittsdarstellungen gekommen ist, blieb offen.
Fiir Potenzproduktideale werden wir dazu im iibernichsten Abschnitt ein brauch-
bares Verfahren angeben kénnen. Auch fiir beliebige Polynomideale ist die Be-
rechnung einer solchen Durchschnittsdarstellung grundsitzlich méglich; das ist
gerade Aussage der Theorie von HENTzELT und G. HERMANN. Sie liefert aber leider
keine praktisch durchfiihrbaren Methoden; dies liegt vor allem an der Schwierigkeit
der Berechnung der Grundideale. Lediglich bei Potenzproduktidealen ist dies ver-
hiltnismi8ig einfach, gibt dann aber — wie das zweite Beispiel zeigt — immer
noch kompliziertere Darstellungen als mit der eigens fiir Potenzproduktideale ent-
wickelten Methode.

Bei H-Idealen, welche keine Potenzproduktideale sind, ist daher ein gewisses
,,Probieren* derzeit wohl noch der giinstigste Weg: Unter der Voraussetzung, da8
die zugehorigen Primideale bekannt sind, werden fiir die Primdrkomponenten ver-
schiedene Ansitze ausprobiert und dann die Durchschnittsdarstellungen bestitigt —
oder auch nicht.

2.21.  Reduzierte Darstellungen

Definition 14 (von Emmy NoETHER). Die unverkiirzbare Darstellung durch gréBSte
Priméirkomponenten (44) heiBt reduziert, wenn keine der eingebetteten Primér-
komponenten durch ein Oberideal ersetzt werden kann.

So folgt im ersten Beispiel aus (83), daB die Darstellung a, = qy; N Gazg Dicht redu-
ziert ist. Fiir das zweite Beispiel folgt aus (84), daB die Darstellungen a, = g, N Qe
fir+ =2, 6,7, 8, ... nicht reduziert sind.

Man kénnte nun hoffen, durch die zusitzliche Forderung der Reduziertheit die
Eindeutigkeit der eingebetteten Primirkomponenten erzwingen zu kénnen. DaB dies
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L’ einesweys
jedocﬁ’zutriﬁt, zeigt das bereits von EMMy NOETHER angegeb dritte Beispiel
mit den Darstellungen (85), welche fiir alle @ reduziert sind.
Die Verwendung des Begriffes ,,reduzierte Darstellung* ist in der Literatur un-
einheitlich; so verwendet GROBNER in [8] den Begriff ,,reduzierte Darstellung als
Abkiirzung fiir ,,unverkiirzbare Darstellung durch gréBte Primarkomponenten®.

2.22.  Primirkomponentenzerlegung fiir Potenzproduktideale

Nach Kap.1, (109), galt (anb)+cS(a+¢)n(d + ¢). Wir wollen zunichst
zeigen, daB fiir Potenzproduktideale darin das Gleichheitszeichen gilt, also

(6x 0 Bay €)= (A, €) 0 (B C)- (86)
Dies folgt durch Nachrechnen aus Kap. 1, (137). Aus

= (D1, Ps)s be=(q0, ., @) und ¢ =(ry,...,7%)
folgt
(@ By, €2) = (PrUGr, oo PiliQes oo os Pa U Gt T1s oo o Tm) (87)

In (a,, c) n (by, ¢,) kommen zu den Basiselementen von (87) noch Potenzprodukte
der Typen 7, u 1, pyu 7 und gy u r; hinzu, dieaber alle durch ry, ..., r,, ausgedriickt
und daher gestrichen werden konnen ; mithin gilt (86). Durch mehrmalige Anwendung
folgt aus (86)

(Ba1 N Gxg 0222 0 Bxp, Cx) = (Ax1, C4) N (Br2, C) 0 ==+ 0 (Bpy C)- (88)
Es sei nun p; = zfpaty -« zjm (vgl. Kap. 1, (48)). Wir setzen

my=a  (i=1,..,m); (89)
dann ist also

Py =My Mg oo My, (90)

die Zerlegung von p, in teilerfremde Monome (89). Mithin ist m,; v my; = myy - myy;
aus Kap. 1, (136), folgt somit

(1) 0 (11ya) 0 -+ 0 (Mym,) = (May - g -« Moym,) = (B). ©1)

Setzen wir nun in (88) jetzt a,; = (my,;) fir ¢ =1,...,m,, also h =m,, ferner
Cx = (P2 +++s D), 80 folgt aus (91)

(P1s Pas o+ 03 Pa) = (My1y Pay ey Do) N2 0 (Mymyy Py oees Do) (92)
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Das ist eine sehr niitzliche Formel. Wahlt man nimlich p, geschickt genug (beispiels-
weise mit moglichst vielen Variablen und mdglichst niedrigen Exponenten), so kann
man in (92) sehr viele Basisel te und moglicherweise sogar Ideale streichen,
niimlich diejenigen Komp t Iche doppelt auftreten oder Oberideale anderer
Komponenten sind.

Jetzt wiederholen wir das Verfahren mit p, und (my;, p,, ..., ,) usw. Als Ergebnis
haben wir wegen Satz 24 den von R.KummEr in KuMmMER und RENscHUCH (1],
Satz 12, formulierten

Satz 37 (Zerlegungssatz von R. KuMMER). Ist a, = (py, ..., P,) ein Potenzprodukt-
sdeal und sind
Do = Mgy * Mgz =+ Mom, (0 =1,...,8) (93)
die Zerlegungen der Basispotenzprodukte in teslerfremde Monome

Moy =Tgme  (Tomg € (%) T15 200 Zn)) s (94)
80 18t
(Prs +ves D) = (Mg, My, oevs Migy) O (Mg, Mgy, ooy Migy,1, Mgg) 0 -0+
0 (Mmg e vs Mg (95)
eine im allgemeinen verkiirzbare Darstellung von (p,, ..., p,) als Durchschnitt irredu-
2ibler Potenzproduktideale gemif dem ersten Zerlegungssatz.
Beispiel 1. a, = (%!, 2,2, zy2,7,). Hier ist
=% my=2} my =2, My=2, My=2,
und (95) liefert
Gy = (1M1, Mgy, Myq) N (Mg, Mgy, Miys) 0 (Mg, Mgy, Mys)
= (%" 7" %) 0 (%% 7% 7,) N (%% 7,7, 7p)
= (7o, 7,%) 0 (%%, 71) 0 (2}, 2,2, 7).

Hier haben die ersten beiden irreduziblen Primirideale dasselb horige Primideal (zo, z,);
die unverkiirzbare Darstellung durch gro8te Primirkomponenten ist also

= (%" %% &") 0 (@ 2% 7).
Beispiel 2. a, = (27,2, 7%, 2%, 7,22;, 7,%2,%). Hier ist
My =2, My =Ty, My =2t my =2, my =2z,
My =2t Mg =2, my =20, mg =z,
und die Anwendung von Satz 37 liefert 3.1-1.2.2 =12 lrreduzlblo Ideale, von denenneun ge-

strichen werden konnen. Hier ist es praktischer, (82) meh den. Dies liefert
= (z,*%,%, 2oy 71Y) 0 (2%, 21) 0 (ZeP21, 7%, 7y, 247).
Enuprechend ist

(@223}, 2o 7,%) = (200 21%) 1 (%00 1%, 24%)
und
(%21, 2%, 3, 248) = (3, 2, 7,%) 0 (3, 7%, 7,%).
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Dies in a, eingesetzt und Oberideale gestrichen, folgt — wie der Leser zur Ubung selbst be-
stiitigen moge —

G = (%%, 2) 0 (@or 2%) 0 (&0, 71", 7")3
werden die beiden ersten Ideale nach Satz 16 zusammengezogen, so folgt die unverkiirzbare Dar-
stellung durch groBte Primidrkomponenten

8, = (@ ToZ1 2,%) 0 (7% 2,4, 24%).

DaB bei dieser Methode die Primirkomponenten im Sinne von EMMy NOETHER
reduziert sind, ist einleuchtend und wurde von R. KuMMER bewiesen (vgl. KuMMER
und RENscRUCH [1], Satz 13c¢). Zugleich wurden hiermit die Zerlegungen bei den
beiden ersten Beispielen von 2.20. motiviert.

2.23. Ausblick auf weitere Zerlegungssitze

Die Schulbezogenheit der Zerlegungs- und Eindeutigkeitssitze zum Satz von der
eindeutigen Primzahlzerlegung ist offenkundig; der Leser ersetze dazu Durchschnitte
durch Produkte und alle Ideale durch Hauptideale und deute dann die einzelnen
Beweisschritte. Eingebettete Komponenten gibt es nicht in Z, da Primzahlen keine
Teiler haben. Man vergleiche dies mit dem Eindeutigkeitsbeweis von ZEEMELO ge-
miB ML Bd. 1, 3.7., (51)f.

Diese Betrachtungen liefern einen weiteren Aspekt zur Einschitzung der Schwierig-
keiten, vor denen jeder Lehrer steht, der diese Probleme an zwélfjihrige Schiiler
heranzutragen hat.

Daneben wird sich der Leser aber auch fragen, welche Axiome zu den Eigenschaften
Noetherscher Ringe hinzukommen miissen, um zu Produktzerlegungen und schlieB-
lich zu Produkten von Primidealpot; zu k¢ Dies soll im folgenden kurz
angedeutet werden, wobei wir von der Darstellung von vaAN DER WAERDEN (vgl. [10],
§§ 134—140, vor allem SchluB von § 140) ausgehen (vgl. auch GRGBNER [8], Kap. V).

Mit Riicksicht auf die gewiinschten Anwendungen miissen wir dazu jedenfalls
voraussetzen, daB der Ring R, von dem wir ausgehen, ein Integrititsbereich I ist,
also keine Nullteiler besitzt. In I werden also Ideale betrachtet. Wir betrachten dann
folgendes Axiomensystem:

(AI)  Teilerkettenbedingung, d. h., I ist ein Noetherscher Ring.

(AII) Jedes Primideal ist teilerlos, d. h., jedes Primideal besitzt keine echten
Oberideale auBler (1).

(AIII) I ist ganz-abgeschlossen im Quotientenkérper Z.

Zum ungefihren Verstindnis von (A III) geben wir einige Erliuterungen. Ist R
ein kommutativer Ring mit Einselement, 7' ein Kérper, R — T', 80 heiBt ein Element
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t € T ganz in bezug auf R, wenn ¢ einer algebraischen Gleichung
P g™ g™ttt + =0 mit r€eR
geniigt, deren hochster Koeffizient also 1 ist.

Beispiel. 7 = @, R = Z, alle Elemente z = a/b aus @ geniigen der Gleichung bz — a2 =0
mit @, b € Z; wird 0. B.d. A. von a und b noch die Teilerfremdheit gefordert, so ist a/b € Z genau
dann, wenn b = 1 ist.

Man zeigt dann verhédltnismaBig leicht, daB die in bezug auf R ganzen Elemente
in T einen Ring § bilden.

Ein Ring 8 heiBt ganz-abgeschlossen in einem Korper T, wenn jedes in bezug auf S
ganze Element von T' zu S gehért.

Ein Integrititsbereich I heiBt ganz-abgeschlossen, wenn er ganz-abgeschlossen in
seinem Quotientenkérper X ist. Dies also wird in (A III) fiir I vorausgesetzt.

N hr werde zusa gestellt, was aus der Giiltigkeit von (A I) bis (A III)
gefolgert werden kann:

Aus (AT) allein folgen, wie wir in diesem Kapitel gezeigt haben, der erste und
zweite Zerlegungssatz und die beiden Eindeutigkeitssitze, in Stichworten: Dar-

tellung als Durchschnitt von Primiridealen, zugehorige Primideale und isolierte
Primirkomponenten sind eindeutig.

Aus (A T) und (A II) folgt, wie man bei vaAN DER WAEEDEN nachlesen kann, da8
jedes Ideal als Produkt von Primiridealen darstellbar ist. Nach (A II) sind dann
die zugehorigen Primideale dieser Primirideale teilerlos; solche Primirideale heiBen
nach DEDERIND einartige Ideale. Jedes Ideal ist also Produkt einartiger Ideale, und
diese Produktzerlegung ist eindeutig.

Diese Theorie geht auf DEDEKIND zuriick und wurde von KRULL weiterentwickelt.

Aus (AT) bis (A III) folgt schlieBlich, daB jedes Ideal eindeutig als Produkt von
Primidealpotenzen darstellbar ist (vgl. Kap. 1, (74)). Solche Integrititsbereiche heiBen
auch Dedekindsche Ringe oder Dedekindsche Integrititsbereiche oder Dedekindsche Be-
reiche. Hierzu sei auf GROBNER [8], Kap. V, § 6, und auf DEDERIND selbst, etwa [1],
verwiesen.

Ist schlieBlich I noch ein Hauptidealring, also auch jedes Primideal ein Prim-
hauptideal und jede Primidealpotenz eine Primhauptidealpotenz, so haben wir
wieder den ZPE-Satz.

Aus (A T) und (A III) folgt aber keineswegs (A II). Es ist daher sinnvoll, Integri-
titsbereiche zu betrachten, fiir die nur (A I) und (A III) gelten, vgl. vaAN DER WAER-
DEN [10], § 140; die dort dargestellte Theorie geht auf E. ARTIN zuriick.
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3.1.  Einleitung, Definitionen

In diesem Kapitel wollen wir uns mit inhomogenen und homogenen nichtlinearen
Gleich t bef oder — in unserer Sprechweise — mit den Nullstellen
von P- Ides.len und H-Idealen. Es scheint dazu ratsam, die entsprechenden Uber-
legung enlaufend mit der Theorie derlinearen Gleichungssystemein Verbindung zu brin-
gen, sowohl zur Erliduterung als auch zur besseren Herausarbeitung der Unterschiede.

Der Leser mige aber bitte von vornherein nicht zu viel erwarten. Er moge be-
denken, daB im nichtlinearen Fall von vornherein Grenzen gesetzt sind.

Einmal kénnen wir schon deshalb im allgemeinen nicht mit geschlossenen Losungs-
formeln aufwarten, weil Gleichungen fiinften und hoheren Grades nicht durch Ra-
dikale auflésbar sind (vgl. MfL Bd. 3, 14.8.).

Demgegeniiber konnen wir fiir Gleichungen vierten, dritten und zweiten Gra-
des Formeln derart angeb daB beispielsweise fiir quadratische Gleichungen
2? + px + ¢ =0 jede Losung fiir speziell gewihlte Koeffizienten p, ¢ durch
entsprechende Spezialisierung in der fiir unb P, ¢ berechneten Losung

yl.z=—l2"i1/'§-q

gewonnen werden kann.

Auch das Vorgehen bei linearen Gleichungssyst mit quadratischer Koeffi-
zientenmatrix kann man unter diesem Aspekt sehen: Ein solches System ist lgsbar,
wenn die Koeffizienten Unbestimmte sind. Aus dieser durch die Cramersche Regel
gegebenen Losung bekommt man auch bei speziellen Koeffizienten die Losung, hat
dabei lediglich die Einschriinkung zu beachten, daB die Spezialisierung so erfolgt sein
muB, daB die Koeffizientendeterminante det A4 == 0 bleibt (vgl. MfL Bd. 3, 8.3.).
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Und damit kommen wir zu einem zweiten bemerkenswerten Unterschied im nicht-
linearen Fall, der in der algebraischen Geometrie zu vielen Abhandlungen iiber
,,Spezialisierungsprobleme* Anla8 bot: Es gibt Fille, wo man Losungen im speziellen
Fall nicht durch Spezialisierung der Losungen im allgemei Fall gewinnen kann.
Zur Theorie der Spezialisierungen sei auf das Buch von O.-H. KELLER [2] verwiesen.
Wir geben dazu ein berithmtes Beispiel in der Darstellung von VAN DER WAERDEN
an (vgl. [2]).

Es sei 4 eine Unbestimmte und als Gleichungssystem in K (1)

(21 — o) (e® — zx3) =0,
Zg(@o® — x1%z3) = 0, (1)
23— Az, =0
gegeben. SchlieBt man die triviale Losung y, = y; = y, = 0 aus, so folgt
Y2 =2y,
¥o* = M®.

Sind 4, 8, 8; die dritten Wurzeln aus 1 im Korper 2 > K(2), so hat (1) die Lé-
sungen

8 A 8
hif1 ), k|1 ), Ra[1 ] mit Bk, hkyky€ L,
2 i 2

0

die fiir A = 0 in die eine Losung % (1 ) iibergehen.
0
Dagegen geht (1) fiir A = 0 iiber in

(21 — Zo) (%e® — 21%2,) =0,

Za(@e® — 7y%2) =0, ¢ =

(%1 — @) 2® =0,} @

z, =0;
2 =0

also hat (2) die beiden Lésungen

0 1
El1), m|1 mit kb € 2,
0 0

von denen sich die zweite nicht durch Spezialisierung der Losungen von (1) ergibt.
Dagegen schligt sich der bei linearen Gleichungssystemen wesentliche Unterschied
zWwischen dem inhomogenen und dem homogenen Fall auch bei nichtlinearen Glei-
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chungssystemen nieder (vgl. MfL Bd. 3, 5.1.): Auch hier gibt es im inhomogenen
Fall wirklich unlésbare Gleichungssysteme.

Wir miissen daher zwischen inhomogenen P-Idealen und H-Idealen streng unter-
scheiden. DemgemiB werden Definitionen und Sitze im folgenden getrennt fiir
P-Ideale und H-Ideale gegeben. Zur Vereinfachung wollen wir jetzt K als algebraisch
abgeschlossenen Korper der Charakteristik 0 voraussetzen (vgl. Kap. 1, Definition 21,
und MfL Bd. 3, 13.7.).

Definition 1. (¥, ¥s, ..., ¥s) mit 3, € K (£ =1, 2, ..., n) heiBt Nullstelle des in-
homogenen P-Ideals (a) = K[z, 3, ..., Z,], wenn f(y,, ¥3, ..., ¥p) = 0 gilt fiir jedes
Polynom f(zy, z3, ..., Z,) € (a).

Nach Kap. 1, Satz 12, ist K[2,, 75, ..., z,] ein Noetherscher Ring; mithin existiert
eine Basisdarstellung (a) = (f,, f2, .., f;). Dann ist also
fi(y1, Y2 oo Ya) =0,
lz(ylx Y2) ooy .'I.) =0,

feWr Y - ya) = 0.

@)

Da nun f € (a) und (fy, fs ..., f:) eine Basis von (a) ist, existieren Polynome
g1, G2 + -+, G¢ Mt

f(@1s ooy Za) = J2(@1, oo s Tp) - fr(@1, oo0y Tp) o0
+ gi(@y, ooy T4) - fel@y, s ),

und es ist f(gy, ..., ¥s) = O wegen (3). Aquivalent zu Definition 1 ist also die

Definition 2. (y;, Y2, ..., ¥s) mit y € K (k =1, 2, ..., n) heiBt Nullstelle des in-
homogenen P-Ideals (a) = K[z, ..., z,] mit (a) = (f,, ..., fr), wenn (3) gilt; gleich-
zeitig heiBt (yy, ¥s, ..., ¥a) LOsung des inhomogenen algebraischen Gleichungssystems

fr(®1, T2y o0s 24) =0,
fa(@1, T3y .o, 4) =0,

(4)

dabei konnen (y,, ¥5, ..., ¥») al8 Punkte im n-dimensionalen affinen Raum gedeutet
werden; die Gesamtheit dieser Punkte heiBt Nullstellengebilde von (a), kurz NG ((a)),
neuerdings auch algebraisches System.
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Entsprechend hat man

Definition 3. (yo, #1,...,y¥s) mit ¥, € K (k =0,1,...,n) heibt Nullstelle des
homogenen H-Ideals a — K[z, 2,, ..., z,] mit a = (F,, ..., F,), wenn

N A

................... ®

Fo(Yo, 415+, Y) =0
gilt; (Yo, 91, -+, ¥a) heiBt gleichzeitig Lésung des homogenen algebraischen Qleichungs-
systems

Fy(%gy @1y oeey 24) =0

Fy(Zg, @y, o0y Z4) =0

()

F (%9, @y, -+, Ta) = 03

dabei kénnen (y,, ¥y, ..., ¥s) als Punkte im n-dimensionalen projektiven Raum ge-
deutet werden; die Gesamtheit dieser Punkte heiBt Nullstellengebilde von a, kurz
NG (a), neuerdings auch algebraisches System.

Die Besti g aller Losungen eines algebraischen Gleichungssystems ist also
leichbedeutend mlt der Bestimmung aller Nullstellen des entsprechenden Ideals.
Tst das Nullstellengebilde die leere Menge, also NG ((a)) = @, so existiert keine Null-
stelle und umgekehrt; NG ((a)) = @ bedeutet demnach, daB das Gleichungssystem
unlésbar ist.

Sind in (4) die Polynome f,, fs, ..., f; linear, also f, = [, mit

bh=ay+an@ + a2+ -+ 0% (b =1,2,...,8 apo = —by), (7)

s0 geht (4) in ein lineares Gleichungssystem iiber, welches fiir den Fall, daB a,, ..., a;y
nicht alle gleich Null sind, inhomogen ist (Kap. 1, (50)). Wenn es 15sbar ist, dann
kann die ,,vollstindige Losung* derart angegeben werden, da

di=n—7r (8)

der n Koordinaten des Lésungsvektors gleich beliebigen Pa: tern ¢, ..., ty gesetzt
werden kénnen, also etwa

Y=ty Y=l 0 Y, =1ls, 9)

wihrend die iibrigen y; lineare Funktionen in ¢,, ..., ¢; sind. Diese vollstindige Lsung
gewinnt man am besten aus dem Gaupschen Algorithmus (vgl. MfL Bd. 3, SchluB
von 5.4.). In der linearen Algebra setzt man vielfach firr z,, 2,, ..., z, zusitzlich
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eine ,,geeignete Numerierung* derart voraus, daB

Y1 =C0 + tou + -+ + teCua,
Yo = Cg0 + £1Cay + -+ + l4Caa)

Yr =Cro + biCrt + +-+ + taCra,

10)
Y1 = b, a0
Yrez =12,
Yn =1

gilt. Dasbedeutet, da8 man beim GauBschen Algorithmus nacheinander z;, 2,, ..., Z,;
eliminiert und dadurch schlieBlich zu einer solchen ,, Trapezform* gelangt, bei welcher
das Trapez aus einem Rechteck durch Wegschneiden eines Dreiecks auf der linken
Seite entstanden ist; aus dieser Trapezform folgt dann (10).

Setzt man beim GauBschen Algorithmus jedoch das Eliminationsverfahren derart
an, daB nacheinander z,,,,,..., Ty_(;-2) = g2 eliminiert werden, so folgt bei
geeigneter Numerierung eine Trapezform mit einem Trapez, welches aus einem
Rechteck durch Dreiecksabschneiden auf der rechten Seite entstanden ist. Wir haben
dann

n=t,
Ya =13,
Yo =ta, (11)

Yar1 = Cger0 + a1 + ¢+ + Carras

Yn =0Cno + t1Ca1 + ++ + teCpa

als vollstindige Losung.

Entsprechend kann man aus (9) zu einer vollstindigen Losung gelangen. In allen
diesen Fillen bedeutet der Begriff ,,vollstindige Losung*, daB siamtliche Losungen
von

U(xy, %oy ..oy %) =0,
.................. (12)

Uiy, Zgy oeny a) = 0

durch Parameterspezialisierung aus (9) bzw. (10) bzw. (11) folgen.
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Ersetzt man nun in (10) die Parameter ¢,,...,¢; wieder durch y,.,,...,%, und
Y1y oos Yp» Yre1s +++» Yn durch z,, ..., z,, so gewinnt man das Gleichungssystem (12)
oder ein zu (12) dquivalentes Gleichungssystem (vgl. MfL Bd. 3, 5.1., Definition 4),
aus welchem sich [, ..., I; durch Linearkombinationen ergeben (vgl. MfL Bd. 3, 5.2.,
Satz 1). Setzen wir

0:=b ... b)), (13)
80 kénnen wir also sagen: Die vollstindige Losung ist auch dadurch charakterisiert,

daB fiir lineare Polynome

Ui=Uy,onn a) = G + @2y + -+ + 2y (14)
gilt:

Ui, oo Yn) = 0= Uy, ooy ) € (D). (15)
Zum gleichen Ergebnis wiiren wir von (11) oder (9) aus gelangt; ganz entsprechend
hitten wir im homogenen Fall mit Linearformen

L(%g, @y, +++) Tn) 1= GoTp + @17y + ++- + BuZy
schlieBen kénnen.

Die durch (15) gegebene Charakterisierung vollstindiger Losungen lit sich auf
den nichtlinearen Fall iibertragen und fiihrt uns zum Begriff der ,,allgemeinen Null-
stelle®, mit dem wir uns im folgenden Abschnitt 3.2. ausfiihrlich befassen werden.

Beispiel.

0 =0nlply)
h=o+20+2,—4, L=25+45,+25,—8, =3z —45,+225—1.
Die vollstindige Losung des Gleichung L, =0,l,=0,1l,=0ist dann

Y=—T+8t yy=¢t y,=11— 10t

mit

Aus ihr folgt lOy,+y,—ll—01d in ¢, und dsraus folgt I,* := 10z; + 2, — 11 € (I), was

man durch 4* = 3], — I, atigt. Aus der vollstindi Lésung folgt weiterhin
y; — 8yy + 7 =0id.infund d&rn.us L*:= z — 8, + 7 € () mit der Darstellung },* = —I, + I,
So kann man aber nur bei unb hlieBen. Setzen wir etwa ¢ = 1, so wird

(1) = (1) = 1, also y,(1) — y4(1) = 0 aber z; — x, 4 (I). Der Leser mdge nachrechnen, da8
h=h*+5L* L=2*+2,°* L=3,*+2"

gilt. Ist (1*) = (I,*, 1;*), so gilt also (1) = (I*). Somit ist (I, Iy, };) keine Minimalbasis fir (I),
sondern (},*, 1,*). Hier ist also ¢ = 3, r = 2, n = 3, d = 1 in Ubereinstimmung mit einem Para-
meter ¢ in der vollstindigen Lsung.

s hels (Meich +

Wir werden sehen, daB die Verhiltnisse bei
anders liegen. Wir geben daher abschlieSend noch Deflmtlonen, welche auf dle unter-
schiedliche Situation bei nichtli Gleichungssy hnitten sind.

&
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Definition 4. Zwei nichtlineare inhomogene Gleichungssysteme
fi@y, ..., z,) =0, fHi*@y o0s z0) =0,
............... und (16)
f@y, ..0r 2s) =0 fo(@, o za) =0
mit den zugehorigen P-Idealen (a) = (fy, ..., f;) und (a*) = (f,*, ..., f{») heiBen ideal-
dguivalent, wenn (a) = (a*) ist.

Definition 5. Zwei nichtlineare inhomogene Gleichungssysteme (16) mit den zu-
gehorigen P-Idealen (a) = (f;,...,f;) und (a*) = (f,*, ..., /&) heiBen ldsungsdqus-
valent, wenn NG ((a)) = NG ((a*)) ist.

Definition 6. Zwei nichtlineare homogene Gleichungssysteme
Fy(%o; T1s o Zy) =0, Fy*¥(zg, 2y, ..., Z4) =0,
................... . L n
F (2, %1y 000, 2a) =0 Fiu(@o, @1y ovvy @p) =0

mit den zugehérigen H-Idealen a = (Fy,..., F,) und a* = (Fy*,..., F%) heiBen
sdealdquivalent, wenn a = a* ist.

Definition 7. Zwei nichtlineare homogene Gleichungssysteme (17) mit den zu-
gehorigen H-Idealen a = (F,, ..., F,) und a* = (F,*,..., F%) heiBen losungsdqui-
valent, wenn NG (a) = NG (a*) ist.

Die Definitionen 4 und 5 bzw. 6 und 7 sind jetzt keineswegs dquivalent. Das liegt
daran, daB sich (15) nicht einfach iibertragen laBt (vgl. 3.7., 3.11.).

3.2.  Aligemeine Nullstellen

Definition 8. Ist (a) = K[z, ..., z,] ein inhomogenes P-Ideal und (a) 3 (1), so
heiBt (yy, ..., y,) eine allgemeine Nullstelle von (a), wenn gilt:

11 -3 Yn) =0 & f(z1, ..., 74) € (3). (18)

Bemerkungen zu Definition 8:

1. Die Forderung (a) == (1) ist offenbar notwendig fiir die Existenz einer Nullstelle
des P-Ideals (a).

2. In der Richtung (&) ist dies die iibliche Definition der Nullstelle; die ent-
scheidende Forderung ist die Giiltigkeit von (=>).



3.2. Allgemeine Nullstellen 106

3. In (18) bedeutet f(y,,...,¥s) =0 das identische Verschwinden in gewissen
Parametern ¢, ..., {3, kurz id. in ¢,, ..., ¢;, von denen y,, ..., ¥, noch abhingen; vgl.
(10) und (11) fiir den linearen Fall.

Satz 1. Besitzt das P-Ideal (a) = K[z, ..., z,] eine allgemeine Nullstelle, so st (a)
etn Primideal.

Beweis. Wir konnen hier ebenso schlieBen wie in Kap. 1, 2.2., Beispiel 3, wo
der Satz 7 die entsprechende Aussage fiir H-Ideale darstellt.

Es ist also keine Einschrinkung, wenn (18) nur fiir Primideale definiert wird:

Definition 9. Ist (p) = K[z, ..., z,] ein inhomogenes Primideal und (p) # (1),
80 heiBt (yy, ..., ¥,) eine allgemeine Nullstelle von (p), wenn gilt:

fg1s s Ya) = 0 & f(@y, ..., 74) € (P). (19)
Entsprechend schlieBen und definieren wir fiir H-Ideale:

Definition 10. Ist p = K[z, z,, ..., z,] ein homogenes Primideal, so heit
(Y0s Y1 - +» Ya) eine allgemeine Nullstelle von p, wenn gilt:

F(Yo, Y15 -+ Ya) =0 & F(@o, 7y, ..., Zp) €9 (20)
Aus den Bemerkungen im AnschluB an (15) folgt dann

Satz 2. Fiir lineare Gleichungssysteme gilt:

1. Die Begriffe ,,vollstindige Losung'‘ und ,,allgemeine Nullstelle* stimmen iiberein.
2. Die zugehorigen Ideale (1) bzw. | sind Primideale.

In 3.4. werden wir sehen, daB 1. im nichtlinearen Fall nicht mehr zutrifft.

Bei Betrachtung von linearen Vektor-Parameterdarstellungen in der analytischen
Geometrie geht man im allgemeinen weder von (10) noch von (11) aus, vielmehr
von Darstellungen der Gestalt

Y1 =6y + hon + -0 + e,
......................... @1)
Yn =0Cno T+ liCm + *+* + luCaa

und schliet von (21) auf ,,parameterfreie Gleichungen* (vgl. BREEMER und BELENER
[1], 1.3.1,, 4.2.2.). Man fordert dann zweierlei:

C1y Cid
-(A) Die Vektoren{ : |,...,|{ : | sind linear unabhingig.

Cm1 Cnd
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(B) Die Parameter ¢,, ..., t; konnen beliebig gesetzt werden; es existiert also keine
Abhiingigkeit f(t,, ..., t;) = 0 zwischent,, ..., ts, wobei f(u,, ..., ug) € K[u,, ..., u4] ist.

Aus (B) folgt, daB es dann wenigstens eine Kombination 3y, ..., 8, derart gibt,
daB y,, ..., ¥;, als Parameter gesetzt werden kénnen, denn andernfalls wiirde aus
der Abhingigkeit von g, ..., ¥;, eine Abhéngigkeit f(¢, ..., t) = 0 folgen im Wider-
spruch zu (B). Bei geeigneter Numerierung der Variablen folgt dann wieder (10)
bzw. (11).

Zusammenfassend ergibt sich also aus (A) und (B):

Satz 3. Bei linearen Parameterdarstellungen (21) mit (A) und (B) sind die Para-
meler ¢y, ..., ts tn dieser Anzahl unbedingt erforderlich, um (19) zu sichern.

Entsprechend miissen im nichtlinearen Fall die y; in einer allgemeinen Nullstelle
(15 +++> Yu) DZW. (Yo, Y1, .-+, Ys) auch noch von Parametern ¢,, ..., t; bzw. &, ¢y, ..., 4
abhingen, um (19) bzw. (20) zu sichern.

Definition 11. Dje Parameter ¢,, ..., t; in einer allgemeinen Nullstelle
(9100, -+ s ta)s -5 Yalts, -, ta)

eines inhomogenen Primideals (p) = K[z, ..., ,] heiBen unbedingt erforderlich, wenn
es nicht moglich ist, mit einer kleineren Anzahl die Bedingung (19) zu erfiillen.

Definition 12. Die Parameter ¢y, ¢,, ..., {5 in einer allgemeinen Nullstelle
(9oltos b1y +ves ta)s o Ynltos by +-s ta))

eines homogenen Primideals p < K[z, 2y, ..., Za] heiBen unbedingt erforderlich, wenn
es nicht méglich ist, mit einer kleineren Anzahl die Bedingung (20) zu erfiillen.

Beispiel fiir den homogenen Fall.
Yo = t™ Y1 = PN + Ta), o = (T +TI™L Yy = (1 + T)™
Hier kann 7, 4 7, =, gesetzt werden, und es ist d = 1.
Ebenso wie im Fall linearer Parameterdarstellungen folgt dann
Satz 4. Ist (p) ein inhomogenes Primideal aus K[z,, ..., z,] mit der allgemeinen
Nullstelle (yy, ..., yn) und

% =%t . t),

Yn = Yalts ..+ ta),
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worin ty, ..., t; unbedingt erforderliche Parameter sind, so existiert wenigstens eine Kom-
bination i,, ..., is derart, daB y,,, ..., ¥, als Parameter gesetzt werden kinnen, also

¥, = b*,
Y =4 @2)
Yi, =",

und die ibrigen y, algebraische Funktionen von yy, y,,, ---, ¥i, sind, d. k.,

Ye & (Y1 Y - Yi)
geniigt einer algebraischen Gleichung
@i - Y10 Ye) = 0. (23)
Definition 13. Ist (p) ein inhomogenes Primideal aus K[z,, ..., z,] und gilt (22)
und (23), so heiBt 3y, ¢, ..., 4 eine geeignete Numerierung fiir (p).

Satz 5. Ist p ein homogenes Primideal aus K[z, 2y, ..., x,] mit der allgemeinen
Nullstelle (yo, Y1 - -+, Ya) und
Yo = Yolbo, t1; -+, ta),
Y1 =Yilbos by -0y b)),
Yn = Yallo, b1y -+, ta)

worin by, by, ..., tq unbedingt erforderliche P ter sind, so existiert igstens eine
Kombination 1,3y, ..., %4 derart, daf yi, Y, ..., ¥i, als P ter gesetzt di
kénnen, also

Yi, = b*,
Y, = 4H*, 24)
Yi, = tg*,

und die iibrigen y, algebraische Funktionen von y;, yi,, - .-, ¥, 8ind, d. h.,
Yi & (Yig Yips -+ Yi,)
geniigt esner homogenen algebraischen Qleichung F(y,, ¥, --., ¥i,) = 0.

Definition 14. Ist p ein homogenes Primideal aus K[z, 2,, ..., z,] und gilt (24)
und F(y;, ¥, -+ Yip ) = O fiir alle y, § {yi,, Yi,s +-+» Yig}» 80 heibt 4y, 4y, ..., 44 eine
geeignete Numerierung fiir p.
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3.3. Eindeutigkeit von d, Austauschsatz, Dimension von p
Satz 6. Die Anzahld der unbedingt erforderlicken Parameter in den allgemeinen Null-
stellen eines inhomogenen Primideals (p) = K[z,, ..., z,] 18t eindeutig bestimmd.
Beweis. Es seien

% =%t .. L),
............... (26)
Yu = Yalts, - ta)

und
% =%, .5 7),
................ (26)
Yn = Ya(T1s ++0, T0)

zwei verschiedene allgemeine Nullstellen von (p) mit jeweils unbedingt erforderlichen
Parametern. Es sei o. B. d. A.

é=d. (27)
Aus (25) folgt dann eine ,,geeignete Numerierung**

u, = 4%,

........ (22)

Y, = 4,

wobei nach dem vorher Gesagten mit ¢,, ..., {; auch ¢,*, ..., #;* unbedingt erforderliche
Parameter sind. Die Parameterdarstellung (26) beinhaltet fiir die Indizes i,, ..., t4

Yi, = Y71, .- 1),
................. (28)
Yie = Y1,(T1, -+, T);

aus (22) und (28) folgt
W =y (r, .. m),
................. (29)
t* =yt 00 T);

mithin gilt wegen (27) im Fall § < d nicht, daB die Parameter ¢,*, ..., ¢;* und damit
t, ..., t; unbedingt erforderlich sind im Widerspruch zu unserer Voraussetzung.
Es muB also é = d sein, q. e. d.
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Entsprechend folgt der Beweis fiir H-Ideale mit der ,,geeigneten Numerierung‘

¥, = t*, l
v = % 30)
Yie = t*, J

wobei ¥, t;*, ..., t4* unbedingt erforderliche Parameter sind.

Wir zeigen nun, daB in (23), also in f(yi,, ..., ¥, %) = 0, die Nullstellenkoordi-
naten ¥;,¥;, ... ¥i,» ¥ durch irgendwelche d 41 Nullstellenkoordinaten y, ...,
Yi*, Ys,,, 2usgetauscht werden konnen; daher werden die beiden folgenden Sitze
auch als Austauschsatz bezeichnet:

Satz 7. Ist (y,,...,ys) die allgemeine Nullstelle eines inhomogenen Primideals
) = K[z, ..., zp] mit gy =yilts, ..., 8a) (6 =1,...,7) und sind t,, ..., t; unbedingt
erforderliche Parameler, so existiert fiir jede Kombination ky, ..., kg, kgs1, -+, kgsp von
1,2,...,n) mit 1 < h < n — d wenigstens ein Polynom f € (p) mit

HYs -+ Yrea) =0, (31)
also speziell fiir h = 1:
f¥ > Yra,)) = 0- (32)

Beweis. Andernfalls kénnte man y;, =t,, ..., Ys,,, = s Setzen und hitte d+ 4
unbedingt erforderliche Parameter im Widerspruch zur Eindeutigkeit von d gemd8
Satz 6.

Entsprechend folgt
Satz 8. Ist (Yo, Y1, -+, Ya) die allgemeine Nullstelle eines primen H-Ideals
p < K[zg, 2, ..., Zp]

mit Yy = Yiltoy by ..o ta) (5 =0,1, ..., n) und sind ty, ¢y, ..., ¢ty unbedingt erforderliche
Parameter, so existiert fiir jede Kombination ky, ..., kq, ..., kgey von (0,1, ..., n) mit
1 £ h < n — d wenigstens eine Form F € p mit

F(Ye, Yy oo Yras) = 0, (33)
also speziell fiir h = 1:
F(Yeps Yaps ++os Yar) = 0- (34)

Definition 15. Ist (p) = K[z, ..., z,] ein inhomogenes Primideal, so heiBt die
Anzahl d der unbedingt erforderlichen Parameter in jeder allgemeinen Nullstelle
von (p) die Dimension von (p).
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Dagegen setzen wir fiir H-Ideale fest:

Definition 16. Ist p = K[z, x,, ..., z,] ein primes H-Ideal, so heiBt die um 1
verminderte Anzahl der unbedingt erforderlichen Parameter in jeder allgemeinen Null-
stelle von p die (komogene) Dimension von p.

Aus den Eigenschaften (22) und (32) fiir prime P-Ideale und (30) und (34) fiir
prime H-Ideale werden wir in 4.5. eine axiomatische Definition der Dimension (die
Grébnerschen Dimensionsaxiome) fiir beliebige P-Ideale bzw. H-Ideale okne Be-
nutzung des Begriffes ,,allgemeine Nullstelle* herleiten und am Spezialfall der Ideale
mit linearen Basispolynomen bzw. mit linearen Basisformen erldutern.

Zuvor noch einige erginzende Bemerkungen zur Nullstellentheorie.

3.4.  Aligemeine Nullstellen und vollstindige Lésungen

Wir beweisen nun den in 3.2. angekiindigten

Satz 9. Die Begriffe ,allgemeine Nullstelle’ und ,vollstindige Losung* fallen im
nichtlinearen Fall nicht zusammen, d. h., es gibt spezielle Nullstellen, die aus der all-
gemeinen Nullstelle durch Spezialisierung der Parameter nicht gewonnen werden konnen.

*

m=2

Abb. 1

Beweis, Dazu geniigt ein Beispiel. Wir wihlen dafiir die rationale Parameter-
darstellung des Einheitskreises, der durch z,%® + 2,2 — 1 =0 gegeben ist (vgl.
Abb. 1). Die Geradenschar durch den Punkt 8(—1,0) ist durch z, = m(z, + 1) ge-
geben; jede Gerade dieser Schar hat auBer S noch einen weiteren Schnittpunkt
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P(yy, yo) mit
_1-—m _ 2m
_l+m3’ y’_1+m"

%

Hieraus folgt ¥,2 + y,* — 1 =0 und z,%2 4 .2 — 1 € (2,® + 2,2 — 1); die obige ra-
tionale Parameterdarstellung des Einheitskreisesist also eine allgemeine Nullstelle des
zugehorigen Ideals (x,2 + 2,2 — 1) = €[z, 2,], bei welcher m (anstelle von £) der
Parameter ist. Lediglich der Punkt S kann dabei durch Spezialisierung von m nicht

2
T — —1 wiirde die widerspriichliche Beziehung

gewonnen werden, denn aus
+ m?

1 —m? = —1 — m?® folgen.
In diesem Beispiel war die allgemeine Nullstelle rational.

3.5.  Existenz allgemeiner Nullstellen

Wir iibertragen hierzu den Existenzbeweis fiir Nullstellen # irreduzibler Polynome
P(z) € K[z] aus MIL Bd. 3, 14.5.2. Dort also wurden das Primideal (p(z)) = K[z]
und gemiB der Kongruenzrechnung (vgl. 1.2.) Restklassen mod (p(x)) betrachtet.
Es galt dann

/@)1 = [f(=D),

[p()] = [0], (35)

[2(t))] = [0].
Der Restlklassenkorper K[]/(p(x)) enthielt einen vermége a > @ = [a] zu K iso-
morphen Teilkérper K :

K[;]/(P(Z))

K&K
Das in MfL. Bd. 3, 14.5.2., im AnschluB an (9) beschriebene Ersetzungsverfakren
sicherte dann die Existenz eines Erweiterungskorpers K* = K(#) von K mit

E* & K[2)/(p())

! )

K& K
Dafiir galt f([z]) —> [f([z])] und mithin wegen (35)
([2]) = 0 & f(z) = 0 mod (p(z))

oder

f([=]) = 0 & f(z) € (p(2)), (36)
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insbesondere also

P([=]) = 0. @7

In MfL Bd. 3, 14.5.2., wurde dann das Element Z = [z] des Korpers K* mit ¢ und
der Kérper K* selbst mit K(#) bezeichnet; dann geht (37) iiber in p(#) = 0 und (36)
in

1®) =0 & f(2) € (p(=)). (38)

Mit (38) war dann also die Existenz der Nullstelle 3 nachgewiesen. Bei diesem
Verfahren wurde benutzt, da8 K[z]/(p(x)) ein Korper ist; dies war durch die Prim-
idealeigenschaft von p(z) und diese durch die Irreduzibilitit von p(z) gesichert.
Ferner wurde mit Restklassen nach Idealen gerechnet.

Letzteres ist gemdB 1.2. auf inhomogene Primideale (p) — K[z, ...,z,] mit
(p) == (1) sofort iibertragbar. Dagegen ist K[z, ..., ,)/(p) im allgemeinen kein
Korper, sondern gemiB Kap. 2, (3), ein Integrititsbereich, zu welchem wir einen
Quotientenkérper Q(K[2;, ..., Z,)/(p)) geméB MfL Bd. 3, 13.6., bilden konnen.

Alle weiteren Uberlegungen lassen sich fast wortlich iibertragen; die Restklassen-
bildung erfolgt gemiB der Basisdarstellung (p) = (f;, ..., f;) und fithrt zur Existenz
eines Korpers K* mit

E* & Q(K[z,, ..., 2,]/(9))
[ i
K & K

Analog zu (38) existi in K* El te ¥y, Y, -+, Yu Mmit:
1 Y - Ya) =0 & f(zy, ..., 24) € (P). (39)

Nach (19) bedeutet nun aber (39), daB (y;, ¥, ..., ¥») eine allgemeine Nullstelle ist;
wir haben also den

Satz 10. Jedes inhomogene Primideal (p) € K[z,, ..., z,] mit (p) == (1) besitzt in
einem Erweiterungskorper K* 2 K eine allgemeine Nullstelle.

Entsprechend gilt:

Satz 11. Jedes homogene Primideal p = K[zo, 2y, ..., Z4] Mmit P = (Zg, Xy, +-+, Tp)
besitzt in einem Erweiterungskorper K* O K eine nichitriviale allgemeine Nullstelle.

Die Beziehung (39) ist dann zu ersetzen durch:
F(yo, Y1, -+, Yn) =0 & F(mo, 7y, ..., Zn) €D (40)
und beweist geméB (20) wiederum, daB die Nullstelle allgemein ist.
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Bemerkung. Setzen wir K = K als algebraisch abgeschlossen voraus, so folgt
im Fall K* > K die Existenz von Parametern in K*, die keiner iiber K algebraischen
Gleichung geniigen; K* heit dann eine transzendente Erwesterung von K (vgl. MfL
Bd. 3, 14.5. und 14.1.).

Satz 12 (vgl. vaAN DER WAERDEN [8], § 99, Aufgabe 4). Ist (z,, 25, ..., 2,) eine all-
gemeine Nullstelle des inhomogenen Primideals (p) < K[z, %3, ..., Z,], 0 ist eine all-
gemeine Nullstelle des dquivalenten H-Ideals p = K[%o, %y, ..., Z,) durch

(Yo Yo21> Y22 -+ Yozn) (40)
gegeben.
Beweis. Aus Kap. 1, (38), folgt
F(Yo, Y15 -++» Ya) = FYo, Yo21, «++ Yo2a)
]
Yo (yn Yo Yo
— g ,(M Yoo -'/L)
Yo Yo Yo
=9 - f(21, 22, o0 20) = 9" -0 =0,

und entsprechend folgt F(zo, z,, ..., Z,) € p aus f(zy, ..., z,) € (p). (40) erfiillt also
die Bedingungen (20), mithin ist durch (40) eine allgemeine Nullstelle gegeb
Die Nullstelle (40) ist jedoch nicht immer am giinstigsten. Dafiir geben wir ein
Beispiel an.
Beispiel. Wir betrachten wieder einmal in K[z, z,, 2y, 2,] das Primideal
p=(Fy, Fy, Fy, F) :

mit
Fy =12y — 02y, Fy=22,— 20, Fy=a22’— 217, Fi=2z2"—2
und der allgemeinen Nullstelle

%o Y1 Yo ¥a) = (" %, bti% 1Y)
Setzen wir jetzt z, = 1, also auch ¢, = 1, so geht p in (p) = (fy, fs, /s f,) Gber. Das ist eine H-
Basis, aber keine Minimalbasis; f, und f, konnen gestrichen werden. Es ist also (p) = (f,, fy) mit
h = %3 — 2,2y, fy = 2, — 2,® mit der allgemeinen Nullstelle (z,, 25, 23) = (73, v,3, 7,%). Das iqui-
valente H-Ideal ist gerade wieder p = (F,, F,, Fy, F,); nach (40) ergibt sich jedoch die allgemeine
Nullstelle

B=Tr N=T0 NH=%L YB=71n0"

Ersetzen wir hierin 7, = {4, 7, = ‘i, 80 erhalten wir wieder die eingangs g g
Nullstelle (b, t5%;, tot;® 4%)- fo
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3.6.  Eigenschaften von Nullstellengebilden

Satz 13. Ist (p) = K[z, ..., z,] ein inhomogenes Primideal mit (p) = (1), so ist
NG ((p%)) = @ fiir jedes z € N*, und es gilt

NG((p*)) = NG((p))- (41)

Beweis. Die Existenz von NG((p)) folgt aus Satz 10. Ist (p) = (fy, ..., f;), 80 hat
((0®)) nach Kap. 1, (72), die Basis

((D')) =" K e oo 1)

Ist (yy, ..., ¥») die allgemeine Nullstelle von (p), so ist (y;, ..., ¥,) Losung des in-
homogenen Gleichungssystems

h(@y, ...y z0) = 0,

............... (42)
i@y, .o 2) =0,
aber auch von
L@y, .0 24) =0,
Ho (@, oo 20) =0, 43)

1@y, ooy 20) = 0;

also ist NG ((p)) S NG ((p°)). Aber auch umgekehrt ist jede Losung von (43) zu-
gleich Lasung von (42), also NG ((p°)) S NG ((p)), woraus insgesamt (41) folgt.

Entsprechend schlieBt man fiir H-Ideale und hat den
Satz 14. Istp = K[z, 24, ..., Z,] ein primes H-Ideal, so gilt fiir jedes x € N*
NG (p*) = NG (p). (44)

Die Siitze 13 und 14 zeigen wegen (41) und (44), daB das Nullstellengebilde weder
fiir ein P-Ideal noch fiir ein H-Ideal charakteristisch ist.

Satz 15. Sind (a) und (b) vom Einheitsideal verschiedene P-Ideale aus K[zy,...,z,]
mit

(a) & (b) (46)
und existiert NG ((b)), so existiert auch NG ((a)), und es gilt
NG ((2)) 2 NG (). (46)
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Beweis. Ist (a) = (fy, ..., f) und (b) = (gy, -.., g»), 80 gilt wegen (45)

h=cug1+ - + cudns
fa =cngr + -+ + cagh,

fe =cugr + -+ + cuga;
die vorausgesetzte Existenz von NG ((b)) bedeutet die Existenz von Nullstellen
(1) +-+» Ya) Tir gy, ..., gy; diese sind wegen (47) dann auch Nullstellen von f,, ..., f;,

mithin existiert NG (()). Aus (47) folgt aber auch, da8 nicht jede Nullstelle von (a)
eine Nullstelle von (b) zu sein braucht; es gilt also nur (46).

#7)

Entsprechend folgt
Satz 16. Sind a und b zwei H-Ideale aus K[z, z,, ..., z,] mit
ach (48)
und existiert NG (b), so existiert auch NG (a), und es gilt
NG (a) 2 NG (b). (49)

Zusatz. Aus a =D folgt natiirlich NG (a) = NG (b); aus a = b kann jedoch
NG (a) = NG (b) folgen (vgl. (44) (bzw. (41)) fiir z = 2).

Satz 17. Sind (a), (b), (c) vom Einkeitsideal verschiedene P-Ideale aus K[z, ..., z,]
mit

(a) E (6) E (c), (50)
existieren NG ((a)) und NG ((c)) und ist ferner

NG ((@)) = NG ((c)), (61)
30 existiert auch NG ((b)), und es gilt auch

NG ((a)) = NG ((6)) = NG ((c)). (52)

Beweis. DieExistenz vonNG((b)) folgt geméB Satz 15. Aus (a) S (b) erhalten wir
NG ((a)) 2 NG ((6)) nach (46), aus (b) < (c) folgt NG ((b)) 2 NG ((c)) ebenfalls nach
(46), also NG ((a)) 2 NG ((b)) 2 NG ((c)); wegen (51) folgt daraus

NG ((@) 2 NG ((6)) 2 NG (@),
woraus NG ((a)) = NG ((b)) folgt. Wegen (1) folgt daraus schlieBlich (52).
Entsprechend folgt
Satz 18. Sind a,b und ¢ dres H-Ideale aus K[z, z,, ..., x,] mit
aShbco, (63)
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existieren NG (a) und NG (c) und ist ferner

NG (a) = NG (c), (54)
80 existiert auch NG (b), und es gilt
NG (a) = NG (b) = NG (c). (65)

Satz 19. Ist (r) == (1) ein (p)-quasiprimires P-Ideal aus K[z, ..., 2,], 80 existiert
NG ((z)), und es ist

NG (()) = NG ((p)). (56)

Beweis. Dies folgt aus (p?) S (r) S (p) nach Kap. 2, (11), ferner aus (41) und
Satz 17.

Wieder gilt entsprechend :

Satz 20. Ist t ein p-quasiprimires H-Ideal aus K[zo, 2y, ...,%,], 80 existiert
NG (), und es ist

NG (r) = NG (p). (67)
Da Primirideale spezielle quasiprimiire Ideale sind, gilt auch der

SBatz 21. Ist (q) = (1) ein (p)-primdres P-Ideal aus K[z, ..., z,], 80 existiert
NG ((q)), und es ist
NG (() = NG (). (58)
Satz 22. Ist q ein p-primdres H-Ideal aus K[z,, z,, ..., Z,], 80 existiert NG (q), und
es 18t
NG (q) = NG (p). (59)
Satz 23. Sind (a), (b), (c) vom Einhestsideal verschiedene P-Ideale aus K(z,, ..., z,],
gilt

(@) =(®) n (c) (60)
und ezistieren NG ((b)) und NG ((c)), s0 existiert auch NG ((a)), und es ist
NG ((a)) = NG ((6)) v NG ((¢). (1)

Beweis. Aus (60) folgt (a) & (b) und (a) < (c); nach (46) existiert dann NG ((a))
mit NG ((a)) 2 NG ((6)) und NG ((a)) 2 NG ((c)); mithin gilt

NG ((a)) 2 NG ((b)) uNG ((c)). (62)
Wiire nun

NG ((@)) = NG ((6)) u NG ((¢)), (63)
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80 existiert eine Nullstelle (y,, ..., ¥,) von (a), welche nicht Nullstelle von (b) oder (c)
ist, also weder Nullstelle von (b) noch von (c) ist. Es existiert also wenigstens ein
Polynom f,(zy, ..., z,) € (b) mit f,(y,...,ys) =0, und es existiert wenigstens ein
fa(@y, «.., @4) € () mit fo(yy, ..., ¥s) & 0. Dann ist das Polynom

9(@1s ooy Ta) 1= f1(®@1, o, Za) + fol@1; 100 Za) € (B) - (€) S (B) 0 (¢) = (a)

wegen Kap. 1, (104) und (60); es wird dann g(y;, ..., ¥s) = 0 im Widerspruch zur
Voraussetzung, daB (y,, ..., y,) eine Nullstelle von (a) ist, also alle Polynome aus (a)
annulliert. Also war die Annahme (63) falsch; aus (62) folgt damit (61), q.e.d.

Satz 24, Sind a,b und ¢ drei verschiedene H-Ideale aus K[z, 2y, ..., Z,), gilt

a=bne (64)
und existieren NG (b) und NG (c), so existiert auch NG (a), und es ist
NG (a) = NG (b) u NG (c). (85)

Durch mehrfache Anwendung folgt

Satz 25. Sind (a), (ay), ..., (a;) vom Einheitsideal verschiedene P-Ideale aus
K[xlr cens Za), 9‘1‘

(a) = (a;) n - n (@) (86)
und ezistieren NG ((a,)), .., NG ((a4)), 30 existiert auch NG ((a)), und es ist
NG ((@)) = NG ((a)) u -+ u NG ((a)). (67
Satz 26. Sind a, a,, ..., a; verschiedene H-Ideale aus K(z,, z, ..., z,], gilt
a=a n--na (68)
und existieren NG (a,), ..., NG (a;), s0 existiert auch NG (a), und es ist
NG (a) = NG (a;) u+-- u NG (ay). (69)

3.7.  Der Hilbertsche Nullstellensatz fiir quasiprimare und primére
P- und H-ldeale, T-ldeale

Es sei (t) & (1) ein quasipriméres P-Ideal aus K[z,, ..., z,] mit Rad (r) = (p). Von
einem Polynom f(z;, ..., z,) sei bekannt, daB es an allen Nullstellen (y,*, ..., y,*)
von (r) — welche wegen (56) auch alle Nullstellen von (p) sind — verschwindet.
Dann gilt dies insbesondere fiir die aligemeine Nullstelle (y;, ..., ¥s) von (p), also
{3, +++» ya) = 0. Nach Definition 9 der allgemeinen Nullstelle folgt daraus aber
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(@, ..., z,) € (). Wegen (p?) S (r) S (p) gemiB Kap. 1, (11), gilt dann fé(z,, ..., z,)
€ (t); damit haben wir den

Satz 27 (Spezieller Hilbertscher Nullstellensatz fiir P-Ideale). Verschwindet ein
Polynom  f(x,, ...,z,) an similichen Nullstellen eines quasiprimiren P-Ideals
(r) = K[y, ..., z,] mit () == (1), so existiert esn Exponent o mit fo(zy, ..., z,) € (¥).

Entsprechend gilt

Satz 28 (Spezieller Hilbertscher Nullstellensatz fiir H-Ideale). Verschwindet eine
Form F(z, x,,...,2,) an simtlichen Nullstellen eines quasiprimiren H-Ideals
t <= K[y, ..., 2,], 80 existiert ein Exponent ¢ mit Fe(zy, z,, ..., z,) € T.

Da Primiirideale spezielle quasiprimire Ideale sind, gelten die Sitze 27 und 28
insbesondere fiir Primirideale.

Definition 17. Ein H-Ideal qr = K[z, 2, ..., Z,], dessen Nullstellengebilde nur
aus der trivialen Nullstelle y, =0, y;, =0, ..., ¥, = 0 besteht, heiBt ein triviales
Ideal oder kurz T-Ideal.

Wir werden uns in 3.12. weiter mit 7-Idealen beschiftigen.

3.8.  Zur Losbarkeit inhomogener Gleichungssysteme:
Existenz von Nullstellen fiir P-ldeale bel (a) + (1)
Es sei (a) = (fy, ..., fs) mit (a) = (1) ein inhomogenes P-Ideal aus K[z, ..., z,] und

(@) = (q1) n (qa) n -+ n (qe) (70)

eine unverkiirzbare Darstellung durch gri8te Primdrkomponenten gemiB Kap. 2,
(44), also insbesondere (q,) = (1), ..., (q¢) = (1), so existieren nach dem zuvor Ge-
sagten NG ((a1)), NG ((qa)), ---, NG ((ax)), und nach (58) gilt

NG ((a1)) = NG ((py)), ---» NG ((a)) = NG ((ps))-
Dann existiert nach (66) und (67) auch NG ((a)). Mithin gilt der

Satz 29. Jedes vom Einheitsideal verschiedene inhomogene P-Ideal (a) = K[z,,...,2,]
besitzt wenigstens eine Nullstelle. Ist (70) esne unverkiirzbare Darstellung fiir (a), so st

NG ((@)) = NG ((qu) 0+ n (a)) = NG (1)) v --- v NG ((py))- (1)

Gehen wir von der Basisdarstellung (a) = (f,, ..., f;) aus, so haben wir als dqui-
valente Aussage zu Satz 29 den
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Satz 30 (Satz von KRONECKER). Jedes nichtlineare inhomogene algebraische Glei-
chungssystem

hi(@y, oooy 20) =0,
............... (72)

mat (fy, ..., fe) < (1) besitzt wenigstens eine Lisung.

Damit kénnen wir nachtriglich die Existenzvoraussetzungen bei den Sitzen von
3.6. fortlassen.

Wir haben hier zum Nachweis der Existenz von Nullstellen die Lasker-Noether-
schen Sdtze benutzt und dadurch den Nachweis auf den irreduziblen Fall (Primir-
ideale bzw. Primideale) zuriickgefiihrt. Das geschah in Analogie zum entsprechenden
Nachweis bei Polynomen in einer Variablen.

Demgegeniiber beweist jedoch KRoNECKER die Existenz von Nullstellen im Fall
(f15 ---» f¢) == (1) durch Zuriickfiihrung auf den Fall einer Variablen vermoge sukzes-

siver Elimination von Variablen; diese K7 kersche Eliminati ethode steht mit-
hin in Analogie zum Eliminieren von Variablen bei der Losung linearer Gleichungs-
systeme. Die Durchfiihrung der Kr kerschen Eliminati thode erfordert in-

dessen komplizierte Variablentransformationen zur Sicherung der Méglichkeit der
sukzessiven Erginzung von Nullstellen, macht jedoch andererseits keinen Gebrauch
von den Lasker-Noetherschen Sitzen, die bei unseren Schlii v tlich benutzt
wurden.

3.9.  Zur nichttrivialen Lésbarkeit homogener Gleichungssysteme:
Existenz nichttrivialer Nullstellen fiir nichttriviale H-ldeale
Fiir H-Ideale gilt entsprechend der

Satz 31. Jedes H-Ideal a = K[z, 24, ..., z,] besitzt wenigstens eine Nullstelle. a be-
sitzt genaw dann eine nichitriviale Nullstelle, wenn a kein T-Idealist. Ista = q; 0 -+ 0 Qi
eine unverkiirzbare Darstellung, so st

NG (@) = NG (g n -+ n g) = NG (p) u -+ u NG (py). (13)

Gehen wir von der Basisdarstellung a = (¥, ..., F,) aus, so haben wir als dqui-
valente Aussage zu Satz 31 den



120 3. Nullstellen von Polynomideal

Satz 32. Jedes lineare oder nichtlineare homogene algebraische Qleichungssystem

Fl(xo’ Ty, .0 Ty) =0,

................... (74)
Fy(2g, 1y .00y 2y) =0

besitzt wenigstens esne Losung. (74) besitzt genaw dann wenigstens eine michiiriviale

Lésung, wenn (Fy, ..., F,) kein T-Ideal ist.

Bemerkung. Beziiglich der 7-Ideale werden die Sitze 31 und 32 erst dadurch
einen Aussagewert bekommen, daB wir 7T-Ideale auf andere Weise (vor allem als
H-Ideale mit der Hilbertfunkiton Null fiir geniigend groBe Gradzahlen) werden
charakterisieren kénnen.

3.10.  Schnitte von Nullstellengebilden

Die Sitze dieses Abschnittes gelten sowohl fiir homogene als auch fiir inhomogene
Polynomideale. Da wir sie spiter jedoch vorwiegend fiir H-Ideale aus K[z, z;,...,z,]
bendtigen werden, sollen sie hier auch nur fiir H-Ideale formuliert werden.

Satz 33. Sind a und b zwei H-Ideale aus K[z,, zy, ..., Z,], 80 gilt
NG (a + b) = NG (a,b) = NG (a) n NG (b). (75)
Beweis. Es seia = (F,,...,F,), b =(G,,..., Gy) und

Fy(2o, @1, o+ Z4) =0,

F (29, @1, -+, Za) =0, (18)
G(2o, 21, ..., Ty) = 0,

GQi(2o, Ty, oy Ta) = 0,

F\(%g, 1, -+, Ta) =0,

................... (77)
F (%o, @1, -0, Ta) =0,

Gy(T, Tyy +oes Tp) = 0,

................... (78)
Gy(zo, 1, -0y Ty) =
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Ist (Yo, %15 ---» ¥a) € NG (a, b), so erfiillt (3o, 9y, ..., ¥s) die Gleichungen (78), ferner
sowohl (77) als auch (78), mithin (y,, ¥, ..., ¥s) € NG (a) n NG (b), also
NG (a,b) S NG (a) n NG (b). Ist umgekehrt (yo,¥y, ..., ¥s) € NG (a) n NG (b), so
sind sowohl (77) als auch (78) und mithin auch (76) erfiillt, also

(Yo» Y15 -++> ¥n) € NG (a, b),
und somit NG (a) n NG (b) S NG (a, b); insgesamt gilt also (75).
Durch mehrmalige Anwendung folgt fiir endlich viele Schnitte

NG (@, + -+ + @) = NG (a;) n -+ 0 NG (), (19)
insbesondere
NG (Fy, ..., F,) = NG (Fy) n--- n NG (F,). (80)

Definition 18. Nullstellengebilde von Hauptidealen heiSen Hyperflichen, fir
n = 3 Fldchen.

Damit kann (80) folgendermaBen formuliert werden:

Satz 34. Jedes Nullstellengebilde ist als Schnitt endlich vieler Hyperflichen dar-
stellbar.

Beispiele im dreidimensionalen Raum: Jede Gerade ist Schnitt zweier Ebenen,
jeder Punkt ist Schnitt dreier Ebenen.

3.11.  Nulistellengebilde und Radikale

Auch in diesem Abschnitt wollen wir die Sitze nur fiir H-Ideale formulieren, obwohl
sie auch fiir P-Ideale giiltig sind.

Wir wollen zeigen, da8 die Klasse aller H-Ideale mit dem gleichen Nullstell bild
und die Klasse aller Ideale mit dem gleichen Radikal ibereinstimmen und daraus
einige Folgerungen ziehen. Als erstes beweisen wir

Satz 35. Sind p, und p, zwes in K[z,, 2y, ..., 2,] prime H-Ideale mit gleschen Null-
tellengebilden, so sty P, und p, u,berem

NG (p;) = NG (p3) © 9, =9,. (81)

Beweis. Die Richtung (&) ist trivial; zum Beweis von (=) benutzen wir, da8
aus NG (p,) = NG (p,) die Existenz einer gemeinsamen allgemeinen Nullstelle (20)
folgt, durch welche aber das Primideal wegen der eineindeutigen Zuordnung ge-
miB (20) eindeutig bestimmt ist.
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Definition 19. Das Nullstellengebilde NG (p) eines primen Polynomideals heiBt
eine trreduzible algebraische Mannigfaltigkeit oder Varietdt.

Wir erinnern an Kap. 2, Satz 31 und (78): Ist
€=y G 0 Gy 0o 0 G (82)

die unverkiirzbare Darstellung von a durch gré8te Primirkomponenten derart, daB
Gy, .-+, Gm isolierte, hingegen g1, - .., G, eingebettete Primdrkomponenten sind, so ist

Prn NPy NPper N e NPy =Py Neee NP

und nach den beiden Zerlegungssiitzen
Rada =p;n::- np, mit p; = Rad q;, q; isolierte Komponenten
(t=1,...,m) (83)

die eindeutige und unverkiirzbare Darstellung von Rad a als Durchschnitt von Prim-
idealen. Aus (82), (66), (67) folgt

NG (a) =NG (g1 0 +** 1 G N Ges 0 -++ N1 )
= NG (p,) uNG (p;) u-+- UNG (pp) UNG (Ppas1) U ==+ U NG (ps)
=NG (P, n++- NPpNPpsy n-+- nP;) = NG (Rad a)
=NG (p;n--- npa)
= NG (p)) u-+- UNG (pn);

mithin gilt
Satz 36. Fir H-Ideale a = K[z, z,, ..., 2,] gilt

NG (a) = NG (Rad a), (84)
sowie

Satz 37. Die Darstellung von
NG (a) = NG (Rad a) = NG (p,) u -+ u NG (p,) (85)

als Vereinigungsmenge endlich vieler Varietiten, worin ,, ..., pn die zugehorigen Prim-
tdeale der isolierten Primdrkomponenten von a sind, ist eindeutiy.

Daraus folgt insbesondere unter Benutzung von Kap. 1, Definition 38, der

Satz 38. Zwei H-Ideale a und b aus K[z, 2y, ..., z,] sind genau dann dquivalent,
wenn ste dasselbe Nullstellengebilde haben :

Rad a = Rad b & NG (a) = NG (5). (86)
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Unter Verwendung von Definition 7 kénnen wir Satz 38 auch wie folgt formulieren:

Satz 39. Aquivalente H-Ideale besti l6sungsdquivalente homogene Gleichungs-
systeme und umgekehrt.

Vermége (86) konnen wir nun alle Beziehungen fiir Radikale auf solche fiir Null-
stellengebilde umschreiben (vgl. Kap. 1). Wir wollen hier nur die wichtigsten ver-
merken:

Kap. 1, (100), geht iiber in

NG (a,b) = NG (Rad a, Rad b), (87)
Kap. 1, (102), geht iiber in
NG (a - b) = NG ((Rad a) - (Rad b)), (88)
NG (a-b) = NG (a nb) = NG (a) u NG (b)
= NG (Rad a) u NG (Rad b) = NG (Rad a n Rad b); (89)

schlieBlich gehen alle distributiven Gleichungen fiir Ideale oder Radikale von 1.15.
in solche fiir NG iiber; wir wollen hier nur die beiden wichtigsten Beziehungen ver-
merken:

Aus Kap. 1, (118), folgt

NG ((a,b)n¢) =NG (anc,bnc)=NG((a,b)-c), (90)
entsprechend aus Kap. 1, (114),
NG (anb,c) = NG ((a,c) n (b, c)) = NG (a, ) uNG (b, c) = NG (a-b, ).
(91)
Sowohl in (90) als auch in (91) tritt jedoch, wie in Kapitel 1 gezeigt wurde, die
Gleichheit erst bei der Radikalbildung ein, die wir hier durch die NG-Bildung er-
setzen konnten. Fiir die Ideale galten diese Beziehungen nicht. Dadurch lassen sich
viele Unterschiede in der Literatur erkliren, wenn vorwiegend geometrisch geschlos-
sen wird.

Dem Leser wird empfohlen, auch alle weiteren distributiven Beziehungen aus
Kapitel 1 auf Nullstellengebilde umzuschreiben.

3.12.  Der Hilbertsche Nullstellensatz fiir beliebige P-ldeale, H-Ideale
und T-ldeale, triviale Komponenten

Wir haben nun alle notwendigen Hilfsmittel, um diesen wichtigen Satz der Ideal-
theorie und der algebraischen Geometrie fiir alle Polynomideale beweisen zu konnen.
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Satz 40 (Hilbertscher Nullstellensatz fiir P-Ideale). Ist (a) == (1) ein P-Ideal und
f(zy, --., ) ein Polynom aus K[z,, ..., 2,), so sind folgende Aussagen dquivalent:
a) f(zy, ..., Ts) verschwindet an allen Nullstellen
von (a), also NG ((a)) S NG (),
b) f(®1, ..., zs) € Rad (a),
c) V F(zy, ..., xz,) € ().
ZEN®

(92)

Wir wollen auf einen gesonderten Beweis verzichten, da er vollig analog zu dem
fiir H-Ideale erfolgt. Dazu formulieren wir

Satz 41 (Hilbertscher Nullstellensatz fiir H-Ideale). Ist a ein H-Ideal und F eine
Form aus K[z, z,, ..., 2,], 80 sind folgende Aussagen dquivalent:

a) NG (a) & NG (F),

b) F(xo, 24, ..., z,) € Rad a, ©93)
e) V F%(zg, 1, ..., Zy) € Q.
ZEN®

Beweis. Die Aquivalenz von b) und c) ist durch die Definition des Begriffes
, Radikal* evident (vgl. Kap. 1, Definition 35). Aus b) folgt nach (49)

(F) & Rad a= NG (Rad a) S NG (F),
also gilt a) nach (85). Aus a) folgt
NG (Rad a) = NG (p;) u--- u NG (p») E NG (F)

wegen (86), also gilt NG (p;) S NG (F) fiir alle ¢ =1,...,m; also verschwindet F
an jeder allgemeinen Nullstelle von p;, und es gilt F € p, fiir alles =1, ..., m, also
F €p,n--+ np, und somit b) wegen (83).

Zum Beweis haben wir hier die Lasker-Noetherschen Sitze tlich benutzt;
der Beweis kann jedoch auch auf andere Weise gefiihrt werden.

Ist nun das H-Ideal speziell ein T-Ideal qr — K[z, 24, ..., 2,], 80 haben (vgl.
Definition 17) alle Formen nur die triviale Nullstelle yo =0, y, =0, ...,y = 0 ge-
meinsam. Die ,,Formen* 2, ,, ..., z, verschwinden aber an dieser Nullstelle, welche
die einzige Nullstelle von qr ist, also gilt formal: z, 2y, ..., z, verschwinden an allen
Nullstellen von q7. Also gilt nach Satz 41 z, € Rad qr, #, € Rad gz, ..., z, € Rad qr;
folglich ist (2, 24, ..., ,) S Rad qr. Da nun (2o, 2, ..., %,) das umfassendste von (1)
verschiedene H-Ideal aus K[z, 2,, ..., 2,] ist, folgt

Rad gr = pr := (%0, Z1, .., Za) (94)
wobei py ein Primideal ist, weil es die allgemeine Nullstelle (0, 0, ..., 0) besitzt.
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Nach Satz 41 existieren dann Exponenten g, g1, ..., 05 mit
xo" € qr, zlh € qrs «oes 2,." € qr-. (95)

Analog zu den Uberlegungen in Kap. 1, (78)ff., sind dann alle Potenzprodukte
Lo®Zy% « oo+ - 2,5 vom Grad oagt oyt -+ ay=7 mit T=gg+0;+ - +oa—2+1
(vgl. Kap. 1, (81)) in qr enthalten; die tatsiichliche Gradschranke ¢ kann dann
wiederum kleiner als 7 sein.

Sind umgekehrt von einem Grad ¢ an alle Potenzprodukte in einem H-Ideal qr
enthalten, so gilt insbesondere z,? € qr, 2,° € qr, ..., Z4° € qr; folglich besitzt dieses
H-Ideal qr nur die triviale Nullstelle, ist also ein 7-Ideal. Mithin gilt

Satz 42. Ein H-Ideal qr = K[y, 2y, ..., z,] 18t dann und nur dann ein triviales
Ideal (T-Ideal), wenn von einem gewissen Grad o an alle Potenzprodukte in qr ent-
halten sind.

