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Vorwort

Durch Ubungen soll der Student die Kenntnisse, die er sich in der
Vorlesung und durch Lehrbuchstudium angeeignet hat, festigen und
vertiefen. Insbesondere soll er lernen, sein Wissen beim L&sen von
Problemen der Praxis anzuwenden. Diesem Zweck dienen die vor-
liegenden «Ubungen zur Physik». Der Band baut auf langjihrigen
Erfahrungen der Autoren im Physikunterricht des Direkt-, Fern- und
Abendstudiums an Ingenieur- und Fachschulen auf und wurde als
Arbeitsbuch zum Lehrbuch «Physik — Fundament der Technik» er-
arbeitet. Doch wird das Arbeitsbuch auch im Zusammenhang mit
anderen Lehrbiichern der Physik einsetzbar sein.

Als Grundlage sowohl fiir das Auswerten von MeBergebnissen im
Praktikum als auch fiir das Losen von Aufgaben beginnt das Arbeits-
buch mit einer «Einfithrung in die Fehlerrechnung». Hier werden auch
kurz Fragen der Rechengenauigkeit behandelt.

Es folgt der Hauptabschnitt «Ubungen». Thm ist eine methodische
Anleitung fiir das Losen von physikalischen Aufgaben vorangestelit.
Sodann enthélt er, gegliedert nach den Abschnitten des Lehrbuches,
Beispiele, die als Muster vollstindig vorgerechnet sind (Kennzeichen:
Kleindruck), und Ubungen. Hier sind physikalisch-technische Pro-
bleme durch Rechnung oder verbale Antwort zu 16sen. Ihre grofie
Anzahl erlaubt es dem Lehrer bzw. dem Studenten, eine geeignete
Auswahl zu treffen. Zu jeder Ubung ist im Teil «Hinweise zu den
Losungen, Antworten und Ergebnisse» sowohl das allgemeine als
auch das spezielle Ergebnis angegeben. Teilweise erfolgen Hinweise
zur Losung (Kennzeichen: O unter der Aufgabennummer).

Im Teil «Physikalisches Praktikum» wird zunichst Allgemeines zum
physikalischen Praktikum gesagt. Dann werden drei verschiedenartige
Versuche mit MeBprotokoll und vollstindiger Auswertung dargestellt.
Diese dienen als Muster und sollen dem Studenten helfen, im Prak-
tikum zweckmiBig und rationell zu arbeiten.

Hinweise auf Textstellen erscheinen in Klammern, 7 .B. bedeutet
(—3.6.3.) «sieche Abschnitt 3.6.3.». Der Buchstabe F in der Klammer
(—F 4.2)) weist auf eine Textstelle im Lehrbuch hin, die Buchstaben
FB (—FB 7.2.) auf eine Tabelle in der Beilage zum Lehrbuch, jeweils
bezogen auf die 4. oder eine spitere Auflage des «Physik — Fundament
der Technik».

Zusammentassungen des im Lehrbuch enthaltenen Stoffes erfolgen
in «Kérner, Physik — kurz gefaBt», das im gleichen Verlag erschienen



Vorwort

ist. Dieser Titel enthalt in verbaler Darstellung die Schwerpunkte des
im Lehrbuch dargebotenen Stoffes einschlieBlich der Gleichungen.
Zu jedem Hauptabschnitt erscheinen auch Tabellen und Erfahrungs-
werte sowie wichtige Analogien.

Am Arbeitsbuch wirkten durch zahlreiche Hinweise neben den Mit-
gliedern der Arbeitsgruppe Literatur der Zentralen Fachkommission
Physik beim Ministerium fir Hoch- und Fachschulwesen der DDR
als Gutachter mit die Herren Dipl.-Phys. Korst, Reichenbach, Dipl.-
Phys. Waldmann, Hermsdorf, und Studiendirektor Wiinschmann,
Dresden. Sie erginzten auch die Ubungen durch einige eigene Bei-
trage. Ihnen sowie allen Lesern, die durch krititische Hinweise zu den
bisherigen Autflagen beigetragen haben, sei an dieser Stelle herzlich
gedankt.

Lehrer und Studenten werden gebeten, auch zukiinftig ihre
Erfahrungen aus der Arbeit mit den «Ubungen zur Physik» mit-
zuteilen und so zur Weiterentwicklung des Buches beizutragen.

Autoren und Verlag
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Bild 1

1.  Einfiihrung
in die Fehlerrechnung

1.1. Fehlerdefinition

Im physikalischen Grundlagenpraktikum, in weiteren Praktika und
in Ihrer beruflichen Titigkeit werden Sie vor das Problem gestellt
werden, physikalische GroBen zu messen. Dabei miissen Sie sich
stets dariiber im klaren sein, daB3 die erhaltenen Mefwerte keinesfalls
mit dén wahren Werten der physikalischen GrofBlen vollig identisch
sind. Durch die Unvollkommenheit der MefBgerite und andere, oft
sehr unterschiedliche Einfliisse sind MeBwerte stets fehlerbehaftet.
Die Differenz zwischen MeBwert x und wahrem Wert X bezeichnen
wir als wahren Fehler ¢:

e=x—X (1)

Die GI. (1) ist nicht unmittelbar anwendbar, da von den drei vor-
kommenden GroBlen nur der MeBwert x bekannt ist. Der wahre
Wert X kann sowohl groBer als auch kleiner sein als der Mef3wert x,
somit ist auch das Vorzeichen von ¢ unbekannt.

Unser Ziel ist, einen absoluten Fehler Ax zu ermitteln, der der Be-
dingung geniigt

Ax = [e| (1)

Damit legen wir das in Bild 1 dargestellte Intervall mit den Grenzen
x — Ax und x + Ax fest, in dem der wahre Wert X mit Sicherheit
(bei Kenntnis des maximal moglichen Fehlers) oder mit einer gewissen
Wahrscheinlichkeit (bei Melireihen; — 1.4.) liegt.

Mit diesen Voraussetzungen gilt

X —Ax £ X = x + Ax : 2
Das vollstindige MefBergebnis lautet dann
X =x+ Ax Q)

Eine bessere Einschitzung der Genauigkeit einer physikalischen

Messung ergibt sich durch die Angabe des relativen Fehlers

Ax

—_ 4
— @

Da X unbekannt ist, aber nur wenig von x abweicht, ersetzen wir bei

der Berechnung des relativen Fehlers X durch x. .
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Beispiel

1. Einfithrung in die Fehlerrechnung

Bei einer Langenmessung erhalten wir als MeBwert 334 mm. Der

maximale Absolutfehler ist 1 mm. Dann besagt das vollstindige Mep-

ergebnis ‘

I =(334 £ 1) mm,

daB die wahre Linge mit Sicherheit im Bereich (333 ... 335) mm liegt.

Der relative Fehler betragt

Al _ 1mm
I~ 334mm

Diese MefBgenauigkeit ist mit einfachen LingenmeBgeriten zu er-

reichen.

Soll dagegen der gleiche Fehler bei einer MeBlinge von etwa einem
Kilometer zulissig sein, dann ergibt das einen relativen Fehler

= 0,003 =0,3%

Al _ 1 mm
/995788 m

Diese Genauigkeit ist nur durch den Einsatz modernster Gerite
(z. B. Laserentfernungsmesser) realisierbar.

=105 = 0,0001%

1.2. Fehlerarten
1.2.1. Grobe Fehler

Grobe Fehler konnen sehr unterschiedliche Ursachen haben. Defekte
MeBgerite, Nichtbeachtung duBerer Storeinfliisse oder falsche Skalen-
ablesungen fiihren z. B. zu groben Fehlern. Diese sind jedoch stets
vermeidbar und sollen im folgenden ausgeschlossen sein.

1.2.2. Zufillige Fehler

Zuféllige Fehler treten bei jeder Messung auf. Sie sind am deutlich-
sten bei mehrfacher Messung der gleichen MeBgroBe unter gleichen
Bedingungen zu erkennen. Zufillige Fehler enthaltende MeBwerte
der gleichen MeBgroBe streuen statistisch verteilt um einen Mittelwert.
Diese Streuungen sind vorwiegend auf zwei Ursachen zuriickzufiihren.
Bei allen unter Zuhilfenahme der menschlichen Sinnesorgane durch-
gefiihrten Messungen (z. B. bei der Schitzung von Zwischenwerten
beim Ablesen von Skalen oder bei Zeitmessungen mit Handstopp-
uhren) begrenzt das endliche Unterscheidungsvermdgen unserer
Sinnesorgane die Genauigkeit der Messung und fiihrt zu unterschied-
lichen MeBwerten (z. B. Ableseunsicherheit).

Daneben treten bei fast allen MeBgeriten Reibungskrifte in den
Lagern der beweglichen Teile der Gerite auf. Diese sind die Ursache
von statistischen Schwankungen der Anzeigewerte dieser Gerédte um
einen Mittelwert bzw. fiihren bei Einzelmessungen zu unterschied-
lichen zufilligen Fehlern. )
Die mathematische Behandlung zufilliger Fehler bei Mehrfach-
messungen der gleichen GroBe (MeBreihen) erfolgt im Abschnitt 1.4.
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Dort wird gezeigt werden, dal3 die Auswirkung der zufilligen Fehler
durch mehrfache Messungen der gleichen MeBgroBe weitgehend aus-
schaltet werden kann. Wird dagegen eine physikalische Grof3e nur
einmal gemessen, dann muB} der zufillige Fehler geschdtzt werden. Je
nach der GroBe der Skalenteilung werden wir als zufilligen Fehler
etwa die Hilfte bis ein Viertel des Abstandes zweier Teilstriche an-
nehmen.

1.2.3. Systematische Fehler

Genau wie zufillige Fehler treten systematische Fehler ebenfalls bei
jeder Messung auf und sind den zufilligen Fehlern nach 1.2.2. iiber-
lagert. Im Gegensatz zu zufilligen Fehlern haben jedoch systematische
Fehler bei mehrfacher Messung der gleichen MeBgr6Be unter gleichen
Bedingungen stets den gleichen Betrag und das gleiche Vorzeichen.
Einige Beispiele sollen das verdeutlichen. Messen wir eine physika-
lische GroBBe mit einem bestimmten MefBgerit, dann werden die An-
zeigewerte dieses Gerites keinesfalls exakt mit den wahren Werten
iibereinstimmen. Jedes MefBgerit und jede' MaBverkorperung (z. B.
Waigestiicke oder ParallelendmaBe) haben mehr oder weniger groB3e
Eichfehler, also Differenzen zwischen dem angezeigten bzw. verkor-
perten und dem wahren Wert. Diese Differenzen bezeichnen wir als
systematische Fehler. Eine Verringerung dieser Fehler ist nur durch
die Verwendung genauerer Mef3gerite moglich.

Andere systematische Fehler treten durch die Beeinflussung der Mef-
grioffen durch die Mefgerdte selbst auf. Ermitteln wir z. B. den Wert
eines Widerstandes durch gleichzeitige Spannungs- und Stromstirke-
messung aus dem Ohmschen Gesetz, ohne dabei die Innenwiderstinde
der Melgerite zu beriicksichtigen, dann enthélt unser Ergebnis einen
mehr oder weniger groBBen systematischen Fehler. Wir werden diesen
im Versuch Widerstandsbestimmung (— 3.6.3.) unter unterschied-
lichen MefBbedingungen ermitteln.

Auch die Ermittlung der spezifischen Wirmekapazitit von fliissigen
oder festen Korpern mit Hilfe von Mischungsvorgingen fiihrt ohne
die Beriicksichtigung der Wirmekapazitit der verwendeten Gerite
(Kalorimeter, Thermometer) zu systematischen Fehlern.

Die beiden letzten Beispiele zeigen, daB systematische Fehler oft
rechnerisch erfaBt und damit korrigiert werden konnen. In manchen
Fillen liegen fiir MeBgerite Eichkurven oder -tabellen vor, die die
Abweichungen zwischen den angezeigten und den wahren Werten
nach GréB8e und Vorzeichen angeben. Die Korrektur der Anzeige-
werte mit Hilfe der Eichwerte fiihrt ebenfalls zur Verkleinerung der
systematischen Fehler.

Oft werden jedoch systematische Fehler nur mit groBerem apparati-
vem oder mathematischem Aufwand erfaBbar und somit korrigierbar
sein. In solchen Fillen werden wir auf die Erfassung dieser Fehler
verzichten. Wir sind dann gezwungen, den Wert dieser nicht erfafiten
systematischen Fehler abzuschdtzen, um sie bei der Fehlerrechnung
beriicksichtigen zu konnen.
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1. Einfithrung in die Fehlerrechnung

1.2.4. MeBunsicherheit

Wir haben festgestellt, daB jeder physikalische MeBwert fehlerbehaftet
ist. Der Fehler setzt sich dabei stets aus einem zufilligen und einem
nichterfal3ten, abgeschitzten systematischen Fehleranteil zusammen.
Die Summe der beiden Fehleranteile hei3t MeBunsicherheit u:

u= szuf + Axsysl (5)

Bei der Wahl unseres MeBverfahrens (Einzelmessung oder MeBreihe)
und unseres Mefgerites sollten wir anstreben, dafl beide Fehler-
anteile angendhert in der gleichen GroBenordnung liegen. Es ist
physikalisch und 6konomisch sinnlos, durch groBere MeBreihen den
zufilligen Fehler zu reduzieren, ohne gleichzeitig auch durch die
Wabhl eines genaueren Mefgerites den systematischen Fehler zu ver-
kleinern.

Als vollstindiges MefBergebnis geben wir stets den MefBwert x und
die MeBunsicherheit  an:

X=xzxtu (6)

In dem Wort «MeBunsicherheit» kommt zum Ausdruck, daB3 unsere
gesuchte physikalische Grofle mit einer gewissen, aber meist nicht
bekannten Wahrscheinlichkeit im Intervall x — u ... x + u liegt.
Die MeBunsicherheit ist damit die Halbspanne des Bereichs um das
vollstindige MefJergebnis.

1.3. Fehlergrenzen von MeBgeriten

Fiir die meisten der von Thnen verwendeten Mellgerite bzw. Mal3-
verkorperungen wird vom Hersteller die Einhaltung bestimmter
Fehlergrenzen garantiert. Wir verstehen darunter Grenzwerte fiir die
maximal zuldssigen Abweichungen zwischen angezeigten und wahren
Werten.

Oft sind diese Fehlergrenzen standardisiert. Insbesondere elektrische
MelBgerite werden hinsichtlich ihrer Fehlergrenzen in Klassen ein-
geteilt. Dabei gibt die Klasse an, wieviel Prozent vom jeweiligen
MeBbereich der Fehler des Gerites maximal betragen darf. Bei einem
Instrument der Klasse 1 und einem MeBbereich von 300 V betrédgt
der maximal zuldssige Fehler an jeder Stelle der Skale 3 V. Bei Be-
triebsmefBgeriten wird die Einhaltung der Fehlergrenzen regelmaBig
von den jeweiligen Eichimtern iiberpriift. '

Die zufilligen Fehler eines MeBinstrumentes, also die Summe von
Ableseunsicherheit beim Schitzen von Skalenzwischenwerten und
von durch Reibungskrifte bedingten unterschiedlichen Einstellwerten
beim gleichen MeBwert, miissen stets klein sein gegeniiber den Fehler-
grenzen des MeBgeriites. Wenn wir also bei der Angabe eines MeB-
fehlers die Fehlergrenzen des benutzten MeBgerites verwenden,
brauchen wir zufillige Fehler nicht zu beriicksichtigen. Der wahre
Wert liegt dann mit Sicherheit innerhalb des von uns durch die
Fehlergrenzen angegebenen Bereiches. Wir bezeichnen den so an-
gegebenen Fehler als maximal moglichen Fehler.
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Wir sollten es uns zum Grundsatz machen, vor der Anwendung von
MeBinstrumenten uns iiber deren Fehlergrenzen Klarheit zu ver-
schaffen, um nicht durch zu gering geschitzte Fehler zu kleine MeB-
unsicherheiten vorzutduschen.

1.4. Mathematische Erfassung zufilliger Fehler bei Me8-
reihen
1.4.1. Voraussetzungen

MeBreihen sind nur dann sinnvoll, wenn bei einer Messung zufillige
Fehler auftreten, die groBer sind als die Fehlergrenzen der verwen-
deten MeBgerite. Dies ist insbesondere in der FeinmefBtechnik und
in der Geodisie der Fall. Auch in der subjektiven Fotometrie, wo mit
Hilfe des menschlichen Auges Helligkeitsvergleiche durchgefiihrt
werden, sind MeBreihen erforderlich.

Fiir die Mehrzahl dieser MeBprobleme ist charakteristisch, daB bei
ihnen der Anteil der menschlichen Sinne bei der Ermittlung der Mef3-
werte hoch ist. Die Abweichungen, die zwischen den einzelnen MeB-
werten einer MeBreihe auftreten, werden je nach der Ubung des Be-
obachters mehr oder weniger grof} sein.

Die mathematischen Grundlagen fiir den Ausgleich der streuenden
MeBwerte einer MeBreihe sind relativ kompliziert. In den folgenden
Abschnitten kann daher nur ein grober Uberblick iiber die anzuwen-
denden Methoden gegeben werden.

1.4.2. Mittelwert einer MeBreihe, Standardabweichung
und Vertrauensbereich des Mittelwertes

Als Ergebnis einer MeBreihe mit den N MeBwerten x, ... xy bezeich-
nen wir das arithmetische Mittel oder den Mittelwert

1 N

— 7
N E, X ™
Als MaB fiir die zufilligen Abweichungen der Einzelwerte von dem
Mittelwert gilt die Standardabweichung (auch. mittlerer Fehler der
Einzelmessung)

T F e ;
s = N_li;(xi ’X) ®
Wenn wir die gleiche physikalische GroBe unter gleichen Bedingungen
mehrfach messen und die Haufigkeit H iibereinstimmender MeBwerte
iiber dem MeBwert x; auftragen, erhalten wir bei ausreichend hoher
Zahl der Messungen eine Verteilung der MeBwerte nach Bild 2. Die
Hiufigkeit von MeBwerten in der Nihe des durch (7) definierten
Mittelwertes x ist sehr groB3, dagegen weichen nur wenige MeBwerte
wesentlich von X ab. (Grobe MebBfehler sind dabei nicht beriick-
sichtigt!)

Trotzdem ist nicht gesichert, daBB der Mittelwert ¥ und der wahre

X =
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Wert X iibereinstimmen. Die Festlegung eines Bereiches um den
Mittelwert, in dem der wahre Wert X mit einer gewissen statistischen
Sicherheit P liegt, ist ein Problem der Wahrscheinlichkeitsrechnung.
Wir bezeichnen als Vertrauenshalbbereich des Mittelwertes (zufilliger
Fehler der MeBreihe) den Ausdruck

t

\/W s ()]

Tabelle 1: 7-Werte fiir verschie- Der Faktor ¢ (— Tabelle 1), der neben der Standardabweichung s die

dene statistische Sicherheit P bei GroBe des Vertrauensbereiches beeinflult, hingt von der Anzahl N

N Einzelmessungen der durchgefiihrten Messungen und vor allem von der geforderten
statistischen Sicherheit P ab.

N t
In der Praxis sind folgende statistische’ Sicherheiten iiblich:

P = 68,3% in der physikalischen MeBtechnik,

P=6839% P=95%

5 1,15 2,8 P =95% in der industriellen MeBtechnik,
10 1,06 2,3 P = 99,73 % in der biologischen MefBtechnik.
20 1,03 21 Der Vertrauensbereich des Mittelwertes (Bild 2) ist
t t
x - R s (10)

VN JN
1.4.3. MeBunsicherheit und Ergebnis

Bei den bisherigen Uberlegungen wurden systematische Fehler nicht
beriicksichtigt. Fiir die Angabe der MeBunsicherheit # und das end-
giiltige Ergebnis der MeBreihe sind die nichterfaBten systematischen
Fehler zu schitzen. Wir erhalten aus (5) und (9) mit s nach (8) als
volilstindiges MeBergebnis

+ ( t— s + Axsysl) (11)
JN
Aus (8) und (11) ist ersichtlich, daB der meist erhebliche Mef3- und
Rechenaufwand bei MeBreihen nur dann sinnvoll ist, wenn der Streu-
bereich der Einzelmessungen x; wesentlich groBer ist als der nicht-
erfaflte systematische Fehler.

Beispiel Bei einer Mefireihe wurden unter Verwendung eines Zeitmessers mit
einem geschitzten systematischen Fehleranteil von 2 ms 10 Zeiten
ermittelt. Daraus sollen der Mittelwert, die Standardabweichung, der
Vertrauenshalbbereich des Mittelwertes, die MeBunsicherheit und
das MeBergebnis berechnet werden.

=i

X =

i ri/ms» (T — ?)/ms (@ - ?)zlms’
1 8202 1,4 1,96

2 8184 —16,6 276

3 8206 54 29,2

4 8221 20,4 416

5 8195 -5,6 314

6 8212 11,4 130
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i Ti/ms (e — f)/ms (T — f)zlms'
7 8191 -96 92,2
8 8206 5,4 29,2
9 8201 0,4 0,16

10 8188 —12,6 159

> 82006 +0 1165

T = 8200,6 ms

A/%-1165 ms = 11,4 ms

“
i

L s=-2 114ms =829ms

JN 10

u=(83+2)ms =10,3ms

v = (8,20 + 0,01)s (N =10; P = 95%)

1.5. Fehlerfortpflanzung
1.5.1. Aufgabenstellung

Viele physikalische GroBen konnen nicht direkt gemessen, sondern
miissen aus anderen GroBen, die einer direkten Messung zuginglich
sind, berechnet werden. Da jede MeBgroBe fehlerbehaftet ist, entsteht
die Frage, wie sich die Fehler der Eingangsgroen auf die berechneten
GroBen auswirken. Dieses Problem soll jetzt untersucht werden. In
1.3. wurden die Fehlergrenzen von Meflgeriten betrachtet. Falls die
Fehlergrenzen nicht bekannt sind, muB ein Maximalfehler geschitzt
werden. Wir wollen die Maximalfehler der MeBgroBen x, y, u, v, w
mit Ax, Ay, Au, Av und Aw bezeichnen. Die aus den MeBgrofien zu
errechnende Grofle soll z, ihr Maximalfehler Az sein. Es gilt also
z = f(x,y, u, v, w), wie wir vereinfachend fiir den wahren Wert
Z = f(X, Y, U, V, W) schreiben wollen.

Je nach der Art der Funktion ergeben sich fiir Az, den Maximalfehler
der errechneten GroBe, verschiedene Ausdriicke. Einige typische
Funktionen sollen untersucht werden. Das geschieht am einfachsten
mit Hilfe der Differentialrechnung. Da aber nicht in allen Fillen
schon die Kenntnis der Differentialrechnung vorausgesetzt werden
kann, soll zunichst die Fehlerabschidtzung ohne Differentialrechnung
durchgefiihrt werden.

1.5.2. Fehlerfortpflanzung ohne Differentialrechnung

1.5.2.1. Fehler von Summen und Differenzen

Es liegen die MefBergebnisse x + Ax und y + Ay vor. Gesucht wird
z + Az,wenn z = x + y ist.
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Beispiel

Fall 1

Fall 2

Fall 3

1. Einfiilhrung in die Fehlerrechnung

Wir wollen von einem Beispiel ausgehen. Es seien zwei Lingen ge-
messen mit

x=(321+£01)cm und y = (23,5 + 0,1) cm.

Das bedeutet

320cm = x £322cm und 23,4cm =< y < 23,6 cm.
Ohne Beachtung der Fehlergrenzen erhalten wir
z=x+y=132,1cm + 23,5cm = 55,6 cm.

Setzen wir die oberen Grenzen, so ergibt sich

Zmax = Xmax + Ymax = (32,2 + 23,6) cm = 55,8 cm.

Mit den minimalen Werten erhalten wir

Zmin = Xmin + Ymin = (32,0 + 23,4)cm = 55,4 cm.
Wird x zu gro8 (xmax), ¥ jedoch zu klein (¥min) gemessen, so ergibt
sich

Z = Xmax + Ymin = (32,2 + 23,4)cm = 55,6 cm.

Die Fehler heben sich in diesem Fall gegenseitig auf. Bei der Fehler-
abschitzung "interessiert uns dieser Fall jedoch nicht. Wir wollen
wissen, wie gro3 der Fehler im ungiinstigsten Fall wird, wir suchen
den Maximalfehler. Die groBiten Abweichungen ergeben sich in den
Fillen 7/ und 2. In beiden Fillen gilt

Az = Ax + Ay 12)

Allgemein sieht die Rechnung so aus:
Wir setzen die MeBergebnisse in die Funktionsgleichung ein und er-
halten

z+Az=x+Ax+y Ay =x+y+(Ax £ 4y)

Wir subtrahieren von der linken Seite dieser Gleichung z, von der
rechten x + y, da z = x + y vorausgesetzt wurde, und erhalten als
maximalen Absolutfehler

Az = Ax + Ay

Rechnen Sie nach, daB fiir den maximalen Absolutfehler der Differenz
z = x — y ebenfalls gilt

Az = Ax + Ay 12)

Der maximale Absolutfehler von Summen und Differenzen ist gleich
der Summe der Absolutfehler der einzelnen Summanden.

1.5.2.2. Fehler von Produkten

Zunichst soll die durch z = ax beschriebene Funktion betrachtet
werden, in der a eine Konstante (und damit fehlerfrei) sein soll. Es
ist dann der maximale Absolutfehler

Az = |a| Ax, 13)

und der maximale Relativfehler folgt, indem wir die linke Seite durch
z, die rechte durch ax dividieren:



1.5. Fehlerfortpflanzung 17

A A
222X a13)
z x

Der Relativfehler ist unabhingig von konstanten Faktoren.

Wir untersuchen nun die durch z = xy beschriebene Funktion. Dazu
gehen wir aus von

z+ Az = (x £ Ax)(y £ Ay)

Wir multiplizieren die rechte Seite aus:

z+Az=xy + xAy + yAx £ Ax Ay
=xy + (xAy + yAx) + Ax Ay

Da Ax und Ay klein gegen x bzw. y sind, kann das Produkt Ax Ay
vernachlissigt werden. Beachten wir ferner z = xy, so erhalten wir
als maximalen Absolutfehler

Az = x Ay + y Ax
Die linke Seite dieser Gleichung dividieren wir durch z, die rechte
durch xy (z = xy) und erhalten so den maximalen Relativfehler

Az Ax A
s

z x y

Der maximale Relativfehler eines Produktes ist gleich der Summe der
Relativfehler der einzelnen Faktoren.

(14

1.5.2.3. Fehler von Quotienten

Bei der durch z = x/y beschriebenen Funktion tritt der maximale
Absolutfehler dann auf, wenn x zu groB3 und y zu klein bzw. y zu
groB und x zu klein gemessen wurde. Wir setzen daher

x + Ax . .
z+ Az = und erweitern den Bruch mit y + Ay:
y F Ay
+ A + A
24+ Az = (x £ Ax) (y + Ay)
OF A £ 4y
xy + (xAy + yAx) + Ax Ay
z+ Az = 3 >
y: - (4y)

Wir vernachlissigen wieder die Produkte kleiner GroBen, beachten
z = x/y und erhalten fiir den maximalen Absolutfehler
x Ay + y Ax

y2
Nun dividieren wir die linke Seite der Gleichung durch z, die rechte
durch x/y und erhalten fiir den maximalen Relativfehler

Az =

Az Ax Ay 14

—_— —

z x y

Der maximale Relativfehler eines Quotienten ist gleich der Summe
der Relativfehler von Dividend und Divisor.
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Beispiel

1. Einfithrung in die Fehlerrechnung

1.5.2.4. Fehler von Potenzprodukten

Die in den letzten Abschnitten aufgestellten Gesetze der Fehlerfort-
pflanzung sollen nun auf Potenzprodukte angewendet werden.
Da Potenzen als Produkte geschrieben werden konnen (z. B. x3
= x - x - x), gilt folgender Satz (n beliebige- positive oder negative
[auch gebrochene] Zahl):

Der maximale Relativfehler einer n-ten Potenz ist gleich dem |n|-
fachen maximalen Relativfehler der Basis.

Wir untersuchen nun ein einfaches Potenzprodukt, die durch z = x™y"
beschriebene Funktion.

Nach den Sitzen iiber Produkte und Potenzen ergibt sich der maxi-
male Relativfehler zu

Az Ax A

— = |m— + Inl-—J-)— 14"
z X y

1.5.2.5. Fehler von Quotienten aus Summen

und Differenzen

betrachten, in

. x +
Wir wollen nun Funktionen von der Form z = z
u —

der die Variablen im Zihler und im Nenner voneinander unabhingig
sind, und wenden dabei die Sitze iiber Summen und Quotienten an.
Fiir den Zihler Z = x + y gilt
AZ _ Ax + Ay
zZ lx + yl
Entsprechend erhalten wir fiir den Nenner N = u — v
AN Au+ A
AN = Au + Av und B
N lu — v
Der maximale Relativfehler von z ist damit

Az AZ AN Ax + Ay Au + Av

AZ = Ax + Ay und

= +
z zZ N x + yl lu — vl
. . ) x3(u + v)?
Berechnen Sie den maximalen Relativfehler von z = —
Setzen wir ¥ + v = y, so vereinfacht sich das Potenzprodukt zu

z = x3y*/w*. Wir erhalten
A A

A
4 X

Nun beachten wir noch den Satz iiber den Absolutfehler von Summen

und erhalten

Ay = Au + Av

Der maximale Relativfehler des betrachteten Potenzproduktes ist

damit

Ay Aw
+2— +4—.
y w
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1.5.3. Fehlerfortpflanzung und Differentialrechnung

1.5.3.1. Differenzieren nach Logarithmieren

Da wir annehmen konnen, daB der MeBfehler Ax klein gegen den
MeBwert x ist, diirfen wir Ax durch das Differential dx ersetzen und
haben damit die Méglichkeit, die Differentialrechnung zur Ermittlung
des Maximalfehlers einzusetzen. Zunichst soll das Differenzieren nach
Logarithmieren erliutert werden. Dabei hat man die Funktion zu-
nichst zu logarithmieren und anschlieBend zu differenzieren. Als Bei-
spiel soll der Maximalfehler fiir die durch

W@ + w)
2 = e——
xy®
beschriechene Funktion ermittelt werden. Wir logarithmieren zu-
néichst: .

Inz=alnu+In(v +w) —Inx —blny

Da es sich bei u, v, w, x, y, z um physikalische Gr6B8en handelt und der
Logarithmus von Gré8en nicht gebildet werden kann, miiBte im folgenden
eigentlich In {z}, In {x} usw. geschrieben werden. Der Einfachheit halber
soll jedoch auf die geschweifte Klammer verzichtet werden.

Dann wird auf beiden Seiten das Differential yebildet, rechts wegen
der Summenregel gliedweise:

dz du dv + dw dx dy

—_—=q— _ e b

z u v+ w X y

Nun werden die Differentiale du, dv, ... in erster Niherung durch die
Fehler Au, Av, ... ersetzt. Der Maximalfehler entsteht durch Summa-
tion:

Az Ay Av Aw Ax Ay

— = la| — + + + — + bl —
z u v+ w v+ w x .y

Uberzeugen Sie sich davon, daB dieses Ergebnis auch aus den in 1.5.2.
abgeleiteten Regeln folgt!

1.5.3.2. Totales Differential

Eine andere Moglichkeit, den Maximalfehler zu berechnen, ist die
Bildung des totalen Differentials. Wir betrachten éine Funktion mit
mehreren unabhingigen Variablen, beschrieben durch

z=fx,5.u,..)
Dann versteht man unter dem toralen Differential
0z oz oz
= — —dy + —du + ...
dz v dx + 5 dy > u (15)

Dabei sind 0z/dx, 0z/0y,... die partiellen Ableitungen. Man bildet
beispielsweise 0z/0x, indem man z nach x differenziert und dabei
die tibrigen Variablen wie Konstanten behandelt.

Ersetzt man noch die Differentiale dx, dy, ... in erster Naherung
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Beispiel

Beispiel

1. Einfithrung in die Fehlerrechnung

durch Ax, Ay, ... so hat man bereits den maximalen Absolutfehler,
wenn man zu den Betrdgen iibergeht:

0z 0z

z
A A —|Ay + |—| A ’
z or x + by y > u + (159

a y
Als Beispiel betrachten wir die durch z = X< beschrlebene Funk-
tion. Die partiellen Ableitungen sind u
0z -4 0z x* 0z

—_— = x"l_; —_— = =
ox “ u oy u < du u?

Damit ergibt sich nach (15)

(4 x%” . x%e”

dz = ax*~!' —dx + dy — ——du
u u

und nach (15%)
e’ x%e’ ”e"

Az = agx°! Au

Den maximalen Relativfehler erhdlt man, wenn man die linke Seite
durch z, die rechte durch x%”/u dividiert:
Az Ax Au

e p Ay —
V4 X u

1.6. Rechengenauigkeit

Ehe wir uns mit weiteren Beispielen zur Fehlerrechnung beschiftigen,
miissen wir kldren, mit welcher Genauigkeit solche Rechnungcn
durchzufiihren sind.

MeBwerte sind fehlerbehaftet und damit im mathematischen Sinn
Néiherungswerte. Thre Unsicherheit ergibt sich aus dem bekannten
bzw. geschitzten Absolutfehler.

!l = (11,7 + 0,2) cm ist identisch mit der Angabe
11,5cm =/ = 119cm.

Bei Aufgaben, in denen mit geschitzten bzw. angenommenen Zahlen-
werten gearbeitet wird, betrachten wir die Zahlenangaben als auf die
letzte Dezimalstelle gerundete Werte, ihre Unsicherheit ist damit gleich
dem halben Wert ihrer letzten Dezimalstelle.

! = 1383 m bedeutet 1382,5m < / < 1383,5m.

Problematisch wird es in der Praxis, wenn wir mit Angaten wie m = 2t
oder / = 6 m Rechnungen durchfithren sollen. Bei dem Beispiel m = 2t
ist es durchaus méglich, daB mit der nur einziffrigen Angabe zum Aus-.
druck gebracht werden soll, daB3 es sich dabei um einen groBziigig ge-
schitzten Wert handelt. Beim zweiten Beispiel / = 6 m ist dagegen kaum
damit zu rechnen, daB} die 6 im Sinne einer gerundeten Zahl gemeint ist.
Damit bleibt aber offen, ob es sich um 6,00 m (Unsicherheit 0,5 cm) oder
um 6,000 m (Unsicherheit 0,5 mm) handelt. Wir sollten auch in der Praxis
bemiiht sein, Angaben so zu formulieren, daB solche Unbestimmtheiten
vermieden werden.
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Die relative Unsicherheit eines Niherungswertes hingt ab von der
Anzahl der geltenden oder wesentlichen Ziffern.

Als geltende Ziffern eines Niherungswertes bezeichnen wir alle Ziffern
auBler den Nullen, die links von der ersten von Null verschiedenen
Ziffer stehen.

Die Zahlen 382, 0,00485 und 0,680 haben also 3 geltende Ziffern.
Rechts stehende Nullen, die nur zur Angabe der GroBenordnung
dienen, also nicht geltende Ziffern sein sollen, vermeidet man besser
und ersetzt sie durch Zehnerpotenzen oder wahlt groflere Einheiten
(«etwa 6000 m»: besser 6 - 10> m oder 6 km).

Fiir das Rechnen mit gerundeten Zahlenwerten gelten folgende, aus
den Sitzen des Abschnitts 1.2. abgeleiteten Faustregeln:

Regel 1

Bei Summen und Differenzen von Naherungswerten sind im Ergebnis
nur so viele Dezimalstellen beizubehalten, wie in der Eingangszahl
mit kleinster Anzahl von Dezimalstellen vorhanden sind.

Regel 2

Bei Potenzprodukten von Niherungswerten sind im Ergebnis nur
so viele geltende Ziffern beizubehalten, wie in der Eingangszahl mit
der kleinsten Anzahl von geltenden Ziffern vorhanden sind.

Regel 3

Bei Berechnung von Zwischenergebnissen empfiehlt es sich, jeweils
eine Stelle (Ziffer) mehr beizubehalten, als es die Regeln 1 und 2 an-
geben. Haben einige Eingangswerte mehr Dezimalstellen (bei Summen)
oder mehr geltende Ziffern (bei Potenzprodukten) als die anderen,
so sind sie vorher so zu runden, daB sie nur eine Stelle oder Ziffer
mehr haben als die anderen.

Beim Losen von Aufgaben mit angenommenen bzw. geschitzten
Werten bewahrt uns die Anwendung der Regeln 1 bis 3 davor,
hohere Genauigkeit bei der Ergebnisangabe vorzutiduschen. Auf-
gaben, bei denen die gegebenen Werte mit zwei oder drei geltenden
Ziffern vorhanden sind, 16sen wir mit Hilfe eines 25-cm-Rechenstabes
ausreichend genau. Lediglich Aufgaben, bei denen gegebene Werte
mit mehr als drei geltenden Ziffern vorliegen, erfordern bei ihrer
Losung die Anwendung einer entsprechenden Logarithmentafel bzw.
eines Taschenrechners.

26 m Gesucht: 1.1, + I,
31 mm 2. LJly; 3. L]/,

Gegeben: I,
I3

1., + 1, =26m + 0,031m =26m (/, + L= [)

L _ 003m .
LT Taem DRI
b __26m 8,4 - 102

"7,  0,031m
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1. Einfiihrung in die Fehlerrechnung

Gegeben: AuBBendurchmesser d, = 22,3 mm
Innendurchmesser 4; = 21,7 mm
d, — d,
2

Gesucht: Wanddicke s

(22,3 - 21,7) mm
s =

0,3
> mm

[}

Die relative Unsicherheit der gegebenen Werte ist

Ad, Ad, 005
XR—x—— 2210 =0,2%.
4 4 2 ! %

Die relative Unsicherheit des Ergebnisses ist

As 0,05
—=—_—202=20%.
s 0,3 %

Dieses Beispiel zeigt: Bei der Berechnung der Differenz zweier Gro-
Ben, die sich nur wenig unterscheiden, kann sich die Anzahl der gel-
tenden Ziffern des Ergebnisses gegeniiber der der Eingangsgrofen
wesentlich verkleinern. Damit ist die relative Unsicherheit des Ergeb-
nisses wesentlich groBer als die der gegebenen GrofBen. In diesem Fall
und insbesondere bei mefitechnischen Problemen sollte man daher
nach Moglichkeit nicht die Grof3en messen, deren Differenz gesucht
ist, sondern durch andere MeBverfahren direkt die Differenz messen.

Nach diesen Beispielen wenden wir uns nun Aufgaben aus dem
Bereich der Fehlerrechnung zu. Die von uns geschitzten MeBunsicher-
heiten bzw. die gegebenen Fehlergrenzen der von uns benutzten MeB-
instrumente liegen meist als auf eine geltende Ziffer gerundete Werte
vor (1 - 10-2 mm; 1 mg; 1% des MeBwertes bei Vollausschlag). Durch
Anwendung der Regel 2 auf die Fehlerfortpflanzungsrechnung ergibt
sich folgende Regel:

Der Absolutfehler im Endergebnis fiir eine aus mehreren gemessenen
GroBen berechnete Grofle wird mit einer geltenden Ziffer angegeben.

Zwischenrechnungen (z. B. die vorher meist erforderliche Berechnung
des relativen Fehlers) fiihren wir mit Rechenstabgenauigkeit aus und
runden erst bei der Angabe des Absolutfehlers auf eine geltende
Ziffer. ~

Dagegen sind die MeBwerte selbst nicht als gerundete, sondern nur
allgemein als gendherte Werte zu betrachten. Die Zahl der geltenden
Ziffern bei der endgiiltigen Angabe des Ergebnisses und damit der
erforderliche Rechenaufwand (Rechenstab, Logarithmentafel oder
Taschenrechner) ergeben sich daher nur angenihert aus den Regeln 1
bis 3. Entscheidend fiir die Stellenzahl bei der Ergebnisangabe ist die
Dezimalstelle, in der der auf eine geltende Ziffer gerundete Absolut-
fehler auftritt.

Das Endergebnis fiir eine aus mehreren gemessenen Groflen berech-
nete GroBe ist auf die Dezimalstelle zu runden, in der der mit einer
geltenden Ziffer angegebene Absolutfehler auftritt.
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0 = (875 £002)gem->; ¥ = (10,3 + 0,3) cm?

u =04 +0,1

Mathematisch nicht sinnvoll sind dagegen Angaben wie

¢ = (8,753 £ 0,02) gcm3; V = (10,3 + 0,34) cm?

u=0473 £ 0,1

Die Kanten eines Quaders werden gemessen und betragen

Iy =362 +0,1)cm; I, = (23,8 +0,1)cm; /3 = (13,6 + 0,1) cm.
Berechnen Sie das Volumen des Quaders, den maximalen Relativ-

fehler, den maximalen Absolutfehler und geben Sie das Volumen des
Quaders mit Fehlergrenzen an.

Gegeben: |, = 36,2cm; Al; =0,1cm Gesucht: V
AV
Iz = 23,8 cm; A[z = 0,1 cm 7
I; =13,6cm; Al; =0,1cm AV

Das Volumen des Quaders ist V = [,/,15.
V =136,2-238-13,6cm® = 11,72 dm?

Der maximale Relativfehler ergibt sich nach (14) zu
Ay Al Al Al

—_— =+ =+
2
0,1 0,1 0,1 .
= ’ 9, ’ =0 7
362 + 3338 + 136 ,00276 + 0,00420 + 0,00735

AV

% 0,01431 = 1,4%

Der maximale Absolutfehler ergibt sich daraus zu

AV
AV = - V =0,01431 - 11,72 dm? = 0,168 dm® ~ 0,2 dm?

Das vollstindige MeBergebnis lautet ¥ = (11,7 + 0,2) dm3

Der Wirkungsgrad eines Tauchsieders ist aus folgenden MefBergeb-
nissen zu bestimmen:

Stromstirke: I =44 +£02)A
Spannung: U=220+4V
Zeit: t =280 + 1)s
Masse des Wassers: m = (880 + 5)g
Anfangstemperatur: #y = (15,2 +£0,2) °C
Endtemperatur: 4, = (80,4 + 0,2) °C

spezifische Wiarmekapazitit: ¢ = 4,18 kJ kg~! K-!



1. Einfiihrung in die Fehlerrechnung

Gegeben: sieche Aufgabenstellung Gesucht: g
Der Wirkungsgrad ist das Verhiltnis von abgegebener zu aufge-
nommener Energie:

_ om@: — )

ure

_ 4,18kJ-880g-652K
7T XeK 220V 44 A 280s
Die spezifische Wirmekapazitit wird hier nicht gemessen, der ver-

wendete Tabellenwert wird als gerundeter Wert betrachtet. Der maxi-
male Relativfehler des Wirkungsgrades ist

Ay  Am  AS, + A8, AU Al At Ac

= 0,885

] m * 19, — 04 * U * N t c

_5_. .___0’4 +L+E+L+_0,005

880 65,2 220 44 280 4,18

= 0,0057 + 0,0061 + 0,0182 + 0,0455 + 0,0036 + 0,0012

An dieser Stelle lassen sich die Fehler der einzelnen Mef3gr68en ver-
gleichen. Wir stellen fest, daf3 die Fehler der Masse, der Temperatur
und der Zeit von gleicher GroBenordnung sind, wiahrend die Span-
nung und besonders die Stromstirke weit groBBere Fehler aufweisen.
Um zu genaueren Ergebnissen zu kommen, miissen in erster Linie
Stromstédrke- und Spannungsmessung verbessert werden.

A
Insgesamt erhalten wir i A 0,0803.
n

Daraus folgt An = 0,0803 - » = 0,0803 - 0,885 = 0,07.
Das vollstindige MeBergebnis lautet » = 0,89 + 0,07.



2.  Ubungen

2.1. Vorbemerkungen

Im Unterricht wie im Lehrbuch wird die Physik als ein System von
Erfahrungssitzen, Gesetzen und Theorien dargestellt, durch das in
der Natur beobachtbare Erscheinungen beschrieben werden. Das
Beschreiben erfordert die Verwendung definierter Begriffe und die
Darstellung von Zusammenhingen in mathematischer Form. Durch
die Ubungen soll der Student die Fihigkeit erwerben, die im Unter-
richt vermittelten GesetzméaBigkeiten zur Beschreibung einzelner Er-
scheinungen und zur Berechnung der Ergebnisse von Versuchen an-
zuwenden.

Die im folgenden Abschnitt enthaltene. Anleitung zum Losen von
physikalischen Aufgaben bezieht sich vor allem auf den Aufgaben-
typ, der letzten Endes mathematisch geldst wird. Da aber die wesent-
liche Arbeit beim Aufgabenidsen vor dem Rechnen liegt und vor-
wiegend Denkarbeit ist, wird ein groBer Teil des hier Gesagten auch
fir sogenannte Denkaufgaben anwendbar sein. Aus dem gleichen
Grund kann diese Anleitung nicht als Algorithmus oder gar als
Rechenrezept dienen, mit dem man auf kiirzestem Wege zum Ziel
kommt. Das Losen von Aufgaben erfordert, systematisch zu denken.
Die Autoren wollen dazu beitragen, dieses Denken zielstrebiger und
damit erfolgreicher zu gestalten.

Das physikalische Denken ist eine notwendige Vorstufe dessen, was
der Ingenieur zu leisten hat: Analysieren eines gegebenen, meist
technischen Sachverhalts mit dem Ziel, EinfluBgrofen zu ermitteln
und quantitativ zu beschreiben sowie diesen Sachverhalt unter
Nutzung physikalischer Gesetze gezielt zu verindern. Die im Physik-
unterricht behandelten Zusammenhinge sind meist bewullt verein-
facht und damit iibersichtlicher darstellbar als die in der Technik.
Deshalb ist die-Physik ein besonders geeignetes Ubungsfeld fiir die
genannten Fihigkeiten.

Die Anleitung zum Lo6sen physikalischer Aufgaben geben wir zu-
nichst in allgemeiner Form und anschlieBend an einem ausfiihrlich
kommentierten Beispiel. Spéter sollen durchgerechnete Beispiele und
Aufgaben mit Hinweisen zur Losung deutlich machen, wie diese
Losung in den verschiedenen speziellen Fillen moglichst rationell
zu finden ist.
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Bild 3

Aufmerksames Lesen

Anfertigen einer Skizze

2. Ubungen

2.2 Methodische Anleitung fiir das Lisen von Aufgaben
2.2.1. Allgemeine Hinweise
Bei nidherer Untersuchung des Liosungsweges fiir rechnerisch zu

16sende Aufgaben stellt sich heraus, daB3 im allgemeinen folgende Be-
arbeitungsschritte notwendig sind (Bild 3):

Dieses Schema ist natiirlich noch keine ausreichende Anleitung fiir
jeden Einzelfall. Wir wollen deshalb niher untersuchen, welche Titig-
keiten im einzelnen zu jedem der sogenannten Schritte gehGren.

1 AUFGABE ANALYSIEREN

Die Analyse 4Bt sich in folgende Teilschritte auflosen:

Hierbei ist jede Aussage im Aufgabentext auf ihre Bedeutung hin zu
untersuchen. Aufgaben in Lehrbiichern sind meist so abgefal3t, daB
sie keine iiberflilssigen Angaben enthalten. So sagt z. B. die Be-
merkung, daB sich eine Bewegung in geringer Hohe iiber der Erd-
oberfliche abspielt, aus, daf3 in vertikaler Richtung eine Kraft, die
Schwerkraft, wirkt, die bei geringen H6henunterschieden als kon-
stant angenommen werden kann. Haufig werden fiir Krifte, Be-.
schleunigungen usw. Durchschnittswerte angegeben. Diese sind
immer als konstante Werte zu betrachten.

