

electronic(l · Band 222/223

HANS BARTHOLD

DR. HEINZ BÄURICH

Mikroprozessoran­
Mikroelektronische
Schaltkreise
und ihre Anwendung
Teil1:
Grundlagen der Mikrorechentechnik

MILITÄRVERLAG

DER DEUTSCHEN DEMOKRATISCHEN

REPUBLIK

Barthold , H.; Dr. Bäurich, H. :
Mikroprozessoren - Mikroelektronische Schaltkreise und ihre Anwendung.
Teil!: Grundlagen der Mikrorechentechnik. -
3 . , überarbeitete Auf!. , - Berlin:
Militärverlag der DDR (VEB), 1985 . -
184 S. : 108 Bilder - (electronica: 222/223

3. Auflage, 1985
1!:> Militärverlag der
Deutschen Demokratischen Republik (VEB) - Berlin, 1980
lizenz-Nr. 5
Printed in the German Democratic Rebublic
Gesamtherstellung: Druckerei Märkische Volksstimme Potsdam
Lektor: Stefferi Würtenberget
Zeichnungen: Johanna Goernemann
Typografie: Martina Schwarz
Redaktionsschluß: 20. September 1984
LSV 3539
Bestellnummer: 746 692 4
00380

Inhaltsverzeichnis

1.
1 . 1 .

1 .2 .

2.

2. 1 .
2 . 1 . 1 .
2 .1 .2 .
2 . 1 . 3 .
2 .2 .
2 .2 . 1 .
2 .2 . 1 . 1 .
2 .2 . 1 . 2.
2 .2 . 1 . 3 .
2 .2 . 1 .4.

2 .2 . 1 . 5 .

2 .2 . 1 .6.
2 .2 . 1 . 7 .
2 .2 .2 .
2 .2 .3 .
2 .3 .
2 .4 .
2 .5 .
2 .6
2.6. 1 .
2 .6 .2 .
2 .6 .3 .
2 .7 .
2 .8 .

Vorwort

Erläuterungen zu den Abkürzungen .
Aufstellung häufig verwendeter Formelzeichen und
Abkürzungen
Wertzuweisung bei logischen Signalen

Grundlagen der Rechentechnik

Aufbau eines Rechners
Speicher . .
Rechenwerk
Steuerwerk
Darstellung von Daten
Zahlendarstellung . . .
Ganze Zahlen im Dualsystem
Gebrochene Zahlen im Dualsystem
Darstellung von negativen Zahlen .
Mathematische Formulierung der Komplement-
bildung . .
Zahlensysteme mit der Basis 8 (Oktalsystem) und
16 (Hexadezimalsystem)
Zifferncode
Zahlenbereich im Rechner
Darstellung von Text (Zeichencode)
Rechnen mit Dualzahlen . . .
Aufbau der Befehle
Befehlsschlüssel eines Rechners
Befehlsabarbeitung
Ein- und Ausgabesteuerung (E/A-Steuerung) .
Prinzip der E/ A -Steuerung . . .
Programmierte Ein- und Ausgabe
Autonome Ein- und Ausgabe
Programmunterbrechung (INTERRUPT)
STACK-Organisation

6

8

8
8

9
9

10
1 1
12
14
14
14
16
17

18

19
19
22
23
24
31
32
34
36
36
38
38
41
42

3

2.9. Zusammenstellung der Funktionseinheiten eines
Rechners 43

3. Aufbau und Arbeitsweise digitaler Schaltkreise für

Mikrorechner 44
3.1. Übersicht 44
3.2. Schaltalgebra 45
3 .3 . Logische Grundschaltkreise 52
3.4. Informationsspeicherung 53
3.4.1. Überblick 53
3.4.2. Register 54
3 .4 .3 . Speicher . 61
3.4.4. Zusammenstellung einiger Speicherschaltkreise . 76
3 .5 . Codier- und Decodierschaltungen 82
3.6 . Rechenschaltkreise 94
3.7 . Bustreiber 100
3.8 . Zähler . 103
3 .9 . Taktgeneratoren 107

4. Mikroprozessoren 110
4.1. Der Mikroprozessorbaustein U 880 111
4.1.1. Registerstruktur des Mikroprozessorbausteins U 880 112
4.1.2. Befehlsaufbau des Bausteins U 880 115
4.1.2.1. Befehlsstruktur 115
4.1.2.2. Adreßbildung 116
4.1.3 . Zeitverhalten 117
4.1.4. Befehlsabarbeitung 123
4.1.5. Befehlsliste des Prozessors U 880 124
4.1.5.1. Verwendete Abkürzungen bei der Befehlsbeschrei-

bung . 124
4.1.5 .2. Transportbefehle 125
4.1.5 .3 . Rechen- und logische Operationen mit einem Ope-

rand 132
4.1.5 .4. Rechen- und logische Operationen mit zwei Ope-

randen . 139
4.1.5 .5 . Rechen- und logische Operationen mit mehreren

Operanden 142
4.1.5 .6. Sprungbefehle . 144
4.1.5 .7 . Unterprogrammbefehle 146
4.1.5 .8 . Ein- und Ausgabebefehle 148

4

4. 1 .5 .9 .
4 . 1 .6 .
4 . 1 .7 .
4 . 1 .8 .
4 .2 .
4 .2 . 1 .
4 .2 .2 .
4 .2 .3 .
4 .2 .4 .
4 .2 .5 .
4 .2 .6 .
4 .2 .7 .

Steuerbefehle • 0 0 • • 0 0 0 153
INTERRUPT 153
Starten des Prozessors U 880 157
Anschlüsse an den Baustein U 880 . 157
Der Mikroprozessorbaustein 8080 . 160
Registerstruktur 160
Befehlsaufbau . 160
Zeitverhalten 161
Anschlußsignale 163
Anschluß von Schaltkreisen an den Prozessor 8080 165
Befehlsschlüssel des Prozessors 8080 167
Programmunterbrechung 167

Anhang

Befehlstabellen der Prozessoren U 880 und 8080 168
Codierungstabelle U 880 178

5

Vorwort

Der Mikroprozessor ist sehr schnell zu einem Begriff geworden ,
der aus der Elektronik nicht mehr wegzudenken ist . In der Fachli­
teratur spricht man in diesem Zusammenhang von Bausteinen der
künftigen Automatisierungstechnik. Selbst solche Aussagen wie
"Nervensystem der Technik" werden im Zusammenhang mit dem
Mikroprozessor gebraucht. Unsere Massenmedien berichten in
Wort und Bild, daß durch den Mikroprozessor ein Teil der Arbeits­
welt völlig verändert wird . Während in den kapitalistischen Län­
dern die Rationalisierung mit Hilfe dieser Elektronik dazu führt ,
daß Arbeitsplätze abgeschafft werden und dadurch die Arbeitslo­
sigkeit weiter steigt , dient der Einsatz der Mikrorechentechnik in
den sozialistischen Ländern zum Nutzen der gesamten Gesell­
schaft und somit dem Wohl jedes einzelnen.
Aus allen diesen Informationen heraus drängen sich die Fragen
auf, was ist ein Mikroprozessor, was kann er wirklich leisten? Das
gesamte Gebiete der Elektronik hat sich seit 1945 sehr rasch ent­
wickelt. Eine wesentliche Rolle dabei spielt die Entwicklung der
Bauelemente. Von den anfänglichen Bauelementeil der Informa­
tionstechnik bis zu den hochintegrierten Schaltkrei�en haben sich
Platz- und Energiebedarf für ein aktives Bauelement sehr stark
verringert, gleichzeitig sind Zuverlässigkeit und Betriebssicherheit
in sehr hohem Maße angestiegen.
Alle Gebiete der Elektronik wurden von dieser schnellen Bauele­
menteentwicklung beeinflußt. Dabei ist auf dem Gebiet der elek­
tronischen Rechentechnik diese Entwicklung besonders sichtbar.
Aus diesem Fachgebiet kommen auch die programmierbaren
Schaltkreise, wobei der bekannteste Vertreter der Mikroprozessor
ist. Er stellt den eigentlichen Rechenschaltkreis dar ; mit ihm lassen
sich alle Verknüpfungen von Zahlen und logischen Größen reali­
sieren.
Die Verknüpfung solcher Größen bildet gleichzeitig die Grundlage
der Automatisierungstechnik. Im Grunde genommen können mit
jedem elektronischen Rechner die Probleme der Automatisierung
gelöst werden. Aber erst durch die Möglichkeit, den Rechner als
Bauelement (Chip) herzustellen, wurde die stürmische Entwick-

6

Jung in der Automatisierungstechnik erreicht. Es läßt sich ein­
schätzen, daß diese Entwicklung noch am Anfang steht . Aber
schon in den nächsten Jahren wird der Mikroprozessor in vielen
technischen Geräten eine Selbstverständlichkeit sein .
Auf Grund der großen Nachfrage erscheinen die Hefte "Mikropro­
zessoren - Mikroelektronische Schaltkreise und ihre Anwendung"
in einer überarbeiteten Form als zwei Doppelhefte. Sie sind als
Einheit zu betrachten . Bei der Überarbeitung wurde das Kapitel
über den Mikroprozessor U 808 herausgenommen, da er für Neue
entwicklungen nicht mehr eingesetzt wird. Hinzugekommen sind
ein Kapitel über die Assemblersprache MAPS-K 1520 sowie ein
Kapitel mit Programmbeispielen zum U 880.

7

1. Erläuterungen zu den Abkül'zungen

1.1. Aufstellung häufig verwendeter Formelzeichen
und Abkürzungen

B Zahlenbasis
E
H
L
m

Exponent einer Gleitkommazahl
hoher logischer Spannungspegel
niedriger logischer Spannungspegel
Mantisse einer Gleitkommazahl

Pi Elementarkonjunktion, die der Dualzahl j zugeordnet ist
T logischer Term (logischer Ausdruck)
Q, Q Ausgänge eines Flip-Flop
V Vorzeichen einer Zahl
Xi Ziffern einer Zahl
X (Y) Wert einer Zahl
X' Zweierkomplement der Zahl X

1.2. Wertzuweisung bei logischen Signalen

In den verwendeten Schaltbildern sind die logischen Signale durch
Abkürzungen eingezeichnet. Die Abkürzungen werden im Text
erläutert. Ist am Eingang oder am Ausgang eines Bausteins ein lo­
gisches Signal S durch S gekennzeichnet , heißt das : Das Signal hat
Hochpegel, wenn dem Signal der logische Wert 1 zugeordnet ist .
Wird es durch Sgekennzeichnet, heißt das : Das Signal hat Tiefpe­
gel, wenn dem Signal der logische Wert 1 zugeordnet ist . In den
Funktionstabellen bedeuten die Bezeichnungen H bzw. L hoher
bzw. niedriger SpannungspegeL Dagegen kennzeichnen 1 oder 0
die. den Eingängen bzw. Ausgängen zugeordneten logischen
Werte . Die Bezeichnung H und L wurde in den Fällen gewählt , wo
es sich um die Beschreibung der Signalpegel in einer Schaltung
handelt. 0 und 1 stehen in den Fällen, wo aus vorgegebenen logi­
schen Bedingungen das logische Schaltbild entworfen wird, ohne
daß dabei die Signalzuordnung H oder L erforderlich ist .

8

2. Grundlagen der Rechentechnik

2.1. Aufbau eines Rechners

Der Rechner war das Vorbild für die Entwicklung der Mikropro­
zessoren. Viele Vorgänge in Natur und Technik laufen nach ma­
thematischen oder logischen Regeln ab. Der Rechner ist die Basis
zur Nachbildung solcher Vorgänge. Durch die Möglichkeit, ihn zu
programmieren, kann man in ihm Algorithmen speichern und zu
jeder Zeit abarbeiten lassen .
Der Rechner ist ein universelles Hilfsmittel zur Realisierung von
Steuerungen, zur Nachbijdung von Modellen sowie zur Lösung
von mathematischen Aufgaben, für die man sich bisher umfangrei­
cher elektronischer Schaltungen bedienen mußte (z. B . Digitaluhr,
Digitalvoltmeter, Zähler) . Durch seine Programmierbarkeit hat er

,gegenüber anderen Lösungen den Vortyil, daß er sieh ohne Ände­
rung der Hardware (fest verdrahtete Schaltung) an das jeweilige
Programm anpassen läßt. Sein Einsatz für eine bestimmte Lösung
hängt im Prinzip nur vom Kostenverhältnis zwischen Rechner und
konkreter Schaltungstechnik ab .
Ein Rechner soll eine Aufgabe nach einer Lösungsvorschrift abar­
beiten. Dabei ist der Ablauf derselbe wie bei einer Handrechnung.
Entsprechend der Lösungsvorschrift, die aus einer Reihe von An­
weisungen besteht, werden die Daten durch Rechenoperationen
mitemander verknüpft, eventuelle Zwischenergebnisse notiert
und die Ergebnisse auf einem gesonderten Formular zusammenge­
faßt.
In der gleichen Weise arbeitet ein Rechner. Die Lösungsvorschrift,
die aus einer Reihe von Anweisungen (Befehlen) besteht, ist das
Programm . Man muß es, damit es abgearbeitet werden kann, in.ei�
nen Speicher eingeben . Ebenso müssen die Ausgangsdaten, die
Zwischenwerte sowie .die Resultate gespeichert werden . Das Re­
chen werk, das im wesentlichen die 4 Grundrechena�;ten Addition,
Subtraktion, Multiplikation und Division sowie die logischen
Operationen UND, ODER und NEGATION ausführt, verknüpft
die Daten . Für die Steuerung des gesamten Ablaufs gibt es ein
Steuerwerk. Dieses Steuerwerk liest Anweisung für Anweisung der

9

Ausgabe von
Ergebnissen

Ausgongs-
Rechenwerk doten

1--:::------,---,---.j Ergebnisse
Speicher

Bild 2 . 1 Grundsätzliche Struktur eines Rechners

Eingabe von
Ausgongsdaten

Lösungsvorschrift aus dem Speicher und gibt dem-Rechenwerk Si­
gnale zur Ausführung der in der Anweisung vorgegebenen Funk­
tion . Rechenwerk und Steuerwerk bilden die CPU (Central Pro­
zessor Unit) . Ein Rechner besteht also aus den Hauptbestandteilen
Speicher, Rechenwerk und Steuerwerk.
Außerdem gehören zum Rechner noch Ein- und Ausgabegeräte
zur Eingabe des Programms und der Ausgangsdaten einer Auf­
gabe sowie zur Ausgabe der Ergebnisse . Ferner ist an jedem Rech­
ner ein Bedienpult angeschlossen, über das bestimmte Funktionen
(Starten eines Programms , Ein- und Ausschalten von Teilgeräten,
Sichtanzeigen) gesteuert werden können .
Bild 2 . 1 zeigt die grundsätzliche Struktur eines solchen Rechners .

2.1.1. Speicher

Der Speicher hat die Aufgabe , alle Informationen, die zur Lösung
einer Aufgabe benötigt werden, zu speichern .
Dazu gehören das Programm, das aus einer Folge von Befehlen be­
steht , die Ausgangsdaten, die Zwischenresultate und die Ender­
gebnisse .
Ausgangsdaten, Zwischenresultate und Endergebnisse sind im all­
gemeinen Zahlen oder alphanumerische Zeichen (Text) . Zur Dar-

. stellung einer Zahl oder eines Befehls dient innerhalb des Rech­
ners ein sogenanntes Maschinenwort, das aus einer Bit-Folge

10

��-s_ek_to_r _o +I s_e_kt_or_1......__�} ,_! -----+l-se_kt_or_6....J31
Zelle 0 Zelle1024 Zelle 64512

Bild 2 .2 Logische Aufteilung eines 64-K-Speichers in 64 Sektoren

besteht. Es hat eine vorgegebene Wortlänge . Den Platz, der not­
wendig ist , um ein solches Wort im Rechner zu speichern, nennt
man eine Speicherzelle. Der Speicher besteht aus einer größeren
Anzahl solcher Speicherzellen , die durchnumeriert sind. Die Num­
mer der Speicherzelle nennt man die Adresse.
In der Rechentechnik ist die Mengenangabe Kilo (Kilobyte oder
Kiloworte) üblich . Ein Kilo kennzeichnet hier jedoch nicht die tau­
sendfache Menge , sondern das 1024fache (1 Kbyte = 1024 Byte),
da die Kapazität eines Speichers fast immer einer Zweierpotenz
entspricht. Zu einer solchen Speicherplatzanzahl ist eine optimale
Adreßentschlüsselung möglich . Manchmal wird der Speicher in
Seiten oder Sektoren aufgeteilt. Entsprechend unterteilt sich dann
auch die Adresse in Seitenadresse (Sektoradresse) und Zellen­
nummer innerhalb der Seite (Sektor) . Bild 2 .2 . zeigt die Auftei­
lung eines Speichers mit 64K-Zellen in 64 Sektoren.
Technisch werden Speicher meistens als Ferritkernspeicher oder
Halbleiter ausgeführt (s . Abschnitt 3 .4 .3 .) .

2.1.2. Rechenwerk

Das Rechenwerk dient zur Ausführung von Rechenoperationen.
Es bekommt durch das Steuerwerk eine Folge von Schaltsignalen,
die es auf die gerade auszuführenden Rechenoperationen umschal­
ten . Vom Speicher erhält es die Zahlen , die zur Ausführung der
Rechenoperationen notwendig sind .
Die Zahlen werden im Rechenwerk zwischengespeichert. Dazu
hat das Rechenwerk mehrere Register, in denen die Ausgangsda­
ten einer Rechenoperation gespeichert sind.
Nach der Ausführung der Rechenoperation wird das Ergebnis
ebenfalls in einem Register gespeichert. Bild 2 .3 . zeigt das Grund­
prinzip eines Rechenwerks.

1 1

(Ergebnisregister)
Bild 2.3 Grundprinzip eines Rechenwerks

Schaltsignale zum Einstellen
der Rechenoperationen

Zu den Operationen , die ein Rechenwerk eines Rechners aus­
führt, gehören:
a) Arithmetische Rechenoperationen für die im Reqmer verdrah­

teten Zahlendarsteilungen (ADDITION, SUBTRAKTION,
MULTIPLIKATION und DIVISION) . Bei Mikrorechnern
sind im allgemeinen nur Addition und Subtraktion möglich.
Multiplikation und Division müssen programmiert werden.

b) Logische Operationen
(UND, ODER, EXKLUSIV-ODER,
NEGATION, VERSCHIEBUNG)

c) Zahlenumwandlungen.
Das Rechenwerk eines Mikrorechners wird im allgemeinen als
arithmetisch-logische Einheit (ALU - arithmetic-logic unit) be­
zeichnet. Die ALU ist eine Logikschaltung, die durch Steuer­
signale so eingestellt werden kann , daß ein oder zwei Eingangs­
bitmuster entsprechend der eingestellten Operation verarbeitet
werden.

·

2.1.3. Steuerwerk

Das Steuerwerk übernimmt die Befehle eines Programms in der
vorgegebenen Reihenfolge aus dem Speicher, entschlüsselt sie und
bildet daraus die Steuersignale für das Rechen werk. Bild 2 .4 zeigt
den logischen Aufbau des Steuerwerks.
Der Befehlszähler enthält die Adresse des zu holenden Befehls .
Der vom Speicher übernommene Befehl wird zur Befehlsent­
schlüsselung im Befehlsregister zwischengespeichert. Das Spei-

12

vom Speicher

Steuersignale
für Rechenwerk

Bild 2.4 Aufbau des Steuerwerks eines Rechners

Zeit stufen­
generotor

cheradreßregister enthält die Adresse des zum Befehl benötigten
Operanden. (Mehrere Operanden [Zahlen) werden nacheinander
aus dem Speicher geholt .)
Der Zeitstufengenerator erzeugt eine Reihe von Zeitsignalen, die
den Ablauf der Befehlsabarbeitung festlegen. Den Grundtakt
dazu liefert der Taktgenerator. Die wichtigsten Schritte einer Be­
fehlsabarbeitung sind:
- Übernehmen des Befehls aus dem Speicher ;
- Entschlüsseln des Befehls ;
- Ermitteln der Operandenadresse ;
- Holen der Operanden aus dem Speicher ;
- Ausführung des Befehls ;
- Ermittlung der Adresst; des nächsten Befehls.
Da der Rechner aus Speicher, Rechen- und Steuerwerk besteht,
ergibt sich die Möglichkeit, automatisch, d. h. programmgesteu­
ert , beliebige Funktionen oder Aufgaben abzuarbeiten. Zu diesem
Zweck enthält jede Aufgab� 2 Teilinformationen . Die erste Teilin"
formation beinhaltet die Daten bzw. Zahlen, die verarbeitet wer­
den soilen . Der zweite Teil der Information sind die Anweisungen
(Befehle) , die aussagen, wie die Daten verarbeitet werden sollen.
Beide Teilinformationen gibt man über externe Geräte (Eingabe­
tastatur, Schreibmaschine , Lochbandleser , Lochkarteneingabe

13

usw.) in den Speicher ein . Vom Speicher werden die Anweisungen
in einer festgelegten Reihenfolge ins Steuerwerk übernommen,
entschlüsselt und vom Rechenwerk abgearbeitet . Zwischen- und
Endresultate gelangen in den Speicher zurück und können von
dort aus wieder über externe Geräte (Anzeige , Schreibmaschine ,
Drucker) ausgegeben werden .

2.2. DarsteUung von Daten

Da der Speicher aus einzelnen Zellen besteht , wobei jede Zelle
eine Bit-Folge mit vorgegebener Länge speichern kann, müssen
die zu �erarbeitenden Daten (Zahlen) in Bit-Folgen umgewandelt
werden. Dafür gibt es eine Reihe von Darstellungsarten . Je nach
Länge einer Speicherplatzzelle und Anzahl der notwendigen Stel­
len für die Darstellung einer Zahl werden für die Speicherung einer
Zahl eine oder mehrere Zellen benötigt . Das gleiche gilt für die
Speicherung von alphanumerischem Text .

2.2.1. Zahlendarstellung

Ausgangspunkt für die Darstellung von Zahlen in Rechnern ist das
Dualsystem. Dabei handelt es sich um ein-Zahlensystem, das auf
nur 2 Ziffern basiert (0 und 1) . Zur Speicherung einer Dualziffer
sind also nur 2 stabile Zustände notwendig, die sich leicht realisie­
ren lassen .

2.2.1.1. Ganze Zahlen im Dualsystem

Um eine Dezimalzahl in das Dualsystem zu übertragen, zerlegt
man sie in Potenzen zur Basis 2, wobei jeder neuen Potenz von 2
eine neue Stelle zugeordnet wird .
Beispiel
Die Zahl 27 soll dual dargestellt werden . Aus Tabelle 2 . 1 . ist zu er­
sehen, daß die größte in 27 enthaltene Zweierpotenz 24 = 16 ist , d .
h . , der Stellenwert 24 wird benötigt . Der Stellenwert 23 = 8 ergibt
mit 24 zusammen 24, der Rest ist 3. Der Stellenwert 22 tritt also
nicht, d. h. Oma! , auf, während die Stellenwerte 21 und 2° je einmal

14

Tabelle 2.1. Tabelle der Zweierpotenzen

2" n T"

1 0 I
2 1 0,5
4 2 0,25
8 3 0, 125

16 4 0,0625

32 5 0,03125
64 6 0,015625

128 7 0,0078125
256 8 0,00390625

erforderlich sind. Die Zahl 27 stellt sich im Dualsystem also folgen­
dermaßen dar:
Stelle 2 4 Stelle 23 Stelle 22 Stelle 21 Stelle 2 °

1 1 0 1 1
Der Leser führe selbst die Umwandlung der folgenden Dezimal­
zahlen ins Dualsystem aus :
41 = 1 . 2 5 + 0 . 2 4 + 1 . 23 + 0 . 22 + 0 . 21 + 1 . 2 ° � 101001
(dual) ;
15 = 1 ·23+ 1 · 22 + 1 · 21 + 1 · 2 ° � 1 1 1 1 (dual) .

Umwandlung Dezimal � Dual

Eine weitere Methode besteht in der fortlaufenden Division durch
2 .

Beispiel
Es soll die Dezimalzahl 9 3 durch fortlaufende Division durch 2 dual
dargestellt werden .

93 : 2 = 46 Rest 1 1
46 : 2 = 23 Rest 0 0
23 : 2 = 1 1 Rest 1 1
1 1 : 2 = 5 Rest 1 1
5 : 2 = 2 Rest 1 1
2 : 2 = 1 Rest 0 0
1 : 2 = 0 Rest 1 1

1 0 1 1 0

93 (dezimal)� 101 1 101 (dual) .

15

Umwandlung Dual-Dezimal

Hier geht man von einem Rechenschema aus , in dem die 2er Po­
tenzen wieder dezimal dargestellt werden .

Beispiel
101 1 1 flo1 . 24 + o . 23 + 1 . 22 + 1 . 21 + 1 . 2 °
= 16 + 0 + 4 + 2 + 1 = 23 .

2.2.1.2. Gebrochene Zahlen im Dualsystem

Bei der Darstellung von Zahlen , die Stellen hinter dem Komma ha­
ben, wird ähnlich wie bei den ganzen Zahlen verfahren. Man benö­
tigt dazu eine Tabelle der Potenzen von 2 mit negativen Exponen­
ten . Zum Beispiel kann man die Zahl 0,625 folgendermaßen
schreiben:
0,625 = 1 · T1 + 0 · z-2 + 1 · z-3 flo 0, 101 (dual) .
Ein Dezimalbruch läßt sich ins Dualsystem durch fortlaufende
Multiplikation mit der Grundzahl 2 überführen. Steht nach der
Multiplikation mit 2 vor dem Komma eine 0, so ist die nächste Du­
alstelle eine 0. Steht eine 1 vor dem Komma, dann ist die nächste
Dualstelle eine 1 .

Beispiel
Umwandlung der Dezimalzahl 0,625
0,625 · 2 = 1 ,250 1 flo 1 . Dualstelle nach dem Komma;
0,25 · 2 = 0,50 0 flo 2. Dualstelle nach dem Komma;
0,50 · 2 = 1 ,00 1 flo 3. Dualstelle nach dem Komma. · Die Dezimalzahl 0 ,625 1autet dual 0 , 101 . Die Begründung des Ver­
fahrens liegt darin , daß bei jeder Multiplikation mit 2 die Zweier­
potenzen um 1 erhöht werden und dabei die erste Ziffer vor das
Komma rückt. Diese Ziffer wird als Dualstelle übernommen.
Bei gemischten Zahlen wandelt man den ganzen Teil und den ge­
brochenen Teil - jeden für sich - in eine Dualzahl um.
Beispiel
Die Zahl 3 ,25 soll dual dargestellt werden. Die Zerlegung von 3 ,25
ergibt 3 + 0,25 . Der Zahl 3 entspricht die Dualzahl l l , der Zahl
0,25 entspricht die Dualzahl 0,01 .
Damit lautet die Zah1 3 ,25 dual l l ,Ol .

16

Stellenwert ,...::.27"'"T'"..;;2_6 ,.....;:.25"'"T'"..;;2...,' ,....;;.2 3-r-2=-2-r-=-i-r-2=-0.., I I I
t

Vorzeichenstelle

2.2.1.3. Darstellung von negativen Zahlen

Bild2.5
Darstellung von positiven
und negativen ganzen Zah­
len mit Hilfe von 8 Dualstel­
len

In der Umgangssprache unterscheiden sich die negativen Zahlen
von den positiven Zahlen durch ein negatives Vorzeichen. Für die
Darstellung dieses Vorzeichens im Rechner kann man eine zusätz­
liche Dualstelle als Vorzeichenstelle einführen und z. B. folgende
Vereinbarung treffen:
Vorzeichenstelle = 0 heißt positives Vorzeichen.
Vorzeichenstelle = 1 heißt negatives Vorzeichen.
Diese Darstellungsart wird in der Literatur mit·"Betrag und Vor­
zeichen" bezeichnet .
In den meisten Rechnern wird jedoch eine andere Darstellung, die
Komplementdarstellung, verwendet , in der die negativen Zahlen in
den positiven Zahlenbereich transformiert werden . Der Vorteil
besteht darin , daß sich die Subtraktion auf eine Addition zurück­
führen läßt .
In den meisten Mikroprozessoren stehen 8 Dualstellen (7 Dualstel­
len für die positiven Zahlen und eine Dualstelle für die Vorzei­
chenstelle) zur Verfügung (Bild 2.5) . Werden diese 8 Dualstellen
zur Darstellung ganzer Zahlen verwendet, so hat dfe Zahl +5 die
Belegung in Zeile 1 von Bild 2 .6 . Die duale Darstellung der Zahl
-5 mit Betrag und Vorzeichen ist aus Zeile 2 zu ersehen . Bei der
Komplementdarstellung wird bei negativen Zahlen das Komple­
ment zu 28 gebildet . Das heißt, im Rechner wird anstelle der Zahl

0 0 0 0 0 1 0 1 •5
1 0 0 0 0 1 0 1 -5 (Betrag +Vorzeichen)

1 1 1 1 1 0 1 1 -5 (Zweierkomplementl
•

Vorzeichenstelle

Bild 2.6 Darstellung der Zahlen +5 und -5 im Zweierkomplement

17

-x die Zahl 28 - x gespeichert. Für die Zahl -5 entsteht dabei die
Belegung entsprechend Zeile 3 in Bild 2 .6 .
Für die Komplementbildung kann man folgende Regel aufstellen:
Ausgehend von der positiven Dualzahl, werden zur Komplement·

bildung alle SteHen negiert und anschließend zum niedrigsten Stel­
lenwert eine 1 addiert.

2.2.1.4. Mathematische Formulierung der Komplementbildung

Der positive Zahlenbereich der nach Bild 2 .7 dargestellten Zahlen
ist

N
0 � X � I i = 2N+I - 2-M 0

i=-M

Da die negativen Zahlen in den positiven Zahlenbereich transfor­
miert werden sollen , gilt für die Zahlen x' im Rechner: {x, falls x � 0} x' = x + k, falls x < 0 ·

wobei k eine Komplementärzahl ist. Für die Komplementärzahl k
ergeben sich folgende Bedingungen:
1. Es soll x' > 0 sein .
2. Positive und negative Zahlen müssen unterscheidbar sein.
Damit muß für negative Zahlen x
k + X > 2N+I - 2-M
sein , d. h .
k > 2N+I - TM - X = 2N+I - 2-M + I X I ,

·und mit
I X lmax = 2N+l - rM

wird
k > 2 ° 2N+I- 2 ° TM= k'.

f
Vorzeichenstelle

Bild 2. 7 Duale Zahlendarstellung im Rechner

18

Kommastellung

Die kleinstmögliche Komplementärzahl ist damit
kt = k' + z-M = 2 N+2 - 2-M .

Negative Zahlen. , die mit dieser Komplementärz-ahl gebildet wer­
den, heißen Einerkomplement.
Die nächstmögliche Komplementärzahl ist :

kz = kt + 2-M = 2 N+Z .
Zahlen . die mit k2 gebildet werden , nennt man Zweierkomple­
ment. In unserem Beispiel nach Bild 2 .5 sind M = 0 und N = 6 und
damit k2 = 28 .

2.2.1.5. Zahlensysteme mit der Basis 8 (Oktalsystem) und 16
(Hexadezimalsystem)

Sehr häufig werden zur übersichtlichen Darstellung von Dualzah­
len dem Dualsystem verwandte Zahlensysteme verwendet. Hierzu
gehören das Oktalystem und das Hexadezimalsystem .
Oktaldarstellung
Beim Oktalsystem beträgt die Basis B = 8. Da 8 = 23 ist , bilden
immer 3 Dualziffern eine Oktalziffer. Im Oktalsystem werden 7
Ziffern (0 bis 7) benötigt .
Beispiel
Die Dezimalzahl 201 lautet als Dualzahl 1 10010 01 und als Oktal­
zahl 3 1 1 (1 1/001/001) .
Hexadezimaldarstellung
Das Hexadezimalsystem hat die Basis B = 16. Da 16 = 24 ist , bil­
den 4 Dualziffern eine Hexadezimalziffer. Im Hexadezimalsystem
werden 16 Ziffern benötigt . Für die Ziffern (10) , (1 1) , (12) , (13) ,
(14) , (15) setzt man gewöhnlich die Zeichen A, B , C, D, E, F ein .
Beispiel
Die Dezimalzahl 201 lautet als Hexadezimalzahl
c 9 (1100/1001) .

2.2.1.6. Zifferncode

Um Zahlen binär auszudrücken, gibt es außer der reinen Dualdar­
stellung noch gemischte Formen , sogenannte Codierungen, in

19

denen die Ziffern einer Dezimalzahl getrennt durch Binärziffern
dargestellt werden.
Der ei�fachste Code ist der BCD-Code (Binär-Code) , in dem jede
Ziffer durch die entsprechende Dualzahl dargestellt wird. Für eine
Ziffer werden dabei 4 Dualstellen benötigt .

Beispiel

3791 � 0011
3

0111
7

1001
9

0001
1

Die für eine Dezimalziffer notwendigen Dualstellen nennt man
eine Tetrade. Mit diesen 4 Stellen lassen sich außer den Ziffern 0 bis
9 noch die Zahlen 10 bis 15 realisieren . Tritt innerhalb der Tetrade
eine Kombination von Binärstellen auf, die einer der Zahlen 10 bis
15 entspricht (z. B. 1 101 � 13) , so nennt man diese Kombination
eine Pseudotetrade. Pseudotetraden sind Kombinationen von Bi­

närziffern, deren Wert keiner der Ziffern 0 bis 9 zugeordnet ist.
Außer dem BCD-Code gibt es noch weitere Codierungsvorschrif­
ten für Ziffern , in denen andere Kombinationen von Binärziffern
den Dualziffern 0 bis 9 zugeordnet sind.

3-Exzeß..Code
Codewert = Dualwert + 3 .
Die 3-Exzeß-Code-Verschlüsselung ergibt für die Dezimalziffern 0
bis 9 folgende Zuordnung:

0
1
2
3
4
5
6
7
8
9

Aiken-Code

0011
0100
0101
0110
0111
1000
1001
1010
1011
1 100

Codewert = Dualwert , falls Zahlenwert <5,
Codewert = Dualwert +6, falls Zahlenwert ;;5 .

20

Der Aiken-Code ergibt für die Dezimalziffern 0 bis 9 folgende Zu­
ordnung:

0
1
2
3
4
5
6
7
8
9

()()()()
0001
0010
0011
0100
101 1
1100
1 101
1 1 10
1 1 1 1

Außer der Darstellung von Dezimalziffern durch 4 Dualstellen gibt
es noch solche mit mehr als 4 Dualstellen.
Beispiele solcher Codierungen sind der Walking-Code und der Po­
sitionscode.

Walking-Code (2-aus-5-Code)

0 = 0 0 0 1 1
1 = 0 0 1 0 1
2 = 0 0 1 1 0
3 = 0 1 0. 1 0
4 = 0 1 1. 0 0
5 = 1 0 1 0 0
6 = 1 1 0 0 0
7 = 0 1 0 0 1
8 = 1 0 0 0 1
9 = 1 0 0 1 0

Positionscode (1-aus-10-Code)

0 = 0 0 0 0 0 0 0 0 0 1
1 = 0 0 0 0 0 0 0 0 1 0
2 = 0 0 0 0 0 0 0 1 0 0
3 = 0 0 0 0 0 0 1 0 0 0
4 = 0 0 0 0 0 1 0 0 0 0
5 = 0 0 0 0 1 0 0 0, 0 0
6 = 0 0 0 1 0 0 0 0 0 0
7 = 0 0 1- 0 0 0 0 0 0 0
8 = 0 1, 0 0 0 0 0 0 0 0
9 = 1 0 0 0 0 0 0 0 0 0

21

2.2.1. 7. Zahlenbereich im Rechner

Bei der Darstellung von Zahlen im Rechner muß man die Tatsache
berücksichtigen, daß ein Rechner nur eine bestimmte Stellenzahl
hat . Stehen z. B. nur 7 Stellen für positive Dualzahlen zur Verfü­
gung, wie es bei vielen Mikroprozessoren der Fall ist, so kann man
damit nur ganze Zahlen zwischen 0 und 127 darstel,len . Sollen auch
gebrochene Zahlen dargestellt werden , so kann man das Komma
vor eine dieser Stellen setzen . Dabei wird der Zahlenbereich nicht
erweitert, sondern nur verschoben . Steht bei 7 Stellen das Komma
nach der 4. Stelle , so kann man nur Zahlen zwischen 0 und 15, 875
in Schritten zu 0, 125 darstellen .
Damit der Zahlenbereich an die praktischen Erfordernisse ange­
paßt wird , gibt es noch verschiedene Darstellungsformen inner­
halb eines Zahlensystems , die wichtigsten sind die Festkomma­
und die Gleitkommazahlen.

