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Abstract 
 

The article contains the competition problems given at he 1st International Physics 
Olympiad (Warsaw, 1967) and their solutions. Additionally it contains comments of historical 
character. 
 

Introduction 
 

 One of the most important points when preparing the students to the International 
Physics Olympiads is solving and analysis of the competition problems given in the past. 
Unfortunately, it is very difficult to find appropriate materials. The proceedings of the 
subsequent Olympiads are published starting from the XV IPhO in Sigtuna (Sweden, 1984). It 
is true that some of very old problems were published (not always in English) in different 
books or articles, but they are practically unavailable. Moreover, sometimes they are more or 
less substantially changed.  

The original English versions of the problems of the 1st IPhO have not been conserved. 
The permanent Secretariat of the IPhOs was created in 1983. Until this year the Olympic 
materials were collected by different persons in their private archives. These archives as a rule 
were of amateur character and practically no one of them was complete. This article is based 
on the books by R. Kunfalvi [1], Tadeusz Pniewski [2] and Waldemar Gorzkowski [3]. 
Tadeusz Pniewski was one of the members of the Organizing Committee of the Polish 
Physics Olympiad when the 1st IPhO took place, while R. Kunfalvi was one of the members 
of the International Board at the 1st IPhO. For that it seems that credibility of these materials 
is very high. The differences between versions presented by R. Kunfalvi and T. Pniewski are 
rather very small (although the book by Pniewski is richer, especially with respect to the 
solution to the experimental problem).  

As regards the competition problems given in Sigtuna (1984) or later, they are 
available, in principle, in appropriate proceedings. “In principle” as the proceedings usually 
were published in a small number of copies, not enough to satisfy present needs of people 
interested in our competition. It is true that every year the organizers provide the permanent 
Secretariat with a number of copies of the proceedings for free dissemination. But the needs 
are continually growing up and we have disseminated practically all what we had. 

The competition problems were commonly available (at least for some time) just only 
from the XXVI IPhO in Canberra (Australia) as from that time the organizers started putting 
the problems on their home pages. The Olympic home page www.jyu.fi/ipho contains the 
problems starting from the XXVIII IPhO in Sudbury (Canada). Unfortunately, the problems 
given in Canberra (XXVI IPhO) and in Oslo (XXVII IPhO) are not present there. 

The net result is such that finding the competition problems of the Olympiads 
organized prior to Sudbury is very difficult. It seems that the best way of improving the 
situation is publishing the competition problems of the older Olympiads in our journal. The 
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question arises, however, who should do it. According to the Statutes the problems are created 
by the local organizing committees. It is true that the texts are improved and accepted by the 
International Board, but always the organizers bear the main responsibility for the topics of 
the problems, their structure and quality. On the other hand, the glory resulting of high level 
problems goes to them. For the above it is absolutely clear to me that they should have an 
absolute priority with respect to any form of publication. So, the best way would be to publish 
the problems of the older Olympiads by representatives of the organizers from different 
countries. 

Poland organized the IPhOs for thee times: I IPhO (1967), VII IPhO (1974) and XX 
IPhO (1989). So, I have decided to give a good example and present the competition problems 
of these Olympiads in three subsequent articles. At the same time I ask our Colleagues and 
Friends from other countries for doing the same with respect to the Olympiads organized in 
their countries prior to the XXVIII IPhO (Sudbury). 
 

I IPhO (Warsaw 1967) 
 

The problems were created by the Organizing Committee. At present we are not able 
to recover the names of the authors of the problems. 
 

Theoretical problems 
 
Problem 1 
 
 A small ball with mass M = 0.2 kg rests on a vertical column with height h = 5m. A 
bullet with mass m = 0.01 kg, moving with velocity v0 = 500 m/s, passes horizontally through 
the center of the ball (Fig. 1). The ball reaches the ground at a distance s = 20 m. Where does 
the bullet reach the ground? What part of the kinetic energy of the bullet was converted into 
heat when the bullet passed trough the ball? Neglect resistance of the air. Assume that g = 10 
m/s2. 
 

 Fig. 1 

M 

s 

h 
 

m    v0 



Solution 
 

 
 

 
 

Fig. 2 
 
 We will use notation shown in Fig. 2.  
 
 As no horizontal force acts on the system ball + bullet, the horizontal component of 
momentum of this system before collision and after collision must be the same: 
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So,  
 

V
m
Mvv −= 0 . 

 
From conditions described in the text of the problem it follows that 
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 After collision both the ball and the bullet continue a free motion in the gravitational 
field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of 
the bullet are continued for the same time: 
 

.2
g
ht =  

d 

M 

s 

h 
 

m    v0 v – horizontal component of the velocity 
of the bullet after collision 
V – horizontal component of the velocity 
of the ball after collision 



 
It is time of free fall from height h. 
 The distances passed by the ball and bullet during time t are: 
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respectively. Thus 
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Finally: 
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Numerically: 

d = 100 m. 
 
 The total kinetic energy of the system was equal to the initial kinetic energy of the 
bullet: 
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Immediately after the collision the total kinetic energy of the system is equal to the 

sum of the kinetic energy of the bullet and the ball: 
 

2

2mvEm = ,     
2

2MVEM = . 

 
Their difference, converted into heat, was 
 

)(0 Mm EEEE +−=∆ . 
 
It is the following part of the initial kinetic energy of the bullet: 
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By using expressions for energies and velocities (quoted earlier) we get 
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Numerically: 

 p = 92,8%. 
 

Problem 2 
 
 Consider an infinite network consisting of resistors (resistance of each of them is r) 
shown in Fig. 3. Find the resultant resistance ABR  between points A and B. 
  
 
 
 
 
 
 
 
 

Fig. 3 
 
Solution 
 
 It is easy to remark that after removing the left part of the network, shown in Fig. 4 
with the dotted square, then we receive a network that is identical with the initial network (it 
is result of the fact that the network is infinite).  
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 

 
Thus, we may use the equivalence shown graphically in Fig. 5. 
 
 
 
 
 

 
 
 

Fig. 5 
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Algebraically this equivalence can be written as 
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Thus 
 

022 =−− rrRR ABAB . 
 
This equation has two solutions: 
 

rRAB )51(2
1 ±= . 

 
 The solution corresponding to “-“ in the above formula is negative, while resistance 
must be positive. So, we reject it. Finally we receive 
 

rRAB )51(2
1 += . 

 
Problem 3 
 
 Consider two identical homogeneous balls, A and B, with the same initial 
temperatures. One of them is at rest on a horizontal plane, while the second one hangs on a 
thread (Fig. 6). The same quantities of heat have been supplied to both balls. Are the final 
temperatures of the balls the same or not? Justify your answer. (All kinds of heat losses are 
negligible.) 
 
 
 
 
 
 
 
 

Fig. 6 
Solution 
 
 
 
 
 
 
 
 
 

Fig. 7 
 
 As regards the text of the problem, the sentence “The same quantities of heat have 
been supplied to both balls.” is not too clear. We will follow intuitive understanding of this 
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sentence, i.e. we will assume that both systems (A – the hanging ball and B – the ball resting 
on the plane) received the same portion of energy from outside. One should realize, however, 
that it is not the only possible interpretation. 
 When the balls are warmed up, their mass centers are moving as the radii of the balls 
are changing. The mass center of the ball A goes down, while the mass center of the ball B 
goes up. It is shown in Fig. 7 (scale is not conserved). 

Displacement of the mass center corresponds to a change of the potential energy of the 
ball in the gravitational field.  
 In case of the ball A the potential energy decreases. From the 1st principle of 
thermodynamics it corresponds to additional heating of the ball. 
 In case of the ball B the potential energy increases. From the 1st principle of 
thermodynamics it corresponds to some “losses of the heat provided” for performing a 
mechanical work necessary to rise the ball. The net result is that the final temperature of the 
ball B should be lower than the final temperature of the ball A. 
 The above effect is very small. For example, one may find (see later) that for balls 
made of lead, with radius 10 cm, and portion of heat equal to 50 kcal, the difference of the 
final temperatures of the balls is of order 10-5 K. For spatial and time fluctuations such small 
quantity practically cannot be measured. 
 Calculation of the difference of the final temperatures was not required from the 
participants. Nevertheless, we present it here as an element of discussion. 
 We may assume that the work against the atmospheric pressure can be neglected. It is 
obvious that this work is small. Moreover, it is almost the same for both balls. So, it should 
not affect the difference of the temperatures substantially. We will assume that such quantities 
as specific heat of lead and coefficient of thermal expansion of lead are constant (i.e. do not 
depend on temperature). 
 The heat used for changing the temperatures of balls may be written as 
 

BAitmcQ ii or       where, =∆= , 
 

Here: m  denotes the mass of ball, c  - the specific heat of lead and it∆  - the change of the 
temperature of ball. 
 

The changes of the potential energy of the balls are (neglecting signs): 
 

BAitmgrE ii or         where, =∆=∆ α . 
 
Here: g  denotes the gravitational acceleration, r  - initial radius of the ball, α  - coefficient of 
thermal expansion of lead. We assume here that the thread does not change its length. 
  
 Taking into account conditions described in the text of the problem and the 
interpretation mentioned at the beginning of the solution, we may write: 
 

AEAQQ AA  ball for the   ,∆−= , 
BEAQQ BB  ball for the   ,∆+= . 

 

A  denotes the thermal equivalent of work: 
J

cal24.0≈A . In fact, A  is only a conversion ratio 

between calories and joules. If you use a system of units in which calories are not present, you 
may omit A  at all. 



 Thus 
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(We neglected the term with 2α  as the coefficient α  is very small.) 
 
 Now we may put the numerical values: =Q 50 kcal, 24.0≈A cal/J, 8.9≈g m/s2, 

≈m 47 kg (mass of the lead ball with radius equal to 10 cm), =r 0.1 m, 031.0≈c cal/(g⋅K), 
≈α 29⋅10-6 K-1. After calculations we get ≈∆t 1.5⋅10-5 K. 

 
Problem 4 
 
Comment: The Organizing Committee prepared three theoretical problems. Unfortunately, at 
the time of the 1st Olympiad the Romanian students from the last class had the entrance 
examinations at the universities. For that Romania sent a team consisting of students from 
younger classes. They were not familiar with electricity. To give them a chance the 
Organizers (under agreement of the International Board) added the fourth problem presented 
here. The students (not only from Romania) were allowed to chose three problems. The 
maximum possible scores for the problems were: 1st problem – 10 points, 2nd problem – 10 
points, 3rd problem – 10 points and 4th problem – 6 points. The fourth problem was solved by 
8 students. Only four of them solved the problem for 6 points. 
 
 A closed vessel with volume V0 = 10 l contains dry air in the normal conditions (t0 = 
0°C, p0  = 1 atm). In some moment 3 g of water were added to the vessel and the system was 
warmed up to t = 100°C. Find the pressure in the vessel. Discuss assumption you made to 
solve the problem. 
 
Solution 
 
 The water added to the vessel evaporates. Assume that the whole portion of water 
evaporated. Then the density of water vapor in 100°C should be 0.300 g/l. It is less than the 
density of saturated vapor at 100°C equal to 0.597 g/l. (The students were allowed to use 
physical tables.) So, at 100°C the vessel contains air and unsaturated water vapor only 
(without any liquid phase). 
 Now we assume that both air and unsaturated water vapor behave as ideal gases. In 
view of Dalton law, the total pressure p in the vessel at 100°C is equal to the sum of partial 
pressures of the air pa and unsaturated water vapor pv: 
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 As the volume of the vessel is constant, we may apply the Gay-Lussac law to the air. 
We obtain: 
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 The pressure of the water vapor may be found from the equation of state of the ideal 
gas: 
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where m denotes the mass of the vapor, µ - the molecular mass of the water and R – the 
universal gas constant. Thus, 
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and finally 
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Numerically: 
 

atm. 88.1 atm )516.0366.1( ≈+=p  
 
Experimental problem 
 

The following devices and materials are given: 
 

1. Balance (without weights) 
2. Calorimeter 
3. Thermometer 
4. Source of voltage 
5. Switches 
6. Wires 
7. Electric heater 
8. Stop-watch 
9. Beakers 
10. Water 
11. Petroleum 
12. Sand (for balancing) 

 
Determine specific heat of petroleum. The specific heat of water is 1 cal/(g⋅°C). The 

specific heat of the calorimeter is 0.092 cal/(g⋅°C). 
Discuss assumptions made in the solution. 



 
Solution 
 
 The devices given to the students allowed using several methods. The students used 
the following three methods: 
 

1. Comparison of velocity of warming up water and petroleum; 
2. Comparison of cooling down water and petroleum; 
3. Traditional heat balance. 

 
As no weights were given, the students had to use the sand to find portions of petroleum 

and water with masses equal to the mass of calorimeter.  
 
First method: comparison of velocity of warming up 
 
If the heater is inside water then both water and calorimeter are warming up. The heat 

taken by water and calorimeter is: 
 

111 tcmtcmQ ccww ∆+∆= , 
 

where: wm  denotes mass of water, cm - mass of calorimeter, wc - specific heat of water, cc - 
specific heat of calorimeter, 1t∆ - change of temperature of the system water + calorimeter. 
 On the other hand, the heat provided by the heater is equal: 
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where: A – denotes the thermal equivalent of work, U – voltage, R – resistance of the heater, 
τ1 – time of work of the heater in the water. 
 Of course, 
 

21 QQ = . 
 

Thus 
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For petroleum in the calorimeter we get a similar formula: 
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where: pm  denotes mass of petroleum, pc - specific heat of petroleum, 2t∆ - change of 
temperature of the system water + petroleum, τ2 – time of work of the heater in the petroleum. 
 

By dividing the last equations we get 
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It is convenient to perform the experiment by taking masses of water and petroleum equal 

to the mass of the calorimeter (for that we use the balance and the sand). For 
cpw mmm ==  

 
the last formula can be written in a very simple form: 

 

22

11

2

1

tctc
tctc

cp

cw

∆+∆
∆+∆

=
τ
τ . 

 
Thus 
 

cwc c
t

tc
t

tc 







∆

∆
−−

∆
∆

=
2

2

1

1

2

2

1

1 1 τ
τ

τ
τ

 

or 
 

cwc c
k
kc

k
kc 








−−=

2

1

2

1 1 , 

 
where 
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denote “velocities of heating” water and petroleum, respectively. These quantities can be 
determined experimentally by drawing graphs representing dependence 1t∆ and 2t∆  on time 
(τ). The experiment shows that these dependences are linear. Thus, it is enough to take slopes 
of appropriate straight lines. The experimental setup given to the students allowed 
measurements of the specific heat of petroleum, equal to 0.53 cal/(g°⋅C), with accuracy about 
1%. 
 Some students used certain mutations of this method by performing measurements at 

1t∆ = 2t∆  or at 21 ττ = . Then, of course, the error of the final result is greater (it is additionally 
affected by accuracy of establishing the conditions 1t∆ = 2t∆  or at 21 ττ = ). 

 
Second method: comparison of velocity of cooling down 
 
Some students initially heated the liquids in the calorimeter and later observed their 

cooling down. This method is based on the Newton’s law of cooling. It says that the heat Q 
transferred during cooling in time τ  is given by the formula: 

 
τϑ sthQ )( −= , 

 
where: t denotes the temperature of the body, ϑ  - the temperature of surrounding, s – area of 
the body, and h – certain coefficient characterizing properties of the surface. This formula is 



correct for small differences of temperatures ϑ−t  only (small compared to t  and ϑ  in the 
absolute scale). 
 
 This method, like the previous one, can be applied in different versions. We will 
consider only one of them. 
 
 Consider the situation when cooling of water and petroleum is observed in the same 
calorimeter (containing initially water and later petroleum). The heat lost by the system water 
+ calorimeter is 
 

tcmcmQ ccww ∆+=∆ )(1 , 
 
where t∆  denotes a change of the temperature of the system during certain period 1τ . For the 
system petroleum + calorimeter, under assumption that the change in the temperature t∆  is 
the same, we have 
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Of course, the time corresponding to t∆  in the second case will be different. Let it be 2τ . 
 From the Newton's law we get 
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If we conduct the experiment at 
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then we get 
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 As cooling is rather a very slow process, this method gives the result with definitely 
greater error. 
 

Third method: heat balance 
 
This method is rather typical. The students heated the water in the calorimeter to certain 

temperature 1t  and added the petroleum with the temperature 2t . After reaching the thermal 
equilibrium the final temperature was t. From the thermal balance (neglecting the heat losses) 
we have 
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If, like previously, the experiment is conducted at 
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then 

 

2

1)(
tt
tt

ccc cwp −
−

+= . 

 
In this methods the heat losses (when adding the petroleum to the water) always played a 

substantial role.  
 

The accuracy of the result equal or better than 5% can be reached by using any of the 
methods described above. However, one should remark that in the first method it was easiest. 
The most common mistake was neglecting the heat capacity of the calorimeter. This mistake 
increased the error additionally by about 8%. 

 
Marks 
 
 No marking schemes are present in my archive materials. Only the mean scores are 
available. They are: 
 
 Problem # 1   7.6 points 
 Problem # 2   7.8 points (without the Romanian students) 
 Problem # 3   5.9 points 
 Experimental problem 7.7 points 
 
Thanks 
 
 The author would like to express deep thanks to Prof. Jan Mostowski and Dr. Yohanes 
Surya for reviewing the text and for valuable comments and remarks. 
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Abstract 
 

After a short introduction the problems of the 2nd and the 9th International Physics Olympiad, organized 
in Budapest, Hungary, 1968 and 1976, and their solutions are presented. 
 
 
 

Introduction 
 

 
Following the initiative of Dr. Waldemar Gorzkowski [1] I present the problems and 

solutions of the 2nd and the 9th International Physics Olympiad, organized by Hungary. I have 
used Prof. Rezső Kunfalvi’s problem collection [2], its Hungarian version [3] and in the case 
of the 9th Olympiad the original Hungarian problem sheet given to the students (my own 
copy). Besides the digitalization of the text, the equations and the figures it has been made 
only small corrections where it was needed (type mistakes, small grammatical changes). I 
omitted old units, where both old and SI units were given, and converted them into SI units, 
where it was necessary. 

If we compare the problem sheets of the early Olympiads with the last ones, we can 
realize at once the difference in length. It is not so easy to judge the difficulty of the problems, 
but the solutions are surely much shorter. 

The problems of the 2nd Olympiad followed the more than hundred years tradition of 
physics competitions in Hungary. The tasks of the most important Hungarian theoretical 
physics competition (Eötvös Competition), for example, are always very short. Sometimes the 
solution is only a few lines, too, but to find the idea for this solution is rather difficult. 

Of the 9th Olympiad I have personal memories; I was the youngest member of the 
Hungarian team. The problems of this Olympiad were collected and partly invented by 
Miklós Vermes, a legendary and famous Hungarian secondary school physics teacher. In the 
first problem only the detailed investigation of the stability was unusual, in the second 
problem one could forget to subtract the work of the atmospheric pressure, but the fully 
“open” third problem was really unexpected for us. 

The experimental problem was difficult in the same way: in contrast to the Olympiads 
of today we got no instructions how to measure. (In the last years the only similarly open 
experimental problem was the investigation of “The magnetic puck” in Leicester, 2000, a 
really nice problem by Cyril Isenberg.) The challenge was not to perform many-many 
measurements in a short time, but to find out what to measure and how to do it. 

Of course, the evaluating of such open problems is very difficult, especially for several 
hundred students. But in the 9th Olympiad, for example, only ten countries participated and 
the same person could read, compare, grade and mark all of the solutions. 
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2nd IPhO (Budapest, 1968) 
 
 
Theoretical problems 
 
Problem 1 
 

On an inclined plane of 30° a block, mass m2 = 4 kg, is joined by a light cord to a solid 
cylinder, mass m1 = 8 kg, radius r = 5 cm (Fig. 1). Find the acceleration if the bodies are 
released. The coefficient of friction between the block and the inclined plane µ = 0.2. Friction 
at the bearing and rolling friction are negligible. 
 

 
 
Solution 
 
 If the cord is stressed the cylinder and the block are moving with the same 
acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and 
the inclined plane (Fig. 2). The angular acceleration of the cylinder is a/r. The net force 
causing the acceleration of the block: 
 

  Fgmgmam +−= αµα cossin 222 , 
 

and the net force causing the acceleration of the cylinder: 
 

  FSgmam −−= αsin11 . 
 

The equation of motion for the rotation of the cylinder: 
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(I is the moment of inertia of the cylinder, S⋅r is the torque of the frictional force.) 
Solving the system of equations we get: 
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The moment of inertia of a solid cylinder is 
2
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1rmI = . Using the given numerical values: 
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Discussion (See Fig. 3.) 
 
 The condition for the system to start moving is a > 0. Inserting a = 0 into (1) we 
obtain the limit for angle α1: 
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 If the cord is not stretched the bodies move separately. We obtain the limit by 
inserting F = 0 into (3): 
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 The condition for the cylinder to 
slip is that the value of S (calculated from 
(2) taking the same coefficient of friction) 
exceeds the value of αµ cos1gm . This gives 
the same value for α3 as we had for α2. The 
acceleration of the centers of the cylinder 
and the block is the same: 

( )αµα cossin −g , the frictional force at the 
bottom of the cylinder is αµ cos1gm , the 
peripheral acceleration of the cylinder is 

αµ cos
2

1 g
I
rm

⋅⋅ . 

 
Problem 2 
 
 There are 300 cm3 toluene of C0°  temperature in a glass and 110 cm3 toluene of 

C100°  temperature in another glass. (The sum of the volumes is 410 cm3.) Find the final 
volume after the two liquids are mixed. The coefficient of volume expansion of toluene 

( ) 1C001.0 −°=β . Neglect the loss of heat. 

β r, a 

g 

α 0° 30° 60° 90° 

F, S (N) 

α1 α2=α3 

10 

20 

F 

S 

β r 

a 

Figure 3 
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Solution 
 
 If the volume at temperature t1 is V1, then the volume at temperature C0°  is 

( )1110 1 tVV β+= . In the same way if the volume at t2 temperature is V2, at C0°  we have 
( )2220 1 tVV β+= . Furthermore if the density of the liquid at C0°  is d, then the masses are 

dVm 101 =  and dVm 202 = , respectively. After mixing the liquids the temperature is 
 

  
21

2211

mm
tmtmt

+
+

= . 
 

The volumes at this temperature are ( )tV β+110  and ( )tV β+120 . 
The sum of the volumes after mixing: 
 

  

( ) ( ) ( )

( ) ( ) 21220110

2202011010
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2010
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221121
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201020102010

11
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




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=
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+

⋅
+
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=+++=+ ++

ββ

βββ

β

βββ

 

 

The sum of the volumes is constant. In our case it is 410 cm3. The result is valid for any 
number of quantities of toluene, as the mixing can be done successively adding always one 
more glass of liquid to the mixture. 
 
Problem 3 
 
 Parallel light rays are falling on the plane surface of a semi-cylinder made of glass, at 
an angle of 45°, in such a plane which is perpendicular to the axis of the semi-cylinder 
(Fig. 4). (Index of refraction is 2 .) Where are the rays emerging out of the cylindrical 
surface? 

 
 
Solution 
 

 Let us use angle ϕ to describe the position of the rays in the glass (Fig. 5). According 
to the law of refraction 2sin45sin =° β , 5.0sin =β , °= 30β . The refracted angle is 30° 
for all of the incoming rays. We have to investigate what happens if ϕ changes from 0° to 
180°. 

Figure 4 Figure 5 

ϕ 

α 

β 

A 

C 

D O 

B 

E 
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 It is easy to see that ϕ  can not be less than 60° ( °=∠ 60AOB ). The critical angle is 
given by 221sin == ncritβ ; hence °= 45critβ . In the case of total internal reflection 

°=∠ 45ACO , hence °=°−°−°= 754560180ϕ . If ϕ  is more than 75° the rays can emerge 
the cylinder. Increasing the angle we reach the critical angle again if °=∠ 45OED . Thus the 
rays are leaving the glass cylinder if: 
  °<<° 16575 ϕ , 
CE, arc of the emerging rays, subtends a central angle of 90°. 
 
Experimental problem 
 
 Three closed boxes (black boxes) with two plug sockets on each are present for 
investigation. The participants have to find out, without opening the boxes, what kind of 
elements are in them and measure their characteristic properties. AC and DC meters (their 
internal resistance and accuracy are given) and AC (5O Hz) and DC sources are put at the 
participants’ disposal. 
 
Solution 
 
 No voltage is observed at any of the plug sockets therefore none of the boxes contains 
a source. 
 Measuring the resistances using first AC then DC, one of the boxes gives the same 
result. Conclusion: the box contains a simple resistor. Its resistance is determined by 
measurement. 
 One of the boxes has a very great resistance for DC but conducts AC well. It contains 

a capacitor, the value can be computed as 
CX

C
ω

1
= . 

 The third box conducts both AC and DC, its resistance for AC is greater. It contains a 
resistor and an inductor connected in series. The values of the resistance and the inductance 
can be computed from the measurements. 
  



3rd International Physics Olympiad
1969, Brno, Czechoslovakia

Problem 1. Figure 1 shows a mechanical system consisting of three carts A,
B and C of masses m1 = 0.3 kg, m2 = 0.2 kg and m3 = 1.5 kg respectively.
Carts B and A are connected by a light taut inelastic string which passes over
a light smooth pulley attaches to the cart C as shown. For this problem, all
resistive and frictional forces may be ignored as may the moments of inertia
of the pulley and of the wheels of all three carts. Take the acceleration due
to gravity g to be 9.81 m s−2.

µ´
¶³

µ´
¶³

i
¡e e

e
e- C

B

A

~F

Figure 1:

1. A horizontal force ~F is now applied to cart C as shown. The size of ~F
is such that carts A and B remain at rest relative to cart C.

a) Find the tension in the string connecting carts A and B.

b) Determine the magnitude of ~F .

2. Later cart C is held stationary, while carts A and B are released from
rest.

a) Determine the accelerations of carts A and B.

b) Calculate also the tension in the string.
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Solution:
Case 1. The force ~F has so big magnitude that the carts A and B remain
at the rest with respect to the cart C, i.e. they are moving with the same
acceleration as the cart C is. Let ~G1, ~T1 and ~T2 denote forces acting on
particular carts as shown in the Figure 2 and let us write the equations of
motion for the carts A and B and also for whole mechanical system. Note
that certain internal forces (viz. normal reactions) are not shown.
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Figure 2:

The cart B is moving in the coordinate system Oxy with an acceleration
ax. The only force acting on the cart B is the force ~T2, thus

T2 = m2 ax . (1)

Since ~T1 and ~T2 denote tensions in the same cord, their magnitudes satisfy

T1 = T2 .

The forces ~T1 and ~G1 act on the cart A in the direction of the y-axis.
Since, according to condition 1, the carts A and B are at rest with respect
to the cart C, the acceleration in the direction of the y-axis equals to zero,
ay = 0, which yields

T1 −m1 g = 0 .

Consequently
T2 = m1 g . (2)

So the motion of the whole mechanical system is described by the equation

F = (m1 + m2 + m3) ax , (3)

2



because forces between the carts A and C and also between the carts B
and C are internal forces with respect to the system of all three bodies. Let
us remark here that also the tension ~T2 is the internal force with respect to
the system of all bodies, as can be easily seen from the analysis of forces
acting on the pulley. From equations (1) and (2) we obtain

ax =
m1

m2

g .

Substituting the last result to (3) we arrive at

F = (m1 + m2 + m3)
m1

m2

g .

Numerical solution:

T2 = T1 = 0.3 · 9.81 N = 2.94 N ,

F = 2 · 3

2
· 9.81 N = 29.4 N .

Case 2. If the cart C is immovable then the cart A moves with an accelera-
tion ay and the cart B with an acceleration ax. Since the cord is inextensible
(i.e. it cannot lengthen), the equality

ax = −ay = a

holds true. Then the equations of motion for the carts A, respectively B,
can be written in following form

T1 = G1 −m1 a , (4)

T2 = m2 a . (5)

The magnitudes of the tensions in the cord again satisfy

T1 = T2 . (6)

The equalities (4), (5) and (6) immediately yield

(m1 + m2) a = m1 g .
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Using the last result we can calculate

a = ax = −ay =
m1

m1 + m2

g ,

T2 = T1 =
m2m1

m1 + m2

g .

Numerical results:

a = ax =
3

5
· 9.81 m s−2 = 5.89 m s−2 ,

T1 = T2 = 1.18 N .

Problem 2. Water of mass m2 is contained in a copper calorimeter of
mass m1. Their common temperature is t2. A piece of ice of mass m3 and
temperature t3 < 0 oC is dropped into the calorimeter.

a) Determine the temperature and masses of water and ice in the equilib-
rium state for general values of m1, m2, m3, t2 and t3. Write equilibrium
equations for all possible processes which have to be considered.

b) Find the final temperature and final masses of water and ice for m1 =
1.00 kg, m2 = 1.00 kg, m3 = 2.00 kg, t2 = 10 oC, t3 = −20 oC.

Neglect the energy losses, assume the normal barometric pressure. Specific
heat of copper is c1 = 0.1 kcal/kg·oC, specific heat of water c2 = 1 kcal/kg·oC,
specific heat of ice c3 = 0.492 kcal/kg·oC, latent heat of fusion of ice l =
78, 7 kcal/kg. Take 1 cal = 4.2 J.

Solution:
We use the following notation:

t temperature of the final equilibrium state,
t0 = 0 oC the melting point of ice under normal pressure conditions,

M2 final mass of water,
M3 final mass of ice,

m′
2 ≤ m2 mass of water, which freezes to ice,

m′
3 ≤ m3 mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states
can occur:

4



1. t0 < t < t2, m′
2 = 0, m′

3 = m3, M2 = m2 + m3, M3 = 0.
Unknown final temperature t can be determined from the equation

(m1c1 + m2c2)(t2 − t) = m3c3(t0 − t3) + m3l + m3c2(t− t0) . (7)

However, only the solution satisfying the condition t0 < t < t2 does
make physical sense.

2. t3 < t < t0, m′
2 = m2, m′

3 = 0, M2 = 0, M3 = m2 + m3.
Unknown final temperature t can be determined from the equation

m1c1(t2 − t) + m2c2(t2 − t0) + m2l + m2c3(t0 − t) = m3c3(t− t3) . (8)

However, only the solution satisfying the condition t3 < t < t0 does
make physical sense.

3. t = t0, m′
2 = 0, 0 ≤ m′

3 ≤ m3, M2 = m2 + m′
3, M3 = m3 −m′

3.
Unknown mass m′

3 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) = m3c3(t− t3) + m′
3l . (9)

However, only the solution satisfying the condition 0 ≤ m′
3 ≤ m3 does

make physical sense.

4. t = t0, 0 ≤ m′
2 ≤ m2, m′

3 = 0, M2 = m2 −m′
2, M3 = m3 + m′

2.
Unknown mass m′

2 can be calculated from the equation

(m1c1 + m2c2)(t2 − t0) + m′
2l = m3c3(t0 − t3) . (10)

However, only the solution satisfying the condition 0 ≤ m′
2 ≤ m2 does

make physical sense.

b) Substituting the particular values of m1, m2, m3, t2 and t3 to equations (7),
(8) and (9) one obtains solutions not making the physical sense (not satisfying
the above conditions for t, respectively m′

3). The real physical process under
given conditions is given by the equation (10) which yields

m′
2 =

m3c3(t0 − t3)− (m1c1 + m2c2)(t2 − t0)

l
.

Substituting given numerical values one gets m′
2 = 0.11 kg. Hence, t = 0 oC,

M2 = m2 −m′
2 = 0.89 kg, M3 = m3 + m′

2 = 2.11 kg.
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Problem 3. A small charged ball of mass m and charge q is suspended
from the highest point of a ring of radius R by means of an insulating cord of
negligible mass. The ring is made of a rigid wire of negligible cross section and
lies in a vertical plane. On the ring there is uniformly distributed charge Q of
the same sign as q. Determine the length l of the cord so as the equilibrium
position of the ball lies on the symmetry axis perpendicular to the plane of
the ring.

Find first the general solution a then for particular values Q = q =
9.0 · 10−8 C, R = 5 cm, m = 1.0 g, ε0 = 8.9 · 10−12 F/m.

Solution:
In equilibrium, the cord is stretched in the direction of resultant force of ~G =
m~g and ~F = q ~E, where ~E stands for the electric field strength of the ring
on the axis in distance x from the plane of the ring, see Figure 3. Using the
triangle similarity, one can write

x

R
=

Eq

mg
. (11)

@
@

@
@
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@
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x

l

~F

~G

Figure 3:

For the calculation of the electric field strength let us divide the ring to
n identical parts, so as every part carries the charge Q/n. The electric field
strength magnitude of one part of the ring is given by

∆E =
Q

4πε0l2n
.
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Figure 4:

This electric field strength can be decomposed into the component in the
direction of the x-axis and the one perpendicular to the x-axis, see Figure 4.
Magnitudes of both components obey

∆Ex = ∆E cos α =
∆E x

l
,

∆E⊥ = ∆E sin α .

It follows from the symmetry, that for every part of the ring there exists
another one having the component ∆ ~E⊥ of the same magnitude, but however
oppositely oriented. Hence, components perpendicular to the axis cancel each
other and resultant electric field strength has the magnitude

E = Ex = n∆Ex =
Q x

4πε0 l3
. (12)

Substituting (12) into (11) we obtain for the cord length

l = 3

√
Qq R

4πε0 mg
.

Numerically

l =
3

√
9.0 · 10−8 · 9.0 · 10−8 · 5.0 · 10−2

4π · 8.9 · 10−12 · 10−3 · 9.8 m = 7.2 · 10−2 m .

Problem 4. A glass plate is placed above a glass cube of 2 cm edges in
such a way that there remains a thin air layer between them, see Figure 5.
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Electromagnetic radiation of wavelength between 400 nm and 1150 nm (for
which the plate is penetrable) incident perpendicular to the plate from above
is reflected from both air surfaces and interferes. In this range only two
wavelengths give maximum reinforcements, one of them is λ = 400 nm. Find
the second wavelength. Determine how it is necessary to warm up the cube
so as it would touch the plate. The coefficient of linear thermal expansion is
α = 8.0 · 10−6 oC−1, the refractive index of the air n = 1. The distance of the
bottom of the cube from the plate does not change during warming up.

6

?????????

d

h

Figure 5:

Solution:
Condition for the maximum reinforcement can be written as

2dn− λk

2
= kλk , for k = 0, 1, 2, . . . ,

i.e.

2dn = (2k + 1)
λk

2
, (13)

with d being thickness of the layer, n the refractive index and k maximum
order. Let us denote λ′ = 1150 nm. Since for λ = 400 nm the condition for
maximum is satisfied by the assumption, let us denote λp = 400 nm, where p
is an unknown integer identifying the maximum order, for which

λp(2p + 1) = 4dn (14)

holds true. The equation (13) yields that for fixed d the wavelength λk

increases with decreasing maximum order k and vise versa. According to the

8



assumption,
λp−1 < λ′ < λp−2 ,

i.e.
4dn

2(p− 1) + 1
< λ′ <

4dn

2(p− 2) + 1
.

Substituting to the last inequalities for 4dn using (14) one gets

λp(2p + 1)

2(p− 1) + 1
< λ′ <

λp(2p + 1)

2(p− 2) + 1
.

Let us first investigate the first inequality, straightforward calculations give
us gradually

λp(2p + 1) < λ′(2p− 1) , 2p(λ′ − λp) > λ′ + λp ,

i.e.

p >
1

2

λ′ + λp

λ′ − λp

=
1

2

1150 + 400

1150− 400
= 1. . . . (15)

Similarly, from the second inequality we have

λp(2p + 1) > λ′(2p− 3) , 2p(λ′ − λp) < 3λ′ + λp ,

i.e.

p <
1

2

3λ′ + λp

λ′ − λp

=
1

2

3 · 1150 + 400

1150− 400
= 2. . . . (16)

The only integer p satisfying both (15) and (16) is p = 2.
Let us now find the thickness d of the air layer:

d =
λp

4
(2p + 1) =

400

4
(2 · 2 + 1) nm = 500 nm .

Substituting d to the equation (13) we can calculate λp−1, i.e. λ1:

λ1 =
4dn

2(p− 1) + 1
=

4dn

2p− 1
.

Introducing the particular values we obtain

λ1 =
4 · 500 · 1
2 · 2− 1

nm = 666.7 nm .

Finally, let us determine temperature growth ∆t. Generally, ∆l = αl∆t
holds true. Denoting the cube edge by h we arrive at d = αh∆t. Hence

∆t =
d

αh
=

5 · 10−7

8 · 10−6 · 2 · 10−2
oC = 3.1 oC .
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Problems of the IV International Olympiad, Moscow, 1970  

The publication is prepared by  Prof. S. Kozel & Prof.  V.Orlov 

(Moscow Institute of Physics and Technology) 

  

The IV International Olympiad in Physics for schoolchildren took place in Moscow (USSR) in July 

1970 on the basis of Moscow State University.   Teams from 8 countries participated in the 

competition, namely Bulgaria, Hungary, Poland, Romania, Czechoslovakia, the DDR, the SFR 

Yugoslavia, the USSR.   The problems for the theoretical competition  have been prepared by the 

group from Moscow University stuff headed by professor V.Zubov. The problem for the 

experimental competition has been worked out by B. Zvorikin from the Academy of Pedagogical 

Sciences. 

It is pity that marking schemes were not preserved. 
 

Theoretical Problems 
 

Problem 1.  

A long bar with the mass M = 1 kg is placed on a smooth horizontal surface of a table where it can 

move frictionless. A carriage equipped with a motor can slide along the upper horizontal panel of 

the bar, the mass of the carriage is m = 0.1 kg. The friction coefficient of the carriage is  μ = 0.02. 

The motor is winding a thread around a shaft at a constant speed v0 = 0.1 m/s. The other end of the 

thread is tied up to a rather distant stationary support in one case (Fig.1, a), whereas in the other case 

it is attached to a picket at the edge of the bar (Fig.1, b). While holding the bar fixed one allows the 

carriage to start moving at the velocity V0 then the bar is let loose.  

    

 

 

 

   

 

Fig. 1      Fig. 2 

By the moment the bar is released the front edge of the carriage is at the distance l = 0.5 m 

from the front edge of the bar. For both cases find the laws of movement of both the bar and the 

carriage and the time during which the carriage will reach the front edge of the bar. 
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Problem 2.  

A unit cell of a crystal of natrium chloride (common salt- NaCl) is a cube with the edge length  a = 

5.6ּ10-10 m (Fig.2). The black circles in the figure stand for the position of natrium atoms whereas the 

white ones are chlorine atoms. The entire crystal of common salt turns out to be a repetition of such 

unit cells. The relative atomic mass of natrium is 23 and that of chlorine is 35,5. The density of the 

common salt    ρ = 2.22ּ103 kg/m3 . Find the mass of a hydrogen atom. 
 

Problem 3.  

Inside a thin-walled metal sphere with radius R=20 cm there is a  metal ball  with the radius r = 10 cm 

which has a common centre with the sphere. The ball is connected with a very long wire to the Earth 

via an opening in the sphere (Fig. 3). A charge Q = 10-8 C is placed onto the outside sphere. Calculate 

the potential of this sphere, electrical capacity of the obtained system of conducting bodies and draw 

out an equivalent electric scheme. 

 

 

 

 

 

 

Fig. 3     Fig. 4 

 

Problem 4.  

A spherical mirror is installed into a telescope. Its lateral diameter is D=0,5 m and the radius of the 

curvature R=2 m. In the main focus of the mirror there is an emission receiver in the form of a round 

disk. The disk is placed perpendicular to the optical axis of the mirror (Fig.7). What should the radius 

r of the receiver be so that it could receive the entire flux of the emission  reflected by the mirror? 

How would the received flux of the emission decrease if the detector’s dimensions decreased by 8 

times? 

Directions: 1) When calculating small values α (α<<1) one may perform a substitution 

2
11 αα −≈− ; 2) diffraction should not be taken into account. 
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Experimental Problem 

 

Determine the focal distances of lenses. 

List of instruments: three different lenses installed on posts, a screen bearing an image of a 

geometric figure, some vertical wiring also fixed on the posts and a ruler. 

 

Solutions of the problems of the IV International Olympiad, Moscow, 1970 

Theoretical Competition 

 

Problem 1.  

a) By the moment of releasing the bar the carriage has a velocity v0  relative to the table and continues 

to move at the same velocity. 

The bar, influenced by the friction force Ffr = μmg  from the carriage, gets an acceleration  

a = Ffr/ M = μmg/M ;   a = 0.02 m/s , while the velocity of the bar changes with time according to the 

law vb = at.                 . 

Since the bar can not move faster than the carriage then at a moment of time t = t0        its 

sliding will stop, that is   vb = v0. Let us determine this moment of time: 

s500
0 ===

mg
Mv

a
v

t
µ

 

 

By that moment the displacement of the Sb bar and the carriage Sc relative to the table will be equal to 

mg
Mv

tvS
µ

2
0

00c ==  ,    
mg
Mvat

Sb µ22

2
0

2
0 == . 

The displacement of the carriage relative to the bar is equal to 

m25.0
2

2
0

c ==−=
mg
Mv

SSS b µ
 

Since S<l, the carriage will not reach the edge of the bar until the bar is stopped by an 

immovable support. The distance to the support is not indicated in the problem condition so we can 

not calculate this time. Thus, the carriage is moving evenly at the velocity v0 = 0.1 m/s, whereas the 

bar is moving for the first 5 sec uniformly accelerated with an acceleration   a = 0.02 m/s  and then the 

bar is moving with constant velocity together with the carriage. 

b) Since there is no friction between the bar and the table surface the system of the bodies 

“bar-carriage” is a closed one. For this system one can apply the law of conservation of momentum: 

mv + Mu = mv0  (1) 
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where v and u are projections of velocities of the carriage and the bar relative to the table onto the 

horizontal axis directed along the vector of the velocity v0. The velocity of the thread winding v0 is 

equal to the velocity of the carriage relative to the bar (v-u), that is 

  v0 =  v – u   (2) 

Solving the system of equations (1) and (2) we obtain: 

u = 0 ,   v = v0 .      

Thus, being released the bar remains fixed relative to the table, whereas the carriage will be moving 

with the same velocity v0 and will reach the edge of the bar within the time t equal to 

t = l/v0 = 5 s. 

 

Problem 2.  

Let’s calculate the quantities of natrium atoms (n1) and chlorine atoms (n2) embedded in a single 

NaCl unit crystal cell (Fig.2).   

 One atom of natrium occupies the middle of the cell and it entirely belongs to the cell. 12 

atoms of natrium hold the edges of a large cube and they belong to three more cells so as 1/4 part of 

each belongs to the first cell. Thus we have 

 n1 = 1+12⋅1/4 = 4 atoms of natrium per unit cell. 

 In one cell there are 6 atoms of chlorine placed on the side of the cube and 8 placed in the 

vertices. Each atom from a side belongs to another cell and the atom in the vertex  - to seven others. 

Then for one cell we have  

    n2= 6⋅1/2 + 8⋅ 1/8 = 4 atoms of chlorine. 

 Thus 4 atoms of natriun and 4 atoms of chlorine belong to one unit cell of NaCl crystal. 

 The mass m of such a cell is equal 

 m = 4(mrNa + mrCl) (amu),     

 where  mrNa and  mrCl are relative atomic  masses of  natrium and clorine. Since  the mass of hydrogen 

atom mH is approximately  equal to one atomic mass unit: mH = 1.008 amu ≈ 1 amu then the mass of 

an unit cell of NaCl is  

m = 4(mrNa + mrCl) mH . 

On the other hand, it  is equal m  = ρa3  ,  hence  

( ) kg1067.1
4

27

rClrNa

3

H
−⋅≈

+
=

mm
am ρ . 

Problem 3.  

Having no charge on the ball the sphere has the potential  

V450
4

1

0
0s ==

R
Q

πε
ϕ . 



5 

     When connected with the Earth the ball inside the sphere has the potential equal to zero so there is 

an electric field between the ball and the sphere. This field moves a certain charge q from the Earth to 

the ball. Charge Q`, uniformly distributed on the sphere, doesn’t create any field inside thus the 

electric field inside the sphere is defined by the ball’s charge q. The potential difference  between the 

balls and the sphere is equal  

,
4

1

0
sb 






 −=−=∆

R
q

r
q

πε
ϕϕϕ     (1) 

Outside the sphere the field is the same as in the case when all the charges were placed in its 

center. When the ball was connected with the Earth the potential of the sphere φs is equal 

.
4

1

0
s R

Qq +
=

πε
ϕ    (2) 

Then the potential of the ball  

0
4

1
4

1

00
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




 +=






 −+

+
=∆+=

r
q

R
Q

R
q

r
q

R
Qq

πεπε
ϕϕϕ      (3)   

Which leads to  

R
rQq −= .    (4) 

Substituting (4) into (2) we obtain for potential of the sphere to be found: 

( ) .V225
4

1
4

1
2

00
s =

−
=

−
=

R
rRQ

R
R
rQQ

πεπε
ϕ   

The electric capacity of whole system of conductors is 

44pFF104.4
4 11

2
0

s

=⋅=
−

== −

rR
RQC

πε
ϕ

 

The equivalent electric scheme consists of two parallel capacitors: 1) a spherical one with charges 

+q and –q at the plates and 2) a capacitor “sphere – Earth” with charges +(Q-q) and 

 –(Q–q) at the  plates (Fig.5). 

 

 

 

    

 

 

Fig. 5     Fig. 6 
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Problem 4.  

As known, rays parallel to the main optical axis of a spherical mirror, passing at little distances from 

it after having been reflected, join at the main focus of the mirror F which is at the distance R/2 from 

the centre O of the spherical surface. Let us consider now the movement of the ray reflected near the 

edge of the spherical mirror of large diameter D (Fig. 6).  The angle of incidence α of the ray onto the 

surface is equal to the angle of reflection. That is why  the angle OAB within the triangle, formed by 

the radius OA of the sphere, traced to the incidence point  of the ray by the reflected ray AB and an 

intercept BO of the main optical axis, is equal to α. The angles BOA and MAO are equal, that is the 

angle BOA is equal to α. 

 Thus, the triangle AOB is isosceles with its side AB being equal to the side BO. Since the sum 

of the lengths of its two other sides exceeds the length of its third side, AB+BO>OA=R,  hence 

BO>R/2. This means that a ray parallel to the main optical axis of the spherical mirror and passing not 

too close to it, after having been reflected, crosses the main optical axis at the point B lying between 

the focus F and the mirror. The focal surface is crossed by this ray at the point C which is at a certain 

distance CF = r from the main focus. 

 Thus, when reflecting a parallel beam of rays by a spherical mirror finite in size it does not 

join at the focus of the mirror but forms a beam with radius r on the focal plane. 

 From  Δ BFC we can write : 

r =  BF tg β = BF tg 2α , 

 

where α is the maximum angle of incidence of the extreme ray onto the mirror, while sin α = D/2R:  

α
α

α cos
cos1

22cos2
−

=−=−=
RRROFBOBF . 

Thus, 
α
α

α
α

2cos
2sin

cos
cos1

2
−

=
Rr .      Let us express the values of cos α,  sin 2α, cos 2α via sin α taking 

into  account  the small value of the angle α: 

 

2
sin1sin1cos

2
2 ααα −≈−= , 

sin2α = 2sinαcosα , 

cos2α =cos2α – sin2α = 1 – 2sin2α . 

Then 

2

3
3

2

3

16
sin

2sin21
sin

2 R
DRRr ≈≈

−
= α

α
α . 

Substituting numerical data we will obtain: r ≈ 1.95∙10-3 m ≈ 2mm . 



7 

 

From the expression   3 216 rRD =  one can see that if the radius of the receiver is decreased 8 

times the transversal diameter D’ of the mirror, from which the light comes to the receiver, will be 

decreased 2 times and thus the “effective” area of the mirror will be decreased 4 times. 

The radiation flux Φ reflected by the mirror and received by the receiver will also be 

decreased twice since Φ ∼ S.  

 
 

Solution of the Experimental Problem 
 

While looking at objects through lenses it is easy to establish that there were given two 

converging lenses and a diverging one. 

The peculiarity of the given problem is the absence of a white screen on the list of  the 

equipment that is used to observe real images. The competitors were supposed to determine the 

position of the images by the parallance method observing the images with their eyes. 

The focal distance of the converging lens may be determined by the following method. 

Using a lens one can obtain a real image of a geometrical 

figure shown on the screen. The position of the real image is 

registered by the parallax method: if one places a vertical wire 

(Fig.7) to the point, in which the image is located, then at small 

displacements of the eye from the main optical axis of the lens 

  the image of this object and the wire will not diverge. 

We obtain the value of focal distance F from the formula of   thin lens by the measured 

distances d and f : 

1,2

1 1 1 ;
F d f

= +        1,2
dfF

d f
=

+
 . 

 

In this method the best accuracy is achieved in the case of  

f = d. 

 

The competitors were not asked to make a conclusion. 

The error of measuring the focal distance for each of the two converging lenses can be determined by 

multiple repeated measurements. The total number of points was given to those competitors who 

carried out not less fewer than n=5 measurements of the focal distance and estimated the mean value 

of the focal distance Fav: 

Fig. 7 
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av
1

1 n

iF F
n

= ∑  

 

and the absolute error F∆  

1

1 n

iF F
n

∆ = ∆∑ ,       avi iF F F∆ = −  

or root mean square error rmsF∆  

( )2
rms

1
iF F

n
∆ = ∆∑ . 

 

One could calculate the error by graphic method. 

 

 

 

 

 

 

 

Fig. 8 

           Determination of the focal distance of the diverging lens can be carried out by the method of 

compensation. With this goal one has to obtain a real image S’ of the object S using a converging lens. 

The position of the image can be registered using the parallax method. 

 If one places a diverging lens between the image and the converging lens the image will be 

displaced. Let us find a new position of the image S”. Using the reversibility property of the light rays, 

one can admit that the light rays leave the point S”. Then point S’ is a virtual image of the point S”, 

whereas the distances from the optical centre of the concave lens to the points S’ and S” are, 

respectively, the distances f to the image and d to the object (Fig.8). Using the formula of a thin lens 

we obtain 

 

3

1 1 1 ;
F f d

= − +        3 0fdF
d f

= − <
−

 . 

 

Here F < 0 is the focal distance of the diverging lens. In this case the error of measuring the focal 

distance can also be estimated by the method of repeated measurements similar to the case of the 
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converging lens. 

Typical results are: 

cmF )4,00,22(1 ±= , cmF )3,03,12(2 ±= , cmF )4,04,8(3 ±−= . 
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Sofia, Bulgaria 
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Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High School 
Students”, eds. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 

Theoretical problems 

Question 1. 
 A triangular prism of mass M is placed one side on a frictionless horizontal plane as 
shown in Fig. 1. The other two sides are inclined with respect to the plane at angles α1 and α2 
respectively. Two blocks of masses m1 and m2, connected by an inextensible thread, can slide 
without friction on the surface of the prism. The mass of the pulley, which supports the thread, 
is negligible.  

• Express the acceleration a of the blocks relative to the prism in terms of the 
acceleration a0 of the prism.  

