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Vorwort

Zwei Jahrtausende wurde die Mathematik in der Sprache der Geometrie formuliert;
bis ins 18. Jahrhundert wurde Geometrie synonym fiir Mathematik gebraucht.
Auch wenn die Geometrie nicht mehr diese Stellung in der Mathematik besitzt
und den Charakter einer Naturwissenschaft verloren hat, so hat sie seitdem doch
wesentlich die Entwicklung der Mathematik und Naturwissenschaft beeinfluft,
und ihre Sprache bewihrt sich auch in Disziplinen, die sich in unserem Jahrhundert
herausgebildet haben.

Mit der vorliegenden Einfiihrung in geometrische Theorien, die von der euklidi-
sohen Geometrie abweichen, méchten wir einerseits den Blick des kiinftigen wie
auch des an der Oberschule titigen Mathematiklehrers weiten. Andererseits behandeln
wir ausschlieBlich solche Theorien, die Davip HILBERT in seinem beriihmten Vortrag
,»Mathematische Probleme 1900 in Paris auf dem 2. Internationalen Mathematiker-
kongreB als ,,der euklidischen Geometrie nichststehend bezeichnet hat; somit
wird man beim Eindringen in diese Theorien auch zu einem tieferen Verstindnis
der euklidischen Geometrie gefilhrt — zumindest in dem MaBe, wie man es beim
Studium einer Fremdsprache gewohnlich fiir den bewuBteren Gebrauch der Mutter-
sprache gewinnt.

Im ersten Kapitel behandeln wir den Teil der euklidischen Geometrie des Raumes,
der von dem euklidischen Parallelenaxiom unabhiéngig ist. Da man Axiomatik erst
kennenlernt, wenn man schon mathematische Kenntnisse besitzt, konnten wir
solche Grundbegriffe und Axiome wihlen, die unter anderem die Entwicklung der
spiter bendtigten Sitze der absoluten Geometrie moglichst rasch gestatten. In
diesem Kapitel wird neben Inzidenz-, Anordnungs- und Bewegungsaxiomen auch ein
Stetigkeitsaxiom formuliert, jedoch zunichst nicht ang; det. Dagegen werden drei
Axiome des Zirkels zur Realisierung elementarer Konstruktionen vorgestellt. (Spitere
Uberlegungen erméglichen ihre Herleitung aus den iibrigen Axiomen.)

Der erste Teil des zweiten Kapitels bringt nach einigen Vorbereit ichst
eine Reihe von Aussagen, die in der absoluten Geometrie dem 5. Postulat Evxrns
dquivalent sind. Damit verfolgen wir nach wie vor das oben genannte Anliegen —
nimlich die weitere Vertiefung der Kenntnis der euklidischen Geometrie, speziell
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der Tragweite des euklidischen Parallelenaxioms. Uber die Negation des 5. Postulats
von EvkLID erhilt man gemiB der Vorbereitung bereits zahlreiche spezifische Aus-
sagen der Lobagevskijschen Geometrie und so einen ersten Einblick in die Situation
zur Zeit der Entdeckung dieser Geometrie. Uber Lagebeziehungen zweier Gemden
einer Ebene wird die Darlegung zu eb Kurven ,,konstanter Krii g“, zu
den Abstandslinien, Kreisen und Grenzkreisen vorbereitet. Sie werden als Orbits
oder Bahnen beziiglich der Gruppen erklirt, die von Biischeln erzeugt werden;
diese Uberlegungen stiitzen sich stark auf gruppentheoretische Methoden. Im
Zusammenhang mit den Lagebeziehungen zweier Geraden einer Ebene wird auch
die Lobagevskijsche 17 Fu.uktlon betmchtet und die Méglichkeit der Definition einer
absoluten Lingenei hgewiesen. Im dritten und letzten Teil des Kapitels
erarbeiten wir die Bedeutung der Dreiecksinhalte fiir die elementare Flicheninhalts-
lehre. Dabei wird kein Parallelenaxiom benutzt, d. h., daB die gewonnenen Aussagen
auch in der euklidischen Geometrie gelten. Fiir die Lobagevskijsche Geometrie
ist typisch, daB sich die Defekte als Dreiecksinbalte eignen, sobald man die Winkel-
groflen in eine geordnete Struktur mit unbeschrinkt ausfiihrbarer Addition einge-
bettet hat. Mit Hilfe dieser Resultate und der Zerlegungsgleichheit werden Flichen-
inhalte auch als Aquivalenzklassen gewonnen.

Das dritte Kapitel besteht aus zwei Teilen. Im ersten Teil werden die Grund-
lagen der analytischen Geometrie aus den bereits vorliegenden Aussagen iiber die
euklidische Geometrie abgeleitet. Der Umfang dieses Teiles ist wesentlich durch die
Erfordernisse im folgenden Beweis der relativen Widerspruchsfreiheit der Loba-
devskijschen Geometrie bestimmt. Dieser Beweis stiitzt sich auf das Kleinsche
Kugelmodell. Im Zusammenhang mit den Modellbewegungen werden hiufig die
Eigenschaften des euklidischen Vektorraumes ausgenutzt. Auf den projektiven
AbschluB des Anschauungsraumes konnte somit-verzichtet werden. AbschlieSend
veranschaulichen wir einige bemerkenswerte Begriffe und Aussagen der Lobadev-
skijschen Geometrie im Modell.

Bei der Behandlung der Banach-Minkowskischen Geometrie im vierten Kapitel
wird in Analogie zur absoluten Geometrie hiufig das in den Vordergrund geriickt,
was auch in der euklidischen Geometrie gilt, insbesondere Folgerungen aus der Drei-
ecksungleichung, nach der unter anderem die Strecken kiirzeste Verbindungen von
zwei Punkten sind. Im einfithrenden Teil des Kapitels dient der Anschauungsraum
als ,, Triger der Uberlegungen, obwohl nur die Eigenschaften eines stetigen affinen
Raumes in die Beweise eingehen; somit erweisen sich eine mit dem:Teilverhéltnis
vertriigliche Abstandsfunktion, MaBbestimmung mittels Eichfigur und Norm fiir
die Vektoren als gleichberechtigte Moglichkeiten zur Einfiihrung einer Minkowski-
schen Metrik. Aussagen iiber konvexe Figuren, Stiitzgeraden und Kreisschnittpunkte
bereiten das Studium der Orthogonalitit und die Bestimmung der Kreisumfange
in Abhiingigkeit von einer Eichfigur vor. Im letzten Teil des Kapitels werden zunachst
A zusa tragen, die in der Minkowskischen Geometne fiir die euklidi-
sche Geometue charakteristisch sind. Als solche k ichnende Eigenschaften er-
weisen sich spezielle Aussagen beziiglich der Bewegungen oder Winkelkongruenz,
auch der Satz des PyTHAGORAS. Der weitere Ausbau der Minkowskischen Geome-
trie mit konvexer Eichfigur — unter anderem von STEFAN BANACH — wird ange-
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deutet, zumal die Anwendungen der Banachriume die von HILBERT im 4. Problem
ausgesprochene Vermutung iiber die Fruchtbarkeit der Forschung in dieser Rich-
tung vollauf bestitigt haben.

. Bei der anderen mit dem Namen von MiNgowskr verkniipften Theorie handelt
es sich um das ,,mathematische Gewand“ der speziellen Relativitatstheorie von
ALBERT EINsTEIN. Da viele Uberlegungen noch nicht alle Eigenschaften des Kérpers
der reellen Zahlen voraussetzen, gehen wir im fiinften Kapitel von Vektorriumen
iiber Korpern aus. Auf dieser Grundlage werden auch affine Riume behandelt;
wir hoffen, daB gerade dadurch der Gebrauch der analytischen Methoden gefordert
wird. Fiir die Einfiihrung eines inneren Produktes, das mit Ausnahme des Positiv-
definit-seins die Eigenschaften des Skalarproduktes im dritten Kapitel besitat,
wird ein Korper einer Charakteristik = 2 vorausgesetzt. Uber angeordneten Korpern,
in denen jedes positive Element quadratisch ist, wird ein Abstandsbegriff eingefiihrt,
der sich jedoch grundlegend vom Abstandsbegriff in Banach-Minkowskischen Réumen
unterscheidet, da unter anderem verschiedene Punkte den Abstand Null haben
konnen und die Dreiecksungleichung nicht gilt. Nach der Darstellung von Beweg

wird der Zusammenhang zum Raum der Ereignisse in der spemellen Relativitits-
theorie hergestellt.

Seit mehr als zehn Jahren haben wir Lehrerstudenten an nichteuklidische Geo-
metrie herangefiihrt. Der Gegenstand dieses Bandes wurde von uns im Rahmen der
wahlweise obligatorischen Ausbildung bzw. in der Lehrveranstaltung Ausgewihlte
Kapitel der Mathematik im Umfang von 4 bis 6 Semesterwochenstunden realisiert,
vorwiegend in Vorlesungen. Dabei kam uns zustatten, daB die let beiden Kapitel
auch unabhingig von den vorangehenden und unabhiingig voneinander geboten
werden konnen. Aus Zeitgriinden muBten wir g tlich einige Beweise skizzieren,
die hier voll ausgefiihrt wurden. Bei der Verwu'khchung dieses Programms in
héchst: vier S terstunden wurde nur die erste Hilfte des zweiten Kapitels
ausfiihrlich gelesen, wihrend iiber den restlichen Teil nur informierend referiert
wurde; dabei kann man die Abschnitte 1.2.2 und 1.2.3 aus der absoluten Geometrie
auslassen. Natiirlich ist es auch méglich, iiber groBere Teile der absoluten Geometrie
informierend zu referieren, wenn iiber diese Teile im Rahmen der Grundausbildung aus-
fiihrlich gesprochen wurde. Es ist nicht nétig, viele Varianten ausfiihrlich vorzustellen ;
denn man kann stets interessierende Teile in Angriff nehmen und notfalls fehlende
Uberlegungen, die in davorliegenden Abschnitten enthalten sind, nachtragen. Ent-
sprechendes gilt fiir die Durchfiihrung des Beweises der relativen Widerspruchsfrei-
heit der Lobatevskijschen Geometrie. Die Kapitel 4 und 5 konnten stets ohne
wesentliche Kiirzungen in Vorlesungen geboten werden. GréBere Teile der absolu-
ten Geometrie sowie der Abschnitt 3.1 waren mitunter in Seminare gelegt worden.
Solch Vorgehen hiingt davon ab, inwieweit passende Literatur zur Verfiigung steht.
Die Durchfiihrung eines Seminars zur vorliegenden Thematik ist wiinschenswert, da
es die selbstindige Auseinandersetzung des Studierenden mit diesem Stoff férdert und
bei der Herausbildung von Fertigkeiten in bezug auf die axiomatische Methode hilft.

Dieser Band umfaBt den axiomatischen Aufbau solcher nichteuklidischer Geome-
trien, die der euklidischen Geometrie am niichsten stehen. Der Kundige wird in
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dieser nichteuklidischen Geometrie das ,,mathematische Gewand* der allgemeinen
Relativititstheorie (1916) von A. EINSTEIN vermissen, das BERNHARD RIEMANN
in seiner Habilitationsvorlesung Uber die Hypothesen, welche der Geometrie zugrunde
Uiegen bereits 1854 vorgelegt hatte. Dieses Thema stellt in der Tat eine notwendige
Ergiinzung dieses Bandes dar. Deshalb fiihren wir im Rahmen der wahlweise obliga-
torischen Ausbildung iiber Elemente der Kurven- -und Flichentheorie der euklidi-
schen Geometrie an den Begriff des Riemannschen oder gar des Finslerschen Raumes
heran. Eine solche Heranfithrung benitigte jedoch einen eigenen Band.

Wir hoffen, daB der vorliegende Band eine wiinsch rte Ergi g der
Geometrie-Binde in der Reihe ,,Mathematik fiir Lehrer (MfL)* darstellt. Der Voll-
stindigkeit halber haben wir geringe Teile des axiomatischen Aufbaus der Geometrie
in MfL, Bd. 6 wiederbolt, zumal die Deduktion im Rahmen der absoluten Geometrie
unter veriinderten bzw. schwiicheren Voraussetzungen erfolgen muBte. Dasselbe
trifft auf den Geometrie-Band des einen Autors in der Studienbiicherei zu. In einigy
Fillen konnten derartige Herleitungen vereinfacht werden. Gegeniiber [32] wurde
die Einfithrung der Begriffe entsprechend den Festlegungen fiir die Reihe MfL ver-
dndert, so daB hier und in [32] selbst hinter gleichen Symbolen kaum genau derselbe
Begriffsinhalt steht.

An einigen Stellen haben wir wissenschaftsgeschichtliche Angaben gemacht.
Neben den Lebensdaten wurden nur bei den weniger bekannten Wissenschaftlern
einige biographische Notizen aufgenommen. Insbesondere méochten wir beziiglich
Gauss, LoBAdEVSK1LS, J. BoLyAar und MiNgowskEr auf die einschligigen mathematik-
historischen Versffentlichungen verweisen.

Fiir viele Anregungen, Hinweise und Verbesserungsvorschlige haben wir den
Herren S. BREHMER, W. ENGEL und G. GEISE zu danken, ebenso Herrn H. Wussing,
der uns zu den mathematik hichtlichen Bemerkungen wertvolle Hinweise gege-
ben hat. Beim Korrekturlesen haben uns die Kollegen B. WeRNICKE und U. LENGTAT
in hervorragender Weise unterstiitzt. Unser Dank gilt weiterhin dem VEB Deut-
scher Verlag der Wissenschaften fiir die gute Zusammenarbeit ; die sachkundige und
umsichtige redaktionelle Bearbeitung des Manuskripts leistete Frl. E. ARNDT, der wir
fiir zahlreiche Ratschlage und Korrekturen sehr verbunden sind. SchlieBlich danken
wir dem VEB Druckhaus ,,Maxim Gorki‘ fiir die sorgfaltige Arbeit.

Potsdam, im Januar 1978
B. KroTZEK
E. QUAlssEr
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1. Absolute Geometrie

Die Geometrie ist eine der dltesten Wissenschaften. Der aus dem Griechischen stam-
mende Name — Erdvermessung — weist auf ihren Ursprung in der objektiven Reali-
tat hin. Die Erkenntnisse wurden wie in jeder empirischen Wissenschaft in der Aus-
einandersetzung mit der Umwelt durch Abstraktion gewonnen, und durch die An-
wendung der g Einsichten haben sie in der Praxis ihre Bestitigung ge-
funden. Dieses Herangehen an die Erkenntnisgewinnung sollte auch heute noch
im Unterricht hinreichend breit beriicksichtigt werden. So kann man beispielsweise
eine Anzahl von Dreiecken untersuchen, um dann folgende Vermutung aufzustell
In jedem Dreteck ABC gilt (mit den iiblichen Verembarungen hmslchthch der Be-
zeichnungen von Seitenlingen und WinkelgroBen)

asboasp.

Typisch fiir die Mathematik ist jedoch, die Giiltigkeit solch einer Aussage durch
einen Beweis zu sichern. Dieser Beweis soll hier skizziert werden.

Wir setzen zunichst die jeweiligen Beziehungen zwischen a und b voraus. ~

Fall1: a = b (Abb. 1a). Dann ist das Dreieck ABC gleichschenklig, und die
Basiswinkel <t 4 und < B sind deckungsgleich, d. h. &« = f.

°8  Abb. 1

Fall 2: a > b (Abb. 1b). Wir tragen die Strecke AC auf der Halbgeraden p,
die den Anfangspunkt C besitzt und durch B geht, ab und erhalten einen Punkt D
zwischen B und C. Im Dreieck ADC gilt & A =~ < D. Ist 8 die GroBe dieser Winkel,
80 gilt « > & und 8 > B (nach dem Satz vom AuBenwinkel beziiglich des Dreiecks
ABD); folglich ist & > 8.
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Fall 3: @ < b. Hier erhalten wir « < § wie im Fall 2.
Nunmehr setzen wir umgekehrt die Beziehungen zwischen « und g voraus.

Fall 1: « < . Es gilt a < b, denn aus a = b folgte & = 8.
Fall 2: « = . Es gilt @ = b, denn aus a < b folgte x < 6.

Fall 3: & > p. Es gilt a > b, denn aus a < b folgte « < 8,
w.z.b.w.

Im ersten Teil des Beweises wurden einige geometrische Sitze als giiltig voraus-
gesetzt: Satz vom gleichschenkligen Dreieck, Satz vom AuBenwinkel, die Transitivi-
tit der Relation > fiir WinkelgroBen?) u. a. m. Im zweiten Teil des Beweises wurde
der bereits bewiesene Teil des Satzes benutzt. AuBerdem haben wir uns darauf ge-
stiitzt, daB sich die Fille &« < f, « = B, « > f gegenseitig ausschlieBen und daB
von den Fillen ¢ < b, @ = b und a > b wenigstens einer eintritt.?)

Die soeben geschilderte Situation ist auch typisch fiir die gesamte Mathematik.
So finden wir in jedem Geometriebuch wahre geometrische Aussagen, geometrische
Sétze mit Beweis, wobei im Beweis andere geometrische Aussagen als wahr voraus-
gesetzt werden. Insbesondere gibt es auch Aussagen, die als wahr vorausgesetzt
und zuvor nicht bewiesen wurden, die Aziome. Als Axiome werden in der Elementar-
geometrie z. B. folgende Sitze benutzt:

Durch zwei Punkte gibt es genau eine Gerade. Durch drei nicht kollineare Punkte
gibt es genau eine Ebene. Liegen zwei Punkte einer Geraden auch in einer Ebene,
dann liegt die Gerade ganz in dieser Ebene. Zu jeder Geraden gibt es durch jeden
Punkt hochstens eine Parallele.

Zum Aufbau der Elementargeometrie konnen jedoch Systeme bzw. Mengen von
Axiomen benutzt werden, die nur einen Teil oder sogar keine dieser genannten Sitzc
als Axiome enthalten.

Den Zusammenhang zwischen den Axiomen, Sitzen und Beweisen bei einem Aufbau
einer Theorie kann man durch das folgende Schema darstellen:

Axiome g Sitze

In die Formulierung von Axiomen und Sitzen geht eine Reihe von Begriffen ein
wie z. B. Punkt, Gerade, Strecke, Mittelpunkt,... geht durch ... In jedem Geometrie-
buch gibt es geometrische Begriffe, die mit Hilfe anderer erkldrt bzw. definiert
werden. Es existieren aber auch geometrische Begriffe ohne vorherige Erklirung
bzw. Definition. Im allgemeinen bemiiht man sich, wenige geometrische Begriffe
als Grundbegriffe unerkldrt zu benutzen, um mit ihrer Hilfe die anderen Begriffe
durch Definitionen einzufiihren:

Grundbegriffe g Begriffe der Theorie

1) DaB die Transitivitit im allgemeinen nicht trivial ist, iiberlegt man sich beispielsweise
anhand der Beziehung ,,ist Tochter von". .

2) Dabei wud abrigens eine logische Formel sichtbar, die sich in vielen Beweissituationen
der Math ti den liBt, namlich das Haubersche Theorem.
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Ein Aufbau nach den hier skizzierten Prinzipien, ein axiomatischer bzw. dedukti
Aufbau, wurde erstmals fiir die Geometrie erarbeitet. In seinen Elementen hat EURLID
(3652—300 v. u. Z.) den Versuch eines streng logischen Aufbaus der Geometrie
unter Hinsichtlich der logischen Strenge galt dieses Werk, das die gesamte
Mathematik der Antike enthielt, zwei Jahrtausende lang als mustergiiltig. Trotzdem
hatten viele Mathematiker Bedenken gegen die Aufnahme des sogenannten 5. Postu-
lats in das System der Axiome und Postulate:

Gefordert soll sein:
5. (Ax. 11) Und daf, wenn eine gerade Linie besm Schnitt mit zwei geraden Linien
bewrirkt, daP tnnen auf derselben Seite entstehende Winkel kleiner als zwet
Rechte werden, dann die 2wei geraden Linien ber Verlingerung tns unendliche sich
treffen auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte
sind. (Vgl. [16), S. 3)

Dieses Axiom, das sich schon durch seine Linge von den anderen Postulaten
und Axiomen EvrLIDS unterscheidet, hat bei vielen Mathematikern MiBt
erweckt. Geraden und Ebenen sind ideale Gebilde, die in der Realitit nur teilweise

P

9 Abb. 2

realisiert werden kénnen; auf jedem Zeichenblatt bzw. auf jeder Wandtafel (Abb. 2)
gibt es stets gerade Linien, die die Voraussetzungen des 5. Postulats erfiillen, und
sich dennoch auf dem Zeichenblatt bzw. auf der Tafel nicht schneiden, auch nicht
bei jeder Verlingerung, die wir realisieren kénnen. Bis vor 150 Jahren wurde ver-
sucht, das 5. Postulat aus den iibrigen Axiomen und Postulaten EUKLIDS abzu-
leiten. Wie die Losung der Parallelenfrage durch CarL FRIEDRIOH GAUSS (1777—1855,
1816), Nmoras IvaNovid LoBACEVSEIS (1792—1856, 1826) und Janos BoLyar
(1802—1860, 1831) zeigt, ist das nicht moglich. Vielmehr wurde die Loba&evskijsche
GQeomelrie entdeckt!), in der es zu einer Geraden und einem Punkt auBerhalb der
Geraden mehrere Parallelen gibt. Im Rahmen der Priifgenauigkeit auf der Erde
eignet sich diese Theorie wie die euklidische Geometrie zur angeniherten Beschrei-
bung der geometrischen Verhiltnisse des physikalischen Raumes.

Die Forderungen an einen deduktiven Aufbau sind vor allem im vorigen Jahr-
hundert gewachsen. Nachdem Morrrz PascH (1843—1930) besonders durch seine
Vorlesungen iiber meuere Qeometrie von 1883 die axiomatische Methode entwickelt
hatte, formulierte Davip HILBERT (1862—1943) in den Grundlagen der Geometrie
von 1899 die Forderungen an einen deduktiven Aufbau, wie sie heute in der Mathe-
matik gestellt werden. Es ist bemerkenswert, daB er erst in der vierten Axiomen-
gruppe ein euklidisches Parallelenaxiom benutzt. Darin spiegelt sich die Tendenz

1) LoBA¢EVSELS hat diese Ehrung verdient, weil er nicht nur als erster seine Ergebnisse ver-
offentlicht hat, sondern sich auch spater durch Veréffentlichungen um die Anerk g, den
Ausbau und um die Anwendungen seiner Ideen bemiiht hat.
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wider, die von einem Parallelenaxiom unabhingigen geometrischen Sitze gesondert
zu entwickeln. Nach J. Boryar faBt man diese Sitze zur absoluten Geometrie zusam-
men. Wir wollen bereits hier bemerken, daB das Attribut ,,absolut durchaus relativ
ist. Wir haben keinen Grund, nur dem Euklidischen Parallelenaxiom eine fragliche
Ubereinstimmung mit der Realitit nachzusagen. Bereits PascH duBert z. B. gegen-
iiber der Dichtheit der Strecken und Geraden Vorbehalte, die dann beziiglich der
Stetigkeit erst recht bestehen.

1.1.  Inzidenz, Anordnung und Bewegung

1.1.1.  Inzidenzaxiome und einige Folgerungen

Wir setzen die Begriffe Punkt, Gerade und Ebene als Grundbegriffe voraus. In
unseren spiteren Uberlegungen betrachten wir Punkte, Geraden und Ebenen als
Elemente gegebener Mengen B, & bzw. € und gehen von folgender Grundannahme
aus:

I,. Gegen sei ein festes Tripel (R, &, €) derart, daB
gEG=>9S P, €€ P
gilt.

Die Elemente von P nennen wir Punkte und bezeichnen sie mit groBen lateinischen
Buchstaben 4, B, C,..., P,Q, ... Zur Bezeichnung der El te von & und G,
die Geraden bzw. Ebenen genannt werden, verwenden wir vorwiegend die kleinen
lateinischen Buchstaben f, g, k bzw. die kleinen griechischen Buchstaben ¢, {, 5, 9.
Die Zeichen €, S bzw. 5, 2 werden im Zusammenhang mit Punkten, Geraden und
Ebenen als (liegt) tn bzw. als (geht) durch (einheitlich auch als inzidiert mit) gelesen.

Jede beliebige Teilmenge F von P wird Figur genannt. Im Fall F C g fiir eine
Gerade g bzw. F < ¢ fiir eine Ebene ¢ heiBit F linear bzw. eben.

Die Punkte einer linearen Figur werden kollinear, die Punkte einer ebenen Figur

komplanar genannt.
Es werden folgende Inzidi lome vorausgesetzt :

I,. Jede Gerade g enthilt voneinander verschiedene Punkte P, Q.

L. Durch zwei Punkte P, Q gibt es genau eine Gerade g.

I5. Jede Ebene ¢ enthilt nicht kollineare Punkte P, Q, R.

I,. Durch nicht kollineare Punkte P, Q, R gibt es genau eine Ebene &.

Is. Liegen zwei Punkte P, Q einer Geraden g in einer Ebene ¢, dann liegt
die Gerade ¢ in &.

I,. Fiir zwei Ebenen ¢, 7, die einen gemeinsamen Punkt besi ist & n 7 eine
Gerade.

I,. Es gibt Punkte P, Q, R, 8, wobei P 5 Q gilt und P, Q, R nicht kollinear

sowie P, Q, R, 8 nicht komplanar sind.
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Fiir die spiteren Beweisfiihrungen ist es wichtig, die logische Struktur der Axiome
genau zu erfassen. Formalisiert konnen einige Axiome wie folgt notiert werden:

L. AN VP£Q.

9€® P.Qeg
I,. A P, @, R nicht kollinear = V !! P, Q, R€ ¢.
PQ,ReB €
L. V P ==QAP, @, R nicht kollinear A P, Q, R, S nicht komplanar.
P.Q.R,S€B

Fiir den Leser ist es niitzlich, alle Axiome nach dem vorliegenden Muster zu notieren.

Es sei bemerkt, daB wir nach I, statt g S ¢ bzw. ¢ 2 g einfach g— e bzw. ¢ O ¢
schreiben kénnen.

Die Formulierung des Axioms I, laBt sich nicht dahingehend vereinfachen, dafl
nur die Existenz nicht komplanarer Punkte P, Q, R, S gefordert wird, weil sonst
weder die Existenz einer Geraden noch die einer Ebene gesichert ist und weil im
Fall € = @ jede Punktmenge nicht komplanar ist.

Nach I, bestimmen zwei Punkte eine Gerade eindeutig; nach demselben Axiom
haben zwei Geraden hochstens einen Punkt gemeinsam. AuBerdem bestimmen drei
nicht kollineare Punkte nach I, eindeutig eine Ebene. Das rechtfertigt den Ge-
brauch des bestimmten Artikels in den folgenden

Definitionen. Die Gerade g heiBt die Verbindungsgerade von P, Q (in Zeichen:

= gpg = g(PQ)) genau dann, wenn P % Q und P, Q € ¢ gilt.

Der Punkt P heiBt der Schnitpunkt der Geraden g, h (in Zeichen: P = P, = P(gh))
oder g, h schneiden sich in P genau dann, wenn g 5=k und P € g, h gilt.

Die Ebene ¢ hei8t die Verbindungsebene von P, Q, R (in Zeichen: ¢ = epgp = ¢(PQR))
genau dann, wenn P, Q, R nicht kollinear sind und P, Q, R € & gilt.

Satz 1.1. Es gibt hochstens eine Ebene, die

a) durch evnen Punkt P und eine Gerade g mit P § g
oder

b) durch 2wei Geraden g, h geht.

Zusatz. Die Existenz ist gesichert, wenn P ¢ g gilt bzw. wenn sich g, h schneiden.

Beweis. a) Nach I, gibt es in g zwei Punkte Q und R, die wegen I, mit P nicht
kollinear sind. Gehen etwa & und % durch P und g, dann gilt P, @, R € ¢, 5 und folg-
lich ¢ = # nach I,.

b) Wegen g == h gibt es einen Punkt, der etwa in & und nicht in g liegt. Aus g, b
< ¢, n erbalten wir somit nach a) sofort ¢ = #. Den Beweis des Zusatzes iiberlas-
sen wir dem Leser (vgl. Aufgabe 2).

Dieser Satz ermoglicht folgende
Definition. Die Ebene ¢ heiBt Verbindungsebene von P, g bzw. g, h (in Zeichen:

& = gyp = &(gP) bzw. ¢ = g, = ¢(gh)) genau dann, wenn Pd g, P€¢ und g ¢
bzw. g & k und ¢, b < ¢ gilt.
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Mit Hilfe der bisherigen Begriffe kénnen wir folgende Definition der Parallelitiit
von Geraden aussprechen:

Wir schreiben g || & fiir komplanare Geraden g, k genau dann, wenn g = h oder
gnh =g ist.

Wir diirfen jedoch nicht erwarten, da$ die gewohnten Eigenschaften dieser Rela-
tion gelten wie z. B. Existenz und Eindeutigkeit einer Parallelen zu einer Geraden
durch einen Punkt oder die Transitivitdt der Parallelitit. Im Gegenteil. So werden
wir z. B. im folgenden zeigen, daB die Existenz einer Parallelen zu einer Geraden durch
einen Punkt aus dem vorliegenden Axiomensystem nicht hergeleitet werden kann.

Satz 1.2. Aus den Inzidenzaziomen ist micht beweisbar, daf Geraden mehr als
zwer und Ebenen mehr als drev Punkte enthalten und daf zu Geraden durch Punkte
stets Parallelen exvistieren.

Um das einzusehen, betrachten wir folgendes Modell des Systems der Inzidenz-
axiome:
Bu = {4, B,C, D,
Gy ={(X,Y): X+ YrX,Y€E Py},
Cy={X,Y,2: X+Y+Z+XnX,Y,Z€ By}

(2]

B Abb. 3

Die Menge der M-Punkte besteht aus vier Punkten (Abb. 3). Die M-Geraden kénnen
wir als sechs ,,Hanteln“ deuten, die M-Ebenen als vier ,,Triangel*. Nach Defini-
tion enthilt jede M-Gerade zwei Punkte, und durch je zwei M-Punkte geht genau eine
M-Gerade. Entsprechend enthilt jede Ebene nicht kollineare Punkte, und durch
je drei Punkte geht genau eine Ebene. Trivialerweise liegt eine Gerade in einer
Ebene, wenn ihre beiden Punkte zur Ebene gehoren. Aus Mangel an Punkten schnei-
den sich je zwei Ebenen in einer Geraden. Gffenbar ist auch I, erfiillt, so daB unser
Tripel (Ba, Gy, €yr) neben der Grundannahme I, auch I, bis I, geniigt. — Damit
ist die Behauptung des Satzes 1.2 einsichtig, denn wire das Gegenteil richtig, dann
miiBte es speziell fiir das Tripel (Pyr, Gy, €y) gelten — im Widerspruch dazu, dal
g = {4, B) € @y genau zwei und ¢ = {4, B, C) € €y genau drei Punkte enthilt
und daB zu g in e durch C keine Parallele existiert, w. z. b. w.

Aufgaben

1. Man zeige, daB sich Geraden g und 5 einer Ebene genau dann schneiden, wenn g jrk gilt.
2. Man beweise mit Hilfe der Axiome I,, I,, I, und I;:
a) Es gibt eine Ebene, die einen gegebenen Punkt P und eine gegebene Gerade g mit P¢ g
enthilt.
b) Durch sich schneidende Geraden existiert eine Ebene.
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3. Es gilt:
a) Nicht kollineare Punkte 4, B, C sind paarweise verschieden.
b) Von nicht komplanaren Punkten 4, B, C, D sind je drei nicht kollinear.

Beweis von a). Nach I, gibt es einen Punkt P + 4, nach I, existiert g4p und nach Vor-
aussetzung gilt B¢ g,p oder C¢ g p. etwa B¢ g p und damit 4 = B. Nach I, existiert
g48 und nach Voraussetzung ist C ¢ g45 und folglich 4, B == C, w.z. b. w.

Man beweise b) nach diesem Muster oder indirekt mit Hilfe des Zusatzes zu Satz 1.1 und
I,

1.1.2. Anordnungsaxiome und grundlegende Folgerungen

Oft werden Geraden als (total) geordnete Punktmengen vorausgesetzt. Dabei wird
besonders deutlich, was sich in der Mengenlehre erst nach zusitzlichen Uberlegungen
herausstellt: Eine Relation und ihre inverse Relation sind wie Zwillingsbriider Ord-
nungsrelationen oder nicht. An anschauliche Vorstellungen ankniipfend, werden
wir die ausgezeichneten Ordnungsrelationen der Geraden Durchlaufsinne nennen
und neben den Begriffen Punkt, Gerade und Ebene als Grundbegriff verwenden,
um alle anderen Anordnungsbegriffe wie z. B. Halbgeraden, Halbebenen und Halb-
riume, Winkel und deren Ordnung darauf zuriickzufiihren.

Deshalb erweitern wir unsere Grundannahme I, dahingehend, daB wir neben
B, @, € eine Funktion D als gegeben ansehen, die jeder Geraden g zwei zueinander
entgegengesetzte Relationen D!, D,? in g zuordnet:

A, g€ @ = D(g) = (D, D?} mit g X g o Dg* = (D).

Beziiglich der Grundannahme werden D,!, D2 die Durchlaufsinne von g g t
Im allgemeinen werden wir den von uns betrachteten bzw. ausgezeichneten Durch-
laufsinn von g kurz mit < bezeichnen, weil keine MiBverstindnisse zu befiirchten
sind (vgl. auch Aufgabe 1).

Fiir jede Gerade wird festgelegt: A liegt vor B genau dann, wenn 4 < B gilt.
B liegt zuwischen A und C genau dann, wenn 4 < B < C oder C < B < 4 gilt.
Die Menge der zwischen 4 und B liegenden Punkte wird mit (4B) bezeichnet.

AB:= (4B)u (4, B

ist die Strecke mit den Endpunkten A und B. Beziiglich AB ist (4B) das Innere.
Fiir 4 = Bist (AB) = J und AB = {4} hier als Sonderfall zugelassen.
Wir setzen folgende Anordnungsaxiome voraus:

A,. Jede Gerade g ist eine unbegrenzte (total) geordnete Menge, d.h., daB
beziiglich eines Durchlaufsinnes < fiir alle 4, B, C € g folgendes gilt:
(a) A € A (Irreflexivitat),
(b) A < BA B < C=> A < C (Transitivitit),
(¢) 4 +# B> A < Bv B < A4 (Konnexitit),

(d)V P < 4 < Q (Unbegrenztheit).
PReg
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A,. Zu jeder Ebene ¢ und jeder in ¢ enthaltenen Geraden g gibt es genau eine
Menge {H,, H,}, deren Elemente offene Halbebenen tn ¢ beziiglich des Trigers
g genannt werden, mit folgenden Eigenschaften:
(8) HyuH, =¢e\yg,
(b) P,Q€ e\ g liegen genau dann in derselben offenen Halbebene, wenn

PQng =0 ist.
A, Zu jeder Ebene & gibt es genau eine Menge (9, 9.}, deren Elemente offene
Halbriume beziiglich des Trigers ¢ genannt werden, mit folgenden Eigen-
schaften:

(8) §10H. = P\ e,
(b) P,Q € B\ ¢ liegen genau dann in demselben Halbraum, wenn PQn ¢
= @ ist.

Neben den offenen Halbebenen und Halbriumen gibt es die offenen Halbgeraden
in g beziiglich O € g:

={X€g:0<X), g=(X€g: X <O}

a) b) Abb. 4

dabei ist O = O(p) = O(q) der Anfangspunkt von p bzw. g. Gilt P € p, dann werden
OP+:= pu (0} und OP-:= g\ p abgeschlossene Halbgeraden genannt (Abb. 4a).
Aus der Definition der offenen Halbgeraden erhalten wir folgenden

Hilfssatz 1.3. Ist p eine offene Halbgerade mit dem Anfangspunkt O, dann folgt
aus P, P’ € p stets PP’ — p.

Beweis. Es geniigt, den Fall 0 < P < P’ zu betrachten. Dann folgt aus X ¢ PP’
zuniichst 0 < P < X < P’ und mit O < X bereits X € p, w. z. b. w.

Die Bezeichnung von Halbebenen und Halbriumen erfolgt entsprechend den
Festlegungen fiir Halbgeraden: Ist H eine offene Halbebene in & beziiglich g = gpq
(Abb 4b) und R¢ H'), dann heiien PQR+ = gR*:= H u gund PQR- = gR-:= ¢\ H

Halbeb Analog werden fiir S ¢ ¢ = epop die abgeschlossenen
Halbmume PQRS* = eS*+ baw. PQRS- = &8- eingefiihrt.

Offenbar sind offene Halbgeraden, Halbebenen und Halbriume Elemente einer
gewissen Klasseneinteilung. Auchn-Ecke?) 4,4,...4, = 4,4, v 4; A3 v --- v 4,4,
in einer Ebene ¢ zerlegen ¢ \ 4,4;...4, in Teile, die allerdings nicht so einfach wie
Halbebenen nach A,(b) beschrieben werden konnen (Abb. 5a): P,Q € e\ 4,4,...4,

1) Man iiberlegt sich leicht, daB jede offene Halbebene und jeder offene Halbraum Punkte
enthilt.

%) Vielecke und ihre Ecken, Seiten, Diagonalen seien wie iiblich erklart (vgl. etwa MfL, Bd. 6
oder die Lehrbiicher fir Mathematik der Polytechnischen Ob
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liegen genau dann in demselben Teil, wenn es in ¢ Punkte P,, ..., P; derart gibt,
daB (PPyuP,Pyu---uPQ)n A 4,... A, = J ist (Streckenzugiquivalenz). Wie

Aufleres

einfach nicht einfach
a) bl Abb. 5

man leicht sieht, ist die Streckenzugiiquivalenz in &\ 4,4,...4, eine Aquivalenz-
relation. Somit kénnen wir erkliren:

Definition. In einer Ebene ¢ heiBt das n-Eck 4;4,...4, = 4,4, u --- v 4,4,
einfach (zusammenhiingend) genau dann, wenn & \ 4,4,...4, beziiglich der Strecken-
zugiquivalenz genau zwei Aquivalenzklassen enthilt!) (Abb. 5b).

Im Fall der Winkel < POQ := {OP+, OQ*) mit OP+ 5= OQ* kénnen beziiglich der
Streckenzugiquivalenz ebenfalls Aquivalenzklassen gebildet werden (Abb. 6);

Abb. 6 Abb. 7

darauf wollen wir nicht weiter eingehen, zumal wir davon kaum Gehrauch machen.
Die Ordnung der Punkte einer Geraden hat noch eine bemerkenwerte Eigenschaft:

Satz 1.4. Die Geraden sind dichte Punkimengen, d. h., daf zwischen zwei Punkten
stets woch ein Punkt der Geraden liegt.

Folgerung. Es gilt (AB) = @ genau dann, wenn A = B 7st.

Beweis. Es sei 4 == B. Nach 1, gibt es einen Punkt C derart, da 4, B, C nicht
kollinear sind.?) Nach A,(d) existiert ein Punkt D € gpc, fiir den C € (BD) und folg-
lich D ¢ g4 gilt (Abb. 7). Ebenfalls nach A,(d) finden wir einen Punkt B '€ gup» 50 daB
A im Inneren von DE liegt. Esgilt D € ABC+, E € ABC-;somit gibt es einen Punkt
F € (CE) n g4p. Andererseits ergibt die Wahl der Punkte B¢ ECD-, A € ECD+,
8o daB F zwischen 4 und B liegt, w.z. b. w.

1) Man kann beweisen, daB genau eine Klasse, das Aupere, Geraden enthilt; die andere
Klasse ist das Innere.
2) Im folgenden werden wir keine Inzid iome wie beispielsweise I, ziti Auch in

P
Tnoid,

2
spiteren Beweisen soll die Anwendung der benétigten I iome kaum noch besonders
hervorgehoben werden.
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Eine entsprechende Aussage gilt fiir Halbgeraden, die von einem Punkt aus-
gehen. Dazu miissen Mengen solcher Halbgeraden geordnet werden: Es sei O ¢ gpq
und etwa P < Q. Wir setzen fiir zwei von O ausgehende Halbgeraden s und ¢ per
definitionem s < ¢ genau dann, wenn s, ¢ die Strecke PQ in Punkten § bzw. T
mit § < T treffen. Dann gilt

Satz 1.5. Sind O, P, Q nicht kollineare Punkte, so kann die Menge der Halbgeraden,
die von O ausgehen und PQ treffen, mit Hilfe der Durchlaufsinne in gpq so geordnet
werden, daf} die Ordnung von der speziellen Transversalen PQ unabhingig ist; wir
erhalten cine dichte (total) geordnete Menge. .

Abb. 8

Beweis. Wir haben nur zu zeigen, daB die oben beschriebene Ordnung unab-
hiingig von der Strecke PQ ist. Es sei OP+ = OP’+ und 0Q* = 0Q'+ (Abb. 8). Ohne
Beschrinkung der Allgemeinheit kénnen wir P’ < Q' neben P < Q voraussetzen.
Die von O ausgehenden Halbgeraden s, ¢ mogen die Strecke PQ in § und 7 treffen,
wobei 8 < T gilte.

Im Fall S=Pund T =Qgilt P’ € sn P'Q',Q € tn P'Q' und P’ < Q'. Andern-
falls gilt S &= P oder T' 3 Q, etwa S 5= P. Wir betrachten die offenen Halbebenen
H,, H, beziiglich gos mit P € H, und Q € H,. Nach dem Hilfssatz 1.3 gilt H, > P, P,
H, > Q, Q'; folglich trifft gos die Strecke P'Q’ in einem Punkt §’, der wegen

0PQ+ > PQ, 0Q*, PQ' A s = gos n OPQ+

in 8 liegt. Entsprechend trifft ¢ die Strecke P'Q’ in einem Punkt 7. Wegen H, 5 P, P’
und H, 57T, Q, Q’, T" gilt schlieBlich 8’ < 7", w.z.b. w.

Ist M eine nicht leere, nach oben beschrinkte Teilmenge einer Geraden g, dann
kann man fragen, ob eine kleinste obere Schranke, eine obere Grenze von M, existiert.
Aus den bisherigen Axiomen kann diese Frage nicht positiv beantwortet werden.
Wir formulieren deshalb das Axziom von der oberen bzw. unteren Grenze:

St. Jede nicht leere, nach oben bzw. unten beschriinkte Teilmenge einer Geraden
besitzt eine obere bzw. untere Grenze.

Diese Eigenschaft iibertriigt sich offenbar sofort auf die Menge der Halbgeraden
die von einem Punkt ausgehen und eine Strecke schneiden.

Im Gegensatz zu den bisherigen Axiomen wird hier eine Existenzaussage iiber
eine unendliche Menge (von oberen bzw. unteren Schranken) gemacht. Deshalb
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spricht man hier nicht mehr von einem Anordnungsaxiom, sondern von einem
Stetigkeitsaxiom. Wir wollen HILBERT folgen und dieses Axiom erst spiter, und zwar
in Kapitel 2 benutzen.

Aufgaben

1. Irreflexivitit, Transitivitit, Konnexitat und Unbeg heit des ausgezeichneten Durch-
laufsi <, einer Geraden g bedingen die entsprechenden Eigenschaften des dazu ent-
gogengosetzten Durchlanfsinnes <,*.

2. Die Durchlaufsinne sind asymmetrisch: 4 < B = B < 4. Folglich kénnen B€ (4C) und
A € (BC) nicht zugleich gelten.

Anleitung: Ohne Beschrinkung der Allgemeinheit gilt 4 < B.

3.*1) Es seien 4, B, C, D nicht komplanare Punkte. Dann sind keine drei dieser Punkte kolli-
near. Es sei $, der offene Halbraum beziglich epop, der 4 enthilt; entsprechend seien
95 9c und Pp definiert. Wir setzen

Bae := 940950 $¢ 0 $p,
Gy = {7';:’&1' =gn Py + g}-

Gy := {c':‘(\‘l:s' =en Py + B}.

Die Durchlaufsinne in den Modellgeraden g' = g n P € @y seien durch Einschrinkung
der Durchlaufsinne in g auf ¢’ erklart: <g.:= <;n (g’ xg').

a) Man zeige, daB fiir (P, Gy, Cy, Dy) alle Inzidenz-, Anordnungs- und Stetigkei
axiome gelten.

b) Es ist zu beweisen, daB jede Gerade g’ unendlich viele Punkte enthilt und daB zu jeder
Geraden g’ € @y durch jeden Punkt P’ € Ry mit P'¢ g’ in @y unendlich viele Parallele
existieren.

1.1.3. Bewegungen und Spiegelungen

Als fiinften und letzten Grundbegriff verwenden wir den Begriff der Bewegung.
Wir gehen nun von einem Tupel (B, &, €, D, B) aus, wobei wir die Elemente von B
Bewegungen nennen, und erweitern unsere Grundannahme um

B,. 7€ B = 7 eineindeutige Abbildung aus P in P, u.a. v S PxP.

Bewegungen ebener Figuren konnen gut mit Hilfe von Transparentpapier ver-
anschaulicht werden. Zur Motivierung spiterer Axiome kann man sich so folgende
Sachverhalte klarmachen: Jede lineare Figur F mit zwei Punkten 4 und B kann so
bewegt werden, daB8 A in den Anfangspunkt O einer gegebenen Halbgeraden p und B
in einen Punkt B’ € p iibergeht. Durch A’ = O, B’ € p ist fiir jeden Punkt X von
F der Bildpunkt X’ eindeutig bestimmt (Abb. 9a).

1) Der Stern an einer Aufgabe bedeutet, daB die Aufgabe einen hoheren Schwierigkeitsgrad
besitzt.
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8
0
| \\
a) P
Sind in einer ebenen Figur F nicht kollineare Punkte 4, B, C vorgegeben, dann
konnen wir F so bewegen, daB A in den Anfangspunkt O einer gegebenen Halb-
geraden p, B in einen Punkt B’ € p und C in einen Punkt C' einer durch p bestimmten
Halbebene H iibergeht (Abb.9b). Durch 4’ —0 B'€p, C'c H ist fiir jeden
Punkt X von F der Bildpunkt X’ eindeutig b — Eine entsprechende Eigen-
schaft ist fiir die Bewegungen rdumlicher Flgunen erfiillt.
Zur Bezeichnung von Bewegungen werden wir hauptsichlich die Variablen
¢, 0, T benutzen. P bezeichne das Bild des Punktes P bei der Abbildung 7; ist F
eine Figur, so ist F* das Bild der Figur F bei 7. Sobald P* bzw. F* benutzt wird,

setzen wir (evtl. unausgesprochen) voraus, da P bzw. F im Definitionsbereich
D(t) von 7 enthalten ist.

b) Abb. 9

Definition. Figuren F, F’ heiBen kongruent oder deckungsgleich (in Zeichen:
F =~ F') genau dann, wenn es eine Bewegung r mit F* = F gibt. Winkel < POQ
und X P'O'Q’ heiBen kongruent (in Zeichen: < POQ =~ X P'O'Q’) genau dann,
wenn {(OP+), (0Q+)} = {O'P'+, 0'Q'+) fiir eine Bewegung  gilt.

Die Nacheinanderausfiihrung von Bewegungen o und r werden wir, um (Pe¢)* = Pe
zu erhalten, durch

T:=[(X,Z2):VXe=YAY =
e {( ):V Z}
festl Im al i gilt nur D(pr) S D(o); in Abb. 10 sind Definitions- und

Bl.ldberelch von Qt schraffiert, wobei D(gr) = D(p) gilt.
Die Umkehrung r! von 7 ist wie iiblich durch

= {(X,Y): Y = X}

festgelegt. Speziell gilt Q" = P, wenn Q = P ist.

5 7]
§5
£ Abb. 10
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Fiir F = D(r) ist 7! im allgemeinen nicht die identische Abbildung der Menge
aller Punkte, sondern die identische Abbildung von F, wihrend z-'r die Figur F*
identisch abbildet.

Beziiglich 7 ist P Fixpunkt, g Fizgerade bzw. ¢ Fixebene genau dann, wenn P* = P,
g* = g baw. & = £ gilt.})

Definition. Die Bewegung o heiBt Spiegelung an P genau dann, wenn P’ = P
und fiir alle X 3 P stets X° € PX~ gilt (Abb. 11a). Die Bewegung o heiBt Spiege-
lung an g genau dann, wenn X° = X fiir alle X € g und X° € gX- fiir alle X 4 ¢
gilt (Abb. 11b). Die Bewegung o heiBt Spiegelung an e genau dann, wenn X° = X
fiir alle X € ¢ und X° € ¢X- fiir alle X ¢ ¢ gilt (Abb. 11¢).

Xﬂ. XP X
P P
€
X l
X%=x¢
a) c) Abb. 11

Ohne zusitzliche Axiome: ist weder die Existenz noch die Eindeutigkeit von
Spiegelungen gesichert; nach dem folgenden Axiom B, gibt es an jedem Punkt bzw.
an jeder Geraden genau eine Spiegelung. Hier vereinbaren wir: Ist o eindeutig be-
stimmte Spiegelung an P, g bzw. ¢, dann schreiben wir statt X° kurz und signifi-
kant XP, X9 bzw. X, gelesen: Bild von X bei der Spiegelung an P usw. (Abb. 11).

Wir nennen g senkrecht zu h (in Zeichen: g | h) genau dann, wenn g =k und
g" = g ist. Entsprechend heiBt g bzw. ¢ senkrecht zu 7 (in Zeichen: g | » bzw. ¢ | 1)
genau dann, wenn g &~z und g” = g bzw. ¢ == n und &” = ¢ ist.

Es werden folgende Bewegungsaxiome, deren Inhalt teilweise gut mittels Trans-
parentpapier zu veranschaulichen ist (vgl. die Erlauterungen zum Axiom Bg(a, b)
durch Abb. 9 und die entsprechende Textstelle), vorausgesetzt :

B,. Mit o und 7 sind auch g7 und ! Bewegungen.?)

1) Fixgeraden bzw. -ebenen brauchen keinen Fixpunkt zu besitzen.

?) Nach MfL, Bd.1 ist die Nacheinand fihrung von Abbildungen stets iativ.
Beziiglich dieser Operation bildet eine nichtleere Menge MM von eineindeutigen Abbild
mit der Eigenschaft

(1) 0 TEM=>ote M
eine Halbgruppe. Kommt noch
(2) TEMSTeEM

hinzu, dann liegt im allgemeinen noch keine Gruppe, sondern nur eine inverse Halbgruppe
vor (vgl. E. C. JIanur, MMonyrpynos, ®uamarrua, Mocksa 1960). Solch inverse Halbgruppe
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B,. Vertriglichkeit mit den Inzidenz- und Anordnungsbegriffen.?)

(a) Bei Bewegungen bleiben Kollinearitit und Komplanaritéit erhalten.

(b) Ist 7 eine Bewegung einer linearen Figur F & ¢ und gilt 4, B€ F,
A < B und A* <’ B fiir einen Durchlaufsinn <’ der Verbindungs-
geraden von A* und B, dann folgt X* <’ Y* fiir alle X, Y € F mit
X<7.

B;. Beweglichkeit und Starrheit.

(a) Sind 4, B (+ A) in einer linearen Figur F und eine Halbgemde P
gegeben, dann existiert genau eine Bewegung = mit D(z) = F, 4* = O(p)
und B € p.

(b) Sind nicht kollineare Punkte 4, B, C in einer ebenen Figur F, eine
offene Halbebene H und eine Halbgerade p in deren Triiger gegeben,
denn existiert genau eine Bewegung r mit D(r) = F, 4* = 0(p),
B€pund C € H.

(c) Sind A4, B, C, D nicht komplanare Punkte in einer Figur F, $ ein
offener Halbraum, H eine Halbebene in seinem Triger und p eine
Halbgerade in deren Triger, dann existiert genau eine Bewegung v
mit D(r) = F, A* = O(p), B'€ p, C*€ H und D' € 9.

B,. Symmetrie der Strecken und Winkel.

(a) Es gibt genau eine Spiegelung an einem Punkt M, die die Endpunkte
einer gegebenen Strecke vertauscht.

(b) Ist ein Winkel in einer Ebene ¢ gegeben, dann existiert genau eine
Spiegelung an einer Geraden w in ¢, die die Schenkel des Winkels ver-
tauscht.

enthilt jedoch die folgenden Untergruppen (B. B. Baruep): Ist D Definitionsbereich fir ein
Element aus 9, dann bildet
= {r€ M: D(zr) = W(zr) = D}

nach (1) und (2) eine Untergruppe der inversen Halbgruppe; weitere Untergruppen gibt
es nicht.
In der Vereinigung der P« der Definitionsbereich

M :=r£Lﬂ)R PB(D(x))

induziert N folgend Ben eine Aquivalenzrelation:

M~N:=}VM§D(1)AM'=N.

Mit Hilfe dieser Relation lassen sich in Form von Aqulvnlenzklnssen invariante Begriffe
erkliren. Die Aussage ,,~ ist Aqmvn lation‘ verallgemeinert die Aussage, daB eine Grup-
pe eineindeutiger Abbildungen einer Menge auf sich in deren P eine Aq

relation erzeugt.

1) In [32] wurde nur Br € (4*C") fir 4, B, C € D(z) und B € (AC) verlangt. Die jetzige For-
mulierung scheint dem bisherigen Aufbau besser angepaBt zu sein. Verwendet man dagegen
die Zwischenbeziehung als Grundbegriff (vgl. [4]), dann ist die Forderung nach Invarianz
der Zwischenbeziehung natiirlich.
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Die Veranschaulichung des Axioms B, veranlaft uns, den bei gegebenen Punkten
P, Q eindeutig existierenden Punkt M = M(P, Q) mit P¥ = Q und Q¥ = P den
Mittelpunkt von PQ zu nennen (Abb. 12a). Fiir P = Q gilt M = P, so daB nach
By(a) an jedem Punkt eindeutig gespiegelt werden kann.

Bei gegebenem Winkel < (p, g) in & nennen wir die Gerade w = w(<X (p, ¢)) mit

q und q“’ =P dle kaelhalbwrende von <X(p, g). Nach By(b) kann an jeder

g gespiegelt werden.
Q-P¥ q-p*
M w
P-qM
al b) P=q"  Abb. 12

Wegen der Beweglichkeit der Figuren nach B, gibt es fiir jede Figur F mit wenig-
stens zwei Punkten eine Bewegung v mit D(r) = F; und mit «(F) := 77! erkennen
wir nach dem Axiom B, die identische Abbildung von F als Bewegung; nach By(a)
und B, trifft das auch fiir Figuren mit weniger als zwei Punkten (uninteressante
Sonderfille) zu. Ist folglich ¢ — 7 und 7 eine Bewegung, dann ist mit ¢ als identischer
Bewegung des Definitionsbercichs von ¢ offenbar ¢ = v eine Bewegung. Solche
Bewegungen erhilt man oft als Einschrinkungen von Bewegungen auf gewisse
Figuren: Ist beispielsweise v eine Bewegung eines Dreiecks 4BC, dann ist v/4B
eine Bewegung der Strecke AB.

Umgekehrt méchte man manchmal z. B. eine Bewegung 7 eines Dreiecks auf die
Schenkel der Dreieckswinkel ausdehnen. Es kann tatsichlich jede Bewegung
einer ebenen Figur F mit A = O(p), B € p, C* € H fiir nicht kollineare Punkte
A,B,C¢ F und Halbgeraden p im Triger der offenen Halbebene H eindeutig
auf jede Figur F* mit F'C F* C ¢450") fortgesetzt werden: Nach By(b) gibt es
genau eine Bewegung t* mit D(z*) = F* und A** = O(p), B* € p, C*' € H; die
Bewegung 7*/F ist nach der Eindeutigkeitsaussage in By(b) gleich 7, w. z. b. w.

Entsprechende Aussagen kénnen fiir lineare Figuren mit zwei Punkten bzw. fiir
Figuren mit nicht komplanaren Punkten gewonnen werden.

Unter Beriicksichti der unint anten Sonderfille gilt der

(-2 -3

Satz 1.6. a) Fiir jede Figur ist deren identische Abbildung eine Bewegung.

b) Das Einschrinken von Bewegungen fiihrt ebenfalls zu Bewegungen.

¢) Jede Bewegung einer linearen Figur mit zweir Punkten A und B kann in g4
etndeutig fortgesetzt werden. Entsprechendes gilt fiir ebene Figuren mit nicht kollinearen

1) Die Bezeichnung &,g¢ setzt Existenz und Eindeutigkeit der Verbi bene voraus, die
nach I, gesichert ist. Wir werden uns kiinftig auf den Hinweis auf verwendete Bewegungs-
axiome ) ieren und ver dete Inzid und Anordnungsaxiome kaum lich

zitieren.
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B -.vld“

Punkten A4, B, C bezuglwh e4pc und fiir Figuren mit nicht komplanaren Punkien
PB.

Da mit = auch 7! Bewegung ist, kann B,(a) sofort dahingehend verschirft wer-
den, daB bet Bewegung nicht kollineare Punkte in nicht kollineare und nicht kom-
planare Punkte in nicht komplanare iibergehen.

Schon in der M lehre kann folgendes festgestellt werden:

Ist © eine etneindeutige Abbildung von M auf M’ = N, so gibt es keine eineindeutige
Abbildung ¢ von N in M mit (X*)* = X fiir alle X' € M'. Das heifit, wenn v eine
eineindeutige Abbildung von M auf M' = N ist und eine eineindeutige Abbildung o
von N in M mit (X*)¢ = X fiir alle X* € M’ bzw. X € M existiert, dann gilt M' = N.

Diese Situation ist im Zusammenhang mit Bewegungen oft gegeben. Ist beispiels-
weise D(t) = AB* fiir eine Bewegung 7, dann gilt nach dem Axiom B,(a) zunichst
(AB+) S g epe; 0. B.d. A. kénnen wir 4 < B und 4r <’ B* voraussetzen, um
aus X € AB+ pach By(b) noch 4 <’ X, d. h. (4B*) € A'B**, zu erhalten. Da
die Erweiterung von v! auf A*B+ diese Halbgerade nach B,(b) in AB* abbildet,
ergibt sich (4B+)* = A*B+. — Nach diesem Muster beweist man den

Satz 1.7. Es gelten folgende Regeln:

(1) 94s = Guz» Eimc = Eamer P =P,
(2) (AB*y = A'B+, (ABC¥y = A'B'C**, (ABCD*) = A'B'C'D+,
(3) (AB)* = A'B*, (X ABC)y = L A'B'C', (A ABC) = A A'B'C".
Wir wenden uns nun den Spiegelungen zu. Aus der Definition der Spiegelungen

ergibt sich, daB fiir jeden Punkt des Raumes ein Bildpunkt existiert ; aus ihr erhalten
wir auch folgende Charakterisierung der Bildpunkte (Abb. 11):

Spiegelung an P Spiegelung an g Spiegelung an ¢
Fiir X 5 P gilt Fiir X ¢ g und Fiir X ¢ ¢ und
XP¢ PX-, Pe XX0nggilt Pe XX nggilt
XP ~ PXP. XXv g, XX | e
XvegX-, XeeeX,
XP ~ PXv. XP~ PX-.

Auf diese Kennzeichnung der Bildpunkte baut die Konstruktion der Bildpunkte
mit den Zeichengeriten auf.
Die folgenden Sitze enthalten grundlegende Ei haften der S; 1

) & )

Satz 1.8. Fiir jede Spiegelung o gilt
X=Y=>Y=X
bzw, X = X.
Beweis. Es sei X° = Y bei einer Spiegelung o.
a) Es sei o Spiegelung an P.
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Fall1: X =P.Dannist X = X° =Y = Y°.

Fall2: X & P. ¢ und o bewegen P und Y; nach der Eindeutigkeitsaussage
in By(a) gilt
P’-_.'PG=P =Y =X.

Yo (= X), Y° € PX+|

b) Es sei o Spiegelung an g.

Falll: X€g. Dannist X = X =Y = Ye.

Fall2: X ¢ g. Es sei P€ XY ng; o und 0! bewegen P und Y; nach der Ein-
deutigkeitsaussage in By(a) gilt

P, P =P
‘ Ye=X.
Y (=X), Y€ PX+} =

c) Es sei o Spiegelung an ¢. Dann erhilt man analog b) die Behauptung, w. z. b. w.

Satz 1.9. a) Die Fizpunkte der Spiegelung den durch folgende Bedingung
charakterisiert:

XP=XoX=P,
X'=XoXcg,
X*=XoXce.

b) Hinsichflich der Fizgeraden ¢ilt

P=ze2>5P,

P=zxozr=¢9gvz ]y,
F*r=rSrCevr | e

Beweis. a) Wenn X = P ist, gilt nach Definition X? = X; wenn X = P ist,
gilt X? ¢ PX- und folglich X? = X. Damit gilt die Behauptung beziiglich der Fix-
punkte einer Punktspiegelung. Die Aussagen beziiglich der Fixpunkte der Spiege-
lungen an Geraden und Ebenen beweist man analog.

b) Die Aussagen beziiglich der Fixgeraden von Spiegelungen an Geraden bzw.
Ebenen ergeben sich unmittelbar aus der Definition der Orthogonalitét. Aus der
Definition der Punktspiegelung folgt unmittelbar, daB x5 P sofort z” = z nach
sich zieht; gilt umgekehrt P = z = gos und P = @, dann erhalten wir zunichst
Q =% QP € zP = z und schlieBlich P € gpy = goor = 7, W. 2. b. w.

Satz 1.10. Fir die Spiegelung an jedem Punkt P und fiir jede Gerade g qilt g* || g.
Zusatz. Aus P ¢ g folgt g°n g = 0.

Beweis. Fiir P ¢ g ist gP = g und folglich g” || g. Nun sei P ¢ g. Aus der Defini-
tion der Punktspiegelung folgt zundchst gF — gp. AuBerdem gilt gPng =4,
denn andernfalls wiirden sich g” und g in einem Punkt S == P schneiden, weil
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nach dem Satz 1.9b wegen P ¢ g noch g g gilt. Aus S€ gP n g folgt aber SP¢cg
ng" nach dem Satz 1.8 und damit 87 =8 im Widerspruch zum Satz 1.9a,
w.z.b.w.

Aufgaben

[

. Man beweise X° = X fir die Spiegelung o an einer beliebigen Ebene . (Vgl. Satz 1.8.)
Man zeige:

a) Erfiillt eine Bewegung 7 einer Figur F fiir zwei ihrer Punkte die Bedingungen A* = 4
und Br€ AB*, denn gilt X* = X fiir jeden Punkt X € F ngyp.

b) Erfillt eine Bewegung 7 einer Figur F fiir drei nicht kollineare Punkte die Bedingungen
A* = A, B'€ AB* und C*€ ABC*, dann ist X* = X fiir alle Punkte X € F n e pc.

Man kann den Beweis des Satzes 1.8 variieren, indem man a) mit T = oo benutzt.

1

1.2, Die Bewegungen einer Ebene und die Bewegungen des Raumes

In diesem Abschnitt werden wir oft Produkte von Bewegungen und deren Inverse
betrachten. Es ist deshalb niitzlich, einige Regeln aus der Mengenlehre zu wieder-
holen. Die Nacheinanderausfithrung von Abbildungen ist stets assoziativ, so dafl
wir stets klammerfrei arbeiten kénnen. Es gilt aufierdem

(oo = g

Fiir Spiegelungen o gilt -! = ¢ nach Satz 1.8.
Fiir Produkte o,:- -0, bzw. 0,"--*6,’, fiir deren Faktoren 0, = ¢, bzw. 0,™! = ¢,
gilt, ergibt sich

’

(01 On)t = G0,
und aus ¢,:-:0,, = 0y"-+-0,’ folgt der Reihe nach

Oy + O = 010y,

OO0y’ = 010y+++0,_y,

0,0y = 0pe-0y.
Ist schlieBlich o Spiegelung an P und o eine beliebige Spiegelung, dann ist o’co’
Spiegelung an P, denn es gilt (P°')”’ = Pee’ = P, und zu jedem ¥ % P
gibt es ein X mit X = ¥, so daB aus P € XX° nach dem Axiom B, offenbar
P € Xo'Xoo' = YYo folgt. Abnlich zeigt man natiirlich fiir beliebige Spiege-
Jungen ¢':

Ist o Spiegelung an g, dann ist o’co’ Spiegelung an g, ist o Spiegelung an ¢,

dann ist o’co’ Spiegelung an &'
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1.21. Ebene Spiegelungen, Drehungen und Verschieb

)

In diesem und dem nichsten Abschnitt betrachten wir eine beliebige, aber feste
Ebene ¢. Die identische Abbildung von & bezeichnen wir mit 1. Sind in ¢ ein Punkt P
bzw. eine Gerade g gegeben, dann gilt ¢¥ = ¢ bzw. & = &. Die auf ¢ eingeschriinkte
Spiegelung an P bzw. g bezeichnen wir mit op bzw. ¢, und nennen sie ebene Spiege-
lung an P bzw. g.

Das Axiom B, sichert uns in ¢ eindeutige Mittelpunkte und Winkelhalbierende.
Es sichert uns auch wie folgt das Lot von einem Punkt P auf eine Gerade h(pP)
und zu einer Geraden g in einem Punkt P (€ g) die Senkrechte:

a) Gilt h = g3 — ¢, dann existiert die Spiegelung an » als Winkelhalbierende
von < BAB, und nur die Verbindungsgerade ¢ von P und P* erfiillt Pecg | h
(Abb. 13a).

Abb. 13

b) Gilt P € g < ¢ und liegt P in g zwischen 4 und B, dann ist die Winkelhalbierende
h von < APB die eindeutige Senkrechte mit P € k und g | k') (Abb. 13b).

Fiir Punkte P und Q in ¢ wird eine Gerade m = m(P, Q) ¢, die P und Q ver-
tauscht (P™ = Q und Q™ = P), Muttelsenkrechte genannt. Wie der Beweis des folgen-
den Satzes lehrt, sichert das Axiom B, auch Existenz und Eindeutigkeit der Mittel-
senkrechten.

Satz 1.11. In & gibt es zu zwet Punkten P und Q genau eine Multelsenkrechie m.
Zusatz. Es gilt gpg | m und M(P, Q) € m.

Beweis. Existenz. Nach B(a) gibt es einen Punkt M mit P¥ = @, und nach
B,(b) existiert zu < PMQ eine Winkelhalbierende m (Abb. 13¢). Da oy und o,
den Punkt M festlassen und P¥, P™ ¢ MP- erfiillen, gilt nach By(a) wie erwartet
Pm = PM =Q,

Eindeutigkeit. Aus P®'=Q = P™ folgt o, = 0, und damit m = m’' (Menge
der Fixpunkte), denn o, und o, erfiillen die Bedingungen

Pr=P"=q,
Q™ =Q™ € QP+

1) Nach dieser Herleitung steht vorliaufig das Lot links vom 1 -Zeichen und die Senkrechte
rechts. Nach dem Zusatz von 1.13 brauchen wir die Reihenfolge nicht mehr zu beachten.
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und bilden jede der Halbebenen beziiglich gpq auf sich ab, erfiillen also die Voraus-
setzungen des Axioms By(b), w. z. b. w.

Neben den ebenen Spiegelungen werden in der Elementargeometrie noch Drehun-
gen und Verschiebungen betrachtet, die wir hier wie folgt erkliren:

Definition. Eine Bewegung Definition. Eine Bewegung
¢ = 1 von ¢ auf sich heiBt genau = = 1 von ¢ auf sich heiBt genau
dann Drehung wm P, wenn dann Verschiebung lings g, wenn

1.Pe=P, lL.go=g,

22X+P=>Xe 4 X 2.2kg>xnz=0
gilt. gilt.

Um spitere Fallunterscheidungen zu vermeiden, soll die identische Bewegung 1
von ¢ Sonderfall sowohl der Drehung als auch der Verschiebung sein. In der Defini-
tion der Drehung ¢ =+ 1 kénnen die Bedingungen 1 und 2 zusammengefa3t werden:
o besitzt genau einen Fizpunkt, ndmlich das Drehzentrum. Eine Verschiebung t # 1
st fixpunktfrei. Offenbar gilt der

Abb. 14
Satz 1.12. a) Mt o ist auch o=* eine Drehung um P.
b) Myt v ist auch v=* eine Verschiebung lings g.

Als Beispiel einer ebenen Drehung um P kénnen wir die Spiegelung op aixgeben.
Fiir diese spezielle Drehung gilt

Satz 1.13. Aus P€ g, h c e und g | h folgt 6,0, = op = 040, und umgekehrt.

Zusatz. Wenn g | h gilt, dann schneiden sich g und h in einem Punkt P, und es
ist auch b | g; aupPerdem qilt

Xeg=> Xt = XP,
Yeh=> Yo =YP.

Beweis. a) Esseig | h,d.h. gk und g* =g. Es gibt Punkte @ und R mit
Q€eg\hund R¢h\ g. Wegen @*€ gn hQ- schneiden sich g, % in einem Punkt P
(Abb. 14). Nach der Eindeutigkeitsaussage im Axiom Bjy(b) gilt

(PY =P = PP
(@, Q7€ PQ- 1= 040, = 0p = 05} = 0,0).
(RM?, RP € PQR-
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Wegen ¢g* = g und # = (k*)? = h? = h erkennt man
Xecg=> Xh = XP,
Yeh=> Y9 =1YP

sowie b | g.

Zum Beweis der Umkehrung sei 0,0, = op = 030;. Dann ist offensichtlich
g+ h. EsseiX € h\ g. Wegen X? = (X*y = Xv ist P Mittelpunkt und g Mittel-
senkrechte von XXP, fiir die P€ g gilt. Aus P* = (P¢)* = PP = P folgt Pch,
und ¢g* = (¢g9)* = ¢g* = g zieht noch ¢ | % nach sich, w. z. b. w.

Der Satz 1.13, der iiber die Spiegelungen op als spezielle Drehungen Auskunft
gibt, kann fiir Drehungen und Verschiebungen verallgemeinert werden.

Satz 1.14. Wenn P € g, h = ¢ gilt, dann ist 0,0, eine Drehung um P. Ist umge-
kehrt o eine Drehung um P und h eine Gerade durch P, dann gibt es eine Gerade g
durch P mit ¢ = 0y0p.

Zusatz. Aus (Fo)» = F und g =k folgt F € g, h.

R Q_-h Y _h

a) Q b) x Abb. 15

Folgerung. Die Menge der Drehungen um P ist auf der Menge der von P ausgehen-
den Halbgeraden einfach transitiv, d. h., daf zu Halbgeraden PX+ und PY* in & genau
eine Drehung o um P mit (PX+)¢ = PY+ existiert.

Beweis. a) Es sei P€ g,h — &. Dann ist ¢ := 0,0, eine Bewegung von ¢ mit
dem Fixpunkt P. Fiir g = h ist ¢ die identische Drehung von e. Fiir g 5 h ist ¢
eine Drehung um P, wenn ¢ auBer P keinen weiteren Fixpunkt besitzt; das ergibt
sich aus dem Zusatz, den wir nun beweisen.

Es sei (F9)* = F bzw. F9 = F» Wire F ¢ g oder F ¢ h, dann gilte F 3= Fo = F*,
Wir erhielten g = m(F, F9) = h im Widerspruch zur Voraussetzung iiber g und
h. Deshalb gilt F ¢ g, k. :

b) Es sei ¢ Drehung um P und P € h (Abb. 15a). Es gibt Punkte Q' und R’ mit
P =@ € hund R’ € ¢ \ k. Die Urbilder von Q’, R’ bei g seien Q bzw. R,d. h. Q¢ = Q’
und R¢ = R'. Weiterhin bezeich wir die Winkelhalbi de von < QPQ’' mit g.
Nach der Eindeutigkeitsaussage im Axiom By(b) gilt

Po = (Po)h = P¢ = P
P =(QP=Q =QEPQ+t=>0,=0V 0=
Ri¢c PQ'R*v (Ro)* ¢ PQ'R'+
Da die Anzahl der Fixpunkte von ¢, und ¢ differiert, ist wie behauptet ¢ = g,0%.




32 1. Absolute Geometrie

Zum Beweis der Folgerung sei PX+, PY+* ¢, g die Winkelhalbierende von
X XPY und h = gpy (Abb. 15b). Dann ist ¢ :=0,0, eine Drehung um P mit (PX+)¢
= PY+. — Gilt auch (PX+)¢ = PY* fiir eine weitere Drehung o', dann gibt es
zunichst eine Gerade f mit o’ = oy04, und ¢'0~ = 003040, = 040, ist eine Drehung
mit den Fixpunkten P und X, d. h. oo = 1 und o’ = ¢, W.z. b. w.

