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Abstract

The article contains the competition problems given at he 1% International Physics
Olympiad (Warsaw, 1967) and their solutions. Additionally it contains comments of historical
character.

Introduction

One of the most important points when preparing the students to the International
Physics Olympiads is solving and analysis of the competition problems given in the past.
Unfortunately, it is very difficult to find appropriate materials. The proceedings of the
subsequent Olympiads are published starting from the XV IPhO in Sigtuna (Sweden, 1984). It
is true that some of very old problems were published (not always in English) in different
books or articles, but they are practically unavailable. Moreover, sometimes they are more or
less substantially changed.

The original English versions of the problems of the 1% IPhO have not been conserved.
The permanent Secretariat of the IPhOs was created in 1983. Until this year the Olympic
materials were collected by different persons in their private archives. These archives as a rule
were of amateur character and practically no one of them was complete. This article is based
on the books by R. Kunfalvi [1], Tadeusz Pniewski [2] and Waldemar Gorzkowski [3].
Tadeusz Pniewski was one of the members of the Organizing Committee of the Polish
Physics Olympiad when the 1% IPhO took place, while R. Kunfalvi was one of the members
of the International Board at the 1% IPhO. For that it seems that credibility of these materials
is very high. The differences between versions presented by R. Kunfalvi and T. Pniewski are
rather very small (although the book by Pniewski is richer, especially with respect to the
solution to the experimental problem).

As regards the competition problems given in Sigtuna (1984) or later, they are
available, in principle, in appropriate proceedings. “In principle” as the proceedings usually
were published in a small number of copies, not enough to satisfy present needs of people
interested in our competition. It is true that every year the organizers provide the permanent
Secretariat with a number of copies of the proceedings for free dissemination. But the needs
are continually growing up and we have disseminated practically all what we had.

The competition problems were commonly available (at least for some time) just only
from the XXVI IPhO in Canberra (Australia) as from that time the organizers started putting
the problems on their home pages. The Olympic home page www.jyu.fi/ipho contains the
problems starting from the XXVIII IPhO in Sudbury (Canada). Unfortunately, the problems
given in Canberra (XXVI IPhO) and in Oslo (XXVII IPhO) are not present there.

The net result is such that finding the competition problems of the Olympiads
organized prior to Sudbury is very difficult. It seems that the best way of improving the
situation is publishing the competition problems of the older Olympiads in our journal. The
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question arises, however, who should do it. According to the Statutes the problems are created
by the local organizing committees. It is true that the texts are improved and accepted by the
International Board, but always the organizers bear the main responsibility for the topics of
the problems, their structure and quality. On the other hand, the glory resulting of high level
problems goes to them. For the above it is absolutely clear to me that they should have an
absolute priority with respect to any form of publication. So, the best way would be to publish
the problems of the older Olympiads by representatives of the organizers from different
countries.

Poland organized the IPhOs for thee times: I IPhO (1967), VII IPhO (1974) and XX
IPhO (1989). So, | have decided to give a good example and present the competition problems
of these Olympiads in three subsequent articles. At the same time | ask our Colleagues and
Friends from other countries for doing the same with respect to the Olympiads organized in
their countries prior to the XXVIII IPhO (Sudbury).

I IPhO (Warsaw 1967)

The problems were created by the Organizing Committee. At present we are not able
to recover the names of the authors of the problems.

Theoretical problems
Problem 1

A small ball with mass M = 0.2 kg rests on a vertical column with height h = 5m. A
bullet with mass m = 0.01 kg, moving with velocity v, = 500 m/s, passes horizontally through
the center of the ball (Fig. 1). The ball reaches the ground at a distance s = 20 m. Where does
the bullet reach the ground? What part of the kinetic energy of the bullet was converted into
heat2 when the bullet passed trough the ball? Neglect resistance of the air. Assume that g = 10
m/s”.

o —» M
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Fig. 1




Solution

o —> M ) ]
m Vo v — horizontal component of the velocity
of the bullet after collision
V - horizontal component of the velocity
of the ball after collision
h

Fig. 2
We will use notation shown in Fig. 2.

As no horizontal force acts on the system ball + bullet, the horizontal component of
momentum of this system before collision and after collision must be the same:

mv, = mv+MV.

So,

v:vo—%v.

From conditions described in the text of the problem it follows that
v>V.
After collision both the ball and the bullet continue a free motion in the gravitational

field with initial horizontal velocities v and V, respectively. Motion of the ball and motion of
the bullet are continued for the same time:



It is time of free fall from height h.
The distances passed by the ball and bullet during time t are:

s=Vt and d=vt,

respectively. Thus

V=s i.
2h
Therefore
V=V, ——S 9
m V2h
Finally:
d=v, /Z_h —Ms.
g m
Numerically:
d =100 m.
The total kinetic energy of the system was equal to the initial kinetic energy of the
bullet:
mv;
E,=—>
° 2

Immediately after the collision the total kinetic energy of the system is equal to the
sum of the kinetic energy of the bullet and the ball:

2 2
E :mv’ EM:M;/ .

Their difference, converted into heat, was
AE=E,-(E,+E,).
It is the following part of the initial kinetic energy of the bullet:

_AE_, EntEy
EO EO
By using expressions for energies and velocities (quoted earlier) we get



Numerically:
p =92,8%.

Problem 2

Consider an infinite network consisting of resistors (resistance of each of them is r)
shown in Fig. 3. Find the resultant resistance R,; between points A and B.

Solution

It is easy to remark that after removing the left part of the network, shown in Fig. 4
with the dotted square, then we receive a network that is identical with the initial network (it
is result of the fact that the network is infinite).

A | | | | |
r r r
r r r
B ____________
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Fig. 5



Algebraically this equivalence can be written as

1
RAB:r+1

1,1
r RAB
Thus

R —TR,, —r?=0.
This equation has two solutions:

R, =1(1%+/5)r.

The solution corresponding to “-“ in the above formula is negative, while resistance
must be positive. So, we reject it. Finally we receive

R = 1(1++/5)r.
Problem 3

Consider two identical homogeneous balls, A and B, with the same initial
temperatures. One of them is at rest on a horizontal plane, while the second one hangs on a
thread (Fig. 6). The same quantities of heat have been supplied to both balls. Are the final
temperatures of the balls the same or not? Justify your answer. (All kinds of heat losses are
negligible.)

Fig. 6
Solution

Fig. 7

As regards the text of the problem, the sentence “The same quantities of heat have
been supplied to both balls.” is not too clear. We will follow intuitive understanding of this



sentence, i.e. we will assume that both systems (A — the hanging ball and B — the ball resting
on the plane) received the same portion of energy from outside. One should realize, however,
that it is not the only possible interpretation.

When the balls are warmed up, their mass centers are moving as the radii of the balls
are changing. The mass center of the ball A goes down, while the mass center of the ball B
goes up. It is shown in Fig. 7 (scale is not conserved).

Displacement of the mass center corresponds to a change of the potential energy of the
ball in the gravitational field.

In case of the ball A the potential energy decreases. From the 1% principle of
thermodynamics it corresponds to additional heating of the ball.

In case of the ball B the potential energy increases. From the 1% principle of
thermodynamics it corresponds to some “losses of the heat provided” for performing a
mechanical work necessary to rise the ball. The net result is that the final temperature of the
ball B should be lower than the final temperature of the ball A.

The above effect is very small. For example, one may find (see later) that for balls
made of lead, with radius 10 cm, and portion of heat equal to 50 kcal, the difference of the
final temperatures of the balls is of order 10° K. For spatial and time fluctuations such small
quantity practically cannot be measured.

Calculation of the difference of the final temperatures was not required from the
participants. Nevertheless, we present it here as an element of discussion.

We may assume that the work against the atmospheric pressure can be neglected. It is
obvious that this work is small. Moreover, it is almost the same for both balls. So, it should
not affect the difference of the temperatures substantially. We will assume that such quantities
as specific heat of lead and coefficient of thermal expansion of lead are constant (i.e. do not
depend on temperature).

The heat used for changing the temperatures of balls may be written as

Q; =mcAt;, where i=AorB,

Here: m denotes the mass of ball, ¢ - the specific heat of lead and At; - the change of the
temperature of ball.

The changes of the potential energy of the balls are (neglecting signs):

AE; =mgroAt;, where i=A orB.

Here: g denotes the gravitational acceleration, r - initial radius of the ball, « - coefficient of
thermal expansion of lead. We assume here that the thread does not change its length.

Taking into account conditions described in the text of the problem and the
interpretation mentioned at the beginning of the solution, we may write:

Q=Q, - AAE,, fortheball A,
Q=0Q; + AAE;, fortheball B.

. I . . .
A denotes the thermal equivalent of work: A= 0.24%. In fact, A is only a conversion ratio

between calories and joules. If you use a system of units in which calories are not present, you
may omit A at all.



Thus

Q=(mc—Amgra)At,, fortheball A,
Q=(mc+ Amgra)At,, for the ball B

and
My=— 2 a2
mc — Amgroa mc + Amgro
Finally we get
At=At, —At, = — 2Agra Zgz 2Angra.
c’—(Agra) - m mc

(We neglected the term with «* as the coefficient o is very small.)

Now we may put the numerical values: Q=50 kcal, A~0.24 cal/J, g~9.8m/s’,

m =~ 47 kg (mass of the lead ball with radius equal to 10 cm), r=0.1 m, ¢ ~0.031cal/(g-K),
a ~29-10° K. After calculations we get At ~1.5-10° K.

Problem 4

Comment: The Organizing Committee prepared three theoretical problems. Unfortunately, at
the time of the 1% Olympiad the Romanian students from the last class had the entrance
examinations at the universities. For that Romania sent a team consisting of students from
younger classes. They were not familiar with electricity. To give them a chance the
Organizers (under agreement of the International Board) added the fourth problem presented
here. The students (not only from Romania) were allowed to chose three problems. The
maximum possible scores for the problems were: 1% problem — 10 points, 2" problem — 10
points, 3" problem — 10 points and 4™ problem — 6 points. The fourth problem was solved by
8 students. Only four of them solved the problem for 6 points.

A closed vessel with volume V, = 10 | contains dry air in the normal conditions (ty =
0°C, po =1 atm). In some moment 3 g of water were added to the vessel and the system was
warmed up to t = 100°C. Find the pressure in the vessel. Discuss assumption you made to
solve the problem.

Solution

The water added to the vessel evaporates. Assume that the whole portion of water
evaporated. Then the density of water vapor in 100°C should be 0.300 g/I. It is less than the
density of saturated vapor at 100°C equal to 0.597 g/l. (The students were allowed to use
physical tables.) So, at 100°C the vessel contains air and unsaturated water vapor only
(without any liquid phase).

Now we assume that both air and unsaturated water vapor behave as ideal gases. In
view of Dalton law, the total pressure p in the vessel at 100°C is equal to the sum of partial
pressures of the air p, and unsaturated water vapor p,:



P=Pa+P-

As the volume of the vessel is constant, we may apply the Gay-Lussac law to the air.

We obtain:
B (273+t]
pa - pO 273 -

The pressure of the water vapor may be found from the equation of state of the ideal

gas:

vaO _ m R
273+t u

where m denotes the mass of the vapor, « - the molecular mass of the water and R — the
universal gas constant. Thus,

m_ 273+t
pv =—R
H Vo
and finally
273+t m _ 273+t
P =P +—R :
2713 u VvV,
Numerically:

p=(1.366+0.516) atm ~1.88 atm.

Experimental problem
The following devices and materials are given:

Balance (without weights)
Calorimeter
Thermometer
Source of voltage
Switches

Wires

Electric heater
Stop-watch

. Beakers

10. Water

11. Petroleum

12. Sand (for balancing)

oSN~ wWN PR

Determine specific heat of petroleum. The specific heat of water is 1 cal/(g-°C). The
specific heat of the calorimeter is 0.092 cal/(g-°C).
Discuss assumptions made in the solution.



Solution

The devices given to the students allowed using several methods. The students used
the following three methods:

1. Comparison of velocity of warming up water and petroleum;
2. Comparison of cooling down water and petroleum;
3. Traditional heat balance.

As no weights were given, the students had to use the sand to find portions of petroleum
and water with masses equal to the mass of calorimeter.

First method: comparison of velocity of warming up

If the heater is inside water then both water and calorimeter are warming up. The heat
taken by water and calorimeter is:

Q, =m,c,At, + m_C.At,,

where: m,, denotes mass of water, m - mass of calorimeter, c - specific heat of water, c_-

specific heat of calorimeter, At,- change of temperature of the system water + calorimeter.
On the other hand, the heat provided by the heater is equal:

Q.= A?Tw

where: A — denotes the thermal equivalent of work, U — voltage, R — resistance of the heater,
71 — time of work of the heater in the water.
Of course,

Q1 = Qz-
Thus

U 2
A?rl =m,C,At; + m.C At .

For petroleum in the calorimeter we get a similar formula:

U 2
A?r2 =m,C,At, + m.C AL,.

where: m_ denotes mass of petroleum, c, - specific heat of petroleum, At, - change of
temperature of the system water + petroleum, z — time of work of the heater in the petroleum.

By dividing the last equations we get



r,  m,C,At +m.c At
T, MC,At, +mCAL,

It is convenient to perform the experiment by taking masses of water and petroleum equal
to the mass of the calorimeter (for that we use the balance and the sand). For

m, =m, =m,
the last formula can be written in a very simple form:

7, C,AL +CAL

T, C,At,+CAt,

Thus
c AT [ AL T,
C o ALY T, At )¢
or
k k
C. :—10W—[ ——1jcc,
k2 k2
where
kl:ﬁ and k, AL
(2} P

denote “velocities of heating” water and petroleum, respectively. These quantities can be
determined experimentally by drawing graphs representing dependence At,and At, on time
(7). The experiment shows that these dependences are linear. Thus, it is enough to take slopes
of appropriate straight lines. The experimental setup given to the students allowed
measurements of the specific heat of petroleum, equal to 0.53 cal/(g°-C), with accuracy about
1%.

Some students used certain mutations of this method by performing measurements at
At,= At, orat 7, =7,. Then, of course, the error of the final result is greater (it is additionally

affected by accuracy of establishing the conditions At,= At, orat 7, =7,).

Second method: comparison of velocity of cooling down

Some students initially heated the liquids in the calorimeter and later observed their
cooling down. This method is based on the Newton’s law of cooling. It says that the heat Q
transferred during cooling in time 7 is given by the formula:

Q=h(t-9)sr,

where: t denotes the temperature of the body, 9 - the temperature of surrounding, s — area of
the body, and h — certain coefficient characterizing properties of the surface. This formula is



correct for small differences of temperatures t—4 only (small compared to t and 4 in the
absolute scale).

This method, like the previous one, can be applied in different versions. We will
consider only one of them.

Consider the situation when cooling of water and petroleum is observed in the same
calorimeter (containing initially water and later petroleum). The heat lost by the system water
+ calorimeter is

AQ, =(m,cC, +m.C,)At,

where At denotes a change of the temperature of the system during certain period z,. For the

system petroleum + calorimeter, under assumption that the change in the temperature At is
the same, we have

AQ, =(m,c, +m., )At.

Of course, the time corresponding to At in the second case will be different. Let it be z,.
From the Newton's law we get

AQ, T

AQ, T, .

Thus

If we conduct the experiment at

then we get

T T
C, =—C, —[1——2)%.
Tl Tl

As cooling is rather a very slow process, this method gives the result with definitely
greater error.

Third method: heat balance

This method is rather typical. The students heated the water in the calorimeter to certain
temperature t, and added the petroleum with the temperature t,. After reaching the thermal

equilibrium the final temperature was t. From the thermal balance (neglecting the heat losses)
we have



(mwcw + mccc)(tl _t) = mpcp(t _tz)-

If, like previously, the experiment is conducted at

m, =m,=m,,
then

t, —t

C, :(CW+C°)t—t2 :

In this methods the heat losses (when adding the petroleum to the water) always played a
substantial role.

The accuracy of the result equal or better than 5% can be reached by using any of the
methods described above. However, one should remark that in the first method it was easiest.
The most common mistake was neglecting the heat capacity of the calorimeter. This mistake
increased the error additionally by about 8%.

Marks

No marking schemes are present in my archive materials. Only the mean scores are
available. They are:

Problem # 1 7.6 points
Problem # 2 7.8 points (without the Romanian students)
Problem # 3 5.9 points
Experimental problem 7.7 points
Thanks

The author would like to express deep thanks to Prof. Jan Mostowski and Dr. Yohanes
Surya for reviewing the text and for valuable comments and remarks.
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Problems of the 2" International Physics Olympiads
(Budapest, Hungary, 1968)

Péter Vankéd
Institute of Physics, Budapest University of Technical Engineering, Budapest, Hungary

Abstract

After a short introduction the problems of the 2™ and the 9™ International Physics Olympiad, organized
in Budapest, Hungary, 1968 and 1976, and their solutions are presented.

Introduction

Following the initiative of Dr. Waldemar Gorzkowski [1] | present the problems and
solutions of the 2" and the 9™ International Physics Olympiad, organized by Hungary. | have
used Prof. Rezsé Kunfalvi’s problem collection [2], its Hungarian version [3] and in the case
of the 9™ Olympiad the original Hungarian problem sheet given to the students (my own
copy). Besides the digitalization of the text, the equations and the figures it has been made
only small corrections where it was needed (type mistakes, small grammatical changes). I
omitted old units, where both old and SI units were given, and converted them into Sl units,
where it was necessary.

If we compare the problem sheets of the early Olympiads with the last ones, we can
realize at once the difference in length. It is not so easy to judge the difficulty of the problems,
but the solutions are surely much shorter.

The problems of the 2" Olympiad followed the more than hundred years tradition of
physics competitions in Hungary. The tasks of the most important Hungarian theoretical
physics competition (E6tvos Competition), for example, are always very short. Sometimes the
solution is only a few lines, too, but to find the idea for this solution is rather difficult.

Of the 9" Olympiad | have personal memories; | was the youngest member of the
Hungarian team. The problems of this Olympiad were collected and partly invented by
Mikldés Vermes, a legendary and famous Hungarian secondary school physics teacher. In the
first problem only the detailed investigation of the stability was unusual, in the second
problem one could forget to subtract the work of the atmospheric pressure, but the fully
“open” third problem was really unexpected for us.

The experimental problem was difficult in the same way: in contrast to the Olympiads
of today we got no instructions how to measure. (In the last years the only similarly open
experimental problem was the investigation of “The magnetic puck” in Leicester, 2000, a
really nice problem by Cyril Isenberg.) The challenge was not to perform many-many
measurements in a short time, but to find out what to measure and how to do it.

Of course, the evaluatin% of such open problems is very difficult, especially for several
hundred students. But in the 9" Olympiad, for example, only ten countries participated and
the same person could read, compare, grade and mark all of the solutions.



2" IPhO (Budapest, 1968)

Theoretical problems

Problem 1

On an inclined plane of 30° a block, mass m, = 4 kg, is joined by a light cord to a solid
cylinder, mass m; = 8 kg, radius r = 5 cm (Fig. 1). Find the acceleration if the bodies are
released. The coefficient of friction between the block and the inclined plane x = 0.2. Friction
at the bearing and rolling friction are negligible.

1L M,gCcosa

my

Figure 1 Figure 2

Solution

If the cord is stressed the cylinder and the block are moving with the same
acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and
the inclined plane (Fig. 2). The angular acceleration of the cylinder is a/r. The net force
causing the acceleration of the block:

m,a=m,gsina — um,gcosa + F,
and the net force causing the acceleration of the cylinder:
ma=mgsina—-S—F.

The equation of motion for the rotation of the cylinder:

a
Sr=—-1.
r

(I'is the moment of inertia of the cylinder, S-r is the torque of the frictional force.)
Solving the system of equations we get:

(m, +m, )sin & — zm, cosax

a:g~ I 1 (1)
m1+m2+r—2
| m, +m, )sina — cosa
S=r_z'g'( ,+m,) ﬂlmz ’ )
m, +m, +—
r



| Isina
M ml +F COSo — r2
: 3)

F=m2g' I
m,+m, +—
r

2
o : : . m,r . : .
The moment of inertia of a solid cylinderis I = 12 . Using the given numerical values:

(m, +m, )sin & — zm, cosa

a=g- =0.3317g =3.25 m/s?,
J 1.5m, +m, J /
5 - Mg (m,+m,)sing — um, cosa _1301N,
2 1.5m, +m,
Fomg. (1.54.c0scx —0.5sin e )m, 0492 N.
1.5m, +m,

Discussion (See Fig. 3.)

The condition for the system to start moving is a > 0. Inserting a = 0 into (1) we
obtain the limit for angle o:

m,

tana, = u-
m, +m,

£ -00667, a,=381°.
3
For the cylinder separately «, =0, and for the block separately «, =tan™ z=11.31°.
If the cord is not stretched the bodies move separately. We obtain the limit by
inserting F = 0 into (3):

2

tana, =y-[1+ mllr J:sﬂ:o.es, a, =30.96°.

The condition for the cylinder to Ar, a
slip is that the value of S (calculated from
(2) taking the same coefficient of friction)
exceeds the value of um gcose . This gives
the same value for a3 as we had for a,. The
acceleration of the centers of the cylinder
and the block is the same:

g(sina — ucosea), the frictional force at the
bottom of the cylinder is gm,gcose, the /

peripheral acceleration of the cylinder is 0
2

m,r
H- | "gCoscx . Figure 3

g4 [24]

Problem 2

There are 300 cm® toluene of 0°C temperature in a glass and 110 cm® toluene of
100°C temperature in another glass. (The sum of the volumes is 410 cm®) Find the final
volume after the two liquids are mixed. The coefficient of volume expansion of toluene

S =0.001(°C)™. Neglect the loss of heat.



Solution

If the volume at temperature t; is Vi, then the volume at temperature 0°C is
V,, =V, /(L+ Bt,). In the same way if the volume at t, temperature is V,, at 0°C we have
V,, =V, /(L+ Bt,). Furthermore if the density of the liquid at 0°C is d, then the masses are
m, =V,,d and m, =V,,d , respectively. After mixing the liquids the temperature is
{— m,t, + myt, .
m, +m,
The volumes at this temperature are V,,(1+ £t) and V,,(1+ Bt).
The sum of the volumes after mixing:
V10(1+ﬂt)+V20 (1+ﬂt):V10 +Vy +ﬁ(V10 +Vy )t =
m +m, mt +mpt,
d m, +m,
+

=V10+V20+ﬁ[ d d j=V10+ﬂ\/10t1+V20+13\/20t2:

:V10(1+ﬂtl)+V20(1+ﬁt2):Vl +V,

=V +Vy + B+

mt,  myt,

The sum of the volumes is constant. In our case it is 410 cm®. The result is valid for any
number of quantities of toluene, as the mixing can be done successively adding always one
more glass of liquid to the mixture.

Problem 3

Parallel light rays are falling on the plane surface of a semi-cylinder made of glass, at
an angle of 45°, in such a plane which is perpendicular to the axis of the semi-cylinder

(Fig. 4). (Index of refraction is V2 .) Where are the rays emerging out of the cylindrical
surface?

NN\

Figure 4 Figure 5

Solution

Let us use angle ¢ to describe the position of the rays in the glass (Fig. 5). According
to the law of refraction sin 45°/sin,3 =2, sinf =05, B=30°. The refracted angle is 30°

for all of the incoming rays. We have to investigate what happens if ¢ changes from 0° to
180°.



It is easy to see that ¢ can not be less than 60° ( AOB~Z =60°). The critical angle is
given by sin g, :1/n=\/§/2; hence g, =45°. In the case of total internal reflection

ACOZ =45°, hence ¢ =180°-60°—-45°=75°. If ¢ is more than 75° the rays can emerge
the cylinder. Increasing the angle we reach the critical angle again if OED./ =45°. Thus the
rays are leaving the glass cylinder if:

75° < @ <165°,
CE, arc of the emerging rays, subtends a central angle of 90°.

Experimental problem

Three closed boxes (black boxes) with two plug sockets on each are present for
investigation. The participants have to find out, without opening the boxes, what kind of
elements are in them and measure their characteristic properties. AC and DC meters (their
internal resistance and accuracy are given) and AC (50 Hz) and DC sources are put at the
participants’ disposal.

Solution

No voltage is observed at any of the plug sockets therefore none of the boxes contains
a source.

Measuring the resistances using first AC then DC, one of the boxes gives the same
result. Conclusion: the box contains a simple resistor. Its resistance is determined by
measurement.

One of the boxes has a very great resistance for DC but conducts AC well. It contains

1
@ X
The third box conducts both AC and DC, its resistance for AC is greater. It contains a

resistor and an inductor connected in series. The values of the resistance and the inductance
can be computed from the measurements.

a capacitor, the value can be computed as C =



3' International Physics Olympiad
1969, Brno, Czechoslovakia

Problem 1. Figure 1 shows a mechanical system consisting of three carts A,
B and C of masses m; = 0.3 kg, ms = 0.2 kg and mg = 1.5 kg respectively.
Carts B and A are connected by a light taut inelastic string which passes over
a light smooth pulley attaches to the cart C' as shown. For this problem, all
resistive and frictional forces may be ignored as may the moments of inertia
of the pulley and of the wheels of all three carts. Take the acceleration due
to gravity g to be 9.81 m s72.

C A

O O

Figure 1:

F

1. A horizontal force F is now applied to cart C' as shown. The size of F
is such that carts A and B remain at rest relative to cart C.

a) Find the tension in the string connecting carts A and B.

b) Determine the magnitude of F.

2. Later cart C' is held stationary, while carts A and B are released from
rest.

a) Determine the accelerations of carts A and B.

b) Calculate also the tension in the string.

1



Solution:

Case 1. The force F has so big magnitude that the carts A and B remain
at the rest with respect to the cart C, i.e. they are moving with the same
acceleration as the cart C' is. Let él, T1 and T2 denote forces acting on
particular carts as shown in the Figure 2 and let us write the equations of
motion for the carts A and B and also for whole mechanical system. Note
that certain internal forces (viz. normal reactions) are not shown.

Yy 15
B

_F . i
OO '@

Figure 2:

The cart B is moving in the coordinate system Ozy with an acceleration
a;. The only force acting on the cart B is the force T5, thus

T2 = M9 Ay . (]')
Since T} and Ty denote tensions in the same cord, their magnitudes satisfy
Th=T,.

The forces fl and 671 act on the cart A in the direction of the y-axis.
Since, according to condition 1, the carts A and B are at rest with respect
to the cart C' the acceleration in the direction of the y-axis equals to zero,
a, = 0, which yields

71 —mpg=0.

Consequently
T2 =miqg. (2)

So the motion of the whole mechanical system is described by the equation

F = (my +mg+m3)a,, (3)

2



because forces between the carts A and C' and also between the carts B
and C' are internal forces with respect to the system of all three bodies. Let
us remark here that also the tension 7?2 is the internal force with respect to
the system of all bodies, as can be easily seen from the analysis of forces
acting on the pulley. From equations (1) and (2) we obtain

my
Uy = —
ma

Substituting the last result to (3) we arrive at

m
F:(m1+m2+m3)—19.
mo

Numerical solution:
To=T1=03-981 N=294 N,

F:2-;~9.81N:29.4N.

Case 2. If the cart C is immovable then the cart A moves with an accelera-
tion a, and the cart B with an acceleration a,. Since the cord is inextensible
(i.e. it cannot lengthen), the equality

Uy = —Qy = Q

holds true. Then the equations of motion for the carts A, respectively B,
can be written in following form

leGl—mla, (4)
Th=msa. (5)

The magnitudes of the tensions in the cord again satisfy
T1 - T2 . (6>
The equalities (4), (5) and (6) immediately yield

(my+mg)a=myg.



Using the last result we can calculate

my
a4 =0, = —ay = ,

my + Mo

T, =T, = mammy
mi1 + mo

Numerical results:
3
a:ax:g-9.81 ms>2=>58)ms 2,
T, =T, =118 N

Problem 2. Water of mass msy is contained in a copper calorimeter of
mass m;. Their common temperature is to. A piece of ice of mass ms3 and
temperature t3 < 0°C is dropped into the calorimeter.

a) Determine the temperature and masses of water and ice in the equilib-
rium state for general values of my, mo, ms, t5 and t3. Write equilibrium
equations for all possible processes which have to be considered.

b) Find the final temperature and final masses of water and ice for m; =
1.00 kg, mo = 1.00 kg, ms = 2.00 kg, t, = 10°C, t3 = —20°C.

Neglect the energy losses, assume the normal barometric pressure. Specific
heat of copper is ¢; = 0.1 kcal/kg-°C, specific heat of water co = 1 keal /kg-°C,
specific heat of ice ¢z = 0.492 kcal/kg-°C, latent heat of fusion of ice | =
78,7 keal /kg. Take 1 cal = 4.2 J.

Solution:
We use the following notation:
t temperature of the final equilibrium state,
to = 0°C the melting point of ice under normal pressure conditions,
Mo, final mass of water,
Ms final mass of ice,

mf < my mass of water, which freezes to ice,
my < ms mass of ice, which melts to water.

a) Generally, four possible processes and corresponding equilibrium states
can occur:



1. t0<t<t2,m’2:O, mg:mg, M2:m2+m3, M5 = 0.
Unknown final temperature ¢ can be determined from the equation

(m101 + mQCQ)(tQ — t) = mgcg(to — t3> + m3l + mgCQ(t — to) . (7)

However, only the solution satisfying the condition t, < t < ty does
make physical sense.

2. 13 <t <ty, m’2:m2, mg:O, MQZO, M3 = mso + ms.
Unknown final temperature ¢ can be determined from the equation

micq (tg — t) + mQCQ(tQ — to) + mgl + m203(t0 — t) = m303<t — tg) . (8)

However, only the solution satisfying the condition t3 < t < ty does
make physical sense.

3. t=1to, myh=0,0<mfs <mg, My=mo+mj, Mg =msz—mj.
Unknown mass mj can be calculated from the equation

(m101 + mQCQ)(tQ — to) = mgcg(t — tg) + mél . (9)

However, only the solution satisfying the condition 0 < mj4 < mg does
make physical sense.

4. t =1y, 0 <mh < mgy, mhy =0, My =mg —mb, Mz =ms+mb.
Unknown mass m/, can be calculated from the equation

(m101 + mQCQ)(tQ — to) —+ m’2l = mgcg(to — tg) . (10)

However, only the solution satisfying the condition 0 < m{, < mgy does
make physical sense.

b) Substituting the particular values of my, ma, mg, to and t3 to equations (7),
(8) and (9) one obtains solutions not making the physical sense (not satisfying
the above conditions for ¢, respectively mj). The real physical process under
given conditions is given by the equation (10) which yields

o mgcg(to — tg) — (m161 + mQCQ)(tQ — to)
my = / .

Substituting given numerical values one gets m) = 0.11 kg. Hence, t = 0°C,
My = mgy —ml, = 0.89 kg, M3 = ms3 +m, = 2.11 kg.

5



Problem 3. A small charged ball of mass m and charge ¢ is suspended
from the highest point of a ring of radius R by means of an insulating cord of
negligible mass. The ring is made of a rigid wire of negligible cross section and
lies in a vertical plane. On the ring there is uniformly distributed charge @) of
the same sign as ¢q. Determine the length [ of the cord so as the equilibrium
position of the ball lies on the symmetry axis perpendicular to the plane of
the ring.

Find first the general solution a then for particular values Q = q =
9.0-108C,R=5cm,m=1.0g,& =89-107'2 F/m.

Solution:
In equilibrium, the cord is stretched in the direction of resultant force of G =
mg and F = qﬁ , where E stands for the electric field strength of the ring
on the axis in distance x from the plane of the ring, see Figure 3. Using the
triangle similarity, one can write

r  Eq

F e (11)

Figure 3:

For the calculation of the electric field strength let us divide the ring to
n identical parts, so as every part carries the charge ()/n. The electric field
strength magnitude of one part of the ring is given by

Q

B Aregl?n

AE



R l
o AFE,
T 1
AE, AiE
Figure 4:

This electric field strength can be decomposed into the component in the
direction of the z-axis and the one perpendicular to the z-axis, see Figure 4.
Magnitudes of both components obey
AFEx

l )

AFE, = AF cosa =
AFE, = AF sino.

It follows from the symmetry, that for every part of the ring there exists
another one having the component AE| of the same magnitude, but however
oppositely oriented. Hence, components perpendicular to the axis cancel each
other and resultant electric field strength has the magnitude

(12)

Substituting (12) into (11) we obtain for the cord length

l — 3 Q q R
dregmg
Numerically

I {5/9.0 -1078-9.0- 1078 - 5.0 - 102
B 4m-8.9-10712-1073-9.8

m=72-10"2m.

Problem 4. A glass plate is placed above a glass cube of 2 cm edges in
such a way that there remains a thin air layer between them, see Figure 5.

7



Electromagnetic radiation of wavelength between 400 nm and 1150 nm (for
which the plate is penetrable) incident perpendicular to the plate from above
is reflected from both air surfaces and interferes. In this range only two
wavelengths give maximum reinforcements, one of them is A = 400 nm. Find
the second wavelength. Determine how it is necessary to warm up the cube
so as it would touch the plate. The coefficient of linear thermal expansion is
a =8.0-1079°C~!, the refractive index of the air n = 1. The distance of the
bottom of the cube from the plate does not change during warming up.

L

d
h
Figure 5:

Solution:

Condition for the maximum reinforcement can be written as

Ak
2dn—7:k)\k, for k=0,1,2,...,

1.€.

A
2dn = (2k+1)7’“, (13)
with d being thickness of the layer, n the refractive index and k& maximum
order. Let us denote N = 1150 nm. Since for A = 400 nm the condition for
maximum is satisfied by the assumption, let us denote A, = 400 nm, where p

is an unknown integer identifying the maximum order, for which
Ap(2p+ 1) = 4dn (14)

holds true. The equation (13) yields that for fixed d the wavelength A
increases with decreasing maximum order k and vise versa. According to the

8



assumption,
)\p,1 <N < )\p,Q,

1.€.
4dn , 4dn

— <A< .

2p—1)+1 2p—2)+1
Substituting to the last inequalities for 4dn using (14) one gets

Ap(2p +1) / Ap(2p+1)

2(p—1)+1 2p—2)+1°
Let us first investigate the first inequality, straightforward calculations give
us gradually

M2p+1) < N(@2p—1), 2p(N =X) >N+,
i.€.
LAN+X, 11150 +400

- S = 1

P=5 NN, ~ 21150 — 400 (15)
Similarly, from the second inequality we have
M2p+1) > N(2p—3), 2p(N —)\,) <3N +X,,
7.€.

13N +A, 13-1150+ 400

— — = 1
P=5 NN ~ 2 1150 — 400 (16)

The only integer p satisfying both (15) and (16) is p = 2.
Let us now find the thickness d of the air layer:
A 400
d= Zp(Qp—l—l) = T(2-2+1) nm = 500 nm.
Substituting d to the equation (13) we can calculate A\,_1, i.e. A;:
4dn _ 4dn
2p—1)+1 2p—1
Introducing the particular values we obtain
4-500-1
M= ———
2.:2-1
Finally, let us determine temperature growth At. Generally, Al = alAt
holds true. Denoting the cube edge by h we arrive at d = ahAt. Hence

d 5-1077
ah  8-1076-.2-102

)\1:

nm = 666.7 nm .

At °C=3.1°C.



Problems of the IV International Olympiad, Moscow, 1970
The publication is prepared by Prof. S. Kozel & Prof. V.Orlov
(Moscow Institute of Physics and Technology)

The IV International Olympiad in Physics for schoolchildren took place in Moscow (USSR) in July
1970 on the basis of Moscow State University. Teams from 8 countries participated in the
competition, namely Bulgaria, Hungary, Poland, Romania, Czechoslovakia, the DDR, the SFR
Yugoslavia, the USSR. The problems for the theoretical competition have been prepared by the
group from Moscow University stuff headed by professor V.Zubov. The problem for the
experimental competition has been worked out by B. Zvorikin from the Academy of Pedagogical
Sciences.

It is pity that marking schemes were not preserved.

Theoretical Problems

Problem 1.

A long bar with the mass M = 1 kg is placed on a smooth horizontal surface of a table where it can
move frictionless. A carriage equipped with a motor can slide along the upper horizontal panel of
the bar, the mass of the carriage is m = 0.1 kg. The friction coefficient of the carriage is x = 0.02.
The motor is winding a thread around a shaft at a constant speed vo = 0.1 m/s. The other end of the
thread is tied up to a rather distant stationary support in one case (Fig.1, a), whereas in the other case
it is attached to a picket at the edge of the bar (Fig.1, b). While holding the bar fixed one allows the

carriage to start moving at the velocity V, then the bar is let loose.

m —

iz |

7 0
M

ik b/////// Z

Fig. 1 Fig. 2
By the moment the bar is released the front edge of the carriage is at the distance | = 0.5 m
from the front edge of the bar. For both cases find the laws of movement of both the bar and the
carriage and the time during which the carriage will reach the front edge of the bar.



Problem 2.

A unit cell of a crystal of natrium chloride (common salt- NaCl) is a cube with the edge length a =
5.6-10°m (Fig.2). The black circles in the figure stand for the position of natrium atoms whereas the
white ones are chlorine atoms. The entire crystal of common salt turns out to be a repetition of such
unit cells. The relative atomic mass of natrium is 23 and that of chlorine is 35,5. The density of the

common salt p =2.22-10% kg/m* . Find the mass of a hydrogen atom.

Problem 3.

Inside a thin-walled metal sphere with radius R=20 cm there is a metal ball with the radius r =10 cm
which has a common centre with the sphere. The ball is connected with a very long wire to the Earth
via an opening in the sphere (Fig. 3). A charge Q = 10°® C is placed onto the outside sphere. Calculate
the potential of this sphere, electrical capacity of the obtained system of conducting bodies and draw

out an equivalent electric scheme.

YL
\r]
[}

2
S
1

Fig. 3 Fig. 4

Problem 4.

A spherical mirror is installed into a telescope. Its lateral diameter is D=0,5 m and the radius of the
curvature R=2 m. In the main focus of the mirror there is an emission receiver in the form of a round
disk. The disk is placed perpendicular to the optical axis of the mirror (Fig.7). What should the radius
r of the receiver be so that it could receive the entire flux of the emission reflected by the mirror?
How would the received flux of the emission decrease if the detector’s dimensions decreased by 8
times?

Directions: 1) When calculating small values a (a<<1) one may perform a substitution

Vl-a =~ 1—%; 2) diffraction should not be taken into account.



Experimental Problem

Determine the focal distances of lenses.
List of instruments: three different lenses installed on posts, a screen bearing an image of a

geometric figure, some vertical wiring also fixed on the posts and a ruler.

Solutions of the problems of the IV International Olympiad, Moscow, 1970
Theoretical Competition

Problem 1.
a) By the moment of releasing the bar the carriage has a velocity v, relative to the table and continues
to move at the same velocity.

The bar, influenced by the friction force Fq = umg from the carriage, gets an acceleration
a=Fqs/ M =pumg/M; a=0.02m/s, while the velocity of the bar changes with time according to the
law vy, = at.

Since the bar can not move faster than the carriage then at a moment of time t = t, its
sliding will stop, that is vy, = vp. Let us determine this moment of time:

Vo _ Vo M
a umg

t, = 5s

By that moment the displacement of the Sb bar and the carriage Sc relative to the table will be equal to
_ YoM aty _ M

umg "2 2umg’

The displacement of the carriage relative to the bar is equal to

VeM
2umg
Since S<lI, the carriage will not reach the edge of the bar until the bar is stopped by an

S, =Vt

S=SC_Sb= =0.25m

immovable support. The distance to the support is not indicated in the problem condition so we can
not calculate this time. Thus, the carriage is moving evenly at the velocity vo = 0.1 m/s, whereas the
bar is moving for the first 5 sec uniformly accelerated with an acceleration a =0.02 m/s and then the
bar is moving with constant velocity together with the carriage.

b) Since there is no friction between the bar and the table surface the system of the bodies
“bar-carriage” is a closed one. For this system one can apply the law of conservation of momentum:

mv + Mu = mvp 1)



where v and u are projections of velocities of the carriage and the bar relative to the table onto the
horizontal axis directed along the vector of the velocity v,. The velocity of the thread winding v, is
equal to the velocity of the carriage relative to the bar (v-u), that is
Vo= V—u 2

Solving the system of equations (1) and (2) we obtain:

u=0, v=vp.
Thus, being released the bar remains fixed relative to the table, whereas the carriage will be moving
with the same velocity v, and will reach the edge of the bar within the time t equal to

t=1I/;=5s.

Problem 2.
Let’s calculate the quantities of natrium atoms (n;) and chlorine atoms (n;) embedded in a single
NaCl unit crystal cell (Fig.2).

One atom of natrium occupies the middle of the cell and it entirely belongs to the cell. 12
atoms of natrium hold the edges of a large cube and they belong to three more cells so as 1/4 part of
each belongs to the first cell. Thus we have

ny = 1+12-1/4 = 4 atoms of natrium per unit cell.

In one cell there are 6 atoms of chlorine placed on the side of the cube and 8 placed in the
vertices. Each atom from a side belongs to another cell and the atom in the vertex - to seven others.
Then for one cell we have

np,= 6-1/2 + 8- 1/8 = 4 atoms of chlorine.
Thus 4 atoms of natriun and 4 atoms of chlorine belong to one unit cell of NaCl crystal.
The mass m of such a cell is equal
m = 4(Ma + Micy) (@mu),
where mpn, and myc are relative atomic masses of natrium and clorine. Since the mass of hydrogen
atom my is approximately equal to one atomic mass unit: my=1.008 amu =~ 1 amu then the mass of
an unit cell of NaCl is
m = 4(Myna + Mrct) M .
On the other hand, it is equal m = pa®, hence
pa3

P 216710 7kg.
4(mrNa + erI)

m, =
Problem 3.

Having no charge on the ball the sphere has the potential

Pos = L g:450V.
4re, R




When connected with the Earth the ball inside the sphere has the potential equal to zero so there is
an electric field between the ball and the sphere. This field moves a certain charge g from the Earth to
the ball. Charge Q°, uniformly distributed on the sphere, doesn’t create any field inside thus the
electric field inside the sphere is defined by the ball’s charge g. The potential difference between the
balls and the sphere is equal

1 (g q
AP =0, —@. = 1 1 1
O =@, — @, 4”50(r Rj (1)

Outside the sphere the field is the same as in the case when all the charges were placed in its

center. When the ball was connected with the Earth the potential of the sphere ¢s is equal

_ 1 9+Q @)
* 4mg, R

Then the potential of the ball

1 (g+Q q q 1 (Q ¢
=p.+A\p=—"—| +—4+ 22 |=— | =Z4+21=0 3
Po =0 T2P 47[80( R r Rj Are, (R r] ®)

Which leads to
r
=-Q—. 4
q QR 4)

Substituting (4) into (2) we obtain for potential of the sphere to be found:

r
Q-Q_ _

0, = R__1 QR-1) oy
4re, R dre, R

The electric capacity of whole system of conductors is

2
c=Q 7R 4 q0up 44pF
o, R-—r
The equivalent electric scheme consists of two parallel capacitors: 1) a spherical one with charges
+q and —q at the plates and 2) a capacitor “sphere — Earth” with charges +(Q-q) and

—-(Q-q) at the plates (Fig.5).

P
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Fig. 5 Fig. 6




Problem 4.

As known, rays parallel to the main optical axis of a spherical mirror, passing at little distances from
it after having been reflected, join at the main focus of the mirror F which is at the distance R/2 from
the centre O of the spherical surface. Let us consider now the movement of the ray reflected near the
edge of the spherical mirror of large diameter D (Fig. 6). The angle of incidence o of the ray onto the
surface is equal to the angle of reflection. That is why the angle OAB within the triangle, formed by
the radius OA of the sphere, traced to the incidence point of the ray by the reflected ray AB and an
intercept BO of the main optical axis, is equal to .. The angles BOA and MAO are equal, that is the
angle BOA is equal to o.

Thus, the triangle AOB is isosceles with its side AB being equal to the side BO. Since the sum
of the lengths of its two other sides exceeds the length of its third side, AB+BO>0A=R, hence
BO>R/2. This means that a ray parallel to the main optical axis of the spherical mirror and passing not
too close to it, after having been reflected, crosses the main optical axis at the point B lying between
the focus F and the mirror. The focal surface is crossed by this ray at the point C which is at a certain
distance CF =r from the main focus.

Thus, when reflecting a parallel beam of rays by a spherical mirror finite in size it does not
join at the focus of the mirror but forms a beam with radius r on the focal plane.

From A BFC we can write :

r= BFtg S =BFtg 2a,

where « is the maximum angle of incidence of the extreme ray onto the mirror, while sin & = D/2R:
R R Rl-cosa

BF =BO-OF = =
2c0Sa 2 2 cosa

R1- in2 . - .
Thus, r=— CoSa sinca . Let us express the values of cos «, sin 2¢, cos 2« via sin «a taking

2 COSa COS2a

into account the small value of the angle a.:

=2
- sin’ a
cosa =+/1-sin‘a ~1- o

sin2a = 2sinacosa. ,
c0s2a =Cos%a — sina = 1 — 2sin’a.
Then

R sin‘a R ., D?
=——————=~—SiNar——.
21-2sin‘a 2 16R?

Substituting numerical data we will obtain: r ~ 1.95-10° m ~ 2mm .



From the expression D = W one can see that if the radius of the receiver is decreased 8
times the transversal diameter D’ of the mirror, from which the light comes to the receiver, will be
decreased 2 times and thus the “effective” area of the mirror will be decreased 4 times.

The radiation flux @ reflected by the mirror and received by the receiver will also be

decreased twice since ® ~ S.

Solution of the Experimental Problem

While looking at objects through lenses it is easy to establish that there were given two
converging lenses and a diverging one.

The peculiarity of the given problem is the absence of a white screen on the list of the
equipment that is used to observe real images. The competitors were supposed to determine the
position of the images by the parallance method observing the images with their eyes.

The focal distance of the converging lens may be determined by the following method.

d F Using a lens one can obtain a real image of a geometrical

-

figure shown on the screen. The position of the real image is

SN registered by the parallax method: if one places a vertical wire

A (Fig.7) to the point, in which the image is located, then at small

¥
displacements of the eye from the main optical axis of the lens

Fig. 7

g the image of this object and the wire will not diverge.

We obtain the value of focal distance F from the formula of thin lens by the measured

distances d and f:

In this method the best accuracy is achieved in the case of
f=d.

The competitors were not asked to make a conclusion.

The error of measuring the focal distance for each of the two converging lenses can be determined by
multiple repeated measurements. The total number of points was given to those competitors who
carried out not less fewer than n=5 measurements of the focal distance and estimated the mean value

of the focal distance Fav:



av

e R

HMD
-n

and the absolute error AF
AF :EZAE . AR =|R-F,|
n-

or root mean square error AF__

AF,, :%./Z(AE ).

One could calculate the error by graphic method.

Fig. 8

Determination of the focal distance of the diverging lens can be carried out by the method of
compensation. With this goal one has to obtain a real image S’ of the object S using a converging lens.
The position of the image can be registered using the parallax method.

If one places a diverging lens between the image and the converging lens the image will be
displaced. Let us find a new position of the image S”. Using the reversibility property of the light rays,
one can admit that the light rays leave the point S”. Then point S’ is a virtual image of the point S”,
whereas the distances from the optical centre of the concave lens to the points S’ and S” are,
respectively, the distances f to the image and d to the object (Fig.8). Using the formula of a thin lens

we obtain

Here F < 0 is the focal distance of the diverging lens. In this case the error of measuring the focal

distance can also be estimated by the method of repeated measurements similar to the case of the



converging lens.
Typical results are:
F, =(22,0£04)cm, F, = (12,3£0,3)cm, F, = (-8,4+0,4)cm.
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V International Physics Olympiad, 1971
Sofia, Bulgaria

The problems and the solutions are adapted by
Victor Ivanov
University of Sofia, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High School
Students”, eds. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian).

Theoretical problems

Question 1.

A triangular prism of mass M is placed one side on a frictionless horizontal plane as
shown in Fig. 1. The other two sides are inclined with respect to the plane at angles oy and o
respectively. Two blocks of masses m; and m,, connected by an inextensible thread, can slide
without friction on the surface of the prism. The mass of the pulley, which supports the thread,
is negligible.

e Express the acceleration a of the blocks relative to the prism in terms of the
acceleration ag of the prism.

e Find the acceleration ag of the prism in terms of quantities given and the acceleration g
due to gravity.

e At what ratio my/m; the prism will be in equilibrium?

mp

(0 %] (0 %]

Fig. 1

Question 2.

A vertical glass tube of cross section S = 1.0 cm? contains unknown amount of
hydrogen. The upper end of the tube is closed. The other end is opened and is immersed in a
pan filled with mercury. The tube and the pan are placed in a sealed chamber containing air at
temperature To = 273 K and pressure Py = 1.334x10° Pa. Under these conditions the height of
mercury column in the tube above the mercury level in the pan is ho = 0.70 m.

One of the walls of the chamber is a piston, which expands the air isothermally to a
pressure of P; = 8.00x10* Pa. As a result the height of the mercury column in the tube
decreases to h; = 0.40 m. Then the chamber is heated up at a constant volume to some
temperature T, until the mercury column rises to h, = 0.50 m. Finally, the air in the chamber
is expanded at constant pressure and the mercury level in the tube settles at hs = 0.45 m above
the mercury level in the pan.



Provided that the system is in mechanical and thermal equilibrium during all the
processes calculate the mass m of the hydrogen, the intermediate temperature T, and the
pressure P in the final state.

The density of mercury at temperature Ty is po = 1.36x10* kg/m?, the coefficient of
expansion for mercury p = 1.84x10™* K™, and the gas constant R = 8.314 J/(molxK). The
thermal expansion of the glass tube and the variations of the mercury level in the pan are not
considered.

Hint. If AT is the interval of temperature variations of the system then BAT =x<<1In

L. 1
that case you can use the approximation: R 1-x.
+X

Question 3.

Four batteries of EMF E;=4 V, E; =8V, E3=12 V, and E, = 16 V, four capacitors
with the same capacitance C; = C, = C3 = C4 = 1 uF, and four equivalent resistors are
connected in the circuit shown in Fig. 3. The internal resistance of the batteries is negligible.

e Calculate the total energy W accumulated on the capacitors when a steady state of the
system is established.
e The points H and B are short connected. Find the charge on the capacitor C, in the

new steady state.
Cy

D C
Ez\_< c,
A G
Cs E,
E F
Cs
Fig. 3

Question 4.

