externer
Quarz

Tank
Eingang far
Oberwellenguarz

SYNC j

jereitschafts- ?
signal

Losch- .
signal ﬂ

Takt-
geber
¢,TTL)
g
STSTB
D — READY
>
—D RESET
Ldg

Barthold/Baurich

Mikroprozessoren —

Mikroelektronische
Schaltkreise und ihre
Anwendung (Teil 1)

Steuersignale
flr den

Prozessor

electronica - Band 222/223

HANS BARTHOLD
DR. HEINZ BAURICH

Mikroprozessoren-
Mikroelektronische
Schaltkreise

und ihre Anwendung

Teil 1:
Grundlagen der Mikrorechentechnik

X

MILITARVERLAG
DER DEUTSCHEN DEMOKRATISCHEN
REPUBLIK

Barthold , H.; Dr. Béurich, H.:

Mikroprozessoren — Mikroelektronische Schaltkreise undihre Anwendung.
Teil 1: Grundlagen der Mikrorechentechnik. —

3., liberarbeitete Aufl., - Berlin:

Militirverlag der DDR (VEB), 1985. -

184 S.: 108 Bilder - (electronica: 222/223

3. Auflage, 1985

© Militirverlag der

Deutschen Demokratischen Republik (VEB) - Berlin, 1980
Lizenz-Nr. 5

Printed in the German Democratic Rebublic
Gesamtherstellung: Druckerei Markische Volksstimme Potsdam
Lektor: Steffers Wiirtenberger

Zeichnungen: Johanna Goer

Typografie: Martina Schwarz

RedaktionsschluB: 20. September 1984

LSV 3539

Bestellnummer: 746 692 4

00380

Inhaltsverzeichnis

1.2.

2.1.
2.1.1.
2.1.2.
2.1.3.
2.2.
2.2.1.
22.1.1.
2.2.1.2.
2.2.1.3.
2.2.1.4.

2.2.1.5.

2.2.1.6.
2.2.1.7.
2.2.2.
2.2.3.
2.3.
2.4.
2.5.

2.6
2.6.1.
2.6.2.
2.6.3.
2.7.
2.8.

Vorwort 6
Erlauterungen zu den Abkiirzungen 8
Aufstellung haufig verwendeter Formelzeichen und
Abkiirzungen oL 8
Wertzuweisung bei logischen Signalen 8
Grundlagender Rechentechnik 9
Aufbau eines Rechners 9
Speicher 10
Rechenwerk 11
Steuerwerk 12
DarstellungvonDaten 14
Zahlendarstellung 14
Ganze Zahlenim Dualsystem 14
Gebrochene Zahlen im Dualsystem 16
Darstellung von negativen Zahlen 17
Mathematische Formulierung der Komplement-

bildung 18
Zahlensysteme mit der Basis 8 (Oktalsystem) und

16 (Hexadezimalsystem) 19
Zifferncode oL 19
ZahlenbereichimRechner 22
Darstellung von Text (Zeichencode) 23
Rechnen mit Dualzahlen 24
Aufbau der Befehle) |
Befehlsschliissel eines Rechners 32
Befehlsabarbeitung 34
Ein- und Ausgabesteuerung (E/A-Steuerung) . . . 36
Prinzip der E/A-Steuerung 36
Programmierte Ein- und Ausgabe 38
Autonome Ein-und Ausgabe 38
Programmunterbrechung (INTERRUPT) 41
STACK-Organisation 42

2.9.

3.1.
3.2
3.3.
3.4.
3.4.1.
3.4.2.
3.4.3.
3.44.
3.5.
3.6.
3.7.
3.8.
3.9.

4.

4.1.
4.1.1.
4.1.2.
4.1.2.1.
4.1.2.2.
4.1.3.
4.14.
4.1.5.
4.1.5.1.

4.1.5.2.
4.1.5.3.

4.1.5.4.
4.1.5.5.
4.1.5.6.

4.1.5.7.
4.1.5.8.

Zusammenstellung der Funktionseinheiten eines
Rechners 43

Aufbau und Arbeitsweise digitaler Schaltkreise fiir

Mikrorechner 44
Ubersicht 44
Schaltalgebra 45
Logische Grundschaltkreise 52
Informationsspeicherung 53
Uberblick 53
Register 54
Speicher . : v v w s s v s v v wm s e s wow s 61
Zusammenstellung einiger Speicherschaltkreise . . 76
Codier- und Decodierschaltungen 82
Rechenschaltkreise 94
Bustreiber 0oL 100
Zahler . .« v o v w s gms sw s v w s e w R 103
Taktgeneratoren 107
Mikroprozessoren 110
Der Mikroprozessorbaustein U880 111
Registerstruktur des Mikroprozessorbausteins U 880 112
Befehlsaufbau des Bausteins U880 115
Befehlsstruktur, 115
AdreBbildungo oL 116
Zeitverhalten 117
Befehlsabarbeitung 123
Befehlsliste des Prozessors U880 124
Verwendete Abkiirzungen bei der Befehlsbeschrei-

bung L v e e e e e e e 124
Transportbefehle 125
Rechen- und logische Operationen mit einem Ope-

rand ¢ . osoc cowos w s wm e s s s m s b s 6w s 132
Rechen- und logische Operationen mit zwei Ope-

randen . . ¢ . s s v e s owoeEs w w s s 8 e 8wk 139
Rechen- und logische Operationen mit mehreren
Operanden 142
Sprungbefehle 0oL 144
Unterprogrammbefehle 146
Ein- und Ausgabebefehle 148

4.1.5.9.
4.1.6.
4.1.7.
4.1.8.
4.2.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.
4.2.7.

Steuerbefehle 153
INTERRUPT 153
Starten des Prozessors U880 157
Anschliisse an den Baustein U880 157
Der Mikroprozessorbaustein8080 160
Registerstruktur 160
Befehlsaufbau 160
Zeitverhalten 161
AnschluBsignale 163
AnschluB von Schaltkreisen an den Prozessor 8080 165
Befehlsschliissel des Prozessors 8080 167
Programmunterbrechung 167
Anhang

Befehlstabellen der Prozessoren U880 und 8080 . 168
Codierungstabelle U880 178

Vorwort

Der Mikroprozessor ist sehr schnell zu einem Begriff geworden,
der aus der Elektronik nicht mehr wegzudenken ist. In der Fachli-
teratur spricht man in diesem Zusammenhang von Bausteinen der
kiinftigen Automatisierungstechnik. Selbst solche Aussagen wie
»Nervensystem der Technik“ werden im Zusammenhang mit dem
Mikroprozessor gebraucht. Unsere Massenmedien berichten in
Wort und Bild, daB3 durch den Mikroprozessor ein Teil der Arbeits-
welt vollig verandert wird. Wahrend in den kapitalistischen Lén-
dern die Rationalisierung mit Hilfe dieser Elektronik dazu fiihrt,
daB Arbeitsplatze abgeschafft werden und dadurch die Arbeitslo-
sigkeit weiter steigt, dient der Einsatz der Mikrorechentechnik in
den sozialistischen Léndern zum Nutzen der gesamten Gesell-
schaft und somit dem Wohl jedes einzelnen.

Aus allen diesen Informationen heraus drangen sich die Fragen
auf, was ist ein Mikroprozessor, was kann er wirklich leisten? Das
gesamte Gebiete der Elektronik hat sich seit 1945 sehr rasch ent-
wickelt. Eine wesentliche Rolle dabei spielt die Entwicklung der
Bauelemente. Von den anfénglichen Bauelementen der Informa-
tionstechnik bis zu den hochintegrierten Schaltkreisen haben sich
Platz- und Energiebedarf fiir ein aktives Bauelement sehr stark
verringert, gleichzeitig sind Zuverléssigkeit und Betriebssicherheit
in sehr hohem MaBe angestiegen.

Alle Gebiete der Elektronik wurden von dieser schnellen Bauele-
menteentwicklung beeinfluBt. Dabei ist auf dem Gebiet der elek-
tronischen Rechentechnik diese Entwicklung besonders sichtbar.
Aus diesem Fachgebiet kommen auch die programmierbaren
Schaltkreise, wobei der bekannteste Vertreter der Mikroprozessor
ist. Er stellt den eigentlichen Rechenschaltkreis dar; mitihm lassen
sich alle Verkniipfungen von Zahlen und logischen GroBen reali-
sieren.

Die Verkniipfung solcher GréBen bildet gleichzeitig die Grundlage
der Automatisierungstechnik. Im Grunde genommen kénnen mit
jedem elektronischen Rechner die Probleme der Automatisierung
gelost werden. Aber erst durch die Mdglichkeit, den Rechner als
Bauelement (Chip) herzustellen, wurde die stiirmische Entwick-

6

lung in der Automatisierungstechnik erreicht. Es laBt sich ein-
schiatzen, daB diese Entwicklung noch am Anfang steht. Aber
schon in den néchsten Jahren wird der Mikroprozessor in vielen
technischen Geréten eine Selbstversténdlichkeit sein.

Auf Grund der groBen Nachfrage erscheinen die Hefte ,,Mikropro-
zessoren — Mikroelektronische Schaltkreise und ihre Anwendung*
in einer tberarbeiteten Form als zwei Doppelhefte. Sie sind als
Einheit zu betrachten. Bei der Uberarbeitung wurde das Kapitel
iiber den Mikroprozessor U 808 herausgenommen, da er fiir Neu-
entwicklungen nicht mehr eingesetzt wird. Hinzugekommen sind
ein Kapitel iiber die Assemblersprache MAPS-K 1520 sowie ein
Kapitel mit Programmbeispielen zum U 880.

1. Erlauterungen zu den Abkiirzungen

1.1. Aufstellung héufig verwendeter Formelzeichen
und Abkiirzungen

Zahlenbasis

Exponent einer Gleitkommazahl
hoher logischer Spannungspegel
niedriger logischer Spannungspegel
Mantisse einer Gleitkommazahl
Elementarkonjunktion, die der Dualzahl j zugeordnet ist
logischer Term (logischer Ausdruck)
Ausginge eines Flip-Flop
Vorzeichen einer Zahl

Ziffern einer Zahl

Wert einer Zahl

Zweierkomplement der Zahl X

M<OHTICIm®
Jo]

> 2
=

1.2. Wertzuweisung bei logischen Signalen

In den verwendeten Schaltbildern sind die logischen Signale durch
Abkiirzungen eingezeichnet. Die Abkiirzungen werden im Text
erlautert. Ist am Eingang oder am Ausgang eines Bausteins ein lo-
gisches Signal S durch S gekennzeichnet, heit das: Das Signal hat
Hochpegel, wenn dem Signal der logische Wert 1 zugeordnet ist.
Wird es durch S gekennzeichnet, heiBt das: Das Signal hat Tiefpe-
gei, wenn dem Signal der logische Wert 1 zugeordnet ist. In den
Funktionstabellen bedeuten die Bezeichnungen H bzw. L hoher
bzw. niedriger Spannungspegel. Dagegen kennze€ichnen 1 oder 0
die den Eingingen bzw. Ausgingen zugeordneten logischen
Werte. Die Bezeichnung H und L wurde in den Fillen gewihlt, wo
es sich um die Beschreibung der Signalpegel in einer Schaltung
handelt. 0 und 1 stehen in den Féllen, wo aus vorgegebenen logi-
schen Bedingungen das logische Schaltbild entworfen wird, ohne
daBdabei die Signalzuordnung H oder L erforderlich ist.

8

2. Grundlagen der Rechentechnik

2.1. Aufbau eines Rechners

Der Rechner war das Vorbild fiir die Entwicklung der Mikropro-
zessoren. Viele Vorgénge in Natur und Technik laufen nach ma-
thematischen oder logischen Regeln ab. Der Rechner ist die Basis
zur Nachbildung solcher Vorgédnge. Durch die Moglichkeit, ihn zu
programmieren, kann man in ihm Algorithmen speichern und zu
jeder Zeit abarbeiten lassen.

Der Rechner ist ein universelles Hilfsmittel zur Realisierung von
Steuerungen, zur Nachbildung von Modellen sowie zur Losung
von mathematischen Aufgaben, fiir die man sich bisher umfangrei-
cher elektronischer Schaltungen bedienen muBte (z. B. Digitaluhr,
Digitalvoltmeter, Zihler). Durch seine Programmierbarkeit hat er
gegeniiber anderen Losungen den Vorteil, daB er sich ohne Ande-
rung der Hardware (fest verdrahtete Schaltung) an das jeweilige
Programm anpassen 148t. Sein Einsatz fiir eine bestimmte Losung
héngt im Prinzip nur vom Kostenverhaltnis zwischen Rechner und
konkreter Schaltungstechnik ab.

Ein Rechner soll eine Aufgabe nach einer Lésungsvorschrift abar-
beiten. Dabei ist der Ablauf derselbe wie bei einer Handrechnung.
Entsprechend der Losungsvorschrift, die aus einer Reihe von An-
weisungen besteht, werden die Daten durch Rechenoperationen
mitemander verkniipft, eventuelle Zwischenergebnisse notiert
und die Ergebnisse auf einem gesonderten Formular zusammenge-
faBt.

In der gleichen Weise arbeitet ein Rechner. Die Losungsvorschrift,
die aus einer Reihe von Anweisungen (Befehlen) besteht, ist das
Programm . Man muB es, damit es abgearbeitet werden kann, in ei-
nen Speicher eingeben. Ebenso miissen die Ausgangsdaten, die
Zwischenwerte sowie die Resultate gespeichert werden. Das Re-
chenwerk, das im wesentlichen die 4 Grundrechenarten Addition,
Subtraktion, Multiplikation und Division sowie die logischen
Operationen UND, ODER und NEGATION ausfiihrt, verkniipft
die Daten. Fiir die Steuerung des gesamten Ablaufs gibt es ein
Steuerwerk. Dieses Steuerwerk liest Anweisung fiir Anweisung der

9

Ausgabe von Eingabe von
Ergebnissen T lAusgongsdcnten

Ausgangs-
Rechenwerk| daten Speicher
Ergebnisse

Fertigmel- .
ang l t Steuersignale l Befehlsworte

Steuerwerk

Anzeigesignale Startsignale
Bedienpult

Bild 2.1 Grundsitzliche Struktur eines Rechners

Losungsvorschrift aus dem Speicher und gibt dem-Rechenwerk Si-
gnale zur Ausfiihrung der in der Anweisung vorgegebenen Funk-
tion. Rechenwerk und Steuerwerk bilden die CPU (Central Pro-
zessor Unit). Ein Rechner besteht also aus den Hauptbestandteilen
Speicher, Rechenwerk und Steuerwerk.

AuBlerdem gehoren zum Rechner noch Ein- und Ausgabegerite
zur Eingabe des Programms und der Ausgangsdaten einer Auf-
gabe sowie zur Ausgabe der Ergebnisse. Ferner ist an jedem Rech-
ner ein Bedienpult angeschlossen, iiber das bestimmte Funktionen
(Starten eines Programms, Ein- und Ausschalten von Teilgeriten,
Sichtanzeigen) gesteuert werden konnen.

Bild 2.1 zeigt die grundsitzliche Struktur eines solchen Rechners.

2.1.1. Speicher

Der Speicher hat die Aufgabe, alle Informationen, die zur Lésung
einer Aufgabe benétigt werden, zu speichern.

Dazu gehoren das Programm, das aus einer Folge von Befehlen be-
steht, die Ausgangsdaten, die Zwischenresultate und die Ender-
gebnisse.

Ausgangsdaten, Zwischenresultate und Endergebnisse sind im all-
gemeinen Zahlen oder alphanumerische Zeichen (Text). Zur Dar-
stellung einer Zahl oder eines Befehls dient innerhalb des Rech-
ners ein sogenanntes Maschinenwort, das aus einer Bit-Folge

10

Sektor 0 [Sektor1 | 3 Sektor 63]

Y

Zelle O Zelle1024 Zelle 64512
Bild 2.2 Logische Aufteilung eines 64-K-Speichers in 64 Sektoren

besteht. Es hat eine vorgegebene Wortlinge. Den Platz, der not-
wendig ist, um ein solches Wort im Rechner zu speichern, nennt
man eine Speicherzelle. Der Speicher besteht aus einer groBeren
Anzahl solcher Speicherzellen, die durchnumeriert sind. Die Num-
mer der Speicherzelle nennt man die Adresse.

In der Rechentechnik ist die Mengenangabe Kilo (Kilobyte oder
Kiloworte) iiblich. Ein Kilo kennzeichnet hier jedoch nicht die tau-
sendfache Menge, sondern das 1024fache (1 Kbyte = 1024 Byte),
da die Kapazitit eines Speichers fast immer einer Zweierpotenz
entspricht. Zu einer solchen Speicherplatzanzahl ist eine optimale
AdreBentschliisselung moglich. Manchmal wird der Speicher in
Seiten oder Sektoren aufgeteilt. Entsprechend unterteilt sich dann
auch die Adresse in Seitenadresse (Sektoradresse) und Zellen-
nummer innerhalb der Seite (Sektor). Bild 2.2. zeigt die Auftei-
lung eines Speichers mit 64K-Zellen in 64 Sektoren.

Technisch werden Speicher meistens als Ferritkernspeicher oder
Halbleiter ausgefiihrt (s. Abschnitt 3.4.3.).

2.1.2. Rechenwerk

Das Rechenwerk dient zur Ausfiihrung von Rechenoperationen.
Es bekommt durch das Steuerwerk eine Folge von Schaltsignalen,
die es auf die gerade auszufiihrenden Rechenoperationen umschal-
ten. Vom Speicher erhilt es die Zahlen, die zur Ausfithrung der
Rechenoperationen notwendig sind.

Die Zahlen werden im Rechenwerk zwischengespeichert. Dazu
hat das Rechenwerk mehrere Register, in denen die Ausgangsda-
ten einer Rechenoperation gespeichert sind.

Nach der Ausfiihrung der Rechenoperation wird das Ergebnis
ebenfalls in einem Register gespeichert. Bild 2.3. zeigt das Grund-
prinzip eines Rechenwerks.

11

(Register fur1.Zaht) (Register fur 2.Zahl)
| Register 1] | Register 2 |

Schaltsignale zum Einstellen

Rechermerkslogik der Rechenoperationen

(Ergebnisregister)

Bild 2.3 Grundprinzip eines Rechenwerks

Zu den Operationen, die ein Rechenwerk eines Rechners aus-
fiihrt, gehoren:

a) Arithmetische Rechenoperationen fiir die im Rechner verdrah-
teten Zahlendarstellungen (ADDITION, SUBTRAKTION,
MULTIPLIKATION und DIVISION). Bei Mikrorechnern
sind im allgemeinen nur Addition und Subtraktion méglich.
Multiplikation und Division miissen programmiert werden.

b) Logische Operationen

(UND, ODER, EXKLUSIV-ODER,

NEGATION, VERSCHIEBUNG)
¢) Zahlenumwandlungen.
Das Rechenwerk eines Mikrorechners wird im allgemeinen als
arithmetisch-logische Einheit (ALU - arithmetic-logic unit) be-
zeichnet. Die ALU ist eine Logikschaltung, die durch Steuer-
signale so eingestellt werden kann, daB ein oder zwei Eingangs-
bitmuster entsprechend der eingestellten Operation verarbeitet
werden. '

2.1.3. Steuerwerk

Das Steuerwerk iibernimmt die Befehle eines Programms in der
vorgegebenen Reihenfolge aus dem Speicher, entschliisselt sie und
bildet daraus die Steuersignale fiir das Rechenwerk. Bild 2.4 zeigt
den logischen Aufbau des Steuerwerks.

Der Befehlszahler enthélt die Adresse des zu holenden Befehls.
Der vom Speicher iibernommene Befehl wird zur Befehlsent-
schliisselung im Befehlsregister zwischengespeichert. Das Spei-

12

Z
QLG
o [~
SE&
-
¥2D
. 2EC
vom Speicher (7,?,?, &
| Befehladhlerl [Befehlsregister]-—-—
Y
Zeitstufen-
generator
Befehlsentschlunler
Adrenrechen-l

s
lSpeicheradrenregister] Steuerslignole I Taktgenerator l

fir Rechenwerk
Bild 2.4 Aufbau des Steuerwerks cines Rechners

cheradreBregister enthilt die Adresse des zum Befehl benétigten
Operanden. (Mehrere Operanden [Zahlen] werden nacheinander
aus dem Speicher geholt.)

Der Zeitstufengenerator erzeugt eine Reihe von Zeitsignalen, die
den Ablauf der Befehlsabarbeitung festlegen. Den Grundtakt
dazu liefert der Taktgenerator. Die wichtigsten Schritte einer Be-
fehlsabarbeitung sind:

— Ubernehmen des Befehls aus dem Speicher;

— Entschliisseln des Befehls;

— Ermitteln der Operandenadresse;

— Holen der Operanden aus dem Speicher;

— Ausfiihrung des Befehls;

— Ermittlung der Adresse des nidchsten Befehls.

Da der Rechner aus Speicher, Rechen- und Steuerwerk besteht,
ergibt sich die Mdglichkeit, automatisch, d. h. programmgesteu-
ert, beliebige Funktionen oder Aufgaben abzuarbeiten. Zu diesem
Zweck enthilt jede Aufgabe 2 Teilinformationen. Die erste Teilin-
formation beinhaltet die Daten bzw. Zahlen, die verarbeitet wer-
den sollen. Der zweite Teil der Information sind die Anweisungen
(Befehle), die aussagen, wie die Daten verarbeitet werden sollen.
Beide Teilinformationen gibt man iiber externe Gerite (Eingabe-
tastatur, Schreibmaschine, Lochbandleser, Lochkarteneingabe

13

usw.) in den Speicher ein. Vom Speicher werden die Anweisungen
in einer festgelegten Reihenfolge ins Steuerwerk iibernommen,
entschliisselt und vom Rechenwerk abgearbeitet. Zwischen- und
Endresultate gelangen in den Speicher zuriick und kénnen von
dortaus wieder iiber externe Gerite (Anzeige, Schreibmaschine,
Drucker) ausgegeben werden.

2.2. Darstellung von Daten

Da der Speicher aus einzelnen Zellen besteht, wobei jede Zelle
eine Bit-Folge mit vorgegebener Linge speichern kann, miissen
die zu verarbeitenden Daten (Zahlen) in Bit-Folgen umgewandelt
werden. Dafiir gibt es eine Reihe von Darstellungsarten. Je nach
Liange einer Speicherplatzzelle und Anzahl der notwendigen Stel-
len fiir die Darstellung einer Zahl werden fiir die Speicherung einer
Zahl eine oder mehrere Zellen benotigt. Das gleiche gilt fiir die
Speicherung von alphanumerischem Text.

2.2.1. Zahlendarstellung

Ausgangspunkt fiir die Darstellung von Zahlen in Rechnern ist das
Dualsystem. Dabei handelt es sich um ein Zahlensystem, das auf
nur 2 Ziffern basiert (0 und 1). Zur Speicherung einer Dualziffer
sind also nur 2 stabile Zustidnde notwendig, die sich leicht realisie-
ren lassen.

2.2.1.1. Ganze Zahlenim Dualsystem

Um eine Dezimalzahl in das Dualsystem zu iibertragen, zerlegt
man sie in Potenzen zur Basis 2, wobei jeder neuen Potenz von 2
eine neue Stelle zugeordnet wird.

Beispiel

Die Zahl 27 soll dual dargestellt werden. Aus Tabelle 2.1. ist zu er-
sehen, daB die groBte in 27 enthaltene Zweierpotenz 24=16ist, d.
h., der Stellenwert 2* wird benotigt. Der Stellenwert 2* = 8 ergibt
mit 2* zusammen 24, der Rest ist 3. Der Stellenwert 2 tritt also
nicht, d. h. Omal, auf, wihrend die Stellenwerte 2! und 2° je einmal

14

Tabelle 2.1. Tabelle der Zweierpotenzen

2" n 27"
1 0 1
2 1 0,5
4 2 0,25
8 3 0,125
16 4 0,0625
32 N 0,03125
64 6 0,015625
128 7 0,0078125
256 8 0,00390625

erforderlich sind. Die Zahl 27 stellt sich im Dualsystem also folgen-
dermaBen dar:
Stelle 2* Stelle 2° Stelle 2* Stelle 2' Stelle 2°

1 1 0 1 1

Der Leser fiihre selbst die Umwandlung der folgenden Dezimal-
zahlen ins Dualsystem aus:
41=1-25+0-2+1-22+0-22+0-2"+1-2°2101001
(dual);

15=1-2%41-22+1-2"+1.2°2 1111 (dual).

Umwandlung Dezimal — Dual
Eine weitere Methode besteht in der fortlaufenden Division durch
2.

Beispiel
Es soll die Dezimalzahl 93 durch fortlaufende Division durch 2 dual
dargestellt werden.

28 9> 94 3 92 ol Y

93:2 =46 Rest 1 1
46 :2 = 23 Rest 0 0
23:2=11Rest 1 1
11:2= SRestl 1

5:2= 2Restl 1

2:2= 1Rest0 0

1:2= ORestl 1

93 (dezimal) 2 1011101 (dual).

15

Umwandlung Dual —Dezimal
Hier geht man von einem Rechenschema aus, in dem die 2er Po-
tenzen wieder dezimal dargestellt werden.

Beispiel
1011121 -2 +0-2°+1-22+1-2'4+1-2°
=16+0+4+2+1=23.

2.2.1.2. Gebrochene Zahlen im Dualsystem

Bei der Darstellung von Zahlen, die Stellen hinter déem Komma ha-
ben, wird dhnlich wie bei den ganzen Zahlen verfahren. Man bené-
tigtdazu eine Tabelle der Potenzen von 2 mit negativen Exponen-
ten. Zum Beispiel kann man die Zahl 0,625 folgendermaB3en
schreiben:

0,625=1-2"140-2"2+1-27%20,101 (dual).

Ein Dezimalbruch 148t sich ins Dualsystem durch fortlaufende
Multiplikation mit der Grundzahl 2 iiberfiihren. Steht nach der
Multiplikation mit 2 vor dem Komma eine 0, so ist die nichste Du-
alstelle eine 0. Steht eine 1 vor dem Komma, dann ist die nachste
Dualstelle eine 1.

Beispiel

Umwandlung der Dezimalzahl 0,625

0,625 - 2 = 1,250 1 2 1. Dualstelle nach dem Komma;
0,25 -2 =0,50 0 2 2. Dualstelle nach dem Komma;
0,50 -2=1,00 12 3. Dualstelle nach dem Komma.

' Die Dezimalzahl 0,625 lautet dual 0,101. Die Begriindung des Ver-
fahrens liegt darin, daB bei jeder Multiplikation mit 2 die Zweier-
potenzen um 1 erh6ht werden und dabei die erste Ziffer vor das
Komma riickt. Diese Ziffer wird als Dualstelle ibernommen.

Bei gemischten Zahlen wandelt man den ganzen Teil und den ge-
brochenen Teil — jeden fiir sich — in eine Dualzahl um.

Beispiel

Die Zahl 3,25 soll dual dargestellt werden. Die Zerlegung von 3,25
ergibt 3 + 0,25. Der Zahl 3 entspricht die Dualzahl 11, der Zahl
0,25 entspricht die Dualzahl 0,01.

Damit lautet die Zahl 3,25 dual 11,01.

16

Stellenwert 27 28 25 2¢ 23 22 2! 2% (Bid2S
Darstellung von positiven
| I [I] I | |] und negativen ganzen Zah-
len mit Hilfe von 8 Dualstel-
len

Vorzeichenstelle

2.2.1.3. Darstellung von negativen Zahlen

In der Umgangssprache unterscheiden sich die negativen Zahlen
von den positiven Zahlen durch ein negatives Vorzeichen. Fiir die
Darstellung dieses Vorzeichens im Rechner kann man eine zusétz-
liche Dualstelle als Vorzeichenstelle einfiihren und z. B. folgende
Vereinbarung treffen:

Vorzeichenstelle = 0 heit positives Vorzeichen.

Vorzeichenstelle = 1 heiBt negatives Vorzeichen.

Diese Darstellungsart wird in der Literatur mit',,Betrag und Vor-
zeichen“ bezeichnet.

In den meisten Rechnern wird jedoch eine andere Darstellung, die
Komplementdarstellung, verwendet, in der die negativen Zahlen in
den positiven Zahlenbereich transformiert werden. Der Vorteil
besteht darin, daB sich die Subtraktion auf eine Addition zurtick-
fithren 148t.

In den meisten Mikroprozessoren stehen 8 Dualstellen (7 Dualstel-
len fiir die positiven Zahlen und eine Dualstelle fiir die Vorzei-
chenstelle) zur Verfiigung (Bild 2.5). Werden diese 8 Dualstellen
zur Darstellung ganzer Zahlen verwendet, so hat die Zahl +5 die
Belegung in Zeile 1 von Bild 2.6. Die duale Darstellung der Zahl
—5 mit Betrag und Vorzeichen ist aus Zeile 2 zu ersehen. Bei der
Komplementdarstellung wird bei negativen Zahlen das Komple-
ment zu 28 gebildet. Das heiBt, im Rechner wird anstelle der Zahl

Stellenwert 28 27 28 25 2¢ 28 22 ' 20
ojlojofojofl1fo]1]ss
0]0|l0f|0]1] 0] |-5(Betrag+Vorzeichen)

1111111711101 1|1 [|-5(2weierkomplement)

Vorzeichenstelle

Bild2.6 Darstellung der Zahlen +5 und —5 im Zweierkomplement

17

—x die Zahl 28 — x gespeichert. Fiir die Zahl —5 entsteht dabei die
Belegung entsprechend Zeile 3 in Bild 2.6.

Fiir die Komplementbildung kann man folgende Regel aufstellen:
Ausgehend von der positiven Dualzahl, werden zur Komplement-
bildung alle Stellen negiert und anschliefSend zum niedrigsten Stel-
lenwert eine 1 addiert.

2.2.1.4. Mathematische Formulierung der Komplementbildung

Der positive Zahlenbereich der nach Bild 2.7 dargestellten Zahlen
ist

Ill\
|I/\

N
Z N+1 _ 2—

Da die negativen Zahlen in den positiven Zahlenbereich transfor-
miert werden sollen, gilt fiir die Zahlen x’ im Rechner:

’_{x, fallsx%O}
YT 4k fallsx <o)

wobei k eine Komplementirzahl ist. Fiir die Komplementérzahl k
ergeben sich folgende Bedingungen:

1. Essollx’ > Osein.

2. Positive und negative Zahlen miissen unterscheidbar sein.
Damit muB fiir negative Zahlen x

k+ x>V - oM

sein, d. h.

k>N oM _ e =N 27 M 4 | x|,
und mit

|x |max = 2N+I _ 2—-M

wird

k>2.2M1 2. 27M - ',

Stellenwert 2N 2N M 2 2% 2! 2™
[T[- 11 F----11
Vorzeichenstelle Kammastellung

Bild 2.7 Duale Zahlendarstellung im Rechner

18

Die kleinstmdgliche Komplementérzahl ist damit
ky=k' +27M =22 7M,
Negative Zahlen, die mit dieser Komplementérzahl gebildet wer-

den, heiBen Einerkomplement.
Die niachstmdgliche Komplementérzahl ist:

k2 e k1 + 2_M = 2N+2 .
Zahlen. die mit k, gebildet werden, nennt man Zweierkomple-

ment. In unserem Beispiel nach Bild2.5sind M = Ound N = 6und
damit k, = 2%,

2.2.1.5. Zahlensysteme mitder Basis 8 (Oktalsystem) und 16
(Hexadezimalsystem)

Sehr hiufig werden zur iibersichtlichen Darstellung von Dualzah-
len dem Dualsystem verwandte Zahlensysteme verwendet. Hierzu
gehoren das Oktalystem und das Hexadezimalsystem.

Oktaldarstellung

Beim Oktalsystem betrigt die Basis B = 8. Da 8 = 2*ist, bilden
immer 3 Dualziffern eine Oktalziffer. Im Oktalsystem werden 7
Ziffern (0 bis 7) benotigt.

Beis piel

Die Dezimalzahl 201 lautet als Dualzahl 11001001 und als Oktal-
zahl 311 (11/001/001).

Hexadezimaldarstellung

Das Hexadezimalsystem hat die Basis B = 16. Da 16 = 2*ist, bil-
den 4 Dualziffern eine Hexadezimalziffer. Im Hexadezimalsystem
werden 16 Ziffern benétigt. Fir die Ziffern (10), (11), (12), (13),
(14), (15) setzt man gewohnlich die Zeichen A, B, C, D, E, Fein.
Beispiel

Die Dezimalzahl 201 lautet als Hexadezimalzahl

C9(1100/1001).

2.2.1.6. Zifferncode

Um Zahlen binir auszudriicken, gibt es auBer der reinen Dualdar-
stellung noch gemischte Formen, sogenannte Codierungen, in

19

denen die Ziffern einer Dezimalzahl getrennt durch Binérziffern
dargestellt werden.

Der einfachste Code ist der BCD-Code (Bindr-Code), in dem jede
Ziffer durch die entsprechende Dualzahl dargestellt wird. Fiir eine
Ziffer werden dabei 4 Dualstellen benétigt.

Beis piel

3791 £ 0011 0111 1001 0001
3 7 9 1

Die fiir eine Dezimalziffer notwendigen Dualstellen nennt man
eine Tetrade. Mitdiesen4 StellenlassensichauBer den Ziffern 0 bis
9 nochdie Zahlen 10 bis 15 realisieren. Tritt innerhalb der Tetrade
eine Kombination von Binéarstellen auf, die einer der Zahlen 10 bis
15 entspricht (z. B. 1101 £ 13), so nennt man diese Kombination
eine Pseudotetrade. Pseudotetraden sind Kombinationen von Bi-
nirziffern, deren Wert keiner der Ziffern 0 bis 9 zugeordnet ist.
AuBer dem BCD-Code gibt es noch weitere Codierungsvorschrif-
ten fir Ziffern, in denen andere Kombinationen von Binéarziffern
den Dualziffern 0 bis 9 zugeordnet sind.

3-ExzeB-Code
Codewert = Dualwert + 3.

Die 3-ExzeB-Code-Verschliisselung ergibt fiir die Dezimalziffern 0
bis 9 folgende Zuordnung:

0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100
Aiken-Code

Codewert = Dualwert, falls Zahlenwert <5,
Codewert = Dualwert +6, falls Zahlenwert =5.

20

Der Aiken-Code ergibt fiir die Dezimalziffern 0 bis 9 folgende Zu-

ordnung:
0 0000
1 0001
2 0010
3 0011
4 0100
5 1011
6 1100
7 1101
8 1110
9 1111

AuBer der Darstellung von Dezimalziffern durch 4 Dualstellen gibt
es noch solche mit mehr als 4 Dualstellen.

Beispiele solcher Codierungen sind der Walking-Code undder Po-
sitionscode.

Walking-Code (2-aus-5-Code)
=00011

1
—m O =00 00
OO = O =00
cCooCOoOR R OR=

0
1
2
3
4
5
6
7
8
9

-0 o000 oo mEmkOo
O R R OOOoOOoOOoO -

Positionscode (1-aus-10-Code)
0=0000000001
1=0000000010

2=0000000100
3=0000001000
4=0000010000
5=0000100000
6=0001000000
7=001:0000000
8=0100000000
9=1000000000

21

2.2.1.7. Zahlenbereich im Rechner

Bei der Darstellung von Zahlen im Rechner muf8 man die Tatsache
beriicksichtigen, daf ein Rechner nur eine bestimmte Stellenzahl
hat. Stehen z. B. nur 7 Stellen fiir positive Dualzahlen zur Verfii-
gung, wie es bei vielen Mikroprozessoren der Fall ist, so kann man
damit nur ganze Zahlen zwischen 0 und 127 darstellen. Sollen auch
gebrochene Zahlen dargestellt werden, so kann man das Komma
vor eine dieser Stellen setzen. Dabei wird der Zahlenbereich nicht
erweitert, sondern nur verschoben. Steht bei 7 Stellen das Komma
nach der 4. Stelle, so kann man nur Zahlen zwischen 0 und 15,875
in Schritten zu 0,125 darstellen.

Damit der Zahlenbereich an die praktischen Erfordernisse ange-
paBt wird, gibt es noch verschiedene Darstellungsformen inner-
halb eines Zahlensystems, die wichtigsten sind die Festkomma-
und die Gleitkommazahlen.

