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Vorwort

Das vorliegende Buch ist aus Vorlesungen entstanden, die ich mehrfach im Rahmen
der wahlweise-obligatorischen Ausbildung vor Lehrerstudenten an der Friedrich-
Schiller-Universitit in Jena gehalten habe. Die Beschiftigung mit den Zahlen beein-
fluBt in bedeutender Weise einen jeden Mathematikunterricht von der ersten Klasse
bis zum letzten Schuljahr. Somit soll dieses Buch dem zukiinftigen Mathematiklehrer
einen tieferen Einblick in das Reich der Zahlen vermitteln als dies im Grundkurs
Mathematik moglich sein kann. Dabei galt es, in der Stoffauswahl einmal hinreichend
breit, zum anderen an einzelnen Stellen auch geniigend tief zu bleiben. Der Uber-
blickscharakter sollte gewahrt sein durch eine ausfiihrliche Behandlung der Teilbar-
keitslehre, durch die Aufnahme abstrakter, struktureller Gesichtspunkte, durch
Approximationsprobleme bei reellen Zahlen sowie eine ausgedehnte Behandlung der
zahlentheoretischen Funktionen und Gitterpunktprobleme. Die Darstellung der
Theorie der diophantischen Gleichungen erfolgte fast ausschlieBlich im Gewand der
Gitterpunktlehre, um bei Heranziehung geometrischer Gesichtspunkte grificre An-
schaulichkeit zu erzielen. Vertiefungen crfolgten bei der Behandlung des quadra-
tischen Reziprozititsgesetzes mit GauBschen Summen, der Transzendenzbeweise von
¢ und x, der Darlegung einer elementaren Variante des Beweises des Primzahlsatzes
und der elementaren Vinogradovschen Methode zur Abschétzung von Gitterpunkten.
Natiirlich wird es kaum mdglich sein, in einer Lehrveranstaltung alle diese schwieri-
gen Probleme abzuhandeln. Aber ich denke, ein Mathematiklehrer sollte auch cinmal
einen Transzendenzheweis studieren und bei der einen oder anderen zahlentheore-
tischen Fragestellung etwas linger verweilen. Ubrigens liegt inzwischen eine ganze
Reihe von Varianten des elementaren Beweises des Primzahlsatzes vor. DaB hier auf
die in [7] dargestellte Wrightsche Modifikation zuriickgegriffen wurde, hat ausschlie8-
lich den Grund, daf dieses Vorgehen der Anlage des Kapitels 5 am besten entspricht.

Den einzelnen Kapiteln wurden Aufgaben beigegeben, die teilweise reinen Ubungs-
charakter, teilweise auch weiterfilhrenden Charakter tragen. Im allgemeinen sind sie
nicht zu schwierig und mit den bereitgestellten Hilfsmitteln in ansprechender Zeit
zu losen. Aufgaben, die Anspruch auf Originalitit haben, sind namentlich gekenn-
zeichnet. Sie miissen deshalb nicht schwierig sein!

Meine Mitarbeiter, Herr Dr. MENZER und Herr ScENABEL, haben das Manuskript
kritisch durchgesehen und durch viele Hinweise zur Verbesserung beigetragen. Ich
bin ihnen sehr zu Dank verpflichtet.

Jena, 1981 ERKEHARD KRATZEL
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1. Der Fundamentalsatz der Zahlentheorie

Die elementare Zahlentheorie beschiftigt sich vornehmlich mit den natiirlichen
Zahlen. Uber diese setzen wir die Kenntnis der Gesetze der el taren Rechen-
operationen und der Anordnung als bekannt voraus. Wir berufen uns ferner auf das
Prinzip der vollstindigen Induktion und das Prinzip der kleinsten Zahl, nach dem
jede nichtleere Menge von natiirlichen Zahlen eine eindeutig bestimmte kleinste
Zahl enthilt. Ebenso nehmen wir die Erweiterung des Bereiches N der natiirlichen
Zahlen zum Integrititsbereich Z der ganzen Zahlen als gegeben hin. In diesem
Kapitel entwickeln wir die grundlegende Begriffsbildung der elementaren Zahlen-
theorie, die Teilbarkeit. Als wesentliche Grundlage fiir den multiplikativen Aufbau der
ganzen Zahlen werden sich dabei die Primzahlen hervorheben. Das wichtigste Er-
gebnis wird der Fundamentalsatz der Zahlentheorie sein, nach dem sich jede natiir-
liche Zahl im wesentlichen eindeutig als Produkt von Primzahlen darstellen laBt.
Es sei noch darauf hingewiesen, daf Teile der elementaren Teilbarkeitslehre bereits
in MfL, Bd. 1 behandelt wurden.

11. Teilbarkeit und Primzahlen

Definition 1.1. Die ganze Zahl ¢ heiBt ein Teiler der ganzen Zahl n, wenn es eine
ganze Zahl g gibt mit n = ¢ . g.
Ist ¢ ein Teiler von n, so werden wir ¢ | n schreiben. Ist dagegen ¢ kein Teiler von =,
so werden wir dies durch ¢4 ausdriicken.
Die folgenden einfachen Teilbarkeitsbezichungen ergeben sich unmittelbar aus der
Definition und den Eigenschaften von Z:
1|n, n|n, n|0,
0ln=>n=0,
tinan,m =>t|m,
tinatlm=t|(an 4+ bm),
tin=>at|an,
atlanna =0=>t|n,
tinan 0=t < Inl,
tldad|t=|t| = |d|,

n
t]n/\d=7;"dln.
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Eine jede von 0 verschiedene ganze Zahl n besitzt die Teiler +1, 4-n, welche wir
die trivialen Teiler nennen wollen. Die Zahlen +1 werden die Einheiten von Z ge-
nannt. Sie sind dadurch gekennzeichnet, daB auch ihre reziproken Werte zu Z ge-
héren. Ebenso folgt aus ¢ | stets (4-¢) | (+=n). Man sieht also, daB es bei Teilbar-
keitsaussagen nicht auf Einheiten ankommt und man sich demzufolge auf den Be-
reich N der natiirlichen Zahlen beschrinken kann. Wir wollen dabei vereinbaren,
daB 0 nicht zu N gerechnet wird.

Definition 1.2. Eine natiirliche Zahl p > 1 heiBt Primzahl, wenn sie nur durch 1
und sich selbst teilbar ist.

Die Ubereinkunft, 1 nicht zu den Primzahlen zu rechnen, erweist sich fiir die For-
mulierung vieler zahlentheoretischer GesetzmiBigkeiten als zweckmiBig. Damit he-
ginnt die Folge der Primzahlen mit 2, 3, 5, 7, 11, ..., in der 2 die einzige gerade Prim-
zahl darstellt. Eine natiirliche Zahl n > 1, die keine Primzahl ist, werden wir eine
zusammengeseltzte Zahl nennen.

Satz 1.1. Jede natiirliche Zahl n > 1 besitzt mindestens einen Primteiler, das heift
eine Primzahl p mit p | n.

Beweis. Wir betrachten die Menge
A:={a:acN,a>1,a!n}.

Wegen n | » ist 4 nicht leer und hesitzt daher eine kleinste Zahl p. Diese Zahl ist
Primzahl. Denn gibe es eine Zahl ¢ mit ¢ |p und 1 < ¢ < p, so wiire auch ¢ | n.
Dies steht aber im Widerspruch zur Auswahl von p als kleinstem Teiler von n.

Bereits in den ,,Elementen‘ von EvkLiD (etwa 365—300 v. u. Z.) findet sich der
Nachweis der Unendlichkeit der Menge der Primzahlen.

Satz 1.2, Es gibt unendlich viele Primzahlen.

Beweis. Im Gegensatz zur Behauptung nehmen wir an, es gibt nur endlich viele
Primzahlen. Wir notieren sie uns der Reihe nach, schreiben 2 = p,, 3 = p,, ..., p,
und hilden die Zahl

P=pp,- - py + 1.

Nach Satz 1.1 gibt es eine Primzahl p mit p' P. Dieseist von py, ps, ..., p, verschieden,
denn sonst wire p | pyp,- -+ - p, und damitauch p| 1, wasaber nicht moglich sein kann.

Die Primzahlen scheinen in der Folge der natiirlichen Zahlen véllig unregelmaBig
verteilt zu sein. Einerseits kann man beliebig groBe Liicken feststellen. Ist n > 1
eine beliebige natiirliche Zahl, so befindet sich unter den aufeinanderfolgenden Zahlen
n! 42, n! +3,...,n! + n keine einzige Primzahl, da in ihnen nacheinander die
Zahlen 2, 3, ..., n als echte Teiler enthalten sind. Andererseits trifft man immer wie-
der auf die sogenannten Primzahlzwillinge, das sind Paare (p, p + 2) von Primzahlen,
die sich nur durch die Differenz 2 unterscheiden. Die ersten Primzahlzwillinge sind
(3,5), (6,7, (11, 13), (17, 19). Es ist zwar gegenwiirtig noch nicht bekannt, ob es
unendlich viele Primzahlzwillinge giht oder nicht, dennoch suggerieren die beiden
genannten Tatsachen ein totales Chaos in der Verteilung der Primzahlen. Daf dies
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aber nicht so ist, werden wir im Kapitel 5 kennenlernen. Aus diesem Grunde sollte
man die folgende Abschiitzung der n-ten Primzahl, die sich aus dem Euklidischen Be-
weis des Satzes 1.2 ergibt, auch wenn sie noch so grob ist, nicht unterschitzen. Be-
zeichnet p, die n-te Primzahl, also p, = 2, p, = 3 usw., so gilt

Pa =227,

Diese Abschitzung ist fiir n = 1 sicher richtig. Weiter folgt nach dem Euklidischen
Beweisverfahren durch Induktion von n — 1 auf »

Pn=Pipe- - Pa + 1
< 2+t betant 4 — 2271 g <2,

1.2.  Darstellung der natiirlichen Zahlen als Produkte von Primzahlen

Nach Satz 1.1 1iBt sich jede natiirliche Zahl n > 1 als ein Produkt von Primzahlen
darstellen. Denn » enthilt wenigstens einen Primteiler p, und besitzt daher eine Dar-
stellung n = pyn,. Fiir n, = 1 ist die Behauptung gegeben. Fiir n, > 1 gibt es einen
Primteiler p, von n,. Damit ist 7, = p;n; und n = p,;pyn,. In Fortsetzung des Ver-
fahrens erhédlt man n = p;p, - --- - pgn mit den Primzahlen p,, ps, ..., pp und der
natiirlichen Zahl n;. Ist n, = 1, so ist das Verfahren an dieser Stelle beendet, fiir
n > 1 setze man es entsprechend fort. Man erhilt auf diese Weise eine streng mono-
ton fallende Folge von natiirlichen Zahlen n;, so daB das Verfahren nach endlich
vielen Schritten abbrechen muB. Das sei an der Stelle & = r der Fall, womit die
Primfaktorzerlegung n = p,p, - - - p, gefunden ist.

Von gréBter Bedeutung ist nun, daB die Zerlegung von n in Primfaktoren, ab-
gesehen von der Reihenfolge, eindeutig ist. Fiir diese fundamentale Tatsache ist eine
Reihe von Beweisen hekannt. Wir wiihlen einen Beweis aus, der im Jahre 1962 von
J. SuRANYI gegeben wurde. Dabei wird die Existenz einer Primfaktorzerlegung gleich
noch einmal mitbewiesen.

Satz 1.3 (Fundamentalsatz der Zahlentheorie). Jede natiirliche Zahl n > 1 lift
sich als Produkt von Primzahlen darstellen, wobei die Darstellung bis auf die Rethen-
Jolge der Faktoren eindeutig vst.

Beweis. Der Satz gilt fiir 2 und jede weitere Primzahl. Es sei daher 7 eine zu-
sammengesetzte Zahl, und wir nehmen die Richtigkeit des Satzes fiir alle natiirlichen
Zahlen kleiner als » an. Dann gibt es natiirliche Zahlen a, b mit n = «bund 1 < a
< b < n. Da der Satz fiir @ und b gilt, geben die Primfaktorzerlegungen von a und b
eine Primfaktorzerlegung von n.

Der kleinste Teiler p > 1 von » ist natiirlich eine Primzahl. Wenn wir zeigen kon-
nen, dafl p unter den Primfaktoren von a oder b vorkommt, so ist auch die Eindeutig-
keit der Primfaktorzerlegung von n nachgewiesen. Denn nach Induktionsannahme
hat die Zahl n’ == n [ p wegen n’ < n eine eindeutige Primfaktorzerlegung.

Es ist p < a, da p der kleinste Teiler von n ist. Fiir p = a gilt unsere Behauptung.
Fiir p < a bilden wir mita’ = a — pdie Zahln” = a’b = (a — p) b = n — pb. Da-
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mit ist p | n”, 0 < »” < n, und n” besitzt eine eindeutige Primfaktorzerlegung, die
aus den Zerlegungen von a’ und b resultiert. Folglich muB p unter Primfaktoren von
a’ oder b vorkommen. Ist p in b enthalten, so sind wir fertig. Ist a’ durch p teilbar, so
auch @ = @’ + p. Somit ist auch in diesem Fall der Beweis beendet.

Ublicherweise faBt man in der Primfaktorzerlegung n = p,p, - -+ - p, gleiche Prim-
zahlen zu Primzahlpotenzen zusammen und spricht

k
n = "p":
i=1

mit p; < P < - < P, ¥; 2 1 als die kanonische Zerlegung von n an. Manchmal ist
auch die folgende Darstellung ganz niitzlich:

n =[] p".
?

Dabei ist das Produkt iiber alle Primzahlen p zu erstrecken. Fiir jedes p ist v, = 0,
aber nur fiir endlich viele p soll », > 0 sein.

Den Anfinger mag der Wert, der dem Fundamentalsatz der Zahlentheorie bei-
g n wird, zunidchst befremden, nimmt er doch die eindeutige Primfaktor-
zerlegung einer natiirlichen Zahl aus dem Schulunterricht als selbstverstindlich
gegeben hin. Es sei aber darauf verwiesen, da$ der zugrunde gelegte Zahlenhereich
hierbei die entscheidende Rolle spielt. Mit derselben Berechtigung wie in Z hezie-
hungsweise N kann auch in andereren Zahlenbereichen, wie etwa im Bereich der
komplexen Zahlen, in sinnvoller Weise Zahlentheorie betrieben werden. Es stellt
sich dann heraus, daB ein solcher Satz von der eindeutigen Primfaktorzerlegung im
allgemeinen keine Giiltigkeit mehr hat. Es wiirde den Rahmen dieses Buches sprengen,
auf solche allgemeineren Zahlenbereiche einzugehen. Statt dessen soll als einfaches,
aber instruktives Beispiel die Teilmenge der natiirlichen Zahlen

M:=m:mecN,m=4n+1,2=0,1,...)

betrachtet werden. Eine Primzahl wird in M genau wie in N erklirt. Demzufolge
sind die ersten sicben Primzahlen die Zahlen 5, 9, 13, 17, 21, 29, 33. DaBl in M der
Satz von der eindeutigen Primfaktorzerlegung nicht gilt, kann leicht durch ein Bei-
spiel belegt werden. Die Zahl 693 besitzt in M die heiden verschiedenen Zerlegungen
693 = 9. 77 = 21 - 33, wobei die Zahlen 9, 21, 33, 77 siémtlich Primzahlen in M sind.

1.3.  Der gréBte gemeinsame Teiler
und das kleinste gemeinsame Vielfache

Sind a, b natiirliche Zahlen mit den Darstellungen
a=[]p*>, b=][]]p,
» »

5o ist offensichtlich b | @ genau dann, wenn B, < «x, fiir alle p ist. Betrachten wir jetzt
gemeinsame Teiler endlich vieler Zahlen. Es seien a,, @, ..., @, ganze Zahlen, wobei
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etwa die Zahlen a,, a,, ..., @, mit 1 < » < n von 0 verschieden sein sollen. Fiir diese
Zahlen haben wir die Darstellungen

ol = e (k=1,2...7). )
»
Die Zahlen z mit
lel =1 p™
»

und v, < vy (k = 1, 2, ..., 7) bilden die gemeinsamen Teiler von a,, a,, ..., @,. Unter
ihnen befindet sich die natiirliche Zahl

a=I1r"
»
mit
My = Min (¥p,1, Yp,2y ++ -5 Vp,r) -
Sie ist nicht nur gemeinsamer Teiler von a,, ay, ..., a,, sondern jeder gemeinsame
Teiler dieser Zahlen ist sogar ein Teiler von d. Sie erfiillt also die beiden Eigenschaften
dla, fir k=12,...,n, (2)
tlay fir k=1,2,..,0n=>¢t|d. ®3)
Uberdies ist d eindeutig bestimmt. Dies fiihrt zu folgender Festlegung:

Definition 1.3. Die zu den ganzen Zahlen a,, a,, ..., a,, die nicht simtlich 0 sind,
durch die Eigenschaften (2) und (3) eindeutig bestimmte natiirliche Zahl d heiBt der
grople gemeinsame Teiler dieser Zahlen.

Wir konnen auch den Fall @, = a, = --- = a, = 0 einbeziehen, wenn wir hierfiir
d = 0 setzen. Es wird allgemein die Schreibweise

d = (ay, ay, ..., @)

benutzt (man beachte hierzu auch [2]). Fiic d = 1 nennen wir die Zahlen a,, a,, ..., a,
teilerfremd. Aus der Darstellung des groBten gemeinsamen Teilers liest man ohne
weiteres
(a1, @y, .oy By, @p) = ((a,, Ay, ooy Wy), “n)

ab, so daBl die Bestimmung des gréBten gemeinsamen Teilers von #» Zahlen auf die
von zwei Zahlen zuriickgefiihrt ist.

Jetzt ziehen wir gemeinsame Vielfache. von endlich vielen Zahlen in Betracht. Es
seien die ganzen Zahlen a,, a,, ..., a, simtlich von 0 verschieden. Wir nutzen wieder
die Darstellungen (1) mit # = n. Die Zahlen y mit

lyl =[179>
P

und », = v, (k = 1,2, ..., n) bilden die gemeinsamen Vielfachen von a,, ay, ..., a,.
Unter ihnen befindet sich die natiirliche Zahl

v =[] ">
P
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mit
My = max (vp,1, ¥p,2, -+ Vp,n)-

Sie ist nicht nur gemeinsames Vielfaches von ay, a,, ..., a,, sondern jedes Vielfache
dieser Zahlen ist auch ein Vielfaches von ». Damit geniigt » den Eigenschaften

alv fir k=1,2,...,n, (4)
ajw fir k=12,..,n=v|w. (5)
Natiirlich ist v eindeutig bestimmt. Somit legen wir fest:

Definition 1.4. Die zu den ganzen Zahlen a,, a,, ..., ,, die simtlich von 0 ver-
schieden sind, durch die Eigenschaften (4) und (5) eindeutig bestimmte natiirliche
Zahl v: =[a,, dy, ..., a,) heiBt kleinstes gemeinsames 1 ielfaches dieser Zahlen.

Ist eine der Zahlen a; = 0, so legen wir hierfiir ¢+ = 0 fest.

Zwischen dem griften gemeinsamen Teiler und dem kleinsten gemeinsamen Viel-
fachen zweier natiirlicher Zahlen «, b hesteht ein einfacher Zusammenhang. Aus den
Darstellungen fiir  und » entnimmt man

(a, b) [a, b] = ab.

Das Problem der Bestimmung des groBten gemeinsamen Teilers von zwei natiirlichen
Zahlen kann ohne Zuhilfenahme ihrer Primfaktorzerlegung gelést werden. Hierzu
benutzen wir das als Euklidischer Algorithmus bekannte Verfahren. Es seien ag, @, € N
mit ag > a; > 1. Gesucht ist der grofite gemeinsame Teiler d = (a,, @,). Der Algo-
rithmus besteht in einer fortwahrenden Division mit Rest (siehe [2]), wie sich aus
nachstehendem Schema, in dem alle aufgefithrten Zahlen ganz sind, unmittelbar
ergibt:

Uy = u ¢y + ¢y, 0<a,<a,
ay = agq; + 3, 0<uy <ag,
Qg = ApyGp-y + Qg 0<a, <ap,,
Any = Ann;» 0=dyy-

Der Divisionsalgorithmus findet nach endlich vielen Schritten seinen Abschluf, da
die Folge der Reste «,, ay, ... eine streng monoton fallende Folge nichtnegativer
ganzer Zahlen hildet, die nach unten beschrinkt ist. Der letzte von 0 verschiedene
Rest «, ist der gesuchte grofite gemeinsame Teiler a, = (aq, «,). Durchliuft man
nimlich die Gleichungskette von unten nach oben, so erkennt man nacheinander

Un | Upy = g [ty =5 o0 = dy | @1 = Uy | do.

Das ist aber die Eigenschaft (1) in der Definition 1.3. Zur Uberpriifung der Eigen-
schaft (2) sei t | ao und ¢ | a,. Dann ergibt sich beim Durchlaufen der Gleichungskette



von oben nach unten
tlagat|ay=>tla,=>t|lay= ---=>t|a,.

Aus dem Euklidischen Algorithmus folgt noch die bemerkenswerte Tatsache, da B
sich der groBte gemeinsame Teiler von n Zahlen aus diesen linear kombinieren liBt.

Satz 1.4. Ist d = (c,, ¢y, - .., C,) der gropte gemeinsame Teiler von n ganzen Zahlen,
80 existieren n ganze Zahlen z,, x,, ..., x, mit

d =2 + oy + -+ + €y (6)

Beweis. Wir fithren den Beweis zundchst fiir n = 2. Ist eine der beiden Zahlen
¢y, ¢, gleich 0, so ist die Aussage des Satzes trivial. Wir koénnen also ¢,, ¢, als natiir-
liche Zahlen annehmen und auBerdem ¢, > ¢,. Wir setzen ¢, = a,, ¢; = a, und durch-
laufen obige Gleichungskette des Euklidischen Algorithmus von oben nach unten.
Mit ganzen Zahlen &, n; erhalten wir

= Ay — a1y = aof; + arns,

a3 = a4, — gy = aely + arns,

A = ly_g — UpyGn-1 = G &n + Q1.

Mit &, = x,, , = z, ergibt sich hieraus d = ¢,z, + c,,.
Fiir beliebiges n ergibt sich der Satz durch Induktion. Es sei (6) fiir » richtig. Fiir
7 + 1 haben wir

(€1) €2y ++ 15 Cny Cap1) = ((Cn €2y ++) Cn)s le)
= (1, €y -+ €p) T + CprTana
= ¢1(xZ1) + Co(xZ3) + -+ + Cal@Zy) + Cpr1Taia-

Daraus ergibt sich die Behauptung.

1.4.  Aufgaben

. Man zeige: Die Summe von Primzahlzwillingen p, p + 2 mit p > 3 ist stets durch 12

teilbar.

Man zeige: Ist n eine nicht durch 2 und 3 teilbare natiirliche Zahl, so ist stets 24 ein Teiler

von n? + 23.

3. Man zeige: Ist n > 1, und ist a® — 1 eine Primzahl, so miissen @ = 2 und » eine Primzahl
sein.

4. Unter Benutzung der Identitit 47 = 27 — 3% weise man nach, daB 47 ein Teiler von
228 — 1 ist.

5. Man zeige: Ista = 2, und ist a” + 1 eine Primzahl, so ist a gerade und » eine Potenz von 2.

6. Man weise nach, daB die Zahlen 2** 4 1 (n = 0, 1, 2, ...) paarweise teilerfremd sind und

leite daraus einen neuen Beweis fiir den Satz 1.2 ab. — G. P6Lya.
. Sind @, b, n drei natiirliche Zahlen, so beweise man

(n® — 1, 2% — 1) = plod — 4

-

1

-

durch Anwendung des Euklidischen Algorithmus.
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8. Man zeige: Sind g, b, ¢, d natiirliche Zahlen, die der Bedi ab =cd il 80 ist
e @0 (@ d)
(@b,¢,d)
— LAUFFER.
9. Es seien n, ny, n, natarliche Zahlen mit n | n,n,, n ¥ ny, n § ny. Man zeige, daB dann

12,

—™
N,
(5
n

ein Teiler von # mit 1 < d < n ist. — W. SIERPINSKI.

. Es sei n = a? + b® = ¢® 4 d® mit natiirlichen Zahlen a, b, ¢, d, die den Bedingungen

a=b,¢c=d,a> ¢ (ab) = (c,d) =1 unterliegen. Dann ist

= ac + bd
" (ac + bd, ab + cd)

ein Teiler von » mit 1 < ¢ < n. — W. SIERPINSKI.

. Ein Polynom P(z) mit reellen Koeffizienten heiBt ganzwertig, wenn P(n) ganzzahlig fiir be-

liebige ganze Zahlen » ausfillt. Es ist nachzuweisen, daB ein solches Polynom auf genau
eine Weise in der Form

ro-esva () oo (2) - on )

mit ganzzahligen Koeffizienten darstellbar ist.

Es sei P(z) ein ganzwertiges Polynom. Man zeige, daB nicht alle Glieder der Zahlenfolge
P(0), P(1), P(2), ... Primzahlen sein kénnen.

MlnL" hte i N d dash'x'l

P(z) = 2(;) +4t.

Anleitung: Im Sinne eines indirekten Beweises untersuche man P(0) = p und gebe eine
natiirliche Zahl z so an, daB P(z) > p und p | P(x) wird.



2. Kongruenzen

In diesem Kapitel soll die el tare Teilbarkeitslehre weiter ausgebaut werden.
Wir betrachten solche ganzen Zahlen a, b, die bei der Teilung durch die natiirliche
Zahl m denselben Rest r lassen: Es seia = kym -+ 7, b = kym + r mit ganzen Zahlen
ky, ks, r und etwa 0 < 7 < m. Welche gemeinsamen Eigenschaften haben a, b hin-
sichtlich m? Zunéchst ist

a—b=(ky—k)m=gqm
oder
a="b+gm.

Also ist m | (@ — b). Ist ferner ¢ ein Teiler von @ und m, so auch von b. Entsprechend
ist jeder Teiler d von b und m auch ein Teiler von a. Noch schirfer iiberblickt man
sofort (a, m) = (b, m). Diese Eigenschaften erweisen sich als so grundlegend, daB eine
formale Festlegung des Begriffes der Restgleichheit duBerst zweckmaBig erscheint.
Dem Studium der Grundlagen der Theorie der Kongruenzen, das heifit der Rest-
gleichheit, die von C. F. Gauss (1777—1855) erstmals entwickelt wurde, ist dieses
Kapitel gewidmet.

2.1.  Der Restklassenring

Definition 2.1. Gegeben seien die ganzen Zahlen a, b, m mit m > 0. a heifle
kongruent b modulo m, in Zeichen a = b (m), wenn m ein Teiler der Differenza — b
ist. '

Ist a nicht zu b modulo m kongruent, so nennen wir a, b inkongruent und schreiben
as=b (m).

Die Kongruenzrelation R,, nach dem Modul m bildet in Z offenbar eine Aquivalenz-
relation. Denn aus der Definition ergeben sich unmittelbar

a=a (m) (Reflexivitit),

a=b (m)=>b=a (m) (Symmetrie),

a=b (m)ab=c (m)=>a=c (m) (Transitivitit).
Demzufolge bewirkt R, im Ring Z eine Klasseneinteilung Z/R,,.

Definition 2.2. Gegeben sei ein fester Modul m > 0. Mit @ werde die Menge aller
ganzen Zahlenz mitz=a (m) bezeichnet. Die Menge d heiBle dann Restklasse modulom.
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Die Restklasse
a={z:2€ Z,x=a (m))

enthilt also alle diejenigen ganzen Zahlen x, die hinsichtlich der Teilung durch m
denselben Rest a lassen. Damit gilt

a=bsa=b (m),

und die Menge Z/R,, besteht aus allen Restklassen modulo m. Die Anzahl ihrer Ele-
mente ist natiirlich m.

Definition 2.3. Wir sagen, die Zahlen a,, a,, ..., a, bilden ein vollstindiges Rest-
system modulo m, wenn fiir ¢ = j stets a; == a; (m) gilt.

Beispielsweise bilden die Zahlen 0, 1, ..., m — 1 ein vollstindiges Restsystem mo-
dulo m, und wir kénnen die Menge der Restklassen etwa durch

Z/R, = {0,1,..,m — 1}

heséhreiben.

Das Rechnen mit Kongr ist iiberaus einfach. Ist

ay=b (m), ag=b, (m),
also
ay=by, +km, a,=>b, + kym,

so ergibt Addition beziehungsweise Multiplikation der Gleichungen
a + a;=by + by + (ky + ko) m,
@y - ay = by - by + (biky + boky + m kiky) m.
Hieraus folgt
a+ay=b +b (m), ay-ay=0b,-b, (m).
Dies rechtfertigt die folgende Definition fiir das Rechnen mit Restklassen:
Definition24. a+b=a+0b, a-b=auab.

Die oben angefiihrten Rechnungen zeigen zugleich, daf diese Definitionen der
Rechenoperationen in Z/R,, unabhingig von der Auswahl der Repriisentanten in den
Restklassen ist. Allgemein kann man sagen, daBl das Rechnen mit Restklassen auf das
Rechnen mit ganzen Zahlen zuriickgefiihrt ist. Priiziser heifit das:

Satz 2.1. Die Menge der Restklassen Z/R,, bildet hinsichtlich der in Definition 2.4
gesproch algebraischen Operati einen k tativen Ring.

Ein ins Detail gehender Beweis eriibrigt sich wohl. In Z/R,, bilden 0 das Null-
element und I das Einselement.

Wir stellen jetzt die Frage nach der Division im Restklassenring. Ist der Modul m
eine zusammengesetzte Zahl m = mym, mit 1 < m,; < m, so ist sowohl m, + 0 als
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auch 7, % 0. Aber fiir das Produkt der Restklassen finden wir m, - T, = mym, =0,
so daB der Ring Nullteiler enthilt. Eine andere Situation finden wir vor, wenn der
Modul m = p eine Primzahl ist. Ist @ - 5 = 0 in Z/R, so bedeutet dies p | ab, also
p | aoder p|b, das heiBt @ = 0 oder b = 0. Demnach enthélt Z/R, keine Nullteiler
und ist folglich ein Integrititsbereich. Ausder Algebra ist bekannt, daB ein endlicher
Integrititsbereich automatisch einen Korper darstellt. Da fiir alle @ ¢ Z/R, gilt

P& = pa = 0, so sagt man auch, es handelt sich um einen Korper der Charakteristik
p. Zusammenfassend halten wir fest:

Satz 2.2. Der Restklassenring Z|R,, besitzt fiir zusammengesetztes m Nullteiler. Ist
m = p eine Primzahl, so ist er ein Kirper der Charakteristik p.

Die Frage der Losbarkeit der Gleichung @ = b bei vorgegebenen @, b, mit @ = 0
ist nach diesem Satz in Z/R, entschieden. Sie soll aber auch in beliebigen Ringen
Z/R,, behandelt werden. Eine iiquivalente Formulierung des Problems besteht in der
Frage nach der Losbarkeit der linearen Kongruenz az =b (m). In diesem Sinne
sprechen wir den folgenden Satz aus:

Satz 2.3. Die Kongruenz
axr=b (m)

st genaw dann losbar, wenn (a, m) | b. In diesem Fall besitzt sie genau («, m) zuesnander
modulo m tnkongruente Losungen.

Beweis. Die genannte Bedingung ist notwendig, denn andernfalls kann eine Glei-
_chung ax = b 4 km in ganzen Zahlen nicht bestehen. Es sei also jetzt (a, m) = d
und d | b.

1. Fall: d = 1. Nach Satz 1.4 gibt es ganze Zahlen u, v mit
au + mv = 1.
Also gibt es auch ganze Zahlen z, y mit

ax +my =b,
was
ax=>b (m)

zur Folge hat. Die Losung ist in dem Sinne eindeutig bestimmt, daB alle x und 2’ mit
ar=>b (m), ar'=b (m)

zur selben Restklasse gehoren. Denn aus diesen beiden Kongruenzen folgt
a(x —x')=0 (m)

und wegen d = 1

z=2 (m).
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2. Fall: d > 1. Als notwendig fiir die Losbarkeit wurde bereits d | b erkannt.

Setzt man in
ax =b + km

a =a'd,b=>bd, m =m'd, so ist nach Teilung durch d
az=0b (m').

Nach Fall 1 besitzt diese Kongruenz eine eindeutig bestimmte Losungsklasse
z=z, (m').

Modulo m ergeben sich hieraus die d Losungen

T=2p, Ty + M, .y g+ (d— 1)m"  (m).

2.2.  Die prime Restklassengruppe

Die Aussage des Satzes 2.3, daB @ - ¥ = b in Z/R,, fiir (a, m) = 1 eine eindeutig be-
stimmte Losung hat, gibt uns Veranlassung, diese Restklassen @ niher zu betrachten.

Definition 2.5. Die Restklasse @ heilt eine prime Restklasse modulo m, wenn
(a, m) = 1 gilt.

Satz 2.4. Die primen Restklassen modulo m bilden eine multiplikative abelsche
Gruppe, die prime Restklassengruppe modulo m.

Beweis. Es bezeichne G die Menge der primen Restklassen. Die Gruppenaxiome
iiberpriift man leicht:

LabeG@=(am)={Hm=1=(bun)=1=>ab=abeq.
2. Kommutativ- und Assoziativgesetz sind erfiillt.

3. Das Einselement ist 1.

4. Nach Satz 2.3 existiert zu jedem Element genau ein Inverses.

Definition 2.6. Es bezeichne @(m) die Anzahl der primen Restklassen modulo m.

@(m) ist damit eine Funktion von m, wenn sie auch nur fiir natiirliche Zahlen m er-
klirt ist. In einem solchen Fall spricht man von einer zahlentheoretischen Funktion.
@(m) wird nach L. EULER (1707—1783), der sie in die Zahlentheorie einfiihrte, auch
als Eulersche @-Funktion bezeichnet. Entsprechend der Definition kann man auch
sagen, @(m) gibt die Anzahl der zu m teilerfremden natiirlichen Zahlen an, die kleiner
oder gleich m sind. Die ersten Werte von ¢(m) sind: ¢(1) = 1, ¢(2) = 1, ¢(3) = 2,
@(4) = 2, p(5) = 4, p(6) = 2. Ist m = p eine Primzahl, so ist offensichtlich ¢(p)
= p — 1. Die folgenden Sitze dienen der Berechnung der Eulerschen ¢-Funktion.

Satz 2.5.
o) =n.

tin

Die Summe ist iiber alle Teiler ¢ von n zu erstrecken.
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Beweis. Es bezeichne g;(n) die Anzahl der natiirlichen Zahlen x < = mit (z, n)
=d. Dann ist

X qa(n) =n.

din
Setzt man z = 2'd, n = n'd, so ist ¢4(n) = ¢(n’) wegen (2',n') = 1. Mit n’ = % ist
n
n =3 g4n) = Z'P(;) =X gl).
din din {in

Mit Hilfe dieses Satzes a8t sich leicht ¢(n) fiir eine Primzahlpotenzn = p* (v = 1)
berechnen. Es ist

o(1) + @(P) + -+ + @lprt) + @(p) =P,

?(1) + ¢(p) + -+ + 9(#1) =p
Durch Subtraktion der Gleichungen folgt
1
o) =1 (l - ) )]
P

Hilfssatz 2.1. Es seten m, m’ zwel natiirliche Zahlen mit (m, m') = 1. Durchlaufen
aund a’ evn vollstindiges Restsystem modulo m bzw. modulo m', dann durchliuft a'm
+ am’ ein vollstindiges Restsystem modulo mm'.

Beweis: Die Anzahl der Zahlen «'m + am’ ist offensichtlich mm'. Aus
ay'm + aym’ = a,’m + aym’  (mm')
folgt
aym’ =am’ (m),
aym=a,m (m’),
also wegen (m, m') = 1
g=a (m), a'=a’ (m).
Daher sind alle Zahlen a'm + am’ untereinander inkongruent.
Satz 2.8. (m,m') = 1=> g(mm’) = p(m) p(m').

Beweis. Nach dem Hilfssatz durchliuft «'m + am’ unter der Voraussetzung
(m, m') = 1 ein vollstindiges Restsystem modulo mm', wenn @ und @’ ein solches
modulo m beziehungsweise m’ durchlaufen. Dabei ist

(@m + am',mm')y =1& (@'m + am',m) = 1A (a'm + am’,m’) =1
& (am',m) =14 (a'm,m') =1
S (@,m)=1a(c,m)=1.

Damit sind die g(mm’) zu mm' teilerfremden Zahlen unterhalb mm' die kleinsten
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positiven Reste der ¢(m) p(m’) Zahlen a’m + am’' mit (a,m) = 1 und (a’,m') = 1.
Das ist die Behauptung.
Satz 2.7.
1

= 1—=).
@(m) mﬁIIZ‘( p)

Das Produkt ist dabei iiber alle Primteiler von m zu erstrecken.

Beweis. Wir betrachten die kanonische Zerlegung von m
m =ig7’i"» pi+p; fir =7,
Nach Satz 2.6 und (1) ist
pm) = [T #(pr) = [] " (1 - l) —n (1 - l).
i=1 i=1 i pim P

Die Eulersche p-Funktion ist von wesentlicher Bedeutung in der Zahlentheorie, wie
schon der nichste Satz lehrt. P. DE FERMAT (1601 —1665) bemerkte, dafl

al=1 (p)

fiir Primzahlen p mit p } a gilt, was gelegentlich als kleiner Fermatgcher Satz an-
gesprochen wird. Der folgende Satz gibt einc von L. EULER ausgesprochene Verall-
gemeinerung dieser Aussage.

Satz 2.8 (FERMAT-EULER).
(a,m)=1=>a*™=1 (m).

Beweis. Wir betrachten die prime Restklassengruppe modulo m
G =1{a,a, ..., B}

Es sei a@ € G, dann ist
G = (@, 3@y, ..., Ty

wieder die volle prime Restklassengruppe. Daher ist

Ty By + e Ay = Tylly + o+ Aoy
also
@™ =1,

Das Beispiel 22 =1 (7) lehrt, daB ¢(m) nicht der kleinste Exponent sein mu8,
so daB eine Potenz von a den Rest 1 modulo m laBt. Ist aber d die kleinste natiirliche
Zahl mit

at=1 (m), (a,m) =1,
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so ist d | ¢(m). Denn sei ¢(m) = kd 4- r mit 0 < r < d, so ist
1=q%™ = g*¥*" =q' (m),

und wegen der Minimaleigenschaft von d muf r = 0 sein.
Der Satz von FERMAT-EULER erméglicht eine unmittelbare Auflosung der linearen
Kongruenz

ax=b (m), (@, m) = 1.
Aus
ax = ba¥™ (m)

ergibt sich wegen (a,m) = 1
2 = ba®™=1 (m). (2)

Jedoch hat dieses Ergebnis mehr theoretisches als praktisches Interesse, denn die
Berechnung der Potenz a®™ kann recht miihsam sein.

Satz 2.9 (WiLsoN). Fiir jede Primzahl p gilt
P—l=—1 (p).

Beweis. Fiir p = 2 ist die Behauptung sicher richtig. Fiir p > 2 betrachten wir
die prime Restklassengruppe

G = {i, 2, ,p—:-l}

In G ist die Gleichung @Z = 1 eindeutig nach ¥ auflésbar. Wann ist = a?
#=lea=1 Pol—1)@a+)=0 (p

sa=1va=p—1I.

Damit kénnen wir in dem Produkt
p—Nn'=1.2.....p—1

die Restklassen aufler 1, p — 1 zu Paaren zusammenfiigen mit @ = 1. Also ist
p—D'=p—1,

und das ist die Behauptung des Satzes.

Der Satz von WILSON ist ein Primzahlkriterium, das heift, aus

m—1)=—1 (n) (a>1)

folgt, daB » = p eine Primzahl sein muB. Ist nimlich » eine zusammengesetzte Zahl,
so gibt es eine Zahld mit d | n und 1 < d < n. Dann ist aber auchd | (» — 1)!.
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23.  Lineare diophantische Gleichungen

In Anwendung des Rechnens mit Kongruenzen sollen jetzt lineare Gleichungen
2 + Xy + o+ + @y = (3)

mit ganzzahligen Koeffizienten a,, ay, ..., «,, ¢ behandelt werden. Dabei sollen die
ganzzahligen Losungen z,, &, ..., r, — sofern vorhanden — dieser Gleichung be-
stimmt werden. Die Bezeichnung ,,diophantisch* ist dem Namen des Mathematikers
DropHANT (um 250) entlehnt und zeigt allgemein an, daB man ausschlieBlich an ganz-
zahligen Lo 1 einer Gleichung interessiert ist.

)

Wir befassen uns zunichst mit der Gleichung
ar + by =c; a,byce Z; a,b =0, (4)

Bekanntlich beschreibt diese Gleichung in der Euklidischen Ebene bei beliebigen
reellen z, y eine Gerade. Wir nennen nun solche Punkte P mit den Koordinaten z, y
der Ebene Gitterpunkte, deren Koordinaten beide ganzzahlig sind. Somit kann unser
arithmetisches Problem auch geometrisch heschrieben werden: Liegen auf der durch
(4) beschriebenen Geraden Gitterpunkte und, wenn ja, welche? Man iiberblickt sofort,
daB (a, b) | ¢ notwendige Bedingung fiir die Lisbarkeit der Gleichung (4) in ganzen
Zahlen ist. Da man den groBten gemeinsamen Teiler dann wegkiirzen kann, be-
schrinken wir uns auf den Fall (¢, b) = 1. Es wird sich zeigen, da8 unter dieser Vor-
aussetzung die Gleichung (4) 16sbar ist, und wir werden die Losungen angeben. Be-
trachten wir (4) modulo |}, so folgt aus

ax=c (lb])
und wegen (a, b) = 1
x = ca®®=1  (|b])
und mit beliebiger ganzer Zahl k
X = ca®PD=1 L b, (5)
Setzt man (5) in (4) ein, so errechnet sich y zu
1 — astioh

v=e : .

(6)
y ist nach dem Satz von FERMAT-EULER tatsichlich ganzzahlig, so daB (5) und (6)
die Losungen von (4) unter der Voraussetzung (a, b) = 1 darstellen.

Lineare diophantische Gleichungen mit » Unbekannten kénnen nach dem geschil-
derten Verfahren auf solche mit » — 1 Unbekannten zuriickgefiihrt werden. Es be.
zeichne d; = (ay, ay, ..., a;) fiir k = 2,3, ..., n. Wir betrachten die Gleichung (3)
gleich unter der Voraussetzung d, = 1. Schreiben wir die Gleichung in der Gestalt

@y + Q% + o0+ Cp @y = € — Ay,
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so erkennt man, daB notwendigerweise
agxy =c (du-y)

sein muB. Wegen (¢, d,-,) = d, = 1 ist diese Kongruenz eindeutig lésbar, und mit
beliebiger ganzer Zahl k ist

X, = ca,P-0"1  kd, .
Damit ist Gleichung (3) mit = Unbekannten auf die Gleichung
a2 + %y + o+ @@y = ¢(1 — a,7@D) — ka,d,,

mit » — 1 Unbekannten zuriickgefiihrt.

2.4.  Simultane lineare Kongruenzen

Ein System von linearen Kongruenzen muB keine gemeinsame Lésung besitzen, auch
wenn die einzelnen Kongr Lésungen haben. Zum Beispiel hat das System von
Kongruenzen =0 (2), r=1 (4) offensichtlich keine gemeinsame Losung. Man
bemerkt an diesem Beispiel (2,4) > 1. Sind dagegen die Moduln teilerfremd, so liegt
eine besondere Situation vor.

Satz 2.10. Die Zahlen m,, m,, ..., m, seien paarweise teilerfremd. a,,ay, ..., a,
und by, by, ..., b, seten beliebige ganze Zahlen mit (ay, my) = (az, my) = +-- = (a,, m,)
= 1. Dann besitzt das System

ax=b; (m) i=12,..,7)

genau eine Losung modulo m = mymy - ++- - m,.

Beweis. Nach Satz 2.3 besitzen die einzelnen Kongruenzen genau eine Lésung.
Notieren wir sie uns etwa in der Form

ri=c¢ (m) (=12..,7).

Wegen (m;, m;) = 1 fiir 7 = j ist (Ln-, r_n_. N ﬂ) = 1. Nach Satz 1.4 gibt es ganze
Zahlen y,, ¥, ..., Y, Mit My My ™,

m m m
—ht—p++t—y=1
my my mye
Wir konnen uns ganze Zahlen ey, e, ..., ¢, wihlen mit
m .
e =—y; (m) t=12..r7),
m;

etwa die absolut kleinsten Reste modulo m oder auch die erwéhnten Zahlen selbst.
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Jedenfalls gilt
ate+-+e=1 (m), (M
eieg=0 (m) (7)), ee=¢e (m), ®)

eiE{o (my) fiir 7j )

1 (my) fir i=j.
Bilden wir

Xo = C1€1 + Co€2 + o+ + Crey,
so ist wegen (9)

ro=c; (m) r=12,..7)

und daher z = z, (m)eine gemeinsame Lsung des Systems. Fiir jede andere Lésung
o' modulo m ist

’

) =z (m;) (t=12...7)
und folglich auch z,’ = z, (m). Damit ist der Satz vollstindig bewiesen.

Die Bedeutung dieses Satzes werden wir im nachfolgenden Abschnitt erkennen.

2.5.  Die Struktur der primen Restklassengruppe

Es bezeichne G, die prime Restklassengruppe modulo m. Sie ist eine endliche abel-
sche Gruppe der Ordnung ¢{(m). Die Untersuchung ihrer algebraischen Struktur wird
uns zu tieferen zahlentheoretischen Einsichten fiithren.

Fiir m bestehe mit paarweisen teilerfremden Zahlen m,, my, ..., m, die Zerlegung
m = mymy - -+ - m,. Nach Satz 2.10 besitzt das System von Kongruenzen

r=a; (m) (=1,2..7)

genau eine Losung @ = a  (m). Dabei ist (a, m;) = (a;, m;) fir © = 1,2, ..., r. Also
ist @ genau dann eine prime Restklasse modulo m, wenn die @; prime Restklassen
modulo m; sind. Nach Satz 2.10 gestattet demnach jede prime Restklasse @ mit den
durch (7)—(9) definierten Zahlen e; die eindeutig bestimmte Zerlegung

@ =6, + ey + - + age;. (10)

Bezeichnet a;* € G, die prime Restklasse

a¥:i=e + - + e+ aie; + ey + - + e,

so bildet offensichtlich bei festem v die Menge Gy, der Restklassen @;* eine Unter-
gruppe von G,,. Weiter erhilt man aus (10) auf Grund der Eigenschaften (7)—(9) die
eindeutig bestimmte Zerlegung

@ = @*a* - - a,*.
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Fiihrt man diese Zerlegung fiir alle @ € G,, durch, so heiBt das in der Sprache der
Algebra (vgl. MfL, Bd. 3): Die prime Restklassengruppe G,, ist das direkte Produkt der
Untergruppen Gy, Gy, ..., Gy, . Ferner 1a8t sich die Gruppe Gy, auf die prime Rest-
klassengruppe G, mit Hilfe der Zuordnung @;* <> @; isomorph abbilden. Damit haben
wir:

Satz 2.11. Ist m = my - my -+ -+ - m, mil paarweise teilerfremden Zahlen m;, so Vst
die prime Restklassengruppe modulo m isomorph dem direkten Produkt der primen
Restlklassengruppen modulo m;.

Nimmt man fiir m die kanonische Zerlegung nach Primzahlpotenzen, so besagt
dieser Satz, daB die prime Restklassengruppe modulo m beherrscht wird, sofern wir
Kenntnis iiber die primen Restklassengruppen modulo einer Primzahlpotenz be-
sitzen. Bevor wir uns diesen Gruppen zuwenden, fithren wir noch den Begriff der
primitiven Wurzel ein, der im engen Zusammenhang damit steht.

Nach dem Satz von FERMAT-EULER gibt es zu zwei ganzen Zahlen @, m mit m > 1,
(a, m) = 1 stets eine natiirliche Zahl d mit a4 =1 (m). Dabei ist d | ¢(m). Die Bei-
spiele 7 =1 (43) und 5"== 1 (7) fiir 1 < n < 6 zeigen, daB beide Maoglichkeiten
d < g(m) und d = @(m) auftreten konnen. Wir fiihren die Sprechweise ein:

« gehort modulo m zum Exg ten d, wennat =1 (m) ist,
aherar==1 (m)firl <n <d.

Hilfssatz 2.2. Gehért a modulo m zum Exponenten d, so sind die Zahlen 1, a, 2, ...,
a1 modulo m inkongruent. Ist ferner a' =1 (m),soistd .

Beweis. Es sei 0 <h <k <d und «*=a? (m). Wegen (a,m) = 1 ist dann
a*b =1 (m). Und dies steht infolge 0 < k¥ — h < d im Widerspruch zur Auswahl
von d als kleinstem Exponenten. Nimmt man fin der Form¢ = dg + rmit0 < » < d,
S0 zeigt

l=a'=a""=a (m),
dafl r = 0 sein muB.

Hilfssatz 2.3. Gehiort a modulo m zum Exponenten d, und ist n eine natiirliche Zahl
mit (n,d) = 1, so gehort a® ebenfalls zum Exponenten d.

Beweis. an gehore zum Exponenten (. Aus (a®)! =1 (m) und Hilfssatz 2.2 folgt
dint. Da (n,d) = 1 vorausgesetzt ist, gilt sogar d |t und schwicher d <t. Da
(a") = ()" =1 (m) ist, kann andererseits nur d = ¢ sein. Insgesamt ist also t = d.

Definition 2.7. Eine Zahl g, die modulo m zum Exponenten ¢(m) gehért, heiBit
primitive Wurzel modulo m.

Die bereits erwihnten Beispicle besagen also: 5 ist primitive Wurzel modulo 7.
Dagegen gehért 7 modulo 43 zum Exponenten 6 und ist keine primitive Wurzel.

Satz 2.12. Zu einem Modul m gibt es entweder keine oder op((p(m)) modulo m n-
kongruente primitive Wurzeln.
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Beweis. Es sei g primitive Wurzel modulo m. Nach Hilfssatz 2.3 ist auch g"
primitive Wurzel modulo m, sofern (r, ¢(m)) = 1 gibt. Es gibt ¢(p(m)) derartige Zahlen
n < @(m). Also gibt es jedenfalls 'p(q'(m)) primitive Wurzeln. DaB} es keine weiteren
primitiven Wurzeln gibt, zeigt der Hilfssatz 2.2. Durchlduft nimlich » die Zahlen
von 0 bis g(m) — 1, so durchliuft ¢’ das prime Restsystem modulo m. Ist » so gewihlt,

g(m)
daB (v, qz(m)) = (> l,dannist (g')—‘ =1 (m). Also kann ¢’ nicht primitive Wurzel
sein.

Die Aufgabe, alle Moduln m zu bestimmen, zu denen primitive Wurzeln existieren,
hingt wesentlich mit der Struktur der primen Restklassengruppe modulo m zu-
sammen, wie sich in folgendem zeigen wird.

Satz 2.13. Es sei p eine Primzahl. Die prime Restklassengruppe modulo p st
zyklisch. Mit anderen Worten: Es gibt primitive Wurzeln modulo p.

TIst also g eine primitive Wurzel modulo p, so laBt sich jede prime Restklasse @ durch
@ =g"mit 0 < n < p — 1darstellen.

Beweis. Fiir p = 2 ist die Aussage des Satzes trivial. Es sei jetzt p eine ungerade
Primzahl. Fiir d | (p — 1) erkldren wir y(d) als die Anzahl der Restklassen, die zum
Exponenten d gehéren. Wir haben also z(p — 1) > 0 zu zeigen. Nach Satz 2.12 ist
dann sogar y(p — 1) = @(p — 1).

Gibt es eine Zahl a, die zum Exponenten d gehort, so sind nach Hilfssatz 2.2 die
samtlichen Zahlen 1, a, @?, ..., a®! inkongruente Lésungen von 24 — 1 = 0 (p).
Demzufolge 1aBt sich die Polynomkongruenz in der Gestalt

HW—1l=@x—1)(z—a) - -(z—a%l)=0 (p)

schreiben. Also sind die genannten Zahlen auch simtliche Lésungen dieser Kongruenz.
Nach Hilfssatz 2.3 gehért mit @ auch a* zum Exponenten d, wenn (k ,d) = 1. Das
heiit, unter den Losungen befinden sich ¢(d) Zahlen, die zum Exponenten d gehéren.
Zusa f id ist entweder y(d) = 0 oder y(d).= ¢(d).

Die Aufzihlung aller primen Restklassen nach ihren zugehérigen Exponenten
geordnet ergibt

X yd)=p—1.
di(p—1)
Da nach Satz 2.5 aber auch
Jod)=p—1
di(p—1)

gilt, kann nur x(d) = ¢(d) fiir alle d sein. Damit ist der Satz bewiesen.

Der Untersuchung der primen Restklassengruppe modulo p* (» > 1) schicken wir
zwei Hilfssitze voraus.

Hilfssatz 2.4. Es gibt eine primitive Wurzel g modulo p mit der Eigenschaft
g1 (p?).
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Beweis. Erfiillt die primitive Wurzel g diese Eigenschaft nicht, so muB gr-! =1
(p?) sein. Dann betrachten wir die primitive Wurzel g, = g + p. Fiir sie gilt

gPl=(g+pPl=g"1+(p— g~ (p?
=1—pg*? (p?)
=1 (),
also die geforderte Eigenschaft.
Hilfssatz 2.5. Ist g eine primitive Wurzel modulo p (p > 2) mat
g1 (p?),
so gilt fiir jedes r = 2
FEIE1 (p). (11)
Beweis. Wir fiihren den Bereis durch Induktion nach r. Fiir » = 2 ist (11) nach

Voraussetzung richtig. Wir nehmen die Richtigkeit von (11) fiir ein 7 = 2 an. Nach
dem Satz von FERMAT-EULER ist

=1 (),
g*P™) = 1 4 np'1
mit p t n wegen (11). Weiter ist mit r = 2
@ = (14 np-tp =14 mpr + 2 niptt (p)
=1+np" (p™)
=1 (),
und (11) ist auch richtig fiir » 4 1.