Beispiel. Es sei n = 2 und qy = (Fy, Fy, Fy, F,, F5) mit

Fi=2'+2, Fy=2zm,, Fy=z7,, F=z'+z Fy=z7.
Dann sind bereits alle zohn Potenzprodukte dritten Grades in qr enthalten wegen

= %Fy — 2, F5, z%st = 2y,
Zo*ty = zoFy, 2,® = z,F, — 2,Fy,
Zo’zy = 7oKy, oz, = 2, F,
Z,* = 7, Fy, Ty = z,Fy,
Zo2yy = ZoF, 238 = z,Fy — &, Fg;
auBerdem ergibt sich

z,Fy — 2,Fy = 0,

— ZFy =0,

— zFy — 2,F5 =0,

2yFy — 2yFy — 2,F + 2,Fg =0,
7Fy + 27,Fy — 2,F =0,
was der Leser selbst nachrechnen oder herlelten mége: Es wurde dazu der Modul dor im | Ideal

enthaltenen Formen dritten Grades aufgestellt und beziiglich der lexil
der P produkte der GauBsche Algorithmus durchgefiihrt. H.wrmcalsog=3,n—2 also

Pr = (%o 71, Ty)

pr® = qr < pp.

Entsprechend gilt allgemein: Ist ¢ der genaue Grad, von dem an ein 7-Ideal
ar < K[z, 2y, ..., 2,] alle Potenzprodukte o-ten Grades enthilt, so gilt wegen (84)
P S ar SPr (96)
mit

Pr = (o, %1, +-- Zn) 97)
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weil die Basis von p;¢ gemiB Kap. 1, (72), gerade aus allen Potenzprodukten g-ten
Grades in x,, z,, ..., z, besteht.

Aus (98) folgt nach der Definition von Kap. 2, (11), zunichst, daB qr ein quasi-
primires Ideal ist. Mithin existiert nach Kap. 2, (82), eine Darstellung

qr=qnb, (98)
worin Rad q = pr und nach Kap. 2, (81), Rad b o py ist, also

Rad b o (%, 21, «+., Z4).
Nun ist aber (z,, z;, ..., ,) das umfassendste vom Einheitsideal verschiedene H-
Ideal in K[z, 2y, ..., 2,], also ist nur der Fall Radb = (1), also b = (1) moglich.
Mithin kann in (98) b gestrichen werden; jedes 7-Ideal qr ist also ein Primérideal,
wodurch die Bezeichnung qr endlich gerechtfertigt ist. Dies hitte man auch aus

Satz 42 durch Nachweis der Primiridealeigenschaften (vgl. Kap. 2, (21)) folgern
kénnen.

Wir fassen unsere Ergebnisse zusammen zu dem

Satz43. Jedes triviale H-Ideal qr — K[z, 2y, ..., 4] 15t primdr mit dem zugehorigen
Primtdeal pr = (Zg, Zy, -+, Zy)-

Definition 20. Tritt in der unverkiirzbaren Darstellung durch gréSte Primir-
komponenten eines H-Ideals a — K[z, z, ..., Z,],

A=q N NGp N Gmr N =" N Qe N AT, (99)
ein 7'-Ideal gr als Primdrkomponente auf, so heiBt qr eine triviale Komponente.

Bemerkung. Da es sich um eine Darstellung durch groBte Primérkomponenten
handelt, kann es nach Kap. 2, Satz 16 und Satz 28, in jeder solchen Darstellung nur
héchstens eine triviale Komponente geben.

Satz44. Einetriviale Komponente ist in jeder anderen eingebettet (vgl. Kap. 2, (52)).

Beweis. Fiir jedes vom Einheitsideal und von pr verschiedene prime H-Ideal
p < K[z, 24, ..., z,] gilt offenbar pr D p.

Aus Satz 44 und dem zweiten Eindeutigkeitssatz (Kep. 2, Satz 33) ergibt sich,
daB die triviale Komponente im allgemeinen mehrdeutig ist.

Die Existenz einer trivialen Komponente ist in vielen Fillen von Bedeutung,
weshalb es wiinschenswert ist, dafiir den Nachweis ohne Herstellung der Primir-
komponentenzerlegung fiihren zu kénnen. Dazu geben wir im folgenden drei Sitze
von DUBREIL und GROBNER an.

Der erste Satz kniipft an Kap. 2, (46), Satz 29, an. Danachgalt:a:b =a < b & p,
fiir alle zugehérigen Primideale p,. Ist nun b = (F) ein Hauptideal, also F eine Form
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aus K[z, z,, ..., z,], so gilt:
a:(F) =a<& F ¢y, fiir alle zugehorigen Primideale p,.

Besitzt nun a eine triviale Komponente, tritt also pr = (%o, 21, ..., ,) als zugehoriges
Primideal auf, so ist diese Bedingung nicht realisierbar, denn es ist F € py fiir alle
F € K[z, 2, ..., z,]. Existiert also eine Form F mit a: (F) = a, so kann a keine
triviale Komponente besitzen. Insbesondere kann dann F als geeignete Linearform

L =agty + 12 + ++ + ax7, (100)
gewiihlt werden. Besitzt umgekehrt a keine triviale Komponente, so sind die Be-
dingungen F ¢ p, beispielsweise dadurch realisierbar, da8 man F als Linearform (100)
80 wihlt, daB L an keiner der allgemeinen Nullstellen der p, verschwindet. Ist pp
nicht unter den p, und hat K unendlich viele Elemente, so ist dies durch geeignete
Wahl von ay, a,, ..., a, stets moglich. Mithin gilt (vgl. DuBremwL [1], Abschnitt 5,
S. 275) der

Satz 45 (Dubreilsches Lemma). Ein H-Ideal a = K[z, z,, ..., z,] besitzt dann und
nur dann keine triviale K te, wenn es igstens eine Form F € K[z, 2,, ..., Z,]
mit a: (F) = a gibt.

Nach Kap.2, (51), Satz 30, galt: a:b6 > a< b Sp, fir wenigstens ein zu-
gehoriges Primideal p,. Ist b = pr = (2o, 4, ..., Z,), 80 kannpy = p,, nur fiirp, = (1)
eintreten; da dann die Darstellung (99) verkiirzbar wiire, ist also p, = pr, also be-
sitzt a eine triviale Komponente. Gehen wir umgekehrt davon aus, daB a eine triviale
Komponente besitzt, so tritt p, als zugehdriges Primideal auf, und nach Kap. 2,
Satz 30 (&), folgt fiir b = pr unmittelbar a:pr > a. Dieser Satz stammt von
GROBNER (vgl. [9], 4.9., S. 28):

Satz 46 (Satz von GROBNER). Ein H-Ideal a — K[z, 2y, ..., x,] besitzt dann und
nur dann eine triviale Komponente, wenn

P

Q:(Tg, Zyyeeey Zy) D A (101)
gilt.

Wir wollen nun (101) zu einem handlicheren Kriterium umschreiben, welches dem
Verfasser erstmals schriftlich von Herrn Prof. GROBNER mitgeteilt wurde (siehe auch
GROBNER [7], S. 262, 12. Zeile v. u.):

Satz 47 (Grébnersches Kriterium). Ein H-Ideal a — K[z, z,, ..., x,] besitzt eine
triviale Komponente <

V(Fé¢anrzsF canzyFean---nz,F€a). (102)
¥

Beweis. («): Aus (102) folgt F € a: (z, 2y, ..., Z,) und wegen F ¢ a mithin (101)
und damit die Existenz einer trivialen Komponente.

(=): a: (%o, %y, ..., Z,) ist nach Definition des Idealquotienten (vgl. Kap. 1, De-
finition 40) die Gesamtheit der F mit FB € a fiir alle B € (2, 2;, ..., Z,), also gilt:



128 3. Nullstellen von Polynomideal

insbesondere Fz, € a, Fz, € a, ..., Fz, € a. Besitzt a eine triviale Komponente, so
gilt (101), und es kann iiberdies F ¢ a gewihlt werden. Damit sind alle Bedingungen
(102) erfiillt.

T-Ideale haben insofern keine geometrische Bedeutung, als der trivialen Null-
stelle, der einzigen Nullstelle eines 7T'-Ideals, kein Punkt im projektiven Raum ent-
spricht.

Andererseits kann durch Hinzunahme einer trivialen Komponente die Anzahl der
Basiselemente verringert werden.

Wir greifen dazu das Beispiel 2 von 2.6. wieder einmal auf. Dort war p = (Fy, Fy, Fy, F,)
ein Primideal und t = (F,, Fy, F,) ein p-quasipriméres Ideal und

Fy =20y — 2y, Fy =z, — 20, Fy =202 — 27, Fo=z78 = 230,
und F, § ¢ ist evident. Weiterhin gilt (was der Leser selbst nachprifen mége)
2y = —2,°F) + z,Fy € 1,
7 Fy = —z2,F) + 2y Fy€ 1, (103)
2 Fy = 2z, Fy, — %F €,
zFy = 'Fy — z, Fy €1,
also F, € t: (g, z;, Ty, T3); mit Fy¢ v folgt t: (2, ), 7y, Zy) D t. Mithin sind (101) und (102)
erfiillt, und ¢ besitzt also eine triviale Komponente. Wir geben hier noch zwei mégliche Primir-
komponentenzerlegungen fiir t an:
T =1 0 (@ 2y, Ty}, 7)) = P 0 (T, 2%, 2, T7)
und haben damit zugleich ein Beispiel fiir die Mehrdeutigkeit trivialer K

Die Basis von r bestand nur aus drei Elementen, hingegen die Basis von p aus vier
Elementen ; durch die Hinzunahme einer trivialen Komponente konnte also die An-
zahl der Basiselemente verringert werden, wie eingangs behauptet wurde.

Die trivialen Komponenten in den Darstellungen (99) kann man aber auch da-
durch ,,sichtbar‘‘ machen, daB man a = K[z, z,,...,%,] als Ideal in K[zy,zy,...,Zp, Zps1]
betrachtet. Dann hat a die Nullstelle y, =0, ..., ¥y, = 0, ¥441 = ¢,. Fiihren wir zuvor
die vielfach in der Literatur iibliche Indexverschiebung 2; +> zy,, (¢ =0, 1,...,2)
durch, so gewinnen wir die Nullstelle yo = ¢y, ¥, =0, ..., Yu+1 = 0.

Wir haben damit durch Betrachtung in einem um 1 héherdimensionalen Raum
eine geometrische Deutung der trivialen Komponenten erreicht ; dieses von W. VogeL
(Halle) hiiufig benutzte Prinzip geht auf GROBNER zuriick, findet sich aber schon
bei MaoATLAY. Der mit der Geometrie vertraute Leser wird dabei auch an den Beweis
des Satzes von DESARGUES denken, der ,,geometrisch* erst durch den Ubergang vom
zweidimensionalen in den dreidimensionalen projektiven Raum méglich wird. Als
weitere Analogie bieten sich Projektionsverfahren der darstellenden Geometrie an,
wo etwa in der GrundriBebene Punkte zusammenfallen, die im dreidimensionalen
Modell verschoben sind.
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41.  Einleitung

Eines der wesentlichsten Ergebnisse in der Theorie der linearen Gleichungssysteme
ist doch, iiber die Anzahl der Parameter in jeder vollstindigen Losung Aussagen
machen zu kénnen, ohne daB man diese Losung kennen muB. Die Ubertragung
dieser Ergebnisse auf den nichtlinearen Fall ist mit einigen Schwierigkeiten ver-
bunden; allerdings sind dafiir die Folgerungen teilweise interessanter, auch in geo-
metrischer Hinsicht. Damit wollen wir uns in dem nun folgenden Kapitel beschif-
tigen.

Dazu haben wir im vorigen Kapitel bereits Vorarbeiten geleistet. In Satz 6 von 3.3.
bewiesen wir die Eindeutigkeit der Anzahl der unbedingt erforderlichen Parameter
in jeder allgemeinen Nullstelle eines vorgegebenen primen Polynomideals. Wir
konnten ferner nachweisen, da8 man gewisse Koordinaten der allgemeinen Nullstelle
als Parameter withlen konnte (Kap. 3, (22)), und wir sprachen dann von einer ,,ge-
eigneten Numerierung‘ der entsprechenden Variablen. Daraus konnten wir dann
weiter folgern, daB es Polynome f € (p) gab mit f(y,, ..., Yre Yi,,,) = O fiir jede
Kombination (ky, ..., kg, kg4;) € (1, ..., n); Entsprechendes gilt fiir homogene Prim-
ideale. Damit war es sinnvoll, die Anzahl der unbedingt erforderlichen Parameter
in irgendeiner allgemeinen Nullstelle eines primen P-Ideals (p) < Kz, ..., z,] als
Dimension von (p) zu definieren (Kap. 3, Definition 15).

InDefinition 16 von Kapitel 3hatten wir fiir homogene Primidealep — K[z, 21, ...,Z,]
wie folgt definiert: Dimp = —1 + Anzahl der unbedingt erforderlichen Parameter
in einer allgemeinen Nullstelle von p.

Aus der letzten Definition ergibt sich fiir pr = (2o, 2y, ..., Z4)

Dim pr = Dim (Zg, 2, ..., Z,) = —1, (1)
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und daher ist es sinnvoll, im inhomogenen Fall
Dim (1) := —1 2)
zu definieren.

Es liegt nun nahe, den Begriff ,,Dimension* fiir beliebige P-Ideale und H-Ideale
8o zu definieren, daB er in sinnvoller Weise auf diese Dimensionsdefinitionen fiir
Primideale zuriickgefiihrt wird. Dazu werden uns die Beziehungen

NG ((a)) = NG (), (Kap. 3, (68))

NG (q) =NG (p), (Kap. 3, (59))

NG (a) = NG (Rad a) = NG (p,) u NG (py) u-+- uNG (pn) (Kap. 3, (85))
weiterhelfen ; die letzte Beziehung gilt analog fiir P-Ideale.

4.2.  Vorbereitende Bemerkungen zur Dimensionsdefinition
von van der Waerden
Die bisher gegebene Di ionsdefinition steht in Einklang mit der analytischen

Geometrie und linearen Algebra; wir betrachten hierzu zwei Beispiele, bei denen wir
die Bezeichnung der MfL: Bd. 3 angepaBt haben:

Beispiel 1. Gema8 BREEMER und BELENER [1], 4.2.2. (vgl. auch Lehrbuch der Klasse 12,

A 3), ist die P d llung oder allgemeine Nullstelle der Ebene & = &, + f,a, +-t,a,
mit der Di jon 2; im dreidi ionalen affinen Raum wird diese Ebene durch eine lineare
Gleichung gegeben.

Beispiel 2. Gemi8 Bnmm und BELENER [1], 4. 2 1. (vgl &uch Lehrbuch der Klasse 12,
A 3), ist die P llung oder all der den T = x, + t,@, mit
der Di jon 1; im dreidi ionalen affinen Rnum werden jetzt zwei lineare Gleichungen
Zur D 11 g djm G 4 Hh “A:;J.

Der Dimensionsbegriff ist also eine Eigenschaft der Nullstellengebilde; nach den
soeben nochmals zitierten Formeln (58) und (59) von Kapitel 3 ist es also sinnvoll,
fiir priméire Polynomideale

Dim (q) = Dim (p) fiir (p)-primére P-Ideale 3)
und

Dim q =Dimp fiir p-priméire H-Ideale (4)
zu definieren.

Um den Dimensionsbegriff fiir beliebige Polynomideale zu definieren, betrachten
wir drei weitere Beispiele:
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Beispiel 3. Im dreidimensionalen affinen Raum seien gegeben: die Ebene £ mit der Glei-
chung z, + 3z + 423 — 8 = 0 und der allgemeinen Nullstelle

h=—3—44+5,
h=h, 6)
Y=1
und die Gerade @ mit den Gleichungen
2, + 32y + 42, — 6 =0,

7 —2,+2=0
und der allgemeinen Nullstelle

Nn="

h=2+1,

Y= "7

Dann wird man E v @ die Dimension 2 zuordnen, da E v @ die zweidimensionsle Nullstelle (5)
hat. Wegen Kap. 5, (60), ist nun E v @ = NG ((a)) mit

() = (% + 33 + 42, — b) 0 (, — 32, + 42y — 6, 2, — 2, + 2),
und das gibt hier zufillig
(6) = (2, + 323 + 42, — 6) - (3 — 32y + 423, — 8, 2, — 7, + 2)
= (z;® + 62,73 + 82,75 + 92,® + 247,37y + 162, — 112 — 332, — 44z, + 30,
2,* + 22,2 + 42,0y — 32,° — dayzy — 3z, + Tz + 82y — 10);

die Vereini L Gebilde* ist also nicht mehr linear.

Beispiel 4. Im zweidimensionalen affinen Raum seien gegeben: die Gerade @ mit der Glei-
chung z, + 42, — 3 = 0 und der allgemeinen Nullstelle

h=—4%+3,
Ya=*t
und der Punkt P mit den Gleichungen z, — 2 = 0, z; — 3 = 0 und der allgemeinen Nullstelle
Y1 =2, y, = 3. Dannist G v P = NG ((a)) mit
@ =@ +4—3)n(x—2 2—3)
= (22 + 47 — 3) (2. — 2), (&2 + 42, — 3) (2, — 3))
= (5,® + 42,73 — bz, — 82y + 8, 7,7y + 42,7 — 37y — 152, + 9).
Hier wird man sinngemiB die Di ion 1 d
Die erforderliche Durchschnittsberechnung war einfach, da in diesem und dem vorigen Beispiel
eines der Ideale ein Hauptideal war.
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Bouplel 5. Wir betrachten jetzt dieselbe A i ion wie im vorigen Beispiel, nam-
lich eine Gerade und einen nicht auf ihr liegenden Pu.nkt, jetzt aber im dreidimensionalen affinen
Raum. Jetzt wird die Berechnung bereits erheblich schwieriger, da nun beide Komponenten keine
Hauptideale mehr sind. Es seien also gegeben: die Gerade G mit den Gleichungen

2 + 32, + 22, — 6 =0,
5 +z,—2=0

und der Punkt P mit den Gleichungen

5z —2=0,
z3—3=0,
z3—1=0.

A dung des GauBschen Algorith liefert fiir @ die vereinfachten Gleichungen

Z — % =0,
Zy+ a3 —2=0.
Es ist also @ u P = NG ((a)) mit

@=@ -2+ —2)n@—2 2,—3, 5 — 1)
= (22 — 7 — 37, + 2, (32 — 22) (7, — 2), (21 — 22,) (2 — 7)),

wobei die Berech des Durchschuit schon elmge Schw:engkelben (U'berga.ng zu équi-
valenten H-Idealen, At dung der Sy Die Ub der Null-
stellengebilde und damit der Rodikale mt leicht nachzuweisen und sei dem Leser iiberlassen,
der auch nachrechnen mage, daB 2z, — z; — 32y + 2 = 0 die Gleichung der von G und P auf-
gespannten Ebene ist. Auch hier ist es wieder sinnvoll, G u P die Dimension 1 zuzuordnen, also
dem Ideal ((a)) die groBere der beiden auf den Di hlen als Di ion zu-
zuschreiben.

Zusammen mit (3) und (4) ist es also sinnvoll, fiir P-Ideale
Dim ((q1) n -+ n (q4)) := Max (Dim (q,)} = Max (Dim (p,)} (6)
und fiir H-Ideale
Dim (q; n«+- n g) := Max {Dim q,} = Max {Dim p,} (7)

zu definieren. Dies zusammen sind die Dimensionsaxiome von VAN DER WAERDEN.

4.3. Die Dimensionsaxiome von van der Waerden

Wir wollen auch hier die Axiome getrennt fiir P-Ideale und fiir H-Ideale formulieren.
Fiir P-Ideale werden die Axiome und einige Folgerungen in runde Klammern ,,( )
gesetzt, fiir H-Ideale zur Unterscheidung nicht.
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Aus dem Vorhergesagten ergibt sich fiir P-Ideale folgendes Axiomensystem :
(W1) Die Dimension eines inhomogenen Primideals (p) = K[z, ..., z,] ist die
Anzahl der unbedingt erforderlichen Parameter in jeder allgemeinen Null-
stelle.
(W2) Die Dimension eines inhomogenen Primirideals (q) = K[z, ..., z,] ist gleich
der Dimension des zugehérigen Primideals, Dim (q) := Dim (p).
(W3) Die Dimension eines inhomogenen P-Ideals (a) = K[z, ..., z,] ist gleich
dem Maximum der Dimensionszahlen ihrer Primirkomponenten (vgl. (6)).
Fiir H-Ideale haben wir folgendes Axiomensystem:

wi Die Dimension eines homogenen Primideals p < K[z, 2y, ..., z,] ist die
um 1 verminderte Anzahl der unbedingt erforderlichen Parameter in jeder
allgemeinen Nullstelle.

w2 Die Dimension eines homogenen Primérideals q = K[z, 24, ..., %] ist gleich
der Dimension des zugehérigen Primideals, Dim g := Dim p.

w3 Die Dimension eines homogenen H-Ideals a — K[z, Zy, ..., %,] ist gleich
dem Maximum der Dimensionszahlen ihrer Primérkomponenten (vgl. (7)).

4.4,  Folgerungen aus den van-der-Waerdenschen Axiomen

Definition 1. Die GroBe
ri=n—d (8)

heiBt Kodimension oder Rang des homogenen oder inhomogenen Polynomideals a
bzw. (a).

Bemerkung. Im Gegensatz zur linearen Algebra kann die Kodimension im all-
gemeinen nicht durch die Anzahl s bzw. ¢ der Elemente einer Minimalbasis definiert
werden; es gilt vielmehr 8 > r bzw. ¢ = r (vgl. 4.17. bzw. 4.26.).

Aus W 1 und W 2 sowie (1) und (2) folgen
Satz 1. Fiir T-Ideale qr = K[z, 2y, ..., Z,] 15t

Dim gy = —1 9)
und
Kodim qr =7 + 1. (10)

Definition 2. Fiir das Einheitsideal in K[z,, ..., z,] setzen wir

Dim (1) := —1. (2)
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Aus (W 2) und (W 3) folgt der
Satz 2. Fiir P-Ideale (a) = K[z, ..., z,] tst

Dim (a) = Dim Rad (a). (11)
Entsprechend folgt aus W 2 und W 3
Satz 3. Fiir H-Ideale a = K[z, 2,, ..., 2,] tst

Dim a = Dim Rad a. (12)
Der folgende Satz wird sich als auBerordentlich wichtig erweisen.

Satz 4. Fiir prime P-Ideale (p,), (p;) bzw. primire P-Ideale (q,), (a2) aus K[z,,..., 2,]
gilt:

(P1) < (pg) = Dim (p;) > Dim (p,) (13)
und
Rad (,) = Rad (q3) = Dim () > Dim (q,). (14)
Bemarkungon Von (13) gilt die Umkehrung kei gs; als ein Gegenbeispiel betracht:
man in K[z,, z;, z;] etwa dle Ideale (z,, z,) und (z,) mit den Dimensionszahlen 1 bzw. 2. (14)
gilt auch noch fir iire Ideale; all kann ]edoch aus Rad (a) CR&d(b) nur
auf Dim (a) = Dim (b) geschloasen werden; das Gleichhei h gilt beispiel far

Rad (a) = (z) n (22), Rad (B) = (z1) n (25, 2,)-
Beweis. Aus Kap. 3, (45), (46) und (86), folgt zunichst:

(91) = (92) & NG ((p1)) > NG ((pa)); (15)

jeder Punkt von NG ((p,)) — bis auf Ausnahmewerte — kann also aus jeder all-
gemeinen Nullstelle von (p,) mit den Parametern ¢; gewonnen werden, und zwar
durch Einsetzen spezieller Werte fiir die ¢; (vgl. 3.4.) ; mithin wird auch eine allgemeine
Nullstelle von (p,) mit den unbedingt erforderlichen Parametern 7, durch Setzen
von ¢; = @y(..., Ty, ...) gewonnen. Hierbei muB aber die Anzahl der 7, kleiner als
die Anzahl der ¢; sein, da man andernfalls wegen der Eindeutigkeit der Dimension
(vgl. 3.3.) wieder eine allgemeine Nullstelle von (p,) erhalten wiirde. Damit ist (13)
bewiesen.

Der Beweis von (14) folgt aus (13) unmittelbar wegen Rad ¢ =y, (W 2) und (11).

Entsprechend verlduft der Beweis fiir H-Ideale:

Satz 5. Fiir prime H-Ideale p,,p, bzw. primire H-Ideale q,, q; aus K[z, z,, ..., Z,]
gilt:
p1 == Dimp, > Dimp, (16)
und
Rad g, < Rad q; = Dim q, > Dim q,. (17)

Aus (W 1), (W 2) und (W 3) folgt unmittelbar der



4.5. Dimensionsaxiome von GRSBNER 135

Satz 6 oder (W 4). Ein inhomog Poly ideal hat genau dann die Dimension d,
wenn wenigstens eine Nullstelle mit d unbedmgt erforderlichen Parametern, aber keine
Nullstelle mit d+ 1 unbedingt erforderlichen Parametern existiert.

Fiir H-Ideale folgt entsprechend aus W 1, W 2 und W 3 der

Satz 7 oder W 4. Ein H-Ideal hat genaw dann die D+ ton d, wenn Vg8t
eine Nullstelle mit d + 1 unbedingt erforderlichen Parametern, aber keine Nullstelle mit
d + 2 unbedingt erforderlichen Parametern existiert.

Praktisch ist mit (W 4) bzw. W 4 nur in einfachen Fillen etwas anzufangen, da
die zweite Aussage die Ubersicht iiber simtliche Nullstellen erfordert. In Zusammen-
hang mit den Grébnerschen Axiomen wird sich jedoch die alleinige Kenntnis der
ersten Aussage als niitzlich erweisen, also der

Satz 8 oder (W 5). Ist zu einem inhomogenen P-Ideal (a) = K[z, ..., z,] wenigstens
eine Nullstelle mit d unbedingt erforderlichen Parametern bekannt, so tst Dim (a) = d.

Satz 9 oder W 5. Ist zu einem H-Ideal a = K[z, 2y, .., Z,] wenigstens eine Null-
stelle mit d + 1 unbedingt erforderlichen Parametern bekannt, so ist Dima = d.

Wir werden mit (W 5) bzw. W 5 und dem Grobnerschen Axiom (G 2) bzw. G 2
ein Axiomensystem haben, welches in vielen Fillen ein brauchbares Verfahren zur
effektiven Bestimmung der Dimension liefert.

Wie schon vorher gesagt, ist es nachteilig, daB die Dimensionsbestimmung gemi 8
VAN DER WAERDEN die Kenntnis allgemeiner Nullstellen voraussetzt. Daher erscheint
es wiinschenswert, eine Dimensionsdefinition zu geben, welche die Kenntnis von
Nullstellen nicht erfordert. Dies leisten die Dimensionsaxiome von GRGBNER.

4.5. Die Dimensionsaxiome von Grébner

Auch hier formulieren wir die Axiome getrennt fiir P-Ideale und fiir H-Ideale.

Ist (a) = K[z, ..., z,] ein inhomogenes P-Ideal, so ist die Dimension ¢ von (a)
festgelegt durch:
(G1)  Es existiert wenigstens eine Kombination z,, ..., z;, mit

(a) n K[z, ..., 2,,] = (0), (18)

eine ,,geeignete Numerierung* (vgl. Kap. 3, (22)).
(G2) Fiir alle Kombinationen z,,, ..., 7, , gilt

(@) 0 K[z, ..., Zx, 2, ] += (0). (19)
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Ist a = K[z, 2y, ..., z4] ein H-Ideal, so ist die Dimension d von a festgelegt durch :
G1 Es existiert wenigstens eine Kombination z,,, ..., z;, mit
anKzy, ..., z,] = (0), (20)
eine ,,geeignete Numerierung* (vgl. Kap. 3, (24)).
G2 Fiir alle Kombinationen zy,, ..., Z,, Zi,,, gilt
an Kz, ..., 2, 2,,,) + (0). (1)

4.6.  Aquivalenz der Axiomensysteme
Ohne Beschrinkung der Allgemeinheit fithren wir die Aquivalenzbeweise nur fiir
H-Ideale durch; fiir P-Ideale verlaufen die Beweise entsprechend.
Satz 10. Fiir H-Ideale gilt:
WIAW2AW3=>G1AG2.
Beweis. Aus W 1 folgen G 1 und G 2 zunichst fiir Primideale wegen (30) und (32)
von Kapitel 3.
Ist q ein p-primires H-Ideal, so gelten weiterhin:
p oKz, ...z,] =(0) & qnK[z,,...,z,] =(0),
P 0 Kz, ooy Zag Ty, ) F (0) © q 0 K[zg, ..o, Zh,, Ty, ] F (0).
Dies folgt unmittelbar aus p¢ S q S p (Kap. 2, (24)). Also gelten G 1 und G 2 fiir
Primirideale.
Ist a = gy n gy N -+ n g mit Dim q, = d,, so gilt also:

(22)

fiir alle Kombinationen ko, ..., ks, ist q; n K[z, ..., z,,l“] =+ (0),
fiir alle Kombinationen %, ..., kg4, ist q2 0 K[, ..., a:,,‘.ﬂ] %+ (0),
fiir alle Kombinationen ko, ..., kg1 it q; n K[:c,,., e x,‘w] =+ (0).
Ist nun gemiB W 3 d = Max {d,, ..., d,}, so gilt auch:
Fiir alle Kombinationen k,, ..., kg, ist

o n K[z, ..., 2,,.] & (0), es existiert also Fy(2,, ..., Z,,,) € G1,
a2 n K[Zy,, ..., 7y,,.] + (0), es existiert aleo Fy(zy,, ..., Z4,,,) € qa,

a0 Ky, ..., 2] & (0), es existiert also Fy(y,, ..., Ti,,,) € Qi-
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Denn ist Fy-F,---Fy€a, also anK[z, ..., 5,,.] + (0); mithin ist G2 fir
beliebige H-Ideale a erfiillt. Entsprechend gilt:

Es existiert wenigstens eine Kombination iy, ..., % mit a n K[z;, ..., 2] = (0),
denn andernfalls kénnte d nicht die Maximaldimension von gy, ..., q; sein, mithin
gilt auch G 1.

Satz 11. Fir H-Ideale gilt:
GIAG2Z WIAWZAWS.

Beweis. Ist p ein primes H-Ideal, so folgt aus G 1, daB y, =t,, yi, =14y, ...,
Yi, = t; gesetzt werden kann; daB die Parameter in dieser Anzahl unbedingt er-
forderlich sind, folgt aus G 2. Damit ist W 1 bewiesen.

Aus G 1 und G 2 folgt W 2 unmittelbar wegen (22).
Aus G 2: a n K[z, 24, ..., %] + (0) folgt wegena =q; n-- n g

G 0 K2, 2h5 -, 2, )+ (0) fiir x=1,2,...,k, (23)
also
Dimg, <d fir x=1,2,...,k. (24)

Aus G 1: a n K[z, 2y, ..., 2;,] = (0) folgt: Fiir wenigstens eine Primirkomponente
qu 0. B.d. A. fiir qy, gilt q; n K[z, 2, ..., 2;,] = (0) und wegen (23) weiterhin

gy 0 K[, 2, - oos Ty 2, ] (0),
also Dim g, = d = Dim a. Zusammen mit (24) folgt also W 3.

4.7.  Folgerungen aus den Grsébnerschen Axiomen

Aus den soeben gefiihrten Aquivalenzbeweisen folgt unmittelbar

Satz 12. Fiir P-Ideale (a) = K(z,, ..., z,] gilt: Allein aus (G 1) folgt Dim (a) = d,
allein aus (G 2) folgt Dim (a) < d.

Satz 13. Fiir H-Ideale a = K[z, z,, ..., Z,] gilt: Allein aus G 1 folgt Dim a = d,
allein aus G 2 folgt Dim a < d.

Hieraus folgt der angekiindigte

Satz 14. Durch (W 5) und (G 2) ist die Dimension eines inhomogenen P-Ideals
(a) = K[z, ..., 2,] eindeutig bestimmd.

Satz 15. Durch W 5 und G 2 ist die Dimension eines H-Ideals a — K[z, zy, ..., ,]
eindeutig bestimmd.
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Hierzu werden wir in 4.9. zwei Beispiele durchrechnen.

Unmittelbar einleuchtend ist fernerhin der

Satz 16. Fiir Potenzproduktideale a, — K[z, 2y, ..., %,] kann die Dimension
gemdp G 1, G 2 unmittelbar aus der Basis abgelesen werden.

AbschlieSend beweisen wir noch den

Satz 17. Hauptideale aus K[z, ..., z,) bzw. K[z, 2y, ..., z,] haben die Dimension
n—1.

Beweis. Wir zeigen dies o. B. d. A. fiir H-Ideale. Es sei also

a=(F), acK[z,z,...,2,], F=F(Zo,%y,-..,%s),

und o. B. d. A. trete z, in F wirklich auf. Dann ist (¥) n K[y, ..., Zs—;] = (0), aber

(F) n K[y, 2y, ..., Ty, 4] = (F) & (0); nach G 1 und G 2 ist also Dim (F) =n — 1,
q.e. d.

4.8.  Erliuterung der Grébnerschen Dimensionsaxiome
fiir inhomogene lineare Gleichungssysteme

Wir fihren diese Erliuterung an einem Beispiel durch, welches alles Wesentliche beinhaltet.
Es sei () = K[zy, 7y, 3, 24, 25] mit () = (4, Iy, }) und
h=2— 2 — 23— 32, — 25, — 7,
h=2 + 2 — 8o, + 2% + 2,
Iy = 2z, — 3z, + 424 — 127, + 82 + 17.
Anwendung des GauBschen Algorithmus liefert die @ibliche ,, Trapezform*
h=a— 23— 2— 3z, — 223, —1,

—h+h= 7y + 223 — 22, + a5 + 9,
3 1 1
—ghtghtgh= zy — 2+ 225+ 5.
Eliminieren wir nun z, aus dem zweiten Polynom und dann z, und z, aus dem ersten Polynom %,
g0 erhalten wir die ,, Di 1 Trapezform*
3 7 1
L= ;11+?’n—?’:=¢1—4¢4—3,
1 3 1
Wio=——h+Th-Th=n—1
3 1 1
L,* =—?ll+?1,+?l,=z,—z.+2z,+5.
Dann hat

M) = (h by l5) = (W% 1% 1,%)
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P

die allgemeine Nullstelle
=t, =k H=3+4, p=1, h=-5+4—24;
nach (W 1) ist die Dimension von (1) also gleich 2.
‘Wir priifen nun (G 2) nach, indem wir alle (g ) = 10 Kombinationen (zy,, 2;,, Z;,) untersuchen:

. () 0 Kizy, 7, 23] 3 (0) wegen z, —1€ (1),

. (1) 0 K2y, 2 2] + (0) wegen z;, —1€()),

M) n K[zy, 2, 5] + (0) wegen =z, —1€(l),

. (1) 0 K[z, 73, 7, % (0) wegen z;, — 4z, —3€(l),

. () 0 K[zy, 23, 75] & (0) Wegen 2z, — 4zy — 8z, — 23 € (1),
) n K[z, 74, 5] + (0) wegen 2z, — 4z, —3€ (1),

. () 0 K[zy, 25, 2,] &= (0) wegen 2z, — 1€ (I),

. (1) n K(zs, 25, 2] & (0) wegen =z, — 1€ (1),

M) 0 Kzy, 7, 75) + (0) wegen z, — 1€ (D),

L I - Y~ R N

10. (1) n K[zy, 7, 73] * (0) Wegen z3 — 2, + 225 + 5 € (I).
Wir wollen nun hen, fiir welche Kombinati (G 1) erfiillt ist; obwohl wir nur eine
solche Kombination (zy,, z;,) ben brauchten, seien hier einmal alle ( ;) = 10 untersucht:

1. (1) n K[z;, 73] & (0) wegen z; — 1 € (I), Numerierung ungeeignet,
2. (1) n K[z,, ;] = (0), also Numerierung geeignet,
3. () n K[z, 2] * (0) wegen 2, — 4z, — 3 € (I), Numerierung ungeeignet,
4. (I) n K[z,, 5] = (0), also Numerierung geeignet,
5. (1) n Kizy, 73] + (0) wegen z, — 1 € (1), Numerierung ungeeignet,
6. (I) n K[z, 2,] & (0) wegen z, — 1 € (I), Numerierung ungeeignet,
7. (1) n K[y, 2] & (0) wegen z, — 1 € (l), Numerierung ungeeignet,
8. (I) n K[z;, z,] = (0), also Numerierung geeignet,
9. (1) n K[z,, 25] = (0), also Numerierung geeignet,
10. (1) n K[z,, ;) = (0), also Numerierung geeignet.
Mithin ist (G 1) erfillt fiir die Kombinationen 2, 4, 8, 9 und 10. Als Parameter in allgemeinen
Nullstellen konnen folglich gewihlt werden (y,, ¥s), (%1, ¥s), (¥ ¥4)» (y,, ys) und (y,, ¥s), jedoch
keine anderen Paare. Setzt man fiir diese Parameter den Wert Null ein, so erhilt man die so-
genannten Basislosungen, aus welchen die Losungen fiir die all ine Aufgabe der linearen
Optimierung gewonnen werden (vgl. PIEHELER [1], Satz 4, ferner TscHERNIKOW [1], Kap. I, § 2,
und KreK6 [1], Kap. X, §2).

4.9.  Beispiele fiir die Dimensionsbestimmung
mit Hilfe von W5 und G 2

Wie wir in 4.10. zeigen werden, ist die Dimensionsbestimmung nach G 1 und G 2
oft recht miihevoll, da der Nachweis von G 1 nicht so einfach wie im linearen Fall ist.
Der Nachweis gemi8 Satz 15 fiihrt daher oftmals schneller zu einem Ergebnis. Dies
soll an zwei Beispielen demonstriert werden.
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Beispiel 1. Wir betrachten das bereits mehrmals untersuchte prime H-Ideal
(Fy, Fy, Fy, Fy) < Kz, 2, 7y, 75]
mit
Fy =2y — 22y, Fy=a’ — 2P, Fy=mzad — 2%, Fi=2x2—2°
und der allgemeinen anlstelle (to*, oy, tot,’, t,‘) Man nennt dies auch das Veronesesche Pro-

jektionsideal v{%. Diese B besagt f des: Der Index 1 gibt die Dimension, also die
um 1 vermmdene Anzah! der Parameter, an. Der Index 4 bezeichnet den Grad der Pobenzpro-
dukte. Und der obere Index 2 besagt, daB das P P t fehlt, welches bei lexil

Anordnung — von 0 an zéhlend — die Nummer 2 bekommen wiirde, also unter
="t z=1h%, =14 Z="th z =4
fehlt gerade 2z,. Soviel zu dieser Bezeichnung.

Wir beginnen nun mit der Untersuchung von G 2 und haben (4) = 4 Kombinationen zu
ben'lcksichtigan: 3

vi% n K[zg, 7, 2,] & (0) wegen F, € vi},

m 0 Kz, 21, 23] + (0) Wegen zg’Fy + 2,Fy =2z, — 2, € v},

‘” 0 K[y, 25, 73] + (0) wegen zy3F; — 2,F, = zyz® — 2,8 € v,

‘” 0 K[zy, 75, 7] & (0) wegen F, € v{¥;
nach G 2 ist also

Dim o < (25)

Nehmen wir an, uns wire die allgemeine Nullstelle nicht bek dern nur die Basisf

F,, Fy, Fy, F,. Die unter 2. und 3. gewonnenen Formen fiihren schnell zu einer Nullstelle, bei
der y, und y, als Parameter gesetzt werden. Damit hat man dann schon nach W 5

Dim p{y > 1. (26)
Aus (25) und (28) folgt b{%) =

Beispiel 2. Dieses Beispiel wurde von W. VogeL (Halle) angeregt. In dem soeben unter-
suchten Ideal v{} = K[z, z,, z,, 2;] ersetzen wir z; durch z;,, (§ = 0, 1, 2, 3) und fassen dies als
ein H-Ideal in K[z,,, 2, %3, Ty, 2,] auf. Es ist also

W% = (G, Gy, Gy, G,) < K2y, 7y, 25, 73, 2,) @7
mit
G =22, — 2973, Gy=1m"03 — 2, Oy =25 — 2%, Gy=z2® — 2. (28)
Jetzt ist Dim o} = 2, denn als Parameter kénnen neben y, und y, auch noch y, gesetzt werden,
da x, wegen der Koordmof.onummdmerung in Gy, Gy, Gy, G, iiberhaupt nicht mehr auftritt.
Daneben betrachten wir das prime H-Ideal v{}) — K([zy, 2;, 25, 73, z,] mit der allgemeinen Null-
stelle
=% ni=ld =4’ Y=Hhh, Y=t

und der Basisdarstellung
oY = (207 — 2%, 22 — 2?). (29)
Aus der Anzahl der P: ter in der allgemeinen Nullstelle folgt nach W 1 Dim vy = 2.

Es soll nun die Dimension von NG (10{2) n NG (v{)), kurz Schnittdimension genannt, be-
stimmt werden. Darunter ist geméi8 Kap. 3, (75), die Di ion der Ideal zu versteh
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P

Zu bestimmen ist also d = Dim a mit
a= (0, 8). (30)

Aus der Kenntnis der Di i hlen von 10{? und v{} kann leider nur auf d =2 + 2 — 4
geschlossen werden (vgl. 4.16.). Wir miissen also d ohne Benutzung von 4.16. vermdige W 5
und G 2 berechnen.

Dazu ordnen wir die sechs Basisformen von a nach steigenden Gradzahlen und ersten Potenz-
produkten und erhalten

a = (%% — T}, TT — Ty, T — Th 7Ty — I, BTt — 250, Tt — 7).
Multiplizieren wir die dritte Basisform mit z, bzw. —z; und addieren dies zu den beiden letzten
Basisformen, so erhalten wir

0= (22, — T, 17— Ty, TaTy — Tt 1y — 20, TiT — Tyt 2P — T'7y); (31)
dafiir kénnen wir auch schreiben

0= (22 — 21}, T7 — TFy T — T, BT — 3 (71— T) 2h, (23— 2) %), (32)

Setzen wir die Basisformen von (32) gleich Null, so lassen sich drei Nullstellen wie folgt angeben:
Aus y; = 0 ergeben sich, wie der Leser nachrechnen moge, die beiden nulldimensionalen Null-
stellen yp =0, 3, =0, 3 =0, y, =0, y, =ty und yo =4, 1 =0, ¥, =0, ;= 0, y, = 0.
Der ebenfalls naheliegende Ansatz y, = y, = ¢, und y; = y, = ¢, fihrt zu ¢, =¢, und zu der
ebenfalls nulldimensionalen Nullstelle yo = ty, ¥, = t5, ¥ = ty, ¥s = by, Y4 = bo. Nach W 5 ist
also

Dima = 0. (33)
Wir wollen zeigen, daB in (33) das Gleichheitszeichen gilt. Dazu haben wir gemi8 G 2

an K[z, z;,] + (0) (34)
fir alle Kombinationen ky, k, durch n. Es empfiehlt sich, dieso (5) = 10 Kombinationen
in der Reihenfolge 2

(kos Ky) = {(3, 4), (2, 4), (2, 3), (1, 4), (1, 3), (1, 2), (0, 4), (0, 3), (0, 2), (0, 1)}
zu bearbeiten und dabei die in Kap. 1, Definition 9H eingefiihrte Kongruenzrechnung fir Ideale

zu benutzen. Diese liefert ichst fir die Basi gemiiB (31) mod a
T, = 7%, (356)
.7, = TyZy, (36)
z2 = X, (37)
%0y = x°, (38)
2,22 = Zy1y?, (39)
zd = z,%z,. (40)

Nunmehr untersuchen wir die zehn Kombinati in der kiindigten Reihenfolg

(3,4): Aus (40) folgt 2,® — zy%z, € a.

(2,4): Aus (40) und (37) folgt z,® = z,%r, = z,7,® und daraus z,® = z,%,*. Aus (37) folgt
z,% = z,22,° und mithin z22¢ = 2%, also z,223(z, — 2, € a.

(2, 3): Aus (37) folgt z23 = z,’a:‘, mit (40) folgt 2,72 = z,*, also 2,222 = zy2y®; mit (37)
folgt z,2z,2 = 744, also z,23® = x4, mithin 2,3z, — z,) € a.
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(1,4): Aus (37) und (40) folgt zyzs7, = 7,° = 7,2, 8180 24%,°z, = 2’7, = 7’2,* wegen (40),
also

25", = 3’2, (a1)
Aus (36) und (41) folgt 2,2,7,2 = 22332, = 7,323, also
2,473 = 2370 (42)

Aus (42) folgt mit (40) z,2,°7.2 = 2’28 = 20, 8ls0 2,237,222 = 2,352, mit (36) folgt
2,37,3 = 2,323, also 2,°z* = 2,22, und damit endlich z,%z4(z, — z,) € a.
(1, 8): Aus (42) folgt 2,258z = 2,828, aus (40) folgt 2,7,'z? = 2,7,*, zusammen ergibt sich
also z,7,® = 2,52,%; nach (40) ist zy*z,? = z,%, folglich
2,230 = 1y7. 43)
Aus (43) folgt 2,2,® — 2,7 € a.
(1,2): Aus (38) folgt zuniichst

Tyl = 2yt (44)

2,142, = ., (45)
Aus (43) folgt 2,152,8 = 2,14z, ; mit (44) und (45) folgt daraus 2,2z,1* = z,1, also z,'%(2,® — z,}) €a.
(0, 4): Der Fall (1,4) fihrte auf z,2z(z, — z,) = 0; also gilt auch z,2z.%(z,® — z?) = 0;
aus (35) folgt daraus
izt = zpr® (48)
und mithin zyz4(z, — 2,) € a.

(0, 3): Aus (46) folgt 2,32,1%,* = %¢,1%2,%; aus (40) folgt 2,°z,* = z,'* und z,'%2,® = z,'%; dies
eingesetzt, gibt 2,32,14 = 77,15, also Zezs'4(zy — 7p) € a.

(0, 2): Durch Multiplikation mit z, folgt aus der letzten Kongruenz zyiz,z;' = 247,%,'%; mit
den Ergebnissen von (2, 3) folgt 2y7,’zs!* = 27,25’ also zoyZy4(zp — z5) = 0. Mit z,® multi-
pliziert und 2,3 vermittels der 14ten Potenz von (38) wieder eliminiert, folgt zez,**(zy — 2,) € a.

(0, 1): Die Untersuchung von (0,4) ergab zz* — z,2,* = 0; mit z,® multipliziert, folgt
232,208 — 2%, %28 = 0. GemiB (1, 4) war

2,0z = %5, folglich z%2,%z¢ = 22,225,

und

also
Z'%y 'z — 2mnd = 2@, — ) =0,
mit z,* multipliziert, folgt nach (35) endlich z,'3(z, — z,) = 0, also z,'%(z, — ;) € a. Mithin ist
G 2 erfiillt, und wir haben
Dim a £ 0. (a1
Aus (33) und (47) ergibt sich die Schnittdimension Dim a = 0.

4.10. Eliminationsideale

Bei den folgenden Betrachtungen setzen wir voraus, daB a — K[z, 2y, ..., 7,] ein
H-Ideal ist. Fiir m < n ist dann a n K[z;, ..., ;] in K[z, ..., z,] ebenfalls ein
H-Ideal.
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Definition 3. Ist a = K[z, 2y, ..., z,] ein H-Ideal, so heiBt jedes H-Ideal
(an K[zy, ..., z;,]) = K[zy,, ..., z;,] ein (n—m)-tes Eliminationsideal (m =n — 1,
n —2,...,2,1,0). Man schreibt dafiir

Dp-rmwm i = 0 K[y, ..., 7, ] (48)
Dabei gibt x,, die Nummer der jeweiligen Kombination jq, ..., jm an.

FaBt man b, ., wieder als H-Ideal in K[z, 2y, ..., %,] auf, so ist offenbar
Dp-mwe & @, nach Kap. 3, 8atz 16, also NG (by-p,..) 2 NG (a); speziell firm =d 1,
n—m=mn—(d+ 1) =r—1folgt

NG (dy1,0,,,] 2 NG (a). (49)

Aus (49) folgt

Satz 18. Sdmtliche Nullstellen eines H-Ideals a — K[z,, 2,, ..., z,] lassen sich
wegen (49) aus den Nullstellen eines geeignet gewihlien (r — 1)-ten Eliminationsideals
bestimmen; dabes tst d = n — r die Dimension des H-Ideals a.

Beweis. Kennt man simtliche Nullstellen von b, ,,,, 80 kann man durch Ein-
setzen in die Basisformen von a entscheiden, welche davon zugleich Nullstellen von a
sind. Wegen (49) gewinnt man auf diese Weise simtliche Nullstellen von a.

Geometrisch kann jedes NG (by-m,,) 8ls m-fache Projektion von NG (a) gedeutet
werden (vgl. GROBNER [2], Abschnitt 123).

SchlieBlich ist die Berechnung von Eliminationsidealen bei der Dimensions-
bestimmung nach den Grébnerschen Axiomen G1 und G2 erforderlich. Zwar
benétigt man zum Nachweis von G 2 nur jeweils eine von Null verschiedene Form
der gewiinschten Art (man vergleiche dazu das Beispiel des vorigen Abschnitts),
jedoch macht der Nachweis von G 1 die genaue Kenntnis von a n K[z, ..., %]
notwendig.

Bei linearen Gleichungssystemen liefert die Herstellung der sogenannten ,,Tra.pez-
form* fiir das durch die linken Seiten der Gleichungen des Gleich
erzeugte Ideal I zugleich ein Verfahren zur Berechnung der Ehmms,txonsndeale
(vgl. 4.8.).

Die Herstellung der Trapezform vermittels des GauBschen Algorithmus erfolgt
bekanntlich durch sukzessive Elimination der Variablen: Erst wird z, aus der zweiten,
dritten, ..., m-ten Gleichung eliminiert, dann wird z, aus der neuen dritten, vierten,
.-+, m-ten Gleichung eliminiert usw. Entsprechend gilt allgemein der

Satz 19. Die Berechnung von Eliminationsidealen kann durch sukzessive Elimina-
tion von jeweils einer Variablen erfolgen.

Beweis. Dies folgt unmittelbar aus

bn-m,l.. = bn-—m-l,-m, n K[t‘., veey z/..] (60)
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wegen
an Kz, ..., z;,, 7.1 0 K[z;,, ..., ;] = a0 K[z, ..., 2;,].
Wegen
K.,z o0y 2 0] = KLy 24, 000, 24, 000]
gilt ferner der auch in der linearen Algebra giiltige

Sntz 20. Bei der Berechnung von Eliminationsidealen kann die Reihenfolge der zu
terenden Variablen vertauscht werden.
Damit kann der EliminationsprozeB insofern vereinfacht werden, als man sich im
konkreten Fall eine moglichst einfache Reihenfolge aussuchen kann.

Da man zum Eliminieren einer Variablen mindestens zwei Formen benétigt, gilt
fernerhin der

Satz 21. Fiihrt die sukzessive Elimination auf ein Hauptideal, so ist eine weitere
Elimination von Variablen nicht moglich.

Soll die Variable z; eliminiert werden, so enthélt die Basis des Eliminationsideals
jedenfalls alle diejenigen Basisel te von a, welche z; nicht enthalten. In Analogie
zu den linearen Gleichungssystemen kénnte man nun annehmen, daB fiir die Berech-
nung neuer von z; freier Formen nur noch mit den Basisformen von a gerechnet
werden muB, welche z; enthalten. Man kénnte in Analogie zu den linearen Glei-
chungssystemen hoffen, da8 es mit Rechnungen der folgenden Art getan wiire: Es sei
etwa F, = zyxy — 212, F, = x¢2; — 2,® und ¢ von 0,1,2,3 verschieden. Die
Elimination von z; wird dann durch 2@?2F, + 2,F, = 2%, — 2,* bewerkstelligt. Die
auf diese Weise gewonnenen und nicht durch die schon bekannten von z; freien
Formen reduzierbaren Formen bilden zusammen mit den z; nicht enthaltenen Basis-
formen von a im allgemeinen nicht das volle Eliminationsideal.

Wir geben dazu ein einfaches Beispiel an:
Es sei
a = (Fy, Fy, Fy) = K[z, 23, Zy, T3y 2y, Zs» Ty Z12 %)
mit
Fy =22, — 2%y, Fy =223 — 235 Fy = 22y — 22,
und es soll die Variable z, eliminiert werden. Es ist dann jedenfalls

an Kz, 2y, Zs, Ty, T4y Ty, Zor 7] = (Fy, -..).
Beriicksichtigen wir nur die z, enthaltenden Formen F, und F,, so gewinnen wir eine neue Form F,
mit Fy:= = Tty — Ty, und F, ist ](aln Vlelfaches von Fy, Jedoch ist (F, F,) noch nicht das
volle Elimi ideal, weil zgF, unb t geblieben ist. Nun ist 2,Fy = 247375 — Z,ZsZs,
und diese beiden Terme treten auch in z,F, bzw. z.F, auf, wodurch sich z, wiederum eliminieren
1é8t und zu einer von z, freien Form Fj fiihrt mit

Fy:= z3F, + 25Fy + 2,Fy = 20,23 — 2,277
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Offenbar ist Fy ¢ (Fy, F,). Mit Methoden, die im folgenden erliutert werden, kann man nach-
weisen, da8 man damit das volle Eliminationsideal hat, da8 also

a n Kzg, 2y, Zy, Ty, Ty, Tgs Tg, 7] = (Fy, Fy, Fy)
gilt.
Wir haben jedenfalls als K q
Satz 22. Bei der Berechnung von Eliminationsidealen sind diejenigen Basisformen,
die die zu eliminierenden Variablen nicht enthalten, in den EliminationsprozeB grund-
sdtzlich mit esnzubeziehen.

den

Um alle Moglichkeiten zu erfassen, gehen wir folgendermaBen vor: Es sei z; die zu
eliminierende Variable. Dann vertauschen wir z; und ,, so daB wir im folgenden
immer annehmen kénnen, da8 z, die zu eliminierende Variable ist. Gemi$ Kap. 1,
Satz 17 und 18, stellen wir nun die K-Moduln (¢; a) fiir bestimmte Gradzahlen ¢ auf.
Wie in Kap. 1, Satz 18, kann nun auf die Potenzprodukte des Moduls M(¢; a) fiir
festes ¢ geméB der lexikographischen Anordnung der Potenzprodukte der GauBsche
Algorithmus angewandt werden. Ist myder Minimalgrad der Basisformen von a, so
fithrt man dieses Verfahren nacheinander fiir ¢ = mg, my + 1, my + 2, ... durch (vgl.
Kap. 1, Satz 20). Fiir geniigend groBes ¢ erhélt man schlieSlich Formen aus a, welche
die Variable , nicht enthalten, wobei sich auch die Form 0 ergeben kann. Ist M der
Maximalgrad der Basisformen von a, so wird 2M als obere Schranke fiir ¢ vermutet.

Jedenfalls haben wir damit den

Satz 23. Ist a = K[z, 2,, ..., %,) ein H-Ideal, so kann a n K[z, ..., z,] durch
Bildung der Moduln M(t; a) und A dung des Gaupschen Algorithmus in endlich
vielen Schritten berechnet werden.

Fiir P-Ideale ist dazu der vorherige Ubergang zum &quivalenten H-Ideal uner-
ldBlich (vgl. Kap. 1, Definition 30 und 1.16.).

Beispiel. Wir betrachten wieder einmal das homogene Primideal v(2 — K[z, 2;, zy, 73] mit
den vier Basisformen
Fy = zgzy — 2,2y, Fy =22, — 2,3, Fy= 2z,® — 2%, Fy=z73® — 2,

also my =2, M = 3, 2M = 6. Gesucht ist b{? n K[z, z,, 2,]; mithin ist 2, zu eliminieren. Wir
haben also als erstes z, und z, zu vertauschen; das gibt

Fy> 250y — 202y, Fyb> 22 — 22, Fyb> 250, — 275, Fy> 2im® — 2%;
wir betrachten also das Ideal p := (G, G, Gy, G,) mit
O =ar, — g1y, Op =20 — 2,2, Oy =27y — 2%, G =z2? — 20,
Der Modul }(2; p) besteht nur aus G,.
Der Modul suz(s ) besteht aus den sieben linear unabhingigen Formen

H = 6,=2z—zz, = 2,0, = 2%, — 7,257, =50, = 30’1’: - ’z”:’
H, = 2,6, = 30221 ToTeTss H s = 2,0, = T2,y — 7,2y, H1 Gy = zozy? — 2%,
Hy= Gy=uxr, — 2’z
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Der Modul (4; §) entsteht etwa durch Bildung der 28 Formen z;H, (s = 0,1,2,3; k= 1, ...,7)
welche jedoch nicht mehr linear unabhingig sind:

Zolly =t — zmy7?,
i, = 22 — 2%,
ZoHy = 20’2, — Zo'%eZy,

zHy = 22,23 — 242,°7s,
ZlHy = 2’07y — 2yt

ToHy = 2’2123 — ZoZaTy’,

z3H, = zo%,23 — 21025,
T Hy = 2977y — T2
z,Hy = zom,zy® — 2%y,

2 H) = 2°2y — 212,752 _ — 51
z:g: = ::’z: — z:::;?:,: zHy = 223" — %257, nH, = a3yt — 7%, @
7l = 2’z — 2zt zoH, = a'zy — 27", z3Hy = zo7,2575 — 23'05",
nlHy = z’z® — amizgty, By = 2Ty — 2T, 7 Hy = 290,225 — 2,°%5°,
n'n, — Tty Bl = 22° — 2z, z3Hy = 2y7,25* — 22,
Z'7,Ty — &°Zy» 2,H, = 202,°%y — 2,25"2y, 2y H, = zg7,® — 2Ty,
Zolly = 2¢’z,23 — 223’2, 2 Hy = zo2,%2; — 2125723, z3H, = zo2y’2 — 2,°25.
Es bestehen die Abhingigkeitarelati
zH, — xll; — zHy = 0, zoHy — z;Hy =0, zH, —zHy =0,
ZHy — zoHy — 2,H, = 0, zH, — 2 H, =0, zH, — z,Hg =0,
zHy — 2H, =0, 7y — 2H; — 2, H =0, z3Hy — 2yl = 0.
zHy — 2 Hg — 7 Hy = 0,
Uns interessiert hier die aus (51) sich ergebende, von z, freie Form
2Hy — 2 H, = 2t — 22y = 2,°G, — 2,6,
Vertauschen wir hierin wieder z, und 2, so erhalten wir
2'Fy + 5, Fy = 2’2y — 2, € off) 0 Kz, 23, 73]
Nun kann man zeigen (was wir an dieser Stelle nicht beweisen ké: ), daB fiir d-di

sionale Primideale p die Eliminationsideale p n K[z, .., Zg, Z,,,] Hauptideale sind, sofern
durch Weglassen eines Elementes aus 2z, ..., #y,,, auf wenigstens eine Weise eine geeignete
Numerierung z;, ..., ;, entsteht. Das ist nun in unserem Beispiel, dem H-Ideal v{?, der Fall,
80 daB wir nicht bis £ = 2M = 6 zu rechnen brauchen, sondern bereits bei ¢ = 4 abbrechen
konnen. Wir haben somit

o n Kizg, 21, 73] = (7’25 — ;)
und mithin nach Satz 21

0% 0 K[ze, 2,1 = (0), 1 n K[z, 23] = (0), 9 n K[zy, 2] = (0).
Entsprechend folgt b2 n K[z, 2,, 23] = (242,® — 2,%) und daraus

v® n Kizg, 23] = (0), 0 n K[zy, 73] = (0),
ferner

02 0 Klzo, 2, 23] = (Fy) = (2% — %,%)
und daraus b2 n K[z,, 2,] = (0). SchlieBlich vermerken wir noch

0} 0 Kizy, 73, 23] = (Fy) = (2125 — 2°).
Mithin ist in diesem Beispiel — Gber die Forderung G 1 hinausgehend — v{% n K[z;, ] = (0)
fir alle (s, 7) € (0, 1, 2, 3); alle (s, ) sind also geeignete Numerierungen.

Fiir die Berechnung der Nullstellen nach Satz 18 erweist sich die geeignete Numerierung z,, zy
als besonders ginstig. Aus den Eliminationsidealen v n K[z, 7, 23] = (2,°%5 — ;%) und
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22 n K[y, 25, 75] = (22,® — 7,*) ergeben sich fiir 2, und z, die reinen Gleichungen vierten
Grades (vgl. MfL Bd. 3, 14.8.) in 2, bzw. z,

Z'Ty — 2t = 0, } 62)
%o’ — zt = 0,
und (52) legt nahe, fiir y, und y, Parameter zu setzen. Da wir in einem algebraisch abgeschlossenen
Kérper K rechnen, konnen wir diese Parameter der Einfachheit halber als vierte Potenzen an-
setzen: y, = to}, yy = &,*. Aus (52) folgt dann y; = ¢, und drei konjugierte Werte bzw. y; = #,?
und drei konjugierte Werte, wobei sich die konjugierten Werte jeweils durch Multiplikation mit
den von 1 verschiedenen vierten Einheitswurzeln —1, s, —¢ ergeben (vgl. MfL Bd. 2, 7.4.). Das
ergibt 16 Losungen, die in F,, F,, Fy, F, einzusetzen sind. Dabei stellt sich heraus, daB nur
(2%, &6y, bt 4;*) als Nullstelle in Frage kommt, was der Leser selbst bestatigen kann. Damit
haben wir (f,%, 2%, foh?, ;%) als sogar allgemeine Nullstelle von (2 und damit dessen Primideal-
eigenschaft (vgl. dazu 6.7.).

4.11.  Grundideale, ungemischte, gemischte und pseudogemischte
Ideale

Es sei a = gy n -+ n q; die unverkiirzbare Darstellung durch gré8te Primirkompo-
nenten fiir ein H-Ideal a = K[z, 2,, ..., Z,] der Dimension d. Nach W 3 besitzt dann
wenigstens eines der Primirideale g, ..., q; die héchstmégliche Dimension d; da-
neben konnen noch die Dimensionszahlen d — 1, d — 2, ..., 0, —1 auftreten. Dem
entsprechen die aufsteigenden Kodimensionszahlen (oder Rangzahlen) r =n — d,
r+1,r+2,..,n,n+ 1. DemgemiB wollen wir die Primarkomponenten g, ..., q;
nach aufsteigenden Kodimensionszahlen ordnen und verwenden zur Kennzeichnung
Doppelindizes, wobei der erste Index die Kodimension angibt:

a c K[zy, 2y, ..., 24], Dima=d=n—r,
und (63)
@ =0qr1 0" N Qrs 0 Qa3 N *** N Gretg,, N0 N Gaa N0 N Gy, N G-
Da nicht alle Kodimensionszahlen von r bis 7 4+ 1 aufzutreten brauchen, ist die

Darstellung (53) nicht notwendig unverkiirzbar, d. h., im konkreten Fall ist fiir nicht
auftretende Kodi i hlen r + & zu setzen: 8,,; = 1 und @y = (1).

Definition 4. Das i-te Grundideal g,(a) eines H-Ideals a = K[z, 2y, ..., 2,] ist
definiert durch

gia) i=an - NGy Neengynecengy, fir i=r, .., n} (54)
Barr(0) 1= a.

Entsprechend gilt fiir P-Ideale die
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Definition 5. Das i-te Grundideal g‘((a)) eines P-Ideals (a) = K[zy, ..., 2,] ist
definiert durch

6i((@) :=(@n) 0+ 0 (Grs) 0o 0 (qu) N0 (qu) fiir E =1, 0. (55)

Diese Definitionen der Grundideale stammen von EMmy NOETHER; weitere
Definitionen wurden von HeNTzELT, G. HEEMANN, KRULL und dem Verfasser
gegeben (vgl. RENSORUOH [5], dort auch eine Zusammenstellung aller Definitionen).

Zum Nachweis der Eindeutigkeit der Grundideale machen wir folgende Fest-
stellungen, die wir 0. B. d. A. fiir H-Ideale formulieren:

1. Nach dem ersten Eindeutigkeitssatz (Kap. 2, Satz 37) sind alle zugehérigen
Primideale eindeutig bestimmt; wegen Dim q; = Dim p; nach W 2 gilt also: In jeder
unverkiirzbaren Darstellung a = g; n --- n g, sind die Dimensionszahlen der Primar-
komponenten eindeutig bestimmt.

2. Zweifel beziiglich der Eindeutigkeit der Grundideale konnen indessen wegen der
Mehrdeutigkeit der eingebetteten Komponenten in der Darstellung a =g, n-+- n g,
aufkommen (vgl. 2.20.). Nach 2.15. heiBt q, eingebettet in q; genau dann, wenn
pi D p; und q; P g; gilt. Weiter folgt nach (16): p; = p;=> Dim p; > Dim p;. Mit
W 2 gibt dies

Satz 24. Ista =q; n--- n q; ein H-Ideal aus K[z, z,, ..., z,] mit Dim a = d und
ist die Primdrkomponente q; in der Primdrkomponente q; eingebettet, so gilt:

qi tn q; eingebettet = Dim q; < Dim q; < d (56)
und mithin:
qy eingebettet = Dim q; < d — 1. (67)

Entsprechendes gilt fiir P-Ideale (a) = K[z,, ..., Z,).
Als Kontraposition von (57) folgt der

Satz 25. Bei einem d-dimensionalen H-Ideal oder P-Ideal sind alle d-dimensionalen
Primdrkomponenten isoliert.

3. Wenn trotz der Mehrdeutigkeit der eingebetteten Primirkomponente q; die
Durchschnittsdarstellung a =q, n---ng;n---ngqyn--+ nq, wieder eindeutig ist,
80 liegt das an dem Auftreten der Primirkomponente g;, in welche g, eingebettet ist.
Nach (58) haben aber alle diese q; mit p; D p; eine groBere Dimension als q;; mithin
gilt der

Satz 26. Ist q; esne eingebettete Komp te des d-dimensionalen H-Ideals
a < K[z, 24, ..., z,] und Dim q; = 8 < d, so ist q; auch eingebettete Komponente der
Grundideale gy(a), @a-1(0), - .., Gn-4(a). Entsprechendes gilt fiir P-Ideale.
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Aus Satz 26 folgt unmittelbar
Satz 27. Fiir alle Primirk tenzerl eines H-Ideals oder P-Ideals

sind die Grundideale eindeutig bestimmd. o
Definition 6. Ein H-Ideal a oder P-Ideal (a) heiBt ungemischt, wenn alle Primér-
komponenten dieselbe Dimension haben.

Aus (54) und (55) folgen unmittelbar zwei weitere Sitze.

Satz 28. Fiir H-Ideale a = K[z, ,, ..., 2,] bzw. P-Ideale (a) = K[z, ..., 2] gilt
a ungemischt < a = g,(a), (68)
(&) ungemischt < (a) = g,((a)). (59)

Insbesondere sind also Primirideale und Primideale ungemischt.

Satz 29. Fiir H-Ideale a = K[z, z,, ..., z,] gilt:
a besitzt keine triviale Komponente < a = g4(a), (60)
a besitzt eine triviale Komponente & a < gq(a). (61)

Definition 7. Ein H-Ideal a oder P-Ideal (a) heiBt gemischt, wenn es nicht unge-
mischt ist.

Aus (53) und (54) folgt unmittelbar

Satz 30. Fiir H-Ideale a = K[z, z,, ..., x,] bzw. P-Ideale (a) = K[z, ..., z,] gilt:
a gemischt & a < g,(a), (62)
(a) gemischt <> (a) = g,((a))- (63)

Definition 8. Ist a bzw. (a) ein d-dimensionales gemischtes H-Ideal bzw.
P-Ideal, dessen Primirkomponenten mit kleinerer Di jon als d simtlich ein-
gebettet sind, so heiBt a bzw. (a) pseudogemischt.

Der Begriff ,,pseudogemischt wurde von GRGBNER eingefiihrt (vgl. [2], 137.10).
Die hier und da von anderen Mathematikern aufgeworfene Frage, ob im Hinblick
auf die Anwendungen die Bezeichnung ,,pseudoungemischt‘‘ nicht gii wiire,
bleibt zu bedenken. Vielleicht wire die Bezeichnung ,radikalungemischt am
giinstigsten, und dies aus folgendem Grunde:

Bei Radikalbildung kénnen wegen p; O p; alle eingebetteten Primideale p,; ge-
strichen werden (Kap. 2, Satz 21), so daB in der unverkiirzbaren Darstellung fiir das
Radikal im Fall der Pseudogemischtheit nur noch d-dimensionale Primideale stehen;
mithin gilt
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Satz 31. Ein H-Ideal a = K[z, 2y, ..., z,] bzw. P-Ideal (a) = K[z, ..., z,] ist
pseudogemischt genau dann, wenn Rad a bzw. Rad (a) ungemischt ist.

Mit Satz 28 folgt fiir Satz 31 die formelmiBige Darstellung:

a 18t pseudogemischt < Rad a = g,(Rad a) = Rad g,(a), (64)
bzw. fiir P-Ideale:
(a) ist pseudogemischt < Rad (a) = g,(Rad (a)) = Rad g{(a)). (65)

In Kap. 3, (84), hatten wir NG (a) = NG (Rad a) bewiesen. Demzufolge kann aus
der Aussage ,,NG (a) ist ungemischt** bzw. ,,NG ((a)) ist ungemischt* nur auf ,,a bzw.
(a) ist pseudogemischt‘‘ geschlossen werden. Die Nichtbeachtung dieses Tatbestandes
hat in der algebraischen Geometrie zu Differenzen gefiihrt.

412.  Dimension von ((p), f) und (p, F)

Die folgenden Sitze und die von 4.21. werden von S. LaNe in [66], IL, 7., als Dimen-
stonstheorem bezeichnet.

Satz 32. Ist (p) = K[y, ..., %,] ein d-dimensionales Primideal und f(z,, ..., z,)
€ K[zy, ..., z,] ein Polynom, so gilt:
. dsfe(p),
D = 6
im ((p), ) {4_1 ot 1616 0); (66)
der Fall Dim ((p), f) = —1 ist nach (2) mit ((p), f) = (1) gleichbedeutend.
Beweis. Aus f € (p) folgt ((p), ) = (p) und folglich auch
Dim ((p), /) = Dim (p) = d.
Das Primideal (p) habe die allgemeine Nullstelle
(#1081, - ta)s <o es Ynllss -5 a))-
Wenn Dim((p), f) =d ist, muB f(y,, ..., ¥,) = O sein; da nun aber (y,,...,y,) als
allgemeine Nullstelle von (p) vorausgesetzt worden war, folgt f(z;, ..., Z,) € (p) nach
Kap. 3, (19).

Wenn Dim ((p), f) = d — 1 oder ((p), f) = (1) gilt, ist f ¢ (p), denn im Fall { € (p)
wiirde Dim ((p), f) = d nach dem oben Bewiesenen folgen.

Wenn f ¢ (p) ist, ist
H#r +oos ta)s oo Yaltsy oo b)) = fltry - ta) £ 0id.in by, ..oy by
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Jetzt sind zwei Fille zu unterscheiden:

Fall 1: Nach Durchfiihrung aller méglichen Vereinfachungen komme in f(¢,, ..., f2)
wenigstens ein Parameter, o.B.d. A. t;, wirklich vor. Fiir jede Nullstelle von ((p), )
muB dann

flty, ... t0) =0 (87)

gelten.

Aus (67) folgt im Fall des Auftretens von ¢,, ..., ¢, daB sich ¢, durch ¢, ..., ¢,
ausdriicken 1aBt. Héngt jedoch die linke Seite von (87) von ¢; allein ab, so folgt
t; = const aus (67). In beiden Féllen ergibt sich Dim ((p), f) =d — 1 nach (W 4)
(vgl. Satz 6).