Festkommazahlen.
Dabei handelt es sich um Zahlen , bei denen eine feste Anzahl von
Ziffern vor und nach dem Komma vereinbart wird . Die Stellung
des Kommas und die Gesamtzahl der Ziffern hängt vom Rechner­
typ ab . Es gibt auch Rechner, bei denen das Komma durch Tasten
oder selbständig gesetzt wird .

Beispiel
In jedem Taschenrechner sind Dezimalzahlen der Form 3 7 2 8 3 ·
6 1 3 üblich. In diesem Fall rechnet der Taschenrechner mit 8 Dezi­
malstellen in Festkommadarstellung.
Im Dualsystem besteht das gleiche Problem. In einem Rechner
läßt sich wegen der technischen Gegebenheiten nur eine feste An­
zahl von Dualstellen speichern . Dabei kann das Komma rechts von
der niedrigsten Stelle (dann handelt es sich um ganze Zahlen) oder
links vor der höchsten Stelle stehen (dann handelt es sich um echt
gebrochene Zahlen) , oder das Komma trennt einen ganzen und ei­
nen gebrochenen Teil.
Bei der Addition und Subtraktion von Festkommazahlen müssen
die Zahlen so verschoben werden, daß die Kommas untereinander
stehen. Bei Multiplikation und Division muß man die Stelle des
Kommas besonders bestimmen.

Gleitkommazahlen
Jede Zahl Z läßt sich in folgender Form darstellen:

2 2

Z = m· BE

(z . B . 0, 19 · 10- 18 ; m = 0, 19; E = - 18; B = 10) .
Dabei nennt man m die Mantisse, E den Exponenten, und B ist die
Basis des Zahlensystems.

Bei der dualen Darstellung von Gleitkommazahlen gilt für m bei
den meisten Rechnern folgende Vorschrift:

1 . - 1 < m < + 1 .
2. Die 1 . Stelle nach dem Komma soll nicht 0 sein.

Zahlen, die diesen Bedingungen genügen, nennt man normalisierte
Zahlen. Durch diese Vorschrift werden die Mantisse m und der Ex­
ponent E eindeutig bestimmt . Es gibt aber auch Vorschriften für
die Bi ldung der Mantisse m, die von der genannten Vorschrift ab­
weichen .

Beispiel]
Man schreibe die Zahl 25, 21 1 als Dezimalzahl in·GJeitkommadar­
stellung.
Lösu ng: 25, 21 1 = 0, 25211 · 102 .
Die Mantisse lautet also m = 0, 25211 und der Exponent E = 2.

Beispiel 2
Man schreibe die Zahl 4, 25 als Gleitkommazahl in dualer Darstel­
lung .
Lösung: 4, 25 = 1 · 22 + 0 · 21 + 0 · 2- 1 + 1 · 2- 2 .
Das ergibt die Dualzah1 100, 01 .
Als Gleitkommazahl entsprechend obiger Vorschrift wird daraus

o, 10001 . 23 = o, 10oo 1. 21 1 •
Die Mantisse lautet also m = 0, 10001 und der Ex ponent E = 1 1 .

2.2.2. DarsteUung von Text (Zeichencode)

Damit der Rechner beliebige Textinformationen speichern kann,
müsse n alphanumerische Zeichen auch durch Bit-Folgen (Folgen
aus den Ziffern 0 und 1) dargestell t werden. Dabei ergibt sich die
Frage, wieviel Dualstellen insgesamt zur Codieru ng aller vorkom­
menden Zeichen notwendig sind. Aus der Mathematik ist bekannt,
daß mit n Dualstellen 2" unterschiedliche Bit-Folgen, bestehend

23

aus den Ziffern 0 und 1 , dargestellt werden können. Nimmt man
an, daß die Anzahl der verwendeten Zeichen (Buchstaben, Ziffer n
und Syntaxzeichen) kleiner als 128 ist , so benötigt man dazu 7 Du­
alstellen, da 27 = 128 ist . Meistens kommt zu diesen 7 Bit eine
Kontrollbit hinzu . Die Bit-Folge von 8 Dualstellen nennt man 1
Byte. Innerhalb dieser 8 Stelien wird jedem Zeichen eine feste
Folge aus den Ziffern 0 und 1 zugeordnet . Diese Folge ist der Code
des betreffenden Zeichens .
Es gibt mehrere internationale Festlegungen für solche Zuordnun­
gen . Die in der DDR am häufigsten verwendeten Zeichenc:; ode
sind :
- SIF- 1000-Code (Standard- Interfac e- Code für Datenverarbei­

tungsperipherie) ;
- ASCII- Code (American Standard .C ode for Information

Interchange - amerikanischer Code für Infor­
mationsaustausch) ;

- R-300-Code ;
- IS0-7-Bit-Code .
In M ikrorechnern wird vorwiegend der ASCII- Code und der SIF-
1000- Code angewendet .

2.2.3. Rechnen mit Dualzahlen

Addition
Während bei Dezimalzahlen ein Übertrag entsteht, wenn die
Summe zweier Ziffern größer als 9 ist , tritt im Du alsystem der
Übertrag bereits auf, wenn di e Summe größer als 2 ist . Im Dualsy­
stem gelten folgende Grundregeln :
0 + 0 = 0 mit Übertrag 0 ;
0 + 1 = 1 mit Übertrag 0;
1 + 0 = 1 mit Übertrag 0;
1 + 1 = 0 mit Übertrag 1 .

Beispiel
Bilden der Summe 13 + 7 .

1 Übertrag
Dezimal : 13

+ 7
2 0

2 4

1 1 1 1 Übertrag
Dual : l3 � 1 101

+ 7 � 1 1 1
20 � 10100

Subtraktion
Gelingt die Subtraktion in einer Stelle nicht direkt , so muß der Mi­
nuend durch "Borgen" aus der nächsthöheren Stelle erhöht wer­
den. Im Dualsystem wird das "Borgen" aus der nächsthöheren
Stelle dadurch realisiert , daß von der höherwertige n Stelle , wie
auch im Dezimalsystem, eine 1 ab gezogen und dafür die betref­
fende Stelle um 10 erhöht wird

Beispiel
B ilden der Differenz 91-53 . � 1 geborgt
Dezimal : 9 1

- 53
38

1 geborgt
Dual : 91 � 1 0 1 1 0 1 1

- 5S � 1 1 0 1 0 1
38 � 1 0 0 1 1 0

Werden negative Dualzahlen im Komplement dargestellt, dann
realisiert man die Subtraktion durch die Addition im Zweierkom­
plement. Die Zahl -53 sieht in Zweierkomplementdarstellung fol­
gendermaßen aus :
-53 � 1 1 0 0 1 0 1 1 '
wobei das vorderste Bit die Vorzeichenstelle ist.
Das Beispiel 91-53 sieht , wenn statt 91 -53 91 + (-53) gerechnet
wird, so aus :

91 � 0 1 0 1 1 0 1 1
-53 � 1 1 0 0 1 0 1 1

0 0 1 0 0 1 1 0

Der Ü bertrag in die Stelle vor dem Vorzeichen wird dabei nicht
mehr berücksichti gt , da er über die vorgegebene Stellenzahl hin­
ausgeht. Z ur Begründung der angewandten Methode setzt man für
eine negative Zahl y in der Komplementdarstellung das Zeichen
y'. Dann ist y' = y + k2, mit k2 = 28 , wenn es sich um das Zweier­
komplement handelt .
Die Z ahl k2 = 28 läßt sich mit den vorgegebenen S tellen nicht dar­
stellen, da de r höchst e Stellenwert 27 ist .
Für x - y gilt :
X- y =X + (-y) =X + y' =X- y + k2 .

Ist x - y negativ , so ste}J t das Erg� bnis mit x - y + k2 richtig im Re­
gister. Ist x - y positiv , so ergibt sich ebenfalls ein richtiges Ergeb­
nis , da die Stelle für k2 nicht vorhanden ist.

25

Sind x und y negativ, dann gilt:
-x - y = x' + y'

= - x - y + 2kz = - x - y + kz + kz .
Der Wert -x - y + k2 ist die Komplementdarstellung von -x - y.
Das zweite k2 wird nicht im Register dargestellt , da die dafür not­
wendige Stelle nicht vorhanden ist .

Multiplikationen
Zur Multiplikation müssen die beide n Ope'r anden positiv sein. Die
Multiplikation von positiven Zahlen gleicht der im Dezimalsystem ,
wobei folgende Grundregeln gelten:

0. 0 = 0;
0. 1 = 0;

1. 0 = 0;
1. 1 = 1 .
Die Multiplikation ist eine fortgesetzte Addition, wobei die einzel­
nen Summanden entsprechend ihrem Stellenwert verschoben sind.

Beispiel
Bil den des Produkts 12 • 5 .

1100. 101
0000
1100

111100 � 60
Auch hier kann wie beim Rechnen mit Dezimalzahlen im angege­
benen Beispiel di e Nullzeile weggelassen werden .

Division

Die Divisi on ist im wesentlichen eine fortgesetzte Subtraktion. In
den Quotienten wird dann eine Ziffer 1 eingetragen, wenn der Sub­
trahend kleiner als der Minuend ist. Da die S ubtraktion auch als
Addition im Komplement realisiert werden kann , ergeben sich un­
terschiedliche Verfahren für die Division, die j edoch im Pri nzip auf
der gleichen Grundlage beruhen.

Beispiel]
Bilden der Division 108: 12 nach dem normalen Handrechenver­
fahren.

26

1 1 01100:1100 =1001
- 1 1 0 0 geht zu subtrahieren

(Subtrahend ist kleiner als
Minuend) , Ergebnis ist 1;

0 0 0 1 1 0 0 Rest

Divisor 1 Stelle
nach rechts -1 1 0 0

Divisor 1 Stelle
nach rechts

Divisor 1 Stelle
nach rechts

0001100

-11 0 0

0001100

-11 0 0

0000000

geht nicht zu subtrahieren,
Ergebnis ist 0;
Rest

geht nicht zu subtrahieren,
Ergebnis ist 0;

Rest

geht zu subtrahieren,
Ergebnis ist 1;

Rest

Da der Rest 0 ist, lautet das Ergebnis 1 0 0 1 .

Beispiel 2

Bilden der Division 108 : 12 mit Rückstellung des Restes unter
Verwendu11 g der Komplement darstellung.

1101100:1100 =1001

Stellenzahl 8 7 6 5 4 3 2 1 0
01101100

+10100000

00001100

+11010000

11011100

+ 110 0

00001100
+11101000

11110100

Divident
Zweierkomplement des
Divisors
Ergebnis ist positiv -
ergibt eine 1 im Quotienten
Div isor um eine Stelle nach
rechts verschoben
(Zweierkomplement)
Ergebnis ist negativ - ergibt
eine 0 im Quotienten
Da das vorangegangene Ergeb­
nis negativ ist, muß der Divisor
wieder dazugezä hlt werden
(Rückstellung des Restes)

Divisor um eine Stelle nach
rechts verschoben,
Ergebnis ist negativ - ergibt
eine 0 im Quotienten

27

+ __ 1_ 1_ 0_:_ 0_

0 0 0 0 1 1 0 0

+ 1 1 1 1 0 1 0 0

Da das vorangegangene Ergeb­

nis negativ ist, muß der Divisor
wieder dazugezählt werden
(Rückstellung des Restes)

Divisor um 1 nach rechts ver-

schoben
0 0 0 0 0 0 0 0 Ergebnis positiv-ergibt 1 im

Quotienten
Der verbleibende Rest ist 0, die Division geht auf und ergibt den

Quotienten 1001.
Geht man von der Tatsache aus, daß Multiplikation und Division

durch fortgesetzte Additionen bzw. Subtraktionen realisiert wer­
den, so läßt sich zeigen, daß im Dualsystem weniger Additionen
und Subtraktionen notwendig sind als im Dezimalsystem.

Rechnen mit codierten Zahlen

In diesem Abschnitt wird nur auf BCD-codierte Zahlen eingegan­
gen, da der BCD-Code der am häufigsten verwendete Code ist.
Für die Rechenoperationen im BCD-Code gibt es bei den Mikro­
prozessoren 8080 und U.880 spezielle Befehle. Werden 2 Dezimal­
ziffern im BCD-Code addiert, so können folgende Fälle auftreten:

1. Die Summe ist �9 .
2. Die Summe ist >9 aber � 15.
3. Die Summe ist > 15 .
Im Fall 1 ist die Ergebnisziffer richtig.

Beispiel

Summe4 + 5: 4 � 0100
5 � 0101

9 � 1001
Im .Fall 2 ist die Ergebnisziffer eine Pseudotetrade. Die richtige
Ziffer erhält man durch Addition von 6.

Beispiel

Summe7 + 6:

28

7 � 0111
6 � 0110

1 101 = Pseudotetrade
+ 1 10 (Addition 6)

13 � 10011

Im Fall 3 ergibt sich bereits der richtige Übertrag, aber die Ergeb­
nisziffer muß noch um 6 erhöht werden .

Beispiel
Summe 8 + 9:

Ü bertrag in die
nächste Dezi-

8 ,Q, 1000
9 ,Q, 1001

malziffer --- 1 0001
+ 1 10 (Addition 6)

17 ,Q, 101 1 1
Für die Addition i m BCD-Code lassen sich also folgende Regeln
aufstellen:
Ergibt die Summe zweier Ziffern plus Übertrag von der vorherigen
Stelle kein e Pseudotetrade und keinen Übertrag in die nächste De­
zimalstelle, so ist die Ergebnisziffer richtig.
Ergibt die Summe zw eier Ziffern eine Pseudotetrade od er einen
Ü bertrag\ n die nächste Ste lle, dann muß die Ergebnisziff er um 6
erhöht werden .

Beispiel
Summe 2985 + 4936 = 7921 .

0 0 1 �u 0 0 �l 1 0 0 �
0 1 0 0 1 0 0 1 0 0 1 1
0 1 1 1 OTI 1 1 0 0 ,Q, PS*

1 1 0 (+ 6) 1 1 0 (+ 6)
0 1 1 1 1 0 0 1 Y0 1 0
• PS = Pseudotetrade

Rechneo mit Gleitkommazahlen

Übertrag in
0 1 0 1 nächste Tetrade
0 1 1 0
1 0 1 1 ,Q, PS*
__!_!_Q_ (+ 6)

0 0 1 ,Q, 7921

Addition und Subtraktion von Gleitkommazahlen
Die Addition bzw. Subtraktion der Mantissen zweier Zahlen ist
nur dann möglich, wenn die Exponenten beider Zahlen gleich
sind.
Für die Berechnung von
Zt + Zz = m1 · lOEI + mz · 10E2
muß unter der Voraussetzung, daß E1 < E2 ist, m1 um E2- E1

29

Stellen nach rechts verschoben werden . Die neue Mantisse sei mit
mi bezeichnet, dann ist
Z1 + Z2 = mi · 10E2 + m2 · 10E2 = (mi + m2) · 10E2

.
Die neue Mantisse ist also mi + m2, der neue Exponent E2•

Beispiel
z1 = 0,25 · 102;
Z2 = 0,35 · 104•
E2 - E1 = 2, d. h . , die Mantisse von Z 1 muß um 2 Stellen nach
rechts verschoben werden . Es gilt also :
Z1 + Z2 = 0,25 · 102

+ 0,35 · 104

= 0,0025 . 104 + 0,35 . 104 = 0,3525 . 104•
Bei der Addition im Dualsystem verfährt man analog.
Bei der Subtraktion ist in entsprechender Weise vorzugehen .

Multiplikation von Gleitkommazahlen

Die Multiplikation von Gleitkommazahlen läuft nach der Regel
Z1 · Z2 = m1 · 10E1 · m2 · 10E2 = m1 · m2 · 10E2 + E2

ab . Die neue Mantisse ist also m1 • m2, der neue Exponent E1 + E2•
Die neue Mantisse m1 • m2 darf ebenfalls keine 0 nach dem Komma
aufw eisen, d. h . , gegebenenfalls ist die 0 nach dem Komma durch
Vers chiebung von m1 • m2 um ein Stelle nach links zu beseitigen ,
wobei der Exponent E1 • E2 um 1 zu erniedrig en ist .

Beispiel] (Dezimalsystem)
z1 = o,2 · 102;
Z2 = 0,3 · 103;
Z1 · Z2 = 0,2 · 0,3 · 102 + 3 = 0,06 · 105 = 0,6 · 104•
(Die "0" nach dem Komma bei 0,06 wurde durch Verschiebung um
eine Stelle nach rechts und Erniedrigung des Exponenten 5 um 1
beseitigt .)
Im Dualsystem wird in entsprechender Weise verfahren .

Beispiel 2 (Dualsystem)
3 . 4 = 12 .
3 � 1 1 = 0 ,11 · 22 = o,11 . 210; 4 � 100 = o,1 . 23 = 0 , 1 . 211;
o , 11 · 210 · o,1 · 211 = o ,11 · 0,1 . 210+11 = o,o11 . 2101;
= 0 ,11 . 2(101-1) = 0 , 1 1 . 2100.

Division von Gleitkommazahlen

Die Division von Gleitkommazahlen läuft nach der Regel

30

ab. Die neue Mantisse ist also m1 : m2, der neue Exponent E1 - E2.
Da die neue Mantisse der Vorschrift. -1 < m < + 1 genügen muß,
ist gegebenenfalls die Ergebnismantisse um eine Stelle nach rechts
zu verschieben und der Exponent dabei um 1 zu erhöhen.

Beispiel I (Dezimalsystem)
z, = 0,25 · 10Z;
Zz = 0,5 · 101;
z, 0,25 · 10Z

0
o
.
. 5
25 . 1 oz_1 = o,s. zd.

Zz
= 0,5 · 101

Beispiel 2 (Dualsystem)
6: 2 = 3
z, = 6 � 0,11 . 211;
Z2 = 2 � 0,1 · 210;
z,

=
0,11 . 2"

=
0,11 . 2"-'o = 1 1. 2' = o 11. 2' +' = o 11.210

Zz 0,1 · 210 0,1 ' ' ' .

2.3. Aufbau der Befehle

Genauso wie die Zahlen durch Bit-Folgen dargestellt werden, muß
man auch die Anweisungen (Befehle) in Bit-Folgen umwandeln,

um sie zu speichern. Da eine Anweisung (Befehl) eine Information
sein soll, aus der hervorgeht, was der Rechner zu tun hat, besteht
sie aus 2 Hauptteilen:
-Der 1. Teil sagt aus, was bzw. welche Operation der Rechner

ausführen soll.
-Der 2. Teil sagt aus, woher die Daten kommen, die für die

Durchführung dieser Operation gebraucht werden.
Der 1. Teil wird Operationsteil, der 2. Teil Adreßteil genannt (Bild
2.8). Im Adreßteil steht eine Adresse (Einadreßbefehl) oder meh­

rere Adressen (Mehradreßbefehl) für die benötigten Daten. Im
Adreßteil eines Einadreßbefehls steht entweder die fertige
Adresse oder, wie es oft der Fall ist, eine Rechenvorschrift, aus der

die endgültige Adresse ermittelt wird. Man spricht in diesem Fall

31

I Operationste i l I Adrentei l
Bild 2 .8 Befehlsaufbau

von Adreßrechnung. Durch die A dreßrechnung w ird aus den
.im A dreßte il des Be fe hls ste hen den Anga ben d ie en dgü lt ige ·
Spe ichera dresse erm it telt .
Be i der A dreßre chnung g ibt es 2 Grun dpr inz ip ien, auf die be i na­

hezu allen Rechnern zurückgegr iffen w ir d . Das erste Pr inz ip ist un­
ter dem Namen Index-Rechnung bekannt . Be i der In de x-Rech­
nung w ir d die en dg ült ige S pe ichera dresse erm ittelt, in dem zu der

im Befehl angegebenen A dr esse der Inhalt e ines spez iellen Reg i­
sters, Index-Register genannt, dazugezählt w ir d. D ie endgü lt ige

Spe ichera dresse ist also gle ich im Befehl angege bene A dresse p lus
Inhalt In de x-Reg ister (In de xierung):
Endgültige Speicheradresse = im Befehl angegebene Adresse +
{Index-Register) .

Das zwe ite Pr inz ip ist unter dem Namen indirekte Adressierung be­
kannt . Be i der in direkten A dress ierung steht die en dg ült ige Spe i­
chera dresse in der Ze lle, deren A dresse im Be fehl steht ; o der an­

ders ausge drückt, die en dgült ige A dresse ist der Inhalt der im Be­
feh l angege benen Spe icherzelle . Es kommt au ch vor, daß dje end­

gült ige A dresse n icht in der Spe icherzelle, son dern in e inem spe­
z iellen Reg ister steht .

Endgültige Speicheradresse = Inhalt der im Befehl angegebenen
SpeicherzeUe.

2.4. Befehlsschlüssel ebies Rechners

Der Be fehlsschlüssel ist e ine Zusammen fassung a ller Be feh le, d ie
ein Rechner aus führen kann . Je dem Be fehl w ir d e ine best immte
B it -Folge im Operat ionste il zugeordnet . D iese B it -Folge nenn t

man Operationscode. Be i Befehlen, die ke inen Spe icherzugr iffbe­
nöt igen (nichtspeicherbezogene Befehle), w ir d zur Co dierung des
Befehls der A dreßte il h inzugezogen . D ie folgen de Zusammenstel­

lung enthält e ine Übers icht ü ber Befeh lsarten, die e in Mikropro­
zessor aus führen kann .

- Adreßoperationen
A dreßoperat ionen s in d Operat ionen zur Erm ittlung der en dgül-

32

tigen Speicheradresse aus den Angaben im Adreßteil des Befehls
(Indexierung, indirekte Adressierung) .
- Transportoperationen
Transportoperationen dienen zur Übertragung von Daten vom
Speicher in spezielle Register und umgekehrt oder von Speicher­
zellen in andere Speicherzellen. Man unterscheidet Einzelwort­
transfer und Blocktransfer. Einzelworttransfer ist die Übertragung
eines Wortes oder Bytes, Blocktransfer ist die Übertragung eines
Datenblocks von einem Speicherbereich in einen anderen Spei­
cherbereich.
- Rechen- und logische Operationen
Diese Operationen dienen zur Verknüpfung von Zahlen bzw. Bit­
Folgen. Bei den Rechenoperationen werden Zahlen durch Re­
chenvorschriften (Addition, Subtraktion, Multiplikation, Divi­
sion), bei den logischen Operationen durch logische Operatoren
(UND, ODER, NEGATION, EXKLUSIV-ODER usw.) ver­
knüpft. Das Resultat st�ht meistens in einem speziellen Register,
dem Akkumulatorregister.
Außerdem gibt es Befehle, durch die einzelne Bits einer Bit-Folge
verändert werden, sowie Befehle zum Vergleich zweier Bit-Fol­
gen .
Sprungoperationen
Sprungoperationen dienen zur Gestaltung der Programmstruktur.
Durch einen Sprungbefehl ist es möglich, von einer Stelle im Pro­
gramm an eine beliebige andere Stelle zu springen und dort die Ab­
arbeitung fortzusetzen .
Natürliche Abarbeitungsfolge Reihenfolge bei Sprungbefehl
Befehl l Befehl l
Befehl 2 [B: efehl 2 (Sprung nach Befehl S)
Befehl 3
Befehl 4
Befehl 5 Befehl 5
Befehl 6 Befehl 6
Unterprogrammbefehle
Ein Unterprogramm ist ein Programm, das eine spezielle Funktion
ausführt, die während der Abarbeitung eines größeren Programms
mehrmals notwendig ist (z. B . Berechnung des Logarithmus einer
Zahl) . Man spricht deshalb vom Hauptprogramm, das die gesamte
Aufgabe realisiert, und vom Unterprogramm zur Lösung einer spe­
ziellen Funktion.

33

Hauptprogramm (HP l

Befehls­
zähler ­
stand

Ende HP

Bild 2.9 Arbeitsweise eines Unterprogramms

insH

Das Un terprogramm steh t nur einmal im Speicher und muß so a r­
bei ten, daß man es von verschiedenen S tellen des Ha up tpro ­
g ramms aus au frufen kann . Nach dem Durchlaufen des Unte rpro ­
gramms muß an die Stelle im Haup tprogramm z urückgesp rungen
werden, von der aus ins Un terpr qgramm gesprungen wurde . Der

Sprungbefehl ins Un terprogramm bes teh t aus 2 Funk tionen . Er ­
s tens wird ein einfacher Sprung zur S tar tadresse des Un terpro ­
gramms ausgef ühr t, zwei tens muß die Rücksprungstelle ins Haup t­
programm gemerk t werden . Die Rücksprungadresse (Inhal t Be ­
fehlszähler + 1) wird in einer speziellen Speicherzelle gemerk t .
Der Rücksprung aus dem Un terprogramm is t ein Sprungbefeh l,
dessen ,Adresse aus der Speicherzelle genommen wird, in der die
Rücksprungadresse steht (Bild 2.9) .
Steueroperationen

Diese Opera tionen sind spezielle Befehle, die den Zus tand des
Rechners fes tlege iL Dazu gehör t z . B . der H A LT -Befehl .
Ein- und Ausgabeoperation
Sie dienen zur Ans teuerung en tsprechender Kanäle, an die Gerä te

zur Ein- bzw . Ausgabe von Daten angeschlossen sind .

2.5. Befehlsabarbeitung

Zur Abarbei tung eines Programms werden die Befehle der Reihe
nach aus dem Speicher in die C P U gehol t. Die Adresse der Spei ­
cherzelle, aus der der Befehl komm t, s teh t im Befehlszähler (B Z) .
Die Ausf ührung eines Befehls geh t in einzelnen Abschnitten, den

34

Adreßrechnung

Befehlszöhler
er höhen

n

Bild 2 . 10 Befehlsabarbeitung

35

Maschinenzyklen, vor sich . Bild 2.10 zeigt, welche Funktionen bei
der Aus führung e ines Befehls abgearbe itet werden .

2.6. Ein- und Ausgabesteuerung (E/ A-Steuerung)

2.6.1; Prinzip der EtA-Steuerung

Die Ein -/Ausgabe -Steuerung stellt die Verbindung zwischen dem
Rechner und den peri pheren Ger aten her (Bild 2 . 1 1) .

Die Schnittstellen zwischen Rechner und E / A -Steuerung und zwi­
schen E tA -Steuerung und externem Gerät bestehen aus Daten-,
Adreß- und Steuerleitungen . Man spricht vom Datenbus, Adreß­
bus und Steuerbus. Ist an die E / A -Steuerung nur ein externes Gerät

an geschlossen, dann kann der dazugehörige Adreßbus entfallen .
Entsprechen die Leitungen einer Schnittstelle einer Normung, so

s pricht man von e ine r Standard-Interface.

Datenbus
Über den Datenbus werden Dateninformationen übertragen . Er
besteht meistens aus 8 (1 Byte) oder 16 Leitungen .

Adreßbus
Der Adreßbus enthält die Adresse der E tA -Steuerung bzw . die
Adresse des externen Geräts . Das Gerät entschlüsselt d ie Adresse

und bildet ein Adreßsignal, wenn es durch die r ichtige Adresse an­
ges prochen wir d .

I
I

Adrefl -
Ieitungen

Rechner I A I E /A -
Daten - Steuerung

Ieitungen

I A I
_st.euer-
lei t unqen

I
I

I
I

Adren -
leitunaen

I
Daten-

le�tungen
I

, Steuer-
Ieitungen

I I
I
I

Schnittstelle

externes
Gerät

lz.B.Lochband-
stanzer oder
Magnetband-
kassette

I
Schnittstelle

Rechner - E/A- Steuerung E /A- Steuerung - externes Gerät

Bild 2 . 1 1 Ein-/ Ausgabe-Steuerung

36

Steuerbus
Der Steuerbus enthält Signale, die den Zeitpun kt der Datenüber­
tragung festlegen . Es sind Melde -und Steuersignale . Meldesignale
sind Ausgangssignale eines Geräteteils . Wichtige Meldesignale
sind:

- Geräteteil für Daten empfangsbereit ;
- Geräteteil hat Daten übernommen ;
- Geräteteil ha tDaten zur Ausgabe bereitgestellt ;
-Fehler im Gerätetei L
Die Meldesignale des sendenden Geräteteils sind gleichzeitig Steu­
ers ignale für den empfangenden Gerätetei L
Der Datenaustausch geschieht im allgemeinen nach dem soge­
nannten Hand-shake-Prinzip. (Die anfordernde Stelle gibt ein An­
forderungssignal (Re quest) und wartet, bis die Gegenstelle ein

Quittungssignal zurüc kgibt .)

Beispiel
Die E /A -Steuerung A gibt Daten an das Gerät G (Bild 2. 12) :

-Die E /A- Steuerung sendet die Adresse des Gerätes G und stellt
die Daten auf dem Datenbus bereit .

-Die E /A- Steuerung sendet als Zeichen bereitstehender Daten
das Signal "A -Bereit " .

-Das Gerät G entschlüsselt die Adresse und übernimmt, wenn es
bere it ist, die Daten .

- Hat G die Daten übernommen, so sendet es das Signal "Daten
übe rnommen" .

- Jetzt kann die E /A- Steuerung die Daten und die Adresse wieder
abschalten .

E/A -
Adresse

Steuerung
A oten

A -Bereit

.Daten übernommen
RESET

externes
Gerät

G

Bild 2 . 12 Aufbau
eiuer Interface­
Schnittstelle

37

Die Signale "A -Bereit " und "Daten übe rnommen " sind Signale
des Steuerbusses . Ein wi chtiges Steuersignal ist das Löschsignal

(R E S ET), mit dem vom Re chner aus alle anges ch lossenen Geräte
in die Ausgangsstellung gesetzt werden .

2.6.2. Programmierte Ein- und Ausgabe

Wir d ein Re chnerwort vom Re chner über die E /A -Steuerung zum
externen Gerät mit Hilfe eines Ein -oder Ausgabe befehls ein -ode �
ausgegeben, so s pri cht man von programmierter Ein-bzw . AuS­
gabe. Dabei wird meistens vom Datenbus ein Byte in ein Register

der C P U eingegeben oder der Inhalt eines Registers auf den Da­
tenbus bereitgestellt . D er Ein -b zw . Ausgabebefehl enthält die

Ri chtung (Ein -oder Ausgabe) und di e Geräteadresse . Für die pro­
grammierte Ein -und Ausgab e gibt es 4 Befehlsgru ppen .

E /A -Befehle Gru ppe 1 : Dur ch den Befehl werden Funk -
(EIA-Steuerbefehle) tionssignal e zum exte rnen Gerät

gesandt, die dort eine bestimmte
Funktio n auslösen (z . B . Magnet­

bandkassette starten) .

E /A -Befehle Gru ppe 2 :
(E/A-Testbefehle)

E /A -Befehle Gru ppe 3 :
(Eingabebefehle)

E /A -Befehle Gru ppe4:
(Ausgabebefehle)

Dur ch den Befehl wird der Zu­
stand des exte rnen Geräts abge­
fragt und in Abhängigkeit vom

Zustand ein bedingter S prung aus­
geführt .

Dur ch den Befehl wird die Ein­
gabe eines Datenwortes vom Da­
tenbus in ein s pezielles Register
der C P U realisiert .

Dur ch den Befehl wird der Inhalt
eines s peziellen Re gisters der C P U
auf dem Datenbus bereitgestellt .

2.6.3. Autonome Ein- und Ausgabe

. Die autonome Ein-und Ausgabe ist au ch unter den Begriffen D S K
(Direkter Spei cher kana !) oder D M A (Dire ct Memory Access)

38

bekannt . Dabei geschieht die Ein- bzw . Ausgabe in Datenblöcken
zwischen Speiche r und exte rnem Ge rät m it Hilfe de r E /A- St eue ­
rung (DMA-Steuerung genannt) .

Die OM A- Steue rung enthält folgende Registe r:

- Ad reß registe r zum Ad ress ieren d es Spe iche rs ;
-Daten reg iste r (Datenpu ffe r) zu r Zw ischenspeiche rung e in es

Wo rtes ;
- Ge rätead reß registe r;
- Blocklängen registe r.

Vo r dem Auslö sen des autonomen Datent ransfe r we rden übe r d ie
p rog rammie rte Ausgabe Ad reß registe r, Ge räte registe r und

Blocklängen registe r mit den entsp rechenden We rten ge füllt . Nach
d em Sta rt des autonom en Datent ransfe r geht de r weit ere Dat en­
austausch zwischen Spe iche r und exte rnem Ge rät mit Hilfe d er

OM A- Steue rung vo r sich . Zw ischen OM A- Steue rung und exte r­
nem Ge rät vollzieht sich de r Datenausta usch wie b eim p rog ram­
mie rten Kanal im Hand-shake- Ve rfah ren . Ist d ie D M A - St eu erung
zum Datenaustausch mit dem Speiche r be re it (Datenpu ffer voll be i

Einga be, Datenpu ffe r lee r bei Ausgabe), so e rfolgt e in Speiche rzu­
g ri ff. Dazu läuft ein Speiche rzyklus ab (Speiche rzyklus: Ad resse
an Ad reßschlüsselung, Speiche ranfo rde rungssignal anl egen, Spei­

che r auf Lesen ode r Sch reiben schalten, Daten auslesen od er e in­
sch reiben) . Diese r Spe iche rzyklus wi rd bei Rechne rn, in denen pa­

rallel zu r autono men Ein -und Ausgabe die A rbeit mit de r C PU
(Cent ral Processo r Unit = Rechenwe rk u qd Steue rwe rk) mögl ich

ist, e ingeschoben . Nach de r E in- bzw . Ausgabe des Datenblocks
g ibt d ie OM A -Steue rung ein "Endsignal " ab .

Beispiel
Ausgabe eines Datenblocks vom Spe iche r. Dabei we rden folgende
Teilsch ritte ausgefüh rt:
- Einstellen des G rundzustands du rch E /A -Befehle übe r den

p rog rammie rten Kanal ;
a) Füllen des Ad reß registe rs mit de r Anfangsad resse des Da­

tenblocks,
b) Füllen des Blockläng en regist ers mit de r Anzahl de r Wo rte,
c) Füllen des Ge rätead reß reg iste rs m it de r Ad resse des Aus­

gabe ge räts (z . B . D rucke r),
d) Sta rten zu r autonomen Datenausgabe .

39

""
"

0

S!' 0:

!"
 "' o-l
 .. � 9: .. � .. 3 3 !!. :> � ;I> c � .. <:r
 " C•
 [Q.
 " :> 0
 2:: � :>:
: .. :> !!
!.

Fü
lle

n
Ad

re
nr

eg
is

te
r

07
77.0

Fü
lle

n
Bl

oc
k­

lö
ng

en
re

gi
st

er
(B

 L R
)

Fü
lle

n
Ge

rä
te

­
cd

ren
re

gi
st

er

Fü
lle

n K
om

ma
nd

o
re

gis
ter

St

ar
t

OM
A

Ad
re

ss
e

Sp
eic

he
r­

an
fo

rd
er

un
g

Sp
ei

ch
er

 le
se

n
Ad

re
nre

gi
st

er

er
hö

he
n

Bl
oc

kl
ön

ge
n­

re
gis

te
r e

rn
iedr

ig
 1en

Au

ss
en

de
n

Ge
rä

te
ad

re
ss

e

Da
te

nb
us

Da

te
n

.
vo

rh
an

de
n

Da
te

n
üb

er
no

m
m

en

�

pr
og

r.
Ka

na
l

I !
�

 �

�

�

de
s

Sp
eic

her
zy

kl
l.e

Au

sg
ab

ez
yk

lu
s

?n

�

�

�

�
JL

SL

 I •

Spei
ch

er
zy

kl
us

--
- -

r-
-

--r-
-

let
zt

er
 A

us
ga

be
­

zy
kl

us

-Die D MA -Steuerung fordert einen Spei che rzyklus ;
a) Ad resse an Adreßentsc hlüs se lung,

b) Speic heranforderun gs signal,
c) Speic her lesen, Wort nac h Da ten puffer,
d) In halt des Adreßregisters um 1 er höhen,
e) In halt des Blocklängenregisters um 1 ernie drigen .