A spherical aquarium, filled with water, is placed in front of a flat vertical mirror. The
radius of the aquarium is R, and the distance between its center and the mirror is 3R. A small
fish, which is initially at the point nearest to the mirror, starts to move with velocity v along
the wall. An observer looks at the fish from a very large distance along a horizontal line
passing trough the center of the aquarium.

What is the relative velocity vy at which the two images of the fish seen by the observer
will move apart? Express your answer in terms of v. Assume that:

e The wall of the aquarium is made of a very thin glass.

e The index of refraction of water is n = 4/3.



Experimental Problem

Apparatus: dc source, ammeter, voltmeter, rheostat (coil of high resistance wire with sliding
contact), and connecting wires.

Problem: Construct appropriate circuit and establish the dependence of the electric power P
dissipated in the rheostat as a function of the current I supplied by the dc source.

Make a plot of P versus I.

Find the internal resistance of the dc source.

Determine the electromotive force E of the source.

Make a graph of the electric power P versus resistance R of the rheostat.

Make a graph of the total power Py dissipated in the circuit as a function of R.

Make a graph of the efficiency n of the dc source versus R.

o g wd P
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Theoretical problems

Question 1.

The blocks slide relative to the prism with accelerations a; and a,, which are
parallel to its sides and have the same magnitude a (see Fig. 1.1). The blocks move
relative to the earth with accelerations:

(1.1) Wi = a; + ag;
(1.2) W, = a, + ap. N
Now we project w; and w, along the x- and y-axes: y
(1.3) W, =acoso, —a,; _
(1.4) w,, =asina,; Re 1
(1'5) sz = aCOSOLZ - a.o, 4& \V{/z a;
. (0] Ol _
(1.6) W,, =-asina,. _,
Fig. 1.1

The equations of motion for the blocks and for the prism have the following vector
forms (see Fig. 1.2):

(1.7) mw, =mg+R, +T;
(1.8) m,w, =m,g+R, +T,;
(1.9) Ma,=Mg-R,-R,+R-T,-T,.
A
y

Fig. 1.2

The forces of tension T, and T, at the ends of the thread are of the same magnitude T
since the masses of the thread and that of the pulley are negligible. Note that in equation
(1.9) we account for the net force —(T1 + T,), which the bended thread exerts on the



prism through the pulley. The equations of motion result in a system of six scalar
equations when projected along x and y:

(1.10) macosa, —ma, =T cosa, — R, sina,;

(1.11) masina, =T sina, + R, cosa, —m,g;

(1.12) m,acosa, —m,a, =—T cosa, + R, sina,;

(1.13) m,asina, =T sina, + R, sina, —m,g ;

(1.14) —Ma, =R;sina, —R,sina, —Tcosa, +T cosa,;
(1.15) 0=R-R,cosa, -R,cosa, - Mg.

By adding up equations (1.10), (1.12), and (1.14) all forces internal to the system cancel
each other. In this way we obtain the required relation between accelerations a and ay:

(1.16) a=a, M +m, +m, :
m, cosa, + M, cosa.,
The straightforward elimination of the unknown forces gives the final answer for ay:
(1.17) a, = (m;sina, —m,sina,)(m, cosa, +m, cosa,) .
(m +m, + M)(m, +m,)—(m, cosa, +m, cosa,)
It follows from equation (1.17) that the prism will be in equilibrium (ag = 0) if:

m in
(1.18) My _ e,
m, sina,

Question 2.

We will denote by H (H = const) the height of the tube above the mercury level
in the pan, and the height of the mercury column in the tube by h;. Under conditions of
mechanical equilibrium the hydrogen pressure in the tube is:

(21) I:>H2 = Pair _pghi’
where p is the density of mercury at temperature t;:
(2:2) p=po(l-pt)

The index i enumerates different stages undergone by the system, po is the density of
mercury at to = 0 °C, or To = 273 K, and  its coefficient of expansion. The volume of
the hydrogen is given by:
(2.3) V= S(H - hi).

Now we can write down the equations of state for hydrogen at points 0, 1, 2, and
3 of the PV diagram (see Fig. 2):

m
(2.4) (P, —poghy)S(H _ho):MRTo;
m
(2.5) (Pl _poghl)S(H - h1) = MRTO;
m
(2.6) (P, —p.gh,)S(H —h,) = MRTZ’
where P, _hT D p =20 sp [L-B(T,-T,)] since the process 1-3 is
T 1+B(T, = To)

isochoric, and:



m

(2.7) (P, —p,9hy)S(H —h3)=MRT3
V, _ H-h, .
where p, ~p,[1-B(T, -T,)], T, :TZV—:T2 T for the isobaric process 2-3.
o A 2 2
o 2
P, ___________________ 3
VO V1: {/2

Vs Vr
Fig. 2

After a good deal of algebra the above system of equations can be solved for the
unknown quantities, an exercise, which is left to the reader. The numerical answers,
however, will be given for reference:

H=13m;

m ~ 2.11x107° kg;
T,~364 K;

P, ~ 1.067x10° Pa;
T3~546 K;

P, ~ 4.8x10* Pa.

Question 3.

A circuit equivalent to the given one is shown in Fig. 3. In a steady state (the
capacitors are completely charged already) the same current | flows through all the
resistors in the closed circuit ABFGHDA. From the Kirchhoff’s second rule we obtain:

E,-E
3.1 | =—2 ",
D 4R
Next we apply this rule for the circuit ABCDA:
(3.2) V,+IR=E, -E,,

where V; is the potential difference across the capacitor C;. By using the expression
(3.1) for I, and the equation (3.2) we obtain:

(3.3) V,=E,-E, —% =1V.

Similarly, we obtain the potential differences V, and V, across the capacitors C, and C,4
by considering circuits BFGCB and FGHEF:

(3.4) VZ=E4—EZ—¥=5V,



(3.5) V, =E, -E, —% =1V.
Finally, the voltage V3 across Csz is found by applying the Kirchhoff’s rule for the
outermost circuit EHDAH:

E,—E

(3.6) V,=E,-E, - L=5V.
The total energy of the capacitors is expressed by the formula:
(3.7) W =%(\/12 +V2 4V 4V )= 26l
Cs
|
C
R R 4
A B * F E
— 1 [ — ||
E, — E, E, R = Ej
D | T | _’_ — H
||Cl C e, ¢ —
| |
R

Fig. 3

When points B and H are short connected the same electric current I’ flows
through the resistors in the BFGH circuit. It can be calculated, again by means of the
Kirchhoff’s rule, that:

E
3.8 I'=—2.
(3.8) T
The new steady-state voltage on C, is found by considering the BFGCB circuit:
(3.9 V,+IR=E, -E,
or finally:
(3.10) V, =%— E,=0V.

Therefore the charge q,on C; in the new steady state is zero.

Question 4.

In a small time interval At the fish moves upward, from point A to point B, at a
small distance d = vAt. Since the glass wall is very thin we can assume that the rays
leaving the aquarium refract as if there was water — air interface. The divergent rays
undergoing one single refraction, as show in Fig. 4.1, form the first, virtual, image of the
fish. The corresponding vertical displacement A;B; of that image is equal to the distance
d; between the optical axis a and the ray bi, which leaves the aquarium parallel to a.
Since distances d and d; are small compared to R we can use the small-angle
approximation: sina. = tana. = o (rad). Thus we obtain:

(4.1) di~R o
(4.2) d=Ry;
(4.3) o+y=2p;

(4.4) o~ np.



From equations (4.1) - (4.4) we find the vertical displacement of the first image in terms
of d:
n

4.5 d,=——-d,

(45) =5

and respectively its velocity vy in terms of v:
n

4.6 V,=——=2V.

(4.6) e

Fig. 4.1

The rays, which are first reflected by the mirror, and then are refracted twice at
the walls of the aquarium form the second, real image (see Fig. 4.2). It can be
considered as originating from the mirror image of the fish, which move along the line
A’B’ at exactly the same distance d as the fish do.

Fig. 4.2

The vertical displacement A,B, of the second image is equal to the distance d, between
the optical axis a and the ray b,, which is parallel to a. Again, using the small-angle
approximation we have:

4.7) d’ ~ 4R34 - d,

(4.8) d2 ~Ra

Following the derivation of equation (4.5) we obtain:
n

4.9 d,=——-d".

(4.9) 2=

Now using the exact geometric relations:



(4.10) d=2a-2pB

and the Snell’s law (4.4) in a small-angle limit, we finally express d, in terms of d:
n

4.11 d, =——

(“.11) ? 9n-10

and the velocity v, of the second image in terms of v:

(4.12) v, = n v:gv.

9n-10 3
The relative velocity of the two images is:
(4.13) Vil = V1 — V2
in a vector form. Since vectors v; and v, are oppositely directed (one of the images
moves upward, the other, downward) the magnitude of the relative velocity is:

(4.14) Vg =V, +V, = §v :

Experimental problem

The circuit is given in the figure below:

®)

Sliding the contact along the rheostat sets the current | supplied by the source. For each
value of | the voltage U across the source terminals is recorded by the voltmeter. The
power dissipated in the rheostat is:

P=UI
provided that the heat losses in the internal resistance of the ammeter are negligible.
1. A typical P-I curve is shown below:

PA

I:)me'lX

v




If the current varies in a sufficiently large interval a maximum power Pna.x can be
detected at a certain value, lo, of I. Theoretically, the P(I) dependence is given by:

(5.1) P=ElI-I°r,

where E and r are the EMF and the internal resistance of the dc source respectively. The
maxim value of P therefore is:

EZ
5.2 P =—
(5-2) " 4y
and corresponds to a current:

E
53 l,=—.
(5.3) 0=

2. The internal resistance is determined trough (5.2) and (5.3) by recording Pmax and I
from the experimental plot:

r= I:)max
ls
3. Similarly, EMF is calculated as:
E_ 2P, ..
I0
4. The current depends on the resistance of the rheostat as:
| = E
R+r
Therefore a value of R can be calculated for each value of I:
(5.4) R= IE -r.
The power dissipated in the rheostat is given in terms of R respectively by:
2
55) __ER
(R+r)
The P-R plot is given below:
P A
E°/(4r)

v

Its maximum is obtained atR =r.

5. The total power supplied by the dc source is:
E? A

5.6 P,=——.

( ) tot R +r PIOI

E2/r

v




6. The efficiency respectively is:

P R

5.7 L .
(5.7) T T Rir

tot




Problems of the 6™ International Physics Olympiad
(Bucharest, 1972)

Romulus Pop
Civil Engineering University, Physics Department’
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The sixth IPhO was held in Bucharest and the participants were: Bulgaria,
Czechoslovakia, Cuba, France, German Democratic Republic, Hungary, Poland, Romania, and
Soviet Union. It was an important event because it was the first time when a non-European
country and a western country participated (Cuba), and Sweden sent one observer.

The International Board selected four theoretical problems and an experimental
problem. Each theoretical problem was scored from 0 to 10 and the maximum score for the
experimental problem was 20. The highest score corresponding to actual marking system was
47,5 points. Each team consisted in six students. Four students obtained the first prize, seven
students obtained the second prize, ten students obtained the third prize, thirteen students had
got honorable mentions, and two special prizes were awarded too.

The article contains the competition problems given at the 6" International Physics
Olympiad (Bucharest, 1972) and their solutions. The problems were translated from the book
published in Romania concerning the first nine International Physics Olympiads?, because |
couldn’t find the original English version.

Theoretical problems
Problem 1 (Mechanics)

Three cylinders with the same mass, the same length and the same external radius are
initially resting on an inclined plane. The coefficient of sliding friction on the inclined plane, p,
is known and has the same value for all the cylinders. The first cylinder is empty (tube) , the
second is homogeneous filled, and the third has a cavity exactly like the first, but closed with
two negligible mass lids and filled with a liquid with the same density like the cylinder’s walls.
The friction between the liquid and the cylinder wall is considered negligible. The density of
the material of the first cylinder is n times greater than that of the second or of the third
cylinder.

Determine:

a) The linear acceleration of the cylinders in the non-sliding case. Compare all the
accelerations.

b) Condition for angle a of the inclined plane so that no cylinders is sliding.

C) The reciprocal ratios of the angular accelerations in the case of roll over with
sliding of all the three cylinders. Make a comparison between these accelerations.

d) The interaction force between the liquid and the walls of the cylinder in the case
of sliding of this cylinder, knowing that the liquid mass is m;.

! E-mail: popr@tvet.ro
2 Marius Gall and Anatolie Hristev, Probleme date la Olimpiadele de Fizica, Editura Didactica si Pedagogica —
Bucuresti, 1978



Solution Problem 1

The inertia moments of the three cylinders are:

|1=%p17z(R4—r4)h, |2=%p2;zR4h=%mR2 , I3:%p2ﬂ(R4—r4)h, 1)
Because the three cylinders have the same mass :
m=pz(R? =12 h = p,zRh @)
it results:
rZ:R{l—&j:Rz(l—lj,n:ﬂ ©)
P n P2

The inertia moments can be written:

1 1)1 |
L=1,2-=Dl,, l,=1,2-=|-==-2+ 4
1 2( n}> 2 3 2( nj n n ( )
In the expression of the inertia momentum |, the sum of the two factors is constant:

(2—ij+£:2
n) n

independent of n, so that their products are maximum when these factors are equal:

n n n) n
is les than 1. It results:

2—1 = 1 ; it results n = 1, and the products (2 —ljl =1. In fact n > 1, so that the products

I1>1>13 (5)
For a cylinder rolling over freely on the inclined plane (fig. 1.1) we can write the equations:

mgsina —F, =ma (6)
N -mgcosa =0
FR=l¢g (7)

where ¢ is the angular acceleration. If the cylinder doesn’t slide we have the condition:
a=eR 8

Solving the equation system (6-8) we find:



gsina mgsin«
S T R
1+ 1
mR? * I

©)

The condition of non-sliding is:

Ff < uN = pumgsina

Fig. 1.1

In the case of the cylinders from this problem, the condition necessary so that none of them
slides is obtained for maximum I:

2 —
tgaul 1+ MR | = 40—t (11)
I 2n-1
The accelerations of the cylinders are:
_ 295|n01: ’ az:ngmoz Ca - 2gsmf . (12)
3+ (1-") 3 3-(1- )
n n
The relation between accelerations:
a<ap<as (13)
In the case than all the three cylinders slide:
F, = uN = umgcosa (14)

and from (7) results:



£ = TR Mg COS (15)

for the cylinders of the problem:

E1E, & =Ii:li:li=1:(l_£j:n
1 2 3 n

€1<& < &3 (16)
In the case that one of the cylinders is sliding:

mgsina —F, =ma, F, =umgcosa, (17)
a=g(sina—pucosa) (18)

Let F be the total force acting on the liquid mass m; inside the cylinder (fig.1.2), we can write:

F, +mgsing =ma=mg(sina — ucosa), F,—mgcosa=0 (19)

F=,F>+ Ff =m,gcosa -1+ u* =mg cosa (20)

CoS¢

where ¢ is the friction angle (tg¢ = y).

Fig. 1.2

Problem 2 (Molecular Physics)

Two cylinders A and B, with equal diameters have inside two pistons with negligible
mass connected by a rigid rod. The pistons can move freely. The rod is a short tube with a
valve. The valve is initially closed (fig. 2.1).



A L B Fig. 2.1

The cylinder A and his piston is adiabatically insulated and the cylinder B is in thermal contact
with a thermostat which has the temperature 6 = 27°C.

Initially the piston of the cylinder A is fixed and inside there is a mass m= 32 kg of argon at a
pressure higher than the atmospheric pressure. Inside the cylinder B there is a mass of oxygen
at the normal atmospheric pressure.

Liberating the piston of the cylinder A, it moves slowly enough (quasi-static) and at
equilibrium the volume of the gas is eight times higher, and in the cylinder B de oxygen’s
density increased two times. Knowing that the thermostat received the heat Q =747,9.10%J,
determine:

a) Establish on the base of the kinetic theory of the gases, studying the elastic collisions
of the molecules with the piston, that the thermal equation of the process taking place in the
cylinder A is TV#? = constant.

b) Calculate the parameters p, V, and T of argon in the initial and final states.

c) Opening the valve which separates the two cylinders, calculate the final pressure of the
mixture of the gases.

The kilo-molar mass of argon is p = 40 kg/kmol.

Solution Problem 2

a) We consider argon an ideal mono-atomic gas and the collisions of the atoms with the
piston perfect elastic. In such a collision with a fix wall the speed v of the particle changes
only the direction so that the speed vV and the speed v'after collision there are in the same
plane with the normal and the incident and reflection angle are equal.

V, =V, V, =V, (1)
In the problem the wall moves with the speed U perpendicular on the wall. The relative speed

of the particle with respect the wall isV — U . Choosing the Oz axis perpendicular on the wall in
the sense of U, the conditions of the elastic collision give:

(V-0), =-(v -0),, (7-10),, =@ -a),,;
v, —U :—(v'Z —u) LV, =20V, v, =V, (2)
The increase of the kinetic energy of the particle with mass m, after collision is:
1 o 1 1 :
2 0 2 _Emovz :Emo(vzz
because u is much smaller thanv, .
If n, is the number of molecules from unit volume with the speed componentyv,, , then the

number of molecules with this component which collide in the time dt the area dS of the piston
is:

—v?)=2mu(u-v,)=-2muv, (3)



%nkvzk dds  (4)
These molecules will have a change of the kinetic energy:

%nkvzkdtds(— 2m,uv, )=-mnvidv (5)

where dV =udtdS is the increase of the volume of gas.
The change of the kinetic energy of the gas corresponding to the increase of volume dV is:

dE, =-m,dV > nv5 :—%nmovzdv (6)
k

and:

2
my* AV _ 2, dv @
2 V 3 V

du =_2N
3

Integrating equation (7) results:
UV 2’® = const. (8)
The internal energy of the ideal mono-atomic gas is proportional with the absolute temperature
T and the equation (8) can be written:
TV #3 = const. (9)
b) The oxygen is in contact with a thermostat and will suffer an isothermal process. The
internal energy will be modified only by the adiabatic process suffered by argon gas:
AU =vC, AT =mc, AT (10)

where v is the number of kilomoles. For argon C, :gR.

For the entire system L=0and AU =Q.

We will use indices 1, respectively 2, for the measures corresponding to argon from cylinder A,
respectively oxygen from the cylinder B:

2/3
aU=" 3 R 7)==t 3R, [ﬁ] - (11)
My 2 My 2 Vi
From equation (11) results:
1:3.&.9.%/3:1000K (12)
3 m R [y
L -1
Vl
T
T, = i 250K (13)
For the isothermal process suffered by oxygen:
P2 _ P2 (14)

P2 P,

p, = 2,00atm = 2,026-10°N /m®



From the equilibrium condition:

p, = p, = 2atm (15)
For argon:
' Vll Tl 5 2
p, =P, — — =64atm =64,9-10°N /m* (16)
Vl Tl
V, =8 AL 102m®,V, =8V, =816m° (17)
My Py

c) When the valve is opened the gases intermix and at thermal equilibrium the final
pressure will be p" and the temperature T. The total number of kilomoles is constant:

Vl +V2 :VI, plvl + p2V2 _ p(\/l +V2) (18)

RTl' RT RT
p, + p, =2atm, T, =T, =T = 300K
The total volume of the system is constant:

VoAV, =V +v, 2Py Ve qqame (19)
Ve o 2

From equation (18) results the final pressure:

p= pi-#- Vl'-l.+V2' = 2,2atm = 2,23-10°N /m? (20)
V, +V, L

Problem 3 (Electricity)

A plane capacitor with rectangular plates is fixed in a vertical position having the lower
part in contact with a dielectric liquid (fig. 3.1)
Determine the height, h, of the liquid between the plates and explain the phenomenon.
The capillarity effects are neglected.
It is supposed that the distance between the plates is much smaller than the linear dimensions
of the plates.

A

H Fig. 3.1
ig. 3.
e N )
Rt I
\ 2 *

It is known: the initial intensity of the electric field of the charged capacitor, E, the density p,
the relative electric permittivity &, of the liquid, and the height H of the plates of the capacitor.
Discussion.



Solution Problem 3

The initial energy on the capacitor is:

2

W,=2.CuZ=". )
2 2 C,

H is the height of the plates, | is the width of the capacitor’s plates, and d is the distance

between the plates.

When the plates contact the liquid’s surface on the dielectric liquid is exerted a vertical force.

The total electric charge remains constant and there is no energy transferred to the system from

outside. The increase of the gravitational energy is compensated by the decrease of the

electrical energy on the capacitor:

g, HI

,Where C, =

W, =W, +W, 2
wl=%- CZ w2=%pgh2|d ®)
C=C,+C, = g.¢€.hl N go(Hd— h)i @)
Introducing (3) and (4) in equation (2) it results:
(6, —1)h? + Hh—EfgL(gr_lL 0
A9

The solution is:

L9H

h, = H . .[1i\/1¢4E°2‘9°(8r1)2] (8)

Discussion: Only the positive solution has sense. Taking in account that H is much more grater
than h we obtain the final result:

h~ go(gr _1) E02
~9

Problem 4 (Optics)

A thin lens plane-convex with the diameter 2r, the curvature radius R and the refractive
index ny is positioned so that on its left side is air (n; =1), and on its right side there is a
transparent medium with the refractive index n, # 1. The convex face of the lens is directed
towards air. In the air, at the distance s;from the lens, measured on the principal optic ax, there
is a punctual source of monochromatic light.
a) Demonstrate, using Gauss approximation, that between the position of the image, given by
the distance s, from the lens, and the position of the light source, exists the relation:
L + k — 1
S1 SZ



where f; and f; are the focal distances of the lens, in air, respectively in the medium with the
refractive index nj.

Observation: All the refractive indexes are absolute indexes.

b) The lens is cut perpendicular on its plane face in two equal parts. These parts are moved
away at a distance 6 <<r (Billet lens). On the symmetry axis of the system obtained is led a
punctual source of light at the distance s; (s; > 1) (fig. 4.1). On the right side of the lens there
is a screen E at the distance d. The screen is parallel with the plane face of the lens. On this
screen there are N interference fringes, if on the right side of the lens is air.

Determine N function of the wave length.

Fig. 4.1

4§

Sq }

Solution problem 4

a) From the Fermat principle it results that the time the light arrives from P, to P, is not
dependent of the way, in gauss approximation (P, and P, are conjugated points).

|
|
|
|
B, Cq Vil 0 V2 G2 Py 1942

T, is the time the light roams the optical way P,V,0V,P, (fig. 4.2):
2 2
T, = AM | BM , where bM =,/P,0* + MO? ~ PO + h ,and P,M ~ P,0 + h
v, v, 2P0 2P,0
because h = OM is much more smaller than P,O or P,O.
2
T1=E+@+h—- 1 + 1 ;T2:P1Vl+v2 P2+V1V2
A v, 2 \vRO v,P,0 A v, v

1)



VV, =—. i+i (2
Rl RZ

From conditionT, =T,, it results:

1 1 11 1 1 1
+ == =—+=—|-—- (3)
vPO Vv,P,O Vv(R, R,) vR VR,

o . c . :
Taking in account the relationv = —, and using PO =s,,0OP, =s,, the relation (3) can be
n

written:
&_Fn_zzno i+i __1 — 1 (4)
s, S, R, R,) vR VR,
If the point P, is at infinite, s, becomes the focal distance; the same for P, .
1 1 n,-n  n,-n, ; 11 n,-n  n,—n, 5)
f, n, R, R, f, n R, R,
From the equations (30 and (4) it results:
A + T =1 (6)
S1 SZ

The lens is plane-convex (fig. 4.3) and its focal distances are:

, Fig. 4.3
Ng
Ro=0o R1=R
n,R n,R n.R
fl — 1 _ R ’ f2 — 2 — 2 (7)
n,-n n,-1 n,—n n,-1

b) Inthe case of Billet lenses, S, and S, are the real images of the object S and can be
considered like coherent light sources (fig. 4.4).

10
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B IR Peivel.- S —

b

0,0, = A is much more smaller than r:

Fig. 4.4

OM =A+r~r, SO~SO, ~S0, = p,, 5,0, =5,0,~S0=p,, S,S, =A~(1+

We calculate the width of the interference field RR™ (fig. 4.4).

RR' :2-RA:2-5'A-tg%, SAzd-p,, tg%zL, RR =2(d - p,)-—

2
Maximum interference condition is:

S,N=k-4
The fringe of k order is located at a distance x, from A:
o =k A=) ®

A[l + DZJ
P,

The expression of the inter-fringes distance is:
P ﬂ'(d — pz) (9)

i=
( J
Py

The number of observed fringes on the screen is:

RR 1+ P2
N :fzer'—pl (10)
! Ap,
p, can be expressed from the lenses’ formula:
__bf
P, b — f

2

P
P,

|

11



Experimental part (Mechanics)

There are given two cylindrical bodies (having identical external shapes and from the
same material), two measuring rules, one graduated and other un-graduated, and a vessel with
water.

It is known that one of the bodies is homogenous and the other has an internal cavity with the
following characteristics:

- the cavity is cylindrical

- has the axis parallel with the axis of the body

- its length is practically equal with that of the body
Determine experimentally and justify theoretically:

a) The density of the material the two bodies consist of.

b) The radius of the internal cavity.

c) The distance between the axis of the cavity and the axis of the cylinder.

d) Indicate the sources of errors and appreciate which of them influences more the final

results.
Write all the variants you have found.

Solution of the experimental problem

a) Determination of the density of the material
The average density of the two bodies was chosen so that the bodies float on the water.
Using the mass of the liquid crowded out it is determined the mass of the first body (the
homogenous body):

m:ma :Vapa :SaHpa (1)
where S, is the area of the base immersed in water, H the length of the cylinder and p, is the
density of water.
The mass of the cylinder is:

m=V-p=aR’Hp )
It results the density of the body:
S
P=Pa o 3)

To calculate the area S, it is measured the distance h above the water surface (fig. 5.1). Area is
composed by the area of the triangle OAB plus the area of the circular sector with the angle
2w -26.

The triangle area:

~2)R*=(R-h) -(R-)=(R-n}hZR-N) @)

12



Fig. 5.1

The circular sector area is:

2(7r — 9)
2r

aR? :Rz(ﬁ—arcconghj (5)

The immersed area is:

S, =(R—h)/h(2R—h)+ Rz(n—arccosRT_hj (6)

where R and h are measured by the graduated rule.
b) The radius of the cylindrical cavity
The second body (with cavity) is dislocating a water mass:
m=m,=S,Hp, (7)

where S;’ is area immersed in water.
The mass of the body having the cavity inside is:

m = -v)p=z(R*-r?JHp (8)
The cavity radius is:

r=[R?-22.5. (9)
7p

S, is determined like S,.
c¢) The distance between the cylinder’s axis and the cavity axis
We put the second body on the horizontal table (or let it to float in water) and we trace the
vertical symmetry axis AB (fig. 5.2).
Using the rule we make an inclined plane. We put the body on this plane and we determine the
maximum angle of the inclined plane for the situation the body remains in rest (the body
doesn’t roll). Taking in account that the weight centre is located on the axis AB on the left side
of the cylinder axis (point G in fig. 5.2) and that at equilibrium the weight centre is on the
same vertical with the contact point between the cylinder and the inclined plane, we obtain the
situation corresponding to the maximum angle of the inclined plane (the diameter AB is
horizontal).

13



Fig. 5.2

The distance OG is calculated from the equilibrium condition:
m -OG =m_ -X , (M = the mass dislocated by the cavity)  (10)

OG =Rsina  (11)

m . R*-r’?
X=0G-—=R-sina- 5
m, r
d) At every measurement it must be estimated the reading error. Taking in account the
expressions for p, r and x it is evaluated the maximum error for the determination of these

measures.

(12)
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Problems of the 7th International Physics Olympiad*
(Warsaw, 1974)

Waldemar Gorzkowski
Institute of Physics, Polish Academy of Sciences, Warsaw, Poland 2

Abstract

The article contains the competition problems given at the 7th International Physics
Olympiad (Warsaw, 1974) and their solutions.

Introduction

The 7" International Physics Olympiad (Warsaw, 1974) was the second one organized
in Poland. It took place after a one-year organizational gap, as no country was able to
organize the competition in 1973.

The original English version of the problems of the 7™ IPhO has not been preserved.
We would like to remind that the permanent Secretariat of the IPhOs was established only in
1983; previously the Olympic materials had been collected by individual people in their
private archives and, in general, are not complete. English texts of the problems and
simplified solutions are available in the book by R. Kunfalvi [1]. Unfortunately, they are
somewhat deformed as compared to the originals. Fortunately, we have very precise Polish
texts. Also the full solutions in Polish are available. This article is based on the books [2, 3]
and article [4].

The competition problems were prepared especially for the 7" IPhO by Andrzej
Szymacha (theoretical problems) and Jerzy Langer (experimental problem).

THEORETICAL PROBLEMS
Problem 1

A hydrogen atom in the ground state, moving with velocityv, collides with another
hydrogen atom in the ground state at rest. Using the Bohr model find the smallest velocity v,

of the atom below which the collision must be elastic.

At velocity v, the collision may be inelastic and the colliding atoms may emit

electromagnetic radiation. Estimate the difference of frequencies of the radiation emitted in
the direction of the initial velocity of the hydrogen atom and in the opposite direction as a
fraction (expressed in percents) of their arithmetic mean value.

Data:
me* 0B e
E = =13.6eV =2.18-187" J; (ionization energy of hydrogen atom)

oot

m,, =1.67-107*" kg ; (mass of hydrogen atom)

! This article has been sent for publication in Physics Competitions in September 2003
2 e-mail: gorzk@ifpan.edu.pl



(m - mass of electron; e - electric charge of electron; 7 - Planck constant; numerical
values of these quantities are not necessary.)

Solution

According to the Bohr model the energy levels of the hydrogen atom are given by the
formula:

where n= 1, 2, 3, ... The ground state corresponds to n=1, while the lowest excited state
corresponds to n=2. Thus, the smallest energy necessary for excitation of the hydrogen atom
Is:

AE = Ez_Elei(l_%):%Ei-

During an inelastic collision a part of kinetic energy of the colliding particles is
converted into their internal energy. The internal energy of the system of two hydrogen atoms
considered in the problem cannot be changed by less than AE. It means that if the Kinetic
energy of the colliding atoms with respect to their center of mass is less than AE, then the
collision must be an elastic one. The value of v, can be found by considering the critical case,
when the kinetic energy of the colliding atoms is equal to the smallest energy of excitation.
With respect to the center of mass the atoms move in opposite direction with velocities $v, .
Thus

and

V, = /ﬁ (= 6.26-10" m/s).
mH

Consider the case when v=v,. The collision may be elastic or inelastic. When the

collision is elastic the atoms remain in their ground states and do not emit radiation. Radiation
is possible only when the collision is inelastic. Of course, only the atom excited in the
collision can emit the radiation. In principle, the radiation can be emitted in any direction, but
according to the text of the problem we have to consider radiation emitted in the direction of
the initial velocity and in the opposite direction only. After the inelastic collision both atom
are moving (in the laboratory system) with the same velocities equal to 1v,. Let f denotes
the frequency of radiation emitted by the hydrogen atom in the mass center (i.e. at rest).

Because of the Doppler effect, in the laboratory system this frequency is observed as (c
denotes the velocity of light):



1
a) f1:[1+ﬂjf - for radiation emitted in the direction of the initial velocity of the
C

hydrogen atom,

1
b) f, :(1—ﬂjf - for radiation emitted in opposite direction.
C

The arithmetic mean value of these frequencies is equal to f . Thus the required ratio

B>
=
T
|
—
N
<

AT _ _Vo ~2.102%),
f ¢ ( °)

In the above solution we took into account that v, <<c . Otherwise it would be

necessary to use relativistic formulae for the Doppler effect. Also we neglected the recoil of
atom(s) in the emission process. One should notice that for the visible radiation or radiation
not too far from the visible range the recoil cannot change significantly the numerical results

for the critical velocity v, and the ratio % The recoil is important for high-energy quanta,

but it is not this case.
The solutions were marked according to the following scheme (draft):

1. Energy of excitation up to 3 points

2. Correct description of the physical processes up to 4 points

3. Doppler effect up to 3 points
Problem 2

Consider a parallel, transparent plate of thickness d — Fig. 1. Its refraction index varies
as

v




Fig. 1

A light beam enters from the air perpendicularly to the plate at the point A (xa = 0) and
emerges from it at the point B at an angle « .

1. Find the refraction index ng at the point B.
2. Find x; (i.e. value of x at the point B)
3. Find the thickness d of the plate.

Data:
n,=12; R=13cm; a=30°.

Solution

Ny Ny N3

Fig. 2

Consider a light ray passing through a system of parallel plates with different
refractive indexes — Fig. 2. From the Snell law we have

sing, n

A
sing, n,
n,sin B, =n,sin g,.
In the same way we get
n,sin B, =n,sin g, etc.

Thus, in general:
n; sin f; = const.



This relation does not involve plates thickness nor their number. So, we may make use
of it also in case of continuous dependence of the refractive index in one direction (in our case
in the x direction).

Consider the situation shown in Fig. 3.

i

Fig. 3

At the point A the angle £, =90°. The refractive index at this point is n,. Thus, we have

n,sin B, =ngsin g,
N, =Ng Sin f;.

Additionally, from the Snell law applied to the refraction at the point B, we have

sina B
sin(90°— ;) °

Therefore
sina =Ny €08 iy = Ngy/1-sin? B, =+/n2 —(ngsin f)? =4/nZ —n?
and finally
Ng =4/ +sin’a .
Numerically

2 2
Ng = E + i =1.3
10 10



The value of x; can be found from the dependence n(x) given in the text of the
problem. We have

Numerically

The answer to the third question requires determination of the trajectory of the light
ray. According to considerations described at the beginning of the solution we may write (see
Fig. 4):

n(x)sin g(x)=n,.
Thus

ng, R-X
nx) R

sin B(x) =

Fig. 4

Consider the direction of the ray crossing a point C on the circle with radius R and
center in point O as shown in Fig. 4. We see that

sin £ COC' =¥ =sin B(x) .

Therefore, the angle £ COC' must be equal to the angle S(x) formed at the point C by the
light ray and CC". It means that at the point C the ray must be tangent to the circle. Moreover,
the ray that is tangent to the circle at some point must be tangent also at farther points.
Therefore, the ray cannot leave the circle (as long as it is inside the plate)! But at the



beginning the ray (at the point A) is tangent to the circle. Thus, the ray must propagate along
the circle shown in Fig. 4 until reaching point B where it leaves the plate.

Already we know that A'B = 1 cm. Thus, B'B = 12 cm and from the rectangular
triangle BB'O we get

d=B'0=4+13*-12 cm =5 cm.

The shape of the trajectory y(x) can be determined also by using more sophisticated
calculations. Knowing f£(x) we find tg A(x) :

R—-x

JRPZ(R-x)?

But tg S(x) is the derivative of y(x). So, we have

y__Rx (R Rox)

dx . JR2—(r-x)? " dx

tg f(x) =

Thus

y=+/R? —(R-X)* + const

Value of const can be found from the condition
y(0)=0.

Finally:

y=4R?=(R=x)*.

It means that the ray moves in the plate along to the circle as found previously.

A

<




Fig. 5

Now we will present yet another, already the third, method of proving that the light in
the plate must move along the circle.

We draw a number of straight lines (inside the plate) close to each other and passing
trough the point (R,0) - Fig. 5. From the formula given in the text of the problem it follows
that the refraction index on each of these lines is inversely proportional to the distance to the
point (R,0). Now we draw several arcs with the center at (R,0). It is obvious that the geometric
length of each arc between two lines is proportional to the distance to the point (R,0).

It follows from the above that the optical path (a product of geometric length and
refractive index) along each arc between the two lines (close to each other) is the same for all
the arcs.

Assume that at +-certain moment t the wave front reached one of the lines, e.g. the
line marked with a black dot in Fig. 5. According to the Huygens principle, the secondary
sources on this line emit secondary waves. Their envelope forms the wave front of the real
wave at some time t+ At. The wave fronts of secondary waves, shown in Fig. 5, have
different geometric radii, but - in view of our previous considerations - their optical radii are
exactly the same. It means that at the time t + At the new wave front will correspond to one
of the lines passing trough (R,0). At the beginning the wave front of the light coincided with
the x axis, it means that inside the plate the light will move along the circle with center at the
point (R,0).

The solutions were marked according to the following scheme (draft):

1. Proof of the relation nsin = const up to 2 points
2. Correct description of refraction at points A and B up to 2 points
3. Calculation of xg up to 1 point
4. Calculation of d up to 5 points
Problem 3

A scientific expedition stayed on an uninhabited island. The members of the
expedition had had some sources of energy, but after some time these sources exhausted.
Then they decided to construct an alternative energy source. Unfortunately, the island was
very quiet: there were no winds, clouds uniformly covered the sky, the air pressure was
constant and the temperatures of air and water in the sea were the same during day and night.
Fortunately, they found a source of chemically neutral gas outgoing very slowly from a cavity.
The pressure and temperature of the gas are exactly the same as the pressure and temperature
of the atmosphere.

The expedition had, however, certain membranes in its equipment. One of them was
ideally transparent for gas and ideally non-transparent for air. Another one had an opposite
property: it was ideally transparent for air and ideally non-transparent for gas. The members
of the expedition had materials and tools that allowed them to make different mechanical
devices such as cylinders with pistons, valves etc. They decided to construct an engine by
using the gas from the cavity.

Show that there is no theoretical limit on the power of an ideal engine that uses the gas
and the membranes considered above.

Solution



Let us construct the device shown in Fig. 6. B; denotes the membrane transparent for
the gas from the cavity, but non-transparent for the air, while B, denotes the membrane with
opposite property: it is transparent for the air but non-transparent for the gas.

Initially the valve Z; is open and the valve Z; is closed. In the initial situation, when
we Kkeep the piston at rest, the pressure under the piston is equal to p, + p, due to the Dalton
law. Let V, denotes an initial volume of the gas (at pressure p,).

Now we close the valve Z; and allow the gas in the cylinder to expand. During
movement of the piston in the downwards direction we obtain certain work performed by

excess pressure inside the cylinder with respect to the atmospheric pressure p,. The partial
pressure of the gas in the cylinder will be reduced according to the formula p=p,V,/V,

where V denotes volume closed by the piston (isothermal process). Due to the membrane B,
the partial pressure of the air in the cylinder all the time is p, and balances the air pressure

outside the cylinder. It means that only the gas from the cavity effectively performs the work.

Po

Fig. 6

Consider the problem of limits for the work that can be performed during isothermal
expansion of an initial portion of the gas. Let us analyze the graph of the function p,V,/V

versus V shown in Fig. 7.

It is obvious that the amount of work performed by the gas during isothermal
expansion from V, to V, is represented by the area under the curve (shown in the graph) from

V, to V,. Of course, the work is proportional to V,. We shall prove that for large enough V,
the work can be arbitrarily large.

Consider V =V, 2V,, 4V,, 8V,,16V,, ... It is clear that the rectangles I, II, III, ... (see
Fig. 7) have the same area and that one may draw arbitrarily large number of such rectangles



under the considered curve. It means that during isothermal expansion of a given portion of
the gas we may obtain arbitrarily large work (at the cost of the heat taken from sthe
urrounding) — it is enough to take V, large enough.

After reaching V, we open the valve Z, and move the piston to its initial position
without performing any work. The cycle can be repeated as many times as we want.

In the above considerations we focused our attention on the work obtained during one
cycle only. We entirely neglected dynamics of the process, while each cycle lasts some time.
One may think that - in principle - the length of the cycle increases very rapidly with the
effective work we obtain. This would limit the power of the device we consider.

Take, however, into account that, by proper choice of various parameters of the device,
the time taken by one cycle can be made small and the initial volume of the gas V, can be

made arbitrarily large (we consider only theoretical possibilities — we neglect practical
difficulties entirely). E.g. by taking large size of the membrane B; and large size of the piston
we may minimize the time of taking the initial portion of the gas V, from the cavity and make

this portion very great.

In our analysis we neglected all losses, friction, etc. One should remark that there are
no theoretical limits for them. These losses, friction etc. can be made negligibly small.

w
v

Po/2 -

p()/ 4

The device we analyzed is very interesting: it produces work at cost of heat taken from
surrounding without any difference in temperatures. Does this contradict the second law of
thermodynamics? No! It is true that there is no temperature difference in the system, but the
work of the device makes irreversible changes in the system (mixing of the gas from the
cavity and the air).



The solutions were marked according to the following scheme (draft):

1. Model of an engine and its description up to 4 points
2. Proof that there is no theoretical limit for power up to 4 points
3. Remark on Il law of thermodynamics up to 2 points

EXPERIMENTAL PROBLEM

In a "black box™ there are two identical semiconducting diodes and one resistor
connected in some unknown way. By using instruments provided by the organizers find the
resistance of the resistor.

Remark: One may assume that the diode conducts current in one direction only.

List of instruments: two universal volt-ammeters (without ohmmeters), battery, wires
with endings, graph paper, resistor with regulated resistance.

Solution

At the beginning we perform preliminary measurements by using the circuit shown in
Fig. 8. For two values of voltage U, and U, , applied to the black box in both directions, we

measure four values of current: 1(U,), 1(U,), 1(-U,) and 1(-U,). In this way we find that:

1. The black box conducts current in both directions;
2. There is an asymmetry with respect to the sign of the voltage;
3. In both directions current is a nonlinear function of voltage.

(mAY.
PN

Fig. 8

The diodes and resistor can be connected in a limited number of ways shown in Fig. 9
(connections that differ from each other in a trivial way have been omitted).

IRvAV, %
v A %
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Fig. 9

Only one of these connections has the properties mentioned at the beginning. It is:

B

—>—11

>
A

Fig. 10
For absolute values of voltages we have
U,=U,-U,=AU,

where U, denotes voltage on the resistor when a current | flows trough the branch B, U, -
voltage on the black box when the current 1 flows through the branch A, and U - voltage on

the black box when the current | flows through the branch B.
Therefore

_Ug(1) _Ug()-U,(1) _AU

R
| | |

It follows from the above that it is enough to take characteristics of the black box in
both directions: by subtraction of the corresponding points (graphically) we obtain a straight
line (example is shown in Fig. 11) whose slope allows to determine the value of R.

The solutions were marked according to the following scheme (draft):



Theoretical part:

1. Proper circuit and method allowing determination of connections
the elements in the black box up to 6 points
2. Determination of R (principle) up to 2 points
3. Remark that measurements at the same voltage in both
directions make the error smaller up to 1 point
4. Role of number of measurements (affect on errors) up to 1 point
Experimental part:
1. Proper use of regulated resistor as potentiometer up to 2 points
2. Practical determination of R (including error) up to 4 points
3. Proper use of measuring instruments up to 2 points
4. Taking into account that temperature of diodes increases during
measurements up to 1 point
5. Taking class of measuring instruments into account up to 1 point
A
AU |
[mV]
[
200
|
150 I
| 1
[
100
80
60
40
20
| | | .
0 10 15 20 25 |
[mA]
Fig. 11
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Problems of the 8th International Physics Olympiad
(Giistrow, 1975)

Gunnar Friege' & Gunter Lind

Introduction

The 8th International Physics Olympiad took place from the 7.7. to the 12.7. 1975 in Giistrow,
in the German Democratic Republic (GDR). Altogether, 9 countries with 45 pupils participated.
The teams came from Bulgaria, the German Democratic Republic, the Federal Republic of
Germany (FRG), France, Poland, Rumania, Tchechoslowakia, Hungary and the USSR. The
entire event took place in the pedagogic academy of Giistrow. Pupils and leaders were
accommodated inside the university academy complex. On the schedule there was the
competition and receptions as well as excursions to Schwerin, Rostock, and Berlin were offered.
The delegation of the FRG reported of a very good organisation of the olympiad.

The problems and solutions of the 8th International Physics Olympiad were created by a
commission of university physics professors and lecturers. The same commission set marking
schemes and conducted the correction of the tests. The correction was carried out very quickly
and was considered as righteous and, in cases of doubt, as very generous.

The main competition consisted of a 5 hour test in theory and a 4.5 hour experimental test. The
time for the theoretical part was rather short and for the experimental part rather long. The
problems originated from central areas of classical physics. The theoretical problems were
relatively difficult, although solvable with good physics knowledge taught at school. The level
of difficulty of the experimental problem was adequate. There were no additional devices
necessary for the solution of the problems. Only basic formula knowledge was requested, and
could be demanded from all pupils. Critics were only uttered concerning the second theoretical
problem (thick lens). This problem requested relatively little physical understanding, but tested
the mathematical skills and the routine in approaching problems (e.g. correct distinction of
cases). However, it is also difficult to find substantial physics problems in the area of

geometrical optics.

' Remark: This article was written due to the special request to us by Dr. W. Gorzkowski, in order to close one of
the last few gaps in the IPhO-report collection.

Contact: Dr. Gunnar Friege, Leibniz-Institute for Science Education (IPN) at the University of Kiel, Olshausenstr.
62, 24098 Kiel, Germany, friege@ipn.uni-kiel.de



Altogether 50 points were the maximum to achieve; 30 in the theoretical test and 20 in the
experimental test. The best contestant came from the USSR and had 43 points. The first prize
(gold medal) was awarded with 39 points, the second prize (silver medal) with 34 points, the
third prize (bronze medal) with 28 points and the fourth prize (honourable mention) with 22
points. Among the 45 contestants, 7 1. prizes, 9 II. prizes, 12 III. prizes and 8 IV. prizes were
awarded, meaning that 80 % of all contestants were awarded.

The following problem descriptions and solution are based mainly on a translation of the
original German version from 1975. Because the original drafts are not well preserved, some
new sketches were drawn. We also gave the problems headlines and the solutions are in more

detail.

Theoretical problem 1: “Rotating rod”

A rod revolves with a constant angular velocity w

around a vertical axis A. The rod includes a fixed angle A*

of mw/2-a with the axis. A body of mass m can glide

along the rod. The coefficient of friction is p = tanp.

The angle f is called ,,friction angle*.

a) Determine the angles o under which the body
remains at rest and under which the body is in L
motion if the rod is not rotating (i.e. @ = 0).

b) The rod rotates with constant angular velocity

@ > 0. The angle o does not change during rotation. <

Find the condition for the body to remain at rest

relative to the rod.

You can use the following relations:
sin(aaxB)=sina-cosP £ cosa-sinf

cos(atPB)=cosa-cosP F sina-sinf



Solution of problem 1:

a)

b)

w=0:

The forces in this case are (see figure):
G=Z+N=m-g (1),
|Z|=m- g-sina=Z ),
‘N‘: m-g-cosa=N (3),
‘ﬁ‘:u-N:u-m-g-cosoczR (4).

[ R : force of friction]
The body is at rest relative to the rod, if Z < R. According to equations (2) and (4) this is

equivalent to tana < tan 3 . That means, the body is at rest relative to the rod for o < 3 and

the body moves along the rod for a > 3 .

w>0:
Two different situations have to be considered: 1. o > 3 and 2. o < 3.

If the rod is moving (® # 0) the forces are G=m-g and ‘Ii‘ =m-r-6.
From the parallelogramm of forces (see figure): A
Z4N=G+F O
The condition of equilibrium is:

|Z|= u|N| (6).

= . . . . 2

Case 1:  Zis oriented downwards, i.e. g-sina>r-®" -cosa. .
= . 2 - 2 .
‘Z‘:m-g-sma-m-r-m -cosa.  and ‘N‘:m-g-cosa +m-r-® -sina
= . . . . 2

Case 2:  Zis oriented upwards, i.e. g-sino<7-®" -cosa. .

=g . 2 ~ 2 .
‘Z‘:—m-g-s1noc+m-r-co -coso. and ‘N‘:m-g-cosoc+m-r-co -sinal

It follows from the condition of equilibrium equation (6) that

i(g-sina —r-o’ -cosa)=tanB -(g-coscx +r-m2~sina) (7).



Algebraic manipulation of equation (7) leads to:

g-sin(a—p)=r-o’-cos(o—P) (3),
g-sin(a+B)=r-o’-cos(a+p) ).
That means,

- -
N2=3 tan (o ¥ ) (10).

The body is at rest relative to the rotating rod in the case o > 3 if the following inequalities

hold:

n<r<r, with 7,7, >0 (11)
or

L <L<L, with L, =r,/cosa and L, =r,/cosa (12).

The body is at rest relative to the rotating rod in the case o < 3 if the following inequalities
hold:
0<r<r, with 7, = 0 (since r, <0 is not a physical solution), r, >0 (13).

Inequality (13) is equivalent to
0<L<L, with L, =r,/cosa>0 (14).

Theoretical problem 2: “Thick lens”

The focal length f of a thick glass lens in air with refractive index n, radius curvatures r;, > and

: . nrr
vertex distance d (see figure) is given by: ' = —

- (n—l)[n(r2 —r1)+d(n—1)]

<
™~

(V)

=9

wn
‘™~
}’0




Remark: r; > 0 means that the central curvature point M; is on the right side of the aerial

vertex S;, 1; < 0 means that the central curvature point M; is on the left side of the

aerial vertex S; (i=1,2).

For some special applications it is required, that the focal length is independent from the

wavelength.

a) For how many different wavelengths can the same focal length be achieved?

b) Describe a relation between 7; (1 = 1,2), d and the refractive index »n for which the required
wavelength independence can be fulfilled and discuss this relation.
Sketch possible shapes of lenses and mark the central curvature points M; and M.

¢) Prove that for a given planconvex lens a specific focal length can be achieved by only one
wavelength.

d) State possible parameters of the thick lens for two further cases in which a certain focal

length can be realized for one wavelength only. Take into account the physical and the

geometrical circumstances.

Solution of problem 2:

a)

b)

The refractive index # is a function of the wavelength A i.e. n = n (A ). According to the
given formula for the focal length f (see above) which for a given f yields to an equation
quadratic in n there are at most two different wavelengths (indices of refraction) for the same
focal length.

If the focal length is the same for two different wavelengths, then the equation
f)=f(r) or f(m)=f(n) (1
holds. Using the given equation for the focal length it follows from equation (1):

(m =) (, l—lrlz)+d(nl 0] (n-1)[n, (rzz—lrlz)er(nz 1]

Algebraic calculations lead to:

rl—rzzd-(l—ﬁj (2).
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If the values of the radii r; r, and the thickness satisfy this condition the focal length will be

the same for two wavelengths (indices of refraction). The parameters in this equation are
subject to some physical restrictions: The indices of refraction are greater than 1 and the
thickness of the lens is greater than 0 m. Therefore, from equation (2) the relation

d>r,—n,>0 3)



is obtained.