(p— 1)
2

Satz 2.14. Es sei p eine ungerade Primzahl. Die prime Restklassengruppe modulo
P (v > 1) dst zyklisch. Ist g eine primitive Wurzel modulo p mit g2 f= 1 (p?), dann
18t g auch primitive Wurzel modulo p* fiir alle v = 1.

Beweis. Nach Hilfssatz 2.4 gibt es eine primitive Wurzel g modulo p mit g7~ == 1
(p?). Nehmen wir an, g gehért modulo p* zum Exponenten d. Aus g =1 (p) folgt
insbesondere g¢ = 1 (p). Da g primitive Wurzel modulo p ist, muB (p — 1) | d sein.
Da andererseits d | g(p’) ist und ¢(p) = p*-Y(p — 1) gilt, ergibt sich d = @(p") mit
1 <r <v. Wire r <, so hiitten wir d | g(p-1) und g°" =1 (p) im Wider-
spruch zu Hilfssatz 2.5. Also ist d = ¢(p"), und g ist primitive Wurzel modulo p’.

Wir wenden uns nun den primen Restklassengruppen modulo 2’ (v = 1) zu. Fiir
» = 1, 2 sind sie trivialerweise zyklisch. Aber fiir » = 3 ist die Gruppe Gy = (1, 3, 5,7}
nicht zyklisch, da die Elemente 3, 5, 7 von der Ordnung 2 sind. Dieses gilt auch fiir
die Gruppen mit » = 3. Denn ist a eine beliebige ungerade Zahl, so ist fiir » = 3 stets

=1 (2), (12)
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wiihrend @(27) = 2'-1ist. Fiir » = 3 haben wir (12) schon bestatigt. Durch Induktion
schlieBen wir aus der Richtigkeit von (12) fiir » auf die Richtigkeit fiir » 4- 1:
a?" = (@) = (1 + k2)?
=14 k2 4 k22 =1 (247).
Satz 2.15. Die prime Restkl gruppe modulo 27 ist fiir v = 3 direktes Produkt
einer zjklischen Gruppe der Ordnung 2 und einer zyklischen Gruppe der Ordnung 2'-2.

Jedes Element @ der Gruppe lift sich in der Forma = (—1y7 5 (r=0,1;8=0, 1, ...,
22 — 1) durstellen.

Beweis. Die Zahl —1 gehort modulo 2° zum Exponenten 2 und 5 wegen (12) und
5 = (14291 (2)

zum Exponenten 2-2. Die Zahlen 5° sind nach Hilfssatz 2.2 inkongruent, und aus
=1 (4), —6%= —1 (4) folgt auch stets 5= 5= —5» (2’). Demzufolge bilden
die 21 = @(2") Zahlen (—1)" 5° ein primes Restsystem modulo 2'.

Satz 2.16. Es set p eine ungerade Primzahl. Ist g primitive Wurzel modulo p', dann
st dve ungerade der Zahlen g, g + p* primitive Wurzel modulo 2* (v = 1).

Beweis. Es bezeichne g, die ungerade der beiden Zahlen g, g + p’. g, gehore mo-
dulo 2p’ zum Exponenten d. Dann ist d | ¢(2p’), und mit ¢(p") = @(2p’) folgtd < @(p’).
Modulo pr ist g, primitive Wurzel und daher d = ¢(p’). Folglich ist d = ¢(2p’).

Insgesamt wurde fiir die Moduln m = 2, 4, p, 2p" (p =1 (2)) die Existenz pri-
mitiver Wurzeln nachgewiesen. Jetzt werden wir zeigen, daB es fiir alle anderen
Moduln m > 1 keine primitiven Wurzeln gibt. Das folgt aus nachstehendem Satz.

Satz 2.17. Es seien m eine natiirliche Zahl mit m > 1; m =+ 2, 4, p, 2p* ,(1: =1
(2),» = 1) und a eine gunze Zahl mit (a, m) = 1.
Dann gilt
#(m)
a? =1 (m).

Beweis. Wir haben drei Fille zu unterscheiden.
1. m = 2';» = 3: Dieser Fall ist durch (12) bereits erledigt.
2.m=2p*;v=2;4=1:Esist

plm) = 2-1p*1 (p — 1),
und unter den genannten Voraussetzungen ist glm) durch ¢(2") und @(p°®) teilbar.
Daher ist 2

om)
a? =1 (2,

=1 (),

was der Behauptung dquivalent ist.
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r
3. m =2 []p;v =0;r = 2: Analog zu 2. stellen wir aus

=1

plm) = @) [] pi~'pi — 1)
i=1

die Teilbarkeit von@durch @(2") und @(p™) (¢ = 1,2, ..., 7) fest. Also ent-

sprechend der Behauptung ist

m
af =1 (2),

=1 (p") (@=12,..,7).

2.6. Die Indexrechnung

In diesem Abschnitt bezeichne m > 1 stets einen solchen Modul, der primitive Wur-
zeln besitzt, das heit m = 2,4, p", 2p" (p =1 (2),» = 1). Ist g eine primitive Wur-
zel modulom, so wissen wir nach dem vorangegangenen Abschnitt, daBl die Zahlen
1,9,9% ..., g%™~1 ein primes Restsystem modulom bilden. Damit kann man jeder zu
m primen Zahl « eine Zahl u (x € {0, 1, ..., p(m) — 1)) zuordnen, so daB « = g#(m)
gilt. Das fiihrt zu folgender Definition:

Definition 2.8. Es sei g primitive Wurzel modulo m, (a, m) = 1 und x die aus der
Kongruenz a = g# (m) eindeutig bestimmte Zahl der Menge {0, 1, ..., p(m) — 1}.
Dann heiBt u der Index der Zahl a beziiglich der Basis ¢ modulo m, und es wird g
= ind, a geschrieben.

Sind keine Verwechslungen zu befiirchten, so schreiben wir auch kiirzer 4 = ind a.

Die auf der Grundlage dieser Definition entwickelte Indexrechnung entspricht
weitgehend dem hekannten Rechnen mit Logarithmen wie der folgende Satz zeigt.

Satz 2.18. Fiir die Indexrechnung gelten folgende Gesetze:

1. ind (ab) = ind « + ind b (p(m)),

2. inde"=ninda (p(m)), =n=1,
3.ind 1 =0,

4. indjg=1,

5. ind(~l)=%¢(m), m> 2.
Beweis. Aus

=gnae (m), b=gh® (m)
folgt
a - b = gindo+inad  (pp),
Der Vergleich mit

a - b= gind@d) ()
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gibt die erste Eigenschaft. Die Eigenschaften 2 und 3 sind sofort aus 1. ablesbar. Aus
g = ¢'%¥(m) ergibt sich 4. Die Aussage 5 folgt aus dem Satz von FERMAT-EULER:

#(m) om)
Y e [ BT
Fiir m > 2 ist stets 2! g(m). Ist m = 4, so ist ¢ = 3 und

[0
32 £1=4=0 (4).

Ist m = p*, so konnen nicht beide Faktoren durch p teilbar sein, da sie die Differenz 2
haben. Da ¢ primitive Wurzel ist, mu8 also
om)
[ —
g° =—1 (m)

sein. Fiir m = 2p* folgt die Behauptung genauso, wenn man noch beachtet, dal
g ungerade sein muB.

Fiir das Rechnen mit Indizes ist wie bei den Logarithmen ein Tafelwerk nétig.
Wir werden eine Indextafel fiir den Modul m = 17 aufstellen. Weitere Tafeln findet
man etwa in [13] und [19]. Es ist ¢(17) = 16 und 3 eine primitive Wurzel modulo 17,
da 32=9, 3* = —4, 3* = —1 modulo 17 sind. Nacheinander bestimmen wir 3° = 1,
3N=3 32=9, 3=10, 3*=13, =5 3¥=15 3 =11, 3¥=16, 39= 14,
30 =8 3 =7 3N2=4, 318=12, 34 =2, 315=6, 3 =1 modulo 17. Je nach
Anordnung kénnen wir uns zwei Tafeln notieren:

a 1 2

|
indsa| 0 | 14 |

w
'S

5| 6] 7] 891011 |12[13|14[15] 16
5] []rwo]2] 3] 7[13] +] o 6] s

-
o

12

Iy

|
!
indya| 01| 2| 3| 4|5]| 6| 7| 8| 9|10 11|12]13|14]15
3|of10]13]5|15|1]16|1a]| 8] 7| 4]12]| 2] 6

—

a

Wir wollen die Anwendung der Indexrechnung an zwei Beispielen verdeutlichen.
1. Lineare Kongruenzen:

ax=>b (m), (a,m) = (b,m) =1

= inda + ind x = ind b (q:(m))

= ind x =indb —inda (p(m)).
Beispiel:92 =7 (17)=>indx=ind7—ind9=11—-2=9 (16)

=  z=14 (17).

2. Exponentialkongruenzen: Die Kongruenz

at=b (m), (a,m) = (b,m) =1
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wird auf die lineare Kongruenz
zinda=indb (¢(m))
zuriickgefiihrt, woraus sich die Losbarkeit fiir (q)(m), ind a) | ind b ergibt.
Beispiel: 77=5 (17)=>zind7=ind5 (16)=> llz=5 (16)
>zr=15 (16).

27. Potenzreste

Wir wollen Aussagen iiber die Losbarkeit von Kongruenzen
ax"=b (m)

mit n = 2 erzielen. Wie beiden linearen Kongruenzen kénnen wir uns auf den Fall
(a, m) = 1 beschrinken. Da nach dem Satz von FERMAT-EULER z" = ba?™-1 (m)
gilt, geniigt es, den Fall der Potenzreste zu betrachten.

Definition 2.9. Es seien m, » natiirliche Zahlen mit m = 2, n = 2, a ganze Zahl
mit (a, m) = 1. Die Zahl a heiBt n-ter Polenzrest modulo m, sofern die Kongruenz
" =aqa (m) losbar ist.

Die Untersuchung derartiger Kongruenzen kann immer auf den Fall von an-
zahlpotenzmoduln zuriickgefiihrt werden. Dies geht aus dem nachfolgenden Satz
hervor, der fiir beliebige Polynomkongruenzen formuliert wird, was den Beweis nicht
komplizieren wird.

Satz 2.19. Es sei f(x) etn Polynom in x mit ganzzahligen Koeffizienten. Die Anzahl
der Losungen von

flxy=0 (m), m =‘H it
i=1

8t N = nyny - -+ - n,, wobet die n; die Anzahl der Lisungen von f(x) =0 (p;") be-
zeichnen.

Beweis. Die Losbarkeit der Kongruenz f(z) = 0 (m) ist gleichbedeutend mit der
Losbarkeit des Systems

fx)=0 (p) (i=12..7).

Im Falle der Lisbarkeit jeder einzelnen Kongruenz bezeichne x =¢; (p;") eine
Lésung der ¢-ten Kongruenz. Mit ¢ = 1, 2, ..., » erhilt man ein lineares System von
Kongruenzen, das nach Satz 2.10 eine eindeutig bestimmte Losung modulo m be-
sitzt. Durchlaufen die c; alle n; inkongruenten Ldsungen, so erhilt man insgesamt N
Lésungen modulo m.

Zunichst wollen wir Kongruenzen betrachten, deren Moduln aus der Potenz einer
ungeraden Primzahl bestehen.
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Satz 2.20. Es sei p eine ungerade Primzahl und a nicht durch p teilbar. Die Kon-
gruenz
?=a (p)
hat genau d = (n, p=}(p — 1)) inkongruente Losungen, wenn d | ind a. Andernfalls ist
die Kongruenz unlosbar.
Beweis. Die Aussage des Satzes ist durch Anwendung von Satz 2.3 auf die sich
ergebende lineare Kongruenz

nindz=inda (p-}p— 1)

klar.
Beispiel: rP=a (p), p=5,(¢,p)=1.
Esist d = (3, p — 1). Ist also p = —1 (6), so besitzt die Kongruenz genau eine

Losung. Ist dagegen p = 1 (6), so hat die Kongruenz entweder genau drei Lésungen
oder gar keine Losung.

Satz 2.21. Es sei p eine ungerade Primzahl, p 4 a und d = (n, p(p — 1)). Not-
wendig und hinreichend fiir dve Losbarkeit der Kongruenz

?=a (p)
18t das Bestehen der Kongruenz

1 .. _
=1 ). (13)

Beweis. Es sei g eine primitive Wurzel modulo p'. Nach Satz 2.20 ist die Kon-
gruenz genau dann 16sbar, wenn es eine ganze Zahl k gibt mit ind @ = & . d. Dann ist

= gte =g (p),

1
71)"‘(»— 1)
«

=gre-D=1 (p).
Es sei umgekehrt (13) erfiillt. Mit 4 = inda und « = g# () folgt aus (13)

%P"'(P—I)
g =1 (p).
Hierin muB der Exponent ein Vielfaches von p*-1(p — 1) sein, da g primitive Wurzel
ist. Also ist d  u. Das bedeutet aber nach Satz 2.20 die Lésbarkeit der Kongruenz.

Hilfssatz 2.6. Besiltzt die natiirliche Zahl m > 1 primitive Wurzeln und wstt | g(m),
so hat die Kongruenz a* = (m) genau t inkongruente Losung m.

Beweis. Fiir die Kongruenz tindx =0 (¢(m)) gilt (1, ¢(m)) = t. Aus Satz 2.3
folgt die Behauptung.

Satz 2.22. Ist p eine ungerade Primzakl und ist d = (n, p=Y(p — 1)), so gibt es

1
genau 7 P=Yp — 1) n-te Polenzreste modulo p'.
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Beweis. Nach Satz 2.21 ist die Anzahl der Potenzreste gleich der Anzahl der
Lésungen der Kongruenz (13). Nach Hilfssatz 2.6 folgt die Behauptung.

Beispiel: Hp=a (17).
Esistd = (4,16) = 4und 1 p~Y(p — 1) = 4. Also gibt es vier biquadratische Reste.
Es sind dies 1, 4, 13, 16. ¢

Bei der Betrachtung des Moduls 2' unterscheiden wir zwischen n =1 (2) und
n=0 (2).

Satz 2.23. Esseia=n=1 (2). Dann hat die Kongruenz
;r=a (2)
fiir v = 1 genau eine Losung.

Beweis. Wir unterscheiden die Fille v = 1, » = 2, » = 3. Fiir » = 1 handelt es
sich um die Kongruenz 2" =1 (2) mit der einzigen Losung z =1 (2). Fiir» = 2
istz=1 (4) wegen der Ungeradheit von n die einzige Losung im Falla =1 (4)
undz=—1 (4)fira=—1 (4.

Fiir » = 3 verwenden wir Satz 2.15. Danach laBt sich a in der Form

a=(—1)rb5 (2)

darstellen, und fiir  kénnen wir den Ansatz
z=(—1)ed (2)

machen. Dann folgt aus
(—1ye5m = (1) 50 (2)

¢ =17 (2) bei Betrachtung modulo 4. Schlielich mufl ny = s (2"-2?) sein, und diese
lineare Kongruenz hat wegen n = 1 (2) genau eine Losung. Also gibt es auch genau
eine Lésung z modulo 2+,

Satz 2.24. Esseia=n=1 (2),a = 1,» = 1. Dann hat die Kongruenz
2 =a (2

fir v < « + 2 genau 2~ Lisungen, falls a =1 (2') und fir v = x + 2 genau 2°4
Lésungen, falls a =1 (2**3). In allen anderen Fillen Vst die Kongruenz unlosbar.

Beweis. Fiir » = 1 ist alles klar. Daher sei » = 2. Entsprechend dem Beweis des
Satzes 2.23 setzen wir

a= (=15 (@), e=(—lp (),
52w = (—1)r 50 (2).

Die Betrachtung modulo 4 zeigt, da nur r = 0 (2) sein kann. Damitista =1 ()
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notwendig fiir die Losbarkeit. In diesem Fall ist
Qony =5 (2-%).

Jetzt trennen wir die Filley < a +2und » = « + 2.

1. » < « 4 2: Die lineare Kongruenz ist genau dann l6sbar, wenn s = s'2-3, also
a=1 (2)ist. Alle ganzen Zahlen y sind Losungen, das heit modulo 2'-2 gibt es
2 ~2Ldsungen y. Da ¢ gleich 0 oder 1 sein kann, gibt es 2! Lésungen z.

2. » 2 « + 2: Die lineare Kongruenz ist genau dann lgsbar, wenn s = 52¢, also
a=1 (2*?)ist. Die sich ergebende Kongruenz

ny=s (22

hat genau eine Losung y modulo 2:-*-2, also 2* Lésungen y modulo 2-2, Mit o = 0,1
ergeben sich 2+ Losungen z.

2.8. Quadratische Kongruenzen

Wir betrachten mit ganzen Zahlen «, b, ¢, m (m >1l,az=0 (m)) die quadratische
Kongruenz

a4+ br+c=0 (m).
Durch Multiplikation mit 4a kann diese Kongruenz auf die Gestalt
(2ax + b)® = b2 — 4ac (4am)

gebracht werden. Das heiit, daB man die Auflésung quadratischer Kongruenzen
véllig beherrscht, wenn man die speziellen Kongruenzen

2=a (m)

beherrscht. Damit ist die Problematik auf die Frage nach den quadratischen Resten
zuriickgefiihrt. Gegeniiber dem vorangegangenen Abschnitt kénnen wir in diesem
Spezialfall die Frage der Losbarkeit vollstindig beantworten. Genauer genommen er-
geben sich zwei Fragen:

1. Welche Zahlen a sind zu gegebenem m quadratischer Rest beziehungsweise Nicht-
Rest?

2. Welche Zahlen m haben die Eigenschaft, dup ein gegebenes a quadratischer Rest oder
Noicht-Rest ist?

Wihrend fiir die Beantwortung der ersten Frage relativ einfache Kriterien gegeben
werden konnen, ist die Beantwortung der zweiten Frage recht schwierig. Sie gelingt
mit Hilfe des sogenannten quadratischen Reziprozititsgesetzes, welches fiir die Weiter-
entwicklung der Zahlentheorie von aullerordentlicher Bedeutung war. Es wurde be-
reits von L. EULER auf Grund reichen Zahlenmaterialsentdeckt und von A. M. LEGEN-
DRE (1752 —1833) zum Teil bewiesen. Den ersten vollstindigen Beweis gab C. F. Gauss
im Jahre 1796. Von ihm selbst stammen insgesamt acht verschiedene Beweise.
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Heutzutage existieren zahllose Beweisvarianten, die sich aber alle in ihrem Grund-
prinzip auf fiinf schon bei Gauss vorkommende Typen reduzieren lassen.

Zunichst soll gezeigt werden, daB die Behandlung von Kongruenzen 22 =a (m)
mit Primzahlmoduln ausreichend ist. Nach Satz 2.19 geniigt es, Kongruenzen 22 =a
(p"), p Primzahl, zu behandeln. Man kann ferner (@, ) = 1 annehmen. Denn wire
pla,s0hittemanr =0 (p)im Fally = 1. Fiir» > 1 miiite 2 = py, also py* = a’
(p™1) (@ = pa’) sein. Notwendig fiir die Losharkeit ist a' = pa”, so daB man mit
y? =a" (p?) eine Kongruenz vom gleichen Typus erhilt.

Wir betrachten also jetzt Kongruenzen

#=a (p), (ap) =1 (14)

Der Fall p = 2 ist durch Satz 2.24 bereits erledigt :
1. » = 1: Es existiert genau eine Losung.
2. r=2: a) a=1 (4): Es existieren genau zwei Losungen.
b) a= —1 (4): Es gibt keine Losung.
3.»=3: a) a=1 (8): Es existieren genau vier Losungen.
b) as=1 (8): Es gibt keine Losung.
Wir wenden uns nun den ungeraden Primzahlen zu.
Satz 2.25. Ist p eine ungerade Primzahl, so hat die Kongruenz (14) entweder keine

oder genau zwei Lisungen. Ist a quadratischer Rest modulo p, so auch modulo p* und
wmgekehrt.

Beweis. Es ist (2, P! (p — 1)) = 2. Nach Satz 2.20 hat die Kongruenz (14)
genau zwei Losungen, wenn ind @ = 0 (2) und keine Losung, wenninda =1 (2).
Wir haben dann noch zu zeigen, daf ind ¢ unabhéngig von » durch 2 teilbar ist oder
nicht. Es sei ¢ eine primitive Wurzel modulo pr fiir beliebiges » = 1 und u, = ind «
beziiglich des Moduls p. Aus

a=g" (pr), a=gt=g" (p)
folgt 4, = p; (p — 1) und daher u, =, (2).

Von nun an nehmen wir (14) mit » = 1 zum Gegenstand unserer Untersuchungen.

Satz 2.26. Ist p eine ungerade Primzahl, so gibt es g el quadratische Resle

— 1\2
wie Nicht-Reste. Die quadratischen Reste sind durch a = 12,22, ..., (}’—2—) (p)
gegeben.

Beweis. Die angegebenen Zahlen sind modulo p inkongruent. Denn ist b2 = c(p)

mit 1< b <Pt

,s0ist b —¢c)(b+¢c)=0 (p). Wegen1 <b+c<p

folgt b —c =0 (p),alsob=c.Da(p— k)®=1£k* (p)ist, muB jeder quadratische
Rest einer der Zahlen a kongruent sein. Damit ist der Satz bewiesen.

In Anlehnung an A. M. LEGENDRE driicken wir die Aussage ,,quadratischer Rest‘
oder ,,quadratischer Nicht-Rest“ durch ein Symbol aus, das nur der Werte +1
fihig ist.
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Definition 2.10. Es sei p eine ungerade Primzahl und p 4 a. Das Legendre-
Symbol (i) (lies ,,a fiir p*‘) wird folgendermaBen festgelegt :
P

a\ _ [+1, wenn a quadratischer Rest modulo p,
p] | —1, wenn a quadratischer Nicht-Rest modulo p.

Es geht jetzt also darum, Regeln fiir die Berechnung des Symbols aufzustellen.
Klar sind die Eigenschaften

(i) = (2) fir a=bd (p),
P P
1

.2
&
P
21
Nach dem Satz von FErRMAT-EULER ist «?1 =1 (p) und ddher a 2
p-1
Nach Satz2.21 ist @ 2 =1 (p) notwendig und hinreichend fiir die Losbarkeit

der Kongruenz z? = a  (p). Damit haben wir den folgenden als Eulersches Kriterium
bezeichneten Satz:

Satz 2.27.

a 21
(—-) =a® (p).
P

= +1 (p).

Aus diesem Kriterium kann schon eine Reihe wichtiger Schliisse gezogen werden.
Satz 2.28.
ab a\ (b
(5)-6G)6)
Beweis.

r/\r
Satz 2.29.
2-1 Pl
(5)=cv=. (3) —(=n T
P P
Beweis. Die erste Formel folgt sofort, wenn man in Satz 2.27 a = — 1 setzt. Zum

Beweis der zweiten Formel betrachten wir das Produkt
p=1

= o
ﬁ(—l)"k:(P—; 1)! (-1 8.

k=1
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Ist in dem Produkt k¥ ungerade, so ersetzen wir —k modulo p durch p — & und er-

halten
P=1

f](—l)"k=2.4.6. (p—1) = ( )122 (p)-
k=1 2

Da p ¢ ( )' folgt

p—t a'—l
2 2 =(=1) ° (p)

und nach dem Eulerschen Kriterium die Behauptung.
Wir sehen uns zwei Beispiele zur Anwendung des Eulerschen Kriteriums an:

1. a2=—1 (p):
Wegen
—1 =(_1)’%‘= +1 fir p=1 (4),
P —1 fir p=—1 (4

ist die Kongruenz fiir p =1 (4) 1sbar, fiir p = —1 (4) unlésbar. Im Falle der
Losbarkeit sind die Losungen durch

e= ()

gegeben. Denn aus

p—1 = (—1) (—=2): - _p—1 (_1)Tl
2 ) 2

=e-0p-2-(r-257) @

=N\ =
((—2—)!)=<p Di=—1 ()

nach dem Satz von WILSON.

2 2=a (p), p=3 (), (%)=+1:

-

folgt

Die Lésungen sind
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Obwohl das Eulersche Kriterium eine Methode zur Berechnung von il gibt,

bringt es doch fiir groBe a erhebliche Miihe mit sich. Eine Vereinfachung bietet der
auf C. F. Gauss zuriickgehende folgende Satz.

Satz 2.30 (GauBsches Lemma). Es set p eine ungerade Primzahl und p 4 a. Man

reduziere die 2 ; ! Zahlen

a,2a,...,’);1a (15)

modulo p so, dap ihre Reste zwischen O und p liegen. Es set u die Anzahl derjenigen
Reste, die grofer als % sind. Dann gilt

(-
P

Beweis. Die gemiB der Anweisung modulo p reduzierten Zahlen (13) verteilen
wir auf zwei disjunkte Mengen. Die Menge 4 = {a,, ay, ..., ;) enthalte diejenigen

Zahlen ¢; mit 0 < a; < —f‘; und die Menge B = {b,, by, ..., b,} die Zahlen b; mit %

< b; < p. Da die Zahlen (15) modulo p inkongruent sind, gilt a; == a; und b; =+ b;

fiirv 4= j,undesist k + p = P ; l. Kann a; = p — b; sein? Dann muf} es Zahlen

p—1
2
Dapta,istx+y=0 (p). Das ist aber wegen 0 < z + y < p unméglich. Daher
bildet die Vereinigung der Mengen 4 und {p — b,,p — by, ..., p — b,] die Menge

1,2 ..., 2;—1} Damit haben wir

zymit 1 Sx,y < geben mit xa = p — ya (p) oder (x + y)a=0 (p).

p—l k " k "
( - )!=Ha..ﬂ(p—bm)E(—l)"na"Hbm »)
= n=1 m=1

n=1 m=

p-1

2 —1 Pt
= (=1 [T () = (— 1) (” )!a T ()
r=1

2

und
P-1

= a
(~r=a® = (—) (),
P
was der Behauptung entspricht.

Eine Vereinfachung in Anwendung des GauBschen Lemmas kénnen wir noch er-
zielen, wenn wir u modulo 2 betrachten. Bezeichnet [z] das groBte Ganze von z, so ist
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fiir p t na
w=[ﬂ]p+,,,, 1snsp—1.
P

Durch Summation iiber 2 von 1 bls

erglbt sich

p-1
2 _ 1 2
s (5] '~)
8 n=1 P
p-1
z k
=p2[—] + Zay+ Xba,
n=1 n=1 m=
wobei a,, by, k, u die obige Bedeutung haben. Weiter ist
p-1
pt— 1 2|
e Z[%]+ Za+So-to-mr2Zn
=1 P n=1
p-1
2 2 1 )
=-3 "—“]+” +u @),
n=1| P 8
also
p-1
2 2 _ 1
\ ﬂEE[_nﬂ].l,.p (@ —1) (2).
a=1| P 8

Fiir @ = 2 erhalten wir hieraus das schon bekannte Ergebnis fiir (3) des Satzes 2.29
und fiira =1 (2) den folgenden Satz: P

Satz 2.31. Fiir ungerades a ist

- <)

Das angekiindigte quadratische Reziprozititsgesetz erreichen wir jetzt schnell iiber
den Hilfssatz:

S
-

Das|

Hilfssatz 2.7. Fira=b=1 (2);a,b =3, (a,b) =1 gt

a=1 )
2 [bm
—| +
mzs‘l[ a ]
Beweis. Wir betrachten die Zahlen bm —anmitm=1,2,...,

2,..., b ) 1. l b 3 lst gleich der rechten Seite von (16). Die

ity

an a—1b—1
= = —_— 1
[b] 2 2 (16)

a—1

,yno=1,
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linke Seite von (16) erhalten wir durch eine verinderte Abzihlung. Die Anzahl der

Zahlen mit bm — an = 0 ist 0, da aus (a, b) = 1m = at, n = bt folgt, was nicht mog-

lich sein kann. Die Anzahl der Zahlen mit bm — an > 0 ist bei festem m durch
bm .

[T] gegeben und insgesamt

a-1

2%

Die analoge Betrachtung der Zahlen mit b;m — an < 0 gibt die zweite Summe auf der
linken Seite von (16).

Satz 2.32 (Gauss). Sind p, g verschiedene ungerade Primzahlen, dann besteht das
quadratische Reziprozitiitsgeselz
1

(B -

Beweis. Nach Satz 2.31 ist

(i) = (—1)m, (l).) = (—1)™
4 q9

p—1

~2f3) ne2fs)

mit

m=1| P
Aus (16) folgt sofort die Behauptung.

Zusammenfassung: Die folgenden Eigenschaften ermoglichen die Berechnung
eines jeden Legendre-Symbols:

S e
- (-()E)

C. Quadratisches Reziprozitiilsgeselz:

() =o™

D. 1. Erginzungssatz zum quadratischen Reziprozititsgesetz:

r;l
(-
P

E. 2. Erginzungssatz zum quadratischen Reziprozititsgesetz:

9 e
TR
P



Beispiele:

1. Ist 74 quadratischer Rest modulo 1312

B> (17:1) (él) (%)

131°—-1

g\ ==t
E:.(—-m)_( ) * =-—1.

37 WL 31 (131
¢ (131)~(_1) ('* )=(37)

131y 20\ [22\[5\ (5
AnB= (37) = (37) = (37) 37) = (37)
C=> ( ) = (_1)5; :"2 ' (ﬁ) = (_7)
5 5

37\ (2 =
AAE=>(5) (;):(—1) = 1.

74
Die Eintragung aller Teilergebnisse gibt ( ) = +1, so daBl 74 quadratischer
Rest modulo 131 ist. 131

2. Fiir welche Primzahlen p ist 3 quadratischer Rest beziehungsweise Nicht-Rest?

3 =1 71 P -t P
) =(—12 2 (L) _ (2 (£
Cs}(P) =y (‘*) =0 (3)

p=1+6k=> (3) = (—1)k.
P

p=—1+6L=>() (- 1)"+1(_—1)=(—1)*.
P 3

Damitist 3fiirp = 41 (12) quadratischer Restundfiirp = +5 (12) quadratischer
Nicht-Rest.

2.9. Aufgaben

1. Es ist zu zeigen: Eine natiirliche Zahl ist genau dann durch 13, 17, 19 teilbar, wenn die
Summe aus dem 4fach (—5)-fach 2fachen der letzten Ziffer der Dezimalbruch-
entwwkl\mg und der aus den restlichen Ziffern gebvldeten Zuhl du.rch 13 17, 19 teilbar ist.

h

2. Man besti il Lésungen der folgenden dic g
a) 255z = 83y = 202,
b) 137952z + 1743z = 416612,
c) 10z + 18y + 15z = 404.
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@ o

I

S ®© ®

11,
12.

1

@

15.
16.

. Man zeige: Fiir alle natiirlichen Zahlen » gilt p(n) < n — }'n.
. Man zeige: Es gibt unendlich viele natiirliche Zahlen 2 mit p(n) > @(» + 1).
. Man beweise die Identitit

. Man bestimme die Menge der Primteiler der Zahlen 9, 99, 999, ...
. Es werde die Folge n" (n = 1, 2, ...) modulo p betrachtet, wobei p eine Primzahl bedeute.

Es ist die Periodizitit der Restklassenfolge nachzuweisen und die Periodenlinge zu be-
stimmen.

. Man bestimme alle » mit (n) =1, 2, 3, 4, 5, 6, 14.
. Es bezeichne p, die n-te Primzahl. Man zeige:

@) Pt _ L
Pn! @(Pp!) P

n
b) Ist k= JTp"
i=1

mit v, =1 (i=1,2,..,n),s0gilt
ok) _ 9(pa!)

k P!

1

. Man zeige: Fiir alle natiirlichen Zahlen » gilt p(n) = — ﬁ

2
-

" [ 1
om =L it
Es sind alle primitiven Wurzeln modulo 17 zu bestimmen.
Es sind die folgenden Kongruenzen zu lésen:
a) 45z == 28 (17),
b) 27 =10 (17),
¢) 137 = 16 (17).

. Man berechne die Legendre-Symbole (Q), (26), (_209), ( 8 267) .

13)° \59)" \ 719 )" \55863

. Man lése, soweit méglich, die folgenden Kongruenzen:

a) 822+ 5z +1=0 (7),
b) 42* + 22+ 3 =m0 (15),
c)a® —3z2+2=0 (6),
d) 322+ 7z +1=0 (9).
Fiir welche Primzahlen p ist 2% = 1 (p) nichttrivial 16sbar?
Fiir welche Primzahlen ist a) 4, b) —1 biquadratischer Rest?



3. Endliche abelsche Gruppen

Die im vorangegangenen Kapitel erfolgte vollstindige Beschreibung der primen Rest-

" klassengruppe modulo m als direktes Produkt zyklischer Gruppen ordnet sich einem
allgemeinen Satz der Algebra iiber endliche abelsche Gruppen unter. Es wiirde hier
zu weit fiihren, die algebraischen Grundlagen unf: d zu entwickeln. Es sei dies-
beziiglich auf den Band 3, Algebra, der Studienbiicherei verwiesen. Dennoch ver-
bindet. sich hiermit eine der Natur nach zahlentheoretische Fragestellung nach der
Anzahl der wesentlich verschiedenen abelschen Gruppen gegebener Ordnung, die
nachfolgend angeschnitten werden soll.

Ferner sollen Funktionen iiber endliche abelsche Gruppen erklirt und untersucht
werden. Durch Spezialisierung auf die prime Restklassengruppe modulo p wird sich
zeigen, daB sich das Legendre-Symbol in harmonischer Weise einordnet. Durch den
Einbau dieses Symbols in trigonometrische Summen wird sich ein neuer Beweis des
quadratischen Reziprozitiitsgesetzes ergeben, der sich nicht mehr auf das GaufBsche
Lemma stiitzt und der somit einem tieferen Verstindnis des vielleicht wichtigsten
Gesetzes der Zahlentheorie dient.

3.1.  Nichtisomorphe endliche abelsche Gruppen

Bekanntlich heiBt eine abelsche Gruppe G direktes Produkt ihrer Untergruppen
A,, A,, ..., A,, wenn sich jedes Element g ¢ @ auf genau eine Weise in der Form
g=may- - -a, ;5 A4;,7=12,...,7) darstellen liBt. Man schreibt dann auch
G = A, X AyX -+ X A,. Mit Hilfe des direkten Produktes kann dann nicht nur wie
im vorigen Kapitel die Struktur der primen Restklassengruppen, sondern die einer
jeden endlichen abelschen Gruppe beschrieben werden.

Satz 3.1 (Hauptsatz fiir endliche abelsche Gruppen). Jede endliche abelsche Gruppe
ist das direkte Produkt zyklischer Gruppen von Primzahlpotenzordnung.

Dariiber hinaus gilt:

Satz 3.2, Die Darstellung einer endlichen abelschen Gruppe von Primzuahlpotenz-
ordnung als direktes Produkt zyklischer Gruppen 1st, abgesehen von der Reihenfolge der
Faktoren, eindeutig.

Hinsichtlich der Bewcise der beiden Sitze sei auf [5] verwiesen.
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Wir wenden uns nun der zahlentheoretischen Fragestellung, der Frage nach der
Anzahl der nicht-isomorphen abelschen Gruppen einer gegebenen Ordnung, zu. Die bei-
den obigen Sitze geben uns die Moglichkeit, diese Frage in Angriff zu nehmen.

Definition 3.1. Es bezeichne a(n) die Anzahl der nicht-isomorphen abelschen
Gruppen der Ordnung n.

Es ist also «(n) eine fiir alle natiirlichen Zahlen erkliarte Funktion, und spezicll ist
a(1) = 1. Die beiden Siitze geben eine Anweisung, wie man alle wesentlich verschie-
denen abelschen Gruppen einer gegebenen Ordnung n angeben kann. Man zerlege die
Zahl n auf irgendeine Art in ein Produkt von Primzahlpotenzen. Zu jeder derartigen
Zerlegung gibt es genau eine Gruppe. So gibt es zu jeder Primzahlordnung p genau
eine abelsche Gruppe, nimlich die zyklische Gruppe der Ordnung p. Zu n = p? gibt
es genau zwei abelsche Gruppen, und zwar die zyklische Gruppe der Ordnung p? und
das direkte Produkt zweier zyklischer Gruppen der Ordnung p. Allgemein erhilt man
zu n = p™ so viele abelsche Gruppen wie sich m als Summe von natiirlichen Zahlen
darstellen liBt, wobei die Reihenfolge der Summanden keine Rolle spielt. Daraus er-
gibt sich noch insbesondere die Eigenschaft

a(mn) = a(m) a(n) fir (m,n)=1.

Zieht man die kanonische Zerlegung von n in Primzahlpotenzen

n=]J]p (1)
i=1
heran, so ist also
a(n) = [] a(p?). @
=1
Es geniigt daher, a(n) fiir eine Primzahlpotenz n = p° zu untersuchen. Das gibt Ver-
anlassung zu der folgenden Definition.

Definition 3.2. Jede Darstellung einer natiirlichen Zahl n als Summe von natiir-
lichen Zahlen, wobei die Reihenfolge der Summanden keine Rolle spielt, heifit eine
Partition von n. Mit P(n) werde die Anzahl der Partitionen von n bezeichnet.

Wir geben ein paar Beispiele an. Die Zahl 1 besitzt die einzige Partition 1. Fiir die
Zahl 2 finden wir die Moglichkeiten 2, 1 - 1; fiir die Zahl 3 haben wir 3, 2 + 1,
1+ 1+ 1; fiir dieZahl4gebenwir 4,3 + 1,2+ 2,2+ 1+ 1,14+ 1+ 14 1an.
Wir notieren die folgende Tabelle:

n|l|2|3|4|5|6|7|8 91101

poy |1 |2]8] 5] 7] ] 15]22]30] 4

|l
| 56

Daraus gewinnen wir fiir a(r), worin p eine beliebige Primzahl bedeutet :

v
ot

n|l|2|3l4|5|6|7]8|9 10] p| p2|0*| 0| p°
am| 1] u]e|t]t]1]3]z2 1235 |7

—
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Die kurze Tabelle fiir P(n) zeigt schon, daB diese Funktion mit » enorm wichst. Wir
iiberlegen uns eine grobe, aber einfache Abschitzung von P(n). Schreiben wir die
Partitionen von » auf, so kénnen wir dies allgemein wie in den Beispielen tun. Zu-
niichst ist n eine Partition. Dann gibt es P(1) Partitionen, die mit » — 1 beginnen;
P(2) Partitionen, die mit » — 2 beginnen. Allgemein gibt es P(k) Partitionen, die
mit n — k beginnen, sofern ¥ < n — k ist. Wird & > n — £, so schiitzen wir die An-
zahl der bestehenden Méglichkeiten nach oben ebenfalls mit P(k) ab. Insgesamt ist

Py <1+ 5 P(M).
k=1

Aus P(1) = 1 folgt hieraus durch Induktion P(n) < 2*1. Wir iibertragen diese Ab-
schitzung auf a(r). Nach (1), (2) und der Definition von P(n) ist

a(n) = I']P(vi) (3)
i=1
und daher
a(n) < Qutntetr-r, )

Zur Formulierung des Ergebnisses fiihren wir noch die folgenden Funktionen ein.

Definition 3.3. Es bezeichne 2(n) die Anzahl der Primfaktoren von n und w(n)
die Anzahl der verschiedenen Primfaktoren von n.
Mit diesen Funktionen ergibt sich aus (4):

Satz 3.3.
a(n) < 29m-w(n),

Fiir quadratfreies » ist wegen 2(n) = w(n) stets a(n) = 1. Beachtet man die Ab-
schitzung

r
n=[]prz 2%,
i=1
s0 sieht man fiir n > 1

an) < n- 270w <

o=

In Kapitel 7 werden wir wesentlich genauere Abschitzungen fiir a(r) vornehmen
konnen. Die dazu benstigten Hilfsmittel stehen uns an dieser Stelle noch nicht zur
Verfiigung.
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3.2.  Charaktere endlicher abelscher Gruppen

Definition 3.4. Ein Charakter y einer endlichen abelschen Gruppe G ist eine auf ¢/
erklarte, komplexwertige nicht identisch verschwindende Funktion mit der Eigen-
schaft

7(ab) = x(a) 7(b)
firallea, b ¢ G.
Einfache Eigenschaften der Charaktere:
1. Fiir alle a € G ist g(a) = 0.

Es bezeichne e das Einsel t von Gund a~1daszuainverse Element. Nehmen wir
an, es existiert ein Element ¢ € G mit y(c) = 0. Dann ist y(e) = y(cc™!) = y(c) z(c™?)
= 0 und fiir beliebiges a ¢ G z(a) = y(e) x(«) = 0 entgegen der Voraussetzung, daB »
nicht die identisch verschwindende Funktion sein soll.

2, z(e) = y(e?) = yle) xle) = yle) = 1.
3. Die simtlichen Losungen 2, der Gleichung 2" — 1 = 0, n ¢ N, bilden die n-ten
Einheitswurzeln

2ni
z,=e¢ "; r=12,...,n.
Hat die Gruppe G die Ordnung 7, so ist a® = e fiir jedes a € G. Daher ist y(a)
= y(a®) = y(e) = 1, und jeder Charakter ist eine n-te Einheitswurzel. Der Charakter y,
mit der Eigenschaft y,(a) = 1 fiir alle a ¢ G heift der Hauptcharakter von G.

Satz 3.4. Eine abelsche Gruppe der Ordnung n besitzt genau n verschiedene Charak-
tere.

Beweis. Wir fiilhren den Beweis zunichst fiir eine zyklische Gruppe G. Die Gruppe
wird danndurch die Potenzen a, a?, ..., a" = e eines Elementes gebildet. Ein Charakter
7 von G ist wegen y(a’) = y(a)’ durch die Angabe des Wertes y(a) vollstindig be-
stimmt. Wegen a® = ¢ ist y(a)* = 1, also y(a) eine n-te Einheitswurzel. Da es nur
n verschiedene n-te Einheitswurzeln gibt, kann es also hochstens n verschiedene Cha-
raktere geben. Umgekehrt definiert aber jede n-te Einheitswurzel o durch die Fest-
legung y(a) = ¢ einen Charakter. Denn aus a™a™ = a™ folgt n, + n, =ny; (n) und
o™Mo™ = g™. Somit gibt es genau n verschiedene Charaktere.

Zum Beweis fiir beliebige endliche abelsche Gruppen ziehen wir den Satz 3.1 heran.
Danach lifit sich G als direktes Produkt G = G; X G, X - X G} von zyklischen
Gruppen G, Gy, ..., G; darstellen. Haben die Gruppen G; die Ordnungen »; (j = 1, 2,
..., k), so hat die Gruppe @ die Ordnung n = n;n, - --- - m. Bilden q; die erzeugenden
Elemente von G, so liBt sich jedes Element a ¢ G eindeutig in der Form a = a,"
X (01 <my— 155 = 1,2,..., k) darstellen. Fiir jeden Charakter y
von @ ist y(a) = ylay)"* y(as)™ « -+ - g(a). Bezcichnet o; cine n;-te Einheitswurzel,
so ist demzufolge durch die Vorgaben y(a;) = 9; der Charakter 4 von G eindeutig
bestimmt. Da o; genau n; verschiedene Werte annehmen kann, gibt es genau
n == nyn, - --- - n; verschiedene Charaktere von G.
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Die n verschiedenen Charaktere einer abelschen Gruppe der Ordnung » werden wir
mit %, %z, --., Zn bezeichnen. Dabei sei y, der Hauptcharakter.

Wir definieren das ,,Produkt* zweier Charaktere y,, 7, von G durch die Festsetzung
(770 (@) 1= z4(a) x(@), a € G. Dann ist auch y,y, ein Charakter von G, was aus

(xs1t) (@b) = y4(ab) ye(ab) = y.(@) ze(a) 1,(b) x:(b)
= (2a20) (@) (2s22) (b)
unmittelbar folgt. Daraus erkennt man sofort, daB die Charaktere von G selbst eine
abelsche Gruppe G*, die Charaktergruppe von @, bilden. Das Einselement bildet der
Hauptcharakter y,. Der zu y inverse Charakter y~! ist durch y~(a) = %) gegeben.
— za

Wegen jy(a)| = 1ist y~}(a) = x(a), wobei der Strich den zu y(a) konjugiert komplexen
Wert andeuten soll.

Satz 3.5. Die Charaktergruppe G* einer endlichen abelschen Gruppe G ist zu G iso-
morph.

Beweis. Ist G von der Ordnung 7, so nach Satz 3.4 auch G*. Es sei entsprechend
einer direkten Produktzerlegung von ¢

a=a"a,r - a O=srsn—1,7=12..,k)

mit » = mn, - - - n; eine Basisdarstellung der Elemente von G. Ist o; eine primitive
n;-te Einheitswurzel, das heiBt ¢;” % 1 fiir 0 < 7; < n; und ¢ = 1, so 1aBt sich
jede n;-te Einheitswurzel in der Gestalt o, darstellen, wobei 8; modulo n; festgelegt
ist. Demnach gilt

#a) = ormgr e e g,
Damit ist jedem Charakter y € G* eindeutig ein Exponentensystem (s, s, ..., 8;)
zugeordnet. Die Abbildung dieses Charakters auf das Element b = a,%a," - .-+ - q;%

liefert offensichtlich einen Isomorphismus zwischen G* und G.

Satz 3.6. Es seten G eine endliche abelsche Gruppe der Ordnung n mit den Elemen-
ten «y, @y, ..., a, und G* die zugehorige Charaktergruppe mit den Elementen y, (Haupt-
charakter), xq, ..., xa. Dann ist

L] n fir r=1
v) = ’ 5
& wla) {0 fir 7 >1, ®)
L] n fir a, =e,
) = (]
.é;"'(a) {0 fir a, +e. ©

Bemerkung. Ersetzt man in (5) y, durch y,7, und in (6) a, durch a,a,™?, so erhilt
man die Orthogonalititsrelationen

" — n fir r=3s
= ! 7
'-Z;Z'(a-) 2s(a,) {0 fiir 7+, (7)
" _ n fir r=3s
= ’ 8
V‘Z; 2(ar) x.(a,) {0 fiir r s (8)
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Beweis. Die Behauptung (5) ist fiir 7 = 1 sicher richtig. Sei jetzt » > 1. Es gibt
ein Element b € G mit #,(b) = 1. Mit a, durchléuft ba, die volle Gruppe G. Daher ist

8y = X nlba) = Z; #B) z:(a,) = 7:() S,
v=1 e

und folglich §, = 0.

Die Behauptung (6) ist fiir a, = e wieder klar. Also sei @, % e angenommen. Wir
méchten entsprechend dem ersten Teil des Beweises zu a, einen Charakter 3’ € G*
mit y'(a,) = 1 angeben. Die Existenz eines solchen Charakters geht aus folgendem
hervor: Es bezeichne D die Determinante '

D=zl (Gji=12..,n),

worin 7 den Zeilenindex und j den Spaltenindex darstellen. Wegen (7) ist DD = =", also
D von 0 verschieden. Demnach kénnen in D auch keine zwei Spalten iibereinstimmen.
Weil y(e) = 1 fiir alle Charaktere gilt, muf in der r-ten Spalte wenigstens einmal
x(a,) == 1 sein. Also gibt es ein ;' € G* mit y'(a,) & 1. Dann durchlduft aber mit y,
auch 'y, die volle Gruppe G*, und es ist

Sy =X (') (ar) = X ') z.(a)) = 7'(ar) Sy,
yve=1 v=1

also S, = 0.

3.3. Restklassencharaktere

Wir wenden nun die Ergebnisse des vorangegangenen Abschnitts auf die prime Rest-
klassengruppe modulo m an: Diese mit G,, bezeichnete Gruppe ist eine endliche abel-
sche Gruppe der Ordnung @(m). lhre Charaktere sind also iiber die primen Rest-
klassen @ = {x: a0 € Z,z =« (m)) mit (a, m) = 1 erklirt. Sie konnen durch die fol-
genden Festlegungen als Funktionen iiher alleganzen Zahlen aufgefa Bt werden. Es sei
€ Z und (z,m) = 1. Wir setzen y(x):= y(@), wenn 2 € @. Dann ist natiirlich
2(x) = y(y) fir x =y (m). Fir (x, m) = (y, m) = 1 ist ebenfalls y(zy) = x(z) x(y).
Da y(a@) = O fiir jede prime Restklasse @ ist, haben wir bei der neuen Vereinbarung
#(x) == 0 fiir alle Zahlen 2 mit (x, m) = 1. Also liegt es noch nahe, y(x) = 0 fiir
(z, m) > 1 zu setzen. Zusammenfassend definieren wir:

Definition 3.5. Ein Restklussencharakter modulo m ist eine iiber Z erklirte
Funktion mit den Eigenschaften

2la) = x(b) fir a=b (m),
7(ab) = z(a) z(b) firalle a,b< Z,
zla) =0 fiic (a,m) > 1,

2@ +0 fir (¢, m) = 1.
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Aus dem Abschnitt 3.2. entnehmen wir: Es gibt ¢(m) Restklassencharaktere mo-
dulo . Sie bilden eine multiplikative abelsche Gruppe, die der Gruppe der primen
Restklassen modulo m isomorph ist. Das Einselement ist der Hauptcharakter y, mit
(@) = 1 fiir (@, m) = 1. Es bestehen die Relationen

_ [olm) fir z=zx,
i) _{ 0 fir g+,
g(m) fir n=1 (m),

?Z(n) ={ 0 fir n=1 (m).

Dabei wird die erste Summe iiber ein beliebiges vollstindiges Restsystem modulo m
und die zweite iiber alle Restklassencharaktere erstreckt.

Diesem allgemeinen Begriff des Restklassencharakters ordnet sich nun das in
Kapitel 2 betrachtete Legendre-Symbol L , aufgefaBt als Funktion seines Zihlers,
V4
unter. Es war fiir ungerade Primzahlen p und fiir alle ganzen Zahlen a mit (a, p) = 1

erklirt. Setzen wir zusdtzlich (i) = 0 fiir (a, p) > 1, so erfiillt es alle Eigenschaften
P

2
der Definition 3.5. Wegen 2) = 1, (a, p) = 1, nennen wir es den quadratischen

Restklassencharakter modulo p. Da fiir einen Charakter y aus ¥ = x~! und der For-
derung 32 = 1 die Beziehung y = 7 entsteht, sind die quadratischen Restklassen-
charaktere modulo p als die vom Hauptcharakter verschiedenen reellen Charaktere
festgelegt.

An dem Beispiel m = 5 soll noch die Bestimmung aller Restklassencharaktere
modulo 5 demonstriert werden. Wegen ¢(5) = 4 gibt es vier verschiedene Charaktere
mit den méglichen Werten +1, +1 fiir (a, 5) = 1. Aus #(2) 4(3) = %(6) = z(1) =1
folgt #(3) = x~1(2). x(4) ist durch z(2) wegen x(4) = x(2)? festgelegt. Daraus erhilt
man die Tabelle

a [ 1 2 3 4 5
z1(a) 1 1 1 10
22(a) 1 -1 -1 10
#a(a) 1 i —i =1 0
2a(@) 1 — i —1 0

Insbesondere liest man gy(a) = (%) ah.
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3.4. GauBsche Summen

Definition 3.6. Es sei ; ein beliehiger Restklassencharakter modulo m. Die
Summe
an

2ai
Ga, )= me ™
amodm
wird die zu y gehérige Gaufsche Summe genannt. Dabei durchlduft » ein vollstin-
diges Restsystem modulo m.

Es soll hier keine allgemeine Theorie der GauBschen Summen entwickelt werden.
Wir begniigen uns mit einigen wenigen Aussagen und legen unser Hauptaugenmerk
auf die Gauischen Summen nach quadratischen Restklassencharakteren. Beginnen
wollen wir aber mit dem einfachsten Fall, der erst in Kapitel 5 von Bedeutung sein
wird, némlich der zum Hauptcharakter y, gehorigen GauBschen Summe. Diese wird
auch Ramanujansche Summe genannt und iiblicherweise durch c,(a) := G(a, 3;)
bezeichnet. Es ist dann

Cpla) = )E’ ehi;.
(n.”:)lzl !

Diese Summen lassen sich infolge ihrer Multiplikativitat beziiglich m auf Primzahl-
potenzen zuriickfiihren und damit berechnen.

Satz 3.7. Fiir (my, my) = 1 ist
Cmymy(@) = C,(@) Cm (@)
Fiir Primzahlen p und v = 1 gilt

pl(p—1) fir pria,
cpl@) =4 —p? fir pllanp ta,
0 fir p-1ta.
Beweis. Durchlaufen #; (j = 1, 2) prime Restsysteme modulo m;, so durchléauft
nymy + nym, wegen (m,, my) = 1 ein primes Restsystem modulo m,m,. Daher ist
™ my 2,;0.'“'”;;"&
n,(@) Cmy(@) = X e = Cmm, (@)
By=1 m=1
(nymy)=1 (W3, my)==1
Die angegebenen Werte fiir c,»(a) ergeben sich sofort aus
» o P
c,.(a) — E e2rianp™ Zezmaur' — 2 e2vianp'="
n=1 =1 n=1
(mp)=1
Nun wenden wir uns einigen allgemei Aussagen iiber GauBsche Summen zu.

