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VORWORT

Die mit NEwTONS ,,Philosophiae naturalis principia mathematica“ (1687) be-
ginnende klassische Epoche der modernen Astronomie ist etwa mit der letzten
Jahrhundertwende zu Ende gegangen. Viele Versuche sind in jenem Zeitraum
unternommen worden, die Ergebnisse der Himmelsmechanik zu einem Lehr-
gebidude zusammenzufassen. Besonders die Franzosen haben es verstanden, in
ihrer schénen und exakten Sprache die Lehren dieser schonen und exakten
Wissenschaft meisterhaft zu vermitteln. Ich darf nur an das fiinfbindige Werk
von LapLACE, den , Traité de mécanique céleste” (1799-1825) erinnern, ferner
an das gleichnamige vierbindige Werk von F. T1ssERAND (1889-1896), das den
Astronomengenerationen der letzten siebzig Jahre durch seine kristallene Klar-
heit und formvollendete Darstellungsweise den Zugang zu diesem erhabenen
Gegenstand er6ffnet und erleichtert hat. Am Ende dieser klassischen Epoche
stehen die beiden dreibidndigen Werke ,, Méthodes nouvelles de la mécanique
céleste” (1892-1899) und ,Legons de mécanique céleste” (19o5-1910) von
H.PoINCARE, die nicht nur das Vorhandene noch einmal zusammenfaBten,
sondern aus tiefen mathematischen Einsichten heraus neue Wege fiir die zu-
kiinftige Forschung erdffneten.

Das zwanzigste Jahrhundert hat diesen Meisterwerken nur wenig Ebenbiir-
tiges an die Seite zu stellen. In deutscher Sprache erschien 1902 die , Mecha-
nik des Himmels“ des schwedischen Astronomen C.V.L.CHARLIER, ein aus-
gezeichnetes Buch, das auch die damals neuesten Ergebnisse beriicksichtigte, so
die Arbeiten von G.W. HiLL und G. H. DARWIN iiber die Mondbewegung und iiber
die Bahnen von Planetoiden in der Nihe der LAGRANGEschen Librationszen-
tren sowie die PoincarEsche Theorie der periodischen Losungen des Drei-
koérperproblems. Im Jahre 1912 veréffentlichte F. R. MouLton das kleine Buch
»An Introduction to Celestial Mechanics”, das als erste Einfithrung in diese
Wissenschaft bleibenden Wert besitzt und das seit 1927 auch in deutscher
Ubersetzung vorliegt. In Frankreich trat (1923-1926) H. ANDOYER mit seinem
zweibdndigen ,,Cours de mécanique céleste” hervor, der das Gebiet besonders
hinsichtlich der allgemeinen Stérungstheorie bereicherte, aber die ungemein
fruchtbaren PoincarEschen Ideen unberiicksichtigt lieB. In Deutschland er-
schien 1941 ,Das Dreikorperproblem von H. HaPPEL, das fiir den Kenner der
Probleme ein duBerst wertvolles Nachschlagewerk iiber viele in den élteren
Werken noch nicht enthaltenen Methoden darstellt und insbesondere die wich-
tigen Ergebnisse neuerer Forscher wie GYLOEN, SUNDMAN, BRENDEL u.a.
bringt, aber als Lehrbuch fiir Studierende weit weniger geeignet ist, als es die
obengenannten Werke der klassischen Fachliteratur gewesen sind. Von den
Erscheinungen der letzten Jahre verdienen noch die ,,Celestial Mechanics” von
W.M.SMmART (1953) und die ,Vorlesungen iiber Himmelsmechanik” von
C.L.SIEGEL (1956)genannt zu werden. Dasletztere nur wenig umfangreiche Buch
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betrachtet die Probleme der Himmelsmechanik (insbesondere das Dreikdrper-
problem) vom Standpunkt des reinen Mathematikers aus und beschiftigt sich
daher vorwiegend mit Konvergenz- und Stabilititsfragen und mit Betrach-
tungen iiber die mathematische Behandlung von allgemeinen kanonischen
Differentialgleichungssystemen, also mit Dingen, die fiir den Theoretiker auBer-
ordentlich bedeutsam, fiir den Anfinger aber zu schwierig und fiir den prak-
tischen Astronomen weniger wichtig sind. Der letztere wird die Grundlagen fiir
seine Tatigkeit nicht so sehr aus den Werken iiber die allgemeine Himmels-
mechanik erarbeiten als aus der Spezialliteratur iiber die Bahnbestimmung der
Himmelskérper und die Methoden der speziellen Stérungsrechnung. Hier sei
besonders auf zwei Biicher verwiesen: die , Bahnbestimmung der Himmels-
kérper von J.BAUSCHINGER (1906, letzte Auflage 1928) und die ,Bahn-
bestimmung der Planeten und Kometen“ von G.STRACKE (1929).

Inzwischen ist die in Zeitschriften und Publikationen weit verstreute Lite-
ratur ungeheuer stark angewachsen. Das Bediirfnis nach einer auf den modern-
sten Stand gebrachten Darstellung der Himmelsmechanik in deutscher
Sprache, die sich als Einfiihrung in das Studium eignet und die auch dem
Astronomen zur Vervollstindigung seines Wissens dienen kann, ist unzweifel-
haft heute gréBer als noch vor wenigen Jahren. Wihrend die moderne Astro-
physik, die der Forschung in den letzten fiinfzig Jahren eine ungeheure Fiille
neuer Aufgaben erdfinet hat, das Interesse der jungen Astronomengeneration
beinahe ausschlieBlich in Anspruch genommen hat, sind die Probleme der
Himmelsmechanik, die noch im vorigen Jahrhundert im Vordergrund gestan-
den haben, stark beiseite gedrangt worden. Das wird sich aber bald wieder
indern: Das Zeitalter der kiinstlichen Erdsatelliten und der ersten Vorsto8e in
den Weltenraum wird mit zwingender Notwendigkeit das Augenmerk auf eine
Wissenschaft lenken, von der noch vor kurzem mit Unrecht vermutet wurde,
daB ihre Probleme, soweit unsere mathematischen Hilfsmittel es erlauben, ge-
16st seien, und die man daher als abgeschlossenes und der Forschung wenig An-
reiz bietendes Lehrfach ansah.

Der Plan, ein Lehrbuch der Himmelsmechanik zu schreiben, entstand bei mir
schon 1944, muBte aber damals, nachdem einige Kapitel des ersten Bandes zu
Papier gebracht worden waren, infolge der Ungunst der Zeitverhiltnisse unter-
brochen und auf lingere Zeit verschoben werden. Ich bin auch heute noch,
nachdem der ,,Deutsche Verlag der Wissenschaften®, der erst kiirzlich mein
Lehrbuch ,,Geographische Ortsbestimmungen® herausgebracht hat, mich zur
Vollendung dieses alten Vorhabens ermutigt hatte, sehr im Zweifel gewesen,
ob ich es wagen sollte, eine so groBe und verantwortungsvolle Aufgabe auf mich
zu nehmen, deren Erledigung jahrelange Arbeit erfordern wird, und die mir
dadurch erschwert erscheint, daB in der Vergangenheit so groBe Vorbilder auf-
gerichtet sind, die auch nur annihernd zu erreichen ich nicht hoffen darf. Wenn
ich mich trotzdem entschlossen habe, diesen Versuch zu unternehmen, so vor
allem, weil ich von seiner Notwendigkeit tiberzeugt bin und weil ich vielleicht,
wenn auch sicher nicht die Meisterschaft jener Vorbilder, so doch die beschei-
dene Fihigkeit mitbringe, die dem Anfinger schwer verstindlichen Dinge klar
und leicht faBlich darzustellen. Was den Stoff anbetrifft, so kann ich wenig-
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stens auf einigen Gebieten, wie in der Theorie der Zweik6rperbewegung und der
Methodik der Bahnbestimmung der Himmelskorper, auf eigene Ideen ver-
weisen. So darf ich hoffen, daB zumindest der Band I, der jetzt vollendet vor-
liegt und der sich hauptsichlich mit diesen Dingen beschiftigen soll, in einigen
seiner Abschnitte sein eigenes Gesicht tragen wird.

Im ganzen sind drei Binde geplant. Der erste umfaBt, wie gesagt, die Ana-
lyse des Zweikorperproblems und die Bahnbestimmung der Planeten und Ko-
meten. Der Band II wird sich mit dem Dreikorperproblem und den Methoden
der numerischen Integration und der Berechnung spezieller Stérungen be-
fassen, Band III mit den allgemeinen Stérungen und allen damit zusammen-
hingenden Fragen (Stabilitit des Planetensystems, Bewegung der Satelliten,
einschlieBlich der kiinstlichen Erdsatelliten, kosmogonische Probleme). Ob es
notig (und moglich) sein wird, noch einen weiteren Band iiber Rotationsprobleme
hinzuzufiigen, wird die Zukunft lehren.

Ich lasse den Band I mit einem Kapitel iiber das ptolemiische Weltsystem
beginnen. Die Kenntnis der antiken Vorstellungen von der Mechanik und Kine-
matik des Planetensystems ist heute weitgehend verlorengegangen, und wenn
ich von einem kurzgefaBten Anhang in Friscuaurs , GrundriB der Theore-
tischen Astronomie” und einem Abschnitt in VALENTINERs ,,Handwérterbuch
der Astronomie® absehe, so ist mir kein modernes Lehrbuch bekannt, in dem
die Bemithungen der Alten um die Erforschung des Weltmechanismus die ihnen
gebiihrende Wiirdigung erfahren haben. Das mag daran liegen, daB die griechi-
schen und lateinischen Texte des ,, Almagest” (von dem arabischen ganz zu
schweigen) der neuen Generation kaum noch zuginglich sind. Seitdem aber
K.Man1rius (1912) uns die schone und sorgfiltige (leider lingst vergriffene)
Ubersetzung dieses antiken Werkes ins Deutsche geschenkt hat, 148t sich die
vollige Vernachlissigung des geschichtlich Gewordenen im Studium der Astro-
nomie kaum noch entschuldigen. In meiner Darstellung habe ich nur das be-
riicksichtigt, was auch fiir die moderne Himmelsmechanik interessant und
wesentlich ist. Ich weil3 wohl, daB die Ansicht weit verbreitet ist, die Beschif-
tigung mit diesen Dingen sei iiberfliissig und eine unnétige Belastung fiir Geist
und Gedichtnis. Ich hoffe trotzdem, daB dieser Versuch bei den Jiingern der
astronomischen Wissenschaft Anklang finden und ihnen den Anreiz geben wird,
sich ein wenig in dieses anziehende Thema zu versenken, das so viele Jahr-
hunderte lang das Thema der astronomischen Vorlesungen an allen Universi-
titen des Abend- und Morgenlandes gewesen ist. Die Ubertragung der schwer-
filligen geometrischen Ausdrucksweise des ProLEMAUS in die elegantere Form
der modernen mathematischen Symbolik verhilft dazu, auf die Denkart
und den Scharfsinn des groBen Agypters iiberraschende Lichter zu werfen,
und die Erkenntnis, daB viele moderne Gedankenginge und Methoden in
ihrem Ursprung schon auf ihn und seine Zeit zuriickgehen, sollte in dem
Schatz der allgemeinen Bildung auch des modernen Wissenschaftlers nicht
fehlen.

In den nachfolgenden Kapiteln wird die Theorie der Zweikérperbewegung mit
der ihr gebiihrenden Griindlichkeit behandelt. In der Tat ist ja die Bewegung
in Kegelschnittsbahnen nach den KEpLERschen Gesetzen als erste Niherung
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fiir die Bewegungen der Planeten, Kometen und Satelliten unseres Sonnen-
systems der Ausgangspunkt fiir die meisten himmelsmechanischen Unter-
suchungen, und es wire durchaus falsch, in Unterschitzung dieses Umstandes
sich damit zufrieden zu geben, dieses Problem (was an sich moglich wire) mit
wenigen Federstrichen zu 16sen, um dann sogleich auf das wesentlich schwie-
rigere Dreikorperproblem iiberzugehen oder gar mit diesem zu beginnen und
jenes dann als besonders einfachen Spezialfall nur am Rande zu behandeln.
Vielmehr zeigt sich, daBB das Zweikérperproblem trotz seiner relativen Einfach-
heit erstaunlich vielseitig ist und daB fast jeder der zahlreichen Gesichtspunkte,
von denen aus man es betrachten und analysieren kann, Wege erkennen 14d8t,
die in die noch recht unerschlossenen Tiefen des Dreikérperproblems und in die
schwierigen Entwicklungen der Stérungstheorie hineinfiihren.

Um dem Studierenden das Hineinlesen in den Gegenstand zu erleichtern,
habe ich es bewuBt vermieden, die allgemeinen mechanischen Prinzipe, wie sie
von LAGRANGE, d’ ALEMBERT, HAMILTON, JACOBI usw. entwickelt worden
sind und die haufig (so bei TisSERAND, PoINCARE, HaPPEL) an den Beginn
der himmelsmechanischen Deduktionen gestellt worden sind, auch hier an
den Anfang zu setzen. Die Erfahrung lehrt, daB der Anfinger dadurch leicht
entmutigt wird. Vom Standpunkt des Lehrers aus scheint es mir ratsam, das
Verstindnis des Schiilers nicht von vornherein mit diesen schénen, aber tief
liegenden und sehr abstrakten Gedankengingen zu belasten, sondern ihn all-
mahlich iiber konkrete und der Anschauung zugingliche Zwischenstufen auf sie
vorzubereiten. So soll auch die HamiLToN- JacoBische Theorie erst im Band IT
Platz finden, damit der Leser, der den ersten aufmerksam studiert hat, ihre
Giiltigkeit sogleich an den noch einfachen und durchsichtigen Zusammenhangen
in der Zweikorperbewegung zu verifizieren imstande ist.

Die Kapitel VIII und IX behandeln Probleme und Methoden der Bahn-
bestimmung von Planeten und Kometen. Uber diesen Gegenstand ist in den
letzten Jahrzehnten viel geschrieben worden, und es miiBte einem besonderen
Werk iiber Bahnbestimmung vorbehalten werden, die Vielzahl der vorgeschla-
genen Methoden darzustellen und kritisch miteinander zu vergleichen. Das ist
z.T. schon in dem obenerwihnten Lehrbuch von G. STRACKE geschehen, in dem
natiirlich die seit 1930 hinzugekommene Literatur noch nicht beriicksichtigt
werden konnte. Teilweise ist dies in der Abhandlung von P.HERGET: ,The
Computation of Orbits (1948)“ nachgeholt worden. Ich selbst habe versucht,
aus der Vielzahl der dargebotenen Methoden diejenigen herauszuheben, deren
Gedankenfiihrung besonders charakteristische Merkmale zeigt. Dagegen habe
ich es vermieden, allzusehr ins Einzelne gehende praktische Anweisungen,
Rechenschemata und Rechenbeispiele zu geben. Diese Dinge gehéren in ein
Rezeptbuch fiir den Rechner, wie es (im besten Sinne) das Buch von STRACKE
darstellt, aber nicht in ein allgemeines Lehrbuch der Himmelsmechanik, in dem
es mehr auf die Herausarbeitung der Ideen als auf Anleitungen fiir deren prak-
tische Anwendung ankommt. _

Das letzte Kapitel behandelt schlieBlich einige Probleme, die iiber die Zwei-
korperbewegung nach dem NEwroNschen Gesetz hinausgehen: die Zentral-
bewegungen auf Grund verschiedener Beschleunigungsgesetze — als besonders
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wichtiger Spezialfall erscheint hier die Bewegung sonnennaher Planeten nach
der allgemeinen Relativitidtstheorie.

Urspriinglich bestand die Absicht, noch ein Kapitel iiber die Methoden der
Berechnung spezieller Stérungen hinzuzufiigen. Ich habe mich aber wihrend
der Arbeit an diesem Band I entschlossen, die Behandlung dieses Gegenstandes
auf den Band II zu verschieben, da die Methoden der numerischen Integration
ja nicht nur im Zusammenhang mit der Bahnbestimmung und Ephemeriden-
rechnung, sondern in weit gréBerem Umfang bei der numerischen Lésung all-
gemeinerer himmelsmechanischer Aufgaben angewandt werden. Ich erinnere
nur an die Kopenhagener Arbeiten iiber die periodischen Bahnen im ein-
geschriankten Dreikorperproblem. So habe ich mich damit begniigt, in den
Kapiteln iiber Bahnbestimmung einiges iiber die Beriicksichtigung von Sto-
rungseinfliissen bei der Bahnberechnung der Planetoiden zu sagen.

Im Anhang habe ich eine Reihe von Tabellen und Tafeln zusammengestellt,
die fiir die Ephemeridenrechnung und Bahnbestimmung niitzlich sind. Teil A
des Anhangs bringt eine Anzahl kleinerer Tabellen, wiahrend Teil B eine um-
fangreichere sechsstellige Tafel der von mir eingefithrten ¢-Funktionen ent-
hilt, wie sie — abgesehen von einer weitmaschigen Tabelle in den Astrono-
mischen Nachrichten (Band 275, 108) — noch nirgends existiert. Bei der Be-
rechnung dieser Tafel stand mir, dank dem Entgegenkommen von Prof. L. BIER-
MANN, die elektronische Rechenanlage G I des Max-PLANCK-INSTITUTS FUR
Puysik in Gottingen zur Verfiigung. Fiir die Ausfithrung dieser Rechnung danke
ich Dipl.-Phys. PETER STuMPFF, der mir auch wertvolle Hilfe bei der Korrek-
tur dieses Bandes geleistet hat.

Moge dieses Buch, fiir dessen Gestaltung dem Verlag mein besonderer Dank
gebiihrt, dazu dienen, dem Studierenden der Himmelskunde die Probleme der
Himmelsmechanik wieder niher zu bringen, die zweifellos in der zukiinftigen
Entwicklung der astronomischen Wissenschaft sehr bald den Platz zuriick-
gewinnen werden, der ihnen von alters her und von Rechts wegen zukommt.

Gottingen, im April 1958 KARL STUMPFF
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KAPITEL I

DIE HIMMELSMECHANIK DER ANTIKE

1. Das geozentrische und das heliozentrische Prinzip

Die Anschauungen der Alten iiber den Aufbau des Weltalls und die Bewegungen
der Himmelskérper waren sehr verschiedenartig und haben sich im Laufe der
Zeit oft gewandelt. Vorherrschend ist aber in ihnen die Vorstellung von der im
Weltmittelpunkt ruhenden Erde (geozentrisches Weltbild) und von der gleich-
formigen Kreisbewegung der Himmelskorper. Die Kugelgestalt der Erde wurde
schon sehr frithzeitig erkannt ; der Erdumfang wurde bereits von ERATOSTHENES
(276-195 v.Chr.) durch ein Verfahren, das im Prinzip der modernen Grad-
messung vollig entspricht, groBenordnungsméBig richtig bestimmt. Auch die
Rotation der Erde wurde im Altertum mehrfach behauptet und zur Erklirung
des téglichen Umschwungs der Fixsternsphire benutzt. Ein Ansatz dazu findet
sich schon in der merkwiirdigen Theorie der Pythagorder (PHiLorAvuS): Die
Erde und eine Gegenerde bewegen sich mit 24-stiindiger Umlaufszeit gemein-
sam um ein (von den bewohnten Erdgegenden aus nicht sichtbares) Zentral-
feuer. Auch ARISTARCH vON Samos (3. Jh. v.Chr.) lehrte die Erdrotation und
erstmalig auch die Bewegung der Erde um die Sonne, doch konnten beide An-
schauungen sich nicht durchsetzen, sondern blieben lediglich als Kuriosititen
im Gedéchtnis der Zeiten haften.

Die endgiiltige Gestalt des geozentrischen Weltbildes der Antike hat uns (um
150 n.Chr.) der alexandrinische Gelehrte Craupius PToLEMAUS iiberliefert.
Sein 13 Biicher umfassendes Werk ist uns unter dem Titel ueydin ovvratic oder
besser noch unter dem der spiteren arabischen Ubersetzung »Almagest“!) er-
halten geblieben und vermittelt uns eine Gesamtdarstellung des astronomischen
Wissens der damaligen Zeit sowie den Versuch einer geometrisch-mechanischen
Theorie der Bewegungen aller bekannten Himmelskorper mit AusschluB der
Kometen, die von den Alten meist als ,sublunare” Erscheinungen, d.h. als
irdischen Ursprungs, gedeutet wurden. Die im Almagest vorgetragene Theorie
der Bewegung von Sonne, Mond und Planeten ist in ihrer Endform das eigene
Gedankengut des ProLEMAUS, doch stammen ihre Grundlagen aus &lteren
Quellen. Die astronomischen Beobachtungsdaten, auf die sich diese Theorie
stiitzt, hat sich ProLEMAUS z.T. selbst verschafft, z. T. sind sie ihm aus ilterer
Zeit iiberliefert worden. Vor allem bedient er sich der Aufzeichnungen des
HipparcH voN NicAa (19o-125 v.Chr.), der ein ausgezeichneter Beobachter
war. Auch im Aufbau der Theorien selbst folgt PToLEMAUS, wo es nur angeht,
den Spuren des HipPARCH, den er mit Recht als den gr6Bten unter den 4lteren
Astronomen ansieht und dessen Ergebnisse er daher nur selten, und auch dann

1) Das Beiwort ueydAn (die groBe) im Titel des Werkes wurde spiter durch den
Superlativ ueyiorn (die groBte) ersetzt. Durch Verschmelzung mit dem arabischen
Artikel al entstand so das Wort Almagest.
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nur widerstrebend, abindert. Von HirpaRcH iibernimmt er die Kenntnis der
Prizession der Tag- und Nachtgleichen, ferner die Verwendung des exzen-
trischen Kreises zur Erklirung der ungleichférmigen Geschwindigkeit der
Sonnenbewegung lings der Ekliptik. Die Idee der Epizykelbewegung, des be-
kanntesten Bestandteiles der ptolemiischen Theorien, ist ebenfalls schon von
HrirrarcH verwendet worden, 1aBt sich aber bis auf den Mathematiker AroL-
LONIUS VON PERGE zuriickfiihren, der etwas vor HippaRcH, um 200 v.Chr.,
gelebt hat. Alleiniges Verdienst des PTOLEMAUS bleibt es, diese verschiedenen
Elemente zu einem Ganzen verwebt zu haben, das den vorliegenden Erfah-
rungstatsachen innerhalb der damals noch sehr geriumigen Grenzen der
Beobachtungsgenauigkeit gerecht wurde. .

Das Studium des Almagest, d&r bis zu den Zeiten von KOPERNIKUS und
KEPLER, also rund anderthalb ]Kﬂaﬁdg} als Standardwerk der gesamten Astro-
nomie galt und dem in diesem langen Zeitraum nur wenig Erginzendes hin-
zugefiigt werden konnte, sollte auch heute nicht ganz vernachldssigt werden.
Wenn wir auch jetzt in der Lage sind, das Problem der Himmelsmechanik von
einem hoheren Standpunkt aus zu iiberblicken, so wollen wir doch nicht ver-
gessen, daB der iiberwundene geozentrische Standpunkt eigentlich der natiir-
lichere ist, weil von ihm aus alle theoretischen Erérterungen unmittelbar an die
durch die sinnliche Wahrnehmung gegebenen Erfahrungstatsachen angeschlos-
sen werden. Die Elemente der Erfahrung — das sind hier insbesondere die
periodischen ,,Ungleichheiten oder ,,Anomalien” in der scheinbaren Bewegung
der Sonne, des Mondes und der Planeten — lassen sich im Prinzip ebensogut durch
eine geozentrische wie durch eine heliozentrische Theorie darstellen ; nur erlaubt
die letztere — und das ist natiirlich entscheidend — alle Erscheinungen physika-
lisch zu deuten und unter ein einziges Gesetz von groBer Einfachheit, das
NewroNsche Gravitationsgesetz, einzuordnen, wihrend der antiken Astro-
nomie jede Moglichkeit fehlte, die Vielheit der Erscheinungen deduktiv aus
einem universellen Grundprinzip abzuleiten. Die Bewegungstheorien der Sonne,
des Mondes und jedes der fiinf im Altertum bekannten Planeten standen einzeln
zur Diskussion und erforderten zur Erklirung der beobachteten Erscheinungen
besondere Mechanismen. Je gro8er die Anzahl der Einzelelemente wurde, d.h.
also hier der periodischen Schwankungen im Lauf der Wandelsterne, desto ver-
wickelter und uniibersichtlicher gestaltete sich der Aufbau des Weltsystems.
Das Gemeinsame an beiden Auffassungen, der antiken und der modernen, ist
die Feststellung der Existenz dieser Anomalien selbst. Die antike Himmels-
mechanik beschritt den mithsamen und zu keinem klar erkennbaren Ziel fijhren-
den Weg der Synthese der beobachteten Himmelsbewegungen aus diesen Ele-
menten. Die moderne Astronomie hingegen leitet diese selben Anomalien analy-
tisch als periodische Glieder von Reihenentwicklungen ab, die sich ihrerseits
als Folgerungen aus einem mathematisch formulierbaren Grundgesetz ergeben.
Was dort, dem auf das Sinnféllige gerichteten Geist der Antike entsprechend,
als ein System von einander iiberlagernden Kreisbewegungen (etwa als eine
aus Hebeln und Rddern zusammengesetzte Maschinerie) erscheint, dessen Struk-
tur keinen einheitlichen Bauplan verrit, wird in der modernen Himmels-
mechanik zu einer formal-mathematischen, aber dafiir auch eindeutigen und
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zwangsldufigen Folgerung aus einem einfachen und allgemeingiiltigen Kraft-
gesetz.

Aus dieser Gegeniiberstellung ergibt sich unschwer einer der Griinde dafiir,
daB die antike Weltmaschinerie nur ein unvollstindiges Abbild der Wirklichkeit
bleiben muBte. Die Anzahl der Glieder einer Reihenentwicklung 148t sich
theoretisch bis ins Unendliche steigern, ohne daB neue Gesichtspunkte ins Feld
gefiihrt werden miiBten, d.h. praktisch bis an die Grenze, die durch die Ge-
nauigkeit der durch die Theorie rechnerisch darzustellenden Beobachtungs-
groBen vorgeschrieben ist. Die antiken Konstruktionen werden sich dagegen
mit endlich vielen, d.h. praktisch mit moglichst wenigen Elementarmechanis-
men (Anomalien) begniigen miissen, da jedes neue Zusatzglied, das keinen sicht-
baren logischen Zusammenhang mit den schon vorhandenen besitzt, die Theorie
komplizierter macht. So finden wir denn auch bei PToLEMAUS, daB er sich beim
Aufbau seiner Planetentheorien mit ganz wenigen Anomalien, meist mit einer
oder zwei, zufrieden gibt. Der andere Grund fiir das Steckenbleiben in diesen
verhiltnismiBig primitiven Anniherungen ist das sture Festhalten an dem
Prinzip der gleichférmigen Kreisbewegung der Himmelskorper. Die spitere
Geschichte hat tatsichlich gezeigt, daB der eigentliche AnstoB zu der Weiter-
entwicklung der Himmelsmechanik nach langer Stagnation nicht so sehr durch
KopERNIKUS erfolgte, als er das schon von ARISTARCH vertretene heliozen-
trische Prinzip aufs neue in die Diskussion warf, sondern durch KEPLER, der
an die Stelle der gleichférmigen Bewegung in Kreisen die ungleichméBig schnelle
Bewegung in elliptischen Bahnen einfiihrte. '

Die Abschnitte dieses Kapitels werden uns zeigen, wie nahe der Wahrheit der
scharfsinnige Denker ProLEMAUS in manchen Einzelheiten seines Systems
gekommen ist. An anderen Stellen wird eine Kritik seiner Gedankenginge
zeigen, daB vermeidbare Fehler ihn ebenso wie die obengenannten Vorurteile
daran gehindert haben, den letzten Schritt in das schon so nahe Ziel zu tun.
Besonders interessant und aufschluBreich wird aber das Studium der Methoden
sein, die ProLEMAUS bei der Ableitung der Elemente seiner Himmelskorper-
bahnen aus den Beobachtungen benutzte. In ihnen wird die Urform der mo-
dernen Bahnbestimmungsmethoden sichtbar werden, deren Darstellung einen
angemessenen Raum in den nachfolgenden Kapiteln dieses Buches einnehmen
wird.

2. Die Bewegung der Fixsternsphdre und der Sonne

Die scheinbare, d.h. vom irdischen Beobachtungsstandpunkt aus gesehene, Be-
wegung der Gestirne setzt sich aus zwei wesentlich verschiedenen Komponenten
zusammen: dem in einem Sterntage (= rund 23" 56™ mittlere Sonnenzeit) er-
folgenden Umschwung der gesamten Himmelskugel (Sphire) in ost-westlicher
Richtung um die durch die Pole des Himmelsidquators gehende Weltachse, an
dem Fixsterne, Sonne, Mond und Planeten gemeinsam teilnehmen, und der
weit langsamer vor sich gehenden eigenen Bewegung der Wandelsterne in der
Zone des ,, Tierkreises“, deren vorwiegende Richtung die west-6stliche ist. Die
Alten wuBten diese beiden Komponenten sehr wohl zu trennen, so daB wir hier
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von der ersteren, der durch die Rotation der Erde verursachten scheinbaren
gleichférmigen Drehung der Sphire, im allgemeinen absehen diirfen.

Die iibrigbleibenden Eigenbewegungen betreffen die Sonne, den Mond und
die Planeten — von den letzteren waren den Alten fiinf bekannt ; Merkur, Venus,
Mars, Jupiter und Saturn. DaB unter diesen sieben beweglichen Gestirnen die
Sonne einen besonders erhthten Rang einnimmt, wird auch von PToLEMAUS
anerkannt. Zwar ist er noch weit davon entfernt, ihr den Platz in der Mitte des
Weltalls zuzubilligen, er weiB aber bereits, daB ihre GréBe die der Erde iiber-
trifft!), und er erkennt, daB die Bahnbewegungen der tibrigen sechs Gestirne
mit der Bahn der Sonne deutlich gekoppelt sind, wihrend sie untereinander
(abgesehen von gewissen iibereinstimmenden Merkmalen in der Art der Be-
wegungen) keinerlei Bindungen aufzuweisen scheinen. Dariiber hinaus ist die
Sonnenbahn im Gegensatz zu denen des Mondes und der Planeten auBerordent-
lich einfach: Sie erfolgt auf einem gréBten Kugelkreis der Sphire, der seine
Lage unter den Fixsternen nicht dndert. Dieser groB3te Kreis der Himmelskugel,
die ERliptik, bildet die Mittellinie der Tierkreiszone, eines etwa 20° breiten
Giirtels, innerhalb dessen die Bewegungen aller iibrigen Wandelsterne sich ab-
spielen. Die Ebene der Ekliptik, die durch den Erdmittelpunkt geht und in der
sich die Bahnbewegung der Sonne vollzieht, bietet sich somit von selbst als
Hauptkoordinatenebene dar, nicht nur fiir die Bewegung der Sonne, sondern
auch fiir die der Planeten und des Mondes, deren Bahnen gegen die Ekliptik
nur wenig geneigt sind und die sich daher fast verzerrungsfrei auf die Ekliptik-
ebene projizieren lassen.

ProLEMAUS benutzt schon, wie wir, die Koordinatendarstellung der sphi-
rischen Gestirnsorter in diesem Ekliptiksystem nach Ldnge und Breite, doch
sieht er sich noch vor-die Alternative gestellt, ob er den Anfangspunkt der
Lingenzihlung auf der Ekliptik durch die Fixsterne festlegen soll oder durch
die dem jahreszeitlichen Lauf der Sonne entstammenden Punkte der Sonnen-
wenden (Solstitien) und Tag- und Nachtgleichen (Aquinoktien). Infolge der
schon von HipparcH entdeckten Prdizession verindern nimlich die Aquinok-
tien und Solstitien und damit die durch sie bestimmten zwolf ,Zeichen des
Tierkreises ihre Lage gegen das System der Fixsterne langsam, aber bestindig.
ProLEMAUS entscheidet sich dafiir, die Aquinoktien als feste und unverdnder-
liche Richtungen anzusehen, auf die sich alle Vorginge am Himmel zu be-
ziehen haben. Die geozentrischen Polarkoordinaten der Gestirne an der Sphire
sind demnach Linge und Breite, wobei die Breite den Winkelabstand von der
Ekliptik bedeutet, wahrend die Lange in der Ekliptik selbst, und zwar im Sinne
der Sonnenbewegung, vom Frihlingspunkt aus zu zihlen ist.

Nach dieser Festsetzung ergibt sich, daB die Fixsterne infolge der Prizession
eine langsame Ortsveranderung zeigen: Wihrend ihre Breiten konstant bleiben,
nehmen die Lingen im Laufe der Zeit gleichmiBig zu. Der Name ,,Prizession
ist durch diese Definition als Vorwirtsbewegung der Fixsterne historisch ge-
rechtfertigt — nach unserer heutigen Auffassung, die das System der Fixsterne

1) Er unterschitzt die GréBe der Sonne, der er fiinffache ErdgréBe zubilligt,
allerdings noch bedeutend.
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(von deren individuellen Eigenbewegungen abgesehen) als riumlich fest an-
sieht, besteht die Prézession ja in einem Riickwdrisschreiten der Aquinoktien.
HiprarcH war noch der Meinung, daB von dieser Bewegung in Linge nur die
Fixsterne der Tierkreiszone betroffen seien. PToLEMAUS weist dagegen nach,
daB die Konstellationen der Fixsterne an der gesamten Sphire sich seit den
iltesten Zeiten nicht gedndert hitten, was nur moglich ist, wenn die Fixstern-
sphire als Ganzes die Prazessionsbewegung als eine Drehung ihrer Rotations-
achseum die Pole der Ekliptik mitmacht. Zur Ableitung der Prizessionskonstan-
ten benutzt er die Beobachtungen des HipparcH und die Sternbedeckungen
durch den Mond, die um 390 v.Chr.von TiMocHARIS in Alexandrien beobachtet
wurden. Sein Ergebnis ist, daB die Lingen der Fixsterne um rund 1°in 100 Jah-
ren zunehmen. Die Prizessionskonstante betrigt daher nach ProLEMAUS 36"
im_Jahr, wihrend der moderne Wert (rund 50") nicht unbetrichtlich gréBer ist.
Diese Diskrepanz ist z.T. auf die Ungenauigkeit der benutzten Unterlagen zu-
riickzufithren, z.T. aber auch auf mangelnde Sorgfalt bei der Reduktion und
auf das unseren heutigen Begriffen von wissenschaftlicher Sauberkeit wider-
sprechende Bestreben des PToLEMAUS, seine Ergebnisse untereinander und mit
den von HipparcH iiberlieferten durch willkiirliche Abrundungen in Uber-
einstimmung zu bringen. ‘

Die Bewegung der Sonne lings der Ekliptik erfolgt von Friihlingspunkt zu
Friihlingspunkt in einem tropischen Jahre und mit ungleichférmiger Geschwin-
digkeit. Um diese Ungleichférmigkeit mit dem antiken Grundsatz von den
gleichformigen Kreisbewegungen der Himmelskorper in Einklang zu bringen,
stellte schon HipparRcH die rdumliche Sonnenbahn als einen exzentrischen
Krers dar. Dieser wird von der Sonne mit gleichférmiger Geschwindigkeit
durchlaufen; von der auBerhalb seines Mittelpunktes stehenden Erde aus er-
scheint diese Bewegung im Apogdum (Erdferne) langsamer, im Perigdum (Erd-
nihe) schneller als im Mittel. ProLEMAUS iibernimmt diese Theorie ohne Ande-
rung.

Zur vollstandigen Beschreibung der Sonnenbewegung auf der Ekliptik sind
vier Angaben erforderlich: Die Dauer des tropischen Jahres, die Linge des
Apogiums, die Exzentrizitit der Bahn und die mittlere Linge der Sonne zu
einem vorgeschriebenen Zeitpunkt, der ,,Epoche”.

Die Linge des tropischen Jahres leitet ProLEMAUS aus den Zeitpunkten der
Aquinoktien ab, wie sie einerseits von HipparcH, andererseits — 285 Jahre
spiter — von ihm selbst bestimmt worden waren. Die Beobachtungsmethode
war ziemlich ungenau: Ein Metallring von quadratischem Querschnitt wurde
so an der Siiddwand eines Hauses befestigt, daB seine Ebene mit der des Himmels-
dquators iibereinstimmte. Zur Zeit der Aquinoktien, d. h., wenn die Sonne genau
im Himmelsdquatorstand, fiel der Schatten der vorderen Ringhélfte genauaufdie
hintere Innenfliche. ProLEMAUS gelangt zu dem Ergebnis, da8 das tropische
Jahr etwas kiirzer als das julianische von 365!/, Tagen sei, und zwar um soviel,
daB sich die Differenz in 300 Jahren zu einem vollen Tag aufsummiert. Das er-
gibt 365324667, wihrend der moderne Wert mit 365%24220 merklich kleiner ist.
Auch aus den dlteren Beobachtungen der Solstitien durch die Schule des
MeroN und des EUKLEMON (432 v.Chr.) leitet er den gleichen fehlerhaften

2 Stumpff, Himmelsmechanik
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Wert ab, was wahrscheinlich wieder seiner schon erwihnten Manier zuzuschrei-
ben ist, die Beobachtungsdaten so auszuwihlen oder gar abzuédndern, daB die
innere Ubereinstimmung nicht leidet.

Aus der Jahresperiode T folgt unmittelbar die maitlere tigliche Bewegung der
Sonne in Linge:

y =

360°  [0°59 873304 (moderner Wert)
T o 59 8.2870 (PTOLEMAUS)

Um diesen Betrag wichst tdglich und gleichformig der Winkel ¢, unter dem
(Abb. 1) der Abstand 4 S (Apogium-Sonne) vom Mittelpunkt M des Exzen-
ters A SII aus erscheint. Man be-
S A zeichnet pals diemittlere Anomalie
der Sonne, wihrend der ungleich-
formig wachsende Winkel p, unter
dem sich die Apogiumsdistanz
der Sonne von der Erde E aus
% darbietet, ihre wakre Anomalie ge-
¥V nannt wird. Die Differenz beider
Anomalien ist der Winkel £, unter
dem die lineare Exzentrizitit M E
der Bahn von der Sonne aus er-
scheint. PTOLEMAUS gebraucht sie
im Sinne { =y — ¢, d.h. als
Korrektion, die dermittleren Ano-
malie hinzuzufiigen ist, um die
wahre zu erhalten; wir werden
T sie dagegen im umgekehrten Sinne
verwenden und ¢ = y -+ ¢ schrei-
Abb. 1. ben. Der Winkel ¢ ist dann posi-
Bewegung der Sonne nach Hipparch. tiv, wenn sich die Sonne auf dem
Wege vom Apogdum 4 zum Peri-
gium [T befindet, negativ auf der anderen Bahnhilfte. PToLEMAUS bezeichnet
diese Groe, die bald als additive, bald als subtraktive Korrektion auftritt, als
Prosthaphiresis (Zusammensetzung aus mpdodeots = Addition und dpaigeoic
= Subtraktion). Man beweist leicht, daB die Prosthaphdresis ihren Maximal-
betrag erreicht, wenn die wahre Anomalie go°® bzw. 270° betrigt. Im Dreieck
MES ist ndmlich
I- . . ME . .
(I; 1) smé'—msmtp—e:.mtp,
wobei das Verhiltnis e der linearen Exzentrizitit M E zum Exzenterradius M' S
eine Bahnkonstante, die numerische E xzentrizitit, bedeutet.

Die Linge des Apogiums ist der geozentrisch gemessene Winkel w zwischen
den Richtungen nach dem Friihlingspunkt 7\" und dem Apogidum. PToLEMAUS
hilt sie fir konstant, obwohl eine genaue Analyse des ihm zur Verfiigung
stehenden Beobachtungsmaterials das langsame Fortschreiten des Apogidums

g
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im Sinne der Sonnenbewegung hitte zutagefordern miissen. Diese Bewegung
der Apsidenlinie, d.h. der Verbindungslinie Perigdum-Erde-Apogdum, wurde
erst um goo n.Chr. von dem arabischen Astronomen ALBATEGNIUS entdeckt.
Die Summe der Winkel w und ¢, d.h. der geozentrisch gesehene Abstand der
Sonne vom Friihlingspunkt, heiBt ihre wahre Linge, die Summe w + ¢ ihre
mittlere Linge, und es gilt die Beziehung

mittlere Linge = wahre Linge + Prosthaphiresis.

Wahre und mittlere Linge, ebenso natiirlich auch wahre und mittlere Ano-
malie, stimmen miteinander iiberein, wenn die Prosthaphiresis verschwindet,
d.h. im Apogdum und Perigdum. Zur Berechnung des wahren Sonnenortes fiir
eine beliebige Zeit ¢ geniigt es also, wenn man auBer der mittleren téglichen
Bewegung » der Sonne, der Exzentrizitit ¢ und der Apogiumslinge w den
Zeitpunkt eines beliebigen Apogdumsdurchgangs kennt. Sei dieser 6, so ist

¢=‘V(t—6),

vermindert um ganze Vielfache von 360°, die mittlere Anomalie zur Zeit .
Setzen wir in (I; 1) 9y = ¢ — £, so erhalten wir

sin { = e(sin ¢ cos { — cos ¢ sin )
und hieraus zur Bestimmung der Prosthaphiresis als Funktion von ¢ die Formel

. _ esing
(;2) tgc_l—l—ecosqo'

ProLEMAUS gibt an Stelle der Apogiumsdurchgangszeit @ die mittlere Linge
der Sonne fiir eine Epoche an, die vor den Daten der 4ltesten von ihm benutz-
ten Beobachtungen liegt. Er wihlt dazu den mittleren Mittag des 1. dgyp-
tischen Thot der Regierung desNaBONASSAR in Babylon (26. Februar 747 v. Chr.).
Sei dieser Zeitpunkt E und die mittlere Linge der Sonne fiir diese Epoche 4,
so ist die mittlere Linge der Sonne zur Zeit ¢

A=14+v(t—E)
und ihre mittlere Anomalie
p=1—ow.

3. Bestimmung der Elemente der Sonnenbahn

Die Aufgabe, Exzentrizitit und Apogiumslinge der Sonnenbahn auf Grund
der Hypothese des exzentrischen Kreises zu bestimmen, ist bereits von Hipp-
ARCH vollstindig gelost worden. Es handelt sich hier um die erste Methode der
Bahnbestimmung eines Himmelskorpers, die wir in der Geschichte der Astro-
nomie antreffen. ProLEMAUs hat die gleiche Methode auf eigene Beobachtun-
gen angewandt; daB er nicht nur denselben Wert fiir die Liange des Apogidums

2%
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findet wie HipPARCH (obwohl diese in den seitdem verflossenen 285 Jahren
infolge des Vorriickens der Apsiden um fast 5° angewachsen sein muBte), son-
dern daB er auch den gleichen fehlerhaften Wert fiir die numerische Exzentrizi-
tit erhilt, auf den HipparcH infolge der Ungenauigkeit seiner Sonnen-
beobachtungen gestoBen
war, zwingt uns zuder An-

Fon, - .
\./ . = " nahme, daB PTOLEMAUS

die Ausgangsdaten seiner

Rechnung nicht aus un-
voreingenommenen Beob-

5 achtungen abgeleitet, son-
dern diese der Uberein-

stimmung mit HipparcH

X zuliebe zurechtgemacht

v hat.