The following table shows a discussion of different cases:

7 7, condition shape of the lens centre of
curvature
>0 |rn>0|0<r-r<d M; is always
or right of M.
r,<r<d+r, 5 s My, MM, <SS,
n>0 1 71,<0 |1 +|n|<d / \ Order of points:
S — S1M1M2S2
1\ o / i
r,<0 | r,>0 |never fulfilled
n<0 1 1<0 | 0<|n|-|n|<d M, is always
or right of M.
| <|r|<d +|r| By v, $ S MM, <SS,

¢) The radius r; or the radius r; is infinite in the case of the planconvex lens. In the following it

is assumed that r; is infinite and 7, is finite.

lim f = lim

1y

nr,

r

rp—>®©

(”—1){n(:—1j+(n_1)ﬂ_1—n

(4)

Equation (4) means, that for each wavelength (refractive index) there exists a different value

of the focal length.

d) From the given formula for the focal length (see problem formulation) one obtains the

following quadratic equation in #:

A-n’+B-n+C=0

with

a=(s

~r+d)-f

()

=—[f-(r,—n)+2-f-d+r,-r,] and C=f-d .




Solutions of equation (5) are:

2
B + B C

n,,=———-= -— 6).
Moo2.4\4 4 4 (©)
Equation (5) has only one physical correct solution, if...
I) A =0 (i.e., the coefficient of »’ in equation (5) vanishes)
In this case the following relationships exists:
rn-rn=d (7,
= & >1 (8)
f-d+r-n
1) B = 0 (i.e. the coefficient of n in equation (5) vanishes)
In this case the equation has a positive and a negative solution. Only the positve
solution makes sense from the physical point of view. It is:
So(r=r)+2-f-d+r-rn=0 ©),
o4 (10),
A (r,—r,+d)
) B*=4AC
In this case two identical real solutions exist. It is:
2 2
[f(n=n)+2:frd+nn] =4:(,-r+d) f*d (11),
he B :f-(rz—r1)+2-f-d+r1-r2>1 (12).
2-4 2-f(r,—r,+d)
Theoretical problem 3: “Ions in a magnetic field”

A beam of positive ions (charge +e) of the same and

constant mass m spread from point Q in different directions

©_ o
in the plane of paper (see figure’). The ions were @0 ®
accelerated by a voltage U. They are deflected in a uniform 0@

magnetic field B that is perpendicular to the plane of paper.

magnetic field

The boundaries of the magnetic field are made in a way .% o
Q

a a A

that the initially diverging ions are focussed in point A

(Q_A =2-a). The trajectories of the ions are symmetric to the middle perpendicular on Q_A

* Remark: This illustrative figure was not part of the original problem formulation.

7



Among different possible boundaries of magnetic fields a specific type shall be considered in

which a contiguous magnetic field acts around the middle perpendicular and in which the points

Q and A are in the field free area.

a)

b)
©)

d)

Describe the radius curvature R of the particle path in the magnetic field as a function of the
voltage U and the induction B.

Describe the characteristic properties of the particle paths in the setup mentioned above.
Obtain the boundaries of the magnetic field boundaries by geometrical constructions for the
casesR<a,R=aand R> 0.

Describe the general equation for the boundaries of the magnetic field.

Solution of problem 3:

a)

b)

The kinetic energy of the ion after acceleration by a voltage U is:
% omv* = eU (D).

From equation (1) the velocity of the ions is calculated:

b [2-e-U Q).
m

On a moving ion (charge e and velocity v) in a homogenous magnetic field B acts a Lorentz

force F. Under the given conditions the velocity is always perpendicular to the magnetic
field. Therefore, the paths of the ions are circular with Radius R. Lorentz force and

centrifugal force are of the same amount:

ev-B= 3).
2 3)
From equation (3) the radius of the ion path is calculated:
1 [2-m-U
R=_— 4).
2\ o “

All ions of mass m travel on circular paths of radius R = v-m / e-B inside the magnetic field.

Leaving the magnetic field they fly in a straight line along the last tangent. The centres of

curvature of the ion paths lie on the middle perpendicular on Q_A since the magnetic field is
assumed to be symmetric to the middle perpendicular on Q_A The paths of the focussed

ions are above Q_A due to the direction of the magnetic field.



&

A
. a_




¢) The construction method of the boundaries of the magnetic fields is based on the
considerations in part b:
Sketch circles of radius R and different centres of curvature on the middle perpendicular
on QA.
Sketch tangents on the circle with either point Q or point A on these straight lines.
The points of tangency make up the boundaries of the magnetic field. If R > a then not
all ions will reach point A. Ions starting at an angle steeper than the tangent at Q, do not

arrive in A. The figure on the last page shows the boundaries of the magnetic field for

the three casesR<a, R=a and R > a.

d) It is convenient to deduce a general equation for the boundaries of the magnetic field in

polar coordinates (7, @) instead of using cartesian coordinates (x, ).

—r—
o & A
The following relation is obtained from the figure:
r-cosQ + Rsinp =a (7.
The boundaries of the magnetic field are given by:
r=—12 (l—ﬁsin(pj (8).
CosQ a

10



Experimental problem: “Semiconductor element”

In this experiment a semiconductor element (—IAA1+— ), an adjustable resistor (up to 140 Q),

a fixed resistor (300 Q), a 9-V-direct voltage source, cables and two multimeters are at disposal.

It is not allowed to use the multimeters as ohmmeters.

a)

b)

d)

Determine the current-voltage-characteristics of the semiconductor element taking into
account the fact that the maximum load permitted is 250 mW. Write down your data in
tabular form and plot your data. Before your measurements consider how an overload of the
semiconductor element can surely be avoided and note down your thoughts. Sketch the
circuit diagram of the chosen setup and discuss the systematic errors of the circuit.
Calculate the resistance (dynamic resistance) of the semiconductor element for a current of
25 mA.

Determine the dependence of output voltage U, from the input voltage U; by using the

circuit described below. Write down your data in tabular form and plot your data.

prommmm— 0

300Q
Uy U,

o
o

The input voltage U; varies between 0 V and 9 V. The semiconductor element is to be
placed in the circuit in such a manner, that U, is as high as possible. Describe the entire
circuit diagram in the protocol and discuss the results of the measurements.

How does the output voltage U, change, when the input voltage is raised from 7 V to 9 V?
Explain qualitatively the ratio AU; / AU..

What type of semiconductor element is used in the experiment? What is a practical

application of the circuit shown above?

Hints: The multimeters can be used as voltmeter or as ammeter. The precision class of these

instruments is 2.5% and they have the following features:

measuring range

50 pA

300 pA

3 mA

30 mA

300 mA

03V

1Y

3V

10V

internal resistance

2kQ

1 kQ

100 Q

10 Q

1Q

6 kQ

20 kQ

60 kQ

200 kQ

11




Solution of the experimental problem:

a) Some considerations: the product of the voltage across the semiconductor element U and
current / through this element is not allowed to be larger than the maximum permitted load
of 250 mW. Therefore the measurements have to be processed in a way, that the product U-
1 is always smaller than 250 mW.

The figure shows two different circuit diagram that can be used in this experiment:

J J
— [ _J|:_ [
U U
The complete current-voltage- 43
characteristics look like this: wA

The systematic error is produced

by the measuring instruments. >

<lc

Concerning the circuit diagram on

the left (“Stromfehlerschaltung”),

the ammeter also measures the
current running through the voltmeter. The current must therefore be corrected. Concerning
the circuit diagram on the right (“Spannungsfehlerschaltung”) the voltmeter also measures
the voltage across the ammeter. This error must also be corrected. To this end, the given
internal resistances of the measuring instruments can be used. Another systematic error is
produced by the uncontrolled temperature increase of the semiconductor element, whereby

the electric conductivity rises.

b) The dynamic resistance is obtained as ratio of small differences by

r =AY

iy (D.

The dynamic resistance is different for the two directions of the current. The order of
magnitude in one direction (backward direction) is 10 Q + 50% and the order of magnitude

in the other direction (flux direction) is 1 Q £+ 50%.

12



¢)

d)

The complete circuit diagram contains a potentiometer and two voltmeters.

3000

U, U,

The graph of the function U, = f(U,)has TSV
2

generally the same form for both directions of v

the current, but the absolute values are different.

By requesting that the semiconductor element

has to be placed in such a way, that the output $1
voltage U, is as high as possible, a backward > Uq
direction should be used. 3 v

Comment: After exceeding a specific input voltage U; the output voltage increases only a
little, because with the alteration of U; the current / increases (breakdown of the

diode) and therefore also the voltage drop at the resistance.

The output voltages belonging to U; =7 V and U; = 9 V are measured and their difference
AU, is calculated:
AU, =0.1 V< 50% (2).

Comment: The circuit is a voltage divider circuit. Its special behaviour results from the
different resistances. The resistance of the semiconductor element is much
smaller than the resistance. It changes nonlinear with the voltage across the

element. From R, << R, follows AU, <AU, inthecase of U, >U,.

The semiconductor element is a Z-diode (Zener diode); also correct: diode and rectifier. The

circuit diagram can be used for stabilisation of voltages.

13



Marking scheme

Problem 1: “Rotating rod” (10 points)

Parta 1 point
Part b — cases 1. and 2. 1 point
— forces and condition of equilibrium 1 point
— case Z downwards 2 points
— case Z upwards 2 points
— calculation of 7, 1 point
—case o > 3 1 point
—case o <3 1 point
Problem 2: “Thick lens” (10 points)
Part a 1 point
Part b — equation (1), equation (2) 2 points
— physical restrictions, equation (3) 1 point
— discussion of different cases 2 points
— shapes of lenses 1 point
Part ¢ — discussion and equation (4) 1 point
Partd 2 point

Problem 3: “Ions in a magnetic field” (10 points)

Part a — derivation of equations (1) and (2) 1 point
— derivation of equation (4) 1 point
Part b — characteristics properties of the particle |3 points
paths
Part ¢ — boundaries of the magnetic field for the |3 points
three cases
Partd 2 points

14




Experimental problem: “Semiconductor element” (20 points)

Part a — considerations concerning overload, 6 points
circuit diagram,
experiment and measurements,
complete current-voltage-
-characteristics
discussion of the systematic errors

Part b — equation (1) 3 points
dynamic resistance for both directions
correct results within £50%

Part ¢ — complete circuit diagram, 5 points
measurements,
graph of the function U, = f(U,),

correct comment

Part d — correct AU, within £50%, 3 points
correct comment
Part e — Zener-diode (diode, rectifier) and 3 points

stabilisation of voltages

Remarks: If the diode is destroyed two points are deducted.

If a multimeter is destroyed five points are deducted.
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Problems of the 9™ International Physics Olympiads
(Budapest, Hungary, 1976)

Theoretical problems

Problem 1

A hollow sphere of radius R = 0.5 m rotates about a vertical axis through its centre
with an angular velocity of @ =5 s™. Inside the sphere a small block is moving together with
the sphere at the height of R/2 (Fig. 6). (g = 10 m/s%)

a) What should be at least the coefficient of friction to fulfill this condition?

b) Find the minimal coefficient of friction also for the case of ® =8s™.

c) Investigate the problem of stability in both cases,

o) for a small change of the position of the block,
[3) for a small change of the angular velocity of the sphere.

Figure 6 Figure 7

Solution

a) The block moves along a horizontal circle of radius Rsin«a . The net force acting
on the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force
exerted by the wall N, the frictional force S and the weight mg is equal to the resultant:

mw’Rsing .

The connections between the horizontal and vertical components:
mo’Rsina = Nsina —Scosa,,
mg =Ncosa +Ssina.

The solution of the system of equations:
S =mgsin a(l——sz;osaj,



( wZRSinza}
N =mg cosa+T .
The block does not slip down if
w’Rcosa
S o 3V3
1, 2~ =sina- 9 N2 02259,
N o°Rsin“a 23
cosag+————
g

In this case there must be at least this friction to prevent slipping, i.e. sliding down.

2
b) If on the other hand Mﬂ some

g
friction is necessary to prevent the block to slip
upwards. mo°Rsina must be equal to the
resultant of forces S, N and mg. Condition for the
minimal coefficient of friction is (Fig. 8):

®’Rcosa 1
S g
> =sing- _
o N ®?’Rsin’ a
cos@g+——
g
:£20.1792. ]
29 Figure 8

c) We have to investigate u, and u, as functions of « and @ in the cases a) and b)
(see Fig. 9/a and 9/b):

Ho w = 8/s ,

{R
A\ @> 8/s
\

Figure Figure

In case a): if the block slips upwards, it comes back; if it slips down it does not return.
If @ increases, the block remains in equilibrium, if @ decreases it slips downwards.

In case b): if the block slips upwards it stays there; if the block slips downwards it
returns. If @ increases the block climbs upwards’, if @ decreases the block remains in
equilibrium,

Problem 2

The walls of a cylinder of base 1 dm? the piston and the inner dividing wall are



perfect heat insulators (Fig. 10). The valve in the dividing wall opens if the pressure on the
right side is greater than on the left side. Initially there is 12 g helium in the left side and 2 g
helium in the right side. The lengths of both sides are 11.2 dm each and the temperature is
0°C. Outside we have a pressure of 100 kPa. 11.2 dm 11.2 dm

The specific heat at constant volume is s

¢, =3.15J/gK, at constant pressure it is

Cp = 5.25J/gK. The piston is pushed slowly 1dm
towards the dividing wall. When the valve

opens we stop then continue pushing slowly SISSS LSS SSSSSSSSS LS
until the wall is reached. Find the work done _

on the piston by us. Figure 10

MRS

Solution

The volume of 4 g helium at 0°C temperature and a pressure of 100 kPa is 22.4 dm®
(molar volume). It follows that initially the pressure on the left hand side is 600 kPa, on the
right hand side 100 kPa. Therefore the valve is closed.

An adiabatic compression happens until the pressure in the right side reaches 600 kPa
(k=5/3).

100-11.2%° =600-V ¥,
hence the volume on the right side (when the valve opens):

V =3.82 dm°.
From the ideal gas equation the temperature is on the right side at this point
T, = v 552K .
nR

During this phase the whole work performed increases the internal energy of the gas:
W; = (3.15 J/gK) - (2 g) - (552 K — 273 K) = 1760 J.

Next the valve opens, the piston is arrested. The temperature after the mixing has been
completed:

12.273+2-552
14

During this phase there is no change in the energy, no work done on the piston.
An adiabatic compression follows from 11.2 + 3.82 = 15.02 dm® to 11.2 dm®:

313-15.02%° =T, -11.2%%,

=313K.

T

hence

T3 =381 K.
The whole work done increases the energy of the gas:

W3 = (3.15 J/gK) - (14 g) - (381 K — 313 K) = 3000 J.

The total work done:
Whotar = W1 + W3 = 4760 J.

The work done by the outside atmospheric pressure should be subtracted:
Wiatm = 100 kPa - 11.2 dm® = 1120 J.



The work done on the piston by us:

W = Wtota] - Watm = 3640 J
Problem 3

Somewhere in a glass sphere there is an air bubble. Describe methods how to
determine the diameter of the bubble without damaging the sphere.

Solution

We can not rely on any value about the density of the glass. It is quite uncertain. The
index of refraction can be determined using a light beam which does not touch the bubble.
Another method consists of immersing the sphere into a liquid of same refraction index: its
surface becomes invisible.

A great number of methods can be found.

We can start by determining the axis, the line which joins the centers of the sphere and
the bubble. The easiest way is to use the “tumbler-over” method. If the sphere is placed on a
horizontal plane the axis takes up a vertical position. The image of the bubble, seen from both
directions along the axis, is a circle.

If the sphere is immersed in a liquid of same index LJ LJ
of refraction the spherical bubble is practically inside a
parallel plate (Fig. 11). Its boundaries can be determined ; | e—
either by a micrometer or using parallel light beams. | E

Along the axis we have a lens system consisting’ of N
two thick negative lenses. The diameter of the bubble can
be determined by several measurements and complicated Figurell
calculations.

If the index of refraction of the glass is known we can fit a plano-concave lens of same
index of refraction to the sphere at the end of the axis (Fig. 12). As ABCD forms a parallel
plate the diameter of the bubble can be measured using parallel light beams.

tt i

<->
d

Fiaurel?2 Fiaurel3

Focusing a light beam on point A of the surface of the sphere (Fig. 13) we get a
diverging beam from point A inside the sphere. The rays strike the surface at the other side
and illuminate a cap. Measuring the spherical cap we get angle ¢. Angle  can be obtained in
a similar way at point B. From



and sinz//:L

sing =
¢ R—d

we have

F_9R. -Sinl//SiI:l(z) | d:R-S?m//_Sin(D.
siny +sing siny +sing
The diameter of the bubble can be determined also by the help of X-rays. X-rays are not
refracted by glass. They will cast shadows indicating the structure of the body, in our case the
position and diameter of the bubble.
We can also determine the moment of inertia with respect to the axis and thus the

diameter of the bubble.
Experimental problem
The whole text given to the students:

At the workplace there are beyond other devices a test tube with 12 V electrical
heating, a liquid with known specific heat (co = 2.1 J/g°C) and an X material with unknown
thermal properties. The X material is insoluble in the liquid.

Examine the thermal properties of the X crystal material between room temperature
and 70 °C. Determine the thermal data of the X material. Tabulate and plot the measured data.

(You can use only the devices and materials prepared on the table. The damaged
devices and the used up materials are not replaceable.)

Solution
Heating first the liquid then the liquid and the crystalline substance together two

time-temperature graphs can be plotted. From the graphs specific heat, melting point and heat
of fusion can be easily obtained.
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10" International Physics Olympiad
1977, Hradec Kralové, Czechoslovakia

Problem 1. The compression ratio of a four-stroke internal combustion
engine is € = 9.5. The engine draws in air and gaseous fuel at a temperature
27°C at a pressure 1 atm = 100 kPa. Compression follows an adiabatic
process from point 1 to point 2, see Fig. 1. The pressure in the cylinder
is doubled during the mixture ignition (2-3). The hot exhaust gas expands
adiabatically to the volume V5 pushing the piston downwards (3-4). Then
the exhaust valve opens and the pressure gets back to the initial value of
1 atm. All processes in the cylinder are supposed to be ideal. The Poisson
constant (i.e. the ratio of specific heats C,/Cy) for the mixture and exhaust
gas is k = 1.40. (The compression ratio is the ratio of the volume of the
cylinder when the piston is at the bottom to the volume when the piston is
at the top.)

P4
3
P3 """"""
P, >
4
Py
P= Py 0 1
v, v, vV

Figure 1:



a) Which processes run between the points 0-1, 2-3, 4-1, 1-07

Find the thermal efficiency of the cycle.

)
b) Determine the pressure and the temperature in the states 1, 2, 3 and 4.
c)

d) Discuss obtained results. Are they realistic?

Solution: a) The description of the processes between particular points is the

following:
0-1: intake stroke isobaric and isothermal process
1-2 :  compression of the mixture  adiabatic process
2-3 : mixture ignition isochoric process
3-4 . expansion of the exhaust gas adiabatic process
4-1: exhaust isochoric process
1-0 : exhaust isobaric process

Let us denote the initial volume of the cylinder before induction at the
point 0 by Vi, after induction at the point 1 by V5, and the temperatures
at the particular points by Tgy, 17, Ts, T5 and T}.

b) The equations for particular processes are as follows.

0-1: The fuel-air mixture is drawn into the cylinder at the temperature
of Ty =T, = 300 K and a pressure of pg = p; = 0.10 MPa.

1-2 : Since the compression is very fast, one can suppose the process to be
adiabatic. Hence:

p1Va _ p2Vi
T T,

p1 Vo =p V¥ and

From the first equation one obtains

(B
P2 =D Vi =D

and by the dividing of both equations we arrive after a straightforward
calculation at

V k—1
NV =TV, Th=T (72) =Te" .
1

For given values k = 1.40, ¢ = 9.5, p; = 0.10 MPa, T7 = 300 K we have
po = 2.34 MPa and Ty = 738 K (5 = 465°C).

2



2-3:

4-1

Because the process is isochoric and p3 = 2ps holds true, we can write

T.
Ps _ 23 . which implies T3 =T 2@ =2T5.
D2 T2 b2

Numerically, p; = 4.68 MPa, T3 = 1476 K (t3 = 1203°C).

: The expansion is adiabatic, therefore

psV1 paVa
VE = p, VS —_— = .
p3Vy DPaVy T T,

The first equation gives

Vi\"
= e = 2 S_K’ = 2
P4 =DP3 (Vg ) D2 P1
and by dividing we get
TVt =T, Vet

Consequently,
T4 = T’gf‘:l_fi = QTQEl_K = 2T1 .

Numerical results: py = 0.20 MPa, T3 = 600 K (t3 = 327°C).

The process is isochoric. Denoting the temperature by 7] we can write

ps_ Ta
p T
which yields
T
=1 =t
pe 2

We have thus obtained the correct result 7] = T;. Numerically, p; =
0.10 MPa, T] = 300 K.

¢) Thermal efficiency of the engine is defined as the proportion of the

heat supplied that is converted to net work. The exhaust gas does work on
the piston during the expansion 3-4, on the other hand, the work is done
on the mixture during the compression 1-2. No work is done by/on the gas
during the processes 2-3 and 4-1. The heat is supplied to the gas during the
process 2-3.



The net work done by 1 mol of the gas is
R

Kk—1

W =

R R
(Tl — Tg) =+ m(Tg — T4) = m(Tl — T2 +T3 — T4)

and the heat supplied to the gas is

Qa3 = Cy (T3 — Ts).
Hence, we have for thermal efficiency

%% R T =T+ T3 -1,

n:QZS_(H_l)CV T35 — 1T,

Since

R :CP—CV:FL—lzl
(k=1)Cy (k=1)Cy k-1 ’
we obtain
nzl—T4_T1:1—£=1—€17“-
T3 — Ty T

Numerically, n = 1 — 300/738 = 1 — 0.407, n = 59, 3% .

d) Actually, the real pV-diagram of the cycle is smooth, without the sharp
angles. Since the gas is not ideal, the real efficiency would be lower than the
calculated one.

Problem 2. Dipping the frame in a soap solution, the soap forms a rectangle
film of length b and height h. White light falls on the film at an angle «
(measured with respect to the normal direction). The reflected light displays
a green color of wavelength \g.

a) Find out if it is possible to determine the mass of the soap film using
the laboratory scales which has calibration accuracy of 0.1 mg.

b) What color does the thinnest possible soap film display being seen from
the perpendicular direction? Derive the related equations.

Constants and given data: relative refractive index n = 1.33, the wavelength
of the reflected green light A\j = 500 nm, o = 30°, b = 0.020 m, h = 0.030 m,
density o = 1000 kg m~3.



Solution: The thin layer reflects the monochromatic light of the wavelength A
in the best way, if the following equation holds true

A
2ndcosﬂ:(2k:+1)§, k=0,1,2,..., (1)

where k£ denotes an integer and [ is the angle of refraction satisfying

sin «v

=n
sin 3

/ . 1 ;
cosB=1/1—sin?f ==-vVn?2—sin’a.
n

Substituting to (1) we obtain

2dv/n? —sin? a = (2k + 1)% : (2)

If the white light falls on a layer, the colors of wavelengths obeying (2) are
reinforced in the reflected light. If the wavelength of the reflected light is A,
the thickness of the layer satisfies for the kth order interference

2% + 1)\
g = —CEEDN op s gyg,

4+/n? — sin® o

For given values and k = 0 we obtain dy = 1.01 - 1077 m.

a) The mass of the soap film is my = grbhdg. Substituting the given
values, we get my = 6.06-1072 mg, m; = 18.2-1072 mg, ms = 30.3-10~% mg,
etc. The mass of the thinnest film thus cannot be determined by given
laboratory scales.

b) If the light falls at the angle of 30° then the film seen from the per-
pendicular direction cannot be colored. It would appear dark.

Hence,

Problem 3. An electron gun 7' emits electrons accelerated by a potential
difference U in a vacuum in the direction of the line a as shown in Fig. 2. The
target M is placed at a distance d from the electron gun in such a way that
the line segment connecting the points 7" and M and the line a subtend the
angle a as shown in Fig. 2. Find the magnetic induction B of the uniform
magnetic field



lectron gun
electron gu o
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Figure 2:

a) perpendicular to the plane determined by the line a and the point M
b) parallel to the segment T'M

in order that the electrons hit the target M. Find first the general solution
and then substitute the following values: U = 1000 V, e = 1.60 - 10~ C,
me = 9.11-1073 kg, a = 60°, d = 5.0 cm, B < 0.030 T.

Solution: a) If a uniform magnetic field is perpendicular to the initial direc-
tion of motion of an electron beam, the electrons will be deflected by a force
that is always perpendicular to their velocity and to the magnetic field. Con-
sequently, the beam will be deflected into a circular trajectory. The origin of
the centripetal force is the Lorentz force, so

mev>

Bev = (3)

r
Geometrical considerations yield that the radius of the trajectory obeys
(cf. Fig. 3).
d
r=—-.
2sin«

(4)
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The velocity of electrons can be determined from the relation between the
kinetic energy of an electron and the work done on this electron by the electric
field of the voltage U inside the gun,

1
Emev2 =eU. (5)

Using (3), (4) and (5) one obtains

2eU 2sin 2Um, sin «
B =m, =2 .
m. ed e d

Substituting the given values we have B = 3.70 - 1073 T.

b) If a uniform magnetic field is neither perpendicular nor parallel to the
initial direction of motion of an electron beam, the electrons will be deflected
into a helical trajectory. Namely, the motion of electrons will be composed
of an uniform motion on a circle in the plane perpendicular to the magnetic
field and of an uniform rectilinear motion in the direction of the magnetic
field. The component ¢; of the initial velocity ¢, which is perpendicular
to the magnetic field (see Fig. 4), will manifest itself at the Lorentz force
and during the motion will rotate uniformly around the line parallel to the
magnetic field. The component 75 parallel to the magnetic field will remain

7
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constant during the motion, it will be the velocity of the uniform rectilinear
motion. Magnitudes of the components of the velocity can be expressed as

V] =vsSina Uy = VCOS .
Denoting by N the number of screws of the helix we can write for the time

of motion of the electron

d d B 2mrN B 2mr N

t:—: = =

Uy  VCOSQ o vsina

Hence we can calculate the radius of the circular trajectory

dsin o
= —
27N cos «

However, the Lorentz force must be equated to the centripetal force

mevZsin?a mev?sin? a

Bevsina = . =—. (6)

27N cos




Consequently,

mev?sin?a2rNcosae 2 Nmev cos a

B = : —
dsin o ev sin « de

The magnitude of velocity v again satisfies (5), so
2Ue
v =4/ )
me
Substituting into (6) one obtains

B_QWNcosa 2Um,
N d V e

Numerically we get B = N -6.70-1073 T. If B < 0.030 T should hold true,
we have four possibilities (N < 4). Namely,

B =6.70-10"3T,
By =134-103T,
B3 =20.1-10"°T,
B, =268-10"2T.



Problems of the XI International Olympiad, Moscow, 1979
The publication has been prepared by Prof. S. Kozel and Prof. V.Orlov
(Moscow Institute of Physics and Technology)

The XI International Olympiad in Physics for students took place in Moscow, USSR, in July 1979
on the basis of Moscow Institute of Physics and Technology (MIPT). Teams from 11 countries
participated in the competition, namely Bulgaria, Finland, Germany, Hungary, Poland, Romania,
Sweden, Czechoslovakia, the DDR, the SFR Yugoslavia, the USSR.  The problems for the
theoretical competition have been prepared by professors of MIPT (V.Belonuchkin, I.Slobodetsky,
S.Kozel). The problem for the experimental competition has been worked out by O.Kabardin from
the Academy of Pedagogical Sciences.

It is pity that marking schemes were not preserved.

Theoretical Problems

Problem 1.

A space rocket with mass M=12t is moving around the Moon along the circular orbit at the height
of h =100 km. The engine is activated for a short time to pass at the lunar landing orbit. The
velocity of the ejected gases u = 10* m/s. The Moon radius Ry = 1,7-10° km, the acceleration of

gravity near the Moon surface gy = 1.7 m/s*

Fig.1 Fig.2

1). What amount of fuel should be spent so that when activating the braking engine at
point A of the trajectory, the rocket would land on the Moon at point B (Fig.1)?

2). In the second scenario of landing, at point A the rocket is given an impulse directed
towards the center of the Moon, to put the rocket to the orbit meeting the Moon surface

at point C (Fig.2). What amount of fuel is needed in this case?



Problem 2.

Brass weights are used to weigh an aluminum-made sample on an analytical balance. The weighing

is ones in dry air and another time in humid air with the water vapor pressure P,=2.10° Pa. The

total atmospheric pressure (P = 10° Pa) and the temperature (t =20° C) are the same in both cases.
What should the mass of the sample be to be able to tell the difference in the balance
readings provided their sensitivity ismg =0.1 mg ?

Aluminum density py= 2700 kg/m®, brass density p,=.8500 kg/m®.

Problem 3
.During the Soviet-French experiment on the optical location of the Moon the light pulse of a ruby
laser (A= 0,69um) was drected to the Moon’s surface by the telescope with a diameter of the
mirror D = 2,6 m. The reflector on the Moon’s surface reflected the light backward as an ideal
mirror with the diameter d = 20 cm. The reflected light was then collected by the same telescope
and focused at the photodetector.
1) What must the accuracy to direct the telescope optical axis be in this experiment?
2) What part of emitted laser energy can be detected after reflection on the Moon, if we
neglect the light loses in the Earth’s atmosphere?
3) Can we see a reflected light pulse with naked eye if the energy of single laser pulse
E = 1 J and the threshold sensitivity of eye is equal n =100 light quantum?
4) Suppose the Moon’s surface reflects o = 10% of the incident light in the spatial angle 2x
steradian, estimate the advantage of a using reflector.
The distance from the Earth to the Moon is L = 380000 km. The diameter of pupil of the eye is

d, = 5mm. Plank constant is h = 6.6-10°* J.s.
Experimental Problem

Define the electrical circuit scheme in a “black box” and determine the parameters of its elements.
List of instruments: A DC source with tension 4.5 V, an AC source with 50 Hz frequency and
output voltage up to 30 V, two multimeters for measuring AC/DC current and voltage, variable

resistor, connection wires.



Solution of Problems of the XI International Olympiad, Moscow, 1979
Solution of Theoretical Problems

Problem 1.
1) During the rocket moving along the circular orbit its centripetal acceleration is created by
moon gravity force:
MM, _ Mv?
R? R

where R = Ry + h is the primary orbit radius, vo -the rocket velocity on the circular orbit:

My
R

v, =.,|G

M
2
M

Since g,, =G it yields

gMRl\Z/I 9w
vV, =, — =R, [—— 1
e i ot &

The rocket velocity will remain perpendicular to the radius-vector OA after the braking
engine sends tangential momentum to the rocket (Fig.1). The rocket should then move along the
elliptical trajectory with the focus in the Moon’s center.

Denoting the rocket velocity at points A and B as va and vg we can write the equations for

energy and momentum conservation as follows:

2 2
M MM, M MM,
2 R 2 R,
MvaR = MvgRwm (3)

Solving equations (2) and (3) jointly we find

V, = ZG—MMRM
R(R+R,,)

Taking (1) into account, we get



2R,,
Va Vo R+ R,
M

Thus the rocket velocity change Av at point A must be

AV=V, -V, =V,|1- 2Ry =v,| 1- 2Ry =24m/s.
R+R,, 2R, +h

Since the engine switches on for a short time the momentum conservation low in the system

“rocket-fuel” can be written in the form

(M =my)Av =myu
where m, is the burnt fuel mass.
This yields

AV

m, =
u+Av

Allow for Av << u we find
m, ~ 2V M = 20kg
u

2) In the second case the vector V3 is directed perpendicular to the vector Va thus giving

T, =V, HA,, v, = v HAwE
Based on the energy conservation law in this case the equation can be written as
M(VZ+AVZ) GMM, M2 GMM,

4
2 R 2 R, @

and from the momentum conservation law
Mv,R = MV.R,, . (%)

Solving equations (4) and (5) jointly and taking into account (1) we find

2
AV, =g, (R-R,) —h|—J%_ < 97ms.
R Ry +h

Using the momentum conservation law we obtain

_Av,

m, M ~116Kg .

Problem 2.



A sample and weights are affected by the Archimede’s buoyancy force of either dry or humid air in
the first and second cases, respectively. The difference in the scale indication AF is determined by
the change of difference of these forces.
The difference of Archimede’s buoyancy forces in dry air:

AF, = AVp, g
Whereas in humid air it is:

AF, =AVp.g

where AV - the difference in volumes between the sample and the weights, and  p.andp, -

densities of dry and humid air, respectively.

Then the difference in the scale indications AF could be written as follows:

AF = AF, - AF, = AVg(p, - p.) 1)

According to the problem conditions this difference should be distinguished, i.e.
AF >m,g or AVg(,o;1 —p;)z m, , wherefrom

M,

— . ()
Pa ~ Pa
The difference in volumes between the aluminum sample and brass weights can be found from the
equation

AV >

AV :m_ﬂ:m[uj | @)
P P> P1P>

where m is the sought mass of the sample. From expressions (2) and (3) we obtain

m:AVL PP jz Imo [ PP J (4)
P2~ P Pa = Pa\ P2~ F1

To find the mass m of the sample one has to determine the difference (pa - pa) :

With the general pressure being equal, in the second case, some part of dry air is replaced by vapor:
Am,  Am,

\ \

Pa— Pa =

Changes of mass of air Am, and vapor Am, can be found from the ideal-gas equation of state

Am, = P.VM, CAm, = PVM, |
RT RT
wherefrom we obtain
. . _P(M,-M,)
_ — a a \ . 5
Pa = Pa RT (%)
From equations (4) and (5) we obtain
Pa(Ma_Mv) P2~ P



The substitution of numerical values gives the answer: m>0.0432 kg~ 43 g.

Note. When we wrote down expression (3), we considered the sample mass be equal to the
weights’ mass, at the same time allowing for a small error.

One may choose another way of solving this problem. Let us calculate the change of
Archimede’s force by the change of the air average molar mass.

In dry air the condition of the balance between the sample and weights could be written

M,P 3 _MaP
(/)1_ RT }G‘(pz RT )Vz : (7)

In humid air its molar mass is equal to
M:Mai+MvP_Pa, (8)
P P

down in the form of

whereas the condition of finding the scale error could be written in the form

M,P M,P
P11~ RT 17| P2~ RT 2 2 Mg, (9)

From expressions (7) —(9) one can get a more precise answer

mO RTplpz -M aPa

_(Ma_Mv)(pz_pl)Pa . (10)

Since M P, <<m,p,p,RT , then both expressions (6) and (10) lead practically to the same
quantitative result, i.e. m>43 g.

Problem 3.
1) The beam divergence angle d¢ caused by diffraction defines the accuracy of the telescope optical
axis installation:

Sp~ A/D=2.610"rad. = 0.05" .

2) The part K, of the light energy of a laser, directed to a reflector, may be found by the ratio

of the area of S; reflector ( S, = zd*/4 ) versus the area S, of the light spot on the Moon
(S, =, where r = L dp ~ L)/D, L — the distance from the Earth to the Moon)

S, d* d’D?

K:—: e
LS, (ery axL?

The reflected light beam diverges as well and forms a light spot with the radius R on the Earth’s
surface:

R=AL/d, as r<<R

That’s why the part K, of the reflected energy, which got into the telescope, makes



D? D%d?
K, = 2 pq2)2
(2R)?  4A°L
The part K, of the laser energy, that got into the telescope after having been reflected by the

reflector on the Moon, equals

4
K, = KK, :[%) ~10™"

3) The pupil of a naked eye receives as less a part of the light flux compared to a telescope,
as the area of the pupil Se is less than the area of the telescope mirror Si:

d2

K, = Koiz Ko, —% ~3.7:10%.
S, D

e

So the number of photons N getting into the pupil of the eye is equal
N = E K,=12.
hy
Since N<n, one can not perceive the reflected pulse with a naked eye.
4) In the absence of a reflector « =10% of the laser energy, that got onto the Moon, are
dispersed by the lunar surface within a solid angle €; = 2 steradian.

The solid angle in which one can see the telescope mirror from the Moon, constitutes
Q,=S,/L*=nD*4L?
That is why the part K of the energy gets into the telescope and it is equal

2
K=a22-a2 <0510
8L

1

Thus, the gain S, which is obtained through the use of the reflector is equal
B =KiK=210°

Note. The result obtained is only evaluative as the light flux is unevenly distributed inside the
angle of diffraction.



Solution of Experimental Problem.

A transformer is built-in in a “black box”. The black box has 4 terminals. To be able to
determine the equivalent circuit and the parameters of its elements one may first carry out
measurements of the direct current. The most expedient is to mount the circuit according to the
layout in Fig.3 and to build volt-ampere characteristics for various terminals of the “box”. This
enables one to make sure rightway that there were no e.m.f. sources in the “box” (the plot 1=f(U)
goes through the origin of the coordinates), no diodes (the current strength does not depend on the
polarity of the current’s external source), by the inclination angle of the plot one may define the
resistances between different terminals of the “box”. The tests allowed for some estimations of
values Ry, and R;4. The ammeter did not register any current between the other terminals. This
means that between these terminals there might be some other resistors with resistances larger than
RL

R, =Umax = 4’5X =2.25-10%0hm
.. 2-107A
where  Imin - the minimum value
of the 1 3 strength of the current
- @1 ~
which the instrument would
have 2
(o]
2 4
>0 —o
“Black
box”
Fig.3

registered. Probably there might be some capacitors between terminals 1-3, 1-4, 2-3, 2-4 (Fig.4).
Then, one can carry out analogous measurements of an alternative current. The taken volt-
ampere characteristics enabled one to find full resistances on the alternative current of sections 1-2

and 3-4: Z, and Z, and to compare them to the values R; and R,. It turned out, that Z,>R, and Z,>R..

oL 12 3, J A
¢ Ly
L
Al %) []% : x
| 3 Ry
g’2_- e 4 2 A
! -9 o— s




Fig.4 Fig.5
This fact allows one to conclude that in the “black box™ the coils are connected to terminals 1-2 and
3-4 (Fig.5). Inductances of coils L; and L, can be determined by the formulas

Lo VEERD S NLR

27v 2" 2rv

After that the dependences Z = f(l), L=f(l) are to be investigated. The character of the found
dependences enabled one to draw a conclusion about the presence of ferromagnetic cores in the
coils. Judging by the results of the measurements on the alternative current one could identify the

upper limit of capacitance of the capacitors which could be placed between terminals 1-3, 1-4, 2-3,
2-4:

-6
R 5.10°A

mx T o) 2-3.14-505 -3V

max

=5.10°F=5nF

Then one could check the availability of inductive coupling between circuits 1-2 and 3-4. The plot

of dependence of voltage Us., versus voltage U, ., (Fig. 6) allows one to find both the transformation
coefficient

K=Yz 1
Uy, 2

and the maximum operational voltages on coils L; and L,, when the transformation

Fig.6

coefficient has not changed yet, i.e. before saturation of the core.
Ul—z(max) :25 V, U3—4(max) = 5 V
One could build either plot K(Us-2) or K(Us.sy (Fig. 7).




Fig.7

Note: It was also possible to define the “box” circuit after tests of the direct current. To do that one
had to find the presence of induction coupling between terminals 1-2 and 3-4, that is the appearance
of e.m.f. of induction in circuit 3-4, when closing and breaking circuits 1-2 and vice-versa. When
comparing the direction of the pointer’s rejection of the voltmeters connected to terminals 1-2 and

3-4 one could identify directions of the transformer’s windings.
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XI1 International Physics Olympiad

Varna, Bulgaria, July 1981

The problems and the solutions are adapted by Miroslav Abrashev
University of Sofia, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High School
Students”, ed. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian).

The Experimental Problem

Materials and Instruments: elastic rubber cord (the length of free cord is lo = 150 mm),
vertically hanged up to a stand, set of weights from 10 g to 100 g, pan for the weights with
mass 5 g, chronometer, ruler, millimeter (scaled) paper.

Note: The Earth Acceleration is g = 10 m/s?. The mass of the rubber cord can be
neglected.

Make the following study:

1. Load the rubber cord with weights in the range 15 g to 105 g. Put the data obtained
into a table. Make a graph (using suitable scale) with the experimentally obtained dependence
of the prolongation of the cord on the stress force F.

2. Using the experimental results, obtained in p.1, calculate and put into a table the
volume of the cord as a function of the loading in the range 35 g to 95 g. Do the calculations
consequently for each two adjacent values of the loading in this range. Write down the
formulas you have used for the calculations. Make an analytical proposition about the
dependence of the volume on the loading.

Assume that Young’s modulus is constant: E = 2.10° Pa. Take in mind that the
Hooke’s law is only approximately valid and the deviations from it can be up to 10%.

3. Determine the volume of the rubber cord, using the chronometer, at mass of the
weight equal to 60 g. Write the formulas used.

Solution of the Experimental Problem

1. The measurements of the cord length I, at different loadings m, must be at least 10.
The results are shown in Table I.

Table 1.
My, Kg Fn=mng, N [,, mm Alp =1, = lp, mm
0.005 0.05 153 3
0.015 0.15 158 8
0.025 0.25 164 14
0.035 0.35 172 22
0.045 0.45 181 31
0.055 0.55 191 41
0.065 0.65 202 53
0.075 0.75 215 65
0.085 0.85 228 78
0.095 0.95 243 93




0.105

10.5

261

111

The obtained dependence of the prolongation of the cord on the stress force F can be
drawn on graph. It is shown in Fig. 1.

120

100 +

80

60 -

A, mm

20

Fig.1

2.For the calculations of the volume the Hooke’s law can be used for each

measurement:

Al

n

n

therefore

1
E

AF,

S

n

5, P,
EAl'

where Al =1 —1_, AF. = Amg. (Using the Hooke’s law in the form

larger error, because the value of the Al is of the same order as I,).
As the value of the S, is determined, it is easy to calculate the volume V, at each value

of Fp:

Vn = Snln =

I2AF,
EAl

n _

n

Using the data from Table 1, all calculations can be presented in Table 2:

Al ll:—”Ieads to
ES

n

Am, =m -m ,,kg | AF,=Am.g, | h.m | Al =I-1_,,m g AR o Vnzlgsm
N " EAl m
0.035 - 0.025 0.1 0.172 0.008 1,07.10° 184.107
0.045 - 0.035 0.1 0.181 0.009 1,01.10° 183.10”
0.055 — 0.045 0.1 0.191 0.010 0,95.10° 182.10°
0.065 — 0.055 0.1 0.203 0.012 0,92.10° 187.107
0.075 - 0.065 0.1 0.215 0.012 0,89.10° 191.10°
0.085 - 0.075 0.1 0.228 0.013 0,88.10° 200.10°




0.095 - 0.085 0.1 0.243 0.015 0,81.10° 196.10”

0.105 — 0.095 0.1 0.261 0.018 0,72.10° 188.10°

The results show that the relative deviation from the averaged value of the calculated values
of the volume is:

AV, . -100% 53107

n,aver.

V 7189.10°°

aver.

Therefore, the conclusion is that the volume of the rubber cord upon stretching is constant:
V, = const.
3. The volume of the rubber cord at fixed loading can be determined investigating the
small vibrations of the cord. The reason for these vibrations is the elastic force:

F:ESATI

.100% ~ 2.8%

eE=

Using the second law of Newton:

2
&l _ A
I dt?

the period of the vibrations can be determined:

T =2 |M
VES

Then
2
S (2n) 2mI |
ET
and the volume of the cord is equal to:
2 2
V=8l= w
ET

The measurement of the period gives: T =t/n = 5.25s /10 = 0.52 s at used mass m = 0.065 kg.
The result for the volume V = 195.10° m®, in agreement with the results obtained in part 2.




XI1 International Physics Olympiad

Varna, Bulgaria, July 1981

The problems and the solutions are adapted by Miroslav Abrashev
University of Sofia, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Reference: O. F. Kabardin, V. A. Orlov, in “International Physics Olympiads for High
School Students”, ed. V. G. Razumovski, Moscow, Nauka, 1985. (In Russian).

Theoretical Problem 1

A static container of mass M and cylindrical shape is placed in vacuum. One of its
ends is closed. A fixed piston of mass m and negligible width separates the volume of the
container into two equal parts. The closed part contains n moles of monoatomic perfect gas
with molar mass Mg and temperature T. After releasing of the piston, it leaves the container
without friction. After that the gas also leaves the container. What is the final velocity of the
container?

The gas constant is R. The momentum of the gas up to the leaving of the piston can be
neglected. There is no heat exchange between the gas, container and the piston. The change
of the temperature of the gas, when it leaves the container, can be neglected. Do not account
for the gravitation of the Earth.

Theoretical Problem 2

An electric lamp of resistance Ry = 2 Q working at nominal voltage Uy = 4.5 V is
connected to accumulator of electromotive force E = 6 V and negligible internal resistance.

1. The nominal voltage of the lamp is ensured as the lamp is connected
potentiometrically to the accumulator using a rheostat with resistance R. What should be the
resistance R and what is the maximal electric current I, flowing in the rheostat, if the
efficiency of the system must not be smaller than 7, = 0.6?

2. What is the maximal possible efficiency 7 of the system and how the lamp can be
connected to the rheostat in this case?

Theoretical Problem 3

A detector of radiowaves in a radioastronomical observatory is placed on the sea
beach at height h = 2 m above the sea level. After the rise of a star, radiating electromagnetic
waves of wavelength 4 = 21 cm, above the horizont the detector registers series of
alternating maxima and minima. The registered signal is proportional to the intensity of the
detected waves. The detector registers waves with electric vector, vibrating in a direction
parallel to the sea surface.

1. Determine the angle between the star and the horizont in the moment when the
detector registers maxima and minima (in general form).

2. Does the signal decrease or increase just after the rise of the star?



3. Determine the signal ratio of the first maximum to the next minimum. At reflection
of the electromagnetic wave on the water surface, the ratio of the intensities of the electric
field of the reflected (E;) and incident (E;) wave follows the low:

E, n-cose

E. n+cose’

where n is the refraction index and ¢ is the incident angle of the wave. For the surface “air-
water” for A = 21 cm, the refraction index n = 9.

4. Does the ratio of the intensities of consecutive maxima and minima increase or
decrease with rising of the star?

Assume that the sea surface is flat.

Solution of the Theoretical Problem 1

Up to the moment when the piston leaves the container, the system can be considered
as a closed one. It follows from the laws of the conservation of the momentum and the energy:

(M +nM;)v,—-mu=0 (1)
2 2
(M +r12M0)v1 N m: —AU @)

where v; — velocity of the container when the piston leaves it, u — velocity of the piston in the
same moment, AU — the change of the internal energy of the gas. The gas is perfect and
monoatomic, therefore

AU =%nRAT :gnR(I' -T.); 3)
Tt - the temperature of the gas in the moment when the piston leaves the container. This
temperature can be determined by the law of the adiabatic process:

pV7 =const.
Using the perfect gas equation pV =nRT , one obtains
TV’ =const., V=TV,

Using the relation V; =2V , and the fact that the adiabatic coefficient for one-atomic gas is

¢ %R s

=—= =—, the result for final temperature is:
4 c, %R 3 p
Vi T -2
T, =T()"'=—=T2"7 4
f (Vf ) 2% ( )
Solving the equations (1) — (4) we obtain
v, = [31-27%) mNRT )
(nM, +M)(Mm+nM, +M)

If the gas mass nMy is much smaller than the masses of the container M and the piston m,
then the equation (5) is simplified to:

v, = \/3(1—2-%)% (5)




When the piston leaves the container, the velocity of the container additionally increases to
value v, due to the hits of the atoms in the bottom of the container. Each atom gives the
container momentum:

p=2m,Av, ,

M — . :
where ma — mass of the atom; m, = N—° and v, can be obtained by the averaged quadratic
A

velocity of the atoms v? as follows:

2
— v :
vi+vy+vi=v?, and vi =vi =v? , therefore v, = 3 It appears that due to the elastic

impact of one atom the container receives averaged momentum

oM [V
N, \3

All calculations are done assuming that the thermal velocities of the atoms are much larger
than the velocity of the container and that the movement is described using system connected
with the container.

Have in mind that only half of the atoms hit the bottom of the container, the total
momentum received by the container is

1 v?
pt:EnNAp:nMO ? (6)
and additional increase of the velocity of the container is
p_ M, V¥
V, =—=N—"m4|—. 7
2= "\ 3 (7)

Using the formula for the averaged quadratic velocity
\/v:2 _ 3RT;
M 0
as well eq. (4) for the temperature T¢, the final result for v, is

L% WMGRT

2 M (8)

Therefore the final velocity of the container is
_ ~y ny /M RT
V=V, +V,= 3(1—2%) mnRT w2 s WM
(nM, +M)(M+nM, + M) M
2 ~ M /RT
~ [3a-27%) MR 5% WMoRT (©)
M(m+M) M

Solution of the Theoretical Problem 2

1) The voltage U, of the lamp of resistance Ry is adjusted using the rheostat of
resistance R. Using the Kirchhoff laws one obtains:
UO + UO

“RTRoR @



where R—R, is the resistance of the part of the rheostat, parallel connected to the lamp, Ry is
the resistance of the rest part,

U,=E-IR, )
The efficiency » of such a circuit is

UZ
g U2
IE RIE

=5 - 3)

accum.
From eq. (3) it is seen that the maximal current, flowing in the rheostat, is determined by the
minimal value of the efficiency:

2 2
ok = Y = Ys . 4
RE77min RE?]O

The dependence of the resistance of the rheostat R on the efficiency » can determined
2

replacing the value for the current | , obtained by the eq. (3), | = :EO , In the egs. (1) and (2):
n

o 1, 1T ©)
REp R, R-R,
RE
R, =(E-Uy)——L. (6)
UO
Then
21+77(1—UE
R:ROUF 0 (7)
U

0
To answer the questions, the dependence R(r7) must be investigated. By this reason

we find the first derivative R,’]:

!

E
n+n1l-——)
' UO
Rﬂcﬁ 1—£ oC
u,

E E E.|E E E
14200 ——)A=—)+ | n+172(1——) |— = n(2— —n)(1— —) +1.
oc 1+ 27 UO)( Uon) {77 n°( Uo)}Uo n( UO77)( UO)

n < 1, therefore the above obtained derivative is positive and the function R(#) is increasing.
It means that the efficiency will be minimal when the rheostat resistance is minimal. Then

E
2 1+T70(1_7)
R> Rmin = ROUO FTOZ853Q
o 1_ =
U, o

The maximal current Iax can be calculated using eq. (4). The result is: Inax ~660 mA.