Fall 2: Nach Durchfiihrung aller moglichen Vereinfachungen komme in f(¢,, ..., #4)
keiner der Parameter ¢, ...,¢ vor, also ist f(¢,...,¢;) = const = C, und wegen
f(ts, «--r tg) = 01id.int;, ..., 44 ist C == 0. Dann hat ((p), f) keine Nullstelle und muB
nach 3.8. das Einheitsideal sein; dies folgt auch so: Ist

g@ys ooy T) 1= f(@1, s T8) — O,
dann ist

91 - Yn) =41, o, Ya) —=C=C—-C =0,
mithin g(z,, ..., z,) € (p), also

@»n=«mw+cr=WLQ={w»%-ﬂ=ﬂn

wegen C == 0. Damit ist der Satz 32 vollstindig bewiesen.
Ist dagegen p ein H-Ideal, so kann der zweite Fall nicht eintreten; wir haben also
den

Satz 33. Ist p = K[z, 2y, ..., z4] ein d-dimensionales homog Primideal und
F(xy, 24, ..., z,) eine Form, so gilt:
. do Feyp,
D ,F) = 68
im (p, F) {d_léFQ& (68)

413. Dimension von ((a), f) und (a, F)
Um den Fall ((a), f) auf ((p), /) zuriickfithren zu kénnen, miissen wir die Rechen-
regeln fiir Radikale und die Beziehung

Dim (a) = Dim Red (a) 1)
wesentlich benutzen.
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Aus der im Kap. 1, (100), bewiesenen Beziehung
Rad ((a) + (b)) = Rad ((Rad (a)) + (6))
folgt fiir Primiirideale (q) mit Rad (q) = (p) unmittelbar
Rad ((g), /) = Rad ((9), 1)- (69)
Weiterhin galt nach Kap. 1, (114),
Rad (((@) 0 (B) + () = (Rod (@) + () 0 (Rad (®) + (@),

wobei die Radikalbildung tlich fiir die Giiltigkeit des Gleichheitszeichens war.
Hieraus folgt fiir (¢) = (f) unmittelbar

Rad ((a) 0 (6), /) = Rad ((@), f) n Rad (®), ),

Red ((q) 0+ 0 (as), /) = Rad (@), /) 0 Bad ((ds), /) 0 -+~ n Rad (@), ),
und mit (69) folgt

Rad ((qs) -+~ 0 (@), /) = Rad ((py), f) n Rad ((Bs), f) n -+ 0 Rad ((p), /)(7 0

mit)

Aus (W 3) folgt unmittelbar

Dim ((a) n (b)) = Max {Dim (a), Dim (b)} (71)
und mithin wegen (11)

Dim ((g;) n++- 0 (qe), ) = Max {Dim Rad ((0a)» f)} x=1,...,k). (72

Wir setzen jetzt Dim (a) = d, r = n — d, voraus und benutzen die Darstellung (53)

fiir inhomogene P-Ideale (a) = K[z, ..., z,]:

(@) =(an) >+ 0 (Gra,) N (Gra1,1) 0 =22 0 (Qran o) 0000 0 (Am) 0200 0 (Gnsl);
aus (73) folgt wegen (70) (73)

Rad ((a), f) =Rad ((pn), f) 0 -+ n Rad (9,4, /)

n Rad ((Prs1,1), f) 0 -+ 0 Rad ((Prea)s f)

n Rad ((pnl)» ’) n---nRad ((Pu.); ,)' (74)

Mit (686) und (11) folgt aus (74): Es ist Dim ((a), f) = d gensu dann, wenn f € (p,,)
fiir wenigstens ein ¢ € (1, ..., 8,) gilt. Ist hingegen f ¢ (p,,) fiir alle 0 = 1, ..., 8, 80
ist Dim ((a), f{) < d — 1. Sind alle ((py,), f) = (1) und gilt f § (Pry,) fiir alle o =1,
++43 841, 80 i8t Dim ((a), f) < & — 2 usw.; auf diese Weise kann auch der Fall ((a), )
= (1) eintreten. Wir haben also als Ergebnis den
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Satz 34. Ist (a) = K[zy, ..., 2,] ein d-dimensionales P-Ideal und f € K[z, ..., z,]
ein Polynom, so ist Dim ((a), f) = d, wenn f in wenigstens esnem zugehirigen d-dimen-
sionalen Primideal aufgeht, andernfalls st Dim (a) < d — 1.

Nach Kap. 1, Satz 29, galt:
(a) : (6) = (a) & (b) & (p,) fiiralle x =1, ..., k;
also speziell fiir (b) = (f):
14 (py,) firalle 0 =1,...,8,
& ((Pr) 0 -4+ 0 (0ra)) : () = (@) 0 -+ 01 (ara,)-
Nach (55) ist aber (g,1) n -+ 0 (gy,,) = g((2)); mithin gilt:
14 (pyo) fiiralle 0 =1, ..., 8, & g{(a)) : (f) = g((®)),
und dementsprechend gilt auch die Kontraposition:
f € (p,,) fiir wenigatens ein o € (1, ..., 3,)  g,((a)) : () > g+((@));
wir haben also fiir Satz 34 die formelmiBige Darst;

; =d  ©g{@): > @), }
Di > 76
m (@) 1) { Sd—1 s g(@): () =gf{(). (76)
Beispiel. Es sei
(@) = (@2 + 21, Z1%5 .-y 21%), (@) < K[Zpy ooey 2]

Wir wollen zeigen, da8 Dim (a) = n — 1 und Dim ((a), 2, + 1) = n — r gilt. Ersteres folgt nach
(W 4) aus der Nullstelle

n=0, Hm=t, u Y=t u Y=l
oder aus der Durchschnittsdarstellung

@=@) @+ L2..07)=@)n@+1,2 ..., 7).
Weiter ist hier g,((a)) = (2,); wegen z; + 1 ¢ (z,) ist

8((@)) 2 (= + 1) = ga((a));

2= zy(z, + 1) — 2z (6=2..7

(@2, +1)= (@ + 1L,z .00 2p),
und nach (W 1) ist Dim ((a), z; + 1) =27 — r. Man beachte auch hier bei der Darstellnng von z;
die nur bei inhomogenen P-Idealen mogliche Gradiibersok g auf der rechten Seite.

Dieses Beispiel von GROBNEB zeigt, daB bei inhomogenen P-Idealen durch die

Hinzunahme eines Polynoms die Dimension beliebig stark verkleinert werden kann
(wenn r und # nur geniigend gro8 sind).
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Um zu einer geometrischen Formulierung unserer Sitze zu gelangen, erinnern wir
an Definition 18 von Kapitel 3, wonach Nullstellengebilde von Hauptidealen Hyper-
flichen genannt werden. Unter Benutzung von NG ((a) + (b)) = NG ((a)) n NG ((6))
gewinnen wir dann folgende geometrische Interpretationen:

fiir (66): Im n-dimensionalen affinen Raum ist der Schnitt eines irreduziblen
algebraischen d-dimensionalen Nullstellengebildes (kurz: einer d-dimensionalen
Varietit) mit einer Hyperfliche d-dimensional oder (d— 1)-dimensional, falls er
existiert;

fiir (75): Im n-dimensionalen affinen Raum ist der Schnitt eines d-dimensionalen
algebraischen Nullstellengebildes (oder: eines d-dimensionalen algebraischen Systems)
mit einer Hyperfliche hichstens d-di ional, falls er existiert, kann aber beliebig
kleiner als d — 1 sein.

Einfacher liegen die Dinge im projektiven Raum. Hier konnen wir sagen: Im
n-dimensionalen projektiven Raum existiert fiir d = 1 stets der Schnitt eines d-dimen-
sionalen algebraischen Nullstellengebildes mit einer Hyperfliche und het die Dimen-
sion d oder d — 1 (vgl. (68) und die noch folgende Formel (72)).

Wir setzen jetzt a — K[z, 2y, ..., z,] als H-Ideal mit Dima =d und Kodim a
=r =mn — d voraus und benutzen die Darstellung (53) fiir H-Ideale, also in der
Gestalt

A=0n N 0 Grs 0 Gre1,1 N *** N Qretsg,, 020 NV Qi N 22 N Gpg, N qr
und gewinnen analog dem inhomogenen Fall

Rad (a, F) = Rad (ppy, F) n -+ n Rad (p,,,, F)
n Rad ®rer F)oeeen Rad (pﬂ-l.lru’ F)

nRad (ppy, F) n--- n Rad (pu,,, F) n Red (pr, F).
Wegen p; = (2, 2, ..., Z,) ist nun aber (pr, F) = pr und Rad py =pr, also auch
Rad (pr, F) = pr; in obiger Durchschnittsdarstellung kann also diese letzte Primar-
komponente gestrichen werden, und es bleibt
Rad (a, F) = Rad (p1, F) n --- n Rad (p,,,, F)
n Rad (9y41,1, F) 0 -+ n Rad (Pr41,4,,, F)

nRad (pay, F) 0 -+ n Rad (Pae,, F). (76)
Mit (68) und (12) folgt aus (76) der
Satz 35. Ist a = K[z, 2y, ..., 2,] ein d-dimensionales H-Ideal und F (2, z, ..., Z,)
eine Form, so ist Dim (a, F) = d, wenn F in wenigstens einem zugehorigen d-dimen-
sionalen Primideal aufgeht; wenn dagegen F in keinem zugehorigen d-dimensionalen
Primideal aufgeht, 1st Dim (a, F) =d — 1.
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Analog zum Satz 34 haben wir dafiir die formelméBige Darstellung:

a © g/(a) : (F) > g.la),
d — 1 g,(a): (F) = gia).

Als besonders wichtig wird sich der Spezialfall a : (F) = a erweisen. Ausa: (F) =a
folgt g,(a) : (F) = g,(a); mithin gilt der

Satz 36. Ist a < K[z, z,,...,2,] ein d-dimensionales H-Ideal ohne triviale
Komponente und ist F(zy, 2y, ..., %,) eine Form mit a: (F) = a, so ist Dim (a, F)
=d — 1, kurz:

(6 =ga@ADima=dnra:(F) =qa)=> Dim(a, F) =d — 1. (78)

Nach (60) bedeutet a = gu(a), daB a keine triviale Komponente besitzt und umge-
kehrt; diese Voraussetzung ist nach dem Dubreilschen Lemma (Kap. 3, Satz 45) fiir
die Existenz von Formen F mit a : (F) = a notwendig und hinreichend.

Die Umkehrung von (78) gilt wegen (58) und (77) nur im Fall der Ungemischtheit
von a:

Dim (a, F) = { (77)

(a ungemsscht A Dim a =d A Dim (a, F) =d — 1) = a: (F) =a. (79)

414. Dimension vona:b

Wir formuli dies dchst fiir H-Ideale a = K[z, 2,, ..., 2,]. Ersetzen wir in
Satz 20 von 2.11. das Ideal a durch b, so folgt

q:b=gq @bgy,

goq:bc(1)eobEqab Sy,

q:b=(1) s$bcSqa;

dabei ist im zweiten Fall Rad (q : b) =p. Wegen Dim a = Dim Rad a gemiB8 (12)
folgt mithin:

q:b + (1) © Dimq:b = Dimq. (80)
Fir a =@, n--- nq; folgt unter Benutzung von Kap.1, (160), a:b = (q, : b)
0 (qz:b) n.-- n(q,:b) mit (63) und (54) sofort:
Satz 37. Fiir H-Ideale a, b aus K[z, z,, ..., z,) mit Dima =d =n — r gilt:

=Dima fir b g.(a),

<Dima fir bZ<gla). @1

Dima:b{
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Fiir P-Ideale lassen sich dieselben Schliisse in gleicher Weise durchfiihren; es gilt
also

Satz 38. Fiir P-Ideale (a), (b) aus K[z,, ..., z,] mit Dim (a) =d =n — r gilt:

=Dim(a) fir () g{@),

2
<Dim (a) fir (6) S gf(@)- @2

Dim (a) : (6) {

4.15. Ungemischtheit von Hauptidealen

Wir wollen auch hier die Uberlegungen fiir H-Ideale durchfiihren und beweisen
(unter Benutzung einer Mitteilung von D. NESSELMANN) den wichtigen

Satz 39. a < K[z, 2,, ..., 2] sei ein H-Ideal. Dann gilt:
a 13t Hauptideal & a st ungemischt A Dima =n — 1. (83)

Beweis. («<): Essei zundchstp = (P, ..., P,) ein Primideal und Dimp =n — 1.
Ist (Py, ..., P,) eine Minimalbasis von p, so sind P, ..., P, nach Primidealdefinition
(vgl. Kap. 2, (2)) irreduzibel. Ist P € K[z, #;, ..., z,] irreduzibel und P € p, dann
ist (P) ein Primideal mit (P) S p, wegen Satz 17 und (16) gilt also » — 1 = Dim (P)
2 Dimp =n — 1; wir haben mithin (P) S 9 und Dim (P) = Dimp. Aus (16)
folgt indirekt:

p1 Sp2ADimp, = Dimp, = p; =p,; (84)

aus (84) folgt p = (P).

Aus (p9) S g = (P), (p*) & q, o = 2, folgt fiir F = H,P € q nacheinander
H, € (P), H = H,P, H; € (P), F = H,P?* usw.bis F = H,Pe¢; mithin sind die
Hauptideale (P¢) =pe fiir ¢ =2, 3,4, ... die einzigen Primérideale mitp = (P)
als Radikal.

Ist nun q ein (» — 1)-dimensionales Primirideal, so ist wegen Dim a = Dim Rad a
gemiB (12) das Ideal Rad g = p ebenfalls (n — 1)-dimensional und nach dem soeben
Bewiesenen Rad ¢ =p = (P) und q = (P?) ein Hauptideal.

Ist schlieBlich a ein ungemischtes (»— 1)-dimensionales reduzibles H-Ideal, so
ista = g, ngg 0 -+ n qp, und demgemiB sind wegen der vc tzten Ungemischt-
heit alle anrkomponenten (n — 1)-dimensional. Mithin gilt q‘ (Py®), q3 = (Py®),

«» Qg = (P4®); wegen der paarweisen Teilerfremdheit von P,, Py, ..., P, ist mithin

a= (P Pyo... P,0r), (85)
also ein Hauptideal.

(=): Ist umgekehrt a = (F) ein Hauptideal, so ist zundchst Dim a = n — 1 nach
Satz 17. Jetzt ist F eine Form aus K[z, z,, ..., z,]. Nun ist K[z, 2,, ..., z,] zwar kein
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euklidischer Ring, aber dennoch ein ZPE-Ring. Mithin existiert fiir () eine Dar-
stellung der Gestalt (85), aus welcher a = (P,*) n (Py®) n -+« n (P;%) mit Rad (P%)
= (P;) folgt. Wegen der Irreduzibilitit sind die (P;) Primideale und also die (P%)
Primirideale, welche als Hauptideale nach Satz 17 simtlich die gleiche Dimension
n — 1 haben; mithin ist a ungemischt, q. e. d.

Ganz entsprechend verlaufen die Beweise fiir P-Ideale; mithin gilt
Satz 40. (a) = K([zy, ..., z,] sei ein P-Ideal. Dann gilt:
(a) tst Hauptideal < (a) ést ungemischt A Dim (a) =n — 1. (86)

Wir stellten im zweiten Kapitel fest, daB die effektive Durchfiihrung der Primir-
komponentenzerleg\mg und mithin auch die daraus folgende Entscheidung iiber
ischtheit und U ischtheit des betreffenden P-Ideals oder H-Ideals nur in
besonderen Fillen moghch ist. Daher ist es von Bedeutung, hinreichende Bedingungen
fiir die Ungemischtheit von P-Idealen und H-Idealen angeben zu kinnen. Die Sitze
39 und 40 stellen eine erste derartige Bedingung dar, die wir durch die Begriffe
,,1deal der Hauptklasse* und ,,perfektes Ideal* im folgenden abschwichen werden.

4.16. Dimension von (g, b) fiir H-ldeale

Der folgende Satz 41 wurde erstmals von vaAN DEB WABBDEN bewiesen (vgl. [5],
8Satz II); fiir weitere Beweise sei auf ZARISKT und SAMUEL [1], p. 207, Theorem 27,
S. Lawe [1], p. 38, Corollary, O.-H. KELLER [2], S. 153, Satz 44, und die Dissertation
von RENsoHUOH [1], S. 10, Satz 3, verwiesen.

Satz 41 (Allgemeiner Di i tz). Sind a, b H-Ideale aus K[z, 2y, ..., Z,]
mit Dima =d,Dimb = 8:=n — g, so0 8¢
Dim (a,6) =d — o. (87)

Beweis. Auf den vollstindigen Beweis soll hier verzichtet werden; wir wollen
immerhin zeigen, wie (87) auf den Fall zuriickgefiihrt werden kann, daB a und b
prime H-Ideale sind. Dazu wenden wir wieder

Rad (a + b) = Rad (Red a) + (Rad b))
aus Kap. 1, (100), und
Rad ((a; n 6z), a5) = (Rad (a,, a5)) n (Rad (az, a5))
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aus Kap. 1, (114), mehrmals aufa =q, n--- nq, und b = G, n --- n G an und haben
damit
Rad (a, b) = Rad (p;, By) n--- o Rad (py, Ps)
n Red (ps, By) n -+ n Rad (ps, Pp)

n Rad (9, By) 0 -+ o Rad (py, Pa). (88)
Aus (88) und wegen Dim a = Dim Rad a nach (12) folgt, daB es also geniigt, (87) fiir
zwei homogene Primideale p, p zu beweisen. Dann gilt sogar der etwas schiirfere
Satz 42. Sindp und b zwes homogene Primideale aus K[z, zy, ..., z,] mit Dim p =d,
Dim p = d:=n — o, %0 gilt
Dim (p, §) = d — ¢ A (b, P) pseudogemsischt fiir Dim (p,p) =d —o.  (89)

Zum Beweis verweisen wir auf die anfangs genannten Autoren; insbesondere die
A der Pseudogemischtheit ist schwieriger zu beweisen; fiir den Spezialfall

)

= (¥) fithren wir den Beweis in 4.21. Allgemein gilt Rad (p, F) = gn(Rad (p, B))-

In geometrischer Sprechweise lautet Satz 42 — wenn wir die kiirzere Bezeichnung

,» Varietit telle von ,,Nullstellengebilde eines Primideals” benut und
NG (a,b) = NG (a) n NG (b) gemiB Kap. 5, (75), beachten — folgendermaSen:
Im n-ds ional jektiven Raum ist der Schnitt zweier Varietiten der Dimen-

sionszahlen d und 8, /alls er existiert, mindestens von der Dimension d + 8 — n und
enthilt keine Komponenten von kleinerer Dimension als d + 6 — n.

Denn die Beziehung Rad (p, p) = g"'(Ra,d », p)) besagt, daB die isolierten Pri-
mirkomponenten von (p,P) mindest die Di jon d —p=d— (n—é)
=d + 8 — n haben.

417. s = rfiir H-ldeale, H-ldeale der Hauptklasse

Es sei (F,, ..., F,) die Minimalbasis eines H-Ideals a = K[z, 2, ..., z,] der Dimen-
sion d =n — r, also der Kodimension r. Nach Satz 17 ist Dim (F,) =n — 1; aus
(77) folgt nacheinander Dim (Fy, F,) 2n — 2, Dim (F),F,,Fy) =n—3, ...,
Dim (Fy,...,F}) =n —14, ..., schlieBlich

d=n—r =Dima =Dim(F,....,F)=n—s,

alson — r = n — ¢, mithin —r = —s, also gilt der
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Satz 43. Ist a = K[z, 2y, ..., 24] ein H-Ideal der Kodimension r mit der Minimal-
basis a = (Fy, ..., F,), so gilt
s, (90)
Mit (90) ist ein wesentlicher Unterschied zur linearen Algebra zu verzeichnen, bei
welcher stets 8 = r gilt und der Rang r oftmals durch r = & sogar definiert wird. DaB
der Fall 8 > r auftritt, ist am schnellsten wohl durch Bildung von Idealpotenzen
(vgl. Kap. 1, (72)) einzusehen; aber selbst bei Primidealen kann der Fall s > r auf-
treten; wir betrachten wieder einmal unser laufend als Beispiel benutztes primes
H-Ideal p = (Fy, Fy, F3, Fy) < K[, z,, %, 5] mit
Fy = zywy — 2125, Fp = 2%, — 2,5, Fy = 22, — 2,225, Fy = 2,2, — z°
mit n =3,d =1, r =2, 8 =4. Wir werden in 4.27. noch ausfiihrlicher hierauf
eingehen und zeigen, da8 selbst bei Primidealen s beliebig gro8 werden kann.

Jedenfalls ist das Auftreten des Gleichheitszeichens in (80) eine Ausnahme, die eine
Definition rechtfertigt.

Definition 9. Ein homogenes oder inhomogenes Polynomideal a bzw. (a) heift
ein Ideal der Hauptklasse r oder kurz Hauptklassenideal, wenn es die Kodimension r
und eine r-gliedrige Basis besitzt. Ideale der Hauptklasse 1 heiBen Hauptideale.

Theoretisch 1iBt Definition 9 die Méglichkeit offen, daB eine Basis minimaler
Liinge des vorgelegten Ideals aus weniger als r Elementen besteht. Aus (90) folgt, da8
dies fiir H-Ideale nicht eintreten kann (fiir P-Ideale vgl. 4.25.); wir haben also den

Satz 4. Ein H-Ideal a = Kz, 2y, ..., z,] der Kodimension r ist genau dann ein
H-Ideal der Hauptklasse r, wenn jede Basis minimaler Linge aus genau r Elementen
besteht :

a = (Fy,..., F,) st H-Ideal der Hauptklasse r
A Fy, ..., F,ist Basis minimaler Linge.
Von Wichtigkeit erweist sich ferner

Satz 45. Ist a = (Fy, Fy, Fy, ..., F,) = K[%g, 24, ..., x,) ein H-Ideal der Haupt-

klasse r, so gilt:
(F,) tst Hauptideal,
(Fy, Fy) 18t H-Ideal der Hauptklasse 2,
(Fy, Fy, Fy) st H-Ideal der Hauptklasse 3,

}=>a=r. (91)

(Fy, Fy, ..., F,_,) tst H-Ideal der Hauptklasse r — 1, kurz:

a = (Fy, ..., F,) ist H-Ideal der Hauptklasse r

= a = (Fy,..., F)) tst H-Ideal der Hauptklasse i (92)
fir 1=1,2,...,r—1.
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Beweis. Tritt in der Folge der Ungleichungen
Dim (F,) =2 — 1, Dim (F,, F;) =n—2, Dim (Fy, F;, F}) =n —3,...
an irgendeiner Stelle das >-Zeichen auf, so nach (77) auch an allen folgenden. Damit

B

also

Kodim a = Kodim (F,, ..., F,) = r,also Dim (¥y, ..., F,) =n —r
ist, muB (92) gelten, q. e. d.
Fiir inhomogene P-Ideale der Hauptklasse ist (92) nicht immer erfiillt, vgl. 4.25.

4.18. Schnellbasen von H-ldealen

Definition 10. Ist a ein H-Ideal aus K[z, z,, ..., z,] mit Dima =d =n — r, so
heiBt eine Basis von a der Gestalt

a=(Fy,...,F, Fpy, ..., F,) mit Dim (Fy,...,F,) =Dima=n—r (93)
eine a-Schnellbasis.
‘Wir beweisen nun den

Satz 48. Zu jedem H-Ideal a = K[z, 2y, ..., z,) mit der Minimalbasis (F,, ..., F,)
und Dim a =d = n — r gibt es mindestens eine a-Schnellbasis (F,,...,F,, Fp,y,..., F,),
die also wiederum Minimalbasis st und bei welcher F,, ..., F, von moglichst geringem
Grad sind.

Beweis. Die Elemente der Minimalbasis seien so geordnet, daB (vgl. Kap. 1, (33))

WF) S h(Fy) < - S H(F,) (94)
gilt. Wir setzen dann
Fy:=Fy; (95)

dann ist Dim (F;) = n — 1. Ist nun Dim (F,, F,;) =n — 2, so setzen wir F, = F,.
Andernfalls existiert ein Index j; mit -

Dim (F,, F,, ..., F}) =n — 1 und Dim (F,, Fy, ..., Fj, Fj ) =n —2,
(98)
und wir machen den Ansatz

Fy =G Fy + GuuFs + -+ + Oy Fy+ Ry gy Fry mit Ay g0 €K
97)
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und bestimmen Gy, Gy, ..., Gj,, Aryjer 80, daB F, eine Form wird und
Dim (F,, F;) =n — 2 ist. Dies ist nach (77) stets moglich, da K unendlich viele
Elemente hat. Damit F, Element eines der Primideale von (F,) ist, miissen seine
Koeffizienten endlich vielen Gleichungen geniigen (das sind die ,,Hilbertschen Glei-
chungen®, auf die in Kapitel 8 eingegangen wird); man braucht also die Koeffi-
zienten von Gy, ..., Gy, und den Wert 4, ;,, nur so zu wihlen, daB keine dieser
Gleichungen erfiillt ist, was bei endlich vielen Elementen stets moglich ist.

Ist nun Dim (F,, F,, F3) =n — 3, so setzen wir F; = F;. Andernfalls existiert
ein Index j3 > j, mit

Dim (Fy,...,F,) =n—2 und Dim(F,,...,F,, Fi,) =n—3; (98)
wir machen den Ansatz
Fy =GyF) + GyuFy + - + Ga.l.F-]. + 13.1.+1F_/.+1 mit 4., €K (99)

und bestimmen Gy, Gyg, ..., Gy, Ag,j,1 80, daB Fy eine Form wird und die Beziehung
Dim(F,, Fy, F3) =n — 3 gilt. Jetzt sind die Gy und 23;,., gemaB (77) so zu be-
stimmen, daB F, in keinem (n — 2)-dimensionalen Primideal von (F,, F;) aufgeht,
was wiederum auf die Vermeidung von Werten hinausliuft, die endlich vielen Be-
dingungsgleichungen geniigen; dies ist wiederum mdglich, da K unendlich viele
Elemente hat.

So fahren wir fort bis

Dim (F,,..,F;)=n—r+1 und Dim(F,,....F,, F,.,)=n—r
(100)
und setzen

Fo=0GuF 4+ G F) + Ay, nF ey mit Ay € K. (101)

Dann kénnen wir Gy, ..., Gy, A5+ 80 bestimmen, daB Dim (Fy, ..., F,) =2 —r
= Dim a ist. Somit haben wir die Schnellbasis

[0 7R Fﬁim eny F_/,n, wees F}., F_,',n, veey F_y,, F_/,n, ~-~,Fa)> (102)

welche wegen (95), (97), (99), ..., (101) zur Ausgangsbasis (F,, ..., F,) idealiqui-
valent ist. Da (F, ..., F,) als Minimalbesis vorausgesetzt war und (102) ebenfalls
aus ¢ Elementen besteht, ist auch (102) eine Minimalbasis, q. e. d.

Wir werden im folgenden Schnellbasen bei der Abschitzung der Linge der Sy-
zygienkette nach unten bendétigen (vgl. Kap. 5); sie wurden von RENScHUCH zu Be-
rechnungen bei Verallgemeinerungen des Bezoutschen Satzes eingefiihrt (vgl. [1]).
Die Bezeichnung ,,Schnellbasis‘ wurde von O.-H. KELLER vorgeschlagen.

So vorteilhaft Schnellbasen fiir diese Beweise auch sein mogen, so zeigen bereits
die Ansitze (97), (99), ..., (101), daB die Elemente der Schnellbasen von kompli-
zierterer Bauart sein kénnen. So sind die nach Anwendung des GauBschen Algorith-
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mus gewonnenen Minimalbasgen, u. a. von Eliminationsidealen, im allgemeinen keine
Schnellbasen. Bei Potenzproduktidealen bedeutet der Ubergang zu Schnellbasen,
daB man nicht nur Potenzprodukte, sondern mehrgliedrige Polynome in die Basis
aufnehmen muB; als Beispiel betrachte man (zoz,, ZoZs, 2,2;).

4.19. Gemischtheit von (a, F) bei a: (F) = a und Gemischtheit von a

Der folgende wichtige Satz stammt von GROBNER (vgl. [2], 135.8).

Satz 47. Ist a = K[z, 2, ..., z,] etn d-dimensionales (d = 1) gemischtes H-Ideal,
bei dessen Primirkomponenten die Dimension é mit 0 < 6 < d als kleinstmogliche Di-
mension auftritt, und i8¢t F eine Form mit a: (F) = a, so st (a, F) von der Dimension
d — 1 und ebenfalls gemischt, und zwar ist die kleinstmogliche D ion der Primdr-
komponenten hichstens & — 1.

Setzen wir r = n — d, so bedeutet dies formelmaBig:

r<g=nara=gyla)racge(a)ra:(F)=a
= V ((a, F) = goui(a, F) A (8, F) < goira(a, F)) (103)
iz1
und damit gleichwertig:
r<osSnAa=ga) A aS g (a)aa:(F)=a (104)
= (a, F) < go(a, F) A (a, F) S goui(a, F).

Beweis. Wegend = 1ist § = 0, also ¢ < » und damit a = gu(a), mithin besitzt a
nach (60) keine triviale Komponente, so daB Formen F mit a : (F) = a existieren;
nach (78) ist dann

Dim (a, F) =d — 1. (105)
Es ist nachzuweisen, da (a, F) eine Primarkomponente besitzt, deren Kodimension
mindestens gleich o + 1 ist. Die Radikalbildung Rad (a, F) = n Rad (py, F) ge-
méB (76) hilft uns dabei nicht weiter, da die Gemischtheit durch eingebettete Kom-
ponenten verursacht werden kann. — Nach Kap. 2, (51), galt doch:
b Sy, fiir wenigstenseinx € (1,2,...,k) ©a:b>a. (1086)
Wir wollen aus (106) eine Beziehung fiir die Dimensionszahlen von p und b her-
leiten. Ist b =p,, so ist Dimb = Dimyp,. Ist b —p,, so auch Radb S p,. Ist
Rad b =p,, so ist wiederum Dim b =Dim p,,. Ist Rad b = p,, s0 ist Dim b =Dim p,,
also Kodim b < Kodim p, . Insgesamt folgt also aus (106):

a:b>a=>b Sp,= Kodimb < Kodimp,. (107)
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Nach Voraussetzung existiert nun ein zu a gehériges Primideal p der Dimension
d =n — p, also der Kodimension ¢; wegen a: (F) = a ist dann F ¢ p; mithin hat
(p, F) nach (68) die Dimension é — 1, also die Kodimension ¢ + 1.

Es ist zu zeigen, daB es wenigstens eine Priméirkomponente g, mit dem zugehérigen
Primideal p, von (a, F) mit Kodim (p, F) = ¢ + 1 < Kodimp, gibt. Nach (107)
geniigt hierzu der Nachweis von

(a, F): (p, F) > (a, F). (108)
Wegen Kap. 1, (139), geniigt es zum Nachweis von (108), die Alternative
(a,F): (p, F) =(a, F) ’ (109)

zum Widerspruch zu fiihren,
Nach Kap. 1, (188), galt a: (b + ¢) = (a:b) n(a:¢c), also

(a,F): (p, F) =((a, F):p) n((a, F): (F)) =(a, F):p
wegen (a, F) : (F) = (1) nach Definition des Idealquotienten. Zusammen mit (109)
gibt dies

(a,F):p = (a, F). (110)
Nach Kap. 1, (148),galtnun: a Sb=>a:c Sb:c,als0oa:p S (a, F) : p; mit (110)
folgt daraus

a:p S (a, F). (111)
Andererseits ist (vgl. Kap. 2, (51))

a:p>oa. (112)
Also existiert eine Form F, mit F, € a:p und F, ¢ a; wegen (111) ist F, € (a, F),
also F, = A 4 F,F oder in Kongruenzschreibweise F,= F,F(a). F,€a:p be-
deutet F.p S a, mithin F.Fp S a, also Fop S a:(F); nach Voraussetzung war
abera: (F) = a,alsoist Fop S aund damit F, € a: p. Weiterist F, ¢ a, denn wegen

F, = A + F,F wiirde andernfalls F, € a im Widerspruch zu F, 4 a folgen. Wir
haben also:

(Fiea:paFdanF € (s F)=> F,=F,F(a)
=)(Fz€a:pAF,Q aAer(a,F)=>F,EF3F(a))=>
mit monoton fallenden Gradzahlen k(F,) > h(F;) > h(F3) > ---, so daB wir schlieB-
lich nach endlich vielen Schritten zu F, =cmitc€ Kund ¢ == 0 und ¢ € (a, F) ge-

langen. Wegen ¢ = 0 ist, dann auch —.c=1€(a, F), also (a, F) = (1) im Wider-
spruch zu (105) und d = 1.
Also war die Annahme (109) {alsch; mithin gelten (108) und (103), q. e. d.
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4.20. Ungemischtheit von H-ldealen der Hauptklasse

In diesem Abschnitt wollen wir schrittweise den angekiindigten Satz von MacAuLAY
beweisen, daB jedes H:Ideal der Hauptklasse ungemischt ist. Wir beweisen den Satz
zunéchst fir n = 1.

Satz 48. In K[z, z,] ist jedes H-Ideal a der Hauptklasse ungemischt.

Beweis. Entweder ist a = (F) ein Hauptideal der Dimension 0; nach Satz 39
ist a dann ungemischt. Oder es ist a = (Fy, F;) = qr ein T-Ideal, welches ebenfalls
ungemischt ist, da kleinere Dimensionszahlen als —1 nicht erklart sind, q. e.d.

Nunmehr erinnern wir an das Dubreilsche Lemma von Kap. 3, Satz 45, und wollen
— wie im Kap. 3, (100) — mit Linearformen arbeiten. Dann gilt also:

a besitzt keine triviale Komponente & V a: (L) = a. (113)
1z
Wir machen nun fiir L den Ansatz
L= ugze + way + -+ + 7, (114)

mit zundchst unbestimmten Koeffizienten ug, uy, ..., %,.
Besitzt a eine triviale Komponente, so gehen wir gema8 (53) zum Grundideal g.(a)
iiber, welches keine triviale Komponente mehr besitzt, ebenso wie die Grundideale

8n-1(a), Ba-2(@)s -+ s Ba-a-1(B) = Grs1(a); Ba-a(a) = @r(a);
wir haben also
Satz 49 (Verallgemeinertes Dubreilsches Lemma). Fir jedes H-Ideal
a < K[z, 7y, ..., z,] existiert wenigstens eine Linearform L mit
grei(@) 1 (L) = gri(a)  fiir ¢=0,1,...,d. (115)
Wir benétigen diese Uberlegungen zum Beweis von
Satz 50. In K[z, 2y, ..., z,] besitzt jedes H-Ideal a der Hauptklasser fir 1 S r<n
kesne triviale Komponente.

Beweis. Zur Einschrinkung fiir  bemerken wir, daB r =1 generell wegen
d<n—1gilt; r <n muB gefordert werden, weil r =n + 1 gerade d = —1 be-
deutet, d. h., a wiire ein 7-Ideal.

Fiir n = 1 ist die Behauptung richtig nach Satz 48.

Wir benétigen jetzt das Grobnersche Kriterium fiir triviale Komponenten von
Kap. 3, (102), Satz 47: Ist a = K[z, 24, ..., Z,] ein H-Ideal, so gilt:

a besitzt eine triviale Komponente <> Es existiert wenigstens eine Form

F(2o, %y, .., Zy) Mit FdanzsFecarz,Fean...nz,Fe€a;
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fiir F gilt auch
(UeZo + w2y + -+ + UpyZy) F€a und F ¢ a, (116)
sogar mit unbestimmten Koeffizienten ug, uy, ..., s
Wir nehmen jetzt indirekt an, a = (F, ..., F,_,, F,) besiBie doch eine triviale
Komponente. Wir konnen dann in (114) die %, %y, ..., %, 80 wihlen, da8 (115) gilt.
Besonders giinstig wire die Giiltigkeit von (115) fir L = z,. Ist diese nicht ge-
geben, so nehmen wir die lineare Variablentransformation
X, = 2o,
X, =2,

(117)

Xy = Uy + Ty + ++ + UnTn
vor, durch welche
ainb = K[X,, Xy, ..., X,] mit b = (G,,..., G, G,),

F(zo, 2y, ..., z,4) in KXy, Xy, ..., X,)
und )

L = ugko + % + -+ + Uy, in X,
iibergehe. Mit a beziiglich z,, z,, ..., z, hat dann auch b beziiglich X,, X, ..., X, eine
triviale Komponente und umgekehrt; mit Dima =d = — r ist auch Dimb =d
=n — r und umgekehrt; mit a ist auch b ein H-Ideal der Hauptklasse und
umgekehrt; F ¢ a ist mit G ¢ b gleichwertig. In K[X,, X, ..., X,] haben wir also:

G40, (118)

X,Geb; (119)
ferner folgt aus (115) firs =0

8:(6) : (Xa) = g(b). (120)
Aus (120) folgt wegen (77)

Dim (b, X,) =d — 1. (121)
Wegen b = (Gy, ..., G, G,) lautet (119) ausfiihrlich

X,.G =HG + HG, + -+ + H,,G,., + H,G,. (122)

In (122) wollen wir nun auf beiden Seiten X, = 0 setzen; wir fiihren dann folgende
Abkiirzungen ein:

H(Xoy o0 X)) i=Hy(Xo, X1y oy Xpo, 0) fiir §=1,..., 7 (423)
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und

G Xy oy Xnot) 1= Q(Xo, Xy, ooy Xney, 0) fiir s =1, .., 7, (124)
Damit folgt aus (122)

0=HG + HG, + -+ H.,G,, + HG,. (125)
Es sei nun

b:=(Gy, ..., Grs, G) = K[ Xy, .., Xl (126)

dann ist b in K[X,, ..., X,,] ein H-Ideal, und wegen (124) ist (b, X,) = (b, X,) in
K[Xo, ..., Xy-1, X,], also

b= (6, X.) 0 K[X,, ..., X (127)

wegen (121) folgt daraus Dimb=d — 1, also Kodimb=(n —1) —(d—1) =7,
mithin Kodim b = Kodim b, also ist b in K[X,, ..., X, ,] ein H-Ideal der Haupt-
Kklasse r.

Alle diese Uberlegungen dienen dem Beweis des Satzes von MAOAULAY, daB jedes
H-Ideal der Hauptklasse ungemischt ist. Der Beweis dieses Satzes wird durch voll-
stindige Induktion nach n erfolgen, wobei der Induktionsanfang fiir » = 1 durch
Satz 48 gegeben ist. Wir wollen an dieser Stelle von der Induktionsannahme Ge-
brauch machen. Dies besagt also, dall Ideale der Hauptklasse in 2y, ..., %,, also
auch in den transformierten Variablen X, ..., X,,_;, ungemischt sind.

Mithin ist also b = (G4, ..., G,y, G,) ungemischt mit Dim b =d — 1. Nach (92)
ist auch (@, ..., G,-,) ein H-Ideal der Hauptklasse aus K[X,, ..., X,.,] und mithin
nach Induktionsannahme ebenfalls ungemischt mit der Dimension

m—1)—(r—1)=n—r=d.
Aus (79) folgt damit

@y Gry) 1 (@) = (G, ooy Bra)- (128)
Aus (125) folgt nun H,G, = —H,G, — -+ — H,,G,,, also H, € (G, ..., G,y) : (G,)
und mit (128)

H, ¢ @,....,Gr), (129)
also _ B B

Hy= 4,6, + - + 4rpyGpy mit 4y € K[Xo, .0, Xpy], (130)
folglich

H, = 4,64 + -+ + 44,01Gry + B, X, mit B € K[X,, ..., X,,].
In (122) eingesetzt, gibt dies (131)

X\G = (H, + G A4y) G + -+ + (Hy-y + Gr4y4-) Groy + GBX,,
also.

Xo(@ — B/Gy) € (G1, Gy, .., Groy). (132)
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Jetzt konnen wir mit (132) dieselben Uberlegungen anstellen wie mit (122) und er-
halten entsprechend

X,(G — B,G, — B,G,-) € (G1, Go, .., Gra)

schlieBlich

X.(G — B,G, — B,_.,G,_; — --- — ByGy) € (Gy), (133)
genauer

X.G — B@G, — .- — B,G;) = H\G,. (134)

Aus (134) folgt, wenn wir X, = 0 setzen, 0 = H,G,. Folglich mu8 einer der beiden
Faktoren O sein. Wegen (117) ist @, = PX, und @, =0 unmdglich, also ist

H, = O0und H, = B,X,, folglich X,(G — B,G, — ... — B,G;) = B,G,X,, folglich
X,.@ — B,G, — -+ — B,G, — B,G,) =0. Wegen (117) folgt X, =0 und also
@ = B,G, + --- + B,G,, mithin wegen b = (G4, ..., @,) also G € b im Widerspruch
zu (118).

Also war die Annahme, daB a eine triviale Komponente besitzt, falsch, und Satz 50
ist damit endlich bewiesen.
Wir kommen nun zum eigentlichen ,,unmixnedness theorem‘‘ von MacauLay.

Satz 51 (Satz von Macavray). In K[zg, 2y, ..., 2,) tst jedes H-Ideal a der Haupt-
klasse ungemischi.

Beweis. Ist r = n — d die Kodimension von a, so ist die Behauptung jedenfalls
richtig fiir ¥ = n + 1, denn das sind gerade T-Ideale qr. Ferner ist der Satz nach (83)
Satz 39, richtig fiir Hauptideale, also fiir r = 1.

Wir beweisen nun den Satz — wie angekiindigt — durch vollstindige Induktion
nach n.

Fiir n = 1 ist die Behauptung nach Satz 48 richtig.

Induktionsannahme: Der Satz ist fiir K[z, ..., Z,;] richtig. Daraus konnte
nach Satz 50 bewiesen werden, daB a keine triviale Komponente besitzt, womit
(neben den anfangs diskutierten Fillen » = 1 und r = n + 1) der Beweis auch fiir
r = n (also d = 0) bereits erbracht ist.

Wir kénnen also 2 < r < n — 1 voraussetzen. Angenommen, a = (F,, ..., F,) mit
Dima =d =n — r wire gemischt mit einer Primarkomponente der Dimension
8 <d und der Kodimension ¢ =n — é >n —d =r, also ¢ > r; nach Satz 50
besitzt a keine triviale Komponente, und mithin existiert eine Form F,,, mit
a: (F,,) = a, und nach (103) hat (a, F,,,) eine Primirkomponente der Dimension
8 — 1, also der Kodimension ¢ + 1. Wegen a : (F,,,) = a ist Dim (a, F,,;) =d — 1
nach Satz 36 und mithin wiederum ein H-Ideal der Hauptklasse und nach Satz 50
ebenfalls ohne triviale Komponente, mithin kénnen wir das Verfahren mit einer Form
F,., mit (a, F,y,) : (Frya) = (a, F,,,) fortsetzen. So finden wir schlieBlich eine Form
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Fryg0q mit

(@ Fropy ooos Frag) t (Frager) = (@, Frans ooy Fray)
und
Dim (a, Fryy, ooy Fragy Fregrr) = Dim (Fy, oo, Fp, Fryqy ooy Fraga)

=d—(d+1)=d—-—86—-1=20
wegen 6 < d, also 8 < d — 1. Mithin gilt
Kodim (Fy, ..., Frppey) =2 — (d— 86— 1) =r+ 6 + 1. (135)

Nach (103) hat dann (F;, ..., Fy.44,) eine Primdrkomponente der Dimension § — 6 — 1,
also der Kodimension ¢ + 8 + 1, also eine triviale Komponente. Dies ist aber nach
Satz 50 unméglich, da (¥, ..., F,,;,) wegen (135) ein H-Ideal der Hauptklasse

r+ 8+ 1ist.
Also war die Annahme, da a = (F,, ..., F,) gemischt ist, falsch, womit der Satz 51
von Macauray endlich bewiesen ist.

Aus Satz 51 folgt unmittelbar

Satz 52. Ist a = K[z, 2, ..., 2,] ein H-Ideal und F(zy, 2y, ..., 2,) eine Form, so
gilt:
a tét H-Ideal der Hauptklasse rna: (F) =a
= (a, F) ist H-Ideal der Hauptklasse r + 1. (138)
Von Satz 52 gilt auch die Umkehrung:
Satz 53. Ist a = K[z, 2y, ..., z,] ein H-Ideal und F(x,, 2y, ..., x,) eine Form, so
gilt:
a:(F)=aan(a, F)tst H-Ideal der Hauptklasse r + 1
= a ist H-Ideal der Hauptklasse r. (137)
Der Beweis soll hier nicht ausgefiihrt werden; fiir einen Beweis des Verfassers
unter Benutzung der Syzygientheorie sei auf RENSCHUCH [4] verwiesen.
Aus dem Beweis von Satz 51 ergab sich ferner
Satz 54. Es set a = K[zo, 2y, ..., 2,] ein H-Ideal der Hauptklasse r =n — d,
ferner seien Fy, ..., Fy Formen aus K[x,, 2y, ..., z,] mit
a:(Fy) =a,
(a, Fy) : (Fy) = (a, Fy),

(138)

Dann gilt: Fiir alle Formen F, ..., Fy, fiir welche (138) gilt, besitzt (a, F,, ..., Fy) keine
triviale Komponente.
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Von Satz 54 gilt keineswegs die Umkehrung: Wenn (a, Fy, ..., Fy) keine triviale
Komponente besitzt und (138) erfiillt ist, braucht a kein H-Ideal der Hauptklasse
zu sein; vielmehr ist dadurch eine umfassendere Klasse von H-Idealen gegeben, die
wir als perfekte Ideale bezeichnen werden.

4.21.  Pseudogemischtheit von ((p), f) und (p, F)

Wir wollen in diesem und dem folgenden Abschnitt Sitze der Art von Satz 52 ver-
allgemeinern.

Satz 55. Ist (p) = K[z, ..., z,] ein inkomogenes Primideal und f € K[z, ..., z,]
ein Polynom, so gilt

((0), 1) ist stets pseudogemische. (139)

Beweis. Die Behauptung ist richtig fiir f € (p) und ((p), f) = (1); von den beiden
Fiillen beim Beweis von Satz 32 fiir f ¢ (p) bleibt also nur der erste Fall mit den zwei
Moglichkeiten zu untersuchen. Bei der ersten Moglichkeit lieB sich aus f(¢y, ..., t5) = 0
gemiB (67) o.B.d.A. t; durch ¢, ..., t;, ausdricken; alle auftretenden allgemeinen
Nullstellen sind also (d — 1)-dimensional bei Dim (p) = d; mithin ist Rad ((p), f)
ungemischt (d — 1)-dimensional, also ((p), f) pseudogemischt. Bei der zweiten Mog-
lichkeit war f(¢,...,t;) = f(t5) =0, also {; = const = {¢,, ¢;, ..., ¢3}; mithin sind
wiederum alle auftretenden allgemeinen Nullstellen (d — 1)-dimensional, also ist
Rad ((p), f) ungemischt und ((p), f) pseudogemischt.

Entsprechend verlduft der Beweisgedanke im homogenen Fall, nur daB bei der
zweiten Moglichkeit wegen der Homogenitéit nur der Fall ¢; = 0 in Frage kommt.
Es gilt also der

Satz 56. Ist p = K[z, 2y, ..., Z,) ein primes H-Ideal und F(zy, x,, ..., Z,) eine
Form, so gilt:

(p, F) st stets pseudogemsischi. (140)

Satz 56 kann leider nickt dahingehend verschérft werden, daB (p, F) ungemischt ist.

Um ein Gegenbeispiel zu konstruieren, gehen wir wieder einmal von dem Primideal
D(lzl} = (Fy, Fy, Fy, F) < Ko, 7y, 7, 73]
aus mit F; = a2y — 0y2,, Fy = 222y — 2,3, Fy = 2y23? — 2%, Fy = 2,2,® — 2,® und withlen
F = z,. Nach Kap. 1, Satz 37, wird dann — wie der Leser nachrechnen mége —

(0135 21) = (T4, ZoTs, Ze22y, ZoZe%, T3°) = (2,21, Z5) 1 (21, Ty, Z5) N (Zeh, ZeZe?, 21, 24%, T3),

enthiilt also eine triviale Komponente und ist mithin zwar pseudogemischt, aber nicht un-
gemischt. Auf die Existenz einer trivialen Komponente kann auch gemi8 Kap. 3, (102), Satz 47,
mit F = 2,2, geschlossen werden wegen z,z, § (b{}, z;) und z2yz, € (0§}, ) fiir § =0, 1,2, 3.
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4.22. Pseudogemischtheit von (a, F) bei a:(F) = a und
Pseudogemischtheit von a

Hierfiir gilt der

Satz 57. Ist a = K[z, 2, ..., 2,) ein d-di tonal dogemischtes H-Ideal
und F(zy, 2, ..., z,) eine Form mit a : (F) = a, so ist (a, F) etn (d — 1)-dimensionales
pseudogemiacht&s H-Ideal.

Beweis. Die Dimensionsaussage folgt aus (78). GeméB Kap. 3, (82) und (83), sei
nun

Q=G 0 NGn D Guer N 0 g
G, -+ G iSOlieTt, Gmsy, ..., G eingebettet, also Rada =p, n--- np,; somit ist
Rad (a, F) = Rad (p,, F) n --- n Rad (pp, F). (141)

Aus a:(F)=a folgt Fép,, ... F4p,; nach (140) sind Rad (p,, F),...,
Rad (p, F) alle (¢ — 1)-dimensional ungemischt, also auch Rad (a, F); mithin ist
(a, F) pseudogemischt, q. e. d.

Bei diesem Beweis wurde nur F ¢ py, ..., F ¢ p, benutzt, was nach Kap. 3, (83),
und Kap. 2, (46), mit (Rad a) : (F) = Rad a gleichwertig ist; es gilt also sogar der

Satz 68. Ist a = K[z, 2y, ..., x,] ein d-dimensional dogemischtes H-Ideal
und F(z,, x,, ..y Zp) eine Form mu (Rad a) : (F) = Rad a, .so st (a, F) etn (d — 1)-
dimensi dogemischtes H-Ideal.

P

Die geometrische Interpretation von Satz 58 mdchten wir dem Leser iiberlassen.

DaB aus der Ungemischtheit von a bei a: (F) = a nicht auf die Ungemischtheit
von (a, F) geschlossen werden kann, zeigte bereits das Beispiel im AnschluB an
Satz 56. H-Ideale a mit dieser Eigenschaft werden die schon einmal angekiindigten
,,perfekten Ideale** sein. Es ist jedoch nicht moglich, daB folgender Fall eintritt:
a pseudogemischt, aber nicht ungemischt, ferner a: (F) = a und daraus (a, F) un-
gemischt folgt. Dies namlich stiinde im Widerspruch zu Satz 47.

4.23.  Zur UObertragbarkeit auf P-ldeale

Da in (75) der Fall Dim ((a), f) < d — 1 eintreten kann, kénnen die Sitze 47, 57
und 58 im Gegensatz zu Satz 55. nicht auf inhomogene P-Ideale iibertragen werden

Daher sind zu den Beweisen der auch im inhomogenen Fall giiltigen Sitze 51
und 43 in 4.25. andere Methoden erforderlich.
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Am naheliegendsten méchte es scheinen, von P-Idealen zu dquivalenten H-Idealen
iiberzugehen, mit letzteren zu rechnen, schlieBlich z, = 1 zu setzen und somit zum
inhomogenen Fall zuriickzukehren. Der letzte Schritt ist dabei gewi8 unproblema-
tisch, denn ein H-Ideal § der Hauptklasse r aus K[z,, 2y, ..., 2,] mit 2,7 4 § fiir alle
x € N* geht nach Setzen von z, = 1 in ein P-Ideal der Hauptklasse 7 in K[z, ..., z,]
iiber.

Anders liegen die Dinge beim Ubergang von P-Idealen zu dquivalenten H-Idealen.
Hier gilt der

Satz 59. Beim Homogenisieren von inhomog P-Idealen aus K[z,, ..., z,] in
dquivalente H-Ideale aus K[z, x,, ..., z,] gehen diber:
— Durchschnittsdarstellungen von P-Idealen in Durchschnittsdarstellungen fir H-
Ideale,
— mh. g P" ‘deal ,inl g PT‘ ' denl,
— inhomogene Primirideale in homogene Primdirideale,
— inhomogene quasiprimére Ideale in homogene quasiprimdre Ideale,
— d-dimensionale P-Ideale in d-dimensionale H-Ideale,
— ungemischte P-Ideale in ungemischte H-Ideale,
— pseudogemischte P-Ideale in pseudogemischte H-Ideale,
— gemischte P-Ideale in gemischte H-Ideale,
— tnhomogene Hauptideale in homogene Hauptideal
Jedoch gehen P-Ideale der Hauptklasse r = 2 im_allgemeinen nickt in H-Ideale der
Hauptklasse iiber.

Beweis. Die positiven Aussagen folgen unmittelbar aus der Definition des dqui-
valenten H-Ideals gemd8 Kap. 1, Definition 30. Fiir die letzte Aussage geben wir
zwei Beispiele.

Das erste Beispiel hatten wir bereits an zwei Stellen des ersten Kapitels herangezogen. Im
AnschluB an Kap. 1, Definition 26, betrachteten wir als zweites Beispiel das P-Ideal (a) = (f,, f;)
aus K[z, 2, ;] mit f, = 2,3, f, = z; + 2,%,. Der Leser mdge schnell nachprifen, da8 hierd = 1
ist. Wegen n = 3 ist also r = n — d = 2, also (a) ein P-Ideal der Hauptklasse 2. Wie in 1.16.
festgestellt wurde, ist jedoch das dquivalente H-Ideal aus K[z, z,, 2;, 23] durch a = (Fy, Fy, Fy, F,)
gegeben mit Fy, = z,% F, = zy2y + 2,75, Fy = 2,7, Fy = 2,2

Als zweites Beispiel zeigen wir, daB8 das von uns wiederholt betrachtete homogene Primideal
0% = (Fy, Fy, Fy, F,) aus K[z,, 2, 75, 23] mit

Fy = 22y — 212y, Fy =%, — 2,5, Fy= 22 — 2%, F =z — 2}
das dquivalente H-Ideal eines P-Ideals der Hauptklasse ist. Setzen wir némlich z, = 1, 80 erhalten
wir

LV =2y — %y, =3, — 2 h=2zd— 2 fi=z2’— 2z
und f; und £, lassen sich durch f, und f; ausdriicken mit

fi=afy — @y und fi = z(zs + 21zy) h — 24
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v{y ist also das &quivalente H-.Ideal zum inhomogenen primen Heuptklassenideal (f,, fy). Wir
werden in 4.27. zeigen, daB es fir die Anzahl der Elemente der Minimalbasis eines zu einem
Hauptklassenideal dquivalenten H-Ideals keine obere Schranke gibt.

Die Minimalbasis des dquivalenten H-Ideals kann also beliebig mehr Elemente
enthalten als die Basis des inhomogenen Ausgangsideals. Aber auch der umgekehrte
Fall kann durchaus eintreten, niamlich dann, wenn vom inhomogenen Ausgangsideal
(a) = K[z, ..., z,] zwar eine Minimalbasis, jedoch keine Basis minimaler Lénge vor-
gegeben ist. Man betrachte hierzu die durch Kap. 1, (21) und (22), gegebenen P-
Ideale mit dem dquivalenten H-Ideal a = (z,, z,, z3) = K[z, 2,, Z,, z3], welches bei
Enthomogenisierung (z, = 1) in (2, 2,, 2;) = K[#,, 73, 23] iibergeht und mit (21)
und (22) iibereinstimmt, wie im AnschluB an (21) und (22) im Kapitel 1 gezeigt wurde.
Die Bildung des dquivalenten H-Ideals diente hier iiberdies zur Feststellung, daB es
sich bei Kap. 1, (21) und (22), um P-Ideale der Hauptklasse handelte.

SchlieBlich wollen wir noch erwihnen, daB P-Ideale der Hauptklasse bei Bildung
des dquivalenten H-Ideals durchaus auch in H-Ideale der Hauptklasse iibergehen
konnen. Das geometrisch einfachste Beispiel sind nulldimensionale inhomogene Prim-
ideale (p) = K[z, ..., z,], deren Nullstellengebilde nur aus einem Punkt (y,, ..., ¥a)
besteht ; mithin gilt

Satz 60. Nulldi tonale inhomogene Primideale (p) aus K[z, ..., z,] haben die
Bastisdarstellung
() = (@1 — Y1, oo, T — Ya), (142)

sind also P-Ideale der Hauptklasse n.

Durch Homogenisierung folgt aus (142) gemiB Kap. 1, (38), (176), zunichst
P1 = (Yo% — Y%1%0, -+, YoTn — Yn¥o) uUnd P, : (zo) =P, Wegen z, ¢ p,; es ist also p,
das zu (p) dquivalente H-Ideal p aus K[z, z,, ..., 2,], und wir haben iiberdies den

Satz 61. Nullds tonale homogene Primideale p aus K[z, @y, ..., z,] haben die
Basisdarstellung
P = (Y1 — %1%0, -+, YoTn — Yao), (143)

ind also H-Ideale der Hauptklasse n.

Aus (143) folgt, daB dann NG (p) nur aus dem Punkt (yo, 5, ..., ¥») mit yo =ty
besteht.

AbschlieBend verweisen wir nochmals auf die im Kapitel 1 im AnschluB an Satz 57
getroffene Feststellung, daB es H-Ideale gibt, welche zu keinem inhomogenen P-Ideal
dquivalent sind. Solche H-Ideale sind beispielsweise H-Ideale mit einer trivialen
Komponente, weil dann die Bedingung (178) von Kap. 1, Satz 58, wegen des Grob-
nerschen Kriteriums (Satz 47, (102) in diesem Kapitel) nicht erfiillt ist.
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4.24.  P-ldeale der Hauptklasse

In Satz 45, (92), hatten wir bewiesen: Ist a = (F), ..., F,) ein H-Ideal der Haupt-
klasse r, 8o ist auch jedes der H-Ideale (¥, ..., F;) firs =1,2,...,r — 1 ein H-Ideal
der Hauptklasse 7. Fiir inhomogene P-Ideale der Hauptklasse ist dies nun leider
nicht mehr bei allen Basisdarstellungen richtig, wie das folgende Beispiel zeigt: Es sei

(a) = (@125 + 21, ToZs + 22, T3) = (T1, Ty, Tp)
aus K[z,, z;, 23]. Dann ist (a) ein P-Ideal der Hauptklasse 3, jedoch hat
(2125 + 1, 225 + T2) = (zl(zx + 1), Zo(s + 1)) = (23 + 1) n (21, 72)

die Kodimension 3 — 2 = 1, ist also kein P-Ideal der Hauptklasse.
Es gilt jedoch der

Satz 62. Ist (a) = (fy, ..., },) = K[=,, ..., z,] ein P-Ideal der Hauptklasse r, so
existiert eine Basis (f,*, ..., f,*) derart, daf

(1), (1% %)y woes (B s 1), oo (% )
samdlich P-Ideale der Hauptklasse sind.
Beweis. Dazu machen wir den Ansatz
f* =anfi + apfe + - +afe fir i=1,2,..,r. (144)
Wir haben zu zeigen, daB wir die Koeffizienten a, ¢ K so wihlen kénnen, da8 gilt:
1. f,*, ..., {;* sind linear unabhingig firi = 1,2, ..., r, also

det (ay) =0 (145)

und
2. (f*, ..., fi*) sind fiir ¢+ =1,2,...,r P-Ideale der Hauptklasse i. Nach Defi-
nition 9 hieB ein P-Ideal (oder H-Ideal) ein Ideal der Hauptklasse 7, wenn es die
Kodimension r und eine r-gliedrige Basis besitzt. Bei H-Idealen fanden wir fiir die
Anzahl s der Elemente einer Minimalbasis in Satz 43, (90), die Ungleichung s = r;
fiir H-Ideale der Hauptklasse galt also s = r. Da wir fiir P-Ideale (a) = (f,, ..., f¢)
die Ungleichung ¢ = r erst in 4.25. zusammen mit dem Ungemischtheitssatz werden
beweisen kénnen, haben wir vorerst die Méglichkeit des Auftretens von inhomogenen
P-Ideslen (fy, ..., f;) mit der Kodimension r und ¢ < r mit zu beriicksichtigen. Wir
kénnen dann den ¢ Basiselementen f,, ..., f; noch r — ¢t > 1 iiberfliissige Basis-
elemente (beispielsweise Linearkombinationen von fi, ..., f;) beifiigen und hitten
dann wieder r Basiselemente. Damit wire die Definition 9 erfiillt; wir kénnen also
feststellen: Ein inhomogenes P-Ideal (a) = K[zy,...,%,] mit der Minimalbasis
(@) =(fy,..., ;) ist genau dann ein P-Ideal der Hauptklasse r, wenn Kodim (f,,...,f;) =¢
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gilt. Zum Beweis von 2. haben wir demnach
Kodim (£,*, ..., f*) =% (1486)
Zu zeigen.

Fiir ¢ = 1 ist das richtig. Wir fithren vollstindige Induktion nach ¢ durch; es gelte
also Kodim (f,*,...,ff_;) 2 ¢ — 1. Gilt nun Kodim (f,*,...,f{-;) >¢— 1, also
Kodim (f,*, ..., f*) = ¢, so widhlen wir f* linear unabhingig zu f,*,..., f{_, und
haben damit 1. erfiillt. Ist hingegen Kodim (f,*, ..., fi_;) = ¢ — 1, so wihlen wir f;*
80, daB es in keinem (n — ¢+ 1)-dimensionalen Primideal liegt; nach (75) ist dies mit

(Bl-l(fl‘) e /.“—1)) (¥ = gialh* e o))

gleichwertig und ergibt (146) und zugleich die lineare Unabhingigkeit von f,*, ..., f;*,
also schlieBlich die lineare Unabhéangigkeit von f,*, ..., f,*, q. e. d.

Bemerkung. Wegen (145) ist (a) = (fy, ..., fy) = (Hi*, ..., },*), und es sind auch
f1s ooy f linear unabhéngig. Damit ist aber weder die Beziehung ¢ = r noch die
Minimalbasiseigenschaft von (fy, ..., f,) bewiesen. Aus der linearen Abhingigkeit von
Basispolynomen folgt zwar, daB diese keine Minimalbasis bilden kénnen ; umgekehrt
kénnen jedoch iiberfliissige Basiselemente linear unabhingig sein; beispielsweise sind
(vgl. 4.23. und 1.7.)

hi=zd h=un+taz, fi=u2 [=2°
linear unabhéngig, aber es war f, = (—zs) f + 21fo und fo = 2y + (22 — 2,25) fo,
also (a) = (fu, fa, far fa) = (fu, o)
Bei H-Idealen ist die Anwendung der Begriffe , linear unabhingig' bzw. , linear
abhiingig* auf Formen gleichen Grades beschrankt und daher von vornherein ein-

geschriankt. Wir werden uns damit in den beiden néchsten Kapiteln iiber Syzygien-
theorie und die Hilbertfunktion beschéftigen.

4.25.  Ungemischtheit von P-ldealen der Hauptklasse
und der Beweis von t = r fiir P-ldeale

Satz 63 (Satz von Macavray). InK([z,, ..., x,] tst jedes P-Ideal (a) der Hauptklasse
ungemischi.

Satz 64. Ist (a) = K2y, ..., z,] ein P-Ideal der Hauptklasse r, s0 ist in jeder Basis-
darstellung (a) = (fy, ..., f;) kein Basiselement iberfliisstg, d. h., alle Basen minimaler
Linge bestehen aus genaw r Elementen.

Zusatz. Der Leser moge hier die Formulierung der Voraussetzung besonders be-
achten. Wiire (a) = (fy, ..., f;) mit ¢ < 7 eine Basis minimaler Lénge fiir (a), so kénnte
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man nach dem Muster von Kap. 1, (21), (22), fiir (a) durchaus eine andere Minimal-
basis (a) = (g1, ..., g,) angeben, bei der also kein Basiselement iiberfliissig ist, welche
jedoch wegen ¢t < r keine Basis minimaler Linge ist. Daneben wiirde aber auch
die Basisdarstellung (a) = (fy, ..., f¢, fe+1, -+-, fr) mit iiberfliissigen Basiselementen
fts1s - fr existieren im Widerspruch zur hier ausgesprochenen Behauptung, da8 in
jeder Basiedarstellung (f,, ..., f,) kein Element iiberfliissig ist. Mithin bestehen alle
Basen minimaler Linge eines inhomogenen Hauptklassenideals der Kodimension r
aus genau 7 Elementen.

Nach den Ausfithrungen in 4.24. bedeutet dies, daB der Fall ¢ < r bei P-Idealen
niemals auftreten kann, d.h., auch fir P-Ideale (a) = (fy, ..., fi) = K[z, ..., Z,]
haben wir den

Satz 65. Ist (a) = K[z, ..., z,] ein P-Ideal mit Kodim (a) = r, 8o gilt fiir jede
Bastsdarstellung (a) = (fy, ..., fr)

t=r. (147)

Beweis. Wir beweisen nun die Sitze 63 und 64 simultan durch vollstandige Induktion
nach n; im Verlauf dieses Beweises werden wir hier noch nicht angegebene Hilfs-
mittel und Ergebnisse aus der Literatur benétigen. Leser, die daran weniger interes-
siert sind, konnen diesen Beweis iibergehen.

Vorerst betrachten wir dazu einige Sonderfille.

a) r=n. Ist (a) = (fy, ..., f,) ein P-Ideal der Hauptklasse 7, 8o ist Dim (a) = n— n = 0;
da aber im inhomogenen Fall Null die kleinstmdgliche Dimension ist, sind alle nulldimen-
sionalen P-Ideale ungemischt. Zum Beweis der zweiten Behauptung ist zu zeigen, da3 der Fall
Dim (a) = Dim (f;, ..., f) = 0, also der Fall Kodim (a) = Kodim (f,,...,f) =7 mit t<n
unméglich ist. Dies trifft zu, wenn ¢ = r fiir alle r < » bewiesen worden ist, weil dann der Fall
Dim (fy, ..., fa-) = 0, also Kodim (fy, ..., f_;) = 7, ausgeschlossen werden kann. Damit ist der
Beweis unserer Behauptung auf den Beweis fiir den Fall r < n zuriickgefithrt worden.

b) » = 1. Hier ist nur r = 1 und d = 0 méglich; das sind durchweg Hauptideale, welche nach
Satz 40, (86), ungemischt sind und nach Definition nur ein Basiselement haben, also keine ver-
kiirzbare Basis besitzen konnen. Wir hitten dies auch als Spezialfall von a) ansehen konnen.

¢) n=2. Fir r =1 und d = 1 entstehen wieder Hauptideale. Fiir r = 2 und d = 0 liegt
wieder der unter a) behandelte Fall » = » vor, der schnell gesondert erledigt werden kann: Die
Ungemischtheit folgt wegen d = 0; die Basisverkiirzung ist unméglich, weil denn Hauptideale
entstehen wiirden, welche nach Satz 17 die Dimension » — 1 = 1 haben miaf8ten.

Wir nehmen jetzt an, unsere Behauptungen seien fiir n — 1 Variable richtig; daraus wollen
wir die Giltigkeit fiir n Variable ableiten. Dazu nehmen wir indirekt an, (a) wire gemischt,
genauer: (a) habe eine Primérkomponente von der héchstméglichen Kodimension ¢ > r, also
der Dimension d =7 — ¢ < d = n — r; dabei ist p < 7, also

r<ogs=n. (148)
Wir untersuchen zunichst den Fall
d) ¢ < n. Dann ist 6 > 0, also é = 1. Fiir jedes §-dimensionale zu (a) gehorige Primirideal

(qes) (0 =1,...,8,) gibt es dann eine geeignete Numerierung iy, ..., §; mit (q,,) n K(zi1, «ooy 23]
= (0). Wir bendtigen jedoch, daf3 es eine fur alle (q,,) geeignete Numerierung gibt. Um dies zu
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sichern, unterwerfen wir z;, ..., z, einer linearen Transformation mit unbestimmten Koeffizienten.
Bei diesem Ubergang zu ,,transformierten Idealen* im Sinne von E. NoETHEE (vgl. [2], § 1) gehen
u. . gemischte Ideale in gemischte Ideale und ungemischte Ideale in ungemischte Ideale aber;
auch dndert sich die Anzahl der Basiselemente nicht (vgl. NoETEER (2], § 2, Hilfssatz 1,2). Wie
E. NoeTHER weiter gezeigt hat (vgl. [2], S. 232, letzte Zeile) sind bes transformierten Idealen alle
Numerierungen gleich geeignet; wir kénnen also o. B. d. A.

(a) n K[2y, ..., 25] = (0) (149)
annehmen. Dann ist wegen 6 = 1

K(zy, -0 Z3) [Zg410 o000 Zn) D K[z, -00s 73], (150)
and wir betrachten das Ideal

(a*) := () - K(@y) ++0s Z5) [Tgr1r -+ 02 Tn) (181)

im Oberring K(z,, ..., Z5) [Z441, ---» Z4). (a*) hat dieselbe Basis wie (a). Aus Dim (a) = d und also
Kodim (a) = n — d = r folgt Dim (a*) = d — & und folglich Kodim (a*) = (» — 8) — (8 — &)
= n — d = r; mithin ist (a*) ein P-Ideal der Hauptklasse r in n — § < n — 1 Variablen. Fir
(a*) gilt die Induktionsannahme, also ist (a*) ungemischt, und keines der Basiselemente ist Gber-
{lissig. Hieraus folgt, da8 auch (a) ungemischt ist (im Widerspruch zu unserer Annahme) und
ferner — wegen der Ubereinstimmung der Basen — kein Basiselement von (a) uberflissig ist,
q.e.d.

Der Leser wird sich die berechtigte Frage stellen, warum wir mit diesem grundsétzlich einfachen
Prinzip der Bildung von (a*) nicht auch schon bei den fritheren Beweisen im Fall der H-Ideale
gearbeitet haben. Das hat seinen einfachen Grund darin, daB a* bei einem H-Ideal a kein H-Ideal
mehr ist. Um zu solchen zu gelangen, muB man nach dem Vorbild von G. HERMANN dquivalente
H-Idesle beziiglich der verbliebenen Variablen (hier 244,, ..., Z) bilden, wobei sich im aligemeinen
die Anzahl der Basiselemente erhdhen wird (vgl. HERMANN [1], Satz 4).

e) ¢ =n. Wir haben also die Annahme, daB das Hauptklassenideal (a) = (f,, ..., f,) eine null-

le Primirkomp besitzt, zum Widerspruch zu fihren. Wir nehmen dazu 0. B.d. A.
an,daBd:eN“ lle dieser Primark: in den Koordi prung fallt; dann ist nach
Satz 80, (142), (p) = (23, 23, .., Zy) das zugehérige Primideal. Jetzt kénnen wir den Beweis-
gedanken von Satz 50 (jedes H-Ideal der Hauptklasse r besitzt fir 1 < r < n kesne triviale Kompo-
nende) formal Gbertragen, indem wir ersetzen:

Pr = (%0 @1y +20s Zp) durch  (p) = (21, ..., 2p),
L=up+ e, + -+ + 2,2, durch =z + - + 1,2,
X, =2, X, ==,

X, =z, X, =2z,
......................... durch ...l
Xy = Zn-y Xpoy = Tpy

Xy =ty + o + UpZp Xy =wum+ e+ Uy,
a> b= KX, ..., X,] durch (a) > (b)) = K[X,, ..., X,],
b=(G,...G) durch (b) (Gas ++01 Gr)s

L X, durch

F¢ar>rG4D durch /e(a)»ﬂ(ﬁ).
X,G€Db durch X,g€ (b),

X,¢=H,6,+ - + HG, durch  Xpg =gy + -+ + hegrs



4.26. Gemischtheit und Ungemisohtheit von Idealpot: 177

H; durch k;,
G durch G,
b = K[X,, ..., Xpoyl durch (b) = K[Xy, ..., Xpey],
B; durch ;.

AuBerdem miissen wir von den F; die Giltigkeit der Eigenschaften der f;* von 4.24. voraus-
setzen. Dann erhalten wir den Widerspruch g € (b).

Die Annahme der Existenz iiberflissiger Basispolynome in (a) fihrt zur gleichen Eigenschaft
im Hauptklassenideal (b) = K[X,, ..., X,,] im Widerspruch zur Induktionsannahme, daB bei
Hauptklassenidealen in n — 1 Variablen kein Basiselement iiberfliissig sein kann. Mithin war die
Annahme der Existenz uberflissiger Basispolynome fir (a) falsch, q. e. d.

Zum SchluB werde nochmals das im AnschluB an (75) gegebene Beispiel betrachtet.
Dort war (a) = (2,2 + y, 2,3, ..., 2,%,) mit Dim (a) =7 — 1, also Kodim (a) =1,
aber Dim ((a),z, + 1)) =n — r, also Kodim ((a), %.;)) =r; die Dimension er-
niedrigte sich also um r — 1, wihrend sich die Kodimension um r — 1 erhéhte. Und
dennoch steht dies in Einklang mit ¢ > r: Die schlagartige Erniedrigung war nur
moglich, weil wegen

Dim (2,2 + 2;) = Dim (z,® + 2, 2,2;) = -
= Dim (z,% + 2y, %173, ..., T%) =n — 1

zuvor ein geniigend langer Dimensionsstillstand eingetreten war. Mithin ist Satz 52
fiir P-Ideale keineswegs allgemein giiltig.

4.26. Gemischtheit und Ungemischtheit von Idealpotenzen,
Kriterien fir Primirideale

Satz 68. Ist (a) bzw. a eingemischtes P-Idealoder H-Ideal, dessen Radikal ebenfalls
gemischt ist, so hat jede Potenz (a¥) bzw. a* dieselbe Eigenschaft.

Beweis. Dies folgt sofort wegen Rad (a*) = Rad a nach Kap. 1, (87). Aus dem
gleichen Grunde folgt der

Satz 67. Jede Potenz eines pseudogemischten P-Ideals oder H-Ideals ist pseudo-
gemischt,

Jedoch gilt der

Satz 68. Pot gemischter Ideale ko gemischt (genauer: pseudogemischt,
aber nicht ungemischt) sein.

Beweis. Dazu verweisen wir auf das zweite Beispiel von 2.6. und das erste Bei-
spiel von 2.9. Die Ideale p? waren jeweils quasiprimér, aber nicht primér. Da die ein-
gebetteten Komponenten eine geringere Dimension haben, ergibt sich als Neben-
ergebnis der wichtige
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Satz 69. Ein P-Ideal oder H-Ideal ist primir genaw dann, wenn es quasiprimdr
und ungemischt 1st.

Es ist mithin eine Ausnahme, wenn aus der Ungemischtheit von (a) bzw. a die
Ungemischtheit von (a¥) bzw. a* folgt; dies gilt nicht einmal fiir die noch zu behan-
delnden perfekten H-Ideale; das erste Beispiel von 2.9. liefert dafiir ein Beispiel. Fiir
Ideale der Hauptklasse ist dies jedoch richtig; wir beweisen dazu den ebenfalls
von MACAULAY stammenden

Satz 70. Jede Potenz eines P-Ideals (a) oder H-Ideals a der Hauptklasse ist un-
gemischi.