Festkommazahlen

Dabei handelt es sich um Zahlen, bei denen eine feste Anzahl von
Ziffern vor und nach dem Komma vereinbart wird. Die Stellung
des Kommas und die Gesamtzahl der Ziffern hangt vom Rechner-
typ ab. Es gibt auch Rechner, bei denen das Komma durch Tasten
oder selbstandig gesetzt wird.

Beispiel

In jedem Taschenrechner sind Dezimalzahlen der Form37283 -
613 iiblich. In diesem Fall rechnet der Taschenrechner mit 8 Dezi-
malstellen in Festkommadarstellung.

Im Dualsystem besteht das gleiche Problem. In einem Rechner
148t sich wegen der technischen Gegebenheiten nur eine feste An-
zahl von Dualstellen speichern. Dabei kann das Komma rechts von
der niedrigsten Stelle (dann handelt es sich um ganze Zahlen) oder
links vor der hochsten Stelle stehen (dann handelt es sich um echt
gebrochene Zahlen), oder das Komma trennt einen ganzen und ei-
nen gebrochenen Teil.

Bei der Addition und Subtraktion von Festkommazahlen miissen
die Zahlen so verschoben werden, da3 die Kommas untereinander
stehen. Bei Multiplikation und Division mufl man die Stelle des
Kommas besonders bestimmen.

Gleitkommazahlen
Jede Zahl Z 148t sich in folgender Form darstellen:

22

Z=m- BE
(z.B.0,19-10%;m = 0,19; E = —18; B = 10).
Dabei nennt man m die Mantisse, E den Exponenten, und B ist die
Basis des Zahlensystems.

Bei der dualen Darstellung von Gleitkommazahlen gilt fiir m bei
den meisten Rechnern folgende Vorschrift:

1. -1<m< +1.
2. Die 1. Stelle nach dem Komma soll nicht 0 sein.

Zahlen, die diesen Bedingungen geniigen, nennt man normalisierte
Zahlen. Durch diese Vorschrift werden die Mantisse 7 und der Ex-
ponent E eindeutig bestimmt. Es gibt aber auch Vorschriften fiir
die Bildung der Mantisse m, die von der genannten Vorschrift ab-
weichen.

Beispiel 1

Man schreibe die Zahl 25,211 als Dezimalzahl in Gleitkommadar-
stellung.

Losung: 25,211 = 0,25211 - 10% .

Die Mantisse lautet also m = 0,25211 und der Exponent E = 2.

Beispiel 2

Man schreibe die Zahl 4,25 als Gleitkommazahl in dualer Darstel-
lung.

Losung:425=1-22+0-2'+0-2"+1-22,

Das ergibt die Dualzahl 100,01.

Als Gleitkommazahl entsprechend obiger Vorschrift wird daraus
0,10001 - 2% = 0,10001 - 2! .

Die Mantisse lautet also m = 0,10001 und der Exponent E = 11.

2.2.2. Darstellung von Text (Zeichencode)

Damit der Rechner beliebige Textinformationen speichern kann,
miissen alphanumerische Zeichen auch durch Bit-Folgen (Folgen
aus den Ziffern 0 und 1) dargestellt werden. Dabei ergibt sich die
Frage, wieviel Dualstellen insgesamt zur Codierung aller vorkom-
menden Zeichen notwendig sind. Aus der Mathematik ist bekannt,
daB mit n Dualstellen 2" unterschiedliche Bit-Folgen, bestehend

23

aus den Ziffern 0 und 1, dargestellt werden kénnen. Nimmt man

an, daB die Anzahl der verwendeten Zeichen (Buchstaben, Ziffern

und Syntaxzeichen) kleiner als 128 ist, so bendtigt man dazu 7 Du-
alstellen, da 27 = 128 ist. Meistens kommt zu diesen 7 Bit eine

Kontrollbit hinzu. Die Bit-Folge von 8 Dualstellen nennt man 1

Byte. Innerhalb dieser 8 Stellen wird jedem Zeichen eine feste

Folge aus den Ziffern Ound 1 zugeordnet. Diese Folge ist der Code

des betreffenden Zeichens.

Es gibt mehrere internationale Festlegungen fiir solche Zuordnun-

gen. Die in der DDR am hiufigsten verwendeten Zeichencode

sind:

— SIF-1000-Code (Standard-Interface-Code fiir Datenverarbei-
tungsperipherie);

— ASCII-Code (American Standard Code for Information
Interchange — amerikanischer Code fiir Infor-
mationsaustausch);

— R-300-Code;

— ISO-7-Bit-Code.

In Mikrorechnern wird vorwiegend der ASCII-Code und der SIF-

1000-Code angewendet.

2.2.3. Rechnen mit Dualzahlen

Addition

Wihrend bei Dezimalzahlen ein Ubertrag entsteht, wenn die
Summe zweier Ziffern grofer als 9 ist, tritt im Dualsystem der
Ubertrag bereits auf, wenn die Summe groBer als 2 ist. Im Dualsy-
stem gelten folgende Grundregeln:

0 + 0 = 0 mit Ubertrag 0;

0 + 1 =1 mit Ubertrag 0;

1 + 0 = 1 mit Ubertrag 0;

1 + 1 = 0 mit Ubertrag 1.

Beispiel
Bilden der Summe 13 + 7.
1 Ubertrag 1111 Ubertrag
Dezimal: 13 Dual: 13 2 1101
+ 17 + 72 111
20 20 2 10100

24

Subtraktion

Gelingt die Subtraktion in einer Stelle nicht direkt, so mufl der Mi-
nuend durch ,,Borgen“ aus der niachsthoheren Stelle erh6ht wer-
den. Im Dualsystem wird das ,,Borgen“ aus der nichsthoheren
Stelle dadurch realisiert, daB von der hoherwertigen Stelle, wie
auch im Dezimalsystem, eine 1 abgezogen und dafiir die betref-
fende Stelle um 10 erh6ht wird

Beispiel
Bilden der Differenz 91—-53.
~ 1 geborgt ~ ~ 1 geborgt
Dezimal: 91 Dual: 9121011011
- 53 -52 110101
38 332 100110

Werden negative Dualzahlen im Komplement dargestellt, dann
realisiert man die Subtraktion durch die Addition im Zweierkom-
plement. Die Zahl —53 sieht in Zweierkomplementdarstellung fol-
gendermaBen aus:

-53211001011,

wobei das vorderste Bit die Vorzeichenstelle ist.

Das Beispiel 91—53 sieht, wennstatt 91—53 91 + (—53) gerechnet
wird, so aus:

91201011011
-53211001011
00100110

Der Ubertrag in die Stelle vor dem Vorzeichen wird dabei nicht
mehr beriicksichtigt, da er iiber die vorgegebene Stellenzahl hin-
ausgeht. Zur Begriindung der angewandten Methode setzt man fiir
eine negative Zahl y in der Komplementdarstellung das Zeichen
y'.Dannisty’ =y + k,, mitk, = 28 wenn es sich um das Zweier-
komplement handelt.

Die Zahl k, = 28148t sich mit den vorgegebenen Stellen nicht dar-
stellen, da der hochste Stellenwert 27 ist.

Fiir x — y gilt:

x—y=x+(=y)=x+y =x—-y+k,.

Ist x — y negativ, so steht das Ergebnis mit x — y + k; richtig im Re-
gister. Ist x — y positiv, so ergibt sich ebenfalls ein richtiges Ergeb-
nis, da die Stelle fiir k, nicht vorhanden ist.

25

Sind x und y negativ, dann gilt:

—x-—y=x't+y =—x—-y+2kz=—x—-y+kotk;.

Der Wert —x — y + k; ist die Komplementdarstellung von —x — y.
Das zweite k, wird nicht im Register dargestellt, da die dafiir not-
wendige Stelle nicht vorhanden ist.

Multiplikationen

Zur Multiplikation miissen die beiden Operanden positiv sein. Die
Multiplikation von positiven Zahlen gleicht derim Dezimalsystem,
wobei folgende Grundregeln gelten:

0-0=0;
0:-1=0;
1-0=0;
1-1=1.

Die Multiplikation ist eine fortgesetzte Addition, wobei die einzel-
nen Summandenentsprechendihrem Stellenwert verschoben sind.

Beis piel
Bilden des Produkts 12 * 5 .
1100 * 101

0000

1100

111100 £ 60
Auch hier kann wie beim Rechnen mit Dezimalzahlen im angege-
benen Beispiel die Nullzeile weggelassen werden.
Division
Die Division ist im wesentlichen eine fortgesetzte Subtraktion. In
den Quotienten wird dann eine Ziffer 1 eingetragen, wenn der Sub-
trahend kleiner als der Minuend ist. Da die Subtraktion auch als
Addition im Komplement realisiert werden kann, ergeben sich un-
terschiedliche Verfahren fiir die Division, die jedoch im Prinzip auf
der gleichen Grundlage beruhen.

Beis piel 1
Bilden der Division 108 : 12 nach dem normalen Handrechenver-
fahren.
1101100:1100=1001
- 1100 geht zu subtrahieren
(Subtrahend st kleiner als
Minuend), Ergebnisist 1;
0001100 Rest

26

Divisor 1 Stelle

nachrechts -1100
0001100

Divisor 1 Stelle

nachrechts -1100
0001100

Divisor 1 Stelle

nachrechts -1100
0000000

geht nichtzusubtrahieren,
Ergebnisist 0;
Rest

geht nicht zu subtrahieren,
Ergebnisist 0;
Rest

geht zu subtrahieren,
Ergebnisist 1;
Rest

Da der Rest O ist, lautet das Ergebnis1 00 1.

Beis piel 2

Bilden der Division 108 : 12 mit Riickstellung des Restes unter
Verwendung der Komplementdarstellung.

1101100:1100=1001

Stellenzahl 876543210

01101100
+10100000
00001100

+11010000

11011100

+ 1100

00001100
+11101000
11110100

Divident
Zweierkomplementdes
Divisors

Ergebnis ist positiv—

ergibt eine 1im Quotienten
Divisor um eine Stelle nach
rechts verschoben
(Zweierkomplement)
Ergebnisist negativ—ergibt
eine 0im Quotienten

Da das vorangegangene Ergeb-
nis negativ ist, muB der Divisor
wieder dazugezihlt werden
(Riickstellung des Restes)

Divisor um eine Stelle nach
rechts verschoben,
Ergebnisist negativ—ergibt
eine 0im Quotienten

27

+ 1100 Dadas vorangegangene Ergeb-
nis negativ ist, muB der Divisor
00001100 wiederdazugezihlt werden
(Riickstellungdes Restes)
+11110100 Divisorum 1 nachrechtsver-
schoben
00000000 Ergebnispositiv—ergibt 1im
Quotienten
Der verbleibende Rest ist 0, die Division geht auf und ergibt den
Quotienten 1001.
Geht man von der Tatsache aus, daB Multiplikation und Division
durch fortgesetzte Additionen bzw. Subtraktionen realisiert wer-
den, so 14Bt sich zeigen, daB im Dualsystem weniger Additionen
und Subtraktionen notwendig sind als im Dezimalsystem.

Rechnen mit codierten Zahlen

In diesem Abschnitt wird nur auf BCD-codierte Zahlen eingegan-
gen, da der BCD-Code der am haufigsten verwendete Code ist.
Fiir die Rechenoperationen im BCD-Code gibt es bei den Mikro-
prozessoren 8080 und U 880 spezielle Befehle. Werden 2 Dezimal-
ziffern im BCD-Code addiert, so kénnen folgende Fille auftreten:
1. Die Summe ist =9.

2. Die Summe ist >9 aber =15.

3. Die Summe ist >15.

Im Fall 1 ist die Ergebnisziffer richtig.

Beispiel

Summe4 +5: 4 2 0100
5 20101
9 2 1001

Im Fall 2 ist die Ergebnisziffer eine Pseudotetrade. Die richtige
Ziffer erhalt man durch Addition von 6.

Beispiel
Summe7+6: 72 0111
62 0110
1101 = Pseudotetrade
+ 110 (Addition 6)
13 2 10011

28

Im Fall 3 ergibt sich bereits der richtige Ubertrag, aber die Ergeb-
nisziffer muB noch um 6 erhoht werden.

Beis piel

Summe8+9: 82 1000
92 1001

Ubertrag in die

néchste Dezi-
malziffer ———1 0001
+ 110 (Addition 6)

17 2 10111
Fiir die Addition im BCD-Code lassen sich also folgende Regeln
aufstellen:
Ergibt die Summe zweier Ziffern plus Ubertrag von der vorherigen
Stelle keine Pseudotetrade und keinen Ubertrag in die nichste De-
zimalstelle, so ist die Ergebnisziffer richtig.
Ergibt die Summe zweier Ziffern eine Pseudotetrade oder einen
Ubertrag'in die nichste Stelle, dann muB die Ergebnisziffer um 6
erhoht werden.

Beis piel
Summe 2985 + 4936 = 7921.

1 1 1 Ubertrag in
0010 1001 1000 1 0 1 nachste Tetrade
0100 1001 0011 0110
0111 011 11002PS*{1011 2 PS*

110(+6) 110(+6) 110(+6)

0111 1001 L0010 0012 7921
* PS = Pseudotetrade

Rechnen mit Gleitkommazahlen

Addition und Subtraktion von Gleitkommazahlen

Die Addition bzw. Subtraktion der Mantissen zweier Zahlen ist
nur dann moglich, wenn die Exponenten beider Zahlen gleich
sind.

Fiirdie Berechnung von

Zi+ Zy = my - 108! + m, - 102

muB unter der Voraussetzung, daBl E| < E; ist, m; um E, — E,

29

Stellen nach rechts verschoben werden. Die neue Mantisse sei mit
m; bezeichnet, dann ist

Zi+ Z, =mj- 107 + m, - 102 = (m{ + my) - 1052,

Die neue Mantisse ist also m; + my, der neue Exponent E,.

Beispiel
Z,=0,2510%
Z,=0,35"-10%

E, — E; =2, d h., die Mantisse von Z; muf83 um 2 Stellen nach
rechts verschoben werden. Es gilt also:
Zy+ Z,=0,25-10*+0,35- 10
=0,0025 - 10* + 0,35 - 10* = 0,3525 - 10°.
Bei der Addition im Dualsystem verfahrt man analog.
Bei der Subtraktion ist in entsprechender Weise vorzugehen.

Multiplikation von Gleitkommazahlen

Die Multiplikation von Gleitkommazahlen lduft nach der Regel
Zy-Zy=my- 108" . my - 1022 = my - mp - 1052+ B2

ab. Die neue Mantisse ist also m; - m,, der neue Exponent E; + E,.
Die neue Mantisse m; - m, darf ebenfalls keine 0 nach dem Komma
aufweisen, d. h., gegebenenfalls ist die 0 nach dem Komma durch
Verschiebung von m; - m; um ein Stelle nach links zu beseitigen,
wobei der Exponent E; - E;um 1zuerniedrigen ist.

Beispiel 1 (Dezimalsystem)

Z,=02-10%

Z,=03-10%

Z,-2,=0,2-03-10*>=0,06-10° = 0,6 - 10*.

(Die ,,0“ nach dem Komma bei 0,06 wurde durch Verschiebung um
eine Stelle nach rechts und Erniedrigung des Exponenten 5 um 1
beseitigt.)

Im Dualsystem wird in entsprechender Weise verfahren.

Beispiel 2 (Dualsystem)

3-4=12.
3211=0,11-22=0,11-2%42100=0,1-2*=0,1 - 2!;
0,11-2°.0,1-2"=0,11-0,1-29+11=0,011 - 219,
=0,11.2000-D =0 11 . 2%

Division von Gleitkommazahlen
Die Division von Gleitkommazahlen lauft nach der Regel

30

ab. Die neue Mantisse ist also m, : m,, der neue Exponent £, — E,.
Da die neue Mantisse der Vorschrift —1 < m < + 1 geniigen mu8},
ist gegebenenfalls die Ergebnismantisse um eine Stelle nach rechts
zu verschieben und der Exponent dabei um 1 zu erhéhen.

Beispiel 1 (Dezimalsystem)

Z;=0,25-10%

Z,=0,5-10%

Z, _025-10°_ 0,25 .

Z " 05 1005 102=1=0,5- 10"
Beispiel 2 (Dualsystem)

6:2=3

Z,=620,11-2"

Z,=220,1-21

0,11-2" 0
% = 0’111 2%0 =0’11l 2M710=1,1.2'=0,11-2!"1= 0,11 2",
2 1)

2.3. Aufbau der Befehle

Genauso wie die Zahlen durch Bit-Folgen dargestellt werden, muBl
man auch die Anweisungen (Befehle) in Bit-Folgen umwandeln,
um sie zu speichern. Da eine Anweisung (Befehl) eine Information
sein soll, aus der hervorgeht, was der Rechner zu tun hat, besteht
sie aus 2 Hauptteilen:
— Der 1. Teil sagt aus, was bzw. welche Operation der Rechner
ausfiihren soll.
— Der 2. Teil sagt aus, woher die Daten kommen, die fiir die
Durchfiihrung dieser Operation gebraucht werden.
Der 1. Teil wird Operationsteil, der 2. Teil Adre ffteil genannt (Bild
2.8). Im AdreBteil steht eine Adresse (EinadreBbefehl) oder meh-
rere Adressen (MehradreBbefehl) fiir die bendtigten Daten. Im
AdreBteil eines EinadreBbefehls steht entweder die fertige
Adresse oder, wie es oft der Fall ist, eine Rechenvorschrift, aus der
die endgiiltige Adresse ermittelt wird. Man spricht in diesem Fall

31

lOperohonsteulI Adrefteil

Bild 2.8 Befehlsaufbau

von Adrefirechnung. Durch die AdreBrechnung wird aus den
im AdreBteil des Befehls stehenden Angaben die endgiiltige’
Speicheradresse ermittelt.

Bei der AdreBrechnung gibt es 2 Grundprinzipien, auf die bei na-
hezu allen Rechnern zuriickgegriffen wird. Das erste Prinzip ist un-
ter dem Namen Index-Rechnung bekannt. Bei der Index-Rech-
nung wird die endgiiltige Speicheradresse ermittelt, indem zu der
im Befehl angegebenen Adresse der Inhalt eines speziellen Regi-
sters, Index-Register genannt, dazugezihlt wird. Die endgiiltige
Speicheradresse ist also gleich im Befehl angegebene Adresse plus
Inhalt Index-Register (Indexierung):

Endgiiltige Speicheradresse = im Befehl angegebene Adresse +
(Index-Register).

Das zweite Prinzip ist unter dem Namen indirekte Adressierung be-
kannt. Bei der indirekten Adressierung steht die endgiiltige Spei-
cheradresse in der Zelle, deren Adresse im Befehl steht; oder an-
ders ausgedriickt, die endgiiltige Adresse ist der Inhalt der im Be-
fehl angegebenen Speicherzelle. Es kommt auch vor, daB die end-
giiltige Adresse nicht in der Speicherzelle, sondern in einem spe-
ziellen Register steht.

Endgiiltige Speicheradresse = Inhalt der im Befehl angegebenen
Speicherzelle.

2.4. Befehlsschliissel eines Rechners

Der Befehlsschliissel ist eine Zusammenfassung aller Befehle, die
ein Rechner ausfiihren kann. Jedem Befehl wird eine bestimmte
Bit-Folge im Operationsteil zugeordnet. Diese Bit-Folge nennt
man Operationscode. Bei Befehlen, die keinen Speicherzugriff be-
notigen (nichtspeicherbezogene Befehle), wird zur Codierung des
Befehls der AdreBteil hinzugezogen. Die folgende Zusammenstel-
lung enthilt eine Ubersicht iiber Befehlsarten, die ein Mikropro-
zessor ausfiihren kann.

— Adrefoperationen
AdreBoperationen sind Operationen zur Ermittlung der endgiil-

32

tigen Speicheradresse aus den Angaben im AdreBteil des Befehls
(Indexierung, indirekte Adressierung).

— Transportoperationen

Transportoperationen dienen zur Ubertragung von Daten vom
Speicher in spezielle Register und umgekehrt oder von Speicher-
zellen in andere Speicherzellen. Man unterscheidet Einzelwort-
transfer und Blocktransfer. Einzelworttransfer ist die Ubertragung
eines Wortes oder Bytes, Blocktransfer ist die Ubertragung eines
Datenblocks von einem Speicherbereich in einen anderen Spei-
cherbereich.

— Rechen- und logische O perationen

Diese Operationen dienen zur Verkniipfung von Zahlen bzw. Bit-
Folgen. Bei den Rechenoperationen werden Zahlen durch Re-
chenvorschriften (Addition, Subtraktion, Multiplikation, Divi-
sion), bei den logischen Operationen durch logische Operatoren
(UND, ODER, NEGATION, EXKLUSIV-ODER usw.) ver-
kniipft. Das Resultat steht meistens in einem speziellen Register,
dem Akkumulatorregister.

AufBlerdem gibt es Befehle, durch die einzelne Bits einer Bit-Folge
verdndert werden, sowie Befehle zum Vergleich zweier Bit-Fol-
gen.

Sprungoperationen

Sprungoperationen dienen zur Gestaltung der Programmstruktur.
Durch einen Sprungbefehl ist es moglich, von einer Stelle im Pro-
gramm an eine beliebige andere Stelle zu springen und dort die Ab-
arbeitung fortzusetzen.

Natiirliche Abarbeitungsfolge Reihenfolge bei Sprungbefehl

Befehl 1 Befehl 1

Befehl 2 Befehl 2 (Sprung nach Befehl 5)
Befehl 3 .

Befehl 4 .

Befehl 5 Befehl 5

Befehl 6 Befehl 6
Unterprogrammbefehle

Ein Unterprogramm ist ein Programm, das eine spezielle Funktion
ausfiihrt, die wihrend der Abarbeitung eines groBeren Programms
mehrmals notwendig ist (z. B. Berechnung des Logarithmus einer
Zahl). Man spricht deshalb vom Hauptprogramm, das die gesamte
Aufgabe realisiert, und vom Unterprogramm zur Losung einer spe-
ziellen Funktion.

33

Hauptprogramm (HP) Unterprogramm (UP)

1.Befehl des UP|
1
Ap fruf
Be_feiw—l; ndchsterBefehl
zdhler-
stand
Ende HP inshP

Bild 2.9 Arbeitsweise eines Unterprogramms

Das Unterprogramm steht nur einmal im Speicher und muB8 so ar-
beiten, daB man es von verschiedenen Stellen des Hauptpro-
gramms aus aufrufen kann. Nach dem Durchlaufen des Unterpro-
gramms muf an die Stelle im Hauptprogramm zuriickgesprungen
werden, von der aus ins Unterprogramm gesprungen wurde. Der
Sprungbefehl ins Unterprogramm besteht aus 2 Funktionen. Er-
stens wird ein einfacher Sprung zur Startadresse des Unterpro-
gramms ausgefiihrt, zweitens muB die Riicksprungstelle ins Haupt-
programm gemerkt werden. Die Riicksprungadresse (Inhalt Be-
fehlszédhler + 1) wird in einer speziellen Speicherzelle gemerkt.
Der Riicksprung aus dem Unterprogramm ist ein Sprungbefehi,
dessen Adresse aus der Speicherzelle genommen wird, in der die
Riicksprungadresse steht (Bild 2.9).

Steueroperationen

Diese Operationen sind spezielle Befehle, die den Zustand des
Rechners festlegen. Dazu gehort z. B. der HALT-Befehl.

Ein- und Ausgabeoperation

Sie dienen zur Ansteuerung entsprechender Kanile, an die Gerite
zur Ein- bzw. Ausgabe von Daten angeschlossen sind.

2.5. Befehlsabarbeitung

Zur Abarbeitung eines Programms werden die Befehle der Reihe
nach aus dem Speicher in die CPU geholt. Die Adresse der Spei-
cherzelle, aus der der Befehl kommt, steht im Befehlszéhler (BZ).
Die Ausfiihrung eines Befehls geht in einzelnen Abschnitten, den

34

N

1

Befehl aus Speicher nach
Befehlsregister holen
Adresse ist imBefehlszdhler

l Adrefirechnung

]

r Befehl entschlisseln]

? .
(Sprungbefehl ? 3—£———

n

register

Operanden aus Speicher holen
Adresse im Speicheradrefi -

!

lapemtion ausfihren

‘ n Sprung
erf

Befehlszdhler
erhohen

bedingung

i)

allt ?

ja

Durch Adrefirechnung
ermittelte Adresse in den
Befehlszdhler bringen

|

(" Halt-Befeh! ?

)

ja

&

Bild 2.10 Befehlsabarbeitung

35

Maschinenzyklen, vor sich. Bild 2.10 zeigt, welche Funktionen bei
der Ausfiihrung eines Befehls abgearbeitet werden.

2.6. Ein- und Ausgabesteuerung (E/A-Steuerung)
2.6.1. Prinzip der E/A-Steuerung

Die Ein-/Ausgabe-Steuerung stellt die Verbindung zwischen dem
Rechner und den peripheren Geriten her (Bild 2.11).

Die Schnittstellen zwischen Rechner und E/A-Steuerung und zwi-
schen E/A-Steuerung und externem Gerit bestehen aus Daten-,
AdreB- und Steuerleitungen. Man spricht vom Datenbus, Adre f3-
busund Steuerbus. Ist an die E/A-Steuerung nur ein externes Gerét
angeschlossen, dann kann der dazugehérige AdreBbus entfallen.
Entsprechen die Leitungen einer Schnittstelle einer Normung, so
spricht man von einer Standard-Interface.

Datenbus
Uber den Datenbus werden Dateninformationen iibertragen. Er
besteht meistens aus 8 (1 Byte) oder 16 Leitungen.

Adrefbus
Der AdreBbus enthilt die Adresse der E/A-Steuerung bzw. die
Adresse des externen Gerits. Das Gerit entschliisselt die Adresse
und bildet ein AdreBsignal, wenn es durch die richtige Adresse an-
gesprochen wird.

! i
! I

I [S—)
; A,(dreﬂ - lA_(tjreﬂ -
ei ur:gen i ei urlmgen externes
Rechner 1 - Gerdt

I R |
Daten- \| Steuerung Daten-
leitungen leitungen
! ! 2B Lochband-
Steuer- Steuer- stanzer oder

leitungen leitungen 4 Magnetband-
| : kassette
I !
Schnittstelle Schnittstelle

Rechner - E/A-Steuerung E/A-Steuerung - externes Gerdt

Bild2.11 Ein-/Ausgabe-Steuerung

36

Steuerbus

Der Steuerbus enthilt Signale, die den Zeitpunkt der Dateniiber-
tragung festlegen. Es sind Melde- und Steuersignale. Meldesignale
sind Ausgangssignale eines Geriteteils. Wichtige Meldesignale
sind:

— Geriteteil fiir Daten empfangsbereit;

— Gerditeteil hat Daten iibernommen;

— Geriteteil hat Daten zur Ausgabe bereitgestellt;

— Fehler im Geriteteil.

Die Meldesignale des sendenden Geriteteils sind gleichzeitig Steu-
ersignale fiir den empfangenden Geriteteil.

Der Datenaustausch geschieht im allgemeinen nach dem soge-
nannten Hand-shake-Prinzip. (Die anfordernde Stelle gibt ein An-
forderungssignal (Request) und wartet, bis die Gegenstelle ein
Quittungssignal zuriickgibt.)

Beispiel
Die E/A-Steuerung A gibt Daten an das Gerit G (Bild 2.12):

— Die E/A-Steuerung sendet die Adresse des Gerites G und stellt
die Daten auf dem Datenbus bereit.

— Die E/A-Steuerung sendet als Zeichen bereitstehender Daten
das Signal ,,A-Bereit“.

— Das Gerit G entschliisselt die Adresse und libernimmt, wenn es
bereit ist, die Daten.

— Hat G die Daten iibernommen, so sendet es das Signal ,,Daten
iibernommen®.

— Jetzt kann die E/A-Steuerung die Daten und die Adresse wieder
abschalten.

Adresse
EIA- externes

Steverung | Gerdt
A | Odgten) G

A-Bereit

| Daten Gbernommen |

RESET Bild 2.12 Aufbau

einer Interface-
Schnittstelle

37

Die Signale ,,A-Bereit“ und ,,Daten iibernommen* sind Signale
des Steuerbusses. Ein wichtiges Steuersignal ist das Loschsignal
(RESET), mit dem vom Rechner aus alle angeschlossenen Gerite
in die Ausgangsstellung gesetzt werden.

2.6.2. Programmierte Ein- und Ausgabe

Wird ein Rechnerwort vom Rechner iiber die E/A-Steuerung zum
externen Gerat mit Hilfe eines Ein- oder Ausgabebefehls ein- oder
ausgegeben, so spricht man von programmierter Ein- bzw. Aus-
gabe. Dabei wird meistens vom Datenbus ein Byte in ein Register
der CPU eingegeben oder der Inhalt eines Registers auf den Da-
tenbus bereitgestellt. Der Ein- bzw. Ausgabebefehl enthilt die
Richtung (Ein- oder Ausgabe) und die Geriteadresse. Fiir die pro-
grammierte Ein- und Ausgabe gibt es 4 Befehlsgruppen.

E/A-Befehle Gruppe 1: Durch den Befehl werden Funk-
(E/A-Steuerbefehle) tionssignale zum externen Gerit
gesandt, die dort eine bestimmte
Funktion auslosen (z. B. Magnet-
bandkassette starten).
E/A-Befehle Gruppe 2: Durch den Befehl wird der Zu-
(E/A-Testbefehle) stand des externen Gerits abge-
fragt und in Abhéngigkeit vom
Zustand ein bedingter Sprung aus-

gefiihrt.
E/A-Befehle Gruppe 3: Durch den Befehl wird die Ein-
(Eingabebefehle) gabe eines Datenwortes vom Da-

tenbus in ein spezielles Register
der CPU realisiert.

E/A-Befehle Gruppe 4: Durch den Befehl wird der Inhalt
(Ausgabebefehle) eines speziellen Registers der CPU
auf dem Datenbus bereitgestellt.

2.6.3. Autonome Ein- und Ausgabe

Die autonome Ein- und Ausgabe ist auch unter den Begriffen DSK
(Direkter Speicherkanal) oder DMA (Direct Memory Access)

38

bekannt. Dabei geschieht die Ein- bzw. Ausgabe in Datenblocken
zwischen Speicher und externem Gerit mit Hilfe der E/A-Steue-
rung (DM A-Steuerung genannt).

Die DMA-Steuerung enthilt folgende Register:

— AdreBregister zum Adressieren des Speichers;

— Datenregister (Datenpuffer) zur Zwischenspeicherung eines
Wortes;

— GeriteadreBregister;

— Blocklangenregister.

Vor dem Auslosen des autonomen Datentransfer werden tiber die
programmierte Ausgabe AdreBregister, Geriteregister und
Blockldngenregister mit den entsprechenden Werten gefiillt. Nach
dem Start des autonomen Datentransfer geht der weitere Daten-
austausch zwischen Speicher und externem Gerit mit Hilfe der
DMA-Steuerung vor sich. Zwischen DMA-Steuerung und exter-
nem Gerit vollzieht sich der Datenaustausch wie beim program-
mierten Kanal im Hand-shake-Verfahren. Ist die DMA-Steuerung
zum Datenaustausch mit dem Speicher bereit (Datenpuffer voll bei
Eingabe, Datenpuffer leer bei Ausgabe), so erfolgt ein Speicherzu-
griff. Dazu lauft ein Speicherzyklus ab (Speicherzyklus: Adresse
an AdreBschliisselung, Speicheranforderungssignal anlegen, Spei-
cher auf Lesen oder Schreiben schalten, Daten auslesen oder ein-
schreiben). Dieser Speicherzyklus wird bei Rechnern, in denen pa-
rallel zur autonomen Ein- und Ausgabe die Arbeit mit der CPU
(Central Processor Unit = Rechenwerk und Steuerwerk) moglich
ist, eingeschoben. Nach der Ein- bzw. Ausgabe des Datenblocks
gibt die DMA-Steuerung ein ,,Endsignal“ ab.

Beispiel
Ausgabe eines Datenblocks vom Speicher. Dabei werden folgende
Teilschritte ausgefiihrt:
— Einstellen des Grundzustands durch E/A-Befehle iiber den
programmierten Kanal;
a) Fiillen des AdreBregisters mit der Anfangsadresse des Da-
tenblocks,
b) Fiillen des Blocklangenregisters mit der Anzahl der Worte,
c) Fiillen des GeriteadreBregisters mit der Adresse des Aus-
gabegerits (z. B. Drucker),
d) Starten zur autonomen Datenausgabe.

39

Joupyy 1604d

snpiAz r _.ﬂ uap 439N Ya
-aqpbsny 195233 n)%Az1ayoiedg] sn)¥Azaqobsny MAzyoRdS| sap bunyiiaqiop uawWOwIAqN
= | uajoq
U3PUDYJOA
u3jdQg
snquajbQ

77777 - — — iy 77772 9SS3.pD3YRIAY
uapuassny
usbiupaiugad J3}si6a.
i LI -Uabupppoolg
uayoyJa
13)s16a1yalpy

u3sa) LBYol1ads

|
«[[

bunJapoyup
-13yojRds
9ss3.py

L
L
—2

lllll T] | S|
Zzzz2

VWQ HD3IS
=8| _1 |~ " Jaysibay

w2 ~0puDWWOY U3|IN4

———— 13)sibalyaspo
“ -3)D439 u3)ing

||||| 77— (418)1434s1631u3bup)
=X20)g uan4

P o, J3)sibauyalpy
uanng

Bild 2.13 Taktdiagramm einer Ausgabe iiber den DMA-Kanal

40

— Die DMA-Steuerung fordert einen Speicherzyklus;
a) Adresse an AdreBentschliisselung,
b) Speicheranforderungssignal,
c) Speicher lesen, Wort nach Datenpuffer,
d) Inhalt des AdreBregisters um 1 erhchen,
e) Inhalt des Blocklangenregisters um 1 erniedrigen.
- Zwischen DMA-Steuerung und Ausgabegerit findet ein Hand-
shake-Zyklus statt;
a) die DMA-Steuerung sendet die Adresse des Ausgabegerits
und stellt die Daten auf dem Datenbus bereit,
b) die DMA-Steuerung sendet das Signal ,,Daten vorhanden“,
c) das Ausgabegerit iibernimmt das Datenwort,
d) das Ausgabegerit sendet ,Daten iibernommen®,
e) die DMA-Steuerung schaltet das Signal ,,Daten vorhanden“
ab.
Speicherzyklus und Hand-shake-Zyklus zum Ausgabegerit wer-
den so lange wiederholt, bis das Blockliangenregister Null ist. Jetzt
sendet die DMA-Steuerung das ,,Endesignal“. Bild 2.13 zeigt das
Taktdiagramm einer Ausgabe iiber den DMA-Kanal.

2.7. Programmunterbrechung INTERRUPT)

Durch eine Programmunterbrechung besteht die Moglichkeit, den
Programmablauf durch Signale von auBen zu steuern. Ein in den
Rechner gegebenes Programmunterbrechungssignal filhrt zum
Abbrechen des gerade laufenden Programms und zur Fortsetzung
der Arbeit des Rechners mit einem anderen Programm. Nach ei-
nem Programmunterbrechungssignal wirdzunichst eindem Signal
zugeordnetes Bedienprogramm abgearbeitet. Erst danach setzt
der Rechner das unterbrochene Programm fort. Im einzelnen er-
zeugt ein Programmunterbrechungssignal folgende Arbeitsgénge:
— Nach Beendigung des gerade laufenden Befehls wird ein
INTERRUPT-Zyklus durchlaufen.
— Der Rechner gibt ein Signal ,INTERRUPT angenommen* als
Quittung nach auBen ab.
— Wihrend des INTERRUPT-Zyklus wird ein INTERRUPT-
Befehl gebildet und anschlieBend sofort abgearbeitet.
Der INTERRUPT-Befehl kann ein Sprung in ein Unterprogramm
sein. Das Unterprogramm ist das entsprechende Bedienpro-

41

gramm. Der Riicksprung ins unterbrochene Programm wird ge-
nausoorganisiert wie der Riicksprung aus einem Unterprogramm.
Am Anfang des Bedienprogramms bringt man im allgemeinen die
Inhalte der Register, die nach dem Riicksprung ins unterbrochene
Programm noch benétigt werden, inden ST ACK (Stapelspeicher).
Vor dem Riicksprung werden die Register wieder mit den im
STACK geretteten Inhalten gefiillt.