Die Methode selbst be-
ruht auf der Beobachtung
der Linge der Jahreszei-
ten, die infolge der Exzen-
.§' trizitdit der Sonnenbahn
verschiedeneDauer haben.
HipparcH findet fiir die
Dauer des Friihlings, also

3,

r fiir die Zeit zwischen Friih-
S0 \ iir die W,
4 lingsdquinoktium (") und
Abb. 2. Bestimmung der Elemente Sommersolstitium  (69)
der Sonnenbahn. 04.5 mittlere Sonnentage

und fiir die Dauerdes Som-
mers, die Zeit zwischen Sommersolstitium und Herbstiquinoktium (), 92.5
Tage. Friihling und Sommer zusammen dauern demnach 187 Tage, also mehr
als die Hilfte des tropischen Jahres. Das Apogium der Sonnenbahn muf dem-
nach (Abb. 2) auf dem Sommerbogen der Ekliptik, also zwischen Y" und L
liegen, da diejenige Halfte der Ekliptik,in der das Apogdum liegt, notwendig in
der lingeren Zeit durchlaufen wird. Da auBerdem der Friihling linger als der
Sommer war, muBte (zur Zeit des HipparcH!) das Apogdum irgendwo im Friih-
lingsquadranten liegen (Punkt A4 in Abb. 2).
Der Halbmesser des Exzenters sei gleich eins gesetzt. Dann ist die lineare
Exzentrizitit M E der numerischen Exzentrizitit gleich. Man findet ¢ und w,
wenn es gelingt, die rechtwinkligen Koordinaten

X=ecosw, y=esinw

des Exzentermittelpunktes in bezug auf das durch die Geraden LuY" und ;69
gebildete Achsenkreuz zu bestimmen. Da x = sin £, ¥ = sin y, so kommt diese
Aufgabe auf die Messung der beiden Winkel { und y hinaus. Nun sind die
Lingen der Jahreszeiten und die mittlere tigliche Bewegung der Sonne be-
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kannt, also auch die beiden Winkel
a=094.57=93° 85 (nach ProLEMAUS 93° ¢')
B =0925v=091°10.1 (nach ProLEMAUS 91° 11')

bekannt. In den beiden gleichschenkligen Dreiecken M " 69 und M Y L mit
den Winkeln an der Spitze « bzw. 360° — (¢ + f) sind damit auch die Basis-
winkel 6 bzw. y gegeben. Im rechtwinkligen Dreieck V"E69 ist dann 6 + ¢

= g0° — (0 + »); setzt man hierin § = go° — %und

_etB_ ..
Y= 2 90’

so erhilt man

und es ist dann
tgw=l= s?ny; e=—Sin€.
x sin cos W

Fithren wir diese einfache Rechnung mit den von ProLEMAUS aufgerundeten
Werten fiir « und f§ durch, so ergibt sich
I
= ° / = ° ! = 6 ° ’ = —_—
y=2710, £=0"59" @=05°35, ¢=—

ProLEMAUS erhilt w = 65° 30" und e = 21—4; die kleinen Abweichungen liegen

innerhalb der Genauigkeitsgrenzen seiner Rechnung.

Es ist niitzlich, diese Ergebnisse mit denjenigen zu vergleichen, die man auf
Grund moderner Daten erhalten wiirde. Das Berliner Astronomische Jahrbuch
fiir 1950 gibt fiir den Eintritt

des Friihlingsdquinoktiums den 21.Mirz, 4 36™ Weltzeit,
des Sommersolstitiums den 21. Juni, 23P 37 Weltzeit,
des Herbstaquinoktiums den 23.Sept., 142 44™ Weltzeit

an. Daraus folgt fiir die Dauer des Friihlings 9297923, fiir die des Sommers
93%6299. Verwenden wir den modernen Wert der mittleren tiglichen Bewegung
der Sonne, v = 098565, so folgt '

a = 91°4598; f = 92°2864.
Die weitere Rechnung fithrt sodann auf

y=1%873, {= —0°413; w=7102°20, e=——.



22 Die Himmelsmechanik der Antike

Der exakte Wert fiir die Linge des Sonnenapogiums (dle gleich der Linge
des Perihels der Erdbahn ist) betrigt fiir 1950.0 @ = 102° 4.8. Die geringe Ab-
weichung des obigen Ergebnisses von diesem Wert beruht natiirlich darauf, daB
die Hypothese des exzentrischen Kreises zur Darstellung der Sonnenbewegung
nicht exakt ist. Zur Beurteilung der Zuverlissigkeit des von PToLEMAUS mit-
geteilten Wertes beriicksichtigen wir, daB (nach NEwcouMs) die Apsiden der
Erdbahn jahrlich um 6179 fortschreiten. Die Differenz von 36°5 zwischen un-
serem und dem antiken Ergebnis fiir o fithrt demnach auf eine Zeitspanne von
2123 Jahren, also auf das Jahr — 173 = 174 v.Chr. Wenn wir die Ungenauig-
keit der antiken Beobachtungen in Rechnung stellen, so lassen sich die rund
25 Jahre spiter erfolgten Beobachtungen des HipPARCH mit diesem Befund
einigermaBen in Einklang bringen, nicht aber die des ProLEMAUS, die noch
etwa 300 Jahre spéter durchgefiihrt wurden.

. .. . 1
Was die Exzentrizitit e anbelangt, so ist der von uns errechnete Betrag 299

genau doppelt so groB wie die Exzentrizitit der elliptischen Erdbahn (e = 5_91—8)

DaB dies so sein muB, werden wir spiter (Abschn. g) einsehen lernen. Der Wert

I o . e, I
e = 2—4 von HipPARCH-PTOLEMAUS, der also einer Erdbahnexzentrizitit 4_8

entsprechen wiirde, erweist sich deshalb als bei weitem zu groB. Das wird auch
‘nicht viel anders, wenn wir die sikulare Anderung der Erdbahnexzentrizitit

beriicksichtigen, die fiir die Zeit des HipparcH auf rund 0.0176 = % fithrt.

4. Die Perioden der Mondbewegung

Von den sieben Wandelsternen ist neben der Sonne nur noch der Mond nie-
mals riickldufig, sondern wandert stindig in gleicher Richtung durch den Tier-
kreis. Im Gegensatz zur Sonnenbahn ist aber der Weg des Mondes so kompli-
ziert, daB seine genaue Beschreibung nicht nur den Astronomen der Antike,
sondern auch der modernen Himmelsmechanik erhebliche Schwierigkeiten be-
reitet hat.

Die Ebene der Mondbahn ist gegen die Ekliptik um 5° 9’ geneigt. Dieser
Winkel ist nur kleinen periodischen Anderungen unterworfen, die den Alten
nicht bekannt waren. Es gentigt also hier, die Neigung der Mondbahn als kon-
stant anzusehen. Anders ist es mit der durch den Erdmittelpunkt gehenden
Knotenlinie, in der sich die Ebenen der Mondbahn und der Ekliptik schneiden.
Durch sie werden auf der Ekliptik zwei Punkte ausgezeichnet: der aufsteigende
Knoten, in dem der Mond von der Siidseite der Ekliptik auf die Nordseite iiber-
tritt, und der ihm gegeniiberliegende absteigende Knoten. Die Lingen der Knoten
sind aber nicht konstant, sondern (wiederum abgesehen von kleinen periodi-
schen Schwankungen) in einer stindigen Abnahme begriffen: Die Knoten
wandern in riickldufigem Sinn um die Ekliptik. Die etwa 18.6 Jahre betragende



Die Perioden der Mondbewegung 23

Umlaufsperiode der Mondbahnknoten war den Alten wohlbekannt und fand in
den Mondtheorien von HippArcH und ProLEMAUs volle Beriicksichtigung.
Von HipparcH itbernahm ProLEMAUS auch die Kenntnis einer periodischen
Ungleichférmigkeit der scheinbaren Bahngeschwindigkeit des Mondes. Das Prin-
zip der gleichférmigen Kreisbewegung fithrte auch hier zu der Annahme,
daB die ungleichmiBig schnelle Bewegung des Mondes durch seine verschiedene
Entfernung in verschiedenen Bahnteilen vorgetiuscht wird. Diese Annahme
lieBe sich wieder, wie bei der Sonne, durch einen exzentrischen Kreis realisieren
oder aber durch das im nichsten Abschnitt zu beschreibende Hilfsmittel des
Epizykels. Jedenfalls findet man auch hier ein Apogdum, in dem die schein-
bare Mondgeschwindigkeit ihr Minimum, und ein Perigium, in dem sie ihr
Maximum erreicht. Da diese Ungleichformigkeit der Mondbewegung sehr aus-
geprigt ist — die Abweichungen des wahren Mondorts vom mittleren erreichen
nach jeder Seite hin rund 6° -, lieB sich auch mit den primitiven Beobach-
tungsgeriten der Alten die Lage der Apsiden der Mondbahn unschwer be-
stimmen, und so konnte auch nicht verborgen bleiben, daB Perigium und
Apogium in raschem Vorwirtsschreiten auf der Mondbahn begriffen sind; in
nicht ganz neun Jahren vollenden sie einen vollen Umlauf im rechtldufigen
Sinne.

Diese besonderen Bewegungsverhiltnisse geben AnlaB zu einer Reihe von
Periodizititen des Mondlaufs, auf deren genaue Bestimmung die Alten grofe
und nicht vergebliche Mithe verwendet haben. Ihre Beobachtungen fiihrten
zunichst auf drei voneinander unabhingige Grundperioden, nimlich

1. den synodischen Monat oder die mittlere Dauer der Zeitspanne zwischen
zwei aufeinanderfolgenden Konjunktionen des Mondes mit der Sonne, d.h. die
Periode des Mondphasenwechsels;

2. den drakonitischen Monat oder die mittlere Dauer der Zwischenzeit
zwischen zwei aufeinanderfolgenden Monddurchgingen durch den aufsteigen-
den Knoten, d.h. die Periode, in der sich die Schwankungen der Mondbreite
wiederholen;

3. den anomalistischen Monat oder die mittlere Dauer der Zeitspanne zwischen
zwei aufeinanderfolgenden Apogien des Mondes, d.h. die Periode der Schwan-
kung der scheinbaren Bahngeschwindigkeit des Mondes.

Zwei weitere Perioden lassen sich ableiten, wenn man die Periode des syno-
dischen Umlaufs in geeigneter Weise mit denen der jihrlichen Sonnenbewegung
und der Prizession kombiniert. Es sind dies

4. der ¢ropische Monat oder die mittlere Dauer eines Mondumlaufs durch den
Tierkreis, d.h. die Periode der Wiederkehr gleicher Langen des Mondes;

5. der siderische Monat oder die mittlere Dauer der Zwischenzeit zwischen
zwei aufeinanderfolgenden Konjunktionen des Mondes mit dem gleichen Punkt
der Fixsternsphire.

Die Beziehungen zwischen dem tropischen und dem siderischen Monat einer-
seits und dem synodischen Monat, dem tropischen Jahr und der Prizessions-
periode andererseits ergeben sich leicht durch folgende Uberlegung: Es seien
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zur Zeit £, immer in bezug auf den Friihlingspunkt als Koordinatenanfang, die
mittleren Langen des Mondes und der Sonne L und 4; die Linge eines belie-
bigen Punktes der Fixsternsphire sei /. Zur Epoche #, seien die entsprechenden
Lingen L, 4y und J,. Bezeichnen wir ferner die Dauer des tropischen Monats
mit U, die des tropischen Jahres mit T, die Prizessionsperiode (rund 26000
Jahre, nach ProLEMAUS 36000 Jahre) mit P, so ist offenbar

27 2m 27
L-Li=—F(—t), A=dy=—p(t—t), I=hh=—5(—1).

Subtrahiert man nun die zweite und die dritte Gleichung von der ersten, so
erhilt man

L—1=Lo—-lo+2n(%—%)(t—to);

I I
L—1 =L0_IO +Zﬂ(’ﬁ'—"-1—)') (t—to).
Sei nun S die Dauer des synodischen und S’ die des siderischen Monats, so ist
1 I 1 I I I 1 I 1
G =T T FTTP-STT B

Mit Hilfe dieser Formeln lassen sich U und S’ berechnen, wenn S, T und P
gegeben sind.

Um die Grundperioden méglichst genau zu bestimmen, suchten die Alten
nach lingeren Zeitintervallen, in denen diese Perioden moglichst ganzzahlig
enthalten sind. Nach Ablauf solcher Zeitrdume oder Zyklen miissen sich alle
Erscheinungen des Mondlaufs, die durch das Zusammenwirken der elementaren
periodischen Vorginge entstehen, genau wiederholen. Das gilt besonders fiir
die mit dem Mondlauf eng zusammenhingenden Finsternisse, die im Altertum
besonders eifrig beobachtet wurden. Man kann also auch umgekehrt die Peri-
oden der Mondbewegung ermitteln, wenn es gelingt, in der Folge der beobach-
teten Sonnen- und Mondfinsternisse genaue Zyklen festzustellen.

Ein solcher Finsterniszyklus, in dem sich alle Finsternisse in der gleichen
Reihenfolge, mit den gleichen zeitlichen Abstinden und den gleichen charak-
teristischen Merkmalen wiederholen, war schon den dlteren Astronomie treiben-
den Kulturvélkern (den Chinesen, Chalddern usw.) bekannt; er wurde von den
Griechen als Saroszyklus bezeichnet. Der Saros umfaf3t 6585/, mittlere Sonnen-
tage oder 18 julianische Jahre (zu je 365!/, Tagen) und 10%/; Tage. In ihm sind
enthalten: 223 synodische, 239 anomalistische und 242z drakonitische Umliufe
des Mondes; d.h., zwei durch eine Sarosperiode getrennte Finsternisse finden
nicht nur bei der gleichen Konstellation Sonne-Mond statt, sondern auch in der
gleichen (bei Finsternissen notwendig kleinen) Distanz des Mondes vom
gleichen Knoten und schlieBlich auch im gleichen Abstand vom Apogium, d.h.
in der gleichen Phase der groBen periodischen Ungleichheit der Mondbewegung.
Dagegen treten diese beiden Finsternisse nicht genau an der gleichen Stelle der
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Ekliptik ein, da der Saroszyklus einen UberschuB von rund 11 Tagen iiber eine
volle Anzahl von Sonnenumliufen aufweist. Infolge der allerdings nur geringen
Ungleichformigkeit der Sonnenbewegung wird die Genauigkeit des Zyklus
durch diesen Umstand ein wenig beeintrachtigt.

'Die Werte, die man aus dem Saroszyklus fiir die Grundperioden der Mond-
bewegung ableitet, sind bemerkenswert genau, wie man an der folgenden
Gegeniiberstellung dieser Zahlen mit den strengen Werten der modernen Mond-
theorie erkennt:

Saroszyklus: S = 6585933

synodischer Monat:  S: 223 = 29%5306 (genau 29¥53050)
anomalistischer M.:  S: 239 = 27.5537 (genau 27.55455)
drakonitischer M.: S: 242 = 27,2121 (genau 27.21222)
tropischer M. (nach I; 3) = 27.3216 (genau 27.32158)

Der siderische Monat ist um rund 8 Einheiten der 5.Dezimale linger als der
tropische.

Trotz dieser beachtlichen Genauigkeit — die weitaus groBte Abweichung
findet sich beim anomalistischen Monat mit 1.3 Zeitminuten — war schon
HipparRcH mit diesen Werten nicht zufrieden. Durch sorgfiltige Analyse
ilterer und neuerer Finsternisse wurde er zu einem neuen Zyklus von 12600741?
gefiihrt, der 4267 synodische Monate zu je 29953059 und 4573 anomalistische
Monate zu je 27955457 umfaBt. Der synodische Monat (und damit auch der
tropische) war jetzt auf die 5. Dezimale genau, wihrend der anomalistische nur
noch eine Abweichung von knapp 2 Zeitsekunden gegeniiber dem modernen
Wert zeigte. Auch war die Forderung, daB der Zyklus eine volle Anzahl von
Sonnenjahren enthalten sollte, wesentlich besser als beim Saros erfiillt: An 345
vollen ptolemiischen Jahren fehlten nur etwa 3 Tage (die Angabe von 8 Tagen
im Almagest beruht offensichtlich auf einem Rechenfehler). Legen wir den
modernen Wert fiir die Linge des tropischen Jahres zugrunde, so reduziert sich
diese Abweichung sogar auf etwa 1!/, Tage.

Der drakonitische Monat 148t sich durch den hipparchischen Zyklus nicht so
genau festlegen, da die beiden durch dieses Zeitintervall getrennten Finster-
nisse im entgegengesetzten Knoten stattfinden. Wenn wir die Zahl der im
Zyklus enthaltenen drakonitischen Umliufe mit 46301/2 ansetzen, kommen wir
zu dem etwas zu groBen Wert von 27%2124. Durch eine parallele Untersuchung
stellt HipPARCH aber fest, daB 5458 synodische Monate genau gleich 5923 dra-
konitischen Monaten sind. Mit Hilfe des schon gesicherten Wertes fiir die
synodlsche Umlaufszeit erhilt er so die Linge des drakonitischen Monats zu
27921222 in genauer Ubereinstimmung mit dem modernen Befund.

AuBerst merkwiirdig ist, daB ProLEMAUS, der sonst geneigt ist, mangelhaft
begriindete Ergebnisse des HipPARCH sogar dann zu iibernehmen, wenn sie
mit dem eigenen Befund in Widerspruch stehen, sich mit diesen mit groBem
Scharfsinn und vorbildlicher Griindlichkeit abgeleiteten Resultaten seines
groBen Vorgingers nicht zufrieden gibt. Nur die synodische und die tropische
Umlaufszeit des Mondes hilt er fiir gentigend gesichert, wihrend er die iibrigen
Perioden noch zu verbessern sucht. Zweifellos leitet ihn hierbei die Erkenntnis
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der ungeheuren Bedeutung genauer Zahlenwerte fiir die fundamentalen astro-
nomischen Konstanten, zu einem anderen Teile auch wohl das Bediirfnis, die
von ihm zum Zwecke der Verbesserung dieser Konstanten erfundenen neuen
Reduktionsmethoden ins rechte Licht zu riicken. Diese Methoden, die wir in
den nichsten Abschnitten kennenlernen werden, verdienen dies auch wirklich:
Sie entsprechen im Prinzip vollig den modernen Verfahren bei der Trennung
und Bestimmung von einander iiberlagernden Periodizititen. Die Ergebnisse,
die ProLEMAUs im Falle der Perioden der Mondbewegung mit ihnen erzielt
hat, sind allerdings vollig illusorisch: Die von ihm gefundenen Korrektionen
der Perioden des HipPARCH betragen nicht mehr als 1-2 Einheiten der sechsten
Dezimale und sind reine Zufallsergebnisse ohne reale Bedeutung.

5. Die grofe Ungleichheit der Mondbewegung. Einfiihrung des Epizykels

Die erwihnte Methode des ProLEMAUS zur Verbesserung der Mondperioden
setzt nicht nur die Kenntnis gendherter Werte dieser Konstanten voraus, die
ja von HipPARCH iiberliefert waren, sondern auch bereits eine formale Theorie
der Mondbewegung selbst. Ferner wird, da es sich hier um die Verwertung von
Finsternissen handelt, auch die vollstindige Theorie der Sonnenbewegung vor-
ausgesetzt. Bei diesen Analysen bevorzugt ProLEMAUS mit Recht die Mond-
finsternisse, deren Eintrittszeiten unabhingig vom Standpunkt des Beobach-
ters sind, wihrend der Verlauf der Sommenfinsternisse wesentlich durch die
Parallaxe des Mondes mitbestimmt wird. Das hitte die rechnerische Verwer-
tung der Sonnenfinsternisse nicht unbetrichtlich erschwert, wenn auch die
Mondparallaxe den Alten schon recht genau bekannt war. Zur Festlegung der

-
ahn— Q
Abb. 3. Mondbahn und Ekliptik.

Mandb.

Mondorter zur Zeit der verwendeten Finsternisse benutzt ProLEMAUS die nach
der weiter oben beschriebenen Theorie der Sonnenbewegung konstruierten
Sonnentafeln: Die Lange des Mondes z.Z. der Mitte einer Mondfinsternis er-
gibt sich aus der gleichzeitigen Linge der Sonne durch Hinzufiigen von 180°.

Zwecks Vereinfachung der mathematischen Uberlegungen denkt sich PToLE-
MAUS die Ebene der Mondbahn in die Ekliptik verlegt, d.h., er identifiziert die
ekliptikalen Lingen des Mondes mit den in der Mondbahn gezihlten. Den
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Unterschied hilt er wegen der geringen Neigung der Mondbahn fiir unerheb-
lich. In Wirklichkeit kann der dadurch begangene Fehler bis auf rund %’ an-
wachsen. Sei (Abb. 3) K der aufsteigende (oder absteigende) Knoten der Mond-
bahn, V'K = ) seine Linge, I = V"Q die ekliptikale Linge des Mondes M,
1 die Bahnneigung, K M = u der Abstand des Mondes vom Knoten (das , Argu-
ment der Breite“) und {) + # die Linge des Mondes in der Bahmn, so gilt im
rechtwinkligen spharischen Dreieck K MQ

tg(l — ) =tgucosi.
Firr die Differenz zwischen Linge in der Bahn und ekliptikaler Linge erhilt

man dann

tg(Q+u—l)=tglu—(— Q)=

tgu (T — cos i)
14 tg2ucoss

Zur Feststellung der Extrema differenzieren wir nach # und erhalten nach ein-
facher Rechnung

(1 — cos7) (1 — tg%u cos 1)
cos? (1 + tg%u cos 1)?

S gm— - Q=

Die Extrema treten also bei tg? % = sec ¢ auf, d.h. fiir » = +45° 3'5 bzw.
% = +134° 56.5, wenn wir fiir # den modernen mittleren Wert 5° ¢’ einsetzen.
Der Extremwert selbst ergibt sich dann aus

tg [ — (0 — §Q)lextr. = =+ Vsecd sinzg zu [ — (I — §)lextr. = +0°69.

Auf die nachfolgenden Uberlegungen hat die Vernachlissigung dieser Differenz
keinen EinfluB, da ja die verwendeten Orter des Mondes alle in unmittelbarer
Nihe der Knoten liegen, wo # — (I — {3) = o ist.

Wenn wir also von den mit der Neigung der Mondbahn gegen die Ekliptik
zusammenhingenden Besonderheiten der Mondbewegung absehen diirfen,
bleiben von den bisher genannten Eigenschaften der Mondbahn nur noch die
groBe Ungleichheit in Linge bestehen, die auch als , Mittelpunkisgleichung*
bekannt ist, auBerdem die rechtldufige Bewegung der Apsiden. Eine zweite
kleinere Ungleichférmigkeit der Mondbewegung, die , Evektion”, geht in die
Finsternisbeobachtungen ebensowenig ein wie die soeben beschriebene ,,Re-
duktion auf die ERliptik“. Diese zuerst von HIPPARCH bemerkte und von
ProLEMAUS griindlich untersuchte Periodizitit bewirkt lediglich,wie im ndchsten
Abschnitt gezeigt werden soll, eine Schwankung der Konstanten der Mittel-
punktsgleichung im Rhythmus eines halben synodischen Monats. Aus den
Finsternissen allein, die ja in bezug auf einen solchen Rhythmus stets diegleiche
Phase zeigen, lieBe sich also eine Trennung der Evektion von der Mittelpunkts-
gleichung nicht erzielen. Man miiBte dazu Beobachtungen der Mondlinge in
den Quadraturen (im ersten und letzten Viertel) zu Hilfe nehmen. Auf diese
Weise hat ProLEMAUs die Evektion abgeleitet.
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Bei Beschrinkung auf Mondorter wihrend der Finsternisse (oder ganz all-
gemein in den Syzygien, d.h., bei Voll- und Neumond) kommt PTOLEMAUS
also mit einer provisorischen Mondtheorie aus, die nur eine einzige periodische
Ungleichheit zeigt. Diese hitte er wieder, wie in der Theorie der Sonnenbahn,
durch Emfuhrung eines exzentrischen Kreises beschreiben kénnen; nur hitte er

dann den Mlttelpunkt (und damit

auch die Apsidenlinie) des Ex-
zenters eine langsame Kreisbe-
wegung um die Erde ausfithren
lassen miissen, um das Vorriicken
der Apsiden darzustellen. Er zieht
es aber vor, den exzentrischen
v Kreis als mathematisches Hilfs-
mittel fiir die spitere Vervoll-
stindigung der Theorie durch die

Evektion aufzusparen und fiir die

provisorische Theorie den Epi-

zykelalsgleichwertiges Hilfsmittel
zu verwenden.

Die einfachste Form der Dar-
stellung der Bahn eines Himmels-
kérpers durch Einfithrung des
Epizykels ist folgende: Auf einem
um die Erde E als Mittelpunkt
konstruierten Kreis, dem Deferen-

Epizyse,
,A‘
(57

I ten, bewegt sich (Abb. 4) ein

Abb. 4. Punkt Z mit gleichférmiger Ge-

GroBe Ungleichheit der Mondbewegung. schwindigkeit. Diesen Punkt, den
Ersatz des exzentrischen Kreises Epizykelmittelpunkt, umkreist
durch den Epizykel. wieder, ebenfalls gleichmiBig

schnell, der Himmelskorper M auf
einem kleineren Kreise, dem Epizykel. Umlaufssinn und Winkelgeschwindig-
keit beider Bewegungen sowie das Verhiltnis der Halbmesser der beiden
Kreise kénnen zur Darstellung verschiedener Bewegungen beliebig variiert
werden.

Der Ortsvektor EM des Himmelskérpers erscheint als Summe von zwei
Vektoren EZ und ZM, deren Linge konstant bleibt. Da diese beiden
Vektoren in ihrer Reihenfolge vertauschbar sind (kommutatives Gesetz der
Vektorenaddition), so 1aBt sich die Bewegung von M auch als Kreisbewegung
um den Punkt Z’ darstellen, der seinerseits auf einem kleineren Kreise um die
Erde liuft. Eine spezielle Anwendung dieser Vertauschungsregel ergibt, da3
man die Bewegung auf einem exzentrischen Kreis mit festem Mittelpunkt auch
als Epizykelbewegung darstellen kann. Ist also Z’ der Mittelpunkt eines exzen-
trischen Kreises mit der festen Apogdumsrichtung EZ’A’, so ergibt sich die
Bewegung von M auf diesem Kreise ebenfalls, wenn man den Epizykelmittel-
punkt Z auf dem Deferenten um E kreisen 16t und den Fithrungsvektor Z M
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des Himmelskoérpers im Epizykel stets der konstanten Richtung EZ’ parallel
bleiben 148t.

ProLEmAUS bezeichnet den erdfernsten Punkt A4 des Epizykels als dessen
Apogdum und beschreibt die jeweilige Stellung von M im Epizykel durch den
Winkel AZM = ¢. Im Falle der exzentrischen Kreisbewegung ist, wie Abb. 4
unmittelbar erkennen 148t, dieser Winkel stindig gleich der mittleren Anoma-
lie MZ'A’; nur wird ¢ im exzentrischen Kreise vom Apogium E A’ des Exzen-
ters aus im rechtldufigen, im Epizykel dagegen vom Apogium Z 4 aus im riick-
liufigen Sinne gezihlt. Es ist ferner klar, daB der Winkel EMZ gleich der
wahren Anomalie g und der stets spitze Winkel ZE M gleich der Prosthaphi-
resis ¢ ist.

Von diesem Schema unterscheidet sich die provisorische Mondtheorie des
ProLemAus nur dadurch, daB die Apsidenlinie E A’ nicht festliegt, sondern
sich mit einer Umlaufszeit von 8.85 Jahren in rechtliufigem Sinne dreht; d.h.,
die Apogiumslinge w ist nicht konstant, sondern nimmt langsam zu. Im
Sinne der Epizykelbewegung bedeutet das, daB der zu EZ’ parallele Vektor ZM
zu einem vollen Umlauf im Epizykel (von Apogium zu Apogium) etwas mehr
Zeit benotigt als der Epizykelmittelpunkt zu einem vollen Umlauf im Deferen-
ten (von Friihlingspunkt zu Frithlingspunkt). Die mittlere Anomalie ¢ des
Mondes nimmt in einem anomalistischen Monat gleichmiBig um 2z zu. Als
mittlere Linge, die, ebenfalls gleichférmig, in einem tropischen Monat um 2x
wichst, bezeichnen wir den Abstand 4 = w + ¢ des Epizykelapogiums vom
Frithlingspunkt. Der Winkel ! = Y'EM ist die direkt beobachtbare wakre
Linge, die Differenz ¢y =1 — w die wahre Anomalie des Mondes, wihrend
¢ = 2 — I, wie schon erwihnt, der Prosthaphiresis des exzentrischen Kreises
entspricht.

Die Bestimmung der Bahnkonstanten (Exzentrizitit, d.h. hier das Verhilt-
nis zwischen den Halbmessern des Epizykels und des Deferenten, und Linge des
Apogiums des Epizykels zu einer gegebenen Epoche) ist wieder eine dhnliche
Aufgabe wie die in Abschn. 3 geloste. Ein prinzipieller Unterschied zwischen
beiden Problemen besteht nicht; nur lagen im Fall der Sonne die Verhiltnisse
etwas einfacher: In der Sonnentheorie war die Apsidenlinie (nach der Annahme
des ProLEMAUS) unbeweglich, ferner waren die Differenzen der drei benutzten
wahren Lingen der Sonne (zweier Aquinoktien und des dazwischenliegenden
Solstitiums) je 9o°, was die rechnerische Durchfithrung der Aufgabe wesent-
lich erleichterte.

Auch die vorliegende Aufgabe erfordert wieder die Kenntnis dreier Orter —
hier der wahren Lingen des Mondes wihrend dreier Mondfinsternisse, die zeit-
lich méglichst dicht aufeinanderfolgen —, ferner der genauen Eintrittszeiten die-
ser Ereignisse. Die letzteren waren unmittelbar gegeben und wurden von
ProLEMAUS, sofern es sich um Finsternisse handelte, die nicht in Alexandrien
beobachtet worden waren, auf die Ortszeit von Alexandrien reduziert. Diese
Zeiten bezogen sich auf die Mitte der Finsternisse, die geniigend genau mit der
Opposition Mond-Sonne in Linge zusammenfillt. Die wahren Lingen des
Mondes konnten dann, wie erwidhnt, aus den Sonnentafeln entnommen
werden.
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Seien ¢, %,, !, die drei Finsterniszeiten und /,, I,, /, die zugehérigen wahren
Lingen des Mondes, ferner

360°
27.32158

360°
n, = = 13°1764; #n,= —————— = 13°00
¢ 3-1704; #, 27.55457 3-0050
die mittlere tigliche tropische und anomalistische Bewegung des Mondes. Da
die obigen Zahlen, die ProLEMAUS von HIPPARCH iibernommen hatte und
um deren Verbesserung er sich bemiihte, aus Zeitintervallen von mehreren
‘ Jahrhunderten  abgeleitet
worden waren, durften sie fiir
die sehr viel kiirzeren Zwi-
schenzeiten zwischen den drei
Finsternisterminen als streng
richtig angesehen werden. Mit
ihnen ergeben sich
1. die Differenzen der mitt-
leren Lingen des Mondes in
denbeiden Intervallen?, — ¢,
und ¢, — f,:

Ay — Iy = my(ty — 1);
Ag — Ay = my(ty — 1);

2. die Differenzen der mitt-
leren Anomalien:

=@y — @y =n,(ty — ty);
B=gs— gp=mn,(ts — b);
3. dieUherschiisse der mitt-

leren Lingendifferenzen iiber
die wahren:

y=U—4) -5k

=6z~ 615
0= —4) — (b — 1)
Abb. 5. Bestimmung der Mondbahnelemente =4 — G,
aus drei Mondfinsternissen. die gleich den Differenzen der

Prosthaphiresen sind.

In Abb. 5 sind die drei Stellungen des Mondes (M,, M,, M) auf dem Epi-
zykel, bezogen auf den beweglichen Leitstrahl EZ des Epizykelmittelpunkts,
angedeutet. Die Differenzen « und f der mittleren Anomalien sind offenbar
durch die Winkel M,Z M, und M,Z M, gegeben, die Uberschiisse y und  durch
die Winkel M, E M, und M, E M,. Die Aufgabe lautet dann, aus den bekannten
GroBen «, B, y, 6 die wahre Anomalie y = @ — { und die mittlere Anomalie ¢
des zweiten Mondortes zu finden, womit dann eo ipso auch die der beiden an-
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deren Orter bekannt sein werden, ferner das Verhiltnis des Epizykelhalbmessers
Z A zu dem Deferentenhalbmesser EZ. Setzt man den ersteren gleich eins, so
geniigt es, die Lange R der Strecke EZ zu finden.

Im Dreieck EZ M, ist nach dem Sinussatz
Rsin { =sinyp.
Ebenso ist in den Dreiecken EZM, und EZ M,
Rsin(§ —y)=sinf(p —a) = (=] =sin(y —a+7),
Rsin ({4 0) =sin[(p+ ) — ((+ 0)] =sin(y + f — 9).

Setzt man zur Abkiirzung

(I;4)

%#=Rcos{; y=Rsin{=siny; z=cosy,

so ergeben die Gleichungen (I; 4) nach Auflésung der Sinusausdriicke

(1) (I1)
ycosy —xsiny = ycos (@ —y) —zsin (@ — p) | sin (f — d) | sind
ycosd+ xsind = ycos(f — 08)+ zsin (f — 0) | sin (@ — ) | siny.

Multipliziert man diese Gleichungen mit den Faktoren (I) und (II) und addiert,
so findet man

y [cosysin (B — ) + cosdsin (@ — )] — x4 =ysin(@+ f—y — 9),
ysin (y 4+ 8) = y [siny cos (f — d) + sin d cos (@ — »)] + z4,
mit A4 = sinysin (8 — 6) — sin d sin (@ — p),
und daraus sogleich
y 4

tgc:?=cosysin(ﬂ—ﬁ)-i-cosésin(a—}')A—Sin(“‘l‘ﬁ_?'“6),
I;5) A
tey = y _

z sin(y+4 8) —sinycos (B — 0) —sindcos (@ — )
Die beiden Hauptunbekannten des Problems, ¢ und R, sind dann durch
sin p

(I;6) ¢=C+w;R=SmC

gegeben, und es ist schlieBlich auch, fiir den Termin der zweiten Finsternis,
wo=1I—1y.

Die in Abschn. 3 geléste Aufgabe der Bestimmung der Elemente der
Sonnenbahn ist in der obigen als Spezialfall enthalten. Dort ist #, = #1,, da
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nach Meinung des PToLEMAUS eine Apsidenbewegung nicht stattfindet. Dem-
nach wird 4, — 4, = a, 4, — 1, = f. Ferner hat man/, = o, [, = %, ly=m,

alsoy=a—£, 6=ﬂ—§-undsomit
2 2
n
a—y=ﬂ—6=—2—; a+pf—y—0=m.

Die Losung (I; 5) lautet demnach im Falle der Sonnenbahnbestimmung nach
Abschn. 3:

_siny—sind _ y—906 ., y—0_ a—§
tgc—cosy—}-cosé_t 2 ' &= 2 2
. . siny——a sina_ﬁ
tngsmy—smb___ 2 _ 2

sin (v + 9) sin y—-: 4 cos> 42- B

Dafernerw =1, —p = 1:— — p, so ist tg w = ctg p, schlieBlich auch, iiberein-
stimmend mit den Ergebnissen von Abschn. 3,

1 sin .o —
e=— = — ¢ = sin ﬁsecw.
R sin 2

Die nun folgenden numerischen Beispiele beziehen sich auf die beiden Bahn-
bestimmungen, die ProLEMAUS aus je drei Mondfinsternisértern vorgenommen
hat. Diese beiden Beobachtungsgruppen liegen zeitlich weit auseinander und
eignen sich daher gut zur genauen Bestimmung der Periode des anomalistischen
Monats. Die erste Gruppe stammt aus alten babylonischen Finsternisbeobach-
tungen um %20 v.Chr., die andere ist von ProLEMAUS selbst beobachtet wor-
den.

Nachstehende Ubersicht gibt Ausgangsdaten und Ergebnisse der leichten
Rechnung. Alle Zeiten beziehen sich auf die Mitte der Finsternisse und sind in
wahrer Sonnenzeit fiir Alexandria gegeben; die Zwischenzeiten enthalten be-
reits die von ProLEMAUS berechnete Reduktion auf mittlere Ortszeit, d.h. die
Beriicksichtigung der Zeitgleichung.

A. Alte Finsternisse (beobachtet in Babylon):

1. totale Mondfinsternis, 19.3.721 v.Chr., 8" 40™ abds. J, = 174° 30’
2. partielle Mondfinsternis, 8.3.720 v.Chr., 11 10 abds. /, = 163 45
3. partielle Mondfinsternis, 1.9.720v.Chr., 7 40 abds.l; =333 15
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ty— t,=354%11 ¢t — 1, = 176984
lp— h=349°15" Iy — b= 169° 30’
Ag — A =345°51" 43— A =170° 8
o = 306° 25 B = 150° 26’
= =3°24 o= o°37
Daraus nach (I; 5, 6)

t{=0°59"; p=11°25"; @=12°24"; R =11.50

in Ubereinstimmung mit den von PToLEMAUS nach einer sehr umsténdlichen
geometrischen Rechnung gefundenen Werten.

B. Neuere Finsternisse (beobachtet in Alexandrien):

1. totale Mondfinsternis, 6. 5.133 n.Chr., 11® 15™ abds. I; = 223° 15
2. partielle Mondfinsternis, 20.10.134 n.Chr., 11 0 abds.l; = 25 10
3. partielle Mondfinsternis, 6. 3.136 n.Chr.,, 4 o0 morg.l; =164 35

ty — t; = 5319084 t; — t; = 5029229
ly — Iy =161°55" I, — l; =138°55
A — A3 =169° 38" 13 — A5 = 137° 34’
« = 110° 22 "= 81°37
v'= 7°43 ' =—1°2r
Daraus nach (I; 5, 6)
U'=4°21"; 9’ =60°15"; ¢ =064°36"; R =1154.
ProLEMAUS findet
'=4°20"; y =60°18; @ =64°38"; R =1146.

Die Abweichungen liegen im Bereich der Abrundungsfehler der Rechnung und
weit innerhalb der durch die Ungenauigkeit der Beobachtungen bedingten
Grenzen, die man wohl kaum kleiner als 410" anzunehmen berechtigt ist. Als
endgiiltigen Wert fiir R nimmt PTOLEMAUS 11.5 an.

Die beiden mittleren Anomalien ¢, ¢’ liefern die Phasen der auf das jeweilige
Apogium bezogenen mittleren (anomalistischen) Bewegung des Mondes fiir die
Zeiten der zweiten Finsternis jeder Gruppe. Fiir die Zeiten der vorhergehenden
Durchginge durch das Apogium erhilt man daher

T=t2—;l=t2—o995; T’=t§—£ =1y — 4%4.

a nﬂ

Diese Zeiten sind auch mit einem roh genéherten #, geniigend sicher. Nun be-
trigt die zwischen den beiden Finsternissen verflossene Zeit t; — ¢, = 311783.97
mittlere Sonnentage, die Zeit zwischen den beiden Apogien also

T — T =1ty — &, — 3%09 = 311779%8.

3 Stumpff, Himmelsmechanik
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Dividiert man diese Zeit durch die Anzahl 11315 der in ihr zuriickgelegten
vollen anomalistischen Monate, so erhilt man fiir die Periode der anomali-
stischen Bewegung den Wert 27955457, der mit dem von HipparRcH gefun-
denen genau -iibereinstimmt und von dem modernen Wert um zwei Ein-
heiten der letzten Dezimalstelle abweicht. Wenn PToLEMAUS diese Periode
noch auf einige Dezimalstellen mehr angibt (die von ihm gefundene Abweichung
wird erst in der sechsten Dezimale merklich), so ist dies ein reines Rechenergeb-
nis ohne reale Bedeutung.

6. Die Evektion

ProrLeEmAus hatte bemerkt, daB die aus der provisorischen Theorie folgenden
wahren Lingen des Mondes nicht immer mit den beobachteten tibereinstimmen.
Nur in der Umgebung der Syzygien (Voll- und Neumond) lieBen sich, innerhalb
der zu erwartenden Genauigkeits-
grenzen, die Abweichungen des wah-
ren vom mittleren Mondlauf durch
den Epizykel mit dem Halbmesser-
verhiltnis 1 : 11.5 darstellen. AuBer-
halb der Syzygien, am fiihlbarstenin
den Quadraturen (erstes und letztes
Viertel), erscheint die Amplitude der
periodischen Schwankung der Diffe-
renz ,,wahre minus mittlere Lange”
groBer, so daB es den Anschein hatte,
als sei an diesen Stellen der Mond-
bahn der Epizykel des Mondes in
groBere Erdnihe geriickt. Auch
HirparcH hat diese Erscheinung, die
spiter als Evektion bezeichnet wurde,
schon bemerkt, aber erst PTOLEMAUS
hat versucht, sie in eine Theorie der
Mondbewegung einzubauen. Er er-
reichte das, indem er den Mittelpunkt
des Mondepizykels, wie in der provi-
sorischen Theorie, durch einen von der Erde ausgehenden, sich gleichmiBig
drehenden Leitstrahl herumfiihren lieB, nun aber auf einem exzentrischen Kreis,
dessen Mittelpunkt zudem nicht festliegt, sondern sich seinerseits gleichmaBig
auf einem Kreis um die Erde bewegt. Diese Bewegung mu8 mit der des Mondes
und der Sonne so abgestimmt sein, daB die beobachtete Erscheinung auftritt,
daB also der Epizykelmittelpunkt in den Syzygien im Apogium, in den Qua-
draturen im Perigium des Exzenters steht.

Abb. 6 moge dies veranschaulichen. Wieder sei die Mondbewegung in die
Ebene der Ekliptik verlegt. EY" sei die feste Richtung nach dem Friihlings-

punkt, ES die Richtung nach der die Ekliptik gleichmiBig umkreisenden mitt-

Abb. 6. Die Evektion.
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leren Sonne, EZ ;le die nach dem Mittelpunkt des Mondepizykels und dem
mittleren Mond M, der, ebenfalls mit konstanter Winkelgescllwindigkeit, die
EXkliptik in einem tropischen Monat umliuft. Es ist dann V"EM = 1 die mitt-

lere Linge des Mondes, " ES = 4’ die mittlere Linge der Sonneund SEM =D
der Abstand des mittleren Mondes von
der mittleren Sonne, also ein Winkel,
der in einem synodischen Monat um
2n wichst und z.Z. des mittleren Neu-
monds null ist. Der Epizykelmittel- z
punkt Z moge auf einem Exzenter mit 2
dem Mittelpunkt C liegen und durch r
den Leitstrahl EM auf ihm herum-

gefiihrt werden. Dabei soll C die Erde

mit gleichfsrmigerWinkelgeschwindig-

keit umkreisen, und zwar so, daB3 Z ins

Apogdum des Exzenters gelangt, wenn Ta
M und S in Konjunktion oder Opposi- c
tion stehen, ins Perigdum aber in den °
Quadraturen. Das ist offensichtlich er- bE
fiillt, wenn M und das Apogidum A des
Exzenters immer genau symmetrisch

zur Richtung E S liegen. Es mu dem-

nachderWinkelA EM = 2D sein,also r
durch die Richtung nach der mittleren
Sonne halbiert werden. Die Linge des A
Apogdums des Exzenters ist demnach
o =1 —2D,und A bewegt sich von
S aus riickliufig. bid
Die wichtigsten Konstanten dieser Abb. 7. Schwankung
Bewegung sind die Exzentrizitit des der Mittelpunktsgleichung
Exzentersunddas Verhiltnis der Halb- infolge der Evektion.
messer von Epizykel und Exzenter.
ProLeEMAUSs leitet diese GréBen aus der Beobachtung ab, daB in den Syzygien
der Betrag der Differenz zwischen wahrer und mittlerer Lange des Mondes bis
auf 5°, in den Quadraturen aber bis auf 7° 40’ anwachsen kann, In Abb. 7 ist
der Mondepizykel zweimal gezeichnet, im Apogdum und im Perigdum des
Exzenters. Die maximalen Betrige der Elongationen des Mondes vom Epi-
zykelmittelpunkt, also die Amplituden der Mittelpunktsgleichung, sind durch
die Winkel 7, = 5°0’ bzw. n, = 7° 40’ gegeben. Setzen wir den Halbmesser des
Exzenters gleich eins, soist E C = e die numerische Exzentrizitat des Exzenters.
Zwischen ihr und dem Halbmesser » des Epizykels bestehen dann die Be-
ziehungen

Y]

7
I+ e

= sin 5, = 0.0872; -I,Te = sin7, = 0.1334,

3‘
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aus denen leicht

7 = 0.1055; € = 0.20094
folgt. In den Syzygien ist cosec 7, = 11.47; dieser Wert stimmt innerhalb der
Genauigkeitsgrenzen mit dem von R der provisorischen Theorie iiberein.