- Zwisc hen D MA -Steuerung un ä Ausga begerät findet ein Hand­
shake -Zyklus statt ;
a) die D MA -Steuerung sendet die Adresse des Ausga bege räts

und stellt die Daten auf dem Daten bus bereit,
b) die D MA -Steuerun g sendet das Signal "D aten vor handen ",

c) das Ausga begerät ü bernimmt das Datenwor t ,
d) das Ausga begerät sendet "Daten ü bernommen ",
e) die D MA -Steuerung schaltet das Signal "Daten vor hand en "

a b.
Speic her zyklus und Hand -s hake -Zyklus zum Ausga begerät wer ­

den so lange wieder holt, bis das Blocklängenregister Null ist . Jet zt
sendet die D MA -Steuerung das "Endesignal " . Bild 2 .13 zeigt d as
Taktdiagramm einer Ausga be ü ber den D MA -Kan al .

2. 7. Programmunterbrechung (INTERRUPT)

Durc h eine Pro grammunter brec hung beste ht die Möglich keit, den
Programma blauf durc h Signale von außen zu steuern . Ein in den
Rec hner gege benes Programmunter brec hungssignal f ührt zum
A bbrec hen des gerade laufenden Programms und zur Fortset zun g

der Ar beit des Rec hners mit einem anderen Programm . Nac h ei­
nem Programmunter brec hungssignal wird zunäc hst ein dem Signa l
zugeordnetes Bedien programm a bgear beitet . Erst danac h set zt

der Rec hner das 4nter broc hene Programm fort . Im ein zelnen er­
zeugt ein Pro grammunter brec hungssignal folgende Ar beitsgänge:

- Nac h Beendigun g des gerade laufen qen Befe hls wird ein
I NT E R R UP T -Zyklus durc hlaufen .

-Der Rec hner gi bt ein Signal "I NT E R R UP T angenommen " als
Quittung nac h außen a b .

- Wä hrend des I NT E R R UP T -Zyklus wird ein I NT E R R UP T­
Befe hl ge bildet und anschließend sofort a bgear beitet .

Der I NT E R R UP T -Befe hl kann ein Sprung in ein Unter programm
sein . Das Unter programm ist das ents prec hende Bedienpro -

41

gramm . Der Rücksprung ins unterbroc hene Programm wird ge­
nauso organisiert wie der Rücksprung aus einem Unterprogra mm .

Am An fang des Bedienprogramms bringt man im allgemeinen d ie
In halte der Register , die nac h dem Rücksprung ins unte rbroc hene
P rogramm noc h benötigt werden , in den STACK (Stapelspeic her) .
Vor dem Rücksprung werden die Register wieder mit den im
S T AC K geretteten In halten gefü ßt .
Ein Rec hner kann einen oder me hrere INT E RRUP T- Eingänge
haben . Die zu den Eingängen gebildeten INT E RRUP T- Be fe hle

unterscheiden sich . Die einzelnen Eingänge lassen sic h im allge­
meinen durc h spezielle Steuerbe fe hle sperren und öffnen (sie s ind
maskierbar) . Bei me hreren Eingängen besteht eine Vorrangord­
nung . Kommen an 2 Eingängen die I NT E RRUP T- Signale gleic h­
zeitig an , so hat das Signal mit der hö heren Priorität den Vorrang .
Das andere Signal kann vorgemerkt oder ignoriert werden .

2.8. STACK-Organisation

Der S T AC K (auch Stapelspeicher genannt) ist ein Teil des Ar­
beitsspeichers , der so organisiert wird , wie man Gegenstände in ei­
nem Keller ablagert, d . h ., die Informatione il werden h ineingesta­
pelt . Die Information, die zuletzt hineingebrac ht wurde, muß man
auc h als erste wieder herausne hmen . Man sagt , die Speic herung
gesc hie ht nach dem Prinzip "last in first out " .

Zur Adressierung des S T AC K dient ein spezielles Register, der
S T AC KP O I NT E R (Stackzeiger) . Für die S T AC K- Adressierung

gelt en im allgemeinen fol gende Re geln :

16-Bi t-Wort I HWT I NWT I
l I SP nach

Abspeichern 'lo.

SP vor Abspeichern

Abspe1chern
in den STACK

STACK

NW
�w

Bild 2 . 14 Arbeitsweise des STACK-Speichers

42

16-Bit-Wort

I HWT I NWT I
SP vor i i Lesen

SP nach Lesen

Lesen
aus dem STACK

- Der STACKPOINTER (SP) zeigt auf das zuletzt eingeschrie­
bene Öder auf das nächste zu lesende Byte .

- Der STACK wird von höheren Adressen nach niedrigeren
Adressen beschrieben .

- Die Abspeicherung {als PUSH bezeichnet) und das Lesen (als
POP bezeichnet) geschieht meistens mit einem 16-Bit-Wort
(2 Byte) .

Aus Bild 2. 14 ist zu ersehen, in welcher Weise ein 16-Bit-Wort in
den STACK abgespeichert wird und wie es aus dem STACK gele­
sen wird, wenn eine Speicherzelle 8 Bit (1 Byte) speichern kann.

2.9. Zusammenstellung der Funktionseinheiten eines
Rechners

Aus Bild 2. 15 sind die wichtigsten Funktionseinheiten eines Rech­
ners zu ersehen. Für die rein elektronischen Funktionseinheiten
(Rechenwerk, Steuerwerk, Speicher, EtA-Steuerung, OMA­
Steuerung, INTERRUPT-Steuerung) gibt es spezielle program;
mierbare Schaltkreise . Dabei werden Rechenwerk und Steuer­
werk im Mikroprozessorschaltkreis vereinigt . Für die übrigen
Funktionseinheiten gibt es spezielle Schaltkreise .
In Tei1 2 sind Grundlagen und Arbeitsweise der programmierbaren
Schaltkreise sowie einige Schaltkreise für die genannten Punk­
tionseinheiten eines Rechners beschrieben.

Bild 2. 15 Funktionseinheiten eines Rechners

43

3. Aufbau und Arbeitsweise digitaler
Schaltkreise für Mikrorechner

3.1. Übersicht

Die Digitaltechnik befaßt sich mit der Verarbeitung logischer Si­
gnale. Durch die Verfeinerung der Technologie war es im Laufe
der Zeit möglich, immer mehr der für diese Verarbeitung notwen­
digen logischen Grundschaltungen auf einem Chip unterzubrin­
gen. Von den ersten SSI-Schaltkreisen, in denen einige Transisto­
ren untergebracht sind , bis zu den LSI-Schaltkreisen mit 104 bis 105

Transistoren ging eine intensive technologische Entwicklung
parallel.
Während bei den niedrigintegrierten Schaltkreisen das Spektrum
von einfachen Grundschaltungen bis zu speziellen Schaltungen wie
Zähler, Register, Decoder, Konverter, Multiplexer, Leitungstrei­
ber reicht, geht die Entwicklung der hochintegrierten Schaltkreise
in 2 Richtungen . Die eine Richtung ist der spezielle Kundenschalt­
kreis. Dazu gehören z. B . der Taschenrechnerschaltkreis und der
Schaltkreis für Digitaluhren. Diese Schaltkreise realisieren eine
spezielle Funktion. Die Schaltung ist fest vorgegeben und für die
jeweilige Funktion weitestgehend optimal entwickelt.
Die zweite Richtung sind die programmierbaren Schaltkreise. Sie
sind Bestandteile eines Rechners. Die Entwicklung verläuft zur
Zeit in der Richtung, daß einmal die gesamte Zentraleinheit ein­
schließlich der Ein- und Ausgabekanäle auf einem Chip integriert
wird. So entstehen heute bereits Chips , die eine minimale Rech­
nerkonfiguration (CPU, Speicher, Ein-/ Ausgabe-Kanäle) realisie­
ren. Die folgende Zusammenstellung zeigt eine Übersicht existie­
render Schaltkreistypen .

Digitale Grundschaltkreise
- logische Grundfunktionen
- Flip-Flop-Schaltungen
- Treiber

Analoge Grundschaltkreise -- Operationsverstärker
- NP-Verstärker

44

- ZF-Verstärker
- Netzregelschaltkreise

MSI-Schaltkreise der Digitaltechnik
- Taktgeneratoren
- Codierer und Decodierer
- Register
- Zähler
- Multiplexer
- Rechenschaltungen
- Speicher
- Bustreiber

MSI-Schaltkreise der Analogtechnik
- Analog-Digital-Umsetzer
- Digital-Analog-Umsetzer

LSI-Kundenschaltkreise
- Taschenrechnerschaltkreise
- Schaltkreise für Digitaluhren

Programmierbare LS/-Schaltkreise
(Schaltkreise der Mikrorechentechnik)
- Mikroprozessoren
- Ein-/ Ausgabe-Schaltkreise
- INTERRUPT-Schaltkreise
- Schaltkreise zum direkten Speicherzugriff (DMA-Schaltkreise)

3.2. Schaltalgebra

Eine Reihe von Grundfunktionen , z. B. die EntschlüsseJung einer
Adresse , müssen meistens durch logische Grundschaltkreise auf­
gebaut werden. Zum Aufstellen solcher Schaltungen ist die Schalt­
algebra eine große Hilfe. Sie ist die Grundlage für das Fällen von
Entscheidungen und für das Prüfen von logischen Bedingungen.
Mit den Binärziffetn 0 und 1 werden sogenannte logische Operatio­
nen durchgeführt. Zu den logischen Operationen gehören:
die ODER-Funktion bzw. Disjunktion (OR) ,
die UND-Funktion bzw. Konjunktion (AND) ,
das EXKLUSIV-ODER (XOR)
und die Nicht-Funktion bzw. NEGATION (NOT) .

45

Die ODER-Funktion

Die ODER-Funktion wird für 2 Binärziffern A und B folgender­
maßen definiert:
Wenn A oder 8 oder beide gleicb 1 sind, so ist das Ergebnis gleich
1. Andernfalls ist das Ergebnis gleicb 0.

Zur Darstellung der ODER-Funktion wird das Symbol "+ " bzw.
" v " (vel - lat . , oder) genommen.
Es gelten die Kombinationen:
0 V 0 = 0,
0 V 1 = 1,
1 V 0 = 1,
1 v 1 = 1 .

Logische Funktionen werden mit Hilfe einer Funktionstabelle de­
finiert. Die Funktionstabelle enthält die Ausgangssignale , die sich
bei den zulässigen Kombinationen der Eingangssignale ergeben.
Die Funktionstabelle für die ODER-Funktion ist aus Tabelle 3 . 1 .
zu ersehen.

UND-Funktion

Die UND-Funktion wird für 2 Binärziffern A und B folgenderma­
ßen definiert:
Wenn A und 8 beide gleicb 1 sind, so ist das Ergebnis gleich 1. An­

dernfalls ist das Ergebnis 0.

Zur Darstellung der UND-Funktion wird das Symbol " · " bzw. " A "
(et - lat . , und) genommen. Es ist auch üblich , daß 2 Binärziffern
ohne Operationszeichen aneinandergeschrieben werden:
A · B � A A B � AB

Tabelle 3.1 Funktionstabelle für die ODER-Funktion

Eingänge Ausgang

A B A v B

0 0 0
0 1

0

46

Tabelle 3.2. Funktionstabelle für die UND-Funktion

Eingänge

A B

0 0

0 1
0

Es gelten die Kombinationen
0 1\ 0 = 0,
0 1\ 1 = 0,
1 1\ 0 = 0,
1 A 1 = 1 .

Ausgang

A A B

0
0
0

Die Funktionstabelle für die UND-Funktion ist in Tabelle 3 .2. dar­
gestellt .

Das EXKLUSIV-ODER

Beim EXKLUSIV-ODER ist das Ergebnis der Verknüpfung von
A nnd B gleich 1, wenn die Eingangssignale verschieden sind, nnd
0, wenn die Eingangssignale gleich sind.
Für das EXKLUSIV-ODER wird das Symbol $ bzw. das Symbol
v verwendet. Es gelten folgende Kombinationen:
0 $ 0 = 0,
0 $ 1 = 1 ,
1 ® 0 = 1 ,
1 $ 1 = 0.

Tabelle 3.3 Funktionstabelle für das EXKLUSIV-ODER

47

Die Funktionstabelle für das EXKLUSIV-ODER ist aus Tabelle
3 .3 . zu ersehen.

Die Nicht-Funktion (NEGATION)

Die Nicht-Funktion bezieht sich nur auf eine Binärziffer. Sie wird
durch einen Querstrich über die betreffende Ziffer dargestellt .
(A heißt NEGATION von A.)
Bei der NEGATION ist das Ergebnis 1, wenn A gleich 0 ist, und 0,
wenn A gleich 1 ist.
Es gilt :
I = o,
0 = 1 .
Tabelle 3 .4. zeigt die Funktionstabelle für die NEGATION.

Rechenregeln für logische Operationen

a) Die Negation einer negierten Größe ergibt die Größe selbst :
(1) a = a.

b) Für die logischen Operationen mit 2 Größen gelten folgende
Vertauschungsgesetze (Kommutativgesetz) :
(2) a v b = b v a,
(3) a " b = b " a,
(4) a EB b = b EB a.

Insbesondere gilt :
1 v a = 1 ,
1 " a = a,
0 v a = a,
0 " a = 0,
a v a = 1,
a 1\ a = 0.

TabeHe 3.4. Funktionstabelle für die NEGATION

Eingang Ausgang

-
A A

0
0

48

c) Für zusammengefaSte Ausdrücke gilt das Distributivgesetz:
(5) (a V b) V C = a V (b V c) ,
(6) (a 11. b) 11. c = a 11. (b 11. c) ,
(7) a 11. b v c = (a v c) 11. (b v c) .

Weiterhin gilt :
(8) a I\ b = a V b,
(9) a V b = a I\ b,

(10) a V ab = a V b,
(11) a V ab = a V b.

Die Regeln (1) bis- (11) lassen sich überprüfen , wenn man jeweils
für die rechte und linke Seite die Funktionstabelle aufstellt und da­
bei die Funktionstabellen ·für die UND-Funktion, die ODER­
Funktion, die NEGATION und für das EXKLUSIV-ODER ver­
wendet.
Mit Hilfe der genannten Umformungsregeln kann man logische
Ausdrücke wesentlich vereinfachen. Bei der technischen Realisie­
rung lassen sich Schaltungen optimieren und damit Bausteine ein­
sparen.

Beispiel
Der logische Ausdruck
T = ad V ac V bd V bc V ab V ab
läßt sich wie folgt vereinfachen:
T = ad V ac V bd V bc V a,
T = d V a V bc V c,
T = d v a V b V c.
Ein sehr häufig vorkommendes Problem ist die Aufstellung eines

TabeHe 3.5. Funktionstabelle für die Addition von 3 Dualziffern
{2 Summanden a, b und Übertrag u)

a

0
0
0
0

b

0
0

1
0
0

u

0

0
1
0
1
0

0

I
0
1
0
0

49

logischen Ausdrucks bei vorgegebener Funktionstabelle . Will man
z. B. die Summe von 3 Dualziffern bilden (2 Operanden a und b
und einen Übertrag u vom niedrigen Stellenwert) , so kann die
Funktionstabelle 3 .5 aufgestellt werden. Die Summe s ist 1 , wenn
eine Ziffer 1 oder alle 3 Ziffern 1 sind� ·Sind alle 3 Ziffern 1 , so tritt
ein Übertrag in die nächste Stelle auf. Sind 2 Ziffern 1 , dann ist die
Summe 0 und der Übertrag in die nächste Stelle 1 .
s ist hier eine logische Funktion von den 3 Größen a , b und u . Aus
Tabelle 3 .5 . kann man ablesen, daß s = 1 ist , wenn

a = 0; b = 0; u = 1
oder
a = 0; b = 1 ; u = 0
oder
a = 1 ; b = 0; u = 0
oder
a = 1 ; b = 1 ; u = 1 .
Statt a = 0 kann man auch sagen, es muß a = 1 sein , d . h . , es
ist
s = 1 , wenn
a = 1 ; 6 = 1 ; u = 1 bzw. a 6 u = 1
oder
a = 1 ; b = 1 ; u = 1 bzw. a b u = 1
oder
a = 1 ; 6 = 1 ; u = 1 bzw. a 6 u = 1
oder
a = 1 ; b = 1 ; u = 1 bzw. a b u = 1 .

Den Ausdruck a 6 u nennt man die Elemenartarkonjunktion P,
(a, b, u) . Sie ist nur für die Belegung 0 0 1 (a = 0; b = 0; u = 1)
gleich 1 , sonst 0. Ebenso ist die Elementarkonjunktion P2 (a , b , u)
= abu nur für die Belegung 0 1 0 (a = 0; b = 1 ; u = 0) gleich 1 ,
sonst O.
Die ODER-Funktion der Elementarkonjunktion abu, abu, abu
und abu ist damit gerade dort 1 , wo s nach Tabelle 3 .5 gleich 1 ist.
Sonst ist diese ODER-Funktion 0. Danach läßt sich schreiben:
S = abu V abu V abu V abu .
Durch Anwendung des Distributivgesetzes (7) erhält man:
s = u(ab v ab) v u (ab v ab) .

50

TabeUe 3.6.

Belegung
0
Belegung
1
Belegung
2

Belegung
2" - 2
Belegung
2" - 1

a,

0

0

0

Tabelle der Elementarkonjunktionen Pj

3n - l 3n - 2 · . . az a, Elementarkonjunktionen

0 0 . . . 0 0 Po = än än - 1 än - 2 · . . äz äl

0 0 . . . 0 Pt = in in- t in - 2 · . a2 a1

0 0 . . . 1 0 Pz = in in - t än - 2 · . az a1

1 . . . 1 0

1 . . . 1

Mathematische Zusammenfassung
Liegt eine Funktionstabelle mit n Größen a1 a2 . • . a. vor und ist T
die Ergebnisfunktion, so bilde man zunächst alle Elementarkon­
junktionen Pi> für deren Belegung j T = 1 ist (Tabelle 3 .6 .) . Die
ODER-Funktion dieser Elementarkonjunktion Pi ist die logische
Funktion T:

2" - 1
T = v Q P .

j = O I I

{ 0, wem1 T für die Belegungj gleich 0 ist ;
Dabei ist Qi = 1 , wenn T für die Belegung j gleich 1 ist .

Durch Vereinfachung des Ausdrucks für T mit Hilfe der Rechenre­
geln für logische Funktionen erhält man die gewünschte Funktion.

Beispiel
Ein Baustein soll mit der Adresse 14 ausgewählt werden. Die Ge­
samtadresse ist 16 Bit lang. Das Auswahlsignal CS (chip-select) ist
nur dann aktiv (= 1) , wenn auf den Adreßleitungen eine 14 steht :

51

Adreß-
ltgn. : A1s A14 An A12 An Aw Ag As A1 A., As � A3 Az A1 Ao
Adres-
se 14: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
CS = - - - - - - - - - -
P14 = A1s A14 A13 A12 Au Aw A9 As A1 A., As A4 A3 Az A1 Ao.

3.3. Logische Grundschaltkreise

Die Verarbeitung von Binärsignalen basiert auf wenigen Grund­
schaltungen. Die wichtigsten Grundschaltungen sind die Realisie­
rung des logischen UND, des logischen ODER und der NEGA­
TION. Diese Funktionen werden in den meisten Schaltkreisreihen
durch NOR- oder NANO-Schaltungen gebildet. Der Leser infor­
miere sich an dieser Stelle ausführlicher über die Schaltkreisserie
D 10, z. B. in der Reihe electronica (Heft 141 , 155 , 156) .
Eine sehr wichtige Eigenschaft in der Mikroelektronik ist die Mög­
lichkeit, Schaltkreise ausgangsseitig zusammenzuschalten. Diese
Eigenschaft haben nicht alle Schaltkreise . Eine Form der Zusam­
menschaltung ist der Wired-OR-verdrahtete Ausgang mit offenem
Kollektor (Bild 3 . 1) . Dabei erhalten Kollektorausgänge aller
Schaltkreise einen gemeinsamen Arbeitswiderstand. Der Nachteil
dieser Schaltung besteht im hohen Stromverbrauch , da der Ar­
beitswiderstand um so kleiner sein muß, je mehr Schaltkreise aus­
gangsseitig parallelgeschaltet werden.
Eine zweite Möglichkeit der ausgangsseitigen Parallelschaltung
bietet die Tri-state-Schaltung. Bei dieser Schaltung kann der Aus­
gang neben den Pegeln H und L noch einen dritten hochohmigen
Zustand einnehmen. Der hochohmige Zustand wird erreicht,
wenn sowohl der obere als auch de!:..J:!ntere Ausgangstransistor
sperren (Tiefpegel am Steuereingang X ; Bild 3 .2).

E, Bild 3 . 1
Parallelschaltung von
Ausgängen nach dem __ __._ ______ __.__ M Wired-OR-Prinzip

52

Bild 3 .2 Erzeugung des hochohmigen Zustandes am Ausgang Y eines Schaltk�ses
durch Sperren beider Ausgangstransistoren (L-Pegel am Steuereingang X)

y
Bild 3.3
Tri-state-Steuerung am Bau­
stein D 150

Zum Beispiel läßt sich der Baustein D 150 in Tri-state-Schaltung
betreiben, da über:_l(ein Sperren des oberen Ausgangstransistors
möglich ist , wenn X L-Pegel führt. Bild 3 . 3 zeigt die Ansteuerung
des Bausteins D 150 für den Tri-state-Betrieb . Für die Umschal­
tung in den hochohmigen Zustand ist der Steueranschluß E, vorge-.
sehen . Um den unteren Ausgangstransistor zu sperren, werden
alle zweiten AND-Eingänge (B , D) auf L-Pegel gelegt . Damit ist
der untere Ausgangstransistor gesperrt . Der obere Ausgangstran­
sistor ist durch L-Pegel an X gesperrt .

3.4. Informationsspeicherung

3.4.1. Überblick

Die Grundeinheit der Information ist das Bit; die Grundschaltung
zur Speicherung eines Bit das Flip-Flop . Werden mehrere Bit zu­
sammengefaßt, so ergibt sich ein Bit-Muster. Das Bit-Muster

53

kann 1 Byte (8 Bit) oder Wort sein . Ein Byte oder Wort wird im Re­
gister gespeichert (zwischengespeichert) . Zur Speicherung vieler
Worte (den Daten eines Rechners) ist eine große Anzahl von Regi­
stern erforderlich. Sie bilden den Speicher eines Rechners .
Flip-Flop-Schaltungen sind die Grundlage aller Halbleiterspei­
cheL Über Aufbau und Arbeitsweise von Flip-Flop-Schaltungen
informiere sich der Leser in [1] . Sie sollen an dieser Stelle nicht nä­
her behandelt werden .

3.4.2. Register

Ein Register dient zur Speicherung eines Bit-Musters . Es besteht
deshalb aus einer entsprechenden Anzahl von Flip-Flop. Je nach
der zusätzlichen Funktion, die das Register noch zu erfüllen hat ,
werden dazu RS-Flip-Flop, D-Flip-Flop oder JK-Flip-Flop ge­
wählt.
Registerschaltungen können auch einfache Operationsschritte
ausführen, z. B. die gespeicherte Information um eine oder meh­
rere Stellen nach rechts oder links verschieben (Schieberegister) .
Bild 3.4 zeigt ein einfaches Speicherregister aus RS-Flip-Flop für 4
Bit . Wenn das Torungssignal STR (Strobe) den Pegel H hat , wird
die Information E3 E2 E1 Eo im Register gespeichert. H-Pegel des
Signals RESET löscht den Registerinhalt. Der Registerinhalt läßt
sich an A3 A2 A1 A0 abnehmen.
Bild 3 .5 zeigt ein 4-Bit-Schieberegister aus JK-Flip-Flop . Die ein­
zelnen Stellen des Registers können von außen parallel statisch
oder dynamisch mit Hilfe der Eingänge Eo bis E3 gesetzt werdeE.
Das ern.!.öglicht eine parallele Eingabe . Über die Ausgänge Ao, A0
bis A3, A3 ist eine parallele Ausgabe der Stellen des Registers mög­
lich . Ein 4-B\!-Muster, das im Register steht, kann seriell über den
Ausgang A, A ausgegeben werden. Der Schiebeprozeß wird durch
den Takt T veranlaßt. Durch die mit jedem Takt ausgelöste
Rechtsverbindung können auch über den Eingängen E, E neue
Bit-Muster seriell eingegeben werden. Das Register ist somit für
die Umsetzung parallel _.. seriell und seriell _.. parallel geeignet .
Mit Hilfe eines Dynamikvorsatzes (Kondensatorspeicher) läßt sich
ein Schieberegister auch mit einem RS-Flip-Flop aufbauen.

54

E ,

S T R

IL
T

�-----l &
RESET

'0--+----A3 Bild 3 .4 .

Speicherregister für
4 Bit aus RS-Flip-Flop

E,

A, A,

Bild 3.5 4-Bit-Schieberegister aus JK-Flip-Flop

55

E,
M

RE, RE2

II II

R1

/1
" s

R2

T

"'r---- A ���
RA Symbol

M

llild 3.6 Dynamikvorsatz (Kondensatorspeicher) zur Realisierung von
Schieberegistern mit RS-Fiip-Fiop

Bild 3.6 zeigt die Schaltung eines solchen Dynamikvorsatzes. Mit
E1 wird die Schaltung vorbereitet_ Hat E1 L-Potential , so steht an
Punkt B eine kleine positive Spannung. Ein negativer Impuls bei
E2 sperrt den Transistor T kurzzeitig und erzeugt am Ausgang A ei­
nen L-Impuls. Hat E1 H-Potential , so liegt bei B die volle Span­
nung Up an. Ein negativer Impuls an E2 bringt Transistor T nicht
bis zur Sperrschwelle. Der Transistor T sperrt im Fall E1 = L auch,
wenn zum gleichen Zeitpunkt, zu dem der negative Impuls an �

T -

Bild 3 . 7 Zwei Richtungs-Schieberegister mit Dynamikvorsatz für die
Linksverschiebung

56

erscheint , E1 JI-Pegel erhält, da das Potential bei B erst langsam
über R2 umgeladen wird.
Bild 3 .7 zeigt ein Zwei-Richtungs-Schieberegister für 4 Bit mit
Kondensatorspeicher für die Linksverschiebung. Die Dynamik­
vorsätze D1 bis D4 ermöglichen ein kurzzeitiges Speichern der In­
formation bei der Linksverschiebung.
Für den Aufbau von Mikrorechnern gibt es Schaltkreise, in die
komplette Register integriert sind . Bild 3 .S zeigt die Schaltung des
Schaltkreises 8212, der zur Dateneingabe und -ausgabe verwendet
werden kann . Er besteht aus einem S-Bit-Register mit D-Hip-Hop
und einer Steuerschaltung.

Arbeitsweise des Bausteins 82U
Der Schaltkreis 8212 arbeitet in 2 Betriebsarten, die durch MD
(Mode) gesteuert werden.
Betriebsart 1 : Eingang MD hat H-Pegel
Die Information der einzelnen Registerstellen kann direkt an
den Ausgängen DOl bis DOS abgenommen werden. Wenn DSl
L-Pegel und DS2 H-Pegel hat , dann wird die Information von den
Eingängen Dll bis DIS in die D-Flip-Hop eingegeben.
Betriebsart 2: Eingang MD hat L-Pegel
Mit H-Pegel an STR (Strobe) wird die Information in die D-Flip­
Hop gespeichert .
Wenn DSl L-Pegel und DS2 H-Pegel führt , so kann die Infor­
mation, die im Register gespeichert ist , an den .Ausgängen DOl bis
DOS abgenommen werden.
Im F.all 2 setzt außerdem das Signal STR mit der HL-Hanke das
Hip-Hop SRFF zurück und damit den !NT-Ausgang auf L-Pegel.
Durch DSl · DS2 wird das Hip-Hop SRFF wieder gesetzt. Die
Leitung INT dient als INTERRUPT-Anforderung für Mikropro­
zessorschaltkreise. Durch L-Pegel am Eingang CLR (Löschen)
werden die D-Hip-Flop des Registers rückgesetzt und das Hip­
Hop SRFF gesetzt (INT = H, d. h. nicht aktiv) . Die Ausgänge
DOl bis DOS sind mit einer Tri-state-Steuerung versehen, d. h. ,
wenn die Ausgangsleitungen gesperrt sind , ist ihr Ausgang hoch­
ohmig.

ZusammensteUung der Funktionen des Bausteins 82U
MD = H: DE · DSl · DS2 -+ Registerinhalt

DA = Registerinhalt

57

TIS1
052

MD

STR
01 1

0 12

01 3

014

01 5

01 6

017

01 8

Bild 3.8 Schaltbild des Bausteins 8212

58

001

002

003

004

00 5

00 6

007

00 8

MD = L: DE · STR --+ Registerinhalt, DA = Registerinhalt · DS1 · DS2
STR (H--+ T) --+ SRFF --+ INTERRUPT-Anforderung

CLR = L: Löschen Register und Setzen SRFF
Das INT -Signal ist aktiv (INT = L) , wenn
INT = DS1 · DS2 v SRF'F = 1 ist .

Anwendung des Bausteins 8212
Der Baustein 8212 läßt sich sehr universell für die Bussteuerung
und Datenpufferung anwenden. Bild 3 .9 zeigt den Einsatz des
Bausteins als Datenpuffer. Die Eingabe in das Register geschieht
mit DS1 · DS2 = H. Die Ausgabe aus dem Register ist jederzeit
möglich .
Bild 3 . 10 zeigt die Verschaltung des Bausteins 8212 als Eingabe­
puffer. Die Eingabe in das Register läßt sich über das Signal STR
vornehmen. Das Signal STR aktiviert gleichzeitig das !NT-Signal.
Damit wird angezeigt, daß der Datenpuffer voll ist .
Die Ausgabe beginnt in dem Moment, wo DS1 · DS2 = H ist .
Mit diesem Signal wird gleichzeitig das SRFF-Flip-Flop gesetzt.

OE

+SV

STR

+SV

n .--Oatenübemohrreimpu!s
STR

Bild 3.9
Der Baustein 8212 als Daten­
puffer

Bild 3 .10
Der Baustein 8212 als
Eingabetor

59

OE

Jl.. Dotenobnahme-
STR imputs

8212
DA

+ S V

Bild 3 . 1 1
Der Baustejn 8212 im
Hand-shake-Prinzip

Die Ausgabe beginnt in dem Moment , wo DSl - DS2 = H ist .
Mit diesem Signal wird gleichzeitig das SEFF-Flip-Flop gesetzt .
Das !NT-Signal verschwindet jedoch erst mit der HL-Flanke von
DSl · DS2.
Bild 3 . 1 1 zeigt die Verschaltung des Bausteins 8212 im Hand­
shake-prinzip für einen Ausgabepuffer. Die Eingabe ins Register
geschieht mit dem Signal DSl · DS2 = H. Der Inhalt des Regi­
sters liegt ständig an DA. Den zur Abnahme des Datenwortes ver­
wendeten Stroheimpuls führt man gleichzeitig an den Strobeein­
gang, wodurch das !NT-Signal aktiv wird (als Rückmeldung, daß
die Daten abgeholt wurden) .
I n Tabelle 3 .7 sind einige Registerschaltkreise zusammengestellt .

TabeHe 3. 7. Zusammenstellung einiger Registerschaltkreise
Typ

MH 7475
74174 PC

74175 PC
74259 PC
K 500 TM 131
D 191 C/D
D 195 C/D

MH 7496

MH74164

74165 PC}
741.66 PC
K 155 IR 13
74194 PC
74195 PC

60

CSSR
UVR

UVR
UVR

DDR
DDR
CSSR

UVR

UdSSR
UVR
UVR

Kuncharakteristik

4-Bit-D-Register mit Enable
6-Bit-D-Fiip-F1op, löschbar
4-Bit-D-Fiip-F1op, löschbar
8-Bit-Register, adressierbar
4-Bit-D-Register (ECL) ,
8-Bit-Schieberegister
4-Bit-rechts/links-Schieberegister
5-Bit-Schieberegister,
EI A parallel mit Löschung
8-Bit-Schieberegister
Eingabe serieU; Ausgabe paraUel
8-Bit-Schieberegister

Eingabe serieU; Ausgabe paraUel
8-Bit-rechts/links-Schieberegister
4-Bit-rechts/links-Schieberegister
4-Bit-Schieberegister
Eingabe paraUel; Ausgabe paraUel

3.4.3. Speicher

Während ein Register dazu dient , 1 Bit-Muster zu speichern, hat
der Speicher die Aufgabe, eine größere Anzahl Bit-Muster (Worte
genannt) aufzunehmen . Im Laufe der Entwicklung der Rechen­
technik wurden die unterschiedlichsten Speicherprinzipien entwik­
kelt (Magnettrommelspeicher, Laufzeitspeicher, Speicherbild­
röhre , Ringkernspeicher , Halbleiterspeicher) . In der Mikrore­
chentechnik wird ausschließlich der Halbleiterspeicher verwendet .
Deshalb soll auch nur auf ihn eingegangen werden .
Speicherschaltkreise kann man nach der Art der Anwendung oder
nach der. Herstellungstechnologie einteilen . Nach der Art der An­
wendung gibt es
ROM (Read Only Memory - Nur-Lesespeicher) ,
PROM (Programmable Read Only Memory - Programmierba­

rer ROM) ,
EPROM (Erasable PROM - Löschbarer und programmierbarer

ROM) ,
RAM (Random Access Memory - Schreib-Lese-Speicher) .
Nach der Herstellungstechnologie unterscheidet man Speicher­
schaltkreise in
TIL-Technik ,
p-MOS-Technik ,
n-MOS-Technik,
CMOS-Technik,
fL-Technik ,
Eine Beschreibung der unterschiedlichen Techniken findet der Le­
ser in [2) .

RAM (Schreib-Lese-Speicher)

Statische Schreib-Lese-Speicher
Bei den statischen RAM bilden 2 rückgekoppelte NICHT-Gatter
die Speicherzelle , wobei den beiden Zuständen die Information 0
oder 1 zugeordnet wird.
Aus technologischer Sicht gibt es solche Speicher in TIL-Techni�
und MOS-Technik. Speicher in TIL-Technik sind sehr schnell, sie
haben aber einen großen Leistungs- und Platzbedarf. MOS-Bau­
steine erfordern weniger Platz . Die Schaltkreise in p-Kanal-MOS­
Technik sind sehr langsam und benötigen mehrere Betriebsspan-

61

nungen. Heute werden MüS-Sehaltkreise fast ausschließlich in n­
Kanal-Technik ausgeführt. Moderne MüS-Sehaltungen sind voll
TTL-kompatibel . Bei der CMüS-Technik bestehen wesentlich
günstigere Betriebsspannungen (3 bis 15 V) . Ihre Leistungsauf­
nahme liegt wesentlich unter der der TTL-Technik. Bild 3 . 12 zeigt
den Aufbau einer Speicherzelle in TTL-Technik , Bild 3 . 13 den
Aufbau einer Speichermatrix mit 16 Speicherzellen .
Um einen Speicherplatz innerhalb der Speichermatrix anzusteu­
ern , müssen die X- und Y-Leitung H-Signal führen. Damit wird die
Speicherzelle aktiviert, bei der X- und Y-Leitung gleichzeitig I-I-Si­
gnal haben. In der adressierten Speicherzelle fließt der Kollektor­
strom des leitenden Transistors in die entsprechende Schreib-Lese­
Leitung L oder H. An den Ausgängen der Schreib-Lese-Leitungen
befinden sich Leseverstärker (LV) , die aus dem Kollektorstrom
ein logisches L (QL) oder H (QH) bilden .
Zum Einschreiben einer Information wird nach der Adressierung
der Speicherzelle auf eine der Schreib-Lese-Leitungen ein H-Si­
gnal gegeben . Zur Speicherung einer 0 wird auf die L-Leitung ein
H-Signal (Eingang EL) und zur Speicherung' einer 1 auf die H-Lei­
tung (Eingang EH) ein H-Signal gegeben .
Die in Bild 3 . 13 dargestellte Anordnung der Flip-Flop ist in den
TTL-Bausteinen 7481 und 7484 realisiert . Es kann immer nur 1 Bit
gelesen bzw. eingeschrieben werden. Um eine 0 einzuschreiben,
muß man den EL-Eingang ansteuern, zum Einschreiben einer 1
den EwEingang . Die gelesene Information liegt an QL bzw. QH·
Bild 3 . 14 zeigt den Baustein 7489. Er hat eine 16 x 4-Struktur,

YAdrerlleitung

Bild 3 . 1 2 Aufbau einer TTL-Speicherzelle

62

Bild 3 . 13 TIL-Speichermatrix mit 16 Speicherzellen

d. h. eine Speicherkapazität von 16 Wörtern zu je 4 Bit . Der Bau­
stein 7489 ist ein voll-decodiertes RAM.