• Find the acceleration a0 of the prism in terms of quantities given and the acceleration g 
due to gravity.  

• At what ratio m1/m2 the prism will be in equilibrium? 
 
 
 
 
 
 
 
                                                                 Fig. 1 
                                                                

Question 2. 
 A vertical glass tube of cross section S = 1.0 cm2

 contains unknown amount of 
hydrogen. The upper end of the tube is closed. The other end is opened and is immersed in a 
pan filled with mercury. The tube and the pan are placed in a sealed chamber containing air at 
temperature T0 = 273 K and pressure P0 = 1.334×105 Pa. Under these conditions the height of 
mercury column in the tube above the mercury level in the pan is h0 = 0.70 m.  
 One of the walls of the chamber is a piston, which expands the air isothermally to a 
pressure of P1 = 8.00×104 Pa. As a result the height of the mercury column in the tube 
decreases to h1 = 0.40 m. Then the chamber is heated up at a constant volume to some 
temperature T2 until the mercury column rises to h2 = 0.50 m. Finally, the air in the chamber 
is expanded at constant pressure and the mercury level in the tube settles at h3 = 0.45 m above 
the mercury level in the pan. 

α1 α2 

m1 
m2 



 Provided that the system is in mechanical and thermal equilibrium during all the 
processes calculate the mass m of the hydrogen, the intermediate temperature T2, and the 
pressure P in the final state.  
 The density of mercury at temperature T0 is ρ0 = 1.36×104 kg/m3, the coefficient of 
expansion for mercury β = 1.84×10–4 K–1, and the gas constant R = 8.314 J/(mol×K). The 
thermal expansion of the glass tube and the variations of the mercury level in the pan are not 
considered.  
 Hint. If ∆T is the interval of temperature variations of the system then β∆T = x << 1 In 

that case you can use the approximation: x
x

−≈
+

1
1

1 .  

Question 3. 
 Four batteries of EMF E1 = 4 V, E2 = 8 V, E3 = 12 V, and E4 = 16 V, four capacitors 
with the same capacitance C1 = C2 = C3 = C4 = 1 µF, and four equivalent resistors are 
connected in the circuit shown in Fig. 3. The internal resistance of the batteries is negligible.  

• Calculate the total energy W accumulated on the capacitors when a steady state of the 
system is established. 

• The points H and B are short connected. Find the charge on the capacitor C2 in the 
new steady state. 

  
 
 
 
 
 
 
 
 
 
 
 
                                                       Fig. 3 
                                                       
 

Question 4. 
 A spherical aquarium, filled with water, is placed in front of a flat vertical mirror. The 
radius of the aquarium is R, and the distance between its center and the mirror is 3R. A small 
fish, which is initially at the point nearest to the mirror, starts to move with velocity v along 
the wall. An observer looks at the fish from a very large distance along a horizontal line 
passing trough the center of the aquarium.   

What is the relative velocity vrel at which the two images of the fish seen by the observer 
will move apart? Express your answer in terms of v. Assume that: 

• The wall of the aquarium is made of a very thin glass.  
• The index of refraction of water is n = 4/3.   

 
 
 
 

E1 E2 

E3 E4 

C1 

C2 

C3 

C4 

A B 

C D 

E F 

G H 



 
 
 

Experimental Problem 
Apparatus: dc source, ammeter, voltmeter, rheostat (coil of high resistance wire with sliding 
contact), and connecting wires.   
Problem: Construct appropriate circuit and establish the dependence of the electric power P 
dissipated in the rheostat as a function of the current I supplied by the dc source.  

1. Make a plot of P versus I. 
2. Find the internal resistance of the dc source. 
3. Determine the electromotive force E of the source. 
4. Make a graph of the electric power P versus resistance R of the rheostat. 
5. Make a graph of the total power Ptot dissipated in the circuit as a function of R. 
6. Make a graph of the efficiency η of the dc source versus R. 

 



Solutions to the problems of the 5-th 
International Physics Olympiad, 1971, Sofia, Bulgaria 

 
The problems and the solutions are adapted by 

Victor Ivanov 
Sofia State University, Faculty of Physics, 5 James Bourcier Blvd., 1164 Sofia, Bulgaria 
 
Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High 
School Students”, eds. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 

Theoretical problems 

Question 1. 
 The blocks slide relative to the prism with accelerations a1 and a2, which are 
parallel to its sides and have the same magnitude a (see Fig. 1.1). The blocks move 
relative to the earth with accelerations: 
(1.1) w1 = a1 + a0; 
(1.2)   w2 = a2 + a0. 
Now we project w1 and w2 along the x- and y-axes: 
(1.3)   011 cos aaw x −α= ; 
(1.4)   11 sinα= aw y ; 
(1.5)   022 cos aaw x −α= ; 
(1.6)   22 sinα−= aw y . 
                                                                                                        
Fig. 1.1 
 
The equations of motion for the blocks and for the prism have the following vector 
forms (see Fig. 1.2): 
(1.7)   11111 TRgw ++= mm ; 
(1.8)   22222 TRgw ++= mm ; 
(1.9)   21210 TTRRRga −−+−−= MM . 
 
 
 
 
 
 
 
 
 
                                                            Fig. 1.2 
 
The forces of tension T1 and T2 at the ends of the thread are of the same magnitude T 
since the masses of the thread and that of the pulley are negligible. Note that in equation 
(1.9) we account for the net force –(T1 + T2), which the bended thread exerts on the 

α1 α2 
x 

y 

a0 

a1 

a2 w2 

w1 

R2 

T2 R1 
T1 

R 

Mg 
m1g 

m2g 

x 

y 



prism through the pulley. The equations of motion result in a system of six scalar 
equations when projected along x and y: 
(1.10)   1110111 sincoscos α−α=−α RTamam ; 
(1.11)   gmRTam 111111 cossinsin −α+α=α ; 
(1.12)   2220222 sincoscos α+α−=−α RTamam ; 
(1.13)   gmRTam 222222 sinsinsin −α+α=α ; 
(1.14)   2122110 coscossinsin α+α−α−α=− TTRRMa ; 
(1.15)   MgRRR −α−α−= 2211 coscos0 . 
By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel 
each other. In this way we obtain the required relation between accelerations a and a0: 

(1.16)   
2211

21
0 coscos α+α

++
=

mm
mmMaa . 

The straightforward elimination of the unknown forces gives the final answer for a0: 

(1.17)   2
22112121

22112211
0 )coscos())((

)coscos)(sinsin(
α+α−+++

α+αα−α
=

mmmmMmm
mmmma . 

It follows from equation (1.17) that the prism will be in equilibrium (a0 = 0) if: 

(1.18)   
1

2

2

1

sin
sin

α
α

=
m
m . 

Question 2. 
 We will denote by H (H = const) the height of the tube above the mercury level 
in the pan, and the height of the mercury column in the tube by hi. Under conditions of 
mechanical equilibrium the hydrogen pressure in the tube is: 
(2.1)    iairH ghPP ρ−=

2
, 

where ρ is the density of mercury at temperature ti:  
(2.2)    ( )tβ−ρ=ρ 10  
The index i enumerates different stages undergone by the system, ρ0 is the density of 
mercury at t0 = 0 °C, or T0 = 273 K, and β its coefficient of expansion. The volume of 
the hydrogen is given by: 
(2.3)    Vi = S(H – hi). 
 Now we can write down the equations of state for hydrogen at points 0, 1, 2, and 
3 of the PV diagram (see Fig. 2): 

(2.4)    00000 )()( RT
M
mhHSghP =−ρ− ; 

(2.5)    01101 )()( RT
M
mhHSghP =−ρ− ; 

(2.6)    22212 )()( RT
M
mhHSghP =−ρ− , 

where 
0

21
2 T

TPP = , [ ])(1
)(1 020

02

0
1 TT

TT
−β−ρ≈

−β+
ρ

=ρ  since the process 1–3 is 

isochoric, and: 



(2.7)   33322 )()( RT
M
mhHSghP =−ρ−  

where [ ])(1 0302 TT −β−ρ≈ρ , 
2

3
2

2

3
23 hH

hH
T

V
V

TT
−
−

==  for the isobaric process 2–3. 

 
 
 
 
 
 
 
 
                                                
 
 
                                                              Fig. 2 
 

After a good deal of algebra the above system of equations can be solved for the 
unknown quantities, an exercise, which is left to the reader. The numerical answers, 
however, will be given for reference:  

H ≈ 1.3 m; 
    m ≈ 2.11×10–6 kg; 
    T2 ≈ 364 K; 
    P2 ≈ 1.067×105 Pa; 

T3 ≈ 546 K; 
    P2 ≈ 4.8×104 Pa. 
 

Question 3. 
 A circuit equivalent to the given one is shown in Fig. 3. In a steady state (the 
capacitors are completely charged already) the same current I flows through all the 
resistors in the closed circuit ABFGHDA. From the Kirchhoff’s second rule we obtain: 

(3.1)   
R

EEI
4

14 −= . 

Next we apply this rule for the circuit ABCDA: 
(3.2)   121 EEIRV −=+ , 
where V1 is the potential difference across the capacitor C1. By using the expression 
(3.1) for I, and the equation (3.2) we obtain: 

(3.3)   1
4

14
121 =

−
−−=

EEEEV V. 

Similarly, we obtain the potential differences V2 and V4 across the capacitors C2 and C4 
by considering circuits BFGCB and FGHEF: 

(3.4)   5
4

14
242 =

−
−−=

EEEEV V, 

P0 

P2 

P1 

P 

V0 V1= V2 V3 V 

1 

2 3 

0 



(3.5)   1
4

14
344 =

−
−−=

EEEEV V. 

Finally, the voltage V3 across C3 is found by applying the Kirchhoff’s rule for the 
outermost circuit EHDAH: 

(3.6)   5
4

14
133 =

−
−−=

EEEEV V. 

The total energy of the capacitors is expressed by the formula: 

(3.7)   ( ) 26
2

2
4

2
3

2
2

2
1 =+++= VVVVCW µJ. 

 
 
 
 
 
 
 
 
 
                                                          Fig. 3 
 

When points B and H are short connected the same electric current I’ flows 
through the resistors in the BFGH circuit. It can be calculated, again by means of the 
Kirchhoff’s rule, that: 

(3.8)   
R

EI
2

4=′ . 

The new steady-state voltage on C2 is found by considering the BFGCB circuit: 
(3.9)   242 EERIV −=′+′  
or finally: 

(3.10)   0
2 2

4
2 =−=′ EEV V. 

Therefore the charge 2q′ on C2 in the new steady state is zero. 

Question 4. 
 In a small time interval ∆t the fish moves upward, from point A to point B, at a 
small distance d = v∆t. Since the glass wall is very thin we can assume that the rays 
leaving the aquarium refract as if there was water – air interface. The divergent rays 
undergoing one single refraction, as show in Fig. 4.1, form the first, virtual, image of the 
fish. The corresponding vertical displacement A1B1 of that image is equal to the distance 
d1 between the optical axis a and the ray b1, which leaves the aquarium parallel to a. 
Since distances d and d1 are small compared to R we can use the small-angle 
approximation: sinα ≈ tanα ≈ α (rad). Thus we obtain: 
(4.1)   d1 ≈ R α; 
(4.2)   d ≈ R γ; 
(4.3)   α + γ = 2β; 
(4.4)   α ≈ nβ. 

E1 E2 E3 E4 

C1 C2 

C3 

C4 
A B 

C 
D 

E F 

G H 

R R 

R 

R 



From equations (4.1) - (4.4) we find the vertical displacement of the first image in terms 
of d: 

(4.5)   d n
n

d1 2
=

−
, 

and respectively its velocity v1 in terms of v: 

(4.6)   v n
n

v1 2
2=

−
= . 

 
 
 
 
 
 
 
 
 
 
 
 
                                                        Fig. 4.1 
 
 The rays, which are first reflected by the mirror, and then are refracted twice at 
the walls of the aquarium form the second, real image (see Fig. 4.2). It can be 
considered as originating from the mirror image of the fish, which move along the line 
A’B’ at exactly the same distance d as the fish do.  
 
 
 
 
 
 
 
 
 
 
                                                         Fig. 4.2 
 
The vertical displacement A2B2 of the second image is equal to the distance d2 between 
the optical axis a and the ray b2, which is parallel to a.  Again, using the small-angle 
approximation we have: 
(4.7) d’ ≈ 4Rδ - d, 
(4.8) d2 ≈ Rα 
Following the derivation of equation (4.5) we obtain: 

(4.9)   d n
n

d2 2
=

−
′ . 

Now using the exact geometric relations: 

A 

B 

A1 

B1 

a 

b1 
d1 α 

β 
β γ 

α 

d 

α β β γ α 
δ 

d' 

d d 

d2 

B2 

A2 

A’ 

B’ 

A 

B 4R 

a 

b2 



(4.10)    δ = 2α – 2β 
and the Snell’s law (4.4) in a small-angle limit, we finally express d2 in terms of d: 

(4.11)   d
n

nd
1092 −

= , 

and the velocity v2 of the second image in terms of v: 

(4.12)   vv
n

nv
3
2

1092 =
−

= . 

The relative velocity of the two images is: 
(4.13) vrel = v1 – v2 
in a vector form. Since vectors v1 and v2 are oppositely directed (one of the images 
moves upward, the other, downward) the magnitude of the relative velocity is: 

(4.14)   vvvv
3
8

21rel =+= . 

 
Experimental problem 

 
 The circuit is given in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sliding the contact along the rheostat sets the current I supplied by the source. For each 
value of I the voltage U across the source terminals is recorded by the voltmeter. The 
power dissipated in the rheostat is: 

 P = UI  
provided that the heat losses in the internal resistance of the ammeter are negligible.  
1. A typical P–I curve is shown below: 
 
 
 
 
 
 
 
 
 

I 

P 
Pmax 

I0 

A 

V 

R 

E 



If the current varies in a sufficiently large interval a maximum power Pmax can be 
detected at a certain value, I0, of I. Theoretically, the P(I) dependence is given by: 
(5.1)     rIEIP 2−= , 
where E and r are the EMF and the internal resistance of the dc source respectively. The 
maxim value of P therefore is: 

(5.2)     
r

EP
4

2

max = , 

and corresponds to a current: 

(5.3)     
r

EI
20 = . 

2. The internal resistance is determined trough (5.2) and (5.3) by recording Pmax and I0 
from the experimental plot: 

     2
0

max

I
P

r =  . 

3. Similarly, EMF is calculated as: 

     
0

max2
I
P

E = . 

4. The current depends on the resistance of the rheostat as: 

     
rR

EI
+

= . 

Therefore a value of R can be calculated for each value of I: 

(5.4)     r
I
ER −= . 

The power dissipated in the rheostat is given in terms of R respectively by: 

(5.5)     2

2

)( rR
REP

+
= . 

The P–R plot is given below: 
 
 
 
 
 
 
 
 
 
 
Its maximum is obtained at R = r. 
5. The total power supplied by the dc source is: 

(5.6)  
rR

EPtot +
=

2

. 

 
 
 

R 

Ptot 

E2/r 

R 

P 

R = r 

E2/(4r) 



 
 
6. The efficiency respectively is: 

(5.7)  
rR

R
P
P

tot +
==η . 
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η 
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Problems of the 6th International Physics Olympiad 
(Bucharest, 1972) 

 
Romulus Pop 

Civil Engineering University, Physics Department1

Bucharest, Romania 
 

 
 The sixth IPhO was held in Bucharest and the participants were: Bulgaria, 
Czechoslovakia, Cuba, France, German Democratic Republic, Hungary, Poland, Romania, and 
Soviet Union.  It was an important event because it was the first time when a non-European 
country and a western country participated (Cuba), and Sweden sent one observer.  

The International Board selected four theoretical problems and an experimental 
problem. Each theoretical problem was scored from 0 to 10 and the maximum score for the 
experimental problem was 20. The highest score corresponding to actual marking system was 
47,5 points. Each team consisted in six students. Four students obtained the first prize, seven 
students obtained the second prize, ten students obtained the third prize, thirteen students had 
got honorable mentions, and two special prizes were awarded too. 

The article contains the competition problems given at the 6th International Physics 
Olympiad (Bucharest, 1972) and their solutions. The problems were translated from the book 
published in Romania concerning the first nine International Physics Olympiads2

 

, because I 
couldn’t find the original English version. 

Theoretical problems 
 

Problem 1 (Mechanics) 
 

Three cylinders with the same mass, the same length and the same external radius are 
initially resting on an inclined plane. The coefficient of sliding friction on the inclined plane, μ, 
is known and has the same value for all the cylinders. The first cylinder is empty (tube) , the 
second is homogeneous filled, and the third has a  cavity exactly like the first, but closed with 
two negligible mass lids and filled with a liquid with the same density like the cylinder’s walls. 
The friction between the liquid and the cylinder wall is considered negligible. The density of 
the material of the first cylinder is n times greater than that of the second or of the third 
cylinder. 
Determine: 

a) The linear acceleration of the cylinders in the non-sliding case. Compare all the 
accelerations. 

b) Condition for angle α of the inclined plane so that no cylinders is sliding. 
c) The reciprocal ratios of the angular accelerations in the case of roll over with 

sliding of all the three cylinders. Make a comparison between these accelerations. 
d) The interaction force between the liquid and the walls of the cylinder in the case 

of sliding of this cylinder, knowing that the liquid mass is ml.  
 

                                                 
1 E-mail: popr@tvet.ro 
2 Marius Gall and Anatolie Hristev, Probleme date la Olimpiadele de Fizica, Editura Didactica si Pedagogica – 
Bucuresti, 1978 
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Solution Problem 1 
 
 The inertia moments of the three cylinders are: 
 

( ) ,
2
1 44

11 hrRI −= πρ    24
22 2

1
2
1 mRhRI == πρ    ,  ( ) ,

2
13 44

2 hrRI −= πρ           (1) 

Because the three cylinders have  the same mass : 
 

( ) hRhrRm 2
2

22
1 πρπρ =−=                                                    (2) 

 
it results: 
 

2

12

1

222 ,111
ρ
ρ

ρ
ρ

=





 −=








−= n

n
RRr                                            (3) 

 
The inertia moments can be written:  
 

221
12 I
n

II 〉





 −=  ,    

n
I

nn
II 1

23
112 =⋅






 −=                                (4) 

 
In the expression of the inertia momentum  3I  the sum of the two factors is constant: 

2112 =+





 −

nn
 

independent of n, so that their products are maximum when these factors are equal:  

nn
112 =−  ; it results n = 1, and the products 1112 =⋅






 −

nn
. In fact n > 1, so that the products 

is les than 1. It results: 
 

I1 > I2 > I3                                (5) 
For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations: 
 

maFmg f =−αsin                                            (6) 
0cos =− αmgN  

εIRFf =                                                              (7) 
 
where ε is the angular acceleration. If the cylinder doesn’t slide we have the condition: 
 

Ra ε=                                                                 (8) 
 
Solving the equation system (6-8) we find: 
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21

sin

mR
I

ga
+

=
α  ,    

I
mR

mgFf 2

1

sin

+
=

α                               (9) 

 
The condition of non-sliding is: 
 

Ff < μN = μmgsinα 
 

tgα  < 







+

1

2

1
I

mRµ                        (10) 

 

 
In the case of the cylinders from this problem, the condition necessary so that none of them 
slides is obtained for maximum I: 
 

12
141

1

2

−
−

=







+〈

n
n

I
mRtg µµα             (11) 

 
The accelerations of the cylinders are: 
 

)11(3

sin2
1

n

ga
−+

=
α   ,  

3
sin2

2
αga =  ,   

2
3

)11(3

sin2

n

ga
−−

=
α .                    (12) 

 
The relation between accelerations: 
 

a1 < a2 < a3                           (13) 
 
In the case than all the three cylinders slide: 

αµµ cosmgNFf ==                      (14) 
and from (7) results: 

Fig. 1.1 
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αµε cosmg
I
R

=                               (15) 

for the cylinders of the problem: 
 

n
nIII

:11:11:1:1::
321

321 





 −==εεε  

 
ε1 < ε2 <  ε3                        (16) 

 
In the case that one of the cylinders is sliding: 
 

maFmg f =−αsin ,   αµ cosmgFf = ,    (17) 
( )αµα cossin −= ga                                 (18) 

 
Let F



be the total force acting on the liquid mass ml inside the cylinder (fig.1.2), we can write: 
 

( )αµαα cossinsin −==+ gmamgmF lllx ,  0cos =− αgmF ly   (19) 

φ
αµα

cos
cos1cos 222 gmgmFFF llyx =+⋅=+=                       (20) 

where φ  is the friction angle ( )µφ =tg . 
 

 

 
 

Problem 2 (Molecular Physics) 
 

Two cylinders A and B, with equal diameters have inside two pistons with negligible 
mass connected by a rigid rod. The pistons can move freely. The rod is a short tube with a 
valve. The valve is initially closed (fig. 2.1). 
 
 

Fig. 1.2 
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The cylinder A and his piston is adiabatically insulated and the cylinder B is in thermal contact 
with a thermostat which has the temperature θ = 27oC. 
Initially the piston of the cylinder A is fixed and inside there is a mass m= 32 kg of argon at a 
pressure higher than the atmospheric pressure. Inside the cylinder B there is a mass of oxygen 
at the normal atmospheric pressure. 
Liberating the piston of the cylinder A, it moves slowly enough (quasi-static) and at 
equilibrium the volume of the gas is eight times higher, and in the cylinder B de oxygen’s 
density increased two times. Knowing that the thermostat received the heat Q’=747,9.104J, 
determine: 

a) Establish on the base of the kinetic theory of the gases, studying the elastic collisions 
of the molecules with the piston, that the thermal equation of the process taking place in the 
cylinder A is TV2/3 = constant. 

b) Calculate the parameters p, V, and T of argon in the initial and final states. 
c) Opening the valve which separates the two cylinders, calculate the final pressure of the 

mixture of the gases. 
The kilo-molar mass of argon is μ = 40 kg/kmol. 
 
Solution Problem 2 
 
a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the 

piston perfect elastic. In such a collision with a fix wall the speed v  of the particle changes 
only the direction so that the speed v  and the speed 'v after collision there are in the same 
plane with the normal and the incident and reflection angle are equal.  

nn vv −=' , tt vv ='                   (1) 
In the problem the wall moves with the speed u  perpendicular on the wall. The relative speed 
of the particle with respect the wall is uv 

− . Choosing the Oz axis perpendicular on the wall in 
the sense of u , the conditions of the elastic collision give: 

( ) ( )zz uvuv 

−−=− '  , ( ) ( ) yxyx uvuv ,
'

,


−=− ; 

( )uvuv zz −−=− '  , zz vuv −= 2' , yxyx vv ,
'
, =    (2) 

The increase of the kinetic energy of the particle with mass om  after collision is: 

( ) ( ) zozozzooo uvmvuumvvmvmvm 22
2
1

2
1

2
1 22'22' −≅−=−=−    (3) 

because u is much smaller than zv . 
If kn is the number of molecules from unit volume with the speed component zkv , then the 
number of molecules with this component which collide in the time dt the area dS of the piston 
is: 

A B Fig. 2.1 
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dtdSvn zkk2
1     (4) 

These molecules will have a change of the kinetic energy: 

( ) dVvnmuvmdtdSvn zkkozkozkk
22

2
1

−=−    (5) 

 
where udtdSdV =  is the increase of the volume of gas. 
The change of the kinetic energy of the gas corresponding to the increase of volume dV is: 

dVvnmvndVmdE o
k

zkkoc
22

3
1

−=−= ∑                  (6) 

 
and: 

V
dVU

V
dVvm

NdU o

3
2

23
2 2

−=⋅−=                   (7) 

 
Integrating equation (7) results: 

.3/2 constUV =              (8) 
The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature 
T and the equation (8) can be written: 

.3/2 constTV =              (9) 
b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The 

internal energy will be modified only by the adiabatic process suffered by argon gas: 
TmcTCU VV ∆=∆=∆ ν   (10) 

where ν is the number of kilomoles.  For argon RCV 2
3

= . 

For the entire system L=0 and  QU =∆ . 
We will use indices 1, respectively 2, for the measures corresponding to argon from cylinder A, 
respectively oxygen from the cylinder B: 

( )











−








⋅==−⋅⋅=∆ 1
2
3

2
3

3/2

'
1

1
1

1

1
1

'
1

1

1

V
VRTmQTTRmU

µµ
              (11) 

From equation (11) results: 

K

V
VR

Q
m

T 1000

1

1
3
2

3/2

'
1

11

1
1 =

−







⋅⋅⋅=

µ                (12) 

KTT 250
4
1'

1 ==                        (13) 

For the isothermal process suffered by oxygen: 

2

'
2

2

'
2

p
p

=
ρ
ρ                                    (14) 

 
25'

2 /10026,200,2 mNatmp ⋅==  
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From the equilibrium condition: 
atmpp 2'

2
'
1 ==                         (15) 

For argon: 
25

'
1

1

1

'
1'

11 /109,6464 mNatm
T
T

V
Vpp ⋅==⋅⋅=  (16) 

3
1

'
1

3

1

1

1

1
1 16,88,02,1 mVVm

p
RTmV ===⋅=

µ
   (17) 

c) When the valve is opened the gases intermix and at thermal equilibrium the final 
pressure will be 'p  and the temperature T. The total number of kilomoles is constant: 

( )
RT

VVp
RT

Vp
RT

Vp '
2

'
1

'
2

'
2

'
1

'
1

'
1'

21 , +
=+=+ ννν            (18) 

KTTTatmpp 300,2 '
22

'
2

'
1 ====+  

The total volume of the system is constant: 

,'2
'

121 VVVV +=+     '
2

2

2

'
2

ρ
ρ

=
V
V ,   32'

2 14,7
2

mVV ==     (19) 

 
From equation (18) results the final pressure: 

25'
2'

1

'
1

21

'
1 /1023,22,21 mNatmV

T
TV

VV
pp ⋅==








+⋅⋅

+
⋅=   (20) 

 
Problem 3 (Electricity) 

 
A plane capacitor with rectangular plates is fixed in a vertical position having the lower 

part in contact with a dielectric liquid (fig. 3.1) 
Determine the height, h, of the liquid between the plates and explain the phenomenon.  
The capillarity effects are neglected. 
It is supposed that the distance between the plates is much smaller than the linear dimensions 
of the plates. 
 

 
 
It is known: the initial intensity of the electric field of the charged capacitor, E, the density ρ, 
the relative electric permittivity εr of the liquid, and the height H of the plates of the capacitor. 
Discussion. 

h 

H 
Fig. 3.1  
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Solution Problem 3 

 
The initial energy on the capacitor is: 

o

o
ooo C

Q
UCW

2
2

2
1

2
1

⋅=⋅= , where   
d
Hl

C o
o

ε
=    (1) 

H is the height of the plates, l is the width of the capacitor’s plates, and d is the distance 
between the plates. 
When the plates contact the liquid’s surface on the dielectric liquid is exerted a vertical force. 
The total electric charge remains constant and there is no energy transferred to the system from 
outside. The increase of the gravitational energy is compensated by the decrease of the 
electrical energy on the capacitor: 

21 WWWo +=                  (2) 

C
Q

W o
2

1 2
1
⋅= ,  ldghW 2

2 2
1 ρ=               (3) 

( )
d

lhH
d

hl
CCC oro −

+=+=
εεε

21       (4) 

Introducing (3) and (4) in equation (2) it results: 

( ) ( )
0

1
1

2
2 =

−
−+−

g
HE

Hhh roo
r ρ

εε
ε  

The solution is: 

( )
( )











 −
±±−⋅

−
=

gH
EHh roo

r ρ
εε

ε

22

2,1
14

11
12

              (8) 

 
Discussion: Only the positive solution has sense. Taking in account that H is much more grater 
than h we obtain the final result: 

( ) 21
o

ro E
g

h ⋅
−

≈
ρ
εε      

 
 

Problem 4 (Optics) 
 

A thin lens plane-convex with the diameter 2r, the curvature radius R and the refractive 
index no is positioned so that on its left side is air (n1 =1), and on its right side there is a 
transparent medium with the refractive index n2 ≠ 1. The convex face of the lens is directed 
towards air. In the air, at the distance s1from the lens, measured on the principal optic ax, there 
is a punctual source of monochromatic light. 
a) Demonstrate, using Gauss approximation, that between the position of the image, given by 
the distance s2 from the lens, and the position of the light source, exists the relation:  

1
2

2

1

1 =+
s
f

s
f  
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where f1 and f2 are the focal distances of the lens, in air, respectively in the medium with the 
refractive index n2. 
Observation: All the refractive indexes are absolute indexes. 
b) The lens is cut perpendicular on its plane face in two equal parts. These parts are moved 
away at a distance δ << r (Billet lens). On the symmetry axis of the system obtained is led a 
punctual source of light at the distance s1 (s1 > f1) (fig. 4.1). On the right side of the lens there 
is a screen E at the distance d. The screen is parallel with the plane face of the lens. On this 
screen there are N interference fringes, if on the right side of the lens is air. 
Determine N function of the wave length. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Solution problem 4 
 

a) From the Fermat principle it results that the time the light arrives from 1P  to 2P is not 
dependent of the way, in gauss approximation ( 1P  and 2P  are conjugated points). 

 
1T  is the time the light roams the optical way 2211 POVVP  (fig. 4.2): 

2

2

1

1
1 v

MP
v
MPT += , where

OP
hOPMOOPMP

1

2

1
22

11 2
+≈+= , and 

OP
hOPMP

2

2

22 2
+≈  

because OMh = is much more smaller than OP1  or  OP2 . 









+⋅++=

OPvOPv
h

v
OP

v
OPT

2211

2

2

2

1

1
1

11
2

; 
v
VV

v
PV

v
VPT 21

2

22

1

11
2 ++=               (1) 

 

Fig. 4.1 

Fig. 4.2 
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







+⋅≅

21

2

21
11

2 RR
hVV    (2) 

From condition 21 TT = , it results: 
 

2211212211

1111111
RvRvRRvOPvOPv

−−







+=+   (3) 

Taking in account the relation
n
cv = , and using 11 sOP = , 22 sOP = , the relation (3) can be 

written: 

2211212

2

1

1 1111
RvRvRR

n
s
n

s
n

o −−







+=+     (4) 

If the point 1P  is at infinite, 2s  becomes the focal distance; the same for 2P . 








 −
+

−
⋅=

2

2

1

1

22

11
R

nn
R

nn
nf

oo ;   






 −
+

−
⋅=

2

2

1

1

11

11
R

nn
R

nn
nf

oo                 (5) 

From the equations (30 and (4) it results: 

1
2

2

1

1 =+
s
f

s
f                               (6) 

The lens is plane-convex (fig. 4.3) and its focal distances are: 
 

 

11

1
1 −

=
−

=
oo n
R

nn
Rnf        ;   

10

2

1

2
2 −

=
−

=
n

Rn
nn

Rnf
o

               (7) 

b) In the case of Billet lenses, 1S  and 2S  are the real images of the object S and can be 
considered like coherent light sources (fig. 4.4). 
 

 
 
Fig. 4.3 
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∆=21OO  is much more smaller than r: 

rrOM ≈+∆= ,  121 pSOSOSO =≈≈ , 2
'

2211 pOSOSOS =≈= , 







+⋅∆=

2

1
21 1

p
pSS  

We calculate the width of the interference field 'RR   (fig. 4.4). 

2
22 '' ϕtgASRARR ⋅⋅=⋅= ,  2

' pdAS −≅ , 
22 p

rtg =
ϕ ,   ( )

2
2

' 2
p
rpdRR ⋅−=  

Maximum interference condition is: 
λ⋅= kNS2  

The fringe of k order is located at a distance kx  from A: 
( )









+∆

−
⋅=

1

2

2

1
p
p
pdkxk

λ                    (8) 

The expression of the inter-fringes distance is: 
( )









+∆

−
=

1

2

1
p
p
pdi λ                          (9) 

The number of observed fringes on the screen is: 

2

1

2
' 1

2
p
p
p

r
i

RRN
λ

+
⋅∆==          (10) 

2p  can be expressed from the lenses’ formula: 

fp
fpp
−

=
1

1
2  

 
 

Fig. 4.4 



 12 

Experimental part (Mechanics) 
 

There are given two cylindrical bodies (having identical external shapes and from the 
same material), two measuring rules, one graduated and other un-graduated, and a vessel with 
water. 
It is known that one of the bodies is homogenous and the other has an internal cavity with the 
following characteristics:   

- the cavity is cylindrical  
- has the axis parallel with the axis of the body 
- its length is practically equal with that of the body 

Determine experimentally and justify theoretically: 
a) The density of the material the two bodies consist of. 
b) The radius of the internal cavity. 
c) The distance between the axis of the cavity and the axis of the cylinder. 
d) Indicate the sources of errors and appreciate which of them influences more the final 

results. 
Write all the variants you have found. 
 
Solution of the experimental problem  
 

a) Determination of the density of the material 
The average density of the two bodies was chosen so that the bodies float on the water. 
Using the mass of the liquid crowded out it is determined the mass of the first body (the 
homogenous body): 

aaaaa HSVmm ρρ ===                                  (1) 
where Sa is the area of the base immersed in water, H the length  of the cylinder and ρa is the 
density of water. 
The mass of the cylinder is: 

ρπρ HRVm 2=⋅=                                (2) 
It results the density of the body: 

2R
Sa

a π
ρρ =                          (3) 

To calculate the area Sa it is measured the distance h above the water surface (fig. 5.1). Area is 
composed by the area of the triangle OAB plus the area of the circular sector with the angle 
2π -2θ. 
The triangle area: 

( ) ( ) ( ) ( )hRhhRhRhRR −−=−⋅−−⋅ 22
2
1 2       (4) 
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The circular sector area is: 
 

( )






 −

−=
−

R
hRRR arccos

2
2 22 ππ

π
θπ        (5) 

The immersed area is: 
 

( ) ( ) 





 −

−+−−=
R

hRRhRhhRSa arccos2 2 π        (6) 

where R and h are measured by the graduated rule. 
b) The radius of the cylindrical cavity 
The second body (with cavity) is dislocating a water mass: 

aaa HSmm ρ''' ==       (7) 
where Sa’ is area immersed in water. 
The mass of the body having the cavity inside is: 

( ) ( ) ρπρ HrRvVm 22' −=−=    (8) 
The cavity radius is: 

'2
a

a SRr ⋅−=
πρ
ρ

   (9) 

Sa
’ is determined like Sa. 

c) The distance between the cylinder’s axis and the cavity axis 
We put the second body on the horizontal table (or let it to float in water) and we trace the 
vertical symmetry axis AB (fig. 5.2). 
Using the rule we make an inclined plane. We put the body on this plane and we determine the 
maximum angle of the inclined plane for the situation the body remains in rest (the body 
doesn’t roll). Taking in account that the weight centre is located on the axis AB on the left side 
of the cylinder axis (point G in fig. 5.2) and that at equilibrium the weight centre is on the 
same vertical with the contact point between the cylinder and the inclined plane, we obtain the 
situation corresponding to the maximum angle of the inclined plane (the diameter AB is 
horizontal). 

Fig. 5.1 
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The distance OG is calculated from the equilibrium condition: 
 

xmOGm c ⋅=⋅'  , (mc = the mass dislocated  by the cavity)      (10) 
 

OG = Rsinα          (11) 
 

2

22'

sin
r

rRR
m
mOGx

c

−
⋅⋅=⋅= α     (12) 

d) At every measurement it must be estimated the reading error. Taking in account the 
expressions for ρ, r and x it is evaluated the maximum error for the determination of these 
measures. 

Fig. 5.2 
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Abstract 
 

The article contains the competition problems given at the 7th International Physics 
Olympiad (Warsaw, 1974) and their solutions.  

 
Introduction 

 
 The 7th International Physics Olympiad (Warsaw, 1974) was the second one organized 
in Poland. It took place after a one-year organizational gap, as no country was able to 
organize the competition in 1973. 

The original English version of the problems of the 7th IPhO has not been preserved. 
We would like to remind that the permanent Secretariat of the IPhOs was established only in 
1983; previously the Olympic materials had been collected by individual people in their 
private archives and, in general, are not complete. English texts of the problems and 
simplified solutions are available in the book by R. Kunfalvi [1]. Unfortunately, they are 
somewhat deformed as compared to the originals. Fortunately, we have very precise Polish 
texts. Also the full solutions in Polish are available. This article is based on the books [2, 3] 
and article [4]. 

The competition problems were prepared especially for the 7th IPhO by Andrzej 
Szymacha (theoretical problems) and Jerzy Langer (experimental problem). 

 
THEORETICAL PROBLEMS 

 
Problem 1 
 

A hydrogen atom in the ground state, moving with velocity v , collides with another 
hydrogen atom in the ground state at rest. Using the Bohr model find the smallest velocity 0v  
of the atom below which the collision must be elastic. 

At velocity 0v  the collision may be inelastic and the colliding atoms may emit 
electromagnetic radiation. Estimate the difference of frequencies of the radiation emitted in 
the direction of the initial velocity of the hydrogen atom and in the opposite direction as a 
fraction (expressed in percents) of their arithmetic mean value. 

Data: 
 

J 182.18  eV 6.13
2

18-
2

4

⋅===


meEi ; (ionization energy of hydrogen atom) 

 
kg 1067.1 27−⋅=Hm ; (mass of hydrogen atom) 

                                                 
1 This article has been sent for publication in Physics Competitions in September 2003 
2 e-mail: gorzk@ifpan.edu.pl 



 
( m  - mass of electron; e  - electric charge of electron;  - Planck constant; numerical 

values of these quantities are not necessary.) 
 

Solution 
 
 According to the Bohr model the energy levels of the hydrogen atom are given by the 
formula: 
 

2n
EE i

n −= , 

 
where n = 1, 2, 3, … The ground state corresponds to 1=n , while the lowest excited state 
corresponds to 2=n . Thus, the smallest energy necessary for excitation of the hydrogen atom 
is: 
 

ii EEEEE 4
3

4
1

12 )1( =−=−=∆ . 
 

During an inelastic collision a part of kinetic energy of the colliding particles is 
converted into their internal energy. The internal energy of the system of two hydrogen atoms 
considered in the problem cannot be changed by less than E∆ . It means that if the kinetic 
energy of the colliding atoms with respect to their center of mass is less than E∆ , then the 
collision must be an elastic one. The value of 0v  can be found by considering the critical case, 
when the kinetic energy of the colliding atoms is equal to the smallest energy of excitation. 
With respect to the center of mass the atoms move in opposite direction with velocities 02

1 v . 
Thus 

 

( ) ( ) iHH Evmvm 4
32

02
12

02
1

2
1

2
1

=+  

 
and 
 

H

i

m
Ev 3

0 =         ( 41026.6 ⋅≈  m/s). 

 
 Consider the case when 0vv = . The collision may be elastic or inelastic. When the 
collision is elastic the atoms remain in their ground states and do not emit radiation. Radiation 
is possible only when the collision is inelastic. Of course, only the atom excited in the 
collision can emit the radiation. In principle, the radiation can be emitted in any direction, but 
according to the text of the problem we have to consider radiation emitted in the direction of 
the initial velocity and in the opposite direction only. After the inelastic collision both atom 
are moving (in the laboratory system) with the same velocities equal to 02

1 v . Let f  denotes 
the frequency of radiation emitted by the hydrogen atom in the mass center (i.e. at rest). 
Because of the Doppler effect, in the laboratory system this frequency is observed as (c 
denotes the velocity of light): 



a) f
c
v

f 






 += 02
1

1 1 - for radiation emitted in the direction of the initial velocity of the 

hydrogen atom, 

b) f
c
v

f 






 −= 02
1

2 1  - for radiation emitted in opposite direction. 

 
The arithmetic mean value of these frequencies is equal to f . Thus the required ratio 

is 
 

c
v

f
ff

f
f 021 =

−
=

∆           ( %102 2−⋅≈ ). 

 
In the above solution we took into account that cv <<0 . Otherwise it would be 

necessary to use relativistic formulae for the Doppler effect. Also we neglected the recoil of 
atom(s) in the emission process. One should notice that for the visible radiation or radiation 
not too far from the visible range the recoil cannot change significantly the numerical results 

for the critical velocity 0v  and the ratio 
f
f∆ . The recoil is important for high-energy quanta, 

but it is not this case. 
The solutions were marked according to the following scheme (draft): 

1. Energy of excitation     up to 3 points 
2. Correct description of the physical processes up to 4 points 
3. Doppler effect      up to 3 points 

 
Problem 2 
 

Consider a parallel, transparent plate of thickness d – Fig. 1. Its refraction index varies 
as 

R
x

nn
−

=
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0 . 
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Fig. 1 
 

A light beam enters from the air perpendicularly to the plate at the point A (xA = 0) and 
emerges from it at the point B at an angle α .  

1. Find the refraction index Bn  at the point B. 
2. Find Bx (i.e. value of x at the point B) 
3. Find the thickness d of the plate. 

Data: 
 

2.10 =n ;   13=R cm;   °= 30α . 
 

Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 
 Consider a light ray passing through a system of parallel plates with different 
refractive indexes – Fig. 2. From the Snell law we have 
 

2

1

1

2

sin
sin

n
n

=
β
β  

i.e.  
1122 sinsin ββ nn = . 

 
In the same way we get 
 

2233 sinsin ββ nn = ,  etc. 
 
Thus, in general: 

=iin βsin const. 
 

β2 

n1 n2 n3 

β1 

β2 

β3 

β3 



This relation does not involve plates thickness nor their number. So, we may make use 
of it also in case of continuous dependence of the refractive index in one direction (in our case 
in the x direction). 

 
 Consider the situation shown in Fig. 3. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 
 

At the point A the angle °= 90Aβ . The refractive index at this point is 0n . Thus, we have 
 

BBAA nn ββ sinsin = , 

BBnn βsin0 = . 
 
Additionally, from the Snell law applied to the refraction at the point B, we have  
 

B
B

n=
−° )90sin(

sin
β

α . 

 
Therefore 
 

2
0

2222 )sin(sin1cossin nnnnnn BBBBBBBB −=−=−== βββα  
 
and finally 
 

α22
0 sin+= nnB . 

 
Numerically 
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The value of Bx  can be found from the dependence )(xn  given in the text of the 
problem. We have 
 

R
x

nxnn
B

BB

−
==

1
)( 0 , 









−=

B
B n

nRx 01 , 

Numerically 
1=Bx  cm. 

 The answer to the third question requires determination of the trajectory of the light 
ray. According to considerations described at the beginning of the solution we may write (see 
Fig. 4): 
 

0)(sin)( nxxn =β . 
 
Thus 

R
xR

xn
nx −

==
)(

)(sin 0β . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
 
 Consider the direction of the ray crossing a point C on the circle with radius R  and 
center in point O as shown in Fig. 4. We see that 
 

∠sin COC' )(sin x
R

xR β=
−

= . 

 
Therefore, the angle ∠COC' must be equal to the angle )(xβ  formed at the point C by the 
light ray and CC'. It means that at the point C the ray must be tangent to the circle. Moreover, 
the ray that is tangent to the circle at some point must be tangent also at farther points. 
Therefore, the ray cannot leave the circle (as long as it is inside the plate)! But at the 

R 

A’ 
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B 

O 
R 
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C C’ 

R 

R - x 

B’ 

β(x) 



beginning the ray (at the point A) is tangent to the circle. Thus, the ray must propagate along 
the circle shown in Fig. 4 until reaching point B where it leaves the plate. 

 Already we know that A'B = 1 cm. Thus, B'B = 12 cm and from the rectangular 
triangle BB'O we get 
 

22 1213 OB' −==d cm = 5 cm. 
 
 The shape of the trajectory )(xy  can be determined also by using more sophisticated 
calculations. Knowing )(xβ  we find )(tg xβ : 
 

22 )(
)(tg

xRR

xRx
−−

−
=β . 

 
But )(tg xβ  is the derivative of )(xy . So, we have 
 

( )22

22
)(

)(
xRR

dx
d

xrR

xR
dx
dy

−−=
−−

−
= . 

 
Thus 
 

constxRRy +−−= 22 )(  
 
Value of const can be found from the condition 
 

0)0( =y . 
 
Finally: 
 

22 )( xRRy −−= . 
 
It means that the ray moves in the plate along to the circle as found previously. 
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Fig. 5 
 

Now we will present yet another, already the third, method of proving that the light in 
the plate must move along the circle. 
 We draw a number of straight lines (inside the plate) close to each other and passing 
trough the point (R,0) - Fig. 5. From the formula given in the text of the problem it follows 
that the refraction index on each of these lines is inversely proportional to the distance to the 
point (R,0). Now we draw several arcs with the center at (R,0). It is obvious that the geometric 
length of each arc between two lines is proportional to the distance to the point (R,0). 

 It follows from the above that the optical path (a product of geometric length and 
refractive index) along each arc between the two lines (close to each other) is the same for all 
the arcs.  

 Assume that at +-certain moment t  the wave front reached one of the lines, e.g. the 
line marked with a black dot in Fig. 5. According to the Huygens principle, the secondary 
sources on this line emit secondary waves. Their envelope forms the wave front of the real 
wave at some time tt ∆+ . The wave fronts of secondary waves, shown in Fig. 5, have 
different geometric radii, but - in view of our previous considerations - their optical radii are 
exactly the same. It means that at the time tt ∆+  the new wave front will correspond to one 
of the lines passing trough (R,0). At the beginning the wave front of the light coincided with 
the x axis, it means that inside the plate the light will move along the circle with center at the 
point (R,0). 

The solutions were marked according to the following scheme (draft): 

1. Proof of the relation =βsinn  const    up to 2 points 
2. Correct description of refraction at points A and B   up to 2 points 
3. Calculation of Bx        up to 1 point 
4. Calculation of d       up to 5 points 

 
Problem 3 
 
 A scientific expedition stayed on an uninhabited island. The members of the 
expedition had had some sources of energy, but after some time these sources exhausted. 
Then they decided to construct an alternative energy source. Unfortunately, the island was 
very quiet: there were no winds, clouds uniformly covered the sky, the air pressure was 
constant and the temperatures of air and water in the sea were the same during day and night. 
Fortunately, they found a source of chemically neutral gas outgoing very slowly from a cavity. 
The pressure and temperature of the gas are exactly the same as the pressure and temperature 
of the atmosphere.  

The expedition had, however, certain membranes in its equipment. One of them was 
ideally transparent for gas and ideally non-transparent for air. Another one had an opposite 
property: it was ideally transparent for air and ideally non-transparent for gas. The members 
of the expedition had materials and tools that allowed them to make different mechanical 
devices such as cylinders with pistons, valves etc. They decided to construct an engine by 
using the gas from the cavity.  

Show that there is no theoretical limit on the power of an ideal engine that uses the gas 
and the membranes considered above. 

 

Solution 



 

 Let us construct the device shown in Fig. 6. B1 denotes the membrane transparent for 
the gas from the cavity, but non-transparent for the air, while B2 denotes the membrane with 
opposite property: it is transparent for the air but non-transparent for the gas.  

Initially the valve Z1 is open and the valve Z2 is closed. In the initial situation, when 
we keep the piston at rest, the pressure under the piston is equal to 00 pp +  due to the Dalton 
law. Let 0V denotes an initial volume of the gas (at pressure 0p ). 

Now we close the valve Z1 and allow the gas in the cylinder to expand. During 
movement of the piston in the downwards direction we obtain certain work performed by 
excess pressure inside the cylinder with respect to the atmospheric pressure 0p . The partial 
pressure of the gas in the cylinder will be reduced according to the formula VVpp /00= , 
where V denotes volume closed by the piston (isothermal process). Due to the membrane B2 
the partial pressure of the air in the cylinder all the time is 0p  and balances the air pressure 
outside the cylinder. It means that only the gas from the cavity effectively performs the work. 

 
  

 

 

 

 

  

 

 

 

 
 

 

 
Fig. 6 

 

 Consider the problem of limits for the work that can be performed during isothermal 
expansion of an initial portion of the gas. Let us analyze the graph of the function VVp /00  
versus V  shown in Fig. 7. 

 It is obvious that the amount of work performed by the gas during isothermal 
expansion from 0V  to kV  is represented by the area under the curve (shown in the graph) from 

0V  to kV . Of course, the work is proportional to 0V . We shall prove that for large enough kV  
the work can be arbitrarily large.  

 Consider ... ,16 ,8 ,4 ,2 , 00000 VVVVVV =  It is clear that the rectangles I, II, III, … (see 
Fig. 7) have the same area and that one may draw arbitrarily large number of such rectangles 
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Z2 
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under the considered curve. It means that during isothermal expansion of a given portion of 
the gas we may obtain arbitrarily large work (at the cost of the heat taken from sthe 
urrounding) – it is enough to take kV  large enough. 

 After reaching kV  we open the valve Z2 and move the piston to its initial position 
without performing any work. The cycle can be repeated as many times as we want. 

 In the above considerations we focused our attention on the work obtained during one 
cycle only. We entirely neglected dynamics of the process, while each cycle lasts some time.  
One may think that - in principle - the length of the cycle increases very rapidly with the 
effective work we obtain. This would limit the power of the device we consider.  

Take, however, into account that, by proper choice of various parameters of the device, 
the time taken by one cycle can be made small and the initial volume of the gas 0V  can be 
made arbitrarily large (we consider only theoretical possibilities – we neglect practical 
difficulties entirely). E.g. by taking large size of the membrane B1 and large size of the piston 
we may minimize the time of taking the initial portion of the gas 0V  from the cavity and make 
this portion very great. 

In our analysis we neglected all losses, friction, etc. One should remark that there are 
no theoretical limits for them. These losses, friction etc. can be made negligibly small. 

 

 

 

 
Fig. 7 

 
 The device we analyzed is very interesting: it produces work at cost of heat taken from 
surrounding without any difference in temperatures. Does this contradict the second law of 
thermodynamics? No! It is true that there is no temperature difference in the system, but the 
work of the device makes irreversible changes in the system (mixing of the gas from the 
cavity and the air). 
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The solutions were marked according to the following scheme (draft): 

1. Model of an engine and its description     up to 4 points 
2. Proof that there is no theoretical limit for power    up to 4 points 
3. Remark on II law of thermodynamics    up to 2 points 

 
EXPERIMENTAL PROBLEM 

 
 In a "black box" there are two identical semiconducting diodes and one resistor 
connected in some unknown way. By using instruments provided by the organizers find the 
resistance of the resistor. 
 Remark: One may assume that the diode conducts current in one direction only. 
 List of instruments: two universal volt-ammeters (without ohmmeters), battery, wires 
with endings, graph paper, resistor with regulated resistance. 
 
Solution 
 
 At the beginning we perform preliminary measurements by using the circuit shown in 
Fig. 8. For two values of voltage 1U  and 2U , applied to the black box in both directions, we 
measure four values of current: )( 1UI , )( 2UI , )( 1UI −  and )( 2UI − . In this way we find that: 
 

1. The black box conducts current in both directions; 
2. There is an asymmetry with respect to the sign of the voltage; 
3. In both directions current is a nonlinear function of voltage. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 
 
 The diodes and resistor can be connected in a limited number of ways shown in Fig. 9 
(connections that differ from each other in a trivial way have been omitted). 
 