Ein Rechner kann einen oder mehrere INTERRUPT-Eingénge
haben. Die zu den Eingéingen gebildeten INTERRUPT-Befehle
unterscheiden sich. Die einzelnen Eingénge lassen sich im allge-
meinen durch spezielle Steuerbefehle sperren und 6ffnen (sie sind
maskierbar). Bei mehreren Eingéngen besteht eine Vorrangord-
nung. Kommen an 2 Eingédngen die INTERRUPT-Signale gleich-
zeitig an, so hat das Signal mit der hoheren Prioritét den Vorrang.
Das andere Signal kann vorgemerkt oder ignoriert werden.

2.8. STACK-Organisation

Der STACK (auch Stapelspeicher genannt) ist ein Teil des Ar-
beitsspeichers, der so organisiert wird, wie man Gegensténdein ei-
nem Keller ablagert, d. h., die Informationen werden hineingesta-
pelt. Die Information, die zuletzt hineingebracht wurde, muBl man
auch als erste wieder herausnehmen. Man sagt, die Speicherung
geschieht nach dem Prinzip ,,last in first out*.

Zur Adressierung des STACK dient ein spezielles Register, der
STACKPOINTER (Stackzeiger). Fiir die STACK-Adressierung
gelten im allgemeinen folgende Regeln:

16-Bit-Wort STACK 16-Bit-Wort
HWT | NWT HWT | NWT
SP nach SP vor]
Abspeichern Lesen
NWT
HWT
e o o] I —
SP vor Abspeichern SP nach Lesen
Abspeichern Lesen
inden STACK aus dem STACK

Bild 2.14 Arbeitsweise des STACK-Speichers

42

— Der STACKPOINTER (SP) zeigt auf das zuletzt eingeschrie-
bene oder auf das nichste zu lesende Byte.

— Der STACK wird von hoheren Adressen nach niedrigeren
Adressen beschrieben.

— Die Abspeicherung (als PUSH bezeichnet) und das Lesen (als
POP bezeichnet) geschieht meistens mit einem 16-Bit-Wort
(2 Byte).

Aus Bild 2.14 ist zu ersehen, in welcher Weise ein 16-Bit-Wort in

den STACK abgespeichert wird und wie es aus dem STACK gele-

sen wird, wenn eine Speicherzelle 8 Bit (1 Byte) speichern kann.

2.9. Zusammenstellung der Funktionseinheiten eines
Rechners

Aus Bild 2.15 sind die wichtigsten Funktionseinheiten eines Rech-
ners zu ersehen. Fiir die rein elektronischen Funktionseinheiten
(Rechenwerk, Steuerwerk, Speicher, E/A-Steuerung, DMA-
Steuerung, INTERRUPT-Steuerung) gibt es spezielle program-
mierbare Schaltkreise. Dabei werden Rechenwerk und Steuer-
werk im Mikroprozessorschaltkreis vereinigt. Fir die ibrigen
Funktionseinheiten gibt es spezielle Schaltkreise.

In Teil 2 sind Grundlagen und Arbeitsweise der programmierbaren
Schaltkreise sowie einige Schaltkreise fiir die genannten Funk-
tionseinheiten eines Rechners beschrieben.

) Rechen- Steuer- Interrupt-

Speicher werk werk steuerung
DMA- E/A- Bedien-
Steuerung Steuerung konsole

externe Geréte

Bild 2.15 Funktionseinheiten eines Rechners

43

3. Aufbau und Arbeitsweise digitaler
Schaltkreise fiir Mikrorechner

3.1. Ubersicht

Die Digitaltechnik befalt sich mit der Verarbeitung logischer Si-
gnale. Durch die Verfeinerung der Technologie war es im Laufe
der Zeit moglich, immer mehr der fiir diese Verarbeitung notwen-
digen logischen Grundschaltungen auf einem Chip unterzubrin-
gen. Von den ersten SSI-Schaltkreisen, in denen einige Transisto-
ren untergebracht sind, bis zu den LSI-Schaltkreisen mit 10* bis 10°
Transistoren ging eine intensive technologische Entwicklung
parallel.

Wihrend bei den niedrigintegrierten Schaltkreisen das Spektrum
von einfachen Grundschaltungen bis zu speziellen Schaltungen wie
Zihler, Register, Decoder, Konverter, Multiplexer, Leitungstrei-
ber reicht, geht die Entwicklung der hochintegrierten Schaltkreise
in 2 Richtungen. Die eine Richtung ist der spezielle Kundenschalt-
kreis. Dazu gehoren z. B. der Taschenrechnerschaltkreis und der
Schaltkreis fiir Digitaluhren. Diese Schaltkreise realisieren eine
spezielle Funktion. Die Schaltung ist fest vorgegeben und fiir die
jeweilige Funktion weitestgehend optimal entwickelt.

Die zweite Richtung sind die programmierbaren Schaltkreise. Sie
sind Bestandteile eines Rechners. Die Entwicklung verlduft zur
Zeit in der Richtung, daB einmal die gesamte Zentraleinheit ein-
schlieBlich der Ein- und Ausgabekanile auf einem Chip integriert
wird. So entstehen heute bereits Chips, die eine minimale Rech-
nerkonfiguration (CPU, Speicher, Ein-/Ausgabe-Kanile) realisie-
ren. Die folgende Zusammenstellung zeigt eine Ubersicht existie-
render Schaltkreistypen.

Digitale Grundschaltkreise

— logische Grundfunktionen
— Flip-Flop-Schaltungen

— Treiber

Analoge Grundschaltkreise
- Operationsverstiarker
— NF-Verstirker

44

— ZF-Verstirker
— Netzregelschaltkreise

MSI-Schaltkreise der Digitaltechnik
— Taktgeneratoren

— Codierer und Decodierer

— Register

— Zahler

— Multiplexer

— Rechenschaltungen

— Speicher

— Bustreiber

MSI-Schaltkreise der Analogtechnik
— Analog-Digital-Umsetzer
— Digital-Analog-Umsetzer

LSI-Kundenschaltkreise
— Taschenrechnerschaltkreise
— Schaltkreise fiir Digitaluhren

Programmierbare LSI-Schaltkreise

" (Schaltkreise der Mikrorechentechnik)

— Mikroprozessoren

— Ein-/Ausgabe-Schaltkreise

— INTERRUPT-Schaltkreise

— Schaltkreise zum direkten Speicherzugriff (DMA-Schaltkreise)

3.2. Schaltalgebra

Eine Reihe von Grundfunktionen, z. B. die Entschliisselung einer
Adresse, miissen meistens durch logische Grundschaltkreise auf-
gebaut werden. Zum Aufstellen solcher Schaltungen ist die Schalt-
algebra eine groBe Hilfe. Sie ist die Grundlage fiir das Fallen von
Entscheidungen und fiir das Priifen von logischen Bedingungen.
Mit den Binirziffern 0 und 1 werden sogenannte logische Operatio-
nen durchgefiihrt. Zu den logischen Operationen gehéren:

die ODER-Funktion bzw. Disjunktion (OR),

die UND-Funktion bzw. Konjunktion (AND),

das EXKLUSIV-ODER (XOR)

und die Nicht-Funktion bzw. NEGATION (NOT).

45

Die ODER-Funktion

Die ODER-Funktion wird fiir 2 Binérziffern A und B folgender-
maBen definiert:

Wenn A oder B oder beide gleich 1 sind, so ist das Ergebnis gleich
1. Andernfalls ist das Ergebnis gleich 0.

Zur Darstellung der ODER-Funktion wird das Symbol ,,+“ bzw.
»V“ (vel — lat., oder) genommen.

Es gelten die Kombinationen:

0Ovo0=0,
Ovil=1,
1v0=1,
1vli=1

Logische Funktionen werden mit Hilfe einer Funktionstabelle de-
finiert. Die Funktionstabelle enthélt die Ausgangssignale, die sich
bei den zuldssigen Kombinationen der Eingangssignale ergeben.
Die Funktionstabelle fiir die ODER-Funktion ist aus Tabelle 3.1.
zu ersehen.

UND-Funktion

Die UND-Funktion wird fiir 2 Binérziffern A und B folgenderma-
Ben definiert:

Wenn A und B beide gleich 1 sind, so ist das Ergebnisgleich1. An-
dernfalls ist das Ergebnis 0.

Zur Darstellung der UND-Funktion wird das Symbol ,,-“ bzw. ,, A
(et — lat., und) genommen. Es ist auch iiblich, daB 2 Binarziffern
ohne Operationszeichen aneinandergeschrieben werden:
A-B2AAB2AB

Tabelle 3.1 Funktionstabelle fiir die ODER-Funktion

Einginge Ausgang
A B AVvB

0 0 0

0 1 1

1 0 1

1 1 1

Tabelle 3.2. Funktionstabelle fiir die UND-Funktion

Einginge Ausgang
A B AAB
0 0 0

0 1 0

1 0 0

1 1 1

Es gelten die Kombinationen

0A0=0,
0Al1=0,
1A0=0,
1Al=1

Die Funktionstabelle fiir die UND-Funktion ist in Tabelle 3.2. dar-
gestellt.

Das EXKLUSIV-ODER

Beim EXKLUSIV-ODER ist das Ergebnis der Verkniipfung von
A und B gleich 1, wenn die Eingangssignale verschieden sind, und
0, wenn die Eingangssignale gleich sind.

Fiir das EXKLUSIV-ODER wird das Symbol @ bzw. das Symbol
» verwendet. Es gelten folgende Kombinationen:

0©0=0,
001=1,
1®0=1,
1®1=0.

Tabelle 3.3 Funktionstabelle fiir das EXKLUSIV-ODER

Eingénge Ausgang
A B A®B
0 0 0

0 1 1

1 0 1

1 1 0

47

Die Funktionstabelle fiir das EXKLUSIV-ODER ist aus Tabelle
3.3. zu ersehen.

Die Nicht-Funktion (NEGATION)

Die Nicht-Funktion bezieht sich nur auf eine Binérziffer. Sie wird
durch einen Querstrich iiber die betreffende Ziffer dargestellt.
(A heit NEGATION von A.)

Bei der NEGATION ist das Ergebnis 1, wenn A gleich 0 ist, und 0,
wenn A gleich 1 ist.

Es gilt:

1=0,

0=1

Tabelle 3.4. zeigt die Funktionstabelle fiir die NEGATION.

Rechenregeln fiir logische Operationen

a) Die Negation einer negierten GroBe ergibt die GroBe selbst:
1Ha=a.

b) Fiir die logischen Operationen mit 2 Gro8en gelten folgende
Vertauschungsgesetze (Kommutativgesetz):
(2)avb=byva,

(3)aAab=bAa,
(4)a®@b=>bdPa.
Insbesondere gilt:

lva=1,
lAaa=a,
Ova=a,
0OAa=0,
ava=1,
ana=0.

Tabelle 3.4. Funktionstabelle fiirdie NEGATION

Eingang Ausgang
A A

0 1

1 0

48

c) Fir zusammengefaBte Ausdriicke gilt das Distributivgesetz:
) (avb)vc=av(bvec),
6) (@ab)ac=anA(bac),
MHaabve =(@vc)a(bve).
Weiterhin gilt:
(8 aAnb =
(9 avb
(10)avab=avb,
(1) avab=avb.
Die Regeln (1) bis (11) lassen sich iiberpriifen, wenn man jeweils
fiir die rechte und linke Seite die Funktionstabelle aufstellt und da-
bei die Funktionstabellen fiir die UND-Funktion, die ODER-
Funktion, die NEGATION und fiir das EXKLUSIV-ODER ver-
wendet.
Mit Hilfe der genannten Umformungsregeln kann man logische
Ausdriicke wesentlich vereinfachen. Bei der technischen Realisie-
rung lassen sich Schaltungen optimieren und damit Bausteine ein-
sparen.

Beispiel

Der logische Ausdruck

T=advacvbdvbcvabvab

148t sich wie folgt vereinfachen:

T=advacvbdvbcva,

T=dvavbcvec,

T=dvavbve

Ein sehr hiufig vorkommendes Problem ist die Aufstellung eines

Tabelle 3.5. Funktionstabelle fiir die Addition von 3 Dualziffern
(2 Summanden a, b und Ubertrag u)

a b u s
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

49

logischen Ausdrucks bei vorgegebener Funktionstabelle. Will man
z. B. die Summe von 3 Dualziffern bilden (2 Operanden a und b
und einen Ubertrag u vom niedrigen Stellenwert), so kann die
Funktionstabelle 3.5 aufgestellt werden. Die Summe s ist 1, wenn
eine Ziffer 1 oder alle 3 Ziffern 1 sind. -Sind alle 3 Ziffern 1, so tritt
ein Ubertrag in die nichste Stelle auf. Sind 2 Ziffern 1, dann ist die
Summe 0 und der Ubertrag in die nichste Stelle 1.

s ist hier eine logische Funktion von den 3 Gr6B8en a, b und u. Aus
Tabelle 3.5. kann man ablesen, daB3 s = 1 ist, wenn

a=0b=0u=1

oder
a=0b=1u=0
oder
a=1;b=0u=0
oder
=1;b=1;u=1.

Statt a = 0 kann man auch sagen, es muB a = 1 sein, d.h., es
ist

s =1, wenn
a=1b=1;u=1bzw.abu=1
oder
a=1;b=1;u=1bzw.abu=1
oder
a=1;b=1,u=1bzw.abu=1
oder

a=1;b=1;u=1bzw.abu=1.

Den Ausdruck a b u nennt man die Elemenartarkonjunktion P;
(a, b, u). Sie ist nur fiir die Belegung001(a=0;b=0;u = 1)
gleich 1, sonst 0. Ebenso ist die Elementarkonjunktion P,(a, b, u)
= abu nur fiir die Belegung 01 0 (a = 0; b = 1; u = 0) gleich 1,
sonst 0.
Die ODER-Funktion der Elementarkonjunktion abu, abu, abu
und abu ist damit gerade dort 1, wo s nach Tabelle 3.5 gleich 1 ist.
Sonst ist diese ODER-Funktion 0. Danach ldBtsich schreiben:
s = abu v abu v abu v abu.
Durch Anwendung des Distributivgesetzes (7) erhélt man:

= u(ab v ab) v u(ab v ab).

50

Tabelle 3.6. Tabelle der Elementarkonjunktionen Pj

a, -1 a-2...2; a; Elementarkonjunktionen
Belegung
0 (1] (1] 0...0 0 Py =2, 8,1 3,-2...2; 3
Belegung
1 0 0 0...0 1 Py =2,8,-181-2...3 8
Belegung
2 0 0 0...1 0 Py =2,8,-18,-2...22 3
Belegung
21-2 1 1 1...1 0 PY_2=a,a,_18y_2...8, 8
Belegung
2"-1 1 1 1...1 1 Pl_1=a,a,-1a5-2...23 a1

Mathematische Zusammenfassung

Liegt eine Funktionstabelle mit n GroBen a; a,...a, vor und ist T
die Ergebnisfunktion, so bilde man zunéichst alle Elementarkon-
junktionen P;, fiir deren Belegung j T = 1 ist (Tabelle 3.6.). Die
ODER-Funktion dieser Elementarkonjunktion P; ist die logische
Funktion T:

2"-1
T= v QiPi‘
j=0

0, wenn T fiir die Belegung j gleich O ist;

Dabeiist Q; = { 1, wenn T fiir die Belegung j gleich 1 ist.

Durch Vereinfachung des Ausdrucks fiir T mit Hilfe der Rechenre-
geln fiir logische Funktionen erhélt man die gewiinschte Funktion.

Beispiel
Ein Baustein soll mit der Adresse 14 ausgewihlt werden. Die Ge-

samtadresse ist 16 Bit lang. Das Auswahlsignal CS (chip-select) ist
nur dann aktiv (= 1), wenn auf den AdreBleitungen eine 14 steht:

51

Adre8-
Itgn.: AisApuApApAnApg Ag Ag A As As Ay Az Ay A Ay
Adres-
sel40 0 0 0 0O O OO O OOOTI1TT1T10O0
csS=_ _ - _ _ _ _ _ _ _ _ _ _
Puu= AisAuApApAnApAg Ag Ar AsAs Ay A Ay A Ao,

3.3. Logische Grundschaltkreise

Die Verarbeitung von Binirsignalen basiert auf wenigen Grund-
schaltungen. Die wichtigsten Grundschaltungen sind die Realisie-
. rung des logischen UND, des logischen ODER und der NEGA-
TION. Diese Funktionen werden in den meisten Schaltkreisreihen
durch NOR- oder NAND-Schaltungen gebildet. Der Leser infor-
miere sich an dieser Stelle ausfiihrlicher iiber die Schaltkreisserie
D 10, z. B. in der Reihe electronica (Heft 141, 155, 156).

Eine sehr wichtige Eigenschaft in der Mikroelektronik ist die Mog-
lichkeit, Schaltkreise ausgangsseitig zusammenzuschalten. Diese
Eigenschaft haben nicht alle Schaltkreise. Eine Form der Zusam-
menschaltung ist der Wired-OR-verdrahtete Ausgang mit offenem
Kollektor (Bild 3.1). Dabei erhalten Kollektorausgiange aller
Schaltkreise einen gemeinsamen Arbeitswiderstand. Der Nachteil
dieser Schaltung besteht im hohen Stromverbrauch, da der Ar-
beitswiderstand um so kleiner sein muB}, je mehr Schaltkreise aus-
gangsseitig parallelgeschaltet werden.

Eine zweite Moglichkeit der ausgangsseitigen Parallelschaltung
bietet die Tri-state-Schaltung. Bei dieser Schaltung kann der Aus-
gang neben den Pegeln H und L noch einen dritten hochohmigen
Zustand einnehmen. Der hochohmige Zustand wird erreicht,
wenn sowohl der obere als auch der_untere Ausgangstransistor
sperren (Tiefpegel am Steuereingang X ; Bild 3.2).

+U
R

E E; Bild3.1

Parallelschaltung von
Ausgingennach dem
M Wired-OR-Prinzip

52

+5V

o>

Y

f0lT,
U0

Bild 3.2 Erzeugung des hochohmigen Zustandes am Ausgang Y eines Schaltkreises
durch Sperren beider Ausgangstransistoren (L-Pegel am Steuereingang X)

D150
E, _g 1
& Y
Ee »—B Bild33
E s '|<|' X ’Sl;:i:tla)tzsgeuerung am Bau-

Zum Beispiel 148t sich der Baustein D 150 in Tri-state-Schaltung
betreiben, da liber X ein Sperren des oberen Ausgangstransistors
moglich ist, wenn X L-Pegel fiihrt. Bild 3.3 zeigt die Ansteuerung
des Bausteins D 150 fiir den Tri-state-Betrieb. Fiir die Umschal-
tung in den hochohmigen Zustand ist der SteueranschluB} E; vorge-
sehen. Um den unteren Ausgangstransistor zu sperren, werden
alle zweiten AND-Eingéinge (B, D) auf L-Pegel gelegt. Damit ist
der untere Ausgangstransistor gesperrt. Der obere Ausgangstran-
sistor ist durch L-Pegel an X gesperrt.

34. Informationsspeicherung
3.4.1. Uberblick

Die Grundeinheit der Information ist das Bit; die Grundschaltung
zur Speicherung eines Bit das Flip-Flop. Werden mehrere Bit zu-
sammengefaBlt, so ergibt sich ein Bit-Muster. Das Bit-Muster

53

kann 1 Byte (8 Bit) oder Wort sein. Ein Byte oder Wort wird im Re-
gister gespeichert (zwischengespeichert). Zur Speicherung vieler
Worte (den Daten eines Rechners) ist eine groe Anzahl von Regi-
stern erforderlich. Sie bilden den Speicher eines Rechners.
Flip-Flop-Schaltungen sind die Grundlage aller Halbleiterspei-
cher. Uber Aufbau und Arbeitsweise von Flip-Flop-Schaltungen
informiere sich der Leser in [1]. Sie sollen an dieser Stelle nicht na-
her behandelt werden.

3.4.2. Register

Ein Register dient zur Speicherung eines Bit-Musters. Es besteht
deshalb aus einer entsprechenden Anzahl von Flip-Flop. Je nach
der zusitzlichen Funktion, die das Register noch zu erfiillen hat,
werden dazu RS-Flip-Flop, D-Flip-Flop oder JK-Flip-Flop ge-
wihlt.

Registerschaltungen koénnen auch einfache Operationsschritte
ausfiihren, z. B. die gespeicherte Information um eine oder meh-
rere Stellen nach rechts oder links verschieben (Schieberegister).
Bild 3.4 zeigt ein einfaches Speicherregister aus RS-Flip-Flop fiir 4
Bit. Wenn das Torungssignal STR (Strobe) den Pegel H hat, wird
die Information E; E; E; E; im Register gespeichert. H-Pegel des
Signals RESET 16scht den Registerinhalt. Der Registerinhalt 146t
sichan A3 A, A Apabnehmen.

Bild 3.5 zeigt ein 4-Bit-Schieberegister aus JK-Flip-Flop. Die ein-
zelnen Stellen des Registers konnen von auBlen parallel statisch
oder dynamisch mit Hilfe der Eingénge E, bis E; gesetzt werde n.
Das erméglicht eine parallele Eingabe. Uber die Ausgénge Ag, Ag
bis A3, Ajist eine parallele Ausgabe der Stellen des Registers mog-
lich. Ein 4-Bit-Muster, das im Register steht, kann seriell iber den
Ausgang A, A ausgegeben werden. Der Schiebeproze8 wird durch
den Takt T veranlaBt. Durch die mit jedem Takt ausgeloste
Rechtsverbindung koénnen auch iiber den Eingédngen E, E neue
Bit-Muster seriell eingegeben werden. Das Register ist somit fiir
die Umsetzung parallel — seriell und seriell — parallel geeignet.
Mit Hilfe eines Dynamikvorsatzes (Kondensatorspeicher) 148t sich
ein Schieberegister auch mit einem RS-Flip-Flop aufbauen.

54

Bild 3.4

Speicherregister fiir
4 Bit aus RS-Flip-Flop
STR
E; E, g Eo
n| |
T L
S| 1S/ 1S
8l T 3] 1T 8 T 5 T /i
E (] (] =i} —iC :
T 8 R i & R
[[[[
Loschsignal
K:{ A3 I2 A2 K1 A1 Kl‘.l AD

Bild 3.5 4-Bit-Schieberegister aus JK-Flip-Flop

55

+Up

Bild 36 Dynamikvorsatz (Kondensatorspeicher) zur Realisierung von

Schieberegistern mit RS-Flip-Flop

Bild 3.6 zeigt die Schaltung eines solchen Dynamikvorsatzes. Mit
E, wird die Schaltung vorbereitet. Hat E; L-Potential, so steht an
Punkt B eine kleine positive Spannung. Ein negativer Impuls bei
E,sperrt den Transistor T kurzzeitig und erzeugt am Ausgang A ei-
nen L-Impuls. Hat E; H-Potential, so liegt bei B die volle Span-
nung U, an. Ein negativer Impuls an E; bringt Transistor T nicht
bis zur Sperrschwelle. Der Transistor T sperrtim FallE; = L auch,
wenn zum gleichen Zeitpunkt, zu dem der negative Impuls an E,

gt
T—o
Er IS/ TT —HS[TT IS[TT rS[TT] Ag
1J] M] L.“L -
| R —R] R —R] AR
A
AL
D1 D; D! EL
E
Il

Bild3.7 Zwei Richtungs-Schieberegister mit Dynamikvorsatz fiir die

Linksverschiebung

56

erscheint, E, H-Pegel erhilt, da das Potential bei B erst langsam
iber R2 umgeladen wird.

Bild 3.7 zeigt ein Zwei-Richtungs-Schieberegister fiir 4 Bit mit
Kondensatorspeicher fiir die Linksverschiebung. Die Dynamik-
vorsitze D; bis D4 ermdglichen ein kurzzeitiges Speichern der In-
formation bei der Linksverschiebung.

Fiir den Aufbau von Mikrorechnern gibt es Schaltkreise, in die
komplette Register integriert sind. Bild 3.8 zeigt die Schaltung des
Schaltkreises 8212, der zur Dateneingabe und -ausgabe verwendet
werden kann. Er besteht aus einem 8-Bit-Register mit D-Flip-Flop
und einer Steuerschaltung.

Arbeitsweise des Bausteins 8212

Der Schaltkreis 8212 arbeitet in 2 Betriebsarten, die durch MD
(Mode) gesteuert werden.

Betriebsart 1: Eingang MD hat H-Pegel

Die Information der einzelnen Registerstellen kann direkt an
den Ausgingen DO1 bis DO8 abgenommen werden. Wenn DST
L-Pegel und DS2 H-Pegel hat, dann wird die Information von den
Eingéingen DI1 bis DI8 in die D-Flip-Flop eingegeben.
Betriebsart 2: Eingang MD hat L-Pegel

Mit H-Pegel an STR (Strobe) wird die Information in die D-Flip-
Flop gespeichert.

Wenn DST L-Pegel und DS2 H-Pegel fiihrt, so kann die Infor-
mation, die im Register gespeichert ist, an den Ausgéngen DO1 bis
DO8 abgenommen werden.

Im Fall 2 setzt auBerdem das Signal STR mit der HL-Flanke das
Flip-Flop SRFF zuriick und damit den INT-Ausgang auf L-Pegel.
Durch DST - DS2 wird das Flip-Flop SRFF wieder gesetzt. Die
Leitung INT dient als INTERRUPT-Anforderung fiir Mikropro-
zessorschaltkreise. Durch L-Pegel am Eingang CLR (Ldschen)
werden die D-Flip-Flop des Registers riickgesetzt und das Flip-
Flop SRFF gesetzt (INT = H, d. h. nicht aktiv). Die Ausginge
DO1 bis DO8 sind mit einer Tri-state-Steuerung versehen, d. h.,
wenn die Ausgangsleitungen gesperrt sind, ist ihr Ausgang hoch-
ohmig.

Zusammenstellung der Funktionen des Bausteins 8212
MD = H: DE - DS1 - DS2 — Registerinhalt
DA = Registerinhalt

57

SRFF
S| T
D
e
D5T 2
DS2
7
MD
STR
oit o ol
|
D2 o= —0 T
DI3 o ﬂ +
>—¢_Q
rJ»R
Dl4 o—) L
=
DI5 o 0]
—1C]
e |
Di§ o BT
>—=t
DI7 o— % y
+—C
R |
DI8 o D] T
—<C|
R

e o1

Bild 3.8 Schaltbild des Bausteins 8212

58

A DO1
¢ D02
ST D03
ok D04
¥ D05
2 D06
2 DO7
Y D08

MD = L: DE - STR — Registerinhalt, DA = Registerinhalt
- DS1 - DS2
STR (H— T) — SRFF — INTERRUPT-Anforderung
CLR = L: Loschen Register und Setzen SRFF
Das INT-Signal ist aktiv (INT = L), wenn
INT = DST - DS2 v SRFF = 1 ist.

Anwendung des Bausteins 8212

Der Baustein 8212 148t sich sehr universell fiir die Bussteuerung
und Datenpufferung anwenden. Bild 3.9 zeigt den Einsatz des
Bausteins als Datenpuffer. Die Eingabe in das Register geschieht
mit DST - DS2 = H. Die Ausgabe aus dem Register ist jederzeit
moglich.

Bild 3.10 zeigt die Verschaltung des Bausteins 8212 als Eingabe-
puffer. Die Eingabe in das Register laBt sich iiber das Signal STR
vornehmen. Das Signal STR aktiviert gleichzeitig das INT-Signal.
Damit wird angezeigt, da8 der Datenpuffer voll ist.

Die Ausgabe beginnt in dem Moment, wo DST - DS2 = H ist.
Mit diesem Signal wird gleichzeitig das SRFF-Flip-Flop gesetzt.

+5V
STR

{— 8212 >

DE DA
+5V
Bild 3.9
DS1|MD |DS2 Der Baustein 8212 als Daten-
+5V puffer

I |.-Datenibernahmeimpuls
STR

Bild 3.10
Der Baustein 8212 als
Eingabetor

59

11 Datenabnahme-

impuls
 ——p
DE DA
Bild 3.11

O |MD |DSZ Der Baustein 8212im
Hand-shake-Prinzip
+5V

Die Ausgabe beginnt in dem Moment, wo DST - DS2 = H ist.
Mit diesem Signal wird gleichzeitig das SEFF-Flip-Flop gesetzt.
Das INT-Signal verschwindet jedoch erst mit der HL-Flanke von
DSI - DS2.

Bild 3.11 zeigt die Verschaltung des Bausteins 8212 im Hand-
shake-prinzip fiir einen Ausgabepuffer. Die Eingabe ins Register
geschieht mit dem Signal DST - DS2 = H. Der Inhalt des Regi-
sters liegt stindig an DA. Den zur Abnahme des Datenwortes ver-
wendeten Strobeimpuls fiihrt man gleichzeitig an den Strobeein-
gang, wodurch das INT-Signal aktiv wird (als Riickmeldung, daB
die Daten abgeholt wurden).

InTabelle 3.7 sind einige Registerschaltkreise zusammengestellt.

Tabelle 3.7. Zusammenstellung einiger Registerschaltkreise

Typ Kurzcharakteristik
MH 7475 CSSR 4-Bit-D-Register mit Enable
74174 PC UVR 6-Bit-D-Flip-Flop, 16schbar
74175PC UVR 4-Bit-D-Flip-Flop, l6schbar
74259 PC UVR 8-Bit-Register, adressierbar
K500TM 131 4-Bit-D-Register (ECL),
D191C/D DDR 8-Bit-Schieberegister
D195C/D DDR 4-Bit-rechts/links-Schieberegister
MH 7496 CSSR 5-Bit-Schieberegister,

E/A parallel mit Léschung
MH74164 8-Bit-Schieberegister

Eingabe seriell; Ausgabe parallel
74165 PC UVR 8-Bit-Schieberegister
74166 PC Eingabe seriell; Ausgabe parallel
K155IR13 UdSSR 8-Bit-rechts/links-Schieberegister
74194PC UVR 4-Bit-rechts/links-Schieberegister
74195PC UVR 4-Bit-Schieberegister

Eingabe parallel; Ausgabe parallel

60

3.4.3. Speicher

Waihrend ein Register dazu dient, 1 Bit-Muster zu speichern, hat

der Speicher die Aufgabe, eine groBere Anzahl Bit-Muster (Worte

genannt) aufzunehmen. Im Laufe der Entwicklung der Rechen-

technik wurden die unterschiedlichsten Speicherprinzipien entwik-

kelt (Magnettrommelspeicher, Laufzeitspeicher, Speicherbild-

rohre, Ringkernspeicher, Halbleiterspeicher). In der Mikrore-

chentechnik wird ausschlieBlich der Halbleiterspeicher verwendet.

Deshalb soll auch nur auf ihn eingegangen werden.

Speicherschaltkreise kann man nach der Art der Anwendung oder

nach der Herstellungstechnologie einteilen. Nach der Art der An-

wendung gibt es

ROM (Read Only Memory — Nur-Lesespeicher),

PROM (Programmable Read Only Memory — Programmierba-
rer ROM),

EPROM (Erasable PROM —Loschbarer und programmierbarer
ROM),

RAM (Random Access Memory — Schreib-Lese-Speicher).

Nach der Herstellungstechnologie unterscheidet man Speicher-

schaltkreise in

TTL-Technik,

p-MOS-Technik,

n-MOS-Technik,

CMOS-Technik,

I’L-Technik,

Eine Beschreibung der unterschiedlichen Techniken findet der Le-

serin [2].

RAM (Schreib-Lese-Speicher)

Statische Schreib- Lese-S peicher

Bei den statischen RAM bilden 2 riickgekoppelte NICHT-Gatter
die Speicherzelle, wobei den beiden Zustinden die Information 0
oder 1 zugeordnet wird.

Aus technologischer Sicht gibt es solche Speicher in TTL-Technik
und MOS-Technik. Speicher in TTL-Technik sind sehr schnell, sie
haben aber einen groBen Leistungs- und Platzbedarf. MOS-Bau-
steine erfordern weniger Platz. Die Schaltkreise in p-Kanal-MOS-
‘Technik sind sehr langsam und benétigen mehrere Betriebsspan-

61

nungen. Heute werden MOS-Schaltkreise fast ausschlieBlich in n-
Kanal-Technik ausgefiihrt. Moderne MOS-Schaltungen sind voll
TTL-kompatibel. Bei der CMOS-Technik bestehen wesentlich
giinstigere Betriebsspannungen (3 bis 15 V). Ihre Leistungsauf-
nahme liegt wesentlich unter der der TTL-Technik. Bild 3.12 zeigt
den Aufbau einer Speicherzelle in TTL-Technik, Bild 3.13 den
Aufbau einer Speichermatrix mit 16 Speicherzellen.

Um einen Speicherplatz innerhalb der Speichermatrix anzusteu-
ern, miissen die X- und Y-Leitung H-Signal fiihren. Damit wird die
Speicherzelle aktiviert, bei der X- und Y-Leitung gleichzeitig H-Si-
gnal haben. In der adressierten Speicherzelle flieBt der Kollektor-
strom des leitenden Transistors in die entsprechende Schreib-Lese-
Leitung L oder H. An den Ausgingen der Schreib-Lese-Leitungen
befinden sich Leseverstiarker (LV), die aus dem Kollektorstrom
einlogisches L (Qr) oder H (Qy) bilden.

Zum Einschreiben einer Information wird nach der Adressierung
der Speicherzelle auf eine der Schreib-Lese-Leitungen ein H-Si-
gnal gegeben. Zur Speicherung einer 0 wird auf die L-Leitung ein
H-Signal (Eingang E) und zur Speicherung einer 1 auf die H-Lei-
tung (Eingang Ey) ein H-Signal gegeben.

Die in Bild 3.13 dargestellte Anordnung der Flip-Flop ist in den
TTL-Bausteinen 7481 und 7484 realisiert. Es kann immer nur 1 Bit
gelesen bzw. eingeschrieben werden. Um eine 0 einzuschreiben,
muB man den E;-Eingang ansteuern, zum Einschreiben einer 1
den Ey-Eingang. Die gelesene Information liegt an Qg bzw. Qy.
Bild 3.14 zeigt den Baustein 7489. Er hat eine 16 X 4-Struktur,

L Uy H

XAdreﬂkeitung

YAdrenleitung

Bild 3.12 Aufbau einer TTL-Speicherzelle

62

EL
EJy}oL
-,

En

Bild 3.13 TTL-Speichermatrix mit 16 Speicherzellen

d. h. eine Speicherkapazitit von 16 Wértern zu je 4 Bit. Der Bau-
stein 7489 ist ein voll-decodiertes RAM.

Schreibvorgang: Wenn die Freigabeeinginge 'CS (chip-select,
Bausteinauswahl) und W R (Write) auf L-Signal liegen, wird die an
den Dateneingéngen D, bis D, bereitgestellte Information in die
durch die AdreBeingénge Ag bis A3 angesteuerten Speicherzellen
gebracht. Die Y-Leitungen tragen dabei die negierte Information,
die auch gleichzeitig an Q, bis Q4 anliegt. Die Flip-Flop schalten
mit L-Signal auf den Y-Leitungen und mit H-Signal auf den X-Lei-
tungen.

Lesevorgang: Wenn ‘CS L-Signalund W R H-Signal erhilt, so liegt
an den Ausgingen Q bis Q4 der negierte Inhalt der durch Ay bis A;
adressierten Speicherzelle.

63

&
Dy,

T [

sultulvalig

Nuinulsaling

o [T T T[T |

I uivulsuisg

ISt g

H |
ss== K3
»ﬂq

I} b inng

N wia b inng

o ol iy
Ll tptrp b e
Iwainuisaiag

Ll s e e g

i newinng

A3

interne
Versorgung-

I

Eg;
—3
&

spannung

WR

Bild 3.14 Logischer Aufbau des Speicherbausteins 7489.

Uy ' Zeilenauswahl

= =

T4 T3 T
T6 >< 5
—

N
’—4T2 T‘!}_-I

Spaltenauswahl L

Bild3.15 Aufbau einer MOS-Speicherzelle

Statische S peicherin MOS-Technik

Bild 3.15 zeigt die Prinzipschaltung einer MOS-Speicherzelle fiir
statische RAM. Die Lastwiderstinde sind wegen des geringen
Platzbedarfs durch Transistoren T3, T, ersetzt.

Lesevorgang: Wenn die Transistoren Tsund Tg iiber die Zeilenaus-
wahl durchgesteuert sind, dann kann die Information als Signalun-
terschied an den Spaltenleitungen abgenommen werden.