Scbreibvorgang: Wenn die Freigabeeingänge C S (chip-select,
Bausteinauswahl) und W R (Write) auf L-Signal liegen, wird die an
den Dateneingängen D1 bis D4 bereitgestellte Information in die
durch die Adreßeingänge Ao bis A3 angesteuerten Speicherzellen
gebracht. Die Y-Leitungen tragen dabei die negierte Information,
die auch gleichzeitig an Ö1 bis Ö4 anliegt. Die Flip-Flop schalten
mit L-Signal auf den Y-Leitungen und mit H -Signal auf den X-Lei­
tungen.

Lesevorgang: Wenn C S L-Signal und W R H-Signal erhält, so liegt
an den Ausgängen Ö1 bis Ö4 der negierte Inhalt der durch Ao bis A3
adressierten Speicherzelle .

63

Bild 3 . 14 Logischer Aufbau des Speicherbausteins 7489.

64

Zeilenauswahl

Bild 3 . 15 Aufbau einer MOS-Speicherzelle

Statische Speicher in M OS-Technik
Bild .3 . 15 zeigt die Prinzipschaltung einer MOS-Speicherzelle für
statische RAM. Die Lastwiderstände sind wegen des geringen
Platzbedarfs durch Transistoren T3 , T4 ersetzt .

Lesevorgang: Wenn die Transistoren T5 und T6 über die Zeilenaus­
wahl durchgesteuert sind , dann kann die Information als Signalun­
terschied an den Spaltenleitungen abgenommen werden .

Schreibvorgang: Leiten T5 und T6, so läßt sich das Flip-Flop über
die Spaltenleitungen in den gewünschten Zustand sqzen.
Bild 3 . 16 zeigt das Prinzip eines Halbleiterspeichers mit 256 Flip­
Flop aus p-Kanal-MOS-Transistoren . Die Flip-Flop sind in einer
Ebene so angeordnet , daß jederzeit über 16 X- und V-Koordinaten
ein direkter Zugriff zu jedem Flip-Flop besteht . Wenn an den
Koordinaten Xm, Y m das Potential - U00 anliegt , werden die Tran­
sistoren T5 bis T8 durchgesteuert.
Zur Speicherung einer "1" liegen z. B. an S� 18 V über T9 (T9 ist
geöffnet) u'nd an SL1 0 V über R3 und R4 (T10 ist gesperrt) . Dadurch
leitet T3 , und T4 sperrt . Die durch T1 und T2 gebildeten Lastwider­
stände halten diese Stellung auch nach Abtrennen der Adresse.
Zur Speicherung einer "0" haben S� 0 V und SL1 18 V Potential.
Beim Lesen sind T9 und T10 geöffnet. Die Widerstände Rt . R2 und
R3, R4 liegen zu den Lastwiderständen T1 und T 2 parallel. Durch R2
bzw. � fließt Strom entsprechend den Potentialen bei A und B .
Der Spannungsabfall über R2 und �wird über einen Differenzver­
stärker als Informationssignal abgenommen.
In weiterentwickelten Speicherschaltkreisen sind die Adreßdeco­
dierung sowie eine Bausteinauswahllogik enthalten .

65

X-Adrendecoder Ym � V,6
O
X1· · · ·Xm· · · X16

o . .., . � Yn -
GI '
� : >- v, +

1.�/WI..
t--+----,

le-------1
Informationsleitung

Schreiben
Schaltle i tung

Lesen I Schreiben

L Lesen mwR
Schreiben

Bild 3 .16 Halbleiterspeicher mit 2S6 Flip-Flop aus MOS-p-Kanai-Transistoren (ne­
gierte Logik)

Bild 3 . 17 zeigt den Aufbau eines 256 x 1 volldecodierten statischen
MOS-RAM. Der Baustein wird mit CS = L angesteuert. Die Zei­
lenauswahl geschieht über die Adreßeingänge Ao bis A3, die Spal­
tenauswahl über � und A7• Hat RIW L-Signal, so wird die an I lie­
gende Information eingeschrieben. Bei H-Signal an RIW erscheint
an 0 der invertierte Inhalt der ausgewählten Speicherzelle. Mit H- ·
Signal an C S ist der Speicher blockiert.

66

Zeilen ­
regi.ster

Ausgongs­
register

Bild 3 . 17 MOS-RAM mit 256 x 1 Zellen

Zeilen ­
decoder

R/W I

Bild 3 . 18 zeigt den Aufbau eines 256 X 4-RAM. Über Ao bis
A!werden die Zeilen und über A5 bis A7 die Spalten ausgewählt.
Bei L-Signal an RJW lassen sich die Daten auslesen. Die Informa­
tion erscheint bei 01 bis 04• Bei H-Signal an RJW werden die an 11
bis 4 liegenden Informationen in die adressierte Speicherzelle ein­
�schrieben. Li� an OD H-Signal, so sind die Ausgän� 0 1 bis
0 4 hochohmig. C S dient zur ChipwahL Mit L-Signal an C S arbei­
tet der Speicherbaustein.

Ao A, Speicherfeld A2 256x 4 A3
A,

I, o,

12 02
1 3

03
I,

o,

""CS'
00

Bild 3.18 MOS-RAM mit 256 x 4 Zellen

67

Dynamische Schreib-Lese-Speicher
Bei den dynamischen RAM wird die Information durch Aufladung
eines �ondensators gespeichert. Bild 3 . 19 zeigt eine Ein-Transi­
stor-Speicherzelle . Sobald T1 leitet , erscheint die Information auf
der Datenleitung. Wegen der auftretenden Leckströme muß die
Kondensa�orladung periodisch (ungefähr alle 2 ms) regeneriert
(wieder aufgela<;Ien) werden .
Die ersten dynamischen RAM waren den statischen RAM ange­
lehnt . Bild 3 .20 zeigt den Aufbau einer solchen Speicherzelle . Aus
Bild 3 .21 ist der heutzutage meistens verwendete Aufbau einer dy­
namischen RAM-Zelle zu ersehen.
Zum Einschreiben muß die Schreibleitung H-Signal haben und die
Datenleitung die Information (L- oder H-Signal) tragen. Über T3
wird C1 entsprechend aufgeladen .

·
Zum Lesen muß die Lese-Auswahlleitung H-Signal führen (T2 1ei­
tet) . Hat C1 H-Signal , so wird T1 1eitend, und auf der Datenleitung
entsteht L-Potential . Hat C1 L-Potential , dann bleibt der Weg T2-
T1-Substrat hochohmig, und die Datenleitung erhält H-Potentia) .
Auf der Datenleitung entsteht das negierte Informationssignal der
Speicherzelle . Lese-Auswahlleitung und Schreibleitung bestim­
men meistens die Zeilenauswahl , die Datenleitung bestimmt die

�----, T1 ,_----, _ _ _ c lc,

Datenle itung

1ubstrot

Zeilenwohl

Substrat

Bild 3 . 19
Aufbau einer dynamischer
RAM-Speicherzelle mit
einem Transistor

Daten - H - Le i tung Doten - L- Le i tung

Bild 3.20 Dynamische RAM-Speicherzelle nach dem Flip-Flop-Prinzip

68

1 T 3 T 2 i
s

T" 1"
Substrat

Datenlei tung

Schreible i tung Lese -Auswahllei tung

Bild 3 .21 Dynamische RAM-Speicherzetle

SpaltenauswahL Aus Bild 3 .22 ist der Aufbau eines dynamischen
4 K x 1-RAM zu ersehen .
In Bild 3 .22 bedeuten :
Ao bis A11 Adreßeingänge ;
I - Dateneingang
R/W-Schreibfreigabe (R!W = L � Schreiben ; RIW = H � Lesen) ;
0 - Datenausgang;
C S - Bausteinauswahl (C S = L � Freigabe) ;
CE - Speicherfreigabe (chip enable)

Bild 3.22
Dynamischer
4 K x 1-RAM

69

Jede einzelne Zeile muß innerhalb von 2 ms einen AuffrischzyklUs
erhalten. Während dieser Zeit darf nicht neu eingeschrieben wer­
den. Das ist möglich bei
einem Lesezyklus: RfW = H, C S beliebig;
einem Schreibzyklus: RfW = L, dann muß C S H-Potential haben.
Der Eingang CE schaltet den Speicher im nichtaktiven Zustand (L­
Pegel an CE) auf geringen Leistungsverbrauch. Er beträgt im
nichtaktiven Zustand "" 1 ,3 m W, zusätzlich "" 7 m W für das Auffri­
schen.

Nur-Lese-Speicher (ROM)
Ein ROM (Read Only Memory) ist ein vom Hersteller program­
mierbarer Festwertspeicher. Der Inhalt eines programmierten
ROM läßt sich nicht mehr ändern. Der so hergestellte Dateninhalt
kann nur ausgelesen werden.
Bild 3.23 zeigt den Aufbau eines Masken-ROM. Die Basiselektro­
den, die die Verbindung zur Zeilenauswahl herstellen, ' werden
durch Wegätzen einer SiOrSchicht, die zwischen einem Metall­
band (Zeilenleitungen) und dem Substrat liegt, gebildet. Dazu ver­
wendet man eine Maske, die an jeder Programmierstelle ein Pro­
grammierungsloch hat.
Die Ausgabe erfolgt über die Spaltenleitungen. Für jeden Ausgang
e�stiert ein Leseverstärker, der nur arbeiten kann, wenn am CE­
Eingang H-Signal anliegt. Damit sperren die 4 unteren Transisto­
ren (p-Kanal-MOS-Transistoren) , und es kann kein Strom gegen
Masse fließen. Soll Zeile 2 angewählt werden, dann muß die Zei­
lenleitung L-Signal bekommen. Die MOS-Transistoren, deren Ba­
siselektrode vorhanden ist , bilden jetzt eine leitende Verbindung
zur Masse. Der fließende Strom wird in den Leseverstärkern in ein
logisches Signal umgewandelt. In Spalte 1 , 3 und 4 kann über Zeile
2 ein solcher Strom fließen. Die Leseverstärker von Q1, Q3 und Q4
erkennen deshalb ein L-Signal, der Leseverstärker Q2 dagegen ein
H-Signal.

Programmierbare ROM (PROM)
PROM können vom Anwender mit Hilfe eines Programmiergerä­
tes programmiert werden. Die Programmierung geschieht mit
elektrischen Impulsen .

70

Bild 3.23 Aufbau eines Masken-ROM

MOS-PROM
Bild 3.24 zeigt den Aufbau einer MOS-PROM-Speicherzelle. In
einem n-Substrat liegen die beiden p-Zonen. Bei dem Program­
miervorgang wird 'der Drainanschluß der Speicherzelle mit Masse
verbunden und der Source,Anschluß an eine Spannungsquelle an­
geschlossen. Bei niedriger Spannung fließt durch die Speicherzelle
nur ein kleiner Strom. Bei höherer Spannung wird der Strom grö­
ßer. Er verläßt die p-Zone der Source und, fließt über die Metall­
schicht. Dabei kommt es zu einer Wanderung von Metallatomen.
Durch diese Wanderung entsteht zwischen den p-Zonen und der
Metallschicht eine elektrisch leitende Verbindung. Der Program­
mierungsstrom beträgt etwa 150 mA.

71

Bild 3.23 Aufbau eines Masken-ROM

TTL-Dioden-PROM
Bild 3.25 zeigt eine Diodenmatrix . Im unprogrammierten Zustand
sind die Dioden bereits vorhanden, aber nicht angeschlossen. Erst
durch Wegätzen einer Si02-Schicht werden die Katoden der Dio­
den mit den Y-Leitungen elektrisch verbunden .
An den Y-Achsen ist durch die Leseverstärker an jeder Leitung ein
H-Signal vorhanden . Durch die Adressierung wird auf eine X­
Achse ein L-Signal gelegt. Über die angeschlossenen Dioden kann
ein Strom gegen Masse fließen. Die Leseverstärker wandeln diesen
Strom in das logische Signal um.
Bild 3 .26 zeigt den Aufbau eines 32 x 8-ITL-Dioden-PROM.
Eine andere Möglichkeit zur Herstellung von ITL-Dioden-PROM
ist das Fusable-link-Verfahren. Bild 3.27 zeigt den Aufbau eines
FL-PROM. Im unprogrammierten Zustand sind zwischen den
Dioden Fnd den Y-Leitungen Brücken in Form eines Sicherungs­
drahts (f. sable-link) . Die Speicherzelle wird durch Abschmelzen
dieser Verbindung mit Hilfe eines Stromimpulses programmiert.
Ein anderes Verfahren zur Herstellung von programmierbaren

72

Bild 3.25
PROM-Dioden-Matrix

Bild 3 .26 32 x 8-TTL-Dioden-PROM

O, O e

Festwertspeichern ist das AlM-Verfahren (Avalanche-Jnduced­
Migration) . Die Matrix besteht aus einem Transistorfeld (Bild
3 .28) . Bei der unprogrammierten Speicherzelle ist die Basis nicht
angeschlossen . Beim Programmieren wird die Basis-Emitter­
Diode der zu programmierenden Speicherzelle mit Stromstößen
abgebaut. Sie hat im unprogrammierten Zustand einen Wider­
stand von etwa 100 k.Q, im programmierten Zustand von etwa
200 .Q (Bild 3 .29) . Die Stromstöße zur Programmierung betragen
200 mA bei einer Spannung von 32 V und 7,5 f.i.S Dauer. Diese
Stromstöße werden so lange wiederholt , bis der Widerstand der
Speicherzelle unter 200 .Q liegt .

Löschbare Festwertspeicher

(EPROM - Erasable PROM, REPROM - Reversible PROM) .
Für das Löschen verwendet man ultraviolettes Licht . Dabei wird
der gesamte Speicherinhalt gelöscht . Nach dem Löschen läßt sich
der Speicher neu programmieren.

Bild 3.27
Aufbau eines PROM nach dem
Fusable-link-Verfahren

73

Bild 3 .28
Aufbau eines PROM nach
dem AlM-Verfahren

j' " .1 P' " �
� ., c � 1fc 8 � c

unprogrammiert programmiert

Bild 3 .29 Programmierung einer PROM-AlM-Zelle

Bild 3 .30 zeigt den Aufbau einer löschbaren Speicherzelle. An­
steuerungsgate und Floating-Gate sind Poly-Siliziumschichten.
Das Ansteuerungsgate wird mit den Zeilenleitungen verbunden.
Das Floating-Gate dient zur Ladungsspeicherung. Beim Program­
mieren wird über die Spaltenleitungen durch Injektion energierei­
cher Elektronen das Floating-Gate aufgeladen. Die gespeicherte
Ladung verändert die Schwellwertspannung der Zelle . Bild 3 .31
zeigt den logischen Aufbau eines EPROM.

A (Ansteuergate l

S !Sourcel D (Drain)

Bild 3.30 Aufbau einer mit UV-Licllt löschbaren PROM-Speicherzelle

74

Bild 3.31 Aufbau eines EPROM

Zur Programmierung wird CS auf + 12 V gelegt. An die Adreß­
eingänge Ao bis A9 wird wie beim Lesen die Wortadresse angelegt.·
Die Programminformation kommt an die Datenleitung D0 bis D7•
Nachdem Adressen und Daten eingestellt sind, wird ein Program­
mierungsimpuls je Adresse an den PROGR-Eingang gegeben.
Das einmalige Durchlaufen aller Adressen bezeichnet man als Pro­
grammierschleife. Die Anzahl der Programmierschleifen ist von
der Impulsdauer des PROGR-Signals abhängig.
Das Löschen geschieht mit UV-Licht über vorhandene Quarzten­
ster. Bei einigen EPROM wird eine Wellenlänge von 253 ,7 nm
(2537 A) bei einer Dosis von 10 Ws/cm-2 und einer Löschzeit von
20 bis 30 min angegeben. Dem Strahler darf kein Filter vorgesetzt
sein . Durch die UV-Strahlung werden die Elektronen vom Floa­
ting-Gate gelöst .
Außer mit UV-Licht löschbare PROM gibt es noch PROM, die
sich mit einer hohen Spannung löschen lassen (VEPROM - Vol­
tage erasable PROM) . Diese Bausteine haben anstelle des Quarz­
fensters eine Metallplatte mit einem Anschlußpin. Durch Anlegen
einer hohen Spannung von etwa 10 min Dauer mit umgekehrten
Vorzeichen gegenüber der Spannung beim Programmieren wer­
den die Elektronen aus dem Floating-Gate herausgezogen.

75

�r E7

l_ sr----r_._._-'-'------'--'-,.,._
E

Bild 3 .32 Pufferspeicherprinzip

Pufferspeicher

Eine spezielle Speicherlogik stellt der Pufferspeicher nach dem
Prinzip "first in, first out" dar . Mit ihm lassen sich zwei mit unter­
schiedlicher Geschwindigkeit arbeitende Maschinen anpassen.
Bild 3 .32 zeigt die grundsätzliche Struktur eines solchen Speichers .
Die Daten werden über E0 bis E7 mit Hilfe des Schreibtaktes ST
eingeschrieben . Durch das Signal E meldet der Speicher, daß er
leere Zellen hat . Wenn der Speicher gefüllt ist , wird das durch das
Signal A gemeldet . Ist das Signal A aktiv, so können die Daten mit
Hilfe des Lesetaktes LT ausgelesen werden . Das Signal A wird
inaktiv, wenn der Speicher leer ist oder wenn Masc.hine 2 ein An­
schlußsignal MR (master reset) abgibt. Durch MR wird der Spei­
cher gelöscht, A inaktiv und E aktiv. Dann kann ein neues Ein­
schreiben beginnen . Mit jedem Signal ST und LT wird der Inhalt
des Speichers um 1 Zelle nach rechts geschoben.

3.4.4. ZusammensteUung einiger Speicherschaltkreise

ROM-Schaltkreise
U501 D
ROM-Speicherschaltkreis mit 256 X 8-0rganisation (Bild 3.33)
Der Speicher hat einen Chip-enable-Eingang (CE) . Bei L-Signal
an CE gibt der Baustein den Inhalt der an den Adreßleitungen A0
bis A7 adressierten Speicherzellen an D0 bis D7 ab.

8308
ROM-Schaltkreis mit /024 x 8-0rganisation (Bild 3.34)
Der Schaltkreis hat 2 Eingänge , CS1 und CS2 zur Bausteinaus­
wahL Mit CS1 • CS2 = H wird die durch Ao bis A9 adressierte
Speicherzelle gelesen . Ihr Inhalt erscheint an D0 bis D7 •

76

Speichermatrix

Bild 3.33 ROM-Speicherschaltkreis U 50/ D

es, __j.-L--.:-:=,."..,..,,...,.,
cs2 ---,"---'�=_,

� (CS2 akt iv)

A9 Ao
Bild 3 .34 ROM-Speicherschaltkreis 8308

8702 A

IVZZTA-

EPROM-Schaltkreis mit 256 x 8-0rganisation (Bild 3.35)
Der Schaltkreis 8702 A ist ein löschbarer und elektrisch program­
mierbarer ROM. Der Speicher hat einen Eingang es (chip­
select) . Wenn an es L-Potential liegt , wird der Inhalt der durch
die Adreßleitung A0 bis A7 adressierten Speicherzelle an D0 bis D7
bereitgestellt . .
Der Schaltkreis wird durch Anlegen eines Programmimpulses am
Eingang PROGR programmiert. Dabei erhalten die Adreßleitun­
gen und Stromversorgungsleitungen impulsförmig höhere Span­
nungen als im Arbeitsbetrieb .
Das Löschen geschieht mit UV-Licht. Dazu muß der Baustein
etwa 10 bis 20 min mit UV-Licht der Wellenlänge 253,7 nm
(2537 Ä) mit einer Intensität von 6 WS · cm-2 bestrahlt werden .

77

Bild 3.35
EPROM-Speicherschaltkreis 8702 A

1702 A

IVZ?Z2r-

EPROM-Schaltkreis mit 256 X 8-0rganisation (Bild 3.36)
Der Schaltkreis 1702 A ist ein löschbarer und elektrisch program­
mierbarer ROM. Der &,peicher hat einen Eingang CS (chip-se­
lect) . Wenn an <::S L-Potential liegt, dann wird der Inhalt der
durch die Adreßleitung A0 bis A7 adressierten Speicherzelle an D0
bis D7 bereitgestellt.

Tabelle 3.8. Anschlüsse des Bausteins 1702 A beim Lesen und
Programmieren

Anschluß Lesen I Programmieren

1-3, 17-21 Adreß·Bits

4-11 Daten-Bits

12 5 V o v

13 5 V Progr.-lmp. - 48 V

14 o v o v

15 5 V 12V

16 -9V -35 V . . . -40V

22, 23 5 V o v

24 -9V - 9V

78

Bild 3.36 EPROM·Speicherschaltkreis 1 702 A

Zum Programmieren wird an den Eingang PROGR ein Impuls ge­
legt . Vor diesem Programmierimpuls muß die Adreßleitung die
Adresse der zu programmierenden Speicherzelle und an die Da­
tenleitungen das Programmwort gelegt werden.
Aus Tabelle 3 .8 . sind die Anschlüsse des Bausteins 1702 A beim
Lesen und Programmieren zu ersehen. Das Löschen geschieht mit
UV-Licht der Wellenlänge 253,7 nm (2537 Ä) .
8708
EPROM-Schaltkreis mit 1024 x 8-0rganisation (Bild 3.37)
Der Schaltkreis 8708 ist ein löschbarer und elektrisch program­
mierbarer ROM. Das Lesen geschieht in der Weise , daß der Ein­
gang CS/WE auf L-Potential gelegt und an die Adreßleitung A0 bis

Äg

Ao
Bild 3 .37 EPROM-Speicherschaltkreis 8708

79

A9 die Adresse der gewünschten Speicherzelle gegeben wird . An
D0 bis D7 kann der Inhalt der Speicherzelle abgenommen werden.
Zum Programmieren des Schaltkreises wird an den Eingang CS/
WE eine Spannung von 12 V und an den Eingang PROGR ein Im­
puls von 26 V gelegt . Den Speicherschaltkreis löscht man mit UV­
Licht der Wellenlänge 253 ,7 nm (2537 Ä) mit einer Intensität von
10 Ws · cm-2 in einer Zeitdauer von 20 bis 30 min .

RAM-Schaltkreise

2102
RAM-Schaltkreis mit 1024 x I -Organisation (Bild 3.38)
Der Schaltkreis hat einen Bausteinauswahleingang CS . Bei es = L
ist der Baustein angesteuert . Durch den Anschluß R/W läßt sich
der Schaltkreis zwischen Lesen und Schreiben umschalten. Beim
Schreiben (R/W = L) wird die an DI anliegende Information ge­
speichert. Bei Lesen (R/W = H) ist die gespeicherte Information
an DO abnehmbar.

CM BOOI
Statischer RAM-Schaltkreis mit 256 x I -Organisation (Bild 3.39)
Das Lesen des Schaltkreises geschieht dadurch , daß an den Ein­
gang es L-Potential gelegt wird . Die Information erscheint am
Ausgang DO und in negierter Form an 00.
Zum Beschreiben des Bausteins muß RJw = H sein und die In­
formation an den Eingang DI gelegt werden .

U253 D
Dynamischer RAM-Schaltkreis mit 1024 x I -Organisation (Bild
3. 40)
Der Schaltkreis U 253 D ist ein dynamischer Schreib-Lese-Spei­
cher. Zum Lesen muß der Eingang es L-Potential haben und die

00

80

Bild 3 .38
RAM·Speicherschaltkreis 2102

Lesezyklus

·s
A

[} - -Äf�-

cs 00 C5 �
tDW CM 8001 R/W

01 00
00 --fZZZJ-­

A7· Ao
Bild 3.39 Statischer RAM-Speicherschaltkreis CM 8001

Schreibzyklus
A0 . . ArfZ,ZZZZI­

CS �

�/W__r-'_
01 --1'LZ:ZZZI-

Adresse an A0 bis Ag gelegt werden . Der Eingang WE bleibt
auf H-Potential . Die gelesene Information liegt negiert am Aus­
gang DO an . Zum Einschreiben (WE = L) legt man die Informa­
tion am Eingang DI an.
Zum Auffrischen wird die ausgewählte Zelle gelesen und gleichzei­
tig wieder eingeschrieben . Dazu müssen alle 32 Zeilen der Spei­
chermatrix , die von den Adressen A0 bis A4 angesteuert werden ,
innerhalb von 2 ms mindestens einmal gelesen worden sein . Die
Belegung der Adressen A5 bis Ag (Spalten) ist dabei ohne Bedeu­
tung.

Bild 3.40 Dynamischer RAM-Speicherschaltkreis U 253 D

81

TabeHe 3.9. Zusammenstellung einiger Speicherschaltkreise
Typ

MSI-Schaltkreise
D ISl aD
K 155 RU 3
K 155 RU 2
MH 74188
MH 74 S 201
74200PC
K 155 RP I
LSI-Schaltkreise
2716
2758
2708

2704

8101
8111
2112
K 565 PY 1 A

DDR
UdSSR
UdSSR
tSSR
tssR
UVR
UdSSR

Kurzcharakteristik

16 x 1-RAM
16 x i-RAM
16 x 4-RAM
32 x 8-PROM

256 x 1-RAM mit Tri-state-Ausgang
256 x 1-RAM mit Tri-state-Ausgang

4 X 4-Bit-Register-Stapel

2K X 8-UV-EPROM (nur 5 V)
lK x 8-UV-EPROM (nur S V)
lK X 8-UV-EPROM
(+12V, + 5 V , - 5 V)
512 X 8-UV-EPROM
(+12V, +5 V, -5 V)
256 x 4-RAM (+ 5 V)
256 X 4-RAM (+5 V)
256 x 4-RAM (+5 V)
dynamischer4K x 1-RAM (-S V, +S V, + 1 2 V)

3.5. Codier- und Decodierschaltungen

Umcodierungen werden beim Aufbau von Mikrorechnern sehr
häufig gebraucht. Beispiele sind die Realisierung der Anzeige
durch LED-Elemente , die Zuordnung von Ziffern- und Funktions­
tasten zu den entsprechenden Zahlendarsteilungen und die Ent­
schlüsseJung von dualen Adressen . Für viele dieser Funktionen

Bild 3.41 Codierung Dezimal -> BCD-Code

82

gibt es integrierte Schaltkreise . . Stehen keine speziellen Schalt­
kreise zur Verfügung, so lassen sich entsprechende Schaltungen
auch mit logischen Grundschaltkreisen aufbauen.
Durch die Codierschaltung wird eine Darstellungsform für Zahlen
oder Zeichen in eine andere Darstellungsform umgewandelt.
Bild 3.41 zeigt eine einfache Codierung Dezimalstellung � BCD­
Code. Eine Dezimalziffer wird durch den ihr zugeordneten Schal­
ter dargestellt. Beim BCD-Code bildet man duale Bit-Kombina­
tionen mit 4 Dualstellen.
Aus Bild 3.42 ist die Schaltung des Bausteins 74147 zur Umwand-

Bild 3.42 Aufbau des Bausteins 74147 zur Codierung Dezimal --+ BCD·Code

83

Tabelle 3.10.

EI E2 E3

H H H

H H H

H H H

H H H

H H H

H H H

H H H

H H L

H L H

L H H

84

Funktionstabelle des Bausteins 74147
(Codierer: Dezimal -+ BCD)

E4 E5 E6 E7 ES

H H H H H

H H H H H

H H H H L

H H H L H

H H L H H

H L H H H

L H H H H

H H H H H

H H H H H

H H H H H

E9 A3 A2 Al AO

H H H H H

L L H H L

H L H H H

H H L L L

H H L L H

H H L H L

H H L H H

H H H L L

H H H L H

H H H H L

9

8

7

6

5

4

3

2

I Bild 3.43
Aufbau des Bausteins 7442
zur Umwandlung BCD -->
Dezimal

Jung einer Dezimaldarstellung 1 aus 10 in eine BCD-Darstellung
mit 4 Bit und aus Tabelle 3 . 10 . die Funktionstabelle des Bausteins
7 4147 zu ersehen .
Der Baustein 7442 (Bild 3 .43) decodiert binäre Zahlen zu Dezimal-
zahlen .
In der Elektronik wird sehr häufig die 7-Segment-Anzeige verwen-
det . Aus Bild 3 .44 ist die Zifferndarstellung bei der 7-Segment-An-
zeige zu ersehen. Ein 7-Segment-Decoder muß aus dem BCD-
Code die Signale zur Ansteuerung der 7 Segmente liefern .

a
f /-/ b

e (i_t c
d

Bild 3 .44 Zifferndarstellung der Ziffern 0 bis 9 einer 7-Scgmcnt-A nzcigc

TabeHe 3.11. Funktionstabelle eines 7-Segment-Decoders für die
Dezimalziffern 0 bis 9

Ziffer Eingänge Segmente

D c B A b d

0 L L L L H H H H H H L
L L L H L H H L L L L

2 L L H L H H L H H L H

3 L L H H H H H H L L H

4 L H L L L H H L L H H

L H L H H L H H L H H

6 L H H L H L H H H H H

7 L H H H H H H L L L L
8 H L L L H H H H H H H

9 H L L H H H H H L H H

Tabelle 3 . 1 1 . zeigt die dazugehörige Funktionstabelle für die
Ziffern 0 bis 9. Aus dieser Funktionstabelle ergibt sich über die
Kanonische Alternative Normalform

85

a = B v D v AC v R;
b = c V D V AB V An';
c = A V 1J V c V D;
d = D V BC V AB V R V ABC;
e = AC v AB;
f = D V AC V B'C V AB';
g = D V BC V AB V B'C.

Bild 3.45 zeigt die Schaltung eines 7-Segment-Decoders für die Zif­
fern 0 bis 9 .

� � �

aJ a

-r&l r--=-:-..:. � b
-LI j&f-5----

c

-LJ

fl- T
fl

u
1=1

i &?- � '--'

-ri1

d

e

-LJ

� -i.:J
j & g
'--'

Bild 3.45 7-Segment-Decoder für die Ziffern 0 bis 9

86

In ähnlicher Weise läßt sich auch ein 7-Segment-Decoder für die
Hexadezimalziffern 0 1 2 3 4 5 6 7 8 9 A B C D E F entwickeln.
Bild 3 .46 zeigt die Zeichendarstellung 0 bis F, Bild 3 .47 den Auf-
bau des 7-Segment-Decoders, und aus Tabelle 3 . 12. ist die dazuge-
hörige Funktionstabelle zu ersehen.

Tabelle 3.12. Funktionstabelle eines 7-Segment-Decoders für die
Hexadezimalziffern 0 bis F

Ziffer Eingänge Segmente

D c B A b d e g

0 L L L L H H H H H H L

L L L H L H H L L L L

2 L L H L H H L H H L H

L L H H H H H H L L H

4 L H L L L H H L L H H

L H L H H L H H L H H

6 L H H L H L H H H H H

7 L H H H H H H L L L L

8 H L L L H H H H H H H

9 H L L H H H H H L H H

A H L H L H H H L H H H

B H L H H L L H H H H H

c H H L L H L L H H H L

D H H L H L H H H H L H

E H H H L H L L H H H H

F H H H H H L L L H H H

Bild 3 .46 Darstellung der Hexadezimalziffern 0 bis F

87

(0 A 2 I (, B 2 l (2 c 2) (3 0 2)

--5- ---{3- --fl- fi
fl-
fl-

�o-a

Fß-
F=B-1 Wt-
�

-
b

:=&-
& & c

�
'"&'

88

<D ® ®@@

fl-
�
& & d

5-J
�

� �
��

- e

frt= t:::::::::: �
�

&
Bild 3.47 ?-Segment-Decoder für die Hexadezimalziffern 0 bis F

Für die Ansteuerung der Segmente gilt:
a = ÄC v BC v ÄD v BD v BCD v ACD ;
b = ÄC V BC V ABD V ABD V ÄBD ;
c = BD V AC V CD V CD V AB;
d = BD V ABC V ABC V ÄBC V ÄCD ;
e = BD v ÄB v CD v ÄC;
f = ÄC V BD V CD V BCD V ÄBD ;
g = BC V CD V AD V ÄB V BCD.

� & g -

Die Bausteine 7446, 7447, 7446 A und 7447 A sind integrierte 7-
Segment-Decode{.

89

n I -1 -1 I I 1- I -1 1-1 1-1 1_1 I_ I 1_1 I I_ -1 -1 �) Cl I Cl -1 c :J c
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bild 3.48 Darstellung der Hexadezimalziffern für die Bausteine 7446 und 7447

Bild 3 .48 zeigt die Hexadezimaldarstellung der Bausteine 7446,
7447, 7446 A, 7447 A, Bild 3 .49 den Aufbau der Decoder.
RBI = L ergibt eine automatische Unterdrückung der Nullan­
zeige . Die Segmentausgänge erhalten H-Signal, wenn die Ein­
gänge A, B, C und D L-Signal haben (Nullbedingung) .
Bei LT = L (Lampentest) führen alle Segmentausgänge L-Signal
(Helltastung) .
Alle 4 Bausteine unterscheiden sich bei gleicher Innenschaltung le­
diglich in ihren Endstufen.
7446: offener Kollektorausgang 30 V/20 mA;
7447: offener Kollektorausgang 15 V/20 mA;
7446 A: offener Kollektorausgang 30 V/40 mA;
7447 A: offener Kollektorausgang 15 V/40 mA;
Die Spannung der heute verwendeten GaAs-Leuchtdioden beträgt
etwl!. U0 = 1 ,6 V. Da der vorgegebene Strom I nicht überschritten
werden darf, sind zwischen Segmentanzeige und Decoder Wider­
stände zu schalten (Bild 3 .50) . Die Widerstände R können nach
der Gleichung

Ub - Uo
R = ---'----'--=- , .

I
Ub = S V; Uo = 1 ,6 V;
I = angegebener höchster Wert des Stromes ;

berechnet werden.
Oft liefern bestimmte Meßgeräte Ziffern in einer anderen Darstel­
lung, als sie benötigt werden. Dann sind sogenannte " Umcodierer"
notwendig. Es gibt folgende Umcodierer:
BCD-Code --+ Aiken-Code;
BCD-Code --+ 3-Exzeß-Code;
Aiken-Code --+ BCD-Code;
3-Exzeß-Code --+ BCD-Code.