 
 
 
 
 
 
 
 

  mV 

  mA 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 
 
 
 Only one of these connections has the properties mentioned at the beginning. It is: 
 
 
 
 
 
 
 
 

Fig. 10 
 
 For absolute values of voltages we have 
 

UUUU ABR ∆=−= , 
 
where RU  denotes voltage on the resistor when a current I  flows trough the branch B, AU  - 
voltage on the black box when the current I  flows through the branch A, and BU  - voltage on 
the black box when the current I  flows through the branch B. 
 Therefore 
 

I
U

I
IUIU

I
IUR ABR ∆

=
−

==
)()()( . 

 
 It follows from the above that it is enough to take characteristics of the black box in 
both directions: by subtraction of the corresponding points (graphically) we obtain a straight 
line (example is shown in Fig. 11) whose slope allows to determine the value of R . 

The solutions were marked according to the following scheme (draft): 

B B 

A 



Theoretical part: 
1. Proper circuit and method allowing determination of connections  

the elements in the black box      up to 6 points 
2. Determination of R (principle)     up to 2 points 
3. Remark that measurements at the same voltage in both  

directions make the error smaller     up to 1 point 
4. Role of number of measurements (affect on errors)   up to 1 point 

Experimental part: 
1. Proper use of regulated resistor as potentiometer   up to 2 points 
2. Practical determination of R (including error)   up to 4 points 
3. Proper use of measuring instruments     up to 2 points 
4. Taking into account that temperature of diodes increases during  

measurements        up to 1 point 
5. Taking class of measuring instruments into account  up to 1 point 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 
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Problems of the 8th International Physics Olympiad

(Güstrow, 1975)

Gunnar Friege1 & Gunter Lind

Introduction

The 8th International Physics Olympiad took place from the 7.7. to the 12.7. 1975 in Güstrow,

in the German Democratic Republic (GDR). Altogether, 9 countries with 45 pupils participated.

The teams came from Bulgaria, the German Democratic Republic, the Federal Republic of

Germany (FRG), France, Poland, Rumania, Tchechoslowakia, Hungary and the USSR. The

entire event took place in the pedagogic academy of Güstrow. Pupils and leaders were

accommodated inside the university academy complex. On the schedule there was the

competition and receptions as well as excursions to Schwerin, Rostock, and Berlin were offered.

The delegation of the FRG reported of a  very good organisation of the olympiad.

The problems and solutions of the 8th International Physics Olympiad were created by a

commission of university physics professors and lecturers. The same commission set marking

schemes and conducted the correction of the tests. The correction was carried out very quickly

and was considered as righteous and, in cases of doubt, as very generous.

The main competition consisted of a 5 hour test in theory and a 4.5 hour experimental test. The

time for the theoretical part was rather short and for the experimental part rather long. The

problems originated from central areas of classical physics. The theoretical problems were

relatively difficult, although solvable with good physics knowledge taught at school. The level

of difficulty of the experimental problem was adequate. There were no additional devices

necessary for the solution of the problems. Only basic formula knowledge was requested, and

could be demanded from all pupils. Critics were only uttered concerning the second theoretical

problem (thick lens). This problem requested relatively little physical understanding, but tested

the mathematical skills and the routine in approaching problems (e.g. correct distinction of

cases). However, it is also difficult to find substantial physics problems in the area of

geometrical optics.

                                                
1 Remark: This article was written due to the special request to us by Dr. W. Gorzkowski, in order to close one of

the last few gaps in the IPhO-report collection.
 Contact: Dr. Gunnar Friege, Leibniz-Institute for Science Education (IPN) at the University of Kiel, Olshausenstr.

62, 24098 Kiel, Germany, friege@ipn.uni-kiel.de
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Altogether 50 points were the maximum to achieve; 30 in the theoretical test and 20 in the

experimental test. The best contestant came from the USSR and had 43 points. The first prize

(gold medal) was awarded with 39 points, the second prize (silver medal) with 34 points, the

third prize (bronze medal) with 28 points and the fourth prize (honourable mention) with 22

points. Among the 45 contestants, 7 I. prizes, 9 II. prizes, 12 III. prizes and 8 IV. prizes were

awarded, meaning that 80 % of all contestants were awarded.

The following problem descriptions and solution are based mainly on a translation of the

original German version from 1975. Because the original drafts are not well preserved, some

new sketches were drawn. We also gave the problems headlines and the solutions are in more

detail.

Theoretical problem 1: “Rotating rod”

A rod revolves with a constant angular velocity ω

around a vertical axis A. The rod includes a fixed angle

of / 2 -π α  with the axis. A body of mass m can glide

along the rod. The coefficient of friction is µ = tanβ.

The angle β is called „friction angle“.

a) Determine the angles α under which the body

remains at rest and under which the body is in

motion if the rod is not rotating (i.e. ω = 0).

b) The rod rotates with constant angular velocity

ω > 0. The angle α does not change during rotation.

Find the condition for the body to remain at rest

relative to the rod.

You can use the following relations:

sin (α ± β) = sin α ⋅ cos β ±  cos α ⋅ sin β

cos (α ± β) = cos α ⋅ cos β ∓  sin α ⋅ sin β
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Solution of problem 1:

a) ω = 0:

The forces in this case are (see figure):

G Z N m g= + = ⋅
G G G G (1),

sinZ m g Z= ⋅ ⋅ α =
G

(2),

cosN m g N= ⋅ ⋅ α=
G

(3),

cosR N m g Rµ µ α= ⋅ = ⋅ ⋅ ⋅ =
G

(4).

[ R
G

: force of friction]

The body is at rest relative to the rod, if Z R≤ . According to equations (2) and (4) this is

equivalent to tan tanα β≤ . That means, the body is at rest relative to the rod for α β≤ and

the body moves along the rod for α β> .

b) ω > 0:

Two different situations have to be considered: 1. α β>  and 2. α β≤ .

If the rod is moving ( 0ω ≠ ) the forces are  G m g= ⋅
G G  and 2

rF m r ω= ⋅ ⋅
G G

.

From the parallelogramm of forces (see figure):

rZ N G F+ = +
GG G G

(5).

The condition of equilibrium is:

Z Nµ=
G G

(6).

Case 1: Z
G

is oriented downwards, i.e. sin cos2g rα ω α⋅ > ⋅ ⋅ .

sin - cos2Z m g m rα ω α= ⋅ ⋅ ⋅ ⋅ ⋅
G

  and  cos sin2N m g m rα ω α= ⋅ ⋅ + ⋅ ⋅ ⋅
G

Case 2: Z
G

is oriented upwards, i.e. sin cos2g rα ω α⋅ < ⋅ ⋅ .

sin cos2Z m g m rα ω α= − ⋅ ⋅ + ⋅ ⋅ ⋅
G

  and  cos sin2N m g m rα ω α= ⋅ ⋅ + ⋅ ⋅ ⋅
G

It follows from the condition of equilibrium equation (6) that

( )sin cos2g rα ω α± ⋅ − ⋅ ⋅ = ( )tan cos sin2g rβ α ω α⋅ ⋅ + ⋅ ⋅        (7).
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Algebraic manipulation of equation (7) leads to:

( ) ( )sin cos2g rα β ω α β⋅ − = ⋅ ⋅ −        (8),

( ) ( )sin cos2g rα β ω α β⋅ + = ⋅ ⋅ +        (9).

That means,

( ), tan1 2 2

gr α β
ω

= ⋅ ∓      (10).

The body is at rest relative to the rotating rod in the case α β>  if the following inequalities

hold:

1 2r r r≤ ≤         with 1 2, 0r r >        (11)

or

1 2L L L≤ ≤         with / cos and / cos1 1 2 2L r L r= α = α               (12).

The body is at rest relative to the rotating rod in the case α β≤  if the following inequalities

hold:

20 r r≤ ≤ with 1r 0= (since 1r 0<  is not a physical solution), 2 0r >      (13).

Inequality (13) is equivalent to

20 L L≤ ≤         with / cos2 2L r 0= α>      (14).

Theoretical problem 2: “Thick lens”

The focal length f of a thick glass lens in air with refractive index n, radius curvatures r1, r2 and

vertex distance d (see figure) is given by: 
( ) ( ) ( )

1 2

2 11 1
n r rf

n n r r d n
=

− − + −  
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Remark: ri > 0 means that the central curvature point Mi is on the right side of the aerial

vertex Si, ri < 0 means that the central curvature point Mi is on the left side of the

aerial vertex Si (i = 1,2).

For some special applications it is required, that the focal length is independent from the

wavelength.

a) For how many different wavelengths can the same focal length be achieved?

b) Describe a relation between ri (i = 1,2), d and the refractive index n for which the required

wavelength independence can be fulfilled and discuss this relation.

Sketch possible shapes of lenses and mark the central curvature points M1 and M2.

c) Prove that for a given planconvex lens a specific focal length can be achieved by only one

wavelength.

d) State possible parameters of the thick lens for two further cases in which a certain focal

length can be realized for one wavelength only. Take into account the physical and the

geometrical circumstances.

Solution of problem 2:

a) The refractive index n is a function of the wavelength λ , i.e. n = n (λ ). According to the

given formula for the focal length f (see above) which for a given f yields to an equation

quadratic in n there are at most two different wavelengths (indices of refraction) for the same

focal length.

b) If the focal length is the same for two different wavelengths, then the equation

( ) ( )1 2f fλ = λ  or  ( ) ( )1 2f n f n=         (1)

holds. Using the given equation for the focal length it follows from equation (1):

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 1 2

1 1 2 1 1 2 2 2 1 21 1 1 1
n r r n r r

n n r r d n n n r r d n
=

− − + − − − + −      

Algebraic calculations lead to:

1 2
1 2

1r r d 1
n n

 
− = ⋅ − 

 
        (2).

If the values of the radii r1, r2 and the thickness satisfy this condition the focal length will be

the same for two wavelengths (indices of refraction). The parameters in this equation are

subject to some physical restrictions: The indices of refraction are greater than 1 and the

thickness of the lens is greater than 0 m. Therefore, from equation (2) the relation

01 2d r r> − >         (3)
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is obtained.

The following table shows a discussion of different cases:

1r 2r condition shape of the lens centre of
curvature

01r > 02r > 0 1 2r r d< − <
or

2 1 2r r d r< < +

M2 is always
right of M1.

1 12 2M M S S<

01r > 02r < d1 2r r+ < Order of points:
1 1 2 2S M M S

01r < 02r > never fulfilled

01r < 02r < 0 2 1r r d< − <
or

1 2 1r r d r< < +

M2 is always
right of M1.

1 12 2M M S S<

c) The radius r1 or the radius r2 is infinite in the case of the planconvex lens. In the following it

is assumed that r1 is infinite and r2 is finite.

( ) ( )
lim lim

1
1 1 1

1 1

2 2
r r

2

1 1

n r rf
nr dn n n

r r

→∞ →∞
= =

−  
− − + −  

  

        (4)

Equation (4) means, that for each wavelength (refractive index) there exists a different value

of the focal length.

d) From the given formula for the focal length (see problem formulation) one obtains the

following quadratic equation in n:

02A n B n C⋅ + ⋅ + =         (5)

with ( )2 1A r r d f= − + ⋅ , ( ) 22 1 1 2B f r r f d r r= − ⋅ − + ⋅ ⋅ + ⋅    and C f d= ⋅ .



7

Solutions of equation (5) are:

, 2 4

2

1 2 2

B B Cn
A A A

= − ± −
⋅ ⋅

       (6).

Equation (5) has only one physical correct solution, if...

I) A = 0 (i.e., the coefficient of  n2 in equation (5) vanishes)

In this case the following relationships exists:

r1 – r2 = d        (7),

1
1 2

f dn
f d r r

⋅
= >

⋅ + ⋅
       (8).

II) B = 0 (i.e. the coefficient of n in equation (5) vanishes)

In this case the equation has a positive and a negative solution. Only the positve

solution makes sense from the physical point of view. It is:

( ) 02 1 1 2f r r 2 f d r r⋅ − + ⋅ ⋅ + ⋅ =        (9),

( )
12

2 1

C dn
A r r d

= − =− >
− +

     (10),

III) B2 = 4 AC

In this case two identical real solutions exist. It is:

( ) 2
( ) 2

2 1 1 2 2 1f r r 2 f d r r 4 r r d f d⋅ − + ⋅ ⋅ + ⋅ = ⋅ − + ⋅ ⋅        (11),

( )
( )

1
2

2 1 1 2

2 1

f r r 2 f d r rBn
2 A f r r d

⋅ − + ⋅ ⋅ + ⋅
= − = >

⋅ ⋅ − +
     (12).

Theoretical problem 3: “Ions in a magnetic field”

A beam of positive ions (charge +e) of the same and

constant mass m spread from point Q in different directions

in the plane of paper (see figure2). The ions were

accelerated by a voltage U. They are deflected in a uniform

magnetic field B that is perpendicular to the plane of paper.

The boundaries of the magnetic field are made in a way

that the initially diverging ions are focussed in point A

( QA 2 a= ⋅ ). The trajectories of the ions are symmetric to the middle perpendicular on QA .

                                                
2 Remark: This illustrative figure was not part of the original problem formulation.
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Among different possible boundaries of magnetic fields a specific type shall be considered in

which a contiguous magnetic field acts around the middle perpendicular and in which the points

Q and A are in the field free area.

a) Describe the radius curvature R of the particle path in the magnetic field as a function of the

voltage U and the induction B.

b) Describe the characteristic properties of the particle paths in the setup mentioned above.

c) Obtain the boundaries of  the magnetic field boundaries by geometrical constructions for the

cases R < a, R = a and R > 0.

d) Describe the general equation for the boundaries of the magnetic field.

Solution of problem 3:

a) The kinetic energy of the ion after acceleration by a voltage U is:

½ mv2 = eU        (1).

From equation (1) the velocity of the ions is calculated:

2 e Uv
m
⋅ ⋅

=        (2).

On a moving ion (charge e and velocity v) in a homogenous magnetic field B acts a Lorentz

force F. Under the given conditions the velocity is always perpendicular to the magnetic

field. Therefore, the paths of the ions are circular with Radius R. Lorentz force and

centrifugal force are of the same amount:
2m ve v B

R
⋅

⋅ ⋅ =         (3).

From equation (3) the radius of the ion path is calculated:

R = 1 2 m U
B e

⋅ ⋅        (4).

b) All ions of mass m travel on circular paths of radius R = v⋅m / e⋅B inside the magnetic field.

Leaving the magnetic field they fly in a straight line along the last tangent. The centres of

curvature of the ion paths lie on the middle perpendicular on QA  since the magnetic field is

assumed to be symmetric to the middle perpendicular on QA . The paths of the focussed

ions are above QA due to the direction of the magnetic field.
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c) The construction method of the boundaries of the magnetic fields is based on the

considerations in part b:

- Sketch circles of radius R and different centres of curvature on the middle perpendicular

on QA .

- Sketch tangents on the circle with either point Q or point A on these straight lines.

- The points of tangency make up the boundaries of the magnetic field. If R > a then not

all ions will reach point A. Ions starting at an angle steeper than the tangent at Q, do not

arrive in A. The figure on the last page shows the boundaries of the magnetic field for

the three cases R < a, R = a and R > a.

d) It is convenient to deduce a general equation for the boundaries of the magnetic field in

polar coordinates (r, ϕ) instead of using cartesian coordinates (x, y).

The following relation is obtained from the figure:

cos sinr R aϕ ϕ⋅ + =        (7).

The boundaries of the magnetic field are given by:

1 sin
cos

a Rr
a

ϕ
ϕ
 = − 
 

       (8).
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Experimental problem: “Semiconductor element”

In this experiment a semiconductor element (                   ), an adjustable resistor (up to 140 Ω),

a fixed resistor (300 Ω), a 9-V-direct voltage source, cables and two multimeters are at disposal.

It is not allowed to use the multimeters as ohmmeters.

a) Determine the current-voltage-characteristics of the semiconductor element taking into

account the fact that the maximum load permitted is 250 mW.  Write down your data in

tabular form and plot your data. Before your measurements consider how an overload of the

semiconductor element can surely be avoided and note down your thoughts. Sketch the

circuit diagram of the chosen setup and discuss the systematic errors of  the circuit.

b) Calculate the resistance (dynamic resistance) of the semiconductor element for a current of

25 mA.

c) Determine the dependence of output voltage U2 from the input voltage U1 by using the

circuit described below. Write down your data in tabular form and plot your data.

The input voltage U1 varies between 0 V and 9 V. The semiconductor element is to be

placed in the circuit in such a manner, that U2 is as high as possible. Describe the entire

circuit diagram in the protocol and discuss the results of the measurements.

d) How does the output voltage U2 change, when the input voltage is raised from 7 V to 9 V?

Explain qualitatively the ratio ∆U1  / ∆U2.

e) What type of semiconductor element is used in the experiment? What is a practical

application of the circuit shown above?

Hints: The multimeters can be used as voltmeter or as ammeter. The precision class of these

instruments is 2.5% and they have the following features:

measuring range 50 µA 300 µA 3 mA 30 mA 300 mA 0,3 V 1 V 3 V 10 V

internal resistance 2 kΩ 1 kΩ 100 Ω 10 Ω 1 Ω 6 kΩ 20 kΩ 60 kΩ 200 kΩ
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Solution of the experimental problem:

a) Some considerations: the product of the voltage across the semiconductor element U and

current I through this element is not allowed to be larger than the maximum permitted load

of  250 mW. Therefore the measurements have to be processed in a way, that the product U⋅

I is always smaller than 250 mW.

The figure shows two different circuit diagram that can be used in this experiment:

The complete current-voltage-

characteristics look like this:

The systematic error is produced

by the measuring instruments.

Concerning the circuit diagram on

the left (“Stromfehlerschaltung”),

the ammeter also measures the

current running through the voltmeter. The current must therefore be corrected. Concerning

the circuit diagram on the right (“Spannungsfehlerschaltung”) the voltmeter also measures

the voltage across the ammeter. This error must also be corrected. To this end, the given

internal resistances of the measuring instruments can be used. Another systematic error is

produced by the uncontrolled temperature increase of the semiconductor element, whereby

the electric conductivity rises.

b) The dynamic resistance is obtained as ratio of small differences by

i
UR
I

∆
=
∆

       (1).

The dynamic resistance is different for the two directions of the current. The order of

magnitude in one direction (backward direction) is 10 Ω  ±  50% and the order of magnitude

in the other direction (flux direction) is 1 Ω  ±  50%.
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c) The complete circuit diagram contains a potentiometer and two voltmeters.

The graph of the function ( )2 1U f U= has

generally the same form for both directions of

the current, but the absolute values are different.

By requesting that the semiconductor element

has to be placed in such a way, that the output

voltage U2 is as high as possible, a backward

direction should be used.

Comment: After exceeding a specific input voltage U1 the output voltage increases only a

little, because with the alteration of U1 the current I increases (breakdown of the

diode) and therefore also the voltage drop at the resistance.

d) The output voltages belonging to U1 = 7 V and U1 = 9 V are measured and their difference

2U∆   is calculated:

2U∆  = 0.1 V ±  50%        (2).

Comment: The circuit is a voltage divider circuit. Its special behaviour results from the

different resistances. The resistance of the semiconductor element is much

smaller than the resistance. It changes nonlinear with the voltage across the

element. From i VR R<<  follows  2 1U U∆ < ∆  in the case of 1 2U U> .

e) The semiconductor element is a Z-diode (Zener diode); also correct: diode and rectifier.  The

circuit diagram can be used for stabilisation of voltages.
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Marking scheme

Problem 1: “Rotating rod” (10 points)

Part a 1 point

Part b – cases 1. and 2. 1 point

          – forces and condition of equilibrium 1 point

          – case Z downwards 2 points

          – case Z upwards 2 points

         – calculation of r1,2 1 point

         – case α β> 1 point

         – case α β≤ 1 point

Problem 2: “Thick lens” (10 points)

Part a 1 point

Part b – equation (1), equation (2) 2 points

          – physical restrictions, equation (3) 1 point

          – discussion of different cases 2 points

          – shapes of lenses 1 point

Part c – discussion and equation (4) 1 point

Part d 2 point

Problem 3: “Ions in a magnetic field” (10 points)

Part a – derivation of equations (1) and (2) 1 point

          – derivation of equation (4) 1 point

Part b – characteristics properties of the particle

             paths

3 points

Part c – boundaries of the magnetic field for the

             three cases

3 points

Part d 2 points
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Experimental problem: “Semiconductor element” (20 points)

Part a  – considerations concerning overload,
   circuit diagram,
   experiment and measurements,
    complete current-voltage-
   -characteristics
   discussion of the systematic errors

6 points

Part b – equation (1)
   dynamic resistance for both directions
   correct results within ±50%

3 points

Part c – complete circuit diagram,
measurements,
graph of the function ( )2 1U f U= ,
correct comment

5 points

Part d – correct 2U∆  within ±50%,
correct comment

3 points

Part e – Zener-diode (diode, rectifier) and
stabilisation of voltages

3 points

Remarks: If the diode is destroyed two points are deducted.

If a multimeter is destroyed five points are deducted.
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Problems of the 9th International Physics Olympiads 
(Budapest, Hungary, 1976) 

 
 
 
Theoretical problems 
 
Problem 1 
 

A hollow sphere of radius R = 0.5 m rotates about a vertical axis through its centre 
with an angular velocity of ω  = 5 s-1. Inside the sphere a small block is moving together with 
the sphere at the height of R/2 (Fig. 6). (g = 10 m/s2.) 

a) What should be at least the coefficient of friction to fulfill this condition? 
b) Find the minimal coefficient of friction also for the case of ω  = 8 s-1. 
c) Investigate the problem of stability in both cases, 

α) for a small change of the position of the block, 
β) for a small change of the angular velocity of the sphere. 
 

 
 

Solution 
 

a) The block moves along a horizontal circle of radius αsinR . The net force acting 
on the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force 
exerted by the wall N, the frictional force S and the weight mg is equal to the resultant: 

αω sin2Rm . 
 

The connections between the horizontal and vertical components: 
 

  αααω cossinsin2 SNRm −= , 
 

  αα sincos SNmg += . 
 

The solution of the system of equations: 
 

  







−=

g
RmgS αωα cos1sin

2

, 

 

R/2 

Figure 6 Figure 7 

S 
α 

mω2Rsinα 

mg 
N 

R 



2 
 

  







+=

g
RmgN αωα

22 sincos . 

The block does not slip down if 
 

  0.2259==
+

−
⋅=≥

23
33

sincos

cos1
sin 22

2

g
R
g

R

N
S

a αωα

αω

αµ . 

 

In this case there must be at least this friction to prevent slipping, i.e. sliding down. 
 

b) If on the other hand 1cos2

>
g

R αω  some 

friction is necessary to prevent the block to slip 
upwards. αω sin2Rm  must be equal to the 
resultant of forces S, N and mg. Condition for the 
minimal coefficient of friction is (Fig. 8): 
 

 =
+

−
⋅=≥

g
R

g
R

N
S

b αωα

αω

αµ 22

2

sincos

1cos

sin  

0.1792==
29

33 . 

 
c) We have to investigate µa and µb as functions of α and ω in the cases a) and b) 

(see  Fig. 9/a and 9/b): 
 

 
 

In case a): if the block slips upwards, it comes back; if it slips down it does not return. 
If ω  increases, the block remains in equilibrium, if ω  decreases it slips downwards. 

In case b): if the block slips upwards it stays there; if the block slips downwards it 
returns. If ω increases the block climbs upwards-, if ω decreases the block remains in 
equilibrium. 
 
Problem 2 

 
The walls of a cylinder of base 1 dm2, the piston and the inner dividing wall are 

α 
90° 

µ a 

0.5 

90° 

µ b 

0.5 ω = 5/s 

ω < 5/s ω > 5/s 

α 

ω > 8/s 

ω = 8/s 

ω < 8/s 

Figure 
 

Figure 
 

S α 

mω2Rsinα 

mg 

N 

Figure 8 
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perfect heat insulators (Fig. 10). The valve in the dividing wall opens if the pressure on the 
right side is greater than on the left side. Initially there is 12 g helium in the left side and 2 g 
helium in the right side. The lengths of both sides are 11.2 dm each and the temperature is 

C0° . Outside we have a pressure of 100 kPa. 
The specific heat at constant volume is 
cv = 3.15 J/gK, at constant pressure it is 
cp = 5.25 J/gK. The piston is pushed slowly 
towards the dividing wall. When the valve 
opens we stop then continue pushing slowly 
until the wall is reached. Find the work done 
on the piston by us. 
 
Solution 
 

The volume of 4 g helium at C0°  temperature and a pressure of 100 kPa is 22.4 dm3 
(molar volume). It follows that initially the pressure on the left hand side is 600 kPa, on the 
right hand side 100 kPa. Therefore the valve is closed. 

An adiabatic compression happens until the pressure in the right side reaches 600 kPa 
(κ = 5/3). 
 

  3535 6002.11100 V⋅=⋅ , 
 

hence the volume on the right side (when the valve opens): 
 

  V = 3.82 dm3. 
 

From the ideal gas equation the temperature is on the right side at this point 
 

  K5521 ==
nR
pVT . 

 

During this phase the whole work performed increases the internal energy of the gas: 
 

  W1 = (3.15 J/gK) ⋅ (2 g) ⋅ (552 K – 273 K) = 1760 J. 
 

Next the valve opens, the piston is arrested. The temperature after the mixing has been 
completed: 
 

  K313
14

552227312
2 =

⋅+⋅
=T . 

 

During this phase there is no change in the energy, no work done on the piston. 
An adiabatic compression follows from 11.2 + 3.82 = 15.02 dm3 to 11.2 dm3: 

 

  32
3

32 2.1102.15313 ⋅=⋅ T , 
 

hence 
 

  T3 = 381 K. 
The whole work done increases the energy of the gas: 
 

  W3 = (3.15 J/gK) ⋅ (14 g) ⋅ (381 K – 313 K) = 3000 J. 
 

The total work done: 
 

  Wtotal = W1 + W3 = 4760 J. 
 

The work done by the outside atmospheric pressure should be subtracted: 
 

  Watm = 100 kPa ⋅ 11.2 dm3 = 1120 J. 

11.2 dm 11.2 dm 

1 dm2 

Figure 10 
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The work done on the piston by us: 
 

  W = Wtotal – Watm = 3640 J. 
Problem 3 
 

Somewhere in a glass sphere there is an air bubble. Describe methods how to 
determine the diameter of the bubble without damaging the sphere. 
 
Solution 
 

We can not rely on any value about the density of the glass. It is quite uncertain. The 
index of refraction can be determined using a light beam which does not touch the bubble. 
Another method consists of immersing the sphere into a liquid of same refraction index: its 
surface becomes invisible. 

A great number of methods can be found. 
We can start by determining the axis, the line which joins the centers of the sphere and 

the bubble. The easiest way is to use the “tumbler-over” method. If the sphere is placed on a 
horizontal plane the axis takes up a vertical position. The image of the bubble, seen from both 
directions along the axis, is a circle. 

If the sphere is immersed in a liquid of same index 
of refraction the spherical bubble is practically inside a 
parallel plate (Fig. 11). Its boundaries can be determined 
either by a micrometer or using parallel light beams. 

Along the axis we have a lens system consisting, of 
two thick negative lenses. The diameter of the bubble can 
be determined by several measurements and complicated 
calculations. 

If the index of refraction of the glass is known we can fit a plano-concave lens of same 
index of refraction to the sphere at the end of the axis (Fig. 12). As ABCD forms a parallel 
plate the diameter of the bubble can be measured using parallel light beams. 

 

 
 

Focusing a light beam on point A of the surface of the sphere (Fig. 13) we get a 
diverging beam from point A inside the sphere. The rays strike the surface at the other side 
and illuminate a cap. Measuring the spherical cap we get angle ϕ. Angle ψ can be obtained in 
a similar way at point B. From 
 

Figure12 

A   
 

C   
 

A 

r 

d 

ψ ϕ 
R B 

Figure13 

Figure11 
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dR

r
+

=ϕsin  and 
dR

r
−

=ψsin  

 

we have 
 

  
ϕψ
ϕψ

sinsin
sinsin2
+

⋅= Rr ,    
ϕψ
ϕψ

sinsin
sinsin

+
−

⋅= Rd . 

 The diameter of the bubble can be determined also by the help of X-rays. X-rays are not 
refracted by glass. They will cast shadows indicating the structure of the body, in our case the 
position and diameter of the bubble. 

We can also determine the moment of inertia with respect to the axis and thus the 
diameter of the bubble. 
 
Experimental problem 
 
The whole text given to the students: 

 
At the workplace there are beyond other devices a test tube with 12 V electrical 

heating, a liquid with known specific heat (c0 = 2.1 J/g°C) and an X material with unknown 
thermal properties. The X material is insoluble in the liquid. 

Examine the thermal properties of the X crystal material between room temperature 
and 70 °C. Determine the thermal data of the X material. Tabulate and plot the measured data. 

(You can use only the devices and materials prepared on the table. The damaged 
devices and the used up materials are not replaceable.) 
 
Solution 
 

Heating first the liquid then the liquid and the crystalline substance together two 
time-temperature graphs can be plotted. From the graphs specific heat, melting point and heat 
of fusion can be easily obtained. 

 
 
 

Literature 
 
[1] W. Gorzkowski: Problems of the 1st International Physics Olympiad 
 Physics Competitions 5, no2 pp6-17, 2003 
 
[2] R. Kunfalvi: Collection of Competition Tasks from the Ist through XVth International 
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[3] A Nemzetközi Fizikai Diákolimpiák feladatai I.-XV. 
 Eötvös Loránd Fizikai Társulat, Középiskolai Matematikai Lapok, 1985  
 



10th International Physics Olympiad
1977, Hradec Králové, Czechoslovakia

Problem 1. The compression ratio of a four-stroke internal combustion
engine is ε = 9.5. The engine draws in air and gaseous fuel at a temperature
27 oC at a pressure 1 atm = 100 kPa. Compression follows an adiabatic
process from point 1 to point 2, see Fig. 1. The pressure in the cylinder
is doubled during the mixture ignition (2–3). The hot exhaust gas expands
adiabatically to the volume V2 pushing the piston downwards (3–4). Then
the exhaust valve opens and the pressure gets back to the initial value of
1 atm. All processes in the cylinder are supposed to be ideal. The Poisson
constant (i.e. the ratio of specific heats Cp/CV ) for the mixture and exhaust
gas is κ = 1.40. (The compression ratio is the ratio of the volume of the
cylinder when the piston is at the bottom to the volume when the piston is
at the top.)

p

p = p

p

p

p

V

0 1

1

2

2

3

4

0
1

2

3

4

V V

Figure 1:

1



a) Which processes run between the points 0–1, 2–3, 4–1, 1–0?

b) Determine the pressure and the temperature in the states 1, 2, 3 and 4.

c) Find the thermal efficiency of the cycle.

d) Discuss obtained results. Are they realistic?

Solution: a) The description of the processes between particular points is the
following:
0–1 : intake stroke isobaric and isothermal process
1–2 : compression of the mixture adiabatic process
2–3 : mixture ignition isochoric process
3–4 : expansion of the exhaust gas adiabatic process
4–1 : exhaust isochoric process
1–0 : exhaust isobaric process

Let us denote the initial volume of the cylinder before induction at the
point 0 by V1, after induction at the point 1 by V2 and the temperatures
at the particular points by T0, T1, T2, T3 and T4.

b) The equations for particular processes are as follows.

0–1 : The fuel-air mixture is drawn into the cylinder at the temperature
of T0 = T1 = 300 K and a pressure of p0 = p1 = 0.10 MPa.

1–2 : Since the compression is very fast, one can suppose the process to be
adiabatic. Hence:

p1V
κ
2 = p2V

κ
1 and

p1V2

T1

=
p2V1

T2

.

From the first equation one obtains

p2 = p1

(
V2

V1

)κ

= p1ε
κ

and by the dividing of both equations we arrive after a straightforward
calculation at

T1V
κ−1
2 = T2V

κ−1
1 , T2 = T1

(
V2

V1

)κ−1

= T1ε
κ−1 .

For given values κ = 1.40, ε = 9.5, p1 = 0.10 MPa, T1 = 300 K we have
p2 = 2.34 MPa and T2 = 738 K (t2 = 465 oC).
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2–3 : Because the process is isochoric and p3 = 2p2 holds true, we can write

p3

p2

=
T3

T2

, which implies T3 = T2
p3

p2

= 2T2 .

Numerically, p3 = 4.68 MPa, T3 = 1476 K (t3 = 1203 oC).

3–4 : The expansion is adiabatic, therefore

p3V
κ
1 = p4V

κ
2 ,

p3V1

T3

=
p4V2

T4

.

The first equation gives

p4 = p3

(
V1

V2

)κ

= 2p2ε
−κ = 2p1

and by dividing we get

T3V
κ−1
1 = T4V

κ−1
2 .

Consequently,
T4 = T3ε

1−κ = 2T2ε
1−κ = 2T1 .

Numerical results: p4 = 0.20 MPa, T3 = 600 K (t3 = 327 oC).

4–1 : The process is isochoric. Denoting the temperature by T ′
1 we can write

p4

p1

=
T4

T ′
1

,

which yields

T ′
1 = T4

p1

p4

=
T4

2
= T1 .

We have thus obtained the correct result T ′
1 = T1. Numerically, p1 =

0.10 MPa, T ′
1 = 300 K.

c) Thermal efficiency of the engine is defined as the proportion of the
heat supplied that is converted to net work. The exhaust gas does work on
the piston during the expansion 3–4, on the other hand, the work is done
on the mixture during the compression 1–2. No work is done by/on the gas
during the processes 2–3 and 4–1. The heat is supplied to the gas during the
process 2–3.
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The net work done by 1 mol of the gas is

W =
R

κ− 1
(T1 − T2) +

R

κ− 1
(T3 − T4) =

R

κ− 1
(T1 − T2 + T3 − T4)

and the heat supplied to the gas is

Q23 = CV (T3 − T2) .

Hence, we have for thermal efficiency

η =
W

Q23

=
R

(κ− 1)CV

T1 − T2 + T3 − T4

T3 − T2

.

Since
R

(κ− 1)CV

=
Cp − CV

(κ− 1)CV

=
κ− 1

κ− 1
= 1 ,

we obtain

η = 1− T4 − T1

T3 − T2

= 1− T1

T2

= 1− ε1−κ .

Numerically, η = 1− 300/738 = 1− 0.407, η = 59, 3% .
d) Actually, the real pV -diagram of the cycle is smooth, without the sharp

angles. Since the gas is not ideal, the real efficiency would be lower than the
calculated one.

Problem 2. Dipping the frame in a soap solution, the soap forms a rectangle
film of length b and height h. White light falls on the film at an angle α
(measured with respect to the normal direction). The reflected light displays
a green color of wavelength λ0.

a) Find out if it is possible to determine the mass of the soap film using
the laboratory scales which has calibration accuracy of 0.1 mg.

b) What color does the thinnest possible soap film display being seen from
the perpendicular direction? Derive the related equations.

Constants and given data: relative refractive index n = 1.33, the wavelength
of the reflected green light λ0 = 500 nm, α = 30o, b = 0.020 m, h = 0.030 m,
density % = 1000 kg m−3.

4



Solution: The thin layer reflects the monochromatic light of the wavelength λ
in the best way, if the following equation holds true

2nd cos β = (2k + 1)
λ

2
, k = 0, 1, 2, . . . , (1)

where k denotes an integer and β is the angle of refraction satisfying

sin α

sin β
= n .

Hence,

cos β =

√
1− sin2 β =

1

n

√
n2 − sin2 α .

Substituting to (1) we obtain

2d
√

n2 − sin2 α = (2k + 1)
λ

2
. (2)

If the white light falls on a layer, the colors of wavelengths obeying (2) are
reinforced in the reflected light. If the wavelength of the reflected light is λ0,
the thickness of the layer satisfies for the kth order interference

dk =
(2k + 1)λ0

4
√

n2 − sin2 α
= (2k + 1)d0 .

For given values and k = 0 we obtain d0 = 1.01 · 10−7 m.
a) The mass of the soap film is mk = %kb h dk. Substituting the given

values, we get m0 = 6.06 ·10−2 mg, m1 = 18.2 ·10−2 mg, m2 = 30.3 ·10−8 mg,
etc. The mass of the thinnest film thus cannot be determined by given
laboratory scales.

b) If the light falls at the angle of 30o then the film seen from the per-
pendicular direction cannot be colored. It would appear dark.

Problem 3. An electron gun T emits electrons accelerated by a potential
difference U in a vacuum in the direction of the line a as shown in Fig. 2. The
target M is placed at a distance d from the electron gun in such a way that
the line segment connecting the points T and M and the line a subtend the
angle α as shown in Fig. 2. Find the magnetic induction B of the uniform
magnetic field

5



T

M

a

a
electron gun

d

Figure 2:

a) perpendicular to the plane determined by the line a and the point M

b) parallel to the segment TM

in order that the electrons hit the target M . Find first the general solution
and then substitute the following values: U = 1000 V, e = 1.60 · 10−19 C,
me = 9.11 · 10−31 kg, α = 60o, d = 5.0 cm, B < 0.030 T.

Solution: a) If a uniform magnetic field is perpendicular to the initial direc-
tion of motion of an electron beam, the electrons will be deflected by a force
that is always perpendicular to their velocity and to the magnetic field. Con-
sequently, the beam will be deflected into a circular trajectory. The origin of
the centripetal force is the Lorentz force, so

Bev =
mev

2

r
. (3)

Geometrical considerations yield that the radius of the trajectory obeys
(cf. Fig. 3).

r =
d

2 sin α
. (4)
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The velocity of electrons can be determined from the relation between the
kinetic energy of an electron and the work done on this electron by the electric
field of the voltage U inside the gun,

1

2
mev

2 = eU . (5)

Using (3), (4) and (5) one obtains

B = me

√
2eU

me

2 sin α

ed
= 2

√
2Ume

e

sin α

d
.

Substituting the given values we have B = 3.70 · 10−3 T.
b) If a uniform magnetic field is neither perpendicular nor parallel to the

initial direction of motion of an electron beam, the electrons will be deflected
into a helical trajectory. Namely, the motion of electrons will be composed
of an uniform motion on a circle in the plane perpendicular to the magnetic
field and of an uniform rectilinear motion in the direction of the magnetic
field. The component ~v1 of the initial velocity ~v, which is perpendicular
to the magnetic field (see Fig. 4), will manifest itself at the Lorentz force
and during the motion will rotate uniformly around the line parallel to the
magnetic field. The component ~v2 parallel to the magnetic field will remain

7
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constant during the motion, it will be the velocity of the uniform rectilinear
motion. Magnitudes of the components of the velocity can be expressed as

v1 = v sin α v2 = v cos α .

Denoting by N the number of screws of the helix we can write for the time
of motion of the electron

t =
d

v2

=
d

v cos α
=

2πrN

v1

=
2πrN

v sin α
.

Hence we can calculate the radius of the circular trajectory

r =
d sin α

2πN cos α
.

However, the Lorentz force must be equated to the centripetal force

Bev sin α =
mev

2 sin2 α

r
=

mev
2 sin2 α

d sin α
2πN cos α

. (6)
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Consequently,

B =
mev

2 sin2 α 2πN cos α

d sin α ev sin α
=

2πNmev cos α

de
.

The magnitude of velocity v again satisfies (5), so

v =

√
2Ue

me

.

Substituting into (6) one obtains

B =
2πN cos α

d

√
2Ume

e
.

Numerically we get B = N · 6.70 · 10−3 T . If B < 0.030 T should hold true,
we have four possibilities (N ≤ 4). Namely,

B1 = 6.70 · 10−3 T ,

B2 = 13.4 · 10−3 T ,

B3 = 20.1 · 10−3 T ,

B4 = 26.8 · 10−3 T .
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Problems of the XI International Olympiad, Moscow, 1979  

The publication has been prepared by  Prof. S. Kozel and Prof.  V.Orlov 

(Moscow Institute of Physics and Technology)  

The XI International Olympiad in Physics for students took place in Moscow, USSR, in July 1979 

on the basis of Moscow Institute of Physics and Technology (MIPT).   Teams from 11 countries 

participated in the competition, namely Bulgaria, Finland, Germany, Hungary, Poland, Romania, 

Sweden, Czechoslovakia, the DDR, the SFR Yugoslavia, the USSR.   The problems for the 

theoretical competition have been prepared by professors of MIPT (V.Belonuchkin, I.Slobodetsky, 

S.Kozel). The problem for the experimental competition has been worked out  by O.Kabardin from  

the Academy of Pedagogical Sciences. 

It is pity that marking schemes were not preserved. 

Theoretical  Problems 

 

Problem 1. 

 A space rocket with mass M=12t is moving around the Moon along the circular orbit at the height 

of h =100 km. The engine is activated for a short time to pass at the lunar landing orbit. The 

velocity of the ejected gases u = 104 m/s. The Moon radius RM = 1,7·103 km, the acceleration of 

gravity near the Moon surface gM = 1.7 m/s2 

 

 

 

 

 

 

 

 

 

                     Fig.1             Fig.2 

 

1). What amount of fuel should be spent so that when activating the braking engine at 

point A of the trajectory, the rocket would land on the Moon at point B (Fig.1)? 

2). In the second scenario of landing, at point A the rocket is given an impulse directed 

towards the center of the Moon, to put the rocket to the orbit meeting the Moon surface 

at point C (Fig.2). What amount of fuel is needed in this case? 
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Problem 2.  

Brass weights are used to weigh an aluminum-made sample on an analytical balance. The weighing 

is ones in  dry air and another time in  humid air with the water vapor pressure  Ph =2·103 Pa. The 

total atmospheric pressure (P = 105 Pa) and the temperature (t =20° C) are the same in both cases. 

What should the mass of the sample be to be able to tell the difference in the balance 

readings provided their sensitivity is m0 = 0.1 mg  ? 

Aluminum density ρ1= 2700 kg/m3, brass density ρ2=.8500 kg/m3. 

 

Problem 3 

.During the Soviet-French experiment on the optical location of the Moon the light pulse of a ruby 

laser (λ= 0 , 6 9 μm) was d irected to the Moon’s surface by the telescope with a diameter of the 

mirror D = 2,6 m. The reflector on the Moon’s surface  reflected the light backward as an ideal 

mirror with the diameter d = 20 cm. The reflected light was then collected by the same telescope 

and focused at the photodetector. 

1) What must the accuracy to direct  the telescope optical axis be in this experiment?   

2) What part of emitted laser energy can be detected after reflection on the Moon, if we 

neglect the light loses in the Earth’s atmosphere? 

3) Can we see a reflected light pulse with naked eye if the energy of single laser pulse  

     E = 1 J and the threshold sensitivity of eye is equal n =100 light quantum? 

4) Suppose the Moon’s surface reflects α = 10% of the incident light in the spatial angle 2π 

steradian,  estimate the advantage of a using reflector. 

The distance from the Earth to the Moon is L = 380000 km. The diameter of pupil of the eye is  

dp = 5mm. Plank constant is h = 6.6ּ10-34  Jּs. 

 

Experimental Problem 

 

 Define the electrical circuit scheme in a “black box” and determine the parameters of its elements.  

List of instruments: A DC source with tension 4.5 V, an AC source with 50 Hz frequency and 

output voltage up to 30 V, two multimeters for measuring AC/DC current and voltage, variable 

resistor, connection wires. 
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Solution of Problems of the XI International Olympiad, Moscow, 1979 

Solution of Theoretical  Problems 

 

Problem 1.   

1) During  the rocket  moving along the circular orbit  its centripetal acceleration is created by 

moon gravity force: 

R
Mv

R
MMG M

2
0

2 = , 

where R = RM + h  is the primary orbit radius, v0 -the rocket  velocity on the circular orbit: 

R
MGv M=0  

Since  2
M

M
M R

MGg =  it yields 

hR
gR

R
Rgv

M

M
M

MM

+
==

2

0                     (1) 

The rocket velocity will remain perpendicular to the radius-vector OA after the braking 

engine sends tangential momentum to the rocket (Fig.1). The rocket should then move along the 

elliptical trajectory with the focus in the Moon’s center.  

Denoting the rocket velocity at points A and B as vA and vB we can write the equations for 

energy and momentum conservation as follows: 

 

M

MBMA

R
MMGMv

R
MMGMv

−=−
22

22

 (2) 

MvAR = MvBRM    (3) 

 

Solving equations  (2) and (3) jointly we find 

)(
2

M

MM
A RRR

RMGv
+

=  

Taking (1) into account, we get  
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M

M
A RR

Rvv
+

=
2

0 . 

Thus the rocket velocity change Δv at point A must be 

./24
2

2121 000 sm
hR

Rv
RR

Rvvvv
M

M

M

M
A =











+
−=











+
−=−=∆  

 Since the engine switches on for a short time the momentum conservation low in the system 

“rocket-fuel” can be written in the form 

(M – m1)Δv = m1u 

where m1 is the burnt fuel mass. 

This yields 

vu
vm
∆+

∆
=1  

Allow for  Δv << u we find  

kg291 =
∆

≈ M
u
vm  

2) In the second case the vector  is directed perpendicular to the vector  thus giving 

 
Based on the energy conservation law in this case the equation can be written as  

( )
M

MCM

R
GMMMv

R
GMMvvM

−=−
∆+

22

22
2

2
0   (4) 

and from the momentum conservation law  

MC RMvRMv =0 .     (5) 

 

Solving equations  (4) and (5) jointly and taking into account (1) we find 

( )
m/s97

2

2 ≈
+

=
−

=∆
hR

gh
R
RRgv

M

MM
M . 

Using the momentum conservation law we obtain 

kg1162
2 ≈

∆
= M

u
vm . 

 

 

 

 

Problem 2.  
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A sample and weights are affected by the Archimede’s buoyancy force of either dry or humid air in 

the first  and second cases, respectively. The difference in the scale indication ΔF is determined by 

the change of difference of these forces. 

The difference of Archimede’s buoyancy forces in dry air: 

                 gVF a
'

1 ρ∆=∆    
Whereas in humid air it is: 

 

 
where ΔV -  the difference in volumes between the sample and the weights, and    "

a
' andρρ a      - 

densities of dry and humid air, respectively.      

Then the difference in the scale indications   ΔF could be written as follows: 

 
( )"'

21 aaVgFFF ρρ −∆=∆−∆=∆    (1) 
 

According to the problem conditions this difference should be distinguished, i.e.                                    
gmF 0≥∆   or  ( ) 0

"' mVg aa ≥−∆ ρρ  , wherefrom 
 

"'
0

aa

m
V

ρρ −
≥∆  .     (2) 

The difference in volumes between the aluminum sample and brass weights can be found from the 
equation 








 −
=−=∆

21

12

21 ρρ
ρρ

ρρ
mmmV  ,   (3) 

 
where m     is the sought mass of the sample. From expressions (2) and (3) we obtain   
  









−−

≥







−

∆=
12

21
"'

0

12

21

ρρ
ρρ

ρρρρ
ρρ

aa

m
Vm  .  (4) 

 
To find the mass m of the sample one has to determine the difference  ( )"'

aa ρρ −  . 
With the general pressure being equal, in the second case, some part of dry air is replaced by vapor: 

V
m

V
m va

aa
∆

−
∆

=− "' ρρ  . 

 
Changes of mass of air Δma and vapor Δmv can be found from the ideal-gas equation of state 

                                       
RT
VMP

m aa
a =∆  ,     

RT
VMP

m vv
v =∆ , 

wherefrom we obtain 

        
( )

RT
MMP vaa

aa
−

=− "' ρρ  .     (5) 

From equations (4) and (5) we obtain 

( ) 







−−

≥
12

210

ρρ
ρρ

vaa MMP
RTm

m  .       (6) 

gVF a
"

2 ρ∆=∆
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The substitution of numerical values gives the answer: m ≥ 0.0432 kg ≈ 43 g. 
 

Note.  When we wrote down expression (3), we considered the sample mass be equal to the 

weights’ mass, at the same time allowing for a small error. 

One may choose another way of solving this problem. Let us calculate the change of 

Archimede’s force by the change of the air average molar mass. 

In dry air the condition of the balance between the sample and weights could be written 

down in the form of 

 

2211 V
RT

PM
V

RT
PM aa 






 −=






 − ρρ  .       (7) 

In humid air its molar mass is equal to 

,
P

PP
M

P
P

MM a
v

a
a

−
+=         (8) 

 
whereas the condition of finding the scale error could be written in the form 

02211 mV
RT

PM
V

RT
PM aa ≥






 −−






 − ρρ .       (9) 

From expressions (7) –(9) one can get a more precise answer 
 

( )( ) ava

aa

PMM
PMRTm

m
12

210

ρρ
ρρ

−−
−

≥  .           (10) 

 
Since aa PM << RTm 210 ρρ  , then both expressions (6) and (10) lead practically to the same 
quantitative result, i.e. m ≥ 43 g.  
 
Problem 3.    
1) The beam divergence angle δφ caused by diffraction defines the accuracy of the telescope optical 
axis installation: 

δφ ≈  λ/D ≈ 2.6∙10-7 rad. ≈ 0.05″ . 
 

2) The part K1 of the light energy of a laser, directed to a reflector, may be found by the ratio 

of the area of S1 reflector (  S1 = πd2/4 ) versus the area S2 of the light spot on the Moon  

(S2 = πr2 , where r = L δφ ≈ Lλ/D,   L – the distance from the Earth to the Moon) 

   

( ) 22

22

2

2

2

1
1 42 L

Dd
r

d
S
SK

λ
===  

 
The reflected light beam diverges as well and forms a light spot with the radius R on the Earth’s 
surface:  
        

R = λL/d,    as     r << R 
 

That’s why the part K2 of the reflected energy, which got into the telescope, makes 
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( ) 22

22

2

2

2 42 L
dD

R
DK

λ
==  

The part K0 of the laser energy, that got into the telescope after having been reflected by the 

reflector on the Moon, equals 
4

210 2






==

L
dDKKK
λ

≈ 10-12 

 

 

3) The pupil of a naked eye receives as less a part of the light flux compared to a telescope, 

as the area of the pupil  Se   is less than the area of the telescope mirror  St: 

 

≈== 2

2

00 D
d

K
S
S

KK e

t

e
e 3.7∙10-18 . 

 So the number of photons N getting into the pupil of the eye is equal  

eK
h
EN
ν

= = 12. 

  Since N<n, one can not perceive the reflected pulse with a naked eye. 

  4) In the absence of a reflector   α =10% of the laser energy, that got onto the Moon, are 

dispersed by the lunar surface within a solid angle    Ω1 = 2π steradian.                  

The solid angle in which one can see the telescope mirror from the Moon, constitutes 
 

Ω2 = St /L2
 = πD2/4L2    

 
That is why the part K of the energy gets into the telescope and it is equal 

 
 
 
 
 

Thus, the gain  β , which is obtained through the use of the reflector is equal 
β = K0/K ≈ 2·106 

 

 
Note. The result obtained is only evaluative as the light flux is unevenly distributed inside the 
angle of diffraction. 

 

 

18
2

2

1

2 105.0
8

−⋅≈=
Ω
Ω

=
L

DK αα
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Solution of Experimental Problem. 