Beweis. Wir filhren den Beweis fiir P-Ideale (a); der Beweis fiir H-Ideale ver-
duft entsprechend. Das vorgegebene Hauptklassenideal sei

@ =(fi, - fr), (152)
und gemaB Satz 62 sei 0. B. d. A. auch
(f2y +++, f;) Ideal der Hauptklasse. (153)

Ferner sei (a) = (q;) n (q2) n -+ n (qn); Wwegen der Ungemischtheit von (a) ist dann
Rad (a) = (p) n (Pg) n+++ n (p,) eine unverkiirzbare Darstellung fiir Rad (a). Wegen
Rad (a*) = Rad (a) gemiB Kap. 1, (87), sind (p,), (p2), ..., (Pm) auch alle Primir-
komponenten der Kodimension r von (a¥), dasselbe gilt fiir (a¥-1).
Angenommen, (a*¥) wire gemischt ; dann miiBte wenigstens ein Polynom a existieren
mit
(@) : (@) = (a) (154)
und
(a¥) : (@) D (a¥). (155)

Wir fithren den Beweis nun durch vollsténdige Induktion nach k. Fir & = 1 ist die
Behauptung richtig und stimmt mit dem Satz von MacavLAY (Satz 51 bzw. Satz 63)
iberein. Als Induktionsannahme setzen wir die Ungemischtheit von (a*-!) voraus;
aus (154) folgt daraus

(a*1) : (@) = (a*Y). (156)
Wir wollen nun (165) zum Widerspruch fiihren, indem wir von einem Polynom g mit
ge(@):(@ und gg(a¥) (157)

ausgehen und auf g € (a¥) im Widerspruch zu (155) schlieBen. Wegen (157) ist also
ga € (a¥) und wegen (a¥) — (a*-?) mithin ga € (a*-?), also g € (a*-!) : (@) und wegen
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(158) folglich g € (a*-1). Aus (152) folgt nun
(@) = (F51 B2 ay oo A5 150 1R o )
= (h) - (@) + (fo oo f)Y5
jedes g € (a*-1) ist also darstellbar durch

g =gHh +b (158)
mit g, € (a*-?) und b, € (f,, ..., f,)*!; mithin ist
ag = agf, + ab,. (169)

Andererseits ist ag € (a¥), und fir (a¥) gilt (a¥) = (f,) - (@) + (fa ..., /,)¥; also
existiert eine Darstellung

@ =hfi+o (160)
mit &, € (a3) und ¢, € (fy, ..., /,)t; aus (159) und (160) folgt

hiagy — k) = —aby + ¢, € (fo, ..., f)F1,
also agy — &y € (fa, ..o, fr)*2 : (f1); Wegen (153) ist

(fo oo 122 (R) = (fa oo f)F2,

also ag, — hy € (f5, ..., )1 <= (a¥-2); wegen hk, € (a*-?) ist also ag, € (a*-!) und mit-
hin wegen (156) g, € (a*-1), also g,f, € (a*) und wegen ag € (a*) nach (158) auch
bja € (a¥). Jetzt kénnen wir daraus analog wie oben weiterschlieBen auf b,a € (a*1),
by € (%) und by = gufy + by mit gq € (05%) und by € (fy, ..., f,)*-* sowie g, € (a*-)
usw. bis b,y = g,_1fr-1 + b,y mit b,_; € (f¥-1); wir hitten also

g =gih + gafe + -+ + gerfr-1 + b (181)

mit g, € (a*1) fiir ¢ =1,2,...,r — 1 und b, € (). Diefolgenden Uberlegungen
vervollstandigen den Macaulayschen Beweis: Es ist also

by =t f52 (162)
und mithin
ab,-y = atfL. (163)

Andererseits ist wegen (157) und (161) ab,., = b,_,a € (a¥), also existiert eine Dar-
stellung

bp1a = by = gifi¥ + G Ma + o0+ gffy
+ fEUdfy + dofy + oo F desify + dify), (164)
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welche wegen (163) so gewihlt werden kann, da g, =0, ..., g, = 0 werden; es ist
alsonach (163) und (164)atf -1 = f*-1(d,f, + --- + d,f,) mit at € (a), also ¢ € (a) : (a),
und wegen (a) : (a) = (a) geméB (154) ist ¢ € (a); aus (162) folgt b, € (a) - (f*1)
< (a) - (a¥-1) = (a¥); in (161) gilt also neben gif; € (a*-1) - (a) = (a*) auch b,_, € (a¥),
also schlieBlich g € (a*) im Widerspruch zu (157). Also war die Annahme (155), welche
aus der angenommenen Gemischtheit von (a*) folgte, falsch.

Mithin ist (a*) ungemischt, q. e. d.

Auf die Macaulayschen Ungemischtheitssitze 51 bzw. 63 stiitzt sich die Theorie
der Cohen-Macaulayschen Ringe, welche zur Zeit von vielen Autoren untersucht
werden. Der Leser beachte dazu, da wir zum Beweis von Satz 70 den Ungemischt-
heitssatz 51 bzw. 63 sowie Satz 62, nicht aber die Polynomeigenschaft der betreffen-
den Elemente benétigt haben.

Fiir H-Ideale kann man Satz 70 noch etwas verschirfen, nimlich dahingehend, daB
Idealpotenzen von H-Idealen der Hauptklasse perfekt sind, woraus die Ungemischt-
heit folgt, wie wir im kommenden Kapitel sehen werden. Idealpotenzen perfekter
H-Ideale sind jedoch im allgemeinen nicht mehr perfekt, ja gegebenenfalls nicht
einmal ungemischt; dies kann man aus dem ersten Beispiel von 2.9. folgern.

Wir fassen unsere bisherigen Ergebnisse betreffend die Ungemischtheit zusammen:

Satz 71. Fiir P-Ideale und H-Ideale gilt: Primideale, Primérideale, Ideale der
Hauptklasse und Potenzen von Idealen der Hauptklasse sind ungemischi.

Zusammen mit Satz 69 folgt weiter

Satz 72. Ein quasiprimires P-Ideal oder H-Ideal, welches Ideal der Hauptklasse
oder Idealpotenz eines Ideals der Hauptklasse tst, ist primdr.

Jetzt endlich haben wir bewiesen, daB es sich bei dem zweiten Beispiel von 2.9.
tatsichlich um ein Primérideal handelt, weil hier ein H-Ideal der Hauptklasse 2 vor-

liegt.

4.27. Schranken fiir s und t, Kronecker-Perronsches Problem

Mit s = r und ¢ = 7 gemiB (90) bzw. (147) sind untere Schranken fiir die Anzahl der
Basiselemente von d-dimensionalen H-Idealen aus K[z, z,, ..., z,] bzw. P-Idealen
aus K[z, ..., z,] mit fest vorgegebenen » und d (r = »n — d) gegeben worden, und
zwar scharfe Schranken in dem Sinne, daB diese Schranken bei Idealen der Haupt-
klagse (und nur bei diesen) tatsichlich angenommen werden.
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Wir wollen uns im folgenden Gedanken machen, inwieweit die Frage nach oberen
Schranken fiir s bzw. ¢ bei vorgegebenen n und d iiberhaupt sinnvoll ist. Zunichst
folgt aus der Basisdarstellung fiir Idealpotenzen gemd Kap. 1, (72), daB es H-Ideale
mit beliebig groSer Anzahl von Basiselementen gibt. Betrachten wir das d-dimen-
sionale prime Potenzproduktideal p, = (2o, 2,, ..., %,-;) gemdB Kap. 2, (9), dann ist
die Basis offenbar Minimalbasis, und p,, ist in K[z, ..., Z,.;, Z;, ..., Z,] ein d-dimen-
sionales H-Ideal der Hauptklasse r = n — d. Nach Kap. 2, (27), ist dann jede Ideal-
potenz p,™ = (z,", x,™ 1y, ..., 27 ,) ein Primirideal, und (z,", ;™ 'z, ..., 2 ;) ist

offenbar eine Minimalbasis aus (m + fl_ l) Elementen (diese Hurwitzsche Formel
r—

m+r—1
—1
Basigformen einer Minimalbasis fiir ein homogenes Primirideal bei fest vorgege-
benen d, ¥, n immer noch beliebig gro werden. Dasselbe gilt fiir P-Ideale.
Die Frage nach oberen Schranken fiir ¢ und ¢ ist also nur fir Primideale sinnvoll.
Bei P-Idealen miissen wir dabei wegen Kap. 1, (21), (22)ff., zusitzlich fordern, daB
eine Basis minimaler Linge vorliegt.

werden wir in 5.14. beweisen) ; wegen >> m kann also die Anzahl der

Wir behandeln zunichst den Fall n = 2. Fiir das triviale Primideal pp = (z,, 2,, 2,.
ist dann s =n +1=3. Ist d =0, so gilt p = (yoz: — 1%, YoT2 — Ya%o) bzWw)
(p) = (2, — ¥1,%; — ¥,) nach (143)bzw. (142); wir erhalten also in jedemn FallIdeale der
Hauptklasse 2; also ist s =2 baw. ¢ = 2. Ist schlieBlich d = 1, so folgt aus der
Ungemischtheit von Primidealen mit Hilfe von Satz 39 bzw. Satz 40 (Formeln (83)
bzw. (86)) die Hauptidealeigenschaft, also s = 1 bzw. ¢ = 1. Insgesamt ist also fiir
n = 2 stets s < 3 und bei Basen minimaler Linge auch ¢t < 3.

Wenn wir nun im folgenden fiir prime H-Ideale zeigen wollen, daB fiir s keine
obere Schranke existiert, so muB jedenfalls n = 3 sein. Wir wollen den kleinstmég-
lichen Wert, also n = 3, wihlen. Fiir d = 2 gibt das wieder Hauptideale, fiir d = 0
Ideale der Hauptklasse 3, fiir d = —1 das 7'-Ideal der Hauptklasse 4. Interessant
ist also der Fall n = 3, d = 1, r = 2. Enthélt unser Primideal eine Linearform, so
konnen wir diese durch eine Variablentransformation in z, transformieren und damit
Z, aus den anderen Basisformen eliminieren, welche mithin nur von z, z,, z, ab-
hingen. Und fiir diese gelten die Abschitzungen im Fall » = 2; unter Hinzunahme
von z, haben wir also die Abschétzung s < 4.

In unserem Gegenbeispiel miilte also » =3, d =1, r = 2 sein, und fiir den
Minimalgrad m, der Basisformen mufl m, = 2 gelten. Die Nullstellengebilde solcher
eindimensionalen primen H-Ideale sind irreduzible algebraische Raumkurven. Wir
haben also

Definition 11. Unter dem idealtheoretischen Kurvenproblem fiir H-Ideale versteht
mean die Frage nach oberen Schranken fiir die Anzahl s der Elemente von Minimal-
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basen fiir eindimensionale prime H-Ideale aus K[z, 2;, Z;, z,], welche keine Linear-
form enthalten.

Hierzu gilt der

Satz 73. Fiir die Anzahl s der El te von Minimalb indi ionaler primer
H-Ideale aus K(zy, %, Z;, ¥;], welche keine Linearform enthalten, existiert keine obere
Schranke.

Beweis. Hierzu wird in der Literatur gewdhnlich auf ein Gegenbeispiel von
Maocauray (vgl. [2], p. 38) verwiesen, welches von GROBNER in [2], S. 115, FuBnote 2,
erldutert wird. MacAULAY gibt keine explizite Basisdarstellung an, sagt auch nicht, ob
er P-Ideale oder H-Ideale betrachtet, sondern zeigt durch abzihlende Methoden,
welche nur bei H-Idealen anwendbar sind, daB eine solche Gradschranke nicht
existieren kann. Stattdessen geben wir hier als Beispiele fiir die Richtigkeit von
Satz 73 zwei homogene Primideale aus K[z, #;, ,, z;] explizit an.

Beispiel 1. Wir betrachten die Primideale
O = 05 ™ = Kl 2, 3, 3:]
fir m = 4 mit der allgemeinen Nullstelle
Yo="t" Y1 ="H"h, y=1th"™", yy=4".
Vom Verfasser und Diplomanden wurde die Basis berechnet zu

ofn = (F1, Fy, ..., Fp)) mit F, = zg2, — 2,27, und (165)
Tyl — Mg fir ¢ =2,...,m und m = 4.

Da8 (F,, F,, ..., F,) eine Minimalbasis bilden, ist unmm;elbar emzusehen DaB dadurch die volle
Basis des Primideals mit der angegeb all gegeben ist, 148t sich mit den in
6.8. im AnschluB an Kap. 8, (195), a b M thoden beweisen; man vgl. hierzu REN-
SoRUOH [6, 8] und [14], (12). Dies ist aber hier von geringerem Interesse, da durch (F, Fy, ..., F,,)
jedenfalls bereits m unbedingt erforderliche Basiselemente gegeben sind, und diese Anzahl wird
mit wachsendem m beliebig groB, was zu zeigen war.

Benaplel 2 (vgl Rmtsozvcn [14], (13)). Wir betrachten ganz entsprechend die Primideale
DY 1= pfli e e K[zy, 2y, x4, 73] fir ungerades m und m =7 mit der allgemeinen
Nullstelle

Yo=14" =4, Y =tH"0, y=4".
Hiertir bereohneten wir die Minimalbasis zu

o= (Gy, Gy ..., Gpy) mit @) = 2427, — 2,27, und (166)
Q) =zt — 2™ 2 far §=2,..,m — 2, m =7, m ungerade;

hier besteht die Basi8 aus m — 2 Basisformen; die Anzah! der Basisformen wird also mit wachsen-
dem m wiederum beliebig gro8.
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Als Folgerung aus (165) und (166) ergibt sich der

Satz 74. Bei primen H-Idealen kann der Mazimalgrad M der Basisformen einer
Minimalbasis beliebig grof sein; genauer: Die Differenz M — mq zwischen Maximal-
grad und Minimalgrad der Basisformen einer Minimalbasis kann beliebig grof werden.

Wir werden in Kapitel 6 sehen, da auch der Minimalgrad der Basisformen von
primen H-Idealen beliebig gro werden kann.

Das idealtheoretische Kurvenproblem ist mithin fiir H-Ideale negativ zu beant-
worten. Bei P-Idealen kann man bis zur Formulierung des Kurvenproblems analog
schlieBen, muB allerdings Basen minimaler Linge heranziehen.

Definition 12. Unter dem idealtheoretischen Kurvenproblem fir P-Ideale ver-
steht man die Frage nach oberen Schranken fiir die Anzahl ¢ der Elemente von Basen
minimaler Lénge fiir eindimensionale prime P-Ideale aus K[z,, 2, 5], welche keine
linearen Polynome enthalten, sowie die Frage, wann Ideale der Hauptklasse 2 vor-
liegen und wann nicht.

Zu diesem Problemkreis sind in letzter Zeit von verschiedenen Mathematikern
Untersuchungen angestellt worden; eine abschlieBende Beantwortung steht jedoch
noch aus; insbesondere kann der Verfasser auch kein Verfahren zur Berechnung oder
Bestimmung von Basen minimaler Linge angeben; in durchgerechneten Beispielen
von Hauptklassenidealen verhalf jeweils das dquivalente H-Ideal zur Auffindung von
Basgen minimaler Linge (vgl. 5.13.).

Im Gegensatz zumanchen Zitatenin der Literatur konnte daher auch das Macau-
laysche Gegenbeispiel nicht zu einer analogen Aussage fiir P-Ideale fiihren, selbst
wenn das enthomogenisierte Ideal eine Minimalbasis beliebiger Linge gehabt haben
wiirde, weil dann immer noch die Frage zu kldren war, ob es sich bei dieser Mini-
malbasis zugleich um eine Basis minimaler Linge handelt. Man vergleiche hierzu
ABHYANEAR und SATHAYE [1].

Die Beispiele (165) und (166) helfen uns da nicht weiter; sie ergeben niamlich bei
Enthomogenisierung P-Ideale der Hauptklasse 2, was wir fiir (166) kurz zeigen wollen.
Es ist, wie der Leser selbst nachrechnen mége,

2oF1 = 2 F; — 2,22,
Setzen wir

fil@r, 22, 73) 1= Fi(1, 2y, 73, 23),
80 folgt daraus

finr = ofs — ™22y

mithin 148t sich f; durch f,, f, ausdriicken; ferner 1aBt sich f, durch f, f,, also auch
dureh f,, f, ausdriicken usw. Durch Auflésung der Rekursion lassen sich also fg, ..., f»
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durch f,, f, ausdriicken; das enthomogenisierte P-Ideal ist also ein P-Ideal der Haupt-
klasse 2.

In Definition 12 kann die Voraussetzung ,,Basis minimaler Lange* nicht durch
,,Minimalbasis*‘ ersetzt werden; man vergleiche dazu Kap. 1, (21), (22). Fiir belie-
bige P-Ideale aus K[z, ..., z,] bewiesen H. BRESINSEY und M. J. FULLER, da es zu
jedem P-Ideal (1) = K[z, ..., ,] Minimalbasen beliebiger Liinge gibt; vgl. BRE-
sivsEY und FuLrer (1]

Der Grundgedanke des Beweises von BRESINSKY und FULLER ist folgender:
Ist (f;, ..., f) mit ¢ = 1 irgendeine Minimalbesis von (a), so wird aus f,, ..., f, eine
Minimalbasis (g, ..., g;+1) von (a) konstruiert. Dabei werden im Gegensatz zu Kap. 1,
(21), (22), alle Basispolynome f; verdndert.

Insbesondere gibt es also zu jedem Primideal Minimalbasen beliebiger Linge.
DaB es schon fiir n = 3, d = 1 auch inhomogene Primideale gibt, bei denen auch die
Anzahl der Elemente jeder Basis minimaler Léinge groBer als irgendeine vorgegebene
natiirliche Zahl ist, wurde von T. T. Mor bewiesen, vgl. Mo= [1].

Diese — irrtiimlich lingst erledigt geglaubten — Probleme sind durch die Not-
wendigkeit der Unterscheidung zwischen ,,Minimalbasen‘“ und ,,Basen minimaler
Linge bei P-Idealen wieder aktuell geworden. Es liegt hier eine dhnliche Situation
vor wie in den Jahren 1940 bis 1943, als PERRON die Ungiiltigkeit des Vahlenschen
Beispiels zum Satz von KRONECKER nachwies. Damit wollen wir uns im folgenden
beschaftigen.

Wir betrachten Ideale aus K[z, z,, ..., z,] bzw. K[z,, ..., z,]. Der erwihnte Satz
von KrRoNECEER und PERRON besagt nun, daB es unter den unendlich vielen Idealen
mit gleichem Nullstellengebilde wenigstens eines gibt, das eine Basis von héchstens
n + 1 Polynomen hat. Gelingt der Beweis fiir H-Ideale, so gilt die Behauptung
auch fiir P-Ideale, da sich bei der Enthomogenisierung die Anzahl der Elemente
einer Basis minimaler Linge nicht vergréfern kann. Wir kénnen uns daher im
folgenden auf eine idealtheoretische Formulierung fiir H-Ideale beschrinken.

GemiB Kap. 3, Satz 36, (84), galt:
NG (a) = NG (b) ©® Rad a = Rad b;

daraus folgt, daB hier die Klasse derjenigen H-Ideale zu betrachten ist, deren Radi-
kale mit dem Radikal eines vorgegebenen H-Ideals a iibereinstimmen. Nach Kap. 1,
Definition 38, (95), nannten wir solche Ideale dquivalent. Zu beweisen ist also der

Satz 75 (Satz von KrONECKER und PERRON). I8t a < K[z, x,, ..., z,] ein H-Ideal
mita = (F, Fy, ..., F,),8 >n + 1, (Fy, ..., F,) Minimalbasis, so existiert wenigstens
etn H-Ideal b < K[z, 2y, ...,2,] mit b =(G,,G,,...,G;), Rada =Radb und
k <n + 1. Anders formuliert: In der Klasse aller Ideale mit demselben Radikal
existiert wenigstens eines, das eine Minimalbasis aus hochstens n + 1 Formen besitzt.
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Beweis. Wir geben hier eine idealtheoretische Formulierung und Ausfiillung
eines Beweisgedankens von vaN DER WAERDEN aus dem Zentralblatt fiir Mathe-
matik, Band 24 (1941), S. 276.

Zunichst sei vermerkt, daB das Radikal r = Rad a = Rad b zwar selbst der
genannten Klasse angehort, aber im allgemeinen nicht das Gewiinschte leistet. Da
Primideale mit ihrem Radikal {ibereinstimmen, liefern die soeben betrachteten Prim-
ideale (165) und (166) mit Minimalbasen beliebiger Liinge bereits Gegenbeispiele. Es
sei also a=(Fy,...,F,) = K[zg,...,2,], s>n+1, Dima=d=n—r und
Rada =p, n+ NP,y N Ppsysy 0 ++» NPy, mit Dimpy =7 — ¢ und den Grund-
idealen (vgl. (54) und Kap. 3, (83))

grei(Rad ) =P 0 0Py 0o AP N 0 Prg,,;, fir i=0,...,d.
Fiir a existiert nach Satz 46 eine a-Schnellbasis

a=(Fy,..., F, F—rﬂv EERP) Fu) = (9, Fuu veey Fu)
mit § = (Fy, ..., F,) und Dim§) =n —r =d; § ist also ein H-Ideal der Haupt-
klasse r. Dann ist Rad f) S Rad a; gilt das Gleichheitszeichen, so kann b = mit
k =r gesetzt werden, und wir sind fertig. Ist dagegen Radf) — Rad a, so gilt
Radh =p, n-- nyp,, nb, = g(Rad a) n b, mit b, & (1), b, = Rad b, (d. h., b, ist
semiprim, vgl. Kap. 1, Definition 37), b, ungemischt und Dimb, =n — r = d. Wir
wiihlen nun eine Form F,,, € Rad a S g,(Rad a) mit b, : (F,,;) = b,. Dann wird

Rad (9, F,,,) = Rad (p,y, Frsy) 0 -+ n Rad (p,,, Fri1) n Rad (b, Fpyy)

=P N NPy, 0 Rad (b, Fr).

Nach Satz 56 ist dann Rad (b,, F,,;) ungemischt und Dim (b,, F,,;) = d — 1. Weiter
istRad (f, F,,;) S Rad a, und im Fall des Gleichheitszeichens sind wir wieder fertig und
kénnen b = (§, F,,,) setzen. Ist dagegen Rad (f), F,,,;) = Rad q, so gilt Rad (9, F,.,)

= grr1(Rad @) nbyyy mit by.y & (1), by = Rad by.y, bysy ungemischt und Dim by,
=d — 1. So fortfahrend, erhalten wir im ungiinstigsten Fall

Rad (5, Fryy, Frezy ..o, F) = go(Rad @) nb, =Radanb,

mitn =r 4 d,b, = (1), b, = Rad b,, b, ohne triviale Komponente und Dim b, = 0.
Fiir den Fall Rad (§, F,yy, Frug, ..., F,) = Rad @ wihlen wir dann abschlieBend
F,,, mit F,, € Rad a, b, : (Fay,) = b,, dann folgt

Rad (9, Friy, Frazy oovy Fy Foiy) = Rad a n by

mit b,,, # (1), b, = Rad b,,; und Dimb,,; = —1. Dann aber muB b,,, =pr
= (&, &, ..., T,) sein und kann in der Durchschnittsdarstellung weggelassen werden.
Mithin ist Rad (§, Fy.1, Freg, «.., Fa, Fayy) = Rad a, also

b= Fryyeory Fout) = (Fry oo Fry Frayy ooy Fana),
q.e. d
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Damit ist jedoch nichts dariiber gesagt, wie man ein solches H-Ideal b berechnen
kann; wir geben dieses und andere offene Probleme als

Definition 13 (Kronecker-Perronsche Probleme). Vorgegeben sei ein H-Ideal a
< K[z, 2y, ..., 2,]; dann versteht man unter den Kronecker-Perronschen Problemen die
Aufgaben, ein H-Ideal b mit Rad b = Rad a und einer Basis von kleinstméglicher
Lange zu berechnen sowie allgemeine Aussagen iiber eine Verbesserung der Schranke
7 + 1 zu machen.

Die zweite Aufgabe ist dahingehend beantwortet worden, daB die Schranke
generell auf » herabgedriickt werden konnte.

Fiir n =3 wird nun n + 1 = 4 und Satz 75 besagt fir d = 1, daB die Punkt-
menge einer algebraischen Raumkurve als Nullstellengebilde eines Ideals gewonnen
werden kann, dessen Basis aus hichstens vier Basisformen besteht.

Definition 14. Unter dem mengentheoretischen Kurvenproblem fiir H-Ideale
versteht man die Frage nach Aussagen zur Verschirfung der Schranke 4 fiir die
minimale Anzahl von Basisformen in H-Idealen b = K[z, z,, 2;, z;] mit Rad a
= Rad b, worin a = K[z, 2, 2,, 7,] ein vorgegebenes eindimensionales H-Ideal ist.

Hier folgt aus dem Vorhergesagten, da die Schranke auf 3 herabgedriickt werden
kann. Von Bupach wurde in [1], S. 189, Korollar 7.5.3, gezeigt, daB diese Schranke 3
fiir nicht prime ungemischte H-Ideale nicht verbessert werden kann. Offen ist also
die Frage, ob es zu jedem eindimensionalen Primideal p < K[z, z,, Z;, 23] ein
p-priméres H-Ideal q der Hauptklasse 2 gibt.

Als positives Beispiel hierfiir verweisen wir auf das vierte Beispiel von 1.10. Aber
bereits fiir das von uns 8fter behandelte H-Ideal v{Z, welches aus (165) fiir m = 4
folgt, ist diese Frage derzeit noch offen.

Zu diesem Problemkreis sei auf RENSCHUCH [18] verwiesen; dort findet der Leser
auch weitere Literaturhinweise, u.a. auf den Begriffsstreit, der durch die Ver-
wechslung des idealtheoretischen und gentheoretischen Kurvenproblems ent-

standen war,

4.28. Beziehungen zu linearen Gleichungssystemen

Wir wollen hier die bereits in MfL Bd. 3 gegebenen Ergebnisse fiir lineare Gleichungs-
systeme vom Standpunkt der im dritten und vierten Kapitel entwickelten Theorie
der Polynomideale aus betrachten.

Sehen wir den Stoff des dritten Kapitels unter einem solchen Aspekt, so sei zunéchst
auf das Beispiel von 3.1. beziiglich der Koeffizientenspezialisierung verwiesen. In den
weiteren Ausfilhrungen von 3.1. wurde dann ausfithrlich auf lineare Gleichungs-
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systeme Bezug genommen. Vom hier gewonnenen Aspekt wire die Schreibweise (12)
fiir lineare Gleichungssysteme zu bevorzugen; der Begriff ,,homogen‘ miiSte dann
wie hier eingefiithrt und das Minuszeichen bei der Cramerschen Regel in Kauf ge-
nommen werden; die Schreibweise (12) wire auch der Formulierung von Gleichungen
zweiten, dritten und vierten Grades angepaBt (vgl. MfL Bd. 2, 7.5. und 7.6.). Die
Beziehung (15) kann hinterher so gedeutet werden, daB bei linearen Gleichungs-
systemen fiir den Exponenten ¢ im Hilbertschen Nullstellensatz stets ¢ = 1 gewihlt
werden kann, weshalb im linearen Fall die Begriffe ,,idealiquivalent* und ,,16sungs-
#quivalent’* zusammenfallen.

Zu 3.2. verweisen wir auf den Satz 2. Die Problematik von 3.3. beziiglich der Wahl
der Parameter und der geeigneten Numerierungen haben wir im Fall der linearen
Gleichungssysteme in 4.8. erliutert. Da wir in 3.5. direkt an die Darstellung von
MfL Bd.3 angekniipft haben, bleibt hier nur noch 3.8. fiir inhomogene lineare
Gleichungssysteme zu erldutern.

Vorgegeben sei ein lineares inhomogenes Gleichungssystem in z,, 2, ..., Z,. Beim

GauBschen Algorithmus oder GauBschen Eliminierungsverfahren wird — eine
,,geeignete Numerierung‘‘ vorausgesetzt — nacheinander

z, aus der 2., 3., 4., 5., ..., m-ten Gleichung eliminiert,
z,aus der 3., 4., 5., ..., m-ten Gleichung eliminiert,

zg aus der 4., 5., ..., m-ten Gleichung eliminiert usw.,

wodurch die Trapezform mit einem Trapez entsteht, welches aus einem Rechteck
durch Abschneiden eines Dreiecks unten links vorzustellen ist. Mit dieser sukzessiven
Elimination von Variablen wird folgendes erreicht:

1. Entscheidung iiber Lésbarkeit oder Unlosbarkeit des inhomogenen Gleichungs-
systems,

2. Im Fall der Losbarkeit Entscheidung iiber die Anzahl der Parameter der voll-
stindigen Lésung.

3. Bestimmung der vollstindigen Losung durch Ubergang zur Diegonal-Trapez-
form:

z, + @10+ GprnZrn ot BTy =0 (@0 = —by),
Z2 + @30 + o011 %rs1 + 00+ Gy =0 (ago = —by),

2y + Qrg + G Ty + 00 F GpaZa =0 (@rp = —by).

4. Herstellung eines Gleichungssystems mit méglichst geringer Anzahl von Glei-
h 1, d. h. Herstellung einer Minimalbasis fiir das von den linearen Polynomen

)

erzeugte P-Ideal (I).
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Dabei ist 4. nicht so wesentlich, denn beim Ldsen der Gleichungen macht man
keinen Fehler, wenn man die tiberfliissigen Gleichungen nicht beriicksichtigt.

Bei nichtlinearen Gleichungssystemen bzw. den dadurch bestimmten Polynom-
dealen kann nun die Elimination von Variablen nicht allein durch Multiplikation
mit Elementen aus K und Addition bzw. Subtraktion bewerkstelligt werden.

Bei H-Idealen a mit Basisformen gleichen Grades fithrt der GauBsche Algorithmus
zwar zum Entscheid iiber das Vorliegen einer Minimalbasis, zur Elimination von
Variablen gelangt man jedoch erst durch Anwendung des Verfahrens auf die Moduln
der in a enthaltenen Formen héheren Grades, vgl. 4.10. Damit konnte man dann auch
bei H-Idealen die Probleme 2. und 3. l6sen. Zur Behandlung von 1. haben wir nun
in 3.8. im nichtlinearen Fall einen anderen Weg eingeschlagen. Im folgenden soll an
zwei Beispielen illustriert werden, daB dies bei inhomogenen linearen Gleichungs-
systemen ebenfalls ein gangbarer Weg ist:

Beispiel 1. Vorgegeben sei das Gleich ystem

Z 422, + 2, —4=0,
2z, + 423 + 22, — 8 =0,
3z — 4z, + 22, — 1 =05

nach Durchfithrung des GauBschen Algorithmus haben wir

7+ 22+ 23— 4=0,
0=0,
10z, + 23 — 11 =0.

Idealtheoretisch formuliert haben wir das Primidesl (I) = (b, I, I5) mit

L= z,+25,+ z,—4,
Iy = 22, + 4z, + 22, — 8,
Iy =3z, — 4y + 223 — 1,

und der GauBsche Algorithmus fithrt zu
h=2+22+2,—4,
2l — 1, =0;

also kann J; in der Basis gestrichen werden;
3l — Iy = 10z, 4 274 — 11;

es st also
) =(hl) = (s 34 — &).

Beispiel 2. Vorgegeben sei das Gleich y

z 4+ 22+ 23— 4=0,
22y + 42y + 22, — 11 =0,
3:1—4.1:,4-21,— 1=0;

nach Durchfiihrung des GauBschen Algorithmus haben wir
z+22+2— 4=0,

3 = 0 (Widerspruch, also unldebar),
10zy + 23 — 11 = 0.

Idealtheoretisch formuliert haben wir (I) = (I, 5, l;) mit
h= 2+ 22+ z,— 4,
l,=2z,+4z,+2z,—11,

Iy =238z, — 42, + 22, — 1,




4.28. Beziehungen zu linearen Gleichungssystemen 189

und der GauBsche Algorithmus fithrt zu

I =z + 22, + 23— 4,
3, —ls= 10z, + z, — 11,
2 — 1, =3,

mithin 24/3 — 1,/3 =1, also 1 € (I) und folglich () = (1). Entsprechend folgt (I) = (1) in allen
anderen unldsbaren Fillen und umgekehrt in Einklang mit Satz 30, (72).

Fiir die Beziehungen des vierten Kapitels zu linearen Gleichungssystemen sei
zuniichst auf 4.8. hingewiesen. Dort wurde der Dimensionsbegriff auf lineare Glei-
chungssysteme angewandt. Die in 4.9. erlauterte Methode fithrt zwar auch bei linearen
Gleichungssystemen zur Bestimmung der Dimension, doch ist dies wenig effektiv, da
man durch die Beziehung

d = n — 8 = (Anzahl der Variablen) — (Anzahl der linear unabhiingigen Gleichungen)

die Zahl d wesentlich bequemer bestimmen kann (vgl. MfL Bd. 3, Kap. 5, Satz 4).
Die Beziehung d =7 — s, die man wohl auch als Satz von Frobenius bezeichnet,
laBt sich auf die Kurzform s = r bringen; sie erscheint in der linearen Algebra fast
als selbstverstiéndlich. Ihre Bedeutung wird durch die Komplikationen im nicht-
linearen Fall (8 = r bzw. ¢t = r, Ideale der Hauptklasse, Schnellbasen, vgl. 4.17.,
4.18., 4.25., 4.27.) herausgestellt. Die Bildung der Eliminationsideale in 4.10. lauft
bei linearen Gleichungssystemen auf den GauBschen Algorithmus hinaus. Der Leser
mache sich jedoch den Unterschied klar: Bei linearen Gleichungssystemen werden
durch die einmalige Anwendung des GauBschen Algorithmus auf zo, z;, ..., , gleich-
zeitig Minimalbasen und Losungen bestimmt, wihrend im nichtlinearen Fall zur
Bestimmung von Eliminationsidealen iiber den Maximalgrad der Basisformen des
Ausgangsideals hinausgegangen werden muB (Satz 23). Daher ist es erforderlich, den
Gauflschen Algorithmus mehrmals anzusetzen, und zwar in jedem Fall fiir die Potenz-
produkte ¢-ten Grades mit ¢ = mq + 1, ..., 2M, wobei m, der Minimalgrad und M der
Maximalgrad der Basisformen des Ausgangsideals ist.

Angesichts der Tatsache, daB bei Gegeniiberstellung der linearen und nichtlinearen
Gleichungssysteme der GauBsche Algorithmus sich als das wesentliche gemeinsame
Element erweist, ist es bedauerlich, daB diese grundsitzliche Methode im Schul-
unterricht nicht behandelt wird, selbst nicht in der Abiturstufe.

Bei linearen Gleichungssystemen definieren die dadurch gegebenen Linearformen
bzw. linearen Polynome gerade Primideale; ein Bezug von den Sitzen iiber die
Dimensionserniedrigung zur linearen Algebra ist daher allein aus 4.12. gegeben. Die
,, Erweiterung des Gleichungssystems‘ durch eine zusitzliche lineare Gleichung
bedeutet bei linearen Gleichungen im Fall der linearen Abhingigkeit der zusitzlichen
Gleichung den Erhalt der Losung, im Fall der linearen Unabhingigkeit eine um 1
verringerte Dimension in Einklang mit Satz 33, wihrend bei inhomogenen linearen
Gleichungssystemen das System auch unlésbar werden kann (vgl. Satz 32).



S. Syzygientheorie der H-ldeale

5.1.  Einleitung

Wir haben bereits bei der Berechnung von Idealdurchschnitten und Idealquotienten
Vorgriffe auf die Syzygientheorie gemacht, so da8 ihre Behandlung allein durch
diesen Nachholbedarf gerechtfertigt ist. Sie wird uns jedoch noch zu weiteren An-
wendungen verhelfen.

L. BupacE schreibt in dem Vortrag [2], ,,dafB die Syzygientheorie gerade aus dem
Bediirfnts entstanden tst, die Methoden der linearen Algebra soweit als moglich auf
Polynomringe zu tibertragen'. In der gleichen Arbeit [2], S. 7—10, 1.2., betrachtet
BupacH den Zusammenhang zwischen Syzygienketten und exakten Folgen und
schreibt dazu (vgl. [2], S.7): ,,Dieses Beispiel, das auf Hilbert zuriickgeht, stellt zu-
gleich einen der klassischen Ausgangspunkte der homologischen Algebra dar.” — Inter-
essierten Lesern kann die Lektiire der Budachschen Arbeit nur warmstens empfohlen
werden; vgl. auch KLeEmNERT [1], II. Zugleich wird dadurch eine Verbindung zu den
Begriffsbildungen und zur Terminologie in MfL Bd. 3, 3.4.f., gegeben.

Die Syzygientheorie wurde 1890 von Davip HILBERT in der berithmten Arbeit [1]
,,Uber die Theorie der algebraischen Formen* begriindet, also wihrend der ersten
schopferischen Periode von HILBERT (vgl. das Vorwort von H. BERNHARDT und
H. Wussmvg zu HnBerT [2]). Weiterentwickelt wurde die Syzygientheorie durch
OsTBOWSKI [1] und N. M. GONTER [1]. Diese wenig bekannte Arbeit von GONTER,
auf welche der Verfasser auch nur durch einen Zufall stie8, stellt anscheinend eine
nachtriigliche Wiedergabe von Vorlesungen aus dem Jahre 1904 dar, vgl. die ,,Kurze
Biographie‘* am Schlufl von GONTER [2].

Eine moderne Darstellung der Syzygientheorie, insbesondere unter Verwendung
der Matrizenschreibweise, wurde 1949 in GROBNER [2] gegeben, ferner in der Arbeit
[1] von GrOBNER. Wir folgen hier im wesentlichen der Grobnerschen Darstellung,
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welche von grundsitzlicher Bedeutung fiir die Entwicklung der modernen Richtung
in der algebraischen Geometrie und der Homologietheorie geworden ist.

In der Vektorrechnung bzw. beim Rechnen mit n-Tupeln (in der Terminologie
von MfL Bd. 3) schlieBt man bei vorausgesetzter linearer Unabhéngigkeit der Basis-
vektoren a,, ..., @, aus der Gleichheit

b =20+ A, + - + 48y = 8 + 1,8, + - + paly
liber
(A=) 8+ (B — )8 + - + (A — pa) s =0

auf A, = p,, A3 = 4y, ..., Ay = py (vgl. ML Bd. 3, (21)). Entsprechend schlieBt man
bei Polynomen in einer oder mehreren Variablen auf die Eindeutigkeit der Koeffi-
zienten (vgl. MfL Bd. 3, 14.1., (1)). Ist dagegen (a) bzw. a mit der Minimalbasis
(f1s fas -+ s ft) bzw. (Fy, Fy, ..., F,) ein inhomogenes oder homogenes Polynomideal,
80 kann man diesen SchluB nicht mehr machen; wir zeigen dies fiir P-Ideale: Aus

f=ah+gfrt+ -+ gft =Mmfi + hafs + -+ + kifrid.inay, ..., 2,
folgt natiirlich wieder
(91— P1) fr + (92 — hs) fat o+ (g — hl)é 0id.in zy, ..., Zs; (1)

aus (1) folgt aber keineswegs g, = h,; fiir alle ¢ =1,2,...,¢; man betrachte dazu
beispielsweise Identititen der Gestalt f,f; + (—fi) fe = 0.

Um nun einen Uberblick iiber alle derartigen Identititen zu gewinnen, ist es
sinnvoll, nach steigenden Gradzahlen vorzugehen.

Wir kénnen uns dann auf H-Ideale a = K[z, z,, ..., z,] mit a = (Fy, F, ..., F,)
und (Fy, Fy, ..., F,) Minimalbasis beschrianken. Dies hat iiberdies den Vorteil, daB
aus

F:=GF + GF;, + -+ GF,€a (2)
stets
k(F) = k(@) + B(F,) firalle 1 =1,2,...,8 (3)

folgt (vgl. Kap. 1, (45)), wihrend bei P-Idealen nur A(f) < k(g;) + A(f,) gilt (vgl.
Kap. 1, (44)). Die Beziehung (3) bedeutete gerade, daB die in a = (¥, ..., F,)
< K[z, 2, ..., z,] enthaltenen Formen eines festen Grades ¢ einen K-Modul IR(¢; a)
bilden; q ist dann die Vereinigungsmenge aller dieser K-Moduln; wir erinnern hierzu
an die Sitze 15 bis 18 von Kapitel 1 und an Satz 22 von Kapitel 4.

Ausgangspunkt fiir die Syzygientheorie war bei HILBERT 1890 die Frage nach der
Bestimmung der Anzahl der linear unabhingigen Formen aus 9 (¢; a) fiir festes, aber
beliebiges ¢. Gehen wir dazu von (2) aus, 8o miissen wir — analog zu (1) — die Iden-
titdten

O F, + O F, + - + O F, =01id.in 2y, 2, ...,z (4)
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mit beriicksichtigen; die Beriicksichtigung der Identititen (4) reicht jedoch — wie wir
in 5.14. sehen werden — zu der gewiinschten Anzahlbestimmung allein noch nicht
aus. Die Identitit (4) 1Bt sich auch als Skalarprodukt

D,
Dy U
(Fy, Fg, ..., F,) - =0id.inx,, ..., 2, (5)
¢l
P,
schreiben; der Vektor [ { | heiBt dann eine Syzygie von a = (Fy, F,, ..., F,).
¢!
Py, @,
Sind{ { | und | : | zwei Syzygien von a, so ist
¢la 28
¢ll ¢21 y/1¢l'l + yl2¢21
el )+ )=t
D, (29 ¥ Dy, + VP,

wiederum eine Syzygie von a. Dabei sind ¥;, ¥; Formen aus K[z, 2y, ..., z,] mit
AE) + h(Py) = h(¥y) + k(Pay). (6)

Die Syzygien bilden unter Beachtung der Gradbedingung (6) einen K[z,, z,, ...,z,]-
Vektormodul, den sogenannten zweiten Syzygienmodul von a. Wie wir beweisen
werden, besitzt nun jeder K[z, 2y, ..., z,]-Vektormodul B eine endliche Basis. Da
nun jedes Basiselement von B ein Spaltenvektor ist, wird eine Minimalbasis von 8
durch eine Matrix von Formen reprisentiert; fiir die Gradzahlen dieser Formen
miissen jedoch zur Sicherstellung der Homogenitéit gewisse Einschrankungen gelten,
die als erstes naher zu untersuchen sind.

5.2, Homogene Matrizen

Vorgegeben sei eine einzeilige Matrix von Formen aus K[z, 2y, ..., z,], die als Basis
eines H-Ideals a = (F), ..., F,) gedeutet werden kann:

Uy, = (Fy, ..., Fy). M
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Wir betrachten neben U,, eine damit verkettete Matrix

Gy ... Oy
Vai={|........0. mit A(Gy) :=gu- (8)

Gy ... Gy

Definition 1. Die zu (8) gehérige Matrix der Gradzahlen heilt die zu (8) zuge-
hérige Gradmatriz:

gu .- Gue
MG :i={..cre..... . 9)
ga .-+ Gat

Fiirt = 1 oder s = 1 ergeben sich die bereits in Kap. 1, Definition 31, eingefiihrten
Gradvektoren.
Unsere Aufgabe besteht also darin, Bedingungsgleichungen fiir die Gradzahlen g;,

anzugeben. Durch diese Bedingungsgleichungen soll erreicht werden, daB bei der
Matrizenmultiplikation U,,V,; nur Formen entstehen, ausfiihrlich:

Gy ... Gy
(Fryees Fo) o | oovnnnnnn 1= (H,, Hy, ..., H}),
Gal Gu
also
Hy:=F\Gyy + FyGyy + - + F G, (10)
und
H,:=F\Gy + F.Qy + -+ + F Gy (k=2,...,1); (11)
aus (10) folgt
h(F) + g =MEF,) + gy = =hF,) + a1,
also
h(Fy) + g = h(F) + gu (t=2..9,
also
k(Fy) — MF) = gu — gu; (12)
aus (11) folgt
k(EFy) + gu = b(F2) + gu = -+ = M(F,) + gu,
also
h(Fy) + gue = MF) + gu,
also

gue = h(Fy) — B(F) + gu; (13)
(12) in (13) eingesetzt, liefert die entscheidende Gradbedingung
Ju =9gu + Ju — gn- (14)



194 5. Syzygientheorie der H-Ideale

Definition 2. Matrizen mit Elementen aus K[z, 2y, ..., 2,] (Formen) und Giiltig-
keit von (14) heiBen H-Matrizen. Auftretenden Nullformen wird dabei derjenige
Grad zugeschrieben, der mit (14) vertraglich ist.

Das geschieht in Einklang mit Kap. 1, (35), jedoch in Abweichung zu MfL Bd. 3,
14.1. und 14.6.

Aus (14) folgt unmittelbar der

Satz 1. Bei H-Matrizen sind die Graddifferenzen verschiedener Zeilen und Spalten
konstant.

Beweis. Fiir Zeilen folgt aus (14) sofort

i — e =G — Ju, (15)
also

Fue — gt = (G — gu) — (5 — gu) = (g — 911) — (g — 1)) =g — gj15
fiir Spalten folgt entsprechend mit Hilfe von (14) die Behauptung aus
Jie — Ju = gu — gu- (16)
Aus (15) und (16) ergibt sich unmittelbar

Satz 2. Die Gmdzahlen einer H-Matriz, also die zugehorige Gradmatriz, sind
bereits vollk festgelegt, wenn die Gradzahlen fir eine Zeile und fiir eine Spalte,
0.B.d. A. fiir die erate Zetle uml die erste Spalte, vorgegeben sind.

Jede Gradmatriz (9) hat dann die Bauart

8 gu + 6 cee gu Tt 0
gutd gntea+d ... gutoa+d

g+ iy gut o+ dey oo guF Co+ deny
und es gilt gy = g1y + Ce-y + di-y, wobet ¢o = dy = O zu setzen ist.

Beispiel.
2 2 3 457 2 23 4 5 7
3 3 34 5 6 8
4 erginzt sich zu 4 45 6 7 9
5 556 7 8 10
8 8 8 9 10 11 13
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Wir wollen nun untersuchen, welchen Gradbedingungen die Elemente von

Hy ... Hy
We:i=|....0000 (17)
H“ N Hlu
neben (14) geniigen miissen, wenn

HH Hﬂ H)
Gll GH Gll M Glt H,, H. H'
Gn On Gy oo Gu | [ 0" =
V“W‘- i Ha] HQ‘ H“
G" Gui G“ - Ga‘ ...............
Hﬂ Hﬂ .. H(I

wieder eine H-Matrix sein soll. Dazu miissen sich beim Ausmultiplizieren aus-
schlieBlich Formen ergeben; die Gradmatrix ist mithin gegeben durch

g+ hn guF P oo gu i

(h(V,;W;..)) _ [ = +hy g+l oo gt R
G+ o+l oo gt Ry

und aus der Matrizenmultiplikation ergibt sich fiir die Elemente der ersten Zeile

gu + ku =gu + ki,
gu + b = gu + b,

gu + hu = gu + b,
also allgemein

gu+hy=gu+hy fir k=1,..,¢t und I=1,...,u
Mithin gilt

Satz 3. Ist V,, eine vorgegebene H-Matriz mit der zugehdrigen Gradmatriz (g,), so
gilt fir alle mit V,, verketteten H-Matrizen W, mit den Gradmatrizen (hy), die zu
H-Matrizen VW, fiihren, daf die Gradzahlen by, durch Vorgabe einer Zeile, 0. B.d. A.
der ersten Zeile mit den Elementen hy;, vollkommen festgelegt sind durch

by =gu — gu + hu (k=1,..,t und l=1,...,4). (18)
VW, ist dann eine H-Matriz.
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Beweis. Wir haben nur noch die letzte Behauptung, also die Giiltigkeit von
(14) fiir die Ay, nachzuweisen, d. h.
by = by + by — by (19)
Wir bestitigen die Giiltigkeit von (19), indem wir beiderseits (18) einsetzen:

gu — gu + by =gu — gu + b + 9 — gu + by — bu.
Wir geben noch ein Beispiel zu Satz 3. Es sei

2 3 3 4
ww) =3 ¢ 4 5),
5 6 6 7
und es sei W = W, und hy, = 5, by = 6 vorgegeben. Dann ergiinzt sich (A(W)) zu

8

5
45
aw) =1, 5
3 4

Zum SchluB dieses Abschnittes noch eine ergiénzende Bemerkung.
Durch die Bedingung (14) bzw. (19) konnen negative Gradzahlen auftreten. Man
vermeidet dies, wenn man die g;; so wihlt, dal

JuSge < Sgu (20)
und
InsSgn S Sga (21)

gilt. Nach Satz 3 ist fiir die &, nur (20) noch realisierbar; das Nichtauftreten negativer
Exponenten ist bei den von der Matrizenmultiplikation betroffenen Elementen
evident; lediglich bei Nullen konnen sich formal negative Werte ergeben.

Im iibrigen gelten die iiblichen Regeln und GesetzméBigkeiten fiir das Rechnen mit
Matrizen ; wir heben hier nur eine hervor: Fiir die Multiplikation einer H-Matrix mit
einer Form A(zo, 2y, ..., Z») < K[z, 2y, ..., Z»] bzw. mit einer Konstanten aus K gilt
ohne Zusatzbedingungen

Gy ... Gy A6y, ... AGy,
Al = . (2
Gy ... Gy AG, ... AG,
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5.3.  Homogenitit der Unterdeterminanten von H-Matrizen

Wir gehen nun wieder aus von der Matrix
7R [P (8)

mit A(Gy) 1= gy und
Jue =gn + Ju — gu- (14)
Dann gilt der
Satz 4. Alle r-rethigen (r < Min (s, t)) Unierdeterminanten von V, sind Formen.

Beweis. Wir fithren den Beweis 0. B. d. A. fiir die aus den ersten r Zeilen und den
ersten r Spalten gebildete r-reihige Unterdeterminante; nach der Leibnizschen
Definition der Determinante (vgl. MfL Bd. 3, 8.2.) ist dann

...... L = X Gy Gy e G

wobei die Summe iiber alle Permutationen (s, ..., ;) von (1, ..., r) zu bilden ist und
I(iy, ..., %) die Anzahl der Inversionen der jeweiligen Permutation (¢, ..., 1,) ist. Es
sei g der Grad des allgemeinen Gliedes unserer Determinante, also

g:=hG Gy, Gr) = g1y, + Goiy + - + Gri,

Es ist zu zeigen, daB g unabhingig von der Permutation (3, ..., 4,) ist. Setzen wir
(14) in den Ausdruck fiir g ein, so wird (untereinandergeschrieben)
g=gu +9un + - +gn
+ gy, + gu, + o+ g,

—fu —9u — 0 — g
und wegen

Ju, + g, + o+ gy, =gt gzt + o
ist also ¢ in der Tat unabhéingig von der jeweiligen Permutation (¢, ..., t,).

GROBNER geht in [2] von Satz 4 als Forderung aus und gelangt von da aus zur
Bedingung (14). Der Verfasser wiihlte hier mit Riicksicht auf die in 5.1. dargelegten
Zusammenhiinge bewuBt einen etwas weniger eleganten Weg.
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5.4. Homogene Vektormoduln

Die Zeilen- oder Spaltenvektoren homogener Matrizen bilden einen Vektormodul, den
wir als ,,homogenen Vektormodul‘‘ bezeichnen wollen:

Definition 3. Ein homogener Vektormodul des H-Ringes K[z, zi, ..., z,] ist eine
Menge B von Vektoren mit gleicher Koordinatenzahl, fiir die folgendes gilt:
1. Die Koordinaten Gy, sind Formen aus K[z, zy, ..., z,], fiir deren Gradzahlen
(14), (15) und (16) gelten.
Gll Glz
2,Aus U=|: |e®B, V= |€B,4¢cK[z2y..., z4], BEK[zo,2y,...,2,]
Gn Gaz
wobei die Beziehung
h(A) + h(@u) = HB) + h(Gy) (23)
gilt, folgt AU + BV € 8.
Es gilt dann der

Satz 5 (Hilbertscher Basissatz fiir homogene Vektormoduln). Jeder homogene
Vektormodul B besitzt eine endliche Basts.

Beweis. Dazu nehmen wir in 8 eine Klasseneinteilung der Spaltenvektoren vor.

Die erste Klasse besteht aus allen Spaltenvektoren, bei denen die erste Koordinate
= 0 ist,

— die zweite Klasse besteht aus allen Spaltenvektoren, bei denen die erste Ko-
ordinate = 0 und die zweite Koordinate = 0 ist,

— die dritte Klasse besteht aus allen Spaltenvektoren, bei denen die erste und die
zweite Koordinate = 0 und die dritte Koordinate == 0 ist, usw.

Dies ist offenbar eine vollstindige Klasseneinteilung, wobei in Einzelfillen aller-
dings eine oder mehrere Klassen auch leer sein konnen. Jedenfalls erhalten wir da-
durch eine treppenférmige Anordnung der Spaltenvektoren.

Die ersten Koordinaten der Spaltenvektoren der ersten Klasse bilden wegen (23)
ein H-Ideal, welches nach Kap. 1, Satz 12, eine endliche Basis besitzt, und wir kénnen
diese als Minimalbasis wihlen. Jeder Spaltenvektor der ersten Klasse kann dann
durch die Basisvektoren dieser Minimalbasis und einen Spaltenvektor einer Klasse
mit héherer Nummer dargestellt werden.

Jetzt werde derselbe ProzeB mit den zweiten Koordinaten der Spaltenvektoren der
zweiten Klasse durchgefiihrt usw.

Auf diese Weise entsteht sogar eine Minimalbasis unseres Vektormoduls.

Nebeneinander geschrieben, bilden diese Spaltenvektoren eine Matrix endlicher
Spaltenzahl. Wegen der ersten Eigenschaft, die fiir homogene Vektormoduln in
Definition 3 gefordert wurde, ist diese Matrix gemiB 5.2. eine homogene Matrix, fiir
die also die Gradbedingungen (14), (15) und (16) erfiillt sind.
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Ganz analog verlaufen die Uberlegungen fiir Zeilenvektoren, was uns hier aber
weniger interessieren wird.
Wir vermerken nochmals als wichtiges Nebenergebnis den

Satz 6. Durch sukzessive Best g von Minimalbasen fiir endlich viele H-Ideale
kann zu jedem homogenen Vektormodul etne Minimalbasis berechnet werden.

Wir kehren nun zu den Uberlegungen von 5.1. zuriick.

5.5.  Syzyglen

Definition 4. Ist U, = (Fy,..., F,) ein H-Ideal aus K[z, 2y, ..., z,], 80 heilit

D,
jeder Vektor [ : | mit
P,

& F, + O Fy + - + B F, =0id.in zo, ..., 7, (4)
bzw.
@,
[+
(Fy, Fa, ..., F)) :z =0 (5)
¢4

eine Syzygie des H-Ideals (Fy, ..., F,).
Definition 5. Ist

D,
eine homogene Matrix, so heifit jeder Vektor ( : ) mit
P,

Gy ... Gy D, 0
........... = Jid.inzg, ..., 24 (24)
Gy ... Gu/ \P 0

eine Syzygie der H-Matrix V,, bzw. des durch V,, definierten homogenen Vektor-
moduls.
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Aus dem zuvor Bewiesenen folgt unmittelbar
Satz 7. Die Gesamtheit der Syzygien eines H-Ideals bzw. eines homogenen Vektor-
moduls bildet einen homogenen Vektormodul.

Definition 6. Der Modul der Syzygien eines H-Ideals a oder eines homogenen
Vektormoduls V,; heiit der Syzygienmodul von a bzw. von V,,.

Satz 8. Jeder Syzygienmodul besitzt eine endliche Basis.
Beweis. Dies folgt aus Satz 5 und Satz 7.

Satz 9. Ist W,, der Syzygienmodul von V, so braucht V¥ nicht der volle Syzygien-
modul von W, zu sein.

Beweis. Zunichst folgt aus VW, = 0 sofort WIV =0, jedoch zeigt das
Beispiel (2o, ZoZ;) ( 22) =0 mit (z,, —2) (z,) =0 und (z"zl) =z, (Zl) die
- Z2 ZoZ2 T
Richtigkeit der Behauptung von Satz 9.

Definition 7. Ist a = (Fy,..., F,) ein H-Ideal aus K[z, z, ..., z,], 80 heiit
der Syzygienmodul von a der zweite Syzygienmodul von a; der Syzygienmodul dieses
zweiten Syzygienmoduls (falls er existiert) heilBt der dritte Syzygienmodul von a; ...,
usw. a selbst wird als erster Syzygienmodul gezihlt.

Man beachte, daB mitunter in der Literatur a nicht als Syzygienmodul mitgerechnet
wird; dann ist der Syzygienmodul von a der erste Syzygienmodul usw. Wir wollen im
folgenden bei der durch Definition 7 festgelegten Zahlung verbleiben.

Wir wollen nun ein Beispiel fiar den zweiten und den dritten Syzygienmodul eines H-Ideals
geben und betrachten dazu das bereits in Kap. 1, (130), (131), in diesem Zusammenhang betrach-
tete H-Ideal v{}j = K[z, z,, 2;, 5] mit der Minimalbasis (Fy, F,, Fy, F,) und F; = 242y — 2,7,,
Fy =z, — 2y, Fy = 22, — 2y%2,, F,= x,2,® — z,°>. Die Formen eines festen Grades ¢
aus % (¢ = 2) bilden dann nach Kap. 1, Satz 17, den Modul 9(¢; v{}); die Beziehungen

D F, + B, F, + OFy + O F, = 0 id. in 2, 2y, 2y, 2

stellen dann fiir festen Grad ¢ lineare Abhingigkeitsrelationen zwischen den Formen des Moduls
M(t; vi3) dar. Fir ¢ = 2 existieren keine solchen Abhéngigkeitsrelationen, da F; die einzige
quadratische Basisform in v ist. Fiir £ = 3 haben wir die linearen Abhingigkeitsrelationen
zwischen z,Fy, z,F;, 2,Fy, 2,F,, F,, Fy und F, zu beriicksichtigen; solche existieren aber nicht.
Fir ¢ = 4 sind demgemiB die linearen Abhingigkeitsrelationen zwischen den 22 Formen zy2F,,
20, Fyy 2203 Fy, 262sFy, 02 Fy, 2i2oFy, 2,25Fy, 2?Fy, 2,2Fy, 25°Fy, 2oFy, 2,F5, 24F5, 23Fy, 26K,
2, Fy, €3 Fy, 2oF'y, 2Fy, 2, F, 23F,, 2,F, zu bestimmen, was mit Hilfe des GauBschen Algorithmus
geschehen kann (vgl. 5.6.). Dies gibt vier Abhingigkeitsrelationen, nimlich

z'Fy — 2,Fy + 2,Fy = 0,
Zg7,Fy — 23Fy + 2, F3 =0,
)2y Fy — 2 Fy — 2,F, = 0,

2IF, — 2yFy — 2, F, =0

id. in g, 2y, 25, 23+ (25)
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Daraus ergibt sich — was noch zn beweisen ist — bereits der volle Syzygienmodul

z,? Ty TyTy T

— - 0
T3 T3 0 (26)
To e

0 0 —zy, —I

mit der Gradmatrix

2 2 2 2
11 11
11 11
11 11

Dy

D,
»Voller* Syzygienmodul heiBt, daB sich jede Syzygie ¢' auf mindestens eine Weise mit
3

4
geeigneten Formen 4,, 4,, 4,, 4, aus den Syzygien von (28) kombinieren la8t:

D, z? ZoT2 Z,%y ES
Dy —2y —2 0 0

[N 4 Xy + 4 Eo + 4 i) + 4 —Zs
P4 0 0 ~% —z

Wegen (22) — angewandt auf Spaltenvektoren — laBt sich dies matrizenmafig schreiben:

D, ' wm nn Y\ (4 4,
P\ [~ —z 0 0 4,) A,
[ % Bl N o —zy  —zs |\ 4] Uy 4, (27)
P, 0 0 —2z, —zy A, A,
£2
Gilt auBerdem fiir dieselbe Syzygie z‘
3
D,
£ z? L B, B,
D, —Zy =2 0 0 B, B,
= =U, (28)
D, Ty T r X B, “ B,
P, 0 0 —z, —z B, By
mit
4, B,
4y By
4]\ 5 )



202 5. Syzygientheorie der H-Ideale

s0 folgt aus (27) und (28)

B, — 4, 0
B, — A, 0
U, 2 1) = 29,
“\ B, — 4, 0 (29)
B, — 4, 0
B, — A,
Es ist also B - j‘ eine Syzygie von Uy, also eine Syzygie des zweiten Syzygienmoduls
s — “s B, — 4,
B, — 4, B, — 4
von iy = (F,, Fy, F;, Fy); nach Definition 7 ist also BI A' ein Element des dritten
s — 4
Bl - AI
Syzygienmoduls; setzen wir
B, — 4, @
BI - AI ¢l'
=¥ 30,
B, — 4, X (30)
Bl - A’I 0"
mit einer geeigneten Form ¥ = ¥(z,, 2,, 2,, 7,), 80 folgt also
B, 4, D,
B A,y &3
= ¥ .
2 V7 e PR
B, 4, D8
wobei die Koordinaten @;2, @2, $,?, $? gemiB (29) und (30) ans
D Ty ;I Tt D2 0
D,° —Z, —y 0 0 D,2 0
U 2 - 1 1 —_ 31
“Nop Te T —FT I D5 0 v
X 0 0 -z -/ \®2 0

zu berechnen sind. Aus (31) folgt nach Ausfihrung der Matrizenmultiplikation
220° + 25, P° + 5Py + 2P0 =0,
—2, P — P =0,
PP+ 2P — P — PP =0,
— 2P — 2,02 = 0.
Bei der Losung derartiger Gleichungssysteme empfiehlt es sich, mit den einfachsten Gleichungen
zu beginnen; in unserem Fall sind das die zweite und die vierte Gleichung.
Aus der zweiten Gleichung folgt @,® = z;4, P = —z,4, aus der vierten Gleichung folgt
P, = z,B, P = —z,B; dies in die dritte Gleichung eingesetzt, gibt (zyz3 — 2,24) (4 + B) =0,
also B = —A4, mithin

L2y 3
D8 —zy
=4
[ -

\DE To
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Einsetzen in die erste Gleichung gibt schlieBlich A(z,%2y — 242, — 2,32y + Zy%3?) = 0; die erste

EN
Gleichung ist also ebenfalls erfiillt. Mithin stellt der Vektor V,, := “ ] bereits den vollen
dritten Syzygienmodul dar. ES

Die Berechnung des dritten Syzygienmoduls gestaltete sich hier — und dhnlich ist es in anderen
Beispielen — wesentlich einfacher als die des zweiten Syzygienmoduls. Dies rihrte von den in Uy,
auftretenden Nullen her. Daher wird im folgenden der Berechnung des zweiten Syzyglenmoduls
unser besonderes Augenmerk dienen, zumal dies auch fiir die Anwend von b
Bedeutung ist.

ES
Ein eventueller vierter Syzygienmodul wére durch Thlg=0 gegeben, also durch
—z,

x

Pt =0, i
—z,P* =0,
—z,P* =0,
2P =0

mit der einzig moglichen Losung #* = 0. Weitere Syzygienmoduln konnen also nicht existieren,
wenn der Ausgangsmodul nur aus einem Spaltenvektor besteht; wir formulieren dies noch als
Satz 10. Diese Bedingung ist aber kemeswegs notwendig; man betrachte dazu das P P

z, O
ideal (zozy, 2oz, 2,2;) mit dem zweiten Syzygienmodul | —z; zx); fir die Koordinaten &3,
0 —z
®,} eines dritten Syzygienmoduls miiBte dann
2,92 =0,
—2P° + 2,9,° =0,
—zy@Pg? = 0

3
gelten, und hieraus folgt (:‘.) = (g). der Nullvektor ist also die einzig mdgliche Syzygie. Wie
s

das vorletzte Beispiel zeigte, kann dabei der Fall auftreten, daB der Nullvektor nur aus einer
Koordinate, also der Zahl Null allein, besteht. Sobald der Nullvektor als einzig mégliche Syzygie
auftritt, sprechen wir vom Abbrechen der Syzygienkette. Dazu geben wir die

Definition 8. Geht man von einem H-Ideal aus K[z, 2y, ..., z,] oder einem
homogenen Vektormodul aus, so heiBt die aus dem H-Ideal bzw. homogenen Vektor-
modul,

— dem zweiten Syzygienmodul,

— dem dritten Syzygienmodul,

— ... usw.

bestehende Folge von Vektormoduln bzw. die sie reprisentierende Folge von homo-
genen Matrizen die Syzygienkette des H-Ideals bzw. des Ausgangsmoduls.
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Wir sprechen vom Abbrechen der Syzygienkette nach dem k-ten Glied, wenn der
(k 4 1)-te Syzygienmodul der Nullvektor (bzw. gleich der Zahl Null) ist, nicht
aber der k-te Syzygienmodul, in Zeichen:

0 0
X . ) 0 0

Uy Ul oo Us_ A UUSR =0Tk | | |aUra=| " |. (32
0 0

Bei H-Idealen a < K[z, ;, ..., z,] wird die Zahl & als Linge L(a) der Syzygien-
kette bezeichnet, in Zeichen

L(a) := k. (33)
L(a) darf nicht mit der hier nicht eingefiihrten Ideallinge 4 von Priméridealen
verwechselt werden.

Wir werden sehen, daB L(a) wichtige Aussagen iiber das H-Ideal a liefert.
Wir kénnen nunmehr den angekiindigten Satz formulieren:

Satz 10. Bestcht ein Syzygienmodul nur aus einem Spaltenvektor, so bricht die
Syzygienkette mit diesem Syzygienmodul ab.

Aus Satz 9 folgt: Ist U1 der volle Syzygienmodul von UY, so braucht (U*)" nicht
der volle Syzygienmodul zu (U**)" zu sein. Ist dies fiir alle ¢ dennoch der Fall, so
definieren wir:

Definition 9. Ist (32) die Syzygienkette von U:,o.
ponierten Matrizen

(U _ )T (U, T, (O2)T, (U7 (34)

[N L

und ist die Folge der trans-

die Syzygienkette von (U*)T, so heiBt (32) eine reversible Syzygienkette.

Die Bezeichnung ,reversible Syzygienkette* wurde von GROBNER in [9] geprigt,
wihrend G. EiseNrercE in [3] die Bezeichnung ,,umkehrbare Syzygienkette*
benutzt. Von GrOBNER und dem Verfasser wurde vermutet, daB H-Ideale mit
reversibler Syzygienkette die bereits mehrmals vorangekiindigten ,,perfekten Ideale*
sind; dies wurde unabhingig von G. EISENREICK in [3] erstmals bewiesen, vgl. auch
die daran ankniipfende Darstellung bei GROBNER ([9], Kap. IV, § 5, Sitze IV und V).

5.6,  Praktische Berechnung von Syzygienketten

Esseia = (F,, Fy, ..., F,) = K[z, 2y, ..., z,] ein H-Ideal mit
my =h(F)) Sh(F;) S+ ShFiy) SHF)S - Sh(F) SHF)=M
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und (Fy,..., F,) eine Minimalbasis. Es seien &; = ®(z,, z,, ..., z,) vollstindige
Formen in unbestimmten Koeffizienten u,, vom Grad m, + 1 — h(F); ,,vollstandig*
soll heiBen, daB alle moglichen Potenzprodukte des geforderten Grades mit von Null
verschiedenen Koeffizienten wirklich auftreten. Dann wird &, F; + @, F, + ---
+ &@,F, vom Gesamtgrad mq, + 1 bei @; = 0 fiir A(F;) > my. Soll nun

O F) + G Fy + - + P F, =0 id.in z4, 2y, ..., 2,

werden, 8o miissen die unbestimmt angesetzten Koeffizienten u, gewissen linearen

Gleichungen geniigen, aus deren Losungen sich die Syzygien ergeben. In analoger
Gy ... Gy

Weise kann man bei Vektormoduln | ........... mit my = k(GQy;) < - < A(Gyy)

= M ansetzen. Gy ... Gy

Im niichsten Schritt werden die @, vom Grad m, + 2 — h(F,) angesetzt. Auf diese
Weise muB man wegen Satz 5 nach endlich vielen Schritten einmal den vollen
Syzygienmodul berechnet haben. Auf dieses Verfahren wurde von OSTROWSKI in [1],
8. 314, hingewiesen (OSTROWSEI verwendet die Bezeichnung ,,Dimension® an Stelle
von ,,Grad“). Jedoch erhebt sich die Frage, wie man merkt, daB man den vollen
Syzygienmodul erreicht hat. Derartige Algorithmen sind von grundsitzlicher Bedeu-
tung; bei ihnen ist also die Frage nach Abschitzungen fiir die Anzahl der durch-
zufiihrenden Schritte zu stellen.

In unserem Fall wiirde dazu geniigen, Abschitzungen fiir den héchsten erforder-
lichen Gesamtgrad M + K anzugeben. Dies ist in der Arbeit [1] von G. HERMANN
geschehen, aber die dort angegebenen Gradschranken sind einmal fiir den praktischen
Gebrauch viel zu hoch und zum anderen auch noch falsch. Es wird 2M als scharfe
Gradschranke (also 1 < K < M) vermutet.

Wie bereits im vorigen Abschnitt dargelegt wurde, wollen wir stattdessen bei der
Berechnung des zweiten Syzygienmoduls die Ausgangsbeziehung

O\F, + OoFy + -+ + OF, =0 mit MO, F, + - + S,F,) =t

als lineare Abhingigkeitsrelation zwischen den p;F; mit A(p;) = ¢ — k(F,) deuten.
Diese linearen Abhingigkeitsrelationen bestimmen wir mit dem Gaufschen Algo-
rithmus.

Als Hilfsmittel numerieren wir die Potenzprodukte des jeweiligen Grades ¢ in
lexikographischer Anordnung, vgl. 7.3.

Wir rechnen dazu das bisher betrachtete Beispiel vy = (¥y, Fy, Fy, F) < K[y, 2,, 2,, 5] mit
Fy =20 — 22y, Fy=a’z,— 2, Fy= 22 — 2%z, [F§= 217 — z®.

Wir betrachten als erstes den Gr&d t =4 =M + 1, haben also zjz,F, z;F,, ;F,, z;F, auf
lineare Abhangigkeiten zu Wir benutzen dazu 7.3. Dies gibt zuniichst

2t Fy = z’Ty  —zfimE, = (4) — (6),
20 Fy = m’zzy — 2oz, = (1) — (12),
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T2y Fy = 27Ty — Tt = (9) — (14),
Tl = 2y — ZemzaEy = (10) — (15),
2Py =z, — oz, = (13) — (22),
223 Fy = zomaez, — izt = (16) — (24),
2z Fy =zt — 2z, = (16) — (26),
z'F) = 2y, — 7z = (18) — (27),
zg2, Fy = zoz47? — 217%2, = (19) — (28),
7iF = zo7®  — nam’ = (20) — (29),
zoFy = 2%z, — 22 (3) — (11),
2y = zlnz, — 2t (6) — (21),
2Py = zlzy'  — 2z, (8) — (22),
7 Fy = 2z — 2,2, (9) — (23),
ZoFly = 2’2" — zom'zy = (8) — (13),
2Py = zemz® — 2z, = (14) — (23),
7Fy = 2% — 2lnyzy = (17) — (26),
nFy = zmtn, — ol = (18) — (26),
2P = zemz — 2z = (16) — (17),
nF =25 —nz° = (28— (27),

2 = 233" — 2t = (20) — (31),
BF =2z —zln  =(30)—(2).
Wir ordnen nach den ersten Potenzprodukten und erhalten

zoFy = (3) — (11), 2,73 Fy = (16) — (24),
z'Fy = (4) —(8), 2,2, F, = (16) — (26),
zFy = (8) — (21), zoF = (18) — (17), }

T Fy = (1) — (12), z,Fy = (17) — (25),
zFy = (8) — (22), z'F, = (18) — (27), }
zoFy = (8) —(13), } z3Fy = (18) — (28),

awFy= (0) — (23),
2 Fy = (9) — (14),

zozFy = (19) — (28),
2,3F, = (20) — (29),

——

zzyFy = (10) — (16), z,F, = (28) — (27),
#*F, = (13) — (22), zF, = (28) — (31),
z,Fy = (14) — (23), z,F = (30) — (32).

Wenn Syzygien — also Abhingigkeitsrelationen — entstehen sollen, miissen die
ersten Potenzprodukte gleich sein.
Die Umkehrung kann natiirlich keineswegs gelten, denn sonst konnte es beispiels-
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weise keine Eliminationsideale geben. Es kann also durchaus sein, daB man bei
gleichen ersten Potenzprodukten durch Subtraktion zu neuen ersten Potenzprodukten
gelangt. Da wir dies im néichsten Kapitel noch bendtigen werden, wollen wir dafiir
eine formelmiBige Fassung geben:

Definition 10. Es sei a = K[z, zy, ..., 4] ein H-Ideal. Dann werde unter a,(¢)
dasjenige Potenzproduktideal verstanden, dessen Basis aus genau den Potenz-
produkten ¢-ten Grades in x,, z,, ..., #, besteht, die bei lexikographischer Anordnung
und nach Anwendung des GauBschen Algorithmus als erste Potenzprodukte in
M(¢; a) auftreten. a,(t) heiBt das zugeordnete Potenzproduktideal t-ten Grades des
H-Ideals a.