Satz 3.8. Fiir beliebigen Restkl harakter y modulo m und fir (a, m) = 1 gilt
Qla, 1) = 1(a) G(1, 7).
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Beweis: Wegen (a, m) = 1 durchlanfen mit » auch die Zahlen an ein vollstindiges
Restsystem modulo m. Aus g(a) z(a) = 1 folgt y(n) = y(a) z(a) x(r) = %(a) z(an)
und daher

.an

il 2ni:
Gla, ) = 3 zm)e ™ =ya) ¥ ylaw)e ™

nmod m nmod m
— wmid
=ya) X x(k)e ™= za)G(1, ).
kmodm
Ist (a,m) > 1, so ist stets y(a) = 0. Dagegen kann G(a, y) sehr wohl von O ver-

schieden sein. Der néichste Satz gibt eine notwendige Bedingung.

Doetbl, 7

Satz 3.9. Es sei y etn rakter modulo m. Fiir die ganze Zahl a sei
(a, m) > 1 und G(a, y) = 0. Dann existiert ein Teiler t von m mit 0 < t < m und

20y =1 fir (b,m)=1Ab=1 ().

Beweis. Essei (a,m) =dund t = L} Wegend > 1ist 0 < ¢ < m. Es sei b so
gewiihlt, daB (b,m) = 1und b=1 (¢). Dann ist

2ni— 2:-&ﬂ
Gla, )= X zmye " = 3 yibn)e ™

nmodm nmod m

.abn
=) X ame ™.

smod m
Aus abn = an + antk = an + % nmk = an  (m) ergibt sich

G, 1) = ) T 2w &= ) 6la, 7).

Fiir G(a, ) & 0 muB dann notwendigerweise z(b) = 1 sein, was den Satz beweist.

Definition 3.7. Ein Restklassencharakter y modulo m hei3t primitiv, wenn es fiir
jeden Teiler ¢ von m, 0 < t < m, eine ganze Zahlbmit b=1 (#), (b, m) = 1, gibt,
so daB y(b) = 1 ist.

Fiir m > 1 ist der Hauptcharakter x, nicht primitiv, da y,(b) = 1 fiir alle b mit
(b, m) = 1ist.

Ist m = p eine Primzahl, so ist jeder vom Hauptcharakter verschiedene Charakter
x primitiv. Der einzig mogliche Teiler ¢ von p mit 0 < ¢t < p ist ¢ = 1. Wiire y nicht
primitiv, so miifite y(b) = 1 fiir alle b mit (b, p) = 1 sein. Das kann aber nur der
Hauptcharakter sein.

Doctll,

Satz 3.10. Ist y ein primitiver Restk harakter modulo m, so ist G(a, ) =0
fiir jedes a mit (@, m) > 1.
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Beweis. Gibt es ein a mit G(a, y) =0 und (a, m) > 1, so gibt es nach Satz 3.9
einen Teiler ¢ von m mit 0 < ¢t < m, so daB} z(b) = 1 fiir (b, m) =1lund b=1 ()

54

wird. Dann kann aber y nicht primitiv sein.
Satz 3.11. Ist y ein primitiver Restklassencharakter modulo m, so gilt

16(1, 7)) = Ym.
Beweis. Die Behauptung folgt aus
JE— m__ g
GL R =0G(1, )G, ) =Gl Y m)e "

m 2 m "‘": L Gt Y]
=XOmpe "=3 Xyke "
n=1 n=1 k=

n m =D

™ =my(l) =m.

Z‘ (k) Ze
=1
Im Hinblick auf das quadratische Reziprozitilsgesetz betrachten wir jetzt den quadra-
(a) nach einer ungeraden Primzahl p. Wir haben

tischen Restklassencharakter y(a) =

dann
p—-1 LA
Gla, =X (ﬁ) e
n=1

und nach Satz 3.8
Gla, ) = (i) 61, .
P

Gegeniiber Satz 3.11 kénnen wir ein weitergehendes Resultat erzielen

Satz 3.12. Ist p eine ungerade Primzahl und y(n) = (ﬁ), so gilt
4

p-1
Gl 2t =(-1"* )
Beweis. Es ist
k\ 2mi
onor-3 2 34
n=1 k= P
Fiir festes n gibt es zu jedem k ein durch k = nm (p) eindeutig bestimmtes m mit
(m, p) = 1. Daher ist
2D 5y Pl ommtD
o =% % (""’”) o (ﬂ) R
n=1 m=1 Ml P/ n=1
—1 -1 (o —1
= - +(p-NN{—])=- =) +p(—
Z(5) e G)--E6) )
p-1
=(-1*p

nach den Sitzen 2.26 und 2.29.
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Zur Berechnung von G(1, z) fiir y(n) = (l) ist nach (9) in
4

(=3
'

»nur noch das Vor 1 zu besti Aber darin liegt dic eigentliche ganze
Schwierigkeit, die selbst C.F.GAuss erst nach mehreren vergeblichen Versuchen
meistern konnte. Wir werden dieses Problem im nidchsten Abschnitt l6sen, befreien
uns aber zunichst in der Definition dieser speziellen GauBschen Summe von der

@, » = :I:l/(—l)

ioh

direkten Verwendung des Restklassencharakters (ﬁ) . Fiir ungerade Primzahlen p
ist namlich L

p=1 () 2m® il 2qi20

Gan =2 (=)e ™ =z Tz,

k=1 \P 3

wobei in der ersten Summe iiber alle quadratischen Reste 7 und in der zweiten Summe
ither alle quadratischen Nicht-Reste n modulo p zu summieren ist. Aus

k

a ak
P 0

Ri—

" p-1 2ai
>k
¥=0

2mi 2
L+Xe P +3e
r n

fiir (e, p) = 1 folgt

ar

% i-
Gan=1+25e"7,
;

und da jede Kongruenz 22 =r (p) genau zwei Losungen x = +k (p) hat, erhalten
wir

p=1 omilis

Ga, x) =kz:) e P . (10)

3.5.  Das quadratische Reziprozititsgesetz
im Lichte der GauBschen Summen

Die Darstellung (10) soll zum AnlaB genommen werden, derartige Summen auch dann
zu erklidren, wenn p keine Primzahl ist.

Definition 3.8. Esseia eine natiirliche Zahl und b eine ganze Zahl mit («, b) = 1.
Die Summe

a—1 gg‘in'
Go(b) = Z; e °

wird quadratische Gaufsche Summe genannt.

Unsere Aufgabe soll darin bestehen, diese Summe zu berechnen. Zunichst wird
sich zeigen, daB die quadratische GauBsche Summe beziiglich a einer multiplikativen
Eigenschaft geniigt. Damit konnen wir uns auf den Fall einer Primzahlpotenz a = p*
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beschrinken. Fiir p = 2 gelingt unssodann die Berechnung von G,(b) sofort. Fiira = 2’

berechnen wir vorerst nur G4(1). In Verbindung mit einem Reziprozititsgeselz, welches
G,(b) in Gy (a) iiberfiithrt, konnen wir schlieBlich G,(b) rekursiv berechnen. Uber (10)
gelingt uns dann eine Verbindung zum quadratischen Reziprozitdtsgesetz.

Satz 3.13. Fiir (a,a’) = 1 gilt
Go(a'b) Gy(ad) = Goupe(D).
Beweis. Esist
1 20ttt
aa

Go(a'b) G, (ab) = "2‘1 az’ e

a=1 a" —lz-u—(a n-+an’)t
=3 Xe
n=0n=0
ag’=1 2ail
=X e “ =G,
k=0
unter Ausnutzung des Hilfssatzes 2.1.

Satz3.14. Firb=1 (2)1st

Gy(d) = 0 (11)
und fir v > 1
2721 + ) fir »=0 (2),
Gy(b) = v+l b (12)

22¢ % fir v=1 (2).

Beweis. Durch Ausrechnen bestitigt, man leicht (11) und fiir » = 2,3 auch (12).
Setzen wir jetzt » > 3 voraus. Dann ist

2-1-13
Gu(d) = 3 Z‘ez-ubr'(,, P
i n= 0r=0
2r-tmy

— 27ib2-"n* nibnr
e ).7 ¢

22—
=1y 2nib2tmt
m=0
da die Summe iiber r fiir ungerade n den Wert 0, fiir » = 2m den Wert 4 annimmt.
Wegen (m + 22 =m? (2'") fiir » > 3 folgt

Gp(b) = 2 Ee”"”""'" 2G-4(b).

m=0

Damit kann G, (b) auf Gy(b) oder Gg(b) zuriickgefiihrt werden, je nachdem, ob » gerade
oder ungerade ist. Aus diesen Anfangswerten ergibt sich unmittelbar (12).
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Die Berechnung des Betrages der quadratischen GauBschen Summe bietet keiner-

lei Schwierigkeiten.
Satz 3.15. Fiir (a,b) =1 1st

Ya fir a=1 (2),
1Gad)l = | Y2a fiir a=0 (4),
0 fir a=2 (4).
Beweis. Wir behandeln die drei Fille getrennt.
La=1 (2):
a—1 2n—(u. —n.‘)

Gt =5 T

=0 ny,=0

(13)

Wir setzen n, = ny + m. Durchliduft n, bei festem n, ein vollstindiges Restsystem

modulo «, dann auch m. Daher ist

2m£m‘ a—1 unimn.
1G,y(b)2 == Ze Se =a,

m=0 ny==0

- da die Summe iiber n, fiir m = 0 den Wert a, sonst aber 0 hat.

(14)

2. a=0 (4): Wir kénnen die Entwicklung (14) benutzen. Die Summe iiber n,

hat jetzt fiirm = Qund m = %- den Wert a, sonst 0. Daher ist |G,(b)|? = 2a.

3.a=2 (4): Mita=2u,u=1 (2),folgtausSatz3.13 und (11)
Go(b) = Gy(ub) G,(2b) = 0.

Damit ist der Satz in allen Teilen bewiesen.

Wir nehimen jetzt die Berechnung von G4(1) iiber eine Produktdarstellung der qua-
dratischen Gaupschen Summe vor. Diesem Ziel dienen die beiden folgenden Hilfssitze.

Hilfssatz 3.1. Fiir ungerade, natiirliche Zahlen n und beliebige reelle Zahlen x gilt

n—1 s n-1
I1sin2a (:c + L) = 21-7(—1) % sin 27 nx.
v=0 n
Insbesondere Vst

n—1

) 1=
Hsin2:t—y-= : ]/n,
v=1

n

s
1

1

-1 1-8

» »-1

cos 21— = (—1) ¢ 27 .
n

.

-

Hier und in folgendem sollen leere Produkte stets den Wert 1 haben.

(15)

(18)

a7
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Beweis. Die Losungen von 2" — 1 = 0, die n-ten Einheitswurzeln, sind gegeben
durch

2mie
z,=e " v=0,1,..,n—1).

Dabher ist
n—1 27it
IN\:—e ")=2—1.
v=0

Da 7 ungerade ist, durchliuft mit » auch 2» ein volles Restsystem modulo n. Setzen
wir noch z = e~4%%, g0 haben wir

n—1 3 2mi— i
H (e—lmx —¢ ") — e—dminz _
»=0
Durch Multiplikation dieser Gleichung mit
n-1 ( 2::-'(:—%)) .
—e — _e2ninz

ergibt sich

n=1( om :+%) —2m'(z+ ) . .
I \e —e n]) _ g2ning _ g—2ninz

»=0
und damit (15). Der Grenziibergang x — 0 liefert aus
nﬁlsin 27 [x + ') = o.—n(_l)"T_l sin 2nnx
r=1 4 n) sin 2nx

die Gleichung

n—1

et v v
I1 sin 27 — = 2'=%(—1) * =,
vl n
Hieraus gewinnen wir
n—-1
- n v n—1
. v o = _ re
Il sin 27z — sin 2z = 21-n(—1) * n,
n

=

. v
sin? 27 — = 2!~
n

.
1

! ist, folgt hieraus (16). Zum Nachweis von (17)

Dasin2nl>0ﬁirl§ v g"
n

2
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1
setzen wir in (15) x = T und erhalten

n=1 »
I] cos2a — = 21,
n

v=1
n—1

2 »
I cos? 27 — = 21-n,
v=1 n
=1

Il cos2x — =422 |
v=1

. - . . . n
Zur Bestimmung des Vorzeichens stellen wir cos 2z 2 >0firlsr< Y und
n
—1

5 fest. In den Faktoren des Produktes (17) tritt

cos2nl<0f|’ir£<v§n
n 4
n—1

2

2

— 2 __ 1
tigt man 2 2 ! — [i] =2 3 (2). Damit ist auch (17) bewiesen.

also -— [%]-mal das Minuszeichen auf. Durch eine leichte Rechnung besta-

Hilfssatz 3.2. Mit co(x, n) = 1 und

Y 1 — gnek+l
c(x,n) = p=1,2,...,n
=1 ———— 0 )

gilt fiir nichinegative ganze Zahlen n mit n =0 (2)
n n/2
2 (=1ycfz,n) =[] (1 —a*71), (18)
v=0 k=1

Beweis. Fiir n = 0 ist die Giiltigkeit von (18) trivial. Wir betrachten die linke
Seite von (18) zunichst fiir beliehige ganze Zahlen n = 2. Aus der Definition von
¢,(x, n) folgt

1—an 1—a
e (v, n) = T c(r,n —1) =cfzx,n — 1) + 2" l—ﬁc.(x,n —1)
=c,(x,n — 1) 4+ 2"¢,_,(x,n — 1).

Daher ist, wenn wir die linke Seite von (18) mit f(z, n) bezeichnen,

n—-1
fle,n) =1+ (=1)" + ' (—1) ez, n)
v=1

n—1
L+ (=1 + (=1 {efz, m — 1) + ae,(z, n — 1)}
v=1

=5 1 (L — ) e n — 1)

r=1

= (=) B (— ) eyl n — 2) = (L — 27) f(a, 1 — 2).

ve=1
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Aus dieser Rekursionsformel folgt wegen f(x, 1) = 0 als Nebenergebnis f(x,n) = 0
fiir ungerade 7 und wegen f(z, 0) = 1 fiir gerade n die Behauptung (18).

Aus diesen beiden Hilfssitzen ergibt sich fiir die quadratische GauBsche Summe
eine Produktdarstellung, die eine Berechnung von G,(1) erméglichen wird.

Satz 3.16. Fiir (a,b)=1,a=1 (2)gilt

o_l a—l b
G,b) =22 + i-9) " sin 22y —. (19)
»=1 a
b
— i
Beweis. Wir benutzen die Beziehung (18) mit n =a — 1 und z =¢  °. Fiir
¢,(x, a — 1) erhalten wir
lm‘—b b
* 1 —e 2miv(r+1) —
c,(:c,a—l):”——kb=(—l)'c ¢
k=1 —hi—;

1—e
und damit fiir die linke Seite von (18)

a5 2min( —omi(Z)L ooy amif21o0)2
Z(—l)'C(I.E—l)—212 r(+l)- c-z( )" Z‘lez(ﬂl )a

=0 r=0 =0
—omi(222)'2
=e ( 2 )“ Go(b). (20)
Fiir die rechte Seite von (18) erhalten wir
a=—1

a=1
2

— gmi(ek—1)2
f—won =g (- "7)
k=1

—ox la— n—l _
: ‘( )" @ "sm 27(2k — 1)— (21)

Zur Umformung des Produktes auf die Gestalt (19) unterscheiden wir die Fille
a=1 (4)unda=3 (4).Im Falla=1 (4) bilden die Zahlen 2k — 1fiir1 < k

a— 1 . a+3
< . Fir

! die ungeraden Zahlen unterhalb il

sin 2n(2k — 1) l = sin 2n(a — 2k’) E- = —sin 272k’ innt K =%1 — k. Da-

durch erhalten wir ergéinzend die gemden Zahlen 2’ unterhalb 2= Hinza kommen

®— ! Minuszeichen. Aus (21) entsteht

b -1
e —)7 B

1 -
2 T b

kn (1 — 2% =¢ n sin 27w; (22)
=1 vl
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1
die un-

Analog bilden im Fall a= 3 (4) die Zahlen 2k — 1 fir 1 <k < ad
I.Fﬁr“:s 2= 1 ist sin 2a(2k — 1) >
a

geraden Zahlen unterhalb il k=<

1
= —sin 222k’ 2 mick =21

— k. Wir erhalten die erginzenden geraden Zahlen

2k’ verbunden mit S— 8 Minuszeichen. Aus (21) wird

e=—1
5 R A
[1(—attyy—¢ ‘2222
k=1

1
= b
I sin 22y —. (23)
=1 a
(18) liefert die Identitit einerseits von (20} und (22) und andererseits von (20) und
(23). Beide Identititen zusammengefaBt ergeben (19).

Satz 3.17 (Gavss).

o =1 1+ o v (24)

Beweis. Fiira =2 (4) folgt (24) aus (13). Auch fira =1 (2) ergibt sich (24)
sofort aus (16) und (19). Fira =0 (4) setzen wira =2« mit a =2, u =1 (2).
Damit erhalten wir aus Satz 3.13

Go(1) = Gpa(u) Gy(2°)-
Ist x gerade, s0 ist Gy(2°) = Gu(l). Hierfiir ist (24) schon bewiesen, und mit (12) ist

Gt = 221 + ) 2 (1 4 i Ya = (1 4 9 Ya.

Ist « ungerade, so ist G,{2*) = G,(2). Hier folgt aus (19)

u—1

+ 1"‘)Hsm _

v=1

¥-1

@) =2"°

I—l
=2%"31 +7) (1 + ¢~ “)nsm—cos@

vel
und aus (18), (17)
02 = (—1) T 2 1

Damit ergibt sich aus (12)

-1

Gty = (1) * ‘}f’(lw—")e a4 0a,

und der Satz ist in allen Teilen bewiesen.
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Nunmehr sind wir in der Lage, fiir die quadratischen Gaufischen Summen selhst
ein Reziprozititsgesetz aufzustellen, aus dem das guadratische Reziprozititsgesetz
unmittelbar folgt.

Satz 3.18. Sind «, b natiirliche Zahlen mit (a,b) = 1, und ist b=1 (2), sogilt

Gu(b) = V—‘b‘- ! ;‘ L1+ i) G (25)

Beweis. Nach Satz 3.13 ist fiir (a,b) = 1
Go(b) Gyla) = Gay(1)-
Durch Multiplikation mit dem Konjugiertkomplexen von Gy(e) erhilt man
Go(b) |Gy(a)i* = Gap(1) Gp(a).

Nach (13) ist |Gy(@)i2 = bfiirb =1 (2). Setzt man dies und fiir Gy(1) noch (24) ein,
s0 ergibt sich (25).

Anwendung auf die quadratischen Reste: Ist p eine ungerade Primzahl
und ¢ eine beliebige Zahl mit (p, ¢) = 1, so ist nach Satz 3.8, (10), und Definition 3.8

6yl0) = (%) &,(1).

Durch Eintragen von (19) findet man daraus die merkwiirdige Darstellung des
Legendre-Symbols

'-’;—l sin 27:17i
(1) -0 —2= (26)
p "=!" sin 2ay —

oder mit (16)
21 p-1
2

N2 [Ieinowl, 27)
P Vo =1 P

Die beiden Ergiinzungssiitze des quadratischen Reziprozititsgesetzes

s poy
(‘—') =7, (3) - °
D p

liest man aus (27) bei Verwendung von (16) und (17) miihelos ab.

Fiir den Beweis des quadratischen Reziprozititsgesetzes bieten sich jetzt zwei
Varianten an: Entweder man benutzt die Produktdarstellung (26) des Legendre-
Symbols oder direkt das Reziprozititsgesetz (25) der GauBschen Summen. Da beide
Beweise nach der geleisteten Hauptarbeit sehr kurz sind, sollen auch beide darge-
stellt werden. Dabei bedeuten p, ¢ jetzt immer ungerade Primzahlen mit p %= ¢.
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1. Variante: Benulzung der Produktd llung (26) des Legendre-Symbols. Hier-
zu sei nebenbei bemerkt, daBl die Darstellung (26) allein aus dem Eulerschen Kri-
terium und dem Hilfssatz 3.1 gewonnen werden kann, so daB der hier eingeschlagene
Weg iiber die GauBschen Summen véllig unnétig ist. Nach (13) ist

sin2.-n'l =1, , ,
P _ge-y_yp)® nsin2.-;(L+’_)
1 P q

sin 2ar —

g (P=D@-1 pT = N » »
L =(—9 4 I sin 27 (— + ) sin 2% (— — —)
(1’) =1 'IJ r ¢ P 9
und hei Vertauschung von p und ¢ das quadratische Reziprozititsgesetz

(-0

2. Variante: Benutzung des Reziprozilitsgesetzes (25) der Gaufschen Summen. Aus
Gylg) = ( ) G,(1) und aus (24) leitet sich wegen der Ungeradheit von p
r

p=1
60 - (2) g
p

und ebenso
p @-n
¢») =(—)i " e

her. (25) laft sich auf die Gestalt

— ey
Gyla) = V% 5 o

bringen. Durch Einsetzen erhélt man

(3)- T = )
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3.6.  Aufgaben

1. Man bestimme das Produkt simtlicher Elemente einer endlichen abelschen Gruppe.

2. Es sind alle abelschen Gruppen der Ordnung 6, 18, 30 und ihre Zerlegungen in direkte Pro-
dukte zyklischer Gruppen anzugeben.

3. Man bestimme simtliche abelschen Gruppen der Ordnung 8 und gebe fiir jede Gruppe die
2ugehérigen Charaktere an.

4. Es seien p eine ungerade Primzahl, p 4 b und v = 2. Man zeige

Gyr(b) = pGyr-s(h)

und schlieBe daraus

p? fir v=0 (2),
Gp(d) = v=1

P E GO fir veml (2).

5. Es sei p eine ungerade Primzahl, p  bund » = 1 (2). Man beweise
(L) pi2 fir p=1 (),
Gpr(b) = R
i|—=}p2 fir p=3 (4).
()



4, Algebraische und transzendente Zahlen

Die bekannten systematischen Bruchentwicklungen der reellen Zahlen vermégen nur
héchst unvollkommen die Eigenschaften der durch sie dargestellten Zahlen wider-
zuspiegeln. Jede derartige Entwicklung vermittelt im wesentlichen nur einen Zu-
sammenhang zwischen der betreffenden Zahl und der gewihlten Grundzahl, bei der
Dezimalbruchentwicklung der Grundzahl 10. Selbst die Unterscheidung zwischen
den rationalen und irrationalen Zahlen ist verhiltnismiBig kompliziert. In diesem
Kapitel werden wir Darstellungen der reellen Zahlen — die Kettenbruchentwick-
lungen — kennenlernen, die unabhingig von besonders ausgewihlten Zahlen sind.
Die rationalen werden von den irrationalen Zahlen in einfacher Weise durch die End-
lichkeit beziehungsweise Unendlichkeit der Entwicklungen getrennt. Dariiber hinaus
liefern die an einer Stelle abgebrochenen Entwicklungen in einem.gewissen Sinne beste
Approximationen durch rationale Zahlen. Wir setzen die Untersuchungen der irratio-
nalen Zahlen durch ihre Unterscheidung in algebraische und transzendente Zahlen
fort. Es wird sich herausstellen,da8 ,,fast alle‘ Zahlen transzendent sind. Das Kapitel
wird mit dem Nachweis der Transzendenz der Zahlen e und = abgeschlossen.

41.  Die Entwicklung reeller Zahlen in Kettenbriiche

Der in 1.3 entwickelte Euklidische Algorithmus zur Bestimmung des grofBten gemein-
samen Teilers zweier natiirlicher Zahlen kann andererseits zur Entwicklung von
rationalen Zahlen in Kettenbriiche ausgenutzt werden. Sind a,, ¢, €¢ N mit @, > a, > 1,
so folgt aus dem Euklidischen Schema in 1.3

a,

2=gq +-2 0<=2<1

a, @ a,

a a. a

= q: + =3 0 < =3 <1

a, a, ay

a,_ 1
g+ < /<1

Ayy n-1 Aymy

Ty




66 4. Algebraische und transzendente Zahlen

Triigt man nacheinander die 2., 3., ..., n-te Gleichung in die erste Gleichung ein, so
erhilt man fiir ag/a, die Entwicklung

a, 1
—=q+ =q¢ +
a, 3 1
g+ — 42 +
“2 an_ﬂ
ag
1
=¢+ 1
@+t —
4+, 1
+—
1
-1 + —

Diese Entwicklung nehmen wir zum AnlaB, allgemein den Begriff eines Kettenbruches
festzulegen.

Definition 4.1. Unter einem Kettenbruch versteht man die Entwicklung

[ao; a1, g, .. .] 1= a9 + ! 1
a, + -
Uy .
Dabei ist a, eine beliebige relle Zahl, und die Teilnenner a,, a,, ... sind positive Zahlen.
Ist die Folge {a,) eine unendliche Folge reeller Zahlen, so spricht man von einem
unendlichen Kettenbruch. Die gegebene Definition ist in diesem Fall zunichst ganz
formal, da noch die Frage der Konvergenz zu kliren ist. Besteht die Folge {a,} nur
aus endlich vielen Elementen, so haben wir einen endlichen Kettenbruch
[ao; @1 @, ...y ] = ag + !
a + —M8M——
as+ ., 1
. + —
am
Wir wollen unter [ay; a,, s, ..., a;] fiir ¥ = O den k-ten Abschnitt eines vorgelegten
Kettenbruches [ay; a,, ¢y, ...] beziehungsweise [ay; a,, ay, ..., a,] verstehen. Fiir den
unendlichen Kettenbruch kann k beliebig, fiir den endlichen Kettenbruch muB k < m
sein. Wir beschiftigen uns zuniichst mit diesen Abschnitten.

Satz 4.1. Die Zahlen p, und g; seven definiert durch
=1, po=ag, Pr=tipp1 + D2 k21), (1)
g1=0, =1, @G=ag 1+ @ (k=1). (2)

Dann lift sich jeder k-te Abschnitt eines Kettenbruches [ay; ay, a,, ...] darstellen in der
Form

[ao; a1, s, ..., ax] = % (k =0). 3)
&
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Die Briiche p;/q; heiBlen die Niherungsbriiche k-ter Ordnung des vorgelegten Ketten-
bruches.

Beweis. Fiir & = 0 ist

[ae] = ao = Do
o
und fiir k =1
[do; a,]_ao+——M=ﬁ’-
ay a N

Weiter schlieBen wir durch Induktion. Es sei die Darstellung (3) richtig fiir k¥ < n.
Dann folgt die Richtigkeit fiir n + 1 iiber

1
[ao; a1, @z, ..oy dpy Cua] = | @03y, s, - oy gy, +
@psy

a, + Pua + Pae

( " “nu) " " _ s1(FaPa-1 + Pr-2) + Pn-x
1 Ay iy (Angn - -

(“n " - ) Gos + o w+1(@ndn1 + Gn2) + Gna
n+1

_ @naPn + Prey _ Pen

rrGn + Go1 Gner
Satz 4.2. Firk =0 ist

Pefe-1 — Piade = (— 11, )
und fir k = 1 gilt
GPr2 — Pege-2 = (— 1)1 ap. [t2)

Beweis. Durch Multiplikation der Rekursionsformeln (1), (2) mit g,_, beziehungs-
weise p;_, erhalten wir

Pide-1 = @GPr-19i-1 + Pe-2i-1»
Pr1@e = CPe-19e-1 + Pe1Ge-2
und durch Subtraktion beider Gleichungen
Prfir — Peade = — (Peae-2 — Pi-2Ge-1)
= (—1)*(pog-1 — P-190) = (— 11,

Damit ist (4) bewiesen. Entsprechend ergibt sich aus (1), (2) durch Multiplikation mit
Q12 beziehungsweise pp_,

QePr-2 = Gfe1Pr-2 + de-2Pe-2»
Pedi-2 = QPe-19e-2 + De-2qi-2
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und durch Subtraktion

ePe-2 — Pede-2 = — Gk Pe-rGi-2 — Ge-1Pr-2) -
Verwendet man hierin (4), so ergibt sich sofort (3).

Aus diesem Satz konnen wir eine wichtige Folgerung ziehen. Aus (5) folgt fiir
k=2
P P2 (—Va

' Qi—2 TiQi-2

Die rechte Seite dieser Gleichung ist fiir gerades k stets positiv und fiir ungerades &
stets negativ. Also bilden die Naherungshriiche gerader Ordnung eine streng monoton
wachsende Folge, die Niaherungsbriiche ungerader Ordnung eine streng monoton
fallende Folge. Aus (4) ergibt sich fiir k = 1

{3 /8] Qi1

e P _ (D

Hieraus erkennt man, daB jeder Niaherungsbruch ungerader Ordnung gréfer ist als
jeder Niherungsbruch gerader Ordnung.
Insgesamt erhilt man: LBt sich die reelle Zahl & durch einen endlichen Ketten-

bruch « = [ay; @y, ay, ..., a,] darstellen, so ist fir 2k + 1 <n
Dok <a< Pai+1 (6)
92k 2k

und &« = ==, Jedem unendlichen Kettenbruch [a,; ,, a,, -..] entspricht eine Folge

{pe/qs} von Nnherungsbmchen Konvergiert diese Folge, das heifit, ist llm p,,/q‘. =,

so fafit man « als den Wert des unendlichen Kettenbruches auf und setzt o = [a,;
@y, 4y, ...]. Fir die Folge der Niherungsbriiche gilt dann stets die Ungleichung (6).

Im weiteren wollen wir uns ausschlieBlich auf Kettenbriiche mit natiirlichen Ele-
menten beschrinken. Dabei soll angenommen werden, daB die Zahlen a,, a,, ...
natiirliche Zahlen sind und die Zahl a, ganz ist. Endliche Kettenbriiche mit letztem
Element 1 sollen ausgeschlossen sein.

Satz 4.3. Unendliche Kettenbriiche mit natiirlichen Elementen sind stets konvergent.

Beweis. Wir zeigen, daB die Folge {p:/qi) dem Cauchyschen Konvergenz-
kriterium geniigt : Zu jedem beliebigen ¢ > 0 gibt es eine natiirliche Zahl n,, so daBl
_ Pm

9m

fiir alle k, m > n, gilt I L < &. Wir kiénnen k > m annehmen. Dann ist
9

k— k-1
< m_&{= L

P Pn
b .
wla @) g

' I
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Da ay, a,, ... € N gind, folgt aus (2) ¢, = «, 2 1 und ¢ = ¢;—, + 1 fiir £ = 2. Daher
ist g = k. Fiir unsere Abschitzung erhalten wir

Pr  Pu - _ “‘(1 1 )_ 1
G Qu| SmlH+ Dy Th\y v+ 1 m k
1 1
<—<—<e,
m ng

1
sofern man nur n, > — wiihlt. Dies beweist den Satz.
€

Satz 4.4. Jede reelle Zahl « lift sich cindeutig in einen Kettenbruch mit natiirlichen
Elementen entwickeln. Der zugehorige Kettenbruch ist endlich, wenn « rational ist; er ist
unendlich, wenn o irrational vsl.

Beweis. Es bezeichne allgemein [z] die grofte ganze Zahl, die kleiner oder gleich
z ist. Wir setzen

1
[«] = aq, “=an+7, a = [ag; n].
73

Dabei ist fiir nicht-ganzzahliges « stets r, > 1. Jetzt schreiben wir

1
nl=a, ’1=‘l1+r—, o = [a; a1, 75].
2

Diesen Prozef setzen wir beliebig fort. Ist im n-ten Schritt r, > 1, so bilden wir

1
[ml=a,, rm=a,+—, a=][apan...,a,"%m]
Fpaa
mit 7,,; > 1. Diese Entwicklung gilt allgemein, sofern ry, 7,, ..., r, nicht ganzzahlig
sind.

Ist « rational, so sind auch alle 7, rational. Es zeigt sich, daB dann unser Prozefl
nach endlich vielen Schritten abbricht. Ist nimlich », = s,/t, mit natiirlichen Zahlen
8y by und t, > 1, (85, t,) = 1, so folgt aus

1
Osn—a=—<1

Tn+1

— agt z,
ogﬁ_a"=w=t_"<1,

i tn n

Damit ist 2, < ¢,. Fir z, = 0 ist die Entwicklung beendet. Fiir z, > Oist r,_, = f,/z,.
Damit hat r,,,, einen kleineren Nenner als r,, weshalb die Folge {r,) nach endlich vielen
Schritten eine natiirliche Zahl erreicht. Die vorgegebene reelle Zahl « besitzt daher eine
endliche Kettenbruchentwicklung, deren letztes Element grofer als 1 ist.
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Ist « irrational, so sind auch simtliche 7, irrational, und der ProzeB 1iBt sich un-
begrenzt fortsetzen. Dabei gilt fiir jedes n

a = [ag; dy, -y Uns Traals
Pn
qn
Wir zeigen, daf die Folge {p,/g,} gegen « strebt. Es ist

= [ag; ay, ..., a,]-

«— Pn _ Ta1Pa + P _ P _ Pnrdn = Pudn
I Tande T @t G GnlMnaadn + Gna)
Mit Hilfe von (4) ergibt sich
1 1 1
x—Pr|_ < =—
qn In(Tasrgn + go-1)  Gul@nir@n + Ga-1)  GuGun

Wegen ¢, — oo fiir n — oo folgt daraus

7

a = lim &.

a0 Jn
Wir haben noch die Eindeutigkeit der Entwicklung nachzuweisen. Dazu nehmen wir
an, « habe die beiden Entwicklungen

o = [ag; ay, 4z, ...] = [ag’5 0/, o', .. ],

wobei die Kettenbriiche sowohl endlich als auch unendlich sein kénnen. Offensicht-
lich ist [x] = a¢ = ay’. Nunseischon a; = «,’ fiir k < n nachgewiesen. Fiir diese k ist
dann auch p, = p’, ¢ = ¢’, wenn py, g, dem ersten und p;’, ¢;" dem zweiten Ketten-
bruch zugeordnet sind. Aus

= Tnt1Pa + Poa Tas1Pn S Phy _ Tn1aPa + Paa

Tadn + Gt Tnale’ F Uhoy Twerdn + ot

folgt r,., =7p,,.Dadyyy = [run]unda; ., = [r; .,]gilt, haben wiraucha,., = a, . So
ist durch Induktion die Identitit beider Kettenbriiche nachgewiesen, und der Satz
ist in allen Teilen bewiesen.

Die Entwicklung der reellen Zahlen in Kettenbriiche mit natiirlichen Elementen
gibt gegeniiber den systematischen Bruchentwicklungen nicht nur den Vorzug der
scharfen Trennung der rationalen von den irrationalen Zahlen. Bricht man beide
Entwicklungen an einer bestimmten Stelle ah, so erhilt man A pproximationen der vor-
gegebenen Zahl durch rationale Zahlen. Die durch die Néherungsbriiche der Ketten-
bruchentwicklung gegebenen Approximationen sind dabei erheblich besser. Dies
zeigt die Ungleichung (7), die offensichtlich auch fiir endliche Entwicklungen zu-
trifft. Mit ¢,., = ¢, folgt:

Satz 4.5. Ist p,/q, der n-te Niherungsbruch der Kettenbruchentwicklung von «, so gilt
| _ 1
«— -

| @
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Auf solche Approximationen von reellen Zahlen durch die Naherungsbriiche ihrer
Kettenbruchentwicklung soll im nachsten Abschnitt noch niher eingegangen werden.

Wir betrachten hier noch periodische Kettenbriiche, die, wie sich zeigen wird, den
quadratischen Irrationalititen zugeordnet sind. Was versteht man unter einer quadra-
tischen Irrationalitit? Bekanntlich ist jede Zahl ﬁ irrational, wenn N eine natiir-
liche Zahl darstellt, die keine Quadratzahl ist. Dabei ist ﬁ Lésung der Gleichung
2% — N = 0. Allgemeiner nennen wir jede reelle, nichtrationale Lisung der quadra-
tischen Gleichung ax? + bz + ¢ = 0 mit ¢,b,c € Z, a £ 0, eine quadratische Trra-
tionalitit.

Der unendliche Kettenbruch x = [a,: ay, a,, ...] heiBt periodisch, wenn es ganze
Zehlen n = 0, b = 1 gibt, so daB fiir beliebige k = n stets ai.., = a; gilt. Wir schrei-
ben dann

&= [“o? Uy -o ey Uy Upy ""an+h—l]'

Satz 4.6. Jeder periodische Kettenbruch stellt eine quadratische Irrationalitil dar.
Umgekehrt besitzt jede quadratische Irrationalitit eine periodische Kettenbruchent-
wicklung.

Beweis. 1. Es sei der periodische Kettenbruch
«=[ap;ay, .., Gpy, Uy ooy Gppa)

vorgelegt. Wir betrachten den aus den periodisch wiederkehrenden Elementen be-
stehenden Anteil des Kettenbruchs

s = [an;anﬂs cees Quip-1y Ay ooy Quap1y |
= [t} Buets -+ Basn-1, Tal-
Fiir b = 1 ist
e in— s L
und r, geniigt der quadratischen Gleichung
12— a,r, —1=0.

Fir k> 1 bezeichne p"[q", p'/q’ die letzten beiden Niherungsbriiche von [a,;
@giys - s Boipy ), Wobei in diesem Kettenbruch ausnahmsweise a,.,—, = 1 zugelassen
ist. Nach Satz 4.1 ist dann

_Prntyp

7 ) n?
qre + ¢

80 daB auch in diesem Fall r, einer quadratischen Gleichung

ar24+br,+¢c=0
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mit ganzzahligen Koeffizienten geniigt. Aus

D170 + Paz

o = [ag; a3, ..y Wy gy ) = (n21)
InaTn + -2
bestimmt sich r, zu
= Pr-2_— Gn-2% .
In-18 — Pa-1

Durch Einsetzen in die quadratische Gleichung fiir r, erhilt man eine solche fiir & mit
ganzzahligen Koeffizienten:

Ao? 4+ Ba +C =0. (8)

Da & durch einen unendlichen Kettenbruch gegeben war, ist « irrational. Also ist «
eine quadratische Irrationalitit.

2. Umgekehrt sei jetzt « als quadratische Irrationalitit vorgegeben. & geniigt also
einer Gleichung (8) mit ganzzahligen Koeffizienten. Wir entwickeln « in einen Ketten-
bruch:

o = [ag; ay, @, ...] = [@; @15 -y Upy, 7ol = Mﬁj
In-1"n + Gn-2

Durch Einsetzen in (8) erhilt man eine quadratische Gleichung fiir 7,:

Aura® + Byrg + €y = 0. )
Die ganzen Zahlen 4,, B,, C, errechnen sich zu

An = Aps_y + Bpasgur + Oy,

B, = 24P, 1Pn-2 + B(Pardn-2 + Pr-oda-1) + 20¢u-1dn-2>

Co = Apy_» + Bpu-sgus + Oy = Ans-

Dabei ist 4, = 0, denn sonst hitte (8) eine rationale Losung. Wir zeigen jetzt, daBl
die Koeffizienten 4,, B,, C, beschrinkt sind. Nach Satz 4.5 gibt es eine Zahl 6,_; mit

Ons

Pn-1 = Gpq +

n—-1

und |6, < 1. Damit ergibt sich fiir 4,

0p-1\? Op_
4,= 4 (O‘qn—l + 2 l) + B ("‘qn—l + 2 l) Gn1 + Cany

n-1 n—1
2
= (Ao? 4 Ba + O)gh_y + 24ad,, + 4 221 ¢ Bs_,
n—1

|4, < 2{4al + 4] + |Bi.
Wegen C, = 4,_, ist noch
ICal < 2]da] + 4] + |B.
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Eine leichte Rechnung zeigt

B,* — 44,0, = (B* — 44C) (Pu-1Gn-2 — Ta-1Pn-2)* = B* — 44C.
Dabher ist

B,* < 4[4,C,| + |B® — 44C| < (2]4a| + |4]| + |B|)? + |B* — 440|.
Insgesamt konnen die Koeffizienten 4,, B,, C, nur endlich viele verschiedene Werte
annehmen. Nach Gleichung (9) kommen dann aber auch fiir die r, nur endlich viele
verschiedene Werte in Frage. Ist fiir geeignete n und % etwa r, = r,,, und

Thn = [a'n; all+l! b '] )

Faeh = [@nens @nsners <21,

so folgt aus der Eindeutigkeit der Kettenbruchentwicklung u; = ay., fiir k 2 n. Da-
mit hat sich eine periodische Entwicklung ergeben.

4.2.  Approximation reeller Zahlen durch rationale Zahlen

Prinzipiell 1dBt sich jede reelle Zahl mit beliebiger Genauigkeit durch rationale
Zahlen approximieren, da die rationalen Zahlen in der Menge der reellen Zahlen dicht
liegen. Das heiBt, zu jeder reellen Zahl « und zu jedem ¢ > 0 finden sich rationale
Zahlen p/g mit |x — p/g| < e. Es entsteht die Frage, was man bei Vorgabe von « und
¢ iiber die rationalen Zahlen p/q aussagen kann. Wir wollen die Frage nicht ausfiihr-
lich diskutieren und erwithnen nur folgenden Satz.

Satz 4.7. Zu beliebigen reellen Zahlen o und ny mit ) = 1 gibt es ganze Zahlen p und
g, die die Ungleichungen
. . 1
gr—p <—, (=g¢g=m
7
erfiillen.

Beweis. Der Satz ist fiir rationale « = a/b mit 1 < b < trivial. Wir konnen
daher entweder & als rational mit b > 5 oder als irrational annehmen. Wir betrachten
die Naherungsbriiche p;/g; der Kettenbruchentwicklung von « und bestimmen zu 7
ein 7 aus g, < 7 < ¢pya- Nach (7) ist dann

1 1
R % DU B
qn Yndn+1 qn7

was der Behauptung des Satzes entspricht.

Eine andere Fragestellung ergibt sich, wenn man zu & eine Approximation p/g an-
nimmmt. Wie klein kann zu gegebenen & und ¢ die Zahl ¢ in [« — p/g| << ¢ gemacht
werden? Hieriiber erhalten wir durch Satz 4.5 eine Auskunft: Approximiert man x
durch Niherungsbriiche p,/g, seiner Kettenbruchentwicklung, so wird der Fehler
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unter g, 2 gedriickt. Wie sich zeigt, sind diese Approximationen in einem gewissen
Sinne optimal.

Definition 4.2. Die rationale Zahl «/b, («,b) =1, b > 0, heilit beste Approxi-
mationder reellen Zahl «, wenn fiir alle rationalen Zahlen p/g mit 0 < ¢ < bund p/q = «/
b gilt

4 <
a2
b

a—Lf
q

Es bestcht die bemerkenswerte Tatsache, daB die Naherungsbriiche der Ketten-
bruchentwicklung von « zugleich beste Approximationen dieser Zahl darstellen.
Wir beweisen den in dieser Richtung bestehenden Satz von J. L.. LAGRANGE (1736 bis
1813).

Satz 4.8 (LAGRANGE). Ist p,/q, fiir n = 1 ein Néiherungsbruch von «, so gill fiir alle
rationalen Zahlen plg mit 0 < q < q,, p/q = P,/q, die Ungleichung
g — pol < lgx —p'.
Dieser Satz sagt etwas mehr aus als urspriinglich behauptet wurde. Aber aus

a— P

P
& — =

q
folgt die Eigenschaft der besten Approximation von « durch p,/g,.

@ <qla—L|<q,

Beweis. Wir konnen sogleich & = p,/¢, annehmen. Wir erfiillen die Gleichung
9% — P = M(gnx — Pa) + N{gn-1® — Pu1), (10)
wenn M und N aus dem Gleichungssystem
Mpy + Nppy =p
Mg, + Ng,.y = ¢
gewonnen werden. Da sich die Koeffizientendeterminante zu
Pn Pa
9n o1

ergibt, ist das System eindeutig 16sbar, und iiberdies sind die Zahlen M und N ganz.
Wegen p/q == p,/q, muB N = 0 sein. Dann ist entweder M = 0 oder M und N haben
verschiedene Vorzeichen, weil sonst entgegen der Voraussetzung ¢ > g, wire. Da-
mit haben die Summanden auf der rechten Seite von (10) gleiche Vorzeichen. Denn
auch die Klammerausdriicke haben verschiedene Vorzeichen, da es sich bei p,.,/¢,-;,
Pa/gn um benachbarte Niherungsbriiche handelt. Daher ist

= (=11

igx — pl = |M(gax — pa)i + IN(ga1& — Poa)| 2 19016 — Paal-
Inx = [aq; ay, ..., Up, Tpar] i8t 744y > 1, da wirgrundsitzlich nur solche Kettenbriiche
betrachten. Aus
.= Palner + Poy
@nTne1 + Gn-1
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folgt
In1% — Pn1
gn% — P

TFavl = —
und

lgx — Pl =2 |@n-18 — Pori > [gnex — P!
Dies beweist den Satz.

An Hand zweier Beispiele, der. Zahlen ﬁ und =z, soll die Niitzlichkeit der besten
Approximation demonstriert werden. Es werden jeweils die ersten drei Ndherungs-
briiche iiber die Formeln (1) und (2) als beste Approximationen angegeben und dle
Abschitzung des Fehlers nach Satz 4.5 vorgenommen.

1. Beste Approximationen von ]/:

Wegen

V2 =1+ ()2 _1)_1+)+(Vl§—1

besitzt 1/2 die periodische Kettenbruchentwicklung ]/E = [1; 2]. Daraus ergibt sich:

p- <L<0007

¢ 2-5+2 12

2. Beste Approximationen von z.

Das allgemeine Bildungsgesetz des Kettenbruches von = ist nicht bekannt. Be-
nutzt man eine geniigende Anzahl von Stellen der Dezimalbruchentwicklung von =z,
so kann man die ersten Elemente des Kettenbruches ermitteln. Es ist 2 = [3; 7, 15,
1, 292, ...]. Daraus folgt

m_7T3+1_ 2 ,—,_2 <+ <0021
o 711 7 9

.99 43 3:
P15 3_ 338 ] D PO
e 15-7+1 106 106 | = 106%

- 338 2 B :
P _ 1333422 355 1 D U,
% 1-16+7 113 n3 |~ 1

Bemerkenswert ist, daB die erste und dritte beste Approximation weit besser sind
als die theoretischen Fehler angeben. So ist = — 22/7 = —0,001 ... und » — 355/113
= —0,0000002 ... Um so erstaunlicher ist, dal alle drei Approximationen als gute
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Néherungen lingst bekannt waren, bevor die Theorie der Kettenbriiche entwickelt
war. Die Zahl 22/7 wurde von ARCHIMEDES (um 287—217 v. u. Z.) angegeben, und
die Zahlen 333/106, 355/113 kannte bereits Apriants METIUS (1571—1635).

Wir beziehen jetzt in die Betrachtung auch Approximationen p/g der reellen Zahl «
mit
c
-

q

ein, wobei n eine beliebige natiirliche Zahl sein kann. Es wird die Frage nach der
Beschaffenheit von « gestellt, wenn die Ungleichung bei vorgegebenem n unendlich
viele Losungen in rationalen Zahlen hat, wobei ¢ von diesen nicht abhiangen soll.

Definition 4.3. Die Zahl « ist approzimierbar durch rationale Zahlen zur Ordmung
n (n € N), wenn eine nur von « abhingende Konstante ¢(x) existiert, so daB

¢(x)
P

r

o« — <

unendlich viele Losungen p/g € @ besitzt.

Satz 4.9. Eine rationale Zahl ist «pprozimierbar zur Ordnung 1 und zu keiner
hoheren Ordnung.

Beweis. Es sei « = a/b mit (a, b) = 1. Die lineare diophantische Gleichung ag
— bp = 1 hat unendlich viele Losungen p, ¢ mit (p, ¢) = 1. Aus der Gleichung folgt

a p_ 1

b ¢ b
und

a P 2

b og| ¢’

so daf} diese Ungleichung unendlich viele Losungen besitzt. Also ist « = a/b approxi-
mierbar zur Ordnung 1. Sind b, ¢ > 0 und a/b = p/g, so folgt

Eine Approximation zur Ordnung 2 erfordert ¢ < bc. Diese Ungleichung laBt sich
nur endlich oft realisieren. Daher kann eine rationale Zahl nicht zur Ordnung 2
approximierbar sein.

Satz 4.10. Jede irrationale Zahl ist approximierbar zur Ordnung 2.

Beweis. Jede irrationale Zahl besitzt eine unendliche Kettenbruchentwicklung.
Nach Satz 1.5 liefern die Ndherungsbriiche die gewiinschten Approximationen.

Satz 4.11. Eine quadratische Irrationalitiit ist nicht approximierbar zu einer Ord-
nung, die grofer als 2 ist.
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Beweis. Die quadratische Irrationalitit o = [ag; a4, as, ...] besitzt eine perio-
dische Entwicklung, so daB ihre Teilnenner a, beschrinkt sind. Es sei 0 < a, < M
fiir alle n = 1. Setzt man & = [ay; ay, .- ., @, 7441], 80 ist nach dem Beweis zu Satz 4.4

1
GnlTnerdn + gn1)’

P

6 — —=

an

1
Aus 741 = Gy + — < @g4y + 1 folgt
Tn+2

! > ! .
@n((@ner + 1) @n + €o-) ~ (M + 2) g

Es sei nun p/g eine Approximation von & mit ¢ > 1 und ¢,_; < ¢ < ¢u. Da /g,
beste Approximation ist, so gilt

o—Pu

an

P Pa 1 g\* 1 (q,.-l)’
—=|Z2|a—=]> =] >
* q * In (M +2) ¢* (q..) (M +2)¢*\ ¢,
_ 1 1 - 1
M +2)¢ (u,. + q_wz)“ o+ 2pg
Gn—1

Eine Approximation zur Ordnung 3 erfordert ¢ < (M + 2)¢. Da sich diese Un-
gleichung aber nur endlich oft realisieren la8t, kann & nicht zur Ordnung 3 approxi-
mierbar sein.

43.  Algebraische Zahlen

Definition 4.4. Eine Zahl & heilit algebraische Zahl n-ten Grades, wenn sie Wurzel
einer Gleichung n-ten Grades

ag® + a0t 4 -+ a,x +a, =0, ao + 0 (11)
mit ganzzahligen Koeffizienten ist und keine Wurzel einer Gleichung niederen Grades.

Im Sinne dieser Definition sind die rationalen Zahlen algebraische Zahlen ersten
Grades. Damit stellt der Begriff der algebraischen Zahl einer Verallgemeinerung des
Begriffes der rationalen Zahl dar. Die quadratischen Irrationalitéten sind algebraische

n
Zahlen zweiten Grades. Ist p eine Primzahl, so ist ]/; eine algebraische Zahl n-ten

Grades. Auch 7 = V: als Lésung von &? + 1 =0 ist als algebraische Zahl an-
zusprechen. Jedoch interessieren wir uns hier nur fiir die reellen algebraischen Zahlen.

Satz 4.12. Die Menge der algebraischen Zahlen Vst abzihlbar.
Beweis. Wir definieren die Hoke H der Gleichung (11) durch
H:=n+ |ag + {a] + - + |a,].
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Das Minimum von H ist 2. Es gibt natiirlich nur endlich viele Gleichungen einer
festen Hohe H. Wir notieren sie uns durch Ey ), Ey ., ..., Eys,. Nun kénnen wir
samtliche Gleichungen in einer Folge anordnen: E,;, Ep 5, ..., Eap,; By, B3 --os
E, 4,5 ... Damit ist die Menge der Gleichungen abzihlbar. Da jede algebraische Zahl
zu wenigstens einer Gleichung gehért und zu jeder Gleichung nur endlich viele
algebraische Zahlen gehéren, ist die Menge der algebraischen Zahlen ebenfalls abzihl-
bar.

Im Jahre 1851 bewies J. L1ouviLLE (1809— 1882) den folgenden, auBerordentlich
wichtigen Satz.

Satz 4.13 (L1ovvILLE). Eine reelle algebraische Zahl n-ten Grades ist nicht approxr-
mierbar zu evner Ordnung, die gréfer als n 1st.

Beweis. Es geniigt zu zeigen, daB es fur beliebige ganzzahlige p und ¢ > 0 eine
Konstante K gibt mit

K
x— £‘ > -,
q q
wenn « eine reelle algebraische Zahl n-ten Grades ist. Es sei

J(x) = agz® + a;2* 1 4 oo 4 @y X + @y

und f(a) = 0. Dann konnen wir f(xr) = (x — &) /,(x) mit f,(x) = O setzen. Es gibt
eine Zahl 6 mit f;(x) &= 0 indem Intervalla — 8 < x < & + 4. Dort sei |f,(2)] < M.

P

Es sei jetzt p/g (¢ > 0) eine Approximation von & mit |« — 2 < 4. Dann ist

P
/(2)
P q lagp® + a;p"t g 4 - 4 daypg"™? A aag?|

x——|= =

") (%)

q"

4.4,  Transzendente Zahlen

Definition 4.5. Eine Zahl, die nicht algebraisch ist, heiBit transzendent.

Der Satz von L1oUVILLE ist deswegen aus historischer Sicht von so grundlegender
Bedeutung, da er zum ersten Mal die Existenz transzendenter Zahlen nachzuweisen
erlaubte. Zu diesem Zweck konstruiere man eine Zahl, die sich in besonders guter
Weise durch rationale Zahlen approximieren laBt. Ein Beispiel liefert nach [7] der
folgende Satz.
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Satz 4.14. Die Zahl

1 1
+ o

1
*= o tiom T T
ist transzendent.
Beweis. Wir setzen
_ 1 1 1 _p
S T AT I T
mit ¢ = 10". Dann ist
p 1 1 2 2
0<x— ; = — G, = 0@ + 10+ 21 o< 10m+nt "t

und fiir alle z > N
P 2
O<a — =< —.
g 4"
Da diese Ungleichung unendlich viele Losungen hat, ist « approximierbar zur Ord-
nung N. Da man aber N beliebig gro wihlen kann, ist « nicht algebraisch, also trans-
zendent.

Etwa 20 Jahre nach L1ouviLLE zeigte G. CANTOR (1845—1918) wesentlich mehr,
daB niémlich fast alle Zahlen transzendent sind. Gemeint ist damit, daB im Gegensatz
zur Menge der algebraischen Zahlen die Menge der reellen Zahlen iiberabzihlbar ist.