 

A transformer is built-in in a “black box”. The black box has 4 terminals. To be able to 

determine the equivalent circuit and the parameters of  its elements one may first carry out 

measurements of the direct current. The most expedient is to mount the circuit according to the 

layout in Fig.3 and to build volt-ampere characteristics for various terminals of the “box”. This 

enables one to make sure rightway that there were no   e.m.f. sources in the “box” (the plot I=f(U) 

goes through the origin of the coordinates), no diodes (the current strength does not depend on the 

polarity of the current’s external source), by the inclination angle of the plot one may define the 

resistances between different terminals of the “box”. The tests allowed for some estimations of 

values R1-2 and R3-4. The ammeter did not register any current between the other terminals. This 

means that between these terminals there might be some other resistors with resistances larger than  

RL    : 

ohm1025.2
A102

V5,4 6
6

min

max ⋅=
⋅

== −I
URL  

where   Imin     - the minimum value 

of the strength of the current 

which the instrument would 

have  

 

 

 

 

 

 

registered.  Probably there might be some capacitors between terminals 1-3, 1-4, 2-3, 2-4  (Fig.4).  

Then, one can carry out analogous measurements of an alternative current. The taken volt-

ampere characteristics enabled one to find full resistances on the alternative current of sections 1-2 

and 3-4: Z1 and Z2 and to compare them to the values R1 and R2. It turned out, that Z1>R2 and Z2>R2. 

 

 

 

 

 

 

Fig.3 

“Black 
     box” 
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Fig.4      Fig.5 

This fact allows one to conclude that in the “black box” the coils are connected to terminals 1-2 and 

3-4 (Fig.5). Inductances of coils L1 and L2 can be determined by the formulas 

πν2

2
1

2
1

1

RZ
L

−
=  ,      

πν2

2
2

2
2

2

RZ
L

−
= . 

After that the dependences Z = f(I),  L=f(I) are to be investigated. The character of the found 

dependences enabled one to draw a conclusion about the presence of ferromagnetic cores in the 

coils. Judging by the results of the measurements on the alternative current one could identify the 

upper limit of capacitance of the capacitors which could be placed between terminals 1-3, 1-4, 2-3, 

2-4: 
6

9min
max 1

max

5 10 A 5 10 F 5nF
2 2 3.14 50s 3V

IC
Uπν

−
−

−

⋅
= = = ⋅ =

⋅ ⋅ ⋅
 

Then one could check the availability of inductive coupling between circuits 1-2 and 3-4. The plot 

of dependence of voltage U3-4 versus voltage U1-2 (Fig. 6) allows one to find both the transformation 

coefficient 

2
1

43

21 ==
−

−

U
UK  

and the maximum operational voltages on coils L1 and L2, when the transformation  

 

 

 

 

 

 

 

 

 

     Fig.6 

  

coefficient has not changed yet, i.e. before saturation of the core. 

U1-2(max) =2.5 V,     U3-4(max) = 5 V. 

One could build either plot K(U1-2) or K(U3-4) (Fig. 7). 
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      Fig.7   

 

Note: It was also possible to define the “box” circuit after tests of the direct current. To do that one 

had to find the presence of induction coupling between terminals 1-2 and 3-4, that is the appearance 

of e.m.f. of  induction in circuit 3-4, when closing and  breaking circuits 1-2 and vice-versa. When 

comparing the direction of the pointer’s rejection of the voltmeters connected to terminals 1-2 and 

3-4 one could identify directions of the transformer’s windings. 
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XII International Physics Olympiad 
 

Varna, Bulgaria, July 1981 
 

The problems and the solutions are adapted by Miroslav Abrashev 
University of Sofia, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria 

 
Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High School 
Students”, ed. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian). 
 

The Experimental Problem 
  

Materials and Instruments: elastic rubber cord (the length of free cord is l0 = 150 mm), 
vertically hanged up to a stand, set of weights from 10 g to 100 g, pan for the weights with 
mass 5 g, chronometer, ruler, millimeter (scaled) paper.  

Note: The Earth Acceleration is g = 10 m/s2. The mass of the rubber cord can be 
neglected.     
 
 Make the following study: 
 1. Load the rubber cord with weights in the range 15 g to 105 g. Put the data obtained 
into a table. Make a graph (using suitable scale) with the experimentally obtained dependence 
of the prolongation of the cord on the stress force F. 
 2. Using the experimental results, obtained in p.1, calculate and put into a table the 
volume of the cord as a function of the loading in the range 35 g to 95 g. Do the calculations 
consequently for each two adjacent values of the loading in this range. Write down the 
formulas you have used for the calculations. Make an analytical proposition about the 
dependence of the volume on the loading. 
 Assume that Young’s modulus is constant: E = 2.106 Pa. Take in mind that the 
Hooke’s law is only approximately valid and the deviations from it can be up to 10%. 
 3. Determine the volume of the rubber cord, using the chronometer, at mass of the 
weight equal to 60 g. Write the formulas used.                  
 

Solution of the Experimental Problem 
 

1. The measurements of the cord length ln at different loadings mn must be at least 10. 
The results are shown in Table I.  
 
Table 1. 

mn, kg Fn = mn.g, N ln, mm ∆ln = ln – l0, mm 
0.005 0.05 153 3 
0.015 0.15 158 8 
0.025 0.25 164 14 
0.035 0.35 172 22 
0.045 0.45 181 31 
0.055 0.55 191 41 
0.065 0.65 202 53 
0.075 0.75 215 65 
0.085 0.85 228 78 
0.095 0.95 243 93 



0.105 10.5 261 111 
     
 The obtained dependence of the prolongation of the cord on the stress force F can be 
drawn on graph. It is shown in Fig. 1.  
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   Fig.1 
 
2.For the calculations of the volume the Hooke’s law can be used for each 

measurement: 

n

n

n

n

S
F

El
l ∆
=

∆ 1'

,  

therefore 

  '
n

nn
n lE

FlS
∆
∆

= ,  

where 1
'

−−=∆ nnn lll , mgFn ∆=∆ . (Using the Hooke’s law in the form 
n

n

n

n

S
F

El
l 1
=

∆ leads to 

larger error, because the value of the nl∆ is of the same order as ln).  
 As the value of the Sn is determined, it is easy to calculate the volume Vn at each value 
of Fn: 

   '

2

n

nn
nnn lE

FllSV
∆
∆

== . 

 Using the data from Table 1, all calculations can be presented in Table 2: 
 

1−−=∆ nnn mmm , kg ,gmF nn ∆=∆
N 

ln ,m  1−−=∆ nnn lll , m 
'
n

nn
n lE

FlS
∆
∆

= , m2 Vn=lnSn, 
m3 

0.035 – 0.025 0.1 0.172 0.008 1,07.10-6 184.10-9 

0.045 – 0.035 0.1 0.181 0.009 1,01.10-6 183.10-9 
0.055 – 0.045 0.1 0.191 0.010 0,95.10-6 182.10-9 
0.065 – 0.055 0.1 0.203 0.012 0,92.10-6 187.10-9 
0.075 – 0.065 0.1 0.215 0.012 0,89.10-6 191.10-9 
0.085 – 0.075 0.1 0.228 0.013 0,88.10-6 200.10-9 



0.095 – 0.085 0.1 0.243 0.015 0,81.10-6 196.10-9 
0.105 – 0.095 0.1 0.261 0.018 0,72.10-6 188.10-9 

  
The results show that the relative deviation from the averaged value of the calculated values 
of the volume is: 

  %8.2%100.
10.189
10.3,5%100.

9

9

.

., ≈≈
∆

=ε −

−

aver

avern

V
V

  

Therefore, the conclusion is that the volume of the rubber cord upon stretching is constant: 
   Vn = const.  
 3. The volume of the rubber cord at fixed loading can be determined investigating the 
small vibrations of the cord. The reason for these vibrations is the elastic force: 

  
l
lESF ∆

=     

Using the second law of Newton:  

  2

2 )(
dt

ldm
l
lES ∆
=

∆
− , 

the period of the vibrations can be determined: 

  
ES
mlT π= 2 . 

Then 

  2

2)2(
ET

mlS π
= ,  

and the volume of the cord is equal to: 

  2

224
ET

mlSlV π
==  

The measurement of the period gives: T = t/n = 5.25s /10 = 0.52 s at used mass m = 0.065 kg. 
The result for the volume V ≈ 195.10-9 m3, in agreement with the results obtained in part 2.  
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The problems and the solutions are adapted by Miroslav Abrashev 
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Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High 
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Theoretical Problem 1 

 
 A static container of mass M and cylindrical shape is placed in vacuum. One of its 
ends is closed. A fixed piston of mass m and negligible width separates the volume of the 
container into two equal parts. The closed part contains n moles of monoatomic perfect gas 
with molar mass M0 and temperature T. After releasing of the piston, it leaves the container 
without friction. After that the gas also leaves the container. What is the final velocity of the 
container? 
 The gas constant is R. The momentum of the gas up to the leaving of the piston can be 
neglected. There is no heat exchange between the gas, container and the piston. The change 
of the temperature of the gas, when it leaves the container, can be neglected. Do not account 
for the gravitation of the Earth.  
 

Theoretical Problem 2 
 
 An electric lamp of resistance R0 = 2 Ω working at nominal voltage U0 = 4.5 V is 
connected to accumulator of electromotive force E = 6 V and negligible internal resistance.  
 1. The nominal voltage of the lamp is ensured as the lamp is connected 
potentiometrically to the accumulator using a rheostat with resistance R. What should be the 
resistance R and what is the maximal electric current Imax, flowing in the rheostat, if the 
efficiency of the system must not be smaller than η0 = 0.6?  
 2. What is the maximal possible efficiency η of the system and how the lamp can be 
connected to the rheostat in this case? 
 

Theoretical Problem 3 
 
 A detector of radiowaves in a radioastronomical observatory is placed on the sea 
beach at height h = 2 m above the sea level. After the rise of a star, radiating electromagnetic 
waves of wavelength λ  = 21 cm, above the horizont the detector registers series of 
alternating maxima and minima. The registered signal is proportional to the intensity of the 
detected waves. The detector registers waves with electric vector, vibrating in a direction 
parallel to the sea surface.  
 1. Determine the angle between the star and the horizont in the moment when the 
detector registers maxima and minima (in general form). 
 2. Does the signal decrease or increase just after the rise of the star? 



 3. Determine the signal ratio of the first maximum to the next minimum. At reflection 
of the electromagnetic wave on the water surface, the ratio of the intensities of the electric 
field of the reflected (Er) and incident (Ei) wave follows the low: 

ϕ
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n
n

E
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where n is the refraction index and ϕ is the incident angle of the wave. For the surface “air-
water” for λ = 21 cm, the refraction index n = 9.  

4. Does the ratio of the intensities of consecutive maxima and minima increase or 
decrease with rising of the star?   

Assume that the sea surface is flat. 
 

Solution of the Theoretical Problem 1 
 
 Up to the moment when the piston leaves the container, the system can be considered 
as a closed one. It follows from the laws of the conservation of the momentum and the energy:  

0)( 10 =−+ muvnMM                 (1) 
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where v1 – velocity of the container when the piston leaves it, u – velocity of the piston in the 
same moment, ∆U – the change of the internal energy of the gas. The gas is perfect and 
monoatomic, therefore 
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Tf  - the temperature of the gas in the moment when the piston leaves the container. This 
temperature can be determined by the law of the adiabatic process: 
    .constpV =γ  
Using the perfect gas equation nRTpV = , one obtains 
  .1 constTV =−γ ,  11 −− = γγ

ff VTTV  
Using the relation VV f 2= , and the fact that the adiabatic coefficient for one-atomic gas is  
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Solving the equations (1) – (4) we obtain 
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If the gas mass nM0 is much smaller than the masses of the container M and the piston m, 
then the equation (5) is simplified to:  
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When the piston leaves the container, the velocity of the container additionally increases to 
value v2 due to the hits of the atoms in the bottom of the container. Each atom gives the 
container momentum: 
   xA vmp ∆= 2 ,  

where mA – mass of the atom; 
A

A N
Mm 0= , and xv  can be obtained by the averaged quadratic 

velocity of the atoms 2v as follows: 

2222 vvvv zyx =++ , and 222
zyx vvv == , therefore 

3

2vvx = . It appears that due to the elastic 

impact of one atom the container receives averaged momentum 
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All calculations are done assuming that the thermal velocities of the atoms are much larger 
than the velocity of the container and that the movement is described using system connected 
with the container.  
 Have in mind that only half of the atoms hit the bottom of the container, the total 
momentum received by the container is 
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and additional increase of the velocity of the container is 
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Using the formula for the averaged quadratic velocity  
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as well eq. (4) for the temperature Tf , the final result for v2 is 
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Therefore the final velocity of the container is 
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Solution of the Theoretical Problem 2 

 
1) The voltage U0 of the lamp of resistance R0 is adjusted using the rheostat of 

resistance R. Using the Kirchhoff laws one obtains: 
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where xRR −  is the resistance of the part of the rheostat, parallel connected to the lamp, Rx is 
the resistance of the rest part, 
  xIREU −=0         (2) 
The efficiency η of such a circuit is 
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From eq. (3) it is seen that the maximal current, flowing in the rheostat, is determined by the 
minimal value of the efficiency: 
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The dependence of the resistance of the rheostat R on the efficiency η can determined 

replacing the value for the current I , obtained by the eq. (3), 
ηRE

UI
2
0= , in the eqs. (1) and (2): 
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 To answer the questions, the dependence )(ηR  must be investigated. By this reason 
we find the first derivative ηR′ : 
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η < 1, therefore the above obtained derivative is positive and the function R(η) is increasing.  
It means that the efficiency will be minimal when the rheostat resistance is minimal. Then 
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The maximal current Imax can be calculated using eq. (4). The result is: Imax ≈660 mA. 



 2) As the function R(η) is increasing one, maxηη → , when ∞→R . In this case the 

total current I will be minimal and equal to 
R

U 0 . Therefore the maximal efficiency is 

  75.00
max ==

E
Uη  

This case can be realized connecting the rheostat in the circuit using only two of its 
three plugs. The used part of the rheostat is R1: 
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Solution of the Theoretical Problem 3 
 
 1) The signal, registered by the detector A, is result of the interference of two rays: 
the ray 1, incident directly from the star and the ray 2, reflected from the sea surface (see the 
figure).     

The phase of the second ray is shifted by π due to the reflection by a medium of larger 
refractive index. Therefore, the phase difference between the two rays is:  
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 The condition for an interference maximum is: 
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where k = 1,2,3,…,19. (the difference of the optical paths cannot exceed 2h, therefore k 
cannot exceed 19). 
 The condition for an interference minimum is: 
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where k = 1,2,3,…,19. 
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 2) Just after the rise of the star the angular height α is zero, therefore the condition for 
an interference minimum is satisfied. By this reason just after the rise of the star, the signal 
will increase.  
 3) If the condition for an interference maximum is satisfied, the intensity of the 
electric field is a sum of the intensities of the direct ray Ei and the reflected ray Er ,  
respectively: ri EEE +=max . 
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From the figure it is seen that maxmax 2
απϕ −= , we obtain 
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At the interference minimum, the resulting intensity is: 
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The intensity I of the signal is proportional to the square of the intensity of the electric 
field E, therefore the ratio of the intensities of the consecutive maxima and minima is: 
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Using the eqs. (2) and (3), the eq. (6) can be transformed into the following form: 
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Using this general formula, we can determine the ratio for the first maximum (k =1) and the 
next minimum: 
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4) Using that 
h

n
2
λ

>> , from the eq. (7) follows : 

 22

22

min

max 4
λk
hn

I
I

≈ . 

So, with the rising of the star the ratio of the intensities of the consecutive maxima and 
minima decreases.  
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Abstract

The 13th International Physics Olympiad took place in 1982 in the Federal Republic of

Germany. This article contains the competition problems, their solutions and a grading

scheme.

Introduction

In 1982 the Federal Republic of Germany was the first host of the Physics Olympiad

outside the so-called Eastern bloc. The 13th International Physics Olympiad took place in

Malente, Schleswig-Holstein. The competition was funded by the German Federal

Ministry of Science and Education. The organisational guidelines were laid down by the

work group “Olympiads for pupils” of the conference of ministers of education of the

German federal states. The Institute for Science Education (IPN) at the University of Kiel

was responsible for the realisation of the event. A commission of professors, whose

chairman was appointed by the German Physical Society, were concerned with the

formulation of the competition problems. All other members of the commission came from

physics department of the university of Kiel or from the college of education at Kiel.

The problems as usual covered different fields of  classical physics. In 1982 the pupils had

to deal with three theoretical and two experimental problems, whereas at the previous

Olympiads only one experimental task was given. However, it seemed to be reasonable to

put more stress on experimental work. The degree of difficulty was well balanced. One of

the theoretical problems could be considered as quite simple (problem 3: “hot-air

balloon”). Another theoretical problem (problem 1: “fluorescent lamp”) had a mean degree

of difficulty and the distribution of the points was a normal distribution with only a few

                                                

1 Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de
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excellent and only a few unsatisfying solutions. The third problem (problem 2: “oscillation

coat hanger”) turned out to be the most difficult problem. This problem was generally

considered as quite interesting because different ways of solving were possible. About one

third of the pupils did not find an adequate start to the problem, but nearly one third of the

pupils was able to solve the substantial part of the problem. That means, this problem

polarized between the pupils. The two experimental tasks were quite different in respect of

the input for the experimental setup and the time required for dealing with the problems,

whereas they were quite similar in the degree of difficulty. Both required demandingly

theoretical considerations and experimental skills. Both experimental problems turned out

to be rather difficult. The tasks were composed in a way that on the one hand almost every

pupil had the possibility to come to certain partial results and that there were some

difficulties on the other hand which could only be solved by very few pupils. The

difficulty in the second experimental problem (problem5: “motion of a rolling cylinder”)

was the explanation of the experimental results, which were initially quite surprising. The

difficulty in the other task (problem 4: “lens experiment") was the revealing of an

observation method with a high accuracy (parallax). The five hours provided for solving

the two experimental problems were slightly too short. According to that,  in both

experiments only a few pupils came up with excellent solutions. In problem 5 nobody got

the full points.

The problems presented here are based on the original German and English versions of the

competition problems. The solutions are complete but in some parts condensed to the

essentials. Almost all of the original hand-made figures are published here.

Theoretical Problems

Problem 1: Fluorescent lamp

An alternating voltage of 50 Hz frequency is applied to the fluorescent lamp shown in the

accompanying circuit diagram.
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The following quantities are measured:

overall voltage (main voltage) U  = 228.5 V

electric current I   = 0.6 A

partial voltage across the fluorescent lamp U’ = 84 V

ohmic resistance of the series reactor dR 26.3= Ω

The fluorescent lamp itself may be considered as an ohmic resistor in the calculations.

a) What is the inductance L of the series reactor?

b) What is the phase shift ϕ   between voltage and current?

c) What is the active power Pw transformed by the apparatus?

d) Apart from limiting the current the series reactor has another important function. Name

and explain this function!

Hint: The starter  includes a contact which closes shortly after

switching on the lamp, opens up again and stays open.

e) In a diagram with a quantitative time scale sketch the time sequence of the luminous

flux emitted by the lamp.

f) Why has the lamp to be ignited only once although the applied alternating voltage goes

through zero in regular intervals?

g) According to the statement of the manufacturer, for a fluorescent lamp of the described

type a capacitor of about 4.7 µF can be switched in series with the series reactor. How

does this affect the operation of the lamp and to what intent is this possibility provided

for?

h) Examine both halves of the displayed demonstrator lamp with the added spectroscope.

Explain the differences between the two spectra. You may walk up to the lamp and you

may keep the spectroscope as a souvenir.

S
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Solution of problem 1:

a) The total resistance of the apparatus is 228.5VZ 380.8
0.6A

= = Ω  ,

the ohmic resistance of the tube is R
84 VR 140
0.6 A

= = Ω .

Hence the total ohmic resistance is R 140 26.3 166.3= Ω + Ω = Ω .

Therefore the inductance of the series reactor is: 2 2L Z R 342.6ω⋅ = − = Ω .

This yields 1

342.6L 1.09 H
100 s−

Ω
= =

π
.

b) The impedance angle is obtained from L 342.6tan 2.06
R 166.3
ω⋅ Ω

ϕ = = =
Ω

.

Thus o64.1ϕ = .

c) The active power can be calculated in different ways:

1) o
wP U I cos 228.5V 0.6 A cos 64.1 59.88 W= ⋅ ⋅ ϕ = ⋅ ⋅ =

2) 2 2
wP R I 166.3 (0.6 A) 59.87 W= ⋅ = Ω ⋅ =

d) By opening the contact in the starter a high induction voltage is produced across the

series reactor (provided the contact does not open exactly the same moment, when the

current goes through zero). This voltage is sufficient to ignite the lamp. The main

voltage itself, however, is smaller than the ignition voltage of the fluorescent tube.

e)

f) The recombination time of the ions and electrons in the gaseous discharge is

sufficiently large.
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g) The capacitive resistance of a capacitor of 4.7 µF is

6 11 (100 4.7 10 ) 677.3
C

− −= ⋅π ⋅ ⋅ Ω = Ω
ω⋅

.

The two reactances subtract and there remains a reactance of 334.7 Ω acting as a

capacitor.

The total resistance of the arrangement is now

2 2Z ' (334.7) (166.3) 373.7= + Ω = Ω ,

which is very close to the total resistance without capacitor, if you assume the capacitor

to be loss-free (cf. a) ). Thus the lamp has the same operating qualities, ignites the same

way, and a difference is found only in the impedance angle ϕ’, which is opposite to the

angle ϕ calculated in b):

( ) 1L C 334.7tan ' 2.01
R 166.3

−ω⋅ − ω⋅
ϕ = = − = −

o' 63.6ϕ = − .

Such additional capacitors are used for compensation of reactive currents in buildings

with a high number of fluorescent lamps, frequently they are prescribed by the

electricity supply companies. That is, a high portion of reactive current is unwelcome,

because the power generators have to be layed out much bigger than would be really

necessary and transport losses also have to be added which are not payed for by the

customer, if pure active current meters are used.

h) The uncoated part of the demonstrator lamp reveals the line spectrum of mercury, the

coated part shows the same line spectrum over a continuous background. The

continuous spectrum results from the ultraviolet part of the mercury light, which is

absorbed by the fluorescence and re-emitted with smaller frequency (energy loss of the

photons) or larger wavelength respectively.

Problem 2: Oscillating coat hanger

A (suitably made) wire coat hanger can perform small amplitude oscillations in the plane

of the figure around the equilibrium positions shown. In positions a) and b) the long side is
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horizontal. The other two sides have equal length. The period of oscillation is the same in

all cases.

What is the location of the center of mass, and how long is the period?

  a) b) c)

The figure does not contain any information beyond the dimensions given. Nothing is

known, e.g., concerning the detailed distribution of mass.

Solution of problem 2

First method:

The motions of a rigid body in a plane correspond to the motion of two equal point masses

connected by a rigid massless rod. The moment of inertia then determines their distance.

Because of the equilibrium position a) the center of mass

is on the perpendicular bipartition of the long side of the

coat hanger. If one imagines the equivalent masses and

the supporting point P being arranged in a straight line in

each case, only two positions of P yield the same period

of oscillation (see sketch). One can understand this by

considering the limiting cases: 1. both supporting points

in the upper mass and 2. one point in the center of mass and the other infinitely high

above. Between these extremes the period of oscillation grows continuously. The

supporting point placed in the corner of the long side c) has the largest distance from the

center of mass, and therefore this point lies outside the two point masses. The two other

supporting points a), b) then have to be placed symmetrically to the center of mass

between the two point masses, i.e., the center of mass bisects the perpendicular bipartition.

One knows of the reversible pendulum that for every supporting point of the physical

pendulum it generally has a second supporting point of the pendulum rotated by 180o, with

the same period of oscillation but at a different distance from the center of mass. The
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section between the two supporting points equals the length of the corresponding

mathematical pendulum. Therefore the period of oscillation is obtained through the

corresponding length of the pendulum sb + sc , where sb = 5 cm and 2 2
cs 5 21= + cm, to

be  T  =  1.03 s .

Second method:

Let  s  denote the distance between the supporting point and the center of mass,  m  the

mass itself and  θ  the moment of inertia referring to the supporting point. Then we have

the period of oscillation  T :

T 2
m g s
θ

= π
⋅ ⋅

  , (1)

where  g  is the acceleration of gravity,  g  = 9.81 m/s2. Here θ can be obtained from the

moment of inertia  θo related to the center of mass:

2
0 m sθ = θ + ⋅ (2)

Because of the symmetrical position in

case a) the center of mass is to be found on

the perpendicular bisection above the

long side. Now (1) and (2) yield

2
2

0
Tm s m g s for

2
⎛ ⎞θ + ⋅ = ⋅ ⋅ ⋅⎜ ⎟⋅π⎝ ⎠

  s  =  sa,  sb  and sc. (3)

because all periods of oscillation are the same. This quadratic equation has only two

different solutions at most. Therefore at least two of the three distances are equal. Because

of  sc > 21 cm > sa + sb, only sa and sb can equal each other. Thus we have

sa = 5 cm (4)

The moment of inertia θ0 is eliminated through (3):

( )
2

2 2
c a c a

Tm (s s ) m g s s
2

⎛ ⎞⋅ − = ⋅ ⋅ ⋅ −⎜ ⎟⋅π⎝ ⎠

and we have c as sT 2
g
+

= ⋅π (5)
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with the numerical value T 1.03 s= ,

which has been rounded off after two decimals because of the accuracy of  g.

Third method:

This solution is identical to the previous one up to equation (2).

From (1) and (2) we generally have for equal periods of oscillation T1 = T2:

2
0 1

1

m s
m g s

θ + ⋅
⋅ ⋅

  =  
2

0 2

2

m s
m g s

θ + ⋅
⋅ ⋅

and therefore ( ) ( )2 2
2 0 1 1 0 2s m s s m s⋅ θ + ⋅ = ⋅ θ + ⋅

or ( ) ( )2 1 0 1 2s s m s s 0− ⋅ θ − ⋅ = (6)

The solution of (6) includes two possibilities: 0
1 2 1 2s s or s s

m
θ

= ⋅ =

Let  2⋅a  be the length of the long side and  b the height of the coat hanger. Because of

Tb  =  Tc  we then have 0
b c b ceither s s or s s

m
θ

= ⋅ = , where 2 2
c bs s a= + ,

which excludes the first possibility. Thus 0
b cs s

m
θ

⋅ = . (7)

For  Ta  =  Tb  the case  sa ⋅ sb = 0

m
θ  is excluded because of eq. (7), for we have

a bs s⋅ < 0
c bs s

m
θ

⋅ = .

Hence 2 2
a b c

1 1s s b, s b a
2 4

= = = +

and

20 2b
b c b

b b

s s s smT 2 2
g s g s

θ
+ ⋅ +

= ⋅π = π
⋅ ⋅

The numerical calculation yields the value T 1.03 s= .
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Problem 3: Hot-air-balloon

Consider a hot-air balloon with fixed volume VB = 1.1 m3. The mass of the balloon-

envelope, whose volume is to be neglected in comparison to VB,  is mH  =  0.187 kg.

The balloon shall be started, where the external air temperature is  1ϑ  = 20 oC and the

normal external air pressure is po = 1.013 ⋅ 105 Pa. Under these conditions the density of

air is ρ1 = 1.2 kg/m3.

a) What temperature 2ϑ  must the warmed air inside the balloon have to make the balloon

just float?

b) First the balloon is held fast to the ground and the internal air is heated to a steady-state

temperature of 3ϑ  = 110 oC. The balloon is fastened with a rope.

Calculate the force on the rope.

c) Consider the balloon being tied up at the bottom (the density of the internal air stays

constant). With a steady-state temperature 3ϑ  = 110 oC of the internal air the balloon

rises in an isothermal atmosphere of 20 oC and a ground pressure of

p0 = 1.013 ⋅ 105 Pa. Which height  h  can be gained by the balloon under these

conditions?

d) At the height  h  the balloon (question c)) is pulled out of its equilibrium position by

10 m and then is released again.

Find out by qualitative reasoning what kind of motion it is going to perform!

Solution of problem 3:

a) Floating condition:

The total mass of the balloon, consisting of the mass of the envelope  mH  and the mass

of the air quantity of temperature 2ϑ  must equal the mass of the displaced air quantity

with temperature 1ϑ  = 20 oC.

VB ⋅ ρ2  +  mH  =  VB ⋅ ρ1

H
2 1

B

m
V

ρ = ρ −  (1)
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Then the temperature may by obtained from

1 2

2 1

T
T

ρ
=

ρ
,

1
2 1

2

T Tρ
= ⋅
ρ

= 341.53 K = 68.38 °C (2)

b) The force  FB  acting on the rope is the difference between the buoyant force FA  and

the weight force  FG:

FB = VB ⋅ ρ1 ⋅ g  -  (VB ⋅ ρ3  + mH) ⋅ g (3)

It follows with ρ3 ⋅ T3  =  ρ1 ⋅ T1

FB = VB ⋅ ρ1 ⋅ g ⋅ 1

3

T1
T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 - mH ⋅ g = 1,21 N (4)

c) The balloon rises to the height  h , where the density of the external air ρh has the same

value as the effective density ρeff, which is evaluated from the mass of the air of

temperature ϑ3  = 110 oC (inside the balloon) and the mass of the envelope  mH:

1

0

g h

3 B H2
eff h 1

B B

V mm e
V V

ρ ⋅ ⋅
−

ρρ ⋅ +
ρ = = = ρ = ρ ⋅   (5)

Resolving eq. (5) for  h  gives: o 1

1 eff

ph 1n 843m
g

ρ
= ⋅ =

ρ ⋅ ρ
(6).

d) For small height differences (10 m in comparison to 843 m) the exponential pressure

drop (or density drop respectively) with height can be approximated by a linear

function of height. Therefore the driving force is proportional to the elongation out of

the equilibrium position.

This is the condition in which harmonic oscillations result, which of course are damped

by the air resistance.



11

Experimental Problems

Problem 4: Lens experiment

The apparatus consists of a symmetric biconvex lens, a plane mirror, water, a meter stick,

an optical object (pencil), a supporting base and a right angle clamp. Only these parts may

be used in the experiment.

a) Determine the focal length of the lens with a maximum error of  ±  1 %.

b) Determine the index of refraction of the glass from which the lens is made.

The index of refraction of water is  nw  =  1.33. The focal length of a thin lens is given by

( )
1 2

1 1 1n 1
f r r

⎛ ⎞
= − ⋅ −⎜ ⎟

⎝ ⎠
,

where  n  is the index of refraction of the lens material and  r1  and  r2  are the curvature

radii of the refracting surfaces. For a symmetric biconvex lens we have r1 = - r2 = r, for a

symmetric biconcave lens  r1  =  - r2  =  - r .

Solution of problem 4:

a) For the determination of  fL , place the lens on the mirror

and with the clamp fix the pencil to the supporting base.

Lens and mirror are then moved around until the

vertically downward looking eye sees the pencil and its

image side by side.

In order to have object and image in focus at the same

time, they must be placed at an equal distance to the eye.

In this case object distance and image distance are the

same and the magnification factor is  1 .

It may be proved quite accurately, whether magnification 1 has in fact been obtained, if

one concentrates on parallatical shifts between object and image when moving the eye:

only when the distances are equal do the pencil-tips point at each other all the time.

The light rays pass the lens twice because they are reflected by the mirror. Therefore

the optical mapping under consideration corresponds to a mapping with two lenses

placed directly one after another:
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L L

1 1 1 1 1 1, where
g b f f f f
+ = = +

i.e. the effective focal length  f  is just half the focal length of the lens. Thus we find for

magnification 1:

L
L

2 2g b and i.e. f g.
g f

= = =

A different derivation of fL = g = b: For  a

mapping of magnification  1  the light rays

emerging from a point on the optical axis

are reflected into themselves. Therefore

these rays have to hit the mirror at right

angle and so the object distance  g  equals

the focal length  fL  of the lens in this case.

The distance between pencil point and mirror has to be determined with an accuracy,

which enables one to state  fL  with a maximum error of  ± 1 % . This is accomplished

either by averaging several measurements or by stating an uncertainty interval, which

is found through the appearance of parallaxe.

Half the thickness of the lens has to be subtracted from the distance between pencil-

point and mirror.

'
L L

1f f d , d 3.0 0.5 mm
2

= − = ±

The nominal value of the focal length of the lens is Lf  = 30 cm. However, the actual

focal length of the single lenses spread considerably. Each lens was measured

separately, so the individual result of the student can be compared with the exact value.

b) The refractive index  n  of the lens material can be evaluated from the equation

( )
L

1 2n 1
f r

= − ⋅

if the focal length  fL  and the curvature radius  r  of the symmetric biconvex lens are

known. fL  was determined in part a) of this problem.
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The still unknown curvature radius  r  of the

symmetric biconvex lens is found in the

following way: If one pours some water onto

the mirror and places the lens in the water,

one gets a plane-concave water lens, which

has one curvature radius equalling the glass lens’ radius and the other radius is  ∞ .

Because the refractive index of water is known in this case, one can evaluate the

curvature radius through the formula above, where  r1  =  -r   and  r2  =  ∞  :

( )w
w

1 1n 1 .
f r

− = − ⋅

Only the focal length  f '  of the combination of lenses is directly measured, for which

we have

L w

1 1 1
f ' f f

= + .

This focal length is to be determined by a mapping of magnification  1  as above.

Then the focal length of the water lens is '
w L

1 1 1
f f f

= −

and one has the curvature radius ( )w wr n 1 f= − − ⋅ .

Now the refractive index of the lens is determined by 
L

rn 1
2 f

= +
⋅

with the known values of  fL  and  r, or, if one wants to express  n  explicitly through

the measured quantities: ( )
( )

w

L

f ' n 1
n

2 f ' f
⋅ −

=
⋅ −

+ 1.

The nominal values are: f ' =  43.9 cm, fw = -94.5 cm, r =  31.2 cm, n = 1.52.

Problem 5: Motion of a rolling cylinder

The rolling motion of a cylinder may be decomposed into rotation about its axis and

horizontal translation of the center of gravity. In the present experiment only the

translatory acceleration and the forces causing it are determined directly.
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Given a cylinder of mass Μ , radius R , which is placed on a horizontal plane board. At a

distance ri  (i  =  1 … 6) from the cylinder axis a force acts on it (see sketch). After letting

the cylinder go, it rolls with constant acceleration.

a) Determine the linear accelerations ai (i  =  1 … 6) of the cylinder axis experimentally

for several distances ri (i = 1 … 6).

b) From the accelerations  ai  and given quantities, compute the forces Fi   which act in

horizontal direction between cylinder and plane board.

c) Plot the experimental values Fi as functions of ri. Discuss the results.

Before starting the measurements, adjust the plane board horizontally. For present

purposes it suffices to realize the horizontal position with an uncertainty of ± 1 mm of

height difference on 1 m of length; this corresponds to the distance between adjacent

markings on the level. What would be the result of a not horizontal position of the plane

board?

Describe the determination of auxiliary quantities and possible further adjustments;

indicate the extent to which misadjustments would influence the results.

The following quantities are given:

R = 5 cm r1 = 0.75 cm

M = 3.275 kg r2 = 1.50 cm

m = 2 x 50 g r3 = 2.25 cm

D = 1.50 cm r4 = 3.00 cm

d = 0.1 mm r5 = 3.75 cm

r6 = 4.50 cm

Mass and friction of the pulleys c may be neglected in the evaluation of the data.

By means of knots, the strings are put into slots at the cylinder. They should be inserted as

deeply as possible. You may use the attached paper clip to help in this job.
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The stop watch should be connected, as shown in the sketch, with electrical contacts at A

and B via an electronic circuit box. The stop watch starts running as soon as the contact at

A is opened, and it stops when the contact at B is closed.

The purpose of the transistor circuit is to keep the relay position after closing of the contact

at B, even if this contact is opened afterwards for a few milliseconds by a jump or chatter

of the cylinder.

Solution of problem 5:

Theoretical considerations:

a) The acceleration of the center of mass of the cylinder is 2

2 sa
t
⋅

= (1)

b) Let  am  be the acceleration of the masses  m  and  T  the sum of the tensions in the two

strings, then

T  =  m ⋅ g - m ⋅ am (2)

The acceleration  a  of the center of mass of the cylinder is determined by the resultant

force of the string-tension  T  and the force of interaction  F  between cylinder and the

horizontal plane.

M⋅a  = T  -  F (3)

If the cylinder rotates through an angle  θ  the mass  m  moves a distance xm.

It holds

xm = (R + r) ⋅ θ

( )m
aa R r
R

= + ⋅ (4)
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From  (2),  (3) and  (4)  follows rF mg M m 1 a
R

⎡ ⎤⎛ ⎞= − + ⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (5)

c) From the experimental data we see that for small  ri  the forces M ⋅ a  and T are in

opposite direction and that they are in the same direction for large ri .

For small values of  r  the torque produced by the string-tensions is not large enough to

provide the angular acceleration required to prevent slipping. The interaction force

between cylinder and plane acts into the direction opposite to the motion of the center

of mass and thereby delivers an additional torque.

For large values of  r  the torque produced by string-tension is too large and the

interaction force has such a direction that an opposed torque is produced.

From the rotary-impulse theorem we find

aT r F R
R

⋅ + ⋅ = Ι ⋅θ = Ι ⋅ ,

where  Ι  is the moment of inertia of the cylinder.

With (3)  and  (5) you may eliminate  T  and  a  from this equation. If the moment of

inertia of the cylinder is taken as 21 R
2

Ι = ⋅Μ ⋅ (neglecting the step-up cones) we find

after some arithmetical transformations

2

r1 2
RF mg

m r3 2 1
M R

− ⋅
= ⋅

⎛ ⎞+ ⋅ ⋅ +⎜ ⎟
⎝ ⎠

.

For  r  =  0 m gF m3 2
M

⋅
→ =

+ ⋅
 >  0.

For  r  =  R m gF m3 8
M

− ⋅
⇒ =

+ ⋅
<  0.

Because  m 1
M

it is approximately 1 2 rF m g
3 3 R

= ⋅ − ⋅ .
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That means:  the dependence of  F  from  r  is approximately linear.  F  will be zero if

r m g
R 2

⋅
= .

Experimental results:

s  =  L  −  (2 ⋅  R ⋅D  +  D2)
1
2   −  (2 ⋅  R ⋅d  −  d2) 

1
2

s  =  L  −  4.5 cm  =  39.2 cm  −  4.5 cm  =  34.7 cm

r
[cm]

t
[s]

t

[s]

a

[m/s2]

F
[N]

0.75 1.81 1.82 1.82 1.816 0.211 0.266

1.50 1.71 1.72 1.73 1.720 0.235 0.181

2.25 1.63 1.63 1.64 1.633 0.261 0.090

3.00 1.56 1.56 1.57 1.563 0.284 0.004

3.75 1.51 1.51 1.52 1.513 0.304 - 0.066

4.50 1.46 1.46 1.46 1.456 0.328 - 0.154
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Grading schemes

Theoretical problems

Problem 1: Fluorescent lamp pts.
Part a 2
Part b 1
Part c 1
Part d 1
Part e 1
Part f 1
Part g 2
Part h 1

10

Problem 2: Oscillating coat hanger pts.
equation (1) 1,5
equation (2) 1,5
equation (4) 3
equation (5) 2
numerical value for T 1

10

Problem 3: Hot-air-balloon pts.
Part a 3
Part b 2
Part c 3
Part d 2

10

Experimental problems

Problem 4: Lens experiment pts.
correct description of experimental prodedure 1
selection of magnification one 0.5
parallaxe for verifying his magnification 1
fL = g = b with derivation 1
several measurements with suitable averaging or other

determination of error interval 1
taking into account the lens thickness and computing fL,

including the error 0.5
idea of water lens 0.5
theory of lens combination 1
measurements of f ′ 0.5
calculation of n and correct result 1

8
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Problem 5: Motion of a rolling cylinder pts.
Adjustment mentioned of strings a) horizontally and b) in

direction of motion 0.5
Indication that angle offset of strings enters the formula for

the acting force only quadratically, i.e. by its cosine 0.5
Explanation that with non-horizontal position, the force

m⋅g is to be replaced by  m⋅g  ±  M⋅g ⋅ sin α 1.0
Determination of the running length according for formula

( ) ( )1 / 2 1 / 22 2s L 2 R D D 2 R d d= − ⋅ ⋅ + − ⋅ ⋅ +

including correct numerical result 1.0
Reliable data for rolling time 1.0
accompanied by reasonable error estimate 0.5
Numerical evaluation of the  Fi 0.5
Correct plot of  Fi (vi) 0.5
Qualitative interpretation of the result by intuitive

consideration of the limiting cases  r = 0  and  r = R 1.0
Indication of a quantitative, theoretical interpretation using

the concept of moment of inertia 1.0
Knowledge and application of the formula  a = 2 s / t2 0.5
Force equation for small mass and tension of the string

m⋅(g - am)  =  T 1.0
Connection of tension, acceleration of cylinder and

reaction force  T – F = M⋅a 1.0
Connection between rotary and translatory motion

( )mx R r= + ⋅ θ 0.5
( )ma 1 r / R a= + ⋅ 0.5

Final formula for the reaction force
( )( )F m g M m 1 r / R a= ⋅ − + ⋅ + ⋅ 1.0

If final formulae are given correctly, the knowledge for
preceding equations must be assumed and is graded
accordingly.

12
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1.Mechanics – Problem I (8 points) 
A particle moves along the positive axis Ox  (one-dimensional situation) under a force having a 
projection 0FFx = on Ox , as represented, as function of x , in the figure 1.1. In the origin of the Ox  
axis is placed a perfectly reflecting wall.  
A friction force, with a constant modulus NFf 00,1= , acts everywhere on the particle. 
The particle starts from the point  mxx 00,10 ==  having the kinetic energy JEc 0,10= . 
a. Find the length of the path of the particle until its’ final stop  
b. Plot the potential energy )(xU  of the particle in the force field xF . 
c. Qualitatively plot the dependence of the particle’s speed as function of its’ x coordinate. 

 
Figure 1.1 

 

Problem I – Solution 
a. It is possible to make a model of the situation in the problem, considering the Ox axis vertically 
oriented having the wall in its’ lower part. The conservative force xF  could be the weight of the particle. 
One may present the motion of the particle as the vertical motion of a small elastic ball elastically 
colliding with the ground and moving with constant friction through the medium. The friction force is 
smaller than the weight.  
The potential energy of the particle can be represented in analogy to the gravitational potential energy 
of the ball, hgm ⋅⋅ , considering xhFgm x ==⋅ ; . As is very well known, in the field of a conservative 
force, the variation of the potential energy depends only on the initial and final positions of the particle, 
being independent of the path between those positions. 
 
For the situation in the problem, when the particle moves towards the wall, the force acting on it is 
directed towards the wall and has the modulus l 

fx FFF −=←         ( 1.1) 

NF 9=←         ( 1.2) 

As a consequence, the motion of the particle towards the wall is a motion with a constant acceleration 
having the modulus  

m
FF

m
Fa fx −== ←

←        ( 1.3) 

During the motion, the speed of the particle increases. 



IPhO 1983             Theoretical Question I      

 
 

Mechanics – Problem I - Solution       Page 2 from 17 

Hitting the wall, the particle starts moving in opposite direction with a speed equal in modulus with the 
one it had before the collision.  
When the particle moves away from the wall, in the positive direction of the Ox axis, the acting force is 
again directed towards to the wall and has the magnitude  

fx FFF +=→         ( 1.4) 

NF 11=→         ( 1.5) 

Correspondingly, the motion of the particle from the wall is slowed down and the magnitude of the 
acceleration is 

m
FF

m
Fa fx +== →

→        ( 1.6) 

During this motion, the speed of the particle diminishes to zero.  
Because during the motion a force acts on the particle, the body cannot have an equilibrium position in 
any point on axis – the origin making an exception as the potential energy vanishes there. The particle 
can definitively stop only in this point.  
The work of a conservative force from the point having the coordinate  00 =x  to the point x  , xL →0  is 
correlated with the variation of the potential energy of the particle ( ) ( )0UxU −  as follows 

( ) ( )

( ) ( )







⋅=⋅=⋅−=−

−=−

∫∫

→

xFdxFdxFUxU

LUxU

x

x

x

x

x

x

00

0

0

0
    ( 1.7) 

Admitting that the potential energy of the particle vanishes for 0=x , the initial potential energy of the 
particle ( )0xU  in the field of conservative force  

( ) 0FxFx =         ( 1.8) 

can be written 

( ) 000 xFxU ⋅=         ( 1.9) 

The initial kinetic energy ( )0xE  of the particle is – as given  

( ) cExE =0         ( 1.10) 

and, consequently the total energy of the particle ( )0xW  is 

( ) ( ) cExUxW += 00        ( 1.11) 

The draw up of the particle occurs when the total energy of the particle is entirely exhausted by the 
work of the friction force. The distance covered by the particle before it stops, D , obeys 

( )
( )









⋅=+⋅

⋅=+
⋅=

fcx

fc

f

FDExF
FDExU

FDxW

0

0

0

       ( 1.12) 

so that , 
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f

cx

F
ExF

D
+⋅

= 0        ( 1.13)

and 

* 

mD 20=         ( 1.14)

The relations (1.13) and (1.14) represent the answer to the question I.a. 

* 

 
b. The relation (1.7) written as   

( ) xFxU x ⋅=         ( 1.15) 

gives the linear dependence of the potential energy to the position . 
If the motion occurs without friction, the particle can reach a point A  situated at the distance δ  apart 
from the origin in which the kinetic energy vanishes. In the point A  the energy of the particles is entirely 
potential.  
The energy conservation law for the starting point and point A   gives  









+=

⋅=⋅+

x

c

xxc

F
Ex

FxFE

0

0

δ

δ
       ( 1.16) 

The numerical value of the position of point A , furthest away from the origin, is  
m2=δ  

if the motion occurs without friction. 
The representation of the dependence of the potential energy on the position in the domain ( )δ,0  is 
represented in the figure 1.2. 

 
Figure 1.2 

During the real motion of the particle (with friction) the extreme positions reached by the particle are 
smaller than δ  (because of the leak of energy due to friction).  
The graph in the figure 1.2 is the answer to the question I.b.  
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c.  During the motion of the particle its energy decrease because of the dissipation work of the friction 
force. The speed of the particle has a local maximum near the wall. Denoting kv  the speed of the 
particle just before its’ kth

1+kv collision with the wall and   the speed just before its’ next collision,  
1+> kk vv  

Among two successive collisions, the particle reaches its’ kx  positions in which its’ speed vanishes and 
the energy of the particle is purely potential. These positions are closer and closer to the wall because a 
part of the energy of the particle is dissipated through friction.  

kk xx <+1          ( 1.17) 

 
Case 1  

When the particle moves towards the wall, both its’ speed and its’ kinetic energy increases. The 
potential energy of the particle decreases. During the motion – independent of its’ direction- energy is 
dissipated through the friction force.  
The potential energy of the particle, )(xU  , the kinetic energy ( )xE  and the total energy of the particle 
during this part of the motion ( )xW   obey the relation 

( ) ( ) ( )xxFxWxW f −⋅=− 00        ( 1.18) 

the position x  lying in the domain  
( )0,0 xx∈          ( 1.19) 

covered from 0x  towards origin. The relation (1.18) can be written as 

[ ] ( )xxFxFvmxFE fxxc −⋅=







⋅+

⋅
−⋅+ 0

2

0 2
     ( 1.20) 

so that 

( )[ ]

( ) ( )[ ]








−−−+=

−⋅−⋅−⋅+=

fxfxc

fxxc

FFxFFxE
m

v

xxFxFxFE
m

v

0
2

00
2

2

2

     ( 1.21)  

and by consequence  

( ) ( )[ ]fxfxc FFxFFxE
m

v −−−+−= 0
2      ( 1.22) 

The minus sign in front of the magnitude of the speed indicates that the motion of the particle occurs 
into the negative direction of the coordinate axis. 
Using the problem data  

( )

( )








⋅−−=

⋅−=

x
m

v

x
m

v

9192

91922

        ( 1.23) 

The speed of the particle at the first collision with the wall ←1v  can be written as  
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( )[ ]fxc FFxE
m

v −+−=← 01
2        ( 1.24) 

and has the value  

192
1 m

v −=←         ( 1.25) 

The total energy near the wall, purely kinetic  ←1E  , has the expression 

( )fxc FFxEE −+=← 01         ( 1.26) 

The numerical value of this energy is  

JE 191 =←          ( 1.27)  

The graph in the figure (1.3) gives the dependence on position of the square of the speed for the first 
part of the particle’s motion.  

 
Figure 1.3 

 
Figure 1.4 
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The graph in the figure (1.4) presents the speed’s dependence on the position in this first part of the 
particle’s motion (towards the wall). 
After the collision with the wall, the speed of the particle, →1v , has the same magnitude as the speed 
just before the collision but it is directed in the opposite way. In the graphical representation of the 
speed as a function of position, the collision with the wall is represented as a jump of the speed from a 
point lying on negative side of the speed axis to a point lying on positive side of the speed axis. The 
absolute value of the speed just before and immediately after the collision is the same as represented 
in the figure 1.5.  

( )[ ]fxc FFxE
m

v −+=→ 01
2        ( 1.28) 

After the first collision, the motion of the particle is slowed down with a constant deceleration →a   and 
an initial speed →1v . 
This motion continues to the position 1x   where the speed vanishes.  
From Galileo law it can be inferred that  

( )[ ] ( )[ ]












+
−+

=
+

⋅

−+
=

⋅
=

⋅⋅−=

→

→

→→

fx

fxc

fx

fxc

FF
FFxE

m
FF

FFxE
m

a
vx

xav

0
02

1
1

1
2
1

2

2

2

20

    ( 1.29) 

The numerical value of the position 1x   is 

mx
11
19

1 =          ( 1.30) 

For the positions  
( )1,0 xx∈          ( 1.31) 

covered from the origin towards 1x  the total energy ( )xW  has the expression  

( ) xFvmxW x ⋅+
⋅

=
2

2

        ( 1.32) 

From the wall, the energy of the particle diminishes because of the friction – that is  
( )

( )





⋅=⋅−
⋅

−−+

⋅=−←

xFxFvmFFxE

xFxWE

fxfxc

f

2

2

0

1

     ( 1.33) 

The square of the magnitude of the speed is  

( ) ( )[ ]

( ) ( )








−⋅+=

⋅+−−+=

xxFF
m

v

xFFFFxE
m

v

fx

fxfxc

1
2

0
2

2

2

      ( 1.34) 

and the speed is  

( ) ( )[ ]xFFFFxE
m

v fxfxc ⋅+−−+= 0
2      ( 1.35) 
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Using the furnished data results  

[ ]x
m

v ⋅−= 111922         ( 1.36) 

and respectively  

[ ]x
m

v ⋅−= 11192         ( 1.37) 

For the positions lying in the domain ( )1,0 xx∈  - (which correspond to a second part of the motion of 
particle) the figure 1.5 gives the dependence of the speed on the position. 