Die Bewegung des Epizykels ist damit vollstindig beschrieben. Es fehlt jetzt
noch eine Angabe dariiber, wie die Bewegung des Mondes im Epizykel erfolgen
soll, d.h., von welchem Punkt
des Epizykels aus die anomalisti-
sche Bewegung des Mondes zu
zéhlen ist. Nennen wir diesen
Punkt das wahre Apogium des
Epizykels, so ergeben sich fiir
seine Orientierung tatsichlich
verschiedeneMoglichkeiten,iiber
die nur weitere Beobachtungen
entscheidenkonnen. Esldgenahe
zuvermuten, daB daswahre Apo-
gium entweder durch den Leit-
strahl EZ (Abb. 8) von der Erde
aus oder durch CZ vom Mittel-
punkt des Exzenters aus auf den
Epizykel projiziert wird, also
entweder in F oder D liegt. Eine
Entscheidung dariiber gelingt
am besten, wenn sich der Epi-

Abb. 8. Drehpunkt der Apsidenlinie zykel moglichst in der Mitte

des Mondbahnepizykels. zwischen dem Apogium 4 (Sy-

zygien) und dem Perigium [T

(Quadraturen) des Exzenters befindet, also, wenn die Phasengestalt des Mondes

entweder die Sichelform oder die bikonvexe Form zeigt. Bestimmt man in solcher

Lage des Epizykels die wahre Linge des Mondes, wenn die mittlere Anomalie

gerade null ist, so ist durch den Mondort das wahre Apogdum des Epizykels

gegeben. PToLEMAUS findet aus einer Reihe von Beobachtungen, da8 das wahre

Apogium weder in F noch in D liegt, sondern in dem Punkte G, in den von

einem festen Punkt Q der Apsidenlinie des Exzenters aus der Punkt Z auf den

Epizykel projiziert wird. Dieser Punkt Q hat vom Exzentermittelpunkt C aus

die Entfernung 2e¢ in Richtung auf das Perigium des Exzenters, so daB die
Strecke CQ durch den Erdort E halbiert wird.

Durch diese Festlegung des Punktes Q, den man auch als den ,,Drehpunkt
der Apsidenlinie des Epizykels“ bezeichnen kann, ist nun auch der theoretische
Mondort fiir beliebige Zeiten bekannt. Die der Zeit proportional wachsende
mittlere Lange des Mondes

T

A=ly+ m(t —4)

(4 = mittlere Linge zur Epoche #) liefert die Richtung EZ vom Erdmittel-
punkt nach dem Mittelpunkt des Epizykels. Die Richtung E A nach dem Apo-
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gium des Exzenters wird erhalten, indem man den ebenfalls mit der Zeit
gleichmiBig wachsenden Winkel

@ =2n—1t)= o+ 21, (¢ — to)

(n, = mittlere tédgliche synodische Bewegung des Mondes, ¢, = Zeit der letzten
Konjunktion in Linge zwischen der mittleren Sonne und dem mittleren Mond)
in riickliufigem Sinne von EZ aus abtrigt. Mit der Exzentrizitit e lassen sich
dann die Punkte C und Q auf dieser Richtung abtragen. C ist der Mittelpunkt
des Exzenters, dessen Halbmesser gleich der Einheit gesetzt werde; der Leit-
strahl QZ definiert auf dem &uBeren Bogen des um Z mit 7 als Halbmesser be-
schriebenen Epizykels das wahre Apogidum G. Von ZG aus wird dann, wiederum
in riickldufigem Sinn, die mittlere Anomalie

= m,(t —t;) = pig + n,(t — 1)

(¢, = Zeit des letzten wahren Apogdums) auf dem Epizykel abgetragen. Damit
ist der Mondort gefunden. Die Differenz zwischen der wahren und der mittleren
Linge,des Mondes ist der Winkel ZE M -= {, ihn gilt es aus den unmittelbar
gegebenen GréBen (e, 7, @, u), von denen er offenbar allein abhingt, abzuleiten,
was folgendermaBen geschieht:

Die Entfernung p des Epizykelmittelpunkts von der Erde ist eine Funktion
von ¢ allein. Im Dreieck ECZ ist ndmlich

(I; %) pg=-¢ecosp -+ cosy; siny = esing.
Auch der Winkel EZQ = % hangt nur von ¢ ab, denn es gilt im Dreieck EZQ
psiny = esin (p — %) = ¢ (sin p cos n — cos @ sin y),
also
e .
—sin g
(I;8) tgn = p :
I+ —cos
0 @
Die gesuchte GroBe ¢ (Elongation vom Epizykelmittelpunkt) berechnet. man

dann leicht aus dem Dreieck ZE M, in dem der Winkel ZME =6 =p+ n —¢
ist. Nach dem Sinussatz ergibt sich

gsin{ =7sind =7 [sin (u + %) cos { — cos (4 + #) sin ],

woraus

r .
2 (e +n)
I;9) tgl =

I+ %COS(qun)

folgt. Die wahre Linge des Mondes in der Bahn ist dann
(I; 10) L=1-¢.
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7. Vergleich der Mondtheorie des PTOLEMAUS mit der modernen

Esist recht aufschluBreich und trigt viel zum Verstdndnis dieser auf den ersten
Blick recht kiinstlich anmutenden Konstruktion bei, wenn man ihre Ergebnisse
denjenigen der modernen Himmelsmechanik gegeniiberstellt. Insbesondere
wird es auf diese Weise gelingen zu zeigen, daB die Einfithrung des Drehpunktes
der Epizykelapsiden gerade an der Stelle Q notwendig war, wenn man der be-
sonderen Erscheinungsform der Evektion gerecht werden will.

In der modernen Theorie der Mondbewegung wird die wahre Linge des
Mondes durch eine Reihe mit sehr vielen periodischen Gliedern dargestellt. Hier
diirfen wir uns auf diejenigen beschridnken, deren Amplituden besonders groB
sind. Diese Glieder sind daher auch schon lange bekannt und fithren meist
besondere Bezeichnungen, die sie aus der Menge der iibrigen hervorheben.
Wenn wir nur diese Glieder beriicksichtigen, so lautet die Formel fiir die wahre
Mondlinge

=4+ 377'3sing + 12'8sin 2g + --- (Mittelpunktsgleichung)

+ #6'4sin (2D — g) (Evektion)

— 2osinD (parallaktische Gleichung)
(L; 11) + 139'5sin2D (Variation)

+ 1r'2sing’ (jahrliche Gleichung)

— (Reduktion auf die Ekliptik)

6'gsinz(l — §))
Hierbei bedeutet, wie schon in Abschn. 6 (Abb. 6), D das Argument des syno-
dischen Mondumlaufs (das mittlere Mondalter), g die in der modernen Astro-
nomie vom Perigdum aus gerechnete mittlere Anomalie des Mondes, g’ die der
Sonne, 4 wie bisher die mittlere Linge, ! die wahre Linge des Mondes und §)
die Linge des aufsteigenden Knotens der Mondbahn. Die Reduktion auf die
EFRliptik haben wir bereits in Abschn. 5 abgeleitet. Die Variation und die jihr-
liche Gleichung, die an Amplitudenbetrag gleich hinter den beiden groBen
schon den Alten bekannten periodischen Ungleichheiten, der Mittelpunkis-
gleichung und der Evektion, rangieren, sind von TycHo BRAHE entdeckt worden.

Setzen wir anstatt der Lange in der Bahn (L), deren Berechnung in der alten
Theorie nach den Formeln (I; 7-10) vor sich ging, die Linge in der Ekliptik,
so ist, bis auf zu vernachlissigende Glieder hoherer Ordnung,

l=1—¢—6gsinz(l— ).

Da wir das 1. und 3. Glied der rechten Seite auch in der modernen Theorie an-
treffen, so kommt es nur noch darauf an, die GroBe £ in eine trigonometrische
Reihe zu entwickeln und die Amplituden ihrer Glieder mit denen von (I; 11)
zu vergleichen. { ist eine periodische Funktion der beiden gleichmiBig mit der
Zeit fortschreitenden Winkelargumente y und ¢. Diese Argumente kommen
nach (I; 9) nur in den beiden Kombinationen

%cos (v+7n) und %—sin (&4 7)
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vor, wobei p und % Funktionen von g allein sind. Setzt man fiir den Augenblick

r
+n=yp; ==k,
l"?)’g

so erscheint (I; g) in der Form

ksiny
tgt=——-1__,
g¢ I+ kcosy
Setzt man hierin
. ey — v e+ et 1 et — it
siny=——7 5 csy=——— Wl=F g

so erhilt man, wenn man links mit e¢¢ erweitert,
2t — 1 &Y — ey

L1 T2t RETLe)
Aus dieser Gleichung folgt

pic = T H ke
I— ket
Durch Logarithmieren ergibt sich dann
21 =In(1 4 kef?) — In(x — ke~i7).
Aus der Funktionentheorie ist bekannt, daB die Reihe
1 1 I
In (1 + 2) =z—;zz+ 323—2244—

konvergiert, wenn die komplexe Zahl z innerhalb des Einheitskreises der kom-
plexen Ebene liegt. Das trifft fiir z = ket zu, da » = 0.1055, p =1 — ¢
= 0.7906, mithin

|zl = & < 0.1334.
Wir diirfen also setzen

. I . I )
v = ity . . p2g2%y P33y — ...
21 = ke zke +3ke3

—heir 4 Lpetiv — L psgsiv 4o
2 3
oder
(I; 12) C=ksiny—,%kzsin2y+%k“sin3y—o--.
Von dieser Entwicklung darf man unbedenklich alle Glieder von der 3.0rd-

nung an vernachlissigen. Da k& = 7/g von der GréBenordnung o.1 ist, wird die
Amplitude des Gliedes 3.Ordnung im Mittel etwa 1/3q9, d.h. im WinkelmaB8



40 Die Himmelsmechanik der Antike

rund 1 Bogenminute betragen, also um eine GroBenordnung kleiner sein als die
mutmaBliche Ausdehnung des Unsicherheitsbereichs der antiken Beobachtun-
gen. Man erhilt somit

r . I /7\2,
= —SIn _——— 2 ese ==
b=gsin+n 2(9)8111 (w+n) +
(I; 13) =%(sinycosn+ cos y sin7) —

2
- %(%) [sin 2 cos 297 + coszpsin27] + -+,

und es handelt sich jetzt nur noch darum, die Abhingigkeit der GréBen g und %
von ¢ zum Ausdruck zu bringen. Ein Vergleich der Formeln (I; 8, 9) zeigt,
daB # mit ¢/p und ¢ in gleicher Weise zusammenhingt wie £ mit#/p und u + 7.
Die Entwicklung von #(g) 148t sich daher ebenfalls nach dem Muster (I; 12)
durchfithren, und man erhilt

e 1[e\?
I;x = —sin ——(—) sinzg + ---,
(I;14) n=5sme =2y P
ferner aus (I; %)

2 2
(I;15) po=ecosp+ Y1 —e?sinp =1 ——i—-l—ecosq;+%cosz<p+

bis zu Gliedern 2. Ordnung in ¢. Wegen der verhiltnismaBig groBen Exzentrizi-
tit des Exzenters (¢ ist ja von der GréBenordnung o.2) wiirde eine auf vier
Stellen genaue Entwicklung der von ¢ abhingigen Terme

” cos ” sin (L)2 cos 27 (—7—)2 sin 29
Q 77: e 17: e ’ Q ]

in (I; 13) die Mitnahme ziemlich vieler Glieder erfordern. Um einen ersten
Uberblick zu gewinnen, geniigt es aber, wenn wir diese Entwicklung nur bis
zur 2.0rdnung in 7 und e durchfiithren. Es wird dann

7 7 1 /[7\2
I;16 = —sin —ncospy — —|—) sinzauy — ---,
( ) ¢ o u+ en u 2(9) u

und es ist
%: I—ecosQp—+ --»; n=esing+ :--
zu setzen. Man erhilt dann
2
{=r7(1—ecosq)sinu + resinpcosy — %sin2y+ e =

(I; 17)

2
=rsinp —-%sinz,u-l— resin (¢ — p) + ---.
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Nun ist ¢ die doppelte Differenz der mittleren Lingen von Mond und Sonne,
die wir mit 2D bezeichnet hatten. Ferner bedeutet y die mittlere Anomalie
des Mondes vom Apogdum aus, wihrend das in (I; 11) benutzte Argument g
dieselbe, aber vom Perigium aus gezdhlte GréBe bedeutet, so daB also
u = g + 180° ist. (I; 17) 14Bt sich daher auch in der Form

.92
{= —rsing — %sinzg—resin (zD—g)— -

schreiben, und es ist daher

2
L=1+rsing+ %sinzg—l— resin (2D — g) 4 ---.

Als Hauptglieder der Entwicklung der Mondlidnge in der Theorie des PToLE-
MAUS erscheinen daher die Mittelpunktsgleichung und ihre erste Oberschwin-
gung sowie die Evektion. Die geniherten, bis zur 2.Ordnung in e genauen
Werte der Amplituden dieser Terme sind dann

7 = 0.1055 = 3627 (moderner Wert 377'3),
%72 = 0.00556 = 191 (moderner Wert 128),
re = 0.02209 = 759 (moderner Wert 76’5),

geben also die Erscheinung gréBenordnungsmiBig richtig wieder. Die verhilt-
nismdBig groBe Diskrepanz zwischen den Amplituden der Mittelpunktsglei-
chung liegt natiirlich zum gréBten Teil an der Vernachlissigung der hoheren
Entwicklungsglieder — tatsichlich verbessert sich dieser Wert schon bei Be-
riicksichtigung des ndchst hoheren, sin g enthaltenden Gliedes um 3% auf
rund 374’

Bemerkenswert ist, wie schon angedeutet, daB das Evektionsglied gerade
durch die besondere Wahl des Apsidendrehpunktes @ in der richtigen Form
erhalten wird. Lige ndmlich Q nicht in der Entfernung ¢ vom Erdmittelpunkt,
sondern in einer anderen Entfernung f, so hitte man, in der gleichen Ndherung
wie oben,

n=/fsing

zu setzen. Die Vereinigung der Glieder 7 sin ¢ cos  und —re cos ¢ sin u, die
dann in (I; 17) auftreten wiirden, ergibe den Ausdruck

e+ f e—f
2 2

4

sin (p —p) —7 sin (¢ + p),

d.h., auBer dem Evektionsglied mit dem Argument ¢ — u wiirde noch ein
weiteres Glied mit dem Argument ¢ + w bzw. 2D + g auftreten, dessen Ampli-
tude nur verschwindet, wenn f = e ist. Nun gibt es in der modernen Mond-
theorie tatsichlich einen periodischen Term dieser Art, dessen Amplitude mit
3'2 aber so klein ist, daB sein Fehlen in der antiken Theorie nicht verwundern
darf.
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Die Theorie der Evektion ist zweifellos eine der groBten Leistungen des
ProLEMAUS, die um so mehr hervorgehoben werden muB, als der Weg, der zu
ibr fiihrte, nicht von gesichertem Standpunkt aus klar vor ihm gelegen hat,
sondern durch Irrtiimer und vorgefaBte Meinungen verschleiert war. Es darf
nicht iibersehen werden, daB die Mondtheorie des PTOLEMAUS, wenn man sie
konsequent zu Ende denkt, zu Folgerungen fiihrt, die sich mit den Beobachtun-
gen keineswegs decken. Wihrend die Darstellung der Mondlidngen durch die
Theorie einigermaBen gelungen ist, erweisen sich alle Schliisse, die man aus
dieser Theorie auf die Entfernung des Mondes ziehen kdnnte, als unvertriglich
mit den beobachtbaren Tatsachen. Aus Abb. 7 erkennt man, da8 —in Einheiten
des Exzenterhalbmessers — die maximale Mondentfernung (in den Syzygien,
wenn gleichzeitig der Mond im Apogdum steht) 1 4+ e + 7 = 1.3149, die mini-
male dagegen (in den Quadraturen, wenn gleichzeitig der Mond im Perigdum
steht) 1 — ¢ — 7 = 0.6851 betragen miiBte. Beide Entfernungen verhalten sich
demnach wie 1.92 : 1. Der Mond wiirde also in der groSten Erdnihe auch einen
fast doppelt so groBen scheinbaren Durchmesser zeigen als in der groBten Erd-
ferne; ein Umstand, der dem PToLEMAUS keineswegs hitte entgehen kénnen,
wenn er ihn in Erwigung gezogen hitte, und der ihm gezeigt haben wiirde, daB
seine Theorie keine andere Realitdt in Anspruch nehmen kann, als die eines
Rechenschemas zur Berechnung der Bewegung des Mondes in seiner scheinbaren
Bahn.

8. Allgemeines diber die Theorie der Planetenbewegung

Der Theorie der fiinf eigentlichen Planeten hat ProLEMAUS die letzten fiinf
Biicher des ,;Almagest” gewidmet. Sie ist, wie die des Mondes, im wesentlichen
sein eigenes Werk, und zwar trotz mancher Irrtiimer, die ihm den Weg zur
Vertiefung seiner Erkenntnisse verbauten, sicherlich sein bestes. Denn nirgends
ist er, wie hier, jener grundsitzlichen Losung des Problems der Himmels-
bewegungen so nahe gekommen, die fast anderthalb Jahrtausende nach ihm
von KEPLER gefunden wurde. Damit ist nicht das heliozentrische System ge-
meint, das (wie schon in Abschn. 1 erwédhnt) fiir den Aufbau eines geometrisch-
kinematischen Modells der Planetenbahnen nicht von ausschlaggebender Be-
deutung ist, sondern vielmehr der Ubergang von den gleichmiBig-kreisférmigen
Bewegungen der antiken Astronomie zu den ungleichférmig durchlaufenen
Ellipsen der KEpLERschen Gesetze. Nicht daB ProLEMAus, der noch grund-
sédtzlich an dem Prinzip der gleichmiBigen Kreisbewegungen festhielt, diesen
Ubergang bereits gesehen oder auch nur geahnt hitte; aber seine theoretische
Geschicklichkeit, die mitunter vom Hauch des Genialen gestreift wird, fiihrte
ihn doch bis an jenen Punkt, von dem aus nur ein kleiner Schritt gentigt hitte,
um ihm den Ausblick auf die richtige Lsung zu eréffnen. Schon der nichste
Abschnitt wird das zeigen.

Wie die Mondbahn, so lassen sich auch die Bahnen der Planeten durch zwei
Ungleichheiten beschreiben, von denen die eine wieder durch einen exzen-
trischen Kreis, die andere durch einen Epizykel dargestellt wird. Anders als
beim Mond bietet sich die Entscheidung dariiber, welche der beiden perio-
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dischen Bewegungen durch das eine oder das andere dieser mathematischen
Hilfsmittel beschrieben werden soll, durch die Form der scheinbaren Planeten-
bahnen von selbst dar. Die Planetenbewegung erfolgt im allgemeinen recht-
liufig, d.h. im gleichen Sinne wie die Bewegung von Sonne und Mond; sie wird
aber in periodisch wiederkehrenden zeitlichen Abstinden fiir eine Weile rsick-
ldufig. DaslaBt die Annahme
gerechtfertigt erscheinen, da3
der Planet sich rechtldufig
auf einem Epizykel bewegt,
dessen Mittelpunkt ebenfalls
rechtliufig auf einem Kreis,
dem Deferenten, um die Erde
herumgefiihrt wird. Die Mog-
lichkeit der mathematischen
Beschreibung der Planeten-
bewegung in Linge auf diese
Art hatte schon APOLLONIUS
fast 400 Jahre vor PTOLEMAUS
gelehrt. PTOLEMAUS zeigte,
daB die scheinbare, d.h. von
der Erde aus gesehene, Be-
wegung des Epizykelmittel-
punktsnicht gleichférigist,
sondern, &dhnlich wie die
Bahngeschwindigkeit der Abb. 9. Bewegung der inneren Planeten.
Sonne, von der Linge ab-

hingt. Diese zweite Ungleichférmigkeit kann dadurch erklirt werden, daB der
Deferent ein exzentrischer Kreisist, sein Mittelpunkt also nicht mit dem Mittel-
punkt der Erde zusammenfillt. Diese Hypothese wird dadurch bestitigt, daB
die scheinbare Groée des Epizykels schwankt und ein Maximum im Perigium,
ein Minimum im Apogium des Exzenters annimmt.

Die Bewegung des Planeten im Epizykel erfolgt, vom Epizykelmittelpunkt
aus gesehen, gleichférmig. Die Bewegung des Epizykelmittelpunktes dagegen
erweist sich, den Beobachtungen zufolge, als ungleichformig, sowohl von der
Erde aus gesehen als auch vom Mittelpunkt des Deferenten aus. Sie erscheint
aber gleichmiBig, wenn man sie von einem noch zu bestimmenden Punkte der
Apsidenlinie des Deferenten, dem punctum aequans,aus betrachtet. Das punctum
aequans (F in Abb. g und 10) kann also als Drehpunkt eines Leitstrahls an-
gesehen werden, der sich mit konstanter Winkelgeschwindigkeit dreht und da-
bei den Epizykelmittelpunkt auf dem Exzenter herumfiihrt. Die Bewegung des
Planeten 148t sich daher auf Grundlage dieses Mechanismus durch zwei sich
iiberlagernde gleichférmig-periodische Bewegungen darstellen: Die mittlere Be-
wegung tn Linge, die durch die Drehung des Leitstrahls um das punctum
aequans erzeugt wird, und die Bewegung in Anomalie, die dem Umlauf des Pla-
netén auf dem Epizykel entspricht.

Die Perioden dieser beiden gleichférmigen Kreisbewegungen leitete ProLE-
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MAvs direkt aus' den Daten ab, die ihm aus geniigend weit zuriickliegenden
Beobachtungen zur Verfiigung standen. Die Periode der mittleren Bewegung
in Linge, also die Umdrehungszeit des Leitstrahls in bezug auf den Friihlings-
punkt, ist gleich der mittleren tropischen Umlaufszeit des Planeten durch die
Tierkreiszone. ProLEMAUS findet hierfiir bei Merkur und Venus genau ein
tropisches Jahr, was schon aus
der Tatsache folgt, daB diese
beiden Planeten sich stindig
in der niheren Umgebung der
Sonne aufhalten; sie miissen
daher auch die gleiche mittlere
Geschwindigkeit haben wie
diese. Fiir Mars und Jupiter
errechnet er die Perioden
12322% bzw. 113134, die mit
den modernen Werten bis auf
Tagesbruchteile iibereinstim-
men. Fir Saturn erhdlt er
29*1584, einen Wert, der gegen
den modernen um rund 3¢ zu
groB ist.

Die Periode der Bewegung
in Anomalie, also die Umlaufs-
zeit im Epizykel in bezug auf

Abb. 10. Bewegung der duBeren Planeten. dessen Apogium, ist offenbar

identisch mit dem mittleren

Zeitraum, in dem die Erscheinung der Riicklaufigkeit wiederkehrt. DaB diese

Periode bei allen Planeten aufs engste mit dem Lauf der Sonne gekoppelt ist,

war den Alten wohlbekannt, ebenfalls, daB diese Koppelung bei Merkur und

Venus eine andere Form hat als bei den drei ,,4uBeren” Planeten. Im Almagest
finden wir diese Zusammenhinge durch folgende Sitze festgelegt:

1. Bei den inneren Planeten (Merkur und Venus) ist die mittlere Linge des
Epizykelmittelpunkts stets gleich der mittleren Linge der Sonne. Das bedeutet
also, daB die Leitstrahlen, die die Epizykelmittelpunkte dieser beiden Planeten
auf ihren Exzentern herumfiihren, stets dem Leitstrahl der mittleren Sonne
parallel sind (Abb. g).

2. Bei den duperen Planeten (Mars, Jupiter, Saturn) ist der Leitstrahl, der
den Planeten auf dem Epizykel herumfiihrt, dem Leitstrahl der mittleren
Sonne stets parallel. Wenn also (Abb. 10) E die Erde, Z den Epizykelmittel-
punkt und P den Ort des Planeten bedeutet, und wenn ferner ES gje Richtung
nach der mittleren Sonne angibt, so ist ZP immer parallel ES und daher
a = f. Hieraus aber folgt weiter:

a) Der Planet erreicht das Apogéum H des Epizykels, wenn « = f = o ist,
der Planet also mit der mittleren Sonne in Konjunktion steht.
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b) Der Planet erreicht das Perigdum G des Epizykels, wenn ¢ = f§ = 180°
ist; er steht dann zur mittleren Sonne in Opposition und befindet sich gleich-
zeitig in der Mitte seiner Riickldufigkeitsstrecke.

c) Ist die Umlaufszeit von Z auf dem Exzenter gegeben, so ist damit auch die
Umlaufszeit des Planeten auf dem Epizykel bekannt. Diese ist offenbar mit
der synodischen Umlaufszest des Planeten, d.h. also mit der mittleren Dauer
der Zwischenzeit zwischen zwei aufeinanderfolgenden Konjunktionen (oder
Oppositionen) des Planeten in bezug auf die Sonne identisch.

. Zwischen der synodischen Umlaufszeit S, der tropischen Umlaufszeit U des
Planeten und dem tropischen Sonnenjahr T gilt die Beziehung

T
(I; 18) S_IU—TI’
die der fiir die entsprechenden Perioden des Mondes giiltigen Formel (I; 3)
dquivalent ist. Ptolemius findet fiir die Perioden in Anomalie, also die syno-
dischen Umlaufszeiten der fiinf Planeten folgende Werte, die, von hier nicht
wiedergegebenen Tagesbruchteilen abgesehen, mit den modernen iiberein-
stimmen:
Merkur 1164  Mars 2% 504
Venus 5844 Jupiter 12349
Saturn 1® 134

Aus den Perioden folgen die mittleren féig]ichen Bewegungen in Linge (#,)
und in Anomalie (%,), die nach ProLEMAUS und nach modernen Bestimmungen
(NEwcoMB 1900) die nachfolgenden Zahlenwerte ergeben:

Planet n, (ProLEMAvs) | n, (NEwcoMB) |n, (ProLEMAUS) | , (NEWCOMB)
Merkur 3548729 3548733 11184% 12 11184723
Venus 3548.29 3548.33 2219. 43 2219.48
Mars 1886761 1886766 1661767 1661767
Jupiter 209.24 229.27 3249.05 3249.06
Saturn 120.56 120.60 3427.73 3427.73

Bei den mittleren Bewegungen in Linge fillt auf, daB die antiken Werte
systematisch um 0?03 bis 0?05 (im Mittel 0704) unter den modernen liegen. Das
rithrt davon her, daB ProLEMAUs bei der Reduktion der Beobachtungen, die
sich tiber mehrere Jahrhunderte erstreckten, einen falschen Wert der Prizession
benutzt und daher den Anfangspunkt der Lingenzdhlung, den Friihlingspunkt,
falsch angesetzt hat. Seine Prizession (36" jahrlich) betrigt tiglich 0”10, wih-
rend der richtige Wert (50" jahrlich) 0?14 ergibt, so daB also alle seine mitt-
leren tiglichen Bewegungen in Linge um 0?04 zu klein ausfallen. Von diesem
systematischen Fehler abgesehen, sind also simtliche #,-Werte bis auf eine
Hundertstel-Bogensekunde genau. Die #, fiir die inneren Planeten entsprechen
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natiirlich der mittleren tiglichen Bewegung der Sonne (np); fiir die ZuBeren
Planeten besteht die Beziehung

4+ 1, = 0o,
die aus (I; 18) hervorgeht, wenn man

2, _2m, _ 2 e 8"

M= =g "0= 3 =354829 (3548°33)
setzt. Die von PTOLEMAUS abgeleiteten Perioden sind erstaunlich genau, wenn
man bedenkt, daB ein Fehler von oo1 tiglich in hundert Jahren auf nur etwa
6 Bogenminuten anwichst, einen Betrag, der sicher noch innerhalb der Ge-
nauigkeitsgrenzen der primitiven antiken Beobachtungsmethoden liegt. Nur in
den anomalistischen Bewegungen des Planeten Merkur ist der Fehler etwas
groBer, entsprechend den groBen Schwierigkeiten, die bei der Beobachtung
dieses sonnennahen Planeten obwalten.

Die Theorie der Planetenbewegung ist von PTOLEMAUS zunichst, ebenso wie
die des Mondes, unter der vereinfachenden Annahme durchgefiihrt worden, daf3
die Bahnebenen in der Ekliptik liegen. Zur Erklirung der scheinbaren Bewe-
gung der Planeten in Breite, d.h. der noérdlichen und siidlichen Abweichungen
der Planetenorter von der Ekliptik, nimmt ProLEMAUS Neigungen der Ebenen
des Exzenters bzw. des Epizykels gegen die Ekliptik an. Den EinfluB dieser Bahn-
neigungen auf die Bewegungen in Linge hilt er durchweg fiir unmerklich. Wir
wissen von der Mondtheorie her, daB dies streng genommen nicht der Fall ist;
da die Neigungen der Planetenbahnebenen aber (abgesehen von der des Mer-
kur) kleiner sind als die der Mondbahn, ist die Vernachlissigung der ,,Reduk-
tion auf die Ekliptik™ hier noch weniger fithlbar als dort. Auf die Wiedergabe
der Methoden der Neigungsbestimmung, die im letzten Buch des Almagest
beschrieben werden, kann hier verzichtet werden, da sie von sekundirem
Interesse sind.

9. Theorie und Bahnbestimmung der Venus

ProLEMAUS beginnt seine Darlegungen iiber die Bewegung der einzelnen Pla-
neten mit der Theorie des Merkur. Wir wollen, abweichend von dieser Reihen-
folge, den Vorrang der Venus geben, deren Bahnform auch fiir die drei dueren
Planeten als Vorbild gedient hat, wihrend Merkur infolge besonderer Um-
stinde eine abweichende Behandlung erforderte.

Bei der Bahnbestimmung der Venus konnte sich ProLEMAUS auf Beobach-
tungen des Planeten in seinen groBten Elongationen von der Sonne stiitzen.
In Abb. g sei AII die Apsidenlinie des Exzenters. Auf ihr liegen das Apogium 4,
das Perigdum I1, der Exzentermittelpunkt M, die Erde E und an noch genauer
zu bestimmender Stelle das punctum aequans F. Zu einer bestimmten Zeit
moge der Mittelpunkt des Epizykels den Ort Z einnehmen und damit den geo-
zentrischen Winkelabstand y ostlich vom Apogdum haben. Die entsprechende
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vom punctum aequans aus gesehene Distanz wird durch den Winkel ¢ dar-
gestellt, der — entsprechend der Definition des punctum aequans — der Zeit
proportional wichst. Ist w die Linge des Apogiums des E xzenters, so ist w + ¢
die muttlere Linge des Epizykelmittelpunktes, die nach Satz 1 des vorigen Ab-

b/

Abb. 11. Bestimmung der Elemente der Venusbahn
aus groSten Elongationen.

schnitts gleich der mittleren Linge der Sonne ist. Zieht man also durch E eine
Parallele zu dem Leitstrahl FZ, so zeigt dieser nach dem Ort der mittleren
Sonne (S) in der Ekliptik.

Die Aufgabe, Lage des Apogdums, Exzentrizitit des Exzenters und Halb-
messer des Epizykels (ausgedriickt in Einheiten des Exzenterhalbmessers) zu
bestimmen, kann gelost werden, wenn es gelingt, in verschiedenen Positionen
des Epizykels seine scheinbare (d.h. von der Erde aus gesehene) GréBe zu
messen. Ist (Abb. 11) V, der Ort des Planeten in einer seiner groBten dstlichen
Elongationen vom Epizykelmittelpunkt, so ist EV, die von der Erde aus an
den Epizykel gelegte Tangente und der Winkel ZE V, = ¢ der scheinbare Halb-
messer des Epizykels. Dieser Winkel ist nicht direkt meBbar. Dagegen ist die
Richtung E S nach der mittleren Sonne aus der Sonnentheorie bekannt. Dieser
Strahl bildet mit EV, den Winkel 5, und mit der anderen Tangente EV,,
(Venus in der groBten westlichen Elongation bei gleicher Position des Epizykels)
den Winkel 7,,, und es ist dann

Mo + My = 26.
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ProLeMAUs bezeichnet die Winkel 7, und 7, als gréBte Gstliche und west-
liche Elongation des Planeten von der mittleren Sonne und bestimmt sie, indem
er, den Lauf des Planeten verfolgend, das Maximum der scheinbaren Lingen-
differenz zwischen Planet und mittlerer Sonne feststellt. Die Ermittlung der
Lage der Apsidenlinie, d.h. die Linge des Apogiums des Exzenters, beruht
dann auf folgender Uberlegung: Es sei festgestellt worden, daB bei der Stellung

S der mittleren Sonne der Planet seine groBte 6stliche Elongation mit dem Be-

trage 7, erreichte und daB bei einer anderen Stellung S’ der mittleren Sonne
der Planet in V, eine groBte westliche Elongation von gleichem Betrage
(nw = o) zeige. Das ist aus Symmetriegriinden nur méglich, wenn die Apsiden-
linie AIT den Winkel zwischen EV, und EV,, halbiert. ProLEMAUS findet
unter seinen Beobachtungen folgendes Paar derartiger Elongationen:

132 Marz 7, 7®  abends: Linge der Venus 31° 30
Linge der mittleren Sonne 344 15
somit: gr. ostliche Elongation 47 15

140 Juli 30, 4P 30 frith:  Linge der Venus 78° 30’
Linge der mittleren Sonne 125 45
somit: gr. westliche Elongation 47 15

Die Linge der Apsiden liegt demnach bei—;— (31°5 + #8%5) = 55° bzw. 235°.

Die Entscheidung dariiber, welcher der beiden einander gegeniiberliegenden
Ekliptikpunkte (55° und 235°) als Apogdum und welcher als Perigdum anzu-
sehen ist, ferner die Berechnung der Exzentrizitit ¢ des Exzenters und des
Halbmessers 7 des Epizykels in Einheiten des Exzenterhalbmessers, folgen dann
aus der Analyse solcher Elongationen, bei welchen die mittlere Sonne und
damit auch der Epizykelmittelpunkt in den Apsiden oder wenigstens in deren
unmittelbarer Nihe stehen. Diese Bedingungen erfiillt folgendes Paar von
Elongationen:

129 Mai 20, sbfriih: Linge der Venus 10° 36
Linge der mittleren Sonne 55 24
somit: gr. westliche Elongation 44 48

136 Nov. 18  abends: Linge der Venus 282° 50’
Linge der mittleren Sonne 235 30
somit: gr. ostliche Elongation 47 20

Der Epizykelhalbmesser erscheint also in der letzteren Position um 2° 32°
groBer als in der ersteren; mithin liegt das Apogdum des Exzenters in 55°, das
Perigidum in 235° Linge.

Exzentrizitit und Epizykelhalbmesser bestimmen sich dann nach der
gleichen Methode wie beim Mond (Abb. 7), wobei

e =44°48"; n, = 47°20'
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zu setzen ist. Die einfache Rechnung ergibt dann
7 = 0.7196; e = 0.02I3I.

ProLEMAUS erhilt bei geringerer Rechengenauigkeit die hiermit nahe iiber-
einstimmenden Werte » = 0.719 und e = 0.0208 bzw., wenn man eine letzte
Abrundung vermeidet, die er vor Errechnung des Endresultats noch vor-
genommen hat, ¢ = 0.0211.

Nachdem diese Konstanten festliegen, kann auch die wichtige Frage nach
der Lage des punctum aequans auf der Apsidenlinie beantwortet werden, und
zwar mit Hilfe von Elongationspaaren, bei welchen der Fahrstrahl des Epi-
zykelmittelpunktes mit der Apsidenlinie einen rechten Winkel bildet. Abb. 12
stellt einen solchen Fall dar, und ProLEMAUS beobachtete folgende Elonga-
tionen, die ihm entsprechen:

134 Febr. 18, 60 frith:  Linge der Venus 281° 55’
Liange der mittleren Sonne 325 30
somit: gr. westliche Elongation 43 35

140 Febr. 18, 5P30m abends: Linge der Venus 13° 50
Linge der mittleren Sonne 325 30
somit: gr. 6stliche Elongation 48 20

Der Ort der mittleren Sonne ist beide Male der gleiche und vom Apogdum des
Exzenters (55°) um ¢ = 89° 30" nach Westen entfernt. Dieser Winkel gibt
gleichzeitig die Richtung des Fahrstrahls FZ in bezug auf die Richtung nach
dem Apogium an. Die geozentrische Linge des Epizykelmittelpunktes ist
gleich dem anthmetlschen Mittel der beiden beobachteten Planetenlingen,
also 327° 52'5. Der geozentrische Winkelabstand des Eplzykelmlttelpunktes
vom Apogium nach Westen ist demnach p = 87° 7'5.

In Anbetracht der Kleinheit der Exzentrizitit begehen wir keinen merk-
lichen Fehler, wenn wir ¢ auf volle go° abrunden, dafiir aber auch dem Win-
kel y eine Korrektion von 30" hinzufiigen. Wir setzen also

‘ @ =90°; y=287°37s.
Im Dreieck E M Z ist dann nach dem Sinussatz, wenn wir M Z = 1 setzen,
sin { = esinyp.

Mit dem frither gefundenen e = 0.02131 erhalten wir dann { = 1° 13'2 und
somit fiir den Kathetenwinkel y = y + { des rechtwinkligen Dreiecks FMZ
88° 507. Der Abstand FM = f des punctum aequans vom Exzentermittel-
punkt ist dann

f = cos x = 0.02013.

Es ist also, weit innerhalb der durch die Unsicherheit der Beobachtungsdaten
gewihrleisteten Grenzen, f = e. ProLEMAUS faBt dieses wichtige Ergebnis in
den Satz zusammen: Der Mittelpunkt des exzentrischen Kreises halbiert die
Strecke zwischen der Evde und dem punctum aequans. Dieser Satz gewinnt an

4 Stumpfi, Himmelsmechanik
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Gewicht dadurch, daB ProLEMAUS ihn auch fiir die drei duBeren Planeten un-
verindert iibernehmen konnte, ohne damit in Widerspruch mit der Erfahrung
zu geraten. Nur beim Planeten Merkur gelangte er zu abweichenden Ergebnissen.

Fiir uns, die wir iiber die Vorginge im Planetensystem eine exaktere Vor-
stellung haben, kann Deutung und Rechtfertigung dieses Satzes nicht zweifel-
haft sein: An Stelle des exzen-
trischen Kreises, auf dem sich
der Epizykelmittelpunkt be-
wegt, tritt in der modernen
Theorie eine Ellipse, und zwar
im Falle der inneren Planeten
die Sonnenbahn (Erdbahn), im
Falle der duleren Planeten die
Planetenbahn selbst. Die bei-
den Punkte E und F, die auf
der Apsidenlinie symmetrisch
zum Mittelpunkt der Ellipse
M liegen,sind dieBrennpunkte.
Hierzu mégen noch zwei Er-
lduterungen eingeschaltet wer-

mi\;ﬂ

£

T den:
Abb. 12. Bestimmung 1. Ellipsen mit sehr kleinen
der Lage des punctum aequans. Exzentrizititen sind von Krei-

sen nur schwer zu unterschei-
den. Setzen wir die gro8e Halbachse einer Ellipse gleich eins, so ist die kleine

Halbachse .
b=VI—82=I—-;82—-'-.

Im Falle des Venusbahnexzenters, wo e =~ 0.02 ist, wiirde also die kleine Halb-
achse von der groBen nur um den 5000ten Teil ihres Betrages abweichen. Bei
der hier angestrebten geringen Genauigkeit ist also die geometrische Form des
Exzenters mit geniigender Anniherung die eines Kreises.

2. Wir werden im nichsten Kapitel bei der Untersuchung der Planeten-
bewegung nach den KepLERschen Gesetzen bestitigt finden, daB der zweite
Brennpunkt der Bahnellipse tatsichlich die Eigenschaften eines punctum
aequans besitzt, wenn wir Abweichungen von der 2. und den héheren Ordnungen
in der Exzentrizitdt vernachldssigen. Tatsichlich wird sich zeigen, daB sich der
vom zweiten Brennpunkt der KEpLERschen Ellipse aus gezogene Fahrstrahl
nahezu gleichformig dreht, wenn die Exzentrizitit klein ist. Dies bestitigt uns,
daB ProLEMAUS bei der Formulierung seiner Planetentheorien eine iiberaus
gliickliche Hand gehabt hat. Vorausgesetzt, daB man auf dem Standpunkt der
antiken Astronomie beharrt, die das geozentrische System und die gleichfor-
mige Kreisbewegung der Himmelskorper zum Prinzip erhoben hatte, 18t sich
kaum eine Losung denken, die so tief in das Wesen der Dinge eindringt wie
gerade diese.
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Es bleibt nun noch iibrig, die numerischen Ergebnisse der Analyse der Venus-
bewegung durch ProLEMAUS einer kritischen Priifung zu unterwerfen, indem
man sie mit den modernen Daten vergleicht. Dem Epizykel der Venusbahn ent-
spricht in der modernen Theorie die Bahn des Planeten um die Sonne. Da die
Exzentrizitit dieser Bahn sehr klein ist (etwa 1/147), so darf man den Epizykel
ohne wesentlichen Fehler als Kreis ansehen, in dessen Mittelpunkt die Sonne
steht. Der Exzenter wire dann also mit der Sonnenbahn, der Epizykelmittel-
punkt mit dem wahren Ort der Sonne zu identifizieren.

Die Linge des Epizykelhalbmessers (nach PToLEMAUS rund o.72) stimmt
mit dem modernen Wert fiir die groBe Halbachse der Venusbahn (0.7233 Astro-
nomische Einheiten) ausgezeichnet iiberein. Weniger gut ist die Ubereinstim-
mung zwischen den Elementen des Exzenters und denen der Sonnenbahn (der
Erdbahn im heliozentrischen System). Die Exzentrizitit der Erdbahn, heute
0.0167, betrug z.Z. des ProLEMAUS 0.0176 und war daher merklich kleiner als
die von ihm gemessene Exzentrizitit des Venusexzenters. Auch die Linge der
Apsiden ist etwas verschieden: Wihrend ProLEMAus fiir die Linge des Apo-
giums des Venusexzenters 55° ermittelt, liefert die moderne Theorie fiir die
ihm entsprechende Perihellinge der Erdbahn rund 71°, wenn wir von dem heu-
tigen Wert (102°) mit der sikularen Anderung der Perihellinge (62"’ jahrlich)
um 1800 Jahre zuriickgehen. Die von PTOLEMAUS bestimmte Apogiumslinge
der Sonnenbahn liegt mit 65°5 dazwischen.