Satz 4.15 (CANTOR). Die Menge der reellen Zahlen ist iiberabziihibar.

Beweis. Es geniigt, dies fiir die Zahlen z mit 0 < z < 1 zu zeigen. Jede derartige
Zahl 1Bt sich als unendlicher Dezimalbruch schreiben. Dabei seien zwecks Forderung
nach Eindeutigkeit unendlich viele aufeinanderfolgende Neunen ausgeschlossen. Ein
endlicher Dezimalbruch werde durch Anhiingen von Nullen zu einem unendlichen
erginzt. Wir nehmen entgegen der Behauptung an, die Menge der reellen Zahlen 2
mit 0 < x < 1 sei abziahlbar. Wir konnen sie dann in einer gewissen Folge anordnen:

Z; = 0,a,,819845 - ..,
2y =0, 83150y ...,

T3 = 0, agagag ...,

Die ay stellen dabei die Ziffern der Dezimalbruchentwicklungen dar. Wir bilden jetzt
den Dezimalbruch

2 =0, a0y -
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mit den auf der Diagonalen liegenden Ziffern. Nun éndern wir die Ziffern durch
b, = {a,,,, + 1 fiir a,, +89
0 fir a,, = 8,9
ab. Die Zahl
y=0,bbsb,...

ist von allen z, verschieden, da jedenfalls die n-ten Ziffern verschieden sind. Das
steht im Widerspruch zur Abzihlbarkeit.

4.5. Die Irrationalitit von e und =

Obwohl aus der im nichsten Abschnitt nachzuweisenden Transzendenz von e und =
die Irrationalitit folgt, sollen die Irrationalititsbeweise doch gesondert gefiihrt wer-
den, da sie entschieden einfacher sind. Die Irrationalitiit von ¢ und = wurde erstmals
von J. H. LAMBERT (1728—1777) im Jahre 1761 bewiesen. Zum Beweis der Irratio-
nalitit von e benutzen wir eine einfache Variante von J. B. J. ForrIEr (1768 —1830)
und von 7z eine solche von J. NIVEN.

Satz 4.16 (LAMBERT). Die Zahl e Vst irrational.

Beweis. Die Zahl e ist gegeben durch

1
e=J3 —.

K=o k!

Wir nehmen an, e sei rational. Wir kénnen e = a/b mit (a,b) = 1 und b > 1 setzen,
da 2 < e < 3 ist. Mit n = b bilden wir die Zahl

a:n!(e—i‘ ‘).

K=o k!

Diese Zahl ist sicher ganz. Andererseits steht

1 il 1
— < -
k! k=§+n (n+ 1"

im Widerspruch zur Ganzzahligkeit von «.

Mg

0<a=nmn!

1
=— <1
k n

+1

Satz 4.17 (LAMBERT). Die Zahl = Vst irrational.

Beweis. Wir nehmen an, z sei rational und setzen n = a/b, (a, b) = 1. Fiir be-
liebige natiirliche Zahlen n werden die Polynome

_ aMa — ba) '

fz)

n!

Fla) = f2) +kz"‘ (— 1)t f(2)
=1



4.6. Die Transzendenz von ¢ und 7 81

gebildet. Es ist
fla) = — z car

mit ganzen Zahlen c,. Folglich sind alle /®(0) fiir k¥ = 0 ganzzahlig. Da f(z — x) =
f i — x| = f(z) ist, ist auch f®)(x) ganzzahlig fiir k = 0. Daher sind auch die beiden

Werte F(0), F(n) ganzzahlig. Wegen

di (F'(z) sin  — F(z) cos x) = (F"(x) + F(z)) sin = f(x) sin 2
2

ist
f/(:t) sinz dz = F(n) + F(0) € Z.
°

Andererseits gilt fiir 0 < r<n
0 < f(z)sinx < fla) < 2o

und daher fiir hinreichend groBes n

a+lgn

0<f/(x)sinzda:< <1.
o

Dies steht im Widerspruch zur Ganzzahligkeit des Integrals.

4.6. Die Transzendenz von e und &

Die Transzendenz von e wurde im Jahre 1873 von C. HERMITE (1822—1901) und die
Transzendenz von z im Jahre 1882 von F. LINDEMANN (1852 —1939) bewiesen. Die
Beweise wurden im Verlaufe der Jahre vereinfacht. Wir orientieren uns an der Dar-
stellung in [16).

Hilfssatz 4.1. Ist

f(x) = "' ax
v-O

ein beliebiges Polynom und

Fla) = 2/(%)
dann gilt
{F(0) e — Fa)| < €1 5 |a,] [af-
vr=0



82 4. Algebraische und ¢ dente Zahlen

Beweis. Aus

n n »! zr—k
o= &8 “5—m® .=20" * 2 v — &)
" v Z“
= g, 2
'é;v ak-zc: k!
folgt
FO) = Ssla,
v=0
und damit
F(0) e — F(zn—]zwa FZ-Snas {7‘
=|Zre £ Dl Pe S
»=0 A »+1 ’»' for RS L

n
< € 3 la, |z).
v=0

Satz 4.18 (HERMITE). Die Zahl e ist transzendent.

Beweis. Es ist zu zeigen, daB fiir jedes Polynom

P(x) = Zm' X

a=0

mit ¢y = 0, m > 0 und ganzzahligen Koeffizienten P(e) = 0 ist. Es sei p eine Prim-
zahl mit p > max (m, |cs]). Wir bilden das Polynom

oy = Zs M =29 = S
" &

und entsprechend dem Hilfssatz

F(z) = Z f®z).

Nun setzen wir

F(0) Ple) = 4, + 4, (12)
mit
= T oFw),
§=0

4, = Zm;c,,(F(O) o — F().
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Es werden die beiden Summanden 4,, 4, einzeln betrachtet. Beachtet man die
Bildung des Polynoms f(z) in

4, =X Cuzi(k)(,“)v
k=0

u=0
so erkennt man, daf 4, eine ganze Zahl sein muf. Aus
A, = co(m!)? (p)

folgt wegen ¢, &= 0, p > max (m, [cy]), daB 4, =& 0 sein muB. Insgesamt ist [4,] = 1.
Beziiglich der Gréfle A, finden wir iiber den Hilfssatz

|F(0) et — F(u)| < e* Zl‘ i pr = e _'u_ll ﬁ(h + w)P.
v=0 (» — Dla=a

Die rechte Seite dieser Ungleichung geht fiir p — oo gegen 0. Wihlen wir also p hin-
reichend groB, so kénnen wir stets |4,| < 1/2 erreichen.

Aus (12) ergibt sich P(e) 5= 0 wegen |4,] = 1 und |4,] < 1/2. Also kann e keiner
algebraischen Gleichung geniigen und muB transzendent sein.

Der Beweis der Transzendenz von 7 verlduft in entsprechenden Bahnen wie der
vorstehende von e. Es wird insbesondere der zwischen e und z bestehende Zusammen-

hang e® = —1, ¢ = J—1, ausgenutzt. Das bedeutet aber zugleich, da der Trans-
zendenzbeweis von x nicht mehr ganz von elementarem Charakter ist.

Satz 4.19 (LINDEMANN). Die Zahl x ist transzendent.
Beweis. Ist die reelle Zahl z algebraisch, so geniigt sie einer Gleichung
Zm dat =
u=0
mit nicht simtlich verschwindenden Koeffizienten d, € Z. Fiir y = ix ist
dy — tdyy — doy® + idyy® + dyyt — - =0
und daher
(o — doy®* + day* — ) + (dyy — doy® + dsy® — -)* = 0.

Also ist auch y algebraisch.
Nehmen wir jetzt an, daB x algebraisch ist, so ist auch z7 algebraisch und Wurzel
einer Gleichung
m

Sext =0
Pr=

°

mit ¢y, ¢, ..., ¢y € Z und ¢, = 0. Die Wurzeln dieser Gleichung werden mit xy, x, ...,
z,, bezeichnet. Unter ihnen befindet sich neben der Wurzel 7z auch die Wurzel —=xz.
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Wegen e™ = —1 ist
m
11 +ew) =0.
w=1

Multiplizieren wir dieses Produkt aus, so erhalten wir

2m—1
14 Yevr=0, (13)
=1
wobei die Zahlen y, die 2™ — 1 Zahlen 2, 25, ..., Xy, &1 + X2, &1 + Zgy -0y T + T
+ +++ + %, in einer gewissen Reihenfolge durchlaufen. Wenigstens eine der Zahlen y,
ist 0, denn wenigstens eine der Zahlen z, + , ist 0, da die Wurzeln =7 und —z7 vor-
kommen. Wir kénnen annehmen, daB y, =0 fir » =1,2,...,» und y, =0 fiir
v=n+41,242,...,2" — 1. Wir setzen ¢ = 2™ — n und erhalten aus (13)

g+ T ew=0. (14)

»=1

In der Darstellung
n n
9-171(2—!/-) =29

sind die Koeffizienten g, fiir 0 < < n — 1 abgesehen vom Vorzeichen die symme-
trischen Grundfunktionen in gy, ¥,, . .., ¥». Sie sind also auch symmetrische Polynome
in ¢1, %2, .-+, Ym- Nach dem Hauptsatz iiber symmetrische Polynome (siehe [6]) sind
sie ganze symmetrische Polynome in z,, z,, ..., z,, und daher ganzzahlig. Natiirlich
ist go == 0,9, 0.

Wir bringen jetzt wieder den Hilfssatz 4.1 in Anwendung und setzen mit einer
Primzahl p > max (g, |gol, lgal)

gt
flo) = =———
(r — 1!
Entsprechend dem Hilfssatz werde F(z) durch die Summe der Ableitungen von f(z)
gebildet. Wir betrachten jetzt die Zahl

2P go + 1% + - + a2 -

L]
4 =qF0) + % Fy,). (15)
r=1
Nach Hilfssatz 4.1 und (14) ist

4l =| X (Flg) — enF(0))| = X ewihiy,)
=1 r=1
mit
|gai?* !

h(z) = L 2P (gol + igni |21 4 - - lgul li™)P-

-1
Ist y = max (%], %2l ..., [yal), 80 ergibt sich
|4] < nevh(y).
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Da h(y) fiir groBe p beliebig klein wird, kann man {4| < 1 fiir hinreichend groBes p
erreichen. Daraus erzielen wir einen Widerspruch, wenn wir zeigen konnen, dafi 4
eine ganze, nicht durch p teilbare Zahl ist.

Die Zahl gF(0) in der Darstellung (15) von 4 ist ganz und wegen

9F(0) = gg.*"'95* ()
und p > max (g, |gol, |gal) nicht durch p teilbar
Es verbleibt noch zu zeigen, dal die Zahl 3_' F(y,) in (15) ganz und durch p teilbar

ist. Dann ist 4 ganz und nicht durch p te]lbar, was im Widerspruch zu |4| < 1 steht.
Wegen
Jo+ i + - + g2 =gu(x — @) (& — y2) - oo (T — Ya)
ist
(gaz)>?
flo) = 22—
(»—1!
Diesen Ausdruck entwickeln wir nach Potenzen von g,z — g,y (1 < » < n) und er-
halten

(gnx — Gu1)? (9% — Ga¥2)” - »* - (§aZ — Gntyu)?-

np+p—1 g

fa) =2 =% (g — gy}
w=p [t

Die Koeffizienten a,, sind selbst Polynome in g,y1, ga4s, - . -» ga¥ys Mit ganzzahligen,

durch p teilbaren Koeffizienten. Dariiber hinaus stellen sie symmetrische Funktionen

(vgl. [5]) der GroBen ¥y, ..., Yi_1s You1, - .-, Yy dar. Es ist

np+p—1
Fy)= X ang:
u=p
und
n ap+p—1 n

ZFEy)= Y g+ X an,. (16)

r=1 s=p r=1
Die innere Summe bildet eine ganze symmetrische Funktion von g,y1, gu¥2, - - -» §n¥n

mit ganzzahligen, durch p teilbaren Koeffizienten. Sie und damit (16) ist selbst eine
ganze, durch p teilbare Zahl. Denn zu den Wurzeln g,y1, .92, - .-, gatyn gehort die
Gleichung

Foga" ! + 19,72 + o0+ Gu20uT"E 4 gyaa™t b2 =

deren héchster Koeffizient 1 ist.
Da die ganze Zahl 4 nicht durch p teilbar ist, muB sie von 0 verschieden sein. Dann
kann aber nicht |4| < 1 sein.
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47.  Aufgaben

. Man zeige: Ist die natiirliche Zahl N keine Quadratzahl, so ist }’ﬁ irrational.
. Man zeige: Sind », m verschiedene natiirliche Zahlen mit (», m) > 1, so ist log, m irrational.
. Die reelle Zahl x sei Wurzel einer Gleichung
z® + a2 + o+ apz+a, =0

mit ganzzahligen Koeffizienten. Es ist zu zeigen, daB x entweder ganz oder irrational ist.
4. Man bestimme die ersten drei besten Approximationen von }/5, }/E, ﬁ
. Man berechne [2; T, 1, 3], [6; 3, 12), [4; 2, 8].
. Man beweise fir natiirliche Zahlen n:

VAET = [ 58], VAT T2 = [mi 7, 39,

(XY

oo



5. Zahlentheoretische Funktionen

In den vorangegangenen Kapiteln ist uns bereits eine Reihe von zahlentheoretischen
Funktionen, das heit Funktionen, die fiir alle natiirlichen Werte ihres Argumentes
erklirt sind, begegnet. Es handelte sich um die Eulersche ¢-Funktion ¢(n), die An-
zahl der nichtisomorphen abelschen Gruppen n-ter Ordnung a(n), die Anzahl 2(n)
der Primfaktoren von n beziehungsweise die Anzahl o(n) der verschiedenen Prim-
faktoren und die Restklassencharaktere y(z). In diesem Kapitel werden wir weitere
fiir die Zahlentheorie wichtige Funktionen kennenlernen. In den ersten beiden Ab-
schnitten betrachten wir vorwiegend allgemeinere Aussagen. Im groBen vierten Ab-
schnitt fithren wir zunichst ganz einfache Abschitzungen der Anzahl der Primzahlen
unterhalb einer Schranke durch, vertiefen diese durch die Ergebnisse von CEBY3EV und
gelangen schlieBlich zum elementaren, aber schwierigen Beweis des Primzahlsatzes.
Der vorangestellte dritte Abschnitt stellt einige Hilfsmittel zur Abschitzung von
Summen bereit. Die folgenden Abschnitte befassen sich mit der Beurteilung zahlen-
theoretischer Funktionen fiir grofie Werte ihrer Argumente. Im allgemeinen ergeben
sich dabei keine klaren Resultate, da die Funktionswerte selbst benachbarter Argu-
mente erheblich differieren kénnen. Aus diesem Grunde hat man gewisse Gréfen-
ordnungsbegriffe geschaffen, die doch in bestimmten MaBen Auskunft iiber die
GroBenverhiltnisse der Funktionswerte geben. Es sind dies die maximale, durch-
schnittliche und normale GréBenordnung, die an einzelnen wichtigen zahlentheo-
retischen Funktionen demonstriert werden sollen.

51.  Dirichletsche Multiplikation zahlentheoretischer Funktionen

Definition 5.1. Eine zahlentheoretische Funktion ist eine auf der Menge der
natiirlichen Zahlen erklirte, reell- oder komplexwertige Funktion.

Wir betrachten jetzt eine nach P. G. L. DIricHLET (1805— 1859) benannte zweck-
méBige Verkniipfungsvorschrift zahlentheoretischer Funktionen.

Definition 5.2. Sind f(rn) und g(n) zwei zahlentheoretische Funktionen, so be-
zeichne die zahlentheoretische Funktion

By = 5 g (ﬁ)
tin t

ihr Dirichletsches Produkt. Dabei ist die Summe iiber alle Teiler ¢ von n zu erstrecken.
Fiir 2(n) wird auch h(n) = f(n) % g(n) oder kiirzer 2 = f * g geschrieben.
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Durchliuft ¢ die Teiler von n, so 7 die Komplementirteiler. Wir konnen so auch

f(r) % g(n) =MZ 1) g(d)

schreiben, wobei die Summe iiber alle natiirlichen Zahlen ¢, d gebildet wird, die der
Gleichung td = n geniigen. Aus dieser Darstellung erkennt man sofort, daB die
Dirichletsche Multiplikation kommutativ ist. Sie ist auch assoziativ, was aus

)+ (gn) % h(n)) = j(n) % 5 gty) hita) = Z /ta) X2 g(ts) h(tz)

[t s‘ td=n tta=

= 7 g(t) h(ta) f(ts)
histe=n

folgt. Die Funktion

en) = 1 fir n=1,
“lo fir n>1

tibernimmt die Rolle des Einselementes, denn es ist
n
) fm) = X o(0) (—) — fim).
tin ¢

In der Menge der zahlentheoretischen Funktionen f(n) mit f(1) 3= 0 ist das Eins-
element eindeutig bestimmt. Denn giibe es neben &(n) noch eine Funktion ¢(n) mit
&(n) x f(n) = }(n), so wire

(e = extm) o) = 2 e1) — )/ (%) -

Fiir » = 1 liest man hieraus wegen /(1) == 0 sofort ¢,(1) = &(1) ab. Sei bereits ¢,(h)
= ¢(h) fiir b < n festgestellt, so folgt £ (n) = &(n) wiederum wegen f(1) 3= 0. Also
ist &y(n) = e(n) fiir alle n. Fiir f(1) == 0 1aBt sich die Gleichung f(n) » z(n) = £(n) ein-
deutig nach z(n) auflésen. Denn aus

2/( ) ')_{1 f.i:lr n=1,

0 fir n>1

folgt (1) = rll)’ und fiir » > 1 ist 2(n) aus

o =~ "2/( )

durch Rekursion eindeutig bestimmt. Wir bezeichnen z(r) als die zu f(n) inverse
Funktion und schreiben x(n) = f~1(n). Insgesamt hat sich ergeben:

Satz 5.1. Die Menge der zahlentheoretischen Funkti f{n) mit f(1) 3= O bildet
beziiglich der Dirichletschen Multiplikation eine abelsche Gruppe.




5.1. Dirichletsche Multiplikation zahlentheoretischer Funktionen 89

Definition 5.3. Eine nicht identisch verschwindende zahlentheoretische Funk-
tion f(n) heiBt multiplikativ, wenn f(nyn,) = f(n,) f(ny) fiir (n,, n;) = 1 gilt. Die Funk-
tion heiBt total multiplikativ, wenn f(nyn,} = f(n,) f(n,) ohne jede Einschrinkung be-
steht.

Fiir eine multiplikative Funktion f(n) ist stets f(1) = 1. Denn es gibt ein m mit
f(m) = 0. Fiir dieses m ist f(1-m) = f(1) f(m), also f(1) = 1.

Satz 5.2. Sind f(n) und g(n) multiplikativ, so auch f(n) * g(n).

Beweis. Es sei n = nyn, mit (n,, n,) = 1. In

nyn

h(nyng) = X f(t) g ( v ’)
tinymy

kann ¢in ¢ = t;t, mit (¢, £;) = 1 so zerlegt werden, daB ¢, die Teiler von n; und ¢, die

Teiler von n, durchlaufen. Dann ist

b = 2 2106 16 0 (2) o () = 1o .
Gl i t
Es ist zu beachten, daB sich die totale Multiplikativitit von zwei Funktionen im
allgemeinen nicht auf ihr Dirichletsches Produkt iibertrigt. Zum Beispiel ist die
Funktion f(n) = n total multiplikativ, aber nicht k(n) = n x n. Dies erkennt man
etwa aus h(2) = 4, h(4) = 12, h(4) F k(2) k(2).

Definition 5.4. Fiir beliebige reelle & werden die Teilerfunktionen durch

op(n) :=1xnk = 3tk
tin
erklart.

Insbesondere beschreibt oy(n) die Anzahl der Teiler von n. Ublicherweise wird
ao(n) = d(n) geschrieben. Fiir die Summe der Teiler von n ¢,(n) wird auch nur o(n)
verwendet.

Da die Funktionen 1 und n* multiplikativ sind, ist auch g;(n) multiplikativ. Fiir eine
Primzahlpotenz n = p" ist

pre+D 1

——— fir k=0
ap)=1+pt+p¥* .. +pt=1 P —

y+ 1 fir k=0.

Kennt man also die kanonische Zerlegung von n,

so ist fiir & 2= 0
ropketD g

a(n) =JJ

iml Pi" -1
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und fiir k = 0

d(n) = I] i +

i=1
Satz 5.3. Sind g(n) und f(n) * g(n) multiplikativ, so auch f(n).

Beweis. Im Hinblick auf Satz 5.2 zeigen wir, da k(n) = f(n) * g(n) nicht multi-
plikativ ist, wenn f(n) nicht multiplikativ ist. Es seien die Zahlen n,, n, mit (n,, ny)= 1
so ausgewihlt, daB f(n,n,) = f(n,) f(n,) ist und das Produkt n,n, minimal ausfallt.
Ist nyn, = 1, so ist k(1) = f(1) g(1) = f(1) = 1, also k(n) nicht multiplikativ. Ist
Ny > 1,80ist f(my'ny’) = f(n,') f(ny') fiir (n,', n,’) = 1 und n,"n," < nyn,. Daraus folgt

h(nyn,) —”Z'”Z‘/(tl‘z) g (nlnz) + f(mym,)
fta<numa

=X S/ /(‘z)g( ) ( ’)  fing) fma) + fimymy)
2

talmy talny
= h(ny) h(ng) — f(m) f(na) + f(nins) = h(ny) h(n,).

Wir definieren jetzt eine fiir die Primzahltheorie bedeutsame Funktion, die nach
A. F. M6B1Us (1790— 1868) benannt wurde.

Definition 5.5. Die zu f(n) = 1 inverse Funktion werde als Mabiussche u-Funk-
tion hezeichnet.

Fiir die x-Funktion besteht also die Beziehung 1 * u(n) = &(n) oder ausfiihrlicher
{1 fir n=1,

t) =
ZM0=10 tir n>1,

Iy

Da f(r) = 1 und &(n) multiplikativ sind, ist nach Satz 5.3 auch u(n) multiplikativ.
Berechnen wir u(n) fiir Primzahlpotenzen » = p*. Aus der definierenden Gleichung
ergibt sich

(1) + p(p) + p(p?) + - + u(p?) = 0.

Wegen u(1) = 1 erhilt man hieraus fiir » = 1 u(p) = —1 und sukzessive u(p*) = 0
fiir £ > 1. Benutzen wir die kanonische Zerlegung
r
n= H e,
i=1

so erhalten wir firn > 1

) = (=1 fiir »y=9=-=9,=1,
0 sonst.

Mit Hilfe der Mbiusschen p-Funktion 1aBt sich die inverse Funktion einer total
multiplikativen Funktion leicht bestimmen.
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Satz 5.4. Ist g(n) total multiplikativ, so ist g\ (n) = u(n) g(n).
Beweis.

(um) gta)) % gtn) = X w0y g(0) g (= = gln) Z ) = elw).
A t

Hieraus ergibt sich sofort :
Satz 5.5 (Mobiussche Formeln). Ist g(n) total multiplikativ, so gilt:
F(n) = f(n) x g(r) & f(n) = F(n) x (u(n) g(n)).

Betrachten wir die Gleichung F(n) = f(n) % g(») und ihre Auflosung nach f(n) ge-
miB Satz 5.6 unter der zusitzlichen Voraussetzung, daB entweder f(n) oder F(n)
multiplikativ ist. Nach den Sitzen 5.2 und 5.3 ist dann jeweils die andere Funktion
auch multiplikativ. Es geniigt also, f(n) aus f(n) = F(n) % (,u(n) g(n)) fiir Primzahl-
potenzen zu berechnen. Fiir = = p* ist

120 = 51090 F (—’;—) = Fip) — g(p) Fpr).
>

Mit der kanonischen Zerlegung

r
n=npi"

i=1

ergibt sich
fo =11 (F@r — g(p) Fip—).

Die Eulersche p-Funktion:

In Abschnitt 2.2 haben wir die Eulersche g-Funktion kennengelernt. Setzen wir
lediglich die Kenntnis von Satz 2.5, also 1 % g(n) = =, voraus, so beherrschen wir
unter den neuen Gesichtspunkten ¢(n) véllig. Da 1 und »n multiplikative Funktionen
sind, ist nach Satz 5.3 auch ¢(») multiplikativ. Die Anwendung der Mébiusschen
Formeln gibt p(n) = n % w(n) und

1
g(n) = np"—p" l)wn[](l——).
pln P
Definition 5.6. Die durch 1% A(n) = log n eindeutig bestimmte Funktion A(zn)
werde als Mangoldtsche Funktion bezeichnet.
Wie wir spiter sehen werden, spielt diese Funktion in der Primzahltheorie eine
bedeutende Rolle. Wegen A(1) = 0 ist die Mangoldtsche Funktion nicht multipli-
kativ. Aus den Mobiusschen Formeln finden wir

A(n) = p(n) xlogn = 37 pu(t) logl:- = —Ju(t)logt. (1)
tin tin
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Hieraus kénnen wir A(n) berechnen. Zunichst sei » eine Primzahlpotenz n = p*. Man
erkennt sofort

A(p’) =log p.

Ist 7 eine zusammengesetzte Zahl, so kann man » durch 7 = nn, mit 1 <n, <n
und (n;, ny) = 1 darstellen. In (1) zerlegen wir ebenso die Teiler ¢ durch ¢ = #;t,, in-
dem ¢, die Teiler von 7, und ¢, die Teiler von n4 durchlaufen. So ist

Amng) = =3 37 pu(ty) plts) (log &y + logt,) =0

tim tlny

wegen 1 x u(n) = 0 firn > 1.

5.2. Dirichletsche Reihen

Definition 5.7. Es sei f(rn) eine zahlentheoretische Funktion. Die unendliche

o
Reihe 3 /(7:) heiBe die f(n) zugeordnete Dirichletsche Rethe.
n=1 W

Als bekannt sei vorausgesetzt, dal aus der absoluten Konvergenz einer Dirichlet-
schen Reihe fiir s = 8, die absolute Konvergenz fiir s > s, folgt. Damit entspricht
jeder zahlentheoretischen Funktion f(z), die eine irgendwo konvergente, zugeordnete
Dirichletsche Reihe besitzt, eindeutig eine Funktion

F(s)=2‘lf%z

der reellen Variablen s. DaB auch umgekehrt jeder durch eine Dirichletsche Reihe
darstellbaren Funktion eindeutig eine zahlentheoretische Funktion entspricht, zeigt
folgender Satz.

Satz 5.6. Ist
F(s) = 5 iiLnT) =0

fiir alle 8 > s, so ist f(n) = 0.

Beweis. Im Gegensatz zur Behauptung nehmen wir f(r) = 0 fiir » < m, aber
f(m) == 0 an. Dann ist fiir 8 > s,

) =g fm) | mfm B fm) o
0= m® +,.=,,.+. n me _'_g..;; (m + k)‘_ me (1 ’ GM) @
mit
_Rfm+ R m Y
%0 =& “em (m T k)‘
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Geniigt s, der Ungleichung s, << 8, < 8, 80 ist

) =) ) = )T R

und daher

mmg(

a ms = fm + k)|

m
m+) fm)| ¥y (m 4k

Hieraus erkennt man, daB G(s) mit s — oo gegen 0 strebt. Daher kann man in (2)
i1 + G{s)! > 1/2 fiir geniigend groBes s sichern. Dann steht aber Gleichung (2) im
Widerspruch zur Annahme f(m)== 0, und der Satz ist bewiesen.

Der aufgefiihrte Zusammenhang zwischen zahlentheoretischer Funktion und Funk-
tion einer reellen Verinderlichen ersffnet weitreichende Moglichkeiten zur Unter-
suchung zahlentheoretischer Funktionen. Wir zeigen zunichst, daB die im voran-
gegangenen Abschnitt eingefiihrte Dirichletsche Multiplikation, die im ersten Moment
etwas merkwiirdig erscheinen muB, iiber die Dirichletschen Reihen ihre ganz natiir-
liche Erklirung findet. Seien die die Funktionen F(s) und G(s) darstellenden Diri-
chletschen Reihen

& fn & g(n
Fo =21 o £ 20)

w=1 N

fiir s > s, absolut konvergent. Bekanntlich konvergiert dann auch jede Reihe, die die

Produkte Mﬂm_) in beliebiger Reihenfolge durchliuft, fiir s > s, absolut, und
nm*

zwar gegen das Produkt F(s) G(s). Damit kann man das Produkt F(s) G(s) in der Form

Fls) G(s) = 22‘“““—5 Z o) gtm)

n=im=1 (nM)’ -1 A .
bilden. Schreibt man
< h(k)
F(s) G(s) = H(s) = }] —
0 6 =~ Ao = & =,

0 ist k(n) = f(r) * g(n). Also entsprechen sich Dirichletsche Multiplikation und Multi-
plikation Dirichletscher Reihen. Natiirlich ist die von den Dirichletschen Reihen un-
abhingige Definition der Dirichletschen Multiplikation allgemeiner, da sie an keine
Konvergenzbedingungen gebunden ist. Im Falle der Konvergenz kann aber aus der
Gleichheit H(s) = F(s) G(s) auf die Gleichheit k(n) = f(n) * g(r) und umgekehrt ge-
schlossen werden. Auch die Auflésung der zahlentheoretischen Gleichung nach f(n)

21((8)) im allgemeinen einfach durch Darstellung
G
von %} in Form einer Dirichletschen Reihe vorgenommen werden.
s
Bevor auf Beispiele eingegangen wird, soll noch eine wichtige Produktdarstellung
im Fall multiplikativer zahlentheoretischer Funktionen aufgestelit werden.

kann iiber die Auflésung F(s) =
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Es sei f(n) multiplikativ und 2:‘ f(n) n-® fiir s > s, absolut konvergent. Wir bilden
mit einer Primzahl p n=1

Py = 2 12
=0 P

fiir s > 8o und das Produkt von F(s) iiber alle Primzahlen, welche die 7-te Primzahl
P, nicht iiberschreiten:

Il Py = 5. 5 L Jod),
PSP, i n=0 »=0 8,

Auf Grund der Multiplikativitit von f(n) kénnen wir auch

11 Fyis) — 2’ f:”)

PSP,

schreiben, wobei die Summe iiber alle diejenigen natiirlichen Zahlen zu erstrecken ist,
die durch Primzahlen p < p, gebildet werden. Da die rechte Seite der Ungleichung

= fm) )] 5y
a1 70 n® | Tus =p+1 7

e

fiir » — oo gegen O strebt, geht 3 f(n) n-* fiir » — oo gegen J' f(n) n-*. Das Produkt

T n=1
konvergiert, sofern die Summe der Logarithmen konvergent ist. Mit log (1 + ) < x

fiir # > —1 ergibt sich
/(r)
log JT Fp(s)| = X |log Fp(s) = X' |log (1 + Z‘

P<p, p<p, 7 r=1
<5 2’ V(P")l gf "(ZZ)I.
P, v=1 a=2 W

Aus der Beschrinktheit der Partialsummen folgt die Konvergenz von Reihe und Pro-
dukt. Damit ist

= /(")

~HF (),

wobei das Produkt iiber alle Primzahlen zu erstrecken ist. Fiir total multiplikative

Funktionen ist noch
1
Fy(s) = ———m88 —.
? 1—f(p)p~*

Insgesamt fassen wir zusammen:
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Satz 5.7. Ist f(n) eine multiplikative zahlentheoretische Funktion, und wst J7 f(n) n-*

fiir 8 > so absolut konvergent, dann gilt fiir s > s, n=1
) had / {V20]
" H )
,.=1 n ,=o P

Ist iiberdies f(n) total multiplikativ, so ist

()] 1
281
n=1 M » 1—f(p)p

Definition 5.8. Als Riemannsche Zetafunktion werde die fir s > 1 erklirte
Funktion

R |
$(s) -——"é‘ pr
bezeichnet.

Diese von B. R1eManx (1826— 1866) ausgiebig untersuchte Funktion spielt in der
Primzahltheorie eine grundlegende Rolle, was aber in diesem Buch nicht dargelegt
werden soll. Wir werden sie zur Erzeugung von zahlentheoretischen Funktionen aus-
nutzen. Die aus Satz 5.7 folgende Produktdarstellung

& =JI —

p 1—p7*
war schon L. EULER bekannt.
Die M6biussche u-Funktion:
Aus 1% u(n) = &(n) folgt fiir s > 1

o My,

a=1 7

nt’

1 2 u

T
Die Teilerfunktionen:
Fiir s > max (1, k + 1) ist

1 =21 ® 1
{(8) L(s — k) = Z = Y o= =X = X d*,
Tt dad a=1 7 tdm=n

> 3‘;—"’ =) s — B).
n=1

Quadratfreie Zahlen:

Die natiirliche Zahl n heiBt quadratfrei, wenn n keinen quadratischen Teiler, der
gréBer als 1 ist, enthélt. Eine quadratfreie Zahl wird durch [u(n)| beschrieben, denn es
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ist

1 fiir n quadratfrei,
ww=h 4
sonst.

Da |u(n)| multiplikativ ist, verwenden wir Satz 5.7 fiir s > 1.

o — p—28
Z.llt(n)l_nl, ")=H1 g

n=1 » 1—p*
= ) _ &)
n=t n° (2s)

Die Eulersche g-Funktion:
Aus @(n) = n * p(n) ergibt sich fiir s > 2

< | o
*Z v 2 wd) =L o X
=1 =1 7 td= =1 {*
fwm_m—n

n=1 n° B 2(s)

Die Primfaktoren von n:

Fiir die Anzahl w(n) der verschiedenen Primfaktoren von % gilt w(nn,) = w(n,)
+ @(ny) unter der Voraussetzung (n;, n,) = 1. Daher ist 2°(™ multiplikativ, und nach
Satz 5.7 ist fiirs > 1

52”("’=g(§2”—””):n(1+25%)

nm1 N v=0 P”

Die Mangoldtsche Funktion:
Aus A(n) = log p fiir » = p’ und A(n) = 0 sonst folgt fiir s > 1

= Am) 1 ®1 1

— = —— = —Jlog(1—p),
n=2 logn e §.£ vy P 2 o8 ( )
o AM 1 ).
=2 logn n*

In der Analysis lernt man, daB eine solche Reihe gliedweise differenziert werden darf:

= dm) _ )

n=1 00 L)’
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5.3.  Abschitzungen von Summen

Da in den folgenden Abschnitten in starkem MafBe Summen abgeschitzt werden
miissen, sollen hier die dazu benétigten Hilfsmittel bereitgestellt werden. Wir fiihren
zuniichst eine auf E. LANDAU (1877—1938) zuriickgehende, vereinfachende Schreib-
weise fiir Abschitzungen ein. Die dabei auftretenden Funktionen konnen wir uns
recht allgemein vorstellen. Es soll das Verhalten einer reell- oder komplexwertigen
Funktion f(z) beschrieben werden, wenn z gegen irgendeinen Wert x,, gleichgiiltig
ob endlich oder unendlich, strebt. Eine Aussage iiber das Verhalten von f(z) fiir
2 — z, beinhaltet eine Aussage iiber alle z, die dem Definitionsbereich von f(z) ent-
nommen sind und hinreichend nahe bei z, liegen. Letzteres bedeutet genauer fiir end-
liches z, daB es ein r, gibt, so daB die Aussage fiir 0 < |z — x| < z, zutrifft. Ent-
sprechend gibt es fiir z, = oo dann ein z,, so daB fiir > x, die Aussage getroffen
wird. In diesem Sinne ist die folgende Definition zu verstehen.

Definition 5.9. Die Funktion f(z) heiit ein GroB-O der Funktion g(x) fiir z — z,,
geschrieben f(x) = O(g(:c)) (x —x,), wenn es eine von x unabhingige Konstante
C > 0 gibt mit |f(2)] < C g(z)| fir 2 — z,.

Die Funktion f(x) heiBt ein Klein-o der Funktion g(z) fiir « — z,, geschrieben
flz) = o(g(:c)) (z — x,), wenn

m J@®
z—»z. 9@
ist.

Wenn die Angabe z —>z,ausdem Zusammenhangklarist, kann sie auch weggelassen
werden. Eine Gleichung f(z) = A(z) + O(g(z)) meint f(z) — k(z) = O(g(z)). Analog
wird bei o vorgegangen.

Definition 5.10. Die Funktionen f(z), g(z) heiflen fiir x>y asymptotisch gleich,
geschrieben f(x) ~ g(z) (x — z,), wenn

lim 12 _
2z, 9(2)
ist.
Die hier benétigten Abschitzungen von Summen basieren simtlich auf der Abel-
schen Identitit und der Euler-Maclaurinschen Summenformel.

Satz 5.8 (Abelsche Identitit). Sind f(n) und g(n) zahlentheoretische Funktionen,
Glz) = 3 g(n) fire 21, 3x) =0firz < 1, sogilt fiir0 <a<b

nsz

2 f(m) g(n) = f([b]) G(b) — f([a] + 1) G(a) + E (/(") —fn + DIGH). (3}

a<nsb

Ist iiberdies [(t) im gesamten Intervall [a, b] erkldrtund stetigund in Ju, bf[ einmal stetig
differenzierbar, so gilt

b
Z‘Sbf(n) gin) = #(b) 6() — f{e) Gla) — [ F'(1) Gr) d. (4)
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Beweis.
[b]
2 fmyg)= 3 [n) {G(n) — Gn — 1)}
a<ash n=[a]+1
Q) b]-1
= ) fm)Gn)— X fin+ 1)G(n)
n=[a)+1 n=[a]

= AB]) G(b) — f(la] + 1) Gla) + Zs,'b {f(») — f(n + 1)} G(n).
a<n

-1
Das ist die Formel (3). Ist noch die Zusatzvoraussetzung erfiillt, so folgt

fa+1

L fmygm) = [(B) €) — f(a] + N 0@ — 6 froad
(2]
= f([b]) G(®) — f(la] + 1) G(@) — [ /(1) Ge) dt
la)+1

b
= f(8) G(b) — f(a) Gla) — [ F'(t) o) dt
und damit Formel (4). ’

Satz 5.9 (Euler-Maclaurinsche Summenformel). Ist f(t) in [@,b] (0 < a < b) stetig
und in Ja, b einmal stetig differenzierbar und bezeichnet y(t) =t — [t] — 1/2, so gilt

b b
Z o) = [ 10ydt = ) 1) + @) f@) + [ 110 vlt) . (5)

Beweis. Setzt man in (4) g(n) = 1, so wird

a<nsbd

b
X fin) = [B]/() — [a] fle) — [ () [ .

Verwendet man hierin die Identitét

13 1]
) 1 1 1
f/ ® (t - ;) dt = ) (b - 3) ~ f@ (a - 5) —f/(t)dc,

so ergibt sich unmittelbar (5).

Ist f(t) in [a, b] mehrmals differenzierbar, so kann man die Formel (5) noch weiter
entwickeln. Nehmen wir f(¢) in [[a, b] 4-mal und in Jja, [ (k¥ + 1)-mal stetig differen-
zierbar an und definieren

]
w)=[pa@d =120 w®=yv0,
0



5.3. Abschi von 8 99

3

8o erhalten wir durch fortgesetzte partielle Integration des zweiten Integrals in (5)

b k
Z;b/(n) = f 1) dt + 37 (=1) {wila) [7(a) — . (b) /(B))
a<n I v=0

b
+ (=1 [ fE00) () dt. (©)

An Hand einiger wichtiger Beispiele, die alle spiter gebraucht werden, soll demon-
striert werden, wie die Euler-Maclaurinsche Summenformel fiir die Abschitzung von
Summen ausgenutzt werden kann. Alle Formeln verstehen sich fiir z — oo, so dal
dies im einzelnen nicht vermerkt wird.

1. Abschitzung von J'n*, « =0.
1385z

In (5) setzen wir f(r) = »?, a = 0, b = z. Dann erhalten wir

1ZnsSz

> = ft" dt — y(x) 2* — %f(o) + ,,fga-l ylt) dt,
H o

wobei fiir x = 0 das letzte Integral entfillt. Wegen |y(t)] < 1/2 ist

z z
a—1 i a—1 __l o
ufl v di|s 5 [ rtd= e

0 )
und daher
ol
n* = + O(x*). @
lsiz a+1 ) )
2. Abgchitzung von J l
1sns2 M

Wir verwenden die Formel (6) mit & = 1 und setzen f(n) = 1/n,a = 1,b = z.

z

L[l e e w0,
1<msz N t 2 x 1 x? 3
y1(¢) errechnet sich zu
1 1
W) = ) (t— [y — o) t— [t])-

Daher ist y,(1) = 0 und w,(f) = O(1) fiir £ — oo, und wir erhalten fiir das letzte Inte-
gral

z o oo o0

f%mmszmﬂ_fwmﬂ:f%ma+oey
IAd 3 I IAd 22
1 1 z 1
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Die Zahl

o:=%—2f”"(” &t

1
wird als Eulersche Konstante bezeichnet. Mit ihrer Verwendung erhalten wir
1 1
P ——=logx+0—m+0(—2). 8)
155z ® z x

3. Abschdtzung von }; l, s> 1.
1585z 7°
Wir beginnen mit der Anwendung von (5) und setzen f(r) = 1/2*,a =1, b = =z.
Dies ergibt

1<nse R’ 4 2 Ea et
1 1

11 1 gt wit)
15%;27#_3—-14-2 s—1 f!‘“dz+0

1

1_ ﬂ_l_M_JfW_“ld,

Wegen ¢ > 1 kénnen wir in dieser Gleichung den Grenziibergang z — oo vollziehen
und erhalten mit

ey — 1 p(t)
5(8)—8_1-{-?——8'/‘”1!# (9)
1
eine Iniegraldarstellung der Ri hen Zetafunktion. Da sich das Integral aber

schon fiir s > 0 als konvergent erweist, kann man dies zum Anla$ nehmen, {(s) fiir
8 > 0, s £ 1, durch (9) zu definieren. Verwenden wir also (9), so erhalten wir

x —,—c(a)———+0( )
1sngze M x

Fiir spitere Anwendungen benétigen wir aber noch eine genauere Formel. Wir be-
nutzen (6) mit k¥ = 1 und erhalten

11 &7 1 @) @) )
,<£,n‘_s—l s—1 2 z° ot sts + l)f .

Aus (9) folgt

o) =ty — ol + l)f'”“"

pot+2
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Damit erhalten wir

21=c(e)—£—M+O(L). (10)

1€ns2 7° z Ea

1
4. Abschidtzung von 3} —, 0<s<l1.
1805 W

Bei Benutzung der Definition (9) dndert sich an den Rechnungen von Beispiel 3
nichts, so daB (10) auch in diesem Fall richtig ist.

5. Die Stirlingsche Formel.
In (6) setzen wir k = 1, f(r) = log n, « = 1, b = m. Dann wird

m m

m
log(m!):z‘logrbzflog[+%logm_i_‘/‘w;_it)dl
A=l
i

1
=mlogm — m+1+-1-logm+fw—’(9dt+0(l).
2 [ m
1

Ohne Beweis sei

o

it 1
f:—zdtzglogﬂn)—l

1
mitgeteilt. Damit erhalten wir
log (m!y = mlogm — m + % log (27em) + O (—1-) (11)
2 m

und daraus die Stirlingsche Formel

m! = m™Y2zam e”"{l +0 (i)}
m

5.4, Die Primzahlfunktion

5.41. Der Euklidische Beweis der Unendlichkeit der Menge der Primzahlen

Im Beweis zu Satz 1.2 haben wir die Euklidische Beweisidee fiir die Unendlichkeit
von Primzahl gen kennengelernt. Sie ist zwar iiberaus einfach, aber nicht sehr

ausbaufihig. Wir werden sie in diesem Abschnitt noch an zwei Beispielen demonstrie-
ren, spiter aber zugkriftigere Methoden fiir tiefere Ergebnisse heranziehen.

Satz 5.10. Fiir jedes Polynom
f@) = ap + a1z + - + a,a”
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mat ganzzahligen Koeffizienten und a, > 0, r 2 1, existieren unendlich viele Prim-
zahlen p, so daf p | f(n) mit geeigneten n ¢ N.
Beweis. Fiir a, = 0 ist die Behauptung nach Satz 1.2 und p | f(p) klar. Jetzt sei

@y == 0. Wir nehmen an, es gibt nur endlich viele Primteiler p,, p,, ..., p, der Folge
{/(n)} mit p; ¥ ao ({ = 1, 2, ...,») und bilden die Zahlen n = 2*p,p, - --- - p, und

fagin) = ag(1 + ayagn + axag®n? + --- + a,a,> ~'n%) = agm.

Da fiir x — oo auch f(x) — oo geht, ist m > 1 fiir hinreichend groBes k. Folglich gibt
es eine Primzahl p mit den Eigenschaften p | m, p + a;und p } n. Dassteht im Wider-

spruch zur Annahme.
'y

Das zweite Beispiel bezieht sich auf Primzahlen in arithmet? Progr
Unter einer arithmetischen Progression versteht man eine Folge natiirlicher Zahlen
der Gestalt kn + a, in der k, a feste natiirliche Zahlen mit (k, a) = 1 sind und = die
Folge der natiirlichen Zahlen durchliuft. P. G. L. DiricHLET bewies 1837, dafl jede
arithmetische Progression unendlich viele Primzahlen enthlt. Dieses Ergebnis kann
im allgemeinen nicht mit der Euklidischen Beweisidee erreicht werden. In einigen
Spezialfillen kommt man mit ihr noch zum Zuge. Es soll dies im Fall der primen Rest-
klassen modulo 8 dargestellt werden.

Satz 5.11. Es gibt unendlich viele Primzahlen der Gestall p =a (8) mita = 1,3,
5,17.

Wir fijhren die Beweise fiir a = 1 und @ = 3, 5, 7 getrennt.

Beweis fiira = 1. Wir zeigen zuniichst, daB jeder Primteiler des Polynoms
f@) =2+ 1,2€ Z,xz %0, 41, von der Gestalt p=1 (8) ist. Aus z* + 1 =0
(p) folgt (z%)2 = —1 (p), so daB notwendigerweise

r—1
- i
r

sein muB. Das bedeutet p = 1 (4) oder, was dasselbe ist, p = 1,5 (8). Ausa* + 1
=0 (p)folgt auch (22 + 1)2 — 222 =0 (p) und
P-1

(3) = (-1 ° =1.
P

Also p=1,7 (8). Beide Ergebnisse zusammen lassen nur p =1 (8) zu. Also ist
jeder Primteiler von f(x) = 2% 4+ 1 von der Gestalt p =1 (8), und nach Satz 5.10
gibt es unendlich viele derartige Primteiler.

Beweis fiir a = 3, 5, 7. Wir bilden die Polynome
falz) =8z +~ 1)2+2=3 (8),
fe) =5 (B + 3+ =5 @),
hie) =Gz + 3 —2=T (8)

und fithren den Beweis fiir die drei Fille gemeinsam in drei Schritten.
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1. Sckritt. Es wird gezeigt, daB jeder Primteiler p von f4(z) von der Gestalt p =1
(8)oder p =a (8) ist.
Pt p'-1

a) =3 Bx+1)2+2=0 (p)=>(_—2)=(—1)2 S|
P

:>(1)—1)8(p+5)50 @

=p=13 (8).

Pt

b) a = 5: %{(81+3)’+1}E0 (p)=>(_71)=(—1)2 =1

=>p=15 (8).

r'—1

)a="7 (dr+32—2=0 (p)=>(£) = (=¥ —
P

=>p=17 (8).

2. Schritt. Es wird gezeigt, daB es fiir z ¢ Z (z + —1 fiir @ = 7) eine Primzahl
p=a (8) mitp|/f(z) gibt.

Alle Primteiler von f,(z)} sind nach dem ersten Schritt von der Gestalt p =1,4a
(8). Wiirde f,(z) nur Primteiler p = 1 (8) bhesitzen, so miiBte f,(x) =1 (8) sein im
Widerspruch zu f,(x) =a (8).

3. Schritt. Annahme: Es gibt nur endlich viele Primzahlen p =a (8). Wir no-
tieren sie uns durch «, p, Py, ..., p, und bilden P = p,p, « -:- - p,. Die Zahl f,(Po1)
enthiilt nach der Feststellung im zweiten Schritt wenigstens einen Primteiler p = a
(8). Dieser ist von allen p; verschieden. Denn es ist f(P*!) = a (p;), und da (a, p;)
= 1 vorausgesetzt wurde, ist p; ¢ f,(P*!). Der Primteiler » muB auch von « ver-
schieden sein, da nach dem Satz von FERMAT-EULER f,(P*1) = f,(1) 3= 0 (a) ist.
Das ist aber ein Widerspruch zur Annahme.

5.4.2. Einfache Abschitzungen der Primzahlfunktionen

Definition 5.11. Fiir positive reelle Zahlen x bezeichne =(z) die Anzahl der
Primzahlen kleiner oder gleich z.

Aus dem Euklidischen Beweis haben wir fiir die n-te Primzahl p, in Kapitel 1 die
Abschiatzung

P, <20

gefunden. Hieraus folgt eine Abschitzung von n(x) nach unten. Fiir jedes z = 2 gibt
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es eine nicht-negative, ganze Zahl n mit
2 <z < 22,
Daraus folgt
alz) = 2(2%) Z w(Pppn) =7 + 1 > 1_10 (log log z — log log 2),
og 2
log log z
a(z) > 1og 2

Eine Verbesserung dieser Abschitzung kénnen wir erzielen, wenn wir uns einer
auf L. EULER zuriickgehenden Beweisidee zum Satz 1.2 bedienen. Nehmen wir wieder
an, es gibt nur endlich viele Primzahlen p,, p,, ..., p,. Dann ist auch das Produkt

A=z

endlich. Andererseits ist aber

-3 v 0) -2

i=1 pi] i P P m’

Inder Summe miissen auf Grund der eindeutigen Primfaktorzerlegung alle natiirlichen

Zahlen m erscheinen. Dann handelt es sich aber um die divergente harmonische Reihe.
Unter Verwendung dieser Idee zeigen wir, daB die Summe iiber die Reziproken der

Primzahlen divergent ist.

Satz 5.12. Das Produkt [T (1 — 1/p) und die Summe 3 1/p, jeweils erstreckt iiber
alle Primzahlen, sind divergent. Genauer gilt fiir ¢ = 2

-1
n (1 — ;) > log z, (12)
piz
E%>loglogx—1. (13)
psz

Beweis. Es ist

wobei die (konvergente!) Summe iiber alle diejenigen natiirlichen Zahlen » zu er-
strecken ist, die aus den Primzahlen p < x gebildet werden. Die Ungleichung (12)
folgt nun aus

41 [£]+1

"(1_l)_122l=2 %dtgf%:log([x]+l)>logx.
1

p=z ¥4 sz M nsz
n



5.4. Die Primzahlfunktion 105

Die Ungleichung (13) erhalten wir durch Logarithmieren von (12).

loglogz<—2!og(l—%)=2 f ! <X El,

psz pszu=1MP*  pzra=1 P

psep — 1 pszp  pEc\p—1 r

»sz P n—1 n psz P

Aus (12) erhalten wir eine Verbesserung der Abschitzung von z(z) nach unten:

1 P R PRSI T S
< —_— = —_ = ax ’
e <gl(1=3) = (-5 =

n(z) > logxr — 1.
Fiir die n-te Primzahl ergibt sich aus » = n(p,) > log p, — 1:
e < el

Mit dieser Abschitzung von n(z) nach unten wollen wir uns hier begniigen, schir-
fere Abschitzungen sollen erst in den néichsten Abschnitten besprochen werden. Wir
bemiihen uns noch um eine méglichst einfache Abschitzung von z(x) nach oben.
Wir bedienen uns dabei des Siebes von ERATOSTHENES (um 200 v. u. Z.), das ein sehr
altes Verfahren zur Aufstellung von Primzahltafeln beinhaltet.

Ist 2 nicht zu groB, so kénnen wir auf folgende Weise alle Primzahlen unterhalb von
z bestimmen. Wir schreiben uns alle natiirlichen Zehlen #» mit 2 < n < « der Reihe
nach auf. Sodann ist die erste auftretende Zahl, die 2, Primzahl. Wir lassen sie stehen,
streichen jedoch ihre sémtlichen Vielfachen fort. Die nichste stehengebliebene Zahl,
die 3, muB wieder Primzahl sein. Wir belassen die 3, streichen aber wieder alle Viel-
fachen weg. Indem wir fortfahren, bleiben schlieBlich genau die Primzahlen unterhalb
z stehen. Zu bemerken ist dabei, daB das Verfahren mit dem Streichen der Vielfachen
der groften Primzahl p < V; bereits beendet ist, denn die Vielfachen der groBeren
Primzahlen sind bereits gestrichen. Dies gibt eine Moglichkeit, x(z) zu berechnen,
falls n(}/;) bekannt ist. Verfihrt man etwas modifiziert so, dafi man alle natiirlichen
Zahlen n mit 1 < n <  aufschreibt und simtliche Primzahlen unterhalb von V;
und ihre Vielfachen streicht, so verbleiben 1 + #(x) — 1(}/;) nicht gestrichene Zah-
len. Genau diese sind zu allen Primzahlen p < V;, also zu P = J] p teilerfremd.