Satz 1.15. Wenn f | g, h < & gilt, dann ist 0,0, eine Verschiebung lings f. Ist
umgekehrt v eine Verschiebung lings f und h eine Gerade mit f | h, dann gibt es eine
zu f senkrechte Gerade g mit v = 6,05,

Zusatz. Fiir A, B€ f ist o405 eine Verschiebung lings f; wenn A, B,C€ | gilt,
8t 0,4050¢ Spiegelung an einem Punkt aus f.

Folgerung. Die Menge der Verschiebungen lings f ist auf | einfach transitiv,
d. h., daf eszu X, Y € f genau eine Verschiebung t lings f mit X* = Y gibt. Aufer-
dem erhilt jede Verschiebung lings f die Durchlaufsinne von f wie folgt:

A<Y=>X < Y

X
@ /
f. 1 P X Y

A B c(a8r /
/ Abb. 16

Beweis. Wir beweisen zunéchst den Zusatz. Es sei 4, B,C€f=gyp, D in f
der Mittelpunkt von 4 und (42)° und Q € ¢\ f (Abb. 16). Nach dem Axiom B,(b)
bleibt der Durchlaufsinn < von f mit 4 < P bei den Spiegelungen an den Punkten
X von f erhalten (<’ = <), oder er wird umgekehrt (<’ = <-!); nach der Defini-
tion der Punktspiegelungen kann nur der zweite Fall eintreten. Auferdem ist Q¥ € f@-.
Es gilt also

(((AA)D)C)D =A< (((PA)B)C)DE 1
(((PA)I)C)D € AP+,
((@vP)e) € 4PQr,

80 daB 0405000p nach der Eindeutigkeitsaussage in By(b) die identische Bewegung
1 ist, d. h. g4080¢ = op oder 6,405 = 0p0¢.

Fiir A, B¢ f ist T := 0405 eine Bewegung von ¢ mit f* = f. Schneidet nun z — ¢
die Gerade f in X, dann gibt es einen Punkt Y € f mit v} = 0304 = oyoxr und
T = 0403 = 0xoy. Im Fall 4 = B ist 7 die identische Verschiebung von ¢; im
Fall 4 &= Bist X + Y, d. h. Y ¢ z, und nach 1.10?) gilt noch

?:'nx=(.tx)"nx=x"nx=ﬂ.

1) Verweise dieser Art beziehen sich auf die G heit der im AnschluB an die F lie-
rung des Satzes 1.10 getroffenen Aussagen. Entsprechendes gilt sinngemiB bei Verweisen auf
andere Nummern. Verweise auf ganze Abschnitte sind durch den Zusatz ,,Abschnitt** vor der
Nummer gekennzeichnet.
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Nun ist der Beweis des Satzes nicht mehr schwer.

a) Esseif | g,h — ¢ Sind 4, B die Schnittpunkte von f mit g bzw. & (Abb. 17a),
dann gilt nach dem Satz 1.13 zunichst 6,0, = 0,0,0/05 = 0,405. Nach dem Zusatz
erkennen wir somit 6,0, als Verschiebung lings /.

b) Es sei nun  eine Verschiebung lings / | h.Im Fallz = 1kenng=h gewihlt
werden. Im Fallz 5= 1 besitzt die Verschiebung keinen Fixpunkt. Es seiQ der Schnitt-
punkt von f und %, P sein Urbild bei 7z (P* = @) und ¢ die Mittelsenkrechte von
PQ in ¢; R wird beliebig in ¢ \ f gewihlt (Abb. 17b).

Nach der Eindeutigkeitsaussage im Axiom By(b) gilt

P9 = Poh = P =Q
PeEQPrv(@PeQQ+ t Do, =tvao=1.
Re, (Ro)*, R* € PQR+

Da 7 fixpunktfrei ist, kann nur t = g,0, gelten.

b) Abb. 17

Zum Beweis der Folgerung sei X, Y € f und M der Mittelpunkt von XY. Dann
ist 7 := gyoy eine Verschiebung lings f mit X* = Y. — Ist ' = oyoy mit N€ f
(vgl. Aufgabe 1) auch eine Verschiebung lings f mit X* = Y, dann ist 7'z!
= oy0yoyoy eine Verschiebung lings f mit dem Fixpunkt X, d.h. 7! = 1 bzw.
v =17, w.zbw

Als Folgerung aus 1.14 und 1.15 erhalten wir auBierdem den
Dreispiegelungssatz mit seiner Umkehrung.

Wenn P € a, b, ¢ = ¢ gilt, dann ist 0,040, Wennf | a,b,c < & gilt, it 0,040,

Spiegelung an einer vierten Geraden d Spregelung an einer vierten, zu f
durch P (Abb. 18a). Aus P € a, b (+ a) senkrechten Geraden d (Abb. 18b).
und 0,040, = o4 folgt umgekehrt Ausf 1 a,b (& a) und 0,040, = 04
Pege,d. folgt umgekehrt f | c,d.
I: Lb L LC
, d Abb. 18

o) b)
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Folgerung. Die Drehungen um Folgerung. Die Verschiebungen
P bilden eine kommulalive Gruppe. lings f bilden eine kommutative Gruppe.

Beweis. a) Es sei P € a,b, ¢ — &. Dann ist ¢ := 0,0, eine Drehung um P. Folg-
lich existiert zu ¢ eine Gerade d durch P mit ¢ = 0,0,. Dann ist aber o,050, = 04.

Den Beweis des ersten Teiles auf der rechten Seite iiberlassen wir dem Leser
(vgl. Aufgabe 2).

b)Es sei P€a,b (& a) und 0,000, = 0. Es gilt (P%)® = P, 0,05 = 040, und
¢ == d, denn aus ¢ = d folgte g,0, = 1,d. h.a = b. Ausc = d und (P%)° = (P°)* = P
folgt P € ¢, d nach dem Zusatz zu 1.14. — SchlieBlich sei / | a,b (3= @) und o4050,
= 04. Wiire ¢ £ f, dann wihlen wir einen Punkt P € ¢ und bestimmen eine Gerade ¢’
mit P€c’ | f (Abb. 19) und eine weitere Gerade d' mit d' | f und 0,0 = 040,
Wir erhalten 040, = 040y, 0.0, = 040, und P€c,c,d,d'; aus Pec,d | f
folgt ¢’ = d’, ¢ = d und schlieBlich a = b im Widerspruch zur Voraussetzung.

b
h '

|
| 1 l Abb. 19

Beweis der Folgerungen. a) Zﬁ den Drehungen um-P gehért 1. Sind o, o
Drehungen um P, dann gibt es Geraden k,g,f> P mit o' = 0,0, und ¢ = oy0,.
Folglich sind :

00’ = 070, - 0,04 = 070y,
o = (0p0,) = 0,0,
Drehungen um P. Zum Beweis der Kommutativitit bemerken wir, daB o,0.04 als

Spiegelung mit dem eig Inversen iibereinstimmt: 6,0,05 = 0)0/0,. Daraus folgt

00" = 05Oy = 0y + 04040y = Gy » 040y0; = @'

b) Den Beweis der anderen Folgerung iiberlassen wir dem Leser als niitzliche
ung.

Aufgaben

1. Es sei v eine Verschiebung lings f und B€ f. Man zeige, daB es einen Punkt A€ f mit
© = 0405 gibt.

2. Man beweise den iten Teil des Dreispiegelung (rechte Seite), indem man
a) den Zusatz des Satzes 1.15 verwendet,
b) den Beweis des ersten Teiles des Dreispiegelungssatzes (linke Seite) sinngemdB auf die
neuen Voraussetzungen iibertrigt.

3.* Definiert man fiir gerichtete Strecken X7 .= X, ¥)

4B # e 040p = 0poc,
dann erhilt man offenbar eine Aquivalenzrelation.
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AuBerdem folgt aus ﬁﬁl—)é stets 4D 4 BC.

Fir dieMenge 8op := {0X: X € gog} kann maneine Ordnungsrelation (o. B. d. A. sei O < E)
0X<0T:0X<Y

und das Antragen
0X + 0Y = 0% : OY # XZ

erkliiren. Man zeige, daB (8og, <, +) eine geordnete kommutative Gruppe ist.

(Benutzt man noch das Stetigkeitsaxiom, dann léBt sich eine monotone Multiplikation -
mit dem Einselement OF auf genau eine Weise einfiihren, und (8¢z <, +, -) ist dem
Korper R der reellen Zahlen isomorph. Dazu vgl. etwa [34].)

1.2.2. Die Gruppe der ebenen Bewegungen

Im vorigen Abschnitt hat sich schon angedeutet, daB die ebenen Spiegelmgen fiir
die eb Bewegungen bedeut: sind. Es erweist sich, daB sie fiir die ebene Bewe-
gungsgeometrie von fundamentaler Bedeutung sind:

Satz 1.16. Jede ebene Bewegung vst Produkt von Spiegelungen an zwei oder dres
Geraden.

Abb. 20

Beweis. Es sei t eine beliebige Bewegung von & = g4p auf sich. Offenbar gibt
es Geraden m und w mit 4™ = 4* und ((4B*)™)* = A'B+ (Abb. 20). Ist ¢ die
Verbindungsgerade von A* und B, dann gilt nach der Eindeutigkeitsaussage im
Axiom By(b)

(Amyw = ((An)w)g = A

(Bmye = ((Ban)w)g € A*Br+ T = OOy V T = 0p0y0;,
(C™) € A"BC* v ((C™)°) € A'BC++
w.z. b. w.

Zwei Geraden einer Ebene schneiden sich, oder sie sind parallel zueinander. In
der euklidischen Geometrie haben parallele Geraden igstens ein g
Lot, so daB man dort die Bewegungen 6,0, als Drehungen und Verschiebungen er-
kennt. Hier kann das, wie die Kapitel 2 und 3 lehren, nicht abgeleitet werden. Da-
gegen konnen wir noch tiefere Einsichten beziiglich der Gruppe der ebenen Bewegun-
gen gewinnen, indem wir Aussagen iiber die Menge aller Produkte g,0, bzw. 0,050,
machen. Dazu sind einige Vorbereitungen nétig. ’
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Hilfssatz 1.17. a) Es st 0,050, genau dann eine Spiegelung op, wenn eine Gerade g
mit a,c | g und B € g existiert (Abb. 21a).

b) Es ist 0,050c genau dann eine Spiegelung o4, wenn eine Gerade g mit A, C€ g
und b | g existiert (Abb. 21Db).

Zusatz. Aus 6,030, = 0p, a,¢ | g und Becg folgg D€g; aus o4000c = 0y,
A,Cequndb | gfolgtd | g.

Folgerung. Jedes Produkt 040,0¢ st gleich einem Produkt opoy.?)

Beweis. a,) Es sei a,¢ | g und B¢ g (Abb. 21a). Ist b die Senkrechte auf ¢ in B,
dann ist 6,0, = 0p und 0,0, = 0,0, nach dem Satz 1.13, und nach dem Drei-
spiegelungssatz gibt es wegen a, b, ¢ | g eine Gerade d mit

04080, = 050p0,0, = 0a0p0.0y = 040,
und d | g, so daB o0, gleich der Spiegelung am Schnittpunkt D von d und g ist. —
Damit gilt auch der erste Teil des Zusatzes.

Lo b, b 1

c - A c 7
[

v

g

b
a) b) c)
Abb. 21

a,) Nun sei 0,050, = op (oder g,05 = 0po,), ¢ das Lot von B auf a, b die Senk-
rechte auf g in B, d das Lot von D auf g und & die Senkrechte auf d in D. Wegen
d,a,b | g ist 040,05 nach dem Dreispiegelungssatz Spiegelung an einer Geraden
¢’ | g. Wenn €’ der Schnittpunkt von ¢’ und g ist, gilt unter Beriicksichtigung des
Satzes 1.13

Op = Op0y, Op = 040y, 040p = Op,
Op = 0,0, = ddﬂadbd, = 0g0a0p = 040p0,; = O)C;,
und damit ¢" € hund ¢ | h. Aus C' € g,h | dfolgtg=h | c.

b) Die iibrigen Teile konnen unter Beriicksichtigung des bereits Bewiesenen her-
geleitet werden (vgl. Aufgabe 2).

Zum Beweis der Folgerung fillen wir von A das Lot g auf b und von C das Lot ¢
auf g; dann ist 0,0, gleich der Spiegelung o, am Schnittpunkt von ¢ und g (0,0, = o,
und o, = 6,0,), 04050, Spiegelung an einer Geraden d | g (Abb. 21c). Es sei P
der Schnittpunkt von d und g, und k sei die Senkrechte auf ¢ in C'; dann gilt

40000 = GA040,0) = 040p05:0,0) = 040, + Oy = Gp0),
w.z. b. w.

1) Diese Folgerung kann man auch nach dem Satz 1.19 erhalten. Nach diesem Satz erkennt
man auBerdem, daB jedes Produkt 0,050, gleich einem Produkt o0 ist.
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Satz 1.18 (Lotensatz von HyELMSLEVY)). Stehen a,a’ in 4 und ¢, ¢’ in C auf-
einander senkrecht und ist 0,040, = 04, dann gilt: Es ist 6,040, genau Spiegelung an
einer Geraden, wenn eine Gerade g mit A, C € gund d | g existiert.

Folgerung. Ist P ein Punkt und sind a', ¢’ Geraden in &, dann existiert stels eine
Gerade b > P derart, daf 0,040, Spiegelung an einer Geraden ist.

Beweis. Es sei 6,0, = 0y, 6,0, = 0¢ und 0,050, = 0. Es gilt
04040¢ = 0q'0g * 00p0¢ * 0c0r = Og0p0

80 daB der Lotensatz nach dem Satz 1.17b gilt (Abb. 22a).

Abb. 22

Um die Folgerung zu beweisen, fille man Lote a, ¢ von P auf a’ bzw. ¢, lege durch
die LotfuBpunkte 4 bzw. C eine Gerade g und fiille das Lot d von P auf g (Abb. 22b).
Nach dem Dreispiegelungssatz ist 0,040, Spiegelung an einer Geraden b 3 P. Aus
0y = 0,040, folgt 0,0,0, = 04, und nach dem Lot tz ist 04050, Spiegelung an einer
Geraden, w. z. b. w.

b) Abb. 23

Satz 1.19 (Reduktionssitze). a) Zu Geraden a, b, ¢ gibt es stets eine Gerade h und
einen Punkt P mit 0,040, = 0p0y.
b) Zu Geraden a, b, ¢, d gibt es stets Geraden e, [ mit 0,000,053 = 6,0;.

Beweis. a) Es sei B¢ b, A der FuBpunkt des Lotes ¢’ von B auf a und C der
FuBpunkt des Lotes ¢’ von B auf ¢ (Abb. 23a). Nach dem Dreispiegelungssatz gibt
es eine Gerade b’ mit 0,0,0, = 0y, nach der Folgerung aus 1.17 ist 040,00 gleich
einem Produkt opoy. Folglich gilt

040p0; = 0404 * G040, * 0p0; = 040y 0c = Tp0y.

1) Nach dem dinischen Mathematiker JomANNES HIELMSLEV (1873 —1950).
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b) Nach a) kann 0,040, durch ein Produkt op0y ersetzt werden, nach der Folgerung
zum Lotensatz gibt es eine Gerade g mit P € g und o,0,0, = o fiir eine Gerade f'.
Dann ist

0,003 = 040p04 = Ty

fiir f = f'4,
Mit der Senkrechten e zu g durch P gilt (Abb. 23b)

040400 = OpOpGy = G03030q = 040y,
w.z. b, w.

Die Produkte opo, kénnen mittels des Lotes g von P auf b mit dem FuBpunkt Q
(Abb. 24) nach dem Satz 1.13 wie folgt umgeformt werden: ~

OpOy = Op0)p0y0y = OpGgly-

hleRender Snieoel

Da sie aus einer Verschiebung lings g mlt piegelung an g
werden die Produkte opo) Schubspie gen oder Gleilspregel t. Fir
P = Q erhalten wir als Sonderfall die Splegelung an g. Es gilt nun yder

hesteh

Satz 1.20. In der Gruppe der ebenen Bewegungen bildet die Menge
U = (0,00 a,bel)]

die Menge der ,,geraden* Bewegungen, eine Untergruppe, wihrend die Menge der
iibrigen ebenen Bewegungen 6,040, die Menge der ,ungeraden* Bewegungen, die nur
aus Schubspiegelungen besteht, mit Hilfe einer Spiegelung o, in der Form

V=0,U="Usg,
geschrieben werden kann.t)

Beweis. Aus 0,0,, 0,0,€ U folgt 6,0,6,04 € U nach dem Reduktionssatz 1.19b
und (0,05)! = 005 € U, d. h., daB U eine Untergruppe bildet.

Die Mengen U und V haben kein gemeinsames Element, denn nach dem Reduk-
tionssatz 1.19b gibe es zu Geraden a, b, ¢, d, k mit 0,0, = 03040, und 0,0,0,05 - 0 = 1
Geraden f, g mit o0, - 0 = 1 und 0y, = 0y; das ergibt einen Widerspruch beziig-
lich der Fixpunkte von o0, bzw. 0.

Nach dem Satz 1.16 ist ¥V die Menge der ebenen Bewegungen auBerhalb v.

Nach dem Reduktionssatz 1.19a besteht ¥ nur aus Schubspiegelungen.

1) Folglich ist U in der Gruppe der ebenen Bewegungen ein Normalteiler vom Index 2.
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Ist schlieBlich o, Spiegelung an einer festen Geraden g und o,0,0, € V, dann gilt
04040, = 0y * 0,0,000, € 0, U,
04040, = 040300, - 6, € Ug,

Wegen 0,04040,, 04050,0, € U nach dem Reduktionssatz 1.19b. Die Umkehrung
o,U, Us, S V ist trivial, w. z. b. w.

Aufgaben

1. Man zeige, daB gy0q aus einer Verschiebung lings des Lotes g von @ auf f und der Spiege-
lung g, besteht, d. h., daB gy0q eine Schubspiegelung ist.
2. Man beweise den Hilfssatz 1.17b und den zugehérigen Teil des Z:

1.23. Die Bewegungen des Raumes

Einleitend bemerken wir, da an jeder Ebene & = e3; genau eine Spiegelung &
existiert, denn nach By(c) gibt es genau eine Bewegung ¢ mit

4o =4,
Boc AB*,
Cv ¢ ABC,
Do ¢ ABCD-

fiir einen Punkt D ¢ &. Wegen A° = A, B° € AB+ und C° € ABC+ist ¢ = ¢4p¢ punkt-
weise fest, d. h. ¢ = s,.

Wir kénnen riumliche Bewegungsgeometrie in Analogie zu der ebenen Bewegungs-
geometrie und mit deren Hilfe entwickeln. Zunichst wollen wir bestehende Zusam-
menhinge zwischen den Spiegelungen sp, 8, bzw. s, an einem Punkt P, einer Geraden g
bzw. einer Ebene ¢ aufdecken.

Wir gehen von einem Punkt P und einer Geraden f mit P € f aus. Ist 7 eine belie-
bige Ebene durch f und g in # die Gerade mit P€ g | f, so erzeugen sp, § und s,
in # ebene Spiegelungen op, 0, und o, mit op = 6/, und ¢, = 0poy, d. h., daB g
bei 8ps, punktweise festbleibt; fiir die Gerade ¢’ in einer weiteren Ebene #' durch f
mit P€ g’ | f erhilt man analog, daB auch sie bei sps, punktweise festbleibt.

o]

b) Abb. 25
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Die Ebene ¢ := ¢, (Abb. 25a) besteht nur aus Fixpunkten, denn fiir X € ¢ gilt
(XPY € gx 0 &g = gpxs

folglich bewirkt sps, in ¢/r die ebene Spiegelung an gpr, d. h. (XP)f = X. Da sps,
offenbar die Halbraume beziiglich ¢ vertauscht, ist

8pSy = 8,

wobei P€ f,eund f | & gilt.
In ¢ finden wir durch P eine Gerade k mit g | h; auBerdem gilt f | k. Es sei
¢ := £y (Abb. 26 b). Es ist

apsy =8, 8p8 =38,

2, ¢, n sind paarweise orthogonal.
Ist f = gpo, g = gpr und k = gps, dann gilt

(P)y=Pl =P,
(@ =0Q =QePQ,
(R = Rf € PR- — PQR-,
(S¢y" = 8f € PS- = PQRS-,
so daB nach By(c) noch
8y =83,
folgt. Mit s, = 8ps, = 8,8p erhalten wir schlieBlich noch
8p = 8,58,.
Zusammenfassend kénnen wir feststellen:

Satz 1.21.8) dusf=Canund { | 7 folgt sy = 88,
b) Gilt P € ¢, L, ) und sind ¢, {, n paarweise senkrecht, dann st

8p = 8,8,8,.

Zusatz. Gilt P € f, dann 1st 8ps, Spiegelung an einer Ebene e mit P€ e und f | e.

AuBerdem sind folgende Konstruktionen klar oder nunmehr leicht zu bestétigen:

a) Zu P und ¢ gibt es genau ein f mit P€ f | .

b) Zu P und f gibt es durch P genau ein ¢ mit f | &.

¢) Zu f, n mit f < 7 gibt es genau ein { mit f = ¢ | 7.

d)Zue, nmit e | ngibtesein { mit{ | ¢, 7.

Bei der Bestiitigung sind folgende Regeln wichtig:

Aus f=gund f, g L h folgt b | &,; sind f, g, b paarweise senkrecht, dann sind
auch e, e, ey paarweise senkrecht. Offenbar ist die Relatwox | auch fir Ebenen
symmetrisch.
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Die Aussagen iiber Mittelsenkrechte und Winkelhalbierende kénnen wie folgt
verallgemeinert werden:

Satz 1.22. a) Zu zwet Punkten P, Q gibt es genau eine Ebene e mit P* = Q (Abb. 26a).
b) Sind O, P, Q nicht kollinear, dann gibt es genau eine Ebene ¢ mit (OP+) = 0Q*
(Abb. 26b).

c) Sind sowohl P, Q, R als auch P, Q, S nicht kollinear, dann existiert genau eine
Ebene ¢ mit (PQR+)* = PQS* (Abb. 26¢).

o—o/| o— 9 === -
P M Q 4 N
|
a) b)
Abb. 26 °

Beweis. a) Existenz. Ist f := gpo und M der Mittelpunkt von P und @, dann ist
88 Spiegelung an einer Ebene ¢. Es gilt P* = (P¥)f = Qf =
Eindeutigkeit. Gilt P* =Q und N € fn ¢, dann kénnen wir in ¢ aufeinander
senkrechte Geraden g und k mit N € g, h wihlen. Folglich sind die Ebenen &', £ := ¢
und 7 := ¢, paarweise senkrecht, und es gilt
8 = 8:8,,
&y = 8,8,8, = 8,5.
Wegen PY = P* = Q ist N = M. Daraus folgt
8, = 8y8 = 358 = 8,

dhe=¢.

b) Existenz. Es sei 7 := ¢gpg. Ist g die Winkelhalbierende von < POQ und
bestimmen wir ¢ durch g — ¢ | # (Abb. 26b), denn gilt s, = s,5,, 8, = 8,8, und
folglich

(OP+y = ((0P+)')" = (0@+)" = 0Q*.

Eindeutigkeit. Gilt (OP*)‘ = 0Q*, dann ist & senkrecht zu 7], wegen ((OP+)‘ )”
= 0Q* und der Eindeutigkeit der Winkelhalbierenden ist s,:s, Spiegelung an g. Aus

8,8, = 8, = 8,8,
folgt zunichst s, = 8, und dann ¢’ = &.
c) Den Beweis des letzten Teiles iiberlassen wir dem Leser (vgl. Aufgabe 1).



42 1. Absolute Geometrie

Nach dieser Vorbereitung beweisen wir den zu 1.16 analogen

Satz 1.23. Jede Bewegung des Raumes ist Produkt von Spiegelungen an drev oder
vier Ebenen.

Beweis. Es sei v eine beliebige Bewegung von  auf sich. Wir wihlen nicht kom-
planare Punkte 4, B, C, D und konnen feststellen, daB nach dem Satz 1.22 oder
(in den Sonderfillen trivialerweise) nach den Inzidenzaxiomen Ebenen ¢, £, 7 mit

= 4, ((AB*y) = 4'B+ und (((ABC+f)r = A'B:C++ existieren. Ist & die
Verbindungsebene von 47, B* und C', dann gilt nach der Eindeutigkeitsaussage
im Axiom By(c)

() = ((doyy) =

(B)r = (B € 4B

(©x)y = ((Cxy) € a-BO~

((D¥) € ABCD+v (((De)))* € A*BrC*Dr+

w. z. b, w.

DT =888, VT =838538,.

Bereits in der ebenen Geometrie gab es Schwierigkeiten, nach dem entsprechen-
den Satz 1.16 eine befriedigende Systematik der ebenen Bewegungen aufzubauen.
Es blieb die Frage offen, ob sich neben den Drehungen und den Verschiebungen
noch andere ebene Bewegungen in der Form 0,0, darstellen lassen. Da in der eukli-
dischen Geometrie die negative Antwort auf diese Frage bei der Systematik der
Bewegungen des Raumes vorteilhaft ausgenutzt werden ka.nn, muB man hier mit
and i um trotzdem einige tliche Aussagen herleiten
zu ko Einige lcher A gen sollen hier ohne Beweis mitgeteilt werden?):
Jedes Produkt von Spiegelungen an fiinf Ebenen lift sich auf ein Produkt von Spiege-
lungen an drei Ebenen reduzieren; daraus folgt dann, daf vm obigen Satz 1.23 das
,,oder'* zu ,,endweder — oder* verschirft werden kann, daff

U := (8,88,80: &, n,9€C)

in der Gruppe der Bewegungen eine Untergruppe (sogar einen Normalteiler) bildet
und dap fiir die Spiegelung an einer festen Ebene ¢

8,0 = Us, = (83,8 (7,9 € €}
gilt. Die Gruppe der Bewegungen des Raumes ist wie folgt zweispiegelig (vgl. den Satz
1.16 in Verbindung mit dem Reduktionssatz 1.19a):
U= (s3,: f,9€ G},
U=(gs,: f€EGAnEC.

Das Einselement der Gruppe der Bewegungen des R iat die identisch Abbildung ¢
der Menge aller Punkte.

1) Vgl. etwa J. AHRENS, d der absoluten G trie des Raumes aus dem Spiege-
lungsbegriff, Math. Z. 71 (1959), 154—185.
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In Analogie zur ebenen Bewegungsgeometne lassen sich jedoch Aussagen iiber
Drehungen und Verschiebungen .

Definition. Eine Bewegung o = ¢ Definition. Eine Bewegung 7 &= ¢
von P auf sich heiBt genau dann von P auf sich heilt genau dann
Drehung um f, wenn Verschiebung des Raumes lings f, wenn

1L.Xef>Xe=X, Lf=f

2.X¢f=>Xe X 2.fkeY=>ene=0
gilt. git. -

Wiederum sei ¢ sowohl (identische) Drehung als auch (identische) Verschiebung.
Eine nichtidentische Bewegung ist genau dann Drehung um f, wenn f die Menge der
Fixpunkte ist. Die Spiegelung s, ist Spezialfall einer Drehung um f; sie kann mit
Hilfe der Spiegelungen an zwei Ebenen dargestellt werden, die in f aufeinander
senkrecht stehen. Allgemein gilt

Satz 1.24. Wenn f < e, 7 gilt, ist 8,8, eine Drehung um f. Ist umgekehrt ¢ eine
Drehung um f und 7 eine Ebene durch f, dann gibt es eine Ebene ¢ durch f mit o = 8,8,

Zusatz, Aus (F*)" = F und ¢ = 7 folgt F € &, 7.

Folgerung. Die Menge der Drehungen um | bildet eine auf der Menge der Halb-
ebenen mit dem Triger [ einfach transitive Gruppe.

Satz 1.26. Wenn | | ¢, 1 qilt, dann ist 3,8, eine Verschiebung lings f. Ist T eine
Verschiebung des Raumes lings | und 7 eine Ebene mit f | 7, dann existiert eine
zu f senkrechte Ebene ¢ mit v = 8,3,

Zusatz. Fiir A, B¢ [ dst 8,85 eine Verschiebung lings f; wenn A, B,C¢€ | qilt,
18t 848580 Spregelung an einem Punkt D aus f.

Folgerung. Die Menge der Verschiebungen lings f bildet eine auf f einfach transi-
tive Gruppe.

SchlieBlich folgert man aus 1.24 und 1.25 einen Dreispiegelungssatz mit seiner
Umkehrung.

Satz 1.26. Wenn fc e, {,n oder [ 1 & ¢, n gilt, dann 18t s,8:8, Spiegelung an
einer Ebene & mit f = & baw. f | 8. Gilt umgekehrt a,c‘a = 8y, dann folgt aus f — ¢, ¢
(Fe)oderf | & ¢ () stets f =, 8 bzw. f | 9, 8.

Somit kann man wieder die Kommutativitét der Gruppe der Drehungen um eine

feste Gerade f bzw. der Gruppe der Verschiebungen lings einer festen Geraden
ableiten.

Aufgaben
1. Man beweise den Satz 1.22¢c.
2. Man zeige mit Hilfe des Satzes 1.24, daB die Menge der Drehungen um Geraden durch
einen festen Punkt O eine Gruppe bildet.

1) Wie iiblich sei f || e genau dann, wenn f — ¢ oder fne = & gilt.
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Grundlegende Sitze iiber Lingen und WinkelgréBen

Strecken- und Winkelkongruenz

an den Ab

itt 1.1 iiber die Inzidenz, Anordnung und Bewegung an.
Mit Hilfe der Bewegungsaxiome konnen die vielfach b

tzten grundlegenden Eigen-

schaften der Strecken- und Winkelkongruenz hergeleitet werden:

Satz 1.27. Die Kongruenz der Strecken und Winkel besitzt folgende Eigenschuften:

K.

K,

K,.

Zu AB und A'P+ gibt es genau K,

ein B' mit B' ¢ A'P+ und
AB~ A'B

(Moglichkeit und Eindeutigkeit
des Streckenabtragens auf
Halbgeraden).

A
AB, B
APt

Abb. 27a

Aus AB — A'B’ und K,

A"B" ~ A'B’ folgt
AB~ 4"B"
(Drittengleichheit).

AusQe PR, Q' € PR, Ky.

PQ =~ P'Q und QR =~ Q'R’
folgt PR~ P'R’
(Streckenadditionssatz).

P R’
Q
o
R for

Abb. 28a

Zu X (p, q), p' = OP+ und
OPQ+ gibt es genau ein ¢' mit
0(¢') = 0, ¢’ = OPQ* und
L= X (@) 9)
(Moglichkeit und Eindeutig-
keit des Winkelantragens an
Fahnen).

Abb. 27b

Aus < (p,q) = X (p' ¢') und
X (2", ¢") 2 X (v, ') folgt
X (P9 = X (" 9"
(Drittengleichheit).

Aus OQ+n PR % 0,
0Q+nP'R £ 0,

X POQ >~ X POQ und

X QOR =~ X Q'O'R’ folgt

X POR ~ X POR’
(Winkeladditionssatz).

R

o
Abb. 28b

Gilt AB~~ A'B’, AC =~ A'C’ und < BAC =~ < B'A'C’ fiir Dreiecke ABC
und A'B'C’, dann ist A ABC =~ A A’'B'C’ (Dreieckskongruenzsatz sws).



1.3. Grundlegende Sitze iiber Lingen und WinkelgroBen 45

Beweis. Die Moglichkeit des Streckenabtragens ist nach dem Axiom By(a)
trivial, nicht die Eindeutigkeit, denn es gibt bei gegebener Strecke 4B und Halb-
gerade A'P+ zwei Bewegungen o und 7, die das Abtragen von AB auf A’P+ reali-
sieren, etwa wie folgt:

A = A'AB€ A'P+ bzw. Be¢=A'AA%c A'P+.
Ist o die Spiegelung am Mittelpunkt von AeBe, dann gilt
Ae = Bee = Br
wegen Aee = Be = A’ = A nach der Eindeutigkeitsaussage in Bj(a).

Ist (AB) = A’B’ und (A”"B") = A'B’, dann gilt (4B)*” = A”B” und somit
die Drittengleichheit der Streckenkongruenz.

Im Fall P = Q oder Q = R ist K, trivial. Andernfalls bewegen wir PR mittels ¢
derart, daB Q' = Q' und Pr€ Q'P'+ gilt; nach dem Axiom By(b) gilt R € Q'R+
und nach K, bereits P* = P’ und R* = R’, d. h. PR =~ P'R’. — Es ist nicht schwer,
nun K,’ zu beweisen.

Abb. 29

Sind die Voraussetzungen von K erfiillt, dann gibt es nach dem Axiom By(b) eine
Bewegung 7 mit

Ar=A', B¢ A'B*, Cr¢ A'BC+;
nach K, und K’ erhalten wir der Reihe nach B* = B’, (AC+)* = A'C'+ und C* = (',

d. h. .
AABC =~ A A'BC: = AA'BC'.

Die Teilaussagen K,’ bis K, kénnen analog K, bis K, hergeleitet werden, w. z. b. w.

Mit dem Satz 1.27 konnen viele Sitze nach dem Euklid-Hilbertschen Muster
oder mit Hilfe des Bewegungsbegriffes bewiesen werden. Im folgenden sollen Beispiel
fiir die zweite Moglichkeit angegeben werden. Nach K; und K, bzw. K,’ und K,’
sind Strecken- und Winkelkongruenz Aquivalenzrelationen. Andererseits kann
mit Hilfe der Bewegungsaxiome sofort mehr bewiesen werden: Jede Figur F ist zu
sich selbst kongruent, da deren identische Bewegung (vgl. den Satz 1.8a) F auf sich
abbildet. Gilt F* = F fiir eine Bewegung 7, dann gilt ' = F fiir die Bewegung
7! (vgl. das Axiom B,), d. h., daB die Kongruenz in der Menge der Figuren symme-
trisch ist. Aus Fe = F’ und F'* = F" mit Bewegungen o, v folgt Fe* = F", wobei
ot nach dem Axiom B, eine Bewegung ist, so daB die Relation =~ in der Menge der
Figuren auch transitiv ist. Zusammenfassend gilt

Satz 1.28. Die Kongruenz ist in der Menge der Figuren eine Aquivalenzrelution.
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Folgerung. Die Kongruenz der Winkel ist ebenfalls eine Aquivalenzrelation.
Auch den folgenden Satz wollen wir mit Hilfe des Bewegungsbegriffes beweisen.

Satz 1.29 (Satz vom gleichschenkligen Dreieck). a) Gilt AB =~ AC (Gleich-
schenkligkert) fiir dret beliebige Punkte A, B, C, dann ist die Winkelhalbierende des Win-
kels < A Mittelsenkrechtevon BC. Folglich gilt < B ~ <X C (Kongruenz der Basiswinkel.)

b) Gilt X B ~ <X C ¢m Dreieck ABC, dann st die Mittelsenkrechte von BC Winkel-
halbierende von X A. Folglich gilt AB ~ AC.

Folgerung. Die Diagonalen g, h eines gleichseitigen Vierecks PQRS sind Symme-
trieachsen, thr Schnittpunkt M st Symmelriezentrum. Folglich sind die Diagonalen
orthogonal, sie halbieren sich sowie die Viereckswinkel; die Gegenseiten “sind parallel
zuesnander.

a) Abb. 30

Beweis. a) Es sei AB~ AC (Abb. 30a). Bei der Spiegelung an der Winkel-
halbierenden w von < BAC wird AB auf AC* und AC auf 4B+ abgetragen. Wegen
der Eindeutigkeit des Streckenabtragens gilt B* = C und C¥ = B, d.h., daB w
Mittelsenkrechte von BC ist. Offensichtlich gilt <t B >~ (< ABC)* = X C.

b) Es sei ¥ Bz & C. Bei der Spiegelung an der Mittelsenkrechten m von BC
wird < B wie folgt angetragen: (BC+)™ = CB+ und (BA4*)™ — BCA+. Wegen der
Eindeutigkeit des Winkelantragens gilt (BA*)" = CA*+ und (CA*)» = BA*; als
Schnittpunkt von BA* und CA* ist A ein Fixpunkt, der folglich iy m liegt, d. h.,
daB m Winkelhalbierende von < 4 ist. Nun ist (4B)™ = AC trivial.

Zum Beweis der Folgerung bemerken wir (Abb. 30b)
g := w(X P) = m(@Q8) = w(X R),
h = w(X Q) = m(PR) = w(X 8),
d. h., daB g, » Symmetrieachsen mit g | k sind, die sich und die Viereckswinkel
halbieren. Fiir den Schnittpunkt M von g und % gilt
PM=P'=R, Q¥=Q =38,

folglich ist M Symmetri¢zentrum, und die Gegenseiten sind parallel zueinander,
w.z. b.w.

In der Form von K wurde der Dreieckskongruenzsatz sws formuliert und bewiesen.
Wir wenden uns nun weiteren, auf der Kongruenz von Seiten bzw. Innenwinkeln
beruhenden Kriterien fiir die Dreieckskongruenz zu.
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Satz 1.30 (Dreieckskongruenzsitze). Fiir Dretecke ABC und A'B'C’ gibt es eine
Bewegung v mit A* = A’', B* = B’ und C* = C', wenn eine der folgenden Bedingungen
erfiillt ist:

a) AB~ A'B’, < A=~ < A" und < B~ X B’ (vgl. wsw),

b)AB~ A’'B’, < B~ X B und ¢ C = X C' (sww)}),

¢) AB~ A'B’, BC >~ B'C’ und CA =~ C'A’ (vgl. sss).?)

Beweis. a) Es sei AB~ A'B’, X{ Az~ < A" und X Bz~ < B'. Nach dem
Axiom By(b) gibt es eine Bewegung v mit

A*=A4', B¢ A'B+, Crec A'B'C'+.
Nach K, und K’ erhalten wir der Reihe nach Br = B', (AC*)* = A'C'+, (BC+)' = B'C'+
und schlieBlich Cr = C'.

b) Essei AB~ A'B’, X B~ ¥ B’und ¥ C =~ X C'. Dann gibt es eine Bewegung
7 mit
A*=A', B¢ A'B+, C:¢ A'BC'+.

ce

b) A Abb. 31

Nach K, und K,’ erhalten wir zunichst B = B’ und (BC*)* = B'C'+ (Abb. 31a).
Es gibt eine Verschiebung 1’ lings ggpe mit C' = €' und (C*4+)" = C'4'+,
die wegen A’'€ C*A'+n C'A’+ die identische Abbildung der Ebene e4p¢ sein
muB, d. h. G = C'. '

c)Essei AB~ A'B’, BC =~ B'C’ und CA4 ~ C'A4’. Dann gibt es eine Bewegung o
mit

Ae=A', Be¢c A'B+, Cec A'BC-

(Abb. 31b). Wegen der Eindeutigkeit des Streckenabtragens gilt Be = B'. Nach
dem Satz 1.29a ist

g := (X C"4'CY) = m(C'C°) = w(X C'B'Ce);
insbesondere verbindet ¢ die Punkte 4’ und B'. Ist o die Spiegelung der Ebene &4p.c-
an g, dann gilt fiir v := g0
A = (4ep = A4', B'=(By=PB, C=(Cy=C,
w.z.b. w.

1) In der euklidischen Geometrie ist sww eine Folgerung aus wew.

2) Der Kongruenzsatz sSW, der im Gegensatz zu den and Dreiecksk E3
nicht in den El ten des EUELID enthalten ist, wurde erst Mitte des 18. Jahrhunderts aus-
gesprochen. Er wird als 1.36 bewiesen.
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Aufgaben

L Man zeige, daB Scheitelwinkel stets kongruent sind.

2. Man beweise mit Hilfe von By(b), B, und der Eindeutigkeit des Winkelantragens, daB
die Nebenwinkel kongruenter Winkel untereinander kongruent sind.

3. Man zeige, daB nach B,(a), B, und K,’ von drei Geraden einer Ebene, die kongruente Wechsel-
winkel bilden, zwei Geraden parallel i der sind.})

1.3.2.  Lingen und WinkelgréBen?)

Nach dem Satz 1.28 und seiner Folgerung sind Strecken- und Winkelkongruenz
Aquivalenzrelationen. Die Aquivalenzklassen in der Menge der Strecken werden
bekanntlich Lingen genannt; der Abstand a(P, Q) der Punkte P und Q ist per defi-
nitionem gleich der Linge der Strecke PQ. In der Menge der Winkel werden die
Winkelgrofen zur Benennung der Aquivalenzklassen benutzt.

Offenbar bilden alle Strecken XY mit X = Y, die Nullstrecken, eine Linge, die
wir mit o bezeichnen. Nicht ganz so einfach erhilt man, daB alle Nullwinkel, alle
rechten Winkel und alle gestreckten Winkel je eine Aquivalenzklasse bilden, die wir
der Reihe nach mit o (Omikron), R und 2R bezeichnen.

.g Abb.32

Eine Aquivalenzklasse ist eindeutig bestimmt, wenn eines ihrer Elemente an-
gegeben wird ; beispielsweise gilt
(P, Q) = (XY: XY ~ PQ).

Dabei wird PQ Reprisentant von a(P, Q) genannt. Man veranschaulicht Aquivalenz-
klassen durch Angaben von Repriisentanten. In einer veranschaulichenden Abbildung
werden an Repri ten die Bezeichnungen fiir die Aquivalenzklassen geschrie-
ben; das ist in Abb. 32 beziiglich eines Dreiecks ABC in der allgemein iiblichen Art
und Weise erfolgt.

Strecken- und Winkeladditionssatz in 1.27 gestatten folgende Erklirungen:

Definition. Die Linge ¢ der Strecke Definition. Die GréBe y des Winkels
PR heiflt Summe der Lingena, b (in Zei- < POR heiBt Summe der WinkelgroBen
chen: a + b = c) genaudann, wennin PR «, f (in Zeichen: « + f =y) genau
ein Punkt Q derart existiert, da8 PQ die = dann, wenn ein Punkt Q %= O

1) Auf Grund der Ergebnisse der Kapitel 2 und 3 ergibt sich, daB die Umkehrung nur in der
euklidischen Geometrie gllt

2) Dieses Thema wird in MfL, Bd. 6 im Rahmen der eukhduchen Geometrie der Ebene aus-
fithrlich behandelt. Die folgenden Ausfiihrungen fir die ab ie des R wer-
den dadurch keineswegs iiberfliissig.
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Linge a und QR die Linge b besitzt (Abb. derart existiert, da 0@+ n PR = @ gilt
33a). und & POQ die GréBe «, < QOR die
GroBe B hat (Abb. 33b).

Abb. 33a Abb. 33b
Wir schreiben fiir Lingen a, ¢ Wir schreiben fiir Winkelgré8en «, y
a<e <y

genau dann, wenn es eine Linge x = o mit genau dann, wenn es eine WinkelgrsBe
a + z = c gibt. & % omit & + £ =y gibt.})

Satz 1.31. In der Menge der Lingen ist + eine assoziative und k tative Opera-
tion und < eine monotone Ordnung, d. k., daf die Menge der Lingen durch + und <
2u einer geordneten? kommutativen Halbgruppe (mit dem Nullelement o) wird.

Beweis. Die Definition der Lingenaddition ist eindeutig (reprisentantenunab-
hingig), denn aus Q@ € PR, Q' € P'R’, PQ, P'Q’' € a und QR, Q'R’ € b folgt nach K, in
1.27 bereits PR, P'R’ € c. Die Ausfiihrbarkeit der Addition von a und b ergibt sich
folgendermaBen: Auf einer Halbgeraden mit dem Anfangspunkt Q tragen wir eine
Strecke der Linge a, auf der dazu entgegengesetzten Halbgeraden eine Strecke
der Linge b ab; dann reprisentiert die erhaltene Strecke PR die Summe der ge-
gebenen Lingen (Abb. 34a). Offenbar gilt @ + o = a fiir alle Lingen a.

b,
9 @
P a b 3 a
a) b 9P
Abb. 34

Die Kommutativitit der Addition ist trivial. Zum Beweis der Assoziativitit
mogen PR und SV eine Summe a + b bzw. (a + b) + ¢ repriisentieren, wobei in
PR ein Punkt Q mit PQ€ a und QR€ b und in SV ein Punkt U mit SU€ a + b
und UV € ¢ liegt (Abb. 34b). Wegen PR = SU gibt es nach B,(a) o. B. d. A. eine
Bewegung v von PR mit P'=8 und R*F=U; es sei T:=Q und SSU V.
Denn gilt S<T<U SV, TVeb+cund8Ve€(@a+b) +¢c,a+ (b+c¢)d h
@+b+c=a+(d+0).

1) Nunmehr lét sich erkliren: Ein Winkel der GroBe « heilt genau dann spitz bzw. stumpf
wenn 0 < & < R bzw. R < « < 2R gilt.
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Fiir alle Lingen « und y == o0 gilt 2 < z 4+ y und wegen der Eindeutigkeit des
Streckenabtragens noch o, z &= = + y. Somit ist < irreflexiv. Die Transitivitdt der
Ordnungsrelation erhalten wir wie folgt: Wenn a < b und b < ¢ gilt, gibt es Lingen
z+oundy+omita+2=>5>b+y=cundfolglicha+(z+y)=(@+2z)+y
=b+y=c¢, d h. a <c wegen z + y & 0. Zum Beweis der Konnexitit braucht
man nur Strecken zweier gegebener Lingen a, b auf einer Halbgeraden abzutragen.

Gilt @ < b, etwa a + 2 = bmit 2 3= 0, dannist a + ¢ < b + c wegen (a + ¢) + =
=(a+2)+c=>b+ cund z % o, d. h., daB < auch monoton ist, w. z. b. w.

Die Addition der WinkelgroBen ist nicht immer ausfiihrbar, z. B. kénnen R und
2R nicht addiert werden.!) Wenn man von der Ausfiihrbarkeit der Addition ab-
sieht, dann hat sie als ,,partielle* Operation Eigenschaften, die den Eigenschaften der
Lingenaddition entsprech

Sogar die Beweisfiihrung ist so dhnlich, da wir uns mit einigen diesbeziiglichen
Bemerkungen begniigen.

Satz 1.32. In der Menge der Winkelgrofen ist + eine partielle Operation, die wie
folgt it und k tativ ist:
a) Mit (x + ) + y existiert auch & + (B + y), und es gilt
(o+B+y=a+ @+
b) Mt « + B existiert auch f + o, und es qilt
o+ f=p+c.
Auperdem st < eine Ord lation mit o als kleinstem und 2R als groptem Element,

)

die wie folgt monoton ist: Gilt « < f und existiert f + y, dann existiert auch « + y, und
es gilt:

aty<p+vy.
Zusatz. Ist « Grope eines Winkels und o' die Qrofe seiner Nebenunnkel, dann gilt:
o + B existiert & f < o',

Beim Beweis des Satzes kann man sich, gestiitzt auf den Satz 1.5, an den Beweis
von Satz 1.31 anlehnen. Die Konnexitiit der Relation < beruht letztlich auf folgender
Aussage: Liegt R in OP@*, dann gilt OQ* 0 PR %= @ oder OR* n PQ % @ (vgl. [32]
oder [34]).

Auf der Grundlage der Siitze 1.31 und 1.32 kann die Vervielfachung und die »-
Teilung fiir Lingen und WinkelgréBen eingefiihrt werden. Setzen wir fiir beliebige
Lingen a und natiirliche Zahlen n

0-a:=o, n+1)a:=na+a,

1) Solche Aufgaben werden 15sbar, wenn man in der Menge der Winkelflichen Aquivalenz-
klassen bildet, die Menge der Aquivalenzklassen strukturiert und die Menge der hier definier-
ten WinkelgroBen darin einbettet (vgl. [32]).
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dann kann fiir beliebige Lingen a, b und beliebige natiirliche Zahlen m, n
(m - n)a = m(na),
(m + n)a = ma + na,
n(a + b) = na + nb

durch vollstindige Induktion bewiesen werden. AuBerdem gilt auf Grund der
Ordnungseigenschaften, daB zu einer Linge a und zu einer natiirlichen Zahl » > 0
héchstens eine Liange  mit nx = a (Eindeutigkeit der n-Teilung) existiert.!) Somit
konnen wir mit

1
r=—a:Snr=a
n

per definitionem die n-Teilung und mit

we=ned
—_—ai=ml—a
n n

wegen der Repriisentantenunabhiingigkeit die Vervielfachung mit rationalen Zahlen
erkliren. Das geniigt Zunichst hinsichtlich der Lingen.
Analog verfahren wir im Fall der WinkelgréBen. Wir setzen fiir beliebige Winkel-
groBen « und patiirliche Zahlen n
0-a:=o, m+1)a:=n-«+«,

falls n-« und 7 -« + & existieren.?) Da -+ fiir WinkelgroBen nur eine partielle
Operation ist, sind die Regeln fiir die Vervielfachung mit natiirlichen Zahlen nur modi-
fiziert giiltig. (Statt n - « schreiben wir kurz n«.) Es li8t sich die Eindeutigkeit der
n-Teilung?) herleiten und damit

1
=—u:onf=u«,
n

erkliren.

Aufgaben

-

. Die Linge z wird Differenz von ¢ und a genannt (in Zeichen: z = ¢ — a) genau dann, wenn
a + 2 = ¢ gilt. Man zeige, daB unter der Voraussetzung a < ¢ genau eine Differenz ¢ — a
existiert. (Analoges gilt fiir WinkelgrsB

1) Hinsichtlich der Exnstenz gilt folgendes: Nach B, kénnen wir fortgesetzt halbieren. Neben
dieser el \2 baren Moglichkeit gibt es die naherungsweise n-Teilung; mit Hilfe
des Axioms von der oberen bzw. unteren Grenze 1aBt sich die Existenz vollstindig beweisen.

2) Fiir R konnen wir nur die Koeffizienten 0, 1, 2 gebrauchen. Dabei gilt 2 - R = 2R.

3) Vgl. die FuBinote 1.
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2. Man beweise
a<b=>mna<nb

fiir Liingen a, b und positive natiirliche Zahlen » und begrinde damit die Eindeutigkeit
der n-Teilung.

1.3.3. Einige wichtige Ungleichungen und ihre Bedeutung beim Konstruieren

Hinsichtlich der Bezeichnungen der Seitenlingen und der GroBen der Innenwinkel
eines Dreiecks ABC halten wir uns an die allgemein iiblichen Festlegungen (vgl.
Abb. 32). Ist £ die GroBe eines Winkels, dann werden wir mit &’ die GroBe seiner
Nebenwinkel bezeichnen; damit ist speziell fiir ein Dreieck die Bezeichnung der
GroBen der AuBenwinkel geregelt.

Satz 1.33 (Satz vom AuBenwinkel). Die Grofe eines Innenwinkels eines Dreiecks
ABC 1st kleiner als die Gréfe eines nicht anliegenden AuPenwinkels.

Folgerung. Die S zweter I inkelgrofen ist stets kleiner als 2R.

Beweis, Wir zeigen etwa « < f'. Es gibt eine Verschiebung 7 lings g,p mit B* = 4
(Abb. 35a). Es gilt (BC+)* n BC = @ und folglich « < ' sowieax + # < ' + f = 2R,
w. z. b. w.2)

(8cY*® c

a) Abb. 35

Satz 1.34. In jedem Dreteck ABC gilt
agboaip,
d. h., daB der Seite mit der kleineren Liinge der Winkel mit der kleineren Grofe gegen-
iiberliegt.
Folgerung. Ein rechier oder stumpfer Winkel 1t stets grofter Innenwinkel; thm
Uiegt due lingste Seite gegeniiber.

Beweis. Der Satz (vgl. Abb. 35b) ergibt sich nach den Sitzen 1.27, 1.29, 1.31 bis
1.33 wie in der Einleitung. Zum Beweis der Folgerung bemerken wir, da8 ein rechter
bzw. stumpfer Innenwinkel an einem nichtstumpfen AuBenwinkel liegt und somit
die anderen Innenwinkel spitz sind, d. h., daB ein rechter bzw. stumpfer Winkel stets
groBter Innenwinkel ist und daB ihm gegeniiber die lingste Seite liegt, w.z. b. w.

1) Der Beweis kann variiert werden, indem statt = die Spiegelung am Mittelpunkt M von
AB betrachtet wird.
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Hilfssatz 1.35. Ist a(M, O) < a(M, P) fiir ein Dreteck MOP, dann gilt
X € (OP)= a(M, X) < a(M, P),
Y€ OP+\OP= o(M,P) < a(M,Y).

Beweis. Der Punkt X liege zwischen O und P, Y in OP+\ OP (Abb. 36). Die
GréBen der Winkel < MOP, X MPO, <x MXO und X MYO bezeichnen wir der
Reihe nach mit «, 8, y bzw. 8; ' und y’ sind die GréB8en der Nebenwinkel von < MPO
bzw. X MXO.

Wegen a(M, 0) < a(M, P) ergibt der Satz 1.34 zuniichst « > p. Nach dem Satz
vom AuBenwinkel gilt 8 < & <y’ und é < < & < f', 50 daB a(M, X) < a(M, P)
bzw. a(M, P) < a(M, Y) nach dem Satz 1.34 folgt, w.z.b. w.

o
vy 8'c =
b
A c 4
Abb. 36 Abb. 37

Satz 1.36 (s8SW). Qilt fiir Drevecke ABC und A'B'C’
AB~ A'B', AC~AC, XBx~<XB

und b = c, dann gibt es eine Bewegung v des Dreiecks ABC mit A* = A’, B*= B/,
C=C'.

Beweis. Nach dem Axiom By(b) gibt es eine Bewegung 7 mit
B*=PB', A'€¢BA+, C(CcABC*.

Wegen der Eindeutigkeit des Strecken- und Winkelantragens gilt 4* = 4’ und
(BC*)* = B'C", insbesondere C* € B'C'+ (Abb. 37). Aus

a(d',C)=a(4,C)=b=a(d',C)
und b = ¢ folgt C* = C’ nach dem Hilfssatz 1.35, w. z. b. w.

Satz 1.37 (Dreiecksungleichung). Die Summe zweier Seitenlingen eines Dreiecks
18t grofer als die dritte Seitenlinge.

Zusatz. Qilt a < b, dann istb — a < c.
Ergianzung. Sind 4, B, C drei Punkte einer Geraden, dann gilt a + b = c.

Beweis. Es sei ABC ein beliebiges Dreieck. Um etwa a < b 4 ¢ zu zeigen, tragen
wir die Strecke AC auf der Halbgeraden 4 B-ab und erhalten einen Punkt D (Abb. 38).
Nach dem Satz 1.29 haben die Winkel <t ACD und < ADC dieselbe GroBe 8. Indem
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wir den Satz 1.34 auf das Dreieck BCD anwenden, erhalten wir wegen 8 <y + é
bereits a < b + ¢.

() Abb. 38
D b A 8

Gilt a < b,dannist b —a < c wegen b < ¢ +a.

Hinsichtlich der Ergi g sei bemerkt, daB einer der Punkte zwischen den
anderen liegt ; somit gilt @ + b = ¢ oder b + ¢ = a oder ¢ + a = b, in jedem Fall
a+b=e,
w. z. b. w.

Lingen a, b, ¢ erfiillen per definitionem die Dretecksungleichung genau dann, wenn
die Summe von je zweien groBer als die dritte ist. Man iiberlegt sich leicht, daB
unter der Voraussetzung a < b die Lingen genau dann die Dreiecksungleichung
erfiillen, wenn

b—a<c<b+ta

gilt. Somit 1aBt sich der Satz 1.37 folgendermafen umformulieren: Wenn a, b, c
Sestenlingen eines Dretecks sind und 0.B.d.A.a < b ist, danngiltb —a <c <b + a.
Ist von diesem Satz auch die Umkehrung richtig: Wenn a, b, ¢ Lingen mit a < b
und b—a <c<b+ a sind, dann sind a, b, ¢ Seitenlingen eines Dretecks? Die
Beantwortung der Frage liuft auf die Losung einer Konstruktionsaufgabe hinaus.
Wir konnen deshalb auch fragen, ob das Erfiilltsein der Dreiecksungleichung, das
sich nach dem Satz 1.37 fiir die Losung der Konstruktionsaufgabe als notwendige
Bed.mgung erweist, dazu auch hmrelcht Bekanntlich lduft die Aufgabe auf die Be-
g von Kreisschnittpunkten hinaus. Um das niher auseinandersetzen zu
kénnen, bezeichnen wir in einer Ebene ¢ den Krers um M € e mit dem Radius r mit
k(M, ), d. h.

KM, r):={Xce: a(M,X)=r1].

Gilt nun b — a < ¢ < b + a, dann konnen wir eine Strecke AB der Linge ¢ in ¢
withlen. Die Frage lautet nun, ob sich die Kreise k(4, b) und k(B, a) in ¢ schneiden
(vgl. Abb. 39).

Ein dhnliches Problem tritt auf, wenn §, b, ¢ mit o < # < 2R und b > ¢ vor-
gegeben sind: Wir wihlen einen Winkel der GroBe B, tragen von seinem Scheitel B
aus auf einem Schenkel eine Strecke der Linge ¢ ab und erhalten 4. Trifft k(4, b)
den anderen Schenkel BP+?

Es 1a8t sich zeigen, daB die Eindeutigkeit der gesuchten Schnittpunkte aus den
Dreieckskongruenzsiitzen sss bzw. sSW folgt. Die Existenz der gesuchten Schnitt-
punkte liBt sich mit Hilfe der Inzidenz-, Anordnungs- und Bewegungsaxiome
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nicht herleiten. Thre Herleitung wird nach dem Stetigkeitsaxiom méglich (vgl. Ab-
schnitt 4.2.2). Man kann diese nichtelementare Herleitung dieser elementaren Aus-
sagen umgehen, indem man folgende Axiome des Zirkels formuliert:

Z,. In einer Ebene schneiden sich ein Kreis und ein Halbgerade, deren An-
fangspunkt vom Kreismittelpunkt einen Abstand kleiner als der Radius
hat, in genau einem Punkt.

Z,. In einer Ebene schneiden sich zwei Kreise in einer Halbebene beziiglich der
Verbindungsgeraden der Kreismittelpunkte in genau einem Punkt, wenn
ihre Radien und der Abstand der Mittelpunkte der Dreiecksungleichung
geniigen.

c?

c?
\ B ) 5 .
A
A B
a)

b) Abb. 39

Da wir die Eindeutigkeit der Schnittpunkte postuliert haben, kénnen die Drei-
eckskongruenzsiitze sSSW und sss mit Hilfe der Eindeutigkeitsaussagen in Z, bzw. Z,
hergeleitet werden. Sind beispielsweise die Voraussetzungen von sSW fiir Dreiecke
ABC und A’'B’'C’ wie in 1.36 erfiillt, dann kénnen wir den Beweis wie dort formulieren,
wobei wir statt des Hilfssatzes 1.35 das Axion Z, zitieren. — Der Beweis von sss
verkiirzt sich erheblich (vgl. Aufgabe 4).

/

3. Abb. 40

A
Q

(

Die Existenzaussagen in Z, und Z, sind fiir Grundkonstruktionen in der Ebene
wie das Errichien einer Senkrechten, das Fiillen eines Lotes, das Halbieren von Strecken
und Winkeln sowie die Konstruktion einer Mittelsenkrechten bedeutsam. Um z. B.
von einem Punkt P auf eine Gerade g (p P) das Lot zu féllen, ziehen wir um P durch
einen Punkt aus der offenen Halbebene gP- einen Kreis, der g nach Z, in zwei Punkten
Q, 8 trifft; die Kreise um @ und S mit demselben Radius schneiden sich etwa nach Z,
in gP- in genau einem Punkt R, fiir den nach der Folgerung aus 1.29 wie gewiinscht
grr L g gilt. — Mit Hilfe der genannten Folgerung und den Axiomen Z; und Z,
lassen sich auch die anderen, oben genannten Grundkonstruktionen begriinden (vgl.
etwa [32]).

AbschlieBend wollen wir nochmals die Dreieckskonstruktionen behandeln, deren
Eindeutigkeit bis auf Kongruenz bzw. Bewegung durch die Dreieckskongruenzsitze
ausgedriickt wird.
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Es ist bemerkenswert, da8 EURLID keine Bedenken gegen eine (stillschweigende)
Verwendung von Z, hatte. Dagegen hatte er die Losbarkeit der Aufgabe bei gegebenen
«, B, ¢ durch die Formulierung seines 5. Postulates (vgl. 8. 13) erreicht. Bald werden*
wir erkennen, da8 die Forderung nach uneingeschrinkter Losbarkeit dieser Aufgabe
fiir die euklidische Geometrie kennzeichnend ist. Im Ergebnis der Kapitel 2 und 3
konnen wir dann sagen, da8 die Aufgabe in der absoluten Geometrie nicht 1sbar ist.

Vorgabe?') Losbarkeit Eindeutigkeit
(bis auf Kongruenz)

a,b, ¢ nach Z,, falls a, b, ¢ nach sss

die Dreiecksungleichung

erfiillen ,
a, b,y nach K, nach sws
B.b,c fiir b > ¢ nach Z; nach sSW fiir b > ¢
x, B, c offen nach wsw
a,x B fiir « 4+ 8 < 2R nach Z, nach sww

(8. u.)

Die Losung der Aufgabe mit gegebenen a, «, f (x + f < 2R) kann wie folgt in
Angriff genommen werden: Wir wihlen einen Winkel der GroBe # und tragen von
seinem Scheitel B aus auf einem Schenkel eine Strecke der Liinge a ab und erhalten
einen Punkt C (Abb. 41). Ist BP* der andere Schenkel des Winkels < B, dann
tragen wir einen Winkel der Gré8e « an PB+ in die Halbebene PBC+ ab und erhalten

q

s Abb.41
P Q' AP -

die Halbgerade ¢g. Indem wir g lings f := gpp 80 verschieben, da8 ¢ den Punkt C
enthilt, finden wir schlieBlich den noch gesuchten Punkt A. — Doch wie 18t sich
die Verschiebung 7 lings f exakt bestimmen? Ist Q € ¢ ein Punkt, der denselben Ab-
stand von f wie C hat, d. h., dessen LotfuBpunkt Q' € f von Q denselben Abstand hat
wie der Punkt C von seinem LotfuBpunkt C’ € f, dann kann die nach der Folgerung
zu 1.15 existierende Verschiebung v mit Q* = ' gewihlt werden.

Der Punkt Q kann als Schnittpunkt von g mit der Abstandslinie I durch C auf-
gefaBt werden, wobei ! per definitionem die Menge derjenigen Punkte aus PBC+
enthilt, die von f denselben Abstand wie C besitzen.2) Wie wir spiter sehen werden,

1) Als generelle Bedingungen setzen wir voraus, daB alle Lingen groBer als o sind und alle
WinkelgroBen zwischen o und 2R liegen.

%) In der euklidischen Geometrie ist ! eine Parallele von f. Das trifft in der absoluten Geometrie
im allgemeinen nicht zu.
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lassen sich Existenz und Eindeutigkeit des Schnittpunktes herleiten, allerdings nur
mit Hilfe des Stetigkeitsaxioms. Wer die oben geschilderte Konstruktion elementar
abgesichert wissen méchte, wird wie im Fall der Axione Z, und Z, folgendes Axiom in
Kauf nehmen:

Z,. In einer Ebene schneiden sich eine Gerade g und eine Abstandslinie  einer
Geraden f in genau einem Punkt, wenn f 4 g gilt.

Es sei dem Leser iiberlassen, sich einen ,,Abstandslinienzirkel* vorzustellen.

Aufgaben

1. Man zeige, da8 unter allen Streckenziigen, die zwei Punkte P und @ verbinden, PQ der
kiirzeste ,,Streckenzug* ist.

. Es sei ABC ein Dreieck, das nur spitze Winkel besitzt, und P ein Punkt zwischen B und C.
Wie miissen Punkte Q und R im Innern von CA bzw. AB gewihlt werden, da8 der Um-
fang des Dreiecks PQR moglwhar. klein wird?

Anleitung: Man wihle P, @, R zunichst beliebig und spiegele P an gg4 bzw. g p.

3. Man fille vom Scheitel des groBten Winkels eines Dreiecks das Lot auf die Verbindungs-
gerade der beiden anderen Ecken und zeige, daB8 der LotfuBpunkt zwischen diesen Ecken
liegt.

4. Fir Dreiecke 4BC und A’B'C’ gelte a = a’, b = b’ und ¢ = ¢’ (Voraussetzungen in sss).
Man wihle nach By(b) eine Bewegung 7 mit

4 =4, FcAB+, (€ ABCY
und zeige B* = B’ und C* = (' mit Hilfe von K, und Z,.

N




2. Einfihrung in die Lobacevskijsche Geometrie

Die Lobagevskijsche Geometrie unterscheidet sich von der euklidischen lediglich im
Parallelenaxiom. Zunichst wird die absolute Geometrie fortgesetzt, um dann mit der
Einfijhrung eines nichteuklidischen Parallelenaxioms (LP) erste charakteristische
Sitze der Lobadevskijschen Geometrie zu gewinnen. Die Abschnitte 2.2 und 2.3,
die beim ersten Lesen ausgelassen werden konnen, besitzen die Aussagen iiber die
Beziehungen zwischen zwei Geraden einer Ebene als gemeinsame Grundlage.

2.1.  Euklidisches und Lobagevskijsches Parallelenaxiom

21.1.  Einige weitere Sitze der absoluten Geometrie

Im Gegensatz zum Kapitel 1 werden wir kiinftig unser Stetigkeitsaxiom, das Axiom
von der oberen bzw. unteren G hiufig benut Eine wichtige Folgerung ist
die Aussage, daB die Geraden archimedisch geordnet sind. Um uns diesen Begriff zu

T
9 &0 s Abb.42
E, £, E & E E

erarbeiten, gehen wir von einer Geraden f = gog und einer Verschiebung v lings f
mit O' = E aus (Abb. 42). Da die Verschiebungen lings f eine geordnete kommu-
tative Gruppe bilden, kénnen wir zuniichst Potenzen von 7 bilden,

=y, il 1= . pEl)
und dann

E, :=0"
setzen, um auf f eine Skala zu erhalten. Wie man leicht sieht, gilt fiir 0 < E und alle
ganzen Zahlen m, n

m<n& Ey<E,.
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AuBerdem gibt es — das ist ein Ausdruck der archimedischen Ordnung — zu ]edem
Punkt X € f eine ganze Zahl m mit X € E,_,Ep,.
Zum Beweis dieser Behauptung diirfen wir o. B.d. A.

X € OE+

Ve Wir neh an, daB E, < X fiir alle ganzen Zahlen = gilt. Dann wiire
die Menge

={E,: n€e ZAE, < X]

nicht leer und nach oben beschrankt, so daf es eine obere Grenze P € f geben miifite.
Es gilte B, < P fiir alle ganzen Zahlen n, jedoch miiBte es fiir den Mittelpunkt M
von O und P eine natiirliche Zahl » mit M < E, und folglich P < E,, im Wider-
spruch zur Eigenschaft von P geben. Da die Annahme falsch war, existiert eine
natiirliche Zahl » mit X < E,. — Nun ist es nicht mehr schwer, eine natiirliche
Zahl m mit X € E,,_,E,, zu finden, w.z. b. w.

Aus der archimedischen Ordnung der Geraden folgt
Satz 2.1. Zu Lingen a, b 3 o gibt es stets eine natiirliche Zahl n mit a < nb.)

Folgerung. Zu Lingen a, b = o gibt es stets eine natiirliche Zahl k mit -5 <b.

Die Folgerung liBt sich sinngemi8 auf WinkelgréBen iibertragen. Dazu stellen
wir einen Hilfssatz bereit, der auch spiter noch benétigt wird.

Hilfssatz 2.2. Im Dreteck ABC set b < ¢ und X € BC. Ist dann o, bzw. &, die
Grofe von X BAX bzw. X CAX und a, := a(B, X) sowie a, := a(C, X), dann gilt

& = 0= @y > @,
== x) < &p.

Zusatz. Fiir b = c gqilt
o =0y & ay = a,.

Beweis. Unter der Vor tzung o, = «, spiegeln wiran w = g,z. Wegen b < ¢
liegt C* zwischen 4 und B (Abb. 43). Nach dem Satz vom AuBenwinkel gilt § </,
so daB a, > a, nach dem Satz 1.34 folgt. Aus diesem Resultat ergibt sich sofort
&, < &, unter der Voraussetzung a, = a,. — Der Zusatz ist nach dem Satz 1.29
trivial, w. z. b. w.

Satz 2.3. Zu Winkelgrofen x, p mito < x, B < 2R gibt es stets eine natiirliche Zahl
., %
ke mat 7 <8

1) Diese Aussage wird oft als Eud. Archimedisches Aziom benutzt
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Beweis. Im Fall x < § kann k& = 0 gewihlt werden.

Es sei nun R > x > f. Dann gibt es Punkte 4, B, C, X derart, daB < BAC die
Grofe x, < CAX die GroBe p hat und X zwischen B und C liegt; im Dreieck ABC
kann < C o.B.d. A. als rechter Winkel vorausgesetzt werden (Abb. 44).

Wir bestimmen X,. wie folgt als Mittelpunkte:
X;:=M(B,C), Xgpu:=M(C, Xy).
Nach der Folgerung aus 1.34 ergibt sich nacheinander
b < a(4d, X,), a4, Xy), ..., a4, Xp), ...
Somit gilt fiir die GroBen o, g, ...y Gax, .. von X CAX, bzw. X CAX, bzw. ... nach
dem Hilfssatz 2.2 der Reihe nach
&y > %—, g > %> %,-..,“gg> 2%,

SchlieBlich gibt es nach der Folgerung aus 2.1 eine natiirliche Zahl k mit X, € CX,
d. h.
o
B> an > -2—k .
Gilt « > B, jedoch 2R > & = R, dann setzen wir a* := —;— und g* := -g- Nach
: *

dem bereits Bewiesenen gibt es eine natiirliche Zahl & mit 5“—* < p* d. h. mit ﬁk <B
w.z. b. w. 2 ?

Die hergeleiteten Sitze sind Voraussetzung zum Beweis der folgenden Aussagen.

Satz 2.4. Fir jedes Dreieck ABC existiert o +f+y, d.h. a + <y und
®«+p+y<2R

Zusatz. Fiir jedes rechtuinklige Dreieck ABC mit dem rechten Winkel bei C ist
a+p<R

Beweis. Zuniichst wird der Zusatz bewiesen. Nach der Folgerung aus 1.33 ergibt
sich lediglich « + f < 2R. Es sei etwa & = . Wir setzen 4 := 4,, B := A; und

Mi:=M(4,0), Auy:=AY
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fir 1 =1,2,... (Abb. 45a). AuBerdem seien «, := « und «;, &; die GréBen von
X CAjA;, baw. X Ay A4y, fiir j = 2,3, ... Dann gilt

%+ & =B, Oy = &3 = Bgy eees Gy + Ejpr = &jp eevy

d.h.
0 o+ f=(x + ap+ a3+ - + &) + &
Aus der Konstruktion ergibt sich auBerdem
Rt oy 44 a;<2R
oder einfach
(2 o + g+ - + oy < R.

Wir nehmen nun entgegen der Behauptung R < « + # < 2R an. Nach dem Satz2.3
gibt es eine natiirliche Zahl & mit

®  Esy=avs-z

Abb. 45

Andererseits liegt nach der Folgerung aus 1.34 im Dreieck 4,,4,C fir+=2,3,...
dem Punkt C die lingste Seite gegeniiber ; daraus folgt &; > &; nach dem Hilfssatz 2.2
und somit

= B _ _& _B _
&y < ?, aa<?< 'Z,...,A‘ <%,
fiir © = 2, 3, ... Aus (2) und (1) erhalten wir fiir j =k + 1

a+p<R+aﬂ<R+§

ﬂ < & + B gemiB (3). Damit

im Widerspruch zur angenommenen Ungleichung R +
gilt der Zusatz.