Schreibvorgang: Leiten Ts und Tg, so 148t sich das Flip-Flop tber
die Spaltenleitungen in den gewiinschten Zustand setzen.

Bild 3.16 zeigt das Prinzip eines Halbleiterspeichers mit 256 Flip-
Flop aus p-Kanal-MOS-Transistoren. Die Flip-Flop sind in einer
Ebene so angeordnet, daB jederzeit tiber 16 X- und Y-Koordinaten
ein direkter Zugriff zu jedem Flip-Flop besteht. Wenn an den
Koordinaten X, Yn, das Potential - Upp anliegt, werden die Tran-
sistoren Ts bis Ty durchgesteuert.

Zur Speicherung einer ,, 1 liegen z. B. an SL; 18 V iiber Ty (T ist
geoffnet) und an SL; 0 V iiber R; und R4 (Tyoist gesperrt). Dadurch
leitet T3, und T, sperrt. Die durch T, und T, gebildeten Lastwider-
stinde halten diese Stellung auch nach Abtrennen der Adresse.
Zur Speicherung einer ,,O“ haben SL, 0 V und SL; 18 V Potential.
Beim Lesen sind Tg und T geoffnet. Die Widerstidnde R;, R, und
R3;, Ryliegen zu den Lastwiderstianden T; und T, parallel. Durch R,
bzw. R, flieft Strom entsprechend den Potentialen bei A und B.
Der Spannungsabfall iiber R, und Rywird iiber einen Differenzver-
stirker als Informationssignal abgenommen.

In weiterentwickelten Speicherschaltkreisen sind die AdreBdeco-
dierung sowie eine Bausteinauswahllogik enthalten.

65

X-AdreNdecoder

Y,
1 Xy -+ Xiyg "
g Y‘ﬁ é 1 T2
S =
By, S -
5 g 3 . T4
E Y, + +18V
LRWL, [I]
15 T6
17 T8
Xom
Sby Schreibl
lgjtung.
Al +18V
T9 T0
R1 URB
j: > lLeselei(ung
La
R2|| ¥ ¥ (|rR4
L
Ie
Informationsleitung Schaltleitung
Schreiben Lesen / Schreiben

Lesen ROMWR

—L Schreiben

Bild 3.16 Halbleiterspeicher mit 256 Flip-Flop aus MOS-p-Kanal-Transistoren (ne-

gierte Logik)

Bild 3.17 zeigt den Aufbau eines 256 X 1 volldecodiertenstatischen
MOS-RAM. Der Baustein wird mit CS = L angesteuert. Die Zei-
lenauswahl geschieht iiber die AdreBeingidnge A, bis A3, die Spal-
tenauswahl iiber A, und A;. Hat R/WL-Signal, so wird die an1 lie-
gende Information eingeschrieben. Bei H-Signal an R/W erscheint
an O der invertierte Inhalt der ausgewihlten Speicherzelle. Mit H--
Signal an CS ist der Speicher blockiert.

66

Ag
— ilen- ilen - R Matrix
g;— S:g;{:;r dzeeclloeger }gég’g?en
—
I
v Lresng- paltendecoder.
7 — Ausgangs-
register . ’
":eggci's or] [SDGWENEQ'S‘Erl
L] BER
[RW I A, Ag Ag A,

Bild3.17 MOS-RAMmit 256 X 1 Zellen

Bild 3.18 zeigt den Aufbau eines 256 x 4-RAM. Uber A, bis
A,werden die Zeilen und iiber A; bis A, die Spalten ausgewahlt.
Bei L-Signal an R/W lassen sich die Daten auslesen. Die Informa-
tion erscheint bei O; bis O, Bei H-Signal an R’W werden die an I;
bis I liegenden Informationen in die adressierte Speicherzelle ein-
geschrieben. Liegt an OD H-Signal, so sind die Ausgénge O, bis
‘O, hochohmig. CS dient zur Chipwahl. Mit L-Signal an CS arbei-
tet der Speicherbaustein.

Ag—
§1 —Jzeilen- Speicherfeld
Az " Jouswahl 256x 4
3
A,

RIW——— .
h—_ L !

. __[Fingang EIA- 7]

2 Schaltung ——l_ : 02

I3 . Spalten- ST
e — Jisp?ﬂ%l_ :. 0s
ST
As Ag A, :. O

Bild3.18 MOS-RAMmit256 X 4 Zellen

67

Dynamische Schreib- Lese-S peicher

Bei den dynamischen RAM wird die Information durch Aufladung
eines Kondensators gespeichert. Bild 3.19 zeigt eine Ein-Transi-
stor-Speicherzelle. Sobald T) leitet, erscheint die Information auf
der Datenleitung. Wegen der auftretenden Leckstrome muB die
Kondensatorladung periodisch (ungefihr alle 2 ms) regeneriert
(wieder aufgeladen) werden.

Die ersten dynamischen RAM waren den statischen RAM ange-
lehnt. Bild 3.20 zeigt den Aufbau einer solchen Speicherzelle. Aus
Bild 3.21 ist der heutzutage meistens verwendete Aufbau einer dy-
namischen RAM-Zelle zu ersehen.

Zum Einschreiben muB die Schreibleitung H-Signal haben und die
Datenleitung die Information (L- oder H-Signal) tragen. Uber T
wird C, entsprechend aufgeladen. ’

Zum Lesen muB die Lese-Auswahlleitung H-Signal fiihren (T lei-
tet). Hat C, H-Signal, so wird T, leitend, und auf der Datenleitung
entsteht L-Potential. Hat C; L-Potential, dann bleibt der Weg T,-
T;-Substrat hochohmig, und die Datenleitung erhilt H-Potential.
Auf der Datenleitung entsteht das negierte Informationssignal der
Speicherzelle. Lese-Auswahlleitung und Schreibleitung bestim-
men meistens die Zeilenauswahl, die Datenleitung bestimmt die

™
a___C
=c1
Bild 3.19
Substrat Aufbau einer dynamischer
Zeilenwahl RAM-Speicherzelle mit
Datenleitung einem Transistor
= 1 Zeilenauswahl
- ..
- T L: }_T T4 o
T2} 1 T3
l" ¢ 2 'Ll
Substrat
Daten-H-Leitung Daten-L-Leitung

Bild3.20 Dynamische RAM-Speicherzelle nach dem Flip-Flop-Prinzip

68

J Datenleitung
L1 T3 T2 L

I
I
|
M

Substrat
Schreibleitung Lese -Auswahlleitung

Bild3.21 Dynamische RAM-Speicherzelle

Spaltenauswahl. Aus Bild 3.22 ist der Aufbau eines dynamischen
4K x 1-RAM zu ersehen.

In Bild 3.22 bedeuten:

Ay bis Ay AdreBeingéinge;

I-Dateneingang . .
R/W-Schreibfreigabe (R/W = L £ Schreiben; R/W = H £ Lesen);
O —Datenausgang; —

C S - Bausteinauswahl (C S = L 2 Freigabe);

CE - Speicherfreigabe (chip enable)

Matrix
64x64

64

Schreib-Lese-

RW—] E/A ["Ispaltendecoder|
register

Bild 3.22
Dynamischer
Ag- -+ - An 4K x .RAM

ol

69

Jede einzelne Zeile muB innerhalb von 2 ms einen Auffrischzyklus
erhalten. Wihrend dieser Zeit darf nicht neu eingeschrieben wer-
den. Das ist méglich bei .

einem Lesezyklus: R'W = H, CS beliebig;

einem Schreibzyklus: R‘'W = L, dann mu CS H-Potential haben.
Der Eingang CE schaltet den Speicher im nichtaktiven Zustand (L-
Pegel an CE) auf geringen Leistungsverbrauch. Er betragt im
nichtaktiven Zustand = 1,3 mW, zusitzlich = 7 mW fiir das Auffri-
schen.

Nur-Lese-Speicher (ROM)

Ein ROM (Read Only Memory) ist ein vom Hersteller program-
mierbarer Festwertspeicher. Der Inhalt eines programmierten
ROM I8t sich nicht mehr dndern. Der so hergestellte Dateninhalt
kann nur ausgelesen werden.

Bild 3.23 zeigt den Aufbau eines Masken-ROM. Die Basiselektro-
den, die die Verbindung zur Zeilenauswahl herstellen, werden
durch Wegitzen einer SiO,-Schicht, die zwischen einem Metall-
band (Zeilenleitungen) und dem Substrat liegt, gebildet. Dazu ver-
wendet man eine Maske, die an jeder Programmierstelle ein Pro-
grammierungsloch hat.

Die Ausgabe erfolgt iiber die Spaltenleitungen. Fiir jeden Ausgang
existiert ein Leseverstirker, der nur arbeiten kann, wenn am CE-
Eingang H-Signal anliegt. Damit sperren die 4 unteren Transisto-
ren (p-Kanal-MOS-Transistoren), und es kann kein Strom gegen
Masse flieBen. Soll Zeile 2 angewihlt werden, dann muB die Zei-
lenleitung L-Signal bekommen. Die MOS-Transistoren, deren Ba-
siselektrode vorhanden ist, bilden jetzt eine leitende Verbindung
zur Masse. Der flieBende Strom wird in den Leseverstirkernin ein
logisches Signal umgewandelt. InSpalte 1, 3 und 4 kann iiber Zeile
2 ein solcher Strom flieBen. Die Leseverstiarker von Q;, Qs und Q4
erkennen deshalb ein L-Signal, der Leseverstirker Q, dagegen ein
H-Signal.

Programmierbare ROM (PROM)

PROM konnen vom Anwender mit Hilfe eines Programmiergera-
tes programmiert werden. Die Programmierung geschieht mit
elektrischen Impulsen.

70

Q‘I 02 03 04
| | l |
L Spalten - Ausgangsdecoder]

-_—

'\ R WD (o G i P O G h sl) G () s

'S D O G g e G D O i

S iy D ' U |y P S G |y D O G By

Adrefidecoder
w
I———1
I———<

LS =Eed L T B bl e LOF

L’ ;
.
|
|

=T
i |
|

Bild3.23 Aufbau eines Masken-ROM

MOS-PROM

Bild 3.24 zeigt den Aufbau einer MOS-PROM-Speicherzelle. In
einem n-Substrat liegen die beiden p-Zonen. Bei dem Program-
miervorgang wird der DrainanschluB der Speicherzelle mit Masse
verbunden und der Source-AnschluB an eine Spannungsquelle an-
geschlossen. Bei niedriger Spannung flieBt durch die Speicherzelle
nur ein kleiner Strom. Bei hoherer Spannung wird der Strom gré-
Ber. Er verldBt die p-Zone der Source und flieBt iiber die Metall-
schicht. Dabei kommt es zu einer Wanderung von Metallatomen.
Durch diese Wanderung entsteht zwischen den p-Zonen und der
Metallschicht eine elektrisch leitende Verbindung. Der Program-
mierungsstrom betrégt etwa 150 mA.

Ut

Metallschicht D
S(Source) D(Drain) Substrat J

Si0-Schicht |
n-Substrat p* Metull—'—-l

schicht

S
Bild3.23 Aufbau eines Masken-ROM

TTL-Dioden-PROM

Bild 3.25 zeigt eine Diodenmatrix. Im unprogrammierten Zustand
sind die Dioden bereits vorhanden, aber nicht angeschlossen. Erst
durch Wegitzen einer SiO,-Schicht werden die Katoden der Dio-
den mit den Y-Leitungen elektrisch verbunden.

Anden Y-Achsen ist durch die Leseverstérker an jeder Leitung ein
H-Signal vorhanden. Durch die Adressierung wird auf eine X-
Achse ein L-Signal gelegt. Uber die angeschlossenen Dioden kann
einStromgegen Masse flieBen. Die Leseverstirker wandeln diesen
Strom in das logische Signal um.

Bild 3.26 zeigt den Aufbau eines 32 x 8-TTL-Dioden-PROM.
Eine andere Moglichkeit zur Herstellung von TTL-Dioden-PROM
ist das Fusable-link-Verfahren. Bild 3.27 zeigt den Aufbau eines
FL-PROM. Im unprogrammierten Zustand sind zwischen den
Dioden 'nd den Y-Leitungen Briicken in Form eines Sicherungs-
drahts (f sable-link). Die Speicherzelle wird durch Abschmelzen
dieser Verbindung mit Hilfe eines Stromimpulses programmiert.
Ein anderes Verfahren zur Herstellung von programmierbaren

Y; Y, Y3
F % B EJ
X‘ v N "
X5 E % % g
X3 ' ' ' Bild 3.25
PROM-Dioden-Matrix

72

A
AS —] Adren- 1aus 32 : I2x8 =
A2 —register Decoder : Speicher -
A3 — anordnung
A A

TE Ausgangs -

register
Q, Qs

Bild3.26 32 x 8-TTL-Dioden-PROM

Festwertspeichern ist das AIM-Verfahren (Avalanche-Induced-
Migration). Die Matrix besteht aus einem Transistorfeld (Bild
3.28). Bei der unprogrammierten Speicherzelle ist die Basis nicht
angeschlossen. Beim Programmieren wird die Basis-Emitter-
Diode der zu programmierenden Speicherzelle mit Stromsté8en
abgebaut. Sie hat im unprogrammierten Zustand einen Wider-
stand von etwa 100 k2, im programmierten Zustand von etwa
200 £ (Bild 3.29). Die Stromsté8e zur Programmierung betragen
200 mA bei einer Spannung von 32 V und 7,5 us Dauer. Diese
StromstoBe werden so lange wiederholt, bis der Widerstand der
Speicherzelle unter 200 £ liegt.

Loschbare Festwertspeicher

(EPROM - Erasable PROM, REPROM - Reversible PROM).
Fiir das Loschen verwendet man ultraviolettes Licht. Dabei wird
der gesamte Speicherinhalt geloscht. Nach dem Loschen 1Bt sich
der Speicher neu programmieren.

Farala
EEkaka
f f Bild3.27

Aufbau eines PROM nach dem
Fusable-link-Verfahren

73

Y1 Y2 Y3
Xi 1 1 1
X,
5 k k Bild3.28
X, Aufbau eines PROM nach
dem AIM-Verfahren
E E E E
2 o
B B B B
g C c c
unprogrammiert programmiert

Bild 3.29 Programmierung einer PROM-AIM-Zelle

Bild 3.30 zeigt den Aufbau einer l16schbaren Speicherzelle. An-
steuerungsgate und Floating-Gate sind Poly-Siliziumschichten.
Das Ansteuerungsgate wird mit den Zeilenleitungen verbunden.
Das Floating-Gate dient zur Ladungsspeicherung. Beim Program-
mieren wird iiber die Spaltenleitungen durch Injektion energierei-
cher Elektronen das Floating-Gate aufgeladen. Die gespeicherte
Ladung verédndert die Schwellwertspannung der Zelle. Bild 3.31
zeigt den logischen Aufbau eines EPROM.

A (Ansteuergate)

Floating-Gate D
3) J
N)
S (Source) { — =D (Drain) A—] ;—1
\ p-Substrat | g
I N

Bild 3.30 Aufbau einer mit UV-LicHt 16schbaren PROM-Speicherzelle

74

[‘)o ||31 ?z ?3 ?4 ?5 ?s ?7

CS Ausgangsregister Leseverstdrker

T T T T LT L1
H Spaltendecoder |

3
L1 1 [P
A &= o
—7eien-1 LS -
Ag—{Zeilen. = Jf-é o
Ag
A
A - .JF,_‘ -
=
AT

Bild 3.31 Aufbau eines EPROM

Zur Programmierung wird CS auf +12V gelegt. An die AdreB-
eingénge Ay bis Ay wird wie beim Lesen die Wortadresse angelegt.
Die Programminformation kommt an die Datenleitung Dy bis D;.
Nachdem Adressen und Daten eingestellt sind, wird ein Program-
mierungsimpuls je Adresse an den PROGR-Eingang gegeben.
Das einmalige Durchlaufen aller Adressen bezeichnet man als Pro-
grammierschleife. Die Anzahl der Programmierschleifen ist von
der Impulsdauer des PROGR-Signals abhingig.

Das Loschen geschieht mit UV-Licht iiber vorhandene Quarzfen-
ster. Bei einigen EPROM wird eine Wellenldnge von 253,7 nm
(2537 A) bei einer Dosis von 10 Ws/cm™2 und einer Léschzeit von
20 bis 30 min angegeben. Dem Strahler darf kein Filter vorgesetzt
sein. Durch die UV-Strahlung werden die Elektronen vom Floa-
ting-Gate gelost.

AuBer mit UV-Licht l6schbare PROM gibt es noch PROM, die
sich mit einer hohen Spannung 16schen lassen (VEPROM - Vol-
tage erasable PROM). Diese Bausteine haben anstelle des Quarz-
fensters eine Metallplatte mit einem AnschluBpin. Durch Anlegen
einer hohen Spannung von etwa 10 min Dauer mit umgekehrten
Vorzeichen gegeniiber der Spannung beim Programmieren wer-
den die Elektronen aus dem Floating-Gate herausgezogen.

75

Eo Ao

Vcs&;hi - - i :.: = . , Masghine
langsam] = : —oo=== - = |(schnell)
E7 A7
T__. ST j| p— VR ‘——T
£ Steuerlogi A

Bild 3.32 Pufferspeicherprinzip

Pufferspeicher

Eine spezielle Speicherlogik stellt der Pufferspeicher nach dem
Prinzip , first in, first out“ dar. Mit ihm lassen sich zwei mit unter-
schiedlicher Geschwindigkeit arbeitende Maschinen anpassen.
Bild 3.32 zeigt die grundsitzliche Struktur eines solchen Speichers.
Die Daten werden iiber E bis E; mit Hilfe des Schreibtaktes ST
eingeschrieben. Durch das Signal E meldet der Speicher, da3 er
leere Zellen hat. Wenn der Speicher gefiillt ist, wird das durch das
Signal A gemeldet. Ist das Signal A aktiv, so kdnnen die Daten mit
Hilfe des Lesetaktes LT ausgelesen werden. Das Signal A wird
inaktiv, wenn der Speicher leer ist oder wenn Maschine 2 ein An-
schluBsignal MR (master reset) abgibt. Durch MR wird der Spei-
cher geldscht, A inaktiv und E aktiv. Dann kann ein neues Ein-
schreiben beginnen. Mit jedem Signal ST und LT wird der Inhalt
des Speichers um 1 Zelle nach rechts geschoben.

3.4.4. Zusammenstellung einiger Speicherschaltkreise

ROM-Schaltkreise

U501 D

ROM-Speicherschaltkreis mit 256 x 8-Organisation (Bild 3.33)
Der Speicher hat einen Chip-enable-Eingang (CE). Bei L-Signal
an CE gibt der Baustein den Inhalt der an den AdreBleitungen A
bis A, adressierten Speicherzellen an D, bis D; ab.

8308

ROM-Schaltkreis mit 1024 x 8-Organisation (Bild 3.34)

Der Schaltkreis hat 2 Einginge, CS; und CS, zur Bausteinaus-
wahl. Mit CS, - CS; = H wird die durch Ag bis Ay adressierte
Speicherzelle gelesen. Ihr Inhalt erscheint an Dy bis D.

76

D; - D

e Ausgangsregster — 777 77—
Ag- A,
[/
Speichermatrix
—
Dy Dy
——
[Speichermatrix =—— —
1024x 8 G /
- (CSzoktiv)\'—’
e P
Dy...D,

Bild 3.34 ROM-Speicherschaltkreis 8308

8702 A

EPROM-Schaltkreis mit 256 x 8-Organisation (Bild 3.35)

Der Schaltkreis 8702 A ist ein l6schbarer und elektrisch program-
mierbarer ROM. Der Speicher hat einen Eingang CS (chip-
select). Wenn an CS L-Potential liegt, wird der Inhalt der durch
die AdreBleitung A, bis A; adressierten Speicherzelle an D bis D,
bereitgestellt.

Der Schaltkreis wird durch Anlegen eines Programmimpulses am
Eingang PROGR programmiert. Dabei erhalten die AdreBleitun-
gen und Stromversorgungsleitungen impulsférmig héhere Span-
nungen als im Arbeitsbetrieb.

Das Loschen geschieht mit UV-Licht. Dazu muB3 der Baustein
étwa 10 bis 20 min mit UV-Licht der Wellenldnge 253,7 nm
(2537 A) mit einer Intensitit von 6 WS - cm™2 bestrahlt werden.

77

(0] [Lr—s;ﬂus =
register

77777777
Y2 77773—

Bild 3.35
EPROM-Speicherschaltkreis 8702 A

1702 A

EPROM-Schaltkreis mit 256 X 8-Organisation (Bild 3.36)

Der Schaltkreis 1702 A ist ein 16schbarer und elektrisch program-
mierbarer ROM. Der Speicher hat einen Eingang CS (chip-se-
lect). Wenn an CS L-Potential liegt, dann wird der Inhalt der
durch die AdreBleitung A, bis A7 adressierten Speicherzelle an Dy
bis D7 bereitgestellt.

Tabelle 3.8. Anschliisse des Bausteins 1702 A beim Lesen und

Programmieren
Anschlu Lesen Programmieren
1-3,17-21 AdreB-Bits
4-11 Daten-Bits

12 ’ 5V .oV

13 RAY% Progr.-Imp. — 48V
14 ov ov

15 5V 12v

16 -9V -35V...-40V
22,23 5V ov

24 -9V -9V

78

Bild 3.36 EPROM-Speicherschaltkreis 1702 A

Zum Programmieren wird an den Eingang PROGR ein Impuls ge-
legt. Vor diesem Programmierimpuls muf3 die AdreBleitung die
Adresse der zu programmierenden Speicherzelle und an die Da-
tenleitungen das Programmwort gelegt werden.

Aus Tabelle 3.8. sind die Anschliisse des Bausteins 1702 A beim
Lesen und Programmieren zu ersehen. Das Loschen geschieht mit
UV-Licht der Wellenlinge 253,7 nm (2537 A).

8708

EPROM-Schaltkreis mit 1024 x 8-Organisation (Bild 3.37)

Der Schaltkreis 8708 ist ein 16schbarer und elektrisch program-
mierbarer ROM. Das Lesen geschieht in der Weise, daB3 der Ein-
gang CS/WE auf L-Potential gelegt und an die AdreBleitung A, bis

Dy......Dg
LU
PROGR
TSIWE Ausgabe- Ag...Aq
register ——7777773
Ag || T3IWE
.~] Y-Decoder - Y-Tor
= —Speichermatrix De...D
. 1 X-Decoder p64x128 'O—L—m_
Ao‘d —

Bild 3.37 EPROM-Speicherschaltkreis 8708

79

Ay die Adresse der gewiinschten Speicherzelle gegeben wird. An
Dy bis D; kann der Inhalt der Speicherzelle abgenommen werden.
Zum Programmieren des Schaltkreises wird an den Eingang CS/
WE eine Spannung von 12 Vundanden Eingang PROGR ein Im-
puls von 26 V gelegt. Den Speicherschaltkreis 16scht manmit UV-
Licht der Wellenlinge 253,7 nm (2537 A) mit einer Intensitit von
10 Ws - cm™2in einer Zeitdauer von 20 bis 30 min.

RAM-Schaltkreise

2102

RAM-Schaltkreis mit 1024 X 1-Organisation (Bild 3.38)

Der Schaltkreis hat einen Bausteinauswahleingang CS. Bei CS =L
ist der Baustein angesteuert. Durch den AnschluB R/W 148t sich
der Schaltkreis zwischen Lesen und Schreiben umschalten. Beim
Schreiben (R/W = L) wird die an DI anliegende Information ge-
speichert. Bei Lesen (R/W = H) ist die gespeicherte Information
an DO abnehmbar.

CM 8001

Statischer RAM-Schaltkreis mit 256 X 1-Organisation (Bild 3.39)
Das Lesen des Schaltkreises geschieht dadurch, daB an den Ein-
gang CS L-Potential gelegt wird. Die Information erscheint am
Ausgang DO und in negierter Form an DO.

Zum Beschreiben des Bausteins mu R/W = H sein und die In-
formation an den Eingang DI gelegt werden.

U253 D

Dynamischer RAM-Schaltkreis mit 1024 X 1-Organisation (Bild
3.40)

Der Schaltkreis U 253 D ist ein dynamischer Schreib-Lese-Spei-
cher. Zum Lesen muB der Eingang CS L-Potential haben und die

Speicher-
matrix

32 Zeilen

32Spalten

I

Spalten- |__ D0

| auswahl

T T T I t Bild 3.38

As. ... Ag RAM:-Speicherschaltkreis 2102

ps)
|Q§|

0)
2]

80

Lesezyklus Schreibzyklus
Ay . ATZZ7773 Ay ATLLZ772H—

5 — D0 C3— S—
RIw— cM 8001
DI —4 0 P mw—

D0 —ZZ2— 0O —ZZZZ7-

Bild 3.39 Statischer RAM-Speicherschaltkreis CM 800/

Adresse an Ag bis Ag gelegt werden. Der Eingang WE bleibt
auf H-Potential. Die gelesene Information liegt negiert am Aus-
gang DO an. Zum Einschreiben (WE = L) legt man die Informa-
tion am Eingang DI an.

Zum Auffrischen wird die ausgewihlte Zelle gelesen und gleichzei-
tig wieder eingeschrieben. Dazu miissen alle 32 Zeilen der Spei-
chermatrix, die von den Adressen A bis A, angesteuert werden,
innerhalb von 2 ms mindestens einmal gelesen worden sein. Die
Belegung der Adressen A;s bis Ag (Spalten) ist dabei ohne Bedeu-
tung.

Auffrischverstdrker
A Ly S_ Speichermatrix
A S [I8E .
Ar—{ T D S 32 Zeilen
. I E 32 Spalten
{2
s —1 l*—DlI
Spaltendecoder
WE — DO

T

AdrefNregister

Pl

As Ag A7 Ag Ag

Bild3.40 Dynamischer RAM-Speicherschaltkreis U 253 D

81

Tabelle 3.9. Zusammenstellung einiger Speicherschaltkreise

Typ Kurzcharakteristik
MSI-Schaltkreise
D181C/D DDR 16 x 1-RAM
K155RU3 UdSSR 16 x 1-RAM
K155RU2 UdSSR 16 X 4-RAM
MH 74188 CSSR 32 x 8-PROM
MH 74§ 201 CSSR 256 X 1-R AM mit Tri-state-Ausgang
74200PC UVR 256 x 1-RAM mit Tri-state-Ausgang
K155RP1 UdSSR 4 x 4-Bit-Register-Stapel
LSI-Schaltkreise
2716 2K x 8-UV-EPROM (nur 5 V)
2758 1K x 8-UV-EPROM (nur 5 V)
2708 1K x 8-UV-EPROM
(+12V, +5V,-5V)
2704 512 x 8-UV-EPROM
(+12V,+5V,=5V)
8101 256 X 4-RAM (+5V)
8111 256 X 4-RAM (+5V)
2112 256 X 4-RAM(+5V)
KS565PY1A dynamischer4K X -RAM (=5V, +5V, +12V)
3.5. Codier- und Decodierschaltungen

Umcodierungen werden beim Aufbau von Mikrorechnern sehr
haufig gebraucht. Beispiele sind die Realisierung der Anzeige
durchLED-Elemente, die Zuordnung von Ziffern- und Funktions-
tasten zu den entsprechenden Zahlendarstellungen und die Ent-
schliisselung von dualen Adressen. Fiir viele dieser Funktionen

g

i

AR

e

WY

A

+Up

T T 1 I

Bild 3.41 Codierung Dezimal - BCD-Code

82

gibt es integrierte Schaltkreise. Stehen keine speziellen Schalt-
kreise zur Verfiigung, so lassen sich entsprechende Schaltungen
auch mit logischen Grundschaltkreisen aufbauen.

Durch die Codierschaltung wird eine Darstellungsform fiir Zahlen
oder Zeichen in eine andere Darstellungsform umgewandelt.

Bild 3.41 zeigt eine einfache Codierung Dezimalstellung — BCD-
Code. Eine Dezimalziffer wird durch den ihr zugeordneten Schal-
ter dargestellt. Beim BCD-Code bildet man duale Bit-Kombina-
tionen mit 4 Dualstellen.

Aus Bild 3.42 ist die Schaltung des Bausteins 74147 zur Umwand-

20

R

s

oo T} n T
{2

Bild 3.42 Aufbau des Bausteins 74147 zur Codierung Dezimal — BCD-Code

83

Tabelle 3.10. Funktionstabelle des Bausteins 74147

(Codierer: Dezimal - BCD)

E2 E3 E4 ES E6 E7 E8 E9 A3 A2 Al A0

El

1
|
1

Bild 3.43

.

Aufbau des Bausteins 7442

zur Umwandlung BCD —

Dezimal

0

»-_:]&

20

84

lung einer Dezimaldarstellung 1 aus 10 in eine BCD-Darstellung
mit 4 Bit und aus Tabelle 3.10. die Funktionstabelle des Bausteins
74147 zu ersehen.

Der Baustein 7442 (Bild 3.43) decodiert binare Zahlen zu Dezimal-
zahlen.

In der Elektronik wird sehr héufig die 7-Segment-Anzeige verwen-
det. Aus Bild 3.44 ist die Zifferndarstellung bei der 7-Segment-An-
zeige zu ersehen. Ein 7-Segment-Decoder muf} aus dem BCD-
Code die Signale zur Ansteuerung der 7 Segmente liefern.

[a]

|) Jifn— i _Ib
C

f
T A Vo A A T A T A

— d

Bild 3.44 Zifferndarstellung der Ziffern 0 bis 9 einer 7-Segment-Anzeige

Tabelle 3.11. Funktionstabelle eines 7-Segment-Decoders fiir die
Dezimalziffern 0 bis 9

Ziffer Einginge Segmente

D C B A a b c d e f g
0 L L L L H H H H H H L

L L L H L H H L L L L
2 L L H L H H L H H L H
3 L L H H H H H H L L H
4 L H L L L H H L L H H

L H L H H L H H L H H
6 L H H L H L H H H H H
7 L H H H H H H L L L L
8 H L L L H H H H H H H
9 H L L H H H H H L H H

Tabelle 3.11. zeigt die dazugehodrige Funktionstabelle fiir die
Ziffern 0 bis 9. Aus dieser Funktionstabelle ergibt sich iiber die
Kanonische Alternative Normalform

85

BvCvD;

Bild 3.45 zeigt die Schaltung eines 7-Segment-Decoders fiir die Zif-
fern 0 bis 9.

A2°) B(2') C(23) D3

o 1% 1% L

Bild 3.45 7-Segment-Decoder fiir die Ziffern 0 bis 9

86

In dhnlicher Weise 148t sich auch ein 7-Segment-Decoder fiir die
Hexadezimalziffern 01234567 89 A B C D E F entwickeln.
Bild 3.46 zeigt die Zeichendarstellung 0 bis F, Bild 3.47 den Auf-
bau des 7-Segment-Decoders, und aus Tabelle 3.12. ist die dazuge-
horige Funktionstabelle zu ersehen.

Tabelle 3.12. Funktionstabelle eines 7-Segment-Decoders fiir die
Hexadezimalziffern 0 bis F

Ziffer Eingiénge Segmente

D C B A a b c d e f g
0 L L L L H H H H H L
1 L L L H L H H L L L L
2 L L H L H H L H H L H
3 L L H H H H H H L L H
4 L H L L L H H L L H H
5 L H L H H L H H L H H
[3 L H H L H L H H H H H
7 L H H H H H H L L L L
8 H L L L H H H H H H H
9 H L L H H H H H L H H
A H L H L H H H L H H H
B H L H H L L H H H H H
C H H L L H L L H H H L
D H H L H L H H H H L H
E H H H L H L L H H H H
F H H H H H L L L H H H
I) Jipo) oo e e
el 2 T o o\ 2 i
Bild 3.46 Darstellung der Hexadezimalziffern 0 bis F

87

A(29)

B(2')

c(2?2)

D(23)

O RS LY

=

=

88

OO

®© 60606 606 60 Oo®

Bild 3.47 7-Segment-Decoder fiir die Hexadezimalziffern 0 bis F

Fiir die Ansteuerung der Segmente gilt:
a=AC v BCv AD v BD v BCD v ACD;
b=AC v BC v ABD v ABD v ABD;
¢c=BD v ACv CD v CD v AB;

d =BD v ABC v ABC v ABC v ACD;
e=BD v AB v CD v AC;

f =ACv BD v CD v BCD v ABD;
g=BCv CDv AD v AB v BCD.

Die Bausteine 7446, 7447, 7446 A und 7447 A sind integrierte 7-
Segment-Decoder.

89

Bild 3.48 Darstellung der Hexadezimalziffern fiir die Bausteine 7446 und 7447

Bild 3.48 zeigt die Hexadezimaldarstellung der Bausteine 7446,
7447, 7446 A, 7447 A, Bild 3.49 den Aufbau der Decoder.
RBI = L ergibt. eine automatische Unterdriickung der Nullan-
zeige. Die Segmentausginge erhalten H-Signal, wenn die Ein-
ginge A, B, C und D L-Signal haben (Nullbedingung).
Bei LT = L (Lampentest) fiihren alle Segmentausgénge L-Signal
(Helltastung).
Alle 4 Bausteine unterscheiden sich bei gleicher Innenschaltung le-
diglich in ihren Endstufen.
7446: offener Kollektorausgang 30V/20mA;
7447: offener Kollektorausgang 15V/20mA;
7446 A: offener Kollektorausgang 30V/40mA;
7447 A: offener Kollektorausgang 15V/40mA;
Die Spannung der heute verwendeten GaAs-Leuchtdioden betragt
etwa Up = 1,6 V. Dader vorgegebene Strom I nicht iiberschritten
werden darf, sind zwischen Segmentanzeige und Decoder Wider-
stinde zu schalten (Bild 3.50). Die Widerstinde R konnen nach
der Gleichung

rR=L=Uo.

I .

Ub = SV; UD = 1,6V;
I = angegebener hochster Wert des Stromes;

berechnet werden.

Oft liefern bestimmte MeBgerite Ziffern in einer anderen Darstel-
lung, als sie benétigt werden. Dann sind sogenannte ,,Umcodierer*
notwendig. Es gibt folgende Umcodierer:

BCD-Code — Aiken-Code;

BCD-Code — 3-ExzeB-Code;

Aiken-Code —» BCD-Code;

3-ExzeB-Code - BCD-Code.

90

] a

m |

>—1

e

|

2t Co—&} i

e ar

[#f—e

23De E-}L

o—]
BI/RBQ

7

LT °——<| '—‘

1&

el

| 1 & §

|
- |

Rel — &4

!
[HE s

&
i
_i
e
];L—‘
|
]&

=

Bild 3.49 Schaltbild der 7-Segment-Decoder

ine 7446 und 7447

Segmentanzelge

I

Decoder

Bild 3.50
Zusammenschaltungvon
7-Segment-Decoder und
-Anzeige

Priifbiterzengung — Paritiitspriifer

Die haufigste Methode zur Feststellung von Fehlern bei einer Da-
teniibertragung ist die Priifbitkontrolle. Dabei wirddie Anzahlder
zur Ubertragung verwendeten Bit durch ein Zusatzbit, das soge-
nannte Priifbit, erginzt. Dieses Priifbit wird nun so gesetzt, daB3 die
Anzahl der Einsen im Gesamtwort (Information + Priifbit) gerade
oder ungerade ist. Im Sender setzt man das Priifbit dazu, im Emp-
fanger 4Bt sich dann die gerade oder ungerade Paritit iberpriifen.

Bild 3.51 zeigt den Aufbau des Bausteins 74180, der zur Uberprii-
fung und Erzeugung der Priifbits eines 8-Bit-Wortes (7bit + Priif-
bit) verwendet werden kann. Aus Tabelle 3.13. 148t sich die zuge-
horige Funktionstabelle ersehen.