 
Figure 1.5 

As can be observed in the figure, after reaching the furthest away position, 1x , the particle moves 
towards the origin, without an initial speed, in an accelerated motion having an acceleration with the 
magnitude of ( ) mFFa fx −=← . After the collision with the wall, the particle has a velocity equal in 
magnitude but opposite in direction with the one it had just before the collision. 
When the particle reaches a point in the domain ( )1,0 x  moving from 1x  towards the origin its’ total 
energy ( )xW  has the expression (1.32). 
Starting from 1x , because of the dissipation determined by the friction force, the energy changes to the 
value corresponding to the position with coordinate x .  

( ) ( )

( )







−⋅=⋅−
⋅

−⋅

−⋅=−⋅

xxFxFvmxF

xxFxWxF

fxx

fx

1

2

1

11

2

      ( 1.38) 

The square of the speed has the expression  

( ) ( )[ ]
( )[ ] ( )











−⋅











−

+
−+

=

−⋅−=

fx
fx

fxc

fx

FFx
FF

FFxE
m

v

xxFF
m

v

02

1
2

2

2

     ( 1.39) 
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and the speed is  
( )[ ] ( )fx

fx

fxc FFx
FF

FFxE
m

v −⋅











−

+
−+

= 02      ( 1.40) 

Using the given data, for a position in the domain ( )1,0 x  

9
11
1922 ⋅



 −= x

m
v         ( 1.41) 

respectively 

9
11
192

⋅



 −−= x

m
v         ( 1.42)  

The speed of the particle when it reaches for the second time the wall has - using (1.39) - the 
expression  

( )[ ] ( )












−⋅
+

−+
−=← fx

fx

fxc FF
FF

FFxE
m

v 0
2

2      ( 1.43) 

 
The resulting numerical value is 

11
1712

2 m
v −=←         ( 1.44) 

Concluding, after the first collision and first recoil, the particle moves away from the wall, reaches again 
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting 
again the wall is smaller than before – as in the figure 1.5. 
As it was denoted before kv   is the speed of the particle just before its’ k th

kx run and   is the 
coordinate of the furthest away point reached during the k th

The energy of the particle starting from the wall is  
 run.  

( )0
2

2

k
k

k WmvE =
⋅

=         ( 1.45) 

In the point kx , the furthest away from the origin after k th

( )kkxkk xWFxU =⋅=

 collision, the energy verifies the relation 

        ( 1.46) 

The variation of the energy between starting point and point kx  is 

kfxk
k xFFxmv

⋅=⋅−
⋅
2

2

        ( 1.47) 

so that 

( )fx

k
k FF

mvx
+⋅
⋅

=
2

2

        ( 1.48) 

After the particle reaches point kx  the direction of the speed changes and, when the particle reaches 
again the wall  
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( )0
2 11

2
1

++
+ ==
⋅

kk
k WEmv        ( 1.49) 

The energy conservation law for the kx  point and the state when the particle reaches again the wall 
gives 

kf
k

xk xFmvFx ⋅=
⋅

−⋅ +

2

2
1        ( 1.50) 

so that 

( )fxkk FFx
m

v −=+
22

1         ( 1.51) 

Considering (1.48), the relation (1.51) becomes 

FF
FF

vv
x

x
kk +

−
⋅=+

22
1         ( 1.52) 

Between two consequent collisions the speed diminishes in a geometrical progression having the ratio 
q .This ratio has the expression 

FF
FF

q
x

x

+
−

=          ( 1.53) 

and the value  

11
9

=q          ( 1.54) 

For the 1+k  collision the relation (1.48) becomes  

( )fx

k
k FF

mvx
+⋅
⋅

= +
+ 2

2
1

1         ( 1.55) 

Taking into account (1.52), the ratio of the successive extreme positions can be written as  









⋅=

=
+
−

=

+

+

kk

fx

fx

k

k

xqx

q
FF
FF

x
x

2
1

21

        ( 1.56) 

From the k  run towards origin, (analogous to (1.39)), the dependence of the square of the speed on 
position can be written as ( )

2
,←kv  

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅−=

−⋅−=

←

←

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

2

2

      ( 1.57) 

or, using the data 
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( )





















−






⋅⋅=← x

m
v

k

k 11
9

11
19922

,       ( 1.58) 

For the k th

( )
2

,→kv
 run from the origin (analogous with (1.34)), the dependence on the position of the square of 

the magnitude of the speed  can be written as   

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅+=

−⋅+=

→

→

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

2

2

      ( 1.59) 

Using given data 

( )





















−






⋅⋅=→ x

m
v

k

k 11
9

11
191122

,       ( 1.60) 

 
The evolution of the square of the speed as function of position is represented in the figure 1.6.  

 
Figure 1.6 

And the evolution of the speed as function of position is represented in the figure 1.7.  
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Figure 1.7 

The sum of the progression given in (1.56) gives half of the distance covered by the particle after the 
first collision. 

∑
∞

= −
=

1
21 1

1
k

k q
xx         ( 1.61) 

Considering (1.53) and (1.29) 

( )
∑
∞

= ⋅
−⋅+

=
1

0

2k f

fxc
k F

FFxE
x        ( 1.62) 

Numerically, 

mx
k

k∑
∞

=

=
1 2

19          ( 1.63) 

The total covered distance is 








=

+⋅= ∑
∞

=

mD

xxD
k

k

20

2 0
1         ( 1.64) 

which is the same with ( 1.14 ). 
 
Case 2 
If the particle starts from the 0x  position moving in the positive direction of the coordinate axis Ox its’ 
speed diminishes and its’ kinetic energy also diminishes while its’ potential energy increases to a 
maximum in the '1x  position where the speed vanishes. During this motion the energy is dissipated due 
to the friction. 
The total energy ( )xW , for the positions x  between 0x  and '1x  verify the relation  

( ) ( ) ( )00 xxFxWxW f −⋅=−        ( 1.65) 

the position x  lying in the domain  
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( )', 10 xxx∈          ( 1.66) 

when the particle moves from 0x  in the positive direction of the axis. The relation (1.65) becomes 

[ ] ( )0

2

0 2
xxFxFvmxFE fxxc −⋅=








⋅+

⋅
−⋅+      ( 1.67) 

so that 

( )[ ]

( ) ( )[ ]








+−++=

−⋅−⋅−⋅+=

fxfxc

fxxc

FFxFFxE
m

v

xxFxFxFE
m

v

0
2

00
2

2

2

     ( 1.68)  

and  

( ) ( )[ ]fxfxc FFxFFxE
m

v +−++= 0
2       ( 1.69) 

Using provided data 

( )

( )








⋅−=

⋅−=

x
m

v

x
m

v

11212

112122

        ( 1.70) 

 
Figure 1.8 
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Figure 1.9 

The graph in the figure (1.8) presents the dependence of the square speed on the position for the 
motion in the domain ( )', 10 xxx∈ . The particle moves in the positive direction of the coordinate axis Ox. 
This motion occurs until the position '1x  - when the speed vanishes - is reached. From the relation 
(1.68), in which we take the modulus of the speed zero, results  

fx

c

FF
Exx
+

+= 01'         ( 1.71) 

the numerical value for '1x  is  

mx
11
21'1 =          ( 1.72) 

After furthest away position '1x is reached, the particle moves again towards the origin, without initial 
speed, in a speeded up motion having an acceleration of magnitude ( ) mFFa fx −=← . After the 
collision with the wall, the particle has a velocity '1→v  equal in magnitude but opposite direction with the 
one it had before the collision '1←v .  
When the particle is at a point lying in the domain ( )',0 1x  running from '1x  to the origin, its’ total energy  
( )xW  has the expression  

( ) xFvmxW x ⋅+
⋅

=
2

2

        ( 1.73) 

Because of friction, the value of the energy decreases from the one it had at '1x  to the corresponding to 
the x  position     

( ) ( )

( )







−⋅=⋅−
⋅

−⋅

−⋅=−⋅

xxFxFvmxF

xxFxWxF

fxx

fx

'
2

'

''

1

2

1

11

      ( 1.74) 

The square of the speed has the expression  

( ) ( )[ ]xxFF
m

v fx −⋅−= '2
1

2        ( 1.75) 

and the speed is 
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( ) ( )[ ]xxFF
m

v fx −⋅−−= '2
1        ( 1.76) 

For the given data, in the domain,  ( )',0 1x  

9
11
2122 ⋅



 −= x

m
v         ( 1.77) 

respectively 

9
11
212

⋅



 −−= x

m
v         ( 1.78)  

The speed of the particle hitting a second time the wall is – according to (1.78)- 

( )[ ]'2' 11 xFF
m

v fx ⋅−−=←        ( 1.79) 

 
and has the value  

11
1892'1 m

v −=←         ( 1.80) 

Concluding, after the first collision and first recoil, the particle moves away from the wall, reaches again 
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting 
again the wall is smaller than before – as in the figure 1.11. 
Denoting 'kv   the speed at the beginning of the k th 'kx run and  the coordinate of the furthest away 
point during the k th

( )0'
2

''
2

k
k

k WmvE =
⋅

=

 run, the energy of the particle leaving the wall is  

        ( 1.81) 

In the position 'kx  after the k  departure from the wall, the energy is  

( )'''' kkxkk xWFxU =⋅=         ( 1.82) 

The variation of the total energy has the expression  

''
2

'2
kfxk

k xFFxmv
⋅=⋅−

⋅         ( 1.83) 

so that 

( )fx

k
k FF

mvx
+⋅
⋅

=
2

''
2

        ( 1.84) 

After the particle reaches the position 'kx   the direction of the speed changes and, when the particle 
hits the wall,  

( )0''
2

'
11

2
1

++
+ ==
⋅

kk
k WEmv        ( 1.85) 

The energy conservation law for the 'kx position and the point in which the particle hits the wall gives  
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'
2

''
2

1
kf

k
xk xFmvFx ⋅=

⋅
−⋅ +        ( 1.86) 

so that 

( )fxkk FFx
m

v −=+ '22'
1         ( 1.87) 

Considering (1.84), the relation (1.87) becomes 

FF
FF

vv
x

x
kk +

−
⋅=+

22
1 ''         ( 1.88) 

Between two successive collisions the speed diminishes in a geometrical progression with the ratio q  

FF
FF

q
x

x

+
−

=          ( 1.89) 

Using the data provided 

11
9

=q          ( 1.90) 

From ( 1+k )th

( )fx

k
k FF

mvx
+⋅
⋅

= +
+ 2

''
2

1
1

, collision the relation (1.84) is written as 

        ( 1.91) 

Considering (1.84) and (1.91), the ratio of the extreme positions in two successive runs is 

 








⋅=

=
+
−

=

+

+

''

'
'

2
1

21

kk

fx

fx

k

k

xqx

q
FF
FF

x
x

        ( 1.92) 

For the  k th

( )
2

,' ←kv
 run towards the origin, analogous to (1.57), one may write the dependence of the square 

speed as function of the position as 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅−=

−⋅−=

←

←

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

'2'

'2'
      ( 1.93) 

Or, using the data 

( )





















−






⋅⋅=← x

m
v

k

k 11
9

11
2192'2 ,       ( 1.94) 

From the k th

( )
2

,→kv
 run from the origin, analogous to (1.59), the dependence on the position of the square 

speed  can be written as 
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( ) ( ) ( )[ ]

( ) ( ) ( )[ ]








−⋅⋅+=

−⋅+=

→

→

xqxFF
m

v

xxFF
m

v

k
fxk

kfxk

2
1

2
,

2
,

'2'

'2'
      ( 1.95) 

Using given data  

( )





















−






⋅⋅=→ x

m
v

k

k 11
9

11
21112'2 ,       ( 1.96) 

The evolution of the square of the speed as function on position is presented in the figure 1.10. 

 
Figure 1.10 

And the evolution of the speed as function of the position is presented in the figure 1.11. 
 
 

.  
Figure 1.11 

The sum of the geometrical progression (1.92) gives (after the doubling and then subtracting of the 0x  ) 
the total distance covered by the particle. 
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∑
∞

= −
=

1
21 1

1''
k

k q
xx         ( 1.97) 

Considering (1.97), (1.71) and (1.72) it results 

mx
k

k∑
∞

=

=
1 2

21'          ( 1.98) 

The total distance covered by the particle is  








=

−⋅= ∑
∞

=

mD

xxD
k

k

20

'2 0
1         ( 1.99) 

which allows us to find again the result ( 1.14 ). 
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         Research- Bucharest, Romania 
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2.Electricity – Problem II (8 points) 
 
Different kind of oscillation 
 
Let’s consider the electric circuit in the figure, for which mHL 101 = , 

mHL 202 = , nFC 101 = , nFC 52 =  and Ω= kR 100 . The switch K  
being closed the circuit is coupled with a source of alternating current. The 
current furnished by the source has constant intensity while the frequency of 
the current may be varied. 

a. Find the ratio of frequency mf  for which the active power in circuit 
has the maximum value mP  and the frequency difference 

−+ −=∆ fff  of the frequencies +f  and  −f  for which the active 
power in the circuit is half of the maximum power mP . 

 
 
The switch K  is now open. In the moment  0t  immediately after the 
switch is open the intensities of the currents in the coils  1L  and  

Ai 1,001 =  and Ai 2,002 =  1L  (the currents flow as in the figure); at 
the same moment, the potential difference on the capacitor with 
capacity  1C  is  Vu 400 =  : 

b. Calculate the frequency of electromagnetic oscillation in  
2211 LCCL  circuit; 

c. Determine the intensity of the electric  current in the AB  
conductor; 

d. Calculate the amplitude of the oscillation of the intensity of 
electric current in the coil 1L . 

 
Neglect the mutual induction of the coils, and the electric resistance of 
the conductors. Neglect the fast transition phenomena occurring when 
the switch is closed or opened. 
 
 
 
Problem II - Solution 
 
a. As is very well known in the study of AC circuits using the formalism of complex numbers, a complex 
inductive reactance jLX L ⋅⋅= ω , ( 1−=j )  is attached to the inductance L  - part of a circuit 
supplied with an alternative current having the pulsation ω  . 

Similar, a complex capacitive reactance 
ω⋅

−=
C

jX C  is attached to the capacityC . 

A parallel circuit will be characterized by his complex admittanceY . 
The admittance of the AC circuit represented in the figure is 
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( )



























+−+⋅+=

⋅
−

⋅
−

⋅⋅
+

⋅⋅
+=

21
21

21

21

111

111

LL
CCj

R
Y

j
C

j
C

jLjLR
Y ωω

ωω
     ( 2.1) 

The circuit behave as if has a parallel equivalent capacity  C  

21 CCC +=          ( 2.2) 

and a parallel  equivalent inductance  L  











+
=

+=

21

21

21

111

LL
LL

L

LLL
         ( 2.3) 

The complex admittance of the circuit may be written as  









⋅
−⋅⋅+=

ω
ω

L
Cj

R
Y 11        ( 2.4) 

and the complex impedance of the circuit will be   
























⋅
−⋅+














 ⋅−

⋅
⋅+

=

=

22 11

11

1

ω
ω

ω
ω

L
C

R

C
L

j
RZ

Y
Z

      ( 2.5) 

The impedance  Z  of the circuit, the inverse of the admittance of the circuit  Y  is the modulus of the 
complex impedance Z   

Y

L
C

R

ZZ 1

11

1
22
=









⋅
−⋅+








==

ω
ω

     ( 2.6) 

The constant current source supplying the circuit furnish a current having a momentary value  ( )ti   

( ) ( )tIti ⋅⋅⋅= ωsin2 ,        ( 2.7) 

where I  is the effective intensity (constant), of the current and  ω  is the current pulsation (that can 
vary) . The potential difference at the jacks of the circuit has the momentary value  ( )tu   

( ) ( )ϕω +⋅⋅⋅= tUtu sin2        ( 2.8) 

where U  is the effective value of the tension and  ϕ  is the phase difference between tension and 
current.  
The effective values of the current and tension obey the relation  
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ZIU ⋅=           ( 2.9) 
The active power in the circuit is  

R
IZ

R
UP

222 ⋅
==         ( 2.10) 

Because as in the enounce,  





=
=

constantR
constantI

         ( 2.11) 

the maximal active power is realized for the maximum value of the impedance that is the minimal value 
of the admittance . 
The admittance  

22 11








⋅
−⋅+






=

ω
ω

L
C

R
Y        ( 2.12) 

has– as function of the pulsation  ω  - an „the smallest value”  

R
Y 1

min =          ( 2.13) 

for the pulsation 

CLm ⋅
=

1ω          ( 2.14) 

In this case  

01
=








⋅
−⋅

ω
ω

L
C .        ( 2.15) 

So, the minimal active power in the circuit has the value   
2IRPm ⋅=          ( 2.16) 

and occurs in the situation of alternative current furnished by the source at the frequency mf  

LC
f mm ⋅⋅

==
π

ω
π 2

1
2
1        ( 2.17) 

To ensure that the active power is half of the maximum power it is necessary that 















==

⋅=
⋅

=

2
22

2
22

12
2
1

2
1

Y
ZR

IR
R

IZ

PP m

        ( 2.18) 

That is 
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








⋅
−⋅=±









⋅
−⋅+=

ω
ω

ω
ω

L
C

R

L
C

RR
11

112 2

22
       ( 2.19) 

The pulsation of the current ensuring an active power at half of the maximum power must satisfy one of 
the equations  

0112 =
⋅

−
⋅

±
CLCR

ωω        ( 2.20) 

The two second degree equation may furnish the four solutions 

CLCRCR ⋅
+








⋅
±

⋅
±=

41
2
1

2
1 2

ω       ( 2.21) 

Because the pulsation is every time positive, and because  

CRCLCR ⋅
>

⋅
+








⋅
141 2

       ( 2.22) 

the only two valid solutions are  

CRCLCR ⋅
±

⋅
+








⋅
=± 2

141
2
1 2

ω       ( 2.23) 

It exist two frequencies  ±± = ω
π2
1f  allowing to obtain in the circuit an active power representing half of 

the maximum power. 




























⋅
−

⋅
+








⋅
=















⋅
+

⋅
+








⋅
=

−

+

CRCLCR
f

CRCLCR
f

2
141

2
1

2
1

2
141

2
1

2
1

2

2

π

π
     ( 2.24) 

The difference of these frequencies is  

CR
fff

⋅
=−=∆ −+

1
2
1
π

        ( 2.25) 

the bandwidth of the circuit – the frequency interval around the resonance frequency having at the ends 
a signal representing 21  from the resonance signal. At the ends of the bandwidth the active power 
reduces at the half of his value at the resonance.  
The asked ratio is  
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( ) ( )










⋅
+⋅+

=
∆

=
⋅
⋅

=
∆

21

2121

LL
LLCCR

f
f

L
CR

CL
CR

f
f

m

m

       ( 2.26)

Because  

* 







=

=

mHL

nFC

3
20
15

 

it results that  
1510 −⋅= sradmω  

and 

150
1020
1015310100 3

9
3 =

×
×⋅

⋅×==
∆ −

−

L
CR

f
fm      ( 2.27) 

The (2.26) relation is the answer at the question a. 
 
b. The fact that immediately after the source is detached it is a current in the coils, allow as to admit 
that currents dependents on time will continue to flow   through the coils.  

 
Figure 2.1 

The capacitors will be charged with charges variable in time. The variation of the charges of the 
capacitors will results in currents flowing through the conductors linking the capacitors in the circuit. 
The momentary tension on the jacks of the coils and capacitors – identical for all elements in circuit – is 
also dependent on time. Let’s admit that the electrical potential of the points C and D is  )(tu  and the 
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potential of the points A and B is zero. If through the inductance  1L  passes the variable current having 
the momentary value ( )ti1 , the relation between the current and potentials is   

( ) 01
1 =−

dt
diLtu          ( 2.28) 

The current passing through the second inductance ( )ti2  has the expression,  

( ) 02
2 =−

dt
diLtu         ( 2.29) 

If on the positive plate of the capacitor having the capacity  1C  is stocked the charge ( )tq1 , then at the 
jacks of the capacitor the electrical tension is  ( )tu  and 

uCq ⋅= 11          ( 2.30) 

Deriving this relation it results  

dt
duC

dt
dq

⋅= 1
1          ( 2.31) 

But 

3
1 i

dt
dq

−=          ( 2.32)  

because the electrical current appears because of the diminishing of the electrical charge on capacitor 
plate. Consequently 

dt
duCi ⋅−= 13          ( 2.33) 

Analogous, for the other capacitor, 

dt
duCi ⋅−= 44          ( 2.34) 

Considering all obtained results 










=

=

2

2

1

1

L
u

dt
di

L
u

dt
di

         ( 2.35) 

respectively 










=

−=

2

2

2
4

2

2

1
3

dt
udC

dt
di

dt
udC

dt
di

        ( 2.36) 

Denoting ( )ti5  the momentary intensity of the current flowing from point B  to the point A , then the 
same momentary intensity has the current through the points C  and D . For the point A  the Kirchhoff 
rule of the currents gives   
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351 iii =+          ( 2.37) 

For  B  point the same rule produces  

254 iii =+          ( 2.38) 

Considering (2.37) and (2.38) results  

2431 iiii −=−          ( 2.39) 

and deriving  

dt
di

dt
di

dt
di

dt
di 2431 −=−         ( 2.40) 

that is 

( )









+⋅=







+⋅−

+=−−

212

2

21

2

2

22

2

1
21

11 CC
dt

ud
LL

u

dt
udC

dt
udC

L
u

L
u

      ( 2.41) 

Using the symbols defined above  










=+

⋅=−

01
2

2

u
LC

u

C
dt

ud
L
u



         ( 2.42) 

Because the tension obeys the relation above, it must have a harmonic dependence on time  
( ) ( )δω +⋅⋅= tAtu sin         ( 2.43) 

The pulsation of the tension is   

CL ⋅
=

1ω          ( 2.44) 

Taking into account the relations (2.43) and (2.36) it results that  

( )( ) ( )

( )( ) ( )








+⋅⋅⋅⋅−=+⋅⋅−=

+⋅⋅⋅⋅−=+⋅⋅−=

δωωδω

δωωδω

tACtA
dt
dCi

tACtA
dt
dCi

cossin

cossin

224

113

   ( 2.45) 

and 

( )

( )









+⋅⋅⋅==

+⋅⋅⋅==

δω

δω

tA
LL

u
dt
di

tA
LL

u
dt
di

sin1

sin1

22

2

11

1

      ( 2.46) 

It results that 
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( )

( )









++⋅⋅⋅
⋅

=

++⋅⋅⋅
⋅

=

NtA
L

i

MtA
L

i

δω
ω

δω
ω

cos1

cos1

2
2

1
1

      ( 2.47) 

In the expression above, A , M , N  and δ  are constants that must be determined using initially 
conditions. It is remarkable that the currents through capacitors are sinusoidal but the currents through 
the coils are the sum of sinusoidal and constant currents. 
In the first moment 

( )
( )
( )








==
==
==

Aii
Aii
Vuu

2,00
1,00

400

022

011

0

        ( 2.48) 

Because the values of the inductances and capacities are  











=
=
=
=

nFC
nFC

HL
HL

5
10

02,0
01,0

2

1

2

1

         ( 2.49) 

the equivalent inductance and capacity is 















=
×
×

=

+
⋅

=

+=

−

−

HHL

LL
LLL

LLL

150
1

103
102

111

2

4

21

21

21

       ( 2.50) 

respectively 





=
+=
nFC

CCC
15

21  .        ( 2.51) 

From (2.44) results  

15

9

10
1015

150
1

1 −

−

⋅=
×⋅

= sradω       ( 2.52)

The value of the pulsation allows calculating the value of the requested frequency b. This frequency 
has the value 

* 

f  

Hzf
ππ

ω
2
10

2

5

==         ( 2.53)

 

 * 

c. If the momentary tension on circuit is like in (2.43), one may write 
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( ) ( )

( )





=

=⋅=

A
u

uAu

0

0

sin

sin0

δ

δ
        ( 2.54) 

From the currents (2.47) is possible to write  

( )

( )









+⋅⋅
⋅

=

+⋅⋅
⋅

=

NA
L

i

MA
L

i

δ
ω

δ
ω

cos1

cos1

2
02

1
01

       ( 2.55) 

On the other side is possible to express (2.39) as 

( ) ( )

( ) ( )













−+⋅⋅⋅
⋅

−+⋅⋅⋅⋅−

=+⋅⋅⋅⋅+++⋅⋅⋅
⋅

−=−

NtA
L

tAC

tACMtA
L

iiii

δω
ω

δωω

δωωδω
ω

cos1cos

coscos1

2
2

1
1

2431

    ( 2.56) 

An identity as 
DCBA +⋅≡+⋅ αα coscos        ( 2.57) 

is valuable for any value of the argument  α  only if 





=
=

DB
CA

         ( 2.58) 

Considering (2.58), from (2.56) it results 

( )















+⋅−=+⋅⋅

=+

21
21

11
0

LL
ACCA

NM

ω
ω

      ( 2.59) 

For the last equation it results that the circuit oscillate with the pulsation in the relation (2.44) 
Adding relations (2.55) and considering (2.54) and (2.59) results that 

( )

( )

( )





















⋅⋅+
=









+⋅⋅

+
=









+⋅⋅

+
=









+⋅⋅⋅=+

A
Lii

LL
A

ii
LL

iiA

LL
Aii

ωδ

ω

δ

ω
δ

ω
δ

0201

11

0201

11

0201

11
0201

cos

111
cos

111cos

111cos

      ( 2.60) 
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The numerical value of the amplitude of the electrical tension results by summing the last relations from 
(2.54) and (2.60) 
 

( )

( )

( )( ) ( )( )
( )

( ) ( )( )

















⋅⋅++=

=





 ⋅⋅+

+







=+

⋅⋅+
=

=

2
0201

2
0

2

0201

2

0

22

0201

0

1

1sincos

cos

sin

ω

ω

δδ

ωδ

δ

LiiuA

A
Lii

A
u

A
Lii

A
u

      ( 2.61) 

The numerical value of the electrical tension on the jacks of the circuit is  

( ) ( )

( ) ( )








=+=







 ⋅⋅+=

VA

A

264020040

10
150

13,040

22

2
52

      ( 2.62) 

And consequently from (2.54) results 

( )

( )









==

=

26
1

2640
40sin

sin 0

δ

δ
A
u

       ( 2.63) 

and 

( )
26
5cos =δ          ( 2.64) 

Also 
 
 

( )

( )





=

=

51
5
1

arctg

tg

δ

δ
         ( 2.65) 

From (2.55) 

( )

( )









⋅⋅
⋅

−=

⋅⋅
⋅

−=

δ
ω

δ
ω

cos1

cos1

2
02

1
01

A
L

iN

A
L

iM
       ( 2.66) 

the corresponding numerical values are 
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









=







⋅⋅

⋅
−=

−=







⋅⋅

⋅
−=

AAN

AAM

1,0
26
52640

1002,0
12,0

1,0
26
52640

1001,0
11,0

5

5

     ( 2.67)

The relations (2.47) becomes 

 * 

( )( )

( )( )











+=







++⋅⋅=

−=







−+⋅⋅=

02
5

2

01
5

1

~1,05110cos
100

262

~1,05110cos
100

264

IiAarctgti

IiAarctgti
    ( 2.68) 

The currents through the coils are the superposition of sinusoidal currents having different amplitudes 
and a direct current passing only through the coils. This direct current has the constant value  

AI 1,00 =          ( 2.69)

as in the  figure 2.2. 

 * 

 
Figure 2.2 

The alternative currents through the coils has the expressions  

( )( )

( )( )



















+⋅⋅=









+⋅⋅=

Aarctgti

Aarctgti

5110cos
100

262~

5110cos
100

264~

5
2

5
1

     ( 2.70) 



IPhO 1983                                                                           Theoretical Question II   

 
 

Electricity – Problem II - Solution                                                             Page 12 from 12 

The currents through the capacitors has the forms  

( )( )( )
( )( )

( )( )( )
( )( )
























+⋅−=

+⋅⋅⋅×−=









+⋅−=

+⋅⋅⋅×−=

−

−

Aarctgti

Aarctgti

Aarctgti

Aarctgti

5110cos
100

262

5110cos2640105

5110cos
100

264

5110cos26401010

5
4

54
4

5
3

54
3

    ( 2.71) 

The current  5i  has the expression  

( )( )















++⋅−=

−=

Aarctgti

iii

1,05110cos
100

268 5
5

135

     ( 2.72) 

The value of the intensity of  5i  current is the answer from the question c. 
The initial value of this current is  
 
 

AAi 3,01,0
26
5

100
268

5 −=







+−=       ( 2.73)

d. The amplitude of the current through the inductance  

 * 

1L  is  

( ) ( )( ) AAAarctgti 2,0
100

2645110cos
100

264max~max 5
1 ≈=








+⋅⋅=   ( 2.74)

representing the answer at the question d. 

 * 
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3. Optics – Problem III (7points) 
 

Prisms 
 
Two dispersive prisms having apex angles °= 60ˆ

1A  and  °= 30ˆ
2A  are glued as in the figure ( °= 90Ĉ ). 

The dependences of refraction indexes of the prisms on the wavelength are given by the relations    

( ) 2
1

11 λ
λ

ban += ;      

( ) 2
2

22 λ
λ

ban +=  

were  
.105,3,1,101,1,1 24

22
25

11 nmbanmba ⋅==⋅==   
 

a. Determine the wavelength  0λ  of the incident radiation that pass through the prisms without 
refraction on AC  face at any incident angle; determine the corresponding refraction indexes of 
the prisms. 

b. Draw the ray path in the system of prisms for three different radiations ioletred vλλλ ,, 0  
incident on the system at the same angle. 

c. Determine the minimum deviation angle in the system for a ray having the wavelength 0λ . 
d. Calculate the wavelength of the ray that penetrates and exits the system along directions 

parallel to DC. 
 

Problem III - Solution 
 

a.  The ray with the wavelength  0λ  pass trough the prisms system without refraction on AC  face at 
any angle of incidence if : 

( ) ( )0201 λλ nn =          
Because  the dependence of refraction indexes of prisms  on wavelength has the form : 

( ) 2
1

11
λ

λ
ban +=         ( 3.1) 

( ) 2
2

22 λ
λ

ban +=         ( 3.2) 

The relation (3.1) becomes: 

2
0

2
22

0

1
1 λλ

baba +=+         ( 3.3)  

The wavelength 0λ  has correspondingly the form: 

12

21
0 aa

bb
−
−

=λ          ( 3.4) 

Substituting the furnished numerical values  
nm5000 =λ          ( 3.5) 



IPhO 1983                                                                       Theoretical Question III   

 
 

Optics – Problem III - Solution                                                                    Page 2 from 4 

The corresponding common value of indexes of refraction of prisms for the radiation with the 
wavelength 0λ  is: 

( ) ( ) 5,10201 == λλ nn        ( 3.6) 
The relations (3.6) and (3.7) represent the answers of question a. 
 
 
b. For the rays with different wavelength ( ioletred vλλλ ,, 0 ) having the same incidence angle on first 
prism, the paths are illustrated in the figure 1.1. 
 

 
Figure 3.1 

The draw illustrated in the figure 1.1 represents the answer of question b. 
 
 
c. In the figure 1.2 is presented the path of ray with wavelength  0λ   at minimum deviation (the angle 
between the direction of incidence of ray and the direction of emerging ray is minimal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2 
In this situation 
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( ) ( )

2
'sin

2
'sin min

0201 A

A

nn

+

==

δ

λλ       ( 3.7) 

where 
( ) °= 30'Âm , 

as in the figure 1.1 
Substituting in (3.8) the values of refraction indexes the result is  

2
'sin

2
3

2
'sin min AA

⋅=
+δ        ( 3.8) 

or 

2
'

2
'sin

2
3arcsin2min

AA
−






 ⋅=δ        ( 3.9) 

Numerically 
°≅ 7,30minδ          ( 3.10) 

The relation (3.11) represents the answer of question c. 
 
 
d. Using the figure 1.3 the refraction law on the  AD  face is 

111 sinsin rni ⋅=          ( 3.11) 
The refraction law on the  AC  face is 

2211 sin'sin rnrn ⋅=⋅         ( 3.12) 
 

 
 

Figure 3.3 
        
As it can be seen in the figure 1.3 
 22 Ar =          ( 3.13) 
and 

°= 301i          ( 3.14) 
Also,  

111 ' Arr =+          ( 3.15) 
Substituting (3.16) and (3.14) in (3.13)  it results  
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( ) 22111 sinsin AnrAn ⋅=−⋅        ( 3.16) 
or 

( ) 2211111 sincossincossin AnArrAn ⋅=⋅−⋅⋅      ( 3.17) 
Because of (3.12) and (3.15) it results that 

1
1 2

1sin
n

r =          ( 3.18) 

and 
14

2
1cos 2

1
1

1 −= n
n

r         ( 3.19) 

 Putting together the last three relations it results     

1

1222
1 sin

cossin2
14

A
AAn

n
+⋅

=−       ( 3.20) 

Because  
°= 60ˆ

1A   
and 

°= 30ˆ
2A   

relation (3.21) can be written as  

3

12
14 22

1
+

=−
n

n         ( 3.21) 

or  
2

22
2

1 13 nnn ++=⋅         ( 3.22) 
Considering the relations (3.1), (3.2) and (3.23) and operating all calculus it results: 

( ) ( ) 032613 2
2

2
1

2
222112

2
2

2
1

4 =−+⋅−−+−−−⋅ bbbabbaaaa λλ   ( 3.23) 
Solving the equation (3.24) one determine the wavelength  λ  of the ray that enter the prisms system 
having the direction parallel with DC  and emerges the prism system having the direction again parallel 
with DC . That is  

nm1194=λ          ( 3.24) 
or 

mµλ 2,1≅          ( 3.25) 
The relation (3.26) represents the answer of question d. 
 
 
 
 
Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and 
         Research- Bucharest, Romania 
Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania 
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4. Atomics - Problem IV (7 points) 
 
Compton scattering 
 
A photon of wavelength iλ  is scattered by a moving, free electron. As a result the electron stops 
and the resulting photon of wavelength 0λ  scattered at an angle °= 60θ  with respect to the 
direction of the incident photon, is again scattered by a second free electron at rest. In this 
second scattering process a photon with wavelength of mf

1010251 −×= ,λ  emerges at an angle 
°= 60θ  with respect to the direction of the photon of wavelength 0λ . Find the de Broglie 

wavelength for the first electron before the interaction. The following constants are known: 
sJh ⋅×= −341066,  - Planck’s constant 

kgm 311019 −×= ,  - mass oh the electron 
smc /, 81003 ×=  - speed of light in vacuum 

 
 
Problem III - Solution 
 
The purpose of the problem is to calculate the values of the speed, momentum and wavelength 
of the first electron. 
 
To characterize the photons the following notation are used: 
Table 4.1 

 

 
To characterize the electrons one uses 
Table 4.2 
 first electron 

before collision  
first electron 
after collision 

second electron 
before collision  

Second electron 
after collision 

momentum ep1


 0  0  ep2


 
energy eE1  eE0  eE0  eE2  
speed ev1

  0  0  ev 2
  

 
 
The image in figure 4.1 presents the situation before the first scattering of photon. 
 

 initial  
photon 

photon –  
after the  
first scattering 

final  
photon 

momentum ip


 0p


 fp


 
energy iE  0E  fE  
wavelength iλ  iλ  fλ  
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 Figure 4.1       Figure 4.2 
 

 
 Figure 4.3      Figure 4.4 
To characterize the initial photon we will use his momentum ip

  and his energy iE  








⋅=

⋅
==

ii

i

i
i

fhE
c
fhhP

λ



        ( 4.1) 

i
i

cf
λ

=           ( 4.2)  

is the frequency of initial photon. 
For initial, free electron in motion the momentum oep



 and the energy oeE are 













−

⋅
=⋅=

−

⋅
=⋅=

2

2
02

2
10

1

1

1

β

β

cmcmE

vmvmP

oe

e
eoe







       ( 4.3) 

where 0m  is the rest mass of electron and m  is the mass of moving electron. As usual, 
c

v e1=β . 

De Broglie wavelength of the first electron is 
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2

100

1 βλ −
⋅
⋅

==
ee

oe vm
h

p
h   

The situation after the scattering of photon is described in the figure 4.2. 
To characterize the scattered photon we will use his momentum 0p

  and his energy 0E  








⋅=

⋅
==

oo

o

o
o

fhE
c
fhhP

λ



        ( 4.4). 

where 

0λ
cfo =          ( 4.5) 

is the frequency of scattered photon. 
 
The magnitude of momentum of the electron ( that remains in rest) after the scattering is zero; 
his energy is eE1 . The mass of electron after collision is 0m  - the rest mass of electron at rest. 
So, 

2
01 cmE e ⋅=  

To determine the moment of the first moving electron, one can write the principles of 
conservation of moments and energy. That is  

0ppP oei





=+          ( 4.6) 

and 

eei EEEE 100 +=+         ( 4.7) 

The conservation of moment on Ox  direction is written as 

θα coscos 0
1 c

fhvm
c
fh

e
i ⋅

=⋅⋅+
⋅       ( 4.8) 

and the conservation of moment on Oy  is 

θα sinsin 0
1 c

fhvm e
⋅

=⋅⋅        ( 4.9) 

To eliminate α , the last two equation must be written again as 

( ) ( )

( )















 ⋅

=⋅⋅

−⋅
⋅

=⋅⋅

2
02

1

2
02

2
2

1

sinsin

coscos

θα

θα

c
fhvm

ff
c
hvm

e

ie

      ( 4.10) 

and then added. 
The result is 

( )θcos2 0
2

1
2

02

2
2
1

2 ⋅⋅−+
⋅

=⋅ ie ffff
c
hvm       ( 4.11) 

or 
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( )θcos2
1

0
2

1
2

0
22

12
1

22
0 ⋅⋅−+⋅=⋅







−

⋅
ie

e

ffffhv

c
v

cm      ( 4.12) 

The conservation of energy (4.7) can be written again as 

0
2

01
2 fhcmfhcm ⋅+⋅=⋅+⋅        ( 4.13) 

or 

( )10
2

02
1

2
0

1

ffhcm

c
v

cm

e

−⋅+⋅=







−

⋅        ( 4.14) 

Squaring the last relation results 

( ) ( )10
2

0
2

10
242

02
1

42
0

1
ffchmffhcm

c
v

cm

e

−⋅⋅⋅+−⋅+⋅=







−

⋅     ( 4.15) 

Subtracting (4.12) from (4.15) the result is 

( ) 02cos22 1
2

01
2

10
2

0 =⋅⋅−⋅⋅⋅+−⋅⋅⋅ ffhffhffhcm θ     ( 4.16) 

or 

( )
010

cos1
f
c

f
c

cm
h

−=−
⋅

θ        ( 4.17) 

Using  

cm
h
⋅

=Λ
0

         ( 4.18) 

the relation (4.17) becomes 
( ) 0cos1 λλθ −=−⋅Λ i         ( 4.19) 

The wavelength of scattered photon is 
( )θλλ cos10 −⋅Λ−= i         ( 4.20) 

shorter than  the wavelength of initial photon and consequently the energy of scattered photon is 
greater that the energy of initial photon. 





>
<

0

0

EEi

i λλ
         ( 4.21) 

  
Let’s analyze now the second collision process that occurs in point N . To study that, let’s 
consider a new referential having Ox  direction on the direction of the photon scattered after 
the first collision.   
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The figure 4.3 presents the situation before the second collision and the figure 4.4 presents the 
situation after this scattering process. The conservation principle for moment in the scattering 
process gives  










=⋅⋅−

⋅⋅+=

0sinsin

coscos

2

2
0
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e
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e
f

vmh

vmhh

      ( 4.22) 

To eliminate the unknown angle β  must square and then add the equations (4.22) 

That is 
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or 
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
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
θ
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     ( 4.24) 

The conservation principle of energy in the second scattering process gives 

22
0

0

cmchcmch
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⋅+
⋅

=⋅+
⋅

λλ
       ( 4.25) 

 (4.24) and (4.25) gives 
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and 
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0
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22 11211 cmmchcmch
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
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Subtracting (4.26) from (1.27), one obtain 

( )

( )






−⋅Λ=−

−=−⋅
⋅

θλλ

λλθ
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0
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       ( 4.28) 

That is  
 
 





<
>

0

0

EEf

f λλ
         ( 4.29) 
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Because the value of fλ  is know and Λ  can be calculate as 









×=×=
×⋅×

×
=Λ

×=

−−
−

−

−

mmm

mf

1012
831

34

10

1002,01041,2
103101,9

106,6
1025,1λ

   ( 4.30) 

the value of wavelength of photon before the second scattering is 

m10
0 1023,1 −×=λ         ( 4.31) 

Comparing (4.28) written as: 
( )θλλ cos10 −⋅Λ+=f         ( 4.32) 

and (4.20) written as  
( )θλλ cos10 −⋅Λ+=i         ( 4.33) 

clearly results 

fi λλ =           ( 4.34) 

The energy of the double scattered photon is the same as the energy of initial photon. The 
direction of “final photon” is the same as the direction of “initial” photon. Concluding, the final 
photon is identical with the initial photon. The result is expected because of the symmetry of the 
processes. 
Extending the symmetry analyze on electrons, the first moving electron that collides the initial 
photon and after that remains at rest, must have the same momentum and energy as the second 
electron after the collision – because this second electron is at rest  before the collision. 
That is  



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=

ee

ee

EE
pp

21

21


         ( 4.35) 

Taking into account (4.24), the moment of final electron is  

( )( ) ( )( )θλλ
θ

θλλ cos1
cos2

cos1
11

222 −Λ−⋅
⋅

−
−Λ−

+=
ffff

e hp    ( 4.36) 

The de Broglie wavelength of second electron after scattering (and of first electron before 
scattering) is 

( )( ) ( )( ) 










−Λ−⋅
⋅

−
−Λ−

+==
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111 2221
ffff

ee   ( 4.37) 

Numerical value of this wavelength is 

mee
10

21 1024,1 −×== λλ        ( 4.38) 

 
 
Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of  
      Education and Research- Bucharest, Romania 
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5.IPhO’s LOGO – Problem V  
 
The Logo of the International Physics Olympiad is represented in the figure below. 
The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of 
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid 
line. 
Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936). 
 
This problem will be not considered in the general score of the Olympiad. The best solution will be 
awarded a special prize.  

 
 

Figure 5.1 
Problem V -Solution 
 
Suppose a fluid is in a recipient at a constant pressure. If a thin jet of fluid (gas or liquid) having a small 
circular or rectangular cross section leaves the recipient through a nozzle entering the medium, the 
particles belonging to the medium will be carried out by the jet. Other particles belonging to the medium 
will be attracted to the jet.  
If the jet flows over a large surface, the particles belonging to the medium over the jet and the particles 
leaving between the jet and the surface will be carried out by the jet. The density of particles over the jet 
remains constant because of newly arriving particles, but the particles between the surface and the jet 
cannot be replaced.  A pressure difference appears between the upper and lower side of the jet, 
pushing the jet to the surface. If the surface is curved, the jet will follow its shape. 
The left image in the figure below presents the normal flow of a fluid jet leaving through a nozzle of a 
recipient with a high, constant pressure. The final pressure of the fluid is of medium pressure.  
The right image in the figure below presents the flow of a fluid over the large surface. The jet is “stuck” 

 
against the surface. 
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The process of deflection of the jet increases the speed of the jet without any variation of the pressure 
and temperature of the jet.  
During the tests of the first jet plane in Paris, December 1936, the Romanian engineer Henry Coanda 
was the first to observe this phenomenon, occurring when the flames of the engine passed through a 
flap.  
 
The logo of the Olympiad illustrates the Coanda flow of a fluid. 
 
 
 
 
Professor Delia DAVIDESCU, National Department of Evaluation and Examination–Ministry of Education and 
         Research- Bucharest, Romania 
Professor Adrian S.DAFINEI,PhD, Faculty of Physics – University of Bucharest, Romania 



IPhO 1983                                                                     Theoretical Questions   

 

Page 1 from 4 

 

1.Mechanics – Problem I (8 points) 
Jumping particle 
 
A particle moves along the positive axis Ox  (one-dimensional situation) under a force that’s projection 
on Ox is 0FFx =  as represented in the figure below (as function of x ). At the origin of Ox  axis is 
placed a perfectly reflecting wall.  
A friction force of constant modulus NFf 00,1=  acts anywhere the particle is situated. 
The particle starts from the point  mxx 00,10 ==  having the kinetic energy JEc 0,10= . 
a. Find the length of the path of the particle before it comes to a final stop  
b. Sketch the potential energy )(xU  of the particle in the force field xF . 
c. Draw qualitatively the dependence of the particle speed as function of his coordinate x . 

 
 
 

2.Electricity – Problem II (8 points) 
 
Different kind of oscillation 
 
Let’s consider the electric circuit in the figure, for which mHL 101 = , 

mHL 202 = , nFC 101 = , nFC 52 =  and Ω= kR 100 . The switch K  
being closed the circuit is coupled with a source of alternating current. The 
current furnished by the source has constant intensity while the frequency of 
the current may be varied.  

a. Find the ratio of frequency mf  for which the active power in circuit 
has the maximum value mP  and the frequency difference 

−+ −=∆ fff  of the frequencies +f  and  −f  for which the active 
power in the circuit is half of the maximum power mP . 

 
 
The switch K  is now open. In the moment  0t  immediately after the switch 
is open the intensities of the currents in the coils  1L  and  Ai 1,001 =  and 
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Ai 2,002 =  1L  (the currents flow as in the figure); at the same moment, 
the potential difference on the capacitor with capacity  1C  is  

Vu 400 =  : 
b. Calculate the frequency of electromagnetic oscillation in  

2211 LCCL  circuit; 
c. Determine the intensity of the electric  current in the AB  

conductor; 
d. Calculate the amplitude of the oscillation of the intensity of 

electric current in the coil 1L . 
 
Neglect the mutual induction of the coils, and the electric resistance of 
the conductors. Neglect the fast transition phenomena occurring when 
the switch is closed or opened. 
 
 
 
 
 
 

3.Optics – Problem III (7points) 
 

Prisms 
 
Two dispersive prisms having apex angles °= 60ˆ

1A  and  °= 30ˆ
2A  are glued as in the figure below 

( °= 90Ĉ ). The dependences of refraction indexes of the prisms on the wavelength are given by the 
relations    

( ) 2
1

11 λ
λ

ban += ;      

( ) 2
2

22 λ
λ

ban +=  

were  
.105,3,1,101,1,1 24

22
25

11 nmbanmba ⋅==⋅==   
 

a. Determine the wavelength  0λ  of the incident radiation that pass through the prisms without 
refraction on AC  face at any incident angle; determine the corresponding refraction indexes of 
the prisms. 

b. Draw the ray path in the system of prisms for three different radiations ioletred vλλλ ,, 0  
incident on the system at the same angle. 

c. Determine the minimum deviation angle in the system for a ray having the wavelength 0λ . 
d. Calculate the wavelength of the ray that penetrates and exits the system along directions 

parallel to DC. 
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4.Atomics - Problem IV (7 points) 
 
Compton scattering 
 
A photon of wavelength iλ  is scattered by a moving, free electron. As a result the electron stops and 
the resulting photon of wavelength 0λ  scattered at an angle °= 60θ  with respect to the direction of 
the incident photon, is again scattered by a second free electron at rest. In this second scattering 
process a photon with wavelength of mf

1010251 −×= ,λ  emerges at an angle °= 60θ  with respect 
to the direction of the photon of wavelength 0λ . Find the de Broglie wavelength for the first electron 
before the interaction. The following constants are known: 

sJh ⋅×= −341066,  - Planck’s constant 
kgm 311019 −×= ,  - mass oh the electron 

smc /, 81003 ×=  - speed of light in vacuum 
 
 
The purpose of the problem is to calculate the values of the speed, momentum and wavelength of the 
first electron. 
 
To characterize the photons the following notation are used: 
Table 4.1 

 

 
To characterize the electrons one uses 
Table 4.2 

 first electron 
before collision  

first electron 
after collision 

second electron 
before collision  

Second electron 
after collision 

momentum ep1


 0  0  ep2


 
energy eE1  eE0  eE0  eE2  
speed ev1

  0  0  ev 2
  

 
 
 
 
 
 
 

 initial  
photon 

photon –  
after the  
first scattering 

final  
photon 

momentum ip


 0p


 fp


 
energy iE  0E  fE  
wavelength iλ  iλ  fλ  
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5.IPhO’s LOGO – Problem V  
 
The Logo of the International Physics Olympiad is represented in the figure below. 
The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of 
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid 
line. 
Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936). 
 
This problem will be not considered in the general score of the Olympiad. The best solution will be 
awarded a special prize.  
 

 
 



 Problems of the XV International Physics Olympiad 
 (Sigtuna, 1984) 

 
Lars Gislén 

Department of Theoretical Physics, University of Lund, Sweden 
 
Theoretical problems 
 
Problem 1 
 
a) Consider a plane-parallel transparent plate, where the refractive index, n, 
varies with distance, z, from the lower surface (see figure). Show that 
    

 

nA sin α = nB sin β . The notation is that of the figure. 

α

β

n

n

n(z)

A

B

z

z = 0

 
b) Assume that you are standing in a large flat desert. At some distance you 
see what appears to be a water surface. When you approach the “water” is 
seems to move away such that the distance to the “water” is always constant. 
Explain the phenomenon. 
 
c) Compute the temperature of the air close to the ground in b) assuming that 
your eyes are located 1.60 m above the ground and that the distance to the 
“water” is 250 m. The refractive index of the air at 15 ˚C and at normal air 
pressure (101.3 kPa) is 1.000276. The temperature of the air more than 1 m 
above the ground is assumed to be constant and equal to 30 ˚C. The 
atmospheric pressure is assumed to be normal. The refractive index, n, is such 
that n – 1 is proportional to the density of the air. Discuss the accuracy of your 
result. 
 
Solution: 
 
a) From the figure we get 
    

 

nA sin α = n1 sinα1 = n2 sin α2 =… = nB sin β  
 
b) The phenomenon is due to total reflexion 
in a warm layer of air when β = 90˚. This 
gives 

α

β

nA

nB

n
n

1

2

α
α

αα1
1

2
2



     

 

nA sin α = nB  
 
c) As the density, ρ, of the air is inversely proportional to the absolute 
temperature, T,  for fixed pressure we have 

    

 

n T( )= 1+ k ⋅ ρ = 1+ k/ T  
The value given at 15 ˚C determines the value of k = 0.0795.  
In order to have total reflexion we have     

 

n30sin α = nT  or 

 
    

 

1+
k
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 

 
 

 

 
 ⋅

L
h2 + L2

= 1+
k
T

 

 
 

 

 
  with h = 1.6 m and L = 250 m 

As h << L we can use a power expansion in     

 

h/ L : 

 

    

 

T =
303

303
k

+ 1
 

 
 

 

 
 1

1+ h2/ L2
− 303

k

≈ 303 1+
303h2

2kL2

 

 
  

 

 
  = 328K = 56ÞC  

 



Problem 2 
 
In certain lakes there is a strange 
phenomenon called “seiching” which is an 
oscillation of the water. Lakes in which you 
can see this phenomenon are normally long 
compared with the depth and also narrow. 
It is natural to see waves in a lake but not 
something like the seiching, where the entire 
water volume oscillates, like the coffee in a cup that you carry to a waiting 
guest. 
 