Dieser Teilschritt ist zwar nicht in allen Fillen erforderlich, verbessert
aber die Anschaulichkeit und erleichtert bei vielen Aufgaben das
weitere Analysieren. Die am hiufigsten verwendbaren Arten von
Skizzen sind Prinzipskizzen (Bild 131, Seite 123), Bewegungsdia-
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gramme (Bild 15, Seite 39) oder Schaltskizzen (Bild 67, Seite 79).
In die Skizze tragen wir die gegebenen und die gesuchten Gro8en ein.
Dabei lassen sich meist wichtige Erkenntnisse iiber Richtungsbezie-
hungen und geometrische Bedingungen gewinnen. Eine mafBstab-
gerechte Darstellung ist nicht erforderlich.

Wir erfassen dabei alle Grof3en, auch die durch den Text nur indirekt
gegebenen. Beim Zusammenstellen der GroBBen achten wir auf eine
eindeutige Zuordnung der gewihlten Formelzeichen zu den GroBen.
Bei der Auswahl der Formelzeichen orientieren wir uns an Lehrbuch
und Beiheft. Kommen mehrere GroBen gleicher Art vor, unter-
scheiden wir sie voneinander durch Indizes. Auch den gesuchten
GroBlen ordnen wir Formelzeichen eindeutig zu. Haufig gelingt es
hierbei schon, im Text beschriebene Zusammenhidnge mathematisch
darzustéllen, z. B. das Anwachsen einer Grof3e um 20%; in der Form
X, =12X,.

Zu Beginn empfiehlt es sich, das Suchfeld mit folgender Frage einzu-
grenzen:

In welchem Teilgebiet der Physik kommen die gegebenen und die
gesuchten Grofen vor?

Fiir einfache Aufgaben ist diese Frage schon durch die Zuordnung
der Aufgabe zu einem Abschnitt in der Aufgabensammlung beant-
wortet. Bei komplexen Aufgaben, die mehrere Teilgebiete der Physik
beriihren, ist sie fiir jede Grofe zu beantworten.

Als zweite Frage konnte folgen:
Welcher Vorgang wird durch die gegebenen und die gesuchten Grifen
beschrieben?

Folgende Vorginge kommen am hiufigsten vor: Bewegungen, Wir-
ken von Kriften (Beschleunigung, Verformung), Energieumwand-
lungen, Energietransport, Anderungen von Korpereigenschaften.
Fiir weitergehende Unterteilung empfiehlt sich die Verwendung von
Ubersichten, wie sie sich z. B. in den Tafeln 2.3, 3.3 und 8.1 des Lehr-
buches finden. Kommen z. B. die Gro3en Weg, Zeit und Beschleuni-
gung vor, bezieht sich die Aufgabe auf eine Bewegung. Gibt es fiir die
Beschleunigung nur einen Wert, ist sie als konstant zu betrachten,
und wir haben es mit einer gleichmaBig beschleunigten Bewegung zu
tun.

LaBt sich weder aus dem Aufgabentext noch aus der Liste der ge-
gebenen und gesuchten GroBen eine Zuordnung zu einem Vorgang
finden, fragen wir anders:

Welcher Zustand wird beschrieben?

GroBen, die Zustinde beschreiben, sind meist nicht von der Zeit ab-
hingig. Hiufig auftretende Zustinde sind: geometrische Anordnung,
Massenverteilung, Dichte, statisches Kriftegleichgewicht, therm\o-
dynamischer Zustand, elektrische Schaltung und Ladungsverteilung.
Solite eine Aufgabe die Berechnung mehrerer Groflen aus verschie-
denen Teilgebieten der Physik erfordern, wenden wir unsere Fragen
auf jede gesuchte GroBle bzw. auf jede Teilaufgabe gesondert an,
ohne Riicksicht auf die anderen Teile.
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Gleichungen suchen

Ldsungsansatz iiberpriifen

2. Ubungen

LZ LOSUNGSANSATZ AUESTELLEN

Wir fragen:

Welche Gleichungen beschreiben die durch die Aufgabe erfaffiten Vor-
gdnge oder Zustdnde oder welche Gleichungen definieren vorkommende
Grofen?

Bevor wir eine Formelsammlung benutzen, befragen wir zunichst
unser Gedichtnis, den wertvollsten, stets benutzbaren Wissens-
speicher.

Beim Suchen der Gleichung gehen wir von dem bereits erkannten
Vorgang oder Zustand aus, auf keinen Fall orientieren wir uns an
dem - vielleicht nicht standardgerecht gewdhlten — Formelzeichen.
Das ist auch deshalb notwendig, weil viele Formelzeichen mehrere
Bedeutungen haben. £o stehen z. B. v nicht nur fiir die Geschwindig-
keit, sondern auch fiir das spezifische Volumen, und ¢ nicht nur fiir
die Dichte, sondern auch fiir den spezifischen Widerstand.

Haben wir auf die bisher beschriebene Weise keine fiir die Beschrei-
bung des Vorgangs geeignete Gleichung gefunden, miissen wir die
Fragestellung erweitern:

Welche allgemeinen. Prinzipien gestatten eine Aussage, die auf den
gegebenen Fall anwendbar ist?

Solche allgemeinen Prinzipien sind z. B. der Energieerhaltungssatz,
der Impulserhaltungssatz, die Erhaltungssitze fiir Masse und Ladung,
die Newtonschen Axiome sowie die Kirchhoffschen Regeln.

Miissen wir von einem allgemeinen Prinzip ausgehen, sind folgende
Schritte niitzlich: Wir formulieren das allgemeine Prinzip zunichst
verbal und wandeln dann die Aussage in eine Gleichung um, die wir
anschlieBend schrittweise prizisieren. Das kann beispielsweise fiir
eine Energiebilanz folgendermaBen verlaufen:

Energie vor dem Bremsen = an den Bremsen umgesetzte Arbeit
Kinetische Energie = Reibungsarbeit
4 mv? = Fgs.

Wir untersuchen, ob die gefundene Gleichung fiir die Berechnung
der gesuchten GroBe geniigt. Das ist auf formale Weise moglich, in-
dem wir feststellen, ob die Gleichung auBer der gesuchten nur ge-
gegebene GroBen enthilt. Sind auBer der gesuchten Grofle auch
noch andere unbekannt, beginnen  wir noch einmal in der beschriebe-
nen Weise mit dem Aufsuchen einer Gleichung. Das wiederholen wir
so oft, bis die Anzahl der Gleichungen gleich der Anzahl der ge-
suchten GroBen ist. Dabei ist es haufig auch notwendig, mathemati-
sche bzw. geometrische Beziehungen zu nutzen, die im gegebenen
Fall eine Rolle spielen, wie z. B. fiir die Berechnung der Hangabtriebs-
kraft auf der geneigten Ebene: Fy; = G sin «.
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3 ALLGEMEINES ERGEBNIS BERECHNEN

Das allgemeine Ergebnis stellt die funktionale Abhédngigkeit der ge-
suchten GroBe von den gegebenen GroBen dar. Wir finden dieses
Ergebnis, indem wir die im Losungsansatz zusammengefaten Glei-
chungen nach der gesuchten GroBe auflosen. Mathematisch gesehen
ist also ein Gleichungssystem zu l6sen. In vielen Fillen eignet sich
dafiir das Einsetzverfahren.

4 ALLGEMEINES ERGEBNIS DISKUTIEREN

Auf der rechten Seite der Gleichung setzen wir fiir jede Gro8e deren
SI-Einheit ein. Nach Kiirzen und Zusammenfassen muf} sich die SI-
Einheit der gesuchten GroBe ergeben. Es kann noétig sein, abgeleitete
Einheiten auf Basiseinheiten zuriickzufiihren, damit das Kiirzen mog-
lich wird. Ergibt sich nicht die Einheit der gesuchten Grofle, ist das
allgemeine Ergebnis falsch, und wir miissen den Losungsgang iiber-
priifen.

Wir priifen als nichstes, ob das allgemeine Ergebnis eine sinnvolle
Aussage liefert. Die Entscheidung dariiber ist nicht allein aus der
Erfahrung heraus moglich. Mitunter ergeben sich Aussagen, die
zwar richtig, aber nicht auf den ersten Blick plausibel sind. Eine Vor-
stellung von der gefundenen funktionalen Abhingigkeit gewirnen
wir am einfachsten, wenn wir auf der rechten Seite der Gleichung
jede Variable einzeln spezielle Werte annehmen lassen und fest-
stellen, in welcher Weise sich der Funktionswert dndert. Als sclche
spezielle Werte kommen null, unendlich oder durch die Aufgabe
bestimmte Grenzen bzw. Maxima in Frage.

[ 5 SPEZIELLES ERGEBNIS BERECHNEN

Die gegebenen Groflen setzen wir mit Zahlenwert und Einheit so in
das allgemeine Ergebnis ein, wie wir sie unter «Gegeben» aufge-
schrieben haben. Dabei bleiben Zahlenwert und Einheit als zusam-
mengehorig erkennbar, damit bei etwa erforderlichen Kontrollen
Ubertragungsfehler leichter sichtbar werden.

In einem Potenzprodukt formen wir die gegebenen Zahlenwerte in
Vielfache von Zehnerpotenzen um, und zwar so, daBl die Faktoren
der Zehnerpotenzen zwischen 1 und 10 liegen. In Verbindung mit
diesem Schritt erfassen wir auch die Vorsitze von Einheiten und
erforderliche Umrechnungsfaktoren fiir Einheiten.

3-10°W-3,6-10%s
10? ’

Beispielsweise rechnen wir 0,03 kW h =
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2. Ubungen

Alle Zehnerpotenzen fassen wir zusammen und berechnen im nichsten
Schritt iiberschlagsméiBig das Ergebnis.

Wir berechnen Zahlenwerte und Einheiten getrennt und beachten
dabei Abschnitt 1.6.

Wenn eine grafische Darstellung gefordert wird, ermitteln wir zuerst
den maximalen Funktionswert im gegebenen Definitionsbereich. Da-
durch wird der MaBstab fiir die Ordinate bestimmt. Der MaBstab
fiir die Abszisse ergibt sich aus der Breite des Definitionsbereiches.
Fiir die Feststellung des Funktionsverlaufes im Definitionsbereich
geniigt es meist, Funktionswerte wie Anfangs- und Endwerte sowie
Nullstellen und Extremwerte zu bestimmen und zwischen diesen
Punkten die Kurve entsprechend der bekannten funktionalen Ab-
hangigkeit einzuzeichnen.

6 SPEZIELLES ERGEBNIS DISKUTIEREN

Wir schitzen ab, ob wir ein unserer Erfahrung entsprechendes Er-
gebnis erhalten haben. Dafiir geniigt die Uberschlagsrechnung. Wir
diirfen voraussetzen, daB die in der Ausbildung gestellten Aufgaben
spezielle Ergebnisse haben, die in der Praxis moglich sind. Ergibt
sich also beispielsweise fiir die Geschwindigkeit eines LKW die Gro-
Benordnung 10* km h-!, muB ein Rechenfehler aufgetreten sein, der
wahrscheinlich beim Zusammenfassen der Zehnerpotenzen unterlief.

Fiir das Losen praxisbezogener Aufgaben gibt es zwei unterschied-
liche Wege:

Berechnen des allgemeinen Ergebnisses, ohne daB3 spezielle Zwischen-
ergebnisse berechnet werden. Dies ist der Weg, den wir in der Physik-
ausbildung bevorzugen, da er funktionale Zusammenhinge ergibt.

Schrittweises Berechnen des speziellen Ergebnisses iiber spezielle
Zwischenergebnisse. Dabei erhalten wir kein allgemeines Ergebnis.
Dieser Weg kann bei Bemessungsaufgaben sinnvoll sein, wenn das
allgemeine Ergebnis weniger interessiert als das spezielle. Er kann
weiter angebracht sein, wenn das allgemeine Ergebnis so umfang-
reich und uniibersichtlich ist, daB3 ein funktionaler Zusammenhang
nicht deutlich wird. Ferner entspricht er mehr als der erste Weg dem
ingenieurmiBigen Vorgehen bei der Bearbeitung technischer Pro-
bleme. Gehen wir den zweiten Weg, so benutzen wir spezielle Zwi-
schenergebnisse wie gegebene Groflen. Dabei riskieren wir, daB3 falsche
Zwischenergebnisse zu falschen Endergebnissen fiihren, erleichtern
aber gleichzeitig die Fehlersuche durch Zwischenkontrollen.

Wir erkennen Vor- und Nachteile der beiden Wege und zugleich die
Notwendigkeit fiir den Ingenieur, beide Wege anwenden zu kénnen.
Um bei der Bearbeitung der Aufgaben dieser Sammlung die Wahl
des geeignetsten Weges zu erleichtern, vereinbaren wir: Werden in
der Aufgabenstellung keine speziellen Zwischenergebnisse gefordert,
verfahren wir nach Weg 1, werden spezielle Zwischenergebnisse ver-
langt, wahlen wir Weg 2.
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2.2.2. Losungsbeispiel

Wir wollen hier an einem Beispiel das Vorgehen beim Lésen einer
Aufgabe demonstrieren. Weitere, allerdings nicht ganz so ausfiihrlich
dargestellte Beispiele sind die Ubungen 3.44, 6.20, 7.6, 8.6 und 10.1.

Ein Gegenstand fillt aus 7,5 m Hohe ins Wasser. Berechnen Sie die
Geschwindigkeit, mit der er auf die Wasseroberfliche auftrifft, unter
der Voraussetzung, daBl auBler der Schwerkraft keine weiteren Krifte
wirken.

Aufmerksam lesen:

Nur die vertikale Rjchtung ist Gegenstand der Aufgabe. Die Schwere-
beschleunigung ist zu beriicksichtigen. Fallen heif3t, daB3 die Bewegung
ohne Anfangsgeschwindigkeit beginnt. Krifte wie Reibung oder
Windkraft werden vernachlissigt.

Skizze anfertigen:
)

Bild 4

Zusammenstellen der gesuchten und gegebenen Grifen:

Gegeben: h =7,5m; g =98ms"2%; vo =0. Gesucht: v

Zuordnen von Begriffen und Gesetzen zum Sachverhalt:

Die Begriffe der Aufgabe gehdren in die Mechanik. Krifte sind weder
gegeben noch gesucht, also ist ein kinematisches Problem zu 16sen.
Es ist nur eine konstante Beschleunigung gegeben, demnach liegt
eine gleichmiBig beschleunigte Bewegung vor. Die Anfangsgeschwin-
digkeit ist Null und die Beschleunigung die Schwerebeschleunigung,
also ist der in der Aufgabe beschriebene Vorgang der freie Fall.

Gleichungen suchen:
Fiir die im freien Fall erreichte Geschwindigkeit gilt

v =gt (0))
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3 ALLGEMEINES
ERGEBNIS BERECHNEN

4 ALLGEMEINES
ERGEBNIS DISKUTIEREN

5 SPEZIELLES ERGEBNIS
BERECHNEN

6 SPEZIELLES ERGEBNIS
DISKUTIEREN

2. Ubungen

Lisungsansatz iiberpriifen:

Gleichung (1) enthilt zwei unbekannte GréBen, v und ¢. Damit ist
sie noch nicht 16sbar. Wir benétigen eine zweite, von (1) unabhéngige
Gleichung fiir den gleichen Vorgang. Fiir den im freien Fall zuriick-
gelegten Weg finden wir

h =}%egt? @

Damit haben wir zwei Gléichungen mit zwei unbekannten GrofBen.
Das Gleichungssystem ist 1osbar.

Aus (1) folgt

r=— 3)
g
Die Gleichungen (3) und (2) ergeben
U2
=— 4
27 (©)]

In dieser Gleichung sind neben der gesuchten Grofle v nur noch ge-
gebene GrofBen enthalten. Wir 16sen nach der gesuchten Geschwindig-
keit auf:

v = \/ 2gh
Einheitenprobe:

[v]=A/m-2m _m
s s

Die berechnete Einheit ist richtig.

Diskussion der funktionalen Abhdngigkeit:

Die im Ergebnis formulierte Abhingigkeit erscheint sinnvoll. Die
Auftreffgeschwindigkeit nimmt mit der Hohe zu. Fiir den Grenzfall
h = 0 ist sie ebenfalls Null, was plausibel ist.

Einsetzen der speziellen Grofien:

2:-98m-7,5m
v= _—SE_

Umformen der Zahlenwerte und Uberschlagsrechnung
Bei dieser Aufgabe konnen wir uns auf die Uberschlagsrechnung be-
schrinken:

vx\/2-10-8 ms! x /160 ms~! x 13ms?
Exakte Rechnung mit sinnvoller Genauigkeit:
2-98m-7,5
o JERIMTIM i
S _
Der Wert der berechneten Geschwindigkeit (etwa 43 km h~') mag
grof} erscheinen. Bedenken wir aber die Wirkung eines Aufpralls aus

gleicher Hohe auf festen Boden, wird dieser Wert auf iiberzeugende
Weise anschaulich.
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Ziel der Aufgaben dieses Ab-
schnitts ist, das Umrechnen von
Einheiten zu iiben. Die Krafteinheit
Kilopond ist kiinftig nicht mehr
zulassig. Sie wird hier noch ver-
wendet, weil in der Phase der kon-
sequenten Durchsetzung des SI
derartige Umrechnungen noch hiau-
fig notwendig werden.

1.2
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In dem einfachen einfithrenden Beispiel konnten nicht alle Teile der
oben gegebenen Anleitung wirksam werden. Jede andere Aufgabe
hat andere Besonderheiten und erfordert einen angepaBten Losungs-
weg. Deshalb empfiehlt es sich, wiederholt auf die allgemeine An-
leitung zuriickzugreifen.

2.3. Beispiele und Ubungen

2.3.1. Beispiele und Ubungen zum Rechnen mit allgemeinen
und mit zugeschnittenen GriBengleichungen

Berechnen Sie nach der Gleichung P = ndnF die erforderliche Lei-
stung in Kilowatt fiir einen Motor, der am Umfang einer Scheibe
(d = 200 mm) bei n = 720 min~! eine Tangentialkraft F = 25 kp
ausiiben soll.

Gegeben: d = 200mm; F = 25kp Gesucht: P
n = 720 min~! [P] = kW
7t - 200 mm - 720 - 25 kp
P = ndnF; P= -
min
po T 20m 7025 9BIN oo o
B 103- 60 s B T2

Aufgaben wie 1.1 mit d4hnlichen Werten der gegebenen Groflen kom-
men in Threm Aufgabenbereich hiufig vor. ZweckmiBig erweist sich
eine zugeschnittene GroBengleichung.

1. Schneiden Sie die allgemeine GroBengleichung P = ndnF auf die

in Aufgabe 1.1 gegebenen Einheiten zu. 2. Losen Sie die Aufgabe 1. l

mit Hilfe der aufgestellten zugeschnittenen GroBengleichung.

1. Wir verwandeln eine allgemeine GréBengleichung in einé zugeschnittene
GroBengleichung, indem wir zunichst jede GroBe durch ihre vorgegebene
Einheit teilen (dabei verwenden wir den schriagen Bruchstrich) und dann
wieder mit dieser Einheit multiplizieren:

P/kW kW = ndjmm - mm © jpyp-1 - min~! - Fjp - kp
Nun fassen wir alle Einheiten, die nicht unter einem schrigen Bruch-
strich stehen, und die Zahl = zusammen:

7 mm kp

Pixw = dimm * Mmin-2 " Flxp Wmin (¢))

In einer Nebenrechnung, in der wir die SI-fremden Einheiten auf SI-
Einheiten zuriickfiihren, erhalten wir:

7 mm kp T m-981N _ 7©-9,81 Nm
kWmin  103-103W-60s  6:107Ws

Da Nm = W s, folgt
7 mm kp 5,14

kW min 107
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Setzen wir diesen Faktor in Gl. (1) ein, erhalten wir die zugéschnittene

GroBengleichung
5,14
kW = W : d/mm *Mmin-1 'F/kp

2. Wir setzen die in Aufgabe 1.1 gegebenen Gréf3en ein:

5,14 .
Puw = ST 200 mmypmm * 720 min~ g 01+ 25 kpjkp
Nach Kiirzen aller reéhts vom Gleichheitszeichen stehenden Einheiten
rechnen wir:
5,14 -200 - 720 - 25
P/kw = = 107 = 1,85

Erst jetzt bringen wir die Einheit Kilowatt auf die rechte Seite der Glei-
chung und erhalten das Ergebnis

P = 185kW
. .. . . . 4Fs
1.3  Schneiden Sie die allgemeine GroBengleichung E = — A auf fol-
TC

gende Einheiten zu:
[F] =kN; [s] =cm; [d] = mm; [As] = mm; [E] = GPa

4
1.4 Schneiden Sie die allgemeine GroBengleichung I = auf fol-

gende Einheiten zu:
[r7) = mm; [4] = Pas; [Ap] = Torr; [[] =m; [/] =1min!

A \Y%
1.5 Eine Rechnungergibt eine GroBe mit der Einheit Ts- . _c_ﬂ'ni . Weisen

Sie nach, daB diese GroBe eine Geschwindigkeit sein kann.
Der Nachweis wird durch Einheitenrechnung gefiihrt:
AVs? W s? kg m? s? 10°m

= = = = H -1
gcm gcm s3gcm 1025 10" ms™

Die Einheit Meter je Sekunde ist eine Geschwindigkeitseinheit.

2.3.2. Beispiele und Ubungen zur Kinematik
AVsch
2.1 Ein Motorschiff hat relativ zum Ufer stromauf eine Geschwindigkeit .
A Vaur von 10 km h~!, stromab von 16 km h—*. Berechnen Sie 1. die Fahr-
geschwindigkeit relativ zum Wasser, 2. die Stromungsgeschwindigkeit
des Flusses.
‘ ‘ Gegeben: vy = 10 km h™! Gesucht: 1. vgep,
‘:‘atr Uap = 16 kmh! 2. Ustr
1. GemaB Bild 5 gilt
"%ch Vab = Usch + Usir
y Vauf = Usch — Ustr

. V.
Bild 5 ob Uap + Vgur = Zchh
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1 1 km km .
Usch = ?(U.b + Vaur);  Usen = 5 16T + 10 T) =13kmh

2. Vap — Vaur = 20s4r

1 . 1 km km 1
User = ?(Uab = Vaur);  Ustr = 5 (16T - 10 T) = 3kmh
Drei Panzerabwehrraketen fliegen mit einer Geschwindigkeit von
300 km h-! iiber das Gelinde. Jede trifft einen Panzer. Der erste
steht, der zweite rollt mit einer Geschwindigkeit von 60 km h—! auf
die Abschuflrampe zu, der dritte entfernt sich von ihr mit der gleichen
Geschwindigkeit. Berechnen Sie die drei Auftreffgeschwindigkeiten.

Ein Segelflugzeug, das beim Gleitflug in ruhiger Luft eine Sinkge-
schwindigkeit von 1,5 m s~! hat, befindet sich in einer aufsteigenden
Luftstromung, in der es in 10 min 250 m an H6he gewinnt. Berechnen
Sie die Geschwindigkeit der Aufwirtsstromung.

Ein Motorboot fihrt auf einem FluB}, der eine Stromungsgeschwin-
digkeit von 2,5 ms~! hat, stromauf. Es benétigt fiir die Fahrt zwi-
schen zwei 7,2 km voneinander entfernten Orten 40 min. Berechnen
Sie die Geschwindigkeit (in Kilometer je Stunde), die das Boot relativ
zum Wasser hat.

Der D-Zug Dresden-Leipzig legt die 120 km lange Strecke in 1 h
25 min zuriick. Davon entfallen 6 min auf Bahnhofsaufenthalte. Ein
Personenzug benotigt fiir die gleiche Strecke 2 h 31 min, wovon
48 min auf Bahnhofsaufenthalte gerechnet werden. Vergleichen Sie
die Durchschnittsgeschwindigkeiten beider Ziige, 1. bezogen auf die
Reisedauer, 2. bezogen auf die reine Fahrzeit.

Bei einem FuBmarsch werden zuriickgelegt: von 8.00 bis 10.15 Uhr
11,7 km, von 10.45 bis 12.30 Uhr 5,6 km und von 13.45 bis 15.30 Uhr
8,5 km. Berechnen Sie die Durchschnittsmarschgeschwindigkeiten
1. fiir jede der drei Etappen und 2. fiir den gesamten Weg.

Im Lauf einer Maschinenpistole wird ein Geschof8 in 1,21 ms auf
795 ms~! beschleunigt. Berechnen Sie die durchschnittliche Be-
schleunigung.

Ein Zug verringert in 2 min 30s seine Geschwindigkeit von 120 km h—!
auf 35 km h~!. Berechnen Sie die Durchschnittsbeschleunigung.

Was bedeutet eine Parallele zur ¢-Achse 1. im v,t-Diagramm, 2. im
s,t-Diagramm?

Was bedeutet der Schnittpunkt zweier Geraden 1. im v,z-Diagramm,
2. im s,r-Diagramm? Es soll keine der Geraden parallel zu einer Ko-
ordinatenachse verlaufen.

Stellen Sie im s,/-Diagramm 1. einen Uberholvorgang, 2. eine Begeg-
nung zweier Fahrzeuge dar, die sich mit konstanten Geschwindig-
keiten bewegen.

Stellen Sie nachstehenden Bewegungsvorgang im v,-Diagramm dar:
Ein Kraftfahrzeug fihrt an, bewegt sich gleichformig, bremst scharf
bis zum Stillstand, fihrt mit geringer Beschleunigung nach riickwirts
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an und bremst wieder bis zum Stillstand. Alle Beschleunigungen
werden als konstant angenommen.

Beschreiben Sie den im Diagramm (Bild 6) dargestellten Bewegungs-
vorgang.

Beschreiben Sie den im Diagramm (Bild 7) dargesteliten Bewegungs-
vorgang.

1. Beschreiben Sie den Verlauf der Geschwindigkeiten fiir die beiden
im Diagramm (Bild 8) dargestellten Bewegungen. 2. Vergleichen Sie
die Momentangeschwindigkeiten zu den Zeiten ¢o, #; und ¢,.

Ein Schiitzenpanzerwagen fiahrt im Gelinde mit einer Geschwindig-
keit von 75 km h—!. Berechnen Sie die Zeit, die er bendtigt, um eine
320 m breite Schneise zu iiberqueren.

Ein Sprinter lduft 100 m in 10,0 s. Stellen Sie fest, ob er mit einem
Radfahrer Schritt halten kann, der in 5,0 min 2,0 km zuriicklegt.

Berechnen Sie die Geschwindigkeit des Kérpers, dessen Bewegung
das Diagramm (Bild 9) darstelit.

Berechnen Sie fiir die Bewegung, die durch das Diagramm (Bild 10)
dargestellt wird, den in den ersten 6 s zuriickgelegten Weg.

An Eisenbahnstrecken stehen «Kilometersteine» im Abstand von
200 m. 1. Sie beobachten, dal der Zug diese Strecke in 9 s zuriick-
legt. Berechnen Sie die Zuggeschwindigkeit in Kilometer je Stunde.
2. Formulieren Sie die zugeschnittene GroBengleichung zur Berech-
nung der Zuggeschwindigkeit in Kilometer je Stunde, wenn die Fahr-
zeit fiir 200 m in Sekunden gemessen wird. 3. Zeichnen Sie ein Dia-
gramm, dem Sie aus den Fahrzeiten fiir 200 m die Zuggeschwindig-
keit im Bereich von 40 bis 120 km h—! entnehmen kénnen.

Gegeben: s = 200 m; t=9s Gesucht: v
_ 200 m 200- 3,6 km

s
= = = = = -1
l.v—t v 9 s Y 80kmh™’
5 kmh-! = 200 m
« Ufkm n=t " KM = 1S
200 mh . m-3600s _ 36
Plcm n=t = t, kms’ 1000m-s 10
_ 720
V/km h—2 = s
3. Bild 11

Ein Mopedfahrer startet um 9.00 Uhr im Ort A in Richtung auf den
15 km entfernten Ort B. Seine Geschwindigkeit betragt 45 km h—1.
In B startet um 9.40 Uhr ein PKW-Fahrer. Er fihrt mit der Ge-
schwindigkeit 75 km h~! in gleicher Richtung wie der Mopedfahrer.
Ermitteln Sie grafisch, 1. nach welcher Zeit und 2. in welcher Ent-
fernung von A das Moped vom PKW iiberholt wird.
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Gegeben: As = 15km; vy = 45kmh~! Gesucht: 1. ty
At = 40 min; vp = 75kmh?! 2. sy

Ort und Zeit des Uberholens sind dem Schnittpunkt der s,--Kurven der
beiden Bewegungen zu entnehmen. Wir zeichnen durch die Punkte
(so =0, to = 0) und (s; = 45 km, #; = 1 h) die M-Kurve, aus (s, = 15 km,
t, =40min) und (s3 =90km, 7, = 1h40min) die P-Kurve. Den
Koordinaten des Schnittpunktes (Bild 12) entnehmen wir:

so = 53 km; to = 1 h 10 min.

Loésen Sie Aufgabe 2.21 rechnerisch.

Am Anfangspunkt einer 150 km langen Strecke startet ein PKW,
der mit einer Durchschnittsgeschwindigkeit von 70 km h~! fihrt.
20 min spiter startet am Endpunkt der Strecke ein zweiter PKW,
der mit einer Durchschnittsgeschwindigkeit von 90 km h-! fihrt.
Berechnen Sie 1. den Zeitpunkt und 2. den Ort der Begegnung.
3. Losen Sie die Aufgabe grafisch und vergleichen Sie die Ergebnisse.

Auf einer StraBenbahnstrecke fahren die Bahnen im zeitlichen Ab-
stand von 10 min mit einer Geschwindigkeit von 36 km h-!. Ein FuB3-
ginger geht mit der Geschwindigkeit 6,0 km h~! in Fahrtrichtung
der Bahn. Berechnen Sie den zeitlichen Abstand, in dem die Bahnen
am FulBlginger vorbeifahren (Bild 13).

Zwei in entgegengesetzten Richtungen aneinander vorbeifahrende
Ziige I und 2 haben die Geschwindigkeiten v; = 70km h~! und
v, = 110 km h~!. Berechnen Sie, wie lange fiir einen Fahrgast von
Zug 2 die Voriiberfahrt von Zug / dauert, wenn Zug / 100 m lang ist.

Ein Fahrzeug wird von der Geschwindigkeit 80 km h—! auf 20 km h—!
gebremst und legt dabei 120 m zuriick. Berechnen Sie 1. seine Be-
schleunigung und 2. die Fahrtdauer fiir die zuriickgelegte Strecke.

Gegeben: vy = 80kmh™!; s=120m Gesucht: 1. a
v =20kmh?! 2.t

1. Nicht vorkommende GroBe ¢: Gl. (2.8)

2 2

v — v v? — v
a=

2a ; 2s

s =

(202 — 80) km® _ (400 — 6400) m?
4= T2 120mh2 " 240m - 3,62s2

m
= —1,935—2

2. Nicht vorkommende GréBe a: Gl. (2.9)

(+ vyt 2s
§=— =
2 v+ Uy
2-120mh 240m-3,6 s
'=®0F20)km 100m ~ 2%s

Ein LKW erreicht beim Anfahren nach 18 s die Geschwindigkeit
65 km h~*. Berechnen Sie 1. die durchschnittliche Beschleunigung
und 2. den zuriickgelegten Weg.
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Ein Fahrzeug, das beim Bremsen eine maximale Beschleunigung von
—6,5ms~2 hat, fihrt mit der Geschwindigkeit 60 km h~! auf ein
40 m entferntes Hindernis zu. Untersuchen Sie, ob ein Anhalten vor
dem Hindernis moglich ist.

Ein Kraftfahrer mu3 wegen eines Bahniibergangs seine Geschwindig-
keit von 90 km h~! auf 50 km h~! verringern. Berechnen Sie, in wel-
cher Entfernung vom Bahniibergang er mit dem Bremsen beginnen
muB, um die angegebene Geschwindigkeit 80 m vor dem Bahniiber-
gang zu erreichen. Der Betrag der mittleren Beschleunigung betragt
2,5ms2.

Ein Sprinter erreicht 10m nach dem Start die Geschwindigkeit
10 ms~!, ein Kraftfahrzeug 100 m nach dem Start 60 kmh~*. Ver-
gleichen Sie die mittleren Beschleunigungen bei beiden Vorgéngen.

Ein Kraftfahrzeug kommt bei als konstant angenommener Beschleu-
nigung (Betrag 5,5 m s~2) nach einer Bremsstrecke von 44 m zum
Stehen. Berechnen Sie seine Geschwindigkeit zu Beginn des Brem-
sens.

Ein Fahrzeug wird auf einer Strecke von 100 m gleichméBig mit
2,5ms~2 beschleunigt und erreicht dabei die Geschwindigkeit
90 km h~!. Berechnen Sie die Geschwindigkeit des Fahrzeugs 1. am
Anfang und 2. in der Mitte der Strecke.

Ein Kraftfahrzeug wird mit konstanter Beschleunigung (Betrag
4,0 m s~2) bis zum Stillstand gebremst. 1. Berechnen Sie den Brems-
weg fiir eine Anfangsgeschwindigkeit von 80 km h-!. 2. Der wievielte
Teil des Bremsweges ergibt sich fiir halbe Anfangsgeschwindigkeit?
3. Leiten Sie das Ergebnis zu 2. aus den »,t-Diagrammen der beiden
Bremsvorginge her.

Gegeben: a; = a; =a= —4,0ms—2 Gesucht: 1. s,
S2

vo; = 80kmh™!; v,=v,=0 2.;-—-

1

zZul.:ivg, = 70“

2

1. Aus (2.8) folgt s; = — —2--
. Aus (2. gt 5, = 2,
—(802) km? s2 802 m? s?
51 = 3 =0 =61,7m
h2-2-(—4m 3,62s2-8 m
2. Wir rechnen allgemein
1 2
52 ng (7”01) _ 1 _ 1 o
_ST v$ Vo1 T4 $2 = 4!

3. Die Beschleunigung ist in beiden Fillen die gleiche. Somit laufen die
v,t-Kurven parallel (Bild 14). Im »,t-Diagramm kennzeichnet die Fliche
zwischen Kurve und Zeitachse den zuriickgelegten Weg. Es ist
Az = '/4A; (Dreieck mit halber Grundseite und halber Hohe) und somit
spi8 = 1:4.
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1. Berechnen Sie fiir das Kraftfahrzeug nach Aufgabe 2.33 die Brems-
zeit. 2. Der wievielte Teil der Bremszeit ergibt sich fiir halbe Anfangs-
geschwindigkeit? 3. Leiten Sie das Ergebnis zu 2. aus den v,r-Dia-
grammen der beiden Bremsvorginge her.

Ein Fahrzeug erreicht bei konstanter Beschleunigung 10 s nach dem
Start seine Endgeschwindigkeit. Berechnen Sie die Zeit, die benstigt
wird, um bei doppelter Beschleunigung diese Endgeschwindigkeit zu
erreichen.

Ein Fahrzeug hat die Geschwindigkeit 85 km h~'. Berechnen Sie die
notwendige Beschleunigung, um das Fahrzeug 1. nach 50 m und 2.
nach 100 m Bremsweg anzuhalten.

Ein Fahrzeug soll bei einer konstanten Beschleunigung von 3,8 m s—2
von der Geschwindigkeit 20 km h=! auf 90 km h-! beschleunigt wer-
den. Berechnen Sie 1. die Dauer der Beschleunigungsphase und 2. den
dabei zuriickgelegten Weg.

Berechnen Sie 1. die Beschleunigung und 2. die Endgeschwindigkeit
eines Fahrzeugs, das bei der Anfangsgeschwindigkeit 50 km h~! in
7,5 s einen Weg von 90 m zuriicklegt.

Ein Fahrzeug soll innerhalb von 4,0 s gleichmifig von 50 km h—!
auf 100 km h~! beschleunigt werden. Berechnen Sie 1. die erforder-
liche Beschleunigung und 2. den wihrend der Beschleunigungsphase
zuriickgelegten Weg. )

Ein Triebwagen erreicht bei konstanter Beschleunigung in 30 s auf
einer Strecke von 600 m eine Geschwindigkeit von 100 km h-!.
1. Berechnen Sie die Beschleunigung. 2. Zeichnen Sie das v,#-Dia-
gramm. '

Ein in Fahrt befindliches Schiff wird vom Zeitpunkt des Passierens
einer Boje an gleichmiBig beschleunigt, so daB3 es in 150 m Entfer-
nung von der Boje die Geschwindigkeit 36 km h~-! hat. Die Be-
schleunigung betrigt 10 cm s~2. Berechnen Sie 1. die Dauer der Be-
schleunigungsphase und 2. die Geschwindigkeit des Schiffes beim
Passieren der Boje. 3. Erlidutern Sie anhand des »,#-Diagramms die
verschiedenen Losungen.

Ein Fahrzeug fihrt 10s mit einer mittleren Beschleunigung von
1,5m s~2 an. Dann fihrt es 100 m weit mit konstanter Geschwindig-
keit und bremst schlieBlich auf einer Strecke von 15 m bis zum Still-
stand ab. 1. Skizzieren Sie das v,s-Diagramm. Berechnen Sie 2. die
Dauer des gesamten Vorgangs und 3. die Linge der gesamten Fahr-
strecke. 4. Zeichnen Sie das s,7-, das v,7- und das a,7-Diagramm.

Gegeben: t;, = 10s; s, = 100 m Gesucht: 2. tges
a; = 1,5ms™2?; s3=15m 3. Sges
Vo = 0; V3 = 0

1. Bild 15. Die Bewegung hat drei Phasen, die getrennt behandelt werden
(1 und 3 gleichmiBig beschleunigte, 2 gleichférmige Bewegung).
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Zu 1: Gegeben: ay, t,, vy, Gesucht: sy, vy
a , 1,5m-100s?
2.7 s =Ttl =—zsz——=75m

m
2.6) v, = ayt; = 1,5?- 10s = 15ms™?!

Zu 2: Gegeben: s,, v, = vy; Gesucht: t,
1" t_sz_100m5_67
AN === =67
Zu 3: Gegeben: s3, v93 = v = vy, 03 = 0; Gesucht: t3, a,
2s. 30ms

29) 1 =—i—1—5—ﬁl-—2,05

Vo3 _ - _ —15m _ 2
(26) a3 = — f = t3 = s 2s = 7,5ms

2. 1”5:’1 + 1 + ’3=(10+6,7+2)S= 18,75

3.8ges =851 + 5, +53=(75+ 100 + 15)m = 190 m

4. Diagramme: Bild 16

Ein Kraftwagen fihrt 100 m mit konstanter Geschwindigkeit. Dann
wird er auf einer Strecke von 50 m innerhalb von 5,0 s bis zum Still-
stand abgebremst und sofort wieder 20 s lang mit 1,0 m s~2 beschleu-
nigt. Berechnen Sie 1. die Gesamtdauer des Vorgangs und 2. die Ge-
samtlinge der Fahrstrecke.

Ein mit der Geschwindigkeit 60 km h~! fahrender Schnellzug bremst
vor einem Signal auf einer Strecke von 900 m gleichmiBig bis zum
Stillstand, hilt 4,0 min am Signal und beschleunigt schlieBlich mit
0,15 m s~2 wieder auf die Geschwindigkeit 60 km h~'. Berechnen Sie
die Verspitung, die der Zug durch das Anhalten erhilt.

Ein PKW iiberholt einen LKW von 15 m Linge, der eine konstante
Geschwindigkeit von 60 km h-! hat. Der Uberholvorgang beginnt
30 m hinter und endet 30 m vor dem LKW. Der PKW vergroBert
seine Geschwindigkeit vom Beginn des Vorgangs bis zum Erreichen
des LKW gleichmiBig von 60 km h~* auf 80 km h—! und behilt dann
die erreichte Geschwindigkeit bei. Berechnen Sie 1. die Dauer des
Uberholvorgangs und 2. die Weglinge, iiber die er sich erstreckt.

Ein Stein fillt von einer Briicke ins Wasser. Nach 4 s sieht man
seinen Aufschlag auf dem Wasser. Berechnen Sie 1. die Hohe der
Briicke iiber der Wasseroberfliche und 2. die Geschwindigkeit, mit
der der Stein aufschlagt.

1. Eine Stahlkugel fillt aus einer Hohe von 200 cm auf eine horizon-
tale Stahlplatte und wird so reflektiert, daB sie die gleiche Hohe wie-
der erreicht (Idealfall). Berechnen Sie die Dauer dieses Vorgangs.
2. Berechnen Sie die Zeitspanne, in der die Kugel drei Zyklen (ab/
auf) durchliuft, wenn sie am Ende eines jeden Zyklus nur 959 der
Ausgangshohe erreicht. Die Beriihrungszeit zwischen Kugel und
Platte wird vernachlissigt.



Bild 17

AS/m

28

24

/
20 1

L

2 7
8

4
0 .

Bild 18

2.48

2.49

2.50

2.51

2.52

2.53

2.54

2.3.2. Beispiele und Ubungen zur Kinematik 41

Ein Stein wird vom Balkon eines Hauses in vertikaler Richtung ge-
worfen. Er schldgt nach 1,5 s mit der Geschwindigkeit 10 m s=! auf
dem Erdboden auf. Berechnen Sie 1. die Abwurfgeschwindigkeit und
2. die Entfernung zwischen Abwurf- und Aufschlagstelle.

Ein Korper, der von einem 15 m hohen Turm in vertikaler Richtung
geworfen wird, schldgt nach 2,0 s am Ful3 des Turmes auf. 1. Berech-
nen Sie die Geschwindigkeit, mit der er auftrifft. 2. Geben Sie an, ob
er nach oben oder nach unten geworfen wurde. (Rechnen Sie mit
g=10ms™2) :

Ein Pfeil wird mit der Anfangsgeschwindigkeit 35 ms-! vertikal
nach oben geschossen. Ermitteln Sie die Zeit, die er benstigt, um
50 m Hohe zu erreichen. (Rechnen Sie mit g = 10 ms=2.)

Gegeben: s = 50 m; a=—g=—10ms? Gesucht: t
vo = 35ms!
a
Nicht vorkommende GréBe v: Gl. (2.7) s = vot + 7’2

Umstellen der in # quadratischen Gleichung nach ¢ und Division durch
a/2 zur Herstellung der Normalform ergibt:

I
|
[
2
Q
N
+
|
I
|
I+
I
Py
on
+
[\ )
8

Bm LS ~/352m2 2-(=10) 2 . 50
s-(—=10)m — —10m s? +2:(- )52 m

-~
|

1 -
=35s +-ﬁ\/1225— 1000s = 3,5s + 1,55

ty =95s; t, =2s
t, gilt fir die Aufwirts-, ¢, fir die Abwiartsbewegung des Pfeils.

1. Beschreiben Sie die im »,z-Diagramm Bild 17 dargesteliten verti-
kalen Wurfbewegungen, die im Nullpunkt beginnen. 2. Berechnen
Sie den Abstand der Ko6rper voneinander 5,0 s nach dem Abwurf.

Ein Radargerit ortet in 60 km horizontaler Entfernung ein Flugzeug,
das mit einer Geschwindigkeit von 1200 km h-! anfliegt. 40 s spiter
wird eine Fla-Rakete gestartet, die 50 s lang mit 20 m s~2 beschleu-
nigt wird und dann mit konstanter Geschwindigkeit auf das Ziel zu-
steuert. Berechnen Sie die horizontale Entfernung der Rakete von
ihrem Startpunkt im Augenblick des Auftreffens auf das Flugzeug.
(Skizzieren Sie zunichst ein s,z-Diagramm.)

Eine Kugel fillt vertikal aus einer Hohe von 10,0 m herunter. Im Zeit-
punkt ihres Starts wird eine andere Kugel mit der Anfangsgeschwin-
digkeit 25,0 ms~! von der H6he Null aus vertikal nach oben ge-
schossen. Berechnen Sie die Hohe, in der sich die Kugeln treffen.

Stellen Sie fest, ob die im s,7-Diagramm (Bild 18) dargestelite Be-
wegung gleichmiBig beschleunigt verliuft.
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Berechnen Sie 1. Umlaufzeit, 2. Frequenz und 3. Winkelgeschwindig-
keit des Sekundenzeigers einer Taschenuhr.

Auf einer Drehmaschine wird ein Werkstiick von 12,0 mm Durch-
messer bearbeitet. Berechnen Sie die Schmttgeschwmdlgkelt in Meter
je Minute bei einer Drehzahl von 3000 min~!.

Gegeben: d = 12 mm; n = 3000 min~! Gesucht: v

Die Schnittgeschwindigkeit ist die Bahngeschwindigkeit eines Punktes auf
dem Umfang des Werkstiicks. Es gilt (2.21) v = wr = wd/2. Mit (2.16)
w = 2nn folgt

_ 21'md_ ’
v=—F— =rmdn
- 12 mm - 3000 r-12m-3- 103 m
v = = n = 113

min 103 min min

Berechnen Sie die Bahngeschwindigkeit eines geostationdren Wetter-
satelliten, der in einer Hohe von 3,56 - 10* km iiber einem Ort am
Aquator der Erde steht. (Bezugssystem: Erdachse; Erdradius
rg = 6378 km.) :

Die Seiltrommel einer Motorwinde hat den Durchmesser 50 cm. Ihre
Drehzahl ist 120 min~'. Berechnen Sie 1. die Umlaufzeit, 2. die Win-
kelgeschwindigkeit, 3. die Geschwindigkeit, mit der sich das Seil be-
wegt, und 4. die Zeit, die vergeht, bis 30,0 m Seil aufgewunden sind.

Eine Magnetspule hat einen Kerndurchmesser von 60 mm; der Durch-
messer der vollgewickelten Spule (Aullere Windung) betrage 160 mm.
Berechnen Sie den Bereich, in dem sich die Drehzahl der Spule wih-
rend des Abspielens des Bandes dndert, wenn das Gerat mit der kon-
stanten Bandgeschwindigkeit 9,5 cm s~! arbeitet.

Bei einer groBen Schallplatte (33 min—!) hat das Rillenfeld die in
Bild 19 gegebenen Abmessungen. Auf die Strecke von 1 mm in
radialer Richtung kommen 10 Durchginge der spiralférmig ver-
laufenden Rille. Berechnen Sie 1. die Spieldauer der Schallplatte,
2. den Bereich, in dem sich die Abtastgeschwindigkeit wihrend des
Abspielens der Schallplatte andert, 3. die Lange der Rille.

Ein Fahrzeug, dessen Rider einen Durchmesser von 500 mm haben,
rollt mit einer Anfangsgeschwindigkeit von 3,0 ms~! einen Abhang
von 10 m Linge hinab. Seine Beschleunigung betrigt 0,35 ms=2
Berechnen Sie 1. die Endgeschwindigkeit des Fahrzeugs, 2. die Dreh-
zahl der Rider am Anfang und am Ende des Abhangs und 3. die
Anzahl der Umdrehungen eines Rades bei diesem Vorgang.

Ein Motor wird in 2,5 min bis zum Stillstand abgebremst. Dabei ver-
ringert sich seine Drehzahl gleichmiBig in jeweils 5 s um 200 min—*
Berechnen Sie 1. die Winkelbeschleunigung, 2. die Drehzahl bei Be-
ginn des Bremsens und 3. die Anzahl der Umdrehungen wihrend der
Bremsphase.

Gegeben:t = 25min; w=20 Gesucht: 1. x, 2.nq
At =5s; An = —200min™! 3.z
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Aw
1. Aus « = — und @ = 2rn folgt

At
_ 2mAn _ 2m.(—200) 5
*= A& ' T T mn-ss - —hlrds
o,
2. Aus (2.16) folgt ng = 2—:. Aus (2.18) erhalten wir wg = @ — of; mit

o = 0 ergibt sich

ot
mo = -

(—4,19) - 2,5 min 10,5 min - 602
ng = — =

s72. 21 T 2n min?
= 6,02 - 10> min—!