2) As the function R(#) is increasing one, 7 — 7,,., When R —oo. In this case the

total current I will be minimal and equal to ?0 Therefore the maximal efficiency is

U 0
n = =0.75
max E

This case can be realized connecting the rheostat in the circuit using only two of its
three plugs. The used part of the rheostat is Rj:

R, = E-Y, _E-U, R, ~0.67Q.

IO 0

Solution of the Theoretical Problem 3

1) The signal, registered by the detector A, is result of the interference of two rays:
the ray 1, incident directly from the star and the ray 2, reflected from the sea surface (see the
figure).

The phase of the second ray is shifted by n due to the reflection by a medium of larger
refractive index. Therefore, the phase difference between the two rays is:

AzAC+£—AB=L+£—(L]COS(ZQ)=

2 Sihae 2 \Slhg

~A i cos@ay=2 + 2hsing (1)
2 sina 2

The condition for an interference maximum is:

%+2hsin Aoy = KA, OF

. 1.4 A
=(k-2)2=(2k-1)Z, 2
SiNQ g, = ( 2)2h ( )4h (2)

where k = 1,2,3,...,19. (the difference of the optical paths cannot exceed 2h, therefore k
cannot exceed 19).
The condition for an interference minimum is:

i+ 2hsina,,, = (2k +1)i, or
2 2

) kA
Ssing,.. =— 3
amln 2h ( )

where k=1,2,3,...,19.



2) Just after the rise of the star the angular height « is zero, therefore the condition for
an interference minimum is satisfied. By this reason just after the rise of the star, the signal
will increase.

3) If the condition for an interference maximum is satisfied, the intensity of the
electric field is a sum of the intensities of the direct ray E; and the reflected ray E, ,
respectively: E,. =E, +E,.

Because E, = E; N=C% then E, = E{l+ n-—Cos (Dmaxj.
n+Cos¢ N+cosSe,..

From the figure it is seen that ¢, :%—a we obtain

max !

E_ =E 14 075N T | _ E, L (4)
N+sina,,, N+sin(2a,,,)
At the interference minimum, the resulting intensity is:
Emin = Ei - Er = Ei M (5)
n+sina

min
The intensity | of the signal is proportional to the square of the intensity of the electric
field E, therefore the ratio of the intensities of the consecutive maxima and minima is:

Imax _ Emax 2_ n2 (ﬂ—i_s’inamin)2 (6)
I E (n+sina,,)’

sin’a
Using the egs. (2) and (3), the eq. (6) can be transformed into the following form:
2

min min min

I ™

max (7)
A
n+(2k -1)—
+( ) 2h

T

min

Using this general formula, we can determine the ratio for the first maximum (k =1) and the
next minimum:

Imax _ 4n2h2 n+% -3 104
= 5 l = o.
Imin ﬂ’ n+—
4h

4) Using that n >> % from the eq. (7) follows :

| _ 4n°h?

max_
292 °
I KA

So, with the rising of the star the ratio of the intensities of the consecutive maxima and
minima decreases.




Problems of the 13th International Physics Olympiad

(Malente, 1982)
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Abstract

The 13th International Physics Olympiad took place in 1982 in the Federal Republic of
Germany. This article contains the competition problems, their solutions and a grading

scheme.

Introduction

In 1982 the Federal Republic of Germany was the first host of the Physics Olympiad
outside the so-called Eastern bloc. The 13th International Physics Olympiad took place in
Malente, Schleswig-Holstein. The competition was funded by the German Federal
Ministry of Science and Education. The organisational guidelines were laid down by the
work group “Olympiads for pupils” of the conference of ministers of education of the
German federal states. The Institute for Science Education (IPN) at the University of Kiel
was responsible for the realisation of the event. A commission of professors, whose
chairman was appointed by the German Physical Society, were concerned with the
formulation of the competition problems. All other members of the commission came from

physics department of the university of Kiel or from the college of education at Kiel.

The problems as usual covered different fields of classical physics. In 1982 the pupils had
to deal with three theoretical and two experimental problems, whereas at the previous
Olympiads only one experimental task was given. However, it seemed to be reasonable to
put more stress on experimental work. The degree of difficulty was well balanced. One of
the theoretical problems could be considered as quite simple (problem 3: “hot-air
balloon”). Another theoretical problem (problem 1: “fluorescent lamp”) had a mean degree

of difficulty and the distribution of the points was a normal distribution with only a few

! Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de



excellent and only a few unsatisfying solutions. The third problem (problem 2: “oscillation
coat hanger”) turned out to be the most difficult problem. This problem was generally
considered as quite interesting because different ways of solving were possible. About one
third of the pupils did not find an adequate start to the problem, but nearly one third of the
pupils was able to solve the substantial part of the problem. That means, this problem
polarized between the pupils. The two experimental tasks were quite different in respect of
the input for the experimental setup and the time required for dealing with the problems,
whereas they were quite similar in the degree of difficulty. Both required demandingly
theoretical considerations and experimental skills. Both experimental problems turned out
to be rather difficult. The tasks were composed in a way that on the one hand almost every
pupil had the possibility to come to certain partial results and that there were some
difficulties on the other hand which could only be solved by very few pupils. The
difficulty in the second experimental problem (problem5: “motion of a rolling cylinder”)
was the explanation of the experimental results, which were initially quite surprising. The
difficulty in the other task (problem 4: “lens experiment™) was the revealing of an
observation method with a high accuracy (parallax). The five hours provided for solving
the two experimental problems were slightly too short. According to that, in both
experiments only a few pupils came up with excellent solutions. In problem 5 nobody got
the full points.

The problems presented here are based on the original German and English versions of the
competition problems. The solutions are complete but in some parts condensed to the

essentials. Almost all of the original hand-made figures are published here.

Theoretical Problems

Problem 1: Fluorescent lamp

An alternating voltage of 50 Hz frequency is applied to the fluorescent lamp shown in the

/ mercury vapor
(5)~
/ NS

—f 7 G/

— - ©
nt

accompanying circuit diaaram.




The following quantities are measured:

overall voltage (main voltage) U =2285V
electric current I =06A
partial voltage across the fluorescent lamp U =84V
ohmic resistance of the series reactor Ry =26.3Q

The fluorescent lamp itself may be considered as an ohmic resistor in the calculations.
a) What is the inductance L of the series reactor?

b) What is the phase shift ¢ between voltage and current?

c) What is the active power P, transformed by the apparatus?

d) Apart from limiting the current the series reactor has another important function. Name

and explain this function!

Hint: The starter —@— includes a contact which closes shortly after
switching on the lamp, opens up again and stays open.

e) Inadiagram with a quantitative time scale sketch the time sequence of the luminous

flux emitted by the lamp.

f) Why has the lamp to be ignited only once although the applied alternating voltage goes

through zero in regular intervals?

g) According to the statement of the manufacturer, for a fluorescent lamp of the described
type a capacitor of about 4.7 uF can be switched in series with the series reactor. How
does this affect the operation of the lamp and to what intent is this possibility provided

for?

h) Examine both halves of the displayed demonstrator lamp with the added spectroscope.
Explain the differences between the two spectra. You may walk up to the lamp and you

may keep the spectroscope as a souvenir.



Solution of problem 1:

a) The total resistance of the apparatus is Z= 2586'1\/ =380.8Q ,
the ohmic resistance of the tube is Ri = sav =140 Q.
0.6A
Hence the total ohmic resistance is R=140Q+26.3Q=166.3Q.

Therefore the inductance of the series reactor is: ®-L=vZ*-R?=3426Q.

This yields = 342'6% =1.09H.
1007s
b) The impedance angle is obtained from tan ¢ = oL = 342.602 =2.06.
R 166.3Q
Thus ¢0=64.1.

c) The active power can be calculated in different ways:
1) P,=U-l-cosp=2285V-0.6 A-cos64.1° =59.88 W
2) P,=R-1°=166.3Q-(0.6 A)* =59.87 W

d) By opening the contact in the starter a high induction voltage is produced across the
series reactor (provided the contact does not open exactly the same moment, when the
current goes through zero). This voltage is sufficient to ignite the lamp. The main
voltage itself, however, is smaller than the ignition voltage of the fluorescent tube.

€) Luminous flux 4

T 1 > Time
0 10 20 ms

f) The recombination time of the ions and electrons in the gaseous discharge is

sufficiently large.



9)

h)

The capacitive resistance of a capacitor of 4.7 uF is

S (100-7-4.7-10°) " Q=677.3Q.
o-C

The two reactances subtract and there remains a reactance of 334.7 Q acting as a

capacitor.

The total resistance of the arrangement is now

Z'=/(334.7)° + (166.3)> Q =373.7Q,

which is very close to the total resistance without capacitor, if you assume the capacitor
to be loss-free (cf. a) ). Thus the lamp has the same operating qualities, ignites the same
way, and a difference is found only in the impedance angle ¢’, which is opposite to the

angle o calculated in b):

1
tan o' = o-L-(-C) _ 3347 _

R 166.3

-2.01

¢'=—-63.6°.

Such additional capacitors are used for compensation of reactive currents in buildings
with a high number of fluorescent lamps, frequently they are prescribed by the
electricity supply companies. That is, a high portion of reactive current is unwelcome,
because the power generators have to be layed out much bigger than would be really
necessary and transport losses also have to be added which are not payed for by the

customer, if pure active current meters are used.

The uncoated part of the demonstrator lamp reveals the line spectrum of mercury, the
coated part shows the same line spectrum over a continuous background. The
continuous spectrum results from the ultraviolet part of the mercury light, which is
absorbed by the fluorescence and re-emitted with smaller frequency (energy loss of the

photons) or larger wavelength respectively.

Problem 2: Oscillating coat hanger

A (suitably made) wire coat hanger can perform small amplitude oscillations in the plane

of the figure around the equilibrium positions shown. In positions a) and b) the long side is



horizontal. The other two sides have equal length. The period of oscillation is the same in

all cases.
What is the location of the center of mass, and how long is the period?

a) b) C)

A
-+

10 cm

— 2w —

The figure does not contain any information beyond the dimensions given. Nothing is

known, e.g., concerning the detailed distribution of mass.

Solution of problem 2

First method:

The motions of a rigid body in a plane correspond to the motion of two equal point masses
connected by a rigid massless rod. The moment of inertia then determines their distance.
Because of the equilibrium position a) the center of mass P

is on the perpendicular bipartition of the long side of the n/2
coat hanger. If one imagines the equivalent masses and P

the supporting point P being arranged in a straight line in

each case, only two positions of P yield the same period

of oscillation (see sketch). One can understand this by m/2

considering the limiting cases: 1. both supporting points

in the upper mass and 2. one point in the center of mass and the other infinitely high
above. Between these extremes the period of oscillation grows continuously. The
supporting point placed in the corner of the long side c¢) has the largest distance from the
center of mass, and therefore this point lies outside the two point masses. The two other
supporting points a), b) then have to be placed symmetrically to the center of mass
between the two point masses, i.e., the center of mass bisects the perpendicular bipartition.
One knows of the reversible pendulum that for every supporting point of the physical
pendulum it generally has a second supporting point of the pendulum rotated by 180°, with

the same period of oscillation but at a different distance from the center of mass. The



section between the two supporting points equals the length of the corresponding
mathematical pendulum. Therefore the period of oscillation is obtained through the
corresponding length of the pendulum s, + s¢, where s, =5 cm and s, =~/5° +21° cm, to
be T = 1.03s.

Second method:

Let s denote the distance between the supporting point and the center of mass, m the
mass itself and 6 the moment of inertia referring to the supporting point. Then we have

the period of oscillation T :

Toon |9 (1)
m-g-s

where g is the acceleration of gravity, g = 9.81 m/s® Here 6 can be obtained from the

moment of inertia 0, related to the center of mass:

0=0,+m-s’ (2)

Because of the symmetrical position in

case a) the center of mass is to be found on
the perpendicular bisection above the
long side. Now (1) and (2) yield
2
60+m-32=(2;nj -m-g-s for s = s, S, and s.. (3)

because all periods of oscillation are the same. This quadratic equation has only two
different solutions at most. Therefore at least two of the three distances are equal. Because

of sc>21cm > s, + sp, only s, and s, can equal each other. Thus we have
sa=5cm (4)

The moment of inertia 0y is eliminated through (3):
T 2
2 2
m-(s, —s,”)=|— | -m-g-(s.—S
(s —s,) (Mj 9-(Sc—5,)

S, +S,
9

andwehave T=21

()



with the numerical value T =1.03s,

which has been rounded off after two decimals because of the accuracy of g.

Third method:

This solution is identical to the previous one up to equation (2).

From (1) and (2) we generally have for equal periods of oscillation T; = Ty:

0,+m-s’ _ 0,+m-s,’
m-g-s, m-g-s,
and therefore s, -(60+m-512) = sl-(90+m-szz)
or (s,—5,)-(8,—m-s,s,)=0 (6)
. . L 0,
The solution of (6) includes two possibilities: s, =s, or s, - SZ:E

Let 2-a be the length of the long side and b the height of the coat hanger. Because of

i 0
Tp = T. wethenhaveeither s, =s. or s, -s,=—2, where s, =45, +a’,
m

which excludes the first possibility. Thus Sy S, = % . (7)

‘ m

For T, = T, thecase s, Sp= 8 is excluded because of eg. (7), for we have

m

6,
S, S, < SC'Sb:H.

c

Hence sa:sbzlb, 5, = | =b? +a?
2 4

0, -
—+S, 2
S, -S.+S
m =21 b "¢ b
g-S, V9,

The numerical calculation yields the value T =1.03s.




Problem 3: Hot-air-balloon

Consider a hot-air balloon with fixed volume Vg = 1.1 m®. The mass of the balloon-

envelope, whose volume is to be neglected in comparison to Vg, is my = 0.187 kg.

The balloon shall be started, where the external air temperature is 9, = 20 °C and the

normal external air pressure is p, = 1.013 - 10° Pa. Under these conditions the density of

air is p1 = 1.2 kg/m?®,

a)

b)

d)

What temperature 9, must the warmed air inside the balloon have to make the balloon

just float?

First the balloon is held fast to the ground and the internal air is heated to a steady-state

temperature of 3, =110 °C. The balloon is fastened with a rope.

Calculate the force on the rope.

Consider the balloon being tied up at the bottom (the density of the internal air stays
constant). With a steady-state temperature 9, = 110 °C of the internal air the balloon
rises in an isothermal atmosphere of 20 °C and a ground pressure of

po = 1.013 - 10° Pa. Which height h can be gained by the balloon under these

conditions?

At the height h the balloon (question c)) is pulled out of its equilibrium position by
10 m and then is released again.

Find out by qualitative reasoning what kind of motion it is going to perform!

Solution of problem 3:

a)

Floating condition:

The total mass of the balloon, consisting of the mass of the envelope my and the mass

of the air quantity of temperature 3, must equal the mass of the displaced air quantity

with temperature 9, =20 °C.
Vg p2 + My = Vg:p1

m,,
—y __H 1
P2 =Py v, 1)



b)

d)

Then the temperature may by obtained from

P Te

P, T

T,=PL.7,=34153K =6838°C ()
P2

The force Fg acting on the rope is the difference between the buoyant force Fo and
the weight force Fg:

Fe=Ve-p1-9 - (Ve-p3 +mu)-g 3)

It follows with p3- T3 = p1- Ty

3

FB:VB'pl'g'(1_%j'mH'g:1121N (4)

The balloon rises to the height h, where the density of the external air p, has the same
value as the effective density pesr, Which is evaluated from the mass of the air of

temperature 93 = 110 °C (inside the balloon) and the mass of the envelope my:

oy e Vatma -
eff VB VB h 1
Resolving eq. (5) for h gives: h = L.1n& = 843m (6).
pl.g pef‘f

For small height differences (10 m in comparison to 843 m) the exponential pressure
drop (or density drop respectively) with height can be approximated by a linear
function of height. Therefore the driving force is proportional to the elongation out of
the equilibrium position.

This is the condition in which harmonic oscillations result, which of course are damped

by the air resistance.

10



Experimental Problems

Problem 4: Lens experiment

The apparatus consists of a symmetric biconvex lens, a plane mirror, water, a meter stick,
an optical object (pencil), a supporting base and a right angle clamp. Only these parts may

be used in the experiment.
a) Determine the focal length of the lens with a maximum error of + 1 %.
b) Determine the index of refraction of the glass from which the lens is made.

The index of refraction of water is n,, = 1.33. The focal length of a thin lens is given by

where n is the index of refraction of the lens material and r, and r, are the curvature
radii of the refracting surfaces. For a symmetric biconvex lens we haver; =-r, =r, fora

symmetric biconcave lens r; = -1, = -r.

Solution of problem 4:

a) For the determination of f_, place the lens on the mirror
and with the clamp fix the pencil to the supporting base.

Lens and mirror are then moved around until the < =
ln—-|-
vertically downward looking eye sees the pencil and its 'WZDI\” “
. . . I\
image side by side. It \\ g
b ! \

. . . / \
In order to have object and image in focus at the same \\\
g \
time, they must be placed at an equal distance to the eye. -t »

In this case object distance and image distance are the

same and the magnification factoris 1.

It may be proved quite accurately, whether magnification 1 has in fact been obtained, if
one concentrates on parallatical shifts between object and image when moving the eye:

only when the distances are equal do the pencil-tips point at each other all the time.

The light rays pass the lens twice because they are reflected by the mirror. Therefore
the optical mapping under consideration corresponds to a mapping with two lenses

placed directly one after another:

11



b)

1 1 1 1
+—=—, where —=—+—
f foff

L L

Q|
ok

.e. the effective focal length f is just half the focal length of the lens. Thus we find for

magnification 1:

g=b and ngi le. f =0.

L

A different derivation of f_ =g =b: For a —_— ‘3% ——————
mapping of magnification 1 the light rays / \
emerging from a point on the optical axis / \
are reflected into themselves. Therefore
these rays have to hit the mirror at right \

/ \
angle and so the object distance g equals 'ﬂ-\/—-“) 73
[ —

the focal length f_ of the lens in this case.

The distance between pencil point and mirror has to be determined with an accuracy,
which enables one to state f_ with a maximum error of +1 % . This is accomplished
either by averaging several measurements or by stating an uncertainty interval, which

is found through the appearance of parallaxe.
Half the thickness of the lens has to be subtracted from the distance between pencil-
point and mirror.

nzfg—lm d=3.0+05mm
2

The nominal value of the focal length of the lens is f, =30 cm. However, the actual

focal length of the single lenses spread considerably. Each lens was measured

separately, so the individual result of the student can be compared with the exact value.

The refractive index n of the lens material can be evaluated from the equation

ﬁ|[\)

fi:(n_l).

L

if the focal length f_ and the curvature radius r of the symmetric biconvex lens are

known. f_ was determined in part a) of this problem.

12



The still unknown curvature radius r of the
symmetric biconvex lens is found in the
following way: If one pours some water onto
the mirror and places the lens in the water,
one gets a plane-concave water lens, which

has one curvature radius equalling the glass lens’ radius and the other radius is oo .

Because the refractive index of water is known in this case, one can evaluate the

curvature radius through the formula above, where r; = -r and r, = o :

Only the focal length f' of the combination of lenses is directly measured, for which

we have

and one has the curvature radius r=—(n,, —1)-f

w*

Now the refractive index of the lens is determined by n = er +1
s

with the known values of f_ and r, or, if one wants to express n explicitly through

f'-(n, _1)+1.

the measured quantities: n =
2 '(f - fL)

The nominal values are: f'= 43.9cm, f,=-945cm,r= 31.2cm, n = 1.52.

Problem 5: Motion of a rolling cylinder

The rolling motion of a cylinder may be decomposed into rotation about its axis and

horizontal translation of the center of gravity. In the present experiment only the

translatory acceleration and the forces causing it are determined directly.

13



Given a cylinder of mass M, radius R, which is placed on a horizontal plane board. At a
distancer; (i = 1 ... 6) from the cylinder axis a force acts on it (see sketch). After letting
the cylinder go, it rolls with constant acceleration.

C
M dLm,—C
B f:r_‘nn

a) Determine the linear accelerations a; (i = 1 ... 6) of the cylinder axis experimentally

for several distances r; (i=1 ... 6).

b) From the accelerations a; and given quantities, compute the forces F; which act in

horizontal direction between cylinder and plane board.
c) Plot the experimental values F; as functions of r;. Discuss the results.

Before starting the measurements, adjust the plane board horizontally. For present
purposes it suffices to realize the horizontal position with an uncertainty of + 1 mm of
height difference on 1 m of length; this corresponds to the distance between adjacent
markings on the level. What would be the result of a not horizontal position of the plane

board?

Describe the determination of auxiliary quantities and possible further adjustments;
indicate the extent to which misadjustments would influence the results.

The following quantities are given:

R = 5cm rh = 075 cm
M = 3.275kg r, = 150 cm
m = 2x50¢ rs = 225 cm
D = 150cm r, = 3.00 cm
d = 01mm rs = 375 cm

re = 450 cm

Mass and friction of the pulleys ¢ may be neglected in the evaluation of the data.

By means of knots, the strings are put into slots at the cylinder. They should be inserted as

deeply as possible. You may use the attached paper clip to help in this job.

14



The stop watch should be connected, as shown in the sketch, with electrical contacts at A
and B via an electronic circuit box. The stop watch starts running as soon as the contact at
A is opened, and it stops when the contact at B is closed.

i —~ J €
i i |
0 |
A B 11 |
T |
! b,
_______ —

The purpose of the transistor circuit is to keep the relay position after closing of the contact
at B, even if this contact is opened afterwards for a few milliseconds by a jump or chatter

of the cylinder.

Solution of problem 5:

Theoretical considerations:

2-S
e 1)

a) The acceleration of the center of mass of the cylinderis a=

b) Let a, be the acceleration of the masses m and T the sum of the tensions in the two

strings, then
T=m-g-m-an @)

The acceleration a of the center of mass of the cylinder is determined by the resultant
force of the string-tension T and the force of interaction F between cylinder and the

horizontal plane.
Ma=T-F (3)

If the cylinder rotates through an angle 6 the mass m moves a distance Xpn,.
It holds

Xm=(R+r1)-0

a,=(R+r)- (4)

a
R

15



From (2), (3)and (4) follows F:mg—[M+m-(1+%ﬂ-a. (5)

From the experimental data we see that for small r; the forcesM -a and T are in

opposite direction and that they are in the same direction for large r; .

For small values of r the torque produced by the string-tensions is not large enough to
provide the angular acceleration required to prevent slipping. The interaction force
between cylinder and plane acts into the direction opposite to the motion of the center

of mass and thereby delivers an additional torque.

For large values of r the torque produced by string-tension is too large and the

interaction force has such a direction that an opposed torque is produced.

From the rotary-impulse theorem we find
Tr+F-R=1-6=1-—,
R

where 1 is the moment of inertia of the cylinder.
With (3) and (5) you may eliminate T and a from this equation. If the moment of

inertia of the cylinder is taken as 1 =%-M -R?(neglecting the step-up cones) we find

after some arithmetical transformations

Forr=0—> F= m-gm > 0.
3+2-—
M
Forr = R— F= _m'?n < 0.
3+8-—
M
m . . 1 2 r
Because — <1 itis approximatel F=—=m-g——-—.
M PP y 3 g 3R
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That means: the dependence of F from r is approximately linear. F will be zero if
r_mg

R 2

Experimental results:

1

1
L-(Q2-R-D+D»)2 - (2-R-d-d)?

(%)
1

s=L -45cm = 39.2cm — 45cm = 34.7cm

r t t a F
[cm] [s] [s] [m/s?] [N]
0.75 1.81 1.82 1.82 1.816 0.211 0.266
1.50 1.71 1.72 1.73 1.720 0.235 0.181
2.25 163 163 1.64 1.633 0.261 0.090
3.00 1.56 1.56 1.57 1.563 0.284 0.004
3.75 1.51 1.51 1.52 1.513 0.304 - 0.066
4.50 1.46 1.46 1.46 1.456 0.328 -0.154
F IN] J}

0,37

NN

0,1t \,

0 + + :\l— + t — ¥ [cm]
1,5 3\. 4,5

-0,1 7+ \

o2} N

-0,3 1
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Grading schemes

Theoretical problems

Problem 1: Fluorescent lamp pts.
Part a 2
Partb 1
Partc 1
Partd 1
Parte 1
Part f 1
Partg 2
Part h 1
10
Problem 2: Oscillating coat hanger pts.
equation (1) 1,5
equation (2) 1,5
equation (4) 3
equation (5) 2
numerical value for T 1
10
Problem 3: Hot-air-balloon pts.
Part a 3
Part b 2
Part c 3
Part d 2
10
Experimental problems
Problem 4: Lens experiment pts.
correct description of experimental prodedure 1
selection of magnification one 0.5
parallaxe for verifying his magnification 1
fL = g = b with derivation 1
several measurements with suitable averaging or other
determination of error interval 1
taking into account the lens thickness and computing fy,
including the error 0.5
idea of water lens 0.5
theory of lens combination 1
measurements of f’ 0.5
calculation of n and correct result 1
8

19




Problem 5: Motion of a rolling cylinder pts.
Adjustment mentioned of strings a) horizontally and b) in

direction of motion 0.5
Indication that angle offset of strings enters the formula for

the acting force only quadratically, i.e. by its cosine 0.5
Explanation that with non-horizontal position, the force

m-g is to be replaced by m-g + M-g-sina 1.0
Determination of the running length according for formula

s=L-(2-R-D+D?)”" —(2.R-d+d?)"”

including correct numerical result 1.0
Reliable data for rolling time 1.0
accompanied by reasonable error estimate 0.5
Numerical evaluation of the F; 0.5
Correct plot of Fi (vj) 0.5
Qualitative interpretation of the result by intuitive

consideration of the limiting cases r=0 and r=R 1.0
Indication of a quantitative, theoretical interpretation using

the concept of moment of inertia 1.0
Knowledge and application of the formula a=2s/t 0.5
Force equation for small mass and tension of the string

m(g-am) =T 1.0
Connection of tension, acceleration of cylinder and

reaction force T-F=M-a 1.0
Connection between rotary and translatory motion

Xp=(R+r)-0 0.5

a, =(1+r/R)-a 05
Final formula for the reaction force

F=m-g—(M+m-(1+r/R))-a 1.0
If final formulae are given correctly, the knowledge for
preceding equations must be assumed and is graded
accordingly.

12

20




IPhO 1983 Theoretical Question I QIBF;
+ HL”“:" *

By
L TLY

Mechanics — Problem I (8 points)

A particle moves along the positive axis Ox (one-dimensional situation) under a force having a
projection F, =F,on Ox, as represented, as function of x, in the figure 1.1. In the origin of the Ox
axis is placed a perfectly reflecting wall.

A friction force, with a constant modulusF, =1,00N , acts everywhere on the particle.

The particle starts from the point x = x, =1,00m having the kinetic energy E. =10,0J .

a. Find the length of the path of the particle until its’ final stop

b. Plot the potential energy U(x) of the particle in the force fieldF, .

c. Qualitatively plot the dependence of the particle’s speed as function of its” x coordinate.

1E
b ,:'I. =1,00 m X,
A
FE==10,0 N————————mm=——— =
W
Figure 1.1

®roblem I — Solution

a. It is possible to make a model of the situation in the problem, considering the Ox axis vertically
oriented having the wall in its” lower part. The conservative force F, could be the weight of the patrticle.
One may present the motion of the particle as the vertical motion of a small elastic ball elastically
colliding with the ground and moving with constant friction through the medium. The friction force is
smaller than the weight.

The potential energy of the particle can be represented in analogy to the gravitational potential energy

of the ball,m-g -h, considering m-g = |FX|; h =x. As is very well known, in the field of a conservative

force, the variation of the potential energy depends only on the initial and final positions of the particle,
being independent of the path between those positions.

For the situation in the problem, when the particle moves towards the wall, the force acting on it is
directed towards the wall and has the modulus |
F. =[f-F (19

As a consequence, the motion of the particle towards the wall is @ motion with a constant acceleration
having the modulus
_ F_e — |F>< | B Ff

- (1.3)
m m

«—

During the motion, the speed of the particle increases.
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Hitting the wall, the particle starts moving in opposite direction with a speed equal in modulus with the
one it had before the collision.
When the particle moves away from the wall, in the positive direction of the Ox axis, the acting force is
again directed towards to the wall and has the magnitude

F, =|F|+F (1.4)
F, =1IN (15)

Correspondingly, the motion of the particle from the wall is slowed down and the magnitude of the

acceleration is
F Fl+F
a, =—= |X|_‘ (1.6)
m m

During this motion, the speed of the particle diminishes to zero.

Because during the motion a force acts on the particle, the body cannot have an equilibrium position in
any point on axis — the origin making an exception as the potential energy vanishes there. The particle
can definitively stop only in this point.

The work of a conservative force from the point having the coordinate x, =0 to the pointx , L, ,, is

correlated with the variation of the potential energy of the particle U(x)—U(0) as follows

0—>X

U(x)-U(0)=-L,
U(x)—U(O)z—jEX-&:j|FX|-dx=|FX|-x (1)

Admitting that the potential energy of the particle vanishes forx =0, the initial potential energy of the
particle U(x, ) in the field of conservative force

F(x)=F, (18)
can be written
U(Xo): |Fo| “Xo (1.9)

The initial Kinetic energy E(x, ) of the particle is - as given

E(x,)=E, (1.10)
and, consequently the total energy of the particle W(xo) is
W (x,)=U(x,)+E, (1.12)

The draw up of the particle occurs when the total energy of the particle is entirely exhausted by the
work of the friction force. The distance covered by the particle before it stops, D, obeys

W(XO)ZD'Ff

U(x,)+E, =D-F (1.12)
F|-%,+E. =D-F
so that ,
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s
F|-x,+E
o Rl % +E (1.13)
R
and
D=20m (1.14)
The relations (1.13) and (1.14) represent the answer to the question |.a.
b. The relation (1.7) written as
U(x)=1F|-x (1.15)

gives the linear dependence of the potential energy to the position .

If the motion occurs without friction, the particle can reach a point A situated at the distance & apart
from the origin in which the kinetic energy vanishes. In the point A the energy of the particles is entirely
potential.

The energy conservation law for the starting point and point A gives

E.+|F|- % =|F| &

1.16
5:x0+i (116)

K

The numerical value of the position of point A, furthest away from the origin, is
o=2m
if the motion occurs without friction.
The representation of the dependence of the potential energy on the position in the domain (0,5) IS
represented in the figure 1.2.
Ep)TAU.
EG) |-

O55530553351:333331:,55555£x(m)~
Figure 1.2

During the real motion of the particle (with friction) the extreme positions reached by the particle are
smaller than & (because of the leak of energy due to friction).
The graph in the figure 1.2 is the answer to the question 1.b.
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c. During the motion of the particle its energy decrease because of the dissipation work of the friction
force. The speed of the particle has a local maximum near the wall. Denoting v, the speed of the
particle just before its” ki collision with the wall and v, ., the speed just before its’ next collision,
Vi > Vi
Among two successive collisions, the particle reaches its’ x, positions in which its’ speed vanishes and
the energy of the particle is purely potential. These positions are closer and closer to the wall because a
part of the energy of the particle is dissipated through friction.

X g <X (1.17)
k+1 k

Casel
When the particle moves towards the wall, both its’ speed and its’ kinetic energy increases. The
potential energy of the particle decreases. During the motion — independent of its’ direction- energy is

dissipated through the friction force.
The potential energy of the particle, U(x) , the kinetic energy E(x) and the total energy of the particle

during this part of the motion W(x) obey the relation

W (xp) =W (x)=F; - (x, —x) (118)
the position x lying in the domain

x €(0,x,) (1.19)

covered from X, towards origin. The relation (1.18) can be written as

[EC+|FX|-XO]—{m'2V2 +|FX|-X}:Ff (X, = x) (1.20)
so that
V= Z[E + | —[F X —F (3 )]

f; (1.20)
V2 Z_[Ec + XO(“:X| _Ff)_ XqFx| _Ff )]

m

and by consequence

o= 2l o (F - )x(E] ] (122

The minus sign in front of the magnitude of the speed indicates that the motion of the particle occurs
into the negative direction of the coordinate axis.
Using the problem data

v2:%(19—9-x)

(1.23)

2
= [~ (19-9-
v m( x)

The speed of the particle at the first collision with the wall v, can be written as
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v, :—\/%[EC +%(F|-F )l (1.24)

and has the value

vV, =- %19 (1.25)

The total energy near the wall, purely kinetic E,, , has the expression

E,. =E, +%(F|-F) (1.26)

The numerical value of this energy is

E, =19J (1.27)

The graph in the figure (1.3) gives the dependence on position of the square of the speed for the first

part of the particle’s motion.
ey

v
%

U

Figure 1.3

Figure 1.4
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The graph in the figure (1.4) presents the speed’s dependence on the position in this first part of the
particle’s motion (towards the wall).
After the collision with the wall, the speed of the particle,v, , , has the same magnitude as the speed

just before the collision but it is directed in the opposite way. In the graphical representation of the
speed as a function of position, the collision with the wall is represented as a jump of the speed from a
point lying on negative side of the speed axis to a point lying on positive side of the speed axis. The
absolute value of the speed just before and immediately after the collision is the same as represented
in the figure 1.5.

v, :\/%[EC +%(F|=F)] (1.28)

After the first collision, the motion of the particle is slowed down with a constant deceleration a , and
an initial speedv, , .

This motion continues to the position x, where the speed vanishes.

From Galileo law it can be inferred that

0=V, -2-a,-X
2
v, B xlBIR) R -R) (1.29)
= = =
2-a, 2_|Fx|+Ff F|+F
m
The numerical value of the position x; is
19
X, =—m 1.30
T (1.30)
For the positions
x (0,x,) (1.31)
covered from the origin towards x, the total energy W(x) has the expression
2
W(x)="2 R [ x (132)
From the wall, the energy of the particle diminishes because of the friction — that is
Ele _W(X): Ff "X
m-v? (1.33)

E. +%(F|-F)- F|-x=F -x

2
The square of the magnitude of the speed is

VZ :%[Ec +X0qF><|_Ff)_qFx|+Ff)'X]

) (1.34)
vi= EQFXHH )-(,—x)

and the speed is

1= 2l Rl )] ) (139
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Using the furnished data results
v :3[19—11-x] (1.36)
m

and respectively

V= ,/3[19—11-x] (1.37)
m

For the positions lying in the domain x € (0,x1) - (which correspond to a second part of the motion of
particle) the figure 1.5 gives the dependence of the s_pee_d on the_ position.

.....

Figure 1.5

As can be observed in the figure, after reaching the furthest away position, x,, the particle moves
towards the origin, without an initial speed, in an accelerated motion having an acceleration with the
magnitude of a_ = (]FX| -F )/m . After the collision with the wall, the particle has a velocity equal in

magnitude but opposite in direction with the one it had just before the collision.
When the particle reaches a point in the domain (0,x1) moving from x, towards the origin its’ total

energy W(x) has the expression (1.32).
Starting fromx, , because of the dissipation determined by the friction force, the energy changes to the
value corresponding to the position with coordinate x .

|Fx|'X1_W(X):Ff '(Xl_x)

m-v® (1.38)
T—|Fx|'x =F - (x,—x)

The square of the speed has the expression

v = 2[R -R)-6—x)]

VZ:E[[EC+XOQFX|_E)]_X:|_QF|_E) (1.39)

m F|+F "

|Fx|'X1_
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and the speed is

V\/3{[&+XO(JFXI—E)]_X}_QFX|_E) (1.40)

m F|+F
Using the given data, for a position in the domain (0,x, )
v° :E{E—X]Q (1.41)
m[11
respectively
V=— E{E—X}Q (1.42)
m[11

The speed of the particle when it reaches for the second time the wall has - using (1.39) - the
expression

VZE_\/3{[&+XOQFX|—E)]_QFX|_E)} (1.43)

m F|+F

The resulting numerical value is

2171
Vy = — === 1.44
2¢ m 11 ( )

Concluding, after the first collision and first recoil, the particle moves away from the wall, reaches again
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting
again the wall is smaller than before — as in the figure 1.5.

As it was denoted before v, is the speed of the particle just before its’ k ™" run and x, is the
coordinate of the furthest away point reached during the k t run.

The energy of the particle starting from the wall is

CVEem
2
In the point x, , the furthest away from the origin after k ™ collision, the energy verifies the relation

E, =W, (0) (1.45)

U =x[F| =W, (x,) (1.46)
The variation of the energy between starting point and point x, is
Vf'm—xk-|Fx|=Ff-xk (1.47)
so that

vi-m

Xk :W} ( 148)

After the particle reaches point x, the direction of the speed changes and, when the particle reaches
again the wall
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Vk+1 ‘m
2

The energy conservation law for the x, point and the state when the particle reaches again the wall
gives

= Ek+1 :Wk+l(0) ( 149)

vZi,-m
xk~|FX|—k+lT:Ff-xk (1.50)
so that
2
Vlf+1:_xk(“:x|_l:f) (151)
m
Considering (1.48), the relation (1.51) becomes
F|-F
Vi =Vi - IF I+F (152)

Between two consequent collisions the speed diminishes in a geometrical progression having the ratio
g .This ratio has the expression

_ |[FI=F
1= F|+F (153)

and the value

- |2 1.54
9= (1.54)

For the k +1 collision the relation (1.48) becomes
2
Vi, oM
Xpog =7~ (1.55)
“72.(F[+F)
Taking into account (1.52), the ratio of the successive extreme positions can be written as

_Fl=F _

Kot — g
X |F|+F (1.56)
X = q2 - Xk

From the k run towards origin, (analogous to (1.39)), the dependence of the square of the speed on
position can be written as v(zkye)

ooy = 2llR[-)-6s~x]

o= lF] =R )07 -x]

or, using the data

(1.57)
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. _2[g (19 (9)
Vi) = m{9 [11 (11} xj] (1.58)

For the k ™ run from the origin (analogous with (1.34)), the dependence on the position of the square of
the magnitude of the speed v(zkﬁ) can be written as

V(zkﬁ) - %[QFA +F ) (Xk - X)]

) (1.59)
Vi) = H[(H +F)- (Xl'q2k —X)]

Using given data
2 19 (9

The evolution of the square of the speed as function of position is represented in the figure 1.6.

Figure 1.6

And the evolution of the speed as function of position is represented in the figure 1.7.
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Figure 1.7

The sum of the progression given in (1.56) gives half of the distance covered by the particle after the
first collision.

= 1
E X, =X (1.61)
k=1 ‘ ll_qz

Considering (1.53) and (1.29)
. ExlRlR)

X, = x (1.62)
Z 2-F

Numerically,

Zﬁzgm (1.63)
= 2

The total covered distance is

D=2-» X, +X
;k ’ (1.64)

D=20m

which is the same with ( 1.14).

Case 2

If the particle starts from the X, position moving in the positive direction of the coordinate axis Ox its’
speed diminishes and its’ kinetic energy also diminishes while its’ potential energy increases to a
maximum in the x,' position where the speed vanishes. During this motion the energy is dissipated due
to the friction.

The total energyW(x), for the positions x between x, and x," verify the relation

W (xo)-W (x)=F - (x=x,) (1.65)

the position x lying in the domain
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x € (Xg,%,') (1.66)

when the particle moves from X, in the positive direction of the axis. The relation (1.65) becomes

[Ec +|Fx|'X0:|_|:m.2V

so that

2

+|FX|-X}:Ff-(x—xo) (1.67)

V= 2 |0y | xR ()
m (1.68)
v =2l x|+ F )-x(F | +F )

and

=2 0] )5 ) (169
Using provided data

v? =%(21—11~x)

(1.70)
V= ‘/3(21—11~x)

m
vZf(a.u)
(N
™S
H H H H H H H H H H H H H H H ; . | X(m)
Figure 1.8

Mechanics — Problem I - Solution Page 12 from 17



IPhO 1983 Theoretical Question I QIBF;
+ HL”“:" *

LT

Figure 1.9

The graph in the figure (1.8) presents the dependence of the square speed on the position for the
motion in the domain x & (x,,X,"). The particle moves in the positive direction of the coordinate axis Ox.
This motion occurs until the position x,' - when the speed vanishes - is reached. From the relation
(1.68), in which we take the modulus of the speed zero, results

E
'= : 1.71
X=X+ FI+F (1.71)

the numerical value for x," is
X,'=—m (1.72)

After furthest away position x,'is reached, the particle moves again towards the origin, without initial
speed, in a speeded up motion having an acceleration of magnitude a_ :QFX|—E)/m . After the
collision with the wall, the particle has a velocity v, ,' equal in magnitude but opposite direction with the
one it had before the collisionv,, ".

When the particle is at a point lying in the domain (0,x1‘) running from x," to the origin, its’ total energy
W (x) has the expression

m-v®

W (x)= +|F |- x (1.73)

Because of friction, the value of the energy decreases from the one it had atx," to the corresponding to
the x position
Rl %= (x)=F - (x/~x)
mev? . (1.74)
Rl =R =F ()
The square of the speed has the expression

V2= %[(H ~F)-(x,/~x)] (1.75)
and the speed is
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o= 2l R ) (179

For the given data, in the domain, (0,x,")

v° 23{2_1_)(}_9 (1.77)
m| 11
respectively
V=— 3{2_1_)(]9 (1.78)
m| 11

The speed of the particle hitting a second time the wall is — according to (1.78)-

1200 e )y
V= \/m[OFxl )] (179

and has the value

/2 189
v, '=— | ——— 1.80
1 m 11 ( )

Concluding, after the first collision and first recoll, the particle moves away from the wall, reaches again
a position where the speed vanishes and then comes back to the wall. The speed of the particle hitting
again the wall is smaller than before — as in the figure 1.11.

Denoting v,' the speed at the beginning of the k ™ run and x,' the coordinate of the furthest away
point during the k t run, the energy of the particle leaving the wall is

12
£ =2k _w, (0) (1.81)

In the position x, ' after the k departure from the wall, the energy is

U'=x R =W, (x,) (1.82)
The variation of the total energy has the expression

12 m
D R =Fox, (1.83)
so that

. vEm

Xk :m ( 184)

After the particle reaches the position x,' the direction of the speed changes and, when the particle
hits the wall,

2
M: Ek+1I=Wk+1|(O) (1-85)

The energy conservation law for the x, 'position and the point in which the particle hits the wall gives
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xR -5 —=F x/ (1.86)
so that

. 2
Vi, =—x(F|-F) (1.87)

m
Considering (1.84), the relation (1.87) becomes
F|-F

v2,=va kB 1.88

k+1 k |Fx|+F ( )

Between two successive collisions the speed diminishes in a geometrical progression with the ratio q

F|-F
= [= 1.89
| IF,|+F (189)
Using the data provided
9
== 1.90
9= (1.90)

From (k +1)t, collision the relation (1.84) is written as
v?Z .m
Xpog = - 191
k+1 2 . FX| + Ff ( )
Considering (1.84) and (1.91), the ratio of the extreme positions in two successive runs is

Xk_+1|: |FX|—E =g
X' |F|+F (1.92)

X' =07 %,
For the k™ run towards the origin, analogous to (1.57), one may write the dependence of the square
speed Vl(zk,<—) as function of the position as

Vo= 2 [F |- )- )]
V'fk,a:%[(JFJ —F)- (/g™ —x)]
Or, using the data

o _2]g(21(9Y
Vi) = m[Q (11 (11] xﬂ (1.94)

From the k ™ run from the origin, analogous to (1.59), the dependence on the position of the square
speed v( _,) can be written as

(1.93)
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Vl(zkﬁ) - %[QFA +F ) (Xk '_X)]

i 25 M o]

Using given data

o _ 2] (21 (9Y
V(H)mlll (11 (11) xﬂ (1.96)

The evolution of the square of the speed as function on position is presented in the figure 1.10.

(1.95)

vit(a.l)
\Hz\.‘ s
SN o
""::2 \\ N Ty N
NN \\\\\\\'\
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g R A Xe X, Ex(m}:

Figure 1.10
And the evolution of the speed as function of the position is presented in the figure 1.11.

Figure 1.11

The sum of the geometrical progression (1.92) gives (after the doubling and then subtracting of the x, )
the total distance covered by the particle.
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k=1 1-q
Considering (1.97), (1.71) and (1.72) it results
S k= 2m (1.98)
P 2
The total distance covered by the particle is
D=2-)» x,'=Xx
kZ::‘ < (1.99)
D=20m

which allows us to find again the result ( 1.14 ).

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of Education and
Research- Bucharest, Romania
Professor Adrian S.DAFINELPhD, Faculty of Physics — University of Bucharest, Romania
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L,
Different kind of oscillation C
1
Let's consider the electric circuit in the figure, for which L, =10 mH , II A
L,=20mH, C,=10nF, C,=5nF and R=100kQ . The switch K C

being closed the circuit is coupled with a source of alternating current. The

current furnished by the source has constant intensity while the frequency of _I I_ )4
the current may be varied.

a. Find the ratio of frequency f,, for which the active power in circuit L» 1
has the maximum value P, and the frequency difference — Y000 —
Af =f, —f_of the frequencies f, and f_for which the active R K /

power in the circuit is half of the maximum powerP, .

p T—
s
The switch K is now open. In the moment t, immediately after the _@

switch is open the intensities of the currents in the coils L, and L
iy =01Aand i, =02 A L, (the currents flow as in the figure); at !
the same moment, the potential difference on the capacitor with el UUUU
capacity C,is u, =40V : C:I llil]
b. Calculate the frequency of electromagnetic oscillation in
L,C,C,L, circuit; @ @
c. Determine the intensity of the electric current in the AB
conductor; C
d. Calculate the amplitude of the oscillation of the intensity of 2
electric current in the coilL, . @
Neglect the mutual induction of the coils, and the electric resistance of L I
the conductors. Neglect the fast transition phenomena occurring when 2 ’-z[}
the switch is closed or opened. —W—

Problem I1I - Solution

a. As is very well known in the study of AC circuits using the formalism of complex numbers, a complex
inductive reactance X, =L-@- |, ( j=+/—1) s attached to the inductance L - part of a circuit
supplied with an alternative current having the pulsation @ .

Similar, a complex capacitive reactance E —__1_isattached to the capacityC .

C-w
A parallel circuit will be characterized by his complex admittance .
The admittance of the AC circuit represented in the figure is
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?:%ﬂ_ 1 '+L 1 -_Cl'-a)_Cz'-a)
1 | 2 1 1 (21)
Y=Z4j(C +C,)-| —+—=
R L, L,
The circuit behave as if has a parallel equivalent capacity C
C=C,+C, (2.2)
and a parallel equivalent inductance L
1.t
L L L
_ I-1|-2
L, +L,
The complex admittance of the circuit may be written as
\?:Lj-(c-w—ij (2.4)
R L-w
and the complex impedance of the circuit will be
7=2
Y
1 1
—+j|—-C-w
- R (L o j (25)
Z - 2 2
(e
R w

The impedance Z of the circuit, the inverse of the admittance of the circuit Y is the modulus of the
complex impedance Z

z:ﬁ: ! _

() o)

The constant current source supplying the circuit furnish a current having a momentary value i(t)

i(t)=1-+/2-sin(e-t), (2.7)

where | is the effective intensity (constant), of the current and « is the current pulsation (that can
vary) . The potential difference at the jacks of the circuit has the momentary value u(t)

u(t)=U-v2-sin(w-t + ) (2.8)

where U is the effective value of the tension and ¢ is the phase difference between tension and

current.
The effective values of the current and tension obey the relation

1
- (2.6)
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U=I-Z
The active power in the circuit is
2 2 2
P U_ _ 2%
R R
Because as in the enounce,

{I = constant

(2.11)

R = constant

the maximal active power is realized for the maximum value of the impedance that is the minimal value
of the admittance .
The admittance

Y:J(zjl(c.w_if (212
R L-w

has- as function of the pulsation @ - an ,the smallest value”

Y == 2.13
min R ( )
for the pulsation
®, = . (2.14)
m \/ﬁ .
In this case
1
(C-a)——jzo. (2.15)
L-w

So, the minimal active power in the circuit has the value
P =R.I? (2.16)
and occurs in the situation of alternative current furnished by the source at the frequency f

1 1
m—n Oy =——
21 27-4/C-L

To ensure that the active power is half of the maximum power it is necessary that

f (2.17)

2 |2
2o e (2.18)
R 2

i_izyz

R Z7°

That is
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2
Felee
. . @ (2.19)
+-=C.0———
R L-o

The pulsation of the current ensuring an active power at half of the maximum power must satisfy one of
the equations

-t g (2.20)
R-C L-C
The two second degree equation may furnish the four solutions
2
wet b g1 f 1) 4 (2.21)
2R-C 2\\R-C L-C
Because the pulsation is every time positive, and because
2
L + 4 > L (2.22)
R-C L-C R-C
the only two valid solutions are
2
PPy (N I S (2.23)
- 2\(R-C L-C 2R-C

It exist two frequencies f, = z—a)i allowing to obtain in the circuit an active power representing half of
T

the maximum power.

11 1) 4 1
f,=—/= + +
271 2V\R-C) "L.C 2R-C

(2.24)
11 ( 1 jz 4 1
f =—|= + -
2| 2\\R-C L-C 2R-C
The difference of these frequencies is
Af =f —f N (2.25)
27 R-C

the bandwidth of the circuit — the frequency interval around the resonance frequency having at the ends
a signal representing ]/ /2 from the resonance signal. At the ends of the bandwidth the active power

reduces at the half of his value at the resonance.
The asked ratio is
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W_RC _o[C

At JLC L

fi=R\/(Cl+C2)'(L1+L2)
L

Af

Because
C=15nF
20

L=—mH
3

it results that
w, =10° rad-s™

and
9
x —R\/Z 100x10° .| > 19x10 15><(1)03 (2.27)
X

The (2.26) relation is the answer at the question a.

b. The fact that immediately after the source is detached it is a current in the coils, allow as to admit
that currents dependents on time will continue to flow through the coils.

ut) L. o
— OO —

":j_] i CT ltl
3 —
o=
L " L i
i G, 5

IER[ERE

2l i,

—

Figure 2.1

The capacitors will be charged with charges variable in time. The variation of the charges of the
capacitors will results in currents flowing through the conductors linking the capacitors in the circuit.

The momentary tension on the jacks of the coils and capacitors — identical for all elements in circuit — is
also dependent on time. Let's admit that the electrical potential of the points C and D is u(t) and the
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potential of the points A and B is zero. If through the inductance L, passes the variable current having
the momentary valuei, (t), the relation between the current and potentials is

di
u(t)-L —+=0 2.28
O)-L (2.28)
The current passing through the second inductance i 2(t) has the expression,
di
u(t)-L,—2=0 2.29
O-L (2.29)

If on the positive plate of the capacitor having the capacity C, is stocked the chargeql(t), then at the
jacks of the capacitor the electrical tension is u(t) and

q,=C,-u (2.30)

Deriving this relation it results

4 _ . du (2.31)
dt dt

But

dg, .