Alles in allem sind diese Unterschiede verhiltnismiBig klein. Besonders kann
bei der Bestimmung der Apsidenlage, die bei so kleiner Exzentrizitit recht
schwierig und ungenau ist, ein Fehler von 16° kaum als ungewohnlich groB
angesehen werden, wenn wir die primitiven Beobachtungsmethoden jener Zeit
beriicksichtigen. Eher konnte man sich wundern, warum PToLEMAUS auf
Grund dieser groBenordnungsmiBigen Ubereinstimmung den naheliegenden
Gedanken nicht aufgegriffen hat, daBB die Sonne wirklich im Mittelpunkt des
Venusepizykels steht und Venus somit als Trabant die Sonne umkreist. Wir
diirfen aber nicht iibersehen, daB ProLEMAUs ja die Sonnentheorie von
HiprarcH iibernommen hat, die — abgesehen von der nahen Ubereinstimmung
in der Lange der Apsiden - in dieses Bild nicht hineinpaBt. Denn das punctum
aequans der Sonnenbahn liegt ja nach dieser Theorie im Exzentermittelpunkt,
und es ergeben sich dadurch grundsitzliche Unterschiede zwischen den Me-
chanismen beider Bahnen. Ware ProLemAus auf den Gedanken gekommen,
auch die Sonnenbahn auf ihrem Exzenter durch einen Leitstrahl herumzufiih-
ren, dessen Drehpunkt im symmetrischen Gegenpunkt der Erde in bezug auf
den Exzentermittelpunkt lige, so hitte ihm die Identitit der Sonnenbahn mit
dem Venusexzenter kaum entgehen koénnen, zumal die von ihm errechnete
Exzentrizitit der Sonnenbahn (1/24 = 0.0417) genau gleich der doppelten
Exzentrizitit des Venusexzenters ist, so daf3 in beiden Bahnen der Abstand der
Erde vom punctum aequans denselben Betrag hat. Zu einer derartigen An-
gleichung der Sonnentheorie an die Theorie der Planeten lag aber wohl fiir
ProLEMAUS kein hinreichender Grund vor, da sie keine fithlbare Verbesserung
in der Darstellung der Sonnenlingen mit sich gebracht hitte. Lediglich die
Schwankung der Sonnenentfernung, die in der von ihm bevorzugten Theorie

4*
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um das Doppelte zu groB war, wire dadurch auf das richtige MaB reduziert
worden. Ahnlich wie in der Mondtheorie, hitte eine genaue Messung des schein-
baren Sonnendurchmessers ihn zu einer kritischen Uberpriifung seiner Hypo-
thesen veranlassen kénnen. Im Gegensatz zu dort sind allerdings hier diese
Schwankungen so geringfiigig, daB sie seiner Beobachtungskunst wohl kaum zu-
ginglich gewesen wiren.

Ein weiterer Punkt, auf den wir hier noch kurz eingehen miissen, betrifft die
Bewegung der Apsiden des Exzenters. Im Falle der Sonnenbahn war diese dem
ProLEMAUS entgangen, so daB er den Abstand des Sonnenapogiums vom
Friihlingspunkt fiir konstant hielt, obwohl ihm alte Beobachtungen zur Ver-
fiigung standen, aus denen er das Vorriicken der Apsiden hitte ableiten kénnen.
Bei der Venus fehlten ihm solche Vergleichsmoglichkeiten. Er nahm daher fiir
diesen wie auch fiir die iibrigen Planeten ohne weitere Priifung jenen Befund
an, den ihm die Analyse der Bahnbewegung des Merkur geliefert hatte. Hier
fanden sich alte Angaben, die zum Teil 400 Jahre zuriickreichten und aus denen
er ableitete, daB das Apogium des Merkurexzenters in bezug auf die Fixsterne
ruhe, sich also in bezug auf den Friihlingspunkt mit derjenigen Geschwindig-
keit rechtliufig bewege, die durch die Konstante der Prizession gegeben ist. In
Wirklichkeit gibt es auch eine Verlagerung der Apsiden in bezug auf das Fix-
sternsystem, aber diese ist betrachtlich kleiner als die Prazessionsbewegung und
bei der Venus fast verschwindend klein. Jedenfalls ist der Ansatz, die Lange des
Apogdums der Planetenexzenter ebenso wie die der Fixsterne um die Prizession
wachsen zu lassen, bedeutend besser als derjenige, den er in der Sonnentheorie
versucht hat.

10. Theorie und Bahnbestimmung der duferen Planeten

Wie schon weiter oben ausgefiihrt wurde, ist die Theorie der drei duBeren Pla-
neten bei ProLEMAUS formal die gleiche wie bei der Venus, abgesehen von der
abweichenden Koppelung der Bahnbewegung mit der Bewegung der Sonne.
Insbesondere wird das punctum aequans auf der Apsidenlinie des Exzenters
genauso definiert wie bei Venus: Auch hier wird die Strecke zwischen diesem aus-
gezeichneten Punkt und der Erde durch den Mittelpunkt des Exzenters halbiert.

Zur Bestimmung der Bahnelemente 148t sich die bei Venus befolgte Methode
nicht anwenden, da die Beobachtung der Planeten in ihren gréBten Elonga-
tionen vom Epizykelmittelpunkt auf Schwierigkeiten stoSen wiirde. Dafiir er-
weisen sich hier die Oppositionen zur mittleren Somme als bequem und genau
beobachtbare Stellungen, die sich gut zur Ableitung der Exzenterkonstanten
eignen. Da nédmlich (siehe Abschn. 8, Satz zb) der Planet wihrend der Oppo-
sition zur mittleren Sonne stets den erdnichsten Punkt des Epizykels durch-
lauft, ist in diesem Zeitpunkt die Richtung von der Erde nach dem Planeten
gleichzeitig auch die nach dem Epizykelmittelpunkt. Durch Messung der Pla-
netenldngen bei verschiedenen Oppositionen gewinnt man also sichere Lingen
des Epizykelmittelpunktes, mit deren Hilfe man Apogiumslinge und Exzen-
trizitit des Exzenters ableiten kann.
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ProLEMAUS zeigt, daB diese Aufgabe 13sbar ist, wenn drei beliebige Oppo-
sitionsérter nach Linge und Zeit gegeben sind. Dieses Bahnbestimmungs-
problem entspricht im wesentlichen dem, das wir im Zusammenhang mit der
Mondtheorie gelost haben. Auch dort waren drei Oppositionsorter (Mondfinster-
nisse!) notig, um diese beiden Bestim-
mungsstiicke des Exzenters zu berech-
nen. Der hier vorliegende Fall ist aber
in einem entscheidenden Punkt schwie-
riger. In der provisorischen Mondtheo-
rie wurde angenommen, daB das punc-
tum aequans im Mittelpunkt des Ex-
zenters liege, der Epizykelmittelpunkt
also mit gleichférmiger Geschwindig-
keit den Exzenter umlaufe. Hier
dagegen bewegt sich dieser Punkt un-
gleichférmig schnell, da der Drehpunkt
des Leitstrahls, der ihn mit konstanter
Winkelgeschwindigkeit auf dem Ex-
zenter herumfiihrt, auBerhalb des Ex-
zentermittelpunktes liegt. Die hier-
durch bedingte Komplikation bringt
es mit sich, daB man eine strenge
Losung des Problems nicht direkt an-
geben kann. Die Art und Weise, in
der ProLEMAUS diese neu auftretende

Schwierigkeit durch eine Ndherungs- Abb. 13. Bahnbestimmung
und Hypothesenrechnung umgeht, eines duleren Planeten
wiirde einem modernen Mathematiker aus drei Oppositionen.

alle Ehre gemacht haben. Sein Ver-

fahren kann als das ilteste Vorbild der Bahnbestimmungsmethoden unserer
Zeit (siehe Kapitel VIII und IX) angesehen werden, die ebenfalls auf dem
Wege sukzessiver Niherungen zum Ziele fiihren.

Es sei (Abb. 10) G der Oppositionsort eines der duBeren Planeten und EK
die gleichzeitige (EG entgegengesetzte) Richtung nach der mittleren Sonne. Die
beobachtete Linge ! von G, gleich der Linge w + 9 des Epizykelmittelpunktes
Z, ist dann gleich der um 180° vermehrten oder verminderten Linge der mitt-
leren Sonne. Die geozentrisch gesehene Apogidumsdistanz von Z ist durch den
Winkel y gegeben, die vom punctum aequans aus gesehene aber durch den
mit der Zeit proportional wachsenden Winkel ¢. Sind drei Oppositionsérter G,
bzw. Z, (i = 1, 2, 3) vorgelegt und bezeichnen wir auch bei den iibrigen Gré8en
die Zugehérigkeit zu diesen Ortern mit den gleichen Indizes, so sind bekannt:

1. die Differenzen
n=wp—pi=h—hL; n=yy—p=L-15L
aus den beobachteten Planetenldngen;
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2. die Differenzen

=@ —Pr=mly— 1), Oy=q@3— @=1m(ty — 1),

die den Zwischenzeiten proportional sind, wobei #,, die mittlere tropische Be-
wegung des Planeten in der Zeiteinheit, auf Grund der Tabelle S. 45 als bekannt
vorausgesetzt werden darf.

In Abb. 13 sei nun A1 die Apsidenlinie, auf der die Punkte E und F mit dem
noch unbekannten Abstand e beiderseits des Exzentermittelpunktes M auf-
getragen sind. Um F als Mittelpunkt sei ein Hilfskreis geschlagen, dessen Halb-
messer, ebenso wie der des Exzenters, gleich der Lingeneinheit sei. Die Leit-
strahlen FZ,, die vom punctum aequans zu den auf dem Exzenter liegenden
Epizykelmittelpunkten Z, fithren und miteinander die bekannten Winkel d, und
0, bilden, treffen den Hilfskreis in den Punkten Q,. Wiren diese Punkte von der
Erde E aus anvisierbar, somit die von den drei Richtungen EQ, gebildeten
Winkel y; und y; durch Beobachtung bekannt, so wire die Aufgabe der Bahn-
bestimmung, wie ein Vergleich mit Abb. 5 lehrt, auf die der Bestimmung der
provisorischen Mondbahn zuriickgefiihrt. Das gleiche Formelsystem, das dort
aus den gegebenen Winkeln «, f§, , 6 die unbekannten Winkel {, y und
@ = { + y sowie die Strecke R zu berechnen gestattete, kénnte hier benutzt
werden, um aus d;, 0,, ¥, y5 die Winkel g, £; und @, = y; + {3 sowie die
(R entsprechende) Strecke EF = ze¢ zu bestimmen. GemidB den Formeln
(I; 5, 6) in Abschnitt 5 wéire dann

(L; 19)
tgy) = ' sin 7 sin (8, — 7.14) — sin y; sin {61 —71)
cos py sin (35 — p5) + cos yz sin (0, — p1) — sin (0, + 5 — 1 — 3)
tg £ = — sin y] sin. (0, — y3) — sin yg s;in'(él — 1)
sin (y; + p3) — sin p{ cos (65 — p3) — sin y; cos (6, — 77)
(I; 20) p=y;+ {3 ze= :i:i:

Nun sind die beiden Winkel y; und y; nicht bekannt, wohl aber die von den
Richtungen EZ, gebildeten Winkel y; und y;. Sofern die Exzentrizitit e klein
von der 1.0Ordnung ist, kann man aber die Differenzen y; — p, und y; — y, als
klein von der 2.0Ordnung ansehen. Man erhilt daher eine brauchbare Nihe-
rungslésung, wenn man in den Formeln (I; 19, 20) in erster Hypothese y; = ,
und y; = p, setzt.

Mit den auf diese Weise erhaltenen Naherungen fiir y;, {3, @,, ¢ wird mandann
imstande sein, die an y, und y, noch anzubringenden Verbesserungen y; — 7,
bzw. 5 — y, zu errechnen. Man erhilt so neue Ausgangswerte fiir eine aber-
malige Durchrechnung der Formeln (I; 19, 20) und somit verbesserte Werte
¥3, L2, @, €. Dieses Verfahren ist so oft zu wiederholen, bis sich die Ergebnisse
nicht mehr dndern und daher als die endgiiltige Losung des Problems an-
gesehen werden diirfen.
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Das Verfahren zur Berechnung der Korrekturen y; — p; und y3 — y, lehrt
Abb. 14, in der wieder die beiden Kreise und die Apsidenlinie A /I mit den
Punkten E, M und F gezeichnet sind. Ferner sind fiir eine beliebige der drei
Oppositionen die (nun ohne Index bezeichneten) Punkte Z und Q sowie die
Winkel y, ¢, ¢ eingetragen. Als
weitere Hilfswinkel dienen ZMF =
undQEZ =y’ — yp = &.Die Strecken
FQ und MZ haben die Linge eins.
Dann ist nach dem Sinussatz

(I;21) sin(p — ) =esing,

sin (y —y) =sin (y — ¢’ + ¢)
(I; 22) =esin (p' — &).
Nimmt man ¢ und o’ sowie e auf
Grund der bereits durchgefiihrten
Hypothesenrechnung als gegeben an,
so berechnet man y aus (I; 21). Um

¢ zu finden, l6st man in (I; 22) die
Sinusausdriicke auf:

sin(y — y') cose + cos (y — y')sine

= ¢ (siny’ cos& — cosyp’sin¢)

und dividiert durch cose. Das ergibt

(I; 23) Abb. 14. Bahnbestimmung
e sin ’P' — sin (x — 2/") eines duferen Planeten
tge = . (Hypothesenrechnung).

ecosy’ + cos (y — ')

Hat man die Rechnung nach (I; 21, 23) fiir alle drei Orter ausgefiihrt (was
méglich ist, da mit ¢ = ¢,, ' = 3 auch ¢, @,; p1, s bekannt sind), und
unterscheidet man wieder, wie friiher, die Ergebnisse durch Indices, so folgt aus

Vi—hi=68, Yi—h=6&, Yi—Vi=&
durch Subtrahieren
(1; 24) {}’t—71=(’P?—'I”1)"'('Pz""l’l)=52"€1
s~V =(Ws —¥a) — (s —y) =& — &
Damit sind die gesuchten Korrektionen gefunden, und das Verbesserungsver-
fahren kann den oben beschriebenen weiteren Verlauf nehmen.
Als Anwendungsbeispiel moge die Bestimmung der Exzenterelemente des
Planeten Mars dienen, wie sie ProLEMAUs durchgefiihrt hat. Als Ausgangs-

daten benutzte er folgende von ihm selbst beobachtete Oppositionen der Pla-
neten:
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’

130 Dez. 15, 1P nachts: Linge des Mars 81° o
135 Febr. 21, g? abends: Linge des Mars 148° 50’
139 Mai 27, 10" abends: Linge des Mars 242° 34’

Die Lingen der mittleren Sonne fiir diese Zeiten stimmten mit den um 180°
vermehrten bzw. verminderten Lingen des Planeten bis auf Abweichungen
von héchstens 2’ iiberein.
Aus diesen Daten folgen die Zwischenzeiten und die Differenzen der wahren

Lingen des Mars:

t, — t, = 15299 20, y, =1, — I, = 67° 50,

ty —f, = 15561 1%, yy3 =1l — L, =93° 44,
wihrend die Differenzen der mittleren Lingen, berechnet mit #, = 18867615,
die Werte

0 = m,(ty — b)) = 81°44', 0y =m(ty — 1) = 95° 28’

ergeben. Die Hypothesenrechnung gestaltet sich dann folgendermaBen:

I.Hypothese II. Hypothese II1.Hypothese
7 67° 50’ 68° 55’ 68° 44
73 93 44 92 21 92 38
'g:z 37° 4313 3; ° 548 32 ° 5257
h(I: 2 7 3%°4 9.3 26.0
nach (I319,20) o, 45 22 39 4 40 24
€ 0.10866 0.09867 0.10028
Y1=vz— N — 30° 7 — 36° o — 34°46
vz 37 43 32 55 33 58
i = v + ¥3 131 27 125 16 126 36
¢,=¢,;61 — 36°22/ — 42 40 — 41°20
(23 45 22 39 4 40 24
P =@, + 04 140 50 134 32 135 52
& — 0°32’ — o°27 — 0°28
& 4+ o 33 + o 27 4+ o 28
nach (I; 21-24) & — o0 50 — o0 39 — o0 41
Nn—n + 1 5 + o 54 + o 56
V3 — Vs — 1 23 - 1 6 — 1 9

Nachdem sich die Korrektionen nach der 3.Iteration nicht mehr wesentlich
gedndert haben, erhilt man mit den endgiiltigen Werten

y1=68°46, y5=092°35’
nach einer abschlieBenden Rechnung

Y =33°46'6, @, =+ {3 = 40°96,

s = 6°230, e=0.09997,
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was mit den von PToLEMAUS angegebenen Endwerten

@ = 40° IT, &= =z
10
bestens iibereinstimmt.
Die Linge des Apogiums selbst ergibt sich zu

o =1, — (p; — &) = 115° 31’ (nach PTOLEMAUS w = 115° 30’).

Zur Bestimmung des Epizykelhalbmessers ist noch eine weitere Beobachtung
des Planeten auBerhalb der Opposition erforderlich. Es sei (Abb. 15) P die
Stellung des Planeten auf dem Epi-
zykel zur Zeit ¢ und der Winkel
JZ P = § seine mittlere Anomalie,
die nach der Theorie vom mittleren
Apogium J des Epizykels aus im
rechtldufigen Sinne gezihlt wird. Die
scheinbare Anomalie, die durch den
vom scheinbaren Apogdum aus ge-
zihlten Winkel HZ P definiert ist,
hat dann den Betrag ¢ + {. Es werde
nun angenommen, dafB die Zeit ¢, der
letzten Opposition des Planeten zur
mittleren Sonne gegeben sei, ebenso
die zugehérige Distanz @, des Epi-
zykelmittelpunktes vom Apogdum
des Exzenters. Da nun wihrend der
Oppositionder Planetim erdnichsten
Punkt des Epizykels steht, so ist fiir

ty der scheinbare Abstand y, vom Abb. 15.
Apogium des Exzenters fiirden Pla-  Bestimmung des Epizykelhalbmessers
neten und den Epizykelmittelpunkt eines duBeren Planeten.

derselbe und hat, wenn /, die Oppo-
sitionslidnge des Planeten und w die Linge des Apogidums des Exzenters ist,
den Wert y, = [, — w. Ferner ist fiir diesen Zeitpunkt die mittlere Anomalie
des Planeten im Epizykel #, = 180° — {,, wo {y = @y — ¥,-

Fiir den Zeitpunkt ¢ der Beobachtung lassen sich dann die mit der Zeit linear
fortschreitenden Winkel ¢ und 4 nach den Formeln

(I; 25) Q=@+ m(t—1t); ¢=>30+ n,(t—1%)

berechnen. Aus @ ergeben sich g und { nach dem aus den Dreiecken E M Z und
FMZ folgenden Formelsystem

sin(p —y) =esing, sin(y —y) =esiny,

(I; 26) sin y

hieraus: x und tgzp:m, (=9 —vp.
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Fiir die Elongation # des Planeten vom Epizykelmittelpunkt erhilt man, wenn
I die zur Zeit ¢ gemessene Planetenldnge ist,

(I; 27) n=1-(0+79).
SchlieBlich ergibt sich aus dem Dreieck EZ P nach dem Sinussatz

esiny

2 Y e

wobei der geozentrische Abstand ¢ des Epizykelmittelpunktes aus dem Drei-
eck EMZ nach dem Cosinussatz berechnet werden kann, der

(I; 29) =1+ 2ecosy + €

liefert.

Es leuchtet ein, daB die Bestimmung von » um so genauer wird, je weniger
sich der Winkel ZPE = & + { — # von go°® bzw. 270° unterscheidet, d.h. je
niher der Planet einer seiner groBten Elongationen vom Epizykelmittelpunkt
steht. ProLEMAUS hat diese Regel bei der Bestimmung des Halbmessers des
Marsepizykels nicht beachtet und eine Beobachtung gewihlt, die nur wenige
Tage auf eine Opposition des Planeten folgte, und zwar auf die letzte der drei
Oppositionen, die er zur Bestimmung der Exzenterkonstanten benutzt hatte.
Fiir diese Opposition galt

ty = 139 Mai 27, 10P abends; [y =234°34"; yy=1 — 0 =127°4".

Ferner war aus der Bahnbestimmung des Exzenters bekannt, wenn wir die
endgiiltigen Werte des ProLEMAUS zugrunde legen,

) Po= @3 = @+ 03 = 135° 39’
und somit
o= — o=28°35"; &, =180° — {,=171° 25",
Die zusitzliche Beobachtung ergab dann folgende Daten:
¢t = 139 Mai 30, gt abends; ! = 241°36’; ¢ — f, = 23 23" = 299583,
und mit #, = 186676 und #n, = 166177 nach (I; 25)
p=137°12', ¥ =172°47"
Nach Durchrechnung der Formeln (I; 26 bis 29) findet man sodann mit ¢ = o.1
x=133°18, = —2°4¢4,
py=128°50", o= 0.9342,
(= 8°22, r= 0.6578.



Theorie der Bewegung des Merkur 59

ProLEMAUS erhilt » = 0.6583, was in Anbetracht der unzweckmiBigen Wahl
des Beobachtungstermins befriedigend mit unserem Ergebnis iibereinstimmt.

Nach dem gleichen Verfahren hat ProLEMAUs auch die Elemente der Bah-
nen von Jupiter und Saturn bestimmt. Wir stellen in der folgenden Tabelle fiir
die drei duBeren Planeten die Bahnelemente nach ProLemAus den ihnen
addquaten Elementen der modernen Theorie gegeniiber:

A. nach ProLEMAUS

Linge des Apogiums . Epizykel- 1

Planet des Exzenters () Exzentrizitdt | 1, )bmesser r
Mars 115° 30 0.1000 0.6583 1.519
Jupiter 161 o 0.0458 0.1917 5.217
Saturn 233 O 0.0569 0.1083 9.231

B. moderne Werte
Linge des Aphels Exzentrizitat GroBe Halb-
Planet achse der Bahn
fiir 1950 fiir 135 1950 135

Mars 155°1 12107 0.0934 0.0917 1.524
Jupiter 193.5 164 .2 0.0484 0.0455 5.203
Saturn 272.1 236.5 0.0557 0.0620 9.539

Die Apogdumslingen stimmen mit den wegen Prizession und Apsidenbewegung
auf die Epoche 135 n.Chr. umgerechneten NEwcoMBschen Werten fiir die
Aphellingen der Planetenbahnen bis auf einen geringen systematischen Unter-
schied von durchschnittlich 4° iiberein. Die Exzentrizititen sind gréBenord-
nungsmaBig gut bestimmt, die des Jupiter ist sogar ganz genau. Die Epizykel-
halbmesser entsprechen in der modernen Theorie dem Halbmesser der Erd-
bahn, ausgedriickt in Einheiten des Planetenbahnhalbmessers. Die in astro-
nomischen Einheiten ausgedriickte groBe Halbachse der Planetenbahnen findet
sich also in der antiken Theorie als Reziproke des Epizykelhalbmessers wieder.
Auch hier ist die Ubereinstimmung befriedigend.

11. Theorie der Bewegung des Merkur

Wihrend es ProLEMAUS gelungen war, im Falle der Venus und der drei duBe-
ren Planeten Bewegungstheorien nach gemeinsamem Muster zu schaffen, die
den tatsichlichen Bewegungen innerhalb der Grenzen der damaligen Beob-
achtungsgenauigkeit gerecht wurden, stie er bei der Bearbeitung des Planeten
Merkur auf Schwierigkeiten besonderer Art, die eine Anwendung des bei den
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iibrigen Planeten benutzten Schemas unmdoglich machten. Er hat versucht,
diese Schwierigkeiten zu meistern, indem er — dhnlich wie in der Mondtheorie —
eine Bewegung des Exzenters einfithrte. Wihrend diese MaBnahme aber dort
mit der Darstellung der Evektion zu einem klaren Erfolge fiihrte, entstand
hier ein Mechanismus, den man nur als eine Fehlkonstruktion bezeichnen kann.
Wir diirfen uns damit begniigen, diese Theorie kurz zu skizzieren und mit
einigen Erliduterungen zu versehen.

Der eigentliche Grund, weshalb der theoretische Ansatz, der bei den anderen
Planeten zum Ziele fiihrte, bei Merkur versagen muBte, ist folgender: PTroLE-
MAUS hat immer an dem Grundsatz festgehalten, daB der auf dem Exzenter
herumgefiihrte fingierte Punkt Z der Mittelpunkt des Epizykels sei. Sowohl bei
Venus als auch bei den duBeren Planeten konnte er diesen Satz anwenden, ohne
in merkliche Widerspriiche mit der Erfahrung zu geraten. Der Venusepizykel
entspricht ja der sehr schwach exzentrischen Venusbahn um die Sonne, wih-
rend die Epizykel der duBeren Planeten durch die ebenfalls recht schwach
exzentrische Erdbahn dargestellt werden. Nur die Bahn des Merkur ist mit
e ~ 0.2 so stark exzentrisch, daB ihre Beschreibung durch den zentrischen
Epizykel nicht mehr moglich war.

Dazu kam als weiterer erschwerender Umstand die Schwierigkeit der Beob-
achtung dieses sonnennahen, nur in der hellen Dimmerung sichtbaren Pla-
neten, dessen Positionen durch Anschlu3 an helle Fixsterne zu bestimmen eine
fiir die damalige Beobachtungskunst schwierige und nur selten und ungenau zu
erfiillende Aufgabe gewesen sein muf. Wenn man versucht, die Beobachtungs-
ergebnisse, die PToLEMAUS im neunten Buch des Almagest wiedergibt, an
Hand der modernen Theorie zu priifen, so stoBt man in der Tat auf Wider-
spriiche, die nur auf grobe Beobachtungsfehler (wenn nicht gar auf — der inne-
ren Ubereinstimmung zuliebe — gefilschte Daten) zuriickgefithrt werden kon-
nen.

MaBgebend fiir die Begriindung der Theorie ist wieder der scheinbare
Durchmesser des Epizykels, d.h. also die Lingendifferenz zwischen den Posi-
tionen des Planeten in der &stlichen und der westlichen groBten Elongation,
wihrend die Sonne eine bestimmte mittlere Linge hat. Wenn man die Léinge
des Epizykelmittelpunkts und den scheinbaren Epizykeldurchmesser als Funk-
tion der mittleren Linge der Sonne auftrigt, gewinnt man die Grundlagen, die
zur Aufstellung einer Bewegungstheorie des Planeten nétig sind. Der Befund
des ProLEmMAUS auf Grund von Untersuchungen dieser Art ist in folgenden
Sétzen enthalten:

1. Die Apsidenlinie des festen exzentrischen Kreises, die eine Symmetrie-
linie fiir alle Bewegungen des Planeten darstellt und die mit den Fixsternen die
Prizessionsbewegung mitmacht (sich also, wenn wir die Prizessionskonstante
der antiken Astronomen zugrunde legen, in bezug auf den Frithlingspunkt um 1°
in 100 Jahren in rechtldufigem Sinne bewegt), zeigt in die Richtungen 10° bzw.
190° Linge.

2. Wenn die mittlere Sonne eine Linge von 19o° hat, erscheint der Epizykel
unter einem Durchmesser von 38° 6’. Dies ist das absolute Minimum, so daB
also das Apogdum des Exzenters in 1go° Linge liegt. Bei einer Lange der mitt-
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leren Sonne von 10°, also im gegeniiberliegenden Punkte der Ekliptik, betrigt
die scheinbare GréBe des Epizykels 46° 30’. Das ist aber nicht das absolute
Maximum, sondern in den Lingen 70° und 310°, d.h. also um 120° stlich und
westlich vom Apogium, erreicht der scheinbare Durchmesser des Epizykels den
absolut groBten Wert mit 47° 45’. Es gibt also zwei zur Apsidenlinie symme-
trisch liegende Perigden.

ProLEMAUS gelingt es, durch eine sinnvolle Konstruktion die Theorie der
Merkurbewegung so zu gestalten, daB diese merkwiirdige Erscheinung durch
sie dargestellt wird. Es lohnt sich aber kaum, diese Theorie hier im einzelnen
wiederzugeben, da die Beobachtungen selbst, auf denen sie aufgebaut ist, mit
den uns heute bekannten tatsichlichen Verhiltnissen im Widerspruch stehen.
Der einzige Zahlenwert der ptolemiischen Theorie, der mit den modernen ver-
traglich ist, betrifft den Halbmesser des Epizykels, den PToLEMAUS mit 0.375
angibt, und der von dem modernen (0.387) nur geringfiigig abweicht. Auch die
Annahme einer Symmetrie der geézentrischen Bewegung des Planeten in bezug
auf eine Apsidenlinie ist wenigstens nahezu erfiillt: Zur Zeit des ProLEMAUS
betrug die Linge des Perihels der Merkurbahn rund 50°, die des Perihels der
Erdbahn rund 70°; der Unterschied ist gering, wenn wir beriicksichtigen, daB
das Perihel der Erdbahn wegen der kleinen Exzentrizitit nur schwach aus-
gepragt ist. Das groBte Gewicht liegt also auf der Apsidenlage der Merkurbahn,
die wegen der starken Exzentrizitit dieser Bahn entsprechend scharf definiert
sein miiBte. Es ist also vollig unverstindlich, wenn im Almagest die Linge des
Apogdums mit 10° um 40° zu klein angegeben wird. Es fillt dabei auf, da8
ProLEmAUs zum Vergleich alte Beobachtungsdaten aus dem Jahre 262 v.Chr.
heranzieht, aus denen er die Lange des Apogdums zu 6° bestimmt — sein um 4°
groBerer Wert ist genau derjenige, den er erhalten wiirde, wenn er die Verlage-
rung der Apsidenlinie wegen der Prizession (4° in 400 Jahren) beriicksichtigen
wiirde, unter der Voraussetzung, da8 die alten Beobachtungen fehlerfrei waren.
Man kann sich hier kaum des Verdachtes erwehren, daB ProLEmMAUS (wie auch
an anderer Stelle) seine eigenen Ergebnisse denen seiner Vorfahren angeglichen
hat, vielleicht, weil er seiner eigenen Beobachtungskunst allzu kritisch gegen-
iiberstand.

Auch die Beobachtung von zwei Perigden beiderseits der Apsidenlinie ist
sicher falsch. Man kénnte eine derartige Erscheinung nur auf folgende Weise
erkliren: daB beim Betrachten der stark elliptischen Merkurbahn von ver-
schiedenen Seiten bald ihre groBe, bald ihre kleine Achse im rechten Winkel
zur Visierlinie steht. Das wiirde dazu fiihren, daB der Winkel zwischen den
beiden von der Erde an die Bahnellipse des Planeten gelegten Tangenten zwei
verschiedene periodische Schwankungen ausfiihrt: eine Schwankung von ein-
jahriger Periode, die davon herriihrt, daB der Mittelpunkt der Bahnellipse im
Laufe eines Jahres einmal in Erdnihe, einmal in Erdferne gelangt, und eine
Schwankung von halbjihriger Periode, deren Maxima eintreten, wenn sich die
Erde in Richtung der kleinen Achse der Merkurbahn befindet, und deren
Minima stattfinden, wenn sie die groBe Achse kreuzt. Wenn man aber diese
Verhiltnisse an Hand der bekannten Daten iiber die Bahnelemente von
Erde und Merkur durchrechnet, so findet man, daB die halbjdhrige Schwan-
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kung sehr viel kleiner ist als die groBe einjihrige') und daB sie nicht imstande
ist, die beiden von PTOLEMAUS vermuteten Maxima der Lingendifferenz
zwischen den Elongationen zu erkliren. Es ist zwar richtig, daB zur Zeit des
ProLEMAUS der scheinbare Epizykeldurchmesser in 70° Linge merklich
groBer gewesen ist als in 10° Lange, und auch die angegebenen Zahlen stimmen
groBenordnungsmiBig einigermaBen. Von einem zweiten Maximum bei 310°
kann aber keine Rede sein. Auch der scheinbare Epizykeldurchmesser im
Apogium, den PToLEMAUS mit 38° 6’ angibt, ist sicher falsch — in Wirklich-
keit liegt das Minimum etwa bei 42°. Es kann sich also hier nur um grobe
Fehler handeln.

Wir haben am SchluB des Abschn. g die Frage aufgeworfen, warum ProLE-
MAUs den naheliegenden Gedanken nicht aufgegriffen hat, daB die Venus die
Sonne umkreise und daB daher der Mittelpunkt des Epizykels dieses Planeten
gleichzeitig der wahre Ort der Sonne sei. Wir kénnen unseren Uberlegungen zu
diesem Punkte noch hinzufiigen, daB er dann konsequenterweise auch fiir Mer-
kur das gleiche hitte annehmen miissen. Apogdum und Exzentrizitit des Ex-
zenters der Venusbahn hitte er, wie wir an jener Stelle bemerkt haben, bei
einer geringfiigigen Abdnderung seiner Theorie der Sonnenbahn mit dieser in
Ubereinstimmung bringen kénnen. Bei der Bahn des Merkur, wie sie ihm er-
schien, wire das ganz unmoglich gewesen. Vielleicht ist diese ungliickliche
Fehlkonstruktion die eigentliche Ursache dafiir, daB ProLEMAUS hier den Zu-
gang zu den groBen Zusammenhingen im Planetensystem verfehlen mubBte,
an deren Pforte er bei anderer Gelegenheit schon gestanden hat, ohne es zu
wissen. Denn nur demjenigen hitte dieser Zugang zu hoheren Einsichten offen
gestanden, der das gemeinsame Bindeglied zwischen den einzelnen, nur schein-
bar voneinander unabhingigen Erscheinungen erkannte. Dem ProLEMAUS
blieb er verborgen, weil sein Weltbild esn widerspenstiges Glied in der Kette
der Zusammenhinge enthielt, das sich den Regeln nicht fiigen wollte, von
denen die iibrigen beherrscht wurden.

12. Von ProLEMAUS 2u KEPLER

Der groBte Mangel der antiken Planetentheorien war ihre Uneinheitlichkeit.
Selbst wenn wir Sonne und Mond auBer acht lassen, waren fiir die fiinf
eigentlichen Planeten nicht weniger als drei verschiedene Bewegungstheorien
erforderlich, eine fiir Merkur, eine fiir Venus und eine fiir die drei duBeren
Planeten. Dennoch war jenes gemeinsame Bindeglied zwischen diesen ver-
schiedenen Bahntypen, von dem weiter oben die Rede war, schon in den ein-
zelnen Theorien vorhanden, wenn auch unter fehlerhaftem Beiwerk versteckt.
Dieses gemeinsame Element war die merkwiirdige Koppelung der Planeten-

1) Die Amplitude der Jahresperiode ist ungefihr der Exzentrizitit [ ~ i), die
der halbjahrigen dem Achsenverhiltnis (~ L) der Bahnellipse proportioﬂal.
50
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bewegung an die Bahn der Sonne. Es tritt auch in der geozentrischen Fassung
der Planetentheorien zutage, wenn wir von den sekundiren Erscheinungen —den
durch die Exzentrizitit des Exzenters bedingten Ungleichheiten der Bewegung
in Linge - abstrahieren. Es bleiben dann nur noch die mittleren Bewegungen
auf dem Exzenter und auf dem Epizykel iibrig, und die Bindung der Planeten-
bewegungen an die der Sonne dufBert sich dann in den folgenden beiden Regeln:

1. Bei den inneren Planeten entspricht die mittlere Bewegung des Epizykel-
mittelpunktes auf dem Deferenten nach Periode und Phase genau der mittleren
Bewegung der Sonne.

2. Bei den duferen Planeten entspricht die Bewegung des Planeten auf dem
Epizykel nach Periode und Phase genau der mittleren Bewegung der Sonne.

Diese beiden Regeln lassen sich, auch wenn man den geozentrischen Stand-
punkt nicht verldBt, in eine einzige und fiir alle Planeten giiltige vereinigen.
Man braucht nur folgende Anderungen vorzunehmen, die weder mit den an-
tiken Bewegungsprinzipien noch mit der Erfahrung in Widerspruch stehen:

a) Man darf offenbar, ohne daB die Bahn des Planeten sich dndert, die beiden
Vektoren (Erde-Epizykelmittelpunkt und Epizykelmittelpunkt-Planet), aus
denen sich der ,,Ortsvektor des Planeten (Erde-Planet) zusammensetzt, in
ihrer Reihenfolge vertauschen, gemdB dem kommutativen Gesetz der Vek-
torenaddition. Nimmt man diese Vertauschung bei den duBeren Planeten vor,
so entspricht bei simtlichen Planeten die mittlere Bewegung des Epizykel-
mittelpunktes auf dem Deferenten nach Periode und Phase der mittleren Be-
wegung der Sonne.

b) Beobachtbar ist unmittelbar nur die Richtung, in der, vom Beobachtungs-
ort aus gesehen, die Planeten stehen, d.h., wenn wir die Neigung der Kreise
gegen die Ekliptik vernachlissigen, ihre ekliptikale Linge, nicht dagegen ihre
Entfernung. Wir diirfen daher die Halbmesser der Bahnkreise, ohne mit den
Beobachtungen in Widerspruch zu geraten, in beliebigen Lingeneinheiten
messen, und es ist zur Darstellung der scheinbaren Bewegungen nicht notwen-
dig, die gewahlte Lingeneinheit mit irdischen zu vergleichen; d.h., es ist aus-
reichend, die Verhdlinisse zwischen den vorkommenden Strecken, z. B. zwischen
dem Halbmesser des Epizykels und dem des Deferenten einer Planetenbahn zu
kennen. Setzen wir nun, nach der unter (a) beschriebenen Vertauschung, simt-
liche Deferentenhalbmesser gleich dem Halbmesser der Sonnenbahn, der als
Lingeneinheit dienen moge: so gelangen wir zu folgendem allgemeinen Gesetz:
Die Planeten bewegen sich in verschiedenen Kreisen um die Sonne, die sich threy-
seits auf einem Kreise mit dem Halbmesser eins um die Evde bewegt.

Dies ist der Grundgedanke einer Theorie des Planetensystems, die der letzte
prominente Anhinger des geozentrischen Prinzips, der Didne TycHo BRAHE
(1546-1601) noch ein halbes Jahrhundert nach dem Tode des Nikoraus Ko-
PERNIKUS (I473-1543) aufgestellt hat. KorERNIKUS hingegen hatte die an-
dere noch mégliche Folgerung aus den obengenannten Regeln gezogen: Die
Sonne als Mittelpunkt des Weltalls steht fest. Um sie kreisen die Planeten, unter
thnen auch die Evde, deren Bahn (Halbmesser 1) zwischen denen des Mars
(Halbmesser 1.52) und der Venus (Halbmesser 0.72) eingeschlossen ist.

Von diesen beiden an sich gleichwertigen Entwiirfen hatte der letztere vor
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dem anderen den Vorteil groBerer Einheitlichkeit voraus. Warum Tycro, ob-
wohl er das kopernikanische System genau kannte, es doch fiir nétig hielt,
einen Schritt riickwirts zu gehen und zugunsten des antiken geozentrischen
Prinzips ein KompromiB zu schlieBen, steht auf einem anderen Blatt. Der
Hauptgrund mag das Fehlen einer meBbaren jihrlichen Parallaxe der Fix-
sterne gewesen sein. Die Giite der Beobachtungen TycHos, der noch ohne
Fernrohr arbeitete, war zu seiner Zeit uniibertroffen: Die von ihm gemessenen
Gestirnsorter waren auf 1-2 Bogenminuten genau. Eine jahrliche Parallaxe von
1’ hitte auf eine Fixsternentfernung von rund 3500 Sonnenabstinden (Astro-
nomischen Einheiten) gefiihrt. Das ist etwa 1/, Lichtjahr. Mit einer so hohen
unteren Schranke fiir die Abstdnde der Fixsterne zu rechnen, mag den Astro-
nomen zu TycCHOs Zeiten noch schwer gefallen sein.

Eine endgiiltige Losung dieses himmelsmechanischen Hauptproblems brachte
weder das heliozentrische Schema des KoPERNIKUS noch der KompromiBvor-
schlag des Tycuo BraHE, da beide Hypothesen noch das antike Prinzip der
gleichformigen Kreisbewegung enthielten. Beide Forscher muBten also, um die
Ungleichférmigkeiten der Planetenbewegung darzustellen, doch wieder zu den
Hilfsmitteln der Alten, den exzentrischen Kreisen und den Epizykeln, Zuflucht
nehmen. Nur die groBte, primidre Ungleichheit, die den Wechsel zwischen
Recht- und Riickliufigkeit der scheinbaren Planetenbewegung hervorruft,
brauchte nun nicht mehr erklirt zu werden, da sie (bei KOPERNIKUS) als
parallaktischer Effekt der Erdbewegung bzw. (bei BraHE) als Mitfithrungs-
effekt der Sonnenbewegung gedeutet wurde. Die kleineren Ungleichheiten blie-
ben aber bestehen und wurden sogar vermehrt, da die glinzende Beobachtungs-
kunst TycHOs zu den schon bekannten noch weitere periodische Schwankungen
der Planetenérter enthiillte, die neue Anforderungen an den Theoretiker stellte.
Das gleiche gilt in besonderem MaBe fiir die Theorie des Mondes, die ja durch
die obigen Uberlegungen gar nicht beriihrt wird.

Tycuo BrauEs Nachfolger an der kaiserlichen Sternwarte zu Prag, an der
dieser bedeutende Astronom wahrend der letzten Jahre seines Lebens wirkte,
war JoHANN KEPLER (1571-1630), der das Gliick hatte, das in mehr als zwan-
zig Jahren gesammelte Beobachtungsmaterial seines Vorgingers auswerten zu
diirfen. Nach langen, vergeblichen Versuchen, die Bahn des Planeten Mars
durch Kreisbewegungen darzustellen, kam er auf den gliicklichen Gedanken,
auch dieses letzte Prinzip der antiken Astronomie fallen zu lassen, nachdem er
schon das geozentrische System zugunsten des kopernikanischen aufgegeben
hatte, und die wirkliche Form der Planetenbahnen sowie das Geschwindigkeits-
gesetz ohne Vorurteil allein aus den Beobachtungsdaten abzuleiten. Die Frucht
dieser Bemiihungen, die ersten beiden seiner beriihmten drei Gesetze der Pla-
netenbewegung, hat er in seiner 1609 in Prag erschienenen Schrift ,,Astronomia
nova seu physica coelestis tradita commentariis de motibus stellae Martis ex
observationibus G.V.TycHoNIS BRAHE” niedergelegt. Das dritte Gesetz, das
eine Abhingigkeit zwischen den Umlaufszeiten der Planeten und ihren mitt-
leren Entfernungen von der Sonne ausdriickt, ist als das wertvollste Ergebnis
seiner spiteren, im iibrigen mit vielen mystischen Spekulationen angefiillten
Arbeit ,Harmonices mundi libri V“ (Linz 1619) zu verzeichnen.
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Diese drei Gesetze haben den folgenden Wortlaut:

I. Die Planeten bewegen sich auf Ellipsen um die Sonne. Die Sonne befindet sich
in einem gemeinsamen Bremmpunkt dieser Ellipsen.

II. Der von der Sonne zum Planeten fiihrende Leststrahl vberstreicht in gleichen
Zeiten gleiche Flichen (Flichensatz).

III. Die Quadrate der Umlaufszeiten der Planeten verhalten sich wie die dritten
Potenzen ihrer groPen Bahnhalbachsen.

Die hier gewihlte Numerierung der KEpLERschen Gesetze, die wir in der
Folge mit , KEPLER I-III“ bezeichnen wollen, ist nicht die historische, denn
KEPLER hat als ersten den Flichensatz gefunden. Alle drei Gesetze stellen nach
unseren heutigen Kenntnissen nur Niherungen an die wirklichen Bewegungs-
verhiltnisse dar. Sie gelten streng nur dann, wenn man die Massen der Planeten
gegen die des Zentralkdrpers, der Sonne, vernachlissigen kann — eine Voraus-
setzung, die im Planetensystem mit groBer Anndherung, aber keineswegs exakt
erfillt ist.

5 Stumpff, Himmelsmechanik



KAPITEL I1

DIE KEPLERSCHEN GESETZE UND DIE GRAVITATION
13. Die Bahnbewegung in dev KEPLERschen Ellipse

Durch die ersten beiden KEPLERschen Gesetze wird die Bewegung eines Pla-
neten um die Sonne vollstindig beschrieben, wenn wir die am SchluB des
vorigen Abschnitts genannten Vorbehalte machen. Wir werden dabei vorerst
die Himmelskérper stets als punktformige Gebilde ansehen. In Wirklichkeit
sind sie endlich ausgedehnte Kugeln oder kugelidhnliche Rotationskorper. Wir
meinen dann immer ihre Mit-
telpunkte,wenn wirihre Orter
im Raum (oder ihre Bahnen
alsebene oder rdumliche Kur-
ven) beschreiben. Die Frage,
ob dieser Standpunkt berech-
tigt ist, wird spdter (Ab-
schn. 27 und 28) beantwortet
% werden. In diesem Sinn wird
also nach KEePLER I der ge-
meinsame Brennpunkt der
Planetenbahnellipsen durch
den Mittelpunkt der Sonne
belegt, und es sind die Mit-
telpunkte der Planeten —oder
] auch gewisse mit besonderen
Abb. 16. Bahnellipse eines Planeten. Eigenschaften ausgestattete
fingierte Punkte (Schwer-
punkte) innerhalb der von den Planeten mit ihrem Satellitengefolge gebildeten
Systeme —, die auf Ellipsen um die Sonne laufen.