In order to create a model of the seiching we look at water in a rectangular 
container. The length of the container is L and the depth of the water is h. 
Assume that the surface of the water to begin with makes a small angle with 
the horizontal. The seiching will then start, and we assume that the water 
surface continues to be plane but oscillates around an axis in the horizontal 
plane and located in the middle of the container.  
 
Create a model of the movement of the water and derive a formula for the 
oscillation period T. The starting conditions are given in figure above. 
Assume that   

 

ξ << h . The table below shows experimental oscillation periods 
for different water depths in two containers of different lengths. Check in 
some reasonable way how well the formula that you have derived agrees 
with the experimental data. Give your opinion on the quality of your model. 
 
Table 1. L = 479 mm 

    

 

h/ mm 30 50 69 88 107 124 142
T / s 1.78 1.40 1.18 1.08 1.00 0.91 0.82

 

 
Table 2. L = 143 mm 

    

 

h/ mm 31 38 58 67 124
T / s 0.52 0.52 0.43 0.35 0.28

 

 
The graph below shows results from measurements in lake Vättern in Sweden. 
This lake has a length of 123 km and a mean depth of 50 m. What is the time 
scale in the graph? 

L

h

ξ



 
The water surface level in Bastudalen (northern end of lake Vättern) and Jönköping (southern end). 
 



Solution: 
 
In the coordinate system of the figure, we have for 
the centre of mass coordinates of the two triangular 
parts of the water 
     

 

x1, y1( )= L/ 3,h/ 2+ξ / 3( ) x2,y2( )= −L/ 3,h/ 2−ξ / 3( ). 
For the entire water mass the centre of mass coordinates will then be 

 
    

 

xCoM, yCoM( )=
ξL
6h

,
ξ2

6h
 

 
  

 

 
   

Due to that the y component is quadratic in ξ will be much much smaller than 
the x component. 
The velocities of the water mass are 

 
    

 

vx ,vy( )=
?ξ L
6h

,
?ξ ξ
3h

 

 
  

 

 
  , 

and again the vertical component is much smaller the the horizontal one. 
We now in our model neglect the vertical components. The total energy 
(kinetic + potential) will then be 

 
    

 

W = WK + WP = 1
2 M

?ξ 2L2

36h2 + Mg ξ2

6h2  

For a harmonic oscillator we have  
     

 

W = WK + WP = 1
2 m?x 2 + 1

2 mω2x2  
Identifying gives 

 
    

 

ω =
12gh

L
 or 

    

 

Tmodel =
πL
3h

. 

Comparing with the experimental data we find     

 

Texperiment ≈ 1.1⋅ Tmodel , our model 
gives a slight underestimation of the oscillation period. 
 
Applying our corrected model on the Vättern data we have that the oscillation 
period of the seiching is  about 3 hours. 
 
Many other models are possible and give equivalent results. 
 

x
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Problem 3 
 
 An electronic frequency filter consists of four components coupled as in the 
upper figure. The impedance of the source 
can be neglected and the impedance of the 
load can be taken as infinite. The filter 
should be such that the voltage ratio 
    

 

Uout / U in  has a frequency dependence shown 
in the lower where   

 

Uin  is the input voltage 
and   

 

Uout  is the output voltage. At frequency     

 

f0  the phase lag between the two 
voltages is zero. 
 
In order to build the filter you can choose from the following components: 
 
2 resistors, 10 kΩ 
2 capacitors, 10 nF 
2 solenoids, 160 mH (iron-free and with neglible 
resistance) 
 
Construct, by combining four of these components, 
a filter that fulfils the stated conditions. Determine 
the frequency     

 

f0  and the ratio     

 

Uout / U in  at this frequency for as many 
component combinations as possible.  
 
Solution: 
 
The conditions at very high and very low frequencies can be satisfied with for 
example the following circuit 

 

C

R

R
C

 
 
Using either the graphic vector method or the analytic jω method we can 

show that the minimum occurs för a frequency 
    

 

f0 =
1

2πRC
 when the ratio 

between the output and input voltages is 2/3. Switching the resistors and the 
capacitors gives a new circuit with the same frequency     

 

f0 . Another two 

possibilities is to exchange the capacitors for solenoids where we get 
    

 

f0 =
R

2πL
. 

There are further eight solutions with unsymmetric patterns of the electronic 
components. 

U Uin out

U in Uout/

f

1

f 0



Experimental problems 
 
Problem 1 
 
You have at your disposal the following material: 
 
(1) A sine wave voltage generator set to a frequency of 0,20 kHz. 
(2) A dual ray oscilloscope. 
(3) Millimeter graph paper. 
(4) A diod. 
(5) A capacitor of 0.10 µF  (square and black). 
(6) An unknown resistor R (red). 
(7) A coupling plate. 
(8) Coupling wires. 
 
Build the circuit shown in the figure.  
 
Connect the terminals A and B to the sine 
wave generator set to a frequency of 0.20 
kHz. Determine experimentally the mean 
power developed in the resistor R when the amplitude of the generator 
voltage is 2.0 V (that is the peak-to-peak voltage is 4.0 V). 
 
Solution: 
 
The picture to the right shows the 
oscilloscope voltage over the resistor. 
The period of the sine wave is 5 ms and 
this gives the relation 1 horizontal 
division = 1.5 ms. The actual vertical 
scale was 0.85 V / division. The first 
rising part of the curve is a section of a 
sine wave, the second falling part is an exponential decay determined by the 
time constant of the resistor and capacitor. Reading from the display the "half-
life"     

 

t1/ 2 = RC ⋅ ln 2 turns out to be 0.5 ms. This gives R = 7.2 kΩ. The mean 
power developed in the resistor is 

    

 

P =
1
T

U 2 t( )
R0

T

∫ dt . Numerical integration (counting squares) gives 

    

 

U 2 t( )
0

T

∫ dt = 4,5 ⋅ 10−3 V2s from which   

 

P ≈ 0.1 mW. 

0.1 µF C R
A

B



Problem 2 
 
 Material: 
(1) A glow discharge lamp connected to 220 V, alternating current. 
(2) A laser producing light of unknown wavelength. 
(3) A grating. 
(4) A transparent “micro-ruler”, 1 mm long with 100 subdivisions, the ruler is 
situated exactly in the centre of the circle. 
(5) A 1 m long ruler 
(6) Writing material. 
 
The spectrum of the glow discharge lamp has a number of spectral lines in the 
region yellow-orange-red. On of the yellow lines in the short wavelength part 
of this spectrum is very strong. Determine the wavelength of this spectral line. 
Estimate the accuracy of your measurement. 
 
Note: If you happen to know the wavelength of the laser light beforehand you 
are not allowed to use that value in your computation. 
 
Warning. Do not look into the laser beam. Do not touch the surface of the 
grating or the surface of the transparent micro-ruler. 
 
Solution: 
 
Using the micro-ruler with we can determine the wavelength of the laser light. 
Knowing this wavelength we can calibrate the grating and then use it to 
determine the unknown wavelength from the glow discharge lamp. We 
cannot use the micro-ruler to determine this wavelength because the intensity 
of the light from the lamp is too weak.  
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1 Problems

1.1 Theoretical competition

Problem 1

A young radio amateur maintains a radio link with two girls living in two
towns. He positions an aerial array such that when the girl living in town
A receives a maximum signal, the girl living in town B receives no signal
and vice versa. The array is built from two vertical rod aerials transmitting
with equal intensities uniformly in all directions in the horizontal plane.

∗Edited by B. Golli, Faculty of Education, University of Ljubljana, and J. Stefan Insti-
tute, Ljubljana, Slovenia, e-mail:bojan.golli@ijs.si
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a) Find the parameters of the array, i. e. the distance between the rods,
its orientation and the phase shift between the electrical signals sup-
plied to the rods, such that the distance between the rods is mini-
mum.

b) Find the numerical solution if the boy has a radio station transmit-
ting at 27 MHz and builds up the aerial array at Portorož. Using the
map he has found that the angles between the north and the direc-
tion of A (Koper) and of B (small town of Buje in Istria) are 72◦ and
157◦, respectively.

Problem 2

In a long bar having the shape of a rectangular parallelepiped with sides a,
b, and c (a � b � c), made from the semiconductor InSb flows a current
I parallel to the edge a. The bar is in an external magnetic field B which
is parallel to the edge c. The magnetic field produced by the current I can
be neglected. The current carriers are electrons. The average velocity of
electrons in a semiconductor in the presence of an electric field only is
v = µE, where µ is called mobility. If the magnetic field is also present,
the electric field is no longer parallel to the current. This phenomenon is
known as the Hall effect.

a) Determine what the magnitude and the direction of the electric field
in the bar is, to yield the current described above.

b) Calculate the difference of the electric potential between the oppo-
site points on the surfaces of the bar in the direction of the edge
b.

c) Find the analytic expression for the DC component of the electric
potential difference in case b) if the current and the magnetic field
are alternating (AC); I = I0 sin ωt and B = B0 sin(ωt + δ).

d) Design and explain an electric circuit which would make possible,
by exploiting the result c), to measure the power consumption of an
electric apparatus connected with the AC network.

Data: The electron mobility in InSb is 7.8 m2T/Vs, the electron con-
centration in InSb is 2.5·1022 m−3, I = 1.0 A, B = 0.10 T, b = 1.0 cm,
c = 1.0 mm, e0 = −1.6 · 10−19 As.
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Problem 3

In a space research project two schemes of launching a space probe out
of the Solar system are discussed. The first scheme (i) is to launch the
probe with a velocity large enough to escape from the Solar system di-
rectly. According to the second one (ii), the probe is to approach one of
the outer planets, and with its help change its direction of motion and
reach the velocity necessary to escape from the Solar system. Assume
that the probe moves under the gravitational field of only the Sun or the
planet, depending on whichever field is stronger at that point.

a) Determine the minimum velocity and its direction relative to the
Earth’s motion that should be given to the probe on launching ac-
cording to scheme (i).

b) Suppose that the probe has been launched in the direction deter-
mined in a) but with another velocity. Determine the velocity of the
probe when it crosses the orbit of Mars, i. e., its parallel and perpen-
dicular components with respect to this orbit. Mars is not near the
point of crossing, when crossing occurs.

c) Let the probe enter the gravitational field of Mars. Find the minimum
launching velocity from the Earth necessary for the probe to escape
from the Solar system.

Hint: From the result a) you know the optimal magnitude and the di-
rection of the velocity of the probe that is necessary to escape from
the Solar system after leaving the gravitational field of Mars. (You
do not have to worry about the precise position of Mars during the
encounter.) Find the relation between this velocity and the velocity
components before the probe enters the gravitational field of Mars;
i. e., the components you determined in b). What about the conser-
vation of energy of the probe?

d) Estimate the maximum possible fractional saving of energy in scheme
(ii) with respect to scheme (i). Notes: Assume that all the planets re-
volve round the Sun in circles, in the same direction and in the same
plane. Neglect the air resistance, the rotation of the Earth around its
axis as well as the energy used in escaping from the Earth’s gravita-
tional field.

Data: Velocity of the Earth round the Sun is 30 km/s, and the ratio of the
distances of the Earth and Mars from the Sun is 2/3.
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1.2 Experimental competition

Exercise A

Follow the acceleration and the deceleration of a brass disk, driven by an
AC electric motor. From the measured times of half turns, plot the angle,
angular velocity and angular acceleration of the disk as functions of time.
Determine the torque and power of the motor as functions of angular
velocity.

Instrumentation

1. AC motor with switch and brass disk

2. Induction sensor

3. Multichannel stop-watch (computer)

Instruction

The induction sensor senses the iron pegs, mounted on the disk, when
they are closer than 0.5 mm and sends a signal to the stop-watch. The
stop-watch is programmed on a computer so that it registers the time
at which the sensor senses the approaching peg and stores it in mem-
ory. You run the stop-watch by giving it simple numerical commands,
i. e. pressing one of the following numbers:

5 – MEASURE.

The measurement does not start immediately. The stop-watch waits
until you specify the number of measurements, that is, the number
of successive detections of the pegs:

3 – 30 measurements

6 – 60 measurements

Either of these commands starts the measurement. When a mea-
surement is completed, the computer displays the results in graphic
form. The vertical axis represents the length of the interval between
detection of the pegs and the horizontal axis is the number of the
interval.
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7 – display results in numeric form.

The first column is the number of times a peg has passed the detec-
tor, the second is the time elapsed from the beginning of the mea-
surement and the third column is the length of the time interval
between the detection of the two pegs.

In the case of 60 measurements:

8 – displays the first page of the table

2 – displays the second page of the table

4 – displays the results graphically.

A measurement can be interrupted before the prescribed number of mea-
surements by pressing any key and giving the disk another half turn.

The motor runs on 25 V AC. You start it with a switch on the mounting
base. It may sometimes be necessary to give the disk a light push or to
tap the base plate to start the disk.

The total moment of inertia of all the rotating parts is: (14.0 ± 0.5) ·
10−6 kgm2.

Exercise B

Locate the position of the centers and determine the orientations of a
number of identical permanent magnets hidden in the black painted block.
A diagram of one such magnet is given in Figure 1. The coordinates x, y
and z should be measured from the red corner point, as indicated in Fig-
ure 2.

Determine the z component of the magnetic induction vector ~B in the
(x, y) plane at z = 0 by calibrating the measuring system beforehand.

Find the greatest magnetic induction B obtainable from the magnet sup-
plied.

Instrumentation

1. Permanent magnet given is identical to the hidden magnets in the
block.

2. Induction coil; 1400 turns, R = 230 Ω
5



Fig. 1 Fig. 2

3. Field generating coils, 8800 turns, R = 990 Ω, 2 pieces

4. Black painted block with hidden magnets

5. Voltmeter (ranges 1 V, 3 V and 10 V recommended)

6. Electronic circuit (recommended supply voltage 24 V)

7. Ammeter

8. Variable resistor 3.3 kΩ
9. Variable stabilized power supply 0 – 25 V, with current limiter

10. Four connecting wires

11. Supporting plate with fixing holes

12. Rubber bands, multipurpose (e. g. for coil fixing)

13. Tooth picks

14. Ruler

15. Thread

Instructions

For the magnet-search only nondestructive methods are acceptable. The
final report should include results, formulae, graphs and diagrams. The
diagrams should be used instead of comments on the methods used wher-
ever possible.

The proper use of the induced voltage measuring system is shown in Fig-
ure 3.
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This device is capable of responding to the magnetic field. The peak volt-
age is proportional to the change of the magnetic flux through the coil.

The variable stabilized power supply is switched ON (1) or OFF (0) by the
lower left pushbutton. By the (U) knob the output voltage is increased
through the clockwise rotation. The recommended voltage is 24 V. There-
fore switch the corresponding toggle switch to the 12 V – 25 V position.
With this instrument either the output voltage U or the output current I is
measured, with respect to the position of the corresponding toggle switch
(V,A). However, to get the output voltage the upper right switch should be
in the ’Vklop’ position. By the knob (I) the output current is limited bellow
the preset value. When rotated clockwise the power supply can provide
1.5 A at most.

Fig. 3 ’0’ zero adjust dial, ’1’ push reset button

Note: permeability of empty space µ0 = 1.2 · 10−6 Vs/Am.
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2 Solutions

2.1 Theoretical competition

Problem 1

a) Let the electrical signals supplied to rods 1 and 2 be E1 = E0 cos ωt and
E2 = E0 cos(ωt + δ), respectively. The condition for a maximum signal in
direction ϑA (Fig. 4) is:

2πa
λ

sin ϑA − δ = 2πN

and the condition for a minimum signal in direction ϑB :

2πa
λ

sin ϑB − δ = 2πN′ + π (2p.)

where N and N′ are arbitrary integers. In addition, ϑA − ϑB = ϕ, where

Fig. 4

ϕ is given. The problem can now be formulated as follows: Find the
parameters a, ϑA, ϑB , δ, N, and N′ satisfying the above equations such,
that a is minimum.

We first eliminate δ by subtracting the second equation from the first one:

a sin ϑA − a sin ϑB = λ(N − N′ − 1
2) .
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Using the sine addition theorem and the relation ϑB = ϑA − ϕ:

2a cos(ϑA − 1
2ϕ) sin 1

2ϕ = λ(N − N′ − 1
2)

or

a =
λ(N − N′ − 1

2)
2 cos(ϑA − 1

2ϕ) sin 1
2ϕ

.

The minimum of a is obtained for the greatest possible value of the de-
nominator, i. e.:

cos(ϑA − 1
2ϕ) = 1 , ϑA = 1

2ϕ ,

and the minimum value of the numerator, i. e.:

N − N′ = 1 .

The solution is therefore:

a = λ
4 sin 1

2ϕ
, ϑA = 1

2ϕ , ϑB = −1
2ϕ and δ = 1

2π − 2πN . (6p.)

(N = 0 can be assumed throughout without loosing any physically relevant
solution.)

b) The wavelength λ = c/ν = 11.1 m, and the angle between directions
A and B, ϕ = 157◦ − 72◦ = 85◦. The minimum distance between the
rods is a = 4.1 m, while the direction of the symmetry line of the rods is
72◦ + 42.5◦ = 114.5◦ measured from the north. (2 p.)
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Problem 2

a) First the electron velocity is calculated from the current I:

I = jS = ne0vbc, v = I
ne0bc

= 25 m/s .

The components of the electric field are obtained from the electron veloc-
ity. The component in the direction of the current is

E‖ = v
µ

= 3.2 V/m . (0.5p.)

The component of the electric field in the direction b is equal to the
Lorentz force on the electron divided by its charge:

E⊥ = vB = 2.5 V/m . (1p.)

The magnitude of the electric field is

E =
√

E2
‖ + E2

⊥ = 4.06 V/m . (0.5p.)

while its direction is shown in Fig. 5 (Note that the electron velocity is in
the opposite direction with respect to the current.) (1.5 p.)

Fig. 5

b) The potential difference is

UH = E⊥b = 25 mV (1p.)
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c) The potential difference UH is now time dependent:

UH = IBb
ne0bc

= I0B0

ne0c
sin ωt sin(ωt + δ) .

The DC component of UH is

UH = I0B0

2ne0c
cos δ . (3p.)

d) A possible experimental setup is-shown in Fig. 6

Fig. 6

(2 p.)
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Problem 3

a) The necessary condition for the space-probe to escape from the Solar
system is that the sum of its kinetic and potential energy in the Sun’s
gravitational field is larger than or equal to zero:

1
2mv2

a − GmM
RE

≥ 0 ,

where m is the mass of the probe, va its velocity relative to the Sun, M
the mass of the Sun, RE the distance of the Earth from the Sun and G the
gravitational constant. Using the expression for the velocity of the Earth,
vE =

√
GM/RE , we can eliminate G and M from the above condition:

v2
a ≥ 2GM

RE
= 2v2

E . (1p.)

Let v′
a be the velocity of launching relative to the Earth and ϑ the angle

between ~vE and ~v′
a (Fig. 7). Then from ~va = ~v′

a + ~vE and v2
a = 2v2

E it

Fig. 7

follows:
v′

a
2 + 2v′

avE cos ϑ − v2
E = 0

and
v′

a = vE

[
− cos ϑ +

√
1 + cos2 ϑ

]
.

The minimum velocity is obtained for ϑ = 0:

v′
a = vE(

√
2 − 1) = 12.3 km/s . (1p.)

b) Let v′
b and vb be the velocities of launching the probe in the Earth’s and

Sun’s system of reference respectively. For the solution (a), vb = v′
b + vE .

From the conservation of angular momentum of the probe:

mvbRE = mv‖RM (1p.)
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and the conservation of energy:

1
2mv2

b − GmM
RE

= 1
2m(v2

‖ + v2
⊥) − GmM

RM
(1p.)

we get for the, parallel component of the velocity (Fig. 8):

v‖ = (v′
b + vE)k ,

and for the perpendicular component:

v⊥ =
√

(v′
b + vE)2(1 − k2) − 2v2

E(1 − k) . (1p.)

where k = RE/RM .

Fig. 8

c) The minimum velocity of the probe in the Mars’ system of reference
to escape from the Solar system, is v′′

s = vM(
√

2 − 1), in the direction
parallel to the Mars orbit (vM is the Mars velocity around the Sun). The
role of Mars is therefore to change the velocity of the probe so that it
leaves its gravitational field with this velocity.

(1 p.)

In the Mars’ system, the energy of the probe is conserved. That is, how-
ever, not true in the Sun’s system in which this encounter can be consid-
ered as an elastic collision between Mars and the probe. The velocity of
the probe before it enters the gravitational field of Mars is therefore, in
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the Mars’ system, equal to the velocity with which the probe leaves its
gravitational field. The components of the former velocity are v′′

⊥ = v⊥
and v′′

‖ = v‖ − vM , hence:

v′′ =
√

v′′
‖

2 + v′′
⊥

2 =
√

v2
⊥ + (v‖ − vM)2 = v′′

s . (1p.)

Using the expressions for v⊥ and v‖ from (b), we can now find the relation
between the launching velocity from the Earth, v′

b, and the velocity v′′
s ,

v′′
s = vM(

√
2 − 1):

(v′
b+vE)2(1−k2)−2v2

E(1−k)+(v′
b+vE)2k2−2vM(v′

b+vE)k = v2
M(2−2

√
2) .

The velocity of Mars round the Sun is vM =
√

GM/RM =
√

k vE , and the
equation for v′

b takes the form:

(v′
b + vE)2 − 2

√
k

3
vE(v′

b + vE) + (2
√

2 k − 2)v2
E = 0 . (1p.)

The physically relevant solution is:

v′
b = vE

[√
k

3
− 1 +

√
k3 + 2 − 2

√
2 k

]
= 5.5 km/s . (1p.)

d) The fractional saving of energy is:

Wa − Wb

Wa
= v′

a
2 − v′

b
2

v′
a

2 = 0.80 ,

where Wa and Wb are the energies of launching in scheme (i) and in scheme
(ii), respectively. (1 p.)
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2.2 Experimental competition

Exercise A

The plot of the angle as a function of time for a typical measurement of
the acceleration of the disk is shown in Fig. 9.

Fig. 9 Angle vs. time

The angular velocity is calculated using the formula:

ωi(t′
i) = π

(ti+i − ti)
and corresponds to the time in the middle of the interval (ti, ti+1): t′

i =
1
2(ti+1 + ti). The calculated values are displayed in Table 1 and plotted in
Fig. 10.

Observing the time intervals of half turns when the constant angular ve-
locity is reached, one can conclude that the iron pegs are not positioned
perfectly symmetrically. This systematic error can be neglected in the
calculation of angular velocity, but not in the calculation of angular accel-
eration. To avoid this error we use the time intervals of full turns:

αi(t′′
i ) = ∆ωi∆ti

,
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Fig. 10 Angular velocity vs. time

where ∆ti = t2i+2 − t2i,

∆ωi = 2π
(t2i+3 − t2i+1)

− 2π
(t2i+1 − t2i−1)

and t′′
i = t′

2i+1.

The angular acceleration as a function of time is plotted in Fig. 11.

The torque, M , and the power, P , necessary to drive the disk (net torque
and net power), are calculated using the relation:

M(t) = Iα(t)

and
P(t) = M(t)ω(t)

where the moment of inertia, I = (14.0 ± 0.5) · 10−6 kgm2, is given. The
corresponding angular velocity is determined from the plot in Fig. 10 by
interpolation. This plot is used also to find the torque and the power as
functions of angular velocity (Fig. 12 and 13).
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i t δt ϕ t′ ω α
ms ms rd ms s−1 s−2

1 0.0 0.0
272.0 5.78

2 543.9 543.9 3.14
758.7 7.31

3 973.5 429.6 6.28 3.38
1156.3 8.60

4 1339.0 365.5 9.42
1499.9 9.76

5 1660.8 327.8 12.57 5.04
1798.6 11.40

6 1936.3 275.5 15.71
2057.1 13.01

7 2177.8 241.5 18.85 5.96
2287.2 14.36

8 2396.6 218.8 21.99
2498.1 15.48

9 2599.6 203.0 25.73 9.40
2689.6 17.46

10 2779.5 179.9 28.27
2859.4 19.66

11 2939.3 159.8 31.42 18.22
3008.6 22.65

12 3078.0 138.7 34.56
3139.9 25.38

13 3201.8 123.8 37.70 25.46
3256.6 28.66

14 3311.4 109.6 40.84
3361.8 31.20

15 3472.1 100.7 43.98 26.89
3458.2 34.11

16 3504.2 92.1 47.12
3547.8 36.07

17 3591.3 87.1 50.27 21.72
3632.4 38.27

18 3673.4 82.1 53.41
3713.5 39.22

19 3753.5 80.1 56.55 4.76
3792.8 39.97

20 3832.7 78.6 59.69
3872.4 39.03

21 3912.6 80.5 62.83 −1.69
3952.7 39.22

22 3992.7 80.1 65.97
4032.8 39.22

23 4072.8 80.1 69.12 0.77
4112.4 39.67

24 4152.0 79.2 72.26
4192.3 39.03

25 4232.5 80.5 75.40 −0.15
4272.4 39.42

26 4312.3 79.7 78.54

Table 1
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Fig. 11 Angular acceleration vs. time

Fig. 12 Net torque (full line) and total torque (dashed line) vs.
angular velocity

To find the total torque and the power of the motor, the torque and the
power losses due to the friction forces have to be determined and added
to the corresponding values of net torque and power. By measuring the
angular velocity during the deceleration of the disk after the motor has
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been switched off (Fig. 14), we can determine the torque of friction which
is approximately constant and is equal to M ′ = (3.1 ± 0.3) · 10−5 Nm.

Fig. 13 Net power (full line), power loses (dashed and dotted line)
and total power (dashed line) vs. angular velocity

Fig. 14 Angular velocity vs. time during deceleration
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The total torque and the total power are shown in Fig. 12 and 13.

Marking scheme

a) Determination of errors 1 p.

b) Plot of angle vs. time 1 p.

c) Plot of angular velocity and acceleration 3 p.

d) Correct times for angular velocity 1 p.

e) Plot of net torque vs. angular velocity 2 p. (Plot of torque vs. time
only, 1 p.)

f) Plot of net power vs. angular velocity 1 p.

g) Determination of friction 1 p.
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Exercise B

Two permanent magnets having the shape of rectangular parallelepipeds
with sides 50 mm, 20 mm and 8 mm are hidden in a block of polystyrene
foam with dimension 50 cm, 31 cm and 4.0 cm. Their sides are parallel
to the sides of the block. One of the hidden magnets (A) is positioned so
that its ~B (Fig. 15) points in z direction and the other (B) with its ~B in x or
y direction (Fig. 15).

Fig. 15 A typical implementation of the magnets in the block

The positions and the orientations of the magnets should be determined
on the basis of observations of forces acting on the extra magnet. The
best way to do this is to hang the extra magnet on the thread and move it
above the surface to be explored. Three areas of strong forces are revealed
when the extra magnet is in the horizontal position i. e. its ~B is parallel
to z axis, suggesting that three magnets are hidden. Two of these areas
producing an attractive force in position P (Fig. 16) and a repulsive force
in position R are closely together.

Fig: 16 Two ’ghost’ magnets appearing in the place of magnet B
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However, by inspecting the situation on the other side of the block, again
an attractive force in area P’ is found, and a repulsive one in area R’. This
is in the contradiction with the supposed magnets layout in Fig. 16 but
corresponds to the force distribution of magnet B in Fig. 15.

To determine the z position of the hidden magnets one has to measure
the z component of ~B on the surface of the block and compare it to the
measurement of Bz of the extra magnet as a function of distance from
its center (Fig. 18). To achieve this the induction coil of the measuring
system is removed from the point in which the magnetic field is measured
to a distance in which the magnetic field is practically zero, and the peak
voltage is measured.

In order to make the absolute calibration of the measuring system, the
response of the system to the known magnetic field should be measured.
The best defined magnetic field is produced in the gap between two field
generating coils. The experimental layout is displayed in Fig. 17.

Fig. 17 Calibration of the measuring system

The magnetic induction in the gap between the field generating coils is
calculated using the formula:

B = µONI
(2l + d)

.

Here N is the number of the turns of one of the coils, l its length , d
the width of the gap, and I the current through the ammeter. The peak
voltage, U , is measured when the induction coil is removed from the gap.
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Plotting the magnetic induction B as a function of peak voltage, we can
determine the sensitivity of our measuring system:

B
U

= 0.020 T/V .

(More precise calculation of the magnetic field in the gap, which is beyond
the scope of the exercise, shows that the true value is only 60 % of the
value calculated above.)

The greatest value of B is 0.21 T.

Fig. 18 Magnetic induction vs. distance

Marking scheme:

a) determination of x, y position of magnets (±1 cm) 1 p.

b) determination of the orientations 1 p.

c) depth of magnets (±4 mm) 2 p.

d) calibration (±50 %) 3 p.

e) mapping of the magnetic field 2 p.

f) determination of Bmax (±50 %) 1 p.
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Fig. 19 Distribution of marks for the theoretical (1,2,3) and the
experimental exercises. The highest mark for each exer-
cise is 10 points.
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1986 INTERNATIONAL PHYSICS 
OLYMPIAD 

EXPERIMENT 1.   

2½ hrs 

APPARATUS 

1. Spectrometer with collimator and telescope. 
2. 3 syringes; one for water, one for liquid A and one for liquid B. 
3. A beaker of water plus two sample tubes containing liquids A and B. 
4 3 retort stands with clamps. 
5. 12V shielded source of white light. 
6. Black card, plasticine, and black tape. 
7. 2 plastic squares with holes to act as stops to be placed over the ends of the telescope, with 

the use of 2 elastic bands. 
8. Sheets of graph paper. 
9. Three dishes to collect water plus liquids A and B lost from syringes. 

Please complete synopsis sheet in addition to answering this experimental problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
            
            
            
            
            
            
            
            
            
            
             

 

Pendant drop 

Collimator 

Telescope 

Light Drop 

θ 
Plan of Apparatus 



 2 
INSTRUCTIONS AND INFORMATION 

1. Adjust collimator to produce parallel light. This may be performed by the following      sequence of 
operations: 

(a) Focus the telescope on a distant object, using adjusting knob on telescope, so that the 
cross hairs and object are both in focus.  
(b) Position the telescope so that it is opposite the collimator with slit illuminated so that the 
slit can be viewed through the telescope. 
(c) Adjust the position of the collimator lens, using the adjusting knob on the collimator, 
so that the image of the slit is in focus on the cross hairs of the telescope's eyepiece. 
(d) Lock the spectrometer table, choosing an appropriate 'zero' on the vernier scale, so that 
subsequent angular measurements of the telescope's position can conveniently be made. 

2. Remove the eyepiece from telescope and place black plastic stops symmetrically over both 
ends of the telescope, using the elastic bands, so that the angle of view is reduced. 

3. Open up collimator slit. 
4. Use the syringes to suspend, vertically, a pendant drop symmetrically above the centre of the 
spectrometer table so that it is fully illuminated by the light from the collimator and can be viewed by 
telescope. 
5. The central horizontal region of the suspended drop will produce rainbows as a result of two 
reflections and k (k = 1,2,...) internal reflections of the light. The first order rainbow corresponds to 
one internal reflection. The second order rainbow corresponds to two 
Internal reflections. The k'th order rainbow corresponds to k internal reflections. Each rainbow 
contains all the colours of the spectrum. These can be observed directly by eye and their angular 
positions can bed accurately measured using the telescope. Each rainbow is due to white light rays 
incident on the drop at a well determined angle of incidence, that is different for each rainbow. 
 
6. The first order rainbow can be recognized as it has the greatest intensity and appears on the 
right hand* side of the drop. The second order rainbow appears with the greatest intensity on the 
left hand* side of the drop. These two rainbows are within an angular separation of 20° of each other 
for water droplets. The weak intensity fifth order rainbow can be observed on the right hand side of 
the drop located somewhere between the other two, 'blue', extreme ends of the first and second order 
rainbows. 
7. Light reflected directly from the external surface of the drop and that refracted twice but not 
internally reflected, will produce bright white glare spots that will hinder observations. 

8. The refractive indices, n, of the liquids are: 

Water nw  = 1.333 

Liquid A nA  =  1.467 

Liquid B nB   =  1.534 

In addition to the experimental report please complete the summary sheet. 
 
 
 
Footnote: This statement is correct if the collimator is to the left of the telescope, as indicated in the diagram. If 
the collimator is on the righthand side of the telescope the first order rainbow will appear on the lefthand side of 
the drop and the second order rainbow on the righthand side of the drop. 



 3 
Measurements 
 
1) Observe, by eye, the first and second order water rainbows. Measure the angle θ through which the 
telescope has to be rotated, from the initial direction for observing the parallel light from the 
collimator, to observe, using a pendant water droplet, the red light at the extreme end of the visible 
spectrum from: 
 
 (a) the first order rainbow on the right of the drop (k  =  1); 
 (b) the second order rainbow on the left of the drop (k  =  2);  
 (c)  the weak fifth order rainbow (k  =  5), between the first and second order rainbows. 
 
One of these angles may not be capable of measurement by the rotation of the telescope due to the 
mechanical constraints limiting the range of θ. If this is found to be the case, use a straight edge in 
place of the telescope to measure θ. 
(Place the appropriate dish on the spectrometer table to catch any falling droplets.) 
 
Deduce the angle of deviation, φ  , that is the angle the incident light is rotated by the two reflections 
and k reflections at the drop's internal surface, for (a), (b) and (c). Plot a graph of φ  against k. 
 
 
2.Determine φ  for the second order rainbows produced by liquids A and B using the red visible light 
at the extreme end of the visible spectrum. (Place respective dishes on table below to catch any falling 
liquid as the quantities of liquid are limited). 

Using graph paper plot
6

cos φ  against 
n
1 ,  n being the refractive index, for all three liquids and insert 

the additional point for n = 1. Obtain the best straight line through these points; measure its gradient 
and the value of φ  for which n = 2. 
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EXPERIMENT 2 
 
Apparatus 
RML Nimbus computer 

Ten sheets of graph paper. 

Please complete synopsis sheet in addition to answering this experimental problem. 

 
THIS IS A TWO AND A HALF HOUR EXAMINATION 

 
 
INFORMATION 
 
The microcomputer has been programmed to solve the Newtonian equations of motion for a two-
dimensional system of 25 interacting particles, in the xy plane. It is able to generate the positions and 
velocities of all particles at discrete, equally spaced time intervals. By depressing appropriate keys 
(which will be described), access to dynamic information about the system can be obtained. 
The system of particles is confined to a box which is initially (at time t =  0) arranged in a two-
dimensional square lattice. A picture of the system is displayed on the screen together with the 
numerical data requested. All particles are identical; the colours are to enable the particles to be 
distinguished. As the system evolves in time the positions and velocities of the particles will change. 
If a particle is seen to leave the box the program automatically generates a new particle that enters the 
box at the opposite face with the same velocity, thus conserving the number of particles in the box. 
Any two particles i and j, separated by a distance  rij interact with a well-defined potential Uij, 
 
It is convenient to use dimensionless quantities throughout the computation. The quantities given 
below are used throughout the calculations. 
 
 

Variable Symbol 

Distance r* 

Velocity v* 

Time t* 

Energy E* 

Mass of particle M* = 48 

Potential Uij* 

Temperature T* 

Kinetic Energy 
2**

2
1* vmEk =  
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INSTRUCTIONS 
 
The computer program allows you to access three distinct sets of numerical information and display 
them on the screen. Access is controlled by the grey function keys on the left-hand side of the 
keyboard, labelled F1, F2, F3, F4, and F10. These keys should be pressed and released - do not hold 
down a key, nor press it repeatedly. The program may take up to 1 second to respond. 
 
FIRST INFORMATION SET.  PROBLEMS 1 – 5 
 

( )

( )

( )jiUU

vnv

vnv

i
ij

j

i

n
iyy

i

n
ixx

≠>=<

>=<

>=<

∑∑

∑

∑

==

=

=

     
25
1

and
25
1,

25
1,

25

1

*
25

1

25

1

*

25

1

*

        

            
   
where 

*
ixv      is the dimensionless x – component of the velocity for the i’th particle, 
*
iyv      is the dimensionless y – component of the velocity for the i’th particle, 

and n is and integer with 1≥n . 
 
[Note: the summation over *

iyU  excludes the cases in which i = j] 
 

After depressing F1 it is necessary to input the integer )1( ≥nn  by depressing one of the white keys in 
the top row of the keyboard, before the information appears on the screen. 
 
The information is displayed in dimensionless time intervals Δt at dimensionless times 
 
S Δt**      (S = 0, 1, 2, .....) 
 
Δt** is set by the computer program to the value Δt** = 0•100000. 
 
The  value of S is displayed at the bottom right hand of the screen. Initially it has the value S = 0. The 
word "waiting" on the screen indicates that the calculation has halted and information concerning the 
value of S is displayed. 
 
Depressing the long bar (the "space" bar) at the bottom of the keyboard will allow the calculation of 
the evolution of the system to proceed in time steps Δ**t.   The current value of S is always displayed 
on the screen. Whilst the calculation is proceeding the word "running" is displayed on the screen. 
 
Depressing F1 again will stop the calculation at the time integer indicated by S on the screen, and 
display the current values of 

<vx,n>,  <vy,n> and <U> 

after depressing the integer n. The evolution of the system continues on pressing the long bar. 
The system can, if required, be reset to its original state at S = 0 by pressing F10 TWICE. 
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SECOND INFORMATION SET: PROBLEM 6 
 
Depressing F2 initiates the computer program for the compilation of the histogram in problem 6. This 
program generates a histogram table of the accumulated number ΔN, of particle velocity components 
as a function of dimensionless velocity. The dimensionless velocity components, vx and vy are referred 
to collectively by vc. The dimensionless velocity range is divided into equal intervals Δ vc = 0.05. The 
centres of the dimensionless velocity "bins" have magnitudes 
  
 .),.........2  1,0(B            B ** ±±== cc Δvv  
 
When the long bar on the keyboard is pressed the 2 x 25 dimensionless velocity components are 
calculated at the current time step, and the program adds one, for each velocity component, into the 
appropriate velocity 'bin'. This process is continued, for each time step, until F3 is depressed. Once F3 
is depressed the (accumulated) histogram is displayed. The accumulation of counts can then be 
continued by pressing the long bar. (Alternatively if you wish to return to the initial situation, with 
zero in all bins, press F2). 
The accumulation of histogram data should continue for about 200 time steps after initiation. 
 
In the thermodynamic equilibrium the histogram can be approximated by the relation 











 −

=∆
α

2*)(24 cv

AeN  
where α is a constant associated with the temperature of the system, and A depends on the total 
number of accumulated velocity components. 
 
 
THIRD INFORMATION SET: PROBLEM 7 
 
Depressing F4 followed by the long bar at any time during the evolution of the system will initiate the 
program for Problem 7. The program will take some 30 seconds, in real time, before displaying a 
table containing the two 
Quantities 
 

[ ]
225

1

** )()(
25
12, ∑

=

−>=<
i

ii SRxSxRX  

 
and 

[ ]
225

1

** )()(
25
12, ∑

=

−>=<
i

ii SRySyRY  

 
where xi

* and yi
* are the dimensionless position components for the i'th particle. S is the integer time 

unit and SR is the fixed initial integer time at which the programme is initiated by depressing F4. It is 
convenient to introduce integer 

SZ = S - SR.. 
 
The programme displays a table of <RX,2> and <RY,2> for 

SZ = 0, 2, 4..……24. 
 
Prior to the display appearing on the screen a notice 'Running' will appear on 
the screen indicating that a computation is proceeding.  Depressing F4, followed by the long bar, 
again will initiate a new table with SR advanced to the point at which F4 was depressed. 
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COMPUTATIONAL PROBLEMS 
 
1  Verify that the dimensionless total linear momentum of the system is conserved for the times 
given by 

 S = 0, 40, 80, 120, 160. 
State the accuracy of the computer calculation. 
2. Plot the variation in dimensionless kinetic energy of the system with time using the time 
sequence 

S = 0, 2, 4, 6, 12, 18, 24, 30, 50, 70, 90, 130, 180. 
 

3.  Plot the variation in dimensionless potential energy of the system with time using the time 
sequence in 2. 
 
4. Obtain the dimensionless total energy of the system at times indicated in 2. Does the system 
conserve energy?  State the accuracy of the total energy calculation. 
 
5. The system is initially (at S = 0) NOT in thermodynamic equilibrium. After a period of time the 
system reaches thermodynamic equilibrium in which the total dimensionless kinetic energy fluctuates 
about a mean value of *

kE .   Determine this value of *
kE  and indicate the time, SD, after which the 

system is in thermodynamic equilibrium. 
 
6. Using the dimensionless accumulated velocity data, during thermodynamic equilibrium, draw 
up a histogram giving the number ΔN of velocity components against dimensionless velocity 
component, using the constant velocity component interval ΔVc* = 0.05, specified in the table 
available from the SECOND INFORMATION SET. Data accumulated from approximately 200 time 
steps should be used and the starting time integer S should be recorded. 
 
Verify that  ΔN satisfies the relation 

( )















−

=∆
α

2*24 Cv

AeN  
 
where C and A are constants. Determine the value of α . 
 
7. For the system of particles in thermodynamic equilibrium evaluate the average value of 

,   , 22 >< RR  where R is the straight line distance between the position of a particle at a fixed initial 
time number SR and time number S. The time number difference SZ = (S - SR) takes the values 

SZ = O, 2, 4, .…. 24. 

Plot <R2> against SZ for any appropriate value of SR. Calculate the gradient of the function in the 
linear region and specify the time number range for which this gradient is valid. 
In order to improve the accuracy of the plot repeat the previous calculations for three (additional) 
different values of SR and determine the AVERAGE <R2> for the four sets of results together with 
the 'linear' gradient and time number range. 
Deduce, with appropriate reasoning, the thermodynamic equilibrium state of the system, either solid 
or liquid. 
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SUMMARY SHEET 
 

EXPERIMENT 1 
 

1. FOR WATER AND RED LIGHT AT EXTREME END OF SPECTRUM 
 
 

k = 1 First Order Rainbow θ1 =129.0° 
 

φ 1 = 137.0 ±5.0° 
k = 2 Second Order Rainbow  θ2= 129.0° φ 2 = 231.0 ±3.0° 
k = 5 Fifth Order Rainbow  θ5= 126.0° φ 5 = 486.0 ±4.0° 

  

2. LIQUIDS A AND B USING SECOND ORDER RAINBOWS 

For Liquid A θ2 = 105.0° φ 2= 255.0 ±3.0° 

For Liquid B θ2  = 89.5° φ 2= 270.5 ±3.0° 

  
 

      

Gradient of graph  = 0.84 ±0.07 

Extrapolated, n =2, θ2, value of φ          = 304 ±25o 
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Figure E 1.1. 

φ 2= 0.0..o For n = 1 
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Figure E 1.2 
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SUMMARY SHEET 

EXPERIMENT 2 

Is the total momentum conserved?    YES /NO 

Accuracy of computer calculation    
1.0

0000018.0100 ≈0.002% 0:1 

(RMS velocity = 0.1) 
 

Time Total Energy 

0 -1.61499 

2 -1.62886 

4 -1.62878 

6 -1.62301 

12 -1.62882 

18 -1.62599 

24 -1.62796 

30 -1.62703 

50 -1.62753 

70 -1.62676 

90 -1.62580 

130 -1.62713 

180 -1.62409 
 
Does the system conserve energy? YES/NO  (~ ±1%) 

 
Equilibrium value of Ek* 
 
Equilibrium time SD 

(Average 24 to 180) 
 
(see Fig. E 2.1 ) 

= 0.534 ±0.05 
 

≅ (10 to 20 ) 1.0×  

Value of S recorded  > 20, e.g. 60 

Value of α  
(for SD=60) 

 
(see Fig. E2.2 ) 

 
= 0.503 

 
Accuracy of α    

= ±0.02 
 
 
For what time number range is graph, obtained using first value of SR, linear?   SZ = 18 to 24 
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Gradient of this graph in linear region     ≅ 0.027 to 0.47  
  
Accuracy of gradient       = 0.002 
 
Gradient of AVERAGE <R2> in linear region    = 0.035 
 
Accuracy of this gradient      = ± 0.01 

* delete as appropriate 
 
 
Is the system a liquid/solid?      Liquid/Solid* 
 
 
 

Mean Momentum of the system at requested steps (S) 

 
S 

 
<VX,1> 

 
<VY,1> 

 
<PX> 

 
<PY>     

         0 0.0000000 0.0000000 0.000000 0.000000     
40 0.0000010 0.0000016 0.000048 0.000077   . p.E.  
80 0.0000018 0.0000001 0.000086 0.000005     
120 0.0000014 0.0000007 0.000067 0.000034     
160 0.0000016 0.0000010 0.000077 0.000048     
        -2-

        K . E .   
 

Energy of the system at requested steps (S) 
 
 
 
 

S 

 
 
<VX,2> 

 
 

<VY,2> 

 
 
<KE> = T* 

 
 
<U>  

 
 
<E>= Total Energy 

  

0 0.0173874 0.0142851 0.760140 -4.7502660 -1.61499   
2 0.0162506 0.0131025 0.704474 -4.6666675 -1.62886   
4 0.0124966 0.0089562 0.514867 -4.2873015 -1.62878  ¢0 80 120 
       ti  $ 6 0.0077405 0.0039113 0.279643 -3.8053113 -1.62301   
12 0.0118740 0.0120959 0.575278 -4.4081878 -1.62882   
       Fi  E2 1 
18 0.0099579 0.0075854 0.421039 -4.0940627 -1.62599   

24 0.0108577 0.0116978 0.541332 -4.3385782 -1.62796  Variation of K.E and P.E 
30 0.0126065 01000340 0.543372 -4.3407997 -1.62703   
50 0.0127138 0.0103334 0.553133 -4.3613165 -1.62753   
70 0.0088657 0.0158292 0.592678 -4.4388669 -1.62676   
90 0.0107740 0.0076446 0.442087 -4.1357699 -1.62580   
130 0.0073008 0.0177446 0.601090 -4.4564333 -1.62713   
180 0.0097161 0.0096426 0.464609 -4.1773882 -1.62409   
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All values are in reduced units. <KE> is the mean kinetic energy per atom. <U*> is twice the 
potential energy.   <VX,2> and <VY,2> are the mean values of the squares of the X and Y velocity 
components, as described in the question. Similarly <VX,1> and <VY,1> are the mean values of the 
velocity components. <PX> and <PY> are the mean momentum per particle. 
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Variation of K.E and P.E. 
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   <Rz> curves as a function of time 
 
 
 
 
 
 
 

 
TYPICAL RESULTS : NOTE THE LARGE VARIATIONS IN THE VALUES OF <R2> 
 
 

LnN 
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Figure E2.2 
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Figure E2,3 
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Time Number 
SZ - S-SR SR = 261 

<R2> 
SR = 301 
<R2> 

SR = 334 
<R2> 

SR = 370 
<R2> 

AVERAGE 
<R2> 

0 0 0 0 0 0 

2 0.00088 0.00067 0.00091 0.00079 0.00081 

         4 0.00287 0.00276 0.00382 0.00298 0.00311 

         6 0.00523 0.00628  
. 

 

0.00623 0.00658 

8 0.00797 0.01101 0.01449 0.01039 0.01097 

10 0.01143 0.01656 0.02095 0.01523 0.01604 

12 0.01528 0.02235 0.02768 0.02022 0.02138 

14 0.01874 0.02845 0.03453 0.02564 0.02684 

16 0.02184 0.03539 0.04157      0.03160 0.03260 

18 0.02526 0.04293 0.04902 0.03833  0.03889 

20 0.02979 0.05080 0.05718 0.04532 0.04577 

22 0.03538 0.05918 0.06605 0.0510 0.05303 

24 0.04063      0.06784      0.07533 0.05569 0.05987 

 
 
 
 

0.00858 
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Q1 

 
 
 
 
 

 
A plane monochromatic light wave, wavelength λ and frequency f, is incident normally on 
two identical narrow slits, separated by a distance d, as indicated in Figure 1.1. The light 
wave emerging at each slit is given, at a distance x in a direction θ at time t, by 

 
)]/(2cos[ λπ xftay −=  

 
where the amplitude a is the same for both waves. (Assume x is much larger than d). 
 
(i) Show that the two waves observed at an angle θ to a normal to the slits, have a resultant 
amplitude A which can be obtained by adding two vectors, each having magnitude a , and 
each with an associated direction determined by the phase of the light wave. 
 
Verify geometrically, from the vector diagram, that  

 
θcos2aA =  

 
where 
 

θ
λ
πβ sind=  

 
 
 (ii) The double slit is replaced by a diffraction grating with N equally spaced slits, adjacent 
slits being separated by a distance d. Use the vector method of adding amplitudes to show 
that the vector amplitudes, each of magnitude a, form a part of a regular polygon with 
vertices on a circle of radius R given by 

,
sin2 β
aR =  

Deduce that the resultant amplitude is  
 

β
β

sin
sin Na  

 

θ 

θ 

Figure 1.1 

d 
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and obtain the resultant phase difference relative to that of the light from the slit at the edge 
of the grating. 
 
(iii) Sketch, in the same graph, sin Nβ and (1/sinβ) as a function of β. On a separate graph 
show how the intensity of the resultant wave varies as a function of β. 
  
(iv) Determine the intensities of the principal intensity maxima. 

(v) Show that the number of principal maxima cannot exceed 







 +12
λ
d  

  
(vi) Show that two wavelengths δλλλ + and , where δλ << λ, produce principal maxima with 
an angular separation given by 

etc....2  ,1  ,0  e      wher
cos

±±=
∆

=∆ n
d

n
θ
λθ  

 
Calculate this angular separation for the sodium D lines for which 
 

 
2

B-A.cos
2

cos2coscos     :reminder 

m. 102.1 and  ,2   nm,6.589    ,nm0.589 6





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Q2 

International Physics Olympiad 1956 

2. Early this century a model of the earth was proposed in which it was assumed to be a sphere of 
radius R consisting of a homogeneous isotropic solid mantle down to radius Rc. The core region 
within radius Rc contained a liquid. Figure 2.1 

 

 
 
 

The velocities of longitudinal and transverse seismic waves P and S waves respectively, are 
constant, VP, and V S within the mantle. In the core, longitudinal waves have a constant velocity 
VCP, < VP, and transverse waves are not propagated. 
An earthquake at E on the surface of the Earth produces seismic waves that travel through the Earth 
and are observed by a surface observer who can set up his seismometer at any point X on the 
Earth’s surface.  The angular separation between E and X, 2θ given by 

EOXAngle 2 =θ  

where O is the centre of the Earth. 

(i) Show that the seismic waves that travel through the mantle in a straight line will arrive at X at a 
time t (the travel time after the earthquake), is given by 
 









>=

R
R

v
Rt carccosfor               ,sin2 θθ , 

where v = vP for the P waves and v = vS for the S waves. 
 

(ii) For some of the positions of X such that the seismic P waves arrive at the observer after two 
refractions at the mantle-core interface. Draw the path of such a seismic P wave.  Obtain a 
relation between θ and i, the angle of incidence of the seismic P wave at the mantle-core interface, 
for P waves. 