3.220) z= %. Analog Gl (2.10) ist ¢ = wf — $ar?; mit & = 0
erhalten wir

at?
4r

z= -

(—4,19) - 2,52 min?
B s2- 4w

= = 7,50 103

Ein Turbinenliufer wird aus dem Stillstand auf die Drehzahl
3000 min:1 beschleunigt, wobei sich die Drehzahl gleichmiBig in je
12 s um 100 min-! erhoht. Berechnen Sie 1. die Winkelbeschleunigung
und 2. die Dauer des Anfahrvorgangs.

Ein Elektromotor soll 40mal in der Minute umgesteuert werden
(seinen Drehsinn dndern). Rechnen Sie vereinfachend mit folgenden
Vorgaben: Betrag der Beschleunigung konstant; Enddrehzahl in
jedem Takt 50 min~!. 1. Berechnen Sie den Betrag der Winkelbe-
schleunigung. 2. Zeichnen Sie das #,7- und das «,z-Diagramm.

Ein Forderkorb fihrt in einen 600 m tiefen Schacht ein. Das Seil ist
tiber eine Trommel von 2,5 m Durchmesser gefiihrt. Fiir die Trom-
mel ist beim Anfahren und Abbremsen, das jeweils 4,0 s dauert, eine
Winkelbeschleunigung vom Betrag 4,5 s~2 zugelassen. Berechnen Sie
1. die Lange der Anfahr- und der Bremsstrecke, 2. die Gesamtdauer
des Einfahrers, 3. die Drehzahl der Trommel widhrend der gleich-
formigen Bewegung des Korbes und 4. die Anzahl der Trommel-
umdrehungen wihrend des gesamten Vorgangs. 5. Skizzieren Sie das
o,t- und das o,-Diagramm der Trommelbewegung.

Ein Korper rotiert mit gegebener Winkelgeschwindigkeit. Berechnen
Sie allgemein die Dauer des Bremsvorgangs, durch den er bei kon-
stanter Winkelbeschleunigung so weit abgebremst wird, daB die
Radialbeschleunigung eines jeden Punktes des Korpers auf die Hilfte
verringert wird.

Gegeben: wg; o Gesucht: At
Bedingung: a;; = 4a,o
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Nach (2.15) ist

Aw w; — Wy .
*=Ar T T M ®
Aus (225) a, = w? und a, =1a, folgt w?r =lwdr und daraus

W, = i\/ 2 wy. Damit ergibt sich aus (*)
1 wg - wg
A= (=2 —1) 2% = 029320
(2 \/_ ) o o«

Der Antrieb einer Zentrifugentrommel von 400 mm Durchmesser
erfolgt liber Treibriemen durch einen Motor mit der Drehzahl
2880 min~—! (Bild 20). Die Riemenscheiben von Motor und Zentri-
fuge haben die Durchmesser 300 mm bzw. 200 mm. Berechnen Sie
fiir einen Punkt am Rand der Trommel 1. die Bahngeschwindigkeit,
2. die Radialbeschleunigung, 3. die Winkelbeschleunigung wahrend
des in 7,5 s erfolgenden Anfahrens der Zentrifuge. 4. Ermitteln Sie
den Weg, den ein Punkt des Riemens wiahrend des Anfahrens zuriick-
legt.

Ein Kraftfahrzeug durchfihrt eine Kurve, die den Radius 60 m hat,
mit einer Geschwindigkeit von 30 km h~'. 1. Berechnen Sie die
Radialbeschleunigung des Fahrzeugs. 2. Vergleichen Sie das Ergebnis
Threr Rechnung mit dem Wert, der sich ergibt, wenn sowohl der
Radius als auch die Geschwindigkeit verdoppelt werden.

Ein Motorboot, das gegeniiber dem Wasser eine Geschwindigkeit
von 5kmh™! entwickelt, durchquert einen 150 m breiten FluB.
Dessen Wasser stromt mit einer Geschwindigkeit von 2,0ms™!
Berechnen Sie 1. die Strecke, um die das Boot wihrend der Uberfahrt
abtreibt, wenn es senkrecht zur Stromung gesteuert wird, und 2. die
Dauer der Uberfahrt.

Gegeben: vg = Skmh™1 Gesucht: 1. As
b =150m; vg=20ms™! 2.t
1. Nach Skizze (Bild 21) gilt 5: As = vg : vg. Somit ist
bvg 150m:2m h

As = ; As= — 04— =216m
Up s'5km —

2. Nach dem Uberlagerungssatz sind die quer zur Stromung und die mit
der Stromung verlaufenden Bewegungen unabhingig voneinander. Des-
halb ist die Stromungsgeschwindigkeit fiir die Zeit der Uberfahrt ohne
Belang, und es ist

t=i t = 1,8 min
Up —_—

Mit einem Motorboot, das gegeniiber dem Wasser eine Geschwindig-
keit von 18 km h~! entwickelt, soll ein FluB von 200 m Breite, der
eine Stromungsgeschwindigkeit von 2,5 ms~' hat, auf kiirzester
Strecke iiberquert werden. Geben Sie 1. die Richtung an, in der das
Boot gesteuert werden muB, und 2. die Dauer der Uberfahrt.

Auf einer programmgesteuerten Drehmaschine soll ein Kegel mit
einem Offnungswinkel von 20° gefertigt werden (Bild 22). 1. Ergiinzen
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Sie die Skizze, indem Sie die Geschwindigkeit fiir Léngs- und Plan-
vorschub (Vorschub parallel zur Achse und senkrecht dazu) eintra-
gen. 2. Berechnen Sie das Verhiltnis der Geschwindigkeiten, das an
der Maschine einzustellen ist.

Ein GeschoB soll unter einem Winkel von 60° abgeschossen werden
und auf einer waagerechten Ebene eine Wurfweite von 1,2 km er-
reichen.’Berechnen Sie unter Vernachlissigung des Luftwiderstandes
1. die Anfangsgeschwindigkeit, 2. die Flugdauer des Geschosses,
3. die Wurfhohe, 4. die horizontale Entfernung des Geschosses vom
AbschuBpunkt nach 2/; der Flugzeit und 5. die Zeiten, zu denen s1ch
das GeschoB in einer Hohe von 300 m befindet.

Ein GeschoB3 hat auf einer Parabelbahn im Scheitelpunkt (2000 m
iiber der Miindungsebene) die Geschwindigkeit 350 m s—!. Berechnen
Sie die Miindungsgeschwindigkeit.

2.3.3. Beispieie und Ubungen zur Dynamik

Eine Antriebskraft von 500 N wirkt auf ein Fahrzeug, dessen Masse
1000 kg betrigt. Berechnen Sie die Zeit, in der das Fahrzeug auf
horizontaler StraBBe aus dem Stillstand 100 m zuriicklegt. Der Fahr-
widerstand werde vernachldssigt.

Gegeben: F = 500 N; m = 1000 kg Gesucht: t
=100m; v, =0

Vernachlissigung des Fahrwiderstandes und Bewegung auf horizontaler
StraBe heiBt: die Kraft dient allein zur Beschleunigung des Fahrzeugs. Da
Kraft und Masse konstant sind, folgt aus (3.4) F = ma, daB auch die
Beschleunigung konstant ist. Es liegt somit eine gleichmiBig beschleunigte
Bewegung vor. Fiir diese gilt Gl. (2.5)

a
—_ -2
s=3 t
und somit
2s .
=N @

Aus F = ma folgt
F

a=— )
m

Aus (1) und (2) erhalten wir
2sm ~/2'100m-1000kg »./ ms? kg ,
”‘A/ F o5 = 500N =N T2

Ein reibungsfrei mit der der Geschwindigkeit 25 km h~—! rollendes
Fahrzeug (Masse 750 kg) kommt 10 s nach Betitigung der Bréemsen
zum Stillstand. Berechnen Sie die mittlere Bremskraft.

Ein Eisldufer mit einer Masse von 75 kg, der mit einer Geschwindig-
keit von 8,0 ms~! gleitet, wird durch eine mittlere Kraft (Wind,
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Reibung) von 50 N gebremst. Berechnen Sie die Bremsstrecke bis
zum Stillstand.

Ein KugelstoBer bewegt die Kugel (Masse 7,25 kg) beim Stofen auf
einer Strecke von 2,50 m. Die Kugel verli3t die Hand mit der Ge-
schwindigkeit 14 m s~1. Berechnen Sie die mittlere Kraft, die der
Sportler allein zur Beschleunigung der Kugel aufbringt. (Die Ge-
wichtskraft und das Anheben der Kugel beim Sto3 werden vernach-
lassigt.)

Beim ruckartigen Anheben eines schweren Koffers reiflt der Griff des
Koffers. Bei langsamem Anheben hilt er. Begriinden Sie diesen Sach-
verhalt.

Ein Radfahrer (Masse 75 kg) erreicht, wenn er allein auf einem Tan-
demrad (Masse 15 kg) fahrt, 10 s nach dem Start eine Geschwindig-
keit von 25 km h='. Berechnen Sie die Zeit, die benétigt wird, wenn
ein zweiter Fahrer (Masse 60 kg) mitfihrt und angenommen wird,
daB beide mit gleicher Kraft antreten. Der Fahrwiderstand werde
vernachléssigt.

Die Kabine eines Aufzugs mit einer Masse von 2,0 t soll aus der Ruhe
so nach oben bewegt werden, daB3 sie nach 50 m eine Geschwindigkeit
von 10 m s~! hat. Die Reibung werde vernachlissigt. Berechnen Sie
1. die als konstant angenommene Beschleunigung der Kabine und
2. die im Zugseil auftretende Kraft.

Gegeben: m = .2,0t; vo =0 Gesucht: 1. a
s =50m; v=10ms? 2. F
g =98ms2
1. Aus (2.8) folgt a = v - v
2s
100 m?
= —agom silms?

2. Die Kraft im Seil setzt sich zusammen aus der Gegenkraft zur Gewichts-
kraft und der Kraft, die zur Beschleunigung des Aufzugs dient.

FKE=G+ Fg (1); G=mg (2); Fg=ma (3)
Aus den Gln. (1) ... (3) folgt
Fs = mg + ma = m(g + a)

Fg=2-102kg (9,8 + 1,0)ms™2 = 2,16 - 104N = 21,6 kN

Geben Sie den relativen Fehler an, den man begeht, wenn man fiir
eine Hohe von 0,1r¢ (= 637 km) noch mit ¢ = 9,8 m s~2 rechnet.

Berechnen Sie mit Hilfe des Gravitationsgesetzes die Masse der Erde.

Eine vertikal hingende Schraubenfeder ist mit einem Korper der
Masse 200 g belastet, wobei ihre Verlingerung 5,0 cm betrdgt. 1. Be-
rechnen Sie die Federkonstante. 2. Berechnen Sie die Masse des Kor-
pers, mit dem eine zweite Feder (Federkonstante 50 N m~!) belastet
werden muBl, damit sie um die gleiche Strecke verlingert wird wie
Feder 1. 3. Welche der beiden Federn ist die hirtere Feder?
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Ein 1,0 m langer, masseloser Hebel ist an einem Ende drehbar ge-
lagert (Bild 23). Er wird in der Mitte durch eine Schraubenfeder ge-
halten, die die Federkonstante 15 kN m~! hat. Berechnen Sie die
Kraft, mit der das freie Ende des Hebels belastet wird, wenn die
Feder um 50 mm ausgelenkt ist.

-Zwei gleiche Schraubenfedern werden 1. hintereinander, 2. parallel

hidngend verbunden (Bild 24) und mit dem gleichen Wigestiick be-
lastet. Geben Sie fiir jede der beiden Kombinationen an, wie sich
ihre Dehnung von der Dehnung der einzelnen Feder unter gleicher
Belastung unterscheidet. '

Zeichnen Sie ein F,As-Diagramm zu der in Bild 25 skizzierten Feder-
anordnung. Die Federkonstante der inneren Feder betrigt
100 N cm™*, die der beiden duBeren je SO N cm™'.

Ein Kupferstab von 240 mm Lange und kreisformigem Querschnitt
(Durchmesser 15 mm) wird zusammen mit einer Schraubenfeder
(Federkonstante 0,45 MN m~!) eingespannt (Bild 26). Dabei ver-
kiirzt sich die Feder um 35 mm. Geben Sie an, um wieviel sich der
Kupferstab verkiirzt.

Gegeben: Asg = 35mm; kg = 0,45 MNm™! Gesucht: Asg,

ss¢ =240mm; E =1,2-10''Pa -
ds, = 15mm
] F .
Asgy = 5508 m); te=F (2); o= 3)
T 2
A= Tds‘ ) F = kg Asg %)
A _ 4Ss|k|.- ASF
%= TTdZE
4-240mm-4,5-10°N-35mm m?

Asg, = = 0,178 mm

7+ 152 mm? m-1,2-10"' N

Ein Stein, der am Ende eines 1,0 m langen Brettes liegt, beginnt bei
einseitigem Anheben des Brettes zu gleiten, sobald er eine Hohe von
25 cm erreicht hat (Bild 27.1). Berechnen Sie 1. die Haftreibungszahl,
2. die Beschleunigung des Steins beim Gleiten und 3. die Geschwin-
digkeit, die der Stein beim Erreichen des FuBBpunktes hat. Die Gleit-
reibungszahl sei halb so groB3 wie die Haftreibungszahl.

Gegeben: 1 =1,0m; h=25cm Gesucht: 1. po; 2.a

vo=0; £=98ms2; ug =4y v
h h
1. po —tanam.x—-;— \/[2 5
0,25 m .
Ho = 126

CJIm? - 02 m? ==

2. Beschleunigende Kraft ist die Differenz von Hangabtriebskraft und
Gleitreibungskraft (Bild 27.2):
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h
Fg = Fy — Fyg; F"=mgsinoc=mgT
72 _ p2
Fpg = pgmg cos o = ugmg 7

ma = mg (sinx — pg cos )

gth — ug /PP — i)
a=

!

9,8m (025m — 0,13/1 — 0,252 m)

a=

- -2
P Tm 1,22 ms

) m
3_u=\/2¢u; v=JZ-1,2287'1m=1,56ms“

Erkliren Sie, weshalb sich bei der Notbremsung eines Fahrzeugs mit
blockierten Ridern ein lingerer Bremsweg ergibt als beim Bremsen
mit rollenden Rédern.

Erliutern Sie anhand der wirkenden Krifte das bei einem Fallschirm-
absprung aus 1000 m Hohe mit verzogerter Schirméffnung aufge-
nommene v,r-Diagramm (Bild 28). (Vergleichen Sie mit F, Auf-
gabe 2.13.)

Auf einen Keil (Masse 5,0 kg, Neigungswinkel 30°), der auf seiner
Unterlage mit Reibung gleiten kann, wirkt senkrecht zur Flanke
eine Kraft (Bild 29). 1. Berechnen Sie den Maximalbetrag dieser
Kraft, wenn der Keil allein durch die Reibungskraft zwischen Keil
und Untetlage gehalten werden soll. Die Haftreibungszahl betrigt
0,50. 2. Diskutieren Sie anhand der erhaltenen Gleichung die Ab-
hidngigkeit der Kraft F,, vom Keilwinkel «.

Ein Kraftfahrzeug (Masse 1,50 t) fihrt auf einer Strafle, die auf 100 m
Léinge um 5,0 m ansteigt, mit einer Beschleunigung von 0,30 m s~2
an. Die Fahrwiderstandszahl betrigt 0,020. Berechnen Sie 1. den
Anstiegswinkel der Strafle und 2. die vom Motor beim Anfahren aus-
geiibte Kraft. 3. Untersuchen Sie, ob ein auf dieser StraBe stehendes
Fahrzeug beim Losen der Bremse von selbst abrolit.

Berechnen Sie die Fahrwiderstandszahl eines Fahrzeugs, das bei aus-
gekuppeltem Motor aus einer Geschwindigkeit von 72 km h~! auf
horizontaler StraB8e 800 m weit bis zum Stillstand ausrolit.

Sie lassen zwei Kugeln gleicher Masse, die eine aus Metall, die andere
aus Gummi, aus gleicher Hohe auf den FuBBboden aus Keramikfliesen -
fallen. Erldutern Sie, weshalb die Metallkugel eine Zerstorung der
Fliesen bewirkt, die Gummikugel aber nicht.

Beim Holzhacken gibt es, wenn die Axt nicht beim ersten Schlag
durch das Holz dringt, zwei Varianten: 1. Es wird mit dem Holzklotz,
in dem die Axt steckt, gegen die Unterlage geschlagen. 2. Es wird mit
der Riickseite der Axt, auf der der Klotz steckt, auf die Unterlage ge-
schlagen. Erkliren Sie, wovon die Wahl der Variante abhingt.
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Eine Raketenstufe (Masse 5,35t) wird mit konstanter Schubkraft
in 371s von der Anfangsgeschwindigkeit 9,1 -103*kmh-! auf
24,5 - 10° km h~! beschleunigt. Berechnen Sie 1. die Schubkraft und
2. die auf den Piloten wirkende Trigheitskraft. Die Masse des Piloten
ist 75 kg. Die Massenidnderung der Rakete sei vernachlidssigbar
klein. '

Uber eine Rolle mit horizontaler Achse ist ein undehnbarer Faden
gelegt, an dessen Enden zwei Korper (m; = 600 g und m, = 800 g)
befestigt sind (Bild 30). Die Korper werden zunichst festgehalten
und dann losgelassen. Die Faden- und die Rollenmasse sowie die
Reibung werden vernachldssigt. Berechnen Sie 1. die Beschleunigung
der bewegten Korper und 2. die Seilkraft.

‘Gegeben: my = 600g; m, =800g Gesucht: 1. a

g =981ms2 2. Fy
F
1~a=7 D); F=G, -Gy =(my—m)g 2; m=m +my (3)

Aus (1) ... 3) folgt

(my —my)g (800 — 600) g - 9,81 m m
a=——"———; a= > =1,40 —
my; + m, 1400 g s s

2. Wir betrachten Korper 2. Auf ihn wirken die Seilkraft Fg und die
Gewichtskraft G,. Fiir die beschleunigende Kraft F gilt

F=G,—-F (1); F=mya (2); G, =myg (3).
Aus (1) ... (3) folgt

m
Fs = my(g — a); Fs =800g (9,81 — 1,40)?2- =6,73N

Berechnen Sie 1. die Beschleunigung und 2. die Seilkraft bei Abwaérts-
bewegung von Korper 2 in dem als reibungsfrei angenommenen
System nach Bild 31. :

Berechnen Sie 1. die Beschleunigung und 2. die Seilkraft bei Abwirts-
bewegung von Korper 2 in dem als reibungsfrei angenommenen
System nach Bild 32.

Ein Stahlkorper (Masse 120 g) ruht auf einer in horizontaler Ebene
rotierenden Scheibe. Der Korper ist iiber eine Schraubenfeder (Feder-
konstante 5,6 kN m~!, Linge unbelastet 120 mm) an der Drehachse
der Scheibe befestigt. Berechnen Sie die Drehzahl, bei der die Feder
um 20 mm gedehnt wird.

Gegeben: m = 120 g; k =56kNm! Gesucht: n
! =120mm; Al = 20mm

Die bei der gesuchten Drehzahl auftretende Radialkraft muB3 gleich der
Federkraft sein: F,=F (1); F, = mo?r (2)

=2t (3); r=1+ Al (4); Fr=kAl (5
Aus (1) ... (5) folgt
42n’m(l + Al = kAl

und daraus
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1 J kAl
"= 2 N mi+ 4D

1 5600 kg m - 20 mm e .
"= s2m -120g - 140 mm = 13,0s™! = 780 min

Der Durchmesser einer Raumstation der Zukunft (Bild 33) betrage
20 m. Berechnen Sie 1. die Drehzahl, mit der die Station rotieren muB,
wenn am «Boden» der Station die Radialbeschleunigung ein Drittel
der Fallbeschleunigung auf der Erdoberfliche betragen soll, 2. um
wieviel Prozent die Radialbeschleunigung am Kopf eines 1,80 m
groBen «aufrecht» stehenden Menschen geringer ist als an seinen
Fiiflen. '

Ein PKW fihrt mit einer Geschwindigkeit von 60 km h~! auf hori-

-zontal verlaufender StraBe durch eine nicht iiberhohte Kurve (Kriim-

mungsradius 160 m). Berechnen Sie den Mindestwert der Reibungs-
zahl zwischen Reifen und StraBendecke, bei dem der Wagen noch
nicht aus der Kurve getragen wird.

Ein mit Wasser gefiilltes GefiBB wird in einer lotrechten Kreisbahn
von 100 cm Radius geschwungen (Bild 34). Berechnen Sie die Dreh-
frequenz, mit der das Gefil mindestens bewegt werden muB, damit
das Wasser nicht auslduft.

Ein Eisenbahngleis der Normalspurweite 1435 mm beschreibt eine
Kurve mit dem Radius 810 m. Bestimmen Sie die Uberhohung der
dulBeren Schiene, die so zu bemessen ist, daB bei einer Geschwindigkeit
von 65 km h~! eine seitliche Belastung der Schienen nicht auftritt.
(Benutzen Sie die fiir kleine Winkel « zuldssige Niherung

tan & % sin &). ’

Ein Omnibus durchfihrt eine Kurve von 50 m Kriimmungsradius
mit einer Geschwindigkeit von 30 km h-!. Berechnen Sie die an
einem Fahrgast (Masse 60 kg) angreifenden Trigheitskrifte, wenn
dieser 1. im Omnibus steht, 2. sich mit der Geschwindigkeit 80 cm s—!
nach vorn und 3. sich mit dieser Geschwindigkeit nach hinten bewegt.

Eine konstante Kraft von 20 kN wirkt auf einen Korper unter einem
Winkel von 60° zu dessen Bewegungsrichtung und verschiebt ihn um
300 m. Berechnen Sie die von der Kraft verrichtete Arbeit.

Ein Arbeiter versucht vergeblich, eine schwere Last zu heben. 1. Er-
mitteln Sie die von ihm verrichtete mechanische Arbeit. 2. Erkldren
Sie die infolge seiner Titigkeit auftretende Ermiidung des Arbeiters.

An einer vertikal hingenden Schraubenfeder mit der Federkonstanten
4,5 kN m~! wird ein Korper befestigt und losgelassen. Es stellt sich
nach Abklingen der auftretenden Schwingung eine Verlidngerung der
Feder von 40 mm ein. Berechnen Sie 1. die in der Feder gespeicherte
Energie und 2. die von der Gewichtskraft verrichtete Arbeit. 3. Er-
kliren Sie die Differenz der Ergebnisse der Fragen 1. und 2. (Skiz-
zieren Sie dazu ein F,s-Diagramm, in das Sie die Gewichtskraft und
die Federkraft eintragen.)
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Gegeben: k = 4,5kNm™!; As = 40 mm Gesucht: 1. Wyg; 2. Wg
k 4500 N - 1600 mm?
1. 3.31): W,F=7As2; W = 2&1 = J
2.(3.29): W =GAs
Die Gewichtskraft G folgt aus (3.16) G = k As.
Somit ist Wg = k As? = 2W,¢ Wg =17201

3. Bild 35. Die von der Gewichtskraft verrichtete Arbeit entspricht der
Rechteckfliche OABC; die als potentielle Energie der Feder gespeicherte
Energie der Dreiecksfliche OBC. Die Hilfte der von der Gewichts-
kraft verrichteten Arbeit wird nach dem Loslassen des Korpers in
Schwingungsenergie umgewandelt. Diese wird beim Abklingen der
Schwingung durch Luftreibung und Reibung innerhalb der Feder in
Warmeenergie umgewandelt.

Gegeben sind die bei zwei Bewegungsvorgingen eines Korpers er-
mittelten F,s-Diagramme I und 2 (Bild 36). Ermitteln Sie fiir jeden
Vorgang 1. die zugehorige Funktionsgleichung und 2. die Arbeit, die
bei einer Verschiebung des Korpers um 10 m verrichtet wird.

I Welche Arbeit miissen Sie verrichten, um eine Schraubenfeder mit
vernachlassigbar kleiner Masse, die durch einen angehingten Koérper
der Masse 1,0 kg um 20 mm gedehnt wurde, um weitere 30 mm zu
dehnen? 2. Welche Arbeit ist fiir diese Feder in horizontaler Anord-
nung bei Vorspannung durch eine Kraft F;, die ebenfalls eine Deh-
nung um 20 mm hervorruft, fiir ‘weitere 30 mm Dehnung aufzu-
bringen? 3. Weshalb ist im 2. Fall die Arbeit grier?

Beieinem Stahldraht von 1,00 mm Durchmesser und 500 cm Lénge,
an den ein Korper von 1,00 kg Masse angehdngt wird, stellt sich eine
elastische Verldngerung des Drahtes von 0,32 mm ein. Berechnen Sie
1. den Elastizititsmodul des Stahles und 2. die potentielle Energie des
gespannten Drahtes.

Ein Steinquader mit der Masse 20 t wird liber eine um 30° geneigte
Ebene aus einem 15 m tiefen Steinbruch gezogen. Die Gleitreibungs-
zahl betrigt 0,25. Berechnen Sie die dabei verrichtete Arbeit.

Losen Sie Aufgabe 3.7, indem Sie vom Energiesatz ausgehen.

Ein Hammer (Masse 1,5 kg) wird auf vertikaler Bahn von 1,2m
Lénge von oben nach unten mit einer Kraft von 30'N angetrieben.
Berechnen Sie 1. die Energie und 2. die Geschwindigkeit, jeweils un-
mittelbar vor dem Aufschlagen.

Bei der Bestimmung der Geschwindigkeit einer Luftgewehrkugel
(Masse 2,2 g) kurz vor dem Aufprall auf den Kugelfang wird fest-
gestellt, daB sie eine Strecke von 10 cm in 1,25 ms durchfliegt. Be-
rechnen Sie 1. die Geschwindigkeit der Kugel und 2. die am Kugel-
fang umgesetzte Energie. 3. Erldutern Sie die beim Aufprall der Kugel
stattfindende Energieumwandlung. 4. Berechnen Sie, wie hoch ein
Korper von 100 g Masse mit der Aufprallenergie gehoben werden
konnte, wenn bei der Umwandlung keine Verluste auftriten.
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Berechnen Sie die Anfangsgeschwindigkeit eines vertikal nach oben
abgefeuerten Geschosses, wenn dessen potentielle Energie in 1000 m
Hohe doppelt so groB ist wie seine kinetische. (Rechnen Sie mit
g = 9,8ms~2 = const und vernachlissigen Sie den Luftwiderstand.)

Beim Rangieren wird ein Giiterwagen abgestoBen und rollt danach
einen 30 m langen, um 3° geneigten Ablaufberg hinab. Seine Ge-
schwindigkeit betrigt am oberen Ende der Ablaufstrecke 1,5 ms~1.
Berechnen Sie, wie weit der Wagen auf der anschlieBenden horizon-
talen Strecke noch rollen kann. Die Fahrwiderstandszahl ist 0,002.

Beim aufmerksamen Lesen findet sich auBer den direkt gegebenen GroBen
der Hinweis auf eine geneigte Ebene, den Ablaufberg. Bei der beschriebenen
Bewegung wird also die Fallbeschleunigung eine Rolle spielen. In die
Skizze (Bild 37.1) sind die gegebenen und gesuchten GroBen eingetragen.

Gegeben: s; = 30m; v, = 1,5ms™! Gesucht: s,
a =3°% ug=0002; g=098Ims?

Vorgange:

Wir erkennen, daB der Wagen, der die Anfangsgeschwindigkeit v,
hat, auf der geneigten Ebene durch die Schwerkraft beschleunigt und
gleichzeitig durch den konstanten Fahrwiderstand gebremst wird. Auf der
horizontalen Strecke wirkt nur ein konstanter Fahrwiderstand. Wéhrend
der Bewegung wird die anfangs im Wagen enthaltene Energie durch Arbeit
gegen den Fahrwiderstand in Warme umgewandelt. Wir stellen die Ener-
giebilanz auf, die bei Bewegungen mit Reibung leichter zum Ziel fihrt als
die Betrachtung der Krifte. Die Energie des Wagens besteht zum Anfang
der Bewegung aus zwei Anteilen, aus potentieller und kinetischer Energie.
Die verrichtete Reibungsarbeit ist wegen der unterschiedlichen Normal-
krifte auf den Teilstrecken (Bild 37.2) ebenfalls in zwei Teilen dar-
zustellen.

Gleichungen suchen:
Unter den genannten Voraussetzungen lautet die Energiebilanz
We + Wy = Wy + Wre (¢}

Die in (1) durchweg unbekannten GroBen eliminieren wir durch die
bekannten Gleichungen

W, = mgh 2) Wi =3imv? A3)
Wr1 = peFnis: 4 Wr2 = urFn2s; )
Aus der Skizze entnehmen wir

Fny = Geosox = mgcoso (6) Fy, =G =mg (¥}
und

h = sgsinx ®)
(2 ... (8) in (1) eingesetzt, ergibt

mgsy sinx + —'-;- v = upmgs, cos & + upmgs, (&)

Division von (9) durch m und Auflésen der Gleichung nach s, fithrt zum
cllgemeinen Ergebnis:

2gs; (sinx — pg cos &) + v3
2= 2urg
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Einheitenprobe:
GroBen im Zihler haben gleiche Einheit: ms~2 m = m? s~2. Somit ist

-2

[Sz] = F = m.
Die Einheit entspricht der gesuchten GrofBe.

Diskussion der funktionalen Abhangigkeit:

Die Ausrollstrecke nimmt mit der Anfangsgeschwindigkeit sowie mit der
Linge der geneigten Strecke und deren Neigungswinkel zu. Sie nimmt mit
wachsendem Fahrwiderstand ab. Diese Aussagen entsprechen der Er-
fahrung. DaB die Ausrollstrecke von der Masse, also dem Beladungs-
zustand des Wagens, unabhingig ist, ist zunichst erstaunlich, wird aber
verstandlich bei der Uberlegung, daB sowohl die gespeicherte Energie als
auch der Energieverlust in gleicher Weise von der Masse abhdngen, der
Einflul der Masse sich also kompensiert.

Spezielles Ergebnis berechnen:
m . m?
2-981 P 30 m (sin 3° — 0,002 cos 3°) + 1,52 -~

Sy =
m
2-0,002-9,81 =
‘Uberschlagsrechnung :
: . o n in3°=sin—~ 2 ~
Wir rechnen mit cos 3° & 1 und sin 3° = sin 0 e~ 0,05
. 20-30-005+2 750
S; X — 0,04 m=x m
Exakte Rechnung ergibt: s, =812m

Spezielles Ergebnis diskutieren:

Der errechnete Wert erscheint hoch, ist jedoch aus dem sehr kleinen Fahr-
widerstand und der Tatsache zu erkldren, daB zusitzlich keine Brems-
kraft wirkt.

Ein Giiterwagen (Masse 15 t) rollt mit der Anfangsgeschwindigkeit
3,0 ms~! einen 150 m langen Ablaufberg (H6henunterschied 4,5 m)
hinab. Bestimmen Sie die kinetische Energie 1. zu Beginn und 2.
am Ende der beschleunigten Bewegung. 3. Berechnen Sie die End-
geschwindigkeit in Kilometer je Stunde. Der Fahrwiderstand werde
vernachlissigt.

Ein Waggon mit einer Masse von 40 t rollt mit einer Geschwindigkeit
von 1,5kmh-! gegen einen Puffer und driickt dessen Feder um
50 mm zusammen. Berechnen Sie die Federkonstante der Puffer-
feder.

Ein Schilaufer (Masse 75 kg) startet zu einer Abfahrt von 120 m
Lange und 17 m Hohenunterschied mit vernachlissigbarer Anfangs-
geschwindigkeit. Die Reibungszahl betriagt 0,030. Die durch den
Luftwiderstand hervorgerufene Bremskraft betrigt im Mittel 30 N.
Berechnen Sie die Geschwindigkeit, die der Schildufer ohne zusitz-
lichen Antrieb durch Benutzen der Stocke erreicht.

In Bild 38 bewegt sich ein Korper auf geneigter Ebene (Bahn 1)
von A nach B. Bekannt sind Masse des Korpers, Linge und Hohe
der geneigten Ebene sowie die Gleitreibungszahl. Die Anfangsge-
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schwindigkeit sei Null. Bestimmen Sie allgemein 1. die Endgeschwin-
digkeit bei reibungsfreier Bewegung und 2. bei Bewegung mit Reibung.
3. Diskutieren Sie die Abhéngigkeit der Endgeschwi 1digkeit von der
Masse des Korpers und von der Form der Gleitbahn.

Gegeben: m; s; h; ug;, g vo=0 Gesucht: 1. vy; 2. v,
1. Wou = Wip

mv? N
’ngh = 2l v, = \/Zgh

2. Wou= Wip+ Wo;» Wa = uchys
= pUGmgs cos & = pgmg \/s’ - h?
mgh = ymvo3 + pome \/s* — h?

v, =V 28(h — po /T= %)

3. Das Ergebnis zeigt, daB im Fall 2 (Bewegung mit Reibung) die End-
geschwindigkeit stets kleiner ist als bei reibungsfreier Bewegung. Der
Unterschied ist um so geringer, je kleiner die Differenz s2 — A2 ist,
d. h., je steiler die Ebene verlauft. Im Grenzfall # = s liegt freier Fall
vor. Da in den Gleichungen fiir die Geschwindigkeit die Masse des
Korpers nicht vorkommt, hidngt die Geschwindigkeit nicht von der
Masse ab. Bei Bewegung ohne Reibung ist allein die Hohe, bei Bewegung
mit Reibung auch die Weglinge und damit die Form des Weges maB-
gebend.

Losen Sie Ubung 3.20 durch Aufstellen der Energiebilanz.

Ein Korper (Masse 250 g) fallt auf eine Schraubenfeder (Linge 25 cm,
Federkonstante 280 N m~!') und driickt diese um 150 mm zusammen.
Fertigen Sie eine Skizze an, und bestimmen Sie die Hohe, aus der die
Kugel fiel.

Auf einer vertikal stehenden Schraubenfeder (Federkonstante
18 N cm™?) liegt ein Korper der Masse 0,38 kg. Die Feder wird um
25 mm zusammengedriickt und losgelassen. Berechnen Sie die Ge-
schwindigkeit des Korpers beim Erreichen der Ausgangshéhe.

Auf horizontaler Unterlage aus Holz kann ein holzerner Korper
(Masse 100 g) gleiten. Er wird beim Entspannen einer um 100 mm
zusammengedriickten Feder in Bewegung versetzt und kommt nach
‘Zuriicklegen eines Weges von 100 cm zur Ruhe. Berechnen Sie die
Federkonstante der Schraubenfeder.

Auf einer geneigten Ebene aus Holz (Neigungswinkel 40°) gleitet ein
Messingkorper. Er soll am FuBl der geneigten Ebene die Geschwin-
digkeit 2,5 m s~! haben. 1. Berechnen Sie die Hohe, in der die Be-
wegung beginnen muB. 2. Berechnen Sie die Anfangsgeschwindigkeit,
wenn die Bewegung in 0,50 m HGhe beginnen soll.

Ein Kraftwagen (Masse 2,0 t) startet auf einer Stral3e, die auf 100 m
um 4 m ansteigt, und erreicht bei konstanter Beschleunigung nach
30s die Geschwindigkeit 54 km h~'. Die Fahrwiderstandszahl be-
tragt 0,03 (Bild 39). Berechnen Sie 1. die mittlere Leistung, die der
Motor aufbringen muB, sowie 2. dessen Moementanleistung am Ende
des Vorgangs.
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Gegeben: m =2,0t; vo=0; g=981ms? Gesucht: 1. P,
t =30s; v=S54kmh! 2.P,
up =0,03; Ah= 4m; As =100 m
l.Pm=-tz; W=Wy+ Wa + Wa
- Mttt o
h Ah vt
Wa=mgh; —=—3=; §=-5
_ mgvtAh
H™ "As

Zur Vereinfachung der weiteren Rechnung fithren wir den Winkel &
ein. Es ist sin x = Ah/As = 0,04.
mgut sin &

W = T @

Wa = upFus; FN=mgcoso¢=mg\/l—-sin2azmg
(fiir kleine Winkel o ist sin? « < 1)

t
w, = LEme 6))

@

Wg = Wy =
Aus (1) ... (4) folgt

my . v
Pn=—— [g(smcx + pp) + _t-]

2. 10°kg-54m (9,81 m-(004 +003)  54m )
P = 2365 2 365 30s

17,8 kW

2. Firr die Momentanleistung gilt P = Fv. Wegen der hier konstanten Kraft
F=Fy+ Fr + Fg ist P, ~ v. Die Geschwindigkeit und damit auch
die Leistung nehmen bei gleichmiBig beschleunigter Bewegung linear
zu. Fir diesen Fall ist

P. = 2P, P.=2-178kW = 356kW

Das Ergebnis 1dBt sich durch eine Rechnung iiber den Krifteansatz
bestitigen.

Der Bir einer Ramme hat eine Masse von 2,5 t. Zum Anheben auf
5,0 m Hohe steht ein Motor mit einer Leistung von 27,3 kW zur
Verfiigung. Der Wirkungsgrad betrigt 909,. Berechnen Sie 1. die
Dauer des Anhebens (Beschleunigungs- und Verzogerungsphase wer-
den vernachlissigt) und 2. die Anzahl der je Minute méglichen Hiibe
(Fallzeit beriicksichtigen).

Die sowjetische Windkraftmaschine TW 8 hat eine maximale Nutz-
leistung von 4,0 kW. Sie nutzt 429, der Windenergie aus und treibt
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eine Wasserpumpe an, die einen Wirkungsgrad von 0,70 hat. Be-
rechnen Sie, 1. wieviel Prozent der Windleistung insgesamt genutzt
werden, 2. welche Leistung der Wind zur Verfiigung stellen muB,
wenn die Anlage mit Hochstleistung arbeitet, und 3. welche Leistung
die Pumpe dabei abgibt. - '

Berechnen Sie die Geschwindigkeit, mit der man einen kleinen Hand-
wagen, dessen Deichsel 40° gegen die StraBe geneigt ist und an der
eine Zugkraft von 100 N in Deichselrichtung wirkt, ziehen kann, wenn
man tiber lingere Zeit eine Leistung von 75 W aufbringt.

Beim Eintauchen einer Raumkapsel (Masse 4,5 t) in die Erdatmo-
sphire tritt eine Beschleunigung von —40 m s~2 auf. Die Anfangs-
geschwindigkeit der Kapsel betrigt 40 Mm h~!. Berechnen Sie 1. die
auf die Kapsel wirkende Tragheitskraft und 2. die Bremsleistung der
Erdatmosphire bei Beginn der Bremsung.

Das Pumpspeicherwerk Hohenwarte 11 hat eine Turbinenleistung von
320 MW bei einer Fallhohe des Wassers von 300 m. Berechnen Sie
das Volumen des Wassers, das in 1,0 s die Turbinen durchstromt.
Der Gesamtwirkungsgrad betriagt 909;.

Die Ketten eines Kettenkarussels mit 16 Sesseln (Bild 40) haben eine
Linge von 8,0 m. Nach Erreichen konstanter Drehzahl bilden die
Ketten einen Winkel von 26° mit der Vertikalen. Berechnen Sie 1. den
Radius des Umlaufkreises der Sessel, 2. die Umlaufzeit und 3. die
mittlere Leistung, die aufgebracht werden muf3, um das vollbesetzte
Karussel in 45 s in den angegebenen Betriebszustand zu versetzen.
Die Masse eines besetzten Sessels betragt im Mittel 80 kg. Die Massen
der Seile und des Gestidnges sowie die Reibung sollen durch den an-
genommenen Wirkungsgrad von 509 beriicksichtigt werden.

Bei einem Versuch zur Demonstration des Impulserhaltungssatzes
springen gleichzeitig zwei Schiiler (Masse A 42 kg, B 57 kg) in den
in Bild 41 angegebenen Richtungen auf eine nach allen Seiten beweg-
liche Plattform auf, die sich in Ruhelage befindet. Beide Schiiler
haben die Geschwindigkeit 5,0 m s~'. Berechnen Sie 1. den Betrag
und 2. die Richtung der Geschwindigkeit, mit der sich die Plattform
nach dem Aufsprung bewegt. Die Plattform hat die Masse 30 kg.

Gegeben: mp = 30kg; m, = 42kg; mg = 5T kg Gesucht: 1. v
vp =0; va =vg=S5ms! 2.«
1. Impulserhaltungssatz:

Pp+ Pa+Ps =p
(vor dem Sprung) (nach dem Sprung)

P =mpp = 0;  pa = mabs; pa = mgvg; p=mp
Daraus folgt mit m = mp + m, + mg fiir den Betrag von v
b 2 Vo) + (mgg)?

m mp + my + mg

/(@22 - 52 + 572 - 5%) kg? m? 274 m g1
v= (0 + 42 + ST kg 52 =2 mS
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. 42-5
2. tanax = — = — ; tan « = —— = 0,737; « = 36,4°
Ps mpgvg 575

Ein GeschoB3 von 10 kg Masse verlaBt das Geschiitzrohr mit einer
Geschwindigkeit von 800 m s~!. 1. Berechnen Sie die Riicklaufge-
schwindigkeit des Rohres, wenn dieses eine Masse von 650 kg hat.
2. Berechnen Sie die mittlere Kraft, die notwendig ist, um den Riick-
lauf auf einem Wege von 0,80 m abzubremsen.

Von einem Wagen (Masse 40 kg), der mit einer Geschwindigkeit von
2,0 m s~? rollt, springt ein Mensch (Masse 80 kg) mit der Geschwin-
digkeit 10 m s~! (relativ zum Wagen) schrig nach vorn im Winkel
von 30° zur Bewegungsrichtung des Wagens ab. Berechnen Sie die
Geschwindigkeit des Wagens nach dem Sprung.

Die Diise eines Raketentriebwerks liefert 12 s lang einen Schub von
15 kN. Berechnen Sie die Geschwindigkeitsanderung der Rakete, die
eine als konstant angenommene Masse von 4,5 t hat.

Zur Messung der Geschwindigkeit eines Geschosses (Masse 5,0 g)
schieit man dieses in einen pendelnd aufgehingten Holzklotz, der
dadurch aus der Ruhelage ausgelenkt wird. Das GeschoB3 bleibt im
Klotz stecken (ballistisches Pendel, Bild 42). Berechnen Sie die Ge-
schoB3geschwindigkeit unter der Voraussetzung, daf3 der Klotz eine
Masse von 2,5 kg hat und beim Pendeln eine H6he von 50 mm iiber
der Ruhelage erreicht.

Gegeben: m; = 50g; m; = 25kg Gesucht: v,
h =350mm; v,=0; g=98ms?
Es laufen zwei Vorgidnge nacheinander ab: der unelastische Stof3 und die

darauf folgende Pendelbewegung.
Fiir den unelastischen StoB gilt nach dem Impulserhaltungssatz

myvy = (my + my) v, (D

Daraus laBt sich die GeschoBgeschwindigkeit v, bestimmen, wenn die
Geschwindigkeit v, des Pendels unmittelbar nach dem Stof3 bekannt ist.
Diese Geschwindigkeit ist zugleich die Anfangsgeschwindigkeit der Pendel-
bewegung und folgt aus dem Energieerhaltungssatz:

W, p2 = Wi,
(my + my) gh =3(m; + my) vk 2
Aus (1) und (2) erhalten wir die gesuchte Geschwindigkeit
m; + m —_—
vy =¥\/2gh v, =496 ms!
1 _

Das GeschoB einer Pistole hat die Masse 15 g. Es dringt in einen Holz-
klotz (Masse 1,20 kg) ein, der auf einer horizontalen Stahlplatte gleitet
und bei einer Gleitreibungszahl von 0,40 nach 1,80 m zur Ruhe
kommt. 1. Berechnen Sie die GeschoBgeschwindigkeit. 2. Geben Sie
an, welcher Teil der GeschoBenergie durch Reibungsarbeit und wel-
cher Teil durch Verformungsarbeit (Gescho3 und Holzklotz) in
Wirme umgewandelt wird.
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Eine Stahlkugel (Masse 20 g) fillt aus 1,0 m Hohe so auf eine hori-
zontal liegende schwere Stahlplatte, daB3 sie mit gleichem Betrag der
Geschwindigkeit reflektiert wird. Durch Kurzzeitfotografie wird fest-
gestellt, wie sich die Kugel beim Auftreffen elastisch verformt. Ein
Versuch zeigt, daB3 diese Verformung der Belastung durch eine Kraft
von 160 N entspricht. Berechnen Sie, wie lange Kugel und Platte in
Beriihrung stehen.

Eine Stahlkugel (Masse 120 g) fillt mit der Geschwindigkeit 10 m s~!
vertikal auf die gehirtete ebene Fliche eines Ambosses. Ermitteln
Sie, wie hoch die Kugel steigt, wenn rein elastischer Sto3 angenom-
men wird.

Eine Stahlkugel mit der Masse 1,5 kg sto3t mit der Geschwindigkeit
45 m s~! zentral auf eine ruhende Stahlkugel (Masse 60 g). Berecknen
Sie die Geschwindigkeit, mit der die Kugel nach dem elastischen
Sto3 davonfliegt.

Eine unbewegt hingende Stahlplatte (Masse 10 kg) wird mit einem
Hammer (Masse 1,0kg) angeschlagen (Auftreffgeschwindigkeit
25 ms~!). Berechnen Sie die Geschwindigkeiten, mit denen sich die
Korper nach dem als elastisch angesehenen Sto3 bewegen.

Ein Kraftwagen (Masse 2,5t) fihrt mit einer Geschwindigkeit von
80 km h~! auf einen vor ihm fahrenden Wagen (Masse 0,8 t, Ge-
schwindigkeit 60 km h—') auf. Berechnen Sie die Geschwindigkeiten
der beiden Wagen nach dem als unelastischen StoB3 zu behandelnden
Aufprall.

Nach einem Verkehrsunfall, bei dem zwei Wagen frontal zusammen-
stieBen und miteinander verklemmt noch 30 m in Richtung des
schwereren Fahrzeugs weiterrutschten, ist zur Kliarung der Schuld-
frage die Geschwindigkeit des schwereren Wagens vor dem Aufprall
zu bestimmen. Die Massen der Fahrzeuge betragen 2000 kg und
800 kg, die Geschwindigkeit des leichteren war vor dem Unfall
42 km h~!. Die Gleitreibungszahl betrage 0,20. Berechnen Sie 1. die
Gleitgeschwindigkeit nach dem StoB, 2. die Anfangsgeschwindigkeit
des zweiten Wagens und 3. den Energieanteil, der zur Deformation
der Wagen verbraucht wurde.

Vier verschieden groBBe Korper unterschiedlicher Masse sind in einer
Anordnung nach Bild 43 durch eine starre Stange verbunden. Be-
rechnen Sie den Abstand des Massenmittelpunktes des Systems vom
Massenmittelpunkt des Korpers /. Die Masse der Stange bleibe un-
beriicksichtigt. Die Koérper I ... 4 haben die Massen 5,0 kg, 12,0 kg,
3,0 kg und 10,0 kg, die Abstinde /; ... I; sind 0,60 m, 0,30 m und
0,80 m.