Solange wir uns mit der Bewegung eines einzelnen Planeten um die Sonne
befassen, haben wir ein ebenes Problem vor uns. Wir wihlen dann zweckmiBig
die Bahnebene als Koordinatenebene, den einen Brennpunkt der Bahnellipse,
in dem die Sonne steht, als Koordinatenursprung und die Richtung von der
Sonne nach dem Perihel IT der Bahnellipse (Abb. 16) als Hauptkoordinaten-
richtung. Ist P der Ort des Planeten zu einer bestimmten Zeit ¢, und sind seine
Polarkoordinaten 7 (Radiusvektor) und v (wahre Anomalie), so lautet die
Gleichung der Bahnkurve

"o

) _ p
(IL; 1) r= T ecoso (KepLERI)

Form und GréB8e der Bahn sind dann durch die beiden Konstanten p (Para-
meter) und e (numerische Exzentrizitit) bestimmt. Sind & und & die gro8e und
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die kleine Halbachse der Ellipse, so bestehen zwischen , ¢ einerseits und a, b
andererseits die aus der Geometrie der Ellipse bekannten Beziehungen

P b

1—¢’ _]/1—52’

a=
(IT; 2)

in denen &, b und $ als Lingen geometrischer Strecken (p ist die positive Ordi-
nate im Brennpunkt) stets positiv sind, wihrend fiir die reine Zahl ¢ die Un-
gleichung o0 < e < 1 gilt. Der Abstand der Brennpunkte vom Mittelpunkt der
Ellipse ist gleich ae und heiBt , lineare Exzentrizitit“. Fiire = owirda = b = $:
Die Ellipse geht dann in den Kreis r = a iiber. Strebt ¢ gegen 1, so nidhert sich
die Bahnform dem Grenzfall der Parabel.

An Stelle von e wird hiufig der ,,Exzentrizititswinkel” ¢ benutzt, jener Win-
kel, unter dem von den Endpunkten der kleinen Achse aus die lineare Exzen-
trizitit erscheint. Es ist dann

(IL; 3) e=singp, J1—e =cosq,
und die Gleichungen (II; 2) lassen sich in der Form
(IT; 4) p=acos’p, b=acosp=gpsece

schreiben.

Waihrend das erste KEPLERsche Gesetz die Form der Bahn festlegt, regelt
das zweite, der sogenannte Flichensatz, die Geschwindigkeit des Planeten in
den verschiedenen Phasen seines Umlaufs. Mit Hilfe des Flichensatzes gelingt
es, den Ort (7, v) des Planeten als Funktion der Zeit zu bestimmen. Das laft
sich auch ohne Rechnung leicht einsehen: Man denke sich die von der Bahn
umschlossene Ellipsenfliche durch N verschiedene Leitstrahlen in N flichen-
gleiche Sektoren zerlegt, deren Spitzen im Brennpunkt S zusammenlaufen.
Durch diese Leitstrahlen werden N Bahnpunkte und zwischen ihnen N Bégen
der Ellipse bestimmt, die nach Aussage des Flichensatzes in gleichen Zeiten,
d.h. also in je U/N Zeiteinheiten durchlaufen werden, wenn U die Umlaufszeit
bedeutet. Wihlt man die ganze Zahl N belie-
big groB, so ist damit die Aufgabe, den Pla-
netenort fiir gleichabstindige, beliebig dicht
aufeinanderfolgende Zeitpunkte anzugeben,
auf eine geometrische Teilungsaufgabe zuriick-
gefiihrt.

In Abb. 17 sei SP P’ ein solcher Ellipsen-
sektor, dessen Inhalt dem N-ten Teil des ge-
samten Flicheninhalts der Ellipse gleich sei,
also abz/N betrage. Wichst N iiber alle Gren-
zen, riicken also die Endpunkte des Ellipsen-
bogens P P’ immer dichter zusammen, so darf Abb. 17. Flichensatz.

s.
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der Bogen P P’ der Sehne gleichgesetzt werden, der Inhalt des Sektors also dem
des Dreiecks SPP'. Ist  die Linge des Leitstrahls (Radiusvektors) S P und
7" = v + Avr die desbenachbarten Leitstrahls S P/, 4v = v’ — v der sehr kleine
Winkel PS P’, so ist der Inhalt des Dreiecks S P P’

x inAdv ~ =72
2 r{r + A7) sindv =~ 57 Av,

wenn wir uns auf Glieder 1.0rdnung in 47 und 4v beschrinken. Nach dem
Flichensatz ist der Inhalt dieser kleinen Fliche dem Zeitintervall 4¢, in dem
der Planet von P nach P’ gelangt, proportional. Wir konnen also setzen

2 Adv=~c At

wo ¢ einen konstanten Proportionalititsfaktor bedeutet. Nach vollzogenem
Grenziibergang erhalten wir dann streng

(IT; 5) 72% =c¢ (KeprLErII)

als mathematischen Ausdruck fiir den Flichensatz.
Fiihren wir rechtwinklige Koordinaten

x=7rcosv, y=rsinv; r=Yxt+f 32, tgv=—3:-

ein, so ist, wenn wir die letzte dieser Gleichungen nach der Zeit differenzieren
und Ableitungen nach der Zeit durch Punkte kennzeichnen,
v xy —yE

cos v %2

Setzen wir hierin wieder cos v = % und beriicksichtigen (II; 5), so ergibt sich
der Flichensatz in rechtwinkligen Koordinaten:
(IT; 6) zy —yE =c.

Uber den Zusammenhang zwischen der , Flichengeschwindigkeitskonstante*
(kurz: Flichenkonstante) ¢ und den Bestimmungsstiicken der Ellipse 148t sich
vorldufig folgendes aussagen: Ist U die Umlaufszeit des Planeten, so ist nach
dem obigen Teilungsprinzip

At:ﬁ.

Andererseits ist der Flicheninhalt des in dieser Zeit vom Radiusvektor des
Planeten iiberstrichenen Sektors
abn I

1 U
Af——ﬁ——?CAt——z—CN'.
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Daraus ergibt sich

I1;7) 0=2—Jab=nab,

wenn wir mit # = 2z/U die mittlere Bewegung des Planeten in der Zeiteinheit
bezeichnen, d.h. den in BogenmaB ausgedriickten Winkel, um den sich in der
Zeiteinheit ein Leitstrahl drehen wiirde, der in der Zeit U eine gleichférmige
Drehung um 27z = 360° ausfiihrt. Benutzen wir die Beziehungen (II; 3, 4), so
konnen wir statt (II; 7) auch schreiben

nap

(IT; 8) c=n}pa® =na’)r —e* =

I — e

Der Flichensatz bildet die Grundlage fiir eine analytische Behandlung der
KEepLERschen Bewegung. Driickt man 7 durch (II; 1) aus, so erhdlt man

3

dv c a\z
e )

als Differentialgleichung fiir die wahre Anomalie als Funktion der Zeit. Ihr
Integral

. I (p\2 [ dv .
(IL; o) ;(7) /(I-i—ecosv)2 =t=h

liefert die Zeit ¢, zu der sich der Planet in der wahren Anomalie v befindet. Die
Integrationskonstante £, gibt den Zeitpunkt an, an dem der Planet im Perihel
v = o steht (,Periheldurchgangszeit” oder kiirzer , Perihelzeit®).

14. Die KEPLERsche Gleichung

~ Zu den rein geometrischen Uberlegungen, die wir ohne Zuhilfenahme physi-

kalischer Interpretationen durchfiithren kénnen, gehért auch die Ausfithrung
der in (II; 9) angedeuteten Integration. Diese gelingt leicht, wenn man anstatt
der wahren Anomalie eine andere Variable E einfiihrt. Da der Radiusvektor #
wihrend der elliptischen Bewegung des Planeten zwischen dem Minimum
a(x — ¢) im Perihel und im Maximum & (1 + ¢) im Aphel der Bahn periodisch
schwankt, und da, wie aus KEPLER I und II unmittelbar eingesehen werden
kann, die Bewegung symmetrisch zu den Apsiden erfolgt, so liegt es nahe, die
neue Variable so zu definieren, daB

(II; xo0) 7 =a(1 —ecos E).
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Im Perihel (E = o) und im Aphel (E = =) stimmt E mit v iiberein. Fir E = 1;—

und %n wird 7 = a; der Planet befindet sich dann in einem der beiden End-

punkte der kleinen Achse.
Aus (IT; 1 und 10) folgt

recosv =p —r=a(l —e?) —a(x —ecos E),
also

(IT; 11) rcosv =a(cos E —¢),
ferner aus (II; 10, 11)

(rsinv)? =72 — (r cos v)? = a?(1 — €% sin®E,
also

(IL; 12) rsinv=a}1 — e*sinE,

wobei der Quadratwurzel das positive Zeichen zukommt, wenn man festsetzt,
daB E im gleichen Sinne wie v mit der Zeit wachsen soll. Durch Subtraktion
und Addition erhilt man aus (II; 10, 11)

7(I —cosv) =a(1+ ¢)(x —%cosE),
7(I+ cosv) =a(r —e) (1 +¥\cosE)

und, wenn man die erste dieser Gleichungen durch die zweite dividiert und die
Identitit

(IT; 13)

I—cCcosa

a
= P g2
I+ cosa gz

auf beide Seiten anwendet, die zur Umwandlung von v in E und umgekehrt
verwendbare Formel

1 E
(IT; 14) tg% = Viﬂ tg

I—e ~ 2

oder, wenn nach (IT; 3)

= gi N = = 2= _
e=sing; ——— I._Cos(f__q)) tg(4+2)
2

gesetzt wird,

(IT; 15)
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Differenziert man (II; 10) und (II; 1) in bezug auf die variablen GréB8en, so
erhilt man
dr = aesin E dE,

esinv e .
P v=1r—sinvdv

dr = (1 + ecosv)z

napdt

— e

oder, wenn man in der zweiten Beziehungr? dv = cdt = nach (II; 5, 8)

:

setzt,

dr = sin v d¢.

I — ¢?

Vergleicht man beide Ausdriicke miteinander, so folgt

yr— ezs:.—nE—dE =ndl

in v
oder, wegen (II; 12 und 10),

(I1; 16) —;—dE= (1 — e cos E) dE = n dt.

Die Integration dieser Gleichung ergibt

(IT; 17) E—esinE=n(t—1t)]|.

Das ist die KEPLERsche Gleichung, die man umstindlicher auch aus (II; g)
ableiten kann, wenn man v durch E mittels der Substitution (II; 14) ausdriickt.

Die transzendente KEpPLERsche Gleichung, deren Losung im Kapitel IV
(Abschn. 35) behandelt werden soll, gibt die Hilfsvariable E, die ,,exzentrische
Anomalie”, als Funktion der seit dem Zeitpunkt #, des letzten Periheldurch-
gangs verflossenen Zeit bzw. des Winkels

(IT; 18) M=n(t—to)=%“(t-to),

den man auch als die ,mittlere Anomalie” des Planeten bezeichnet, da er wih-
rend eines Umlaufs gleichférmig von o bis 2z zunimmt. Ist E durch Aufldsung
der KepLERschen Gleichung gefunden, so kann man die zu einem beliebigen
Zeitpunkt ¢ gehorigen rechtwinkligen Koordinaten des Planeten, £ = 7 cos v
und y = 7 sin v, aus (II; 11, 12) oder die Polarkoordinaten » und » aus (II; 10,
14) bestimmen.

KEPLER hat die Gleichung (II; 17) auf geometrischem Wege gefunden. Kon-
struiert man (Abb. 18) um die Ellipse den Hauptkreis, d.h. den Kreis um den
Ellipsenmittelpunkt M mit 4 als Halbmesser, der die Ellipse in den Endpunk-
ten der groBen Achse beriihrt, und verlingert man die Ordinate PQ des Pla-
netenorts P bis zum Schnitt K mit dem Hauptkreis, so ist der Winkel K M1]
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gleich der exzentrischen Anomalie E. Man liest nidmlich die Giiltigkeit der
Formeln (IT; 11, 12) direkt aus der Figur ab - die letztere, wenn man bedenkt,
daB wegen des Affinititsgesetzes der Ellipse die Proportion

KQ:PQ=a:b=1:]1 — ¢

besteht.

A 2 Mo $

Abb. 18. Exzentrische Anomalie. Ableitung der KerLErschen Gleichung.

Nun ist der Flicheninhalt des Kreissektors (I1M K)

(IT; 19) . v

(IMK) = Pyl acw = %— E = Dreieck KM'S + Kreisausschnitt (IISK).
Der Inhalt des Kreisausschnitts (I71S K) ist, wiederum auf Grund des Affinitits-
i multiplizierten Inhalt des Ellipsensektors (I1S P).

b
Dieser ist aber wegen KEPLER 11

gesetzes, gleich dem mit

2
1sP) =L abn— O M, s0da8 (ISK)=2(1SP) =L M.
2n 2 b 2

Da nun der Inhalt des Dreiecks KM S
2
iMS-KQ =L ac.asinE = g—esinE,
2 2 2
so ergibt die Beziehung (II; 19)
2 2
%E = %(M+ esinE) oder E —esinE =M.

15. Die antifokale Anomalie und das punctum aequans

Betrachten wir die Bewegung des Planeten P von dem zweiten Brennpunkt F
der Bahnellipse (dem ,leeren Brennpunkt oder , Antifocus”) aus, so sind
(Abb. 19) seine Polarkoordinaten
s =2a —r (antifokale Distanz),
w (antifokale Anomalie).
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Im Kapitel I haben wir gesehen, daB in der antiken Planetentheorie die Be-
wegung des Epizykelmittelpunkts vom punctum aequans aus mit konstanter
Winkelgeschwindigkeit vor sich ging. Die Kreisbahn des Epizykelmittelpunkts
(Deferent) entspricht in der modernen Theorie bei den inneren Planeten der
Sonnenbahn (Erdbahn), bei den duBeren der Planetenbahn selbst. Die festen
Punkte E (Erde) und F (punctum
aequans) entsprechen also den bei-
den Brennpunkten einer KEPLER-
schen Bahnellipse, deren Gestalt
wegen der kleinen Exzentrizitit nur
wenig von der Kreisform abweicht.
Wennalso das Ergebnis der Analyse y
des PToLEMAUS richtig ist, so darf 4 F M ae S
man erwarten, daB der Antifokus Aph, 19. Wahre und antifokale Anomalie.
der elliptischen Bahn die Eigen-

schaften eines punctum aequans wenigstens annihernd aufweist. Der Beweis
fiir die Berechtigung dieser Annahme 148t sich leicht erbringen.

Fiir die Polarkoordinaten s, w gelten die Beziehungen

s=2a—7%=a(1+4 ecos E),
(II;zo) scosw = 2ae+ rcosv = a(cos E 4 ¢),
ssinw =rsinv=a})1 — e?sinkE,

die aus den Gleichungen (II; 10-12) folgen und ihnen entsprechen. Alle Be-
ziehungen zwischen 7, v und E gehen also in die zwischen s, w und E {iber, wenn
man e mit — e vertauscht. Wegen (II; 13) gilt daher auch

. w 1/1—e E T @ E 1—¢ v
(II,21)tg2—V tg —tg(4 )tg—z——l_}_e’cg2

und

v w
. — 2
(IT; 22) tg—2 tg 5 = tg

Differenziert man (II; 21) nach v und w, so ergibt sich

w
tg —
dw  1—e dv €2 dw dv
= = . oder — = — s
2 @ I+ e 2 ¥ v 2 U sin w sin v
cos% — cos® — tg— cos*—
2 2 2 2

d.h., wenn man die dritte Gleichung (II; 20) und den Flichensatz berticksich-

tigt,
dw dv dw
(II; 23) Sor =T oder TS =c.
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Driickt man nun 7 und s nach (II; 10,20) durch die exzentrische Anomalie aus,
so erhilt man

dw c c
at a*(1 — e? cos? E) - ?(I + et cos’ B+ efcostE + --1).

wihrend nach KEPLER 11

dv c

c
ws m =?(I+ 2¢cos E 4 362 cos’E + --+).

Hierbei ist ;cz_ =n 1 — ¢ nach (II; 8). Die zeitliche Anderung der antifokalen

Anomalie weicht also nur um Glieder 2. Ordnung in der Exzentrizitit von einer
Konstanten ab, wihrend die der wahren Anomalie auch Glieder 1.Ordnung
enthilt. Wegen der Kleinheit der Bahnexzentrizitit aller alten Planeten (mit
Ausnahme des Merkur) ist es daher verstindlich, wenn die Astronomen der
alten Schule die antifokale Winkelgeschwindigkeit dw/d¢ streng fiir konstant
ansahen.

16. Zentralbewegung und Gravitationskraft

KEPLER hat seine Gesetze der Planetenbewegung auf empirischem Wege ab-
geleitet — ihre Einordnung in ein physikalisches Weltbild war zu seiner Zeit noch
nicht méglich, doch wurden die Vorbedingungen dazu von seinem Zeitgenossen
GALILEO GALILEI (1564-1642), dem Begriinder einer neuen, auf Beobachtung,
Experiment und exakter Messung fuBenden Mechanik, geschaffen. Die Bestre-
bungen GaLiLEIs fanden gegen Ende des 17. Jhs. ihre Fortsetzung und Voll-
endung durch Isaac NEWTON (1643-1727), der in seiner berithmten, 1687 er-
schienenen Schrift ,, Philosophiae naturalis principia mathematica“ die mathe-
matischen Grundlagen der modernen Himmelsmechanik entwickelt hat.

Wihrend KEPLER sich noch damit begniigen mubBte, einen Bewegungsvor-
gang wie den Lauf der Planeten um die Sonne beschreibend darzustellen,
suchte NEwToN ihn durch Zuriickfithrung auf das Wirken von Kriften ver-
stindlich zu machen. Dazu war natiirlich nétig, den bis dahin verschwommenen
Begriff der Kraft als mathematisch-physikalische GroBe exakt zu definieren
und damit der Messung und der Rechnung zuginglich zu machen.

In der NEwtoNschen Mechanik sind die Begriffe Kraft, Trigheit und Be-
wegungsgrofe (Impuls) eng miteinander verkniipft. Unter BewegungsgréBe ver-
steht man das Produkt aus Masse und Geschwindigkeit eines bewegten Kor-
pers, wobei die Geschwindigkeit als Vekfor aufzufassen ist. Das Geselz der
Traghest, das in seinem Wesen bereits von GALILEI klar erkannt, von NEwTON
aber streng formuliert wurde, besagt, daB die BewegungsgréBe eines Korpers
unverinderlich, d.h., als Funktion der Zeit betrachtet, eine Konstante ist,
solange keine Krifte auf ihn wirken. In dieser Formulierung ist die Definition
der Kraft enthalten. Jede zeitliche Verinderung der BewegungsgréBe wird
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durch eine auf den bewegten (oder ruhenden) Kérper wirkende Kraft verur-
sacht. Damit ist das MaB der Kraft durch die zeitliche Anderung der Bewe-
gungsgroBe, mit anderen Worten als deren Differentialquotienten nach der Zeit
gegeben.

Der Ort P eines Korpers, den wir auch jetzt als punktformig ansehen wollen,
sei durch den Vektor p symbolisiert, der vom Anfangspunkt eines Koordinaten-
systems nach P fiihrt. Bewegt sich der Koérper auf einer Kurve, so wird dieser
,,Ortsvektor eine Funktion der Zeit

(IT; 24) p=7(@).

Ebenso wie die Bahnkurve, die durch sie mathematisch dargestellt wird, ist

diese Funktion notwendig stefig (natura non facit saltus). Dariiber hinaus sind

die Bewegungen, mit denen wir es zu tun haben, stets so geartet, daB die Funk-

tion (II; 24) beliebig oft nach der Zeit differenzierbar ist. Die erste Ableitung

nach der Zeit

b=p=2
Tt

liefert den Vektor der Geschwindigkeit. Der obigen Definition zufolge wird dann

die auf den Massenpunkt P wirkende Kraft durch den Vektor

d

nach GroBe und Richtung gemessen, wobei m die in P vereinigte Masse be-

deutet. Im Rahmen der Probleme, mit denen wir es vorerst zu tun haben,
diirfen wir die Masse # als unverdnderlich betrachten. Es wird dann

dzp

f=md=mp = mg
d.h., die Kraft ist proportional der Masse und der Beschleunigung des bewegten
Korpers.

Um die Eigenschaften einer Kraft kennenzulernen, die Bewegungen nach
den KepLERschen Gesetzen hervorruft, diirfen wir uns auf ein zweidimensionales
Koordinatensystem beschrinken, da eine derartige Bewegung ja in einer Ebene
vor sich geht. Es sei also P (Abb. 20) der Ort des Planeten zu irgendeiner Zeit ¢,
seine Polarkoordinaten seien 7 und @. Der Ortsvektor des Planeten ist dann

(IT; 25) p=rrt,

wenn t den Einheitsvektor in der Richtung vom Koordinatenursprung S nach P
bedeutet. Geschwindigkeit und Beschleunigung von P ergeben sich dann durch
zweimaliges Differenzieren von (II; 25) nach der Zeit:

(IT; 26) P =t -+ ri,
(IT; 27) p =it + 27t 4 ri.
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Sind ferner die Achsenrichtungen eines rechtwinkligen Koordinatensystems
durch die konstanten Einheitsvektoren i(p = 0°) und j(¢ = 90°) gegeben, so
lassen sich der radiale Einheitsvektor t (@) und der auf ihm senkrecht stehende
zirkulare Einheitsvektor m = t(p 4 9o°) in der Form

(IT; 28) t= icosg+ jsing,
(IT; 29) m= —ising + jcosg
darstellen. Differenziert man (II; 28) zweimal nach der Zeit, so ergibt sich
t= (—ising + jcosg) ¢ = ¢m,
f=(—1ising+ jcos @) p — (icos @ + jsin @) ¢* = gm — ¢r.
Setzt man dies in (II; 26, 27) ein, so erhilt man schlieBlich
p=fr+ rom,
(11; 30 .. N
b= (F—re®)r+ (279 + r@)m.

Diese beiden Gleichungen bedeuten eine Zerlegung des Geschwindigkeits- und
des Beschleunigungsvektors in zwei Komponenten, eine in Richtung des Orts-
vektors zeigende radiale und eine im positiven Sinne um go° gegen diese Rich-
tung gedrehte zirkulare Komponente.

Ky z 7

Abb. 20. Ebene Bewegung eines Punktes.

Erfolgt die Bewegung, tiber die bislang nichts vorausgesetzt wurde, nach den
KEePLERschen Gesetzen, so gestatten die mathematischen Ausdriicke (II; 1, 5),
diese Komponenten durch die gegebenen Bahnkonstanten auszudriicken. Neh-
men wir an, daB die Sonne im Koordinatenanfang stehe und die Hauptkoordi-



Zentralbewegung und Gravitationskraft 77

natenrichtung die nach dem Perihel einer Planetenbahn sei, so ist ¢ mit der
wahren Anomalie v identisch. Die Formeln (II; 1, 5) liefern dann

P

(IL; 31) "= I} ecosv’

. ¢
(IT; 32) v=-
Durch Differenzieren von (II; 31) erhilt man

esinv . 2 e . )
F = P -v=( p )-—smv-v

(x + ecosv)? I1+ecosv) p

oder, nach Einsetzen von (II; 31, 32),

(IT; 33) F=c2sinv.
p
Nochmaliges Differenzieren von (II; 32, 33) ergibt
z‘i——ci~—— ¢ esinv
=TT b ,
(I; 34) . .
f=c—cosv-0= 7 }—cosv.

Setzt man die so erhaltenen speziellen Werte fiir die Ableitungen von 7 und
@ = v in (II; 30) ein, so folgt fiir die GroBe der beiden Komponenten des Be-
schleunigungsvektors

cz(ecosqy I)__ c?

. . i pep_ G [(ecOSp T K
(I1; 35) radiale Komponente: i — r¢ o 5 ; et

(IT; 36) zirkulare Komponente: 2'1"¢ + rp =o.
Damit folgt fiir den Beschleunigungsvektor nach (II; 30) der Ausdruck

I - c?
(IL; 37) b= gat
bzw. fiir die auf den bewegten Massenpunkt wirkende Kraft
mc?

Da der Faktor mc?/p7? eine wesentlich positive GroBe ist, besagt (II; 38), daB
die auf einen nach den KEpLERschen Gesetzen um die Sonne laufenden Planeten
wirkende Kraft stets die Richtung — t hat, d.h. vom Planeten zur Sonne ge-
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richtet ist. AuBerdem gilt der Satz: Der Betrag der Kraft ist der Masse des
Planeten proportional und dem Quadrat seines Abstandes von der Somne um-
gekehrt proportional. NEWTON bezeichnete diese Kraft als Gravitation und deu-
tete sie als eine allgemeine Anziehung, die von der Sonne auf alle Massen aus-
geiibt wird, die sich in ihrer Umgebung befinden. '

Die Formel (II; 36) sagt aus, daB die zirkulare Komponente der Kraft ver-
schwindet, daB also die radiale Komponente allein wirksam ist. Krafte mit
dieser Eigenschaft haben stets die Richtung des Radiusvektors oder die ent-
gegengesetzte, je nachdem die radiale Komponente eine positive oder negative
MaBzahl besitzt. Krifte dieser Art heiBen allgemein Zentralkrifte, da sie als von
einem Zentrum ausgehend angesehen werden konnen. Die durch sie bedingten
Bewegungen werden dementsprechend Zentralbewegungen genannt. Die radiale
Komponente, iiber die (II; 36) nichts aussagt, kann immer noch eine beliebige
Funktion der Zeit und der Koordinaten 7, ¢ sein. Ist insbesondere der Zahlen-
faktor der radialen Komponente negativ, wie bei der KErPLERschen Bewegung,
so nennt man die Zentralkraft affrakiiv, im anderen Falle repulsiv. In der
KErLERschen Bewegung ist die Kraft von der Zeit und der Richtung ¢ unab-
hingig, also eine Funktion des Abstandes 7 allein; sie bildet also ein stationdres
Kraftfeld, das zum Kraftzentrum radialsymmetrisch angeordnet ist.

Fiir das Zustandekommen einer Zentralbewegung. ist die Giiltigkeit des
Flichensatzes eine hinreichende Bedingung, denn aus

. ¢, . 2cF
P P=

folgt unmittelbar (II; 36). Diese Bedingung ist aber auch nofwendsg, d.h., der
Flichensatz gilt fiir alle Zentralbewegungen. Schreibt man ndmlich die Diffe-
rentialgleichung (II; 36) in der Form

2

+Z =0,

| =
<.

so folgt durch Integration
2log7 4 logp =loge,

wo log ¢ eine Integrationskonstante bedeutet. Diese Gleichung ist aber mit
dem Flichensatz r2¢p = ¢ gleichbedeutend.

Sei nun R = R(r, ¢) der Betrag einer Zentralkraft, so 4Bt sich aus den bei-
den Bedingungen
R=m|i —rg?|, rP¢p=c
eine Differentialgleichung herleiten, der die Bahnkurve 7 = 7 (p) geniigen muB.

Fiihrt man statt 7 die neue Variable # = ;—ein, und kennzeichnet man Ablei-
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tungen nach ¢ durch Striche, Ableitungen nach der Zeit, wie immer, durch
Punkte, so ergibt sich durch zweimaliges Differenzieren nach ¢:

, % I 7
Y= T TR T G
¢ r c
" 1§ 2§ ¥
U =———=——=="57
c c 2y
Es ist also
f=—culu"; r¢?=ctud
und somit

R =mc?u?(u' 4 u)

oder, wenn wieder % durch 7 ersetzt wird,

R

Fiir das NEwToNsche Gravitationsgesetz ist speziell

mc? ¢, " I
R—W—mr—z(u + u) oder u +u—$.

Diese Differentialgleichung 2.Ordnung hat die allgemeine Lésung

u=§+Acos<<p—«po)

oder
_ ?
I+ Apcos(p— @)’

d.h. also, die Bahn ist ein Kegelschnitt. Das Kraftzentrum (Koordinatenan-
fang) befindet sich in einem der Brennpunkte. Die Integrationskonstanten 4

und @, haben folgende Bedeutung: Es ist 4 = %, und ¢, ist der Richtungs-

winkel nach dem Perizentrum.

17. Das dritte KEPLERSche Gesetz und die allgemeine Gravitation

~ Die Formel (II; 37) fiir die Beschleunigung, die einem Planeten durch die
Gravitationskraft der Sonne erteilt wird,
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besagt zunichst nur, daB fir einen und denselben Planeten, fiir dessen Bahn-
bewegung die Konstanten ¢ und  bestimmte Zahlenwerte annehmen, der Be-
trag dieses Vektors nur von der Entfernung » des Planeten von der Sonne ab-
hingt, und zwar dem Quadrat dieser Gré8e umgekehrt proportional ist. Neh-
men wir nun mit NEWTON an, daB diese GesetzmiBigkeit auf das Bestehen
einer der Sonne innewohnenden und von ihr ausgeiibten Kraft zuriickzufiihren
ist, so folgt daraus, daB die Beschleunigungen, die irgendwelche beliebige
Massenpunkte durch diese Kraft erleiden, der gleichen GesetzméiBigkeit unter-
worfen sein miissen. In dem Ausdruck fiir dieses Beschleunigungsgesetz diir-
fen also nicht mehr diejenigen GroBen vorkommen, die von der Gestalt einer
bestimmten Bahn abhingen, auf der sich ein bestimmter Kérper bewegt. Die
einem beliebigen Planeten, der sich in der Entfernung 7 von der Sonne befindet,
erteilte Beschleunigung wird also durch die Formel

o T
(I1; 40) b=-C—3

dargestellt werden miissen, in der C? eine positive Konstante bedeutet, die fiir
das System Sonne-Planet maBgebend ist und nur von den individuellen Eigen-
schaften (den Massen) dieser beiden Himmelskérper abhangen darf, nicht aber
von den Elementen der von ihnen beschriebenen Bahnen. Der Vergleich beider
Ausdriicke zieht nach sich, da8

2

(IL; 41) =25 e=Cp,

d.h. also, daB die Flachenkonstante einer Planetenbahn der Quadratwurzel aus
dem Bahnparameter proportional ist.

NewToN hat ferner gezeigt, daB die Anziehungskraft, die von der Erde auf
den sie umkreisenden Mond ausgeiibt wird, ihrem Wesen und ihrer Gré8e nach
mit der Schwerkraft identisch ist, die den freien Fall der Kérper auf der Erd-
oberfliche verursacht. Aus den schon von GALILEI empirisch abgeleiteten Fall-
gesetzen war bekannt, daB3 die Beschleunigung der Korper durch die Schwer-
kraft von deren Masse unabhingig ist. Es lag also nahe anzunehmen, daB die
GroBe C wohl von der Masse des anziehenden, nicht aber von der des angezo-
genen Korpers abhingt und daher fiir ein und dasselbe System, etwa das
Planetensystem der Sonne oder das Satellitensystem eines Planeten, konstant
ist. Um diesen Sachverhalt zu priifen, fithren wir in (II; 41) fiir die Flichen-
konstante ¢ den Ausdruck (II; 8) ein und erhalten

I1; 42 ¢t =n%adp; C?=n’ds
4 2

Ist also C eine fiir das ganze Planetensystem giiltige Konstante, so wird fiir
verschiedene Planeten P; (s =1, 2, ...) mit den mittleren Bewegungen n, =2x/U;
und den groBen Bahnhalbachsen a; das Verhiltnis

ai  C?

(IT; 43) T
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konstant sein. Das ist aber nichts anderes als der mathematische Ausdruck fiir
das dritte KEPLERsche Gesetz, das von KEPLER empirisch gefunden wurde und
daher wenigstens mit groBer Annidherung im Planetensystem erfiillt sein muB8.

Um einen Uberblick zu gewinnen, mit welcher Genauigkeit dieses Gesetz
tatsichlich gilt, stellen wir in der folgenden Tabelle die gro8en Bahnhalbachsen
(in astronomischen Einheiten), die siderischen Umlaufszeiten (in mittleren
Tagen) und die nach (II; 43) berechneten Werte C? zusammen, und zwar links
fiir die vier sonnennichsten Planeten, rechts fiir die vier groBen Jupiter-
monde in der Bewegung um ihren Zentralkérper.

Planet a U 10* C? | Trabant a U 107 C?
Merkur 0.38710 | 87.969 | 2.9591 I 0.002819 | ‘1.7601 | 2.826
Venus 0.72333 | 224.70 2.9501 II 0.004486 | 3.5512 | 2.826
Erde 1.00000 | 365.26 | 2.9591 III 0.007155 | 7.1546 | 2.825
Mars 1.52369 | 686.98 2.9591 v 0.012585 | 16.6890 | 2.825

Innerhalb der hier benutzten Stellenzahl erweist sich die GroBe C2 also fiir
jedes der beiden Systeme tatsdchlich als konstant, wihrend sie fiir verschie-
dene Systeme betrichtlich verschieden ausfillt. Fiir das Jupitersystem ist C2
rund 1047mal so klein wie fiir das Sonnensystem. Noch andere Werte wiirden
wir erhalten, wenn wir die gleiche Rechnung fiir die Trabantensysteme anderer
Planeten durchfiihrten. Es wird daher zweckmiBig sein,

(IL; 44) cr= M2

zu setzen, wobei nun k2 eine universelle Konstante und M einen Faktor bedeutet,
der fiir jedes System verschieden ist und offensichtlich ein MaB fiir die vom
Zentralkorper ausgehende attraktive Kraft ist, und die man daher als MaBzahl
fiir die gravitierende Masse des Zentralkérpers einfithren kann. Wihlt man,
wie es in der Astronomie iiblich ist, als Masseneinheit die Sonnenmasse, so be-
tragt dieser Festsetzung zufolge die Masse des Jupiter 1/1047.

Definiert man nun, wie oben, die vom Zentralkérper auf den Begleiter aus-
geiibte Kraft als das Produkt aus Masse und Beschleunigung des letzteren, so
wird nach (IT; 40)

m
= — C27t
oder, wenn man (II; 44) substituiert,
Mm
(IT; 45) t=—p =t

der allgemeine Ausdruck fiir die Gravitationskraft. Diese Kraft ist demmach dem
Produkt der beiden beteiliglen Massen divekt und dem Quadrat thres Abstandes
umgekehrt proportional! '

6 Stumpff, Himmelsmechanik
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In dieser endgiiltigen Gestalt, die sich auch in allen ihren Konsequenzen als
mit der Erfahrung vertriglich erwiesen hat, gibt das NEwroNsche Gravitations-
gesetz zu folgenden grundsitzlichen Uberlegungen AnlaB: Nachdem festgestellt
worden ist, daB die einem Kérper innewohnende Attraktionskraft der Masse

dieses Korpers proportional ist, wird es nur
P folgerichtig sein, wenn man die Eigenschaft,

Anziehungskrifte auf andere Kérper auszu-

iiben, jeder Masse zubilligt. Wenn also die

Sonneaufirgendeinen Planeten eine Kraft von

der Form (II; 45) ausiibt, so wird auch um-

gekehrt der Planet auf die Sonne eine solche

Kraft ausiiben. Da nun aber (II; 45) in bezug

auf die beiden beteiligten Massen symmetrisch

ist, werden diese beiden Krifte dem Betrage
nach gleich groB sein. Ihre Richtung ist aber
entgegengesetzt, da die eine vom Planeten zur

Sonne (in der Richtung — r), die andere aber

von der Sonne zum Planeten (in der Rich-

tung t) wirkt. Im mechanischen System
: Sonne-Planet gibt es daher die beiden ent-
2 gegengesetzt gleichen Krifte

1 Ab'b:. 21. Zweikérperproblem:
Ortsvektoren. (I1; 46) £ = —&2 Afzm 6oV =4R? Aimt

Das entspricht einem allgemeinen Grundsatz der NEwToNschen Mechanik: In
einem geschlossenen System, auf das keine duBeren Krifte wirken, ist die
Summe aller (inneren) Krifte null, d.h., jede auftretende Kraft (actio) wird
durch eine gleich groBe Gegenkraft (reactio) kompensiert: Actio ef reactio sunt
aequales.

Diese endgiiltige Fassung des Gravitationsgesetzes zwingt uns, die obigen
Uberlegungen, die zum dritten KEPLERschen Gesetz gefiihrt haben, etwas zu
modifizieren. Sei (Abb. 21) von einem ruhenden (d.h. von Kriften nicht be-
einfluBten) Anfangspunkt O des Raumes aus 8 der Ortsvektor der Sonne (S), q
der Ortsvektor des Planeten (P) und p der von der Sonne zum Planeten fith-
rende Vektor, so ist nach dem Gesetz der Vektorenaddition

8+p=gq, also p=gq—38.
Die Beschleunigung des Planeten in bezug auf die Sonne ist demnach
F=§-38.
GemiB (IT; 46) sind die auf Planet bzw. Sonne wirkenden Krifte

M bow. M3 = +k2]‘f2’”

5 _ 2
mg k e

L,
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woraus fiir die Beschleunigungen

. M m
(IL; 47) q=—k2—7r bzw. 3=-§-kzﬁt

folgt. Die Relativbeschleunigung des Planeten zur Sonne ist also

2M+mt.
72

(I1; 48) p=—h

Vergleicht man (IT; 48) mit (II; 37), so findet man fiir die Flichenkonstante der
Planetenbahn den neuen Ausdruck

(IT; 49) c=kYp VM + m.

Setzt man dies mit (II; 8) gleich und bedenkt, daB » = 2x/U, so ergibt sich das
dritte KEPLERsche Gesetz in der genaueren Form

a® k2 '
M + m) (KepLER III)

(IT; 50) ﬁ=jﬁ§(

Das Verhiltnis zwischen den Kuben der groBen Halbachsen der Bahnen und
den Quadraten der Umlaufszeiten ist also innerhalb eines Systems nicht, wie
die urspriingliche Fassung (II; 43) dieses Gesetzes vermuten lieB, eine fiir das
ganze System giiltige Konstante. Wird, wie oben, die Sonnenmasse M = 1
gesetzt, so hat der Ausdruck auf der rechten Seite von (II; 50) infolge des
Faktors 1 + m fiir jeden Planeten einen individuellen Wert. Diese Unter-
schiede fallen aber im Planetensystem nicht sehr ins Gewicht, da die Massen
aller Planeten gegen die Sonnenmasse sehr klein sind. Von den vier Planeten
der obigen Tabelle besitzt die groBte Masse die Erde mit m = 1/329000 (ein-
schlieBlich Mond). Dieser Betrag ist so geringfiigig, daB der Faktor 1 + # bei
fiinfstelliger Rechnung nicht merklich von der Einheit abweicht. Wiirde man
aber die Tabelle durch die Daten des Jupiter vervollstindigen, dessen Masse
von der GréBenordnung 1073, also bei gleicher Rechengenauigkeit nicht mehr
zu vernachlissigen ist, so wiirde man finden:

a = 5.2028, U = 4332.6, C? = 2.9617--10"*

und in Ubereinstimmung mit (II; 50)

m 1
1I: 2. B2 4 —) = 2. - 1074
(IT; 51) C kM(1+M) 29591(1+ 1047) 10
Die Diskrepanz zwischen den Formeln (II; 44) und (II; 51) beruht darauf, daB
in der ersteren die der Sonne vom Planeten erteilte Beschleunigung auBer acht
gelassen wurde. Nur wenn diese verschwindend klein ist, gehen beide Formeln
ineinander iiber.

6*
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Aus (IT; 8) und (II; 49) leitet man fiir die mittlere Bewegung eines Planeten
in der Zeiteinheit den neuen Ausdruck

3
(IT; 52) n=kYM+ma 2

ab.
18. Gravitationskonstante und Sonnenparallaxe

Den numerischen Wert der Gravitationskonstante % leitet man am besten aus
den Elementen der Erdbahn ab, wobei zur Bestimmung der Erdmasse die
Bahnbewegung des Mondes um die Erde herangezogen werden kann. Setzen
wir Masse, groBe Bahnhalbachse und Umlaufszeit der Erde gleich m, a, U, die
entsprechenden Daten fiir den Mond gleich m,, a,, U, so gilt fiir die Bewegung
des Systems Erde-Mond um die Sonne gemiB (II; 50)

as 2

(IT; 53) —UE' e 2(I+m+m1)
und fiir die Bewegung des Mondes um die Erde entsprechend

a3 k2

'U_:ln\_ 47‘2 (m + ml)
Eliminiert man aus beiden Gleichungen die Massensumme  + m,, so ergibt
sich

ad at

B = qmt (ﬁ Ulz)

oder

.
2% 31/ _ (UV (2
k‘U“V‘ (U)(a)

Driickt man nun die groBen Halbachsen in astronomischen Einheiten (¢ = 1)
und die siderischen Umlaufszeiten in mittleren Sonnentagen aus, so wird

27 1(U\,
b= -3 -]

mit a; = 1: 389.3; U = 365.25636; U, = 27.32166.
Das Hauptglied 27/U hefert

(IT; 54) k= \1720210 log & = 8.2355814 — 10.

Das 1.Korrektionsglied in der Klammer betrigt 1.52 10~% und wiirde den
oben angegebenen Wert von £ nur um 2-3 Einheiten der 8.Dezimalstelle 4n-
dern. Bei siebenstelliger Rechnung, die fiir fast alle Anwendungen der theore-
tischen Formeln, mit denen wir es hier zu tun haben werden, vollig ausreicht,
kommt man also mit dem Wert (II; 54) aus.
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C.F.Gauss hat in seiner , Theoria motus corporum coelestium“ (1809) die
Gravitationskonstante nach (II; 53) mit @ = 1 und

U = 365%2563835; 7+ my = 1:354710
zu
k = 0.01720209895

berechnet. Dieser Zahlenwert ist als ,,Gausssche Konstante” seither in allen
himmelsmechanischen Rechnungen benutzt worden, obwohl inzwischen fiir U
und m + m, genauere Werte bekannt geworden sind. Heute gelten die von
NEwcoMB (um 1900) abgeleiteten Zahlenwerte

(IT; 55) U = 365%25636042; m + m, = 1: 329390

als die besten. Mit ihnen wiirde sich % geringfiigig, aber doch fiir genaue Rech-
nung merklich dndern. Um nun zu vermeiden, daB die zahlreichen mit dem
obigen Zahlenwert der Gaussschen Konstante durchgefithrten Rechnungen
ihre Giiltigkeit verlieren, ist man iibereingekommen, statt fiir # mit der fort-
schreitenden Verbesserung unserer Kenntnis der astronomischen Konstanten
stdndig neue Werte einzufiihren, die Gleichsetzung der astronomischen Lingen-
einheit mit der mittleren Entfernung der Erde von der Sonne aufzugeben. Be-
rechnet man unter Beibehaltung der Gaussschen Konstanten die Gréfe a aus
(IT; 53) und den Daten (II; 55), so findet man

(II; 56) log @ = 0.000000013,

d.h. also fiir die groBe Halbachse der Erdbahn einen Wert, der etwas groBer als
die astronomische Lingeneinheit ist.

Um die ,,Astronomische Einheit“ (A.E.) in irdischem LingenmaB ausdriicken
zu konnen, ist es notwendig, die mittlere tdgliche Parallaxe der Sonne (7()
durch Messung so genau wie méglich zu bestimmen. Sie hingt mit « und dem
Aquatorhalbmesser der Erde g, durch die Gleichung

: _ %
SN o = 2R
zusammen, wo R die, ebenso wie g,, in km ausgedriickte Linge der A.E. und 4
die durch (II; 56) definierte Zahl bedeutet.