Um den Satz zu beweisen, betrachten wir in einem behebxgen Dreieck ABC die
lingste Seite, etwa AB. Das Lot von C auf g,p hat einen FuBpunkt F zwischen 4
und B (vgl. Aufgabe 3, S. 57). Bezeichnen wir die GroBen der Winkel < ACF,
< BCF mity, bzw. y, (Abb. 54 b), dann gilt nach dem Zusatza +n=<RB+7v<R
und somit & + § + y < 2R, w. z. b. w.
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Es ist iiblich, fiir jedes Dreieck ABC die Differenz §(4BC) := 2R — (x + 8 + y)
den Defekt des Dreiecks ABC zu nennen. Grundlegende Eigenschaften enthalt der
folgende

Satz 2.5. Fiir Defekte gilt
(a) o < 8(4BC) < 2R,
(b) A ¢ gpc A X € (BC)= 6(ABX) + 6(ACX) = 6(ABC),
(c) A ABC =~ A A’'B'C' = §(ABC) = §(4'B'C").
Zusatz. Auperdem gilt
(b") 8(ABC) =0 A X € (BC)=> 8(ABX) = 6(4CX) =o.

Beweis. Nach der Definition und dem Satz 2.4 sind (a) und (c) trivial.

Ao b8 Abb. 46

Es sei nun X innerer Punkt der Dreiecksseite BC des Dreiecks ABC (Abb. 46).
Die GréBen der Winkel <t BAX, <X CAX und < AXC bezeichnen wir mit «,, &,
bzw. &, 2R — & wie oben mit ¢’. Dann gilt

(ABX) + 6(ACX) = 2R — oy —B—§)+ CR — oy —y —§)
=@R—u—B—-8+E —x—1
=2R — &« — p— y = 6(ABC).
Der Zusatz ergibt sich nun aus den Rechenregeln fiir WinkelgroBen: Wiire etwa

6(ABX) > o, dann folgte 6(4ABC)= §(ABX) + 6(ACX) > o0 + 6(ACX) =0 im
Widerspruch zur Voraussetzung, w. z. b. w.

Satz 2.6. Gt ag + fo + 7o = 2R fiir wenigstens ein Dreicck AoByCo, dann gil
& + B + v = 2R fiir alle Dretecke ABC.

Zusatz. Gilt By + y, = R fiir igstens ein rechiwinkliges Dreieck A,B,C, mit
oy = R, dann qilt  + y = R fiir jedes rechtwinklige Dreieck ABC mit « = R.

Beweis. Auch hier wenden wir uns zuerst dem Beweis des Zusatzes zu. Es sei
A,B,C, ein Dreieck mit &, = f, + ¥, = R. Indem wir fortgesetzt an Seitenmittel-
punkten spiegeln, erhalten wir (durch Parkettieren) neue rechtwinklige Dreiecke,
deren Kathetenlingen jede vorgegebene obere Schranke iibertreffen (vgl. Abb. 47a):
Ist K, := M(B,,C,) der Mittelpunkt von B,C,, dann setzen wir K, := A%,
L, := M(B,, K,) und M, := M(C,, K,) sowie B, := C,% und C, := B,:; wegen
B, + v, = R sind B,, C, und K, kollinear, und es gilt B, € 4,B*, C,€ 4,C,*,
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X By € By, & C; € 1, by = 2b, und ¢, = 2¢,. Indem wir diese Konstruktion auf das
Dreieck A4,B,C, mit 4, := A, anwenden, erhalten wir ein Dreieck 4,B,C, mit
Ay :=A4,, B, A:Byt, C,€ A0y, X B€p, X Ci€y, b =2 =4h und
¢y = 2¢, = 4¢,. Durch fortgesetzte Konstruktionen der geschilderten Art, bei der
sich die Kathetenlingen jeweils verdoppeln, ergeben sich Dreiecke mit den Katheten-
lingen 2*b, und 2%, fiir die es nach der Eudoxus-Archimedischen Aussage 2.1 keine
obere Schranke gibt.
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Abb. 47

Ist nun ABC ein beliebiges Dreieck mit « = R, dann kénnen wir es so bewegen,
daB Ar = A,, B'€ 4,B* und C'¢ 4,C* gilt. Weiterhin gibt es eine natiirliche
Zahl k derart, daB Br zwischen 4, und By, C* zwischen 4, und Cy: liegt (Abb. 47b).
Zerlegen wir noch das Viereck B*B;.CpC* durch eine Diagonale, etwa B‘Cy, dann
erkennen wir wegen 6(AgBuCy) = o nach 2.5¢, b’ sofort §(4BC) = 8(4'B'C*) =o,
d. h. « = g + y = R. Somit ist der Zusatz vollstindig bewiesen.

Es sei nun A44B,C, ein beliebiges Dreieck mit «y + f, + 7o = 2R. Liegt etwa C,
gegeniiber der lingsten Seite, dann hat das Lot von C, auf g,, 5, einen FuBpunkt F,
zwischen 4, und B, (vgl. Aufgabe 3, S.57). Wegen 8(4,B,C,) = o verschwindet
auch der Defekt der rechtwinkligen Teildreiecke A,FyCy und B,FyCy; somit ver-
schwindet der Defekt jedes rechtwinkligen Dreiecks.

Ist nun ABC ein beliebiges Dreieck, wobei etwa AB die lingste Seite ist, dann
trifft das Lot von C auf g, sogar 4B in einem inneren Punkt F (Abb. 46b). Sind
71, ¥z die GréBen von < ACF bzw. < BCF, dann gilt « +y, =R, f+y, =R
und folglich « + f + y = 2R, w. z. b. w.

Den Satz 2.6 kann man auch wie folgt interpretieren: Entweder es gilt 5(ABC) = o
tiir alle Dretecke, oder es qilt 8(ABC) > o fiir alle Drevecke. Natiirlich ist noch nicht
geklirt, ob nur einer der Fille moglich ist oder ob beide Fille eintreten kdnnen.
Aus diesem Resultat kann man eine erste Antwort auf die Frage erhalten, ob man
Rechtecke oder gar Quadrate konstruieren kann. Dazu betrachten wir zundchst
Saccherische') Vierecke, das sind Vierecke ABCD mit rechten Winkeln etwa bei 4

1) Nach dem italienischen Mathematiker G. SAcCHERI (1667 —1733) benannt, obwohl bereits
'UmAR AL-HAovyZm (1048 —1131) solche Vierecke betrachtet hat (vgl. [562]).
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und B und mit AD o~ BC (Abb. 48a). Sie sind immer konstruierbar, aber sind sie
Rechtecke? Wir kénnen zunichst nur sagen

D o c
Ne 7
1\
7 ’ \ Do
/ ‘_\\
/ Ia \
/ N \
A
/ i \
/
I
/ 3\
i ; Abb. 48
A Tm B A 8
a) b}

Satz 2.7. Ist ABCD ein Saccherisches Viereck mit rechten Winkeln bei A und B,
dann sind die Winkel bet C und D ebenfalls rechte oder kongruente spitze Winkel.
Oder schirfer: Entweder sind alle Saccherischen Vierecke Rechtecke, oder es gibt iiber-
haupt kein Rechteck.d) ‘

Den Beweis iiberlassen wir dem Leser als Aufgabe.

Aufgaben

-

. Man beweise den Satz 2.7.
Anleitung: Die Mittelsenkrechte m = m(4, B) ist Sy trieachse des Saccherisch
Vierecks ABCD; beziiglich der entstand Teilvierecke argumentiere man mit Hilfe
des Satzes 2.4 bzw. seines Zusatzes. Die Verschérfung erhilt man nach dem Satz 2.6.

2. Man zeige fir ein Viereck 4 BCD mit rechten Winkeln bei 4 und B sowie Winkeln der

GroBe y, 8 bei C bzw. D die folgende Aquivalenz (vgl. Abb. 48b)

y<d&a(d,D)<a(B,0).

2.1.2. Das euklidische Parallelenaxiom

In diesem Abschnitt wollen wir auf der Grundlage der absoluten Geometrie die
Bedeutung des 5. Postulates fiir den Aufbau der euklidischen Geometrie erarbeit:
Da die Resultate unserer Uberlegungen unmittelbare Riickschliisse auf die Lobagev-
skijsche Geometrie gestatten, hat dieser Abschnitt an dieser Stelle seine Berechtigung.
Neben den zahlreichen Aussagen sind auch viele Beweise bedeutsam. Wir iiberlassen
es dem Leser, sich eine Ubersicht iiber die Beweise zu verschaffen, um daraufhin
die intensive Erarbeitung zu planen. Wir haben versucht, bei der Anordnung der
Sitze neben beweistechnischen Aspekten die historische Entwicklung zu beriick-
sichtigen.

!) Im ersten Fall spricht man von der Hypothese der rechten, im zweiten Fall von der Hypo-
these des spitzen Winkels fiir Sacoherische Vierecke.
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Der Inhalt des 5. Postulates kann wie folgt wiedergegeben werden (vgl. auch die
Bemerkungen zur Konstruktion eines Dreiecks bei gegebenen «, # und ¢ am Schlu8
des Abschnittes 1.3.3):

8ind < BAX, X ABY Winkel der Grofe « bzw. B und gilt neben Y € ABX+ noch

«+f <2R,
dann schneiden sich AX+ und BY+ in einem Punkt C (Abb. 49).

Abb. 49

Dieses Postulat EURLIDS ist in der absoluten Geometrie zu zahlreichen anderen
Aussagen gleichwertig.

Satz 2.8. Das 5. Postulat Euklids ist dquivalent zu
(1) Es gilt « + B + y = 2R fiir alle Drevecke ABC.%)

Folgerung. Das §. Postulat Euklids qilt genau dann, wenn
(') ein Dreteck AuByCo mit o + flo + yo = 2R existiert.

Beweis. a) Es gelte das 5. Postulat, ABC sei ein beliebiges Dreieck. Um die
Summe B + y zu bilden, spiegeln wir am Mittelpunkt M von BC (Abb. 50a). Nach
dem Satz 2.4 gilt « +(8 + y) < 2R. Wiire « +(8 + 7) < 2R, dann miiBten sich
AB* und (BA*)™ nach dem 5. Postulat schneiden im Widerspruch zu g,z g%
fiir die Spiegelung an M.

Abb. 50

b) Es wird nun (1) vorausgesetzt. Auflerdem seien <t BAX und < ABY Winkel
der GroBe « bzw. §, und es gelte ¥ € ABX+ und « + # < 2R (Abb. 50b). Wir kon-

struieren eine Folge gleichschenkliger Dreiecke ABB,, AB,B,, AB,B,, ..., indem wir
!) Diese Aquivalenz wurde bereits von dem aserbaidshanischen Mathematiker Nasie Ap-

DiIx aAT-TOST (Nasir-ed-din; 1201 —1274) betrachtet, der das 5. Prostulat zu beweisen ver-
suchte. Er wirkte am Observatorium Maragha in der Nihe Bagdads, einem Zentrum der
Wissenschaft des Orients.
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AB auf BY+, AB, auf B,B-, AB, auf B,B- usw. abtragen; die GroBen der Winkel
X BAB,, & B,AB,, X B;AB,, ..., bezeichnen wir der Reihe nach mit «;, &s, &g, ...
Nach dem Satz 1.29 und (1) gilt (mit §’ := 2R — B)

B = 2x,, %y = 2009, 67 = 25y, ...,

d. h.

’

a‘=§‘- fir 1=1,2,...

Andererseits folgt aus « 4 f < 2R zunichst « < f'. Im Dreieck ABB; hat der
Winkel bei 4 die GroBe
g

L +0‘z+"'+0‘x=ﬂ'—°‘i=ﬂ'—§-

Nach dem Satz 2.3 gibt es eine natiirliche Zahl & mit
gk <p —« und a = —ﬁ—
d. h., daB der Schenkel AX+ die Strecke BB, trifft. Somit schneiden sich AX+
und BY+.
Die Folgerung ist nun nach dem Satz 2.6 trivial, w. z. b. w.

Der italienische Jesuit ter GIROLAMO SACCHERI (1667—1733) betrachtete
die nach ihm benannten Vlerecke um das 5. Postulat aus den iibrigen Axiomen und
Postulaten EukLips herzuleiten. Es gelang ihm, die ,Hypothese des stumpfen
Winkels* zum Widerspruch zu fithren. Um nun die ,,Hypothese des rechten Winkels*
zu erhalten, wollte er die ,,Hypothese des spitzen Winkels* ebenfalls ausschlieBen.
Sein Widerspruch beruhte jedoch auf einem Fehler. Die ,,Hypothese des rechten
Winkels“ kann nur als Axiom das 5. Postulat herleitbar machen. — Ahnlich ging
der Schweizer Mathematiker JoHANN HEINRICH LAMBERT (1728—1777) an das
Parallelenproblem heran; er untersuchte Vierecke mit drei rechten Winkeln, zeigte,
daB die Hypothese des rechten Winkels fiir diese Vierecke zum 5. Postulat dqui-
valent ist, die Hypothese des stumpfen Winkels zum Widerspruch fiihrt, und ver-
mutete, daB sich die Hypothese des spitzen Winkels nicht zum Widerspruch fiihren
1éBt. Wir zeigen hier

Satz 2.9. Das 5. Postulat Euklids ist zu jeder der folgenden Aussagen dquivalent:
(2) Jedes Viereck mit dret rechten Winkel ist ein Rechteck (Rechtseitsatz).
(3) Jedes Saccherische Viereck ist ein Rechteck (Hypothese des rechten Winkels).
3 Wenigstens ein Saccherisches Viereck st ein Rechteck.
(R) Es gibt ein Rechteck.?)

Beweis. a) Aus dem 5. Postulat folgt (2): Es sei ABCD ein Viereck mit rechten
Winkeln bei 4, B und C (Abb. 51a). Bezeichnen wir die WinkelgroBen im Dreieck

1) Aus der Existenz eines Rechtecks hat der franzosische Math tiker ALEX1S CLAUDE
CLAIRAUT (1713—1765) die Parallelentheorie entwickelt.
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ABC wie iiblich, denn gilt « + y = R, da wir nach dem Satz 2.8 speziell (1) benutzen
diirfen. Nach (1) ist

2R—(R—o)+(R—7)=2R—(2R—(x+7) =R
die GroBe des Winkels bei D.

" g Abb. 51

a) b)

IH

b) Aus (2) folgt (3): Ist ABCD ein Saccherisches Viereck mit rechten Winkeln
bei 4 und B sowie mit 4D ~ BC, dann ist die Mittelsenkrechte m von AB eine
Symmetrieachse des Vierecks ABCD. Nach (2) — angewandt auf die entstandenen
Teilvierecke (Abb. 51b) — liegen bei C' und D rechte Winkel.

c) Aus (3) folgt trivialerweise (3').

d) Aus (3') ergibt sich (R).

e) Gilt (R), so gilt auch (1): Es sei ABCD ein Rechteck. Bezeichnen wir wieder
die WinkelgréBen im Dreieck ABC wie iiblich und wenden den Zusatz zum Satz 2.4
auf die rechtwinkligen Dreiecke 4BC und ACD an, dann ergibt sich

a+y=R, (R—oa)+(R—y)=<R.
Aus der zweiten Ungleichung erhalten wir R < & + y. Mit
R<a+y=<R

gilt « +y=R. Da a + f + y = 2R fiir das Dreieck ABC besteht, haben wir
(1) nach dem Satz 2.6.

Da nach dem Satz 2.8 die Aussage (1) das 5. Postulat nach sich zieht, ist somit
der Satz vollstindig bewiesen.

Die Hypothese des rechten Winkels fiir Saccherische Vierecke gestattet uns,
eine Aussage iiber Abstandslinien zu hen. Es seien 4, B, X drei Punkte einer
Abstandslinie a der Geraden g und 4’, B’, X’ die FuBpunkte der Lote von 4, B bzw.
X auf g (Abb. 52a). Dann sind 4’B’BA und B’'X’'X B Saccherische Vierecke; nach der
Hypothese des rechten Winkels sind 4, B, X kollinear, d. h. a S g43 Wie man
leicht sieht, gilt sogar @ = g,p.

Gibt es eine Abstandslinie a einer Geraden g mit drei kollinearen Punkten 4, B, C,
dann bilden diese Punkte gemeinsam mit dem LotfuBpunkt A4’, B’ bzw. C’
Saccherische Vierecke. Es sei etwa B € AC. Sind dann 8, B, die GréBen der Winkel
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bei B in den genannten Vierecken (Abb. 52b), dann gilt einerseits g, f; < R nach
dem Satz 2.7 und andererseits , + B, = 2R; daraus folgt §; = f, = R und somit
(3'). Nach dem Satz 2.9 gilt dann fiir Saccherische Vierecke die Hypothese des rech-
ten Winkels und schlieBlich das 5. Postulat EvELIDS.

AL

al g .l sl O 9 Abb. 52
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Aus diesen Uberlegungen erhilt man leicht den
Satz 2.10. Das 5. Postulat Euklids ist zu jeder der folgenden Aussagen iiquivalent

(4) Die Abstandslinien sind Geraden.!)
4) Die Punkte der Abstandslinien sind kollinear.
4" Es gibt eine Abstandslinie, die drei kollineare Punkte enthdlt.

Verbindet man die Seitenmittelpunkte eines Dreiecks, dann entstehen vier Teil-
dreiecke; in der euklidischen Geometrie erweisen sich diese Dreiecke als zum Aus-
gangsdreieck dhnlich, insbesondere haben sie die InnenwinkelgréBen «, B, y%)
(Abb. 53a).

Um diesen Sachverhalt in seiner Bedeutung fiir die euklidische Geometrie noch
deutlicher zu machen, setzen wir nun voraus, daB zwei Dreiecke ABC und 4’'B'C’
mit « = &', § = p’ und y = y’ existieren, die nicht kongruent sind. Nach wsw gilt
a Fa',b 3 b und ¢ # ¢’. Ohne Beschrinkung der Allgemeinheit diirfen wir ¢’ = C
und A’'€ CA+, B’ € CB+ voraussetzen (Abb. 53b). Von den Mittelpunkten M
:= M(A, A’) und N := M (B, B')fillen wir die Lote auf g5 Indem wir die LotfuB-

1) Einen ,,Beweis‘ des 5. Postulates mit Hilfe von (4) besaBen nach [15] der in Rom wirkende
griechische Gelehrte Poserponros (135?—51 v.u. Z.), der armenisch-byzantinische Mathe-
matiker AGANIS (5.—6. Jh.), der in Bagdad lebende TEZBIT 1BN QURRA (808 —946) und HasZN
IBN AL-HAITHAM (ALHAZEN, etwa 965—1039) in Kairo. Im Zusammenhang mit dem Parallelen-
problem hat bereits CHRIsSTOPE CLAVIUS (1537 —1612) diese Aussage betrachtet. Dieser deutsche
Mathematiker trat 1555 dem Jesuiten-Orden bei und lehrte mehrere Jahrzehnte im rémi-
schen Collegium Ger Math tik. Im Jahre 1574 erschien von ihm in Rom eine Aus-
gabe der Elemente des EUKLID mit Erlauterungen.

%) Sind K, L und M die Mittelpunkte von BC, CA bzw. AB, dann kénnen wir wie folgt die
Ubereinstimmung in den entsprechenden WinkelgroBen beweisen. Es sei F' der FuBpunkt des
Lotes von C auf gy ;. Wir spiegeln die Dreiecke CFK und CFL an K bzw. L und erhalten ein
Saccherisches Viereck FXFLAB, fiir das in der euklidischen G trie (Hypothese des recht:
kaels) o« + n= B + V2 = R gilt, d.h. X KLC€ o« und X LKC€ f. — Analog erhalten
wir die B h der Dreiecke A ML und BKM ; daraus folgt dann die Behaup-
tung bezughch des Dreiecks KLM (Vgl. auch Aufgabe 1.)
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punkte F bzw. G an M bzw. N spiegeln, erhalten wir wegen « = &’ und g = g
ein Rechteck FGG¥F¥, Nach dem Satz 2.9 gilt das 5. Postulat. Zusammenfassend
haben wir den

Satz 2.11. Das 5. Postulat Euklids gilt genau dann, wenn
(5) es zwei nicht komgruente Drevecke ABC und A'B'C’ mit a =o', f=f

und y =y’ gibt.1)
C
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Die Ptolemiische Form des Parallelenaxioms — zu jeder Geraden gibt es durch
jeden Punkt genau eine Parallele — fand mit den englischen Euklid-Ausgaben fiir
Schulzwecke weite Verbreitung, besonders durch J. PLaYFAIR, Elements of geo-
metry containing the first six books of Euclid, Edinburgh and London 1797%). Diese
Form des Parallelenaxioms wird in England und Amerika meist Playfairsches Axiom
2 t. Die Eindeutigkeit der Parallelen zu einer Geraden durch einen Punkt wurde
auch von HILBERT in seinen Grundlagen der G trie als Axiom verwendet; dieses
einfach formulierte Inzidenzaxiom ist in modernen Darstellungen der euklidisch
Geometrie hiufig anzutreffen. Mit ihm wollen wir sogleich einige weitere A
zur Kennzeichnung der euklidischen Geometrie angeben.

Satz 2.12. Das 5. Postulat Euklids ist zu jeder der folgenden A Lo

J t4 e s
(EP)  Zu jeder Geraden gibt es durch jeden Punkt hochstens eine Parallele (Eukli-
disches Parallelenaxiom).
(6) Es gibt eine Gerade g und auperhalb von g einen Punkt P, durch den hochstens
eine Parallele zu g geht.
(T) Die Parallelitit der Geraden st transitiv.3)

)

Folgerung. Das 5. Postulat gilt genau dann, wenn

(7 zwet parallele Geraden bevm Schnitt mit einer dritten Geraden stets kongruente
Wechsel- bzw. Stufenwinkel bilden.

1) Es war bereits dem Oxforder Geometrie-Professor JoaN WaLLIS (1616 —1703) bekannt,
daB das 5. Postulat gilt, wenn es zu jeder Figur ,,beliebig groBe' dhnliche Figuren gibt.

2) JoEN PLAYFAIR (1748—1819).

3) Statt der Transitivitit kann ohne weiteres die Drittengleichheit werden:
Sind zwei Geraden einer dritten parallel, dann sind sie untereinander pamuel
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(Die Umkehrung von'(7) gilt in der absoluten Geometrie, etwa nach dem Satz vom
AuBenwinkel — #hnlich wie die Umkehrung des 5. Postulats als Folgerung dieses
Satzes 1.33.)

Beweis. Wir zeigen zunichst

A. 5. Postulat = (EP) = (6) = 5. Postulat.

a) Unter der Vor tzung des 5. Postulates betrachten wir in einer Ebene &
eine Gerade g und einen Punkt P und fillen von P das Lot f auf g (Abb. 54a). Nach
dem 5. Postulat kann in ¢ nur die Senkrechte & zu f in P parallel zu g sein.

b) Aus (EP) folgt trivialerweise (6).

g Abb. 54

a) b)

c) Es sei C ¢ g = g4p und ¢’ die einzige Parallele zu g durch C. Wir verschieben
< BAC lings g,¢, bis der Scheitel in C fdllt, d. h. 4* = C (Abb. 54b). Nach dem
Satz vom AuBenwinkel trifft (4:B+)* die Strecke BC* in einem Punkt P; wegen
gng =90 muB P€ BC ng sein. — Bei der Spiegelung am Mittelpunkt M von
BC erhalten wir analog < PCB¢ f. Es gilt folglich « + 8 =9 = 2R —y und
& + B + v = 2R fiir ein Dreieck ABC.!) Nach der Folgerung aus 2.8 ist das zum
6. Postulat équivalent.

B. Es gilt (EP) & (T).

a) Um (EP) aus (T) herzuleiten, bemerken wir, daB || nach (T) in der Menge der
Geraden eine Aquivalenzrelation ist. Es sei nun P ¢ f;, f, || g. Dann gilt P€ f,, f,
und /, || f,; daraus folgt f, = f, nach der Definition der Parallelitit.

b) Wir setzen nun (EP) voraus. Es sei f| g und g | k. Fiir f =g oder g =k ist
die Behauptung f || & trivial. Nun sei f & ¢, ¢ + h, ¢ := gy und { := ¢

Im Fall fn k 4 @ folgt f = h nach (EP) und somit f|| k. Es sei nun fnh =0
Der Beweis von f || k ist erbracht, sobald die Komplanaritit von f, h nachgewiesen
ist. Hierbei ist der Fall ¢ = { trivial. SchlieBlich sei ¢ ¢, P€ % und 7 := ¢p
(Abb. 55). Wie man leicht sieht, gilt # == £, so daB { n 7 wegen P € {, n eine Gerade ist.
Es gilt gn ({ nn) = gnn=0%; als zu g parallele Geraden in ¢ fallen k,{n 73 P
nach (EP) zusammen. Somit gilt schlieBlich f, b = 7.2)

1) Unter der Voraussetzung von (EP) liefern diese Uberlegungen o + 8 + y = 2R fiir alle
Dreiecke.

%) Andernfalls erhdlt man P€ 7 =¢ und & = epy = { im Widerspruch zur Fallvoraus-
setzung.

') Nach einer Analyse der bisherigen Beweise emphehlt sich zur Charakterisierung der eukli-

di trie das folgende Axiom: Sind zwei Geraden einer dritten parallel, dann sind sie
untereinander parallel.
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C. Es gilt (EP) & (7).

a) Unter der Voraussetzung von (EP) seien zwei parallele Geraden f, g gegeben,
die von einer Geraden k in A bzw. B geschnitten werden (Abb. 56). Es sei M der
Mittelpunkt von AB. Aus B¢ f¥, g und f || /¥, g folgt nach (EP) zunichst f¥ = g.
fst f=gup, dann gilt P¥cg und X BAP~ & (BAP)M = & ABP¥, d.h,
X A und X B sind kongruente Wechselwinkel.

Abb. 55 Abb. 56

b) Um abschlieBend (EP) aus (7) herzuleiten, betrachten wir eine Gerade f = g4p
und einen Punkt B ¢ f sowie den Mittelpunkt M von AB. Es sind <t BAP und
< ABP¥ kongruente Wechselwinkel. Wegen der Eindeutigkeit des Winkel
tragens muB jede Parallele zu f durch B nach (7) auch durch P gehen. Somit gilt
(EP) im Fall B¢ f. — Im Fall B¢ f ist (EP) trivial, w. z. b. w.

Ist < POQ ein Winkel, dessen Schenkel nicht in einer Geraden liegen, dann
konnen wir mit Hilfe des 5. Postulates durch jeden Punkt X € OPQ*n OQP+
eine Gerade legen, die beide Schenkel trifft: Ist ndmlich w die Winkelhalbierende
von < POQ und f das Lot von X auf w (Abb. 57a), dann trifft f nach dem 5. Postulat
beide Schenkel des Winkels.

Ry

o

2]

a) b)
Abb. 57

Aus dieser Aussage hat der franzésische Mathematiker ADRIEN MARIE LEGENDRE
(1752—1833) das 5. Postulat gefolgert.!) — Es gelte diese Aussage fiir wenigstens
einen (evtl. ,,sehr* spitzen Winkel) < P,0Q; ; das Bild des Scheitels O bei der Spiege-
lung am Mittelpunkt M von P,Q, werde mit R, bezeichnet (Abb.57b). Wenn es
eine Gerade durch R, gibt, die OP,* und 0Q,* trifft, dann existiert auch eine Gerade,

’

1) Nach [15] sind Mathematiker vor LEGENDRE auch schon etwa denselben Weg gegangen:
der griechische Mathematiker Smuprix10s (6. Jh.), der in Bagdad wirkende SAT'ID AL-GAUHARY
(9. Jh.) und der in Mittelasien schaffende Sams AD-DIN As SAMAREANDI (13. Jh.).
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die P,0- und Q,0- schneidet, etwa in P, bzw. @,. Nach dem Satz 2.5(b, c) gilt
5(0P202) = J(OpgR‘) + ‘5(002R1)
= 5(P|Ple) + MPR,) + 6(M0P1)
+ 6(QiQ:Ry) + S(MQ\R,) + 6(MOQ,)
= §(P\P,R,) + 6(QiQ:1)) + 6(P,Q\R,) + 6(0OP,Qy)
= 6(P1P2R1) + 6(0102R1) + 26(0P101)
und folglich 6(0P,Q,) > 26 mit 6 := §(OP,Q,). Indem wir dieses Verfahren mehr-

fach wiederholen, erhalten wir ein Dreieck OP,Q, mit 6(0OP,Q,) > 2"-1. Nach dem
Satz 2.5(a) erhielten wir

R=— G(OP. . > 272§ und i >é

on-2
fiir alle natiirlichen Zahlen = d. h. § = 0 nach Satz 2.3. Insgesamt gilt der
Satz 2.13. Das 5. Postulat Euklids st zu jeder der folgenden Aussagen dquivalent:

(8) Gilt X € OPQ* n OQP+, dann gibt es eine Gerade durch X, die beide Schenkel
von X POQ trifft.

(8') Es gqibt einen Winkel <x POQ mit Q 4 gop derart, daf durch jeden Punkt
X € OPQ*+ n OQP+ eine Gerade exvstiert, die beide Schenkel von <X POQ
schnedet.

In jiingerer Zeit sind Charakterisierungen der euklidischen Geometrie mit Hilfe
von Abbildungen angegeben worden. Wir wollen zum AbschluB des Abschnittes
wenigstens einige solcher Moglichkeiten ins Auge fassen.

Satz 2.14. Das 5. Postulat ist zu jeder der folgenden Aussagen dquival
9) Das Produkt von je drei ebenen') Punktspiegelungen ist eine ebene Punkt-
spiegelung.

9" Es gibt nicht kollineare Punkte A, B, C derart, daff die Nacheinanderaus-
fiihrung der Spiegelungen an diesen Punkten in €45, etne ebene Punkt-
spregelung st.

(10) Die Nacheinanderausfiihrung von ebenen') Verschiebungen fiihrt wieder zu
ebenen Verschiebungen.

Beweis. Wir beweisen zunichst

A. 5. Postulat = (9) = (9) = 5. Postulat.

a) Es seien 4, B, C drei beliebige Punkte in einer Ebene, ferner sei f := g,p,
¢ das Lot von C auf f, a und b die Senkrechten za f in 4 bzw. B und g die Senkrechte
zu ¢ in C (Abb. 58a). Nach dem Dreispiegelungssatz gibt es eine Gerade d | f mit
0,040, = 04. Wenn wir das 5. Postulat und somit den Rechtseitsatz (Satz 2.9 (2))

hieh

bzw. Vi gen des

1) Diese Aussagen konnen auch als Aussagen iiber Spiegelung
Raumes ausgesprochen werden.
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voraussetzen, dann gilt noch d | g. Unter Beriicksichtigung des Satzes 1.13 erhalten
wir

0050 = 0,0/0/040,0, = 040,
d. h., 64050 ist die Spiegelung an dem Schnittpunkt von d und g.

b) Die Implikation (9) = (9') ist trivial.

c) In eqpc sei 040300 = op. Wir setzen f:= g,p und g:= gop und betrachten
die Senkrechten ¢, d auf g in C bzw. D (Abb. 58b). Nach dem Satz 1.13 gilt 04050, = 0,
so daB ¢, d | f nach dem Hilfssatz 1.17 ist, d. h., daB ¢, f, d, g ein Rechtseit bilden.
Aus (R) folgt aber das 5. Postulat nach dem Satz 2.9.

] c .
g g
a |d b e
0 N f f  Abb. 58
A 8 A 8
a) b)

B. Nach dem Satz 2.10 geniigt es, nun (9) = (10) = (4”) zu zeigen.

Sind in ¢ zwei Verschiebungen r und 7’ gegeben, dann existieren Punkte 4, B, C, D
mit v = g40p und 1’ = o0p; folglich ist " = a40p- 0¢0p = 04050¢ - 0p nach (9)
eine Verschiebung, weil 0,050 Spiegelung an einem Punkt P ist (vgl. Abb. 59a).

P pt prT

g
0 0 f  Abb. 59
Q (i o™t

b}

Wir betrachten eine Verschiebung 7 (== 1) lings f und einen Punkt P ¢ f (Abb. 59b).
Es gibt eine Verschiebung ¢’ mit (P*)” = P. Wenn wir 7z’ nach (10) als Verschie-
bung voraussetzen, dann muB v’ = v-! und v = 7"-! gelten, d. h., daB = Verschiebung
lings f und lings g := gpp ist. Damit enthilt die Abstandslinie zu f durch P mehr
als zwei Punkte von g, etwa P, Pr, P, w. z. b. w.

Aufgaben
. Man verbinde die Sei ittelpunkte eines Dreiecks 4BC und zeige unter Voraussetzung
des 5. Postul daB bei geeigneter Zuordnung die Seiten der Teildreiecke halb so lang
wie die des Ausgangsdreiecks sind.
Anleitung: Vgl. die FuBnote 2 auf S. 68.
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2. Man beweise, daB in der absoluten Geometrie das Produkt einer Verschiebung lings f
und einer Verschiebung lings g eine Verschiebung ist, wenn f und g einen gemeinsamen
Punkt P haben.

21.3. Das Lobacevskijsche Parallelenaxiom

Wir kniipfen hier an die einleitenden, knappen Ausfiihrungen zum Kapitel 1 an.
Das 5. Postulat, EURLIDS ist in seinen Elementen (etwa 325 v. u. Z.) enthalten. In
ihnen wurde nicht nur das mathematische Wissen seiner Zeit in der Sprache der
Geometrie zusammengefaBt, sondern es wurde, ausgehend von ,Definitionen®,
,»,Postulaten“ und ,,Axiomen®, streng logisch hergeleitet. Um die kulturgeschicht-
liche Bedeutung dieses Werkes wenigstens anzudeuten, sei bemerkt, dal die Zroiysin
zu den Biichern mit den meisten Ubersetzungen und Auflagen gehért, und zwar
unter den Biichern aller Zeiten.

Bis in unsere Zeit galten die Elemente beziiglich der logischen Strenge als muster-
giiltig, mustergiiltig nicht nur in der Mathematik. Trotzdem hatten die Mathematiker
von Anfang an Bedenken gegen die Aufnahme des 5. Postulates in das System der
"Axiome und Postulate. Vielleicht hat nur seine Linge dazu AnlaB gegeben, vielleicht
war der Umstand ausschlaggebend, daB seine Umkehrung beweisbar ist (vgl. die
Folgerung aus dem Satz vom AuBenwinkel); vielleicht hat Evkrip dadurch Be-
denken aufkommen lassen, daB er die ersten 28 Sitze ohne sein 5. Postulat beweist.
Wie es auch gewesen sein mag, haben sich doch 2000 Jahre lang bedeutende Mathe-
matiker mit dem sogenannten Parallelenproblem beschiftigt. Bei den zahlreichen?)
Versuchen, EvELIDS 5. Postulat mit Hilfe der iibrigen Postulate und Axiome EvgLIDS
zu beweisen, wurde letzten Endes immer eine Aussage benutzt, die dem 5. Postulat
gleichwertig ist. Solche Aussagen und Hinweise auf ihre Quellen sind im vorigen
Abschnitt 2.1.2 enthalten.

Einer der gro8ten Mathematiker aller Zeiten, CARL FRIEDRICH GAUSS (1777—1855),
auch ehrenvoll princeps mathematicorum genannt, besaB reiches Material zur Uber-
priifung der euklidischen Geometrie aus der Praxis der Landesvermessung: Auch
beim groBten von ihm ausgemessenen Dreieck Brocken—Inselsberg—Hohehagen
(bei Gottingen), bei dem die Entfernung Brocken—Inselsberg mehr als 100 km
miBt, lag die Abweichung in den Fehlergrenzen.?)

Bis zu Beginn des 19. Jahrhunderts wurde versucht, das 5. Postulat EvrrDs
aus den iibrigen Postulaten und Axiomen in den Elementen herzuleiten. Diese
niichterne Feststellung trifft noch nicht ganz den Kern der Bemiihungen; worum
es dariiber hinaus ging, wird vorziiglich durch den Titel der Saccherischen Arbeit
zur Parallelenfrage ausgedriickt: , Euclides ab omni naevo vindicatus, von jedem
Makel befreiter EvRLID (Mailand 1733). Wie schon oben erwihnt, hatte SaccHERI

1) Nach [14] gibt es mehr als 250 ernst zu nehmende Abhandlungen.

2) Nach SarTorIUs von Waltershausen (vgl. [18], S. 267) Mmmber wn-d jedoch die Memung
vertreten, daB Gauss als Astronom nach seinen erfolgrei von Pl
bahnen keine Zweifel an der niherung Giltigkeit der euklidischen G trie auf der
Erde gehabt haben kénne.
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auf Grund eines Fehlers gleich zahlloser anderer Mathematiker vor und nach ihm
das Ziel nicht erreicht. Nach zwei Jahrtausenden miBgliickter Beweisversuche ist
es verstindlich, daB8 der Ungar FARKAS BoLvar (1775—1856) seinem Sohn Janos
davon abrit, sich mit dem Parallelenproblem zu beschiftigen:

,,Versuche die Parallelen auch Du nicht, ich bitte Dich; denn alle Deine Zeit
wiirdest Du dabei verschwenden. Den Satz werdet ihr alle mitsammen nicht beweisen.
Versuche die Ergriindung der Parallelen weder auf dem mir mitgetheilten noch
auf einem andern Wege. Versuche es nicht, nie wirst Du zeigen, dass die obere Gerade
von Strecke zu Strecke um gleiche Winkel gegen die untere gedreht, diese je schneiden
werde. Ich kenne alle Wege bis ans Ende; ich habe keine Idee angetroffen, die ich
nicht schon bearbeitet hétte. Ich durchmaass diese grundlose Nacht, und alles Licht,
alle Freude meines Lebens erstarb in ihr. Ich bitte Dich um Gottes Willen! lass ab
von der Materie der Parallelen — entsetze Dich davor nicht weniger als vor welch’
immer fiir einem liiderlichen Umgang, sie kann Dich ebenso aller Deiner Zeit, Ge-
sundheit, Ruhe und Deines ganzen Lebensgliickes berauben. Jene grundlose Finster-
niss verschlingt gar wohl tausend NEWTONsche Riesenthiirme. Nie wird sie erhellt
auf Erden, und nie wird das arme Menschengeschlecht etwas vollkommen Reines
besitzen, auch in der Geometrie nicht. Eine grosse und ewige Wunde ist dies in meiner
Seele. Gott bewahre Dich davor, dass dies sich bei Dir jemals so tief einfresse. Dies
benimmt einem die Lust zur Geometrie, zum irdischen Leben. Ich hatte mir vor-
genommen, mich aufzuopfern fiir die Wahrheit, und bereit wire ich.gewesen, ein
Miirtyrer zu werden, um nur die Geometrie von diesem Flecken gereinigt dem mensch-
lichen Geschlechte iibergeben zu kénnen. Ich habe riesenhafte Arbeiten unternommen,
nichts unversucht gelassen. Ich lieferte weit Besseres, als bis dahin geleistet wurde,
aber vollige Befriedigung fand ich nicht, da auch hier das: Si paullum a summo
discesseris, vergis ad imum?) Anwendung findet. Als ich einsah, dass der Grund dieser
Nacht von der Erde aus nicht erreichbar ist, kehrte ich um, trostlos, mich und das
arme Menschengeschlecht bejammernd. Lerne Du an meinem Beispiel. Ich blieb
strebend die Parallelen zu erkennen unwissend. Das raubte alle Bliithe meines Lebens
und meiner Zeit, ja darin wurzelte der Grund aller meiner nachherigen Fehler, und
aus den triilben Wolken héduslicher Verhiltnisse regnete es darauf.” (Aus einem Brief,
den der Vater 1820 an den Sohn richtete, vgl. [48], S. 3/4).

In einem 1831 veroffentlichten Anhang zu einem Geometriebuch des Vaters
konnte J. BoLyar (1802—1860), zeigen, daB eine Geometrie denkbar ist, in der es
zu einer Geraden durch einen nicht in ihr liegenden Punkt mehr als eine Parallele
gibt. Doch schon im Jahre 1826 hatte der geniale russische Mathematiker LoBaCEV-
sE1y seiner Fakultit der Kasaner Universitit die Losung des Parallelenproblems
vorgelegt. Dafl die Zeit zur Losung dieses Problems reif war, kommt schlieSlich
auch darin zum Ausdruck, daB Gauss sich seit 1792 mit dieser Frage beschiftigt hatte
und seit etwa 1816 eine nichteuklidische Geometrie besa$; das wissen wir nach der
Veroffentlichung des Nachlasses, aus Briefen konnten es Freunde erahnen:

»+-. Auch iiber ein anderes Thema, das bei mir schon fast 40 Jahr alt ist, habe
ich zuweilen in einzelnen freien Stunden wieder nachgedacht, ich meine die ersten

1) Wenn man vom Gipfel abweicht, gleitet man ganz in die Tiefe.
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Griinde der Geometrie: ich weiss nicht, ob ich Thnen je iiber meine Ansichten dariiber
gesprochen habe. Auch hier habe ich manches noch weiter consolidirt, und meine
Uberzeugung, dass wir die Geometrie nicht vollstindig a priori begriinden kénnen,
ist, wo mdglich, noch fester geworden. Inzwischen werde ich wohl noch lange nicht
dazu kommen, meine sehr ausgedehnten Untersuchungen dariiber zur offent-
lichen Bekanntmachung auszuarbeiten, und vielleicht wird diess auch bei meinen
Lebzeiten nie geschehen, da ich das Geschrei der Bootier') scheue, wenn ich meine
Ansicht ganz aussprechen wollte ... (Aus einem Brief an BESSEL vom 29. 1. 1829,
vgl. {18], S. 200.)

Dieses Zitat deutet an, daB die neue Geometrie das Umdenken sowohl von seiten
der Mathematik als auch von seiten der Philosophie erforderte.

Wir wenden uns zundchst der mathematischen Seite des Umdenkens zu. Seit
SaccHERI versuchte man vielfach, das 5. Postulat EURLIDS indirekt zu beweisen.
Die Entdecker der nichteuklidischen Geometrie, der Lobagevskijschen Geometrie,
gingen ebenfalls von der Verneinung des 5. Postulates aus, aber sie strebten keinen
Widerspruch an, sondern entwickelten die neue Theorie. Doch welche Konsequenzen
hat das Lobagevskijsche Parallelenaxiom, das wir hier als — (EP) formulieren:

(LP) Es gibt eine Gerade g und einen Punkt P, durch den wenigstens zwei
Parallelen zu g existieren.

Als Antwort konnen wir sofort .sagen, da8 dann die Negation aller zu (EP) bzw
dem B. Postulat EURLIDS dquivalenten Aussagen herleitbar ist. Nach dem Satz 2.4
und dem Satz 2.8(1’) erhalten wir den

Satz 2.8'. In der Lobadevskijschen Geometrie gilt « + f + y < 2R bzw. 6 (ABC) > o
fiir alle Drevecke ABC.

In der nichteuklidischen Geometrie kann x + 8 + y nicht fiir alle Dreiecke 4BC
ein und dieselbe Konstante sein, da konstante Defekte mit dem Satz 2.5(b) unver-
triglich sind. Fiir ,,hinreichend kleine* Dreiecke unterscheidet sich dariiber hinaus
& + B + y beliebig wenig von 2R: Ist ABC ein beliebiges Dreieck, dann kénnen
wir 0. B.d. A. &, < y voraussetzen. Folglich hat das Lot von C auf g,5 einen
FuBpunkt F, zwischen 4 und B (Abb. 60).

Wir iiberlassen es dem Leser, folgendes zu zeigen (vgl. Aufgabe 1): In der Ebene
des Dreiecks trifft die Mittelsenkrechte von CF, die Seiten AC und BC in Punkten

A, bzw. B,, und es gilt §(4,B,C) < %G(ABC). — Indem wir diese Konstruktion
wiederholen, erhalten wir eine Folge 4,B,C, 4,B,C, ... von Dreiecken mit (4,B,C)
< 2_1-. 8(ABC). Nach dem Satz 2.3 gibt es zu jeder WinkelgroBe 6 > o eine natiirliche

1) Bootien ist eine Landschaft in Mittelgriechenland, deren Bevélkerung in der Antike als
gefriBig und denkfaul galt. Im zitierten Zusammenhang wird Bootier im ubertragenen Sinne
auf Menschen mit Bildung angewandt, die weder fihig noch bereit gewesen wiiren, sich von
der euklidischen Geometrie zu l6sen (und das waren fast alle!).
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Zahl k mit
1
2E — (o + fi + 7) = 0 AB,C) < 5 0(ABC) = 6.

Nicht so einfach 1aBt sich zeigen, daB auch Dreiecke ABC mit « + 8 +y < 6
fiir beliebiges 8§ < 2R existieren.

Welche weitere Aussagen widersprechen der Anschauung eines nur an der eukli-
dischen Geometrie geschulten Menschen? Nach den Sitzen 2.7, 2.9(3') und 2.9(R)
erhalten wir den

Satz 2.9'. In der Lobalevskijschen Geometrie qilt fiir Saccherische Vierecke die
Hypothese des spitzen Winkels; in thr gibt es keine Rechtecke und damit erst recht
keine Quadrate, zwei Geraden haben hochstens ein gemeinsames Lot.

Aus den Sitzen 2.10(4’) und 2.10(4”) folgt der

Satz 2.10". In der Lobalevskijschen Qeometrie sind die Abstandslinien gekriimmt;
eine Abstandslinie hat mit einer Geraden hochstens zwer Punkle gemeinsam.?)

" Dreiecks bz

-5

Satz2.11’. In der Lobabevskijschen G trie sind Dretecke ABC und A'B'C’
mit o =o', B =p undy =y’ kongruent, genauer: Unter der Voraussetzung o = o',
B =p und y =y gibt es eine Bewegung v des Dretecks ABC mit A* = A’, B =B’
und C* = C' (www).

Indem wir (5) verneinen, erhalten wir einen wei

Nach dem Satz 2.12 und dem Axiom (LP) wird die Parallelenfrage im engeren
Sinne wie folgt beantwortet:

Satz 2.12". In der Lobatevskijschen G trie qibt es zu jeder Geraden g durch
jeden Punkt auferhalb von g wenigstens zwei (und damit dlich viele) Parallel
zu g. Die Parallelitit der Geraden ist keine Aquivalenzrelation, weil sie nach (LP)
nicht transitiv ist bzw. nicht der Drittengleichhest geniigl. Schlieflick kénnen zwei
purallele Geraden beim Schnitt mit einer dritten Geraden inkongruente Stufen- bzw.
Wechselwinkel bilden.

1) Im folgenden Abschnitt 2.2 werden wir noch weitere Gemeinsamkeiten von Kreisen und
Abstandslinien aufdecken.
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Beziiglich der Legendreschen Aussage iiber Winkel kénnen wir nach dem Satz
2.13(8') hier feststellen:

Satz 2.13". In der Lobaéevskijschen G trie gibt es zu jedem Winkel < POQ
mit Q4§ gop wenigstens einen Punk[ X € OPQ+ n OQP*+ derart, daf} keine Gerade
durch X beide Schenkel von < POQ schneidet.

SchlieBlich gilt beziiglich der Aussagen iiber Bewegungen nach dem Zusatz zum
Satz 1.15 sowie nach den Sitzen 2.14(9’) und 2.14(10) der

Satz 2.14". In der Lobadevskijschen Geometrie sind Punkte A, B, C einer Ebene
genau dann kollinear, wenn 0,050, eine ebene Punktspiegelung ist. Auperdem gibt
es Verschiebungen einer Ebene, deren Produkt keine Verschiebung ist, so daf die
ebenen Verschiebungen keine Gruppe bilden.

Vor 150 Jahren bedeutete die Anerkennung der Lobadevskijschen Geometrie
beispielsweise die Anerk der Sitze 2.8’ bis 2.13". Dazu war damals kaum
ein Mathematiker bereit. Den Enbdeckern, die mutig ihre Ergebnisse veroffentlicht
hatten, nimlich LoBa¢Evskis und J. BoLyal, blieb die erhoffte Anerkennung ver-
sagt. GAUss hatte mit seiner AuBerung vom ,,Geschrei der Béotier recht. Erst
nach Jahrzehnten wandten sich breitere Kreise von Mathematikern der nichteukli-
dischen Geometrie zu und begannen, sie zu verstehen. Von J. BoLyar wird berichtet,
daB er unter dem Mangel an Verstindnis in seiner Zeit so litt, daB er friihzeitig
psychisch und physisch verfiel.

Man muf aber auch sehen, daB in allzu vielen ,,Beweisen des 5. Postulates
Fehler gefunden worden waren und daB man damals eher an einen Widerspruch
in der Lobadevskijschen Geometrie zu glauben bereit war, als sie anzuerkennen.
Vielleicht hat Gauss auch deshalb seine Ergebnisse nicht veréffentlicht, weil ihm
ein biindiger Beweis der Widerspruchsfreiheit der nichteuklidischen Geometrie
fehlte. Ja es kann sogar sein, da8 auch Leser nach den Sitzen 2.8’ bis 2.14’ die Loba-
devskijsche Geometrie mit MiBtrauen betrachten. Solchen Lesern sei empfohlen,
das Kapitel 3 vor den Abschnitten 2.2 und 2.3 zu lesen.

Man kann mit Sicherheit annehmen, daB Gauss das ,,Geschrei der Bootier*
nicht nur aus Mathematikerkreisen befiirchtete, sondern da er nur allzu gut wuBte,
daB er mit der Veroffentlichung der nichteuklidischen Geometrie einen Schlag gegen
die damals vorherrschende Philosophie von IMMANUEL KANT (1724—1804) fithren
wiirde (vgl. neben [18], S. 200, noch [18], S. 224, oder [52], S.56/57/81). Gauss
stand wie auch LoBACEVSKIS beziiglich der Geometrie auf einer materialistischen
Grundposition (vgl. [18], 8. 177, oder [52], S. 56/60).

Seit EURLID hatte sich seine Geometrie zu der Raumvorstellung entwickelt.
Die (euklidische) Geometrie!) wurde hinsichtlich des Umfangs und der Methoden
ausgebaut. Ihre Formulierung als analytische Geometrie gestattete GOTTFRIED

1) Dazu muB bemerkt werden, daB von EURLID her bis ins 18. Jahrhundert die Mathematik
in der Sprache der G: trie f liert, daB somit Geometrie synonym fiir Mathematik ge-
braucht wurde.
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WmeELM LEIBNIZ (1646—1716) den geometrischen Zugang zur Infinitesimalrech-
nung. Die folgende rasche Losung zahireicher Probleme, insbesondere der Himmels-
mechanik mit Hilfe der Theorie von Isaac NEwToN (1642—1727), fiihrte zu einem
Gefiihl der Vollkommenheit der Theorie, das JosEPH Louis LLAGRANGE (1736—1813)
zu den folgenden Zeilen an JEAN BAPTISTE LE ROND D’ALEMBERT (1717—1783) ver-
anlaBte: ,,Scheint es Thnen nicht, daB die erhabene Geometrie ein wenig dazu neigt,
dekadent zu werden? Sie hat keine andere Stiitzeals Sie und Herrn Euler. (1772)!)
Ausgesprochen oder unausgesprochen wurde stets das 5. Postulat EUKLIDS voraus-
gesetzt ; speziell in diesem Sinne blieb die Geometrie euklidisch. Die Untersuchungen
zum 5. Postulat verfolgten bis damals nur das Ziel, EUELID ,,von allen Makeln zu
befreien“. So wurde die Geometrie eine Stiitze des mechanischen Materialismus,
aber gegen 1781 gelangte auch KaANT zu der subjektiv-idealistischen Auffassung
von Raum und Zeit als Anschauungsformen a priori jeder Sinneserfahrung. Danach
wiire die euklidische Raumvorstellung denknotwendig. Diese Auffassung ist wegen
der Existenz nichteuklidischer Geometrie hinfillig.

Fiir uns sind die euklidische wie die Lobagevskijsche Geometrie mathematische
Modelle des uns umgebenden Raumes. Im Rahmen der Priifgenauigkeit auf der
Erde stellen sie die realen Verhiltnisse dar. Nach den bisherigen Ausfiihrungen konnte
der Eindruck entstehen, daB die Lobadevskijsche Geometrie die Alternative zur
euklidischen Geometrie ist. Tatsdchlich sind aber in der modernen Kosmologie
zahlreiche mathematische Modelle fiir unseren Raum entwickelt worden, die erheb-
lich komplizierter als die euklidische Geometrie sind, die aber zur besseren Beschrei-
bung der Vorgiinge im Kosmos geeignet sind. So hat ALBERT EINSTEIN (1879— 1955)
in seiner allgemeinen Relativititstheorie 1916 eine Theorie verwendet, die BERN-
HARD RIEMANN (1826—1866) in seiner Habilitationsschrift ,,Uber die Hypothesen,
welche der Geometrie zugrunde liegen* schon 1854 entwickelt hatte. Auch sei
bemerkt, daB seit der Aufstellung der speziellen Relativititstheorie von 1905 vier-
di ionale (mathematische) Raume zur Beschreibung der Realitéit benutzt werden.
Ubrigens hatte HERMANN GRassMANN (1809—1877) in seiner ,Linealen Ausdeh-
nungslehre schon 1844 den Schritt zur n-dimensionalen Geometrie vollzogen2).

Die Entscheidung iiber die Giite einer Geometrie zur Beschreibung der realen
Raumverhiltnisse kann nicht in der Geometrie selbst, sondern nur in der Natur-
wissenschaft gefunden werden; letztes Kriterium der Wahrheit ist die Praxis.
(Man erinnere sich an dieser Stelle an Gauss’ Ausmessung des Dreiecks Brocken—
Inselsberg— Hohehagen!) Wie wir oben bemerkt haben, kénnen wir auf der Erde
die euklidische Geometrie als relativ einfache, brauchbare Anniherung an die realen
Verhiltnisse benutzen. Die Tradition wird bedingen, daB sie auch in der Zukunft
fiir die allgemeinbildende polytechnische Oberschule bestimmend sein wird. Ubrigens
haben wir keinen Grund, nur dem Axiom EP fragliche Ubereinstimmung mit der
Realitit nachzusagen. PascH duBert z. B. gegeniiber der Dichtheit der Strecken und
Geraden (vgl. Satz 1.4) Vorbehalte, die dann beziiglich der Stetigkeit erst recht be-

1) Vgl. [52], S. 144.
%) Wir kénnten uns durch eine Variation der Axiome I, und B, einen miihelosen Weg zur
n-dimensionalen Geometrie schaffen.
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stehen. Damit ist der Zusammenhang mit den reellen Zahlen in Frage gestellt usw.
Wir konnen aber mit PascE abschlieBend nochmals feststellen, daB die euklidische
Geometrie fiir uns auf der Erde ,,hinreichende Genauigkeit besitzt*.

Aufgaben

1. Firr ein Dreieck ABC gelte «, § < y. Dann hat das Lot von C auf g 5 einen FuBpunkt
F, zwischen 4 und B (Abb. 60). Man zeige, daB in der Ebene des Dreiecks die Mittel-
senkrechte von CF, die Seiten AC und BC in Punkten 4, bzw. B, trifft und daB

$(A,B,C) < —;— 8(4B0) gilt.

[S]

. In einer Ebene seit (4 1) eine Verschiebung lings f, P§ f, g := gppr und t’ die Verschie-
bung lings g mit P’ = P. Man beweise, daB8 77’ nach dem Satz 1.15, dem Reduktions-
satz 1.19b und dem Zusatz zu 1.14 wegen P = P in der Lobadevskijschen Geometrie
eine von 1 verschiedene Drehung um P ist, weil 7z’ = 1 nach dem Zusatz zu 1.15 und dem
Satz 2.14’ im Widerspruch zum Lobadevskijschen Parallelenaxiom (LP) steht.

2.2 Biischel und Bahnen

2.21. Beziehungen zwischen zwel Geraden einer Ebene

In der absoluten Geometrie schneiden sich zwei Geraden einer Ebene, oder sie sind
parallel zueinander. Nennt man nun Geraden einer Ebene genau dann verbindbar,
wenn sie einen Punkt oder ein Lot gemeinsam haben, dann kann festgestellt werden,
daB in der euklidischen Geometrie je zwei Geraden einer Ebene durch einen Punkt
(sich schneidende Geraden) oder durch ein gemeinsames Lot (zueinander parallele
Geraden) verbunden sind. Wir werden sehen, daB es in der Lobadevskijschen Geome-
trie unverbindbare Geraden gibt. Vorbereitend beweisen wir einige Hilfssitze.

Hilfssatz 2.15. In der Lobalevskijschen Geometrie seien g, h zwei Geraden einer
Ebene; weiterhin bezeichne < einen gezeichneten Durchlaufsinn von g und X'

den FuPpunkt des Lotes von X € g auf h. Qilt A = A’ oder X BAA'€ x = R fiir
einen Punkt B > A, dann st

alX) = a(X, k) := a(X, X")
fiir X = A streng monoton wachsend, stetig und (nach oben) nicht beschrinkt.')

Beweis. Es seien die Vora tzungen des Hilfssatzes erfiillt,g * hund X, Y =2 4
Punkte mit X < Y (Abb. 61a, b). Fiir X = 4 = 4’ gilt offenbar a(X) = 0 < a(Y).
Andernfalls betrachten wir das Viereck XX’Y’Y mit rechten Winkeln bei X’ und
Y’. Wie man leicht sieht, ist der Winkel bei X nicht spitz und folglich bei Y spitz.

1) Nach diesem Satz wird das Axiom Z, entbehrlich.

In der euklidischen Geometrie ist a(X) fir & BAA’€ « = R konstant (vgl. den Satz 2.10).
ProRLOS D1apocHOS (410—486) hat das 5. Postulat EURLIDS aus der Beschrinktheit von
a(X) fir o = R gefolgert, die nach diesem Satz dem 5. Postulat dquivalent ist.
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Daraus folgt
a(X) < a(Y)
(vgl. Aufgabe 2 aus dem Abschnitt 2.1.1).

X 9 <

A y

3 X oo

Y

5 b h A g h
A X Y X Y’
a) b) -
Abb. 61

Y > X, tragen die Strecke XX’ auf Y'Y+ ab und erhalten einen Punkt Y. Im
Dreieck XYY ist < XY ¥ der groBte Winkel, so daB nach dem Satz 1.34

a(Y) —a(X) =a(Y,7) < a(X, Y)
gilt; bei gegebener Linge a > o gilt demzufolge
aX,Y)<a=a(Y)—aX) <a.
Analog erhalten wir die linksseitige Stetigkeit fiir alle X > 4.
Wir beweisen abschlieBend die Unbeschrinktheit, indem wir auf g einen Punkt
H > A wihlen und zunichst mittels der Verschicbung r := 0405 vermége
A4, := A"

fiir alle natiirlichen Zahlen » auf g eine Skala erzeugen (Abb. 62a). Wir betrachten
drei benachbarte Punkte 4;,, 4; und 4;,,, tragen auf 4;'4;* die Strecken 4;,4;_,

Um die rechtsseitige Stetigkeit in X = 4 zu zeigen, betrachten wir einen Punkt

Ajs

Ali-1 Alx‘ A;'d
Al b)

Abb. 62
und 4;,,4/,, ab und erhalten P bzw. R (Abb. 62b). AuBerdem sei Q das Bild von

P bei der Spiegelung an A4, In den Saccherischen Vierecken 4;,4;_ ,4,/P und
A, A{ AR liegen bei P bzw. R spitze Winkel, in den kongruenten Dreiecken
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A AP und A;4,4,Q liegen folglich bei P bzw. @ stumpfe Winkel; mit dem Satz
vom AuBenwinkel ist nur Q € (4,R) vertriiglich, d. h.

a(4,) — a(44) = a(4;, P) = a(4;, Q) < a(4;, B) = a(4y) — a(4)).
Mit a := a(d4,) und b := a(4,) — a(4,) erhalten wir

a(4,) =a+0b,
4 a(4,) = a(4,) + (a(4.) — a(4,)) > a(4,) + (a(4:) — a(4y)) = a + 2b,

Nach dem Eudoxus- Archimedischen Axiom 2.1 ist a(X) nach oben nicht beschrinkt.
Der Fall g | h ist wegen a(Y) — a(X) = a(X, Y) fir X < Y trivial, w. z. b. w.
Aus dem Hilfssatz folgt unmittelbar der
Satz 2.16. In der Lobalevskijschen Geometrie ist fiir zwer verbindbare Geraden g

und h die Funkiion a(X) sowohl bei wachsendem als auch be: fallendem X unbeschrinkt.?)

Fiir sich schneidende Geraden ist o das Minimum von a(X), wahrend andem/all,a

a(X) sein Minimum annimmi, wenn X auf dem (nach 2.9’ eindeutigen) g
Lot von g und h liegt.

Vom ersten Teil des Satzes gilt auch die Umkehrung:

Satz 2.17. Ist in der Lobalevskijschen Geometrie fiir zwei Geraden g und h einer
Ebene die Funktion a(X) sowohl bei wachsendem als auch bet fallendem X unbeschrinkt,
dann &ind g, b verbindbar.

P R

Q 4
X I 8l 5i_h  Abb. 63
P m R .

Beweis. Fiir sich schneidende Geraden ist nichts zu zeigen. Wir betrachten deshalb
den Fall, daB g, h parallel sind. Es sei g = go und etwa < Q'QR nicht spitz (Abb. 63).
Dann gilt a(Q) < a(R). Da a(X) fiir X € QR- als unbeschrinkt vorausgesetzt wird,

1) Folglich kénnen Geraden in der Lobadevskijschen Geometrie nicht durch lineare Gleichun-
gen beschrieben werden.

%) Wegen dieses Sachverhaltes werden zwei parallele verbindbare Geraden als divergierend
bezeichnet.
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gibt es einen Punkt P € QR- mit a(P) > a(Q); o. B. d. A. gelte fiir R nach 2.15 noch
a(P) = a(R). Bei der Spiegelung an der Mittelsenkrechten m von P'R’ bleiben g und
hfest,d.h.g,h | m, w.z.b. w.

Als Folgerung aus den Sitzen 2.16 und 2.17 erhalten wir unmittelbar den

Satz 2.18. In der Lobadevskijschen G irie sind zwes parallele Geraden g und b
genau dann unverbindbar, wenn a(X) bei wachsendem oder bei fallendem X beschrinkt
st.

Sind eine Gerade k und ein Punkt P mit P ¢ & gegeben, dann konnen wir eine Paral-
lele zu & durch P konstruieren, indem wir einen beliebigen Punkt X € k withlen und
h am Mittelpunkt M von P und X spiegeln (Abb. 64a). Dabei sind die Parallelen
und k¥ verbindbar, weil das Lot von M auf h auch zu h¥ senkrecht ist

alle Parallelen
2u h durch P

Abb. 64

>

al

Um die Frage nach der Existenz unverbindbarer Geraden zu beantworten, be-
trachten wir das Lot / von P auf k mit dem FuBpunkt P’ sowie einen Punkt Q
auf der Senkrechten zu f in P (Abb. 64b). Wir betrachten die gemiB Satz 1.5 geord-
nete Menge M der von P ausgehenden Halbgeraden, die P'Q treffen und fiir die
PP+ erstes und P@+ letztes Element ist. Die Menge

M = (PXte M: X€h),

d. h. die Menge der k schneidenden Halbgeraden aus M, ist nicht leer und nach oben
beschriinkt ; sie besitzt folglich nach dem Satz 1.5 und dem Axiom von der oberen
Grenze eine obere Grenze PR+, o. B. d. A. mit R € P'Q. Die Gerade

g :=grr

kann h nicht schneiden; da andererseits alle Halbgeraden aus M, die & nicht schnei-
den, obere Schranken von M’ sind, ist g ,,erste* Parallele, Grenzgerade oder Randpar-
allele.)

Es sei nun § ein beliebiger Punkt der offenen Halbgeraden PR+ (Abb. 65a), S’
der FuBpunkt des Lotes von § auf & und 7 der FuBpunkt des Lotes von P auf ggs.
Im Viereck PP'S'T liegt bei P ein spitzer Winkel, wegen PT+nh = @ liegt PR+

1) Fiir diesen Namen gibt es verschiedene Motivierungen. Wir konnen etwa daran denken,
daB g und g/ die Winkelfliche in epy ,,beranden*, die alle Parallelen zu & durch P umfaBt.
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vor PT+, und folglich liegt S zwischen §' und 7. Somit gilt
a(S) < a(¥', T) < a(P)?)

(vgl. dazu Aufgabe 2 aus dem Abschnitt 2.1.1),d. h. nach dem Satz 2.18,daB g und 2
unverbindbar sind.

P T P X U
T
S
— Y
g % [\g
ul I» h 0 h
7 27 g 3
a) b)
Abb. 65

Umgekehrt ist eine Gerade gpy — ep, randparallel zu k, wenn a(X) fiir alle
X € PU+ beschrinkt ist: Die Randparallele ¢ zu 2 durch P, die P'U und somit
P'X trifft, muB auch einen Punkt ¥ von XX’ enthalten (Abb. 65b). Ist nun X"
der FuBpunkt des Lotes von X auf g, dann gilt

aX, X"V < aX,Y)<aX,X),
d. h.,daB a(X, X") beschriinkt ist. Folglich gilt nun g = gpy, denn fiir sich schneidende
Geraden gpp und ¢ ist a(X, X”’) nach dem Satz 2.16 unbeschriinkt.
Zusammenfassend konnen wir feststellen:

Satz 2.19. In der Lobadevskijschen G trie sind zwei Geraden g und h einer
Ebene genau dann randparallel, wenn a(X) bet wachsendem oder fallendem X beschrinkt
8t, d. h., wenn sie unverbindbar sind.

Satz 2.20. In der Lobadevskij " Geometrie gibt es zu jeder Geraden h durch
jeden Punkt P ¢ h zwer Randparallele

Sind f und g zwei Randparallele zu k durch P, dann bestimmen diese Randparalle-
len einen Winkel der GroBe 2x, in dessen Innerem h verlduft (Abb. 66a). Nach
LoBadEvsk1y faft man « als Funktion des Abstandes a von P und kb auf:

« = II(a).

Da Randparallelen einer Geraden bei Bewegungen stets in Randparallelen der
Bildgeraden iibergehen, hingt « nur von a und nicht von der speziellen Geraden h
und dem speziellen Punkt P ab.

Zum Definitionsbereich der I7-Funktion gehéren alle Lingen a > o. Um uns einen
Uberblick iiber den Wertebereich der /7-Funktion zu verschaffen, betrachten wir

1) Es lieBe sich sogar zeigen, daB a(S) mit wachsendem Abstand a(P, §) monoton gegen 0
strebt. Deshalb nannte J. BoLYAl solche Geraden g, h asymptotisch. 'UMAR AL-HAYYZM
(1048—1131) erhlelt du 5. Postu.lut El:rxmns unter der Voraussetzung, daB einander unbe-
grenzt nih G sich
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eine WinkelgroBe « mit 0 < « < R, einen Winkel < POQ der GriBe 2« und dessen
Winkelhalbierende w. Nach dem Satz 2.13' gibt es einen Punkt X € OP@+ n OQP+
derart, daB keine Gerade durch X beide Schenkel von <t POQ schneidet. Das Lot
f von X auf w trifft weder OP+ noch OQ+ (Abb. 66b). Alle Lote von w durch Punkte
von OPQ+n OQP+, die OP+ nicht treffen, sind (bei geeigneter Feststellung der Ord-
nung nach der Ordnung der Punkte in w) obere Schranken fiir die nichtleere Menge

L
. d X t

a) b) Abb. 66

h f

der Lote von w, die OP+ (und 0Q*) treffen; folglich besitzt diese Menge eine obere
Grenze h. Offensichtlich kann h den Schenkel OP+ nicht schneiden; nach dem Satz
2.19 sind gop und k randparallel. Insgesamt gilt der

Satz 2.21. In der Lobabevskijschen Geometrie hat die IT-Funktion, die fir alle
Liingen a > o definiert ist, das offene Intervall (o, R) als Wertebereich.)

In der euklidischen Geometrie ist keine Linge a 3= o vor einer anderen ausge-
zeichnet. Im Gegensatz dazu gibt es Winkel, wie beispielsweise, die rechten, die
geometrisch von den anderen unterschieden werden konnen. Deshalb kann man die
‘Winkelmessung mit, R oder ganzzahligen Teilen von R als Einheit aufbauen, wihrend
die Liing g etwa beziiglich des Urmeters Kopien davon notwendig machte.

In der Lobadevskijschen Geometrie konnen wir rechte Winkel konstruieren, aber
auch eine Einheitsstrecke besti indem wir oben beispielsweise von einem rech-
ten Winkel < POQ ausgehen, die Strecke OH mit H als Schnittpunkt von A und w
ins Auge fassen (Abb. 86b) und deren Linge e als Lingeneinheit wihlen; dann gilt
R = 2I(e).

Folgerung 2.22. In der Lobak kijschen Geometrie ko Einhestswinkel und
Einhettsstrecken innermathematisch bestimmt werden.?)

Aufgaben

1. Es sei g = gpg randparallel zu k, P < Q und a(P) > a(Q). Man zeige, daB a(X) fir X > P
monoton fallend ist und daB die Definition der Randparallelitit unabhingig von der Wahl
eines Punktes P € g ist.

1) In der euklidischen Geometrie ist diese Funktion konstant H(a) R Iur alle Lungen a.
?) In diesem Sinne spricht man auch von ,,absol und Wi . Es
war bereits LAMBERT bekannt, daB die Hypothese des spitzen Winkels fiir Saccherische Vler-

ecke zu einer absoluten Lingeneinheit fiihrt.
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2. Man beweise mit Hilfe des Satzes 2.19, daB die Randparallelitit symmetrisch ist.
Anleitung: Es sei g = gpq randparallel zu %, weil a(X) fir X € PQ* beschrinkt ist. Man
zeige, daB a(Y, g) fir Y € P'Q'+ beschrinkt bleibt. (Dabei bezeichne a(Y, g) den Abstand
von Y und g und P’ bzw. Q' den FuBpunkt des Lotes von P bzw. @ auf k.)

2.2.2.  Bischel in einer Lobagevskijschen Ebene

Im folgenden untersuchen wir Mengen von Geraden einer Ebene ¢. Besonders einfach
lassen sich wichtige Eigenschaften der Mengen
M(P):=(zxce: P€a},
M) :={(zxce: gLz
(Abb. 674, b) herleiten. Sind M und M’ solche Mengen, dann gilt
1 abeEM M >a=bvM=M.
Zum Beweis betrachten wir zwei Mengen M und M’ (M =+ M') sowie Geraden a
und b mit a, b€ M, M'.
Fall1l: M =M(P) und M’ = M(Q). Aus M =M’ folgt P=+Q und a=b
wegen der Eindeutigkeit der Verbindungsgeraden zweier Punkte.
Fall 2: M = M(P) und M’ = M(g). Es gilt a =b wegen der Eindeutigkeit
des Lotes von P auf g in e.
Fall 3: M = M(f) und M’ = M(g). Aus M + M’ folgt f 4 g und a = b wegen
der Eindeutigkeit des i Lotes von f und g nach dem Satz 2.9’, w. z. b. w.

&

Fiir eine Menge M der oben definierten Art gilt

2" a,b,¢,€ M=V 0,040, = 0.
deM

Diese Aussage ist gerade der Dreispiegelungssatz (vgl. 67a, b)-.
I: L t Ld l: L
i I l l l l Abb. 67

b)

aQ

SchlieBlich seien noch folgende, offensichtlich richtige Regeln
3) M(PY = M(P!), Mgy = Mg’

beziiglich der Spiegelung an einer Geraden f hervorgehoben.
Andererseits kénnen wir mit Hilfe von

S:={o;: zc¢);
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der Menge der Spiegelungen an Geraden der Ebene ¢, Mengen von Geraden beziiglich
zweier Geraden a und b aus ¢ wie folgt einfithren:

M(a,b) := [z < e: 0,050, € S}.
Wie der folgende Satz lehrt, sind die Mengen M(P) bzw. M(g) unter den soeben
definierten Mengen enthalten.
Satz 2.23. Fiir je zwei Geraden a und b aus & gilt

a,be M(Py=> M(P) = M(a, b),
a,be M(g)=> M(g) = M(a,b).

Beweis. a) Aus a,b, z€ M(P) bzw. a,b, x€ M(g) folgt nach dem Dreispiege-
lungssatz z € M(a, b).

b) Gilt z € M(a, b) fiir eine Gerade z < ¢, dann ergibt die Umkehrung des Drei-
spiegelungssatzes z € M(P) im Fall a,b€ M(P) und z€ M(g) im Fall a, b€ M(g),
w.z. b. w.