Bei einem Demonstrationsversuch zum Impulssatz rollen zwei zu-
sammengekuppelte Wagen (Massen 50 g und 200 g) reibungsfrei mit
der Geschwindigkeit 50 cm s~! auf einem Gleis, wobei der leichtere
Wagen der in Fahrtrichtung vordere ist. Beim Losen der Kupplung
wird zwischen beiden Wagen eine Federkraft wirksam, die die Wagen
in vernachlissigbar kurzer Zeit so voneinander abst68t, daB sich die
Geschwindigkeit des vorderen Wagens verdoppelt. Berechnen Sie die
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Zeitdifferenz, in der die Wagen einen 500 cm von der Entkupplungs-
stelle entfernten Ort erreichen. Die Wagen werden als Massenpunkte
betrachtet.

Gegeben: my = 50g; s = 500cm Gesucht: At
my, =200g; v=50cms™!; v, =2
K 5
i A = —_ = — e —
Esist Ar=1¢, — ¢, 5 o1 (€3]

Die Geschwindigkeiten v, bzw. v, ergeben sich aus der Uberlagerung der
Anfangsgeschwindigkeit v und der durch den StoB bewirkten Geschwindig-
keiten vy bzw. vg,.

vy =vg; + v =2, tor =20—0v=0v
U2=Uoz+”

v, folgt aus dem Impulserhaltungssatz:

m, my
mvoy = —M3lo3z; Vo2 = — — Vg = — ——0
my my
Somit ergibt sich
m my
v=——v+v=0v|l —— 2)
my my

Aus (1) und (2) folgt

m;

A,=_’___‘_=i(L_L
(l m,) 2v v \my; —m 2
v

At = ——
50 cm

500cms (ZOOg 1
150 g 2)

= 8,33s

In Bild 44 greifen die Krifte F; = 100 N und F, = 80 N in den an-
gegebenen Richtungen am Rand einer Scheibe (Radius 50 cm) an,
deren Achse, senkrecht auf der Scheibe stehend, durch den Punkt A4
lauft. Berechnen Sie 1. das Drehmoment der Kraft F,, 2. das Dreh-
moment der Kraft F,, 3. die Resultierende der beiden Momente. —
Uberpriifen Sie das Ergebnis, indem Sie 4. die Resultierende der
Krifte bilden und 5. das Drehmoment dieser Resultierenden bestim-
men. 6. Erliutern Sie, wie sich die Ergebnisse dndern, wenn beide
Krifte nicht in der Scheibenebene, sondern unter einem Winkel
0 = 45° gegen diese Ebene an der Scheibe angreifen.

Ein Spanndraht wird dadurch straff gehalten, daB er nach Bild 45 an
einer durch schwere Betonkldtze belasteten Rolle befestigt wird. Be-
rechnen Sie allgemein die Zugkraft, die auf den Spanndraht ausgeiibt
wird, wenn die Masse der Klotze sowie die Radien r, und r, bekannt
sind.

Berechnen Sie die maximale Kraft, die an der Tretkurbel eines Fahr-
rades (Bild 46) wirken kann, wenn die Kraftiibertragung zwischen
Reifen und StraBe ohne Gleiten erfolgen soll. Das Hinterrad ist durch
die Gewichtskraft des Fahrers und des Rades mit 600 N belastet.
Die Haftreibungszahl betragt 0,30.
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Im mechanischen System nach Bild 47 ist ein um die Achse 4 dreh-
barer Hebel (Gewichtskraft 100 N) um 45° aus der Vertikalen aus-
gelenkt und wird durch die Krifte Fy und F; in dieser Lage gehalten.
Berechnen Sie 1. die Kraft F, und 2. die im Achslager angreifende
Kraft F; (Betrag und Richtung).

An einer quadratischen Holzplatte von l,OmISeitenléingc, die auf
einer Wasseroberfliche schwimmt, greifen die in Bild 48 angegeberien
Krifte F,, F, und F; an. 1. Untersuchen Sie, wie sich die Platte unter
Einwirkung dieser Krifte bewegt. 2. Schlagen Sie eine Kriftearord-
nung vor, die die Platte ins Gleichgewicht bringt.
Gegeben: F; = 20N; a = 60° Gesucht: Fy

F, = 10N; Fy=173N

B =y=90° | =10m
1. Gleichgewichtsbedingungen:

SF, = —=Fjcosax + F, = —20N-cos60° + 10N = 0

3F, = —F;sinax + Fy=—20N"sin60° + 173N =0

ZM,=0; 3IM,=0;
2 M, =F,lcosx — F,lsina + F3l (um Punkt 4)
SM,=10Nm+0

2> F = 0 bedeutet a = 0 (Platte als Ganzes bewegt sich nicht);
2 M > 0 bedeutet, daB die Platte eine Drehbewegung entgegen dem
Uhrzeigersinn ausfiihrt, und zwar um eine durch den Schwerpunkt
gehende Achse.

2. Um die Platte ins Gleichgewicht zu bringen, muB8 ein Drehmoment
von —10 N'm wirksam werden. Dies konnte beispielsweise durch ein
Kriftepaar nach Bild 49 (F,, Fs) geschehen.

Berechnen Sie die Lage des Schwerpunktes fiir das in Bild 50 darge-
stellte 1,00 m lange Winkelprofil (MaBangaben in Millimeter).

Berechnen Sie das auf die Lingsachse bezogene Massentrigheits-
moment eines oben offenen zylindrischen GefdBles aus 2,00 mm
dickem Stahlblech (Innenradius 30,0 cm, Héhe 50,0 cm). 1. in leerem
Zustand und 2. mit Wasser gefiillt.

Gegeben: r = 300cm; h=500cm; d=200mm Gesucht: 1. J,
Ore = 7,86 kgdm™3; pgw = 1,00 kgdm3 2. Jges

1. Das Trigheitsmoment des leeren GefaBles J, ist die Summe aus dem
Tragheitsmoment des Zylindermantels Jy; und dem des Bodens Jg.
(Wegen der geringen Dicke des Blechs rechnen wir mit r, =r, = r
= 30,0 cm.)

Ju = myr? = 2nr® dh g,

Jp = Ympr? = ymrédor.

,
Jy = Jy + Js = nridog. (Z.h +'7); Ji = 1,53 kg m?2
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2. Fiir das Tragheitsmoment des Wassers gilt

Jw = Imyr? = inrthow Jw = 6,36 kg m?
Jges = 1 + Jw Jees = 7,89 kg m?

Berechnen Sie das Verhiltnis der Massentrigheitsmomente einer
Kugel und eines Wiirfels gleicher Masse und Dichte (Achsen durch
Schwerpunkt, beim Wiirfel senkrecht zur Seitenfliche).

Die Drehachse A eines Vollzylinders (Masse 360 g) lduft parallel zur
Zylinderachse. Der Abstand zwischen Zylinderachse und Drehachse
betrigt ein Drittel des Radius, das Trigheitsmoment um die Achse A4
1000 g cm?. Berechnen Sie den Zylinderradius.

Eine 0,50 m lange Stahlstange mit quadratischem Profil (Kanten-
lange 30 mm) ist drehbar um eine ihrer Langskanten gelagert. Sie soll
in 0,50 s aus dem Stillstand gleichmiBig auf die Drehzahl 2000 min—!
beschleunigt werden. Berechnen Sie das dafiir erforderliche Dreh-
moment.
Gegeben: | = 0,50m; a=30mm; ¢=0,50s Gesucht: M

ore = 7,86 gcm™3; n = 2000 min~!

2nn

M=J 1); o = A—w = )
At t
Ju=Js + ms? 3); m = gpe V = gpe @*/ “
1 2 . a
Js = -g-ma 4); s = \/2— ©)
Aus (3) ... (6) ergibt sich
Ja= —;—a‘len + —;‘“4191-1 = %a“[QFe ™
Aus (1), (2) und (7) folgt
4nna*log.
M= —"" M = 0,889 Nm

3t

1. Berechnen Sie die kinetische Energie (in Kilowattstunden) eines
Turbogenerators, dessen Rotor die Drehzahl 3000 min-! und das
Massentrigheitsmoment 5,0 - 10* kg m? hat. 2. Berechnen Sie die
Zeit, in der der Rotor zum Stillstand kommt, wenn ein Bremsmoment
von 2,5 kN m wirkt.

Berechnen Sie die kinetische Energie der Erde auf der als kreisférmig
anzunehmenden Bahn um die Sonne (Energie der Revolution).

Ein Wirbelsturm 148t sich nidherungsweise als ein rotierender Luft-
zylinder ansehen. 1. Berechnen Sie die Energie, die in einem Wirbel-
sturm gespeichert ist, der einen Durchmesser von 60 km und eine
Hohe von 6 km hat und an dessen duBerem Rand eine Windge-
schwindigkeit von 180 km h—! herrscht. Die Dichte der Luft sei
1,20 kg m~3. 2. Uberschlagen Sie, in welcher Zeit das DDR-Kern-
kraftwerk Nord, das mit einer Leistung von 3,5 GW projektiert ist,
die Energie des Wirbelsturms bei dauernder Volleistung produziert.
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Ein Rad mit dem Durchmesser 1,2 m hat beziiglich der Rotations-
achse das Massentrigheitsmoment 44 kg m2. Es rotiert mit der Dreh-
zahl 100 min—!. Zum Abbremsen des Rades wird ein Bremsklotz mit
einer Kraft von 600 N auf-den Radumfang gepreB3t. Die Reibungszahl
betragt 0,40. 1. Berechnen Sie die kinetische Energie des Rades vor
dem Bremsen. 2. Geben Sie die Anzahl der Umdrehungen an, die das
Rad beim Bremsen bis zum Stillstand ausfiihrt.

Eine Kugel und ein Vollzylinder mit gleicher Masse und gleichem
Durchmesser rollen auf einer geneigten Ebene. Ermitteln Sie, welcher
von den beiden Korpern zuerst den FuBpunkt der geneigten Ebene
erreicht. Der Start erfolgt gleichzeitig in gleicher Hohe.

Ein homogener Vollzylinder (Masse 2,0 kg, Radius 50 mm) rollt auf
horizontaler Unterlage auf eine geneigte Ebene zu und hat am FuB
der Ebene die Drehzahl 15 s~!. Berechnen Sie die Hohe, die der Zy-
linder erreicht.

Gegeben: m = 2,0kg; r = 50 mm Gesucht: h
n = 15s7"
Energiesatz: Wy = W,
W, = mgh; h= ﬂ n
mg

Fiir die Berechnung von W, gibt es zwei Wege:
1. Es wird die Rotation um die Zylinderachse betrachtet. Dann gilt

Wy = Wioe + Wi trans (2)
Is m

Wrol = ) w (3) ./,.v = '2—I‘ (4)
. m

Wy trans = 7 v? (5 v = wr = 2nnr (6)

Aus (2) ... (6) folgt
W, = 3x2nr’m (7)

2. Es wird die Rotation um die momentane Drehachse betrachtet.
Dann gilt fiir das Massentragheitsmoment J, nach dem Steinerschen

J
Satz J, = Js = mr?. Aus Wy = %wz folgt fiir W, das Ergebnis (7)
wie nach dem ersten Weg. =
Fiir die Hohe A ergibt sich aus (1) und (7)

In2nr?

h= — h=1,70m
g

Der Rotor eines Generators, der als homogener Vollzylinder be-
trachtet wird, hat den Radius 25 cm und die Masse 1600 kg. Er soll
aus dem Stillstand in 2,0 s gleichmidBig auf eine Drehzahl von
500 min~! beschleunigt werden. Berechnen Sie 1. das erforderliche
Drehmoment, 2. die aufzuwendende Energie, 3. die mittlere und 4. die
maximale Leistung (in Kilowatt).
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Berechnen Sie die MindesthGhe, aus der der Wagen auf der «Todes-
bahn» (Bild 51) losgelassen werden muB, damit er die Schleife ohne
Absturz durchfdhrt. (Betrachten Sie den Wagen als Massenpunkt.)

Eine diinne, lange Stange (Linge 50 cm) ist in 4 drehbar gelagert.
Sie wird aus der in Bild 52 angegebenen Lage 7 losgelassen. Berechnen
Sie 1. die Geschwindigkeit des freien Endes der Stange in Lage 2 und
2. die Geschwindigkeit in Lage 2, wenn am Ende der Stange ein als
Massenpunkt zu betrachtender Korper befestigt ist, der die gleiche
Masse wie die Stange hat.

Das freie Ende einer nach Bild 53 drehbar gelagerten Stange (2,5 m
lang, Masse 8,2 kg) hat in der angegebenen Lage eine Geschwindig-
keit von 1,0 m s~!. Berechnen Sie das Bremsmoment, das notwendig
ist, um die Stange nach einer Drehung um 180° in der tiefsten Lage
zur Ruhe zu bringen.

Berechnen Sie den Drehimpuls der Erde beziiglich ihrer Rotation
um die Erdachse. Die Erde ist als homogene Kugel anzunehmen.

Bei einem Drehschemelversuch nach Bild 54 rotiert die Scheibe mit

“der Versuchsperson mit 2 Umdrehungen je Sekunde. Dabei trigt

diese, mit ausgestreckten Armen auf der Scheibe stehend, in jeder
Hand eine Hantel von 3,0 kg Masse. Die Hanteln beschreiben einen
Kreis von 85 cm Radius. Berechnen Sie, wie sich die Drehzahl dndert,
wenn die Versuchsperson die Hanteln dicht an den Ko6rper heranzieht
(Radius 20 cm). Fiir Drehschemel und Versuchsperson (ohne Han-
teln) wird in beiden Fillen ein Trigheitsmoment von insgesamt
2,5 kg m? angenommen.

-1

Gegeben: m = 3,0kg; n, =2s Gesucht: n,

Jop=25kgm?; r,=85cm; r, =20cm
Nach dem Drehimpulserhaltungssatz ist L, = L, und damit J,w;, = J,0,.

J.
Mit w = 2rnn folgt n, = —J—l— ny. .
2
Das Gesamttriagheitsmoment ist J = Jp + 2Jy, fir eine Hantel ist

Jy = mr?. Somit folgt

Jp + 2mr? _
ny = Jp + 2mr3 ny ny =251, = 50s7!

~

Ein Vollzylinder (Radius 25 cm) rotiert mit der Drehzahl 100 min—!
um seine Lingsachse. Seine Masse betriagt 360 kg. Berechnen Sie
1. seinen Drehimpuls und 2., wie lange ein Drehmoment von 20 N m
wirken muB, damit sich die Drehzahl verdoppelt.

Eine runde Scheibe mit dem Durchmesser 40 cm und der Masse 40 kg
rotiert mit 180 Umdrehungen je Minute. An einem Stift, der 10 cm
von der Achse angebracht ist, wird die Rotation in 50 ms gestoppt.
Berechnen Sie die mittlere Kraft, mit der der Stift dabei belastet
wird.

Erldutern Sie mit Hilfe des Drehimpulserhaltungssatzes, wie ein
Sportler einen Salto ausfiihrt.
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2.3.4. Beispiele und Ubungen zur Mechanik der Fliissig-
keiten und Gase

In einem vorschriftsmdfig behandelten Einkochglas ist ein der Um-
gebungstemperatur entsprechender Dampfdruck vorhanden. Er be-
trage 3 kPa (& 20 Torr). Berechnen Sie die Kraft, mit der ein Deckel
von 10,5 cm Durchmesser auf das Glas gepret wird. Der Luftdruck
sei 101 kPa (= 760 Torr).

Gegeben: pp = 3 kPa; p, = 101 kPa Gesucht: F

d = 10,5¢cm
Aus (4.1) folgt F = pA. Fiir den Druck setzen wir hier die Druckdifferenz
ein. Somit ist

nd?
F=(p.— pD)T

T
F = (101 — 3)kPa - e 10,52 cm?

98-10% N -r- 10,52 m?
= — o = 89N

Ein evakuierter Behilter ist oben mit einem kreisrunden Deckel ver-
schlossen (Durchmesser 500 mm; Masse 10 kg). Berechnen Sie die
Kraft, die zum Anheben des Deckels erforderlich ist.

Otto von Guericke demonstrierte 1654 die Wirkung des Luftdrucks
durch den beriihmten Versuch mit den Magdeburger Halbkugeln.
Zwei Halbkugelschalen von 42 cm Durchmesser wurden luftdicht
schlieBend aneinandergesetzt und der Innenraum evakuiert. An
jeder Halbkugel wurde sodann eine Gruppe von 8 Pferden angesetzt,
um die Kugelhilften voneinander zu trennen. Schitzen Sie ab, welche
Kraft ein Pferd etwa aufbringen mubBte.

Ein aus zwei zylindrischen Teilen nach Bild 55 zusammengesetztes
GefalB ist bis zur Hohe 4, mit Wasser gefiillt. Berechnen Sie die Kraft
auf die Kreisringfliche (angedeutet durch eine dicke Linie in der
Schnittdarstellung). Die Hohen sind 500 mm und 50 mm, die Durch-
messer 20 mm und 80 mm.

Ein Behélter mit Einfiillstutzen (Bild 56) ist einmal bis zur Hohe A,
und ein anderes Mal einschlieBlich Einfiillstutzen mit Fliissigkeit
gefiillt. 1. In welchem Verhiltnis stehen die Schweredriicke am Boden
des Behiilters fiir diese beiden Fiillungen? 2. Nennen Sie Anwendungs-
beispiele.

Berechnen Sie nidherungsweise die Luftdruckinderung, die sich er-
gibt, wenn Sie den Luftdruck einmal am Erdboden und zum anderen
in 100 m Hohe messen, in den Einheiten Pascal und Millibar. (Rech-
nen Sie mit der Dichte der Luft bei 0 °C.)

In welcher Hohe iiber der Erdoberfiiche ist bei 0 °C der Luftdruck
gleich /5, /3, '/s und !/;, des Luftdrucks an der Erdoberfliche
(100 kPa)? Rechnen Sie niherungsweise mit der als konstant ange-
nommenen Fallbeschleunigung 9,8 m s~2.
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Ein offenes Fliissigkeitsmanometer zeigt einen Hohenunterschied
der Quecksilberoberflichen von 45 mm an (Bild 57). Berechnen Sie
1. den Uberdruck und 2. den Druck des Gases. Der Luftdruck sei
990 mbar.

Erldutern Sie qualitativ den Unterschied zwischen einem offenen
(Bild 57) und einem geschlossenen Fliissigkeitsmanometer (Bild 58).
Im geschlossenen Schenkel des U-Rohrs sei Luft eingeschlossen,
deren Temperatur konstant gehalten wird. Die Fliissigkeit sei Wasser.

In einem mit groBer Beschleunigung anfahrenden Wagen wird ein
mit Wasserstoff gefiillter Ballon losgelassen. Beschreiben Sie die Be-
wegung, die der Ballon im Wage;n ausfiihrt.

Beschreiben Sie den Aufstieg eines mit Wasserstoff gefiillten Ballons
in der Atmosphire fiir zwei verschiedene Fille: 1. fiir einen Ballon
mit nichtdehnbarer Hiille und 2. fiir einen (Gummi-)Ballon, dessen
Hiille mit vernachlissigbar kleinem Kraftaufwand dehnbar ist.

Ein quaderférmiger Korper aus Holz (Dichte 0,8 kg dm~3; Hohe
25 ¢cm) schwimmt in Wasser. Berechnen Sie die Eintauchtiefe.

Um wieviel Prozent ﬁndert sich die Eintauchtiefe des Korpers der
Ubung 4.12, wenn 1. die Dichte des Korpers oder 2. die Dichte der
Fliissigkeit um 4 %, groBer wird?

Welchen Wert hat die mittlere Dichte des menschlichen Korpers
ungefahr ? Leiten Sie die Antwort aus der Beobachtung her, dal3
der tief einatmende Mensch in Wasser schwimmt, der ausatmende
aber untergeht (jeweils ohne Schwimmbewegung).

Ein Ardometer (Bild 59) mit der Masse m taucht in eine Fliissigkeit
der Dichte ¢ ein. Berechnen Sie die Eintauchtiefe A.

Ein diinnwandiges Kistchen hat die Masse 350 g, die Grundflache
320 mm - 180 mm und die Héhe 120 mm. 1. Welche Masse Sand
darf eingefiillt werden, wenn der Kasten in Wasser 20 mm tief ein-
sinken soll? 2. Wird mehr oder weniger Sand benétigt, um in Ol die
gleiche Eintauchtiefe zu erzielen? 3. Welche Masse Sand darf maximal
noch hinzugefiigt werden, damit der Kasten gerade noch schwimmt?
Geben Sie fiir den letzten Fall an, welche Hohe trockener Sand im
Kasten einnimmt. Setzen Sie dafiir niherungsweise InnenmaBe =
Auflenmale.

Gegeben: my = 350g; a = 320mm  Gesucht: 1. mg
b=180mm; H = 120 mm 2.my; = my?
zul.: h=20mm; pw =10gcm™3 3. Amg, Hy
zu 2.: h=20mm; g4 < ow.
zul3.: h=H;, gs=15gem™3
1. Aus dem Ansatz fiir das Kriftegleichgewicht Gx + Gs = F, folgt mit
F, = pwabgh

ms = pwabh — my

mg=1gem3-32cm-18cm-2cm — 350g = 802 ¢
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2. Wegen mg = ms + mg = ggabh ist mys ~ op. Bei kleinerer Dichte
der Flissigkeit F wird folglich weniger Sand benétigt, wenn die gleiche
Eintauchtiefe erreicht werden soll.

3. Amg = gwabh — mg — mg; Amg = 5,76 kg
ms + Ams _ (802 + 5760) gem?3, %
ST T gab $=75g 32cm-18cm  —om

Der in Ubung 4.12 betrachtete Holzquader wird so festgehalten, daB
sich seine Oberfliche 2 m unter der Wasseroberfliche befindet. Linge
und Breite des Quaders sind 100 cm und 50 cm. 1. Berechnen Sie ein-
zeln die am Quader in vertikaler Richtung angreifenden Krifte. 2. Be-
rechnen Sie die Beschleunigung, mit der der Quader aufsteigt, wenn
er losgelassen wird. 3. Berechnen Sie ohne Beriicksichtigung der
Reibung die Zeit, in der der Korper die Wasseroberfliche erreicht.
4. Stellen Sie den EinfluB von bewegungshemmenden Kriften in
einem v,r-Diagramm dar.

Weshalb wird eine wenig geoffnete Tiir infolge Luftzug zugeschlagen?
Erkldren Sie diese Erscheinung an Hand einer Skizze.

In einem Flugzeug zeigt ein Prandtisches Staurohr einen dynami-
schen Druck von 28,7 mbar an. Berechnen Sie die Relativgeschwin-
digkeit des Flugzeugs gegeniiber der Luft, die eine Temperatur von
0 °C und einen Druck von 101,3 kPa aufweist.

In einem Wasserstrom (4 °C) zeigt eine Venturidiise einen Druck-
unterschied von 100 Pa (= 10 mm WS) an. Die Querschnitte ver-
halten sich wie 3 : 1. Berechnen Sie die Geschwindigkeit, mit der das
Wasser an der Stelle groBeren Querschnitts durch die Diise stromt.

In einer Wasserleitung herrscht bei geschlossenem Hahn ein Druck

von 0,6 MPa (x 6 at). Wenn das Wasser mit einer Geschwindigkeit

von 3,5m s ! aus dem gedffneten Hahn flieBt, dndert sich der sta-

tische Druck. Berechnen Sie die Druckénderung in Prozent. Geben

Sie weiterhin die relative Anderung des gegen den Luftdruck 0,1 MPa
~ 1 at) gemessenen statischen Uberdrucks an.

Eine Kugel (Radius 3,0 mm, Dichte 2,5 g cm~3) durchfillt in einer
Fliissigkeit der Dichte 0,90 g cm~3 eine Strecke von 10 cm in 0,70 s
mit konstanter Geschwindigkeit. Berechnen Sie die dynamische Vis-
kositidt der Fliissigkeit in Pascalsekunden unter der Annahme einer
laminaren Umstrémung. '

Gegeben: r = 3,0 mm; ok = 2,5gcem™3 Gesucht: n
er=09gem™3; s =10cm; ¢=0,70s

Auf die Kugel wirken drei Krifte, die miteinander im Gleichgewicht
stehen:

Gk =F, + Fp ()
(3.6) und (3.3) Gx = myg = Vioxe @
@.11 F, = Gr = merg = Vrorg 3)
Ve = Wk . @
@.21) Fp = 6mnor (5)



4.23

4.24

5.1

2.3.5. Beispiele und Ubungen zur kinetischen Theorie der Wirme 67

4
Kugelvolumen Vg = T'rrr’ ©)

@17 b= % Q)

Nun haben wir 7 Gleichungen mit 7 unbekannten Variablen (Gk, F,,
Fx, Vk, V¥, 1, v), davon ist eine gesucht (n). Einsetzverfahren: (2), (3)
— unter Beachtung von (4) und (6) — sowie (5) in (1) eingesetzt, ergibt
Vkgt(oxk — or) _ 2tgr¥(ox — oF)

6resr 9s

2:0,75s-9,81m(3-1073)2m?(2,5-09) g
"= 9-10cm s2 cm3
2:7-981-9-1,6 smm? kg - 102 - 10°

L A 7 1o-1-6-1.
9 10 103 ms?2 m3
L sm3kg kgm s Ns
Einheitenrechnung : e - 2 mE o Pas

7 = 0,22 Pas (= 220 cP)

Berechnen Sie die bei einem Kraftwagen zur Uberwindung des Fahr-
widerstandes und der Luftreibung erforderliche Leistung bei einer
Geschwindigkeit von 100 km h~! auf Asphalt. Die Gesamtmasse des
Wagens betrigt 1,3 t, die Querschnittsfliche 2,06 m2, der Wider-
standsbeiwert 0,5, die Dichte der Luft 1,2 kg m~3 und die Fahrwider-
standszahl 0,022.

Erldutern Sie an Hand des allgemeinen Ergebnisses von Ubung 4.23,
wie sich 1. der Leistungsanteil zur Uberwindung des Fahrwider-
standes und 2. der Leistungsanteil zur Uberwindung des Luftwider-
standes bei Verdoppelung der Geschwindigkeit eines Fahrzeugs dn-
dern.

2.3.5. Beispiele und Ubungen zur kinetischen Theorie der
Wirme

Berechnen Sie die Boltzmann-Konstante. Gehen Sie dabei von der
Aussage aus, daB8 unter Normbedingungen das Verhiltnis der Teil-
chenanzahl zum Volumen gleich der Loschmidt-Konstanten ist.
Gegeben:p = 101,3kPa; T = 273,15K Gesucht: k

N, = 2,687 - 1025 m~3
Aus (5.2), (5.4), (5.12) und (5.13) folgt
pV = NkT

Mit =¥ = N, wird daraus k = =2
it 5= N wird daraus k = ™,

101,3-10°Pa m?3
T 273,15K - 2,687 - 1025

Bemerkung: Die Boltzmann-Konstante gibt die Energie an, die ein Mole-

=1,38-10"23J K



68

2. Ubungen

kil des idealen Gases aufnimmt (abgibt), wenn die Temperatur des Gases
um 1 K steigt (fallt).

5.2 Berechnen Sie das spezifische Volumen von Wasserstoff unter Norm-
bedingungen.

5.3 Berechnen Sie iiberschliglich das Volumen V,,,, das einem einzelnen
Wassermolekiil zur Verfiigung steht, und zwar 1. in Wasser der
Dichte 1 g cm~3 und 2. in Wasserdampf der Dichte 0,6 kg m~3.

Gegeben: o, = 1gcm™3; ¢, = 0,6 kgm™ Gesucht: Vo 15 Vinot 2
M = 18 g mol~!
. vV m
Es ist Vyo = - Aus (3.3) V= Q— und (5.4) N = Njn ergibt sich
Vot = ——— ; mit (5.2) — = M (molare Masse) fol
mol = N’ mit (5.2) = (molare Masse) folgt
M 18 g cm? mol
_ . - = 3-.10-29 m3
Vo = 5y 3 Vot = S0 o602 1028 — 20T mY
. . 1 . Vmol 2 €1 .
Das Ergebnis zeigt, daBl V,,,; ~ —, daher gilt ——— = — und damit
o Vmol 1 Q2
A -26 3
Vimor 2 = Vo1 Z Vo2 = 5+ 10 m

5.4 Berechnen Sie das Volumen, das einem Sauerstoffmolekiil in fliissigem
O  Sauerstoff der Dichte 1,1 gcm~2 zur Verfiigung steht. Schitzen Sie
daraus den Durchmesser eines O,-Molekiils ab.

5.5 Um eine Vorstellung von der GroBenordnung der Avogadro-Kon-
stanten zu erhalten, machen wir folgenden Gedankenversuch: Die in
1 g Wasser enthaltenen Molekiile werden gleichméBig iiber die Ober-
fliche der Erdkugel verteilt. Bestimmen Sie, wieviel Molekiile hierbei
auf jeden Quadratzentimeter der Erdoberfliche entfallen.

5.6 Berechnen Sie die Dichte des Sauerstoffs in einer 40-1-Stahlflasche, in
der das Gas bei einer Temperatur von 17 °C unter-einem Uberdruck
von 14,4 MPa (gegeniiber dem Luftdruck von 0,1 MPa) steht.

Gegeben: V = 401; M = 32 kg kmol~! Gesucht: o
T=29K; p =14,5MPa
Mp . - .
e=gr (aus der Zustqndsglelchung und der Definition der Dichte)

32 kg - 14,5 - 10° Pa - kmol - K
¢ = mol 83147 -290 K

@ Berechnen Sie .das Volumen, das 0,24 kg Luft bei einem Druck von
98,6 kPa und einer Temperatur von 17 °C einnehmen.

5.8 Berechnen Sie deid Druck, der erforderlich ist, um 4,2 kg Stickstoff
bei einer Temperatur von 7,0 °C auf 0,48 m3 zu komprimieren.

Berechnen Sie die Masse der Luft in einem Zimmer von 5,00 m Linge,
4,00 m Breite und 3,00 m Hohe bei 20 °C und 98,0 kPa.

=192 kgm3
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3,53 g eines Gases richmen bei einer Temperatur von 20 °C und einem
Druck von 97,4 kPa ein Volumen von 2,01 ein. Berechnen Sie die
relative Molekiilmasse des Gases.

Berechnen Sie die innere Energie von 0,24 kg Helium bei einer Tem-
peratur von —13 °C.

2.3.6. Beispiele und Ubungen zur Thermodynamik

Ein GlasgefiBl (Pyknometer aus Labortherm G), das bei 20 °C genau
100,0 cm? faf3t, wird bis zum Rand mit Wasser gefiillt und anschlie-
Bend auf 50 °C erwirmt. Berechnen Sie die Wassermenge, die beim
Erwirmen aus dem Gefil ausflieit.

Gegeben: V; = 100,0cm®; 1, = 20°C; 1, = 50°C Gesucht: AVy
ag =47-100°K!; yw =0,18-10"3K™?!

Sowohl das Volumen des Wassers als auch das des Pyknometers nimmt mit
steigender Temperatur zu. Das Wasservolumen wichst stirker, deshalb
flieBt ein Teil des Wassers aus. Das Volumen dieses Teils ist gleich der
Differenz der beiden. Volumenzunahmen.

AVy = Vi Atlyw — 30G)
AVy = 100cm? - (50 — 20) K - (180 — 14) - 10-S K~ = 0,5 cm?®

Der Kupferdraht einer Freileitung ist bei 25 °C 200,0 m lang. Be-
rechnen Sie die Lingenidnderung, die dieser Draht beim Absinken
der Temperatur auf —15 °C erfihrt.

Ein MeBglas aus Labortherm G trigt die Aufschrift «100,00 cm? bei
20 °C». Berechnen Sie, welches Volumen es bei 120 °C hat.

Zink hat bei 18 °C eine Dichte von 7,12 g cm~3. Berechnen Sie die
Temperatur, auf die es erwirmt werden muB}, damit die Dichte auf
7,05 g cm~3 abnimmt.

Zur Bestimmung der Wirmekapazitit eines Kalorimeters wird es mit
400 g Wasser von 15 °C gefiillt. Beim ZugieBen von 600 g Wasser
von 60 °C ergibt sich eine Mischungstemperatur von 39 °C. Berechnen
Sie daraus die Warmekapazitat des Kalorimeters.

Gegeben: my = 600g; m, = 400g Gesucht: C
ty =60°C; t, =15°C
tm =39°C; ¢ =4,18)Jg'K!

Das warme Wasser gibt die Wéir;nemenge Q, ab:

Q1 = cemy(ty — t)

Das kalte Wasser nimmt die Wiarmeenergie Q, auf:

Q3 = cmy(ty — 1)

Das Kalorimeter nimmt die Warmemenge Q5 auf:

Qs = Cltm — 12).
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Nach dem Energieerhaltungssatz ist O, = Q, + Q;, also
emy(ty —ty) = emy(ty, — t,) + C(t, — 1), daraus

ty —
C=c(m1’l m—mz)

C=418— (600 2K w00g) = 5235k
=% 3K 824Kk ~ g)'_

Berechnen Sie, um wieviel Kelvin sich die Temperatur des Wassers
in einem Wasserfall dndert, wenn die Fallhohe 40 m betrdgt und der
Wirmeaustausch mit der Umgebung vernachlissigt wird. Die kine-
tische Energie des oben zuflieBenden Wassers ist gleich der des unten
abflieBenden.

Berechnen Sie die Zeit, in der ein elektrischer HeiBBwasserspeicher
8,00 1 Wasser von 10 °C auf 95 °C erwiarmt. Die Heizleistung betrigt
950 W, der Wirkungsgrad 92 %;.

Der Pkw Wartburg 1000 hat einen Motor mit einer Nutzleistung von
33,1 kW. Berechnen Sie den Benzinverbrauch fiir den Fall, daB3 der
Motor auf einem Priifstand eine Stunde lang mit Hochstleistung lduft
und einen Wirkungsgrad von 28 9/ hat.

In einem elektrischen Schmelzofen soll Reinaluminium geschmolzen
werden. Berechnen Sie die fiir ein Kilogramm Aluminium benétigte
Energie in Kilowattstunden unter der Voraussetzung, da3 die Anlage
einen Wirkungsgrad von 609 hat und die Anfangstemperatur des
Metalls 25 °C betrigt.

Berechnen Sie den Druck, bis zu dem 100 m3 Luft von 98 kPa iso-
therm komprimiert werden, wenn einé Arbeit von 3,00 kW h fiir die
Kompression zur Verfiigung steht.

Gegeben: V, = 100m3; W = —3,00kWh Gesucht: p,
py = 98 kPa
Aus (6.17), (6.13) und (5.13) folgt W = p, ¥, In (p; /ps)
w
P2 = py €Xp ("‘ EV_I/

= 98 kPa - e!-1°2 = 295 kPa

3:3,6-10°W s m?
P2 = 98 kPa - exp )

98 - 103N - 100 m3
3,0 m3 Luft von 108 kPa und 27 °C sollen isotherm auf 490 kPa
komprimiert werden. Berechnen Sie 1. das Volumen nach der Ver-

dichtung, 2. die erforderliche Kompressionsarbeit und 3. die abzu-
fiihrende Wiarmemenge.

1,0 m3® Luft von 88 kPa und 27 °C soll durch Temperaturerh6hung
auf einen Druck von 294 kPa gebracht werden. Berechnen Sie 1. die
erforderliche Temperatur und 2. die zuzufiihrende Warmemenge.

1,0 m3® Luft von 27 °C soll bei konstantem Druck von 90 kPa auf
727 °C erwiarmt werden. Berechnen Sie 1. das Endvolumen, 2. die
zuzufiihrende Wiarmemenge und 3. die dabei verrichtete Ausdehnungs-
arbeit. Die mittlere spezifische Wiarmekapazitit betriagt im gegebenen
Temperaturbereich 1,068 kJ kg=! K1,
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3,0 m?3 Luft von 27 °C und 110 kPa sollen isentrop auf 500 kPa kom-
primiert werden. Berechnen Sie 1. das Volumen nach der Verdich-
tung, 2. die Temperatur, die das Gas annimmt, und 3. die zur Kom-
pression erforderliche Arbeit.

Gegeben: V; = 3,0m>; p, = 110kPa Gesucht: 1. V,
t, =27°C: p, = 500 kPa 2.1,
x = 1,4; M = 29 kg kmol? . W
1.(632) V, =V, (’—‘)"
P2
110 kP: :
a\ T4
— 7.3 4 _ 3. _ 3
V:=3m (SOOkPa) 3Im>-0,339 = 1,02 m
x1
2.631) T, =T, (:—’) * . mit T, = 300K folgt
1
500 kP: s
_ 500 kPa\Ta _ ) _ ) _ .
Tz-soox(HOkPa) =300K- 1,541 = 462 K; 1, = 189°C
3. Aus (6.33) und (5.13) folgt
PV
W= G-DT, (T, - T7)
110:103Pa-3m3 - (—=162K
W= a-3m ) o _446K] = —0,124kWh

0,4-300 K

Mit 10,0 | Luft, die unter einem Druck von 1,80 MPa steht, ist ein
Carnot-ProzeB8 zwischen 400 °C und 20 °C durchzufiihren. Nach
der isentropen Expansion muB das Volumen des Gases 1001 be-
tragen. Bild 60 soll den Vorgang veranschaulichen. Berechnen Sie
1. das Volumen im Zustand B, 2. den Druck im Zustand B, 3. den
Druck im Zustand C, 4. das Volumen im Zustand D, 5. den Druck im
Zustand D und 6. den Wirkungsgrad.

Die Kompression von 3,00 m® Luft, die eine Temperatur von 27 °C
und einen Druck von 110 kPa hat, erfolgt polytrop auf 500 kPa. Der
Polytropenexponent ist 1,2, die spezifische Warmekapazitit ¢, =
0,779 kJ kg~! K~!. Berechnen Sie die abzufiihrende Warmemenge.
Gegeben: V, = 3,00m3; 1, =27°C Gesucht: Q

p, = 110kPa; &k 1,2

ps =500kPa; x =14
M=29—5 . o —07m9—L_
= “hkmol’ ¢ TP g K
Wir benutzen die Gleichungen (6.10) Q = AU + W 0))
mit AU = Cvm(Tz - Tl) (2)
mR
und W = m(ﬂ - Tz) (3)
G.13) pV = RT )

M
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R
(6.25) G )
(6.29) ¢, = xc, ©)

T Lt
6.35) == = (&) .
(6.35) T, I3 @]
Kombination von (1), (2) und (3) ergibt

R

Q=mT,—-T) (cv - m) ®)

Mit (4) und (5) wird daraus
MoV, k==t e

0 = gt (T - Ty =] o)
. _ k — » P1 VlM Tz
und mit (6) Q = Cuﬁ T (Tl - 1) (10)

Mit (7) folgt das Ergebnis
k-1
k—x MpV, [ P2\ F ]
=% -7 "R (I) -1

- 0,
_ 0779k —02 29kg-110-1o3pa-3m3-kmou<[ 500 \ 1z ]
ke K 02 _ kmol 83147 110) -

= —896,7kJ- 0,287 = —257kJ

~N

Berechnen Sie fiir die in Ubung 6.16 behandelte polytrope Zustands-
dnderung 1. das Volumen nach der Verdichtung, 2. die Temperatur,
die das Gas annimmt, und 3. die zur Kompression erforderliche me-
chanische Arbeit.

Eine Wirmepumpe entnimmt Warmeenergie aus einem See, der eine
Temperatur von 5,0 °C hat, und fiihrt sie einer Warmwasserheizung
zu, deren Heiflwasser eine Temperatur von 75 °C hat. Berechnen Sie
die Leistungszahl.

5,0 kg Wasser befinden sich auf Siedetemperatur. Berechnen Sie den
Energiebedarf und den Entropiezuwachs fiir das restlose Verdampfen
des Wassers.
Ein Dampferzeuger nimmt stiindlich 3,0 m3 Wasser von 15 °C auf.
Er gibt iiberhitzten Dampf von 120 °C ab. Berechnen Sie die not-
wendige Heizleistung, wenn die Anlage einen Wirkungsgrad von
589 hat. Die spezifische Wirmekapazitit des Dampfes betrigt
1,59 kJ kg ' K1,
Wasser soll in Dampf verwandelt werden. Fiir die Celsius-Temperatur
wihlen wir das Formelzeichen # zur Unterscheidung von der Zeit ¢.
Gegeben: %, = 15°C; ¥, =120°C; ¥ = 100°C Gesucht: P

V =30m3, o=10kgdm3; ¢= 60min

cw=4,18kJ kg ' K~ '; cp =1,59kJ kg ' K!

n = 0,58; r =226MJkg!
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Die Erzeugung von iiberhitztem Dampf aus kaltem Wasser schlieBt drei
Vorgdnge ein, bei denen Energie zugefiihrt wird: Erwirmen des Wassers
bis zum Siedepunkt, Verdampfen des Wassers und Erwirmen des Dampfes.
Die zugefiithrte Energie findet sich, abgesehen von den Verlusten, im
Dampf wieder.

Gleichungen suchen:
Wir gehen zweckmiBig vom Wirkungsgrad aus, dem Verhiltnis® der aus-
genutzten Energie W zur aufgewendeten Energie Pz:
ud 1

=5 (¢))
Hierin ist P die gesuchte Leistung. W ist die Summe der fiir die drei genann-
ten Vorginge aufzuwendenden Wirmemengen:
W=0,+0Q;+0; (#))

Wir prizisieren die in (2) auftretenden Gréflen:

Q; = cwm Ady Energie zur Erwirmung des Wassers A3
Q, = mr Energie zur Verdampfung des Wassers @)
Q3 = cpmAdp  Energie zur Erwirmung des Dampfes 4)

Aus (1) bis (5) folgt, wenn wir die darin enthaltenen Temperaturdifferenzen
durch die gegebenen Temperaturen ausdriicken, eine l16sbare Gleichung:

m
Pt = 7["w(ﬁs - ) +r+cp (9, — )] ©6
und daraus mit der Definitionsgleichung fiir die Dichte ¢ = m/V

V ;
P= E;—t [ew(@s — 31) + r + cp (B, — )]

Einheitenprobe:

Die GrofBlen in der eckigen Klammer haben gleiche Einheit:
J K J

kg K~ kg’

Somit ist

Die Einheit ist richtig.

Diskussion der funktionalen Abhdngigkeit:

Die zuzufiihrende Leistung ist der verdampften Wassermenge proportional
und steigt linear mit den zu erreichenden Temperaturdifferenzen. Sie ist
umgekehrt proportional dem Wirkungsgrad, der spezifischen Verdamp-
fungswirme sowie der Zeit, die fir die Umwandlung der gegebenen
Wassermenge zur Verfiigung steht. Diese Aussagen sind sinnvoll.

Spezielles Ergebnis:
P 1kg:3m? y
dm?3 - 0,58 - 60 min
kJ MJ J
x [4,18 kg—K(IOO — 15K + 2,26 Ty + l,59-k—g——K—(120 - lOO)K]

1kg-10%-3m?
T m3-0,58-3,6-10%s

kJ MJ kJ
4,18 -85 — + 2,26 — + 1,59:20 —
kg kg kg
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: J
Abschatzen: 0,35 + 2,26 + 0,03) —I\:— ~ 3,5 MW

Pz 3
~ 0,6-3,6
Exaktes Ergebnis: P = 3,80 MW

Diskussion des speziellen Ergebnisses:

Die berechnete Leistung erscheint sehr groB. Bedenken wir, daB sie dazu
dient, in jeder Sekunde etwa ein Liter kaltes Wasser in Dampf zu iiber-
fithren, wird sie glaubhaft. Der groBte Teil der zugefiihrten Leistung wird
fir das Verdampfen verbraucht. In der Praxis findet das Verdampfen in
Druckbehiltern und bei hoheren Temperaturen statt. Damit verdndern
sich die Energieanteile der drei Einzelvorginge und der Wirkungsgrad.

33,5 kg Zinn von 25 °C sind zu schmelzen. Der Wirkungsgrad der
Anlage ist 20%. Berechnen Sie die fiir die Beheizung erforderliche
Menge Petroleum in Liter. Der Heizwert des Petroleums betragt
42 MJ kg !, seine Dichte 0,85 kg dm~3.

Zur Untersuchung der Verunreinigung von Niederschligen wird eine
Schneeprobe von —20 °C und mit der Masse 100 g iiber einem Spiri-
tusbrenner verdampft. Berechnen Sie die erforderliche Spiritusmenge
(Athanol) in Kilogramm. Der Wirkungsgrad sei 30%.

Durch Verbrennen von Stadtgas ist in einem Glithofen ein Warme-
strom von 700 W aufrechtzuerhalten. Berechnen Sie die fiir eine
Achtstundenschicht erforderliche Menge Stadtgas in Kubikmeter.
Der Heizwert von Stadtgas unter Normbedingungen ist 16,8 MJ m~3,
der Wirkungsgrad betrigt 40 %,.

In einer 1200 m3 groBen Werkhalle wird bei 25 °C eine relative Luft-
feuchte von 609, gemessen. Berechnen Sie 1. die absolute Feuchte,
2. den Taupunkt und 3. die Masse des Kondenswassers, wenn die
Temperatur nachts auf 10 °C absinkt.

Erkliren Sie, weshalb im Freien aufgehingte Wasche im Wind rascher
trocknet als in ruhender Luft, gleiche Lufttemperatur vorausgesetzt.

Die Winde eines Zimmers sollen bei Frostwetter mit Leimfarbe ge-
strichen werden. Beschreiben Sie die Verfahrensweise, mit der sich
die Winde nach dem Anstreichen schnell trocknen lassen.

Die Ziindtemperatur von Briketts betragt etwa 300 °C, die Tempe-
ratur einer Streichholzflamme etwa 1300 °C. Begriinden Sie, weshalb
man trotzdem mit einem Streichholz kein Brikett entziinden kann.

Ein Warmwasserspeicher von 30 dm? Oberfliche und einer Wand-
dicke von 0,50 cm soll bei einer Raumtemperatur von 25 °C Wasser
von 90 °C speichern. Die Wirmeiibergangskoeffizienten sind innen
1,2kW m~2 K1, auBen 6,0 W m~2 K~!. Die Wirmeleitfahigkeit des
Wandmaterials ist 1,0 W m~! K-!. Berechnen Sie den Warmedurch-
gangskoeffizienten und die mittlere Heizleistung, die zur Aufrecht-
erhaltung der Temperaturdifferenz erforderlich ist.

Gegeben: t; =90°C; t, =25°C Gesucht: k, P
! =0,5cm; = 30 dm?
a; =12kWm2K!; o =60Wm2K!
2 1,0Wm! K-!
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Der Wirmedurchgang besteht aus zwei Wirmeiibergingen und einem
Wirmeleitungsvorgang. Nach (6.60) errechnet sich

1 1 1\
- a_,+o‘,+l

(] 1 0,005“’(m’K)"
=\T20 "5t 1 ) W

=580Wm2K!=209kIm2h!K?

Die mittlere Heizleistung ist der Quotient aus der Warmemenge, die infolge
Wirmedurchgangs nach (6.59) verlorengeht, und der Zeit:

P=kAt; — 1)

P=580Wm2K!-03m? 65K =113W =407kJh!

Ein Kupferstab von 1,57 m Linge und einem Durchmesser von
1060 mm ist lings seines Umfangs vollstindig warmeisoliert. Zwischen
seinen Enden wird eine Temperaturdifferenz von 100 K aufrecht-
erhalten. Berechnen Sie die in einer Stunde iibertragene Wirme-
energie und den Wirmeleitwiderstand.

Durch die 1,0 cm dicke Metallwand eines Kessels wird Warmeenergie
von den Heizgasen (1100 °C) auf siedendes Wasser iibertragen. Die
Wirmeleitfihigkeit des Metalls ist 60 W m~! K—'; der Wiarmeltiber-
gangskoeffizient zwischen Heizgas und Wand betrigt 60 W m—2 K-1,
zwischen Wand und Wasser dagegen 6,0 kW m~2 K-!. Berechnen
Sie 1. den Wirmedurchgangskoeffizienten und 2. die in 1 h durch die
10 m? groBe Wand iibertragene Wirmeenergie.