Sollz. B. zueinem 7-Bit-Wort ein 8. Bit so gesetzt werden, daB ge-
radzahlige Paritit entsteht, so verbindet man die 7 Bit mit E, bis
E¢,setzt E; =0, Sp = 1und S = 0. Damit wird A; = 1, wenn E bis

Ajungerade

-I&

Exklusiv-ODER- Bausteine 6 6
So S
gerade ungerade

Bild 3.51 Aufbau des Bausteins 74/80 zur Priifbitbildung

92

A —Do AaAAe | 00, 0,050,05050,
A LD, HH HHHH H
A 0, CLHHLHHHHAH
8205 - O HLIHHL HHHH
L o LHH [HHH LHHHH

- L L [HHAH[HH

- HLH [HHHHHLHH

- HL [HHHHHH [H

HHH [HHHHHHHL

w N

m miml

Bild 3.52 3-zu-8-Decoder 8205 mit Funktionstabelle

E¢ ungerade sind, und A, = 0, wenn E, bis E¢ gerade sind. Es gilt
Ap = Ay; A ist unmittelbar das gesuchte Priifbit. Zur Priifbitkon-
trolle verbindet man die 8 Datenleitungen mit E, bis E;, setzt Sy =
1 und S; = 0. Damit ist bei geradzahliger Anzahl von Einsen Ay =
1, A; = 0 und bei ungeradzahliger Anzahl Ao = 0, A; =1.

Mit 2 Bausteinen 74180 148t sich auch eine 16-Bit-Priifbitlogik auf-
bauen.

Wichtige Funktionen bei der AdreBentschliisselung sind die Um-
codierungen

Binir — Oktal;

Binidr — Hexadezimal.

Im Fall ,,Binar — Oktal*“ werden aus einer Oktalziffer 8 Einzelsi-
gnale (3 zu 8), im Fall ,,Bindr — Hexadezimal“ 16 Einzelsignale (4
zu 16) gebildet. Der Baustein 8205 (Bild 3.52) realisiert die Funk-
tion3 zu 8.

In Tabelle 3.14. sind einige Codierschaltkreise zusammengestellt.

Tabelle 3.13. Funktionstabelle des Paritiatsbausteins 74180

Eo-E; So S Ao A
gerade H L H L
ungerade H L L H
gerade L H L H
ungerade L H H L
beliebig H H L L
beliebig L L H H

93

Tabelle 3.14. Zusammenstellung einiger Codierschaltkreise

Typ Kurzcharakteristik
MH 74154 CSSR 4-Bit-Binir-Decoder (4zu 16)
K155ID4 UdSSR 2 x 2-Bit-Binir-Decoder (2zu 4)
K155ID7 UdSSR 3-Bit-Binir-Decoder (3 zu 8); Schottky-TTL
K5001ID 161 UdSSR 3-Bit-Binir-Decoder (3zu8); ECL,.
invertierender Ausgang
K 5001ID 162 UdSSR 3-Bit-Binir-Decoder (3zu 8); ECL
K155PR6 UdSSR BCD/Binir-Konverter; offener Kollektorausgang
K155PR7 UdSSR Bindr/BCD-Konverter; offener Kollektorausgang
T443APC UVR 3-ExzeB/Dezimal-Decoder
MH 7746 CSSR BCD/7-Segment-Decoder; Treiber,
offener Kollektorausgang (30 V, 20mA)
MH 7747 CSSR BCD/7-Segment-Decoder; Treiber,
offener Kollektorausgang (15 V,20mA)
MH 7442 CSSR BCD/Dezimal-Decoder
7449 PC UVR BCD/7-Segment-Decoder; Treiber,
offenerKollektorausgang 5,5 V
K1551P2 UdSSR 9-Bit-Paritétsgenerator; 8-Bit-Paritétspriifer
MH 74150 CSSR 16-zu-1-Multiplexer; invertierender Ausgang
MH 74151 CSSR 8-zu-1-Multiplexer
K155KPS5S UdSSR 8-zu-1-Multiplexer; invertierender Ausgang
K155KP2 UdSSR 2 X 4-zu-1-Multiplexer
KS001ID 164 UdSSR 8-zu-1-Multiplexer; ECL

3.6. Rechenschaltkreise

Der wichtigste Rechenschaltkreis ist der Mikroprozessor. Seine
Teilfunktionen werden durch eine Reihe von Rechenschaltungen
realisiert, die zusammen das Rechenwerk eines Rechners darstel-
len. Viele dieser Teilschaltungen sind auch getrennt als Schalt-
kreise in MSI-Technik ausgefiihrt. Sie konnen zum Aufbau kleiner
Rechenschaltungen dienen.

Die Grundfunktion des Rechners ist die Addition. Bei der Addi-
tion im Dualsystem miissen die Summe und der Ubertrag von 2
Summanden und einem eventuellen Ubertrag aus dem niedrigeren
Stellenwert gebildet werden (Bild 3.53). Tabelle 3.15. zeigt die
Funktionstabelle eines solchen Volladdierers.

Uber die Kanonische Alternative Normalform ergibt sich aus Ta-
belle 3.15. fiir S und Uy die Schaltfunktion

S=Ua (AB v AB) v U, (AB v AB);

Ux = Ua (AB v AB) v AB.

94

[N NN

A B

b

= Volladdierer ..
. U= + [*—Ua
(Ubertrag neu) (Ubertrag alt)
l Bild3.53.
Funktion eines Volladdie-
S (Summe) rers

Tabelle 3.15. Funktionstabelle eines Volladdierers

B Ua S Un
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

Aus Bild 3.54 ist der Aufbau des dazugehorigen Volladdierers zu
ersehen.

Bild 3.55 zeigt die Innenschaltung des Volladdiererbausteins 7480.
Es ist ein 1-Bit-Volladdierer mit komplementiren Ein- und Aus-
géngen. Fiir die Eingédnge a und b gilt:

a* = aja, bzw. b* = b;b;.

a* und b* konnen am Baustein abgenommen werden. Wenn a*
und b* jedoch als Addiatoreingang benutzt werden, dann miissen

Bild 3.54 Volladdierer nach der Funktionstabelle 3. 15

95

Qa, [¢
o
(e PY —S-
S
]
]
U E} 1 4:U°

Bild 3.55 Volladdiererbaustein 7480

aj, az, by und b, an Masse liegen. Fiir die Eingangssignale a und b
gilt:

a = a‘a; b = b*b,.

Wenn ay, a;, b; und b, an Masse liegen, so sind a* = b* = 1 und
a=a,b=bh.

Addierbausteine gibt es in sehr unterschiedlichen Ausfiihrungen.

Beispiele
7482: 2 Volladdierer (Bild 3.56, Funktionstabelle Tabelle 3.16).
74183: schneller Volladdierer (Bild 3.57, Funktionstabelle Tabelle
3.15).
2 Dualzahlen kénnen mit Hilfe eines Volladdierers parallel oder
seriell addiert werden. Aus Bild 3.58 ist der Aufbau des parallelen
und aus Bild 3.59 der des seriellen Addierwerks zu ersehen. Die
Register A und B miissen fiir die Paralleleingabe geeignet sein.
Das Summenregister S nimmt die Daten seriell auf und gibt sie par-
allel ab. Mit jedem Takt werden die Register um eine Stelle nach
rechts verschoben. Dabei werden die Stellen Ay, By und UFF
(Ubertrags-Flip-Flop) iiber die Addierschaltung gefiihrt. Die
Werte der Ausgénge S und Una1 der Addierschaltung werden in S;
und UFF eingetragen.

96

S

Bild 3.56 Volladdiererbaustein 7482

Tabelle 3.16 Funktionstabelle des Volladdiererbausteins 7482

a

by

az

joofie *QS =)

S IS - - R

[S ol -S|

[<R NS |

T T T

o QIS IS -

(SRS -

joolie RS IS |

o ofis S IS

[[[o« o

97

[

6 oe
a bUn
Bild 3.57 Schneller Volladdierer 74183

Bild 3.58 Paralleles Addierwerk

Eingabewert A
Al A

Bild 3.59
Serielles Addierwerk

98

Eine sehr hidufige Funktion bei Mikroprozessoren ist die Erh6hung
(Inkrementierung) oder Subtraktion (Dekrementierung) einer 1
vem Inhalt eines Registers. Tabelle 3.17. enthélt die Funktions-
tabelle einer Dekrementierung. Uber die Kanonische Alternative
Normalform ergibt sich aus Tabelle 3.17.:

By = Ay; o

B = A¢A; v AjAj; o

B2 = A1A2 Vv AOA2 \% A()AIAZ;_ L

B; = A1A; vV AjA3 vV ArA; v AjA1AAs.

Aus Bild 3.60 ist der Aufbau eines Dekrementierers zu ersehen. In
Tabelle 3.18. sind einige Rechenschaltkreise zusammengestellt.

Tabelle 3.17. Funktionstabelle eines Dekrementierers

As A; Ay B, B, B, B,
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 1 1 0 0 1 0
0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 1 1 0 0 1 0 1
0 1 1 1 0 1 1 0
1 0 0 0 0 1 1 1
1 0 0 1 1 0 0 0
1 0 1 0 1 0 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 0

Tabelle 3.18. Zusammenstellung einiger Rechenschaltkreise

Typ Kurzcharakteristik

K155IM1 UdSSR 1-Bit-Volladdierer

K155IM2 UdSSR 2-Bit-Volladdierer

K155IM3 UdSSR 4-Bit-Volladdierer

K155IM3 UdSSR 4-Bit-Recheneinheit

7485PC UVR 4-Bit-Vergleicher

K5311P3 UdSSR 4-Bit-Recheneinheit; Schottky-TTL
K5S00IP 181 UdSSR 4-Bit-Recheneinheit; ECL

99

Bild 3.60 Dekrementierschaltung

3.7. Bustreiber

Die aus den Schaltkreisen kommenden Signale haben nicht immer
die Leistung, die notwendig ist, um mehrere angeschlossene Bau-
steine zu steuern. Teilweise sind auch die Mindestpotentiale zur
Steuerung eines Bausteins groBer als die Potentiale, die der Geber-
schaltkreis liefert. Zur Anpassung der Potentiale und der Lei-
stungsparameter im Mikrorechnerbus dienen sogenannte Bustrei-
ber. Da der Mikrorechnerbus meistens in beiden Richtungen be-
trieben wird, arbeiten diese Bustreiber ,,bidirektional“.

Bild 3.61 zeigt den Aufbau des Bustreiberbausteins 8216. Wenn
bei A H-Potential vorliegt, so arbeitet der Baustein in Richtung DI
— DB und bei H-Potential an B in Richtung DB — DO. Liegt A

100

bzw. B auf L-Potential, so sind die Ausgénge der entsprechenden
Treiber hochohmig.

Tabelle 3.19. Funktionstabelle des Bustreiberbausteins 8216

[« DIEN
L L DI- DB
L H DB— DO
H L hochohmig
H H hochohmig
ST|
D1 —— &
— DB1
ST
001—‘—‘; & M1
ot]
— ST
DI2 &[]
— | t+—D82
ST
DI3 — &
ST }—\ DB3
w7
1 ST
Di4 &
ST }' DB4
D04 &
Bild 3.61
Bustreiberbaustein 8216

101

0, 01
——0
w Dy ¢
=
o
v D] D3
N
4 B 0,
p B o= g (o< S
n :
3
D
2o, 5
o De
g Ds
201 D
o
o Da D 8
Bild3.62
Informationsrichtung Busfreigabe Steuerungeines
1 2Eingabe inden Prozessor 1 Bus gesperrt 8-Bit-Datenbusses mit
0%Ausgabe vom Prozessor 0ZBus frei 2 x 8216

Die Richtung des Informationsflusses wird durch das Signal
DIEN bestimmt, wihrend man mit CS (chip-select) den Baustein
freigibt. Aus Tabelle 3.19. ist die Funktionstabelle des Bausteins
8216 zu ersehen.

Bild 3.62 zeigt die Verwendung von 2 Bausteinen 8216 zur Steue-
rung eines 8-Bit-Datenbusses. Wahrend die Eingangsspannungen
des Bausteins 8216 fiir H-Potential nur mindestens 2 V betragen
miissen, liefert der Baustein H-Potential von mindestens 3,65 V.

Tabelle 3.20. Zusammenstellung einiger Treiberschaltkreise

Typ Kurzcharakteristik

KI155LN3 UdSSR 6 Treiber, invertiert, offener Kollektorausgang
30V

K155LN4 UdSSR 6 Treiber, offener Kollektorausgang, 30 V

7416 PC UVR 6 Treiber, invertiert, offener Kollektorausgang,
15V

7417PC UVR 6 Treiber, offener Kollektorausgang, 15V

74125 PC UVR 4 Bustreiber, Tri-state

74126PC UVR 4 Bustreiber, Tri-state

SN 74367 AN 6 Bustreiber, 2 Enable-Einginge, Tri-state

102

3.8. Zihler

Zihler lassen sich auf verschiedenste Art aufbauen. Verwendet
man getriggerte Flip-Flop, die mit der HL-Flanke umkippen, und
verbindet den jeweiligen Ausgang der vorherigen Zihlstufe mit
dem Takteingang des nédchsten Flip-Flop (Bild 3.63), so spricht
man von asynchronen Zihlern. Wird der Takt an alle Flip-Flop
gleichzeitig angelegt und eine logische Verbindung zwischen den
Ausgingen der vorangehenden Flip-Flop und den Eingéngen des
nédchsten Flip-Flop geschaffen, so erhélt man synchrone Zdhler.
Ein Beispiel eines synchronen Vorwirtszéhlers zeigt Bild 3.64.

STH BTH BT Bild363
—=((] +C| Schaltprinzip eines
R R R asynchronen Zahlers
20 21 22 23
[T Tr [s] ¥r s[T [s] 7t
J J T i)
o 3 = iz
K K H =
rR] R] {R] R
T
RESET

Bild 3.64 Synchroner Zihler

Zihler mit JK-Flip-Flop

Jedes als Trigger geschaltete JK-Flip-Flop teilt die Eingangsfre-
quenz im Verhdltnis 1:2. Bild 3.65 zeigt die Schaltung fiir einen
Vorwirtszdhler im Dualcode und das zugehorige Impulsdia-
gramm. Soll der Zahler bereits nach Stellung 9 zuriickschalten, so
kann eine Schaltung nach Bild 3.66 verwendet werden. Durcheine
entsprechende Zahlstruktur, d. h. durch Schalten der einzelnen
Setz- und Riicksetzbedingungen, lassen sich beliebige Zahlfunk-
tionen realisieren. Zum Beispiel bendtigt man fiir einen Zahler im
3-ExzeB-Code die in Tabelle 3.21. stehende Zahlfolge. Bild 3.67
zeigt das dazugehorige Schaltbild mit dem Taktdiagramm.

103

0 1 2 23
T_.%T—-_Ii%T 2%Tj_I:.:T—-T
IIO_BJRESET L r i
=
20

Y/ /777 V 1 V7772 r7777)
2

22
23

V2777777777777 77

Bild 3.65 Vorwirtszihler im Dualcode mit dem dazugehdrigen Impulsdiagramm

23

Impulsgréne nur
durch die Schaltzeit
V7777 V77777 —fl=- 7 bestimmt (=50ns)

Ruckstellen
Bild 3.66 Vorwirtszihlerim BCD-Code

104

R

a b \C d
STH| ST BT]
Zdhltakt—C] C t

Ruckstellung

Bild3.67 Zahler im 3-ExzeB-Code (Das gezeichnete AND-Gatter istein NAND!)

Tabelle 3.21 Zihlfolge fiir einen Zéhler im 3-ExzeB-Code

d c b a
0 0 0 1 1
1 0 1 0 0
2 0 1 0 1
3 0 1 1 0
4 0 1 1 1
5 1 0 0 0
6 1 0 0 1
7 1 0 1 0
8 1 0 1 1
9 1 1 0 0

105

Zihler mit RS-Flip-FLop

Schaltet man vor die Eingangsstufen eines RS-Flip-FLop Dyna-
mikvorsitze (Kondensatorspeicher), so lassen sich sehr einfach
Zihlschaltungen aufbauen.

Der in Bild 3.68 dargestellte Speicher mit dynamischer Ansteue-
rung eignet sich als Baustein zum Aufbauvon Zahlstufen. Bild 3.69
zeigt einen vierstelligen Dualzahler. Die einzelnen Stufen sind als
Teiler geschaltet. Jede Stufe wird von der Vorstufe angesteuert,
wenn deren Ausgangssignal von H nach L springt. Mit TL werden
die Zahlstufen in die Ausgangsstellung 0000 gebracht.

E S| T L

E—1J] .

Es—10

E/K| .

E——R a
Ersatzschaltbild

Bild 3.68 RS-Flip-Flop mit dynamischer Ansteuerung

Tabelle 3.22. Zusammenstellung einiger Zéhlerschaltkreise

Typ Kurzcharakteristik

MH 7490 CSSR Dezimalzihler

K1S5IE9 UdSSR programmierbarer Dezimalzihler

74176 PC UVR programmierbarer Dezimalzihler

74190PC UVR Synchroner programmierbarer Vorwirts-/Riick-
wirts-Zahler (Dezimalzéhler)

D192C/D DDR Synchroner programmierbarer Vorwirts-/Riick-
wirts-Zihler (Dezimalzahler)

74290 PC UVR Dezimalzéhler

MH 7493 CSSR 4-Bit-Binarzihler

74161 PC UVR programmierbarer 4-Bit-Binarzahler

74177PC UVR programmierbarer 4-Bit-Bindrzéhler

74191 PC UVR Synchroner programmierbarer Vorwirts-/Riick-
wirts-Zihler (4-Bit-Binérzihler)

D 193C/D DDR Synchroner programmierbarer Vorwirts-/Riick-
wirts-Zihler (4-Bit-Binirzihler)

74293 PC UVR 4-Bit-Dualzihler

106

Léschung T,
I__—§ T Lji T Li TT ISITT
T 1 L] L] L]
—=(| tCi tC| tC|
K] K K]
r R r R r R r R

Bild 3.69 Vierstelliger Dualzihler mit Schaltelementen nach Bild 3.68

3.9. Taktgeneratoren

Die meisten Rechnerschaltkreise arbeiten taktgesteuert. Bild 3.70
zeigt eine einfache Variante zur Erzeugung einer unstabilisierten
Taktserie. Liegt am Punkt A H-Pegel, so hat Punkt B L-Pegel. Der
Kondensator C entladt sich iiber R, bis Punkt A L-Pegel erhilt.
Jetzt hat B H-Pegel, und der Kondensator C 14dt sich iiber R und
den Negator 1 wieder auf. Die Umladung von C wird durch Nega-
tor 2 geringfiigig unterstiitzt.

Bild 3.70
Erzeugung einer unstabilisierten
Taktserie

Bild 3.71 zeigt eine Schaltung, in der die Auf- und Entladung von
C durch R; und R; geschieht. AuBerdem wird durch Hinzuschalten
eines Quarzes die erzeugte Taktserie frequenzstabilisiert. Liegt die
Quarzfrequenzzu hoch, so kann man die Taktfrequenz mit D-Flip-
Flop untersetzen. Bild 3.72 zeigt eine solche Untersetzung mit 2 D-
Flip-Flop.

Bild 3.71
ﬂ| Einfacher Taktgenerator

107

Q Q %]
Lml g T
- oo

Bild 3.72 Taktgenerator mit zweifacher Untersetzung

oJo]

=

Sollen aus dem Urtakt 2 Taktserien hergestellt werden, so 148t sich
das mit einem D-Flip-Flop nach Bild 3.73 erreichen.

Der Baustein 8224 ist ein integrierter Taktgenerator fiir den Mi-
kroprozessor 8080. Er erzeugt die notwendigen Taktimpulse @,
und @, und dient gleichzeitig zur Verarbeitung des Zeitsignals
SYNC und zur Erzeugung der Signale RESET, READY und
STSTB (Bild 3.74).

L]

Al

Bild 3.73 Taktgenerator zur Erzeugung von 2 Taktserien @; und &,

108

[

u Joubis
i35 AP e

105S3201d
uap Ny Joubis
Joubisienays | AV m -S}yDpRsHaRg

81S IS INAS

g m 13q36 "
S [-0 21Dnbua)|amId
IS iS PoY] i mcom%_m

INAS— — éb||-'Jn supy

j =
) = 15 Z0—y gighy
zionp
12UIR)%3

109

Bild 3.74 Integrierter Taktgenerator 8224 fiir den Prozessor 8080

4. Mikroprozessoren

Der Mikroprozessor ist der Schaltkreis innerhalb eines Mikrorech-
ners, der die Steuerung des Programmablaufs ibernimmt. Er bein-
haltet das Rechen- und Steuerwerk eines Rechners. Zum Einbau
in Rechnersysteme verfiigt er iiber Ein- und Ausgabesignale, mit
deren Hilfe weitere Bausteine eines Rechners angeschlossen wer-
den koénnen. Die Ein- und Ausgangssignale des Mikroprozessors
kann man unterteilen in
- AdreBsignale (AdreBbus)
- Datensignale (Datenbus)
— Steuer- und Meldesignale (Controlbus)
— Versorgungsspannungen (Taktsignale, Betriebsspannungen
und Masseleitung).
Die Arbeitsweise des Mikroprozessors wird durch seinen Befehls-
vorrat bestimmt. Den Befehlen entsprechen Signale, durch die die
Inhalte der einzelnen internen Register untereinander transpor-
tiert werden. Wihrend des Transports fiihren logische Schaltungen
die einzelnen Operationen aus. Voraussetzung zum Verstindnis
des Befehlsschliissels ist deshalb die Registerstruktur des Prozes-
SOrs.
Der Befehlsschliissel bildet die Basis fiir die Entwicklung der Soft-
ware eines Rechners. Um bereits entwickelte Software auch auf
Nachfolgerechnern zu nutzen, versucht man sie so aufzubauen,
daB im allgemeinen die Befehle des Vorgingers als Teilmenge ent-
halten sind. Damit wird eine sogenannte Aufwiértskompatibilitat
erreicht.
Die Prozessoren U808 D, 8080, U880 D und U 881 bilden eine sol-
che Generationsreihe.
Mit dem Prozessor U 808 D begann die Entwicklung der Mikro-
rechentechnik in der DDR. Der Baustein benétigt eine umfangrei-
che Busanpassung und benutzt nicht den Arbeitsspeicher zur
Stackorganisation. Bei der Interruptorganisation wurde nicht der
Begriff ,Interruptvektor‘ verwendet. Bild 4.1 zeigt die logische
Struktur dieses Bausteins. Er wird fiir Neuentwicklungen nicht ein-
gesetzt.

110

D7... Do

reiber interner Datenbus
: ADR
ZIC[P[S] [Cer] o I)
l stack® [1] B 8
ISTACK 2 ¥ 2l ¢ 8
b Befehls- STACK3 Y 3 b ¢
deriader I l Stacks® [o] E ®
ALY 1 STACK 5 5| 9
| :l - . __ _ |Maschiren- [STACK 6 6] L
sflﬁé‘#ﬁﬁq [STACK 7 E Uniktign

Zyklengenerator

HERERER

So Sy S2 INT READYCy C2 SYNC
Bild4.1 Registerstruktur des Bausteins U808 D (statt Cy, C; lies @, @)

4.1. Der Mikroprozessorbaustein U 880

Der Baustein U 880 ist gegeniiber dem Baustein U 808 D weiter

vervollkommnet. Die wesentlichen Verbesserungen sind folgende:

— Esist nur eine Betriebsspannung V. = 5 V notwendig und eben-
falls nur ein Steuertakt @ erforderlich.

— Die Steuersignale zur Auswahl und Ansteuerung der externen
Bausteine werden im Prozessor schon so weit aufbereitet, da3
sie direkt mit den Eingédngen und Ausgéngen der externen Bau-
steine verbunden werden konnen.

— Die Befehlsliste ist wesentlich erweitert; wihrend der Baustein
U 808 D 48 Basisbefehle verarbeitet, sind es beim U 880 158 Be-
fehle. Neu sind dabei Befehle fiir Doppelwortoperationen, fiir
BCD-Arithmetik, fiir einen zweiten Registersatz, Blocktrans-
ferbefehle und Blocksuchbefehle in Verbindung mit dem Spei-
cher und den Ein- und Ausgabebausteinen, Bitoperationen,
Indexoperationen sowie wesentlich erweiterte Verschiebebe-
fehle.

11

— Die Behandlung von externen INTERRUPT ist durch einen
maskierten INTERRUPT sowie durch die Moglichkeit des Auf-
baus einer AdreBliste fiir unterschiedliche INTERRUPT-Routi-
nen erweitert worden.

4.1.1. Registerstruktur des Mikroprozessorbausteins U 880

Aus Bild 4.2 ist die Registerstruktur des Bausteins U 880 zu erse-
hen. Der Mikroprozessor enthilt einen internen 8-Bit-Bus, von
dem aus alle Register zu erreichen sind. Von diesem Bus aus wer-
den Daten iiber den externen Datenbus D bis D; ein- und ausgege-
ben. Er 1aBt sich in beiden Richtungen betreiben. Der externe bidi-
rektionale Datenbus ist iiber Bustreiber mit dem internen 8-Bit-

Bus verbunden. An den internen 8-Bit-Bus sind angeschlossen:

— 2 Registersitze zur Zwischenspeicherung der Zahlen im Prozes-
sor, die aus je 8-Bit-Registern bestehen.- Der 1. Registersatz
beinhaltet die Register A, F?,B,C,D,E, H, L, der2. Register-
satz die Register A’, F'?,B’,C',E’, H',L'. Durch einen einfa-
chen Austauschbefehl konnen die Inhalte der Registersitze
komplett vertauscht werden. Dadurch ist es méglich, einen be-
stimmten Programmabschnitt einem der Registersitze zuzuord-
nen. Wechselt das Programm, dann kénnen die dazugehorigen
Registersidtze umgetauscht werden.

— Zweckregister I, R, IX, IY, SP, PC.

Das Register I (8-Bit-INTERRUPT-AdreBregister) enthilt den
hoherwertigen Teil einer Adresse, deren niederwertiger Teil bei
einem INTERRUPT von dem entsprechenden Gerit gebildet
wird. Die Adresse weist auf eine Speicherzelle, in der die Start-
adresse des INTERRUPT-Bedienprogramms steht.

Das Register R (Speicherauffrischregister) enthilt eine 7-Bit-
Adresse, die in Verbindung mit dem Auffrischsignal RFSH auf
den niederwertigen 7 Bit des AdreBbus ausgesendet wird. Diese
Adresse wird wihrend der Operationscodeentschliisselung aus-
gesendet. Sie dient zum Auffrischen von dynamischen Spei-
chern. Wahrend jedes Operationscodeholzyklus erhoht sich der
Inhalt des Registers R um 1.

Die beiden Register IX und IY (Indexregister) konnen eine 16-

IF, F' sind Flagregister

112

w
2
D
& T
° wWo|w|—
o
[
C <m|c
£
QU
E
= =3
==
gl s
ofu cC @ s
sl 15
ooy =] :
=ZAd &[le .
0 -
0[O {4 o @ <§’
=] o i
< g <
r~t——t—————————- ——‘1|
1 | =
o [
i
Ee E -—
CERLY
COwLc=0 [oy
50X 5
Z9RE -
K68 NG le— |
2= 2 N
§ & .y -
|
I &
|
5 g 2
| < I35 D
1| 2 2 a
T J gL §
cl:r + T g g 2
u ! | & 2 3
| | s & 2
() . X ”
] T N g =<
> 5 = 5
T o =1 -
= < N g
~ (=) »—.o"; @
w0 - 2
—
1)
5 &
ﬂ §]
<t = <
|§ 3
a

Bit-Basisadresse enthalten. Wahrend der Adressenrechnung
wird aus dieser Basisadresse durch Addition einer AdreBzahldie
eigentliche Operandenadresse ermittelt.

Das Register SP (Stackpointer) enthilt eine 16-Bit-Adresse, die
die Speicherzelle an der Spitze eines Kellerspeichers adressiert.
Der Kellerspeicher ist als ,,last in—first out-Speicher* organisiert
(das zuletzt eingeschriebene Wort wird zuerst gelesen).

Das Register PC (Program-Counter oder Befehlszahler) enthalt
eine 16-Bit-Adresse, die angibt, aus welcher Speicherzelle der
laufende Befehl geholt wird.

113

— In dem Befehlsregister BR wird der Operationscode des laufen-
den Befehls gespeichert. Hier kommt es zur Decodierung des
Befehls und zur Bildung der Steuersignale fiir dessen Abarbei-
tung. Die Steuersignale bestehen aus den Befehls- und den Zeit-
signalen. Die Befehlssignale werden durch die Befehlsentschliis-
selung und die dazugehdrigen Zeitsignale durch die Zeitsteue-
rung gebildet. Die Zeitsteuerung besteht aus dem Zyklengene-
rator, der durch den externen Takt @ und die Befehlssignale ge-
steuert wird. Im Zyklengenerator werden auch die Signale zur
Steuerung der externen Bausteine gebildet sowie die von den ex-
ternen Bausteinen kommenden Signale abgetastet.

— Das Flagregister enthilt 6 Flip-Flop, die in Abhéngigkeit von
den einzelnen Befehlen und vom Ergebnis der Befehle.gesetzt
oder riickgesetzt werden. Die einzelnen Flags haben folgende
Bedeutung:

C: Carry-Flag

Cist gleich 1, wenn bei der Addition ein Ubertrag in die 8. Stelle
auftritt, oder wenn bei der Subtraktion ein Borgen von der
8.Stelle notwendig wird.

N: Subtraktions-Flag

N ist gleich 1, wenn die ausgefiihrte Operation eine Subtraktion
war.

P/V: Parity-Uberlauf-Flag (Uberlauf = Overlow)

P/V ist gleich 1, bei logischen Operationen, wenn die Anzahl der
Einsen im Ergebnis geradzahlig ist, bei Rechenoperationen,
wenn ein Uberlauf auftritt (Ergebnis groBer als die groBte dar-
stellbare Zahl).?

H: Half-Carry-Flag

H st gleich 1, wenn es bei der Addition zu einem Ubertrag in die
4. Stelle kommt oder wenn bei der Subtraktion ein Borgen von
der 4. Stelle notwendig wird.

Z: Zero-Flag

Zist gleich 1, wenn das Ergebnis 0 ist.

S: Sign-Flag

Sist gleich 1, wenn im Ergebnis das Vorzeichen 1 (negativ) ist.

% Der Prozessor U 880 arbeitet mit einem 8-Bit-Zahlwort im Zweierkomplement. Der
Stellenwert 2 entspricht dem Vorzeichen. Die gréBte positive Zahlist 2 — 1, die nega-
tive Zahl mit dem gréBten Betrag —27. Der vom Prozessor erfaBte Zahlenbereich um-
faBt—2"'=Z2=2"-1.

114

Beispiele

1 N Ubertrag in 4. Stelle
120= 0111 1000 ergibtl->H
+105= 0111 1001
225=0]1111 0001
7 N
0->C 1-P/V wegen Uberlauf
kein Ubertrag in 4. Stelle
ergibt 0—» H
-5= 1111 1011
-16 = 1111 0000
-21=1 1110 1011
'
1-C aber 0 —» P/V

4.1.2. Befehlsaufbau des Bausteins U 880

4.1.2.1. Befehlsstruktur

botan_ [_Op-Coce |
Befeh(| _Op-Code

Beton [_0p-Cove] [0op-Coce]

oder

I Op--Code I ﬁirektopemnd—l

3-Oxte-[op-Code | [op-Code | [pirektoperond

[Op.-Code] IiAdr‘esse] rAdresse]
fa_e?ggle_ r0p.-Code I l Op.—Code] I Adresse I ITdres?I

lOp‘-Codi] I Op.-CodeI {Direkfopemngl I Op.- Code |
1.Byte 2.Byte 3.Byte 4.Byte

Bild 4.3. Befehlsstrukturen im Prozessor U 880

115

Ein Befehl besteht aus Operationsteil und AdreBteil. Zur Darstel-
lung eines Befehls werden 1 bis 4 Byte benétigt. Davon kann der
Operationscode 1 bis 3 Byte ¥ und der AdreBteil ebenfalls 1 bis 2
Byte lang sein. Bei den meisten Befehlen ist der Operationscode 1
Byte lang. Bei 2 Byte langen Operationscodes gibt das 1. Byte die
Befehlsgruppe an. Durch das 2. Byte und 3. Byte werden spezielle
Befehle innerhalb der Gruppe gekennzeichnet. Bild 4.3 zeigt die
im Prozessor U 880 méglichen Befehlsstrukturen.

4.1.2.2. AdreBbildung

Direktoperand

Der zum Befehl gehérende Operand steht im AnschluB an den
Operationscode:

Zelle 1 Operationscode,

Zelle 2 NWT-Operand (niederwertiger Teil des Operanden),
Zelle 3 HWT-Operand (hoherwertiger Teil des Operanden).

Adressierter Operand

Im Befehl steht die Adresse der Speicherzelle, in der der Operand
steht:

Zelle 1 Operationscode,

Zelle 2NWT-ADR (niederwertiger Teil der Adresse),

Zelle 3 HWT-ADR (hoherwertiger Teil der Adresse).

Relative Adressierung

Im Befehl steht eine positive oder negative Zahl N.

Der Operand steht um N Zellen nach oder vor dem Befehl.
Zelle 1 Operationscode

Zelle 2 N (positive oder negative Zahl im Zweierkomplement),
Zelle 3 nichster Befehl;

ADR als Operanden = ADR Zelle 3 + N.

Indirekte Adressierung
Die Adresse ADR des Operanden steht in einem speziellen Regi-
ster:

) Bei einigen Befehlen mit Indexrechnung ist der Operationscode 3 Byte und der Adre8-
teil 1 Byte lang.

116

ADR = (Register)
Als Register treten die Registerpaare BC, DE, HL sowie die Regi-
ster SP, IXund IY auf.

Indexierung

Die Adresse ADR des Operanden ergibt sich aus der im Befehl an-
gegebenen Zahl N plus dem Inhalt eines Indexregisters.

Zelle 1 Operationscode

Zelle 2 N (positive oder negative Zahl im Zweierkomplement)
ADR = N + (Indexregister)

Registeroperand
Der Operand steht in einem im Befehl angegebenen Register.

4.1.3. Zeitverhalten

Ein Befehl wird in mehreren Maschinenzyklen abgearbeitet. Es
gibt Maschinenzyklen fiir folgende Funktionen:

— Operationscode holen,

— Speicher lesen oder schreiben.

— Ein-und Ausgabe,

— INTERRUPT,

— DMA-Funktion,

— Ausfiihrung einer HALT-Operation.

Ein Maschinenzyklus unterteilt sich in 3 bis 6 Zustinde (T-Zyk-
len). Ein T-Zyklus entspricht einer Periode des Grundtaktes .
Bild 4.4 zeigt ein Beispiel fiir den Aufbau eines Befehlszyklus (Ge-
samtzeitraum zur Abarbeitung eines Befehls).

T-Zyklus

T1.T2lT3‘T4 T1‘T2IT3 T1|T2lT3
Maschinen-Zykl
My t M2 M3
Holen des Opera- Speicher Speicher
tions -Codes lesen schreiben

Befehlszyklus
Bild 44 Aufbaueines Befehlszyklusim U 880

117

Abfrage WA

Y g SN
Ag...As | X_PC-[Speicheradr.] XBEER-AdL
VRED T
RD T
DB,-DB, {IN }
" /
WAT & — — |\ s e M
RFSH v —
T T2 0, Tw Tw e T T
M - Zyklus

Refresh=Lesen=RFSH-MREQ
Bild4.5 Operationscodeholzyklus im U 880

Operationscode-Holzyklus (Bild 4.5)

Am Anfang des Zyklus enthélt der Befehlszéhler die Adresse des
Operationscodes. Mit der Riickflanke von T; wird das Signal
MREQ aktiv, gleichzeitig das Signal RD. MREQ bedeutet eine
Anforderung zum Speicher; RD sagt aus, daB eine Lese-Opera-
tion ablaufen soll. Das Einlesen der Daten geschieht mit der Vor-
derflanke von @ wihrend Ts. In den Zyklen T; und T, wird eine
Auffrischadresse fiir dynamische Speicher an den AdreBbus ge-
legt. Die Auffrischadresse liegt an den Bitstellen Ag bis Ag, wih-
rend die tibrigen Bit 0 sind. Zu dem Zeitpunkt, in dem Auffrisch-
adresse am AdreBbus liegt, ist das Signal RFSH aktiv. Ist zum
Zeitpunkt der Riickflanke von @ im Zustand von T, das WAIT-
Signal aktiv, so wird nach T, ein Wartezustand eingeschoben. Die-
ses Einschieben von Wartezustinden wiederholt sich so lange, bis
das WAIT-Signal inaktiv wird.