90

Bild 3.49 Schaltbild der 7-Segment-Decoderbausteine 7446 und 7447

Bild 3.50
Zusammenschaltung von
7-Segment-Decoder und
-Anzeige

Prüfbiterzeugung - Paritätsprüfer
Die häufigste Methode zur Feststellung von Fehlern bei einer Da•
tenübertragung ist die Prüfbitkontrolle . Dabei wird die Anzahl der
zur Übertragung verwendeten Bit durch ein Zusatzbit , das soge­
nannte Prüjbit, ergänzt . Dieses Prüfbit wird nun so gesetzt, daß die
Anzahl der Einsen im Gesamtwort (Information + Prüfbit) gerade
oder ungerade ist . Im Sender setzt man das Prüfbit dazu , im Emp­
fänger läßt sich dann die gerade oder ungerade Parität überprüfen.
Bild 3.51 zeigt den Aufbau des Bausteins 74180, der zur Überprü­
fung und Erzeugung der Prüfbits eines 8-Bit-Wortes (7bit + Prüf­
bit) verwendet werden kann . Aus Tabelle 3 . 13 . läßt sich die zuge­
hörige Funktionstabelle ersehen.
Soll z. B. zu einem 7-Bit-Wort eiry 8 . Bit so gesetzt werden , daß ge­
radzahlige Parität entsteht , so verbindet man die 7 Bit mit E0 bis
E6, setzt E7 = 0, S0 = 1 und S1 = 0. Damit wird A1 = 1 , wenn Eo bis

Eo
Et

Exklusiv-ODER-Bausteine
50 St

gerade ungerade

Bild 3 .5 1 Aufbau des Bausteins 74i80 zur Prüfbitbildung

92

At ungerade

Bild 3 .52 3-zu-8-Decoder 8205 mit Funktionstabelle

E6 ungerade sind , un9 A1 = 0, wenn E0 bis E6 gerade sind . Es gilt
Ao = A1 ; A1 ist unmittelbar das gesuchte Prüfbit. Zur Prüfbitkon­
trolle verbindet man die 8 Datenleitungen mit E0 bis E7 , setzt So =
1 und S1 = 0. Damit ist bei geradzahliger Anzahl von Einsen A0 =
1 , A 1 = 0 und bei ungeradzahliger Anzahl Ao = 0, A 1 = 1 .
Mit 2 Bausteinen 74180 läßt sich auch eine 16-Bit-Prüfbitlogik auf­
bauen.
Wichtige Funktionen bei der Adreßentschlüsselung sind die Um­
codierungen
Binär -> Oktal ;
Binär -> HexadezimaL
Im Fall "Binär -> Oktal" werden aus einer Oktalziffer 8 Einzelsi­
gnale (3 zu 8) , im Fall "Binär -> Hexadezimal" 16 Einzelsignale (4
zu 16) gebildet . Der Baustein 8205 (Bild 3 . 52) realisiert die Funk­
tion 3 zu 8.
In Tabelle 3. 14. sind einige Codierschaltkreise zusammengestellt.

TabeHe 3.13. Funktionstabelle des Paritätsbausteins 74180

Eo- E, So s, Ao A,

gerade H L H L

ungerade H L L H

gerade L H L H

ungerade L H H L

beliebig H H L L

beliebig L L H H

93

Tabelle 3.14. Zusammenstellung einiger Codierschaltkreise

Typ Kurzcharakteristik

MH74154 tssR 4-Bit-Binär-Decoder (4zu 16)
K 155 ID 4 UdSSR 2 x 2-Bit-Binär-Decoder (2zu4)
K 155 ID 7 UdSSR 3-Bit-Binär-Decoder (3 zu 8) ; Schouky-TfL
K500 ID 161 UdSSR 3-Bit-Binär-Decoder (3 zu 8); ECL, .

invertierender Ausgang
K 500 ID 162 UdSSR 3-Bit-Binär-Decoder (3 zu 8); ECL
K 155 PR6 UdSSR BCD/Binär-Konverter; offener Kotlektorausgang
K 155 PR7 UdSSR Binär/BCD-Konverter; offener Kotlektorausgang
7443APC UVR 3-Exzeß/Dezimai-Decoder
MH 7746 CssR BCDn-Segment-Decoder; Treiber,

offener Kollektorausgang (30 V, 20 mA)
MH 7147 CSSR BCDn-Segment-Decoder;Treiber,

offener Kollektorausgang (15 V, 20 mA)
MH 7442 CSSR BCD/Dezimai-Decoder
7449 PC UYR BCDn-Segment-Decoder; Treiber,

offener Kotlektorausgang 5,5 V
K 155 IP 2 UdSSR 9-Bit-Paritätsgenerator; 8-Bit-Paritätsprüfer
MH74150 tssR 16-zu-1-Multiplexer; invertierender Ausgang
MH 74151 tsSR 8-zu-1-Multiplexer
K 155 KP5 UdSSR 8-zu-1-Multiplexer; invertierender Ausgang
K 155 KP2 UdSSR 2 x 4-zu-1-Multiplexer
KSOO ID 164 UdSSR 8-zu-1-Multiplexer; ECL

3.6. Rechensdutltkreise

Der wichtigste Rechenschaltkreis ist der Mikroprozessor. Seine
Teilfunktionen werden durch eine Reihe von Rechenschaltungen
realisiert, die zusammen das Rechenwerk eines Rechners darstel­
len. Viele dieser Teilschaltungen sind auch getrennt als Schalt­
kreise in MSI-Technik ausgeführt. Sie können zum Aufbau kleiner
Rechenschaltungen dienen.
Die Grundfunktion des Rechners ist die Addition. Bei der Addi­
tion im Dualsystem müssen die Summe und der Übertrag von 2
Summanden und einem eventuellen Übertrag aus dem niedrigeren
Stellenwert gebildet werden (Bild 3 .53) . Tabelle 3 . 15 . zeigt die
Funktionstabelle eines solchen Volladdierers .
Über die Kanonische Alternative NormaHorm ergibt sich aus Ta­
belle 3 . 15 . für S und ÜN die Schaltfunktion
s = ÜA (ÄB V AB) V UA (ÄB V AB) ;
ÜN = ÜA (ÄB V AB) V AB.
94

A 8

S (Summe)

Bild 3.53 .
Funktion eines VoUaddie­
rers

TabeHe 3.15. Funktionstabelle eines Volladdierers
A B ÜA s ON
0 0 0 0 0
0 0 1 0
0 1 0 1 0
0 1 0 1

0 0 1 0
0 0

0 0

Aus Bild 3 .54 ist der Aufbau des dazugehörigen Volladdierers zu
ersehen.
Bild 3 .55 zeigt die Innenschaltung des Volladdiererbausteins 7480.
Es ist ein 1-Bit-Volladdierer mit komplementären Ein- und Aus­
gängen. Für die Eingänge a und b gilt:
a* = a1a2 bzw. b* = I)Ji; .
a* und b* können am Baustein abgenommen werden. Wenn a•
und b* jedoch als Addiatoreingang benutzt werden, dann müssen

A

8

Bild 3 .54 Volladdierer nach der FunktionstabeUe 3. 15

95

01 02 • a
Oe "S"

s

b1
b2
b"
bc

u. u.

Bild 3.55 Volladdiererbaustein 7480

at . a2, b1 und b2 an Masse liegen . Für die Eingangssignale a und b
gilt:
a = ä"*a;;; b = 6*6;; .
Wenn at , a2 , b1 und b2 an Masse liegen, so sind a* = b* = 1 und
a = ä;:, b = 6;:.
Addierbausteine gibt es in sehr unterschiedlichen Ausführungen.

Beispiele
7482: 2 Volladdierer (Bild 3 . 56 , Funktionstabelle Tabelle 3 . 16) .
74183: schneller Volladdierer (Bild 3 . 57 , Funktionstabelle Tabelle

3 . 15) .
2 Dualzahlen können mit Hilfe eines Volladdierers parallel oder
seriell addiert werden . Aus Bild 3 . 58 ist der Aufbau des parallelen
und aus Bild 3 . 59 der des seriellen Addierwerks zu ersehen . Die
Register A und B müssen für die Paralleleingabe geeignet sein .
Das Summenregister S nimmt die Daten seriell auf und gibt sie par­
allel ab . Mit jedem Takt werden die Register um eine Stelle nach
re�hts verschoben. Dabei werden . die Stellen A0, B0 und ÜFF
(Übertrags-Flip-Flop) über die Addierschaltung geführt. Die
Werte der Ausgänge S und ÜN+t der Addierschaltung werden in S1
und ÜFF eingetragen .

96

Bild 3 .56 Volladdiererbaustein 7482

TabeHe 3.16 Funktionstabelle des Volladdiererbausteins 7482
C" = L C" = H

b, ., b, ., s, s, c"+, s, s, c"+,
L L L L L L L H L L
L L L H H L L L H L
L L H L H L L L H L
L L H H L H L H H L
L H L L L H L H H L
L H L H H H L L L H

L H H L H H L L L H
L H H H L L H H L H
H L L L L H L H H L
H L L H H H L L L H

H L H L H H L L L H
H L H H L L H H L H
H H L L L L H H L H
H . H L H H L H L H H
H H H L H L L L H H

H H H H L H H H H H

97

0 b UN
Bild 3.57 Schneller Volladdierer 74183

Bild 3.58 Paralleles Addierwerk

Bild 3.59
Serielles Addierwerk

98

Eine sehr häufige Funktion bei Mikroprozessoren ist die Erhöhung
(Inkrementierung) oder Subtraktion (Dekrementierung) einer 1
vem Inhalt eines Registers. Tabelle 3 . 17. enthält die Funktions­
tabelle einer Dekrementierung. Über die Kanonische Alternative
Normalform ergibt sich aus Tabelle 3 . 17. :
Bo = Äo;
B t = AoAt V ÄoÄt ;
Bz = AtAz v AoAz v ÄoÄtÄz;
B3 = AtAJ v AoAJ v AzA3 v ÄoÄtÄzÄJ.
Aus Bild 3 . 60 ist der Aufbau eines Dekrementierers zu ersehen. In
Tabelle 3 . 18. sind einige Rechenschaltkreise zusammengestellt.

TabeHe 3.17. Funktionstabelle eines Dekrementierers
A, A, A, Ao B, B, B, Bo

0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 1 0 0 0 0 1 1
0 0 0 1 0 0 0
0 0 0 0
0 1 1 0 0

0 0 0 0 1
0 0 0 0 0
0 0 0 0
0 0 0

0 0 0
0 0 0

0 0 I
0

TabeHe 3.18. Zusammenstellung einiger Rechenschaltkreise

Typ Kurzcharakteristik

K 155 IM 1 UdSSR 1-Bit-Volladdierer
K 155 IM 2 UdSSR 2-Bit-Volladdierer
K 155 IM 3 UdSSR 4-Bit-Volladdierer
K 155 IM 3 UdSSR 4-Bit-Recheneinheit
7485 PC UVR 4-Bit-Vergleicher
K 531 IP 3 UdSSR 4-Bit-Recheneinheit; Schonky-TIL
K 500 IP 181 UdSSR 4-Bit-Recbeneinheit; ECL

99

Bild 3.60 Dekrementierschaltung

3.7. Bustreiber

Die aus den Schaltkreisen kommenden Signale haben nicht immer
die Leistung, die notwendig ist, um mehrere angeschlossene Bau­
steine zu steuern. Teilweise sind auch die Mindestpotentiale zur
Steuerung eines Bausteins größer als die Potentiale, die der Geber­
schaltkreis liefert. Zur Anpassung der Potentiale und der Lei­
stungsparameter im Mikrorechnerbus dienen sogenannte Bustrei­
ber. Da der Mikrorechnerbus meistens in beiden Richtungen be­
trieben wird, arbeiten diese Bustreiber "bidirektional" .
Bild 3 .61 zeigt den Aufbau des Bustreiberbausteins 8216. Wenn
bei A H-Potential vorliegt, so arbeitet der Baustein in Richtung DI
-+ DB und bei H-Potential an B in Richtung DB -+ DO. Liegt A

100

bzw. B auf L-Potential , so sind die Ausgänge der entsprechenden
Treiber hochohmig.

TabeHe 3.19. Funktionstabelle des Bustreiberbausteins 8216

DIEN

L L

L H

H L

H H

DB1

DB2

DB3

084

DI-+ DB

DB -+ 00

hochohmig

hochohmig

Bild 3.61
Bustreiberbaustein 8216

101

� 02
0 � OJ----�
QJ � 041------n

CL

8216

Bild 3 .62

Informationsrichtung Busfreigabe Steuerung eines
8-Bit-Datenbusses mit
2 X 8216

1 � Eingabe in den Prozessor 1; Bus gesperrt
0 �Ausgabe vom Pr02essor o; Bus frei

Die Richtung des Informationsflusses wird durch das Signal
DIEN bestimmt, während man mit CS (chip-select) den Baustein
freigibt. Aus Tabelle 3 . 19 . ist die Funktionstabelle des Bausteins
8216 zu ersehen .
Bild 3.62 zeigt die Verwendung von 2 Bausteinen 8216 zur Steue­
rung eines 8-Bit-Datenbusses. Während die Eingangsspannungen
des Bausteins 8216 für H-Potential nur mindestens 2 V betragen
müssen, liefert der Baustein H-Potential von mindestens 3 ,65 V.

TabeHe 3.20. Zusammenstellung einiger Treiberschaltkreise
Typ

K 155 LN 3

K 155 LN 4
7416PC

7417PC
74125 PC
74126PC
SN 74367 AN

102

UdSSR

UdSSR
UVR

UVR
UVR
UVR

Kurzcharakteristik

6 Treiber, invertiert, offener Kollektorausgang
30 V
6 Treiber, offener Kollektorausgang, 30 V
6 Treiber, invertiert, offener Kollektorausgang,
15 V
6 Treiber, offener Kollektorausgang, 15 V
4 Bustreiber, Tri-state
4 Bustreiber, Tri-state
6 Bustreiber, 2 Enable-Eingänge, Tri-state

3.8. Zähler

Zähler lassen sich auf verschiedenste Art aufbauen. Verwendet
man getriggerte Flip-Flop, die mit der HL-Flanke umkippen, und
verbindet den jeweiligen Ausgang der vorherigen Zählstufe mit
dem Takteingang des nächsten Flip-Flop (Bild 3 .63) , so spricht
man von asynchronen Zählern. Wird der Takt an alle Flip-Flop
gleichzeitig angelegt und eine logische Verbindung zwischen den
Ausgängen der vorangehenden Flip-Flop und den Eingängen des
nächsten Flip-Flop geschaffen, so erhält man synchrone Zähler.
Ein Beispiel eines synchronen Vorwärtszählers zeigt Bild 3 .64.

T
RE SET
Bild 3 .64 Synchroner Zähler

Zähler mit JK-Fiip-Fiop

Bild 3.63
Schaltprinzip eines
asynchronen Zählers

Jedes als Trigger geschaltete JK-Flip-Flop teilt die Eingangsfre­
quenz im Verhältnis 1 : 2. Bild 3 .65 zeigt die Schaltung für einen
Vorwärtszähler im Dualcode und das zugehörige Impulsdia­
gramm. Soll der Zähler bereits nach Stellung 9 zurückschalten, so
kann eine Schaltung nach Bild 3 .66 verwendet werden. Durch eiii.e
entsprechende Zählstruktur, d. h. durch Schalten der einzelnen
Setz- und Rücksetzbedingungen, lassen sich beliebige Zählfunk­
tionen realisieren . Zum Beispiel benötigt man für einen Zähler im
3-Exzeß-Code die in Tabelle 3 .21 . stehende Zählfolge . Bild 3 .67
zeigt das dazugehörige Schaltbild mit dem Taktdiagramm.

103

Bild 3.65 Vorwärtszähler im Dualcode mit dem dazugehörigen Impulsdiagramm

Bild 3.66 Vorwärtszähler im BCD-Code

104

d

Zähltakt

Rückstel lung

Bild 3 .67 Zähler im 3-Exzeß-Code (Das gezeichnete AND-Gatter ist ein NANO!)

TabeUe 3.21 Zählfolge für einen Zähler im 3-Exzeß-Code
d b

0 0 0

0 0 0

2 0 0

3 0 0

4 0

0 0 0

6 0 0

7 0 0

8 0

9 0 0

105

Zähler mit RS-Fiip-FLop
Schaltet man vor die Eingangsstufen eines RS-Fiip-FLop Dyna­
mikvorsätze (Kondensatorspeicher) , so lassen sich sehr einfach
Zählschaltungen aufbauen .
Der in Bild 3 .68 dargestellte Speicher mit dynamischer Ansteu�­
rung eignet sich als Baustein zum Aufbau von Zählstufen. Bild 3 . 69
zeigt einen vierstelligen Dualzähler. Die ei,nzelnen Stufen sind als
Teiler geschaltet . Jede Stufe wird von der Vorstufe angesteuert ,
wenn deren Ausgangssignal von H nach L springt . Mit TL werden
die Zählstufen in die Ausgangsstellung 0000 gebracht .

E,

Ersat�schaltbild

Bild 3 .68 RS-Fiip-Fiop mit dynamischer Ansteuerung

Tabelle 3.22. Zusammenstellung einiger Zählerschaltkreise
Typ Kurzcharakteristik

MH 7490 CSSR Dezimalzähler
K 155 1E 9 UdSSR programmierbarer Dezimalzähler
74176 PC UVR programmierbarer Dezimalzähler
74190PC UVR Synchroner programmierbarer Vorwärts-/Rück-

wärts-Zähler (Dezimalzähler)
D 192 C/D DDR Synchroner programmierbarer Vorwärts-/Rück-

wärts-Zähler (Dezimalzähler)
74290 PC UVR Dezimalzähler
MH 7493 CSSR 4-Bit-Binärzähler
74161 PC UVR programmierbarer 4· Bit· Binärzähler
74177 PC UVR programmierbarer 4-Bit-Binärzähler
74191 PC UVR Synchroner programmierbarer Vorwärts-/Rück-

wärts-Zähler (4-Bit-Binärzähler)
D l93 C/D DDR Synchroner programmierbarer Vorwärts-/Rück-

wärts-Zähler (4-Bit-Binärzähler)
74293 PC UVR 4-Bit-Dualzähler

106

Bild 3 .69 Vierstelliger Dualzähler mit Schaltelementen nach Bild 3 .68

3.9. Taktgeneratoren

Die meisten Rechnerschaltkreise arbeiten taktgesteuert. Bild 3 .70
zeigt eine einfache Variante zur Erzeugung einer unstabilisierten
Taktserie. Liegt am Punkt A H-Pegel, so hat Punkt B L-Pegel . Der
Kondensator C entlädt sich über R, bis Punkt A L-Pegel erhält .
Jetzt hat B H-Pegel, und der Kondensator C lädt sich über R und
den Negator 1 wieder auf. Die Umladung von C wird durch Nega­
tor 2 geringfugig unterstützt.

Bild 3.70
Erzeugung einer unstabilisierten
Taktserie

Bild 3 .71 zeigt eine Schaltung, in der die Auf- und Entladung von
C durch R1 und R2 geschieht . Außerdem wird durch Hinzuschalten
eines Quarzes die erzeugte Taktserie frequenzstabilisiert. Liegt die
Quarzfrequenz zu hoch, so kann man die Taktfrequenz mit D-Flip­
Flop untersetzen. Bild 3. 72 zeigt eine solche Untersetzung mit 2 D­
Flip-Flop .

Bild 3.71
Einfacher Taktgenerator

107

Bild 3. 72 Taktgenerator mit zweifacher Untersetzung

Sollen aus dem Urtakt 2 Taktserien hergestellt werden , so läßt sich
das mit einem D-Flip-Flop nach Bild 3 .73 erreichen .
Der Baustein 8224 ist ein integrierter Taktgenerator für den Mi­
kroprozessor 8080. Er erzeugt die notwendigen Taktimpulse C/>1
und C/>2 und dient gleichzeitig zur Verarbeitung des Zeitsignals
SYNC und zur Erzeugung der Signale RESET, READY und
STS'f'B (Bild 3 .74) .

Bild 3. 73 Taktgenerator zur Erzeugung von 2 Taktserien <1>1 und <1>2

108

..9,! 0 � c 01 ·u; ID "'

� � <11 N 0
Ul - a:

� � f-
t;l

0:: �

Bild 3. 74 Integrierter Taktgenerator 8224 für den Prozessor 8080

109

4. Mikroprozessoren

Der Mikroprozessor ist der Schaltkreis innerhalb eines Mikrorech­
ners , der die Steuerung des Programmablaufs übernimmt. Er bein­
haltet das Rechen- und Steuerwerk eines Rechners . Zum Einbau
in Rechnersysteme verfügt er über Ein- und Ausgabesignale, mit
deren Hilfe weitere Bausteine eines Rechners angeschlossen wer­
den können. Die Ein- und Ausgangssignale des Mikroprozessors
kann man unterteilen in
- Adreßsignale {Adreßbus)
- Datensignale (Datenbus)
- Steuer- und Meldesignale (Controlbus)
- Versorgungsspannungen (Taktsignale, Betriebsspannungen

und Masseleitung) .
Die Arbeitsweise des Mikroprozessors wird durch seinen Befehls­
vorrat bestimmt. Den Befehlen entsprechen Signale , durch die die
Inhalte der einzelnen internen Register untereinander transpor­
tiert werden. Während des Transports führen logische Schaltungen
die einzelnen Operationen aus . Voraussetzung zum Verständnis
des Befehlsschlüssels ist deshalb die Registerstruktur des Prozes­
sors.
Der Befehlsschlüssel bildet die Basis für die Entwicklung der Soft­
ware eines Rechners . Um bereits entwickelte Software auch auf
Nachfolgerechnern zu nutzen , versucht man sie so aufzubauen,
daß im allgemeinen die Befehle des Vorgängers als Teilmenge ent­
halten sind. Damit wird eine sogenannte Aufwärtskompatibilität
erreicht .
Die Prozessoren U 808 D, 8080, U 880 D und U 881 bilden eine sol­
che Generationsreihe .
Mit dem Prozessor U 808 D begann die Entwicklung der Mikro­
rechentechnik in der DDR. Der Baustein benötigt eine umfangrei­
che Busanpassung und benutzt nicht den Arbeitsspeicher zur
Stackorganisation. Bei der Interruptorganisation wurde nicht der
Begriff ,Interruptvektor' verwendet . Bild 4 . 1 zeigt die logische
Struktur dieses Bausteins . Er wird für Neuentwicklungen nicht ein­
gesetzt.

1 10

D1 . . Do

2 c
3 D
4 E
5 H
6 L
7 ... u lrtl

So S, S2 INT REAl)'(C, C2 SYNC

Bild 4 . 1 Registerstruktur des Bausteins U 808 D (statt C . , C2 1ies <t>., <1>2)

4.1. Der Mikroprozessorbaustein U 880

a
a

a

Der Baustein U 880 ist gegenüber dem Baustein U 808 D weiter
vervollkommnet. Die wesentlichen Verbesserungen sind folgende:
- Es ist nur eine Betriebsspannung V cc = 5 V notwendig und eben-

falls nur ein Steuertakt C/J erforderlich.
- Die Steuersignale zur Auswahl und Ansteuerung der externen

Bausteine werden im Prozessor schon so weit aufbereitet , daß
sie direkt mit den Eingängen und Ausgängen der externen Bau­
steine verbunden werden können.

- Die Befehlsliste ist wesentlich erweitert; während der Baustein
U 808 D 48 Basisbefehle verarbeitet, sind es beim V 880 158 Be­
fehle . Neu sind dabei Befehle für Doppelwortoperationen, für
BCD-Arithmetik , für einen zweiten Registersatz, Blocktrans­
ferbefehle und Blocksuchbefehle in Verbindung mit dem Spei·
eher und den Ein- und Ausgabebausteinen, Bitoperationen,
Indexoperationen sowie wesentlich erweiterte Verschiebebe­
fehle .

1 1 1

- Die Behandlung von externen INTERRUPT ist durch einen
maskierten INTERRUPT sowie durch die Möglichkeit des Auf­
baus einer Adreßliste für unterschiedliche INTERRUPT-Routi­
nen erweitert worden.

4.1.1. Registerstruktur des Mikroprozessorbausteins U 880

Aus Bild 4.2 ist die Registerstruktur des Bausteins U 880 zu erse­
hen . Der Mikroprozessor enthält einen internen 8-Bit-Bus , von
dem aus alle Register zu erreichen sind . Von diesem Bus aus wer­
den Daten über den externen Datenbus D0 bis D7 ein- und ausgege­
ben . Er läßt sich in beiden Richtungen betreiben. Der externe bidi­
rektionale Datenbus ist über Bustreiber mit dem internen 8-Bit­
Bus verbunden. An den internen 8-Bit-Bus sind angeschlossen:
- 2 Registersätze zur Zwischenspeicherung der Zahlen im Prozes­

sor, die aus je 8-Bit-Registern bestehen. Der 1 . Registersatz
beinhaltet die Register A, f2l , B , C, D, E, H, L, der 2 . Register­
satz die Register A ' , F'2 l , B ' , C' , E ' , H' , L' . Durch einen einfa­
chen Austauschbefehl können die Inhalte der Registersätze
komplett vertauscht werden . Dadurch ist es möglich , einen be­
stimmten Programmabschnitt einem der Registersätze zuzuord­
nen. Wechselt das Programm, dann können die dazugehörigen
Registersätze umgetauscht werden.
- Zweckregister I , R, IX, IY , SP, PC.
Das Register I (8-Bit-INTERRUPT-Adreßregister) enthält den
höherwertigen Teil einer Adresse , deren niederwertiger Teil bei
einem INTERRUPT von dem entsprechenden Gerät gebildet
wird. Die Adresse weist auf eine Speicherzelle , in der die Start­
adresse des INTERRUPT-Bedienprogramms steht .
Das Register R (Speicherauffrischregister) enthält eine ?-Bit­
Adresse , die in Verbindung mit dem Auffrischsignal RFSH auf
den niederwertigen 7 Bit des Adreßbus ausgesendet wird . Diese
Adresse wird während der Operationscodeentschlüsselung aus"
gesendet. Sie dient zum Auffrischen von dynamischen Spei­
chern. Während jedes Operationscodeholzyklus erhöht sich der
Inhalt des Registers R um 1 .
Die beiden Register IX und IY (Indexregistet) können eine 16-

2> F, F' sind Flagregister

1 12

(/)
..5 c "' 0 u w
0 1-----et---HH--i "' E "'
.1;

-

� r - - - - ­
Cf
"- u

5 ilS
X
I
X
N
(/) -

':"
I
I
I
I
I - -r - ---T _j

I I

T
� .�
<t lE]

� <tl-----.....1 -

r----�
1-- l:f
r---- I�

.__I-- Ii
Bit-Basisadresse enthalten . Während der Adressenrechnung
wird aus dieser Basisadresse durch Addition einer Adreßzahl die
eigentliche Operandenadresse ermittelt .
Das Register SP (Stackpointer) enthält eine 16-Bit-Adresse , die
die Speicherzelle an der Spitze eines Kellerspeichers adressiert.
Der Kellerspeicher ist als "last in - first out -Speicher" organisiert
(das zuletzt eingeschriebene Wort wird zuerst gelesen) .
Das Register PC (Program-Counter oder Befehlszähler) enthält
eine 16-Bit-Adresse , die angibt , aus welcher Speicherzelle der
laufende Befehl geholt wird .

113

- In dem Befehlsregister BR wird der Operationscode des laufen­
den Befehls gespeichert. Hier kommt es zur Decodierung des
Befehls und zur Bildung der Steuersignale für dessen Abarbei­
tung. Die Steuersignale bestehen aus den Befehls- und den Zeit­
signalen. Die Befehlssignale werden durch die Befehlsentschlüs­
seJung und die dazugehörigen Zeitsignale durch die Zeitsteue­
rung gebildet. Die Zeitsteuerung besteht aus dem Zyklengene­
rator, der durch den externen Takt 4> und die Befehlssignale ge­
steuert wird. Im Zyklengenerator werden auch die Signale zur
Steuerung der externen Bausteine gebildet sowie die von den ex­
ternen Bausteinen kommenden Signale abgetastet.

- Das Plagregister enthält 6 Flip-Flop, die in Abhängigkeit von
den einzelnen Befehlen und vom Ergebnis der Befehle. gesetzt
oder rückgesetzt werden. Die einzelnen Flags haben folgende
Bedeutung:
C: Carry-Flag
t ist gleich 1 , wenn bei der Addition ein Übertrag in die 8. Stelle
auftritt , oder wenn bei der Subtraktion ein Borgen von der
8.Stelle notwendig wird.
N: Subtraktions-Flag
N ist gleich 1 , wenn die ausgeführte Operation eine Subtraktion
war.
PN: Parity-Überlauf-Flag (Überlauf = Overlow)
PN ist gleich 1 , bei logischen Operationen, wenn die Anzahl der
Einsen im Ergebnis geradzahlig ist , bei Rechenoperationen,
wenn ein Überlauf auftritt (Ergebnis größer als die größte dar­
stellbare Zahl) . 3l
H: Half-Carry-Flag
H ist gleich l, wenn es bei der Addition zu einem Übertrag in die
4. Stelle kommt oder wenn bei der Subtraktion ein Borgen von
der 4. Stelle notwendig wird .
Z: Zero-Flag
Z ist gleich 1 , wenn das Ergebnis 0 ist .
S: Sign-Flag
S ist gleich 1 , wenn im Ergebnis das Vorzeichen 1 (negativ) ist .

31 Der Prozessor U 880 arbeitet mit einem 8-Bit-Zahlwort im Zweierkomplement. Der
Stellenwert 27 entspricht dem Vorzeichen. Die größte positive Zahl ist 27 - 1, die nega­
tive Zahl mit dem größten Betrag -27• Der vom Prozessor erfaßte Zahlenbereich um­
faßt -27 � Z � 27 - I .

1 14

Beispiele

120 =
+ 105 =

1 "'
0 1 1 1
0 1 1 1

225 = 0] 1 1 1 1
.I \.

o- c

Übertrag in 4. Stelle
1 0 0 0 ergibt 1 - H
1 0 0 1

0 0 0 1

wegen Überlauf
kein Übertrag in 4. Stelle
ergibt O - H

- 5 =
- 16 =

1 1 1 1
1 1 1 1

-21 = 1] 1 1 1 0
.I

1 0 1 1
0 0 0 0

1 0 1 1

1 - C aber 0 - PIV

4.1.2. Befehlsautbau des Bausteins U 880

4.1.2.1. Befehlsstruktur

1-Byte - 1
Befehl Op.-Code I
2-Byte - �
Befehl Op.-Code I Op.-Code I

oder

Op.-Code 1 �rl!ktoperandl
3 - Byte- 1
Befehl Op.-Code I Op.-Code �irektope�

Op.- Code I Adresse Adresse

4-Byte - 1
Befehl Op.-Code I Op.-Code I Adresse

Op.- Code I Op.-Code I Joirektoperandl
1 . Byte 2 . Byte 3 .Byte

Bild 4.3 . Befehlsstrukturen im Prozessor U 880

Adresse

Op. - Cod•
4. Byte

115

Ein Befehl besteht aus Operationsteil und Adreßteil. Zur Darstel­
lung eines Befehls werden 1 bis 4 Byte benötigt. Davon kann der
Operationscode 1 bis 3 Byte 4l und der Adreßteil ebenfalls 1 bis 2
Byte lang sein. Bei den meisten Befehlen ist der Operationscode 1
Byte lang. Bei 2 Byte langen Operationscodes gibt das 1 . Byte die
Betehisgruppe an . Durch das 2. Byte und 3 . Byte werden spezielle
Befehle innerhalb der Gruppe gekennzeichnet. Bild 4 .3 zeigt die
im Prozessor U 880 möglichen Befehlsstrukturen .

4.1.2.2. Adreßbildung

Direktoperand
Der zum Befehl gehörende Operand steht im Anschluß �n den
Operationscode :
Zelle 1 Operationscode,
Zelle 2 NWf-Operand (niederwertiger Teil des Operanden) ,
Zelle 3 HWT-Operand (höherwertiger Teil des Operanden) .

Adressierter Operand
Im Befehl steht die Adresse der Speicherzelle, in der der Operand
steht:
Zelle 1 Operationscode, .
Zelle 2 NWf-AD R (niederwertiger Teil der Adresse) ,
Zelle 3 HWf-ADR (höherwertiger Teil der Adresse) .

Relative Adressierung
Im Befehl steht eine positive oder negative Zahl N.
Der Operand steht um N Zellen nach oder vor dem Befehl.
Zelle 1 Operationscode
Zelle 2 N (positive oder negative Zahl im Zweierkomplement) ,
Zelle 3 nächster Befehl ;
ADR als Operanden = ADR Zelle 3 + N.

Indirekte Adressierung,
Die Adresse ADR des Operanden steht in einem speziellen Regi­
ster:

'l Bei einigen Befehlen mit Indexrechnung ist der Operationscode 3 Byte und der Adreß­
teil l Byte lang.

116

ADR = (Register)
Als Register treten die Registerpaare BC, DE, HL sowie die Regi­
ster SP, IX und IY auf.

Indexierung
Die Adresse ADR des Operanden ergibt sich aus der im Befehl an­
gegebenen Zahl N plus dem Inhalt eines Indexregisters.
Zelle 1 Operationscode
Zelle 2 N (positive oder negative Zahl im Zweierkomplement)
ADR = N + (Indexregister)

Registeroperand
Der Operand steht in einem im, Befehl angegebenen Register.

4.1.3. Zeitverhalten

Ein Befehl wird in mehreren Maschinenzyklen abgearbeitet. Es
gibt Maschinenzyklen für folgende Funktionen:
- Operationscode holen,
- Speicher lesen oder schreiben.
- Ein- und Ausgabe,
- INTERRUPT,
- DMA-Funktion,
- Ausführung einer HALT-Operation.
Ein Maschinenzyklus unterteilt sich in 3 bis 6 Zustände (T-Zyk­
len) . Ein T-Zyklus entspricht einer Periode des Grundtaktes (/>,
Bild 4.4 zeigt ein Beispiel für den Aufbau eines Befehlszyklus (Ge­
samtzeitraum zur Abarbeitung eines Befehls) .

T - Zyklus

H
T, I Tz I T�� T, T, I Tz �T3 T1 I Tz I T3

Maschinen-Zyk

M, Mz M3
Holen des Opera- Speicher Speicher
tions - Codes lesen schreiben

Befehlszyklus

Bild 4.4 Aufbau eines Befehlszyklus im U 880

117

p
Ao . . . A.�X:E;�eliliillidi�==tx:.BEE&I1iat::=tC=
�

mr

DBo-.087
M,

WArt

RFSH -+----�--�--�r----h

Refresh" Lesen" RFSH · MREQ
Bild 4.5 Operationscodeholzyklus im U 880

Operationscode-Holzyklus (Bild 4.5)
Am Anfang des Zyklus e11thält der Befehlszähler die Adresse des
Operationscodes . Mit der Rückflanke von T1 wird das Signal
MREQ aktiv , gleichzeitig das Signal RD. MREQ bedeutet eine
Anforderung zum Speicher; RD sagt aus , daß eine Lese-Opera­
tion ablaufen soll . Das Einlesen der Daten geschieht mit der Vor­
derflanke von C/J während T3 . In den Zyklen T3 und T4 wird eine
Auffrischadresse für dynamische Speicher an den Adreßbus ge­
legt . Die Auffrischadresse liegt an den Bitstellen Ao bis At;, wäh­
rend die übrigen Bit 0 sind . Zu dem Zeitpunkt, in dem Auffrisch­
adresse am Adreßbus liegt , ist das Signal RFSH aktiv . Ist zum
Zeitpunkt der Rückflanke von C/J im Zustand von Tz das WAIT­
Signal aktiv , so wird nach Tz ein Wartezustand eingeschoben . Die­
ses Einschieben von Wartezuständen wiederholt sich so lange , bis
das WAIT-Signal inaktiv wird .