Definition. Die Mengen M(a, b) werden (GQeraden-) Biischel genannt. Speziell
heiBen die Mengen M(P) eigentliche Biischel, die Mengen M(g) Lotbiischel und alle
Biischel M(a, b) mit unverbindbaren (oder randparallelen) Geraden a, b Enden.

Wir wollen nun zeigen, da8 die Beziehungen (1’) bis (3) fiir alle Biischel gelten.
Dazu stellen wir vorbereitend einige Regeln bereit.

Hilfssatz 2.24. Die dreistellige Relation o400, € S hat folgende Eigenschaften:
(a) Es gilt 0,040, € S, wenn a, b, ¢ nicht paarweise verschieden sind (Reflexivi-
tat).
i . . . (123
(b) Gilt 0y0,03€ S, dann qilt 60,0, € S fir jede Permutation . . .| von
{1, 2, 3} (Symmetrie). U % %,
(c) Aus a + b und 0,040,, 0,0,04 € S folgt oy0.04 € S (Transitivitit).
Folgerung. Auferdem gilt
(d) a,b€ M(a,b),

z € M(a, b) A 0,000, = 0y => z' € M(a, b),
(e) z, 9,2 € M(a,b)=> V 0,0,0, = g, Au€ Ma, b),
“

(f) a+bra,be M, d)=> M(a,b) = M(c,d).

Beweis. a) Die Reflexivitit ist in den Fillen a = b bzw. b = ¢ trivial. Im Fall
a = ¢ gilt 0,0,0, = 0, € § mit g = b° nach der Vorbemerkung zu Abschnitt 1.2.

b) Es sei 0,0,04 € 8. Es gilt 0,050, = 0,(010:0;) 0, € S und 030,60, = (0,0,0,)"1 € 8.
Da alle Permutationen von (1,2, 3} durch Nacheinanderausfiihren der Permuta-

tionen (; :23 ?) und (; : ::) gewonnen werden konnen, besteht die Symmetrie.
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¢) Es sei a & b und ¢, d € M(a, b). Wenn a, b verbindbar sind, dann gibt es einen
Punkt P oder eine Gerade g mit P€ a,b,c,d oder a,b,¢c,d | g nach dem Satz
2.23; folglich ergibt der Dreispiegelungssatz ¢,0,0, € S.

Im folgenden seien a, b unverbindbar. In den Spezialfillen ¢ =¢, a =d, b =,
b = d oder ¢ = d gilt der Reihenach 0,0,0; = 0,0,04 € S nach b), 6,0.04 = 0,09, €S
nach b), 0,0,0; = 04 € 8, 040,05 = 0.0y € S bzw. 0,0.0; = 0, € S. Wir setzen nun
a, b, ¢, d als paarweise verschiedene Geraden voraus; wegen der Unverbindbarkeit
von a und b sind nach der Umkehrung des Dreispiegelungssatzes auch a, b und ¢
bzw. a, b und d paarweise unverbindbar.

Wir erhalten nun das gewiinschte Resultat durch mehrfache Anwendung des
Lotensatzes von HyeLMsLEV: Wir wiihlen einen beliebigen Punkt B € b und fillen
von ihm die Lote a’, ¢’ und d’ auf a, ¢ bzw. d; die LotfuBpunkte seien 4, C bzw. D

Abb. 68

(Abb. 68). Wegen der Unverbindbarkeiten gilt A + C, D. Fiir die Lote ¢ und d von
B auf g,p bzw. g4 gilt wegen 0,0,0,, 60,0404 € S nach dem Lotensatz

* 0000y = O3y OgOp0y = 0.

Es gilt C = D, denn andernfalls wiire ¢’ = d’ und somit ¢ = d im Widerspruch zur
Voraussetzung. Es sei 4 der FuBpunkt des Lotes @ von B auf gcp; die Fquunkte
der Lote ¢ und d in g,p bzw. g, werden mit C und D bzeichnet.

Es gilt 030,05 = 040,05 = 6;040; € S nach (*) und dem Dreispiegelungssatz;
e8 sei 0, 1= 050,05 = 030y05 = 0;04.05. Wir betrachten M(B) und M(C), M(D) bzw.
M(A) und erhalten nach dem Lotensatz, daB erstens 4 und C sowie 4 und D auf
ein und derselben zu g senkrechten Geraden liegen und daB zweitens 0;0,,0; = 0,
= 0;0,0; und 0;0, = 050, ist. Nach (*) folgt hieraus

050 = OgOy0y + Oy = OgGpe
Somit gilt neben @ | gcp noch
05 = G400+
Nach dem Lotensatz bedeutet das aber ¢,0,0,4 € S, d. h. 6,00, € S nach b).
Zum Beweis der Folgerung stiitzen wir uns nur auf (a) bis (c).
d) Nach (a) gilt a, b € M(a, b), und aus z € M(a, b) und g, := 0,00 € S folgt
0,040y = 0,040,0,0 = 00,04 € S,

d. h. 2’ € M(a, b), ebenfalls nach (a).
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e) Es sei z, y, 2 € M(a, b). Wir zeigen zunichst 0,00, € S. Das ist nach (a) klar,
wenn z, y, z nicht paarweise verschieden sind. Nun sei z & y ==z == z. Nach (b)
diirfen wir 0. B. d. A. b = z voraussetzen, so da8 nach (c) der Reihe nach gilt:

040405, 0a0p0, € 8=> 0,0,0,€ 8,
04002, 0a040; € 8= 0y0,0,€ 8,
0400, 0p0,0,€ 8= 6,0,0,€ 8.
Gilt 0 := 0,040, und 0, := 0,0,0,, denn folgt nach (d) 2, y, z € M(a, b) und nach
dem bereits Bewiesenen
00y = 0a0b0:0,0, = 00,0,€ S,
d. h. u € M(a, b).
f)Es sei a +=b und a,b€ M(c, d). Aus z€ M(c,d) folgt 0,000,€ S nach (e),
d. h. z € M(a, b). Nun sei z € M(a, b). Nach (b) und (c) erhalten wir wegen
04040y o040 € 8 => 040,0,€ S,
040,04 04005 € 8=> 0,0,00€ 8
zuniichst ¢, d ¢ M(a, b) und dann 0,040, € S nach (e), d. h. z € M(c, d).
Insgesamt gilt M(a, b) = M(c, d), w.z. b. w.
Satz 2.25. Fiir Geraden a, b, ¢, f und Biischel M, M’ gilt

(1) a,bEMM >a=bvM=M,

(2) a,b,c€ M=V 6,000, = 04,
deM

(3 M(a, b)Y = M(a?, ),
3" f€ M(a, b) = M(a, b)! = M(a, b).
Zusatz. Zu Geraden z, Y€ M(a, b) gibt es eine Gerade m € M(a, b) mit 2™ = y;

fiir etgentliche Biischel M(a, b) gibt es genau zwer zueinander senkrechte Geraden dieser
Eigenschaft in M(a, b), und fiir nicht eigentliche Biischel M(a, b) ist m eindeutsg.

Beweis. a) Es sei a,b€ M, M’ und a 3b. Nach 2.24(f) gilt offensichtlich
M =M@, b =M.
b) Der Dreispiegelungssatz fiir Geraden eines Biischels ist nach (e) trivial.
¢) Zum Beweis der Gleichung M(a, b)/ = M(a/, b/) betrachten wir folgende, fiir
2 = y/ untereinander équivalente Aussagen:
Y€ Ma, by,
z€ M(a, b),

0,040 € S,
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919407 - 440y - 000, € 8,
0uOn0 € S,
2 € M(al, V),
y€ M(a, b).
d) Es sei f€ M(a,b). Wegen 0/0,0; = 05, und 0,0,0, = 0y, gilt o/, & € M(a, b)
nach (2) und schlieBlich M(a, b))/ = M(a’, &) = M(a, b) nach (3) und (1).
Wir beweisen nun den Zusatz.

Existenz. Es sei z, y € M(a, b). Fiir verbindbare Geraden z, y erhalten wir eine
gesuchte Gerade m als Winkelhalbierende bzw. Mittelsenkrechte (Abb. 69 a, b).
Wir setzen nun z, y als unverbindbar voraus und wihlen einen Punkt X € z
(Abb. 69¢). Von X fillen wir das Lot auf y und erhalten einen FuBpunkt X’. Der

a) b) cl

FuBpunkt Z des Lotes von X' auf z ist wegen der Unverbindbarkeit von z und y
von X verschieden; nach dem Satz 1.34 gilt a := a(X, X’) > a(X’, Z). Nach dem
Hilfssatz 2.16 gibt es einen Punkt Y € y mit a = a(X, X') = a(Y, z); es sei ¥’
der FuBpunkt des Lotes von Y auf z. Man iiberlegt sich leicht, daB sish die offenen
Strecken (XX') und (YY’) wegen a(X, X') = a(¥Y, Y’) in einem Punkt S schneiden
miissen. Die Dreiecke X8Y’ und YSX’ sind nach www kongruent, da X X und
X Y die GroBe IT(a) besitzen. Somit hat die Winkelhalbierende m von < XSY die
Eigenschaft

™ =y.
Folglich ist 0, = 0,0,0, und 0,0,0, = 0, d. h.
m€ M(z, y) = M(a, b)
nach den Sitzen 2.24(b) und 2.25(1).
Eindeutigkeit. Aus 2™ = y = z" und m, n € M(a, b) folgt
OmOzOm = Unt."zdm OO OmOp = 0p0z, Op* OpOp0; = 0x0;

nach dem Satz 2.25(2) und somit 0040, = 0,, d. h. n™ = n. Folglich haben wir
m =mn oder m | n, m =mn oder M(a,b) = M(m,n) nach dem Satz 2.25(1). Es
gilt entweder m = n, oder M(a, b) = M(m, n) ist wegen m | n eigentlich, w. z. b. w.
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Aufgaben

1. Man beweise, daB je zwei Geraden eines Endes unverbindbar sind.?)
2. Man zeige, daB beziiglich einer dreistelligen Aquivalenzrelation in der Menge
= {z€ @: z < ¢} mit den Eigenschaften (a) bis (c) das Sys',om der Biischel M(a, b) fol-
gende Eigenschaften besitzt (vgl. die Eigenschaften einer Kl g in einer Menge):
(g) Je zwei Elemente aus S liegen in einem Biischel, und jedes Biischel enthslt wenigstens
zwei Elemente.

(h) Zwei Biischel haben hchstens eine Gerade gemeinsam.
AuBerdem befinden sich je drei Elemente eines Biischels in der Relation; und besteht die
Relation fiir drei Elemente, von denen zwei einem Biischel angehéren, dann liegt auch das
dritte Element in diesem Biischel.

2.2.3.  Bahnen beziiglich eines Biischels

Wir betrachten ein eigentliches Biischel M(a, b) = M(P) in & und suchen die kleinste
Untergruppe U(a, b) der Gruppe der Bewegungen B, von ¢ auf sich, die die Menge
der Geradenspiegelungen

S(a, b) := {0,: z€ M(a, b))

umfaBt. Jede Untergruppe von 9B,, die S(a, d) umfaBt, muB auch alle Produkte
0y O Mit 0y, ..., 0y € S(a, b) enthalten; wegen

(010 Om)™t + 0y 6 = Ope++0y + 070,
gilt
Ula, b) = (0y:+0m: 0y, ..., 0 € S(a, b))
Nach dem Satz 1.14 enthilt U(a, b) die Gruppe
D(a, b) := {o0’: 0,0 € S(a, b)},
die Gruppe der Drehungen um P, als kommutative Untergruppe. SchlieBlich gilt
nach dem Dreispiegelungssatz
U(a, b) = D(a, b) u S(a, b).
Man kann sich eine tiefere Einsicht beziiglich der Wirkung einer Abbildungs-
gruppe und eine anschauliche Vorstellung von ihr verschaffen, indem man dle Bilder

eines Punktes X bei allen Elementen der Gruppe betrachtet. Beispiel sind
“die Bildmengen

XPtab) ;= (X': Vo€ D(a,b)n X' = X¢},
[

XUv0@b :=(X': Vre Ua, b)a X' = X7}
T

1) Dariiber hinaus gilt fiir ein Ende M(a, b), fir das ay(X) bei in a wachsendem X beschrinkt
ist: g€ M(a, b) :)a,(X) ist bax in a wachsendem X beschrankt. Das heiBt, daB ,,randparallel
zu a beziiglich <,* eine lation ist.
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im Fall eines eigentlichen Biisthels M(a, b) = M(P) fiir X == P konzentrische Kreise
mit dem gemeinsamen Mittelpunkt P (Abb. 70). Die Geraden des Biischels sind
die Symmetrieachsen.

XDlab).xUe)

Abb. 70

Diese Uberlegungen lassen sich fiir belicbige Biischel verallgemeinern:

Satz 2.26. Fiir ein beliebiges Biischel M(a,b) in & ist D(u, b) eine kommutative
Untergruppe der Gruppe U(a, b) = D(a, b) u S(a, b). Auferdem gilt
XUab) — XDiab) — XS(a,b)
fiir alle Punkie X € ¢, wober
Xstod) ;= {X’: Vi€ M@, b)a X' = Xl}
!
ist.
Beweis. a) Es sei g, ¢’ € D(a, b). Dann gibt es Geraden c, d, ¢/, d’' € M(a, b) mit
¢ = 0,04 und ¢’ = gy0p. Nach dem Satz 2.25(2) gilt
o7 = 040, 0p04 = 0+ 00,04 € D(a, b),
d. h., D(a, b) ist eine Gruppe.
Zum Beweis der Kommutativitit bemerken wir zunichst, da nach dem Satz
2.25(2) fiir z, y, z € M(a, b) stets 0,0,0, = 0,0,0, gilt. Folglich ist
00" = 0,04+ 0404 = 0,040 * Oy
= 0¢040; * Oy = O¢ * 040c0a
=0y * 040,04 = @0
b) Wir iiberlassen es dem Leser, die Aussage iiber Ula, b) zu beweisen.
c) Zum Beweis der iibrigen Teilbehauptungen geniigt es, XP@:b) — XS@.b) zy
zeigen. Nach der Folgerung aus dem Satz 1.18 gibt es eine Gerade f € M(a, b) mit
Xe€f Wenn Y ¢ XP@b gilt, gibt es Geraden ¢, d € M(a, b) mit ¥ = (X°)¢; nach

dem Satz 2.25(2) ist ¥ = ((Xf ))d € XS@», Gilt umgekehrt Y € X505 wegen
Y = X9 und g € M(a, b), dann ist ¥ = (X/) ¢ XP0D), w, z. b. w.

Die Mengen X2 werden Orbits oder Bahnen (Bahnkurven) genannt. Die Biischel
konnen als Parameterbereich fiir X2@.b) = X5@.») gedeutet werden. Man iiber-
legt sich leicht, daB8 im Fall der Gruppe der Drehungen um P das System der Bah
aus (P} und allen Kreisen mit dem Mittelpunkt P besteht und daB fiir die Gruppe der
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Verschiebungen lings | dieses System neben f alle Abstandslinien von f in & enthilt
(vgl. Aufgabe 1). Die Bahnen beziiglich der ,,Drehgruppe‘‘ D(a, b) mit unverbind-
baren Geraden a, b werden Grenzkreise') genannt. — Fiir Bahnen beziiglich eines
Biischels lassen sich einheitlich weitere Eigenschaften ableiten:

Satz 2.27. a) Jede Gerade g eines Biischels M(a, b) st Symmetrieachse von X5:b),

b) Aus ¥ € X502 folgt XS@0) = Fswb),

¢) Zu jedem Punkt Y € X5®) gibt es eine Gerade y € M(a,b) mit Y € y; y st fir
M(X) % M(a, b) eindeutig.

d) Zu jeder Geraden y€ M(a,b) gibt es einen Punkt Y € X569 mit Y € y. Der
Punkt Y ist eindeutig, wenn M(a, b) nicht eigentlich ist; bei einem eigentlichen Biischel
M(a, b) = M(P) enthilt y zwei Punkte von X5, sobald X == P gilt.

Beweis. Es sei M(a, b) ein Biischel.

a) Es sei g€ M(a,b) und Y € XS@®), Folglich gibt es eine Gerade f€ M(a, b)
mit ¥ = X’/. Nun gilt nach dem Satz 2.26 der Reihe nach Y7 = (X/)# ¢ XD.)
— XSw@.b),

b) Unter der Voraussetzung Y € X5 gibt es eine Gerade f€ M(a,d) mit
Y =X/ (und Y/ =X). Fiir Z¢ X5¢% gibt es eine Gerade g€ M(a,b) mit
Xt=2, dh Z=X0=(Y/)yeYPob =Y 5@, fiir Z¢ ¥Y5@b existiert
eine Gerade h € M(a, b) mit Y* = Z, so daB Z = Y* = (X/)* € XP@b) = Xs@b gilt,
Wegen XS6.b) < Y560 und Y565 < X56.) jgt folglich XS@:b) = YS@b),

c) Wegen Y € X5@b) = YS@b nach b) gibt es eine Gerade y¢€ M(a,b)
mit Y*=1Y und Y € y. Um die Eindeutigkeit fiir M(X) 4= M(a, b) zu zeigen,
betrachten wir Geraden f,y,y’ € M(a,b) mit X/ = Y € y,y'; wire y & y', dann
erhielten wir M(a, b) = M(y, y') = M(Y) = M(X) nach dem Satz 2.25(1,3') im
Widerspruch zur Voraussetzung. Folglich gilt y = y'.

d) Es sei y € M(a, b) und X € 2 < M(a, b). Nach dem Zusatz zum Satz 2.25 gibt
es eine Gerade m € M(a, b) mit 2™ = y, wobei ¥ := X™ ¢ y n X50.) nach a) gilt.

Um die Eindeutigkeitsaussagen zu beweisen, betrachten wir den Fall y n X5¢.b)
= (Y, Y') mit ¥ 5 Y’. Nach b) ist XS@b) — YS@b) go daB eine Gerade
g€ M(a,b) mit Y9 = Y’ existiert. Wegen M(a, b) = M(g,y) und g | y ist M(a, b)
eigentlich. — Gilt M(a,b) = M(P) und X = P, dann gilt Pém, Y =X"+ P
und ¥ # Y’ := YP = (Xm)P ¢ XS0 ny, w.z. b. w.

Wne der Satz 2.27 (d) lehrt, kann die Definition der Kreistangente der eukli-
disch targeometrie nicht auf Abstandslinie und Grenzkreis ausgedehnt
werden. Wu' erkliren deshalb (vgl. Abb. 71)

Definition. Die Gerade g heiBt Stiitzgerade der ebenen Figur F in einem ihrer
Punkte P € F genau dann, wenn P € g und F & ¢gX+ fiir einen Punkt X gilt. Existiert
in einem Punkt P € F genau eine Stiitzgerade von F, dann wird diese Tangente
genannt (Abb. 71b, c).

1) LoBAGEVSELS na.nnte einen Grenzkreis auch Oricycel. GAuss schlug zu seiner Bezeichnung
Paracykel und zur B 1 g einer Abstandslinie Hypercykel vor.
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Satz 2.28. Es sei t Tangente in einem Punkt Y einer Bahn X500 und Y € y
€ M(a, b). Dann gilt ¢t | y.)
Beweis. Die Gerade y € M(a,b) ist nach dem Satz 2.27(a) eine Symmetrie-

achse: Bei der Spiegelung an y bleiben Y und X5@b fest. Folglich gilt & =¢
und ¢ |y, w.z. b. w.

P g
| A
P
P
RY 9l ¢ g
a) b) c)

Abb. 71

Satz 2.29. Kreis, Abstandslinie und Grenzkreis enthalten von einer Geraden f
hachstens zwet Punkte.

Folgerung. Eine Tangente hat mit einem Kreis, einer Abstandslinie bzw. einem
Grenzkrets genau einen Punkt gemeinsam.

Beweis. Es sei X5@nf={4,B,C} mit A & B =+ C % A. Nach dem Satz
2.27(b) gibt es Geraden g, h € M(a, b) mit 49 = B und B* = C. Nach der Voraus-
setzung haben die zwei Geraden g, k das gemeinsame Lot f. Wegen M(f) = M(g, k)
= M(a, b) nach dem Satz 2.25(1) gilt X500 — {,

Y

Abb. 72

Es sei nun ¢ Tangente im Punkt Y eines Kreises, einer Abstandslinie bzw.
eines Grenzkreises und y der ,,Beriihrungsradius® in M(a, b) (Abb. 72). Da y
nach dem Satz 2.27(a) Symmetrieachse der betrachteten Bahn X5@b durch Y
ist, kann in X5 n ¢ auBer Y kein Punkt Z liegen, weil sonst auch Z¢ dem Durch-
schnitt angehdrte und wir einen Widerspruch zum bewiesenen Satz erhielt:
w.z. b. w.

Satz 2.30. In jedem Punkt eines Kreises, einer Abstandslinie bzw. eines Grenz-
kreises existiert eine Tangente.

Zum Beweis vgl. Aufgabe 2.
1) Vgl. den Satz der euklidischen G trie: Die Krei. te steht auf dem Berihrungs-

radius senkrecht.
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Aufgaben

1. Man zeige mit Hilfe von Winkelhalbierenden und Mittelsenkrech daB die Bahnen
XS0 fir P€ a,b und X + P Kreise um P und fir a,b L f und X ¢ f Abstandslinien
von f sind.

2. Man beweise den Satz 2.30.

Anlextung Der Se,tz 2.28 llefert eine notwendige Bedingung fiir eine Tangente. Da diese
gung auch hinreichend ist, iiberlege man sich im Fall des Kreises mit Hilfe der Folge-
aus dem Satz 1.34 und im Fall der Abstandslinie zusitzlich mittels des Hilfssatzes

2.15. Der Fall des Grenzkreises ist etwas schwieriger; hier kommt man mit Hilfe des Satzes

2.27(a) und der Lobagevskijschen J7-Funktion zum Ziel.

2.3. Flicheninhalte in der Lobagevskijschen Geometrie

2.3.1. Dreiecksinhalte und elementargeometrische Flacheninhalte

Die Behandlung dieses Themas in Anlehnung zur euklidischen Elementargeometrie
(vgl. MfL, Bd. 6) scheint zunichst aussichtslos. Denn in der Loba&evskijschen Geome-

trie gibt es keine Quadrate. Dariiber hinaus kann die Inhaltsformel I(4BC) = % gh

fiic Dreiecke nicht gelten: Um das einzusehen, betrachten wir ein Dreieck 4ABC

mit M und N als Mittelpunkten der Seiten AB bzw. AC (Abb. 73). Ware die genannte
Formel giiltig, dann erhielten wir zunachst

I(ABC) = I(ABN) + I(BCN) = 21(ABN)
= 2(I(AMN) + I(BMN)) = 4I(AMN).

Wegen a(4, B) = 2a(4, M) miiBte fiir g := g,p sofort a(C, g) = 2a(N, g) gelten
im Widerspruch zu

a(C, g) > 2a(N, g)

gemiB der Formel (4) am SchluB des Beweises von Hilfssatz 2.15.

Fiir die elementare Inhaltslehre ist die Kenntnis der Dreiecksinhalte unentbehr-
lich. Um das nachzuweisen, wollen wir zunéchst eine grobe, durch Axiome bestimmte
Beschreibung der Dreiecksinhalte vorneh : Fiir uns sind Dreiecksinhalte positive
Elemente einer Menge M, welche Trigermenge einer Struktur (M, 4, <) mit einer
(totalen) Ordnung < und einer assoziativen, kommutativen und monotonen Opera-
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tion + mit Nullelement 0 ist, wobei die Abbildung I, die jeder Dreiecksfliche ABC
ihren Flicheninhalt I(4BC) zuordnet, folgende Eigenschaften besitzt:

(a) I(4BC) > 0,

(b) A4 gaea X € (BC)=> I(ABC) = I(4BX) + I(4CX),

(c) A ABC ~ A A'B'C’ = I(ABC) = I(A'B'C).

Wie angekiindigt wenden wir uns jetzt der Entwicklung der elementaren Inhalts-
lehre zu, wobei wir im tlichen mit (b) auske

Definition. Eine Menge (D, ..., D,} von Dreiecksflichen heiBt eine (elementar-
geometrische) Zerlegung einer ebenen Figur F genau dann, wenn

i=1
2. fiir 7 < k das Innere (D;) von D; mit dem Inneren (D;) von D, keine gemein-
samen Punkte besitzt (¢ = &k => (D)) n (Dy) = 8).

Beispiele fiir solche Zerlegungen sind in Abb. 74 dargestellt. In Abb. 74a ist
— vgl. (b) — eine einfache Transversalzerlegung einer Dreiecksfliche dargestellt, in
Abb. 74¢ die Zerlegung einer Figur, die keine n-Ecksfliche ist.

1. die Vereinigung der Dreiecksflichen F ergibt (I" = T)i),

a) b)
Abb. 74
Jeder Zerlegung {Dy, ..., D,) einer Figur F kann man zunichst durch
L4 -
I=310D,)
=1

einen Inhalt zuordnen. Wollen wir dariiber hinaus I sogar F eindeutig zuordnen,
dann miissen wir zeigen, daB fiir je zwei Zerlegungen (D,’, ..., D'} und (D,*, ..., D,"}
von F stets

6  XID),)=XID,)
gilt.l) :

Der Fall m = 1 und n = 2 ist besonders einfach, némlich eine einfache Trans-
versalzerlegung von D,’ in D,” und D,” (Abb. 74a). Hieraus erhalten wir den

o — —~
Hilfssatz 2.31. Es qilt I(PQR) = Y’ I(D,), wenn |D,, ..., D;} die Dreiecksfliiche
—— x=1
PQR derart zerlegt, da simtliche Ecken von Dy, ..., Dy in PQ oder QR liegen (Abb. 73).

1) Im Schul icht wird diese Gleichheit allzu oft stillschweigend vorausgesetzt.
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Beweis. Die Behauptung gelte fiir jede Zerlegung in k¥ — 1 Teile. Wir betrachten
jetzt unsere Zerlegung von PQR in k Teile sowie die Eckpunkte P, und R, in PQ
bzw. @R, die P bzw. R am nichsten liegen. Entweder P,R oder PR, ist Seite eines
Dreiecks D,, etwa P,R (Abb. 76). Ist 0. B.d. A. PP,R = D, dann gilt nach der
Induktionsvoraussetzung

-1 _ ko
I(PQR) = I(PP,R) + I(PQR) = I(Dy) + X I(D,) = Zi ID,),
x=1 x= -

w.z. b. w.

Ry

Abb. 76

P Py

Satz 2.32. 8ind (D, ..., Dp'} und (D,", ..., D,"} zwei beliebige Zerlegungen einer
ebenen Figur F, dann gilt (5).

Beweis. Jede Dreiecksfliche D,’ ist in gewisse Vielecksflichen zerlegt, die von
den D,” erzeugt werden, die das Innere von D,’ treffen (Abb. 76a). Indem wir die
entstandenen Vielecksflichen  durch Diagonalen zerlegen, erhalten wir eine ,,ver-
feinerte‘ neue Zerlegung derart, daB sich jedes D,’ und jedes D,” aus Dreiecken dieser
Zerlegung liBt. Die Gleichung (5) gilt deshalb dann, wenn fiir eine
Zerlegung (D,, ..., D,} einer Dreiecksfliche D

k
(6) ID) = Z; ID,)

(Verallgemeinerung des Hilfssatzes 2.31) gilt.

a)

Es sei D = ABC ein beliebiges Dreieck und (D, ..., D,} eine beliebige Zerlegung
von D (Abb. 78b). Den Eckpunkt A verbinden wir mit jedem Punkt P ¢ BC, fiir
den AP eine Ecke von einem der Dreiecke D, enthiilt. Dadurch entsteht eine Zerlegung
(B, By, ...} von D mit I(D) = Y I(A,) nach dem Hilfssatz 2.31. Jedes A; zerfillt
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auf Grund der urspriinglichen Zerlegung (Dy, ..., Dy} in Dreiecks- und Vierecks-
flichen; letztere teilen wir durch eine Diagonale und erhalten eine Zerlegung
{8y, B, ...} von Ay Es gilt I(A) = ZI(Z.,) und somit I(D) = ZI(A.,)

nach dem Hilfssatz 2.31, denn die Ecken von A;j liegen in den von 4 ausgehenden
Seiten von- A ;.

Wie ist die Zerlegung von D, durch die A;; beschaffen (Abb. 78b)? Liegt eine Seite
von D, in einer von A4 ausgehenden Geraden, dann enthalten nur die anderen Seiten
Ecken von Aij» so daB sich der Hilfssatz 2.31 anwenden 1iBt. Andernfalls wird D,
durch eine Seite eines A; einfach in zwei Teildreiecksflichen zerlegt, die ihrerseits
die Vor tzungen des Hilfssatzes 2.31 erfiillen. Durch Klammerung in 3 I(A;)
erhalten wir &

k
1D) = £ 13y) = X 1D,
ij x=

w.z. b. w.
n
Nach dem Satz diirfen wir 3} I(D,) nun der durch {D,, ..., D,) zerlegten Figur F

r=1
)

zuordnen und ihren q trischen Flicheninhalt

M IE = z'l 1(D.).

Die Formel (6) besagt gerade, dafl der el targeometrische Flicheninhalt einer
Dreiecksfliche mit ihrem Dreiecksinhalt iibereinstimmt, da8 die Abbildung I
auf zerlegbare Figuren fortgesetzt werden konnte.

Aufgabe

In einem Viereck 4 BCD mdgen sich AC und BD in § schneiden. Man zeige, daB8

a) die beiden Zerl der Vierecksfliche ABCD in je zwei Dreiecke mit Hilfe einer
Diagonale (5) erfiillen und daB

b) mit a) der Satz 2.32 fiir Vierecke nicht entbehrlich wird.

2.3.2. Defekte als Dreiecksinhalte

Dem aufmerksamen Leser wird nicht entgangen sein, daB in der Lobagevskijschen
Geometrie fiir die Funktion 4, die jedem Dreieck ABC seinen Defekt 6(ABC) zu-
ordnet, nach den Sitzen 2.8’ und 2.5

(®) o < 8(4BC) < 2R,
(b) A ¢ gsc A X € (BC) = 8(ABC) = §(ABX) + 8(ACX),
() A ABC 2 A A'B'C’ = §(ABC) = 6(A’'B'C")
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gilt.!) Jedoch eignen sich WinkelgroBen noch nicht als Dreiecksinhalte, da ihre
Addition nicht immer ausfijhrbar ist und da die unbeschrinkte Ausfiihrbarkeit
der Addition von Dreiecksinhalten eine unerlifliche Voraussetzung fiir die Defini-
tion der elementargeometrischen Flicheninhalte gemaB (7) in Abschnitt 2.3.1 dar-
stellt. Um diesen Mangel zu beheben, betten wir die WinkelgroBen in eine geordnete
Struktur mit kommutativer, assoziativer und monotoner Addition ein: Es sei M
die Menge der geordneten Paare (n, &), fiir die » eine natiirliche Zahl und ¢ eine Winkel-
groBe mit 0 < & < R ist.?) Wir erkliren

k+1la+p) fir « + <R,

(k’a)+<l'ﬂ):={(k'+l+1,a+ﬂ—R) fir RSa+f<2R

und setzen
ko) <(Lprok<ivi=laa<p
(lexikographische Ordnung). Dann gilt

Satz 2.33. Die Relation < der Stmkmr (M +, <) wt eine (totale) Ordnung und
die Operation + eine k 7 3 und Addition in M. Die
Tetlmenge

W:i={né&)eM: n=0ve=1v(n=2A¢=0)}

bildet etne Unterstruktur von (M, +, <) mit einer partiellen Operation, die vermoge
(n, §) > nR + &
zur Struktur der Winkelgrofen isomorph ist.

Beweis. a) Eigenschaften der Relation <. In der Mengenlehre kann gezeigt
werden, daB die Eigenschaften einer (totalen) Ordnung fiir die lexikographische
Ordnung aus den entsprechenden Eigenschaften der verwendeten geordneten Mengen
— hier der Menge N der natiirlichen Zahlen und des halboffenen Intervalls [0, R) —
folgen: Die Irreflexivitét ist offensichtlich. Zum Beweis der Transitivitdt sei (k, «)
<GB und (, B) < (m, 7).

Fall 1. k <lund ! £ m. Dann gilt ¥ < m.

Fall 2. k < lund ! < m. Dann ist ebenfalls k < m.

Fall3. k=l=m,a <pfund B <y.Esgilt k =mund & < y.

Auch die Konnexitdt ist leicht einzusehen, denn aus (k, «) 5= (I, B) folgt k =1
oder & 3 B, im Fall k = list k < loder! < k, im Fall k = I sofort « < g oder § < .

1) In der euklidischen Geometrie sind Defekte als Dreiecksinhalte untauglich, weil §(4.BC)
= o fiir alle Dreiecke ABC gilt.

2) Wir wihlen hier die folgende elementare Konstruktion und vermeiuen somit die nicht-
elementare Einfithrung von nicht negativen reellen Zahlen als WinkelmaBzahlen. Vgl. auch
S. BreEMER, Eine elementare Konstruktion von Winkelzahlen in der komplexen Zahlen-
ebene, Acta math. 16 (1964), 53— 55.
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b) Eigenschaften der Operation 4. Die Kommutativitit ist offensichtlich. Um
(%, &) + @, B)] + (m, y) = (k, &) + [(L, B) + (m, y)] nachzuweisen, treffen wir eine
£ iche Fallunterscheid

ung :
]

©

Falll.a + 8,8+ vy <R.
atpt+y<h:

[k, &) + (LA + (m, p) = (k + L & + B) + (m, )
=k+l4+matp+y)
=k, o)+ (C+mB+y)
= (ko) + [, /) + (m, )]

iR« +p8+y<2R:

[k &) + @A)+ (m, ) = (k + 1, ¢ + B) + (m, )
=k+l+m+la+8+y—R)
=ka)+C+mp+y)
= (&) + (G B) + (m ).

Fall2.a+ﬂ<R§ﬁ+y<2R..DanngiltR§a+ﬁ+y<2Rund

[(ka) + @A+ (my) =k +1a+ )+ (my)
=k+l4+m+lLa+p+y—R)
=ka)+@C+m+1,8+y—R)
= (k, &) + [, B) + (m, M)].

Den Beweis der restlichen Fille

Fall3.8+y<R=Za+p<2R,

Fall4. R<a+ 8,8+ y <2R,

i)a+pf+y—R<R,

i)RS<a«+pf+y—R<2R
iiberlassen wir dem Leser (vgl. Aufgabe 1).

Zum Beweis der Monotonie betrachten wir Paare (k, «), (I, §) und (m,y) mit
(k, ) < (L, B).

Falll" k<l Dammgitk+m<l+m<l+m+ 1.

i) « + y < R. Wegen (k, x) + (m, y) = (k + m, & + y) gilt bereits

(&, &) + (m, y) < (&, B) + (m, ).

ii) R < « + 7, f + y < 2R. Hier gilt die Behauptungmitk +m + 1 <l+m + 1.
iii)f+y<R=Za+y<2R. Aus « <R folgt « +y < R + y und danach
a+y—R<y<pf+y Mitk+m+ 1 <1+ m erhalten wir
(k&) + (m,y) = (k+m+ 1,6 +y — R)
<@+mp+y)=04H + (my).
Fall 2. k =l und « < f. Hier erhalten wir unmittelbar die Behauptung.
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Den Beweis der nur noch offenen Isomorphieaussage iiberlassen wir ebenfalls
dem Leser.

Nach dem Satz diirfen wir die Elemente aus W durch ihnen zugeordnete Winkel-
groBen ersetzen und (n, &) = nR + ¢ fiir alle Elemente (n, &) € M setzen. Als Folge-
rung erhalten wir

Satz 2.34. In der Lobadevskijschen Geometrie kann I(ABC) := 8(ABC) gesetzt
werden. Dabet sind die Dretecksinhalte durch 2R nach oben beschrinkt.

Aufgaben

1. Man Vervollstindige den Beweis des Satzes 2.33.

2. In einer Geraden sei eine Skala (vgl. Abb. 42) gegeben. Ist nun P ein Punkt auBerhalb der
Geraden, dann kann P mit allen Punkten der Skala verbunden werden Man beweise mit
Hllfe der entstehenden Dreiecke, daB in der Lobadevskij trie die Formel

I=?yhder klidischen G ie fiir Dreiecksinhalte nicht gelten kann.

233. Zerlegungsgleichheit und elementargeometrische Flicheninhalte

Der Leser kénnte annehmen, daB sich das merkwiirdige Resultat des Abschnitt;
2.3.2 durch eine groBziigige Formulierung der Eigenschaften von Dreiecksinhalten
ergibt, oder die erhaltenen Resultate wegen des ,,ungeometrischen* Vorgehens
ablehnen. Wir wollen deshalb hier einen geometrischen Weg zu den elementargeo-
metrischen Flicheninhalten angeben. Dabei werden Flicheninhalte wie die Lingen
und WinkelgroBen als Aquivalenzklassen gewonnen, und zwar in der Menge der
zerlegbaren Figuren.

d S Abb. 77
A=p B=8"
a)
Definition. Figuren F und F” heiBen genau dann zerlegungsgleich (in Zeich
F = = F'), wenn Zerlegungen (D,, ..., D,) und {Dy, ..., D,’) mltD =~ D, firv=1,

..., M existieren.

Die Zerlegungsgleichheit ist in der Menge der zerlegbaren Figuren offensichtlich
reflexiv und symmetrisch; die Transitivitit dieser Relation wird mit Hilfe einer geeig-
neten Verfeinerung der Zerlegung nachgewiesen (vgl. Aufgabe 1). Die Aquivalenz-
klassen werden wir kurz Flicheninhalte nennen.

Ein Beispiel fiir zerlegungsgleiche Dreiecksflichen bilden Dreiecke mit einer
gemeinsamen Seite, fiir die sich zwei andere Seiten in einem Punkt M halbieren
(Abb. 77a): Die Spiegelung an M vert; ht die Teildreiecke A und A’, die nicht
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gemeinsam sind. Dabei erkennen wir noch, da88 die Seitenmittelpunkte M, N und
N’ kollinear sind.

Dreiecksflichen mit einer gemeinsamen Seite sind auch dann zerlegungsgleich,
wenn die Verbindungsstrecken der Mittelpunkte der anderen Seiten eine Strecke
gemeinsam haben (Abb. 77b): Die notwendigen Kongruenzen weist man mit Hilfe
der Spiegelungen an den Seitenmittelpunkten nach.

Bezeichnen wir die Verbindungsgerade der Mittelpunkte zweier Dreiecksseiten
als (zur dritten Seiten gehorige) Mittellinie, dann gilt der

Satz 2.35. Drewckaﬂadum die in einer Seite und der zugehorigen Mittellinie
iibereinatimmen (Abb. 78), besitzen denselben. Flichensnhalt

Beweis. Fiir die Dreiecke ABC und A'B'C’ sei A = A’, B = B’ und g die gemein-
same, zu AB gehorige Mittellinie (Abb. 78). Mit E,, E,, M und N bezeichnen wir
die Mittelpunkte der Seiten AC, BC, AC’' bzw. BC’; o.B.d. A. sei M € E E,*.
Indem wir das Dreieck ACE; an E; spiegeln, erhalten wir die zu ABC zerlegungs-
gleiche Dreiecksfliche ABC, mit C, := AF:; débei liegt der Mittelpunkt E, von
BC, auf g. ... Indem wir ACy_,E; an E; spiegeln, erhalten wir die zu A4BC zerlegungs-
gleiche Dreiecksfliche ABC; mit C := AE*, wobei der Mittelpunkt E,,, von BC,
auf g liegt. ...

Abb. 78

.Wegen der archimedischen Anordnung von g (vgl. Abschnitt 2.1.1) gibt es einen
Index n mit E,E,., n MN = 0. Nach den Vorbemerkungen gilt
ABC = 4ABC, = ... = ABC, — ARC,
z z z z
w.z. b. w.

Die Menge der Flicheninhalte liBt sich strukturieren: Wir nennen den Flichen-
inhalt von F Summe der Flicheninhalte von F, und F, gena.u dann, wenn es eine

n
Zerlegung (D, ..., D,} von F derart gibt, daB F, = UD und F2 U D, fiir

skl
einen Index k mit 1 < k < n gilt. Der Flachenmhalt von F, heiit Iclemer als der

Fla.chenmhalt von F genau dann, wenn es eine Zerlegung (D, ..., D,} von F gibt,
80 daB F, U D, fiir einen Index k mit 1 < k < n ist. — Man iiberlegt sich leicht,

daB die Addltlon der Flicheninhalte eindeutig ist.
Aus der Definition der Zerlegungsgleichheit folgt unmittelbar

F=F=IF) =1IF),
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da kongruente Dreiecke denselben Defekt besitzen. Ist der Flicheninhalt von F
gleich der S der Flicheninhalte von F; und F,, dann gilt

I(F) = I(Fy + I(Fy); }
ist der Flicheninhalt von F, kleiner als der Flicheninhalt von F, dann ist
I(Fy) < I(F).

Das legt die Vermutung nahe, da8 die Struktur der Flicheninhalte isomorph zur
Struktur der el trischen Flicheninhalte ist. Um diese Aussage zu
beweisen, stellen wir eunge Hilfssitze bereit.

Hilfssatz 2.36. Die zu AB gehorige Mittellinie des Dreiecks ABC sei g. Dann ist
die Mittelsenkrechte f von AB senkrecht zu g; sie st folglich eine weitere Symmeirie-
achse des Vierecks ABBIA9, der Schnittpunkt S von f und g ist Symmetriezentrum.
ABC und ABA sind zerlequngsgleich, und die Winkel des Vierecks haben siimtlich

die GroPe R — % mit & := 8(4BO).

Folgerung. Qilt 0 < 8, < 8 = 8(ABC), dann gibt es zwischen B und C einen
Punkt C, mit 8(ABC,) = §,.

A9 89 c A9 89 c

////
/

=Y
\
A
h
H >
\

Ry

L
Sp-H N 3 AR
N \ 79 Ny T
N R7h
A
a) b)

Abb. 79

Beweis. Die Mittelpunkte M und N von AC bzw. BC liegen auf g. Ist ! das Lot
von C auf g, dann gibt es nach dem Satz 1.17b eine Gerade f | g mit o, = gy0i0.
Wegen (vgl. Abb. 79a)

A = ((AM)I)N — (CI)N =CN =B
ist f auBerdem Mittelsenkrechte von 4B und folglich von 4987, d. h., f ist wie ¢
eine Symmetrieachse von ABBYA%. Somit ist der Schnittpunkt S von f und g Symme-
triezentrum dieses Vierecks.

Nach dem Satz 2.36 sind die Dreiecksflichen ABC und ABA zerlegungsgleich.
Mithin gilt 6 := 8(4BC) = 8(4BA9). Da im Viereck ABB?A47 alle Winkel gleich gro8
sind und die Summe der GréBen der Winkel bei 4 und B wegen 8(4ABA%) = § offen-
sichtlich 2R — 4 ergibt, gilt auch die letzte Teilbehauptung des Hilfssatzes.

Zum Beweis der Folgerung tragen wir an AB* in die Halbebene ABAv* einen
Winkel der GréBe R — %’- an und erhalten eine Halbgerade AP+ (vgl. Abb. 79b).
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Ohne Beschrinkung der Allgemeinheit sei A < P. Nach dem Hilfssatz 2.15 wichst
a(X, ) von einer Stelle an fiir fallendes X € g,p unbeschrinkt wie fiir wachsendes
X € gup (wegen des unbeschrinkten Wachsens von a(X, f) fir X € 494-). Da
f und g.p punktfremd sind, haben diese Geraden somit nach dem Satz 2.17
ein gemeinsames Lot g,. Das Viereck ABB:4¢ ist gleichwinklig und kann wegen
26, < 28 als Ungleichung zwischen elementargeometrischen Flicheninhalten das
Viereck ABB?A? nicht umfassen; folglich liegt g, zwischen g, und g. Die Seite
BC trifft g, in einem Punkt N,; es sei C; := B. Die zu AB gehérige Mittellinie
des Dreiecks ABC; muBl durch N, gehen und auf f senkrecht stehen; somit ist g,
diese Mittellinie. Nunmehr ist es nicht schwer, mit Hilfe des Satzes 2.36 wie behauptet
8(ABC,) = 6, nachzuweisen, w. z. b. w.

Hilfssatz 2.37. Gilt fir die el ¢ trischen Flicheninhalte I(F) und I(F’)
der zerlegbaren Figuren F bzw. F' die Unglewhung
I(F) = I(F"),

danngibtes Zerlequngen (D, ..., D} von Fund(Dy', ..., D’} von F' mit §(D,) = 8(D,.)
firp=1,...,m. Esqiltm < nim Fall (F) < I(F')undm = nim Fall I(F) = I(F’).

Beweis. Essei (A,, ..., A} eine Zerlegung von F und {A/, ..., &'} eine Zerlegung
von F'. Wir fithren einen induktiven Beweis iiber k 4 ! und setzen voraus, daB
die Behauptung fiir Zerlegungen mit einer Summe < k + 1 gilt. Es sei etwa §(A,)
2 6(Ay). Im Fall §(A,) = 6(A,’) setzen wir D, := A, und Dy’ := A,’. Esgilt

r' I(A,,) < 2 IA))

u

und (¥ — 1) 4+ (I — 1) < k + |, so daB die Behauptung nach der Induktionsvor-
aussetzung gilt. Im Fall§(A,) > 8(A,’) konnen wir nach der Folgerung aus dem Hilfs-
satz 2.36 das Dreieck A, durch eine einfache Transversalzerlegung [D,, A} mit
8(D,) = 6(A,’) zerlegen. Es sei D,’ := A,’. Wegen

k - 1 -
I8)+ X I8, = 3 IB))
u=2 »=2

und k¥ + (I — 1) < & 41 folgt die Behauptung wiederum nach der Induktions-
voraussetzung.

Die iibrigen Teilbehauptungen sind nun trivial, w. z. b. w.

Hilfssatz 2.38. Fiir Dreiecke ABC und A’B'C’ folgt aus der Gleichung 3(ABC)
= 6(A'B'C") stets ABC = A'B'C.

Beweis. Es sei 6 := 8(ABC) = 8(A'B'C’). Nach dem Hilfssatz 2.36 diirfen wir
X BAC, < B'AC'ER —% und somit o. B. d. A. 4’ =4, B’ € AB+, ('€ AC+

voraussetzen. Wegen 6(4BC) = 6(4'B'C") kann kein Dreieck Teildreieck des anderen
sein. Folglich gilt B = B’ und C = C' oder B€ (AB’') und C' € (AC) oder B’ € (4B)
und C€ (AC"). Im ersten Fall sind wir am Ziel. Von den anderen Fillen geniigt
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es, den in Abb. 80 dargestellten zu betrachten. Offensichtlich gilt 6, := 6(BB'C")
= §(BCC'"); die zugehérigen gleichwinkligen Vierecke gemi8 Hilfssatz 2.36 miissen

zusammenfallen, da R ——;i die GroBe ihrer Winkel und 28, ihr elementargeo-

metrischer Flicheninhalt ist. Somit besitzen die Dreiecke BB'C’ und BCC’ dieselbe
zu BC' gehorige Mittellinie g, so daB die Behauptung nach dem Satz 2.35 gilt,
w.z. b. w.

Abb. 80

A=A B ] 8

Satz 2.39. Die Struktur der (auf der Grundlage der Zerlegungsgleichheit gebildeten)
Flicheninhalte ist isomorph zur Struktur (M, +, <) der elementargeometrischen
Flicheninhalte des Abschnittes 2.3.2.

Beweis. a) Wir kennen bereits die Implikation
F=F'= I(F)=IF),

die sich unmittelbar aus der Definition der Zerlegungsgleichheit ergibt. Um die
Umkehrung zu beweisen, betraohten wir Figuren F und F’ mit I(F) = I(F’). Nach
dem Hilfssatz 2.37 gibt es Zerlegungen (D, ..., D,} von F und (Dy’, ..., D'} von F'
mit 6(D,) = §D,’) fiir » =1, ...,n, nach dem Hilfssatz 2.38 gilt D, =D, fir
v =1, ..., n. Somit sind F und F’ zerlegungsgleich. :

b) Es ist nicht schwer, mit den Hilfssitzen 2.37 und 2.38 Relations- und Opera-
tionstreue der Abbildung zu beweisen, die der Aquivalenzklasse von F beziiglich
der Zerlegungsgleichheit den el targeometrischen Flicheninhalt I(F) zuordnet,
w.z. b. w.

Aufgaben

1. Man b ise, daB die Zerl Jeichheit eine Aquivalenmlation ist.
2. Man vollende den Beweis des Satzes 2.39.



3. Euklidische Geometrie und relative Widerspruchs-
freiheit der Lobacevskijschen Geometrie

In Abschnitt 2.1.3 haben wir darauf hingewiesen, daB man vielfach versuchte,
das 5. Postulat EvELIDS indirekt zu beweisen. Angesichts der Sitze der Lobadevskij-
schen Geometrie wird der eine oder andere Leser fragen, ob diese Theorie ihre Berech-
tigung besitzt, ob die Entdecker nicht auch einen indirekten Beweis begonnen hatten,
wobei die Herleitung eines Widerspruchs noch aussteht? Das Hauptziel dieses Kapitels
besteht darin, mit Hilfe der euklidischen Geometrie die Widerspmchsfreiheit der
Lobagevskijschen Geometrie zu beweisen. Um dieses Ziel iiber d zu errei
wollen wir im AnschluB an das Kapitel 1 sowie an die Abschmtbe 2.1.1 und 2.1.2
die hier bendtigten Beweishilfsmittel in Abschnitt 3.1 bereitstellen.

3.1.  Gerichtete Strecken und Schubvektoren

3.1.1.  Verschiebungen in der euklidischen Geometrie

Nach dem Satz 2.12 (T) ist die Parallelitit in der Menge der Geraden eine Aquivalenz-
relation. Die Aquivalenzklasse, die die Gerade g enthilt, wird die Richtung R(g)
dieser Geraden genannt.

Ist v eine Verschiebung des Raumes lings f, dann gilt

X ¢ f= (JXH) = fX+)1)
denn andernfalls wire 7 nicht die identische Abbildung ¢ des Raumes (v = ¢), und _
es gibe durch X und X* eine Ebene & mit f 4 £ und den Widerspruch X* € ¢, &*. Somit
liegen X, X* auf einer Abstandslinie zu f, die nach dem Satz 2.10 (4) eine zu f parallele
Gerade g ist. Nun iiberlegt man sich leicht, daB fiir zueinander parallele Geraden
fund g

Theogke

!) Hieraus folgt speziell, daB 7 in jeder Ebene 5 durch f eine (ebene) Verschiebung lings f
induziert.
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gilt. In der euklidischen Qeometrie lipt v folglich als Verschiebung des Raumes lings f
und g die Richtung R = R(f) el tweise fest, ist T also unabhingig von den speziellen
Reprisentanten f bzw. g von R.

Gilt P 3= P*und X ¢ f := gpp: fiir eine Verschiebung 7, dann ist wegen gpy || gpex-
das Bild X* von X vierte Ecke im Parallelogramm P'PXX"*. Hierauf konnen wir
die Konstruktion der Bildpunkte bei v griinden (Abb. 81). Hieraus erkennen wir auBer-
dem die Regel

(8) (\’(P' = P") S>r=1,

weil nach dem Satz 2.12 (EP) die Parallelen zu Geraden durch Punkte eindeutig
sind. ~

Cla oD 2C

Abb. 81 Abb. 82

Nach dem Zusatz zum Satz 1.25 ist s,85 eine Verschiebung des Raumes. Hier
kann jetzt gezeigt werden, daB s,sgs; stets eine Punktspiegelung ist: Das ist im
Fall A = B wegen 8,858 = 8, klar. Nunsei 4 & B, C’ := (C?)4 und D der Mittel-
punkt von C und C’ (Abb. 82). Wegen (CB)4 = C’' = (C°)? gilt szs, = 3,8p pach
(8), folglich 8,85 = 8,8, und schlieBlich s,858;, = 8p. Wir haben somit den

Satz 3.1. Die Produkte 8,85 sind 'Verschiebungen des R die Produkte 8,858;
Punktspiegelungen.

Ist 7 eine Verschiebung des Raumes und M der Mittelpunkt von P und P* fiir
einen Punkt P, dann gilt nach (8) bereits T = 8p8y. Somit kénnen wir den folgenden
Satz durch Rechnen mit Punktspiegelungen herleiten.

Satz 3.2. Die Verschieb des R bilden eine kommutative, auf der Menge

t)

aller Punkte einfach transitive Gruppe mit dem Einselement .

Beweis. Sind 7 und 7' Verschiebungen des Raumes, dann gibt es Punkte 4, B,
C,Dmitt = 8,85 und v’ = 3p8p. Nach dem Satz 3.1sind 77’ = 8,85 - 808p = 8, - 8p8¢8p,
¢ und 7! = 88, Verschiebungen des Raumes; da das Nacheinanderausfiihren von
Abbildungen stets iativ ist, liegt eine Gruppe vor. Weil 8psgsz nach dem Satz 3.1
eine Punktspiegelung ist, gilt spsqsp = (8p8g8r)~" = 8a8¢sp; hiermit erhalten wir
die Kommutativitét:

TT = 84 - 8p9c8p = 84 * SpScS = S48pc * %2

= 808p8y * 8y = T'T.
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Sind P und P’ beliebige Punkte mit dem Mittelpunkt M, dann gilt P* = P’
fiir 7 := 8psy. Nach (8) ist die kommutative Gruppe der Verschiebungen auf der
Menge aller Punkte sogar einfach transitiv, w. z. b. w.

Die Aussage, daB die Menge B der Verschiebungen auf der Menge aller Punkte
einfach transitiv ist, kann auch wie folgt formuliert werden:

Satz 3.3. Die Verschiebungen des R
der Menge der geordneten Punktpaare.

bilden eine Klasseneinteilung von P X B,

Definieren wir gerichtete Strecken PQ einfach durch PQ := (P, Q), dann ist Bx B
die Menge der gerichteten Strecken. Die vorliegende Klasseneinteilung von Bx B
in Form der Menge der Verschiebungen des Raumes erzeugt eine Aquivalenzrelation
in P P.Wir definieren (vgl. Abb. 81) die Parallelgleichheit:

PQ#PQ

genau dann, wenn es eine Verschiebung r mit P* = Q und P'* = Q' gibt. Um gege-
b falls den Reprisentant t

von 'IT.P?' fiir eine Verschiebung v hervorzu-
heben, schreiben wir auch v = v(PP*) = D(PP’), ich die Verschieb

auch mit a, b, c, ... und schreiben ihre kommutative Nacheinanderausfiihrung als
Addition. Durch

PQ + 8T = PR :& QR 4 8T

erhalten wir eine mit der Verkniipfung von Verschiebungen vertrigliche Operation
fiir gerichtete Strecken (Abb. 83a), d. h.

2(PQ) + v(ST) = v(PQ + ST).

Abb. 83
a) b)

Das ,,Antragen von gerichteten Strecken an gerichtete Strecken* ist assoziativ,
jedoch gilt nur PQ + ST 4+ ST + PQ (Abb. 83b). Betrachten wir jedoch die
Menge

Boz i={0X: X € gog),

die die Menge der Verschiebungen lings goz nach der Folgerung aus dem Satz
1.15 vollstiindig reprisentiert, dann ist dort + offenbar eine assoziative, kommu-
tative und umkehrbare Operation.

Werden in einer Ebene zueinander parallelgleiche Strecken AB und DO auf eine
Gerade g durch parallele Geraden projiziert (Abb. 84), d. h., wenn es projizierende



3.1. Gerichtete Strecken und Schubvektoren 109

Geraden a||b|c|/d g mit 4,4’ €a; B,B €b; C,C'€c; D,D'€d und 4', B,
C’, D' € g gibt, dann gilt A'B’ 3 D'C’: Die Parallele zu g durch 4 trifft b in einem
Punkt P.

g Abb.84

9

A g
Es sei b = 9(4B), a = 9(4P) und b = v(BP) sowie Q = C + b := C® € c. Wegen
AB 3 DO gilt v(4B) = b(DC) und wegen a = b + b auBerdem a = v(DQ). Somit
ist
AB # AP 4 DQ# DC,
d. h.
Satz 3.4. Die Parallelgleichheit ist ber Parallelprojektion auf eine Gerade invariant.
AbschlieBend erwihnen wir die Vertauschungsregel
©®  PQ#PQ=PP#Q7,
die auf der Kommutativitit der Verkniipfung von Verschiebungen beruht (vgl.
Aufgabe 2).

Aufgaben
1. Man zeige die Aquivalenz

A_ﬁ # D_é’@ua, = 8psc.})

2. Man beweise
a) die Vertauschungsregel (9),
b) PQ # P'¢ & V t Verschiebung mit P’ = P* und @’ = .
T

3.1.2. Gerichtete Strecken und reelle Zahlen?)

Aus den Definitionen folgte unmittelbar, daB (8og, +) eine kommutative Gruppe
ist. Nunmehr wollen wir 8oz ordnen. Ohne Beschriinkung der Allgemeinheit sei
O < E. Durch die Festsetzung

0X <0 X<
1) Sind 4, B, C nicht kollinear und gilt 8,858 = 8p, dann ist folglich D vierte Ecke des

Parallelogramms 4ABCD.
2) Vgl. auch Aufgabe 3* zum Abschnitt 1.2.1.
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wird in 8og offenbar eine irreflexive, transitive und konnexe Relation, eine (totale)
Ordnung, eingefiihrt. Sie ist auch monoton, denn aus oP + OR= O_:S,O-Q' + OR =0T
und P < Q erhalten wir nach der Folgerung aus dem Satz 1.15 bereits S < 7.
Zusammenfassend gilt

Satz 3.5. (303, + <) st eine geordnete kommutative Gruppe mit dem Nullelement
00 und mit —0X # Xo0.

Wir besitzen nun eine brauchbare Voraussetzung zur Einfiihrung der Verviel-

fachung der gerichteten Strecken mit ganzen, rationalen und schlieBlich mit reellen
Zahlen.
\

a) Die Vervielfachung von gerichteten Strecken mait ganzen Zahlen
Definition 1. Wir setzen
0-0P := 00, (m + 1)0-}":= m6i>:b(ﬁ5
fiir beliebige gerichtete Strecken OP und ganze Zahlen m.
Satz 3.6. Die Vervielfach der gerichteten Strecken mit ganzen Zahlen hat

9

folgende Eigenschaften (m, n € Z)

(1) 1.0X = 0X,

@  (mn)0X = m(n 0X),

(3) (m + n) 0X = m 0X + n OX,

(4) m(0X + 0X').=mO0X + mOX".
Folgerung. Fiir m € Z gilt auferdem

(6) m00 = 00,

©®  (—m)0X = —(m OX) = m(—0X).

Beweis. Zu (1). Es gilt 1. 0X = (0 + 1) 0X = 0. 0X + 0X = OX.
Zu (3). Es sei m € Z. Dann gilt

(m+0)O—X‘=m0_:Y=m6i'+0~0-f.

Wenn (m + n) 0X = m0X +n OX fiir eine beliebige ganze Zahl = gilt, dann er-
halten wir

(m + (n £ 1)) OX = ((m + n) £+ 1) OX = (m +n) OX + OX
= (m O0X + n0X) + 0X = m 0X + (n OX 4 OX)
=mOX + (n+ 1)0X,
d. h., (3) gilt fiir beliebige ganze Zahlen m und =.
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Den Beweis von (4) und (2) iiberlassen wir dem Leser (vgl. Aufgabe 1).

Der Beweis von (5) und (8) fiir 0X e Bor stutzt sich auf (1) bis (4) und die Eigen-
schaften der kommutativen Gruppe 30,,

Zu (3). Wegen m00 = m(OO + 00) = mOO + m 00 ist m 00 = 00.

Zu (6). Aus m OX + (—m) 0X =0.0X = 00 folgt (—m) 0X = —(m OX), und
die Beziehung m 0X + m(—0X) = m(0X — 0X) = 00 zieht m(—O0X) = —(m OX)
nach sich, w. z. b. w.

Bemerkung. Hierauf beruht die Veranschaulichung der ganzen Zahlen sowie
ihrer Ordnung, ihrer Addition und Multiplikation auf einer Zahlengeraden, die
wir als (3oz, +, <) deuten:

(10a) Z—>38og (mr> (75,, =m O_E').

Offenbar ist £ OF = 0O fiir k = 0; induktiv weist man k OF als positiv fir & > 0
nach, so daB & OF fiir k < 0 negativ ist, d. h., daB LOE genau dann positiv ist,
wenn k > 0 gilt. Wir erhalten beziiglich der
a) Ordnung
m<n®n—m>0®(n—m)@>@@mO—E.<n(TE:’,
b) Addition
OE, ., =(m+n)5[77=m(_)—E'+n673=51':’,+0—E.,,
c) Multiplikation
Wegen der Invarianz der Parallelgleichheit bei Parallelprojektion von g auf

gor in der Richtung von gzr und von gop auf gog in der Richtung von gy, gilt
(Abb. 85)

Fm

Abb. 86

] E Em Ep Fn*Emn

O—F:,,’ = mO—E*,. = m(n OE") = (mn) OE = OE,,.,.

Zusammenfassung. Die Abbildung (10a) ist eineindeutig, beziiglich < rela-
tionstreu und beziiglich + operationstreu. Die Multiplikation kann mit Hilfe von
Parallelprojektionen veranschaulicht werden.

b) Die Vervielfachung von gerichteten Strecken mit rationalen Zahlen
Vorbereitend befassen wir uns mit der n-Teilung von gerichteten Strecken.

Hilfssatz 3.7. Zu 7eder positiven ganzen Zahl n gibt es in Bop genau eine gerichtete
Strecke OP mit n OP = OF.
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Beweis. Existenz. Es sei F ¢ gog und in gop etwa O < F und somit 0 < F < F,,
d. h. F, ¢ gog- Bei_der Parallelprojektion von gor auf gog in der Richtung von gg,_
geht F in einen Punkt P € gop iiber, fiir den wegen der Invarianz der Parallelgleich-

heit bei Parallelprojektion n OP = OF gilt (Abb. 85).
Fa

F
Abb. 85"

0 P
Eindeutigkeit. Wiire auch n 6(2 = O0F und 0——@ + OP, etwa OP < 5@, dann wiren
0Q — OP und n(é'@ — (ﬁ") positiv. im Widerspruch zu 2 0Q = OF = n OP,
w.z. b. w,
Definition 2. Wir setzen fiir m € Z und positive natiirliche Zahlen n € N*

m\n men
i(k()"):k(i{)"),
m m

L ok + 07 =L 08 + LoF.
m m m

Auperdem hingt 22 OF nur von OF und der durch ™ bestimmien rationalen Zahl ab.
n n

Beweis. Das entscheidende Beweishilfsmittel ist die Eindeutigkeit der n-

Teilung.)
Beziiglich der Regeln geniigt es, die Beweisidee etwa bei der Herleitung der zweiten

1) Der Vervielfachung mit ganzen Zahlen entspricht in multiplikativen Gruppen die Ein-
fihrung ganzzahliger Exponenten, der n-Teilung entspricht das Radizieren. Der Beweis obiger
Regeln erfolgt somit analog zur Herleitung von Wurzelgesetzen.
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Zeile zn demonstrieren (vgl. Aufgabe 2). Aus

(Tﬁ:=m[l (kcﬁﬂ‘)] =kOE = k(m(l(ﬁ)) = km(i&‘z)
m m

m
)
m
folgt wegen der Eindeutigkeit der Teilung von OP in m Teile bereits die ,,Gleich-
heit des Inneren der eckigen Klammern“, d. h. i (k ()f) = k(l O—_E)

Auch der letzte Teil des Hilfssatzes wird so gefolgert: Es sei — = —, d. h.
mn' = m'n. Wegen

09 := (frm’)(—"1 O_i’) = nn’ (m (—1— O—E)) = mnn' (—L O—E)
n n n
1 — Jg— — Y s
= mn’ (n (; OE)) =mn' OF = m'nOE = m'n (n (? OE))
1 — 1 — m —
= m'nn’ (—, OE‘) = nn' (m’ (—, OE)) =nn' (—, OE)
n n n

gilt auf Grund der Eindeutigkeit der Teilung von 0Q in nn’ Teile
™ o5~ ™ 58,
n n

w.z. b. w.

Satz 3.9. Die Vervielfachung der gerichteten Strecken mait rationalen Zahlen hat
folgende Eigenschaften (z,y € Q)

(1 1.0FE = OF,

@) (ay) O = a(y OF),

3) (x + y)OE = zOF + y OE,

@ 2(0F + OF)=z0E +z0F".
Beweis. (1) ist trivial.

Zum Beweis von (2) sei z = 2 und y= ﬂ, . Dann gilt
: n n

2 5 ot [ ] [ (2 58] = (2 57)
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Wir diirfen nun den Beweis der iibrigen Gleichungen mit Hilfe der Regeln fiir die
Vervielfachung mit ganzen Zahlen gemé8 dem Satz 3.6 und der Regeln fiir die Teilung
gemiB Hilfesatz 3.8 iibergehen (vgl. Aufgabe 3a).

Bemerkung. Die Abbildung

(10b) @ Bos (z=ﬂ.->071, :=20—E)
n n
ist wegen
m — n
— OE < —OE
m<ne— OF < A 0.
relationstreu und eineindeutig, nach dem Satz 3.9(3) beziiglich + operationstreu.

Auch die Veranschaulichung der Multiplikation ist wegen 3.9(2) analog der Veran-
schaulichung der Multiplikation ganzer Zahlen.

c) Die Vervielfachung von gerichteten Strecken mit reellen Zahlen
Die niherungsweise Vervielfachung von OF mit z = 2,164... ist in der Abb. 86
dargestellt: Der gesuchte Endpunkt E, von z OF muB zwischen E, und Ej, zwischen

N o
0 E E;Llf g, E,
E, Abb. 86

E,, und E,,, ... liegen. Diese anschauliche Vorstellung verarbeiten wir in der

Definition 3. Esseiz€ R.
1. Im Fall 0 < z = 2,2,25.. .%... setzen wir

OP = 20F :o A zo,z,...zka—E'g (.)—ﬁg(zo,z, 2+ )OE.
kN 10*
2. Im Fall z = O sei weiterhin z OF = 07‘, im Fall 0 > z = —2zy,2...2... setzen
wirz OF := 2...%...0E_; unter Beriicksichtigung der Vereinbarung unter 1.

3. SchlieBlich sei z 00 = 00.

Vordringlich sind folgende Fragen zu erkliren: Geniigt unter 1. hochstens eine
gerichtete Strecke den unendlich vielen Ungleichungen? Folgt aus = 202100 2o s s
stets % OE = zo,z,...z,,...O_E", d. h. die Vertriglichkeit mit der Defix:;tion 2?

Zunichst bemerken wir, daB in Bog wegen

0X<0TeX<Y

jede nmicht leere, nach oben (unten) beschrinkie Tellmenge eine obere (uniere) Grenze
besitzt. AuBerdem ist 8oz archimedisch geordmet (vgl. Abschnitt 2.1.1); somit glbt
es zu jeder gerichteten Strecke OP¢ Bog eine natiirliche Zahl n mit OP < nOE
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und zu' jeder positiven Strecke O_Q‘ eine natiirliche Zahl & mit %k Ok < O—Q' Die
Beantwortung obiger Fragen ergibt sich damit aus dem folgenden

Satz 3.10. a) Zu jeder positiven reellen Zahl z gibt es genau eine gerichtete Strecke
OP ¢ 85 mit OP = 2 OF. Dabes st OP positiv.

b) Zu jeder positiven gerichteten Strecke 0P¢ Boz gibt es genau eine reelle Zahl z
mit OP = z OF (eindeutige MeBbarkeit). Dabe: ist z positiv.

Folgerung. dus n_ 205230 2 -« fOlgt
n

-ﬂ CTE' = 202100 Zpe e OfE.
n

Beweis. a) Existenz. Es sei 2 = 2,,2,...2;... Dann gilt

2 S22 S She S S 2,

0,_ Szo,31+—0§20+1-

2S o S22+ —— n
Fiir die nicht leere Menge
T:= [z,,(_)—]_i,"; 2021 OE; ...; Zgs2pe e 2 (ﬁ; N
sind die gerichteten Strecken (z.,,z,...z, + 1_:)‘ O 1=0,1,2,...) wegen der Rela-

tions- und Operationstreue von (10b) sémtlich obere Schranken; folglich besitzt 7'
eine obere Grenze OP, die nach ihrer Definition

(11) A (zo,z,...z,, OE <0P < (z,,,z,...zk + L) 62‘)
keN 10%

erfiillt und offensichtlich positiv ist.

Emdeutngkelt Genugte noch OF den unendlich vielen Unglelchungen in (11)

und wire OP' + OP etwa OP < OP dann gibe es fir OQ — OP — OP' eine
natiirliche Zahl & mit

OB < o O <00
im Widerspruch zu
00 < — OF
10*
nach der (k + 1)-ten Ungleichung in (11).
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Zum Beweis der Folgerung sei - 2g)21.+ 2. Dann gilt
n
m 1
ki\N (zo»zl---zk = - S 20215 + E‘.')’
wegen der Relationstreue von (10b) erhalten wir

A (z.,,z,... OF < Rok< (z.,,z, 2z + ) OE),
keN n

und nach a) gilt % OE = zo,z,...z,,...O-E".

b) Existenz. Da 8¢5 archimedisch geordnet ist, gibt es zu einer beliebigen Strecke

OP € Bog eine natiirliche Zahl » mit opP <n OE. Dann gibt es (im Dezimalsystem
dargestellte) natiirliche Zahlen zy, 2y, 202122, «++) 26%123. - 25 -+ Mib

z,OESOPS(z,,-{—l)OEAznO( OE)SOPs(zOO-i—lO)—OE
2 (L OF < 0P < (s + 1) (L OF
“ 1o =0P= o + 1) 0

1

— — 1 —
A 2620 (TOT) OE) < 0P < (24,0 + 10 (ﬁ) OE),

1 — — 1 !
2ot (ﬁ) OE) < 0P < (2o + 1) (ﬁ) OL) A

1 — —
202120 2 (ﬁ* OE) S OP £ (221222 + 1) ( o OE)

wobei 0 <2, 9,052, <9,...,,0< % <9, ... ist. Offenbar gilt dann

0P = zo,z‘z,...z,...(ﬁ.
Eindeutigkeit. Es sei
(12) zo,x,...x....a_l;? =0P = yo,y,...y,...bi’.

Fall 1. z, = y, fiir alle k € N. Dann ist schon

Topye e Lo = Yorlf1o e Ypo oo
Fall 2. 2, 5 y,, 0. B.d. A. 2, = y, fiir 0 £ » < n und 2, < y, fiir eine natiirliche

Zahl n. Folglich gilt

ZoyZye o X, = YUy, fir 0 =v <m,

(13) )
22y T, < YUy, fiir n =<
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(Ordnung nach der ersten Differenzstelle). Andererseits ist nach (12)

(14) Yot Ye OF = opP = (Zoyxl...-‘ﬂl + %) OE

fiir beliebige natiirliche Zahlen k, I. Aus (14) folgt wegen der Relationstreue von
(10b)

1
15, WY1e o Yb = TgyZy. .- _
(16) Yolr-- Y = ToZy zl+10,
Nunmehr ist die Losung des Problems auf das Rechnen mit Dezimalbriichen zuriick-
gefiihrt: Nach (13) und (15) gilt

1

)21+ Ty < Yoo+ Yn = TosTy- Ty + I

und somit y, = z, + 1; wegen
1
YoY1-+Yn = Yo1--Ynyy S Ty -Ta + Ton = Yo¥r-Yn

erhalten wir y, ., = 0 firy =0, 1, 2, ... und wegen

1 1
Yoo Yn S ToTye . Tyy, + W < Tty 2y + o = YooY+ -Yn
auBerdem
0,0...0 2, +;—L—00 01
0ne D Tniree Buty + 1005 = 108 = 0001,
d.h. 2y = ++- = 24y, = 9 fiir » = 1, 2, ... Zusammenfassend kénnen wir

T = Z0,21...25999... = 20,2, Zpry (Zn + 1) = YoUs.- Yn = ¥
konstatieren, w. z. b. w.