Daher ist pslz
T+r@ —alfs) =Z1=% % u)
a5z mEzi(nP)
(nPr=1
=XuEt=Xut) X 1.
AP ngz 0P tmsz

LLUNO}



106 5. Zahlentheoretische Funktionen

Daraus ergibt sich
@) = a{jz) — 1 + 3 ul) [i]
iP t

Zur Abschitzung von =(x) dndern wir das Verfahren nochmals geringfiigig ab. Es sei

jetzt Py = [[ pmity < ﬁ und
Psy

N = X1 =3 ul) [1]
nsz P, t
(8,P)=1

Offensichtlich ist N(z) = w(x) — =(y), und daher ist fiir beliebiges y < V;
n(z) < aly) + 5wl [i]
4P, t

In dieser Ungleichung kommt es nun darauf an, y méglichst so zu wihlen, daB die
Abschitzung optimal wird. Dazu schitzen wir noch etwas weiter ab.

a2) < aly) + T ul) S + T1=1ly) + — ¢(P,) + d(P,)
tiP, t 4R, P,

=aly) + =[] (l—l) 420 <y p o< T o,
17 P log y log y
Setzt man jetzt y = log z, so wird

Az) < ———— o 200BrL,

loglogz
Fiir z > €® wird daraus noch
2

z) < ———.

log log x

5.4.3. Die Ergebnisse von Cebysev

Die bisher vorliegenden Abschitzungen von n(x) sind auBerordentlich ungenau.
Erst im Jahre 1850 gelang es P.L.CEBYSEv (1821—1894), Abschitzungen nach
unten und nach oben von gleicher Qualitit zu geben. Diese Ergebnisse sollen jetzt
dargelegt werden. Wir heginnen mit der Einfiihrung der Ceby¥evschen Funktionen
#(x) und p(x), wobei y(x) nicht mit der in der Euler-Maclaurinschen Summenformel
auftretenden Funktion zu verwechseln ist.

Definition 5.12.
@)= Tlogp,  v(@):= X Aln).
sz nsT

Dabei ist #(z) = O fiir x < 2 zu setzen.
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Beide Funktionen verhalten sich fiir x — oo in erster Niherung gleich. Dies er-
kennt man, wenn man A{n) = log p fiir n = p’ und A(n) = 0 sonst verwendet.

p(@) = Zlogp Zlogp*zlogp +-

= 0(1) + 19(}/;) 4= Zﬂ(xllm)‘

log
Die Reihe ist endlich; sie bricht ab, wenn 2™ < 2, das heiBit m > o geworden
og 2

ist. Aus #(z) < x log x fiir x = 2 folgt
H(alim) < alim log 2Mm < Yz log z
fiir m = 2. Da die Reihe O(log x) Glieder hat, ist
X (=™ = 0(]/; log? :l:) s
m=2
und es ergibt sich:
Satz 3.13. yp(z) = 9(x) + O(]/; log? 1‘).
Satz 5.14. Fiir x = 2 existieren positive Konstanten A,, 4,, B,, B, mit
Az < ¥x) < Bz, Ax < p(x) < Byz.
Beweis. Wegen Satz 5.13 geniigt es, die Behauptung fiir p(x) zu beweisen. Unter
Benutzung von 1 % A(n) = log » und der Stirlingschen Formel ergibt sich
2,,,( )=2A(d)=2211(d)=2logm (14)
nsx dasz mszdim mszx

=zlogr — x -+ O(log 2)
und

f(z) —Zw( ) "Zw(%):zlog2+0(logx).

nsr nxzf2 -

Da die Funktion y(x) monton wachsend ist, folgt

f) = o) = & (w (%) -y (ém—i—l)) < (),

so daB die Existenz einer Konstanten 4, mit 4,2 < y(z) sofort klar ist.
Fiir den Beweis der zweiten Ungleichung vermerken wir

fa) = pi) — v ( ) +z (w (—1) - (%)) 2y —p (%)

Also gibt es eine Konstante B mit

y(z) < Bz + w(%)
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und sukzessive Anwendung dieser Ungleichung liefert

1 T "l ] z
V’(z)<B¢¢(1 +7) +W(z) < e <Bzvﬁ‘:; > +|p(§;)

< Bzz — = Byr.
v=0

Damit ist der Satz bewiesen.
Nun sind wir in der Lage, dus erste Cebydcvsche Ergebnis zu beweisen.

Satz 5.15 (CEBYSEV). Fiir x = 2 gibt es positive Konstanten A, B mit

4= <) <B2-.
log = log z

Beweis. Mit Hilfe von Satz 5.14 erhalten wir leicht

logp _ d=) -4 r

n(z) 2

seelogz  logz log z
und
2 lo; 289(x
nf{z) — n(}/x) < ) — ZRP 28(x)
Vi<psz log « ]og::
afz) < }/z + — 28(z) <B z .
log = log =

Die in diesem Satz erhaltene Abschitzung wurde wesentlich durch Zuriickfiihrung
von () auf #(z) erzielt. Dieser Zusammenhang kann nun noch etwas schirfer gefaBt
werden.

Satz 5.16. Fir z — oo gilt

logz logz

Beweis. Auf Grund des Satzes 5.13 geniigt es, die Behauptung fiir J(x) nach-
zuweisen. Wir benutzen die Formel (4) und setzen dort @ = 1, b = z, f(n) = log n,
g(n) = 1 fiirr n = p, g(n) = 0 sonst. Dann ist

¥e) = Zlogf’ = 2 g(n)log n = n(x)log x — fﬂ dt
1<msz t
i

Aus =(t) = 0 fiir ¢ < 2 und () = O(¢/log ¢) fiir ¢ = 2 folgt fiir das Integral

z ﬁ z
) o [20 gy [0 x
det_ftdt+ftdt O(V_)+0(lo z)_o(loga:)'
1 2 }/'

z
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Damnit ist

") Lo L
wt(zx) log x =1+0 (logz)’

woraus die Behauptung folgt.
Satz 5.17. Fiir x — oo gult

Z‘M = log x + 0(1),
nsr M

lo g P =log x + 0(1).
rsz

Beweis. Bei Benutzung von (14) ist

Am _ 1 Z[n]A(er0(w(z))=%dZA(n)+0(1)

nsz M Z ssz nsx

1
- 2.,(.:-) +0(1) =logz + O(1).

Die zweite Behauptung folgt aus

A(n lo lo, lo
T pEP 5 KR < Slgp S = 5 BT o,
nsz M psz P pmzz P7 -1
mz2
Aus diesem Satz kénnen wir eine Verschiirfung des Satzes 5.12 folgern.

Satz 5.18. Eg gibt zwei! Konstanten B und C, so dap fiir x — oo gilt

1
— =loglogx + B+ 0{|{—1]|, 15
,,é, g log (logx) (15)
1\-t
H(l——) ~eClogz. (16)
Psz »

Ohne Beweis sei mitgeteilt, daBl es sich hei C um die Eulersche Konstante handelt.
Beweis. Nach Satz 5.17 ist

I
8P _ log z + r(z)
pPsz

mit r(x) = O(1). Von dieser Summe wird der Ubergang zu 37 1/p mit Hilfe des Inte-

grals
d ! dt log p 3 dt logp/( 1 1
og p
[ e - e [ ——
rst p tlog®t 55z p tlog*t y<z p \logp loga,
2 ’
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vollzogen. Wir erhalten

z
1 1 loj log p dt
Z_=__2_8_P+f2_s_1> .
psz P 10811’52 ¥4 pst P Hogt
P
z d z
it 7(t) 1
1 —_ dt+ 0
+ftlogt+ftlog’t + (]ogz)
2 2

o

=1+ loglogx — loglog 2 +ft () dl+0( ! )

log?¢ log z
2
Das ist (15) mit
r(f)
tlo gzl

B=1-—

Formel (16) leiten wir aus (15) ab. Zunachst stellen wir fest, daB auf Grund der Un-
gleichung

Iy, 1 =1 1 =1 1
0< —logf1—=)—== <=y —=c
g( p) 2 2,5 2p(p—1)

und der Konvergenz der Reihe

1
§ plp — 1)
auch die Reihe

F((-3)+3)
P P r
konvergiert. Daher ist

-1
logn(l—fl) =—Zlog(l—l):z—!-—z(log(l—l)+l)
psz 4 psz 4 pcz P psz P p
=loglogz + C + o(1)

o-n-3(alt-3)+2)

Das bedeutet

mit

-1
I (1 - l) = efto Jog 2 ~ €€ log x.

p=% p

Nun gelangen wir zu Cebydevs zweitem Ergebnis.
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Satz 5.19. Wenn der Grenzwert
() )
lim M =c
zr00 z
existiert, dann muf ¢ = 1 sein.
Beweis. In Anwendung von (4) erhalten wir

z

(x) 7(t)
. f X a.
2

Die Voraussetzung des Satzes besagt

a(z) =c¢ z

+o@), olr)=o (L)

log z log z)

Daher ergibt sich

z x
1 c " o(t) 1
—=— dt —dt
pé; p logz +/ tlogt +f [ to (log z)
2 2

z

= cloglogz +f9—t(:—) dt + O(1).

2

Zur Abschitzung des Integrals bemerken wir, daB aus o(x) = o (l 2 ) folgt, dafl es
og
L firz> z,. So finden wir

zu jedem ¢ > 0 ein x, gibt mit lo(x)| < &
log z

z I, z

elt) o(t) dt
del = ft_zdt +ef@<a(e)+eloglogz
2 2 Z,

< 2¢loglogz
fiir £ > xy(¢).

Vergleichen wir nun das Ergebnis

> 1_ ¢ log log z + o(log log )
psz P
mit (15), so sehen wir, daBl ¢ = 1 sein muB.

Mit den Sitzen 5.15 und 5.19 erzielte P. L. CEBYSEV zu seiner Zeit einen wesent-
lichen Fortschritt in der Primzahltheorie. Seine Ergebnisse waren numerisch, vor
allem durch C. F. Gauss und A. M. LEGENDRE, vorbereitet. Sie sprachen die Ver-
mutung

lim 21082 _

z—o00 x
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aus. Aber der Nachweis der Existenz dieses Grenzwertes gelang nicht. Erst etwa
50 Jahre spiiter konnten unabhingig voneinander im selben Jahr 1896 J. HapaMaRD
(1865—1962) und C. DE LA VALLEE-PovussiN (1866—1962) mit funktionentheoreti-
schen Hilfsmitteln den Primzahlsatz

A(x) ~ ——
log =

beweisen. Lange Zeit wurde die Ansicht vertreten, daB es sich hierbei um einen Satz
der Zahlentheorie handelt, der sich den elementaren Methoden entzieht. Um so iiber-
raschender war es, daB im Jahre 1949 unabhingig voneinander P. ERpés und A. SEL-
BERG einen elementaren Beweis veroffentlichten. Inzwischen existiert eine Reihe von
Beweisvarianten. Eine von E. M. WRIGHT gegebene und in [7] dargestelite Variante
sollim iberndchsten Abschnitt vorgestellt werden. Sie griindet sich — wie auch andere
Varianten — auf die Selbergsche Formel und die daraus abgeleitete Selbergsche Un-
gleichung, die im nichsten Abschnitt behandelt werden sollen.

Es sei noch erwihnt, dafl aus dem Primzahlsatz eine asymptotische Formel fiir die
n-te Primzahl folgt. Setzt man nimlich z = p,, so ist fiir n —> oo

Pn
log p,
Hieraus kann man

A~

log n ~ log p, — log log p, ~ log p,
ablesen. Folglich ist

pa~mnlogn.

5.4.4. Die Selbergsche Formel

In Vorbereitung der Selbergschen Formel beginnen wir mit zwei Hilfssitzen.
Hilfssatz 5.1. Firk = 0 und z — oo gilt

> logk - O(x).

nsr n
Beweis.
n
z (2] z [z) z
2 logt— = Xlogt = +logtz < X' [ logt —dt + log* =
nsz n o oa=2 n n=2 t

1
z z

k
§flog“%dl+log":c=zf%dt-{—log"z

1
~ k
<x'/‘lii—ldl+log"x=0(:c).
1
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Hilfssatz 5.2.
n n
A(n)logn 4 3 A{t) A (=) = 3 () log? —.
tin t tn t
Beweis. Nach Definition 5.6 der Mangoldtschen Funktion ist

3 A(t)logt + X A(t) log % =logn 3 A(t) = logtn
tin

tn fn
oder in der Schreibweise der Dirichletschen Multiplikation
A(n)logn * 1 4+ A(n) % log n = log?n.
Mit log n = 1 % A(n) erhélt man
(An) log n + A(n) * Am)) + t = log2n.
Uber Satz 5.5 folgt hieraus mit
A{n)logn + A(n) * A(n) = u(n) x log?n
die Behauptung des Hilfssatzes.

Satz 5.20 (Selbergsche Formel). Fiir die Cebyevsche Funktion y(z) gilt fiir x — oo
y(x)logz + 3 A(n)p (i) =2z logz + O(x).
nsz n

Beweis. Nach Hilfssatz 5.2 ist

Sdmlogn+3 5 A A (%) =3 Zuwlog 2.

n=z n<z tin nsz tn

Mit Hilfe der Abelschen Identitét (4), der Definition 5.12 und Satz 5.14 ergibt sich
fiir die erste Summe

é’ A(n) logn = y(x) log z — f%t) dt = y(x) log x 4 O(x).
1

Somit ist
y(z) log z + é' An)y (%) = A(z) + Oz),
wobei

Aw) = 5 5 uit) log2 =
RSz s ¢

gesetzt wurde. Es ist also noch A(x) = 2z log z + O(z) zu zeigen. Dazu formen wir
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die Summe unter Ausnutzung des soeben erzielten Ergebnisses zunichst etwas um:
A@) =) 3 u(t) (—2lognlogt + log?t)
RSe tin

_Z{2A n)logn—{—z‘,ut)log”t}

fsr

=X {2/1(%) log z + Z‘ w(t) log? t} + O(z)

nsz

=3 Z,u(t) (—2 logxlogt + log?t) + O(z)

RSz tin

=3 X ult) log* = + 0).

nsz tn

Mit der Eulerschen Konstanten C formen wir weiter um.

A@) =3 3 ult) (log z_ 0=) + 0

Az tin

sz

=X ult) [ ] (log*% - 02) + 0@).

Nach Hilfssatz 5.1 wird daraus

A(x)—zz”‘)(lo* 02)+ 0(z)

und nach (8)
% +0 (—‘)) + 0).
z

Ay =23 — #4t) (lo C) (
Verwendet man wiederum Hilfssatz 5.1, so ergibt sich

t=z

.'T., v

Ay =z 5 18 "‘” (log ®_ 0) + O)
sz ¢

=x2—2/4(t) (logi —C) + O(x)

nsz ™ (n

‘ (n)

—-:clogx—f-zz‘ + O(z) = 2z log z + O(z)

nach Satz 5.17. Damit ist die Selbergsche Formel bewiesen.
Aus der Selbergschen Formel soll die Selbergsche Ungleichung hergeleitet werden.
Wir bereiten dies durch den folgenden Hilfssatz vor.

Hilfssatz 5.3. Es bezeichne p(x) die Cebdyevsche Funktion und o(x) := p(x) — .

Fiir x — oo gilt
z
z x
2o @)l 1:6)
1

nssr

log t dt 4+ O(x log x)
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mit
an = Am)dogn + 5 At) A (%)
tin

Beweis. Wir verwenden die Abelsche Identitdt (3)mita =1, b=z, f(n) = |g (i)‘,
g(1) =0, n

gin) =a,—2 [logtdt (n22).
R—-1

Nach der Selbergschen Formel ist
Qz) = Za,, -2 f log tdt = O(x).

Damit ergibt sich aus (3)

Sa (—)l = 4,(2) + 4y() + O) (a7
nszr
mit
A\(x) = ' flogtdt,
SIIS3
xr
=n§§10(n) ( ¢ (;)l_ ¢ (" + 1)I)

Wir schidtzen nun A4,(x) und 4,(x) einzeln ab. Wir benutzen dabei fiirr « > y

[le(@)] — le@)I] < le(@) — o) = (=) — p(y) + 2 —y.
Dann ist mit @(n) = O(n) und Satz 5.14

x z z z
a=o( 2 »p(3)+ 5 -+ () -5
-o(zp ()3 o
Pyt n n
=0(Z‘i) + O(x) = O(x log ). (18)
ngz N
Zur Abschitzung von A4,(z) bemerken wir
, |flogtdt ( ) gf ’Q(ﬁ)h_ g(i)
n t
-1
<[P -sf) 52
¢ n ¢ n

so- b () - (3) -4

log t dt log t dt
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Daher ergibt sich genauso wie bei der Abschiitzung von A(x)

0

Trigt man (18) und (19) in (17) ein, so erhilt man die Behauptung.

Ay(x) =2 log tdt + Ofxlog x). (19)

Satz 5.21 (Selbergsche Ungleichung). Es bezeichne p(x) die Cebydevsche Funktion
und o(2) = p(x) — x. Fiir x — oo gult

lo(=){ log* =z < ?-f’

Beweis. Wendet man Satz 5.17 auf die Selbergsche Formel an, so erhélt man

log tdt + O(x log ).

o@) logz + T A(m) e (ﬁ) = 0().
nsz n

Hieraus ergibt sich weiter

log {g(a:) loga + 3 A(n) o (i)} — > A(m) {g (—1—) log =
nsz n m m

msz
+ X Ame (i)} Ofwlog 2) + 0(= b A""’)
asZ mn, m<z M
= O(z log 2},
olx) logtx = — Z A(m)g( )log m + 5" A(m) A(n) g( ) + O(xlogz).
Mit der Abkiirzung a, des Hilfssatzes 5.3 folgt
&)
o=
n

und aus dem Hilfssatz 5.3 selbst ergibt sich die behauptete Selbergsche Ungleichung.

le(z)| log?z < 3 a, + O(x log 1),
nsz

5.4.5. Elementarer Bewels des Primzahlsatzes
Satz 5.22 (Primzahlsatz).

n(x)Nét (x > 00).

Nach Satz 5.16 ist der Primzahlsatz dquivalent zu y(x) ~ z. Dem Beweis dieser
Aussage schicken wir noch zwei Hilfssitze voraus.
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Hilfssatz 5.4 Es set o(x) := e %o(e*), wobet o(y) wie tn Hilfssatz 5.3 gegeben ist.
Dann gibt es eine positive Konstante A, so dap fiir beliebige positive x,, ,

Iy

f o(r) dr

£

<4

gilt.

Beweis. Nach der Abelschen Identitit (4) ist
A v
sl v,
w5y N Y ‘2
1

und hieraus ergibt sich mit Hilfe der Sitze 5.14 und 5.17

v
f(ﬂ)_i) at = 0(1).
*? t
y

Mit ¢ = ¢, y = € wird daraus
‘, z z
Jleple) — 1) dv = [ evo(er) dr = [ oz) dr = O(1).
[} 0 o
Folglich ist

f‘a(r) dr = f’a(r) dr — fa(r) dr = O(1).
[

Z o

Hilfssatz 5.5. Jst a(x,) = O fiir xy > 0, so Vst bet festem z > 0

: 2
flu(xo told ==+ o(i).
2 Ty
0

Beweis. Wir schreiben die Selbergsche Formel einmal fiir y und éinmal fiir yo auf
und bilden die Differenz beider Gleichungen:

v(y)logy — v(yo) logyo + L .1(m).1{n) = 2(y log y — yo log yo) + O(y).

Ve<mnsy

Dabei wurde noch y > y, = 1 vorausgesetzt. Da, die Mangoldtsche Funktion nicht
negativ ist, erhalten wir hierans

0 < (y) log y — v(yo) log yo = 2(y log y — yo log yo) + Oly),
'o(y) log y — o(yo) log 4ol =< ylogy — yolog yo + O(y).
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Mit y = e™*, yg = €™, o(x,) = 0 bekommen wir fir0 <7 <z

lo(ee + 1) £ 1 — —22 e-'+0(—')=1—w+0(l)
o+ T

Zo EN

1

<t+0 (—)
Zo

Integration iiber v von O bis z ergibt die Behauptung.
Beweis des Satzes 5.22. In der Selbergschen Ungleichung (Satz 5.21) ersetzen
wir z durch e#, substituieren ¢ = ¢#* und erhalten

z ¥
2tjo(z)] <2 [ lox)| (# — 1) dr + O(@) = 2 [ [ |o(z)| dv dy + O(z).  (20)
0 oo

Wegen p(z) = O(x) ist o(x) beschrinkt fiir x — 0. Also existieren auch
z
1
a = lim sup |o(z)|, b = lim sup —f {o(z)| dz.
00 Z—r00 x
0
Verwendet man in (20) die Folgerung

[ lo(2) dv < bz + o(z),
0

so erhilt man fiir |o(x)| die Abschitzung
2 T
lota)l = ;f(by + oly) dy + o(1) = b + of1).
o

Daher muB ¢ < b sein.
Wegen

o(z) = eTp(e?) — 1

ist die Behauptung y(x) ~ x dquivalent zu o(z) — 0 fiir z - co. Und dies bedeutet
o = 0. Wir setzen den Beweis indirekt fort und nehmen ¢ > 0 an. Wir werden dann
a > b zeigen, was im Widerspruch zu obiger Feststellung steht.

2
Mitt> 0,6 = %;M (A ist die Konstante des Hilfssatzes 5.4) betrachten
a

wir o(r) im Intervall ¢t < v < ¢+ 6 — a. Die Funktion ist dort streng monoton
fallend, abgesehen von ihren Unstetigkeiten, in denen sie anwiichst. Somit kénnen
wir zwei Fille unterscheiden:

1. Die Funktion o(r) besitzt im Intervall wenigstens eine Nullstelle.
2. Die Funktion wechselt im Intervall héchstens einmal das Vorzeichen.
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In beiden Fillen wollen wir eine Abschiitzung des Integrals

t+9

f |o(¥)| dv
‘

fiir groBe ¢ durchfiihren.
1. Im betrachteten Intervall gibt es eine Stelle x, mit o(x,) = 0. Benutzen wir
|o(?)] < a + o(1) und Hilfssatz 5.5 mit z = a, so folgt

z, Z,+a t+4

fla(r)ldt—{f+ [+ }w(rn(zf

z Zo+a
gam—z)+%+au+a—zo—a>+o(1> =a'd + o(1)
ita'=afl——
mit @ a( 2&) <a.
2. Im betrachteten Intervall wechselt o(r) htchstens einmal das Vorzeichen. Liegt
im Punkt ¢, mit ¢t < ¢, < ¢ + 6 — a ein Vorzeichenwechsel vor, so ist nach Hilfssatz 5.4

t+dé—a

[ lot)dr =

t

t+é—a

f o(t) dr

&

3
fa(r) dr| + <24.
¢

Liegt gar kein Vorzeichenwechsel vor, so ist

t+d—a t+8~a
f lo(z)| dr = f o(r) dr| < A4
¢ i
Damit ist
t+2 t+d—a 48
J |u(r)|dr—{ [+ }|a(r>|dr
46—

<24 + a? + o(l) = '8 + o(1).
Folglich haben wir in beiden Fillen die gleiche Abschitzung

t+8
[lot2)idr < @' + of1),
t

wobei das Restglied fiir ¢ — oo gegen O strebt. Ist X = [%], so erhalten wir

z x—1 (41
0f lote)l dr = 2 f lo(z)| dr + f lo(z)| de

< a’X6 + ofz) + O(1) = a’x + ofz).
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Dabei ist

z
b = lim sup —l—f lo(z)ldr £ ¢’ < a.
200 T
o

Dies ist der gewiinschte Widerspruch, und der Satz ist bewiesen,

Eine Anwendung des Primzahlsatzes.

Es soll eine asymptotische Darstellung der Summe 3 p~* iiber alle Primzahlen
unterhalb von « fiir 0 < k < 1 gegeben werden. Zuniichst beweisen wir nur mit Hilfe
des in Satz 5.15 gegebenen Uebykevschen Ergebnisses die folgende Abschitzung:

Fiir 0 < k < 1 existieren zwes positive Konstanten a, b mit

xi-k xZ-k
2).

v

a {x

— <3S <b—
logr 32 p* log 2
Beweis. Den linken Teil der Ungleichung erhalten wir sofort durch

zl-k

-

1
N —>ztaz)>a .
p* logz

Fiir den Nachweis des rechten Teils der Ungleichung schreiben wir
1 1
=3 —om
pe B 1<mse g

mit g(n) = 1 fiir » = p und g(n) = 0 fiir » & p. Die Anwendung von (4) gibt

T x

1 -k dt

S — =@ + k[ et dt < by —— + by [ ——.

paz P* log = t* log ¢
2

Zur Abschitzung des Integrals sei jetzt 0 eine positive Zahl mit & 4+ & < 1, und ¢, sei
so gewiihlt, daB t’/log ¢ fiir ¢ > ¢, = 2 monoton wachsend ist. Wir erhalten

1~k q 1] 1-k 8
S on 2 (L) e < by B b () ks
pz ¥ log x logt log = log =
¢

x1-k

logz’
Nun zeigen wir mit Hilfe des Primzahlsatzes die nachstehende Verschirfung:
Satz 5.23. Fiir O <k < 128t

A-k
vt
vse ¥ 1 —k logzx
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3 »ahlenth .ok

Beweis. Der Primzahlsatz besagt

x

Aw) = —2— +ola), o) =0 (L)

log z log =

In Analogie zum vorstehenden Beweis und zum Beweis des Satzes 5.19 erhalten wir

z

1 . x t
S == k| e — 1)) dt
So-v (loga: + g(x)) + f ' (logl ol ))
2

z z
21k dt 1 a1k k dt
© o~ +k e~ +4 — _—
log x t‘logt 1 —k logz 1— k] t¥logt

2 2
1 21-k

11—k logz

5.5.  Die maximale Gré8enordnung zahlentheoretischer Funktionen

In diesem Abschnitt interessieren wir uns fiir solche Werte von =, fiir die die zahlen-
theoretische Funktion f(n) extrem grofe Werte annimmt. Dazu miissen wir zunéchst
einmal eine allgemeine Abschétzung von f(n) haben, und dariiber hinaus ist cine prizi-
sere Fragestellung als die angegebene notwendig. Wir werden an Hand der Teiler-
funktionen die Aufgabenstellung herausarbeiten und den Begriff der maximalen
GroBenordnung entwickeln. AnschlieBend wenden wir ihn auf weitere wichtige
Funktionen an.

5.5.1. Die Teilerfunktionen

Es werden die in Definition 5.4 erklirten Teilerfunktionen g;(n) fiir ¥ = 0 betrachtet.
Trivial ist die Abschitzung ox(n) = »*. Wir bemiihen uns um Abschitzungen nach
oben und beginnen mit & > 1. Bei Benutzung der kanonischen Zerlegung von n er-
halten wir
v keeHD) _ -1 -1
ap(n) = &L—l <n“[](1 —-l-k) <n“[](1-—ik) .
pin P ? P

=1 pk—1
=0 daf fir allen > 1
a(n) < (k) n*

gilt. Diese Abschidtzung ist auBerordentlich gut, denn wir werden zeigen kénnen,
daB fiir unendlich viele Zahlen n die Teilerfunktion dem rechts stehenden Wert he-
liebig nahe kommt. Dazu betrachten wir die Zahlenfolge {n,}, v = 2, 3, ..., mit

n=JIp. 21)

pse’
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Beachten wir

1
1 — pmkotny 5 1 —pho+)) = —
,Isl.v( P ) Ip]( P ) o T )

so bekommen wir

ox(n,) = n,“" 1— p—k(v+1) S nX H (a— p-‘f)-‘.
pe 1 —p* C(k(” + 1)) pse’

Da fiir » - oo das verbleibende Produkt konvergent ist und Z(k(r + 1)) gegen 1
strebt, ist fiir jedes ¢ > 0 und hinreichend groBes »

ai(n,) > (1 — &) L(k) m,k.

Also haben wir

lim sup n*oi(n) = &(k)
=00

bewiesen. Dies nehmen wir fiir folgende Definition zum Anlaf.

Definition 5.13. Die zahlentheoretische Funktion f(n) hat die maximale Gréfen-
ordnung g(n), wenn fiir beliebiges ¢ > 0

f(n) < (1 + &) g(n)
fiir alle n > N(¢) gilt und
f) > (1 — &) g(n)
fiir unendlich viele Werte von n.

Das iiber o(n) fiir k > 1 erzielte Ergebnis 148t sich somit folgendermaBen formu-
lieren:

Satz 5.24 (GroNwaLL). Fiir k > 1 hat oi(n) die mazximale Grofenordnung {(k) n*.

Satz 5.25 (GRONWALL). Die mazimale Grofenordnung von o(n) st en log log n. C be-
deutet die Eulersche Konstante.

Beweis. Wie im vorherigen Fall ist

?ln V4

1\1
a(n)<nn(l——) .

Im Produkt unterscheiden wir die Primteiler p von » mit p < log 2 und p > log n.
Fiir die Anzahl s der Primteiler p > log = gilt (log n)* < ». Daher ist

e (=" p (Y

p>logn pslogn

" 1 -8 1 1 -1
<n - — .
( log ,,) nsIlo]ln ( 17)
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Wegen (16) und
logn

TILER Ry PR P
log =, log n,

schlieBen wir auf

a(n) < (1 + ¢) e°n log log n

fiir jedes ¢ > O mit # > N(¢). Damit ist die erste Eigenschaft der maximalen GroBen-
ordnung nachgewiesen. Fiir den zweiten Teil betrachten wir wieder die Folge (21).
Nach Satz 5.14 gibt es eine Zahl B > 0 mit

log n, = v¥(e’) < Brer,
log log n, < » + log (By).
Daraus ergibt sich

a(n,) e-C 1—pt

¢n, log log n, = loglog n, pge 1 — p*

e-C H 1 1\-1
> — -=] .
¢ + 1) (v + log (BY)) pzer ( p)
Die rechte Seite dieser Ungleichung verhilt sich fiir » — oo wegen {(v + 1) - 1 und

(16) wie ~ 1. Daher ist zu gegebenem & > O fiir hinreichend groBes »

v
v + log (Bv)
d(n,) > (1 — ¢) en, log log n,,
und der Satz ist vollstindig bewiesen.

Fiir 0 < k¥ < 1 kénnen wir fiir die Funktionen oy(n) keine maximalen GréBen-
ordnungen angeben, und wir sind gezwungen, zu den Logarithmen iiberzugehen.

Satz 5.26 (KRitzeL). Fiir 0 <k < 1 hat log (n*oy(n)) die mazimale Gropen-
ordnung

1 (logn)i-*
1—k loglogn’
Fiir die Funktion op(n) selbst heift das: Es ist mit beliebigem ¢ > 0

1+ ¢ (log n)l-"}

an) < nf exp 1— k.log log n

fiir alle n > N(e) und

ai(n) > nf exp {l —° M}

1—k loglogn

fiir unendlich viele n. Dabet bedeutet exp {z} := €.
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Beweis. Die natiirliche Zahl » habe genau r verschiedene Primfaktoren, so daf
nz=2-3.....p,ist. Sodann ist

log (n*au(n)) < — 3 log (1 - i,) =—2log (1 - l,‘)
pln P PSP, P
log (n‘*ak(n)) <8 + 8, (22)
mit
8§ = =3 log (1 — l),
p<logn Pk
S, =0 fir p, <logn, Sy = —2log (1—-—1;) fiir p, > logn.
r

logn<psp,

Fiir S, erhalten wir bei Benutzung von Satz 5.23

1 1 1 (log ny-*
Si= 3 —111+0[(=) =——-——— {1+ o(l)},
1 psiomm [)"{ (p")} 1—kloglogn' + ol

1-k
s, 1+ ¢/2 . (log ») 23)
1—% loglogn

fiir jedes ¢ > 0 und hinreichend groBes n.

Ist 8, = 0, so sind wir bereits fertig. Nehmen wir also p, > log n an. Damit wichst
mit » auch p,. Nachfolgend seien die ¢; stets beliebig positiv, und die Abschatzungen
sind giiltig fiir » > N(e,). Aus log #n = #(p,), dem Primzahlsatz und Satz 5.16 folgt
Pr < (1 + &) logn. Daher ist

1
8; << =log (1 - ) {(pr) — a(log n)}
logk n,
<—logf1— L \[Atep (—e)logn
log*n) | logp Jog log »

,—IOgL log {1 — —1— < —esa(logn)log (1 — —If-
log log n logk n logk n

1
< —g& 3 log (1 - p") =5,

pslogn

< —¢

Verwenden wir die Abschétzung (23), so erzielen wir fiir jedes ¢ > 0 und hinreichend
groBes n
2 (logn)t*

S < — .
2 1— k log logn

Setzen wir dies und (23) in (22) ein, so erhalten wir den ersten Teil der Behauptung.
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Fiir den Nachweis der zweiten Eigenschaft der maximalen Gré8enordnung wihlen
wir uns die Zahlenfolge {n,},v = 1,2, ..., mit n, = 2. 3 . - . p, aus. Fiir die Folge ist
mit & > 0, hinreichend grofiem » nach Satz 5.23

1—p# 1 1—g ptt
log (n,*ox(n,)) = 3 log ——— = J_ lo| (1 + =] > —
g( * ) psZ:p. 8 1—p* psz;v € P 1 — k logp,

Benutzen wir mit dem Primzahlsatz wieder log n, = #(p,) ~ p,, so ist fiir alle ¢ > 0

1— ¢ (log n,)1°%
1 rop(n,)) > ——— s ————,
i (n ol )) 1—% loglogn,

sofern v geniigend groB ist. Dieses vollendet den Beweis.

Bei der Bestimmung der maximalen GréBenordnung von log d(n) wird wesentlich
die Tatsache ausgenutzt, dal d(p’) = » + 1 unabhiingig von der Primzahl p ist.
Da uns auBer an dieser Stelle noch in 5.5.3. und 7.3. solche ,,primzahlunabhingigen‘
Funktionen begegnen werden, soll hier gleich ein allgemeineres Resultat erzielt
werden.

Satz 5.27 (Drozpova/FREIMAN). Es set f(n) eine multiplikative, primzahlun-
abhingige Funktion, d. h., es ist f(p') = g(») bhiingig von der Primzahl p. Dabet sei
g(») = 1, und es existiere exn vomit g(v,) > 1. Fiir grofe v set g(v) durch log g(v) = O(»*~9%)
mil @ > 0 eingeschrinkt. Dann ist die maximale Grofenordnung von log f(n) gegeben
durch

log g(k) logn
k log log n”

Dabei ist k die durch

< loggk) wn <k,
log g(») ¢
» .
< long(L) fir v>%

etndeutig bestimmte natiirliche Zahl.
Fiir die Funktion f(n) selbst besagt der Satz, daf

Lhe | loun
fm) < (gth))  Towos®

fiir n > N(e) ist und

1—¢ _logn

fm) > (gth)) * o8

fiir unendlich viele n.
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Beweis. Wir kénnen 0 < @ < 1 annehmen. Mit é > 0 und der kanonischen Zer-
legung von 7 bilden wir
fr) _ o)
o ot
Nach Voraussetzung ist mit einer geeigneten Konstanten b > 0
90) _ e stions,
"D
Die Funktion

1
-1
h(6)=cé ° 4 vdlog2 (¢ > 0)
nimmt fiir 0 < @ < 1 ihr Minimum an der Stelle

5 [Ala = 1)\
T\ viog2

an. Daher ist
h(d) = byt-e,
falls man noch ¢ entsprechend wihlt. Folglich ist fiir 0 <a < 1

I
Eine solche Ungleichung besteht aber offensichtlich auch fiir a = 1. Fiir p* = g(k) ist

90) . _90)
p-o = (g(k))v/k =
nach Voraussetzung. Daher folgt
1 1 1
_1 1= RN
log f(n) < dlogn + 3 o ° <dlogn-+cd ° (g(k))"‘.
PRO<gth)
Mit
_a+ &/2) log g(k)
k loglog n
wird
1 -
logfm) < 1+ logg(k) _logn _ cllog m)'*" ((1 + ¢/2) logg(k)\ °
€ - 2 k loglogn ke log log 2

logg(k) logn

=@ —_
=L+ k log log n

fiir » > N(e). Dies ist der erste Teil der Behauptung.
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Nun betrachten wir die Zahlenfolge {n,}, v = 1,2,..., mit n, = (2-3 . .- - p,)f.
Fiir diese Zahlen ist

Jm) = (gliy >
Nach Satz 5.14 gibt es eine positive Konstante 4 mit

1
Ap, <d(p)) = 7 log n, < =(p,) log p,.

Daraus folgt

log g(k) log =, > log g(k) log n,

log f(n.) = w(p.) log glk) =
og /o) = n(p)log k) 2 === 0 o T Tk loglog m, — log (AF)

>(—¢ log g(k). log n,
k log log =,
fiir n, > N(¢). Dies war zu beweisen.
Satz 5.28 (WIGERT). Die maximale Grofenordnung von log d(n) tst

]
log 2 —8"
log log n

Beweis. In den Bezeichnungen des Satzes 5.27 ist f(n) = d(n), f(p’) = g(»)
= » 4 1. Die Gréfe a kann beliebig in 0 < @ < 1 angenommen werden. SchlieBlich
ist £ = 1. Aus g(1) = 2 folgt dann sofort die Behauptung.

5.5.2. Die Eulersche g-Funktion

Die Bestimmung der maximalen Gréfenordnung der Eulerschen g-Funktion ist
recht einfach. Trivialerweise ist fiir alle » stets p(n) < n. Fiir die Folge {n,}, v = 1,
2,..., mitn, = p, ist

e(n,) =n, (1 — —l)
y

Wihlt man zu ¢ > 0 die Primzahlen p, > 1/e, so ist ¢(n,) > n,(1 — ¢). Damit ist.
bewiesen :

Satz 5.29. Die maximale Grofenordnung von p(n) ist n.
Satz 5.30. Firn > 1 ist

1 _ afn) pln)
@ < —nz < 1.

Ohne Beweis sei £(2) = #?/6 angemerkt.
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Beweis. Aus der kanonischen Zerlegung von n ergibt sich
a(n) g(n
( ) 9’( ) H(l P,
i=1
und fiir das Produkt ist
1

=[1-p= 1—p ) < 1.
© Ip]( )<I]( Pi )

o)
L}

Nach diesem Satz hat die Funktion —% die gleiche GréBenordnung wie
en
Wir zeigen, daB sogar die maximalen Gréfenordnungen iibereinstimmen.
Satz 5.31 (Lanpav). Die maximale Gréfienordnung von L istec log log n, wober
C die Eulersche Konstante bedeutet. o)
Beweis. Aus
1\-1
NI (1 — _)
o) pin P
folgern wir entsprechend der Teilerfunktion o(n)

logn

L<(l— 1 )_loglogn 1 (l_l)q
@(n) logn pslogn r

und mit ¢ > 0

ﬁ<(1+e)e°loglogn

fiir » > N(e). Die Existenz unendlich vieler Zahlen = mit

LSS (1 —¢)ef loglogn

P(n)
folgt aus
e
pn)  n

und Satz 5.25.

5.5.3. Die Anzahl der Primfaktoren natiirlicher Zahien

Die Funktionen w(n) (Anzahl der verschiedenen Primfaktoren von n) und £(n)
(Anzahl aller Primfaktoren von n) zeigen ein sehr irregulires Verhalten. Einerseits
ist fiir eine Primzahl n = p immer w(p) = 2(p) = 1, andererseits konnen diese Funk-
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tionen auch recht groBe Werte annehmen. Aus der kanonischen Zerlegung von n folgt
sofort
n = 28m
und
log n

o) < B2
™ =30s

Dabei gilt fiir die Zahlenfolge {n,} mit n, = 2, » = 1, 2. ..., stets

Om) = v = log n,
log 2
Mithin haben wir:

logn
log 2°

Satz 5.32. Die maximale Grofenordnung von Q(n) ist

I
Satz 5.33. Die maximale Grofenordnung von wm(n) ist &.
log log n

Beweis. Die Funktion f(n) = 2™ ist multiplikativ und primzahlunabhingig.
In Satz 5.27 setzen wir f(p’) = g(») = 2, a = 1, k = 1. Daraus folgt sogleich die
Behauptung.

5.6.  Ramanujansche Reihen

Von 8. RAMANUJAN (1887—1920) wurde eine Méglichkeit der Entwicklung zahlen-
theoretischer Funktionen in unendliche Reihen aufgedeckt, die einen gewissen Auf-
schiuB iiber die GroBenverhéltnisse erlaubt. Es soll dies hier fiir die Teilerfunktionen
und die Eulersche p-Funktion demonstriert werden. Grundlage bilden die in Ab-
schnitt 3.4 erwdhnten Ramanujanschen Summen

.an
2ri—

@)= 3 e 24)
(n-.;)lzl

Sie sind nach Satz 3.7 hinsichtlich m multiplikative Funktionen. Demzufolge ist auch
die Funktion

nal@) = X cila) (25)
[

|m

beziiglich m multiplikativ. Wir wollen sie berechnen, wobei wir uns also auf Prim-
zahlpotenzen m = p* beschranken kénnen. Ist 2’ | a, 8o ist nach Satz 3.7

npla) =1+ 2'76,,.(41,) =14 Z"pvfl(p —1)=p.
r=1 r=1
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Ist p* t «, so gibt es ein & mit 0 < k < » und p* | @ und p**? } a, und nach Satz 3.7
folgt

k
(@) =1+ 3 pYp— 1) —pt=0.
r=1

Auf Grund der Multiplikativitit ist insgesamt 5,,(a) = m fiir m | @ und 5,(a) = 0 fir
m t a. Wenden wir auf (25) die Mébiussche Umkehrformel an, so erhalten wir

cnla) = 2/4 ( ) nla),

enle) = 3 tu ( ) (26)

tla.tlm
Als ein interessantes Nebenergebnis erhalten wir aus (26) ¢, (1) = u(m) und nach
(24)
pim) = Z &
(n m)-l

Nun betrachten wir eine Entwicklung von o,(n) fiir k > 0.

1 ) 1 ayv 1 1
Sk 1) mE Lk + l)ﬁ(n) “:<k+1)%t*

S M
=3t sam =S 3w
timdt=m

d=1 dl‘ol

_m2=:1 m"*‘tlnzum (%) )

Bei Verwendung von (26) und der Bemerkung |c,(n)| = o(n); woraus die Konvergenz
der Reihe fiir & > 0 folgt, erhalten wir:

Satz 5.34. Fiir k > 0 st

mk+1

m(n)

on) =Lk + 1) n"Z'

Errechnet man aus (24) die ersten Werte von c¢,,(n), so erkennt man aus
27 )

2 cos = 20052
(=1 N 3 2

21‘#1 ! Jk+1 4k+1

oun) = Sk + 1) nk |1+

=+ .-

das Schwanken von ¢;(n) um einen ,,Mittelwert* [(k + 1) n*.
Darauf werden wir im nichsten Abschnitt bezug nehmen.

Eine entsprechende Darstellung wollen wir jetzt fiir die Eulersche p-Funktion her-
leiten. Damit das Wesen der Entwicklung deutlicher in Erscheinung tritt, werde
noch eine Veraligemeinerung dieser Funktion vorgenommen.
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Definition 5.14. Fiir k = 1, 2, ... werde die Jordansche Funktion Ji(n) durch

Ji(n) = n* J] (1 - l)
pin »
erklirt.
Speziell ist J;(n) = @(n). Auf Grund der Definition ist Ji(z) natiirlich multipli-

kativ. Wegen

D) =1+ X prok(pt — 1) = pt

fip r=1
ist

2 Ity =n*
s

und mittels der Mébiusschen Umkehrformel
n\k
Hm) =3 (—) plt).
fn \ !
Betrachten wir jetzt entsprechend den Teilerfunktionen die Entwicklung von Ji(n).
Jin) u(t) )
el R P A PR
— S m(®) Z#(dm) 3 Cn(n) pm) & g #4)

—m S A S dk+1”
(d.m) =-1

Nun wenden wir den Satz 5.7 auf die multiplikative Funktion

@ fir (@d,m)=1,
fd) = { g e A
0 fir (d,m)>1

an und erhalten

% ud) _ S fd)

= Hp) 1
= = = 1— —
2al=-2R-n(ZL8)-n( -5

dmy=1

also

J.,(n) 2 _Cn(®) p(m) _\
2 L mkL Lk 1) !IZ (1 pku) .

Daraus ergibt sich:
Satz §.36. Firk=1,2,... st

%, ea(n) plm)

J; = ———
W) = TE T2 Jenim)
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2
Insbesondere st fiir k= 1 mat £(2) = %

2 Cu(n) /t(m)'

(n) =
¥ 252 Tym)
Aus
n (— 1y 2cos2—:"
ACat=l Ly T

. . . 6n
erkennt man wieder ein Schwanken von @(n) um den ,,Mittelwert* —-
4

5.7.  Die durchschnittliche GréBenordnung
zahlentheoretischer Funktionen
Die Betrachtungen des vorigen Abschnittes veranlassen uns zu folgender Definition,

Definition 5.15. Die zahlentheoretische Funktion f(n) heifit von der durchschnatt-
lichen Gréfenordnung der zahlentheoretischen Funktion g(n), wenn

é‘ f(n) ~§ g(n)

fiir z — oo ist.

Um eine Vorstellung iiber eine zahlentheoretische Funktion f(n) zu erhalten,
streben wir natiirlich die Angabe einer moglichst einfachen Funktion g(n) an. Wir
werden dann auch sagen: f(n) hat die durchschnittliche Grofenordnung g(n).

Es sollen spezielle zahlentheoretische Funktionen auf ihre durchschnittliche Gré-
Benordnung hin untersucht werden.

5.71. Die Eulersche ¢-Funktion

Satz 5.36 (MERTENS). Die durchschnittliche Grofienordnung von @(n) zs!—ﬁ- n.
Genauer gilt

S on) = z" + O(x log x).

RS2z
Beweis. Aus @(n) = n % u(n) ergibt sich

gln) = 2 du(t)
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und
1 2
Som) = 3 dul) = Su) 3 d == Tu) {[i] + H}
nsz sz tsz d<rit tsz t t
-1 EAYEA| S Y0
= 2‘52#(1){(1) + O(l)}— 2‘£ t’ + Oz log 7).
Es ist
ph) _ el N_ L 1
lg e _té; : t O(tg t’) ) N 0(3)
und daher

IZ
’é‘qu(n) = M + O(z log z).

2
Mit {(2) = % folgt die Behauptung.

57.2. Quadratsummen

Definition 5.16. Es bezeichnet r(n) die Anzahl der Darstellungen der natiirlichen
Zahl n als Summe von zwet Quadraten ganzer Zahlen. Es sei r(0) = 1.

Man kann
rm)= 3 1

2,040yt =n
schreiben, wobei n,, n, alle diejenigen ganzen Zahlen durchlaufen, die der Gleichung
n,2 + n,® = n geniigen. Einige Beispiele: r(1) =4, r(2) =4, r(3) =0, 7(4) =4,
7(5) = 8. Da stets n,% + n,2== 3 (4) ist, haben wir r(n) = 0 fir n =3 (4). Man
kann r(n) fiir beliebiges n berechnen. Das muB aber bis zum Abschnitt 6.2 verschoben
werden. Wir bestimmen hier die durchschnittliche GréBenordnung.

Satz 5.37 (Gauss). Die durchschnitiliche Grofenordnung von r(n) ist n. Genauer gilt
R@)= 3 r(n) = nx + O (]/;;)

0snsz

Beweis. Setzt man in R(z) die Summendarstellung von r(n) ein, so ist

Rz)y=4 Y"1.
LA et
n1,M20

Dabei wurde die Summation durch Ausnutzung von Symmetrieeigenschaften auf
nichtnegative Zahlen n,, 7, beschrinkt. Ein Strich am Summenzeichen bedeutet,

dafl der Summand fiir », = 0 den Faktor % erhilt. Der zweite Strich bezieht sich
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analog auf n, = 0. Wir erhalten weiter
—_— 1
Rz)=4 3 3 1=4 % {[]/a:—n*] + ?}
0smslz 0smsVr—nt osaslz -
=4 3 Yz —mt +0(fa).

osnsiz

Mit der Euler-Maclaurinschen Summenformel und () = ¢ — [t] — % ist

() dt + 0(yz)

7 Vi
R(z)=4f1/x—t=dt—4f'_
1 o Vx_tz

=4xf}/1Ttﬂdt—4}/5‘/-‘/1%'21»(}/5!)'1’4'0(1/;)'

Das erste Integral ist der vierte Teil des Flicheninhalts des Einheitskreises, und das
zweite Integral ist beschrinkt. Damit ergibt sich die Behauptung.

5.7.3. Die Teilerfunktionen

Satz 5.38. Die durchschnittliche Gréfenordnung von op(n) ist {(k + 1) n* fiir k > 0.
Genauer gilt

O(z*) fir k>1,
2 a(n) = fe+ 1) a1 ) O logx) fur k=1,
nsz k +1
O(x) fir O<k<1.
Beweis.
Zamy=3Jtt=3t=3 Zt"
ST sz tln sz dsz tszid
1 PRV XY 2 \F
= — = ol .
Zle @) G
Fiir £ > 0 ist

Z d:ﬂ =tk+1)+0 (d)
und
o) fir k<1,
= { O(log z) fiir k=1,
O(z~¥) fir 0<k<1.

1
P
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Satz 5.39 (DrrICHLET). Die durchschnittliche Grofenordnung von d(n) ist log n.
Genauer gilt mit der Eulerschen Konstanten C

=2Xdn)==zlogz + (2C — 1) z + 0(]/;').
nsz

Beweis. Der Nachweis der durchschnittlichen GroBenordnung logn von d(n)
ist ganz einfach:
x z
=31= Z‘[—] =33=+0MN =zxlogz + O (x).
sz dsz| 4] dsc|d

Das priizisere Ergebnis erhiillt man folgendermafien durch Ausnutzung von Symme-
trieeigenschaften :

D=3 X1+ 31=) T 1+3 31
dsiz tszld tdsr asVz t<z/e 1<¥z Vz<dsgajt
r<dsz

—23 s1-[f =22{—+0<1>}—x+0(ﬂ)

asVz 1</ 4syz
=2zlogyz + (2C — )z +0(V:_r).
Es werden noch allgemeinere Teilerfunktionen betrachtet.

Definition 5.17. Fiir natiirliche Zahlen a, b hezeichne

d(a,b;n):= 3 1.

4H9tP=n
Satz 5.40. Fir 1 < a < b gilt
1
Dia, b; 2) = Zd(a,b n)—C( )z”“—i—{(:)z‘”’—#—O(‘”’")
Beweis.

Dabin)=X1=3 1+ 3 > 1

LOPST 4SS GPSTh0 oSz s <t Szt )Y e

S HE)- L] |
Sl ) ol
o (%) alle 4 ¢ (i;-) a0 1 0 (%)

unter Verwendung von (10).
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5.7.4. Quadratfreie Zahlen

Satz 5.41. Die Anzahl der quadratfreien Zahlen unterhalb x ist
6
3 wm)| = =z + 0(Jx).
nsz T

Beweis. Aus

folgt unter Beachtung von Satz 5.6
) = 3 p(t)
td=n

und

Sl =3 pt) =X ut) 31
Asz 4z !

<z dSzt

- L4 U -z
—‘é;#(l)[t,] t'é; ® o) 5(2)+0( 1)

5.7.5. Die Anzahl der Primfaktoren natiirlicher Zahlen

In 5.5.3 wurde auf das irregulire Verhalten der Funktionen w(n), 2(n) hingewiesen.
Es ist zwar fiir quadratfreie Zahlen » stets w(n) = 2(n), sonst immer 2(n) > w(n),
und auch die maximale GréBenordnung von £(n) ist gréfier als die von w(n), dennoch
haben beide Funktionen die gleiche durchschnittliche GréSenordnung und sogar noch
weitere Eigenschaften wie sich in diesem Abschnitt und in 5.8 zeigen wird.

Satz 5.42 (HARDY/RAMANUJIAN). Die durchschnittliche Grofenordnung sowohl von
w(n) als auch von Q(n) ist log log n. Es gibt zwei Konstanten B und B, mit

3 w(n) =zloglog x + Br + o(z),
nsz

3 Qn) = zloglog x + Byx + o(x).
nsz

B ist die Konstante der Formel (15) und
1
B=B+Y—
» plo— 1)
Beweis.

x 1
Som=3 31 _ﬂ;): [;] =z > + O(a(z)).

ngr nSZ pln P=z
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Die Formel (15) und der Primzahlsatz geben das erste Resultat.

e P e

ngszr nsz plin P'sz nsr sz
=2

=Som+ 3= +0(3 1

nsz p"gszz V4 p'ss

=S+ = 5 5+ ot} + 0fz1og)
14

nsz =2 »

1
~"§:(u(n) + z%’,‘ pP— + o(x)

= rloglog x 4+ B,z + o(x).
Wir betrachten noch einen bemerkenswerten Satz von P. TURAN (1910—1976),

der eine Aussage iiber die Abweichung von w(zn) von der durchschnittlichen Gréfien-

ordnung log log n beinhaltet. Zuvor geben wir noch die durchschnittliche Groflen-
ordnung von w?(r) an.

Satz 5.43. Die durchschnittliche Grofenordnung von w?(n) ist (log log n)2. Es gilt

> w¥x) = x(log log x)? + O(x log log z).
sz

Beweis. Es bedeuten p und g jetzt stets Primzahlen. Aus

om)(om) - 1)=F1=31- 31
pgln Pgln P'n
Phq

ergibt sich

Yorn)—Jom= 3 1—- 31

ngr z pmsz ’msz

-z [x-2 15

=2i+q21+wn
pe=zPq

=
13

PeszT
=y o(zi) + 0.
resz P4 psz

Nach Satz 5.18 und Satz 5.42 folgt hieraus

Y ?¥n) =3 é + O(x log log x).

n=zx sz
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Zur Abschitzung der noch verbleibenden Summe beachten wir

1 s 1 1 1 1\?
(23) =25 2rsz-s(2,)
ps¥zP psVz P osyz 9 PeszPQ psz P
Nach Satz 5.18 ist

2
(2 %) = (log log = + O(1))? = (log log )* 4 O(log log x),

psz

( > l)a = (log log Yz + 0(1))2 = (log log x)? + O(log log z)
»sfz P

und daher

2 w¥(n) = x (log log z)* + O(x log log ).
a3z
Satz 5.44 (TURAN).