Speicher-Lese- oder -Schreib-Zyklus (Bild 4 .6)
Mit Beginn des Speicher-Lesezyklus (angesteuert durch die Vor­
derflanke von C/J im Zustand von T1) wird die Speicheradresse auf
den Adreßbus gelegt . Mit der Rückflanke von C/J (Zustand T1) ak­
tivieren sich die Signale MREQ und RD . Das Signal MREQ
kann zur Ansteuerung des betreffenden Speichers genommen
werden , während RD den Speicher auf Lesen umschaltet . Zum
Zeitpunkt der Rückflanke von C/J in Tz tastet der Prozessor das

118

�
A0 . . . A, -l-v--+--.....-ill...--+v---hcorrri"."--+v--
lViRrn

RD

WR" -+---+---+---1,...---i----1

Lesezyklus Schreibzyklus

Bild 4.6 Speicher-, Lese- oder Schreibzyklus im U 880

WAIT-Signal ab und fügt nach Tz bei aktivem W AlT-Signal einen
Wartezyklus Twait ein . Währeni:l Twait bleiben die Adresse am
Adreßbus und die Daten am Datenbus erhalten. Bei der nächsten
Rückflanke von C/J wird die Abfrage von W AlT wiederholt und
eventuell ein weiterer Wartezustand eingeschoben . Ist das WAIT­
Signal nicht mehr aktiv , dann folgt der Zustand T3 . Während des
Taktes C/J im Zustand T3 werden die Daten vom Datenbus in den
Prozessor übernommen, mit der Rückflanke von C/J in T3 werden
die_ Signale MREQ und RD wieder abgeschaltet .
Beim Speicher-Schreib-Zyklus wird die Adresse genau wie zum
Speicher-Lese-Zyklus mit der Vorderflanke von C/J in T1 auf den
Adreßbus gelegt . Mit der Rückflanke von C/J in T1 werden die Da­
ten an den Datenbus gelegt . Mit der Rückflanke von C/J in Tz
wird das Signal WR aktiv und gleichzeitig das WAIT-Signal ab­
gefragt. WR kann zum Umschalten des Speichers auf Schreiben
benutzt werden . Während das Übernehmen der Daten in den Spei­
cher mit C/J in T3 erfolgen kann, wird mit der Rückflanke von C/J in
T3 MREQ und RD wieder abgeschaltet .

Ein- und Ausgabe-Zyklus (Bild 4. 7)
Beim Ein- und Ausgabe-Zyklus wird nach Tz automatisch ein War­
tezyklus eingefügt, um dem Ein- und Ausgabebaustein zu ermögli­
chen, eine Adreßentschlüsselung durchzuführen und im Notfall
das W AlT -Signal zu setzen . Der Ablauf des Zyklus ähnelt dem des
Speicher-Lese- oder -Schreib-Zyklus . Zum Zeitpunkt der Vorder­
flanke von C/J in Tz wird das Signal IÖRQ aktiv . Gleichzeitig ak­
tiviert sich entweder RD oder WR, je nachdem, ob es sich um

119

bei 1/0 -Operationen wird autgmatisch ein Wartezyklus eingeschoben

Bild 4. 7 Ein- und Ausgabezyklus im V 880

eine Eingabe oder um eine Ausgabe handelt . Bei der Ausgabe er­
scheinen die Daten auf dem Datenbus bereits während T1 , so daß
zum Zeitpunkt cJ> in T3 die Daten abgenommen werden können.

INTERRUPT-Zyklus
Bild 4 .8 zeigt das Zeitdiagramm für den maskierten INTERR.UPT­
Zyklus . Das Signal INT wird im letzten Zustand eines Befehls ab­
getastet. Ist es aktiv , dann beginnt mit T1 ein INTERRUPT-Zy­
klus . Mit der Vorderflanke von cJ> in T1 gelangt die Adresse aus
dem Befehlszähler an den Adreßbus . Gleichzeitig wird M1 einge­
schaltet. In jedem INTERRUPT-Zyklus werden automatisch 2

-���� -ILJ
A0 . . . A

M,
15

mEä
Olm

OB

'WÄii
'RD

- - - - - - -
letzter Maschinen-

zyklus
r, T2 Tw

Bild 4.8 Zyklus für den maskierten INTERRUPT

120

� �
RESH

rr-
�

,r-
..flNl- Ei IN· ngcile

T-Vektor F\.._
Tw T

WAIT-Zustände eingeschoben, damit die INTERRUPT-Logik
genügend Zeit zur EntschlüsseJung der Adresse und zur Bereitstel­
lung des INTERRUPT-Vektors hat . Mit der Rückflanke von c1> im
ersten Wartezustand wird zusätzlich das Signal IORO aktiv . Das
gleichzeitige Vorhandensein von IORO und Mt besagt , daß der
INTERRUPT angenommen worden ist . Nach der Rückflanke von
c1> des letzten Wartezustands wird vom Prozessor der Datenbus ab­
getastet und als INTERRUPT-Vektor übernommen.
Während T3 und T4 kommt es wie beim Zyklus Mt zur Ausgabe ei­
ner Auffrischadresse mit den dazugehörigen Signalen MREQ und
RFSH.
In Abhängigkeit vom INTERRUPT-MODE (0 , 1, 2) wird der IN­
TERRUPT-Vektor unterschiedlich interpretiert.

Maskierter INTERRUFT
MODE 0 Der INTERRUPT-Vektor wird als Befehlscode inter­

pretiert .
MODE 1 Der INTERRUPT-Vektor bleibt unberücksichtigt. Es

wird der Befehl CALL 38H gebildet und ausgeführt.
MODE 2 Der INTERRUPT-Vektor wird in Verbindung mit dem

I-Register als Adresse interpretiert, die angibt, in wel­
cher Zelle sich die Ansprungadresse des Bedienungs­
programms befindet . Es wird der Befehl CALL (I-Regi­
ster, INTERRUPT-Vektor) ausgeführt.

Nichtmaskierter INTERRUFT
Es wird der Befehl CALL 66H gebildet und ausgeführt (Taktdia­
gramm Bild 4.9)

h-.JL � f\._ h-h-[\.._ Ir-
- 1- -� - - - - - - - - - 1- - -1- - - -

X X REI RESH �

(__ ___)

letzter Maschinen- T T T T, T
zyklus

Bild 4 .9 Taktdiagramm für den nichtmaskierten INTERRUPT beim U 880

121

Leerbefehl

Bild 4 .10 Haltezyklus im U 880

Haltezyklus (Bild 4. 10)
Nach der EntschlüsseJung eines HALT-Befehls führt der Prozes­
sor Leerbefehle (NOP) aus , und zwar so lange , bis ein INTER­
RUPT erscheint (entweder ein nichtmaskierter oder ein maskier­
ter INTERRUPT, wenn dieser erlaubt ist) . Die INTERRUPT­
Eingänge werden mit der Vorderflanke von l/J in T4 abgetastet . Ist
zu diesem Zeitpunkt ein INTERRUPT-Eingang aktiv, dann setzt
sich mit dem nächsten Takt die Befehlsabarbeitung fort. Es wird
ein Sprung an die Stelle ausgeführt, die der entsprechenden IN­
TERRUPT-Behandlung entspricht.

DMA-Zyklus (Bi_ld 4 . 1 1)
Mit der Vorderflanke von l/J jedes letzten Taktes eines Maschinen­
zyklus wird das Signal BUSRQ abgetastet . Ist es zu diesem Zeit-

Abt tung� Abte t "99SRQ as s ung

-���
A0 . . . A1 ,
00 . . . 0 7
1VfREO
lm.WR

lORO'
Rrn:r

Maschinenzyklus

Bild 4 . 1 1 OMA-Zyklus im U 880

122

hochohmig

BUS - Frei T,
I

punkt aktiv , so werden mit Beginn das nächsten T 1 der Adreßbus,
der Datenbus und die Steuersignale MREQ, RD, WR, mRQ und
RFSH in den hochohmigen Zustand gesetzt . Gleichzeitig aktiviert
sich das Signal BUSAK, als Zeichen dafür, daß der hochohmige
Zustand erreicht ist . Nun wird in jedem Zustand mit der Vorder­
flanke von lf>das Signal BUSRQ abgetastet. Ist es nicht mehr ak­
tiv, so wird im nächsten Takt der hochohmige Zustand beendet;
und es beginnt ein neuer Maschinenzyklus. Während 'BDSAK
aktiv ist , kann kein INTERRUPT auftreten . Der REFRESH ist
unterbrochen.

4.1.4. Befehlsabarbeitung

Während der Abarbeitung eines Befehls werden folgende Arbeits­
gänge durchlaufen :
- Befehl holen
- Befehl entschlüsseln
- Operand holen
- Befehl ausführen .
Die einzelnen Arbeitsgänge werden in Maschinenzyklen ausge­
führt . Die Art des Maschinenzyklus wird durch die Befehlssignale,
die aus der BefehlsentschlüsseJung hervorgehen oder von außen
als Signale des Steuerbus an den Prozessor gelangen, gebildet . In
jedem Maschinenzyklus entstehen durch Hinzufügen von Zeit­
signalen zu den Befehlssignalen interne Steuersignale , die die Ab­
arbeitung in Form von Registertransporten steuern .
STS BSI ZSI
Steuersignal Befehlssignal Zeitsignal
Gleichzeitig werden zur Steuerung des Datentransfers mit den an­
geschlossenen Bausteinen äußere Steuersignale gebildet (RD ,
WR, IÖRQ, MREQ, Mt . HALT, BUSAK) . Die Abarbeitung
eines Befehls setzt sich aus mehreren Maschinenzyklen zusammen.
Die Folge dieser Maschinenzyklen ist eine Kombination der in Ab­
schnitt 3 . 3 genannten Arten der Maschinenzyklen.

123

4.1.5. Befehlsliste des Prozessors U 880

4.1.5.1. Verwendete Abkürzungen bei der Befehlsbeschreibung

r - 8-Bit-Register des Registersatzes, A, B , S, D , E, H, L ;
s - 8-Bit-Quellregister oder ein Speicherplatz oder eine

8-Bit-Zahl n
d - 8-Bit-Bestimmungsregister oder Speicherplatz
n - 8-Bit-Zahl
nn - 16-Bit-zahl
dd - 16-Bit-Bestimmungsregister
ss - 16-Bit-Quellregister
sb - Bit in einem speziellen 8-Bit-Register, b ist die Bit-Nr.

(Bild 4. 12)
Index L - der niederwertige Teil eines 16-Bit-Registers ;
Index H - der höherwertige Teil eines 16-Bit-Registers.
- Steht ein Registername allein , z . B. A, so heißt das:
Inhalt von Register A.
- Steht (HL) ; so bedeutet das:
Inhalt der Speicherzelle , deren Adresse in HL steht .
- Steht (nn) ; m so heißt das :
Inhalt der Speicherzelle , deren Adresse nn ist .
Bedeutung der Symbole für die Plagstellung (Bedeutung des
Merkbits) :
t Das Flag wird in Abhängigkeit vom Ergebnis der Operation

beeinflußt.
Das Flag bleibt unbeeinflußt.

0 Das Flag wird durch die Operation rückgesetzt.
1 Das Flag wird durch die Operation gesetzt .
v Das Flag wird in Abhängigkeit vom Überlauf des Ergebnisses

beeinflußt.
P Das Flag wird in Abhängigkeit von der Parität des Ergeb­

nisses beeinflußt.
X Das Flag ist beliebig.

Bild 4.12 Bit-Numerierung innerha1b eines Bytes

124

4.1.5.2. Transportbefehle

Einzelworttransfer
LD r,s s � r C S Z PIV H N

Der Inhalt des Registers s oder eine Zahl n wird in ein Register r ge­
bracht.
r kann sein : - Register A, B, C, D, E, H, L.
s kann sein : - Direktoperand n (8-Bit-Zahl) ;

Beispiel

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle ,
deren Adresse durch Indexrechnung ermittelt
wird ;

- Register A, B , C, D , E, H, L.

LD C, (IX + 19H)
Der Inhalt von IX sei 25AFH. Durch den obigen Befehl wird der
Inhalt der Zelle 25AFH + 19H = 25C8H nach Register C ge­
bracht .

LD d, s s � d C S Z PIV H N

Der Inhalt des Registers s oder eine Zahl n wird nach der Zelle d
gebracht .
s kann sein: - Register A, B , C, D , E, H, L oder eine Zahl n ;
d kann sein : - (HL) , d . h . eine Speicherzelle , deren Adresse in

Beispiel

HL steht ;
- (IX + d) , (IY + d) , d . h . eine Speicherzelle ,

deren Adresse durch Indexrechnung ermittelt
wird ;

- Register A, B , C, D , E, H, L.

LD (HL) , 28H
Der Inhalt von HL sei 25A5H. Durch obigen Befehl wird die Zahl
28H nach der Zelle 25A5H gebracht.

LD A, s s � A C S Z PIV H N
t t IFF 0 0 bei s = I ,R · 0 bei s nicht I ,R

125

Der Inhalt einer Zelle s wird nach Register A gebracht .
s kann sein: - (BC) , (D E) , d. h. eine Speicherzelle , deren

Adresse in BC oder DE steht ;
- (nn) , d. h. eine Speicherzelle , deren Adresse nn ist ;
- Register I oder R.

Beispiel
LD A, (DE)
Der Inhalt von D E sei 8A25H. Durch obigen Befehl wird der In­
halt von Zelle 8A25H nach Register A gebracht.

LD d, A A �d C S Z PN H N

Der Inhalt des Registers A wird nach der Zelle d gebracht.
d kann sein : - (BC) , (DE) , d . h . eine Speicherzelle, deren

Adresse in BC oder DE steht ;
- (nn) , d. h. eine Speicherzelle , deren Adresse nn ist ,
- Register I oder R.

Beispiel
LD (25 H) , A
Der Inhalt des Registers A wird nach der Zelle 25 H gebracht .

Doppelworttransfer
LD dd, nn nn � dd C S Z PN H N

Der Direktoperand nn wird in das Doppelregister dd gebracht .
dd kann sein : BC, DE, HL, SP, IX, IY. ·
Beispiel
LD HL, 28DEH
Die Zahi 28DEH wird nach Register HL gebracht .

LD dd, (nn) (nn) � dd C S Z PN H N

Der Inhalt von Zelle nn und nn + 1 wird in das Doppelregister dd
gebracht.
dd kann sein : BC, DE, HL, SP , IX, IY.

Beispiel
LD IX, (8AH)
Der Inhalt von Zelle 8AH und 8BH wird in das Indexregister IX
gebracht.

126

LD (nn) , ss ss � (nn) C S Z PN H N

Der Inhalt des Doppelregisters ss wird in die Speicherzelle nn und
nn + 1 gebracht.
ss kann sein: BC, DE, HL, SP, IX, IY.

Beispiel
LD (20H) , SP
Der Inhalt des SP wird nach Zelle 20H gebracht .

LS SP, ss ss � SP C S Z PN H N

Der Inhalt des Doppelregisters ss wird in den Stackpointer SP ge­
bracht.
ss kann sein: HL, IX, IY.

Beispiel
LD , SP, IX
Der Inhalt des Indexregisters IX wird in den Stackpointer SP ge­
bracht.

PUSH ss SSH, SSL � < SP-1) , < SP-2)
SP-2 � SP

C S Z PN H N

Der Inhalt des Doppelregisters ss wird in den Kellerspeicher ge­
bracht . Der höherwertige Teil ssH kommt in die Zelle SP- 1 . Der
niederwertige Teil in die Zelle SP-2. Nach Ausführung des Befehls
ist der Inhalt des Stackpointers SP um 2 erniedrigt .

Kellerspeicher
vor Ausführung
von PUSH ss

,..

Adresse in SP

Adresse in SP

Kellerspeicher
nach Ausführung
von PUSH ss

- ssL

SSH

ss kan sein : BC, DE, HL, AF, IX, IY.

127

Beispiel
Der Inhalt von SP ist 201H

1 FD

Kellerspeicher
vor PUSH HL

1-----1
1 FE

1 FD

KeÜerspeicher
nach PUSH HL

1-----1
1FE

1FF
1-----1

SP -+ 1 FF Inhalt von L
200 1-------1

SP --+ 201

POP ss (SP + 1) , (SP) -> ddH, ddL
SP + 2-> SP

200 Inhalt von H
201

C S Z PN H N

Aus dem Kellerspeicher werden 2 Byte in das Doppeb::egister dd
gebracht. Das Byte aus Zelle SP kommt in den niederwertigen Teil
von dd, das Byte aus Zelle SP + 1 in den höherwertigen Teil von
dd. Nach Ausführung des Befehls ist der Inhalt des Stackpointers
SP um 2 erhöht.

Adresse
in SP -

Kellerspeicher
vor Ausführung
von POP ss

V
J'

kommt nach
dd L

kommt nach
ddH

ss kann sein : BC, DE, HL, AF, IX, IY.

128

Kellerspeicher
nach Ausführung
von POP ss

Adresse - �l�-----�

Beispiel
POP HL
Der Inhalt von SP sei 200H

Kellerspeicher
vor POP HL

SP- 200

201
202

203

I/
l-*

kommt nach
Register L
kommt noch
Register H

1 FE

1FF

200

201

202

203

Doppelworttransfer-Umtauschbefehle

EX, DE, HL DE - HL

Kellerspeicher
nach POP HL

lnhal t
SP

202
von
ist

u
C S Z PIV H N

Der Inhalt des Registerpaares DE wird mit dem Inhalt des Regi­
sterpaares HL vertauscht .

EX, AF, AF' , AF - A'F' C S Z PIV H N

Die Inhalte der Register A und F werden mit den Inhalten der Re­
gister A' und F' vertauscht , und zwar A mit A' und F mit F' .

EXX BC - B 'C'
DE - D'E '
HL - H'L'

C S Z PIV H N

Es werden die Inhalte der Register B mit B ' , C mit C' , D mit D ' , E
mit E ' , H mit H' und L mtt L' vertauscht.

C S Z PIV H N

Der Ir.halt des Doppelregisters ss wird mit dem Inhalt von 2 Zellen
des Kellerspeichers· vertauscht . Es wird dabei der niederwertige
Teil ssL des Doppelregisters mit dem Inhalt der Zelle , deren
Adresse in SP steht , und der höherwertige Teil ssH mit der nächsten
Zelte (Adresse SP + 1) vertauscht. Am Ende steht in SP der glei­
cl.e Wert wie vorher.
ss kann sein: HL, IX, IY.

129

Blocktransfer

LDIR (HL) - (DE)

ja

Ende

C S Z P/V H N
. . . 0 0 0

Es wird der Inhalt eines Speicherbereiches, dessen Anfangsadresse
in HL und dessen Blocklänge (Anzahl der Zellen des Speicherbe­
reiches) in BC steht , in einem Speicherbereich mit der Anfangs­
adresse , die in DE steht, gespeichert.

Beispiel
Der Inhalt von HL sei 200, der von DE 600 und der von BC 8 .
Durch LDIR wird der Inhalt der Zellen 200 bis 207 in den Zellen
600 bis 607 gespeichert .

600
.1-----t 601

602
1------t 603
1------t

604
605

1------1 606
1------t 607

130

LDI (HL) � (DE)
HL + 1 � HL DE + 1 � DE

BC - 1 � BC

C S Z PIV H N
t 0 0

Dieser Befehl dient zur Umspeicherung eines Speicherbereiches ,
dessen Anfangsadresse in HL und dessen Blocklänge in BC steht ,
in einen Speicherbereich , dessen Anfangsadresse in DE steht .
Durch eine einmalige Abarbeitung des Befehls wird der Inhalt der
Zelle, deren Adresse in HL steht , in die Speicherzelle gebracht,
deren Adresse in DE steht . Anschließend werden die Adressen in
HL und DE um 1 erhöht und der Inhalt von BC um 1 erniedrigt. Ist
BC - 1 = 0, so wird das Flag PIV = 0, sonst wird PIV = 1 gesetzt.
Durch mehrmaliges Anwenden dieses Befehls läßt sich der Inhalt
eines Speicherbereiches in einen anderen Speicherbereich umspei­
chern . Dabei kann entweder bei BC = 0 oder bei einer anderen Be-
dingung abgebrochen werden.

Beispiel
Der Inhalt von HL sei 300 , der von DE 500 und der von BC sei 12.
Bei der 1. Befehlsabarbeitung von LD I kommt der Inhalt von Zelle
300 nach Zelle 500 . Bei der 2. Abarbeitung von LDI wird der Inhalt
von Zelle 301 nach Zelle 501 gebracht usw . Nach 12 Durchläufen
(Inhalt von BC) ist der Inhalt von BC = 0, was als Endbedingung
genommen werden kann .

LDDR
(HL) - (OE)

C S Z PIV H N
. . . 0 0 c

Es wird der Inhalt eines Speichers , dessen Endadresse in HL und
dessen Blocklänge in BC steht , in einen Speicherbereich, dessen
Endadresse in DE steht , gebncht.

131

Beispiel
Der Inhalt von HL sei 200H, der von DE 600H und der von BC 8H.
Durch LDDR gelangt der Inhalt der Zellen 1F9-200H in die Zellen
5F9-600H.

LDD (HL) --+ (DE)
HL - 1 --+ HL, DE- 1 --+ DE
BC - 1 --+ BC

C S Z PN H N
t 0 0

Dieser Befehl dient zur Umspeicherung eines Speicherbereiches,
dessen Endadresse in HL und dessen Blocklänge in BC steht, in ei­
nen Speicherbereich, dessen Endadresse in DE steht .
Durch eine einmalige Abarbeitung des Befehls wird der Inhalt der
Zelle, deren Adresse in HL steht, in die Speicherzelle gebracht ,
deren Adresse in DE steht . Anschließend werden die Adressen in
HL und DE um 1 erniedrigt und der Inhalt von BC um 1 erniedrigt'.
Ist BC - 1 = 0, so wird das Flag PN = 0, sonst wird PN = 1 ge­
setzt . Durch mehrmaliges Anwenden dieses Befehls läßt sich der
Inhalt eines Speicherbereiches in einen anderen Speicherbereich
umspeichern. Dabei kann entweder bei BC = 0 oder bei einer an­
deren Bedingung abgebrochen werden .

4.1.5.3. Rechen- und logische Operationen mit einem Operand

Akkumulator- und C-Bit-Befehle
CPL Ä --+ A C S Z PN H N

1 1
Der Inhalt des Registers A wird bitweise negiert .

Beispiel
Der Inhalt von Register A sei 1 1001 1 10 .
Nach Ausführung des Befehls CPL ist der Inhalt des Registers A
001 10001 .

NEG Ä + 1 --+ A oder 0 - A --+ A C S Z PN H N
t t t V t 1

Vom Inhalt des Registers A wird das Zweierkomplement gebildet .

Beispiel
Der Inhalt von Register A sei 1 10011 10 .
Nach Ausführung des Befehls NEG ist der Inhalt des Registers A
001 10010.

132

CCF c - C

Der Inhalt des C-Bits wird negiert .

C S Z PN H N
t . . t 0

Im H-Bit wird der vorherige Wert des C-Bit gespeichert.

SCF 1 - C

Der Inhalt des C-Bits wird 1 gesetzt .

DAA

C S Z PN H N
1 . . 0 0

C S Z PN H N
t t t P t ·

Der Befehl DAA dient im Zusammenhang mit der Addition und
der Subtraktion von Dualzahlen zur Berechnung von Summen
oder Differenzen zweier im BCD-Code dargestellten Zahlen .

Beispiel
Im Register A stehe die Zahl 28 im BCD-Code , d. h . , der Inhalt
von Register 00101000 . Im Register B stehe die Zahl 17 im BCD­
Code, d. h . , B = 000101 1 1 . Nach der dualen Addition der Inhalte
von Register A und B steht im Register A 001 1 1 1 1 1 .
Das ist jedoch nicht die BCD-Code-Darstellung von 28 + 1 7 = 45 .
Der Befehl DAA verändert A = 001 1 1 1 1 1 in den Wert A =
01000l01 (= 45 in BCD-Darstellung) .

.

Einzelwortbefehle
INC d d + 1 --7 d C S Z PN H N

. t t p t 0
Der Inhalt der Zelle oder des Registers d wird um 1 erhöht.
d kann sein : - Register A, B, C, D, E, H, L ;

Beispiel

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d . h. Inhalt einer Speicher­
zelle , deren Adresse durch Indexrechnung ermit­
telt wird.

Der Inhalt vom Indexregister IY sei 1A5H.
Durch den Befehl INC (IY + 17H) wird der Inhalt von Zelle
1A5H + 17H = lBCH um 1 erhöht.

133

DEC d d - 1 --> d C S Z PIV H N
· t t P ! 1

Der Inhalt der Zelle oder des Registers d wird um 1 erniedrigt ,
d kann sein : - Register A, B , C, D , E, H , L ;

Beispiel

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird .

Der Inhalt des Doppelregisters HL sei 800 .
Durch den Befehl DEC (HL) wird der Inhalt der Zeile 800 um 1
erniedrigt.

Verschiebebefehle
RLC s
RLCA5l � r-==-l � RLC s

RLCA

C S Z PIV H N
t t t P 0 0
t . . . 0 0

Der Inhalt des Registers oder der Zelle s wird um eine Stelle nach
links verschoben . Das aus Bit 7 (Zählung von rechts nach links)
heraustretende Bit wird in das C-Bit und Bit 0 eingetragen .
s kann sein :- Register A, B , C, D , E, H, L ;

RL s
RLA"1

- (HL) , d . h . eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird.

RLs
RLA

C S Z PIV H N
t t t P 0 0
t . . . 0 0

Der Inhalt des Register' s mkr Jcr Zelle s wird zusammen mit dem
C-Bit um eine Stelle nach links verschoben . Das aus Bit 7 kom­
mende Bit wird in das C-Bit und das C-Bit in Bit 0 eingetragen.

S)RLCA führt dieselbe Funktion wie RLC A aus, i s t jedoc,h e i n 1 -Byte-Befehl.
61RLA und RRCA führen dieselbe Verschiebung wie RL A und RRC A aus. sind aber

I - Byte-Befehle .

134

s kann sein:- Register A, B , C, D , E , H, L;

RRC s
RRCA'' 1

- < HL) , d . h . eine Speicherzelle , deren Adresse in
HL steht ;

- { IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird .

RRCs
RRCA

C S Z PIV H N
! ! ! P 0 0
t 0 0 0 0 0

Der Inhalt des Registers s oder der Zelle s wird um eine Stelle nach
rechts verschoben . Das aus Bit 0 heraustretende Bit wird in das C­
Bit und in Bit 7 eingetragen .
s kann sein :- Register A, B , C, D, E, H, L;

SLA s

- < HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + D) , (IY + d) , d. h. ein Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird .

RRs
RRA

C S Z PIV H N
! ! ! P 0 0
t 0 0 0 0 0

Der Inhalt des Registers s oder der Zelle s wird zu­
sammen mit dem C-Bit um eine Stelle nach rechts ver­
schoben . Bit 0 kommt ins C-Bit und das C-Bit nach
Bit 7 .
s kann sein :- Register A, B , C, D , E, H, L;
- < HL) , d . h . eine Speicherzelle , deren Adresse in

HL steht ;
- < IX + d) , < IY + d) , d. h. eine Speicherzelle , deren

Adresse durch Indexrechnung ermittelt wird .

C S Z PIV H N
! ! ! P 0 0

Dieser Befehl bewirkt eine arithmetische Linksverschiebung des
Registers oder der Speicherzelle s. Das aus Bit 7 heraustretende
,Bit wird in das Register C-Bit eingetragen.
In Bit 0 wird eine 0 eingetragen . Der Befehl entspricht der Multi­
plikation des Registerinhalts mit 2.

'IRRA führt dieselbe Verschiebung wie RR A aus, ist aber ein I-Byte-Befehl.

135

s kann sein: - Register A, B , C, D , E , H , L ;

SRA s

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird.

� C S Z PN H N � ...______. l l l P 0 0
Dieser Befehl bewirkt eine arithmetische Rechtsverschiebung des
Registers oder der Speicherzelle s . Bit 7 bleibt erhalten. In Bit 6
wird Bit 7 eingetragen , Bit 0 kommt ins C-Bit .
s kann sein : - Register A, B , C, D , E , H , L;

RLD

1 7 . . . 4

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird.

SRL s o � C S Z PN H N
l l l P 0 0

Dieser Befehl bewirkt eine Rechtsverschiebung des
Registers oder der Zelle s. Dabei wird ip. Stelle 7 eine
0 1,md in das C-Bit Bit 0 eingetragen.
s kann sein: - Register A, B, C , D, E , H , L ; -
- (HL) , d. h. eine Speicherzelle , deren AC:resse ih

HL steht ;
- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren

Adresse durch Indexrechnung ermittelt wird.

C S Z PN H N
l l p 0 0

y 3 . . . o H 7 . . . • 4 H 3 . . . o �
A (HL}

Dieser Befehl bewirkt e.in Linksverschiebung um eine Tetrade (4
Bit) des Registers A und einer Speicherzelle , deren Adresse in HL
steht .
Dabei werden eingetragen:
- die niederwertige Tetrade von A in die niederwertige Tetrc;de

der Speicherzelle

136

- die niederwertige Tetrade der Speicherzelle in die höherwertige
Tetrade der Speicherzelle und

- die höherwertige Tetrade der Speicherzelle in die niederwertige
Tetrade des Registers A.

RRD C S Z PN H N
. t t p 0 0

7 4 .--y--3-. -. .
-
.o

-
H-

--
1
-

. -. . -. 4-H---3 .-. .
-

. o
-�

A (HL)
Dieser Befehl bewirkt eine Rechtsverschiebung um eine Tetrade
(4 Bit) des Registers A und einer Speicherzelle , deren Adresse in
HL steht .
Dabei werden eingetragen:
- die niederwertige Tetrade von A in die höherwertige Tetrade

der Speicherzelle ,
- die höherwertige Tetrade der Speicherzelle in die niederwertige

Tetrade der Speicherzelle und die
- niederwertige Tetrade der Speicherzelle in die niederwertige Te­

trade des Registers A.

Beispiel (zu den Verschiebebefehlen)
Tm Register 0 stehe die Bit-Folge 01 1 1 001 1 und im C'-Bit eine 1 .

Bit ? B i t 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GJ o l 1 1 1 l 1 l o l o l 1 l 1 l
C-Bit Register 0

Befehl : Information im D-Register und C-Bit nach dem
Befehl :

RLC D
RL D
RRC D
RR D
SLA D
SRA D
SRL D

1 1 1 0 0 1 1 0
1 1 1 0 0 1 1 1
1 0 1 1 1 001
1 0 1 1 1 00 1
1 1 1 00 1 1 0
0 0 1 1 1 001
0 0 1 1 1 0 0 1

C -Bit Register 0
137

Bit-Befehle
Bitb , s sb � z C S Z PN H N . x t x 1 o
Das Bit b des Registers oder der Speicherzelle s wird in negierter
Form in das Z-Flag gebracht, b ist eine Zahl zwischen 0 und 7 .
s kann sein : - Register A, B , C, D, E, H, L;

Bit-Zählunf.!

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird .

ls11 7 ls11 s ��� s ielt 4 1911 3 1911 2 l911 1 19i t o I
Beispiel
Bit 3, (HL)
Bit 3 der Speicherzelle , deren Adresse in HL steht , wird in negier­
ter Form in das Z-Flag gebracht.
- In HL steht die Adresse 80H.
- In der Zelle 80H steht 1 1 101110.
- Durch Bit 3 , (HL) wird eine 0 in das Z-Flag gebracht.

C S Z PIV H N

Das Bit b des Registers oder der Speicherzelle s wird 1 gesetzt, b ist
eine Zahl zwischen 0 und 7 .
s kann sein : - Register A, B , C, D, E, H, L ;

- (HL) , d . h. eine Speicherzelle, deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RES b , s o � sb C S Z PN H N

Das Bit b des Registers oder der Speicherzelle s wird 0 gesetzt.
s kann sein : - Register A, B, C, D, E, H, L;

138

- (HL) , d. h. eine Speicherzelle , deren Adresse in
HL steht ;

- (IX + d) , (IY + d) , d. h. eine Speicherzelle , deren
Adresse durch Indexrechnung ermittelt wird.

Doppelwortbefehle
INC dd dd + 1 -> dd C S Z PN H N

Der Inhalt des Doppelregisters dd wird um 1 erhöht.
dd kann sein: BC, DE, HL, SP, IX, IY

DEC dd dd - 1 -> dd C S Z PN H N

Der Inhalt des Doppelregisters dd wird um 1 erniedrigt.
dd kann sein: BC, DE, HL, SP, IX, IY.

4.1.5.4. Rechen- und logische Operationen mit zwei Operanden

I-Wort-Befehle
ADD s A + s -> A C S Z PN H N

t t t V t 0
Der Inhalt des Akkumulators und der Inhalt des Registers oder der
Zelle s werden adddiert , und das Ergebnis wird ins Register A ge­
bracht .
s kann sein : - Direktoperand n (8-Bit-Zahl) ;

- (HL) , d . h . eine Speicherzelle, deren Adresse iil
HL steht;

- (IX + d) , (IY + d) , d. h. eine durch Indexierung
ermittelte Speicherzelle ;

- Register A, B , C, D , E, H, L.

ADC s A + s + C -> A C S Z PN H N
t t t V 0 t

Der Inhalt des Registers A und der Inhalt des Registers oder der
Zelle s werden addiert . Zu diesem Ergebnis wird das C-Bit in die
niedrigste Stelle addiert . Das Gesamtergebnis kommt in das Regi­
ster A.
s kann sein : siehe 1-Wort-Befehl ADD s.

SUB s A - s -> A C S Z PN H N
t t t V t 1

Der Inhalt der Zelle oder des Registers s wird vom Register A sub­
trahiert . Das Ergebnis kommt in das Register A.
s kano sein : siehe 1-Wort-Befehl ADD s .

SBC s A - s - C -> A C S Z PN H N
t t t V t 1

139

Der Inhalt des Registers oder der Zelle s wird vom Inhalt des A­
Registers subtrahiert. Von der niedrigsten Stelle des Ergebnisses
wird das C-Bit subtrahiert. Das letzte Ergebnis kommt in das Regi­
ster A.
s kann sein : siehe 1-Wort-Befehl ADD s .

AND s A " s � A C S Z PN H N
0 t t p 1 1

Der Inhalt des Registers A und der Inhalt des Registers oder der
Zelle s werden bitweise durch ein logisches UND verknüpft. Das
Ergebnis kommt in das Register A.
s"kann sein : siehe 1-Wort-Befehl ADD s.

OR s A v s � A C S Z PN H N
0 t t p 1 1

Der Inhalt des Registers A und der Inhalt des Registers oder der
Zelle s werden bitweise durch ein logisches ODER verknüpft. Das
Ergebnis kommt in das Register A.
s kann sein : siehe I -Wort-Befehl ADD s.

XOR s A Ef) s � A C S Z PN H N
0 t t p 1 0

Der Inltalt des Registers A und der Inhalt des Registers oder der
Zelle s werden bitweise durch ein logisches EXKLUSIV-ODER
verknüpft. Das Ergebnis kommt in das Register A.
s kann sein : siehe 1-Wort-Befehl ADD s.

CP s C S Z PN H N
t t t V t 1

Der Inhalt des Registers A wird mit dem Inhalt des Registers oder
der Zelle s verglichei L Der Vergleich erfolgt durch die Bildung der
Differenz A - s. Bei Gleichheit wird das Z-Bit gesetzt , bei Un­
gleichheit rückgesetzt.
s kann sein : siehe 1-Wort-Befehl ADD s.

Doppelwortbefehle
ADD HL, ss HL + ss � HL C S Z PN H N

t . . t 0
Der Inhalt des Doppelregisters HL wird mit dem Inhalt des Dop­
pelregisters ss addi�rt . Das Ergebnis kommt nach HL. Bit H wird
mit dem Übertrag aus Bit 11 gesetzt .
ss kann sein : BC, DE, HL, SP.

140

ADC HL, ss HL + ss + C � HL C S Z PIV H N
t t t v t o

Der Inhalt des Doppelregisters HL wird mit dem Inhalt des Dop­
pelregisters ss addiert . Zum Ergebnis wird das C-Bit in die niedrig­
ste Stelle addiert . Das letzte Ergebnis kommt nach HL. Bit H wird
mit dem Übertrag aus Bit 1 1 gesetzt .
ss kann sein : BC, DE, HL, SP.

SBC HL, ss HL - ss - C � HL C S Z PIV H N
t t t V t 1

Der Inhalt des Doppelregisters ss wird vom Doppelregister HL
subtrahiert . Anschließend wird davon das C-Bit in der letzten
Stelle subtrahiert . Das Ergebnis kommt nach HL, Bit H wird vom
Übertrag von Bit 12 gesetzt .
ss kann sein : BC, DE, HL, SP.

ADD IX, ss IX + ss � IX C S Z PIV H N
t . . t 0

Der Inhalt des Doppelregisters ss wird zum Inhalt des Indexregi- ·
sters IX addiert . Das Ergebnis kommt nach IX. Bit H wird mit dem
Übertrag aus Bit 1 1 gesetzt .
ss kann sein : BC, DE, IX, SP.