Satz 3.11. Die Vervielfachung der gerichteten Strecken mat reellen Zahlen hat folgende
Eigenschaften (z, y € R):

(1 10E = OE,

@ () OF = 2(y 0F),

3  (@+yOE=z0E+yOF.
Folgerung. Fiir OF € 8  gilt auferdem

4) ' z(0_2'+0_F.)=a:0_177+20_F'.
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Die Folgerung erhalten wir folgendermaBen mit Hilfe der MeBbarkeit: Ist
OF = y OE, dann gilt nach (3) und (2)

2(0F + OF) = 2(0F + y OF) = {(1 + y) OE) = (z + zy) OF
=z@+(xy)0f=z5§+z0_i.

Tm Satz ist (1) wiederum trivial, wihrend (2) und (3) wie im Beweis der Eindeutig-
keitsaussage des Satzes 3.10a mittels der Archimedizitit der Ordnung von 8oz
gewonnen werden (vgl. Aufgabe 3b). Mit der eingefiihrten Vervielfachung erweist
sich (8og, ) als reeller Vektorraum.

d) Die Strahlensatzgruppe

Der Leser vermift im Satz 3.11 zweifellos die Eigenschaft (4) sowie eine Veran-
schaulichung der Multiplikation reeller Zahlen auf einer Zahlengeraden. Die dazu
fehlende Invarianz der Teilverhiltnisse bei Parallelprojektion auf eine Gerade werden

wir sogleich erarbeiten. Im Gegensatz zum Vorgehen in der Schule erkliren wir T'eil-
verhiilinisse gerichteter Strecken auf parallelen Geraden (Abb. 87)

P_Q_ &> PO OF .1
OE_t.@PQ#tOE.)

Die ZweckmiiBigkeit dieser Definition wird sich u. a. in diesem Abschnitt erweisen.

<+ 1

ET FT E3-lE,)"

Abb. 87 Abb. 88

1) Bei dem Symbol £ ut dhnlich der Festlegung fiir eine Verschiebung v(PQ) = B(PQ) die

Reihenfolge der P\mkbe zu beachten, da wir von gerichteten Strecken ausgehen. Aus der
Definition ergibt sich jedoch die Regel

Po _ P
OE EO
Betrachtet man ick Streck PX und Q—X einer Geraden mit PX # zQ_f, dann gilt

(vgl. MfL, Bd. 7, 840)

ai=x-TV(PQ,X)

Dabei ist z = TV (P, Q; X) das (Teil-)Verhdltnis, in dem die gerichiete Strecke FQ' durch X
geteilt wird. Im Fall z < 0 spricht man von innerer, im Fall z > 0 von duperer Teilung.
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Satz 3.12. Die Telverhilinisse sind bet Bewegungen und Parallelprojektionen v

OF OF+
invariant, d. k., daff aus OF =t OF stets O°F* = t O°E* bzw. 0B OTE’Jdgt

Beweis. 8) 0 <t =/{yt...l...-Wegen der Invarianz der Parallelgleichheit
bei einer Bewegung bzw. Parallelprojektion 7, d. h.

AB 3 DC = A'B 3 DO,

und der Invarianz der Zwischenbeziehung bei einer Bewegung bzw. Parallelprojek-
tion 7, d. h.

[AB] = 4'B%),
gilt offensichtlich
4, OF <OF < (th+ 1) OF),

tohy OB <OF < (t.,,t. + %o) O E),

totr 4 OF < OF < (to,zl...z,, + %) OF,

’

d. h. nach der Eindeutigkeitsaussage im Satz 3.10a bereits

OF =tOF.
b) Fiir ¢ = 0 ist die Behauptung trivial.
¢) Fiir 0 > ¢ = —ty,ty...4... gilt nach a)

OF = —toty.. ty...0F = t OF",
w. z. b. w.

Ziehen wir im Sonderfall O = O* und gog = gop-, durch E’ eine Parallele k zu
gog (Abb. 89), dann gilt fiir die Parallelprojektion z von g,g auf gop in der Richtung

Abb. 89

1) Fir Pcmllolpro;oktlonen wurde das im Satz 3.4 gezelgt fir Bewegungen ist das aber
auch klar, weil P: g auf Parallelog; bildet werden.

3) Fir Bewegungen steht das im Satz 1.7(3), fir Psrellelpro;ektxonen ergibt sich diese
Regel unmittelbar aus dem Axiom A,.

%) Fiir ¢ = 1,62... und eine Parallelprojektion veranschaulicht Abb. 88 diesen Sachverhalt.
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von ggg: (mit F’':= F*) bzw. von gog: auf gge- in der Richtung von A

OF _OF _FF' _ FF
OE_OF FS EE’
Insgesamt gilt der
Satz 3.13 (Strahlensatz). Sind die Punkte O, E, E’ nicht kollinear, dann gilt

0., F kallinear | op _oF _ OF _FF
o otinear 1 = o8 = o * " 08 ~ 55 T
GemiB unserer Definition impliziert

OF OF

OE~ oF
die Kollinearitit von 0, E, F bzw. O, E’, F' und

OF FF'

OE~ EF'

die Parallelitit ggg || g Somit werden wir auf folgende Umkehrungen des
Strahlensatzes gefiihrt, wobei mit ?) triviale Folgerungen gekennzeichnet werden:

Satz 3.14 (Umkehrungen des Strahlensatzes). Unter der Voraussetzung, daf
0, E, E' nicht kollinear sind, qilé

. O,E,F  kollinear °) ,
OF OF > OF FF
—_=— %0 VB kolls 0 —_—=—
a) 0E " OF +0=>30,E,F kollinear ®) ¢ A 0F— BB’
gee || 9rr
, O,E,F kollinear °) ’
OF FF' i OF OF
Z_Z" 40 B Lollinear? — =
0E " EE +0=4J0,E,F l;ollmear ) ¢ A 0FE "~ OF
gz 19pr %)

Beweis. a) Um ggg- || gpp- zu zeigen, ziehen wir eine Parallele zu ggg. durch F,
die gog in F* schneiden mége (Abb. 90a). Dann gilt nach dem Strahlensatz

Wegen OF = tOE = OF* gilt aber F' = F* und somit ggp || grre = gpp- Nach
dem Strahlensatz ist nun
oF _FF
OE  EE’
1) Die gewahlte Formulierung soll uns des Finden von Umkehrungen erleichtern.

2) Diese Aussage bendtigt man unter anderem, um das Bild einer linearen Funktion bei
ihrer graphischen Darstellung als Gerade zu erkennen.
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b) Um die Kollinearitit von O, E’, F’ zu beweisen, betrachten wir den Schnitt-
punkt F* von gop und gep(Abb. 90b). Nach dem Strahlensatz gilt

d.h. FF' ++ tEE’ # FF*, Hieraus folgt F' = F*, und somit sind O, E, F' (= F*)
kollinear.

» 90F

Abb. 80

a)

Nach dem Strahlensatz kann man nun auf die noch offene Gleichung zwischen
Teilverhéltnissen schlieBen, w. z. b. w.

Satz 3.15 (Ergiinzung von Satz 3.11). Es gilt fiir beliebige reelle Zahlen x
) #(0F + OF) = z OF + x OFY).

Beweis. Nach dem Satz 3.11(4') brauchen wir nur noch den Fall gog + gor
zu betrachten. Fiir die nicht kollinearen Punkte O, E, F sei OG := OE + OF,

OP:= zOF und PR 3 zﬁ’(# z ET(.J);wegen % =z= %gsinddiePunkbeo, G, R
nach dem Satz 3.14b kollinear (Abb. 91). Nach demselben Satz erhalten wir

xO_iJ+zﬁ""=O?+P_ﬁ=(ﬁ=z0_a=z(0_E.+O_F'),

w.z. b. w.

1) Da bei der Additi ich Strecken der zweite Summand stets durch einen zu ihm
parallelgleichen ersetzt werden kann, ohne das Ergebnis zu verindern, konnte als zweiter
Summand o. B. d. A. eine gerich Strecke mit O als Anfangspunkt gewihlt werden.
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Zusammenfassend gilt
Hauptsatz 3.16. Die Abbildung
(10c) R —>8ox (zn—»O_E," :=26E)

ist eineindeutiq, beziiglich < relationstrew und nach dem Satz 3.11(3) beziiglich +
operahmtreu Aw:h die . Veranschaulichung der Multiplikation erfolgt nach den
Siitzen 3.12 und 3.11(2) wie bei den ganzen bzw. rationalen Zahlen. Wegen der ein-
deutigen Mefbarkeit wird R auf Bop abgebildet, d.h., daf die Abbildung ein Iso-
morphismus ist.

Dieser Satz legt es nahe, die reellen Zahlen iiber Zahlengeraden zu definieren
(vgl. [32], S. 199).

Aufgaben

-

. Man leite (4) und (2) im Satz 3.6 her.
. Man beweise die Regel L(—‘- 6E’) - L OE.
m\n

(3]

mn

3. Man zeige (z + y) OF = z OF + y OF unter der Voraussetzung
a) z, y€ @ (vgl. den Beweis des Satzes 3.9),
b) z, y€ R (vgl. die Bemerkungen im AnschluB an den Satz 3.11).

. Es sei KLMN Mittelpunktviereck des Vierecks ABCD (Abb. 92). Man zeige mit Hilfe des
Satzes 3.14, daB KLMN stets ein Parallelogramm ist.

»

3.1.3.  Der Vektorraum der Verschiebungen

Zur Bezeichnung der Verschiebungen verwenden wir hier ausschlieBlich die Buch-
staben a, b, ¢, ..., die Nacheinanderausfiihrung schreiben wir als Addition, und die
identische Abbildung ¢ des Raumes als Nullelement wird mit o bezeichnet.

a) Die Vervielfachung der Verschiebungen
Wir setzen fiir a = v(PQ) = v(Pg)
(18)  za:=b(z PQ).

Hingt za hierbei tlich vom Repriisentant: PG ab? Zum Beweis der Repri-
tant bhingigkeit bemerken wir, daB sich jede Parallelgleichheit durch

b d
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eine Kette von Parallelprojektionen von Geraden auf parallele Geraden realisieren
a8t und daB aus PQ 4 P'Q’ wegen der Invarianz des Teilverhiltnisses bei Parallel-
projektionen z PG H*z PqQ folgt (vgl. Abb. 93).

el
_'r_?,__: , x Q"r
:’ i i :'
' [ xPQ | Abb. 83
PQ

Nach der Definition (16) gilt der

Satz 3.17. Die Menge B der Verschicbungen bildet mit ihrer Addition und der
Vervielfachung (16) einen reellen Vektorraum, d.h., (8B, +) ist eine kommulative
Gruppe, fiir die die Vervielfachung mit reellen Zahlen folgende Eigenschaften besitzt
(z,y€ R;a,b€ B)
(1) la=a,
) (zy) a = z(ya),
(3) ( + v)a =za + ya,
@) z(a + b) = za + 2b.

Beweis. Nach dem Satz 3.2 brauchen wir nur (1) bis (4) herzuleiten. Das ist
nach den Sitzen 3.11 und 3.15 sehr leicht: Ist a = v(PQ), dann gilt beispielsweise

1a =1v(1- PQ) = v(PG) = a,
(zy) & = v((xy) PQ) = v(z(y PY)) = z0(y PQ) = =(ya).
Zum Beweis der iibrigen Regeln vgl. Aufgabe 1.

Wegen dieses Satzes wir die Verschiebungen auch Schubvektoren. Fiir sie
gilt

Satz 3.18. Der Vektorraum der Schubvektoren ist dreidimensional, d.h., es gibt
Vektoren a, b, ¢ derart, daf zu jedem Vektor v € B genau ein Tripel (z,y, z) reeller
Zahlen mit

v =2za + yb + zc
existiert.

Bemerkung. Nach MfL, Bd. 3 ist {a, b, ¢} eine Basis des Vektorraumes der
Schubvektoren. Da es vielfach auf die Reihenfolge der Basisvektoren a, b, ¢ ankommt
— 2. B. bei der Bestimmung des Tripels (z, y, z) —, werden wir auch das Tripel (a, b, ¢)
eine (geordnete) Basis (vgl. den Abschnitt 5.1.1).

Beweis des Satzes 3.18. Existenz. Es gibt nicht komplanare Punkte O, 4, B
und C. Es sei a := 9(04), b := v(0B), ¢ := p(0C) und v = v(0X) (Abb. 94). Die
Parallele zu g, durch X treffe ¢y, in X', die Parallele zu gyp durch X’ schneide
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gos in einem Punkt X"'. AuBerdem sei

v(0X") = za,
v(X"X') = yb,
p(X'X) = z¢

Abb. 94

fiir reelle Zahlen z, y, z, die nach dem Satz 3.10b existieren. Dann gilt
=2a + yb 4 zc.
Eindeutigkeit. Gilt noch v = z'a + ¥'b + 2’c, dann ist zunichst
b(OP) :=(z —2z)c=(zx—2)a+ (y—¥)b,

d.h. 0,P€gycnepup O=P und 2 =2, y =y, 2’ =z nach dem Satz 3.10b,
w.z. b. w.

b) Betrag und Skalarprodukt
Wir setzen fiir z € R, und Lingen a
a=>b
genau dann, wenn es Punkte P, Q, R mit a = a(P, Q), b = a(P, R) und PR= zIT.Q
gibt. Wegen dex' Invananz des Teilverhiltnisses bei Bewegungen ist diese Defini-
tion repriisent bhingig. Nun erkennen wir, daB die Léngen archimedisch

4

geordnet sind. AuBerdem erhalten wir aus den Sitzen 3.10 und 3.11

Satz 3.19. a) Zu jeder Linge a und jeder Zahl z € R, gibt es genau eine Linge b
mit za = b.

b) Zu je zwet Liingen a (= o), b gibtin R, genau eine Zahl z mit za = b (eindeutige
Mepbarkeit).)

Satz 3.20. Fiir beliebige Lingen a, b und Zaklen z, y € R, gilt

(zy) a = 2(ya),
(z +y)a ==za + ya,
z(a + b) = za + 2b.

1) Genau dann, wenn z rational ist, heiBen a, b kommensurabel.
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Da aus ?Q #—P—Q.’ zunichst PP’ #66’ und dann (P, Q) = a(P',Q’) folgt,
kann jedem Schubvektor vermoge

9(PQ) > a(P, @)

eindeutig eine Linge zugeordnet werden. Wird eine Lingeneinheit e (3 0) ausge-
zeichnet, denn kénnen wir eine Abbildung

B>R, (a=0(PQ > a(P,Q) = la er>al)

erkliiren; dabei heiBt |a| der Betrag von a.!) Im Fall |e| = 1 heiBt e Einhestsvekior.
Durch eine Fallunterscheidung bestitigt man leicht

1
ltal = [¢] la|

fiir beliebige reelle Zahlen ¢ und Schubvektoren a. Danach ist fiir a 3= o

a®:= L
la]

ein Einheitsvektor, fiir den a = |a| a® gilt.

Wir schreiben a || b genau dann, wenn es eine reelle Zahl ¢ mit a == ¢b oder b =ta
gibt. Schubvektoren a = v(0A4), b = v(0OB) heiBen zueinander senkrecht oder ortho-
gonal (in Zeichen: a | b) genau dann, wenn go, | gop oder A =0 oder B=0

gilt.
Ist a 3= 0 und v = v, + v,* mitv, |aundv,* | a,dannwird v, Parallel- und v, *
Normalk te von v beziiglich a genannt (Abb. 95). Mit der Existenz und Ein-

deutigkeit von parallelen bzw. senkrechten Geraden zu einer Geraden durch einen
Punkt gewinnt man die Existenz und Eindeutigkeit von b, und v,*.

»
Abb. 95 Abb. 96

Ist ein Korper, auf den die Kraft a wirkt, nur auf einer zwangsliufigen geraden
Bahn g beweglich, so ist fiir die Arbeit bei der Bewegung des Korpers von O nach §
nur die Parallelkomponente a; beziiglich 3 := v(0S) wichtig (Abb. 96): Die Arbeit
ist gleich dem Produkt a, - 8, wenn a; = a; - 8° und 8 = 83° gilt.

1) Elgentllch miiBten wir Betrag von a bezuglwh e ss.gen und das Symbol | | mit e indi-
zieren. Mif iindnisse sind jedoch ausg ge wir e als von nun an festgewihlt
ansehen.
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Nach diesem Vorbild erkliren wir des Skalarprodukt von Vektoren a und b wie
folgt als reelle Zahl

ab — 0 fir a=ooderb=ro?,
" lagd fir ag = agh® und [b| = b.

Auf dieser Definition beruht die Aquivalenz
albseba=0.

Denn gilt a |_b, dann ist a, = 0 oder b = 0. Umgekehrt folgt aus ab = 0 zunichst
a; = 0oder b= 0und dann a =0 oder a | b oder b = o.

Der folgende Satz enthilt die wichtigsten Eigenschaften des Skalarproduktes.
Satz 3.21. Fiir a,b,c€ Bund t€ R gilt
1) >0 fir a%o,
(2) ab = ba,
(@ ()b =tab),
4) (a + b) ¢ = ac + be.
Folgerung. Ist (a, b, ¢) eine Basis und sind a, b, ¢ paarweise senkrechte Einheits-
vektoren, dann gilt
M=oY + 2oy + TYs
fiir ¢ = 2,0 + T,b + z5c und ) = Y10 + Yob + yyc.
Beweis. Zu (1). Fiir a 3 0 ist aa = |a] |a| > 0.2)
Zu (2). Fira | bgilt ab = 0 = ba. Es seinun a £ b.

Fall 1: a =v(04) k¥ b =v(0OB). Wir spiegeln an der Winkelhalbierenden w
von <X AOB und erhalten nach Stufenwinkel- und nach Strahlensatz (Abb. 97a, b)

a ]
— ==, d. h agph=>4ba.
b ba B ) a
! o
< |
N\l w 0 £ 7
® ] X // //
I\ /
4

a) b)
Abb. 97

1) Die Definition mit Hilfe der cos-Funktion macht die folgenden Uberlegungen nur uniber-
sichtlicher; deshalb wird hier darauf verzichtet. Auch sei bemerkt, daB das Skalarprodukt
als Abbildung 8 x B — R keine Operation in B ist (vgl. jedoch den Satz 3.21).

%) Hieraus folgt noch die Regel [a| = Vaa.
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Fall 2. a||b. Es gilt a; = |a| und b, = |b| oder ay = —|a| und b, = —|b|, in
jedem Fall ab = ba.
Zu (3). Fiir t = 0 oder a = o ist (ta) b = 0 = ¢t(ab). Es sei nun ¢ %= 0 und a =+ o.
Wir zerlegen ¢ in der Form ¢ = sgn ¢ - |¢|. Dann gilt b, = sgn ¢ - b, und somit nach (2)
(¢ta) b = b(ta) = bylta] =sgnt b, - |t| la] = t(ba) = t(ab).
Zu (4). Fiir ¢ = o ist offensichtlich (a + b) ¢ = ac + be. Es sei nun ¢ == 0. Aus
der Definition folgt unmittelbar
(a + b) ¢ = (a + b),c.

Um die Parallelkomponente (a + b) zu bestimmen, stellen wir a, + b, || ¢, a.* + bc*
1 ¢ und (a, + b)) + (a;* +b,t)=a + b fest, d.h. (a 4+ b), = a, + b,. Wegen
a, + b, = a,® + b® = (a, + b;) ¢ gilt nun
(@ +b)c=(a+Db)c=/(a +b)c=(a + )l
= a,l¢| + b¢] = a.c + b = ac + be.

Zum Beweis der Folgerung verweisen wir auf Aufgabe 3.

c) Punkte und Vekioren
Ist ¥ das Bild von X beim Schubvektor g, d. h., wenn X7 € a gilt, schreiben wir
gelegentlich ¥ = X + a.

Die Aussage, daB die Verschiebungen des Raumes mit dem Nacheinanderausfiihren
als Verkniipfung eine auf der Menge aller Punkte einfach transitive Abbild
gruppe bilden, kann nun wie folgt formuliert werden:

Satz 3.22. a) Zu jedem Punkt P und jedem Schubvektor a gibt es genau einen
PunktQmit P 4+ a = Q.
b) Zu Punkten P, Q gibt es genau einen Schubvektor a mit P + a = Q.
c) Fiir jeden Punkt P und fiir beliebige Schubvektoren a, b gilt
(P+a)+b=P+4 (a+Db).

Jede Gerade g und jede Ebene ¢ kann mit Hilfe eines Punktes und eines bzw.
zweier Vektoren dargestellt werden: Unter der Voraussetzung a =0, P +a =@
und g = gpq gilt

g=1{X: X=P +1ta; tcR}.
Entsprechend ist
e={X: X=P4sa+1b; 8tcR)

firajb, P+a=@, P+b=R und ¢ = epgp. Die Bewegungen sind die ein-
eindeutigen Abbildungen 7, die

(07 4*) p(0"B*) = v(0A4) v(0OB)

&'
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(Invarianz des Skalarproduktes) erfiillen. Somit kann gezeigt werden, daB ein
Tupel (P', &', €', D', B’), das ebenfalls dem Axiomensystem der euklidischen Geo-
metrie geniigt, zu (B, @, €, D, B) isomorph ist.

Aufgaben

-

. Man leite die Regeln (3) und (4) im Satz 3.17 mit Hilfe der Sitze 3.11 und 3.15 her.
. Man verifiziere den Satz 3.19b nach Satz 3.10.
. Man zeige

) =&y + Y + ZaYs

fiir ¢ =20 + 2,b + 2,¢ und § = y,a + y,b + y,c unter der Voraussetzung, daB die
Basis (a, b, ¢) orthonormiert (ja] = |b] = |¢/ =1unda 1l b L ¢ L a)ist.

@ o

3.2.  Die relative Widerspruchsfreiheit der LobaZevskijschen
Geometrie

3.2.1. Das Kleinsche Modell

FeLix Krev (1849—1925) war um die Jahrhundertwende einer der fithrenden
Kapfe der Bewegung zur Modernisierung der Mathematikausbildung an den Hoch-
hulen und Schulen in Deutschland und im internationalen MaBstab, u. a. durch
seine Arbeit in der Internationalen Mathematischen Unterrichtskommission (IMUK).
Dieser Arbeit im Interesse der Organisation der Wissenschaft und ihrer Vermitt-
lung gingen bedeutende Beitrige zur Mathematik voraus. Indem er als junger
Mathematiker versuchte, die nichteuklidische G trie in das Konzept von
ArTHUR CAYLEY (1821—1895) iiber die invariantentheoretische K
der geometrischen Theorien einzuordnen, fand er 1871 das nach ihm benannte
Modell. Wir wollen hier nur noch erwiihnen, daB damit seinerseits die wichtigste
Vorarbeit fiir seine Antrittsvorlesung Vergleichende Betrachtungen iiber neuere
geometrische Forschungen beim Eintritt in die Fakultdt an der Universitit Erlangen
vorlag, die ihrerseits die geometrische Forschung auf Jahrzehnte bestimmte und
allgemein als Erlanger Programm') bekannt ist.

Das Kleinsche Modell?) der Lobagevskijschen Geometrie wird in der euklidischen
Geometrie konstruiert. Somit erweist sich die Lobadevskijsche Geomelrie als wider-
spruchsfrei, denn andernfalls wire auch die euklidische Geometrie widerspriichlich

Wie sieht dieses Modell aus? Zunichst brauchen wir eine Interpretation der
fiinf Grundbegriffe. In der euklidischen Geometrie sei eine Kugel & mit dem Mittel-
punkt O und dem Radius r (3 o) ausgezeichnet: ® = (X: a(0, X) = 7}; dann ist

(R) :=1{X: a(0,X) <)

?) Vgl. [31]; dort findet man auch eine F.-Klein-Biographie und A ) von H. Wus.
BING.
2) Es gibt noch andere Modelle. Unter and t t ein bel Modell von HENRI

PoINCARE (1854 —1912).
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deren Inneres. Grob gesagt wird durch das Kleinsche Modell eine Geometrie im
Inneren der Kugel dargestellt. Wir erkliren (vgl. Abb. 98)
M-Punkte: die Punkte aus (&),
M-Geraden: das Innere (UV) von Kugelsehnen, d.h. 8 3 U, V (= U),
M-Ebenen: das Innere (k) von Kreisen k in &, d. h. mit k = .
M-Durchlaufsinne: auf M-Geraden eingeschrinkte Durchlaufsinne.
In der Abb. 98 sind 4, B, C beispielsweise M-Punkte, P, U, V wegen P, U, V 4 (R)
jedoch nicht. Es ist (UV) eine M-Gerade und (k) eine M-Ebene. AuBierdem wurde
4 < B < C dargestellt.

Abb. 98 Abb. 99

Die Deutung der Bewegungen im Modell wollen wir iiber die Definition von M-
Spiegelungen an M-Ebenen gewinnen. Dabei werden wir eine andere Darstellung
der M-Geraden und M-Ebenen benut die wir zunichst bereitstell

Hilfssatz 3.23. a) Enthilt eine Gerade g innere Punkte von R, dann ist sie eine
Sekante.

b) Aus U, V (3= U) € R folgt (UV) = gyyn (R)..

c) Aus A, B¢ (R) folgt AB = (R).

Beweis. a) Jede Gerade g, die einen Punkt X € (f) enthilt, liegt in einer Ebene 7
durch O. Der Kreis k(0, r) — 7 trifft g nach dem Axiom Z, in zwei Punkten U und V
(Abb. 99). Wegen U, V € k(0, r) — R gilt die Behauptung.

b) Nach dem Hilfssatz 1.35 — angewandt auf das Dreieck OUV — gilt (UV)
=gyy n (R)-

c) Nach dem Hilfssatz 1.35 gilt auch AB = (®) fiir Punkte 4, B¢ (R), w. z. b. w.

Hilfssatz 3.24. a) Enthilt eine Ebene ¢ innere Punkte von R, dann schneidet
sie ® in einem Kreis.

b) Aus k = en R folgt (k) = en ().

Beweis. a) Im Fall O € ¢ ist ® n ¢ der Kreis (0, r) = e.

Es sei nun O ¢ ¢, S€ en (f) und M der FuBpunkt des Lotes von O auf . Wir
wiihlen eine Ebene 7 durch 0, M und S (Abb. 100a). Wegen a(0, S) < r trifft die
Gerade enz den Kreis k(O,r) = n nach dem Axiom Z, in einem Punkt P. Mit
@ := a(M, P) behaupten wir, daB ¢ n ® der Kreis k(M, o) = ¢ ist (Abb. 100b).

Essei X € k(M, o) < e. Die Dreiecke OM X und OMP besitzen bei M einen rechten
Winkel, so daB nach dem Kongruenzsatz sws aus a(M, X) = ¢ = a(M, P) schon
a(0, X) = a(0, P) =r,d. h. X € en &, folgt.
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Es sei X € ¢n & Wiederum haben die Dreiecke OMX und OMP bei M einen
rechten Winkel, und es gilt a(0, X) = r = a(0, P); nach dem Kongruenzsatz BSW
folgt mit MP ~ MX nun X € k(M,0) c &.

Abb. 100

b) Es sei k = en ®. Unter der Voraussetzung O € . ist k = k(0, r) — ¢ und die
Behauptung trivial. Wir setzen nun O ¢ ¢ voraus. Nach a) ist der FuSpunkt M
des Lotes von O auf ¢ Mittelpunkt des Kreises k c- &.

Abb. 101

Es sei MY+ — e und X € MY*n k (Abb. 101). Das Dreieck OMX hat bei M
einen rechten Winkel; nach dem Hilfssatz 1.35 gilt

Ye MX)=>a(0,Y)<T,
Y=X=4a0,Y)=r,
Ye MX*\ MX=>a(0,Y)>1r
und folglich
Ye(k)o Yeen (R),
w.z. b. w.
Der unmittelbaren Vorbereitung der Definition von M-Spiegelungen an M-Ebenen

en (R) dient folgende Begriffsbildung: P heiBt Pol der Ebene ¢, wenn die Beriih-
r kte der Tangenten von P an & in ¢ liegen (Abb. 102a). Es gilt der

&P

Hilfssatz 3.25. Ist en (R) eine M-Ebene und gilt O 4 &, dann besitzt e genau
einen Pol.

Beweis. Es sei f das Lot von O auf e. Wir legen eine Ebene 7 durch /. Die Gerade
e nn schneidet den Kreis k := k(O0, r) =  nach dem Axiom Z, in zwei Punkten
U und V, weil fn e in (k) liegt. Die Tangenten an k in U und ¥ schueiden sich in
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einem Punkt P € f. Dieser Punkt P hiingt nicht von der Wahl von 7 ab, denn bei
Drehung von 7 um f bleiben ® und ¢ fest, so da die Tangenten gp, und gpy in die
Tangenten von P an § iibergehen, w. z. b. w.

Abb. 102

Wir kommen nun zur Definition der M-Spiegelungen an M-Ebenen (k) = (®)n &:

1. Im Fall O € ¢ sei die M-Spiegelung an der M-Ebene & n (f) die Einschrinkung
von s, auf die Menge der M-Punkte.

2. Um im Fall O ¢ ¢ das Bild X’ eines M-Punktes X zu bestimmen, legen wir
eine Ebene 7 durch X und den Pol P von ¢. Nach dem Hilfssatz 3.24 ist k :=7n &
ein Kreis, wobei 7 aus der ,, Tangentenfliche von P an ®“ Tangenten g, und gpy
mit U, V € k n ¢ herausschneidet (Abb. 103).

Abb. 103

Fall 1. X € en #. Dann setzen wir X' := X.

Fall 2. X ¢ enn. Wir wihlen einen Punkt Y € enn \ gpy und einen Punkt
WeYX+*nk um W als zweiten Punkt in kngpy und das gesuchte Bild X’
bei der Spiegelung an der M-Ebene ¢n (&) als Schnittpunkt gpy und gyy- zu be-
stimmen.?)

Es gilt X’ € (®), jedoch hat die Definition den Nachteil, daB die Eindeutigkeit
von X’ unter 2. wegen der Willkiir von 7, ¥ und fiir ¥ € g, \ UV von W nicht
zu erkennen ist. Um diesen Mangel zu beseitigen, werden wir eine Reihe von Hilfs-

1) Nach der Definition unter 2. gilt fiir alle Lote g n (%) der M-Ebene & n (%) offenbu; goP
(Abb. 103). Hier wie auch spiter werden wir auch Punkte auBerhalb (®) zusitzlich abbilden,
wie hier beispielsweise W.
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siitzen aussprechen und beweisen. Vorbereitend erkliren wir das Doppelverhilinis
(ABCD) von vier Punkten A, B, C, D einer Geraden
AC AD
ABCD) := —:——
¢ ): BC ' BD’
Hilfssatz 3.25. Das Doppelverhiilinis von vier kollinearen Punkten st gegen
Zentralprojektion auf vier Punkte einer anderen Geraden invariant.

Beweis'). Es seien 4, B, C, D vier kollineare Punkte und 4’, B’, C’, D’ deren
Bilder bei einer Zentralprojektion mit dem Zentrum Z.
Fall 1: g5 g.» (Abb. 104a). Nach dem Strahlensatz folgt aus ZA' = t ZA
AC'=tAC, BC =tBC, AD =t4D, BD =tBD
und folglich
AC_4C 4D _ 4D
BC' BC' BD BD
d. h. (4BCD) = (4'B'C'D').

Abb. 104 .

Fall 2: g,p ¥ gyp>» etwa HE g pn gyp (Abb. 104b). Wir betrachten ein
linear unabhiingiges Vektorpaar (u, ) gemidB Abb. 104b und reelle Zahlen m, a
und a’ mit

v(HA) = av, 9(HA')=a'(u + mv).
AuBerdem gibt es eine reelle Zahl 2 mit v(44') = Av(Z4), so daB
a'u + a'mv = a'(u + mv) = p(HA') = v(HA) + v(44")
= ap + A0(ZA) = av + A(av — u)
=—Au+a(l+ 1)y,
folglich @’ = —4, a’m = a(1 + 1) und schlieBlich

,_ _a
m+a
1) Fir die Beweise der Hilfssitze 3.25, 3.26, 3.27 und 3.30 benutzen wu- folgende Quelle:
B. WeBNIOKE, Die relative Widerspruchsfreiheit der Lobatschewskischen ie, Wiss. Z.

PH ,,Karl Liebknecht* Potsdam 17 (1973), 159 —176.
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gelten. Mit analogen Bezeichnungen fiir B, B’ bzw. C, C' bzw. D, D’ statt 4, 4’
gilt

p——, e -9
m+b m+c m+d

Somit erhalten wir nach leichter Rechnung

¢—a d—a c—a d—a

A'B'C’'D') = : = :
¢ ) -4 d—b c—b d—-2>b

= (ABCD),
w.z.b. w.

Hilfssatz 3.26. Ist UV Sehne eines (Einheits-)Kreises k, die nicht durch seinen
Miittelpunkt M geht, P der Schnittpunkt der Kreistangenten in U und V und g eine
Kreissekante durch P, die den Kreis in P, und P, sowie UV in P trifft (Abb. 106),
dann gilt (PPP,P,) = —1.

Beweis. Es sei a := 9(MP), a, : =0(MP,) und u := p(MU). Da o.B.d. A. ein
Einheitskreis vorausgesetzt wird, gilt (Abb. 105) :

Abb. 106

1=u=qu=au=ua=u.a
und folglich

1
U, = ; a.
Es gibt eine reelle Zahl ¢ mit @ := v(MP) = a + t(a, — a). Wir kénnen ¢ wegen
@, = u, folgendermaBen bestimmen:
1= u,a = d,a = dGa = a? + #aa — a?),
d. h.
_1—at
T aa—at’
Es sei nun P,* mit a,:= o(MP,*) derjenige Punkt, fiir den (PPP,*P;) = —1
gilt. Indem wir fiir Vektoren v’, b (¥ 0)

’

|
—=t:0 =)
1

1) Nach dem Abschnitt 3.1.2d) gilt unter der Voraussetzung v’ = v(PQ) = tv = tv(OE)
PQ ’
ffenbar ¢ = —=.
offenbar o8
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setzen, erhalten wir
G —a gG—a_ a-—

-1 - - =
0 —a ag—=a a-—

t—o,
a

(11—t (@ —a)=—(a — ),
C—-t)ay=a4+(1—t)a=(2—2t)a + ta,,

a
2—t 2—1t

Der Satz ist bewiesen, wenn Py* = P, gilt. Dazu geniigt es, abschlieBend P,* € k
nachzuweisen: Wegen a,® = 1 gilt

= _1 [4(1 — ¢)®a® 4 4(1 — ¢) taa, + ]

2—¢
= ﬁ[@-u) a? 4 t(4 — 42) (aa, — a?) + £2].
Mftt-‘(a,a —a%) = 1 — a? folgt
a,? _d—at+e 1,
(2 -ty

w. z. b. w.

Hilfssatz 3.27. Bei einer M-Spiegelung an einer M-Ebene (k) = en (R) st
fiir jeden M-Punkt X das Bild X' eindeutig bestimmt.
Zusatz. Es gt (PXXX') = —1 = (PXX'X) fir X€gprne im Fall Ode.

Beweis. Im Fall O € ¢ ist nichts zu zeigen, im Fall O ¢ ¢ (Abb. 106) gilt nach 3.256
und 3.26 mit den Bezeichnungen der Abb. 106

(PXXX') = (PWWW')= —1 = (PWW'W) = (PXX'X),

w.z. b. w.

Abb. 108

Um den Begriff der M-Bewegung zu fixieren, erkliren wir abschlieSend: J-Bewe-
gungen sind Produkte von M-Spiegelungen an M-Ebenen und die Einschrankungen
solcher Abbildungen auf Figuren. Die M-Spiegelungen an M-Punkten bzw. M-
Qeraden werden wie in Abschnitt 1.1.3 als spezielle M-Bewegungen eingefiihrt.
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Aufgaben

1. Man zeige, daB das Innere eines Dreiecks im Inneren einer Kugel liegt, sobald sich dessen
Ecken dort befinden.

2. Es sei B Mittelpunkt von AD und C der Mittelpunkt von BD. Man berechne

a) (ABCD), (BADC), (CDAB),
b) (4BDC), (BACD),
¢) (ACBD), (ADBC).

3.2.2. Die Giiltigkelt der Axiome der Lobagevskijschen Geometrie im Modell
‘Wir wenden uns den Inzidenzaxiomen zu.

Beweis von I,. Ist UV eine Sehne der Kugel &, dann liegen nach dem Satz 1.4
unendlich viele Punkte in (UV), d. h., daB jede M-Gerade wenigstens zwei M-Punkte
enthilt.

Beweis von I,. Existenz. Sind P, Q zwei M-Punkte, dann ist gpo nach dem
Hilfssatz 3.23a eine Sekante der Kugel R, etwa gpon & = (U, V) mit U £ V.
Nach b) desselben Hilfssatzes 3.23 gilt (UV) = gpo n (%) > P, Q.

Eindeutigkeit. Aus P,Q € (UV), (XY) fiir M-Geraden (UV) und (X7Y) folgt eben-
falls nach 3.23b

(UV) = (R) n gpe = (XT).

Beweis von I;. M-Ebenen enthalten nicht kollineare M-Punkte, da das Innere
eines Kreises stets nicht kollineare Punkte enthilt.

Beweis von I,. Liegen die M-Punkte P, Q, R in keiner Modellgeraden, dann
sind sie auch in der euklidischen Geometrie nicht kollinear, denn wenn P,Q, R€ g
gilte, dann wiire g nach dem Hilfssatz 3.23 Sekante, und P, Q, R ligen in der M-Gera-
den g n (®) im Widerspruch zur Voraussetzung.

Nach dem Hilfssatz 3.24 ist ¢pgp n (R) eine M-Ebene durch P, @, R, und es kann
keine weitere M-Ebene durch P, Q, R geben.

Beweis von I;. Aus P,Q€gn(R), en(R) fir zwei M-Punkte P, Q folgt
g < ¢ und folglich g n (®) = &n (R).

Beweis von I,. Liegt ein M-Punkt in zwei M-Ebenen en (®) und 7n (R),
dann ist en#n nach dem Hilfssatz 3.23 eine Sekante und en (®)n#nn (®)
= ennn (R) eine M-Gerade.

Beweis von I,. Offensichtlich gibt es in (&) Punkte P, Q, R, S, wobei P + Q
gilt, P, @, R nicht kollinear und P, Q, R, S nicht komplanar sind. Daraus folgt die
Giiltigkeit von I, im Modell.

Offensichtlich gilt auch das Axiom (LP) im Modell, es kann sogar mehr gezeigt
werden (Abb. 107): Ist (UV) eine Modellgerade und R ein M-Punkt mit R ¢ (UV),
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dann sind gpy und gp, Sekanten von R, es sei etwa gpyn ® = (U, U’} und
grv N & = {V, V'}. Die M-Geraden (UU’) und (VV’) sind Randparallele zu (UV)
durch R. AuBerdem fiihrt jede Gerade g durch R und einen Punkt S € g,, \ UV
zu einer Parallelen (XY) = g n (®) von (UV) durch R.

Abb. 107

Auch die Giiltigkeit der Anordnungsaxiome und des Stetigkeitsaxioms ist leicht
zu erhalten.

Beweis von A,. Nach der Definition sind die Durchlaufsinne der M-Geraden
irreflexiv, transitiv und konnex. Ist 4 ein Punkt der M-Geraden (UV), dann gibt
es nach dem Satz 1.4 Punkte Q, R mit U<Q < A4 <R< V, falls 0. B.d. A.
U < V gilt, d. h., daB die Ordnung der M-Geraden auch unbegrenzt ist.

Beweis von A,. Ist gn (®) eine M-Gerade und en (®) eine M-Ebene mit
gn(®) < en(R), dann gilt g = ¢, weil gn (R) wenigstens zwei Punkte enthalt.
Sind H,, H, die offenen Halbeb in ¢ beziiglich g, dann gilt fiir K, := H; n (8)
und K, := H, n (R) erstens

K,uK,=(Hyn (®)) u(Hyn (®)) = (Hyu Hy) n (®)
=(EN\g)n(®)=(en(R)\(gn(®),

zweitens folgt aus X, Y € K, zuniichst XY ng = @ und dann XY n (g n (R)) =0,
und wenn drittens X € K, und Y € K, gilt, ist XY n g 3 @ und wegen XY — (R)
nach dem Hilfssatz 3.23c sogar

XY (®)ng)=(XYn(®)ng=XYng+0.
Beweis von A;. Analog dem Beweis von A,.

Beweis des Stetigkeitsaxioms. Es sei T eine nicht leere, nach oben (unten)
beschriinkte Teilmenge einer M-Geraden (UV), es sei etwa Q€ T und R¢ (UV)
eine Schranke. In g, besitzt T eine obere (untere) Grenze S; da S zwischen den
M-Punkten Q und R liegt, ist § nach dem Hilfssatz 3.23¢ ein M-Punkt, w. z. b.w.

Der Beweis der Bewegungsaxiome fiir das Modell ist nicht immer einfach; wir
werden ihn weiter unten durch Hilfsiiberlegungen unterbrechen miissen. Zum Be-
weis der Axiome B; und B, bemerken wir vorbereitend, daB nach der Definition
einer M-Spiegelung s stets s~ = s gilt bzw. daB s* die Menge aller M-Punkte iden-
tisch abbildet.
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Beweis von B,. Sind ¢ und r M-Bewegungen von (®), dann gibt es M-Spiegelun-
gen 8, ...,84 8y ..., 8, mit o =8---5, und v =s’---s,’. Folglich sind auch
0T = 8848’8’ und g1 = g,---s, M-Bewegungen. Daraus folgt B,.

Beweis von B,. Es geniigt, die Vertriiglichkeit mit den Inzidenz- und Anord-
nungsbegriffen fiir M-Spiegelungen an M-Ebenen ¢ n (®) mit O ¢ & zu zeigen.

Es 8ei P der Pol von ¢ und (UV) eine M-Gerade.

Fall 1: P € gyy. Dann ist (UV) = (U'V’).

Fall 2: P ¢ gyy. Zur Bestimmung der Bildpunkte X’ fiir Punkte X € (UV)
wihlen wir eine Ebene # durch P, U und V. Falls g, 4 £ n 5 ist (Abb. 108a),
withlen wir auBerdem Y €gyynen7n und erkennen sofort (UV) = (U'V’);
falls g,y llenn ist (Abb. 108b), gilt g,y | gyy und (UV) = (U'V’) pach dem
Zusatz zum Hilfssatz 3.27 wegen der Invarianz des Teilverhiltnisses bei Parallel-
projektion. Insbesondere bleibt die Kollinearitit erhalten; daraus folgt die Invarianz
der Komplanaritit.

v

U 7 Abb. 108

c)

Die Invarianz der Durchlaufsinne kann man im Fall P ¢ g,, nach dem Satz 1.5
leicht einsehen. Gilt jedoch P € g, (Abb. 108¢), so projizieren wir (UV) zunichst
ordnungserhaltend auf eine M-Gerade (U, V,) mit P ¢ gy,y,. Indem wir diese gesamte
Konfiguration spiegeln, erhalten wir wegen der Invarianz der Kollinearitit eine
Abbildungskette

(@V) = (U V)~ (O/V) > (U'V),

die aus einer Projektion aus 8, der auf (U,V,A) ingeschriinkten M-Spiegelung und

einer Projektion aus S’ besteht und in jedem Schritt die Ordnung erhilt, w. z. b. w.
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Die zuletzt benutzte Methode konnen wir zum Beweis der folgenden Aussage
verwenden:

Hilfssatz 3.28. Ber M-Bewegungen bleibt das Doppelverhiilinis von vier Punkten
einer Geraden erhalten.

Die Eigenschaft, daB ein M-Punkt M nichteuklidischer Mittelpunkt in der Strecke
AB in der M-Geraden (UV) ist, sei dadurch gekennzeichnet, daB eine M-Bewegung
omit M° = M und A° = B existiert. Bei einer M/-Bewegung r erhalten wir M* € A*Br
sowie (MYt = Mo = M+ und (47" = A" = By, d. h.,, daB nichteukli-
dische Mittelpunkte bei M-Bewegungen wieder in nichteuklidische Mittelpunkte iiber-
gehen. In der Definition wird jedoch eine Reihenfolge 4, B benutzt. Um im Fall
A =+ B die Unabhiingigkeit der Definition von der Reihenfolge zu zeigen, bemerken
wir U° = V und V° = U wegen M € AB (vgl. Abb. 109a),

(17  (UVAM) = (VUBM)

als neue K ichnung der nichteuklidischen Mittelpunkte nach obigem Hilfs-
satz sowie B° = 4 wegen (UVAM) = (VUBM) = (UVB°M). '

Ist nun & die M-Spiegelung an einem M-Punkt 4 und 7 eine beliebige M-Bewe-
gung, dann ist t-'sr die M-Spiegelung an A*; denn ist ¥ (3= 4%) ein beliebiger
M-Punkt und X := ¥+, dann gilt

(Aryor = 4o = Ar

und
yrier = Xor,

wobei A* der Mittelpunkt von Y X* = X*X*" ist.
Eine entsprechende Aussage gilt auch fiir M-Spiegelungen s an M-Ebenen ¢ n (£):
Ist t eine M-Bewegung und s’ die M-Spiegelung an ¢* n (), dann gilt
& = 7rlst.
Denn bei M-Bewegungen bleiben Komplanaritit, Kollinearitit, Ordnung und die
Eigenschaft, nichteuklidischer Mittelpunkt zu sein, erhalten; wir erkennen somit

8 = v~17, wenn wir neben ¢ den ganzen ,,Abbildungsmechanismus* der M-Spiege-
lung ¢ der Abbildung = unterwerfen (Abb. 109).

Abb. 109
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Wir haben zusammenfassend den

Satz 3.29. Ist v eine beliebige M-Bewegung und s M-Spiegelung an einem M-Punkt
A bzw. einer M-Ebene ¢ n (®), dann ist Tst die M-Spiegelung an A* bzw. & n (R).

Fiir weitere Uberlegungen erweist sich die Existenz von M-Ebenen, deren M-
Spiegelung zwei gegebene M-Punkte vertauscht, von grundlegender Bedeutung.
Wir werden solche Ebenen gewinnen, indem wir zunichst den Hilfssatz 3.27 durch
die Angabe einer Berechnungsformel fiir die Bildpunkte erginzen. Damit wird
Vorarbeit fiir den Beweis der Axiome B, und B, geleistet, und zwar fiir die Existenz-
aussagen.

Indem wir bei der Bestimmung des Bildpunktes X’ eines Punktes X bei der
M-Spiegelung an einer M-Ebene & n ({) mit O ¢ ¢ eine Ebene 7 durch den Kugel-

Abb. 110

ittelpunkt O verwenden, kénnen wir eine explizite Darstellung von ¢':= b(0X’)
mit Hilfe von a := v(OP) und g := v(0X) angeben (P bezeichne wieder den Pol
von ¢): Fir X € ¢ ist X’ = X. Es sei nun X ¢ & (Abb. 110) und % := p(0X) mit
X €gpynenn Wie bei der Berechnung von @ im Beweis von 3.26 erhalten wir,
indem wir o. B. d. A. eine Einheitskugel voraussetzen,

1—a?
W—@@—”

Zusammen mit (PXX’X) = —1 nach dem Zusatz von 3.27, d. h.

e e v e
_1=u:;_a=z_°.(1_1_a),

I=a+

-t - -1 ta—a?
ergibt das
1—a? ;=
(1 - _‘L,) @ —0=—@~D
2pa —a®—1 - 1—a? 1—a? 2ta — 2
o = 1— = a
ta — a? & E+( ga——a’) ;a—u’g ta —a?
und schlieBlich

E,_(l—n’)g+2(ga—l)a

(18) 2ta —a? — 1
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letztlich eine Darstellung von X’ allein mit Hilfe von P und X. Analog erhalten wir
aus (PXXX') = —1

(1—a*t +2('a—1)a
2tr'a—at—1 ’

(19) t=
LaBt sich auch a als Funktion von ¢ und ¢’ schreiben, wenn ¢ = ¢’ gilt? Aus den
modifizierten Gleichungen (18) und (19)
(2ra—a?— 1) =(1—a*g+2za—1a,
2fa—a®—Ng=01—a)g +2('a—1a
erhalten wir nach Addition
205(z' — @) + 20’z — @) — 2’ —2r +4a =0

und nach Multiplikation mit % T bzw. % t

(20a) ap-zr' —(ar)®+ar’ -2 —ag car —rr’ — 2+ 20 =0,

(20b)  ag-z® —agp-ar’ +azr' -3’ — (ar)? — ¢ —gr' + 207 = 0.
Um a zu bestimmen, machen wir den Ansatz

a=¢+H' —1x), tER.

s h

Wir kénnen damit a in (20a) eliminieren, um zu einer Gl
(21a) [P —rH—2—-1D+ @ -] @' — 1) =0;
im Fall gr’ — g% & 0 erhalten wir

g fiir ¢ zu ke

(22a) (P —r?) —2(*—1)+(*—1)=0.

Mit dem Ansatz a =g’ + #r — '), t € R und (20b) kommt man zu einer Glei-
chung (21b), die aus (21a) durch Vertauschung von ¢ und ¢’ hervorgeht und die
fir gy’ — 2 +02zu
(22b)  £(E?—gH — 2z — D+ (2 —1)=0
fiihrt.

Es kann nicht 1p' — 22 =¢(' — 1) =0=¢(t — ') =1t — r'? gelten, weil
sonst ¢ = ¢’ oder g, ¢’ | ¢ — ¢’ wiire.

Fall 1: ¢ — 2 =0. Wegen der Gleichschenkligkeit des Dreiecks OXX’
gibt es nach dem Satz 1.22b eine Ebene ¢ durch O derart, daB X* = X' gilt. Die
einzige Losung der Gleichungen (22a, b) ist ¢t = —;—; sie fiihrt zur Bestimmung des

Mittelpunktes von XX'.
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Fall 2: g2 — ¢'? 5= 0. Dann gibt es zwei Losungen von (22a, b):

r-1+V@ -1 -1

(23a) 4= P
oder

2 _ 1 2 _ )2 — 1
(23by 4, = t =S }E/’(f'—' P 1t )

GeméB der beiden Losungsansitze ergeben sich hieraus der Pol einer Ebene e,
fiir die die M-Spiegelung an ¢ n (&) die Punkte X und X’ vertauscht, und der nicht-
euklidische Mittelpunkt von XX'.

Somit gilt der

Hilfssatz 3.30. Zu je zwei M-Punkten X und X' gibt es genau eine M-Ebene
en (R) derart, daf bei der M-Spiegelung an dieser M-Ebene X und X' vertauscht
werden; XX' hat einen nichteuklidischen Mittelpunkt.

Beweis von B,. a) Es sei AB eine beliebige M-Strecke.

Existenz. Nach dem Hilfssatz gibt es eine M-Ebene ¢ n () derart, daB bei der
M-Spiegelung s an dieser M-Ebene M* = O fiir den nichteuklidischen Mittelpunkt
M von AB gilt (Abb. 111a). Nach dem Satz 3.29 ist

8" 1= 8898
M-Spiegelung an M, fiir die 4 = B gilt.

Eindeutigkeit. Ist auch &’ M-Spiegelung an M, dann ist ss”’s die eindeutig be-
stimmte M-Spiegelung an 0, d. h. 8" = ssps = &'.

enq

a) Abb. 111

b)In {n (R) sei <X (p,q) ein beliebiger M-Winkel mit dem. Scheitel S. Nach
dem Hilfssatz 3.30 gibt es eine M-Ebene £ n (), so daB die Spiegelung s an dieser
M-Ebene 8§ auf O abbildet (Abb. 111b). In {* gibt es genau eine Gerade w, so daB
s, die Schenkel des Winkels < (p?, ¢°) vertauscht. Ist § durch s, = 808, bestimmt,
dann ist

&' 1= 88,8 = 8803,8 = 850858,8
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nach dem Satz 3.29 eine M-Spiegelung an w* n (), fiir die p*=* = ((°)*) = (¢")*
= q gilt. — Die Eindeutigkeit ergibt sich wie unter a).

Beweis von B;.

a) Es seien 4, B (+ A) Punkte einer Figur F in einer M-Geraden (UV), etwa
B¢ (AV), und (A'W) eine offene M-Halbgerade (Abb. 112a).

Existenz. Nach B, gibt es eine M-Spiegelung s an einem M-Punkt M und eine
M-Spiegelung s’ an einer M-Geraden wn (f) mit 4° = A4’, 4* = A4’ und B*
€ (A'W). Die Einschriinkung ss’ | F von ss’ auf F ist eine gesuchte Bewegung von
F.
Eindeutigkeit. Gilt auch 4* = 4’ und B' € (4’W) fiir eine M-Bewegung von F,
dann gelten die Gleichungen

A — 4’ = A", U = U, Ve = W= V.

Aus (U’ V' 4#"X*') = (UVAX) = (UV'A'X") fiir alle Punkte X € F folgt noch
X' = X, speziell B* = Br,d.h. ss' | F = 1.

a) Abb. 112

Die Existenzaussage in By(a) kann (ohne B,) allein mit Hilfe von 3.30 und 1.22
erfolgen: Es gibt M-Spiegelungen s und s* an M-Ebenen mit 4° = O und 0*" = 4’
(Abb. 112b). Es sei B := B* und W := W**. Nach dem Satz 1.22b gibt es durch O
eine Ebene e mit B* € (OW). Nun brauchen wir nur noch ss,s* auf F einzuschriin-
ken. — Dieser Gedankengang kann fiir den Beweis von By(b, ) als Vorbild dienen:

b) Es seien 4, B, C nicht kollineare Punkte einer Figur F in einer M-Ebene,
(4'U) eine offene M-Halbgerade und A'UV+n (R) eine M-Halbebene. Werden
8, 8* wie eben bestimmt, dann gibt es nach dem Satz 1.22b,c Ebenen ¢ und £, so
daB fiir 7 := ss,8,8*

A =A4'", Be(AU), CecAUV+n(R)
gilt. Nun ist v | F' eine gesuchte Bewegung.

Zum Beweis der Eindeutigkeit bemerken wir zuniichst, da8 die Punkte in g5 n (®)
nach a) eindeutig abgebildet werden. Von jedem Punkt X € F \ ABC- fillen wir
das nichteuklidische Lot I auf g3. Nach dem Satz 3.29 bleibt die M-Orthogonalitit
bei M-Bewegungen erhalten. Da der M-LotfuBpunkt F und damit das M-Lot I
eindeutig abgebildet werden, ist auch das Bild von X in I'n A'UV*n (R) eindeu-
tig. — Analog schlieBt man fiir X € F \ ABC+.
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Der Beweis von c) kann nun iibergangen werden (vgl. Aufgabe 2), w. z. b. w.

Die Axiome des Zirkels sind mit Hilfe des Stetigkeitsaxioms aus den hergeleiteten
Axiomen ableitbar (vgl. dazu die Abschnitte 1.3.3 und 4.2.2 sowie den Hilfssatz
2.15). Somit kénnen wir nochmals feststellen, daB8 die Lobadevskijsche Geometrie
im Inneren einer Kugel realisierbar ist und ein Widerspruch in ihr einen Widerspruch
in der euklidischen Geometrie bedeuten wiirde. Mehr kann in der Mathematik nicht
geleistet werden. Auch die Widerspruchsfreiheit anderer mathematischer Theorien
kann nur relativ zu einer bereits akzeptierten Theorie bewiesen werden. So ist
beispielsweise die euklidische Geometrie relativ zur Theorie der reellen Zahlen oder
relativ zur Lobagevskijschen Geometrie widerspruchsfrei. In der Geschichte der
Mathematik haben die Entdeckung der nichteuklidischen Geometrie und der Nach-
weis ihrer relativen Widerspruchsfreiheit ihren besonderen Platz: Es handelt sich
um den ersten bedeutenden Beweis dafiir, daB eine Aussage aus gewissen anderen
Aussagen nicht ableitbar ist.

Aufgaben

1. Man stélle die Rechnungen, die zum Hilfssatz 3.30 fiihren, ausfiihrlich dar.
2. Man leite By(c) im Modell her.

3.2.3. Aussagen der LobaZevskijschen Geometrie im Kleinschen Modell

Parallele und randparallele Geraden wurden in Abb. 107 dargestellt.

Um die Hypothese des spitzen Winkels fiir Saccherische Vierecke zu veranschau-
lichen, betrachten wir ein Viereck dieser Art mit rechten Winkeln bei 4 und B.
Nach dem Hilfssatz 3.30 gibt es eine M-Spiegelung s, die den Mittelpunkt von 4B
in O abbildet (Abb. 113). Das Viereck A°B°C*D* ist nun ein euklidisches Rechteck,
jedoch gilt nichteuklidisch die Hypothese des spitzen Winkels.

U
T
// \\
s P g ~
- N QO
P
= ! I = KN,
>

Abb. 113 Abb. 114

Bei der Bestimmung einer absoluten Lingeneinheit e sind wir von einem rechten
Winkel ausgegangen. Ohne Beschriinkung der Allgemeinheit sei < UOV mit
U, V € R ein rechter Winkel, dersomit auch nichteuklidisch ein Rechter ist (Abb. 114).
Die zu bestimmende Grenzgerade ist (UV). Die Winkelhalbierende von < UOV
steht auf (UV) senkrecht. Ist ¥ der FuBpunkt dieses Lotes von O auf (UV), dann
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besitzt OF die Linge e mit i;- = II(¢). — Damit ist insbesondere auch der Satz

2.13’ veranschaulicht, falls wir <¢ UOV und F betrachten.

Wir kommen nun zu den Abstandslinien, Kreisen und Grenzkreisen im Klein-
schen Modell. Zunéchst betrachten wir diese Bahnkurven in einer Ebene » durch O.
AuBerdem setzen wir noch besondere Lagen voraus (0. B. d. A sei & Einheitskugel):

a) Nichteuklidischer Kreis um O. Die Spiegelungen an Geraden durch O sind auf
(R) eingeschrinkte euklidische Spiegelungen. Folglich ergibt sich als Bahn ein eukli-
discher Kreis um O (Abb. 115).

Abb. 1156 Abb. 116

b) Abstandslinie zu einer Geraden g n (®) durch O. Die M-Geraden des Lot-
biischels stehen auf g auch im euklidischen Sinne senkrecht (Abb. 118). Es sei nun
X ein Punkt einer zu g n (®) senkrechten M-Geraden (UV) durch O. Bei der Spie-
gelung s an einer M-Geraden des Lotbiischels mit dem Pol P gilt nach dem Strahlen-
satz

ox: PX* 0OU
0X PX OU’
Folglich ist auch
_ox_ox

ti= =,
oUu " oU*
Aus der Kreisgleichung z? 4 y? = 1 fiir & n # erhalten wir die Ellipsengleichung

¥
LI B A,
x+t’ 1.

%
T &nm

X

Abb. 117
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Somit bilden die Abstandslinie @ durch X und a? zwei Teile einer Ellipse, wobei
die Endpunkte der groBen Achse nicht zu den Abstandslinien gehoren.

c) Grenzkreis durch 0. Da alle M-Geraden des erzeugenden Biischel
ander randparallel sind, miissen sie einen Punkt in § n % gemeinsam haben, etwa
den Einheitspunkt der y-Achse (Abb. 118). Die Pole dieser Geraden miissen somit

¥

Abb. 118

simtlich auf der Parallelen zur z-Achse durch diesen Einheitspunkt liegen. Hat P
das Koordinatenpaar (p, 1), dann erhalten wir gemi8 (18) mit ¢ = (0, 0)

— 2p - 2
-0 = (s )
Indem wir in y := 2(p* 4 2)! 0 mittels  := py nun p eleminieren, erhalten wir
die Ellipsengleichung
2+ 2y — 2y = 0.
Der Einheitspunkt auf der y-Achse gehért nicht zum Grenzkreis.)

Die bisher erhaltenen Ergebnisse lassen sich nach dem folgenden Hilfssatz verall-
gemeinern.

’

T

Hilfssatz 3.31. Bet M-Spiegelungen an M-Ebenen wird die Menge der eukli-
dischen Ellipsen, die in (R) u & liegen, auf sich abgebildet.

Beweisskizze. Die Behauptung ist fiir M-Ebenen durch O trivial. Es sei nun
O kein Punkt der M-Ebene ¢ n (f); die Ellipse liege in % n ((R) v ﬁ?).

Fall 1: 7 bleibt bei der Spiegelung & an & n (®) fest. Wir wihlen eine orthonor-
mierte Basis des Vektorraumes derart, daB a = (p,0), t = (z, %) und ¢’ = (2, %)
gilt?) (Abb. 119a). GemiB (19) erhalten wir

g = L=+ Apr — Da

2pr —(p*+1)
d.h.
)2 L 1__ 2 !
(24 z=(14’-p)z’ L/ (’ pZy .
2pz’ — (p* + 1) 2px’ — (p* + 1)

1) In diesem Punkt ist ® n n Krimmungskreis der Ellipse.
%) Das heiBt, daB Null als dritte Koordinate unberiicksichtigt bleibt.
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Setzen wir nun in eine Gleichung zweiten Grades
o0 + 2a01% + 2002y + an®® + 2a107Y + any® =0
ein, dann erhalten wir wieder eine Gleichung zweiten Grades (vgl. Aufgabe 1)
g + 28,7 + 20y’ + @, 7% + 20,7y + ayy? =0,
die Gleichung einer Kurve zweiter Ordnung. Da die Bildpunkte X' in (R)u &
liegen, ist das Bild einer Ellipse wieder eine Ellipse.

?J‘

b}
Abb. 119

Fall 2: 5 bleibt nicht bei der Spiegelung s an &n (8) fest. Da (1 n (R))* eine
M-Ebene ist, lauft der Beweis darauf hinaus, den Schnitt einer Ebene mit einem
(eventuell schiefen) Kegel mit einer Ellipse als Grundfliche (Abb. 119b) zu bestim-
men. Das kann mit Mitteln der analytischen Geometrie vollzogen werden.

Somit haben wir den

Satz 3.32. Die Kreise, Grenzkreise und Abstandslinien in einer Ebene n der Loba-
Cevskijschen Geometrie haben die Gestalt en (R), wober e eine euklidische Ellipse
iny 0 ((R) v &) dst, von der keine, ein bzw. zwei Punkte in 7 n & liegen (Abb. 120).

DO D

Abb. 120

Es bleibt dem Leser iiberlassen, sich weitere Sachverhalte der Lobagevskijschen
Geometrie im Kleinschen Modell zu veranschaulichen. Da alle Modelle der Loba-
Gevskijschen Geometrie untereinander isomorph sind, kann man das Modell sogar
zur Herleitung von Sitzen der nichteuklidischen Geometrie verwenden, z. B. um
die nichteuklidische Trigonometrie aufzubauen (vgl. [4]).

Aufgaben

1. Man zeige, daB bei der Abbildung (24) eine Gleichung zweiten Grades in eine Gleichung
zweiten Grades iibergeht.
2.* Man he die Schnitte elliptischer Kegel.

P




4, Banach-Minkowskische Geometrie

Die Minkowskische Geometrie, die spiiter von STEFAN BANACH (1892— 1945) ausge-
baut wurde, entsteht aus der euklidischen durch Anderung der Lingenmessung.
Dabei bleibt die Strecke (nicht notwendig eindeutige) kiirzeste Verbindung zweier
Punkte. Wihrend die Streckenkongruenz somit einen festen Sinn hat, erweisen sich
mit ihr verkniipfte Winkel- und Dreieckskongr i haften im tlich
als kennzeichnende Eigenschaften euklidischer Geometrie. Auch fiir sie wird hier
die Bedeut der Dreiecksungleichung besonders deutlich, jedoch sind in den
Anwendungen . nichteuklidische Minkowskische Geometrien ebenfalls unentbehrlich.
Sie verdanken ihre Entstehung einer arithmetischen Fragestellung, die von HERMANN
MiNgowskr (1864— 1909) in seiner Geomelrie der Zahlen behandelt wurde.

41.  Einfiihrung

41.1.  Anschauliche Einfiithrung

In der Natur begegnen wir bei physikalischen Erscheinungen dem Phiénomen der
Rlchtungsabhanglgkelt Dxeser fiir Kristallstrukturen typische Tatbestand wird
Amasotropie g ise sind Elastizitit und Kohision richtungsab-
hiingig. Anisotropie bezughch der Ausbreitungsgeschwindigkeit in kristallinen Medien
fiihrt dazu, daBl die Wellenflichen keine Kugelflichen sind. In einigen in der Optik
wichtigen Fillen sind sie Ellipsoide.

Bei den Entfernungen in einer Stadt kénnen wir ebenfalls von Richtungsabhiingig-
keit sprechen, wenn wir von der Luftlinienentfernung zur Entfernung in Minuten
fiir einen Fufginger iibergehen. Zur Vereinfachung unserer Betrachtungen setzen
wir voraus, daB alle StraBen geradlinig und waagerecht verlaufen und bei Kreuzun-
gen stets rechtwinklig aufeinander treffen (Abb. 121). Dann ist offenbar die Strecke
nicht mehr die eindeutig bestimmte kiirzeste FuBgingerverbindung zweier Punkte P
und Q; es kann mehrere kiirzeste Verbindungen geben.




148 4. Banach-Minkowskische Geometrie

Die niichste Frage, die uns beziiglich der FuBginger-Entfernungen interessiert,
bezieht sich auf die Gestalt eines Kreises k, dessen Radius etwa durch die Vorgabe
von 20 Minuten gegeben ist (Abb. 122). Verkiirzen wir den Radius durch die Vorgabe

Abb. 121

P

von 10 Minuten, dann erhalten wir einen Kreis &', der aus k durch eine Stauchung

mit dem Faktor %- hervorgeht. Verallgemeinernd sei festgestellt, daB alle Kreise
beziiglich der FuBginger-Entfernung aus & durch

1. Dehnung (bei ungleichen Radien),

2. Verschiebung (bei gleichen Radien)
gewonnen werden. Diese Einsicht kénnen wir auch wie folgt formulieren: Ein Teil-
verhilinis paralleler gerichteter Strecken stimmt bis auf das Vorzeichen mit dem Ver-
héiltnis der Lingen dieser Strecken beziiglich der neuen Entfernungsmessung iiberein.

Abb. 122 Abb. 123

Die Bestimmung der Kreise in unserer Stadtgeometrie kann fiir die Planung der
Standortverteilung von Verkaufsstellen gleichen Typs, Apotheken usw. ausgenutzt
werden. Dazu iiberdecken wir die Stadt mit kongruenten Kreisen beziiglich der
FuBginger-Entfernung. Die Mittelpunkte ergeben dann giinstige Standorte, wenn
je zwei Kreise keine innere Punkte gemeinsam haben. Als Losung erhalten wir ein
Quadratnetz, bei dem die Diagonalen der Kreise die Richtungen der StraBenziige
besitzen (Abb. 123). — Beziiglich der Luftlinienentfernung erhilt man eine andere
Losung, bei der zwei benachbarte Kreise gemeinsame innere Punkte haben (vgl.
Aufgabe 2).
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Aufgaben

1. Mn.n bestimme einen Kreis beziiglich der FuBgnngar-Entfem\mg in obiger Stadt, dessen
lpunkt keine Kreuzung, sondern ein beliebiger Punkt in einer StraBe ist.
2. Man uberloge sich, daB die Losung der Standortaufgabe zu den Mittelpunkten von ,,Bienen-
waben'* fihrt, wenn man sich auf die Luftlinienentfernung bezieht.

4.1.2. MaBbestimmung mittels Eichfigur?)

Im Beispiel der FuBgiinger-Entfernung hat die Wegzeit o(P, Q) von P nach Q neben
der Eigenschaft
XY oX, Y)
0 ==
PQ o(P, Q)
fiir beliebige Punkte P, Q, X, Y und reelle Zahlen ¢ noch folgende Eigenschaften
einer Abstandsfunktion: Fiir beliebige Punkte X, Y, Z gilt
(1) oX,Y)=0& X =Y (Identititsaxiom),
(2) o(X,Y)=p(Y, X) (Symmetrieaxiom),
3) o(X,Y) +o(Y,Z) = o(X,Z) (Dreiecksungleichung).
Dabei ist diese Abstandsfunktion durch die zugehérigen Kreise bzw. Kugelflichen
véllig bestimmt. AuBerdem -erhdlt man nach (0) die Kreise bzw. Kugelflichen aus
einem Kreis bzw. einer Kugelfliche, einer Eichfigur, durch Dehnung oder Ver-
schiebung. In diesem Abschnitt werden wir die gegeniiber einer Abstandsfunktion
anschaulichere Eichfigur in den Vordergrund riicken.

Es sei k eine zentralsymmetrische Figur, die jede vom Mittelpunkt O ausgehend
(offene) Halbgerade in genau einem Punkt trifft. Um einer beliebigen Strecke 4B
mit 4 # B eine MaBzahl g,(4, B) zuzuordnen, bestimmen wir (vgl. Abb. 124) zuniichst
Punkte P und E durch die Forderungen

=

AB 4 OP,
EcOP+nk

und dann die positive reelle Zahl ¢ = g,(4, B) mit
OP =t 0OF.

Offenbar ist g,(4, B) durch AB eindeutig bestimmt.
In der Ebene ¢ ist die Eichfigur & ein Evnheitskreis bei dieser MaBbestimmung.
Sein Inneres (k) ist durch g:= (0, X) < 1, seine Fliche k := ku (k) durch

1) Alle Uberlegungen dieses Abschni konnen als Aussagen im Ansch gsraum aufge-
faBt werden Es sei aber darauf hingewiesen, daB in den Beweisen nur die Inzidenz- und An-
rd inschlieBlich des euklidischen Parallel joms und — fiir den Begriff

des reellen Teilverhiltnisses — das Stetigkeitsaxiom benutzt werden.
2) Es gilt hier % = ¢t genau dann, wenn Xy H#¢ PQ ist (vgl. 3.1.2d)).
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¢ =1 gekennzeichnet. AuBerdem charakterisiert ¢ = g4(0, X) > 1 das AuBere
des Einheitskreises (Abb. 125). Die Menge

(X € e: a0, X) = 1o}

ist ein zu k konzentrischer Kreis, der fiir 0 < 7o < 1 im Inneren und fiir 7o > 1
im AuBeren von k verlduft.

o>1

Abb. 124 Abb. 125

Ist k beispielsweise das in Abb. 126 dargestellte regelmiBige Sechseck, dann ist
das Dreieck OPQ gleichseitig mit g,(0, P) = (P, Q) = (0, Q) = 1.

Q

Abb. 126

Bemerkenswerterweise haben auch alle Seitenhalbierenden die MaBzahl 1. AuBer-

dem ist in Abb. 126 ein zu k konzentrischer Kreis mit 7, = — durch eine punktierte
Linie hervorgehoben.

Im Raum ist die Eichfigur k eine Einheitskugel(fliche) bei der MaBbestimmung
beziiglich k:

k= (X: 0= o0, X) = 1}.

Inneres (k), Kugelkorper £ und AuBeres werden durch o <1, 0 <1 und ¢ > 1
beschrieben.

Unsere bisherigen Forderungen an k lassen noch vielfiltige Gestalten zu (Abb. 127).
In Abb. 127a, b ist die Einheitskreisfliche % konvez, d. h.

4) P,Qek=>PQck.

Unter Vor ngen iiber k liBt sich eine einfachere Bedingung fiir die
Konvexitit formulieren:
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Definition. Die Eichfigur k ist genau dann konvez, wenn
(5) P,Qek=>PQck
gilt. Die Eichfigur ist genau dann im engeren Sinne konvez, wenn
(5*) P, Qek=>(PQ)c (b

()&

Abb. 127

<

gilt, d. h., wenn zwei Punkte in % liegen, so gehért das Innere der Verbindungsstrecke
zum Inneren von k.

Die Eichfigur inleitend betrachteten Stadtgeometrie (Abb. 127b) ist

beispielsweise nicht im engeren Sinne konvex. Offenbar ist jede im engeren Sinne
konvexe Eichfigur erst recht konvex. AuBerdem gilt

Satz 4.1. Die Euchfigur k ist genau dann konver, wenn k konvex, wenn also (4)
erfullt 1st.