Begriinden Sie, weshalb bei niedrigen Temperaturen das Sitzen auf
Holzflichen angenehmer ist als auf Stahl- oder Steinplatten.

Eine 38 cm dicke Ziegelmauer von 12 m? Fliche ist beiderseits mit
1,5cm dickem Putz versehen. Die Wirmeleitfihigkeiten betragen fiir
die Ziegel 0,6 W m~! K-!, fiir den Innenputz 0,70 W m~! K-* und
fir den AuBenputz 0,85 W m~! K-!. Die Wirmeiibergangskoeffi-
zienten sind innen 8,0 W m~2 K-! und auBlen 23 W m~2 K-!. Die
Raumtemperatur ist konstant 20 °C, die AuBentemperatur —10 °C.
Berechnen Sie 1. den Wirmedurchgangskoeffizienten und 2. die in
24 h durch die Mauer hindurchgehende Wiarmemenge.

2.3.7. Beispiele und Ubungen zum Gleichstromkreis

An einem Heizgerit mit. dem Widerstand 45 Q liegt die Spannung
220 V. Berechnen Sie 1. die Stromstirke und 2. die aufgenommene
Leistung.

Der Widerstand eines Drahtes von 150 m Linge und 0,50 mm Durch-
messer wird mit 13,3 Q gemessen. Berechnen Sie 1. den Leitwert des
Drahtes und 2. den spezifischen Widerstand und die Leitfahigkeit des
Materials, aus dem der Draht besteht. 3. Aus welchem Material be-
steht der Draht?
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Berechnen Sie den Widerstand eines Kupferdrahtes mit einer Masse
von 0,85 kg und einer Querschnittsfliche von 1,5 mm?2.

Eine elektrische Kochplatte hat die Kenndaten 220 V/1,0 kW.
Welche Leistung nimmt dieses Gerit auf, wenn die Spannung auf
200 V absinkt?

Gegeben: Uy = 220V; Py = 1,0 kW Gesucht: P
U =200V
P= U—z m Py = _U_% ¢)]
R R

Bei der geringen Spannungsinderung darf die Temperaturabhingigkeit
des Widerstandes der Heizwendel vernachlissigt werden. Deshalb wird R
ohne Index geschrieben.

Aus (1) und (2) folgt

U 2
P=P, (70) P = 0,826 kW

Ein elektrisches Heizgerit fiir 220 V Betriebsspannung nimmt eine
Leistung von 300 W auf. Seine Leistung soll durch einen Vorwider-
stand auf 200 W reduziert werden. Berechnen Sie 1. den Gerite-
widerstand, 2. die Geritespannung bei 200 W Leistung und 3. den
erforderlichen Vorwiderstand. Die Betriebstemperatur des Heiz-
gerites soll als konstant angesehen werden. '

In einem elektrischen Kammerofen fiir 220 V sind 12 Silitstibe mit
je 22,8 Q parallelgeschaltet. Berechnen Sie 1. die elektrische Leistung,
die der Ofen aufnimmt, 2. die stiindlich erzeugte Warmemenge und
3. die Energiekosten fiir den 24stiindigen Betrieb bei einem Tarif von
0,08 M/kW h. ‘

Beim aufmerksamen Lesen finden wir nur direkt gegebene GroBlen. Eine
Aussage lber Verluste bzw. Wirkungsgrad gibt es nicht.

Gegeben: U =220V; z =12 Gesucht: 1. Pg
R, =228Q; k= O,OSL 2.0

kW h
zu2: t; =1h; zu3l.: 13 =24h 3.K

In dem elektrischen Ofen wird elektrische Energie in Wirmeenergie
umgewandelt. Teil 1 der Aufgabe bezieht sich nur auf die zugefiihrte
Elektroenergie, Teil 2 auf die Energieumwandlung.

1. Die elektrische Leistung ist durch (7.11) definiert:
P=UlI (0))

Diese Gleichung enthilt zwei unbekannte GroBen, ist also nicht 16sbar.
Da der Widerstand der Heizstibe gegeben ‘ist, ziehen wir noch (7.7)
heran:

U= Ry, Stromstirke in einem Stab) 2
Die Stromstirke setzt sich aus z Teilstromstirken zusammen, die den
parallelgeschalteten Silitstiben zuzuordnen sind:

1=zl (©)]
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Danmit ist das Gleichungssystem bestimmt. Aus (1) ... (3) folgt

P Uz. P = 12 -2202 V2 = 25.5 kW
el—zR_l’ el — ZZ,SQ - ’

2. Die zugefiihrte elektrische Energie wird vollstindig in Wirmeenergie
umgewandelt :

Q = Wel (4)
Nach Gl. (3.40) ist W = Pt und mit der Zeit 1,
We = Po 1y ®

Aus (4) und (5) folgt
2,55-10*J-3,6-10%s
s

Q=P,t;; Q@Q=255kW-1h=

=9,18-10"J = 91,8 MJ

3. Die Energiek osten ergeben sich als Produkt aus Energie und Kosten je
Energieeinheit:

K= W,k ©)
Aus (5) und (6) folgt mit der Zeit 75

M
K=Patsk; K=255kW-24h-0,08 <o = 4896 M

Einheitenprobe und Uberschlagsrechnung konnten bei so einfachen Losun-
gen entfallen.

Ein elektrisches Geridt mit der Nennleistung 2,0 kW bei 220 V Nenn-
spannung wird iiber eine Kupferleitung von 2,5 mm? Querschnitt
an eine 125 m entfernte Spannungsquelle mit 225 V Spannung an-
geschlossen. Berechnen Sie 1. den Leitungswiderstand, 2. den Gerite-
widerstand, 3. die Stromstiarke und 4. die Nutzleistung am Gerit.

In 25 m Abstand von einer Spannungsquelle mit vernachlissigbar
kleinem Innenwiderstand wird iiber eine Aluminiumleitung von
1,5 mm? Querschnitt eine Gliihlampe betrieben. Die Spannung an
der Gliihlampe betrédgt 220 V. Wird ein weiteres Gerit angeschlossen,
erhoht sich die Stromstidrke um 10 A. 1. Berechnen Sie den nach Zu-
schalten dieses Gerites in der Leitung auftretenden zusitzlichen
Spannungsabfall. 2. Welche Spannung liegt dann an der Glithlampe?
3. Um wieviel Prozent sinkt dabei die Leistung der Glithlampe?

Ein Trockenofen soll je Stunde 10 MJ (% 2,4 Mcal) abgeben. Be-
messen Sie den Widerstand des Heizkorpers so, daB bei einer Netz-
spannung von 220V die dafiir notwendige Heizleistung erbracht
wird.

An eine Spannungsquelle mit der Urspannung 120 V und dem inneren
Widerstand 4 Q wird ein Widerstand angeschlossen, der in den
Grenzen 0 ... 25 Q stufenlos einstellbar ist. Stellen Sie 1. die Strom-
stiarke, 2. die Klemmenspannung und 3. die duBlere Leistung in Ab-
hidngigkeit vom AuBenwiderstand in Gleichungen und Diagrammen
dar.
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Gegeben: Uy = 120V; R, = 4Q Gesucht: 1. I(R,)
R.=0..25Q . 2. U(R,)
3. Py(R,)
1. I(R,) = —(L-
R, + R,

Wollen wir wie in unserem Falle mehrere Funktionswerte ausrechnen, so
empfiehlt es sich, die Gleichungen auf die gewiinschten Einheiten zu-
zuschneiden und die konstanten GroBen einzusetzen:

I 120

a= Ry + 4

2. Uu(R,) = IR, = UoRe _ _ Uo U 120
» Uly) = a—R|+Rl_l+Rl k/V—l+ 4 ;
R, : R0
R.U% Raq
3.P(R) = Ul = ——> Panew = a2
(R = Uk = R R s = 144 Roa + a7

Im Bild 61 sind die Diagramme zu diesen Funktionen dargestellt. Die
nach auBlen abgegebene Leistung hat bei R, = 4Q ein Maximum. Das
gilt immer, wenn R, = R, ist. Diesen Fall bezeichnet man als Anpassung.

Wird einer Akkumulatorenbatterie ein Strom von 10 A entnommen,
so ist die Klemmenspannung 42 V. Bei der Entnahme von 20 A sinkt
die Klemmenspannung auf 36 V. Berechnen Sie 1. die Urspannung
und 2. den inneren Widerstand der Batterie.

Gegeben: Iy = 10A; Uy, = 82V Gesucht: 1. Uy; 2. R,
I, =20A; U, =36V
1. Uy = Up —.I1R, ()]
Uiz = Up — LR; 2)
Daraus folgt -
Uo - Ulcl;z : :JIKZIl Uo =g

2. Ebenfalls aus (1) und (2) folgt

Ukl - Uk2
Ri=—p—1* R, =0,6Q
An eine Akkumulatorenbatterie mit der Urspannung 6,0 V wird ein
Gerit mit dem Widerstand 2,1 Q geschaltet. Die Stromstiarke betragt
2,8 A. Welche Stromstirke ist vorhanden, wenn ein Gerit mit dem
Widerstand 1,2 Q eingeschaltet wird?

Berechnen Sie 1. den inneren Widerstand einer Spannungsquelle mit
der Urspannung 15 V, die beim Einschalten des Widerstandes 1,8 Q
einen Strom von 7,5 A abgibt, und 2. die maximal mogliche Strom-
stirke.

Ein elektrisches Heizgerit besitzt 3 Schaltstufen (Bild 62). An 220 V
angeschlossen, flieBt bei Schaltstufe 3 ein Strom von 10 A. Beide
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Widerstinde sind gleich. Berechnen Sie die Heizleistung der einzelnen
Schaltstufen.

Zwei Widerstinde sind parallel zueinander und mit einem dritten
in Reihe geschaltet. Alle Widerstidnde sind gleich und an eine Batterie
von 6 in Reihe geschalteten Akkus mit je 100 mQ innerem Widerstand
angeschlossen. Bei einer Gesamtstromstiarke von 500 mA betrigt die
Klemmenspannung je Akku 2,00 V. 1. Zeichnen Sie das Schaltbild.
2. Berechnen Sie einen Widerstand. 3. Berechnen Sie die Urspannung
der gesamten Batterie.

Zwischen den Punkten 4 und B der im Bild 63 dargestellten Schal-
tung liegt die konstante Spannung 120 V. Die Widerstinde haben
folgende Werte: R, = R, = 200Q, R, = R; = 100 Q. Berechnen
Sie die Stromstirke fiir den Fall, daB der Schalter 1. ge6ffnet und
2. geschlossen ist.

In der Schaltung nach Bild 64 kann der veridnderliche Widerstand R,
von 0 bis 30 Q stufenlos eingestellt werden. Berechnen Sie, in welchen
Grenzen der Ersatzwiderstand liegt, wenn die beiden anderen Wider-
stinde die Werte R; = 10 Q und R; = 20 Q haben.

Bemessen Sie den Widerstand R, in der Schaltung nach Bild 65 so,
daf} der Ersatzwiderstand 9 Q betrigt. Die drei gleichen Widerstinde
betragen jeweils 10 Q.

Sechs gleiche Widerstinde sind so geschaltet, daB3 sie in den Seiten
und Diagonalen eines Quadrates liegen (Bild 66). Berechnen Sie den
Ersatzwiderstand der Schaltung zwischen zwei gegeniiberliegenden
Eckpunkten. Vereinfachen Sie zuvor die Schaltung schrittweise.

Eine Weihnachtsbaumbeleuchtung fiir 220 V hat 16 Kerzen. Wiahrend
des Betriebes fallen zwei Kerzen aus. Sie werden durch einen dicken
Kupferdraht iiberbriickt, so daB nur noch 14 Kerzen leuchten. Um
wieviel Prozent wird dann die einzelne Kerze spannungsmaiBig iiber-
lastet? '

An einem Spannungsteiler (Schiebewiderstand von 120 Q), an dessen
Enden eine Spannung von 200 V liegt, soll am Teilwiderstand R,
eine kleinere Spannung abgegriffen werden. Ohne Belastung wird ein
Spannungsabfall von 100 V am Widerstand R, eingestellt (Bild 67.1).
Dann wird ein Widerstand von 16 Q angeschlossen (Bild 67.2). Be-
rechnen Sie die Teilspannung an diesem Widerstand.

Gegeben: U =200V; R =120Q Gesucht: U,
R =R, +R,
Uy =100V; Ry =16Q

Fiir den unbelasteten Spannungsteiler nach Bild 67.1 berechnen wir die
Teilwiderstinde R; und R;:

R, Uy RUy _ 1200-100V _

R v R=—g = 200 V
R2=R—Rl=600

Am belasteten Spannungsteiler (Bild 67.2) dndert sich die Spannungs-
verteilung. Die Widerstinde R; und R, haben verschiedene Stromstirken.
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Nach Bild 67.3 gelten mit R, als Ersatzwiderstand der Kombination von
R; und R,

ers
R,R .
Res = R, + Ry3 3 Ry3 = R'—xﬁ “
Aus (1) ... (4) folgt
U _ URy U _RiRy U _
" Res . _RiRs Ry + Ry |4 BB+ Ry
2T R+ R, RyRs
U = 200 V _ 200V gV
3= 60Q-76Q 76 0 =

I+%a16a 'T16

In einem Projektionsapparat, der mit 220 V betrieben wird, sind
2 Projektionslampen von je 500 W und 110 V Spannung in Reihe ge-
schaltet. Bei einemi Ausfall beider Lampen kann nur eine mit den
genannten Betriebsdaten ersetzt werden, als zweite steht eine von
500 W und 80V zur Verfiigung. Was ist zu tun, damit beide Lampen
entsprechend ihren Betriebsdaten betrieben werden konnen?

Fiinf bekannte Widerstinde werden auf die drei im Bild 68 darge-
stellten Arten zusammengeschaltet. Berechnen Sie die Ersatzwider-
stinde dieser Schaltungen. Die Widerstinde R, ... Rs betragen
100 Q, 300 Q, 200 Q, 500 Q und 50 Q.

Die Batterie einer Notstromversorgungsanlage besteht aus 300 Ele-
menten, von denen jeweils 60 in Reihe und 5 solche Zweige parallel-
geschaltet sind. Jedes Element hat die Urspannung 2,02 V und den
Innenwiderstand 50 mQ. Berechnen Sie 1. die Leerlaufspannung und
die KurzschluBBstromstirke der Batterie sowie 2. die Leistung, die die
Batterie abgibt, wenn man sie mit 109, der KurzschluB3stromstiarke
belastet.

Zwei Akkumulatorenbatterien sind parallelgeschaltet. Da die zweite
Batterie schon weit entladen ist, betragt ihre Urspannung 7,8 V bei
einem inneren Widerstand von 30 mQ. Fiir die erste Batterie sind
diese Kennwerte 8,0 V und 20 mQ. Der Verbraucher entnimmt einen
Strom von 50 A. Berechnen Sie 1. die Stirken der Strome, die den
Einzelbatterien entnommen werden, und 2. die Klemmenspannung.

An einer elektronischen Spannungsquelle mit der Urspannung 400 V
und dem Innenwiderstand 10 kQ soll die Spannung gemessen werden.

-Bemessen Sie den Innenwiderstand des Spannungsmessers so, daB

der Spannungsverlust durch den MefBstrom kleiner als 1%} bleibt.

Ein Strommesser mit einem Innenwiderstand von 200 Q und Voll-
ausschlag bei 500 pA soll als Vielfachinstrument fiir folgende Mef3-
bereiche verwendet werden: 2,5 mA, 5,0 A; 2,5V und 250 V. 1. Ent-
werfen Sie eine einfache Schaltung des VielfachmeBinstruments unter
Verwendung eines MeBbereichsschalters mit 4 Schaltstellungen. Be-
rechnen Sie 2. den Spannungsabfall am Strommesser und 3. die erfor-
derlichen Shunts und Vorwiderstinde.
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Ein Galvanometer mit einem Innenwiderstand von 2,0 kQ ist mit
einem Vorschaltwiderstand von 1,0 kQ und einem Shunt zum MeB-
werk von 5,0 kQ versehen. Berechnen Sie 1., wieviel Prozent des Ge-
samtstromes das Galvanometer anzeigt, und 2., welche Spannung
insgesamt anliegen muB, wenn durch das Galvanometer selbst ein
Strom von 0,50 pA flieBen soll.

2.3.8. Beispiele und Ubungen zum elektrischen und
magnetischen Feld

Zeichnen Sie Feldlinien und Potentiallinien einer positiv geladenen
Metallkugel, die weit von der Erde entfernt ist.

Berechnen Sie die Kraft, mit der sich zwei (zweifach positiv geladene)
Heliumkerne gegenseitig abstoBen, die im Vakuum gegeneinander
geschossen werden, fiir die Abstinde 1,0 mm und 1,0 nm.

Eine kleine Metallkugel trigt die Ladung 1,6 «C. Berechnen Sie 1. die
Feldstiarke dieser Kugel im Abstand von 1,0 m und 2. die Kraft auf
ein Staubkornchen, das mit der Ladung 30 e im gleichen Abstand
schwebt.

Zwei groBBe Metallplatten stehen senkrecht im Abstand von 50 cm
parallel. Zwischen ihnen wird die elektrische Feldstirke 100 V cm™!
gemessen. 1. Berechnen Sie die an den Platten liegende Spannung.
2. Geben Sie an, was mit einer kleinen positiv geladenen Kugel ge-
schieht, die in der Mitte zwischen beiden Platten an einem als masse-
los betrachteten Faden aufgehingt wird.

Eine kleine Kugel aus Kupfer wird in einem groen Raum an einem
isolierenden Faden aufgehidngt und elektrisch geladen. In 4,0 m Ab-
stand wird eine Feldstirke von 12 kV m~! gemessen. Berechnen Sie
die Ladung der Kugel.

Das Plattenpaar in Bild 69 stellt ein Ablenksystem fiir einen Elek-
tronenstrahl dar, der den Punkt 4 mit der (eschwindigkeit v in
x-Richtung erreicht. Geben Sie an, in welcher Richtung der Strahl
abgelenkt wird, und berechnen Sie die Spannung, bei deren Uber-
schreiten der Strahl auf eine Platte auftrifft und damit geloscht wird.
Mit den nach Bild 69 gegebenen Werten sowie mit Elektronenmasse m,
und -ladung e (— FB 6.) ist

Gegeben:v; [; d, m.;, e Gesucht: Upgy

Elektronen sind negativ geladen und werden deshalb zur positiven Platte
hin abgelenkt.

Vorgdnge:

Die Elektronen werden durch die Coulombkraft senkrecht zu ihrer ur-
spriinglichen Bewegungsrichtung beschleunigt. In x-Richtung wirkt keine
Kraft, also auch keine Beschleunigung. Die Bewegung des Elektrons setzt
sich aus zwei Komponenten zusammen: einer gleichmiBig beschleunigten
Bewegung in y-Richtung und einer gleichformigen Bewegung in x-Richtung.

Gleichungen suchen:
Die in y-Richtung wirkende Coulombkraft F = e¢E = e(U/d) ist gleich
der beschleunigenden Kraft F = ma. Der in y-Richtung zuriickgelegte
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Weg ist demnach

1 1

_ /2= 1 eU
s=Zam =3

2 md

2

1? )

F
—1
m

(1) enthilt mit U und ¢ zwei unbekannte GroBen und ist nicht I6sbar. Wir
erhalten eine zweite Gleichung, wenn wir die gleichzeitig ablaufende Be-
wegung in x-Richtung beschreiben:

1=t 2

Aus (2) folgt die fiir den Weg zur Platte verfiigbare Zeit ¢+ = //v. Diese

Zeit in (1) eingesetzt, ergibt
eUl?

S = Imwtd

Die in der Aufgabe gestellte Bedingung, daB der Elektronenstrahl die

Platte nicht erreichen darf, bedeutet

(©))

d 4
s< 4
Die Auflosung von (3) mit (4) ergibt
U med*v?

DRE
Einheitenprobe:
kg m? m? Ws
UV=—"oa—— = — =
vl Asm?s? As v

Ein sehr langer Draht von 2,0 mm Durchmesser trigt je Meter seiner
Lénge die Ladung 90 nC. Berechnen Sie die Feldstarke auf der Ober-
fliche des Drahtes.

Erkliaren Sie, weshalb in Betriebsanlagen, in denen die Luft viel
brennbaren Staub enthilt, alle Metallkonstruktionen geerdet sein
miissen.

Ein Elektron mit der Geschwindigkeit 6,5 - 10 m s~! soll durch ein
elektrisches Gegenfeld vollstindig abgebremst werden. Berechnen
Sie die Spannungv, die das Teilchen zu diesem Zweck durchlaufen
muB.

Gegeben: vy = 6,5-10°ms™'; vp =0; Q =¢ Gesucht: U
Das elektrische Feld verrichtet Beschleunigungsarbeit. Nach Gl. (7.3) ist

W = eU. Da das Elektron vollstindig gebremst werden soll, ist diese
Arbeit gleich der anfangs vorhandenen kinetischen Energie: eU = !/,m%.

Daraus folgt

o vk, Sllkg 10658100 m?
T 2 ~ 1031.2-1,60 As Z =

Berechnen Sie 1. die Kapazitit eines Plattenkondensators, der aus
Platten mit der Fliache von 150 cm? im Abstand von 1,0 mm besteht,
und 2. die Ladung, die der Kondensator speichert, wenn an seinen
Klemmen eine Spannung von 1000 V liegt.
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An den Platten eines Kondensators liegt die Spannung U,. Unter-
suchen Sie, wie sich Kapazitdt, Spannung und Ladung des Konden-
sators verdndern, wenn der Plattenabstand 1. bei angeschlossener
Spannungsquelle und 2. bei abgetrennter Spannungsquelle auf das
Doppelte des Anfangswertes vergroBert wird. Die Daten sind Bild 70
zu entnehmen.

G U 9

Gegeben: A; dy; U, G = = =
egeben " 2; o esucht: 1 G’ To’ 0o
° 0 L2 U2 02

"G’ Uy’ Qo

Es gelten die Gin. (8.9) C = ¢,A4/d und (8.8) Q = CU.

Die Kapazitit hat sich auf die Halfte verringert.
U, = U, laut Aufgabenstellung.

Q GColU, Co 12GC,

Die Ladung hat sich auf die Hilfte verringert (die eine Hilfte ist in die
Spannungsquelle zuriickgeflossen).

1
2. Cz =7C0 wie bei 1.

Q, = Qo laut Aufgabenstellung.

Uo ;0 C; Co 2T L0

Die Spannung ist auf das Doppelte angewachsen.

Zwei Kondensatoren mit den Kapazitdten 10 «F und 40 wF sowie mit
vernachlissigbar kleiner Leitfahigkeit sind in Reihe geschaltet und
an.eine Spannungsquelle von 200 V angeschlossen. Berechnen Sie
1. ihre Ladungen und 2. die Spannungsabfille an den Kondensatoren.

Ein Drehkondensator ist aus 7 parallelen halbkreisformigen Metall-
scheiben aufgebaut, die den Radius 50 mm und den gegenseitigen
Abstand 0,7 mm haben. Der Zwischenraum ist mit Luft ausgefiillt.
Die Scheiben 1, 3, 5 und 7 sind mit dem Pluspol, die iibrigen mit
dem Minuspol der Spannungsquelle verbunden. Die Kapazitit des
Drehkondensators wird verdndert, indem die Scheiben 2, 4 und 6
gleichzeitig um die gemeinsame Achse gedreht werden. Skizzieren
Sie den Aufbau und berechnen Sie die grof3tmogliche Kapazitat.

Um die Kapazitit eines in Volt geeichten Elektrometers zu bestim-
men, wird es zunichst so aufgeladen, daB3 es eine Spannung von 3,5 V
anzeigt. Danach wird ein Kondensator von 3,5 pF parallelgeschaltet,
wodurch sich an den Klemmen eine Spannung von 1,6 V einstellt.
Berechnen Sie die Kapazitat des Elektrometers.

Die Kapazititen dreier in Reihe geschalteter Kondensatoren ver-
halten sich wie 1: 3:5. Das System wird aufgeladen. Berechnen Sie,
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in welchem Verhiltnis 1. die Spannungen, 2. die Ladungen und 3. die
Energieinhalte der drei Kondensatoren stehen.

Eine Elektronenblitzrohre soll mit einer elektrischen Energie von
25 J betrieben werden. Die Betriebsspannung betrigt 250 V. Berech-
nen Sie 1. die erforderliche Kapazitit des Speicherkondensators und
2. die durchschnittliche Leistung unter der Annahme, daf3 die Blitz-
rohre 1,6 ms lang eine konstante Lichtstiarke hat.

Einem auf 100 V aufgeladenen Kondensator von 100 uF wird nach
Abtrennen der Spannungsquelle ein zweiter ungeladener Konden-
sator gleicher Kapazitdt parallelgeschaltet. Berechnen Sie 1. die ur-
spriinglich im Kondensator gespeicherte Energie, 2. die Spannung
an den parallelgeschalteten Kondensatoren und 3. die in den parallel-
geschalteten Kondensatoren gespeicherte Energie. 4. Begriinden Sie
die auftretende Energiedifferenz.

Ein Kondensator, dessen Platten Flichen von 5,0 cm? und einen Ab-
stand von 1 mm haben, ist mit Glimmer ausgefiillt. Berechnen Sie
1. die Kapazitit, 2. die Ladung und 3. den Energieinhalt fiir eine
Spannung von 500 V.

Der Kondensator der Ubung 8.18 ist geladen. Er wird von der Span-
nungsquelle getrennt, und danach wird die Glimmerschicht entfernt.
Berechnen Sie 1. die Ladung, 2. die Kapazitit und 3. den Energie-
inhalt des Kondensators. 4. Begriinden Sie die Energiedifferenz (gegen-
uber 8.18.3).

Zwei 100 cm? groBe Kondensatorplatten haben einen Abstand von
15 mm. Sie sind mit einer Spannungsquelle von 2,0 kV verbunden.
Berechnen Sie fiir das Feld zwischen den Platten Feldstarke und Ver-
schiebung 1. in Luft, 2. in Transformatorendl.

Der Kondensator der Ubung 8.20 wird ohne Dielektrikum an einer
2-kV-Spannungsquelle geladen, danach von der Spannungsquelle
getrennt und mit dem Dielektrikum gefiillt. Berechnen Sie Feldstarke
und elektrische Verschiebung im Dielektrikum.

Berechnen Sie die Kapazitit des im Bild 71 dargestellten Platten-
kondensators,~der teilweise mit einem Dielektrikum gefiillt ist. Die
Plattenfliche ist 4.

Der Plattenkondensator eines Fiillstandsmefgerits besteht aus recht-
eckigen Metallplatten mit der Breite b, der Hohe H und dem Ab-
stand a. Bei einer Messung ist er bis zur Hohe 4 mit einer nichtleiten-
den Fliissigkeit der Dielektrizitidtszahl ¢, gefiillt. Berechnen Sie 1. die
Kapazitit des ungefiillten Kondensators, 2. die Kapazitit des bis
zur Hohe A gefiillten Kondensators und 3. die relative Kapazitits-
adnderung.

Berechnen Sie getrennt fiir die beiden Teile des Kondensators der
Aufgabe 8.22 Feldstirke und Verschiebung. Die Spannung sei U.

Gegeben: A; d,; d,; U; & Gesucht: E; D,; E,; D,

Auf der inneren Grenzfliche des Dielektrikums wird die gleiche Ladung
influenziert, die auf den AuBenplatten liegt: Q = CU. Die an den beiden
Teilkondensatoren liegenden Spannungen sind U; = Q/C, und U, = Q/C,.
Damit wird
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U2 _ g6 AU, &U
v dl - Cldl - (dlel' + dz) Aeodl - dle, + dz
D| = EOEI
Uz Q Boﬁ,A Udz U
Ez =

4, T Cid, | (A + d;) Aeoed; | dig, + dy -
Dz = Eoel-Ez = 'Dl

Bemerkung: Im Gegensatz zur Feldstirke ist die elektrische Verschiebung
innerhalb eines Feldes in allen Dielektrika gleich.

Welche Stromstirke ist bei einer 120 mm langen Spule mit 820 Win-
dungen erforderlich, damit in ihrem Innern eine magnetische Feld-
stirke von 225 A m~! vorhanden ist?

Eine Ringspule (Bild 72) hat N Windungen, den Radius R und den
Wicklungsdurchmesser d. Sie wird von einem Strom der Stromstérke /
durchflossen. Berechnen Sie fiir das Innere der Spule 1. die magne-
tische Feldstarke und 2. die FluB3dichte.

Durch ein Magnetfeld der FluBdichte 500 mT fiihrt ein Leiter der
Linge /, der von einem Strom der Stiarke 10 A durchflossen wird. Er
bildet mit dem FluBdichtevektor einen Winkel von 10° (Bild 73).
Berechnen Sie die Kraft, die auf ein Leiterstiick von 40 mm Linge
wirkt.
Gegeben: B = 500mT; I=10A. Gesucht: F

a =10°;, /=40 mm
Nach (8.22') ist
F ="1IBsin «

F=10A"-40 mm - 500 mT - sin 10°

: AmVs
=4-5-0,174 - 10‘“"’"3‘3—mz = 35mN

Die Zuleitung fiir Aluminiumschmelzéfen besteht aus Kupferschie-
nen, die einen gegenseitigen Abstand von 40 cm haben und parallel
vom Strom durchflossen werden. Berechnen Sie die Kraft, die je Meter
Leiterlinge bei einem Strom der Stromstirke 8,0 kA zwischen zwei
Schienen wirkt, und geben Sie die Kraftrichtung an.

Weisen Sie nach, daB die Gleichung F = I,/B, fiir die Kraft zwischen

zwei parallelen Stromen I; und 7, in geraden Leitern identisch ist mit
der Gleichung

poly 15l

F=
2nr

Eine leere Spule mit 1000 Windungen hat die Liange 12 cm und den
Querschnitt 10 cm2. Berechnen Sie die Induktivitit der Spule.

Eine flache Spule, deren Flichennormale zunichst parallel zum Fluf3-
dichtevektor eines Magnetfeldes steht, wird in dem im Bild 74 darge-
stellten Drehsinn um 90° gekippt. Geben Sie die Polung der dabei
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auftretenden Induktionsspannung an den Spulenklemmen an und
iiberpriifen Sie, ob sich die Polung beim Wechsel des Drehsinns in-
dert.

Ein Relais mit dem Widerstand 200 Q und einer Induktivitit von
2,0 H liegt an einer Gleichspannung von 6,0 V. 1. Berechnen Sie die
Stromstirke. 2. Berechnen Sie die in der Relaiswicklung induzierte
Spannung, die beim Abschalten entsteht, unter der Annahme, da3
die Stromstirke innerhalb 1 ms gleichmiBig auf Null abfilit. 3. Wo
macht sich die induzierte Spannung vor allem bemerkbar?

Auf eine Zylinderspule mit der Linge 400 mm, dem Durchmesser
50 mm und der Windungszahl 800 wird eine Sekundirwicklung von
2000 Windungen aufgebracht. Die Primirstromstirke wichst inner-
halb-von 0,3 s gleichmiBig von 0,1 A auf 5,0 A. Berechnen Sie die
in der Sekundirspule induzierte Spannung.

Durch eine Spule der Induktivitat L flieBt ein Strom mit der Strom-
starke I = I, e*'. Berechnen Sie die induzierte Spannung.

Beim Abschalten von Spulen treten am Schalter hohe, durch die
Selbstinduktion bedingte Spannungen auf. Erldutern Sie die Wir-
kungsweise der in Bild 75 dargestellten Schaltung zur Reduzierung
des Offnungsfunkens am Schalter S.

Berechnen Sie die magnetische Feldenergie, die in einer Spule mit
1000 Windungen bei einer Stromstirke von 2,0 A gespeichert ist.
Die Spule ist 80 mm lang und hat den Durchmesser 35 mm.

Eine Zylinderspule mit 1200 Windungen, der Linge 100 mm und
dem Durchmesser 20 mm wird von einem Strom der Stromstirke
100 mA durchflossen. Berechnen Sie 1. die magnetische Induktion
und 2. den magnetischen FluB innerhalb der Spule.

Mit einem Elektromagneten soll ein Feld der FluBdichte 0,30 T er-
zeugt werden. Die Spule ist 120 mm lang und hat 800 Windungen.
Berechnen Sie die erforderliche Stromstiarke fiir den Fall, daB die
Spule 1. leer und 2. mit einem Eisenkern (1, = 500) ausgefiillt ist.

Im B,H-Diagramm eines ferromagnetischen Stoffes (Bild 76) wird
die Feldstirke iiber den Sittigungswert S hinaus vergroBert. Wie
dndert sich die FluBdichte in diesem Bereich? Begriinden Sie die Ant-
wort. '

Beschreiben Sie, was mit einem Ion geschieht, das in einer Fliissigkeit
schwebt, in der sehr langsam ein Magnetfeld aufgebaut wird.

Im Feld eines Permanentmagneten der Feldstirke H ist eine recht-
eckige Spule der Lidnge /, der Breite b und der Windungszahl N (in
Bild 77 ist nur eine Windung gezeichnet) drehbar gelagert. Ihre Achse
wird durch eine Spiralfeder mit der WinkelrichtgroBe &’ in der Rota-
tion behindert. 1. Berechnen Sie die Stromstirke in Abhingigkeit
vom Verdrehungswinkel @. 2. Fiihren Sie die Einheitenprobe durch.

Ein «-Strahl wird im Vakuum quer in ein Magnetfeld der FluBdichte
1,6 T eingeschossen und durchlduft eine Kreisbahn vom Radius
42 cm. Berechnen Sie die Geschwindigkeit der a-Teilchen. «-Teilchen
haben die spezifische Ladung Q/m = 2e[4m,.
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Fiir die Trennung einfach geladener Kaliumionen der Isotope K3°
und K*° im 'Massenspektrometer ist es erforderlich, daB sich ihre
Ablenkradien im Magnetfeld mindestens um 1% unterscheiden.
Priifen Sie, ob die Trennung unter folgenden Bedingungen moglich
ist: Beide Ionenarten haben die gleiche Energie 2,5 keV, die magne-
tische FluBdichte betrdgt 0,8 T.

2.3.9. Beispiele und Ubungen zur Stromleitung in Fliissig-
keiten

In einem Elektrolyten befinden sich einwertige Ionen vom Radius r.
Formulieren Sie die resultierende Kraft, die auf die Ionen wirkt,
wenn die Feldstiarke E herrscht und die innere Reibung des Losungs-
mittels beriicksichtigt wird. Geben Sie eine Erklirung dafiir, daB sich
die Beweglichkeit der Ionen mit der Temperatur dndert.

Gegeben: r; E; z = 1 Gesucht: F

Die Gesamtkraft setzt sich aus elektrischer und Reibungskraft zusammen:
F = F, + Fr. Mit (8.2),Q" = ze und (4.21) folgt

F = zeE — 6myrv.

Die Ionen bewegen sich dann mit der beobachteten konstanten Geschwin-
digkeit v, wenn F =0, d. h. zeE = 6nyrv ist. Daraus folgt v/E ~ 1/y.
Nach (9.1) ist v/E = u die lonenbeweglichkeit. Weil mit steigender Tem-
peratur die Viskositit # abnimmt, nimmt die Ionenbeweglichkeit mit der
Temperatur zu.

Bemerkung: AuBer durch die Zunahme der Ionenbeweglichkeit wichst die
Leitfahigkeit des Elektrolyten mit der Temperatur auch durch Zunahme

des Dissoziationsgrades, was eine Vermehrung der Ladungstriger bedeu-
tet.

Berechnen Sie, wie lange es dauert, 1,0 m® Wasserstoff von 20 °C
und 101,3 kPa durch einen Strom der Stromstirke 500 A elektrolytisch
abzuscheiden.

Berechnen Sie die Energie, die theoretisch erforderlich ist, um 1,0 t
Aluminium aus einer Aluminium-Kryolith-Schmelze bei 2,5V ab-
zuscheiden.

Im ,,Silberbad* (Elektrolysebad mit Silbersalzlosung) soll eine Schale
mit 5,0 dm? Oberfliche eine Auflage von 25 g Silber erhalten. Es
wird mit einer Stromdichte von 30 A m~2 gearbeitet. Nur 98 % des
Stromes werden fiir die Silberabscheidung wirksam (katodischer
Wirkungsgrad). Berechnen Sie 1. die Dauer der Behandlung und
2. die Dicke des Niederschlags.

Eine Akkumulatorenbatterie speichert eine Ladung von 75 A h. Be-

rechnen Sie die Bleimenge, die bei vollstindiger Entladung in PbSO,
ibergefiihrt wird.

An einen Akkumulator mit der Klemmenspannung 6,0 V ist ein
Widerstand der Leistung 30 W angeschlossen. Berechnen Sie die
Bleimenge, die durch den StromfluB in einer Stunde an simtlichen
Katoden in PbSO, iibergefiihrt wird. '
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2.3.10. Beispiele und Ubungen zu Schwingungen

Ein an einem Seil hingender Korper fiihrt in 30 s 10 Perioden aus.
Der Weg von einem Umkehrpunkt zum anderen betrigt 30 cm. Be-
rechnen Sie die Elongation nach 1s, 2, 5s und 5 min. Alle Zeiten
t; zihlen vom ersten beobachteten Durchgang des Pendels durch
seine Nullage.

Nach aufmerksamem Lesen und Anfertigen einer Skizze (Bild 78) finden
wir leicht die gegebenen Groflen:

Gegeben: z = 10; t=30s Gesucht: y,
s =30cm; ¢=0; ,=1s i=1,23,4
t, =2s; t3=15s; 1y =5min

Gleichungen suchen:
Fiir die Sinusschwingung gilt bei kleiner Amplitude (10.1), hier mit dem
Nullphasenwinkel ¢ = 0:

Y = Ymsin ot m
Nach Skizze ist y,, = % ()}
2r
(2.16) und (2.13) ergeben w = - 3)
t
Die Periodendauer ist T = - “@

Aus (1) ... (4) folgt das allgemeine Ergebnis

s 2zt
Yi =5 sin

t

Spezielles Ergebnis berechnen:
Wir berechnen zuerst das Argument des Sinus fiir i = 1:

w-10-0s L e e
30s 3 73 =
Somit folgt

y1 = 15cm-sin 120° = 13 cm.

Entsprechend folgt y, = y; = —13cm.

Fir 1, = 5 min = 300 s ergibt sich das Argument des Sinus
2 - 10-300s
30s
Dies bedeutet: es sind 100 Perioden abgelaufen, und es ist

=100 2n

Ya =2-

Ein Fadenpendel wird ausgelenkt und losgelassen, so daB es eine
Sinusschwingung ausfiihrt. Gleichzeitig beginnt die Zeitmessung.
Stellen Sie diesen Vorgang im y,t-Diagramm und als Gleichung dar.

Ein Korper wird im Schwerefeld der Erde sinusformig bewegt. Er
beschreibt dabei eine geradlinige vertikale Bahn (Bild 79). Berechnen
Sie die Frequenz, mit der er schwingen muf3, damit an den Umkehr-
punkten die resultierenden Beschleunigungen gerade Null bzw. gleich
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der zweifachen Fallbeschleunigung auf der Erde sind. Die Amplitude
ist 50 mm.

Ein Schiittelsieb bewegt sich vertikal und sinusformig mit einer Ampli-
tude von 30 mm. Auf dem Sieb liegen Korner der mittleren Masse m.
Berechnen Sie die Frequenz, mit der das Sieb bewegt werden muB,
damit sich die Korner vom Sieb ablosen.

Drei Wechselstrome gleicher maximaler Stromstarke mit den Null-
phasenwinkeln 0°, 120° und 240° (Drehstrom) flieBen in einem Draht
zusammen. Ermitteln Sie mit Hilfe der rotierenden Zeiger die resul-
tierende maximale Stromstarke.

Ein Zungenfrequenzmesser fiir Wechselstrom besteht aus kleinen
einseitig eingespannten Blattfedern verschiedener Linge (Bild 80),
die durch eine Magnetspule (im Bild nicht gezeichnet) erregt werden.
Erkliaren Sie die Wirkungsweise des Gerites.

Es ist eine Arbeit von 0,25 J erforderich, um eine gegebene
Schraubenfeder um 100 mm zu dehnen. Geben Sie die Periodendauer
der Schwingung an, die die Feder ausfiihrt, wenn sie mit einem Kor-
per der Masse 200 g belastet, danach um 50 mm ausgelenkt und los-
gelassen wird.

Eine Schraubenfeder (Federkonstante 250 N m~!) wird durch einen
angehdngten Korper um 36 mm gedehnt. 1. Welche Masse hat der
an die Feder angehingte Korper? — Berechnen Sie fiir das schwin-
gungsfihige System (Amplitude 20 mm) 2. die Eigenfrequenz, 3. die
Schwingungsenergie und 4. die Maximalwerte von Geschwindigkeit
und Beschleunigung des Korpers.

Ein Korper der Masse 150 g ist iiber eine Schraubenfeder (Feder-
konstante 56 N m~!) an einer Wand befestigt und kann auf horizon-
taler Unterlage reibungsfrei gleiten (Bild 81). Anfangs ist die Feder
um 35 mm zusammengedriickt. Berechnen Sie mit Hilfe des Energie-
erhaltungssatzes die maximale Geschwindigkeit des schwingenden
Korpers.

fine Maschine belastet ihr Fundament. Nach Bild 82 (sehr verein-
achte Darstellung) ruft die Gewichtskraft der Maschine (5 kN) eine
Durchbiegung des Fundaments um 2 mm hervor. 1. Berechnen Sie
die Frequenz, mit der das System Maschine/Fundament (= Korper/
Feder) schwingen kann. Die Masse des Fundaments sei vernachléssig-
bar klein gegeniiber der Masse der Maschine. 2. Die Betriebsdrehzahl
der Maschine ist 520 min~!. Liegt Resonanz vor?

Gegeben: G = 5kN; s =2mm Gesucht: 1. f

zu 2.: ng = 520 min~* 2. /8
1. Die Frequenz eines Feder-Masse-Schwingers ist
1 [k
I= 5N 0

Die Federkonstante ergibt sich nach (3.16) zu
F a

k=—. 2
s
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Die Kraft F ist hier die Gewichtskraft
G = mg. 3)
Aus (1) ... (3) folgt

1 /g
N /=Lt
2 520 520 8.7
Jo=mp=—— =~ =87Hz < 11,1 Hz

Da fg < fist, liegt kein Resonanzfall vor.

Eine Stanze soll erschiitterungsfrei aufgestellt werden. Sie fiihrt
maximal 60 Hiibe je Minute aus. Die Masse der Maschine einschlie3-
lich der Fundamentplatte betrigt 2,0 t. Welche Federkonstante (als
Kennzeichen der elastischen Eigenschaften) muB3 die Unterlage haben,
damit die Resonanzfrequenz 1,5mal 'so grof} ist wie die Betriebs-
frequenz?

Zwei gleich lange, in Wasser schwimmende Holzbalken der Dichte
0,80 kg dm~2 haben 1. rechteckigen (60 cm - 40 cm) und 2. kreisfor-
migen Querschnitt (Durchmesser 40 cm). Die Balken werden in ver-
tikaler Richtung so in Schwingung versetzt, daB stets die Langs-
achse des Balkens parallel zur Wasseroberfliche liegt. Berechnen Sie
die Periodendauer dieser Schwingung unter Vernachldssigung der
Reibung.

Ein Ardometer mit der Masse m und dem oberen Spindelquerschnitt
A schwimmt, wie Bild 83 zeigt, in einer Fliissigkeit der Dichte o. Es
wird um eine kleine Strecke von y = 0 bis y = y, angehoben und
zum Zeitpunkt z = 0 losgelassen. Danach schwingt es vertikal um
die Ruhelage. Der EinfluB der Reibung und der Bewegung der Fliissig-
keitsoberfliche kann vernachlissigt werden. 1. Ermitteln Sie die
Gleichungen fiir Periodendauer und Elongation der Bewegung. 2. Be-
grinden Sie qualitativ, wie sich die Gleichung fiir die Elongation
bei Beriicksichtigung der Reibung dndert.

Untersuchen Sie an zwei Beispielen, ob die nach Bild 84 aufgehidngte
Kugel als Fadenpendel aufgefalBt werden darf, indem Sie das Ver-
hiltnis der Frequenzen ausrechnen. Esist1.d;, = //2und 2.d; = //10.

1 1
Gegeben: 1. d, = 71; 2. d, = ﬁl Gesucht: 1. und 2. -'5,1
. P

Die Frequenzen der Pendel sind

1 [megl 1 J?
=N AT
Fiir unsere Untersuchung sind Masse und Linge konstant. Es dndert sich
nur das Verhiltnis /:d und damit das Massentrigheitsmoment. Wir

berechnen deshalb zunichst die beiden Trigheitsmomente und verwenden
dazu den Steinerschen Satz.

2 2 1\? 1
1--’A1=?mr2+m12=?m(7) +mlz=mlz(-w+l)
41

=™
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2t =Lt = () e (1
Sz =g mrttml?=om|5) +m?=m 1000+)

1001
1000

Im ersten Fall ist das Massentrigheitsmoment um 2,5% groBer als das
des entsprechend aufgehingten Massenpunktes. Im zweiten Fall ist der
Unterschied zum Fadenpendel verschwindend klein, das Pendel mit
d, = '/,0l verhilt sich praktisch wie ein Fadenpendel.

J J
Das Frequenzverhiltnis istff- = J AL J 4

mi? =~ ml?

A mgll ~ N “ml?
fe A/W fe o001
I.Tp— 'aa—l,ol 27:— m—l,OOOS

Dies bedeutet: Fiir d; = '[,] weicht die Frequenz des als Fadenpendel
berechneten Pendels um 1%, fiir 4, = !/,0/ jedoch nur um 0,05% von der
des exakt als physisches Pendel berechneten ab.

Ein Hohlzylinder von sehr geringer Wanddicke ist an einem Punkt
des duBeren Umfangs aufgehingt. Die Lage der Drehachse und die
MabBe (in Millimeter) sind aus Bild 85 zu entnehmen. Berechnen Sie
die Periodendauer bei Sinusschwingung um die Achse 4.

Berechnen Sie die Frequenzen der verschiedenen physischen Pendel
nach Bild 86 fiir jeweils kleinen Ausschlag. Die Gesamtmasse ist
500 g, die Linge 100 cm. Weitere MaBe entnehmen Sie dem Bild.
Der Korper am Stab (Bild 86.4) sei eine Kugel.

Ein physisches Pendel der Masse 8,5 kg ist um eine Achse 4 drehbar
gelagert, die im Abstand 35 mm parallel zu einer durch den Schwer-
punkt gehenden Achse verlduft. Die Schwingungsfrequenz ist 0,65 Hz.
Berechnen Sie 1. die Periodendauer, 2. das Massentragheitsmoment
beziiglich der Achse 4 und 3. das Massentrigheitsmoment beziiglich
der zur Achse A4 parallelen Achse durch den Schwerpunkt.

Das Massentrigheitsmoment eines kleinen Schwungrades soll experi-
mentell bestimmt werden. Zu diesem Zweck befestigen wir es nach
Bild 87.1 an einem Stahldraht und lassen es Torsionsschwingungen
ausfiihren. Wir messen die Zeit ¢, fiir 100 Perioden. Danach befestigen
wir zwei Wigestiicke (Masse m, je /s bis !/;o der Masse m; des
Schwungrades, Abstand r), wie auf dem Bildteil 2 erkennbar.