Die genaue Bestimmung der Sonnenparallaxe ist eine der schwierigsten Auf-
gaben der messenden Astronomie; ihre fundamentale Bedeutung leuchtet ein,
da auf ihrer exakten Losung letzten Endes die Moglichkeit beruht, alle Ab-
standsmessungen im Universum auf jenes einheitliche Ma8system zuriickzu-
fithren, das in der gesamten Physik benutzt wird. Die Beschreibung der Metho-
den der Bestimmung der Sonnenparallaxe gehért in den Bereich der Sphdrischen
Astronomie. Hier soll nur dasjenige Verfahren kurz skizziert werden, das sich in
der modernen Astronomie als das genaueste bewihrt hat: Die Bestimmung
dieser fundamentalen Konstanten durch Beobachtung von Planetoiden, die der
Erde besonders nahe kommen, wie z.B. die kleinen Planeten Eros und Amor.
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Durch genaue Messung der tiglichen Parallaxe dieser Korper in ihrer groBten
Erdnidhe (die bei Eros 0.16 A.E., bei Amor noch etwas weniger betragen kann)
gelingt es, in dem zu einer bestimmten Zeit von Erde, Sonne und Planetoid
gebildeten Dreieck, dessen Seitenverhiltnisse aus der Himmelsmechanik be-
kannt sind, die eine Seite, nimlich den Abstand Erde-Planetoid, auch in ir-
dischem MaB auszudriicken. Dadurch werden dann die anderen beiden Seiten
des Dreiecks, also auch der Abstand Erde-Sonne, ebenfalls in km ausdriickbar.

Die besonderen Schwierigkeiten, die sich bei der Anwendung dieses Ver-
fahrens ergeben, kénnen an dieser Stelle nur gestreift werden. Zunichst ist klar,
daB die einfachen Formeln von der Art (II; 50) fiir den Zusammenhang zwischen
den Umlaufszeiten und den groBen Bahnhalbachsen der Planeten streng nur
fiir den Fall giiltig sind, daB keiner der Planeten in seiner Bewegung um die
Sonne durch die iibrigen gestért wird. In Wirklichkeit diirfen diese stéren-
den Krifte nicht auBer acht gelassen werden. Um sie beriicksichtigen zu kon-
nen, ist aber eine genaue Kenntnis der Bahnelemente und der Massen der
stérenden Planeten, einschlieBlich derjenigen des Systems Erde-Mond, erfor-
derlich. Es ist klar, daB die Bewegung des Planetoiden, die zur Ermittlung der
Sonnenparallaxe dienen soll, wihrend der Opposition lange genug verfolgt
werden muB und daB nach Moglichkeit auch mehrere aufeinanderfolgende
Oppositionen beobachtet werden sollten, damit nicht nur die Elemente seiner
eigenen Bewegung so genau wie moglich abgeleitet werden konnen, sondern
auch geniigend Material vorhanden ist, um die Massen der stérenden Planeten,
wenn noétig, zu korrigieren.

Die durch die Theorien der Himmelsmechanik gegebenen Zusammenhinge
(iber die an dieser Stelle noch nichts ausgefiihrt werden kann) fithren fiir jede
Beobachtung des scheinbaren Planetenorts auf Gleichungen, die neben den Ver-
besserungen der Bahnelemente des Planeten und der Sonnenparallaxe noch eine
Anzahl weiterer Unbekannter enthalten, unter denen die Korrektionen der an-
genommenen Werte fiir die Massen der stérenden Planeten die wichtigsten sind.

Eine weitere Schwierigkeit bietet die in Geschwindigkeit und Beschleunigung
der Planetendrter enthaltene Zeiteinheit, als die normalerweise der mittlere
Sonnentag oder der Sterntag gilt. Dabei wird stillschweigend vorausgesetzt,
daB diese aus der Rotationszeit des Erdkorpers abgeleitete Einheit unverdnder-
lich ist. Untersuchungen, die erst in den letzten Jahrzehnten zu greifbaren Er-
gebnissen gefiihrt haben, zeigen jedoch, daB die Rotationsdauer der Erde nicht
konstant ist, sondern sehr langsam und unter Schwankungen zunimmt. So ge-
ringfiigig diese Verdnderlichkeit unserer naturgegebenen Zeiteinheit auch sein
mag (sie ist, obwohl man sie schon lange vermutet hat, erst durch moderne
Zeitmessungsgerite, die Quarzuhren, meBbar geworden), so spielt sie doch bei
den duBerst subtilen Untersuchungen dieser Art eine bedeutsame Rolle. So
haben die jiingsten Arbeiten iiber die Neubestimmung der Sonnenparallaxe
und der Planetenmassen aus den Beobachtungen der Erosoppositionen von
1931 und 1938 gezeigt. daBl man eine von diesen UnregelmaBigkeiten der Erd-
drehung befreite Zeitskala (NEwTONsche Zeit, Inertialzeit) benutzen muB, wenn
es gelingen soll, gewisse systematische Abweichungen zwischen Beobachtung
und Theorie zum Verschwinden zu bringen.
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Der numerische Wert der Gravitationskonstanten hingt von der Wahl der
Lingen-, Zeit- und Masseneinheit ab. Formel (II; 50) zeigt, daB sie die Dimen-
sion

3 1
[ﬁ tim _2-]

besitzt. Driickt man den Faktor 27 statt im BogenmaB in Bogensekunden
aus, so ergibt sich statt (II; 54)

k = 3548"1876.

In der Folge werden wir oft von der Moglichkeit Gebrauch machen, durch
passende Wahl der Einheiten dafiir zu sorgen, daBB 2 = 1 wird und somit als
lastiger Faktor in den Formeln der Himmelsmechanik verschwindet. Man er-
reicht das beispielsweise, wenn man als Zeiteinheit

(I1; 57) % = 58.13244 mittlere Tage

einfithrt, d.h, an Stelle der gewdhnlichen, in mittleren Tagen ausgedriickten
Zeit ¢ die neue Variable
T=Fkt

benutzt. Wir werden dieses ZeitmaB8 in den folgenden Kapiteln fast ausschlieB-
lich gebrauchen, zumal bei den Bewegungsproblemen der Planetoiden und der
Kometen unseres Sonnensystems auch die Massen dieser kleinen Korper gegen
die Sonnenmasse unbedenklich vernachldssigt werden konnen und somit auch

der sonst mit 2 immer verbundene Faktor }1 + m gleich eins gesetzt werden
darf.



KAPITEL III

ANALYSIS DER ZWEIKORPERBEWEGUNG
19. Die Differentialgleichungen der Zweskiorperbewegung und ihre Lisungen

Es ist bisher gezeigt worden, wie das NEwToNsche Gravitationsgesetz nach
und nach aus den KEPLERschen Regeln gewonnen wurde. Zur volligen Klirung
der Zusammenhinge wird es aber auch notwendig sein, die Umkehrung zu
behandeln, d.h. zu zeigen, wie die KEPLERschen Regeln deduktiv aus der For-
mulierung des Gravitationsgesetzes folgen. Eine Losung dieses Problems — die
einfachste, die es wahrscheinlich gibt — haben wir bereits in Abschn. 16 kennen-
gelernt, als wir zeigten, wie sich die Gleichung der Bahn als allgemeine Losung
der Differentialgleichung (II; 39) der ebenen Zentralbewegung ergab, wenn wir
der Zentralkraft die Form des NEwToNschen Attraktionsgesetzes gaben.

Die Gleichungen (II; 47) stellen zwei vektorielle Differentialgleichungen
zweiter Ordnung fiir die Bewegung der beiden beteiligten Kérper in einem
»Inertialsystem” dar, d.h. in einem Koordinatensystem, dessen Ursprung und
dessen Achsenrichtungen unbeeinfluBt von Kriften, also nur der , Trigheit”
(inertia) unterworfen sind. Bedenken wir noch, daB (vgl. Abb. 21 und II; 25)

p=q— 8= 1T,
so kénnen wir (II; 47) auch in der Form
w M
= —kzr—s(q —8),

(I1I; 1)
m
8 = -|-/122—-r3 (a—3)

schreiben. Wir erinnern uns, daB g, # Ortsvektor und Masse des Planeten, 8, M
Ortsvektor und Masse der Sonne bedeuten. Geben wir den Ortsvektoren qund 3
die rechtwinkligen Koordinaten z,, y,, z, (Planet) und #,, ¥,, 2, (Sonne), soist
(III; 1) einem System von sechs skalaren Differentialgleichungen 2. Ordnung

. M " m
"’1=_k2ﬁ(z1_%): “’o=_k27(“o“1’1):
" M " m

(IL2) =R —%), H=—F_5%—u),

4y = —kzr—a(zl —2z), %= _kz,—a(zo-zx)

dquivalent, dessen Losung zwolf Integrale erfordert.
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Die Lsung dieses Problems der ungestirten Zweikirperbewegung gelingt sehr
einfach, wenn man die vektorielle Form (III; 1) der Differentialgleichungen bei-
behilt. Multipliziert man die erste dieser Gleichungen mit m, die zweite mit M,
so erhdlt man
(I11; 3) mi+ M8 =o

als mathematischen Ausdruck fiir die Giiltigkeit des Prinzips von der Gleich-

heit von Wirkung und Gegenwirkung (dem Verschwinden der Resultante aller

inneren Krifte). S
Zweimalige Integration von (III; 3) ergibt

(III; 4) mq+ M3 = a + b'¢,

wobei a’ und b’ zwei konstante Vektoren sind. Setzt man
a'=m+ Ma; b= @m+ MDb,

so erhilt (IIT; 4) die Gestalt

(I1I; 5) G = %—ﬁ—g = a+ bt (Schwerpunktssatz)
|

© ist der Ortsvektor des Schwerpunkts der beiden Massen M und m. Dieser
Punkt liegt auf der Verbindungsstrecke der beiden Himmelskérper und teilt
sie im Verhiltnis der Massen so, daB er der groBeren Masse am néchsten liegt.
Aus (IIT; 5) folgt nimlich

M m
e O PmC= oy

Der Schwerpunktssatz sagt aus, daB der Schwerpunkt der beiden Massen,
die sich wechselseitig nach dem NEwToNschen Gesetz anziehen, linear
(d.h. geradlinig und gleichférmig) im Raume fortschreitet. Die Bewegung des
Schwerpunkts ist daher nach dem Trigheitsgesetz Ariftefrei; er teilt diese
Eigenschaft mit dem Anfangspunkt des Koordinatensystems, von dem wir
vorausgesetzt hatten, daB es ein Inertialsystem sei. Auch der Koordinaten-
anfang darf also, ohne daB sich an dieser Eigenschaft, unbeschleunigt zu sein,
etwas dndert, irgendeine geradlinig-gleichférmige Bewegung ausfiihren, statt
zu ruhen, denn ein solches Zugestidndnis wiirde ja lediglich bewirken, daB die
Integrationskonstanten des Schwerpunktssatzes, die ihrer Natur nach will-
kiirlich sind, sich entsprechend dndern. Es ist somit erlaubt, dem Koordinaten-
anfang die gleiche kriftefreie Bewegung wie dem Schwerpunkt zuzuschreiben
und ihn dann durch eine einfache Parallelverschiebung des Koordinatensystems
in den Schwerpunkt selbst zu verlegen.

Man gelangt so zu zwei neuen Differentialgleichungen fiir die Bewegung der
beiden Massen in bezug auf ihren Schwerpunkt. Subtrahiert man von den
Gleichungen (I1I; 1)

&=o

(II;6) q—© (@— 3.
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und eliminiert auf den rechten Seiten 8 bzw. q durch (III; 5):
M + m M

a="T"@g_ 2T 2
3 i c 573 q bzw. q c 6
so erhilt man leicht
i-6=-p"t"4-0),
(I11; 7)
6= —pMtme_g),

also fiir die beiden auf den Schwerpunkt als Koordinatenanfang bezogenen
Ortsvektoren q — & (Planet) und 8 — & (Sonne) je eine Differentialgleichung
von derselben Form, der gleichen iibrigens, die man fiir den Vektor Sonne-Pla-
net (q — 3) erhilt, wenn man die zweite der Gleichungen (III; 1 oder 7) von der
ersten subtrahiert:

(IIT; 8) ﬁ-é:-yM+m

(4 —9).

Die drei Gleichungen (III; 7, 8) unterscheiden sich in einem allerdings sehr
wesentlichen Punkt voneinander: Nur in (III; 8), also fiir die Bewegurig des
Planeten um die Sonne, stimmt die GréB8e » im Nenner der rechten Seite der
‘Differentialgleichung mit dem Betrag der betreffenden Vektorfunktion iiberein,
denn esist jar = |q — 3|. Man kann aber auch die beiden Gleichungen (III; 7)
auf eine Form bringen, fiir die dasselbe gilt. Sei ¢ der Betrag des Vektors ¢ — &,
also der Abstand Schwerpunkt-Planet, und s der Betrag von 3 — &, also der
Abstand Sonne-Schwerpunkt, so gilt offenbar
M

—y 1_4
g+s=r S=-

also
M+m_sM+m
M m

vr=4q

Setzt man dies in (III; 7) ein, so ergibt sich
R M3

ﬁ—@=—F(M—_I_m);(q—@),
(II; g)
. k2 m3

Alle drei Gleichungen besitzen also die gemeinsame Form

(I1T; 10) . x?
; 10 b= ——5p
s i P
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wobei der konstante Faktor % in den drei Fillen verschiedenen Funktionen der
beiden Massen gleich ist. Es ist ndmlich

M3
Hr D — g — _ 2 _ p2
1. fiirp, = q — & (Schwerpunkt-Planet) x»% =% o 7
ms
. fHirp. = 8 — _ 2 _ B2
(I1I; 11) § 2. fiir p, = 8 — & (Schwerpunkt-Sonne) x% =% ot 7
3. firp =q—8 (Sonne-Planet) x2 =Rk (M + m).

In allen drei Fillen wird die Bahnbewegung von der gleichen Form sein, ndm-
lich derjenigen, die durch die Lésung der Differentialgleichung (III; 10) gegeben
ist. Nach (III; 6) ist namlich ’

=P RS TP PR TR

d.h., die drei Vektoren sind jederzeit gleich- bzw. entgegengesetzt gerichtet,
wihrend ihre Betrige in konstanten Verhiltnissen zueinander stehen. Die drei
Bahnen sind daher dhnlich: Jede von ihnen 148t sich aus jeder der beiden an-
deren durch eine affine Transformation (durch eine isotrope, d.h. nach allen
Richtungen gleichmiBige, Dehnung) herstellen.

Es geniigt also, wenn wir uns in der Folge mit der Gleichung (III; 10) be-
schiftigen, der wir die allgemeine Form

2
(II1; 12) p=—25p 0 =1p)

geben. Dabei werden wir von den drei Fillen (III; 11) durchweg den dritten
bevorzugen, der die Bewegung in bezug auf den Zentralkérper als Koordinaten-
anfang betrifft. Nur in besonderen Fillen, z.B. bei der Bahnbewegung von
Doppelsternen, wiirden auch die beiden anderen zur Geltung kommen.

(III; 12) ist eine vektorielle Differentialgleichung 2.Ordnung, die drei ska-
laren Differentialgleichungen derselben Art fiir die drei Koordinaten von p
dquivalent ist. Sie besitzt infolgedessen sechs Integrale; ihre Losungen sind
durch sechs willkiirliche Integrationskonstanten (Bahnelemente) bestimmt.
Multipliziert man (III; 12) vektoriell mit p, so ergibt sich

2
§) = —%[vp] =o,

da ja das Vektorprodukt eines Vektors mit sich selbst verschwindet. Diese
Gleichung 148t sich sofort integrieren: Es ist

(ITT; 13) [pp] =g (Flachensatz)

-
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wobei ¢ einen konstanten Vektor darstellt, der in Gestalt seiner Koordinaten
drei der gesuchten sechs Integrationskonstanten in sich vereinigt. Das Inte-
gral (I1I; 13) ist mit dem uns bereits bekannten Flichenintegral identisch. Aus
der Definition des Vektorprodukts folgt, daB ¢ ein auf der durch p und p be-
stimmten Ebene normaler Vektor ist. Das bedeutet aber, daB die Bahnbewe-
gung des Himmelskérpers in einer festen Ebene vor sich geht, die auch den
Koordinatenanfang (Zentralkorper bzw. Schwerpunkt) enthilt. Man darf also
auf p und seine Ableitungen nach der Zeit die fiir jede ebene Bewegung giiltigen
Formeln (II; 25, 30) anwenden und findet dann

(I1T; 14) g=rf[tt] + P tm] = r’pn=cn,

da [rr] = o und da [tm] = n ein auf der Bahnebene senkrecht stehender Ein-
heitsvektor ist. Der Betrag des Vektors g, den man deshalb auch als den Vektor
der Flichengeschwindighent (Drehzmpulsvektor) bezeichnen kann, ist also gleich
der Flachenkonstanten.

Ein weiteres Vektorintegral erhilt man, wenn man (III; 13) mit (III; 12)
vektoriell multipliziert. Es ergibt sich zunichst

ligl = -—[P[W]] =——= (DP)P — (pp)¥)

wenn man einen Satz der Vektoralgebra iiber die vektorielle Multiplikation
eines Vektors mit einem Vektorprodukt anwendet. Da nun aber

(pp) =12
und, wie man durch Differenzieren dieser Identitit beweist,
(I1I; 15) (b9) = r#,

so kann man auch schreiben:
. _2r¥1—ip_2d P
[he) = ' —— =»"— ||

Diese Gleichung ist integrabel und ergibt

2
(ITI; 16) [bg) = ﬁr—p +§ (LapLacesches Integral)

Das ist das L4 PLACEsche Integral mit der neuen vektoriellen Integrationskon-
stanten f, die wiederum drei skalaren Konstanten dquivalent ist. Diese sind
allerdmgs von den Flichenkonstanten nicht unabhingig. Schreibt man (III; 16)
in der Form

. %2
f=[bg] — - P
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so bemerkt man, daB f in der Bahnebene liegt, da sowohl [$g] als auch p der
Bahnebene angehoren. Es gilt also die Beziehung

(fg) = o,

da f und g aufeinander senkrecht stehen. Zwischen den Koordinaten ¢;, ¢,, ¢
von g und den Koordinaten d,, d,, d; von f besteht demnach die identische
Beziehung

(II1; 17) 6,dy + ¢ydy + c3dg =0,

so daB also nur fiinf der sechs Konstanten ¢; und 4, voneinander unabhingig
sind, wihrend die sechste aus (III; 17) folgt. Mit anderen Worten: Wiahrend g
ein willkiirlich im Raum gegebener Vektor ist, bleibt f auf die durch g be-
stimmte Ebene beschrinkt und ist daher als ebener Vektor aufzufassen, zu
dessen Festlegung zwei Koordinaten notwendig und hinreichend sind, etwa
sein Betrag 4 und seine von irgendeiner festen Anfangsrichtung in der Bahn-
ebene gezihlte Richtung ¢,.
Multipliziert man schlieBlich (III; 16) skalar mit p, so erhdlt man

i) = = (p) + (D).

Da nach dem Satz von der zyklischen Vertauschbarkeit der Faktoren gemisch-
ter Produkte

(pDhg)) = (8[p¥)) = (88) =¢*
und ferner (pp) = 72 ist, so folgt hieraus unmittelbar, wenn wir mit ¢ — g, den
von p und f gebildeten Winkel bezeichnen,

¢ = x2r + rd cos (p — @)
oder
02
« _ p
I+ ecos(p— @)’

(II;18) 7=
d
I+ acos(e — )

d.h. die Gleichung der Bahn, die sich als ein Kegelschnitt erweist, dessen einer
Brennpunkt im Koordinatenursprung liegt. Die Exzentrizitit ¢ = d/x? kann
jeden beliebigen Wert zwischen o und « annehmen, wihrend negative Werte
ausgeschlossen sind, da 4 als Betrag eines Vektors wesentlich positiv ist. Uber
das erste KEPLERsche Gesetz hinaus, das nur von Ellipsen (0 < e < 1) spricht,
sind demnach auch Parabeln (e = 1) und Hyperbeln (e > 1) als Bahnformen
zuldssig. Tatsichlich kommen alle diese Bewegungsarten unter den Himmels-
korpern vor. Elliptisch sind die Bahnen der Planeten und ihrer Trabanten, der
periodischen Kometen und der Doppelsterne, parabolisch viele Kometenbahnen,
wihrend alle drei Bahnformen bei den Meteoren beobachtet werden. Gelegent-
lich sind auch hyperbolische Kometenbahnen berechnet worden, doch waren
deren Exzentrizititen stets nur geringfiigig groBer als eins.
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Von den sechs Integralen der Differentia;lgleichung (IIT; 12) fehlt jetzt nur
noch eines. Wir erhalten es aus dem Flichensatz

r*dy = cdt,

indem wir 7 mittels (III; 18) durch ¢ ausdriicken und integrieren:

¢
(I1I; 19) =cfdt=c(t——to).
&

[[1+ec05(¢—%

Die neue Integrationskonstante?, ist der Zeitpunkt, fiir den ¢ = ¢, wird, also
gemiB (III; 18) der Radiusvektor 7 sein Minimum erreicht (Periheldurchgangs-
zeit). Wie schon gezeigt wurde, fiihrt die Auswertung des Integrals auf der
linken Seite von (III; 19) im Falle der Ellipse auf die K&PLERsche Gleichung.
In den anderen Fillen ergeben sich dhnliche Beziehungen (siehe Abschn. 22).

Der Larracesche Vektor f hat, wie oben bemerkt, in der Bahnebene die
Richtung ¢ = ¢,, zeigt also nach dem Perihel der Bahn; sein Betrag d = x2%e
ist der Exzentrizitit des Kegelschnitts proportional. Fiir ¢ = o (Kreisbahn)
verschwindet f, tibereinstimmend mit der Tatsache, daB kreisformige Bahnen
ein Perizentrum nicht besitzen, da alle jhre Punkte vom Attraktionszentrum
‘gleich weit entfernt sind.

Ist die Bahnebene einmal festgelegt, so sind fiir die Definition der Bahn nach
Form, GroBe und Lage drei Konstanten notwendig und hinreichend, etwa ¢,, e
und p. Jede der Variablen, durch die der Ort des Himmelskorpers in der Bahn
bestimmt wird, muB also einer Differentialgleichung 3.0Ordnung geniigen, die
sie als Funktion der Zeit bestimmt. So findet man aus (II; 32-34)

. e . . c
f=c—sinv; 9= —;
7

und durch nochmaliges Differenzieren nach der Zeit

- 202 e v ¢ e .
F=—2—4Ff—COSV — —0—sInv =
r P P

F7 f
=—2— —c*—
A

Andererseits folgt aus der Formel fiir #

2 2
G X
7' =7
=t p +5.
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wenn man ¢ = % |/p setzt. Benutzt man diese Beziehung zur Elimination vonc,
so erhdlt man schlieBSlich

. Faaft et
(I1I; 20) r+3r + % Z =0

als Differentialgleichung 3.Ordnung fiir den Radiusvektor, in deren Koeffizien-
ten die Bahnkonstanten nicht mehr vorkommen. Wir werden spiter auf diese
bemerkenswerte Gleichung noch zuritickkommen.

20. Der Energiesatz und die Geschwindigkeitsbeziehung

Im vorigen Abschnitt haben wir die Integration des Problems der Zweikorper-
bewegung nach dem NEwToNschen Gesetz vollstindig durchgefiihrt. Die zwolf
Integrale wurden dabei durch vier ,,S4tze” geliefert: Den Schwerpunkissatz mit
sechs unabhingigen Integrationskonstanten (den Koordinaten des Ortes und
der Geschwindigkeit des Schwerpunktes in einem beliebigen Inertialsystem),
den Flachensatz mit drei Konstanten (den Koordinaten des Flichengeschwindig-
keitsvektors bzw. der Flichenkonstante ¢ und den Richtungskonstanten der
Bahnnormale), das L4 PLACEsche Integral mit zwei Konstanten (den Koordi-
naten des LarLaceschen Vektors in der Bahnebene bzw. der Exzentrizitit der
Bahn und dem Richtungswinkel nach dem Perizentrum) und schlieBlich die
KEPLERsche Gleichung in ihrer allgemeinsten Form (III; 19) mit einer Kon-
stanten (der Perihelzeit).

Wenn wir dariiber hinaus noch weitere Integrale finden sollten, so kann es
sich nur noch um Funktionen der bereits bekannten handeln. Eines der wich-
tigsten dieser Integrale, das Energieintegral, erhalten wir, wenn wir (III; 12)
skalar mit  multiplizieren:

- x
o) = - % 9.
Diese Gleichung ist integrabel da

- . ot _df1
o8 = 3509 b9 =ri = (%),
Wir erhalten also durch Integration

v oY Tiopy =Ly *
(IIT; 21) Sen=2vr=2 4,

wo V den Betrag der Geschwindigkeit und % eine skalare Integrationskonstante
bedeutet.

Eine andere Art, diese Beziehung abzuleiten, ist folgende: Bezeichnet man
die drei rechtwinkligen Ortskoordinaten des Planeten mit ¢, (s = 1, 2, 3)
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und die Geschwindigkeitskoordinaten mit p; = ¢,, so kann man (III; 12) durch
folgende sechs skalaren Differentialgleichungen 1.0Ordnung ersetzen:

q.‘i = pt:
L %? L
h=64=—7% (72 =2 q.-)-
i=1
Setzt man nun
2

(I11; 22) H(q1, 95, 955 b1s bar o) = Z?t V—Z.—z

so nehmen diese sechs Differentialgleichungen die ,,kanonische” Form

i = 0H
§ E‘u
III; 2 : i =1,2,
(I11; 23) p—_ﬁ’_ ( 3)
! 0g

an. Multipliziert man diese Gleichungen mit p; bzw. —¢; und summiert iiber
alle 7, so ergibt sich

3 oH | dH
d.h., es ist
H=const=15%
das Energieintegral.

Wir wenden nun diesen Satz auf die drei Bewegungsfille (III; 10) an. Fiir
diese Fille sei:

1. (Bewegung des Planeten um den Schwerpunkt des Systems): Geschwindig-
keit V;, Radiusvektor g, Integrationskonstante 4, ;

2. (Bewegung der Sonne um den Schwerpunkt des Systems): Geschwindig-
keit V,, Radiusvektor s, Integrationskonstante 4,;

3. (Bewegung des Planeten um die Sonne): Geschwindigkeit V, Radius-
vektor 7, Integrationskonstante 4.

Multiplizieren wir in den ersten beiden Fillen die Gleichung (III; 21) mit
der jeweiligen Masse des bewegten Korpers, so ergibt sich, wenn wir noch fiir
den Massenfaktor #? die entsprechenden Werte aus (III; 10) einsetzen,

1 k2 mM?3
= A O
R Mmd

I
Mhy = MVE =5 Gry mp
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oder, da (siehe S.qo)

M _om
q—M-{—m ’ s'—M+m ’
_ I e g Mm M
mhy = 2mVl k Mim
_I _ 2Mm. m
Mh, 2MV% k Mim
Die Summe dieser beiden Gleichungen ergibt
E=T—-U=mh+ Mh,=
(ITIT; 24) I Mm
= —2—(me + MV3) — k2 ” (Energiesatz)

Die neue Konstante E, die auf den Schwerpunkt des Systems bezogen ist
und in bezug auf die Massen, Koordinaten und Geschwindigkeiten der beiden
Korper vollig symmetrisch gebaut ist, bezeichnet man als die Gesamtenergie des
Systems, die Gleichung (III; 24) als den Emnergiesatz. E setzt sich zusammen
aus der kinetischen Energie

T=—(mVi+ MV}

und der potentiellen Energie
Mm

—U=—#&

des Systems. Der Energiesatz besagt also, daB die Gesamtenergie des Systems
konstant ist (Satz von der Erhaltung der Energie). Er gilt natiirlich auch, wenn
wir, wie im dritten Fall (III; 10), den Koordinatenanfangspunkt in die Sonne
legen. Es ist dann entsprechend

(IIT; 25) E=mh=%mw—ﬁfQ%Uﬂ.

Hier bedeutet V' die Relativgeschwindigkeit des Planeten zur Sonne. Die
GroBe U, eine skalare Funktion des Abstandes beider Korper, heiBt das Poten-
tral des Systems und hat im Falle (III; 25) die Form
U= k2 _M-l_—'n) .
r

Sie besitzt folgende merkwiirdige Eigenschaft: Schreibt man die Differential-
gleichung (III; 12) in rechtwinkligen Koordinaten mit dem Ursprung in der

7 Stumpff, Himmelsmechanik
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Sonne (%% = k2 (M + m)), so erhilt man als Koordinaten der auf den Planeten
wirkenden Kraft

mi = — k2m (M + m),%=3—f.
(I11; 26) mij = —km (M + 'm)‘Ty3 =%£y]—,
mi = —k*m (M + m)%:%—ij,

wie man leicht bestitigt, wenn man bei der partiellen Differentiation von U
beriicksichtigt, daB
or

x
72 = 42 2L 22 also — = — usw.
+ y* 4+ 23 9% "

ist. Sind {, i, f die Einheitsvektoren in Richtung der drei Koordinatenachsen,
so 148t sich wegen (III; 26) die Bewegungsgleichung (III; 12) auch in der Form

. o0U, oU, oU

schreiben, d. h., die Kraft, die auf den Planeten wirkt, ist gleich dem Gradienten dey
Potentialfunktion!

Aus (IIT; 21) 14Bt sich der Zusammenhang zwischen der Energiekonstanten 4
und den im vorigen Abschnitt definierten Integrationskonstanten der Bahn-
bewegung herleiten. Multiplizieren wir die erste Gleichung (II; 30) mit sich
selbst skalar, so erhalten wir fiir das Quadrat der Geschwindigkeit

Vi = (bp) = i2(vr) 4 2r7 (tm) + r2¢? (mm)
oder, da (rr) = (mm) = 1, (tm) = o,
(I11; 28) V2 =% 4 12¢%

Ersetzt man nun r, #, ¢ = 9 durch (II; 31-33), so ergibt sich

2 ¢? 2 qin2 02 02
V2= Fe sin v+?(1+ecosv)2=;§(1+zecosv+~ et) =
¢ 14 ecosv I—é? c2f2 1—¢
=¥—(2 p; - S )=$(7——p'e—), also wegen c=z}’;
. 2,22 _I—¢
(III; 29) Vi=x (f 5 )

Andererseits ist nach (III; zi)
VE=x? (i + ﬁ) .

r x?
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Dabher ist
(I11; 30) h= —ux?

Nun ist nach (II; 2) fiir die Ellipse p = a(x — ¢°); fiir die Hyperbel aber, wie
aus der Geometrie bekannt, p = a(¢? — 1) der Ausdruck fiir den Parameter
der Bahn, der seiner geometrischen Bedeutung nach eine wesentlich positive
GroBe darstellt. Wir kénnen dieser Formel einheitlich die Gestalt

p=alr -

geben, wenn wir die Verabredung treffen, die GroBe @ im Falle der Hyperbel als
negativ anzusehen. Unter dieser Voraussetzung diirfen wir statt (III; 30) ein-
heitlich
2
= -2

2a

und fiir das Quadrat der Geschwindigkeit

(LIL; 31) V2 — 2 (3 _ l)
4 a

schreiben. Diese Formel ist auch fiir die Parabe!l richtig, fiir die 4 = o wird,
denn es ist ja dann ¢ = 1 und, da $ stets endlich ist, nach (III; 30) # = o.

Die Geschwindigkeitsrelation (I11; 31), die nur eine andere Form des Energie-
satzes darstellt, lehrt, daB die Geschwindigkeit eines Himmelskérpers im Gravi-
tationsfeld der Sonne, abgesehen von 7, nur noch von der gro8en Halbachse der
Bahn, nicht aber von deren Exzentrizitit abhingt. Ferner folgt aus ihr, da
beide Seiten von (III; 31) stets > o sein miissen'), daB fiir elliptische Bahnen
(@ > o) stets r < 2a ist, wihrend fiir 2 = e (Parabel) und a < o (Hyperbel)
der Abstand des Himmelskérpers von der Sonne auch unendlich groB werden
kann. Fiir die Parabel lautet die Geschwindigkeitsbeziehung

. ._ 22 o 1/2
(I11; 32) =2ty er.

Die Geschwindigkeit eines die Sonne in einer Parabelbahn umlaufenden Ko-
meten oder Meteors ist demnach der Quadratwurzel aus dem Abstand von der
Sonne umgekehrt proportional, wird im Unendlichen null und hingt im iibri-
gen von den Bahnelementen nicht ab, wohl aber von der Masse,da x = k)14 m,
wenn die Sonnenmasse gleich eins gesetzt wird. Wegen der Geringfiigigkeit der

1) ¥ = o ist fiir endliches # nur bei den geradlinigen Bahnen moglich, die einen
singuliren Fall der Zweikorperbewegung darstellen (sieche Abschn. 26).

7
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Masse der Kometen (und erst recht der Meteore) darf aber stets m = o gesetzt
werden, so daB sich (III; 32) praktisch auf

v=#)/2
r

reduziert. So haben also alle auf Parabeln um die Sonne laufenden Kometen
und Meteore in der gleichen Sonnenentfernung auch die gleiche Geschwindig-
keit. Insbesondere ist die Geschwindigkeit aller Meteore, die aus parabolischen
Bahnen auf die Erde stiirzen, in bezug auf die als ruhend angenommene Sonne
stets die gleiche, nimlich, wenn wir den Sonnenabstand der Erde im Zeitpunkt
des Einfangens (d.h., wenn die hier vernachldssigte Anziehungskraft der Erde
sich bemerkbar zu machen beginnt) und damit auch den des Meteors gleich
cins setzen,

AE. km
=kYz 2= = -
V==Fry2 Tag 421,

wie man leicht berechnet, wenn man fiir # den Wert (II; 54) setzt.

Bei nichtparabolischen Bahnen ist der zweite Summand in (III; 31) von
null verschieden; er bewirkt im Fall der Ellipse eine Verminderung, im Falle
der Hyperbel eine VergréBerung der Geschwindigkeit gegen die parabolische.
Kennt man also Radiusvektor und Relativgeschwindigkeit in bezug auf die
Sonne fiir irgendeinen Zeitpunkt, so gentigen diese Daten zur Bestimmung der

Bahnform. Das Kriterium lautet:
V% (Ellipse)
2

V: (Parabel)

V>u V% (Hyperbel)

Fiir Kreisbahnen (7 = a) ergibt sich aus (III; 31) insbesondere

V<=x
V=x«

(II1; 33)

V= * - const.
Va
Die Formel (III; 31) 1Bt sich noch weiter vereinfachen, wenn man nach
(II; 20) den ,antifokalen Abstand“

. s=2a—vr
einfiihrt. Es wird dann

(I11; 34) vE=

2

%%
ar ’

Diese Formel gilt zunéchst nur fiir die Ellipse, 148t sich aber ohne Schwierigkeit
auch auf die Hyperbel iibertragen, wenn man neben & auch s negativ sein 1aBt.
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Fiir die Parabel wird (III; 34) allerdings unbestimmt, da sowohl s als auch a
unendlich groB werden. Aus (II; 20) folgt aber, daB der Quotient s/a dem Grenz-
wert 2 zustrebt, so daB (III; 34) in die mittlere Formel (III; 33) iibergeht, wie
es sein muB.

21. Der Hodograph der Zweikirperbewegung

Trigt man Orts- und Geschwindigkeitsvektor eines bewegten Punktes im
Koordinatenanfangspunkt an, so beschreibt die Spitze des Ortsvektors die
Bahnkurve der Bewegung, die des Geschwindigkeitsvektors eine andere Kurve,
die ebenfalls fiir die Bewegung charakteristisch ist und die man als Hodograph
bezeichnet. Allgemein ist nach (II; 26)

p=r+r+ rgm.

Fiir die Zweikdrperbewegung ergibt sich nach (II; 31-33), wenn wir ¢ = v und
¢ = % |p setzen, der spezielle Ausdruck

T +ecosv)

.¥3=x]/1—>(t%sinv-|-m 5

xe , . %
= —(tsinv 4 mcosv) + —m.

1] 1]

Dabei ist | = tsin v 4 m cos v, wie man der Abb. 20 unmittelbar entnimmt,
ein Einheitsvektor, der mit der Richtung r den Winkel % — v einschlieBt, d.h.

gegen die Perihelrichtung um go° im Sinne der Bahnbewegung verschoben ist.
Er steht demnach auf der groBen Bahnachse senkrecht. Der Hodograph der
Zweikorperbewegung wird also durch

xe, %
(I1L; 35) p=—i+=m

Ve Ve
dargestellt, d.h. durch einen konstanten Vektor, dessen Spitze M (Abb. 22)
auf der positiven Brennpunktsordinate im Abstand xe/}’p vom Brennpunkt

liegt, und einen beweglichen Vektor von der konstanten Linge x/}/p, der sich
um M so dreht, daB seine Richtung der des Ortsvektors stets um go° im Sinne
der Bewegung vorauseilt. Der Hodograph ist demnach ein Kreis mit dem

Mittelpunkt M (& = 0; § = %2) und dem Halbmesser #/Yp. Seine Gleichung

lautet, wenn wir die rechtwinkligen Koordinaten von § mit #, § bezeichnen,

(I11; 36) z2+('—1‘3)2="7f.
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Im Falle einer elliptischen Bewegung wird die groBe Achse von diesem Kreis
geschnitten; die Schnittpunkte haben die Abszissen +x/}a. Die Richtung der
Geschwindigkeit durchlduft, bei go° (Perihelgeschwindigkeit) beginnend, alle
Werte zwischen o und 2z. Im Falle der Parabel beriihrt der Hodograph die
Apsidenlinie im Brennpunkt. Der Brennpunkt selbst (Geschwindigkeit null)
entspricht dem unendlich fernen Punkt der Bahn. Ist die Bahn eine Hyperbel,
so haben Hodograph und groBe Achse keinen Punkt gemeinsam. Der Rich-

Abb. 22. Hodograph der elliptischen Bewegung.

tungswinkel y der Geschwindigkeit gegen die positive Ordinatenachse (die der
Richtung der Perihelgeschwindigkeit entspricht) ist zwischen zwei Grenzen
eingeschlossen, die durch die Richtungen der beiden Tangenten vom Brenn-
punkt an den Hodographen gegeben sind. Alle Punkte des Hodographen, die
den Punkten des von dem Himmelskorper durchlaufenen Hyperbelastes ent-
sprechen, liegen oberhalb der die Beriithrungspunkte dieser Tangenten verbin-
denden Geraden (der Polare des Brennpunkts). Der unterhalb dieser Geraden
liegende Bogen des Hodographen entspricht dem Nebenast der Hyperbel, der
den Antifokus einschlieBt. Dieser Nebenast wird durchlaufen, wenn die Kraft,
die auf den Massenpunkt wirkt, repulsiv ist: Die Geschwindigkeit erreicht da-
her im Scheitel des Nebenastes (unterster Punkt des Hodographen) ein Mini-
mum, wihrend sie im Scheitelpunkt des Hauptastes (Perihel), dem bei allen
Bahntypen der oberste Punkt des Hodographen entspricht, stets ihr absolutes
Maximum annimmt.
Allgemein sind die rechtwinkligen Koordinaten der Geschwindigkeit

&= —Vsiny = — % sinw
ﬂ‘ )
(I11; 37)
y= Vcosy= i(e + cosv).

1%
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Hieraus folgt
z siny

(III; 38) tgy = T7 T efcoss’

was zu einer einfachen Beziehung zwischen % und (im Falle der Ellipse) der

exzentrischen Anomalie fiihrt. Dividiert man namlich (II; 11, 12) durch (II; g),
so erhilt man
cosE —e sinE

(I11; 39) cosy =_——— %, sinv=}1— I—ecosE

Abb. 23. Differenz der wahren
und der antifokalen Anomalien zweier Planetendorter.

Setzt man dies in (III; 38) ein, so folgt

I
tgy = ———
gy P
wenn man noch, nach (II; 3), den Exzentrizititswinkel ¢ einfiihrt.

Fiir den Hodographen gilt folgender geometrische Satz, der an spiterer
Stelle (Abschn. 49) angewandt werden wird. Seien (Abb. 23) @, und Q, zwei
Punkte des Hodographen, die den Bahnpunkten P, und P, einer elliptischen
Bewegung entsprechen. Verlingert man die Geschwindigkeitsvektoren 0Q,,
0Q, nach riickwirts, so sind 0Q; , 0Q; die Geschwindigkeitsvektoren, die zu den
P, und P, diametral gegeniiberliegenden Ellipsenpunkten P; und P; gehéren.
Die zu diesen Punkten fithrenden Radiusvektoren 7; und 7; sind offenbar gleich
den zu P, und P, gehérenden antifokalen Distanzen.

(I1I; 40) tgE = secptgk,
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Nun ist < Q;MQ, = 2f = v, — v;, da ja die Vektoren M stets zu den zu-
gehorigen Ortsvektoren O P normal sind und daher untereinander dieselben
Winkel bilden wie diese. Es ist daher auch < Q,Q;0, = f als Umfangswinkel
iiber dem gleichen Bogen. Ebenso ist dann auch < Q10,05 = f, wenn 2f’
= w, — w, die Differenz der antifokalen Anomalien von P; und P, bedeutet.
Der Winkel zwischen den beiden Geschwindigkeitsvektoren 0Q; und 0Q, ist
demnach (als AuBenwinkel im Dreieck 0Q;Q,) gleich f + f'. Fiir die Parabel
ist f' = o; es gilt daher der Satz: In der Parabelbewegung ist der Winkel
zwischen zwei Geschwindigkeitsvektoren stets halb so groB wie der zwischen
den beiden Ortsvektoren, also gleich der halben Differenz der beiden wahren
Anomalien. In der Hyperbel ist /' negativ.

22. Das Integral der Anomalie

Die Integrationskonstante ¢,, die wir als Richtungswinkel des LAPLACEschen
Vektors in der Bahnebene erhielten, definiert die Richtung nach dem Perihel
(Perizentrum) der Bahn. Die Differenz v = ¢ — ¢, stellt also den heliozentrisch
gesehenen Winkelabstand vom Perihel dar, den wir schon frither als wakhre
Anomalie bezeichnet haben.

Die Gleichung (III; 19), in der das linksseitige Integral noch auszufiihren ist,

lautet, wenn wir v statt ¢ — g, einfithren, ¢ = %}/p setzen und unter T die
'Durchgangszeit durch das Perihel (p = ¢,) verstehen,

r v

) dv *®
(III; 41) f-(l—_i_—m—_—ﬁ(t—ﬂ.

0

Die Ausfilhrung der Integration ist verschieden, je nachdem eS 1 ist.
AuBerdem kann der Fall ¢ = o gesondert behandelt werden, da er besonders
einfach liegt. Wir unterscheiden somit vier verschiedene Fille:

a) Kreisbahn (¢ = 0): Gleichung (III; 41) lautet dann

?

fdv=—"-(t—r)
: 12

(I11; 42) v=—(t—T)=n(t—T) =M,

V@
d.h,, in der Kreisbahn ist die wahre Anomalie der Zeit proportional (wahre
= mittlere Anomalie). Der Fahrstrahl dreht sich also mit der konstanten

oder, da hier p = g,

Winkelgeschwindigkeit # = —= = — (vgl. II; 52).

0w
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b) Parabelbahn (¢ = 1): In diesem nichst einfachen Fall nimmt (III; 41) die
Form

P ?
dv _ dv _ % t-T)
(T+ cosv)® WU PR
o 4 cost — '
2
0
an. Substituiert man
dv
y=1tg—; dy= ,
2 cos2 —
so ergibt sich wegen coszl =1
gibt sic g AT

Yy
' 2 gu o= 2% (4
](x+y)dy— -,
0
Wenn man links das Integral ausfiihrt und rechts, wie bei Parabelbahnen iib-

lich, statt des Parameters die Periheldistanz g = %einfﬁhrt [ausp = a(1—¢?)

und ¢ = a (1 — ¢) folgt ja% = I 4 e = 2 bei der Parabel],

(- 1)

Vo

Aus dieser kubischen Gleichung kann die wahre Anomalie direkt als Funktion
der Zeit gefunden werden. Uber die Methoden ihrer Auflésung wird im Abschn.
34 berichtet werden.