Speicher-Lese- oder -Schreib-Zyklus (Bild 4.6)

Mit Beginn des Speicher-Lesezyklus (angesteuert durch die Vor-
derflanke von @ im Zustand von T;) wird die Speicheradresse auf
den AdreBbus gelegt. Mit der Riickflanke von @ (Zustand T;) ak-
tivieren sich die Signale MREQ und RD. Das Signal MREQ
kann zur Ansteuerung des betreffenden Speichers genommen
werden, wihrend RD den Speicher auf Lesen umschaltet. Zum
Zeitpunkt der Riickflanke von @ in T, tastet der Prozessor das

118

s j/—_/—_lr‘_J/—_F_}’“_JF—L
Ag... A X[MEM-ADR MEM-ADR X
MREQ — T T

i ! !

WR | J
Do...D7 —DATENauf DB }—
WAT —b— -4\l _d4__ 1 F‘\‘L | __
T T2 T T
Lesezyklus Schreibzyklus

Bild4.6 Speicher-, Lese- oder Schreibzyklus im U 880

WATT-Signal ab undfiigt nach T, bei aktivem WAIT-Signal einen
Wartezyklus Ty, ein. Wiahrend Ty,; bleiben die Adresse am
AdreBbus und die Daten am Datenbus erhalten. Bei der nichsten
Riickflanke von @ wird die Abfrage von WAIT wiederholt und
eventuell ein weiterer Wartezustand eingeschoben. Ist das WATT-
Signal nicht mehr aktiv, dann folgt der Zustand T;. Wihrend des
Taktes @ im Zustand T3 werden die Daten vom Datenbus in den
Prozessor iibernommen, mit der Riickflanke von @ in T; werden
die Signale MREQ und RD wieder abgeschaltet.

Beim Speicher-Schreib-Zyklus wird die Adresse genau wie zum
Speicher-Lese-Zyklus mit der Vorderflanke von @ in T, auf den
AdreBbus gelegt. Mit der Riickflanke von @ in T, werden die Da-
ten an den Datenbus gelegt. Mit der Riickflanke von @ in T,
wird das Signal WR aktiv und gleichzeitig das WATT-Signal ab-
gefragt. WR kann zum Umschalten des Speichers auf Schreiben
benutzt werden. Wihrend das Ubernehmen der Daten in den Spei-
cher mit @ in T; erfolgen kann, wird mit der Riickflanke von @ in
T; MREQ und RD wieder abgeschaltet.

Ein- und Ausgabe-Zyklus (Bild 4.7)

Beim Ein- und Ausgabe-Zyklus wird nach T, automatisch ein War-
tezyklus eingefiigt, um dem Ein- und Ausgabebaustein zu ermogli-
chen, eine AdreBentschliisselung durchzufithren und im Notfall
das WAIT-Signal zu setzen. Der Ablauf des Zyklus dhnelt dem des
Speicher-Lese- oder -Schreib-Zyklus. Zum Zeitpunkt der Vorder-
flanke von @ in T, wird das Signal IORQ aktiv. Gleichzeitig ak-
tiviert sich entweder RD oder WR, je nachdem, ob es sich um

119

[J—_}’-_lf“_‘/__m_
Ag...A; X TT0-Tor-Adresse
10RQ
RD
/ ;
DB ==y }Elngcxbe
Zeitpunkt,wo WAIT
WﬂR . wirksam ist
W .
/] }Ausgube
BB] ouT —
T T Tw T

bei 1/0-Operationen wird automatisch ein Wartezyklus eingeschoben
Bild4.7 Ein- und Ausgabezyklusim U 880

eine Eingabe oder um eine Ausgabe handelt. Bei der Ausgabe er-
scheinen die Daten auf dem Datenbus bereits wihrend T, so da3
zum Zeitpunkt @ in T; die Daten abgenommen werden kénnen.

INTERRUPT-Zyklus

Bild 4.8 zeigt das Zeitdiagramm fiir den maskierten INTERRUPT-
Zyklus. Das Signal INT wird im letzten Zustand eines Befehls ab-
getastet. Ist es aktiv, dann beginnt mit T; ein INTERRUPT-Zy-
klus. Mit der Vorderflanke von @ in T; gelangt die Adresse aus
dem Befehlszéihler an den AdreBbus. Gleichzeitig wird M, einge-
schaltet. In jedem INTERRUPT-Zyklus werden automatisch 2

/2 VY U W o W WS o W W
NT- o

>

015

A
™ /_‘_

MREQ —
TORG \ -
Eingabe

08 N N Vektor
WAT —— — — — —— i)

RD !

letzterMaschinen{ T, T, Tw Tw T3
zyklus

Bild 4.8 Zyklus fiir den maskierten INTERRUPT

120

WAIT-Zustdnde eingeschoben, damit die INTERRUPT-Logik
geniigend Zeit zur Entschliisselung der Adresse und zur Bereitstel-
lung des INTERRUPT-Vektors hat. Mit der Riickflanke von @im
ersten Wartezustand wird zusitzlich das Signal TORQ aktiv. Das
gleichzeitige Vorhandensein von TORQ und M; besagt, daB der
INTERRUPT angenommen worden ist. Nach der Riickflanke von
@ des letzten Wartezustands wird vom Prozessor der Datenbus ab-
getastet und als INTERRUPT-Vektor iibernommen.

Wihrend T; und T, kommt es wie beim Zyklus M, zur Ausgabe ei-
ner Auffrischadresse mit den dazugehérigen Signalen MREQ und
RFSH. .

In Abhingigkeit vom INTERRUPT-MODE (0, 1, 2) wird der IN-
TERRUPT- Vektor unterschiedlich interpretiert.

Maskierter INTERRUPT

MODE 0 Der INTERRUPT-Vektor wird als Befehlscode inter-
pretiert.

MODE 1 Der INTERRUPT-Vektor bleibt unberiicksichtigt. Es
wird der Befehl CALL 38H gebildet und ausgefiihrt.

MODE 2 Der INTERRUPT-Vektor wird in Verbindung mit dem
I-Register als Adresse interpretiert, die angibt, in wel-
cher Zelle sich die Ansprungadresse des Bedienungs-
programms befindet. Es wird der Befehl CALL (I-Regi-
ster, INTERRUPT-Vektor) ausgefiihrt.

Nichtmaskierter INTERRUPT
Es wird der Befehl CALL 66H gebildet und ausgefiihrt (Taktdia-
gramm Bild 4.9)

| [WS W
W - 77—~ r

Ag..Ag X PC REFRESH X

V1 \

RD \
RFSH

letzter Maschinen Ty L, |' T T, T
Zyklus -

Bild 4.9 Taktdiagramm fiir den nichtmaskierten INTERRUPT beim U 880

121

ﬁ_m_mh_ﬁ_mm
AC \ /
o ===~~~ ===~
oder
erlaubter Ty T, T3 T,
INT
M, M,y My
Leerbefehl

Bild 4.10 Haltezyklus im U 880

Haltezyklus (Bild 4.10)

Nach der Entschliisselung eines HALT-Befehls fiihrt der Prozes-
sor Leerbefehle (NOP) aus, und zwar so lange, bis ein INTER-
RUPT erscheint (entweder ein nichtmaskierter oder ein maskier-
ter INTERRUPT, wenn dieser erlaubt ist). Die INTERRUPT-
Einginge werden mit der Vorderflanke von @ in T, abgetastet. Ist
zu diesem Zeitpunkt ein INTERRUPT-Eingang aktiv, dann setzt
sich mit dem néchsten Takt die Befehlsabarbeitung fort. Es wird
ein Sprung an die Stelle ausgefiihrt, die der entsprechenden IN-
TERRUPT-Behandlung entspricht.

DMA-Zyklus (Bild 4.11)
Mit der Vorderflanke von @ jedes letzten Taktes eines Maschinen-
zyklus wird das Signal BUSRQ abgetastet. Ist es zu diesem Zeit-

Abtastung BUSREQ Abtastung BUSRQ
B e W e e
sosed —] —
HUS N
Ao.. Ay) —
Do--.Dy ;
VRED L —
RO,WR
TORQ
RFSH hochohmig
Maschinenzyklus BUS - Frei T
=

Bild 4.11 DMA-Zyklus im U 880

122

punkt aktiv, so werden mit Beginn das ndchsten T, der AdreBbus,
der Datenbus und die Steuersignale MREQ, RD, WR, IORQ und
RFSH in den hochohmigen Zustand gesetzt. Gleichzeitig aktiviert
sich das Signal BUSAK, als Zeichen dafiir, daB der hochohmige
Zustand erreicht ist. Nun wird in jedem Zustand mit der Vorder-
flanke von @das Signal BUSRQ abgetastet. Ist es nicht mehr ak-
tiv, so wird im nédchsten Takt der hochohmige Zustand beendet,
und es beginnt ein neuer Maschinenzyklus. Wihrend BUSAK
aktiv ist, kann kein INTERRUPT auftreten. Der REFRESH ist
unterbrochen.

4.14. Befehlsabarbeitung

Wihrend der Abarbeitung eines Befehls werden folgende Arbeits-
génge durchlaufen:

— Befehl holen

— Befehl entschliisseln

— Operand holen

— Befehl ausfiihren.

Die einzelnen Arbeitsginge werden in Maschinenzyklen ausge-
fiihrt. Die Art des Maschinenzyklus wird durch die Befehlssignale,
die aus der Befehlsentschliisselung hervorgehen oder von auen
als Signale des Steuerbus an den Prozessor gelangen, gebildet. In
jedem Maschinenzyklus entstehen durch Hinzufiigen von Zeit-
signalen zu den Befehlssignalen interne Steuersignale, die die Ab-
arbeitung in Form von Registertransporten steuern.

STS = BSI . ZSI

Steuersignal Befehlssignal Zeitsignal
Gleichzeitig werden zur Steuerung des Datentransfers mit den an-
geschlossenen Bausteinen duBere Steuersignale gebildet (RD,
WR, IORQ, MREQ, M,, HALT, BUSAK). Die Abarbeitung
eines Befehls setzt sich aus mehreren Maschinenzyklen zusammen.
Die Folge dieser Maschinenzyklen ist eine Kombination der in Ab-
schnitt 3.3 genannten Arten der Maschinenzyklen.

123

4.1.5. Befehlsliste des Prozessors U 880

4.1.5.1. Verwendete Abkiirzungenbeider Befehlsbeschreibung

r — 8-Bit-Register des Registersatzes, A, B, S, D, E, H, L;

s — 8-Bit-Quellregister oder ein Speicherplatz oder eine
8-Bit-Zahl n

d — 8-Bit-Bestimmungsregister oder Speicherplatz

n - 8-Bit-Zahl

nn - 16-Bit-zahl

dd - 16-Bit-Bestimmungsregister

ss
Sp

16-Bit-Quellregister

Bit in einem speziellen 8-Bit-Register, b ist die Bit-Nr.

(Bild 4.12)

Index L — der niederwertige Teileines 16-Bit-Registers;

Index H — der hoherwertige Teil eines 16-Bit-Registers.

— Stehtein Registername allein, z. B. A, so heifltdas:

Inhalt von Register A.

— Steht (HL); so bedeutet das:

Inhalt der Speicherzelle, deren Adresse in HL steht.

— Steht (nn); mso heiBt das:

Inhalt der Speicherzelle, deren Adresse nn ist.

Bedeutung der Symbole fiir die Flagstellung (Bedeutung des

Merkbits):

{ Das Flag wird in Abhingigkeit vom Ergebnis der Operation
beeinfluBt.
Das Flag bleibt unbeeinfluf3t.

0 Das Flag wird durch die Operation riickgesetzt.
Das Flag wird durch die Operation gesetzt.

v Das Flag wird in Abhéngigkeit vom Uberlauf des Ergebnisses
beeinfluBt.

P Das Flag wird in Abhéngigkeit von der Paritdt des Ergeb-
nisses beeinfluft.

X Das Flag ist beliebig.

[eir7]eiTe]BiT s]airs [BiT 3]BIT2[BIT1]8BITO]

Bild 4.12 Bit-Numerierung innerhalb eines Bytes

124

4.1.5.2. Transportbefehle

Einzelworttransfer
LDr,s s—r CSZPVHN

Der Inhalt des Registers s oder eine Zahl n wird in ein Register r ge-
bracht.

rkannsein: - Register A, B, C, D, E, H, L.

skannsein: — Direktoperand n (8-Bit-Zahl);

— (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;

- (IX + d), (IY + d), d. h. eine Speicherzelle,
deren Adresse durch Indexrechnung ermittelt
wird;

— Register A, B, C, D, E, H, L.

Beispiel

LDC, (IX + 19H)

Der Inhalt von IX sei 25AFH. Durch den obigen Befehl wird der
Inhalt der Zelle 25AFH + 19H = 25C8H nach Register C ge-
bracht.

LDd,s s—d CSZPVHN

Der Inhalt des Registers s oder eine Zahl n wird nach der Zelle d

gebracht.

skannsein: — Register A, B, C, D, E, H, L oder eine Zahl n;

dkannsein: — (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;

- (IX + d), (IY + d),-d.h. eine Speicherzelle,
deren Adresse durch Indexrechnung ermittelt
wird;

— Register A, B, C, D, E, H, L.

Beispiel

LD (HL), 28H

Der Inhalt von HL sei 25A5H. Durch obigen Befehl wird die Zahl
28H nach der Zelle 25A5H gebracht.

LDA,s s> A CSZPVHN
i iIFFOO beis =I,R
. O beisnicht I,R

125

Der Inhalt einer Zelle s wird nach Register A gebracht.
skannsein: — (BC), (DE), d h. eine Speicherzelle, deren
Adresse in BC oder DE steht;
- (nn), d. h. eine Speicherzelle, deren Adresse nnist;
— Register I oder R.
Beispiel
LD A, (DE)
Der Inhalt von DE sei 8A25H. Durch obigen Befehl wird der In-
halt von Zelle 8A25H nach Register A gebracht.

LDd,A A—d CSZPVHN

Der Inhalt des Registers A wird nach der Zelle d gebracht.
dkannsein: — (BC), (DE),d. h. eine Speicherzelle, deren
Adressein BC oder DE steht;
— (nn), d. h. eine Speicherzelle, deren Adresse nnist,
— Register I oder R.

Beispiel

LD (25H),A

Der Inhalt des Registers A wird nach der Zelle 25 H gebracht.
Doppelworttransfer

LDdd,nmn nn — dd CSZPVHN

Der Direktoperand nn wird in das Doppelreglster dd gebracht.
dd kann sein: BC, DE, HL, SP, IX, I'Y.

Beispiel

LD HL, 28DEH

Die Zahl 28DEH wird nach Register HL gebracht.
LDdd,(nn) (nn) — dd CSZPVHN

Der Inhalt von Zelle nn und nn + 1 wird in das Doppelreglster dd
gebracht.
dd kann sein: BC, DE, HL, SP, IX, IY.

Beispiel

LD IX, (8AH)

Der Inhalt von Zelle 8AH und 8BH wird in das Indexregister IX
gebracht.

126

LD (nn),ss ss— (nn) CSZPVHN

Der Inhalt des Doppelregisters ss wird in d1e Spelcherzelle nn und
nn + 1 gebracht.
sskannsein: BC, DE, HL, SP, IX, IY.

Beispiel

LD (20H), SP

Der Inhalt des SP wird nach Zelle 20H gebracht.
LSSP,ss ss — SP CSZPVHN

Der Inhalt des Doppelregisters ss w1rd in den Stackpomter SP ge-
bracht.
sskannsein: HL, IX, IY.

Beispiel

LD, SP, IX

Der Inhalt des Indexregisters IX wird in den Stackpointer SP ge-
bracht.

PUSH ss ssy, ss, — (SP-1), (SP-2) CSZPVHN
SP-2 — SP
Der Inhalt des Doppelregisters ss wird in den Kellerspeicher ge-
bracht. Der hoherwertige Teil ssy kommt in die Zelle SP-1. Der
niederwertige Teil in die Zelle SP-2. Nach Ausfiihrung des Befehls
ist der Inhalt des Stackpointers SP um 2 erniedrigt.

Kellerspeicher Kellerspeicher
vor Ausfiithrung nach Ausfiihrung
von PUSH ss von PUSH ss
Adresse in SP—*1 ss
SSy
Adresse in SP

ss kan sein: BC, DE, HL, AF, IX, IY.

127

Beispiel

Der Inhalt von SP ist 201H

1FD
1FE
1FF
200
SP—= 201

POP ss

Kellerspeicher Kellerspeicher
vor PUSH HL nach PUSH HL
1FD
1FE
SP-=1FF [Inhalt von L
200 |Inhalt von H
201
(SP + 1), (SP) — ddy, ddp CSZPVHN
SP + 2— SP

Aus dem Kellerspeicher werden 2 Byte in das Doppelreglster dd
gebracht. Das Byte aus Zelle SP kommt in den niederwertigen Teil
von dd, das Byte aus Zelle SP + 1 in den hoherwertigen Teil von
dd. Nach Ausfiihrung des Befehls ist der Inhalt des Stackpointers

SP um 2 erhoht.
Kellerspeicher
vor Ausfiihrung
von POP ss

Adresse__]

in SP

Kellerspeicher
nach Ausfiihrung
von POP ss
Adresse
korr(\,r:;tL nach in SP
kommt nach
ddy

ss kann sein: BC, DE, HL, AF, IX, IY.

128

Beispiel

POPHL
Der Inhalt von SP sei 200H
Kellerspeicher Kellerspeicher
vor POPHL nach POP HL
1FE
kommt nach 4pf
Register L Inhalt
S kommt nach 200 \i/:'nz%g
201 < Register H 201 ’
202 202 <—-—,
203 203

Doppelworttransfer-Umtauschbefehle
EX,DE,HL DE < HL CSZPVHN

Der Inhalt des Registerpaares DE wird mit dem Inhalt des Regl-
sterpaares HL vertauscht.

EX,AF,AF', AF & A'F CSZPVHN

Die Inhalte der Register A und F werden mit den Inhalten der Re-

gister A’ und F' vertauscht, und zwar A mit A’ und F mit F’.

EXX BC <« B'C CSZPVHN
DE < D'E’ O —
HL & H'L’

Es werden die Inhalte der Register B mit B’, Cmit C', DmitD’, E
mit E’, H mit H' und L mit L’ vertauscht.

EX (SP),ss ssy,ssp«<>(SP+1),(SP) CSZP/VHN

Der Irhalt des Doppelregisters ss wird mit dem Inhalt von 2 Zellen
des Kellerspeichers vertauscht. Es wird dabei der niederwertige
Teil ssp des Doppelregisters mit dem Inhalt der Zelle, deren
Adresse in SP steht, und der hdherwertige Teil ssy mit der nachsten
Zelie (Adresse SP + 1) vertauscht. Am Ende steht in SP der glei-
che Wert wie vorher.

ss kann sein: HL, IX, IY.

129

Blocktransfer

LDIR (HL) — (DE) CSZPVHN
HL+1 —» HL DE +1-»DE - - -0 00

BC -1—BC

Ende

Es wird der Inhalt eines Speicherbereiches, dessen Anfangsadresse
in HL und dessen Blockldnge (Anzahl der Zellen des Speicherbe-
reiches) in BC steht, in einem Speicherbereich mit der Anfangs-
adresse, die in DE steht, gespeichert.

Beispiel

Der Inhalt von HL sei 200, der von DE 600 und der von BC 8.
Durch LDIR wird der Inhalt der Zellen 200 bis 207 in den Zellen
600 bis 607 gespeichert.

200
201
202
203
204
205
206
207

600
601
602
603
604
605
606
607

130

LDI (HL) — (DE) CSZPVHN
HL + 1> HL DE + 1- DE -3 00
BC -1- BC

Dieser Befehl dient zur Umspeicherung eines Speicherbereiches,
dessen Anfangsadresse in HL und dessen Blockldnge in BC steht,
in einen Speicherbereich, dessen Anfangsadresse in DE steht.
Durch eine einmalige Abarbeitung des Befehls wird der Inhalt der
Zelle, deren Adresse in HL steht, in die Speicherzelle gebracht,
deren Adresse in DE steht. AnschlieBend werden die Adressen in
HL und DE um 1 erhéht und der Inhalt von BC um 1 erniedrigt. Ist
BC — 1 = 0, so wird das Flag P/V = 0, sonst wird P/V = 1 gesetzt.
Durch mehrmaliges Anwenden dieses Befehls 148t sich der Inhalt
eines Speicherbereiches in einen anderen Speicherbereich umspei-
chern. Dabei kann entweder bei BC = 0 oder bei einer anderen Be-
dingung abgebrochen werden.

Beispiel

Der Inhalt von HL sei 300, der von DE 500 und der von BCssei 12.
Beider 1. Befehlsabarbeitung vonLDI kommtder Inhalt von Zelle
300 nach Zelle 500. Bei der 2. Abarbeitung von LDI wird der Inhalt
von Zelle 301 nach Zelle 501 gebracht usw. Nach 12 Durchldufen
(Inhalt von BC) ist der Inhalt von BC = 0, was als Endbedingung
genommen werden kann.

LDDR CSZPVHN
{HU) —= {0E) ... 0 00
HL - 1—HL DE -1-=DE

BC -1—=BC

Ende

Es wird der Inhalt eines Speichers, dessen Endadresse in HL und
dessen Blockldnge in BC steht, in einen Speicherbereich, dessen
Endadresse in DE steht, gebracht.

131

Beispiel

Der Inhalt von HL sei 200H, der von DE 600H und der von BC 8H.
DurchLDDR gelangtder Inhaltder Zellen 1F9-200H in die Zellen
SF9-600H.

LDD (HL) — (DE) CSZPVHN
HL -1 — HL, DE-1- DE .- 3 00
BC-1 — BC

Dieser Befehl dient zur Umspeicherung eines Speicherbereiches,
dessen Endadresse in HL und dessen Blocklénge in BCsteht, in ei-
nen Speicherbereich, dessen Endadresse in DE steht.

Durch eine einmalige Abarbeitung des Befehls wird der Inhalt der
Zelle, deren Adresse in HL steht, in die Speicherzelle gebracht,
deren Adresse in DE steht. AnschlieBend werden die Adressen in
HL und DE um 1 erniedrigt und der Inhalt von BC um 1 erniedrigt.
Ist BC — 1 = 0, so wird das Flag P/V = 0, sonst wird P/V = 1 ge-
setzt. Durch mehrmaliges Anwenden dieses Befehls 148t sich der
Inhalt eines Speicherbereiches in einen anderen Speicherbereich
umspeichern. Dabei kann entweder bei BC = 0 oder bei einer an-
derenBedingung abgebrochen werden.

4.1.5.3. Rechen- undlogische Operationen mit einem Operand

Akkumulator- und C-Bit-Befehle
CPL A A CSZPVHN
Der Inhalt des Registers A wird bitweise negiert.

Beispiel

Der Inhalt von Register A sei 11001110.

Nach Ausfiihrung des Befehls CPL ist der Inhalt des Registers A
00110001.

NEG A+1-5Aoder0— A— A CSZPVHN
1ty vii

Vom Inhalt des Registers A wird das Zweierkomplement gebildet.

Beispiel

Der Inhalt von Register A sei 11001110.

Nach Ausfiihrung des Befehls NEG ist der Inhalt des Registers A
00110010.

132

CCF C-C CSZPVHN
- - 10

Der Inhalt des C-Bits wird negiert.

Im H-Bit wird der vorherige Wert des C-Bit gespeichert.

SCF 1-C CSZPVHN
1-- - 00

Der Inhalt des C-Bits wird 1 gesetzt.

DAA CSZPVHN
ORONONES SO

Der Befehl DAA dient im Zusammenhang mit der Addition und
der Subtraktion von Dualzahlen zur Berechnung von Summen
oder Differenzen zweier im BCD-Code dargestellten Zahlen.

Beispiel

Im Register A stehe die Zahl 28 im BCD-Code, d. h., der Inhalt
von Register 00101000. Im Register B stehe die Zahl 17 im BCD-
Code, d. h., B =00010111. Nach der dualen Addition der Inhalte
von Register A und B steht im Register A 00111111.

Das ist jedoch nicht die BCD-Code-Darstellung von 28 + 17 = 45.
Der Befehl DAA verdndert A = 00111111 in den Wert A =
01000101 (= 45 in BCD-Darstellung).

Einzelwortbefehle
INC d d+1->d CSZPVHN
37 P tO
Der Inhalt der Zelle oder des Registers d wird um 1 erhoht.
dkannsein: — Register A,B,C, D, E, H,L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX + d), {IY + d), d. h. Inhalt einer Speicher-
zelle, deren Adresse durch Indexrechnung ermit-
telt wird.

Beispiel

Der Inhalt vom Indexregister I'Y sei 1ASH.

Durch den Befehl INC (IY + 17H) wird der Inhalt von Zelle
1A5H + 17H = 1BCH um 1 erhoht.

133

DECd d-1->d CSZPVHN
SRRSO
Der Inhalt der Zelle oder des Registers d wird um 1 erniedrigt,
dkann sein: — Register A, B,C,D, E, H,L;
— (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d), (IY +d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

Beispiel

Der Inhalt des Doppelregisters HL sei 800.

Durch den Befehl DEC (HL) wird der Inhalt der Zeile 800 um 1
erniedrigt.

Verschiebebefehle
RLC s
RLCA? [— | CSZPVHN
7+—0 RLCs 111 P 00
RLCA 1--- 00

Der Inhalt des Registers oder der Zelle s wird um eine Stelle nach
links verschoben. Das aus Bit 7 (Zahlung von rechts nach links)
heraustretende Bit wird in das C-Bit und Bit 0 eingetragen.
skann sein:— Register A, B, C,D, E, H,L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d), (IY + d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RLs CSZPVHN
RLA" P RLs 333 P 00
RLA f-- - 00

Der Inhalt des Registers s oder der Zelle s wird zusammen mit dem
C-Bit um eine Stelle nach links verschoben. Das aus Bit 7 kom-
mende Bit wird in das C-Bit und das C-Bit in Bit 0 eingetragen.

S)RLCA fiihrt dieselbe Funktion wie RLC A aus, ist jedoch ein 1-Byte-Befehl.
®RLA und RRCA fiihren dieselbe Verschiebung wie RL A und RRC A aus, sind aber
1-Byte-Befehle.

134

s kann sein:— Register A, B, C,D,E, H, L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d),(IY +d), d h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RRCs H CSZPVHN
RRCA" 7—=0 RRCs 3T P 00O
RRCA - - 00
Der Inhalt des Registers s oder der Zelle s wird um eine Stelle nach
rechts verschoben. Das aus Bit 0 heraustretende Bit wird in das C-
Bit und in Bit 7 eingetragen.
s kann sein:— Register A, B, C, D, E, H, L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+ D), (IY + d), d. h. ein Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RRs CSZP/VHN
RRA” 70 RRs J 1P 00
RRA }-- - 00

Der Inhalt des Registers s oder der Zelle s wird zu-

sammen mit dem C-Bit um eine Stelle nach rechts ver-

schoben. Bit 0 kommt ins C-Bit und das C-Bit nach

Bit7.

s kann sein:i— Register A,B,C,D,E,H, L;

— (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;

- (IX+d),{IY +d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

SLAs 7e—0 CSZPVHN
1ttP 00

Dieser Befehl bewirkt eine arithmetische Linksverschiebung des

Registers oder der Speicherzelle s. Das aus Bit 7 heraustretende

Bit wird in das Register C-Bit eingetragen.

In Bit 0 wird eine 0 eingetragen. Der Befehl entspricht der Multi-

plikation des Registerinhalts mit 2.

RRA fiihrt dieselbe Verschiebung wie RR A aus, ist aber ein 1-Byte-Befehl.

135

s kann sein: — Register A, B, C, D, E,H,L;
— (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d), (IY +d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

SRAs 6—=0 CSZPVHN
H 11LtP 00

Dieser Befehl bewirkt eine arithmetische Rechtsverschiebung des
Registers oder der Speicherzelle s. Bit 7 bleibt erhalten. In Bit 6
wird Bit 7 eingetragen, Bit 0 kommt ins C-Bit.
s kann sein: — Register A, B, C,D,E,H,L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d),(IY +d), d h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

SRLs ¢ 7—e0 CSZPVHN
f{tip 00

Dieser Befehl bewirkt eine Rechtsverschiebung des

Registers oder der Zelle s. Dabei wird in Stelle 7 eine

0 und in das C-Bit Bit 0 eingetragen.

skann sein: — Register A,B,C,D,E,H,L;

- (HL), d. h. eine Speicherzelle, deren Acresse in
HL steht;

- (IX+d), (IY + d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RLD CSZPVHN
11P 00
7.+ [ﬁoH 7]._QU]J
;'—l L
A (HL)

Dieser Befehl bewirkt ein Linksverschiebung um eine Tetrade (4

Bit) des Registers A und einer Speicherzelle, deren Adresse in HL

steht.

Dabei werden eingetragen:

— die niederwertige Tetrade von A in die niederwertige Tetrade
der Speicherzelle

136

— die niederwertige Tetrade der Speicherzelle in die hoherwertige
Tetrade der Speicherzelle und

— die hoherwertige Tetrade der Speicherzelle in die niederwertige
Tetrade des Registers A.

RRD CSZP/VHN
ttTP 00
[7....4] Lﬁ....ﬂ-—[l...a]-—Ls....o]-—'
A (HL)
H‘

Dieser Befehl bewirkt eine Rechtsverschicbung um eine Tetrade

(4 Bit) des Registers A und einer Speicherzelle, deren Adresse in

HL steht.

Dabei werden eingetragen:

— die niederwertige Tetrade von A in die hoherwertige Tetrade
der Speicherzelle,

— die hoherwertige Tetrade der Speicherzelle in die niederwertige
Tetrade der Speicherzelle und die

— niederwertige Tetrade der Speicherzelle in die niederwertige Te-
trade des Registers A.

Beispiel (zu den Verschiebebefehlen)
Im Register D stche dic Bit-Folge 01110011 und im C-Bit eine 1.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

(] ol TaToJorTn]

C-Bit Register D
Befehl: Information im D-Register und C-Bit nach dem
Befehl

RLC D T 11100110

RL D 0| 11100111

RRC D] [F0111001

RR D] [0111001

SLA D 0] 11100110

SRA D Z 00111001

SRL D L 00111001

C-Bit Register D
137

Bit-Befehle
Bitb,s s, > Z CSZPVHN
Xy X10
Das Bit b des Registers oder der Speicherzelle s wird in negierter
Formin das Z-Flag gebracht, b ist eine Zahl zwischen 0 und 7.
s kann sein: — Register A,B,C,D,E,H,L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d), (IY + d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.
Bit-Zéhlung

[it 7 [sit 6 Jgit 5 [sit < |ait 3 |ait 2 [git 1 git o]

Beispiel

Bit3, (HL)

Bit 3 der Speicherzelle, deren Adresse in HL steht, wird in negier-
ter Form in das Z-Flag gebracht.

— In HL steht die Adresse 80H.

— Inder Zelle 80H steht 11101110.

— Durch Bit 3, (HL) wird eine 0 in das Z-Flag gebracht.

SETb,s 1, CSZPVHN

Das Bit b des Registers oder der Speicherzelle s wird 1 gesetzt b ist
eine Zahl zwischen O und 7.
skann sein: — Register A, B,C,D,E,H,L;
— (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d), (IY + d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

RESb,s 0— s, CSZPVHN

Das Bit b des Registers oder der Spelcherzelle swird 0 gesetzt
skannsein: — Register A, B, C, D, E, H, L;
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX+d),(IY +d), d. h. eine Speicherzelle, deren
Adresse durch Indexrechnung ermittelt wird.

138

Doppelwortbefehle
INCdd dd+1— dd CSZPVHN

Der Inhalt des Doppelregisters dd wird um 1 c,rhoht
ddkannsein: BC, DE, HL, SP, IX, I'Y

DECdd dd - 1—dd CSZPVHN

Der Inhalt des Doppelregisters dd wird um 1 ermedrlgt
dd kann sein: BC, DE, HL, SP, IX, IY.

4.1.5.4. Rechen-undlogische Operationenmitzwei Operanden

1-Wort-Befehle
ADDs A+s— A CSZPVHN
1ttt viyo
Der Inhalt des Akkumulators und der Inhalt des Registers oder der
Zelle s werden adddiert, und das Ergebnis wird ins Register A ge-
bracht.
s kann sein: — Direktoperand n (8-Bit-Zahl);
- (HL), d. h. eine Speicherzelle, deren Adresse in
HL steht;
- (IX +d), (IY + d), d. h. eine durch Indexierung
ermittelte Speicherzelle;
— Register A,B,C,D,E, H, L.

ADCs A+s+C-o A CSZPVHN
11t voy

Der Inhalt des Registers A und der Inhalt des Registers oder der

Zelle s werden addiert. Zu diesem Ergebnis wird das C-Bit in die

niedrigste Stelle addiert. Das Gesamtergebnis kommt in das Regi-

ster A.

s kannsein: siehe 1-Wort-Befehl ADD s.

SUBs A-s— A CSZPVHN
118V g1

Der Inhalt der Zelle oder des Registers s wird vom Register A sub-

trahiert. Das Ergebnis kommt in das Register A.

s kannsein: ‘siche 1-Wort-Befehl ADD's.

SBCs A-s—-C— A CSZPVHN
1tr v i

139

Der Inhalt des Registers oder der Zelle s wird vom Inhalt des A-
Registers subtrahiert. Von der niedrigsten Stelle des Ergebnisses
wird das C-Bitsubtrahiert. Dasletzte Ergebnis kommt in das Regi-
ster A.

s kann sein: siche 1-Wort-Befehl ADD s.

ANDs AAs— A CSZPVHN
oytP 11

Der Inhalt des Registers A und der Inhalt des Registers oder der

Zelle s werden bitweise durch ein logisches UND verkniipft. Das

Ergebnis kommt in das Register A.

skann sein: siehe 1-Wort-Befehl ADD s.

ORs Avs—> A CSZPVHN
oytP 11

Der Inhalt des Registers A und der Inhalt des Registers oder der

Zelle s werden bitweise durch ein logisches ODER verkniipft. Das

Ergebnis kommt in das Register A.

skannsein: siche 1-Wort-Befehl ADD s.

XORs A®@s— A CSZPVHN
oytP 10

Der Inhalt des Registers A und der Inhalt des Registers oder der

Zelle s werden bitweise durch ein logisches EXKLUSIV-ODER

verkniipft. Das Ergebnis kommt in das Register A.

skannsein: siehe 1-Wort-Befehl ADD s.

CPs CSZPVHN
11t v 11

Der Inhalt des Registers A wird mit dem Inhalt des Registers oder

der Zelle s verglichen. Der Vergleich erfolgt durch die Bildung der

Differenz A — s. Bei Gleichheit wird das Z-Bit gesetzt, bei Un-

gleichheit riickgesetzt.

s kann sein: siehe 1-Wort-Befehl ADD s.

Doppelwortbefehle

ADDHL,ss HL + ss —» HL CSZPVHN
- - 10

Der Inhalt des Doppelregisters HL wird mit dem Inhalt des Dop-

pelregisters ss addiert. Das Ergebnis kommt nach HL. Bit H wird

mit dem Ubertrag aus Bit 11 gesetzt.

ss kann sein: BC, DE, HL, SP.

140

ADCHL,ss HL +ss + C— HL CSZPVHN
it vi79o

Der Inhalt des Doppelregisters HL wird mit dem Inhalt des Dop-

pelregisters ss addiert. Zum Ergebnis wird das C-Bit in die niedrig-

ste Stelle addiert. Das letzte Ergebnis kommt nach HL. Bit H wird

mit dem Ubertrag aus Bit 11 gesetzt.

ss kann sein: BC, DE, HL, SP.

SBCHL,ss HL — ss — C—> HL CSZPVHN
gt v i1

Der Inhalt des Doppelregisters ss wird vom Doppelregister HL

subtrahiert. AnschlieBend wird davon das C-Bit in der letzten

Stelle subtrahiert. Das Ergebnis kommt nach HL, Bit H wird vom

Ubertrag von Bit 12 gesetzt.

ss kann sein: BC, DE, HL, SP.

ADDIX,ss IX + ss— IX CSZPVHN
10

Der Inhalt des Doppelregisters ss wird zum Inhalt des Indexregi-

sters IX addiert. Das Ergebnis kommt nach IX. Bit H wird mit dem

Ubertrag aus Bit 11 gesetzt.

ss kann sein: BC, DE, IX, SP.