— = 2.32
e (2.32)

because the electrical current appears because of the diminishing of the electrical charge on capacitor
plate. Consequently

. du
|, = —C o—_— 2.33
3 1 dt ( )

Analogous, for the other capacitor,

. du
i,=-C, — 2.34
4 4 dt ( )

Considering all obtained results
di,

o
dt L
di, u
a oL

-

(2.35)

respectively
d, _ o du
dt tdt’
b, _ du
dt dt?
Denoting is(t) the momentary intensity of the current flowing from point B to the point A, then the

same momentary intensity has the current through the points C and D . For the point A the Kirchhoff
rule of the currents gives

(2.36)
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For B point the same rule produces

i, +i, =1, (2.38)
Considering (2.37) and (2.38) results
i, —i, =i, -1, (2.39)
and deriving
di, _di; _di, _di, (2.40)
dt dt dt dt
that is
2 2
_u_u_d o du
L, L, dt dt
4 (2.41)
—-u- l.}.i :_lz'l.(Cl +C2)
L, L) dt
Using the symbols defined above
2
Lu_du
L dt (2.42)
1
U+—u=0
LC
Because the tension obeys the relation above, it must have a harmonic dependence on time
u(t)=A-sin(w-t+5) (2.43)
The pulsation of the tension is
P (2.44)
JL-C '

Taking into account the relations (2.43) and (2.36) it results that

i, :-CI%(A-sin(a)-Ha)):—cl -A-@-cos(w-t+5)

; (2.45)
i4=—Cza(A-sin(a)-t+§))=—Cz-A-a)-cos(a)-t+5)
and
%:E:E-A-sin(w-wd)
a L L
i . (2.46)
B8 2 Asin(wt+6)
at L L

It results that
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i =L~A~cos(a)-t+6)+M
b (2.47)

i, :L-A~cos(w't+§)+N

,

In the expression above, A, M, N and & are constants that must be determined using initially
conditions. It is remarkable that the currents through capacitors are sinusoidal but the currents through
the coils are the sum of sinusoidal and constant currents.

In the first moment

u(0)=u, =40V
i,(0)=i, =01A (2.48)
i,(0)=i, =02A
Because the values of the inductances and capacities are
L, =0,01H
L, =0,02H
C,=10nF
C, =5nF

(2.49)

the equivalent inductance and capacity is

1.1 1
L

L
L= L,
L, +L,

-4
L—2X10 H 1

2

L
_ Ll'

(2.50)

3x107 150
respectively
{c =C, +C,

C =15nF

(2.51)

From (2.44) results
1

‘/i-15><10’9
150

The value of the pulsation allows calculating the value of the requested frequency b. This frequency
has the value f
o 10°

f=—"="""Hz (2.53)°
2 2rw

=10°rad -s™ (2.52)

w =

c. If the momentary tension on circuit is like in (2.43), one may write
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u(0)=A-sin(s)=u,

_ u (2.54)
sin(d)=—
(6)=2
From the currents (2.47) is possible to write
i, = LL~A~COS(5)+ M
: 1“’ (2.55)
i, =——-A-cos(5)+N
L,-o
On the other side is possible to express (2.39) as
i, —i, =i, —1,
1
L—-A-cos(a)-t+5)+M +C,-A-w-cos(w-t+5)= (2.56)
0
1
—C,-A-w-cos(w-t+35)- -A-cos(@-t+8)-N
Lo
An identity as
A-cosa+B=C-cosa+D (2.57)
Is valuable for any value of the argument « only if
A=C
2.58
{B T (258)
Considering (2.58), from (2.56) it results
M+N=0
2.59
A-a)~(C1+C2)=—A- l+i (2.59)
o (L L,

For the last equation it results that the circuit oscillate with the pulsation in the relation (2.44)
Adding relations (2.55) and considering (2.54) and (2.59) results that

+i, :A-cos(5)-%-[i+%}

I01

1 1

A: IOl_i_|02

cos(5)-j)-(|_1+l_1j

(2.60)
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The numerical value of the amplitude of the electrical tension results by summing the last relations from
(2.54) and (2.60)

UXO
(i01 + ioz)' L-o
A
(cos(8)) +(sin(s)) =1 (2.61)

)

A=W, ) +((iy +ip)-L- Y

sin(5) =

C0SO =

The numerical value of the electrical tension on the jacks of the circuit is

A= \/(40)2 +((0,3)-%-105j (262
A=/(40) +(200)" = 4026V

And consequently from (2.54) results

sin(5):ux°
(2.63)
sin(5) _4 _ 1
40v26 /26
and
5
coslo )=— 2.64
©)="1s (2.64)
Also
1
t9(6)=¢ (2.65)
5 =arctg(1/5)
From (2.55)
M =iy =7 -A-cos(5)
1@ (2.66)
N=i,- -A-cos(5)
L,-o

the corresponding numerical values are
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M=|01— .40 A=-01A
( oo 001-10° V26 J26 j .
(2.67)
N=|02- -40 A=01A
( 002- 105 Va6. V26 j
The relations (2.47) becomes
i = (41\5)_6 '003(105 -t +arctg(]/5))—0,1JA =i, -1,
(2.69)
i, = (21{)? -c0s(10° -t +arctg(1/5))+ 0,1JA =i, +1,

The currents through the coils are the superposition of sinusoidal currents having different amplitudes
and a direct current passing only through the coils. This direct current has the constant value

l, =01A (2.69)"
as in the figure 2.2.
I L,
0 ¢ ’0
ill ; ":1 = il +’0
- C?
L
= 4
. O I
L, 2
—_| g
i:l ;
L=+l
T —
A = | A
Figure 2.2
The alternative currents through the coils has the expressions
i = (41\(/)%_6 -cos(10° -t +arctg(V/ 5))] A
(2.70)
P= (% cos(10° -t +arctg(1/ 5))JA
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The currents through the capacitors has the forms

i, =(-10x10" - 404/26 -cos(10° -t + arctg(1/5) A
i, = {— 4\(/)%_6 cos(10° -t + arctg(]/S))JA

1
 =(-5x10-40V26 -cos(10° -t + arctg (y'5)) A

i, = [— @cos(w t+arctg(1/ 5))jA

(2.71)

100

The current i, has the expression
is = ia - il

8./26

- 5 (2.72)
i, = L—Wcos(lo t+arctg(1/5))+ O,l]A

The value of the intensity of i, current is the answer from the question c.
The initial value of this current is

[ 826 5
° 100 /26

d. The amplitude of the current through the inductance L, is

+0,1]A:—0,3A (2.73)"

max(i:): max( 41‘5)_6 .cos(10° -t +arctg(V/ 5))Aj = % A~02A (2.74)"

representing the answer at the question d.

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of Education and
Research- Bucharest, Romania
Professor Adrian S.DAFINELPAD, Faculty of Physics — University of Bucharest, Romania
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Optics — Problem 111 (7points)
Prisms

Two dispersive prisms having apex angles A,=60° and A ,=30° are glued as in the figure (C =90°).
The dependences of refraction indexes of the prisms on the wavelength are given by the relations

b, A B
nl(ﬂ,):a1+l—12,
b, A\ 0
nz(ﬁ)=ag+/1—2
Az
were @
a, =11, b, =1.10°nm?, a, =13, b, =5-10*nm?.

D C
a. Determine the wavelength 1, of the incident radiation that pass through the prisms without

refraction on AC face at any incident angle; determine the corresponding refraction indexes of
the prisms.
b. Draw the ray path in the system of prisms for three different radiations 2

incident on the system at the same angle.
c. Determine the minimum deviation angle in the system for a ray having the wavelength 2, .

d. Calculate the wavelength of the ray that penetrates and exits the system along directions
parallel to DC.

red A 0 A violet

Problem II1 - Solution

a. The ray with the wavelength 2, pass trough the prisms system without refraction on AC face at

any angle of incidence if :
N1 (%)=n, (49)
Because the dependence of refraction indexes of prisms on wavelength has the form :

b
nl(/i):al+l—12 (3.1)
b,
nZ(A):a2+F (3.2)
The relation (3.1) becomes:
b
a1+l2=a2+/1—22 (3.3)
0

The wavelength 4, has correspondingly the form:

o= P (3.4)
a, —a

Substituting the furnished numerical values
Ao =500nm (3.5)
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LTy

The corresponding common value of indexes of refraction of prisms for the radiation with the
wavelength 4, is:

nl(/lo):nz(ﬂ'o):]-’S (3.6)
The relations (3.6) and (3.7) represent the answers of question a.

b. For the rays with different wavelength (4 .., , 4,, 4,0 ) having the same incidence angle on first
prism, the paths are illustrated in the figure 1.1.

viofet

Figure 3.1
The draw illustrated in the figure 1.1 represents the answer of question b.

c. In the figure 1.2 is presented the path of ray with wavelength 1, at minimum deviation (the angle
between the direction of incidence of ray and the direction of emerging ray is minimal).

/A
i |
i |
£ |
; I
|
A B!
- A4 Ny
i 1“ e \\min
- szn
ny A,
D c
Figure 3.2

In this situation
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. O T A
sin 5
nl(/lo):nz(/io): ' (3.7)
sin
where
m(A')=30°,

as in the figure 1.1
Substituting in (3.8) the values of refraction indexes the result is
 Spin TA 3 A

sin =-sin— (3.8)
2 2 2

or

Smin = 2arcsin(%sin%) —% (3.9)

Numerically

S = 30,7° (3.10)

The relation (3.11) represents the answer of question c.

d. Using the figure 1.3 the refraction law on the AD face is

sinip=n; -sinn (3.11)
The refraction law on the AC face is
n, -sinr'=n, -sinr, (3.12)

’_
Figure 3.3

As it can be seen in the figure 1.3

r2 . A2 ( 3.13)
and

i, =30° (3.14)
Also,

n+n'=A (3.15)

Substituting (3.16) and (3.14) in (3.13) it results

Optics — Problem I11 - Solution Page 3 from 4



A XIv-A

IPHO 1983 Theoretical Question I11 Qj‘v;

F

P Bty

Guan
n, -sin(A —r)=n, -sin A, (3.16)
or
n, -(sin A -cosr, —sinr; -cos A )=n, -sin A, (3.17)
Because of (3.12) and (3.15) it results that
sinr =% (3.18)
and

COST, 1 an2 -1 (3.19)
155, 1

1

Putting together the last three relations it results
2 2n, -sin A, +Cos A

4n,“ -1= Sn A (3.20)
Because
A= 60°
and
A ,=30°
relation (3.21) can be written as
a2 g2t (3.21)
1 \/5 .
or
3-n? =1+n, +n,° (3.22)
Considering the relations (3.1), (3.2) and (3.23) and operating all calculus it results:
24882 —a,% —a, ~1)+ (agby —by —2a,b, )4 24302 by 2 =0 (3.23)

Solving the equation (3.24) one determine the wavelength A of the ray that enter the prisms system

having the direction parallel with DC and emerges the prism system having the direction again parallel
with DC . That is

A =1194nm (3.24)
or
A =12um (3.25)

The relation (3.26) represents the answer of question d.

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of Education and
Research- Bucharest, Romania
Professor Adrian S.DAFINEILPAD, Faculty of Physics — University of Bucharest, Romania
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Atomics - Problem IV (7 points)

Compton scattering

A photon of wavelength A, is scattered by a moving, free electron. As a result the electron stops
and the resulting photon of wavelength A, scattered at an angle @ = 60° with respect to the
direction of the incident photon, is again scattered by a second free electron at rest. In this
second scattering process a photon with wavelength of 4, =1,25x10™m emerges at an angle
6 = 60° with respect to the direction of the photon of wavelength 4, . Find the de Broglie

wavelength for the first electron before the interaction. The following constants are known:
h=6,6x10"J -s - Planck’s constant

m=9,1x10"kg - mass oh the electron

c=3,0x10°m/s -speed of light in vacuum

Problem III - Solution

The purpose of the problem is to calculate the values of the speed, momentum and wavelength
of the first electron.

To characterize the photons the following notation are used:

Table 4.1
initial | photon — final
photon | after the photon
first scattering
momentum | p. Py i}
energy E. E, E,
wavelength | 4 A ,

To characterize the electrons one uses

Table 4.2
first electron first electron | second electron | Second electron
before collision | after collision | before collision | after collision
momentum | p,, 0 0 Pye
energy E. = Ee Eo
speed Vi 0 0 Ve

The image in figure 4.1 presents the situation before the first scattering of photon.
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Yl_
m X
scattered )
Af £ M \ photon ;{O fo
OVaw W :
initial 1
photon M v
™y lect,
first electron ﬁ] ergsrl?n N
YL
M X
Figure 4.1 Figure 4.2
X
y\/ P
N

electron recoiling j ' 0 E. A
fs /by
at rest electron

£ 5
\‘_f/k_/ p—
/ N scaftered

again
scaftered A‘U fo X photon
photon VN

N
Figure 4.3 Figure 4.4
To characterize the initial photon we will use his momentum p, and his energy E,
5_h_hf
A ¢ (4.1)
E, =h-f
c
f=— 4.2
= (4.2)

is the frequency of initial photon.
For initial, free electron in motion the momentum p,, and the energy E , are

Isoe =m'\71e = mO .Vlez
Vi-p
2 (4'3)
E, =m-c?=mC
1- p?

: : , v
where m, is the rest mass of electron and m is the mass of moving electron. As usual, g =—=.
c

De Broglie wavelength of the first electron is
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2w
h h-  ——>
ﬂ“oe = = 1- 132
Poe My Vg
The situation after the scattering of photon is described in the figure 4.2.
To characterize the scattered photon we will use his momentum p, and his energy E,

ISo :l: h-f,
Ao c (4.4).
E,=h-f,
where
c
f =— 45
= (4.5)

is the frequency of scattered photon.

The magnitude of momentum of the electron ( that remains in rest) after the scattering is zero;
his energy is E,, . The mass of electron after collision is m, - the rest mass of electron at rest.
So,

E,=m,-C’

To determine the moment of the first moving electron, one can write the principles of
conservation of moments and energy. That is

ISi + Isoe = 50 (46)

and

E, +E, =E,+E, (4.7)

The conservation of moment on Ox direction is written as

h-f h-f

—L4+m-v,, -cosa =—2c0sd (4.8)
C c

and the conservation of moment on Oy is

m-v,, -sina = %o ging (4.9)
C

To eliminate « , the last two equation must be written again as

2
(m-v,, -cosa )’ :%(fO -cos@ 1, )’

(4.10)
(m-v,, -sina ) —(%sinﬁjz
le - c
and then added.
The result is
h?.
m?v2 =~ (2 +2 - 2f, -, -cos0) (4.12)
or
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—h? ({2 +12 - 2f, -f, -cos6) (4.12)

The conservation of energy (4.7) can be written again as
m-c*+h-f,=m,-c® +h-f, (4.13)

or

=m,-c’+h-(f, -f,) (4.14)

Squaring the last relation results
mé-c* 2 4 2 2 2
—2 = —=ml-c¢* +h’-(f, —f, ) +my-h-c?-(f, -f,) (4.15)
a0
c

Subtracting (4.12) from (4.15) the result is

2m, -c®-h-(f, —f,)+2nh? -f, -f, -cos6 —2h? -f, -f =0 (4.16)

or

L) (4.17)

m, - C f, 1

Using

__h (4.18)
m, -C

the relation (4.17) becomes

A-(1-cos8)= A4 — 4, (4.19)
The wavelength of scattered photon is

Ay =4 —A-(1-cosh) (4.20)

shorter than the wavelength of initial photon and consequently the energy of scattered photon is
greater that the energy of initial photon.

A <A,
(4.21)
E, >E,

Let's analyze now the second collision process that occurs in point N. To study that, let's
consider a new referential having Ox  direction on the direction of the photon scattered after
the first collision.
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The figure 4.3 presents the situation before the second collision and the figure 4.4 presents the

situation after this scattering process. The conservation principle for moment in the scattering
process gives

h = l0056’+ m-v,, -cos 3
h (4.22)
—singd-m-v,, -sing=0
To eliminate the unknown angle S must square and then add the equations (4.22)
That is
h h i
(———cos@j =(m-v,, -cos B)
o

0

) (4.23)
(lsinej =(m-v,, -sinB)
A
or
2 2 2
(LJ {LJ ~ 20 _cos0=(m v, (4.24)
/11 ﬂo 0"
The conservation principle of energy in the second scattering process gives
h;Cero~02:h;C+m-c2 (4.25)
0 ﬂf
(4.24) and (4.25) gives
2 2 2 2 2 2
h < N < _zhe cos@=m?-c?-vj, (4.26)
A Ao Ay A4
and
1 1Y 11
hz-cz-[———J +m§-c“+2h-c3-mo-(———J:mz-c4 (4.27)
A g b g

Subtracting (4.26) from (1.27), one obtain

-(1-cos@)=A — 4
m,-C ( ) U (4.28)

A=Ay =A-(1-cos6)

That is

A > A,
(4.29)
E <E,
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Because the value of A, is know and A can be calculate as
A =125%107"m

i (4.30)
=5 61'2X31103 (o= 241x10 %M =002x10 m
Ix -3x

the value of wavelength of photon before the second scattering is

A, =123x107°m (4.31)
Comparing (4.28) written as:

A = Ay +A-(1-cos6) (4.32)
and (4.20) written as

A =2y +A-(1-cos0) (4.33)
clearly results

&= (4.34)

The energy of the double scattered photon is the same as the energy of initial photon. The
direction of “final photon” is the same as the direction of “initial” photon. Concluding, the final
photon is identical with the initial photon. The result is expected because of the symmetry of the
processes.

Extending the symmetry analyze on electrons, the first moving electron that collides the initial
photon and after that remains at rest, must have the same momentum and energy as the second
electron after the collision — because this second electron is at rest before the collision.

That is

{ple = p2€ (435)
E1e = E2e

Taking into account (4.24), the moment of final electron is

S 1 _ 2-c0sO
e h\/ﬂf ’ (4, —A(l—cosO)f A (4 = AL—cos8)) (4.36)

The de Broglie wavelength of second electron after scattering (and of first electron before
scattering) is

o 1 1 B 2-cosd
e / (\/ 2 (- A—coso)f 4 _A<1_cose>)J (430

Numerical value of this wavelength is

Qi = Ay =124x107"m (4.38)

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of
Education and Research- Bucharest, Romania
Professor Adrian S.DAFINELPAD, Faculty of Physics — University of Bucharest, Romania
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IPhO’s LOGO — Problem V

The Logo of the International Physics Olympiad is represented in the figure below.

The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid
line.

Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936).

This problem will be not considered in the general score of the Olympiad. The best solution will be
awarded a special prize.
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Figure 5.1
Problem V -Solution

Suppose a fluid is in a recipient at a constant pressure. If a thin jet of fluid (gas or liquid) having a small
circular or rectangular cross section leaves the recipient through a nozzle entering the medium, the
particles belonging to the medium will be carried out by the jet. Other particles belonging to the medium
will be attracted to the jet.

If the jet flows over a large surface, the particles belonging to the medium over the jet and the particles
leaving between the jet and the surface will be carried out by the jet. The density of particles over the jet
remains constant because of newly arriving particles, but the particles between the surface and the jet
cannot be replaced. A pressure difference appears between the upper and lower side of the jet,
pushing the jet to the surface. If the surface is curved, the jet will follow its shape.

The left image in the figure below presents the normal flow of a fluid jet leaving through a nozzle of a
recipient with a high, constant pressure. The final pressure of the fluid is of medium pressure.

The right image in the figure below presents the flow of a fluid over the large surface. The jet is “stuck”

against the surface.

IPRO’s LOGO — Problem V- Solution Page 1 from 2
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The process of deflection of the jet increases the speed of the jet without any variation of the pressure

and temperature of the jet.
During the tests of the first jet plane in Paris, December 1936, the Romanian engineer Henry Coanda
was the first to observe this phenomenon, occurring when the flames of the engine passed through a

flap.

The logo of the Olympiad illustrates the Coanda flow of a fluid.

Professor Delia DAVIDESCU, National Department of Evaluation and Examination—Ministry of Education and
Research- Bucharest, Romania

Professor Adrian S.DAFINEILPAD, Faculty of Physics — University of Bucharest, Romania
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Mechanics — Problem I (8 points)
Jumping particle

A particle moves along the positive axis Ox (one-dimensional situation) under a force that's projection
on Oxis F, =F, as represented in the figure below (as function of x ). At the origin of Ox axis is
placed a perfectly reflecting wall.

A friction force of constant modulus F, =100N acts anywhere the particle is situated.

The particle starts from the point x = x, =1,00m having the kinetic energy E. =10,0J .

a. Find the length of the path of the particle before it comes to a final stop

b. Sketch the potential energy U(x) of the particle in the force fieldF, .

c. Draw qualitatively the dependence of the particle speed as function of his coordinate x .

tE
b ,:'{. =1,00 m X,
A
FE=+10.0 Nf—————————————rr=m—e =
W
Electricity — Problem I1I (8 points) L
1
Different kind of oscillation C
1
Let's consider the electric circuit in the figure, for which L, =10 mH , II A
L,=20mH, C,=10nF, C, =5nF and R=100kQ . The switch K C

being closed the circuit is coupled with a source of alternating current. The

current furnished by the source has constant intensity while the frequency of _I I_ )4
the current may be varied.

a. Find the ratio of frequency f_ for which the active power in circuit L» 1
has the maximum value P, and the frequency difference — Y000 —
Af =f_ —f_of the frequencies f, and f_ for which the active R K /
power in the circuit is half of the maximum powerP, . S I

The switch K is now open. In the moment t, immediately after the switch C

is open the intensities of the currents in the coils L, and i, =01 A and
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I, =02 A L, (the currents flow as in the figure); at the same moment,
the potential difference on the capacitor with capacity C, is
u, =40V : _W_
b. Calculate the frequency of electromagnetic oscillation in C
L,C,C,L, circuit; 1

Wy

c. Determine the intensity of the electric current in the AB
conductor; @ —| |7 @
d.

Calculate the amplitude of the oscillation of the intensity of

electric current in the coilL, . C,’
Neglect the mutual induction of the coils, and the electric resistance of 4| I— @
the conductors. Neglect the fast transition phenomena occurring when
the switch is closed or opened. L,_ | l
—n—
U (t) =u,

Optics — Problem 111 (7points)
Prisms
Two dispersive prisms having apex angles A,=60° and A ,=30° are glued as in the figure below

(C=90°). The dependences of refraction indexes of the prisms on the wavelength are given by the
relations

b, A B
nl(ﬂ‘):al-i_l_lz'
b A\ (9
nz(ﬂ)=a2+/1—22
Az
were @
a, =11, b =1-10°nm?, a, =13, b, =5-10*nm?.

D C
a. Determine the wavelength 1, of the incident radiation that pass through the prisms without

refraction on AC face at any incident angle; determine the corresponding refraction indexes of
the prisms.
b. Draw the ray path in the system of prisms for three different radiations A ., , 14, 2 yge

incident on the system at the same angle.
c. Determine the minimum deviation angle in the system for a ray having the wavelength 2, .

d. Calculate the wavelength of the ray that penetrates and exits the system along directions
parallel to DC.
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Atomics - Problem IV (7 points)

Compton scattering

A photon of wavelength A is scattered by a moving, free electron. As a result the electron stops and
the resulting photon of wavelength 4, scattered at an angle & = 60° with respect to the direction of
the incident photon, is again scattered by a second free electron at rest. In this second scattering
process a photon with wavelength of 4, =1,25x10™m emerges at an angle € = 60° with respect
to the direction of the photon of wavelength 4,. Find the de Broglie wavelength for the first electron
before the interaction. The following constants are known:

h=6,6x10"J -s - Planck’s constant

m=9,1x10"kg - mass oh the electron

c=3,0x10°m/s -speed of light in vacuum

The purpose of the problem is to calculate the values of the speed, momentum and wavelength of the
first electron.

To characterize the photons the following notation are used:

Table 4.1
initial | photon - final
photon | after the photon
first scattering
momentum | p. P, i
energy E. E, =
wavelength | 4 A

To characterize the electrons one uses

Table 4.2
first electron first electron | second electron | Second electron
before collision | after collision | before collision | after collision
momentum | p,. 0 0 Pye
energy Ele EOe EOe EZe
speed Vi, 0 0 Ve

Page 3 from 4



IPhO 1983 Theoretical Questions

IPRO’s LOGO — Problem V

The Logo of the International Physics Olympiad is represented in the figure below.
The figure presents the phenomenon of the curving of the trajectory of a jet of fluid around the shape of
a cylindrical surface. The trajectory of fluid is not like the expected dashed line but as the circular solid

line.
Qualitatively explain this phenomenon (first observed by Romanian engineer Henry Coanda in 1936).

This problem will be not considered in the general score of the Olympiad. The best solution will be
awarded a special prize.
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Problems of the XV International Physics Olympiad
(Sigtuna, 1984)

Lars Gislén
Department of Theoretical Physics, University of Lund, Sweden

Theoretical problems
Problem 1
a) Consider a plane-parallel transparent plate, where the refractive index, n,

varies with distance, z, from the lower surface (see figure). Show that
n,sin o = ngsin . The notation is that of the figure.

‘A

nz

b) Assume that you are standing in a large flat desert. At some distance you
see what appears to be a water surface. When you approach the “water” is
seems to move away such that the distance to the “water” is always constant.
Explain the phenomenon.

c) Compute the temperature of the air close to the ground in b) assuming that
your eyes are located 1.60 m above the ground and that the distance to the
“water” is 250 m. The refractive index of the air at 15 °C and at normal air
pressure (101.3 kPa) is 1.000276. The temperature of the air more than 1 m
above the ground is assumed to be constant and equal to 30 °C. The
atmospheric pressure is assumed to be normal. The refractive index, 7, is such
that n - 1 is proportional to the density of the air. Discuss the accuracy of your
result.

Solution: ,

o n,
a) From the figure we get G n
msSna=nsSna, =mnsina,=...=nNsSin g e n,

in a warm layer of air when £ =90°. This

b) The phenomenon is due to total reflexion 7
gives >\



n,sina=ny

c) As the density, p, of the air is inversely proportional to the absolute
temperature, T, for fixed pressure we have
AT)=1+k p=1+K T
The value given at 15 °C determines the value of k = 0.0795.
In order to have total reflexion we have ,sin a =, or
£1+—kJ- L :[1+—§J withh=1.6 mand L =250 m

303) {7+ 2

As h << L we can use a power expansionin A L:

7= 303 ~ 303(1+ ﬁJ ~ 328K = 561C
[303 J 1 303 2kl
+1 -
ko )1+ 12k



Problem 2

In certain lakes there is a strange
phenomenon called “seiching” whichisan — __ m......._..
oscillation of the water. Lakes in which you
can see this phenomenon are normally long
compared with the depth and also narrow.
It is natural to see waves in a lake but not
something like the seiching, where the entire
water volume oscillates, like the coffee in a cup that you carry to a waiting
guest.

h

In order to create a model of the seiching we look at water in a rectangular
container. The length of the container is L and the depth of the water is /.
Assume that the surface of the water to begin with makes a small angle with
the horizontal. The seiching will then start, and we assume that the water
surface continues to be plane but oscillates around an axis in the horizontal
plane and located in the middle of the container.

Create a model of the movement of the water and derive a formula for the
oscillation period T. The starting conditions are given in figure above.
Assume that & << A. The table below shows experimental oscillation periods
for different water depths in two containers of different lengths. Check in
some reasonable way how well the formula that you have derived agrees
with the experimental data. Give your opinion on the quality of your model.

Table 1. L =479 mm
Amm| 30 50 69 838 107 124 142

7/'s (178 140 118 108 100 091 0.82

Table 2. L =143 mm
Amm| 31 38 58 67 124

7/'s [052 052 043 035 0.28

The graph below shows results from measurements in lake Vittern in Sweden.
This lake has a length of 123 km and a mean depth of 50 m. What is the time
scale in the graph?
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The water surface level in Bastudalen (northern end of lake Vittern) and Jonkdping (southern end).



Solution:

In the coordinate system of the figure, we have for
the centre of mass coordinates of the two triangular
parts of the water

(0 )= 3,4 2+&13) (X,5,)=(-LI 3, H 2-£1 3).
For the entire water mass the centre of mass coordinates will then be

2

(XCaM’ )V(:o/w)= [%7 ’%J

Due to that the y component is quadratic in ¢ will be much much smaller than

the x component.
The velocities of the water mass are

ey

and again the vertical component is much smaller the the horizontal one.
We now in our model neglect the vertical components. The total energy
(kinetic + potential) will then be
2L
36/7
For a harmonic oscillator we have

W= W+ W, =m#+1mw’ 5
Identifying gives

12gh 7l

W= / or 7 o= Ners

Comparing with the experimental data we find 7,

52

W=W+W,=iM =

+ Mg

~11- T

o OUT Model

eriment

gives a slight underestimation of the oscillation period.

Applying our corrected model on the Vittern data we have that the oscillation
period of the seiching is about 3 hours.

Many other models are possible and give equivalent results.



Problem 3

An electronic frequency filter consists of four components coupled as in the
upper figure. The impedance of the source —

can be neglected and the impedance of the — —
load can be taken as infinite. The filter
should be such that the voltage ratio U, H Upye
U, U,, has a frequency dependence shown

in the lower where U,, is the input voltage
and U, is the output voltage. At frequency £ the phase lag between the two

out

voltages is zero.

In order to build the filter you can choose from the following components:

2 resistors, 10 kQ 4} Yin/ Vou
2 capacitors, 10 nF 1
2 solenoids, 160 mH (iron-free and with neglible \/
resistance) ;

: i
Construct, by combining four of these components, fo g

a filter that fulfils the stated conditions. Determine
the frequency £ and the ratio U,/ U,, at this frequency for as many

component combinations as possible.
Solution:

The conditions at very high and very low frequencies can be satisfied with for
example the following circuit

c

G

Using either the graphic vector method or the analytic jo method we can

o=

- 1 .
show that the minimum occurs for a frequency £ T when the ratio
T

between the output and input voltages is 2/3. Switching the resistors and the
capacitors gives a new circuit with the same frequency f. Another two

possibilities is to exchange the capacitors for solenoids where we get £ =Sl
Vs

There are further eight solutions with unsymmetric patterns of the electronic
components.



Experimental problems
Problem 1
You have at your disposal the following material:

(1) A sine wave voltage generator set to a frequency of 0,20 kHz.
(2) A dual ray oscilloscope.

(3) Millimeter graph paper.

(4) A diod.

(5) A capacitor of 0.10 uF (square and black).

(6) An unknown resistor R (red).

(7) A coupling plate.

(8) Coupling wires.

Build the circuit shown in the figure. ° A >I
Connect the terminals A and B to the sine OlpF==c al
wave generator set to a frequency of 0.20 B
kHz. Determine experimentally the mean  ©
power developed in the resistor R when the amplitude of the generator
voltage is 2.0 V (that is the peak-to-peak voltage is 4.0 V).

Solution:

The picture to the right shows the

oscilloscope voltage over the resistor. I"k ‘
The period of the sine wave is 5 ms and

this gives the relation 1 horizontal I.L "
division = 1.5 ms. The actual vertical

scale was 0.85 V / division. The first

rising part of the curve is a section of a -—_ “4‘"'_ ' —
sine wave, the second falling part is an exponential decay determined by the

time constant of the resistor and capacitor. Reading from the display the "half-
life" #,,, = RC- In 2 turns out to be 0.5 ms. This gives R = 7.2 kQ). The mean

power developed in the resistor is

=7 .r %)d . Numerical integration (counting squares) gives
0

;
] (0t =4,5-10°V’s from which (A~ 0.1 mW.
0



Problem 2

Material:

(1) A glow discharge lamp connected to 220 V, alternating current.

(2) A laser producing light of unknown wavelength.

(3) A grating.

(4) A transparent “micro-ruler”, 1 mm long with 100 subdivisions, the ruler is
situated exactly in the centre of the circle.

(5) A1 mlong ruler

(6) Writing material.

The spectrum of the glow discharge lamp has a number of spectral lines in the
region yellow-orange-red. On of the yellow lines in the short wavelength part
of this spectrum is very strong. Determine the wavelength of this spectral line.
Estimate the accuracy of your measurement.

Note: If you happen to know the wavelength of the laser light beforehand you
are not allowed to use that value in your computation.

Warning. Do not look into the laser beam. Do not touch the surface of the
grating or the surface of the transparent micro-ruler.

Solution:

Using the micro-ruler with we can determine the wavelength of the laser light.
Knowing this wavelength we can calibrate the grating and then use it to
determine the unknown wavelength from the glow discharge lamp. We
cannot use the micro-ruler to determine this wavelength because the intensity
of the light from the lamp is too weak.



Problems and solutions of the 16th IPhO™~
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1 Problems

1.1 Theoretical competition

Problem 1

A young radio amateur maintains a radio link with two girls living in two
towns. He positions an aerial array such that when the girl living in town
A receives a maximum signal, the girl living in town B receives no signal
and vice versa. The array is built from two vertical rod aerials transmitting
with equal intensities uniformly in all directions in the horizontal plane.

CEdited by B. Golli, Faculty of Education, University of Ljubljana, and J. Stefan Insti-
tute, Ljubljana, Slovenia, e-mail:bojan.golli@ijs.si



a)

b)

Find the parameters of the array, i. e. the distance between the rods,
its orientation and the phase shift between the electrical signals sup-
plied to the rods, such that the distance between the rods is mini-
mum.

Find the numerical solution if the boy has a radio station transmit-
ting at 27 MHz and builds up the aerial array at PortoroZ. Using the
map he has found that the angles between the north and the direc-
tion of A (Koper) and of B (small town of Buje in Istria) are 72° and
157°, respectively.

Problem 2

In a long bar having the shape of a rectangular parallelepiped with sides a,
b, and c (a [Cb_I_c)Imade from the semiconductor InSb flows a current
I parallel to the edge a. The bar is in an external magnetic field B which
is parallel to the edge c. The magnetic field produced by the current | can
be neglected. The current carriers are electrons. The average velocity of
electrons in a semiconductor in the presence of an electric field only is
v = UE, where [ is called mobility. If the magnetic field is also present,
the electric field is no longer parallel to the current. This phenomenon is
known as the Hall e [eck.

a)

b)

d)

Determine what the magnitude and the direction of the electric field
in the bar is, to yield the current described above.

Calculate the di Cerkence of the electric potential between the oppo-
site points on the surfaces of the bar in the direction of the edge
b.

Find the analytic expression for the DC component of the electric
potential di Cerence in case b) if the current and the magnetic field
are alternating (AC); I = lgsin wt and B = By sin(wt + d).

Design and explain an electric circuit which would make possible,
by exploiting the result c), to measure the power consumption of an
electric apparatus connected with the AC network.

Data: The electron mobility in InSb is 7.8 m?T/Vs, the electron con-
centration in InSbis 2.5-102 m=3,1=1.0A,B=0.10T,b =1.0 cm,
c=1.0mm, e, =—-1.6-1071° As.



Problem 3

In a space research project two schemes of launching a space probe out
of the Solar system are discussed. The first scheme (i) is to launch the
probe with a velocity large enough to escape from the Solar system di-
rectly. According to the second one (ii), the probe is to approach one of
the outer planets, and with its help change its direction of motion and
reach the velocity necessary to escape from the Solar system. Assume
that the probe moves under the gravitational field of only the Sun or the
planet, depending on whichever field is stronger at that point.

a)

b)

d)

Determine the minimum velocity and its direction relative to the
Earth’s motion that should be given to the probe on launching ac-
cording to scheme (i).

Suppose that the probe has been launched in the direction deter-
mined in a) but with another velocity. Determine the velocity of the
probe when it crosses the orbit of Mars, i. e, its parallel and perpen-
dicular components with respect to this orbit. Mars is not near the
point of crossing, when crossing occurs.

Let the probe enter the gravitational field of Mars. Find the minimum
launching velocity from the Earth necessary for the probe to escape
from the Solar system.

Hint: From the result a) you know the optimal magnitude and the di-
rection of the velocity of the probe that is necessary to escape from
the Solar system after leaving the gravitational field of Mars. (You
do not have to worry about the precise position of Mars during the
encounter.) Find the relation between this velocity and the velocity
components before the probe enters the gravitational field of Mars;
i. e.,, the components you determined in b). What about the conser-
vation of energy of the probe?

Estimate the maximum possible fractional saving of energy in scheme
(ii) with respect to scheme (i). Notes: Assume that all the planets re-
volve round the Sun in circles, in the same direction and in the same
plane. Neglect the air resistance, the rotation of the Earth around its
axis as well as the energy used in escaping from the Earth’s gravita-
tional field.

Data: Velocity of the Earth round the Sun is 30 km/s, and the ratio of the
distances of the Earth and Mars from the Sun is 2/3.

3



1.2 Experimental competition

Exercise A

Follow the acceleration and the deceleration of a brass disk, driven by an
AC electric motor. From the measured times of half turns, plot the angle,
angular velocity and angular acceleration of the disk as functions of time.
Determine the torque and power of the motor as functions of angular
velocity.

Instrumentation

1. AC motor with switch and brass disk
2. Induction sensor

3. Multichannel stop-watch (computer)

Instruction

The induction sensor senses the iron pegs, mounted on the disk, when
they are closer than 0.5 mm and sends a signal to the stop-watch. The
stop-watch is programmed on a computer so that it registers the time
at which the sensor senses the approaching peg and stores it in mem-
ory. You run the stop-watch by giving it simple numerical commands,
i. e. pressing one of the following numbers:

5 - MEASURE.
The measurement does not start immediately. The stop-watch waits
until you specify the number of measurements, that is, the number
of successive detections of the pegs:

3 - 30 measurements

6 — 60 measurements

Either of these commands starts the measurement. When a mea-
surement is completed, the computer displays the results in graphic
form. The vertical axis represents the length of the interval between
detection of the pegs and the horizontal axis is the number of the
interval.



7 — display results in numeric form.

The first column is the number of times a peg has passed the detec-
tor, the second is the time elapsed from the beginning of the mea-
surement and the third column is the length of the time interval
between the detection of the two pegs.

In the case of 60 measurements:
8 — displays the first page of the table
2 — displays the second page of the table

4 - displays the results graphically.

A measurement can be interrupted before the prescribed number of mea-
surements by pressing any key and giving the disk another half turn.

The motor runs on 25 V AC. You start it with a switch on the mounting
base. It may sometimes be necessary to give the disk a light push or to
tap the base plate to start the disk.

The total moment of inertia of all the rotating parts is: (14.0 £ 0.5) -
1076 kgm?.

Exercise B

Locate the position of the centers and determine the orientations of a
number of identical permanent magnets hidden in the black painted block.
A diagram of one such magnet is given in Figure 1. The coordinates X, y
and z should be measured from the red corner point, as indicated in Fig-
ure 2.

Determine the z component of the magnetic induction vector B—ih the
(X,¥y) plane at z = 0 by calibrating the measuring system beforehand.

Find the greatest magnetic induction B obtainable from the magnet sup-
plied.

Instrumentation

1. Permanent magnet given is identical to the hidden magnets in the
block.

2. Induction coil; 1400 turns, R =230 Q
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14.

15.
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Fig. 1 Fig. 2

Field generating coils, 8800 turns, R =990 Q, 2 pieces
Black painted block with hidden magnets
Voltmeter (ranges 1V, 3V and 10 V recommended)

Electronic circuit (recommended supply voltage 24 V)

. Ammeter
. Variable resistor 3.3 kQ

. Variable stabilized power supply 0 - 25 V, with current limiter

Four connecting wires

Supporting plate with fixing holes

Rubber bands, multipurpose (e. g. for coil fixing)
Tooth picks

Ruler

Thread

Instructions

For the magnet-search only nondestructive methods are acceptable. The
final report should include results, formulae, graphs and diagrams. The
diagrams should be used instead of comments on the methods used wher-
ever possible.

The proper use of the induced voltage measuring system is shown in Fig-
ure 3.



This device is capable of responding to the magnetic field. The peak volt-
age is proportional to the change of the magnetic flux through the coil.

The variable stabilized power supply is switched ON (1) or OFF (0) by the
lower left pushbutton. By the (U) knob the output voltage is increased
through the clockwise rotation. The recommended voltage is 24 V. There-
fore switch the corresponding toggle switch to the 12 V - 25 V position.
With this instrument either the output voltage U or the output current | is
measured, with respect to the position of the corresponding toggle switch
(V,A). However, to get the output voltage the upper right switch should be
in the 'Vklop’ position. By the knob (1) the output current is limited bellow
the preset value. When rotated clockwise the power supply can provide
1.5 A at most.

J—ﬂo A o}

o [ ]

L é /O #
LT e

—o o

Fig. 3 'O’ zero adjust dial, ’1’ push reset button

Note: permeability of empty space po = 1.2 - 107° Vs/Am.



2 Solutions

2.1 Theoretical competition
Problem 1

a) Let the electrical signals supplied to rods 1 and 2 be E; = Eg cos wt and
E, = Eg cos(wt + d), respectively. The condition for a maximum signal in
direction 9, (Fig. 4) is:

2a
% sinda — 0 =21N

and the condition for a minimum signal in direction 3g:
2mta

Tsin85—6=2nNE’+n (2p.)

where N and N™are arbitrary integers. In addition, 95 — 9 = ¢, where

Fig. 4

¢ is given. The problem can now be formulated as follows: Find the
parameters a, 9, 9, &, N, and NHsatisfying the above equations such,
that a is minimum.

We first eliminate & by subtracting the second equation from the first one:

asin9s —asin9 =A(N—-N"=2).



Using the sine addition theorem and the relation 9g = 94 — ¢:
2acos(9a — sd)sinsp =A(N-—N"TL 1)
or
AN —N-2)
a= )
2cos(9a — 3¢) sin 2

The minimum of a is obtained for the greatest possible value of the de-
nominator, i. e.:

cos(SA—% )=1, 'SA:%(I)’

and the minimum value of the numerator, i. e.:
N—N-=1.

The solution is therefore:

— A _ 1 _ _1 _1
a—m, '8A—§¢), SB——Eq) and S—EH—ZT[N (6p)
(N = 0 can be assumed throughout without loosing any physically relevant
solution.)

b) The wavelength A = ¢/v = 11.1 m, and the angle between directions
A and B, ¢ = 157° — 72° = 85°. The minimum distance between the
rods is a = 4.1 m, while the direction of the symmetry line of the rods is
72° +42.5° = 114.5° measured from the north. 2p)



Problem 2

a) First the electron velocity is calculated from the current I:

=25 m/s.
negbc

I =jS = negvbc, Vv =

The components of the electric field are obtained from the electron veloc-
ity. The component in the direction of the current is

Ecs : =3.2V/m. (0.5p.)

The component of the electric field in the direction b is equal to the
Lorentz force on the electron divided by its charge:

ErsvB=25V/m. (1p.)

The magnitude of the electric field is

—

E= EZ+Ef=4.06V/m. (0.5p.)
while its direction is shown in Fig. 5 (Note that the electron velocity is in
the opposite direction with respect to the current.) 1.5p.)

B
g
Eu T =
/ 7
E,
da
c
b
Fig. 5

b) The potential di Cerknce is

Uy = Erby=25 mV (1p)

10



c) The potential di Cerence Uy is now time dependent:

IBb 10Bo . .
Uy = = 20 sinwtsin(wt + J).
negbc  negc

The DC component of Uy is

Cc0so. (3p.)

d) A possible experimental setup is-shown in Fig. 6

R» wL

vt

rq
ch

r

shunt

Fig. 6

(2p.)
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Problem 3

a) The necessary condition for the space-probe to escape from the Solar
system is that the sum of its kinetic and potential energy in the Sun’s
gravitational field is larger than or equal to zero:

GmM

E

1 2
EmVa —

=0,

where m is the mass of the probe, v, its velocity relative to the Sun, M
the mass of the Sun, Rg the distance of the Earth from the Sun and G the
gravitﬁ' nal constant. Using the expression for the velocity of the Earth,
Ve = GM/Rg, we can eliminate G and M from the above condition:

= 2V¢. (1p.)

Let v'be the velocity of launching relative to the Earth and 9 the angle
between Vg land W JI(Fig. 7). Then from Vol= WV Vg land v2 = 2V¢ it

Fig. 7

follows:

v +2v¥ecos8—vZ=0

and ] [ 1
vi=vg —cos9+ 1+cos29 .

The minimum velocity is obtained for 9 = 0O:
1
vi=ve( 2—-1) =123 km/s. (1p.)

b) Let vbDand Vp be the velocities of launching the probe in the Earth’s and
Sun’s system of reference respectively. For the solution (a), v, = vi'+ VE.
From the conservation of angular momentum of the probe:

MVpRe = mvRum (1p.)

12



and the conservation of energy:

1 Z_GmM

GmM
smvg Re _—

Rm

= %m(v2:,+ v
we get for the, parallel component of the velocity (Fig. 8):
v (Vg Ve)K,

and for the perpendicular component:
1
vis (Vi ve)2(1—k2) —2vE(L —K).

where k = Re/Ry.

Fig. 8

(1p.)

(1p.)

¢) The minimum velocity of the probe in the Mars’ system of reference
to escape from the Solar system, is v.'= vy ( 2 — 1), in the direction
parallel to the Mars orbit (vy is the Mars velocity around the Sun). The
role of Mars is therefore to change the velocity of the probe so that it

leaves its gravitational field with this velocity.

(1p)

In the Mars’ system, the energy of the probe is conserved. That is, how-
ever, not true in the Sun’s system in which this encounter can be consid-
ered as an elastic collision between Mars and the probe. The velocity of
the probe before it enters the gravitational field of Mars is therefore, in

13



the Mars’ system, equal to the velocity with which the probe leaves its
gravitational field. The components of the former velocity are v+ v —
and vZ= v vu, hence:

I O I |

vl vBavBi= vig (v vn)2 = v (1p.)

Using the expressions for v —and v —from (b), we can now find the relation
between t\l7e launching velocity from the Earth, VE and the velocity v%
vil= vy ( 2-1):

1
(Vi ve)?(1—k?)—2vE(A—K)+ (v ve)?k2—2vpm (ViFve)k = V3 (2—2 2).

. ) I I VA
The velocity of Mars round the Sun is vy = GM/Ry = Kvg, and the
equation for v, 'takes the form:

3 1
(Vi VveE)?> =2 K ve(viHve) + (2 2k—2)vE=0. (1p.)
The physically relevant solution is:
1 — 1
vi=ve k —1+ k3+2-2 2k =55km/s. (1p.)
d) The fractional saving of energy is:
2
Wa—W,  VEE—v] — 080,

W,  vi?

a

where W5 and Wy, are the energies of launching in scheme (i) and in scheme
(i), respectively. @ap)

14



2.2 Experimental competition

Exercise A

The plot of the angle as a function of time for a typical measurement of
the acceleration of the disk is shown in Fig. 9.

¢
BOT

rd
70+
60T
50+
40+
30+

20+

10+

Fig. 9 Angle vs. time

The angular velocity is calculated using the formula:
T
wi(ty) = ———
1 (tivi — )
and corresponds to the time in the middle of the interval (tj, tj+1): ti['z
%(tiﬂ + t;). The calculated values are displayed in Table 1 and plotted in
Fig. 10.

Observing the time intervals of half turns when the constant angular ve-
locity is reached, one can conclude that the iron pegs are not positioned
perfectly symmetrically. This systematic error can be neglected in the
calculation of angular velocity, but not in the calculation of angular accel-
eration. To avoid this error we use the time intervals of full turns:

Awij
oi(t) = At-l :
1

15



40+

30+

201

10+

Fig. 10 Angular velocity vs. time

where At; = tojiro — toj,

2Tt 2Tt

Awj = —
' (taiez — taiv1)  (t2ies — t2icg)

and t"= 5.
The angular acceleration as a function of time is plotted in Fig. 11.

The torque, M, and the power, P, necessary to drive the disk (net torque
and net power), are calculated using the relation:

M(t) = la(t)
and
P(t) = M(D)w(t)

where the moment of inertia, | = (14.0 +£0.5) - 1078 kgm?, is given. The
corresponding angular velocity is determined from the plot in Fig. 10 by
interpolation. This plot is used also to find the torque and the power as
functions of angular velocity (Fig. 12 and 13).

16



i t ot () t™ w a
ms ms rd ms s71 572
1 0.0 0.0
272.0 5.78
2 543.9 543.9 3.14
758.7 7.31
3 973.5 429.6 6.28 3.38
1156.3 8.60
4 1339.0 365.5 9.42
1499.9 9.76
5 1660.8 327.8 12.57 5.04
1798.6 11.40
6 1936.3 275.5 15.71
2057.1 13.01
7 2177.8 241.5 18.85 5.96
2287.2 14.36
8 2396.6 218.8 21.99
2498.1 15.48
9 2599.6 203.0 25.73 9.40
2689.6 17.46
10 2779.5 179.9 28.27
2859.4 19.66
11 2939.3 159.8 31.42 18.22
3008.6 22.65
12 3078.0 138.7 34.56
3139.9 25.38
13 3201.8 123.8 37.70 25.46
3256.6 28.66
14 33114 109.6 40.84
3361.8 31.20
15 3472.1 100.7 43.98 26.89
3458.2 34.11
16 3504.2 92.1 47.12
3547.8 36.07
17 3591.3 87.1 50.27 21.72
3632.4 38.27
18 36734 82.1 53.41
37135 39.22
19 3753.5 80.1 56.55 476
3792.8 39.97
20 3832.7 78.6 59.69
3872.4 39.03
21 3912.6 80.5 62.83 —1.69
3952.7 39.22
22 3992.7 80.1 65.97
4032.8 39.22
23 4072.8 80.1 69.12 0.77
4112.4 39.67
24 4152.0 79.2 72.26
4192.3 39.03
25 42325 80.5 75.40 —0.15
4272.4 39.42
26 4312.3 79.7 78.54
Table 1

17




20t

10+

Fig. 11 Angular acceleration vs. time

40t
10°Nm

30+

10 20 30 Taosr

Fig. 12 Net torque (full line) and total torque (dashed line) vs.
angular velocity

To find the total torque and the power of the motor, the torque and the
power losses due to the friction forces have to be determined and added
to the corresponding values of net torque and power. By measuring the
angular velocity during the deceleration of the disk after the motor has

18



been switched o [(Hig. 14), we can determine the torque of friction which
is approximately constant and is equal to M= (3.1 £0.3) - 107> Nm.