. AT S
(ITI; 43) g, + St

c) Ellipsenbakn (e < 1): Die Integration von (III; 41) gelingt durch Ein-
fithrung der exzentrischen Anomalie E anstatt v. Schreibt man (III; 41) in der
aus dem Flichensatz folgenden Form

fr2dv=c(t—- T)
0

und setzt nach (II; 16)  dE = na dt, nach (II; 8) ¥2dv = c dt = n}pasdt, so
findet man durch Elimination von d¢
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mithin
[ E
[rrav="ap [rdE =nypai¢ — T)
0 0

oder, wenn man 7 durch (II; 10) ausdriickt und integriert,
E
(I11; 44) [(x—ecosE)dE=E —esinE=un(t—T)=M,
0

also die KEPLERsche Gleichung.

d) Hyperbelbahn (e>1; a <o): In der hyperbolischen Bewegung verliert so-
wohl die mittlere Anomalie M (und mit ihr die mittlere Bewegung#) als auch die
exzentrische Anomalie E ihren reellen Sinn. Die Integration von (III; 41) ge-
lingt dennoch in reeller Form,
wenn man statt E eine andere
Hilfsvariable einfiihrt, diein der
Hyperbel (Abb. 24) folgender-
maBen definiert wird: Es seien
P der Ort des Himmelskérpers
und 7, v seine Polarkoordinaten,
bezogen auf die im Brennpunkt
des linken Hyperbelastes ste-
hende Sonne S als Koordinaten-
ursprung und die Richtung von

Abb. 24. Bewegung in der Hyperbel. S nach dem Perihel IT als Haupt-
richtung. Um den Mittelpunkt
M der Hyperbel sei mit dem positiven Halbmesser « = — a der ,,Hauptkreis"

I1 K A beschrieben, der die Hyperbel in den Scheiteln I7 und A beriihrt. Von dem

FuBpunkt Q des von P auf die Apsidenlinie gefillten Lotes aus ziehe man die

Tangente Q K an den Hauptkreis und verbinde ihren Berithrungspunkt K mit

M. Dann ist der Winkel [IM K = H die erwihnte Variable, die an die Stelle

der exzentrischen Anomalie treten soll. '
Aus der Polargleichung der Hyperbel

__ b _ aeE-1
(I11; 45) r= I+ ecosv I+ ecosv

und der aus Abb. 24 unmittelbar abzuleitenden Beziehung

(IIT; 46) 7 cosv = ae — sec H)
folgt durch Elimination von cos v
(I1T; 47) v =a(esec H — 1).

SchlieBlich findet man nach einfacher Rechnung
r?sin®v = 7%(1 — cos?v) = a2(e? — 1) (sec? H — 1) = a®(¢? — 1) tg? H,
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also, wenn man festsetzt, daB v und H gleichsinnig wachsen sollen,
(IIT; 48) rsinv = ayet — 1tgH.
Aus (III; 47, 46) ergibt sich dann durch Subtrahieren und Addieren

r(x —cosv) =a(e + 1) (sec H — 1),

(III; 49) 7(x 4+ cosv) = a(e — 1) (sec H + 1)

und, wenn man die erste dieser Gleichungen durch die zweite dividiert und die
Identitit

I—cosx _ secx—1 _ . ,%
I+cosx secxt+1  ° 2

auf beiden Seiten anwendet, die (II; 14) d4quivalente Beziehung

e+1t£
e—1 2

(I1T; 50) tg— =

Differenziert man (III; 47), so erhilt man
dr =aetg HsecHdH.
AuBerdem ist nach (II; 33)

dr = x—e—sinvdt.

1]

Setzt man diese beiden Ausdriicke gleich, so folgt
tg H sec H ﬂ % %
sinv 4t qfp  JYR—1

oder, wegen (III; 48, 47)

X

7
Z = *H — =
p sec HdH = (esec* H — sec H)dH T dt.

Hieraus folgt durch Integration

(IIL; 51) etgH+1gtg(£—f2{)=i(t—T>

: e

als transzendente Gleichung fiir H, die im Falle der hyperbolischen Bewegung
die KeEpLERsche Gleichung ersetzt.

Der Ausdruck auf der rechten Seite dieser Gleichung gleicht formal dem ent-
sprechenden der KEPLERschen Gleichung, kann aber nicht wie dieser den An-
spruch auf die Bezeichnung ,mittlere Anomalie” erheben, denn in der Hyper-
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belbewegung gibt es keine ,,Umlaufszeit”, und die Begriffe ,mittlere Bewegung*
und ,,mittlere Anomalie“ sind daher nicht im gleichen Sinne wie bei der Ellipse
verwendbar. In der Tat wiirde der Ausdruck fiir # auf der rechten Seite von
(IIT; 44) fiir e > 1 imaginir werden. Denn setzen wir ¢ = —a, wo « eine reelle
positive GroBe ist, die den Halbmesser des Hauptkreises der Hyperbel dar-
stellt, so steht auf der rechten Seite von (III; 44) der Ausdruck

i Y t-T) =i (t—T),
a3

M=—(¢(—T) = ——++
ol DT T y

so daB M imagindr ist.

Man gewinnt die Gleichung (I1I; 51) iibrigens auch direkt aus der KEPLER-
schen Gleichung durch Anwendung folgender Substitutionen: Vergleicht man
die Formelsysteme (III; 46-48) mit den entsprechenden Formeln (II; 10-12)
fiir die Ellipse, so erhilt man

Hyperbel Ellipse
rcosv = —a (sec H — ¢) rcosv =a (cos E — e)
(II];52) rsinv = —a}1— e (—itgH) | 7sinv=a}I— sinE
7 = —a(1 — esec H) 7 =a(x —ecoskE)

Die elliptischen Formeln gehen also in die hyperbolischen iiber, indem man
sin Emit — ¢ tgH, amit —«a
(I11; 53) cos Emit  secH, _% L3
a 2 mit ja 2
tg E mit — ¢sin H,
vertauscht. Diese Substitutionen sind miteinander vertriglich, da
sin? E + cos’E = (1 tg H)? 4 sec’H = 1.

Wegen ¢if = cos E + ¢sin E ist nun ¢E = In (cos E + ¢ sin E). Man kann
also ¢E durch

n
I—l—sinH_1 I+cos<;—H)
cosH ¢ .(n )
sin{— —
2

In(secH + tgH) = In

ersetzen, und die mit —¢ multiplizierte KEpPLERsche Gleichung verwandelt
sich in
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In gleicher Weise erhilt man auch das hyperbolische Analogon zu (II; 14). Aus

sinE = zsin—g—cos—g = —itgH,

I+ cosE = 2cos’§ =14 secH

folgt

und daher (III; 50) aus (II; 14). SchlieBlich erhilt die Beziehung (III; 40)
zwischen der exzentrischen Anomalie und dem Richtungswinkel y der Bahn-
geschwindigkeit im Hyperbelfall die Form

) 1
II1; tgy = tgE = sin H.
(IIL; 54) BY = s —

23. Beziehungen zwischen den Anomalien in der Ellipse

In der elliptischen Bewegung sind die Beziehungen zwischen dem Radius-
vektor 7, der wahren Anomalie v und der exzentrischen Anomalie E durch die
Gleichungen (III; 52)

@ (1)
rcosv = a(cos E — ¢) bcosE —asin E
(III;55) rsinv =bsinE asin E bcosE

r =a(x —ecose) |

gegeben. Multipliziert man die ersten beiden dieser Gleichungen mit den Fak-
toren (I) bzw. (II) und addiert, so erhilt man

r(bcosEcosv+ asin Esinv) = ab(x — ecos E) = rb,
(I1I;56) 7 (bcosEsinv — asin E cosv) = a?esin E — (a® — b?) sin E cos E
=raesinE.

Hieraus folgen, wenn man ¢ = sin ¢ und & = a cos ¢ setzt und durch ¢ divi-
diert, die trigonometrischen Gleichungen

cos ¢ = sin E sin v 4 cos E cos v cos ¢,

(L;s7) . .
sin @ sin E = —sin E cos v 4 cos E sin v cos ¢,
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die man auch findet, wenn man den Cosinussatz und den Sinus-Cosinussatz
der sphirischen Trigonometrie auf das sphérische Dreieck A BC der Abb. 25
anwendet, dessen Seiten und Winkel die in der Abbildung eingetragenen Werte
haben mégen. Auch der Sinussatz ist erfiillt, da er die Identitit

sin ¢ cos E = cos E sin ¢

ergibt. AuBer (III; 57) gelten im gleichen Dreieck die Beziehungen

sinE =sinvcosp — cosvsingsinE,

(I1T; 58) : N :
cos E sin v = sin v sin ¢ + cos v cos ¢ sin E
und
sin v = sin E cos ¢ + cos E sin g sin v,
(I11; 59) ‘

cos v cos @ = cos E cos ¢ — sin E sin g sin v,

aus denen man leicht die hiufig gebrauchten Formeln

. cos @ sin v . cos @ sin E
smE=—-+¢—, smv=——fp———,
I+ singcosv I —sinpcosE
(IIT; 60) ‘
cos v -+ sin cos E — sin
cos E = ———.—u, 0S v = ___zp
I+ singcosv I —singpcosE

ableiten kann, Fiir den bei schwach exzentrischen Bahnen
stets kleinen Unterschied zwischen der wahren und der

Abb. 25. Tngonome- exzentrischen Anomalie erhilt man aus (III; 60)
trische Beziehungen
zwischen den Ano- __sin g cos v 4 cos® v 4 cos g sin®v

malien der Ellipsenbahn. €03 (v—E)= I+ sin g cos v ,
also .
T ——
oder, da

I+ singcosv 2, 1—cos<p=zsin2i£,

. . v—E q/r . @ .
(III; 61) sin — —V;smzsmv.

Das Vorzeichen der Wurzel ist positiv, da v — E stets das Vorzeichen von
sin v hat.

FaBt man, in Analogie zum System der geographischen Lingen und Breiten
auf der Erdkugel, C als Nordpol einer Sphire auf, dann sind C4 und C B zwei
Meridiane mit dem Lingenunterschiedpund 4, B zwei auf diesen Meridianen
gelegene Punkte mit den Breiten E bzw. v.
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Fiihrt man statt v die ,,antifokale Anomalie” w ein, so erhilt man aus den
Grundformeln (II; 20) durch analoge Uberlegungen die (I1I; 57) entsprechen-
den Formeln

cos @ = sin E sin w 4 cos E cos w cos ¢,
(I11; 62) ¢ 4

sin g sin E = sin E cos w — cos E sin w cos ¢,

die auch unmittelbar aus (III; 57) folgen, wenn man, wie in Abschn. 15, v mit
w und e mit — e bzw. @ mit — @ vertauscht. So ergeben sich auch aus (III; 58,
59) die Beziehungen

sin E = sinw cos ¢ 4 cos wsin ¢ sin E,

(I1T; 63) : o .
cos E sinw = — sin wsin ¢ + cos @ cos ¢ sin E
und _
sinw = sin E cos ¢ — cos E sin ¢ sinw,
(IT1; 64)

cos @ cos ¢ = cos E cos ¢ 4 sin E sin ¢ sin w,

wihrend man an Stelle von (IIT; 60) die Formeln

GnE = _Cosesinw . sinw= cos @ sin E ’
I — sing cosw I+ singcosE
(I1T; 65) : .
cosw — sin @ cos E + sing
csE=—7———| w=—"1 "1
I —sing cosw I+ singcosE
findet.

Die Gleichungen (III; 62-64) gelten im Dreieck 4 B'C der Abb. 25, in dem
B’ auf der gleichen Linge wie B, aber auf der Breite w liegt, und in dem der
Abstand 4 B’, ebenso wie 4 B, gleich ¢ ist. Es gilt also der folgende merkwiir-
dige Satz:

Ist in einem sphirischen Koordinatensystem (Linge, Breite) A ein Punkt mit
den Koordinaten (o, E), und schligt man um A einen Kreis mit dem Halbmesser ¢,
so schneidet dieser den Meridian mit der Linge @ in zwei Punkten mit den Brei-
ten v und w. Dieser Satz behilt seine Giiltigkeit, wenn von den Anomalien E, v,

w einige oder alle griBer als % sind; die entsprechenden Punkte liegen dann auf

der Verlingerung ihrer Meridiane iiber den Pol hinaus.

Aus den sphirischen Dreiecken 4 BC und 4 B’ C lassen sich alle moglichen
Beziehungen ableiten, die zwischen den Anomalien und dem Exzentrizitits-
winkel ¢ gelten. So folgen die Formeln (II; 14) und (II; 21) aus den auf diese
beiden Dreiecke angewandten NapIERschen Analogien. Z.B. ist in 4 BC auf
Grund dieser Formeln

tgz cosﬂ =tg (E _uvt E) cos (E - v_—_E) = ctgv+ Esinv —E
2 2 2 2 2 2 2 2
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oder

2
2

v+ E v—E

tg—sin = sin

Hieraus folgt, wenn man die Sinusausdriicke auflést und die Gleichung durch

cos d cos £ kiirzt,
2 2
Plie? & oB) o o _ o E
tgz(tg2+tg2)—tg2 'tgz
oder, wie (II; 14),
@
I+ tg—
v 2 , E [z ¢ E_]/I+6 E
tg—;———(p tg?—tg(:‘*' 2>tg2'—' I—etg2°
I—"tg-—;

Die gleiche Operation, auf 4 B’C angewandt, fithrt auf (II; 21). Auch die An-
wendung der bekannten Tangentenformeln

t2l__sin(s—a)sin(s—b) _atb4c
8 2T T sin(s—osins $= 2 ’
2l — cos (0 — y) cos @ o_a-l—ﬁ-l—y
& 2T " cos@—a)cos (o —P) B 2 ’

die fiir jedes sphirische Dreieck mit den Seiten a, b, ¢ und den ihnen gegen-
iiberliegenden Winkeln «, f, y gelten, fiihrt zu weiteren interessanten und wenig

v-n
2

=7
7/
7/

Abb. 26. Tangente und Normale der Ellipse.
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bekannten Beziehungen zwischen den Anomalien der elliptischen Bewegung,
deren Ableitung dem Leser iiberlassen bleibe.

Aus dem gleichschenkligen Dreieck A BB’ erhilt man schlieBlich alle Be-
ziehungen, die zwischen E und ¢ einerseits, dem Richtungswinkel y der Bahn-
tangente (bzw. des Geschwindigkeitsvektors) und dem Winkel 4 (den Orts- und
Geschwindigkeitsvektor desPlaneten
miteinander bilden) andererseits be-
stehen. Dabei soll y, wie schon in
Abschn. 21, den Winkel darstellen,
den die Bahngeschwindigkeit mit der
Perihelgeschwindigkeit bildet, also
mit der Richtung der positiven Ordi-
natenachse. Nach einem bekannten
Satz aus der Geometrie der Kegel-
schnitte halbiert die Normale N P
der Ellipse (Abb. 26) den Winkel
zwischen den beiden Brennstrahlen
S PundF PundhalbiertdieTangente
T P den AuBenwinkel des Dreiecks
S PF bei P. Es ist demnach

3'
(166 2—2 =% _ ¢,
2 2
und, da im Dreieck SPT
v+ 0+ (ﬁ —y|=n Abb. 27. Beziehungen
2 ’ zwischen den Anomalien in Ellipsenbahnen.

Fiir Hyperbeln ist H statt E,

(1I1; 67) vtw =y. x statt @ zu setzen. Ferner ist

2 vt+w z s v—w
In dem rechtwinkligen Dreieck 2 2z Tz T¥

‘ABD, das entsteht, wenn man in

Abb. 25 das gleichschenklige Dreieck 4 BB’ durch die Mittelsenkrechte 4 D
halbiert (Abb. 27), gelten demnach auf Grund der fiir rechtwinklige sphirische
Dreiecke giiltigen Formeln die Beziehungen

sinypcosp =sindsinE,

(I1I; 68) sin y sin ¢ = cos §,
cos y =sindcos E
und
tg Ectgy = cos ¢, ctgdctgy =singpcos E,
(I1L; 6g) gL clgy 9 goctgy ¢

tgEtgp =cosdsecy, ctgdctgyp =sinkE,

unter denen man die schon friiher abgeleitete Formel (III; 40) wiederfindet.

8 Stumpff, Himmelsmechanik
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Fiir Parabelbaknen riickt der Punkt 4 in den Aquator, da E = 0, und der

Kreis um 4 mit dem Halbmesser ¢ = %fﬁllt mit dem Meridian der Lﬁnge%

ganz zusammen, d.h., zu jeder beliebigen wahren Anomalie v gehort E = o.
Aus (III; 68) folgt fiir die Parabel

cosy = sin 4,

(II1; 70) d.h. ¢=% — 8,

sin ¢ = cos 4,

tibereinstimmend mit einer bekannten geometrischen Eigenschaft dieses Kegel-
schnitts. Hieraus folgt iibrigens auch die am SchluB des Abschn. 21 er-
wihnte Eigenschaft der Parabelbewegung, daB der Winkel zwischen zwei
Geschwindigkeitsrichtungen (Tangenten) halb so gro8 ist wie der zwischen den
beiden zugehorigen Ortsvektoren. Fir
jeden Ort ist ndmlich nach Definition

0= (% + z,v) — v, also wegen (III; 70)

g 2y = v. Fiir zwei verschiedene Orter ist
also

I
$ e M 'I’z_%:;(vz_”l)-

24. Beziehungen zwischen den
Anomalien in der Hyperbel

Abb. 28.
Exzentrizititswinkel der Hyperbel. Fir die Hyperbel werden E und ¢
imaginir. Fiihren wir, wie in Abschn. 22,
statt E die reelle Hilfsvariable H ein, so ergeben sichan Stelle der Gleichungen
(IIT; 57) analoge Beziehungen, wenn wir statt ¢ einen , hyperbolischen Exzen-
trizititswinkel“ y durch

(III; 71) sinx=;, ctgy=7pe* — 1
definieren. Die geometrische Bedeutung dieses Winkels lehrt Abb. 28: y ist der
Winkel, den die vom Brennpunkt S an den Hauptkreis der Hyperbel gezogene
T
Tangente mit der groBen Achse bildet. Man erkennt ferner, daB - "X der zu
v= % gehorige Hilfswinkel H ist.
Setzt man, wie in Abschn. 22, in (III; 57)
sinE = —itgH, cosE =secH
und ferner, wie oben,
(I1I; 72) sinp =cosecy, cosp = —i}e? — 1= —ictgy,
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so verwandeln sich diese Gleichungen, wenn man noch mit —sin y cos H her-
aufmultipliziert, in

cos H cos y = cos v cos y + sinvsin g sin H,

III;
(H: 73) sin H = sin v cos y — cos v sin x sin H.

Diese Formeln entsprechen der zweiten Gleichung (III; 59) bzw. der ersten
Gleichung (III; 58), wenn man E mit H und ¢ mit y vertauscht. Damit ist

Abb. 29. Tangente, Normale
und antifokale Anomalie der Hyperbelbahn.

gleichzeitig bewiesen, daB alle fiir die Ellipse im vorigen Abschnitt entwickelten
Beziehungen zwischen den Anomalien in analoge fiir die Hyperbel iibergehen,
wenn man diese Vertauschungen vornimmt.

Auch der Begriff der antifokalen Anomalie 148t sich auf die Hyperbel iiber-
tragen. Verbindet man (Abb. 29) den Bahnort P mit den beiden Brennpunkten
S und F und bezeichnet mit w den Winkel SF P, so folgt aus (III; 52) und
Abb. 29 :

7 cosv = 2ae — scos w = a(e — sec H),

rsiny = ssinw=a)e? —1tgH =ftgH,
4 = s—20e =uafesecH —1)
oder
(D) (IT)
scosw = a(e + sec H), fsecH atg H
ssinw = ftgH, —atg H BsecH.

s =a(esec H + 1)

8¢
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Multipliziert man die ersten beiden dieser Gleichungen mit den Faktoren (I)
bzw. (II) und addiert, so ergibt sich

s(Bsec Hcosw — a tg H sinw) = aff(¢sec H + sec? H — tg? H) = sf§,
s(x tg H cos w + f sec H sinw) = a®e tg H + («* + f?) tg H sec H = sae tgH

oder, wenn man gemiB (III; 71) e = cosec g, f = a ctg y einfithrt und mit
sin y cos H

heraufmultipliziert,
sa

cos @ cos y — sin w sin y sin H = cos y cos H,
sin w cos § 4 cos w sin  sin H = sin H.

Diese Formeln gehen aus der zweiten Gleichung (III; 64) und der ersten Glei-
chung (III; 63) hervor, wenn man wieder £ mit H und ¢ mit y vertauscht.
Damit ist gezeigt, daB Abb. 26 auch in bezug auf das Dreieck A B’C fiir die
Hyperbel Giiltigkeit behilt, wenn man die Bezeichnungen der Seiten und
Winkel entsprechend dndert.

Auch die Formeln (III; 68, 69), die fiir die Ellipse aus dem rechtwinkligen
Dreieck 4 BD (Abb. 27) abgeleitet wurden, gelten mutatis mutandis fiir die
Hyperbel, vorausgesetzt, daB die oben gegebene Definition der antifokalen
Anomalie nicht zu Widerspriichen fiihrt. Nun zeigt aber Abb. 29, daB zwischen
den Winkeln 3 und 4 einerseits und den Anomalien v und w andererseits die
aus der Abbildung unmittelbar ablesbaren Beziehungen

v+ w /4
= -9,
2 2 2

v—w
=¥y

(I11; 74)

gelten, die mit (III; 66, 67) nur iibereinstimmen, wenn man — w statt w setzt.
Tatsichlich ist aus Abb. 29 ersichtlich, daB w» im negativen Sinne wichst,
wenn v zunimmt. Behalten wir aus Griinden der Bequemlichkeit die obige
Definition von w bei (in der also v und w das gleiche Vorzeichen haben), so
miissen wir in Abb. 27, wenn diese fiir Hyperbeln giiltig bleiben soll, nicht nur

E, ¢ mit H, y, sondern auch y, 4 mit Zzt— — 0, % — y vertauschen. Die Formeln
(III; 68, 69) gehen dann in

cos § cos y = cosysin H,

(ITX; 75) cosdsiny =siny,
sin ¢ = cos y cos H
und
tg Htgd = cosy, tgytgd =sinycos H,
(IIL; 76) g 1118 ¢ X gy 1g X

tg H tg y = sin p cosec §, tgyctgy =sin H
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iiber. Die gleichen Formeln erhilt man auch, wenn auch in anderer Reihen-
folge, wenn man in (III; 68, 69) v und ¢ unverindert 148t, dafiir aber die tri-
gonometrischen Funktionen von E durch (III; 53) und die von ¢ durch (III; 72)
ersetzt.

25. Die Mittelwerte des Radiusvektors

Man bezeichnet die groBe Halbachse a der KEpLERschen Ellipse auch als die
mittlere Entfernung des Planeten von der Sonne. Diese Bezeichnung laBt sich
auf zweierlei Arten rechtfertigen: 1. ist @ gleich dem arithmetischen Mittel aus
den beiden Extremen, die » im Laufe der Bewegung einnimmt, nimlich aus der
Periheldistanz a(x — e) und der Apheldistanz a(1 + e€). 2. ist a der Mittelwert
von 7, wenn man 7 als Funktion der exzentrischen Anomalie auffat. Aus
(IT; 10) folgt ndmlich durch Integration iiber E, erstreckt iiber einen vollen
Umlauf,

2n
fr dE = 2mna,

also der Mittelwert von r (E)
’ 2n

@:—I—frdE=a.

2%
0

In gleicher Weise kann man aus KEPLER I,

1 I
7=$(1+ecosv),

folgern, daB 1/p der Mittelwert des als Funktion der wahren Anomalie betrach-
teten Kehrwertes 1/r des Radiusvektors ist.

Dariiber hinaus ist es von Interesse festzustellen, welche Mittelwerte der
Radiusvektor annimmt, wenn man ihn als Funktion der wahren Anomalie v
oder der mittleren Anomalie M ansieht. Differenziert man die ersten beiden
Gleichungen (III; 55) nach 7, v und E, so erhilt man

drcosv — rdvsinv = —adEsinE,

drsinv 4+ rdvcosv= bdEcosE
und durch Auflésung dieser Gleichungen nach d7 und 7 dv
dr =dE(bcosEsinv — asin E cos v),
7dv = dE(bcos E cos v 4 asin E sin v).

Vergleicht man die Klammerausdriicke der rechten Seiten mit (III; 56), so
folgt
dr = aesin E dE (wie in Abschn. 14),

rdv=>bdE.
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Integriert man die zweite dieser Gleichungen iiber einen vollen Umlauf, so er-

gibt sich der Mittelwert von 7 (v)
2n

r(v)=%/rdv=b,

0

d.h., der iiber 7 als Funktion der wahren Anomalie genommene Mittelwert des
Radiusvektors ist gleich der kleinen Halbachse der Ellipse.
Aus dem Differential der KEpLERschen Gleichung
dM =dE(1 — ecos E)
folgt schlieBlich N

7dM =adE(x —ecos E)2=adE(1 — 2ecos E + €% cos® E),

also nach Integration tiber einen vollen Umlauf der Mittelwert von 7 als Funk-
tion der mittleren Anomalie bzw. der Zeit

2n
r () = = /rdM=a(1+%.)=a+“—P,

Y 2
0

Unter Umstinden ist es niitzlich, auch die Mittelwerte von 1/ zu kennen.
Uber v erstreckt, ist dieser Mittelwert, wie schon erwahnt, gleich 1/p. Dagegen
ist das zestliche Mittel des reziproken Radiusvektors gleich 1/a, denn es ist nach

(IIT; 44) und dem Flichensatz
2n

27

dM=ndt=-—n—r"’dv, also L ﬂl: " _[rdv = E_.=£.
xVp 2w| v 2mxp a

0 0

26. Die geradlinige Bahn

AuBer den bisher behandelten Kegelschnittbahnen liefern die Differential-
gleichungen der Zweikérperbewegung unter gewissen Umstinden noch singu-
liare Losungen, die als Grenzfille der normalen anzusehen sind.

Der auf der Bahnebene senkrecht stehende Vektor g der Flichengeschwindig-
keit bildet mit dem in der Bahnebene selbst liegenden heliozentrischen Orts-
vektor p stets einen rechten Winkel; das skalare Produkt beider ist also stindig
null. Sind ¢, ¢,, ¢; die Koordinaten von g und #, y, z die des Planeten, so stellt
diese Beziehung,

(I11; 77) @p) = 1% + 6y + gz =0,

die Gleichung der durch den Koordinatenanfang gehenden Bahnebene dar. Thr
geniigen auch die Koordinaten d,, d,, d, des LapLACEschen Vektors f, wie schon
in (IIT; 17) gezeigt worden ist. Sie verliert ihren Sinn dann und nur dann,
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wenn alle drei Flichenkonstanten ¢, und damit auch der Vektor g selbst ver-
schwinden. Wegen
lgl =c=xp

wiirde in diesem Falle der Bahnparameter $ den Wert null annehmen. Aus
p = a(1 — %) = «(e? — 1) folgt, daB bei festgehaltenem, im iibrigen beliebig
groBem a bzw. « der Parameter  gegen null strebt, wenn man die Exzentrizitit
sich der Eins nihern 148t. Geometrisch ist evident, daB dieser Vorgang einem
Schrumpfen des Kegelschnitts, welchen Typs er auch sei, auf die groBe Achse
gleichkommt. Der Kegelschnitt selbst artet dabei in eine gerade Linie aus —im
elliptischen Typ in eine endliche Strecke von der Linge 24, im parabolischen in
einen einseitig begrenzten Strahl, im hyperbolischen ebenfalls, wenn lediglich
der vom Himmelskérper wirklich durchlaufene Hyperbelast als Bahn an-
gesehen wird.

Die gleichen Folgerungen zieht man auch aus (III; 16): Wegen g = o ist fiir
die singulire Bahn

p

2P
x> f

oder, wenn man, wie frither, p = 7t setzt,

I
(I11; 78) r=——5f
Der in die Richtung von der Sonne nach dem Ort des bewegten Massenpunktes
zeigende Einheitsvektor r ist demnach konstant und dem LarLAcEschen Vek-
tor f entgegengesetzt gerichtet. Da der Betrag von f nach (III; 18) d = »2%e ist,
so folgt aus (III; 78), wie zu erwarten ist, ¢ = 1. Die Richtung von f ist stets
die von der Sonne zum Perihel. Beim Grenziibergang riickt der Brennpunkt
in das Perihel hinein, da ja bei festem endlichen a fiir ¢ — 1 die lineare Exzen-
trizitit ae gegen a strebt. Der Ortsvektor p hat demnach fiir alle Zeiten die
Richtung nach dem Aphel, d.h., der Himmelskorper bewegt sich auf einem
vom Zentralkérper ausgehenden Strahl.
Die Bewegung des Korpers auf diesem Strahl ist bekannt, wenn der Radius-
vektor 7 als Funktion der Zeit bestimmt wird. Die vektorielle Bewegungs-
gleichung ’

p=—wt  (p=m)

geht, da r = const, also § = #r, in die skalare Differentialgleichung

2
(I11; 79) =25

72

iiber. Multipliziert man sie mit #, so entsteht die Gleichung
i

if = —’62’—2,
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deren Integration den Energiesatz in der Form

. I,_#%
(I11; 80) =2t

liefert. Da in der geradlinigen Bahn # =V ist und 2 4 0 angenommen werden
muB, so erweist sich (III; 80) als identisch mit der Geschwindigkeitsrelation
(III; 31) und 4 als identisch mit der Energiekonstanten (III; 30)

x2

(IIT; 81) h=_2_a'

Eigentiimlich ist, daB in diesem singuliren Grenzfall trotz ¢ = 1 die Unter-
scheidung der Bahnformen in solche vom elliptischen, parabolischen und
hyperbolischen Typ erhalten bleibt, da ja beim Grenziibergang die groBe Halb-
achse unverindert bleibt, deren numerischer Wert das Kriterium fiir den Bahn-
typus darstellt. Das kommt noch deutlicher zum Ausdruck, wenn man die
Losung der Differentialgleichung (III; 79) durch eine weitere Integration zu
Ende fiihrt. Aus (III; 8o, 81) erhdlt man

f=+x 2_1 oder xdt=il—,
r a 2 I
’ ==

also durch Integrieren

r

V__._

Nimmt man an, daB ¢, die Anfangs-, ¢ die Endzeit eines durchlaufenen Bahn-
stiicks ist, so ist die linke Seite von (III; 82) stets positiv. Rechts wird also das
positive Zeichen gelten, wenn auch dr positiv ist, der Massenpunkt sich also in
dem betreffenden Zeitintervall vom Attraktionszentrum entfernt (Steigbewe-
gung). Ebenso gilt das negative Zeichen, wenn d7 < o, der Massenpunkt sich
also dem Attraktionszentrum nihert (Fallbewegung). Setzt sich, was nur beim
elliptischen Bahntyp vorkommt, die Bewegung aus einem aufsteigenden und
einem absteigenden Ast zusammen, so tritt am Umkehrpunkt, an dem r das
Maximum 2a erreicht, ein Vorzeichenwechsel ein.

(III; 82) ist natiirlich nichts anderes als das Anomalieintegral (III; 41), in
dem die hier sinnlos gewordene Variable v durch 7 substituiert wurde. In der
Tat erhilt man aus der allgemeinen Bahngleichung

P

I ecosv

(ITT; 82) x(t—1) =

Yy =
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durch Differenzieren
(1 + ecosv)?

dv =dr epsinv

Damit wird (III; 41)

r

"(t_to)—}/_

esinv’

Bedenkt man nun, daB

esiny = +}e? — (ecosv)? = j;‘/ez-— (% - I)2=

) [ e}

72
so erhilt man

(I11; 83)

Setzt man hierin p = a(x — ¢?), wobei a beim hyperbolischen Typ negativ zu
nehmen ist, und 148t man p gegen null streben, so geht (III; 83) in (III; 82)
iiber.

Die Ausfithrung des Integrals (III; 82) gelingt durch geeignete Substitu-
tionen, wobei man wiederum die drei Bahntypen zu unterscheiden hat, je
nachdem 1/a positiv, null oder negativ ist.

Am einfachsten gestaltet sich die Rechnung beim parabolischen Typ. Hier
erhilt man (1/a = o)

4 3 3
(II1;84)  x(t—t) = + — [yrdr = iiﬁ[ﬁ - ro?].
V2. 3

Diese Formel gewinnt man auch durch Grenziibergang aus (III; 43), wenn man
diese Gleichung, da hier beide Grenzen willkiirlich sind, in der Form

v 1 v
(I11; 85) x(—1t) =7V2¢ [tg'; + ‘gtgaz]
%
schreibt. Setzt man in der Bahngleichung der Parabel,
v

r=—
I+ cosv

?
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p = 2q (¢ = Periheldistanz) und 1 4 cos v = 2 cos* -1—;- , so erhdlt man

r—4q

) _ 94 _ 2 V). L2? _
(I11; 86) r= - q(1+tg 2), tg®— 7

cos? —
2

Fiihrt man dies in (III; 85) ein, so findet man

x(E— 1) = iﬁf[(’—'i)% + g(’ — 4)3};

9

1 31T
= iﬁ{q(f—q)?-!-%(f—q)?} :

also, wenn man ¢ gegen null streben 148t, die Gleichung (III; 84).

Die Substitutionen, die zur Ausfithrung des Integrals (III; 82) im ellip-
tischen und hyperbolischen Fall notwendig sind, ergeben sich zwanglos, wenn
man, ausgehend von den entsprechenden Lésungen des Anomalieintegrals im
' allgemeinen Fall, gleichfalls den
Grenziibergang zum singuldren
Fall vornimmt. Diese Lésungen
sind, wie wir wissen, die KEPLER-
sche Gleichung bzw. ihr hyper-
bolisches Analogon (III; 51). Die
Grenziiberginge sind leicht zu be-
werkstelligen, da ja die exzentri-
sche Anomalie E ebenso wie der
Winkel H in der Hyperbelbe-
wegung geometrisch durch die Be-
griffe ,,groBe Achse” und ,Haupt-
kreis“ definiert sind und daher ebenso wie diese ihren Sinn auch beim Uber-
gang auf die singulidre Bewegung bewahren.

Es gentigt, den elliptischen Typ der geradlinigen Bewegung zu untersuchen.
Die Bahn des Massenpunktes P (Abb. 30) ist die groBe Achse, auf die die ur-
spriingliche Ellipse durch affine Schrumpfung (b — o) ausgeartet ist. Dabei ist
der rechte Brennpunkt S in das Perihel I7, der Antifokus F in das Aphel 4 ge-
riickt. Die Bewegung von P besteht, mathematisch gesehen, in einem perio-
dischen Hin- und Herpendeln zwischen den beiden Endpunkten der ,Fall-
strecke” ITA. Bei der physikalischen Deutung dieses Vorgangs hat man aller-
dings zu beachten, daB3 die Bewegung des fallenden Korpers bei der Ankunft
in [1 ihr natiirliches Ende findet, d.h. in den dort befindlichen Zentralkérper
stiirzt (Einsturz eines Meteors in die Sonne!).

A"F . P S-o.
Abb 30. Geradlinige Bewegung.
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Nun sei P der Ort des Massenpunkts zur Zeit £, 7 sein Abstand von der in I7
befindlichen Sonne. Es ist dann der Winkel K MIT = E die exzentrische Ano-

malie und ,
KP=gasinE=4Va®— (a — 7= +yr(za —7).

Die KepLERsche Gleichung, die wir wieder mit beliebiger unterer und oberer
Integrationsgrenze in der Form

%t —t) = VP [E — esinE]:‘

schreiben, 148t sich dann in

a

x(t—ty) = £ Vad [arc sin}/r(m;_' N _ Vr(za — r)j:

umwandeln, nachdem der Grenziibergang ¢ — 1 vollzogen worden ist.

Fiir die praktische Rechnung ist diese Formel unzweckmiBig, da die Funk-
tion arc sin im Intervall o < 7 < 24 mehrdeutig ist und fiir » = 4, wo ihr
Argument den Wert 1 annimmt, nicht genau ermittelt werden kann. Es ist
daher besser

E =zarc tg(tgg)

zu setzen. In Abb. 30 ist der Winkel K AIT = % als Umfangswinkel iiber dem
Bogen K]I, dessen Mittelpunktswinkel E ist. Man findet dann

tg— Y —(a—7)? V

2a —7r
und erhilt somit

(I5;87)  xt—t) = £ [z arc thza’

_Yrlea— r)]’

a

Diese Losung ist innerhalb eines Umlaufs (0 < E < 27) eindeutig und immer
scharf numerisch bestimmbar. Die beiden Vorzeichen gelten, wie in (III; 82),
fiir E S o, also fiir dr = o.
Der Weg zur Auffindung der das Integral (III; 82) 16senden Substitution ist
nun vorgezeichnet. Man setze
s " ,r=2az2, ,_ 40z ,f._i
2a —7 1+ 22 (I + 7 2) 7 a

Damit wird (III; 82)

azt’

a
x(t_t i4V_/(I:—z2)2’
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und die Ausfithrung der Integration ergibt

. - — 3 — L i
(IL1; 88) %t —12) = t2ya? [arctgz . +22L,

L — in (IIL; 87) iibergeht.

Auch der hyperbolische Fall 148t sich nunmehr ohne weitere Umstinde er-
ledigen. Fiir negatives 4 wird z imaginir. Setzt man also den Halbmesser des
Hauptkreises der Hyperbel —a = «, so empfiehlt sich die reelle Substitution

was nach Einsetzen von z =

7
200+ 7’

=

die mit { = tg% gleichbedeutend ist, was man auch geometrisch leicht ein-
sehen kann. Sie fiihrt (III; 82) in

x(t —to) = i4}/—/(lc déz)z

iiber — die Ausfiihrung der Integration ergibt

x(t-—to)—-+21/_[ C+I_CC2];

14+ ¢

oder, wenn man wieder fiir { den obigen Wert einsetzt,

. _ 3. Y2at+ v — 1/— V(za-i—r)r
(L11; 89) x(t—to—iv&'[ et e

Die Integrale (III; 84,88, 8g) ergeben direkt die Steig- bzw. Fallzeit des
Korpers zwischen zwei Punkten des vom Gravitationszentrum ausgehenden
Strahls. Beim parabolischen und hyperbolischen Typ der Bewegung kann die
Entfernung 7 des Korpers vom Attraktionszentrum jeden beliebigen Wert
zwischen o und oo annehmen, wihrend beim elliptischen Typ 7 auf den Bereich
zwischen o und 2a beschrinkt bleibt. Die Geschwindigkeitsrelation (III; 31)
gilt unverindert. Sie liefert fiir die drei Bahntypen

2a —
V2 =2

(elliptischer Typ),

Vi= x2—f— (parabolischer Typ),

22:1-]—1

xr

V2=1x

(hyperbolischer Typ).



Die geradlinige Bahn 125

Bei der elliptischen Bewegungsart wird der obere Grenzpunkt » = 22 mit
der Geschwindigkeit null erreicht (Umkehr- oder Scheitelpunkt zwischen stei-
gender und fallender Bewegung). Beim parabolischen Typ liegt der Scheitel-
punkt im Unendlichen, beim hyperbolischen ist auch im Unendlichen die Ge-
schwindigkeit noch von null verschieden, nimlich

=

Die andere, untere Begrenzung der Fallstrecke ist durch # = o gegeben, d.h.
durch das Attraktionszentrum selbst. Es wurde schon gesagt, daB in ihm die
Bewegung praktisch aufhort, da ein ZusammenstoB der Massen erfolgt, wenn
ererreicht wird. Andererseits kann7 = oauch als Anfangspunkt der Bewegung an-
gesehen werden - die Masse » wird dann aus dem Ort der Masse M abgeschleudert
(Ejektion). Wenn wir von der physikalischen Deutung dieser Vorgiange (Auf-
sturz bzw. Ejektion) absehen, das Attraktionszentrum also als einen ausdeh-
nungslosen, symbolisch mit Masse belegten Punkt ansehen, tritt der singulire
Charakter der geradlinigen Bewegung an dieser Stelle deutlich zutage. Fiir
r = o wird nimlich, unabhingig vom Bahntyp, die Aufsturz- bzw. Ejektions-
geschwindigkeit unendlich. Hier verliert also bereits der erste Differential-
quotient von 7 nach der Zeit seinen Sinn. Wir werden auf die mathematischen
Schwierigkeiten, die mit der Beschreibung der Bahnbewegung unmittelbar vor
der Kollision bzw. nach der Ejektion verbunden sind, im Abschn. 64 noch zu-
riickkommen.

Es ist bemerkenswert, daB die Natur selbst die hier auftretende Singularitit
mit uniiberwindlichen Schranken umgibt, so daB die Fallgeschwindigkeit eines
Korpers gewisse endliche Grenzen niemals iiberschreiten kann. Sie teilt jeder
gravitierenden Masse ein endliches Volumen zu, das sie ausfiillt und das die
Anniherung einer anderen gravitierenden Masse bis zur volligen Koinzidenz
unmoglich macht. Das ist jedenfalls die Sachlage, solange es sich um Korper
handelt, wie sie in der Astronomie gewShnlich vorkommen, also um Kugeln mit
radialsymmetrischer Massénverteilung oder um Gebilde, die sich von ihnen nur
unwesentlich unterscheiden. Von ihnen gilt, da8 die von ihnen ausgehenden
Gravitationskréfte so wirken, als sei ihre gesamte Masse in ihrem Mittelpunkt
vereinigt. Dieser Satz, der alle unsere bisherigen Aussagen rechtfertigt, wird im
nichsten Abschnitt bewiesen werden. Er gilt, solange sich die angezogene
Masse noch auBerhalb der Begrenzung des anziehenden Koérpers befindet, in
unserem Problem der geradlinigen Bewegung also bis zum Sturz auf die Ober-
fliche des Zentralkorpers, der nach den oben abgeleiteten Formeln stets mit
endlicher Geschwindigkeit erfolgt.

Anders wird es, wenn wir die Moglichkeit zulassen, daB der fallende Korper
(reibungslos) in den anziehenden eindringen kann. Man konnte diesen Vorgang
etwa so realisieren, da8 man annimmt, ein Stern falle zentral in einen kugel-
férmigen Sternhaufen hinein, ohne mit einem Mitglied des Haufens zu kolli-
dieren. Wir werden im nichsten Abschnitt auf diesen in der Wirklichkeit
durchaus denkbaren Vorgang zuriickkommen und zeigen, daB sich das An-

Vo= +
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ziehungsgesetz dndert, sobald sich der fallende Stern im Innern des Haufens
befindet, insofern nidmlich, als die bereits durchstoBenen Kugelschalen des
Haufens keine Anziehungskraft mehr ausiiben. Im Mittelpunkt des Haufens
selbst ist die Kraft gleich null, da dort die Resultierende aus den Anziehungs-
kriften aller Sterne des Haufens auf den eingedrungenen Kérper verschwindet.
Der fallende Stern wird dann beim Durchgang durch den Mittelpunkt eine
endliche Maximalgeschwindigkeit erreichen. Danach kehrt sich der Vorgang
um: Die Geschwindigkeit nimmt wieder ab und erreicht, wenn der Korper auf
der entgegengesetzten Seite den Haufen wieder verliBt, den gleichen Betrag
wie beim Eintritt. So entsteht, wenn es sich um eine Fallbewegung vom ellip-
tischen Typ handelt, ein Hin- und Herpendeln des Sterns auf einer geraden
Strecke, aber nicht, wie die Theorie bei Annahme punktférmiger Massen vor-
schreibt, zwischen Umkehrpunkt und Attraktionszentrum, sondern zwischen
zwei Umkehrpunkten, die symmetrisch zum Attraktionszentrum (in unserem
Beispiel zum Mittelpunkt des Kugelhaufens) angeordnet sind.

Gleichung (I1I; 87) gestattet die Berechnung der Fallzeit eines frei fallenden
Meteors aus der Ruhelage bis zum Aufsturz auf die Oberfliche der Sonne. Sie
ist etwas kiirzer als die ,,ideale Fallzeit®, die sich ergeben wiirde, wenn man die
Sonne als geometrischen Punkt mit der Masse M = 1 betrachtet. Zur Berech-
nung deridealen Fallzeit haben wir7 = 2a und 7, = o zusetzen und erhalten dann

T, =

nYad
el

Dies entspricht [siehe (II; 50) oder auch (III; 44) mit E = x] der halben Um-
laufszeit in einer Ellipse mit der groBen Halbachse 4, ein Ergebnis, das zu er-
warten war, da ja die Umlaufszeit in der Ellipse bei gegebenen Massen nur von a
abhingt und daher beim Grenziibergang auf die geradlinige elliptische Bewe-
gung erhalten bleibt. Die gesamte Umlaufszeit entspricht dann der Dauer von
Steig- und Fallbewegung zusammen.