Beweis. a) Wir setzen (4) voraus. Wegen k S % gilt (5) trivialerweise.

b) Wir setzen nun (5) voraus. Es seien P, @ zunichst beliebige, mit O nicht kolli-
neare Punkte aus %k (Abb. 128a). Wir betrachten die Punkte P’ und Q' in % mit

P ¢ OP und Q€ OQ'. Liegt X zwischen P und Q, dann existiert in P'Q’ ein Punkt X’
mit X € OX' und wegen (6) mit (0, X’') < 1. Wir erhalten

00, X) < 0:(0, X') S 1.

b) ' Abb. 128

Sind 0, P, @ kollinear, dann ist PQ in einem Durch von k enthalten, d. h.
00, X) <1, w.z.b. w.

Wie man leicht sieht, erfiillt die Funktion g, nach der Definition die Bedingungen
(0) und (1). Offenbar ist (2) mit der Zentralsymmetrie von k gleichwertig; iibrigens
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folgt (2) aus (0). Die Antwort auf die naheliegende Frage, fiir welche k die Dreiecks-
ungleichung (3) erfiillt ist, erhalten wir im folgenden

Satz 4.2. Die Funktion g, geniigt genav. dann der Dresecksungleichung (3), wenn k
konvez ist.

Zusatz. Die Funktion g geniigt genau dann der Dretecksungleichung
(3% X, Y) + oY, 2) > X, 2)
fiir nichtkollineare Punkte X, Y, Z, wenn k vm engeren Sinne konvex st.
Beweis. Fiir beliebige Punkte 4, B, C setzen wir
a: =B, C), b:=g(C,A) und c: = g(4, B).

a) Es sei k konvex.

Fall 1: 4, B, C kollinear. Dann liegt o. B. d. A. der Punkt C in AB, so daB
a + b = c fiir die nicht negativen reellen Zahlen a, b, ¢ gilt. Daraus folgt (3).

Fall 2: A, B, C nicht kollinear. Um A ziehen wir den Kreis k(4, 7) mit r:=a + b
(Abb. 129). Wir bestimmen auBerdem Punkte B¥*, P, @, R durch

CB 4 AB*,

Pc AB*nk(4,r), Q€ AB*nk(A4,7), Re€ AC*nk(4,r).
Wegen
(6) a,b<a+b=r

liegt B* zwischen 4 und P, C zwischen A und R. Aus (6) folgt noch g,(C, R) = a,
damit zunichst

i)
Bl

Folglich sind die Punkte B, P, R kollinear, wobei B zwischen P und Rliegt [ 1 < —+—b !
Da k konvex ist und P, R € k(4, r) gilt, erhalten wir B € k(4, r) bzw. g,(4, B) <
d. h. nach (6) wie gewiinscht ¢ < a + b; ist k£ im engeren Sinne konvex, dann liegt B
im Inneren von k, d. h., nach (6) gilt sogar ¢ < a + b.

Anslog erhilt man @ < b + ¢ und b < ¢ + a; aus (5*) folgt natiirlicha < b + ¢
und b < ¢+ a.

b) Es sei k nicht konvex. Dann gibt es in k¥ Punkte P und @, zwischen denen
ein Punkt B mit ,(0, B) > 1 liegt (Abb. 130). Die Punkte O, P und @ konnen nicht
kollinear sein. Wir setzen 4:= O und bestimmen einen Punkt C als Schnittpunkt
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von OP mit der Parallelen zu goq durch B. Dann gilt

PC CB
(P, 0) = 000 %(B,C)=a
und folglich
a+b=0g(P,0)+aC, 4)=1< (4, B) =c.

Das heifit, wenn k nicht konvex ist, gilt (3) nicht.

Abb. 129 Abb. 130

Um den Beweis des Zusatzes zu beenden, setzen wir k als nicht im engeren Sinne
konvex voraus. Dann gibt es in k¥ Punkte P und Q, zwischen denen ein Punkt B
mit g,(0, B) 2 1 liegt. Die Punkte O, P und Q kénnen nicht kollinear sein; bestim-
men wir A und C wie oben, dann sind 4, B, C nicht kollinear, und es gilt

(B, 0) + 0(C, 4) = 1 < ou(4, B),

w.z. b. w.

Aufgaben

-

. Man gebe sich eine konvexe zentralsymmetrische Eichfigur k vor und bestimme beziiglich &

Kreise, deren Radien die MaBzahlen l. 3 und 3 haben und deren Mittelpunkte paar-
weise voneinander verschieden sind. 2

. In der euklidischen Ebene 16se man mit Hilfe der Dreiecksungleichung (mit dem <-Zeichen
fiir Dreiecke!) folgende Aufgaben:
a) Kann, wenn Punkte P, Q und eine Gerade g gegeben sind, in g ein Punkt derart gefunden
werden, daB die Summe seines Abstandes von P und Q moglichst klein wird?
Anleitung: Im Fall gP+ = gQt spiegele man P oder @ an g.
b) Im Inneren eines Winkels mit den Schenkeln p, ¢ liege ein Punkt R. Unter welchen Be-
dingungen fiir den Winkel lassen sich Punkte P € p und Q€ ¢ finden, fir die der Umfang
des Dreiecks PQR méglichst klein wird?

N

41.3. Analytische MaBbestimmung?)

In der affinen Koordinatenebene ist es natiirlich, die neue Lingenmessung durch
die Angabe einer Abstandsfunktion einzufiihren. Die MaBbestimmung mit Hilfe

einer Eichfigur % liefert fiir parallelgleiche gerichtete Strecken P,P, und P/P,

1) Vgl. die FuBnote 1 auf S. 149.
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dieselbe MaBzahl:
(M PiPy# PPy = alPy, Po) = alPy', Py).
Wenn P;, P/ die Koordinaten z;, y; bzw. z;/, y;’ besitzt, gilt
ﬁe #PPYo@m—az,— ) =@ —2 % —u).

Wir haben folglich eine Abstandsfunktion mit den Variablen z, — z,, ¥, — %
zu erwarten.
Bei den folgenden Beispielen habe P; wieder die Koordinaten z;, y;:

01(Py, Py) 1= |z — my| + |2 — wml,

02(Py, Pp) 1=Vl — a[* + |yo — wil?,
0s(Py, Py) := " |22 — z;y|* + |y — wl*.

Aus 1;'—1;‘ =4 folgt bekanntlich (z, — 23 ¥4y — ¥a) = (M(z2 — ), A%, — %)), und
1P
damit gilt
PP, i Py, Py)
55 =A== =,
PP, 0Py, Py)

d. h., daB die Teilverhiltnisse bis auf das Vorzeichen mit den Abstandsverhiltnissen
beziiglich g, iibereinstimmen.
Wegen
ey P)=00n=nmAay=yp P =P,

Td

geniigt o; dem xiom (1). Das Symmetrieaxiom (2), das bereits aus (0)
folgt, kann wegen der vorhandenen | [|-Striche unmittelbar abgelesen werden. Um
die Giiltigkeit der Dreiecksungleichung (3) zu untersuchen, kann man die Einheits-
kreise um den Ursprung betrachten:

k= y): |2l + 9l = 1),
kyi={@y: *+y*=1),
kyi=((z,9): A+ 9yt =1).
In Abb. 131 sind gleichwertige graphische Darstell von k; angegeben. (Insbe-

sondere sei hervorgehoben, daf alle Ellipsen als Eichfiguren zur Beschreibung der
ebenen euklidischen Geometrie geeignet sind, daB in der affinen Koordinatenebene
auf mannigfaltige Art und Weise eine euklidische Metrik eingefiihrt werden kann.)
Die Konvexitit von k, und k, ist wohlbekannt, beziiglich der Konvexitit von X,
vgl. man Aufgabe 2.

Bei der rechnerischen Herleitung der Dreiecksungleichung geniigt es wegen (7),
den Fall zu betrachten, daB einer der drei Punkte der Ursprung O ist. Wir unter-
suchen hier nochmals g; und g,.
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Der Fall g,: ¢4(Py, Pp) =< @4(P1, 0) + ¢1(0, Py). Es gilt

Py, Py) = |2 — | + 1y — il = |z + (—2)| + |32 + (=9
= || + (2] + (9] + [l = (2l + lsl) + (2] + [9al)
= o1(Py, 0) + :(0, Py).

1S5}

PP
8!

Abb. 131

Der Fall g;: 0x(Py, Ps) < 02(Py, 0) + 0:(0, P,). Aus
0 < (my2 — =ath)?
folgt der Reihe nach
222y S 20Ys? + 2ly®,
(T2 + %) = (22 + 91 (= + v2%),
ez + iyl < Viad + 1) (22 + 9.7
Folglich gilt
02(Py, Py) = 2 — 27, + 2 + i — 2u19, + %2t
=2 + 2 + y? + ¥:* — 2=z + %iya)
Szt + 2 + 9 + 9t + 2nm + niel
Sz® 4+ 22+ + v+ 2V(@2 + ) (2 + vP)
= (Vxl’ + 92+ V2t + 3/22)’:

02(Py, Py) < 0a(Py, 0) + 02(0, Py).

d. h.

1) Diese Ungleich wird Bunjakovskij-Sck he Ungleich t (nach VIETOR
JAKOVLEVIS Bm«uxovsm (1804 1889) und HERMANN AMANDUS SOEWARZ (1843—1921).
Auch AuGusTIN-Louts CAUORY (1789—1857) ist in diesem Zusammenhang zu nennen.
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Im Raum konnen éhnliche Beispiele untersucht werden. Dabei sind fiir P; drei
Koordinaten z;, y;, z; zu beachten:

0/ (PuPy) i= |2 — m| + |ya — wil + |22 — zl,
o' (P, Py) i=Vlwe — i* + |y, — nil® + |22 — &l®,

Auch hier ist es niitzlich, sich die Eichfiguren mit dem Ursprung als Mittelpunkt
zu erarbeiten. Indem wir eine Fallunterscheidung nach den einzelnen Oktanten — z. B.
z,9,2 = 0oderz < 0, y, 2 = 0 — vornehmen, erhalten wir beziiglich ¢, ein Oktaeder
(Abb. 132a). Die Eichfigur beziiglich o,’ ergibt in kartesischen Koordinaten eine
Kugelfliche, sonst ein Ellipsoid. — Es ist nun reizvoll, die Metrik in Ebenen durch
den Ursprung zu studieren. Im Fall o, erhilt man natiirlich im wesentlichen g,;

in den Koordinatenebenen erzeugt g,” analog ¢,, in der Ebene durch den Ursprung

und die Punkte (2 ; 0) und (l, 0, -—1-) jedoch nicht o, (vgl. Aufgabe 3).

2 2

Abb. 132

Es ist auch moglich, die MaBbestimmung mit der analytischen Beschreibung
einer Eichfigur zu beginnen. Setzt man 2 = r cos ¢, y = 7 sin ¢, dannist |7| + [2| = 1
die Gleichung eines ,,Doppelkegels (Abb. 132b). Er erzeugt in der z, y-Ebene
02 und etwa in der z, z-Ebene g,.

Wegen (7) konnen wir jedem Vektor a := 9(PQ) die reelle Zahl

8) llall := ex(P, @),
die Norm vor a, zuordnen.!) Die analytische MaBbestimmung kann mit Hilfe der
Abbildung

a— [la]
vorgenommen werden.

1) In Kapitel 3 wurden die Vektoren b(PQ) als spezielle Bewegungen definiert. Da die Ver-
schiebung v(PQ) nach dem Abschnitt 3.1.1 die Aquivalenzklasse aller zu PO parallelgleicher
gerichteter Strecken ist und die Relation 3 mit Hilfe von Pamllelognmmen charakterisiert
werden kann, lassen sich die Verschlebungen nach dem euk 11 iom allein
auf der Grundl der riumlichen Inzid iome (vgl. etwa [34]) nnd ihre Vervielfachung
dann gemis 3.1 einfithren. Somit hat die FuBnote 1 auf S. 149 nach wie vor Giltigkeit.




4.1, Einfihrung 157

Satz 4.3. Wird die Norm (8) mit Hilfe einer Abstandsfunktion o, die die Bedin-
gungen (0) bis (3) erfiillt, definiert, dann gilt fiir beliebige Vektoren a, b und «eelle
Zahlen A ’

(a) ol =0=>a =0,
(b) IAall = 14} llall,
(c) lla + Bl < llall + (1Bl

Beweis. Es seien P, Q, R Punkte mit a = v(PQ) und b = v(QR); solche Punkte
existieren stets (Abb. 133).

R
3
oats 4
£ 2
Q /

P 3

Abb. 133 Abb. 134
a) Gilt lla|| = gu(P, é) =0, dann ist P = @ nach (1) und folglich a = o.
b) Zu a bestimmen wir beziiglich k einen Einheitsvektor e und eine reelle Zahl x4

mit @ = ue (Abb. 134). Dann, gilt nach (0) zunichst [la}] = |u|. Fiir Aa erhalten wir
entsprechend

lAall = llAuell = (Ap] = |4] |u} = 1A] - llall.
c) Es gilt
lla + Bl = en('P, R) = a(P, Q) + ox(@; B) = llall + [IBl
nach der Dreiecksungleichung (3) fiir g;, w. z. b. w.
Bemerkung 4.4. Aus (a) und (b) folgt
9 la =0 a=0
wegen [lofj = [|0 - ol| = [0] [lo]| = O, aus (b) und (c)
(10) llall = 0

wegen 0 = |lof| = [la — af| = [la + (—a)l| < llall + [la]l = 2llall.
Umgekehrt konnen wir bei gegebener Norm

(11) o(P, Q) := [l
definieren, wobei wieder a = 9(PQ) sei.

Satz 4.5. Die Funktion ¢ hat nach (11) die Eigenschaften (0) bis (3), wenn die
Norm | || die Eigenschaften (s) bis (c) besitzt.

Beweis. Aus ‘;—é’ = ¢ folgt v(XY) = ¢ - v(PQ) = ta und somit

o(X, Y): (P, @) = It| llall: llall = It].



158 4. Banach-Minkowskische Geometrie

Es gilt
eP,@)=0s|a|=0sa=0oP=0Q.
Wegen o(P, Q) = |lall = ||—al| = o(Q, P) ist o symmetrisch. Mit den Bezeichnungen
der Abb. 133 gilt
o(P, Q) + (@, B) = [la]| +- [Ibll = lla + bl| = o(P, R),
d. h. die Dreiecksungleichung (3), w. z. b. w.

Die Norm ist unabhingig von der Wahl eines Koordinatensystems. Ein weiterer
Vorzug der Axiome (a) bis (c) besteht darin, daB keine Festlegung hinsichtlich der
Dimension des Raumes benétigt wird. Im folgenden werden wir die Charakterisie-
rung der Minkowskischen Metrik benutzen, die am besten dem jeweiligen Problem
angepaft ist.

Aufgaben

-

. Man untersuche
a) o(Py, Py) := max (|z, — z,|, lys — #l),
b) ¢(Py, Py) = (Viz, — 2] + Viga — v

2. Man beweise die Dreieck leichung (3) fiir g,.
Anleltung Die Konvexitit von k, (sogar im engeren Sinne) liBt sich mit Mitteln der
iffy g (,,Kurvendiskussion*') nachweisen.

w

. Welche Metrik erzeugt ¢,” in der Ebene, die durch den Ursprung und die Punkte (% ’ % ’ )

1 1
—, 0, —) geht?
nnd(2 0, 2)39

4.2.  Der Umfang der Kreise und die Orthogonalitit
4.21. Konvexe Figuren und Stiitzgeraden in der Minkowskischen Geometrie

In Abschnitt 4.1 haben wir Minkowskische Geometrie innerhalb der euklidischen
Geometrie betrachtet. Fiir den systematischen Aufbau der Minkowskischen Geome-
trie kann man sich von dieser Voraussetzung trennen. Wir gehen (vgl. Abschnitt 1.1)
von einem Quadrupel (B, @, €, D) aus und setzen nur die rdumlichen Inzidenz-
und Anordnungsaxiome einschlieBlich des euklidischen Parallelenaxioms sowie das
Axiom von der oberen bzw. unteren Grenze voraus. Ebene Geometrie betrachten
wir stets als Geometrie einer Ebene des Raumes. Unter den genannten Voraus-
setzungen sehen wir gerichtete Strecken PyQ, und P,Q, mit Py %+ Qy, P, +Q,

genau dann als parallelgleich an, wenn gerichtete Strecken }TQ; s veey Pae1@p-y derart
existieren, daB PyQyQ, Py, P1@,Q;P;,... Parallelogramme sind. Ohne Beweis teilen




4.2. Der Umfang der Kreise und die Orthogonalitit 159

wir mit, daB die Parallelgleichheit gerichteter Strecken die folgenden Eigenschaften
besitzt, die die Definition von Schubvektoren als Aquivalenzklassen gestattet:

G,. Zu jeder gerichteten Strecke P und jedem Punkt P’ gibt es genau einen
Punkt Q' mit PQ 4 P'Q' (Moglichkeit und Eindeutigkeit des Antragens
gerichteter Strecken an Punkte).

G,. Aus P—Q' ++ UV und 8T ++ ov folgt P_é':ﬁ: ST (Drittengleichheit).
G,. Aus FQ +* RT folgt PR H+ 0_7" (Vertauschungsregel).
G,. Aus I?é +* QT’ folgt P = Q (Fano-Aussage).

In der Minkowskischen Geometrie gehen wir von einem Tupel (B, &, €, D, k)
bzw. (B, @, €, D, 0) aus, wobei die Minkowskische Metrik durch eine konvexe zentral-
symmetrische Eichfigur k oder eine Abstandsfunktion ¢ mit den Eigenschaften (0)
bis (3) gegeben ist. — Bei analytischer Betrachtungsweise kann auch ein (zwei-
oder dreidimensionaler) Vektorraum mit einer Norm || || gegeben sein.
Unter der Voraussetzung der Inzidenz- und Anordnungseigenschaften hat bereits

der Begriff der konvexen Figur F, definiert mit Hilfe von

X, YceF=>XYCPF,
seinen Sinn (vgl. (4)). In der Minkowskischen Geometrie besitzen die Punkte P
die e-Umgebungen

UP,¢) := (X: o(P; X) < ¢;
das sind im ebenen Fall offene Kreisschetben und im raumlichen Fall offene Kugel-
korper. Deshalb konnen wir die Punkte beziiglich einer Figur F einteilen:

Definition. Ein Punkt P heiBt tnnerer Punkt von F genau dann, wenn wenigstens
eine ¢-Umgebung von P zu F gehort. Entsprechend heiBt ein Punkt P duferer
Punkt von F genau dann, wenn P innerer Punkt des Komplementes von F ist,
d. h., wenn wenigstens eine e-Umgebung von P keinen Punkt von F enthilt. Alle
iibrigen Punkte werden Begrenzungspunkte von F genannt. Alle inneren, éuBeren
bzw. Begrenzungspunkte bilden das Innere, das Aufere bzw. die Begrenzung von F.

Offenbar sind die Begrenzungspunkte von F dadurch gekennzeichnet, dal jede
&-Umgebung von P sowohl Punkte von F als auch Punkte, die nicht zu F gehoren,
enthilt. Begrenzungspunkte, die zu F gehoren, heiBen Randpunkte; die Menge aller
Randpunkte von F wird Rand von F genannt.

Definition. F heiBt abgeschlossen (offen) genau dann, wenn F alle (keine) Begren-
zungspunkte enthilt. Der Abschluf von F ist per definitionem gleich der Vereinigung
von F mit der Begrenzung von F.)

1) Der Abschlup einer Figur F ist abgeschlossen. Dazu geniigt es zu zeigen, daB jeder dulere
Punkt von F auch duBerer Punkt des Abschlusses ist, weil der AbschluB dann alle seine Be-
grenzungspunkte enthilt. Es sei P ein duBerer Punkt von F; dann gibt es eine ¢&-Umgebung
von P, die zu F disjunkt ist. In ihr liegt auch kein Begrenzungspunkt R von F, denn aus
d :=¢ — o(P, R) > 0 folgte U(R, §) S U(P, ¢) wegen

o(P, X) Se(P, R) + o(R, X) < ¢
fir X€ U(R, 6), so daB U(P, ¢) nur éuBere Punkte enthilt, w. z. b. w.
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Sind P, Q zwet Punkte einer komvexen Figur F, von denen wenigstens einer ein
innerer Punkt ist (Abb. 135a), dann sind alle inneren Punkie der Strecke PQ innere
Punkte von F; denn gilt etwa U(Q,¢) S F und PX = ¢ PQ mit 0 <¢ < 1, dann
folgt aus der Konvexitdt von F bereits U(X, te) & F. Folglich ist das Innere einer
Strecke, deren Endpunkte Begrenzungspunkte von F sind, entweder Teil des Inneren
oder Teil der Begrenzung von F. AuBerdem erhilt man als

Folgerung. Eine offene Figur F ist genau dann konvez, wenn thr Abschlufs konvex -
st

a
Abb. 135

Hilfssatz 4.8. Ist P ein Punkt der Figur F und liegt Q im Auferen von F, dann
bt es in PQ einen Begrenzungspunkt R von F; wenn dabei F konver ist und P im
Inneren von F Uegt, st R eindeutig.

Beweis. Ohne Beschrinkung der Allgemeinheit liege P vor @ in gpq. Fiir PQ n F
(== @) ist Q eine obere Schranke (Abb. 135b); folglich hat diese Menge eine obere
Grenze R. Zwischen Q und R kann kein Punkt von F liegen, wihrend jede e-Umgebung
von der kleinsten oberen Schranke R Punkte der Menge PQ n F enthalten muB;
somit ist R ein Begrenzungspunkt von F. — Zwischen einem inneren Punkt und einem
Begrenzungspunkt einer konvexen Figur liegen simtlich innere Punkte, so da

inziger B kt in PQ ist, wenn F konvex ist und P zum Inneren von

-3 4

F geh(':';t, W. 7. b. W.

Satz 4.7. Eine abgeschlossene Figur F ist genaw dann konvex, wenn PQ < F fiir
alle Randpunkte P, Q von F gilt.

Beweis. a) Es sei F eine abgeschlossene konvexe Figur. Da eine abgeschlossene
Figur jhren Rand als Teilmenge enthilt, gilt wegen der Konvexitit PQ < F fiir
alle Randpunkte von F (Abb. 136a).

b) Es sei nun F eine abgeschlossene, nicht konvexe Figur (Abb. 136b). Dann gibt
es in F Punkte P, Q mit PQ & F; es sei etwa A € PQ \ F. Da F abgeschlossen ist,
muB 4 ein duBerer Punkt von F sein. Nach 4.6 gibt es Randpunkte S € PA und
T € AQ, so daB ST & F gilt, w.z. b. w.

m Zusammenhang mit vielen Problemen benétigen wir eine Verallgemeinerung
des Begriffes der Kreistangente, die in der El targeometrie als Gerade der Ebene
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al Abb. 136

des Kreises mit genau einem Kreispunkt definiert ist. Wir kénnen folgende Kon-
struktionen ausfiihren:

— die Tangente in einem Punkt P des Kreises zeichnen (Abb. 137a),
— von einem Punkt P eine Tangente an einen Kreis legen (Abb. 137b),
— parallel zu einer Geraden g eine Tangente an einen Kreis legen (Abb. 137¢).

OOK

Abb. 137

Die Tangente ¢ eines Kreises ¥ kann auch folgendermaBen gekennzeichnet werden
(vgl. auch S. 93):

tnk=+0,
ViXtnk=k.
x
Das fiihrt uns zu folgender
Definition. Eine Gerade g heiBt Stiitzgerade der ebenen Figur F genau dann, wenn

gnF 40,
V gX+nF=F
gilt. Dabei bezeichnet gX+ die abgeschl 1e Halbebene beziiglich g durch X.
Entsprechend heiBt eine Ebene ¢ Stiitzebene der Figur F genau dann, wenn
enF 0,
VeXtnF=F
x

gilt, wobei eX+ den abgeschlossenen Halbraum beziiglich ¢ durch X bezeichnet.

Aus der Definition folgt unmittelbar, daB eine Stiitzgerade (bzw. -ebene) nur
Randpunkte von F enthilt. Mitunter wird die Definition dahingehend abgewandelt,
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daB statt gn F == 0 nur gefordert wird, daB g einen Begrenzungspunkt von F
enthilt. (Dabei kann g n F = @ gelten.)

Satz 4.8. Eine ebene abgeschlossene Figur F mit inneren Punkien ist genau dann
konvezx, wenn durch jeden Randpunkt eine Stiitzgerade von F existiert.

Beweis. a) Es sei F eine abgeschlossene, konvexe Figur mit inneren Punkten,
P ein Randpunkt von F und F' := F \ {P). Dann gibt es einen Winkel < SPT
derart, deB F’ in der von <X SPT und dem zugehérigen konvexen Winkelraum ge-
bildeten Winkelfliche enthalten ist (Abb. 138a, b):

Abb. 138 Abb. 139

Es sei Q ein innerer und R ein d&uBerer Punkt von F mit P € QR (Abb. 139). Auf
der Grundlage der Inzidenz- und Anordnungsaxiome allein kénnen die Winkel, fiir
die PQ* ein Schenkel und deren zweite Schenkel in einer der Halbebenen H (bzw.
H-) beziiglich gpg liegen, geordnet werden, etwa mit Hilfe einer Parallelen zu gpq.
Wir betrachten die Menge

M: ={XQPX: X€¢ F'nH).

Sie ist offensichtlich nicht leer und wegen der Konvexitiit von F nach oben beschrinkt
(durch jeden Winkel < (s,t) mit s = P@Q* und ¢ n (F' n H-) == J). Sie besitzt
also eine obere Grenze <X QPS. Die zugehérige konvexe Winkelfliche enthalt

n H?), denn andernfalls kénnte < QPS wegen der Konvexitit von F keine obere
Schranke sein.

Entsprechend erhalten wir einen Winkel < QPT els eine obere Grenze, wobei
F'n H- in der zugehérigen konvexen Winkelfliche liegt. AuBerdem ist der @ ent-
haltende Winkelraum beziiglich <t SPT konvex, denn die gegenteilige Annahme
fiihrt wegen der Konvexitéit von F zu einem Widerspruch, etwa daB P im Inneren
von F liegt. Folglich existiert eine Stiitzgerade durch P.2)

b) Es sei F eine abgeschlossene, nicht konvexe Figur mit inneren Punkten. Dann
gibt es Randpunkte P, Q mit PQ ¢ F und einen inneren Punkt K € F \ gpq.

Fall 1: Zwischen K und P oder zwischen K und @ liegt noch ein Randpunkt
R von F, etwa zwischen K und P (Abb. 140a). Keine von gpx verschiedene Gerade g

1) Deshalb wird PS+ auch Halbtangente genannt.
*) Wenn < SPT gestreckt ist, erhalten wir mit gsr eine eindeutige Stiitzgerade, eine
Tangente.
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kann in R Stiitzgerade sein, da K und P beziiglich ¢ in verschiedenen offenen Halb-
ebenen liegen. AuBerdem trennt ggp innere Punkte einer e-Umgebung von K.

Fall 2: Weder zwischen K und P noch zwischen K und @ liegt ein Randpunkt
von F. Dann liegen zwischen diesen Punkten simtlich innere Punkte von F
(Abb. 140b). Um das einzusehen, betrachten wir etwa die Menge

{X € KP: KX ist Teilmenge des Inneren von F}.

a) Abb. 140

Diese Menge ist nicht leer und fiir P < K (0. B.d. A.) nach unten beschrinkt;
sie besitzt folglich eine untere Grenze L. Zwischen K und L als groBter unterer
Schranke kénnen nur innere Punkte liegen. Der Punkt L kann weder innerer noch
duBerer Punkt von F sein; mit P = L gilt die Zwischenbehauptung.

Wegen PQ & F gibt es zwischen P und Q einen Punkt A, der nicht zur abgeschlos-
senen Figur F gehort und der folglich duBerer Punkt von F ist. Gilt o. B.d. A.
A < K, dann erhalten wir zwischen 4 und K wie oben einen Randpunkt R von F
als untere Grenze von

{X € AK: KX ist Teilmenge des Inneren von F}.

Offenbar gibt es durch R keine Stiitzgerade von F, w. z. b. w.
Analog gilt im Raum

Satz 4.9. Eine abgeschlossene Figur F mit inneren Punkten ist genau dann konvez,
wenn durch jeden Randpunkt eine Stiitzebene von F geht.

Eindeutige Stiitzgeraden in einem Randpunkt werden Tangenten, eindeutige
Stiitzebenen werden Tangentialebenen der konvexen Figur genannt. Ein Randpunkt
mit eindeutiger Stiitzgerade (bzw. -ebene) heiBt regulirer Randpunkt; alle iibrigen
Randpunkte werden singuliir genannt. SchlieBlich heiBt eine abgeschlossene Figur
genau dann glatt, wenn ihre Randpunkte ausnahmslos regulir sind.

Aufgaben

1. Fir einen Kreis mit dem Mittelpunkt M und dem Radiusr wird {X: ¢(M, X) < r} Inneres
und (X: o(M, X) > r} AuBeres genannt (vgl. Abschnitt 4.1.2). Man zeige, daB die Definition
dieser Begriffe im vorliegenden Abschnitt zu denselben Mengen fihrt.

. Welche Aussagen lassen sich auf der Grundlage der Sitze iiber konvexe Figuren und des
Resultates der Aufgabe 1 iiber die Eichfiguren machen?

13
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4.2.2. Kreisschnittpunkte

Bevor wir uns mit der Umfangsbestimmung der Kreise befassen, sollen Schnitt-
punkteigenschaften der Kreise hergeleitet werden, die in der Elementargeometrie
die Ausfiihrbarkeit der Konstruktionen rechtfertigen. Diese Eigenschaften werden
wir bei der Umfangsbestimmung benutzen, sie konnen aber auch hier eigenstindiges
Interesse beanspruchen.

Satz4.10. In der Ebene schneiden sich ein Kreis und eine Halbgerade, deren
Anfangspunkt im Kreisinneren liegt, in genau einem Punkt (Abb. 141a).

Beweis. Es sei k = k(M, r) ein Kreis und PQ+ eine Halbgerade derselben Ebene
mit o(M, P) < r. Ohne Beschrinkung der Allgemeinheit kann o(P, Q) = 2r voraus-
gesetzt werden (Abb. 141a). Wegen o(M, Q) = o(P, Q) — o(P, M) > r liegt dann
Q im AuBeren von k, und nach 4.6 schneiden sich PQ+ und k in genau einem Punkt,
w. z. b. w.

bi Abb. 141

Satz 4.11. GQeniigen die Radien und der Abstand der Mittelpunkte zweter Kreise
der Ebene der Drevecksungleichung (3), dann besitzen die Kreise gemeinsame Punkte.
(@it statt (3) sogar (3*) und sind die Kreise im engeren Sinne konvex, dann gibt es
in jeder Halbebene der Ebene beziiglich der Verbindungsgeraden der Mittelpunkte
genau etnen Schnittpunkt.)

Dem Beweis stellen wir zwei Hilfssitze voran.

Hilfssatz 4.12. Es set k = k(M, r) ein Kreis und ¢ > 0. Dann gibt es zu jedem
Punkt P € k in jeder offenen Halbebene H der Ebene des Kreises beziiglich gyp einen
von P verschiedenen Punkt S € k mit o(P, S) < e.

Beweis. Es sei g eine Stiitzgerade von k in P, U€ gn H und Q€ anU*

(Abb. 142). Es gibt eine reelle Zahl ¢ mit 0 < ¢ < 1 und g(P U) +0(U,Q) < —
Wir bestimmen Punkte R, V mit PR = tPQ und PV = ¢ PU.

Wegen der Konvexitit von k liegt B in k; als Punkt einer Stiitzgerade ist V
kein innerer Punkt von k. Mit Hilfe von 4.6 erhalten wir die Existenz eines Punktes S
in RV nk, fiir den S & P und o(P, 8) < o(P, V) + o(V, R) = t[e(P, U) + o(U, Q)]
< egilt, w.z. b. w.
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Hilfssatz 4.13. In einer Ebene sei k: = k(M, r) ein Kreis, N ein von M verschiede-
ner Punkt und H eine offene Halbebene beziiglich gyy. Sind A, B Punkte aus kn H,
dann gilt

X AMN < < BMN =5 o(4, N) < o(B, N).

(Wenn k im engeren Sinne konvex ist, dann qilt < statt <.)

Abb. 142 Abb. 143

Beweis. Essei x AMN < <& BMN.
Fall 1: B€ ANM-. Dann gilt mit den Bezeichnungen der Abb. 143
at+r=a+(c+d)=@+c)+d=b+e)y+d=b+7r
und somit ¢(4, N) =a < b= (B, N). (Wenn k im engeren Sinne konvex ist,
erhilt man a < b nach dem Zusatz von 4.2.)
Fall 2: B¢ NA*+. Es folgt sofort ¢(4, N) < o(B, N).
Fall 3: B€ ANM-*. Hier betrachten wir Unterfille.

Fall 3a: NA+*n MB* = (C}. Unter der Voraussetzung iiber die Winkel und
der des Falles 3 liegt 4 zwischen C und N sowie B zwischen C und M. Mit den Bezeich-
nungen der Abb. 144a gilt

a+c+d+r=b+d+d+r=b+d+c+r.

(Wenn % im engeren Sinne konvex ist, erhiilt man a < b.)

Abb. 144

Fall 3b: guu || gsy. Der Abb. 144D ist unmittelbar
a+r=b+r

(bzw. a + r < b + r fiir im engeren Sinne konvexes k) zu entnehmen.
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Fall 3¢: NA-n MB- = (C}. Der Beweis ist dem Leser als Aufgabe iiberlassen
(vgl. Abb. 144c).

Beweis von Satz 4.11. Es seien &, = k(M,, r;) und k, = k(M,, r,;) zwei Kreise
in einer Ebene, fiir die

n—nseMy,M)sSr+n

gilt. Dabei sind die Fille mit dem Gleichheitszeichen trivial, so daB wir nun o. B. d. A.
rn < ryund -

n—n<eoM,M)<rn+n

voraussetzen. Dann gibt es von k, Punkte sowohl im Inneren als auch im AuBeren
von k;, nach 4.12 sogar in einer beliebigen offenen Halbebene H beziiglich ga,a,
(Abb. 145). Wir betrachten die Menge

M:=(XMMX: Xcknk,nH.

Naoch der Vorbemerkung ist diese Menge nicht leer, sie besitzt eine obere Schranke
und somit eine obere Grenze <X M,M,P mit P € k, n H.

Abb. 145

Es gilt P € ky, weil o(M,, P) = r, zum Widerspruch fiihrt:
Der Fall o(M,, P) < r,. Nach 4.12 giibe es in k; n H n PM, My~ einen Punkt §
mit o(P, 8) < r, — o(M,, P) und

o(My, 8) < o(M,, P) + (P, 8) <13,

d. h., daB < M,M,P keine obere Schranke fiir M wire.
Der Fall o(M,, P) > r,. Nach 4.12 giibe es in k, n H n PM, M+ einen Punkt T'
mit (P, T) < o(M,, P) — r; und

o(M3, T) 2 o(M, P) — o(P, T) > 1,.

Weiterhin wire <x M M, T > ¥ M,M,X fiir alle < M,M,X aus M, denn aus
<X M M,\T < < M,M,X folgte nach 4.13 der Widerspruch r, < o(M,, T') < o(M,, X),
d. h., daB < M,M,P nicht die kleinste obere Schranke von M wire.

(Setzen wir zusétzlich voraus, daB die Kreise im engeren Sinne konvex sind,
dann folgt aus P, Q € k; n k; n H stets P = Q: Wiire P %= Q und demit ¥ M,M,P
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+ X M,M,Q, dann folgte der Widerspruch r, = o(M,, P) = o(M,, Q) = 7, nach
der Verschirfung von 4.13.)

Damit ist der Satz 4.11 einschlieBlich seiner Verschirfung hinsichtlich der Eindeu-
tigkeit bewiesen.

Aufgaben

1. In der Ebene eines Kreises enthilt jeder Streckenzug, der einen inneren mit einem &uBeren
Punkt verbindet, ig! einen Kreispunkt. Je zwei innere bzw. duBere Punkte kénnen
in der Ebene des Kreises durch einen Streckenzug verbunden werden, der den Kreis nicht
trifft. :

2. In der Ebene sei k' das Bild eines Kreises k = k(M, r) bei einer Verschiebung a bzw. Deh-
nung b. Unter welcher Bedingung iiber die Norm |ja]] bzw. den Dehnungskoeffizienten ¢
von b haben ¥ und ¥’ gemeinsame Punkte?

4.23. Dile Orthogonalitit

Um den Begriff der Orthogonalitét einfiilhren zu konnen, suchen wir Charakteri-
sierungen des Begriffes in der Elementargeometrie, die sich weder auf den Begriff
der Spiegelung noch auf den Begriff der Kongruenz von Winkeln stiitzen: Es gilt
g L b fiir Geraden g, b mit dem Schnittpunkt S genau dann, wenn es um einen von

a) Abb. 146
8 verschiedenen Punkt M von g einen Kreis gibt, der die Gerade & in S beriihrt
(Abb. 146a). Es gilt aber auch g | h fiir Geraden g, » mit dem Schnittpunkt §
genau dann, wenn in g ein von S verschiedener Punkt M existiert, der von allen
Punkten X € h keinen kleineren Abstand hat als von S (Abb. 146b).

In der Minkowskischen Geometrie gilt der

Satz 4.14. Es set g = gys und S€ h (3= g). In der Ebene der Geraden g und h
st h genaw dann Stiitzgerade an dem Kreis k um M durch S, wenn o(M, S) < o(M, X)
tiir alle Punkte X € h quilt.

Beweis. a) Esseih Stiitzgerade und X € h. Dann gibt es einen Punkt X' € kn MX+.
Da h Stiitzgerade von kist, gilt X’ € MX (Abb. 147a) und folglich o(M, S) = o(M, X')
< o(M, X) wegen 8, X' € k.

b) Es sei k keine Stiitzgerade. Dann gibt es einen Punkt ¥ € k \ hM*, wobei hM*
eine abgeschlossene Halbebene bezeichnet (Abb. 147b); folglich liegt zwischen M und
Y ein Punkt X von &, d. h. (M, 8) = o(M, Y) > o(M, X), w.z. b. w.

Unter Beriicksichtigung der gréB8eren Anschaulichkeit formulieren wir
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Definition. Wir schreiben g | » und nennen g Linkslot von k bzw. h Rechislot
von g genau dann, wenn sich g, & in einem Punkt S schneiden und in ¢ ein von S
verschiedener Punkt M derart existiert, daB & in S Stiitzgerade an dem Kreis um M
durch 8 in e ist.

7

b) Abb. 147

Man iiberlegt sich leicht, daB g | % unabhingig von der Wahl eines Punktes M
in g ist (vgl. Aufgabe 1). Dagegen kann M im allgemeinen nicht in % bestimmt werden;
anders ausgedriickt heiBt das, daB die Orthogonalitit im allgemeinen nicht symme-
trisch ist, weil es Eichfiguren gibt, beziiglich der Geraden g, h mitg | hund bt g
existieren (Abb. 148).

k

Abb. 148

Satz 4.15.a) Ausg | h,gllg’ und h ||} folgt g’ L k.
b) Zu jeder Geraden g gibt es durch jeden Punkt P ein Rechislot h.!)
¢) Zu jeder Geraden h gibt es durch jeden Punkt P ein Linkslot g.%)

Folgerung. An jeden Kreis kann eine Stiitzgerade gelegt werden, die zu einer Geraden
der Ebene des Kreises parallel 7st.

Beweis. a) Es sei k ein Kreis in ¢ um einen Punkt M von g durch den Schnitt-
punkt S von g, k. Bei der Verschiebung a, die S in den Schnittpunkt 8’ von ¢’ und 4’
iiberfiihrt, ist das Bild k° ein Kreis, der g’ | %’ offensichtlich macht (Abb. 149).

b) Sind g, P in einer Ebene gegeben, dann ziehen wir in dieser Ebene um einen
Punkt der Geraden g einen Kreis %, der g etwa in S trifft. Nach 4.8 existiert in S
eine Stiitzgerade f von k. Fiir die Parallele & zu f durch P gilt g | & (Abb. 150a).

1) Rechtslote sind offenbar eindeutig, wenn durch jeden Punkt der Eichfigur k genau eine
Stiitzgerade geht, d. h., wenn k nur aus reguliren Punkten besteht.

2) Linkslote sind emdeutxg. wenn jede Stiitzgerade der Eichfigur k genau einen Punkt von k
enthilt, d. h., wenn k im engeren Sinne konvex ist.
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Abb. 149

Abb. 150

a)

¢) Wir betrachten einen Punkt @ ¢ 2 (Abb. 150b). Um einen Punkt S in k zu
finden, der minimalen Abstand von @ hat, betrachten wir einen beliebigen Punkt
R ¢ h sowie die beiden Punkte U, V € h mit

20t = 20(@, B) = o(R, U) = o(R, V).
Fir die Punkte X € 2\ UV gilt
e@ X) 2 o(B, X) — (@ B)> 22 —a=a,

d. h., der minimale Abstand kann nur fiir einen Punkt S € UV angenommen wer-
den.

Die auf h definierte Funktion f(X): = o(Q, X)ist stetig: Ist ¢ > 0,dannkann é := ¢
gewiihlt werden, denn aus X' € U(X, ¢) n k folgt

0(@ X) — e < 0(@ X) — o(X', X) < 0(@ X')
< 0(@ X) + ol X, X') < 0(@, X) + &.

Nach einem wohlbekannten Satz aus der Analysis nimmt f auf dem abgeschlossenen
Intervall UV ihr (absolutes) Minimum an, etwa fiir 8.

Es gilt gos | h. Die Parallele g von gos durch P ist ein gesuchtes Linkslot.

Zum Beweis der Folgerung bestimmen wir durch den Mittelpunkt des gegebenen
Kreises k ein Linkslot g der gegebenen Geraden k. Ist S € g n k, dann ist die Parallele
zu h durch S eine Stiitzgerade von k, w. z. b. w.

Jeder Kreis k¥ mit dem Mittelpunkt M kann wie folgt in ein Stiitzgeradenparallelo-
gramm eingeschlossen werden (Abb. 1561a): Wir wihlen einen beliebigen Punkt P
in k. Durch diesen Punkt existiert eine Stiitzgerade g; bei der Spiegelung an M
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erhalten wir eine zu g punktfremde zweite Stiitzgerade. — Die Parallele f zu diesen
Stiitzgeraden durch M trifft k, etwa in Q. Durch Q und den beziiglich M/ symmetri-
schen Punkt existieren zueinander parallele Stiitzgeraden k und ¥, die mit den
zuerst bestimmten Stiitzgeraden g und g™ ein Stiitzgeradenparallelogramm bilden,
in dessen Fliche k liegt. — Die Konstruktion stiitzt sich auf 4.8.

Nach der Folgerung zum Satz 4.15 kann die Bestimmung eines Stiitzgeraden-
parallelogr auch folgend Ben ausgefiihrt werden: Wir wihlen zunichst
/ durch M bestimmen die dazu parallelen Stiitzgeraden g und g* sowie parallele
Stiitzgeraden durch Q, QY € fn k. — Hierbei wird neben 4.8 die Folgerung aus
4.15 benétigt.

b) Abb. 151

Wir werden fiir den Fall, daB benachbarte Sgiten eines Stiitzgeradenparallelo-
grammes gleichlang sind und unabhéingig von der Reihenfolge aufeinander senkrecht
stehen, von einem Stiitzgeradengquadrat sprechen. In der einleitend vorgestellten
Stadtgeometrie sind erstens die Eichfigur k selbst und zweitens das Stiitzgeraden-
parallelogramm, dessen Seiten zu den Diagonalen der Eichfigur parallel sind, die
einzigen Stiitzgeradenquadrate beziiglich der Eichfigur k¥ (Abb. 161b).

Satz 4.16. Jeder Kreis k(M, r) lift sich in ein Stiitzgeradenquadrat der Kanten-
linge 2r einschliefen.

Beweis.!) Es seien a, b zwei Vektoren, etwa mit [ja|| = [[b]| = 7. Wir betrachten
die euklidische Metrik, beziiglich der a, b orthogonale Einheitsvektoren sind, d. h.,
aus ¢ = za + yb und ' = z’a + y'b folgt in dieser Metrik 1’ = 2z’ + yy'.

Jedem Vektor r = za + yb mit |[g|| = r ordnen wir ein Stiitzgeradenparallelo-
gramm zu, indem wir die Stiitzgeraden der Richtung g, eine Stiitzgerade der Richtung
 durch X = M + ¢ und die dazu beziiglich M symmetrische Stiitzgerade bestim-
men (Abb. 152a). Ohne Beschrinkung der Allgemeinheit sei ) so gewihlt, daB
|z X y| den Flicheninhalt dieses Parallelogrammes angibt. Dabei ist [r X 9| unab-
hiingig von der Wahl einer Stiitzgerade durch X. Die Funktion

frz—lrxvl

ist fiir alle X € k stetig (ohne nihere Begriindung) und nimmt demzufolge fiir wenig-
stens ein X € & ihr Minimum an.

1) Die liche Beweisidee st: t von dem &sterreichischen Math tiker PAuL FUNK.
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Es sei ABCD ein Stiitzgeradenparallelogramm minimalen Flicheninhalts f,
beziiglich obiger euklidischer Metrik; dann liegen die Mittelpunkte aller Seiten dieses
Vierecks in % (Abb. 152b); denn wire etwa der Mittelpunkt N von AB-ein duBerer
Punkt von k (Abb. 152¢), dann erhielten wir mit Hilfe von parallelen Stiitzgeraden

c 3

Abb. 152

durch die Schnittpunkte P, Q von gyy mit k und mit Hilfe von gzc und gp, ein
Parallelogramm mit

H(o(MP)) < fo.
Wenn jedoch die Mittelpunkte der Seiten des Parallelogrammes ABCD in k liegen,
dann gilt erstens

o(4, B) = o(B, C) = 2r
und zweitens

gaB L gsc L gan>
w.z. b.w.

Satz 4.17. Fiir ein Stiitzgeradenparallelogramm ABCD eines Kreises k(M, r) sind
folgende Bedingungen gleichwertig:

1. ABCD 13t ein Stiitzgeradenquadrat.

2. ABCD hat minimalen Umfang U, dimlich U = 8r.

3. Die Seitenmittelpunkte von ABCD liegen vn k(M, 7).

Beweis. a) Aus 1. folgt g | gsc und gxc | gus; daraus erhalten wir bereits

3. Umgekehrt folgt aus 3. offenbar ¢(4, B) = ¢(B, C) = 27,948 | gpc undgsc L gus,
d.h. 1.

b) Fiir ein Stiitzgeradenparallelogramm 4 BCD gilt stets
o(4, B), (B, C) = 2r,
U = 8r.
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Aus 2. folgt nach 4.16 zundchst U < 8r, so daf dann nur U = 8r und o(4, B)
= g(B, C) = 2r gelten kann, d. h., daB die Seitenmittelpunkte von ABCD in k(M, r)
liegen (vgl. 3.). Umgekehrt folgt mit U = 8r bereits wie behauptet 2., w. z. b. w.

Im Raum kann die Orthogonalitét mit Hilfe von Stiitzebenen der Kugeln definiert
werden.

Aufgaben

1. Es sei g L k. Man zeige (etwa mit Hilfe einer geeigneten Dehnung), daB & fiir jeden Kreis
in g um einen Punkt M’€ g\ A durch den Schnittpunkt von g und & eine Stiitzgerade
ist.
2. Die Bilder senkrechter Kreisdurch bei einer affinen Abbildung werden konjugierte
Ellipsendurchmesser genannt.
a) Man zeige, daBB Geraden beziiglich einer Ellipse als Eichfigur genau dann aufeinander
senkrecht stehen, wenn die Geraden die Richtungen konjugierter Durchmesser der Ellipse
besitzen.
b) Man gebe auf der Grundlage der Aussage a) eine Konstruktionsbeschreibung fiir das
Lotfillen, wenn die Eichfigur eine Ellipse ist.

. Man zeige durch eine geeignete Fall heid daB fir ein regulires Sechseck als
Eichfigur die Orthogonalitit symmetrisch ist.

w

4.2.4. Die Bestimmung von 2z,

Ist k eine konvexe Eichfigur, dann wollen wir deren Umfang?!) mit 27, bezeichnen.
Angesichts der Schwierigkeiten bei der Bestimmung von 2z in der euklidischen
Geometrie kann es iiberraschen, daB der Umfang in der einleitend betrachteten
Stadtgeometrie miihelos bestimmt werden kann: 27, = 8 (Abb. 153a).

a) b) Abb. 153

Weil sich in ein regulires Sechseck k mit Hilfe des Mittelpunktes leicht drei kon-
gruente Rhomben einzeichnen lassen (Abb. 153c), gilt in diesem Fall 27, = 6.

Wenn wir die Eichfiguren der Abb. 163 einer affinen Abbildung unterwerfen,
dann erhalten wir der Reihe nach ein Parallelogramm als affin-regulires Viereck

1) Dabei ist kei: gs selb indlich, daB der Umfang fiir jede Eichfigur existiert. Vgl.
den folgenden Satz 4.18.
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(mit sich halbierenden Diagonalen), eine Ellipse als affinen Kreis') und ein affin-
requlires Sechseck, das zentra.lsymmetnsch ist und in das mit Hilfe des Mittelpunktes
drei Parallelog] ichnet werden konnen (Abb. 154a, b, c); es gilt der
Reihe nach 27, = 8, 27, = 2n und 27z, = 6.

Die bisherigen Uberlegungen haben gezeigt, daB 2z von der speziellen Eichfigur &
abhiingt. Von der Funktion

f: k—>2m,

wollen wir den Definitionsbereich und den Wertebereich ermitteln.

a) b) c)

Abb. 154

Satz 4.18. Jede konvexe Eichfigur k ist in threr Meirik rektifizierbar, d. k., daf
sich fiir jede konvexe Eichfigur f(k) = 2, bestimmen lift.

Der Beweis dieses Satzes ergibt sich aus dem Beweis des folgenden Satzes.
Satz 4.19. Fiir jede konvexe Eichfigur k gilt 2m, < 8.

Abb. 155

Beweis. Es sei k eine beliebige konvexe Eichfigur mit dem Mittelpunkt O. Nach
4.16 gibt es ein Stiitzgeradenquadrat, dessen Seitenmittelpunkte folglich nach 4.17
in k liegen; es seien M, N die Mittelpunkte benachbarter Seiten mit der gemein-
samen Ecke A (Abb. 165a). Wir betrachten ein Niherungspolygon P,P,P,...P,
mit Py=M, P, =N und & MOP, < < MOP, < :-- < < MOP,. Die Parallele
zu goy durch P; trifft die M enthaltende Seite des Stiitzgeradenquadrates in einem
Punkt P;, die Parallele zu goy durch P; trifft die N enthaltende Seite in einem
Punkt P,

1) Die Geometrie beziglich dieser Eichfigur ist euklidisch (vgl. auch Abschnitt 4.1.3).
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Gilt 0.B.d. A. M < A und 4 < N, dann erhalten wir ¥ < P/’ S Py’ <---

=P’'=AuwdA<P"<P'<--<P,” =N:Aus

X MOP < < MOQ < & MON
folgt P’ € MQ', denn es gilt zunichst PN n OQ* = {R) und dann PN n OQ = (R}
wegen der Konvexitit von k (Abb. 155b). Ist nun g die Parallele zu gy, durch Q,
dann gilt fiir die abgeschlossene Halbebene gO+ der Reihe nach g0+ > O, R, P und
damit P’ € MQ'.

Nunmehr gilt (vgl. Abb. 156a)

U= o(Py, Py) + o(Py, Py) + -+ + o(Pp1, Pa)
< o(Py's Py') + o(Py”, Py') + -+ + o(Pr_y, Pu') + o(Py_y, Py”)
=o(Pos Py) + +++ + e(Py_y, Py) + o(Po”, Py"') + -+ + o(Pi_y, Py”")
= oM, 4) + (4, N) = 2.
Folglich existiert sup ! fiir die Lingen  aller Naherungspolygone (SchluB des Beweises
von Satz 4.18, fiir den nur die Eigenschaften eines Stiitzgeradenparallelogrammes
benétigt werden), und es gilt 27, := 4supl < 4-2, w.z. b. w.

Satz 4.20. Fir jede konvexe Eichfigur qilt 27, = 6.

Beweis.!) Es sei k eine konvexe Eichfigur mit dem Mittelpunkt O und P € k.
Um P ziehen wir einen zweiten Einheitskreis &' (Abb. 166). Wegen 1 — 1 =10
< 0(0, P) < 1 + 1 existiert nach 4.11 ein Punkt Q € k n ¥/, offensichtlich aufer-
halb gop. Wir setzen R := Q + 9(P0), S := P% T :=@Q° und U := R°. Dann ist
PQRSTU wegen SO # oP H# ITQ und (als Folgerung) @ H# Sﬁ, Ok 4+ PQ (Ver-
tauschungsregel G,!) ein affin-regulires Sechseck. Offenbar gilt

2m = (P, Q) + (@ B) + -+ + (U, P) = 6,

w, z. b. w.
Q Q P
R ¢
3 7]
o/
S 7 4
Abb. 156 Abb. 157

1) Nach dem polnischen Mathematiker STANISEAW GOEAB.
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Satz 4.21.Es set 0 <e <1. Dann existiert eine konvexe Eichfigur k mit
2m = 6 + 2. ’
Beweis. Es sci PQRSTU ein affin-reguliires Sechseck (Abb. 157). Wir bestimmen

Punkte Q' und 7" durch I’_Q" =1+ e)P—Q‘ und ST = 1+ 3)67". Die Eichfigur
k := PQ'RST'U ist wegen 0 < ¢ < 1 konvex, und es gilt

27 = o(P, Q') + a(@', B) + -+ + (S, T") + e(T", U) + 2(U, P)
(114 (L4 +1+1=6+2,
w. z. b. w.

Zusammenfassend konnen wir feststellen, da8 die Funktion f: k — 27, fiir alle
konvexen Eichfiguren definiert ist und daB das abgeschlossene Intervall [6, 8]
den Wertebereich darstellt. Da jeder Kreis aus der Eichfigur durch Dehnung oder
Verschiebung hervorgeht, erhalten wir schlieBlich (vgl. auch Aufgabe 2) den

Satz 4.22. In der Minkowskischen Geomelrie ist jeder Kreis rektifizierbar. Dabei
8t
U = 2mr
die Formel fiir den Umfang U eines Kreises k(M, r).

Aufgaben

. In der euklidischen Ebene besti man 27, beziiglich eines regelmiBigen

a)2.2%Ecks (n =1,2,...),

b) 3-2"Ecks (n = 1,2, ...).

Man gebe eine Begriindung fiir den letzten Satz, indem man sich eine Ubersicht iiber alle

Niherungspolygone von k(M,r) mit Hilfe der Naherungspolygone der Eichfigur ver-

schafft.

. Die Metrik g," aus dem Abschnitt 4.1.3, beziiglich der die Eichfigur ein Oktaeder ist
(Abb. 132a), induziert in den Ebenen % durch die Punkte 0,%, —-%—) und (0, —% , %)
Metriken gy Man bestimme in diesen Ebenen den Umfang 27, der Eichfiguren.

-

o

[X]

4.3.  Euklidische Riume und Banachriume

4.31. Bewegungen in der Minkowskischen Geometrie

In der Elementargeometrie kénnen die Bewegungen mit Hilfe der Lingeninvarianz
charakterisiert werden. Dabei gilt, daB Q genau dann ein Punkt der Strecke PR 1ust,
wenn a(P, Q) +-a(Q, R) = a(P, R) ist. Gilt P = Q und a(P, Q) + a(Q, R) = a(P, R),
dann erhalten wir noch

PR _ a(P, R)

PQ  aP, Q"




176 4. Banach-Minkowskische Geometrie

. Zusa f d kann festgestellt werden, daB in der euklidischen Geometrie

aus der Lingeninvarianz bei einer Abbildung die Invarianz der Zwischenbeziehung
und des Teilverhiltnisses folgt.

In der Minkowskischen Geometrie gilt die Dreiecksungleichung (3*) genau dann
fiir nicht Lollineare Punkte, wenn % im engeren Sinne konvex ist (vgl. den Zusatz
zum Satz 4.2). Um diesen Sachverhalt noch deutlicher zu machen, betrachten wir
eine konvexe Eichfigur, die nicht im engeren Sinne konvex ist. In ihr gibt es Punkte

‘ R

Q Abb. 158

Q, 8, zwischen denen ein Randpunkt liegt ; folglich besteht @S nur aus Randpunkten
(Abb. 158). Ist P Mittelpunkt der Eichfigur und R das Bild von P bei der Spiegelung
am Mittelpunkt von QS, dann ist PQRS ein Parallelogramm, und es gilt

o(P, Q) + ¢(@ R) =2 =¢(P, B),

obwohl P, @, R nicht kollinear sind. Da wir bei den noch zu defini den B
in der Minkowskischen Geometrie nicht auf die Invarianz des Tellverhaltmsses
verzichten wollen, erkliren wir

Definition. Eine affine Abbildung r von einem linearen Unterraum der Menge
der Punkte in die Menge der Punkte, bei der
o(X%, Y7) = o(X, Y)
fiir alle Bildpunkte X*, Y* gilt (Metrikinvarianz), wird Bewegung genannt. Figuren,
die sich durch Bewegungen zur Deckung bringen lassen, werden kongruent genannt.

Wegen der Metrikinvarianz sind die Bewegungen eineindeutig. Der Definitions-
bereich einer Bewegung ist ein linearer Unterraum der Menge aller Punkte, d. h.
eine Gerade oder eine Ebene oder die Menge aller Punkte; auBerdem sind die uninter-

essanten Fille der einel tigen Punktmengen und der leeren Menge mdglich.
Wegen der Eineindeutigkeit haben Definitions- und Bildbereich dieselbe Dimension.
Die Verschiebungen und die Spiegelungen an den Punkten sind stets Bewegungen

der Menge aller Punkte, denn es gilt dabei
XY # XV vXY #YX

und somit
oX', ¥') =o(X, Y)

fiir die Bildpunkte X', ¥’ von X bzw. Y. Weitere Beispiele fiir Bewegungen konnen
noch fiir eindimensionale Unterriume angegeben werden, und zwar in Form affiner
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Abbildungen von Geraden (vgl. den folgenden Satz 4.23¢ mit seinem Beweis).
Im aligemeinen kénnen wir iiber die Existenz von Bewegungen sehr wenig aussagen;
die Forderungen nach einer gewissen Reichhaltigkeit an Bewegungen fithrt — wie
wir noch sehen werden — sofort zur euklidischen Geometrie.

Welche Eigenschaften besitzen die Bewegungen in der Minkowskischen Geometrie?
Wir denken zunichst an das System der Bewegungsaxiome in der euklidischen Geome-
trie als System von grundlegenden Eigenschaften der uns vertrauten Geometrie.
Ein Teil der Bewegungsaxiome gilt auch in der Minkowskisohen Geometrie (vgl. den
Satz 4.23), ein anderer Teil erweist sich jedoch als charakteristisch fiir die eukli-
dische Geometrie (vgl. die Sitze 4.25 und 4.26).

Satz 4.23. In der Minkowskischen Geometrie qilt:

a) Das Nacheinanderausfiihren und Umkehren von Bewegungen fiihrt wieder zu
Bewegungen.

b) Bewegungen erhalten die Kollinearitit, die Kompl wit, die Durchlaufsi
und das Teilverhilinis.

¢) Jede lineare Figur F mit Punkten A, B (3= A) lift sich eindeutig so bewegen,
daf A in den Anfangspunkt und B in einen Punkt einer gegebemen Halbgeraden
iibergeht.

d) Es gibt genau eine Punktspiegelung, die die Endpunkte einer Strecke vertauscht.
(Vgl. die Bewegungsaxiome B,, B,, By(a) und B,(a).)

Beweis. Offensichtlich sind a) und b) richtig; d) wird durch Spiegelung am
Streckenmittelpunkt realisiert.

Sind nun 4, B (== 4) in g und die Halbgerade p mit dem Anfangspunkt 4’ gegeben,
dann existiert in p genau ein Punkt B’ mit o(4’, B') = o(4, B). Es gibt genau
eine affine Abbildung  der Geraden g mit 4* = A’ und B* = B’; damit ist die
Eindeutigkeitsfrage beziiglich c) bereits positiv entschieden. AuBerdem folgt aus
X, Y€ gmit

olX, ¥) = Ix ’Q(A B) = o4, BY) = (X", ¥)

IX Y:
die Metrikinvarianz, w. z. b. w.
Fir viele weitere Uberlegungen stellen wir einen Hilfssatz von K. LOWNER
bereit:
Hilfssatz 4.24. a) In einer Minkowskischen Ebene mit der beziiglich O symme-
trischen Euchfigur k sei eine Basis a, b des Vektorraumes ausgezeichnet und
=z +yy’

fir ¢ = za + yb, t' = 2'a + y'b als Skalarprodukt einer euklidischen Metrik gesetzt.
Dann gibt es unter allen Ellipsen mit dem Mittelpunkt O genaw eine, die Punkte von k
enthilt und deren Fliche k umfapt und minimalen Inhalt besitzt.
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b) Im Minkowskischen Raum mit der beziiglich O symmetrischen Eichfigur k sei
eine Basis a, b, ¢ des Vektorraumes ausgezeichnet und

it i=axx’ +yy + 22
fiir ¢ ==za+ yb + 2¢c, ¥’ = 2'a + y'b + 2z'c als Skalarprodukt einer euklidischen
Metrik gesetzt. Dann gibt es unter allen Ellipsoiden mit dem Mittelpunkt O genau ein

Ellvpsoid, das Punkte von k enthdlt und dessen Korper k umfapt und minimales Volu-
men hat.?)

Beweis. a) In einer Minkowskischen Ebene sei eine Basis a, b des Vektorraumes
ausgezeichnet.

Existenz. Wir betrachten eine Ellipse mit dem Mittelpunkt O, deren Fliche k
enthilt (Abb. 169a), und eine von O ausgehende Halbgerade p. Die Funktion

d: p—d(p) := [o(P, Q)ll,

wobei P, Q die Schnittpunkte von p mit der Ellipse bzw. mit der Eichfigur sind, ist
fiir jede Halbgerade p stetig, weil P und Q stetig von p abhingen. Sie nimmt, da
sie auf einem abgeschlossenen Intervall definiert ist, ihr Minimum an, etwa fiir p,

mit den Schnittpunkten P, und @, Die Dehnung b(0, t) mit ¢ = %%”— fiihrt zu
o

einer Ellipse mit den Achsen a’, b’, auf der der Punkt Q, aus k liegt, deren Fliche k&
enthilt und fiir die bei gegebener Richtung r:= |a’[-* a’ von a’ und gegebenem
Verhiiltnis q := 6’| : |a’|

f(t, @) := =la’| |b'| = ngla’|*

)

a)

offenbar minimal ist. Die Funktion f ist stetig und kann ihr Minimum nur auf einem
abgeschlossenen Intervall 0 <e<g¢ =< —1- annehmen. Da auch t auf einem abge-
8

schlossenen Intervall variiert, nimmt / ein Minimum an, d. h., es gibt eine Ellipse
mit dem Mittelpunkt O, die Punkte von k enthilt und deren Fliche ¥ umfaBt und
minimalen Flicheninhalt hat.

1) Die Aussage ist auch fiir n-dimensionale Raume richtig.
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Eindeutigkeit. Wir betrachten eine ¥ umschriebene Ellipse ¢ minimalen Fliichen-
inhalts mit Punkten aus k. Sind a’, b’ deren Hauptachsen, dann nehmen wir eine

Koordinatentransformation

(0, a,b) - (0, a,” ')

vor. Dabei dndern sich die Inhaltsverhiltnisse nicht, so daB die Ellipse e, die im
neuen Kdordinatensystem durch eine Kreisgleichung beschrieben wird, nach wie
vor minimalen Flicheninhalt hat. Um die Eindeutigkeit von e nachzuweisen, be-
trachten wir eine zweite Ellipse ¢’ und drehen unser Koordinatensystem derart,
daB die Achsen von e’ neue Koordinatenachsen werden; es gilt dann (vgl. Abb. 159b)

e: 224 yt=1,
yl

28
' — 4= =1,
¢ u’+b’

Der Durchschnitt der zugehorigen Flichen, der auch noch k enthilt, ist durch die
beiden Ungleichungen

2?4y s<1,
FlE T
;+F§l

gekennzeichnet; er ist offenbar in

f(l+$)+%’(l+;‘,)s1,

2

der Fliche einer Ellipse
2 )

& —+ % =1

mit
2 23
=22 o P a2
1+a 148 (1+a) T+

enthalten.

Wiire ¢’ ebenfalls eine Ellipse minimalen Flicheninhaltes — nab =z - 12 = n! —
mit €' 3 ¢, dann wire @ == 1 oder b & 1, etwa a 3= 1. Aus (1 — @) > O und (1 — b)?
=0 erhielten wir 14 a2 > 2a, 14 32 = 2b neben ab=1, d.h.

I<a L__ =
V2a -2
im Widerspruch zur Minimalitdt von e.
Der zweite Teil des Hilfssatzes ergibt sich analog.

4
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Satz 4.25. a) Eine Minkowskische Ebene st genau dann euklidisch, wenn sie die
Existenzaussage in By(b) erfillt.t)

b) Ein Minkowskischer Raum 1ist genau dann euklidisch, wenn er die Existenz-
aussage in By(c) erfiillt.

Zusatz. Ein Minkowskischer Raum, in dem jede Ebene (durch einen Punkt) eukli-
disch ist, hat selbst euklidische Metrik.

" Beweis. a) Es sei O der Mittelpunkt der Eichfigur %, und es sei a, b eine Basis
des Vektorraumes. Wie im Beweis des Hilfssatzes 4.24 fiihren wir eine euklidische
Metrik vermittels

=22’ + gy’
fiir f = xza 4 yb, ¥’ = 2’a + y'b ein. Beziiglich dieser Metrik gilt:

— Die Fliche k der Eichfigur hat einen Flicheninhalt (ohne nihere Begriindung).

— Es existiert eine ,,Minimal“ellipse ¢ mit dem Mittelpunkt O, d. h. eine Ellipse e
mit dem Mittelpunkt O, die Punkte von k enthilt und deren Fliche k umfafit
und minimalen Inhalt besitzt (Exi ussage in 4.24).

Gilt P€ kne, dann gibt es nach der Voraussetzung des Satzes eine Bewegung v

der Ebene mit O = O und P* = X fiir jeden Punkt X € k. Es gilt k* = k, folglich

¢* = e wegen der Eindeutigkeitsaussage in 4.24 und damit

{X} = OX*n k = (OP+n ky" = |P*} = (OP*n ey

=0X+ne,
d. h. k = e. Mithin ist die Minkowskische Ebene euklidisch.
Die Umkehrung ist trivial.

b) Der zweite Teil des Satzes ergibt sich analog.

Zum Beweis des Zusatzes bemerken wir nur, da k ein Ellipsoid sein mu8, weil
jeder Schnitt mit einer Ebene durch O eine Ellipse ergibt.?)

Analog zum Beweis des Satzes 4.25a erhilt man den

Satz 4.26. Eine Minkowskische Ebene ist genau dann euklidisch, wenn sie By(b)
erfullt.

Eine Analyse der Beweise zeigt, daB die Minkowskische Metrik schon dann eukli-
disch ist, wenn Teilaussagen der Existenzaussage in By(b) bzw. wenn By(b) erfiillt
sind. Dazu benétigen wir nur spezielle Bewegungen. Unter einer ebenen Bewegung
verstehen wir eine Bewegung einer Ebene auf sich. Eine ebene Bewegung mit genau
einem Fixpunkt P wird Drehung um P genannt. Eine ebene Bewegung, die eine Gerade

1) Man spricht dann auch von freier Beweglichkeit.

?) G. K1y, Studentin im dritten Studienjahr, geht folgenden Weg: Fiir Geraden f, g, h, z durch
einen Punkt O folgt aus f 1 g,h und 2 < ey stets f L z. Nun kann die Existenz der Spiege-
lungen an allen Ebenen und damit die Existenzaussage in By(c) oder die Existenz einer ortho-
normierten Basis und fiir k mit Hilfe des Satzes von PYTHAGORAS die Gleichung 2* + y? + 2*
= 1 bewiesen werden.
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punktweise festliBt und die Halbebenen beziiglich g vertauscht, heiBt Spiegel
an g. Mit diesen Begriffen konnen folgende Kriterien formuliert werden:

Satz 4.27. a) Eine Minkowskische Ebene ist genau dann euklidisch, wenn jede
Halbgerade OP* in jede Halbgerade OQ+ gedreht werden kann.

b) Eine Minkowskische Ebene ist genau dann euklidisch, wenn an jeder Geraden
(durch einen festen Punkt O) eine Spregelung existiert.

Beweis. Der erste Teil des Satzes kann wie Satz 4.26a bewiesen werden. Zum
Beweis von b) betrachten wir den Einheitskreis ¥ um O sowie die Minimalellipse e,
die im geeigneten Koordinatensystem die Gleichung 2® + y® = 1 besitzt. Die Spiege-
lungen o an den Geraden durch O miissen ¥ und e festlassen; wegen ¢” = ¢ kann es
sich nur um die Spiegelungen der Ebene mit der Eichfigur e handeln. (Vgl. auch die
folgende Aufgabe 1.) Nach B,(b) fiir diese euklidische Ebene kann jede Halbgerade
OP+ in jede Halbgerade OQ* gespiegelt werden, d. h., die Ebene ist euklidisch. —
Die Umkehrung ist trivial, w. z. b. w.

)

Aufgaben
1. Es sei o Spiegelung der Minkowskischen Ebene an g. Dann gilt fir X, Y § g und die Mittel-
punkte M, N von X, X¢ bzw. Y, Y stets
gxxoligrye, M,N€g, gl gxxolyg.

2.* Was liBt sich in der Minkowskischen Geometrie iiber die Eindeutigkeitsaussagen in By(b)
bzw. By(c) sagen?

4.3.2. Die Kongruenz in der Minkowskischen Geometrie

Wegen der Giiltigkeit der Bewegungsaxiome By(a) und B,(a) neben B, und B,
gilt der

Satz 4.28. Strecken konnen mit Hilfe von Bewegungen eindeutig auf Halbgeraden
abgetragen werden. Auferdem gelten fiir die Streckenkongruenz die Drittengleichhest
und der Streckenadditionssatz.

Die bekannten Eigenschaften der Winkelkongruenz sind im wesentlichen fiir die
ﬁ“l{"“‘ h (‘ t :ﬁ )! ich -}:

Satz 4.29. Die Minkowskische Geomelrie ist genau dann euklidisch, wenn eine der
folgenden Bedingungen erfillt ist:

a) Es qilt < POQ =~ < QOP fiir alle Winkel < POQ.

b) Jeder Winkel kann an jede Fahne angetragen werden.

Offenbar ist a) mit der Giiltigkeit von By(b) gleichwertig, wihrend b) eine Teil-

aussage von By(b) darstellt. Somit ergibt sich die Giiltigkeit des Satzes etwa aus
den Sitzen 4.25 und 4.26.
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Da die Winkel im allgemeinen nicht das Symmetrieaxiom 4.29a erfiillen, ergeben
sich von vornherein Schwierigkeiten bei den Dreieckskongruenzsitzen, die Winkel-
kongruenzen in den Voraussetzungen enthalten. Um iiberhaupt zu brauchbaren
Aussagen zu gelangen, kénnte man die Kongruenz gerichteter Winkel betrachten.
Wir wollen aber hier darauf verzichten.

Der Kongruenzsatz sss kann hier ohne weiteres untersucht werden. Das Ergebnis
ist negativ: In der Minkowskischen Geometrie qilt der Kongruenzsalz sss fiir Dretecke
im allgemeinen nicht. Um das einzusehen, betrachten wir wieder die einleitend dar-
gelegte Stadtgeometrie mit der Eichfigur 4 BCD. Im Dreieck A BC gilt (vgl. Abb. 160)

o(4, B) = o(B, 0) = ¢(C, 4) = 2.

Trotzdem konnen die Ecken dieses gleichseitigen Dreiecks nicht durch Bewegungen
beliebig permutiert werden; denn sind X, L und M die Mittelpunkte der Seiten
BC, CA bzw. AB, dann gilt

o(B, L) =1+ 2 = o(C, M) = ¢(4, K).
Wegen der ungleichlangen Seitenhalbierenden gilt beispielsweise

A ABC % A BCA.
) c
L=0, K
A M E
Abb. 160 Abb. 161

Das Dreieck ABC in Abb. 160 ist gleichseitig und wegen g3 | gsc auch rechtwink-
lig. Somat kann der Satz des Pythagoras nicht gelten.