Dann gilt offenbar
Satz 11. Ist a = K[z, 7y, ..., Za] ein H-Ideal und sind a,(t) und a.(t + 1) die
zugeordneten Potenzproduktideale t-ten bzw. (t + 1)-ten Grades, so gilt
Mt + 1; 6,(0) S Mt + 1; aq(t + 1)). (35)
Auf diese Beziehung werden wir im néichsten Kapitel zuriickkommen.
Wir kehren nun zu unserem Beispiel zurick. Hier treten an vier Stellen gleiche erste Potenz-
produkte auf. Es sind also maximal vier Syzygien zu erwarten, die hier auch tatsichlich auf-

treten. Um das ei wir die zweiten Potenzprodukte durch solche mit méglichst
groBer Nummer. Dies gibt, wie in (25) angekiindigt:

z,Fy, = (8) — (22),

e T T} e
7,Fy = (9)-(23>.}

2, Fy + o, Fy = (9) — (23)
o5, Fy = (18) — (25),}

2023 Fy — 23Fy + 2,Fy =0,

@Fy + oFy = (16) — 25) | P T AFa—wF=0,

WP =(18) — @D, ) 0 i g
aFy+aF, = (18) — @) | T Ao al=0
Far spitere Rechnungen setzen wir zur Abkiirzung
Fyy 1= ayFy — 2,F3 + 2,F5,
Fy:= z,0F, — 2,F; + z,Fy,

(38)
Fog 1= 2,23y — 2,Fy — ,F,
Foyi= 243F, — 2y3F3 — z,F,.
‘Wir haben also vier Syzygien 8,, 8,, 8,, 8, gefunden mit
ZoTy z? Ty zt
g = | % s:m| @ 5 i 0 - 0
' E b 7 |’ R R A L N A

0 0 —Z —z;
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und der Leser mache die Probe, daB tatséchlich
(2073 — 2%y T2y — 2%, Tpty® — 2,2y, 7173 — 73') (8, 8y, 83, 8y) = (0,0,0,0)
erfallt ist.
Eine Hauptschwierigkeit besteht nun darin, nachzuweisen, da8
2t 7 Tz T
=% —= O 0 _
Ui, = z 7 —zy —z (81, 83, 85, 8¢) @37
Y 0 —z —z
der volle zweite Syzygienmodul ist. Wir haben dafiir keine hinreichende, wohl aber eine not-
wendige Bedingung. Dazu geben wir die
Definition 11. Ist a = (F,, ..., F,) = K[z, 7y, ..., Z,) ein H-Ideal, s0 bezeichnen
wir als Hauptklassensyzygien diejenigen Syzygien, die sich aus den Identititen
F,F, + (—F,) F; = 0 ergeben.

Der Grund fiir die Bezeichnung ,, Hauptklassensyzygien* wird sich in 5.7. ergeben.
Sie sind offenbar stets vorhanden. Daraus resultiert als notwendige Bedingung der

Satz 12. Wenn ein Syzygienmodul der volle Syzygi dul sein soll, mi die
Hauptkl yzygien daraus kombinierbar sein.

P JY

In unserem Fall sind dies

FX FS F&
I N = ©
hy:= o | hyi= _r ) hy: o |
0 0 —F
0 0 0
F, F, 0
h := s ) = ), hg:= ,
‘ —F, by 0 ° F,
0 —F, —F,

und es ist — was der Leser selbst nachpriifen mége —

hy =28, — ,8;, hy =28, — 2,8y, hy = 2,8y — 2,8,

hy = 2,8 — 24238y, Ry = —2,758, + 2,8, + ToTs8y — 2,°8;, by 1= 1,8y — nze8;.
Mithin konnten die vier Syzygien 8,, 8;, 8, 8, bereits den vollen Syzygienmodul bilden.

Die Umkehrung von Satz 12, ob aus der Kombinierbarkeit der Hauptklassen-
syzygien durch ein berechnetes System von Syzygien auf die Vollsténdigkeit des
Syzygienmoduls geschlossen werden kann, konnte bislang weder bewiesen noch
widerlegt werden.

Wir wollen dsher im folgenden immerhin zeigen, da8 far ¢ = 5 und ¢ = 6 keine neuen Syzygien
entstehen.
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Fr ¢ = 5 folgt nach 7.4. — gleich nach den ersten Potenzprodukten geordnet —

zFy = (3) — (11), z,3F, = (23) — (37),
z'Fy = (4)—(8), 2,*Fy = (24) — (38),
zot, Fy = (8) — (21), z,%z,Fy = (26) — (39),
2’0 Fy = (1) — (12), 2%z, Fy = (26) — (40)»}
z2Fy = (8) — (22)»} zem, Fy = (26) — (27),
22 Fy = (8) — (13), 2,2, Fy = (27) — (40),
ZsFy = (8) — (23)»} 2,2,°Fy = (28) — (42), }
il = (8) — (14), z,23Fy = (28) — (41),
Zo*zyFy = (10) — (15), 7773 Fy = (20) — (43),
z,°Fy = (12) — (36), zozeFy = (28) — (31), }
z2,*Fy = (13) — (22), 2,2'Fy = (30) — (44),
7,5, Fy = (14) — (37), } 7z F = (30) — (32), }
zom, Fy = (14) — (23), 2,°Fy = (31) — (43),
7azsFy = (16) — (38), } 2°F, = (32) — (46), }
2tz Fy = (16) — (24), zy2yFy = (32) — (4),
zemFy = (18) — (25)-} 2z Fy = (33) — (47), }
2*Fy = (18) — (17) 24’ Fy = (33) — (45),

z'Fy = (17) — (39), z,.25°F) = (34) — (48),
2%y Fy = (17) — (26), } "s‘Fx (35) — (49),
z325Fy = (18) — (40), = (41) — (42),
zo2y?Fy = (18) — (27)’} Ilth o= (#4) — (46),
zo2sFy = (18) — (26), 7z, Fy = (46) — (47),

Tp*Fy = (18) — (41), 7,2Fy = (48) — (51),
zoxs7sFy = (18) — (28), } 273 Fy = (49) — (62),

a2 tFy = (20) — (20), 22F, = (50) — (53).
Hieraus folgt
2Py = (8) — (22), _
zgtFy + ziFy = (8>—(22)} “fn=0,
zFy = (9) — (23), —o
2oty + 2 Fy = (8) — (23) } %fn =0,
7z, Fy = (14) — (37), o Fo —
20F, + 22, Fy = (14) — (37) e
z,2,Fy = (16) — (38), _
s, + #Fy = (15) - (39) } A =0,
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2tz Fy = (16) — (%)} 2oFu =0,
22, Fy + 7o', = (16) — (25) ®
2,2F, = (17) — (39), }

—o,
oty + agFy = (1) — (30) | T

zywsFy = (18) — (40),
22yt Fy + 2,2y Fy = (18) — (40), ZTyFy =0, zFy =0,
T3z Fy + 2525, Fy = (18) — (40)
wFy=(19)—(@,] o _,
2z Py + 2 Fy = (19) — (41) | R
'z Fy = (28) — } Foe 0
wFy + 2 Fy = (26) — <40) afe =0
2"F, = (28) — } Fo—0
naFy + 53, = (28) — (42) Atu =0
Tz, F) = (20) — (43), -
23F, + 2z, F, = (20) — (43) } “Fu=0,
75 F; = (30) — } oo
22, Fy + zmaFy = (30) — <44) Al =0
z3F, = (32) — (46), } —o
2Py + zaFy = (32) — 4) | O
2, Fy = (33) — _
23Fy + zyz;Fy = (33) — 47) } #Fu=0.

Fiir ¢ = 6 ergeben sich bereits 956 Binome, die geméB 7.5. nach den ersten Potenzprodukten

zu ordnen sind. Wir wollen diese Schritte hier {ibergehen und stellen im folgenden die Fille mit

leichem ersten P« dukt Auch hier ergeben sich dabei durchweg Syzygien,
deren Reduktion auf die vier Basissyzygien nur in einem Fall etwas komplizierter ist:

aot,Fy = (8) — (22), _
wi2?Fy + 7Py = (8)— (22>} wFu=0,
i Fy = (9) — (23), _
winF, + zimFy = 9) - (23)} Fu =0,
z,z,Fy = (14) — (37), _
22 F, + 2ol Fy = (14) — (37) } #nfn =0,
oty 2yFy = (15) —
Fy =0,
2tz,zFy + 2, ?Fy = (16) — } T
zo'z,2,Fy = (16) — 25)» 2F.. —
zioFs + 2 F = (16)—(25) | %
Zgzy2Fy = (17) — (39), _
zortaFy + 26 Fy = (17) — (39) } #sfn =0,
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22,7 F) + 22y Fy = (18) — (40}, ¢ 2%y Fyy =0, ZFn =0,
20 2, Fy + @z, Fy = (18) — (40)
2, Fy = (18) — (41), }
2oty Fy + ZyeFy = (19) — (41)
'z, Fy = (34) (53) -
2tF) + 22y*Fy = } “Fu=0,
z 7, Fy = 25} (59) P, =0
zzinFy +  2F, = (26) — (59) } afn =0
zoy*z3Fy = (26) — (40), }
2y Fy + 2?ny Fy = (268) — (40)
@y’ Fy = (27) — (60), } —0
winF, + sy = 21— o0) ] 2T
2,27, Fy = (28) — (61), }

gtz Fy = (18) — (40), }

zpz3Fy =0,

Zt,Fyy = 0,

22,22 Fy + 2%y Fy = (28) — (81), ¢ %% Fy = 0, Z2,Fy =0,

T2yl + T2 zaFy = (28) — (61)
2%’ Fy +  2,°F, = (20) — (83),
723 Fy + 2,°Fy =0,

20773 Fy + oy, Fy = (28) — (63),
= —2 %Py + %’ Fy + T%aFy — 2,°Fy = 0,

22y + zpzF, = (29) — (63)
Tt %' Fy = (30) — (44),

Fp=0,
Ty + zim, = (30) — (44 | OB
oPFy=(31) — 63),] _ap _
sniF, + zgngF, = (31) — (63) | rm =0
2 Fy = (32) — (64),
2%’ Fy + 22,7 Fy = (32) — (64), 2 Fy =0, 2353 Fyy =0,
28202, F) + 22yzyFy = (32) —
zy7y'F, = (33) — (55)
T 0 Fy + 21y Fy = (33) — (85), ¢ zayFyy = 0, 23’Fyy =0,
282y’ F) + 22 'Fy = 33) (85)
20F, = (34 (66).} e —0
Z2g 0y Fy + 2,2 Fy = (34) @) f BT
ooz Fy = (41) — (61),] .o
oie,Fy + 2, = (41) — (61) } =0,
iz, Fy = (43) — (83), P
aimFy + zF = (43) — (63) } =0,
oz Fy = (44) — (64), } _
iFy + rnnF, - 44— 64) | R0
2y%2,3F, = (45) — (65), _
nFy + 2maF, = (45) — (65) } #teln =0,
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z,2,°F, = (47) — (67), } 22y Fy = 0,

zzZyFy + 3y'ny Fy = (47) — (67)

z,zy 0, Fy = (48) — (88),
2% Fy + 2%, F = (48) — (68), p Z,23Fy =0, 2°Fy =0,
z°Fy + ey Fy = (48) — (68)
2,275 F, = (49) — 69) } 2uzsFos = 0
282y Fy + 227y Fy = (48) — #aln ’
z,2,°F, = (50) F—0
223 Fy + 2%t F = e ’
20 F, = (52) — (72), 23F — 0
z%5,Fy + 2,5,F = (62) — (72) me
22z, Fy = (63) — (73), } 2 Fu =0
aetF, + maaFo= (63) — (13) | T
wiatFy = (64 — (4]
2’ Fy + 2,2,°F, = (54) — (74) "

Mit diesen Rechnungen wollen wir es bewenden lassen; jedenfalls sind wir hier bis zum Grad
2M = 6 gegangen. Wie schon einmal erwihnt, bleibt zu winschen, da dieser Wert als Grad-
schranke nachgewiesen werden kann.

Das hier benutzte Verfahren fiihrte deshalb so schnell zu Syzygien, weil die
betrachteten Formen durchweg Binome waren. Bei Formen mit mehreren Termen
ist dasselbe Verfahren anwendbar, jedoch ergeben sich Syzygien dann meist erst zum
Schluf des in konkreten Fillen in einer Vielzahl von Schritten durchzufiihrenden
GauBschen Algorithmus. Daran interessierte Leser mogen die im Anhang mitgeteilten
Ergebnisse fiir verschiedene Beispiele nachrechnen. Der starke Rechenaufwand lagt
den Einsatz moderner Rechengerite wiinschenswert erscheinen.

5.7.  Syzygienketten von (a, F)

Wir beweisen als erstes den

Satz 13 (Satz von Grébner, vgl. (2], 152.6,7 und (9], Kap. IV, § 4, 4.13., Satz 4).
Ist a = (Fy, ..., F,) = K[zg, 2y, ..., z,] ein H-Ideal und F(z,, zy, ..., z,) eine Form
mit a: (F) =a,s0 Icarm die Syzygwnkette von (a, F) aus der Syzyglenkette von a durch
Er g der Syzyg trizen berechnet werden, und es gilt

Lia) =kAra:(F)=a=>L(a, F) =k + 1. (38)
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Beweis. Es sei (Fy,...,F,), U, Us,, ..., Uy,_,, die Syzygienkette von a und
o ... ai,
U =[........... , (39)
% ... %,
ferner
ol ... B,
L2 . (40)
% .. o,

Aus @,3F; + -+ + D2F, + P*F = 0 folgt:
PFca=>Pca:(F)=>P2ca

wegen a: (F) = a = (Fy, ..., F,), und demzufolge sind bei $? = 0 die Syzygien

P2 —F 0 0
[ 0 —F 0

: kombinierbar aus : s : Y oeee :
D2 0 0 —F
P F, F, F,

Ist dagegen ¥2 = 0, so erhalten wir Syzygien von a. Der volle zweite Syzygienmodul
V%, von (a, F) ist also gegeben durch

—F o ... 0
0 —F ... 0
U623|
Vi, =1 e (41)
0 0 —F
0 0. F, F, F,

mitt, =8+ 1,8, =8+ 3.
Nun ist wegen der Kombinierbarkeit der Hauptklassensyzygien

(ﬁn» (XN ﬁc,y ey ¢En (s d’f..) 2(F,...F)=a,
allgemein
(P B ) 2 (B, -, Bh,) 20 (42)

Der Ansatz fiir den dritten Syzygienmodul ist dann
DD+ - + B P] + PF =0;
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wegen (42) folgt daraus entsprechend:
PFc (@3 ...0)=>Fca S(P3,....9}),
allgemein
OHIF € (P, ..., B => F e (D, ..., D).
Der volle dritte Syzygienmodul V, von (a, F) ist also gegeben durch

tty

‘F 0 ...0

43)

mit ¢y =8, + 8, t; = 83 + 83.

Das Vorzeichen von F muB jetzt gewechselt werden; um dies einzusehen, setze der
Leser (39) in (41) und (40) in (43) ein und priife V3¥? = 0 nach.

8o konnen wir fiir die nichsten Syzygienmoduln weiterschlieBen und haben dann

_F 0.. 0
0 —F... 0
U:"‘ ................
Vie=| . 0 0. —-F
00
........ v,
0...0

mit ¢; = 8 + 85, {, = 8, + 83 und allgemein fiir ¢ > 3

(—1)}F 0 ... 0

U 0 (—1¢F ... 0

o

(44)

mit ¢ = 8 + 8j-y, tiss = Sj1 + &
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Ist nun L(a) = k, so ist nach Definition 8

0

0
= %)

0

wegen (44) entsteht dann aber ein vom Nullvektor verschiedener (k + 1)-ter Syzygien-
modul von (a, F), und zwar

(—1)¥F 0 ... 0
0 (—1)F ... 0
V{Jil= ......................... (45)
0 0 (—1)}*F
U:l—l'l

mit t, = 8 + 8-y, firy =0 + 8 = 8. Dall

0
vie=| ¢
0
ist, ergibt sich aus (45) wegen:
(1O} F =0=> P2 =0

firj =1,2,..., 5. Esist also L(a, F) = k + 1, womit Satz 13 vollstindig bewiesen
ist.

Satz 13 ist von groBer theoretischer Bedeutung, wie wir im folgenden sehen werden.
Seine Wirksamkeit fiir die effektive Berechnung von Syzygien ist jedoch nicht so
stark; es ist also im allgemeinen nicht méglich, daraus Syzygien rekursiv berechnen
zu wollen, da bei vorgegebenem a = (F), ..., F,) unter den Basiselementen ein F;
mit

(Fyyevs Pty Frgyy o, Fo) :(F) = (Fyy oo, Fiogy Fioy, o, Fy) (46)

in vielen Féllen nicht existiert.

So wird man fragen, ob sich in (38) die Voraussetzung a : (F) = a zur Forderung,
deB (F,, ..., F,, F) eine Minimalbasis ist, abschwichen 1a8t, auch wenn dadurch nur
die Aussage iiber die Linge der Syzygienkette (nicht aber deren Bauart) folgen
sollte. Dazu gilt leider (vgl. RENscHUCH [10]):
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Satz 14, Ista = (Fy, ..., F,) <= K[z, 7y, ..., z,] ein H-Ideal und F(zy, zy, ..., z,)
eine Form mit F ¢ a derart, daf gilt:

(Fy, oo, Fy, F) 18t Minimalbasis von (a, F) und a: (F) > a, (47)
80 ist iiber L(a, F) ketne Aussage moglich.

Beweis. Wir geben dazu Beispiele an fiir

a) L(a, F) < L(a),

b) L(a, F) = L(a),

c) L(a, F) = L(a) + 1,

d) L(a, F) > L(a) + 1;
daB in allen diesen Beispielen a: (F) o a erfiillt ist, wird nicht einzeln gezeigt,
sondern kann aus der Bauart des jeweiligen zweiten Syzygienmoduls V? von (a, F)
abgelesen werden; ebenso ist die Voraussetzung (F,,..., F,, F) Minimalbasis von
(a, F) bei allen vier Beispielen evident. Bei den Beispielen werden wir ferner wieder
einmal unsere vier Formen

Fy, =225 — 2127;, F2 =20, — 2,°, Fy =2z, — 21%2;, Fy =2z — 2,8 (48)
verwenden.

Zua)., a=(F, Fy,F) = K[z.,, Z,, Z,, 23] hat die viergliedrige Syzygienkette (Fy, F,, F,),
U, U, Uf, mit L(a) = 4 und

Ty — 20 T2y + 1) Tt 4 TPy 2Ty + TaT) gt — °

U = | —2o2y + 242y —2° —ZTy —,t 0 ’
0 —%* —ZTy —z* —Zo%s + BTy
zy, zz O 0
-z 0 zz O s
UC=|—-z z —zz z3), U= T,
—z,

0 —z, 0 —2z,
0 0 —zy —x
ist F = F,, so ist (a, F) = (Fy, F,, Fy, F,) = v}, wofir wir im vorigen Abschnitt eine drei-
gliedrige Syzygienkette berechnet haben, also L(a, F) = 3.
Zudb). a = (223 — 2,1, 22y — 2,7y) = K[2g, 2y, 75, 73],
Uj, = oy — Ty , L{a) = 2.
—zeZy + 2}
F = 2,2y — z,?; fir (a, F) gilt

w-(2 2) ()

T T
also I{a, F) = 2.
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Zuc). @ = (T, T1Zy, 2:75) < K2, 21, 2y, 75, 7.,

z O
U;, = ("v 3:)' L{a) = 2.

0 -z
F = zg,; far (a, F) gilt (der Leser beachte den U hied iber (41), (44), (45))
@ 0 —-:}‘12‘ ?} Z3%y
—Zo Ty Zo7,
Visl o s o Vas| 0 )
0 0 £ —ZeTy

also L(a, F) = 3.
Zu d). GeméB (48) sei a = (F,, F,) = K[z, z,, 2,, 7,]; dann ist

—F,
U} = ( F:)’ L(a) = 2.
Setzen wir F' = F,, dann ist (a, F) = (F,, F,, F,) gleich dem Ausgangsideal im Fall a), fir welches
wir eine viergliedrige Syzygienkette angegeben haben. Hier ist also4 = L(a, F) > L(a) + 1 =3.
Damit ist Satz 14 vollstindig bewiesen.

5.8.  Syzygienketten von H-ldealen der Hauptklasse

Fiir H-Ideale der Bauptklasse r gilt nach Kap. 4, Satz 45, (92), die Hauptklassen-
eigenschaft von (¥, ..., F;) fiir j = 1,2,...,r — 1, und damit ist (46) erfiilllt. Wir
konnen also die Syzygienketten von H-Idealen der Hauptklasse gemiB Satz 13
rekursiv bestimmen.

Satz 15. Ist §:= (F,..., F,) = K[z, @y, ..., z,] etn H-Ideal der Hauptklasse
r=n —d, 80 ist

L) =r=n—d, (49)
und die Syzygienkette ist durch § = Vi, Vi, Vi, ..., Vi_, mit
z‘=(:) fir =21 (50)
und
F, F,... F. 0 0
_F, 0 0o F 0
vi—| 0 =Fi.. 0 —F.. 0 1)
0o 0 0 0 7,
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sowte
(—1)'F, 0 )
1)t
U, L By 0 U0
o = 0 0 (52)

[ N 0

............... UYF,, ..., F,_))

[ 0
rekursiv gegeben.

Beweis. Wie zu Anfang dieses Abschnittes gesagt, ist (48) jetzt anwendbar, und
damit ergibt sich (52) und (49). Wegen

r—1 —1

(=030

1 —1 1 '
folgt (50). SchlieBlich folgt (51) aus (41) durch Umordnung und Multiplikation jeder
Syzygie mit —1, was wegen der Moduleigenschaft erlaubt ist. Damit ist Satz 15

bewiesen und zugleich die Bezeichnung ,,Hauptklassensyzygien“ von Definition 11
gerechtfertigt.

Da jedes H-Ideal a — K[z, z, ..., z,] der Dimension d = n — r wenigstens diese
Hauptklassensyzygien besitzt, gilt der

Satz 16. Ist a = K[z, 2y, ..., z,] etn H-Ideal, s0 gilt
Kodim a =r=r < L(a). (53)

Diese Abschitzung werden wir in 5.16. noch verschirfen konnen. Immerhin ist
durch (53) eine scharfe untere Schranke fiir L(a) gegeben.

Wir wollen nun fiir r = 1, 2, 3, 4 die Syzygienketten von H-Idealen der Haupt-
klasse explizit angeben.

Fiir r = 1 entsteht ein Hauptideal ) = (F) mit V*(F) =0, also L()) = 1.

Fiir r = 2 ist die Syzygienkette durch

(Fy, F), ( 1’:)
e |

gegeben.
Fiir r = 3 folgt daraus nach (52)

F, —F; 0 F,
(P, Py Fy), | —Fii 0 —Fy) (—F,)

0 F F
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und in der Bezeichnung (51)

F, F; O Fy
(Fy, Fy, Fy), —F 0 Fa)y (“‘Fz); (54)

0 —F, —F, F,
entsprechend fiir r = 4 gemiB (52)
F, —F, 0 i—F, 0 0

~F, 0 —F, 0 —F, 0
(F1, By, Fo, Fo), o F F,. 0 o0 —F |

0o o o F F, F
Fi F, 0 0

_F,. 0 F, 0 _F,
F,. 0 o F, F,
0 -F, —F, o[ |\-F

0 F 0 —F, £

(U] F, F,
und in umgeordneter Weise
F, F;, F, 0 O 0
—F, 0 0 F, F, ©
o —F, 0 —F, 0 F,
0 0 —F, 0 —F, —F,
Fy, F, © 0

(F1, Fy, Fy, F),

—-F, 0 F, 0 F, (65)
0 —F, —F, 0 —F,
F 0 o FJ| F,
0 F, 0 —F, —F,

0o 0 F, F,

Die Bauart von (54) und (55) lé8t bereits erkennen (vgl. Definition 9):

Satz 17. Die Syzygienketten von H-Idealen der Hauptklasse sind reversible Syzygien-
ketten.

Wir wollen uns nun speziell mit dem zweiten Syzygienmodul beschéftigen. Dann
besagte Satz 15: Ist §) ein H-Ideal der Hauptklasse r, so besitzt es nur die Haupt-
klassensyzygien (51). Die Kontraposition lautet:

Satz 18. Besitzt ein H-Ideal a = (F,, ..., F,) < K[z, 2y, ..., z,] wenigstens eine
Syzygie, die nicht aus den Hauptklassensyzygien kombinterbar ist, so ist a kein H-Ideal
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der Hauptklasse, also:
s=2n—d+1ed=2n+1—s.

Dieser Satz ist besonders fiir den Fall s = » + 1 interessant:

Satz 19. Es set a = (Fy,..., F,) = K[z, 2y, ..., z,] etn H-Ideal. Ist s < n, so
tst Dima = 0. Ist s =n + 1, so ist Dima = 0 genau dann, werm wenigstens eine
Syzygre von a extstiert, welche nicht aus den H. ,‘” 9 binierbar ist.
Anders formuliert: Ein homog ichtlineares Gleichungssyst

Fy(zo, 21, ..., 74) = 0,

................... (56)
F (2o, 1y oo0y 2) =0

18t fiir 8 < n stets nichttrivial losbar. Ein homog ichtlineares Qletchungssyst
Fy(2g, 21, o2, Zp) = 0,
.................... (57)

18t genau dann nichftrivial lésbar, wenn wenigstens eine Syzygie des zugehorigen H-
Ideals a = (F,, ..., F,,) extstiert, welche nicht aus den Hauptklassensyzygien kombi-
nierbar tst.

Beweis. Wegen r =n — d folgt die erste Aussage aus ¢ = r (vgl. 4.17.). Fiir
a = (Fy, ..., F,,) schliefen wir so: Wenn eine nicht aus den Hauptklassensyzygien
kombinierbare Syzygie existiert. kann a kein H-Ideal der Hauptklasse » + 1 sein,
welches die Dimension d =% — r =n — (n + 1) = —1 haben miiBte; es ist also
Dim a = 0. Ist umgekehrt Dim a = Dim (F,, ..., F,,;) = 0, so ist a kein H-Ideal
der Hauptklasse, besitzt also nicht nur Hauptklassensyzygien. Hierbei haben wir
benutzt, daB es sich bei (Fy,..., F,) bzw. (Fy,..., F4,;) nach Definition von & um
Minimalbasen handelt, daB also keines der Basiselemente iiberfliissig ist. SchlieB-
lich ist nach Definition der Dimension gemiB W 1 (vgl. 4.3.) die Aussage d = 0 mit
der nichttrivialen Losbarkeit von (58) gleichwertig. Damit ist Satz 19 bewiesen.

Haben nun beispielsweise Fy, ..., F, alle denselben Grad A(F,) = - = h(Fy,)
:=m, 8o auch die Koordinaten aller Hauptklassensyzygien; aus der Existenz einer
Syzygie mit Koordinaten von kleinerem als dem m-ten Grad kann dann nach Satz 19
auf Dim (Fy, ..., F,,,) = 0 geschlossen werden. Auf diese Weise kann man noch zu
weiteren hinreichenden Bedingungen fiir Dim a = 0 gelangen, vgl. RENscrUCH [2].

Aus dem Beweis von Satz 13 folgt, daB beim Vorliegen von Syzygienketten der
Gestalt (54) und (55) auf die Hauptklasseneigenschaft des betreffenden Ideals
geschlossen werden kann. DaB hierzu bereits die Kenntnis der entsprechenden
Bauart des zweiten Syzygienmoduls geniigt, besagt
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Satz 20 (Satz von EISENREICH, vgl.[1]). Besitzt ein H-Ideal a = (Fy,..., F,)
< K[z, 24, ..., x,] nur die Hauptklassensyzygien (51), so st a esn H-Ideal der Haupt-
klasse s, hat also die Dimension Dim a = d = n — s und mithin die Kodimension
Kodim a =r =s.

Beweis. Dazu sei auf EISENREICH [1] verwiesen.

Satz 20 kénnte dazu ermuntern, noch einen Schritt weiter zu gehen und die
Bedingung (49), also L(§) = r = n — d als charakteristisch fiir H-Ideale der Haupt-
klasse r zu erhoffen. Das ist nun aber nicht mehr richtig, wie am einfachsten das im
Fall ¢) beim Beweis von Satz 14 verwendete H-Ideal

a = (TeZy, T1Za, T2T3) = (To, T2) N (1, 2) N (21, T3)

mit L(a) = 2 zeigt ; aus der angegebenen und gemi B Kap. 2, Satz 37, (95), berechneten
Zerlegung sowie aus W 3 folgt r = Kodim a = 2 = L(a), obwohl a kein H-Ideal
der Hauptklasse 2 ist. Wir werden in 5.18. durch L(a) = r gerade die bereits 6fter
angekiindigten ,,perfekten Ideale‘ definieren.

5.9.  Syzygien von Potenzproduktidealen

Hier kénnen wir fiir den zweiten Syzygienmodul eine zu (51) analoge Darstellung
angeben:

Satz 21. Ist ay = (py, Do, .-+, s) < Klzo, 7y, ..., 2,] ein Potenzproduktideal, so
bilden die Spalten der Matriz W2 mit t = (‘;)

P2 Ps 0
PN P2 P10 Ps
— 0 0
PP
Dy
0 _ 0
W'Z‘ = P10 Ps (58)
0 0 —P
P10 Py
0 0 P
Ps-1 T Ps
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eine Basis fiir den zweiten Syzygienmodul. Durch Streichen der iiberfliissigen Spalten
erhalt man aus W3 eine Minimalbasis U2
Beweis (vgl. KumyER und RENSCHUCH [2], § 8, Satz 21). Zunichst ist unmittelbar
einzusehen, daB durch die Spalten von (58) Syzygien gegeben sind. Ist
D,
: (69)
¢'
eine beliebige Syzygie von a, = (py, Pz, +++, Ds), 80 gilt also
Dipy + Popz + -+ + Py, = 0 (60)

mit &(P,p, + - + P,p,) =t. Jedes in Pyp; auftretende Potenzprodukt tritt dort
nur einmal auf, muB also noch in wenigstens einem anderen Produkt ®;p; (j % +) auf-
treten und sich insgesamt wegheben. Das lexikographisch kleinste Potenzprodukt
t-ten Grades, welches in (60) auftritt, kann mit Hilfe von Syzygien aus (58) aus-
gedriickt werden. Auf diese Weise gelangen wir von (80) zu einer Syzygie

®,"

mit @,'p; + Py'ps + -+ + P,'p, =0 und A(P/'py + - + D)) =,

b,
bei welcher das lexikographisch kleinste Potenzprodukt eine hohere Nummer als
in (80) hat. Dieses Potenzprodukt wird entsprechend behandelt usw. Da es nur
endlich viele Potenzprodukte ¢-ten Grades in z, zy, ..., z, gibt, gelangen wir so
nach endlich vielen Schritten zueiner Beziehung ®@,*p, + ®;*p, + -+ + ®,*p, =0,
bei der nur noch zwei Potenzprodukte auftreten, also

D *py + Po*py + oo + D*p, = gipi + (—gp) =0,

also zu einer Syzygie aus (58), womit die Reduktion von (59) mit Hilfe der Syzygien
von (58) gelungen ist, g. e. d.

Ist moy = h(p) S h(py) < -+ S h(p,) = M, 80 ist

h( B p B p,-) < kpip) < 2M;
P Py Pinp;

damit ist fiir Potenzproduktideale die von uns generell vermutete scharfe Grad-
schranke 2M bestétigt.

Beispiel. a = (zyy, Zo%y, 2,25, 2,25),
o HE 0 0o 0
—z, 0 0 2z, z O
0 —z 0 —zzg 0 7
0 0 —zpzy, 0 —zp —24

Wi =



5.10. Syzygienk von Idealp 223

und
g, % 0 0
- 0 =z O
U = Zy
“ 0 —z, 0 z4
0 0 —z —2z,
Der dritte Syzygienmodul ergibt sich aus
2P, + 2,9, =0,
=20 + 0,0y =0,
—2,Py + 2P, =0,
—zPy — 2,0, = 0;
aus der ersten Gleichung folgt ®, = z,4, @, = —z,4, aus der vierten Gleichung folgt $3 = z,B,
@, = —z,B, aus den ibrigen Gleichungen folgt B = 4, also als dritter Syzygienmodul

z

-5
Zy

—z,

5.10. Syzygienketten von Idealpotenzen
Satz 22. Fiir H-Ideale a < K[z, y, ..., ,) gilt
L(a™) = L(a). (81)

Beweis (vgl. RENscHUOR [3]). Ist @ = (Fy, ..., F,) und sind z,, ..., ny alle Potenz-
produkte vom Grad m — 1 in F,, ..., F,, so ist durch

(% Fyy oo, agFyy oo, mFyy oo, iy F,)

eine Basis von a™ gegeben, aus der eine Minimalbasis gewonnen werden kann (vgl.
auch Keap. 1, (72)). Ist (Fy,..., F,) = U, U}, US,, ..., Uy, die Syzygienkette
von a und

(Fa1y ooy Fap) 1= (Fy, oy Fa)Usza,v (62)
(Fity ovns Fro) = (Fiony v Ficn U, fiir £=3,...,k, (63)

i-18¢

wobei Fy, ..., F, bzw. F,,, ..., Fiy,_  zundchst als Unbestimmte aufgefaBt
werden, so gelangt man durch sukzessive Multiplikation von Fy, ..., F,, dann von
Fy, ..., Fy, ellgemein von Fy,,, ..., Fiy,  mit 7, ..., 7y zu Syzygien von a™;
mithin gilt (61), q. e. d.
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Es sei noch bemerkt, daB man nur fiir ¢ = 2 auf die beschriebene Weise sogar den
vollen (zweiten) Syzygienmodul gewinnt, vgl. RENscaUCH [3]. Ersetzt man in den U*
die Variablen zy, zy, ..., z, durch z;o, 2, ..., Z;», 80 werden fiir s =1, 2, ..., k durch
(63) die sogenannten Ostrowskischen Formen i-ter Klasse definiert, vgl. Garra [1];
gegeniiber GAETA spricht OSTROWSKI in [1] von abgelesteten Formen (s — 1)-ter Stufe.

Beispiel.
zz2 0
4 = (ZZy, 2%y Z1%3), (—ra “1)» Lig) =2,
0 —z
a? = (225", 2o*2a%y, DTy 20T, ZHTS', 21751,
zz 0 0 0 0 0 0
-z, 7 2z 0 0 O £
0 —2 0 =z 0 O , =l L) =3.
0 0 —z 0 =z O z,
0 0 0 —z —z =z —x,
0O 0 0 0 0 —z 0

Wir vermerken noch ohne Beweis den
Satz 23 (Satz von Macauray, vgl. [2], § 93, p. 100). Ist
h=(Fy, ..., F) = K[zo, 24, ..., 7]
ein H-Ideal der Hauptklasse r, so gilt L(H™) = L() = r fiir jede Idealpotenz H™.
Dabei kann die Voraussetzung, daB a =1 ein H-Ideal der Hauptklasse ist, im

allgemeinen nicht abgeschwicht werden, vgl. RENscHUCE [3]; Satz 23 gilt ins-
besondere auch nicht fiir alle perfekten H-Ideale a.

In den folgenden vier Abschnitten geben wir nun einige wichtige Anwendungen
der Syzygientheorie, die an fritheren Stellen bereits angekiindigt worden sind; dies
sind die Bestimmung von Minimalbasen fiir P-Ideale, die Berechnung von Ideal-
durchschnitten und Idealquotienten, die Berechnung des dquivalenten H-Ideals und
der Anzahl der linear unabhéngigen Elemente der schon benutzten Moduln M(¢; a).

5.11.  Bestimmung von Minimalbasen fiir P-ldeale

Da bei inhomogenen P-Idealen Polynome eines festen Grades ¢ keinen Modul bilden,
miissen alle Berechnungen fiir P-Ideale in jeweils geeigneter Weise auf H-Ideale
zuriickgefiihrt werden. Auf diese Weise gelangen wir zu dem zu Kap. 1, Satz 20,
analogen
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Satz 24 (vgl. RENscHUCH [14]). Ist (a) <= K[z, ..., z,] ein P-Ideal und (f,, f5, ..., fr)
eine vorgegebene Basis, so kann tn endlich vielen Schritten entschieden werden, ob eine
Minimalbasis vorliegt oder welche Elemente gestrichen werden kimnen.

Beweis. Durch Homogenisierung (vgl. Kap.1, (38)) gehe fi(z;,...,2,) in
Fi(xy, 2y, ..., z,) liber; aus

(@) = (f1 fas -+ 1) (84)
gewinnt man zunichst (vgl. Kap. 1, (176))
ay:= (Fy, Fy, ..., Fy). (65)

Ist nun (85) keine Minimalbasis fiir a,, was nach Kap. 1, Satz 20, in endlich vielen
Schritten entscheidbar ist, so ist auch (84) keine Minimalbasis; ist némlich o. B.d. A.
Fy =G F, + .-+ + G F,_,, so folgt daraus fiir z, = 1 sofort
ft=gf + - + giaafia
mit gy(zy, Ty, ..., Za) = Gi(1, 2y, ..., 7,) und h(f;) = Max (h(g,f,)). Ist hingegen (65)
eine Minimalbasis, so braucht (84) keine Minimalbasis zu sein. Dies tritt genau dann
ein, wenn o. B.d. A. fy = g.fy + -+ + giafi-y mit A(f;) < Max {h(g,f,)} gilt, was nach
Kap. 1, (44), eintreten kann. Ist dann g := Max (h(g,f;)} — A(f;), so ergibt sich durch
Homogenisierung
z29Fy = G F, + - + G\ Fo . (66)
Wir erliutern dies am Beispiel 1. Dazu kniipfen wir an das Beispiel zu Anfang von 1.16. an
und setzen (a) = (fy, f, fs) mit
h=2z% h=n+zz h=2'
und
y = 2 + (23 — 22) fr,
also g = 4 — 2 = 2; dann wird a, = (F}, F,, Fy) mit
Fy =z} Fy=2z2+ 22, Fy=2
und
29'Fy = 23°F; + (202 — 2,2,) Fs.
Wir setzen nun die allgemeine Beweisfiihrung fort. Existiert eine Darstellung (66)
nicht, so kann f, nicht gestrichen werden. Entsprechend schlieBt man fiir f,, ..., f,_,.
Nun ist (66) mit GiF, + -+« + G, F;-; + (—x°) F; = 0 id. in ,, ..., z, gleich-
wertig, und dies bedeutet, daB
&

Gy

—zf
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eine Syzygie von g, ist. Die Frage, ob (64) eine Minimalbasis von (a) ist, kann also
dadurch entschieden werden, ob der zweite Syzygienmodul von q; Koordinaten mit
¢z’ mit ¢ € K enthélt oder nicht. Da der zweite Syzygienmodul in endlich vielen
Schritten berechnet werden kann, ist Satz 24 damit bewiesen.

Fiir die praktische Anwendung von Satz 24 ist allerdings die Berechnung des vollen
zweiten Syzygienmoduls unerléBlich; in Spezialfdllen fihren andere Methoden
schneller zum Nachweis der Minimaleigenschaft, so bei BRESINSKY und FuLLER [1].

Fiir weitere Uberlegungen siche RENscHUCH [14].

Beispiel 2. Wir betrachten das Beispiel von Kap. 1, (21); dort war (a) = (f,, fs, 3, i) mit

h=n+z h=2'tz, h=u% h=2a'+az,
und wir wollen die dort angekindigte Minimalbasisei haft nachweisen. Hier wird zunichst
a, = (Fy, Fy, Fg, F,) mit

Fi=2z+12, Fy=zm+2b Fy=z2, Fi=z'%+2’%
und fiir den zweiten Syzygienmodul ergibt sich
F, F, F, 0 0 0
—-F, 0 O F, F, 0
0O —F, 0 —F, 0 2%+ z,?
0 0 —F, 0 —F, —z,
und daraus laBt sich keine Syzygie mit einer Koordinate der Bauart ¢ - 2,¢ gewinnen.
Beispiel 3. Wir greifen jetzt das zweite Beispiel von 4.23. auf; dort war (p) = (f,, fs, fa, f,) mit

Ui =

h=z— o, h=2—2" h=2z'—g%,, [ =z52"—2°
und es ist dann p, = o{y = (Fy, Fy, Fy, F,) mit
Fy =22y — mzy, Fy =20, — 2,°, Fy =gz — 2%y, Fy=z7 — %
Der zweite Syzygienmodul von p, ist nach (26)
8 TE, Tyxy 2
—z, —zy 0 0
B m I =
[ Zy z
aus der ersten und dritten Spalte folgt, daB f, und f, gestrichen werden konnen, ausfithrlich:
2Fy = —2,2F; + 2,Fy = fs = —2% + 24,
2F = —2,23F) + 0,Fy = 2*F = —z2,25Fy + 22, Fs
= —zxz,Fy — 2%0,F, + 2,°F,
S fo= —zy(xy + 217) fi + 2ai

die Minimalbasis von (p) ist also (fy, fo). DaB hier f, und f, gestrichen werden konnten, lag daran,
daB in der ersten Spalte in der vierten Zeile eine 0 steht. Anders liegen die Verhiltnisse im folgen-
den Beispiel.
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Beispiel 4. Die Abhyankarsche Kurve (vgl. RENSOHUCH [13, 14]) ist im dreidimensionalen
affinen Raum Nullstellengebilde des primen P-Ideals mit der allgemeinen Nullstelle y, = ¢ - ¢5,
¥3 = 18, y3 = t4. Dem entspricht nach Kap. 3, Satz 12, (40)f., das H-Ideal p, mit der allgemeinen
Nullstelle

¢ ARAR t [AEAR
Lt 5,68,88) =g (1, 2+ 2o, o, o) =g (1, 2 2, 1, L
Wl b+ =% ( & + o t° to‘) ¢ ( to + (SRS
= (" to'ty + 1% 1%, toh®)
und der Minimalbasis p, = (Fy, F,, F,, F,, Fy) mit
Fy =z, — o7y + 7', Fy = @'z, — 7% + 357,53 + 2435°,
Fy = 2g%0® — 2,°23 + 2’5" + 20,25° — 22", Fo = 2%,° — 2,°%3% + 2,28° + 2’7,
Fy = 2iz53,2 — 2,0 — .
Es sei nun f((xy, 7y, 73) := Fi(1, ;, 2y, 23) und (p) := (1, fy fa» for f5) das durch Enthomogenisie-
rung entatehende P-Ideal aus K[z,, z,, z;]. Es soll entschieden werden, ob (fy, f5, /s, /¢, fs) eine
Minimalbasis ist.
Zur abkiirzenden Schreibweise fiir den zweiten Syzygienmodul U2 vonp, = (Fy, Fy, Fy, F,, Fy),
den wir hier ohne Beweis angeben, setzen wir
Hyi= 2’2, — 2223 — 4° + 253, + 297, Hyi= 22 — 24z,
Hyi=a%2, — 235" — 2,°, Hyi= a0 — 25'75, Hyi= 2,22, — 2
und haben dann

H, H, H, H, B§, z°

-z, O 0 z, O 0

Ujy = zy —zy —2, —% O 0
0 T, —% — —zy

0 0 —z 0 —z —z —z

Aus der dritten und vierten Spalte (wo das Element z, auftritt) folgt, daB in (f,, f,, f, /s, f5) das
Basispolynom f; oder das Basispolynom f, gestrichen werden kann; es ist also (f,, fs, fo» fs)
= (f1 far fsr fs) = (p4). Da hier an den dafiir erforderlichen Stellen in der dritten und vierten
Spalte keine Nullen stehen, kénnen f; und f; nicht beide gestrichen werden; Nullen entstehen
an den betreffenden Stellen zwar durch Addition der zweiten und vierten bzw. Subtraktion der
dritten und sechsten Spalte, aber dann geht —z, in —zy — 25 bzw. z, in z, + 2, iber.

5.12. Berechnung der Basen dquivalenter H-ldeale,
Gleichheit von P-Idealen

Ankniipfend an Kap. 1, Definition 30 und Formel (47), wollen wir eine Basis des zu
einem P-Ideal (a) = (fy, ..., f;) = K[z, ..., z,] dquivalenten H-Ideals a berechnen;
gemiB Kap. 1, (48), enthilt a alle Formen, die nach Enthomogenisierung (z, = 1) in
Polynome aus (a) iibergehen. Wie wir in Kap. 1, Satz 14, vermerkten, war dadurch
zugleich eine H-Basis fiir (a) gegeben.



228 5. Syzygientheorie der H-Ideale

GemiB dem Satz von vaxN DER WAERDEN (Kap. 1, Satz 57, (177), (178)) wollen wir
das zu (a) dquivalente H-Ideal a als SchluBglied der durch

6= (Fy, ooy Fy),  Qup i= 050 (%) t=12..) (87)

gegebenen Teilerkette bestimmen.

a, entsteht durch Homogenisierung (Kap. 1, (38)) der Basisformen f,, ..., f; von (a).
GemiB dem vorigen Abschnitt kénnen wir annehmen, daB (F, ..., Fy) eine Minimal-
basis von a, ist. (Ist dies fir (f,, ..., f;) nicht bekannt, so muB es fir (Fy, ..., Fy)
entschieden werden.) Nunmehr werde a, = qa, : (z) = (F,, ..., Fy) : (z,) berechnet,
also nach Kap. 1, 1.14., die Gesamtheit der ¢ mit czg = G, F, + .-+ + G/F,. Hieraus
folgt

GFy + - + GiF + (—0)z = 0. 88)
Dies besagt, daB
Gl
é, (69)
—c
eine Syzygie von (a, ) = (Fy, ..., Fy, 2o) ist. Dazu miissen wir noch zeigen, daB

(Fy, ..., F, z,) eine Minimalbasis von (a,, z,) ist. Ware z, € (Fy, ..., F}), so ergibe
sich1 € (fy, ..., fi),also (a) = (1). Ferner kann keine der Formen F, gestrichen werden,
denn dann miiBte zo|F; sein, was unmdglich ist, weil die F; durch Homogeni-
sierung (Kap. 1, (38)) entstanden sind. Mithin ist (F,, ..., Fy, 2,) eine Minimalbasis,
da (Fy, ..., F,) als solche vorausgesetzt worden war.
Wir haben nun den zweiten Syzygienmodul von (a,, o) gemé8 5.6. zu berechnen.
Hierzu weisen wir noch auf folgendes hin (vgl. RENscHUCE [9]). Die Berechnung
von (69) kann dadurch wesentlich erleichtert werden, daB wir jede der Basisformen
in der Art
Fy=2zR + F* mit R; =Rz, 2y,...,%,) und F*=F*z,...,z,)
(70)
aufspalten, wobei also z, in F;* nicht mehr auftritt. Dann ist offenbar
(a1, o) = (Fy, o, Fiy m) = (F1y*, ..., Fi*, 7o),
also ist Satz 13 von 5.7. anwendbar. F;* berechnet sich durch
F*@y, oo 2a) = Fi(0, 7y, ..., Za),
also dadurch, da z, = 0 in F, gesetzt wird. Aus (68) und (70) folgt dann
GF*+ -+ GF*+ (—c+ GR + -« + GR)zy = 0 id. i zy, 2y, ..., 7. (71)
Schreiben wir dafiir
D F* + oo+ OF* + Byzo = 0 id. in zo, Ty, +ve) Tp, (72)
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8o ergibt sich aus einer Syzygie

@,
d;, (73)
L
von (72) die Gesamtheit der ¢ zu
¢ =R + RP, + -+ + RD, — Dy, (74)

Hierzu geben wir noch zwei Beispiele. Mit (74) ist dann jedenfalls a, = q, : (zo)
berechnet. Ist dabei a, = a,, so sind wir fertig. Andernfalls wird a; = a, : (o) in
analoger Weise berechnet usw. Wir haben also
Satz 25. Das zu einem P-Ideal (a) = (f,..., f) = K[z, ..., 2,] dguivalente
H-Ideal a = K[z, 24, ..., x,] kann in endlich vielen Schritten durch mehrfache Quotien-
tenbildungen (67) berechnet werden.
Beispiel 1. Wir erléutern das zu Anfang von 1.16. behandelte Beispiel
(a) = (f fo) = Klzy, 73, 73] mit f, =52, f =2, + 5175
Hier ist a, = (F,, F;) mit
Fi=2? Fy=z@+22, B=0, F*==z? R=z, F*=2zz,
und @, F,* 4 P.F.* + Dyx, = 0 lautet hier
Py2y? + Pprizs + Pyzp = 0;
nach (58) folgt

P, z3 xz, O A
Qy)=|—=2 O zy B,
Dy, 0 —z?2 —zz,/ \C

und nach (73) und (74) wird
¢ =0 + zo(— Az, + Cz5) + Bz)* + Cyzy = — A2y + Ba,* + Clagzy + 2173),
also ist a; = (Fy, Fy, Fy) mit Fy = z,z,.
Es ist Ry = 0, Fg* = z,z,. Zur Berechnung von a, setzen wir
P F\* + PyFy* + PyFy* + Pzy =0,
also
Dy2y® + Pytizy + Pe2i2y + Pz = 0;
nach (58) folgt

S
(=]
|
5
(=]
|
&
<
&
SRS
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und nach (73) und (74) wird
¢ =0+ 2(—Az, + Dzy + Ez) + 0 + Cz? + Ez\2y + Fzyzg
= (—4 + F) 212y + Oz,* + D2y + E(zgz; + o17),

also ist ay = (Fy, Fy, Fy, F,) mit Fy = z®.
Es ist R, = 0, F* = z,*. Zur Berechnung von q, setzen wir

D.F\* + PyFy* + PoFy* + O F* + Pz, =0,

also
D12,* + Dezyzs + Doty + Py’ + Do = 0;
nech (58) folgt
4,
4,
D, z, zZ3 z, 0 O o 0 0 4
D, -2, 0 0 z z 0o 0 0 A’
Dy | = 0 —z 0 —zy O zy 0 A"
@, 0 0 0 0 0 —=z 0 =z A‘
Dy 0 0 —z2 0 —z2 0 —zy2, —z! A.
7
AG

und nach (73) und (74) wird
¢ =0+ 25(—42; + Azs + Aszg) + 0 + 0 + Az + Ayzzy + Az, + Agzy?
= (=4, + A+ 4)) 27y + Agzy® + Ay(agzy + 2175) + Aezs?,
also ist a, = ay = (Fy, Fy, Fy, F,) und mithin das équivalente H-Ideal a = (F,, F,, Fy, F,), und
dies ist offenbar eine Minimalbasis fiir a.

In diesem Fall bestand die Minimalbasis des &quivalenten H-Ideals a aus mehr Elementen als
die des Ausgangsideals (a); dies ist jedoch nicht zwangsldufig, wie bereits im Kapitel 1 im An-
schluB an Definition 27 erwiahnt wurde.

Beispiel 2. Es sei @ = Q(zy, ..., z,) eine quadratische Form, und in K[z,, z,, 2y, ..., 2,] sei
(a) = (@ + =,°z, 7,2,). Natiirlich kdnnte man die Basis sofort durch (Q, z,z,) ersetzen; wir
wollen jedoch mit der ungiinstigeren Basis arbeiten. Dann wird nimlich

8 = (2'Q + 2,°Zy, 712) = (%,°Q, 71%5)
und
a3 = 0y : (%g) = (2°Q, 7,2y, 2,Q)
und
a=0a, =0y = (Z,) = (%2Q, 2,23, %,Q, Q),
und dies ist offenbar keine Minimalbasis von a; eine solche ist a = (Q, z,2,).

Beispiel 3. Wir betrachten die Ideale von Kap. 1, (20), (21), (22), und wollen hier nur die
Ergebnisse mitteilen: Es sei

@) = (21, 2 7y),  (B) = (2) + 2y, 2 + 23, 7175, 7 + 71),
(€) = (21 + 22 2,° + 2, 147y, (75 + 1) (21 + 7)), 2a(@° + 21)).
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Dann wird
by = (2, + 2y 2073 + 2%, 217 T2y + 21),
By =By : (20) = (21 + Za) ToTy + 2% BTy, T3P, TeT1),
by = by : (%) = (21 + 20 Zo%a + 211, TZnr T T + 22)y Thy 7) = (20, T, 2%, Te7a),
By = by: (z) = (2, 25, Zp),
by = by : (%) = by = (21, 73, Z3);
mnthm ist b = (zl, ::,,z,) d&s a.qulvalenu H- Ideal und b = a. Durch die Bildung der Ideal-
sich dann gemde die in Kapitel 1 im
AnschluB an (20), (21) und (22) gegebenen Umrechnu.ngen Somit haben wir hier von b = a auf
(b) = (a) schlieBen kénnen.
Beim Ideal (c) haben wir
& = (21 + Ty, Zo%y + 21, B2 (%0 + 23) (@7 + 2°), T30 + 22%),
und es wird erst ¢c; = ¢, : (zp*) = (2;, 73, 23) = ¢, also a = b = ¢ und also (a) = (b) = (c).

Wir haben mithin

Satz 25. Zwei P-Ideale aus K[z,, ..., z,] sind genau dann gleich, wenn ihre dqus-
valenten H-Ideale gleich sind.

Dieser Satz ist natiirlich von keinerlei theoretischer, wohl aber — wie diese Bei-
spiele gezeigt haben — von praktischer Bedeutung (der umgekehrte Sachverhalt
tritt in der Mathematik hiufiger auf!). Das liegt daran, daB mit der iiblichen Gleich-
heitadefinition fiir Mengen, dem Extensionalititsprinzip (vgl. MfL Bd. 1, 1.3, (1)),
zwar fiir H-Ideale, nicht aber fiir P-Ideale vermdoge der Basiselemente eine Entschei-
dung maglich ist; vgl. Kap. 1, Siitze 18, 19, 20.

Bei den hier betrachteten Beispielen gelang es ferner, mit Hilfe der dquivalenten
H-Ideale b = ¢ = a = (z,, 2,, 73) = K[z, 2,, Z,, 23] und der daraus resultierenden
Gleichheiten (b) = (¢) = (a) zu Basen minimaler Léinge fiir (6) und (c) zu gelangen.
Ob die Bildung &quivalenter H-Ideale stets zur Gewinnung von Basen minimaler
Linge fiir P-Ideale fiihrt, konnte noch nicht entschieden werden.

5.13. Bestimmung der Basis von Idealquotienten a: (F) und (a) : (f)

Bei der Berechnung von q, : (z,) im vorigen Abschnitt konnten wir davon aus-
gehen, daB (F,,..., F,) und auch (F,,..., Fy, ;) eine Minimalbasis war. Letzteres
ist bei der Berechnung von Idealquotienten a: (F) mit a < K[z, 2y, ..., z,] und
F = F(zy, 2y, ..., *,) nicht immer der Fall. Dennoch gilt

Satz 26. Ist a < K[z, 2, ..., z,] ein H-Ideal und F = F(2y, 2, ..., Z,) €ine
Form, so kann der Idealquotient a : (F) in endlich vielen Schritten vermdge der Syzygien-
theorie berechnet werden.
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Beweis. Ist a = (F,, ..., F,) eine Minimalbasis, so kann zunichst (wie in 1.17.)
F ¢ a angenommen werden, andernfalls wire a: (F) = (1). Dann ist a: (F) die
Gesamtheit der ¢ mit cF = ,F, + .-+ + Q,F,, also

G F, + GFy+ -+ GF, + (—)F = 0id. in 2o, 7, ..., Z,. (75)

Fall 1: (F,, ..., F,, F) ist eine Minimalbasis von (a, F). Dann berechnen wir die
Syzygien aus

O F, + O F, + - + OF, + D, F =0id. in 2o, 7y, ..., Z, (76)
und bestimmen a : (F) als Gesamtheit der
c=—D,,. (77)

Als Beispiel hierfiir verweisen wir auf das Beispiel von 1.17.

Fall 2: (F,,..., F,, F) ist keine Minimalbasis von (a, F). Wegen F ¢ a ist dann
eine Minimalbasis von (a, F) durch Streichung gewisser Formen F,, ..., F, gegeben;
die iibrig bleibenden Formen seien F';, ..., Fy, so daB (a, F) = (F,, ..., Fy, F) die
Minimalbasis von (a, F) ist. Dann ist

Fy=KyF, + - + KyF,, + KjpF fiir j=1,...,8, (78)
wobei die K;; auch Konstante sein konnen, namlich fir j =4, wird K;; =1,
Ky =+ = Ky = K; 4y =0, entsprechend fiir j = 15, ..., 4.

Mit (78) geht (75) tiber in

O F, + -+ + BF,, + B F = 0id. in 7y, 7,, ..., 2, (19)
mit

K\Gy + K@ + - + K6, =9, fir i=1,2,..,k (80)
und

¢ =Ky 4G + KpunrGr + -+ + Kop1Gs — Prnr, (81)

was der Leser nachrechnen moge.

Mit (81) kann ¢ berechnet werden, denn G, ..., G, sind aus (80) bestimmbar.
Dabei werden die G; mit j = i, ..., % beliebig gesetzt und nach den iibrigen @
(fiir welche K;; = 1 ist) aufgeldst.

Damit ist Satz 26 bewiesen.

Beispiel. Essei a = (Fy, F, Fy, F,) = K[y, 2,, 2,, 23] mit,

Fy =z, — 2%, Fy=a2 — 212, Fy=2*—a?, Fy=z2—2,
und es sei ferner F = z; + z,. Zu berechnen ist a : (F), also die Gesamtheit der ¢ mit

G\Fy + GyFy + GyFg + G F, + (—c) F = 0id. in z, 7,, 7y, 75. (82)
Jetzt ist zwar F ¢ a, aber (Fy, Fy, Fy, F,, F) ist wegen

Fy=(z, —a) F (83)
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keine Minimalbasis von (a, F); diese ist (a, F) = (F,, Fy, F,, F). Mit (82) geht (83) iiber in

G Fy + G5Fy + @ F + (—c + Gylz, — 2,)) F =0, (84)
also in
D\ F, + OoFy + P3F, + O F =0, (85)
mit ¢, = P,, Gy = P,, G, = P, und
¢ = Gylay — 2)) — P, 8)
D,
Far z’ ergibt sich mit 5.6. und Satz 13
s
D,
A
P, Zy Zy z—x, O 0 B
Pl _ [~z O -z 0 c
D, z, z O 0 2, — 2, D >
D, 0 0 —F, —F, —F, 7

dies in (88) eingesetzt, folgt ¢ = Gy(z, — z,) + CF, + DF, + EF, mit beliebigen G;, C, D, E;
also ist

a:(F)= (2, — z,, F,, F,, F,).

Ist nun (a) ein inhomogenes P-Ideal und f ein inhomogenes Polynom in z,, ..., Z,,
F die dazu dquivalente Form und a das zu (a) dquivalente H-Ideal (vgl. Kap. 1,
Definition 26 und Definition 30), dann ist a :(F) die Gesamtheit der Formen
H(xo, 2y, ..., 2,) mit HF € a; aus H entstehen bei der Enthomogenisierung z, = 1
inhomogene Polynome k(z,, ..., z,) mit kf € (a), und nach Definition des &qui-
valenten H-Ideals ist dadurch die Gesamtheit der & mit kf € (a), also (a) : (f) gegeben;
wir haben also

Satz 27. Die Berechnung von (a) : (f) mit einem P-Ideal (a) = K[z, ..., z,] und
einem inkomogenen Polynom | = f(zy, ..., x,) kann durch Ubergang zum dquivalenten
H-Ideal a < K[z, 2y, ..., 2,] und zur dquivalenten Form F = F(%, x,, ..., T,) vermoge

(@:(f) =a: (Fmy (87)
auf den homogenen Fall (Setz 26) zuriickgefiihrt werden.

5.14. Bestimmung der Basis von ldealdurchschnitten
und beliebigen Idealquotienten

Wir wollen nun die Uberlegungen von 1.12. zuniichst fiir Idealdurchschnitte von
H-Idealen prazisieren. Wir kénnen uns auf Durchschnitte von zwei Idealen be-
schriinken; dann gilt
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Satz 28. Sind a und b 2wei H-Ideale aus K[z, 2y, ..., z,], 80 kann der Ideal-
durchschnitt a nb in endlick vielen Schritten vermoge der Syzygientheorie berechnet
werden.

Beweis. Sind a = (Fy,...,F,) und b = (F,.y, ..., Foup) Minimalbasen von a
bzw. b, so0 ist a n b die Gesamtheit der Formen @ mit

G=GF + -+ GF, =G \Fouy + -+ + GeinF o, (88)
also

G F 4 o + G F 4 (—Gp1) Fory + o+ + (—Guip) Foup =0 id. in 2o, 2y, ..., 2,. (89)

Nun schlieSen wir weiter wie beim Beweis von Satz 26 und haben als Fall 1, daB
(Fy, .., Fyy Fupy, -, Fyup) eine Minimalbasis von (a,b) = a + b ist, vgl. hierzu das
erste Beispiel von 1.12.

Im Fall 2, beidem (F,, ..., F,, F,,y, ..., F,,;) keine Minimalbasis von (a,b) =a+b
ist, schlieBen wir wie bei (78), (79), (80) und setzen die Ergebnisse in (88) ein. Wir ver-
weisen auf das zweite Beispiel von 1.12.

Sind (a) und (b) zwei inhomogene P-Ideale aus K[z, ..., z,], so gilt offenbar der

Satz 29. Die Berech des Idealdurchschnittes (a) n (b) zweter P-Ideale aus
K[z, ..., z,] kann durch Ubergang 2u den dquivalenten H-Idealen a und b verméige

(@) n(6) =anb|;., (90)
auf den homogenen Fall (Satz 28) zuriickgefithrt werden.
Nach Kap. 1, (170) galt
a:b=a:(G,...,G) =(a:(G))n-n(a:(G) (91)

fiir H-Ideale a und b = (G,, ..., G;), und danach kann — wie bereits in Kap. 1,
Satz 56, allgemein gefolgert — der Idealquotient a : b vermége Satz 26 und 28 in
endlich vielen Schritten berechnet werden; Entsprechendes gilt fiir den Idealdurch-
schnitt zweier P-Ideale (a) : (b) wegen
(@) : (g1 +ver 9) = ((@) 2 (1) 0 -+< 0 ((0) 2 (g0)); (92)

mithin gilt

Satz 30. Idealdurchschnitte von H-Idealen bzw. P-Idealen lassen sich in endlich
vielen Schritten vermoge (91) bzw. (92) berechnen.
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5.15. Berechnung der Volumfunktion

Wir geben nun eine Anwendung der Syzygientheorie, die bei HILBERT in [1] Aus-
gangspunkt fiir die Entwicklung der Syzygientheorie war. Dazu greifen wir auf
Kap. 1, Sdtze 15 bis 19, zuriick. Dort fithrten wir den Modul 9(¢; a) der Formen
t-ten Grades aus einem H-Ideal a — K[z, zy, ..., z,] ein und wiesen die Existenz
einer linear unabhingigen Modulbasis von I%(¢; a) nach.

Definition 12. Die Anzahl der linear unabhingigen Formen aus 9(¢; a), also
die Anzahl der Elemente einer linear unabhéingigen Modulbasis von I(t; a), wird mit
V(t; a) bezeichnet und heiBt die Volumfunktion von a.

Die Anzahlfunktion V(¢; a) wird auch als Dimension von 9¢(¢; a) bezeichnet; um
Verwechslungen mit der Dimension des Ideals a zu vermeiden, iibernehmen wir hier
die von GROBNER in [9], S. 159, und [8], S. 151, geprigte Bezeichnung ,,Volum-
funktion*; in [2] wird noch die Bezeichnung ,,Volumen verwendet.

Tst 0 =97 = (Zo, Ty, .-, Zp), 50 st M(t; (T, 1, --., %a)) die Gesamtheit aller
Formen t-ten Grades aus K[z, 2,, ..., z,]. Jede dieser Formen ist Linearform in den
Potenzprodukten t-ten Grades in @, 2, ..., Z,; wir geben dazu die

Definition 13. Die Anzahl der verschiedenen Potenzprodukte t-ten Grades in z,,
Zy, ..., 2, werde mit A(¢; n) bezeichnet.

Dann gilt wegen Kap. 1, Satz 18, sofort

Satz 31. Die Anzahl der Elemente jeder linear unabhingigen Modulbasis von
M(t; (2o, T, +-- 24)) B8t A(t; ), also

V(t; (@0, @1, .y ) = A(E; m). (93)
Wir beweisen nun den wichtigen
Satz 32. Fiir A(t; n) gilt die Hurwitzsche Formel

Altsm) = (H"L") (94)

Beweis. Wir bemerken zunéichst, daB wir unter (1;:) eine Abkiirzung fiir

mit méZ, keN* (95)

m\ _mm—1).--(m—k+1)
(k)‘_ 1.2k

verstehen wollen, lassen fiir m also auch negative ganze Zahlen zu, wihrend in MfL
Bd. 1, 3.5., (32), einschrinkend 0 < k < m gefordert wird. Auch HURWITZ arbeitet
mit dieser Einschrinkung, wenn er in [1], Formel (8), fiir den Wert A(x; » — 1) das

—1)!
Symbol k = [p; n] einfiihrt und dann k = [u; ] = tn= D!

notiert; dies ist
ul(n — 1)1
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gleich A(u; n — 1), weil HurwrTz (wie auch HILBERT in [1]) mit Formen in z,, ..., z,
arbeitet, wir dagegen mit Formen in z,, 2y, ..., z,. Man beachte dies grundsitzlich
beim Arbeiten mit élterer Literatur!

Wir fassen also bei festem » und variablem ¢ (94) als Polynom n-ten Grades in der
Variablen ¢ auf.

SchlieBlich wollen wir noch bemerken, daB die Hurwitzsche Formel bereits von
HrrBERT in [1] in Abschnitt IV benutzt wird.

Wir beweisen nun (94) fiir beliebige ¢ bei festem = (¢, » € N*) durch vollstindige
Induktion nach ¢ und formulieren zunichst eine Rekursionsformel fiir 4(¢; #). Man
vergleiche hierzu die Uberlegungen in MfL Bd. 1, 3.5.

Die Potenzprodukte t-ten Grades in z, zy, ..., z, lassen sich einteilen in zwei
Klassen:

— zur ersten Klasse gehéren alle Potenzprodukte ¢-ten Grades, in denen x, wirklich
auftritt; ihre Anzahl sei 4,,

— zur zweiten Klasse gehoren alle Potenzprodukte t-ten Grades, in denen z, nicht
auftritt, die also nur von z,, ..., z, abhidngen; ihre Anzahl sei 4,.

Das ist offenbar eine vollstindige Klasseneinteilung aller Potenzprodukte ¢-ten
Grades in 2, , ..., Z,, also

4t;n) = 4, + 4,. (96)

Nun kann von jedem Potenzprodukt der ersten Klasse der Faktor z, abgespalten
werden; es ist also 4, gleich der Anzahl aller Potenzprodukte (¢ — 1)-ten Grades in
Ty Ty, +vvy Ty, 8180

Ay =4t —1;m). (97)
Ersetzen wir in den Potenzprodukten der zweiten Klasse, die nur von z, ..., z,

abhingen, jeweils ; durch z;_; (i =1, ...,7), so erhalten wir die Gesamtheit der
Potenzprodukte t-ten Grades in z,, 7y, ..., Z,_;, also ist

A, =A4(t;n —1). (98)
Setzen wir (97) und (98) in (96) ein, so haben wir

At;n) =A@ — 1;n) + A(t;n — 1). (99)
Ersetzen wir in (99) n nacheinander durch n — 1,7 — 2, ..., 3, 2, 80 erhalten wir

A, n —1) =4t —1;n — 1) + A(t;n — 2),
At;n —2) =4t —1;n —2) + A(t;n — 3),
A(t;3) = A(t — 1;3) + 4(¢; 2),
A(t;2) = At — 1;2) + A(t; 1).
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Als Induktionsanfang berechnen wir A(¢; 1). Dies ist die Anzahl der Potenzprodukte
Zo!, T2y, ..., 24 ; €6 I8t also

A(t;1)=t+1=(‘-:l).

Setzen wir nun in obigem Gleichungssystem die letzte Gleichung in die vorletzte ein
usw., 5o geht durch dieses sukzessive Einsetzen (99) schlieBlich iiber in

Atsn) = At —1;m)+ At —1;n— 1)+ + A —1;3)+A(E—1;2)+Et+1.  (100)

Wir treffen nunmehr die Induktionsannahme, da (94) fiir beliebige, aber feste n =k
und bis ¢ — 1 richtig ist, also

A(t—l;k)=(‘+’;_l)- (101)
Nun gilt allgemein
(m+n+1)=1+(m+1)+<m+2)+(m+3)+m+(m+n—l)+(m+n)
n 2 3 n—1 n
(102)

(vgl. MfL Bd. 1, 3.5., (28)), und fiir m =¢ — 1 gibt dies mit (100) und (101) fiir
k =2, ..., n die gewiinschte Beziehung (94), q. e. d.

Nunmehr kénnen wir zur Bestimmung von V(¢; a) iibergehen. Wir erinnern an (39)
und (40) und beweisen den

Satz33. Es sei a = U}, = (Fy, ..., F,) = K[z, %1, ..., 7,] ein H-Ideal mit der
abbrechenden Syzygrenkette

UL U, UL, .. UL
und
UL, =(F, ... F) und 7:=hkF),
Uy, = (%) und Ty := h(PY)),
Up, = (93) und 75 1= h(®}), (103)
Uy o, = (@3) und Ty = h(PY),
80 st

V(t;a):i‘(t_’_n_'[“)—2'(t+n_1”_12‘)

i=1 n i=1 n
+£~(‘+ "'—711“121—73!) — 4
i=1 n
+(_1)t—l£(‘+n_tll_;;’_tk-l.l—fh), (104)
i=1
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wobes sm Fall t +n — 7y — -+- — 7401,1 — T3 < O der entsprechende By talkoeffi-
zient gleick Null zu setzen tst.

Beweis. Formen ¢-ten Grades aus a entstehen, wenn wir

F, mit allen linear unabhingigen Formen vom Grad ¢ — k(F,) multiplizieren,

F, mit allen linear unabhingigen Formen vom Grad ¢ — k(F;) multiplizieren,

F, mit sllen linear unabha.ngxgen Formen vom Grad ¢ — A(F,) multiplizieren;
dadurch erhalten wir insgesamt Z A(t — 7,4; n) Formen ¢-ten Grades aus a. Durch

=1

diese Anzahl ist aber V(¢; a) noch nicht gegeben, da wir noch die Syzygien beriick-
sichtigen miissen. Dazu formulieren wir das soeben Gesagte noch einmal matrizen-
maBig. Ist

P2
Wlll =]
Fl

dann kénnen obige Multiplikationen durch U},W}, mit

= WULW}) = WF) + h(F),
also
MEFY) =t — 7y
beschrieben werden.

Wir miissen nun noch den Fall beriicksichtigen, daB W}, eine zweite Syzygie wird,
also — wegen der Moduleigenschaft von U2 — von der Bauart U;, W}, mit

F.2
W =| :
F:l

ist. Dabei muB ULU?Z W,’.1 wieder vom Gesamtgrad ¢ sein; wegen (103) haben wir
also

Vit 0) =2 At — rysm) — 44 (105)
mit i
4, := Anzah] der linear unabhiingigen Losungen von U}, U7 W2, =0
vom Grad ¢.
Nun ist
MULULWE) = h(F.) + h(&5) + h(F2) =t,
also

MFR) =t — h(F,) — (&)
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Wir kénnen hier den Zeilenindex o beliebig wihlen. Analog zu den Uberlegungen
von Satz 3 wollen wir die erste Zeile bevorzugen, setzen also ¢ = 1; mit (103) haben
wir dann

RF3) =t —h(F)) — A(P}) =t — 71y — Ty

und folglich
s
4, =2.‘A(‘—7u_1zl}n)—4a, (106)
i=1
4, := Anzahl der linear unabhingigen Losungen von U, U2 US, W, =0
vom Grad ¢
und
F®
Wf. =1
F

&
Entsprechend finden wir
o
4y =2 A4t — Ty — 7 — T8, 1) — A (107)
=1
usw. Wegen des vorausgesetzten Abbrechens der Syzygienkette ist schlieBlich
Ay = 0. Setzen wir (106), (107), ... in (105) ein, so folgt (104) wegen (94), q. e. d.