P

10°wWH

Fig. 13 Net power (full line), power loses (dashed and dotted line)
and total power (dashed line) vs. angular velocity

w
20!
52

105"

Fig. 14 Angular velocity vs. time during deceleration
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The total torque and the total power are shown in Fig. 12 and 13.

Marking scheme

a) Determination of errors 1 p.

b) Plot of angle vs. time 1 p.

c) Plot of angular velocity and acceleration 3 p.
d) Correct times for angular velocity 1 p.

e) Plot of net torque vs. angular velocity 2 p. (Plot of torque vs. time
only, 1 p.)

f) Plot of net power vs. angular velocity 1 p.

g) Determination of friction 1 p.

20



Exercise B

Two permanent magnets having the shape of rectangular parallelepipeds
with sides 50 mm, 20 mm and 8 mm are hidden in a block of polystyrene
foam with dimension 50 cm, 31 cm and 4.0 cm. Their sides are parallel
to the sides of the block. One of the hidden magnets (A) is positioned so
that its B-{fig. 15) points in z direction and the other (B) with its B-ih x or
y direction (Fig. 15).

\\\ /// NN ) /s

/f// \\\\\ 777 YN

Fig. 15 A typical implementation of the magnets in the block

The positions and the orientations of the magnets should be determined
on the basis of observations of forces acting on the extra magnet. The
best way to do this is to hang the extra magnet on the thread and move it
above the surface to be explored. Three areas of strong forces are revealed
when the extra magnet is in the horizontal position i. e. its B-i$ parallel
to z axis, suggesting that three magnets are hidden. Two of these areas
producing an attractive force in position P (Fig. 16) and a repulsive force
in position R are closely together.

N NS

SENVAT

Fig: 16 Two 'ghost’ magnets appearing in the place of magnet B
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However, by inspecting the situation on the other side of the block, again
an attractive force in area P’ is found, and a repulsive one in area R’. This
is in the contradiction with the supposed magnets layout in Fig. 16 but
corresponds to the force distribution of magnet B in Fig. 15.

To determine the z position of the hidden magnets one has to measure
the z component of B-dn the surface of the block and compare it to the
measurement of B, of the extra magnet as a function of distance from
its center (Fig. 18). To achieve this the induction coil of the measuring
system is removed from the point in which the magnetic field is measured
to a distance in which the magnetic field is practically zero, and the peak
voltage is measured.

In order to make the absolute calibration of the measuring system, the
response of the system to the known magnetic field should be measured.
The best defined magnetic field is produced in the gap between two field
generating coils. The experimental layout is displayed in Fig. 17.

B e B
(Aj 24V DC

I B

I/2

I/2

Sl sapyo

Fig. 17 Calibration of the measuring system

The magnetic induction in the gap between the field generating coils is
calculated using the formula:

_ _HoNI
Cel+d)’

Here N is the number of the turns of one of the coils, I its length , d
the width of the gap, and I the current through the ammeter. The peak
voltage, U, is measured when the induction coil is removed from the gap.

22



Plotting the magnetic induction B as a function of peak voltage, we can
determine the sensitivity of our measuring system:

5 =0.020 T/V.

(More precise calculation of the magnetic field in the gap, which is beyond
the scope of the exercise, shows that the true value is only 60 % of the
value calculated above.)

The greatest value of B is 0.21 T.
B,

Bmax
0,2

0,1

Fig. 18 Magnetic induction vs. distance

Marking scheme:
a) determination of X,y position of magnets (1 cm) 1 p.
b) determination of the orientations 1 p.
c) depth of magnets (x4 mm) 2 p.
d) calibration (50 %) 3 p.
e) mapping of the magnetic field 2 p.

f) determination of Bk (50 %) 1 p.
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Fig. 19 Distribution of marks for the theoretical (1,2,3) and the
experimental exercises. The highest mark for each exer-
cise is 10 points.

24



39

1986 INTERNATIONAL PHYSICS
OLYMPIAD

EXPERIMENT 1.
2% hrs
APPARATUS

Spectrometer with collimator and telescope.

3 syringes; one for water, one for liquid A and one for liquid B.

A beaker of water plus two sample tubes containing liquids A and B.

3 retort stands with clamps.

12V shielded source of white light.

Black card, plasticine, and black tape.

2 plastic squares with holes to act as stops to be placed over the ends of the telescope, with
the use of 2 elastic bands.

Sheets of graph paper.

9. Three dishes to collect water plus liquids A and B lost from syringes.

NookrwdE

S

Please complete synopsis sheet in addition to answering this experimental problem.

Pendant drop

Light Collimator
e i

Plan of Apparatus

Telescope



INSTRUCTIONS AND INFORMATION

1. Adjust collimator to produce parallel light. This may be performed by the following  sequence of
operations:
(a) Focus the telescope on a distant object, using adjusting knob on telescope, so that the
cross hairs and object are both in focus.
(b) Position the telescope so that it is opposite the collimator with slit illuminated so that the
slit can be viewed through the telescope.
(c) Adjust the position of the collimator lens, using the adjusting knob on the collimator,
so that the image of the slit is in focus on the cross hairs of the telescope’s eyepiece.
(d) Lock the spectrometer table, choosing an appropriate 'zero' on the vernier scale, so that
subsequent angular measurements of the telescope's position can conveniently be made.

2. Remove the eyepiece from telescope and place black plastic stops symmetrically over both
ends of the telescope, using the elastic bands, so that the angle of view is reduced.

3. Open up collimator slit.

4, Use the syringes to suspend, vertically, a pendant drop symmetrically above the centre of the

spectrometer table so that it is fully illuminated by the light from the collimator and can be viewed by
telescope.

5. The central horizontal region of the suspended drop will produce rainbows as a result of two
reflections and k (k = 1,2,...) internal reflections of the light. The first order rainbow corresponds to
one internal reflection. The second order rainbow corresponds to two

Internal reflections. The k'th order rainbow corresponds to k internal reflections. Each rainbow
contains all the colours of the spectrum. These can be observed directly by eye and their angular
positions can bed accurately measured using the telescope. Each rainbow is due to white light rays
incident on the drop at a well determined angle of incidence, that is different for each rainbow.

6. The first order rainbow can be recognized as it has the greatest intensity and appears on the
right hand* side of the drop.  The second order rainbow appears with the greatest intensity on the
left hand” side of the drop. These two rainbows are within an angular separation of 20° of each other
for water droplets. The weak intensity fifth order rainbow can be observed on the right hand side of
the drop located somewhere between the other two, blue’, extreme ends of the first and second order
rainbows.

7. Light reflected directly from the external surface of the drop and that refracted twice but not
internally reflected, will produce bright white glare spots that will hinder observations.

8. The refractive indices, n, of the liquids are:
Water n, =1.333
Liquid A nay = 1.467
Liquid B ng = 1.534

In addition to the experimental report please complete the summary sheet.

Footnote: This statement is correct if the collimator is to the left of the telescope, as indicated in the diagram. If
the collimator is on the righthand side of the telescope the first order rainbow will appear on the lefthand side of
the drop and the second order rainbow on the righthand side of the drop.



Measurements

1) Observe, by eye, the first and second order water rainbows. Measure the angle 6 through which the
telescope has to be rotated, from the initial direction for observing the parallel light from the
collimator, to observe, using a pendant water droplet, the red light at the extreme end of the visible
spectrum from:

€)) the first order rainbow on the right of the drop (k = 1);
(b) the second order rainbow on the left of the drop (k = 2);
(c) the weak fifth order rainbow (k = 5), between the first and second order rainbows.

One of these angles may not be capable of measurement by the rotation of the telescope due to the
mechanical constraints limiting the range of 6. If this is found to be the case, use a straight edge in
place of the telescope to measure 6.

(Place the appropriate dish on the spectrometer table to catch any falling droplets.)

Deduce the angle of deviation, ¢ , that is the angle the incident light is rotated by the two reflections
and k reflections at the drop's internal surface, for (a), (b) and (c). Plot a graph of ¢ against k.

2.Determine ¢ for the second order rainbows produced by liquids A and B using the red visible light

at the extreme end of the visible spectrum. (Place respective dishes on table below to catch any falling
liquid as the quantities of liquid are limited).

[4
6
the additional point for n = 1. Obtain the best straight line through these points; measure its gradient
and the value of ¢ for whichn=2.

Using graph paper plotcos = against % n being the refractive index, for all three liquids and insert



EXPERIMENT 2

Apparatus
RML Nimbus computer

Ten sheets of graph paper.

Please complete synopsis sheet in addition to answering this experimental problem.

THIS IS ATWO AND A HALF HOUR EXAMINATION

INFORMATION

The microcomputer has been programmed to solve the Newtonian equations of motion for a two-
dimensional system of 25 interacting particles, in the xy plane. It is able to generate the positions and
velocities of all particles at discrete, equally spaced time intervals. By depressing appropriate keys
(which will be described), access to dynamic information about the system can be obtained.

The system of particles is confined to a box which is initially (at time t = 0) arranged in a two-
dimensional square lattice. A picture of the system is displayed on the screen together with the
numerical data requested. All particles are identical; the colours are to enable the particles to be
distinguished. As the system evolves in time the positions and velocities of the particles will change.
If a particle is seen to leave the box the program automatically generates a new particle that enters the
box at the opposite face with the same velocity, thus conserving the number of particles in the box.

Any two particles i and j, separated by a distance r;; interact with a well-defined potential Uy,

It is convenient to use dimensionless quantities throughout the computation. The quantities given
below are used throughout the calculations.

Variable Symbol
Distance r*
Velocity v*

Time t*
Energy E*

Mass of particle M* = 48
Potential Uy*
Temperature T*

1 2
Kinetic Energy B " =2 m*v



INSTRUCTIONS

The computer program allows you to access three distinct sets of numerical information and display
them on the screen. Access is controlled by the grey function keys on the left-hand side of the
keyboard, labelled F1, F2, F3, F4, and F10. These keys should be pressed and released - do not hold
down a key, nor press it repeatedly. The program may take up to 1 second to respond.

FIRST INFORMATION SET. PROBLEMS 1-5

1 &/ .y
<vx,n>=£iz_1:(vix)
25

<v,,n >=2i52(vi*y)n

i=1
and
25

<U >:ii Yup (i=])
254

i=1

where

*

V.

IX

is the dimensionless x — component of the velocity for the i’th particle,
v, Is the dimensionless y — component of the velocity for the i’th particle,

iy
and n is and integer with n>1.

[Note: the summation over U, excludes the cases in which i = j]

After depressing F1 it is necessary to input the integer n(n=>1) by depressing one of the white keys in
the top row of the keyboard, before the information appears on the screen.

The information is displayed in dimensionless time intervals 4z at dimensionless times
SAt**  (S=0,1,2,....)
At** is set by the computer program to the value A4#** = 0100000.

The value of S is displayed at the bottom right hand of the screen. Initially it has the value S = 0. The
word "waiting" on the screen indicates that the calculation has halted and information concerning the
value of S is displayed.

Depressing the long bar (the "space” bar) at the bottom of the keyboard will allow the calculation of
the evolution of the system to proceed in time steps 4**¢.  The current value of S is always displayed
on the screen. Whilst the calculation is proceeding the word "running" is displayed on the screen.

Depressing F1 again will stop the calculation at the time integer indicated by S on the screen, and
display the current values of
<Vy,n>, <vy,n>and <U>

after depressing the integer n. The evolution of the system continues on pressing the long bar.
The system can, if required, be reset to its original state at S = 0 by pressing F10 TWICE.



SECOND INFORMATION SET: PROBLEM 6

Depressing F2 initiates the computer program for the compilation of the histogram in problem 6. This
program generates a histogram table of the accumulated number AN, of particle velocity components
as a function of dimensionless velocity. The dimensionless velocity components, v, and v, are referred
to collectively by v.. The dimensionless velocity range is divided into equal intervals A v, = 0.05. The
centres of the dimensionless velocity "bins" have magnitudes

v, =Bdv, (B=0,41 £2,......... )
When the long bar on the keyboard is pressed the 2 x 25 dimensionless velocity components are
calculated at the current time step, and the program adds one, for each velocity component, into the
appropriate velocity 'bin'. This process is continued, for each time step, until F3 is depressed. Once F3
is depressed the (accumulated) histogram is displayed. The accumulation of counts can then be
continued by pressing the long bar. (Alternatively if you wish to return to the initial situation, with
zero in all bins, press F2).

The accumulation of histogram data should continue for about 200 time steps after initiation.

In the thermodynamic equilibrium the histogram can be approximated by the relation
—24(vc*)2]

AN = Ae{

where « is a constant associated with the temperature of the system, and A depends on the total
number of accumulated velocity components.

THIRD INFORMATION SET: PROBLEM 7

Depressing F4 followed by the long bar at any time during the evolution of the system will initiate the
program for Problem 7. The program will take some 30 seconds, in real time, before displaying a
table containing the two

Quantities

<RX,2>= %Z [x:(8)-x (sR)]

and

1 & 2
<RY 2= [y (9)- ¥ (R)]

i=1

where x;" and y;” are the dimensionless position components for the i'th particle. S is the integer time
unit and SR is the fixed initial integer time at which the programme is initiated by depressing F4. It is
convenient to introduce integer
SZ=S-SR..

The programme displays a table of <RX,2> and <RY,2> for

Prior to the display appearing on the screen a notice 'Running’ will appear on
the screen indicating that a computation is proceeding. Depressing F4, followed by the long bar,
again will initiate a new table with SR advanced to the point at which F4 was depressed.



COMPUTATIONAL PROBLEMS

1 Verify that the dimensionless total linear momentum of the system is conserved for the times
given by
S =0, 40, 80, 120, 160.
State the accuracy of the computer calculation.
2. Plot the variation in dimensionless kinetic energy of the system with time using the time

sequence
S=0,24,06,12, 18, 24, 30, 50, 70, 90, 130, 180.

3. Plot the variation in dimensionless potential energy of the system with time using the time
sequence in 2.

4. Obtain the dimensionless total energy of the system at times indicated in 2. Does the system
conserve energy? State the accuracy of the total energy calculation.

5. The system is initially (at S = 0) NOT in thermodynamic equilibrium. After a period of time the
system reaches thermodynamic equilibrium in which the total dimensionless kinetic energy fluctuates
about a mean value of E,. Determine this value of E, and indicate the time, SD, after which the

system is in thermodynamic equilibrium.

6. Using the dimensionless accumulated velocity data, during thermodynamic equilibrium, draw
up a histogram giving the number AN of velocity components against dimensionless velocity
component, using the constant velocity component interval AV * = 0.05, specified in the table
available from the SECOND INFORMATION SET. Data accumulated from approximately 200 time
steps should be used and the starting time integer S should be recorded.

Verify that AN satisfies the relation

AN = Ae
where C and A are constants. Determine the value of « .

7. For the system of particles in thermodynamic equilibrium evaluate the average value of
R?, <R?>, where R is the straight line distance between the position of a particle at a fixed initial
time number SR and time number S. The time number difference SZ = (S - SR) takes the values

Plot <R*> against SZ for any appropriate value of SR. Calculate the gradient of the function in the
linear region and specify the time number range for which this gradient is valid.

In order to improve the accuracy of the plot repeat the previous calculations for three (additional)
different values of SR and determine the AVERAGE <R*> for the four sets of results together with
the 'linear' gradient and time number range.

Deduce, with appropriate reasoning, the thermodynamic equilibrium state of the system, either solid
or liquid.



SUMMARY SHEET
EXPERIMENT 1
FOR WATER AND RED LIGHT AT EXTREME END OF SPECTRUM
First Order Rainbow 6,=129.0° ¢, =137.0 +5.0°

Second Order Rainbow  6,=129.0° ¢, =231.0 +3.0°
Fifth Order Rainbow 0s=126.0° ¢s5 =486.0 £4.0°

~ X X
I
a1 N

LIQUIDS A AND B USING SECOND ORDER RAINBOWS

For Liquid A 0, = 105.0° ¢2=255.0 £3.0°
For Liquid B 6, = 89.5° ¢,=270.5+3.0°
Forn=1 6,=0.0.° $,=0.0.°
Gradient of graph =0.84 +0.07
Extrapolated, n =2, 6, value of ¢ =304 +25°
b
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Figure E 1.1.
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SUMMARY SHEET

EXPERIMENT 2

Is the total momentum conserved? YES /NGO
Accuracy of computer calculation 100% ~0.002% 0:1

(RMS velocity = 0.1)

Time Total Energy
0 -1.61499
2 -1.62886
4 -1.62878
6 -1.62301
12 -1.62882
18 -1.62599
24 -1.62796
30 -1.62703
50 -1.62753
70 -1.62676
90 -1.62580
130 -1.62713
180 -1.62409

Does the system conserve energy? YES/NG™ (~ £1%)

Equilibrium value of E* (Average 24 to 180) = 0.534 +0.05

Equilibrium time SD (see Fig. E2.1) =(10t0 20)x0.1
Value of Srecorded >20,e.g9. 60
Value of «

(for SD=60) (see Fig. E2.2)  =0.503

Accuracy of « 4002

For what time number range is graph, obtained using first value of SR, linear? SZ =18 to 24



Gradient of this graph in linear region

Accuracy of gradient

Gradient of AVERAGE <R?> in linear region

Accuracy of this gradient

* delete as appropriate

Is the system a liquid/solid?

S

40
80
120

160

S

oo AN O

18

24

30
50
70

90
130
180

<VX,1>

0.0000000
0.0000010
0.0000018
0.0000014

0.0000016

<VX,2>
0.0173874
0.0162506
0.0124966
0.0077405
0.0118740

0.0099579

0.0108577

0.0126065
0.0127138
0.0088657

0.0107740
0.0073008
0.0097161

=~0.027 to 0.47
=0.002
=0.035

=+0.01

Liquid/Sefid*

Mean Momentum of the system at requested steps (S)

<VY,1>

0.0000000
0.0000016
0.0000001
0.0000007
0.0000010

Energy of the system at requested steps (S)

<VY,2>
0.0142851
0.0131025
0.0089562
0.0039113
0.0120959

0.0075854

0.0116978

01000340
0.0103334
0.0158292

0.0076446
0.0177446
0.0096426

<pPX>

0.000000
0.000048
0.000086
0.000067
0.000077

<KE>=T*

0.760140
0.704474
0.514867
0.279643
0.575278

0.421039

0.541332

0.543372
0.553133
0.592678

0.442087
0.601090
0.464609

<PY>

0.000000
0.000077
0.000005
0.000034

0.000048

<U>
-4.7502660
-4.6666675
-4.2873015
-3.8053113
-4.4081878

-4.0940627

-4.3385782

-4.3407997
-4.3613165
-4.4388669

-4.1357699
-4.4564333
-4.1773882

<E>= Total Energy

-1.61499
-1.62886
-1.62878
-1.62301
-1.62882

-1.62599

-1.62796

-1.62703
-1.62753
-1.62676

-1.62580
-1.62713
-1.62409



All values are in reduced units. <KE> is the mean kinetic energy per atom. <U*> is twice the
potential energy. <VX,2>and <VY,2> are the mean values of the squares of the X and Y velocity
components, as described in the question. Similarly <VX,1> and <VY,1> are the mean values of the
velocity components. <PX> and <PY> are the mean momentum per particle.

-19 PE -@-
Yo<U>

-2.0

-2.1

-2.2

-2.3

-2.4

0 40 80 120 160

Figure E 2.1

Variation of K.E and P.E.

Maxwell Boltzmann Distribution

b
NL 3000

2000

1000

v
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LnN
411 Steps
7.0
6.0
Figure E2.2
5.0
4.0 o
0 20 40 60 v
(b)
10%<R?*>
8
6
Figure E2,3

0 6 12 18 24
Time step S

<R?> curves as a function of time

TYPICAL RESULTS : NOTE THE LARGE VARIATIONS IN THE VALUES OF <R*>



Time Number

SZ - S-SR SR =261 SR=301| SR=334 SR=370| AVERAGE
<R*»> <R*»> <R*> <R*»> <R*>
0 0 0 0 0 0
2 0.00088 0.00067 0.00091 0.00079 0.00081
4 0.00287 0.00276 0.00382 0.00298 0.00311
6 0.00523 0.00628 0.00858 0.00623 0.00658
8 0.00797 0.01101 0.01449 0.01039 0.01097
10 0.01143 0.01656 0.02095 0.01523 | 0.01604
12 0.01528 0.02235 0.02768 0.02022 0.02138
14 0.01874 0.02845 0.03453 0.02564 0.02684
16 0.02184 0.03539 0.04157 0.03160 | 0.03260
18 0.02526 0.04293 0.04902 0.03833 0.03889
20 0.02979 0.05080 0.05718 0.04532 0.04577
22 0.03538 0.05918 0.06605 0.0510 0.05303
24 0.04063 0.06784 0.07533 0.05569 0.05987
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A plane monochromatic light wave, wavelength 4 and frequency f, is incident normally on
two identical narrow slits, separated by a distance d, as indicated in Figure 1.1. The light
wave emerging at each slit is given, at a distance x in a direction 6 at time t, by

y=acos[2z(ft—x/ )]
where the amplitude a is the same for both waves. (Assume x is much larger than d).
(i) Show that the two waves observed at an angle 6 to a normal to the slits, have a resultant

amplitude A which can be obtained by adding two vectors, each having magnitude a, and
each with an associated direction determined by the phase of the light wave.

Verify geometrically, from the vector diagram, that

A=2acosd

where

T .
=—dsing
P A

(if) The double slit is replaced by a diffraction grating with N equally spaced slits, adjacent
slits being separated by a distance d. Use the vector method of adding amplitudes to show
that the vector amplitudes, each of magnitude a, form a part of a regular polygon with
vertices on a circle of radius R given by

R=——o,
2sin g

Deduce that the resultant amplitude is

asinNg
sin g3



and obtain the resultant phase difference relative to that of the light from the slit at the edge
of the grating.

(iii) Sketch, in the same graph, sin N and (1/sing) as a function of 4. On a separate graph
show how the intensity of the resultant wave varies as a function of .

(iv) Determine the intensities of the principal intensity maxima.

(v) Show that the number of principal maxima cannot exceed

2

(vi) Show that two wavelengths A and 4 + 64, where 04 << A, produce principal maxima with
an angular separation given by

AO = nAZ where n=0, +1, +2....etc
dcos@

Calculate this angular separation for the sodium D lines for which

1 =589.0nm, A+AA=589.6nm, n=2, andd =1.2x107° m.

[reminder © cos A+cosB = 2005[ Aer B].cos( Aé BH




Q2
International Physics Olympiad 1956

2. E_arl\ﬁthis century a model of the earth was proposed in which it was assumed to be a sphere of
radius R consisting of a homogeneous isotropic solid mantle down to radius R.. The core region
within radius R, contained a liquid. Figure 2.1

E X

N/

Figure 2.1

The velocities of longitudinal and transverse seismic waves P and S waves respectively, are
constant, Vp, and V s within the mantle. In the core, longitudinal waves have a constant velocity

Vcp, < Vp, and transverse waves are not propagated.

An earthquake at E on the surface of the Earth produces seismic waves that travel through the Earth
and are observed by a surface observer who can set up his seismometer at any point X on the
Earth’s surface. The angular separation between E and X, 26 given by

260 = Angle EOX

where O is the centre of the Earth.

(i) Show that the seismic waves that travel through the mantle in a straight line will arrive at X at a
time t (the travel time after the earthquake), is given by

i R
t= 2Rsm6, for9>arccos{?°},

\'
where v = vp for the P waves and v = vs for the S waves.

(if) For some of the positions of X such that the seismic P waves arrive at the observer after two
refractions at the mantle-core interface. Draw the path of such a seismic P wave. Obtain a
relation between 8 and i, the angle of incidence of the seismic P wave at the mantle-core interface,
for P waves.



(iii) Using the data

R = 6370 km
Rc = 3470 km
Vep = 10.85km st
V¢ = 6.31km s*
Vep = 9.02km st

and the result obtained in (ii),draw a graph of 8 against i. Comment on the physical consequences
of the form of this graph for observers stationed at different points on the Earth's surface.

Sketch the variation of the travel time taken by the P and S waves as a function of 6 for 0< ¢
<90 degrees.

(iv) After an earthquake an observer measures the time delay between the arrival of the S wave,
following the P wave, as 2 minutes 11 seconds. Deduce the angular separation of the earthquake
from the observer using the data given in Section (iii).

(v) The observer in the previous measurement notices that some time after the arrival of the P and
S waves there are two further recordings on the seismometer separated by a time interval of 6
minutes 37 seconds. Explain this result and verify that it is indeed associated with the angular
separation determined in the previous section.



Q3

Three particles, each of mass m, are in equilibrium and joined by unstretched massless springs, each
with Hooke’s Law spring constant k. They are constrained to move in a circular path as indicated in
Figure 3.1.

Figure 3.1

(i) If each mass is displaced from equilibrium by small displacements u,, u, and u; respectively,
write down the equation of motion for each mass.

(ii) Verify that the system has simple harmonic solutions of
the form

u, =a,cosat ,

with accelerations, (-w®u,)where a, (n=12,3) are constant amplitudes, and , the angular
frequency, can have 3 possible values,

w,/3, w,+/3and 0. where ©? :%.
(iii) The system of alternate springs and masses is extended to N particles, each mass m is joined by
springs to its neighbouring masses. Initially the springs are unstretched and in equilibrium. Write
down the equation of motion of the nth mass (n = 1,2...N) in terms of its displacement and those of
the adjacent masses when the particles are displaced from equilibrium.

2nsz

u,(t) :assin( +¢jcoswst,

are oscillatory solutions wheres =1, 2,..N,n=1, 2, ...N and where ¢ is an arbitrary phase,
providing the angular frequencies are given by

o, = 2w, Sin(s—”),
N

where a, (s=1,.....N) are constant amplitudes independent of n.

State the range of possible frequencies for a chain containing an infinite number of masses.



(iv) Determine the ratio
un /un+1

for large N, in the two cases:
(a) low frequency solutions

(b) @ = ,,,, where w,,, 1S the maximum frequency solution.

max ! max

Sketch typical graphs indicating the displacements of the particles against particle number along
the chain at time t for cases (a) and (b).

(v) If one of the masses is replaced by a mass m' << m estimate any major change one would
expect to occur to the angular frequency distribution.

Describe qualitatively the form of the frequency spectrum one would predict for a diatomic chain
with alternate masses m and m' on the basis of the previous result.

Reminder

sin(A + B) =sin Acos B +cos Asin B

sin A+sinB:23in(A;B]cos(A;Bj

2sin? A=1-cos2A



Answers Question 1

0 Vector Diagram

€« —>

If the phase of the light from the first slit is zero, the phase from second slit is

27, .
=—_dsin@
¢ A

Adding the two waves with phase difference ¢ where &= 2;;( ft —%]

acos(& + @) +acos(&) = 2acos(p/ 2)(& +¢/2)
acos(& + ¢) +acos(&) = 2acos #{cos(& + )}

This is a wave of amplitude A=2acos g and phase 8. From vector

diagram, in isosceles triangle OPQ,
1 T, .
p=myb=70sn0 (NB ¢-25)
and
A=2acos S.

Thus the sum of the two waves can be obtained by the addition of two vectors of
amplitude a and angular directions 0 and 4.

(i) Each slit in diffraction grating produces a wave of amplitude a with phase 2/ relative to
previous slit wave. The vector diagram consists of a 'regular’ polygon with sides of
constant length a and with constant angles between adjacent sides.

Let O be the centre of circumscribing circle passing through the vertices of the
polygon. Then radial lines such as OS have length R and bisect the internal angles
of the polygon. Figure 1.2.

Figure 1.2




2

OST=0TS =%(180—¢)
and TOS=¢

In the triangle TOS, for example
a=2Rsin(¢/2)=2Rsin S as (¢=2p)

_a
R= 2sin B )

As the polygon has N faces then:
TOZ= Naéz)z Ng = 2Ng
Therefore in isosceles triangle TOZ, the amplitude of the resultant wave, TZ, is given by
2Rsin Ng .
Hence form (1) this amplitude is

asinNg
sin g
Resultant phase is
=ZTS
=0TS-0TZ
o) 1
90-—- |-—=(180—-N
[ 5 |5 180-Ng)

~(N -y

=(N-Dp
(iii)

sin

| |
' |
: |
asinNg = nmnnmnmhnml

a’sin’ Ng

Intensity 1 =
y sin? g



N Al [AAccecnnand

0 T 2 3z

(iv) For the principle maxima g=p wherep=0+1+2........

(. =a2(%j: N?a? p'=0andfB=mp+p'

(v) Adjacent max. estimate I, :

. 37 . 3z
sin?NB=1, B=2mpF—ie f=+—
B B 7Zp+2N B N

[ﬂ = ﬂpi%} does not give a maximum as can be observed from the graph.

2nN1 2
a2 1 :aN

for N>>1

Adjacent zero intensity occurs for g = ﬂpi% ie 5= J_r%

For phase differences much greater than 5, 1= aZ(MJ =a’

sin 8
(vi)

P =nxz for a principle maximum
ie. %d sinf=nx n=011+2.........

Differentiating w.r.t, 1
d cos OAH = nAA

_ hAZ

~ dcosd

Substituting 1 =589.0nm, A+A4=589.6nm. n=2 and d =1.2x10°m.

2
Aesz as sin¢9=r:j—;t and cosez‘/l—(r:j—;tj
g 1_(Mj
d

= A0 =52x10"rads or 0.30°



Answers Q2 4
2.(i)

Figure2.1

_ 2Rsing
v

EX=2Rsing ..t

where v = vp for P waves and v = vs for S waves.

This is valid providing X is at an angular separation less than or equal to X', the tangential ray
to the liquid core. X' has an angular separation given by, from the diagram,

R
2¢ =2cos =< |,
’ (Rj

Thus
_ 2Rsiné
v

t

, foro< cosl(R—Cj,
R

where v = vp for P waves and v = vg for shear waves.

(ii) R—R°=0.5447 and  Yee _08313

Ve

Figure 2.2

From Figure 2.2

0=AOC+EOA=0=(90-r)+(1-a) (1)



(ii) Continued

Snell’s Law gives:

sini Vv,
—=— 2
sinr - vg
From the triangle EAO, sine rule gives

R R

A A (3)
SInX sinli

Substituting (2) and (3) into (1)
0={90—sin‘1(vﬂsiniJ+i—sin‘l(R—CsiniH (4)
Vp R

(iii)

For Information Only

(VCPJ cosi [F;C] cosi
. v
For minimum 0,%—?:0. =1- - —— -
|
R
\/1—["@ sin ij Jl—(csinij
Vo R

Substituting i = 55.0° gives LHS=0, this verifying the minimum occurs at this
value of i. Substituting i = 55.0° into (4) gives 6 = 75.8°.

Plot of # against i.

A

90°

75.8°

v

Substituting into 4:

i=0 gives 6 =90
i=90° gives 6 = 90.8°

Substituting numerical values for i =0 — 90° one finds a minimum value at i = 55; the
minimum values of 0, Gy = 75¢8°.



Physical Consequence

As 0 has a minimum value of 75¢8° observers at position for which 2 8 <151+6° will not
observe the earthquake as seismic waves are not deviated by angles of less than 151+6°.
However for 2 § < 114° the direct, non-refracted, seismic waves will reach the observer.

'
' ]
s/ L
] 1
] 3 P '
! Refracted ¥
! waves 1
3 '
1 1
] ]
0

0 O, :cos‘l[%j O 90°

180° 90°

(iv) Using the result

o 2rsin @
Vv
the time delay At is given by

At = 2Rsin H{L—i}
Vg Vp

Substituting the given data

131 = 2(6370) ————~— |sin g
631 10.85

Therefore the angular separation of E and X is

260 =17.84°

] . R
This result is less than 2cos™| —= |=2cos™ 3410 =114°
R 6370

And consequently the seismic wave is not refracted through the core.



(v)

The observations are most likely due to reflections from the mantle-core interface. Using the
symbols given in the diagram, the time delay is given by

A= (ED+DX){L_A}
Vg Vp
, 1 1
At'=2(ED)| — —— | as ED = EX by symmetry
Vg Vg

In the triangle EYD,

(ED)? = (Rsin@)* +(Rcos#—R.)?

(ED)* =R? +RZ —2RR, cos @ sin?0 +cos?@=1
Therefore
' 2 2 1 1
At'=2,/R? +RZ —2RR,, cos {———}
Vg o Vp
Using (i)
At

At'= JR? +R.2 —2RR, cOs 0

" Rsing
= 396.7s or 6m 37s

Thus the subsequent time interval, produced by the reflection of seismic waves at the mantle core
interface, is consistent with angular separation of 17.84°.



Answer Q3
Equations of motion:

d’u
21 =k(u, —u;)+k(u; —u,)

d?u
m dtzz =k(uz —u,)+k(u, —u,)

2

_k(ul us) +k(u, —u;)

md
dt?

Substituting u, (t) =u,(0) cos et and e, _%

(20,7 - ©*)u, (0)—wo U, (0)—®o’u,(0) =0 (a)
—0° U, (0)+ (2w,” — @)U, (0)—wo’u, (0) =0 (b)
—wo° Uy (0)—wo° U, (0)+ 2w,” —@*)u;(0)=0 (c)
Solving for uy(0) and u,(0) in terms of us(0) using (a) and (b) and substituting into (c) gives the

equation equivalent to
(Bw,” -0*)*w *=0

—3a)o , 36002 and 0

w =\/_a)o, \/§a)o and 0

(ii) Equation of motion of the n’th particle:
du,
t _k(u1+n |‘Jn)_|'|((|Jn—1_un) n:1,2 ...... N

m

2

di?

Substituting u, (t) =u, (0) sm(Zns —) cos w,t

(sm 2ns— =w, {sm 2(n+1)s—] 2sin(2ns£j+sin(2(n—1)51]}
N N N

(sm ZnS—J 20, {—sm 2(n+1)s—]+sm(2ns—}—£5m(2(n 1)s—ﬂ
N N) 2 N
(sm 2ns—J {sm 2ns—jcos(2$—) sin[Znsﬁﬂ
N N N

.'.a;52=2w02{1—cos(251ﬂ: (s=12,....N)

As 2sin® @ =1-cos 26
This gives

2
k(u1+n Un)+(00 (un—l _un)

P

o, =20, sin(%j (s=12,..N)

@, can have valuesfrom 0 to 2w, = 2\/E when N — oo; corresponding to range s =1to 5
m



(iv) For s’th mode

sin(Zns ﬁj
u, N

Una sin[Z(n +1)s ”j
N

sin(Zns ”j
u, N

Unia sin 2ns£ cosS 255 + oS 2ns£ sin 25£
N N N N

a) For small o, S ~ 0, thus cos 2ns = | =1and = sin| 2ns = ~0, andso tn
N N N

un+1

=1.

(b) The highest mode, w,,, =2®,, corresponds to s = N/2

0!

DUy sin2nz)

U, sin(2(n+2)r)
Case (a)
Case (b)
N odd

AAANA 4
v v AR AEAZ

N even

VAAAAAR
vavvvx
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(vi) If m' << m, one can consider the frequency associated with m' as due to vibration of m'
between two adjacent, much heavier, masses which can be considered stationary
relative to m'.

The normal mode frequency of m', in this approximation, is given by

m m’ m
m'X = —2kx
, 2k
m
2k
m

For small m', o' will be much greater than wmax,

ZZ

BAND

= -

0 200 o) ®

DIATOMIC SYSTEM

More light masses, m', will increase the number of frequencies in region of @' giving a band-

gap-band spectrum.

BAND GAP BAND




Problems of the 18" International Physics Olympiad
(Jena, 1987)

Gunnar Friege & Gunter Lind*

Leibniz-Institute for Science Education (IPN) at the University of Kiel, Germany

Abstract
The 18th International Physics Olympiad took place in 1987 in the German Democratic
Republic (GDR). This article contains the competition problems, their solutions and also a

(rough) grading scheme.

Introduction

The 18th international Physics olympics in 1987 was the second International Physics
Olympiad hosted by the German Democratic Republic (GDR) . The organisation was lead by
the ministry for education and the problems were formulated by a group of professors of
different universities. However, the main part of the work was done by the physics
department of the university of Jena. The company Carl-Zeiss and a special scientific school

in Jena were involved also.

In the competition three theoretical and one experimental problem had to be solved. The
theoretical part was quite difficult. Only the first of the three problems (“ascending moist air”)
had a medium level of difficulty. The points given in the markings were equal distributed.
Therefore, there were lots of good but also lots of unsatisfying solutions. The other two
theoretical problems were rather difficult. About half of the pupils even did not find an
adequate start in solving these problems. The third problem (“infinite LC-grid") revealed
quite a few complete solutions. The high level of difficulty can probably be explained with
the fact that many pupils nearly had no experience with the subject. Concerning the second
problem (“electrons in a magnetic field) only a few pupils worked on the last part 3 (see

below).

The experimental problem (“refracting indices”) was much more easier than the theoretical

problems. There were lots of different possibilities of solution and most of the pupils

! Contact: Leibniz-Institute for Science Education (IPN) at the University of Kiel
Olshausenstrasse 62, 24098 Kiel, Germany
ipho@ipn.uni-kiel.de



managed to come up with partial or complete solutions. Over the half of all teams got more

points in the experimental part than in the theoretical part of the competition.

The problems and their solutions are based on the original German and English versions of
the competition problems. Only minor changes have been made. Despite the fact that
nowadays almost all printed figures are generated with the aid of special computer

programmes, the original hand-made figures are published here.

Theoretical Problems

Problem 1: Ascending moist air

Moist air is streaming adiabatically across a mountain range as indicated in the figure.

Equal atmospheric pressures of 100 kPa are measured at meteorological stations My and M3

and a pressure of 70 kPa at station M,. The temperature of the air at My is 20° C.
As the air is ascending, cloud formation sets in at 84.5 kPa.

Consider a quantity of moist air ascending the mountain with a mass of 2000 kg over each
square meter. This moist air reaches the mountain ridge (station M) after 1500 seconds.

During that rise an amount of 2.45 g of water per kilogram of air is precipitated as rain.

1. Determine temperature T, at M; where the cloud ceiling forms.

2. What is the height h; (at M;) above station My of the cloud ceiling assuming a linear

decrease of atmospheric density?
3. What temperature T, is measured at the ridge of the mountain range?

4. Determine the height of the water column (precipitation level) precipitated by the air

stream in 3 hours, assuming a homogeneous rainfall between points M; and Ms.



5. What temperature T3 is measured in the back of the mountain range at station M3?

Discuss the state of the atmosphere at station M3 in comparison with that at station M.

Hints and Data

The atmosphere is to be dealt with as an ideal gas. Influences of the water vapour on the
specific heat capacity and the atmospheric density are to be neglected; the same applies to the
temperature dependence of the specific latent heat of vaporisation. The temperatures are to be
determined to an accuracy of 1 K, the height of the cloud ceiling to an accuracy of 10 m and

the precipitation level to an accuracy of 1 mm.

Specific heat capacity of the atmosphere in the pertaining temperature range:
cp=1005J - kg™t - K*

Atmospheric density for pp and Ty at station My:  pg = 1.189 kg - m
Specific latent heat of vaporisation of the water within the volume of the cloud:
L, = 2500 kJ - kg™

% _4=14 and g=981m-s?
Cv

Solution of problem 1:

1. Temperature T, where the cloud ceiling forms

S
T, =T, (&j — 279K 1)
Po

2. Height h; of the cloud ceiling:

+ . T,
Po—P1 :%.g,hl,wnh plpo'&'—o

Po Th '
h, =1410m (2)
3. Temperature T, at the ridge of the mountain.

The temperature difference when the air is ascending from the cloud ceiling to the

mountain ridge is caused by two processes:

— adiabatic cooling to temperature Ty,



— heating by AT by condensation.

To= T+ AT 3)
=
T=T, -(&j - 265K @)
P1

For each kg of air the heat produced by condensation is L, - 2.45 g = 6.125 kJ.

6125 K 6
C, kg

T,=271K (6)

AT

4. Height of precipitated water column
h =35 mm (7)

5. Temperature T3 behind the mountain

11
T.=T, [EJ = 300K (8)
P2

The air has become warmer and dryer. The temperature gain is caused by condensation of

vapour.

Problem 2: Electrons in a magnetic field

A beam of electrons emitted by a point source P enters the magnetic field B of a toroidal coil
(toroid) in the direction of the lines of force. The angle of the aperture of the beam 2 - ay is
assumed to be small (2 - ap << 1). The injection of the electrons occurs on the mean radius R

of the toroid with acceleration voltage Vo.

Neglect any interaction between the electrons. The magnitude of B, B, is assumed to be

constant.




To guide the electron in the toroidal field a homogeneous magnetic deflection field B, is

required. Calculate B, for an electron moving on a circular orbit of radius R in the torus.

Determine the value of B which gives four focussing points separated by n/2 as

indicated in the diagram.

Note: When considering the electron paths you may disregard the curvature of the

magnetic field.

The electron beam cannot stay in the toroid without a deflection field B, but will leave it

with a systematic motion (drift) perpendicular to the plane of the toroid.
a) Show that the radial deviation of the electrons from the injection radius is finite.
b) Determine the direction of the drift velocity.

Note: The angle of aperture of the electron beam can be neglected. Use the laws of

conservation of energy and of angular momentum.

Data:

£ _17610C-kg; Vo=3kV: R=50mm
m

Solution of problem 2:

1.

Determination of B:

The vector of the velocity of any electron is divided into components parallel with and

perpendicular to the magnetic field B :

VZV|\+VL (1)

The Lorentz force F =—e-(VxB) influences only the perpendicular component, it acts as
a radial force:
2

m.V;:e.VJ_.B (2)
r

Hence the radius of the circular path that has been travelled is

r=—— 3)



and the period of rotation which is independent of v, is

_2-mer 2-m-m

T vV, B-e )
The parallel component of the velocity does not vary. Because of oy << 1 it is
approximately equal for all electrons:

Vjo = Vo -COSQly = Vo (5)
Hence the distance b between the focusing points, using eg. (5), is

b=vjo-Tr~Vo-T (6)

From the law of conservation of energy follows the relation between the acceleration
voltage Vo and the velocity vy:

M eV, (7)

Using eq. (7) and eq. (4) one obtains from eq. (6)

pb=2". 2.M v, (8)
B e
and because of b =>=——"" one obtains
B:i. z.m.vo :l.48-10—2£ 9)
R e m?2
Determination of By:
Analogous to eq. (2)
V§
m-—=e-vy-B; (10)
R
must hold.

From eq. (7) follows

B, =2 [2.M\, =037.102 2 (11)
R e m?



3. Finiteness of ry and direction of the drift velocity

In the magnetic field the lines of force are circles with their centres on the symmetry axis

(z-axis) of the toroid.

In accordance with the symmetry of the problem, polar coordinates r and ¢ are introduced
into the plane perpendicular to the z-axis (see figure below) and the occurring vector
quantities (velocity, magnetic field B, Lorentz force) are divided into the corresponding

components.

p4

Since the angle of aperture of the beam can be neglected examine a single electron

injected tangentially into the toroid with velocity v, on radius R.

In a static magnetic field the kinetic energy is conserved, thus
_my o 2 2y_M_ 2
E_Z(vr +V, +vz)_2v0 (12)

The radial points of inversion of the electron are defined by the condition

vi=0
Using eq. (12) one obtains

Vo' =V +V, (13)
Such an inversion point is obviously given by

r=R-(Vy=Vo, Vi =0, v, =0).

To find further inversion points and thus the maximum radial deviation of the electron the

components of velocity v, and v; in eq. (13) have to be expressed by the radius.

Vv, Will be determined by the law of conservation of angular momentum. The Lorentz
force obviously has no component in the ¢ - direction (parallel to the magnetic field).

Therefore it cannot produce a torque around the z-axis. From this follows that the



z-component of the angular momentum is a constant, i.e. L,=m -V, -r=m- Vg - R and

therefore v, = Vo - R (14)
r

v, Will be determined from the equation of motion in the z-direction. The z-component of

the Lorentz force is F, = - e - B - v,. Thus the acceleration in the z-direction is

a,=-—.B-v. (15).
m

That means, since B is assumed to be constant, a change of v; is related to a change of r as

follows:

szz—i-B-Ar
m

Because of Ar=r—R and A v, =v, one finds

e
vzz—H-B-(r—R) (16)

Using eq. (14) and eg. (15) one obtains for eq. (13)

RY , (T ’
(8] {7 )

where A = -B-B
Vo

€
m

Discussion of the curve of the right side of eq. (17) gives the qualitative result shown in

R 4

the following diagram:

"

Hence r is finite. Since R < r < r; eq. (16) yields v, < 0. Hence the drift is in the

direction of the negative z-axis.



Problem 3: Infinite LC-grid

When sine waves propagate in an infinite LC-grid (see the figure below) the phase of the ac-

voltage across two successive capacitors differs by ®.

o..ILIII-..
L LT

it

a) Determine how @ depends on o, L and C (o is the angular frequency of the sine wave).
b) Determine the velocity of propagation of the waves if the length of each unit is /7 .

c) State under what conditions the propagation velocity of the waves is almost independent

of ®. Determine the velocity in this case.

d) Suggest a simple mechanical model which is an analogue to the above circuit and derive

equations which establish the validity of your model.

Formulae:

COS 0L —COSP = —Z'Sin(ﬂj-sin(ﬂj
2 2

sina—sin[3=2-cos(a+6j.sin(°‘_5j
2 2

Solution of problem 3:

a
) IL»-4 L-n
L L

N " LT, b
Icn—4_[rc " ICn ¢ " ICH‘TC VCHJ‘

Current law: I, +lc, =1, =0 @)

Voltage law: Ve, +Vi., -V, =0 (2)



b)

1

Ae,s 3
o-C ¢ ®)

Capacitive voltage drop: V¢, =

Note: Ineq. (3) Ic,, is used instead of Ic,, because the current leads the voltage by 90°.
Inductive voltage drop: V.., =w-L-1,,, 4)

Note: Ineq. (4) 1o, is used instead of I.,, because the current lags behind

the voltage by 90°.
The voltage Ve, is given by: Ve, =V, -sin(o-t+n-¢) (5)
Formula (5) follows from the problem.
From eq. (3) and eq. (5): Ic, =®-C-Vo-cos(w-t+n-¢) (6)

From eq. (4) and eg. (2) and with eq. (5)

IL”:(,)YOL'{Z'Sin(w~t+(n—%)(pj.sin%} 7
. Vo 19 ci ) i ) i @
IL, ) {2 Sln((o t+(n+2j (pj sin 2} 8)

Egs. (6), (7) and (8) must satisfy the current law. This gives the dependence of ¢ on ®, L
and C.

Vo . O . 0]
0=Vy-o-C-cos(w-t+n-o)+2- -sin=-| 2-cos(w-t+n-o@)-sin| ——=
o Creoslortene)r 2 2[ SR ( Zﬂ

This condition must be true for any instant of time. Therefore it is possible to divide by

Vo - €0s (ot + n-).

Hence ®?.-L-C =4.sin? (%) The result is

¢@=2-arcsin

OVL-Cl ith 0<cw<—2 9).
2 vJL-C
The distance ¢ is covered in the time At thus the propagation velocity is
‘ol -/

E— or V=
(o-«/L-C]
2

== (10)
¢ 2-arcsin{



C) AY

y~ are sin ¥

i 4
] /
s > X
_/ 4
B S
EN

Slightly dependent means arc sin ~ m, since v is constant in that case.

o-vL-C
2
This is true only for small values of . That means ONE~ 2LC < 1 and therefore

Vo = ﬁ (11)

d) The energy is conserved since only inductances and capacitances are involved. Using the

terms of a) one obtains the capacitive energy

WC:Z%.C.VCHZ (12)

n

and the inductive energy

WL:Z%‘L'ILnZ (13)

From this follows the standard form of the law of conservation of energy

WC:Z%(C-VCHZ+L-ILHZ) (14)

n

The relation to mechanics is not recognizable in this way since two different physical

quantities (Vc, and 1., ) are involved and there is nothing that corresponds to the relation
between the locus x and the velocity v = X.
To produce an analogy to mechanics the energy has to be described in terms of the charge

Q, the current | = Q and the constants L and C. For this purpose the voltage V¢, has to be

expressed in terms of the charges Q., passing through the coil.

11



One obtains:

L . 2 1 2
W—Zn: |:E'QL,1 +R(QLn_QLn1)}

N —
A B

(15)

Mechanical analogue:
A (Kinetic part): QLn — Vp; L —m
B (potential part): QL — Xy

Xn: displacement and v,: velocity.

However, Q., could equally be another quantity (e.g. an angle). L could be e.g. a moment of
inertia.

From the structure of the problems follows: Interaction only with the nearest neighbour (the

force rises linearly with the distance). A possible model could be:

e SPTNG ~
-—VYWW. 4 WA »—
~a K am K an

Another model is:

Torsion spring

~

7~
rigid dick —
Experimental Problems

Problem 4: Refractive indices

Find the refractive indices of a prism, n,, and a liquid, n;. Ignore dispersion.

a) Determine the refractive index n, of a single prism by two different experimental
methods.

Illustrate your solution with accurate diagrams and deduce the relations necessary to

calculate the refractive index. (One prism only should be used).

12



b) Use two identical prisms to determine the refractive index n. of a liquid with n_ < nj.
Illustrate your solution with accurate diagrams and deduce the relations necessary to

calculate the refractive index.

Apparatus:
Two identical prisms with angles of 30°, 60° and 90°; a set square, a glass dish, a round table,

a liquid, sheets of graph paper, other sheets of paper and a pencil.
Formulae: sin(a.£B)=sina-cosp + cosa-sinp

Additional remarks: You may mark the opaque sides of the prisms with a pencil. The use of

the lamp is optional.

Solution of problem 4:

a) Calculation of the refractive index of the prism

First method:

Draw a straight line A — B on a sheet of paper and let this be your line of sight. Place the
prism with its rectangular edge facing you onto the line (at point P on the line). Now turn
the prism in the direction of the arrow until the dark edge of total reflection which can be
seen in the short face of the prism coincides with the 90° edge of the prism. Mark a point
M and measure the length c;. Measure also the length of the short face of the prism.

13



The following equations apply:

. 1
sinar =—

Np
sina,
sinp "
B=60°—-ar
y=30°+a

siny _a

sin(90°—a.) o

From eq. (5) follows with eq. (4) and the given formulae:

Ci-cow=sin(30°+a):%-003a+%-\/§-sina
1

2a—C;

2.\a?—a-c+¢’

From egs. (2), (3) and (1) follows:

sina =

sinoL=n, -sin(60°—aT):n—2”-(\/§-cosaT—sinaT)

1 . 2 %
N, :+{§.(2-S|na+1) +1}

1)

@)

3)
(4)

()

(6)

(7)

When measuring c¢; and a one notices that within the error limits of + 1 mm a equals c;.