Wenn der Satz des PyTHAGORAS gilt, sind Links- bzw. Rechtslote eindeutig
(Abb. 161): Aus 4 ¢ g und B, C € g sowie g | s, gac 0der gup, guc L g folgt

o(4, B)® + ¢(B, C) 4 ¢(B, 0)* = o(4, C)* + o(B, C)* = o(4, B)?,
d. h. 2¢(B, C) = 0, ¢(B, C) = 0 und schlieBlich B = C. — Es gilt sogar der

Satz 4.30. In der Minkowskischen Geometrie qilt der Satz des Pythagoras genau
dann, wenn die Metrik euklidisch ust.

Beweis. a) Wir setzen zuniichst voraus, daB aus g, | gsc stets
o(4, B} + o(B, C)* = o(4, O)*

folgt (Satz des PYTHAGORAS), und wihlen durch den Mittelpunkt O der Eichfigur
eine beliebige Ebene ¢ogr, wobeio. B. d. A. goz | gor und (0, E) = (0, F) =1
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gelte. Beziiglich des Koordinatensystems (0, v(OE), v(OF)) gilt fiir einen beliebigen
Punkt X des Einheitskreises ¥ der Minkowskischen Metrik und den Schnittpunkt
P von gog mit der Parallelen zu gor durch X wegen goz | gor

z* + 3 = ¢(0, P)* + o(P, X)* = 0(0, X)* = 1,

Abb. 162

d. h., die Eichfigur der Ebene geniigt der Kreisgleichung der euklidischen Metrik.!)
Fiir die ebene Geometrie ist nichts mehr zu zeigen ; andernfalls sind alle Ebenen eukli-
disch, mithin der Minkowskische Raum (vgl. den Zusatz zum Satz 4.25).

b) Die Umkehrung ist trivial, w. z. b. w.

Wenn in der Minkowskischen Geometrie der Satz des PyTHAGORAS gilt, kann ein
Skalarprodukt

1
a-b:=—(la + b|* — lla — b)

eingefiihrt werden: Es gilt aa = ||a||? = 0 und
aa=0&%a=o.

Aus der Definition ist auch unmittelbar die Symmetrie
ab = ba

abzulesen. Gilt a 3= 0, dann kann jeder Vektor g beziiglich a in eine Parallelkompo-
nente g, und eine Normalkomponente g, mit g, = Aa, ,* | a und ¢ = g, + 5t
zerlegt werden; wegen

||0 +n+ &L”’ - ““ —Ta— EaL”I

= lla + gall* + lizga*1® — lla — zal® — liza*I?

=l + zll* — lla — zl?

1) Wie der Beweis lehrt, bendtigen wir den Satz des PYTHAGORAS nur unter sehr spazlellen
Voraussetzungen, etwa unter der V. g, da8 die Kath zu zwei orth
Geraden parallel sind. Die Voraussetzung gsp L gpc konnte zu gsp L gac L gap verschirft
werden.
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gilt die wichtige Regel
ar = ag,.
Hieraus kann nun
(Aa) b = A(ab),
a + ¢) =Aab + ac

abgeleitet werden (vgl. die folgende Aufgabe). Somit erhilt man einen weiteren Beweis
des Satzes 4.30.

SchlieBlich sei erwihnt, daB die Minkowskische Geometrie genau dann euklidisch
ist, wenn

lla + BlI* + lla — BII* = 2(llall* + (1B]1%)

fiir alle Vektoren a, b gilt (Abb. 163), d. h., wenn die Parallelogrammbeziehung
gilt.l)

Abb. 163

Aufgabe

In der Minkowskischen Geometrie gelte der Satz des PYTHAGORAS. Man beweise fir das
oben eingefiihrte Skalarprodukt

a) a(b + ¢) = ab + ac,
b) (Aa)b = (Aab)
fiir beliebige reelle Zahlen 4 und Vektoren a, b, c.

4.3.3. Banachriume

In den bisherigen Ausfiihrungen ist zu erkennen, daf viele Aussagen unabhingig
von der speziellen Dimension giiltig sind. Das legt den Gedanken nahe, die Dimen-
sion nicht festzulegen. Bei diesem Vorgehen kann man sich vorteilhaft auf den Begriff
des Vektorraumes stiitzen.

Definition. Ein Paar (V, || ||) wird genau dann normierter Raum genannt, wenn
V ein Vektorraum iiber dem Kérper K der reellen oder komplexen Zahlen und || ||

1) Nach J. v. NEUMANN und P. JORDAN, On inner products in linear metric spaces, Ann.
Math. 86 (1935), 719—723. Der Beweis der Additivitdt des zu konstruierenden inneren Pro-
duktes ist leicht, wihrend die H genitdt mit Methoden hergeleitet werden kann, mit denen
in 3.1 gearbeitet wird.
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eine Abbildung von V in den Kérper R der reellen Zahlen mit den Eigenschaften
(2) el =0=>z =0,
(b) 1Azl = 14] =]l
(e) iz + yll = ll=ll + Iyl
fiir alle 1€ K und z, y € V) ist.
Wie wir bereits wissen, gilt somit ||z|| = O fiir alle Vektoren 2 und
el =0 2=0

(vgl. Bemerkung 4.4). Fiir Vektoren z, y — man denke etwa an ,,Ortsvektoren* —
kann vermége

ez, y) = llz — yll

eine Abstandsfunktion eingefiihrt werden (vgl. Aufgabe 1). Somit hat es einen Sinn,
in normierten Raumen den Konvergenzbegriff zu betrachten.

Definition. Wir sagen, daB z,,2,, ..., 2, ... gegen z konvergiert, und setzen
lim z, = 2%) genau dann, wenn die Folge g(z,, z), o(%3, ), . .., 0(Zy, ), ... eine Null-

00
folge ist:
(2 ) > 0.

Die Folge z,, 73, ..., %, ... heiBt genau dann Fundamentalfolge, wenn zu jeder
positiven reellen Zahl ¢ eine natiirliche Zahl N derart existiert, daB fiir m,n = N
stets o(Zm, Za) < € gilt, in Zeichen:

ANV A o(zmz,) <e.
>0 NeN ma2N

In jedem normierten Raum gilt der bekannte

Satz 4.31. Wenn z,, 2y, ..., Zy, ... gegen x konvergiert, dann ist z,, 2y, ..., T, ... €ine
Fundamentalfolge.

Der Beweis verliuft wie gewohnt: Bei gegebenem & > 0 gibt es wegen z = lim  z,
A—>00
eine natiirliche Zahl N mit o(z,, 2) < % fiir n = N; folglich gilt

o(Zm) Zp) = ||tm — Zall = (T — 2) — (za — 2)||

< lltm — 2l + it — 2l = o(&m: 2) + e(zw 2) < % +2 =

2
fiir alle m,n = N, w.z. b. w.

1) Es ist allgemein iblich, in diesem Zusammenhang die Vektoren mit kleinen lateinischen
Buchstaben zu bezeichnen.
%) Vgl. Aufgabe 2.
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Hinsichtlich der Umkehrung des Satzes 4.31 gilt der

Satz 4.32. Ist 2y, %,, ..., Zy, . .. eine Fundamentalfolge, deren Glieder in einem endlich-
dimensionalen Unterraum U von V liegen, dann konvergiert die Folge x,, zy, ..., Zp, ...
gegen einen Vektor z€ U.

Beweis. Es sei ay, ..., a; eine Basis des Unterraumes U, wobei wir o. B. d. A.

llayll = llagll =+« = |lagll = 1 voraussetzen. Die Eichfigur von U sei
k:=(zeU: |z| =1);
sie besitzt Stiitzhypereb U, U; parallel zur Koordinatenhyperebene

{@y, ..., @i} \ [y}, die die i-te Koordinatenachse etwa in wua; und —u,a; (u; > 0)
treffen mége. Somit wird k in ein Parallelepiped aus Stiitzhyperebenen eingeschlos-
sen.

Die Glieder der Fundamentalfolge z,, z,, ..., ,, ... liegen in U, sie sind also
Linearkombinationen der Bagisvektoren a,, ..., a;:

Tn = Am@y + Anglp + 0 + Ay

Wir betrachten die Folge 4,4, A3, « .+, Ani, ... der Koeffizienten des i-ten Basisvektors.
Da z,, 23, ..., @y, ... eine Fundamentalfolge ist, gibt es zu jedem & > O eine natiirliche
Zahl N’ mit

&
lem — Zall < —
Uy

und folglich mit
i = Auil = l(Ami — i) @l < &

fiirallem, n = N’, d. h., daB die Folge 2,4, Ay, .- ., Ay, - . - eine Fundamentalfolge reeller
oder komplexer Zahlen ist und einen Grenzwert 1; besitzt.
Fiir jedes ¢ > O gibt es eine natiirliche Zahl N; mit

nZ N = A <.
Wir setzen N := max N; und z := Aja; + -+ + 4. Dann gilt
1z — 2ll = l(An — A) @1 + -+ + (A — &) all
Shu—hl4o =l < g+ kT =

fiir alle » = N, d. h., daB =y, 2y, ..., Zp, ... gegen z konvergiert, w. z. b. w.

Der obige Satz 4.32, dessen Beweis sich im Fall eines zweidimensionalen Unter-
raumes mit Hilfe eines Stiitzgeradenquadrates vereinfachen liBt, ergibt, daB sich
der Satz 4.31 in endlichdimensionalen normierten Réumen umkehren laft. Im
allgemeinen gilt jedoch die Umkehrung des Satzes 4.31 nicht. Man erklirt deshalb
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Definition. Ein normierter Raum (V, || ||) heiBt genau dann vollstindiger nor-
mierter Raum bzw. Banachraum, wenn in ihm jede Fundamentalfolge konvergiert.

Nach dem Satz 4.32 sind die vorn betrachteten (zwei- bzw. dreidimensionalen)
Réume mit einer Minkowskischen Metrik sidmtlich Banachriume. Ein weiteres
Beispiel ist der te Raum I2: Es sei M die Menge der Folgen z = (2,)nen

5

]
komplexer Zahlen, fiir die J |2,|2 < oo gilt. Vermoge
=0

Z+ ¥ = (Zn + Yn)nen
Az = (ATp)acN

fiir beliebige Folgen z = (Z,)pen» ¥ = (Yn)uen 2us M und komplexe Zahlen 2
erhalten wir einen Vektorraum V mit

llll := VX lzal®

den Banachraum := (V, || |). (Vgl Aufga.be 3.)
InB hriumen kann man beispi auch die Begriffe Reihe und konvergente

Reihe wie iiblich erkliren. Eine R.elhe 2 2, wird absolut konvergent genannt genau
denn, wenn die zugehonge Reihe 2 ][::,,]] konvergiert. Es gilt dann auch hier der

Satz, daB jede absolut konvergente Relbe selbst konvergiert.
Als Verallgemeinerung des Begriffes der affinen Abbildung werden im Zusam-
hang mit Banachri 1 die linearen Operatoren betrachtet, das sind Abbil-
dungen 4, deren Definitionsbereich ein Unterraum eines Banachraumes ist und
die die Bedingungen

A®+y) = A@) + Aly), A7) =24()

erfiillen.

Eine Abbildung, die die Abstinde unverdndert liBt, wird isomelrisch genannt.
Bei den von uns betrachteten Bewegungen handelt es sich um isometrische lineare
Operatoren.

Der Begriff des Banachraumes spielt in der Funktionalanalysis eine groSe Rolle;
er ist fiir die Theorie der Néherungsverfahren, bei der Untersuchung von Differential-
und Integralgleichungen ein wichtiges Hilfsmittel. Dabei sind die unendlichdimen-
sionalen Banachraume und lineare Operatoren bedeutsam. In dieser Richtung wurde
die Minkowskische Geometrie von dem polnischen Mathematiker STEFAN BANACH
ausgebaut. Die geometrische I.nterpretatxon der Theone der Banachriume stellt ein
wichtiges methodisches Hilfsmittel dar.

Die entsprechende Verallgemeinerung der euklidischen Geometrie fiihrt zur
Theorie der Hilbertriume. Als ,,Bausteine* fiir den Begriff des Hilbertraumes be-
nutzt man vorwiegend die Begriffe Vektorraum, Skalarprodukt und Vollstindig-
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keit. In Hilbertriumen wird

llz] := V=,
oz, y) = |lz — yll

gesetzt und die Vollstéindigkeit wie in normierten Réumen erklirt. Mit der soeben er-
klirten Norm erweist sich jeder Hilbertraum als spezieller Banachraum.

Aufgaben

1. Man zeige, daB in einem normierten Raum durch

ez, y) :=llz — gl
eine Abstandsfunktion definiert wird.
2. Zur Rechtfertigung der Schreibweise

lim 2z, =z
n—so0

ist zu zeigen, daB in einem normierten Raum eine Folge z;, z, ..., Zy, ... gegen hochstens
einen Grenzwert z konvergiert.

3.* Man beweise, d.LB B em Bs.na.chnum ist, fiir den a,, @y, ..., @y, ... Mit @y = (Fa)ieN in
keinem endlich Unter liegen.




5. Minkowskische Geometrie der speziellen Relativitédtstheorie

Die spezielle Relativititstheorie ergibt eine gegeniiber der klassischen Physik (New-
tonschen Mechanik) neue Vorstellung von Raum und Zeit. Die mathematische
Beschreibung durch MmNkowskr fithrte zu einem geometrischen Raum, der sich
von der euklidischen Raumstruktur in der Metrik unterscheidet. Das Skalarprodukt
ist nicht mehr positiv definit.

Wir gehen in diesem Kapitel von Vektorriumen iiber Korpern aus, da fiir viele
Uberlegungen nicht alle Eigenschaften des Korpers der reellen Zahlen gebraucht
werden. Eine gewisse breite Behandlung der affinen und metrisch affinen Riume
soll die Kenntnis analytischer Geometrie vertiefen.

51.  Vektorriume iiber Kérpern und symmetrische Bilinearform

5.1.1. Vektorriume

In Verallgemeinerung der Struktur in Abschnitt 3.1.3 setzen wir hier Vektorriume
iiber Korpern voraus; mit (V, K, ¢)!) bezeichnen wir den Vektorraum mit der
Vektorgruppe V iiber dem Korper K, wobei ¢ eine Abbildung von KX V in V
ist, die die-folgenden Eigenschaften der Vervielfachung besitzt; dabei wird fiir
@(x, a) kurz za gesetzt (2, y € K;a,b€ V):

(1) la =a,

(2 (zy) a = =(ya),

(3) (x + y) a = za 4 ya,
(4) z(a + b) = xa + 2b.
(Vgl. Satz 3.17 in Abschnitt 3.1.3.)

1) Zur Vereinfachung von Sprech- und Schreibweisen benutzen wir fiir eine Struktur und
ihre Trigermenge die gleiche Bezeichnung, falls Verwechslungen nicht zu befiirchten sind.
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Neben dem im dritten Kapitel vorgestellten dreidimensionalen reellen Vektor-
raum sei als Beispiel noch der n-d¢ ionale Koordis aum iiber einem Korper K
genannt: Hier ist V := K* mit

(Z1s ens Zn) F (Y15 200 Yn) 2= (T2 + Y15 +00s T + Yn)
und
ot @1y -ens z,)) D= (82, ..oy b2p)

fiir alle zy, ..., Zn, Y15 .+o» Ymo L€ K.

Ist T Teilmenge von V und a € V, so heiBt a linear abhingig von T genau dann,
wenn es endlich viele z,, ..., z, € Kund b,, ..., b, € Tmit a = z,b; + -+ + z,b, gibt.
Andernfalls heiit a linear unabhingig von T'. Ferner heiBt T linear abhingig genau
dann, wenn es einen Vektor a € 7' gibt, der linear abhéngig von 7' \ (al ist. Ansonsten
ist T' linear unabhingig.

Fiir das Weitere ist die folgende Beschreibung der linearen Unabhéngigkeit end-
licher Vektormengen niitzlich, die sich unmittelbar aus der Definition ergibt:

Folgerung 5.1. Wenn aus 2,6, + -+ + z,0, = 0 stets 2, = --- =z, = 0 folgt,
dann st (By, ..., b,) linear unabhingig.

Weiterhin erkliren wir: Ist 7 S V, so heiBt (T, K, §) ein Teilraum oder Unter-
raum von (V, K, ¢) genau dann, wenn gilt:

a,beT=>a+beT,
a€ETrze K> @z, a):=2za€T.

Im Fall T — V sprechen wir von einem echéen Teilraum.
Ist 'S V, so wird

_ "
T:= {E: t= Yz € K, ;€ T}
i=1

die lineare Hiille von T oder der von T erzeugte Teilraum genannt.

Man erkennt leicht, daB jeder Teilraum (7', K, @) selbst Vektorraum ist und da8
T tatsiichlich ein Teilraum von (V, K, @) ist.

Eine Teilmenge B = V heiBt Basis von (V, K, ) genau dann, wenn B linear
unabhiingig und B = V ist.

Gibt es in einem Vektorraum eine endliche Basis, so ist jede andere Basis zu dieser
gleichmiichtig (also auch endlich). Unter der Vor: g des L von
KURATOWSKI-ZORN gilt ganz allgemein, daB jeder Vektorraum eine Basis besitzt
und daB alle seine Basen gleichmiichtig sind.?)

Die Ka,rdina.]zal?l einer Basis des Vektorraumes V mit V = {0} heiBt die Dimen-
gion von V, kurz dim V. Fiir ¥V = (o} sei dim V = 0.

1) Ein Beweis soll hier nicht gefilhrt werden; wir verweisen auf einschligige Literatur wie
A. G. Kuros, Vorl gen iiber allgemeine Algebra, B.G. Teubner Verlagsgesellschaft,
Leipzig 1964 (Uber g aus dem Russischen). Einen Beweis fiir den endlichen Fall findet
man bereits in MfL, Bd. 3, 4.3.
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In n-dimensionalen Vektorraumen gibt also dim ¥ € N die Anzahl der Vektoren
in einer Basis von V an.

Von wesentlicher Bedeutung ist

Satz 5.2 (Darstellungssatz). Ist B = (by, ..., b,) eine Basis') des endlichdimen-
sionalen Vektorraumes V, so besitzt jeder Vektor ¢ € V eine Darstellung

£ =2+ + b,

mit eindeutig bestimmiem n-Tupel (zy, ..., z,) € K™; 2y, ..., z, heiBen die Koordinaten
von ¢ beziiglich B. An spiiterer Stelle bezeichnen wir mit (¢)s das n-Tupel (z,, ..., ,)
der Koordinaten von g beziiglich der Basis B.

Beweis. Die Exisbenz einer Da.rstellung ergibt sich aus der Vomussetzung, daB
B Basis ist. Sind Z z6; und Z z;'b; zwei Darstellungen fiir g, so ist 2 (z; — ') b;

=1
= 0, und nach der Folgeru.ng 5.1 gilt damit z; = 2’ firi =1, ..., 7, w z. b. w.

‘Wir stellen nun einige Aussagen iiber Teilriume beziiglich ein und desselben Vektor-
raumes (V, K, ¢) bereit.

Satz B5.3. Ist (T;);, eine beliebige Folge von Teilrdumen, so ist thr Durchschnitt
N T; esn Terlraum.

(33

Beweis. Mit a,b € n T; ist a,b € T; und damit a 4 b€ T; fiir alle 7€ I, d. h.
a + b€ N T, Ferner 1sc fiir alle Teilrdume 7'; und z € K noch za € T; demnach gilt

i€l
auchza € N T';. Somit sind die Teilraumbedingungen erfiillt, w. z. b. w.
i€l

Hilfssatz 6.4. Fiir 8§ S V 1st 8 der Durchschnitt aller Teilriume T von V, die
8 enthalten. Folglich gilt 8 = S, falls S selbst Teilraum ist.

(Beweis als Aufgabe!)

Fir 8,8, S V heit 8; + S, :={x: £ = a; + a;; 0, €8y, 0, € S;) die Summe
von S, und S,. Sind insbesondere S, S, Teilrdume und 8, n 8; = {0}, so wird 8, + S,
die direkte Summe von S, und S, genannt und mit S, @ S, bezeichnet. An Hand der
Teilraumkriterien erkennt man leicht, daB mit S, und S, auck 8, + S, Teilraum
1st.

Satz 5.5. Jede Bastis eines Teilraumes T eines endlichdimensionalen Vektorraumes
V kann zu einer Basis von V erginat werden.

Zusatz. Falls T echter Teilraum ist, gilt dim T < dim V.

Beweis. Es sei B = (b, ..., b,) eine Basis von ¥V und B’ eine Basis von 7. Ist
b; ¢ B, 80 sei B,':= B’ u {b,}, andernfalls sei B,’:= B'. Offenbar ist B,’ linear unab-
hiingig. Entsprechend sei B, := B,’ u (b,}, falls b, ¢ B/ ist;ansonstensei B, := B/, ...

1) Eigentlich miiBte man ,,geordnete’ Basis sagen, weil wir hier neben der Eigenschaft,
daB {b,, ..., by} eine Basis ist, noch die Reihenfolge der Vektoren zu beachten haben.
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So gelangt man nach endlich vielen Schritten zu einer linear unabhingigen Menge
B, fiir die B S B, und folglich V = B< B/ < V,d. h. B = 7 gilt.

Wenn T echter Teilraum von V ist, gilt BF=TcV= B, und somit B’ &= B,'.
Da nach Konstruktion B’ & B,’ ist, gilt B’ = B, und folglichdim T = |B’| < |B,’|
=dim ¥V, w. z. b.w.

Satz 5.6. Fiir Teldrdume S und T eines endlichdy jonalen R V qilt die
Dimensionsformel

dim(S + T') 4+ dim(8 n T') = dim § + dim 7.

Beweis. Nach dem Satz 5.3 ist Sn 7T ein Teilraum; es sei 4 = (a,,..., ;)
eine Basis von S n 7. Diese kann nach dem Satz 5.6 zu Basen B = (ay, ..., a;
by, ...y by) und C = (ay, ..., ap €y, ..., ;) von S bzw. T erginzt werden.

Wir zeigen zunichst, daB B u C eine Basis von § 4 T ist. U die lineare Unab-
hiingigkeit von B u C zu beweisen, betrachten wir

T m [
(Z z0; + 3 ylbl) + X a0 =o.
i=1 j=1 k=1
Aus
] m n
=2z + Y yb=—Yau
i i=1 =

i=1

folgt g€ 8 n T. Da sich nach Satz 5.2 die Vektoren aus Sn T eindeutig durch
die Vektoren der Basis 4 darstellen lassen, muB auf Grund der linearen Unabhingig-
keit von B und C sowohl y; = 0 als auch z, = 0 und damit auch z; = 0 gelten. Bu C

ist also linear unabhéingig. — Andererseits gilt BuC =8 + T.Denn zug € S + T
gibt es Elemente 8 € S und t € 7' mit § = 3 + t und Elemente s,, ..., 8, 8/, ..., 8,
by eenr iy by oon by’ € K mit

[} ‘m ] n
8=2'8a,+ 3 8/, t=2 ta+X¢%,.
im1 w=1 i=1 v=l
Folglich ist
1 m L —
E=Z (8 +t)a, +28Il’bll +Zt"c'€BUC'
1=1 Prest Pt
Da A = B n C eine Basis von § n T und B u C eine Basis von § + T ist, gilt
dmn@S +T)+dmSnT)=(l+m+n +1l=dmS+dim7T,

w.z. b.w.
Nach dem Satz 5.6 gilt offensichtlich

Satz 5.7. Fiir Teilriume S, T eines endlichdimensionalen R V gt

dmS@ T =dim 8 + dim T.
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Von struktureller und praktischer Bedeutung ist

Satz 5.8 (Isomorphiesatz). Jeder n-dv ionale Vektorraum V iiber einem Korper
K st isomorph dem n-dv jonalen Koordinatenraum iiber K.

Beweis. Es sei B = (b,, ..., b,) eine Basis von V. Die Abbil&ung
B: t=mzby + -+ + b, > (1, ..., T,) € K"

ist wegen 5.2 eine Bijektion von V auf K". Es bleibt nun noch zu zeigen, daB g
beziiglich + operationstreu und mit ¢ vertriglich ist. In der Tat ist

BE+9) = B 5 (a1 90 b= G o 5 1)
= (@1, +o0s Zn) + (Y15 -+ Ya) = BT + BY,
Bltx) = ﬂ):—.:' (bz) by = (tzy, ..., tx) = Uy, -.y Ta) = UBT),
w.z.b. w.

Demnach ist ein endlichdimensionaler Vektorraum bis auf Isomorphie eindeutig
durch den (Skalar-)Korper K und die Dimension # bestimmt.

Es sei (V, K, ¢) ein Vektorraum. Eine eineindeutige Abbildung « von V auf sich,
eine T'ransformation von V, heilt lineare Transformation des Vektorraumes genau
dann, wenn fiir alle a, b € ¥ und z € K Linearitit besteht:

(1) a(a + b) = xa + ob (Additivitit),
(2) «(xa) = x(xa) (Homogenitit).

Satz 5.9. Die W T 77 eines Vektorraumes V bilden (mit der
Nacheinanderausfithrung als Verlmup/ung eine Qruppe.t)

Beweis. Sind «, § lineare Transformationen eines Vektorraumes V, dann ist
ap eine Transformation mit

af(a + b) = p(a(a + b)) = f(aa + ab) = B(xa) + B(ab) = («B) a + (af) b,
af(za) = flz(xa)) = z(B(xa)) = ((xp) a)

firalle a, b€ V und 2 € K, d. h., «f ist linear.
Die identische Abbildung  von V auf sich ist offenbar eine lineare Transformation,
die at = &« = ux fiir alle linearen Transformationen « von ¥ erfiillt.
SchlieBlich besitzt jede lineare Transformation « eine inverse Transformation «-!
mit
a}(a + B) = o}((a'a) a + (a'a) b) = a}a(aa) + a(ab))
= a“(a(u“a + a“b)) = oa~la + &~

1) InJ. DreuDONNE, La géométrie des i inger-Verlag, Berlin—Géttingen—
Heidelberg 1955, wird diese Gruppe, die lineare G'mppe. mit GLy(K) bezeichnet.
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und
oY (za) = oY 2(ata) a) = a-‘(z(a(a-‘a))) = a"(a(z(a“a)))
= z(ala)
fiir alle a, b € ¥ und z € K, d. h., a1 ist linear, w. z. b. w.
Hilfssatz 5.10. Ist & eine lineare Transformation eines Vektorraumes V, so gilt
(a) «a = o genau dann, wenn a = o t8t.
(b) Ist by, ..., by} linear unabhiingig, so auch {aby, ..., ab,}.
(c) Ist B = (by, ..., b,) eine Basis von V, so gilt fiir xB := (aby, ..., aby)

(£)s = (xE)en
fiiralleg € V.
Beweis. Ist a = 0, so gilt aa = «(0a) = O(xa) = 0. Umgekehrt folgt nun aus
oa = o zwangsliufig a = o, da « bijektiv ist und bereits a0 = o gilt.
Zum Beweis von (b) gehen wir von
Z(aby) + «++ + Tp(aby) = 0
aus. Diese Gleichung gilt wegen
Ty (aby) + -+ + za(abn) = x(@iby + -+ + ,6,)

und (a) dann und nur dann, wenn z,b, + -+ + 2,6, = 0 ist. Auf Grund der linearen
Unabhiingigkeit von {by, ..., b,) folgt nach 5.1 aus der letzten Gleichungz; =--- = z,
= 0. Also ist auch {ab,, ..., ab,} linear unabhingig. Damit ist (b) bewiesen.

Demnach ist mit B auch aB = (aby, ..., ab,) eine Basis von V. Uberdies gilt

ar = a(zyby + -+ + 2,8,) = zy(aby) + -+ + Za(aby)
fiir alle £ € V und damit die Behauptung (c), w. z. b. w.

Satz 5.11. Ist V ein n-dimensionaler Vektorraum mit der Basis B = (by, ..., b,),
80 qibt es zu jeder linearen Transformation o von V eine (und nur eine) n-rethige regu-
lire Matriz A (iiber K) derart, daf fiir alle x € V die Matrizengleichung

(ox)s™ = A(z)s”

qult.

Umgekehrt stiftet jede n-reshige Matriz A vermoge dieser Matrizengleichung beziiglich
B eine lineare Transformation o« von V.

Beweis. Jeder Vektor ab; (k =1, ..., n) liBit sich nach 5.2 in eindeutiger Weise
in der Form

n
abk = Z aub‘
i=1

n
mit a € K darstellen. Auf Grund von 5.10(c) ist fiir f = ), 2,6,
k=1

of = Z. z(oby) = 2.1," zk(Z”' aub«) = 25 (Z" “uxk) b;.
k=1 k=1 =1 =1 \k=1
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Wegen der Eindeutigkeit der Basisdarstellung von «g muB 2 a7 die +-te Koordi-
nate von «f sein. Also ist in der Tat

(xz)s” = A(g)s" fir A:=(ay)undallege V.

Die Regularitit von 4 ergibt sich daraus, daB nach 5.10(b) auch {«b,, ..., ab,}
linear unabhingig ist und die Koordinaten von ab; (k = 1, ..., n) aber gerade die
k-te Spalte von A bilden. Es ist also der (Spalten-)Rang von 4 gleich n.

Die Umkehrung liBt sich jetzt einfach bestitigen.

Die Matrix A ist eindeutig, denn aus A(g)sT = 4'(r)s" fiir alle ¢ € V folgt iiber
A(b)aT = A'(b)pT fir k=1, ..., n bereits A = 4’, w.z. b. w.

Satz 5.12.

(a) Das Produkt «f zweier linearer Transformationen « und B wird durch das
Produkt BA der zugehirigen Malrizen dargestellt.

(b) 8ind B = (b, ..., b,) und B’ = (b, ..., b,’) Basen von V, so gibt es eine
lineare Transformation « mit «B = (aby, ..., ab,) = B’ (Erginzung zu
5.10(c)). .

(c)* Jede lineare Transformation (ag)s’ = A(g)sT kann als eine Koordinaten-
transformation interpretiert werden, d. k., es gibt eine Basis B’ von V mit
A(r)s" = (¢r)F fitr alle x € V. Umgekehrt gibt es zu jeder Koordinatentrans-
formation (r)p — (t)s eine lineare T'ransformation o von V mat (ag)s = (¢)s-

(d) Sind A und A’ die zu einer linearen Transformation « gehorigen Mairizen
beziiglich der Basen B und B’ und st beziiglich B die Matrix C diejenige
lineare Transformation, die B tn B’ iiberfiihrt, so gilt

A’ = C14C.
Beweis. Den Beweis von (a) iiberlassen wir dem Leser als Aufgabe 3.
Entspreohend dem Beweis von 5.11 seien a;; diejenigen Elemente aus K, die durch
by = ):‘ aub; (k=1,...,n) mit b, € B und b,’ € B’ bestimmt sind. Auf Grund der

1lneaten Una.bha,nglgkelt von B’ ist 4 := (ay) regula.r folglich gibt es nach 5.11
eine lineare Transformation « mit (ag)sT = A(r)s", und diese leistet nun gerade
«B = B'. Damit ist (b) bewiesen.

Zum Nachweis von (c) und (d) stellen wir bisherige Ergebnisse der Sitze 5.10(c)
und 5.11 in folgendem Diagramm zusammen:

r - oy

(®)5= (xg)sn —> A(¥)5" = (o7)5"
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Mit a-1B = («71by, ..., a~b,) ist demnach

AT = (038" = (00T 15 = ©up
d. h., B':= a-1B leistet das Verlangte. Umgekehrt gibt es nach (b) zu B und B’
eine lineare Transformation « mit B’ = B, und es gilt

(2" = (+7(@0)T-1p = @5~

Damit ist (¢) bewiesen.
Die Behauptung (d) folgt schlieBlich aus

C1A0()] = C1A(C(F) = C1 ()" = Cop)s”
= (0 = 4'(F
firallex € V, w.z. b. w.

Aufgaben

[N

. Men beweise, daB in einem Vektorraum iiber einem beliebigen Kérper K die Regeln
O0a=0, 2z0=0 und (—2z)a = —(za) = z(—a)
fiir alle z€ K und Vektoren a gelten.

2. Man beweise den Hilfssatz 5.4.
3. Man beweise die Aussage 5.12(a).

5.1.2.  Affine Riume

Aufbauend auf den Begriff des Vektorraumes iiber einem Korper stellen wir hier
in Kiirze affine Ridume und einige grundlegende Beziehungen in ihnen bereit. In
Kapitel 3 hatten wir mit Punkten und Vektoren gearbeitet. P + a bedeutet die
Anwendung eines Schubvektors (einer Verschiebung) auf einen Punkt, die einen
Punkt ergibt; diese ,,Addition‘ ist eine Abbildung, die jedem Paar (P, a) einen
Punkt zuordnet. Zur Erklirung des affinen Raumes gehen wir hier von einigen Eigen-
schaften dieser Addition aus, die wir in Abschnitt 3.1.3¢) kennenlernten. Es wird
ein Vektorraum V und die Existenz einer nicht leeren (Punkt-)Menge B sowie einer
Abbildung

+:PXV->P
vorausgesetzt. Das Tripel (V, B, +) heiBt affiner Raum (iiber K) genau dann,
wenn gilt:
(1) Zu jezwei Elementen P, Q € % gibt es genau einen Vektora € Vmit P+ a =Q.
(2) Esgilt (P+a)+b =P+ (a+b)firalle P€ Punda,be V.
Die Elemente von P heiBen Punkte. Sind P und Q Punkte, dann wird der durch
P + a = Q eindeutig bestimmte Vektor a — wie in Kapitel 3 — mit v(PQ) be-
zeichnet.
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Hilfssatz 5.13. Fiiralle P,Q € Rund a,be V gilt
(a) P + a = P genau dann, wenn a = o ist;
(b) P + a = Q genau dann, wenn P = Q + (—a) ist;
(c) o((P + a)(P + b)) =b —a.
Beweis. Zu jedem Punkt P gibt es genau einen Vektor a mit P + a = P. Somit
it P+o=(P+a)+o0=P+ (a+o0)=P.
Aus P + a = P und P + o = P folgt a = v(PP) = 0.
Zum Beweis von (b) gehen wir zunichst von P + a = Q aus. Dann ist nach (a)
Q+(—a)=(P+a)+(—a)=P+0o=P.
Analog zeigt man die Umkehrung.

SchlieBlich ergibt sich (c) aus (P +a)+ (b —a)=P + (a + (6 —a)) =P + b,
w. z. b. w.

Eine Reihe von Begriffsbildungen und Aussagen fiir affine Réume ergeben sich
durch einfache Ubertragung entsprechender Begriffe fiir die zugrunde liegenden
Vektorriume.

Der affine Raum (V, B, +) heifit n-dimensional genau dann, wenn V n-dimensio-
nal ist.

Fiir einen n-dimensionalen affinen Raum (V, R, +) heiBt (O; b,,...,b,) mit
O¢ P und by, ..., b, € V eine Basis genau dann, wenn (b, ..., b,) eine Basis von V
ist.

Aus 5.2 folgt unmittelbar

Satz 5.14 (Darstellungssatz fiir Punkte). Ist (0; b,, ..., b,) eine Basis des affinen
Raumes (V, B, +), so besitzt jeder Punkt P eine Darstellung

P=0+mb + - + 0,

mit etndeutig besttmmtem n-Tupel (z,, ..., x,) € K".
Dabei heiBien z,, ..., z, die Koordinaten von P beziiglich der Basis (O; by, ..., b,).

Beziiglich einer festen Basis werden mitunter P und (z;, ..., z,) identifiziert.

Es sei (V, B, +) ein affiner Raum. Eine eineindeutige Abbildung « von P auf
sich heiBt affine Transformation genau dann, wenn o' mit «'(n(PQ)):= v(xPuxQ)
eine lineare Transformation von V ist.

Es sei M eine Menge von Vektoren eines affinen Raumes. Dann setzen wir fiir
einen beliebigen Punkt P

P+ M:={X: o(PX)€c M)}

Hilfssatz 5.15. Ist T ein Teilraum des Vektorraumes eines affinen Raumes und
w6t Q€ P + T fiir Punkte P,Q,s0qit P+ T =Q + T.

!) Man nennt P + M auch Orbit von P beziglich M. (Vgl. dazu auch Abschnitt 2.2.3.)
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Beweis. Nach Voraussetzung ist v(PQ) € T und demit v(QP) = —o(PQ)€ T.
Esseinun X € P + 7. Dann gilt p(PX) € T und damit b(QX) = v(QP) + v(PX)€ T,
d. h. X € Q + T. Die Umkehrung ergibt sich véllig entsprechend, w. z. b. w.

P + T heiBt Teilraum oder Unterraum des affinen Raumes (V, B, +) genau dann’
wenn T Teilraum von V und P € P ist. Sonderfille sind die trivialen Teilraume
(P} = P + {0} und P = P + V. Unter der Dimension des Teilraumes P + T wird
die Di jon von T verstand

Ein Teilraum P + T des affinen Raumes (V, R, +) mit n := dim V = 1 heifit
Gerade, Ebene bzw. Hyperebene genau dann, wenn dim 7' =1, dim 7’ = 2 baw.
dim T = n — 1 gilt.

Zur Rechtfertigung der Bezeichnung Teilraum beweisen wir den

Satz 65.16. Es set P’ =P + V' ein Teilraum des affinen Raumes (V, B, +)
und +' die Einschrinkung von + auf B'XV'. Dann ist (V', P, +') ein affiner
Raum.

Beweis. Nach Voraussetzung ist V' Teilraum von V und damit selbst Vektor-
raum.

Zum Beweis von (1) sei @, R€ B’ = P + V'. Nach 5.16 gilt nun R€Q + V’,
und folglich ist b(QR) ein Vektor aus ¥’ mit @ + b(QR) = R. Damit ist die Existenz-
aussage von (1) bewiesen. Es gilt auch die Einzigkeit, denn aus Q +'a =Q +'b
mit a, b € V' folgt nach Voraussetzung Q 4+ a = Q + b und daraus weiter a =b
auf Grund der Eindeutigkeitsaussage in (1) fiir (V, B, +). — Entsprechend iiber-
triigt sich die Eigenschaft (2) fiir (V, B, +) auf (V’, ', +'), w. z. b. w.

Hilfssatz 5.17. Sind P + S und Q + T Teilriume ein und desselben affinen
Raumes, so qilt

P4+8=Q+T=>8=T.
Beweis. Nach dem Satz b.16 ist leicht einsichtig, daB
8= {(oXY):X,YEP+8)

fiir alle Teilriume P + S gilt. Damit folgt aus P + 8 =@ + T sofort § =T,
w.z. b. w. ‘

Wir wollen uns nun noch kurz einigen Lagebeziehungen zwischen Teilriumen ein
und desselben affinen Raumes (V, B, +) zuwenden. Dabei benutzen wir die iibliche
geometrische Sprechweise. )

Satz 5.18 (Satz iiber das Verbinden). Je k + 1 Punkteaus Pmit 1 <k <dim V,
die nicht in ein und demselben (k — 1)-di ionalen Telraum liegen, sind in genau
einem k-di vonalen Telraum enthalt

Daraus ergeben sich die aus dem Anschauungsraum bekannten

Folgerungen. Durch je zwei verschiedene Punkte eines Teilraumes P + T mit
dim T' = 1 geht genau eine Qerade des Teilraumes'). Durch je drev nicht kollineare

1) Auf Grund dieser Eigenschaft werden die Unterriume eines affinen Raumes auch lineare
Unterrdume genannt.
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Punkte eines Teilraumes P+ T mit dim T = 2 geht genau eine Ebene des Teil-
raumes.

Beweis. Existenz. Erfiillen die Punkte P, Py,..., P, die Voraussetzungen, so
bilden wir a; := 9(P,P;) fiir ¢ = 1, ..., k. Der Teilraum P®+ U mit U := (qa,, ..., a;}
ist k-dimensional, weil sonst P,, ..., P, € Py + U mit dim U < k¥ im Widerspruch
zur Voraussetzung wiire.

Eindeutigkeit. Aus Py, Py, ..., P, € @ + U’ fiir einen k-dimensionalen Teilraum
Q + U folgt Py, ..., P, € Py + U’ nach dem Hilfssatz 5.15 und somit ay, ..., a; € U".
Mit U = {ay, ..., a} = U’ wegen der Voraussetzung dim U’ = k gilt schlieBlich
Po+U=Py,+U =Q+U',w.z.b. w.

Satz 5.19 (Satz iiber.das Schneiden). Sind P + S und Q + T Teilriume eines
affinen Raumes mat nicht leerem Durchschnitt, so 1t P + S n Q + T selbst ein Teil-
raum.

Beweis. Es sei Re P +8nQ + 7. Zuniichst ist P+ S =R+ S undQ+T
= R + T nach Hilfssatz 5.15. Weiter erkennt man leicht, dafl

R+8SnR+T=R+(SnT
gilt. Nach Satz 5.2 ist S n 7' Teilraum und damit auch P 4+ SnQ + T, w.z. b. w.

Fiir affine Réume ist folgende Relation charakteristisch.

In einem affinen Raum heiBt ein Teilraum P + 8 parallel zu einem Teilraum
Q@+ T — in Zeichen: P 4 S||Q + T — genau dann, wenn S S T oder TS S
gilt.

Die Parallelitit von Teilriumen ist offensichtlich reflexiv und symmetrisch, im
allgemeinen jedoch nicht transitiv (Aufgabe 1). Es gilt jedoch folgende Transitivi-
tdtsaussage fiir (endlichdimensionale) Teilrdume:

Aus Py + 8, | Py + S, und P, + S, || Py + S; sowte dim §; < dim 8, < dim S;
folgt P, + 8, || Py + S; (Beweis als Aufgabe 2).

Offenbar gilt der
Satz 5.20. Bet affinen Transformationen ist die Parallelitiit zuischen Teilrdumen
nvariant.

Satz 5.21 (Euklidische Parallelenaussage). Durch jeden Punkt Q des affinen
Rauma(V‘,B,+)geht/urISdelngenauein k-dv ler Teil s
der zu einem vorgeg len Teilraum P + T parallel ist.

Folgerungen. Zu jedem Punkt P und jeder Geraden g gibt es genau eine Gerade h
mit h>P und h| g. Zu jedem Punkt P und jeder Ebene ¢ gibt es genau eine Ebene
n mit n>Pundn|e

Beweis. Offenbar ist Q + 7' ein zu P + T paralleler k-dimensionaler Teilraum
durch Q.
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Zum Nachweis der Einzigkeit sei Q' + 7" ein gleichartiger Teilraum. Da nun
T' S T oder T S 7" und auBerdem dim 7" = dim T ist, muB 7' = 7" sein. Folglich

ist @ + T’ = Q + T nach dem Hilfssatz 5.15, w. z. b. w.

Die vierdimensionalen“yfinen Riume sind in Hinblick auf die Minkowskische
Geometrie der speziellen Relativititstheorie von besonderem Interesse. Deshalb
geben wir abschlieBend folgende Ubersicht, in der die mit * gekennzeichneten Fille
im Anschauungsraum nicht auftreten.

Satz 5.22. In einem vierdimensionalen affinen Raum sind folgende Lagebeziehungen
zunschen Geraden f, g, Ebenen ¢, n und Hyperebenen A, H moglich:

[

€

H

Li=g(=flg
f 2. fng ={P)
3.fng=0nfllg
4. fng=0nfkyg

L fce(=1le)
2. fne={P)

3. fne=0OAfl|e
. fne=0nflke

1L.fcH((={I|H
2. fnH ={P}
.fnH=0(>f|H)

Le=n(eln)

lL.pcH (=17l H)

2. ennp=h 2.9nH=h"h
7 - 3. enn={P} 3.nnH=9 (=>n|H
4. enn=0nely
B .enn=0nekn
1.A=H (= A| H)
4 2.AnH =¢

3.A0H=0(=>A4|H)

Beweisbeispiel. Wir untersuchen die mdglichen Lagebeziehungen zwischen

der Geraden

f=(P: P=Q+ta;t€ K)

und einer Ebene

e={P: P =R+ 80, + $0a,; 8, % € K}.

Die gemeinsamen Punkte ergeben sich aus den Losungen der Vektorgleichung

ta — 8,0, — 8,0, = V(QR)

mit den Variablen ¢, 8, und s,. Es sei

7o := dim {a, a;, a,}

und

7, := dim {a, qy, a,, 9(QR)).
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Wegen dim V = 4, dim {a) = 1, dim {a;, a,) = 2und 7, < r, < 7, + 1sind folgende
Paarungen moglich:

1. To=2 n=2;
2. =3 n=3;
3. =2 n=23;
4. =3 n=4,

bezieh erg

aus denen sich nun die in der Tabelle angegebenen Lag ben. Denn
7y = 7, ist dquivalent mit v(QR) ¢ (a, a;, a,), d. h. a.quwalent damlt daB die Vektor-
gleichung keine Losung besitzt, also fn ¢ = @ ist. Fiir o = r, ist nach dem Satz
5.19 dann f n ¢ ein Teilraum; seine Dimension ist die von {al n {ay, a3}, . z. b. w.

Aufgaben

1. Man gebe im dreidimensionalen affinen Raum iiber dem Korper der reellen Zahlen ein
Beispiel dafiir an, daB die Parallelitit zwischen Teilrdiumen (etwa Geraden und Ebenen)
nicht transitiv ist.

2. Man beweise folgende Transitivititseigenschaft der Parallelitit fiir (endlichdimensionale)
Teilrdume:

Aus P, + 8,(|P;+ S, und P, + 8, || Py + S; und dim 8; < dim §; < dim S, folgt
Pl +SlllPl+SI'

3. Man beweise die im Satz 5.22 angegeb Lagemaglichkeiten zwischen zwei Ebenen ¢
und 7.

4. In den Abschnitten 1.1. 1 und 1.2.3 wurden bereits Parallelititen definiert, die allerdmgs
erst in der euklidisch trie zu gewoh Parallelité gen fiithren. Man zeige,

daB dann in diesen Fallen Uberemstxmmung mit der in diesem Abschnitt gegebenen Defini-
tion besteht.

5.1.3. Symmetrische Bilinearform und metrischer Vektorraum

Die folgende Begriffsbhildung kann man als Verallgemeinerung des Skalarprodukts
von Vektoren ansehen, wie wir es von der euklidischen Geometrie her kennen (siehe
Abschnitt 3.1.3b). Bei der folgenden Definition gehen wir von den Eigenschaften
des Skalarprodukts aus, die in Satz 3.21 angegeben wurden und sich auf den Fall
eines beliebigen Korpers iibertragen lassen.

Es sei V ein Vektorraum iiber einem (kommutativen)!) Kérper K und f eine Abbil-
dung von ¥V XV in K. Fiir f(a, b) wird kiirzer ab gesetzt. Nun heiBt f symmetrische

1) Bei den bwhengen Darlegungen haben wir von der Kommutativitit des zugrunde lie-
genden Koérpers im wesentlichen keinen Geb h ht; die in den Abschni 5.1.1 und
5.1.2 gewihlte Darstellung kann fir Schiefkérper aufgebaut werden. Symmetnsche Bilinear-
formen (mit f(V X V) +={0}) existieren allerdings nur in Vektorra uber L iven
Korpern, so daB wir in Hinblick auf die Zielstellung dieses Kapitels diese Elgensclmft von
vornherein mit haben. Spiter — ab Hilfssatz 5.27 — werden wir noch 2.1
=14+13+0(2€N; 1 0¢€ K) voraussetzen (Korper einer Charakteristik =2).
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Bilinearform (oder inneres Produkt) iiber ¥V genau dann, wenn fiir alle a,b,c€ V
und z € K gilt:

1) a(b + ¢) = ab + ac,
(2) (za) b = z(ab),
(3) ab = ba.

Nach (3) folgt aus (1) und (2), daB f(a, b) sowohl fiir einen festen Vektor a als auch
fiir einen festen Vektor b additiv und transitiv ist; das rechtfertigt die Bezeichnung
,,Bilinearform*. Die Eigenschaft (3) ist eine Symmetrieforderung.

(V, f) heiBt metrischer Vektorraum (iiber K) genau dann, wenn V ein Vektorraum
(iiber K) und f eine symmetrische Bilinearform iiber V ist.

Jeder Teilraum V' S V eines metrischen Vektorraumes (V, f) bildet offenbar
selbst einen metrischen Vektorraum, wenn man f auf 7’ einschrinkt.

Ist V ein n-dimensionaler Vektorraum, B (b,, ..y b,) eine Basis von V und f

eine Bilinearform iiber V, so erhilt man fiir g = 2 zb, und ) = Z by auf Grund
von (1) und (2) die Darstellung

fen =1 (2 by, Z.: ylrbk) = f zyf (b1, B) = (£)s Fa(9)s",
=1 k=1 Q=1

wobei Fp := (/(b‘, b,)) eine n-reihige Matrix ist. Das bedeutet, daB das innere Produkt
zweier Vektoren bereits durch das innere Produkt der Basisvektoren bestimmt ist.
In dieser Darstellung ist die bekannte Darstellung ) = 2,y + %2y, + Zsy, fiir
das Skalarprodukt in der euklidischen Geometrie beziiglich einer orthonormierten
Basis als Spezialfall enthalten; hier ist b6, gleich 0, falls ¢ % k, und gleich 1, falls
© = kist. (Vgl. Folgerung 3.21.) Wegen (3) ist F offenbar eine symmetrische Matrix.

Umgekehrt bestitigt man durch Rechnung leicht den
Satz 5.23. Ist (fy;) eine n-rethige symmetrische Mairizx mit fy € K, so fiihrt

1@ 9) =X zifu
k=]

fir t =a1b; + - + 2,00, Y = 10y + -+ + Yab, 2u einer symmetrischen Bilinear-
form [ iiber V.

Damit ist eine gewisse Ubersicht iiber alle moglichen symmetrischen Bilinear-
formen iiber einem n-dimensionalen Vektorraum gegeben.

Satz 5.24. Bei einem Basiswechsel § von B = (b,, ..., b,) zu B’ = BB qilt
Fp = CTFyC,
wobet C die zur Basistransformation p gehorige Matriz (beziiglich B) ist.

Folgerung. Der Rang von Fy 15t unabhingig von der Wahl der Basis.
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Beweis. Fiir Basisvektoren b;, b, (¢, k = 1, ..., n) aus B gilt (unter Verwendung
von 5.12):
1(85:, Br) = (860)z Fa(Bbi)s™ = (C(b)s")T Fs(C(bi)s")
= (by)5 (CTF5C) (bs)5"
und damit
Fp = (f(B5y, fbr)) = CTFyC.
Die Folgerung ergibt sich nun sofort aus |C| % 0, w. z. b. w.

Ein grundlegender Begriff in metrischen Vektorrdumen ist die Orthogonalitét.
Ein Vektor a heiBt orthogonal zu einem Vektor b — in Zeichen: a | b — genau
dann, wenn f(a, b) = 0 ist. Weiterhin sei fiir Teilmengen 8, T von Vektoren

S1T:eA Aa LD,
a€eS beT

Slt={g:/\a_]_g}.

aes

Hilfssatz 5.25. Sind S und T Vektormengen aus einem metrischen Vektorraum,
8o qilt
(a) ScT=>T <84,
(b) Sc 8L,
(c) gLt — gL,
d) 84 7st Tedraum,
(e) (8 + T)* =8+ n T4, falls 8, T Teilriume sind.
Beweis. Den Beweis fiir (a) und (b) iiberlassen wir dem Leser.
Zum Nachweis von (c) ist zunichst S < (84)4++ nach (b); aus S £ S** folgt
andererseits (§++)* < S* nach (a),d. h. §++L = 84,

Sind g,y € S+ und t € K, so gilt firallea€e S
t+pa=ga+ya=0+0=0,
(tr) a =¢(za) =¢-0=0,
d.h., esist ¢ + €8 und ¢z € $* und damit S* ein Teilraum.
Die letzte Behauptung ergibt sich daraus, daB wegen 0 € 8, T
AN@a+Br=08Aar=0AAbr=0
aes BeT

aes beT
gilt, w. z. b. w.
Ist T ein Teilraum eines metrischen Vektorraumes V, so heift rad 7' := T'n T+

das Radikal von T, insbesondere ist R :=rad ¥V = V+. Nach 5.25(d) und 5.3 ist
rad T selbst ein Teilraum.
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Ein Teilcaum 7T heiBt regulir genau dann, wenn rad T = {0} ist; anderenfalls
wird T 7sotrop genannt. Insbesondere heiBt T total sotrop fiir den Fall, daBrad 7 = T
ist. Schlieflich nennt man einen Vektor a selbst (echt) 7sotrop genau dann, wenn (a % o
und) a? = 0 ist.?)

Satz 5.26. In einem n-dimensionalen metrischen Vektorraum V gilt
rang Fp + dim R = n.
Folgerung. V ist genau dann reguliir, wenn rang Fg = n st.
Beweis. Es sei (aj, ..., a,) eine Basis von R. Diese kann nach dem Satz 5.5 zu

"
einer Basis (ay, ..., a,) von V erweitert werden. Nun ist offenbar b = 3 bja; € R
genau dann, wenn i=1

* 0="0ba =) bify fir k=1,..,n
i=1
ist. Fassen wir (*) als lineares Gleichungssystem mit den Variablen b,, ..., b, auf,

80 ist R sein Losungsraum und damit nach bekannten Sitzen iiber die Losung homo-
gener Gleichungssysteme rang F = n — dim R, w.z. b. w.

Im folgenden setzen wir 2 = 1 + 1 == 0 voraus.

Hilfssatz 5.27. Jeder nicht total isotrope Teilraum T enthilt einen amisotropen
Vektor.

Beweis. Wiirde a? = O fiir alle a € 7 gelten, so wire wegen
E+9*=2+9"+2m

und 2 = 0 auch ty =Ofiiralleg, 9 € T und damit 7S T4,d.h.rad T=Tn T*
= T im Widerspruch zur Voraussetzung, w. z. b. w.

Hilfssatz 5.28. In einem n-dimenstonalen metrischen Raum V st stets dim {a)*
=n—1.

Beweis. Essei(q,, ..., a,) eine Basis von {a} *. Diese kann zu einer Basis (q,, ..., a,)
von V fortgesetzt werden. Wire m < n — 1, so folgte fiir

b := (aa,) Ay — (a0,) Gy

zuniéichst b == o, da aa,, aa,-, + 0 wegen a,, a,, ¢ (a}* ist. Nun gilt offenbar ab = 0,
also b€ (a}t und damit die widerspriichliche Aussage a, € (aj, ..., Apy). Also gilt
m=n—1,w.2z. b w

Satz 5.29. Ist V ein regulirer n-dimensionaler meltrischer Vektorraum und T
ein Telraum, so gilt:
(a) dim 7' + dim T+ = n.
(b) T+ =T.

1) Fir a =+ o ist {a] offenbar genau dann isotrop, wenn a2 = 0 gilt.
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(c) rad 74+ =rad 7.

(d) Folgende Aussagen sind iquivalent:
— T st regulir,
— Tt gst reguliir,
— V=T+4T,
- V=T@T.

Folgerung. Unter den Vorausselzungen des Satzes gilt fiir Unterrdume S, T
SaTyt =8+ 4+ T+

Beweis. Wir beweisen (a) und (b) gemeinsam induktiv iiber die Dimension
von T und setzen voraus, daB (a) und (b) fiir dim 7' < k gelten. Wir betrachten jetzt
einen Teilraum 7' mit einer Basis (q, ..., a;) und setzen

Ti={ay,...,q;} fir 7=k,
Nach 5.25(e) gilt

-1 —)
T = (z W+ {a.;)‘ = Tf 0ot
j=1

und damit zunichst » — k < dim T4t <n —k + 1, da dim {a;}! =n — 1 nach
5.28 und dim 7'}, = » —.(k — 1) nach der Induktionsvoraussetzung ist.

Ausdim Tt = dim T* =n — k + 1 folgte T, < {a;}* und damit nach 5.25(a)
und Induktionsvoraussetzung

g€ la)tt STy = Tin
im Widerspruch zur linearen Unabhingigkeit von (ay, ..., ;). Somit erhalten wir
bereits dim 7'+ = n — k, d. h.
*) dim T + dim T+ = n.
Offensichtlich gilt nach 5.25(b)
TS T,

Um noch Tt + < T zu zeigen, bestimmen wir eine Basis (b,, ..., b,) von V derart,
daB (bi41, -+, by) Basis von T';+ fiir © < kist; das ist moglich, dennaus dim Tt =n — 7
und 7;, = T folgt T;* = T}, nach 5.25(a), so daB sich eine Basis (by41, ..., b,) von
T = T;* nach 5.5 schrittweise zu Basen von T} |, Tt ,, ..., Ty *, V fortsetzen liBt.

Aus der Konstruktion von b; folgt b;€ T, = (ay, ..., a;4)* und damit ay, ...,

a4y 1 by Andererseits gilt a;b; + 0, sonst wire a,,...,a; | b;, by, ..., by im
Widerspruch zu (*). Somit gilt

0,6y ... ayby
(**) : L=

a;by ... abg
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Wir betrachten einen beliebigen Vektor ay, € T+ ¢ sowie

a a;b; ... a;b
ai=] : HE D
Oper Qg oo Bpiyby

Offensichtlich gilt a | 6,,:..,b, und a | By, ..., b, wegen ay, ..., Qg € T4+, d. b
a€rad V = {o}.

Wegen (**) gilt jetzt a4y € {ay, ..., ;) = T'. Damit ist der Beweis von (a) und (b)
beendet.

Die Aussage (c) ergibt sich mit Hilfe von (b) sofort durch

radTt =T+ n T+t =T ' nT =rad T.

Damit ist auch klar, daB die Regularitit von 7' und T'* einander bedingen. SchlieB-
lich ergibt sich nach (a) und der Dimensionsformel 5.6, daB 7'n T'* = (o} mit
dim (T + T*) = niquivalent und damit die Regularitidt von 7 mit V =T + T+
gleichwertig ist. Aus' V =T + T+ folgt Tn T+ = {0} und somit V=T T*;
unter der Voraussetzung V =T@ T* gilt V = T + T trivialerweise.

Die Folgerung ergibt sich nach (b) und 5.2(e):

St PL = (S 4 Tyt = (§LLa T = (ST,

w. z. b. w.

Das Radikal eines Vektorraumes besteht offenbar nur aus isotropen Vektoren.
Enthilt es auch alle isotropen Vektoren — im folgenden werden wir noch sehen,
daB dies im allgemeinen nicht zutreffen muB —, so heiBt die symmetrische Bilinear-
form f nullteilig. Ein reguliirer Raum V mit nullteiliger Form f liegt offenbar genau
dann vor, wenn

a2 0 firallea+oausV
at.
Fiir metrische Vektorriume erhebt sich naheliegenderweise die Frage, inwieweit
eine Basis eingefiihrt werden kann, die einer orthonormierten Basis in der eukli-
dischen Geometrie (wie in Kapitel 3) entspricht. Allgemein liBt sich bereits zeigen:

Satz 5.30. Jeder n-dimensionale metrische Raum besitzt eine Orthogonalbasis, d. h.
eine Basis mit paarweise zueinander orthogonalen Vektoren.

Beweis. Fiir total isotrope Vektorriume ist die Behauptung offensichtlich. Fiir
nicht total isotrope Réume fiihren wir den Beweis induktiv iiber die Dimension n.
Fir » = 1 ist die Behauptung klar. Sie gelte fiir alle Riume bis zur Dimension
k = 1. Es sei V ein Raum der Dimension & + 1.

Nach 5.27 enthilt V einen anisotropen Vektor a. Fir ihn gilt a ¢ {a}* und damit
dim {a}* = k vermdge 5.28. Nach Induktionsvoraussetzung besitzt {a}* eine Ortho-
gonalbasis B, also ist B u (a) eine Orthogonalbasis fiir ¥V, w. z. b. w.



5.1. Vektorrdume iber Korpern und symmetrische Bilinearform - 207

Fiir gewisse regulire RaumeliBt sich 5.30 verschirfen zu dem folgenden wichtigen
Tragheitssatz:

Satz 5.31. In jedem reguliren n-dimensionalen metrischen Vektorraum V (n = 1)
iiber einem angeordneten Korper K, in dem jedes positive Element quadratisch') st,
gibt es eine Basis (ey, ..., e,) und eine natirliche Zahl r < n derart, daf

0 fir 7k,
(1) ee=fu=4q 1 fir i=k=<r,
—1 fir t=k>r
18¢; 7 15t durch die Form f eindeutig bestimmd.

Beweis. Der Raum besitzt nach 5.30 zunichst eine Orthogonalbasis {by, ..., b,},
fiir die auf Grund der Regularitét b 3= 0 (¢ = 1, ..., n) ist. Nach der Voraussetzung
iiber K existiert /|b;2|; die Vektoren

1
i=—=5b
Ve

bilden nun in der Tat — gegebenenfalls nach Umnumerierung — eine Basis mit
der Eigenschaft (1).

Wir haben nun noch die Eindeutigkeit von r zu zeigen. Zuvor bemerken wir,
daB g* > O fiir alle vom Nullvektor verschiedenen Vektoren g aus C := (e, ..., ¢}
gilt; man sagt dafiir auch, daB f positiv definit in C ist.

Nach 5.29 ist C* = (es41, ..., €4}, und in C* ist f negativdefinit. Wiarenun D @ D*
eine weitere Zerlegung von V, bei der f positiv definit in D und negativ definit in
D+ und o. B. d. A. s := dim D < 7 ist, dann wiire

dim C 4 dim Dt =r 4 (n — 8) > n.

Wegen dim (C + D) < n ergiibe sich daraus nach der Dimensionsformel 5.6 der
Widerspruch, da8 dim (C n Dt) > 0 ist und es einen Vektor g 4= o mit 2> 0
(wegen ¢ € C) und r? < 0 (wegen ¢ € D*+) gibt. Also ist » durch die Form f eindeutig
bestimmt, w. z. b. w.

Erginzend sei noch bemerkt, da8 man beim Beweis der Eindeutigkeit von r
bereits mit der Voraussetzung auskommt, daB —1 sich in K nicht als Quadratsumme
darstellen 1i8t, daB K formal-reell ist.

Giibe es nimlich neben der Basis (e, ..., e,) mit der Eigenschaft (1) eine Basis
(e, ..., ey'), bei der jedoch ¢;'2 = 1 fiir 7 < s und ¢;"? = —1 fiir ¢ > s mit § §= 7,
0.B.d. A. mit s < 7 eintritt, so kénnen wir fiir C := (e, ..., ¢,;} und D := {e/’, .., e’}
wie oben zeigen, daB dim (C' n D*) > 0 ist. Demnach giibe es einen Vektor ¢ = o mit

r
r=2wei= ) ze,
+1

i=1 jue

1) Zu jedem z > 0 aus K gibt es ein (und dann auch nur ein) y > 0 in K mit y* = z. Far
y setzt man l’;
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wobei wenigstens ein z; und ein ;' — etwa x,’ — von Null verschieden ist. Daraus
folgte nun aber .

(o e ) )

das widerspricht der Voraussetzung iiber den Koordinatenkorper.

Bemerkt sei noch, daB ein formal-reeller Korper eine Charakteristik ungleich 2
besitzt, weil aus 1 + 1 = 0 bereits —1 = 1 = 12 folgte.

Wird fiir einen n-dimensionalen metrischen Vektorraum (V, f) die Zahl r gemaB
(1) bestimmt und ist n < 2r, so heiBt V ein metrischer Vektorraum mat dem Index
n — r.d)

In jedem n-dimensionalen Vektorraum mit formal-reellem Koordinatenkérper
laBt sich beziiglich jeder natiirlichen Zahl » < n < 2r eine symmetrische Bilinear-
form so einfiihren, daB ¥ ein metrischer Vektbrraum mit dem Index n — 7 ist:

fx.9): —Z"’t!h me

ist beziiglich einer Ba.sls eine gewunschte Bilinearform, wobei die Voraussetzung
iiber den Koordinatenkorper gewihrleistet, daB fiir jede andere mogliche Basis
dieser Art die gleiche Zahl r auftritt.

Ein metrischer Vektorraum mit dem Index O bzw. 1 heiBt euklidisch bzw. Min-
kowskisch. Fiir einen euklidischen Vektorraum V iiber einem geordneten Koordi-
natenkorper ist demnach

>0 firalley 4=0ausV

charakteristisch. (Vgl. Satz 3.21 (1).)
AbschlieBend sei noch bemerkt, daB die Einschriinkung einer symmetrischen Bili-
nearform f auf die ,,Diagonale” M := {(¢, z): £ € V) zu einer quadratischen Form

¢ VoK (z+q@) =/ 1)
fiihrt. Diese Form ¢ bestimmt wegen

1
f&:9) = 5 (o + ) — a®) — a(v))

fiir alle g, € V ihrerseits die Bilinearform f vollstindig.

Affine Réume iiber einem metrischen Vektorraum werden metrisch-affine Réume
genannt, Alle bisherigen in affinen Riéumen sowie in metrischen Vektorriumen be-
nutzten Begriffe werden in gleicher Weise hier verwendet. Insbesondere werden zwei
Teilriume eines metrisch-affinen Raumes zueinander orthogonal genannt, wenn dies
auf jhre Vektorriume zutrifft. Statt Mmkowsklscher metrisch-affiner Raum sagen
wir kurz Minkowskischer Raum.

Das ,,Nichteuklidische* der in diesem Abschnitt entwickelten Geometrie besteht
im wesenthchen in der verinderten Metrik. Der folgende Abschnitt soll das noch

Tioh Aentlinh
verc |

1) Dabei ist n — r imale Di :on totali per Teilr




5.2. Minkowskische Riume und spezielle Relativititstheorie 209

Aufgaben

1. Man beweise die Aussagen (a) und (b) des Hilfssatzes 5.25.

2. Man b i Ein idi jionaler Teilraum 7' = {a, b} in einem metrischen Vektor-
raum ist dann und nur dann isotrop, wenn a2b* = (ab)? gilt.

3.* Ist V ein n-dimensionaler metrischer Vektorraum und R sein Radikal, so gilt fiir jeden
Teilraum T von V

dm 7! =n —dim7T +dim 7T n R.

(Diese Aussage stellt eine Verallgemeinerung des Satzes 5.29(a) dar.)

5.2 Minkowskische Riume und spezielle Relativititstheorie

5.2.1. Abstand, isotrope Kegel, Modelle (Veranschaulichungen)

In einem Minkowskischen Raum iiber einem geordneten Korper, in dem jedes
positive Element quadratisch ist, wird

llall :=V1a?|
die Norm eines Vektors a genannt; ferner heiBt

“a(P, Q) := [Ib(PQ)l|

der Abstand der Punkte P, Q.

In bezug auf physikalische Sachverhalte, die durch Minkowskische Raume darge-
stellt werden, nennt man den Abstand raum- bzw. zeitartig genau dann, wenn
v3(PQ) > 0 bzw. v*(PQ) < 0 ist. Entsprechend wird diese Bezeichnung auch fiir
Vektoren benutzt.

Diese Funktion a ist offenbar symmetrisch. Sie besitzt jedoch — wie wir gleich
sehen werden — nicht die weiteren Eigenschaften einer Abstandsfunktion, mit
denen man einen metrischen Raum charakterisiert, namlich die Dreiecksungleichung
und das Identitdtsaxiom

a(P,Q) =0 & P = Q fiir alle Punkte P, Q.

Minkowskische R sind d h keine metrischen Riume') und damit auch
keine normierten Riume.

Dazu wollen wir jetzt ein Beispiel niaher betrachten, den zweidimensionalen
Minkowskischen Raum iiber dem Kérper der reellen Zahlen (Abb. 164a).
Nach 5.31 gibt es eine Basis (O; e,, ¢,), so daB die Darstellung des inneren Produkts
unter 5.23 hier fiir ¢ = z,e, + ¢, und 1y = y,e, + y.¢, die Form gy = z,9, — .9,
erhilt. Ein Vektor ¢ = z,e, + e, aus dem Vektorraum ist nach Definition iso-
trop genau dann, wenn 0 = 2,2 — 2,2 = (2, + 2,)(2, — %,) ist. Gleichwertig damit

1) Vgl. etwa MfL, Bd. 4, 1.5.6.
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ist offensichtlich, daB g ein Vielfaches des Vektors e, + e, oder des Vektors e, — e,
ist. Unser Raum enthilt somit genau zwei isotrope Geraden durch O; sie sind in
der Abb. 164a die Winkelhalbierenden w,, w, der durch die Koordinatenachsen ge-
bildeten rechten Winkel. Demnach li8t sich P = Q= a(P,Q) =0 nicht um-
kehren.

Als Einheitskrers um O ist natiirlich die Punktmenge {P: a(0, P) = 1} zu ver-
stehen, wobei noch zwischen raum- und zeitartigem Abstand zu unterscheiden ist.
Fiir P = (,, ;) ist im ersten Fall diese Punktmenge durch die Gleichung z,2 — z,2 = 1,
im zweiten Fall durch —z,® 4 2,2 = 1 charakterisiert. In der- Abb. 164a sind das
bekanntlich gerade die beiden ,,Einheits*hyperbeln mit den Asymptoten w; und

w,.

w1
]
[
-
P
raumartiger Einheitskreis

2zeitartiger Einheitskreis

a}
Abb. 164

Damit wird deutlich, daB8 grundsitzliche Unterschiede zwischen der hier und der
in Kapitel 4 dargestellten und nach H. MINKOWSKI benannten Geometrie bestehen.
Der Einheitskreis hier ist keine konvexe Eichfigur im Sinne des vorigen Kapitels.

Die Dreiecksungleichung besteht selbst im Fall gleichartiger Abstinde im allge-
meinen nicht. Betrachten wir neben O beispielsweise noch die Punkte P = (2, 0)
und Q = (4, 1), so ist

a(0, P) + a(P, Q) = 2 + V3 < V15 = a(0, Q).
In einem n-dimensionalen Minkowskischen Raum heift
K, := {P: v%AP) = 0}

der 2sotrope Kegel beziiglich des Punktes A.
Eine gewisse inhaltliche Rechtfertigung dieser Bezeichnung geben die folgend
beiden Sitze:

Satz 5.32. Ist B€ K, und B & A, so vst g4 S K.

Beweis. Ist P ein beliebiger Punkt aus g,s, so ist 0(4P) = tv(4B) mit t€ K.
Nun gilt v3(4P) = 2% AB) = 0 und damit P € K,, w.z. b. w.

Entsprechend beweist man
Satz 5.33. Eine Gerade g durch A liegt in K, genau dann, wenn g 1s0trop 1st.

In der Minkowskischen Ebene besteht der isotrope Kegel beziiglich des Punktes O
gerade aus den beiden isotropen Geraden durch O (Abb. 164b).
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Ist der zugrunde liegende (Koordinaten-)Kéorper angeordnet, so heifien die Mengen
(P: v%(AP) < 0} und {P: v2(4P) > 0} das Innere bzw. das Aupere des isolropen
Kegels K. Diese Punktmengen sind demnach gerade dadurch charakterisiert, da
v(AP) zeitartig bzw. raumartig ist. In Abb. 164b ist fiir die Minkowskische Ebene
das Innere von K, dargestellt.

Ist B = (e, ..., e,) eine Basis, fiir die (1) aus dem Satz 5.31 gilt, so liegt
A + e, im Innern von K,. Die Eig haft besitzt offensichtlich kein it
Vektor der Basis. Dies gilt unabhingig von der speziellen Wahl der Basis. Die Punkte
im Innern von K, lassen sich nach dem Vorzeichen ihrer n-ten Koordinate z, unter-
scheiden: Unter dem oberen Teil des Inneren von K, versteht man den Teil mit
2y > 0; in diesem liegt auch A4 + e,. Der untere Teil ist durch z, < 0 bestimmt.
Diese Begriffsbildung ist von der Basis B abhiingig.

Satz 5.34. Die Translationen sind auf der Menge der isotropen Kegel transitiv.
Bei Translationen gehen Inneres und Aufleres eines isotropen Kegels in das Innere
bzw. Aupere des Bildskegels iiber. Speziell geht dabei der obere Teil des Inneren in den
oberen Teil des Bildes iiber.