Diese Uberlegungen werfen die Frage auf, ob denn das Abbrechen der Syzygien-
kette wirklich als Voraussetzung formuliert werden muB oder immer eintritt. Dazu
werden wir im niachsten Abschnitt zeigen, daB jede Syzygienkette abbricht, genauer:
Ist a <= K[z, 24, ..., 2,], 80 gilt

La) < n + 1. (108)
Keineswegs kann (108) aus (104) — etwa aus der Anzahl der verschiedenen Bi-
nomialkoeffizienten — gefolgert werden; hierzu sei auf das folgende zweite Beispiel
hingewiesen.
Beispiel 1. Wir betrachten wieder einmal unser Primideal
oy = (Fy, Fy, Fy, F) = K(zo, 23, 23, 73],

dessen Syzygienkette wir im AnschluB an Definition 7 angegeben haben; wir notieren daher hier
nur die Gradmatrizen:

2 2 2 2 1
@333 (11!
1111 1
1111 1
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und erhalten fir ¢ = 2
can _ [t+3—2 6433\ ,[t+3-2-2\ (t+3-2-2-1
Vit o) = ( 3 +3 3 4 3 + 3
t+1 t t—1 t—2 t+3
= — = — (& 41,
(372 =o(5 )+ (57)-(5) ~wen
was der Leser mit Hilfe von 7.6. selbst nachrechnen maoge.
Beispiel 2. Wir betrachten das eindimensionale Primideal
LI (ENENENEN|
mit der allgemeinen Nullstelle (¢, %2, tt,% ¢,7) und der Syzygienkette Uy, U, U2, mit

Ul = (22 — 2% 7o — 2923%, 22® — 2,725, oyt — 2,%),

AT X 0 0 —zg?
2 2 3 2
U= "0 —% A% 4| U = 2y
“ —Zy, —Ty  —x  —zy . -
0 0 -z —z z,
und den Gradmatrizen
2 2 3 3 2
2 23 3 2
3,3,4,5), , ,
¢ ) 112 2 1
0011 1

wobei die Gradzahlen der Nullen gemiB (14) bestimmt wurden. Dann wird fiir ¢ = 4 gemiB 7.6.
samy _ oft t—1 t—2\  ft—2\ _(t—3)\ (t—4
Pt o) 2(3+ s JP0s )72 s )72 s )+ s

ot b— 1\ (t—2\ _(t—3\  (t—4)\ (43 .

=)+ (5) (372037 (39 = () oo

auch diese Rechnung iiberlassen wir dem Leser, dem sicher aufgefallen sein wird, da8 in beiden
Beispielen die Differenzen (‘ _; 3) — V(t; a) wesentlich einfachere Ausdriicke liefern. Dies legt

nshe, von V(¢; a) zu A(t; n) — V(t; a) iberzugehen. Dies ist die Hilbertfunktion H(¢; a), mit
welcher wir uns im nichsten Kapitel beschiiftigen werden.

5.16. Obere Schranke fiir L(a), Abbrechen der Syzygienkette

Wir erinnern an die Bemerkung zu Anfang von 5.8.: Ist ) = (Fy, ..., F,) ein H-Ideal
der Hauptklasse, so ist (F,, ..., F,_,) ebenfalls ein H-Ideal der Hauptklasse, und es
gilt

(Fyyeves Froa) 2 (Fy) = (Fy, ooy Froy)e (109)

Dies benétigen wir zum Beweis von



5.16. Abbrechen der Syzygienk 241

Satz 34 (vgl. GROBNER [2], 152.10, [1], S.5, HmBERT [1], S.504). Ist 8 eine
Syzygie aus dem k-ten Syzygienmodul U¥, fiir welche eine Darstellung der Gestalt

s=Fs + -+ Fs mit j<k (110)
und (F,, ..., F;) H-Ideal der Hauptklasse j
existiert, so konnen 8y, ..., 8; so gewihit werden, daf auch sie berests Syzygien von U*
sind.
Beweis. Wir fiihren den Beweis durch vollstindige Induktion nach j. Induktions-
anfang: Fiir j = 1 ist die Behauptung richtig wegen s = Fs, und weiterhin

0 0 0
Ur1s = i | = U- (Fys)) = Fy(U-1s) =( : | = Ur1s, =| :
0 0 0

Induktionsannahme: Unser Satz ist bis j — 1 richtig. Wir wollen damit die Giiltigkeit
fiir j beweisen. Multiplizieren wir (110) von links mit U*-! und setzen

s/ = Urls, fir i=1,2,..,5—1,f, (111)
0
so folgt wegen U*-18 = :
0
0
=Fs' + -+ F8/,
0
und wegen (109) existiert fiir 8;' eine Darstellung
8/ = Fys," + o + Fpis),. (112)

Wegen (111) gehort s;” dem Syzygienmodul U*-* an, und es ist j — 1 < & — 1 wegen
j < k erfiillt; auf (112) kann also die Induktionsannahme angewendet werden, wo-
nachs,”, ..., 8{_, dem Syzygienmodul U*-? angehéren, d. h., es existieren Vektoren w0,
mit

8 =Utraw; fir ¢=1,2,...,§j—1. (113)
Es sei nun

§;:=8; — Fow, — -+ — F; _w,, (114)
und

Bii=s,+ Fa; fir i=1,..,j—1, (115)
also

$;=8;+ Fow, + -+ + Fw;,
und

8 =38 —Fw, fir i=1,..,j—1;
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dann geht (110) iiber in
s=F35 + Fy8, + - + F;8;, + Fj5;. (116)

Wir wollen zeigen, daB 8,, 8, ..., 8,1, 3; Syzygien des Moduls U* sind. Wir zeigen
dies zundchst fiir 3;: Es wird wegen (114)

U5, = Ux's; — F, U, — - — F; ;U w;,
und wegen (111) und (113)
Ut-13; =8/ — F18," — -« — Fi,8]_,,

und wegen (112) ist folglich

0
U= 1),
0

also 8; aus dem Modul U*. Nach Voraussetzung ist auch s aus U¥, also auch s — F5;;
nach (118) ist dies aber gerade

$—Fg;=F38 + F8 + - + Fi_ 8, (17

Wenden wir auf (117) die Induktionsannahme nochmals an, so ergibt sich, da8 auch
8, ..., 8, Elemente von U* sind. Mithin ist die Darstellung (116) von der ver-
langten Art, q. e. d.

Mit Hilfe von Satz 34 beweisen wir nun

Satz 36 (Hilbertscher Satz vom Abbrechen der Syzygienkette). Jede Syzygien-
kette von H-Matrizen mit Elementen aus K[z, 2y, ..., ,] bricht spitestens beim
(n+ 1)-ten Glied ab; ist der erste Syzygienmodul ein H-Ideal a = K[z, z,, ..., Z,], 0
gilt also

L@)Sn+1. (108)

Beweis. InSatz34 wihlenwirk =n + 2,j =n + lund F, =2, ..., Fayy = 2,
dann ist (Fy, ..., Far) =Ppr = (%o, %y, ..., 2,) ein H-Ideal der Hauptklasse n + 1.
Fiir eine Syzygie 8 aus U+ gibt es gewil wenigstens eine Darstellung

§ =Z¢S; + ++* + Tp8pi1- (118)

Wegen n + 1 < n + 2 ist j < k erfiillt, und wir kénnen Satz 34 anwenden, wonach
Wir 8y, ..., 8,;; 80 withlen kénnen, daB sie ebenfalls Syzygien aus U*+? sind. Mit
ihnen kénnten wir wiederum eine Aufspaltung gemaB (118) vornehmen usw. Bei
jedem dieser Schritte werden die Gradzahlen der Koordinaten der Syzygien um 1
erniedrigt. Wir gelangen dadurch schlieBlich entweder zum Nullvektor oder zu einer
Syzygie mit wenigstens einer von Null verschiedenen Konstanten als Koordinate;
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das wiirde bedeuten, daB im Syzygienmodul U*+! keine Minimalbasis vorgelegen
hat im Widerspruch dazu, daf wir stets von Minimalbasen ausgingen (vgl. 5.1.).
0
Mithin mul U"+2 = | : | sein, q.e.d.
0
Durch (108) ist zunéchst eine obere Schranke fiir L(a) gegeben. Wir werden im
nichsten Abschnitt sehen, daB der Fall L(a) = n + 1 dabei tatsichlich eintreten
kann.

5.17.  Untere Schranken fir L(a), Folgerungen

Wir kniipfen dazu an die Definition der Grundideale an (Kap. 4, Definition 4, (54))
Dann gilt der
Satz 36 (Satz von GROBNER, vgl. [2], 152.8, 9, [1], Satz 4). Ist a = K[z, 2y, ..., z,]
ein H-Ideal der Kodimension r = n — d mit
ge1(@) D a  und g,(a) =a, (119)
80 8t
r<e= L(a). (120)
In Worten besagt Satz 36: Besitzt a eine Primirkomponente der Dimension
8 =n — g, so besteht die Syzygienkette von a aus wenigstens ¢ Gliedern, wobei es
gleichgiiltig ist, ob die 8-dimensionale Primarkomponente isoliert oder eingebettet
ist. Damit ist eine wesentliche Verscharfung von Satz 16, (53), gegeben.

Beweis. Wir indern den Grébnerschen Beweis in [2] und [1] zu Anfang etwas ab.
Es sei
a=(G,....G):= Vi, (121)

und die nach Voraussetzung existierende Primarkomponente der Dimension 4 =n — o
sei q mit dem zugehérigen Primideal p. GemaB Kap. 4, Definition 10, (93), sei

9 =8 For,oer, i) und  § = (B, ..., F,):= U} (122)

eine p-Schnellbasis, d.h. Dimp = Dimf) =n — p; dann ist h S p, und wegen
Kap. 2, Satz 30, (51), gilt also

a:h>oa; (123)
es gibt also eine Form @ mit
Gda (124)
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und @ S a, matrizenmiBig

quj, = viAl, (125)
mit einer geeigneten homogenen Matrix A},

Die Syzygienkette des H-Ideals ) der Hauptklasse ¢ ist gemiB Satz 15 von der

Bauart

Ul Uz Uy -+ UL (126)
die Syzygienkette von a sei

Vi Voo Vi
und wir haben zum Beweis von (120) noch

a=0 (127)

zu zeigen, was nun in mehreren Schritten geschehen soll.
Wir multiplizieren (125) von rechts mit U:a.' Dies gibt

0
: = ;’,A}nUﬁe. ;
(1]

mithin ist 4;,Ug, aus V7 ; mit einer geeigneten Matrix 43, ist also

AUL, =VEAL; (128)
wird (128) von rechts mit U] ,, multipliziert, so folgt entsprechend

450 Use, = ViAo, (129)

A2l = Yo-140-1, (130)

AU = Vede, (131)

AU = Yorlgon

Zum Beweis von (127) nehmen wir nun indirekt an, es wire o < o; dann wire

0 0
Vet ={ i |, aber Ut 5| : |, also
0 0
0
A°U*r=0 und U+=x|: ] (132)
0

Da (126) die Syzygienkette eines H-Ideals der Hauptklasse ist, ist sie nach Satz 17
reversibel, und aus (132) folgt mithin, daB eine Matrix B}, , existiert mit A° = B°U?;

Qo1
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dies in (131) eingesetzt, folgt (4°-! — V°B°)U° = 0, und wegen der Reversibilitit
der Syzygienkette (126) folgt weiter
Al — V°B? = BU-IUU-I,
also
Al = VeBe 4 Be-1Ue-1,
Setzen wir dies in (130) ein und beriicksichtigen Vo-1Ve = 0, so folgt
A2 = Yo-1Bo-1 + Be-2Uo-2,

Diese SchluBweise wenden wir weiterhin an und gewinnen mit (129) und (128)
schlieBlich

Al = V3B3 + BSUZ
und

Al = VB2 + B\UR. (133)

Aus (133) folgt durch linksseitige Multiplikation mit V2
ViA! = V1V2B? 4 VB! = VB!
wegen V1¥V? = 0 und wegen (125) also
GUL, = VL,B\UL. (134)

In (134) ist V],B}, eine , Matrix* vom Format (1, 1), also eine Form, es muB also
@ = V),B}, sein, d. h. aber @ € a wegen (121), und dies ist ein Widerspruch zu (124).
Also war die Annahme ¢ < g falsch, und es gilt (127), q. e. d.

Zur Frage der Umkehrung von Satz 36 beweisen wir zunichst

Satz 37. Ist a = K[z, zy, ..., z,] ein H-Ideal der Kodimension r, so kann von (120)
nicht auf (119) geschlossen werden.

Beweis. Wir verweisen hierzu auf die beiden letzten Beispiele von 5.15; in beiden
Fillen handelte es sich um Primideale mit n =3, d =1, r =p =2, jedoch
L(b‘l’.’) =3 und L(p{;**¥) = 3.

Mehr 18t sich hingegen fiir den Fall o = » + 1 aussagen, was nach Kap. 4, Satz 1.
(10), und Satz 29, (61), bedeutet, dall das betreffende H-Ideal a = K[z, 2, ..., x,]
eine triviale Komponente besitzt. Zuvor notieren wir noch

Satz 38. Fiir die Linge L(a) der Syzygienkette eines H-Ideals a < K([zo, 2y, ..., 2,)
gilt

rsosL@=n+1. (135)

Beweis. (135) ist eine Zusammenfassung von (108) und (120).
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Wir kommen nun zum angekiindigten
Satz 39. Ist a = K[z, ,, ..., 2,] ein H-Ideal, so gilt:
a besitzt eine triviale Komponente & L(a) =n + 1. (1386)

Beweis. (=): Besitzt a eine triviale Komponente, so ist nach Kap. 4, Satz 29,
(1), o =7n + 1; aus (135) folgt mithin L(a) =n + 1.

(«): Es sei L(a) =n + 1. Angenommen, a besitzt keine triviale Komponente,
dann existiert nach dem Dubreilschen Lemma (Kap. 3, Satz 45) eine Form F mit
a: (F) = a, und nach Satz 13, (38), miite L(a, F) =n + 1 + 1 = n + 2 sein, was
nach Satz 35, (108), unméglich ist. Mithin muB a eine triviale Komponente besitzen,
q.e.d.

Gleichwertig mit Satz 39 sind
Satz 40. Fiir H-Ideale a = K[z, 24, ..., z,) gilt:
a besttzt keine triviale Komponente < L(a) < n. (137)
und nach dem Dubreilschen Lemma (Kap. 3, Satz 45)
Satz 41. Fiir H-Ideale a = K[z, 2y, ..., z,] gilt:
Es existiert wenigstens eine Form F mit a: (F) = a & L{a) < n. (138)
Aus Satz 40 und Satz 41 folgt fiir ungemischte H-Ideale:
Satz 42. Fir H-Ideale a = K[z, 2y, ..., z,] gilt:
Dim a = 0 A a ungemischt = L(a) < n. (139)
Ist nun Dim a = 0, also Kodim a = 7, so gilt wegen (120) und (137):
Satz 43. Fiir H-Ideale a = K[z, 2y, ..., z,] gilt:

Dim a = 0 A a besitzt keine

triviale Komponente } < Dima =04 L(a) = n. (140)

5.18. Zusammenstellung der Eigenschaften von L(a), perfekte Ideale

Wir geben eine Ubersicht iiber die bisherigen Ergebnisse fiir L(a):

Satz13. L(a) =knra:(F)=a= L(a, F) =k + 1. (38)
Satz 15. 1§ Ideal der Hauptklasse r = L(§) =r. (49)
Satz 16. r < L(a). (53)

Satz 22. L(a™) = L(a). (81)
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Satz 23. L(H™) = L() = r.

Satz 35. L(a)<n + 1. (108)
Satz 36. 7 < o < L(a). (120)
Satz38. r<p<La)=n-+1. (135)
Satz 39. a besitzt eine triviale Komponente & L(a) =n + 1. (136)
Satz 40. a besitzt keine triviale Komponente & L(a) < n. (137)
Satz 41. F existiert mit a: (F) = a & L(a) < n. (138)
Satz 42. Dima = 0 A a ungemischt = L(a) < n. (139)

Satz43. Dima =0Aa ‘:)le;”;éof:%:;; } o Dima = 0+ L(a) = 7. (140)

Wir wollen uns nun mit denjenigen H-Idealen a beschiftigen, bei denen L(a) = r
wird, also die Syzygienkette von kleinstméglicher Linge ist. Zu dieser Klasse gehéren
nach Satz 15 die H-Ideale der Hauptklasse r und nach Satz 23 deren Potenzen,
auBerdem aber noch weitere Ideale, wie das Beispiel im AnschluB an Satz 20 zeigte:
Dort war a = (22, ,%,, 2,23), Dima =1, Kodima =3 — 1 =2, L(a) =2, und
dieses Ideal ist offensichtlich weder ein Hauptklassenideal noch eine Potenz eines
Hauptklassenideals. Daher ist es sinnvoll, fiir diese Klasse von Idealen eine besondere
Bezeichnung einzufiihren:

Definition 14. H-Ideale a = K[z, 2,, ..., z,] der Kodimension 7 mit L(a) =r
heiBlen perfekte Ideale, andernfalls (L(a) = r + 1) imperfekte Ideale.

Aus (53), (136), (140) folgt

Satz 44. T-Ideale und nulldimensionale H-Ideale ohme triviale Komponente sind
perfekt.
Aus Satz 15, (49) und Satz 23 folgt:

Satz 45. H-Ideale der Hauptklasse und Potenzen von H-Idealen der Hauptklasse
sind perfekt.

Ist a ein gemischtes H-Ideal, so gilt in (120) also r < ¢ = L(a); wir haben also:
Jedes gemischte H-Ideal ist imperfekt. Daraus folgt als Kontraposition

Satz 46. Jedes perfekte H-Ideal a = K[z, z,, ..., x,] 18t ungemischt.

Neben den H-Idealen der Hauptklasse und deren Potenzen haben wir damit eine
weitere Klasse von H-Idealen, bei der wir von vornherein wissen, daB sie die wichtige
Eigenschaft der Ungemischtheit haben, so dal deren Nachpriifung durch die zumeist
komplizierte Primirkomponentenzerlegung entfillt (vgl. Kap. 4, Definition 6 und
(88)).

Mit Satz 45 folgen aus Satz 46 unmittelbar der Satz von Macavray (Kap. 4,
Satz 51), daB jedes H-Ideal der Hauptklasse ungemischt ist, und die entsprechende
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Aussage fiir Potenzen von H-Idealen der Hauptklasse (Kap. 4, Satz 70), nicht jedoch
die entsprechenden Sitze fiir P-Ideale (Kap. 4, Sitze 63 und 70). Wie in Kap. 4,
Satz 59, gezeigt wurde, geht beim Ubergang zum équivalenten H-Ideal die Haupt-
klasseneigenschaft im allgemeinen verloren; eine Definition der Perfektheit firr
P-Ideale (a) durch die Perfektheit des dquivalenten H-Ideals a bringt daher nicht
viel ein, worauf schon KRULL in [2], Abschnitt 24, hinweist. Dazu machen wir noch
erginzende Bemerkungen zum zweiten Beispiel von Kapitel 4 im AnschluB an Satz 59:
Wir betrachteten dort das P-Ideal (f,, f,) der Hauptklasse 2 aus K[z,, 2, z3] mit

h =23 —o@,, fr=2—z°
dessen dquivalentes H-Ideal aus K[z, z,, 2;, z;] das Primideal vy = (F,, Fy, Fy, F,)
mit

Fy =2y — 212, Fy =22, — 2%, Fy =202 — 2%, Fy=222—2°

war. Hierzu hatten wir in 5.8. die Syzygienkette

7t oz, gt e 3
—z, — 0 0 —z
(Fy, Fo, Fy POl ° ¢ : (141)
£ z, —Z, —x —x,
0 0 —x, —z, £

berechnet. Hier ist d =1, also r =n —d =3 — 1 = 2, aber L(b{%) = 3, mithin
ist das zum inhomogenen Hauptklassenideal (f,, f,) dquivalente H-Ideal b{? nicht
einmal perfekt. Da v{2 ein Primideal ist, haben wir iiberdies in Erginzung zu Satz 37 den

Satz 37'. Aus der Ungemischtheit eines H-Ideals a < K[z, 24, ..., x,] kann nicht
auf seine Perfektheit geschlossen werden; es gibt imperfekte Primideale.

Die hier gegebene Definition 14 des Perfektheitsbegriffes stammt von GROBNER
aus dem Jahre 1949 (vgl. [1] und [2]) und hat sich fiir die Weiterentwicklung der
Algebra und algebraischen Geometrie als auBerordentlich fruchtbar erwiesen; vgl.
die Einleitung der Dissertation von KLEINERT [1]. Der Begriff ,,perfektes Ideal*
wurde jedoch erstmals von MAcAULAY geprigt; die Macaulayschen Definitionen er-
fordern jedoch eine Prazisierung; hierzu und fiir die Aquivalenzbeweise unter-
einander und mit Definition 14 vgl. MATUTAT und RENSCHUCH [1]. Wenn MACAULAY
dennoch — auch bei seinen Beispielen — zu richtigen Folgerungen gelangt, so des-
halb, weil er durchweg Gegenbeispiele betrachtet; so wurde auch das imperfekte
eindimensionale homogene Primideal v% < K[z, 2;, 2,, 7;) mit der Syzygienkette
(141) erstmals von MacAULAY in [2], Sect. 88, p. 98, angegeben. Von GROBNER wurde
1965 in [7], Abschnitt 6, dieses — bis dahin ,ziemlich vereinzelt dastehende'* (Zitat
nach [7]) — imperfekte Primideal v{2 als Spezialfall einer ganzen Klasse imperfekter
Primideale, der b{%+", gedeutet. Wir werden iiberdies im AnschluB an Satz 50 mit
dem dritten und vierten Beispiel zwei Klassen eindimensionaler homogener Prim-
ideale in K[z, z,, ,, 2;] geben, welche imperfekt sind; es ist sogar anzunehmen,
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daB die meisten Primideale mit rationalen allgemeinen Nullstellen imperfekt sind;
hierauf werden wir im niichsten Kapitel eingehen.

Wir wollen nun eine Verallgemeinerung des fiir H-Ideale der Hauptklasse in Kap. 4,
Satz 54, (128), gegebenen Satzes fiir perfekte Ideale beweisen, die auch von Ma-
CAULAY aus dessen Definitionen gefolgert wird:

Satz 47. Ist a = K[z, 7y, ..., T,] ein perfektes H-Ideal der Kodimension r =n—d
und sind F,, ..., Fy irgendwelche Formen aus K[z, 2y, ..., Z,] mit

a:(F,) =a,
(a, Fy) : (Fy) = (a, Fy), (142)

(@, Fyy ooy Fana) 2 (Fg) = (a, Fy, oo, Faoa),
80 besitzt (a, F, ..., Fy_y, Fy) fiir alle derartigen F, ..., Fy keine triviale Komponente.

Beweis. Aus L(a) = r folgt L(a, Fy, ..., Fg) = r + d = n wegen (142) und durch
d-malige Anwendung von Satz 13, (38). Wegen Kap. 4, Satz 36, (78), ist ferner
Dim (a, F,, ..., Fg) =d — d = 0. Aus Satz43, (140), in der Richtung (&) folgt dann,
daB (a, Fy, ..., Fy) keine triviale Komponente besitzt, q. e. d.

Wie im AnschluB an Satz 54 in Kapitel 4 angekiindigt wurde, gilt fiir perfekte
Ideale auch die Umkehrung von Satz 47, ndmlich

Satz 48. Ist a = K[z, 7y, ..., z,] ein H-Ideal der Kodimension r =n — d, sind
Fy, ..., Fy irgendwelche d Formen mit (142) und besitzt (a, Fy, ..., Fy) fiir eben diese
Formen F, ..., Fy keine triviale Komponente, so ist a perfekt.

Beweis. Nach Kap. 4, Satz 36, (78), ist Dim (a, Fy, ..., F4) =0 wegen (142).
Nach Satz 43 in der Beweisrichtung (=) ist dann L(a, Fy, ..., Fy) = n. Ist L(a) =&,
so ist nach Satz 13, (38), andererseits L(a, Fy, ..., Fy) =k +d, also k +d =n,
mithin ¥k = n — d = r und somit L(a) = r, q.e.d.

Nach dem Dubreilschen Lemma (Kap. 3, Satz 45) ist das Nichtauftreten einer
trivialen Komponente in (a, Fy, ..., F;) damit gleichwertig, daB eine Form Fg,, mit

(a, Fy, ..oy Fy) 0 (Fany) = (a, Fy, ..., Fo)
existiert; mithin gilt

Satz 49. Ein H-Ideal a — K[z, ;, ..., z,] der Kodimension r =n — d st dann
und nur dann perfekt, wenn es d+ 1 Formen Fy, ..., Fy, Fy,, gibt mit

a:(F) =a,

(a, Fy) : (F;) = (a, F)),

........................................... (143)
(@, Fy, oo, Fary) 0 (Fg) = (a, Fy, ..o, Faoy),

(@, Fy, oo, Fay, Fo) : (Far) = (0, Fy, ooy Fyoy, Fo).
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Fiir Fy, ..., Fy, Fg.y ké tnsb dere geeignete Linearformen Ly, ..., Ly, Lsy, ge-
wihlt werden.

Letzteres folgt aus dem verallgemeinerten Dubreilschen Lemma (Kap. 4, Satz 49,
(115) bzw. (113)).

Aber selbst fiir spezielle Linearformen L,, ..., Ly, Ly, Ly, ist die Nachpriifung
von (142) und (143) miihevoll; lediglich fiir eindimensionale H-Ideale, insbesondere
fiir eindimensionale homogene Primideale, ergibt sich daraus wegenp:(F) =p & Fdp
ein brauchbares Verfahren zur Entscheidung iiber Perfektheit oder Imperfektheit:

Satz 50. Ist a = K[z,,2y,...,2,] ein H-Ideal mit Dim a=1, also Kodima=n—1,
80 1st a perfekt dann und nur dann, wenn eine Form F 'rml a (F) = a existiert und
(a, F) keine triviale Komponente besitzt. Ein eindi homog Primideal

p < K[y, 2y, ..., z,] 18t perfekt dann und nur dann, wenn fir F ¢ p das nulldimensionale
H-Ideal (p, F) keine triviale Komponente besitzt.

Beispiel 1. Wir betrachten das Primideal v{;>*'* mit der vorgegebenen allgemeinen Null-
stelle (7, £*®, tety® ¢,7) und

1.2.4.85) 3 .
3% = (T2, — 2,3, 2g2y® — 2,20, 7T — 2,4);
3 1.2.4.
dann ist F = z, § p{5**®, und
(1.2,4,5:
(037%4%, 25) = (23, 2%, To%s 7,25°)

ist ein Potenzproduktideal, dessen Primirkomponentenzerlegung wir nach dem Zerlegungssatz
von R. Kommer (Kap. 2, 2.22, Satz 37, (95)) sofort angeben konnen:

(0540, 2) = (20, 2y, 73) 0 (2%, Zq, 25°);
da hier keine triviale Komponente auftritt, ist 0{;**® perfekt.
Beispiel 2. Es sei
P =03 = (nf2, — 2%, 2o2® — Zzy?, T2 — 22, Tt — )

mit der allgemeinen Nullstelle (¢, £,°,2, tot,% ¢,"). Dieses Ideal hatten wir in 5.15. als zweites
Beispiel betrachtet und dort die dreigliedrige Syzygienkette angegeben. In diesem Beispiel ist
also d = 1, r = 2, L(a) = 3 und mithin p{;**® imperfekt. Mit Satz 50 folgt dies so:

(>4, 2)) = (21, 72y, 262", T, 22°)
= (2o Z1, 7°) 0 (21, Ty, %) 0 (21, 2% 281 25°),
und die dritte Primérkomponente ist eine triviale Komponente, womit die Imperfektheit folgt.
Beispiel 3. Wir betrachten die Klasse von Primidealen
i 1= 0™ < K[zo, 7,, 24, 73]
von Kap. 4, 4.27, Beispiel 1, (165), mit den allgemeinen Nullstellen (¢,™, £57°t,, to,™ 2, ¢,™) und
Ol = (T3 — 2,2y, 2™ 22y — 2™, 2"zt — 2,0, L ZeZy ™R — 222, 4 — ™).

Zwar laBt sich auch hierfiir die dreigliedrige Syzygienkette angeben (vgl. RENsScEUCH (8]), doch
ist es wesentlich einfacher, die Imperfektheit der Ideale v}, mit Hilfe von Satz 50 zu beweisen;
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wir finden nimlich
(0 71) = (21, Zo 23 Z™ 22y, 2™ 0T, .y 2T, 2™Y)
= (T0) Tp, 2™ 0 (T, Ty, 73)
n (zo"l—ﬁ, zy, z,"‘", 3, Iom—azzz‘ . mtm—!),
und die dritte Primérkomponente ist eine triviale Komponente, womit die Imperfektheit folgt.
Fir m = 4 folgt hieraus abrigens wieder das von uns laufend untersuchte Primideal v{¥. Fir
weitere Beispiele siehe RENSORUCR [11].
Beispiel 4. Wir betrachten die Klasse von Primidealen
o = D TR < K[z, 2, 74 75)
von Kap. 4, 4.27., Beispiel 2, (168), mit den allgemeinen Nullstellen (£,™, t,™~2t,2, t,%,™2, t,™) fir
m = 7, m ungerade und
O = (ToTy — TyTy, 2™ 42, — Z,M72, 2,™ 07,8 — 3,0, ..,
Zy2, ™S — 2,32, 2,2 — z,%z,m4)
und
(0 s 21) = (21, ZoT3, Zo™ 427, T2, ., To™ S, 2™ 2)
= (Tgr 21, 7,™2) 0 (21, T, Tg) 0 (T™ 4, 2y, 2,2, Ty T 0TS, L 2T ™),
und die dritte Primirkomponente ist eine triviale Komponente; mithin sind alle Primideale
v3n imperfekt.
Aus den Sitzen 47 bis 50 folgt

Satz 51. Fir H-Ideale a = Kz, 24, ..., z,] gilt:
(A) Nulldimensionale H-Ideale sind dann und nur dann perfekt, wenn ste keine
triviale Komponente besitzen.
, Es existiert wenigstens eine Form F mit a: (F) = a, und
(B)  aist perfekt < { (a, F) ist perfel.
(C) a 18t perfekt A a: (F) = a=> (a, F) ist ungemischt.

Durch (A) und (B) ist die Moglichkeit einer rekursiven Definition fiir perfekte
Ideale gegeben in Analogie zur entsprechenden Definition fiir H-Ideale der Hauptklasse
(Kap. 4, Satz 53); dabei ist die Perfektheit von T-Idealen zusitzlich festzusetzen.

Mit (C) ist schlieBlich eine Verschirfung von Kap. 4, Satz 58, gegeben; dort wurde
gezeigt:

a ist pseudogemischt A a : (F) = a=> (a, F) ist pseudogemischt.
Wie in Kapitel 4 im AnschluB an Satz 58 angekiindigt wurde, sind die perfekten
H-Ideale gerade solche ungemischten H-Ideale, fiir welche bei a : (F) = a die Ideal-
summe (a, F) stets ungemischt ist. Die Frage, inwieweit man umgekehrt von (C)
unter Abschwichung von (B) auf die Perfektheit schlieBen kann, wurde von GROBNER
in [1], FuBnote 24, aufgegriffen:

Fiir alle F mit a: (F) = a sei (a, F) ungemischt; folgt daraus: a ist perfekt?

Diese Frage wurde von EISENREICH in [2] negativ beantwortet; wir haben also

Satz 52. Ist a = K[z, z,, ..., x,] ein H-Ideal und gilt fir alle Formen F mit
a:(F) =a, dap (a, F) ungemsscht ist, so braucht a nicht perfekt zu sein.
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DaB a dann immerhin ungemischt ist, folgt aus 4.19., Satz 47.

Die Tatsache, daBl es moglich war, verschiedene fiir H-Ideale der Hauptklasse
giiltige Sitze auf perfekte Ideale zu iibertragen, laBt die Frage sinnvoll erscheinen,
ob dies auch bei Satz 17 der Fall ist, wonach die Syzygienketten von H-Idealen der
Hauptklasse reversible Syzygienketten sind (vgl. Definition 9, (34)). Hierzu gilt in
der Tat der

Satz 53. Ein H-Ideal a = Kz, 2y, ..., z,] 16t dann und nur dann perfekt, wenn
seine Syzygienkette eine reversible Syzygienkette ist.

Wir kénnen den von EISENREICH stammenden Beweis hier nicht fithren; wir ver-
weisen dazu auf die lehrbuchmiBige Darstellung bei GRSBNER in [9], Kap. 4, § 5, IV,
die Habilitationsschrift [3] von ErseNeErcH und die weiterfithrende Dissertation [1]
von KueNEgrT. Mit diesen Arbeiten diirfte die Klirung des so wichtigen — urspriing-
lich bei MacAULAY noch etwas nebulésen — Perfektheitsbegriffes zu einem befrie-
digenden AbschluB gebracht worden sein.

Durch die Arbeit von RErsNer [1] erhebt sich die Frage, inwieweit die Aquivalenz
dieser Perfektheitedefinitionen auch bei Korpern K endlicher Charakteristik (vgl.
MfL Bd. 3, 13.7.) gegeben ist. Wir beweisen dazu

Satz 54. Die Linge der Syzygienkette und damit die Perfektheit oder Imperfektheit
eines H-Ideals a < K[z, 2, ..., 4] 18t von der Charakteristik des Korpers K abhdngig.

Beweis. Dazu rechnen wir die Syzygienkette des Beispiels von REISNER [1] aus.
Beispiel 5. Es handelt sich um das Potenzproduktideal a, = K[z, 2;, Z3, Z3, %4, %) Mit

d U = (Tg%1%3, ZoT1%3) ToZeur Z0ZaTsr ToZTer 2124T8) T1%3%0 T18(Ts> TZa%e To¥eTs)
un
Dim a, =2, Kodima, = 3.
Nach Satz 21, (58), ergeben sich fiir den zweiten Syzygienmodul 45 Syzygien, davon 15 lineare
und 30 quadratische, die aus den ersten 15 kombinierbar sind; der zweite Syzygienmodul wird
mithin

z, @ z% 0 0 0 0 0 0 O 0 0 0 0 0

-z, 0 0 =z z 0 0 0 0 0 0 0 0 0 O

0-2 0 0 0 2 2 0 0 0 0 0 0 0 0

0 0 0 0-2 0 0 z 2z 0 0 0 0 0 0

vr | 0 0 0 0 0 0-z 0-z x 0 0 0 0 0
T 0 0 -z 0 0 0 0 0 0 O =z z 0 0 0
0 0 0-z 0 0 0 0 0 0 0 0 =z z 0

0 0 0 0 0 0 0 0 0—z 0—2 0 —z O

0 0 0 0 0-2 0 0 0 0 0 0—2z 0 gz

0 0 0 0 0 0 0—z 0 0—z 0 0 00—z

Zur Berechnung des dritten Syzygienmoduls haben wir das nichtlineare Gleichungssystem

P, 0
Uh [ )=
Py, 0 /100
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von 10 Gleichungen in 15 Unbekannten zu 13sen. Aus der ersten Gleichung folgt
&, =z, d + 2B, = —24 + z,C, Py= —28—z0C,
aus der zweiten Gleichung folgt
P =24 + D, P5=28—zD,
aus der dritten Gleichung folgt
Py = —n4 + 2B, ;=20 —z,E,
aus der vierten Gleichung folgt zuniichat
Py =2,B+zJ, $y=—2,D—2J,
aus der fiinften Gleichung folgt J/ = —EF — z,F und mithin
Py =2,B — 2, — 2,2, F, D)= —2z. D+ z,E + 2,2,F,

ferner
Pio = 2,0 — 2D + 25,F,
aus der sechsten Gleichung folgt
Py = —2B + 2,6, Py=—aC —zb,
aus der siebenten Gleichung folgt zunichst
Py = 2d + 2 H, Py =D —z,H,
aus der achten Gleichung folgt z,24(G + H — z,F) = 0, also H = zoF' — G und mithin
Py = Tpd + 2@ — 2,G, Py = 7D — 2z, F + 7,0,
aus der neunten Gleichung folgt
D5 = %oE + 7 F — 2,G;
die zehnte Gleichung ist dann identisch in den P: n 4, B,C, D, E, F, @ ertillt.

Nach 4, B, C, D, E, G, F geordnet, gibt dies sieben Syzygien 8,, 8, 8, 8, 8;, 8, 8;, die den
dritten Syzygienmodul aufspannen:

z z 0 0 0 O 0
—2z 0 =z 0 0 0. 0
0 —z—2z 0 0 0 0
z 0 0 =z 0 0 0
0 2z 0 —2 0 0 0
—z 0 0 0 z 0. 0
0 0 =z 0 —z 0 0
Ul ; = (8y, 8y, 85, 8, 8, 8, 8;) = 0 =z 0 0 —z, 0  —=zz,
0 0 0 —z =z 0 22
0 0 =z —z 0 0 Zgzy
0 -z, 0 0 0 z: O
0 0 —z, 0 0 —=z 0
Zy, 0 0 0 0 —z5: ez
0 0 0 =z 0 2 —zz
0 0 0 0 2z-—z Loy
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Hier erhebt sich die Frage, ob 8, von 8,, 8,, 8, 8,, 85, 8, abhingt. Eine entsprechende Rechnung
liefert
28, = 4;8; — 2,83 + T8y — 38, + %185 — ZoSs- (144)
Ist nun Char (K) = 2, 8o kann in (144) durch 2 dividiert werden, und 8, kann gestrichen
werden. Die Syzygienkette von a, ist dann
Gy Ul Ulss = (81, 85, 83, 84, 852 8);
es ist L(a,) = 3 = Kodim a,, und a, ist nach Definition 14 perfekt.
Ist hingegen Char (K) = 2, so muB 8, im dritten Syzygienmodul bleiben, und aus (144) ergibt
sich der vierte Syzygienmodul

EA z5
% -
£ £2)

U, = —Zy| = | =23 |
Lot Lo
—%o )
-2 0

und bei Char (K) = 2 ist die Syzygienkette mithin
0y Uloisr Uty = (81, 85, 85, 8, 85, 85, 87), Uy,

also L(a,) = 4 > Kodim a,, und a, ist nach Definition 14 imperfekt.
Mit diesem Beispiel wird zugleich gezeigt, daB fiir den Satz 35 vom Abbrechen der Syzygien-
kette der dort gegebene Beweis bei Char (K) + 0 versagt.



6. Die Hilbertfunktion

6.1. Einleitung, Definitionen, Grundeigenschaften

Die einfachste Motivierung fiir die Einfiihrung der Hilbertfunktion ist durch die
beiden Beispiele am SchluB von 5.15. gegeben: Dort ergaben sich fiir die Differenz
Al m) — V(t; a) = (' ‘: ") Vit a)

erheblich einfachere Ausdriicke als fiir die Volumfunktion V(¢; a); in den genannten
Beispielen waren dies die Polynome 4¢ + 1 bzw. 7t — 2. Bei diesen beiden Beispielen
handelte es sich um Primideale mit den allgemeinen Nullstellen (to%, £,%,, tot,3, t,%)
bzw. (87, 5,2 tots®, ¢,7), und die Gleichheit der Gradzahlen der Koordinaten der all-
gemeinen Nullstellen mit den Koeffizienten von ¢ (ndmlich 4 bzw. 7) laBt einen Zu-
sammenhang erahnen, den HILBERT bereits in seiner Arbeit [1] erkannt hat. Die viel-
seitige Anwendbarkeit dieser Anzahlfunktion A(t; n) — V(t; a) beruht darauf, daB
sie — dhnlich wie das charakteristische Polynom in der analytischen Geometrie —
eine geometrische Invariante ist. Die Auffindung derartiger Invarianten ist in ver-
schiedenen mathematischen Theorien von grundsétzlicher Bedeutung und hat zu
einer eigenen Theorie, der Invariantentheorie, gefiihrt.

Am SchluBl dieses Kapitels werden wir auBerdem iiber die Hilbertschen Glei-
chungen einen Zusammenhang mit der Frage nach der Berechnung eines Primideals
bei vorgegebener rationaler allgemeiner Nullstelle herstellen.

Die oft so unbequemen Studentenfragen: ,,Wie kommt man darauf?*‘ und ,,Wozu
18t das gut?*‘ lassen sich also im Fall der Hilbertfunktion besonders iiberzeugend und
schnell beantworten. Fiir den oft weitaus komplizierteren ErkenntnisprozeB in der
Mathematik kann jedoch dieses Musterbeispiel keineswegs reprisentativ sein. Ins-
besondere diirfte es eine begliickende Ausnahme sein, wenn es — wie in der Hilbert-
schen Arbeit [1] von 1890 — gelingt, die mathematische Abstraktion mit der Anwend-
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barkeit in ein und derselben Arbeit zu koppeln. Dieser Idealzustand diirfte bei der
iiberwiegenden Mehrheit der mathematischen Erkenntnisprozesse unerreichbar sein.

Die geniale Leistung von HILBERT wird nur wenig durch die Tatsache geschmilert,
daB er einige wesentliche Beweise nicht ausgefiihrt hat, vor allem den fiir das charak-
teristische Polynom, der erstmals 1928 von vAN DER WAERDEN in [3] gefiihrt wurde.
Wir wollen hier im wesentlichen der Darstellung von GrROBNER in [2] folgen und
geben zunichst die

Definition 1. Ist a = K[z, 21, ..., z,] ein H-Ideal, so versteht man unter der
Hilbertfunktion H(t; a) die Anzahlfunktion

H(t;0) = At n) — V(t;0) = (':") — Vit;a). )

Nach Kap. 5, Definition 12, ist dabei V(¢; a) die Volumfunktion, welche als Anzahl
der in a enthaltenen linear unabhingigen Formen ¢-ten Grades definiert war. Mit
A(t; n) bezeichneten wir die Anzahl der verschiedenen Potenzprodukte ¢-ten Grades
in 2, Zy, ..., 2, (Kap. 5, Definition 13) und bewiesen dafiir in Kap. 5, Satz 32, (94),
die in (1) benutzte Hurwitzsche Formel

A(t; n) =(‘+ ">
n

Dann gilt offenbar
Satz 1. Fiir Potenzproduktideale a, = K[z, z;, ..., z,] ist

V(t; a,) = Anzahl der in a, enthaltenen verschiedenen Potenzprodukte @
t-ten Grades in zy, , ..., T,,

H(t; a,) = Anzahl der in a, nicht enthaltenen Potenzprodukte 3
t-ten. Grades in o, 2, ..., Tp.

Eine Menge von V linear unabhiingigen Formen ¢-ten Grades geht bei Anwendung
einer umkehrbaren linearen homogenen Variablentransformation von zy, zy, ..., z,
mit Koeffizienten aus K (vgl. ML Bd. 7, 3.5.2.) in V linear unabhingige Formen
t-ten Grades in den transformierten Variablen %, Z,, ..., Z, iber; denn im Fall einer
linearen Abhingigkeit miite diese wegen der vorausgesetzten Umkehrbarkeit der
linearen homogenen Transformation auch schon fiir die ¥ Ausgangsformen in
Zg, 21, . .., &y vorliegen. Wir haben also den

Satz 2. V(t; a) und H(t; a) sind invariant gegeniiber umkehrbaren linearen homo-
genen Transformationen der Variablen x,, x,, ..., z, mit Koeffizienten aus K.

Aus der projektiven Geometrie wird verstindlich, daB man die vorerwdhnten
umkehrbaren linearen homogenen Transformationen als projektive Transformationen
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bezeichnet (vgl. MfL, Bd. 7, 3.5.); Satz 2 wiirde damit lauten: ,,V(¢; a) und H(t; a)
sind invariant gegeniiber projektiven Transf £ ¢, wofiir man noch kiirzer sagt:
,V(¢; a) und H(t; a) stnd pm;pektwe Invarianten.

Nun sind V(¢; a) und H(¢; a) Funktionen von ¢, und ihre Invarianz bedeutet die
Invarianz aller auftretenden Koeffizienten. Wie wir gleich sehen werden, sind V(¢; a)
und H(¢; a) Polynome in ¢, deren Gradzahlen also ebenfalls Invarianten sind. Satz 2
rechtfertigt die Annahme, daB diese invarianten GréBen geometrische Deutungen
zulassen. DaB V(¢; a) fiir gentigend groBes ¢ ein Polynom (hdchstens vom Grad n)
ist, folgt unmittelbar aus Kap. 5, Satz 33, (104). Wegen (1) folgt dieselbe Aussage
fiir die Hilbertfunktion H(t; a); wir haben also nach (1) und Kap. 5, Satz 33, den

Satz 3. Ist a = U}, = (Fy, ..., F,) < K[z, 4, ..., x,] ein H-Ideal mit der ab-
brechenden Syzygienkette

v, U, U, ..., Ut

TN
sowie
U;, = (Fy, ..., F) und 1:=HhF),
= (%) und Ty 1= h(PL),
Uz, = (B30 und Ty = h(PY), (Kap. 5, (103))
U, = (P3) und T 1= h(PY),
80 ist
t+n Cft+n— t+n— 1y — 1y
H(t;a) = —
o= ()AL AT
— "(t+”‘711—721—734)+_ )
i=1 n
+ (—1)F gv (l Fr—Ty = = Ty — Tki).
i=1 n
wobet m Fall t +n — 7y — -+« — 7., — 7y < O der entsprechende Binomialkoeffi-

zient gletch Null zu setzen tst.

Auf diese Weise kann H(t; a) in endlich vielen Schritten berechnet werden.

Aus (4) folgt

Satz 4. Die Hilbertfunktion H(t; a) ist fiir geniigend grofes t ein Polynom mit
hH(t; a) < .

Ziel der folgenden Ausfiithrungen ist es nun, Satz 4 zu prézisieren. HILBERT hatte
in [1] bereits h(H(t; a)) = d = Dim a angegeben, jedoch (was vielfach nicht bekannt
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ist) keinen generellen Beweis gefiihrt. Dazu miissen wir nun etwas weiter ausholen
und beweisen einige Grundeigenschaften fiir V(¢; a) und H(t; a) unter Vermeidung
von (4). Zunichst beweisen wir den

Satz 5. Fiir die Volumfunktion V(t; a) eines H-Ideals a < K[z, 2y, ..., 2,] gilt

Vit;e) < (‘+ ”) ®
n

V(t; ) =0, ©
Vit;pr) = V(t; (@0, 21, -.0s 70) = (t : n). M
Vit; 4r) =(‘j;”) fir geniigend grofest, ®)
Vit; a) = (”;") fiir geniigend. groes t = a = ag., ®
WF) == V(c;(F))=('+’;_’) fir tzx, (10)

=b= Vit 0) = P(t;5), (11)
acb= V(t;a) < V(¢ ), (12)
Vit;a+b) = V(t;a) + V(t;6) — Pit;anb), (13)
V(t;anb) = V(t;a) + V(t;0) — V(t; a + b), (14)
MF)=t=V(t;an(F) =Vt —1;0:(F), (15)
a:(F) =aah(F) == V{t;an (F) = Vit —;0), (16)
a:(l)=aabl)y=1=V(;an (D) =TV(t—1;aq), (17)

h(F) =©= V(t; (0, F)) = V(t; 0) + (' + o ’) —Vlt—;a:(F), (18)

a:(F) =aak(F) == V(t;(a, F)) = V(t;a) + (t + :— ’) —V(it—r;a),
(18)
a:(D) = anh(L) =1 V(t; (0, D) = V(t;a) + ('+:_ 1) —Vi—1;q),
(20)

V(t; a) = V(t; gala)) fiir geniigend gropes t. (21)
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Beweis. (5), (6), (7), (8), (9) sind evident.
Ist a = (F) ein Hauptideal, so ist eine linear unabhéngige Modulbasis von 9)2(‘; (F))
bei A(F) = und ¢ = v durch alle Formen p;F gegeben, wobei die p; alle Potenz-

produkte vom Grad ¢ — rin%y, 2y, ..., z, durchlaufen ; dies sind aber gerade (t = t) s
mithin gilt (10). "

(11) ist trivial, (12) ist evident; fiir das Auftreten des Gleichheitszeichens sei als
Beispiel a, = (2, 242y, 2,%), b, = (%, *,) genannt.

Zum Beweis von (13) haben wir die Anzahl der linear unabhéngigen Elemente der
K-Moduln M(¢; a nb), M(¢; a), M(¢; b) und M(¢; a + b) zu bestimmen. Alle diese
Moduln sind Untermoduln von?}l(t; (%0, @1, -5 24)) ; alle Elemente dieser Moduln, also
auch die jeweiligen Basisformen, sind folglich von der Gestalt k,p, + k;p; + ksps+ -+,
Wworin p;, Py, Pg, ... Potenzprodukte ¢-ten Grades in y, 2, ..., Z, und k;, ko, ks, ...
Elemente aus K sind. Minimalbasen der genannten Moduln bestehen also aus linear
unabhingigen Formen; wir denken uns jeweils den GaufBschen Algorithmus durch-
gefiihrt; dann ist die lineare Unabhingigkeit der Basisformen mit der Verschieden-
heit der ersten Potenzprodukte gleichbedeutend. Wie in der linearen Algebra (MfL
Bd. 3, 4.2, Satz 2) gilt dann auch hier das Steinitzsche Austauschverfahren, d. h.:
Irgendwelche linear unabhingigen Formen kénnen zu einer Minimalbasis erginzt
werden. Wir konnen also o.B.d. A. von folgenden Basisdarstellungen ausgehen:

ME;anb) = (Fy, ..., F,),

Mt;a) = (Fpy oo Fpy Gy, o0, Gy)
und
M(t; ) = (Fy, oeny Foy Hy,y ooy Hy).

Dabei konnen wir dann also jede dieser drei Basisdarstellungen als Minimalbasis an-
nehmen. Nach dem Vorhergesagten konnen wir weiterhin voraussetzen, daB die
ersten Potenzprodukte von Fi,..., F, alle verschieden sind und daB in G,, ..., &
keines dieser ersten Potenzprodukte von F,,..., F, auftritt, entsprechend bei
H,, ..., H,. Nach Kap. 1, Satz 24, (57), hat dann M(¢; a 4 b) die Basis

M5 @ + 8) = (Fyy ovy Foy Gy ooy G Hy, ooy Hy), 22)
und (13) besagt gerade, dal (22) eine Minimalbasis ist, daB also keines der Elemente
F,..,F,@Qy,..., Gy H,... H gestrichen werden kann. Dies ist zunéchst fiir
F,, ..., F, einzusehen, da deren erste Potenzprodukte in @, ..., G;, Hy, ..., H; nicht
auftreten. Eine lineare Abhingigkeit kénnte also allenfalls zwischen @, ..., G;,
H,, ..., H, existieren. Dies werde zum Widerspruch gefiihrt: Wire etwa

Hy =46 + -+ + 4G + mHy + -+ + - Hey,

80 wiire
Fi=M0G + -+ 40 = —wmH — - — pHey + Hy
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ein Element aus a n b, miiBte also aus F,, ..., F, linear kombinierbar sein, was wegen
des Nichtauftretens der ersten Potenzprodukte von ¥y, ..., F,in Gy, ..., Gy, Hy, ..., H
unmdglich ist. Mithin ist (22) eine Minimalbasig, und es gilt (13). Durch Umstellung
folgt (14) aus (13).

Nach Kap. 1, Satz 52, (146), gilt (a: (F)) - (F) = a n (¥), und fiir 4(F) = 7 folgt
daraus (15). (16) folgt unmittelbar aus (15), (17) entsprechend aus (16).

Zum Beweis von (18) gehen wir von (13) aus und setzen b = (F); dies gibt

V(t; (@, F)) = V(t; a) + P(t; (F)) — P(t; an (B);

darin (15) und (16) eingesetzt, folgt (18). (19) und (20) folgen unmittelbar aus (18).

Zum Beweis von (21) schlieBen wir so: Gemé Kap. 4, (53), (54), sei a = ga(a) n qr,
worin g,(a) das n-te Grundideal und qr eine triviale Komponente ist. Nach (14) ist
dann

V(t; a) = V(t; ga(a) n ar) = V(t; ga(@)) + V(t; ar) — V(t; ga(@) + qr)-

Nach Kap. 3, Definition 17, ist denn mit gz auch gu(a) + gr ein 7-Ideal; nach (8)
ist also fiir geniigend groBes ¢

V(t; ar) = P(t; gala) + ar) = (' j: ")

und mithin gilt (21).
Damit ist Satz 5 vollstindig bewiesen.

Wir schreiben nun die Ergebnisse von Satz 5 auf die Hilbertfunktion H(t; a) um.
Dazu benétigen wir neben (1) noch

H(t—r;a:(F)):(t+Z_1)—V(t—t;a:(F)),
Ht—1;a: (L) =

H(t —1;aq) =

H(t —; a) =('+Z"’)_V(z—r,u),

und gewinnen damit
Satz 6. Fiir die Hilbertfunkiton H(t; a) eines H-Ideals a = K[z, 2y, ..., 2,) gilt
H(t;a) 20, (23)

H{t; 0) = (' - "), (24)
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Ht;pr) = H(t; (o, 21, -, 24)) =0, (25)
H(t; qr) = 0 fiir geniigend grofes ¢, (26)
H(t;a) =0 fiir gendigend grofes t = a = qr, (27)
h(F)=1$H(t;(F))=(t-:n)—(t+2_’) fir 21, @8)
a="b= H(t;a) = H(t;b), (29)
acb=H(t;a) = H(t; b), (30)
H(¢;a+b) =H(t;a) + H(; b) — H(t;anb), (31)
H(t;anb) =H(t;a) + H(¢t; b) — H(t;a + b), (32)

h(F)=.,=>H(¢;gn(F)):(l+n)_(t+n—1)+H(t—1;a:(F)),
n n (33)
a:(F)=aAkF)=1

=>H(t;an(F))=(‘j:")_(‘+:_’)+H(t—r,a), (34)
a:(Ly=aabl) =1

:H(t;an(L))=(':")—('+:_1)+Hu—l;a)

=(r ) e e, (35)
MF) =t=> H(t; (0, F)) = H(t; a) — H(t — 7; a: (F)), (36)
a:(F) =anh(F) =7 H(t; (o, F)) = H(t; 0) — Hlt — 73 0), (37)
a:(L) =ank(L) =1= H(t; (a, L)) = H(t;a) — Ht — 1; a), (38)
H(t; a) = H(t; ga(0)  fiir geniigend grofes ¢t. (39)

Wir haben in (26), (27) und (39) den Zusatz ,,fiir geniigend groBes ¢ machen miissen,
ohne eine Schranke angegeben zu haben. Im Fall von (26) und (27) ergibt sich diese
Schranke durch Idealexponenten. Weiterhin werden wir jedoch in Zusammenhang
mit der Darstellung (4) noch ofter die Voraussetzung ,fiir geniigend groflies ¢
machen miissen, wobei eine Schranke durch ¢t +7 — 7y — - — 7y, — 7y 20
gegeben ist. Bei manchen Betrachtungen sind beide Schranken miteinander auf mit-
unter komplizierte Weise verzahnt, so da8 iiber derartige Schranken keine Aussagen
mehr gemacht werden kénnen.
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Wir wollen (25), (26), (27) und auch (39) noch als Sitze formulieren:

Setz 7. Ein H-Ideal a — K[z, 7y, ..., ,] 18t genau dann ein T-Ideal, wenn
H(t; a) = 0 fiir geniigend grofes t gilt.

Satz 8. Fiir geniigend grofes t hat eine triviale Komponente keinen Einfluf auf den
Wert der Hilbertfunktion.

Satz 8 ist von groBer beweistechnischer Bedeutung; daraufhin kann ndmlich bei
allen Aussagen iiber die Hilbertfunktion H(t; a) das H-Ideal als ohne triviale Kompo-
nente vorausgesetzt werden. Davon werden wir im folgenden Gebrauch machen.
‘Wenn nun aber a keine triviale Komponente hat, existiert nach Kap. 4, (113), eine
Linearform L mit a : (L) = a. Ist Dim a = d, so ist dann Dim (a, L) = d — 1 nach
Kap. 4, Satz 36, (78). Fiir die nachzuweisende Darstellung der Hilbertfunktion als
Polynom P(t; a) haben wir mit (38) eine Rekursionsformel zu einem Induktions-
beweis nach der Dimension d; die im folgenden Abschnitt durchgefiihrten Betrach-
tungen fiir nulldimensionale H-Ideale stellen fiir diesen Induktionsbeweis den
Induktionsanfang dar.

6.2 Die Hilbertfunktion nulldimensionaler H-ldeale

Wir beweisen nun in mehreren Etappen den
Satz 9. Ist a = K[z, x,, ..., z,) ein H-Ideal mit Dim a = 0, so st
H(t; a) = hofa) € N*. (40)
Als erstes untersuchen wir den Spezialfall, da8 a ein nulldimensionales Primideal
ist:
Satz 10. Istp < K[z, 2y, ..., x,] ein primes H-Ideal mit Dimp = 0, so st
H(t; p) = hofp) = 1. (41)
Beweis. Nach Kap. 4, Satz 61, (143), hat p die Basisdarstellung
P = (Yo — %1%0; -+ > YoTn — YaZ0),
welches nach der umkehrbaren linearen Transformation zy = z,, 2; = Yo% — ¥i%o

(t=1,2,..,n)inp, = (2, ..., 2s) < K[zq, 21, ..., 2,] libergeht. Inp, sind alle Potenz-
produkte ¢-ten Grades enthalten, ausgenommen zy, also ist H(¢;p,) = 1, q.e.d.
Satz 11. Ist p = K[z, 2y, ..., 2,] ein primes H-Ideal mit Dimyp = 0, so gslt fiir
die Primidealpotenz pe
H(t: 30) = holpe) = (" el

. )eN‘ fir t=o0—1. (42)
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Beweis. Esist nach dem vorigen Beweis H(¢; pe) = H(¢; p,°) mit

P8 = (219, 2,72y, ..., 240) < K[z, 2y, .+, 2,]-
In p,¢ sind die folgenden Potenzprodukte ¢-ten Grades nicht enthalten:

EN

20'732y, 00y 2024,

20222, 2012212y, .., 200 22,2,

20'7%2,3, 2032, %29, .0, 2000203,

P S PR NP P P PA T PR S
Die Anzahl der Potenzprodukte k-ten Grades in z,, ..., z, ist nun gleich der Anzahl
der Potenzprodukte k-ten Grades in @, «,, ..., Z,-y; nach der Hurwitzschen Formel
Kap. 4, Satz 32, (94), ist diese gleich (k +-7i—l- 1); in obiger Aufstellung mu8 dann
t—o+1 gOSein;fﬁrtgg—lgﬂtals:

H(t;p,,e):l+n+(2+n_l)+(3+n_l)+...

n—1 n—1
+(g—1+n—1)
n—1
1 2 -2
e e I ey
n—1 n—1 n—1
Nun gilt (vgl. ML Bd. 1, 3.5., (25)):
2 ™
= =
mzes (1) =(2) “
also wird
H(t;p,e)=1+(")+("+1)+("+2)+~-~+("+"“2).
1 2 3 o—1
und nach Kap. 5, (102), firn =9 — 1, m =n — 1 ist also
e =("T2TY):
o—1

also gilt (42), q.e.d.
Satz 12. Ist g = K[z, 2y, ..., Z,] €in p-primdres H-Ideal mit Dim q = 0, so gilt
H(t; q) = ho(q) := p € N*. (44)
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Beweis. Analog8atz 1ist H(t; q) wiederum von ¢ unabhingig; nach Kap. 2, (24),
ist p¢ S q S p, und nach (30) und (42) folgt daraus

n+p—1

o—1

also gilt (44), denn hy(q) € N* folgt damit aus (4), g.e.d.

Nach Kap. 3, Satz 21, (58), ist NG (q) = NG (p); fiir g = p ist also ke(q) = u
> ho(p) = 1. Geometrisch kann also der Punkt NG (q) als u-facher Punkt NG (p)
aufgefaBt werden; wir geben daher die

)ghom) 21,

Definition 2. Ist q = K[z, 2y, ..., z,] ein p-primires H-Ideal mit Dim q = 0,
80 heifit

ho(q) = & (45)
die Multiplizitit des Primérideals q bzw. des Punktes NG (p).
Zum Beweis von Satz 9 benétigen wir nun noch einen Hilfssatz, nimlich

Satz 13. Ist a = K[zy, 2y, ..., z,] ein nicht-primires H-Ideal mit Dim a = 0 und
okne triviale Komponente, ist ferner a = q; nqy n--- nq, die unverkirzbare Dar-
stellung von a durch grofte Priméirkomponenten und b := g, n+++ n @, 80 18¢

Dim (q,,b) = —1, (46)
also (q,,b) = q, + b etn T-Ideal.

Beweis. Nach Kap. 1, (100), ist Rad (q;, b) = Rad (p,, b); nach Kap. 4, Satz 3,
(12), ist

Dim (g, b) = Dim Rad (q;, b) = Dim Rad (p;, b) = Dim (p;, b). (47)
Nach Voraussetzung hat a keine triviale Komponente; aus Dim a = 0 folgt also
Dim g, =0 und Dimyp, =0 nach Kap. 4, Satz 3, (12). Ist nun b = (G@,, ..., Gy)
und wire Dim (p,, b) = Dim (p,, Gy, ..., Gy) = 0, so miilte G, € p,, ..., Gy € p, sein
nach Kap. 4, Satz 33, (68), im Widerspruch zur Annahme, da8 a nicht primir ist.
Nach Kap. 4, Satz 33, (68), ist also Dim (p,, b) = —1, und nach (47) gilt mithin (46),
q.e.d.

Wir beweisen nun Satz 9 in der etwas detaillierteren Fassung von

Satz 14. Ist a = K[z, 2, ..., z,] ein H-Ideal mit Dim a = 0 und der unverkiirz-
baren Darstellung a = q, n q; n +++ n q, ohne triviale Komponente, so ist
H(t; a) = ho(@1) + ho(a2) + -+ + holqi) € N*. (48)
Beweis, Wie in Satz 13 setzen wira =g, nb mit b = g, n -+ n q;. Nach (32) ist
H(t; 0) = H(t; g, nb) = H(t; q) + H(t; ) — H{t; . + b).
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Wegen (46) und (26) ist H(¢; (a1, 5)) = H(t; a, + b) = 0, also
Ht;a) = H{t; ) + H(t; b);
entsprechend folgt
H(t;8) = H(t; q0) + H(t; 0300+ 0 i),
H(t;qyn 0 q) = H(t; 09) + Hit; q00000 0 )
usw., also

H(t;a) = H(t; 1) + H(t; qa) + -+ + H(ts q),
q.e.d.

6.3.  Das charakteristische Polynom

Satz 16. Ist a = K[z, 2y, ..., z,] ein H-Ideal mit Dim a = d, so ist fiir geniigend
grofes t

e = a=h () +h(, L) en(, L)+

t t
+hm(2)+h,,-,(l)+h,, 49)
also esn Polynom P(t; a) in t vom Grad
h(P(t;a)) =d =Dima (60)
mit
ho(a) € N* (61)
und
M@ €Z fir 8=1,2,...,4d. (52)

Definition 8. P(t; a) heiBt das charakteristische Polynom oder Postulations-
polynom des H-Ideals a < K[z, 2;, ..., Z,].

Definition 4. Die Koeffizienten ky(a), ky(a), ..., ka-y(a), hg(a) des charakte-
ristischen Polynoms P(t; a) heiBen die Hilbertschen Koeffizienten. ho(a) heiBt die
Ordnung oder der Grad des H-Ideals a < K[z, 2;, ..., Z4].

Aus Satz 2 folgt

Satz 16. Die Hilbertschen Koeffizienten sind invariant gegeniiber wmkehrbaren

linearen homog Tranu,w 41 also gegeniiber projektiven Transf ti ;
kurz: Die Hilbertschen Koeffizienten sind projekiive Invariant
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Zur Frage der Invarianz gegeniiber allgemeineren Transformationen verweisen wir
auf GROBNER [4, 5] und [6].

Da die Hilbertfunktion H(¢; a) eine Anzahlfunktion ist, muB bei ihrer Darstellung
als Polynom P(¢; a) dieses Polynom fiir ganzzahlige ¢ wieder ganzzahlige Funktions-
werte ergeben; diese Eigenschaft ist aus der Darstellung (48) sofort abzulesen.
Einfacher wire es, wenn stets

P(t;a) =betd + bt + ... +by mit by, by, ..., bgaus Z
gelten wiirde, was aber nicht durchweg zutrifft, beispielsweise nicht fiir

¢
P(t; a) =3(2) + -

Dennoch ist die Darstellung (49) nicht die einzig mégliche; oft benutzt wird auch
t+d t+d—1 t
P(;a) =k k R L . 5
o=k ) e m (T () 3)

Fiir die Umrechnung von (49) auf (563) und umgekehrt sei auf RENscEUCH [1], § 6,
verwiesen. Die dabei benutzten Additionstheoreme fiir Binomialkoeffizienten werden
uns jedoch im folgenden leider nicht ganz erspart bleiben, weshalb sie hier zusammen-
gestellt werden sollen. Zunichst erinnern wir an

n + 7y E fn Ny

("e")= 2062 o
aus MfL Bd. 1, 3.5., (31). Aus (54) folgt fiir n, = 1

n+ 1\ _ [ ny

()= ()2 ®
insbesondere fiir n, =¢ — 1

t t—1 t—1

()= () 620 -

In dhnlicher Weise wie (64) beweist man

ny — * ny \[me+x—1
= —1)* . 57
(o) 2o () () o
Wir werden (57) insbesondere fiir n, = ¢ + n bendtigen, wie aus (4) zu entnehmen ist.
An dieser Stelle sei jedoch vermerkt, da8 wir hier die Binomialkoeffizienten in Ver-
allgemeinerung von MfL Bd. 1, 3.5., (22)ff., jetzt durch
a\ _a-@—1)--(@a—k+1)
k] 1-2.k

mit a€R, ke N*,(‘;) =1 (58
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definieren, also insbesondere die jetzt auftretenden Mdoglichkeiten mit a € Z, a ¢ N
zulassen.

Dies hat zur Folge, daB der Fall P(¢; a) < O fiir solche ¢ ¢ N*, die nicht ,,geniigend
groB* sind, durchaus eintreten kann, aber auch nur fiir solche ¢; denn fiir diejenigen ¢
mit P(¢; a) = H(t; a) ist P(t; a) = 0 wegen H(¢; a) = 0.

Hierfir geben wir ein Beispiel an. In K[z, 2y, 3, z;] betrachten wir die eindi: jonalen
H-Ideale

U = (Z™, 2™ 712y, T Ty, T, ™Y, L T ™, ™), m € NYL (69)

Nach Satz 1 ist H(¢; a,;) gleich der Anzahl der in a, nicht enthaltenen Potenzprodukte t-ten
Grades in z, 7y, 2y, %y; diese sind

z5f, 2,1y, L, T, Anzahl: ¢t + 1,
2023471, 2,200, L, 2740, Anzshl: ¢,

23243, 2%y, ..., 20240, Anzahl: ¢t — 1,

2, Mgy, g Mg bemg | g el -, Anzshl: t — (m — 2);

fiir gendigend groBes ¢ ist also die Gesamtanzahl

m:+1-(1+2+-~+(m—2))=m4+1—(’"—_"_(1”‘—21-”.:4.1—(’""‘).

2 2

also ist

P(z;a,,.)=mt+1—("‘2_‘), (60)
und aus (60) folgt

m]P(l;a..)

3 3

4 44— 2

b 88— b

8 8t— 9<0 fir ¢=1

7 T—14<0 fir t=1

8 8 —-20<0 fiar t=1,2

9 8 —-27T<0 fir t=1,2

10 106 -36<0 fir t=1,2,3

USW.
Wir haben also den

Satz 17. IstH(t; a) = P(t; a) fiirt = T, sokann firt < T — 1 der Fall P(t; a) <0
einireten.

Hieran kann man die Frage kniipfen, welche Bedingungen an ein Polynom zu
stellen sind, damit es fiir geniigend groBes ¢ das charakteristische Polynom eines
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H-Ideals ist. Wir werden auf diese Frage noch kurz eingehen, fiihren aber erst den

Beweis von Satz 15. Wir gehen dazu von (4) aus und kénnen mit Hilfe von (54)
und (57) H(t; a) fir ¢ +n — 7y — +++ — T4y,y — 7y > O auf die Gestalt

t ¢\ t ¢ ¢
H(‘,a)=cu(n)+°.-1(n_ 1)‘r‘"’+°dn(d+ 1)+6¢(d)+0¢-1(d_ 1)

t t t . "
+cd—2(d_2)+"'+62(2)+°1(1)+00 mit ¢, € Z fir »=0,1,...,n
(61)
bringen. Fiir ¢ + n — 7y — +++ — 74_y,; — Ty — 1 > 0 ist dann auch

oy [t—1 t—1\, t—1 t—1f
H(t—l,a)—o,( - )+c,-1(n_1)+ +c,ﬂ(d+l)+c¢(d_l)

—1 t—1 t—1 t—1
+Cd-1(';_1)+¢d-z(d_2)+“'+52( 5 )+51( 1 )+Co- (62)

und aus (61) und (62) folgt mit (56)

t—1 t—1 t—1
H(t;a)—H(t—l;a)=6.(n_l)+cn-1(n_2)+---+cm( i )

t—1 t—1 t—1 t—1
taly Tyt gDy Fe (i) e (T ) e @

Wir fiihren nun den angekiindigten Beweis von Satz 15 durch vollstindige Induk-
tion nach der Dimension d. Fiir d = 0 ist Satz 15 richtig wegen Satz 14. Wir nehmen
nun an, Satz 15 trifft fiir (d — 1)-dimensionale H-Ideale zu, also insbesondere fiir
(a, L) mit a : (L) = a. Solch eine Linearform L gibt es, da wir a nach Satz 8 als ohne
triviale Komponente annehmen kénnen. Nach Induktionsannahme gilt dann

¢ t t
H(t,(a,L))=hu‘(d_1)+h1‘(d_2)+h:'(d_3)
+~~-+h;-z(:) 4B mit e N%, (64)

Wegen (38) ist die linke Seite gleich H(t; a) — H(t — 1; a); formen wir auBerdem die
rechte Seite gemédB (56) um, so folgt

t—

d —

H(t;a)—H(t—-l;a):ho'( 3

1 t—1 —1
1)+ (ha"i'hl‘)(d_ 2)+ (hx“i‘hz‘)(; _ )

t—1
ot 1 (1) 4 0t
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Koeffizientenvergleich mit (63) liefert

cp =0,
Ca1 =0,
Cer1 =0,

ho 1= cg = ho* € N*, (vgl. (64)),
hyi=coy =h* + M*€Z,
hyi=c43 =h* +h* €L,

hapi=co=hj3+ hi. €Z,
hayi=c¢, =hj, + ki €Z,
hii=c €Z,

womit (49), (50), (51), (62) bewiesen sind.
GrOBNER schlieBt zum Beweis von Satz 15 in [2] folgendermafen: (65) ist jeden-
falls erfiillt fiir

me =to(5)+h L)+t () + 70 (09)
und

t—1 t—1 t—1
H(it —1;a0) =k h w4 kg F(t).
(t ;a) o< 4 )+ 1(d—1)+ + 41( 1 >+ ()
(67)
Wird in (68) ¢ durch ¢t — 1 ersetzt, so folgt

HE— 1;0) = o (' d 1) +hy (; _i) bt e (' ) ‘) FRE—1). (69
Vergleich von (67) und (68) liefert F(t) = F(t — 1); da hier nur ¢t € N* interessieren,
kann F(t) = const := hy € Z gesetzt werden.

In GréBNER [9], Kap. IV, §1, IV, wird Satz 15 indirekt bewiesen, wihrend
VAN DER WAERDEN in [3], § 4, den Induktionsbeweis mit ¢ = O beginnt, dann aber
die Giiltigkeit von (51) gesondert beweisen muB.

Damit ist Satz 15 vollstindig bewiesen.

Durch (50) ist die Dimension d eines H-Ideals a — K[z, z,, ..., z,] eindeutig
bestimmt, so daB d mit Hilfe von (50) definiert werden konnte, was sich jedoch als
nicht zweckmaBig erweist. Immerhin kann in Einzelféllen die Dimension auf diese
Weise berechnet werden. Wir vermerken hierzu
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Satz 18. Sind a und b zwei H-Ideale aus K[z, Zy, ..., ,], 80 gilt
P(t;a) = P(t; b) = Dima = Dimb. (69)

Nun ist P(t; a) = P(t; b) sicherlich erfiillt, wenn sogar H(t; a) = H(¢t; b) ist, und
dies ist nach Satz 3 erfiillt, wenn die Gradmatrizen der Matrizen der jeweiligen
Syzygienmoduln von a und b iibereinstimmen (vgl. 5.2., Definition 1, (9)):

Satz 19. Sind a und b zwei H-Ideale aus K[zo, 2y, ..., z,] und stimmen bei den
Syzygienketten beider H-Ideale die jeweiligen Gradmatrizen tiberein, so tst durchweg
H(t; a) = H(t; b) und Dim a = Dim b.

Beispiel 1. Wir betrachten wieder einmal das eindimensionale Primideal v,; < K([zo, 2y, 2y, 23]
mit der allgemeinen Nullstelle (£, ¢,%;, ts#,% ¢,%) und der Syzygienkette

L)
(% — 2% T2y — 112 12y — T), | —2 —z |, (70)
T T
worsus sich nach (4) und 7.6. das charakteristische Polynom zu

o) <25 o3(() -2
ergibt.

Wir betrachten daneben in K[z, 2;, 23, Z,] das nicht prime Potenzproduktideal
= (o, 71%y Ta%3) = (Tor Z3) N (@1, Z2) 0 (21, Z3)
mit der Syzygienkette
EN 0
(@, 2120 270), [ —2%0 7 | )
0 -z

woraus sich nach (4) das charakteristische Polynom wiederum zu
o= (39 (1)1 (3) -

berechnen 1é8t. Hier stimmen die Gradmatrizen mit (70) diberein.