 

 

 

R 

E X 

Figure 2.1 RC 
O 

2θ 

R 
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(iii) Using the data 

R = 6370 km  
RC = 3470 km  
vCP = 10.85 km s-1 

vS = 6.31 km s-1 

vCP   = 9.02 km s-1 

and the result obtained in (ii),draw a graph of θ against i. Comment on the physical consequences 
of the form of this graph for observers stationed at different points on the Earth's surface. 
Sketch the variation of the travel time taken by the P and S waves as a function of θ for 0 ≤  θ 
≤ 90 degrees. 

(iv) After an earthquake an observer measures the time delay between the arrival of the S wave, 
following the P wave, as 2 minutes 11 seconds. Deduce the angular separation of the earthquake 
from the observer using the data given in Section (iii). 
 

(v) The observer in the previous measurement notices that some time after the arrival of the P and 
S waves there are two further recordings on the seismometer separated by a time interval of 6 
minutes 37 seconds. Explain this result and verify that it is indeed associated with the angular 
separation determined in the previous section. 
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Q3 
 
Three particles, each of mass m, are in equilibrium and joined by unstretched massless springs, each 
with Hooke’s Law spring constant k. They are constrained to move in a circular path as indicated in 
Figure 3.1. 
 

 

 

 
 

 

(i) If each mass is displaced from equilibrium by small displacements u1, u2 and u3 respectively, 
write down the equation of motion for each mass. 
(ii) Verify that the system has simple harmonic solutions of 
the form 

tau nn ωcos= , 
 

with accelerations, )3,2,1(    where)( 2 =− nau nnω are constant amplitudes, and ω, the angular 
frequency, can have 3 possible values, 

 and 3,3 oo ωω 0.  where 
m
k

o =2ω . 

(iii) The system of alternate springs and masses is extended to N particles, each mass m is joined by 
springs to its neighbouring masses. Initially the springs are unstretched and in equilibrium. Write 
down the equation of motion of the nth mass (n = 1,2...N) in terms of its displacement and those of 
the adjacent masses when the particles are displaced from equilibrium. 
 

,cos2sin)( t
N
nsatu ssn ωφπ







 +=  

are oscillatory solutions where s = 1, 2,...N , n = 1, 2, ...N and where φ  is an arbitrary phase, 
providing the angular frequencies are given by 

,sin2 





=

N
s

os
πωω  

where ),......1( Nsas = are constant amplitudes independent of n. 

State the range of possible frequencies for a chain containing an infinite number of masses. 

 

u3 

u1 u2 

k 
k 

k 

m 

m 
m 

Figure 3.1 
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(iv) Determine the ratio 

1/ +nn uu  

for large  N, in the two cases: 

(a) low frequency solutions 

(b) maxmax   where, ωωω = is the maximum frequency solution. 

Sketch typical graphs indicating the displacements of the particles against particle number along 
the chain at time t for cases (a) and (b). 

 

(v) If one of the masses is replaced by a mass m' << m estimate any major change one would 
expect to occur to the angular frequency distribution. 

Describe qualitatively the form of the frequency spectrum one would predict for a diatomic chain 
with alternate masses m and m' on the basis of the previous result. 

Reminder 

AA

BABABA

BABABA

2cos1sin2
2

cos
2

sin2sinsin

sincoscossin)sin(

2 −=







 −







 +

=+

+=+
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Answers Question 1 
 
 (i) Vector Diagram 
 
 
 
 

  

 

If the phase of the light from the first slit is zero, the phase from second slit is 

θ
λ
πφ sin2 d=  

Adding the two waves with phase difference φ  where 





 −=

λ
πξ xft2 , 

( )
( ){ }βξβξφξ

φξφξφξ
+=++
+=++

coscos2)cos()cos(
2/)2/cos(2)cos()cos(

aaa
aaa  

This is a wave of amplitude βcos2aA = and phase β.   From vector 
diagram, in isosceles triangle OPQ, 

θ
λ
πφβ sin

2
1 d==   

 )2   ( βφ =NB
and  

.cos2 βaA =  

Thus the sum of the two waves can be obtained by the addition of two vectors of 
amplitude a and angular directions 0 and φ . 

(ii) Each slit in diffraction grating produces a wave of amplitude a with phase 2β relative to 
previous slit wave. The vector diagram consists of a 'regular' polygon with sides of 
constant length a and with constant angles between adjacent sides. 
Let O be the centre of circumscribing circle passing through the vertices of the 
polygon. Then radial lines such as OS have length R and bisect the internal angles 
of the polygon.  Figure 1.2. 

 

 

Figure 1.2 

d 
θ 

θ 



 2 

φ

φ

=

−==

SOT

OTSTSO

^

^^

     and

)180(
2
1

 

In the triangle TOS, for example 
 

βφ sin2)2/sin(2 RRa ==  as )2( βφ =  

βsin2
aR =∴     (1) 

 
As the polygon has N faces then: 

βφ NNZOTNZOT 2)(
^^

===  
 

Therefore in isosceles triangle TOZ, the amplitude of the resultant wave, TZ, is given by 
 

βNR sin2 . 
 

Hence form (1) this amplitude is  
 

β
β

sin
sin Na  

 
Resultant phase is  

( )

( )
β

φ

φφ

)1(

1
2
1

180
2
1

2
90

^^

^

−=

−−

−−





 −

−=

=

N

N

N

ZTOSTO

STZ

 

(iii) 
 

 
 
 
 
 
 

 
Intensity 

β
β

2

22

sin
sin NaI =  

β
β

Na sin
sin

1
 

β 
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37C 

 
 

(iv) For the principle maxima ........210      where ±±== ppπβ  
 

 ' and  0'      
'
' 222

max βπββ
β
β

+===







= paNNaI    

 
 

(v) Adjacent max. estimate I1 : 
 

NN
pN

2
3  i.e  

2
32   ,1sin 2 πβππββ ±===   

 





 ±=

N
p

2
ππβ   does not give a maximum  as can be observed from the graph. 

23
2

3
1 22

2
2

1
Na

n

aI ==
π

 for N>>1 

 

Adjacent zero intensity occurs for 
N
ππρβ ±=   i.e.  

N
πδ ±=  

 

For phase differences much greater than    
sin

sinaI        , 22 aN
=








=

β
βδ . 

 
(vi) 

θ
λθ

λθθ
λ

πθ
λ
π
πβ

cos

cos
   w.r.t,atingDifferenti

..........2,1,0        sin  i.e.

maximum  principle  afor     

d
n

nd

nnd

n

∆
=∆

∆=∆

±±==

=

 

 
Substituting  m.102.1  and  2n  nm. 589.6   nm,0.589 6−×===∆+= dλλλ  

2

1 





−

∆
=∆

d
nd

n

λ

λθ   as 
2

1cos  and  sin 





−==

d
n

d
n λθλθ  

03 30.0or    102.5 rads−×=∆⇒ θ  
 

I 

0           π                    2π                      3π                     

β 
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v
RtR θθ sin2   sin2EX =∴=  

where v = vP for P waves and v = vS for S waves. 
  
This is valid providing X is at an angular separation less than or equal to X', the tangential ray 
to the liquid core. X' has an angular separation given by, from the diagram, 

 

,cos22 1 





= −

R
RCφ  

Thus 

 ,cosfor        ,   sin2 1 





≤= −

R
R

v
Rt Cθθ  

 
where v = vP for P waves and v = vS for shear waves. 
 

(ii) 3.831.0         and       5447.0 ==
P

CPC

v
v

R
R  

 

 

 

   
  
From Figure 2.2 
 

)1()90(
^^

αθθ −+−=⇒+= rAOECOA    (1) 

θ θ 

R 

O 

R 

φ 

E X 

X’ 

2.(i) 

r 

Figure2.1 

Figure 2.2 

α  

O 

X 
E 

B A 
C 

Rc 

θ 

i 

Answers Q2 
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(ii) Continued 
 
Snell’s Law gives: 
 

.
sin
sin

CPv
v

r
i P=       (2) 

 
From the triangle EAO, sine rule gives 

.
sinsin i

R
x

RC =       (3) 

 
Substituting (2) and (3) into (1) 
 




















−+








−= −− i

R
R

ii
v
v C

P

CP sinsinsinsin90 11θ   (4) 

 
 
(iii) 
 
 
           
           
           
           
           
           
           
           
           
           
           
           
            
            

Plot  of  θ agains t  i .  
 

 
 
 
 
Substituting into 4: 

i = 0 gives θ  =  90 

i = 90° gives θ  =  90.8° 

Substituting numerical values for i = 0 →  90° one finds a minimum value at i = 55°; the 
minimum values of 0, θMIN = 75•8°. 

For Information Only 
 

For minimum 0, =
di
dθθ .   0

sin1

cos

sin1

cos
1

22
=









−










−









−










−⇒

i
R

R

i
R

R

i
v
v

i
v
v

C

C

P

CP

P

CP

   

Substituting i = 55.0o  gives LHS=0, this verifying the minimum occurs at this 
value of i.  Substituting i = 55.0o  into (4) gives θ = 75.80. 

0 550 900 

900 

75.80 
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Physical Consequence 
 
 
As θ has a minimum value of 75•8° observers at position for which 2 θ <151•6° will not 
observe the earthquake as seismic waves are not deviated by angles of less than 151•6°. 
However for 2 θ ≤  114° the direct, non-refracted, seismic waves will reach the observer. 
 
 
 

 
 
           
           
           
           
           
   
(iv)  Using the result 
 

 
v

rt θsin2
=  

 the time delay Δt is given by 
 

 







−=∆

PS vv
Rt 11sin2 θ  

  
Substituting the given data 
 

θsin
85.10

1
31.6
1)6370(2131 



 −=  

 
Therefore the angular separation of E and X is  
 

o84.172 =θ  
 

This result is less than oC

R
R

114
6370
3470cos2cos2 11 =






=







 −−  

And consequently the seismic wave is not refracted through the core. 

0                       cos min
1 θθ 








= −

R
RC

C   900 

900 
 

1800 

Refracted 
waves 

θ 
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(v) 

 

  
 
 

The observations are most likely due to reflections from the mantle-core interface.   Using the 
symbols given in the diagram, the time delay is given by 
 

 
symmetryby  EX  ED as  11)ED(2'

11)DXED('

=







−=∆









−+=∆

PS

PS

vv
t

vv
t

 

  
In the triangle EYD, 
 

 
1cossin                                             cos2(ED)

)cos()sin((ED)
22222

222

=+−+=

−+=

θθθ

θθ

CC

C

RRRR

RRR
 

Therefore 

 







−−+=∆

PS
CC vv

RRRRt 11 cos22' 22 θ  

Using (ii) 
 

 
37s  6mor   7.396

cos2
sin

' 22

s

RRRR
R

tt CC

⇒

−+
∆

=∆ θ
θ  

 
Thus the subsequent time interval, produced by the reflection of seismic waves at the mantle core 
interface, is consistent with angular separation of 17.840. 
 

E X Y 

R R 
D 

θ θ 

O RC 
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Answer Q3 
 Equations of motion: 
 
 

)()(

)()(

)()(

32312
3

2

21232
2

2

13122
1

2

uukuuk
dt

ud
m

uukuuk
dt

ud
m

uukuuk
dt

ud
m

−+−=

−+−=

−+−=

 

  
 

: and cos)0()(  ngSubstituti 2

m
ktutu onn == ωω  

(c)     0)0()2()0()0(

(b)     0)0()0()2()0(

(a)     0)0()0()0()2(   

3
22

2
2

1
2

3
2

2
22

1
2

3
2

2
2

1
22

=−+−−

=−−+−

=−−−

uuu

uuu

uuu

ooo

ooo

ooo

ωωωω

ωωωω

ωωωω

 

Solving for u1(0) and u2(0) in terms of  u3(0) using (a) and (b) and substituting into (c) gives the 
equation equivalent to  

0)3(   2222 =− ωωωo  
22 3 oωω = ,  23 oω  and  0 

oo ωωω 3  ,3= and 0 
 

(ii) Equation of motion of the n’th particle: 

)()(

)()(

1
2

12

2

112

2

nnonn
n

nnnn
n

uuuuk
dt

ud

uukuuk
dt

ud
m

−+−=

−+−=

−+

−+

ω
 

Substituting t
N

nsutu snn ωπ cos2sin)0()( 





=  

θθ

πωω

πππωπω

πππωπω

πππωπω

2cos1sin2    As

),.....2,1(      :2cos12

2sin2cos2sin22sin

)1(2sin
2
12sin)1(2sin

2
122sin

)1(2sin2sin2)1(2sin2sin

2

22

22

22

22

−=

=













−=∴















−














=














−















 −−






+






 +=














−















 −+






−






 +=














−

Ns
N

s

N
ns

N
s

N
ns

N
ns

N
sn

N
ns

N
sn

N
ns

N
sn

N
ns

N
sn

N
ns

os

os

os

os

 

This gives 

),...2,1    sin2 N (s
N
s

os =





=
πωω  

.
2

  to1 range  toingcorrespond ; when 22  to0 from  valueshavecan  NsN
m
k

os =∞→=ωω  

n = 1,2……N 
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(iv) For s’th mode 
 







 +









=
+

N
sn

N
ns

u
u

n

n

π

π

)1(2sin

2sin

1  















+
























=
+

N
s

N
ns

N
s

N
ns

N
ns

u
u

n

n

ππππ

π

2sin2cos2cos2sin

2sin

1

 

 

(a)  For small 1  so and  ,02sin and 12cos   thus,0  ,
1

≅≈





=≅






≈








+n

n

u
u

N
ns

N
ns

N
s ππω . 

(b)  The highest mode,  oωω 2max = ,  corresponds to s = N/2 
 

 as   1
1

−=∴
+n

n

u
u ( )

( ) 1
)1(2sin

2sin
−=

+ π
π

n
n  

 
Case (a) 

 
Case (b) 
N odd 

 
 

N even 
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(vi) If m' << m, one can consider the frequency associated with m' as due to vibration of m' 
between two adjacent, much heavier, masses which can be considered stationary 
relative to m'. 

 
 
The normal mode frequency of m', in this approximation, is given by 
 

 

 
 
 
 

'
2'

2'

2'

2

m
k

m
k

kxxm

=

=

−=

ω

ω



 

 
 
 
 
 
 
 
For small m', ω' will be much greater than ωmax, 
 

 
 
 
DIATOMIC SYSTEM 

More light masses, m', will increase the number of frequencies in region of ω' giving a band-
gap-band spectrum. 

 

 
 
 

 

m‘ m m 

0                 2ωo                  ω   ω 
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Problems of the 18th International Physics Olympiad

(Jena, 1987)

Gunnar Friege & Gunter Lind1

Leibniz-Institute for Science Education (IPN) at the University of Kiel, Germany

Abstract

The 18th International Physics Olympiad took place in 1987 in the German Democratic

Republic (GDR). This article contains the competition problems, their solutions and also a

(rough) grading scheme.

Introduction

The 18th international Physics olympics in 1987 was the second International Physics

Olympiad hosted by the German Democratic Republic (GDR) . The organisation was lead by

the ministry for education and the problems were formulated by a group of professors of

different universities. However, the main part of the work was done by the physics

department of  the university of Jena. The company Carl-Zeiss and a special scientific school

in Jena were involved also.

In the competition three theoretical and one experimental problem had to be solved. The

theoretical part was quite difficult. Only the first of the three problems (“ascending moist air”)

had a medium level of difficulty. The points given in the markings were equal distributed.

Therefore, there were lots of good but also lots of unsatisfying solutions. The other two

theoretical problems were rather difficult. About half of the pupils even did not find an

adequate start in solving these problems. The third problem (“infinite LC-grid") revealed

quite a few complete solutions. The high level of difficulty can probably be explained with

the fact that many pupils nearly had no experience with the subject. Concerning the second

problem (“electrons in a magnetic field”) only a few pupils worked on the last part 3 (see

below).

The experimental problem (“refracting indices”) was much more easier than the theoretical

problems. There were lots of different possibilities of solution and most of the pupils

                                           

1 Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de
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managed to come up with partial or complete solutions. Over the half of all teams got more

points in the experimental part than in the theoretical part of the competition.

The problems and their solutions are based on the original German and English versions of

the competition problems. Only minor changes have been made. Despite the fact that

nowadays almost all printed figures are generated with the aid of special computer

programmes, the original hand-made figures are published here.

Theoretical Problems

Problem 1: Ascending moist air

Moist air is streaming adiabatically across a mountain range as indicated in the figure.

Equal atmospheric pressures of 100 kPa are measured at meteorological stations M0 and M3

and a pressure of 70 kPa at station M2. The temperature of the air at M0 is 20° C.

As the air is ascending, cloud formation sets in at 84.5 kPa.

Consider a quantity of moist air ascending the mountain with a mass of 2000 kg over each

square meter. This moist air reaches the mountain ridge (station M2) after 1500 seconds.

During that rise an amount of 2.45 g of water per kilogram of air is precipitated as rain.

1. Determine temperature T1 at M1 where the cloud ceiling forms.

2. What is the height h1 (at M1) above station M0 of the cloud ceiling assuming a linear

decrease of atmospheric density?

3. What temperature T2 is measured at the ridge of the mountain range?

4. Determine the height of the water column (precipitation level) precipitated by the air

stream in 3 hours, assuming a homogeneous rainfall between points M1 and M2.
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5. What temperature T3 is measured in the back of the mountain range at station M3?

Discuss the state of the atmosphere at station M3 in comparison with that at station M0.

Hints and Data

The atmosphere is to be dealt with as an ideal gas. Influences of the water vapour on the

specific heat capacity and the atmospheric density are to be neglected; the same applies to the

temperature dependence of the specific latent heat of vaporisation. The temperatures are to be

determined to an accuracy of 1 K, the height of the cloud ceiling to an accuracy of 10 m and

the precipitation level to an accuracy of 1 mm.

Specific heat capacity of the atmosphere in the pertaining temperature range:

cp = 1005 J ⋅ kg-1 ⋅ K-1

Atmospheric density for p0 and T0 at station M0: ρ0 = 1.189 kg ⋅ m-3

Specific latent heat of vaporisation of the water within the volume of the cloud:

Lv = 2500 kJ ⋅ kg-1

p

v

c 1.4
c

= χ =   and  g = 9.81 m ⋅ s-2

Solution of problem 1:

1. Temperature T1 where the cloud ceiling forms
11

1
1 0

0

pT T 279K
p

χ−⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
(1)

2. Height h1 of the cloud ceiling:

0 1
0 1 1p p g h

2
ρ +ρ

− = ⋅ ⋅ , with 1 0
1 0

0 1

p T
p T

ρ = ρ ⋅ ⋅ .

1h 1410 m= (2)

3. Temperature T2 at the ridge of the mountain.

The temperature difference when the air is ascending from the cloud ceiling to the

mountain ridge is caused by two processes:

− adiabatic cooling to temperature Tx,
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− heating by ∆T by condensation.

T2 = Tx + ∆T (3)
11

2
x 1

1

pT T 265K
p

χ−⎛ ⎞
= ⋅ =⎜ ⎟

⎝ ⎠
(4)

For each kg of air the heat produced by condensation is Lv  ⋅ 2.45 g = 6.125 kJ.

p

6.125 kJT 6.1K
c kg

∆ = ⋅ = (5)

T2 = 271 K (6)

4. Height of precipitated water column

h = 35 mm (7)

5. Temperature T3 behind the mountain
1
x1

3
3 2

2

pT T 300 K
p

−
⎛ ⎞

= ⋅ =⎜ ⎟
⎝ ⎠

(8)

The air has become warmer and dryer. The temperature gain is caused by condensation of

vapour.

Problem 2: Electrons in a magnetic field

A beam of electrons emitted by a point source P enters the magnetic field B
G

of  a toroidal coil

(toroid) in the direction of the lines of force. The angle of the aperture of the beam 2 ⋅ α0  is

assumed to be small (2 ⋅ α0  << 1). The injection of the electrons occurs on the mean radius R

of the toroid with acceleration voltage V0.

Neglect any interaction between the electrons. The magnitude of B
G

, B, is assumed to be

constant.
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1. To guide the electron in the toroidal field a homogeneous magnetic deflection field 1B
G

 is

required. Calculate 1B
G

 for an electron moving on a circular orbit of radius R in the torus.

2. Determine the value of B
G

 which gives four focussing points separated by / 2π  as

indicated in the diagram.

Note: When considering the electron paths you may disregard the curvature of the

magnetic field.

3. The electron beam cannot stay in the toroid without a deflection field 1B
G

, but will leave it

with a systematic motion (drift) perpendicular to the plane of the toroid.

a) Show that the radial deviation of the electrons from the injection radius is finite.

b) Determine the direction of the drift velocity.

Note: The angle of aperture of the electron beam can be neglected. Use the laws of

conservation of energy and of angular momentum.

Data:

11 1e 1.76 10 C kg
m

−= ⋅ ⋅ ; V0 = 3 kV; R = 50 mm

Solution of problem 2:

1. Determination of B:

The vector of the velocity of any electron is divided into components parallel with and

perpendicular to the magnetic field B
G

:

v v v⊥= +&
G G G (1)

The Lorentz force F e (v B)= − ⋅ ×
G GG  influences only the perpendicular component, it acts as

a radial force:

2vm
r
⊥⋅  = e ⋅ v⊥ ⋅ B (2)

Hence the radius of the circular path that has been travelled is

m vr
e B

⊥= ⋅ (3)
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and the period of rotation which is independent of v⊥  is

2 r 2 mT
v B e⊥

⋅ π⋅ ⋅π ⋅
= =

⋅
(4)

The parallel component of the velocity does not vary. Because of α0 << 1 it is

approximately equal for all electrons:

0 0 0 0v v cos v= ⋅ α ≈& (5)

Hence the distance b between the focusing points, using eq. (5), is

0 0b v T v T= ⋅ ≈ ⋅& (6)

From the law of conservation of energy follows the relation between the acceleration

voltage V0 and the velocity v0:

2
0 0

m v e V
2
⋅ = ⋅ (7)

Using eq. (7) and eq. (4) one obtains from eq. (6)

0
2 mb 2 V
B e
⋅ π

= ⋅ ⋅ ⋅ (8)

and because of 2 Rb
4
⋅ π ⋅

=  one obtains

2
0 2

4 m VsB 2 V 1.48 10
R e m

−= ⋅ ⋅ ⋅ = ⋅ (9)

2. Determination of B1:

Analogous to eq. (2)

2
0

0 1
vm e v B
R

⋅ = ⋅ ⋅ (10)

must hold.

From eq. (7) follows

2
1 0 2

1 m VsB 2 V 0.37 10
R e m

−= ⋅ ⋅ ⋅ = ⋅ (11)
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3. Finiteness of r1 and direction of the drift velocity

In the magnetic field the lines of force are circles with their centres on the symmetry axis

(z-axis) of the toroid.

In accordance with the symmetry of the problem, polar coordinates r and ϕ are introduced

into the plane perpendicular to the z-axis (see figure below) and the occurring vector

quantities (velocity, magnetic field B
G

, Lorentz force) are divided into the corresponding

components.

Since the angle of aperture of the beam can be neglected examine a single electron

injected tangentially into the toroid with velocity v0 on radius R.

In a static magnetic field the kinetic energy is conserved, thus

( )2 2 2 2
r z 0

m mE v v v v
2 2

ϕ= + + = (12)

The radial points of inversion of the electron are defined by the condition

vr = 0

Using eq. (12) one obtains

2 2 2
0 zv v vϕ= + (13)

Such an inversion point is obviously given by

( )0 r zr R v v , v 0, v 0 .ϕ= ⋅ = = =

To find further inversion points and thus the maximum radial deviation of the electron the

components of velocity vϕ and vz in eq. (13) have to be expressed by the radius.

vϕ will be determined by the law of conservation of angular momentum. The Lorentz

force obviously has no component in the ϕ - direction (parallel to the magnetic field).

Therefore it cannot produce a torque around the z-axis. From this follows that the
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z-component of the angular momentum is a constant, i.e. Lz = m ⋅ vϕ ⋅ r = m ⋅ v0 ⋅ R and

therefore vϕ = v0 ⋅ 
R
r

(14)

vz will be determined from the equation of motion in the z-direction. The z-component of

the Lorentz force is Fz = - e ⋅ B ⋅ vr. Thus the acceleration in the z-direction is

z r
ea B v
m

= − ⋅ ⋅ . (15).

That means, since B is assumed to be constant, a change of vz is related to a change of r as

follows:

z
ev B r
m

∆ =− ⋅ ⋅∆

Because of ∆ r = r − R  and  ∆ vz = vz  one finds

( )z
ev B r R
m

= − ⋅ ⋅ − (16)

Using eq. (14) and eq. (15) one obtains for eq. (13)

2 2
2R r1 A 1

r R
⎛ ⎞ ⎛ ⎞= + ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(17)

where 
0

e RA B
m v

= ⋅ ⋅

Discussion of the curve of the right side of eq. (17) gives the qualitative result shown in

the following diagram:

Hence r1 is finite. Since R  ≤  r  ≤  r1  eq. (16) yields vz  <  0. Hence the drift is in the

direction of the negative z-axis.
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Problem 3: Infinite LC-grid

When sine waves propagate in an infinite LC-grid (see the figure below) the phase of the ac-

voltage across two successive capacitors differs by Φ.

a) Determine how Φ depends on ω, L and C (ω is the angular frequency of the sine wave).

b) Determine the velocity of propagation of the waves if the length of each unit is A .

c) State under what conditions the propagation velocity of the waves is almost independent

of ω. Determine the velocity in this case.

d) Suggest a simple mechanical model which is an analogue to the above circuit and derive

equations which establish the validity of your model.

Formulae:

cos cos 2 sin sin
2 2

α +β α −β⎛ ⎞ ⎛ ⎞α − β = − ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

sin sin 2 cos sin
2 2

α +β α −β⎛ ⎞ ⎛ ⎞α − β = ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Solution of problem 3:

a) 

Current law: n 1 n nL C LI I I 0− + − = (1)

Voltage law: n 1 n 1 nC L CV V V 0− −+ − = (2)
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Capacitive voltage drop: n 1 n 1C C
1V I
C− −= ⋅

ω⋅
� (3)

Note: In eq. (3) n 1CI −
�  is used instead of n 1CI −  because the current leads the voltage by 90°.

Inductive voltage drop: n 1 n 1L LV L I− −= ω⋅ ⋅ � (4)

Note: In eq. (4) n 1LI −
�  is used instead of n 1LI −  because the current lags behind

the voltage by 90°.

The voltage nCV  is given by: ( )nC 0V V sin t n= ⋅ ω⋅ + ⋅ϕ (5)

Formula (5) follows from the problem.

From eq. (3) and eq. (5): ( )nC 0I C V cos t n= ω⋅ ⋅ ⋅ ω⋅ + ⋅ϕ (6)

From eq. (4) and eq.  (2) and with eq. (5)

n 1

0
L

V 1I 2 sin t n sin
L 2 2−

⎡ ⎤⎛ ⎞ ϕ⎛ ⎞= ⋅ ⋅ ω⋅ + − ⋅ϕ ⋅⎢ ⎥⎜ ⎟⎜ ⎟ω⋅ ⎝ ⎠⎝ ⎠⎣ ⎦
(7)

n

0
L

V 1I 2 sin t n sin
L 2 2

⎡ ⎤⎛ ⎞ ϕ⎛ ⎞= ⋅ ⋅ ω⋅ + + ⋅ϕ ⋅⎢ ⎥⎜ ⎟⎜ ⎟ω⋅ ⎝ ⎠⎝ ⎠⎣ ⎦
(8)

Eqs. (6), (7) and (8) must satisfy the current law. This gives the dependence of ϕ on ω, L

and C.

( ) ( )0
0

V0 V C cos t n 2 sin 2 cos t n sin
L 2 2

ϕ ⎡ ϕ ⎤⎛ ⎞= ⋅ω⋅ ⋅ ω⋅ + ⋅ϕ + ⋅ ⋅ ⋅ ⋅ ω⋅ + ⋅ϕ ⋅ −⎜ ⎟⎢ ⎥ω⋅ ⎝ ⎠⎣ ⎦

This condition must be true for any instant of time. Therefore it is possible to divide by

V0 ⋅ cos (ω⋅t + n⋅ϕ).

Hence 2 2L C 4 sin .
2
ϕ⎛ ⎞ω ⋅ ⋅ = ⋅ ⎜ ⎟

⎝ ⎠
 The result is

L C2 arcsin
2

⎛ ⎞ω⋅ ⋅
ϕ = ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
  with  20

L C
≤ ω ≤

⋅
(9).

b) The distance A  is covered in the time ∆ t thus the propagation velocity is

v
t

ω⋅
= =
∆ ϕ
A A     or    v

L C2 arcsin
2

ω⋅
=

⎛ ⎞ω⋅ ⋅
⋅ ⎜ ⎟

⎝ ⎠

A (10)
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c) 

Slightly dependent means arc sin L C
2

⎛ ⎞ω⋅ ⋅
ω⎜ ⎟⎜ ⎟

⎝ ⎠
∼ , since v is constant in that case.

This is true only for small values of ω. That means L C 1
2

ω⋅ ⋅ �  and therefore 

0v
L C

=
⋅
A (11)

d) The energy is conserved since only inductances and capacitances are involved. Using the

terms of a) one obtains the capacitive energy

n
2

C C

n

1W C V2= ⋅ ⋅∑ (12)

and the inductive energy

n
2

L L

n

1W L I2= ⋅ ⋅∑ (13)

From this follows the standard form of the law of conservation of energy

( )n n
2 2

C C L

n

1W C V L I2= ⋅ + ⋅∑ (14)

The relation to mechanics is not recognizable in this way since two different physical

quantities ( nCV and nLI ) are involved and there is nothing that corresponds to the relation

between the locus x and the velocity v = x
i
.

To produce an analogy to mechanics the energy has to be described in terms of the charge

Q, the current I = Q
i

 and the constants L and C. For this purpose the voltage nCV  has to be

expressed in terms of the charges nLQ  passing through the coil.



12

One obtains:

( )n n n 1

22
L L L

n

A B

L 1W Q Q Q
2 2 C −

⎡ ⎤= ⋅ + −⎢ ⎥⋅⎣ ⎦∑ �

��	�
 ����	���

(15)

Mechanical analogue:

A (kinetic part):
nLQ

i
vn ; L      m

B (potential part): nLQ        xn

xn: displacement and vn: velocity.

However, nLQ  could equally be another quantity (e.g. an angle). L could be e.g. a moment of

inertia.

From the structure of the problems follows: Interaction only with the nearest neighbour (the

force rises linearly with the distance). A possible model could be:

Another model is:

Experimental Problems

Problem 4: Refractive indices

Find the refractive indices of a prism, np, and a liquid, nl. Ignore dispersion.

a) Determine the refractive index np of a single prism by two different experimental

methods.

Illustrate your solution with accurate diagrams and deduce the relations necessary to

calculate the refractive index. (One prism only should be used).

... ...

......
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b) Use two identical prisms to determine the refractive index nL of a liquid with nL < np.

Illustrate your solution with accurate diagrams and deduce the relations necessary to

calculate the refractive index.

Apparatus:

Two identical prisms with angles of 30°, 60° and 90°; a set square, a glass dish, a round table,

a liquid, sheets of graph paper, other sheets of paper and a pencil.

Formulae: ( )sin sin cos cos sinα ±β = α ⋅ β ± α ⋅ β

Additional remarks: You may mark the opaque sides of the prisms with a pencil. The use of

the lamp is optional.

Solution of problem 4:

a) Calculation of the refractive index of the prism

First method:

Draw a straight line A − B on a sheet of paper and let this be your line of sight. Place the

prism with its rectangular edge facing you onto the line (at point Ρ on the line). Now turn

the prism in the direction of the arrow until the dark edge of total reflection which can be

seen in the short face of the prism coincides with the 90° edge of the prism. Mark a point

M and measure the length c1. Measure also the length of the short face of the prism.
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The following equations apply:

T
p

1sin
n

α = (1)

p
sin n
sin

α
=

β
(2)

β = 60° − αT (3)

γ = 30° + α (4)

( ) 1

sin a
sin 90 c

γ
=

° −α
(5)

From eq. (5) follows with eq. (4) and the given formulae:

( )
1

a 1 1cos sin 30 cos 3 sin
c 2 2
⋅ α = ° + α = ⋅ α + ⋅ ⋅ α

1

22
1 1

2a csin
2 a a c c

−
α =

⋅ − ⋅ +
(6)

From eqs. (2), (3) and (1) follows:

( ) ( )p
p T T T

nsin n sin 60 3 cos sin
2

α = ⋅ ° −α = ⋅ ⋅ α − α

( )
1

22
p

1n 2 sin 1 1
3

⎧ ⎫= + ⋅ ⋅ α + +⎨ ⎬
⎩ ⎭

(7)

When measuring c1 and a one notices that within the error limits of ± 1 mm a equals c1.

Hence: p
1sin and n 1.53
2

α = = . (8)
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Second method:

Place edge C of the prism on edge A of a sheet of paper and look along the prism

hypotenuse at edge A so that your direction of sight B-A and the table surface form an

angle of 60°. Then shift the prism over the edge of the paper into the position shown, such

that prism edge C can be seen inside the prism collinear with edge A of the paper outside

the prism. The direction of sight must not be changed while the prism is being displaced.

The following equations apply:

2

htan c
htan60 3 b

c sinh b 3
1 sin

β =

°= =

⎫ ⋅ β⎪ = > = ⋅ =⎬
− β⎪⎭

(9)

p p

1 3sin sin 60
n 2 n

β = °⋅ =
⋅

(10)

2

p
1 cn 3
2 b

⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

(11)

With the measured values c = 29 mm and b = 11.5 mm, it follows

pn 1.53.= (12)
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b) Determination of the refractive index of the liquid by means of two prisms

Place the two prisms into a glass dish filled with water as shown in the figure above.

Some water will rise between the hypotenuse surfaces. By pressing and moving the prisms

slightly against each other the water can be made to cover the whole surface. Look over

the 60° edges of the prisms along a line of sight L (e.g. in the direction of a fixed point on

an illuminated wall). Turn the glass dish together with the two prisms in such a way that

the dark shadow of total reflection which can be seen in the short face of prism 1

coincides with the 60° edge of that prism (position shown in the figure below).

While turning the arrangement take care to keep the 60° edge (point K) on the line of sight

L. In that position measure the length b1 with a ruler (marking, reading). The figure below

illustrates the position described.
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If the refractive index of the prism is known (see part a) the refractive index of the liquid

may be calculated as follows:

22
1

asin
a b

α =
+

(13)

130 ; 30 60β = α − ° γ = ° −β = °−α       (14, 15)

1
p

2

sin n
sin

γ
=

γ
  refraction at the short face of prism 1. (16)

The angle of total reflection tδ  at the hypotenuse surface of prism 1 in the position

described is:

t 230
2
π
−δ = °− γ (17)

1
t

p

sin60 arcsin
n

⎛ ⎞γ
δ = °+ ⎜ ⎟

⎝ ⎠
(18)

From this we can easily obtain n1:

1
1 p t p

p

sinn n sin n sin 60 arcsin
n

⎧ ⎫γ
= ⋅ δ = ⋅ ° +⎨ ⎬

⎩ ⎭
(19)

Numerical example for water as liquid:

b1 = 1.9 cm; α = 55.84°; γ1 = 4.16°; δt = 62.77°; a = 2.8 cm; with np = 1.5 follows

n1= 1.33. (20)
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Grading Scheme

Theoretical problems

Problem 1: Ascending moist art

part 1 2

part 2 2

part 3 2

part 4 2

part 5 2

10

Problem 2: Electron in a magnetic field

part 1 3

part 2 1

part 3 6

10

Problem 3: Infinite LC-grid

part a 4

part b 1

part c 1

part d 4

10

Problem 4: Refractive indices

part a, first method 5

part a, second method 5

part b 10

20
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THEORY 1
Spectroscopy of Particle Velocities

Basic Data
The absorption and emission of a photon is a reversible process. A good example is to be
found in the excitation of an atom from the ground state to a higher energy state and the at-
oms´ subsequent return to the ground state. In such a case we may detect the absorption of a
photon from the phenomenon of spontaneous emission or fluorescence. Some of the more
modern instrumentation make use of this principle to identify atoms, and also to measure or
calculate the value of the velocity in the velocity spectrum of the electron beam.

In an idealised experiment (see fig. 19.1) a single-charged ion travels in the opposite direction
to light from a laser source with velocity v. The wavelength of light from the laser source is
adjustable. An ion with velocity Zero can be excited to a higher energy state by the applica-
tion of laser light having a wavelength of  λ= 600 nm. If we excite a moving ion, our knowl-
edge on Dopplers´ effect tells us that we need to apply laser light of a wavelength other than
the value given above.

There is given a velocity spectrum embracing velocity magnitude from
s
m0v1  to

s
m000,6v 2  . (see fig. 19.1)
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Questions
1.1
1.1.1
What range of wavelength of the laser beam must be used to excite ions of all velocities in the
velocity spectrum given above ?

1.1.2
A rigorous analysis of the problem calls for application of the principle from the theory of
special relativity

c
v1

c
v1






Determine the error when the classical formula for Dopplers´ effect is used to solve the prob-
lem.

1.2
Assuming the ions are accelerated by a potential U before excited by the laser beam, deter-
mine the relationship between the width of the velocity spectrum of the ion beam and the ac-
celerating potential. Does the accelerating voltage increase or decrease the velocity spectrum
width ?

1.3

Each ion has the value
kg

sA104
m
e 6 

 , two energy levels corresponding to wavelength

nm600)1(  and wavelength nm10 3)1()2(  . Show that lights of the two wave-
lengths used to excite ions overlap when no accelerating potential is applied. Can accelerating
voltage be used to separate the two spectra of laser light used to excite ions so that they no
longer overlap ? If the answer is positive, calculate the minimum value of the voltage re-
quired.
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Solution

1.1
1.1.1
Let v be the velocity of the ion towards the laser source relative to the laser source,
ν́ the frequency of the laser light as observed by the observer moving with the ion (e.g. in the
frame in which the velocity of the ion is 0) and
ν the frequency of the laser light as observed by the observer at rest with respect to the laser
source.

Classical formula for Doppler´s effect is given as









c
v1 .............................................................................................................. (1)

Let ν* be the frequency absorbed by an ion (characteristic of individual ions) and
νL be the frequency of the laser light used to excite an ion at rest,
hence:

ν*  =  νL

For a moving ion, the frequency used to excite ions must be lower than ν*.

Let  νH be the frequency used to excite the moving ion.

When no accelerating voltage is applied

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH

νL

0

v = 6 . 103 m/s

ν*

ν*

λ1

λ2

νL < νH

νL  =  ν*

Calculation of frequency  νH absorbed by moving ions.









c
v1* L where  ν*  =  νH = 5 . 1014 Hz and v = 6 . 103 m/s .......... (2)

The difference in the values of the frequency absorbed by the stationary ion and the ion mov-
ing with the velocity v LH 
The difference in the values of the wavelengths absorbed by the stationary ion and the ion
moving with the velocity v HL 
(higher frequency implies shorter wavelength)
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HL
HL

cc







from (2)

**
c

c
1

*
c

HL 











 





In this case

nm1012m
105
106 3

14

3

HL







1.1.2
The formula for calculation of ν́ as observed by the observer moving towards light source
based on the principle of the theory of special relativity,

c
v1

c
v1






where v is the magnitude of the velocity of the observer towards the light source,
ν́ is the frequency absorbed by the ion moving with the velocity v towards the light source
(also observed by the observer moving with velocity v towards the laser source) and
ν  is the frequency of laser light as observed by an observer at rest.

(To put in a metaphoric way, the moving ion “sees” the laser light of frequency ν́ even
though the scientist who operates the laser source insists that he is sending a laser beam of
frequency ν).

..............
c
v

c
v1

c
v1...............

c
v

c
v1

c
v1 2

22

2

2































































































 ...........

c
v1

1
c2

v1
c
v1...........

c
v1

1
c
v1

c
v1 2

2
2
1

2

2

The second term in the brackets represents the error if the classical formula for Doppler´s ef-
fect is employed.

5102
c
v 

10
5

10

2

2

102
1021

104
2
1

c
v1

1
c2

v 





















The error in the application of classical formula for Doppler´s effect however is of the order
of the factor 2.10-10. This means that classical formula for Doppler´s effect can be used to
analyze the problem without loosing accuracy.
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1.2 When acceleration voltage is used

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH´

νL´

vH´

vL´

ν* = 5 . 1014 Hz

ν* = 5 . 1014 Hz

λH´

λL´

Lowest limit of the kinetic energy of ions   Uevm
2
1 2

L  and
m

Ue2vL




Highest limit of the kinetic energy of ions   Uevm
2
1vm

2
1 22

H 

and
m

Ue2vv 2
H




Spectrum width of velocity spectrum
m

Ue2
m

Ue2vvv 2
LH





 ................ (3)

(Note that the final velocity of accelerated ions is not the sum of v and
m

Ue2 
as veloc-

ity changes with time).

In equation (3) if
m

Ue2 
is negligibly small, the change in the width of the spectrum is

negligible, by the same token of argument if
m

Ue2 
is large or approaches ∞ , the width 

of the spectrum of the light used in exciting the ions becomes increasingly narrow and ap-
proaches 0.

1.3
Given two energy levels of the ion, corresponding to wavelength λ(1) = 600 nm and
λ(2) = 600+10-2 nm
For the sake of simplicity, the following sign notations will be adopted:

The superscript in the bracket indicates energy level (1) or (2) as the case may be. The sign ´
above denotes the case when accelerating voltage is applied, and also the subscripts H and L
apply to absorbed frequencies (and also wavelengths) correspond to the high velocity and low
velocity ends of the velocity spectrum of the ion beam respectively.

The subscript following λ (or ν) can be either 1 or 2, with number 1 corresponding to lowest 
velocity of the ion and number 2 the highest velocity of the ion. When no accelerating voltage
is applied, the subscript 1 implies that minimum velocity of the ion is 0, and the highest veloc-
ity of the ion is 6000 m/s. If accelerating voltage U is applied, number 1 indicates that the
wavelength of laser light pertains to the ion of lowest velocity and number 2 indicates the ion
of the highest velocity.
Finally the sign  *  indicates the value of the wavelength (λ*)  or frequency (ν*)  absorbed by 
the ion (characteristic absorbed frequency).



IPHO-1988 Bad Ischl / Austria
Problems and Solutions

page 6 / 30

When no accelerating voltage is applied:
For the first energy level:

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH(1)

νL
(1)

0

v=6.103 m/s

ν(1)* = 5 . 1014 Hz

ν(1)* = 5 . 1014 Hz

λ1
(1)

λ2
(1)

νH(1)* = νL
(1)* = ν(1)* = 5 . 1014 Hz

Differences in frequencies of laser light used to excite ions = νH(1)–νL
(1)

Differences of wavelengths of laser light used to excite ions = λL
(1) - λH

(1)

nm012,0
105

6000
*

v
14)1(

L







For the second energy level:

frequency of laser
light used to
excite ions

magnitude of
velocity of
ions

frequency of laser
light absorbed
by ions

wavelength of
laser light used
to excite ions

νH(2)

νL
(2)

0

v = 6000 m/s

ν(2)* = 5 . 1014 Hz

ν(2)* = 5 . 1014 Hz

λH
(2)

λL
(2)

νH(2)* = νL
(2)* = ν(2)* = 5 . 1014 Hz

Differences in frequencies of laser light used to excite ions         νH(2)–νL
(2)

Differences in wavelengths of laser light used to excite ions        λL
(2)–λH

(2)

This gives nm012,0
105

6000
14 



Hence the spectra of laser light (ab-
sorption spectrum) used to excite an
ion at two energy levels overlap as
shown in fig. 19.4.
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When accelerating voltage is applied:
Let  λH

(1)´ and λL
(1)´ be the range of the wavelengths used to excite ions in the first energy

level, when accelerating voltage is applied. (Note the prime sign to denote the situation in
which the accelerating voltage is used), and let  λH

(2)´ and λL
(2)´ represent the range of the

wavelengths used to excite ions in the second energy level also when an accelerating voltage
is applied.

Condition for the two spectra not to overlap:





 )1(
L

)2(
H (see fig. 19.4) ..................................................................................... (4)

(Keep in mind that lower energy means longer wavelengths and vice versa).

From condition (3):
*

v
HL 
 .................................................................... (5)

The meanings of this equation is if the velocity of the ion is v, the wavelength which the ion
“sees” is λL, when λH is the wavelength which the ion of zero-velocity “sees”.

Equation (5) may be rewritten in the context of the applications of accelerating voltage in or-
der for the two spectra of laser light will not overlap as follows:

*
v)N(

H
)N(

L 








 where N is the order of the energy level ............................. (6)

The subscript L relates λ to lowest velocity of the ion which “sees” frequency ν*. The lowest 

velocity in this case is
m

Ue2 
and the subscript H relates λ to the highest velocity of the 

ion, in this case
m

Ue2v 2 
 .

Equation (6) will be used to calculate
 width of velocity spectrum of the ion accelerated by voltage U
 potential U which results in condition given by (4)

Let us take up the second energy level (lower energy level of the two ones) of the ion first:

*
v)2(

H
)2(

L 





 .............................................................................................................. (7)

substitute

m
Ue2v 



λH
(1) = 600 + 10-3 nm

v* = 5 . 1014 Hz
v = 0 m/s

  m
105
m

Ue2

10001,0600 14
9)2(

H 






  ...................................................................... (8)
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Considering the first energy level of the ion

*
v)1(

H
)1(

L 





 ................................................................................................................ (9)

In this case

m
Ue2vv 2 



ν*= 5 . 1014 Hz
v = 6000 m/s
λH

(1) = 600 . 10-9 m

m
105

m
Ue2v

10600 14

2

9)1(
L 







  ............................................................................. (10)

Substitute


 )2(
H from (8) and


)1(

L from (10) in (4) one gets

  14

2

9
14

9

105
m

Ue2v
10600

105
m

Ue2

10001,0600










 

1414

2

105
m

Ue2

105
m

Ue2v
500













U1042U10421036500 666 

assume that U is of the order of 100 and over,

then 500U108
U4

91U108 66 










500109
U2

1 3 


324U2 

V162U

The minimum value of accelerating voltage to avoid overlapping of absorption
spectra is approximately 162 V
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THEORY 2
Maxwell´s Wheel

Introduction
A cylindrical wheel of uniform density, having the mass M = 0,40 kg, the radius R = 0,060 m
and the thickness d = 0,010 m is suspended by means of two light strings of the same length
from the ceiling. Each string is wound around the axle of the wheel. Like the strings, the mass
of the axle is negligible. When the wheel is turned manually, the strings are wound up until
the centre of mass is raised 1,0 m above the floor. If the wheel is allowed to move downward
vertically under the pulling force of the gravity, the strings are unwound to the full length of
the strings and the wheel reaches the lowest point. The strings then begin to wound in the op-
posite sense resulting in the wheel being raised upwards.

Analyze and answer the following questions, assuming that the strings are in vertical position
and the points where the strings touch the axle are directly below their respective suspending
points (see fig. 19.5).
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Questions
2.1
Determine the angular speed of the wheel when the centre of mass of the wheel covers the
vertical distance s.

2.2
Determine the kinetic energy of the linear motion of the centre of mass Er after the wheel
travels a distance s = 0,50 m, and calculate the ratio between Er and the energy in any other
form in this problem up to this point.

Radius of the axle = 0,0030 m

2.3
Determine the tension in the string while the wheel is moving downward.

2.4
Calculate the angular speed ώ as a function of the angleΦ when the strings begin to unwind 
themselves in opposite sense as depicted in fig. 19.6.
Sketch a graph of variables which describe the motion (in cartesian system which suits the
problem) and also the speed of the centre of mass as a function of Φ.

Fig. 19.6

2.5
If the string can withstand a maximum tension Tm = 10 N, find the maximum length of the
string which may be unwound without breaking by the wheel.
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Solution

2.1

conservation of energy: 2
AI2

1sgM  .......................................................... (1)

where ω is the angular speed of the wheel and  IA is the moment of inertia about the axis
through A.

Note: If we would take the moment of inertia about S instead of A we would have
22

S vm
2
1I

2
1sgM 

where v is the speed of the centre of mass along the vertical.
This equation is the same as the above one in meanings since

2
SA rMII  and 2

S RMI 

From (1) we get
AI

sgM2 


substitute 22
A RMrM

2
1I 

2
Rr

sg2
2

2 




Putting in numbers we get
s

rad4,72
1036

2
1109

50,081,92
46









2.2
Kinetic energy of linear motion of the centre of mass of the wheel is

J1076,91094,7240,0
2
1rM

2
1vM

2
1E 362222

T
 

Potential energy of the wheel
J962,150,081,940,0sgMEP 

Rotational kinetic energy of the wheel

J899,14,721081,140,0
2
1I

2
1E 232

SR  

3
3

R

T 1013,5
899,1

1076,9
E
E 







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2.3

Let
2
T

be the tension in each string.

Torque τ  which causes the rotation is given by     AIrgM

where α is the angular acceleration    
AI

rgM 


The equation of the motion of the wheel is M.g–T = M.a

Substituting  a = α. r and 22
A RMrM

2
1I  we get

















 22

2

22

2

r2R
r21gM

rMRM
2
1

rgMgMT

Thus for the tension
2
T

in each string we get

N96,1
1092106,3

1092
1

2
81,940,0

r2R
r2

1
2

gM
2
T

63

6

22

2






























 



N96,1
2
T



2.4

After the whole length of the strings is
completely unwound, the wheel con-
tinues to rotate about A (which is at
rest for some interval to be discussed).
Let be the angular speed of the cen-
tre of mass about the axis through A.
The equation of the rotational motion
of the wheel about A may be written as

 
AI ,

where τ is the torque about A, IA is the
moment of inertia about the axis A and
is the angular acceleration about the
axis through A.
Hence  

AIcosrgM

and
AI
cosrgM 



Multiplied with gives:

AI
cosrgM 




 or


dt
d

I
cosrgM

dt
d

2
1

A

2










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this gives

 C
I

sinrgM2

A

2



 [C = arbitrary constant]

If  Φ= 0 [s = H] than is 

That gives
AI

HgM2 
 and therefore

AI
HgM2C 



Putting these results into the equation above one gets












H
r

1
I

sinHgM2

A



For
H
r

<<< 1 we get:

A
MAX I

HgM2 


and

A
MAX I

HgM2rrv 


Component of the displacement
along x-axis is x = r.sinΦ-r
along y-axis is y = r.cosΦ-r
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2.5
Maximum tension in each string occurs MAX

The equation of the motion is   rMgMT 2
MAXMAX 

Putting in T = 20 N and
A

MAX I
sgM2 

 (where s is the maximum length of the

strings supporting the wheel without breaking) and 







 2

2

A r
2

R
MI the numbers one

gets:












 



64

3

10921036
s1034

181,940,020 This gives: s = 1,24 m

The maximum length of the strings which support maximum tension without breaking is

1,24 m .
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THEORY 3
Recombination of Positive and Negative Ions in Ionized Gas

Introduction
A gas consists of positive ions of some element (at high temperature) and electrons. The posi-
tive ion belongs to an atom of unknown mass number Z. It is known that this ion has only one
electron in the shell (orbit).