Hence: sina:% and n, =1.53.

14
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Second method:

paper

Place edge C of the prism on edge A of a sheet of paper and look along the prism

hypotenuse at edge A so that your direction of sight B-A and the table surface form an

angle of 60°. Then shift the prism over the edge of the paper into the position shown, such

that prism edge C can be seen inside the prism collinear with edge A of the paper outside

the prism. The direction of sight must not be changed while the prism is being displaced.

The following equations apply:

tanB:% }:>h:b-\/_= c-sinf

tan60°=ﬁ=% J1-sin2p
sinf =sin 60°-i = e
np 2'np

2
2 b

With the measured values ¢ =29 mm and b = 11.5 mm, it follows

n, = 1.53.

15
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b) Determination of the refractive index of the liquid by means of two prisms

/.sk

7 line of sight L

Place the two prisms into a glass dish filled with water as shown in the figure above.
Some water will rise between the hypotenuse surfaces. By pressing and moving the prisms
slightly against each other the water can be made to cover the whole surface. Look over
the 60° edges of the prisms along a line of sight L (e.g. in the direction of a fixed point on
an illuminated wall). Turn the glass dish together with the two prisms in such a way that
the dark shadow of total reflection which can be seen in the short face of prism 1

coincides with the 60° edge of that prism (position shown in the figure below).

While turning the arrangement take care to keep the 60° edge (point K) on the line of sight
L. In that position measure the length by with a ruler (marking, reading). The figure below

illustrates the position described.

refractive index of the two
prisms: 1,

refractive index of the liquid
between the hypotenuse
surfaces: n,

16



If the refractive index of the prism is known (see part a) the refractive index of the liquid

may be calculated as follows:

sino = —o (13)
\/az + blz
B=a-30° vy, =30°-B=60°—a (14, 15)
siny; . .
- =n, refraction at the short face of prism 1. (16)
Siny;

The angle of total reflection &; at the hypotenuse surface of prism 1 in the position

described is:
g—& = 300—'Y2 (17)
8¢ = 60°+arcsin (SI: £ J (18)
p

From this we can easily obtain n;:

N1 =N, -sin &, =np-sin{600+arcsinsmyl} (19)

Np
Numerical example for water as liquid:
b1 =1.9 cm; o = 55.84°; y; = 4.16°; & = 62.77°; a = 2.8 cm; with np = 1.5 follows

ny=1.33. (20)

17



Grading Scheme

Theoretical problems

Problem 1: Ascending moist art
part 1 2
part 2 2
part 3 2
part 4 2
part 5 2
10
Problem 2: Electron in a magnetic field
part 1 3
part 2 1
part 3 6
10
Problem 3: Infinite LC-grid
part a 4
part b 1
part ¢ 1
partd 4
10
Problem 4: Refractive indices
part a, first method 5
part a, second method 5
part b 10
20
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IPHO-1988 Bad Ischl/ Austria
Problems and Solutions

19" International Physics Olympiad - 1988
Bad Ischl / Austria

THEORY 1
Spectroscopy of Particle Velocities

Basic Data

The absorption and emission of a photon is a reversible process. A good example is to be
found in the excitation of an atom from the ground state to a higher energy state and the at-
oms’ subsequent return to the ground state. In such a case we may detect the absorption of a
photon from the phenomenon of spontaneous emission or fluorescence. Some of the more
modern instrumentation make use of this principle to identify atoms, and also to measure or
calculate the value of the velocity in the velocity spectrum of the electron beam.

In an idealised experiment (see fig. 19.1) a single-charged ion travels in the opposite direction
to light from a laser source with velocity v. The wavelength of light from the laser source is
adjustable. An ion with velocity Zero can be excited to a higher energy state by the applica-
tion of laser light having a wavelength of A = 600 nm. If we excite a moving ion, our knowl-
edge on Dopplers™ effect tells us that we need to apply laser light of a wavelength other than
the value given above.

There is given a velocity spectrum embracing velocity magnitude from v, =Og to

v, = 6,000% (seefig. 19.1)

i |
| Laser source ; —_—
{ |
3

Emitted photon

Y

Photon detector

Fig. 19.1
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IPHO-1988 Bad Ischl/ Austria
Problems and Solutions

Questions

11

111

What range of wavelength of the laser beam must be used to excite ions of al velocitiesin the
velocity spectrum given above ?

11.2
A rigorous analysis of the problem calls for application of the principle from the theory of
special relativity

Determine the error when the classical formulafor Dopplers™ effect is used to solve the prob-
lem.

1.2

Assuming the ions are accelerated by a potential U before excited by the laser beam, deter-
mine the relationship between the width of the velocity spectrum of the ion beam and the ac-
celerating potential. Does the accelerating voltage increase or decrease the velocity spectrum
width ?

13

Each ion has the value %z 4.10° Ak_gs two energy levels corresponding to wavelength

XY =600 nm and wavelength %2 =% +10°° nm. Show that lights of the two wave-

lengths used to excite ions overlap when no accelerating potential is applied. Can accelerating
voltage be used to separate the two spectra of laser light used to excite ions so that they no
longer overlap ? If the answer is positive, calculate the minimum value of the voltage re-
quired.

Number of ‘h}

particles at
different
velocities f

0 5000 10,000 15,000
. -
Particle velocity - (m/s)

Fig. 19.2
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Problems and Solutions

Solution

11
111

Let v bethevelocity of the ion towards the laser source relative to the laser source,

v~ the frequency of the laser light as observed by the observer moving with theion (e.g. in the

frame in which the velocity of theion is 0) and

v the frequency of the laser light as observed by the observer at rest with respect to the laser

source.

Classical formulafor Doppler’s effect is given as

v’:v-(1+xj
C

Let v' bethe frequency absorbed by an ion (characteristic of individual ions) and
vL bethe frequency of thelaser light used to excite anion at rest,

hence:

*
vV = VL

For a moving ion, the frequency used to excite ions must be lower than V.
Let vy bethe frequency used to excite the moving ion.

When no accelerating voltage is applied

frequency of laser | magnitude of | frequency of laser | wavelength of
light used to velocity of light absorbed laser light used
exciteions ions by ions to exciteions
VH 0 v M

Vi v=6.10°m/s| Vv’ A2

VL <VH

*

VL =V

Calculation of frequency vy absorbed by moving ions.

vi=v, -(1+Xj
C

where v = vy =5. 10 Hz and v=6.10°mis.........

The difference in the values of the frequency absorbed by the stationary ion and the ion mov-

ing with the velocity v Av=v, -V,

The difference in the values of the wavelengths absorbed by the stationary ion and the ion

moving with the velocity v AL =N, — Ay
(higher frequency implies shorter wavelength)
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Problems and Solutions

C C
A~y ==&

v, Vy I
from (2) Intensity

C A% C A%
A~y =—-(1+—j——=—

v* c) v* v*
In this case

6-10° . A=6000m A,=600+012 nm
A —Ay=——prm=12-10"° nm Y -

5.10

Fig. 19.3 Spectrum of laser light used to excite ions

1.1.2

The formula for calculation of v as observed by the observer moving towards light source
based on the principle of the theory of specia relativity,

where v isthe magnitude of the velocity of the observer towards the light source,

v~ isthe frequency absorbed by the ion moving with the velocity v towards the light source
(also observed by the observer moving with velocity v towards the laser source) and

v is the frequency of laser light as observed by an observer at rest.

(To put in a metaphoric way, the moving ion “sees” the laser light of frequency v' even
though the scientist who operates the laser source insists that he is sending a laser beam of
frequency v).

2 2 2
v’:v-\/(l+X -(1+X+V—2+ ............... ]:V'\/(:HX) +(1+X)-V—2+ ..............
c cC C c c) C

2 2
v’:v-(1+xj- 1+V—-i+ ........... :v-(l+xj- 1+V—-#+ ...........
c

Y .c?
2-C [1+VJ
i c c

The second term in the brackets represents the error if the classical formula for Doppler’s ef-
fect is employed.

Y_2.10"

c

N[

vi 1 1 4107

2.___.—_5z2.10-10
2-C [ VJ 2 1+2-10

1+—
c

The error in the application of classical formula for Doppler’s effect however is of the order
of the factor 2.10°. This means that classical formula for Doppler’s effect can be used to
analyze the problem without loosing accuracy.
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1.2 When acceleration voltage is used

frequency of laser | magnitude of | frequency of laser | wavelength of
light used to velocity of light absorbed laser light used
exciteions ions by ions to exciteions
VH' VH' v¥=75, 1014 Hz }\-H,
V|_' V|_' v¥=75, 1014 Hz 7\.|_'

. N . 1 L \2 , 2-e-U

Lowest limit of the kinetic energy of ions E-m-(vL) =e-U and v| =
m

Highest limit of the kinetic energy of ions %-m-(v’H)2 :%-m-v2 +e-U

2-e-U
and v|, =.|v®+
m

2-e-U_\/2-e-U

Spectrum width of velocity spectrum |vj, —v| = \/vz — -

(Note that the final velocity of accelerated ionsis not the sum of v and 1/2'2'U as veloc-

ity changes with time).

In equation (3) if 1/2-e-U is negligibly small, the change in the width of the spectrum is
m

negligible, by the same token of argument if 1/% islarge or approaches « , the width

of the spectrum of the light used in exciting the ions becomes increasingly narrow and ap-
proaches 0.

13

Given two energy levels of the ion, corresponding to wavelength A =600 nm and
A2 = 600+10° nm

For the sake of simplicity, the following sign notations will be adopted:

The superscript in the bracket indicates energy level (1) or (2) as the case may be. Thesign ~
above denotes the case when accelerating voltage is applied, and also the subscripts H and L
apply to absorbed frequencies (and also wavelengths) correspond to the high velocity and low
velocity ends of the velocity spectrum of the ion beam respectively.

The subscript following A (or v) can be either 1 or 2, with number 1 corresponding to lowest
velocity of theion and number 2 the highest velocity of the ion. When no accelerating voltage
is applied, the subscript 1 implies that minimum velocity of theion is 0, and the highest veloc-
ity of the ion is 6000 m/s. If accelerating voltage U is applied, number 1 indicates that the
wavelength of laser light pertains to the ion of lowest velocity and number 2 indicates the ion
of the highest velocity.

Finally thesign * indicates the value of the wavelength (A*) or frequency (v¥*) absorbed by
the ion (characteristic absorbed frequency).
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When no accelerating voltage is applied:
For the first energy level:

frequency of laser | magnitude of | frequency of laser | wavelength of
light used to velocity of light absorbed laser light used
exciteions ions by ions to exciteions
vy 0 vi* =5 10" Hz | 3,V

v @ v=6.10°m/s | v =5, 10" Hz | 3,V

Differences in frequencies of laser light used to exciteions = vy® — v @

L
Differences of wavelengths of laser light used to exciteions = A, ® - 4@
\Y 6000
NEE =107 0,012 nm

For the second energy level:

frequency of laser | magnitude of | frequency of laser | wavelength of
light used to velocity of light absorbed laser light used
exciteions ions by ions to exciteions
v® 0 v@* =5 10" Hz | 3@

v @ v =6000 m/s | v®@* =5, 10" Hz | 1, @

Differences in frequencies of laser light used to excite ions VH(Z) - V|_(2)
Differences in wavelengths of laser light used to excite ions M@ —ay@
6000

Thisgives |—————=0,012 nm
g 5.10%

—

|

\

I l

. (Intensity) |

Hence the spectra of laser light (ab- 1

sorption spectrum) used to excite an {
i I B

ion a two energy levels overlap as 1 T

infig. 19.4. M1 AT A
showninfig. 19.4 i o
Fig. 19.4 Spectrum of laser light used to excite ions when no accelerating voltage is
applied(Absorption Spectrum)
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Problems and Solutions

When accelerating voltage is applied:

Let A4 and A" be the range of the wavelengths used to excite ions in the first energy
level, when accelerating voltage is applied. (Note the prime sign to denote the situation in
which the accelerating voltage is used), and let A+® " and A ®" represent the range of the
wavelengths used to excite ions in the second energy level also when an accelerating voltage
isapplied.

Condition for the two spectra not to overlap:

A = AP (SETIG. 19:4) oo @)

(Keep in mind that lower energy means longer wavelengths and vice versa).

From condition (3): AL A = o s (5)

The meanings of this equation isif the velocity of theion is v, the wavelength which the ion
“sees” is AL, when Ay isthe wavelength which the ion of zero-velocity “sees”.

Equation (5) may be rewritten in the context of the applications of accelerating voltage in or-
der for the two spectra of laser light will not overlap as follows:

!

AN A = % where N isthe order of the energy level ...........cccocevevnee. (6)

The subscript L relates A to lowest velocity of the ion which “sees” frequency v*. The lowest

velocity in this case is 2-¢U dthe subscript H relates A to the highest velocity of the
m
ion, in thiscase .[v? + 2-eu
m

Equation (6) will be used to calculate
e width of velocity spectrum of the ion accelerated by voltage U
e potential U which resultsin condition given by (4)

Let us take up the second energy level (lower energy level of the two ones) of theion first:

!

! \Y}
AE B = @)
substitute

. [2eU
V =
m

wm® =600+ 10° nm

v =5.10% Hz
v=0m/s
2.e-U
A2 =(600+0,001)-10°° +$ 11 OO (8)
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Considering the first energy level of theion
A gy =V

L H v*
In this case

, [, 2eU
Vi=,v©+
m

v¥=5_ 10" Hz
v = 6000 m/s
w®P =600.10°m

V2+2’eU

AV =600-10"° +?01[1" M e e e e e e e e e eee e (10)

Substitute X2 from (8) and A from (10) in (4) one gets

/2-e-U V2+2-e-U
(600+0,001)-10° +—™M__>600.10° ++—— M

5.10% 5.10"

\/V2+2-e-u \/Z-e-U
m m
500 >
5.10% 5.10%
500 > /36-10° +2-4-10° -U —+/2-4-10° .U

assume that U is of the order of 100 and over,
then x/8-106-U-(1+%j—\/8-106-u3500

1
——-9-10° <500
v2-U

N2-U2>324

Uux>162V

The minimum value of accelerating voltage to avoid overlapping of absorption
spectrais approximately 162 V
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THEORY 2
M axwell’s Whesl

I ntroduction

A cylindrical wheel of uniform density, having the mass M = 0,40 kg, the radius R = 0,060 m
and the thickness d = 0,010 m is suspended by means of two light strings of the same length
from the ceiling. Each string is wound around the axle of the wheel. Like the strings, the mass
of the axle is negligible. When the wheel is turned manually, the strings are wound up until
the centre of massisraised 1,0 m above the floor. If the wheel is allowed to move downward
vertically under the pulling force of the gravity, the strings are unwound to the full length of
the strings and the wheel reaches the lowest point. The strings then begin to wound in the op-
posite sense resulting in the wheel being raised upwards.

Analyze and answer the following questions, assuming that the strings are in vertical position
and the points where the strings touch the axle are directly below their respective suspending
points (seefig. 19.5).

A
-
R

Fig. 19.5
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Questions

2.1

Determine the angular speed of the wheel when the centre of mass of the wheel covers the
vertical distances.

2.2

Determine the kinetic energy of the linear motion of the centre of mass E, after the wheel
travels a distance s= 0,50 m, and calculate the ratio between E; and the energy in any other
form in this problem up to this point.

Radius of the axle = 0,0030 m

2.3
Determine the tension in the string while the wheel is moving downward.

2.4

Calculate the angular speed »” asafunction of the angle ® when the strings begin to unwind
themselves in opposite sense as depicted in fig. 19.6.

Sketch a graph of variables which describe the motion (in cartesian system which suits the
problem) and also the speed of the centre of mass as a function of ®.

Fig. 19.6
2.5

If the string can withstand a maximum tension T, = 10 N, find the maximum length of the
string which may be unwound without breaking by the whesel.
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Solution

2.1
conservation of energy: M-g-s= % Dy T s Q)

where o is the angular speed of the wheel and | is the moment of inertia about the axis
through A.

Note: If we would take the moment of inertia about S instead of A we would have
1 1
M-g-s=="-lg-o°+=-m-v?
g 2 ° 2

where v isthe speed of the centre of mass along the vertical.
This equation is the same as the above one in meanings since

l, =lg +M-r> and Ig=M-R?

From (1) we get ®= /w
A

substitute IA:%-M-r2+M-R2

_ 2-981-0,
Putting in numbers we get ®= 981 050 z72.4@
9-10°°+3610°" S
2.2
Kinetic energy of linear motion of the centre of mass of the wheel is
E, :%-M-VZ :%-M-mz r? :%.0,40-72,42 9.10°=9,76-102J

Potential energy of the wheel
E, =M-g-s=0,40-9,81-050 =1962 J
Rotational kinetic energy of the wheel

Eq :%-IS 0’ :%-0,40-],81-10‘3 -72,4” =1899 J

E;, 976-10°

=513-10°°
E, 1899
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2.3

Let % be the tension in each string.
Torque © which causes the rotation is given by

where a is the angular acceleration o =

The equation of the motion of the wheel is

IPHO-1988 Bad Ischl/ Austria
Problems and Solutions

M-g-r

IA

t=M-g-r=1,-a

M.g-T = Ma

Substituting a=a.r and IA:%-M-r2+M-R2 we get

T=M-g+

M.g-r?

1

=~ .M-R? +M-r?
2

=M-g-(1+

2.r?
R*+2.r?

Thusfor the tension g in each string we get

2

24

O P

I:M.(l+ 2.r2

2 R?+2.r2

|

_ 0,40-9,81(l

2

|

2.

9.10°

_|_
36-:10°+2-9.10°°

j:lQGN

T 1

N

Fig 19.7

_M-g-r-cos®-®

IA

or

1
2

d((i))2 _M-g-r-cos® do

After the whole length of the stringsis
completely unwound, the wheel con-
tinues to rotate about A (whichisat
rest for some interval to be discussed).
Let & be the angular speed of the cen-
tre of mass about the axis through A.
The equation of the rotational motion
of the wheel about A may be written as
=1, D,

where 1 is the torque about A, I isthe
moment of inertia about the axis A and
@ isthe angular acceleration about the
axisthrough A.

Hence M-g-r-cos® =1, -¢

and ii-):M-g-r-cosd)

|

Multiplied with @ gives:

dt
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this gives

((i))z :2-M-g-r-sin<1>+

I C [C = arbitrary constant]
A

If ®=0 [s=H] thanis d=o

M and therefore C = M

I
A A
Putting these results into the equation above one gets

. 2-M-g-H-sin®
onur ST

IA

That gives o =

r [2MgH . 1
For = <<<1 weget Duax =| = (1+H)]
. 2-M-g-H ®
O=0Opax =47 z
L, T \ 4%}2
1
and i
, 2-M-g-H
V=T Oyuy =l [———
N T L
2MgH 2
% wullv:[—‘—[f;‘ (l“%)] ‘
90° 180° 20
¢ —
Fig.19.8

Component of the displacement
aong x-axisis X = r.sn ®-r
along y-axisis y = r.cos ®-r
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(a)

90° 180°
X
(b)
/
\
y

()

90° 180°
Fig.19.9
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2.5
Maximum tension in each string occurs @ = o), .,

The equation of the motionis Tuax —~M-g =M (0} ) -

Putingin T=20N and o,y = /% (where s is the maximum length of the
A

2

strings supporting the wheel without breaking) and 1, =M- (R? + rzj the numbers one
gets:

This gives: s=124m

-3
20=O,40-9,81-(1+ 4-3:107 s j

36-10%+2-9.10°°

The maximum length of the strings which support maximum tension without breaking is

1,24 m|.
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THEORY 3
Recombination of Positive and Negative lonsin lonized Gas

I ntroduction

A gas consists of positive ions of some element (at high temperature) and electrons. The posi-
tive ion belongs to an atom of unknown mass number Z. It is known that thision has only one
electron in the shell (orbit).

Let thision be represented by the symbol A“™*

Constants:
electric field constant £, =8,85-107" As
V-m
elementary charge e=+1602-10" A-s
2
9P =—2  -2037.10% J.m
4-m-gg
Planck’s constant 7h=1054-10"*J-s
(rest) mass of an electron m, =9,108-10"* kg
Bohr’s atomic radius ry = h ~=592-10""'m
m-q
2
Rydberg’s energy Ep = qu =2180-10"°J
'
(rest) mass of aproton m, -c® =1503-10"° J
Questions:;
3.1

Assume that the ion which has just one electron |eft the shell.
A“@D* isin the ground state.

In the lowest energy state, the square of the average distance of the electron from the nucleus
or r* with components along x-, y- and z-axis being (Ax)? (Ay)? and (Az)? respectively and

r2 = (Ax)? +(Ay) +(Az) and dso the square of the average momentum by
h h

2 =(Ap, )’ +(ap,  +(Ap,)?, whereas Ap, > , Ap, >—— and Ap, > :

p% =(ap, )" +(ap, F +(ap,) Pe 25 e APy 25 and ap, 2

Write inequality involving (p, )* - (ro )* in acomplete form.
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3.2

The ion represented by A
photon.

Write down an equation which is to be used for calculation the frequency of an emitted pho-
ton.

@D* may capture an additional electron and consequently emits a

3.3
Calculate the energy of the ion A" using the value of the lowest energy. The calculation
should be approximated based on the following principles:

33A
The potentia energy of the ion should be expressed in terms of the average value of 1 .
r

(ie. i; ro isgiven in the problem).
r.O

3.3B
In calculating the kinetic energy of the ion, use the average value of the square of the momen-

tum given in 3.1 after being smplified by (p, )* - (rp )* = (1)

34

Calculate the energy of theion A“2* taken to be in the ground state, using the same principle
as the calculation of the energy of A“™* . Given the average distance of each of the two elec-
trons in the outermost shell (same as ry given in 3.3) denoted by r; and r,, assume the average
distance between the two electrons is given by ri+r, and the average value of the square of the
momentum of each electron obeys the principle of uncertainty ie.

pir=h* and pj-r; =h?
hint: Make use of the information that in the ground state r; = r»

3.5

Consider in particular theion A“?* is at rest in the ground state when capturing an additional
electron and the captured electron is aso at rest prior to the capturing. Determine the numeri-
cal value of Z, if the frequency of the emitted photon accompanying electron capturing is
2,057 . 10" rad/s. Identify the element which gives rise to the ion.
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Solution
3.1
r; =(ax)" +(ay)" +(Az)°
pg =(ap, ) +(ap, f +(ap, )
since
h h h
Ap, = > — Ap, >
P 2 AX Py 2-Ay P 2-AZ
gives
h? 1 1 1
po >— 2 2 2
4 [(ax) (ay)  (az)
and
2
() = (ay)’ = (az)* =%
2 2 9 2
thus pg -ty =—-h
4
3.2
[V, |...... speed of the external electron before the capture
Vi speed of A" before capturing

|\7f| ...... speed of A" after capturing
En=hv ... energy of the emitted photon

conservation of energy:
%-me V2 +%-(M+me)-vi2 +E[A Z‘1)+]:%-(M+2-me)-vf2 +E[A 7]
where E[AYY) and E[A¥?*] denotes the energy of the electron in the outermost shell of

ions A“D* and A“?* respectively.

conservation of momentum:

m, -V, +(M+m)-V,=(M+2-m_)-V, v
C

where 1 isthe unit vector pointing in the direction of the motion of the emitted photon.
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3.3
Determination of the energy of A“™* :
2 2
potential energy = — z:e =—Z g
4-m-g, -1, ro
p2
kineticenergy =
2-m

If the motion of the electrons is confined within the x-y-plane, principles of uncertainty in 3.1

can be written as
re = (Ax)* +(ay)?

pg = (Apx )2 + (Apy)2

o om2 [ 1 1] #
pO:—- _— [ =—

2,2|_n 4
rZorg 4 r}

4 Lax)7 (ay) ] 4
thus
Poto =h°
EA(Z—1)+]: Po _Z'q2: o Zq
2-m, o 2-mg-r, o
- : dE
Energy minimum exists, when ar =0.
r.O
Hence
2 2
gE__ W ,zd
dr, me I, rs
2
th|sg|ves i:zq—zrne
o h
hence
2
oG LA AL WL PP AL ..
2-m, h h?
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34
In the case of A“™* jon captures a second electron
2
potential energy of both electrons = —2- qu
0
p2 hZ

kinetic energy of the two electrons = 2-

B 2
2-m mg-r;
2 2

potential energy due to interaction between the two electrons = |q g = | = 2q
nL—r, Ty

hZ 2'Z'q2 q2
2 2 +
s 21,

m, -,
, dE

total energy islowest when ar - 0
r.O

E[A( 2—2)+]:

hence

2-n* 2-2-9° ¢°
s T 3 - 2

m, -1y r 215

hence

2
Lam. (521 122
h 2-h 2) 1y 4

1 1
2 qz-(Z-Z—j qz-me-[Z-Z—j
E[A( zz)+]:£_(q2 .meJ 3 2 _ 2

m 2-h?

e

2 2 2
q° - 2-2—1 m,-[q°- Z—E q?- Z—l
m 2 4 4
E[A\( Z—2)+]:__e_

0=-

4 h h? h?

thisgives
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3.5

Theion A¥™* isat rest when it captures the second electron also at rest before capturing.

From the information provided in the problem, the frequency of the photon emitted is given

by

o _2057-107
2-m 2-m

The energy equation can besimplifiedto  E|A*™ |-E[A 72" |=r.0=h.v

that is

) 1)?
~Eq 2’ -| 2B | Z-] |=ho

putting in known numbers follows

2
2180-107* -{— Z% + 2-(2 —%) :I =105-10"*.2,607-10"

Y Hz

thisgives
Z?-7-127=0
with the physical sensuousresult Z = 1+vir5l ;+51 =41

Thisimplies Z = 4, and that means Beryllium

page 21 /30



IPHO-1988 Bad Ischl/ Austria
Problems and Solutions

EXPERIMENTS

EXPERIMENT 1. Polarized Light

General Information
Equipment:

one eectric tungsten bulb made of frosedt-surface glass complete with mounting
stand, 1 set

3 wooden clamps, each of which contains adlit for light experiment

2 glass plates; one of which is rectangular and the other one is square-shaped
1 polaroid sheet (circular-shaped)

1 red film or filter

1 roll self adhesive tape

6 pieces of self-adhesive labelling tape

1 cellophane sheet

1 sheet of black paper

1 drawing triangle with a handle

1 unerasable luminocol our pen 312, extrafine and black colour

1 lead pencil type F

1 lead pencil type H

1 pencil sharpener

1 eraser

1 pair of scissors

| mportant Instructions to be Followed

1.

Wn

S CIE

Thereare 4 pieces of labelling tape coded for each contestant. Stick the tape one each
on the instrument marked with the sign #. Having done this, the contestant may pro-
ceed to perform the experiment to answer the questions.

Cutting, etching, scraping or folding the polaroid is strictly forbidden.

If marking is to be made on the polaroid, use the lumino-colour pen provided and put
the cap back in place after finishing.

When marking is to be made on white paper sheet, use the white tape.

Use lead pencilsto draw or sketch a graph.

Black paper may be cut into pieces for use in the experiment, but the best way of using
the black paper isto roll it into a cylinder as to form a shield around the electric bulb.
An aperture of proper size may be cut into the side of the cylinder to form an outlet for
light used in the experiment.

Red piece of paper isto be folded to form a double layer.

The following four questions will be answered by performing the experiment:
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Questions
1.1

lla

Locate the axis of the light transmission of the polaroid film. This may be done by observing
light reflected from the surface of the rectangular glass plate provided. (Light transmitting
axis is the direction of vibration of the electric field vector of light wave transmitted through
the polaroid). Draw a straight line along the light transmission axis as exactly as possible on
the polaroid film. (#)

1.1b
Set up the apparatus on the graph paper for the experiment to determine the refractive index
of the glass plate for white light.

When unpolarized light is reflected at the glass plate, reflected light is partialy polarized.
Polarization of the reflected light is a maximum if the tangens of incident angle is equal to the
refractive index of the glass plate, or: tan o = n.

Draw lines or dots that are related to the determination of the refractive index on the graph

paper. (#)

1.2
Assemble a polariscope to observe birefringence in birefringent glass plate when light is nor-
mally incident on the plastic sheet and the glass plates.

A birefringent object is the object which splits light into two components, with the electric
field vectors of the two components perpendicular to each other. The two directions of the
electric field vectors are known as birefringent axes characteristic of birefringent material.
These two components of light travel with different velocity.

Draw a simple sketch depicting design and functions of the polariscope assembled.

Insert a sheet of clear cellophane in the path of light in the polariscope. Draw lines to indicate
birefringent axes (#). Comment briefly but concisely on what is observed, and describe how
berefringent axes are located.

1.3

13a
Stick 10 layers of self-adhesive tape provided on the glass plate as shown below. Make sure
that each layer recedesin equal steps.

S G sguare glass plate as a
T  Substrate for the cellophane
layers
G | } T 10 layers of cellophane
‘ sheet
Fig. 19.10 S stepzI about 3 mm up to 4
mm wide

Insert the assembled square plate into the path of light in the polariscope. Describe conditions
for observing colours. How can these colours be changed ? Comment on the observations
from this experiment.
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1.3b

Prepare monochromatic red light by placing doubly-folded red plastic sheet in the path of
white light. Mark on the assembled square plate to show the steps which allow the determina-
tion of the difference of the optical paths of the two components of light from berefringent
phenomenon, described under 1.2 (#).

Estimate the difference of the optical paths from two consecutive steps.

14

l4a
With the polariscope assembled, examine the central part of the drawing triangle provided.
Describe relevant optical properties of the drawing triangle pertaining to birefringence.

1.4.b
Comment on the results observed. Draw conclusions about the physical properties of the ma-
terial of which the triangle is made.

Additional Cautions

Be sure that the following items affixed with the coded labels provided accompany the report.

1. (#) Polarized film with the position of the transmission axis clearly marked.

2. (#) Graph paper with lines and dots denoting experimental setup for determining re-
fractive index.

3. (#) Sheet of cellophane paper with marking indicating the positions of birefringent
axis.

4. (#) Square glass plate affixed with self-adhesive tape with markings to indicate the po-
sitions of birefringent axis.
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Solution

In this experiment the results from one experimental stage are used to solve problems in the
following experimental stages. Without actually performing all parts of the experiment, solu-
tion cannot be meaningfully discussed.

It suffices that some transparent crystals are anisotropic, meaning their optical properties vary
with the direction. Crystals which have this property are said to be doubly refracting or ex-
hibit birefringece.

This phenomenon can be understood on the basis of wave theory. When a wavefront enters a
birefringent material, two sets of Huygens wavelets propagate from every point of the enter-
ing wavefront causing the incident light to split into two components of two different veloci-
ties. In some crystals there is a particular direction (or rather a set of paralle directions) in
which the velocities of the two components are the same. This direction is known as optic
axes. the former is said to be uniaxial, and the latter biaxial.

If a plane polarized light (which may be white light or monochromatic light) is allowed to
enter a uniaxia birefringed material, with its plane of polarization making some angle, say
45° with the optic axis, the incident light is splitted into two components (ordinary and ex-
traordinary) travelling with two different velocities. Because of different velocities their
phases different.

Upon emerging from the crystal, the two components recombine to from a resultant wave.
The phase difference between the two components causes the resultant wave to be either line-
arly or circularly or eliptical polarized depending on the phase difference between the two
components. The type of polarization can be determined by means of an analyser which is a
second polaroid sheet provided for this experiment.
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EXPERIMENT 2: Electron Tube

I ntroduction

Free electrons in a metal may be thought of as being “electron gas” confined in potential or
energy walls. Under normal conditions or even when a voltage is applied near the surface of
the metal, these electrons cannot |eave the potential walls (seefig. 19.11)

If however the metal or the electron gas is heated, the electrons have enough thermal energy
(kinetic energy) to overcome the energy barrier W (W is known as “work function”). If a
voltage is applied across the metal and the anode, these thermally activated electrons may
reach the anode.

The number of electrons arriving at the anode per unit time depends on the nature of the cath-
ode and the temperature, i.e. al electrons freed from the potential wall will reach the anode no
longer increase with applied voltage (see fig. 19.11)

The saturated current corresponding to the number of thermally activated electrons freed from
the metal surface per unit time obeys what is generally known as Richardson’s equation i.e.

w
5 =C-T?-e «T
where
C isaconstant
T temperature of the cathode in Kelvin
k Boltzmann'sconstant = 1,38.10% JK
d
V\TI Energy 1 S
Cathode
Anode
. . Distance
Fig 19.11 Fig.19.12

/o

Fig 19.13 Graph of current s a function of voltage across anode-cathode

Determine the value of the work function W of tungsten metal in the form of heating filament
of the vacuum tube provided.
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The following items of equipment are placed at the disposal of the contestants:

Electron tube AZ 41 which is a high-vacuum, full-wave rectifying diode. The cathode
is made from a coated tungsten filament the work function of which is to be ascer-
tained. According to the manual prepared by its manufacturer, no more than 4V
should be used when applying heating current to the cathode. Since the tube has two
anodes, it is most desirable to have them connected for all measurements. The diagram
infig. 19.14 isa guide to identifying the anodes and the cathode.

multimeter 1 unit, internal resistance for voltage measurement: 10 MQ
battery 1,5V (together with a spare)
battery 9 V; four units can be connected in series as shown in fig. 19.15
connectors
resistors; each of which has specifications as follows:
1000 Q £ 2% (brown, black, black, brown, brown, red)
100 Q + 2% (brown, black, black, black, brown, red)
47,5 Q + 1% (yellow, violet, green, gold, brown)
resistors; 4 units, each of which has the resistance of about 1 Q and coded
connecting wires
screw driver
graph paper (1 sheet)
graph of specific resistance of tungsten as a function of temperature; 1 sheet

a anodes a

Fig 19.15
Fig 19.14

cathode
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Solve the following problems:

2.1
Determine the resistance of 4 numerically-coded resistors. Under no circumstances must the
multimeter be used as an ohmmeter.

2.2

Determine the saturated current for 4 different values of cathode temperatures, using 1,5V
battery to heat the cathode filament. A constant value of voltage between 35V — 40V be-
tween the anode and the cathode is sufficient to produce a saturated current. Obtain this value
of voltage by connecting the four 9V batteries in series. Describe how the different values of
temperature are determined.

2.3
Determine the value of W. Explain the procedures used.

0.03 e

p specific resistance /
(C2cm™)

0.01 |

250 500 750 1000 1250
Temperature (°C)

Fig 19.16
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Solution

2.1
Connect the circuit as shownin fig. 19.17

Rx .... resistance to be determined —
R... known value of resistance — v, — «—V -

Measure potential difference across Ry and R.
Chose the value of R which gives comparable
value of potential difference across Ry.

In this particular case R=47,5Q Fig. 19.17
Ry _ Vx

{1

R \%

where Vyx and V are values of potential differences across Ry and R respectively.
Rx can be calculated from the above equation.
(The error in Ry depends on the errors of Vx and Vg).

2.2
Connect the circuit as shown in fig. 19.18

e Begin the experiment by measuring the
resistance Ro of the tungsten cathode ‘ T
when there is no heating current ov T

e Add resistor R=1000Q into the cath-

|

ode circuit, determine resistance R; of
the tungsten cathode, calculate the resis- R

tance of the current-carrying cathode. _
e Repeat the experiment, using the resistor Fig 19.18
R =100 Q in the cathode circuit, deter-
mine resistance R, of tungsten cathode with heating current in the circuit.
e Repeat the experiment, using the resistor R = 47,5 Q in the cathode circuit, determine
resistance R3 of tungsten cathode with heating current in the circuit.

R .
e Plot a graph of &,&andR—3 as a function of temperature, put the value of
0 0 0

% =1 to coincide with room temperature i.e. 18°C approximately and draw the re-
0

maining part of the graph parallel to the graph of specific resistance as a function of

temperature provided in the problem. From the graph, read values of the temperature

of the cathode T4, T, and T3 in Kelvin.

page 29 /30




IPHO-1988 Bad Ischl/ Austria
Problems and Solutions

0.04 |- : =

Specific resistance
(Qem™)

0031

0.02

0.01

250 500 750 1000 1250

Temperature(°C)
Fig 19.19
W
Fromtheequation |=C-T?.e T
I w
we get InN— =-——=+InC
T k-T

| . 1
Plot agraph of In—- against —.
grap T2 ag T

The curveislinear. Determine the slope m from this graph. -m-= _W

k

Work function W can be calculated using known values of m and k (given in the problem).

Error in W depends on the error of T which in turn depends on the error of measured R.
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Problems of the 20th International Physics Olympiad *
(Warsaw, 1989)

Waldemar Gorzkowski
Institute of Physics, Polish Academy of Sciences, Warsaw, Poland 2

Abstract

The article contains Eroblems given at the 20" International Physics Olympiad (1989)
and their solutions. The 20"

IPhO was the third IPhO organized in Warsaw, Poland.
Logo

The emblem of the XX International Physics
Olympiad contains a picture that is a historical record of
the first hypernuclear event observed and interpreted in
Warsaw by M. Danysz and J. Pniewski®. The collision
of a high-energy particle with a heavy nucleus was
registered in nuclear emulsion. Tracks of the secondary
particles emitted in the event, seen in the picture (upper
star), consist of tracks due to fast pions (“thin tracks™)
and to much slower fragments of the target nucleus
(“black tracks”). The “black track™ connecting the upper
star (greater) with the lower star (smaller) in the figure
is due to a hypernuclear fragment, in this case due to a
part of the primary nucleus containing an unstable
hyperon A instead of a nucleon. Hyperfragments
(hypernuclei) are a new kind of matter in which the nuclei contain not only protons and
neutrons but also some other heavy particles.

In the event observed above the hyperon A, bound with nucleon, decays like a free
particle through a week (slow) process only. This fact strongly suggested the existence of a
new quantum number that could explain suppression of the decay, even in presence of
nucleons. Indeed, this was one of the observations that, 30 months later, led to the concept of
strangeness.

Introduction

Theoretical problems (including solutions and marking schemes) were prepared
especially for the 20" IPhO by Waldemar Gorzkowski. The experimental problem (including
the solution and marking scheme) was prepared especially for this Olympiad by Andrzej
Kotlicki. The problems were refereed independently (and many times) by at least two persons

! This article has been sent for publication in Physics Competitions in October 2003

2 e-mail: gorzk@ifpan.edu.pl

® M. Danysz and J. Pniewski, Bull. Acad. Polon. Sci., 3(1) 42 (1952) and Phil. Mag., 44, 348 (1953). Later the
same physicists, Danysz and Pniewski, discovered the first case of a nucleus with two hyperons (double
hyperfragment).



after any change was made in the text to avoid unexpected difficulties at the competition. This
work was done by:

First Problem:
Andrzej Szadkowski, Andrzej Szymacha, Wtodzimierz Ungier

Second Problem:
Andrzej Szadkowski, Andrzej Szymacha, Wtodzimierz Ungier, Stanistaw Woronowicz

Third Problem:
Andrzej Rajca, Andrzej Szymacha, Wtodzimierz Ungier

Experimental Problem:
Krzysztof Korona, Anna Lipniacka, Jerzy L.usakowski, Bruno Sikora

Several English versions of the texts of the problems were given to the English-
speaking students. As far as | know it happened for the first time (at present it is typical). The
original English version was accepted (as a version for the students) by the leaders of the
Australian delegation only. The other English-speaking delegations translated the English
originals into English used in their countries. The net result was that there were at least four
English versions. Of course, physics contained in them was exactly the same, while wording
and spelling were somewhat different (the difference, however, were not too great).

This article is based on the materials quoted at the end of the article and on personal
notes of the author.
THEORETICAL PROBLEMS

Problem 1

Consider two liquids A and B insoluble in each other. The pressures p; (i = A or B) of
their saturated vapors obey, to a good approximation, the formula:

In(pi/po)=%+ﬁi; i=AorB,

where p, denotes the normal atmospheric pressure, T — the absolute temperature of the vapor,
and ¢, and S, (i = A or B) — certain constants depending on the liquid. (The symbol In

denotes the natural logarithm, i.e. logarithm with base e = 2.7182818...)

The values of the ratio pi/po for the liquids A and B at the temperature 40°C and 90°C
are given in Tab. 1.1.

Table 1.1
i
trcl i A o i=B
40 0.284 0.07278
90 1.476 0.6918

The errors of these values are negligible.

A. Determine the boiling temperatures of the liquids A and B under the pressure po.



B. The liquids A and B were poured into a vessel in which the layers shown in Fig. 1.1
were formed. The surface of the liquid B has been covered with a thin layer of a non-volatile
liquid C, which is insoluble in the liquids A and B and vice versa, thereby preventing any free
evaporation from the upper surface of the liquid B, The ratio of molecular masses of the
liquids A and B (in the gaseous phase) is:

y = Hal g =8.

Po

v

41 T
Fig. 1.1 Fig. 1.2

The masses of the liquids A and B were initially the same, each equal to m = 100g. The
heights of the layers of the liquids in the vessel and the densities of the liquids are small
enough to make the assumption that the pressure in any point in the vessel is practically equal
to the normal atmospheric pressure po.

The system of liquids in the vessel is slowly, but continuously and uniformly, heated. It
was established that the temperature t of the liquids changed with time z as shown
schematically in the Fig. 1.2.

Determine the temperatures t; and t, corresponding to the horizontal parts of the
diagram and the masses of the liquids A and B at the time 7. The temperatures should be
rounded to the nearest degree (in °C) and the masses of the liquids should be determined to
one-tenth of gram.

REMARK: Assume that the vapors of the liquids, to a good approximation,

(1) obey the Dalton law stating that the pressure of a mixture of gases is equal to
the sum of the partial pressures of the gases forming the mixture and

(2) can be treated as perfect gases up to the pressures corresponding to the
saturated vapors.

Solution

PART A

The liquid boils when the pressure of its saturated vapor is equal to the external pressure.
Thus, in order to find the boiling temperature of the liquid i (i - A or B), one should determine
such a temperature Ty; (or ty;) for which pi/po = 1.

Then In(p,/ p,) =0, and we have:



The coefficients ¢, and g, are not given explicitly. However, they can be calculated

from the formula given in the text of the problem. For this purpose one should make use of
the numerical data given in the Tab. 1.1.

For the liquid A, we have:

In0.284 = Ya + 8.,
(40 + 273.15)K
In1.476 = . B..

+
(90+273.15)K

After subtraction of these equations, we get:

IN0.284—In1.476 =, t 1 K™,
40+273.15 90+273.15
0.284
In—%
oy =— 1.476 K ~-3748.49K

40+273.15 90+273.15

Hence,
ap
(40+273.15)K

S =1In0.284 - ~10.711.

Thus, the boiling temperature of the liquid A is equal to

T, = 3748.49K/10.711 ~ 349.95 K.

In the Celsius scale the boiling temperature of the liquid A is

t,, = (349.95 - 273.15)°C = 76.80°C =~ 77°C.

For the liquid B, in the same way, we obtain:

a, ~ -5121.64 K,
B, ~13.735,
T, ~372-89 K,

t,5 ~99.74°C ~100°C.

PART B

As the liquids are in thermal contact with each other, their temperatures increase in time
in the same way.

At the beginning of the heating, what corresponds to the left sloped part of the diagram,
no evaporation can occur. The free evaporation from the upper surface of the liquid B cannot
occur - it is impossible due to the layer of the non-volatile liquid C. The evaporation from the
inside of the system is considered below.



Let us consider a bubble formed in the liquid A or in the liquid B or on the surface that
separates these liquids. Such a bubble can be formed due to fluctuations or for many other
reasons, which will not be analyzed here.

The bubble can get out of the system only when the pressure inside it equals to the
external pressure p, (or when it is a little bit higher than p,). Otherwise, the bubble will
collapse.

The pressure inside the bubble formed in the volume of the liquid A or in the volume of
the liquid B equals to the pressure of the saturated vapor of the liquid A or B, respectively.
However, the pressure inside the bubble formed on the surface separating the liquids A and B
is equal to the sum of the pressures of the saturated vapors of both these liquids, as then the
bubble is in a contact with the liquids A and B at the same time. In the case considered the
pressure inside the bubble is greater than the pressures of the saturated vapors of each of the
liquids A and B (at the same temperature).

Therefore, when the system is heated, the pressure p, is reached first in the bubbles that

were formed on the surface separating the liquids. Thus, the temperature t, corresponds to a
kind of common boiling of both liquids that occurs in the region of their direct contact. The
temperature t, is for sure lower than the boiling temperatures of the liquids A and B as then

the pressures of the saturated vapors of the liquids A and B are less then p, (their sum equals
to p, and each of them is greater than zero).

In order to determine the value of t, with required accuracy, we can calculate the values
of the sum of the saturated vapors of the liquids A and B for several values of the temperature
t and look when one gets the value p,.

From the formula given in the text of the problem, we have:

aa

e (1)
e @
p,+ Pg equalsto p, if
Pa,Ps_;
Po Py

Thus, we have to calculate the values of the following function:

an

ZALp 2Bty
t+ty

_ A t+,
y(x)=e +e

(where t, =273.15°C) and to determine the temperature t=t,, at which y(t) equals to 1.
When calculating the values of the function y(t) we can divide the intervals of the
temperatures t by 2 (approximately) and look whether the results are greater or less than 1.

We have:



Table 1.2

t y(t)
10°C <1 (see Tab. 1.1)
7790 >1 (as t, is less than t,,)
S9°C 0.749< 1
—°C 1113>1
s5°C 0.966 < 1
57°C 1.001>1
S65°C 0.983 <1

Therefore, t, = 67° C (with required accuracy).

Now we calculate the pressures of the saturated vapors of the liquids A and B at the
temperature t, ~ 67°C, i.e. the pressures of the saturated vapors of the liquids A and B in each
bubble formed on the surface separating the liquids. From the equations (1) and (2), we get:

Pa= 0.734 p,,
pg = 0.267 p,,
(Pa+Pg =1.001p, ~ py).
These pressures depend only on the temperature and, therefore, they remain constant

during the motion of the bubbles through the liquid B. The volume of the bubbles during this
motion also cannot be changed without violation of the relation p, + p; = p, . It follows from

the above remarks that the mass ratio of the saturated vapors of the liquids A and B in each
bubble is the same. This conclusion remains valid as long as both liquids are in the system.
After total evaporation of one of the liquids the temperature of the system will increase again
(second sloped part of the diagram). Then, however, the mass of the system remains constant

until the temperature reaches the value t, at which the boiling of the liquid (remained in the
vessel) starts. Therefore, the temperature t, (the higher horizontal part of the diagram)
corresponds to the boiling of the liquid remained in the vessel.

The mass ratio m,/m, of the saturated vapors of the liquids A and B in each bubble

leaving the system at the temperature t, is equal to the ratio of the densities of these vapors
oAl pg . According to the assumption 2, stating that the vapors can be treated as ideal gases,

the last ratio equals to the ratio of the products of the pressures of the saturated vapors by the
molecular masses:

My Pu_ Pakta _Pa
Mg  Pg  Psllsg Pg
Thus,

Ma 220
mB

We see that the liquid A evaporates 22 times faster than the liquid B. The evaporation of
100 g of the liquid A during the “surface boiling” at the temperature t, is associated with the



evaporation of 100 g / 22 =4.5 g of the liquid B. Thus, at the time 7, the vessel contains 95.5
g of the liquid B (and no liquid A). The temperature t, is equal to the boiling temperature of
the liquid B: t, =100°C.

Marking Scheme

1. physical condition for boiling 1 point
2. boiling temperature of the liquid A (numerical value) 1 point
3. boiling temperature of the liquid B (numerical value) 1 point
4. analysis of the phenomena at the temperature t; 3 points
5. numerical value of t; 1 point
6. numerical value of the mass ratio of the saturated vapors in the bubble 1 point
7. masses of the liquids at the time z, 1 point
8. determination of the temperature t, 1 point

REMARK: As the sum of the logarithms is not equal to the logarithm of the sum, the
formula given in the text of the problem should not be applied to the mixture of the saturated
vapors in the bubbles formed on the surface separating the liquids. However, the numerical
data have been chosen in such a way that even such incorrect solution of the problem gives
the correct value of the temperature t, (within required accuracy). The purpose of that was to
allow the pupils to solve the part B of the problem even if they determined the temperature t;
in a wrong way. Of course, one cannot receive any points for an incorrect determination of the
temperature t; even if its numerical value is correct.

Typical mistakes in the pupils’ solutions

Nobody has received the maximum possible number of points for this problem,
although several solutions came close. Only two participants tried to analyze proportion of
pressures of the vapors during the upward movement of the bubble trough the liquid B. Part
of the students confused Celsius degrees with Kelvins. Many participants did not take into
account the boiling on the surface separating the liquids A and B, although this effect was the
essence of the problem. Part of the students, who did notice this effect, assumed a priori that
the liquid with lower boiling temperature "must™ be the first to evaporate. In general, this need
not be true: if y were, for example, 1/8 instead 8, then liquid A rather than B would remain in

the vessel. As regards the boiling temperatures, practically nobody had any essential
difficulties.

Problem 2

Three non-collinear points P;, P, and P3, with known masses m;, m, and ms, interact
with one another through their mutual gravitational forces only; they are isolated in free space
and do not interact with any other bodies. Let o denote the axis going through the center-of-
mass of the three masses, and perpendicular to the triangle P;P,P3. What conditions should
the angular velocities @ of the system (around the axis o) and the distances:

PP, =ai, PPz=ay, PiP3=as,

fulfill to allow the shape and size of the triangle P,;P,P3; unchanged during the motion of the
system, i.e. under what conditions does the system rotate around the axis o as a rigid body?



Solution

As the system is isolated, its total energy, i.e. the sum of the kinetic and potential
energies, is conserved. The total potential energy of the points P, P, and P3 with the masses
m,, m, and m, in the inertial system (i.e. when there are no inertial forces) is equal to the

sum of the gravitational potential energies of all the pairs of points (P1,P2), (P2,P3) and (P1,P3).
It depends only on the distances a,,, a,; and a,, which are constant in time. Thus, the total

potential energy of the system is constant. As a consequence the kinetic energy of the system
IS constant too. The moment of inertia of the system with respect to the axis o depends only
on the distances from the points P1, P, and P3 to the axis o which, for fixed a,,, a,, and a,,

do not depend on time. This means that the moment of inertia | is constant. Therefore, the
angular velocity of the system must also be constant:

@ =const. (1)

This is the first condition we had to find. The other conditions will be determined by
using three methods described below. However, prior to performing calculations, it is
desirable to specify a convenient coordinates system in which the calculations are expected to
be simple.