Abb. 165

Beweis. Es seien K, und K zwei isotrope Kegel. Bei der durch a := v(4B)
bestimmten Translation ist wegen n((A + a)(P + a)) = p(AP) bereits

Ki+a=(P+a: v¥4d+aP+a)=0=K, ;= Kp.

Daraus ist ersichtlich, daB je zwei isotrope Kegel durch eine Verschiebung inein-
ander iibergefiihrt werden konnen, und ferner, daB bei einer Verschiebung ein iso-
troper Kegel in einen isotropen Kegel iibergeht und dabei Inneres und AuBeres
sowie die oberen Teile in entsprechende Punktmengen iibergefiihrt werden, w. z. b. w.

In n-dimensionalen Minkowskischen Riumen (n = 2) tber geordneten Kérpern
8t die Metrik in den Hyperebenen durch einen Punkt O allein durch ihre Lage beziig-
lich des isotropen Kegels bestimmt.

Wir wollen das im Fall » = 3 ausfiihrlich darlegen. Die Uberlegungen lassen sich
entsprechend auf die Fille » = 2 und n = 4 iibertragen.

Zuvor wollen wir als Beispiel den dreidimensionalen Minkowskischen
Raum iiber dem Kérper der reellen Zahlen vorstellen (Abb. 165a). Ist
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(0; &4, ey, ¢;) eine Basis mit der Eigenschaft (1), so 1dBt sich das innere Produkt in der
Form gt = 4, + %3ys — Z3y; darstellen. Fiir die Punkte P = (,, x., 3) des isotro-
pen Kegels K, erhilt man die Gleichung ;2 + z,? — z,® = 0. Sie bilden demnach in
euklidischer Sicht einen Doppelkegel mit der Spitze O (Abb. 165a). Die Mantel-
linien dieses Kegels stellen gerade die isotropen Geraden durch O dar. Die Einheits-
kugel mit raum- bzw. zeitartiger Radiuslinge wird durch die Gleichungz,2 + 2,2 —z,?
=1 baw. 2,2 + 7,2 — 2,2 = —1 beschrieben; sie besteht d h in euklidisch
Sicht aus einem einschaligen (Abb. 1652) bzw. einem zweischaligen Hyperboloid.

Wir zeigen nun, daB die Metrik in den Ebenen durch O allein durch ihre Lage
zum isotropen Kegel K, charakterisiert werden kann. Dabei wird vom Koordinaten-
korper nur verlangt, daB er die Voraussetzungen im Satz 5.31 erfiillt.

Es sei ¢ = O + U eine Ebene durch 0. Nach dem Satz 5.29(a) gibt es einen Vektor
a == o mit {a}* = U; dieser Vektor ist demnach ein Stellungsvektor beziiglich &.

Wir treffen beziiglich a jetzt folgende Fallunterscheidung:

a) a2> 0, d. h. a ist raumartig (Abb. 162b). Nach 5.29(d) ergibt {a] @ U den
gesamten Vektorraum; somit gibt es ein Korperelement 2 und einen Vektor b € U mit
Aa 4+ b =e;. Wegen 0> eg? = %% + b? und a? > 0 gilt b2 < 0. Daraus folgt,
daB der Index von U gleich 1 ist; denn nach Voraussetzung kann er nicht gréBer
als 1 sein. Das heiBt, daB ¢ eine Minkowskische Ebene ist. Sie besitzt demnach
— wie wir bereits zeigten — genau zwei isotrope Geraden durch O, sie schneidet
den isotropen Kegel (lings zweier Geraden).

b) Es sei a® =0, d. h., a ist isotrop. Dann ist a € rad U, also ¢ isotrop. Wiirde
U noch einen echt isotropen Vektor b ¢ {aj enthalten, so wire U wegen a | b
sogar total isotrop ; wirerhielten U € U+t = faj+t = (TfimWiderspruch zu{a) = U.
Die Gerade O + [a] ist der Durchschnitt von ¢ und dem isotropen Kegel, d.b.,
die Ebene & beriihrt den Kegel.

¢) a? < 0, d. h,, a ist zeitartig. Da dann wiederum {a] @ U den gesamten Vektor-
raum ergibt und da dessen Index gleich 1 ist, muB f in U positiv definit sein. Folg-
lich ist ¢ eine euklidische Ebene. U enthilt keinen echt isotropen Vektor, d. h.,
daB ¢ den Kegel nicht schneidet.

Damit ist die Metrik aller Ebenen und ihr Zusammenhang mit einfachen Lage-
beziehungen der Ebenen zu den isotropen Kegeln aufgezeigt.

Der vierdimensionalereelle Minkowskische Raum ist eigentlich der Raum,
der zur vollstindigen Beschreibung der speziellen Relativititstheorie verwendet
wird. Hier versagt das natiirliche Vorstellungsvermégen auf Grund der Dimension.
Doch der Grad der Befiihigung, sich etwas vorzustellen und darstellen zu kénnen
— eine fiir die wissenschaftliche Arbeit auf vielen Gebieten wichtige Voraussetzung —,
ist in starkem MaBe entwicklungsbedingt. Man kann sich auch vier- und héher-
dimensionale riumliche Sachverhalte vorstellen und eine Darstellung geben.?)

1) Einzelheiten wollen wir hier nicht ausfilhren. Aus einer Reihe von Literaturvorlagen
méchten wir auf das leicht zugingliche Biichlein von A. KoLman. Die vierte Dimension, BSB
B. G. Teubner Verlagsgesellschaft, Leipzig 1976 (Ubersetzung aus dem Russischen), verweisen,
das diesbeziigliche Fragen fiir einen breiten Leserkreis darlegt. ’
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Die Minkowskische Ebene und den (dreidimensionalen) Minkowskischen Raum
haben wir hier deshalb etwas breiter vorgestellt, weil sie auch in der Darstellung
der physikalischen Zussmmenhinge in der speziellen Relativitiitstheorie gern
benutzt werden. Die neue Auffassung von Raum und Zeit und die sich daraus
ergebenden theoretischen Konsequenzen lassen sich mit ihrer Hilfe einfacher veran-
schaulichen.

Im Rehmen analytischer Methoden, mit denen wir in diesem Kapitel arbeiten,
bringt die Beschrinkung auf gewisse Dimensionen weitgehend keine Vorteile.

Zum AbschluB dieses Abschnitts wenden wir uns nochmals dem ebenen Fall zu.

Satz 5.35 (Hohensatz). Ist ABC ein Dreieck, so schneiden sich die Lote von den
Ecken auf die jeweils gegeniiberliegende Seite, d. h. die Hohen, in einem Punkt.

Beweis. Es seien 4, B, C drei nicht kollineare Punkte (Abb. 166a). Wir setzen
a:=9(BC), b :=p(CA4) und ¢ := 9(4AB). Der Satz 5.29(a) sichert letztlich bereits
die Existenz und Eindeutigkeit der Héhen. Es seien kg, k, und &, die Héhen durch
A, B bzw. C.

Die Héhen h, und k, schneiden sich in einem Punkt H. Andernfalls wire kg || by,
d.h. (a)* = {b}*, und damit {a} = {aj** =Tb}** = {b] im Widerspruch dazu,
daB A, B, C nicht kollinear sind.

Fiir o’ := v(4H), b’ := p(BH) und ¢’ := v(CH) gilt

aa’=0, b’ =0
und damit
=(@+b)c¢ =a’+b’=ab+a)+b(—a+b)=0
Folglich liegt H auch auf k,, w.z. b. w.

Dieser Satz laBt sich sogar unter den schwicheren Voraussetzungen einer regulé-
ren metrisch-affinen Ebene beweisen.

In Anbetracht des in Abb. 164 vorgelegten Modells erscheint die unei hrinkte
Giiltigkeit des Hohensatzes, d. h. seine Unabhiingigkeit von der Art der Dreiecks-
seiten, bemerkenswert. In den Abb. 166b und 167 sind Beispiele dargestellt, in denen
eine Dreiecksseite bzw. zwei Dreiecksseiten isotrop sind. Die Aufgabe 2 hebt eine
weitere Besonderheit hervor.
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Aufgaben

1. Man beweise den Satz 5.33.
2. Man zeige, daB die folgende Konstruktion in einer Minkowskischen Ebene (Abb. 164) zu
dem Lot von O auf die anisotrope Gerade g (p O) fiihrt (Abb. 167):

Abb. 167

a) Besti der Schnittpunkte P; und P, der Geraden g mit dem isotropen Kegel
Ko = w, v w,.

b) Konstruktion der vierten Ecke @ im Parallelogramm P,0P,Q.

¢) Verbinden von O und Q.

Im einzelnen ist die Existenz und Eindeutigkeit von P,, Py und @ sowie goq L ¢ zu zeigen.

Bemerkung: Uberraschenderweise werden bei dieser Konstruktion nur die Existenz und
Eindeutigkeit von Verbindung den und Parallelen benétigt.

5.2.2. Bewegungen

Den folgenden Ausfithrungen legen wir zunichst nur einen n-dimensionalen metri-
schen Vektorraum (V, f) mit » = 1 iiber einem Korper K einer Charakteristik == 2
zugrunde.

Eine eineindeutige Abbildung « von ¥V auf sich heiBt orthogonale Transf: 7
genau dann, wenn « eine lineare Transformation von V ist und

flox, o) = f(z, v)
fiir alle ¢, § € V (Invarianz des inneren Produkts) gilt.

Eine Transformationsmatrix 4 von « ist von der gewihlten Basis abhéngig, jedoch
héngt |4| nach dem Satz 5.12(d) nur von & ab. Insbesondere heiit « eine Bewegung
oder 1 trische Transformation genau dann, wenn auBerdem |4| = 4 1 gilt; im
Fall |A| = 1 heiBt « eine eigentliche Bewegung oder Lorentziransformation.

Alle Translationen sind eigentliche Bewegungen, denn A ist dann Einheits-
matrix.

Da die linearen Transformationen nach Satz 5.9 eine Gruppe bilden, trifft das
offenbar auch auf die orthogonalen Transformationen zu. Diese Gruppe heift
orthogonale Gruppe. Untergruppen bilden die Bewegungen bzw. die Lorentztrans-
formationen.

Auf Grund der Gleichung

2/ 9) =f&+ 9,5+ 9 — flz, 0 — fv, 1)
fiir alle g, y) € V gilt der
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Hilfssatz 5.36. Eine lineare Transformation « st genau dann orthogonal, wenn

flex, ox) = fle, 7)
fiir allex € V gilk.
Satz 5.37. Ist der Vektorraum V reguliir, so st jede orthogonale Transformati
eine Bewegung.
Beweis. Bezogen auf eine Basis Bsei A die Transformationsmatrix einer orthogo-

nalen Transformation &. Nun gilt F3 = F,5 = ATF3A nach Satz 5.24. Daraus folgt
|Fp| = |AT| |F5| |A| und damit |4|> = 1 wegen |Fp| 4 0 nach Satz 5.26, w.z. b. w.

Unter den Bewegungen spielen im allgemei Spiegelungen eine tlich
Rolle. Wir verstehen hier unter einer Spiegelung an T eme mvolutonsche’) Bewegung,
bei der die Menge der Fixvektoren einen echten reguliren Teilraum 7' bildet. Eine

anschauliche Kennzeichnung der Spiegelungen liefert der

Satz 5.38. In einem regquliren n-dimensionalen metrischen Vektorraum V (Charak-
teristik == 2) mit n =1 18t o eine Spiegelung an einem reguliren Tellraum T < V
genau dann, wenn o eine lineare Transformation von V mt
(1) ca=a firallea€ T,

(2) oa = —a firallea€c T+
w8t.

Beweis. a) Es sei o eine lineare Transformation von ¥V mit (1) und (2). 7 ist
regulir, so dafl V = T' @ T* nach 5.29(d) gilt. Folglich besitzt jeder Vektor g€ V
eine eindeutige Darstellung y = ¢’ + ¢* mit t'€ T und ¢! € T+.%)

Es gilt (op)?=(r' —¢*)* =1 +1'*= (' + ') =1 pach den Hilfssit-
zen 5.36 und 5.37 folgt daraus, daB ¢ eine Bewegung ist. )

Wegen T = V ist T* = (o) und damit ¢ nach (2) nicht die Identitit. AuBerdem
gilt o(or) = o(t’ — ¢*) = ¢’ + ¢* = ¢; damit ist o involutorisch.

b) Jetzt sei umgekehrt o eine Spiegelung an T'; dann gilt (1) per definitionem.
Fiir a€ Tt ist o(oca + a) = o(0a) + oa = a + oa und damit a + ca € 7. AuBer-
dem ist dann

(oa + a)(oa + a) = (ca + a) sa + 0 = a(a + ca) =0

folglich auch oa 4+ a€ Tt. Wegen T n T'* = {0} muB nun a + oa = o0 sein; und
damit gilt (2), w. z. b. w.

Jede affine Transformation im Punktraum bestimmt eine lineare Transformation
im Vektorraum (siehe Abschnitt 5.1). Umgekehrt kann mit Hilfe einer Translation
und einer linearen Transformation im Vektorraum jede affine Transformation im
Punktraum dargestellt werden, wobei der linearen Transformation des Vektor-

1) Eine Abbildung o heiBt snvolulorisch, wenn sie von Identitit verschieden und wenn
o1 = oist.

%) Die in Abschnitt 3.1.3b) eingefithrte Zerlegung eines Vekwrs in Parallel- und Normal-
komponente erweist sich als Spezialfall der hier v
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raumes eine affine Transformation des Punktraumes mit einem Fixpunkt entspricht.
Die den Bewegungen und speziellen Bewegungen zugehorigen Abbildungen im
Punktraum belegen wir aus praktischen Griinden mit der gleichen Bezeichnung.
(MiBverstindnisse sind kaum zu befurchten.)

Als Punktspiegelungen und Hypereb iegelungen sind diejenigen Spiege-
lungen zu verstehen, bei denen der Fxxvektorra.um die Dlmenslon 0 bzw. n — 1
besitzt. Die Spiegelung an einem Teilraum H & P bezeichnen wir mit oy und das
Bild einer Punktmenge M bei dieser Spiegelung mit M¥ (vgl. Abschnitt 1.1.3),
wobei wir im Fall H = {4} kurz o, schreiben.

Aus den Eigenschaften (i) und (ii) sind in reguliren metrisch-affinen Raumen sofort
einige metrische Eigenschaften dieser Spiegelungen ersichtlich, die zu ihrer kon-
struktiven Darstellung genutzt werden konnen:

Ist o, die Spiegelung an einem Punkt 4 und X irgendein weiterer Punkt, so ist
wegen {4} = A + (o} und v(4X)€ V = (0} nun p(4X4) = —p(4X) nach (ii).
Das Bild X4 von X liegt derart, daB 4 Mittelpunkt der Strecke XX ist.

Es sei jetzt o, eine Spiegelung an einer Hyperebene 4 = P -+ T und X irgendein
Punkt. Nun gilt dim 7'* =n — (n — 1) = 1, und »(PX) ldBt sich als Summe von
Vektoren v’ € T' und p+ € T'* darstellen (Abb. 168).

X
AL
4

o

Abb. 168

XA

EsseiQ:= P + v'. Dann gilt p(QX) = v* € T4, Q4 = Q und p(QX*) = 0,(v(QX))
= —p(QX). Das Bild von X liegt auf der zu A orthogonalen Geraden X + T4,
und die Strecke X X4 wird durch A halbiert.

- Fiir n-dimensionale Minkowskische Rdume mit n = 2 iiber einem geordneten
Koordinatenkérper ergibt sich an Hand der Gleichungen

«(0(4P)) = vp(x4xP) und (ag) (a) = 29
fiir alle Punkte P und Vektoren ¢, t) und Bewegungen « der
Satz 5.39. Ist x eine Bewegung und K, ein isotroper Kegel, so ist
«(Ky) =K, 4,

und Inneres und Auferes von K, gehen in das Innere bzw. Aufere des isotropen
Kegels K, , iiber.

Fiir den zweidimensionalen reellen Minkowskischen Raum untersuchen wir die
Bewegungen jetzt niher. Es sei « eine Bewegung im Vektorraum ¥V und 4 die zuge-
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hérige regulire Matrix beziiglich einer Basis B = (e,, ¢;) mit der Eigenschaft (1)
aus dem Satz 5.31. Dann gilt (ar)p = A(r)s firalleg € ¥V, d. h.

® %' = an® + ant,
7y = an? + an%
fiir = 2,8, + 2,8, und 4 = (ay).
Nach den Hilfssitzen 5.36 und 5.37 ist
(ii) )2 — 2 = (ar) =2 = 2,2 — 7,®

neben [4| = 41 notwendig und hinreichend dafiir, daB (i) eine Bewegung ist. We-
gen
't — 2 = (a}) — a}y) 2 + (o}, — aBy) 2g® + 2(an1012 — Anam) 717,
=2 — 22
fiir alle reelle Zahlen ;, z, ist nun (i) genau dann eine Bewegung, wenn
(i) a} —ah =1,
af, —ap = —1,
@118z — Gy = 0,

Anay; — G0y = |4] = £1
ist.
coshy

sinhy;

————= 7

Abb. 169

Zuniichst fillt die Analogie zur Darstellung von Drehungen in der ebenen eukli-
dischen Geometrie auf. Diese Analogie motiviert die folgenden Ansitze mit Hyper-
belfunktionen’) (Abb. 169). Wegen cosh? y — sinh? y = 1 setzen wir fiir a;, > 0

a;; = cosh y und‘ a, = sinh y.

1) Die Funktionen sinh (sinus hyperbolicus) und cosh (cosinus hyperbolicus) sind definiert
durch

sinh y := % (¢ —e%) und coshy:= % (e* + e2).

Es gilt cosh? y — sinh?®y = 1 und demnach cosh? y = 1. Ferner ist tanh y := m. Vgl.
auoh MfL, Bd. 4, 2.5.4. cosh ¥
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P

Fiir a,; und a,, ergibt sich nach (iii) wegen

3
ap=ahp+ 1= (:—21) - a3 + 1 = (a3, sinh?® y -+ cosh? y) (cosh? y)-
1
zunichst
N cosh? ¥ 2
a3, = ————~=—— =cosh? g,

cosh? y — sinh3y

bei Einschrinkung auf az, > 0 schlieBlich a;, = cosh z und damit .

Q1 = = ay =sinh 7.
an
Bei der Matrix

__ fcoshy sinhy
v sinhy coshy

sind fiir alle reellen Zahlen y die Bedingungen (iii) erfiillt, und iiberdies gilt |4| = +1.
Die restlichen Losungen von (iii) sind nun

A,:=( cosh y sinh

) 4, = —1,
—sinh y —eo;hx) sl

—cosh sinh
Ay := . Z x ’ |4 = -1,
—sinh y coshy

—cosh y sinh '
A= A, = +1.
. ( sinhy —cosh )l) y o A=+

Die Matrix 4, zeichnet sich gegeniiber'den anderen drei Matrizen dadurch aus,
daB die zugehorige Bewegung « eine Lorentztransformation ist (|4,| = 1) und daB8
der Punkt O + «e; = O + sinh ye, + cosh ye, wegen cosh y > 0 im oberen Teil
des Inneren von K, liegt. Man nennt « dann eine eigentliche Lorentztransforma-
tion.1)

Diese Auszeichnung kann in der Veranschaulichung (Abb. 164) auf eine stirker
geometrischen Weise vorgenommen werden: Bei jeder Bewegung mit dem Fixpunkt
O geht jeder Kreis um O in sich iiber. In der Abb. 164 geht somit jede Hyperbel
mit dem Mittelpunkt O und den Asymptoten w,, w, in sich iiber, d. h., jeder Punkt
P ¢ wy, w, wird auf einen Punkt derjenigen Hyperbel abgebildet, die bereits durch
ihn und die Asymptoten w,, w, bestimmt ist.

Die Bewegungen mit der Matrix 4, unterscheiden sich nun gerade von denjenigen
mit der Matrix 4,, 43 oder 4, dadurch, daB bei der zugehorigen Punktabbildung
mit O als Fixpunkt jeder Punkt und sein Bild auf demselben Hyperbelast liegen.
Man nennt sie deshalb eigentliche hyperbolische Drehungen um O (Abb. 170). Damit

1) Die Hervorhebung dieser Transf tion hat — wie wir noch sehen werden — einen
heliegenden phvsikalischen Hi und.
B PRJ -4 .
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ist eine geometrische Charakterisierung der eigentlichen Lorentz-
transformationen gegeben (vgl. auch Aufgabe 1).

SchlieBlich sei noch bemerkt, daB durch einfache Spiegelungen die Matrix 4,
in A,, Ay bzw. A, iibergefiihrt werden kann. Die Spiegelungen an der z,-Achse bzw.
an der z,-Achse (Abb. 171a und b) werden nach (i) offensichtlich durch

1 0 —10
S“_(O _1) bzw. S,.._( 0 l)

beschrieben. Diese Matrizen sind speziell von der Form 4, bzw. 4,. Tatsichlich ist
nun 4, = 8,4,, 43 = 4,8; und 4, = 8,4,8,.

Abb. 170

Auf Grund des Satzes 5.34 iiber die Invarianten bei Translationen haben wir
durch unsere bisherigen Darlegungen letztlich bereits eine vollstindige Darstellung
aller Bewegungen in der reellen Minkowskischen Ebene gewonnen. Mit den bisherigen
Darlegungen ist auch die Darstellung von Bewegungen in hherdimensionalen Min-
kowskischen Rdumen sowie eine Verallgemeinerung beziiglich des Koordinaten-

kérpers vorgezeichnet.
AN _1
=\

P 3
/”10
J <-4

b) Abb. 171

Wir fassen unsere Darlegungen iiber die Bewegungen in der reellen Minkowskischen
Ebene zusammen:

Satz 5.40. Die (eigentlichen) Lorentztransformationen mit dem Fizpunkt O sind
die (eigentlichen) hyperbolischen Drehungen um O. Jede Bewegung lift sich als Nach-
etnanderausfiihrung von einer Translation, einer (eigentlichen) Lorentztransformation
und von Spiegelungen an den Koordinatenachsen darstellen.
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P

Mit dem Hohensatz 5.35 kann der Dreispiegelungssatz fiir regqulire Geraden (vgl.
Abschnitt 1.2.1) bewiesen werden (vgl. Aufgabe 2). Damit ist die Moglichkeit gegeben,
eine ganze Reihe von Sitzen der euklidischen Geometrie zu gewinnen, sogar mit den
gleichen Beweisschritten wie dort; unter anderem erhélt man den Satz iiber das
Schneiden der Winkelhalbierenden eines Dreiecks (Abb. 172b). Bei der Ubertragung
von Uberlegungen aus der euklidischen Geometrie auf die Minkowskische muf man
sehr sorgfiltig vorgehen. So besitzt hier z. B. nicht jeder Winkel eine Winkelhalbie-
rende:

Hilfssatz 5.41. Ein Winkel X PQR besitzt genau dann eine Winkelhalbierende,
wenn die Geraden gop und gog wie folgt gleichartig sind: a(P, Q) und a(Q, R) sind zu-
gleich raum- bzw. zeitartig.

Iy P’/ w

Abb. 172

Beweis. a) Besitzt < PQR eine Winkelhalbierende w, so geht die Halbgerade
QP+ bei der Spiegelung an w in die Halbgerade QR+ iiber. Nach Satz 5.39 sind dann
die Geraden gop und gop gleichartig.

b) Es seien gop und goz gleichartig. Wir setzen p := v(@QP), r:= »(QR) und kénnen
0.B.d. A. p? = 12 voraussetzen. Wegen (p + 1) | (p — r) und

1 1
p=gb+0t+b-n =

geht nach dem Satz 5.38 die Halbgerade QP+ bei der Spiegelung an der Geraden

w:=@Q + {p + t) in die Halbgerade QR+ (Abbh. 172a) iiber, d. h., <t PQR besitzt
eine Winkelhalbierende, w. z. b. w.

Falls gop und gor zwei isotrope Geraden sind, stellt jede reguliire Gerade durch Q
eine Winkelhalbierende dar.

Aufgaben

1. Man zeige, daB im Punktraum

%'\ _ (coshy sinh y (z)
y’/ — \sinh y cosh x/ \y,

eine Drehung um O darstellt, daB fir y + o der Punkt O einziger Fixpunkt ist.
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2.* Man beweise in der ebenen Minkowskischen G trie den Dreisp tz fir regu-
lire Geraden mit gemeinsamem Punkt, d. h. die Aussage: Sind f, g, b drei regulare Geraden
mit einem gemeinsamen Punkt P, so ist das Spiegelungsprodukt opo,0) eine Spiegelung o
an einer reguldren Geraden | durch P.

5.2.3. Der Raum der Ereignisse der speziellen Relativititstheorie

Nach Vorarbeiten von HENRIK ANTOON LORENTZ (1853—1928), H. POINCARE u. a.
begriindete A. EINsTEIN 1905 die spezielle Relativititstheorie.!) Sie ist eine Theorie
iiber die Struktur von Raum und Zeit, die auf der Konstanz der Lichtgeschwindig-
keit im Vakuum sowie auf der grundlegenden Annahme beruht, daB sich die physi-
kalischen Gesetze in allen gegeneinander gleichférmig und geradlinig bewegten Iner-
tialsystemen nicht unterscheiden (Relativitatsprinzip). Die ,,spezielle” Relativitits-
theorie beschrinkt sich auf sogenannte Inertialsysteme.

Die physikalischen Vorginge vollziehen sich in einem eindimensionalen Zeitraum
und in einem dreidimensionalen Ortsraum, den wir als reellen euklidischen Raum
voraussetzen. Beziiglich eines beliebigen Inertialsystems X liBt sich jedes Ereignis
durch drei euklidische Raumkoordinaten z, y, z und eine Zeitkoordinate ¢ beschrei-
ben, d. h., beziiglich Z entspricht jedem Ereignis ein geordnetes Viertupel (z, y, z, ¢)
reeller Zahlen. Diese Zuordnung stellt man sich als eineindeutige Abbildung von der
Menge der Ereignisse auf die Menge R* iiber dem Korper der reellen Zahlen vor.
Auf Grund dieser Zuordnung wird der vierdimensionale affine Raum iiber dem Kéorper
der reellen Zahlen Ereignisraum genannt und mit R bezeichnet.

Von wesentlicher Bedeutung ist die Frage, wie sich beim Ubergang von einem Iner-
tialsystem X zu einem Inertialsystem Z' die Koordinaten der Ereignisse éndern.

Die spezielle Relativititstheorie geht dabei von folgender Grundannahme
aus: ,,Alle Inertialsysteme sind gleichherechtigt. Durch kein Experiment kann ein
Inertialsystem vor einem anderen ausgezeichnet werden. In allen Inertialsystemen
breitet sich das Licht im Vakuum‘ unabhingig von der Richtung ,,mit derselben
Vak lichtgeschwindigkeit ¢ aus ([20], S. 18). Diese Grundannahme steht im
Geg zur Newtonschen Mechanik?) mit ihrem Satz von der Addition der Ge-
schwindigkeiten. Mit obiger Annahme gelang es, Widerspriiche zwischen experi-
mentellen Ergebnissen (u. a. Michelson-Versuch?)) und theoretischen Auffassungen
der Newtonschen Mechanik zu iiberwinden. Aus obiger Grundannahme folgt — wie
man in der Physik zeigt — der

Satz 5.42. Jedem Ubergang von einem Inertialsystem Z zu einem Imertialsystem
X', das sich gleichformig und geradlinig beziiglich X bewegt, entspricht eine affine

1) Es kann nicht Anliegen dieses Buches sein, den deduktlven Au.fbau dleser physikalischen
Theorie darzustellen. Wir miissen sie sowie damit zusam lische Begriffe
weitgehend beim Leser als bekannt voraussetzen. Aus der Fiille der emschlagxgen Literatur,
die zu diesem Gegenstand fiir hiedliche Leserkreise vorliegt, méchten wir hier auf die
Schnfwn [13], [20] und [37] verwelsen letztere sind vorzugsweise fiir die Fachlehrerausbildung

worden. D h hoffen wir, daB die Darlegungen hier ohne Benutzung von Zu-
satzliteratur verstindlich sind.

2) Isaac NEWTON (1643 —1727).

3) ALBERT ABRAHAM MICHELSON (1852—1931).
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Koordinatentransformation

(i) 2’ = ayz + any + iz + art,
Y = anz + any + anz + axt,
2 = ag® + any + Gy + as¢t,
V= ayT + any + aw? + aut

m Ereignisraum mit .
(ii) z'? + y” + 22— %% = 2 + y2 + 22 — c”z,
wober (z, y, 2, t) und (', y', z', t') die Koordinaten ein und desselben Ereignisses beziig-
lich Z und X’ sind. Es gilt auch die Umkehrung.
Diese Transformationsei haft (ii) wurde von LoRENTZ gefunden. Sie bietet

die Gru.nd.lage fiir die Emfuhrung einer Metrik im Ereignisraum, denn mit ihr ist
eine quadratische Form gegeben, die bei den betrachteten Ubergingen invariant
l:_vleibt. Naheliegend ist nun,

(iid) flan @;) i= 2,2 + p1y2 + 212 — ity
fiir alle Vektoren a; = (zi, ¥i 2, ¢;) aus dem Vektorraum ¥V des Ereignisraumes
zu setzen.

Diese Abbildung von VX Vg in die Menge der reellen Zahlen ist offensichtlich
eine symmetrische Bilinearform, die nach dem Satz 5.42 invariant gegeniiber allen
linearen Transformationen von Vj ist. Demnach ist (Rg, f) ein metrisch-affiner
Raum, in dem die orthogonalen Transformationen gerade den Ubergiingen von einem
Inertialsystem zu einem anderen entsprechen.

Fiir die Basisvektoren b, := (1,0, 0, 0), b, := (0,1,0,0), b;:= (0,0, 1,0) und
= (0,0, 0, 1) des Ereignisraumes R ergibt sich

b2=1 firt=1,2,3 und b2=—c.

Zur formalen Angleichung an die Form (1) im Satz 5.31 setzen wir
(iv) ej:=D0b; firi=1,2,3 und e, := i b
c

Beziiglich der neuen Basis (e, e;, es, ¢,) werden die Koordinaten auch ,,normierte
Ereigniskoordinaten‘ g t; sie ergeben sich aus den alten Koordinaten z, y, z, ¢

durch

(iv") H =, =Y, 2z=2, Tg=cl.

Die Form (iii) geht dabei iiber in

(v) = fe t)) = oY + T2 + TaYs — TYe
fiir alle ¢ = 2., + ++* + 24e, und §) = y,e; + +++ + Y., aUS V,,.’)

1) Auch sei bemerkt, daB der Schnitt der Hyperebene H, die parallel zur z,,2,,2,-Hyperebene

ist und durch den Einheitspunkt der x.~Achse geht den isotropen Kegel bezugllch des Ur-
sprungs in der Kugel z,% + 2,2 + z,? Da des auf sich

Bung
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Demnach gilt der

Satz 5.43. Durch die Fe:uegungen (iv) und (v) wird der Ereignisraum zum vier-
dimensionalen reellen M1 kisch. Raum, in dem den Ubergingen zwischen
Inertialsystemen gerade solche Koordinatentransformaty entsprechen, deren Matrizen
2u den Bewegungen beziiglich der Metrik (v) gehoren.

Die mathematische Einkleidung und formale Abrundung der speziellen Relativi-
titstheorie hat H. Minkowskr im Jahre 1908 vorgenommen. Seine Leistung fiir
den Ausbau der speziellen Relativitatstheorie beruht vor allem ,,in der Erkenntnis,
daB das vierdimensionale Kontinuum der speziellen Relativititstheorie in seinen
mafgebenden formalen Eigenschaften die weitgehendste Verwandtschaft zeigt zu
dem dreidimensionalen Kontinuum des euklidischen geometrischen Raumes* ([13],
S. 47). MiNEOWSKIS Beitrag zur speziellen Relativitdtstheorie bildete eine wesent-
liche Grundlage fiir die Entwicklung der allgemeinen Relativititstheorie.

AbschlieBend wollen wir einige geometrische Sachverhalte der Minkowskischen
Geometrie physikalisch interpretieren.

Wir wenden uns zunichst den isotropen Kegeln zu.

Es seien E = (2, Yo, 20, tp) und P = (z, y, 2, t) beliebige Punkte im Ereignisraum
Re. Mit E = (o, Yo, %) und P = (2, y, z) bezeichnen wir die dazugehérigen Punkte
im Ortsraum. Eine gleichférmig geradlinige Bewegung im Ortsraum durch den Punkt
E wird beziiglich eines Inertialsy bekanntlich durch die Bewegungsgleichungen

z — Ty = 0.t — &),
Y — Yo =0t — &),
z— 2o = vt — o)

beschrieben, wobei v,, v, v, die Koordinaten des Geschwindigkeitsvektors sind.
Ferner ist nach Definition des isotropen Kegels K und den Beziehungen (iii)

Kp=(2,9,20: (z— 2 + (y — yo)* + (2 — 2)* — &t — ;)2 =0},

d.h., P = (z, ¥, 2, t) liegt genau dann im isotropen Kegel beziiglich E = (,, ¥ 2, o),
wenn fiir ¢ = ¢, ein zum Zeitpunkt ¢, im Punkt E ausgesandtes Lichtsignal im
Punkt P zur Zeit ¢ eintrifft oder wenn fiir ¢ < f, ein zur Zeit ¢ in P ausgesandtes
Lichtsignal zur Zeit f, in £ ankommt. Auf Grund dieses Sachverhalts wird Kg
auch der Lichtkegel beziiglich E g t

Fiir ¢ > ¢, treffe ein im Punkt E zur Zeit £, ausgesandtes Lichtsignal in P = (2, y, z)
friiher als zum Zeitpunkt ¢ ein. Damit ist gleichwertig, daB

a(E, P
oE, Py _ -
A
abbilden, kann men die B im Kleinschen Modell mit Hilfe der Bewegungen £
des reellen vierdi len Minkowskischen Raumes charakterisieren: Ist O der Koordi-

natenursprung, so setzen wir fir Punkte X, X’ einer Figur F des Kugelinneren X’ = fpX
genau dann, wenn BX € gox- gilt. Wir Gberlassen es dem Leser, fiir die M-Bewegungen g
die Giltigkeit der Bewegungsaxiome B, bis B, nachzuweisen.



224 5. Minkowskische G trie der speziellen Relativititstheorie

ist, wobei mit a(E, P) der euklidische Abstand der Punkte £ und P gemeint ist.
Diese Ungleichung ist aber gerade kennzeichnend dafiir, da8 P im Innern des Kegels
Kpg liegt. Damit ist eine Interpretation fiir alle Punkte aus dem Inneren von Kg
mit ¢ > ¢, gegeben.

Im Fall ¢t = ¢, gilt P = E, so daB fiir die inneren Punkte nur noch ¢ < ¢, zu be-
trachten ist. Es sei also P ein Punkt im Inneren von Kg mit ¢ < ¢,. Dann ist

a(E P) <t — 11,

und dies bedeutet, daB ein zum Zeitpunkt ¢ in P ausgesandtes Lichtsignal in E
frither als zum Zeitpunkt ¢, eintrifft.

In bezug auf das Ereignis £ nennt man deshalb den Teil des Inneren von K
mit ¢ > ¢, den Zukunftskegel und den durch ¢ < ¢, charakterisierten Teil den Ver-
gangenheutskegel. Diese Teile entsprechen dem im Abschnitt 5.2.1 erklirten oberen
bzw. unteren Teil des Innern von Kg.

Analog lassen sich die Punkte P im AuBeren von Kz dadurch charakterisieren,
daB ein zum Zeitpunkt ¢, in E ausgesandtes Lichtsignal in P spiiter als zum Zeit-
punkt ¢ ankommt. Mit anderen Worten: Die Ereignisse P im AuBeren von K sind
genau diejenigen, die nicht in einem kausalen Zusammenhang (Ursache —Wirkung)
mit E stehen.

Wir betrachten nun die Bewegungen im Ereignisraum. Nach Satz 5.43 werden
durch sie gerade die Ubergiinge zwischen zueinander gleichférmig und geradlinig
sich bewegenden Inertialsystemen beschrieben. Zur Vereinfachung der Uberlegung
spezialisieren wir (i), zu

2 =z + et
¥=y,
2 =z,
t = cux + cul.

Das ist keine wesentliche Einschrinkung des Sachverhalts. Die Vereinfachung be-
deutet, daB zum Zeitpunkt ¢ = 0 der Ursprung des Inertialsystems X mit dem des
Inertialsystems X’ zusammenfillt und daB sich £ und 2’ langs der z-Achse von
Z zueinander bewegen. In bezug auf normierte Ereigniskoordi ist entsprech

(iv)

7’ = an®y + a1,
Ty = an®y + an®

mit #, = z und z, = cf zu betrachten. Nach dem Satz 5.26 muB die Matrix 4 := (a;;)
eine Matrix der Form 4,, 4;, A; und A, aus dem Abschnitt 5.2.2 sein. Da aber
der obere Teil des Inneren von K, — wie wir bereits zeigten — die kiinftigen Ereig-
nisse in bezug auf das Ereignis O darstellt, fordert man von der Transformation zusétz-
lich, daB mit P = (0, 1) auch das Bild P’ in diesem Teil des Kegels liegt und damit
P’ eine positive zweite Koordinate z,’ besitzt. Uberdies wird vorausgesetzt, daB sich
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X’ beziiglich X entsprechend der Orientierung der z,-Achse von X fortbewegt.
Damit muB noch a,; > 0 sein. Diesen zusitzlichen Forderungen wird nur

A=d, = e?shz sinh ¥
sinh y  cosh x
und damit eine (eigentliche) Lorentztransformation gerecht.
Wir setzen
p:= —tany.

Es ist offenbar 1 — 2 > 0.
Fiir die (eigentliche) Lorentztransformation ergibt sich dann

1 —B
T G2 =0 = ——
yi-p yi—p
und demit beziiglich der urspriinglichen Ereigniskoordinaten z, ¢ die Darstellung
w2y _hetd
yi-p V-
Der Parameter 8 hat eine einfache physikalische Bedeutung. Der Ursprung von X’
bewegt sich beziiglich X mit der Geschwindigkeit

a1 = Qg =

v = fc,

x — fet
2

denn aus 0 =

folgt durch Differentiation % = fe.
Der mathematischen Einschrinkung 1 — g2 > 0 ist die physikalische » < ¢ gleich-

wertig.
Die (eigentliche) Lorentztransformation erhilt die bekannte Gestalt

W) =, y=y, ¥=2 =

Hier wird ein wesentlicher Unterschied der speziellen Relativitétstheorie zur Newton-
schen Theorie beziiglich der Raum-Zeit-Vorstellung ersichtlich: Die Absolutheit
der Zeit geht verloren. Beim Ubergang von einem Inertialsystem zu einem anderen
gehen Orts- und Zeitkoordinaten in gleicher Weise ein. Raum und Zeit sind relati-
viert.

Die Abb. 170 kann nach den bisherigen Darlegungen als Veranschaulichung
des Uberganges von dem durch (e,, e;) bestimmten Inertialsystem X zu dem durch
(ey, e,’) fixierten Inertialsystem X’ angesehen werden.
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P

Zum AbschluB wenden wir uns noch einigen wenigen Konsequenzen zu, die sich
aus der Lorentztransformation ergeben.

Fiir Relativgeschwindigkeiten » mit v < ¢ (v sehr klein gegeniiber ¢) geht die
obige Lorentztransformation niherungsweise in die bekannte Galilei-Transformation')
der Newtonschen Mechanik iiber.

Aus v < c folgt, daB8 die Relativgeschwindigkeit eines Inertialsystems in bezug
auf ein anderes stets kleiner als die Lichtgeschwindigkeit ist.

Es sei 2’ ein Inertialsystem, das sich beziiglich des Inertialsystems Z (gleich-
formig und geradlinig) mit der Geschwindigkeit v, und X"’ ein Inertialsystem, das
sich in der gleichen Richtung beziiglich X’ mit der Geschwindigkeit v, bewegt. Wir
schrinken uns dabei wieder wie oben auf die z-Achse beziiglich Z' ein Den Relativ-

geschwindigkeiten v, und v, entsprechen nach § = —tanh yund g = — dle ,»Winkel-
groBen® z; und y, mit

tunh;;l:——v—'- und tanh7_2=—£=—.
c c

Abb. 173

Der Relativgeschwindigkeit v von X" beziiglich 2 entspricht dann auf Grund
der gleichen Orientierung die ,,WinkelgréBe® x; + xs (Abb. 173). Wegen

tanh y;, + tanh y,

tanh = —
(n +2) 1 4 tanh y, tanh ,
erhalten wir sofort
:= t'31111(2514'12)— vv'
1 + % 2

Das ist das Additionstheorem der Geschwindigkeiten in der speziellen Relativitits-
theorie. Experimentell wird es unter anderem durch einen Versuch von Fizav%)
bestétigt, der 1851 durchgefiihrt wurde ([20], S.25; [37], S.79). Das Ergebnis

des ,,Leitfiihrungsexperiments* wurde lange Zeit falsch gedeutet.

1) GALILEO GALILEI (1564 —1642).
) ArmManD HrrroLyTE FrzEAU (1819—1896).
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Die Herleitung des letzten Resultats mag ein Beispiel dafiir sein, daB geometrische
Betrachtungen recht wirkungsvoll zu physikalischen Resultaten fiihren kénnen.
Der Nutzen fiir die Relativititstheorie, der durch die geometrische Einkleidung
entstand, ist damit nur am Rande erfaBt.

Aufgaben
1. Man zeige an Hand der Lorentztransformation (vi), daB eine beziglich eines Beobacht:
gleichférmig und geradlinig bewegte Uhr stets 1 geht (Zeitdilatation)
2. Man zeige an Hand des Additionstl fiir Geschwindigkei daB aus v,v, < c stets

v < v; + v, und v < ¢ folgt.



Literatur

[1] ALExaNDROV, P. S, u. a., Die Hilbertschen Probl (Vortrag,,Math ische Probl o
von D. HILBERT, gehalten auf dem 2. Internationalen Math ikerkongreB, Paris 1900, er-
ldutert von einem Autorenkollektiv), Akademische Verl llsch ‘uGoest&PonigK -G.,
Leipzig 1971 (Verantw. H ber der Ub g aus dem Russischen: H. Wussing).

[2] AMBARZUMIAN, V. A, B. G. Kustu:zo“ G. 1 NAAN,J A. SMoroDINSKEI und R. J. STEIN-
MAN, Philosophische Probleme der modernen K logie, VEB Deutscher Verlag der
Wissenschaften, Berlin 1965 (Ubersetzung aus dem Russlschen)

[3] BaceMany, F., Aufbau der G trie aus dem Spiegelungsbegriff, 2. Aufl., Springer-
Verlag, Berlin — Heidelberg—New York 1973.

(4] BaLpus, R., Nichteuklidische Geometrie, 2. Aufl.,, W. de Gruyter, Berlin 1944.

[5] BEENEE, H., F. BAcEMANN, K. FLaDpT und W. Siss, Grundziige der Mathematik, Bd. II,
Vandenhoeck & Ruprecht, Gottmgen 1960.

[6] BuasoBkE, W., Griechisch hauliche G trie, R. Oldenbourg-Verlag, Miinchen
1953.

mn Bouuusnu, W. G., und I. Z. GocEBERG, Sitze und Probl der k

EB Deutscher Verlag der Wissenschaften, Berlin 1972 (Ubersetzung aus
dem Russischen).

8] Bonsux, K., und W. SzmieLEw, Foundations of Geometry, North-Holland Publ. Company,

1960 (Ub g aus dem Polni

[9] Bnnmﬂn, S., und H. BanNzn, Einfithrung in dxe analytische Geometrie und lineare
Algebra, 4. Auﬂ.. VEB Deutscher Verlag der Wissenschaften, Berlin/Verlag Harri
Deutsch, Frankfurt a. M. —Ziirich 1874.

[10] Coxkerer, H. S. M., Die roel]e pro;ektlve Ebene, R. Oldenbourg-Verlag, Miinchen 1955

i 1

(Uber g aus dem E:

(11] Coxerer, H.S. M., Unvargangllche Geometne, Birkhiuser-Verlag, Basel —Stuttgart
1963 (Ub g aus dem Engli

(12] EFdow, N. W., Hohere Geometrle, VEB Deutscher Verlag der Wissenschaften, Berlin
1960 (Ub g aus dem Russischen); Wiederabdruck der Kapitel I—IV sowie V und

VI unter dem Titel ,,Uber die Grundlagen der Geometrie* bzw. ,,Grundziige der projek-
tiven Geometrie*, VEB Deutscher Verlag der Wissenschaften, Berlin/Friedr. Vieweg &
Sohn GmbH, Braunschwelg 1972 (2. Aufl.) bzw. 1970.

[13] EmvsTEIN, A., Uber di i ddieall, ine Relativitatstheorie, (1. Aufl. 1916) 21. Auf-
lage, Akademie-Verlag, Berlm/Pergnmon Press, Oxford/Vieweg & Sohn, Braunschweig1969.

[14] ENcEr, F., und P. StickeL, Die Theorie der Parallellinien von Euklid bis auf Gauss,
eine Urkund lung zur Vorgeschichte der nichteuklidischen G ie, B. G. Teub-
ner, Leipzig 1895.




Literatur 229

[15) Enzyklopidie der Elementarmathematik, Bd. IV, V, VEB Deutschet Verlag der Wissen-
schaften, Berlin 1969 bzw. 1971 (Uber g nus dem R

[(16] EUKLID. Die El Akademische Verlagsgesellschaft Lolpzlg 1933—1937 (Uber-

ng aus dem Griechischen von CLEMENS THAER).

nn FLAD'I', K., Elementarmathematik vom héheren Standpunkt aus, Bd. II, Ernst-Klett-
Verlag, Stuttg&rt 1957.

[18] Gauss, C. F., Werke VIII, B. G. Teubner, Leipzig 1900.

[19] HapwiaEr, H., Vorlesungen iiber Inhalt, Oberfliche und Isoperimetrie, Springer-Verlag,
Berlin —Gottingen — Heidelberg 1957.

[20] HinseL, H., und W. NEUMANN, Physik — eine Darstellung der Grundlagen, Bd. 1V,
VEB Deutscher Verlag der Wissenschaften, Berlin 1974/H. Deutsch, Zirich/Frankfurt
am Main/Thun 1976.

[21] Haumos, P., Measure Theory, D. van Nostrand Company, New York —Toronto— London
1950.

[22] HeNEIN, L., P. Surres and A. Tarski, The Axiomatic Method, North-Holland Publ.
Company, Amsterdam 1959.

[23] HESSENBERG, G., Grundlagen der Geometrie, W. de Gruyter, Berlin und Leipzig 1930.

[24] HrLBERT, D., Grundlagen der Geometrie, (1. Aufl. 1899) 12. Aufl., B. G. Teubner, Stuttgart
1968.

[26] HOLDER, O., Die Axiome der Quantitit und die Lehre vom MaB, Ber. Verh. Kgl. sichs.
Ges. Wiss., Leipzig, Math.-Phys. KI., 38 (1801), 1—64.

{26] JuscEREWTTSCH, A. P., Geschichte der Mathematik im mttelalter, B. G. Teubner Verlags-

i )

gedellschaft, Leipzig 1064 (Uber g aus dem R

[27] Karan, B. ®., Ouepkn no reomerpun, Manarenscrso 0y pcaTera, Mo-
cxBa 1963.

(28] Knnﬁx.yh’ré B Les fonde: s de la g étrie, tome 1: La construction élémentaire
de la g Akad Kmdé“ dapest 1955.

[29] KLEm, F., Elomenmrmathemunk vom héheren Standpunkt aus, Bd. II, Springer-Verlag,
Berlin 1925

[30) KLEN, F., Vorlesungen iiber nichteuklidische G trie, Springer-Verlag, Berlin 1928.

[31] Krer~, F., Das Erlanger Progi (Vergleichende Betrachtungen tber neuere geo-
metrische Forschnngen), eingeleitet und mit Anmerkungen versehen von H. Wussing,
Akademisch llschaft Geest & Portig K.-G., Leipzig 1974.

[32] KrorzEK, B., Geomemo, VEB Deutscher Verlag der Wissenschaften, Berlin 1971.

[33] KiRrsoHAK, J., und P. STAcKEL, Johann Bolyai’s Bemerkungen iiber Nicolaus Loba-
tschewsky’s geometrische Untersuchungen zur Theorie der Parallellinien, Mathematische
und Naturwissenschaftliche Berichte aus Ungn.rn 18 (1902), 250—279.

[34] Lexz, H., Grundlagen der El t; ik, 3. Aufl., VEB Deutscher Verlag der
Wlssenachafton, Berlin/Hanser Verlag, Miinchen 1975.

[35] LNz, H., Vorlesungen tuber projektive Geometrie, Akademische Verlagsgesellschaft
Geest & Portig K.-G., Leipzig 19635.

[36] LoBaTscHEFSEL, N. I Pangeometrie, 2. Aufl, Verlag von W. Engelmann, Leipzig

1912. (Aus dem R h iib und gegeben von H. LIEBMANN.)

[37] MacHELEIDT, G., Relativititstheorie, Manuskriptdruck Potsd 1974 (Leh ial
zur Ausbildung von Diplomlehrern Physik, Heft 12 herausgeg. von der Hauptabteilung
des Ministeri fiir Volksbild g).

[38] Minkowskt, H., Geometrie der Zahlen, B. G. Teubner, Lelpzlg 1912.

[39] NorpEN, A. P., Elementare Einfithrung in die Lobatsch ische G trie, VEB Deut-
acher Verlag der Wissenschaften, Berlin 1958 (Uber g aus dem Russischen)

(40] Pasch, M., Vorlesungen iiber neuere Geometrie, Verlag von B. G. Teubner, Leipzig 1882.

(41] ProkERT, G Analytische G trie, 5. Aufl., demi Verlag: llschaft Geest &
Portig K.-G., Leipzig 1964.

[42] PrckERT, G., Projektive Ebenen, Springer-Verlag, Berlin—G&ttingen — Heidelberg 1955.




230 Literatur

(43] RasomEwskl, P. K., Riemannsche Geometrie und Tensoranalyens. VEB Deutscher Verlag
der Wmsenschafben. Berlin 1959 (Uber g aus dem R h

[44] REpE1, L., Begriindung der euklidisch \md ichteuklidischen G ien, Akadémiai
Kiadé, Budapest/B. G. Teubner Verlagsgesellschaft, Leipzig 1965.

[45] ReromaRDT, H., GauB und die nicht-euklidische Geometrie, B. G. Teubner, Leipzig
1976.

(46] Riemaxy, B., Uber die Hypothesen, welche der Geometrie zu Grunde liegen, 2. Aufl.,
Springer, Berlin 1921. (Neu herausgegeben und erliutert von H. WEYL.)

[47] Sorug, F., Grundlagen der Geometrie, B. G. Tenbner, Lelpzlg Berlin 1809.

[48] StickeL, P., Die Entdeckung der nichteuklidi ie durch Joh Bolyai,
Mathematische und Naturwissenschaftliche Benchte aus Ungam 17 (lDOl). 1—19.

[49] StiokEL, P., Unt h aus der absol he und Natur-
wmlensoha.fthche Berichte aus Ungarn 18 (1902), 280—307.

[60] StickEL, P., Joh: Bolyai’s R lehre, Math tische und Naturwi haftliche

Berichte aus Ungarn 19 (1803), 1—12.

[51] STAcKEL, P., und F. ENGEL, Gauss, die beiden Bolyai und die nichteuklidische Geometrie,
Math. Ann. 49 (1897), 149—167.

[52] STeUIK, D.J., Abri8 der Geschichte der Math ik, 6. Aufl., VEB Deutscher Verlag
der Wissenschaften, Berlin 1976 (Ub g aus dem A iki hen und

[63] Wussing, H., Carl Friedrich GauB, BSB B.G. Teubner Verlagsgesellschaft, Impzlg
1974.

[54] Wussing, H., und W. ArNoLD (Hrsg.), Biographien bedeutender Mathematiker, Volk
und Wissen Volkseigener Verlag, Berlin 1975.

Nachtrag bei der Korrektur: Inzwischen erschien
LreBsoBER, D.-E., Relativitatstheorie mit Zitkel und Lineal, Akademie-Verlag, Berlin/Vieweg,
Braunschweig 1977.



Bezeichnungen und Symbole

o, R, 2R
Al

AP, A9, A°
AB

(4B)

AB

AB+, AB-
M(P,Q)
m(P, Q)
a(P,Q)

< (P9

< POQ
w(<X (p, 9)
I(4BC)
I(F)

KM, 1)

M(P)
Mg)
M(a, b)

konstante WinkelgréBen

Bild von 4 bei der Bewegung ©

Bild von 4 bei der Spiegelung an P, g bzw. &
(abgeschlossene) Strecke

offene Strecke, Inneres der Strecke 4B
gerichtete Strecke

Halbgeraden

Mittelpunkt von PQ

Mittelsenkrechte von PQ (in einer Ebene)
Abstand von P und Q

Winkel

Winkel

Winkelhalbierende

Fliicheninhalt von 4BC

Flicheninhslt der Figur F

Kreis mit dem Mittelpunkt M und dem
Radius r

eigentliches Biischel

Lotbiischel

Biischel

S(a, b) = (05: x € M(a, b))

D(a, b)
Ufa, b)
XDia.b
20F

Po P
OE’ 0B
za

Drehgruppe

von S(a, b) erzeugte Gruppe
Bahn (Kurve), Orbit
zfaches eines Pleiles OF

Verhiiltnis gerichteter Strecken

z-faches eines Schubvektors a

48
22
23

17
34,108

" 96, 101

110, 114
118
122



232 Bezeichnungen und Symbole

X+a
X+ M
f(a, b)

8(ABC)
(a)
Rig)
v(PQ)
ao

Ba

Bat
o(X, ¥), (X, Y)

[lall
ez, )

Boe
T

8, D8,
(s

SL

K,

rad 7'
sinh y
cosh g
tanh y
(V,K,9)
v, hH

Anwendung eines Vektors a auf einen Punkt X
Orbit eines Punktes X beziiglich M

inneres Produkt der Vektoren a, b

(f symmetrische Bilinearform)

Defekt des Dreiecks ABC

Lobadevskijsche I7-Funktion

Richtung von ¢

Verschiebung von P nach Q

Einheitsvektor

Parallelkomponente von 1) beziiglich a
Normalkomponente von ) beziiglich a

Abstand zweier Punkte X, ¥ bzw. MaBzahl des
Abstandes zweier Punkte X, Y (beziiglich einer
Eichfigur k)

Norm eines Vektors a

Abstand in normierten Rdumen

Menge aller Pfeile OX mit X € Jox

lineare Hiille von 7'

direkte Summe zweier Teilriume T, T',
Koordinatentupel von g beziiglich der Basis B
orthogonales Komplement zu §

isotroper Kegel mit der Spitze 4

Radikal von T

sinus hyperbolicus y

cosinus hyperbolicus y ¢ Hyperbelfunktionen
tangens hyperbolicus y

Vektorraum

metrischer Vektorraum

Relations- und Operationszeichen

# HIR

a+b
a+p
a<b
a<p
I(F,) < I(Fy)

Kongruenz (beliebiger Figuren)
Orthogonalitit

Parallelgleichheit

Summe von Lingen
Summe von WinkelgréBen
Lingenvergleich
WinkelgréBenvergleich

Zerlegungsgleichheit,
Parallelitit

127, 196

149
167
186

35, 108

191
191

210
203

217

189
202

101
16, 125, 199



Namen- und Sachverzeichnis

Halbfette Zahlen geben die Seiten an, auf denen wesentliche oder ausfiihrliche Angaben ge-

bracht werden.

Abbildung; affine 176

—, involutorische 215

—, isometrische 187

abgeschlossene Figur 159

— Halbebene 18 -

— Halbgerade 18

—r Halbraum 18

AbschluB einer Figur 159

absolut konvergente Reihe 187

—e Geometrie 5, 111f., 14

—e Lingeneinheit 85

Abstand von Punkten 48, 209

—, raumartiger 209

—, zeitartiger 209

Abstandsfunktion 149

Abstandslinie 56

Addition von Lingen und von Winkel-
groBen 48

— von Schubvektoren 108

— von genchtcun Strecken 108

Ad

AL-GATHARE, Sar'ip 71

AL-Hayyawy, "Umar 63, 84
Ax.mzn 88

all Relativitd ie 8
Anfangspunkt einer Halbgeraden 18
anisotroper (regulirer) Vektor 204
Anisotropie fiir Kristallstrukturen 147
Anordnungsaxiome 17f.
archimedisch geordnet 58
AS-SAMARRANDI, SaMs ap-Din 71
asymptotische Geraden 84

AT-TUsf, Nasir ap-Din 65

duBerer Punkt 169

AuBeres eines einfachen n-Ecks 19
— einer Figur 169

— eines isotropen Kegels 211
Axiom 12

axiomatische Methode 13

—r Aufbau 13

Aziome

der Gesch
226

Additivitdt 193
affine Abbildung 176
— Geometrie 1581f., 1961f.
— Transformation 197
—r Kreis 173
—r Raum 196
affin-reguldres Sechseck 173
— Viereck 172
Acanis 68
ABRENS, J. 42
D’ALEMBERT, J. B. 79

Anordnungsaxiome 17f.
Bewegungsaxiome 23{.
Eudoxus-Archimedisches Axiom 59
Euklidisches Parallelenaxiom 13, 69
Axiom von der oberen bzw. unteren
Grenze 20

Inzidenzaxiome 14

Lobagevskijsches Parallelenaxiom 76
Axiome des Zirkels 55

Bahn (Bahnkurve) 92
BaNacs, 8. 6, 147, 187



234 Namen- und Sachverzeichnis

Banach-Minkowskische Geometrie 6, 147 ff.,
1681f.

Banachraum 187

Basis, orthonormierte 128

— eines affinen Raumes 197

— eines Vektorraumes 123, 190 .

Begrenzung einer Figur 159

Begrenzungspunkt 159

Besser, F. W.'76

Betrag eines (Schub-)Vektors 125

Beweglichkeit 24

—, freie 180

Bewegung, ebene 29ff., 180

—, gerade 38

—, ungerade 38

—en 21

—en im Ereignisraum 224

—en in der Banach-Minkowskischen Geo-
metrie 176, 180

—en im Kleinschen Modell 134

—en in einem metrischen Vektorraum 214

—en — — — —, eigentliche 214

Bilinearform, nullteilige symmetrische 206

—, symmetrische 201

BoLyar, F. 76

Bowyar, J. 18, 14, 75, 78, 84

BREEMER, S. 99

Buniakovskw, V. J. 155

Buniakovskii.Sch he Ungleich 155

ng

Biischel, Geradenbiischel 87
—, eigentliches 87

Cavucny, A.-L. 156
CAYLEY, A. 128
CLarravT, C. 66
Cravivs, Cu. 68

Darstellungssatz fir Punkte 197

— fiir Vektoren 191
deckungsgleich 22

deduktiver Aufbau 13

Defekt eines Dreiecks 62, 98ff.
Diagonale 18

Dreuponntg, J. 193

Differenz von Lingen 51
Dimension eines affinen (Teil-)Raumes 198
— eines Vektorraumes 190

direkte Summe von Teilriumen 191
divergierende Geraden 82
Doppelverhiltnis 132

Drehung um eine Gerade 43

— um einen Punkt 30, 180

— — — —, hyperbolische 218
Drehzentrum 30

Dreiecksinhalt 95f.

Dreieckskongruenzsitze 44, 47, 53
Dreiecksungleichung 53, 149
Dreispiegelungssatz 33, 220f.
Durchlaufsinn 17

—, entgegengesetzter 21

Ebene 14, 198

—, Minkowskische 158ff., 209
ebene Bewegung 180

— Figur 14

— Spiegelung 29
Ebenenspiegelung 23

echter Teilraum eines Vektorraumes 180
n-Eck 18

—, einfach zusammenhingendes 19
Ecken 18

Eichfigur 6, 149

—, konvexe 151

—, —, im engeren Sinne 151

eigentliche Bewegung 214

— Lorentztransformation 218, 225

—3 (Geraden-)Biischel 87

einfach transitiv 311f., 43, 107f.

— zusammenhingendes #-Eck 19

—e Transversalzerlegung 96
Einheitskreis 149, 210
Einheitskugel 150
Einheitsvektor 125
EINSTEIN, A. 7, 8, 79, 221

trischer Flich

inhalt 98,

Ellipse 144 ff., 154, 173, 177ff.

Ende 87

Endpunkt einer Strecke 17

Ereignisraum 221

Erlanger Programm 128

erzeugter Teil (eines Vek

Eudoxus-Archimedisches Axiom 59

Euxu, 5, 6, 18, 47, 56, 74, 78

euklidische Geometrie 5, 106 {f.

— Parallelenaussage 199

—r Vektorraum 208

—s Parallelenaxiom (Ptolemiische Form) 6,
69 :

) 180

EuLER, L. 79

Fano-Aussage 159

Figur 14

—, abgeschlossene 159

—, ebene 14

—, glatte (abgeschlossene) 163
—, konvexe 159

—, lineare 14

—, offene 159

Finslerscher Raum 8



Namen- und Sachverzeichnis 235

Fixebene 23

Fixgerade 23

Fixpunkt 23

Fizeav, A. H. 226

Flicheninhalt, el trischer 98,
101

Folge, konvergente 185

formal-reeller Korper 207

freie Beweglichkeit 180

Fundamentalfolge 185

Fuxg, P. 170

FuBgiinger-Entfernung 147

GaLILEL, G. 226

Gauss, C. F. 18, 74, 75, 78, 79, 93
geht durch 14

Geometrie 11

—, absolute 5, 11£f., 14

—, affine 1581f., 196ff.

— . Banach-Minkowskische 6, 14741, 138

—, euklidische 5, 108ff.

—, Lobagevskijsche 6, 13, 58£f.

—, Minkowskische 6f., 147 ff., 189ff.
gerade Bewegung 38

Gerade 14, 198

—n, asymptotische. 84

—n, divergierende 82

—n, unverbindbare 80

—n, verbindbare 80
Geradenbiachel tliches 87

Geradenspiegelung 23
gerichtete Strecke 108
glatte (abgeschlossene) Figur 163
Gleichschenkligkeit 46
Gleitspiegelung 38
Goras, ST. 174
Grassuaxy, H. 79
Grenzgerade 83
Grenzkreis 93
Gruppe, lineare 193
—, orthogonale 214

Halbebene, abgeschlossene 18
—, offene 18

Halbgerade, abgeschlossene 18
—, offene 18

Halbgruppe, inverse 23
Halbraum, abgeschlossener 18
—, offener 18

Halbtangente 162
Haubersches Theorem 12
Hmwserr, D. 5, 7, 18, 21, 69
Hilbertraum 187

HseLMsLEv, J. 37
Hjelmslevscher Lotensatz 87, 88

Hohensatz 213

Homogenitat 193

Hiille, lineare 190
Hyperbelfunktionen 217
hyperbolische Drehung 218
Hypercykel 93

Hyperebene 198

Hypothese der rechten Winkel 64, 66
— des spitzen Winkels 64

BN AL-HarrEaM, HasAN (ALHAZEN) 68
1BN QURRA, THIBIT 68
Identititsaxiom (der Abstandsfunktion) 149
Index eines metrischen Vektorraumes 208
innerer Punkt 159

inneres Produkt 202 .
Inneres eines einfachen n-Ecks 19

— einer Figur 159

— eines isotropen Kegels 211

— einer Strecke 17

Invarianz des Skalarproduktes 128
inverse Halbgruppe 23

involutorische Abbildung 215
Inzidenzaxiome 14

inzidieren mit 14

isometrische Abbildung 187

— Transformation 214
Isomorphiesatz fiir Vektorrdume 193
isotroper Kegel 210

— Teilraum 204

— Vektor 204

Jorpax, P. 184

EKaxT, 1. 78

Kegel, isotroper 210

Krv, G. 180

KvueIy, F. 128

Kleinsches Modell 1281f., 223
kollinear 14

KoLman, A. 212
kommensurabel 124
komplanar 14

kongruent 22, 176

Kongruenz 441f., 1811f.
konjugierte Ellipsendurchmesser 172
konvergente Folge 185

— Reihe 187

konvexe Eichfigur 161

— — im engeren Sinne 151

— Figur 169

konzentrischer Kreis 160
Koordinaten eines Punktes 197
— eines Vektors 191

Koordi m, n-di ionaler 190




236 N,

und Sach : hni

Koordinatentransformation 195, 222
Kérper, formal-reeller 207

Kreis 54, 92, 1481f., 164ff.

—, affiner 173

—, konzentrischer 150

Kreisscheibe, offene 159
Kugelkérper, offener 159
Kuratowski-Zornsches Lemma 190
Kuros, A. G. 190

kirzeste Verbindung zweier Punkte 6, 147 ff.

LAGRANGE, J. L. 79

LamserT, J. H. 66, 85

Liinge 48

Lingeneinheit, absolute 85
LEGENDRE, A. M. 71

Lemsviz, G. W. 79

Lemma von KurRATOWSKI-ZORN 180
Lichtkegel 223

liegt in 14

— vor 17

— zwischen 17

linear abhingig 190

— unabhiingig 190

—e Figur 14

—e Gruppe 193

—e Hiille 180

—e Transformation eines Vektorraumes 193
—er Operator 187

—er Unterraum 198

Linkslot 168

Losaé&evskw, N. 1. 18, 75, 78, 93
Lobagevskijsche Geometrie 6, 13, 581f.
—s8 Parallelenaxiom 76

Lorentz, H. A. 221, 222
Lorentztransformation 214, 225
—, eigentliche 218

Lot 29

Lotbiischel 87

Lotensatz von HiELMsLEV 87, 88
LowneR, K. 177
Luftlinienentfernung 147

MeBbarkeit 115, 124

Metrik, Minkowskische 6, 169
Metrikinvarianz 176
metrisch-affiner Raum 208
metrischer Vektorraum 202
MicHELSON, A. A. 221
Minkowski, H. 7, 147, 189, 210, 223
Minkowskische Ebene 158ff., 209
— Geometrie 6f., 147ff., 189ff.
— Metrik 6, 169

—r Raum 208

—r Vektorraum 208

Mittellinie eines Dreiecks 102
Mittelpunkt, nichteuklidischer 138
— einer Strecke 25
Mittelsenkrechte 29

NASIR-ED-DIN 65
v. NEUMANY, J. 184
Newroy, 1. 79, 22
ichteuklidischer Mittelpunkt 138
Norm eines Vektors 156, 209
Normalkomponente eines Vektors 125
normierter Raum 184
Nullstrecke 48
nullteilige symmetrische Bilinearform 206

offene Figur 159

— Halbebene 18

— Halbgerade 18

— Kreisscheibe 159

—r Halbraum 18

—r Kugelkorper 159

Operator, linearer 187

Orbit 92, 197

Oricycel 93

orthogonal 125, 203

Orthogonalbasis 206

orthogonale Gruppe 214

— Transformation 214

Orthogonalitit in der Banach-Minkowski-
schen Geometrie 167 ff.

— in einem metrischen Vektorraum 203

orthonormierte Basis 128

Paracykel 93

Parallel 2 Klidische 199

Parallelenaxiom, euklidisches 13, 69

—, —; Ptolemiische Form 6, 69

—. Lobagevskijsches 76

parallelgleich 108, 158

Parallelitit von Geraden 16

— von Teilrdumen 199

— von Vektoren 125

Parallelkomponente eines Vektors 125

Parallelogrammbeziehung 184

Pascn, M. 18, 14, 79, 80

PLAYFAIR, J. 69

Porxcarg, H. 128, 221

Pol 130

PosEerpoxtos 68

positiv definit 207

5. Postulat EvELIDS 13, 64ff.

Produkt, inneres 202

ProkLos Drapocros 80

Ptolemiische Form des euklidischen Paral-
lelenaxioms 6, 69




Namen- und Sachverzeichnis 237

Punkt 14, 196

—, duBerer 159

—, innerer 159
Punktspiegelung 23

quadratische Form 208

Radikal 203

Rand einer Figur 159
Randparallele 83

Randpunkt 159

—, regulérer 163

—, singuliirer 163

Raum, affiner 196

—, Finslerscher 8

—, metrisch-affiner 208

—, Minkowskischer 208

—, normierter 184

—, Riemannscher 8

—, vollstindig normierter 187
raumartiger Abstand 209

— Vektor 209

Rechtseitsatz 66

Rechtslot 168
Reduktionssitze 37

reeller Vektorraum 123
regulirer Randpunkt 163

— Teilraum 204

Reihe, absolut konvergente 187
—, konvergente 187
Relativititsprinzip 221
Relativitatstheorie, allgemeine 8
—, spezielle 7, 2211f.
Richtung 106

RIEMANN, B. 8, 79
Riemannscher Raum 8

SaccHERI, G. 63, 66, 74
Saccherisches Viereck 63 85, 143
Sa vs von W 4
Satz vom AuBenwinkel 52

— vom gleichschenkligen Dreieck 46
— des PYTHAGORAS 182
schneiden 16

Schnittpunkt 15
Schubspiegelung 38

Schubvektor 123

Scewarz, H. A. 155

Sechseck, affin-regulires 173
Seiten eines n-Ecks 18

senkrecht 23, 125

Senkrechte 29

SiMpLIKIOS 71

singulirer Randpunkt 163

Skala 58

Skalarprodukt 125f.

spezielle Relativititstheorie 7, 221£f.

Spiegelung, ebene 29

— an einer Ebene 23

— an einer Geraden 23, 180

— im Kleinschen Modell 131, 134

— an einem Punkt 23

— an einem Teilraum 215

spitzer Winkel 49

Stadtgeometrie 147f.

Starrheit 24

Stetigkeitsaxiom 21

Strahlensatz und Umkehrungen 120

Strecke 17

—, gerichtete 108

Streckenkongruenz 44ff.

Streckenzugiquivalenz 19

stumpfer Winkel 49

Stutzebene 161

Stutzgerade emer ebenen Figur 93, 161
169

Stutzgendenquadrat 170
Stutzhyperebenen 186
von Fl; Iten 102
— von Lingen 48
— von Vektormengen 191
— von WinkelgroBen 48
Symmetrie der Abstandsfunktion 149
symmetrische Bilinearform 201f.
— —, nullteilige 208

Tangente 93, 1611., 168
Tangentialebene 163
Teilraum, isotroper 204

— eines affinen Raumes 198
—, reguléirer 204

—, total isotroper 204

— eines Vektorraumes 190

— — —, echter 180

— — —, erzeugter 190
Teilrdume, triviale 198
n-Teilung 50

— gerichteter Strecken 1111f.
Teilverhiltnis gerichteter Strecken 118
total isotroper Teilraum 204
Tragheitssatz 207
Transformation, affine 197

— eines Vektorraumes 193

— — —, isometrische 214

— — —, lineare 193

— — —, orthogonale 214
transitiv 3! ff., 43 107!

Tr fache 96
triviale Teilrdume 198




Qaoh : hni

238 Ni

und

Umfang einer konvexen Eichfigur 172£f.
e-Umgebung eines Punktes 159
ungerade Bewegung 38

unverbindbare Geraden 80

Unterraum 190, 198

—, linearer 198

— eines affinen Raumes 198

Vektor, anisotroper (regulirer) 204

—, isotroper 204

—, raumartiger 209

—, zeitartiger 200

Vektorraum 189

—, euklidischer 208

—, metrischer 202

—, Minkowskischer 208

—, reeller 123

— der Schubvektoren 123

verbindbare Geraden 80

Verbindungsebene 15

Verbindungsgerade 15

Vorgmgenhemkogel 224
ung lings einer G

Verh.uschnngmgol 109, 159

Vervielfachung von Lingen und von Winkel-

groBen 50f.

den 30, 43

Vervielfachung von gerichteten Strecken 110f.
— von Vektoren 122

Viereck, affin-regulires 172

vollstindig normierter Raum 187

Wars, J. 69

WERNICKE, B. 132

Widerspruchsfreiheit der Lobadevskijschen
Geometrie 1281f., 143

Winkel 19

—, spitzer 49

—, stumpfer 49

WinkelgroBe 48

Winkelhalbierende 26

Winkelkongruenz 22, 44 ff.

Wussing, H. 128

zeitartiger Abstand 209
— Vektor 209
Zeitdilatation 227

Zerl 1

ische, einer

ebenen Figur 96
zerlegungsgleich 101
Zukunftskegel 224
zweispiegelig 42