ADDIY,ss IY + ss—> 1Y CSZPVHN
? - - 10

Der Inhalt des Doppelregisters ss wird zum Inhalt des Indexregi-

sters I'Y addiert. Das Ergebnis kommt nach I'Y. Bit H wird mit dem

Ubertrag aus Bit 11 gesetzt.

ss kann sein: BC, DE, 1Y, SP.

141

4.1.5.5. Rechen- und logische Operationen mit mehreren Ope-

randen
CPIR Vergleich : r:it(H(SL)7 o CSZPVYHN
l nein : ¢ ¢ ¢ ¢ 1
HL « 1 —eHL

Der Inhalt eines Speicherbereiches, dessen Anfangsadresse in HL
und dessen Linge in BC steht, wird nach einer Information im Re-
gister A durchsucht. Befindet sich die Information in einer Zelle
des Speicherbereiches, so ist der Befehl an dieser Stelle beendet.
Befindet sich die Information nicht in dem gesuchten Speicherbe-
reich, so wird der Befehl nach der letzten Zelle des Bereiches been-
det. Wird die Information im Speicherbereich gefunden, so wird
trotzdem HL um 1 erh6ht und BC um 1 erniedrigt. Im Flagregister
steht das Ergebnis der letzten Vergleichsoperation. Das Bit P/V ist
1, wenn BC — 1 = 0, sonst 0.

Beispiel

Die Zellen 200 H bis 205 H sollen nach der Bit-Folge 00000111
durchsucht werden.

Inden Zellen 200 H bis 205 H stehen:

200H 11111111

201 H 00000000

202H 01000000

203H 00000111

204H 00000000

205H 10000001

Dazu bringt man die Bit-Folge 00000111 in das Register A, die
Adresse 200 H ins Registerpaar Hl und die Anzahl 6 ins Register-
paar BC. Nach der Ausfiihrung des Befehls CPIR steht in HL 204
H, und das Z-Bit ist gesetzt.

Wiirde in Zelle 203 die Bit-Folge 01010101 stehen, so stiinde nach
Abarbeitung des Befehls CPIR in Hl 206H, und das Z-Bit wiirde
riickgesetzt werden.

®Wenn BC zum Befehlsende 0ist, dann wird P/V = 0; ist BC # 0, so wird P/V = 1 gesetzt.

142

CPI Vergleich A mit (HL) CSZPV)HN
HL + 1 - HL - 117 11
BC -1- BC
Der Inhalt des Speicherplatzes, dessen Adresse in HL steht, wird
mit dem Inhalt des A-Registers verglichen und das Flagregister ge-
setzt. Das P/V-Flagist 1, wenn BC — 1 # 0, sonst 0. AnschlieBend
wird der Inhalt von HL um 1 erh6ht und der Inhalt von BCum 1 er-
niedrigt. Mit Hilfe des Befehls CPI 148t sich ein Speicherbereich
auf eine Bit-Folge, die im A-Register steht, durchsuchen, wobei
die Abbruchbedingung frei wihlbar ist.

CPDR Vergleich A mit {HL) CSZPVY?HN
A= (Hy—E S SRR
nein

HL-1—eHL HL-1—=HL
BC-1—=BC BC(-1—BC

Ende

Der Inhalt eines Speicherbereiches, dessen Endadresse in HL und
dessen Lange in BC steht, wird nach einer Information, die im Re-
gister A steht, durchsucht. Befindet sich die Information in einer
Zelle des Speicherbereiches, so wird der Befehl an dieser Stelle be-
endet. Steht die Information nicht in dem gesuchten Speicherbe-
reich, so endet der Befehl nach der ersten Zelle des Bereiches.
Wird die Information im Speicherbereich gefunden, so werden
trotzdem HL und BC um 1 erniedrigt.

Im Flagregister steht das Ergebnis der letzten Vergleichsopera-
tion. Das Bit P/Vist 1, wenn BC -1 = 0, sonst 0.

Beispiel

Die Zellen 200H bis 205H sollen nach der Bit-Folge 00000111
durchsucht werden. Inden Zellen 200H bis 205H stehen:

200H 11111111

201H 00000000

202H 01000000

203H 00000111

204H 00000000

205H 10000001

9 Wenn BC nach Befehlsausfiihrung 0 ist, dann wird P/V = 0; ist BC #0, sowird P/V = 1
gesetzt.

143

Dazu bringt man die obige Bit-Folge in das Register A, die Adresse
205H in das Register HL und die Anzahl 6 in das Registerpaar BC.
Nach Ausfiihrung des Befehls CPDR stehtin HL 202H, unddas Z-
Bit ist gesetzt.

Wiirde sich in Zelle 203H die Bit-Folge 01010101 befinden, so
stiinde nach Abarbeitung des Befehls CPDR in HL 1FFH, und das
Z-Bit wiirde riickgesetzt sein.

CPD Vergleich A mit (HL) CSZPVOHN
HL — 1> HL -1t e 11
BC - 1> BC

Der Inhalt des Speicherplatzes, dessen Adresse in HL steht, wird
mit dem Inhalt des A-Registers verglichen und das Flagregister ge-
setzt. Das P/V-Flagist 1, wenn BC — 1 # 0, sonst 0. AnschlieBend
werden der Inhalt von HL und der von BC um 1 erniedrigt. Mit
Hilfe des Befehls CPD 148t sich ein Speicherbereich auf eine Bit-
Folge, die im A-Register steht, durchsuchen, wobei die Abbruch-
bedingung frei wahlbar ist.

4.1.5.6. Sprungbefehle
JPon nn — PC CSZPVHN

Die Adresse nn wird in den Befehlsziahler PC gebracht Der nich-
ste abzuarbeitende Befehl ist damit der Befehl aus Zelle nn. Man
sagt, der Rechner fiihrt einen Sprung in die Zelle nn aus.

JP cc, nn Wenn cc = true, nn —» PC CSZPVHN

Wenn die Bedingung cc erfiillt ist, dann wird die Adresse nninden
Befehlszihler PC gebracht.
cckannsein: — NZ Z-Bitriickgesetzt,

- Z Z-Bitgesetzt,

— NC C-Bitriickgesetzt,

- C C-Bitgesetzt,

— PO Parititsbit auf ungerade gesetzt,

— PE Parititsbitaufgerade gesetzt,

- P Vorzeichenbit auf postiv gesetzt,

— M Vorzeichenbit auf negativ gesetzt.

1. FuBnote S. 143

144

JRe PC +e— PC CSZPVHN

Der Befehlszihler PC wird um die Zahl e verdndert. e ist eine 8-
Bit-Zahl im Zweierkomplement, d. h., e kann auch negativ sein.
Ausgangspunkt fiir PC + e — PCist die Adresse des Operationsco-
des des Befehls. Der Rechner fiihrt einen Sprung um e Zellen aus.
Die Zahl e steht als e — 2 in der Zelle nach dem Operationscode.

Beispiel
Von Zelle 100 soll ein Sprung nach 105 erfolgen.
Befehl: JR S
—100 18 « Operationscode des Befehls IR
101 3 —e-2
102 ——
103 ————
104 ———
—105 ——— « PC-Stand nach dem Befehl.

JR kk, e Wenn kk = true, PC+e—->PC CSZPVHN
wenn kk = not true, Leerbefehl
Wenn die Bedingung kk erfiillt ist, dann fiihrt der Prozessor einen
Sprung um e Zellen aus.
kkkannsein: — NZ Z-Bitriickgesetzt,
‘ - Z Z-Bitgesetzt,
— NC C-Bitriickgesetzt,
- C C-Bitgesetzt.

JP (ss) ss— PC CSZPVHN

Der Inhalt des Doppelregisters ss wird nach PC gebracht. Der
Rechner fiihrt einen Sprung in die Zelle aus, deren Adresse in ss
steht.

ss kann sein: HL, IX, TY.

DINZe B-1 4B) CSZPVHN
ja
PC +e—ePC
ndchster Befehl

Solange B — 1 = Qist, fiihrt der Rechner einen Sprung um e Zellen
aus. e ist eine 8-Bit-Zahl im Zweierkomplement, d. h. e kann auch
negativ sein. Ausgangspunkt fiir PC + e — PCist die Adresse des

145

Operationscodes des Befehls. Die Zahl e steht als e — 2in der Zelle
nach dem Operationscode.

Beispiel

Eine Programmschleife von Zelle 200 bis 209 soll 10mal durchlau-
fen werden. Dazu bringt man eine 10 in das Register B. Der Be-
fehl, der diese 10fache Programmschleife realisiert, lautet
DINZ - 9.

Aufbau der Progammschleife:

—200 —

201 —

202 —

203 —

206 ——

Rucksprung,
prung 206 —

wenn B #0
206 —

207 ——

208 ——

209 DJNZe—Operationscode
210 -1 e—e-2

4.1.5.7. Unterprogrammbefehle

Unterprogrammrufe
CALL m PCy, PCp. —» (SP - 1), (SP-2) CSZ P/VHN

SP-2 —SP

nn — PC
Der CALL-Befehl realisiert einen Sprung in ein Unterprogramm,
dessen Startadresse nn ist. Dabei wird der aktuelle Befehlszihler-
stand (Adresse des Operationscodes des niachsten Befehls) im
STACK gespeichert. Der hoherwertige Teil von PC kommt in die
Zelle, deren Adresse sich aus den um 1 erniedrigten Inhalt des
STACKPOINTER SP ergibt. Der niederwertige Teil von PC ge-
langtin die Zelle, deren Adresse sich aus dem um 2 erniedrigten In-
halt des STACKPOINTER ergibt. Der STACKPOINTER ist am
Ende des Befehls um 2 erniedrigt.

146

CALL cc, nn wenn cc = true CSZPVHN
PCy,PCL— (SP—1),(SP-2) ce
SP -2 SP
nn— PC
Wenn die vorgegebene Bedingung cc erfiillt ist, so wird der Befehl
CALL nn ausgefiihrt. Ist die Bedingung nicht erfiillt, dann hat der
Befehl die Funktion eines Leerbefehls.
cckannsein: — NZ Z-Bitriickgesetzt,
- Z Z-Bitgesetzt,
— NC C-Bitriickgesetzt,
- C C-Bitgesetzt,
— PO Parititsbit aufungerade gesetzt,
— PE Parititsbit auf gerade gesetzt,
— P Vorzeichenbitauf positiv gesetzt,
- M Vorzeichenbit auf negativ gesetzt.

RST z, PCy, PCL — (SP — 1), (SP — 2) CSZPVHN
SP-2 —SP
z — PC

z ist eine der Hexadezimaladressen OH, 8H, 10H, 18H, 20H, 28H,

30H, 38H.

Der Befehl RST z (RESTART) ist ein CALL-Befehl mit der

Adresse z. Er wird in Verbindung mit dem INTERRUPT in

MODE 0 verwendet. Hier muB3 wihrend dem INTERRUPT-Zy-

klus iiber den Datenbus ein 1-Byte-Befehl in den Prozessor gege-

ben werden. Der RST-Befehl stellt einen 1-Byte-CALL-Befehl

dar, wihrend der vollstindige CALL-Befehl 3 Byte lang ist.

Riickkehrbefehle
RET (SP + 1), (SP) — PCy, PCL CSZPVHN
SP +2 — SP e e e

Der RET-Befehl realisiert den Riicksprung aus einem Unterpro-
gramm. Durch ihn wird die zuletzt in den STACK gespeicherte
Adresse in den Befehlszidhler PC gebracht. Der Inhalt der Zelle
dessen Adresse im STACKPOINTER steht, kommt in den nieder-
wertigen Teil von C, der Inhalt der Zelle, dessen Adresse sich aus
dem Inhalt des STACKPOINTERS plus 1 ergibt, in den hoherwer-
tigen Teil von PC. Der STACKPOINTER ist am Ende des Befehls
um 2 erhoht.

147

RET cc wenn cc = true; CSZPVHN
(SP + 1), (SP) — PCy, PC, $ s wm e s
SP +2 — SP
Wenn die vorgegebene Bedingung cc erfiillt ist, dann wird der Be-
fehl RET cc ausgefiihrt. Ist die Bedingung nicht erfiillt, so hat der
Befehl die Funktion eines Leerbefehls.
cckannsein: — NZ Z-Bitzuriickgesetzt,
- Z Z-Bitzuriickgesetzt,
— NC C-Bitzuriickgesetzt,
- C C-Bitgesetzt,
— PO Paritatsbit auf ungerade gesetzt,
— PE Parititsbit auf gerade gesetzt,
— P Vorzeichenbit auf positiv gesetzt,
— M Vorzeichenbit auf negativ gesetzt,

RETI (SP + 1), (SP) - PCy, PC_ CSZPVHN
SP + 2 — SP R e T
IFF2 — IFF1

Der Befehl RETI dient als Riicksprungbefehl beim maskierten IN-
TERRUPT.

RETN (SP + 1), (SP) - PCy, PC_ CSZPVHN
SP +2 — SP f e w e
IFF2 — IFF1

Der Befehl RETN dient als Riicksprungbefehl beim nichtmaskier-
ten INTERRUPT.

4.1.5.8. Ein- und Ausgabebefehle

Einzelwortein- und -ausgabe
IN A, (n) (n) > A CSZPVHN
1T P OO
Innerhalb eines Eingabezyklus wird das auf dem Datenbus vorhan-
dene Byte in das Register A gebracht. Wahrend des Eingabezyklus
enhilt der héherwertige Teil des AdreBbus den alten Inhalt des
Registers A und der niederwertige Teil die Zahl n, die als Adresse
fiir das periphere Gerit dient.

INr, (C) (C)>r CSZPVHN
Innerhalb eines Eingabezyklus wird das auf dem Datenbus vorhan-

148

dene Byte in das Register r gebracht. Wihrend des Eingabezyklus
enthilt der hoherwertige Teil des AdreBbus den Inhalt des Regi-
sters B und der niederwertige Teil den Inhalt des Registers C, der
als Adresse fiir das periphere Gerit dient.
rkannsein: Register A, B,C,D,E, H, L.

OUT (n), A A —(n) CSZPVHN

Innerhalb eines Ausgabezyklus wird der Inhalt des Registers A auf
den Datenbus gebracht. Wihrend des Ausgabezyklus enthélt der
hoherwertige Teil des AdreBbus den alten Inhalt ddes Registers A
und der niederwertige Teil die Zahl n, die als Adresse fiir das peri-
phere Gerit dient.

OUT (C),r r— (C) CSZPVHN

Innerhalb eines Ausgabezyklus wird der Inhalt des Registers r auf
den Datenbus gebracht. Wiahrend des Ausgabezyklus enthalt der
hoherwertige Teil des AdreBbus den Inhalt des Registers B und der
niederwertige Teil den Inhalt des Registers C, der als Adresse fiir
das periphere Gerit dient.

r kann sein: 1 Register A, B, C,D, E, H, L.

Blocktransfer
INIR DB —e(HL) CSZP/VHN
HL + 1 —s HL - X1 X X1
B-1—=8 AdreBbus:

Ags. . .As A7. . .Ao

B=07?

lja Inhalt des Inhalt des

Ende B-Registers C-Registers
Der Prozessor fiihrt cinc Reihe Eingabebefehle durch, deren An-
zahl n im Register B steht. Wihrend jedes Eingabezyklus wird der
Datenbus DB abgetastet und sein Inhalt in ¢ine Speicherzelle ge-
bracht, deren Adresse in HL steht. Nach jedem Eingabezyklus er-
héht sich der Inhalt von HL um 1, und der Inhalt von B wird um 1
erniedrigt. Insgesamt liest der Prozessor n Bytes ein, die in einen
Speicherbereich gebracht werden, dessen Anfangsadresse in HL
steht. Wihrend eines Eingabezyklus enthélt der hoherwertige Teil
des AdreBbus den Inhalt des C-Registers, der als periphere
Adresse dient.

149

INI DB — (HL) CSZPVHN
HL + 1> HL XX X1
B-1 —-B

AdreBbus: Ajs. . .Ag Aq. . Ay
— e
Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor fiihrt einen Eingabebefehl aus. Dabei wird der Da-
tenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge-
bracht, deren Adresse in HL steht. AnschlieBend wird der Inhalt
von HL um 1 erh6ht und der Inhalt von B um 1 erniedrigt. Das Z-
Bit wird 0, wenn B — 1 #+ O wird, und 1, wenn B — 1 = 0 wird.
Waihrend des Eingabezyklus enthilt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der niederwertige Teil
denInhalt des C-Registers, der als periphere Adresse dient.

INDR DB —e (HL) CSZPVHN
HL-1 —e HL X1 X X1

AdreBbus:
Ags. . Ag A; . Ay
P
lj" Inhalt des Inhalt des
Ende B-Registers C-Registers

Der Prozessor fiihrt cine Reihe Eingabebefehle durch, deren An-
zahl n im Register B steht. Wahrend jedes Eingabezyklus wird der
Datenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge-
bracht, deren Adresse in HL steht. Nach jedem Eingabezyklus er-
niedrigt sich der Inhalt von HL und B um 1. Insgesamt liest der Pro-
zessor n Bytes ein, die in einen Speicherbereich gebracht werden,
dessen,Endadresse in HL steht.

Wihrend eines Eingabezyklus enthilt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient.

IND DB — (HL) CSZPVHN
HL - 1> HL SXPX X1
B-1 —B

AdreBbus: Ajs. . .Ag Ay. . Ay

Inhalt des Inhalt des
B-Registers C-Registers

150

Der Prozessor fiihrt einen Eingabebefehl aus. Dabei wird der Da-
tenbus DB abgetastet und sein Inhalt in eine Speicherzelle ge-
bracht, deren Adresse in HL und B steht. AnschlieBend erniedrigt
sich der Inhalt von HL um 1. Das Z-Bit wird 0, wenn B — 1 % 0,
und 1, wenn B — 1 = Oist.

Wihrend des Eingabezyklus enthélt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient.

OTIR (HL)—- DB — ext.Gerdt CSZPVHN
HL +1 —e HL - X1 X X1
B-1—eB AdreBbus:

Ass. . Ay Ag...Ag

Inhalt des Inhalt des
Ende B-Registers C-Registers

Der Prozessor fiihrt eine Reihe Ausgabebefehle durch, deren An-
zahl nim Register B steht. Wahrend jedes Ausgabezyklus wird der
Inhalt der Speicherzelle, deren Adresse in HL steht, auf den Da-
tenbus DB gebracht. Nach jedem Ausgabezyklus erhoht sich der
Inhalt von HL um 1, und der Inhalt von B wird um 1 erniedrigt. Ins-
gesamt gibt der Prozessor n Bytes aus, die in einem Speicherbe-
reich stehen, dessen Anfangsadresse in HL steht.

Waihrend eines Ausbabezyklus enthélt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient.

OUTI (HL) — DB — ext. Gerit CSZPVHN
HL + 1 —» HL S X$X X1
B-1 - B

AdreBbus:Ajs. . .Ag Ay . Ay

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor fiihrt einen Ausgabebefehl aus. Dabei wird der In-
halt der Speicherzelle, dessen Adresse in HL steht, auf den Daten-
bus DB gebracht. AnschlieBend erhoht sich der Inhalt von HL um
1, und der Inhalt von B wird um 1 erniedrigt. Das Z-Bit wird 0,
wenn B — 1 %0 ist, und 1, wenn B — 1 = 0 ist. Wihrend des
Ausgabezyklus enthélt der hoherwertige Teil des AdreBbus den

151

Inhalt des B-Registers und der niederwertige Teil den Inhalt des C-
Registers, der als periphere Adresse dient.

OTDR H)—= DB — ext.Gerdit CSZPVHN

B-1—» B

AdreBbus:
A]S- o .Ag A7. . A{)

Ende Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor fiihrt eine Reihe Ausgabebefehle durch, deren An-
zahl nim Register B steht. Wiahrend jedes Ausgabezyklus wird der
Inhalt der Speicherzelle, deren Adresse in HL steht, auf den Da-
tenbus gebracht. Nach jedem Ausgabezyklus erniedrigt sich der
Inhalt von HL und B um 1. Insgesamt gibt der Prozessor n Bytes
aus, die in einem Speicherbereich stehen, dessen Endadresse in
HL steht.

Wihrend des Ausgabezyklus enthélt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der njederwertige Teil
den Inhalt des C-Registers, der als periphere Adtesse dient.

OUTD (HL) — DB — ext. Gerit CSZPVHN
HL - 1 > HL S X1X X1
B-1 —B

AdreBlbus:Ajs. . .Ag A;. . Ag

Inhalt des Inhalt des
B-Registers C-Registers

Der Prozessor fiihrt einen Ausgabebefehl aus. Dabei wird der In-
halt der Speicherzelle, dessen Adresse in HL steht, auf den Daten-
bus DB gebracht. AnschlieBend erniedrigt sich der Inhalt von HL
und B um 1. Das Z-Bit wird 0, wenn B — 1 # O ist, und 1, wenn
B —1=0ist.

Waihrend des Ausgabezyklus enthdlt der hoherwertige Teil des
AdreBbus den Inhalt des B-Registers und der niederwertige Teil
den Inhalt des C-Registers, der als periphere Adresse dient.

152

4.1.5.9. Steuerbefehle

HALT

Der Befehl HALT bringt den Prozessor in der STOP-Zustand.
Wihrend dieses Zustandes fiihrt der Prozessor NOP-Befehle aus,
wobei er liber den AdreBbus die Auffrischadresse fiir dynamische
Speicher aussendet. Den HALT-Zustand kann der Baustein durch
INTERRUPT oder RESET verlassen.

NOP
Wihrend NOP fiihrt der Prozessor einen Leerzyklus aus.

DI

0 — IFF1, 0 — IFF2

Durch den Befehl DI wird der maskierte INTERRUPT-Eingang
geseperrt. Die beiden INTERRUPT-Flip-Flop IFF1 und IFF2
werden riickgesetzt.

EI

1 - IFF1, 1 — IFF2

Durch den Befehl EI wird der maskierte INTERRUPT-Eingang
geoffnet. Die beiden INTERRUPT-Flip-Flop IFF1 und IFF2 wer-
den gesetzt.

IMO
IMO setzt den Prozessor in den INTERRUPT-MODE 0.

IMI
IMI setzt den Prozessor inden INTERRUPT-MODE 1.

IM2
IM2 setzt den Prozessor in den INTERRUPT-MODE 2.

4.1.6. INTERRUPT

Wie bereits beschrieben, bedeutet ,INTERRUPT“ Unter-
brechung des gerade laufenden Programms und Ubergang zu ei-
nem anderen Programm, das durch das unterbrechende Signal be-
stimmt wird. Durch den INTERRUPT-Eingang laBt sich also die
Arbeitsweise des Prozessors steuern. Der Prozessor U 880 hat 2
INTERRUPT-Eingénge.

— den nichtmaskierten NMI (NMI - nichtmaskierter INTER-

RUPT)

153

Ablaufbei Auftreten eines INTERRUPT-Signals

Auftreten eines Signals
am Eingang INT

0—=IFF1 0-sIFF2

Auftreten eines Signals
am Eingang NMI

IFF1—sIFF2

Verbot weiterer
INTERRUPT
bis EI 0—eIFF1
Ubergang in das zugehdri Verbot von
Arbeitr;gprogmmmge * INTERRUPT -
ignalen bis El

Ubergang in das zugehdrige
@ Arbeitsprogramm

Meldung an den externen @

Baustein :
IFF2— IFF1

Arbeitsprogramm beendet
Ruckkehr in das unter -

brochene Programm

Ruckkehr in das unter -
brochene Programm

Die Riickkehr aus dem zugehérigen Arbeitsprogramm in das unterbrochene Programm
geschieht tiber einen RETURN-Befehl.

- den maskierten Eingang INT (INT - INTERRUPT).
Maskierbar heit, daB das Eingangstor durch das Programm ge-
offnet und gesperrt werden kann. Das Offnen geschieht durch
einen speziellen Befehl EI. Fiir das Sperren gibt es den Befehl
DI. Zur Steuerung des INTERRUPT-Eingangstors INT gibt es
im Prozessor 2 Flip-Flop IFF1 und IFF2.

IFF1 dient zur unmittelbaren Steuerung des INT-Tores. Ist es
eingeschaltet, so ist das INT-Tor geoffnet; ist es ausgeschaltet,
ist das INT-Tor gesperrt.

Jedes von auBen kommende INT-Signal schaltet das IFF1, nach-
dem es das laufende Programm unterbrochen hat, zunichst aus.

154

Wirkung der Befehle und Signale auf IFF1 und IFF2

IFF1 IFF2
RESET 0— IFF1 0— IFF2 INTERRUPT-
DI 0 — IFF1 0 — IFF2 MODE0
EI 1 - IFF1 1 IFF2
LD A,I bleibt bleibt IFF2 — Parity-Flag
LD A,R bleibt bleibt IFF2 — Parity-Flag
INT 0 — IFF1 0 — IFF2
NMI 0 — IFF1 IFF1 — IFF2
RETN IFF2 — IFF1 bleibt
RETI IFF2 — IFF1 bleibt

Damit erreicht man, daB das durch das INT-Signal aufgerufene
Programm nicht wieder unterbrochen werden kann. Das IFF1
wird auch ausgeschaltet, wenn ein Unterbrechungssignal iiber
den NMI-Eingang kommt. In diesem Fall wird aber vorher der
Zustand des IFF1 auf das IFF2 iibertragen.

IFF2 dient als Zwischenspeicher fiir das IFF1. Wenn ein Signal
iiber den NMI-Eingang kommt, wird der Zustand von IFF1 und
IFF2 gespeichert.

Ist das zu NMI gehorige Programm abgearbeitet, wird durch den

Riickkehrbefehl fiir den nichtmaskierten INTERRUPT RETN

der Inhalt von IFF2 wieder nach IFF1 gebracht.

Der Ubergang in das zum INTERRUPT gehorende Arbeitspro-

gramm ist bei den Eingdngen NMI und INT unterschiedlich.

e Bei dem nichtmaskierten INTERRUPT (NMI) geschieht das
durch den Befehl CALL 66H.

Dieser Befehl wird im Prozessor automatisch gebildet und abge-
arbeitet.

¢ BeidemmaskiertenINTERRRUPT (INT)gibt es 2 Moglichkei-
ten des Ubergangs in das dazugehérige Arbeitsprogramm. Die 3
Moglichkeiten werden mit MODE 0, MODE 1 und MODE 2
bezeichnet. Diess MODE lassen sich vorher durch die Befehle
IMO, IM1 und IM2 einstellen.

e Im MODE 0 wird ein wihrend des INTERRUPT-Zyklus einge-
lesenes 8-Bit-Wort als Befehl interpretiert und sofort abgearbei-
tet. Dafiir verwendet man meistens den Befehl RSTZ. Er ist ein
CALL-Befehl zu einer festen Adresse.

e Im MODE 1 wird dhnlich wie beim nichtmaskierten INTER-
RUPT ein Befehl CALL 38H gebildet und ausgefiihrt.

155

¢ Im MODE 2 wird aus dem I-Register als hoherwertiger Teil und
aus einem eingelesenen 8-Bit-Wort als niederwertiger Teil eine
Adresse ADR gebildet. Das niederwertigste Bit des eingelese-
nen Bytes muf Osein. Das eingelesene 8-Bit-Wort nennt man In-
terrruptvektor.
ADR = | I-Register | Interruptvektor |
Diese Adresse zeigt auf eine Zelle, deren Inhalt als Adresse ei-
nes CALL-Befehls verwendet wird. In MODE 2 wird also bei ei-
nem auftretenden INT-Signal der Befehl
CALL (I-Register, Interruptvektor)
gebildet und ausgefiihrt.
Bild 4.9 und 4.10 zeigen den zeitlichen Ablauf beim Erscheinen
eines INTERRUPT-Signals.

Handhabung der INTERRU PT-Eingdinge

— Der nichtmaskierte INTERRUPT wird fiir sehr wichtige Ereig-
nisse verwendet. Er hat die hochste Prioritdt und unterbricht in
jedem Fall das gerade laufende Programm. Zur Bedienung die-
ses INTERRUPT muB3 man ab Zelle 66 H ein dazugehoériges Ar-
beitsprogramm speichern.

— Der maskierte INTERRUPT-Eingang dient zum Aufbau um-
fangreicher Unterbrechungsschaltungen. An diese lassen sich.
Sammelschaltungen fiir eine groBe Anzahl Unterbrechungs-
quellen anschlieBen. Die Unterbrechungsquellen konnen eine
Mehrebenenstruktur haben und nach Prioritidten gestaffelt sein.

Zum Beispiel 1aBt sich MODE 2 im Speicher eine Tabelle der Start-
adresse aufbauen:

I-Register Startadresse 0 NWT

Interruptvektor 71_ Startadresse 0 HWT
Startadresse 1NWT:
Startadresse 1 HWT
Startadresse 127NWT

Startadresse 127 HWT |
Arbeitsprogr. 1

156

Der Inhalt des I-Registers gibt an, aufwelcher Seite die Startadres-
sen liegen (1 Seite = 256 Zellen). Durch das vom Datenbus kom-
mende Byte lassen sich damit 128 INTERRUPT-Quellen be-
dienen.

4.1.7. Starten des Prozessors U 880

Die Programmabarbeitung des Prozessors 148t sich iiber die IN-

TERRRUPT-Méglichkeiten oder iiber RESET starten. Dabei

gibt es folgende Startvarianten:

1. Ein Startimpuls kommt iiber die NMI-Leitung. In diesem Fall
muB ab Zelle 66H das Startprogramm stehen.

2. Der Startimpuls kommt iiber die INT-Leitung. Dazu miissen

der INT-Eingang vorher mit EI freigemacht, der notwendige

INTERRUPT MODE eingestellt und das INTERRUPT-Wort

auf dem Datenbus bereitgestellt werden.

Nach RESET beginnt die Abarbeitung im Prozessor mit Zelle

0. In Zelle 0 kann damit der 1. Befehl des Startprogramms ste-

hen.

e

4.1.8. Anschliisse an den Baustein U 880

Dg Bild 4.13 AnschluBbild des
Dy Bausteins U 880

A P 30— Ao
WD — 19 31— A,
—0 2 A,
—21 B Al
—]22 3 Al
iRkl s
- [o A
VAT —l2; VB0 3L . 4,
NT —»6 38— A,
M —= 17 39— A
w1 ek
] L
R —15 2 an
3 An
LI Ay
S Ass
14— Dy
§ — 6 15— D,
BV — 11 12f— D,
GND —=29 8k— D;
'é.—.
0 f—
3

o

157

Ao bis AlS
AdreB-Bus

Do bis D7
Data-Bus

M1

MREQ
Memory
Request

TORQ
Input-Output
Request

WR
WRITE
RD
READ
RFSH
Refresh

HALT
Halt state

WAIT
Wait

158

AdreBbus, Tristate-Ausgang, aktiv ,,High*

Datenbus, Tristate-Ein- und -Ausgang, aktiv
,High*

Der laufende Zyklus ist ein Operationscodehol-
Zyklus
Ausgangssignal, aktiv ,,Low*

Am AdreBbus ist eine Speicheradresse vorhanden.
Tristate-Ausgang, aktiv ,,Low*

Der niederwertige Teil des AdreBbus enthilt eine
Ein- oder Ausgabeadresse.

Ein gleichzeitiges Erscheinen von M; und IORQ
kennzeichnet einen INTERRUPT-Zyklus
Tristate-Ausgang, aktiv ,,Low*

Der Datenbus des Prozessors enthilt Daten zur
Ausgabe. Tristate-Ausgabe, aktiv ,,Low*

Vom Prozessor werden Daten iiber den Datenbus
eingelesen, Tristate-Ausgang, aktiv ,,Low*

Die 7 niederwertigen Bits des AdreBbus enthalten
eine Auffrischadresse fiir angeschlossene dyna-
mische Speicher.

Sie kann in Verbindung mit Memory Request zum
Auffrischen dieses Speichers verwendet werden.
Ausgabesignal, aktiv ,,Low*

Der Prozessor hat einen HALT-Befehl ausgefiihrt
und befindet sich im HALT-Status.

Wihrend des HALT-Status fiihrt der Prozessor
NOP-Operationen aus, wihrend dieser NOP-Ope-
rationen finden Auffrischzyklen statt. Ausgabesi-
gnal, aktiv ,,Low*

Das WAIT-Signal veranlaBt den Prozessor, nach
dem nédchsten T2-Zustand in den Wartezustand zu
gehen; solange WAIT aktiv ist, fithrt der Prozessor
Wartezyklen durch.

Eingabesignal, aktiv ,Low“

INT
Interrupt
Request

NMI
Non Maskable
Interrupt

BUSRQ
Bus
Request

BUSAK
Bus

Anforderungssignal zu einer Programmunterbre-

chung im Prozessor. Es wird vom Prozessor am

Ende eines Befehlszyklus angenommen, wenn das

Flip-Flop IFF1 gesetzt (INTERRUPT-Erlaube-

FF) und das Signal BUSRQ nicht aktiv ist.

Der Ablauf des INTERRUPT-Vorgangsistim Ab-

schnitt 4.1.6. beschrieben.

Eingabesignal, aktiv ,,Low*

INT O O O——Annahme

1) T des
Signal Befehls- INT-Frei- BUSRQ INTER-
ende gabe-FF = High“ RUPT

gesetzt durch den
(IFF1=1) Prozessor

Das Signal NMI verhilt sich dhnlich wie das Signal
INT. Im Unterschied zu INT ist es jedoch nicht
maskierbar und hat eine hohere Prioritat. Es wird
am Ende eines Befehls angenommen, wenn das
Signal BUSRQ nicht aktiv ist.

Eingabe mit negativer Flanke getriggert.

Dieses Signal setzt den Prozessor in den Grund-
zustand. Der Grundzustand ist gekennzeichnet
durch:

0- PC 01

0 — IFF1; 0—-R

0 — IFF2; INTERRUPTMODE 0

Waihrend das Signal RESET anliegt, sind AdreB-
und Datenbus im hochohmigem Zustand und die
Steuersignale inaktiv. Nach RESET beginnt die
Abarbeitung mit Zelle 0.

Eingabesignal, aktiv ,Low“

Dieses Signal bringt den AdreBbus, den Datenbus
und die Steuersignale in den hochohmigen Zu-
stand. Es wird am Ende jedes Maschinenzyklus
abgefragt.

Eingabesignal, aktiv ,Low“

Datenbus, AdreBbus und Steuerbus befinden sich
im hochohmigen Zustand. Die CPU arbeitet nicht.

159

Acknowledge Es erfolgt kein REFRESH.
Ausgabesignal, aktiv ,,Low*

] Der Steuertakt kann iiber einen 330-Q2-Widerstand
Steuertakt nach 5 V mit dem Ausgang eines TTL-Schaltkrei-
ses verbunden sein (Bild 4.14).

Bild 4.14
Takteingang in den
Prozessor U 880

4.2, Der Mikroprozessorbaustein 8080

Der Mikroprozessor 8080, ein stark verbreiteter Baustein, wird in
sehr vielen Mikrorechner-Konfigurationen verwendet. Alle in ihm
vorhandenen Méglichkeiten sind auch im Mikroprozessor U 880
enthalten.

4,2.1. Registerstruktur

Bild 4.15 zeigt die Registerstruktur des Bausteins 8080. Die Regi-
ster A, B, C, D, E, H, L, SP, PC, BR haben die gleiche Funktion
wie beim Prozessor U 880. Das gleiche gilt fiir die Flags, C, S, Z, P,
H. Das P-Flag wird jedoch nurin Abhéangigkeit von der Paritit des
Ergebnisses gesetzt.

4.2.2. Befehlsaufbau
Ein 8080-Befehl besteht wie beim U 880 aus Operationscode und

AdreBteil. Es gibt nur Befehle mit 1-Byte-Operationscode. Die
Indexrechnung gibt es nicht.

160

w
2
Fa)
[=
Q
2
o
(=]
§ o
o . £ S }
E ~Njo|w| o § P
o | .
']
—[®[]q | o|g] DI- 8 =
a|a|s P : |
£ @ - =
ngI o 'S = ”
X = £
[=) I <3 C < 5
lyomsny/- 13}sibay <
T o}
! 8
) 2
e e aataint $-—m————o 5
] 1 [=
o | u o>
(=) T fe— 1w N
= c, [
@ | o , 2 £
I - g 295 ~ &
: o xl oo <3Ig 'S
] £ (o] o vX3 =
IS] 23 gNg le— 1§ T
) 2 a° £°% . e &
< l—-5 <
o
sl 3%
@ g 9
=4 £ £
g% g
L3 2
N] m
3 3
3
—*>2 ©T
C 5
—2 Z
2
£ 7
z 2
3
z 3
—F &
§ -2
e
. <
2
@

4.2.3. Zeitverhalten

Der Mikroprozessor 8080 wird durch 2 gegeneinander ver-
setzte Impulsfolgen @; und @, gesteuert. Die Abarbeitung
eines Befehls erfolgt in mehreren Maschinenzyklen. Ein Ma-
schinenzyklus ist wiederum in 3 bis 5 Zeitzustinde (T, bis Ts)
unterteilt, wobei ein Zeitzustand die Linge von einer Periode @,
hat.