Let the positions of the points P4, P, and P3 with the masses m,, m, and m, be given by

the vectors r,, r, and r,. For simplicity we assume that the origin of the coordinate system is
localized at the center of mass of the points P4, P, and P with the masses m,, m, and m, and
that all the vectors r,, r, and r, are in the same coordinate plane, e.g. in the plane (x,y). Then

the axis o is the axis z.
In this coordinate system, according to the definition of the center of mass, we have:

myr, +m,r, + myr, =0 (2)
Now we will find the second condition by using several methods.
FIRST METHOD

Consider the point P; with the mass m, . The points P, and P3 act on it with the forces:

m,m

F21 :G#(rz _rl)’ (3)
2
m.m

F31 =G%(r3 _r1)- (4)

13
where G denotes the gravitational constant.
In the inertial frame the sum of these forces is the centripetal force
F,=-mao’r,
which causes the movement of the point P; along a circle with the angular velocity @. (The
moment of this force with respect to the axis o is equal to zero.) Thus, we have:
F,,+F;, =F,. (5)

In the non-inertial frame, rotating around the axis o with the angular velocity o, the
sum of the forces (3), (4) and the centrifugal force



F ., =ma’r
should be equal to zero:
F,,+F;+F,=0. (6)
(The moment of this sum with respect to any axis equals to zero.)
The conditions (5) and (6) are equivalent. They give the same vector equality:

m,m mm
G—2(r,-1)+G—2(r,-1,) +ma’r, =0, (7)
12 3

m m m, Gm
G—31m2r2+G—31m3r3+m1r1[a)2—632— 33J=0 (7"

12 13 a12 a13

From the formula (2), we get:

myr, =—myr —Msl; (8)

Using this relation, we write the formula (7) in the following form:

m, m, , Gm, Gm,
G—3(—mlr1—m3r3)+G—3m3r3+m1rl(a) -———|=0,
12 13 a12 a13

3 3 3 .3
a;, a3 a, a; 12

The vectors r, and r, are non-collinear. Therefore, the coefficients in the last formula

must be equal to zero:
1 1
(—3 ——3]Gmlm3 = 0,

rlml[a)z _GTz _Gm3 _Gmlj_l_rs[i_ 1 JGmlms _0.

a13 12
m{wz _Gm, _Gm, _ Ggﬂlj o
a, a5 ap
The first equality leads to:
1
@, a
and hence,
813 =85

Let a,, =a,, =a. Then the second equality gives:

w’a® =GM 9)
where
M=m, +m,+m, (10)

denotes the total mass of the system.



In the same way, for the points P, and P3, one gets the relations:
a) the point Py:

ay,=a,, a’=GM
b) the point Ps:

a5, =a,; ’a®=GM

Summarizing, the system can rotate as a rigid body if all the distances between the
masses are equal:

, =8y =8;=4a, (11)
the angular velocity @ is constant and the relation (9) holds.
SECOND METHOD

At the beginning we find the moment of inertia | of the system with respect to the axis
o . Using the relation (2), we can write:

0=(myr, +m,r, + myry)* = m2r” + mor? +mZr? + 2mm,r,r, +2m,m,r,r, +2m,m,r,r,.
Of course,
r’=r? i=1,2,3
The quantities 2r;r; (i, j = 1, 2, 3) can be determined from the following obvious relation:
2 2 2 2, .2 2, 2
a; =‘ri —rj‘ =(r,—r) =r"+r;=2rr, =r"+r’ -2rr;.
We get:
2 2 2

2rirj = +r; —ay.

With help of this relation, after simple transformations, we obtain:

0= (m,r, +m,r, + m,r,)? = (m, +m, + m)(mr” +m,r/ + m3r32)—2mimja§.

i<j
The moment of inertia | of the system with respect to the axis o, according to the definition
of this quantity, is equal to
I =m,r” +m,r} +m,r/.

The last two formulae lead to the following expression:

1

I ==> mma;

M o 177

where M (the total mass of the system) is defined by the formula (10).

In the non-inertial frame, rotating around the axis o with the angular velocity o, the
total potential energy V,,, is the sum of the gravitational potential energies

m;m. - o
V. =-G L. ,j=1,2,3;i<]j

ij aij

of all the masses and the potential energies



V- :_%a)zmiriz; i = 11 21 3

of the masses m, (i =1, 2, 3) in the field of the centrifugal force:

Z—— 0’l =G

i<j i<j i<j i<j

tot i%i =

A mechanical system is in equilibrium if its total potential energy has an extremum. In
our case the total potential energy V,, is a sum of three terms. Each of them is proportional to:
2
fa)=a+ &

2M a
The extrema of this function can be found by taking its derivative with respect to a and
requiring this derivative to be zero. We get:

®* G
2

M a

=0.

It leads to:
»’a®=GM or o’a®=G(m,+m,+m,).

We see that all the terms in V,,, have extrema at the same values of a; =a. (In addition,
the values of a and @ should obey the relation written above.) It is easy to show that it is a

maximum. Thus, the quantity V,, has a maximumat a; =a.

This means that our three masses can remain in flxed distances only if these distances
are equal to each other:

a, =8y =8;=4a
and if the relation
w*a’®=GM ,
where M the total mass of the system, holds. We have obtained the conditions (9) and (11)
again.
THIRD METHOD
Let us consider again the point P1 with the mass m, and the forces F,, and F;, given by

the formulae (3) and (4). It follows from the text of the problem that the total moment (with
respect to any fixed point or with respect to the mass center) of the forces acting on the point
P1 must be equal to zero. Thus, we have:

Fxr+F;xr,=0

where the symbol x denotes the vector product. Therefore



m,m,

G—=(r, —r1)><rl+Gml—2n3(r3 -r)xr, =0.
12 13
But
r,xr, =0.
Thus:

m, M —
— X +—-ryxr=0.
2 13

Using the formula (8), the last relation can be written as follows:

1 m,
—3(—m1r1 —m,r;)xr, +—5 X = 0,
12 3

m m
3 3 _
——5 X +— r;xr, =0,

12 3

i—irxr =0
ah ap)

The vectors r, and r, are non-collinear (and different from 0). Therefore

ryxr#0
and
1 1
=0
alS a12
hence,
ay, = ay3.

Similarly, one gets:
a, =ay, (=a).
We have re-derived the condition (11).
Taking into account that all the distances a; have the same value a, from the equation
(7) concerning the point P4, using the relation (2) we obtain:

mlmZ
a3

G

m.m
(r, —r1)+G?(r3 -r,)+maw’r, =0,

m m, . m
—|G—=2+G—2G—2 Imyr, +m@’r, =0,
a a’ a

This is the condition (9). The same condition is got in result of similar calculations for the
points P, and Ps.



The method described here does not differ essentially from the first method. In fact
they are slight modifications of each other. However, it is interesting to notice how
application of a proper mathematical language, e.g. the vector product, simplifies the
calculations.

The relation (9) can be called a “generalized Kepler’s law” as, in fact, it is very similar
to the Kepler’s law but with respect to the many-body system. As far as | know this
generalized Kepler’s law was presented for the first time right at the 20™ 1PhO.

Marking scheme

1. the proof that @ = const 1 point
2. the conditions at the equilibrium (conditions for the forces

and their moments or extremum of the total potential energy) 3 points
3. the proof of the relation a; =a 4 points

4. the proof of the relation w*a® =GM 2 points
Remarks and typical mistakes in the pupils’ solutions

No type of error was observed as predominant in the pupils' solutions. Practically all the
mistakes can be put down to the students' scant experience in calculations and general lack of
skill. Several students misunderstood the text of the problem and attempted to prove that the
three masses should be equal. Of course, this was impossible. Moreover, it was pointless,
since the masses were given. Almost all the participants tried to solve the problem by
analyzing equilibrium of forces and/or their moments. Only one student tried to solve the
problem by looking for a minimum of the total potential energy (unfortunately, his solution
was not fully correct). Several participants solved the problem using a convenient reference
system: one mass in the origin and one mass on the x-axis. One of them received a special
prize.

Problem 3

The problem concerns investigation of transforming the electron microscope with
magnetic guiding of the electron beam (which is accelerated with the potential difference U =
511 kV) into a proton microscope (in which the proton beam is accelerated with the potential
difference —U). For this purpose, solve the following two problems:

A. An electron after leaving a device, which accelerated it with the potential difference
U, falls into a region with an inhomogeneous field B generated with a system of stationary
coils Ly, Ly, ..., Ly. The known currents in the coils are iy, iy, ..., in, respectively.

What should the currents iy’ i2’, ..., iy’ in the coils Ly, Ly, ..., L, be, in order to guide
the proton (initially accelerated with the potential difference —U) along the same trajectory
(and in the same direction) as that of the electron?

HINT: The problem can be solved by finding a condition under which the equation
describing the trajectory is the same in both cases. It may be helpful to use the relation:

pdo_1d o, 1d
dt 2 dt 2dt



B. How many times would the resolving power of the above microscope increase or
decrease if the electron beam were replaced with the proton beam? Assume that the resolving
power of the microscope (i.e. the smallest distance between two point objects whose circular
images can be just separated) depends only on the wave properties of the particles.

Assume that the velocities of the electrons and protons before their acceleration are zero,
and that there is no interaction between own magnetic moment of either electrons or protons
and the magnetic field. Assume also that the electromagnetic radiation emitted by the moving
particles can be neglected.

NOTE: Very often physicists use 1 electron-volt (1 eV), and its derivatives such as 1
keV or 1 MeV, as a unit of energy. 1 electron-volt is the energy gained by the electron that
passed the potential difference equal to 1 V.

Perform the calculations assuming the following data:

Rest energy of electron: Ee = mec® = 511 keV
Rest energy of proton: Ep= mpc2 =938 MeV
Solution
PART A

At the beginning one should notice that the kinetic energy of the electron accelerated
with the potential difference U = 511 KV equals to its rest energy E,. Therefore, at least in the

case of the electron, the laws of the classical physics cannot be applied. It is necessary to use
relativistic laws.

The relativistic equation of motion of a particle with the charge e in the magnetic field
B has the following form:

where p = mymw denotes the momentum of the particle (vector) and
F.=evxB

is the Lorentz force (its value is evB and its direction is determined with the right hand rule).
m, denotes the (rest) mass of the particle and v denotes the velocity of the particle. The

quantity y is given by the formula:

The Lorentz force F, is perpendicular to the velocity v of the particle and to its momentum
p =m,n . Hence,

F-v=F -p=0.

Multiplying the equation of motion by p and making use of the hint given in the text of the
problem, we get:



It means that the value of the particle momentum (and the value of the velocity) is constant
during the motion:

p=m,y = const; Vv = const.
The same result can be obtained without any formulae in the following way:

The Lorentz force F_ is perpendicular to the velocity v (and to the momentum p as
p =m,n ) and, as a consequence, to the trajectory of the particle. Therefore, there is no force

that could change the component of the momentum tangent to the trajectory. Thus, this
component, whose value is equal to the length of p, should be constant: p =const. (The same

refers to the component of the velocity tangent to the trajectory as p = myw ).
Let s denotes the path passed by the particle along the trajectory. From the definition of
the velocity, we have:
ds
— =V
dt
Using this formula, we can rewrite the equation of motion as follows:

d ds d d
V—p =

— P =— :F’
asP dtast atb Tt

d, R
ds’° v
Dividing this equation by p and making use of the fact that p = const, we obtain:
vap_FR
dsp wvp
and hence

d F

—t=-L
ds vp
where t=p/ p=v/v is the versor (unit vector) tangent to the trajectory. The above equation
is exactly the same for both electrons and protons if and only if the vector quantity:
R
vp
is the same in both cases.

Denoting corresponding quantities for protons with the same symbols as for the
electrons, but with primes, one gets that the condition, under which both electrons and protons
can move along the same trajectory, is equivalent to the equality:

R_F.
Vp Vl pl '

However, the Lorentz force is proportional to the value of the velocity of the particle,

and the directions of any two vectors of the following three: t (or v), F., B determine the

direction of the third of them (right hand rule). Therefore, the above condition can be written
in the following form:

B_cB
p p’



Hence,
p=-Ppg_-Pp
ep p

This means that at any point the direction of the field B should be conserved, its
orientation should be changed into the opposite one, and the value of the field should be
multiplied by the same factor p'/p. The magnetic field B is a vector sum of the magnetic fields
of the coils that are arbitrarily distributed in the space. Therefore, each of this fields should be
scaled with the same factor -p'/p. However, the magnetic field of any coil is proportional to

the current flowing in it. This means that the required scaling of the fields can only be
achieved by the scaling of all the currents with the same factor -p'/p:

[ :—Ei

n n*

P

Now we shall determine the ratio p'/p. The kinetic energies of the particles in both cases
are the same; they are equal to E, =e|U|=511 keV. The general relativistic relation between

the total energy E of the particle with the rest energy Ep and its momentum p has the
following form:

E? = E{ + p*c?
where ¢ denotes the velocity of light.

The total energy of considered particles is equal to the sum of their rest and kinetic
energies:

E=E,+E,.
Using these formulae and knowing that in our case E, :e|U|: E., we determine the
momenta of the electrons (p) and the protons (p’). We get:
a) electrons:
(Ee + EB)Z = Eez + pzczl

E
p=—+3.
c
b) protons
(E,+E.) =E; +p“c?,
2 2
E E
p':E _p+1 _| =P
c |\ E E.
Hence,

and



It is worthwhile to notice that our protons are 'almost classical’, because their kinetic
energy E, (= E,) is small compared to the proton rest energy E . Thus, one can expect that

the momentum of the proton can be determined, with a good accuracy, from the classical
considerations. We have:

12 12 .2 12 2

EezEkzp =pCZ=pC
2m 2mpc 2E

1
p'="\2EE,.

On the other hand, the momentum of the proton determined from the relativistic
formulae can be written in a simpler form since E,/E » 1. We get:

E I(E (VY E [E E[E 1
=2 2o o[22 =5 pmey1ae 2222 DEE
P c\/(Ee ] (EJ c E, C E, ¢ &P

In accordance with our expectations, we have obtained the same result as above.
PART B

p

The resolving power of the microscope (in the meaning mentioned in the text of the
problem) is proportional to the wavelength, in our case to the length of the de Broglie wave:

A=—

Y
where h denotes the Planck constant and p is the momentum of the particle. We see that A is
inversely proportional to the momentum of the particle. Therefore, after replacing the electron
beam with the proton beam the resolving power will be changed by the factor p/p' ~1/35. It
means that our proton microscope would allow observation of the objects about 35 times
smaller than the electron microscope.

Marking scheme

1. the relativistic equation of motion 1 point
2. independence of p and v of the time 1 point
3. identity of eB/p in both cases 2 points
4. scaling of the fields and the currents with the same factor 1 point
5. determination of the momenta (relativistically) 1 point
6. the ratio of the momenta (numerically) 1 point
7. proportionality of the resolving power to A 1 point
8. inverse proportionality of A to p 1 point
9. scaling of the resolving power 1 point

Remarks and typical mistakes in the pupils’ solutions

Some of the participants tried to solve the problem by using laws of classical mechanics
only. Of course, this approach was entirely wrong. Some students tried to find the required
condition by equating "accelerations” of particles in both cases. They understood the
"acceleration” of the particle as a ratio of the force acting on the particle to the "relativistic"
mass of the particle. This approach is incorrect. First, in relativistic physics the relationship
between force and acceleration is more complicated. It deals with not one "relativistic" mass,



but with two "relativistic" masses: transverse and longitudinal. Secondly, identity of
trajectories need not require equality of accelerations.

The actual condition, i.e. the identity of eB/p in both cases, can be obtained from the
following two requirements:

1° in any given point of the trajectory the curvature should be the same in both cases;
2° in the vicinity of any given point the plane containing a small arc of the trajectory
should be oriented in space in both cases in the same way.

Most of the students followed the approach described just above. Unfortunately, many
forgot about the second requirement (they neglected the vector character of the quantity eB/p).

EXPERIMENTAL PROBLEM®

The following equipment is provided:

1. Two piezoelectric discs of thickness 10 mm with evaporated electrodes (Fig. 4.1) fixed in
holders on the jaws of the calipers;

Fig. 4.1

Electrodes

2. The calibrated sine wave oscillator with a photograph of the control panel, explaining the
functions of the switches and regulators;

3. A double channel oscilloscope with a photograph of the control panel, explaining the
functions of the switches and regulators;

4. Two closed plastic bags containing liquids;

5. A beaker with glycerin (for wetting the discs surfaces to allow better mechanical coupling);
6. Cables and a three way connector;

7. A stand for support the bags with the liquids;

8. Support and calipers.

A piezoelectric material changes its linear dimensions under the influence of an electric
field and vice-versa, the distortion of a piezoelectric material induces an electrical field.
Therefore, it is possible to excite the mechanical vibrations in a piezoelectric material by
applying an alternating electric field, and also to induce an alternating electric field by
mechanical vibrations.

! The Organizing Committee planned to give another experimental problem: a problem on high T,
superconductivity. Unfortunately, the samples of superconductors, prepared that time by a factory, were of very
poor quality. Moreover, they were provided after a long delay. Because of that the organizers decided to use this
problem, which was also prepared, but considered as a second choice.



A. Knowing that the velocity of longitudinal ultrasonic waves in the material of the disc
is about 4-10° m/s, estimate roughly the resonant frequency of the mechanical vibrations
parallel to the disc axis. Assume that the disc holders do no restrict the vibrations. (Note that
other types of resonant vibrations with lower or higher frequencies may occur in the discs.)

Using your estimation, determine experimentally the frequency for which the
piezoelectric discs work best as a transmitter-receiver set for ultrasound in the liquid. Wetting
surfaces of the discs before putting them against the bags improves penetration of the liquid in
the bag by ultrasound.

B. Determine the velocity of ultrasound for both liquids without opening the bags and
estimate the error.

C. Determine the ratio of the ultrasound velocities for both liquids and its error.

Complete carefully the synopsis sheet. Your report should, apart from the synopsis
sheet, contain the descriptions of:

- method of resonant frequency estimation;
- methods of measurements;
- methods of estimating errors of the measured quantities and of final results.

Remember to define all the used quantities and to explain the symbols.

Synopsis Sheet!
Formula for estimating the resonant frequency: Results (with units):
A - - -
Measured best transmitter frequency (with units): Error:
Definition of measured quantity: Symbol:  Results: Error:

B | Final formula for ultrasound velocity in liquid:

Velocity of ultrasound (with units): Error:
Liquid A
Liquid B
Ratio of velocities: Error:

Solution (draft)*

! In the real Synopsis Sheet the students had more space for filling.



A. As the holders do not affect vibrations of the disc we may expect antinodes on the
flat surfaces of the discs (Fig. 4.2; geometric proportions not conserved). One of the
frequencies is expected for

where v denotes the velocity of longitudinal ultrasonic wave (its value is given in the text of
the problem), f - the frequency and | - the thickness of the disc. Thus:

f=Y
ol

Numerically f =2-10°Hz =200 kHz.

| Mode considered in the problem
—  (schematically)

the disc

A
\ 4

1= A/2
Fig. 4.2

One should stress out that different modes of vibrations can be excited in the disc with
height comparable to its diameter. We confine our considerations to the modes related to
longitudinal waves moving along the axis of the disc as the sound waves in liquids are
longitudinal. We neglect coupling between different modes and require antinodes exactly at
the flat parts of the disc. We assume also that the piezoelectric effect does not affect velocity
of ultrasound. For these reasons the frequency just determined should be treated as only a
rough approximation. However, it indicates that one should look for the resonance in vicinity
of 200 kHz.

The experimental set-up is shown in Fig. 4.3. The oscillator (generator) is connected to
one of the discs that works as a transmitter and to one channel of the oscilloscope. The second
disc is connected to the second channel of the oscilloscope and works as a receiver. Both discs
are placed against one of the bags with liquid (Fig. 4.4). The distance d can be varied.

! This draft solution is based on the camera-ready text of the more detailed solution prepared by Dr. Andrzej
Kotlicki and published in the proceedings [3]
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One searches for the resonance by slowly changing the frequency of the oscillator in the
range 100 — 1000 kHz and watching the signal on the oscilloscope. In this way the students
could find a strong resonance at frequency f ~220 kHz. Other resonance peaks could be
found at about 110 kHz and 670 kHz. They should have been neglected as they are
substantially weaker. (They correspond to some other modes of vibrations.) Accuracy of these
measurements was 10 kHz (due to the width of the resonance and the accuracy of the scale on
the generator).

B. The ultrasonic waves pass through the liquid and generate an electric signal in the
receiver. Using the same set-up (Fig. 4.3 and 4.4) we can measure dependence of the phase
shift between the signals at Y; and Y, vs. distance between the piezoelectric discs d at the
constant frequency found in point A. This phase shift is Ap = 2zdf /v, +¢,, where v, denotes

velocity of ultrasound in the liquid. ¢, denotes a constant phase shift occurring when

ultrasound passes trough the bag walls (possibly zero). The graph representing dependence
d(A¢) should be a straight line. Its slope allows to determine v, and its error. In general, the



measurements of Ag are difficult for many reflections in the bag, which perturb the signal.
One of the best ways is to measure d only for Agp =nz (n - integer) as such points can be

found rather easy. Many technical details concerning measurements can be found in [3] (pp.
37 and 38).

The liquids given to the students were water and glycerin. In the standard solution the
author of the problem received the following values:

The ratio of these values was 1.31+0.15.

The ultrasonic waves are partly reflected or scattered by the walls of the bag. This effect
somewhat affects measurements of the phase shift. To minimize its role one can measure the
phase shift (for a given distance) or distance (at the same phase shift) several times, each time
changing the shape of the bag. As regards errors in determination of velocities it is worth to
mention that the most important factor affecting them was the error in determination of the
frequency. This error, however, practically does not affect the ratio of velocities.

Marking Scheme

Frequency estimation

1. Formula 1 point
2. Result (with units) 1 point
3. Method of experimental determining the resonance frequency 1 point
4. Result (if within 5% of standard value) 2 points
5. Error 1 point
Measurements of velocities
1. Explanation of the method 2 points
2. Proper number of measurements in each series 3 points
3. Result for velocity in the first liquid (if within 5% of standard value) 2 points
4. Error of the above 1 point
5. Result for velocity in the second liquid (if within 5% of standard value) 2 points
6. Error of the above 1 point
Ratio of velocities
1. Result (if within 3% of standard value) 2 points
2. Error of the above 1 point

Typical mistakes

The results of this problem were very good (more than a half of competitors obtained
more than 15 points). Nevertheless, many students encountered some difficulties in estimation
of the frequency. Some of them assumed presence of nodes at the flat surfaces of the discs
(this assumption is not adequate to the situation, but accidentally gives proper formula). In
part B some students tried to find distances between nodes and antinodes for ultrasonic
standing wave in the liquid. This approach gave false results as the pattern of standing waves
in the bag is very complicated and changes when the shape of the bag is changed.
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Question 1. X-ray Diffraction from a crystal.

We wish to study X-ray diffraction by a cubic crystal lattice. To do this we start with the
diffraction of a plane, monochromatic wave that falls perpendicularly on a 2-dimensional
grid that consists of N; x N, slits with separations d, and d,. The diffraction pattern is
observed on a screen at a distance L from the grid. The screen is parallel to the grid and
L is much larger than d; and d,.

a- Determine the positions and widths of the principal maximum on the screen.
The width is defined as the distance between the minima on either side of the
maxima.

We consider now a cubic crystal, with lattice spacing a and size Nj.a x Ny.a x Nj.a. N is
much smaller than N,,. The crystal is placed in a parallel X-ray beam along the z-axis at
an angle ® (see Fig. 1). The diffraction pattern is again observed on a screen at a great
distance from the crystal.

Figure 1 Diffraction of a parallel X-ray beam along the z-axis.
The angle between the crystal and the y-axis is €.

b - Calculate the position and width of the maxima as a function of the angle ® (for
small ®).
- What in particular are the consequences of the fact that N; << N,,.

The diffraction pattern can also be derived by means of Bragg's theory, in which it is
assumed that the X-rays are reflected from atomic planes in the lattice. The diffraction
pattern then arises from interference of these reflected rays with each other.

c- Show that this so-called Bragg reflection yields the same conditions for the maxima
as those that you found in b.



In some measurements the so-called powder method is employed. A beam of X-rays is
scattered by a powder of very many, small crystals. (Of course the sizes of the crystals are
much larger than the lattice spacing, a).

Scattering of X-rays of wavelength 0.15 nm by Potassium Chloride [KCI] (which has a
cubic lattice, see Fig.2) results in the production of concentric dark circles on a
photographic plate. The distance between the crystals and the plate is 0.10 m, and the
radius of the smallest circle is 0.053 m (see Fig. 3). K" and CI ions have almost the same
size, and they may be treated as identical scattering centres.

Figure 2. The cubic latice of < >

Potassium Chloride in which  Figure 3. Scattering of X-rays by a powder of KCI crystals
the K* and Cl'wons have results in the production of concentric dark circles on a
almost the same size. photographic plate.

d - Calculate the distance between two neighbouring K ions in the crystal.

Question 2. Electric experiments in the magnetosphere of the earth.

In May 1991 the spaceship Atlantis will be placed in orbit around the earth. We shall
assume that this orbit will be circular and that it lies in the earth's equatorial plane.

At some predetermined moment the spaceship will release a satellite S, which is attached
to a conducting rod of length L. We suppose that the rod is rigid, has negligible mass,
and is covered by an electrical insulator. We also neglect all friction. Let ¢ be the angle
that the rod makes to the line between the Atlantis and the centre of the earth. (see Fig.
1).

S also lies in the equatorial plane.
Assume that the mass of the satellite
is much smaller than that of the
Atlantis, and that L is much smaller
than the radius of the orbit.

a; - Deduce for which value(s) of !
the configuration of the ]

spaceship and satellite remain M } W

unchanged (with respect to the = . . - .
earth)? In other words, for Figure 1 The spaceship Atlantis (A) with a satellite
which value(s) of ¢ is o (S) in an orbit around the earth. The orbit lies in the
constant? earth’s equatorial plane.
The magnetic field (B) is perpendicular to the
diagram and is directed towards the reader.




a, - Discuss the stability of the equilibrium for each case.

Suppose that, at a given moment,
the rod deviates from the stable configuration by a small angle. The system will begin to
swing like a pendulum.

b - Express the period of the swinging in terms of the period of revolution of the system
around the earth.

In Fig. 1 the magnetic field of the earth is perpendicular to the diagram and is directed
towards the reader. Due to the orbital velocity of the rod, a potential difference arises
between its ends. The environment (the magnetosphere) is a rarefied, ionised gas with a
very good electrical conductivity. Contact with the ionised gas is made by means of
electrodes in A (the Atlantis) and S (the satellite). As a consequence of the motion, a
current, I, flows through the rod.

¢, - In which direction does the current flow through the rod? (Take ¢ = 0)

Data: - the period of the orbit T=54.10°s
- length of the rod L=20.10"m
- magnetic field strength of the eart at the height
of the satellite B =5,0.10°Wb.m®
- the mass of the shuttle Atlantis m = 1,0.10° kg

Next, a current source inside the shuttle is included in the circuit, which maintaines a net
direct current of 0.1 A in the opposite direction.

c, - How long must this current be maintained to change the altitude of the orbit by 10
m.
Assume that (¢ remains zero. Ignore all contributions from currents in the
magnetosphere.
- Does the altitude decrease or increase?

Question 3. The rotating neutron star.

A 'millisecond pulsar' is a source of radiation in the universe that emits very short pulses
with a period of one to several milliseconds. This radiation is in the radio range of
wavelengths; and a suitable radio receiver can be used to detect the separate pulses and
thereby to measure the period with great accuracy.

These radio pulses originate from the surface of a particular sort of star, the so-called
neutron star. These stars are very compact: they have a mass of the same order of
magnitude as that of the sun, but their radius is only a few tens of kilometers. They spin
very quickly. Because of the fast rotation, a neutron star is slightly flattened (oblate).
Assume the axial cross-section of the surface to be an ellipse with almost equal axes.
Let r, be the polar and r, the equatorial radii; and let us define the flattening factor by:

_ (- 1)

"p

€



Consider a neutron star with a mass of 2.0 . 10%kg,
an average radius of 1.0. 10" m,
and a rotation period of 2.0 .10%s.

a- Calculate the flattening factor, given that the gravitational constant is 6.67 . 10!
N.m? kg*.

In the long run (over many years) the rotation of the star slows down, due to energy loss,
and this leads to a decrease in the flattening. The star has however a solid crust that
floats on a liquid interior. The solid crust resists a continuous adjustment to equilibrium
shape. Instead, starquakes occur with sudden changes in the shape of the crust towards
equilibrium. During and after such a star-quake the angular velocity is observed to
change according to figure 1.

F14.164 1
41634

14,162
angular velocity 5. 151 ]

of the crust (s™)

314160
314,158 -
314,155 -
I T i T T T T T T T T T
=-100-05 00 05 10 15 20 25 3 35 40 45 50
Figure 1 time (days) -->

A sudden change in the shape of the crust of a
neutron star results in a sudden change of the
angular velocity.

b - Calculate the average radius of the liquid interior, using the data of Fig. 1. Make
the approximation that the densities of the crust and the interior are the same.
(Ignore the change in shape of the interior).

Question 4. Determination of the efficiency of a LED.
Introduction

In this experiment we shall use two modern semiconductors: the light-emitting diode
(LED) and the photo-diode (PD). In a LED, part of the electrical energy is used to excite
electrons to higher energy levels. When such an excited electron falls back to a lower

energy level, a photon with energy E ,, is emitted, where

h.c

E = =
‘photon A

Here h is Planck's constant, c is the speed of light, and A is the wavelength of the emitted
light. The efficiency of the LED is defined to be the ratio between the radiated power, ¢
, and the electrical power used, P, :



¢

P LED

‘r‘l:

In a photo-diode, radiant energy is transformed into electrical energy. When light falls on
the sensitive surface of a photo-diode, some (but not all) of the photons free some (but
not all) of the electrons from the crystal structure. The ratio between the number of
incoming photons per second, N, and the number of freed electrons per second, N,, is
called the quantum efficiency, q,

o
I}
’EZ |m2

The experiment

The purpose of this experiment is to determine the efficiency of a LED as a function of
the current that flows through the LED. To do this, we will measure the intensity of the
emitted light with a photo-diode. The LED and the PD have been mounted in two
boxes, and they are connected to a circuit panel (Fig. 1). By measuring the potential
difference across the LED, and across the resistors R; and R, one can determine both
the potential differences across, and the currents flowing through the LED and the PD.

We use the multimeter to measure VOLTAGES only!! This is done by turning the knob
to position 'V'. The meter selects the appropriate sensitivity range automatically. If the

display is not on "AUTQO" switch "off" and push on "V" again. Connection: "COM" and
uv_Qu-

The box containing the photo-diode and the box containing the LED can be moved
freely over the board. If both boxes are positioned opposite to each other, then the LED,
the PD and the hole in the box containing the PD remain in a straight line.

Data:- The quantum efficiency of the photo-diode q, = 0.88
- The detection surface of the PD is 2.75 x 2.75 mm?
- The wave-length of the light emitted from the LED is 635 nm.
- The internal resistance of the voltmeter is: 100 MQ in the range up to
200 mV

10 MQ in the other ranges.
The range is indicated by small numbers on the display.
- Planck's constant h=6.63.10*J.s
- The elementary quantum of charge e=16.10"C
- The speed of light in vacuo c=3.00.108m.s?



Figure 1.

R, = 100 Q
R, = variable resistor
R, = 1 MQ

The points labelled 0, 1, 2 and 3
are measuring points.

Figure 2 The experimental setup: a board and the
two boxes containing the LED and the photo-diode.
Instructions

1.  Before we can determine the efficiency of the LED, we must first calibrate the
photo-diode. The problem is that we know nothing about the LED.

Show experimentally that the relation between the current flowing through the
photo-diode and the intensity of light falling on it, I [J.s*.m™], is linear.

2.  Determine the current for which the LED has maximal efficiency.
3. Carry out an experiment to measure the maximal (absolute) efficiency of the LED.
No marks (points) will be allocated for an error analysis (in THIS experiment only).

Please summarize data in tables and graphs with clear indications of quantities (and
units).

Question 5. Determination of the ratio of the magnetic field strengths of
two different magnets.

Introduction

When a conductor moves in a magnetic field, currents are induced: these are the
so-called eddy currents. As a consequence of the interaction between the magnetic field
and the induced currents, the moving conductor suffers a reactive force. Thus an
aluminium disk that rotates in the neighbourhood of a stationary magnet experiences a
braking force.

Material available



1. Astand.

2. Aclamp.

3.  An homogenius aluminium disk on an axle, in a holder, that can rotate.

4. Two magnets. The geometry of each is the same (up to 1%); each consists of a clip
containing two small magnets of identical magnetization and area, the whole
producing a homogenius field, B, or B,.

5. Two weights. One weight has twice the mass (up to 1%) of the other.

6. A stop-watch.

7. Aruler.

Figure 1.

The experiment

The aluminium disk is fixed to an axle, around which a cord is wrapped. A weight hangs
from the cord; and when the weight is released, the disk accelerates until a constant
angular velocity is reached. The terminal speed depends, among other things, on the
magnitude of the magnetic field strength of the magnet.

Two magnets of different field strengths B, or B,, are available. Either can be fitted on to
the holder that carries the aluminium disk: they may be interchanged.

Instructions

1. Think of an experiment in which the ratio of the magnetic field strengths B, and B,,
of the two magnets can be measured as accurately as possible.

2. Give a - short - theoretical treatment, indicating how one can obtain the ratio from
the measurements.

3. Carry out the experiment and determine the ratio.

4.  GIVE AN ERROR ESTIMATION.



Use of the stopwatch

Figure 2.

The stop-watch has three buttons: S;, S, and S, (see Fig. 2).

Button S, toggles between the date-time and the stop-watch modes. Switch to the
stop-watch mode. One should see this:

On pressing S, once, the stop-watch begins timing. To stop it, press S; a second time.

The stop-watch can be reset to zero by pressing S; once.



Solution of question 1.

a -

Consider first the x-direction. If waves coming from neighbouring slits (with
separation d,) traverse paths of lengths that differ by:
A, = n.A

where n, is an integer, then a principal maximum occurs. The position on the
screen (in the x-direction) is:
n.A.L
x =

ny dl

since d, << d,.
The path difference between the middle slit and one of the slits at the edge is then:
N,

N, T —1.111.)\.
a)
If on the other hand this path difference is:
Ny

then the first minimum, next to the principal maximum, occurs. The position of this
minimum on the screen is given by:

ﬁ.nl.)» sAL
2 2)" _mAlL AL

" ) N, d N,

A.
N,.d,
The width of the principal maximum is accordingly:

2.Ax = 2. AL
14

~

A similar treatment can be made for the y-direction, in which there are N, slits with
separation d,. The positions and widths of the principal maximal are:

( ) (nl.)u.L nZ.A..L)

x 9 = b

e d d,

2Ax = 2. L 24y = 2. 0L
N.d, N, d,

An alternative method of solution is to calculate the intensity for the 2-dimensional
grid as a function of the angle that the beam makes with the screen.

In the x-direction the beam 'sees' a grid with spacing a, so that in this direction we
have:

AL
1 Ax = 2.M

a N,.a

xnl =




In the y-direction, the beam 'sees' a grid with effective spacing a.cos(®).
Analogously, we obtain:
n,.A.L AL

Ay = 2.———~
N,.a.cos(0)

Y, a.cos(0)

In the z-direction, the beam 'sees' a grid with effective spacing a.sin(®). This gives
rise to principal maxima with position and width:
, ny.A.L , AL

- Ay = 2 ML
Yom T asin(®) YT TN asin(®)

This pattern is superimposed on the previous one. Since sin(0) is very small, only
the zeroth-order pattern will be seen, and it is very broad, since N,.sin(®) << N,.
The diffraction pattern from a plane wave falling on a thin plate of a cubic crystal,
at a small angle of incidence to the normal, will be almost identical to that from a

two-dimensional grid.

c - In Bragg reflection, the path difference for constructive interference between
neighbouring planes:

A = 2.asin(p) = 2.ad = nd -~ nA nA.L

- X =
a a

=

Here ¢ is the angle of diffraction.
This is the same condition for a maximum as in section b.

d- For the distance, v2.a, between neighbouring K ions we have:

-9
wd) = £ =008 o533, A L OIS0 5y
L 0,1 2.sin(¢) 2.0,24
K-K = 2.0,31 = 0,44 nm
Marking Breakdown

a position of principal maxima :1
width of principal maxima 3
b lattice constants :1
effect of thickness 2
c Bragg reflection 2
d  Calculation of K-K spacing :1



Solution of question 2.

a,; - Since m, << m;, the Atlantis travels around the earth with a constant speed. The
motion of the satellite is composed of the circular motion of the Atlantis about the
earth and (possibly) a circular motion of the satellite about the Atlantis.

For m; we have:

) G.m .m, ) Gm,
m; . Q°.R = 22 - Q= PE

For m, we have:

G.m,m,

myL& = ~(F, - F)sin(a) = - - m, Q%R - L.cos(a))|.sin(a)

(R - L.cos(a)f

Using the approximation:

1 . 1 . 2.L.cos(a)
(R - L.cos(a)® R? R?
and equation (1), one finds:
. Gm, 2Gm, G.m, Gm, )
L& = - — PE L.cos(at) - FE R + PE L.cos(a) | .sin(at)
R
so:
& + 3.Q%sin(e).cos(e) = 0 (2)

If @ isconstant: & =0 --> sin(t) =0 -> o =0; =T

-> cos(ex) =0 -> o =T/2;, o0 =3T/2



a, - The situation is stable if the moment M = m,.L.& L = m,L%& changes signina

manner opposed to that in which the sign of ¢ - &, changes:

sign(o - ¢¢,) -+ -+ -+ -+ -+
o 0 /2 T 3m/2 27
sign(M) + - -+ + - -+ + -

o 0 /2 T 3T/2 27

The equilibrium about the angles 0 en Tt is thus stable, whereas that around /2
and 3Tt/2 is unstable.

For small values of ¢&¢ equation (2) becomes:
& + 3.0%a =0

This is the equation of a simple harmonic motion.
The square of the angular frequency is:

2 =307

SO:
- Q3 - T, - 2—“ -1 (2“) = 0,58.T,

According to Lenz's law, there will be a current from the satellite (S) towards the
shuttle (A).

For the total energy of the system we have:
1 o Gmm, 1 Gmm,
u=0U, +U,=—-mQ°R" - ——= = ——
P 2 R 2 R

A small change in the radius of the orbit corresponds to a change in the energy of:

1 Gmm, 1 )
AU = = AR = —mQ2R.AR
2" g2 2

In the situation under c, energy is absorbed from the system as a consequence of
which the radius of the orbit will decrease.

Is a current source inside the shuttle included in the circuit, which maintains a net
current in the opposite direction, energy is absorbed by the system as a
consequence of which the radius of the orbit will increase.

From the assumptions in ¢, we have:

1 mQ.AR

AU = Fovt = BILQR! = 2mQ>RAR - 1= L.
2 2 BIL

Numerical application gives for the time: t = 5,8 . 10% s; which is about the period
of the system.



Marking breakdown:

a, 1
a, 1
b - Atlantis in uniform circular motion :0,5
- calculation of the period Q - 0,5
- equation of motion of the satellite 12,5
- equation of motion for small angles :0,5
- period of oscillations 1
Cl - ' 1
c, - calculation of the time the current has to be maintained 01,5
- increase or decrease of the radius of the orbit :0,5
Solution of question 3.
a- 1st method !

& Pt
For equilibrium we have F, = F, + N EFC

where N is normal to the surface.

____________________________________________________
d

Resolving into horizontal and vertical . .
components, we find: Fg V2.

F,cos($p) = F, + N.sin(x)

F, sin( ) - Ncos(a) - F cos(¢p) = F, + Fsin(d).rg(e)

From:
Fy = (ii\l , F. = wir, x = rcos(¢), y = rsin(¢) en 1g(a) = %
we find:
ydy + ( - g;)xdx =0
where:
0’ 7107

This means that, although r depends on x and y, the change in the factor in front of
xdx is so slight that we can take it to be constant. The solution of Eq. (1) is then an
ellipse:



2 2 r 2.3 2 3
x—+y—=1—>_p= 1_w'rz1_w'r
2 2 r, GM 2.G.M
e )2

and from this it follows that:
r —-r 2.3
e=—<—2 =27 ~3710"
I3 2.G

2nd method
For a point mass of 1 kg on the surface,

GM
r

U = w2.r2.cos¥(P)

pot

Upn =

n

N | =

The form of the surface is such that U,,, - U, = constant. For the equator (® = 0,
r = r,) and for the pole (® = /2, r = r,) we have:

3
GM _GM ) e w7,
= + —wr, > — =1+
r, r, r, 2.G.M
Thus:
wir]
r - r 1+ -1 wir’
€ = e P _ 2GM ~ e ~ 3,7.10_4
r, w23 2.G
1+ °
2.G.M

As a consequence of the star-quake, the e
moment of inertia of the crust I, decreases .-
by Alm . 314,162

314181

314180

From the conservation of angular o

momentum, we have: 314,158

T T T
-10-05 00 05 10 15 20 25 30 35 40 45 50

IL.wy=0U,-Al)w, - AI =1.

m

After the internal friction has equalized the angular velocities of the crust and the
core, we have:



W, - 0,
a, +1)w, =, +1, - Alm).oo2 - Alm =, + Ic).T
2

I ) (w, - By, Lo I ) (0, - Wy).0,
I, +1, (0, - 0)0, I, +1, (0, - 0)0,
I() R?
] 2
e c = r_c - Q = 1 - (wz wO) wl ~ 0.95
I + 1, r2 r (0, - W),
Marking breakdown
a 1st method - expressions for the forces :1
- equation for the surface 2
- equation of ellipse :1
- flattening factor :1
2nd method - energy equation
- flattening factor
b - conservation of angular momentum for crust :1.5
- conservation of angular momentum for crust and core :1.5
- moment of inertia for a sphere :1

- ratio r/r :1



Solution of question 4.
1.  The linearity of the photo-diode.

The linearity of the photo-diode can be checked by using the inverse square law between
distance and intensity. Suppose that the measured distance between the LED and the
(box containing the) PD is x. The intensity of the light falling on the PD satisfies:

IO
I(x) = —2
X

If the intensity is indeed proportional to the current flowing through the PD, it will also be
proportional to the voltage, V(x), measured across the resistor R3. From (1) it then
follows that:

1

Uze)

To obtain the correct value of V(x), one should subtract from the measured voltage V,
the voltage V, that one measures when the LED is turned off (but the LED box is still in
place in front of the PD).

x X

x(em)  Vi(V)  V,(V) i (HA) i (A)  1li() - ()] (RAY)

1.0 5.66 .003 6.23 .003 0.40
2.0 4.07 .004 4.48 .005 0.47
3.0 3.03 .005 3.33 .005 0.55
4.0 2.32 .006 2.55 .006 0.63
5.0 1.83 .006 2.01 .006 0.71
6.0 1.48 .007 1.63 .007 0.79
7.0 1.23 .007 1.35 .007 0.86
8.0 1.006  .008 1.107  .008 0.95
9.0 0.859  .009 0.945  .009 1.03
10.0 0.744  .009 0.818  .009 1.11
11.0 0.648  .010 0.713  .010 1.19
12.0 0.570  .011 0.627  .011 1.27
13.0 0.507  .012 0.558  .012 1.35
14.0 0456  .012 0.502  .012 1.43
15.0 0414 013 0455  .013 1.50
16.0 0373  .013 0410 .014 1.59
17.0 0.341 014 0375 .014 1.66
18.0 0312 .014 0343 .014 1.74
19.0 0.291 015 0320  .015 1.81
20.0 0.272  .015 0.299  .015 1.88

Plotted on a graph, one finds a perfect straight line.



2. The light intensity as a function of the electrical power of the LED

The photo-current iy, is determined from the voltage V over R3 = 1MQ. The meter itself
has an internal resistance of 100 MQ in the 200 mV range and 10 MQ in the other
ranges. We have then: ipp, = 1.01 Vresp. i,p = 1.1 V where V is in volts and i, in HA.
The current in amperes through the LED is the voltage over R1 in volts, divided by 100.

e PD | LED |

V, (V) V() - iy (HA) g (102 A) Vi (V) Prep (102 W) (i - )/Prep

1.806 .0061 1.98 2.70 1.752 4.73 0.419
1.637 .0061 1.79 2.30 1.742 4.01 0.446
1.511 .0061 1.66 2.08 1.735 3.61 0.460
1.225 .0061 1.34 1.606 1.722 2.77 0.484
1.117 .0061 1.22 1.433 1.718 2.46 0.496
0.903 .0061 0.99 1.123 1.705 1.91 0.518
0.711 .0061 0.78 0.889 1.708 1.52 0.513
0.448 .0061 049 0.555 1.673 0.93 0.527
0315 .0061 0.34 0.410 1.659 0.68 0.5

0.192 .0061 0.21 0.258 1.637 0.42 0.2

The efficiency is proportional to (i, - i,)/P, gp. In the graph of (i, - i,)/P, gp against i, ¢, the
maximal efficiency corresponds to iz, = 0,6 . 102 A. (See figure 2.)

3. Determination of the maximal efficiency.
The LED emits a conical beam with cylindrical symmetry. Suppose we measure the light
intensity with a PD of sensitive area d” at a distance r, from the axis of symmetry. Let the

intensity of the light there be ®(r,), then we have:

ir) = N N q)(ri)
i(r) = N.e = e = .g.e
! ¢ rir h.v Ui

2mrd 2, 2.1 h. :
P = E Q(r). T = ;E @(r).r; = %q—iz ir).r,
S



r. (mm) V,; (V) V, (V) (i, -i)r (x 10°Am) r. (mm) V, (V) V, (V) (i -ip).r, (x 10°

Am)
0 1.833 0.006 O 39 0.097 0.006
3 1.906 0.006 6.27 42 0.089 0.006 4.16
6 1.846 0.006 12.54 45 0.082 0.006 3.86
9 1.750 0.006 17.28 48 0.071 0.006 3.79
12 1.347 0.006 17.76 51 0.066 0.006 3.48
15 0.997 0.006 16.20 54 0.050 0.006 3.39
18 0.643 0.006 12.60 57 0.045 0.006 2.52
21 0.313 0.006 7.14 60 0.037 0.006 2.45
24 0.343 0.006 8.88 63 0.032 0.006 2.08
27 0.637 0.006 18.90 66 0.023 0.006 1.83
30 0.681 0.006 22.20 69 0.017 0.006 1.27
33 0.266 0.006 9.57 72 0.014 0.006 0.88
36 0.119 0.006 448 75 0.011 0.006 0.68
0.49
The efficiency = ®/P,, = 0.001
Marking breakdown
1 linearity of the PD
- inverse square law :1.5
- number of measuring points [1,3>; [3,5>; [5,..> :0.5/1.0/1.5
- dark current :0.5
- correct graph :1
2 determination of current at maximal effiency
- principle :0.5
- number of measuring points [1,3>; [3,5>; [5,..> :0.5/1.0/1.5
- graph efficiency-current :0.5
- determination of current at maximal efficiency :0.5
3 determination of the maximal efficiency
- determination of the emitted light intensity 1.5
- via estimation of the cone cross-section :0.5
- via measurement of the intensity distribution :1.5

- determination of the maximum efficiency :1



Solution of question 5.

1. Theory Let - the moment of inertia of the disk be
- the mass of the weight
- the moment of the frictional force
- magnetic field strength
- the radius of the axle
- the moment of the magnetic force

—_

SCETE

For the motion of the rotating disk we have:

Lo = (mg - ma).r - M, - M,

We suppose that M; is constant but not negligible. Because the disk moves in the
magnetic field, eddy currents are set up in the disk. The magnitude of these currents is
proportional to B and to the angular velocity. The Lorentz force as a result of the eddy
currents and the magnetic field is thus proportional to the square of B and to the angular
velocity, i.e.

My = c.B 2w
Substituting this into Eq. (1), we find:

Lo = (mg - ma)r - M, - c.B%w

M
g.r

2
v, = (g.r ).| m

After some time, the disk will reach its final constant angular velocity; the angular
acceleration is now zero and for the final velocity v, we find:

The final constant velocity is thus a linear function of m.
2.  The experiment

The final constant speed is determined by measuring the time taken to fall the last 21 cm
[this is the width of a sheet of paper].

In the first place it is necessary to check that the final speed has been reached. This is
done by allowing the weight to fall over different heights. It is clear that, with the weaker
magnet, the necessary height before the constant speed is attained will be larger.
Measurements for the weak magnet system:



height (m)

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.10
1.30

smaller weight

5.04 = 0.02 (s)
4.67 = 0.04 (s)
4.59 = 0.05 (s)
4.44 =+ 0.06 (s)
4.49 = 0.05 (s)
4.43 + 0.03 (s)
4.43 + 0.04 (s)

time taken to fall

larger weight

2.00 = 0.01 (s)
1.71 = 0.02 (s)
1.55 = 0.02 (s)
1.48 + 0.01 (s)
1.44 + 0.04 (s)
1.38 = 0.03 (s)
1.35 = 0.02 (s)
1.34 += 0.05 (s)
1.33 = 0.04 (s)

3. Final constant speed measurements for both magnet systems and for several
choices of weight.

Measurements for the weak magnet:

weight T(s) T(s) T(s) T(s) <T>(s) <v> (m/s)
small 442 423 424 433 431+009 49 +=0.1
large 189 191 198 192 193+004 109+02
both 129 132 123 130 129+004 163 +05
Measurements for the strong magnet:
weight T(s) T(s) T(s) T(s) <T> (s) <v> (m/s)
small 893 9.01 9.17 891 9.0 =0.1 2.33 £0.03
large 403 392 403 395 398+ 0.06 528+ 0.08
both 253 252 253 248 252+003 83 0.1

4.  Discussion of the results:

- A graph between v, and the weight should be made.
- From Eq. (2) we observe that:
- both straight lines should intersect on the horizontal axis.
- from the square-root of the ratio of the slopes we have immediately the
ratio of the magnetic field strengths.
- For the above measurements we find:

Al L
B B Ar,\? Ar,)?
1 H~069 R 2 _l. 2np L2k 0.05
B, 15 B, 24\ 7 r
BZ
Bl
— = 0.69 + 0.03

B



Marking Breakdown

1

M, = c.B2o
Eq. (2)

Investigation of the range in which the speed is constant

Number of timing measurements [1,2,3,...]
Error estimation

graph - quality
- the lines intersect each other on the mass-axis
- calculation of B,/B,
- Exror calculation

— == O

:0,1,2
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