Let this ion be represented by the symbol A(Z-1)+

Constants:

electric field constant
mV
sA1085,8 12

O 


 

elementary charge sA10602,1e 19  

mJ10037,2
4

eq 28

O

2
2 


 

Planck´s constant sJ10054,1 34  

(rest) mass of an electron kg10108,9m 31
e



Bohr´s atomic radius m1092,5
qm

r 11
2B







Rydberg´s energy J10180,2
r2

qE 18

B

2

R





(rest) mass of a proton J10503,1cm 102
P



Questions:
3.1
Assume that the ion which has just one electron left the shell.
A(Z-1)+ is in the ground state.

In the lowest energy state, the square of the average distance of the electron from the nucleus
or r2 with components along x-, y- and z-axis being (Δx)2, (Δy)2 and (Δz)2 respectively and

     2222
O zyxr  and also the square of the average momentum by

     2z
2

y
2

x
2
O pppp  , whereas

x2
p x 




,
y2

p y 



and

z2
p z 




.

Write inequality involving   2O
2

O rp  in a complete form.
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3.2
The ion represented by A(Z-1)+ may capture an additional electron and consequently emits a
photon.
Write down an equation which is to be used for calculation the frequency of an emitted pho-
ton.

3.3
Calculate the energy of the ion A(Z-1)+ using the value of the lowest energy. The calculation
should be approximated based on the following principles:

3.3.A

The potential energy of the ion should be expressed in terms of the average value of
r
1

.

(ie.
Or
1

; r0 is given in the problem).

3.3.B
In calculating the kinetic energy of the ion, use the average value of the square of the momen-
tum given in 3.1 after being simplified by    22

O
2

O rp 

3.4
Calculate the energy of the ion A(Z-2)+ taken to be in the ground state, using the same principle
as the calculation of the energy of A(Z-1)+ . Given the average distance of each of the two elec-
trons in the outermost shell (same as r0 given in 3.3) denoted by r1 and r2, assume the average
distance between the two electrons is given by r1+r2 and the average value of the square of the
momentum of each electron obeys the principle of uncertainty ie.

22
1

2
1 rp  and 22

2
2
2 rp 

hint: Make use of the information that in the ground state r1 = r2

3.5
Consider in particular the ion A(Z-2)+ is at rest in the ground state when capturing an additional
electron and the captured electron is also at rest prior to the capturing. Determine the numeri-
cal value of Z, if the frequency of the emitted photon accompanying electron capturing is
2,057 . 1017 rad/s. Identify the element which gives rise to the ion.
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Solution

3.1
     2222

0 zyxr 

     2z
2

y
2

x
2
0 pppp 

since

x2
p x 




y2
p y 




z2
p z 




gives

     















 222

2
2
0 z

1
y
1

x
1

4
p



and

     
3
r

zyx
2
0222 

thus 22
0

2
0 4

9rp 

3.2
ev


...... speed of the external electron before the capture

iV


....... speed of A(Z-1)+ before capturing

fV


...... speed of A(Z-1)+ after capturing

En = h.ν  ......  energy of the emitted photon

conservation of energy:

         )2Z(2
fe

)1Z(2
ie

2
ee AEVm2M

2
1AEVmM

2
1vm

2
1

where E[A(Z-1)+) and E[A(Z-2)+] denotes the energy of the electron in the outermost shell of
ions A(Z-1)+ and A(Z-2)+ respectively.

conservation of momentum:

    1
c

hVm2MVmMvm feiee







where 1


is the unit vector pointing in the direction of the motion of the emitted photon.
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3.3
Determination of the energy of A(Z-1)+ :

potential energy =
0

2

00

2

r
qZ

r4
eZ 







kinetic energy =
m2

p2



If the motion of the electrons is confined within the x-y-plane, principles of uncertainty in 3.1
can be written as
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3.4
In the case of A(Z-1)+ ion captures a second electron

potential energy of both electrons =
0
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3.5
The ion A(Z-1)+ is at rest when it captures the second electron also at rest before capturing.
From the information provided in the problem, the frequency of the photon emitted is given
by
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This implies Z = 4, and that means Beryllium
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EEXXPPEERRIIMMEENNTTSS

EXPERIMENT 1: Polarized Light

General Information
Equipment:

 one electric tungsten bulb made of frosedt-surface glass complete with mounting
stand, 1 set

 3 wooden clamps, each of which contains a slit for light experiment
 2 glass plates; one of which is rectangular and the other one is square-shaped
 1 polaroid sheet (circular-shaped)
 1 red film or filter
 1 roll self adhesive tape
 6 pieces of self-adhesive labelling tape
 1 cellophane sheet
 1 sheet of black paper
 1 drawing triangle with a handle
 1 unerasable luminocolour pen 312, extra fine and black colour
 1 lead pencil type F
 1 lead pencil type H
 1 pencil sharpener
 1 eraser
 1 pair of scissors

IImmppoorrttaanntt IInnssttrruuccttiioonnss ttoo bbee FFoolllloowweedd
1. There are 4 pieces of labelling tape coded for each contestant. Stick the tape one each

on the instrument marked with the sign #. Having done this, the contestant may pro-
ceed to perform the experiment to answer the questions.

2. Cutting, etching, scraping or folding the polaroid is strictly forbidden.
3. If marking is to be made on the polaroid, use the lumino-colour pen provided and put

the cap back in place after finishing.
4. When marking is to be made on white paper sheet, use the white tape.
5. Use lead pencils to draw or sketch a graph.
6. Black paper may be cut into pieces for use in the experiment, but the best way of using

the black paper is to roll it into a cylinder as to form a shield around the electric bulb.
An aperture of proper size may be cut into the side of the cylinder to form an outlet for
light used in the experiment.

7. Red piece of paper is to be folded to form a double layer.

The following four questions will be answered by performing the experiment:
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Questions
1.1
1.1.a
Locate the axis of the light transmission of the polaroid film. This may be done by observing
light reflected from the surface of the rectangular glass plate provided. (Light transmitting
axis is the direction of vibration of the electric field vector of light wave transmitted through
the polaroid). Draw a straight line along the light transmission axis as exactly as possible on
the polaroid film. (#)

1.1.b
Set up the apparatus on the graph paper for the experiment to determine the refractive index
of the glass plate for white light.

When unpolarized light is reflected at the glass plate, reflected light is partially polarized.
Polarization of the reflected light is a maximum if the tangens of incident angle is equal to the
refractive index of the glass plate, or:  tan α  =  n.
Draw lines or dots that are related to the determination of the refractive index on the graph
paper. (#)

1.2
Assemble a polariscope to observe birefringence in birefringent glass plate when light is nor-
mally incident on the plastic sheet and the glass plates.

A birefringent object is the object which splits light into two components, with the electric
field vectors of the two components perpendicular to each other. The two directions of the
electric field vectors are known as birefringent axes characteristic of birefringent material.
These two components of light travel with different velocity.

Draw a simple sketch depicting design and functions of the polariscope assembled.

Insert a sheet of clear cellophane in the path of light in the polariscope. Draw lines to indicate
birefringent axes (#). Comment briefly but concisely on what is observed, and describe how
berefringent axes are located.

1.3
1.3.a
Stick 10 layers of self-adhesive tape provided on the glass plate as shown below. Make sure
that each layer recedes in equal steps.

G square glass plate as a
substrate for the cellophane
layers
T 10 layers of cellophane
sheet
S steps about 3 mm up to 4
mm wide

Insert the assembled square plate into the path of light in the polariscope. Describe conditions
for observing colours. How can these colours be changed ? Comment on the observations
from this experiment.
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1.3.b
Prepare monochromatic red light by placing doubly-folded red plastic sheet in the path of
white light. Mark on the assembled square plate to show the steps which allow the determina-
tion of the difference of the optical paths of the two components of light from berefringent
phenomenon, described under 1.2 (#).
Estimate the difference of the optical paths from two consecutive steps.

1.4
1.4.a
With the polariscope assembled, examine the central part of the drawing triangle provided.
Describe relevant optical properties of the drawing triangle pertaining to birefringence.

1.4.b
Comment on the results observed. Draw conclusions about the physical properties of the ma-
terial of which the triangle is made.

Additional Cautions
Be sure that the following items affixed with the coded labels provided accompany the report.

1. (#) Polarized film with the position of the transmission axis clearly marked.
2. (#) Graph paper with lines and dots denoting experimental setup for determining re-

fractive index.
3. (#) Sheet of cellophane paper with marking indicating the positions of birefringent

axis.
4. (#) Square glass plate affixed with self-adhesive tape with markings to indicate the po-

sitions of birefringent axis.
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SSoolluuttiioonn

In this experiment the results from one experimental stage are used to solve problems in the
following experimental stages. Without actually performing all parts of the experiment, solu-
tion cannot be meaningfully discussed.

It suffices that some transparent crystals are anisotropic, meaning their optical properties vary
with the direction. Crystals which have this property are said to be doubly refracting or ex-
hibit birefringece.

This phenomenon can be understood on the basis of wave theory. When a wavefront enters a
birefringent material, two sets of Huygens wavelets propagate from every point of the enter-
ing wavefront causing the incident light to split into two components of two different veloci-
ties. In some crystals there is a particular direction (or rather a set of parallel directions) in
which the velocities of the two components are the same. This direction is known as optic
axes. the former is said to be uniaxial, and the latter biaxial.

If a plane polarized light (which may be white light or monochromatic light) is allowed to
enter a uniaxial birefringed material, with its plane of polarization making some angle, say
45° with the optic axis, the incident light is splitted into two components (ordinary and ex-
traordinary) travelling with two different velocities. Because of different velocities their
phases different.

Upon emerging from the crystal, the two components recombine to from a resultant wave.
The phase difference between the two components causes the resultant wave to be either line-
arly or circularly or elliptical polarized depending on the phase difference between the two
components. The type of polarization can be determined by means of an analyser which is a
second polaroid sheet provided for this experiment.
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EXPERIMENT 2: Electron Tube

Introduction
Free electrons in a metal may be thought of as being “electron gas” confined in potential or 
energy walls. Under normal conditions or even when a voltage is applied near the surface of
the metal, these electrons cannot leave the potential walls (see fig. 19.11)
If however the metal or the electron gas is heated, the electrons have enough thermal energy
(kinetic energy) to overcome the energy barrier W (W is known as “work function”). If a 
voltage is applied across the metal and the anode, these thermally activated electrons may
reach the anode.
The number of electrons arriving at the anode per unit time depends on the nature of the cath-
ode and the temperature, i.e. all electrons freed from the potential wall will reach the anode no
longer increase with applied voltage (see fig. 19.11)
The saturated current corresponding to the number of thermally activated electrons freed from
the metal surface per unit time obeys what is generally known as Richardson´s equation i.e.

Tk
W

2
B eTCI 




where
C is a constant
T temperature of the cathode in Kelvin
k Boltzmann´s constant = 1,38 . 10-23 J/K

Determine the value of the work function W of tungsten metal in the form of heating filament
of the vacuum tube provided.
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The following items of equipment are placed at the disposal of the contestants:
 Electron tube AZ 41 which is a high-vacuum, full-wave rectifying diode. The cathode

is made from a coated tungsten filament the work function of which is to be ascer-
tained. According to the manual prepared by its manufacturer, no more than 4 V
should be used when applying heating current to the cathode. Since the tube has two
anodes, it is most desirable to have them connected for all measurements. The diagram
in fig. 19.14 is a guide to identifying the anodes and the cathode.

 multimeter 1 unit, internal resistance for voltage measurement: 10MΩ
 battery 1,5 V (together with a spare)
 battery 9 V; four units can be connected in series as shown in fig. 19.15
 connectors
 resistors; each of which has specifications as follows:

1000Ω ± 2% (brown, black, black, brown, brown, red)
100Ω ± 2% (brown, black, black, black, brown, red)
47,5Ω ± 1% (yellow, violet, green, gold, brown)

 resistors; 4 units, each of which has the resistance of about 1Ω and coded
 connecting wires
 screw driver
 graph paper (1 sheet)
 graph of specific resistance of tungsten as a function of temperature; 1 sheet
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Solve the following problems:

2.1
Determine the resistance of 4 numerically-coded resistors. Under no circumstances must the
multimeter be used as an ohmmeter.

2.2
Determine the saturated current for 4 different values of cathode temperatures, using 1,5 V
battery to heat the cathode filament. A constant value of voltage between 35 V –40 V be-
tween the anode and the cathode is sufficient to produce a saturated current. Obtain this value
of voltage by connecting the four 9 V batteries in series. Describe how the different values of
temperature are determined.

2.3
Determine the value of W. Explain the procedures used.
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SSoolluuttiioonn

2.1
Connect the circuit as shown in fig. 19.17

RX .... resistance to be determined
R ...... known value of resistance

Measure potential difference across RX and R.
Chose the value of R which gives comparable
value of potential difference across RX.

In this particular case R = 47,5Ω

V
V

R
R XX 

where VX and V are values of potential differences across RX and R respectively.
RX can be calculated from the above equation.
(The error in RX depends on the errors of VX and VR).

2.2
Connect the circuit as shown in fig. 19.18

 Begin the experiment by measuring the
resistance R0 of the tungsten cathode
when there is no heating current

 Add resistor R = 1000Ω into the cath-
ode circuit, determine resistance R1 of
the tungsten cathode, calculate the resis-
tance of the current-carrying cathode.

 Repeat the experiment, using the resistor
R = 100Ω in the cathode circuit, deter-
mine resistance R2 of tungsten cathode with heating current in the circuit.

 Repeat the experiment, using the resistor R = 47,5Ω in the cathode circuit, determine
resistance R3 of tungsten cathode with heating current in the circuit.

 Plot a graph of
0

3

0

2

0

1

R
R

and
R
R

,
R
R

as a function of temperature, put the value of

1
R
R

0

0  to coincide with room temperature i.e. 18°C approximately and draw the re-

maining part of the graph parallel to the graph of specific resistance as a function of
temperature provided in the problem. From the graph, read values of the temperature
of the cathode T1, T2 and T3 in Kelvin.
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From the equation Tk
W

2 eTCI 




we get Cln
Tk

W
T
Iln 2 




Plot a graph of 2T
Iln against

T
1

.

The curve is linear. Determine the slope m from this graph.
k
Wm 

Work function W can be calculated using known values of m and k (given in the problem).

Error in W depends on the error of T which in turn depends on the error of measured R.
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Abstract 
 
The article contains problems given at the 20th International Physics Olympiad (1989) 

and their solutions. The 20th IPhO was the third IPhO organized in Warsaw, Poland. 
 

Logo 
 

 The emblem of the XX International Physics 
Olympiad contains a picture that is a historical record of 
the first hypernuclear event observed and interpreted in 
Warsaw by M. Danysz and J. Pniewski3

 In the event observed above the hyperon Λ, bound with nucleon, decays like a free 
particle through a week (slow) process only. This fact strongly suggested the existence of a 
new quantum number that could explain suppression of the decay, even in presence of 
nucleons. Indeed, this was one of the observations that, 30 months later, led to the concept of 
strangeness.  

. The collision 
of a high-energy particle with a heavy nucleus was 
registered in nuclear emulsion. Tracks of the secondary 
particles emitted in the event, seen in the picture (upper 
star), consist of tracks due to fast pions (“thin tracks”) 
and to much slower fragments of the target nucleus 
(“black tracks”). The “black track” connecting the upper 
star (greater) with the lower star (smaller) in the figure 
is due to a hypernuclear fragment, in this case due to a 
part of the primary nucleus containing an unstable 
hyperon Λ instead of a nucleon. Hyperfragments 

(hypernuclei) are a new kind of matter in which the nuclei contain not only protons and 
neutrons but also some other heavy particles. 

 
Introduction 

 
Theoretical problems (including solutions and marking schemes) were prepared 

especially for the 20th IPhO by Waldemar Gorzkowski. The experimental problem (including 
the solution and marking scheme) was prepared especially for this Olympiad by Andrzej 
Kotlicki. The problems were refereed independently (and many times) by at least two persons 

 
1 This article has been sent for publication in Physics Competitions in October 2003 
2 e-mail: gorzk@ifpan.edu.pl 
3 M. Danysz and J. Pniewski, Bull. Acad. Polon. Sci., 3(1) 42 (1952) and Phil. Mag., 44, 348 (1953). Later the 
same physicists, Danysz and Pniewski, discovered the first case of a nucleus with two hyperons (double 
hyperfragment). 



after any change was made in the text to avoid unexpected difficulties at the competition. This 
work was done by: 

 
First Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier 

Second Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier, Stanisław Woronowicz 

Third Problem: 
Andrzej Rajca, Andrzej Szymacha, Włodzimierz Ungier 

Experimental Problem: 
Krzysztof Korona, Anna Lipniacka, Jerzy Łusakowski, Bruno Sikora 
 
Several English versions of the texts of the problems were given to the English-

speaking students. As far as I know it happened for the first time (at present it is typical). The 
original English version was accepted (as a version for the students) by the leaders of the 
Australian delegation only. The other English-speaking delegations translated the English 
originals into English used in their countries. The net result was that there were at least four 
English versions. Of course, physics contained in them was exactly the same, while wording 
and spelling were somewhat different (the difference, however, were not too great).  

This article is based on the materials quoted at the end of the article and on personal 
notes of the author.  

 
THEORETICAL PROBLEMS 

 
Problem 1 
 
Consider two liquids A and B insoluble in each other. The pressures pi (i = A or B) of 

their saturated vapors obey, to a good approximation, the formula: 
 

i
i

oi T
pp βα

+=)/ln( ;     i = A or B, 

 
where po denotes the normal atmospheric pressure, T – the absolute temperature of the vapor, 
and iα  and iβ  (i = A or B) – certain constants depending on the liquid. (The symbol ln 
denotes the natural logarithm, i.e. logarithm with base e = 2.7182818…) 

 The values of the ratio pi/p0 for the liquids A and B at the temperature 40°C and 90°C 
are given in Tab. 1.1. 

Table 1.1 

t [°C] pi/p0 
i = A i = B 

40 0.284 0.07278 
90 1.476 0.6918 

The errors of these values are negligible. 

A. Determine the boiling temperatures of the liquids A and B under the pressure p0. 



B. The liquids A and B were poured into a vessel in which the layers shown in Fig. 1.1 
were formed. The surface of the liquid B has been covered with a thin layer of a non-volatile 
liquid C, which is insoluble in the liquids A and B and vice versa, thereby preventing any free 
evaporation from the upper surface of the liquid B, The ratio of molecular masses of the 
liquids A and B (in the gaseous phase) is: 

 
.8/ == BA µµγ  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.1                                                                               Fig. 1.2 

 
The masses of the liquids A and B were initially the same, each equal to m = 100g. The 

heights of the layers of the liquids in the vessel and the densities of the liquids are small 
enough to make the assumption that the pressure in any point in the vessel is practically equal 
to the normal atmospheric pressure p0. 

The system of liquids in the vessel is slowly, but continuously and uniformly, heated. It 
was established that the temperature t of the liquids changed with time τ as shown 
schematically in the Fig. 1.2. 

Determine the temperatures t1 and t2 corresponding to the horizontal parts of the 
diagram and the masses of the liquids A and B at the time τ1. The temperatures should be 
rounded to the nearest degree (in °C) and the masses of the liquids should be determined to 
one-tenth of gram. 

REMARK: Assume that the vapors of the liquids, to a good approximation, 

(1) obey the Dalton law stating that the pressure of a mixture of gases is equal to 
the sum of the partial pressures of the gases forming the mixture and 

(2) can be treated as perfect gases up to the pressures corresponding to the 
saturated vapors. 

 
Solution 
 
PART A 

The liquid boils when the pressure of its saturated vapor is equal to the external pressure. 
Thus, in order to find the boiling temperature of the liquid i (i - A or B), one should determine 
such a temperature Tbi (or tbi) for which pi/p0 = 1. 

Then 0)/ln( 0 =ppi , and we have: 

i

i
biT

β
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t1 

τ τ1 
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t 
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p0 
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p0 p0 



The coefficients iα  and iβ  are not given explicitly. However, they can be calculated 
from the formula given in the text of the problem. For this purpose one should make use of 
the numerical data given in the Tab. 1.1.  

For the liquid A, we have: 

.
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After subtraction of these equations, we get: 
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K)15.27340(
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+
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A
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Thus, the boiling temperature of the liquid A is equal to 

bAT = 3748.49K/10.711 ≈  349.95 K. 

In the Celsius scale the boiling temperature of the liquid A is 

=bAt (349.95 – 273.15)°C = 76.80°C ≈  77°C. 

For the liquid B, in the same way, we obtain: 

≈Bα  -5121.64 K, 
≈Bβ 13.735, 
≈bBT 372-89 K, 
≈bBt 99.74°C ≈100°C. 

PART B 

As the liquids are in thermal contact with each other, their temperatures increase in time 
in the same way. 

At the beginning of the heating, what corresponds to the left sloped part of the diagram, 
no evaporation can occur. The free evaporation from the upper surface of the liquid B cannot 
occur - it is impossible due to the layer of the non-volatile liquid C. The evaporation from the 
inside of the system is considered below. 



Let us consider a bubble formed in the liquid A or in the liquid B or on the surface that 
separates these liquids. Such a bubble can be formed due to fluctuations or for many other 
reasons, which will not be analyzed here. 

The bubble can get out of the system only when the pressure inside it equals to the 
external pressure 0p  (or when it is a little bit higher than 0p ). Otherwise, the bubble will 
collapse. 

The pressure inside the bubble formed in the volume of the liquid A or in the volume of 
the liquid B equals to the pressure of the saturated vapor of the liquid A or B, respectively. 
However, the pressure inside the bubble formed on the surface separating the liquids A and B 
is equal to the sum of the pressures of the saturated vapors of both these liquids, as then the 
bubble is in a contact with the liquids A and B at the same time. In the case considered the 
pressure inside the bubble is greater than the pressures of the saturated vapors of each of the 
liquids A and B (at the same temperature). 

Therefore, when the system is heated, the pressure 0p  is reached first in the bubbles that 
were formed on the surface separating the liquids. Thus, the temperature 1t corresponds to a 
kind of common boiling of both liquids that occurs in the region of their direct contact. The 
temperature 1t  is for sure lower than the boiling temperatures of the liquids A and B as then 
the pressures of the saturated vapors of the liquids A and B are less then 0p  (their sum equals 
to 0p  and each of them is greater than zero). 

In order to determine the value of 1t  with required accuracy, we can calculate the values 
of the sum of the saturated vapors of the liquids A and B for several values of the temperature 
t and look when one gets the value 0p . 

From the formula given in the text of the problem, we have: 
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Thus, we have to calculate the values of the following function: 
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(where 15.2730 =t °C) and to determine the temperature 1tt = , at which )(ty  equals to 1. 
When calculating the values of the function )(ty  we can divide the intervals of the 
temperatures t  by 2 (approximately) and look whether the results are greater or less than 1.  

We have: 



Table 1.2 

t  )(ty  

40°C < 1 (see Tab. 1.1) 

77°C > 1 (as 1t  is less than bAt ) 

59°C 0.749 < 1 

70°C 1.113 > 1 

66°C 0.966 < 1 

67°C 1.001 > 1 

66.5°C 0.983 < 1 

Therefore, ≈1t  67° C (with required accuracy). 

Now we calculate the pressures of the saturated vapors of the liquids A and B at the 
temperature ≈1t  67°C, i.e. the pressures of the saturated vapors of the liquids A and B in each 
bubble formed on the surface separating the liquids. From the equations (1) and (2), we get: 

≈Ap  0.734 0p , 
≈Bp  0.267 0p , 

)001.1( 00 pppp BA ≈=+ . 

These pressures depend only on the temperature and, therefore, they remain constant 
during the motion of the bubbles through the liquid B. The volume of the bubbles during this 
motion also cannot be changed without violation of the relation 0ppp BA =+ . It follows from 
the above remarks that the mass ratio of the saturated vapors of the liquids A and B in each 
bubble is the same. This conclusion remains valid as long as both liquids are in the system. 
After total evaporation of one of the liquids the temperature of the system will increase again 
(second sloped part of the diagram). Then, however, the mass of the system remains constant 
until the temperature reaches the value 2t  at which the boiling of the liquid (remained in the 
vessel) starts. Therefore, the temperature 2t  (the higher horizontal part of the diagram) 
corresponds to the boiling of the liquid remained in the vessel. 

The mass ratio BA mm /  of the saturated vapors of the liquids A and B in each bubble 
leaving the system at the temperature 1t  is equal to the ratio of the densities of these vapors 

BA ρρ / . According to the assumption 2, stating that the vapors can be treated as ideal gases, 
the last ratio equals to the ratio of the products of the pressures of the saturated vapors by the 
molecular masses: 
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0.22≈
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m
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We see that the liquid A evaporates 22 times faster than the liquid B. The evaporation of 
100 g of the liquid A during the “surface boiling” at the temperature 1t  is associated with the 



evaporation of 100 g / 22 ≈4.5 g of the liquid B. Thus, at the time 1τ  the vessel contains 95.5 
g of the liquid B (and no liquid A). The temperature 2t  is equal to the boiling temperature of 
the liquid B: =2t 100°C. 

 
Marking Scheme 
 

1. physical condition for boiling      1 point 
2. boiling temperature of the liquid A (numerical value)   1 point 
3. boiling temperature of the liquid B (numerical value)   1 point 
4. analysis of the phenomena at the temperature 1t     3 points 
5. numerical value of 1t         1 point 
6. numerical value of the mass ratio of the saturated vapors in the bubble 1 point 
7. masses of the liquids at the time 1τ       1 point 
8. determination of the temperature 2t       1 point 

REMARK: As the sum of the logarithms is not equal to the logarithm of the sum, the 
formula given in the text of the problem should not be applied to the mixture of the saturated 
vapors in the bubbles formed on the surface separating the liquids. However, the numerical 
data have been chosen in such a way that even such incorrect solution of the problem gives 
the correct value of the temperature 1t  (within required accuracy). The purpose of that was to 
allow the pupils to solve the part B of the problem even if they determined the temperature 1t  
in a wrong way. Of course, one cannot receive any points for an incorrect determination of the 
temperature 1t  even if its numerical value is correct. 

 
Typical mistakes in the pupils' solutions 

 
Nobody has received the maximum possible number of points for this problem, 

although several solutions came close. Only two participants tried to analyze proportion of 
pressures of the vapors during the upward movement of the bubble trough the liquid B. Part 
of the students confused Celsius degrees with Kelvins. Many participants did not take into 
account the boiling on the surface separating the liquids A and B, although this effect was the 
essence of the problem. Part of the students, who did notice this effect, assumed a priori that 
the liquid with lower boiling temperature "must" be the first to evaporate. In general, this need 
not be true: if γ were, for example, 1/8 instead 8, then liquid A rather than B would remain in 
the vessel. As regards the boiling temperatures, practically nobody had any essential 
difficulties. 

 
Problem 2 
 
 Three non-collinear points P1, P2 and P3, with known masses m1, m2 and m3, interact 

with one another through their mutual gravitational forces only; they are isolated in free space 
and do not interact with any other bodies. Let σ denote the axis going through the center-of-
mass of the three masses, and perpendicular to the triangle P1P2P3. What conditions should 
the angular velocities ω of the system (around the axis σ) and the distances: 

 
P1P2 = a12, P2P3 = a23, P1P3 = a13, 

 
fulfill to allow the shape and size of the triangle P1P2P3 unchanged during the motion of the 
system, i.e. under what conditions does the system rotate around the axis σ as a rigid body? 



 
Solution 
 
As the system is isolated, its total energy, i.e. the sum of the kinetic and potential 

energies, is conserved. The total potential energy of the points P1, P2 and P3 with the masses 
1m , 2m  and 3m  in the inertial system (i.e. when there are no inertial forces) is equal to the 

sum of the gravitational potential energies of all the pairs of points (P1,P2), (P2,P3) and (P1,P3). 
It depends only on the distances 12a , 23a  and 23a  which are constant in time. Thus, the total 
potential energy of the system is constant. As a consequence the kinetic energy of the system 
is constant too. The moment of inertia of the system with respect to the axis σ  depends only 
on the distances from the points P1, P2 and P3 to the axis σ  which, for fixed 12a , 23a  and 23a  
do not depend on time. This means that the moment of inertia I  is constant. Therefore, the 
angular velocity of the system must also be constant: 

 =ω const. (1) 
This is the first condition we had to find. The other conditions will be determined by 

using three methods described below. However, prior to performing calculations, it is 
desirable to specify a convenient coordinates system in which the calculations are expected to 
be simple. 

Let the positions of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  be given by 
the vectors 1r , 2r  and 3r . For simplicity we assume that the origin of the coordinate system is 
localized at the center of mass of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  and 
that all the vectors 1r , 2r  and 3r  are in the same coordinate plane, e.g. in the plane (x,y). Then 
the axis σ  is the axis z . 

In this coordinate system, according to the definition of the center of mass, we have: 

 0321 =++ 221 rrr mmm  (2) 

Now we will find the second condition by using several methods. 
FIRST METHOD 

Consider the point P1 with the mass 1m . The points P2 and P3 act on it with the forces: 
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where G denotes the gravitational constant. 

In the inertial frame the sum of these forces is the centripetal force 

1
2

11 rF ωmr −= , 

which causes the movement of the point P1 along a circle with the angular velocity ω . (The 
moment of this force with respect to the axis σ  is equal to zero.) Thus, we have: 

 .13121 rFFF =+  (5) 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
sum of the forces (3), (4) and the centrifugal force 



1
2

11' rF ωmr =  

should be equal to zero: 

 .0' 13121 =++ rFFF  (6) 

(The moment of this sum with respect to any axis equals to zero.) 

The conditions (5) and (6) are equivalent. They give the same vector equality: 
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From the formula (2), we get: 

 331122 rrr mmm −−=  (8) 

Using this relation, we write the formula (7) in the following form: 
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i.e. 
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The vectors 1r  and 3r  are non-col1inear. Therefore, the coefficients in the last formula 
must be equal to zero: 
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The first equality leads to: 
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and hence, 

1213 aa = . 

Let aaa == 1213 . Then the second equality gives: 

 GMa =32ω  (9) 

where 

 321 mmmM ++=  (10) 

denotes the total mass of the system. 



In the same way, for the points P2 and P3, one gets the relations: 

a) the point P2: 

1223 aa = ;     GMa =32ω  

b) the point P3: 

2313 aa = ;     GMa =32ω  

Summarizing, the system can rotate as a rigid body if all the distances between the 
masses are equal: 

 aaaa === 132312 , (11) 

the angular velocity ω  is constant and the relation (9) holds. 
SECOND METHOD 

At the beginning we find the moment of inertia I  of the system with respect to the axis 
σ . Using the relation (2), we can write: 
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 Of course, 

 22
ii r=r  i = 1, 2, 3 

The quantities jirr2 (i, j = 1, 2, 3) can be determined from the following obvious relation: 

jijijijijijiij rra rrrrrrrrrr 22)( 2222222 −+=−+=−=−= . 

We get: 
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With help of this relation, after simple transformations, we obtain: 
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The moment of inertia I  of the system with respect to the axis σ , according to the definition 
of this quantity, is equal to 
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The last two formulae lead to the following expression: 
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where M (the total mass of the system) is defined by the formula (10). 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
total potential energy totV  is the sum of the gravitational potential energies 
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of all the masses and the potential energies 
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of the masses im  (i = 1, 2, 3) in the field of the centrifugal force: 
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A mechanical system is in equilibrium if its total potential energy has an extremum. In 
our case the total potential energy totV  is a sum of three terms. Each of them is proportional to: 
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The extrema of this function can be found by taking its derivative with respect to a and 
requiring this derivative to be zero. We get: 
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It leads to: 

GMa =32ω     or    ).( 321
32 mmmGa ++=ω  

We see that all the terms in totV  have extrema at the same values of aaij = . (In addition, 
the values of a and ω  should obey the relation written above.) It is easy to show that it is a 
maximum. Thus, the quantity totV  has a maximum at aaij = . 

This means that our three masses can remain in fixed distances only if these distances 
are equal to each other: 

aaaa === 132312  

and if the relation 

GMa =32ω , 
where M the total mass of the system, holds. We have obtained the conditions (9) and (11) 
again. 

THIRD METHOD 

Let us consider again the point P1 with the mass 1m  and the forces 21F  and 31F  given by 
the formulae (3) and (4). It follows from the text of the problem that the total moment (with 
respect to any fixed point or with respect to the mass center) of the forces acting on the point 
P1 must be equal to zero. Thus, we have: 

0131121 =×+× rFrF  

where the symbol ×  denotes the vector product. Therefore 



.0)()( 1133
13

31
1123

12

21 =×−+×− rrrrrr
a

mmG
a
mmG  

But 

.011 =×rr  

Thus: 

.0133
13

3
123

12

2 =×+× rrrr
a
m

a
m  

Using the formula (8), the last relation can be written as follows: 
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The vectors 1r  and 3r  are non-col1inear (and different from 0). Therefore 
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hence, 

.1312 aa =  

Similarly, one gets: 

).(  2312 aaa ==  

We have re-derived the condition (11). 

Taking into account that all the distances ija  have the same value a, from the equation 
(7) concerning the point P1, using the relation (2) we obtain: 
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This is the condition (9). The same condition is got in result of similar calculations for the 
points P2 and P3. 



The method described here does not differ essentially from the first method. In fact 
they are slight modifications of each other. However, it is interesting to notice how 
application of a proper mathematical language, e.g. the vector product, simplifies the 
calculations. 

The relation (9) can be called a “generalized Kepler’s law” as, in fact, it is very similar 
to the Kepler’s law but with respect to the many-body system. As far as I know this 
generalized Kepler’s law was presented for the first time right at the 20th IPhO. 

 
Marking scheme 
 
1. the proof that =ω const 1 point 
2. the conditions at the equilibrium (conditions for the forces  

and their moments or extremum of the total potential energy) 3 points 
3. the proof of the relation aaij =  4 points 

4. the proof of the relation GMa =32ω  2 points 
 
Remarks and typical mistakes in the pupils' solutions 
 
No type of error was observed as predominant in the pupils' solutions. Practically all the 

mistakes can be put down to the students' scant experience in calculations and general lack of 
skill. Several students misunderstood the text of the problem and attempted to prove that the 
three masses should be equal. Of course, this was impossible. Moreover, it was pointless, 
since the masses were given. Almost all the participants tried to solve the problem by 
analyzing equilibrium of forces and/or their moments. Only one student tried to solve the 
problem by looking for a minimum of the total potential energy (unfortunately, his solution 
was not fully correct). Several participants solved the problem using a convenient reference 
system: one mass in the origin and one mass on the x-axis. One of them received a special 
prize. 

 
Problem 3 
 
The problem concerns investigation of transforming the electron microscope with 

magnetic guiding of the electron beam (which is accelerated with the potential difference U = 
511 kV) into a proton microscope (in which the proton beam is accelerated with the potential 
difference –U). For this purpose, solve the following two problems: 

A. An electron after leaving a device, which accelerated it with the potential difference 
U, falls into a region with an inhomogeneous field B generated with a system of stationary 
coils L1, L2, … , Ln. The known currents in the coils are i1, i2, … , in, respectively. 

What should the currents i1’, i2’, … , in’ in the coils L1, L2, … , Ln be, in order to guide 
the proton (initially accelerated with the potential difference –U) along the same trajectory 
(and in the same direction) as that of the electron? 

HINT: The problem can be solved by finding a condition under which the equation 
describing the trajectory is the same in both cases. It may be helpful to use the relation: 
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B. How many times would the resolving power of the above microscope increase or 
decrease if the electron beam were replaced with the proton beam? Assume that the resolving 
power of the microscope (i.e. the smallest distance between two point objects whose circular 
images can be just separated) depends only on the wave properties of the particles. 

Assume that the velocities of the electrons and protons before their acceleration are zero, 
and that there is no interaction between own magnetic moment of either electrons or protons 
and the magnetic field. Assume also that the electromagnetic radiation emitted by the moving 
particles can be neglected. 

NOTE: Very often physicists use 1 electron-volt (1 eV), and its derivatives such as 1 
keV or 1 MeV, as a unit of energy. 1 electron-volt is the energy gained by the electron that 
passed the potential difference equal to 1 V. 

Perform the calculations assuming the following data: 

Rest energy of electron: Ee = mec2 = 511 keV 
Rest energy of proton:  Ep = mpc2 = 938 MeV 

 
Solution 
 
PART  A 

At the beginning one should notice that the kinetic energy of the electron accelerated 
with the potential difference U = 511 kV equals to its rest energy 0E . Therefore, at least in the 
case of the electron, the laws of the classical physics cannot be applied. It is necessary to use 
relativistic laws. 

The relativistic equation of motion of a particle with the charge e in the magnetic field 
B  has the following form: 

Ldt
d Fp =  

where vp γ0m= denotes the momentum of the particle (vector) and 

BvF ×= eL  

is the Lorentz force (its value is evB  and its direction is determined with the right hand rule). 
0m  denotes the (rest) mass of the particle and v  denotes the velocity of the particle. The 

quantity γ  is given by the formula: 
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The Lorentz force LF  is perpendicular to the velocity v  of the particle and to its momentum 
vp γ0m= . Hence, 

0=⋅=⋅ pFvF LL . 

Multiplying the equation of motion by p  and making use of the hint given in the text of the 
problem, we get: 
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It means that the value of the particle momentum (and the value of the velocity) is constant 
during the motion: 

== γvmp 0  const;               v = const. 

The same result can be obtained without any formulae in the following way: 

The Lorentz force LF  is perpendicular to the velocity v  (and to the momentum p as 
vp γ0m= ) and, as a consequence, to the trajectory of the particle. Therefore, there is no force 

that could change the component of the momentum tangent to the trajectory. Thus, this 
component, whose value is equal to the length of p , should be constant: =p const. (The same 
refers to the component of the velocity tangent to the trajectory as vp γ0m= ). 

Let s denotes the path passed by the particle along the trajectory. From the definition of 
the velocity, we have: 
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Using this formula, we can rewrite the equation of motion as follows: 
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vds
d LFp = . 

Dividing this equation by p and making use of the fact that p = const, we obtain: 

vppds
dv LFp

=  

and hence 

vpds
d LFt =  

where vp // vpt ==  is the versor (unit vector) tangent to the trajectory. The above equation 
is exactly the same for both electrons and protons if and only if the vector quantity: 

vp
LF  

is the same in both cases. 

Denoting corresponding quantities for protons with the same symbols as for the 
electrons, but with primes, one gets that the condition, under which both electrons and protons 
can move along the same trajectory, is equivalent to the equality: 
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However, the Lorentz force is proportional to the value of the velocity of the particle, 
and the directions of any two vectors of the following three: t (or v), FL, B determine the 
direction of the third of them (right hand rule). Therefore, the above condition can be written 
in the following form: 
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This means that at any point the direction of the field B should be conserved, its 
orientation should be changed into the opposite one, and the value of the field should be 
multiplied by the same factor p'/p. The magnetic field B is a vector sum of the magnetic fields 
of the coils that are arbitrarily distributed in the space. Therefore, each of this fields should be 
scaled with the same factor -p'/p. However, the magnetic field of any coil is proportional to 
the current flowing in it. This means that the required scaling of the fields can only be 
achieved by the scaling of all the currents with the same factor -p'/p: 
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p
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Now we shall determine the ratio p'/p. The kinetic energies of the particles in both cases 
are the same; they are equal to == UeEk 511 keV. The general relativistic relation between 
the total energy E of the particle with the rest energy E0 and its momentum p has the 
following form: 

222
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where c denotes the velocity of light. 

The total energy of considered particles is equal to the sum of their rest and kinetic 
energies: 

kEEE += 0 . 

Using these formulae and knowing that in our case ek EUeE == , we determine the 
momenta of the electrons (p) and the protons (p’). We get:  

a) electrons: 
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b) protons 
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It is worthwhile to notice that our protons are 'almost classical', because their kinetic 
energy )( ek EE =  is small compared to the proton rest energy pE . Thus, one can expect that 
the momentum of the proton can be determined, with a good accuracy, from the classical 
considerations. We have: 
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On the other hand, the momentum of the proton determined from the relativistic 
formulae can be written in a simpler form since Ep/Ee » 1. We get: 

.212121'
22

pe
e

pe

e

pe

e

p

e

pe EE
cE

E
c
E

E
E

c
E

E
E

E
E

c
Ep =≈+=








−








+=  

In accordance with our expectations, we have obtained the same result as above. 
PART  B 

The resolving power of the microscope (in the meaning mentioned in the text of the 
problem) is proportional to the wavelength, in our case to the length of the de Broglie wave: 

p
h

=λ  

where h denotes the Planck constant and p is the momentum of the particle. We see that λ  is 
inversely proportional to the momentum of the particle. Therefore, after replacing the electron 
beam with the proton beam the resolving power will be changed by the factor p/p' ≈1/35. It 
means that our proton microscope would allow observation of the objects about 35 times 
smaller than the electron microscope. 
 

Marking scheme 
 
1. the relativistic equation of motion     1 point 
2. independence of p and v of the time     1 point 
3. identity of eB/p in both cases     2 points 
4. scaling of the fields and the currents with the same factor  1 point 
5. determination of the momenta (relativistically)   1 point 
6. the ratio of the momenta (numerically)    1 point 
7. proportionality of the resolving power toλ     1 point 
8. inverse proportionality of λ  to p     1 point 
9. scaling of the resolving power     1 point 
 
Remarks and typical mistakes in the pupils' solutions 
 

Some of the participants tried to solve the problem by using laws of classical mechanics 
only. Of course, this approach was entirely wrong. Some students tried to find the required 
condition by equating "accelerations" of particles in both cases. They understood the 
"acceleration" of the particle as a ratio of the force acting on the particle to the "relativistic" 
mass of the particle. This approach is incorrect. First, in relativistic physics the relationship 
between force and acceleration is more complicated. It deals with not one "relativistic" mass, 



but with two "relativistic" masses: transverse and longitudinal. Secondly, identity of 
trajectories need not require equality of accelerations. 

The actual condition, i.e. the identity of eB/p in both cases, can be obtained from the 
following two requirements: 

1° in any given point of the trajectory the curvature should be the same in both cases; 
2° in the vicinity of any given point the plane containing a small arc of the trajectory 

should be oriented in space in both cases in the same way. 

Most of the students followed the approach described just above. Unfortunately, many 
forgot about the second requirement (they neglected the vector character of the quantity eB/p). 
 

 
EXPERIMENTAL PROBLEM1

 
 

The following equipment is provided: 

1. Two piezoelectric discs of thickness 10 mm with evaporated electrodes (Fig. 4.1) fixed in 
holders on the jaws of the calipers; 
 
 
 
 
 
 
    Fig. 4.1 
 
 
 
 
 
 
2. The calibrated sine wave oscillator with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
3. A double channel oscilloscope with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
4. Two closed plastic bags containing liquids; 
5. A beaker with glycerin (for wetting the discs surfaces to allow better mechanical coupling); 
6. Cables and a three way connector; 
7. A stand for support the bags with the liquids; 
8. Support and calipers. 

A piezoelectric material changes its linear dimensions under the influence of an electric 
field and vice-versa, the distortion of a piezoelectric material induces an electrical field. 
Therefore, it is possible to excite the mechanical vibrations in a piezoelectric material by 
applying an alternating electric field, and also to induce an alternating electric field by 
mechanical vibrations. 

 
1  The Organizing Committee planned to give another experimental problem: a problem on high Tc 
superconductivity. Unfortunately, the samples of superconductors, prepared that time by a factory, were of very 
poor quality. Moreover, they were provided after a long delay. Because of that the organizers decided to use this 
problem, which was also prepared, but considered as a second choice. 

 10 mm 

   Electrodes 



A. Knowing that the velocity of longitudinal ultrasonic waves in the material of the disc 
is about 3104 ⋅  m/s, estimate roughly the resonant frequency of the mechanical vibrations 
parallel to the disc axis. Assume that the disc holders do no restrict the vibrations. (Note that 
other types of resonant vibrations with lower or higher frequencies may occur in the discs.) 

 Using your estimation, determine experimentally the frequency for which the 
piezoelectric discs work best as a transmitter-receiver set for ultrasound in the liquid. Wetting 
surfaces of the discs before putting them against the bags improves penetration of the liquid in 
the bag by ultrasound. 

B. Determine the velocity of ultrasound for both liquids without opening the bags and 
estimate the error. 

C. Determine the ratio of the ultrasound velocities for both liquids and its error. 

Complete carefully the synopsis sheet. Your report should, apart from the synopsis 
sheet, contain the descriptions of:  

- method of resonant frequency estimation; 
- methods of measurements; 
- methods of estimating errors of the measured quantities and of final results. 

Remember to define all the used quantities and to explain the symbols. 

 

Synopsis Sheet1

A 

 

Formula for estimating the resonant frequency: 

 

Results (with units): 

Measured best transmitter frequency (with units): 

 

Error: 

B 

Definition of measured quantity: 

 

 

 

Symbol: Results: Error: 

Final formula for ultrasound velocity in liquid: 

 

           Velocity of ultrasound (with units): Error: 

Liquid A   

Liquid B   

 
Ratio of velocities: 

 
Error: 

 

Solution (draft)1

 
1 In the real Synopsis Sheet the students had more space for filling. 

 



 
 A. As the holders do not affect vibrations of the disc we may expect antinodes on the 

flat surfaces of the discs (Fig. 4.2; geometric proportions not conserved). One of the 
frequencies is expected for  

 

f
vl

22
1 == λ , 

 
where v  denotes the velocity of longitudinal ultrasonic wave (its value is given in the text of 
the problem), f  - the frequency and l  - the thickness of the disc. Thus: 

 

l
vf
2

= . 

 
Numerically 5102 ⋅=f Hz = 200 kHz. 

 

  

 

 

 

 

                                                                                                                     

 
 

 
 

Fig. 4.2 

 One should stress out that different modes of vibrations can be excited in the disc with 
height comparable to its diameter. We confine our considerations to the modes related to 
longitudinal waves moving along the axis of the disc as the sound waves in liquids are 
longitudinal. We neglect coupling between different modes and require antinodes exactly at 
the flat parts of the disc. We assume also that the piezoelectric effect does not affect velocity 
of ultrasound. For these reasons the frequency just determined should be treated as only a 
rough approximation. However, it indicates that one should look for the resonance in vicinity 
of 200 kHz. 

The experimental set-up is shown in Fig. 4.3. The oscillator (generator) is connected to 
one of the discs that works as a transmitter and to one channel of the oscilloscope. The second 
disc is connected to the second channel of the oscilloscope and works as a receiver. Both discs 
are placed against one of the bags with liquid (Fig. 4.4). The distance d  can be varied. 

 

                                                                                                                                                         
1 This draft solution is based on the camera-ready text of the more detailed solution prepared by Dr. Andrzej 
Kotlicki and published in the proceedings [3] 

Axis of 
the disc 

l = λ/2 

Mode considered in the problem 
(schematically) 



 

 
 
 
 

 

 

 

 

 
Fig. 4.3 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 4.4 

One searches for the resonance by slowly changing the frequency of the oscillator in the 
range 100 – 1000 kHz and watching the signal on the oscilloscope. In this way the students 
could find a strong resonance at frequency 220≈f  kHz. Other resonance peaks could be 
found at about 110 kHz and 670 kHz. They should have been neglected as they are 
substantially weaker. (They correspond to some other modes of vibrations.) Accuracy of these 
measurements was 10 kHz (due to the width of the resonance and the accuracy of the scale on 
the generator).  

 B. The ultrasonic waves pass through the liquid and generate an electric signal in the 
receiver. Using the same set-up (Fig. 4.3 and 4.4) we can measure dependence of the phase 
shift between the signals at Y1 and Y2 vs. distance between the piezoelectric discs d  at the 
constant frequency found in point A. This phase shift is 0/2 ϕπϕ +=∆ lvdf , where lv  denotes 
velocity of ultrasound in the liquid. 0ϕ  denotes a constant phase shift occurring when 
ultrasound passes trough the bag walls (possibly zero). The graph representing dependence 

)( ϕ∆d  should be a straight line. Its slope allows to determine lv  and its error. In general, the 

  d 

Bag with liquid 

Oscilloscope 
 

 
Oscillator 

(Generator) 

 

  d 

Y1 

Y2 



measurements of ϕ∆  are difficult for many reflections in the bag, which perturb the signal. 
One of the best ways is to measure d only for πϕ n=∆  (n - integer) as such points can be 
found rather easy.  Many technical details concerning measurements can be found in [3] (pp. 
37 and 38). 

The liquids given to the students were water and glycerin. In the standard solution the 
author of the problem received the following values: 

vwater = 310)10.050.1( ⋅±  m/s;   vglycerin = 310)10.096.1( ⋅±  m/s. 

The ratio of these values was 15.031.1 ± . 

The ultrasonic waves are partly reflected or scattered by the walls of the bag. This effect 
somewhat affects measurements of the phase shift. To minimize its role one can measure the 
phase shift (for a given distance) or distance (at the same phase shift) several times, each time 
changing the shape of the bag. As regards errors in determination of velocities it is worth to 
mention that the most important factor affecting them was the error in determination of the 
frequency. This error, however, practically does not affect the ratio of velocities. 

 
Marking Scheme 
 
Frequency estimation 

1. Formula           1 point 
2. Result (with units)          1 point 
3. Method of experimental determining the resonance frequency    1 point 
4. Result (if within 5% of standard value)       2 points 
5. Error           1 point 

Measurements of velocities 
1. Explanation of the method        2 points 
2. Proper number of measurements in each series       3 points 
3. Result for velocity in the first liquid (if within 5% of standard value)     2 points 
4. Error of the above          1 point 
5. Result for velocity in the second liquid (if within 5% of standard value) 2 points 
6. Error of the above          1 point 

Ratio of velocities 
1. Result (if within 3% of standard value)       2 points 
2. Error of the above          1 point 

 
Typical mistakes 
 
The results of this problem were very good (more than a half of competitors obtained 

more than 15 points). Nevertheless, many students encountered some difficulties in estimation 
of the frequency. Some of them assumed presence of nodes at the flat surfaces of the discs 
(this assumption is not adequate to the situation, but accidentally gives proper formula). In 
part B some students tried to find distances between nodes and antinodes for ultrasonic 
standing wave in the liquid. This approach gave false results as the pattern of standing waves 
in the bag is very complicated and changes when the shape of the bag is changed. 
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Figure 1    Diffraction of a parallel X-ray beam along the z-axis.
The angle between the crystal and the y-axis is �.
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Figure 2. The cubic latice of
Potassium Chloride in which
the K+ and Cl-wons have
almost the same size.

Figure 3.  Scattering of X-rays by a powder of KCl crystals
results in the production of concentric dark circles on a
photographic plate.

Figure 1    The spaceship Atlantis (A) with a satellite
(S) in an orbit around the earth. The orbit lies in the
earth’s equatorial plane.
The magnetic field (B) is perpendicular to the
diagram and is directed towards the reader.
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Figure 1 time (days) -->

A sudden change in the shape of the crust of a
neutron star results in a sudden change of the
angular velocity.
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Figure 2    The experimental setup: a board and the
two boxes containing the LED and the photo-diode.
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