Beispiel 2. Dazu gehen wir von dem laufend betrachtet di ionalen Primideal
vii = K[y, 2,, 24, 23] mit der allgemeinen Nullstelle (to*, to’t;, tot;) aus, fir welches wir in 5.6,
die Syzygienkette berechnet hatten, die wir im Hinblick auf das nichste Beispiel etwas abédndern:

EAE N S Zy)

(e0ts — Ty 2y — 18, Bzt — wag 2p — ), [T T O O ) ) g
To T TI ot
0 0 Zo Z Zo

aus (72) folgt nach (4) und 7.6.

.(2)_‘+3_l+1 _ ¢ l—-l_f—2=
P(’:”n)—( 5 ) ( ! ) 3(3)+4( X ) ( N ) 441,



6.3. Das charakteristische Polynom 271

Vergleichsobjekt ist diesmal das nicht prime Potenzproduktideal

by = (TeZs, 2229, ZoZ3%, 132%5%) = (Zo, 23) 0 (Zgs Z52) 0 (25 Za) 0 (%2, 247, Z5)

mit der Syzygienkette
[ ZoTo EAE X ] Zy
oy zim rmt 2, [T 0 0 m) [ (13)
0 —zz 0 —2z 0
0 0 —z, O z,

und denselben Gradmatrizen wie in (72), also
ey (EFI Ty ot t— 1\ ft—2y _
rew) = (50) = (5 =2 (o) (5 ) (57 e

Diese Beispiele werfen die Frage auf, inwieweit das charakteristische Polynom fiir
ein H-Ideal denn nun tatsichlich charakteristisch ist. Zunichst ist diese Frage fiir
zwei H-Ideale a und b nur bei gleichem z sinnvoll ; was also kann aus P(¢; a) = P(t; b)
gefolgert werden, wenn q und b beide H-Ideale aus K[z, 2y, ..., z,] sind?

Die beiden soeben gerechneten Beispiele zeigen, daB daraus Strukturaussagen
jedenfalls nicht zu erwarten gind, da wir in beiden Féllen ein primes und ein nicht

primes H-Ideal miteinander verglichen hatten.
Man konnte jedoch hoffen, daB wenigstens bei Primidealen

p1 = K[zo, 2y, ..., 23] und py = K[z, 2y, ..., Tp]

aus P(t; p,) = P(t; p,) auf die Gleichheit der Gradmatrizen geschlossen werden kann.
DaB auch dies nicht der Fall ist, zeigt das folgende

Beispiel 3. Wir betrachten als erstes das Primideal (vgl. Kap. 4, (165))
o3 = viyY < K [, 21, 73, 74)
mit der allgemeinen Nullstelle (£,5, £, tof*, t,°) und der Syzygienkette

(23 — 21Ty, T2y — 3!, 26°2," — 22y, T — TTt, Tt — mTy?),

2 7'y ,'7y 2Tt a7t zy 0
[—z, -z 0 O 0 0 —z; 0
Ty zy —Zy—2 0 0 |, |-z x| (74)
0 0 zy oz —xy —ag z, —, ’
l 0 0 0 0 z =z 0 —z,
0 =z

aus (74) und 7.6. folgt

P(t;nf:.)=(‘:3)—(‘;1)—4(‘;1)+G(‘—2)—2(‘;3)=5¢+1- (15)
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Daneben betrachten wir das Primideal p; — K[z, 2;, 25, 73] mit der allgemeinen Nullstelle
(ta® to*ty, te¥y? + 8,5, tfy%) und der Basis (¥, Fy, Fy, Fy, Fy) mit
=22y + 2T — 2 — 7' — 2%,
= %'ty — z%i%y + 42y,
Fy = 20,2 + 22023 — T’ — 212, b (76)
Fy = 225 — 2o2s® — 20y — 4,257, l
Fy = 2%z, — 212, + 3512%5° + 254,
und der Syzygienkette
(Fy, Fy, Fy, Fy, Fy),

z, g 0 0 0 T,y + T4Zy
—Zs % Tt T 0 0 —21Z; — 2, &)
—% —% —Ty —%3 Ty IyTy + TeZy 2=zt | | ;s
—% 0 T I — 2 —T% — I L2
0 0 0 — 2z, — — 1z,

aus (76) und 7.8. folgt

t+ 3 ¢ t—1 t—1 t—2 t—3
t5p,) = _ _ — =5t .
row = (59 = (5) = (57) +2 (57) +2(57) - (57) o 0w
Hier liefert (78) daaselbe Ergebnis wie (756), obwohl gegeniiber (74) verschiedene Gradmatrizen
vorliegen.

Wir haben also den

Satz 20. Sind p, < K[z, 2y, 25, 25] und P, < K[zy, 2y, 25, 73] 2zwer  ein-
dimensionale Primideale mit P(t;p,) = P(t;p,), so konnen die Gradvektoren und
damit die Gradmatrizen der Syzygienmatrizen verschieden sein.

Die Frage, ob bei P(t; p,) = P(t; p,) von der Gleichheit der Gradvektoren auf die
Gleichheit der weiteren Gradmatrizen geschlossen werden kann, haben wir noch
nicht entscheiden kénnen.

Uneingeschrinkt gilt dies natirlich kei g9; man betrachte dazu das naive Beispiel
z z,?
) (_2) wnd e (24,
hier ist allerdings auch P(¢; a) = P(¢; b) im Gegensatz zu 8.1.5. und 8.1.8. nicht erfallt.
Konnte man — zumindest fir eindimensionale Primideale aus K[z, 2y, 2, 23] — von
P(t; p,) P(t; p,) und der Gleichheit der Gradvekboren auf die Gleichheit der jeweils folgenden
Grad Ben, 8o wiire es Wi t, die Vor: g der Gleichheit der Grad-

vektoren abschwichen zu kénnen, etwa durch die Forderung, dag far p, und p, die Anzahl der
linear unabhiingigen Basisformen vom Minimalgrad m, iibereinstimmt. Zur Erlauterung greifen
wir noch einmal auf das letzte Beispiel zuriick. Die Zusammenfassung der Terme in (78) liefert

e () ()
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zur Nachprifung dieser Rechnungen durch den Leser sei auf 7.6. verwiesen. Die einfachste
Realisierung von (79) wire dann nicht die durch Gradmatrizen, wie sie zu (77) gehdren, sondern
die durch

11 2
11 2

G333, |, NE

11

[SICIICEN

2
2
1
2 1

Bis jetzt sind dem Verfasser jedoch eindimensionale Primideale aus K[z, 2;, 25, 2,], bei denen
die Minimalbasis aus genau vier kubischen Basisformen besteht, nicht bekannt; auch bei der oft
zitierten Vahlenschen Kurve kommt im zugehorigen H-Ideal noch eine Besisform vierten Grades
hinzu, vgl. Beispiel 8.5.8. Die Richtigkeit der hier geduBerten Spekulation beziiglich der Anzahl-
gleichheit der Basisformen vom Minimalgrad m, wiirde dann bed: daB es eindi ionale
Primideale aus K[z, z;, z,, z;) mit Minimalbasen aus vier kubischen Formen nicht geben kann,
sofern P(t; p) = 5¢ + 1 bekannt ist, sondern daB stets noch eine Basisform vierten Grades hinzu-
kommen muB. Insbesondere kdnnte man also das Ideal (76) an die Stelle des komplizierteren
Vahlenschen Ideals setzen (vgl. RENSCHUOH [15]).

Wir wollen noch bemerken, daB die Berechnung von P(¢; a) in den meisten Fillen
nur iiber (4) moglich ist; fiir H-Ideale der Hauptklasse hat GROBNER in [2], 142.4,
geschlossene Formeln fiir die Hilbertschen Koeffizienten ohne Benutzung von (4)
angeben konnen.

Gleichfalls ohne Benutzung von (4) hat R. KvMmMer in KuMMER und RENSCEUCE
[2], § 7, fiir Potenzprodukte a, eine geschlossene Formel fiir H(¢; a,) (Satz 23) an-
gegeben, welche sich auch aus (4) durch Zusammenfassung gleicher Binomial-
koeffizienten (analog dem SchluB von (78) auf (79)) ergibt. Jedoch kann P(t; a,)
durch Abziéhlung der nicht in a, enthaltenen Potenzprodukte ¢-ten Grades zumeist
schneller bestimmt werden.

Wir wollen die bereits angeschnittene Frage aufgreifen, wann ein Polynom in einer
Variablen ¢ charakteristisches Polynom P(t; a) von H-Idealen a = K[z, 21, ««+, %]
sein kann. Hierzu sei auf Untersuchungen von MACAULAY verwiesen, die durch
SPERNER in [1] kiirzer und verstindlicher dargestellt worden sind. Ausgangspunkt
dieser Uberlegungen ist die im Kap. 5, Satz 11, gegebene Beziehung

Mt + 1; ax(0) S Mt + 1; a,(t + 1)), (Kap. 5, (35))
aus welcher die Macaulay-Spernersche Ungleichung
Tle+1a0) S TE+1;0) (80)

folgt. Dabei ist a,(t) beziiglich a das zugeordnete Potenzproduktideal ¢-ten Grades
(vgl. Kap. 5, Definition 10). Der Hauptsatz von MacAvLAY und SPERNER besagt nun,
daB in (Kap. 5, (35)) und damit in (80) fiir ,,geniigend groBes t** das Gleichheits-
zeichen gilt; wir haben also

Satz 21. Fiir geniigend grofes t, also fir t = T, ist das charakteristische Poly-
nom eines H-Ideals a < K[z, 2y, ..., x,) gleich dem des zugeordneten Potenzprodukt-
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ideals a(T):
P(t; 0) = P(t; a,(T)). (81)

Dal in (80) fiir ¢ = T das Gleichheitszeichen und damit (81) gilt, wurde von
GONTER in [1] ohne Bezug auf die in Frage kommende Arbeit von MACAULAY aus
dem Jahre 1927 bewiesen. Da die Giintersche Arbeit auf eine Vorlesung aus dem
Jahre 1904 zuriickgeht (vgl. die Biographie in GONTER [2]) und diesbeziigliche
(dem Verfasser nicht zugingliche) Publikationen aus den Jahren 1913 und 1914 in
GUNTER [1] zitiert werden, ist die Prioritatsfrage offen. Jedenfalls wird MacaULAY in
GUNTER [1] nicht zitiert, und die Arbeiten von GONTER waren wiederum SPERNER
nicht bekannt (nach einer iiberbrachten miindlichen Mitteilung).

Im zweiten Beispiel haben wir den besonders giinstigen Fall, daB bereits das von
den ersten Potenzprodukten der Minimalbasis erzeugte Potenzproduktideal das
charakteristische Polynom P(¢; v{%) liefert; im ersten Beispiel ist es ein anderes
Potenzproduktideal mit gleichen Gradmatrizen, welches zu P(¢; v,g) fithrt. Diese
Beispiele sind jedoch insofern nicht reprisentativ, als 7' im allgemeinen gréBer als der
Maximalgrad M der Basisformen sein wird; die Schranke 7' = 2M lifBt sich ver-
muten, konnte aber noch nicht bewiesen werden.

Fiir noch groferes ¢, also ¢t > T* > T, existiert dann — wie von MacAULAY und
SPERNER bewiesen wird — ein Potenzproduktideal b,*, dessen Basis aus den ersten
k Potenzprodukten T*-ten Grades in ,, 2y, ..., %, bei lexikographischer Anordnung
besteht, also b,* = (2,T°, z,7*z,, ...) mit

P(t; a) = P(t; b,*) = P(t; cx(T)).

T* kann jedoch erheblich gréBer als 7' sein. Immerhin kann auf diese Weise jedes
charakteristische Polynom als Hilbertfunktion eines Potenzproduktideals b.*
gewonnen werden, woraus MacauLAY und SPERNER hinreichende Bedingungen dafiir
ableiten, daB ein Polynom Volumfunktion eines H-Ideals ist; nach Definition der
Hilbertfunktion und des charakteristischen Polynoms induziert dies entsprechende
hinreichende Bedingungen dafiir, da8 ein Polynom das charakteristische Polynom
eines H-Ideals ist.

Hieraus und auch schon aus Satz 21 folgt, daB es beispielsweise geniigen wiirde,
Satz 15 fiir Potenzproduktideale zu beweisen, was aber beweistechnisch keine
Erleichterung liefert. Auch gehen bei diesem ProzeB des Uberganges von a zu a,(t)
Struktureigenschaften verloren; so war im zweiten Beispiel v ein Primideal, nicht
aber b,.

SchlieBlich verweisen wir darauf, daB bei dem am Schlu8 von 5.18. gegebenen
Beispiel die Hilbertfunktion und das charakteristische Polynom bei Charakteristik 2
sich nicht éndern, da sich in Kap. 5, (144), die durch die hinzukommenden Syzygien
entstehenden Glieder weggehoben haben.
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6.4,  Eigenschaften der Ordnung hy(a)
In diesem Abschnitt werden wir Ergebnisse von 6.2. iibertragen und iiberdies zu
ersten geometrischen Deutungen gelangen. Dazu bendtigen wir als erstes den
Satz 22. Ist a < K[z, 2, ..., z,] etn d-dimensionales H-Ideal mit dem charak-
teristischen Polynom
t t t
P(‘;0)=ho(d)+hl(d_1)+“'+hd-|(1)+hd (49)
und sind g,(a), gri1(@), ..., ga(a) die Grundideale von a gemip Kap. 4, (63) und (54),
s0 gilt
ho(@) = ho(ga(a)) = ho(Ba-1(a)) = +++ = ho(grs1(a)) = Ro(gr()), (82)
hy(a) = hl(ﬁn(“)) = hl(gn—l(a)) == hx(Brﬂ(a))» (83)
ha(@) = hy(8a(a)) = Po(Ga-1(@)) = -+ = Fa(gre2(a)),

haa(a) = hd—|(8-(a)) = ha—x(gu—l(a)),
hy(a) = hy(ga(a))-

Beweis. Wir fithren den Beweis gleich fiir k(). Aus Kap. 4, (53) und Definition 4,
(54), folgt

@ = gr+i(a) 0 Brjy (85)
mit

Bropr = Greirra N ee 0 ns,» (86)
also

Dim gy(a) = Dima = d, (87)
sowie

Dimbpyj =d —4+1 (88)
und auch

Dim (gr+4(a), bye1s1) = Dim (g11(a) + bpia) S d — i — 1. (89)

Nach (32) ist nun wegen (85)
P(t; a) = P(t; Qr-c-((a)) + P(t; Brajua) — P(‘? grei(@) + bulﬂ)‘ (90)
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Aus (87), (88), (89) folgen fiir die charakteristischen Polynome
P(t; grai(@) = a0 ¢ + ety ! + am ! B il k-T2 ! +ay
B d d—i d—i—1 1 ’

t t
Pt Brvin) = bios (d_ i 1) Foen b (1) + s,

t ¢
P(t; gres(@) + Brasnr) = i (cl i 1) + -+ Ca (1) + ¢-
Setzen wir dies in (90) ein, so folgt die Behauptung durch Koeffizientenvergleich
mit (49).

Fiir eine weitere Aussage iiber kq(a) bendtigen wir noch in Analogie zu Satz 13 als
Hilfssatz den

Satz 23. Sind q = K[z, 21, ..., Z,] und ¢ = K[z, 24, ..., z,) zwei d-dimensionale
H-Ideale und ist q ein p-priméres H-Ideal mit
cEy, (91)
80 st
Dim (q,¢c) = d — 1. (92)

Beweis. Nach (47) ist Dim (g, ¢) = Dim (p, ¢), und wegen ¢ ¢ p ist Dim (p, c)
< d — 1 nach Kap. 4, Satz 33, (68), und Kap. 4, Satz 35, (77).
Wir benétigen dies zum Beweis von

Satz 24. Ist a = K[z, 2y, ..., ,) ein d-dimensionales H-Ideal mit d =n — r und
@ =0Gr 0+ NQqrs, O qpr1,1 N *** N Gny, N QT (83)
und Dim qi; = n — 4, s0 ist
ho(6) = ho(gr(a)) = ho(ar) + Ro(Qra) + -+ + Ro(ars,)- (94)
Beweis. Nach Kap. 4, Definition 4, (54), ist

8r(a) =qn N (85)
mit

= Qo M G Moo 0 G, (G =210 8), (96)
also

Dim g, = Dim ¢,y =d =n — 71 (97)

und bei Rad g,y = p,, ferner
¢ EPrs (98)
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mithin ist (91) erfiillt, und nach (92) gilt

Dim (1, ¢z) = Dim (gey + ¢2) < & — 1. (99)
Analog (90) gilt wegen (95)

P(t; () = P(t; an) + P(t; cn) — P(t; an + &),
und hieraus folgt wegen (97) und (99)

Ro(8r(@)) = Rolan) + Po(Cr2)- (100)
Analog folgt
ho(er2) = ho(ara) + holtrs),

ho(Cr,-1) = ko(Qr,q-1) + holdys)s

dies in (100) eingesetzt, folgt (94) unter Beachtung von (82).
Eine Verallgemeinerung von (94) fiir A;(a) wurde von W. VogEeL [1], 8. 55, Satz 5,
Folgerung 1 und Folgerung 2, gegeben.

Mit (94) haben wir die fiir nulldimensionale H-Ideale giiltige Beziehung (48)
iibertragen kénnen. Wir wollen nun in sinnvoller Weise ein Analogon fiir (44) geben.
Wir hatten nach (41) ky(p) = 1 fiir nulldimensionale Primideale p; wird (44) damit
multipliziert, so folgt

o(a) = p - ho(p) mit u€ N*. (101)

Nun ist (101) auch fiir p-primiare H-Ideale q = K[z, zy, ..., Z,] mit Dimq =1
sinnvoll. Zundchst folgt aus (30) P(¢; q) = P(t;p) und daraus ky(q) = Ao(p) (vgl.
etwa ML Bd. 4, 2.3., (10) und (15)). Wir haben also ko(q) = u - ko(p) mit ke(q) € N*
und %,(p) € N*, kénnen aber 4 € N* mit unseren Mitteln nicht beweisen, auch nicht
# = 2 im Fall ¢ = p; diese Behauptungen folgen mit Hilfe der Theorie der Kompo-
sitionsreihen (vgl. etwa GROBNER [2], 143.5). Wir vermerken dennoch den mithin
nur teilweise bewiesenen

Satz 26. Ist q = K[z, 2y, ..., z,] ein primires H-Ideal mit dem zugehorigen Prim-
tdeal p = Rad q, so gilt

ho(q) = - ho(p) mit pe€ N* (101)

und u = 1 genau dann, wenn p = q tst.
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Definition 5. Ist q = K[, ;, ..., Z,] ein p-primires H-Ideal, so heiBt
ho(q)
pi=——¢cN* (102)
ho(p)
die Multiplizitit des Primirideals q.
Setzen wir (101) in (94) ein, so erhalten wir
Satz 26. Ist a < K[zy, 2y, ..., z,] ein d-dimensionales H-Ideal mit d =n —r
und (93), so it
ho(6) = miko(Pr1) + paho(Pr) + -+ + Haho(Bra)- (103)
Wir wollen nun k(a) fiir einige Spezialfiille berechnen. Zunichst gilt

Satz 27. Ist a = (F) = K[z, 2y, ..., Za] ein homogenes Hauptideal und h(F) =z,
80 ist

hof(F)) = h(F) = 1. (104)

Dadurch erst ist die in Definition 4 neben der Bezeichnung ,,Ordnung* gegebene
Bezeichnung ,,Grad* fiir k(a) ebenso gerechtfertigt wie die Einfithrung der Bezeich-
nung k(F) bzw. k(f) fir den Grad von Formen bzw. Polynomen in MfL Bd. 3; vgl.
auch MfL Bd. 7, 2.8.3.

Beweis von Satz 27. Wir gehen dazu aus von (28) und haben

P(t;(F))=(t+n")—(‘+:_1) fir t27 (105)

Um aus (105) die Ordnung ho((F)) zu bestimmen, setzen wir in (57) n, =t + n,
n, =17, k = n; dies gibt

(T2 )= ) ()

setzen wir in (54) n, =n, 7y =t, k == — 1, so folgt

)=l 2 () Ze) o2

mithin wird

t+n t+n—17\ t ¢
e B e A R A

Damit haben wir zugleich den Satz 39, (83), aus Kapitel 4 bestitigt, wonach jedes
Hauptideal die Dimension n — 1 hat.
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Wir beweisen nun (vgl. RENSCHUCH [1], Satz 14)

Satz 28. Ist a = K[z, y, ..., z,] ein H-Ideal, Dim a =d, d = 1, F eine Form mit
F ¢ K[zy, 2y, ..., 24] (F) = 7 und Dim (a, F) =d — 1, so gilt

ho(a, F) = 7 - ho(a) + hy(a) — ky(a: (F)). (1086)
Beweis. Ist Dim (a, F) =d — 1, r =n — d, so ist nach Kap. 4, Satz 35, (77),
gr(a) : (F) = gi(a). (107)

Nun ist nach Kap. 1, (159),

a:(F) = (g : (F) 00 (G, (D) 0 (G (F)) 0o 0 (g, * (F)) 0 ar*
=Gt 0 0 Gr, O (Grera s (F)) 0 0 (Qne, * (F)) 075
hieraus folgt

Dim (a H(F) =4 (108)
und
gr(a : (F)) = gr(a) = g,(a) : (F). (109)
Jetzt greifen wir auf (36) zuriick und haben also
P(t; (a, F)) = P(t; a) — P(t — 7; 0 : (F)). (110)

Wir setzen nun gemi8 (49) und wegen (108), (109), (82)
t t
P(t; a) = ho(a) (d> + Ry(a) (d _ 1) + -+ hyla),

P(t; a: (F)) = ho(a) (t ; ’) + hyfa : (F)) (d i 1) + oo+ hy(a: (F))

und erhalten (106) éhnlich wie beim Beweis von Satz 27 durch Benutzung von (57)
firn, =t n, =1,k =d.
Aus den Uberlegungen im AnschluB an (107) folgt entsprechend generell

grei(a : (F)) = Greil@) : (), (111)
also insbesondere
gra(a: (7)) = graa(@) : (F). (112)

Tst nun tiberdies g,.,(a : (F)) = g,.(a), also
a:(F)=gnn--n Are1,8,,, N (qr+2.| : (F)) Qe n (q". : (F)) nar*,
80 ist nach (83)
hl(a : (F)) = hl(ﬂrﬂ(a : (F))) = hl(grﬂ(a)) = h(a).
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Solche Formen F existieren fiir d = 1, weil dann g,,,(a) keine triviale Komponente
besitzt. Wir haben also mit (112) den

Satz 29. Ist a = K[z, 25, ..., 2,] esn H-Ideal, Dima =d,r=n —d,d = 1 und
ist F € K[z, z,, ..., z,] esne Form mit h(F) = 7 und

8r1(a) 1 (F) = gra(0), (113)
80 gilt
ho(a, F) = 7 - ho(a). (114)

Aus (113) folgt g.(a) : (F) = g,(a), und dies ist nach Kap. 4, Satz 35, (77), mit
Dim (a, F) = d — 1 gleichwertig. Die Frage, ob umgekehrt aus Dim (a, F) =d — 1
und (114) auf (113) geschlossen werden kann, konnte erst mit homologischen Mitteln
durch J. S1ocKRAD und W. VogeL [1] positiv entschieden werden.

Die Beziehung (113) ist natiirlich insbesondere fiir a : (F) = a erfiillt, doch erweist
sich diese Bedingung als zu einschneidend, wenn wir den SchluB von Satz 29 mehr-
mals anwenden wollen, d. h. von (a, F,) zu (a, F,, F;) usw. iibergehen. Dabei benutzen
wir:

gi(b) : (F) = g;(6) = ga(b) : (F) = gp(b) fiiralle » <j
und haben dann

Satz 30. Ist a = K[zg, 2y, ..., 2,] ein H-Ideal, Dima=d, r=n—4d, d =4,
so gilt fiir 8 Formen Fy, ..., Fymit h(F)) = v; firi =1,2,..., 6 und

grea(0) : (F1) = grn(a),

@r+2(a, F1) t (F3) = grea(a, Fy), (115)
8r+8(0, Fyy ooy Foog) 2 (Fy) = graa(a, Fyy ooy Fyy)

die Beziehung
ho(a, Fy,y ooy Fy) =71+ 72+ 74 - ho(a). (118)

Satz 30 wird uns eine Fiille von Anwendungen liefern, die wir unter dem Sammel-
begriff ,, Bezoutscher Satz* im folgenden Abschnitt 6.5. zusammenstellen werden.

Zuvor wollen wir hier noch den Spezialfall behandeln, daB 6 =d und F,, ..., Fy
Linearformen Ly, ..., L, sind. Dann gilt
Satz 31. Ist a = K[z, 2y, ..., 2,] ein H-Ideal, Dima=d, d =1, r=n—4d
und stnd Ly, ..., Ly Linearformen mit
8re1(0) t (Ly) = @raa(a),
Gre2(a, Ly) 1 (Lg) = grala, Ly), (115"
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s0 gilt
ho(a) = hola, Ly, ..., Lq). (117

Wegen Dim (a, L, ..., Ly) = 0 besagt (117): Die Ordnung eines d-dimensionalen
H-Idesals a kann stets durch die Ordnung eines nulldimensionalen H-Ideals erklirt
werden; letztere ist nach Satz 26, (103), die Anzahl der mit entsprechender Multi-
plizitit zu zdhlenden Punkte, die durch NG (a, L, ..., L;) gegeben sind.

Geometrisch formuliert: Aq(a) gibt die Anzahl der mit Multiplizititen belegten
Schnittpunkte von NG (a) mit einem ,,allgemeinen‘ linearen (n-d)-dimensionalen Un-
terraum NG (L, ..., L) an, wobei ,,allgemein® die Giiltigkeit von (115’) beinhal-
tet. Auf diese Weise werden u. a. die Begriffe ,,Kurve m-ter Ordnung“ und ,,Fliche
m-ter Ordnung’* in n-dimensionalen projektiven Riumen erklirt.

Speziell fiir d = 1 ist also k(a) die Anzahl der mit Multiplizititen belegten Schnitt-
punkte einer algebraischen Kurve im n-dimensionalen projektiven Raum mit einer
,,allgemeinen‘‘ Hyperebene L = 0.

In idealtheoretischer Formulierung gibt dies wegen d =1 und r =7 — 1 den

Satz32. Ist a = K[z, 2y, .. .,2,] ein esndimensionales H-Ideal und L € K[zo,z,,...,T,]
eine Linearform mit
8a(a) : (L) = ga(a), (118)
so0 gilt
ho(a) = ho(a, L). (119)
Fiir eindimensionale Primideale p vereinfacht sich Satz 32 zu

Satz 33. Ist p = K[xy, 2y, ..., x,] ein eindimensionales primes H-Ideal und
L € K[zq, 2y, +.., T, eine Linearform mit

Ly, (120)
30 gilt

ho(p) = ho(p, L). (121)

Beispiel. Wir betrachten das Primideal b,y — K[z, 2;, 73, 23] mit der allgemeinen Nullstelle

(£ o™y, toh? 1) und

Dia = (TZy — Ty, ZeZy — T1Ty T7y — 3,1
Dann wird

(010 Z3) = (25, Te%p 2120 2,°) = Q1 N Gy Wit G = (T 21, 20), G = (2%, 20 Ty)-

Nach Satz 1, (3), ist H(t; q,) = hy(qy) = 1, da z,' als einziges Potenzprodukt ¢-ten Grades nicht
in q, enthalten ist; wegen z,! € qy, 2o'~'2, § q, folgt entsprechend H(¢; qy) = ho(qy) = 2. Nach
Satz 24, (04) und (121), ist dann hy(0;5) = ho(a,) + Fo(gs) =1 + 2 = 3.
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6.5. Der Bezoutsche Satz

Ist a = (F,) ein Hauptideal und § = (Fy, ..., F,) mit k(F,) = 7; ein H-Ideal der
Hauptklasse r =7 — d, 8o sind die Voraussetzungen (113), (115) wegen Kap. 4,
(138), erfiillt, denn es gilt
(Fry o0 Fiog) : (F) = (Fy, .., Fiy)  fir $=2,...,d,
und aus (116) folgt
ho(B) = ho(Fy, Fyy oo, Fy) = 75204 7, ho((F1));
wegen (104) ist %((F,)) = 7,; wir haben mithin
Satz 34 (Satz von BezovuT fiir Hauptklassenideale). Ist
h = (Fy, Fy, ..., F) = K[zo, 7y, ..., 2]
ein H-Ideal der Hauptklasse r = n — d mit h(F;) = 7y, s0 ist
ho(f) =71 - 7300 7. (122)
Durch (122) und mit Satz 33 wird die Berechnung von k,(p) fiir eindimensionale
Primideale p in vielen Fillen erleichtert; wir zeigen dies an den vier Beispielen von
Kap. 5, 5.18., im AnschluB an Satz 50:
Beispiel 1.
oY = (mm — 2 2 — gt B — &),
23§ BTV, (0 TV, 3y) = (2, 2,2, 228, 7125°) = (20, Ty, Zg) 0 (&1, Ty, 75%);
hier sind beide Primarkomponenten H-Ideale der Hauptklasse mit den Ordnungen 1-1-1 =1
und 2 1.3 = 6; nach Satz 24, (84), ist also hy(py**¥) =1+ 6=17.
Beispiel 2.
O = (mlizy — 2 207, — 2z, Ty — 2% Tt — ),
2§ 035540, (08540, 2y) = (@1, 26%s Z0s%, 775, 24°)
= (2o, 21, 2°) 0 (21, T3, Z5%) 0 7

d

mit der hier nicht inter trivialen K

(84), ist ho(b(lli!,lya)) =5+4+2=1.

qp = (2, o, 248, 24°); nach Satz 24,

P

Beispiel 3.

Ofn = (223 — 212 2™ 22y — 7™, 202 — 4™y, (123)
Zo™? — 2,22y, 21 — 2,27,

z) § Om, (03m) 21) = (21, ZoZ3, 2™ 32y, 2021, oy TgZy™ 2, ™)

= (Zo» 71, 2" ) 1 (33, 25, 73) 0 QT
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mit der trivialen Komponente gy = (2,™2, 2;, ,™7, 75, 2,™ 2,3, .. ., Z,2,™%) und
hy(olm) =m (124)
wegen hy(0fp) =1-1-(m—1)+1-1.1.
Beispiel 4.
Oim = (267 — TyZpy T2yt — 2™, 20 — 20,
ZE™S — 3P 2™ — o),
21 § Ofms (0Fms 21) = (2, ZoTyy Zo™T5%, To™ 0%, .y ZeTy™ S, 237
= (2, 71, 2™ %) N (21, 7% 73) N A7
mit g7 = (2™, 23, 7™, Ty, ™2y}, .., 2oz, ) und
hy(olm) = (m —2) +2=m.
Wir formulieren Satz 34 noch fiir den Fall d = 0, also r = n:
Satz 35 (Klassischer Satz von Bezour). Ist
(Fy, Fy, ooy Fp) = Ko, 2, 20, ]
ein nulldimensionales H-Ideal der Hauptklasse n mit h(F;) = 7, 30 18t
ho(Fy, Fay ooy F) = 71+ Tg 20+ Ty (125)
In geometrischer Sprechweise lautet Satz 35: n Hyperflichen F, =0, F; =0, ...,
F, =0 im n-dimensionalen projektiven Raum haben entweder so viele mit Multipli-
zititen belegte Schnittpunkte, wie das Produkt ihrer Ordnungen angibt, oder un-
endlich viele. Der letzte Fall tritt ein, wenn (Fy, ..., F,) kein H-Ideal der Haupt-
klasse, also Dim (F,, ..., Fy) =1 ist.

Um nun zu Verallgemeinerungen von Satz 34 zu gelangen, ersetzen wir r durch
r+9=<n,also

b =(F11---; Fn Fnu-u, Fﬁe)
und
b1=(Fr+1:-~-,Fr+;), f),:(F,,...,F,)-

Ist Dim§; = 6 =n — o, Dimh; =d = n — r, so ist hier auBerdem
Dimf =Dim (§;,§;) =d + 8 —n=n—(r+p0) =0. (1286)

Sind umgekehrt b, §, zwei H-Ideale der Hauptklasse und gilt (126), so muB auch
§ = (b, ;) ein H-Ideal der Hauptklasse sein.

Wir haben also

Satz 36. Sind §), und Y, 2wei H-Ideale der Hauptklasse aus K[zo, 2,, ..., z,] mit
Dim ¥, = 8, Dim §); = d und ist

Dim (f;, ) =d +8—n=n—(r+¢ 20, (126)
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so0 gilt
ko(B1, o) = Bo(B1) « Ao(h2)- (127)
Dies folgt wegen Kap. 4, Satz 54, (138), auch wieder aus (115). Wegen Kap. 5,
Satz 47, (142), sind die Bedingungen (115) aber auch fiir perfekte H-Ideale erfiillt;
dies gibt
Satz 37 (Satz von BEZoUT in der Fassung von GROBNER, vgl. GROBNER [2], 144.5).
Sind a und Yy zwei H-Ideale aus K[z, zy, ..., x,], sind ferner a perfekt mit Dim a = d
und Yy ein H-Ideal der Hauptlklasse o = n — & und ist
Dim(a,)) =d+d—n=n—(r+0) =0, (128)
s0 gilt
ho(a, B) = ho(a) - ho(h)- (129)
Aus Satz 37 ergibt sich eine gewisse Verallgemeinerung von Kap. 5, Satz 50, die
zum Nachweis der Imperfektheit von H-Idealen recht praktisch ist:

Satz 38. Sind a und b = (Fy, F,) 2wei H-Ideale aus K[z,, z,, ..., 2,] mit
Dima =2, Dim (F,,F,) =n—2, Dim(a, F;, F;) =0, (130)
80 gilt:
ho(a, Fy, Fp) > ho(a) - ho(b) = a tmperfekt. (131)
Auf Satz 38 machte mich W. Vogrr (Halle) dankenswerterweise aufmerksam.

Auch bei eindimensionalen H-Idealen leistet Satz 38 gute Dienste, wenn die Basis
von komplizierterer Bauart ist.

Wir betrachten dazu das eindimensionale Primideal p; — K[z, 2;, Z;, Z,] mit der allgemeinen
Nullstelle (k5 b, %, + 4,°, toh*) und der Basis py = (Fy, Fy, Fs, Fy, Fy), wobei Fy, Fy, Fy,
F,, Fy durch (76) gegeben sind. Wir ersetzen nun z; durch z;;,; dies gibt

Gy = 2y%z3 + 11247y — T — T2 — T,
@y = 2’2, — 2,257 + 2’7,

Gy = 2,27, + 2,297 — Z'T — 220,

Gy = 2,25 — 220 — 22 — 277y,

Gy = 2’2 — 22" + Baazpn® + 2t

(Gy, Gy Gy, Gy, Gy) = K[y, 2,, 24, 73, 7] hat dann die Dimension 2 und vermoge ¢;+> f;,, die
allgemeine Nullstelle (£, t,5, t,;, ;%33 + #°, t1,8). Mit (Fy, Fy, Fy, Fy, Fy) ist (Gy, Gy, Gy, Gy, Gy)
perfekt oder imperfekt.

ho(Fy, Fs, Fa, Fyy Fy) = ho(Gy, Gy, G, G, Gy) = 6
ist aus den allgemeinen Nullstellen abzulesen. Nun ist
(G, Gy, Gy, Gy, Gy, 7y, 73) = (71, 29, 2%, B2, 2220, 74);
fir § = (z,, z3) und a = (G, Gy, Gy, Gy, Gy) ist also (130) erfiillt, weil
(a8, ) = (21, 25°, 24%24 2420, 30 1)
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ein nulldimensionales Primiiridesl ist (vgl. Kap. 1, Satz 18, (27)). In (a, ) treten sieben Potenz-
produkte ¢-ten Grades nicht auf, nimlich

N T e T e SV N M N A
nach Satz 1 ist also H(¢; a,h) = he(a, ) = 7> 5 = 5. 1 = Ry(a) - hy(H); nach (131) ist also a
und mithin p, imperfekt.

Wir kniipfen nun wieder an Satz 37 an. L. Bupaca und W. VogEL gelang in [1],
Satz 2, mit homologischen Mitteln der Beweis eines Satzes, der eine Verallgemeine-
rung von Satz 37 liefert, die hier nur ohne Beweis angegeben werden kann (vgl. auch
GmosNEr [9], Kap. IV, § 7, (IV), S. 232, und VoaEL [2], S. 77):

Satz 39 (Allgemeiner Satz von BEzoUT). Stnd a und b zwes perfekte H-Ideale aus
K[z, 2y, ..., 2g] mit Dima =d =n — r, Dimb = 8 =n — o und 18t

Dim (a,b) =d + 6 —n=n—(r+¢) 20, (132)
80 gilt
ho(a, ) = ho(a) - ho(b). (133)

Wir wollen nun auf die ,,anschaulichen Falle » = 2 und » = 3 eingehen.

Fiir n = 2 geht (132) iiber in d 4 6 — 2 = 0, und dies ist nur fird =8 =1,
d + 6 — 2 =0 erfiillt. Sind a,b aus K[z, z,, 2,] ungemischt, so folgt daraus nach
Kap. 4, Satz 39, (83), daB a und b Hauptideale, also perfekt sind. Nach Satz 36
oder 37 bedeutet dies, daB zwei algebraische Raumkurven der Ordnungen m,, m, in
der projektiven Ebene entweder unendlich viele Punkte gemeinsam haben oder sich
in m, - m; mit Multiplizititen belegten Punkten schneiden. Der Leser mache sich
dies etwa am Schnitt der Ellipse 92,2 — z,2 — 92,2 = 0 und der kubischen Parabel
6x,%2, + 3x%w, — x,% = 0 klar (zur Enthomogenisierung setze man A z, I Y,

0 To
2o = 1); vgl. Abb. 2, Hier sind die sechs Schnittpunkte reell; zur Giiltigkeit des

X4

-1

Satzes muB jedoch von der projektiven Ebene (also unter EinschluB der uneigent-
lichen Punkte; vgl. MfL Bd. 7, 2.4.1.) und vom Kérper € der komplexen Zahlen aus-
gegangen werden.
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Fiir n = 3 geht (132) iiber in d + § — 3 = 0. Hier sind drei Falle méglich: Fiir
d=48=2,d+ 8 — 3 =1 haben wir wegen der auch hier vorauszusetzenden Un-
gemischtheit von a und b wie bei » = 2 zwei Hauptideale. Dies bedeutet, da8 im
dreidimensionalen projektiven Raum iiber dem Kérper € der komplexen Zahlen
zwei algebraische Flichen der Ordnung m, bzw. m,; entweder eine Fliche gemeinsam
haben oder sich in einer algebraischen Raumkurve der Ordnung m, - m, schneiden.
Es bleiben noch die beiden Félled =2, =1,d + 8 —3=0undd =1, 6 =2,
d + 8 — 3 = 0; wir brauchen hier nur den zweiten Fall zu behandeln, da die beiden
Fille durch Vertauschung von d und § ineinander iibergehen. Wegend + 6 — n =0
haben wir hier die Anzahl der mit Multiplizititen belegten Schnittpunkte einer
algebraischen Kurve (d = 1) der Ordnung %,(a) mit einer algebraischen Fliche (8 =2)
der Ordnung k,(b) zu bestimmen. Idealtheoretisch liegen dann also zwei ungemischte
H-Ideale a, b aus K[z, z;, 23, 23] mit Dima =d =1, Dimb = § = 2 vor. Dann
ist b wiederum ein Hauptideal, also b = (F); indessen braucht a nicht perfekt zu
sein, so daB Satz 37 nicht anwendbar ist. Wegen Dima =d =1, Dim (a,b)
=Dim (a, F) =0 =d — 1 und der vorausgesetzten Ungemischtheit von a gilt
dann a: (F) = a (nach Kap. 4, (79)). Mithin ist (113) erfiillt, und nach Satz 29, (114),
ist

ho(a, B) = hy(a, F) =7 - ho(a) mit v = A(F).

Nach Satz 27, (104), ist A(F) = v = ho((F)) = ho(b); Wir haben also wieder ho(a, b)
= ho(a) - ho(b).
Insgesamt gilt

Satz 40 (Spezieller Satz von BEzout). In den Spezialfillen n = 2,n = 3 gilt:
Fiir zwet ungemischte H-Ideale a, b aus K[z, z;, z,] oder K[z, z,, z;, z5] 15t bes
d+ 8 —mn =0 stets

ho(a, ) = ho(a) + ho(b). (133)

Wird in Satz 40 die Forderung der Ungemischtheit fallengelassen, so ist (133)
nicht einmal fiir » = 2 durchweg richtig; man betrachte dazu den Einheitskreis
(Ek.) mit Mittelpunkt (M,); jeder Durchmesser hat dann mit diesem Gebilde
(Ek.) u (M,) drei Schnittpunkte, idealtheoretisch:

a = (T2 — 2.} — 2122, TPy — 7%y — 2,°) = (%F — &P — %) n (2, 7)

mit ky(a) = 2 nach (82). Wihlen wir als Durchmesser die y-Achse, so wird — homogen
geschrieben — b = (F) = (z;), also ky(b) = 1 nach (104) und

(@,8) = (a,z) = (Ih Zp(@e? — 32’)) = (21, Z2) 0 (21, T — Z) N (21, Zo + Z2)
mit Ay(a, 2;) =1 + 1 + 1 = 3 nach (82); wir haben also
Bo(@,8) = 3> 2+ 1 = ho(a) - ho(D).
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Demzufolge wiire also als Verallgemeinerung von Satz 40 fiir beliebiges » giinstigen-
falls die Giiltigkeit von (133) unter den Voraussetzungen (132) und der Ungemischt-
heit (oder Pseudogemischtheit) sowohl von a als auch von b zu erhoffen, und die
dlteren Geometer hielten dies fiir richtig; hierbei spielte wohl auch die Auffassung
eine Rolle, daB fiir » =2 und n = 3 richtige geometrische Sitze sich in nahe-
liegendster Weise fiir beliebiges » iibertragen lassen. Diese — nicht zuletzt von F.
KLEIN vertretene — Hypothese hat sich jedoch verschiedentlich nicht bestatigt.

Bei schwicheren Voraussetzungen als in den vorangegangenen Sitzen miissen wir
also von der Beziehung

ho(8, B) = ho(a) - ko(B) + K (134)
mit einem Korrekturglied K ausgehen. Der Verfasser hat K in [1] auch fiir den Fall
berechnet, da8 (132) nicht erfiillt ist. LéBt man bei den Voraussetzungen von Satz 37
nur die Forderung der Perfektheit von a fallen und ersetzt sie durch die Ungemischt-
heit, so gilt K = 0 (RENscEHUCH [1], (68)). Selbst fiir den Fall, daB a und b =1}
Primideale sind, kann K sogar beliebig gro werden:

Satz 41. Firn 2 4 gibt es n K[z, 2y, ..., 2,] zu jeder noch so grofen Zahl K € N*
Primideale ,,p; mit Dimp, =d =n — r, Dimp, =6 =n — o und

Dim (p;,p;) =d+d6—n=n—(r+¢) 20 (136)
und

ho(b1, Pa) = ho(p) « ho(ps) + K. (136)

Beweis. Dazu geniigt die Angabe von entsprechenden Beispielen. Wegen Satz 40
konnen wir nur solche fiir » = 4 erwarten. Wir gehen dazu gema8 (123) aus von den
eindimensionalen Primidealen v}, < K[z, 2, 25, 2;] mit den allgemeinen Nullstel-
len (™, t™1t;, tot,™1, ;™) und den Basisformen F,, Fy, ..., Fp mit F, = z2; — 2,7,
und F = zo™ iz, — ;™12 fiir 4 = 2,3,...,m und m = 4. Nach 5.18. und
Satz 38 waren diese v}, imperfekt. Wir wollen nun die v}, als zweidimensionale
Primideale in K[z, z,, 2,, 3, z,] auffassen; um dies zu verdeutlichen, setzen wir (wie
beim Beispiel zu Satz 38)

0}, 1= bim |z.|—>z,., (1=0,1,2,3)
und haben dann die allgemeine Nullstelle

(8™ 0™, 6™y, B, 1), (137)
also Dim 1}, = 2 und w}, = (G, Gy, ..., Gp) mit

G, =22, — 24%;,

Gy = z,™ %y — ™1,

Gy = 2,5 — 2" %y,

Gn-r = 23™ % — 222,

G = 2™ — 2
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Aus (137) folgt uibrigens

i, = bgg- P mit b= —14 ("‘ 2+ 1), E=—-3+ ('” ;" 2).

Wir wihlen nun p, = v}, und p; = = (2, %,). Dann ist Dimp, = Dimp, = 2.
Weiter wird

(1, 92) = (W}, 1) = (21, 24, Tos, 2™, 2,™),

und dies ist nach Kap. 1, Satz 28, (27), ein nulldimensionales Primirideal, ausfithr-
lich: Dim (p;,p;) =0 = 2 + 2 — 4, also ist (132) erfiillt. In (p;, Pa) = (107, 1) sind
die folgenden Potenzprodukte ¢-ten Grades nicht enthalten (vgl. Satz 1):

Zo' 5 To' Mg, + vy T LR 20! Ny, L, ot L™
ihre Anzahl ist

H(t;p1,9:) =ho91,02) =14+m—24+m—2=2m — 3.
Dagegen ist ho(p;) = ho(i0},) = m nach (124) und

ho(P2) = ho(l) = Ro(21,2) =1-1 =1
nach Satz 34, (122), also ky(py) - ho(ps) = m - 1 und mithin

Ro(p1, Pa) = ho(9y) - Ao(p2) + m — 3.

In diesem Beispiel ist also K = m — 3. Wird also K € N* vorgegeben, so braucht
man nur m = K 4+ 3 zu wihlen und hat dazu Primideale der gewiinschten Art,
gleichgiiltig, wie groB K € N* gewahlt wird.

Bei allen vorangegangenen Betrachtungen benutzten wir die in Definition 5, (102),
gegebene Multiplizitdt. Man kann nun anstelle dieser ,,statischen Multiplizitit auf
unterschiedliche Weise eine ,,dynamische‘ Multiplizitit einfiihren, bei welcher der
,,8pezielle Fall“ als Grenzlage eines ,,allgemeinen Falles” betrachtet wird; von
O.-H. KeLLER wurden dafiir die Begriffe Strukturmultiplizitit und Spezialisierungs-
multiplizitdt gepragt. Diese unterschiedlichen Multiplizititsbegriffe fithren zu unter-
schiedlichen Ergebnissen; insbesondere gelang damit vAN DER WAERDEN in [3] eine
Verallgemeinerung des Satzes von BezouT ohne Korrekturglied; vgl. RENSCHUCE
[1], § 5, sowie HERRMANN, STAMMLER und STERZ [1]. Die daraufhin dem Bezoutschen
Satz vielfach eingerdumte Schliisselposition im Begriffsstreit um die Multiplizitats-
definitionen diirfte heute generell als aufgehoben angesehen werden; man vergleiche
hierzu vAN DER WAERDEN [2, 3] und GROBNER [3, 10]; die Entwicklung um diesen
Problemkreis kommt ferner in den Vorworten zu den Biichern [2, 8] und [9] von
GrOBNER zum Ausdruck und ist auch aus erkenntnistheoretischer Sicht von Interesse,
vgl. auch 6.9. und BEENKE [1].
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6.6.  Die Hilbertschen Gleichungen

Es sei F, € K[z, 2y, ..., z,] eine vollstindige Form t-ten Grades (d. h. eine Form, bei
welcher simtliche Potenzprodukte #-ten Grades wirklich auftreten) mit zundchst
unbestimmten Koeffizienten, also eine ,,allgemeine’ Form

Foi= wzg + w2y + oo + uy gt : (138)
Da in (138) simtliche Potenzprodukte ¢-ten Grades in z, #y, ..., z, auftreten, ist in
(138) nach der Hurwitzschen Formel (vgl. Kap. 5, Definition 13, Satz 31 und Satz 32,
(94))
N, =A(;n) = (t + "). (139)
n

Es sei nun a ein H-Ideal a = K[z, z,, ..., ,] durch seine Basis a = (F,, ..., F,)
vorgegeben, und wir fragen, welche speziellen Werte aus K fiir uy, ..., uy, in Frage
kommen, damit die so spezialisierte Form F, in a, genauer in (t; a), liegt (vgl.
Kap. 5, 5.15., und Definition 12).

Es sei (G4, ..., Gy) eine beziiglich der Potenzprodukte zy, zo-z,, ..., z,' linear
unabhingige Modulbasis von J(¢; a); also ist V = V(t; a) die Volumfunktion (vgl.
Kap. 5, 5.15.). Damit F; bei Spezialisierung der u; in I(¢; a) liegt, muB also

Fo=kG, + kG + - + kG mit kecK (140)

gelten. Wir denken uns mit Gy, Gy, ..., G, den GauBschen Algorithmus beziiglich
der lexikographischen Anordnung der Potenzprodukte ¢-ten Grades bereits durch-
gefiihrt, so daB G, ..., @y genau V(¢; a) verschiedene erste Potenzprodukte haben.

Es ist also

V(t; a) = Maximale Anzahl der ersten Potenzprodukte
t-ten Grades von G, ..., Gy.

Aus (138) und (140) folgt durch Koeffizientenvergleich fiir «,, ..., uy, entweder
u =0 (142)

(141)

oder
uy = Ly(ky, kg, .., k), (143)

wobei Ly(k,, ky, ..., ky) jeweils eine Linearkombination von &y, k;, ..., ky ist. Wegen
der vorausgesetzten Verschiedenheit der ersten Potenzprodukte von Gy, ..., Gy ist

Bomw, b=y, e by =y, mit <y < e <y (144)

und jedenfalls ; = 0 fiir j < ¢, (aber nicht umgekehrt). Setzen wir (144) in die rest-
lichen Gleichungen von (143) ein, so bekommen wir lineare homogene Gleichungen

Uy = Li(w;, Uiy oovy i) (145)
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Fiir die Anzahl der Gleichungen (145) gilt mithin

A(t; a) = Anzahl der Bedingungsgleichungen (145) = Anzahl der u;,
also .
A(t; a) = Anzahl der in Gy, ..., Gy auftretenden Potenzprodukte

146
t-ten Grades, die keine ersten Potenzprodukte sind. } (146)

Entsprechend folgt aus (142):

B(¢t; a) = Anzahl der Bedingungsgleichungen (142) = Anzahl der u,,
also
B(t; a) = Anzahl der in G, ..., Gy iiberhaupt nicht } (147)

auftretenden Potenzprodukte t-ten Grades.

Ist umgekehrt ein lineares homogenes Gleichungssystem in u,, ..., uy, vorgegeben,
so kann man den GauBschen Algorithmus in umgekehrter Reihenfolge, also beziig-
lich uy,, y,y, .., Uz, % durchfithren und erreichen, daB kein u;, welches in einer der
Gleichungen des Systems an erster Stelle steht, in einer anderen Gleichung des
Systems an zweiter, dritter, ... Stelle steht. Man kommt dann entweder auf Glei-
chungen der Gestalt (142) oder der Bauart (145) und kann von dort zu (144) iiber-
gehen. Mit (144) und (142) folgen durch Einsetzen in (138) wieder G, ..., Gy. Auf
diese Weise kann also von diesen Bedingungsgleichungen auf eine Minimalbasis
von M(¢; a) geschlossen werden. DaB gemiB (145) und (144) als Parameter solche u,
mit moglichst kleinen Indizes % gesetzt werden, erweist sich fiir das praktische
Rechnen als zweckmiBig, ist aber nicht zwingend.

Wir haben also insgesamt

Satz 42. Damit eine allgemeine Form t-ten Grades (138) nach Spezialisierung in

einem vorgegebenen H-Ideal a = K[z, 2y, ..., z,] liegt, mii die Koeffizient
Uy, ..., Uy, 0 (138) einem System linearer homog Qleich geniigen. Ist um-
gekehrt ein solches lineares homogenes Gleich ystem fir /eates t gegeben, so kann

daraus der Modul M(t; a) in endlich vielen Schntten berechnet werden.

Die Bedeutung von Satz 42 besteht darin, daB dadurch in gewisser Weise nicht-
lineare Probleme auf lineare zuriickgefiihrt werden konnen.

Definition 6. Die den Moduln 0%(¢; a) zugeordneten linearen Gleichungen in den
Koeffizienten u, ..., uy, von (138) heiBen die Hilbertschen Gleichungen des H-Ideals a
fiir den Grad ¢.

Aus dem zweiten Teil von Satz 42 folgt dann

Satz 43. Sind von einem H-Ideal a = K[z, 24, ..., z,] die Hilbertschen Qleichungen
fiir alle Gradzahlen t = 1,2, 3, ... bekannt, so lift sich eine Basis von a in endlich
vielen Schritten berechnen.
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Auf Satz 43 werden wir im nichsten Abschnitt zuriickkommen.

Eine weitere Anwendung der Hilbertschen Gleichungen hatten wir in 4.18. beim
Beweis von Satz 46 iiber die Existenz von Schnellbasen bereits vorweggenommen,
dabei aber die Linearitiat dieser Bedingungsgleichungen nicht benutzt.

‘Wir betrachten nun zur Illustration ein einfaches Beispiel. Dazu gehen wir wieder einmal
von dem primen H-Ideal v < K[z, 2,, Z;, z;] mit der allgemeinen Nullstelle (£*, t,%;, tof;?, #,%)
und der Basis 0¥ = (F,, F,, Fy, F,) mit

Fy = zzy — 2,74,
Fy = zo’zy — 27,
Fy = 22y — 2)%,,
Fy=zz? — 2
aus. Der Modul $R(2; bj}) wird dann allein durch F, aufgespannt. Wir wollen den Modul (3; v{%
betrachten. Es ist dann

(3; 0f}) = (Gy, Gy, Gy, Gy, G, Go, Gr)

(148)

mit
G =Fy =z'z, — 2%,
Gy = 2oy = 7’2, — zom,%4,
Gy = 2, Fy = ami3y — 2,°7,,
G =F, = Zo":’ %2y, (149)
Gy = z,F, = — T2y,
Gy = ayFy = %’ — Ty %%y,
Gy =Fy=z,74 — 2,3,
Hier ent!hllt der GauBsche Algorithmus, da die ersten Potenzprodukte bereits alle voneinander

den sind und auBerdem keines der ¥ = 7 ersten Potenzprodukte als zweites Potenz-
produkt auftritt. Far (138) und (140) ergibt sich

Fy =tz + uze; + us2e’my + uge’t; + usgen,? + ugoniz, + hrdi
+ Uty + UZeTiTs + WoTeTs® + Un® + s 2y + Uyt
+ @5 + Tz + helit + ety + het'Ty T heTem? 4 Uy (150)

F s = k(@2 — 2,0%) + ky(7oP2y — 2o1,23) + Ra(@etiZ3 — 2,%2) + K(@oZs? — 2,%7)
+ ke(2ozaTy — 2125%) + ky(7o23® — 2174%5) + ko(2178® — 24°). (161)
Aus (150) und (151) folgt durch Koeffizientenvergleich

un =0,
u, =0,
us =0,
Uy =0, (162)
=0,
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entsprechend (142) sowie

Uy = ky, ty =k, Uy = —ks,

Uy = ky, U = Ky, Uy = —Ky,

Uy = —ky, =k, we=k, (163)

Uy = ks, U= —ky, w;=—k

Uy = ky, Uy = —k,
gemiB (143). Dricken wir &y, ks, ks, Ky, ks, kg, k, durch u; mit moglichst kleinem Index & aus,
so wird

k=1, ky=1u, ky=1u, ki =u, kx=1uy, kg=1ty, k=1, (164)
und wegen 3 < 4 < 7 < 8 < 9 < 10 < 16 ist dann auch die Nebenhemngung von (144) erﬁullt

— Setzen wir (154) in (153) ein, so folgen die sieben nicht identisch verschw
homogenen Gleichungen

Uy + % =0,
s + % =0,
Uty =0,
Uy + Uy =0, (156)
Uy + % =0,
Uyt =0,
ug +u, =0.

Dann sind (152) und (155) die Hilbertschen Gleichungen. Umgekehrt kann man von (155) auf (1564)
und (163) und mit (162) auf (1561) und von (151) auf (149) schlieBen.

Wir wollen nun fiir beliebige ¢ eine Aussage iiber die Anzahl A(t; a) + B(¢; a) der
linear unabhingigen Hilbertschen Gleichungen eines H-Ideals a fiir den Grad ¢
machen: Ist a, ein Potenzproduktideal, so treten nur Hilbertsche Gleichungen der
Art (142) auf; es ist also A(¢; a,) = 0 und B(¢; a,) = H(¢; a,) nach Satz 1, also

A(t; ay) + B(t; a,) = H(t; o).
Dies gilt allgemein:

Satz 44. Die Anzahl der linear unabhingigen Hilbertschen Qleichungen eines
H-Ideals a = K[z, 2y, ..., z,] 1t gleich der Hilbertfunktion H(t; a):

A(t; a) + B(t; 0) = H(t; a). (156)
Beweis. Aus (139), (141), (146) und (147) folgt

At; 0) + Bt; a) + V(t; ) = (‘ J; ") (157)
Nach (1) ist
H(t;0) + V(t;0) = (’ ‘; "). (158)

Aus (157) und (158) folgt (156), q.e.d.
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Mit Hilfe von Satz 44 kann H(t; a) bzw. P(¢; a) in bestimmten Fillen bequem
bestimmt werden, so bei den Veroneseschen Idealen und den Veroneseschen Pro-
jektionsidealen, vgl. 6.8.

In Macavray (1], V, § 64, wird Satz 44 als selbstverstindlich vorausgesetzt (die
Werte der hier A(t; a) + B(¢; a) genannten Anzahlfunktion werden als ,,Hilbert
numbers® bezeichnet), ebenso in MacavLay [2], wo nur noch die Bezeichnungs-
weige auf den Zusammenhang mit der Hilbertfunktion hindeutet. Der erste, sehr
elegante Beweis von Satz 44 wurde von GRGBNER in [2], 141.6, gefiihrt; zur
effektiven Aufstellung der Hilbertschen Gleichungen ist das dort angegebene Ver-
fahren jedoch weniger gut geeignet, weil die dabei auftretenden — schon von Ma-
CAULAY benutzten — Matrizen (‘‘dialytic array‘‘ und ,,inverse array‘‘) einerseits sehr
groBe Formatzahlen und andererseits nur wenige von Null verschiedene Elemente
aufweisen. Dies war der Ausgangspunkt fiir den hier wiedergegebenen Beweis-
gedanken, der sich auch in den folgenden Abschnitten als niitzlich erweisen wird.

6.7.  Berechnung rationaler Primideale

Ist [ =(Ly,..., L) <= K[z, 2y, ..., z,] ein primes H-Ideal, dessen Basisformen
L,, ..., L, Linearformen sind, so ist eine beliebige Linearform

L = L(@y, 21, vv) %) = %o + 1 + +++ + UanZs (159)

genau dann aus [, wenn L an simtlichen Nullstellen von NG (I) verschwindet ; dieser
aus der linearen Algebra bekannte Satz (MfL Bd. 3, 4.1., Satz 4) folgt auch nach
Kap. 3, Satz 11, aus der Existenz allgemeiner Nullstellen, bei denen in unserem Fall
die Koordinatenfunktionen lineare Funktionen in den Parametern ¢, ¢, ..., {; sind.
Setzen wir diese in (159) ein, so gewinnen wir daraus die Hilbertschen Gleichungen
fiir # = 1 und daraus wieder die Basisformen von I.

Wir erldutern dies am

Beispiel 1. Essein =3, d =1, also

L = Fi(zg, 21, 2p, %) = %0 + w7 + Us%y + U35 (160)
Die Parameterd llung einer Geraden sei unsere allgemeine Nullstelle, und zwar
Yo=2+3t, pr=th—t, y=3,—4, yY=l+h. (161)

Setzen wir (161) in (160) ein und ordnen wir nach ¢y, ¢,, so erhalten wir

F (Yo 910 9o 93) = 102 + Uy + Buy + w) + (3w, — up — 4y + ) =0
id. in ¢, ¢,

} (162)
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also sind fiir ¢ = 1 die Hilbertschen Gleichungen

Uy + 3uy + uy + 24, =0, u, + 3uy + uy + 2u, =0,

=

Uy — duy —ug + 3u;, =0 Tug + 2uy — uy =0,
also

w =Tk, ug =Tk, und uy =14k — 2k, uy = —1Tk; —ky;
dies in (160) eingesetzt, folgt — nach %, k, geordnet —

L= F:(’o- Zy, T3y T3) = ky(170 + 2, — 172y) + ko(T2; — 223 — 2,).
GemiiB Satz 43 ist mithin [ = (72, + 2, — 17z, 72, — 22, — 7,), da nach der linearen Algebra
zu der durch (161) gegebenen allgemeinen Nullstelle ein lineares Gleichungssystem gehért, in
unserem Fall

Ty + 23 — 1723 =0,

T2y — 2z — z,=0;
diese Gleichungen werden in der analytischen Geometrie auch als die ,,parameterfreien Glei-
chungen‘* der Geraden (161) bezeichnet. Dies hitte man aus (161) auch durch Auflésung nach ¢,
und ¢, gewonnen, wie das in der linearen Algebra iiblich ist. Das hier beschriebene Verfahren ist
aber auch fiir t = 2, 3, ... anwendbar; far ¢t = 2 ist (160) zu ersetzen durch

Fi(@or 21, g0 23) = tho? + ey + ey + uToTy + Usts?

+ uUgtiZy + 21Ty + Uy’ UTpTy + U’ (183)

Setzen wir (161) in (163) ein, 8o erhalten wir — nach 2, £¢#,, t,2 geordnet — in Analogie zu (162):

F:(!/on Yo Yo Ys) = o2 (4t + 2up + Bug + dug + ug + 3uy + Uy + Sug + 3uy + %)
+tot (12u) + up + uy + By — 2ug — Tug — 24uy — uy + 2u,0)
42Oy — 3uy — 12u5 + Buy + us + dug — up + 16uy — duy + )

=0 id.in t2 tty, 1,3,
was der Leser nachpriifen méoge. Daraus ergeben sich als Hilbertsche Gleichungen fir ¢ = 2:

tho + By + Bug + up + Bug + up + dug + Buy + 2uy + 4y, =0,
2y — Uy — 24u, — Tug — 2ug + 5uy +  us+ uy+ 124 =0,
tho — duy + 16Uy — u, + dug + us + 3u, — 1205 — 3uy + %y =05

der Nachweis der linearen Unabhingigkeit mit Hilfe des GauBschen Algorithmus sei dem Leser
iberlassen.

Die hier dargelegte Methode des Koeffizientenvergleichs zur Aufstellung der Hilbert-
schen Gleichungen ist nicht nur bei linearen Parameterfunktionen, sondern jedenfalls
immer dann anwendbar, wenn die Koordinatenfunktionen der vorgegebenen Null-
stelle Formen vom gleichen Grad m sind. Um von einer Nullstelle auf ein H-Ideal
und dessen Basisformen schlieBen zu kénnen, miissen wir uns nach dem Hilbertschen
Nullstellensatz (vgl. 3.7. und 3.12.) von vornherein auf prime H-Ideale beschrinken.

Ist ein P-Ideal mit einer allgemeinen Nullstelle vorgegeben, bei der die Koordi-
natenfunktionen Polynome in den Parametern sind, so kann nach Kap. 3, Satz 12,
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die allgemeine Nullstelle des dquivalenten H-Ideals angegeben werden. Sind 7, ..., 74
die Parameter der allgemeinen Nullstelle des P-Ideals, so setze man 7, = f;/t, und
multipliziere mit dem Hauptnenner. Entsprechend kann man bei primen H-Idealen
stets erreichen, daB alle Koordinatenfunktionen y,, ¥, ..., ¥s Formen m-ten Grades
in o, by, ..., tg 8ind:

Yi = apte™ + @pb™ M + o0+ ant™
164
mit N=("‘Id), i=0,1,2,...n. (164

Definition 7. Ein primes H-Ideal p aus K[z, z,, ..., z,] mit einer allgemeinen
Nullstelle (yo, %1, - .., ¥s) der Bauart (164) heilit ein rationales Primideal.

Ist (164) vorgegeben, so machen wir fiir ¢t =1, 2,3, ... den Ansatz (138), setzen
(164) in (138) ein und bestimmen durch Koeffizientenvergleich nach den (héchstens)

(mt ;. d) Potenzprodukten vom Grad mt inty, ¢y, ..., {; die Hilbertschen Gleichungen;
es gilt also

Satz 45. Bei einem rationalen Primideal ki die Hilbertschen Gleichungen aus
der vorgegebenen allgemeinen Nullstelle (184) fiir jedes t in endlich vielen Schrttten be-
stimmt werden. Die auf diese Weise gewcmnenen linearen homog Gleichungssy

thalten im allgemes linear abhingige Gleichung

Um ein System linear unabhingiger Gleichungen zu gewinnen, ist daher die An-
wendung des GauBschen Algorithmus unerldBlich, insbesondere denn, wenn daraus
gemiB Satz 43 Basisformen des durch (164) bestimmten Primideals berechnet werden
sollen. Jedenfalls gilt

Satz 46. Ist ein rationales Primideal p aus K[z, 2y, ..., ,] durch seine allgemeine
Nullstelle vorgegeben, so kann eine Basis von p in endlich vielen Schritten berechnet
werden.

Die Frage, bis zu welchem ¢ die Ansitze (138) durchgerechnet werden miissen,
konnte noch nicht entschieden werden; die Schranke ¢t = m wire denkbar; bei den
bisher gerechneten Beispielen trat m — 1 als Maximalgrad auf, vgl. die Primideale
b}, und vly in 5.18, Beispiele 3 und 4. Bei den im Anhang berechneten rationalen
Primidealen wurden die Ansitze bis ¢t = 6 durchgefiihrt, sofern es sich nicht um
Veronesesche Projektionsideale handelt, fiir die wir im néachsten Abschnitt ein Ver-
fahren zum Nachweis der Vollstindigkeit eines Systems von Basisformen angeben
konnen. '

Dadurch kénnen wir endlich in vielen Fillen entscheiden, ob ein durch seine Basis
gegebenes H-Ideal ein Primideal ist.
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Satz 47. Ist a ein H-Ideal aus K[z, z,, ..., z,] mit einer Nullstelle (164), tst ferner p
das zu (164) gehorige rationale Primideal und ist a = p, so 13t a ein homogenes Prim-
ideal.

Beweis. Ist a = (Gy, ..., ;) eine Basis von a und p = (¥}, ..., F,) die aus (164)
berechnete Basis von p, so ist fiir a =p nur noch zu zeigen, daB jedes F; durch
@y, ..., Gy und jedes @; durch F, ..., F, ausgedriickt werden kann.

Fiir den ersten Schritt von a auf (164) sei auf Kap. 4, Satz 18, verwiesen. Als Bei-
spiel hatten wir dort (4.10) das H-Ideal a = (F,, F,, F3, F,) = K[z, 2,, Z,, Z5] mit
(148) betrachtet und durch Bildung der Eliminationsideale gezeigt, dal a nur die
Nullstelle

Yo =t*, Y1 =t’h, Y2 = loh®, Yo =1t (185)

hat. Es bleibt noch zu zeigen, daB das Primideal v{} mit der allgemeinen Nullstelle
(165) ebenfalls die Basis (F,, F,, Fy, F,) hat, womit a = v und die Primidealeigen-
schaft von a nachgewiesen ist. Bevor wir dies durchfiihren, wollen wir einige Be-
trachtungen an (164) anschlieBen.

Definition 8. Ein rationales Primideal p, aus K[z, 2;, ..., z,] heiBt bei festem m
allgemeines Primideal, wenn die rechten Seiten von (164) allgemeine Formen m-ten
Grades (also vollstindige Formen in unbestimmten Koeffizienten) sind ; ein rationales
Primideal p, heilt normales Primideal, wenn es aus p, durch eine solche Spezialisie-
rung der a,, mit Koeffizienten aus K entstanden ist, da8 p, und p, dieselben Grad-
matrizen haben.

Wir wollen den damit gegebenen Sachverhalt fiir n» = 3, d = 1 niher untersuchen.
Die entsprechenden NG (p,) sind dann algebraische normale Raumkurven im drei-
dimensionalen projektiven Raum. Die Gleichung (164) geht also iiber in

Yi = ante™ + aph™ M + - + Gipuh™  fir 1=0,1,2,3. (166)

Fiir m = 2 folgt daraus eine lineare Beziehung zwischen den y,;, was geometrisch
den Satz beinhaltet, daB rationale Kurven zweiter Ordnung ebene Kurven sind. Dies
ist auch wie folgt einzusehen: Die Hilbertschen Gleichungen sind wegen der Un-
bestimmtheit der ay linear unabhingig, also ist

P(t;pg) =mt + 1 (167)

fiir normale Primideale p,; fiir m = 2, ¢t = 1 haben wir demgemiB drei Gleichungen
fiir vier Unbekannte (vgl. (160)) u,, u,, u,, 4y, also eine einparametrige Losung, folg-
lich existiert eine lineare Basisform.

Fiir m = 3 haben wir jetzt fiir ¢ = 1 vier linear unabhéngige Gleichungen fiir vier
Unbekannte, also nur die triviale Lésung, mithin existieren keine linearen Basis-
formen; fiir # = 2 sind es sieben linear unabhingige Gleichungen fiir zehn Unbekannte
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(vgl. (163)), also existieren drei quadratische Basisformen. Durch eine homogene
lineare Transformation kénnen alle diese Primideale auf das Ideal b,; mit der all-
gemeinen Nullstelle (£, £,2;, tof,2, t,®) zuriickgefiihrt werden, vgl. (70).

Fiir m = 4 existieren aus demselben Grunde keine linearen Basisformen; fiir ¢ = 2
sind es neun linear unabhingige Hilbertsche Gleichungen fiir zehn Unbekannte; also
existiert eine quadratische Basisform. Fiir ¢ = 3 haben wir gemi8 (150) jetzt 20 Un-
bekannte und 13 linear unabhingige Gleichungen, also besteht IM(3;p,) aus
20 — 13 = 7 kubischen Formen. Nun induziert die eine quadratische Basisform
durch Multiplikation mit zq, z;, 2,, z; bereits vier kubische Formen, so daB noch
7 — 4 = 3 kubische Basisformen hinzukommen. Wie (149) und (148) zeigen, wird
dieser Sachverhalt sogar durch das H-Ideal (% realisiert.

Anders verhilt es sich mit dem Ideal v}; (vgl. (74)), dessen Basis aus einer quadra-
tischen Form und vier Formen vierten Grades besteht. Ein normales Primideal fiinfter
Ordnung hat ndmlich keine quadratischen Basisformen, denn die Anzahl der Un-
bekannten ist fiir ¢ = 2 kleiner als die Anzahl der linear unabhingigen Gleichungen:

(2:3)<5~2+1; fiir ¢ = 3 ist dagegen(3;3) > 5.3+ 1; wir haben also

bei normalen Primidealen fiinfter Ordnung 20 — 18 = 4 kubische Basisformen. Da-
mit kann jedoch keineswegs behauptet werden, daB dies die vollstindige Basis ist.
Bei allen durchgerechneten Beispielen von rationalen Primidealen fiinfter Ordnung
mit vier kubischen Basisformen trat noch eine weitere Basisform vierten Grades
hinzu, vgl. (76); dies gilt auch fiir das Vahlensche Ideal, vgl. 8.5.6. Auf diese Weise
koénnen also lediglich Aussagen iiber den Minimalgrad m, der Basisformen von
normalen Primidealen gemacht werden.

Bei diesen ist bei den Hilbertschen Gleichungen fiir den Grad ¢ die Anzahl der
linear unabhingigen Gleichungen gleich der Anzahl der Potenzprodukte vom Grad m¢
in ¢, und ¢, also m¢ + 1 (vgl. (167)), die Anzahl der Unbekannten u,,..., uy, ist

(‘ —; 3);dn.mit keine Basisformen g-ten Grades auftreten, mug also Y :; 3) <mg+1
sein fiirg =1, 2, ..., my — 1, worin m, der Minimalgrad ist. Es gilt also
mimg — 1) +1> ("“’; 2)
und mithin
(5
m> —t— (168)
my — 1

Gibt man m, vor, so kann man also m gemiB (168) so wihlen, daB der Minimal-
grad der Basisformen in dem entsprechenden normalen rationalen eindimensionalen
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Primideal aus K[z, z;, z,, z;] gerade m, ist. Inshesondere wird

m°+2—l
3— >

Mo o — 1 m=
9

3 — 5
2

s |2 7
3
1

s |4 ;
2

s = 12
5

in Worten besagt dies: Allgemeine und normale rationale Primideale
— der Ordnung = 5 enthalten keine quadratische Basisform,
— der Ordnung = 7 enthalten weder quadratische noch kubische Basisformen,
— der Ordnung = 9 enthalten keine Basisformen zweiten, dritten, vierten Grades
usw.

In Ergiinzung von Kap. 4, Satz 74, folgern wir hieraus

Satz 48. Bei H-Idealen kann der Minimalgrad m, der Basisformen einer Minimal-
basis beliebig grof sein.

Wir illustrieren nun die praktische Basisbestimmung bei vorgegebener allgemeiner
Nullstelle am

Beispiel 2. Vorgegeben sei das Primideal v{% — K[z, 2;, 2,, z;] durch seine allgemeine Null-
stelle (185). Setzen wir (165) in (160) ein, so folgt u; = u; = uy = u, = 0 durch Koeffizienten-
vergleich nach ¢4, £5%,, fyt,%, t,*; es existiert also keine lineare Basisform.