> (@n) — log log n)* = O(z log log ).

i<nsz

Beweis. Der Teil der Summe, fiir den n < z'/¢ ist, bringt einen Anteil von O(z)
und noch weniger. Fiir 21 < n < z ist

loglogz — 1 < loglogn < loglog «.
Damit ergibt sich

X (w(n) — loglog n)? = é‘ (w(m) —log log z)t 4 O( > tu(n))

1<nss Sz
+ O(z loglog z)
= 3 w¥n) — 2loglog z 3 w(n)

ssT LT
+ [z] (log log x)® 4 O(x log log x)
= O(z log log ).

Ein interessantes Ergebnis erzielte auch R. L. DTNCAN, der 2(n)/n(n) betrachtete.

Satz 5.45 (Duxcax). Die durchschnittliche Grofenordnung von Q(n)/w(n) st
1. Genauer gilt

Qn) T
,<§’;, wn) *+0 (log log x)
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Beweis. Wir fithren zundchst eine Abschiitzung einer Summe iiber 1/w(n) durch
5L 1, o L
1<nsz ©(7) 1<nse  0n) ner w(n)
2w(m)<loglogz 2w(n)2loglogz
2
S X 1+
n<z log log x
2w(m<loglogz
4 2x
_— n log logx —_—
~ (log log x)? ,.Z; (wom) — log log )t log log
2a(n)<loglogz
4 2z
—_— n(n) — log 2
~ (loglog 1)2 (”( )~ loglog #)? +

log log z”
Mit dem Turénschen Satz ergibt sich

1 x
—_—=0(—.
1<.Z';, w(n) (Iog log x)
Damit erhalten wir

L _ 5 1

1<nsz @(n)

asz O(N) pin

azz ©(N) o ssz 0(7) pm=n
22

[2‘]——-1—— 1

mszpr (p'm)

403 3 —
pv'zéz‘ mzzpr @(m)

In der zweiten Summe kann » héchstens O(log x) Werte annehmen. Mit dem Prim-
zahlsatz bekommen wir

Q(n)

1 x
= 410 —1x
e (é w(m) V:)

und mit der Abelschen Identitit

T
Q(n) =I+0(: 1 )+O fz"’t"’zz;dt
1<asz (n) mez ©(m)
1

mat w(m)
—240 (;)
log log
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5.7.6. Die M&biussche u-Funktion und der Primzahlsatz
Nach Satz 5.16 und dem Primzahlsatz ist

> A(n) = ylx) ~ a(z) logz ~ z.

Iz

Demzufolge ist nachstehender Satz eine dquivalente Formulierung des Primzahlsalzes.

Satz 5.46. Die durchschnittliche GroPenordnung von .A(n) ist 1.

Es soll eine weitere dquivalente Formulierung des Primzahlsatzes, die Aussagen
iiber die Mobiussche u-Funktion enthilt, entwickelt werden. Dazu definieren wir:

Definition 5.18. M(z) := 3 u(n).

asz

Trivial ist M(x) = O(x). Die wahre GroBenordnung von M(x) ist nicht bekannt.
Schon die Verbesserung M(x) = o(z) ist ein sehr tiefliegendes Resultat, sie ist ndm-
lich dem Primzahlsatz gleichwertig. Die beiden folgenden Sitze, die dies ausweisen

werden, sollen noch durch zwei Hilfssitze vorbereitet werden.

Hilfssatz 5.6. Fiirx = 1 gilt

by

Az 7

L) P

Beweis. Aus 1% u(n) = &(n) folgt firz = 1

HSZZ p(n) [ }

Daher ist

pn) x xr
TS T {r H} .s,“‘"’[ ]

=r—[g]+1+ Z;mm{——[%”

12"(") [x]+1+2{~£—[ﬁ]}<x.

nsz

2snsz (N n

Hilfssatz 3.7. M(z)logx = _Z‘,t(n).,;( )+ O(x).
Beweis. Nach Hilfssatz 5.1 und Definition 5.6 ist
M(x)logx = 2 #(n) logn + Z #(n) log %
“ZMMZAM+Wﬂ

nsz

=30 2 pit - d) + 0(z).

is=z d=sajt
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Nun ist A(2) = log p fiir ¢ = p* und sonst 0. Und u(¢ - d) ist héchstens dann von 0 ver-
schieden, wenn v = 1 ist. Daher ist

M(z)logz = Zlong/t pd) + O(x)

——Zlogp M( )*Zlog:v Z uld) + O(x)

= =3 A(n) ( ) + Ofx)

RSz -

—Z#(n)w( ) + O(z).

Satz 5.47. Aus dem Primzahlsatz folgt M(x) = o(x).
Beweis. Nach Hilfssatz 5.7 ist

2 pin) w( ) = ofz log )

nsz

zu zeigen. In Anwendung des Primzahlsatzes y(x) ~ x konnen wir zu jedem & > 0
ein x; > 0 bestimmen mit jy(r) — x < ex fiir ¥ = x,. Mit diesem x, zerlegen wir
fiir 2 > 2, die Summe in

Z.u(")w( ) -z mn)w(i)+ > (n)w( )
nsz n<1lz, n iz, <nsz

Fiir die erste Teilsumme ist dann unter Ausnutzung von Hilfssatz 5.6

2 um) w(i) w(i) -Z
AaszlT, n n n

<z+e —I-<z+zr(l+logx)

nsziz, M

<2z + exlegx,

5

nsziz, N

<ux

+ X

nssiz,

sofern man ¢ < 1 annimmt. Die Abschétzung der zweiten Teilsumme ergibt

) #(")w( )

z/Ze<nSZT

= X w(%)éw(ra)t

zlzo<nsz

Insgesamt ergibt sich

‘ é‘.“(”) 'P(%) < (2 + w(-to)) x4+ exlog x.

Weiter gibt es ein x; = o mit 2 + p(z,) < € log x fiir £ > i, so daB

£,”(") v( )

ist. Das war zu zeigen.

< 2exlog x
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Satz 5.48. Aus M(z) = o(x) folgt der Primzahlsalz.

Beweis. Wir bilden mit der Teilerfunktion d(z) und der Eulerschen Konstanten C
die Funktion

f(n) :=logn — d(n) + 2C.
Auf Grund der Beziehungen A(n) = pu(n) * log n, u(n) * d(n) = 1, p(n) * 1 = &(n) ist
() — [z] + 2C = 3 {A(n) — 1 + 2Ce(n)]
A<z
=23 T i) /( )

nsz l\n

= Z(‘/t(m)/(ﬂ%

Zum Nachweis des Primzahlsatzesin der Form p(x) ~ x ist zu zeigen, daB die Summe
of(x) fiir z — oo ist. Mit

F(z):= 3 f(n)

L1
und y < }/;: zerlegen wir die Summe in

Z‘#M)/(n) Vﬂ(m) X fm)y+ X plm)f(n)

mass mszly nsz/m mu,,z

zly<mg.
=3 ,u(m)r(i) 3 f(n) u( ) Fly) M(-’i). @7
m<zly m nsy Y

Auf Grund der Stirlingschen Formel und des Satzes 5.39 ist

P(z) = (zlogz — 2) — (zlogz + (2C — 1) 2) + 2Cz + 0(]/;:) =0(y‘;),

s0 daB es eine Konstante 4, > O mit [F(x)| < 4, }/.z:_fiir x = 1gibt. Dann gibt es auch
eine Konstante 4, mit

> ulm) F( gmz ]/i <4, (28)
mszly msziy m Vy

Aus der trivialen Abschdtzung M(x) = Ofz) folgt die Existenz einer Konstanten
Az > 0 mit

Fiy) M (i)t <4, Z. (29)
y Vy

Zur Abschitzung der zweiten Sunune in (27) bemerken wir, daB# wir infolge der Be-
dingung M(x) = o(x) zu gegebenem, beliebig groBem y das # so groB wihlen kénnen,

dafl
(I)
n

x

max <=
y?

nsy
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ausfillt. Somit gibt es eine Konstante 4, > 0 mit

Z/(n)M( )

nsy

= T == X (logn+ din) + 20)
Y° nsy Y nsy

=4, % logy. (30)

Verwendet man (28), (29) und (30) in (27), so erhdlt man

X um) fn)| < (‘4* + 4

masz

!
+ 4, ogy)x<u_
Yy

fiir hinreichend groBes y.

5.8.  Die normale GréBenordnung zahlentheoretischer Funktionen

Definition 5.19. Es sei E eine Eigenschaft natiirlicher Zahlen. Die zahlentheo-
retische Funktion ag(n) sei erklart durch:
ag(n) = 1, falls n die Eigenschaft E hat; ag(n) = 0, falls = die Eigenschaft E nicht
hat. Ist

Ap(0):= Tag) ~z (@ > o00),
L1

so sagen wir: Fust alle natiirlichen Zahlen haben die Eigenschaft E.
Satz 5.49. Fast alle natiirlichen Zahlen sind zusammengeseizt.
Beweis. E bedeutet hier, n ist zusammengesetzt. Dann ist

[¢] = 1 + Ag() + (@)
Nach dem Primzahlsatz ist 7#(x) = o(x) und daher Ag(z) ~ 2.

Dieser Satz beinhaltet also nur eine andere Formulierung eines uns bekannten
Sachverhaltes. Jetzt beschdftigen wir uns mit Aussagen iiber die Funktionen w(n),
Q(n), d(n).

Satz 5.50 Fiir beliebiges 6 > O besteht die Ungleichung
j(n) — log log n| < (log log n)t/2+¢ (31)
fiir fast alle natiirlichen Zahlen n.
Beweis. B bezeichne die Eigenschaft von #, die Ungleichung (31) zu erfiillen. Es ist
le] = Aex) = 2 (1 — ag(n).
Da fiir e < 2'/¢ < n die Ungleichung
loglogz << loglogn + 1 < 2loglog n
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besteht, erhalten wir

(log log z)*+? ([x] — Ax(2))
< 3 (1 — ag(n)) (2 log log n)*+# + Oz (log log x)+2!).

2<agz

Das Restglied kénnen wir durch O(z} abschitzen. Fiir ag(r) = 1 sind die entspre-
chenden Summanden 0, fiir ag(r) = 0 gilt die Ungleichung (31) nicht. Daher ist bei
Beriicksichtigung des Satzes von TURAN

(log log z)+** ([x] — Ag(x))
< 21%2 3 (1 — ag(n)) (©(n) — log log n)? + O(x)
2<nsz
< 2142 37 (w(n) — log log n)? + O(x) = O(x log log ).
2<nsz

Daraus ergibt sich

z — Ag(z) = 0(.r(log log :c)‘“)
und Ag(z) ~ z.

Satz 5.51. Fiir beliebige 6 > 0 besteht die Ungleichung

|Q(n) — log log n| < (log log n)¥2+¢

fiir fast alle natiirlichen Zahlen n.
Beweis, Nach Satz 5.42 ist

X (2(n) — w(n)) = O(x).

nsz
Bezeichnet E die Eigenschaft

Q(n) — w(n) < (2log log n)!2, (32)
so konnen wir die Summe wegen 2(n) — m(n) = 0 durch

3 (1 — agm) (2(n) — w(m) < X (2n) — w(w) = 0()

nsz nsz
abschitzen. Fiir n > 2'/¢ = ¢ ist 2 log log n = log log z, und daher ist

(L) — Ag(x)) (log log g 3 (1— ag(n)) (2 log log n)"/2 - O(x)

1<n=sz
= X (1 — ag(n) (Rr) — w(r)) + O2) = O(=).
nsz

Folglich ist

Ag(x) = z + O(x(log log z)°11%),
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und die Ungleichung (32) gilt fiir fast alle n. Somit gilt auch fiir fast alle n und mit
8 > 8 > 0 bei Verwendung von Satz 5.50

2(n) — log log n| < |w(n) — log log n] + 2(n) — w(n)
< (log log n)V2+% 4 (2 log log m)!/2
< (log log n)¥/2+4,
Diese beiden Sitze nehmen wir zum AnlaB, den Begriff der normalen GréBen-
ordnung einzufiihren.
Definition 5.20. Die zahlentheoretische Funktion f(n) hat die normale Grofen-
ordnung g(n), wenn fiir jedes positive ¢ die Ungleichung
1f(n) — g(n)] < eg(n)
fiir fast alle » gilt.
Damit ergibt sich aus den vorangegangenen Siitzen sofort der folgende Satz.

Satz 5.52 (HARDY/RAMANUJIAN). Beide Funktionen w(n) und Q(n) besitzen die
normale Grofenordnung log log n.

. Satz 5.53. Die normale Grofenordnung von Q(n)/w(n) ist 1.

Beweis. Da die Ungleichung (32) fiir fast alle n gilt, erhalten wir mit Satz 5.52,
0 < ¢ <1, > 0fiir fast alle

2
o _ 1 (2 V¥,
w(n) 1 — ¢ \log log

Satz 65.564 (HarDY/RAMANUJAN). Die normale Grofenordnung vor logd(n) ist
log 2. log log n. Das heift, fiir beliebiges € > O besteht die Ungleichung

2(1—s)loglogn < d(n) < 20+eloglogn
fiir fast alie n.
Beweis. Fiir

r
n=[]p

ist wn) =7, QM) =+ v+ -+ v, dm) = (1 + ) (1 + v) » =+« (1 + »).
Wegen2 <14 v < 2 fiiry = 1ist

Qain) = d(n) = 22(m)
Nach Satz 5.52 ist

(1—¢)loglogn < w(n) < ——— < Q(n) < (1 4 ¢)log logn

log d(n)
log 2

fiir fast alle . Daraus folgt der Satz.
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Zusammenfassend konnen wir feststellen, da8 die normale GréBenordnung log log n
von w(n) und 2(n) mit der durchschnittlichen GréB8enordnung iibereinstimmt. Selbst
fiir den Quotienten Q(n)/w(n) sind durchschnittliche und normale GréBenordnung
gleich 1. Das zeigt einerseits, daB w(n) und 2(n) ein ,,regelmaBigeres‘ Verhalten
zeigen, als zunichst angenommen werden konnte und andererseits, dafl sich beide
Funktionen gar nicht so erheblich unterscheiden.

Anders sieht es dagegen mit der Teilerfunktion aus. Man kann zwar im Sinne der
Definition nicht sagen, daB die normale GréBenordnung von d(n)

2lox|ogn — (log n)logz

wire. Dennoch zeigt der Satz, daB sich d(r) im wesentlichen in der Nahe dieses Wertes
bewegt. Da log 2 = 0,69 ... ist, unterscheidet sich dieser Wert von der durchschnitt-
lichen Gréflenordnung log n. Wenige Werte von n, fiir die d(z) abnorm groB wird,
bewirken diese Abweichung der durchschnittlichen GréBenordnung von (log 7)'%%2.

5.9.  Aufgaben

. Man beweise 1 » @%(n) = (1 » d(n))?.
. Man beweise 0,(n) = @(n) » o4(n).
. Man beweise 0,2(n) = n¥ s o,(n?).
. Die Liouvillesche Funktion A(n) ist durch 4(1) = 1 und

Jn) = (—1)2Am (n > 1) erklirt. Man zeige

i —a?
a) 1% An) = {1 fir » = a2,
0 sonst,

b) A-ln) = p(n)l,

o Am =% n(%),
in ®
d) :;.(n)[i] = [¥a].
nsz n

. Es sei k(z) eine beliebige, fiir alle rationalen z in 0 < z < 1 erklirte Funktion. Fir die
Funktionen

PN

o

hd r r
gy =Xk (—) fy= X h (_)
=1 n rsn n
roa)=1
besteht dann der Zusammenhang f(r) = u(n) * g(n).
6. Mit Hilfe des Ergebnisses von Aufgabe 5 leite man

2nil
un)= X e "
rSn
(roay=1
her.
7. f(n) und g(n) seien zwei beliebige zahlentheorctische Funktionen. Die zahlentheoretische
Funktion 4,(n) werde fir k = 2, 3, ... erklért durch
(1) A,(n) ist multiplikativ,
(2) fir Primzahlen p und ganze Zahlen g, b mita = 0,0 < b < kist
+1 fir =0,
Apt=t) = 3 1 fiar b=1,
0 fir 2Zb< k.
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16.
17,

20.

. Man zeige: Er ist o(n) <

Woeiterhin sei g,(n) gleich 0, falls n durch die k-te Potenz (k = 2) einer Primzahl teilbar ist,
andernfalls gleich 1. Man zeige: Es ist g(n) = A(n) ¢ f(n) genau dann, wenn f(r) = g,(n)
* g(n). — E. KRATZEL.

. Unter Verwendung der Polynome a) 2% -+ 1, b) 4x — 1, ¢) 2% + 3, d) 6z — 1 zeige man:

Es gibt unendlich viele Primzahlen der Gestalta)p =1 (4),b)p =3 (4),c)p=1 (6),
dype=5 (8).

. Man beweise d(n) < 2 V— — W. SIERPINSKI
. Fir zusammengesetztes n weise man o(n) > n -+ V; nach. — W. SIERPINSKI.

. Firn> 2isto(r) < n V; zu zeigen. — C. C. LINDNER.
. Man zeige: Es ist @(n) d(n) = n, wobei das Gleichheitszeichen genau fiir » = 1, 2 steht. —

R. SIVARAMAKRISHNAN.

. Man zeige: Fiir n &= 4 ist p(r) d*(n) < %, wobei das Gleichheitszeichen genau firn = 1, 2,

8, 12 steht. — S. PORUBSEI.
n4 1
2

d(n), wobei das Gleichheitszeichen genau im Falle einer

Primzahl » = p steht. — E. S. LaNgForD.

. Far n > 1 jst
(3)w(l) f 1@
- ir n == .
"’f”) < : (n)
3 3\
2 (—2—) fir n=0 (2)

nachzuweisen. — M. SATYANARAYANA.

Man beweise d*(n) ¢(n) > o(n) fir = > 1. — A, MAKOWSKIL

Fiir beliebige natiirliche Zahlen %, n weise man gy(n) = n*/2 d(n) nach. — S. SIVARAMa-
KRISHNAN, C. S. VENKATARAMAN.

. Firr =1, 2, ... bezeichne (n, m), den groBten gemeinsamen Teiler von » und m der Potenz

r und ¢,,(")(a) die verallg te Ra jansche S

enNa) = zl e2nianm~r
n=

(m,m"),=1
Man zeige
@)= X ' (ﬂ)
tim,t'a ¢

. Fiir r = 1, 2, ... und beliebige reelle k¥ bezeichne a;(r, m) die Teilerfunktion

axlr, n) = X tk.
tdr=n

Mit Hilfe des Ergebnisses von Aufgabe 18 beweise man fir & > L 1
r

® ¢ (N(n)
L n) = (ki k5 Cm0(R)
o(r, ») = L(kr + r) 2/ m§1 =
— E. KRATZEL.
Fir natiirliche Zahlen n, m sei
1 fir (n,m) =1,
y,m)y=J3 IT (1 —p) fir (n,m)>1.
ol
pim
Man zeige

v, m) = X tut).
tn.tim

— E. KriTzEL.
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21, Mit Hilfe des Ergebnisses von Aufgabe 20 beweise man
G X y(m, n)

(ke + 1) mmy mb+l
fark =1,2,... — E. KRATZEL.

22. Esgeifuirk=1,2,...

Fn)= X (mn).
1Smsnss

Ji(n) =

Man beweise

22 1
a) Fy@) = 2;5)’ + (),
_t@2
b) Fy(z) = 2E) O(22 log z},
__ Ukt -
¢) Fyz) = FEOMGED + O(z%) far &> 2.
— E., TEUF¥EL.

23. Man beweise die Verschirfung von Aufgabe 22a)

Fyz) = %(2) (log z + A) + O(x32 log z).

wobei A eine geeignete Konstante bedeutet. — E. KriTzEL.



6. Gitterpunkte

Diejenigen Punkte eines n-dimensionalen euklidischen Raumes, die beziiglich eines
kartesischen Koordinatensystems ganzzahlige Koordinaten besitzen, heiflen Gitter-
punkte. Wir beschiftigen uns mit der Abzihlung solcher Gitterpunkte auf Kurven
und Flichen in abgeschlossenen Bereichen. Diese an sich geometrische Fragestellung
ist tatsichlich ein zahlentheoretisches Problem. Rein duBerlich erkennt man dies
schon daran, daf es sich um die Beschiiftigung mit ganzen Zahlen handelt. Oftmals
hingt es nur vom Standpunkt der Betrachtungsweise ab, ob man ein Problem als
geometrisches oder zahlentheoretisches ansieht. So ist beispielsweise die Frage nach
der Anzahl der Gitterpunkte auf dem Kreis x2 4 ¢® = n dquivalent zur Frage nach
der Anzahl der Darstellungen der natiirlichen Zahl » als Summe von zwei Quadraten.

Wir werden bis auf wenige Ausnahmen hauptséchlich zweidimensionale Probleme
betrachten. Wir beginnen mit den Gitterpunkten auf Kurven zweiter Ordnung. Die
Problematik wird fiir Parabeln ganz einfach, fiir Hyperbeln 1dsbar, fiir Ellipsen da-
gegen schwierig scin, so daB der Fall der Ellipsen nur beispielhaft abgehandelt werden
kann. In den Abschnitten 6.3 und 6.4 betrachten wir allgemeiner statt Gitterpunkte
rationale Punkte, also solche mit rationalen Koordinaten. Fiir Kurven zweiter Ord-
nung erhalten wir ein vollstindig befriedigendes Ergebnis, fiir héhere Kurven werden
nur ein paar Spezialfille betrachtet.

In Abschnitt 6.3 behandeln wir das allgemeine Prohlem der Abschitzung der
Anzahl der Gitterpunkte in ebenen Bereichen. Einige Spezialfille haben wir bei der
Untersuchung der durchschnittlichen GroBenordnung der Funktionen 7(n) und d(z)
bereits kennengelernt. Die dort erzielten Abschitzungen werden vermdge einer von
I. M. VixograDOV entwickelten Methode verbessert.

6.1.  Gitterpunkte auf Kurven zweiter Ordnung

Gegeben sei eine nicht zerfallende, reelle Kurve zweiter Ordnung
ar® +bry + ey +dx+ey+ /=0 (1)
mit ganzzahligen Koeffizienten a, ..., /. Wir fragen, ob eine solche Kurve Gitter-

punkte enthdlt oder nicht. Es ist zweckmiBig, die Fille der Parabel, Ellipse,
Hyperbel getrennt zu behandeln.
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6.1.1.  Gitterpunkte auf Parabeln

Die Kurve (1) stelle eine Parabel dar, so daBl b2 — 4ac = 0 ist. Mindestens einer der
Koeffizienten a, ¢ muB verschieden von 0 sein. Wir nehmen a 3 0 an. Durch Multi-
plikation von (1) mit 4 und Einsetzen von 4ac = b2 erhalten wir aus (1)

(20% + by)? + dadx + daey + daf = 0.
Die Transformation

z' = 2ax + by, y=y (2)
fiihrt die Parabel (1) in die Parabel

z'2 4 2d2’ 4 2(2ae — bd) y' + 4af =0

iiber, wobei natiirlich 2ae — bd == 0 sein muB. Auf der neuen Parabel liegen genau
dann, und zwar unendlich viele Gitterpunkte, wenn die quadratische Kongruenz

2t 4+ 2w’ + daf =0 ({4ae — 2bd))

16sbar ist. Die Transformation (2) ist so beschaffen, daB jeder Gitterpunkt von (1)
wieder in einen Gitterpunkt iibergeht. Die Umkehrung gilt aber nicht. Hat jedoch das
System (2) wenigstens eine Losung in ganzen Zahlen z, , so gleich unendlich viele.
Damit haben wir:

Satz 6.1. Auf einer Parabel mit g hligen Koeffizienten liegen entweder keine
oder unendlich viele Gitterpunkte.

Beispiele:
1. 42? 4+ 12zy + 992 — 3y — 1 = 0.
Die Transformation
#¥=2+3y, ¢ =y (3
fithrt die Parabel iiber in
22 —3y' —1=0.
Auf dieser Parabel liegen die beiden Gitterpunktscharen
x' =1+ 3k, ' = 3k2% + 2k,
2y = —1+ 3k,, Yo' = 3k, — 2k,

mit &y, ky € Z. Die Ansgangsparabel enthilt dagegen keinen einzigen Gitterpunkt,
da das System (3) in ganzen Zahlen nicht 16shar ist.

2. 422 4 122y + 992 — 3y — 4 = 0.
Die Transformation (3) gibt

22 -3y —4=0
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mit den beiden Gitterpunktscharen
@' =1+ 3k, v =32+ 2k — 1,
2 = —1 + 3k,, Yo' = 3k — 2k, — 1.
Die Riicktransformation liefert iiber (3) fiir die vorgegebene Parabel die beiden
Gitterpunktscharen
3k, + 9,2
2
9k, — Ok,
2

2 =2 , yr = —1 + 2k, + 3k;3,

zp=1+ , Yo = —1 — 2k; + 3k%.

6.1.2.  Gitterpunkte auf Ellipsen
Zu Beginn betrachten wir noch Ellipsen und Hyperbeln gemeinsam. In der Darstel-

lung (1) ist dann 4ac — b2 = 0. Ist a = ¢ = 0, so muB b ¥ 0 sein. Die Transfor-
mation

¥ =bx+y +d+te, y=bx—y)—d+e 4)
bringt fiir diesen Fall die Hyperbel (1) in die Gestalt
Z—yr =N

mit N = 4de — 4bf == 0. Ist etwa ¢ 3 0, so wultiplizieren wir (1) mit 4c(4ac — b?)
und fiihren die Transformation

2’ = (4ac — b%) x + 2dc — be, Yy =bxr+ 2y +e (3)
aus. Wir erhalten eine Gleichung der Gestalt
2’ 4 (dac — b)Yyt =M, M0,

Mit den Abkiirzungen D := |4ac — b?|, N := | M| bekommen wir fiir 4ac — b2 > 0
und M > 0 die reelle Ellipse

z?+ Dy*=N
und fiir 4ac — b? < 0 die Hyperbeln
22— Dyt = 4+ N.

Die Transformationen (4) und (5) fiihren wieder Gitterpunkte in Gitterpunkte iiber,
so daB wir uns auf die Behandlung von Ellipsen und Hyperbeln des transformierten
Typs beschrinken kénnen.

Hinsichtlich der Ellipsen betrachten wir jetzt einige Spezialfille.

Satz 6.2. Es sei p eine Primzahl. Auf der Ellipse 2 + Dy = p, D & p, liegen
entweder keine oder fiir D > 1 genau vier und fiir D = 1 genau acht Gitterpunkte.
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7,

Aquivalente Formulierung: Die Darstellung einer Primzahl p in der Form
p = 2% + Dy? mit natiirlichen Zahlen z, y ist, wenn iberhaupt moglick, fir D > 1 ein-
deutig und fiir D = 1 auch, sofern man von der Rethenfolge der Summanden absieht.

Beweis. Wir nehmen an, p besitzt die beiden Darstellungen
p=2*+ Dy* = x,* + Dy,?
mit a0, y, &y, y; € N und (2, y) = (2,, ;) = 1. Fiir p? haben wir dann
Pt = (2% + Dy?) (z,® + Dy,%) = (xz; + Dyy1)® + Dl(xy, — xy)?
= (zx; — Dyy1)* + D(wy, + my)*.
Aus
(zxy 4+ Dyyy) (ayy + my) = (22 4+ Dy®) ;s + (0,2 + Dy,?) =y
= plx,y; + y)
folgt, daB p wenigstens einen der beiden Faktoren der linken Seite teilt: Ist p | (xa;
+ Dyy,), so ist xy, — @,y = 0 und = = z;, y = y,, und beide Losungen sind iden-
tisch. Ist aber p | (zy, + ,9), so ist p? = Dp?, was fiir D > 1 unméglich ist. Fiir
D = 1 ist dann xx, — yy, = 0 und = = y,, y = 2,. Das beweist den Satz.
Satz 6.3. Jede Primzahl p=1 (4) kann in der Form p = 2* + y® mit naliir-
lichen Zahlen x,y dargestellt werden. Fiir Primzahlen p =3 (4) besteht eine solche
Darstellung nicht.

Beweis. Besteht eine Darstellung p = 2% + ¢2, so ist (z, y) = 1. Da auch (y, p)
= 1ist, gibt es ein z mit yz =2 (p). Daher ist

Ptyt=yE+1)=0 (p),

und z2= —1 (p)ist eine notwendige Bedingung fiir die Darstellbarkeit von p. Diese
p—1
Kongruenz ist wegen (_—1) =(—1) * fir p=1 (4) loshar und fiir p=3 (4)
unlésbar. P
Es sei jetzt p=1 (4) und z eine Lésung von 22 = —1 (p). Nach Satz 4.7 gibt es

zn ; und V3 eine Zahl =, (@,9) = 1, mit 1 < y < Vp und
Yy

z «

p Y

1
S
Setzt man yz + ap = =, so ist yz = z(p) und jz| < }/; Fiir diese Zahlen z, y gilt
2+yr=yF+1)=0 (p).
Wegen 0 < a2 L y? < 2p ist 22 + y® = p die gewiinschte Darstellung von p.

Satz 6.4. Jede Primzakl p =1 (8) kann in der Form p = x* + 3y* mit natiir-
lichen Zahlen x, y dargestellt werden. Fiir Primzahlen p = —1 (6) besteht eine solche
Darstellung nicht.
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Beweis. Analog zum Beweis des Satzes 6.3 findet man als notwendige Bedingung
22=—3 (p). Aus

=3\ _(p\_ 1 fir p=1 (6),
p ] \3) -1 fir p=—1 (6)
ergibt sich die Moglichkeit einer Darstellung fir pnurfirp=1 (6). Firp=1 (6)

sei z eine Lésung von 22 = —3 (p). Wir hestimmen iiber Satz 4.7 zu Z und Ve
4

eine Zahl E—, (a,y)=1mitl <y =< ]/;und
Y

z «

1

—+—|<—

Pyl yp

Fiir die Zahl r = yz + ap gilt z =yz (p) und |z| < V]_J Folglich ist
24 3=y42 4+ 3)=0 (p),

und wegen 0 << r2 + 3y® < 4p ist 22 4 3y? = mp mit den moglichen Werten m = 1,
2,3. Da stets x2 + 3y2== 2  (4) ist, scheidet die Moglichkeit m = 2 aus. Fiirm = 3
muB z durch 3 teilbar sein, und mit x = 3z, erhilt man wie im Fall m = 1 eine ge-
wiinschte Gleichung 3x,2 + y2 = p.

Satz 6.5. Auf dem Kreisa? + y? = n, n > 1, liegen genau dann Gitter punkte, wenn
jeder Primfaktor von n der Gestalt 4m + 3 in der kanonischen Zerlegung von n einen
geraden Exponenten besitzt.

Beweis. Die Bedingung ist notwendig: Es sei n darstellbar, n = 2% + ¢2, mit
(2, y) = d. Wir setzen ¢ = dir,, y = dy,. Dann ist (x;, ;) = 1 und d? | 2, und es er-
gibt sich mit n = d*n, die Darstellung n, = z;* 4+ ¥,% Nun sei p ein Primteiler von n
mit p?*-1!n und p?* }t n. Diese Primzahl muB auch n, teilen. Wir haben also die
Kongruenz x,2 + 4,2 =10 (p), die nur fiirp =2und p =1 (4) bestehen kann.

Die Bedingung ist hinreichend : Wir zerlegen n in n = n,2n, mit quadratfreiem z,.
Fiir n, = 1 ist n = n,? + 02, Fiir n, > 1 kann n, héchstens die 2 und Primzahlen
p=1 (4) enthalten. Es ist 2 = 12 + 12, und nach Satz 8.3 1d8t sich jede dieser
Primzahlen als Summe von zwei Quadraten darstellen. Besitzen nun zwei Zahlen
hy, ky Darstellungen &, = a? 4 b%, hy = c? + d?, so auch ihr Produkt, wie man aus

hihy = (a® L b?) (c? + d?) = (ac + bd)? + (ad — be)?
erkennt. Insgesamt besitzt also n, gleichfalls eine Darstellung 7, = 42 + v2. Dann ist
auch n = (nu)? + (nv)%
6.1.3.  Gitterpunkte auf Hyperbeln

Ist in der Hyperbelgleichung 22 — Dy* = N die Zahl D ein vollstindiges Quadrat, so
ist die Bestimmung der Gitterpunkte auf der Hyperbel ganz einfach. Wir kénnen so-
garo.B.d. A. D =1, N > 0 annehmen. In 22 — 4% = N setzen wir x — y =t und
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d
& + y = 4. Dann haben wir die Gleichung ¢ - d = N zu 16sen und wegen x = -5
y = 4 ; : die Losungen mit ¢ =d  (2) zu beriicksichtigen. Ist N = 1 (2), so gibt

es genau d(N) positive Losungen ¢. Fiir N =2 (4) gibt es unter der Nebenbedin-
gung keine Lésung. Und fiir N =0 (4) finden wir d % positive Losungen ¢. Da
mit ¢, d auch —¢, —d eine Losung ist, haben wir den Satz:

Satz 6.6. Die Anzahl der Gitterpunkte auf der Hyperbel 2 — y® = N betrigt 2d(N)
JirN=1 (2),0firN=2 (4),2d (g—) fir N=0 (4).

Von jetzt an sei stets D kein vollstindiges Quadrat, das heift, }/l_) ist irrational.
Wir beginnen mit den Hyperbeln 22 — Dy? = 4-1.

Hilfssatz 6.1. Ist D kein vollstindiges Quadrat, dann hat die Ungleichung

[#2 — Dyt < 14+ 2D

ich viele Losungen in natiirlichen Zahlen z, y.

11

: 1
Beweis. Die Ungleichung ‘i — }/B < hat unendlich viele Lésungen, denn
Y Y
sie wird wenigstens von den sidmtlichen Naherungsbriichen der Kettenbruchent-
wicklung von }’l—) erfiillt. Dann ist
(i - yﬁ) uﬁ)l <L 293,
Y Y

x

—+1/1_)|=
y

et — Dyt| = |« — y}D| |t +y¥D| < ylg +2)D=1+2yD.

Satz 6.7. Ist D kein vollstindiges Quadrat,dann liegt auf der Hyperbel x* — Dy® =
wenigstens ein Gitterpunkt mit y = 0.

Beweis. Nach Hilfssatz 6.1 gibt es wenigstens eine ganze Zahl = 0, fiir die die
Gleichung «2 — Dy* = k unendlich viele Lésungen hat. Es bezeichne L die Menge
aller Lésungen (z, y). Wir betrachten die Zahlen z, y modulo |k|. Wie friiher bezeichne
z die Restklasse modulo |%, in der z liegt. Durchléuft (x, y) die Menge L, so erhilt
man hochstens k2 verschiedene Paare (%, 7). Dadurch erhalten wir eine Zerlegung von
L in Klassen, indem wir (x;, y,), (£;, 2) in dieselbe Klasse tun, wenn F, = %, und
Y, = ¥ sind. Da L unendlich viele Elemente enthélt und es nur endlich viele Paare
(%, 7) gibt, besitzt wenigstens eine der Klassen unendlich viele Elemente. In einer
solchen Klasse gibt es daher mindestens zwei Paare (z;, ¥,), (23, ¥2) mit |2| = |xy!,
lnl = lyal-

Ausz =1z, (k) yi=y: (k) folgt

%z, — Dy, = 2,* — Dy, = (&),
LYy — 2y =0 (lK]).
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Setzen wir

7,2, — Dyyy, = ku, Yy — 24 = kv,

(1’1 - yle—)) (12 - !lz]/.ﬁ) =k (“ +v Vﬁ)r
(»”1 + .'/11/]-_))(1'2— .‘Iz}'/ﬁ) =h (" - 1’@-
Durch Multiplikation beider Gleichungen erhalten wir

k= (2, — Dy, (x? — Dy,?) = k*(u? — Dv?)

80 ist

und 4% — Dv? = 1. Der Satz wird bewiesen sein, wenn wir noch zeigen kénnen, da
fiir die erhaltene Lésung (u, v) gilt ¢ == 0. Wire nimlich » = 0, so miifiteu = {1 sein.
Es folgt dann

(-1'1 —yIVI-—)) (12 +?lz]/l_))(zz = yzl/ﬁ) = :tk(xz —.’Izvﬁ)-

Andererseits ist aber

(3'1 —1/1}/3)(12 +?l2]‘rﬁ) (xz— !Iam) = k(xx - ?/1}/3)-
Hieraus erhalten wir |r,, = 'r, [y, = ly,| im Widerspruch zur Ausgangssituation.

Mit diesem Satz ist die Existenz einer nicht-trivialen Lésung gesichert. Dariiber
hinaus soll jetzt das Vorhandensein unendlich vieler Lésungen nachgewiesen werden.
Dazu verabreden wir folgendes:

Definition 6.1. Erfiillen die ganzen Zahlen z, y die Gleichung 2* — Dy? = N
(D kein vollstindiges Quadrat, N 2= 0), so heifle z + y}/ﬁ eine Losung. Die kleinste
Lésung x; + 3, ]/-17 mit x,, y, > 0 heiBe Fundamentalldsung.

Satz 6.8. Ist D kein vollstindiges Quadrat, dann liegen auf der Hyperbel a2 — Dy?
= 1 unendlich viele Gitterpunkte. Ist x| - y,]/ﬁ die Fundamentallosung, so sind die
siamtlichen Lésungen x, + y,,]/E mit x,, y, > 0 gegeben durch

Ln +ynV3=(=r. —I—ylVE)" n=12..).

Beweis. Nach Satz 6.7 liegt auf der Hyperbel wenigstens ein nicht-trivialer
Gitterpunkt, so daB die Fundamentallssung existiert. Die angegebenen Werte
&, + Yn ]/3 bilden im Sinne der Definition wegen

Z, — Dy,? = (1 — Dy,An = 1

tatsichlich Losungen. Nehmen wir an, es gibt noch eine weitere Losung » + v}/B
mit %, » > 0. Hierzu finden wir ein #» mit

(s + VD) < u +9}D < (2, + 9, VD),

% + 4D <u + YD < (% + VD) (= + D).
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Da x, — y,]/ﬁ > 0 ist, finden wir hieraus

1 < (u +2VD) (v, —9.¥D) < = + 0 VD. (6)
Setzen wir

(u+ 2¥D) ez — VD) ==+ v VD,
so erhalten wir eine weitere Msung z + yﬁ, denn es ist

at — Dyt = (u* — Do?) (5,2 — Dy,?) = 1.

(w— VD) (2 + 9 ¥D) = = — ¥VD

und # > v ]/I)- ergibt sich z > y }/3 Daher ist
0<z—yyD =
x+yV_

und das bedeutet > 0 und y > 0. Nach (6) ist

2+y¥D <z +un)D,

was im Widerspruch zur Eigenschaft vonz; 4+, }/I)_ als Fundamentallgsung steht.
Nach diesem Satz besteht also fiir die Angabe von Lésungen das Problem darin,
wenigstens eine Losung zu finden. Das kann geschehen, indem man in 22 = 1 + Dy?
nacheinander fiir y die Werte 1, 2, ... einsetzt und nachsieht, ob sich fiir 1 4+ Dy?
ein vollstindiges Quadrat ergibt. So ist beispielsweise fiir die Gleichung 2% — 5y% = 1

Aus

die Fundamentallsung durch 9 + 4}/5 gegeben. Es gibt auch ein systematisches

Verfahren, welches die Kettenbruchentwicklung von Vﬁausnutzt. Jedoch soll darauf
nicht eingegangen werden.

Wenden wir uns jetze der Gleichung 2® — Dy? = —1 zu.

Satz 6.9. Ist D kein vollstindiges Quadrat, dunn liegen auf der Hyperbel «* — Dy?
= — 1 entweder keine oder unendlich viele Gitterpunkte. Ist im zweiten Fall £ + 7, }/B
die Fundamentallosung, so sind die siimtlichen Losungen £, + '],,V—ﬁ mit 0 >0

durch
S0+ VD = (& + m VD) n=12..)
gegeben. Ferner liefert
x+ yYD = (& +m D)
die Fundamentallosung von x* — Dy® = 1.
Beweis. Wir fiihren den Beweis in drei Scbritten.
1. Die Werte &, + ), }/l_) sind im Fall der Losbarkeit Lisungen, da
— Dp,? = (52— D,hz)zu—l = —1.
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2. Ehenso ist  + y]’ﬁ = (51 + ]/—,5)2 wegen
12— Dyt = (52 — D =11

Lésung der Gleichung #® — Dy? = 1. Nehmen wir an, (51 +m ]/mz ist nicht Fun-
damentallésung, so muB

1<% 4+4nVD < (&6 + mVD)

gelten, wenn z, + y, }/17 die Fundamentalldsung von #2 — Dy® = 1ist. Esist 0 < —£,
+m }/B < 1 wegen

(—51 + 7]1‘/3)(51 + 'hﬁ) ==&+ Dyt =
und daher

—& +771V1_)<("51 +’71V5)(11 +y1}/l—))<51 +771V3'

Setzen wir jetzt

(—& + mYD)(w + 1. YD) = &+ nVD,

80 erkennen wir

(&:* — D) (1, — Dy?) = £ — Dy = —1
und

—& +771V—5<fo+7ln'/3<51+7]1},1_)-

Wir fithren jetzt den Widerspruch herbei, indem wir alle moglichen Vorzeichen-
kombinationen von &, 7o ausschlieBen. £ = 0 oder 7, = 0 kann sowieso nicht sein.

a) & > 0 und 7, > 0 ist unméglich, da &, + 1701/5 <& + nI}/Bund &+ }/3
Fundamentallésung ist.

b) £ < 0 und 79 > 0 ist unmdéglich, da sich aus —¢&; + », }/1._) < &+ 'r]oyﬁ die
Ungleichungen

(—fx +‘mm(5x + ’]1V1—)) < (fn + ﬂom(_fo +’70m
51+711V.5 _504‘7711}/3
1 1
<

G+mVD  —&+nlD
ergeben. Die Ungleichung — &, + ﬂoﬁ <& +m }/B kann aber nicht bestehen, weil
& + m VD Fundementallsung ist.

c) & < 0 und 79 < 0 ist unméglich wegen

0< —&+m VD <& +n)D.
d) £ > 0 und 7, < 0 ist unméglich, da sich aus &2 — Dy = —1 die Unglei-
chung & < |5, VE und daraus & + 7, }/3 < 0 ergibt.
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3. Wir nehmen an, es gibt auller den im Satz genannten Lésungen eine weitere
u + v]/D mit %, » > 0. Dann gibt es ein » mit

(& +mVDP" " <u+oVD < (& + m YD)

Multiplizieren wir die Ungleichung mit (51 —n }/B)h und setzen

(5, - 1],}/B)h(u+v]/3)=r+y]/l_),

so0 ist 22 — Dy? = —1 und

0<;<z+y}/ﬁ<£l+nll/l_)-

& "‘771}/B

Genau wie im zweiten Teil des Beweises schlieBen wir alle Vorzeichenkombinationen
von z, y aus und erzielen den gewiinschten Widerspruch.

a) z >0 und y > 0 ist unmoglich, da x + y]/l_) <&+ VB und & + :h}/l_)
Fundamentall3sung ist.
b) z < 0 und y > 0 ist unmoglich, da

1
—_———= —z+y1D < +'11V—
x+yyD
c) z<<Ound y < Qist wegen 0 < x + gy ]/b_ unmaglich.
d) z > 0 und y < 0 ist unmdglich, da aus x* << Dy? folgt * + y }/3 < 0.

In diesem Satz haben wir inshesondere von der Fundamentallésung der Gleichung
— Dy* = —1 auf die von 22 — Dy? = 1 geschlossen. Aber auch die Umkehrung
ist moglich.

Satz 6.10. Ist z, + y, ]/l—) die Fundamentallosung vor x* — Dy* = 1, so bildet

x — 1 r, + 1
l/ 2 +l/ 2D VB

die Fundamentallosung von a® — Dy? = —1, sofern

—1 T
! X ot natiirliche
2 2D

Zahlen sind; andernfalls vst die Gleichung x* — Dy? = —1 unlosbar.

Beweis. Ist & + 7, }/B die Fundamentallésung von x2 — Dy? = —1, so ist nach
Satz 6.9

x+ 5 VE = (51 +m VB)z

die Fundamentallésung von 22 — Dy? = 1. Aus dieser Gleichung folgt fiir £, , das
Gleichungssystem

2 = &%+ Dny?, Y = 2.
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Durch Einsetzen der'zweiten Gleichung in die erste erhalten wir

Dy,2
2 =5%+ 4:2 » (2862 — )t =m2 — Dy = 1.
Also ist
&= 2 £ 1 und "= Y1 _ rn F 1.
2 2 2 £ 1 2D
2
Wegen

kann in der Darstellung von &, 5, nur das untere Vorzeichen gelten.

Beispiel. Aus der Fundamentallssung 9 + 4 }/3 von 22 — 5y* = 1 erhiilt man die
Fundamentallésung 2 + '|/5 von 2% — 5y = —1.
Wie der folgende Satz zeigt, ist dieses Beispiel verallgemeinerungsféhig.

Satz 6.11. Es sei p eine Primzahl mit p =1 (4). Dann liegen auf der Hyperbel
xt — py? = —1 unendlich viele Gitterpunkte.

Beweis. x; + y; }/; sei Fundamentallésung von 22 — py* = 1. Wire 2, =0 (2),
so wire py,? = —1 (4), was nicht sein kann. Dannistalsoz; =1 (2)und (x, — 1,
x; + 1) = 2. Daher folgt aus

(£, — 1) ( A+ 1) =% — 1 = py,®
mit positiven Zahlen a, b

z + 1 = 242, r, F 1 =2pb?
und «® — pb? = 4-1. Aus

4pa®h? = 2,2 — 1 = py,?

ergibt sich @ < x,undb < y,. Da x, + ¥, VB Fundamentallgsung von 22 — py? = 1
ist, kann nur «®* — pb? = —1 sein. Das heiit, nur das untere Vorzeichen ist zu-
treffend. Die Behauptung resultiert nun aus z, — 1 = 242, 7, + 1 = 2pb? in An-
wendung des Satzes 6.10.

Die Behandlung der allgemeinen Hyperbeln 22 — Dy? = N mit positivem oder
negativem N stiitzt sich auf die Ergebnisse, die wir fiir N = 1 erzielt haben. Zu-
nichst stellen wir fest, daB mit einer Losung z + y }’5 von 22 — Dy? = N und einer

Losung &£ + 7 }/I.—) von £2 — Dn? = 1 auch

(= + yVD) (¢ + nVD) = =t + Dyn + (an + y&) YD
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eine Lésung von 22 — Dy? = N ist. Wir nennen sie eine zu x + ¥ ]/—5 assoziierte
Lésung. Man stellt unschwer fest, daB die Assoziiertheit eine Aquivalenzrelation in der

Menge aller Losungen x + y]/B darstellt. Damit bilden die samtlichen zu x + yVE
assoziierten Lésungen eine Aquivalenzklasse K = K(z, y), die nach Satz 6.8 unend-
lich viele Elemente enthilt.

Ist ' + o' }/B € K(x, y), so besteht eine Darstellung

& +y' VD =(x + y¥D) (¢ + nVD).
Hieraus finden wir
22’ — Dyy' + (ry' — 29) YD = (' +y' VD) (z — y VD)
= @ — Dy (¢ +1VD)
=N(s+ayD).
Daher sind
zz' — Dyy' =0 (IN]),
zy' —a'y=0 (IN})
notwendige Bedingungen,dall x + y ]fi)- und ' + ¢’ Vﬁ zur selben Klasse gehéren.

Sie sind aber auch hinreichend. Dennsind z + y YD und 2’ + y' YD Lésungen mit
dieser Eigenschaft, so definieren wir
zz’ — Dyy' zy =2y

&= ¥ , 7= v

und es ist
1 , ,
,;:2 l’nﬁ_N:(tﬂ l)yl)(ZZ l)y?)-ll

Es bezeichne noch K die zu K konjugierte Klasse, indem bei den Elementen von K
die Zahl }/5 durch —VD ersetzt wird. Wir benutzen die Definition 6.1 in leicht ab-

gewandelter Form: « + v}/B heifle Fundamentallosung der Klasse K, wenn v der
kleinstmégliche nichtnegative Wert ist. Fiir K 4 K ist u eindeutig bestimmt, denn

—u 4+ v ]/l_) € K. Ist dagegen K = K, s0 werde u = 0 gefordert.

Satz 6.12. Ist u + v }/E die Fundamentallosung der Klasse K der Gleichung u?
—Dv’=N>0,1mdial;r,+y,VBdieF de tallosung der Gleichung x* — Dyt
=1, so gult

0svs—% __y¥N, )

V2(zy + 1)

0<ul < I/é(x.+ H¥. ®)
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Folgerung. Es gibt nur endlich viele Losungsklassen. Gibt es keine u und v mit
— Di? = N, die den Ungleichungen (7), (8) geniigen, so ist diese Gleichung un-
losbar.

Beweis. Fiir N > Oistu == 0. Wir knnen ohne Beschrinkung der Allgemeinheit fiir

K diejenige Klasse wihlen, fiir die « > 0 ist. Mit der Fundamentallésungu + v ]/-5 €K
ist

(u + 'u}/B) (z, —u }/B) = uz, — Doy, + (x0 — yyu) YD
ein Element von K. Weil
— Doy, = uz, — V(w2 — N) (& — 1) > 0
ist, muB sogar uzx, — Dvy, = u sein. Daraus ergibt sich
ul(z, — 1)2 = Doy, = (u2 — N) (2,2 — 1),

w < — (z,+1)N

und es folgt (8). Die Ungleichung (7) ergibt sich aus

vzzu’—NSx,—lN= ?—1 "N

= N = N
D 2D 2(z, + 1) D 2x, + 1)

Beispiel. u? — 202 = 119.
Die Fundamentalldsung von 22 — 2y%2 = 1 ist 3 + 2]/§ Nach (7) kommen fiir »

2
Werte mit 0 < v gT J119 < 8 in Betracht. Daraus resultieren die Losungen
8

+11 + V_2-, 413+ 5 }/5 Man iiberpriift leicht, daB alle vier Lisungen verschiedenen
Klassen angehoren. Also gibt es vier Losungsklassen mit den genannten Fundamen-
tallésungen.

Satz6.13. Ist uw + v VB die Fundamentallosung der Klasse K der Gleichung u?
— Dt = —N < O, und st z, + y, ]/B die Fundamentallosung der Gleichung a® — Dy?
=1, sogilt

O<v<—L YN, 9
<v—V2(z1—1)V_ @

oshs ]/%(z. — DN, (10)

Folgerung Es gibt nur endlich viele Lo ssen. Gibt es keine u und v mit
u? — Dv? == —N, die den Ungleichungen (9), (10) gentigen, so ist diese Gleichung
unlésbar.
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Beweis. Ohne Beschrinkung der Allgemeinheit sei » = 0 angenommen. Mit der
Fundamentallésung » + v }/3 € K ist auch

(u + UVZ_))(% —?/1}/3) = ux; — Doy, + (371")—.'/1“)}/36 K.
Wegen

nht = (3/12 + ";—) (u? + N) > y,*u?
ist x;v — y,u > 0 und wegen der Eigenschaft der Fundamentallésung x,0 — y,u = v.
Daraus ergibt sich

Doz, — 1) = Dy,

(u® + N) (2, — 12 2 (n,* — 1) w2,

1
ur < 5 (z, — 1) N

und damit (10). Die Ungleichung (9) folgt aus

:ug—i—N 11+1N= n?—1 N o I 1%
D 2D 2(x, — 1) D 2(x, — 1)

v?

IA

Beispiele.
1. u? — 602 = —2.

Die Fundamentallésung von x% — 6y =1 ist 5 + 2 }/6_ Nach (9) kommt fiir v nur
2 -

0<v=—V2,alsov»=1in Frage. Man erhilt die beiden Lésungen +2 + VE
8

Wie man leicht feststellt, gehdren sie aber zur selben Klasse. Also gibt es nur eine
Lésungsklasse mit der Fundamentallésung 2 + }/B

2. u? — 50 = —2.
Die Fundamentallésung von 22 — 5y = 1 ist 9 4 4}/3. Aus (9) ergibt sich fiir v nur
die Moglichkeit » = 1. Da u? # 3 ist, besitzt diese Gleichung keine Ldsungen.

6.2.  Darstellungen natiirlicher Zahlen als Summe von Quadraten

Den Satz 6.6 kann man so formulieren: Eine natiirliche Zahl » > 1 ist genau dann
als Summe von zwei Quadraten ganzer Zahlen darstellbar, wenn jeder Primfaktor
von n der Gestalt 4m + 3 in der kanonischen Zerlegung von n einen geraden Ex-
ponenten besitzt. Also laBt sich nicht jede natiirliche Zahl als Summe von zwei Qua-
draten darstellen. Es gibt auch unendlich viele natiirliche Zahlen, die sich nicht als
Summe von drei Quadraten darstellen lassen.

Satz 6.14. Die natiirlichen Zahlen n = 49(8b + 7), @ = 0, b = 0, lassen sich nicht
als Summe von drei Quadraten darstellen.
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Beweis. Wir fiihren den Beweis durch vollstindige Induktion nach a und begin-
nen mit a = 0. Es ist

2=0 (8) fiir
22=4 (8) fiir
=1 (8) fiir = (2).