Die wichtigsten Funktionen in den einzelnen Zeitzustidnden inner-
halb eines Maschinenzyklus sind (s. Taktdiagramm Bild 4.16)

161

¢‘__1 1 1 1 1 I
8 gk I 1 | 1 r

Ag...Ag VL L T T T T
SYNC —+— I
Dy...D;——{Statuswort H{ Bei WR aktiv’Ausgabedaten®

READY —+—— | r
DBIN i{ -

T T2 Tw T

Bild 4.16 Taktdiagramm eines Maschinenzyklus des Prozessors 8080

T, Ausgabe der Adresse auf den AdreBbus,
T/T, Ausgabe des Statusworts auf den Datenbus,
T, Abtasten des Signals ,,READY*,

T; Ausgabe oder Eingabe iiber den Datenbus,

T4Ts Ausfiihrung des Befehls.

Nach T, kénnen beliebig viele Wartezustdnde Ty eingefiigt wer-
den. Zu Beginn jedes Maschinenzyklus sendet der Prozessor iiber
den Datenbus ein Statuswort aus. Das Signal SYNC zeigt an, da
das Statuswort auf dem Datenbus Dy bis D; vorhanden ist. Ist zum
Zeitpunkt T,/®, READY = ,Low”, so kommt nach T, ein Warte-
zustand Ty. Ein weiterer Wartezustand folgt, wenn zum Zeitpunkt
Tw/®, READY noch ,Low* ist. Bei DBIN = , High“ (aktiv) wird
zum Zeitpunkt T3/@; die Information vom Datenbus in den Pro-
zessor geholt. Ist WR = ,Low* (aktiv), so enthdlt der Datenbus
einevom Prozessor ausgegebene Information (DBIN und WR sind
nie gleichzeitig aktiv; Bild 4.2 hat fiir diesen Fall nur symbolischen
Charakter). Zur Ausfithrung eines Befehls werden mehrere Ma-
schinenzyklen durchlaufen. Im 1. Maschinenzyklus M1 wird der
Befehl geholt (Befehlsholzyklus), entschliisselt und, wenn keine
Daten von auBerhalb des Prozessors benotigt werden, wihrend T,
und T’ ausgefiihrt. Benotigt man Daten von auBerhalb eines Pro-
zessors, so folgen weitere Maschinenzyklen.

162

Beispiel

Eingabe eines Bytes nach dem A-Register.

Befehl:

M1

M2

M3

Codierung im Speicher: 11011011
ADR-Byte
Maschinenzyklus Zustand Funktion

T, Ausgabe PC
Ausgabe Status

T, PC+1 —»PC
Abfrage ,READY*

T, Befehl - BR

T, interne Entschliisselung

T, Ausgabe PC
Ausgabe Status

T, PC+1 - PC
Abfrage ,READY*

T; ADR — RegisterZund W

T, Ausgabe Register Zund W (ist
Gerateadresse)

T, Abfrage READY

Ts Eingabe Byte vom DB — Re-
gister A

AnschluBisignale

4.24.
D() bis D7

A() bis A15
SYNC

DBIN

READY

WAIT

Bidirektionaler Datenbus (aktiv ,,High*), wird fiir die
Ein- und Ausgabe von Datensignalen verwendet.
AdreBbus (aktiv ,High*)

Ausgabesignal (aktiv ,High“) sagt aus, daB der Da-
tenbus das Statuswort enthalt.

Ausgabesignal (aktiv ,,High*) sagt aus, daBl zum Zu-
stand T; eine Eingabe vom Datenbus erfolgt.
Eingabesignal (aktiv ,High*)

Ist zum Zeitpunkt To/®; oder Tw/P,

READY = ,High“, so folgt der Zustand T, bei
READY = ,Low*“ folgt ein Wartezustand Ty,.
Dieses Ausgabesignal (aktiv ,,High“) sagt aus, daB
sich der Prozessor im Wartezustand Ty befindet.

Das Ausgabesignal (aktiv ,,Low*) sagt aus, daB sich
auf dem Datenbus ein ausgegebenes Byte befindet.

163

HOLD

HLDA

INTE

INT

RESET

164

Eingabesignal (aktiv ,,High“)
DMA-Anforderungssignal. Durch HOLD geht der
Daten- und AdreBbus in den hochohmigen Zustand
(HOLD-Zustand). Das Signal HOLD wird angenom-
men:

— im Zustand T, oder Tw;

— im HALT-Zustand.

Der HOLD-Zustand bleibt so lange bestehen, wie
HOLD = ,High“ ist. Nachdem HOLD = ,Low“
wird, beginnt ein neuer Maschinenzyklus mit T;.
Ausgabesignal (aktiv ,,High*) sagt aus, daB sich der
Prozessor im HOLD-Zustand befindet, d. h. Daten-
und AdreBbus hochohmig sind.

Ausgabesignal (aktiv ,High*); sagt aus, daB der
INT-Eingang frei ist. Es wird riickgesetzt durch den
Befehl DI oder bei Annahme eines INT-Signals.
Eingabesignal (aktiv ,,High*)
Programmunterbrechungsanforderung

INT wird angenommen:

— am Ende eines Befehls;

— im HALT-Zustand;

- bei INTE = ,High“.

Die Programmunterbrechung entspricht dem INTER-
RUPT-MODE 0 des Bausteins U 880. Bei Annahme
der Programmunterbrechung wird ein INT-Zyklus
durchlaufen. Im INT-Zyklus wird

— im Statuswort das Signal INTA ausgesandt;

— im Zustand Tj; ein 1-Byte-Befehl vom Datenbus ein-
gelesen und sofort ausgefiihrt. Dazu verwendet man in
der Regel den Befehl RST.

Eingabesignal (aktiv ,High“)

Durch RESET wird der Baustein 8080 in den Grund-
zustand versetzt. Der Grundzustand ist gekennzeich-
net durch:

— PC geloscht;

— BR geldscht;

— INTE = ,Low“;

- HLTA = ,Low*;

Die Register A, B, C, D, E, H, L bleiben erhalten.

EREREEER

MEMR — Linta
INP “WO (Ausgabeoperation)
ADR-Bus enthdit
Adresse Eingabetor o4 STACK

(ADR-Bus enthdlt STACK-Adresse)

out HLTA
ADR -Bus enthdlt
Adresse Ausgabetor

Bild 4.17 Statuswort des Bausteins 8080

Statusinformationen

Zusitzlich zu den Steuersignalen, die direkt vom Prozessor 8080
ausgehen, gibt der Baustein 8080 am Anfang jedes Maschinenzy-
klus gleichzeitig mit dem Signal SYNC ein Statuswort iiber den Da-
tenbus aus. Bild 4.17 zeigt den Aufbau des Statuswortes.

4.2.5. AnschluB8 von Schaltkreisen an den Prozessor 8080

Mit Hilfe der Status- und Prozessor-Ein- und - Ausgabesignale wer-
den die am Prozessor angeschlossenen Bausteine gesteuert.
Bild 4.18 zeigt die Steuerung des Bausteins 8080 und die Bildung
von AdreBbus, Datenbus und Steuerbus zur Realisierung von Mi-
krorechneraufbauten.

Darin bedeuten (s. Taktdiagramm Bild 4.19):

Agbis A;s AdreBbus

Dy bis D; Datenbus

DBIN, WR 8080-Signale

INA DBIN-INTA Eingabesignal fiir INTERRUPT-
Befehl

IOR = DBIN:INP Eingabesignal fiir Eingabekanal

IOW = WR-OUT Ausgabesignal fiir Ausgangskanal

MER = DBIN-MEMR Speicherlesesignal

STR = &,:-SYNC Statusiibernahmesignal
D, 4 wird aus @, gebildet (etwas ver-
z0Ogertes D,)

165

BUSFREIGABE

Ao ﬁn 1
Ay
Ay
A
As
Ag | 9
A7 _g
As | 5
Ap [
Ay
. An
« 1
- "
Ass r___r 15
1
Do 24 3 Do
Dy |s7 g 6 D,T
D2 911 0 D2 |
D3 lf“ I | D; | 3
L C
QU
D 26 1 3 D, | @
D5 57 £ 6 Dy |©
Ds I © 0 Ds
D7 2% o n|= Dy -
DBIN
N ki
7 s
9 N o
o 5 B f}—IIOR
18 -
g n A
© 22 2 -
213 MER| é
El
i)
[l
- [o il {¥—wew
Takt- [REA
gene- |RESE
rator |SYNC WR
HOL! INT INT -
L STR

Bild 4.18 Bildung des Mikrorechnerbus mit dem Baustein 8080

166

STR — \

READY \ /
DBIN . - ———
W —————— —

Bild 4.19 Taktdiagramm zur Bildung des Mikrorechnerbus mit dem Baustein 8080

4.2.6. Befehlsschliissel des Prozessors 8080

Alle Befehle des 8080 sind auch im U 880 enthalten. Aus den Ta-
bellen im Anhang ist zu ersehen, welche Befehle des U 880 im 8080
vorkommen. Es sind auch die Befehle des U 808 D aufgefiihrt, die
sowohl im 8080 als auch im U 880 enthalten sind. Die Befehle des
U 808 D haben jedoch gegeniiber dem U 880 einen anderen Be-
fehlscode.

4.2.7. Programmunterbrechung

Der Baustein 8080 hat einen Programmunterbrechungseingang.
Der Ablauf der Programmunterbrechung ist identisch mit dem Ab-
lauf der Programmunterbrechung im Prozessor U 880 im MODE 0
(s. Abschnitt 4.1.6.).

Der einzige Unterschied besteht nach dem Einschalten der Span-
nungen bzw. nach RESET. Im Baustein U880ist nach Einschalten
der Spannungen und nach RESET der maskierte Eingang ge-
sperrt.

Ein INTERRUPT kann nur iiber den nichtmaskierten Eingang
kommen. Nach RESET startet der Prozessor U 880 automatisch
bei Zelle 0. Im Baustein 8080 ist nach Einschalten der Spannungen
und nach RESET der INTERRUPT-Eingang offen. Der Prozessor
8080 wird iiber INTERRUPT gestartet.

167

Anhang

Befehlstabellen der Prozessoren U 880und 8080

Abkiirzungen

n 8-Bit-Zahl,

nn 16-Bit-Zahl,

N Register A,B,C,D, E, H, L,

M Speicherzelle ADR = (HL), (IX + d,), (IY + d).

Befehlsgruppen (Ubersicht)
0 AdreBoperationen (stehtin Verbindung mit Befehlen, die
zum Speicher zugreifen)
1 Transportoperationen 1 Wort
Doppelwort
Blocktransfer
2 Rechen- und logische Operationen mit 1 Operand
{Akkumulatorbefehle logische Operationen

1-Wort-Befehle Verschiebeoperationen
Dappelwortbefehle Bit-Operation
Rechenoperationen
3 Rechen-undlogische —1-Wort-Befehle
Operationen mit 2——|:
Operanden Doppelwortbefehle

4 Rechen- und logische Operationen mit Feldern
5 Sprungbefehle
6 Unterprogramm-Befehle—[:Aufruf des Unterprogramms
Riickkehr zum Hauptprogramm
7 Ein-/Ausgabebefehle 1-Wort-Befehle
Blocktransfer
8 Steuerbefehle

Tabelle der U 880-Befehle

Einzelworttransfer
IDr,ss »r
ILDd,rr -d
LDA,ss - A
LDd A A —-d

168

s=n NM) r=N CZP/NV SNH (Beiallen
r=n N d=NM O {Transportbef.
s=(BC),(DE),(m),LR § IFF $ 0 0 (LDA,I
d=(BC), (DE), (nn),,R {LD AR

Doppelworttransfer

LDdd,nn nn—>dd)dd=BC,DE,HL, CZ P/VSNH
LD dd, (nn) (nn) — dd} SP, IX, IY Co
LD (nn), ss ss — (nn), ss = BC, DE, HL, SP, IX, I'Y

LD SP,ss ss— SP ss = HL, IX, IY

PUSHss ss— STACK} ss = BC, DE, HL, AF, IX, IY

POP ss STACK — ss
Registeraustausch
EXDE, HL DE e HL CZPVSNH

EX AF, AF'? AF ©A'F o
EXX BCoB'C' DE < D'E’ HK < H'L'
EX (SP),ss ss <« (SP + 1), (SP) ss = HL, IX,IY

Blocktransfer CZPVSNH
X { X0 0LDI,LDD
X0 XO0 0LDIR,LDDR
LDIR —— (H) —= (DE)

LDDR HL+1 —e HL DE +1—=DE bei LDIR und LDI
LDI HL-1 —e HL DE-1—=DE bei LDDR und LDD

LDD BC-1—=BC

bei LDIR und LDDR

Ende

Rechenoperationen und logische O perationen mit 1 Operand
CZPVSN

CPL A>A R |

NEG A+15A 1t v 1

© =y

D N = Register A,B,C,D,E, H, L
M = Speicherzelle ADR = (HL), (IX + d), (IY + d)

9 Inder Assemblersprache K 1520 wird statt EX AF, AF' EXAF
geschrieben.

169

CCF CoC 3 0 X
SCF 1 - C 1. . .00
DAABCD (A) — A t1 Pt .3
DECd d - 15d), _ .t vty
INCd d + 15d }d‘N’M t v 1071
BITb, s S — Z $ X X0 1
SETb, s 1 -5 s _ .
RESb,s 0 — s, OB I
INCdd dd + 1-dd)dd =BC,DE, HL, SP,IX,IY
DECdd dd - 1->dd CZPVS NH
Verschiebebefehle RLCA,RLA,
RRCA, RRA
RCLs H CZPVS NH
RLCA 1 00
RLs
RLA
RLCs, RLs, RRCs,
RRCs | —— | RRs,SLAs,SRAs,
RRCA - SRLs
CZPVS NH
1T P OO
RRS -—. Cc
RRA .
stas [PH—{=—}—o
s —
SRL s
o~ —]

170

[3

RLD (H) RLD, RRD
! PLO0O
A I

Rechenoperationen mit 2 Operanden

8-Bit-Operationen ADD, ADC
CZPNVS NH

ADDs A+s>A !¢ viog

ADCs A+s+C—>A SUB, SBC, CP

SUBs A-s—>A CZPVS NH

SBCs A-s—-Co>A s=NnpMY) $ 3 vilg

ANDs AAs—> A beiAND C ZPV SN H

ORs Avs—A 0y P 0 1

XORs ADs—>A 0-bei OR, XOR

CPs VergleichA,s A — sstellt Flags

16-Bit-Operationen

ADDHL,ss HL+ss— HL

ADCHL,ss HL+ss+C—HL] ss=BC,DE, HL, SP

SBCHL,ss HL-ss— C—HL

ADDIX,ss IX+ss—>IX ss = BC, DE, IX, SP

ADDIY,ss IY+ss—>IY ss=BC,DE,IY,SP
CZPVS NH
? .. 0X
1?4 viog
1t vi1 g
0 o3
! -1

') N =Register A, B,C,D,E,H,L
M = Speicherzelle ADR = (HL), (IX + d),)IY +d)

17

Rechenoperationen auf Feldern CZPVS NH

Suchoperationen 07 X1X
—=vergleich A, {HL) A - (HL) A — (HL)stellt Flags
CPIR PTIED
CPDR HL+1—s H. H.+1 — HL beiCPIR und CPI
CPI HL-1—e HL HL-1 oy beiCPDRundCPD
CPD
BC-1—= BC BC-1—» BC
bei CPIR und CPDR
Sprungbefehle
JPnn nn— PC
JPcc, nnl) nn— PC, wenn ccerfiillt cc = NZ, Z, NC, C, PO,
PE,P,M
JRe PC+e—PC
JRKK, e2) PC+ e— PC,wennkkerfiilltkk =NZ,Z,NC,C
JP (ss) ss— PCss = HL, IX, IY
CZPVS NH

DINZ e B -1—eB

ja

ndchster Befehl

Unterprogrammbefehle CZPVS NH
CALLnn PC—-STACK nn—PC

CALL cc, nn®) CALL nn, wenn erfiillt cc = NZ, Z, NC, C, PO

PE,P,M

!) In der Assemblersprache K 1520 wird statt JP nn JPM nn, JP (ss) JMP (ss) und JP cc,
nnJPccnn geschrieben.

2) Inder Assemblersprache K 1520 wird statt JR kk, nn JRkk nn geschrieben.

%) Inder Assemblersprache K 1520 wird statt CALL cc, nn CAcc nn geschrieben.

172

RSTZ CALL ZmitZ = OH, 8H, 10H, 18H, ..., 38H
RET STACK—PC

RETcc?) STACK — PC, wenn cc erfiillt

RETN Riicksprung aus nichtmaskiertem Interrupt

RETI Riicksprung aus maskiertem Interrupt
AdreBbus

Ein-/ Ausgabebefehle Ais...Ag Aj...Ag

INA,(n)®(n)>A A n

INT, (C) (C)>r1r=N» B C

OUT (n),AA— (n) A n

OUT(C),rr— (C)r=N» B C

CZPVS NH
. . bei Adresse n
! P § 0 O beiAdresseC

Blockeingabe
(€ —= (H) AdreBbus
HL+1—=HL bei INIR und INI Asis...As Aj...Ag
HL-1—eHL bei INDR und IND

B-1—+=B
INLIND,OUTLOUTD

bei INIR und INDR CZPVS NH
I X X1X
Ende
Blockausgabe INIR, INDR,
OTIR, OTDR
CZPVS NH
—= (H)— (c) .1 XX1X
HL +1—= HL bei OTIR und OUTI
HL -1—» HL bei OTDR und OUTD
B -1—=B
n(B=0?> bei OTIR und OTOR
ja
Ende

%) In der Assemblersprache K 1520 wird statt RET cc Rcc geschrieben, cc und kk wie
oben.

%) NistRegister A,B,C,D,E,H, L.

6) Inder Assemblersprache K 1520 lauten die 4 E/A-Befehle INn, INr, OUT n, OUTT.

173

Steuerbefehle

NOP keine Operation

HALT Haltbefehl

DI 0— IFF INTERRUPT gesperrt
EI 1-IFF INTERRUPTfrei
IMO MODO Befehl vomBus

IMI MOD1 CALL38H

IM2 MOD2 CALL({I,IV)

Tabelle der 8080-Befehle
Einzelworttransfer

MOV r1,s s—r
MVI r,n n-or

s,r=N,M

CZPVS NH

CZPSH

[Nist Register A,B,C,C,B, H L
Ma st Speicherzelle, ADR = (HL)]
STAX ss A— (ss)ss=BC,DE
LDAXss (ss)— Ass=BC,DE

STA nn A— (nn)
LDA nn (nn)—> A
SPHL HL - SP

Doppelworttransfer

LXI dd, nnnn—dddd=BC,DE,HL

SHLD nn HL— (nn)
LHLD nn {(nn)—HL

PUSH ss ss— STACK ss=BC,DE, HL, AF
POP ss STACK—ss ss=BC,DE,HL, AF

Registeraustausch
XCHG HL &DE

XTHL HLo (SP +1),(SP)

CZPSH

Rechenoperationen und logische Operationen mit 1 Operand

CMC C->C
STC 1-C
CMA A->A

DAA BCD(A)—»A

INRd d+1-d
DCRd d-1-d

174

CZPS

!
1

!

oo
oo
oo .
oo~ o X T

INX dd dd+1—>dd} dd = BC,DE,HL,SP CZPSH

DCXdd dd - 1-—dd

Verschiebebefehle

RLC l-—.
A

RAL
A

we =]

A

RAR

A

Rechenoperationen mit 2 Operanden

8-Bit-Operationen

ADDr A+r—-A \
ADCr A+r+C->A
SUBr A-1—>A
SBB r A-r—-C-oA
ANAT AAr—A > r=N,M
ORATr Avr-A
XRAr A®r-A
CMP r Vergleich A, r
A —rsetzt die Flags J
ADI n A+n->A
ACI n A+n+C-A
SUIL n A-n-A
SBI n A-n-C->A
ANI n AAn-—>A
ORI n Avn-oA
XRI n A®n—-A
CPI n VergleichA,n

A — nsetzt die Flags

CZPSH
$...0

175

16-Bit-Operationen CZPSH
DAD ss HL+ss— HLss=BC,DE, HL,SP .. . X

Sprungbeéfehle CZPSH

PCHL HL— PC

JMP nn nn—PC

Jcc nn nn— PC,wennccerfiilltcc=NZ,Z,NC,C,PO, PE,
P,M

Unterprogrammbefehle CZPSH

CALLnn PC—-STACK,nn— PC

Ccc nn CALLnn, wenn ccerfiillt, sonst Leerbefehl
cc=NZ,Z,NC, C,PO,PE,P,M

RST Z wieCALLZ Z=0H,8H,10H,...,38H

RET STACK—-PC

Rcc RET, wenn ccerfiillt, sonst Leerbefehl
cc=NZ,Z,NC,C,PO,PE,P,M

Ein-/ Ausgabebefehle CZPSH
AdreBbus .o
A15...A8 A7A0

IN n (n)->A A n

OUT n A-(n) A n

Steuerbefehle CZPSH
EI INTERRUPTfrei D
DI INTERRUPT gesperrt

HLT HALT

NOP keine Operation

Tabelle der U 808 D-Befehle

Einzelworttransfer CSZP
MOV r,ss—r
MVI r,nn-r } s,T=N,M

Rechenoperationen und logische O perationen mit 1 Operand

CSZP
INR d d+1-d XY
DCR d d-1-d O

176

Verschiebebefehle CSzp

T .
-
A
w L=lg
—_— c

A
RAR

A
Rechenoperationen mit 2 Operanden
8-Bit-Operationen CZPS
ADDr A+r— A \ 11112
ADCr A+r+C->A
SUBr A-r—A
SBBr A-r—-C->A
ANAT AArsA > r=N,M
ORArT Avr->A
XRAr A®@r—A
CMP r VergleichA,r

A —rseiztdieFlags /

ADI n A+n->A CZPS
ACI n A+n+C-A 1112
SUIl n A-n->A
SBI n A-n-C->A
ANI n AAn—>A
ORI 2 Avn-A
XRI n A®n—>A
CPI n VergleichA,n

A — nsetzt die Flags

177

Sprungbefehle CZPS

JMP nn nn-—>PC

Jcc nn nn— PC, wenn cc erfiillt, sonst Leerbefehl
cc=NZ,Z,NC,C,PO,PE,P,M

Unterprogrammbefehle CZPS

CALLnn PC— STACK nn—-PC

Ccc nn CALL nn, wenn cc erfiillt, sonst Leerbefehl
cc=NZ,Z,NC, C, PO, PE,PM

RST Z WieCALLZ Z=0H,8H,10H,...,38H

RET STACK - PC

Rcc .RET, wenn cc erfiillt, sonst Leerbefehl
cc=NZ,Z,NC, C, PO, PE, P, M

Ein-/Ausgabebefehle CZPS

IN n (n)->A n = 0 bis 7 (Geriteadresse)

OUT n A-(n) n = 8 bis 31 (Geriteadresse)

Steuerbefehle CZPS

HLT HALT

NOP keine Operation

Codierungstabelle U 880

1. Byte

Opcode U 880 Opcode U 880

00 NOP 10 DINZe

01 LD BC,an 1 LD DE,nn

2 LD (BC),A 12 LD (DE),A

03 INCBC 13 INCDE

04 INCB 14 INCD

05 DECB 15 DECD

06 LDB,n 16 LDD,n

07 RLCA 17 RLA

08 EXAF 18 JRe

09 ADDHL,BC 19 ADDHL,DE

0A LD A,(BC) 1A LD A,(DE)

0B DECBC 1B DECDE

0C INCC 1C INCE

oD DECC 1D DECE

0E LDC,n 1IE LDE,nn

OF RRCA 1IF RPA

178

Opcode U 880 Opcode U880

20 JRNZe 30 JRNCe
21 LDHL,nn 31 LD SP,nn
2 LD (adr),BC 32 LD (adr),A
23 INCHL 33 INCSP
24 INCH 34 INCM
25 DECH 35 DECM
26 LDH,n 36 LDM;n
27 DDA 37 SCF

28 JRZe 38 JRCe
29 ADDHL,HL 39 ADD HL,SP
2A LD HL,(adr) 3A LD A,(adr)
2B DECHL 3B DEC SP
2C INCL 3C INCA
2D DECL 3D DECA
2E LDL,n 3E LDA,n
2F CPL 3F CCF

40 LDB,B 50 LDD,B
41 LDB,C 51 LDD,C
42 LDB,D 52 LDD,D
43 LDB,E 53 LDD,E
4 LDB,H 54 LDD,H
45 LDB,L 55 LDD,L
46 LDBM 56 LDDM
47 LDB,A 57 LDD,A
48 LDC,B 58 LDD,B
49 LDC,C 59 LDD,C
4A LDC,D SA LDD,D
4B LDC,E 5B LDD,E
4C LDCH 5C LDD,H
4D LDC,L 5D LDD,L
4E LDCM SE LDD,M
4F LDC,A SF LDD,A
60 LDH,B 70 LDM,B
61 LDH,C nn LDM,C
62 LDH,D 72 LDM,D
63 LDH,E 73 LDM,E
64 LDH,H 74 LDM,H
65 LDH,L 75 LDM,L
66 LDHM 76 HALT
67 LDH,A 77 LDM,A
68 LDL,B 78 LDA,B
69 LDL,C 79 LDA,C
6A LDL,D 7A LDA,D
6B LDL,E 7B LDA,E
6C LDL,H 7C LDAH
6D LDL,L D LDA,L
6E LDLM 7E LDAM
6F LDL,A 7F LDAA

179

Opcode U880 Opcode U 880

80 ADDB 90 SUBB
81 ADDC 91 SUBC
82 ADDD 92 SUBC
83 ADDE 93 SUBE
84 ADDH 94 SUBH
85 ADDL 95 SUBL
86 ADDM 96 SUBM
87 ADD A 97 SUBA
88 ADCB 98 SBCB
89 ADCC 99 SBCC
8A ADCD 9A SBCD
8B ADCE 9B SBCE
8C ADCH 9C SBCH
8D ADCL 9D SBCL
8E ADCM 9E SBCM
8F ADCA 9F SBCA
A0 ANDB B0 ORB
Al ANDC B1 ORC
A2 ANDC B2 ORD
A3 ANDE B3 ORE
A4 ANDH B4 ORH
AS ANDL BS ORL
A6 ANDM B6 ORM
A7 AND A B7 ORA
A8 XORB B8 CMPB
A9 XORC B9 CMPC
AA XORD BA CMPD
AB XORE BB CMPE
AC XORH BC CMPH
AD XORL BD CMPL
AE XORM BE CMPM
AF XOR A BF CMP A
Co RNZ DO REC
C1 POPBC D1 POPDE
(67 JPNZ nn D2 JPNCnn
C3 JMPnn D3 OUTn
C4 CANZnn D4 CANCnn
CS PUSHBC D5 PUSHDE
C6 ADDn D6 SUBn
c1 RSTOH D7 RST10H
C8 RZ D8 RC
9 RET D9 EXX
CA JPZnn DA JPCnn
CB Verschiebe- und DB INn
Bitbefehle
CcC CAZnn DC CACnn

180

Opcode U 880 Opcode U880
CD CALLadr DD IX-Befehle
CE ADCn DE SBCn
CF RST8H DF RST 18H
EO0 RPO FO RP
El POPHL F1 POPAF
E2 JPPOnn F2 JPPnn
E3 EX(SP),HL F3 DI
E4 CAPOnn F4 CAPnn
ES PUSHHL FS PUSH AF
E6 ANDn F6 ORn
E7 RSTPOH F7 RST30H
E8 RPE F8 RM
E9 JMPM F9 LD SP,HL
EA JPPEnn FA JPMnn
EB EXDE,HL FB EI
EC CAPEnn FC CAMnn
ED Sondertransport- FD I'Y-Befehle

befehle
EE XORn FE CMPn
EF RST28H FF RST38H
Verschiebe- und Bitbefehle
1. Byte CB
2. Byte 76543210

REG

00RLC OB
01RRC 1C
02 RL 2D
0 3 RR 3E
0 4 SLA 4 H
05SRA SL
06 - 6 M
0 7 SRL 7A
1 0 BIT O,r
1 BIT 1,r
2 BIT 2,r
3 BIT 3,r
4 BIT 4,r
5 BIT 5,r
6 BIT 6,r
7 BIT 7,r
2 0 RES O,r
2 1RES 1r

—_ e e e e

181

2 2 RES 2,1
2 3 RES 31
2 4 RES 4,1
2 5 RES 5,
2 6 RES 6,1
2 7 RES 7,
3 0 SET O
31SET 1,r
32 SET 2
33 SET 3
3 4 SET 4
35 SET 5,
3 6 SET 6,
37 SET 7

Indexbefehle mit IX

(bei Indexbefehlen mit IY ist das 1. Byte FD)

DD09
DD19

DD21
DD22
DD23
DD29
DD2A
DD2B
DD34
DD35
DD36
DD39
DD46
DD4E
DD56
DDSE
DD66
DD6E
DD70
DD71
DD72
DD73
DD74
DD75
DD77
DD7E
DCBof86
DDCB of 8E
DDCB of%6
DDCB of9E
DDCB of A6

182

ADD
ADD
LD
LD
INC
ADD
LD
DEC
INC
DEC
LD
ADD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
RES
RES
RES
RES
RES

IX,BC
IX,DE
IX, dddd
(adr), IX
X

IX, (adr)

IX
(IX+offset)
(IX+offset)
(IX+offset),dd
IX, SP

B, (IX+offset)
C, (IX+offset)
D, (IX+offset)
E, (IX+offset)
H, (IX+offset)
L, (IX+offset)
(IX+offset), B
(IX+offset), C
(IX+offset), D
(IX+offset), E
(IX+offset), H
(IX+offset), L
(IX+offset), A
A, (IX+offset)
0, (IX+offset)
1, (IX+offset)
2, (IX+offset)
3, (IX+offset)
4, (IX+offset)

DD86
DDSE
DD9%
DDYE
DDA6
DDAE
DDB6
DDBE
DDCB of 06
DDCBof0OE
DDCBof 16
DDCBof 1E
DDCB of26
DDCB of2E
DDCB of 3E
DDCBof46
DDCBof4E
DDCB of 56
DDCB of SE
DDCB of 66
DDCB of6E
DDCB of76
DDCB of 7E

ADD
ADC
SUB
SBC

XOR
OR

RLC
RRC

RR
SIA
SRA
SRL
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

A, (IX+offset)
A, (IX+offset)
(IX+offset)

A, (IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)
(IX+offset)

0, (IX+offset)
1, (IX+offset)
2, (IX+offset)
3, (IX+offset)
4, (IX+offset)
5, (IX+offset)
6, (IX+offset)
7, (IX+offset)

DDCBof AE RES
DDCBofB6 RES
DDCBofBE RES
DDCBofC6 SET
DDCBofCE SET
DDCBofD6 SET
DDCBofDE SET
DDCBofE6 SET
DDCBofEE SET
DDCBofF6 SET
DDCBofFE SET
DDEI1 POP
DDE3 EX
DDES PUSH
DDE9 JP
DDF LD
Sondertransportbefehle
ED40 IN
ED41 ouT
ED42 SBO
ED43 LD
ED44 NEG
ED45 RETN
ED46 M
ED47 LD
ED48 IN
ED49 ouT
ED4A ADC
ED4B LD
ED4D RETI
ED50 IN
EDS51 ouT
ED52 SBC
EDS53 LD
EDS6 M
ED57 LD
EDS58 IN
ED59 ouT
ED5SA ADC
EDSB LD
EDSE M
ED60 IN
ED61 ouT
ED62 SBC
ED67 RRD

5, (IX+offset)
6, (IX+offset)
7, (IX+offset)
0, (IX+offset)
1, (IX+offset)
2, (IX+offset)
3, (IX+offset)
4, IX+offset)
5, (IX+offset)
6, (IX+offset)
7, (IX+offset)
IX

(SP),IX

IX

(IX)

SP,IX

BC, (adr)

D
HL,DE
(adr), DE
1

Al

E

E
HL,DE
DE, (adr)
2

H
H
HL,HL

ED68
ED69
ED6A
ED6F
ED72
ED73
ED78
ED79
ED7A
ED7B
EDAO
EDA1
EDA2
EDA3
EDAS8
EDA9
EDAA
EDAB
EDBO
EDB1
EDB2
EDB3
EDB6
EDB9
EDBA
EDBB

IN
ouT
ADC

SBC
LD

IN
ouT
ADC
LD
LDI
CPI
INI
OUTI
LDD
CPD
IND
OUTD
LDIR
OPIR
INIR
OTIR
LDDR
CPDR
INDR
OTDR

L
L
HL,HL

HL,SP
(adr), SP
A

A
HL,SP
SP, (adr.)

183

	Image 00
	Image 000
	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006
	Image 0007
	Image 0008
	Image 0009
	Image 0010
	Image 0011
	Image 0012
	Image 0013
	Image 0014
	Image 0015
	Image 0016
	Image 0017
	Image 0018
	Image 0019
	Image 0020
	Image 0021
	Image 0022
	Image 0023
	Image 0024
	Image 0025
	Image 0026
	Image 0027
	Image 0028
	Image 0029
	Image 0030
	Image 0031
	Image 0032
	Image 0033
	Image 0034
	Image 0035
	Image 0036
	Image 0037
	Image 0038
	Image 0039
	Image 0040
	Image 0041
	Image 0042
	Image 0043
	Image 0044
	Image 0045
	Image 0046
	Image 0047
	Image 0048
	Image 0049
	Image 0050
	Image 0051
	Image 0052
	Image 0053
	Image 0054
	Image 0055
	Image 0056
	Image 0057
	Image 0058
	Image 0059
	Image 0060
	Image 0061
	Image 0062
	Image 0063
	Image 0064
	Image 0065
	Image 0066
	Image 0067
	Image 0068
	Image 0069
	Image 0070
	Image 0071
	Image 0072
	Image 0073
	Image 0074
	Image 0075
	Image 0076
	Image 0077
	Image 0078
	Image 0079
	Image 0080
	Image 0081
	Image 0082
	Image 0083
	Image 0084
	Image 0085
	Image 0086
	Image 0087
	Image 0088
	Image 0089
	Image 0090
	Image 0091
	Image 0092
	Image 0093
	Image 0094
	Image 0095
	Image 0096
	Image 0097
	Image 0098
	Image 0099
	Image 0100
	Image 0101
	Image 0102
	Image 0103
	Image 0104
	Image 0105
	Image 0106
	Image 0107
	Image 0108
	Image 0109
	Image 0110
	Image 0111
	Image 0112
	Image 0113
	Image 0114
	Image 0115
	Image 0116
	Image 0117
	Image 0118
	Image 0119
	Image 0120
	Image 0121
	Image 0122
	Image 0123
	Image 0124
	Image 0125
	Image 0126
	Image 0127
	Image 0128
	Image 0129
	Image 0130
	Image 0131
	Image 0132
	Image 0133
	Image 0134
	Image 0135
	Image 0136
	Image 0137
	Image 0138
	Image 0139
	Image 0140
	Image 0141
	Image 0142
	Image 0143
	Image 0144
	Image 0145
	Image 0146
	Image 0147
	Image 0148
	Image 0149
	Image 0150
	Image 0151
	Image 0152
	Image 0153
	Image 0154
	Image 0155
	Image 0156
	Image 0157
	Image 0158
	Image 0159
	Image 0160
	Image 0161
	Image 0162
	Image 0163
	Image 0164
	Image 0165
	Image 0166
	Image 0167
	Image 0168
	Image 0169
	Image 0170
	Image 0171
	Image 0172
	Image 0173
	Image 0174
	Image 0175
	Image 0176
	Image 0177
	Image 0178
	Image 0179
	Image 0180
	Image 0181
	Image 0182
	Image 0183