Gegeben: 1 ; ty; my; r; z =100 Gesucht: J
Nach (10.9) unter Beachtung von (2.13) ist

h ,,/T o JJ +7
T, = ; =2r % und T, = = =2 ©

Darin ist J das Massentrigheitsmoment des Schwungrades und J’ das
Massentrigheitsmoment der beiden im Abstand r befestigten Wigestiick-
chen (J’ = 2mr?). Nun gilt

TW:T,=t:t; = \/J: (J + J'). Daraus folgt
3 2
J=J ——— = 2m,r?

g -1t

13 —1f
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Zur Bestimmung des Massentragheitsmoments eines Zahnrades
lassen wir zunidchst einen zylindrischen Korper an einem Draht
eine Torsionsschwingung ausfithren, dann das Zahnrad. Der zylin-
drische Korper hat das Massentriagheitsmoment 7,80 kg cm? und fiihrt
20 Perioden in 1,945 min aus, das Zahnrad benoétigt fiir 20 Perioden
0,930 min. Berechnen Sie 1. die RichtgroBe k’, die bei der Torsion
des Drahtes auftritt, und 2. das Massentrigheitsmoment des Zahn-
rades.

Ein homogener Quader (@ = 20 mm; b = 50 mm; 4 = 80 mm) ist
1. um eine Achse A4, 2. um eine Achse B nach Bild 88 drehbar gelagert,
und er fiihrt jeweils eine sinusformige Schwingung aus. Berechnen
Sie die beiden Frequenzen.

Berechnen Sie die Induktivitdt einer Spule, deren ohmscher Wider-
stand vernachldssigbar klein sei, und die Kapazitit eines Konden-
sators, die bei der Frequenz 2,0 kHz den gleichen Wechselstrom-
widerstand 20 Q haben.

Berechnen Sie die Induktivitit der Spule, deren ohmscher Widerstand
vernachldssigbar klein sei, und die Kapazitit des Kondensators, die
jeweils bei Anschlu3 an eine Wechselspannung von 220 V/50 Hz von
der gleichen Stromstirke durchflossen werden wie eine 60-W-Gliih-
lampe.

An die Netzspannung 220 V/50 Hz sind in Reihe liegend eine Spule
mit der Induktivitit 0,50 H und dem ohmschen Widerstand 10 Q so-
wie ein Verbraucher mit dem ohmschen Widerstand 100 Q ange-
schlossen. Berechnen Sie 1. die Stromstirke, 2. den Spannungsabfall
tiber der Spule und 3. den Spannungsabfall iiber dem Verbraucher.

Durch eine Spule flieBt bei 10,0 V Gleichspannung ein Strom der
Stromstirke 6,10 A, bei 10,0 V Wechselspannung betrdgt die Strom-
stirke 1,99 A. Die Frequenz der Wechselspannung ist 50,0 Hz. Be-
rechnen Sie 1. den ohmschen Widerstand, 2. den Scheinwiderstand
und 3. die Induktivitat der Spule.

Berechnen Sie 1. Scheinwiderstand und 2. Phasenverschiebung fiir
eine Reihenschaltung von ohmschem Widerstand (500 Q), Spule
(Induktivitiat 2,50 H) und Kondensator (Kapazitit 1,50 wF) fiir eine
Wechselspannung 220 V/50,0 Hz.

Berechnen Sie die Frequenz, bei der in der Schaltung nach Ubung
10.25 Spannungsresonanz auftritt.

Eine Spule mit einem ohmschen Widerstand von 100 Q wird an eine
Wechselspannung von 220 V und 50 Hz angeschlossen. Im Strom-
kreis liegt ein Elektrizitidtszihler, der in 2 min 5 Umdrehungen macht
(Zahleraufschrift 1 kW h = 1500 Umdrehungen). Berechnen Sie 1. die
Leistung, die die Spule aufnimmt, 2. die Phasenverschiebung und
3. die Induktivitdt der Spule.

Eine Gliihlampe fiir 110 V. und 60 W soll an die Netzspannung 220 V
angeschlossen werden. Die Frequenz sei 50 Hz. Dies la6t sich ent-
weder durch Reihenschaltung mit einem ohmschen Widesstand oder
einer Spule (deren ohmscher Widerstand vernachlissigbar klein ist)
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bzw. mit einem Kondensator verwirklichen. Berechnen Sie 1. die er-
forderlichen Schaltelemente R, L und C sowie 2. fiir alle drei Fille
die Gesamtwirkleistung. )

Ein Gleichstrommotor und ein Wechselstrommotor nehmen bei An-
schluB8 an 220 V Spannung eine Wirkleistung von 1,65 kW auf. Fiir
den Wechselstrommotor ist der Leistungsfaktor 0,50. Berechnen Sie
fiir beide Motoren die Stromstirke.

Berechnen Sie Wirk-, Blind- und Scheinleistung fiir die Reihenschal-
tung nach Ubung 10.23.

Das Typenschild eines Einphasenwechselstrommotors weist folgende
Werte aus: Wirkleistung 600 W, Betriebsspannung 220 V/50 Hz,
Leistungsfaktor 0,75. Berechnen Sie 1. die Scheinleistung, 2. die
Stromstdrke, 3. den Scheinwiderstand, 4. die Phasenverschiebung,
5. die Blindleistung.

Ein das Wechselstromnetz induktiv belastender Verbraucher nimmt
bei 220 V Spannung eine Stromstdrke von 1,05 A auf. Bei Parallel-
schaltung eines Kondensators wird die Stromstirke kleiner. Sie ist
bei 6,5 wF 0,650 A, bei 13 wF 0,541 A und bei 20 oF 0,691 A. 1. Be-
rechnen Sie jeweils die Scheinleistung (ohne bzw. mit Kondensator).
2. Stellen Sie die Abhingigkeit der Scheinleistung von der Kapazitit
im Diagramm dar, diskutieren Sie den Kurvenverlauf und geben Sie
die Wirkleistung an. 3. Berechnen Sie den Leistungsfaktor des Ver-
brauchers. 4. Welche Blindleistung hat der Verbraucher?

Gegeben: U =220V; I, =105A Gesucht: 1. Pyy; Py
C,=65uF; I, =0,650A P,; Py
C,=13uF; I,=0541A 2. Diagramm; P
C; =20uF; Iy =0,691 A 3. cos @

4. P,

1. P, = Ul Py =220V -1,05A = 231 VA

P, =143VA; P,=119VA; P,=152VA

200

752 VA
743 VA
779 VA
Bild 89 r
i 65 3 20 Gyur

2. Bild 89. Kapazitive Belastung kompensiert induktive Belastung. Des-
halb wird die Scheinleistung bei vorgegebener konstanter Wirkleistung
des Verbrauchers mit gro8er werdender Kapazitiat zunédchst kleiner. Das
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Minimum entsteht dadurch, daf3 kapazitive und induktive Blindleistung
gleichen Betrag haben, sich kompengieren. Somit ist Py, = P die
Wirkleistung. Wird die Kapazitit weiter vergroBert, iiberwiegt kapa-
zitive Blindleistung, die Scheinleistung wird wieder groBer.

Wirkleistung aus Diagramm: P = 119 W

3 _ P P 119 VA 0515
S =TT TRy €SP = PVA ~ oo
4. Py = /P2 = P* = \/P& — Plun; Py = 198 var

Zur Probe berechnen wir die Blindleistung des Kondensators 13 uF:
U

Pq = UIC = 27'!7fCU2 (weil Ic = 7 = UwC)
(o]

2n-50-13y.F~2202V2_100 13- 2202 A sV? 197.7
a= s =T 106 vs _ oivar
Die Blindleistung des parallelgeschalteten Kondensators ist gleich der
Blindleistung des Verbrauchers.

Ein Einphasenwechselstrommotor nimmt an einem 220-V-Netz mit
50 Hz bei seiner Nennleistung 180 W einen Strom der Stromstirke
1,17 A auf. 1. Berechnen Sie Leistungsfaktor und Phasenwinkel des
Motors. 2. Bestimmen Sie die Kapazitit des Kondensators, der dem
Motor parallelgeschaltet werden mufBl, damit die aufgenommene
Blindleistung Null wird.

2,3.11. Beispiele und Ubungen zu Wellen

Ein Ultraschallsender strahlt eine Welle mit der Frequenz 800 kHz
ab. Berechnen Sie die Wellenldnge dieser Ultraschallwelle 1. in Was-
ser und 2. in Luft, jeweils bei 20 °C Temperatur.

Berechnen Sie die Wellenlingen von Schailwellen der Frequenzen
1. 300 Hz und 2. 20 kHz in Luft, in Wasser, in Kupfer und in Alu-
minium, jeweils fiir eine Temperatur von 20 °C.

Radaranlagen ermitteln den Abstand von Flugzeugen aus Laufzeit-
messungen. Es werden kurze Hochfrequenzimpulse ausgestrahlt, die
nach Reflexion am Flugzeug zuriickkehren. Die Laufzeit eines Im-
pulses betragt 1 ms. Berechnen Sie fiir diesen Fall die Entfernung des
Flugzeuges von der Radaranlage. Geben Sie an, mit welcher Ge-
nauigkeit die Zeitmessung erfolgen muf3, wenn die Entfernung auf
150 m genau bestimmt werden soll.

Berechnen Sie den Brechungswinkel 1. fiir Schallwellen, 2. fiir Licht-
wellen, die unter einem Winkel von 10° bei 20 °C vom Wasser aus
auf die Grenzfliche Wasser/Luft treffen. Skizzieren Sie den Strahlen-
verlauf.

In der Ubung 11.4 sei der Einfallswinkel des Lichtstrahls 60°. Welche
SchluB¥folgerungen ergeben sich daraus?

Nennen Sie die physikalischen Vorginge aus dem Bereich der Optik,
die sich mit Hilfe eines Glasprismas nachweisen lassen. Skizzieren
Sie diese Vorginge.
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11.7 Erkliren Sie folgende Erfahrungstatsache: Wenn man tagsiiber aus
einem hellen Raum durch das Fensterglas nach drauflen blickt, sieht
man die Umgebung. Nachts dagegen erblickt man in der Fenster-
scheibe das Spiegelbild des hellen Raumes.

11.8 Erkliren Sie, weshalb ein Fettfleck auf weiBem Papier im reflektierten
Licht dunkler als seine Umgebung erscheint. )

11.9 Ein GroBlautsprecher gibt eine Schalleistung von etwa 10 W ab.
Die Schallenergie soll sich kugelférmig ungestort nach allen Seiten
ausbreiten. Von Verlusten wird abgesehen. Ein Hérer befindet sich
10 m vom Lautsprecher entfernt. Berechnen Sie iiberschliglich 1. die
Schallstirke am Ort des Horers, 2. den vom Hoérer wahrgenommenen
Schallpegel, 3. die am Ort des Horers in 11 Luft enthaltene Schall-
energie und 4. die Schalldruckamplitude am Ohr des Horers. Die
Schallgeschwindigkeit sei 340 m s~!, die Dichte der Luft 1,3 kg m~3.

Gegeben: ® = 10W; r=10m Gesucht: 1. J
¢c =340ms™'; og=13kgm3 2.L
Jo = 10712 Wm2 LW
zu 3.: V=1l 4. pm
L, 2 _®_ ow
T T e T e me Y 2
J 8-10'2
2L =10lg—; L=10lg——— =10-9,9% 100dB
Jo 103, —_
JV 8§W- Imd s

3W=wV=—-; = 10°mZ-10° 34-10°m ~ —b

— 2-8W-1,3kg-3,4-102m
4. pm = 2JoC;  pm = T R S~ 27Pa

"11.10 Der Schallintensitidtspegel einer Schallquelle betrigt in 2,0 m Ent-
fernung 60 dB. Berechnen Sie 1. die Schallstirke in 2,0 m Entfernung
von der Quelle sowie 2. die Schallstirke und den Schallintensitats-

“om ® pegel in 4,0 m Abstand von der Quelle.

S 11.11 Das Gerdusch eines Motorrades verursacht in einem bestimmten
__,‘.___i Abstand den Schallpegel 90 dB. Berechnen Sie den Schallpegel, den

10 solche Motorriader im gleichen Abstand erzeugen.

Bild 90
' 11.12 Zwei Gliihlampen von je 32cd sind 5,0 m voneinander entfernt

2,0 m hoch angebracht (Bild 90). Berechnen Sie die Beleuchtungs-
stirke fiir den Punkt 4 unter Annahme richtungsunabhingiger Licht-
starkeverteilung.

11.13 Eine HQL-Lampe 250 W mit einem Gesamtlichtstrom von 11500 Im
in einem Reflektor mit einem Lichtstirkediagramm nach Bild 91 ist
10 m iiber dem Erdboden befestigt. Berechnen Sie die Beleuchtungs-
0 stirke auf dem Erdboden 1. senkrecht unterhalb der Lampe, 2. auf
einer Kreislinic mit dem Radius 1,75 m und 3. auf einer Kreislinie
g mit dem Radius 3,50 m (Kreismittelpunkte jeweils senkrecht unter
dem Aufhingepunkt).

7000

Bild 91
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Bild 92.

11.14

2. Ubungen

Gegebgn:lp =11500lm; A=10m Gesucht: E;
R, =0; R, =175m i=1,23
R;=35m
Hinweis: Die Berechnung der Beleuchtungsstirken nach (11.37)
Eny = M setzt die Kenntnis der Lichtstirken des Strahlers

(r/m)?
in Richtung des Lichteinfalls auf dem Erdboden voraus. Diese konnen wir
jedoch nicht direkt dem Diagramm entnehmen, da dieses wie allgemein
ublich auf eine Gesamtstrahlung von 1000 Im bezogen ist. Aus diesen
Uberlegungen ergeben sich folgende Losungsschritte:

1. Schritt: Berechnung der Lichteinfallswinkel fiir die verschiedenen
Radien

2. Schritt: Entnahme der zu diesen Winkeln gehorenden Lichtstirken aus
dem Diagramm

3. Schritt: Umrechnung dieser Lichtstirken auf den Lichtstrom der
HQL-Lampe
4. Schritt: Berechnung der gesuchten Beleuchtungsstirken.

Weiterhin formen wir (11.37°) um. Nach Bild 92 folgt 4/r = cos «. Damit

“ergibt sich
I/cd
E = cos?
M= hyy?
1. Schritt: R, = 0; x; =0
R,
R, = 1,75 m; tana, = 7 = 0,175; &, = 9,93°
R3
Ry =3,5m; tana; = 5 = 0,35; o5 = 19,29°
2. Schritt: &, = 0 17 =1100cd
x, & 10° I5 = 900cd
oy & 20° 15 = 600cd
3. schrinr: 1 = 220U 0 isp
. Schritt: I = 1000 Tm =11,
I, =11,5-1100cd = 12650 cd
I, =11,5- 900cd = 10350 cd
Iy =11,5- 600cd = 6900 cd
12650
4. Schritt: 1. Epy = —TOT-; F=1271Ix
10350
2. E/Ix = T cos® 10°; E= 97Ix
6900
3. Ejx = ~10° cos3 20°; E= 54Ix

Eine 60-W-Gliihlampe hat einen Lichtstrom von 600 Im und soll
richtungsunabhingig in den Raum strahlen. Berechnen Sie 1. die
Lichtausbeute (Verhiltnis von Lichtstrom zu .elektrischer Leistung)
und 2. die Lichtstirke. 3. Welche Beleuchtungsstirke ergibe sich fiir
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eine 1 m von der Gliihlampe entfernte, senkrecht zu den Lichtstrahlen
angeordnete Fliache?

Fiir Mef3zwecke soll die Lichtstidrke einer Niedervoltgliihlampe durch
Vergleich mit einer geeichten Gliihlampe (Lichtstirke 250 cd) er-
mittelt werden. Dazu werden beide Lampen auf einer optischen Bank
angeordnet (Bild 93). Zwischen den beiden Lampen befindet sich ein
verschiebbarer weiBler Schirm, der durch geeignete Spiegelanordnun-
gen gleichzeitig von beiden Seiten betrachtet werden kann. Der
Schirm wird so lange verschoben, bis die Beleuchtungsstirke auf bei-
den Seiten gleich ist. Dabei ergeben sich folgende Werte: Abstand
der beiden Lampen 1,50 m, Abstand des Schirmes von der geeichten
Lampe bei Gleichheit der Beleuchtungsstirken 1,18 m. Berechnen Sie
die Lichtstiarke der zu eichenden Lampe.

2.4. Hinweise zu den Losungen; Antworten und Ergeb-
nisse
E _ 12,73 - F/kN * S/cm
IGpa = (d/mm)2 . A-"/mm
3,14 - ("/mm)4 ‘ Ap/Torr

Iy min— = 106 - Npas" I/m
U1 = tr v, = 300 kmh™!
v, =g + Up v, = 360 km h™?!
U3 = U — Up vz = 240 km h—?*
Ah
Vgur = -—I— + Uap Vgur = 1,92 m s~1
s
vp = rl + Ustr vg = 19,8 kmh!
s
1. Up = t_ Urp = 84,7 kmh“; Urp = 47,7kmh-1
R
s
2.0p = vep = 9,1 kmh™1; vgp = 69,9kmh?
R— A
51
L tm = re Um1 = 5,20km h~?!
1
52
Omz = 5~ Umz = 3,20 km h™!
2
S3
Um3 = - Um3 = 4,86 km h™!
3
_ 5y + 52 + 3 _ 1
2. Vges = T LT L Uges = 4,49 km h

Beachten Sie: vy darf nicht durch Mittelbildung aus den drei Durch-
schnittswerten bestimmt werden. (Nur moglich, wenn ¢, = 7, = #3.)

Av

Im = 37 an = 6,57 -10° ms~2

v, — v
a, = >—L Y ! an, = —0,157ms™2
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2. Ubungen

1. Zeitlich konstante Geschwindigkeit, gleichformige Bewegung.
2. Zeitlich konstanter Ort, keine Bewegung.

1. Zwei gleichmiBig beschleunigt bewegte Korper haben zu der durch den
Schnittpunkt gegebenen Zeit die gleiche Geschwindigkeit.

2. Zwei gleichformig bewegte Korper befinden sich zu der durch den
Schnittpunkt gegebenen Zeit am gleichen Ort.

1. Bild 94.1; 2. Bild 94.2
Bild 95

Der Korper bewegt sich mit konstanter negativer Geschwindigkeit vom
Ort so aus auf den Nullpunkt zu. Dieser wird zur Zeit ¢; erreicht. Der
Korper bewegt sich mit gleicher Geschwindigkeit weiter bis zum Ort
S = —38o.

Die Bewegung beginnt mit positiver Geschwindigkeit vo. Die Geschwindig-
keit nimmt gleichméBig ab. Zur Zeit ¢, ist sie Null. Die Bewegungsrichtung
kehrt um. Die Geschwindigkeit nimmt dem Betrag nach wieder zu, bis
zur Zeit t, die Geschwindigkeit v, = —v, erreicht ist. Wihrend der
gesamten Bewegung hat die Beschleunigung einen konstanten negativen
Wert.

1. Kurve I: Gerade, d. h., Geschwindigkeit ist konstant.
Kurve 2: Gekrimmte Kurve, die mit zunehmender Zeit steiler wird,
d. h., Geschwindigkeit nimmt zu. Die Steilheit der Kurven entspricht
der Geschwindigkeit.

2.t =ty: 10 = v;; vUyo = 0 (Kurventangente parallel zur 7-Achse)
t=1:0vy, =0v;; vy < vy (Kurve I steiler als Kurve 2)

t=1: 35 = vy; U35 > vy (Kurve 2 steiler als Kurve 1)

s
t=— t=154s
v
s
v=— vs = 10ms™!; vr = 6,7ms™!; vs > U
As — 25 1
b= 4 v=25ms
d 30
s=- s =30m

Fiir die M-Kurve gilt: sy = vpt.
Fiir die P-Kurve gilt: sp = As + vp(t — At).
Fiir den Uberholungspunkt gilt: sy = sp; ¢ =ty

As — vp At
rp=—o>r" to = 1h 10 min
Um — Up
Su = vmlu su = 52,5 km

Die Begegnung findet statt, wenn die Summe der beiden Wege gleich der
Entfernung zwischen Anfangs- und Endpunkt der Strecke ist. Es ist zu
beachten, daB die Geschwindigkeit von PKW 2 mit v, = —90kmh~?!
anzusetzen ist.

As — v, At .
1.t3=——" ’B=1h7,5mln
Uy — Uy
2. Sg = Uyl sp = 78,75 km
3. Bild 96
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Wir wihlen als Beginn des Bewegungsvorgangs den Zeitpunkt, zu dem der
FuBginger von der Bahn iiberholt wird. Dann befindet sich die folgende
Bahn 10 min spiter an dieser Stelle. Gesucht ist der Zeitpunkt, zu dem der
FuBginger durch diese Bahn tberholt wird. Fir die Bahn gilt
sg = vg(t — At), fir den FuBlgdnger sg = vgt. Aus sg = s folgt

At .
t = —————— t = 12 min
. U
],___
U
s
= ——— t=20s
vy + vy
v
1.a=T a=10ms2
v
2.5=—1t s=163m
2
vs . .
s$= -5 s = 21,4 m; Anhalten ist moglich.
v — v
s = 3 + 5o s =166 m
o?
a=7s— as=5,0ms‘2; 0x=],4m5—2; as > ag
vo = \/ —2as vo = 79,2kmh?!

Bild 97 zeigt das v,s-Diagramm. Gesucht sind die Anfangsgeschwindig-
keiten vo und v; bei bekannter Endgeschwindigkeit v, sowie Beschleu-
nigungsstrecke so bzw. s;. Aus (2.8) folgt

1.vp = \/v3 — 2as, vo = 40 km h-!
2.0, = \/L§ — 2as, vy = 70 km h*
Vo1
1.ty = — T t; = 5,56
2. 12 =?tl
t |
3. Bild 14. Nach dem Strahlensatz ist ’—2 =3
1
I
tz = 7 ’2 =1S5s
2
Vo _ a, m
a=—2—s al——5,57ms 2, 02=T=—2,73-7
v — v,
Lt = ° t=512s
a
v? — v
2.5 = s =782m
2a
2(s — vot
l.a-—-——(—ﬁ—o—) a= —0,50ms2
2s
Z'U=T_v° v = 36,4 kmh!
v —
l.a= Yo a=34Tms™?
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2. Ubungen

_ v+ vo)t

25 = =00 s=83m
20t —
1.a=—("t2—s) a=0519ms?

2. Zum Zeichnen des Diagramms wird vy berechnet:

2s
vo= =0 vo = 4,0 kmh-!; Bild 98
CRN p—
Lit=—+—/o? —2a5; ty = 16,33s; 1, = 183,7s
2.vp = /v? — 2as vo = +30,1 kmh™!

3. t; gehort zum positiven, ¢, zum negativen Wert der Anfangsgeschwindig-
keit (voy; vo2). Im letzteren Fall entfernt sich das Schiff zunichst in
Riickwirtsfahrt von der Boje, wobei es bis zum Stillstand abgebremst
wird. Dann bewegt es sich mit gleicher Beschleunigung nach vorn und
fahrt ein zweites Mal an der Boje vorbei (Bild 99).

s 2s syt
1.Aus ¢ = = und V) =Ugy = =2 folgt ¢, = =2 und
vy t 2s,

51t
lges = E + 1, + 1 lges = 30s

ast3
2

Die Gesamtverspéatung At setzt sich zusammen aus Verspatung At¢; (beim
Bremsen), Haltezeit #, und Verspitung Ar; (beim Anfahren) (Bild 100).
Bezeichnen wir mit #,” und #,” die Fahrzeiten auf den Beschleunigungs-
strecken fiir den Fall, daB der Zug nicht anhilt, dann ist

2. Sges = 51 + 52 + Sges = 350 m

231 Sy A
Aty =t -t/ =— - —=—
! ! 1 v v v
Mty=ty -t == 22 v ’_ und somit
3T 3 v a 2av  2a
S v .
At = —+ 1, +— At = 5,8 min
v 27 2a ’

In einem mit dem LKW fest verbundenen Bezugssystem ldBt sich der Vor-
gang durch zwei Phasen beschreiben: 1. Beschleunigung des PKW von
der Geschwindigkeit Null auf die Differenzgeschwindigkeit vp = vp; — Vp;
= 20 km h™'. 2. Gleichférmige Bewegung des PKW mit vp = 20 km h~!
gegeniiber dem LKW. Dann gilt

25y S + S sy Linge des LKW
et T T, s, Weg vor | Vorbeifahrt
s, Weg nach| am LKW

2sy + s + 5,

1. tl&s = # tles = 18,9 s
Up

2. Sges = th'es + Sy + S+ S Sges = 390 m

t2
5= s=785m
2.v=gt ‘p=139,2ms™!
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2h
1.!=2J—— t=1,28s
g

2h — -
2.r=~/? A +2z +22+2/2) t =370s
(mit z = 0,95)

Wir wihlen die Richtung nach unten als positive Richtung.
Nullpunkt: Abwurfstelle (Balkon).

l.ovo=v — gt v = —4,72ms!
. Der Stein wird nach oben geworfen.
tz
2.s=vt—£2— s =39m
t
o=y 2 v=17,5ms™!
t 2
- ol A — -1
2.09 = ; ) vo = —2,5ms

Da die Richtung nach unten als positiv gewéhlt ist, bedeutet negative
Anfangsgeschwindigkeit, da8 der Korper nach oben geworfen wurde.

1. Korper I wird mit vg; = 30ms~! nach oben, Korper 2 mit
vo2 = —30ms~! nach unten geschossen. Korper I erreicht nach 3s
die Maximalh6he (v = 0), beginnt zu fallen und passiert nach weiteren
3 s die Abwaurfstelle (v = —vgy).

2. As = (o1 — Uoz)t AS; = 300 m
1. Losung in Teilschritten (Bild 101):
Die Rakete hat am Ende der Beschleunigungsstrecke den Weg
sg = '/2arts = 25 km zuriickgelegt und die Geschwindigkeit vg = agrtp
= 1 kms~! erreicht. Zu diesem Zeitpunkt (f = 90s) hat das Flugzeug
den Weg sg = vt = 30 km zuriickgelegt. Der Abstand Rakete—Flugzeug
betrigt dann noch 5 km. Da die Rakete dreimal so schnell wie das Flug-
zeug ist, gilt fiir den Treffpunkt sy = 28,75 km.

2. Allgemeine Losung:

1,
So — Uf (TB+A’)

St=datg or + afg St = 28,75 km
t2 12

Esist sy= 50, — -gz— (1) und 53 =vppt - 52— v))
Fiir den Treffpunkt ist s; = s, = s1.
Damit folgt aus (1) und (2) Sp1 = V2! 3)
Aus (1) und (3) ergibt sich

g5
St = So1 — _2v.§z sy =922m

Bei gleichmiBig beschleunigter Bewegung muB gelten: s = ct2. Dem Dia-
gramm entnehmen wir die Wertepaare: (¢ =1s, s=1m), (¢t =2s,.
s=8m), (t = 3s, s = 27 m). Somit gilt s = ct3. Die Bewegung ist nicht
gleichmifig beschleunigt.

At
1.T='—z— T=60s
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1
2f=? f =1,67-1072Hz
3.0 = 2nf w=105-10"1s"1
2 + h
pu et B v = 3,05 kms~!
T
1.T ! T = 0,50
T=— =0,50s
f
2.0 = 2nf o =126s"!
wd
3.0 =— v =3,14ms™!
2
s
4.t = — =9,55s
v
v
n=—. 11,3 min"! £ n < 30,2 min~!
d
Das Rillenfeld wird als aus konzentrischen Kreisen bestehend angesehen.
Anzahl der Rillen: (r, — r;) kK mit k = 10 mm™1,
-k
1.t = u- t = 26 min
n
2. v = 2nnr 2lems ! < v < 50cms™?!
3. Linge = Anzahl der Kreise (Rillen) mal mittlerer Kreisumfang
(Bild 102). Mit U, = 2rry, = n(r, + r;) folgt
I = mk(r?2 — rd) I=54Tm
l.v=\/vg+2as v =40ms!
Vo
2.ng = — = in—t
no wd ng = 115min
n = v 1 in—1
wd n = 153 min
s
3.z = g z = 6,37
2w An
l.a = o = 0,873s72
At
2.1 = A ¢t = 60mi
= An = 6,0 min
1. A Bo _ Zmln et mit z = 40, £ = 1 min, An = 2 d
us & = —e = olgt mit z = 40, ¢ = 1 min, An = 2ny,, un
t
At = —
z
4
o= _"”;"“z * = 69852
2. Bild 103
3 Phasen: 1 gleichmiBig beschleunigt, 2 gleichformig, 3 gleichmaBig

beschleunigt (symmetrisch zu /)



=

w?/_\:

Bild 104

Vp .Bf;

!
L—"

Bild 105

-V

2.67

2.68

2.70

2.71

2.72

2.4. Hinweise zu den Losungen; Antworten und Ergebnisse 103

ot®d

l.sy =853 = 2 SI=S3=45m
2(sges — 251)
2. = ———mmmmmmmm—— =
ts o , =227s
Tges = 2t + 1, Iges = 30,7s
ol s 1
3.n, = e ny = 172 min
4, 7 = z =764
T
5. Bild 104
dnd-
1. vy = TmdmdT vg = 90,5ms™!
dz
2vf
2.a = B a, = 4,10-10*ms2
dr
2 d
3. = Zmdm a = 60,352
tdz
dut
4 s = miml s =170m
2
2
1. a;, =B a,; =12ms™2?
r
2 Ay = 2ay,
v
sina = — o = 30°
Ug
s
2.t = ——— t =46,2s
vp COS
1. Bild 105
o v
2. —tan> -2 = 0,176 = 176: 1000
v 2 UL
= /5 - -1
1'vo_'/sian vo = 117ms
s
2.t = —— t =205s
v COS o
v sin? &
3. b = =y — ey = 523 m
2
4. sy, = —3—sm“ 5y, = 0,8 km

1 -—
5.4, = ;— (vo sinox + \/vg sin?x — 2hg); 1, =3,58s; t, =17,1s
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2. Ubungen

Gleichformige Bewegung in x-Richtung. Es ist v, = const.
Uy = Ugx = Vg COS &
Senkrechter Wurf nach oben in y-Richtung. Es gilt
03, = 2ghmax- Somit folgt
v, = /v, + v3, = /o2 + 2gh
Av

F= m—A—t- F=- 0,521 kN
2
s = —20" . mit F= —50Nfolgt s=48m
2F
Fe F=284N
== =

Die Kraft, die der Griff zu Ubertragen hat, ist die Gewichtskraft des Kof-
fers sowie die zur Beschleunigung des Koffers notwendige Kraft. Ruck-
artiges Anheben ist mit groBer Beschleunigung, d. h. also mit groBer Kraft,
verbunden. Die sich so ergebende Gesamtkraft iiberschreitet die Festig-
keit des Griffs, wihrend die Kraft bei langsamem Anheben darunter bleibt.

_ (m; + my + mg) ty

, = 2oy + ) t; = 8,33s
Aus (3.9) folgt mit r; = 1,1rg
Ag = (] 1 d
g =yme 2 1,123 un
Ag X
oo =1y = 0174 = 17.4%

g » 24
m5=7r5 mg = 5,99 - 10*% kg
1ky = 'Z‘Sg ky =392 Nm*

kz AS
2.m; = =2 my =255¢g

3.k, > k; Die zweite Feder ist die hértere Feder.
F=1,kAs F=375N

1. Die hintereinander verbundenen Federn iibertragen beide die gleiche
Kraft. Sie werden demzufolge um den gleichen Betrag gedehnt wie eine
einzeln belastete Feder. Die beiden Dehnungen addieren sich:
As, = 2As,

2. Die parallel verbundenen Federn werden jede nur mit der halben Kraft
beansprucht. Deshalb ist die Dehnung nur halb so groB wie die einer
Einzelfeder: As, = !/,As;

Bild 106

Die Bremskraft muB iiber die Rider als Haftreibungskraft (beim Rollen)
bzw. als Gleitreibungskraft (beim Gleiten) auf die StraBenoberfliche wir-
ken. Weil o > pg, ist Frumax > Frc. Daraus folgt fiir die Betrige der
Bremsbeschleunigung ag,y; > dgjeir Und fiir die Bremswege Sgoi; < SGieit-



F
Bild 107

16
y

LN~

——

R

3.17

3.18

3.19

3.20
3.21

3.22

2.4. Hinweise zu den Losungen; Antworten und Ergebnisse

105

Krifte
Phase| nach | nach Gesamt- Bewegungs-
unten | oben kraft zustand
0 G - \WF=G freier Fall
2 1...8 G Reibungs- \F=G - F beschleunigte
kraft Fy Bewegung mit
mit Ge- abnehmender
schwindig- Beschleunigung
keit zu-
nehmend
3 8...12 | G R=G F=G-FR gleichféormige
=0 Bewegung,
Fall mit konst.
Geschwindig-
keit
4 12...13 | G R>G \F=FR -G verzogerte Be-
wegung beim
Offnen des
Schirms
5 >14 G R=G F=G-FR gleichformige
=0 Bewegung
wie Phase 3
Us < U3
m;
1. Fay = o8 Foux = 366 N

sin o — gg cOS &
(Bild 107)

2. Fur o = 90° ist als Normalkraft nur die Gewichtskraft mg wirksam. Es
ist Frax = pomg. Mit kleiner werdendem o« wichst Fp,, bis zum Grenz-
fall sinx = yo cos « oder uo = tanx. Dann gilt F,, — oo. Bei noch
kleinerem Winkel &« kann der Keil durch eine noch so groBBe Kraft nicht
mehr verschoben werden. '

l.sinx = — = 2,87°

1

2. F=m(a + gsinoa + ugg cos o) F =148 kN

3. tan omay = UF Gmax = 1,15°

Das Fahrzeug kommt von selbst ins Rollen.

v3

25

Die auftretende Kraft ist gemidB F = ma proportional der Bremsbeschleu-
nigung Av/At. Infolge der groBeren Verformung der Gummikugel ist hier die
Bremszeit At groBer und somit die Bremskraft kleiner als bei der Metall-
kugel. Auch ist die Beriihrungsfliche zwischen Gummikugel und Boden
groBer als zwischen Metallkugel und Boden, so daB bei der Gummikugel
der Druck p = F/A auf die Fliesen wesentlich kleiner ist als bei der Metall-
kugel.

Zwischen eingeklemmter Axt und Klotz sind Reibungskriafte wirksam.
Beim Aufschlag tritt an beiden Korpern (Axt und Klotz) eine in Schlag-

e = ur = 0,025
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richtung wirkende Trigheitskraft auf. Beim unteren Korper ruft sie eine
Verformung der Unterlage hervor, wihrend sie beim oberen Kérper, wenn -
sie groBer als die Haftreibungskraft ist, ein Weiterbewegen dieses Korpers
in Schlagric_;htung bewirkt. GemadB F = ma ist diese Wirkung um so
groBer, je groBer die Masse des Korpers ist. Deshalb immer mit dem jeweils
leichteren Ko6rper aufschlagen!

Uy — Uy
328 1. Fen=mg —ar Fsen = 61,7kN
Uy — Uy
2.Fp = "mp——AT_ Fr = —865N
L - -2
325 1l.a _m,+m2g a =736ms
2. Fs = ma Fs=1736N
326 l.a = M2 mlgsina 4 = 1,64ms-2
my + my
2. Fs = my(gsina — a) Fs = 653N
1 = : A/Eg_ 5,46 min~!
3.28 == 37 n = 5,46 min
Aa h Aa
2. = — — =0,18=18%
arr e acr
vl
329 po=- to = 0,18
ra
.30 = —J— =
3 S =5 ) f =05Hz
Bild 108 3.31 Aus der Skizze Bild 108 lesen wir ab:
F; —t .. A
G =tfanx < s« = [
v?l
Ah=— Ah = 58,9 mm
rg
vZ
332 1.F,=F,=m— F, =833N

r

2. Wegen der Relativgeschwindigkeit des Fahrgastes im rotierenden
Bezugssystem tritt zusdtzlich zur Zentrifugalkraft noch die Coriolis-
kraft auf, die hier — wegen tangentialer Richtung der Relativgeschwin-
digkeit — wie eine zusitzliche positive bzw. negative Zentrifugalkraft

wirkt.
2muvg
F,=F+ = F, =993N
2muvg
3.F3=F1- r F3=67,3N
333 W= Fscosa W =30MJ

3.34 1. Die verrichtete mechanische Arbeit ist Null, da mit der aufgewandten
Kraft kein Weg zuriickgelegt wurde.

Wheeh = Fs =0
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2. Das Anspannen der Muskeln ist mit Energieumsatz verbunden, der zur
Erwarmung des Korpers fithrt. Diese Vorgange machen sich als Er-
miidung bemerkbar.

1.1 F=const = 4N

1.2 Lineare Abhingigkeit: F = ¢s. Die Konstante ¢ ergibt sich aus einem

6
- = —— = -1
F,s-Wertepaar: ¢ Tom 0,6 Nm
21 W=Fs W=4N-10m=40J
F 6N-10m
2.2W=Fms=7.v W=—2—=30.l

In beiden Fillen 1dBt sich die Arbeit auch aus dem Diagramm als
Fldche unter der Kurve bestimmen.

1. Bild 109.1. Die zu verrichtende Arbeit ist gleich der Energiezunahme
der vorgespannten Feder beim weiteren Dehnen um As (Fliche in
Bild 109.3 gerastert). Es gilt (3.31) W = !/,k As?. Aus (3.16) folgt mit
Fr = G, = m g der Betrag der Federkonstanten k = m,g/s,. Somit
ist

m, g As?
W=——- W =10,221)
251

2. Bild 109.2. Die zu verrichtende Arbeit entspricht der schraffiérten
Fliche in Bild 109.3, d.h. der Energiedifferenz AW = W, — W,
= 1/,k(s? — s3). Die Federkonstante k = m,g/s, ist unter 1. allgemein
bestimmt worden. Somit folgt

m g(s? — s?
aw = mEGE = ) AW =0,515]
251

3. Im 1. Fall wird ein Teil der insgesamt zu verrichtenden Arbeit durch
die Gewichtskraft G, des angehingten Korpers aufgebracht, entspre-
chend dem nicht gerasterten Teil der schraffierten Fliche in Bild 109.3,
Dieser Anteil ist W’ = myg(s; — 5,) = m,gAs.

Probe: W + W' = AW
Die Gleichung ist erfiillt mit W’ = 0,294 J.

4mgsy
].E—-m E =195 GPa
mg As -
2 W = & Wye = 1,57 mJ

Es werden Hubarbeit und Reibungsarbeit verrichtet.

W= Wy + Wi = mgh + ugmgs cos o.

Fiir den Weg gilt s = A/sin & und somit

W = mgh(l + jug cot x) W =422 M)

Es werden Hub- und Beschleunigungsarbeit verrichtet.
Fy Wa mv? v

H p=—=—; a=—73 a=l’0ms-2

l.a = h 25

m

2
2
m02 Uz
2. Woes = Wy + Wp = mgh + 2 =m(gh+7)
2

Wes ve
Wies = Fsh; Fsv—_‘ I: =m(g+E); Fs = 21,6 kN
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1. W = h(mg + Fg) W =53,7J)
2

2.0 = > v =845ms™!
m

Lo =8 = 80 ms

cvo= v =80ms
mv?

2. Wy = 2 Wy =17,041]

3. Beim Aufprall werden die Kugel (stark) und der Kugelfang (wenig)
verformt. Die Verformungsarbeit wird in Wirme umgewandelt. Es
erhoht sich die Temperatur der Kugel und des Kugelfangs.

Wi
4 k- — h=718m
mg
Wio = Wi + Wy
m 1 W W 3 " weil in 1000 m Hohe
FR =TVt Wo=5m W,, = 2Wy, )
vo = +/3gh vo =171 ms!
mo}
L Wiy = —— W,, = 67,5kJ
vi
2. Wea=m (—2— +5’Ah) Wy, = 729Kk
2W;
v, = J—u v; =355kmh!
m
mt;2
k=-ST k=2,78MNm“

B 2Fws
v=J2g(h—yGJs’—h’)— ”‘:’ v =13ms™!
mog : 8 0,025

2 = UFMES; UF = 285 sy = V)

. k(As)?
Bild 110; A= +s—As; h=138m

2mg
k(As)? :
vo=J @) — 2gAs vo = 1,57 ms™}
m

- k =59 Nm-t

T (As)? -

2
mvy .
1. mghy = —— + pugmgscosa  (Bild 111)

2
vi . hy
ghy = 5 + ucgh, cot wegen sin o = >
;, v hy = 0,61
17 2g(1 = ug cota) L= 500 W
mv? mv?
2. mghy + 3 =3 + pgmgs cos o
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v3
2
v, = \/vzz + 2ghy(pg cotx — 1); v, = 1,06 ms™!

3.55 1. Zugefiihrte Energie W,, = Pt;, abgegebene Energie W,, = mgh. Mit
n= W-b/Wzn folgt Ptym = mgh

+ uggh, cotn - ghy

le’.,,

y = 50s

t g 2s
2.z2=——. AUSS=—2—t2 folgt 1 = ,/—g—

g+ tu
t
z=— z=10
gy + z
TN g
3.56 1. Nges = NTNp TNges = 29;4%
Py
2. Py =— Py = 9,52 kW
It
3. Pp =npPr Pe = 2,80 kW
Py _ -1
3.57 v= Feosa v=0979ms
3.58 1. FT = —ma FT = 180 kN
2.P =Fp P =20GW
Pt
3599 V=—— V =121 m?
oghn
3.60 1.r=s50+Isina r=651m
2. Bild 112. Aus tan & = F;/G, F; = mw?r und = 2n/T folgt
r
T=2x ,/— T=173s
gtanx
Wi + W, z [ mv?
3.P,,,——m——§(—2-+mgAh)
Mitv = 2nr/Tund Ah = [ — I’ = | — I cos « folgt
P = — [2"2'2 + gl(1 — cos )] P = 134 kW
=— —cosx)|; =1,
Bild 112 m= T e T8 m
my
3.62 l.o,=—u v, = 12,3ms™!
my
2
2 F =202 F = 61,5kN
2s

3.63 Wir rechnen zunichst mit ruhendem Wagen und beachten, daB unter den
gegebenen Bedingungen nur die in Bewegungsrichtung des Wagens liegende
Impulskomponente wirksam wird.

MUy COS

bw = — ———— vw = —153ms™!
w

A
3.64 Av=F—m’- Av = 40 ms-!
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mg + m
3.66 l.ug= —E——K.\/2,ucgs g = 304 ms!
mg
Wr mg W Wy
2. = = 1,29 M = s °
Wie mg + mg Wie 2% Wie 8.8%

3.67 Aus Fr=Apfolgtt = Ap/Fyn. Mit Ap = mv — (—mw) = 2mv, Fy = '/, Fnax
und v = \/ 2gh erhalten wir

4m ﬁ
= __ig_ t =221lms
Fmax
o2
368 h =— h =510m
2g
2 86,5 ms-!
3.69 'k = U my ¥ m, g = ,9ms
2m, .
370 P = b2 tar = 4,55ms”
m, —m
Un2 = Uzﬁ rn, = —20,5ms™?!
myvy + myv
3.71 vy = T Tem2 ta, = 75,2 km h-!
m; + m,
3.72 1.v, = \/Z;tggs rp = 39kmh™!?
my
2.0y =0y + —(vq — Uz) vy = 71 km h-!
m

Beachten Sie, daB v, negativ einzusetzen ist.

3 AW | (my + my)v? AW 0.63 = 63°
' Wges B mlvf + mzvzz Wges R %
> x,m, myly + my(ly + 1) + ma(ly + 1, + 13)
373 gy = -
7 £ > m, my + my + my + my
%\ 7 xu = 0,897 m
\ 3.75 Bild 113
\ 1. M, = Fireosf§ M; =433Nm
—— A\ 2. M, = Fyrsinf M, = 200N m
4 3.MR=M1+M2 MR=63,3Nm
? By I 4. Fr =+/F? + F? Fr =128N
\ F
/ tanx = — x = 502°
fr / \ £
< \_7 \ 5. Mg = Farsin (« + f) Mg = 633N m

6. Es wirken in diesem Fall nur die in die Scheibenebene projizierten

Komponenten F’ = Fcosd. Damit gilt auch fir die Drehmomente

—_— M’ = Mcosd. Alle Ergebnisse sind somit mit cos 45° =1/, \/2 zu
multiplizieren.

atf "
T ) 3.76 F =mg Iy
0 0A=rsin (a+8) HorarsG

Bild 113 3.77 rirs

:ﬂ
I

F, = 720N
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Bild 114. Gleichgewichtsbedingungen:
M= —Fl+3J2-3G +42-3IF, =0

Fo=—3J2F + F, + F5, =0
F,=3J2F G+ Fy, =0
4F,
NG
2. F,=42F, - F,
Fyy=G-%2F
Fy =+/Fi.+ F},

1.F,

F3x
tanx =
- F3y
. Ayx; + Axx;
ST A+ 4,
A + Ay
Y= T4 ¥ 4,
2.2 2
Jw:JK=?mwa :-—S—mKr

Aus der Bedingung my = myg folgt mit ow

F, =414N

F, = —60N
F3, = 64,6 N

F; =649N

& = 5,3°

xs = 5,83 mm

ys = 10,83 mm
500 mm

Zs

zwischen r und a der beiden Korper. Es ist

i/ = '
r= a und damit
47

Jw 5(12
P A/ 9
3 2
12 1672 a
2J4
r=3NTTm

1. Wege = 2n242J

2t _ 2nnJ
M
2n2mr?
Wrot —-TT—
2 2
1 Wy = rd lgglw
20 =—
P

1. Wy = 2n2Jn?

Jw = 1,1 JK,

r=213cm

Wioe = 685 kW h

t = 105 min
Wioe = 2,65-10%3]
Wit = 3,53 TWh

t = 42 Tage

W = 2,41 kJ

2. Aus W,o, = Wy = Fas und s = rzd folgt

WTD[
mugFnd

z= 2,66

= gk eine einfache Beziehung
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Beide Korper haben zu Beginn der Bewegung die gleiche potentielle Ener-
gie (W, = mgh), die sich, wenn der FuBpunkt erreicht ist, in kinetische
Energie (Translations- und Rotationsenergie) umgewandelt hat. An beiden
Korpern ist wegen r¢ = rz das gleiche Drehmoment wirksam. Nach der
Grundgleichung der Dynamik wird aber der Korper mit dem groBeren
Trigheitsmoment, also der Zylinder, weniger beschleunigt. Da Rotations-
und Translationsgeschwindigkeit gekoppelt sind, rollt der Zylinder lang-
samer als die Kugel. Diese erreicht zuerst den FuBpunkt.

nmrn
.M = " M= 131kNm
2. W =n2n*m W = 68,6 k]

w
3. Py =— P, = 343kW

4, Prox = 2P, oder Puay = Mwpax;  Prax = 68,5 kW

Die potentielle Energie beim Start wird umgewandelt in potentielle Ener-
gie und kinetische Energie im hdchsten Punkt der Kreisbahn. Fiir den
gesuchten Grenzfall muB8 die Radialkraft gleich der Gewichtskraft sein.
Daraus folgt

h=—r

2

1. Bild 115.1. Mit der potentiellen . Energie W,, = mgAhy = '/, mgl
(im Schwerpunkt vereinigte Stabmasse hat die Hoéhe Aky = /51, vgl.
Bild 52) folgt aus W,y = Wiei2

v==\/rgl v=238ms!

3
2. Hier gilt Ak, = =1 (Bild 115.2)

3 —
v = 7\/31 v=332ms!
Aus pV,l + Wmll = WK = M? folgt
vl
m (gl + T)
M= — M=644Nm
? .
dmmr L =106-10%N
=Tsr =5 ms
1.L = %r2mn, L =118Nms
AL L
2.At=-;\-l- (AL = L wiebeil) At=590s
nd*mn
= — F = 3,02kN
4"5.'