Nun ist stets
T +xt + 2T (8),
wihrend 86 + 7 =7 (8) ist. Nehmen wir jetzt an, 49(8b + 7) ist nicht als Summe

von drei Quadraten darstellbar. Wir haben zu zeigen, da8 dann auch 4°+1(8b 4 7)
nicht darstellbar ist. Sei im Gegensatz dazu die Darstellung

49F1BD 4 T) = z,® + 2% + 232

angenommen. Aus ;2 4+ x2 4+ 1,2 =0 (4) folgt #, =x,=2,=0 (2). Dann
hitten wir im Widerspruch zur Induktionsannahme

o= (3 (5] (3]

Es ist bemerkenswert, daB sich alle Zahlen, die nicht von der Form 49(8b + 7) sind,
als Summe von drei Quadraten darstellen lassen. Wegen der aufBerordentlichen
Schwierigkeit wollen wir einen Beweis dieser Tatsache hier nicht geben. Iin Jahre 1621
sprach C. G. BAcHET (1581—1638) die Vermutung aus, daB sich jede natiirliche Zahl
als Summe von vier Quadraten darstellen ldBt. Der erste vollstindige Beweis gelang
J. L. LAGRANGE, indem er von L. EULER entwickelte Ideen ausnutzte. Wir bereiten
den Beweis durch einen Hilfssatz vor:

Hilfssatz 6.2. Zu jeder Primzahl p > 2 gibt es gunze Zahlen x, y, m mit a% + y*
+1=mpund 0 <m < p.
p—t sind untereinander in-

kongruent modulo p. Entsprechendes gilt fiir die Zahlen —y? — 1mit0 < y < p%l .

Beweis. Die simtlichen Zahlen 22 mit 0 <z <

Beide Zahlensysteme zusammen enthalten insgesamt p 4 1 Zahlen. Da es aber
modulo p nur p verschiedene Reste gibt, muf} es zwei Zahlen z, y geben, so daB 22
und —y? — 1 modulo p in die gleiche Restklasse fallen. Daher gibt es fiir diese Zahlen
ein m mit 22 + y? + 1 = mp. Wegen

- 2 2
0<x’+y’+1<(%) +(§) +1<pt

st 0 < m < p.

Satz 6.15 (LAGRANGE). Jede natiirliche Zahl ist als Summe von vier Quadraten ganzer
Zahlen darstellbar.
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Beweis. Lassen sich die Zahlen a, b als Summe von vier Quadraten,
a==z%+n?+ n?+ =y®+y? +ut + oyl
darstellen, so auf Grund der Eulerschen Identitidt auch ihr Produkt -
a-b=(@y1 + Toy2 + Tays + TuYa)? + (T2 — Tt + TYy — Tays)?
+ (@Y — B39 + Ty — W) + (B1Ys — Ty + Tz — TYe)®-
Es geniigt also, den Satz fiir Primzahlen zu beweisen, die wir wegen 2 = 12 4 12
+ 02 -+ 02 gleich als ungerade annehmen konnen.
Es sei m die kleinste natiirliche Zahl mit
2,2 + 2% 4 13 + 22 = mp.
Nach Hilfssatz 6.2 gibt es ganze Zahlen z,, x,, 23, 2,, m mit dieser Eigenschaft, und es
ist iiberdies m < p. Wir haben m = 1 zu zeigen und unterscheiden zwei Fille.

1.Esseim =0 (2). Fiirdiex; ergebensich drei Moglichkeiten. Entweder sind alle x;
gerade oder alle ungerade oder zwei (etwa x,, r,) gerade und zwei (nunmehr z, x,)

ungerade. In jedem Fall sind die Zahlen ——— I :t 22 L :l: G ganz. Dann widerspricht

aber die Gleichung

4 7|2 7, — z,\? T3 + 4,\? L=z _m
(2)+(2)+2+2_2p
der Minimumeigenschaft von m.
2. Esseim=1 (2),m = 3. Zu jedem z; wird ein y; bestimmt mit

m
= (m), |wl << (k=1,2,3,4).

Dann ist

ntvityttyi=zi+at+rnt+zi=0 (m),
und es gibt eine ganze Zahl r mit

¥1® + ¥° + y® + Yt =mr

Es mug 7 > 0 sein. Denn wire r = 0, so wiirde y; = y, = y3 = y, = 0 und m ein
Teiler aller x; sein. Das zieht aber m? | mp nach sich, was wegen m < p nicht méglich

sein kann. Wegen |y;| < % fiir alle k ist

'+ 9ty 4yl <m?

und daher r << m.
Die Zahlen mr und mp sind beide durch vier Quadrate darstellbar, und auf Grund
der Eulerschen Identitit ist

mr-mp = z* + 2 + 2* + 2.2
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mit
a =%y + LYy + Tays + =02 + 2P+ 2P+ x2=0 (m),
2 = TyYp — LoYy + TayYs — TaYa =0 (m),
29 =LYy — TaYs + TuY2 — TYa =0 (m),
2y =Ty — TY + ToYs — Y =0 (m).

Damit ist

2 2 2 2 z 2
m m m m
was wegen 0 < 7 << m gegen die Minimumeigenschaft von m verstoBt.
Insgesamt kann also nur m = 1 sein.

Wir stellen uns jetzt die schiirfere Frage, wie oft eine natiirliche Zahl als Summe von
zwei beziehungsweise vier Quadraten darstellbar ist. Wir haben uns schon in Ab-
schnitt 5.7.2. mit der durchschnittlichen (iré8enordnung von r(n) beschiftigt. Jetzt
geht es uns um eine genaue Bestimmung von r(n) und ebenso hinsichtlich der Dar-
stellungen von n als Summe von vier Quadraten. Wir schreiben nunmehr fiir r(n)
= 7,(n) und erkliren allgemeiner:

Definition 6.2. Es bezeichne r(n) die Anzahl der Darstellungen der natiirlichen
Zahl » als Summe von k (k = 2) Quadraten ganzer Zahlen. Es sei (0) = 1.
Der Bestimmung von 7,(n) schicken wir drei Hilfssitze voraus. Der erste Hilfssatz

ist eine Verallgemeinerung der Sitze 6.2 fiir D = 1 und 6.3.

Hilfssatz 6.3. Essein > lund 22 = —1 (n). Dann st n eindeutty in der Form
n=z4+ymitz,y>0,(x,y) =1, yz==z (n)darstellbar.

Beweis. Nach Satz 4.7 gibt es zu Z und ﬂ eine Zahl , (a, y) =1, mit 1
Sy }/; und &

z a

w Ty

1
< y_]/;
Setzt man yz + an = x,s0ist yz =2 (n) und jz| < ﬂ Fiir diese Zahlen «, y gilt
2+ yt=y22 4+ 1)=0 (n).
Wegen 0 < 2% + y? < 2n folgt hieraus 22 + y2 = n. Esist auch (z, y) = 1, denn aus
n=ux%4y*= (yz + an)? + y® = (22 + 1) y® + 2anyz + a?n?
folgt

2 4 2
1=(Z: y+az)y+(yz+an)a:(z—+—ly+az)y—{-ax.
n
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Und diese Gleichung kann nur fiir (z,y) = 1 bestehen. Es ist x 4 0, weil sonst
y* =n > 1 und daher (z,y) > 1 wire. Fiir positives 2 liefern dann z,y und fiir
negatives x die Zahlen y, —2 die gewiinschte Darstellang von 7, denn in diesem Fall
ist

(—2)z=—yt=y ().
Nun haben wir noch zu zeigen, daB die Darstellung von » eindeutig ist. Nehmen
wir an, » besitzt die beiden Darstellungen
=2z +y* =2 +yt
entsprechend den Bedingungen des Satzes. Dann ist
i = (2 + %) (22 + 9 = (220 + 9 + (@ — 2y)?
mu

@ +yp =+ Dyn=0 (n).
Dabher ist

2z, +yy =", 2y — 2y =0,
und hieraus folgt sofort * = z,, y = y,.

Hilfssatz 6.4. Es bezeichne o(n) die Anzahl der Losungen von 22 = —1 (n). Dann
18t die Anzahl der Darstellungen von n tn der Form n = 2% + y? mit ganzen Zahlen x, y
und (z,y) = 1 gegeben durch 4g(n).

Beweis. Der Fall n = 1 ist trivial. Fiir» > 1 sind x,y + 0, da (z,y) = 1. Dann
ist die Anzahl der Losungen n = 22 + g2, (r,y) = 1 gleich der vierfachen Anzahl
unter der Nebenbedingung «,y > 0. Zu jedem z mit 22 = —1 (n) gibt es nach
Hilfssatz 6.3 genau eine solche Darstellung von # mit yz = =  (n). Umgekehrt liefert
jede derartige Darstellung von » genau eine Losung der Kongruenz 22 = —1 (n).
Denn aus (z,y) = 1 folgt einerseits die eindeutige Losbarkeit von yz ==z (n),
andererseits (y, ) = 1 und deshalb wegen

2+ y=y22 4+ 1)=0 (n)
schlieBlich 22 = —1 (n).

Hilfssatz 6.5. ryn) =4 3¢ (%)
Bin
Beweis. Ist in der Darstellung n = 2% + y2 der groBte gemeinsame Teiler (z, y)
=t, 80 setzen wir ¥ = x,t, y = y,¢ und erhalten !

n
r =z +u? (@, 1) = 1.

Durchlduft ¢ alle natiirlichen Zahlen mit ¢ | », so ergibt sich aus Hilfssatz 6.4 die
Behauptung.
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Satz 6.16 (Gauss). Es bezeichne

0 fir n=0 (2)
7(n) = a-1
(=1 *
und d(n) = 1 % y(n), also
dm)y=X1-31.
[

» tn
tml (4) (w3 (4)

fir n=1 (2)

Dann ist
ro(n) = 4d(n).

Beweis. Fiir » = 1 ist alles klar. Wir vermerken, daB x(r) als Restklassencharak-
ter multiplikativ ist und daher auch §(n). Aber auch g(n) ist nach Satz 2.10 multi-

plikativ und nach Hilfssatz 6.5 dann auch % 79(n). Daher geniigt es, die Behauptung

fiir Primzahlpotenzen zu beweisen. Wir unterscheiden die Fille p =2, p=1 (4),
p=3 (4).
Fir p = 2 ist
1 fir v=1
2) = ’

o) { 0 fir »> 1.
Damit ist nach Hilfssatz 6.5 und der Definition von é(n)

ro(20) = 46(2).
Firp=1 (4)ist o(p’) = 2 fiir » > 0 und

ry(p') = 4(» + 1) = 46(p").
Firp=3 (4)ist p(p’) = 0 fiir» > O und

L[4 fir v=0 (2),

ms(p) _{0 fir v=1 (2)

= 448(p").

Dieses Ergebnis wurde von C.G.J. JacoBr (1804—1851) unter Benutzung der
Theorie der elliptischen Funktionen erneut bewiesen. Diese Methode war wirksam
genug, um auch r(n) fiir £ > 2 zu behandeln. Es soll jetzt das Ergebnis fiir & = 4
dargestellt werden, allerdings nach einer spiiter gefundenen elementaren Methode
von E. LaNpAvU. Wir bereiten den Satz wieder durch zwei Hilfssitze vor.

Hilfssatz 6.6. Es seien u, u,, u,, ¥y, u, positive ungerade Zahlen, s(u) bezeich
die Anzahl der Losungen von

du = uy? + u® + uy® 4 ud.

Dann ist s{u) = o(u).
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Beweis. Da u,® + u? = uy? -+ w2 =2 (4) ist, setze man mit ungeraden Zahlen
m,n
2m = u? + w?, 2n = ug® + ug?, m+ n = 2u.
In den Darstellungen 2k = 22 + y2 mit ungeradem k sind die , y ebenfalls ungerade.
Da die u; (i = 1, 2, 3, 4) positiv sein sollen, ist nach Satz 6.16

s(u) = L S nm)r2n) = 3 6(2m)d(2n)

16 m+n=2u min=2u
mmnwl (2) mmnml (2)
= 2 2 Z(tx)z 2(t) = Z Zzl(lltz) = 2 7(hts).
mt+n=2u bHi2m tizn m+n=2u_Glm t,ln td, +hdy=2u
mmuml (2) memml (2)

In der letzten Summe ist iiber alle positiven ungeraden Zahlen ¢, &, d,, d; mit £,d;
+ t,d; = 2u zu summieren. Betrachten wir in dieser Summe zunichst den Teil mit
t; = t,. Hierfiir ist

%
2 oatt) =23 3 1=3—=o0).
f,dy+ tady =2u alu 2u a4
=t, d:+d:=z

Zur Vollendung des Beweises ist also noch

2 altt) =0
1)+ oy =20
0>t

zu zeigen. Die entsprechende Summe mit ¢, < ¢, ist dann aus Symmetriegriinden eben-
falls gleich 0. Wir ordnen jetzt die Losungen der Gleichung t,d, + t,d, = 2u paar-
weige an, so dafl einer Losung (¢, ¢, d;, d;) eineindeutig eine Losung (¢,, ¢y, d,’, d,")
mit y(ti¢;) + x(t'ty’) = O entspricht. Das erfolgt durch die Festsetzung

4'=(rn+2)d + (n+ Ddy, &' =(n+4 1)d, + nd,,
d' = —ni + (n+ 1) by, d) =(n+ 1)t — (n +2)¢,.

Dabei ist n = [t e ; gesetzt. Man sieht sofort, daB die Zahlen t,’, t;', d,’, d,’
1~ b2
positiv und ungerade sind. Eine leichte Rechnung zeigt
b'dy + b'dy = tidy + bdy = 2u.

Auch ¢’ > 8, ist gesichert. Die Auflosung des Gleichungssystems nach t,, ¢, d,, d,
bietet keine Schwierigkeiten. Es ist

b — n(dy + dy) + dy —n
4t dy +d; o

h=m+2)d'+ (4 1)dy, t=(m+1)d' +ndy,
dy = —n' +(n+ )8, =@+ 1t —(n+2)8.
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SchlieBlich ist
ble + 4’ =l +hL -1+ @ +8& —1) (4)
=t 4tt+ @ +3)d +2n+)dy—2 (4)
=2d, +d)) +(th+ o+ d+dy) +2d, —2=0 (4)
und damit y(4t) = —x(t,'ty’).
Hilfssatz 6.7. Fiir ungerade Zahlen w ist r(2u) = 3r(u).
Beweis. In der Darstellung
2u = x,® + 2,2 + 232 + 2,°

sind je zwei der z; gerade beziehungsweise ungerade. Die Anzahl der Losungen dieser
Gleichung unter der Nebenbedingung z, = 2, =0 (2), 1; =x, =1 (2)ist also

%— 74(2u). Die Substitution

X + 1,
- 2

4

h » Yo = —(F—

fithrt die Gleichung iiber in

w=y*+ v+ y’ + 9
deren Lésungsanzahl unter der zu betrachtenden Nebenbedingung y, + y, =0  (2),
Y3+ y4s =1 (2) ebenso El r4(2u) ist. Andererseits ist die Losungsanzahl dieser
Gleichung ohne Nebenbedingung () und mit Nebenbedingung% r4(u). Denn fiir

u==1 (4) kann nur genau ein! y;, also y, oder y,, ungerade sein und fiir u =3 (4}
genau ein y;, also auch y, oder y,, gerade sein.

Satz 6.17 (JacoBr). Es st
ry(n) = 8o(n) fir ns=0 (4),

ry(n) = 8a(n) — 32¢ (%) fir n=0 (4).

Beweis. Esist r,(2n) = r,(4n), denn in
4n = 2,2 4+ 2,2 + 22 + 2,2 (12)
ist 1y =z, =2, =2, (2), und die Substitution (11) gibt
2n =yt + 2t + st + oyt

Setzen wir in (12) eine ungerade Zahl # = u ein, so kénnen wir die Losungen in zwei
Klassen einteilen. Entweder sind alle z; gerade oder alle x; ungerade. Die Anzahl der
Losungen mit geraden z; ist 74(u), die mit ungeraden x; nach Hilfssatz 6.6 bei Be-
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achtung der Vorzeichen 16¢(u). Daher ist
re(du) = ro(u) + 160(u).

Nach Hilfssatz 6.7 folgt nun
3ry(u) = 7(2u) = r(4u) = re(u) + 160(u)
ry(u) = 8a(u).

Das ist die erste Behauptung des Satzes fiir ﬁngerades n =u. Firn =2 (4)ergibt
sich aus Hilfssatz 6.7

ron) = 3r, (%) =246 (%) =80(2)0 (%) = 8a(n).

Damit ist die erste Behauptung des Satzes vollstindig bewiesen. Fiir n =0 (4)
setzen wirn = 2¥u mit k = 2, u =1 (2). Wegen r,(4n) = 7,(2n) ist
rn) = r4(2u) = 80(2u) = 240(u)
= §(2¥+1 — | — 421 — 1)} a(w)
= 8{o(2%) — 10(2*~?)} a(u)

— 8o(n) — 320 (%)

6.3.  Rationale Punkte auf Kurven zweiter Ordnung

In der Ebene sei eine nicht zerfallende Kurve zweiter Ordnung mit rationalen Koeffi-
zienten gegeben. Wir stellen die Frage, ob eine solche Kurve hinsichtlich eines kar-
tesischen Koordinatensystems rationale Punkte, das heiBt Punkte mit rationalen
Koordinaten, enthélt. Diese Frage werden wir vollstindig beantworten konnen.

Satz 6.18. Auf einer Kurve zweiter Ordnung mit rationalen Koeffizienten liegen
entweder ketne oder unendlich viele rationale Punkte.

Beweis. Es sei ein rationaler Punkt auf der Kurve bekannt. Dann lege man durch
diesen Punkt eine Gerade mit rationalen Koeffizienten, die die Kurve in einem
weiteren Punkt schneidet. Dieser zweite Schnittpunkt ist notwendigerweiserational. Da
man durch den bekannten rationalen Punkt aber gleich ein ganzes Geradenbiischel mit
rationalen Koeffizienten legen kann, so erhilt man mit einem Punkt sofort unendlich
viele rationale Punkte.

Satz 6.19. Auf einer Parabel mit rationalen Koeffizienten liegen stets unendlich viele
rationale Punkte.

Beweis. Die Parabel sei durch

az® + bry +cy +drt+ey+f=0
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mit rationalen Koeffizienten und b2 — 4ac = 0 gegeben. Wir kénnen ohne Be-
schrinkung der Allgemeinheit ¢ = 0 annehmen. Durch Multiplikation mit 4¢ und
Einsetzen von 4ac = b? erhilt die Gleichung die Gestalt

bz +2cy+e)2+dx+} =0

mit rationalen Koeffizienten «’, f’, deren Grélle nicht weiter interessiert.
Die Transformation

=z, y =br +2y+e
fithrt die Parabel iiber in
v+ da +f =0

Dabei wird jeder rationale Punkt auf einen rationalen Punkt und umgekehrt ab-
gebildet. Wir konnen uns also auf Parabeln vom Typ

Y¥+ax+b=0, a=*0, (13)

beschrinken. Auf dieser Parabel liegt der rationale Punkt 2 = —-E, y = 0. Nach
a

Satz 6.18 befinden sich dann auf ihr unendlich viele rationale Punkte.
Es bereitet keine Schwierigkeit, simtliche rationalen Punkte von (13) zu bestim-
men. Wir legen Geraden

(r+3)
U=t x4+ —
a

b
durch den Punkt { — —, 0] mit beliebigemn rationalen Parameter ¢ & 0. Der zweite
[

Schnittpunkt mit (13) ergibt sich aus
b\2
2lr4+—) +axr~-b=0
a

zu

Die beiden Kurventypen Ellipse und Hyperbel behandeln wir gemeinsam. Es sei
eine Ellipse oder Hyperbel in der allgemeinen Gestalt (1) mit rationalen Koeffizienten
gegeben. Die Transformationen (4) und (3) fithren diese Kurven in die Gestalt
2% + Dy* = N mit rationalen D, N iiber, wobei wieder jedem rationalen Punkt der
Kurve ein rationaler Punkt der transformierten Kurve entspricht und umgekehrt.
Wir kénnen uns also auf Ellipsen und Hyperbeln dieser speziellen Form beschrinken.
Entsprechend dem Vorgehen in der analytischen Geometrie bezeichnen wir jetzt die
inhomogenen Koordinaten mit grofien Buchstaben. Wir betrachten also die Glei-
chung

X2+ D¥Y2=N. (14)
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Beim Ubergang zu den homogenen Koordinaten setzen wir

x-2 y-% p-2 N__°&
z z a a
mit ganzen Zahlen a, b, c. Die Frage nach der Losbarkeit der Gleichung (14) in
rationalen Zahlen ist dann dquivalent der Frage nach der Losharkeit der Gleichung
ax? + by + ¢cz2 =0 (15)
in ganzen Zahlen.

Liegt auf einer Ellipse oder Hyperbel wenigstens ein rationaler Punkt, so liegen
auf ihr nach Satz 6.18 sogar unendlich viele rationale Punkte, die nach dem dort im
Beweis beschriebenen Verfahren bestimmt werden konnen. Wir wollen es anwenden,
um die sdmtlichen rationalen Punkte auf dem Einheitskreis X* + Y2 =1 zu be-
stimmen. Ein rationaler Punkt ist durch X = —1, ¥ = 0 gegeben. Mit dem ratio-
nalen Parameter ¢ legen wir durch diesen Punkt das Geradenbiischel ¥ = (X + 1).
Die zweiten Schnittpunkte ergeben sich aus

X214+ X +12=0
zu
— 2 9
X=1_L )
142 142

Diese Punkte und (—1, 0) bilden die simtlichen rationalen Punkte auf dem Einkeits-

v
kreis. Wir setzen ¢t = — mit > 0, (%, ) = 1 und erhalten
u

u? — 2?2 2uv

Tt T w4t
Den Punkt (—1, 0) bekommen wir auch mittels dieser Formel, sofern wir nachtrig-
lich = 0 zulassen. Will man schliellich noch zu ganzen Zahlen z, y, zdurch X := ;

y.=X¥ iibergehen, so ist noch der gréfite gemeinsame Teiler d = (u? — 2, 2ur,
z

u? + v?) zu beachten. Offensichtlichistd = 1firusg=» (2)undd = 2firu=v=1
(2). Somit entspricht jedem rationalen Punkt des Einheitskreises umkehrbar ein-
deutig eine Losung

u? — v? 2uv u? 4+ o2

)

x =

der diophantischen Gleichung
2?4y =22

mit (x,y,2) = 1. Fiir d = 2 setzen wir u = ' + ', v =o' — ¢’ mit w'==0 (2)
und erhalten ein dem Fall d = 1 entsprechendes Ergebnis, indem lediglich x und y
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vertauscht sind. Wir konnen uns also allgemein auf d = 1, das heit us= v (2),
beschrinken. Sollen nur die Lésungen in natiirlichen Zahlen z, y, z angegeben werden,
so verlangen wir v > v > 0. Zusammenfassend haben wir:

Satz 6.20. Die Gesamtheit der ganzzahligen Liosungen der Pythagordischen Glei-
chung
2?4 g = 22
mitz,y,2>0,(x,y,2) =1,y=0 (2) ist gegeben durch
= u® — o2, y = 2uv, z=u?+ 22
mitu>v>0,(u,v)=1u=v (2).

Die Lésungen im Sinne dieses Satzes nennt man auch Pythagordische Zahlentripel.
Einige Beispiele entnimmt man der Tabelle:

u v x y z
2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
+ 3 7 24 25
5 2 21 20 29
5 4 9 40 41

Was bei Parabeln gar nicht vorkommen konnte, kann bei Ellipsen und Hyperbeln
durchaus auftreten, daB sie nimlich gar keine rationalen Punkte enthalten. So liegt
beispielsweise auf dem Kreis X? + Y2 = 3 kein rationaler Punkt. Entsprechend (15)
ist hier die Gleichung x% + y2 = 322 in ganzen Zahlen mit (x, ¥, z) = 1 zu betrachten.
Da aber x und y nicht durch 3 teilbar sind, ist die Kongruenz 22 + y2 =0 (3) un-
l6sbar. Ebenso liegt auf der Hyperbel X2 — 2¥% = 3 kein rationaler Punkt, da wir
hier auf die gleiche Kongruenz gefiihrt werden.

Zur allgemeinen Behandlung der diophantischen Gleichung (15) konnen wir an-
nehmen, daf die Zahlen a, b, ¢ simtlich verschieden von 0, nicht alle positiv und nicht
alle negativ sind. Auch kénnen wir sie quadratfrei voraussetzen mit (a, b, c) = 1.
Selbst die Voraussetzung (a, b) = (b, ¢) = (¢, @) = 1 bedeutet keine Einschrinkung.
Fiir die Losungen der Gleichung (15) kénnen wir gleich (2, y, z) = 1 annehmen. Dann
ist von selbst (z,y) = (y, z) = (2, #) = 1. Denn wire beispielsweise die Primzahl p
ein Teiler von (x, y), so wire auch p? | cz2. Das kann aber nicht sein wegen (z, y,z) = 1
und ¢ quadratfrei. Zu einer notwendigen Bedingung fiir die Losbarkeit von (15) ge-
langt man durch eine Betrachtung der Gleichung modulo c:

ar® + by =0 (c).

Wegen (b, ¢) = (r,y) = 1 ist (x,¢) = 1, und es gibt ein » mit y = 2u (c). Daraus
folgt
2%a + bu?) =0 (c),
(bu)? = —ab (c).
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Also ist notwendig fiir die Losbarkeit, daB —ab quadratischer Rest modulo ¢ ist.
Durch zyklische Vertauschung erhilt man die weiteren notwendigen Bedingungen
—be quadratischer Rest modulo @ und —ca quadratischer Rest modulo b. A. M. Le-
GENDRE bewies, daBl diese Bedingungen auch hinreichend sind.

Satz 6.21 (LEGENDRE). Es seien a, b, ¢ drei ganze Zahlen, die den folgenden Be-
dingungen geniigen: Sie sind alle verschieden von 0, nicht alle positiv, nicht alle negativ.
Ste sind samtlich quadratfrer, und es ist (a,b) = (b, ¢) = (¢, a) = 1.

Notwendige und hinreichende Bedingungen fiir die Lésbarkeit der diophantischen
Gleichung (15) in ganzen Zahlen x,y, z mit x® + y® + 22 > 0 sind: —bc Vst quadrati-
scher Rest modulo'a, —ca ist quadratischer Rest modulo b, —ab Vst quadratischer Rest
modulo c.

Beweis (vgl. [13]). Die Notwendigkeit der Bedingungen wurde bereits gezeigt.
Nun weisen wir nach, daB sie auch hinreichend sind. Wir kiénnen ohne Beschrinkung
der Allgemeinheit |a| < |b| < |¢| und daher |ab| < lac| < ibc! annehmen. Wir nennen
K = |ac| den Index der Gleichung (15) und fiihren den Beweis durch Induktion
nach K.

Fiir K = 1 ist |a] = |b| = l¢| = 1. Dieser Fall ist durch den Satz 6.20 erledigt.

Nehmen wir jetzt die Richtigkeit des Satzes fiir alle Gleichungen mit einem Index,
der kleiner als K ist, an und weisen seine Richtigkeit fiir Gleichungen vom Index K
nach. Fir K = 2 kann nicht |b| = |¢| sein, da aus (b, ¢) = 1 sofort |b| = ¢! = |a] =1
folgt. Also ist |a| < |b| < |c| und |ab] < |ac] = K < |bel.

Da —ab quadratischer Rest modulo c ist, gibt es ganze Zahlen r, ¢ mit

ar* + b =cq, |r] §—;|c|. (16)
Fiir |g| gilt
2 K
gl = M_Tlltﬂ \acH—l ‘<—4-+1<K.

Wir unterscheiden zwei Fille.

1. ¢ = 0: Da b quadratfrei und (a, b) = 1 ist, folgt aus b = —ar?, daB b = —«a
= 41, r = 41ist. Dann besitzt die Gleichung (15) die Lésungenz =y =1,z =
und der Satz ist bewiesen.

2. g 9= 0: Bezeichnet 4 = (ar%, b, cg), so ist nach (16)

= (ar?, b) = (ar?, cg) = (b, cq).

Aus 4 | b folgt (4, a) = (4,c) = 1 und daher 4 |72 und 4 | ¢. Da b quadratfrei ist,
8o auch 4 und 4 | . Wir kénnen daher mit quadratfreiem C

r=Aa, b=Af, g=ACy (17)
setzen. Aus (16) finden wir

ada? + f = cOy? (18)
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mit
(aAa?, f) = (ada?, cCy?) = (B, cCy?) = 1.

Setzen wir noch B = af, so ist ab = AB.
Wir betrachten jetzt die Gleichung

Az + By + C22 =0 (19)

und zeigen dreierlei: a) Die Gleichung (19) erfiillt simtliche Bedingungen des Satzes.
b) Der Index der Gleichung (19) ist kleiner als K. c) Jede Lésung der Gleichung (19)
liefert eine Losung von (15). Dies vollendet dann den Beweis.

a) Die Gleichung (19) erfiillt simtliche Bedingungen des Satzes: Es ist ABC = 0.
A und C sind quadratfrei und wegen AB = ab auch B. Uberdies ist (4, B) = 1. Es
gilt (4, C) = 1 und wegen (a,C) = (8, C) = 1 auch (B,C) = 1. Ist ab = AB < 0,
s0 haben A4, B verschiedene Vorzeichen. Es ist dagegen ab > 0, so ist ac < 0 und be
< 0, und wegen (16) ist ¢ < 0 und auch AC < 0. Also sind die Zahlen 4, B, C nicht
alle positiv und nicht alle negativ.

Aus (18) folgt

afida? + 2 = ABa® + 2=0 (C),

und —AB ist quadratischer Rest modulo C.
Nach (18)ist fcC quadratischer Rest modulo 4. Wegen A | b ist —ac quadratischer
Rest modulo 4. Deshalb ist nach

(—uac) (BcC) = —apc?C = — BCc?

— BC quadratischer Rest modulo 4.

Nach (18) ist «4¢cC quadratischer Rest modulo 8. Wegen 8 | b ist —ac quadratischer
Rest modulo . Deshalb ist (—ac) (aA4¢C) und auch — Ac quadratischer Rest modulo
B. Weiterhin ist nach (18) fcC quadratischer Rest modulo a und folglich auch
(—be) (BcC) = —AC(Bc)?, also auch —AC. Wegen B = «f und (a, f) = 1 ist dann
—AC quadratischer Rest modulo B.

b) Der Index der Gleichung (19) ist kleiner als K : Da sowohl

|4B|

I

ladb] < |ac|] = K
als auch

40 S AC| = |g] < K

ist, fillt jedenfalls der Index der Gleichung (19) kleiner als K aus.

¢) Jede Losung der Gleichung (19) liefert eine Losung von (16): Nach a) und b)
besitzt (19) eine Losung (x, yo, 2,), die mit (zy, yo, 20) = 1 angenommen werden kann.
Setzt man

r = Axzy — Byo, Y = ¥y + aayo, z = Cyz,
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s0 ist
az? + by? + c2? = (ad%2 + b) 22 — 2(adaf — acx) xoy,
+ (af? + a2ba?) yo® + cC%%*
= cCy*(Ax?, + Byo? 4 Cz?) = 0.

Damit ist (z, y, 2) eine Losung von (15) mit 22 + 42 + 22 > 0, denn aus x =y =z
= 0 wiirde z, = y, = z, = 0 folgen.

6.4.  Spezielle diophantische Gleichungen dritten und vierten Grades

Das zu Beginn des vorigen Abschnittes bei Kurven zweiter Ordnung demonstrierte
Verfahren, aus einem rationalen Punkt durch das Legen von Geraden weitere ratio-
nale Punkte zu ermitteln, kann nur sehr bedingt auf Kurven héherer Ordnung iiber-
tragen werden, da hier Kurve und Gerade mehr als zwei Schnittpunkte haben kdnnen.
Betrachten wir Kurven dritter Ordnung. Kennt man auf einer solchen Kurve mit
rationalen Koeffizienten zwei rationale Punkte, so kann man durch diese beiden
Punkte eine Gerade legen, und der dritte Schnittpunkt mit der Kurve ist notwendig
rational. Legt man an einen rationalen Punkt die Tangente, so ist der eventuell noch
vorhandene weitere Schnittpunkt mit der Kurve ebenfalls rational. Auf diese Weise
kann man sich aus gegebenen rationalen Punkten weitere konstruieren. Aber es ist
keineswegs gesagt, dafl man dann alle heziehungsweise unendlich viele rationale
Punkte erhalt.

Das folgende Beispiel (vgl. [13]) soll zeigen, wie aus einem eventuell vorhandenen
rationalen Punkt durch fortwihrendes Legen von Tangenten unendlich viele ratio-
nale Punkte ermittelt werden kénnen. Wir betrachten die Kurve X3 + ¥3 = a mit
a€ N, a> 2, und a soll nicht durch die dritte Potenz einer Primzahl teilbar sein.
Auf einer solchen Kurve liegen entweder gar keine oder unendlich viele rationale
Punkte. Es sei (X, Y,) ein rationaler Punkt der Kurve. Wegen der Voraussetzungen
iiber a ist X,, ¥y = 0 und X, = Y,. Die Parameterdarstellung der Tangente in
diesem Punkt lautet

2
X =X,+¢, Y =Y.+ Y,'t, Yn'=—(—) .
¥,
Zur Ermittlung des dritten Schnittpunktessetzen wir in die Kurvengleichung ein und
erhalten aus

(1 + Yo?) 4 33Xy + Yo¥o'?) + (X + YY) + X* + Y =«
den Parameterwert
_3 Xy + Yo ¥,2 - 3X,Y,®
14 Yy Xt — Y
und die Koordinaten (X,, ¥,) des Schnittpunktes
2X3 + Y48

Y,=—Y, R Ts" (20)

t =

X@ +2¥g

X, =X ,
1 OXO“—YO’
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DaB dieses Verfahren unbegrenzt fortgesetzt zu unendlich vielen rationalen Punkten
fiihrt, zeigt der folgende Satz, in dem wir wieder zu homogenen Koordinaten und da-
mit zu ganzzahligen Ldsungen iibergehen.

Satz 6.22. Ist a > 2 eine natiirliche Zahl, die nicht durch die dritte Potenz einer
Primzahl teilbar ist, so hat die diophantische Gleichung

28 4 g8 = a2®
entweder ketne oder unendlich viele Losungen mit (x,y,2) = 1 und z = 0.

Beweis. Es sei (z, y, z) eine Lésung, von der wir sogleich (z, y) = (y,2) = (2, )
= 1 annehmen kénnen. Die Beweismethode besteht darin, daB wir aus dieser Losung
eine weitere (z;, ¥,, 2;) mit |2,} > |z| konstruieren. Dasist aberglelchbedeutend mit der
Existenz unendlich vieler Lésungen. Gemé8 (20) setzen wir

tr, = x(2® + 248), ty, = —y(22® + 19), tzy = z(a3 — 3P)
mit

t= (@ + 2%), y(22 + ), 2> — ),

so daB (xy, ¥y, 2,) = 1 ist. Man iibersieht schnell die Gleichung x,® 4- y,® = «z®. Es
kann nicht x = y sein, denn sonst wire x = y = 4-1, was wegen a > 2 nicht geht.
Aus r = y folgt daher 2, 3= 0. Und da a nicht durch die dritte Potenz einer Primzahl
teilbar ist, muB (2, ;) = (¥1, z1) = (21, #;) = 1 sein. Nun iiberlegen wir uns, welche
Werte ¢ annehmen kann. Sei die Primzahl p ein Teiler von ¢. Aus p | x wiirde p ' y
folgen, was nicht sein kann. Daher ist ¢ ein Teiler von 2® 4- 2y und 223 + 33, also auch
von 2(2x® + 33) — (23 + 2¢®) = 323 Damit kann nur ¢ = 1 oder ¢t = 3 sein. Weiter
ist ¢ ein Teiler von (223 + 43) — (£ + 2y3) = 2® — y?® und folglich von xr — y. Das
hedeutet |z — y| = t wegen 2 = y. Damit haben wir schlielich

nl = ,% @ — )| 2 i+ 2y + 90 = | = (2 + v + 39

Beispiel. Die Gleichung a3 + y® = 72® hat die Lésung z = 2, y = —1, z = 1.
Das eben beschriebene Verfahren licfert aus dieser Losung t =3 und 2; = 4, y, = 5,
2, = 3.

Von groBter Bedeutung fiir die Entscheidung der Losbarkeit diophantischer Glei-
chungen ist eine Umkehrung des geschilderten Verfahrens. Man spricht von der
Fermatschen Methode des unbegrenzten Abstiegs. Sie kann so beschrieben werden: Wir
nehmen an, eine natiirliche Zahl n besitze eine gewisse Eigenschaft. Unter dieser
Annahme konstruieren wir eine natiirliche Zahl n, <C » mit derselben Eigenschaft.
Dies fithrt aber bei unbegrenzter Weiterfiihrung des Verfahrens zum Widerspruch,
da die Menge der natiirlichen Zahlen nach unten beschrinkt ist. Wir demonstrieren
diese Methode an einem Spezialfall des grofen Fermatschen Satzes.
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Es handelt sich um die diophantische Gleichung
4yt =2t

mit natiirlicher Zahl n > 2. Eine Randnotiz von P. FERMAT in seinem Exemplar der
von C. G. BaCHET herausgegebenen Werke des DIoOPHANTUS besagt, daB diese Glei-
chung in ganzen von 0 verschiedenen Zahlen keine Losung besitzt und daB er hierfiir
einen Beweis habe. Diese Aussage hezeichnet man als grofen Fermatschen Satz, obwohl
der Beweis von P. FERMAT, der aus heutiger Sicht wohl fehlerhaft gewesen sein mu8,
nie aufgefunden wurde. Der Satz ist auch gegenwiirtig nicht vollstindig bewiesen,
lediglich in einigen Spezialfillen. Wir wollen hier den Spezialfall » = 4 sogar in etwas
allgemeinerer Gestalt behandeln, der tatsichlich auf P. FERMAT zuriickgeht.

Satz 6.23 (FERMAT). Die diophantische Gleichung
oyt =2
besitzt keine Liosung in natiirlichen Zahlen x,y, z.

Beweis. Wir nehmen eine Lésung in natiirlichen Zahlen mit (z, y, 2) = 1 an. Der
gewiinschte Widerspruch wird dadurch erzeugt, daB wir aus dieser Lisung eine
weitere mit kleinerem z bestimmen werden.

Da z, y nicht beide gerade sein kénnen, nehmen wir ohne Beschrinkung der All-
gemeinheit x =1 (2) an. Wegen 2* + y*=1,2 (4) und 2252 (4) folgt 2 =1
(2) und y =0 (2). Wir schreiben (2?)? + (y*)? = 2% und wenden Satz 6.20 an. Da-
nach ist

22 = a? — b2, y% = 2ab, z = a? + b?

mit «>b>0, (a,b)=1, az=bdb (2). Aus a=0 (2) und b=1 (2) wirde
2= —1 (4) folgen, was nicht sein kann. Daher ist « =1 (2) und b=0 (2).
Wegen

CRER

a = z2, b= 2¢c?

ist

mitz; > 0,¢>0,(z,¢)=1,z,=1 (2). Aus

2= a? — b=z — 4t
folgt
a2 + (262)2 = (212)2

mit (z, 2¢, z;) = 1. Wir kénnen wiederum Satz 6.20 benutzen und erhalten
r=u?— v, = uv, 72 = u® + v

‘mitu > v>0,(u,v) = Luz v (2). Ausct = uvund (u, v) = 1 ergibt sich u = =%,
v = g% Damit erfiillen die Werte z,, y,, 2, die Gleichung ,* 4 y,* = z,%, und es ist
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{z1, ¥1, 1) = 1. Aber
n<zt=a<al<a®+bt=c:

bringt den Widerspruch.

6.5.  Gitterpunkte in ebenen Bereichen

Der Satz 5.37 von C. F. Gauss hesagte, daB die durchschnittliche GréBenordnung
von r(n) den Wert = hat. Er erlaubt eine geometrische Interpretation. Die Darstellung

Rzy=Yrk)= X 1

k=z mtrtsz

1aBt sich deuten als die Anzahl der Gitterpunkte (m, #) in und auf einem Kreis mit
dem Mittelpunkt im Ursprung und dem Radius V; (Abb. 1). Das Ergebnis des Satzes
5.37

R(z) = ax + 0(]/;)

- = \\
AN
4 N
i \
y
\\
N
~
Abb. 1

ist anschaulich sehr plausibel. Ordnet man nimlich jedem Gitterpunkt den Flichen-
inhalt 1 eines anliegenden Quadrates mit der Seitenlange 1 zu, so ist die Anzahl der
Gitterpunkte im Kreis in erster Niherung gleich dem Flicheninhalt nz. Fehler ent-
stehen bei dieser Betrachtungsweise bei der Einbeziehung der Gitterpunkte in der
Nihe des Randes. So ist ein Fehler von der Gréfienordnung des Umfangs des Kreises
in Rechnung zu stellen, was ja auch in der Formel durch O(]/;:) zum Ausdruck kommt.

Im néchsten Abschnitt werden wir sehen, daB sich dieses Ergebnis auf weitgehend
beliebige Bereiche iibertrigt. Andererseits kann man damit rechnen, wenn man die
Spezifik spezieller Kurven beriicksichtigt, dafi der Fehler unter Umstinden herab-
gedriickt werden kann. Fiir dieses Anliegen stellen wir im iibernichsten Abschnitt
eine elementare Methode von I. M. VinoGgraDOV vor, die wir nachfolgend auf spe-
zielle Bereiche anwenden.
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6.5.1.  Gitterpunkte in allgemeinen Bereichen

In der Ebene sei eine geschlossene Kurve € gegeben, die folgenden Eigenschaften
geniigt (Abb. 2):

(4) € ist doppelpunktfrei.

(B) € wird von einer vertikalen Geraden héchstens zweimal geschnitten.

(C) Die Funktionen f,(¢) fiir den oberen Teil der Kurve und f,(¢) fiir den unteren
Teil sind einmal stetig differenzierbar mit eventueller Ausnahme der Rand-
punkte. Dabeiist a <t < b,

(D) Es existieren die Integrale
3

Jioid,  v=12.
! |

Lt rt)

1h

N

f(t)

1 I Abb. 2.
—>

Satz 6.24. Es bezeichne N die Anzahl der Gitterpunkte und F den Flicheninhalt
des von der Kurve € mit den Eigenschaften (A) bis (D) und der Linge ! (I > 0) um-
schlossenen Bereiches. Dann gilt

N =F + 0Q).

Beweis. Ohne Beschrinkung der Allgenieinheit kénnen wir 0 <a <b und
f.(t) > O fiir » = 1, 2 annehmen. Rechnen wir die Gitterpunkte auf € mit, so bekoni-
men wir

N= ) [him]— X [f(n)]+ 0Q)-
asnsd asnsd

Dabei bezeichnet die erste Summe die Anzahl der Gitterpunkte unterhalb oder auf der

.Kurve y = f,(t). Davon subtrahieren wir die Anzahl der Gitterpunkte unterhalb der
Kurve y = f,(t). Da in der zweiten Summe aber die Gitterpunkte auf dieser Kurve
mitgezihlt werden, miissen wir diesen Wert durch O(l) korrigieren. In beiden Summen
wurden die Gitterpunkte auf der ¢-Achse nicht beriicksichtigt. Nun ist

N =X {hin) — fi(n)} + 0Q).
asashd
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Die Anwendung der Euler-Maclaurinschen Summenformel gibt mit fi(a) = fy(a),

H(®) = fo®), ) =t — [} — 1/2.
b b
N = [{f0) — L dt + [y i1'0) — /e dt + O0)
b
=F + [v) /() — £2'®) &t + OQ).
Firv =1, 2 ist
17, 1 DV—"‘ 1

g;f‘/,u) dt -Z—j L+ dt < .

Daraus folgt die Behauptung.

b
vt a

Wir betrachten ein Beispiel, welches eine Verallgemeinerung des Kreises darstellt.

Definition 6.3. Es bezeichne r; x(n) fiir natiirliche Zahlen k = 2 die Anzahl der
Darstellungen von n = 0 in der Form = = 'ny}¥ 4 [n,}¥ mit ganzen Zahlen n,, n,. Es
sei

Ry 1(x) = ) rap(n).
ST

R, 1(x) gibt die Anzahl der Gitterpunkte in dem von € umschlossenen Bereich an,
wohei € entsprechend den Bezeichnungen des Satzes 6.24 durch

Al = (@ — 9, ) = — (& — [t

gegeben ist. Der Flicheninbalt ist
o
F=4 (z—tWrdt = et
6

mit

1
a=4f(1—pypear (1)
[

Fiir denjenigen Leser, der mit der Gammafunktion vertraut ist, sei

2 (%)
o= ——t (22)

hinzugefiigt. Die Lange der Kurve ist durch

e v

2k —2
1=4 [ TThmd= 1] :
[ ©

(& — 2=k dt = O(a'™)
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gegeben. Damit ergibt sich

Ry i(x) = ca®lt + O(ztl¥). (23)

6.5.2. Die Methode von Vinogradov

Bei der Abschitzung der Anzahl der Gitterpunkte kann man prinzipiell so vorgehen:
Man betrachtet die Gitterpunkte auf und unterhalb einer durch y = f(¢) > 0 ge-
gebenen Kurve bis zur Abszissenachse (ausschlieflich) zwischen der Geraden ¢t = a
= 0 (ausschlieBlich) und der Geraden t == b > a (einschlieBlich) (vgl. Abb. 3).

Cr0] -4 1 1+ + 2T

Abb. 3

bt
PR S S

Thre Anzahl ist

N= 3 o= % {"""%}_a Z_ i)

a<mR< a<nsh

1
mit y(x) = & — [x] — - Die Abschitzung der ersten Summe bietet bei Anwendung

der Euler-Maclaurinschen Summenformel keine Schwierigkeiten. Die triviale Ab-
schitzung der zweiten Summe bringt mit O(b — a) die Qualitit des vorigen Ab-
schnitts. Da sich aber qp(/(n)) zwischen —1/2 und + 1/2 bewegt, kann man versuchen,
die Qualitit der Abschitzung durch das Wegheben positiver und negativer Anteile der
Summe zu verbessern. Hierauf bezieht sich die Vinogradovsche Methode. Wir folgen
der Darstellung in [6] und beginnen mit zwei Hilfssitzen.

Hilfssatz 6.8. Es seien n natiirlicke Zahlen zy, 2, ..., 2, mitz; S N (1= 1,2, ...,
) gegeben. Dann kann man diese Folge ohne Anderung der Anordnung mit Ausnakme
von weniger als N Elementen in Klassen mit folgender Eigenschaft zerlegen: Die Anzahl
m der Elemente einer solchen Klasse 2,4y, Xaro, - -+ Xarm 18t gletch der groften in thr
enthaltenen Zahl.

Beweis. Da der Hilfssatz fiir # < N trivial ist, kénnen wir gleich » = N an-
nehmen. Wir betrachten die ersten z, Elemente z,, z,, ..., ¥, der gegebenen Folge
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und bezeichnen mit #® die grofite enthaltene Zahl. Es kann nur 2® = z; oder
2 > x) sein. Ist #® = z,, dann bilden diese Elemente eine Klasse im Sinne des
Hilfssatzes. Ist (2> x;, dann betrachten wir die Elemente z,, @, ..., ;o und be-
zeichnen mit x® die grofite Zahl von diesen Elementen. Fiir z® = z{® erhalten wir
eine gewiinschte Klasse. Fiir z® >> z® setzen wir das Verfahren fort und betrachten
Zy, Xy, + - .y 0. Man erhilt so eine Folge von Elementefolgen, deren Elementeanzahl
eine streng monoton wachsende Folge bildet: z;, < 2® < 2® < -.- . Da allex; < N
sind, kann diese Folge nicht mehr als N Glieder haben. Man gelangt also nach hach-
stens N Schritten zu einer Klasse, die den Erfordernissen des Hilfssatzes geniigt.

Bleiben hernach weniger als N Elemente iibrig, so ist der Hilfssatz bewiesen. Im
anderen Fall bilden wir eine zweite Klasse, indem wir nach dem letzten erfal3ten Ele-
ment in gleicher Weise fortfahren und so weiter.

Hilfssatz 6.9. Es seien 2, y, a ganze Zahlen mit x > 0, (2, y) = 1. Fiir die Funk-
tion g(n) gelte |g(a) — g(f)| < C fir «,pc {a+1,a+ 2,...,a + z}. Dann 18t mit

po) =~ 5] -

=0+

o] —

otr fym + gim)
X w(—x )

m=a+1

Beweis. Es sei

"2.’ v (.vm + y(m))

x

S =

meat1
Wir unterscheiden zwei Fille:

1. C +-§ = %: Hier gibt die triviale Abschidtzung |S| < %- <C + T;-sofort
die Behauptung.

2. C+ %- < %: Es bezeichne ¢ den kleinsten Wert von g(m) fiir m ¢ { a + 1,

a+2,..,a+ z) und gim) = ¢ + g,(m), so daB fiir diese Werte von m die Unglei-
chung 0 < gy(m) < C besteht. In S ersetzen wir ym + [¢] durch seinen kleinsten,
nicht negativen Rest « modulo x. Damit wird

S=E‘P(u+q_£—,ﬂ +92(u))

nmit 0 < go(u) < C. Wir zerlegen die Summe in zwei Teilsutamen. In die erste Teil-
summe nehmen wir alle Glieder mit 0 < % <2 — C — ¢ + [¢] und in die zweite
Teilsumme alle Glieder mit z — C — ¢ + [¢] < u < z auf. Fiir die Glieder der ersten
Teilsumme ist

< %+ ¢ — [g] + g5(w) <1,
—_— .

0
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und fiir die Glieder der zweiten Teilsumme ergibt sich bei Beriicksichtigung von

1 z
Crs<3

u + g~ [q] + g(n) <2,
z

0<

Setzen wir

w(" +a—lg+ 9z(u)) rta—ldda@ 1,
z z 2
s0 ist k(u) = O fiir die erste Teilsumme und k(u) = 0 oder A(u) = —1 fiir die zweite

Teilsumme. Da die zweite Teilsumme hochstens C + ¢ — [¢] Glieder enthilt, folgt

’5(”4——%&_%)_0_“[‘,]9

u=0 x

S (u +ty—lgl+o @ 1)

=5 [————3]
u=0 x 2

Mit 0 < g,(u) < C ergibt sich hieraus

1 1
—;—C§S§-2-+C-

Satz 6.25 (VINOoGRADOV). Es seien a, b, k, z reelle Zaklen mita < b,h = 1,z >> 29.
1
Fiira <t < b sei f(t) zwetmal stetiy differenzierbar, und es sei ™ == 1 bzw.
z z

L <) L. Dann iat
hz — - z

b— a

X wlim)
a<nzb

< 2h( + 1) (z log 2)23. (24)
Beweis. Wir fithren den Beweis in mehreren Schritten. Dabei kénnen wir ohne
weiteres b — ¢ > 2 annehmen.
1. Ista<n<b-—1, so folgt aus f'(n + 1) — f(r) =f'n+8) O< I <)
entweder stets

LSl )~ ) S+
hz z
oder
1 , 1
—=fW)—fr+1)=—.
hz z

Ist k die kleinste der Zahlen f'(n) mit a << n =< b, dann ist die gréBte kleiner als
b—a
k+

. Die Anzahl der Zahlen f'(n) mit ¢ < f'(n) < d ist hochstens kz(d — ¢)+ 1.

<
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2. Wir fithren eine Zahl 7 ein, die zunichst nur der Ungleichung 4 < 7 < }/; ge-
niigen soll. Spiter werden wir sie prézisieren. Nach Satz 4.7 gibt es ein Paar ganzer
Zahlen z(n), y(n) mit

) ) — g0l < T,

(x(n), y(n)) =1 und 0 < x(n) £ 7. Nunmehr teilen wir die Zahlen x([a] + 1),
z([a] + 2), ..., x([b]) gemdB Hilfssatz 6.8 mit Ausnahme von hochstens r Zahlen in
Klassen ein. Eine solche Klasse sei durch 2(«, + 1), 2(«, + 2), ..., («, + »,) gegeben.
In ihr befindet sich eine Zahl x(8,) mit x(8,) = =,. Hierfiir gilt

1
nf' () — y(B)l < e 0<n =<7,

rea =21 2 <. (25)

3. Wir betrachten die Summe
ayn,
= X ylfn),
n=atl
setzen # = B, + m und henutzen die Taylorentwicklung von f(n). Wir erhalten
. ar—Brtny m2
§= 3 W(/(ﬂ.) + mf'()) + Y 1B+ 7"9))

m=a,—f,+1

mit p = g(m) und |o(m)| < 1. Wegenx, + 1 < 8, < x, + n,ist —n, < m < n,. Nach
Voraussetzung ist

m _omt, m
= :E'E/ (B, + mo) = on
Setzen wir
:i:—f"(ﬂv + mo) ——0‘(7'1),

so ist 0 < o(m) < 1. Verwenden wir dies und (25), so entsteht

nf(8.) + my(B.) J"— £ a(m)

2,—B,+n,
8, = )
m=ay,—f,+1 n,

Hierauf kann Hilfssatz 6.9 angewandt werden. Mit den dortigen Bezeichnungen ist
z=n,y=yp)a=ax —p,

3
olm) = mf(B) + 2= 1 22 otm),
T 2z



186 6. Gitterpunkte

so daB sich
n, n,3
c="2
T 2z
als geeignet erweist. Folglich ist
n, n3 1
S < g 2y 2
18, < Z + > + 3
4. Nun schreiben wir

Z ;p(/(n)) =28+ X vlfr).