ADD IY, ss IY + ss � IY C S Z PIV H N
t . . t 0

Der Inhalt des Doppelregisters ss wird zum Inhalt des Indexregi­
sters IY addiert . Das Ergebnis kommt nach IY. Bit H wird mit dem
Übertrag aus Bit 1 1 gesetzt .
ss kann sein: BC, DE, IY, SP.

141

4.1.5.5. Rechen- und logische Operationen mit mehreren Ope­
randen

CPIR Vergleich A mit (HL) .
A = (HL) ? � • nein 1

HL + 1 - HL
BC - 1 - BC

C S Z PN8l H N . t t t t 1

Der Inhalt eines Speicherbereiches , dessen Anfangsadresse in HL
und dessen Länge in BC steht , wird nach einer Information im Re­
gister A durchsucht. Befindet sich die Information in einer Zelle
des Speicherbereiches , so ist der Befehl an dieser Stelle beendet .
Befindet sich die Information nicht in dem gesuchten Speicherbe­
reich, so wird der Befehl nach der letzten Zelle des Bereiches been­
det . Wird die Information im Speicherbereich gefunden, so wird
trotzdem HL um 1 erhöht und BC um 1 erniedrigt . Im Flagregister
steht das Ergebnis der letzten Vergleichsoperation. Das Bit PN ist
1, wenn BC - 1 =F 0, sonst 0.

Beispiel
Die Zellen 200 H bis 205 H sollen nach der Bit-Folge 0000011 1
durchsucht werden.
In den Zellen 200 H bis 205 H stehen:
200 H 1 1 1 1 1 1 1 1
201 H 00000000
202 H 01000000
203 H 00000111
204 H 00000000
205 H 10000001
Dazu bringt man die Bit-Folge 000001 1 1 in das Register A, die
Adresse 200 H ins Registerpaar Hl und die Anzahl 6 ins Register­
paar BC. Nach der Ausführung des Befehls CPIR steht in HL 204
H, und das Z-Bit ist gesetzt .
Würde in Zelle 203 die Bit-Folge 01010101 stehen, so stünde nach
Abarbeitung des Befehls CPIR in Hl 206H, und das Z-Bit würde
rückgesetzt werden .

•>wenn BC zum Befehlsende 0 ist , dann wird PN = 0; ist BC * 0, so wird PN = I gesetzt.

142

CPI Vergleich A mit (HL)
HL + 1 -+ HL
BC - 1 -+ BC

C S Z p�l H N
. t t t t 1

Der Inhalt des Speicherplatzes, dessen Adresse in HL steht, wird
mit dem Inhalt des A-Registers verglichen und das Hagregister ge­
setzt. Das PN-Flag ist 1 , wenn BC - 1 * 0, sonst 0. Anschließend
wird der Inhalt von HL um 1 erhöht und der Inhalt von BC um 1 er­
niedrigt. Mit Hilfe des Befehls CPI läßt sich ein Speicherbereich
auf eine Bit-Folge, die im A-Register steht , durchsuchen, wobei
die Abbruchbedingung frei wählbar ist .
CPDR Vergleich A mit (Hl) .

A = (HL)� l nein I
Hl- 1 -HL HL- 1 - HL

BC - 1 - BC

Ende

C S Z p�l H N
. t t t t 1

Der Inhalt eines Speicherbereiches, dessen Endadresse in HL und
dessen Länge in BC steht , wird nach einer Information, die im Re­
gister A steht, durchsucht. Befindet sich die Information in einer
Zelle des Speicherbereiches , so wird der Befehl an dieser Stelle be­
endet. Steht die Information nicht in dem gesuchten Speicherbe­
reich, so endet der Befehl nach der ersten Zelle des Bereiches.
Wird die Information im Speicherbereich gefunden, so werden
trotzdem HL und BC um 1 erniedrigt.
Im Flagregister steht das Ergebnis der letzten Vergleichsopera­
tion. Das Bit PN ist 1 , wenn BC - 1 * 0, sonst 0.

Beispiel
Die Zellen 200H bis 205H sollen nach der Bit-Folge 000001 11
durchsucht werden . In den Zellen 200H bis 205H stehen:
200H 111111 1 1
201H 00000000
202H 01000000
203H 00000111
204H 00000000
205H 10000001

9l Wenn BC nach Befehlsausführung 0 ist, dann wird PN = 0; ist BC ,;. 0, so wird PN = 1
gesetzt. '

143

Dazu bringt man die obige Bit-Folge in das Register A, die Adresse
205H in das Register HL unq die Anzahl 6 in das Registerpaar BC.
Nach Ausführung des Befehls CPDR steht in HL 202H, und das Z­
Bit ist gesetzt.
Würde sich in Zelle 203H die Bit-Folge 01010101 befinden, so
stünde nach Abarbeitung des Befehls CPDR in HL 1FFH, und das
Z-Bit würde rückgesetzt sein .

CPD Vergleich A mit (HL)
HL - 1 -> HL
BC - 1 -> BC

c s z PN10) H N
. t t t t 1

Der Inhalt des Speicherplatzes , dessen Adresse in HL steht , wird
mit dem Inhalt des A-Registers verglichen und das Plagregister ge­
setzt. Das PN-Flag ist 1 , wenn BC - 1 * 0, sonst 0. Anschließend
werden der Inhalt von HL und der von BC um 1 erniedrigt. Mit
Hilfe des Befehls CPD läßt sich ein Speicherbereich auf eine Bit­
Folge , die im A-Register steht , durchsuchen , wobei die Abbruch­
bedingung frei wählbar ist .

4.1.5.6. Sprungbefehle

JP nn nn -> PC C S Z PN H N

Die Adresse nn wird in den Befehlszähler PC gebracht. Der näch­
ste abzuarbeitende Befehl ist damit der Befehl aus Zelle nn . Man
sagt , der Rechner führt einen Sprung in die Zelle nn aus.

JP ce, nn Wenn cc = true , nn -> PC C S Z PN H N

Wenn die Bedingung cc erfüllt ist , dann wird die Adresse nn in den
Befehlszähler PC gebracht. ·
cc kann sein : - NZ Z-Bit rückgesetzt,

- Z Z-Bit gesetzt ,
- NC C-Bit rückgesetzt,
- C C-Bit gesetzt,
- PO Paritätsbit auf ungerade gesetzt,
- PE Paritätsbit auf gerade gesetzt ,
- P Vorzeichenbit aufpostiv gesetzt,
- M Vorzeichenbit auf n�gativ gesetzt .

10ls . Fußnote S. 143

144

JR e PC + e --+ PC C S Z PN H N

Der Befehlszähler PC wird um die Zahl e verändert . e ist eine 8-
Bit-Zahl im Zweierkomplement, d. h . , e kann auch negativ sein .
A11:sgangspunkt für PC + e --+ PC ist die Adresse des Operationsco­
des des Befehls . Der Rechner führt einen Sprung um e Zellen aus .
Die Zahl e steht als e - 2 in der Zelle nach dem Operationscode.

Beispiel
Von Zelle 100 soll ein Sprung nach 105 erfolgen .
Befehl: JR 5
-100 18

101 3
102 '
103
104

--+ 105

<-- Operationscode des Befehls IR
<-- e - 2

<-- PC-Stand nach dem Befehl .

JR kk, e Wenn kk = true , PC + e --+ PC C S Z PN H N
wenn kk = not true, Leerbefehl

Wenn die Bedingung kk erfüllt ist , dann führt der Prozessor einen
Sprung um e Zellen aus .
kk kann sein : - NZ Z-Bit rückgesetzt, ·

- Z Z-Bit gesetzt ,
- NC C-Bit rückgesetzt,
- C C-Bit gesetzt .

JP (ss.) ss --+ PC C S Z PN H N

Der Inhalt des Doppelregisters ss wird nach PC gebracht. Der
Rechner führt einen Sprung in die Zelle aus , deren Adresse in ss
steht.
ss kann sein : HL. IX, IY.

DJNZ e

PC • e-PC
nächster Befehl

C S Z PN H N

Solange B - 1 =F 0 ist, führt der Rechner einen Sprung um e Zellen
aus . e ist eine 8-Bit-Zahl im Zweierkomplement , d. h. e kann auch
negativ sein. Ausgangspunkt für PC + e --+ PC ist die Adresse des

145

Operationscodes des Befehls . Die Zahl e steht als e - 2 in der Zelle
nach dem Operationscode .

Beispiel
Eine Programmschleife von Zelle 200 bis 209 soll 10mal durchlau­
fen werden. Dazu bringt man eine 10 in das Register B . Der Be­
fehl, der diese 10fache Programmschleife realisiert, lautet
DJNZ - 9.
Aufbau der Progammschleife:

I
���
202
203
204

Rücksprung • ·
205

wenn B • 0

L
���
208
209 DJNZ-Operot ionscode

210 - 1 1 -e - 2

4.1.5. 7. Unterprogrammbefehle

llnterprogran1n1ru[e
CALL nn PCH, PCL -+ (SP - 1 } , (SP - 2} C S Z PN H N

SP - 2 -+ SP
nn -+ PC

Der CALL-Befehl realisiert einen Sprung in ein Unterprogramm,
dessen Startadresse nn ist . Dabei wird der aktuelle Befehlszähler­
stand (Adresse des Operationscodes des nächsten Befehls) im
STACK gespeichert . Der höherwertige Teil von PC kommt in die
Zelle , deren Adresse sich aus den um 1 erniedrigten Inhalt des
STACKPOINTER SP ergibt . Der niederwertige Teil von PC ge­
langt in die Zelle , deren Adresse sich aus dem um 2 erniedrigten In­
halt des STACKPOINTER ergibt. Der STACKPOINTER ist am
Ende des Befehls um 2 erniedrigt .

146

CALL cc, nn wenn cc = true C S Z PN H N
PCH, PCL � (SP - 1) , (SP - 2)
SP - 2 � SP
nn � Pc

Wenn die vorgegebene Bedingung cc erfüllt ist , so wird der Befehl
CALL nn ausgeführt. Ist die Bedingung nicht erfüllt , dann hat der
Befehl die Funktion eines Leerbefehls .
cc kann sein : - NZ Z-Bit rückgesetzt,

- Z Z-Bit gesetzt,
- NC C-Bit rückgesetzt,
- C C-Bit gesetzt,
- PO Paritätsbit auf ungerade gesetzt,
- PE Paritätsbit auf gerade gesetzt,
- P Vorzeichenbit auf positiv gesetzt,
- M Vorzeichenbit auf negativ gesetzt.

RST z, PCH, PCL � (SP - 1) , (SP - 2)
SP - 2 � SP
z � Pc

C S Z PN H N

z ist eine der Hexadezimaladressen OH, 8H, lOH, 18H, 20H, 28H,
30H, 38H.
Der Befehl RST z (RESTART) ist ein CALL-Befehl mit der
Adresse z. Er wird in Verbindung mit dem INTERRUPT in
MODE 0 verwendet. Hier muß während dem INTERRUPT-Zy­
klus über den Datenbus ein I-Byte-Befehl in den Prozessor gege­
ben werden. Der RST-Befehl stellt einen 1-Byte-CALL-Befehl
dar, während der vollständige CALL-Befehl 3 Byte lang ist.

Rückkehrbefehle
RET (SP + 1) , (SP) � PCH, PCL

SP + 2 � SP
C S Z PN H N

Der RET-Befehl realisiert den Rücksprung aus einem Unterpro­
gramm. Durch ihn wird die zuletzt in den STACK gespeicherte
Adresse in den Befehlszähler PC gebracht. Der Inhalt der Zelle
dessen Adresse im STACKPOINTER steht, kommt in den nieder­
wertigen Teil von C, der Inhalt der Zelle , dessen Adresse sich aus
dem Inhalt des STACKPOINTERS plus 1 ergibt, in den höherwer­
tigen Teil von PC. Der STACKPOINTER ist am Ende des Befehls
um 2 erhöht.

147

RET cc wenn cc = true ;
(SP + 1) , (SP) -> PCH, PCL
SP + 2 -> SP

C S Z PN H N

Wenn die vorgegebene Bedingung cc erfüllt ist , dann wird der Be­
fehl RET cc ausgeführt . Ist die Bedingung nicht erfüllt , so hat der
Befehl die Funktion eines Leerbefehls.
cc kann sein : - NZ Z-Bit zurückgesetzt ,

- Z Z-Bit zurückgesetzt,
- NC C-Bit zurückgesetzt,
- C C-Bit gesetzt,
- PO Paritätsbit auf ungerade gesetzt ,
- PE Paritätsbit auf gerade gesetzt ,
- P Vorzeichenbit auf positiv gesetzt,
- M Vorzeichenbit auf negativ gesetzt ,

RETI (SP + 1) , (SP) -> PCH, PCL
SP + 2 -> SP
IFF2 -> IFF1

C S Z PN H N

Der Befehl RETI dient als Rücksprungbefehl beim maskierten IN­
TERRUPT.

RETN (SP + 1) , (SP) -> PCH, PCL
SP + 2 -> SP
IFF2 -> IFF1

C S Z PN H N

Der Befehl RETN dient als Rücksprungbefehl beim nichtmaskier­
ten INTERRUPT.

4.1.5.8. Ein· und Ausgabebefehle

Einzelwortein- und -ausgabe
IN A, (n) (n) -> A C S Z PN H N

· t ! P O O ,
Innerhalb eines Eingabezyklus wird das auf dem Datenbus vorhan­
dene Byte in das Register A gebracht. Während des Eingabezyklus
enhält der höherwertige Teil des Adreßbus den alten Inhalt des
Registers A und der niederwertige Teil die Zahl n, die als Adresse
für das periphere Gerät dient .

IN r, (C) (C) -> r C S Z PN H N

Innerhalb eines Eingabezyklus wird das auf dem Datenbus vorhan-

148

dene Byte in das Register r gebracht . Während des Eingabezyklus
enthält der' höherwertige Teil' des Adreßbus den Inhalt des Regi­
sters B und der niederwertige Teil den Inhalt des Registers C, der
als Adresse für das periphere Gerät dient .
r kann sein : Register A, B , C, D , E, H, L.

OUT (n } , A A -+ (n) C S Z P/V H N

Innerhalb eines AusgabezykJus wird der Inhalt des Registers A auf
den Datenbus gebracht . Während des Ausgabezyklus enthält der
höherwertige Teil des Adreßbus den alten Inhalt ddes Registers A
und der niederwertige Teil die Zahl n, die als Adresse für das peri­
phere Gerät dient.

OUT (C } , r r --+ (C } C S Z P/V H N

Innerhalb eines Ausgabezyklus wird der Inhalt des Regis�ers r auf
den Datenbus gebracht . Während des Ausgabezyklus enthält der
höherwertige Teil des Adreßbus den Inhalt des Registers B und der
niederwertige Teil den Inhalt des Registers C, der als Adresse für
das periphere Gerät dient .
r kann sein : 1 Register A, B , C, D , E, H, L.

Blocktransfer
INIR

Adreßbus:
A1s · . . As

Inhalt des

C S Z P/V H N · X 1 X X 1

Inhalt des
Ende B-Registers C-Registers

Der Prozessor füh rt l: inc Reihe Eingabebefehle durch , deren An­
zahl n im Register B steht . Während jedes Eingabezyklus wird der
Datenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge­
bracht, deren Adresse in HL steht . Nach jedem Eingabezyklus er­
höht sich der Inhalt von HL um 1 , und der Inhalt von B wird um 1
erniedrigt . Insgesamt liest der Prozessor n Bytes ein , die in einen
Speicherbereich gebracht werden , dessen Anfangsadresse in HL
steht . Während eines Eingabezyklus enthält der höherwertige Teil
des Adreßbus den Inhalt des C-Registers, der als periphere
Adresse dient .

149

INI DB --+ (HL) C S Z PN H N
X f X X 1 HL + 1 --+ HL

B - 1 --+ B
Adreßbus: Ats · . . Ag A7 . . . Ao

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor führt einen Eingabebefehl aus . Dabei wird der Da­
tenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge­
bracht, deren Adresse in HL steht . Anschließend wird der Inhalt
von HL um 1 erhöht und der Inhalt von B um 1 erniedrigt. Das Z­
Bit wird 0, wenn B - 1 'I= 0 wird, und 1 , wenn B - 1 = 0 wird.
Während des Eingabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers . der als periphere Adresse dient .
INDR OB -+ (HL) C S Z PN H N

-+ HL • X 1 X X 1
Adreßbus:
Ats · . . Ag

ja Inhalt des Inhalt des
Ende B-Registers C-Registers

Der Prozessor führt eine Reihe Eingabebefehle durch, deren An­
zahl n im Register B steht . Während jedes Eingabezyklus wird der
Datenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge­
bracht, deren Adresse in HL steht. Nach jedem Eingabezyklus er­
niedrigt sich der Inhalt von HL und B um 1 . Insgesamt liest der Pro­
zessor n Bytes ein , die in einen Speicherbereich gebracht werden,
dessen1Endadresse in HL steht .
Während eines Eingabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient .
IND DB --+ (HL) C S Z PN H N

150

HL - 1 --+ HL · X f X X 1
B - 1 --+ B
Adreßbus: Ats · . . Ag A7 . . . Ao

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor führt einen Eingabebefehl aus . Dabei wird der Da­
tenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge­
bracht, deren Adresse in HL und B steht. Anschließend erniedrigt
sich der Inhalt von HL um 1 . Das Z-Bit wird 0, wenn B - 1 * 0,
und 1 , wenn B - 1 = O ist.
Während des Eingabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers , der als periphere Adresse dient .

OTIR

Ende

C S Z PN H N
X 1 X X 1

Adreßbus:
A1s · . . As A1 . . . Ao
Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor führt eine Reihe Ausgabebefehle durch, deren An­
zahl n im Register B steht. Während jedes Ausgabezyklus wird der
Inhalt der Speicherzelle, deren Adresse in HL steht , auf den Da­
tenbus DB gebracht. Nach jedem Ausgabezyklus erhöht sich der
Inhalt von HL um 1 , und der Inhalt von B wird um 1 erniedrigt. Ins­
gesamt gibt der Prozessor n Bytes aus, die in einem Speicherbe­
reich stehen, dessen Anfangsadresse in HL steht .
Während eines Aushabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient .

OUTI (HL) -+ DB -+ ext. Gerät
HL + 1 -+ HL
B - 1 -+ B
Adreßbus:A15 • . • A8 A7 . . . Ao

Inhalt des Inhalt des
B-Registers C-Registers

C S Z PN H N
. X t X X 1

Der Prozessor führt einen Ausgabebefehl aus. Dabei wird der In­
halt der Speicherzelle , dessen Adresse in HL steht , auf den Daten­
bus DB gebracht. Anschließend erhöht sich der Inhalt von HL um
1 , und der Inhalt von B wird um 1 erniedrigt. Das Z-Bit wird 0,
wenn B - 1 * 0 ist , und 1 , wenn B - 1 = 0 ist . Während des
Ausgabezyklus enthält der höherwertige Teil des Adreßbus den

151

Inhalt des ·B-Registers und der niederwertige Teil den Inhalt des C­
Registers, der als periphere Adresse dient .

OTDR

Ende

C S Z PN H N
X 1 X X 1

Adreßbus:
AIS · . . Ag

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor führt eine Reihe Ausgabebefehle durch , deren An­
zahl n im Register B steht . Während jedes Ausgabezyklus wird der
Inhalt der Speicherzelle , deren Adresse in HL steht , auf den Da­
tenbus gebracht. Nach jedem Ausgabezyklus erniedrigt sich der
Inhalt von HL und B um 1 . Insgesamt gibt der Prozessor n Bytes
aus , die in einem Speicherbereich stehen , dessen Endadresse in
HL steht .
Während des Ausgabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der njederwertige Teil
den Inhalt des C-Registers , der als periphere Adresse dient .

OUTD (HL) --+ DB --+ ext . Gerät C S Z PN H N
HL - 1 --+ HL · X t X X 1
B - 1 -+ B
Adreßbus:A15 • . • Ag A7 . . . Ao

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor führt einen Ausgabebefehl aus . Dabei wird der In­
halt der Speicherzelle , dessen Adresse in HL steht , auf den Daten­
bus DB gebracht . Anschließend erniedrigt sich der Inhalt von HL
und B um 1. Das Z-Bit wird 0, wenn B - 1 * 0 ist , und 1, wenn
B - 1 = O ist.
Während des Ausgabezyklus enthält der höherwertige Teil des
Adreßbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers , der als periphere Adresse dient .

152

4.1.5.9. Steuerbefehle

HALT
Der Befehl HALT bringt den Prozessor in der STOP-Zustand.
Während dieses Zustandes führt der Prozessor NOP-Befehle aus,
wobei er über den Adreßbus die Auffrischadresse für dynamische
Speicher aussendet. Den HALT-Zustand kann der Baustein durch
INTERRUPT oder RESET verlassen .

NOP
Während NOP führt der Prozessor einen Leerzyklus aus .

DI
0 � IFF1 , 0 � IFF2
Durch den Befehl DI wird der maskierte INTERRUPT-Eingang
geseperrt. Die beiden INTERRUPT-Flip-Flop IFF1 und IFF2
werden rückgesetzt.

EI
1 � IFF1 , 1 � IFF2
Durch den Befehl EI wird der maskierte INTERRUPT-Eingang
geöffnet. Die beiden INTERRUPT-Flip-Flop IFF1 und IFF2 wer­
den gesetzt.

IMO
IMO setzt den Prozessor in den INTERRUPT-MODE 0.

IMI
IMI setzt den Prozessor in den INTERRUPT-MODE 1 .

1M2
1M2 setzt den Prozessor in den INTERRUPT-MODE 2.

4.1.6. INTERRUPT

Wie bereits beschrieben, bedeutet "INTERRUPT" Unter­
brechung des gerade laufenden Programms und Übergang zu ei­
nem anderen Programm, das durch das unterbrechende Signal be­
stimmt wird. Durch den INTERRUPT-Eingang läßt sich also die
Arbeitsweise des Prozessors steuern . Der Prozessor U 880 hat 2
INTERRUPT-Eingänge.
- den nichtmaskierten NMI (NMI - nichtmaskierter INTER­

RUPT)

153

Ablaufbei Auftreten eines INTERRUPT-Signals

Auftreten eines Signals
om Eingong INT

Auftreten eines Signals
om Eingong NMI

Die Rückkehr aus dem zugehörigen Arbeitsprogramm in das unterbrochene Programm
geschieht über einen RETURN-Befehl.

- den maskierten Eingang INT (INT- INTERRUPT) .
Maskierbar heißt , daß das Eingangstor durch das Programm ge­
öffnet und gesperrt werden kann. Das Öffnen geschieht durch
einen speziellen Befehl EI. Für das Sperren gibt es den Befehl
Dl. Zur Steuerung des INTERRUPT-Eingangstors INT gibt es
im Prozessor 2 Flip-Flop IFFl und IFF2.
IFFl dient zur unmittelbaren Steuerung des INT-Tores . Ist es
eingeschaltet, so ist das INT-Tor geöffnet; ist es ausgeschaltet,
ist das INT-Tor gesperrt.
Jedes von außen kommende !NT-Signal schaltet das IFFl , nach­
dem es das laufende Programm unterbrochen hat , zunächst aus .

154

Wirkung der Befehle und Signale auf IFF1 und IFF2

IFFl IFF2

RE SET 0 --+ IFFl 0 --+ IFF2 INTERRUPT-
DI 0 --+ IFFl 0 --+ IFF2 MODE O
EI 1 --+ IFFl 1 --+ IFF2
LD A, I bleibt bleibt IFF2 --+ Parity-Flag
LD A, R bleibt bleibt IFF2 --+ Parity-Flag
!NT 0 --+ IFFl 0 --+ IFF2
NM! 0 --+ IFFl IFFl --+ IFF2
RETN IFF2 --+ IFFl bleibt
RETI IFF2 --+ IFFl bleibt

Damit erreicht man, daß das durch das !NT-Signal aufgerufene
Programm nicht wieder unterbrochen werden kann. Das IFF1
wird auch ausgeschaltet, wenn ein Unterbrechungssignal über
den NMI-Eingang kommt. In diesem Fall wird aber vorher der
Zustand des IFF1 auf das IFF2 übertragen.
IFF2 dient als Zwischenspeicher für das IFFl . Wenn ein Signal
über den NMI-Eingang kommt, wird der Zustand von IFF1 und
IFF2 gespeichert.

Ist das zu NMI gehörige Programm abgearbeitet, wird durch den
Rückkehrbefehl für den nichtmaskierten INTERRUPT RETN
der Inhalt von IFF2 wieder nach IFF1 gebracht.
Der Übergang in das zum INTERRUPT gehörende Arbeitspro­
gramm ist bei den Eingängen NMI und INT unterschiedlich.
• Bei dem nichtmaskierten INTERRUPT (NMI) geschieht das

durch den Befehl CALL 66H.
Dieser Befehl wird im Prozessor automatisch gebildet und abge­
arbeitet.

• Bei dem maskierten INTERRR UPT (INT) gibt es 2 Möglichkei­
ten des Übergangs in das dazugehörige Arbeitsprogramm. Die 3
Möglichkeiten werden mit MODE 0, MODE 1 und MODE 2
bezeichnet. Diese MODE lassen sich vorher durch die Befehle
IMO, IM1 und 1M2 einstellen.

• Im MODE 0 wird ein während des INTERRUPT-Zyklus einge­
lesenes 8-Bit-Wort als Befehl interpretiert und sofort abgearbei­
tet. Dafür verwendet man meistens den Befehl RSTZ. Er ist ein
CALL-Befehl zu einer festen Adresse.

• Im MODE 1 wird ähnlich wie beim nichtmaskierten INTER­
RUFT ein Befehl CALL 38H gebildet und ausgeführt.

155

• Im MODE 2 wird aus dem I-Register als höherwertiger Teil und
aus einem eingelesenen 8-Bit-Wort als niederwertiger Teil eine
Adresse ADR gebildet . Das niederwertigste Bit des eingelese­
nen Bytes muß 0 sein . Das eingelesene 8-Bit-Wort nennt man In­
terrruptvektor.
ADR = lr-:I,.-,-R=-e-g...,.is-te-r---,1----=I-nt-e-rru-p-tv-e.,..kt-o-r-,1
Diese Adresse zeigt auf eine Zelle , deren Inhalt als Adresse ei­
nes CALL-Befehls verwendet wird . In MODE 2 wird also bei ei­
nem auftretenden !NT-Signal der Befehl
CALL (I-Register, Interruptvektor)
gebildet und ausgeführt.
Bild 4.9 und 4 .10 zeigen den zeitlichen Ablauf beim Erscheinen
eines INTERRUFT-Signals .

Handhabung der INTERRUPT-Eingänge
- Der nichtmaskierte INTERRUFT wird für sehr wichtige Ereig­

nisse verwendet. Er hat die höchste Priorität und unterbricht in
jedem Fall das gerade laufende Programm. Zur Bedienung die­
ses INTERRUFT muß man ab Zelle 66 H ein dazugehöriges Ar-
beitsprogramm speichern. '

- Der maskierte INTERRUFT-Eingang dient zum Aufbau um­
fangreicher Unterbrechungsschaltungen. An diese)assen sich.
Sammeisehaltungen für eine große Anzahl Unterbrechungs­
quellen anschließen. Die Unterbrechungsquellen können eine
Mehrebenenstruktur haben und nach Prioritäten gestaffelt sein.

Zum Beispiel läßt sich MODE 2 im Speicher eine Tabelle der Start­
adresse aufbauen:

I-Register } Startadresse 0 NWT
Interruptvektor 1 Startadresse 0 HWT

L startadresse 1 NWT-----.

Startadresse 1 HWT

Startadresse 127 NWT
Startadresse 127 HWT �

Arbeitsprogr. 1

156

Der Inhalt des I-Registers gibt an , aufwelcher Seite die Startadres­
sen liegen (1 Seite = 256 Zellen) . Durch das vom Datenbus kom,
mende Byte lassen sich damit 128 INTERRUPT-Quellen be-.
dienen .

4.1.7. Starten des Prozessors U 880

Die Programmabarbeitung des Prozessors läßt sich über die IN­
TERRRUPT-Möglichkeiten oder über RESET starten. Dabei
gibt es folgende Startvarianten:
1 . Ein Startimpuls kommt über die NMJ-Leitung. In diesem Fall

muß ab Zelle 66H das Startprogramm stehen.
2. Der Startimpuls kommt über die !NT-Leitung. Dazu müssen

der !NT-Eingang vorher mit EI freigemacht, der notwendige
INTERRUPT MODE eingestellt und das INTERRUPT-Wort
auf dem Datenbus bereitgestellt werden .

3. Nach RESET beginnt die Abarbeitung im Prozessor mit Zelle ·
0. In Zelle 0 kann damit der 1 . Befehl des Startprogramms ste­
hen .

4.1.8.

� +5V
GND

Anschlüsse an den Baustein U 880

U 880

Bild 4. 13 Anschlußbild des
Bausteins U 880

157

Ao bis Ats
Adreß-Bus

D0bis D1
Data-Bus

Ml

MREQ
Memory
Request

IORQ
Input-Output
Request

WR
WRITE

RD
READ

RFSH
Refresh

HALT
Halt state

WAIT
Wait

158

Adreßbus, Tristate-Ausgang, aktiv "High"

Datenbus, Tristate-Ein- und -Ausgang, aktiv
,,High"

Der laufende Zyklus ist ein Operationscodehol­
Zyklus
Ausgangssignal, aktiv "Low"

Am Adreßbus ist eine Speicheradresse vorhanden.
Tristate-Ausgang, aktiv "Low"

Der niederwertige Teil des Adreßbus enthält eine
Ein- oder Ausgabeadresse.
Ein gleichzeitiges Erscheinen von M1 und IÖRQ
kennzeichnet einen INTERRUPT-Zyklus
Tristate-Ausgang, aktiv "Low"

Der Datenbus des Prozessors enthält Daten zur
Ausgabe. Tristate-Ausgabe , aktiv "Low"

Vom Prozessor werden Daten über den Datenbus
eingelesen, Tristate-Ausgang, aktiv "Low"

Die 7 niederwertigen Bits des Adreßbus enthalten
eine Auffrischadresse für angeschlossene dyna­
mische Speicher.
Sie kann in Verbindung mit Memory Request zum
Auffrischen dieses Speichers verwendet werden.
Ausgabesignal, aktiv "Low"

Der Prozessor hat einen HALT-Befehl ausgeführt
und befindet sich im HALT-Status.
Während des HALT-Status führt der Prozessor
NOP-Operationen aus, während dieser NO P-Ope­
rationen finden Auffrischzyklen statt . Ausgabesi­
gnal, aktiv "Low"

Das WAIT-Signal veranlaßt den Prozessor, nach
dem nächsten TI-Zustand in den Wartezustand zu
gehen; solange WAIT aktiv ist , führt der Prozessor
Wartezyklen durch.
Eingabesignal, aktiv "Low"

INT
Interrupt
Request

Anforderungssignal zu einer Programmunterbre­
chung im Prozessor·. Es wird vom Prozessor am
Ende .eines Befehlszyklus angenommen, wenn das
Flip-Flop IFF1 gesetzt (INTERRUPT-Erlaube­
FF) und das Signal BUSRQ nicht aktiv ist .
Der Ablauf des INTERRUPT-Vorgangs ist im Ab­
schnitt 4 . 1 .6 . beschrieben.
Eingabesignal, aktiv "Low"
INT-0-0'----�Annahme

i i i des
Signal Befehls- INT-Frei- BUSRQ INTER­

ende gabe-FF
gesetzt
(IFF1 = 1)

= "High" RUPT
durch den
Prozessor

NMI Das Signal NMI verhält sich ähnlich wie das Signal
Non Maskable INT. Im Unterschied zu INT ist es jedoch nicht
Interrupt maskierbar und hat eine höhere Priorität. Es wird

BUSRQ
Bus
Request

BUSAK
Bus

am Ende eines Befehls angenommen, wenn das
Signal BUSRQ nicht aktiv ist .
Eingabe mit negativer Flanke getriggert.

Dieses Signal setzt den Prozessor in den Grund­
zustand. Der Grundzustand ist gekennzeichnet
durch:
0 -+ PC 0 -+ I
0 -+ IFF1 ; 0 -+ R
0 -+ IFF2; INTERRUPT MODE 0
Während das Signal RESET anliegt, sind Adreß­
und Datenbus im hochohmigem Zustand und die
Steuersignale inaktiv. Nach RESET beginnt die
Abarbeitung mit Zelle 0 .
Eingabesignal, aktiv "Low"

Dieses Signal bringt den Adreßbus, den Datenbus
und die Steuersignale in den hochohmigen Zu­
stand. Es wird am Ende jedes Maschinenzyklus
abgefragt.
Eingabesignal, aktiv "Low"

Datenbus , Adreßbus und Steuerbus befinden sich
im hochohmigen Zustand. Die CPU arbeitet nicht.

159

Acknowledge Es erfolgt kein REFRESH.

(/)
Steuertakt

Ausgabesignal , aktiv "Low"

Der Steuertakt kann über einen 330-!l-Widerstand
nach 5 V mit dem Ausgang eines TIL-Schaltkrei­
ses verbunden sein (Bild 4. 14) .

Bild 4 . 14
Takteingang in den
Prozessor U 880

4.2. Der Mikroprozessorbaustein 8080

Der Mikroprozessor 8080, ein stark verbreiteter Baustein, wird in
sehr vielen Mikrorechner-Konfigurationen verwendet. Alle in ihm
vorhandenen Möglichkeiten sind auch im Mikroprozessor U 880
enthalten .

4,2.1. Registerstruktur

Bild 4 .15 zeigt die Registerstruktur des Bausteins 8080. Die Regi­
ster A, B, C, D, E, H, L, SP, PC, BR haben die gleiche Funktion
wie beim Prozessor U 880. Das gleiche gilt für die Flags, C, S, Z, P ,
H. Das P-Flag wird jedoch nur in Abhängigkeit von der Parität des
Ergebnisses gesetzt.

4.2.2. Befehlsaufbau

Ein 8080-Befehl besteht wie beim U 880 aus Operationscode und
Adreßteil. Es gibt nur Befehle mit 1-Byte-Operationscode. Die
Indexrechnung gibt es nicht.

160

... 0

4.2.3.

"' :J .D c 2 0 0

� .,
� N U W -l

0 N
14DMSn1f- JajSI a1:1

I
I ..-- - - - ...- - - - - - - .. - - - - - - - -, I 1 I

I -- - - - - - 4
I
I
I I
I
I
I
I
I c-- I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ j

Zeitverhalten

:t
.{

j
I� �
� � 0 f! " " " 00 " " :;;: w "' "' il! N
e

.:: "'
p::

IQj � u '; z � ;:;
� � a: � 1: "
� ·o; :;; 9 "
� "' a:l � � "
� "0
.... "
;!; .;;;
I" E
;!; � " z :;; iii ·;;;, 0 "
� p::

� ...;
:!l
iii

Der Mikroprozessor 8080 wird durch 2 gegeneinander ver­
setzte Impulsfolgen <1>1 und <1>2 gesteuert . Die Abarbeitung
eines Befehls erfolgt in mehreren Maschinenzyklen. Ein Ma­
schinenzyklus ist wiederum in 3 bis 5 Zeitzustände (T1 bis T5)
unterteilt, wobei ein Zeitzustand die Länge von einer Periode <1>1
hat .
Die wichtigsten Funktionen in den einzelnen Zeitzuständen inner­
halb eines Maschinenzyklus sind (s. Taktdiagramm Bild 4. 16)

161

DBIN -+---+---'
WR -+---+----.! 1-----+---...1 1

T

Bild 4 . 16 Taktdiagramm eines Maschinenzyklus des Prozessors 8080

T1 Ausgabe der Adresse auf den Adreßbus ,
T1ff2 Ausgabe des Statusworts auf den Datenbus,
T2 Abtasten des Signals "READY" ,
T3 Ausgabe oder Eingabe über den Datenbus ,
T�5 Ausführung des Befehls.
Nach T2 können beliebig viele Wartezustände T w eingefügt wer­
den. Zu Beginn jedes Maschinenzyklus sendet der Prozessor über
den Datenbus ein Statuswort aus. Das Signal SYNC zeigt an, daß
das Statuswort auf dem Datenbus D0 bis D7 vorhanden ist. Ist zum
Zeitpunkt T2/l/>2 READY = "Low", so kommt nach T2 ein Warte­
zustand T W· Ein weiterer Wartezustand folgt, wenn zum Zeitpunkt
Tw/11>2 READY noch "Low" ist . Bei DBIN = "High" (aktiv) wird
zum Zeitpunkt Tyl/>1 die Information vom Datenbus in den Pro­
zessor geholt. Ist WR = "Low" (aktiv) , so enthält der Datenbus
eine vom Prozessor ausgegebene Information (DBIN und WR sind
nie gleichzeitig aktiv; Bild 4.2 hat für diesen Fall nur symbolischen
Charakter) . Zur Ausführung eines Befehls werden mehrere Ma­
schinenzyklen durchlaufen. Im 1. Maschinenzyklus Ml wird der
Befehl geholt (Befehlsholzyklus) , .entschlüsselt und, wenn keine
Daten von außerhalb des Prozessors benötigt werden, während T4
und T5 ausgeführt. Benötigt man Daten von außerhalb eines Pro­
zessors, so folgen weitere Maschinenzyklen .