Der Springer beginnt in aufrechter Stellung mit iiber den Kopf erhobenen
Armen. Beziiglich der Drehachse 4 durch die Korpermitte (Bild 116) hat
er ein maximales Massentrigheitsmoment. Er 13t den Korper nach vorn
fallen und st6Bt sich mit den Fiien vom Boden ab. Dadurch erteilt er sich
einen Drehimpuls. Dann zieht der Springer Arme und Beine an und ver-
kleinert dadurch sein Trigheitsmoment. Wegen der Erhaltung des Dreh-
impulses muB sich seine Winkelgeschwindigkeit vergroBern. Es erfolgt eine
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sehr schnelle Drehung um etwa 270°. Der Springer streckt sich nun wieder
und landet mit kleiner Winkelgeschwindigkeit auf den Beinen.

Auf einen evakuierten Behilter wirkt der duBere Luftdruck. Ist dieser
nicht gegeben, rechnet man mit p;, = 100 kPa = 1 bar (=1 at). Der
Deckel driickt durch seine Gewichtskraft zusitzlich auf die Unterlage.

b3
F=G+F=mg+—dn F = 19,7kN (~2 Mp)

Bemerkung: Das spezielle Ergebnis zeigt, dal G < F..

Die durch den Luftdruck verursachte Kraft F auf jede Kugelhalbschale,
mit der die eine Halbschale gegen die andere gedriickt wird (Bild 117.1),
erhalten wir, indem wir die gestrichelt angedeutete Fliche 4" in (4.1)
einsetzen:
nd?py,

4

Die Kraft, die die eine Gruppe von Pferden aufbringt, kann nach Bild 117.2
auch durch eine feste Wand ausgeiibt werden. Die anderen 8 Pferde bringen
die Gegenkraft F’ zur Kraft F auf. Somit gilt fiir ein . Pferd:

F=Ap. =

d:
1= "_32£'; Fy =~ 1,7kN
'
F = T(dzz — d$)og(hy — hy) F =208N
Ps2 hy + hy
1. Aus (4.6) folgt — = ——————
(4.6) folg o i

2. Benzintank ; GieBform (fliissiges Metall)

Fiir kleine thenunterschigde konnen wir die Dichte der Luft angenihert
als konstant ansehen. Die Anderung des Luftdrucks mit der Hohe verlduft
dann linear, und es gilt Gl. (4.6):

Ap = gog Ah Ap = 1,27 kPa = 12,7 mbar
h
Aus (4.7) folgt durch Logarithmieren In (%o_) = 9078__ Somit ist
L o

h = Po In (p_o) . Mit . . 8 km erhalten wir

(474 PL Q&

1 1 1 1

P 7.00 T‘p° ?Po ﬁpo

Po
In (—) 0,6931 1,099 1,609 2,303

PL
hjxm 5,54 8,79 12,9 18,4
1.po = ps = cg Ah Py = 5,98 kPa
2.p =puo+p p = 105kPa

Wir nehmen eine Ausgangssituation nach Bild 118 an. Die im geschlossenen
Schenkel des Manometers eingeschlossene Luft hat den im Gas vorhandenen
Druck 100 kPa. Bei groBer werdendem Gasdruck wird die Fliissigkeits-
sdule so verschoben, daB3 der Druck der eingeschlossenen Luft stets gleich
dem Gasdruck ist. Der Schweredruck der Fliissigkeit der Hohe A#h ist
vernachldssigbar klein. Somit gilt bei konstanter Temperatur Gl. (4.4)
pV = const. Daraus folgt die skizzierte Eichung.
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Geschlossene Fliissigkeitsmanometer erlauben die Messung h6herer Driicke
als offene (Ubung 4.8). Im Gegensatz zum offenen Fliissigkeitsmanometer,
das stets den gegeniiber dem Luftdruck gemessenen Uberdruck anzeigt,
zeigt das geschlossene Fliissigkeitsmanometer den Druck an.

Der Ballon steigt im Wageri in Beschleunigungsrichtung schrig nach oben.
Im ruhenden Wagen wirken auf-den Ballon in der Vertikalen die Gewichts-
kraft und die Auftriebskraft. Wegen o > gg ist F, > Gg. Die Kraft
F, = F, — Gg beschleunigt den Ballon senkrecht nach oben. Im beschleu-
nigt anfahrenden Wagen wirken zusitzlich in der Horizontalen Trigheits-
krifte auch auf die Luftteilchen. Sie haben ein Dichtegefille entgegen
der Beschleunigungsrichtung zur Folge. Die Druckdifferenz an hinterer
und vorderer Seite des Ballons verursacht eine der Auftriebskraft analoge
Kraft in Beschleunigungsrichtung, die groBer ist als die auf den Ballon
wirkende Trigheitskraft. Die Differenz dieser beiden Krifte sei F,. Die
Resultierende aus F, und F, (Bild 119) zeigt in Beschleunigungsrichtung
schridg nach oben.

Auf den Ballon wirken Gewichtskraft und Auftriebskraft. Die Masse ist
konstant. Die beschleunigende Kraft ist F = F, — G.

1. Das Volumen des Ballons ist konstant. Wegen der Abnahme der Luft-
dichte mit zunehmender Hohe wird die Auftriebskraft kleiner. Wenn
F, = G ist, schwebt der Ballon, er dndert seine Hohe nicht mehr.

2. Das Volumen des Ballons ist nicht konstant; das eingeschlossene Gas
dehnt sich aus, wenn der duBere Druck abnimmt. Nach dem Boyle-

m
Mariotteschen Gesetz (4.4) pV = poVy und mit (3.3) ¢ =5 ist

e = 2o = const. Ebenfalls nach Boyle-Mariotte ist p; Vg = const und

oL Qo
somit g, Vg = const. Die Auftriebskraft berechnet sich nach (4.11)

F, = o Kag, und es ist folglich F, = const - g. Solange g = const, ist
auch die beschleunigende Kraft konstant. Der Ballon steigt stindig,
bis die Hiille platzt.
Bemerkung: Die Anderung der Temperatur mit der Hohe wurde bei unseren
Uberlegungen nicht beriicksichtigt.
Beim Schwimmen besteht Gleichgewicht zwischen der Gewichtskraft des
schwimmenden Korpers und der durch die verdringte Fliissigkeit hervor-
gerufenen Auftriebskraft. Somit folgt

my = Viop bzw. oxHA = gghA; H Korperhohe
_ Hex
- oF
Aus h = Hog/or (Ubung 4.12) folgt, daB die Eintauchtiefe bei groBerer
Korperdichte groBer, bei groBerer Fliissigkeitsdichte dagegen kleiner wird.
Nach Abschnitt 1.5. ist fiir kleine Anderungen Agg bzw. Agg

h h=20cm

Ah Aok » Ah o
T e R
Ah Agg Ah o
T T e T A%
(Das Vorzeichen folgt aus zusitzlicher Uberlegung.)
e R ow ¢~ 1kgdm3
- oV
PNt 14

nd?p



Bild 120

Bild 121

Pstat1=PL

v,

Pstat2 <oy

4.17

4.18

4.19

4.20

4.21

4.23

4.24

52

54

2.4, Hinweise zu den Losungen; Antworten und Ergebnisse 115

1.G = pxgabH G = 981 N (= 100kp)
F, = Gw = owgabH Fp, =1226 N(= 125kp)
Fes = F, — G = gabH(ew — 0k); Fres = 245N (= 25kp)

F,
2.a=—= a=245ms2
m
25
3.t= [— t =1,28s
a

4. Bild 120; ohne Reibung: v = at (gestrichelte Kurve); bei konstanter
Reibungskraft: v = a’t (punktierte Kurve); Reibungskraft wichst mit
Geschwindigkeit, folglich wird Beschleunigung kleiner (gekriimmter
Kurventeil); Antriebskraft = Reibungskraft, folglich a = 0 (Kurven-
teil parallel zur Zeitachse)

Nach der Kontinuitidtsgleichung (4.13) ist beim kleineren Querschnitt 2
die groBere Geschwindigkeit vorhanden, und somit ist der dynamische
Druck pgyn, = !/20v3 ebenfalls groBer als in der Umgebung (Bild 121).
Nach der Bernoullischen Gleichung (4.16") ist die Summe von dyna-
mischem und: statischem Druck konstant. Aus beiden Gleichungen folgt
fiir die statischen Driicke pgai2 < Pstarr- Die Differenz der statischen
Driicke bewirkt die Kraft, die die Tiir zuschlagt.

2payn
9 =,/%"’-— v = 240 km h-!

2Ap
()
4 A2

Mit demi Symbol p fiir den statischen Druck und
|Ap| = 3ev® st

b = v; = 0,158 ms™!

Ap ov? lApl
—] = — —_— = ],0210
l P , 2p p %
A 2 A
S| _ e LY
Pu 2(p — pv)- DPu
P=(F+ Fw)o

= (upmg + }ocwAv?) v P =21 kW (x 29PS)
1. Py = pigm 8V P, = 2P,
2. P, = $ocwAv? P, = 8P,

v,

v=7"' v=11,2m3kg!

Das einem Molekiil zur Verfiigung stehende Volumen wird als Wiirfel
angesehen.. Der Molekiildurchmesser kann also hochstens gleich der
Wiirfelkante d = i/Voz sein. Dieses Bild ist sehr grob und nur fir eine
Abschitzung geeignet.

Wir dividieren das Gesamtvolumen durch die Anzahl der darin vor-
handenen Molekiile und erhalten damit das gesuchte Teilvolumen

m m
Vv = ?(Gesamtvolumen) N = ﬁNA (Teilchenanzahl)
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M .
Vo, = oNa Vo, = 481072 m2
do, = 3/ Vo, do, =3,6-107°m
N MNA N 3 -2
7= ~ = 6.55-10%cm
RT
- YV =0202m® (mit T = 290 K)
Mp

Es interessiert hier nur der Endzustand, nicht der Vorgang des Kompri-
mierens.

p = MV p = 0,73 MPa (= 7,4 at)
m = —MIZIT{ZI3 m = T0kg
M = ﬂ; M; = Mg xmo1—! M, = 44,1
pV
v=2"gr U =194k
2 M
Al = aly At Al = —120 mm

Es handelt sich um eine Volumenzunahme. Da der Raumausdehnungs-
koeffizient  nicht gegeben ist, benutzen wir y = 3«.

V, = Vi(1 + 3aAr) V, = 100,14 cm?
01 — 02 o,
T 1, =113°C

Die potentielle Energie des Wassers W = mgh verwandelt sich in Warme-
energie Q = cmAt.

h
At = gT At = 0,09 K
AT
- t =54min12s
nP
. . Wab
Aus der Definition des Wirkungsgrades = W folgt
zu
i =94k
m= H m = 9,4kg
Es ist Energie fiir zwei Vorgénge zuzufiihren: Erwarmen und Schmelzen.
cAr +
Q _cArtaq £ 0447 kW hkg!
m n m
Zur Berechnung von 1. geniigt das Gesetz von Boyle-Mariotte.
V.
Ly, =20 ¥, = 0,661 m?
]
2. W=p,Vlln—zl— W = —490k] = —0,136 kW h
2

3. Die gesamte vom Kompressor aufgewendete (und in Wiarme umgewan-
delte) Energie ist abzufiihren, wenn die Temperatur konstant bleiben soll.
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o=w Q = —490kJ (= —117 keal)
T,
1,Tz=_1-"ﬁ T, = 1002K; 7, = 729°C
1
VM
2.0 = "’R (P2 — p1) Q = 0,517 kJ (= 0,123 kcal)

Die Angabe «bei konstantem Druck» schlieBt die Moglichkeit zur Aus-
dehnung des Gases ein.

V. T
1.V, =—2 V, = 3,33 m3
T,
MpV,
20 = c,%(n -T) Q = 782KkJ (= 187 kcal)
1
pVy
W =" -T) W =210kJ
1

Der Carnot-ProzeB setzt sich aus zwei isentropen und zwei isothermen
Prozessen zusammen. Jeder ProzeB wird gesondert berechnet.
1

T\ %1
1. Vg =Vc (T) Vg = 12,51
1
Vapba
2.pp = 7 ps = 1,44 MPa (= 14,6 at)
B
x
T, \ »1
3.pc =P8 (.T_) pc = 78 kPa (= 0,80 at)
1
VeV,
4.Vp = —~ Vp =801
B
pcVe
5.pp = 7 Pp = 97,5 kPa (= 0,99 at)
D
T, — T,
6.9 = 1_T1__2_ n = 564Y%
L
k
LV,=W (ﬁ—‘) V, = 0,85 m?
2
=%
k .
2T, =T, (f’—) T, = 386K
1
=%
v, %
ww =2 [1—(”—2) ] W = —474KJ
k-1 D1
! 497
w = ———— ew = 4,
YT 1, -1, w
Q =rm Q =11,3M]
rm
AS = — AS = 30,3 kJ K-?
+ c(tsm — ¢
L, _ e ;;19 Dl v = o1

(g, ¢ und ¢,,, - FB)
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71

7.2

2. Ubungen

m= T g (T — T) + g + ow(Ty = T) + 71 m=135g
Pt
= T V=3m?
Lf = @fmaxs Smax = 23 gm™3 bei 25 °C (FB 7.13)
f =138gm™3
2. T ~ 162°C
3m=(f— foax2) V m=528kg

Durch den Wind wird stindig die wasserdampfgesittigte Luft von der
Oberfliache entfernt und relativ trockenere Luft zugefiihrt.

Kalte AuBenluft, die durchaus die relative Luftfeuchte 1009 haben kann,
wird eingelassen. Die Fenster werden geschlossen, und das Zimmer wird
geheizt. Dadurch sinkt die relative Luftfeuchte, die Luft sittigt sich mit
Wasser aus der Wand. Danach wird mit kalter AuBenluft ausgetauscht.

Das Brikett benotigt infolge seiner groBen Wirmekapazitit eine wesent-
lich gréBere Wirmemenge, als bei der Verbrennung eines Streichholzes
frei wird: Die vom Brikett aufgenommene Wirme wird auBerdem durch
Wairmeleitung auf das ganze Volumen verteilt, so daB ortliche Erwirmung
auf Temperaturen iiber der Entziindungstemperatur nicht moglich ist.
Korper mit schlechter Wairmeleitung und geringer Wirmekapazitit
(Papier, Holzspine) lassen sich leichter ortlich auf hohe Temperatur
erhitzen.

nd2At AT
= Q =692kJ =0,192kWh
R = o R = 0,521 K W-!
" mAd? -
1 1 1\! .
l.k= —+—+—) k =588Wm2K!
oy 0y A
=212kJm2h'K!
2.Q = kAt AT Q0 =2,12GJ) = 588kWh

Holz ist ein schlechter Wirmeleiter. Wer darauf sitzt, hat fast nur die
Fliche zu erwirmen, die er bedeckt. Metall oder Stein leitet die Warme
stindig in das Innere weiter. Obwohl der Sitzende stindig Wirmeenergie
nachliefert, wird ein betrichtlicher Temperaturuntetschied zwischen
Korper und Metall bzw. Stein aufrechterhalten.

Bild 122
11 1 I\~
1.k = L+—+—‘-+—’+—’) k=119Wm2K?!
oy oy Ay Ay As
2.Q = kAt(®, — 9;) Q=103kWh = 37MJ
U
L1 =+ I =489 A
2.P=UI P = 1,08 kW
1
1.6=— G = 752 mS

R
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d2R
2.0 = fﬁ— ¢ =0,0174Q mm? m-!
1
*® =—Q— x» = 57,5S m mm2
3. Kupfer

Wir unterscheiden die Dichte ¢ und den spezifischen elektrischen Wider-
stand g, .

m .
R = QHEZ? R =0,754Q
U2
l.RG=—1% Rg =161Q
2. Ug = \/ RGP, Ug = 180 V
U, — U
3. Ry = Rg ————= Ry = 3580Q
Us
Mit der Drahtlinge / = 2s folgt
-2
LR =22 R, =1,78Q
A
2. Der Geritewiderstand folgt aus Nennleistung und Nennspannung:
Uk
Rg = R =242Q
Py
3. Nach Schaltbild (Bild 123) sind Leitungs- und Geritewiderstand in
Reihe geschaltet. Es ist
1 v I = 8,66 A
" Rg+ R, -5
4. P=1I%Rg P = 1815kW
Die Leistung ist infolge des Spannungsverlustes in der Leitung kleiner
als die Nennleistung.
oll
1.AU-—=7 AU =953V
2.U; = U-AU Us = 210V

3. Nach den Regeln der Fehlerfortpflanzung, die fiir kleine Anderungen
AU angewendet werden diirfen, gilt bei konstantem Widerstand R,
wenn P = U?/R,

AP _ AU AP _2-983V .,

P ‘U P = "mov - 87%
2

R = 0 (Q Wirmeenergie) R=174Q

Wir verwenden (7.16) I = Up/(R; + R,) zweimal mit verschiedenen Werte-

Uo . Uo
paaren (Index 1 und Index 2). Aus I, = R,+_R,l-f°lgt R, = 1—1 — R,;.
Somit wird
Us Us
L = R+ R~ U ; I, =48A

1_1_ Ral + Raz
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Bild 124

Ray=2Ry

Rsg=2Ry
— }

e

Bild 125
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2. Ubungen

LR =—-R R, =02Q
Uo
2 Loy = Ix = —— Inax = 75A
R,
Py = Ul Py =22kW
Py = 1P P, = L1 kW
Py =1P, = }Ps P, = 0,55kW
1. Bild 124
2. Aus R,s = R, + '/,R, = 3/,R, folgt
2 2z,
Rl = T ers = —31k Rl = 16Q
3. Up = z(Ux + IRy) Up =123V
: (R; + R3) (R, + Ry)
1. Rersy =
R] + Rz + R3 + R4
I v I, =08A
e Rcrsl e
RiR, R3R,
2 Rersz = Ri+ R, Ry + R,
I, = v I, =09A
z RCI'SZ 2 ’
R=f(Ry) = Ry + —22K2
=f(R;) = Ry + 72
Fiir R, = 0 erhalten wir den minimalen Ersatzwiderstand
Rmin =R, Roin = 10Q
Fiir R, = 30Q ergibt sich der maximale Ersatzwiderstand
R,R
Roax = Ry + Tz:'—;a Ruax = 22Q

Der Ersatzwiderstand 148t sich stufenlos zwischen 102 und 22Q ein-
stellen.

3R s — 2R
RX = —m Rx = 7OQ
Vereinfachte Schaltung Bild 125. Da die Spannungsabfille an R;, Ry,
Rs und Rg gleich sind, ist der Spannungsabfall U,z = 0. Somit gilt

1 1 1 1 4 1

R TRV IR Y IR, T 2R, R =7k

Die Uberlastung entsteht dadurch, daB die Spannung, die urspriinglich
an den beiden nun ausgefallenen Kerzen abfiel, sich auf die anderen
Kerzen als Uberspannung verteilt.
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A __»n i AUk _ 014 = 14°
U« n—-2 UK_’-_/"

Die Schaltung erfordert folgende Uberlegungen: An der Ersatzlampe fillt
eine zu geringe Spannung ab. Ihr ist ein Widerstand vorzuschalten.

Da P = UI bzw. I = P/U ist, benotigt die Ersatzlampe bei geringerem
Spannungsabfall eine groBere Stromstiarke als die Originallampe fiir die
gleiche Leistung. Die Differenz der Stromstirken muf3 durch einen Neben-
widerstand (Shunt) zur Originallampe aufgenommen werden (Bild 126).

Uy u-uU, -0,

Ry =Tl'=]—l Ry = 4,80Q
U, U, U2
R = - = F o Ry = 64,50
R,24R
I. Rees1 = a2 Rers1 = 174 Q

Ry24 + R3s
(R uv ist der Ersatzwiderstand der Kombination R " und R,)
(R; + R; + R3) (Ry + Rs)
2. Rees; =
R, + R, + Ry + Ry + Rs
Resx = 287Q

(R + Ry + Rs) Ry
3. Rys3 = R, + Ry Rat Rs Reres = 197Q
1. Eine Reihe von r Spannungsquellen (Bild 127) hat die Ersatzurspannung
Uos: = rUp; und den Ersatzwiderstand R;, = rR;;. Bei Parallelschaltung
mehrerer Reihen mit r Widerstinden dndert sich die Urspannung nicht.
Die Leerlaufspannung ist gleich der Urspannung

UL=rU01 UL= ]2],2V

r
Bei Parallelschaltung der z Reihen ist R, = — R;;. Damit folgt die
KurzschluBstromstirke z

Uo ZU(”
I = = Ix = 202 A
K RI ers Rll x
2. P = Ugplx = (Up — pIxR;ers) PIk
R, ],
= (Uo - ﬂ%) Pl P=22kW
Uos — Usy + IR
LI, = °‘R“ i’Ru 12 Iy =34A
Uoz — Usy + IR
I = 02 = _:),lRlz i1 IL=16A
R

i1
————— (Uo;s — Upz + IR;3)
Ry + Ry, 0! 02 i2

Uc=13V

Der bei der Messung flieBende Strom flieBt. nacheinander durch den
«Innenwiderstand» der Quelle und durch das MeBinstrument. Die Strom-
stirke muB so klein bleiben, daB der Spannungsabfall am inneren Wider-
stand unter dem angegebenen Wert bleibt.

R, ist der Instrumentenwiderstand. Fiir ihn gilt

R, > (102 — ) R, R, = 1MQ

2. Uk = UOl -
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2. Ubungen

1. Bild 128
2. U| = I|R| U] = 0,] \'
R R
IR = —— = ——— Rs; = 50Q; Rs; =0,020Q
n—1 I 1
I,
U
Ry = R] (7 = 1) va =48 kQ; sz = 500 kQ
|
" TRt Re T =%
RGRs
2.U—I(Rv+m) U=171mV
Bild 129
QQ’ —22
F, = pr— F, =921-107%* N
F, =921 10-'°N
1.E= Q2 E =144kVm!
4megr
2.F =QE F =691-107"*N = 69,1 fN
1. U= Ed U=50kV

2. Auf die Probeladung wirken zwei Krifte, Coulombkraft und Gewichts-
kraft. Der Faden orientiert sich in Richtung der Resultierenden
(Bild 130).

Q = 4megr’E Q=21,3uC
E = neQdI E=16MVm!
0f

Staubteilchen, die sich infolge der unvermeidlichen Luftbewegung durch
Reibung aufladen, transportieren ihre Ladung auf die Unterlage, auf der
sie sich absetzen. In den leitenden Metallteilen verteilt sich die Ladung
und erreicht dabei auch Eckpunkte, an denen bei geniigend groBer La-
dungsdichte durch Spitzenwirkung groBe Feldstirken auftreten konnen.
Hohe Feldstirken aber fithren zu Funkenentladungen, die in dem ex-
plosionsgefidhrdeten Luft-Staub-Gemisch nicht auftreten diirfen.

1.C = A 0,13 nF
N —507 =0, n
20 =cU Q =0,13,C
L0y =0Q,=0=CoU Q0 =16mC
zu=% Uy =160V; U, =40V

Bild 131.1 und 2: Vorderansicht (in Richtung der Drehachse), Bild 131.3
Draufsicht (D Lager der Drehachse, A mit Drehachse starr und elektrisch
leitend verbundene Platten, A’ elektrisch isoliert angeordnete Platten;
schwarze Punkte kennzeichnen elektrisch leitende Verbindung)

ﬂEo"z

2d

Coax=(n—1) Cax = 298 pF
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C=Cz-—-£2—— C =29pF
Uu -0,

1 1 1

€ GG

2.0,:0,:0;=1:1:1

3. Weil W = !/,QU und Q = const, gilt

.U :U,: Uy = U,:UZ:U,=15:5:Z_§

W, W, Wy=U;:U,;: Us; W,:W,. Wy=15:5.3
2w
1.C = e C =800uF
w
2. P =T- P =156kW
1. W, = C,U? W, =0,50J
2.U, =140, U, =5V
LW, =1W, W, =0.25J
4, Die Ladungstriger breiten sich iiber die doppelte Fliche aus. Dieser

Vorgang stellt einen StromfluB dar, bei dem Bewegungsenergie der
Ladungstriger in Warmeenergie umgewandelt wird.

A
1. C = gper—- C = 31pF
d
2.Q =CU Q =155nC
3. W=14CU? W =1388ul

Die Ergebnisse von 8.18 werden jetzt als gegebene GréBen betrachtet.
Wir nennen sie C;, Q; und W,. Laut Tabelle (—+ FB 7.16) sind &, = 7
und &, = 1. Trennung von der Spannungsquelle bedeutet, daB die Ladung
konstant bleibt.

1.0, =@, Q, =155nC
1

26 =—0 C, = 4,42 pF
rl

3. W2=%C2U§=7W1 W, =2T7ul)

4. Zum Entfernen des Glimmers muBte. mechanische Arbeit verrichtet
(von auBlen zugefiihrt) werden.

U
1.E, = = E; =133kVm!
D, = ¢4E, D, = 1,18 yCm2
2. Ez = El
D, = g&0E, D, = 2,83 uCm?
U E
E=— =~ E =554kVm!
&d &

D =ErfoE= Dl

Der Kondensator 148t sich als Reihenschaltung eines leeren und eines
stoffgefiillten Kondensators beschreiben

C = Sofd
dle, + dz
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2. Ubungen

bH
1 Cl—eoT
b(H — h) bh
2. Cy = gg———— + o6 —
3 AC h( )
o —mE"
Hi
1=— I=33mA

1. Fiir die Berechnung der Feldstirke ist die Spule als gestreckt mit der
mittleren Linge / = 2nrR zu betrachten. Liangs der Spulenachse ist

d
Entlang ihrer Innenseite ist die Spule kiirzer: /; = 2r (R - 7) , entlang

d
der AuBenseite entsprechend ldnger: [, = 2% (R + 7) Damit dndert

sich die magnetische Feldstarke innerhalb der Spule von

NI NI
H.., = ———d' zu Hygin = —d .
ZTE(R——Z—) 27!(R+—2—')

2. Wegen B = uoH andert sich die Flufldichte in gleicher Weise. AuBler-
halb der Spule ist die Feldstirke Null.

,4012[
2wr

F= F=32N
Da bei Zuleitungen gleiche Stromrichtung vorauszusetzen ist, wirkt die
Kraft nach innen. Die Leiter ziehen sich an.

Die FluBdichte B, wird vom Strom der Stirke I, verursacht. Aus (8.18)
und (8.20) folgt

I,
B=ro5

Dieser Ausdruck, in die Ausgangsgleichung eingesetzt, filhrt zum Nach-
weis der Identitat.

A
L=,uoN2—[- L =10,5mH

do
WeilT < 0, ist nach dem Induktionsgesetz U; > 0. Das bedeutet: Die

Urspannung U; wirkt im positiven Rechtsschraubensinn. An der oberen
Klemme entsteht der positive Pol. Die Polung bleibt beim Wechsel des
Drehsinns gleich.

U
1.1 =T I =30mA
Ar
2. Ul = —LE‘ Ul = —-60V

3. Am Schalter als Offnungslichtbogen

7d2 Ny Napo (I — 1)
U= — 4, At U =-0,16V
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U= LY _ Lafye
1S TRy T e

Der abnehmende Strom induziert eine positive Spannung.

Die Diode D wird bei geschlossenem Schalter S in Sperrichtung betrieben,
iiber den Widerstand R flieBt nur der (sehr kleine) Sperrstrom Isl;. Beim
Offnen des Schalters wird in der Spule L eine Spannung induziert, die
zunichst den bisher flieBenden Strom aufrecht erhilt. Wegen der Unter-
brechung des Stromkreises bei S ist der Stromkreis auf die beiden rechten
Zweige mit der Spule L als Spannungsquelle reduziert. Damit flieBt jetzt
der Strom in DurchlaBrichtung iiber die Diode D und durch den Wider-
stand R in die Spule zuriick. Dieser StromfluB3 bleibt erhalten, bis alle
magnetische Feldenergie der Spule im Widerstand R in Wirme um-
gewandelt ist. Auf diese Weise wird die Stromstirkednderung in der Spule
verlangsamt und bei kleinem Widerstand R die am Schalter auftretende
Spannung wesentlich reduziert.

,uoNzTCdzlz

W= —"""— W=30mJ

8/

1

l.B=,uoN1 B =1,51mT

nd?
20 =8 @ = 0,474 Wb
1.1, = Bl I 36 A
" uoN e
2.1, = Bl = ! I I 72 mA
2T poN T op ! -

Bei der Sittigungsfeldstiarke sind alle Weifischen Bezirke bereits in Feld-
richtung umgeklappt. Wird die Feldstirke weiter erhoht, dndert sich die
FluBdichte kaum noch.

Es geschieht nichts. Nach (8.22’) gibt es nur dann eine Wechselwirkung
zwischen Ladungstriager und Magnetfeld, wenn sie sich relativ zueinander
bewegen.

1. Die Spule wird so weit verdreht, bis das von der Lorentzkraft erzeugte
Moment gleich dem riicktreibenden Drehmoment der Feder ist:

NllbuoH cos ¢ = k'gp

=X
" NlbuoH cos ¢
2. Eineitenprobe: [I] = —2mAM _
. Einheitenprobe: [I] = mmAvVs —
2e
v=—rB v=232-10"ms!
m

Die Ionenmasse ist gleich dem Produkt aus Massenzahl 4 und durch-
schnittlicher Nukleonenmasse.

‘_A/ZWm' Ar_JAZ ) Ar 550
= P TN T T %

eB r
Die Trennung ist moglich.
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Aus (9.4°) folgt mit (5.13) und (7.2")

My, zFpV Darin sind My, = 2kgkmol™!;
~  Mu+IRT My+ = 1 kgkmol~! und z = 1.
t = 4h 28 min

Aus (7.12) folgt mit (7.2") und (9.4)

UzFm
M

3 M=27 .
=5 M= kmol')

W=174MWh

Bemerkung: Die tatsichlich benétigte Elektroenergie betrigt etwa das
Dreifache des theoretischen Wertes (Warmeverluste).

1y = 2 ¢ =4h14mi
.t = TMiA = min
m
2.d= Q_A d = 48 um
Blei ist im PbSO, zweiwertig und hat die molare Masse 207 kg kmol~!
oM
m= F m = 0,29 kg

Eine 6-V-Bleibatterie besteht aus 3 Zellen von je 2 V, die in Reihe geschal-
tet, also von der gleichen Ladung durchflossen sind.

M PtM
=3—- m=174¢g

m=3—F =3TF

Bild 132; y = yn cbs ot = yg sin (wt + ;)

An den Umkehrpunkten wirken maximale Beschleunigung nach (10.3)
und die Fallbeschleunigung. Die Bedingung ag.s = 0 bzw. a;, = 2g wird

erfiillt durch a, = g (z. B. a3 = a, + g = 2g). Dann folgt aus (10.3”)
am = ®3y, mit (2.16)

T2t Ny,

Ein Ablésen vom Sieb erfolgt, wenn sich das Sieb am oberen Umkehr-
punkt mit der Beschleunigung a,, die Kérner aber mit der kleineren
Beschleunigung g nach unten bewegen:

w3y, = g. Daraus folgt

f=223Hz

1 g
f= o ;: f=288Hz
Die Stromstirke eines Wechselstromes ist eine sich sinusformig dndernde
GroBe wie die Elongation bei der mechanischen Schwingung. Die resul-
tierende maximale Stromstérke (aus In;,, und Ip,3) ist Null (Bild 133). Das
bedeutet: die resultierende Stromstérke ist zu allen Zeiten Null.

Die Blattfeder, die die Eigenfrequenz 50 Hz hat, schwingt bei Netzfrequenz
50 Hz in Resonanz, also mit maximaler Amplitude. Die Eigenfrequenz
der Feder ist durch deren Linge und Dicke bestimmt.

Es gelten fiir den Schwingungsvorgang (10.7) und (2.13). Somit ist

T=2r \/ m/k. Zur Berechnung von T benétigen wir die Federkonstante k.
Diese erhalten wir aus dem zweiten in der Aufgabe beschriebenen Vor-
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gang: Spannen der Feder. Es gilt (3.31), und fiir & folgt k = 2W/s2. Somit
ist

m

T = 2rs W =0,40s

k As
I.m = m =917g

14

1 [k
Z.f =F 7 f = 2,63 Hz
3.W =1tk W =50mJ
4. vy = 21fVm Um = 0,33 ms™!

a, = 4n3f2y, an = 5,46 ms—2

Aus !/,k As? = 1/,mv?, folgt

k m

Um = As m Vm = 0,639 ry
kN
k = gﬂszz k =177,7 T

Bei der Schwingung eines Korpers in Wasser ist die Auftriebskraft die riick-
treibende Kraft. Sie hingt von der Elongation y (zusitzliche Eintauchtiefe
beim AnstoB) ab. Bild 134 zeigt die Querschnittsflichen der beiden Balken
in der Gleichgewichtslage und gestrichelt in der um y tiefer eingedriickten
Lage.

1. Die riicktreibende Kraft ist F = —pwgAy = —ky. Daraus folgt mit
(10.7) und (2.13)

H
T=nJﬂ=h/“
k owg

2. Fiir den Balken mit kreisformigem Querschnitt ist die Bedingung
k = owgA = const nicht erfiillt, da die Schnittfliche 4 in Hohe der
Wasseroberfliche von der Eintauchtiefe abhingt (4’ < A). Dieser Bal-
ken kann nicht sinusformig schwingen.

_ m _ edg )
I'T_ZT’A/QAg y—ymcos(A/ = t

2. Bei Beriicksichtigung der Reibung erhalten wir eine gedimpfte Schwin-
gung. An die Stelle von y,, tritt y,(¢) (— F 10.3.1.3.).

T=14s

Das Massentriagheitsmoment bestimmen wir mit Hilfe des Steinerschen
Satzes. Nach Skizze (Bild 85) ist der mittlere Radius r,, = 500 mm. Mit
J4 = m(ry,? + r2) folgt

r2 + r?
T=2,,~/u
&ra

T=201s
1 mgs
f=5 T
1 ! 1 [3
— ]2 - =—_ [==. =
l.JA—3m1, s=753 f ﬁ,/y, f=10,61Hz
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2. 1> r, folglich gilt wie beim Fadenpendel

! & = 0,50 H.
S =N /= 050Hz
3.J)s= ! d 2' Ji= U 12, = 31
IsETRM™M\Z) ATTm™ ST T
1 [9%
f =.2?A/7—1 f=0,57THz
4. J4 = Jsiap + Jkuger- Mit der Kugel als Massenpunkt folgt
43 sy + 53 5
= = 2. = =
Jq= % ml?; s 3 8 /
-2 J6°g = 0,59H
S =% N 3 =57z
1
10.17 1. T =7 T =1,5s
2J,4= ;:f;z J4 = 0,175 kg m?
3.Js =J, — ms? Js = 0,165 kg m?

10.19 Aus (10.9) folgt mit (2.13) T = 2rn \/.I,/k’. Mit T = t/z folgt
1. fiir den zylindrischen Ko6rper

4n2z2J
K = % K = 9,04 10-* Nm
i
2. Fiir das Zahnrad ergibt sich damit
k't? s
J, = oy J, = 1,78 kg cm

Bemerkung: Die Rechnung 1aBt sich vereinfachen, wenn wir zur Be-
rechnung von J, das allgemeine Ergebnis von &k’ verwenden:

_ 4n?z2J,13 t_zz
27 24n2? Lg2

. h 1 h\?
1020 1. Mits=—undJ = —m@® +h*) +m (T) folgt

2 12

1~/ 12¢h =227H
fo= N fi =227 He
2. Mit s = 2 und Jp = —— m(b* + k2 (h ? folgt
. lts——z-un B—ﬁm( + )+m7 olg

lJ Seh = 206H
L= Ny f» = 2,06 Hz

10.21 Nach (10.23) und (10.24) sind die Wechselstromwiderstande

Xc= — und X; = wL. Damit ist

L =1,6mH
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1

C = m C = 4pF
Uz
10.22 L = m L=257TH
Pg
C =57 C = 3,95uF
10.23  Eine Spule mit ohmschem Widerstand wird als Reihenschaltung von ohm-
schem und induktivem Widerstand aufgefaBt (Ersatzschaltbild Bild 135.1).
Die Bilder 135.2 und 135.3 stellen Zeigerdiagramm und Widerstands-
dreieck fiir die gesamte Schaltung dar, das Bild 135.4 gibt das Wider-
standsdreieck fiir die Spule allein wieder.
©___
r R,_; Ay OFT ~ ®
L_ Swle_ | ®
Z X=ol  NY|g=wl
- ‘I____!R . Ug=RI
Bild 135 7 ' R=Rgp*Ry Rsp
1. Mit Z nach Bild 135.3 ist
= U U .
Z  /(Rs, + Ry)? + @rfL)* ’ I=1154
2. Mit Zs, nach Bild 135.4 ist
Usp = Zspl = \/R%, + QrfLY - I Us, = 180V
3. Uv =Rv1 Uv =115V
g U_
1024 LR == R =164Q
Ve
2.Z = 4 Z =503Q
X, +Jz?-R? )
3L =—= B (Bild 136) L =151 mH
Jw )
10.25 1. Z=,/R*+ (ZﬂfL - Ef?) Z=1430Q
1
2rfL 2m/C
2. ¢ = arctan —————— @ = —69,5°
R
10.26 ! fo=823H
. = e— = 82, YA
2n\/LC °
10.27 1. Allgemein gilt (3.40) P = W/t. Die Arbeit W ist der Zahl der Um-

drehungen proportional: W = Wyz/z. So folgt
P=W, = P=100W

Zot
2.Mitcosp = R/Z, (7.11) P=1I?R und I = U/Z ergibt sich
VPR

R = 63°
i =

P
U

cosp = @ = arccos
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U=220v 10.28
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3. Nach (10.24) und (2.16) ist X, = 2rnfL, nach Bild 136 ist aber auch
XL = Rtan¢. Daraus folgt
[ = Rpne L =624mH
T 2nf - m

1.1 Bei Reihenschaltung eines ohmschen Widerstandes und Spannungs-
teilung nach Bild 137.1 ist der erforderliche Vorwiderstand gleich dem

Widerstand der Glithlampe:
Uz
Ry = Rg = 5

1.2 Die Glithlampe muB dieselbe Stromstiarke haben wie bei 110 V. Aus
Z = U/I folgt mit I = Ug/Rg und U = 2Ug

URg
Us
Nach Bild 137.2 ist
X, =+/Z? = R% = \/3 Rg, und mit (10.24) X, = oL folgt

3R
L= ‘/Z—nfG
1.3 Entsprechend folgt bei Reihenschaltung eines Kondensators
c-—1
2./3nfRg

2.1 Ohmscher Vorwiderstand: reine Wirkleistung
P = Pg + Py = 2Pg P=120W

2.2 Kapazitiver Vorwiderstand }

RV = RG = 2029

Z =

= ZRG.

L=111H

C =91uF

reine Blindleistung an den

2.3 Induktiver Vorwiderstand Vorwiderstinden, folglich

P=Pg P =60W -
I =—}:- I_=175A
- U - »
- I_=15A
~ Ucosg ~
P =I%R P =1455W
P, = UI P, =253 W
Py = X, I1* = oLI? Py =20TW
1. P, = i P; = 800 VA
cos ¢
2.1 =-Pi I =364A
U A
3.Z =—(Ii Z =60,4Q
4.9 = arccos 0,75 @ = 41,4°
5.P, = Ptang P, = 529 var
l.cosp = L cosp = 0,699

ur
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P
¢ = arccos - @ = 45,6°

UZ
2. Aus P,;, = P folgt Ulsing = < = 2rfCU2.
c

Mit der unter 1. errechneten Phasenverschiebung ¢ ist

Ising

o= C=12,1pyF

c
}.=7 1. Ay = 1,86 mm
2. Mit ¢, = 344 ms~!, fiir 20 °C nach Gleichung (11.23°) errechnet, folgt

AL = 0,43 mm

[
A=—

f

AL }*Hzﬂ Acu - At
I. L15m 4,95 m 12,7m 17,0 m
2. 1,72cm 7,43 cm 190cm  255cm
1 =2 I =150k
= 7 = m
2A
Ar =2 At = 1ps
[
. Cy " o
sina, = —sina; 1. sin &, = 0,04 oy, =23
(51

Skizze s. Bild 138 2. sin, = 0,233 o, = 13,5°

Aus der Rechnung folgt sin &, >.1. Das bedeutet, daB es keinen in Luft
iibergehenden Strahl gibt. Es findet Totalreflexion statt.

Reflexion, Brechung, Totalreflexion, Dispersion; Bild 139

Die Fensterscheibe 1Bt den iiberwiegenden Teil des auf sie auftreffenden
Lichtes hindurch und reflektiert nur einen geringen Bruchteil. Tagsiiber
iberwiegt das von auBlen nach innen gelangende Licht, das die Umgebung
abbildet, den an der Innenfliche reflektierten Teil. Die geringe reflektierte
Lichtmenge, die das Innere des Raumes abbildet, wird von dem auf groBe
Intensitit adaptierten Auge nicht wahrgenommen. Nachts gelangt nur der
von innen kommende und an der Glasscheibe reflektierte Anteil ins Auge
und wird ungestort wahrgenommen.

Das Licht wird vom weiBen Papier stirker reflektiert als vom Fettfleck.
Deshalb wirkt dieser dunkler als seine Umgebung.

L

1LJp, = Jo- 1010 J, =100Wm2=1uWm3?
r}
2= Jo =025 uW m2
4
v J
Ly =101g=% L, = 54dB
Jo
Lyes =L+ 10ign Lges = 100 dB
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11.12

11.14

11.15

2. Ubungen

Wegen der Symmetrie der Anordnung ist die gesuchte Beleuchtungsstirke
gleich dem doppelten Betrag der Beleuchtungsstirke einer einzigen Lampe;
aus (11.37’) folgt

2lica h
Eps = o _tm E=391
VI + ()P
L2 @ _ 60Im _  Im
P P 60W W
o
2.1 =E;m|t.0=4rrsrfolgt I =48cd
3.(11.37) mit cos &« = 1:
I
fed E = 481x

fix = '(r/—mj'z_

Bemerkung : Fir Beleuchtungszwecke wiirde durch Einbau der Glithlampe
in eine Leuchte eine giinstigere Lichtstirkeverteilung gréBere Beleuch-
tungsstirke zur Folge haben (vgl. Ubung 11.13).

Aus Bild 93 und aus (11.20) unter Beachtung von (11.17) ergibt sich bei
gleichen Beleuchtungsstirken

I_ 2
h=ni7#L I = 184cd
1



3.  Physikalisches Praktikum

3.1. Aufgaben des physikalischen Praktikums

Die Durchfiihrung des physikalischen Praktikums ist ein wichtiger
Bestandteil der Physikausbildung. Durch das physikalische Prakti-
kum soll das erworbene Wissen erweitert und vertieft werden. Der
Student soll im Praktikum bestimmte Fihigkeiten und Fertigkeiten
erwerben, die ihn befdhigen, spiter in der Praxis selbstindig Auf-
gaben der MefBtechnik zu bewiltigen. Er soll in der Lage sein, Theorien
und Gesetze vorgegebenen Aufgaben zuzuordnen und aus der vor-
handenen Literatur Fakten und Methoden zur L6sung der gesteliten
Aufgaben zu erarbeiten. Dabei sollen der Lehrstoff systematisiert,
Analogiebeziehungen genutzt und physikalische Interpretationen
technischer Sachverhalte gegeben werden.

Das physikalische Praktikum dient auch dazu, Fihigkeiten zum Ab-
leiten von MeBvorschriften aus-physikalischen Gesetzen zu erwerben
und evtl. eine Auswahl geeigneter MeBverfahren und MefB3gerite nach
Genauigkeitskriterien zu treffen. Dabei sollen die MeBgerite sach-
gemiB eingesetzt werden.

Eine wichtige Aufgabe kommt der Fehlerrechnung bzw. der Fehler-
abschitzung zu (— 1.). Der Student wird zu exakter experimenteller
Arbeit angehalten, wobei er MeBgenauigkeiten ermitteln und beur-
teilen soll. Somit lernt er die Methoden der experimentellen Forschung
kennen und wird gleichzeitig sowohl vor einer Uberschitzung als auch
vor einer Unterschitzung der Genauigkeit seiner Messungen bewahrt.
Wie bei jedem wissenschaftlichen Arbeiten miissen auch im physika-
lischen Praktikum die gemessenen Werte sorgfiltig registriert werden.
Uber jeden Versuch ist also ein Protokoll anzufertigen, welches alle
MeBwerte und Versuchsergebnisse sowie die Berechnungen in iiber-
sichtlicher Form enthilt. Oft miissen die MeBergebnisse auch grafisch
dargestellt werden, wodurch die Auswertung erleichtert und funktio-
nelle Zusammenhinge besser erkannt werden kénnen.

Die folgenden Abschnitte sollen dem Studenten helfen, sich in die
Praktikumsversuche der betreffenden Schule einzuarbeiten. Es wird
bewuBt darauf verzichtet, eine Vielzahl von Versuchsbeschreibungen
vorzulegen. Dafiir gibt es spezielle Biicher fiir das Physikpraktikum.
Nach einigen Hinweisen werden drei Musterversuche beschrieben
und ausgewertet. Damit ist dem Studenten das Riistzeug fiir die
Durchfiihrung weiterer Versuche gegeben.
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3.2 Laborordnung

Die Durchfiihrung der Versuche erfolgt in Versuchsgruppen. Wie in
jedem Laboratorium gelten auch im Physikpraktikum bestimmte
Vorschriften, die unbedingt eingehalten werden miissen. Einige allge-
meine Hinweise sind:

Einrichfungen, Gerite, Werkzeuge und Material sind Volkseigentum
und als solches zu achten und zu behandeln.

Praktikanten diirfen das Physiklabor nur in der dafiir vorgesehenen
Zeit und bei Anwesenheit des Praktikumsleiters oder Assistenten be-
treten.

Vor Beginn des Versuches sind die in der Versuchsanleitung ange-
gebenen Gerite, Werkzeuge und Materialien in Empfang zu nehmen
und auf ihre Vollstindigkeit zu priifen.

Beim ersten Inbetriebsetzen elektrischer Versuchsschaltungen und
Gerite muf} der verantwortliche Praktikumsleiter anwesend sein.

Das unbefugte Hantieren mit Geriten, die nicht zum Versuch ge-
horen, ist zu unterlassen.

Die in der Arbeitsschutzbelehrung gegebenen Hinweise und An-
weisungen sind strikt zu beachten.

Mit Material und Energie ist so sparsam wie moglich umzugehen.

Nach Beendigung der Versuche ist der Arbeitsplatz zu reinigen und
aufzurdumen. Gerite und Werkzeuge sind auf Vollzihligkeit zu iiber-
priifen.

Der Praktikumsraum darf erst nach Abmeldung und erlangtem Testat
verlassen werden. Die Abmeldung geschieht bei dem Praktikums-
leiter, der auch das Testat erteilt.

Die vorgesehene Zeit ist fiir den Versuch voll auszunutzen.
Allen speziellen Hinweisen des Praktikumsleiters ist unbedingt Folge
zu leisten.

Weitere Hinweise entnehmen Sie dem Standard TGL 30585/01,02
(9.84).