Dabei ist die Summe iiber » entsprechend der in Teil 2 vorgenommenen Klassen-
einteilung zu bilden. Die Summe iiber r wird iiber diejenigen Zahlen erstreckt, die
sich der Klasseneinteilung entziehen, von denen es aber hichstens v Zahlen gibt. Da-
her ist

n, n3 1 T
IKZ‘”SbV’(/(”)) <$(-r—+?z—+?)+?

und wegenn, < 1,4 <71 < ]/;

1 72 T T
.Esa"'(’("))|<(7+§) b—at ) +o+—

<(i+;—:)(b—a)+r+§. (26)

T

Hierin bedeutet T die Anzahl der Klassen.
5. Fir die Zahlen z(«, + 1), z(«, + 2), ..., 2(x, + n,) gilt

ay+n, 1 aytn, 1

— 2 — =1.
n=m+1 Z(n) rma,+1 My
Deshalb haben wir fiir die Anzahl 7' aller Klassen
T < 1

_n<%;b x(n)’

Jetzt ist festzustellen, wie oft sich derselbe Wert z(n) in der Summe wiederholt. Zu
gegebenem x konnen nur solche Werte y gehéren, fiir die

, 1
lef'(r) —yl < —
T
gilt. Bezeichnet k die kleinste der Zahlen f'(n), so folgt daraus und nach Teil 1
1 1
zfm) — — <y <af(n) + pat
T

kx—l<y<(k+b—a)x+—1-. -
T T

z
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Die Anzahl der méglichen Zahlen y ist deshalb hichstens
b—a

b—a 3
1'+T.

2
z+—+1<
T
Zu einem gegebenen Paar x, y konnen nur solche Werte f'(n) gehéren, fiir die

l(y—l) <f <i(y+ l)
x T x T

gilt. Nach Teil 1 ist die Anzahl dieser Zahlen f'(n) héchstens

%.|_1<3.__"z
T ™

wegen x < T < }/;, h = 1. Insgesamt kdnnen zu einem gegehenen x hochstens

(ter )2
z

2] =

=

Zahlen f'(n) gehéren. Daher ist

T<h X (3b1;a+9,~.)i.
x

0<z<r 2rx
Mit
1 1
S —<lgr+t<—logz+1,
o<z<r X 2
1 ® 1 =2 5
_— —_——_——< —
o<Zz‘<- z2 =§x x? 6 3
ergibt sich
b— b— 15
T<h i alogz+3 a+—Di .
2 T 2

6. Setzt man diese Abschitzung in (26) ein, so erhélt man

e (3 .7 3 15hz
|a<2:,‘sbw(l(n)) [ <hb —a) (21 +o g z) T

Diese Abschitzung wird besonders giinstig, wenn man noch 7 = (z log z)'® wihlt,
wobei mit z > 29 die Bedingung 4 < 7 < ¥z sicher erfiillt ist. Somit wird fiir z > 29

| 2 ylfm)
a<ngd

Es sollen jetzt einige Anwendungen des Vinogradovschen Satzes gegeben werden,
die wir in der Form von Hilfssitzen formulieren, da sie in den nidchsten beiden Ab-
schnitten bendtigt werden.

< 2h(b_fa + 1) (z log 2)2/%,
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Hilfssatz 6.10. Fiir  — oo ist

> 'p(]/:c — n?) = O(x*P(log ¥)2").

z
0sns ry

Beweis. Mit den Bezeichnungen des Satzes 6.25 ist

&)= (@ —enz,  f(t) = —x(x— )32
und im Intervall 0 <t < l/i;
1 1

— < () < 28—
== £

Daher ist z = 2-32 Jz > 29, b = 2572,

—“:_sll_ L -
" "zﬁl/;. o).

Aus (24) ergibt sich sofort die Behauptung.

o

Hilfssatz 6.11. Es set k etne natiirliche Zahl mit k = 2. Fiir x — oo st
I wli@ — np) = O(a*(log x)?).
F<ntsz

Beweis. Es ist
1
10 = (2 — 0, ) = —(k = Datt=2 @ — 0F
Da f”(#) fiir t* — = gegen — oo strebt, kénnen wir nicht so rasch wie im vorigen Bei-
spiel den Vinogradovschen Satz anwenden. Wir werden uns an die Stelle ¢ = x heran-
tasten und bilden mit noch geeignet zu wihlendem y

X W(/(n)) =8 +8,,

zl2<ntsz

S= X T, S8=xT,
1Sr<y 2y

T, = z w(f()).

z(1-2-")<m¥=s2(1-27"1)

Die in S, auftretenden Summen 7', werden mit der Vinogradovschen Methode, S,
spiiter trivial abgeschitzt. Fiir die Anwendung des Satzes 6.25 auf 7', in 3, ist

a=(z(1l—27), b= (x(l—2N)%

1 apf2-L ven(2-L) —L
0 S 12 F -2y ) g g led)

1 2 fy L 2, L fail) _L
k-1 F—2-)TF 2 k)g k—1y2F " ot-3) T,
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Fiir 2 und z finden wir hieraus

3 1
3—— 1 (v+1)(—_—z)
9 3

h=2 k, :=L 7 Uk,

Wihlt man z hinreichend gro8, so ist fiir alle » < y die Ungleichung z = 29 gesichert,
falls wir
.
W — 261
mit einer geeigneten Konstanten c¢ festlegen. Weiter ist

b_Ta _ (k —1e ‘)1 1—1)(2 ) ((1 — ')-y—])l[k — (1 — 2_.)1/,,) _ ( v(l—% )

Damit ergibt sich aus (24)
*ed) 2
T, = 0(2_T(1‘ ") 2% (log x)”’),

und da fiir die Abschitzung von 8, iiber » bis co summiert werden kann

8, = 0(&1:%r (logx)”’).

Durch triviale Abschitzung von S, erhalten wir

18: = w(/(n))l —[x"*]— —[x(l — 2
21— »-~><-~s
1. . 1
S S o fall — 2
11
= O(aV/*2-¥) = O(x" 2"_1).
Wegen
1 1 2

o1
ergibt sich aus den Abschitzungen von §; und S, die Behauptung.
Hilfssatz 6.12. Isty =2 1,r > 0,1 < 4 < B, A™? > 2%(r + 1) y, dann gilt

2042 l 0( ”JB (IOE B)m) fir r<1,

PR (%) = O(y‘z’“b‘ 3 (log B)‘zl“) + { O(y'"(log B)*?) fir r=1,
A<ksB T

l;f
O(y”" A4 ° (log B)m) fir r > 1.
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Beweis. Die natiirliche Zahl N seiso gewiihlt, daB 427! < B < A2¥ gilt. Dann ist

o) 5
A<ksB K

e
AV <k A2H A2¥-1<ks B

Fiir N = 1 entfillt dabei die Summe auf der rechten Seite. Wir wenden auf R, und R
Satz 6.25 an. Fiir die Summe R, ist

«=A2, b= A2+, fly=yt-r, f'0) =rr + ) yt—2,

rr + 1y 1r rr+ 1)y
—_—T 7 ) < —0 L
2r+2 (420 +2 =/'n = (A2ry+2 ’
;=w, ho=2r+2, b—“=w,
rir+ 1)y z (A42ry+?

Dies gilt alles auch fiir die Summe R, wenn man» = N — 1 und b = B < 427 getat.

Fiir b—

£ erhilt man den angegebenen Wert als obere Schranke. Somit ist
N+1 1-r 20r+2)
Z y (i = 2 {o(ylls (AZ') 3 ) + O(y—zla (sz) 3 )} (log B)zla_
a<rsn \ k" v=0

Die Auswertung der Summe {iber » gibt die Behauptung.

6.5.3. Das Kreisproblem und Verallgemeinerungen

Mit Hilfe der Vinogradovschen Methode geben wir eine Verbesserung der Abschitzung
des Satzes 5.37.

Satz 6.26. Piir die Anzahl der Gitterpunkte R(x) im Kreis £ + 32 < z ¢ilt
R(x) = 7z + Ofx"(log z)?%).
Beweis. Esist

Roy= 3 1=1+4ffa++ X1

n+mlsz nrmsr
nmz1
=1+4fjz] +4 ¥ L+4 5 1
n'd-m'sz +misz

lsm's-z- a2l m'>? nzl

=t+4ffe] +4 p r—wi+t T {[Vm]_h/g]}

ISM'S— lSn'S——

=1+4[y;]_4hf]+s = [;f—nz]

1303
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Mit ply) = y — [y]— % ergibt sich

Rix)= —2z +4Yz +8 Vi (l/-;—)

2 2

+8 ¥ fz—m—8 X y(fz—n?)+00).

1ses 3 1sess
Die Anwendung der Euler-Maclaurinschen Summenformel liefert
Va2 Va2

R(x)=—2.r+8f]/z—l’dt—8 g8 » Wiz = =) + o).
; Yz — msl
2

Das zweite Integral schitzen wir durch partielle Integration zu O(1) ab. Somit folgt

Ve
R(”)=4j']/z—t’dt—8 x w(]/x—n’)+0(l)
[ z

1
lan

=nxr—8 3 w(}/x— n’)—f—O(l).

sl
n§2

0

Hilfssatz 6.10 gibt nun die Behauptung.

Als Kreisproblem bezeichnet man die Aufgabe, das Infimum, & = inf &, in der Ab-
schitzung

R(x) = ax 4 O(z*)
zu bestimmen. Historisch gesehen nahm dieses Problem seinen Ausgangspunkt hei
C. F. Gatss,der § < %, das ist unser Satz 5.37, bewies. Ganz einfach kann man auch
# = 0 zeigen, wie folgender Satz belegt.
Satz 6.27. Die Gleichung
R(z) = zx 4+ o(1)
ist falsch.
Beweis. Wir nehmen an, es sei R(x) = mx + o(1) richtig. Dann ist mit einer
natiirlichen Zahl n

O=R(n+%) — R(n) :n(n +%) — am + o(1) =% + o(1),

was einen offensichtlichen Widerspruch darstellt.
Den ersten Fortschritt gegeniiber dem klassischen Resultat erzielte W. SIERPINSKI, der
1906 nach einer Methode von G. F. VoroNor # < % zeigte. Sein Beweis wurde im Laufe der

Jahre stark vereinfacht, und I. M. VINoGRaDOV konnte 1917 diese Abschitzung bis auf einen
logarithmischen Faktor sogar el tar beweisen, wie wir gesehen haben. G. H. HARDY und
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E. LANDAU wiesen 1915 & = % nach, was man nach einer 1956 von P. ErRpos und W. H. J.

Methad

FucHs entwick jetzt auch el tar beweisen kann. Diese untere Abschitzung
steht heute noch. Hinsichtlich der oberen Abschitzung setzte mit den grundlegenden Arbeiten
J. G. vaN DER CORPUTS (1890—1975) in den zwanziger Jahren eine stiirmische Entwicklung

ein. Er unterbot 1923 als erster die omindse Zahl % und erreichte & < % Zahlreiche

Autoren verbesserten in den folgenden Jahren diese Abschi g. Das beste Resultat steht bei
9= 5 und stammt von WEN-LIx Y15 aus dem Jahre 1962.

Als Verallgemeinerung des Kreisproblems betrachten wir jetzt die in Definition 6.3
gegebene Funktion R, ,(z). Gegeniiber der Abschitzung (23) zeigte 1966 B. RanpoL

1 1
By p(x) = etk O(Ik "‘)
fiir gerade k¥ > 2 und auch, daB diese Abschitzung nicht mehr zu verbessern ist. Wir
zeigen noch weit mehr:

Erstens gilt diese Aussage auch fiir ungerade %. Zweitens kann nan dieses Ergebnis
dahingehend verbessern, daB man noch eine Funktion der genannten GréBenordnung
prézis angeben kann und dann den Rest noch weiter abschiitzt. Es handelt sich um
die Funktion

z 1
ala) = —8 [ B3t — F "y d, @7
o

kSN E=2,9t)=t—[t] — % mit x'/* anstelle von z. Wir zeigen zunichst, daB

(%) von der behaupteten GréBenordnung ist.
Hilfssatz 6.13. Fiir r — oo st

-1
o(®) = O(z ").
Beweis. Wir bilden mit y* = 2% — z*~1

o) =1, + I,
v 1,
I, = -8 j =1k — )k () de,
0

z 1

L= —8 [ 1@k — ¥y dt
v

]
und schitzen die Integrale einzeln ab. Mit y,(¢) = f (v) dv ist
o

1 ¥ 1
I = —8yi — g py(y) +8 f - P '}_ vt de

o

= O(yk—l(rk _ yk)%_l ) _ O(xx_%).
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Fiir I, erhalten wir aus

z 1
L < 4 [ i(k — )% dt = d(ak — gyt

-1

I, = 0(:: ¥ )

Daraus folgt die Behauptung.
Satz 6.28 (KrATZEL). Fiir k = 3 st

Ry 5(2) = c32%° + O(z**(log z)2)
und firk > 3

Roale) = a2 + gu(a'¥) + O(zt¥(log z))
mat der durch (27) gegebenen Funktion op(x) und

o (i)
k
kT (3)
k
Bemerkung. Bei Heranziehung schirferer Methoden kann man die Abschitzung

noch so weit verbessern, da man auch im Fall & = 3 die Funktion gy(z'/3) = O(z%%)
explizit herausziehen kann.

Cp =

Beweis. Wir gehen prinzipiell wie im Beweis zu Satz 6.26 vor, modifizieren aber
vtwas im Hinblick auf die Anwendung des Hilfssatzes 6.11

Rue)= X 1=1+44"%4+4 3 1

Inl*+|mi*sz »'+::;§=
=1+4"%+4 3 1+4 31
At +mEsr nt+mrgz
u*>% lsm'S%
2 \VE]2
=1+4[11/*]+4[(—) ] +8 X 1
2 nt+mtsz
u’>i
2
2 \Vk]2
=1+ 42" + 4 [(_) J +8 X [z — mh¥).
2 :—:-<m's:

Mit ply) = y — [y] — %ergibt sich

/
e = (2 = (" (@) +5, 5 m

?<-'sz
—8 X y(lz— m) 4 0(1).

x
—<mtge
7 <m*S.
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Die Anwendung der Euler-Maclaurinschen Summenformel liefert

Zhik e

2/k 1
Rou(z) = 4(%) 48[ (r—tykg—8 [ e — F ) de

)" )"
—8 5 @ —m) + o)

T
—<mtsz
2 =

und bei Verwendung von (27)
2
Ryplx) = 4 f (@ — W dt + g (@) — 8 5 y((x — m* ) + 0(1).
Zemrgs
2

Der Hilfssatz 6.11 gibt
R, 1(z) = el 4 gi(x1lk) + O(22%(log x)2).

Bei Beriicksichtigung von Hilfssatz 6.13 ergibt sich fiir & = 2 nochmals der Satz 6.26
und fiir £ > 2 der Satz 6.28.

6.5.4. Das Teilerproblem und Verallgemeinerungen

Es wird eine Verbesserung der Abschitzungdes Satzes 5.39 mit Hilfe der Vinogradov-
schen Methode gegeben.

Satz 6.29. Fiir die Anzahl D(x) der Gitterpunkte unterhalb und auf der Hyperbel
=2 (£>0,7p>0)gilt

D(z) = zlog z + (20 — 1) x + O(z*(log 2)*7),
worin C die Eulersche Konstante bedeutet.

Beweis. Esgilt

Dgy= ¥ 1=2 % 1—[yz]

1Samsz 15.3;}/; mg%
=2 i:l - 2
1s£ﬁ " [V;]

Il
o
|

N o R R i C R
=2 £ Toarafli)-2 3 w( )+0<1)

lsnS lsns z

=zlogx +(2C — )z —2 X q)( )+0(1)
1505z \™
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Auf die verbleibende Summe

s 3= 3 ofZ)rown
1zs¥z \? Gozpn<asyz \™

wenden wir Hilfssatz 6.12 an, indem wir dort y =2, r = 1, 4 = (59x)V3, B = x
setzen. Die Voraussetzung A% > 58y ist somit erfiillt, und wir erhalten

> w(—l-) = O(Z’“’(log x)“/"')
1sas¥z \®

und damit die Behauptung des Satzes.

Als Teilerproblem bezeichnet man die Aufgabe, das Infimum, # = inf g, in der Ab-
schitzung

D(z) = xlogx + (2C — 1) x + O(xF)
zu hestimmen. Seinen historischen Ausgangspunkt hat dieses Problem bei P. G. L.

DiricHLET gefunden, von dem nach Satz 5.39 ¢ < 1 stammt. Auch hier lafit sich
¢ = 0 ganz leicht zeigen. 2

Satz 6.30. Die Gleichung
D(x) =z log x + (2C — 1) x + o(log x)
ist falsch.

Beweis. Wir nehmen an, die Gleichung sei richtig und bilden mit einer natiirlichen
Zahl n

=D(n+%)—D(n)=(n+%)log(n+%)—n]ogn+o(logn)
= ! log (1 ! 1l + ol
= n+? og +2_n +§'°8”x0(°g")

= %log n + o(log ).
Dies ist aber offensichtlich ein Widerspruch.

Die Entwicklung des Teilerproblems verlief weitgehend parallel zum Kreisproblem. G. F.
Voroxor (1868 —1908) zeigte 1903 4 < %, was 1917 I. M. VINOGRADOV elementlar beweisen
konnte, wie aus unserem Satz 6.29 ersichtlich wird. G. H. HARDY wies 1915 8 = Tnach, was
H. E. RicHERT 1958 auch elementar gelang. J. G. vax pDER COoRPUT brach 1922 den klassischen
Rekord # §% und erzielte & < 3—3 In den folgenden Jahren gab es zahlreiche Ver-
besserungen bis hin zu 8 < % durch G. A. KoLEsNIk im Jahre 1973.

Mit Hilfe der Vinogradovschen Methode soll abschlieend eine Verbesserung der
Abschitzung von D(a, b; r) des Satzes 5.40 hergeleitet werden.

Satz 6.31. Fir 1 < a <bgilt

1
Dia, b;x) =¢ (3) e g(%) a4 0(12"“ (log x)”“)-
a
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Beweis. Aus dem Beweis zu Satz 5.40 iibernehmen wir

e, 2.0 2 (- [T

. 1.
Mit y(y) =y — [y] — - ist
1

a ; JUL I e
D(a,b;x) = Z {(i.)” + (_‘r_)m} _ xa+o + 9,0F bw(x +b)
1Sa%tsz

nb ne

el () o () ) o

Entwickeln wir die erste Summe mit Hilfe der Formel (10) aus Kapitel 5, so erhalten
wir

Dfa, b; x)—t( ):v""+t( )x"°+-d(a,b;r)

AMa, b; z) = _1s§°5z {W((—:;)m) + w(({;)m)} + 0(1). (28)

Fiir den ersten Teil der Summe bilden wir

Za ()2 o)

und wenden darauf den Hilfssatz 6.12 mit
a 1
y=xlla’ r = E >1, 4= (29£(£ + l)tlln)20+b, B — ot

a a\a

an. Wir erhalten
fx\Ve 2 1
X W((_») ) =0 a:"“”'"(log )23} + 0\2%+® (log x)¥/3
1gaengy \\7

l
= 0( 2% (log x)”") (29)

"Fiir den zweiten Teil der Summe (28) bilden wir analog

EE) 223 - ol

indem wir jetzt entsprechend Hilfssatz 6.12

b 1

y =, r=%<1, A=(29%(%+1)zll°)"_“3, B =
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setzen. Es ergibt sich

2\10 2 1
2 (3o ol
1ntgs

na
2
= O(x“‘“’uog xwa)- (30)

1 2
Setzt man (29) und (30) in (28) ein, so folgt wegen ———— > ———— die Be-
hauptung. 2¢+ b 3(a+bd)

6.6.  Gitterpunkte in mehrdimensionalen Kugeln

Wir betrachten die Anzahl
Ry(z) = > 1

[ NS EEE S

der Gitterpunkte in einer k-dimensionalen Kugel (k = 2). In Hinblick auf Satz 6.24
werden wir auch hier erwarten kénnen, daB sich die Gitterpunktanzahl in erster
Niherung durch das Volumen der Kugel approximieren liBt. Bezeichnet V; das
Volumen der k-dimensionalen Einheitskugel, so 148t sich V iiber ¥V, = 2 durch die
Rekursionsformel

k—~1

“+1 —_
V= Vk_,f(l—t’) 2 g
-1

berechnen. Dabei ergibt sich insbesondere V, ==, V, = il 2, Vi= 1 a% In Ver-
allgemeinerung von Satz 5.37 erhalten wir: 3 2
Satz 6.32. Esust
o
Ry(x) = Vyxbl2 4+ O(x 2 )

Beweis. Fir k = 2 ist die Aussage nach Satz 5.37 richtig. Nehmen wir ihre Rich-
tigkeit fiir £ — 1 an und schliefen auf &.

Ri)= ¥ 1= R,@—m)
L A 1] M=z

= 2,{14 Jx— nz;— + 0((1 - "2; 2)}

Nach der Eunler-Maclaurinschen Summenformel ist

k— L' k—1
Rix) = Vi f(a: — zz)T dt — (k— 1) Ty { vt tx — 1) & zit+0( )

—-¥z »l’—

k-1
= Vit L 0(1' 2 )
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Im Unterschied zu allen bisherigen Restabschitzungen kénnen wir die Abschiit-
zung des Satzes 6.32 fiir k = 4 erheblich verbessern. Das liegt an der besonderen
Struktur der zahlentheoretischen Funktion 7,(n) in

Ry(x) = X 7(n),

ST
die sich nach Satz 6.17 durch Teilerfunktionen darstellen lift.
Satz 6.33. Fiir k = 4 gilt

&
-1
Ry(x) = Vil 4 O(a;2 log x). (31)
Beweis. Wir behandeln zunichst den Fall & = 4. Nach Satz 6.17 ist

Rx)=Xrn)=14+8 X on)—32 3 on).
1$ns2

msz 1snzz/4
Nun ist nach Satz 5.40
e
XY o(n) = — 2 + Oz log x)
1snsz 12

und damit
2
Ryz) = % 2% 4+ O(x log x).

Ahnlich wie im Beweis des vorigen Satzes schlieBen wir durch Induktion auf beliebiges
k. Der Satz sei fiir k — 1 als richtig angenommen, so ist

Ry(z) = é By y(x — n?)
) B e
=X {V,,_,(x —n?) ? 4 O(x % log .r)}
a'ssx i ot

k

= Wik — 2k — 1) Vi [p) e — 8) © dt+ O(:r’ - log:v)
0

E_ d [
— Vit 2k — 1) VT f =0z {zu —a)? '} &t

k k
—-1 =-1
+ O(:c“ log :t) = Vakl?2 4 O(a:2 log z).
Der Satz 6.33 ist insofern bemerkenswert, dafl die Abschétzung bis auf den logarith-
mischen Faktor genau ist. Das heifit, der Exponent % — 1 im O-Glied kann durch

keinen kleineren ersetzt werden. Das harmoniert mit dem Satz 6.27 und kann ebenso
einfach nachgewiesen werden.
Satz 6.34. Die Gleichung

k
Rifz) = Vi 4 o(ﬁ'l) (32)
18t falsch.
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Beweis. Wir nehmen an, die Gleichung (32) ist richtig. Fur natiirliche Zahlen n ist

dann
1 1\ Ao
0= R,,(n -+ ?) — Ri(n) = I',,{(n + T) — n"/z} + o\n?

&
—-1

s ——1
= Vg%?ﬁ -f—O('l2 ):

was einen offensichtlichen Widerspruch darstellt.
In (31) kann man fiir £ > 4 in der Restabschitzung den logarithmischen Faktor
noch beseitigen, so daB man mit

L
Ry(z) = Via*i2 4 0(x2 |

eine endgiiltige, nicht mehr zu verbessernde Abschitzung erhilt. Es soll dieses Re-
sultat nicht vorgestellt werden, sondern nur darauf hingewiesen werden, da fiir
= 4 eine andere Situation vorliegt.

Satz 7.34. Die Qleichung
Ry(z) = V,a? + o(z log log x) (33)
st falsch.
Beweis. Nach Satz 5.26 gibt es unendlich viele natiirliche Zahlen =,, fiir die
a(n,) = o(n, log log =,)

falsch ist. Es ist aber nicht nétig, die damals verwendete Zahlenfolge {n,} zu be-
trachten. Wir kénnen es uns etwas einfacher machen. Wir betrachten fiiry = 2, 3, ...
die Zahlen

1
n,=1.3.5.--(2v—1) =(2-"L.
2!
Nach der Stirlingschen Formel ist

log n, = log (2v)! — v log 2 — log »!

=vlogv + O)

und daher

log log #, ~ log » (v = o0).

Hieraus und aus

v n, 2v g v 1
)=tz =nY —-——=n) —
fne g=120—1 e=1 0 o=120

=mn, {log (2r) — —;— log v + O(l)}

= % log » + O(n,)
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folgt, daB jedenfalls

a(n,) = o(n, log log n,)

falsch ist. Nach Satz 6.17 ist r((n,) = 80(n,). Also ist auch

ry(n,} = o(n, log log n,) (34)

falsch. Nehmen wir nun im Gegensatz zur Behauptung die Richtigkeit von (33) an.
Dann hildet aber

re(n,} = Ry(n,) — Ry(n, — 1) = o(n, log log n,)

einen offensichtlichen Widerspruch zu (34).

6.7.
. Es sind die sémtlichen Gitterpunkte auf der Parabel 9z® + 42zy 4 49y — 5y — 4 = 0

-

o

SO o

®

13.
14.

15.

16.

17.

18.
19.
20.

Aufgaben

zu bestimmen.

Man beweise: Unter allen Primzahlen gestatten genau diejenigen, fir die

a) p==1,3 (8) gilt, die Darstellung p = 2% 4 2%,

b) p = 1,9 (14)gilt, die Darstellung p = 2? + 7y, wobei z und y natiirliche Zahlen gind.
Es ist zu zeigen, da8 2713 eine Primzahl ist.

Der Zusammenhang zwischen den Darstellungen einer Primzahl p als Summe von zwei
Quadraten natiirlicher Zahlen mit den Lésungen der Kongruenz z2 = —1 (p) ist zur
Losung von 2z == —1 (2713) zu benutzen.

. Besitzt die Gleichung 22 — 11y* = —1 Losungen in ganzen Zahlen?
. Es sind die Losungsklassen von a) u? —— 11v? = 5, b) u? — 11v? = —7 anzugeben.
. Die Anzahl der Darstellungen einer ganzen Zahl als Summe von zwei Kuben ganzer Zahlen

ist endlich, — W. SIERPINSKI.

. Keine ganze Zahl der Form 9k - 4 ist Summe von drei Kuben ganzer Zahlen. — W. SieR-

PINSKI.

. Welche Primzahlen p sind a) Summe, b) Differenz von zwei Kuben natiirlicher Zahlen.
10.
1.
12.

Es sind alle rationalen Punkte auf den Kurven 22 4+ 3y? = 7 zu bestimmen.

Bilden die Zahlen a, b, ¢ ein Pythagoriisches Zahlentripel, so ist stets 60 | abe.

Man ermittle alle gleichschenkligen Dreiecke, deren Seitenlingen und Flicheninhalte ganze
Zahlen sind.

Es sind alle natiiclichen Zahlen z, y, = mit (z,y,2) =1 geb die der Glei

x? + 2y% = 22 geniigen.

Man zeige, daB die Gleichung z* - 4y* = 2z* mit (z, y, z) = 1 keine Ldsungen in natiir-
lichen Zahlen besitzt.

Man zeige, daB die Gleichung z* - y* + 2! = »? unendlich viele Losungen in natiirlichen
Zahlen z, y, z, w mit (2, y, z2) = 1 besitzt.

Hinweis: Man benutze die aus a? - 5% = ¢? folgende Identitit (ab)* + (ac)® + (be)*
= (¢t — a??)%. — W. SIERPINSKEI

Fiir jede natiirliche Zahl » existiert in der Ebene ein Kreis, der in seinem Inneren genau n
Gitterpunkte enthilt.

Hinweis: Auf der Peripherie eines jeden Kreises mit dem Mittelpunkt (}/2—,—1—) liegt
héchstens ein Gitterpunkt. — H. STEINHATS. 3

Jede Kugel mit dem Mittelpunkt (ﬁ, }’5, }’g) geht durch héchstens einen Gitterpunkt. —
. SIERPINSKI.

Der Kreis (z — }/_) (y — ‘VF-)2 = 4 enthiilt genau einen rationalen Punkt.

Der Kreis 2 + (y - }/_) = 3 enthilt genau zwei rationale Punkte.

Jeder Kreis mit drei rationalen Punkten enthilt unendlich viele rationale Punkte.
Hinweis: Jeder Kreis mit drei rationalen Punkten hat einen rationalen Mittelpunkt. —
‘W. SIERPINSKI.
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Im dritten Kapitel waren wir bereits auf den Begriff der Partition gestoBen. Es
handelt sich um die Zerlegung einer natiirlichen Zahl in eine Summe von natiirlichen
Zahlen. Hier geht es vornehmlich um die Abschitzung der Anzahl solcher Zerle-
gungen. Dabei ziehen wir auch Zerlegungen in eine beschrinkte Anzahl von Summan-
den in Betracht. Abschliefend wenden wir die Ergebnisse, wie bereits in Kapitel 3
ebenfalls angedeutet, auf die Anzahl der nicht-isomorphen abelschen Gruppen n-ter
Ordnung an.

7.1.  Elementare Eigenschaften

Definition 7.1. Fiir k € N bezeichne Py(n) die Anzahl der Partitionen der natiir-
lichen Zahl n in héchstens k Summanden natiirlicher Zahlen. Ferner sei P(0) = 1 ge-
setzt.

Es ist natiirlich Py(n) = 1. P,(n) ist gleich der Anzahl der Darstellungen von = in
der Form n = n; + n, mit n, = n, = 0. Wir wollen P,(n) berechnen.

1 1
Pmy= X 1=2 X 145 X 1
l.:g"-'!l fa+my=n “ll'::.’:’l

1
w41 — fir n=0 (2),
_rn+1 +12
2
0 fir n=1 (2).
Daniit ergibt sich

n
Pyn) = H .Y W

2
Die Berechnung von Py(n) fiir £ = 3 bringt sehr schnell erhebliche rechentechnische
Probleme mit sich. Wir leiten fiic Pi(n) eine Rekursionsformel her und benutzen diese

fiir Abschitzungen. P,(n) gibt die Anzahl der Darstellungen von = in der Form

B=my b my by, M EME o220
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an. Dies kann man auch in die Gestalt
no= (g — M) + 2Any — mg) + v kmy
=my + 2my; + --- + kmy, my, My, ..., my =0
bringen. Mit Iz] < 1 bilden wir hieraus ableitend die erzeugende Funktion

Fifz) = ZPK ,,) = Z E ZMit2matehkmy n (1 —z7)L, (2)

m=0 my=0
Diese Funktion hat fiir ¥ = 2 die Eigenschaft
(1 = 2¥) Fi(2) = Fia(2).
Andererseits gilt
© « =
(1 — 2 Fi(z) = 3 Pi(n) (1 — %) 2" = J] Pi(n) 2" — 3 Pi(n — k) 2".
n=0 n=0 n=k
Vereinbaren wir noch Pi(m) = 0 fiir m < 0, so haben wir
(1 — 2*) Fi(z) = X {Pi(n) — Pe(n — k) 2" = Fiy(z) = 3 Pry(n) 2",
n=0 n=0
Durch Koeffizientenvergleich ergibt sich

Py(n) — Py(n — k) = Ppy(n).

Damit haben wir fiir Pi(n) eine Differenzengleichung, die die Funktion rekursiv zu
berechnen gestattet. Wir haben also bewiesen:

Satz 7.1. Durch die Differenzengleichung
Py(n) = Py(n — k) + Ppy(n)

mit Py(n) =0 fiir n << 0 und Py(n) = 1 fiir n = 0 ist Pi(n) fiir k = 2 rekursiv be-
stimmdt.

Wir benutzen diesen Satz zur Abschitzung von Py(n). Nach (1) ist

Py(n) = Py(n — 3) + [%J 1Py

< n+2—3
0svEn/3 2
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Entsprechend ist

-5 -3 ]

Zusammenfassend haben wir die Abschéitzung

n? 13n
—_—— — < P 1.
L1 < Py(n) < + 2 +

Wir beweisen jetzt mit Hilfe der erzeugenden Funktion (2) eine Rekursionsformel
fiir Py(n), bei der k fest bleibt.

Satz 7.2. Es bezeichne
an; k) = 3¢,
dann gilt
nPy(n) = 2 o(v; k) Pyn — ).
Beweis. Aus (2) folgt

’ k r—1 k 00 3
5O _ gy Z =5 T owmi =3 (T,
Fi(2) dz vl =2z JTima n=1 {vym=n

Fi() = Fild) 5 ofn; 1) 21,
n=1

E nPi(n) 2" 71 = 5 s,’ o(v; k) Py(m) z*+™-1,
n=1

m=0 r=1
Der Vergleich der Koeffizienten ergibt die Behauptung.

Jetzt wenden wir uns der in Definition 3.2 gegebenen Funktion P(»), der Anzahl
der Partitionen von % in eine unbeschrinkte Anzahl von Summanden, zu. Wir legen
auch hier P(0) = 1 fest. Es ist stets Pr(n) < P(n), Pi(n) = P(n) fiir n < k, und fiir
k — co gilt Py(n) — P(n). Ermitteln wir eine erzeugende Funktion fiir P(n). Fiir
0<z<1ist

3 Py fﬁmﬂ<rﬂmﬂ~ﬂﬂ—ﬂl<ﬂl—ﬂ‘

n=90

Daher konvergiert

F(z) = fP(n) Fd
n=0
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fiir |z| < 1. Wegen

E’ Py(n) 20 < f P(n)z»
n=0 n=0

wieder fiir 0 < z < 1 konvergiert die links stehende Summe gleichmiBig in k. Des-
halb ist

F(z) = ZP(n) 2" = lim ):‘ Py(n) z* = lim [] (1 —2)1,

n=0 k—>00 n= k>0 v:=

F@) = [T(1— =) ®
rv=1

Mit dieser erzeugenden Funktion bereitet die Ubertragung des Satzes 7.2 keine
Schwierigkeiten.
Satz 7.3. Es gilt
L)
nP(n) = > o(») P(n — »).
r=1

Beweis.
F'(zy d ® pr-l had
= Z log F(z) = — 3 yrm—1
Fo & AR T TR R

=529

F'(z) = F(z) 2 o(n) 21,

n=1

SaPma =5 fq(v) P(m) z7+m-1,

n=1 M=( r=1
Aus dem Koeffizientenvergleich folgt die Behauptung.

Wir leiten jetzt noch eine Beziehung zwischen P(n) und Pi(n) her und bereiten
dies mit einem Hilfssatz vor.

Hilfssatz 7.1. Es seten z, 2z reelle Zahlen mit |z| < 1. Dann st

Iz{l —az™ =1 +Z (zz)"n(l — z) L

ve=]
Beweis. Fir
F(z,2) = Ii(l — azm)~1
besteht die Funktionalgleichung
Flzz,z) = (1 — 22) F(z, 2).
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Verwenden wir sie in dem Ansatz

F(x,z):f'a,,r‘, a=1,
so erhalten wir =
Za,,(:cz)' =(1- xz) ax = E‘ aa” — Ean_,zzﬁ
n=0 n=0 n=1
und durch Koefflzlentenverglewh firn =1
2" = a, — @,z

Mit a, = 1 errechnet sich hieraus

a, = z"ﬁ (1 —2)t.

vel

Dies gibt die Behauptung.
Satz 7.4. Firn = 1 gilt

P(n) = z"P,,(n — k).
k=1

Beweis. Wir setzen in der Formel des Hilfssatzes x = 1 und bekommen aus

n(l—zv)1—1+2z'r1](1—zﬂ)l

v=1 k=1 u=1

mit (2) und (3)
Z'P(n) =14 Z' ZPb(V) .
=0 k=1 v=0

Koeffizientenvergleich ergibt die Behauptung.

7.2.  Abschitzungen und asymptotische Darstellungen

Wir beginnen mit Abschitzungen von P(n).
Satz 7.5 (KRATZEL). Fiir alle natiirlichen Zahlen n vst
P(n) < 5",
wobei das Qleichhertszeichen nur fir n = 4 gilt.
Beweis. Mit Hilfe der Tabelle in 3.1 bestitigt man die Aussage fiir 1 < » < 11.
Jetzt setzen wir den Beweis durch Induktion fort. Wir nehmen die Richtigkeit fiir
alle Zahlen kleiner als » an. Nach Satz 7.3 ist dann

n—-v

P(n)=—71L— é";zr(v)li‘(n—v)<l Za(v)ﬁ X3

=1
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und mit
o) =Xpu
am—v

ergibt sich

P(n) < 5n/-li f 2'”5—;111-/4 = 3nls. l . S‘ (B8 — 3-miey-2,
N m=1pu=1 % m=1 ‘

Aus ez — e = 2z fiir x = 0 folgt weiter
Pn) < ELICIN ._1. . :‘ __—16 — jnid 8a?
n

1
=5 — e < 5
mt m¥log 5)2 n  3(log 5)*
fiir n = 11.

Diese Abschétzung ist fiir kleine n zwar recht gut, doch kénnen wir sie fiir groBe n
durch eine hessere ersetzen.

Satz 7.6. Es gilt

T

Pn) < enlan/a ,

Beweis. Wir benutzen die erzeugende Funktion (3)

F(z) = fP(m) " = ﬁ(l —2)!
] v=1

mit 0 < z < 1. Wegen P(m) = 0 und P(m) = P(n) fiir m = n ist

F(z) = E‘P(n) zm = P(n)

zll
1—2
und die Ungleichung

Py < =2 a2
zZ" L,

gilt fiir alle z mit 0 < z < 1. Es kommt darauf an, z in diesem Intervall so auszu-
wihlen, daB die rechte Seite méglichst klein wird. Durch Logarithmieren erhalten wir

log P(n) <log (1 —z) —nlogz —Elog(l —2)
v=1

:log(l—-z)—nlogz—i—f

v=1 m=1 M

=log(l—2z)—~nlogz+ 3 — .
mm1m 1 — 2"
Aus
1—2zm
1 =14+2z+4+22+ . 4 2™ 1 > mzm1
—z
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[
(=3
3

folgt

log P(n) < log (1—z)—nlogz+ 2

1
1 m?

z

log (1 1 =
=log(l—z)—n ogz—}——é—l

_z.

1 .
Setzen wir noch z = 1 mit 2 > 0, so erhalten wir
z

z a1
log (1 —.—
x+n0g( -i-_z)-i-6 o

log P(n) < log 1

1

z n?
1 nr 4 —.—.
< Clgl z+ v+ 6 z

Das Minimum von
+ 12 1
nr 4+ —.—
6 =

liegt bei x = ‘Tn: Fiir diesen Wert ist
6n

log P(n) < —log (1 + ﬂL) + =z VE n
T 3
und

eavzn

/6n T
Pn) < (1+‘ ) erl2nl3 <
n
Anstelle dieser Abschiatzung zeigten G. H. HARDY und S. RAMANUJAN bereits 1918 die
asymptotische Darstellung fiirr 2

P(n) ~ V208,

N

H. RapEMACHER konnte die Hardy-Remanujansche Methode so verfeinern, daB er 1937 eine

explizite Darstellung von P(n) in Gestalt einer unendlichen Reihe erreichte. P. ERDOS bewies
1942 auf elementarem Wege

P(n) ~£ a2 oo,

D. NEWMAN zeigte 1951 ebenfalls elementar C = L
413
Analog kann man mit Hilfe der erzeugenden Funktion (2) eine Abschétzung fiir
Py(n) gewinnen. Wir werden die Rechnung nicht durchfiihren, sondern gleich eine
bessere Abschitzung, die 1942 H. Gupra angab, herleiten.

Satz 7.7 (GUpTa). Firallen = 1,k 2 1 gilt

K — 1)
1 /m+k—1 1
E( )éPk(")éa

n+k+

k-1 k—1
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Beweis. Fir k = 1 ist die Aussage offensichtlich richtig. Wir setzen den Beweis
durch Induktion nach k fort und nehmen die Richtigkeit fiir alle Zahlen kleiner als &
an. Nach Satz 7.1 ist

S Pi) = Pty =B+ 3 Peal),

=
X PR = Pl-—l(") 4)
v=n—k+1 fhur

Fiir die Abschidtzung nach unten benutzen wir
n
2 Pily) S kPy(n),
s=n—k+1
so daB aus (4)

afv+k—2 1 m4+k—1
Pyn) =z — 3 P, =—
W = 2‘(”)—uz( E—2 ) k!( k—1 )
folgt. Fiir die Abschitzung nach oben benétigen wir
»
3 Pu) 2kPn —k + 1),

ven—k+1
so daB wir aus (4) die Abschidtzung

Y S L IS
Pk(")é; y=20 Pk—l(”)éa vé; b2
ik — 1)
g Ao E=2) k4
_ 1 thr 2 (/t+k—2)sl 2
k! IO k—2 ] 7k k—1

2
erhalten.
Aus diesem Satz liBt sich fiir das asymptotische Verhalten von Pi(n) eine wichtige

Folgerung ziehen.
Satz 7.8 (ErDGS/LEBNER). Fiir n — oo ist gleichmdifig in k = o(n!/?)
k-1
Bemerkung. Dieses Ergebms erzielten P. ERp6s und J. LEENER bereits 1841. Im Jahre

1951 zeigt G. SzERERES die Giiltigkeit der asymptotischen Darstellung sogar fiir k = o (}’-)

Beweis. Betrachten wir zuniichst die linke Seite der Ungleichung des Satzes 7.7
Es ist

Py(n) ~

L n+k—1 _ 1 -(n—}-k—l)!
B\ k—1 ) ke — 1) n! '
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Mit Hilfe der Stirlingschen Formel werden wir
(n 4k — 1)
n!
fir k = o(}/;) zeigen. Es ergibt sich
(nt k=1 4k 1) l/mTl ik

nk- Int "ﬂ+“—l

~ k-1

n
k— 1\mtk-1 1-k+(-+k-nlou(1+"—'—‘)
Ak — ¢ S

— )
Fir k = o(ﬂ) ist daher

%(n:k:l)NkvnH : @
(! - 1k — 1)!

k(k — 1)
2

~1.

Fiir die rechte Seite der Ungleichung des Satzes 7.7 ist mit ¢ =
ln—{-k-{—c _ 1 (n + k + ¢!
B\ k=1 | kE—1! h+1+0)!
Mit Hilfe der Stirlingschen Formel zeigen wir hier
n+ k +c)! —~ k1
n + 1+ ¢)!
fiir £ = o(n1%). Es ergibt sich
(m+Ek+ot (At ktorke l/n+k+cel_k
i+ 1+ o) i n+ 14+ fn+14c

k+c 1+¢
) (n+l+£)10!(l+ T) - eo("'/")

1—k+(n+k+c)log (l+
~ €

~1.
Fiir k = o(n''®) ist daher
l n+k+c nk-1 6
K\ k—1 ke — 1)1° ) (

Die asymptotischen Darstellungen (5) und (6) geben in Verbindung mit Satz 7.7 die
Behauptung.

7.3.  Die Anzahl der nicht-isomorphen abelschen Gruppen
n-ter Ordnung

Wir kniipfen an die Ausfithrungen in 3.1 an. Dort hatten wir fiir die Anzahl a(n) der
nicht-isomorphen abelschen Gruppen bereits erkannt:

(m, m) = 1=> a(mn) = ll(m) a(n),

n"‘H:D"=>'“L) HG(P")—H(PV.)
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Jetzt wollen wir eine erzeugende Funktion fiir a(n) aufstellen. Auf Grund der trivialen

Abschatzung a(n) < % fiir n > 1 gibt es ein 8y, so daB fiir alle s > g, die Reihe

o ¢n)

we1 N°

konvergiert. Dann ist nach Satz 5.7 und nach (3)

Fem_ o ( 5 a(p-)) -1 ( 3 Pm)

n=1 10 » \r=0 D" p \r=0 P

= H ﬁ(l — p)l = ﬁ H (1 — p o)1,
P n=l n=1 p

Damit ist sogar fiir s > 1

Mz

20 _ [T tna). )
L5 n=1

1

Schreibt man noch die Reihendarstellung der Funktion {(ns) auf, so erkennt man, daf§
a(n) mit der Anzahl der Zerlegungen von 7 in

n = myng?ngd -, 8
ny, Ny, ... € N, tibereinstimmt.

Nun wollen wir uns mit den in Kapitel 6 entwickelten GroBenordnungen ausein-
andersetzen.

Satz 7.9 (KRATZEL). Die maximale Grofenordnung von log a(n) vst

logh logn

4 loglogn®
Das heift, es st mit e > 0

14+c¢  logn

a(n) < 5¢ loglogn 9
Jiir n > N(¢) und
1~¢ logn
a(n) > 54 loglogn (10)

fiir unendlich viele n.

Beweis. Wir ziehen den Satz 5.27 heran. In den dortigen Bezeichnungen ist
J(n) = a(n), f(p’) = a(p") = P(»),also g(v) = P(»). Nach Satz 7.6 ist log P(») = O(»'/?),
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so dafB} in Satz 5.27a = %gewii.hlt werden kann. Nach Satz 7.5 ist

Py) £ 5/4 fiir v =4,
< 54 fir v>4,
s0 daB mit k = 4, g(4) = 5 der Satz 5.27 sofort die Behauptung ergibt.
Wir wenden uns jetzt der durchschnittlichen GréBenordnung von a(n) zu. Es be-

zeichne

A(x) = é’ a(n)
und

=ﬁ ( ) n=12..). 1)

P. ErRDOs und G. SzEKERES zeigten 1934, daB a(n) die durchschnittliche GréBenord-
nung ¢; (2,29 < ¢; < 2,3) hat. Genauer zeigten sie

A(x) = ¢jx + 0(]@)
Dieses Ergebnis wurde 1947 von I). G. KENDALL und R. A. RANKIN zu
A(x) = ¢, + ce2V/? + O(x1/3 log? x)

verbessert. Dies kann mit relativ einfachen Mitteln selbst bei Retluzierung noch eines
logarithmischen Faktors erreicht werden.

Satz 7.10. Mt (11) gilt
A(x) = 1@ + 222 + O(aV/3 log ).
Beweis. Fiir £ ¢ N bezeichne
afn) = 3 1,  a(r)=an), (12)

Y s

so daB wir fiir § > —z—

2 a(n) H t(ns)

P
erhalten. Dann ist mit Satz 5.40
A(z) = 3 d(1, 2; n) ag(m)

nmgz

= Z em) {5(2) = +¢ (%) (5)”2 + 0((%)”3)}. 13)

Fiir vy = 1,%folgt

ay(m) _ 3 _ “a(m) o %alm) ay(m)
ner W _»é‘x w ,E, W mor M pess (0Pm)

ag(m)
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Die Abschitzung der Restsumme ergibt

ay(m) _ a.(m) 1 + “4(7") P < 1
wnsz (RPM)  aze M wSzm 713' m>: Lo
—of z um a‘(m))
msz m>z m’

[( ).,,]
= o( e “‘("‘)) ( o z ":1"‘“)) —ol7).

ag(m) o

Damit ist

/
2 T + O(z~*3), (14)
Py “;(l’l':) -1/e), (16)

pr— c“

B
“(3)

Fiir die Abschitzung des Restes in (13) vermerken wir zunichst

S agm) = 3 aym) = 0( 5 a m) (5)”’) e
msz

m3z . A'mszx
und sodann vermittels der Abelschen Identitiit

msz

2 as(m) (i)m= 3 ay(m) + _lf(f-)mz ay(m) @_ O(x'3log ). (16)
m mez 3 t me<t t
1

Trigt man (14), (15), (16) in (13) ein, so erhilt man die Behauptung.

Im Jahre 1952 konnte H. E. RICHERT erstmals die GroBenordnung 2'/? im Fehlerglied unter-
bieten und zeigte

A(z) = ¢, + c,@'/% + 7'® + A(2)
mit :

A@) = O((a* log? 2)11%).
Im Verlaufe der folgenden Jahre wurde diese Abschitzung von verschiedenen Autoren weiter
verbessert. Das beste Resultat hiilt gegenwirtig B. R. SRINIVASAN, er erzielte 1973

A(x) = 02195147 log® z).
Mit Hilfe der in 6.5.2. entwickelten Vinogradovschen Methode erzielte P. G. ScaMIpT 1968 das
Ergebnis

A(x) = O((=* logt z)¥7).

Im Sinne der Definition 5.20 kann a(n) keine normale GréBenordnung besitzen.

Denn fiir quadratfreies n ist a(z) = 1, und nach Satz 5.41 ist

6 -
I 1= 3 luml = ot o(ya). Y]

a(n)=1 ns
sz
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Interessant ist nun aber, daB eine Verteilung der Werte # mit a(n) = m fiir beliebiges
m = 0 iiberschaubar dargestellt werden kann. Es wird sich allgemein die asymptoti-
sche Darstellung

3 1~Pyx
atn)=m
ngz
ergeben.
Fiir den Nachweis dieser Darstellung betrachten wir zuniichst die fiir s > 1 kon-
vergenten Dirichletschen Reihen

® 1
A= 3 —
ol W

a(n)=m

mitm = 0, 1, 2, ... Da a(n) stets positiv ist, haben wir 4y(s) = 0. Wie schon bekannt,
ist

Awwg%?i%. (18)

Unm fiir m > 1 zu einer Darstellung von 4,,(s) zu gelangen, zerlegen wir die Zahlen n
in n = nyny mit (n,, n,) —= 1, wobei aulerdem =, eine Zahl zweiter Art und n, quadrat-
frei sein sollen. Dabei wird eine Zahl von zweiter Art genannt, wenn jeder Primfaktor
mindestens in zweiter Potenz enthalten ist. Dann ist a(n) = a(n,), und wir erhalten

1
ot

Ap(8) = i AN

~
atn)=m 1’ (nin)=1 M2

wobei in der inneren Summe iiber alle quadratfreien Zahlen 7, und in der duBeren
Summe iiber alle Zahlen zweiter Art 7, zu summieren ist. Fiir die innere Summe haben
wir
1o el _ 3R
=1 e i B k=1 K
(m.k)=1

mit
|u(k)| fir  (my, k) =1,

1 = {o fir (m, k) > 1.

Wegen der Multiplikativitit von f(k) erhalten wir in Anwendung von Satz 5.7
1 & ) = lu@)l
_=H(2_1’_)=£1(2_"1” )
4 piny

(ny.n) =t T2° =0 P v P

1 () 1\"?
= 1+=)= 14—} .
S ()= B (1)




Insgesamt ergibt sich hieraus
(8)

¢(2s

mit B,(8) = 1 wegen (18) und

An(8) = B.(9) (19)

Buo)= I %zt+%f (20)

a(n)=m 1" pin, ?

fiir m = 2. Bei der fiir s > % konvergenten Reihe ist wieder iiber alle Zahlen zweiter

Art 7, zu summieren. Speziell ist
Byo) =3 ——
S+
wobei die Summe iiber alle Primzahlen zu fiihren ist. Damit sind die notwendigen
Vorbereitungen getroffen.

Satz 7.11 (KENDALL/RANKIN). Fiir m = 0, 1, 2, ... existieren die Grenzwerte

a(r)=m
Dabei sind die P, durch
P=0, P =3 P -3Ba) mzy (21)
s e
mit By, (1) aus (20) gegeben. Und es gilt
P, =1, (22)
m=0
3 mP, = ¢, = lim L X a(n). (23)
m=0 20 ¥ ngz

Beweis. (21) ist fiir m = O trivial und folgt fiir m = 1 aus (17). Fiir m = 2 setzen
wir
o m(")

Bn(s) =2 ’

wobei die Konvergenz der Reihe fiir s > %gesichert ist. Nach (19) und (17) ist

1 1
z b =— X lpm)l by(n,)

Az T omngz

_5 < [oaim) )
_:!2',%;{ n +0( ull n® )}

mit% < # < L. Fiir ¢ — oo folgt hieraus sofort (21).
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Die unendlichen Reihen in (22) und (23) sind konvergent, denn die Folgen ihrer
Partialsummen

o M
Sy = Pn, Ty = 3 mPy
m=0

m=0

sind monoton wachsend und wegen

1 X 1
Sy =Ty =lim— Im 3 1 <lim — Yan) =c
o0 T m=1 ngz 90 £ nsz
a(n)=m
nach oben beschrankt. Dann erhalten wir bei Beriicksichtigung von (20), (21) und
des Satzes 5.7

a(m)=m
.1 P oW\ g pr St
. cm’]( +p+1,=,p') c<2)l,1(p+1.=op-)
1 1\
= — 1 — — =
C(2)I]( :02)

Das ist (22). Ebenso erfolgt der Nachweis von (23), nur benétigen wir hier zusitzlich
3)-
0 1 o oo 1 1\
Snp = Sm3 (1)
m=0 r

$@2) w1 m=1 P pin
a(n)=m

> a(m)

- L S (i)
TS ™ sim /4

1 P Ja@) 1 P2 P(v))
= — 14+ >80 PR
IPI( +P+1r=2 P') IDI(

~wm{ 3 A(-5)

7.4.  Aufgaben

Bei den folgenden Aufgaben bedeute mit k£ € N die zahlentheoretische Funktion P,(z; k) die
Anzahl der Darstellungen von 7 in der Form

7= my + 2¥m, + 3my + - + vhm,
mit ganzen Zahlen m,, m,, ..., m, = 0. Weiter sei

P(n; k) := lim P,(n; k).
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-

. Man bewtise fiir |2| < 1
o »

X Pyn; k) =IT (1 — zm)7,
=0 m=1

T Pins k) = IT (1 — o).
=0 m=1

0

. Mit der Vereinbarung P,{n; k) = 0 far » <¢ 0 weise man die Differenzengleichung
P,(n; k) = P,(n — v*; k) + P,,(n, k)
fiir v = 2 nach.

3. Py(n; k) = [%] +1.

1 1 1 3 1
4'ﬁf"2—2k__+ln<P'(";k)<2.6"n1+(ﬁ+§)n+1'

. Man beweise

o

3 1
Py k) < ggn ¥+1 ghp+1

Dabei ist mit der Gammafunktion I'(z)

&
1\\e5
o = (% r (%) ¢ (1 + T))Hl' by = (k+ 1) a.

6. Es ist fir ¢ > 0 die Ungleichung

* Liogs+e
a(n) < (log n)*

fiir fast alle » nachzuweisen. — E. KRATZEL.
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