Wir gehen nun zum Grad ¢ = 2 iber und setzen (185) in (183) ein. Nach £?, £, ..., 1,* ge-
ordnet, gibt dies

Fo(Yor 1 Yo 4a) = thite® + b’y + ugto®ty? + ugtobty® + (g + ) o4
+ Uatg®,® - ugle®,® + Uploty” + useh® = 0 (169)
id. in 88, 8o7ty, ..., 1y,
Mithin haben wir far ¢ = 2 die Hilbertschen Gleichungen
Upg =y = Uy =Uy=Uy =Ug=1Uy =1y =0 und u, + u,=0.

Setzen wir u, = k,, 8o folgt uy = —k, und Fy = ky(242; — 2,2,). Als erste Basisform zu (148)
haben wir also F, = 2z, — 2,2, gewonnen.
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Wir gehen nun zu ¢ = 3 @ber und setzen (185) in (150) ein. Nach ¢,'2, &%, ..., £;'? geordnet,
ergibt dies
F3yor 91, Yor ¥2) = tito™® + talol™y + w3tg1%3 + (g + 1) t6"°
+ (g + ug) 8% + (% + ) B7H® + (25 + ) L°°
+ (2 + ) %7 + (o + tag) b*° + (e + Uia) B*°
+ tdd®h™® + wshoh ™ + U =
id. in 4512, tg2ity, ..., 110,
Hieraus folgen wieder die Hilbertschen Glelchu.ngen (162), (1565) und damit Fy, Fy, F, von (148).
Hierbei ist es lastig, daB man die kubischen Formen zoF), z,Fy, z,F,, z,F; hinterher aus-
sondern muB. Dies vorher zu bewerkstelligen, ist Gegenstand der im folgenden fiir dieses Beispiel
beschriebenen u*-Methode; fir eine allgemeine Formulierung vgl. RENscrUCE [13]. Aus (148)

folgt
zo'2y = 2oFy + 22,7y,

w7y = 2Fy + 7'z,
zyzy = 7y Fy + zyz?,
Tty = 2y + 2
dies in (150) eingesetzt, ergibt
Fol@on 2y T30 73) = (o + %y + Uy + o) Fy + 42 + uaZey + iy
+ g ? + (U + ) TEyZy + UeZeZy® + UpT,?
+ (g + thys) 2,27y + o775 + (U + %) 27,7
+ (g + Ugg) Z1TeT3 + Ui + U1Z® + LTy
+ 2y’ + ey
Setzen wir ug* := u, + Ug, Ul 1= Uy + Uy, UY, 1= Uy + Uy, Uy 1= Uy + %y; und dann (165)
ein, so reduzieren sich die Hilbertschen Gleichungen auf

o=ty =y =t = Uy = Ul = Ul =ty =ty = Uy =0

dun
4 +uy =0,
Uy + 1ty =0,
e + %y =0,
und hieraus ergeben sich nur noch die neuen Basisformen F,, F., F, von (148)
Ob man einen * hinschreibt oder nicht, ist fiir das praktische Rech heidend

ist, daB man die vier ersten Potenzprodukte von z,Fy, 2, F;, 2,F;, 2,F, in (150) strenchen kann,
Entsprechend kann man fir ¢ = 4 verfahren. Dort lautet der Ansatz

F (200 21, 220 23) = %" + ug7g’2; + o0 + Uzt (170)

Einsetzen von (165) liefert 4 -4 + 1 = 17 Potenzprodukte t,!%, t,!%,, ..., £;'® in t,, ;. Durch
Bildung von ziz;F, ;F, z,Fy, z,F‘ entstehen 22 Formen vierten Grades, von denen jedoch
(wegen der Syzygien, vgl. 5.6.) vier linear abhiingig sind. In (170) kénnen also 18 der v, gestrichen
werden; nach 5.8. sind dies gerade diejenigen u; mit

1=3,4,6,7,8,9, 10, 13, 14, 15, 18, 17, 18, 19, 20, 26, 29, 30.



300 6. Die Hilbertfunktion

Es verbleiben also noch 35 — 18 = 17 Koeffizienten u; bzw. u*, fir welche sich wegen der
17 Potenzprodukte ty!8, %, ..., t,* wiederum 17 linear unabhiangige Hilbertsche Gleichungen
ergeben, die mithin nur die triviale Losung haben. Folglich existieren keine Basisformen vierten
Grades.

Damit ist nun die Vollstindigkeit der Basis (148) fiir unser Primideal mit der
allgemeinen Nullstelle (fo8, ¢%;, tot,% ¢,*) noch keineswegs erwiesen. Wir werden
jedoch im nichsten Abschnitt fiir alle eindimensionalen primen H-Ideale aus
K[z, 2,, 2, 25], bei denen die allgemeine Nullstelle (166) so spezialisiert ist, daf
jedes y; gleich einem Potenzprodukt in ¢, ¢, vom Grad m ist, ein Verfahren zum
Nachweis der Vollstandigkeit der Basis angeben.

6.8.  Veronesesche Ideale und Projektionsideale

Wir denken uns nun die Koeffizienten ay, in (164) so spezialisiert, daB fiir jedes ¢
nur ein ay gleich 1 gesetzt wird und alle iibrigen a;; gleich Null gesetzt werden. Die
Koordinatenfunktionen der allgemeinen Nullstelle (yo, %y, ..., ¥4) sind dann Potenz-
produkte m-ten Grades in ¢y, ¢, ..., ;. Sind dabei zwei Potenzprodukte gleich, gilt
also etwa y; = y, mit j < k, so enthilt das entsprechende Primideal eine Linear-
form 2; — x;, und durch die lineare umkehrbare Transformation

wk—1,

X, =24 fir 1=k ...,n—1,

X, =2 — 2
konnen wir die Betrachtungen auf ein Primideal in K[X,, ..., X,,] ohne Linear-
formen zuriickfiihren. Bei der Spezialisierung der a;, von (164) derart, daByo, ¥y, ..., ¥a
Potenzprodukte werden, kénnen wir also 0.B.d.A. annehmen, daB diese Potenz-
produkte alle voneinander verschieden sind:

X, =z fir §=1,

Definition 9. Rationale Primideale, bei denen die Koordinaten der allgemeinen
Nullstelle (164) zu verschiedenen Potenzprodukten m-ten Grades in ¢, ¢y, ..., &
spezialisiert sind, heiBen Veronesesche Projektionsideale.

In (164) war N = (m : d) die Anzahl aller Potenzprodukte m-ten Grades in
to, b1, «++, tg; wir konnen also bei Veroneseschen Projektionsidealen maximal N Ko-
ordinatenfunktionen bilden, d. h., bei yo, ¥, ..., ¥, ist

n+t1=N mit Ng(’":d). ()

Steht in (171) das Gleichheitszeichen, so spricht man von Veroneseschen Idealen.
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Definition 10. Unter dem Veroneseschen Ideal v4n — K[X,, X;, ..., X,] mit

n=_1+(m:") (172)

versteht man das prime H-Ideal mit der allgemeinen Nullstelle (z,, 2, ..., z,) und

20 = k"™,
2, = t™ M,
2, = ™ s,

zg = ™My,
2any = t™ 02,
Zasa = to™Pits, (173)

Zn, = tots™

Za1 = 4™,

Zpaz = 4™y,
2p =™
dabei ist
n,=_1+("‘+:"1). (174)

Es ist erstaunlich, dafl Veronesesche Ideale Basen aus lauter quadratischen Formen
besitzen, die man sogar implizit angeben kann. Dazu machen wir die nachfolgenden
Bemerkungen: Multipliziert man alle n, + 1 (vgl. (174)) Potenzprodukte (m — 1)-ten
Grades (™1, t,™%,, ..., {1 mit &, ¢, ..., t;, S0 gewinnt man alle » + 1 (vgl. (172))
Potenzprodukte t,™, t,™,, ..., {;, einige von ihnen mehrmals. Wir schreiben uns
dafiir ein Multiplikationsschema und ersetzen darin die ausmultiplizierten Potenz-
produkte m-ten Grades gemdB (173) durch zy, 2, ..., 25!

t am—l ¢ om—ztl ‘o"'_ztz . t dm—l
bo 2y 2z 2 . 2,
[ % 2441 Zg+2 .o e (175)
b % Zd+e

ty 24 234 2,
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Sind p;, p; irgendwelche zwei Potenzprodukte (m —1)-ten Grades in fo, ¢, ..., #,
so ergibt sich fiir die aus der A-ten und i-ten Zeile sowie j-ten und k-ten Spalte von
(175) gebildete zweireihige Unterdeterminante

0Py P
Lp; e

Ersetzen wir nun in (175) die z,, z,, ..., 2z, durch X, X, ..., X,, so folgt aus (175)
die homogene Matriz (H-Matrix) :

=0. (176)

X, X X, N X.‘
xl -Xdﬂ Xd+2

Usingn = | X3 Xgg oor on oo | (177)
X, Xy ... ... Xa

und aus (176) folgt, daB alle zweireihigen Unterdeterminanten von (177) Basisformen
unseres Veroneseschen Ideals g, sind. Es gilt aber sogar die Umkehrung, ndmlich
der

Satz 49 (Satz von GoppARD und GROBNER). Durch die zweirethigen Unterdeter-
minanten von (177) ist eine Basis des Veroneseschen Ideals vy, gegeben, die fiir d = 2
keine Minimalbasis ist.

Wir miissen hier auf den nicht ganz einfachen Beweis verzichten und verweisen
dazu auf GrROBNER [9], Kap. IV, § 3, IIT, und GRGBNER [7], Satz 3.

Satz 49 regt dazu an, H-Ideale dadurch zu definieren, daB man Unterdeterminanten
bestimmter Reihenzahl aus einer vorgegebenen H-Matrix bildet. Nach Kap. 5, Satz 4,
sind diese Unterdeterminanten Formen, und man wihlt sie als Basisformen eines
H-Ideals. Auch hierauf kénnen wir in dem uns gestellten Rahmen leider nicht ein-
gehen.

Nach Definition 9 kénnen wir die allgemeine Nullstelle eines Veroneseschen Pro-
jektionsideals aus (173) durch Streichung der nicht benétigten Potenzprodukte ge-
winnen und danach zuriickindizieren.

Dafiir geben wir ein Beispiel an. In K[z, z,, z,, 2] war b} das prime H-Ideal mit der all-
gemeinen Nullstelle

Yo=1b's n=1% vB="1th’ y==44 (178)
dagegen ist v,, = K[X,, X,, X,, X,, X,] das prime H-Ideal mit der aligemeinen Nullstelle
Zo =1t =13, 2z, =122, zg=1°, z,=14% (179)

hier wird also z, gestrichen (daher die Bezeichnung b{%) sowie

Yo=12, Y1=2, sber y =2, Y=z
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und entsprechend
Zg=2X, =X, sbar z,=X;, 5 =X,
gesetzt. Hier wird also X, eliminiert.
Bei eventueller mehrmaliger Elimination gilt also

Satz 50. Jedes Veronesesche Projektionsideal ist Eliminationsideal eines Veromese-
schen Ideals.

Nach 4.10., Satz 19ff., kénnen mithin Basen von Veroneseschen Projektions-
idealen aus der gemif Satz 49 bekannten Basis des entsprechenden Veroneseschen
Ideals durch sukzessive Elimination von Variablen zwar grundsitzlich berechnet
werden, doch erweist sich dies als nicht zweckmaig.

Hingegen ergeben sich bei dieser Betrachtungsweise Reduktionsméglichkeiten bei
der systematischen Aufstellung Veronesescher Projektionsideale. Einmal sind dies
Parameterpermutationen, welche Permutationen der Variablen induzieren:

(io :, :4) fiihrt zu (zo 2y e z.)
z, 2z, ... %
iy [ Jo i T (180)
und damit X, X, ... X.;
X;, X, ... X;

dadurch ist eine Aquivalenzrelation gegeben, und wir haben beispielsweise fiir
v = K[X,, ..., X;) nur drei Aquivalenzklassen, und zwar fir ¢ =(0,6,9),
t=(1,2,3,5,7,8) und ¢ = (4), vgl. RENScHUOH [19].

Fird =1, also m = n, liefert (180) zwar nur:

(to t,) fiihrt zu (zo 2 e Zpey z,,.)
t by Zm Zmel ees 21 2
; X, X, oo Xpa X,,,)
und damit H
(X,,, Xpy .. X, X,

hier aber tritt dafiir eine zweite Reduktionsméglichkeit um so héufiger auf, wonach
gemeinsame Faktoren in der allgemeinen Nullstelle des Veroneseschen Projektionsideals
abgespalten werden kénnen; so wird beispielsweise

v = 0i% = Diymere (181)
Und schlieBlich kann es passieren, da8 in der allgemeinen Nullstelle des betreffenden
Ver hen Projektionsideals gewisse der Parameter to, ty, ..., t; nur in bestimmien

Potenzen auftreten, wodurch ebenfalls eine Reduktion auf kleineres m maglich ist.
Hierfiir geben wir ein Beispiel an. Das Veronesesche Ideal 9,4 hat die allgemeine Nullstelle

2y =48, 2, =%, z3 =3, z3 = 13,3, zy =t zg =45, zg=1¢°,



304 8. Die Hilbertfunktion

also hat das Veronesesche Projektionsideal v{s™® die allgemeine Nullstelle
Yo=1" =1t Y=t y=14t, (182)
und in (182) sind ¥,, ¥, ¥3, y¥s Funktionen von £,2 und ¢,2. Setzen wir daher &, := {2, 8, := 3, 80
geht (182) iaber in
Yo=15" Y1=28%, Y =288% Ys=24",
und daraus folgt v{s>® = vy,
Diese drei Reduktionsmdoglichkeiten wurden bei den Aufzéhlungen in 8.2., 8.3. und

8.4. beriicksichtigt.
Von Ge6BNER wurde in [7], 2, VI bzw. 5, 6 weiterhin folgendes bewiesen:

L(vgm) =1,
d. h,, alle Veroneseschen Ideale sind perfekt,
L) =r+d—1 fir d=22, m=3,

am.

diese Veroneseschen Projektionsideale sind also imperfekt,
L@y =r+d fir m=4,

und folglich sind auch diese Veroneseschen Projektionsideale imperfekt.

Bei Veroneseschen Idealen und Veroneseschen Projektionsidealen kénnen wir nun
die Hilbertfunktion und das charakteristische Polynom gemi8 Satz 44 aus der An-
zahl der Hilbertschen Gleichungen berechnen. Nach Definition 9 und Definition 10
sind die Koordinatenfunktionen der allgemeinen Nullstelle eines Veroneseschen
Ideals oder Veroneseschen Projektionsideals verschiedene Potenzprodukte m-ten
Grades in #y,t,, ..., t; in (138) entspricht also nach Einsetzen der jeweiligen all-
gemeinen Nullstelle jedem Potenzprodukt ¢-ten Grades in z, 2y, ..., z, genau ein
Potenzprodukt mt-ten Grades in £, ¢, ..., ¢, aber nicht umgekehrt. Bei den daraus
durch Koeffizientenvergleich gewonnenen Hilbertschen Gleichungen tritt jedes u;
nur einmal auf; die so gewonnenen Hilbertschen Gleichungen sind also linear un-
abhingig; nach Satz 44 ist also die Hilbertfunktion gleich der Anzahl der nach Ein-
setzen der allgemeinen Nullstelle auftretenden Potenzprodukte mt-ten Grades in
by, ty, -+, tg; diese ist (da ja micht alle diese Potenzprodukte aufzutreten brauchen)
nach der Hurwitzschen Formel (Kap. 5, (94)) héchstens gleich (mt: d); mithin gilt

Satz 51. Die Hilbertfunktion eines Veromeseschen Projektionsideals ist gleich der
Anzahl der nach Einsetzen der allgemeinen Nullstelle in (138) auftretenden Potenz-
produkte mi-ten Grades in ty, ¢y, ..., ts.

Beispiel. Bei by ist yo = t,™, y, = t,™ My, ...; fiir ¢ = 1, m = 3 tritt nach Einsetzen der

allgemeinen Nullstelle das Potenzprodukt £,™~%, nicht auf; es ist also farm = 3,¢t =1
H(t; o) = P(t; o) — ("“ ; 'i) —1
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Bei Veroneseschen Idealen v,, kénnen wegen der allgemeinen Nullstelle (173), in
der jedes Potenzprodukt m-ten Grades in o, t, ..., t; vorkommt, derartige Fille
nicht auftreten; wir haben mithin (vgl. GRGBNER [7], 2. IT) den

Satz 52. Fiir die Hilbertfunktion Veronesescher Ideale v4y, gilt

mnmm=Pmmm=(”;”) fir alle tEN, (183)
also insbesondere
Ro(Dgm) = S, (184)

Aus (183) wollen wir eine Folgerung ziehen. Nach (1) ist
(CEEY W EE-CUE iy BE:CLE
n t
mit (172) und (183) folgt daraus fiir Veronesesche Ideale

V(z;n.,,,)=('_1t+N)—("”;d) mit N=(m:d); (185)

wegen Satz 49 ist die Anzahl der Elemente einer Minimalbasis von vy, gerade durch
V(2; v4m) gegeben; mithin gilt (vgl. GRéBNER [2], Kap. III, (3.9), und [7], 2. (III))

Satz 53. Jede Minimalbasis des Ver hen Ideals 04, besteht aus genau
1 2m + d . m + d
V(2;v,,,,,)=( ;N)_< ; ) mit N=( ; ) (186)
quadratischen Basisformen.

Wie bereits vor Satz 51 bemerkt wurde, entspricht bei einem Veroneseschen Pro-
jektionsideal nach Einsetzen der allgemeinen Nullstelle in (138) jedem Potenz-
produkt t-ten Grades in zy, z,, ..., 2, genau ein Potenzprodukt mt-ten Grades in
to, ty, ..., ts, aber nicht umgekehrt; Formen ¢-ten Grades entstehen gerade aus der
Gleichheit der Potenzprodukte mi-ten Grades in to, ¢, ..., ¢ bei Ungleichheit der
Potenzprodukte ¢-ten Grades in z, 2y, ..., z, und lassen sich daher auf Binome der
Gestalt p; — p; reduzieren, wobei p;, p; Potenzprodukte ¢-ten Grades in 2o, 2y, ..., 7,
sind; wird dies fiir ¢ = 2, 3, 4, ... durchgefiihrt, so folgt fiir die Basisformen Verone-
sescher Projektionsideale die gegeniiber Satz 49 schwichere Aussage von

Satz54. Die Basisels te eines Ver hen Projektionsideals aus K[z, z,,...,2,]
sind Binome der Qestalt
Pi — Pjs (187)

worin p; und p; Potenzprodukte gleichen Grades in 2o, i, ..., &, sind.
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Aus Satz 54 ergibt sich nun eine Methode zur Bestitigung der Vollstindigkeit
der Basis eines Veroneseschen Projektionsideals, die wir hier fiir den Spezialfalld = 1
erliutern wollen. Fiir d = 1 ist v,,, gegeben durch die allgemeine Nullstelle

zg =t™, zp =™, =0, .., oz, =47, (188)

erzeugt also ein primes H-Ideal in K[X,, Xy, ..., X,]. Fir m = 3 liefert dies das
bereits des fteren in Beispielen benutzte prime H-Ideal v,; = K[X,, X, X,, X4].
Ist in (188) m = 4, so gelangen wir durch (m — 3)-malige Elimination und an-
schlieBende Riickindizierung der verbliebenen vier Variablen zu einem Veroneseschen
Projektionsideal in K[z, z,, 3, %3], ndmlich
Py 1= piftein = K[z, 2, 2, 75); (189)
das einfachste Beispiel ist das haufig in Beispielen herangezogene prime H-Ideal
oy,
Aus Satz 54 folgt, daB wir uns in K[z, x,, zp, 25] bei der Kontrolle der Vollstandig-

keit von Basen solcher Ideale auf die folgenden vier Typen beschrinken kénnen (vgl.
RENscHUCH [6, 11]):

(A) zf — 2z mit ac N*,

(B) zPo%2P — 2 mit a,be N*, (190)
©) 2Pz — 2%+ mit a,b,c € N*,
(D) 2%z — 2,2~ mit a,b,c,a b —c€ N*.

Durch (190) sind (wie der Leser nachrechnen maoge) 6 + 12 + 4 + 3 =25 Fille zur
Nachpriifung vorgegeben; fiir den Typ (A) sind dies die sechs Méglichkeiten

(,9) = {(0,1), 0, 2), (0,3), (1, 2), (1, 3), (2, 3)}..

Wegen (181)ff. konnen wir fiir alle allgemeinen Nullstellen der Primideale p,
(vgl. (189)) die Bauart
Yo=1", Y1 =4L"H™, Y =LPE™, Y =4H" (191)
mit 1<m<m<m-—1 und mnmnm, =1
voraussetzen.
Fiir den ersten Fall vom Typ (A), also fiir § = 0, j = 1 folgt z,®> — z,%; darin (191)
eingesetzt, ergibt sich

Yo® — Y18 = ™ — tyma-miop,ma = 0 id. in to, b;;

hieraus folgt durch Exponentenvergleich m;a = 0; wegen (191) ist m; = 1, also
a = 0 im Widerspruch zu a € N*, also zu @ = 1. In entsprechender Weise fiihren die
anderen fiinf Fille vom Typ (A) auf Widerspriiche; Typ (A) kann also nicht auf-
treten.
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In analoger Weise fallen noch weitere elf Fille bei den Typen (B), (C), (D) fort; als
ein Beispiel fithren wir dies fiir den ersten Fall vom Typ (D), also fir (3,4, k, )
=(0,1,2,3) aus:

b
zoaxlb — zzczam-b-c [ yoay‘b — Yo Yy®Hd-C

— tomtnmo-m.b,lm.b — to"""'“l,"“”tl"“”“""“

—_ toma+mb-m,btlm|b nc—n.etlmmb—mu-m.c

— ¢
=0id.in to, t;.
Durch Exponentenvergleich folgt ma + mb — m;b — me + mgc = 0, also
(m—my)(@+b—c)+ma+ (mg—m)c=0, (192)

und wegen (191) sind m — m; = 1, m; = 1, my — m; = 1; andererseits sind nach
(190)a =1,¢ =1und a + b — ¢ = 1 im Widerspruch zu (192).

Nach Wegfall derartiger Fille bleiben fiir alle gemi 8 (189) definierten ps, also fiir
alle allgemeinen Nullstellen (191), nur noch folgende acht Bauarten iibrig:
vom Typ (B): z8z,® — 2,9, 282" — 2,94, %zy® — 2,240, 2,02 — 2,°4,
vom Typ (C): zo%z,P2s® — 2,40+, @%,Pz¢ — 2,00+, (193)
vom Typ (D): z,%2,% — 2,22, 2%z — 22,0~

Diese Typenreduktion ist ein groBier Vorteil. Sie ist eine spezifische Eigenschaft
fiir d = 1; so waren es bei der Untersuchung der v} fiir verschiedene ¢ nicht immer
dieselben Fiille, die wegen bei den Exponenten auftretender Widerspriiche ausfielen;
auch konnte die allgemeine Nullstelle nicht (wie fiir d = 1 durch (191)) generell
charakterisiert werden. Der Leser hat hier ein Beispiel dafiir, da Eigenschaften, die fiir
d = 1 gelten, fiir d = 2 nicht mehr richtig zu sein brauchen. Dagegen lieB sich unser
Prinzip fiir die eindimensionalen H-Ideale

Py = p{lutetnd = K[zo, 24, 22, 23, %] (194)

iibertragen; von 80 mdglichen Fillen schieden hier 39 Fille generell aus, und es ver-
blieben 41; da wir jetzt fiinf Variable haben, kommen noch zwei weitere Typen (E)
und (F) hinzu, wie sich der Leser iiberlegen mége. Die zu (194) gehorige allgemeine
Nullstelle ist jeweils von der Bauart

Yo =™, Y = LMTE™, Yo = LTME™, Yy = L™ME™, Yy = t,"} (195)
mit 1ESm<m<mg<m—1 und mnmnmynmg=1.
Hingegen gelang es bisher nicht, aus (192) und (193) und entsprechend aus (194)
und (195) die Basen generell anzugeben; vielmehr wurden bei den Beispielen in 8.3.
und 8.4. die Rechnungen fiir jedes m,, my, m bzw. m,, my, ms, m gesondert durch-
gefithrt. Lediglich fiir die Ideale v}, und v}y, (vgl. Kap. 4, Beispiele 1 und 2, (165)
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und (166)) gelangen die Reduktionen der Fallunterscheidungen von (193) fiir belie-
biges m.

Wir wollen nun zeigen, wie man fiir d = 1, » = 3 die verbliebenen acht Fille (193)
durchtesten kann. Das entscheidende Hilfsmittel ist dabei die in 1.2. eingefiihrte
Kongruenzrechnung nach Idealen.

Wir zeigen dies wieder einmal an dem hiufig als Beispiel herangezogenen primen H-Ideal
0% = K[z, 2, 25, z,] mit der allgemeinen Nullstelle

Yo=b's HB==0%, h=1th’ y=~H" (196)
Es ist zu beatitigen, daB (Fy, F,, Fy, F,) mit

Fy = 2y — 217,
Fy = 2oty — 2%,
197

Fy = zz,! — 22y, (197)

=z — 2
eine Basis von v} ist. Wir konnen uns F,, Fy, F,, F, aus (196) wie im AnschluB an Satz 43
gewonnen denken und wollen nun die Vollstindigkeit der Basis (F,, Fy, Fy, F,) nachweisen.
Dazu sind die acht Fille (193) durch 1. Wir bendtigen dazu zwei Hilfsformen, die in v{;
und auch in (Fy, Fy, Fy, F,) enthalten sind, namlich

Fy:= zzg — z,* = 23F, + 2,F,, } (198)
Fy:= zyzy® — 28 = 22F) + 2,F,.
Dann sind die Fiille vom Typ (B) schnell zu erledigen, beispielsweise
29235 — 2,00 > yOy,d — y, 0+ = £ AOHDEID _ g 3043bpotd — O,
also @ = 2b, mithin
(29'73)® = (z,°)® mod (Fy)
(vgl. Kap. 1, (14)), slso ist
(2673)® — 2% € (Fy) = (Fy, Fy, Fy, Fy).
Entsprechend folgt
Z92,0 — %0 > yoBy b — 3,00 = g8 ab — fo30+3bg 040 — 0,
also @ = 3b, mithin
(2°23)° — 2,2 € (Fy) = (Fy, Fy, Fy, Fy).

Auch fir die beiden Fille des Typs (C) von (193) ergeben sich keine Schwierigkeiten ; wir zeigen
dies fiir den zweiten Fall:

2002,P74° — ,zu-bu > y{‘y}‘y,‘ — y B0+ = g Ao+3by e _ ga+bicp 30+3biSc = (),
also ¢ = 3a + 2b, mithin

(2625°)° (21%3Y)° — (22)° (23°)° € (Fo, Fy) = (Fy, Fy, Fy, Fy)
nach Kap. 1, (15).
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Wir behandeln noch die beiden Méglichkeiten fir den Typ (D):

z,"z.b — 351c;,aa-f-b—c > goay’b — y,‘y,‘”‘b“ = gombalb —_ goacﬁwub—u =0,
also b = 3¢ — 4a > 0, mithin ¢ > 4a/3 > a, folglich ¢ = ¢ + d, also
b=8—a und a+b—c=2—a.

Jetzt sind drei Fallunterscheidungen zu treffen. Fird < a, also a =d + %, wird a +b — ¢
=d—k> 0,als0d = k + hund mithina = 2k 4+ h, b=k + 2h,c =3k +2h,a + b —c=h,
folglich

(2220)¥ (2oza?)* — (7)) (21329)" € (Fy, Fy) = (Fy, Fy, Fy, Fy).
Der Fall d = a liefert ¢ = 2a, b = 2a,a + b — ¢ = a, also

(2023)° — (2,%25)° € (F) < (Fy, Fy, Fy, Fy).
Fir d > a setzen wir d =a + k und erhalten c =22 + k, b =22 + 3k, a+b—c=0a+ 2k
und damit

(26232)° (22°)F — (2:%%9)° (2,257)* € (Fy, F) = (Fy, Fy, Fy, F).

Entsprechend findet man fiir 2%z — z,°z,>>+¢ die Bestimmungsgleichung b = 3a — 2¢ und
hat die Fallunterscheidungen a < ¢, @ = ¢, @ > ¢ zu treffen, wobei der Fall a = ¢ auf b = ¢ und
damit auf F, fihrt.

Damit haben wir endlich den Nachweis der Vollstandigkeit der Basis (Fy, Fy, Fy, F,) fir das so
oft als Beispiel benutzte homogene Primideal v € K[y, 2,, z,, #;) erbracht. Entsprechend sind
die Basen fir alle anderen Beispiele in 8.2. und 8.3. und fir die v}, in 8.4. abgesichert.

6.9.  Erginzende Bemerkungen

Mit der Hilbertfunktion wird nach der bereits in MfL Bd. 1, 3.7., behandelten
Eulerschen Funktion @(m) und der Funktion n(n), der Anzahl aller Primzahlen p
mit p < n, dem Leser eine weitere Anzahlfunktion dargeboten; die letztgenannten
Anzahlfunktionen unterscheiden sich schon dadurch von der Hilbertfunktion (und
von der Volumfunktion), daB sich Hilbertfunktion und Volumfunktion auf Formen
und Ideale beziehen. Fiir die Invarianz gegeniiber linearen Transformationen ver-
weisen wir auf Satz 2ff. Der Beweis von Satz 15 ist ein Induktionsbeweis, bei welchem
die Rekursionsformel (38) bereits vorher bewiesen wurde.

Die am Schlu8 von 6.4. gegebene Charakterisierung der Ordnung als Anzahl der
Schnittpunkte mit einem linearen Unterraum kann beispielsweise zur Erklirung von
Kurven m-ter Ordnung im zwei- und dreidimensionalen Raum bereits im Schul-
unterricht der Klasse 12 Erwihnung finden.

Zum Satz von BEzoUT verweisen wir auf das im Anschluf an (133) gegebene
Beispiel der Ebene. Da8 die durch 22 + 9y2 = 9 gegebene Ellipse und die durch
3y = 2% — 6z gegebene kubische Parabel sechs reelle Schnittpunkte haben, kénnte
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bereits im Schulunterricht der 12. Klasse durch Extremwertbetrachtungen bestétigt
werden; dabei konnte der Satz von BEzour Erwihnung finden.

Da lineare Parameterdarstellungen bereits in der 11. und 12. Klasse im Schul-
unterricht behandelt werden, ist die Mdglichkeit der Bestimmung von parameter-
freien Gleichungen gemiB (160), (161), (162) schon in der Schule gegeben, dort aber
von geringem Wert. Demgegeniiber konnte die Verwendung dieser Methode im
Grundkurs den Studenten friihzeitiger und einmal mehr mit der Methode des Koeffi-
zientenvergleichs vertraut machen.

Zum Schluf noch eine Bemerkung zu den erkenntnistheoretischen Fragen in
Zusammenhang mit der Giiltigkeit des Satzes von BrzouT, die in gréBerem Rahmen
als Fragen nach dem Wert von Arbeitshypothesen und Programmen in der Mathe-
matik iberhaupt zu sehen sind. Hier wird der Leser vor allem an das sogenannte
»Erlanger Programm‘‘ von FeLrx KLem [1], vgl. auch MfL Bd. 7, 3.1., und die demit
gegebene Verbindung zur seinerzeitigen Modernisierung des Mathematikunterrichts
denken. Weniger bekannt ist vielleicht die (dem Verfasser durch einen 1958 gehaltenen
Vortrag von W. KRULL bekanntgewordene) Tatsache, da Ferrx KLEIN nicht gerade
zu den Férderern von EMMy NOETHER gehorte; eine Passage in dem Vortrag von
H. BEENEE (vgl. [1]) iiber FELIX KLEIN diirfte auch in dieser Hinsicht zu verstehen
sein. In diesem Zusammenhang sollen auch die ,,Schwéichen und Mdangel von Kleins

llschaftlichem Engag ¢ erwidhnt werden (Zitat nach H. WussiNG in KLEmv
[I]) Hier besteht aber auch ein Zusammenhang zu den Bestrebungen, den Satz von
Brzour fiir » = 4 ohne Korrekturglied auszusprechen. H. BEENEE schreibt dazu
in [1]: ,,Liest man die Arbeiten der Géttinger aus der Zeit der Jahrhundertwende (vor
allem von Klein und Hilbert), so stopt man smmer wieder auf die Vermutung, dap, was
fiir den R® richtig ist, auch fir den R® n > 3 gilt und was fir den C? gilt, auch richtig
13t fiir den C", n > 2. In der komplexen Topologie hat man nun gelernt, daf dies keines-
falls zutrifft. ... So kommen wir mit den Annakmen der Gottinger nicht mehr aus. Dazu
sind unsere Aufgaben zu verfeinert.*

Mit diesen Bemerkungen sollten einige grundsitzliche Probleme berithrt worden
sein, deren Behandlung in gréBerem Zusammenhang auch aus historischer und
philosophischer Sicht wiinschenswert ware.




7. Tabellen

In 7.1. bis 7.5. werden die Potenzprodukte anstelle von p,, ..., py mit (1), ..., (N) bezeichnet
diese Symbolik wurde teilweise auch im Text benutzt. Die Reihenfolge erfolgt durchweg gemiB
der lexikographischen Anordnung.

71.  Tabelle 1: Potenzprodukte zweiten Grades in x;, X3, X5, X3

(1) =z, (4) = Zozy, (7) = 2,75, (8) = 2475,
(2) = zo7,, (6) = =%, (8) =z*, (10) = z*.
(3) = 247y, (8) = 27,

7.2.  Tabelle 2: Potenzprodukte dritten Grades in x;, X, X, X3

(1) ==z (8) = zoz,73, (11) = z*, (16) = z,2,*,
(2) = z*z;, (7) = 2o217s, (12) = 2%z, (17) = z*,

(3) = z'zy, (8) = zgzy?, (13) = z,*zy, (18) = =gz,
(4) = zo’zy, (9) = zo2y7s, (14) = z,2,%, (18) = zzy?,

(6) = zozy?, (10) = zoz,%, (15) = 2,747y, (20) = 2.
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7.3.  Tabelle 3: Potenzprodukte vierten Grades in x,, X;, X5 Xg

(1) = zo4, (10) = zotzy?, (18) = zz373%, (28) = 2,2,%2,,
(2) = zpz,, (11) = z2;3, (20) = 273, (20) = 2,72,
(3) = 2,2z, (12) = z2,%2,, (21) = z,4, (30) = z,2%,
(4) = zdzy, (13) = zgz, %z, (22) = 2%z, (31) = z,¢,

(6) = z'z,?, (14) = 222", (23) = 2z, (32) = z;°z,
(8) = zoizy2y, (16) = zoZ,z42s, (24) = z,%z,%, (33) = a,%z4?,
(1) = zo¥z,2s, (16) = zyz,25%, (26) = 232,25, (34) = zy25%,
(8) = z’zy?, (17) = zozy?, (26) = z,'z%, (36) = =3

(8) = z*zy7s, (18) = z4z,%z5, (27) = z,2%,

7.4, Tabelle 4: Potenzprodukte fiinften Grades in x,, X, X, X5

(1) = =% (18) = z"z)2375, (29) = zry%y7s%, (43) = 2,725z,
(2) = z'zy, (16) = zo*zy7?, (30) = zoz175%, (44) = 2’725,
(3) = zptz,, (17) = z4%2,8, (31) = zoz,4, (45) = z,%z,?,
(4) = zotzs, (18) = z4'z,*zy, (32) = zo2%1y, (46) = z,7,%,
(8) = z’z%, (18) = zo’zyz?, (33) = zozy’2y%, (47) = myz)°zs,
(8) = z’z,2,, (20) = zo'zy®, (34) = zoz3,%, (48) = 2,227,
(7) = z6°z,z5, (21) = zez,", (38) = o7, (49) = z,2,2%,°,
(8) = zozy2, (22) = zo7,%2,, (36) = z,5, (50) = 734,
(9) = 7,2, (23) = zoz,’zy, (87) = z,4z,, (51) = 2,5,
(10) = zozy?, (24) = zoz 2%, (38) = 2y, (62) = z;'z,
(11) = ztz3, (26) = zozy 20z, (39) = 2,°x,%, (63) = z,%24%,
(12) = zotz 2y, (26) = zo2y%2,%, (40) = 2’27y, (64) = zy°z°,
(13) = zotzy*zy, (27) = zomyz)’, (41) = z,°z,2, (66) = z,24%,
(14) = zo’z,2y%, (28) = 221232, (42) = 2,'z°, (58) = z,°.

7.5.  Tabelle 5: Potenzprodukte sechsten Grades in x,, X;, X, X3

(1) = % (4) = zo°z, (7) = z'z,2y, (10) = zgtz?,
(2) = zobzy, (8) = zo'zy?, (8) = =3, (11) = z5°z,%,
(3) = zobzs, (8) = zo'z,25, (9) = zo'z;zy, (12) = z5°z,*z,,
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(13) = zo°z)zy, (31) = 'z, (49) = 2o, 225%, (67) = z’z;",
(14) = z’z,z%, (32) = 2o°2y°2,, (60) = zoz, 7,4, (88) = z"2y°z,,
(18) = z*z,2975, (33) = zo’z,7%, (51) = zozy", (89) = 2z;%z4%,
(18) = 7122, (34) = zo’zy7y%, (52) = zozy*zs, (70) = z*z25%,
(17) = 7z, (36) = zolzyt, (63) = zozy’zy?, (T1) = z 'z,
(18) = z'zy0z,, (36) = zoz;", (54) = zozy'2°, (712) =2,2%,
(19) = zg*zym,?, (37) = zoz, 'z, (65) = zozy7st, (73) = 7,242y,
(20) = z*z®, (38) = zo7'zy, (68) = 262", (74) = ziz°z%,
(21) = zdz,4, (39) = zez,%z4%, (87) = =%, (75) = zy2,%5%,
(22) = z4*z,°z;, (40) = 2oz, 257y, (88) = z,°z,, (76) = z,z47",
(23) = 25,2y, (41) = z2°z4%, (89) = z,°z;, (17) = 2z,
(24) = zo'z bzt (42) = zoz 2%, (80) = z,*z%, (78) = z,%,
(25) = zo'7,%247,, (43) = zgzy’2%2y, (81) = zy'z,7,, (79) = z)8zy,
(28) = zotz %zt (44) = zo2; 297", (62) = z,%25%, (80) = zyz5?,
(27) = zo*z)z°, (48) = zoz,’24%, (83) = z,%zy%, (81) = z,°z¢%,
(28) = o'z, 24%7y, (48) = 7oz, 2,54, (64) = zz,z,, (82) = zyzyt,
(29) = 2,2, 757,%, (47) = zom,275°z5, (85) = 2,°z,23%, (83) = zz®,
(30) = zoizyzy?, (48) = zozy2,°2y%, (88) = z,°z°, (84) = =",

7.6.  Tabelle 6: Einige Werte von 6(t + "3‘*‘ 3)

E=1: (t+4)(¢+3)(¢+2) =t"4+ 92+ 264+ 24,
E=0: (¢t+3)¢+2¢+1)=t"4 63+ 116+ 6,

E=—1: (¢t +2)(¢+1)¢t =04 3+ 2,
E=—2: (¢t + 1)Kt —1) = —
E=—3: 4t —1)(t—2) =68— 34+ 2,

k= —d: (t—1)(t—2) (¢ —3) =6 — 624 11t— 86,
k=—5:(t—2)(t—3)(t—4)=1t5— 93+ 26t — 24,
k= —6: (t—8)(t—4)(t—5)=15— 122 + 47t — 60,
E=—T: (t—4)(t—5)(t—6) =¢> — 150 + 74t — 120,
k= —8: (¢t —5)(t—6)(t—7) =5 — 1882 + 107t — 210,
k= —9: (t—8)(t—17) (t — 8) = » — 21¢2 + 146t — 336.
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7.7.

k=

k=0:
= -1
k= -2
k= -3
—
k=—5
k=—6
k= -7

Tabelle 7: Einige Werte von 24 (t + '2+ 4)

(E+5)(E+4)(E+3) (¢ +2) =18+ 145 + TI3 + 154¢ + 120,
C+OE+3E+2)E+1) =10+ 108 + 350+ 500+ 24,

(E+3)E+2)E -1t =t 4 68+ 1124 6t
T2+ DEE—1) =t - 2,
s+ DEE—1)(—2) =t 28— 114 2,
tHt—-1)(¢E—2) (-3 =t~ 88+ 113 - 6,

tE—1)(t—2)(t—3) (¢t —4) =#— 108+ 362 — 50t + 24,
(=2t —3)(t—4)(—5) =1 — 145 + TU — 154 + 120,
D (t—3)(t—4)(t—5)(t —6) = t4 — 1865 + 1198 — 342¢ + 360,



8. Durchgerechnete Beispiele

8.1.  Potenzproduktideal

e

8.1.1. A, = (2?2, Zo23?, 2,22y, 2°) < K[z, 24, 2,],
Ay = (23, T%) 0 (21, 7?) 1 (26}, 7%, 2oz, 75°),

Syzygienkette: U}, Uk, Uf; mit

0 =z, 2z 0 0
2 zy 0 —zer 2t 0
Ui = 2 3
0 P 0 -z 2
-z, 0 0 0 —z

2

P; ay) =4=(‘+2)—4(‘

fir my = 3 wird H(3; a,) = 6.

o)

8.1.2. A, = (T 2°2y, 29°75, 22212, 2217y, 262,%, 1y0) = K2, 75, 73],

t—2

2

L
Ug; =

A

A, = (%%, 222y, Ze2y3, 218) N (Tg, Tob, 23Ty, T2, Zg23, 2,Y),

Syzygienkette: U}, U, U, mit

z =z 0
-z, 0 1z
0 —zy —z,

U}, = 0o 0 o
o 0 o0

0o 0 o

o o0 o

0o 0
z, O
0o 0
0 1z
—Z —4
(U]
o 0

d R oo0ooco o

©coococon
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. [t+2) L ft—2 t—3\ -4\
P(t.a,>_s_(2) 7(2)+a(2) 2(2)m¢g4,

also auch bereits fir ¢ = m, = 4 im Gegensatz zu 8.1.1.
8.1.3. Oy = (2 218, Ty, Ty23) = (%0, 21) 0 (Tor Ty T3 21%) © Ko, 21, 230 3],

Syzygienkette: Uj,, Uly, Uy, Uy mit

z® =z, zmz 0 0 O

2 —z, O 0 2z zz O
Ug = ’
0 —z, 0 —z 0 =z
0 0 —x 0 —z, —z
z, zz 0 O
-z 0 zz O zy
0 —z, —2, 0 —z
3 _ 1 2 .« _ ]
UIL - EX 0 0 EX ’ UII z, ’
0 z, 0 —z, —z,

st (7)o D)ol o35
far ¢>2,

far my = 1 wird H(1; a,) = 3.
Wird die triviale Komponente weggelassen, so wird

P(t;u,.)=P(t;x,,z,)=t+1=(‘-;3)—2(‘:2)-(-(‘—;1).

Zur Berechnung vgl. 7.6.
8.14. Gy = (s, T, 29%3) = (2o Z3) 1 (21 Ty) 0 (23 Z3) = K2, 21, 25, 73],

Syzygienkette: U};, U, mit

z 0
Ujiy =|—2 =)

0 —z,
P(:;a,,)=3:+1=(‘+3)—3(‘+1)+2(;) faralle t€N.

3 3

Dieses Potenzproduktideal hat dieselben Gradmatrizen und mithin dieselbe Hilbertfunktion wie
das Veronesesche Ideal v,,. Zur Berechnung vgl. 7.6.

8.1.5. [RERCENE XN RNECIEXRE EARCH (ENENENESEAR

Ux = (%o 21, Z3) 0 (Tor T3, %) O (20 s Ty) 0 (T, 25, 24)»
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Syzygienkette: U}, Uy, U2, mit

z, 0 0

zz z 0 0 0 O 0 0 -z, 0 0

-z 0 =z =z 0 0 0 O 0 =z O

UL _ 0 0 0 —z3 2 =z 0 0 Us = z, —z; 0
[ 0 0 -z 0 0 0 =z O "BT| 0 —z gzl

0 0 0 0 —z, 0 —z5 3z zZ3 0 —z

0 —z, O 0 0 —z, 0 —z 0 z, O

0 0 =
P(t;g')=4.t+l=(‘—:4)—6(‘-:2)+8(‘tl)—3(:) fir alle ¢t€ N.

Zur Berechnung vgl. 7.7.

8.18. 4, = (721, ToZy T1Ta) Ty 2%y, 25%0) < Ko, 2y, Ty, 25, 7],
A, = (Zg, Ty, Z3) 0 (Zo» Tay ) N (T2, T3y T3) 0 (T1s Ty Z4) O (Tor Z1s Ty T) s

Syzygienkette: Ul,, Ugy, Ugy, Uy mit

zz 0 0 0 0 0 0 0 =z
0 z =z =z 0 0 0 0 O
UL — —Zy—2 0 0 =z =z 0 0 O
8 0 —z, 0 —2z 0 =z 0 0 |

0 0 0 0 =z,
z, 2z, 0 0 O

-z 0 =z 0 O EN
0 —2, —z, 0 O —zy

Uh=| 2 0 0 =z O , Uy = z |

0 z 0 —z; zp2y —zy
0 0 =z =z O 0
0 0 —zy —2, %,
0 0 0 0 —=z

t+ 4 t+ 2 t+1 t t t—1 t—1
el P B B P R W W U A
und aus dem letzten Term wiirde die Richtigkeit dieser Darstellung fir t = 1, also ¢ € N* folgen.
Da sich dieser letzte Term jedoch weghebt, gilt P(t; a,) = 4¢ + 1 bereits fur ¢ = 0, also £ € N.
Dadurch ist ein Beispiel gegeben, daf der letzte Term aus den Gradmatrizen der Syzygienkette
nur eine Schranke, aber keine Grenze fiir das ,,geniigend groBe ¢* liefert. Ferner laBt sich die
Darstellung vereinfachen zu

b=~ ()0 o[ 1) ()
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wie in 8.1.5., obwohl Gradmatrizen und Léingen der Syzyglenkatmn in beiden Fillen verschieden
sind. Ein Verglemh von 8.1.5. und 8.1.6. zeigt weiterhin, da8 zwei H-Ideale im gleichen Polynom-
ring bei gleich und gleichem charakteristischen Polynom trotz gleichem Gradvektor

verschiedene Gmd.mst.nzen haben kénnen.

8.1.7. A, = (ZgTg, Tp3Ty, Zo2s%, 2,25°) < K[2Zo, 24, 24, 4],
Ay = (Tg 21) 0 (20) 23%) N (2g) T5) N (g0 Ze?, 75Y),

Syzygienkette: U, U, U, mit

Zty 7! Tz 0 3
v =% 0o 0 %3 U = "%
“ 0 —zz 0 -—z) @ o
0 0 —a, 0 zy
t43) (41 ¢ t—1\ [t—2
Pltia,) =4 +1 = — _3 4 - far t=2, teN*.
oo =ut= (5= () =) +<(5)-(57) :

Dieses Potenzproduktideal hat dieselben Gradmatrizen wie das Veronesesche Projektionsideal
of%.

8.18.  ay = (%1 T1T3 Tty 292,) © Klzo, 71, 73 29, 2,
Oy = (21, Z3) N (Zo) Z5, T) 0 (Zo, 23y Z¢) N (24, 2y, Z¢)s

Syzygienkette: U}, Uk, U} mit

Z 0 0 oz TgTy
- 0 o0 z
Uz — Zo Ty . U= %4
“ 0 —z =z 0 a 2 |’
0 0 —zy —z4, —z,

t t+ 4 t+2 t+1 t t—1 -
P(t; = = — - .,
o= (g o= () o (T s () ()= (7)o v
Zur Berechnung vgl. 7.7.

8.1.9. 4, = (@ 2%y, ZoZs To%s, Te%u 01%) < Kz, 21, 75, 279, 7],

Ay = (@ 2,%) N (1, Ty, T Ty, 20,

Syzygienkette: Uly, Ug 1y, U100 Uty,ss Us; mit
Z 2z z 0 0 0 0 0 0 0
0 0 0 =z =z =z =z 0 0 O
-z 0 0 0 —2 0 0 =z =z O
0 -z 0 0 0 —z 0 —z 0 =z
0 0 —z 0 0 0 —z 0 —z, 7

Ucz,u =

|
© oo o8

0o 0 0 -2 0 0 0 0 0 O
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z, 7, ¢ 0 0 0 0 0 0 O

-z 0 0 =z =z 0 0 0 O O
0 -2 0 -z 0 2z 0 0 0 O
0 0 —=z 0 —2,—-2, 0 0 0 O
o o 0 0 o0 o0 o 0 o0 O

Ufo=| 2% 0 0 0 O 0 =z =z O O],

0O =z 0 0 0 0 —2 0 =z O
0 0 2 0 0 0 0 —z3—2z O
o 0 0 =z 0 0 =z 0 0 gz
0 0 0 0 =z 0 0 =z 0 —z
0O 0 0 0 0 =z 0 0 =z =z
zz 0 —z, O 0

—z; z 0 0 O
0 —z, z 0 O 2
z 0 0 2z O z:

Ulys = g :x ;‘ :: g » U= Zs |

—z% 0 0 0 =z A
0 0 z 0 —=z %o
0 —z, 0 0 =z
0 0 0 —z —z

t t
P(t;a,) =2 (2) +3(;

t+4 t+2\ | t+1 t t—1 t—2
= — 8 - —_
(3 o) (0 =0 +o () -(37)
fir ¢t =2, te N*.
Zur Berechnung vgl. 7.7.

)+l=3’+2£+1

8.1.10.  ay = (zg7%y, Zo%1Zy ZeTaTe, T2sTe TtuTs TZTer TZF0 TTTe T D)
SR (ENENENENEREAN

vgl. REISNER [1].

8y = (%0 21, Ty) N () 21, Z3) N (Zos Zgy Ty) N (Tr Ty Z5) N (Fes 2o Tg) 0 (21, 29 Z)

N (21, Ty, T4) 0 (21, 2y, Tg) 0 (T, Ty, 2,) 0 (2, T, Tg) -

Syzygienkette: U} 1o, Uf) s, Uy bei Charakteristik 0, jedoch UY,,, Ul 4, Uy Us,y bei
Charakteristik 2; wegen Kodim a, = 3 ist also dieses Ideal perfekt bei Char (K) = 0, imperfekt
bei Char (K) = 2; vgl. 5.18., Beispiel 5. Fir die Hilbertfunktion folgt nach Kap.86, (4), in
beiden Fillen

o= () =) w5 o )+ [+ (5]

=10(;)+5(t1)+1=5¢’+l fir t€N,
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da sich die bei Char (K) = 2 auftretenden Summanden in der eckigen Klammer wegheben. Wir
haben damit erneut ein Beispiel, da8 in Kap. 8, (4), durch den letzten Summanden nur eine
Schranke far das ,,geniigend groBe ¢* von Kap. 6, Satz 165, gegeben ist; vgl. dazu die Bemer-
kungen im AnschluB an Kap. 6, (39), und 8.1.6.

8.2.  Eindimensionale Veronesesche Projektionsideale in K[x, x;, X3, X3]

8.2.1. Die Idesle v, der Macaulayschen Kurven

Hierbei handelt es sich um die V. hen Projektionsideale vy, := v "% mit der all-
gemeinen Nullstelle y, = £,™, y, = 4,™ %, y; = t,t,"‘", y; = ™und (vgl 4.27.) der Basisdarstellung
(Fy, Fyy ovvy F) mit

Fy =z — 2175,

Fy =z tzy — 2™,

Fy =z™ 2} — 2™z,

F, =z — 2"z,

Fy = z™Sz,8 — z," 4z, @

Fp-y = 2507,™ 4 — 2,22,
Py = 25" — 25",
Frmr = 202y™ — 280,
Fa =2""— 5™

Nach Kap. 5, Satz 50, folgte (vgl. das Beispiel 3 im AnschluB an Satz 50 und (143) im Kap. 5)
die Imperfektheit aller Ideale v, wegen

(0fmr 21) = (21, ZoTps 2™ 22y, 2™ 2,7, .y Tey™ 7, 2™ T)

= (20 21, ™) 0 (21, Tpy Z3) 0 (21, 20 2™ B0, L, 2™ ). (B)
Die Imperfektheit ergibt sich auch aus der Syzygienkette Ulm, Up sm—i» Usm—4.m—» Mit
7™ ™ 5™z . ™ ™ ™t
—zy -2z 0 ) 0 0
Zy z, —zy 0 [ 0
0 0 e 0 0 0
0 0 0 . 0 0 0
U:t.m-u = ’
0 0 0 0 0 0
0 0 0 —zy 0 0
0 0 0 z, —2, —y
0 0 0 0 EN z
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z, 0 . 0 0
—z; 0 . o 0
—T T . o 0

z, —25 . 0o o0

0 —z, . 0o 0

0 . 0 0

0o 0 . 0 0

Ulpemos = | coovereeiiiiieaiiin,

0 o0 . 0 0

0 o . z, O

0 0 ... -2z 0

0 0 ... —z 2

0 0. z, —2y

o 0 . 0 —z

(U] 0 =z

Daraus folgt fir das charakteristische Polynom
P(t; vipm) = mt + 1

S i BT A R R

3 3

_m—m(—§+ﬂ

fir t=m—3,m=4,meN*EN*
mit Hilfe von 7.6.

8.2.2.  Die Ideale y,, 0{i, 053", 053", vy

3

)

Wir fassen fir diese Ideale die Ergebnisse in einer Tabelle zusammen, wobei die Reduktionen

gemiB 6.8. nur far v{}, v{;"” und p{y>® aufgefihrt wurden:



8. Durchgerechnete Beispiele

322

(% %z ‘°z) v &z — iz
(¢ 'z °z) = o]
-9 ('z *,30) Pepred tz'z — ¥2%z - 58 (5" “6"%6 “6'15% ‘%)
(s% %z ‘z) u & — g’z
(¢*z Tz Oz) = 2z — S0
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(%z 'z “Tz) u Wz — Sz lr
5 g ) = oz — S0
g (%2 *g9:230) opred ®zlz — 20z - ) ("1 9" ‘e’ %)
[BopLIBWILY 98t 52z — Sxz
(Pzglz Sz Bz z) = Tz — Sz 0r
9L (% “(gy./50) Popred 'z — 'z - wrand (22 “592% ‘™01 %)
&% %z ) v »z — Sz'z
(°z Tz 07) = ‘e — S0
a-u 02 “ava50) yopod W — Y — awdie B 5P % )
eopLIguILLy 98! T — Sr'w
(2% S8z ‘iz ¥z) — iz — 2o
yon G2 “eefi0) Pioped o'z — et - wesla (%49 4% %)
(fr F*x “=x) v &T — Tz
(¢"z Tz 47) = arlr — o
v (% “gg4'50) Jopted 62 — 2t - aerdd (" 5% V1% %)
woukjog 9yoysodumt
soqossLY 10p0 Jus 19q 1eopI
eI Bunpunaog oprad poIeeg poy  soBuoyadng 1PISTION 3V




8.3. Eindimensionale Veronesesche Projektionsideale in K[z;, 24, 2y, Z3, 2] 325

8.3.  Eindimensionale Veronesesche Projektionsideale
in K[xg, X1, Xg X3, X]

Wir wollen hier die Ideale b!} und v{;” angeben. Fiir v{; bleiben unter Berficksichtigung der
Reduktionsméglichkeiten nur die Ideale v{y und b{}, die wir vorab gesondert untersuchen wollen.

8.3.1. Das Ideal b{y

Hier lautet die Basis

ofy = (22 — T%, 22, — T BTy — T, BT, — BnZa T — T,
und es soll die Perfektheit, also L{n{y) = 4 — 1 = 3, nachgewiesen werden. Hier ist zwar wieder
d = 1, aber n = 4, und daher ist Kap. 5, Satz 50, nicht mehr anwendbar, wohl aber Satz 51 und
Satz 13, (38). Dazu bilden wir

(08, 2,) = (23, Ty, To,, 2o, Ty, T2, — Z?).
Ist L{v{y) = k, so ist also L(v{}, z;) = k + 1. Bei Verwendung der Variablenpermutation

Pi— (fo 7 Ty Ty 24)

To Ty Ty Ty Ty

folgt

L(Pofy, Pr,) = L(Poy, z,) = L{a,z) =k + 1,
also

L(Pofy) = L(a) = k = L{o5})
mit

a = (T2y, T2y 1)) 212y, 11Ty — TpY).
Nun hat a die Syzygienkette U}, Ug, U, mit

oz oz 00 z?
-z 0 -z 0 0 —Zy2y + 7°
Us=| 0 0 0 2z gz Ud=|—z2 H
0 —z 0 —z; —2 ToTs
0 0 z 0 —z —Zoy

folglich ist k = 3 und also v} perfekt.
832  Das Ideal by
Hier ist L(n{}) = 4, also b} imperfekt wegen

@

iy = Ul = (7% — 0123 2% — Ty T2 — B, BTy — T, 2o — 7,%),

R N 7T nr -z 0 0
—zy —x3 7} Z%, Ty O 7z, — 24! 0
Ui=| 0 0 —zp, —z —2} —zz+ 2% —28+ 2% 20, — ot |
z, % 0 0 0 0 0 —2,2, + 24}

0 0 —zg —zy —2z, 0 0 0
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B oz nE -5t 0 0
—Zyr; —Zz; O g — 5t 0 .
4
zy z, 0 0 0
—z
- 0 0 0 z, 2
U: = T3 0, s = —
5 0 —z 0 0 —z4 &t 5
EN 0 —xz —z, —z; o
0 -z 3 £2) —Z o
0 0 z, x, 0

Bei diesem Beispiel macht die Berechnung des dritten Syzygienmoduls etwas mehr Sohwierig-
keiten. Aus der Syzygienkette folgt

t+ 4 t+2 t+ 1 t+1 t—1 t—2
;o) = 1= —4 — 2 8
rsi=as = ()=o) (0 w2 () o) —o(3) ()
t+ 4 t+2 t 41 t—1 t—2
= — 6
()0 (3 o) —o(3)+ ()
far t=2.
Zur Berechnung vgl. 7.7.
8.3.3. Tabelle der Ideale v,,, v{; und v{;"
Einfacher ist es jedoch, die Imperfektheit von b{} gemiaB Kap. 8, Satz 38, nachzuweisen. Auf

diese Weise wurde in der nachfolgenden Tabelle jeweils die Imperfektheit nachgewiesen, wihrend
zum Beweis der Perfektheit analog 8.3.1. verfahren wurde.

Allgemeine Nullstelle Zuge- Besisformen perfekt Charakte-
horiges oder ristisches
Ideal imperfekt Polynom
(o', to*hs t™h ths®, 1y*) D1q Zo8y — 2, perfekt @ +1
ZoTs — TrZy
Zo%y — To%
2,25 — 25,
1Ty — Tty
z8y — Z5t
(8% to¥y, to¥,3, tohy, £5) ofy ZoXy — 2,2, perfekt 5¢
Loty — TyTg
@y — 25t
7Ty — ToZy,
TZ — Tt
(ta®s toty, 62,5, tohit, %) LI ZyZy — 12y imperfekt 5+ 1
ZoTy — BTy
2, — 2%
ZTy — T

222y — 2,°
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Allgemeine Nullstelle Zuge- Basisformen rfekt Charakte-
8 pe
horiges oder ristisches
Idesl imperfekt Polynom
(f0%, t¥hy3, o34, toti5, £,%) o{s? T — &, perfekt 6 —1
7Ty — Ty,
2,3, — 2Ty,
22, — 2}
[NEAAR AR AN of§® zoTy — 7%, perfekt 6 —1
Ty — 1%
7T — Tk
%y — Ty
(8®, totty2, 833, oy, 1) ofg? TRy — Z1Zp, imperfekt 6t
z%, — &%
)Ty — Tg¥y,
ZoTyt — 3%,
z,%2y — 3%,
TTt — 27,
22 — 75
(% t'hi2, b33, B24, 18)  ofL® Zo73 — 7,2, perfekt 6 —t
T2y — 25
)23 — To%,
2%, — Zy®
(8% tolty, toty%, boh®, £8) oy ToZg — Ty, imperfekt 6t +1
ZoZTy — TyTyy
7,2y — T,
ZoT? — 3,°Z,,
7,257y — T,
z,2¢ — 7382,
z°Ty — 3yt
(6% 8%, o2, tohS, 1,°) oyt Zox, — 3%, imperfekt 6+ 1
7Ty — b,
zotzy — 3%,
2’2y — 2,°%,
ZoZ,Ty — Zy'%y

ToTyt — TyeTy
z,z‘: - :,:z,z,
ZToT" — Xy
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8.4.  Hoherdimensionale Veronesesche Projektionsideale
8.4.1. Das Ideal by = K[zy, 2, 2y, 23, 24, 2]

Allgemeine Nullstelle: (t2, tf;, tofs, 1,3, tyts, 633),
Syzygienkette: Uly, Ugy, Uy mit

Uly = (207 — 2% 2o — 5120, T — 207, B2, — BTy, 2as — 2eZ4, B2 — &),

z, zg 0

z, z zZ 0 0 0 O 0 —z, 0 oz

- -z 0 =z, z =z 0 O 0 —z, —2,

N 0 0 —7 —2 —2 —z 0 O 78 —zy =2 0
Usy = 0 0 » U= ’

To T T Z3 T % 7 7 O

0 0 =z z 0 =z —z —2 0 =z z

0 0 0 0 2z 0 =z =z —z, 0 =z,

0 —zy —z
und

P(t; n,,)_4()+5t+1

(242
- 2)
=224+ 3t+1
t4+ 5 t+ 3 t+ 2 t+1
- —6 - .
(50057 +(5)-2(%)
8.4.2. Das Ideal vf} = K[z, 2;, 25, 25, 2,]

Allgemeine Nullstelle: (Fohus bohn 67, afa, 1),
Syzygienkette: Uj,, Uz, mit

U}y = (297 — 212, 7o — 2,23, 22, — 24Y), Uy = ( o z‘)
. -2 —2,
an

P(t;b‘,°,’)=3(‘)+4()+1
(22 (1
(-3
=%¢'+ %t+l
_3+4 _ t 4+ 2 t 41
() (1) ()

Gegenﬁber gy erniedrigt sich hier die Ordnung um 1; dieser Sachverhalt tritt auch bei allge-
meineren by auf. Zur Berechnung vgl. 7.7.
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8.4.3. Das Ideal 05y = K(zy, 2;, 25, 3, 7]

Allgemeine Nullstelle: (£, tofy, 42, ¢ts, t5%),
Syzygienkette: U}y, U2, mit

Tyt — T
U, = @z, — o oty — x?), U= (—‘v’: + z:')'
5} ist ein H-Ideal der Hauptklasse, und es wird
t t
;o) =4 4 1
Pesni) =4 () +4(}) +
(2t _,
2
=204+ 2t + 1
t4 4 t+ 2 ¢
= -2 .
(4929 +0)
Hier bleibt zwar iiber by, die Ordnung h, ungeéndert, hi éndert sich ;. Zur Berech-

nung vgl. 7.7.

8.5.  Andere eindimensionale Ideale in K[xy, X;, Xy, Xs]
8.6.1. Beispiel fir verschiedene Darstellung der Syzygienmoduln

a = Uj, = (202 2oy 2,%2; — BTE, 0,23 — 27Y)
= (20%1, ZoZa, 71(21%s — %), To(Ti2y — zg%))
= (21, 73) 0 (2 212y — %)

mit den Syzygienmoduln

7 Hm -t 0 0 77y — 2"
- 0 2,23 — 22 0 —z,
UL = bz ] . U= ] .
“ 0 —z, 0 " a % 3
o 0 —Z - —%

diese Darstellung fir Uj, scheint naheliegend. Im Hinblick auf die Berechnung des dritten

Syzygienmoduls ist jedoch die Darstellung

z oz 0 0 zt

—z, —z,? —z2 0 —
Uy — T TH BTy — T , v _ ]
H o & o 2 U —a

0 0 —z - Zo
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ginstiger; gibt man die Forderung auf, daB die Elemente der ersten Zeile des zweiten Syzygien-
moduls eine Minimalbasis bilden, so kénnen wir diesen durch lauter Potenzprodukte ausdricken:

] 2
z, 7 oz 0 )Ty + Ty
a _ | 71—z —m? 0 o _ | —2
Ul = , U =
4“ 0 0 41
To Tz —Z
0 —z, 0 -—=z zy

Bei allen diesen Darstellungen haben wir die Gradmatrizen
2 2 2

(2,2,3,3),

— =

1 2
12 2 2
0111
01 11
und damit die Hilbertfunktion
Y 2 N e A t t—1\ (t—2
rao= (372057 -26) + )+ (5 - (57)
t+3 t+4+1 t t—1 t—2
= -2 - -
(39)-2(59-6)+=(59)-(57)
P
dieses charakteristische Polynom kann bei rationalen Primideslen dritter Ordnung nicht auf-
treten.
8.5.2. Ideal von NG (v{) als Schnitt dreier Flichen

a =0} n (2% 2, 25}, 73) = 0 n (2 7,3, T, 257)
= (@2s — B2y 22 — 2% 7t — ') = UL,
Syzygienkette: Uy, Uk, U, U}, mit

2'2y — 20 BTy + TT) T+ 1T BT + TT) izt — 2
Ujs = | =2t + 2123 —23° —Z%y —zy? 0 ,
0 —z5? — %% —z* —ZeZy + 7,7,

2, 2z 0 O
z 0 =z O bl

—2

Ui=|—2 = -—n znf U)= —z‘ ’
0 — 0 — t
z, z4 2

0 0 —zy —z

o ()=o) 3933

—4t+1 far ¢4,
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8.56.3. Ideal der Abhyankarschen Kurve
Allgemeine Nullstelle: (£°, ¢, + 1,5, £,%,3, toh*),
Basisdarstellung: p, = (Fy, Fy, Fy, F,, F) mit
Fy = zws — 212y + 257,
Fy = 2’7, — o%® + 3zt %y + 237
Fy = 20, — 2,°2, + 2% + 205,° — 25%2%,
Fy = 225® — 2%yt + 2125° + 2,75,
Fy = zi2e29" — 23 — zt,
Syzygienkette: U}y, U, Ug, mit

0
H, Hy, Hy, H, H £ —:‘ 7
—2z 0 0 =z 0 0 °
) ! 2 5~
Ugy = T =Ty -z —% 0 0|, Us= zn 0 H

0z oz -z - —2 0 =

0 0 —z 0 —z—z -3 2 -z

dabei ist zur Abkiirzung gesetzt:

Hy = 2’2, — 2237 — &° + 22323° + 2,%5°,
Hy = 2z — 2z,

Hy = 2’7y — zzy? — 2,0,

H, = z*zy — zy';,

Hy = 212573 — 2%

damit haben wir hier dieselben Gradmatrizen wie in 8.2.1. fir m = 5 und mithin die Hilbert-
funktion

P(t;p,) = b6t + 1
I N N t—2\ _(t—3
=(30)(50) =403 ) e () ()
far ¢ =3.
Zur Berechnung vgl. 7.6.

8.5.4. Ideal einer Segreschen Kurve, d. h. einer Quintik mit Tripelpunkt (1, 0, 0, 0) und drei
nicht in einer Ebene liegenden Tangenten

Allgemeine Nullstelle: (5% fo¥; (1% — %), tot,3(H? — f?), &3(52 — b)),

Basisdarstellung: ps = (2123 — 23, 2o,y — 223 + 2r°, 283" — Zer® + 7)%%,) = Uy,
Syzygienkette: Uly, Uj, mit

ZZy + 4 Zeta
U, = | =2, —%

Zy o
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und also
Pl pg) = 66 — 1
_ t+ 3 _ t4+ 1 _ t t—1
=(39)- (%) =) +2(3)
far ¢t€ N*.

Zur Berechnung vgl. 7.6.
8.5.5. Ideal einer quadrikenfreien Quintik vom Abhyankarschen Typ mit vier Kubiken
Aligemeine Nullstelle: (&2, tot,, £,%4® + 45 th1),
Basisdarstellung: p, = (F,, Fy, Fy, F,, F;) mit
Fy = qg’zy + 2297y — 2,° — 0% — 1y2?,
Fy = 25’2y — 20,7y + 23825,
Fy = 22,23 + 2ty — 00 — 412",
Fy = 22 — zo2y* — 2,°75 — 212575,
Fy = 220" — 2173° + 32732, + 254,
Syzygienkette: Ul;, Ug, U, mit

EA zy 0 0 0 2,2y + Ty2y
—23 z ©nt+z, 0 0 —ZyZy — 2!
Uly= |-z — 2, 23— 27 —2 Tht o n' -zt |, Up=| zntat|,
—% Y 7 0T — T —o — 2% 2
0 0 Y —z -5 )

P(t; pg) =6t + 1
N Y AU t—1 t—2\ (t-3
=(30)46)-(5) 23 +2(3)-(57)
__£+3_ t t—1 t—2_£—3
()=o) o523 - (57
far ¢ =3.
Zur Berechnung vgl. 7.6.
8.5.8. Ideal einer speziellen Vahlenschen Quintik
Allgemeine Nullstelle (vgl. PERROX [1]): (0, Y1s ¥s» ¥s) mit
Ye=1 Y1 ="H" ya=1tto — t) (b — at), Y5 =toh’ty — t,) (b — aty).

Nach PERRON [1] ist @ & 0, @ 5 1. Ferner muB a® + 2a¢ + 3a® + 3a? 4 22 + 1 + 0, also ins.
besondere a 3= —1 sein, Fur den Spezialfall ¢ = 2 wird

Yo=1t' Hi=h" Ya=1tMit — &) (b — 26), ys =1t — 1) (b — 24),
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Baasisdarstellung: pp = (Fy, Fy, Fy, F,, Fy) mit
Fy = 1527, — 511agzy2y — 16297, + 46820, — 637dayzy® + 47282,257
— 24822, — 452,% — 2402,%2, — 856247, — 255602,°,
Fy = 16050,2, — 3lzgni2y + 182y%0y — 6922, + 182,797, — 8237y — 162,°,
Fy = 22,3 — 31z’ + 302,27y — 73 — 32380, — Tagzy! — 152,
Fy = 2gzy® — 162,2," + 142,237, — 24’2y — 32375° — 12°,
Fy = 32z — 992432,8 + 96297, — 39372z, %z; + 34722,%2; — 462832,%,*
+ 34086z, .2y — 1736222, — 5386z,25%2s — 406022473 — 187952,2,°
— 8z, — 36z,3r,® — 246z,7° — 12602,
Syzygienkette: U}y, U, U7, mit denselben Gradmatrizen wie im vorigen Beispiel 8.5.5.,
charakteristisches Polynom: wie im vorigen Beispiel 8.5.5.
Dieses Beispiel zeigt, daB bei idealtheoretischer Auffassung des Kurvenproblems die Basis von
Py nicht nur aus vier Kubiken besteht, sondern noch eine fiinfte Basisform vierten Grades hinzu-
kommen mu8.

8.6. Héherdimensionale |deale

8.6.1. Zweidimensionales Ideal mit trivialer Komponente
0 = (207 — ZpTy 2Ty — Ty T — BT, Tt — %)
= (To%y — T1%y) 0 (T4}, 210 Za0 T3).
Die Basis von a kann sus den dreireihigen Unterdeterminanten der Matrix

e T Ty Ty
0 0 z z
Z % 0 0

gewonnen werden,
Syzygienkette: Uy, Udy, Ugy, U, mit

z, 2z 0 0
z x z 0 0 O -z 0 =z 0 2
- 0 0 z 0 0 —z, —z, 0 —zy
U = s : Ty , U= , Ub = R
s 0 —z, 0 —z; 0 =z o z, 0 0 =z a z
0 0 —z 0 —z —2 0 % 0 -z —2,
0 0 =z =z
t t
Pit;a) =2 1
Go=2(;)+3({)+
=0 4241
_(t+3 t t—1 t—2 t—3
(5774l o () 45+ (50
far ¢ =3.

Zur Berechnung vgl. 7.6.
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Der zweite, dritte und vierte Syzygienmodul stimmt jeweils mit dem von (z,, z,, Z,, Z,) fber-
ein. Das steht nicht im Widerspruch zu Kap. 5, Satz 20.

8.8.2. Ideal der Hartshorneschen Flache in K[zg 2y, 25, 2y, 2]

Allgemeine Nullstello: (&2, b, tehita, fofa(ts — ko), ta2(ts — &),
Basisdarstellung:

Pr = (012 — 2% T1Ty — ToZa? + 21Ty, TeZaTy — Tyt + TiTh, ToTaTs — %At T+ %),
Syzygienkette: Uy, Uy, U, mit

M Tt ET T I % z,
2 _ | Ty —% 0 0 s _ | &
Vi = n Zy —Z3 -z, | U = z |
0 0 - EA E
t t
P(t; =4
o) = 4 ) +5 ;) +0
=234+ 3%
ST )7
4 4 4 4 4
far t€ N*.

Zur Berechnung vgl. 7.7.
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