3.3. Ordnung und Sicherheit im physikalischen Praktikum

Bevor die Studenten mit dem ersten Versuch beginnen, werden sie
auBer mit der Laborordnung mit der Arbeits- und Brandschutzord-
nung vertraut gemacht. Auf folgende Dinge ist besonders zu achten:

Spannungen unter 40 V gehoren in den Bereich der Kleinspannungen
und erfordern keine besonderen SchutzmaBnahmen. Wie bei der Be-
nutzung von hoheren Spannungen ist jedoch auch hier die verlangte
Schaltung zunichst aufzubauen und dem Praktikumsleiter vorzu-
zeigen, bevor die Spannungsquelle angeschlossen wird. Spannung-
fithrende Teile sind wihrend des Versuches unter keinen Umstédnden
zu beriihren.

AnschluBschniire sind nur am Stecker, nicht an der Schnur aus der
Buchse zu ziehen. Verschlingen oder Verknoten der Schniire ist zu
vermeiden (Kabelbriiche!).
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Die Schalttafel wird nur vom Praktikumsleiter bedient. Alle elek-
trischen Gerite, die mit Netzspannung betrieben werden, sind nur
iiber ein ordnungsgemiBes Kabel mit Schutzkontakt anzuschlieBen.
Sie sollen nicht ldnger als unbedingt erforderlich eingeschaltet sein.
Elektrische Gerite diirfen nicht ge6ffnet werden.

Nach Beendigung des Versuches ist der Hauptschalter zu 6ffnen und
der Netzstecker aus der Steckdose zu ziehen.

Vor Einschalten der Bunsenbrenner ist die Luftzufuhr am Brenner
zu schlieBen. Nach Entziindung des Gases wird die Wirmeabgabe
nur mit der Lufteinstelldiise reguliert, ohne die Gaseinstelldiise zu
verdndern.

Nach Beendigung des Versuches ist der Gashahn richtig zu schlieBen,
damit nicht unnétig Gas in den Raum ausstromt.

Alle Heizgerite miissen gegeniiber brennbaren Materialien gut iso-
liert werden (Verwendung von geeigneten Unterlagen oder Halte-
rungen).

Zur Halterung von Becherglisern oder Kochflaschen ist das vor-
gesehene Stativmaterial zu verwenden.

Vorsicht ist beim Umgang mit Giften, Sduren und Laugen geboten.
Bei Quecksilbergerdten (Thermometer, Barometer) darf im Schadens-
fall kein Quecksilber verschiittet werden. Geschieht dies doch einmal,
muB auch der kleinste Quecksilbertropfen mit der Quecksilberzange
aufgenommen werden.

Siauren und Laugen werden verdiinnt, indem die Sdure bzw. die Lauge
vorsichtig in das Wasser geschiittet wird, niemals umgekehrt.
Flaschen mit Ather oder anderen brennbaren Fliissigkeiten diirfen
nicht in der Nihe von Gasflammen aufbewahrt oder gedffnet werden.
Versuche mit Ather sind nur an den dafiir vorgesehenen Stellen
durchzufiihren.

Nach Umgang mit Chemikalien sind grundsitzlich die Hidnde zu
waschen.

Glasgerite sind im Stativ mit elastischem Zwischenmaterial einzu-
spannen. Zerbrochene oder angebrochene Glasgerite diirfen nicht
mehr verwendet werden.

Vorsicht ist beim Umgang mit scharfen und spitzen Gegenstinden
geboten.

GlasgefaBe sind nicht iiber eine offene Gasflamme zu stellen; Asbest-
netz benutzen.

Bei VakuumgefiBen kénnen Implosionen auftreten. Thermosgefifle
sind deshalb unbedingt in ihren Behéltern zu lassen.

Rotierende Teile sind so abzusichern, daB eine Beriihrung wihrend
des Betriebes nicht moglich ist.

In den Lichtbogen von Kohlebogen- oder Quecksilberdampflampen
darf nie ohne Lichtschutz gesehen werden.



136

Mefgrife M
Mefgegenstand MG
Mefwert MW

Mepergebnis ME
Skalenteil ST
Skalenwert S

Skalenkonstante SK

MepBbereich MB

Empfindlichkeit E
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3.4. Vorbereitung auf die Versuche

Um erfolgreich arbeiten zu kénnen, muB man nicht nur die Theorie
kennen, sondern auch die Wirkungsweise der zu benutzenden Appa-
ratur. Neben einem intensiven Selbststudium und einer eingehenden
Wiederholung des zum Versuch gehorenden Stoffes hat man sich
daher schon vor Versuchsbeginn mit dem Versuchsaufbau und mit
den Bedienungsvorschriften der Gerite vertraut zu machen. Ist dies
geschehen, konnen Storungen in der Arbeit der Gerite friihzeitig fest-
gestellt, Fehlerquellen beseitigt und damit falsche Ergebnisse ver-
mieden werden. ’

Fiir den Umgang mit MeBgeriten ist es erforderlich, sich mit einigen
wichtigen Grundbegriffen der MeBtechnik vertraut zu machen. Uben
Sie, an den verwendeten MefBgeriten innerhalb der durchgefiihrten
Versuche moglichst die folgenden Begriffe anzuwenden und am Bei-
spiel auszudriicken:

ist die zu messende physikalische GroBe.
ist das Objekt, dessen Merkmale der Messung unterliegen.

ist der aus der abgelesenen Anzeige ermittelte Wert der zu messenden
physikalischen GroBe.

ist der MeBwert selbst oder das Ergebnis, welches sich aus mehreren
MeBwerten mit einer mathematischen Beziehung ergibt.

ist eine Teilungseinheit, in der die Anzeige angegeben werden kann.
Als Zihleinheit wird der Teilstrichabstand verwendet.

ist die Anderung der MeBgroBe, die eine Verschiebung der Marke
um einen Skalenteil bewirkt.

ist die GrofBe, mit der der Zahlenwert, auf dem die Marke der Skale
steht, multipliziert werden muf3, um den MeBwert zu erhalten.

ist der Teil des Anzeigebereichs, fiir den der Fehler der Anzeige inner-
halb von angegebenen bzw. vereinbarten Fehlergrenzen bleibt. Oft
ist Anzeigebereich gleich MeBbereich.

ist der Quotient aus der am MeBgerit beobachteten Anderung seiner
Anzeige und der sie verursachenden moglichst sehr kleinen Anderung
der Mef3groBe.

Fiir eine Strichskale gilt: E = Al A

ur eine Strichskale gilt: £ = N
(E Empfindlichkeit; A/ Anderung der Anzeige in Lingeneinheiten;
AM Anderung der MeBgroBe; A Teilstrichabstand; S Skalenwert)

Ist die Empfindlichkeit einer Skale nicht konstant, muf3 insbesondere
zwischen der Anfangs- und der Endempfindlichkeit unterschieden

werden.
Weitere Begriffe und Definitionen sind TGL 0-1319 und TGL 31550

zu entnehmen.
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3.s. Protokollfithrung
3.5.1. Bestandteile des Protokolls

AuBerst wichtig ist eine iibersichtliche und fiir jeden Sachkundigen
verstindliche Protokollfithrung. Uber jeden durchzufiihrenden Ver-
such ist daher ein Protokoll anzufertigen.

Das Protokoll soll simtliche Angaben enthalten, die zur Nachpriifung
der Messung erforderlich sind, auch wenn sie im Moment unwichtig
erscheinen.

Ist Text notwendig, so soll er stichwortartig gehalten und auf das
unbedingt Notwendige beschrinkt sein. Das Protokoll besteht aus
zwei Teilen, dem MeBprotokoll und der Auswertung.

3.5.2. MeBprotokoll

Das MeBprotokoll wird wiahrend des Versuches gefiihrt. Es besteht
aus einem einheitlich gestalteten Deckblatt, welches vollstindig aus-
gefiillt wird. Um die Zeit fiir die Durchfithrung der Versuche rationell
auszunutzen, sollen alle Teile des Deckblattes, die nicht unmittelbar
mit der Versuchsdurchfithrung zu tun haben, bereits in der Vorberei-
tung fertiggestellt sein.

Die fiir den Versuch notigen Gerite werden vor Beginn der Messun-
gen eingetragen. Dabei ist besonders auf den MeBbereich und auf den
Skalenwert zu achten. Letzterer gibt bereits AufschluBl iiber den zu
erwartenden Maximalfehler des MeBwertes.

Wihrend der Durchfithrung der Versuche werden die gemessenen
GroBen in eine vorbereitete Tabelle bzw. Ubersicht mit Tinte oder
Kugelschreiber eingetragen. Bereits wiahrend des Versuches ist eine
Uberschlagsrechnung zur Ermittlung des MeBergebnisses zu machen.
Nur so konnen prinzipielle Fehler bei der Versuchsdurchfiihrung ver-
mieden und sinnvolle Versuchsergebnisse gewihrleistet werden.
Lassen Sie sich vor dem Verlassen des Labors vom Praktikumsleiter
das Mefiprotokoll testieren.

3.5.3. Auswertung

Wihrend das MeBprotokoll bereits im Laufe des Praktikums fertig-
gestellt wird, miissen Sie den zweiten und umfangreicheren Teil des
Protokolls, die Auswertung, im allgemeinen als Hausarbeit an-
fertigen.

Von der zum Versuch gehorenden Theorie sollen nur die Gleichungen
aufgenommen werden, die fiir die Ermittlung der Mefergebnisse er-
forderlich sind. Weiterhin sollte das Schaltbild bzw. eine Skizze des
Versuchsaufbaus in der Auswertung erscheinen. Die Berechnungen
werden ausfiihrlich und sorgfaltig geschrieben aufgefiihrt. Bei sich
wiederholenden Rechnungen geniigt es, ein Beispiel in die Auswertung
aufzunehmen. Die verbleibenden MeBergebnisse werden iibersichtlich
(in einer Tabelle) dargestellt.

Vergessen Sie nicht, zu jedem MeBergebnis eine Fehlerrechnung
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durchzufiihren. Auch diese muf3 ausfiihrlich und sorgfiltig in der
Auswertung dargestellt und begriindet werden. Nur so ist es Thnen
moglich, die Genauigkeit der Versuchsergebnisse einzuschitzen.
Ohne Fehlerangabe fiir das MeBergebnis hat ein Protokoll nur ge-
ringen praktischen Wert.

Besondere Aufmerksamkeit ist der grafischen Darstellung von.MeB-
werten und Versuchsergebnissen zu widmen. Diese miissen in ver-
niinftigen MaBstiben grundsitzlich auf Koordinatenpapier gezeichnet
werden. Meistens wird fiir die grafische Darstellung Millimeterpapier
verwendet werden konnen. Die Kurven miissen ausgezogen sein und
einen stetigen Verlauf haben. Die MeBpunkte sind deutlich einzu-
zeichnen. Die MaBstibe beider Koordinaten sind so zu wihlen, daB
die Kurve etwa unter 45° gegen die Achsen geneigt ist.

Fiir die Darstellung bestimmter Funktionen gibt és Spezialpapiere.
Besteht zwischen zwei physikalischen Grofen die Beziehung

y = ab* (a, b konstant), so gilt
Igy=Iga+ xlgb

Dies ist die Gleichung einer Geraden in einem Papier, dessen Ordinate
logarithmisch und dessen Abszisse linear geteilt ist (Bild 140).
Liegt die Beziehung

y = ax® (a, b konstant) vor, dann ist
lgy =lga + blgx

Hier ergibt sich im doppeltlogarithmischen Papier (beide Achsen sind
logarithmisch geteilt) eine Gerade (Bild 141).
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3.6. Versuchsanleitungen
3.6.1. Bestimmung der Dichte fester Korper
Grundlagen

Die Dichte ist ein wichtiger Materialwert. Fiir homogene Korper
gilt (3.3)
m

Q= 7 _(1)

(m Masse, V Volumen)

Fiir nichthomogene Korper gibt (1) die mittlere Dichte an.

Bei der experimentellen Bestimmung der Dichte nach (1) miissen
Masse und Volumen des Korpers gemessen werden. Die Masse des
Korpers 1dBt sich mit einer Waage recht genau bestimmen. Zur Fest-
stellung des Volumens konnen verschiedene Verfahren angewendet
werden. Es gibt auch MeBmethoden, die die Ermittlung des Volumens
umgehen und die Dichtebestimmung auf mehrere Wigungen zuriick-
fithren. '

Regelmdpige Korper

Bei regelmiBigen Korpern kann das Volumen aus den charakteristi-
schen Abmessungen des Korpers nach den Gleichungen der Stereo-
metrie berechnet werden.

Volumenmessung mit dem Uberlaufgefif

Fiir unregelmafBige Korper bestimmt man hiufig das Volumen durch
Verdringung einer Fliissigkeit. Dazu wird ein UberlaufgefiB mit
Flissigkeit (meist Wasser) gefiillt, der Korper vorsichtig vollstindig
eingetaucht und das Volumen der ausflieBenden Fliissigkeit mit einem
MeBzylinder gemessen (Bild 142). Selbstverstiandlich ist das Verfahren
auch fiir regelméBige Korper anwendbar.

Dichtebestimmung nach der Auftriebsmethode

Von festen Stoffen kann man auch die Dichte bestimmen, ohne das
Volumen zu kennen. Dies geschieht iiber die Messung der Auftriebs-
kraft, die auf den Kérper in einer Fliissigkeit wirkt. In dieser Fliissig-
keit darf der zu untersuchende Stoff nicht loslich sein. Man verwen-
det meist Wasser, aber auch Benzin, Ol u. a. Nach dem Prinzip von
Archimedes (- F 4.3.5.) wirkt auf einen in eine Fliissigkeit einge-
tauchten Korper eine Auftriebskraft, die dem Betrage nach gleich
der Gewichtskraft ist, die auf die verdringte Fliissigkeit wirkt. Die
Auftriebskraft ist nach (4.11)

Fo=me g =0FVreg 2)
(mg Masse, o Dichte, V¢ Volumen der verdringten Fliissigkeit).

Da das Volumen der verdringten Fliissigkeit gleich dem Volumen
des eingetauchten Korpers ist (Vg = V), gilt nach (2)
Fa

V= 3)
er g
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Bild 143

Bild 144

3. Physikalisches Praktikum

Aus (1) folgt mit (3)

mg

A eF 4
In (4) ist mg die Gewichtskraft, die auf den Korper in Luft wirkt
(G = mg). Die Auftriebskraft F, ist der scheinbare Verlust an Ge-
wichtskraft, den der Korper in der Fliissigkeit erfihrt, also F,
=G — G’ = (m — m’) g mit m’ als der scheinbaren Masse des ein-
getauchten Korpers, die mit der hydrostatischen Waage (Bild 143)
ermittelt wird. Damit folgt aus (4)

e =

o= —— e (5)
m-—m

Die Dichte des Korpers kann also durch zwei Massebestimmungen
ermittelt werden, wenn die Dichte der Fliissigkeit, in die der Korper
getaucht wird, bekannt ist. Da die MeBfehler beim Wigen klein sind,
ist die Dichtebestimmung nach (5) recht genau. Allerdings wird bei
dieser Methode ein systematischer Fehler durch den Aufhingefaden
oder -draht verursacht.

Dichtebestimmung mit dem Pyknometer

Die Dichtebestimmung mit dem Pyknometer (Bild 144) eignet sich
besonders fiir feinkorniges Material und fiir kleine Korper. Auch bei
dieser Methode wird die Volumenbestimmung umgangen und die
Dichte durch verschiedene Wiagungen ermittelt. Das Pyknometer ist
ein Glasflischchen mit kapillar durchbohrtem, gut eingeschliffenem
Stopfen. Die Masse des leeren Pyknometers mit Stopfen ist mg. Ist
das Pyknometer mit Wasser gefiillt, betrigt die Masse m,. Daraus
ergibt sich die Masse des Wassers

'mw =m; — mg (6)

Man fiillt das zu untersuchende Material in das leere und trockene
Pyknometer (bei feinkérnigem Material etwa !/, fiillen). Die Wigung
ergibt die Masse m, des Pyknometers mit Material. Die Masse des
Materials allein ist dann '

my = mz; — Mg @)
Das Material bleibt im Pyknometer, und man fiillt mit Wasser auf
(gegebenenfalls Luftblasen beseitigen!). Die erneute Wégung ergibt
m3. Die Masse des von der Versuchssubstanz verdrangten Wassers ist
Mmwy =my + my — ms (8)

Das Volumen des verdringten Wassers ist gleich dem Volumen V
des Materials, es kann aus (3.3) berechnet werden:

V= MmMwy (9)
Ow

ow ist die Dichte des Wassers. Die Dichte des zu untersuchenden

Stoffes ist o = my/V, mit (9) also

M ow (10)
mw,

Q=
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Mit (7) und (8) folgt daraus

m,; — mo :
0= ow an
m; +my; — mg — mj

Die Ermittlung der Dichte ist damit auf die Durchfiihrung von vier
Wigungen zuriickgefiihrt worden:

mo, Masse des leeren Pyknometers,

m; Masse des Pyknometers, vollstindig mit Wasser gefiillt,
m, Masse des Pyknometers mit Material,

ms Masse des Pyknometers mit Material und Wasser.

Bestimmt man die Masse des Probekorpers nicht im Pyknometer, so
hat man in (11) die Differenz m, — mo nach (7) durch my zu ersetzen
und erhilt '

mw
=— 12
S T e = 12)
In diesem Falle braucht die Masse m, des Pyknometers nicht bestimmt
zu werden.

Aufgaben

Bestimmen Sie die Dichte eines regelmiBigen homogenen Korpers
durch Wigung und Berechnung seines Volumens aus seinen Ab-
messungen (Metallzylinder).

Bestimmen Sie die Dichte des gleichen Kérpers, jedoch durch Volu-
menmessung mit dem UberlaufgefiB.

Bestimmen Sie die Dichte des gleichen Korpers mit Hilfe einer hydro-
statischen Waage (Bild 143) nach der Auftriebsmethode.

Vergleichen Sie die MeBergebnisse, die nach den einzelnen Me8-
verfahren erhalten wurden.

Bestimmen Sie die Dichte eines feinkérnigen Materials mit Hilfe
eines Pyknometers nach Gleichung (11). Uberlegen Sie zuvor die
zweckmaiBige Reihenfolg_e der Wigungen.

Bestimmen Sie mit Hilfe eines Pyknometers die Dichte eines unregel-
miBigen Korpers, indem Sie einige in das Pyknometer passende
Stiicke abschlagen und vor dem Einfiillen wégen.

MeBprotokoll

Das Deckblatt des MeBprotokolls und die Zusammenstellung der
MeBwerte sind in Tabelle 2 (S. 142, 143) dargestellt.
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Tabelle 2.1:

3. Physikalisches Praktikum

MeBprotokoll

Versuchsnummer:

Seminargruppe:

Gruppe:

Thema:

Bestimmung der Dichte fester Korper

Datum der Durchfiihrung:

Abgabetermin:

Namen:

Unterschriften:

" Verwendete Gerite:

Nr.| Art Technische Daten
1. | MeBschieber MB 200 mm S 0,1l mm
2. | MeBschraube MB 50 mm S 0,01 mm
3. | MeBzylinder MB 100 ml S1ml
4. | Hydrostatische Waage MB 1kg
5. | Analysenwaage MB kg
6. | UberlaufgefdB
7. | Pyknometer 25 ml
8. | Wagesatz
9. | Probekorper
10. | Destilliertes Wasser

Bestitigung der Durchfiihrung:
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Tabelle 2.2: MeBwerte

zu 1.: Die Abmessungen des Metallzylinders werden mit dem MeBschieber
bestimmt.

= (38,3 £ 0,1) mm

(22,2 + 0,1) mm

(40,16 +£ 0,01) g

h
d
m
zu2.: V =(05+1)ml
m
m
m

= (40,16 + 0,01) g

(40,16 + 0,01) g
(25,37 + 001) g
oF (0,998 + 0,001) g cm~3 (Tabellenwert)

zu 5.:  Feiner Kies; MeBwerte in der Reihenfolge der Messung:

mo = (25,13 + 0,01) g

m, = (32,17 £ 0,0]) g

my = (54,32 + 001) g

m, = (50,01 £ 0,01)g

ow = (0998 + 0,001) g cm™3 (Tabellenwert)

zu 6.:  Vorgelegtes Gestein; MeBwerte:

my = (0,651 + 0,001) g
m, = (50,012 + 0,001) g

my = (50,393 + 0,001) g
@ Asswertung
zu 1.: Die Dichte ergibt sich aus (1) und der Gleichung fiir das Zylinder-
volumen V = nd?h/4 zu
4m 4-40,16 g
= = = 7 -3
= I " = 227 cm® 38em _ Dl1gem
Relativfehler: o Am 2Ad+Ah
eanvfe er: T = T + T T
o  001g +2. 0,1 mm + 0,1 mm
o  40,16g 222mm = 38,3mm
= 0,00025 + 0,009 + 0,0026 = 0,01185 ~ 0,012 = 1,2%
Ao
Absolutfehler: Ao = — )

A0 =0,012-2,71gcm™3 = 0,032 gcm™3
MeBergebnis: o = (2,71 + 0,03) gcm~* (Aluminium)

Der Maximalfehler wird vor allem von der Durchmesserbestimmung be-
einfluBt.
Die Bestimmung des Durchmessers wird zweckmiBig in einem erginzen-
den Versuch genauer mit einer MeBschraube vorgenommen. Dann erhilt
man 4 = (22,21 + 0,01) mm, die Dichte ist ¢ = 2,706 gcm™3 und der
Fehleranteil des Durchmessers

Ad 0,01

2~ =2

7 ﬁ = 0,0009.
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zu 2.:

Relativfehler:

Absolutfehler:

Mepergebnis:

zu 3.:

Relativfehler:

Absolutfehler:

Mepergebnis:

zu 4.:

3. Physikalisches Praktikum

Fir den relativen Fehler der Dichte ergibt sich jetzt Ag/e = 0,389, und
der absolute Fehler ist Agp = 0,010 g cm™3,

¢ =271 £ 001)gcm™3

m 40,16 g
= —__——_2 -3
€= T = Tsoms _ 268&cm
Ag A AV
—_— = 4 —
[ m 14

Ae  001g + 1 cm3

e' 40,16g = 15cm’
Der Fehler der Wigung ist vernachlissigbar klein gegen den Fehler
der Volumenbestimmung.

A
Ao =—o¢
e

= 0,00025 + 0,067 ~ 0,067 = 6,79,

Ag = 0,067 - 2,68 gcm=3 = 0,18 gcm—3
e=(27+02)gcem™?

Berechnung der Dichte nach (5):

m
Q= ——C0F
m-m

40,16 g

= . -3 _ 2 -3
0 @016 — 25378 0,998 g cm ,71 gcm

A Am Am + Am’ A
e + + QF

o T Tm m—m orF
ﬁ _001g 0,02¢g 0,001 gcm—3
0 40,16 g 14,79g 0,998 gcm™3
= 0,00025 + 0,00135 + 0,001 = 0,0026 = 0,26%,

Ag
Ag =—0p
0

Ag = 0,0026- 2,71 gcm~2 = 0,007 gcm™3

Das Ergebnis zeigt, daB Rechenstabgenauigkeit fiir ¢ nicht ausreicht.
Nachtrigliche Berechnung der Dichte mit Taschenrechner oder fiinf-
stelligen Logarithmen ergibt ¢ = 2,710 gcm™3.

e = (2,710 + 0,007) gcm™3

Vergleich der erhaltenen Versuchsergebnisse

MeBverfahren Q/gem-3

Messung des Volumens mit dem UberlaufgefﬁB 2,7 +0,2
Messung aller Lingen mit dem Mefschieber 2,71 + 0,03
Messung des Durchmessers mit der MeBschraube 2,71 + 0,01
Auftriebsverfahren 2,710 + 0,007



zu S.:

Relativfehler:

Absolutfehler:

Mefergebnis

zu 6.:

Relativfehler:

Absolutfehler :

Mefergebnis:
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Berechnung der Dichte nach (11):
m,; — mg
e = Ow
m; + my — mg — mj
_ 32,17g — 25,13 ¢
T 50,01 g + 32,17g — 25,13 g — 54,32 ¢

=257 gcm™3

-0,998 g cm-3

e

Wir setzen den Zahler des Bruches in der Bestimmungsgleichung fiir
die Dichte gleich Z, den Nenner gleich N. Die Absolutfehler von Z
und N sind:

AZ =Am; + Amp, =0,01g + 0,01 g =0,02¢g

AN = Am; + Am, + Amy + Am; = 0,04g

Ap _ AZ + AN Agw

4 z N ow
_ 0,02¢g 0,04 g + 0,001 gcm™3
7,04 g 273 g 0,998 gcm~3
= 0,0028 + 0,015 + 0,001 = 0,0188 = 1,88%

Ae
Ag = —p
0

Ag = 0,0188-2,57 gcm™3 = 0,048 gcm™3
e = (2,57 £ 0,05) gcm™3

Berechnung der Dichte nach (12):

mm
0= ——— 0w
m; + my — m;

0,651 g
= -0,998 gcm~? = 2,41 gcm™>
= 50012g + 0,651 g — 50,393 g gcm gcm

Ag AZ AN Aow

e z N ow
Mit AZ = 0,001 g und AN = 0,003 g folgt
éﬂ _0,001¢g 0,003 g 0,001 gcm™3
) 0,651 g 0,270 g 0,998 gcm—3
= 0,0015 + 0,0111 + 0,0010 = 0,0136 = 1,369%;

Ae
Ao = —o
e

Ag = 0,0136-2,41 gcm™3 = 0,033 gcm™3
¢ =(2,41 + 0,03) gcm™3

Bemerkung: Die zu 5. und 6. durchgefiihrten Fehlerrechnungen konnen
falsch sein. Es wurde nicht beriicksichtigt, daB gleiche fehlerbehaftete
GroBen im Zihler und Nenner von (11) und (12) stehen und damit den
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Partielle Ableitungen:

Totales Differential:

3. Physikalisches Praktikum

Fehler des Ergebnisses in entgegengesetzter Weise beeinflussen koénnen.
Zur Gegeniiberstellung soll deshalb die Fehlerfortpflanzung zu 6. noch-
mals mit Differentialrechnung durchgerechnet werden, indem das totale
Differential gebildet wird (— 1.5.3.2.).

mm

Aus (12) o = prT——— ow folgt
0o (my — m3) ow -0,381-0998 . _3
S G A —m)? 0z oM = —322em
% — MmOw -0,651-0520 .
omy,  (my + my — my)? 0,272 cm™ = —8,91 cm
¢ Myow 0,651-0,998 . »
dmy ~ (my + my —my> 027 cm™ = 8,91 cm
% _ oy _ 0,651 24l
dow my + my—ms 50,012 + 0,651 — 50,393 ~
do = —2— dmy + dmy + 2 dmy + 2 g
e = S ™M T By ™M T By, O T e OV

Die Differentiale werden durch die Fehler ersetzt, und es gilt fiir den

Absolutfehler der Dichte

e 19 |, |, . |2

Omy [om, | | Om | [ dow |

Ag = (5,220,001 + 8,910,001 + 8,91 -0,001 + 2,41 - 0,001) gcm™3
= 25,45-0,001 gcm™3 = 0,02545gcm™3 = 0,03 gcm™3

Die beiden Ag-Werte stimmen nach den Festlegungen unter 1.6. iiberein.

Agw

Ap = Amy + Amy + Amy +

3.6.2. Bestimmung der Federkonstanten einer Schrauben-
feder

Grundlagen

Wirkt auf eine Schraubenfeder eine Kraft, so ruft diese eine Lingen-
dnderung As der Feder hervor. Die Langeninderung ist der einwirken-
den Kraft proportional. In der Feder entsteht eine Federkraft von
gleichem Betrage wie die von auBlen wirkende Kraft. Die Federkraft
F ist der duBeren Kraft entgegengerichtet. Es gilt (3.16)

= —k As m

Der Proportionalitdtsfaktor k£ heiBit Richtgrife oder Federkonstante.
k hingt von den Abmessungen der Feder und von ihrem Material ab.
Dabei gilt
Gd*

= —— 2

8 ND,,,® @
(d Drahtdurchmesser, N Windungszahl, D, mittlerer Windungs-
durchmesser, G Torsionsmodul).
Wird die Liangeninderung durch die Gewichtskraft G = mg eines
angehingten Korpers der Masse m hervorgerufen, dann ergibt sich
aus (1) wegen F = -G

k
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“= A ®
Lenkt man den angehingten Korper aus seiner Gleichgewichtslage
und 148t ihn los, so fiihrt er eine Sinusschwingung um seine Gleich-
gewichtslage aus. Die Gleichung (10.1) fiir die Elongation lautet
¥ = ¥msin (of + ¢). Aus (2.13) und (10.7) folgt fiir die Perioden-
dauer dieser Schwingung

T=2n/% 4@

Aufgaben

Belasten Sie eine Schraubenfeder mit 1, 2, ..., 10 Korpern gleicher
Masse (m = 50,0 g + 0,1 g) und ermitteln Sie die Lingeninderung
in Abhingigkeit von der einwirkenden Kraft (Nullpunkt bei der
Messung der Linge s willkiirlich). Es gilt F ~ m. Stellen Sie in einem
Diagramm die Léange s iiber der zugehorigen Masse m dar. Berechnen
Sie die Federkonstante nach (3) aus dem linearen Bereich der Feder-
kennlinie.

Lassen Sie zwei verschiedene Ko6rper an der Schraubenfeder schwin-
gen und messen Sie die Zeit ¢ fiir z = 50 Perioden. Berechnen Sie die
Federkonstante k aus (4) unter Beachtung von ¢ = zT. Beriicksichtigen
Sie auch die Unsicherheit von z.

Bestimmen Sie die Abmessungen der Feder und berechnen Sie die
Federkonstante aus (2). Beachten Sie dabei, dal auch die Windungs-
zahl fehlerbehaftet ist.

Vergleichen Sie die Ergebnisse aus 1., 2. und 3. unter Beriicksichti-
gung der Fehler.

Erldutern Sie, wie sich die Federkonstanten einer harten und einer
weichen Feder voneinander unterscheiden.

Zwei gleiche Schraubenfedern (Federkonstante k) werden einmal in
Reihe, zum andern parallel geschaltet. Welche resultierenden Feder-
konstanten ergeben sich?

MeBprotokoll

Das Deckblatt des MeBprotokolls und die Zusammenstellung der
MeBwerte sind in Tabelle 3 (S. 148, 149) dargestellt.
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Tabelle 3.1: MeBprotokoll

Versuchsnummer: Seminargruppe:

Gruppe:

Thema: Bestimmung der Federkonstanten einer Schraubenfeder

Datum der Durchfiihrung: Abgabetermin:

Namen: Unterschriften:

Verwendete Gerite:

Nr. Art Technische Daten

1. 2 Schraubenfedern

2. Stativ mit VertikalmafBstab MB 1000 mm S 1 mm

3. 10 Korper mit Haken m = (50,0 + 0,1) g je Korper
4. Korper 1

5. Korper 2

6. MeBschieber MB 200 mm S 0,1l mm
7. MeBschraube MB 20 mm S 0,01 mm
8. Stoppuhr MB 15 min S0,1s

9. Waage MB 1kg

Bestitigung der Durchfiihrung:




zu l.:

Bild 145

Tabelle 3.2:

zu l.:

zu 3.:
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MeBwerte

n 0 1 2 3 ‘4 5 6 7 8 9 10

myg 0 50 100 150 200 250 300 350 400 450 500

S/mm 282 330 377 426 475 522 570 618 667 714 763
Am=n-0,1g; As =1mm

m; = (1883 £ 0,1) g my = (2570 £ 0,1) g

t;, =(43,0£0,1)s t, =(499 £0,1)s

z; =500+ 0,1 z; =150,0£0,1

d = (0,81 + 0,01) mm

D = (20,5 + 0,1) mm G = (85 + 1) GPa (Tabellenwert)
N =565 +0,5
Auswertung

Relativfehler:

Bild 145. Da die Federkennlinie iiber den gesamten Belastungs-
bereich linear verlauft, wird die Federkonstante aus der maximalen
Belastung ermittelt:

mg _ 05kg-9,81m

= 10,20 N m-!
10 — S0 $%(0,763 — 0,282) m m

k =

Ak Am + ASlo + ASo

—_— (Rundung von g vernachlissigt)
m S10 — So
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Absolutfehler:
Mepergebnis:

zu 2.:

Korper 1:

Relativfehler:

Absolutfehler:
Mefergebnis:

Korper 2:
Relativfehler:
Absolutfehler:
M eﬂgrgebnis :

zu 3.:

Relativfehler:

Absolutfehler:
Mepergebnis:

"k sS00g

3. Physikalisches Praktikum

1 mm + 1 mm
(763 — 282) mm
= 0,0020 + 0,0042 = 0,0062 = 0,629;
Ak = 10,20 Nm~!-0,0062 = 0,063 N m~!
k = (10,20 + 0,06) N m~!

Ak 10-01g

Aus (4) folgt mit T = ¢/z

k= 47':2’rznz2
4n2 - 0,1883 kg - 50,02
= 2 = 10,051 -1
k 43,07 57 Nm
Ak A A At
s B A B Y Yl
k m z t
051 g 0,1 0,1 S
=8 42 42
188,3 g 50 43s

= 0,00053 + 0,0040 + 0,00465 = 0,00918 = 0,929,
Ak = 10,051 Nm~!-0,00918 = 0,092 N m™!
k = (10,05 + 0,09) Nm™*

_ 4n?-0,257 kg - 50,0°

k = 10,187 N m™!
49,97 52 ’ m

Ak 01lg 0,1 0,1s

kK 2570¢g 50,0 499s

= 0,00039 + 0,0040 + 0,00401 = 0,0084 = 0,849,
Ak = 10,187 Nm~! - 0,0084 = 0,086 N m~*
k = (10,19 + 0,09) Nm™!

Gemessen wurden d und D = D, + d. Damit folgt aus (2)
k=G4
8N(D — d)?
85-10° N - 0,814 mm*

k= T8 565205 — 08 mme _ [ONmT
Ak _AG ,Ad AN AD+Ad
kK~ G d N D-4d
_ 1 GPa 0,01 mm 0,5 +3 0,1 + 0,01) mm
85GPa | 08lmm . 565 ' (20,5 — 0,81) mm

= 0,012 + 0,049 + 0,0088 + 0,0168 = 0,0866 = 8,669,
Ak = 10,60 Nm~*-0,0866 = 0,92 Nm*
k = (10,6 + 0,9) Nm!
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Ermittlung aus der Federdehnung:
k = (10,20 + 0,06) N m™!

Ermittlung aus der Federschwingung (Korper 1):
k = (10,05 + 0,09) Nm!

Ermittlung aus der Federschwingung (Korper 2):
k = (10,19 + 0,09) N m~!

Ermittlung aus den Federabmessungen:
k = (10,6 + 0,9) Nm-~!

Alle Werte stimmen unter Beriicksichtigung ihrer Fehler iiberein.
Der kleinste Fehler ergibt sich bei der Ermittlung aus der Feder-
dehnung, der groBte bei der Ermittlung aus den Federabmessungen.

Je hirter die Feder, um so groBer die Federkonstante.

Reihenschaltung: k.,s = }k; Parallelschaltung: k.,s = 2k

3.6.3. Widerstandsbestimmung

Grundlagen

Fiir die Messung von Widerstinden (ohmschen Widerstinden) sind
zahlreiche Methoden entwickelt worden. Hiufig wird sie mit einem
direkt anzeigenden Widerstandsmesser (Ohmmeter), mit einer Wheat-
stoneschen Briicke oder durch gleichzeitige Spannungs- und Strom-
stirkemessung mit Hilfe von VielfachmeBinstrumenten erfolgen
(» F734)

Direkt anzeigende Widerstandsmesser besitzen eine eingebaute Span-
nungsquelle, einen Strommesser und einen Abgleichwiderstand Ry
nach Bild 146. Der Abgleichwiderstand wird bei kurzgeschlossenen
MeBklemmen so eingestellt, daBl der Strommesser gerade Vollaus-
schlag anzeigt (= R, = 0Q). Da fiir U = const R ~ 1/I ist, kénnen
an der Skale des Strommessers Ohmwerte angegeben werden. Dabei
ergeben sich eine starke Zusammendringung der hoheren Widerstands-
werte im unteren Skalenbereich und somit relativ groBe Fehler.

In 4hnlicher Form konnen Widerstinde auch durch gleichzeitige
Spannungs- und Stromstdirkemessungen ermittelt werden. Dieses Ver-
fahren wird insbesondere dann angewendet, wenn der Widerstand
von Bauelementen direkt oder indirekt von der Betriebsspannung
abhingig ist. Dies ist vor allem bei Halbleitern und bei Metall-
widerstinden, die bei hohen Temperaturen betrieben werden (Gliih-
lampen), der Fall.

Fiir die gleichzeitige Messung von Spannung und Stromstirke stehen
zur Verfiigung

1. die spannungsrichtige Schaltung (Bild 147.1)
2. die stromrichtige Schaltung (Bild 147.2)

In beiden Schaltungen ergeben sich bei Vernachlidssigung der Innen-
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widerstinde der Mefgerite, also bei Ermittlung des Widerstandes
R, aus (7.7)
U

R, = 7 )
systematische Fehler, die auf das MeBverfahren zuriickzufiihren sind
und die auBer den Fehlergrenzen der Mefgerite beachtet werden
miissen. Die durch das MeBverfahren hervorgerufenen systematischen
Fehler konnen jedoch, wenn die Innenwiderstinde der MeBgerite be-
kannt sind, erfat und korrigiert werden. Durch Anwendung der
Kirchhoffschen Gesetze (7.13) und (7.14) ergeben sich mit dem Innen-
widerstand Rs, des Spannungsmessers

U
R = U fiir die spannungsrichtige Schaltung )
I -
Rs,
und mit dem Innenwiderstand Rs, des Strommessers
R, = .U_-;_Iffl. = % — Ry fiir die stromrichtige Schaltung  (3)

Bei VielfachmeBinstrumenten werden meist nicht die vom Meg-
bereich Uyp bzw. Iys abhingigen Innenwiderstinde, sondern fiir
die SpannungsmeBbereiche der Quotient r = Rs,/Uwms, fiir die Strom-
stirkemeBbereiche der Spannungsabfall Us, am Geriit bei Vollaus-
schlag, also mef3bereichunabhingige Werte, angegeben. Die Innen-
widerstinde fiir den jeweiligen MeBbereich sind dann:

) Rsp = I’UMB (4)
U,
Ry, = — 0)
IMB

Die Fehlergrenzen elektrischer MefBgerite werden meist durch die
Klasse angegeben (— 1.3.). Fiir jeden MeBbereich ergibt sich dann
der ausschlagunabhingige Absolutfehler

AU = 0,01K5,Unms; K5, Klasse des Spannungsmessers (6)
Al = 0,01KsIyp; Ks, Klasse des Strommessers ©)

Die relativen Fehler AU/U bzw. Al/I einer Spannungs- bzw. Strom-
stirkemessung sind wegen AU = const bzw. AI = const bei kleinen
Ausschligen verhiltnismiBig groB3; elektrische MeBgerite sollten da-
her nach Maéglichkeit nicht im unteren Drittel des jeweiligen MeB-
pereiches verwendet werden.

Sinnvoll konstruierte Gerite haben eine MeBbereichsstufung, die
es gestattet, bei MeBwerten von etwa einem Drittel des MeBbereiches
auf die niachstempfindlichere Stufe umzuschalten.

Aufgaben

Ermitteln Sie den elektrischen Widerstand eines Drahtwiderstandes
bei etwa 6 V Wechselspannung und den elektrischen Widerstand eines
Schichtwiderstandes bei etwa 8 V Wechselspannung durch gleich-
zeitige Spannungs- und Stromstirkemessung
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- in der spannungsrichtigen Schaltung

R.,, ohne Korrektur nach (1),
R, ;> mit Korrektur nach (2),
in der stromrichtigen Schaltung
R, ohne Korrektur nach (1),
R,,, mit Korrektur nach (3).

Berechnen Sie die relativen systematischen Fehler, die sich bei Ver-
nachlidssigung der Geritewiderstinde ergeben, aus

(6R Rle - R:ll

) === (8
( R )l Rxlz )
bzw.

{ 6R R:22 — Ry

_—) == 9
( R )z R;22 ©)

Berechnen Sie fiir die Ergebnisse von 1.1.2. und 1.2.2. die maximalen
relativen und absoluten Fehler, die sich aus den Fehlergrenzen der
MeBgerite ergeben.

Bei den Berechnungen sollen die Korrekturglieder in (2) bzw. (3)
vernachldssigt werden.

Vergleichen Sie die relativen systematischen Fehler, die sich bei Ver-
nachldssigung der Geritewiderstinde ergeben, und die relativen
maximalen Fehler bei Beachtung der Geritewiderstinde miteinander
und entscheiden Sie, wann eine Beriicksichtigung der Geritewider-
stande sinnvoll ist.

MeBprotokoll

Das Deckblatt des MeBprotokolls und die Zusammenstellung der
MeBwerte sind in Tabelle 4 (S. 154, 155) dargestellt.



154

Tabelle 4.1:
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MeBprotokoll

Versuchsnummer:

Seminargruppe:

Gruppe:

Thema: Widerstandsbestimmung

Datum der Durchfiihrung:

Abgabetermin:

Namen:

Unterschriften:

Verwendete Gerite:

Nr. Art

Technische Daten

—

Transformator

2. VielfachmeBgerdt Mellenbach
(verwendet als Spannungs-
messer)

3. VielfachmefBgerit EAW
(verwendet als Strommesser)

220 V/4/6/8 V
Innenwiderstand 4 kQ V-1
Klasse 2,5 bei Wechselstrom

Spannungsabfall bei Voll-
ausschlag 500 mV
Klasse 1,5 bei Wechselstrom

Bestitigung der Durchfiihrung:




Tabelle 4.2:

zu 1.1.1.:

zu 1.1.2.:

zu 1.2.1.:
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MeBwerte

Spannungsrichtige Schaltung Stromrichtige Schalfung

1. Drahtwiderstand

Un Ums/v AU Ija Ivp/a AI/A
1.1. 5,85 10 0,25 0,72 1,5 2,25-1072
1.2 6,10 10 0,25 0,72 1,5 2,25-102
2. Schichtwiderstand

Uy Ums/v AUy Ijma Ig/ma  Aljma
1.1. 7,90 10 0,25 1,41 1,5 2,25-102
1.2 8,33 10 0,25 1,22 1,5 2,25-10°2

Es wurden berechnet:

nach (6): AU = 0,01-25-10V =025V

nach (7): Al =0,01-1,5-1,5A =225-10"2 A

bzw. Al =001-1,5-1,5mA =225-10"5 A
Innenwiderstand des Spannungsmessers nach (4), MeB3bereich 10 V:
Rsp = rUyp = 4kQ V-1 10V = 40kQ

Innenwiderstand des Strommessers nach (5), MeB3bereich'1,5 A:

Rs = m-— ],S_A = 0,333Q
Innenwiderstand des Strommessers, MeBbereich 1,5 mA:
0,5V
st = T5mA = 333Q
Auswertung
Drahtwiderstand
585V
11 = — = 8,13Q
Res 0,72 A
5,85V
Ry = 585V = 8,13Q
072A - =
40 kQ
6,10V
Rle = = 8,48 Q
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zu 1.2.2.:

zu 2.1.:

zu 2.2.:

zu 3.:

zu 1.1.1.:

zu 1.1.2.:

Zu 1.2.1.:

zu 1.2.2.:

zu 2.1.:

zu 2.2.:

zu 3.:
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6,10V — 0,72 A - 0,333-Q

Rezz = =8,14Q
2 072A 8,14
(6R 8,13 = 8,13) Q|
R ), a 8,130 B
6R (8,14 — 8,48) Q 2
—_— —_ 2 T |= . -2 0°
( R )2 5450 l 4,0-10 4,0%
AR AU Al
Relativfehler: — = — + —
elativfehler R T + 7
Spannungsrichtige Schaltung:
AR, ;> 0,25V 2,25-10"2 A
= = + 3,1)- 1072 = 7,49
Ryy» 585V 0,72 A @3 +3.1) A%

Stromrichtige Schaltung:
AR, _ 0,25V 2,25-1072 A
Rz 61V 0,72 A

AR
Absolutfehler: AR = = R

=41 +31)-1002 =72%

AR,;, =8,13Q-7,4-10-2 = 0,60 Q
AR,;, = 8,14Q-7,2-107%2 = 0,59 Q

Schichtwiderstand

7,90 V
x =—, = Py Q
Res 1,41 mA 560k
7,90 V
R:i2 = 790V = 6,53 kQ
1 _ 3
41 mA 40 kQ
8,33V
x =————-’ = Y Q
Ryzy 153 mA 6,83 k
8,33V — 1,22mA - 333 Q
- = ’ bl = , Q
R.22 T A 6,50 k
SR (6,53 — 5,60) k|
— = =142-10"2 = 14,2¢
( R )1 6,53kQ | N %
R (6,50 — 6,83) kQ| )
—_— = |_—_51.]0—2=510
(R)2 6,50 kQ | ’ 1%

Spannungsrichtige Schaltung:

ARy, 025V 225-10-5 A
= =(3,2+1,6)-10"%2 = 4,8°
Ry12 7,90V 1,41-10°3 A (3.2 + 1.6 %
Stromrichtige Schaltung:
AR, 0,25V 2,25-10%A
= =30+ 18102 =438°
R.> 8,33V 1,22-10°3 A ( ) %
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AR,z = 6,53kQ - 4,8 -10-2 = 0,31 kQ
AR,2 = 6,50kQ - 4,8 - 10-2 = 0,31 kQ

Zusammenfassung der R,y R;,> R;2, R:2>
Mepergebnisse:  nyorrigiert)y  (korrigiert) (unkorrigiert)  (korrigiert)
Drahtwiderstand 8,1 Q (8,1 + 0,6) Q 8,5Q (8,1 + 0,6)Q
Schichtwiderstand 5,6 kQ 6,5 £ 03)kQ 6,8kQ (6,5 + 0,3) kQ
zu 4.: Die maximalen Relativfehler betragen beim Drahtwidefstand etwa

7%, beim Schichtwiderstand etwa 59;. Die hoheren Werte beim
Drahtwiderstand ergeben sich dadurch, daB hier zufillig die Instru-
mentenausschldge sowohl bei der Spannungs- als auch bei der Strom-
stirkemessung etwas niedriger lagen als bei dem Schichtwiderstand.
Die systematischen Fehler, die sich bei Vernachldssigung der Geriite-
widerstinde ergeben, sind sehr unterschiedlich. Insbesondere beim
Schichtwiderstand liegt der in der spannungsrichtigen Schaltung ohne
Beriicksichtigung des Spannungsmesserwiderstandes errechnete Wert
weit auBerhalb des Bereiches, der sich bei korrekter Berechnung, also
bei Beriicksichtigung des Spannungsmesserwiderstandes und der
Fehlergrenzen der Mefgerite, ergibt.

Eine Vernachlissigung der Geratewiderstinde ist dann zuldssig, wenn

in der spannungsrichtigen Schaltung Rs, > R,
in der stromrichtigen Schaltung Rs € R,

ist (Bild 147).

Diese Bedingung ist lediglich beim Drahtwiderstand in der spannungs-
richtigen Schaltung erfiillt (40 kQ > 8,1 Q). In der stromrichtigen
Schaltung ist hier R,: Rs, = 8,1 Q:0,333 Q; dabei ergibt sich ein
systematischer Relativfehler von 4,2%. Bei der Messung des
Schichtwiderstandes sind die obigen Bedingungen noch weniger er-
fiillt, so daB die systematischen Fehler hier noch groBer sind (etwa 5
bzw. 14%). :

Bei allen praktischen Spannungs- bzw. Stromstirkemessungen sollte
daher iiberpriift werden, inwieweit durch die Innenwiderstinde der
MeBgerite die zu ermittelnden Werte beeinfluBt und verfilscht wer-
den.
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