162

Beispiel
Eingabe eines Bytes nach dem A-Register.
Befehl: I IN ADR I Codierung im Speicher:

Maschinenzyklus Zustand Funktion
M1

M2

M3

4.2.4.

Ao bis A,5
SYNC

DBIN

READY

WAIT

T, Ausgabe PC
Ausgabe Status

Tz PC + 1 -+PC
Abfrage "READY"

TJ Befehl -+ BR
T4 interne EntschlüsseJung
T, Ausgabe PC

Ausgabe Status
Tz PC + 1 --+ PC

Abfrage "READY"
TJ ADR --+' Register Z und W
T, Ausgabe Register Z und W (ist

Geräteadresse)
Tz Abfrage READY
TJ Eingabe Byte vom DB --+ Re-

gister A

Anschlußsignale

Bidirektionaler Datenbus (aktiv "High"), wird für die
Ein- und Ausgabe von Datensignalen verwendet.
Adreßbus (aktiv "High")
Ausgabesignal (aktiv "High") sagt aus, daß der Da­
tenbus das Statuswort enthält.
Ausgabesignal (aktiv "High") sagt aus , daß zum Zu­
stand T 3 eine Eingabe vom Datenbus erfolgt.
Eingabesignal (aktiv "High")
Ist zum Zeitpunkt TzltP2 oder T wi.Pz
READY = "High" , so folgt der Zustand T3, bei
READY = "Low" folgt ein Wartezustand T W ·
Dieses Ausgabesignal (aktiv "High") sagt aus, daß
sich der Prozessor im Wartezustand T w befindet.
Das Ausgabesignal (aktiv "Low") sagt aus, daß sich
auf dem Datenbus ein ausgegebenes Byte befindet.

163

HOLD

HLDA

INTE

INT

RESET

164

Eingabesignal (aktiv "High")
OMA-AnforderungssignaL Durch HOLD geht der
Daten- und Adreßbus in den hochohmigen Zustand
(HOLD-Zustand) . Das Signal HOLD wird angenom­
men:
- im Zustand T2 oder Tw;
- im HALT-Zustand.
Der HOLD-Zustand bleibt so lange bestehen, wie
HOLD = "High" ist. Nachdem HOLD = "Low"
wird, beginnt ein neuer Maschinenzyklus mit T1 •
Ausgabesignal (aktiv "High") s,agt aus , daß sich der
Prozessor im HOLD-Zustand befindet, d. h. Daten­
und Adreßbus hochohmig sind .
Ausgabesignal (aktiv "High") ; sagt aus , daß der
!NT-Eingang frei ist . Es wird rückgesetzt durch den
Befehl Dl oder bei Annahme eines !NT-Signals .
Eingabesignal (aktiv "High")
Programmunterbrechungsanforderung
INT wird angenommen:
- am Ende 'eines Befehls ;
- im HALT-Zustand;
- bei INTE = "High" .
Die Programmunterbrechung entspricht dem INTER­
RUPT-MODE 0 des Bausteins U 880. Bei Annahme
der Programmunterbrechung wird ein !NT-Zyklus
durchlaufen. Im !NT-Zyklus wird
- im Statuswort das Signal INTA ausgesandt ;
- im Zustand T3 ein 1-Byte-Befehl vom Datenbus ein-
gelesen und sofort ausgeführt. Dazu verwendet man in
der Regel den Befehl RST.
Eingabesignal (aktiv "High")
Durch RESET wird der Baustein 8080 in den Grund­
zustand versetzt. Der Grundzustand ist gekennzeich­
net durch:
- PC gelöscht ;
- BR gelöscht ;
- INTE = "Low" ;
- HLTA = "Low";
Die Register A, B , C, D, E, H, L bleiben erhalten.

ADR-Bus enthält M
Adresse Eingabetor 1

OUT
ADR -Bus enthält
Adresse Ausgabetor

IN TA

Wö (Ausgabeoperation l
STACK
(AOR-Bus enthält STACK-Adresse l

HLTA

Bild 4 . 17 Statuswort des Bausteins 8080

Statusinformationen
Zusätzlich zu den Steuersignalen , die direkt vom Prozessor 8080
ausgehen , gibt der Baustein 8080 am Anfang jedes Maschinenzy­
klus gleichzeitig mit dem Signal SYNC ein Statuswort über den Da­
tenbus aus . Bild 4. 17 zeigt den Aufbau des Statuswortes.

4.2.5. Anschluß von Schaltkreisen an den Prozessor 8080

Mit Hilfe der Status- und Prozessor-Ein- und -Ausgabesignale wer­
den die am Prozessor angeschlossenen Bausteine gesteuert.
Bild 4. 18 zeigt die Steuerung des Bausteins 8080 und die Bildung
von Adreßbus , Datenbus und Steuerbus zur Realisierung von Mi­
krorechneraufbauten .
Darin bedeuten (s. Taktdiagramm Bild 4. 19) :
Ao bis A1s Adreßbus
D0 bis D7 Datenbus
DBIN, WR 8080-Signale
INA DBIN · INTA Eingabesignal für INTERRUPT-

Befehl
IOR = DBIN · INP Eingabesignal für Eingabekanal
IOW = WR· OUT Ausgabesignal für Ausgangskanal
MER = DBIN · MEMR Speicherlesesignal
STR = (/J1A • SYNC Statusübernahmesignal

(/J1A wird aus (/Jz, gebildet (etwas ver­
zögertes (/Jz)

165

,---

-� Takt- A
gene- RESE
rator � H l

"-r

Ao

A,s
Do o,
02
DJ

o,
Ds Os
07

OOIN

0 "' 0 c:o

WR

INT
.______

BUSFREIGABE

1 J 2 4 U)
5 7 1jj 6
g " "

14 15

2 4 1 J
5 7 \!'! 6
9 " !;:: "
12 14 ,, D

MI
I L- J

5 ,
'----- 7

9
16
18
20
22

--fl--fl--

�

�� �1
B f-

� "f- :(:J--1 "' 151-_f flf-
191-

, , 211-m-·

r Vcc �-1
�f::['t--1
rfl-

-

�
NT I

Bild 4.18 Bildung des Mikrorechnerbus mit dem Baustein 8080

166

�.
�2
�"'

SYNC --__j

STR
READY --------.

OBIN -----�
�

Bild 4 .19 Taktdiagramm zur Bildung des Mikrorechnerbus mit dem Baustein 8080

4.2.6. Befeblsschlüssel des Prozessors 8080

Alle Befehle des 8080 sind auch im l! 880 enthalten. Aus den Ta­
bellen im Anhang ist zu ersehen, welche Befehle des U 880 im 8080
vorkommen. Es sind auch die Befehle des U 808 D aufgeführt, die
sowohl im 8080 als auch im U 880 enthalten sind. Die Befehle des
U 808 D haben jedoch gegenüber dem U 880 einen anderen Be­
fehlscode.

4.2.7. Programmunterbrechung

Der Baustein 8080 hat einen Programmunterbrechungseingang.
Der Ablauf der Programmunterbrechung ist identisch mit dem Ab­
lauf der Programmunterbrechung im Prozessor U 880 im MODE 0
(s. Abschnitt 4 . 1 . 6 .) .
Der einzige Unterschied besteht nach dem Einschalten der Span­
nungen bzw. nach RESET. Im Baustein U 880 ist nach Einschalten
der Spannungen und nach RESET der maskierte Eingang ge­
sperrt.
Ein INTERRUFT kann nur über den nichtmaskierten Eingang
kommen. Nach RESET startet der Prozessor U 880 automatisch
bei Zelle 0. Im Baustein 8080 ist nach Einschalten der Spannungen
und nach RESET der INTERRUFT-Eingang offen. Der Prozessor
8080 wird über INTERRUFT gestartet.

167

A..,hang

BefehlstabeDen der Prozessoren U 880 und 8080

Abkürzungen
n 8-Bit-Zahl ,
nn 16-Bit-Zahl ,
N Register A, B , C, D , E, H, L,
M Speicherzelle ADR = (HL) , (IX + d ,) , (IY + d) .

Befehlsgruppen (Übersicht)
0 Adreßoperationen (steht in Verbindung mit Befehlen, die

zum Speicher zugreifen)
1 Transportoperationen 1 Wort

Doppelwort
Blocktransfer

2 Rechen- und logische Operationen mit 1 Operand -fAkkumulatorbefehle1logische Operationen
1-Wort-Befehle Verschiebeoperationen
Doppelwortbefehle Bit-Operation

Rechenoperationen
3 Rechen- und logisqhe 1-Wort-Befehle

Operationen mit
Operanden Doppelwortbefehle

4 Rechen- und logische Operationen mit Feldern
5 Sprungbefehle
6 Unterprogramm-BefehleLAufruf des Unterprogramms

Rückkehr zum Hauptprogramm
7 Ein-/ Ausgabebefehle--,--1-Wort-Befehle

8 Steuerbefehle

Tabelle der U 880-Befehle

Einzelworttransfer
LD r, s s -> r
LD d, r r -> d
LD A, s s -> A
LD d, A A -> d

168

LBlocktransfer

s = n, N, M1l r = N C Z PN S N H
r = n, N d = N, M

{Bei allen
Transportbef.

s = (BC} , (DE) , (nn) , I ,R t IFF t O 0
d = (Be} , (DE) , (nn) , I ,R

Doppelworttransfer

{LD A, I
LD A, R

LD dd, nn nn � dd }dd = BC, DE, HL, C Z PN S N H
LD dd, (nn) (nn) � dd SP, IX, IY
LD (nn) , ss ss � (nn) , ss = BC, DE, HL, SP, IX, IY
LD SP, ss ss � SP ss = HL, IX, IY
PUSH ss ss � STACK} = BC DE HL AF IX IY POP ss STACK � ss

ss ' ' ' ' '
Registeraustausch
EX DE, HL DE - HL C Z PN S N H
EX AF, AF'2l AF -A'F'
EXX ·BC -B'C' DE - D'E' HK - H'L'
EX (SP) , ss ss - (SP + 1) , (SP) ss = HL, IX, IY

Blocktransfer C Z PN S N H
X t X O 0 LDI , LDD

. X 0 X O 0 LDIR, LDDR
LDIR (HL) - (oE}
LDDR
LDI
LDD

HL • 1 - HL OE + 1 - 0E bei LOIR und LOI

HL - 1 - HL OE - 1 - 0E bei LODR und LOO

ja

Ende

bei LOIR und LOOR

Rechenoperationen und logische Operationen mit 1 Operand
C Z PIV S N H

CPL Ä � A . 1 1
NEG Ä + 1 � A t t v t 1 t

I) N = Register A, B , C, D , E, H, L
M = Speicherzelle ADR = (HL) , (IX + d) , (IY + d)

2) In der Assemblersprache K 1520 wird statt EX AF, AF' EXAF
geschrieben.

169

CCF C -+
SCF 1 -+
DAA BCD (A } -+
DEC d d -
INC d d + -
BITb, s sb -+
SETb, s 1 -+
RES b, s 0 -+

c
c
A
1 -+ d } d = N M 1 -+ d '

z

} s = N, M Sb
Sb

t 0 X
1 0 0
t t p t . t

t V t 1 t
t V t 0 t
t X X 0 , 1

INCdd dd +
DEC dd dd -

1 -+ dd}dd = BC, DE, HL, SP, IX, IY
1 -+ dd C Z PN S N H

Verschiebebefehle

RCL s � RLCA

RL s � - � RLA

RRC s � RRCA

� - HriJ RR s
RRA

SLA s � 0

SRA s �
SRL s

0�

170

RLCA, RLA,
RRCA, RRA
C Z PN S N H
t . . 0 0

RLCs, RLs, RRCs,
RRs, SLAs, SRAs,
SRL s
C Z PN S N H
t t P t O O

: I I � RLD I I (HL) RLD, RRD
C Z PN S N H A I

t p t 0 0

: � � �
RRD I (HL)

A

Rechenoperationen mit 2 Operanden

8-Bit-Operationen

ADD s
ADC s
SUB s
SBC s
AND s
OR s
XOR s
CP s

A + s� A
A + s + C� A
A - s� A
A - s - c� A
A " s� A
A v s� A
A Etl s� A
Vergleich A, s

16-Bit-Operationen

ADD, ADC
C Z PN S N H
t t v t O t

SUB , SBC, CP
C Z PN S N H

s = N, n,M1) t t v t 1 t
bei AND C Z PN S N H

o t P t o 1
0-bei OR, XOR

A - s stellt Flags

ADD HL, ss
ADCHL, ss
SBC HL, ss
ADD IX, ss
ADD IY, ss

HL + ss� HL }
HL + ss + C� HL ss = BC, DE, HL, SP
HL - ss - C� HL
IX + ss� IX ss = BC, DE, IX, SP
IY + ss� IY ss = BC, DE, IY, SP

1) N = Register A, B, C, D, E, H, L
M = SpeicheneUe ADR = (HL) , (IX + d) ,) IY + d)

C Z PN S N H
t 0 X
t t v t o t
t t V t 1 t
t t
t 0 t

171

Rechenoperationen auf Feldern
Suchoperationen

CPIR

CPDR
CPI
CPD

vergleich A , (Hl) A - (HL)

� HL + 1 - HL HL + 1 ---+ HL

Hl - 1 - HL HL - 1 ---+ HL

BC - 1 - BC BC - 1 ---+ BC

Sprungbefehle
JP nn nn --+ PC

C Z PN S N H
O t ! X l X

A - (HL) stellt Flags

bei CPIR und CPI
bei CPDR und CPD

bei CPIR und CPDR

JP cc, nn1) nn--+ PC, wenn cc erfüllt cc = NZ, Z, NC, C, PO,
PE, P, M
PC + e --+ PC JR e

iR kk, e2)
JP (ss)

PC + e--+ PC, wenn kk erfüllt kk = NZ, Z, NC, C
ss � PC ss = HL, IX, IY

DJNZ e B - 1 -B � PC • e--PC �
nächster Befehl

Unterprogrammbefehle

CALL nn PC--+ STACK nn --+ PC

C Z PN S N H

C Z PN S N H

CALL cc, nn3) CALL nn, wenn erfüllt cc = NZ, Z, NC, C, PO
PE, P, M

1) In der Assemblersprache K 1520 wird statt JP nn JPM nn, JP (ss) JMP (ss) und JP cc,
nn JPcc nn geschrieben. 2) In der Assemblersprache K 1520 wird statt JR kk, nn JRkk nn geschrieben.

, 3) In der Assemblersprache K 1520 wird statt CALL cc, nn CAcc nn geschrieben.

172

RST Z
RET
RETcc4)
RETN
RETI

CALL Z mit Z = OH, 8H, lOH, 18H, . . . , 38H
STACK--+ PC
STACK--+ PC, wenn cc erfüllt
Rücksprung aus nichtmaskiertem Interrupt
Rücksprung aus maskiertem Interrupt

Ein-/Ausgabebefehle
IN A , (n) 6> (n) --+ A
IN r, (C) (C) --+ r r = N5>
OUT (n) , A A --+ (n)
OUT (C) , r r --+ (C) r = N5>

Blockeingabe
(c) - {HL)

C Z PN S N H
. bei Adresse n . t P t 0 0 bei Adresse C

Adreßbus
HL • 1 - HL bei INIR und IN I Ats · . . As A7 . . . Ao
HL- 1 -HL bei INDR und INO

B - 1 - B

bei IN IR und INDR
INI ,IND ,OUTI,OUTD

C Z PN S N H
. t X X l X

Ende

Blockausgabe INIR, INDR,
OTIR, OTDR
C Z PN S N H

� - � . 1 X X I X
HL • 1 - HL bei OTIR und OUTI

HL - 1 - HL bei OTDR und OUTD

B - 1 - B

be i OTIR und OTDR

Ende

4) In der Assemblersprache K 1520 wird statt RET cc Rcc geschrieben, cc und kk wie
oben.

') N ist Register A, B , C, D , E, H, L.
6) In der Assemblersprache K 1520 lauten die 4 EIA·Befehle IN n, IN r, OUT n, OUT r.

173

Steuerbefehle
NOP keine Operation
HALT Haltbefehl
DI 0--. IFF INTERRUPT gesperrt
EI 1 --. IFF INTERRUPT frei
IMO MOD O
IM1 MOD 1
1M2 MOD 2

Befehl vom Bus
CALL 38H
CALL (I , IV)

Tabelle der 8080-Befehle

C Z PN S N H

Einzelworttransfer C Z P S H
MOV r, s s-+ r) s , r = N, M . .
MVI r, n n-. r [N ist Register A, B , C, C, B , H, L,

M ist Speicherzelle, AD R;= (HL)]
STAX ss A-. (ss) ss = BC, DE
LDAX ss (ss) -. A ss = BC, DE
STA nn A-+ (nn)
LDA nn (nn) -+ A
SPHL HL-. SP

Doppelworttransfer C Z P S H
LXI dd, nn nn--+ dd dd = BC, DE, HL
SHLD nn HL-+ (nn)
LHLD nn (nn)--+ HL
PUSH ss SS-+ STACK ss = BC, DE, HL, AF
POP ss STACK-. ss ss = BC, DE, HL, AF

Registeraustausch
XCHG HL-DE
XTHL HL- (SP + 1) , (SP)

Rechenoperationen und logische Operationen mit 1 Operand

CMC
STC
CMA
DAA
INR d
DCRd .

174

Ä-+ A
BCD (A) -. A
d + 1 -+ d d = N, M
d - 1 --. d d = N, M

'
C Z P S H
t X
1 0

1
t t t t *

t t t t
. t t t t

INX dd dd + 1 -+ dd }
DCX dd dd - 1 -+ dd

dd = BC, DE, HL, SP C Z P S H

Verschiebebefehle

RLC

RAL

RRC

RAR Y - �
A

Rechenoperationen mit 2 Operanden

8-Bit-Operationen
ADD r A + r -+ A
ADC r A + r + C-+ A
SUB r A - r-+ A
SBB r A - r - C-+ A
ANA r A " r-+ A
ORA r A v r -+ A
XRA r A ® r-+ A
CMP r Vergleich A, r

A - r setzt die Flags
ADI n A + n-+ A
ACI n A + n + C-+ A
SUI n A - n-+ A
SBI n A - n - C-+ A
ANI n A A n-+ A
ORI n A v n -+ A
XRI n A ® n-+ A
CPI n Vergleich A, n

A - n setzt die Flags

r = N, M

C Z P S H
t . . . 0

C Z P S H
t t t t t

C Z P S H
t t t t t

175

16-Bit-Operationen
DAD ss HL + ss� HL ss = BC, DE, HL, SP

Sprungbt!fehle
PCHL HL� PC
JMP nn nn� Pc

C Z P S H
t . . . X

C Z P S H

Jcc nn nn � PC, wenn cc erfüllt cc = NZ, Z, NC, C, PO, PE,
P, M

Unterprogrammbefehle C Z P S H

CALLnn PC� STACK, nn� PC
Ccc nn CALL nn, wenn cc erfüllt, sonst Leerbefehl.

cc = NZ, Z, NC, C, PO, PE, P, M
RST Z
RET

wie CALL Z Z = OH, 8H, lOH, . . . , 38H
STACK� PC

Rcc RET, wenn cc erfüllt , sonst Leerbefehl
cc = NZ, Z, NC, C, PO, PE, P, M

Ein-/Ausgabebefehle

IN n
OUT n

(n) � A
A� (n)

Steuerbefehle
EI INTERRUPTfrei

Adreßbus
A,s . . . As
c::AJ CA]

DI INTERRUPT gesperrt
HLT HALT
NOP keine Operation

Tabelle der U 808 D-Befehle

Einzelworttransfer
MOV r, s s � r }
MVI r, n n� r s , r = N, M

C Z P S H

C Z P S H

C S Z P

Rechenoperationen und logische Operationen mit 1 Operand
C S Z P

INR d
OCR d

176

t t t
. t t t

Verschiebebefehle

RLC

RAL � � -
A

RRC �
A

RAR Y - �
A

Rechenoperationen mit 2 Operanden

8-Bit-Operationen
ADD r A + r � A
ADC r A + r + C� A
SUB r A - r� A
SBB r A - r - c� A
ANA r A A r� A
ORA r A v r� A
XRA r A Et> r� A
CMP r Vergleich A, r

A - r setzt die Flags

ADI n A + n� A
ACI n A + n + C� A
SUI n A - n� A
SBI n A - n - c� A
ANI n A A n� A
ORI 11 A v n � A
XRI n A Et> n� A
CPI n Vergleich A, n

A - n setzt die Flags

r = N, M

C S Z P
t . . .

c z p s
t t t t

c z p s
t t t t

177

Sprungbefehle
JMP nn nn--+ PC
Jcc nn nn --+ PC, wenn cc erfüllt, sonst Leerbefehl

cc = NZ, Z, NC, C, PO, PE, P, M

Unterprogrammbefehle

CALLnn PC --+ STACK nn --+ PC
Ccc nn CALL nn, wenn cc erfüllt, sonst Leerbefehl

cc = NZ, Z, NC, C, PO, PE, PM
RST Z Wie CALL Z Z = OH, 8H, lOH, . . . , 38H
RET STACK -+ PC
Rcc . RET, wenn cc erfüllt, sonst Leerbefehl

cc = NZ, Z, NC, C, PO, PE, P, M

Ein-/ Ausgabebefehle

IN n
OUT n

(n) --+ A
A--+ (n)

Steuerbefehle
HLT HALT
NOP keine Operation

CodierungstabeHe U 8 8 0

1. Byte
Opcode U 880

()() NOP

n = 0 bis 7 (Geräteadresse)
n = 8 bis 31 (Geräteadresse)

Opcode U 880

10 DJNZe

c z p s

C Z P S

C Z P S

c z p s

01 LD BC,nn 11 LD DE,nn
02 LD (BC),A 12 LD (DE),A
03 INC BC 13 INC DE
04 INC B 14 INC D
05 DEC B 15 DEC D
06 LD B,n 16 LD D,n
f17 RLCA 17 RLA
08 EXAF 18 JRe
09 ADD HL,BC 19 ADD HL,DE
OA LD A,(BC) 1A LD A,(DE)
OB DEC BC 1B DEC DE
oc INCC 1C INC E
OD DEC C 1D DEC E
OE LD C,n 1E LD E,n
OF RRCA 1F RPA

178

Opcode U 880 Opcode U 880

20 JRNZ e 30 JRNCe
21 LD HL,nn 31 LD SP,nn
22 LD (adr),BC 32 LD (adr) ,A
23 INC HL 33 INC SP
24 INC H 34 INC M
25 DECH 35 DEC M
26 LD H,n 36 LD M,n
27 DDA 37 SCF
28 JRZ e 38 JRCe
29 ADD HL,HL 39 ADD HL,SP
2A LD HL,(adr) 3A LD A,(adr)
2B DEC HL 3B DEC SP
2C INC L 3C INC A
2D DECL 3D DEC A
2E LD L,n 3E LD A,n
2F CPL 3F CCF

40 LD B,B 50 LD D,B
41 LD B,C 51 LD D,C
42 LD B,D 52 LD D,D
43 LD B,E 53 LD D,E
44 LD B,H 54 LD D,H
45 LD B,L 55 LD D,L
46 LD B,M 56 , LD D,M
47 LD B,A 57 LD D,A
48 LD C,B 58 LD D,B
49 LD C,C 59 LD D,C
4A LD C,D 5A LD D,D
4B LD C,E 5B LD D,E
4C LD C,H 5C LD D,H
4D LD C,L 50 LD D,L
4E LD C,M SE LD D,M
4F LD C,A 5F LD D,A

60 LD H,B 70 LD M,B
61 LD H,C 71 LD M,C
62 LD H,D 72 LD M,D
63 LD H,E 73 LD M,E
64 LD H,H 74 LD M,H
65 LD H,L 75 LD M,L
66 LD H,M 76 HALT
67 LD H,A 77 LD M,A
68 LD L,B 78 LD A,B
69 LD L,C 79 LD A,C
6A LD L,D 7A LD A,D
6B LD L,E 7B LD A,E
6C LD L,H 7C LD A,H
6D LD L,L 7D LD A,L
6E LD L,M 7E LD A,M
6F LD L,A 7F LD A,A

179

Opcode U 880 Opcode U S80

80 AOO B 90 SUB B
Sl AOO C 91 SUB C
S2 AOO O 92 SUB C
S3 AOO E 93 SUB E
84 AOO H 94 SUB H
ss AOO L 95 SUB L
S6 AOO M 96 SUB M
S7 AOO A 97 SUB A
88 AOC B 9S SBC B
S9 AOC C 99 SBC C
SA AOC O 9A SBC O
SB AOC E 9B SBC E
SC AOC H 9C SBC H
so AOC L 90 SBC L
SE AOC M 9E SBC M
SF AOC A 9F SBC A

AO ANO B BO OR B
Al ANO C Bl OR C
A2 ANO C B2 OR O
A3 ANO E B3 OR E
A4 ANO H B4 OR H
AS ANO L BS OR L
A6 ANO M B6 OR M
A7 ANO A B7 OR A
AS XOR B BS CMP B
A9 XOR C B9 CMP C
AA XOR O BA CMP O
AB XOR E BB CMP E
AC XOR H BC CMP H
AO XOR L BO CMP L
AE XOR M BE CMP M
AF XOR A BF CMP A

CO RNZ 00 REC
Cl POP BC 01 POP OE
C2 JPNZ nn 02 JPNC nn
C3 JMP nn 03 OUT n
C4 CANZnn 04 CANC nn
es PUSH BC 05 PUSH OE
C6 AOO n 06 SUB n
C7 RST OH 07 RST lOH
C8 RZ OS RC
C9 RET 09 EXX
CA JPZ nn DA JPC nn
CB Verschiebe- und OB !N n

Bitbefehle

cc CAZ nn OC CAC nn

180

Opcode U 880

CD CALLadr

CE ADC n

CF RST 8H

EO RPO

EI POP HL

E2 JPPO nn

E3 EX (SP) ,HL

E4 CAPO nn

ES PUSH HL

E6 AND n
E7 RST POH
E8 RPE
E9 JMP M

EA JPPE nn
EB EX DE,HL

EC CAPE nn
ED Sondertransport-

befehle

EE XOR n
EF RST 28H

Verschiebe- und Bitbefehle
L Byte CB

2. Byte 7 6 5 4 3 2 1 0
REG

0 0 RLC O B

0 1 RRC 1 c
0 2 RL 2 D
0 3 RR 3 E
0 4 SLA 4 H

0 5 SRA 5 L

0 6 - 6 M
0 7 SRL 7 A
1 0 BIT O,r
1 1 BIT l ,r

1 2 BIT 2,r
1 3 BIT 3,r
1 4 BIT 4,r
1 5 BIT 5,r
1 6 BIT 6,r

1 7 BIT 7,r

2 0 RES O,r
2 1 RES l ,r

Opcode U 880

DD IX-Befehle
DE SBC n
DF RST 18H

FO RP
Fl POPAF
F2 JPP nn
F3 DI
F4 CAP nn
F5 PUSH AF
F6 OR n
F7 RST 30H
F8 RM
F9 LD SP,HL
FA JPM nn
FB EI
FC CAM nn
FD IY-Befehle

FE CMP n
FF RST38H

181

2 2 RES 2,r
2 3 RES 3,r
2 4 RES 4,r
2 5 RES 5 ,r
2 6 RES 6,r
2 7 RES 7,r
3 0 SET O,r
3 I SET l ,r
3 2 SET 2,r
3 3 SET 3 ,r
3 4 SET 4,r
3 5 SET 5 ,r
3 6 SET 6,r
3 7 SET 7,r

laclubefellle mit IX
(bei Indexbefehlen mit IY ist das 1. Byte FD)

DD09 ADD IX, BC 0086 ADD A, (IX +offset)
0019 ADD IX, DE DOSE ADC A, (IX+offset)
0021 LD IX, dddd 0096 SUB (IX+offset)
0022 LD (adr) , IX DD9E SBC A, (IX +offset)
0023 INC IX DDA6 AND (IX+offset)
0029 ADD DDAE XOR (IX +offset)
DD2A LD IX, (adr) DDB6 OR (IX +offset)
DD2B DEC IX DDBE CP (IX +offset)
0034 INC (IX+offset) DDCB of06 RLC (IX +offset)
0035 DEC (IX+offset) DDCBofOE RRC (IX+offset)
0036 LD (IX+offset) , dd DDCB of 16 RL (IX +offset)
0039 ADD IX, SP DDCB of lE RR (IX+offset)
0046 LD B, (IX+offset) DDCB of26 SIA (IX+offset)
DD4E LD C, (IX +offset) DDCB of2E SRA (IX+offset)
0056 LD D, (IX+offset) DDCB of3E SRL (IX+offset)
DD5E LD E, (IX+offset) DDCBof46 BIT 0, (IX +offset)
0066 LD H, (IX+offset) DDCBof4E BIT 1, (IX +offset)
DD6E LD L, (IX+offset) DDCB of56 BIT 2, (IX+offset)
0070 LD (IX+offset) , B DDCB of5E BIT 3 , (1X+offset)
0071 LD (IX+offset) , C DDCB of66 BIT 4, (IX+offset)
0072 LD (IX+offset), D DDCB of6E BIT 5, (IX+offset)
0073 LD (IX+offset) , E DDCB of76 BIT 6, (IX+offset)
0074 LD (IX +offset), H DDCB of7E BIT 7, (IX+offset)
0075 LD (IX +offset), L
0077 LD (IX+offset) , A
DD7E LD A, (IX+offset)
DCBof86 RES 0, (IX+offset)
DDCB of8E RES I , (IX+offset)
DDCB of96 RES 2, (IX +offset)
DDCB of9E RES 3, (IX+offset)
DDCB ofA6 RES 4, (IX+offset)

182

DDCB ofAE RES
DDCB ofB6 RES
DDCB ofBE RES
DDCB ofC6 SET
DDCB ofCE SET
DDCB ofD6 SET
DDCB ofDE SET
DDCB ofE6 SET
DDCB ofEE SET
DDCB ofF6 SET
DDCB ofFE SET
DDEl POP
DDE3 EX
DDES PUSH
DDE9 JP
DDF9 LD

Soadertnalportbehle
ED40 IN
ED41 OUT
ED42 SBO
ED43 LD
ED44 NEG
ED45 RETN
ED46 IM
ED47 LD
ED48 IN
ED49 OUT
ED4A ADC
ED4B LD
ED4D RETI
EDSO IN
ED51 OUT
ED52 SBC
ED53 LD
ED56 IM
ED57 LD
ED58 IN
ED59 OUT
EDSA ADC
EDSB LD
ED5E IM
ED60 IN
ED61 OUT
ED62 SBC
ED67 RRD

S, {IX+offset)
6, {IX +offset)
7, {IX +offset)
O, {IX+offset)
l , {IX+offset)
2 , {IX +offset)
3, {IX +offset)
4, {IX +offset)
S , {IX+offset)
6, {IX +offset)
7, {IX+offset)
IX
{SP) , IX
IX
{IX)
SP, IX

B
B
HL, BC
{adr) , BC

0
I, A
c
c
HL, BC
BC, {adr)

D
D
HL, DE
{adr) , DE
1
A, I
E
E
HL, DE
DE, {adr)
2
H
H
HL, HL

ED68 IN L
ED69 OUT L
ED6A ADC HL, HL
ED6F RLD
ED72 SBC HL, SP
ED73 LD {adr) , SP
ED78 IN A
ED79 OUT A
ED7A ADC HL, SP
ED7B LD SP, {adr.)
EDAO LDI
EDAl CPI
EDA2 INI
EDA3 OUTI
EDAS LDD
EDA9 CPD
EDAA IND
EDAB OUTD
EDBO LDIR
EDBl OPIR
EDB2 INIR
EDB3 OTIR
EDB6 LDDR
EDB9 CPDR
EDBA INDR
EDBB OTDR

183

	Image 00
	Image 000
	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006
	Image 0007
	Image 0008
	Image 0009
	Image 0010
	Image 0011
	Image 0012
	Image 0013
	Image 0014
	Image 0015
	Image 0016
	Image 0017
	Image 0018
	Image 0019
	Image 0020
	Image 0021
	Image 0022
	Image 0023
	Image 0024
	Image 0025
	Image 0026
	Image 0027
	Image 0028
	Image 0029
	Image 0030
	Image 0031
	Image 0032
	Image 0033
	Image 0034
	Image 0035
	Image 0036
	Image 0037
	Image 0038
	Image 0039
	Image 0040
	Image 0041
	Image 0042
	Image 0043
	Image 0044
	Image 0045
	Image 0046
	Image 0047
	Image 0048
	Image 0049
	Image 0050
	Image 0051
	Image 0052
	Image 0053
	Image 0054
	Image 0055
	Image 0056
	Image 0057
	Image 0058
	Image 0059
	Image 0060
	Image 0061
	Image 0062
	Image 0063
	Image 0064
	Image 0065
	Image 0066
	Image 0067
	Image 0068
	Image 0069
	Image 0070
	Image 0071
	Image 0072
	Image 0073
	Image 0074
	Image 0075
	Image 0076
	Image 0077
	Image 0078
	Image 0079
	Image 0080
	Image 0081
	Image 0082
	Image 0083
	Image 0084
	Image 0085
	Image 0086
	Image 0087
	Image 0088
	Image 0089
	Image 0090
	Image 0091
	Image 0092
	Image 0093
	Image 0094
	Image 0095
	Image 0096
	Image 0097
	Image 0098
	Image 0099
	Image 0100
	Image 0101
	Image 0102
	Image 0103
	Image 0104
	Image 0105
	Image 0106
	Image 0107
	Image 0108
	Image 0109
	Image 0110
	Image 0111
	Image 0112
	Image 0113
	Image 0114
	Image 0115
	Image 0116
	Image 0117
	Image 0118
	Image 0119
	Image 0120
	Image 0121
	Image 0122
	Image 0123
	Image 0124
	Image 0125
	Image 0126
	Image 0127
	Image 0128
	Image 0129
	Image 0130
	Image 0131
	Image 0132
	Image 0133
	Image 0134
	Image 0135
	Image 0136
	Image 0137
	Image 0138
	Image 0139
	Image 0140
	Image 0141
	Image 0142
	Image 0143
	Image 0144
	Image 0145
	Image 0146
	Image 0147
	Image 0148
	Image 0149
	Image 0150
	Image 0151
	Image 0152
	Image 0153
	Image 0154
	Image 0155
	Image 0156
	Image 0157
	Image 0158
	Image 0159
	Image 0160
	Image 0161
	Image 0162
	Image 0163
	Image 0164
	Image 0165
	Image 0166
	Image 0167
	Image 0168
	Image 0169
	Image 0170
	Image 0171
	Image 0172
	Image 0173
	Image 0174
	Image 0175
	Image 0176
	Image 0177
	Image 0178
	Image 0179
	Image 0180
	Image 0181
	Image 0182
	Image 0183