Ist die Ausdehnung des Zentralkérpers klein gegen die Fallstrecke, so ist
auch die Korrektur klein, die wir an die ideale Fallzeit anzubringen haben, um
die Fallzeit bis zur Oberfliche des Zentralkérpers zu berechnen. Der Zentral-
korper habe Kugelgestalt, sein Halbmesser betrage g. Dann entspricht diese
Korrektion 4 T der Fallzeit von # = g bis # = 0. Es ist also

2y . O ¢
T = - ; = .
o " arctgz T 22]0 5 z(0) 29

Ist nun p gegen 24 klein, so auch z. Der Ausdruck in der Klammer ist also die
Differenz zweier kleiner Zahlen gleicher GroBenordnung und daher in der ge-
gebenen Form fiir die Rechnung ungeeignet. Setzt man aber

1 I I
arctgz=2——8+ =25 — =27+ ...,
& 3 5 7

2
= 3 5 7
—_— -2 22 -2 eoe
T2 + + e
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so findet man

4 3 6 9 12
III; g0 0T = —(z2Va )Pt — =224 24 — =04+ ...|.
(IIL; go) el O i il
Fiir sehr kleines z beschrinkt sich die Korrektion der Fallzeit daher auf das
Hauptglied dieser Entwicklung,

- 4 3
0T = 3% (27 ).

Beispiel: Ein Meteor falle aus der Erdbahn, d.h. aus der Entfernung eins,
mit der Anfangsgeschwindigkeit null geradlinig auf die Sonne. Wie gro8 ist
die ideale Fallzeit, wie lange fillt es bis zum Einsturz in die Sonne, und welches
ist die Einsturzgeschwindigkeit?

Da dasMeteor eine verschwindend kleine Masse besitzt, ist ¥ = 2 = 0.0172021
zu setzen. Es ist ferner 24 = 1, der Sonnenhalbmesser ¢ = 0.6955 - 10® km
= 0.00465 A.E. Die ideale Fallzeit betrigt dann

4
T, = — = 64%570.

Ferner ist z = V}E—Q = 0.068367, das Hauptglied der Korrektion daher

4(2V_
0T = —[—] = 0%0876 = 12™6.
3k (v) ’

Das erste Zusatzglied in der Klammer von (I1I; go), —5—22 = 0.0056, vermag die-

sen Betrag nur um weniger als eine Zehntelminute zu dndern. Die gesuchte
Fallzeit betragt daher

T = Ty — 0T = 64.561 mittlere Sonnentage.
Die Aufsturzgeschwindigkeit errechnet sich mit » = p zu

km

AE.
Ve = 0.3558W = 615.7 e -

27. Potential und Gravitationsfeld ausgedehnter Himmelskorper mit
radialsymmetrischem Massenaufbau

Es ist nun an der Zeit, die am Anfang des Abschn. 13 aufgeworfene Frage zu
beantworten, ob bzw. unter welchen Bedingungen es erlaubt ist, die Himmels-
korper als mit Masse belegte ausdehnungslose Punkte zu betrachten. Von die-
ser Vereinfachung diirfen wir offenbar bedenkenlos Gebrauch machen, wenn
die raumliche Ausdehnung der betrachteten Kérper geniigend klein gegen ihre
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Abstinde voneinander ist, so klein etwa, daB bei der gewdhlten Stellengenauig-
keit der Rechnung das Verhdltnis zwischen Durchmesser und Abstand ver-
nachlissigt werden darf.

Diese Bedingung ist meistens erfiillt, wenn wir die Bewegung der Fixsterne
im interstellaren Raum oder in den duBeren Teilen der Kugelhaufen betrach-
ten, nicht aber im Planetensystem. So ist z.B. der Abstand zwischen Erde und
Sonne nur wenig grofer als das hundertfache des Sonnen- bzw. das zehn-
tausendfache des Erddurchmessers. Wenn im Planetensystem — mit Ausnah-
men, auf die wir noch zuriickkommen werden - die oben erwihnte Verein-
fachung dennoch gestattet ist, so deshalb, weil die Himmelskérper des Systems
mit groBer Annidherung nach Gestalt und Massenverteilung radialsymmetrisch
aufgebaut sind. Wir werden beweisen, daB3 solche Korper auf andere, die sichin
beliebiger Entfernung von ihnen befinden, nach dem NEwToNschen Gesetz
der Gravitation so wirken, als seien ihre Massen in ihren Mittelpunkten vereinigt.

In Abschn. 20 haben wir festgestellt, daB in einem kréftefreien Koordinaten-
system das Pofential U eines Massenpunktes P’ mit der Masse 7’ in bezug auf
einen anderen Massenpunkt P mit der Masse m die Form

’
2mm
4

U=*k

hat, wenn 7 der Abstand P P’ ist. Die Kraft, die von P’ auf P wirkt, ist dann
durch den Wert gegeben, den die Vektorfunktion

P=+grad U

an der Stelle P annimmt!). Nehmen wir an, daB die anzichende Masse ein aus-
gedehnter Korper K sei, der aus beliebig vielen Massenelementen dm’ bestehen
moge, so addieren sich die Potentiale und Krifte in bezug auf P, und wir
konnen schreiben

(IIT; o1) U=km _dTm

K

»

wobei das Integral iiber alle Massenelemente von K zu erstrecken ist. Ist K ins-
besondere radialsymmetrisch aufgebaut, hat er also die Gestalt einer Kugel,
die aus konzentrischen Schichten (Kugelschalen) von jeweils konstanter Dichte
zusammengesetzt ist, so ist das Potential U (P) eine im ganzen Raum auBerhalb
der Kugel stetige und endliche Funktion von P, die so beschaffen ist, daB die
Flichen U = const konzentrische Kugelflichen darstellen, deren gemeinsamer
Mittelpunkt mit dem Mittelpunkt der Kugel zusammenfillt, der gleichzeitig

1) Das Vorzeichen ist bei attraktiven Kriften so zu wihlen, daB f nach dem At-
traktionszentrum gerichtet ist. Da grad U stets die Richtung nach wachsendem
U hat, ist fiir U ~ »~! das positive Zeichen giiltig, wihrend [siehe (III; g5)] fiir
U ~ 7? das negative Zeichen zu nehmen wire.
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ihr Schwerpunkt ist. Die Gradienten dieser skalaren Funktion, die die Niveau-
flichen U = const iiberall rechtwinklig durchstoBen, sind also nach dem Mittel-
punkt C des Korpers gerichtete Vektoren, deren Betrdge nur von dem Ab-
stand 7 des ,,Aufpunktes” P von C abhingen. Die von dem Koérper K auf P
ausgeiibte Gravitationskraft ist also notwendig eine Zentralkraft.

Die Potentialfunktion U geniigt im ganzen Raume auBerhalb von K der
Lapraceschen Differentialgleichung

0*U  0*U  0°U
(IIT; 92) AU:W-l-

9y T 92

wenn wir irgendein rechtwinkliges Koordinatensystem mit C als Anfangspunkt
einfiihren und den Punkten P und P’ die Koordinaten x, ¥, z bzw. %', ', 2’ zu-
schreiben. Es ist dann

P=(x—-2P+y—-y)+(—7)* und
0r x—x Or y—y 8r z—-2

ox r ' dy r ' 0z 7

b

somit
U _dUor o x—w
dx dr ax ”
62_U_k2mm’b (x — =2
7 S s

woraus sofort (III; g2) folgt, wenn man die entsprechend gebauten Ausdriicke
fiir die partiellen Ableitungen nach y und z hinzufiigt. Da (III; 92) unabhingig
von der Lage des anziehenden

Massenelements dm’ in P’ ist, Pz.y'z')
diirfen wir den Operator 4 auch
auf U anwenden, und es ist daher
auch AU = o.

Um den oben ausgesprochenen
Satz zu beweisen, betrachten wir
zundchst eine unendlich diinne
und mit Masse gleichmaBig dicht
belegte Kugelschale K (Abb. 31)
mit dem Halbmesser ¢ und dem
Mittelpunkt C. Die gesamte auf
der Schale verteilte Masse sei Abb. 31.

(III;93) M = f am'. Potential einer Kugelschale.
K

P(1,y,2)

Der Aufpunkt P mit den auf C als Koordinatenanfang bezogenen rechtwink-
ligen Koordinaten %, y, z habe von C die Entfernung R und von P'(«', ¥, ')

9 Stumpff, Himmelsmechanik
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die Entfernung 7. Ferner sei U (R) das Potential der Kugelschale in P. Wegen
R?2 = 4% 4 42 4+ 22ist dann
0U dU OR _dU % 0*U _a*U #* dU(I x2)

9x dR 0z dR R’ 9« 4RR" dR\R R
also, wenn wir die entsprechenden Ausdriicke in y und z hinzufiigen,

_@U | 2 dU _ 1 &UR) _
AU=omtRIR=R R —

Es gilt also, solange R > o, die Differentialgleichung

@#(UR) _ 0
iRz =’
deren allgemeines Integral
UR=aR+f oder U=a+ %

lautet, wo «, f§ zwei willkiirliche Integrationskonstante sind.

Wir haben nun zwei Fille zu unterscheiden:

1. der Aufpunkt P befindet sich auBerhalb. der Kugelschale. Dann ist
R — a< r< R+ a,und es gilt daher wegen (III; 93) die Ungleichung

M am'’ M
(I11; 94) R+a</7 <R—a

fiir jedes R > a. Strebt R gegen oo, so strebt daher

am’
U=k2m/7

gegen null, was nur moglich ist, wenn « = o, also U = /R ist. Die Unglei-
chung (III; 94) 148t sich daher auch
M i M
<5<
iy Bmo e
R R

schreiben, und man findet f/k2m = M, wenn man R gegen o streben lifit.
Damit ist gezeigt, daB die Konstante § den Wert 42 M haben muB, und es ist

also
mM

R

U==~F

Das Potential einer gleichmiBig mit Masse belegten Kugelschale von der Ge-
samtmasse M auf einen Aufpunkt mit der Masse 7 im Abstand R > a vom
Mittelpunkt der Kugel ist also dasselbe wie das eines im Mittelpunkt der Kugel
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liegenden Massenpunktes, in dem die Masse M vereinigt ist. Das gleiche gilt
natiirlich fiir das Potential einer aus konzentrischen Kugelschalen von jeweils
gleicher Massendichte zusammengesetzten Vollkugel auf einen auBerhalb ihrer
Oberfliche liegenden Aufpunkt. Durch Anwendung des Prinzips von der Gleich-
heit von Wirkung und Gegenwirkung iiberlegt man sich leicht, daB dieser Satz
seine Giiltigkeit auch dann behilt, wenn an Stelle des Massenpunktes P ebenfalls
ein radialsymmetrisch aufgebauter Kérper tritt. Es ist demnach gestattet, bei
der Untersuchung der translatorischen Bewegungen der Himmelskorper diese
durch Massenpunkte zu ersetzen, sofern es sich um Kugeln der beschriebenen
Art handelt.

Diese Uberlegungen gelten nicht, wenn sich der Aufpunkt im Inuern einer
Kugelschale befindet. Dann ist 0 < R < a, und es folgt, daB f = o, also
U = a = const sein muBl. Denn wire f§ =+ o, so wiirde U bei Anndherung des
Aufpunkts an den Kugelmittelpunkt (R — o) unendlich gro8 werden, wihrend
in Wirklichkeit im Mittelpunkt der Kugel fiir alle Massenelemente # = a und
daher nach (IIT; 91)

U(o)=k2m/-dl‘-=k2”‘M —
a a

endlich ist. Es hat daher fiir das ganze Innere der Kugelschale, einschlie-
lich des Mittelpunkts, den wir vorhin ausnehmen muBten, das Potential diesen
konstanten Wert, gegen den iibrigens auch U strebt, wenn sich der Aufpunkt
der Kugelschale von auBen nihert. Im Innern einer homogen mit Masse be-
legten Kugelschale (oder einer Hohlkugel von beliebiger Dicke und radial-
symmetrischem Massenaufbau) sind also die NEwToNschen Gravitationskrifte
null, da alle Ableitungen der Potentialfunktion verschwinden.

Ein Massenpunkt, der sich im Innern eines radialsymmetrisch aufgebauten
Korpers befindet (z.B. ein Stern im Innern eines kugelformigen Sternhaufens)
wird demnach nur von denjenigen Massenelementen angezogen, deren Abstand
vom Mittelpunkt der Kugel kleiner ist als sein eigener, wihrend diejenigen
Schichten, deren Abstand groBer ist, keine Krifte auf ihn ausiiben. Ein Stern,
der sich im Innern eines solchen Haufens bewegt, wird also einem Kraftgesetz
unterliegen, das mit dem Abstand vom Mittelpunkt des Haufens variiert. Die
Bahnen, die ein solcher Stern beschreibt, werden wesentlich durch das Gesetz
bestimmt sein, mit dem die Dichte der Materie im Haufen mit dem Abstand
vom Mittelpunkt variiert. Natiirlich werden die Ergebnisse einer Analyse dieses
Problems cum grano salis zu verstehen sein: Es handelt sich ja hier um ein
statistisches Dichtegesetz, das nur durchschnittliche Werte fiir die Massendichte
angibt. Die wirklichen Bewegungen der Sterne werden sich von den berechneten
etwa in derselben Art unterscheiden, wie die von Wellen bewegte Oberfliche
des Meeres sich von der Gestalt einer Kugelfliche unterscheidet, die man ihr
bei groBriumigen Betrachtungen zubilligen darf.

Die Idealisierung, die wir bei einer solchen Betrachtungsweise an dem Pro-
blem vornehmen miissen, besteht darin, daB wir das Dichiegesetz 6 (R) eines
Kugelhaufens als stetige und (evtl. bis auf endlich viele Sprungstellen) diffe-
renzierbare Funktion des Abstandes R vom Mittelpunkt auffassen, was in

o
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Wirklichkeit nur derFall wire, wenn der Kérper K stetig mit (gasférmiger, fliissi-
ger oder fester) Materie erfiillt ist. Eine reibungslose Bewegung wire dann aber
unmdoglich.

Sei ganz allgemein J (R) die Massendichte einer radialsymmetrisch mit Masse
belegten Kugel, so ist das Potential in bezug auf einen Massenpunkt P mit der
Masse m im Abstand R vom Mittelpunkt

UR) =k 22 %(R) ,
wo
R
M(R) = 4z [0*5(0) de
0

die in dem Kugelkern vom Halbmesser R eingeschlossene Teilmasse des Kor-
pers bedeutet. Wir wollen an dieser Stelle nur den besonders einfachen Fall
betrachten, daB die Dichte im Innern der Kugel konstant, also

() =0 fir o<p=<a
sei. Es ist dann fiir R > a

mM 4

U(R) = k2 ; M= M(a) = ~ma®d;
(R) = 2 @ ="

wihrend im Innern der Kugel (R < a)
R
U(R) = kz% : 4na/@2d9 = %nkzm SRe
u 0
oder, da § = ,
L na3

: 3
U(R) = 1T (%) = "cre

gilt, wenn wir die Konstante 2 22} /a® mit C bezeichnen.

Wahrend sich der Massenpunkt P aufBerhalb eines Sternhaufens nach dem
Gravitationsgesetz so bewegt, als sei dessen Gesamtmasse in seinem Mittel-
punkt vereinigt, wiirde im Innern des Haufens, wenn dessen Dichte konstant
wire, das Beschleunigungsgesetz

(I11; g3) b= —%gradU=CRr=Cp

gelten (siehe FuBnote S. 128), die Beschleunigung also proportional mit dem
Abstand vom Mittelpunkt wachsen, bis sie an der Oberfliche des Haufens
den dort nach dem NEwrtoNschen Gesetz zu erwartenden Betrag erreicht.
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Wir werden spiter sehen (Abschn. 8¢), daB die Bewegung eines Massenpunktes
unter dem EinfluB eines derartigen Kraftgesetzes, die in der Physik als ,,har-
monische Bewegung“ bekannt ist, auf Ellipsen vor sich geht, deren Mittelpunkt
mit dem Attraktionszentrum zusammenfillt.

28. Potential und Gravitationsfeld abgeplatteter Himmelskorper
Die Voraussetzung radialsymmetrischen Massenaufbaus ist bei den meisten

Himmelskérpern, mit denen es die Himmelsmechanik zu tun hat, nur mit Ipehr
oder weniger groBer Annaherung erfiillt. So ist die geometrische Gestalt vieler

F

—» X

(x)

Abb. 32. Potential eines homogenen Ellipsoids.

Planeten die von merklich abgeplatteten Rotationsellipsoiden. Bezeichnet man
ihren Aquatorhalbmesser mit a, den etwas kleineren Polarhalbmesser mit b,
so miBt man die geometrische Abplattung der Oberfliche durch den Quo-
tienten

a—b

o = .
a

Genau bekannt sind die Abplattungen der Erde (1 : 297), des Jupiter (1 : 16.35)
und des Saturn (1:10.44), wihrend man die des Mars (=~ 1:190) und des
Uranus (=~ 1 : 18) nur mit einiger Unsicherheit abschitzen konnte. Die vermut-
lich vorhandene Abplattung des Neptun 148t sich wegen der Kleinheit desschein-
baren Durchmessers der Planetenscheibe, der wenig mehr als 2’ betrégt, durch
Messung nicht bestimmen. Die Planeten Merkur und Venus, die nur langsam
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um ihre Achse rotieren, sind ebenso wie der Evdmond mit geniigender Genauig-
keit als kugelférmig anzusehen. Das gleiche gilt fiir die Sonne, bei der ein Unter-
schied zwischen Aquator- und Polardurchmesser, wenn vorhanden, geringer als
der zufillige MeBfehler sein miiBte.

Zur Entscheidung der Frage, unter welchen Bedingungen es gestattet ist, die
bestehenden Abweichungen des Massenaufbaus von der Kugelsymmetrie zu
vernachlédssigen, berechnen wir das Potential eines Rotationsellipsoids mit ge-
gebener Abplattung. Wir diirfen dabei — aus Griinden, die im Verlauf der Unter-
suchung noch ersichtlich werden — die Massendichte im Innern des Korpers als
konstant annehmen.

Essei (Abb. 32) K ein Kérper homogener Dichte, dessen Gestalt symmetrisch
zu den drei Achsen eines rechtwinkligen raumlichen Koordinatensystems sei,
dessen Mittelpunkt, der gleichzeitig auch der Schwerpunkt ist, also mit dem
Koordinatenanfang C zusammenfillt. P’ (x', y', 2’) sei der Ort eines Massen-
elements d' im Innern von K und im Abstand g von C. Dann ist das Potential
von K an der Stelle P (¥, , 2), an der sich ein Massenpunkt mit der Masse
befinden mége, durch

(I11; 96) U=#m dT’”

E
gegeben, wo

P=(— 2P+ (y—¥)?+ @ —7)=R—20Rcosp + ¢*

und ¢ der zwischen C P und C P’ eingeschlossene Winkel ist. Es ist dann
1

1_1f e e\T*®
7= R[I _chosgo—i-(R)]

oder, wenn man die Klammer nach dem binomischen Satz entwickelt und
Glieder von hoherer als 2.Ordnung in der kleinen GroBe g/R vernachléssigt,

co) Lo Ilia 2cosp— E(2) (1 = 5c0stg) + -
(I11; 97) ,—R[I-l-Rcos«;o 2(R_)(I 3cos?g) + ]

Nun sind aus Symmetriegriinden, wenn man iiber alle Massenelemente des
Korpers integriert, die ,,Momente” 1. und 2.0Ordnung

"dm' = ' dm' = 'dm' = ,
(1 o8) fx m fy m fz m =0
fy'z’ am’ =fz'x’ am’ =fx'y' dm' = o.
Andererseits sind

(I11; go)
A =f(y'2+ 2% dm', B =f(z’2+ ¥'?) dm', C =/(x/2+ ¥'?) am'
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die drei H auﬁttmgheztsmomente des Korpers, dessen Haupttragheltsachsen mit
den Koordinatenachsen, die ja nach Voraussetzung auch seine Symmetrie-
achsen sind, zusammenfallen. Aus (III; gg) folgt

/x’zdm’=B+ZC_A, '/Ay'2JM'=g—+AZ—_B, ]z’2dm'=A—_F€;£,

hieraus

2

/ gam = AEEHC

xr+ yyr_l_ 22
R

ferner wegen g cos ¢ = und (I1I; ¢8)

fgcosqadm’:o

f(ecosw«im——[xz(uc —4)+9(C+A-B) +2A+B—C)

=%(A+B )+ 2 I (C —4) + $2(C — B)].

Setzt man den Wert (III; 97) in (III; g6) ein und setzt die Gesamtmasse des
Korpers

fdm’ =M
so ergibt sich mit den obigen Ausdriicken fiir die Integrale
U=k2%{M EATBHO+ (A+B C) +
2a00(C —A) £ 3C~ B+ =
—u2ly- Lc-a+c-mt

L C—A) £ 7€~ B+ .

Ist K speziell ein abgeplattetes Rotationsellipsoid (Sphiroid) oder ein dhnlicher
Rotationskorper, dessen Rotationsachse mit der z-Achse zusammenfillt, so
ist 4 = B, und man erhilt einfacher

o-wghsne-al s}
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oder, wenn (Abb. 32) ¢ den Winkel bezeichnet, den der Strahl O P mit der
%, y-Ebene bildet und den man als die Deklination des Aufpunkies in bezug auf
die Aquatorebene des Korpers K bezeichnen kann,

2m£4 {I—l— -4 (x — 3sin®d) + }

(IIT; 100) U=k SR

Fiir die Haupttrigheitsmomente eines homogenen Rotationsellipsoids erhilt
man schlieBlich auf Grund einer elementaren Anwendung der Integralrechnung

(III; 101) C=—:-Ma2; A=B=%M(a2+ 5)

und daher, wenn man die Abplattung « einfiihrt,

PR N TR
5 5 5

M a a
also schlieBlich
2
(II;102) U =# mff {1 + %a(l - %) : (%) . (x — 3sin?d) + }

Das Potential eines abgeplatteten Himmelskérpers ist also, zundchst unter
der Voraussetzung homogener Dichte, mit dem Potential der NEwToNschen
Gravitationskraft identisch, solange das Zusatzglied in der Klammer gegen die
Einheit vernachlissigt werden darf. Sofern dies der Fall ist, darf man den
Korper K also durch einen in seinem Mittelpunkt gelegenen und mit der
Masse M belegten Massenpunkt ersetzen. Fiir a > o ist das offenbar nur dann
der Fall, wenn R gegen den Aquatorhalbmesser a des attrahierenden Kérpers
geniigend groB ist. Fiir siebenstellige Rechnung ergibt sich als Bedingung hierfiir,

wenn wir den ungiinstigsten Fall ¢ = i zugrunde legen und «2 gegen « ver-
nachldssigen, 2

2
%a(%) < %10‘7 oder R > Ry = 2000a}za.

Fiir Erde, Jupiter und Saturn erhilt man z.B.

Erde: =1:297, 20002 =0.08533 A.E., R,= 0.007 A.E.
Jupiter: =1:16.35, 200042 = 0.96075 A.E., R,=0.336 A.E.
Saturn: = 1:10.44, 20004 = 0.80636 A.E.,, R, = 0.353 A.E.

Die kritischen Abstinde R, sind in allen drei Fillen bedeutend kleiner als die
im Planetensystem vorkommenden Abstinde zwischen den Planeten selbst.
Sie sind aber merklich groBer als die Abstidnde der Satelliten von ihren Zen-
tralplaneten. So ist z.B. der Abstand des Mondes von der Erde rund 1: 400
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= 0.0025 A.E., also fast dreimal kleiner als derjenige Abstand, in dem bei
siebenstelliger Rechnung der EinfluB der Abplattung der Erde keinen EinfluB
mehr hat. Auch die Satellitensysteme des Jupiter und des Saturn liegen weit
innerhalb dieser kritischen Grenze. In allen Satellitenproblemen der Himmels-
mechanik muB daher auf die Abplattung des Planeten Riicksicht genommen
werden. In noch weit gréBerem MaBe gilt das fiir die Bewegungstheorie der
engen Doppelsternsysteme.

Die kritischen Abstidnde verkleinern sich etwas, wenn man von der proviso-
rischen Annahme konstanter Dichte im Planeteninnern abgeht; die nach obi-
gem Schema gerechneten Werte sind also Hochstwerte, jenseits derer die Ver-
nachlissigung der Abplattung unter allen Umstinden gestattet ist. In Wirk-
lichkeit ist die Dichte eine Funktion des Abstandes vom Planetenmittelpunkt,
die mit wachsendem Abstand abnimmt. Bei der Erde betrigt die Dichte im
Mittelpunkt etwa 12 g/cm?, an der Oberfliche rund 3 g/cm?, und die Abnahme
erfolgt an gewissen Stellen unstetig: die Erde besteht aus einem sehr dichten
Kern, der von dem Mantel in 2goo km Tiefe durch einen Dichtesprung getrennt
ist, und es ist nicht ausgeschlossen, daB auch noch andere, wenn auch weniger
ausgeprigte Sprungschichten existieren. Uber die Abplattung des Erdkerns ist
nichts Sicheres bekannt, sie ist aber wahrscheinlich geringer als die der Ober-
fliche. Der Aquatorwulst der Erde, der die Abhéngigkeit der Potentialfunktion
von ¢ und die dadurch verursachte sphiroidische Deformation der Niveau-
flichen dieser Funktion vornehmlich hervorruft, besteht aus Material, dessen
Dichte nur etwa 3/; der mittleren Erddichte betrigt. Es ist daher zu erwarten,
daB der Faktor C —4 in (III; 100) etwas kleiner ausfillt als bei homogener
Dichte. Uber das Dichtegesetz im Innern der Riesenplaneten ist noch wenig
bekannt, doch darf man vermuten, da8 bei ihnen die Dichte der Oberflichen-
schichten relativ zur mittleren Dichte noch geringer ist als bei der Erde. Alle
diese Uberlegungen deuten darauf hin, daB die aus (III; 1o1) abgeleiteten Be-
trige des von & abhingigen Zusatzgliedes nur obere Schranken fiir die wirk-
lichen Betrige darstellen.

In den meisten praktisch vorkommenden Fillen geniigt es immer, das in
(III; 100) aufgefithrte erste Entwicklungsglied der Potentialfunktion zu be-
riicksichtigen. Eine Ausnahme bildet das neuerdings aktuell gewordene Pro-
blem der Bewegung kiinstlicher Erdsatelliten. Hier ist 2/R nahezu gleich der
Einheit, und die Entwicklung der Potentialfunktion mii8te, um eine genaue
Berechnung der wirksamen Krifte zu garantieren, um einige Glieder weiter
getrieben werden. Auch miifte man, um die Betrige der Koeffizienten dieser
Glieder genau genug berechnen zu kénnen, die GréBe C —A und die ebenfalls
von der Dichtefunktion abhingigen Momente héherer Ordnung genauer ken-
nen, als dies aus unserer jetzigen Kenntnis vom Massenaufbau der Erde mog-

lich ist. Zwar 14Bt sich die ,,dynamische Abplattung* C—E—A der Erde auf

himmelsmechanischem Wege mit Hilfe der Theorie der Mondbewegung und der
mit ihr eng zusammenhingenden Verlagerung des Friihlingspunktes (Prizes-
sion und Nutation) ermitteln, aber fiir die in den hoheren Gliedern von (III;
100) vorkommenden Momente hoherer Ordnung ist dies nicht mehr moglich,
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da ihr EinfluB auf die Bewegung des Mondes dazu nicht groB genug ist. Es
konnte aber die genaue Beobachtung eines weit genug auBerhalb der Grenzen
der irdischen Atmosphire kreisenden kiinstlichen Satelliten zur Bestimmung
dieser wichtigen GréBen benutzt werden. An dieser Stelle kann auf dieses Pro-
blem, das erst im Zusammenhang mit den Stérungstheorien und insbesondere
den Bewegungen der Satelliten im Band III dieses Werkes angeschnitten wer-
den kann, nur hingewiesen werden.

Ebenso wie es moglich ist, Potential und Gravitationsfeld eines kugelsym-
metrisch aufgebauten Himmelskorpers durch das eines in seinem Mittelpunkt

7 p liegenden Massenpunkteszuersetzen,

i 148t sich auch zeigen, daB das von
der Abplattung herriihrende Zusatz-
y potential, das nicht, wie das erstere,
A eine Funktion des Abstandes R allein

r ist, sondern auch von der Deklina-

. tion & des Aufpunktes abhingt, er-
' y setzt werden kann durch das Poten-
\\,  C(l#9 " tial eines mit Masse gleichmibBig

(A)— Abb. 33. belegten Ringes, der den Mittelpunkt

Potential eines ringférmigen Massefadens. des Himmelskorpers in dessen Aqua-

torebene umgibt. Das gilt wenig-
stens, solange es ausreicht, sich auf das erste Zusatzglied der Entwicklung
(II; x00) zu beschrinken.

Um dies zu beweisen, definieren wir ein rechtwinkliges Koordinatensystem
so, daB der (fadenformige) Ring mit dem Halbmesser g in der x, y-Ebene liegt
(Abb. 33) und sein Mittelpunkt mit dem Koordinatenanfang C zusammenfillt.
Wir erhalten das Potential U, dieses Ringes, indem wir in (III; 100) die Ring-
masse M, statt M und fiir C, A die Haupttrigheitsmomente des Ringes

2n

2
Ca =[ezdm’= e*M,; A,= /92 costpdm’ = Q—Zf“fcosztp dp = % M,
| 0

einsetzen. Es ist dann
mM, 1({0)\® - }
7 {I+4(R) (x — 3sin28) + .
Nun denke man sich das homogene Rotationsellipsoid mit der Dichte § zerlegt
in eine homogene Kugel mit dem Halbmesser b und der Masse

(ITI; 103) U, =k

3
und in den Restkérper mit der Masse

2
M—Mo=dM=i;-:rm2bé(I— b)=2a(1—£>M,

@
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Das Potential des Ellipsoids ist dann gleich der Summe der Potentiale U, und
d U der beiden Teilkdrper. Es ist also nach (III; 102)

mM, _2mM{ 1 ( «a a)2 o }
R +dU =% R I+5a(1 —2-)(7{/ (x — 3sin?d) + .-
und wegen M = M, + dM
_2mdM{ Moo (2 s }
auv =k 7 1+5dMa1 2\ B (x — 3sin?d) + .
aMm
(=%
2al{1 — —
2
mdM Ay .
dU=k2—R—{I+-E(—E) (1 — 3sin2d) + }

U=~k

Setzen wir hierin M = , so folgt

Vergleicht man diesen Ausdruck mit (III; 103) so erkennt man, daB beide
Formeln ineinander iibergehen, wenn man

2 2 Py
M,=dM uwd £ =2, dn g=aVi
4 10 5

setzt. Das Potential des homogenen Rotationsellipsoids zerfdllt daher in zwei
Teile:

1. in das Potential einer homogenen Kugel vom Halbmesser & und der
Masse M, ; .

2. in das Potential eines in der Aquatorebene liegenden, mit der Kugel kon-

zentrischen, ringformigen Massenfadens vom Halbmesser ¢ = a}/0.4 und der
Masse dM = 2a (I — %) M des den Aquatorwulst bildenden Restkérpers.

29. Universelle Giiltigkeit des NEwWToNschen Gravitationsgesetzes

Bei dem Versuch, die Bewegungen der Himmelskérper unseres Planetensystems
zu beschreiben, hat sich das NEwToNsche Gravitationsgesetz bewihrt. Es ist
moglich, die Bahnbewegungen der Planeten, Satelliten, Kometen und Meteore
in diesem System mit Hilfe der Integrale jener Differentialgleichungen zu be-
rechnen, die aus dem NEwToNschen Attraktionsgesetz folgen, und zwar so
genau, daB die berechneten Orter dieser Himmelskérper innerhalb der durch
die unvermeidlichen zufilligen Beobachtungsfehler gegebenen Grenzen dar-
gestellt werden. Zwei Ausnahmen hiervon bestitigen nur die Regel. Die eine
betrifft die Bewegung des Erdmondes. Dieser Himmelskorper ist der Erde so
nahe, und seine Bahngeschwindigkeit so groB, daB die bei der Formulierung der
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theoretischen Ansitze notwendige Idealisierung der Bedingungen, unter denen
die Bewegung des Mondes zustandekommt, zu gewissen systematischen Ab-
weichungen zwischen Beobachtung und Rechnung fithrt. Insbesondere spielt,
worauf schon hingewiesen wurde, bei der Theorie der Mondbewegung die Mas-
senverteilung im Erdinnern eine wichtige Rolle. Da indessen unsere Kenntnisse
vom Aufbau des Erdkérpers beschrinkt sind, darf man nicht erwarten, da
Theorie und Beobachtung vollig miteinander in Einklang gebracht werden
kénnen. Auch die schon frither (Abschn. 18) erwdhnte UnregelmiBigkeit der
Erdrotation ruft Abweichungen dieser Art hervor, deren Beseitigung allerdings
durch Vervollkommnung der Zeitmessungstechnik erwartet werden darf. Die
andere Ausnahme betrifft die Bewegung des Planeten Merkur. Wie in der
Theorie der Stérungen (Band III) gezeigt werden wird, bewirken die ,,sdku-
laren Stérungen® durch,die iibrigen Planeten eine langsame Drehung der
Apsidenlinie einer Planetenbahn. Nun ist die beobachtete Apsidenbewegung des
Merkur um einen geringen Betrag (rund 43" im Jahrhundert) rascher, alsdie
aus dem NEwroNschen Gesetz folgende Theorie verlangt. Diese Liicke inder
Naturgesetzlichkeit der Planetenbewegungen ist durch die allgemeine Rela-
tivitdtstheorie von ALBERT EINSTEIN geschlossen worden, aus der sich folgern
148t, daB das Attraktionsgesetz geringfiigig von der ihm durch NEwTON ge-
gebenen Form abweicht, und zwar um gewisse in der Nihe groBer Massen nicht
mehr zu vernachlissigende Terme, durch deren Beriicksichtigung die beobachtete
Apsidenbewegung der sonnennahen PlanetenzahlenmaBig genau dargestellt wird.

Andererseits befinden sich die Fixsterne in so groBen riaumlichen Abstinden
jenseits der Grenzen des Planetensystems, daB es a priori nicht unbedingt
sicher ist, ob das NEwToNnsche Gesetz auch dort noch in der gleichen Form
giiltig ist, obwohl gegen die Annahme der universellen Giiltigkeit eines Natur-
gesetzes, das sich in der niheren Umgebung der Sonne so glinzend bewihrt hat,
stichhaltige Griinde kaum geltend gemacht werden kénnen. Eine Moglichkeit,
diese grundsitzlich bedeutsame Frage zu beantworten, bieten die zahlreichen
visuellen Doppelsterne, deren Bahnen man durch Beobachtung verfolgen konnte.
Innerhalb der Beobachtungsgenauigkeit erfiillen die Bewegungen dieser Ge-
stirne folgende beiden Regeln:

1. Die scheinbare Bahn des Begleiters um den Hauptstern ist eine Ellipse,
in deren Innern sich der Hauptstern irgendwo befindet.

2. Der vom Hauptstern zum Begleiter fithrende Fahrstrahl iiberstreicht in
gleichen Zeiten gleiche Flichen.

Diese beiden Regeln sind notwendige, aber nicht hinreichende Bedingungen
fiir die Giiltigkeit des NEwToNschen Attraktionsgesetzes in den Doppelstern-
systemen. Aus diesem Gesetz wiirde folgen, daB die wahre Bahn des Begleiters
um den Hauptstern eine Ellipse ist, in deren einem Brennpunkt der Haupt-
stern sich befindet. Projiziert man diese Bahn auf die durch den Ort des Haupt-
sterns gelegte Tangentialebene der Sphire, so erhilt man als ,,scheinbare Bahn“
wiederum eine Ellipse, doch kann im Innern dieser Ellipse der Hauptstern
einen beliebigen Platz einnehmen, je nach der Exzentrizitit der wahren Bahn
und der Lage der Bahnebene in bezug auf die Projektionsebene. Da ferner fiir
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die wahre Bahn, falls diese durch das Wirken einer Zentralkraft hervorgerufen
wird, der Flichensatz gilt, so hat er ebenfalls fiir die scheinbare Bahn Giiltig-
keit. Projiziert man ndmlich (Abb. 34) eine ebene geschlossene Fliche mit
dem Inhalt f, deren rdumliche Lage durch den auf ihr senkrecht stehenden
Einheitsvektor m gekennzeichnet ist, auf die Tangentialebene, deren Lage
durch den zu ihr normalen Einheits-

vektor n bestimmt wird, so ist der m

Flicheninhalt der Projektion

g = fcos(m,n),

wenn (m, 1) den von den Vektoren
m und n eingeschlossenen Winkel
bedeutet. Sei nun f insbesondere
der Flicheninhalt des vom Fahr-
strahl des Begleiters in der wahren
Bahn iiberstrichenen Ellipsensek- Abb. 34. Giiltigkeit

tors, so folgt aus dem Flichensatz des Flichensatzes fiir Projektionen.

f = const und aus der Konstanz

der beiden Vektoren auch g = const, d.h., der Flichensatz gilt auch in der
scheinbaren Bahn. Es gilt aber auch die Umkehrung dieses Satzes, d.h., da fiir
die scheinbare Bahn der Flichensatz erfahrungsgemdlB erfiillt ist, so ist dies
notwendig auch fiir die wahre Bahn der Fall. Daraus folgt aber, daB die
Kraft, mit der der Begleiter vom Hauptstern angezogen wird, eine Zentral-
kraft ist.

Ob diese Zentralkraft jedoch mit der NEwroNschen Gravitationskraft iden-
tisch ist, kann aus den Beobachtungen nicht ohne weiteres geschlossen werden.
Zwar ist die wahre Bahn sicher eine Ellipse (oder ein Kreis), es ist aber noch
unentschieden, ob sich der Hauptstern wie in der KEPLERschen Bewegung in
einem der Brennpunkte der wahren Ellipse oder an irgendeiner anderen Stelle
im Innern dieser Kurve befindet.

Um diesen Sachverhalt zu kldren, erinnern wir uns der Gleichung (II; 39)
im Abschn. 16:

s

_ 2,0/ I . . _l " o__ dﬁ_"
R(u, @) =mc2u?(u"” + u); u= o u = I

die fiir jede Zentralkraft erfiillt ist und in der R eine beliebige Funktion von 2
und dem Richtungswinkel ¢ des vom Zentralkorper zum Begleiter fithrenden
Fahrstrahls sein kann. Es ist also zu untersuchen, wie der Betrag der Zentral-
kraft als Funktion von # und ¢ beschaffen sein muB, damit die Bahn eine
Ellipse sei.

In einem durch die Hauptachsen der Ellipse definierten rechtwinkligen
Koordinatensystem lautet die Bahngleichung

b2? 4 a2y? = g2,

Sei (Abb. 35) S(«, f) der Ort des Hauptsterns innerhalb der Ellipse und seien
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& =rcos@, n=rsin g die auf S bezogenen relativen Koordinaten des Be-
gleiters P, so gilt

b%(x + 7 cos @)% + a*(f + 7 sin @)% = 42b?
oder
7%(b% cos® @ + a?sin? ) + 27 (xb?cos @ + Balsing) = C? =

= a?b% — (a2b% + f%a?) > o.

1 14

Abb. 35. Giiltigkeit des Gravitationsgesetzes fiir Doppelsternbahnen.

Setzen wir nun

b cos? @ 4 a?sin? ¢ _ I a? 4 bz_az—b
C? T 2

2
D= cos 29| =A— Bcos2g,

2 2 q1
Y’=ab coscpé—zﬁa Smgv:Mcos«,p—l—Nsintp,

I
ikt

so 14Bt sich die Bahngleichung auch in der Form
(II1; 104) w? — 2u¥ =Q; u=Y’i—v}/@+¢=¥’i9

schreiben, wo
=YP*+ P=F+ Gcos2p+ Hsinzgp
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mit

2 2 2 _ N2
F=M-:N M: — N

+ A4, G=——2——B, H=MN

gesetzt ist. Differenziert man (III; 104) zweimal nach ¢ und addiert # hinzu,
so erhilt man

If_ /2 2
u"+“=T"+Ti29@ @ +4@.

oye

Da nun
V'=-V¥, 0"=—40—F), 0°=4[G*+ H) — (0 - F),

so folgt nach einfacher Rechnung
F?—(G*+ HY) F*— (G*+ H?)
076 (w— PP
Der Betrag R der Zentralkraft 148t sich demnach, je nachdem man die erste
oder die zweite Darstellungsart von #'* 4+ % wihlt, durch

(I1I; 105)

“”-l'u:j:

F* — G+ HY R P —(G+H
] 3 " mc®u®  (u— M cos ¢ — N sin ¢)?
(F 4 Gcos 29 + H sin 2¢)?

ausdriicken. Machen wir nun die plausible Annahme, daBl R von der Lage des
Koordinatensystems unabhingig, also eine Funktion von # allein sei, so gibt es
zwei Moglichkeiten dazu, je nachdem wir die linke oder die rechte Seite der
Formel (III; 105) der Darstellung von R (u) zugrundelegen. Man erhilt fiir
diese beiden Moglichkeiten

1) G=H=o; R=mczu2ﬁ‘=mazg, (II1; 106)
F2 — (G*+ HY)

2) M=N=o0; R=mc =mc? (F? —G®— H¥7r.

%

Im ersten Falle ist die Kraft dem Quadrat des Abstandes umgekehrt propor-
tional, wie beim NEwTONschen Gesetz, womit eigentlich schon gezeigt ist, da
die Bewegung wirklich nach diesem Gesetz verlduft. Wir kénnen dieses Ergeb-
nis aber noch durch folgende Uberlegungen erhirten: Wegen H = 0 = M N
wird eine der beiden GréBen M oder N verschwinden — nicht beide, da sonst
wegen G = o0 auch B = o wire, was nur im Falle einer Kreisbewegung (a = b)
zutrife, denn es wire dann nach (III; 104) 4* =A4 = const. Andererseits kann
aber die Kreisbewegung nur eine spezielle Form der Bewegung sein, da der
Hauptstern dann im Mittelpunkt des Kreises, in der Projektion also im Mittel-



144 Analysis der Zweikorperbewegung

punkt der scheinbaren Ellipse l4ge, was erfahrungsgemiB nur in seltenen Aus-
nahmefillen zutrifft. Aus G = o folgt also

M2 — N2 B a® — b2

2 o220
so daB also, wenn nur eine der beiden Gro8en M oder N verschwinden soll, dies
nicht M sein kann, da dann a? — 4% << o wire. Wir haben daher N = o und
daher auch f = o zu setzen, d.h., der Hauptstern befindet sich irgendwo auf
der groBen Achse der Ellipse. Mit § = o erhilt man dann
ab? a
C2=p(a®—a?), M= o R P
undaus2 B = M?
2 b2 2 52 2 b4
2 T = acs = aC4 oder a = +ae,
d.h., der Ort des Hauptsterns ist einer der beiden Brennpunkte der wahren
Bahnellipse. SchlieBlich findet man
M2 ot a4 b
F=—rtd=imt @

oder, mit a? = a%¢?, C% = a%b° (1 — &) =10,

at®4a’(2—¢?) a1

F =

2bt T
Der Ausdruck fiir die GroBe der Zentralkraft wird demnach
_ mc? _an
- 1,1,2 * 72 ’

wenn ¢ = ¥ ﬂ; gesetzt wird.

Im zweiten Fall (III; 106) ist « = § = o. Der Hauptstern befindet sich dem-
nach im Mittelpunkt der elliptischen Bahn, und es ist, wegen C? = a2b?,

2
F?— (G4 HY) = A2 — B2—z%=z

und daher R = 2mc?r
der Betrag der Zentralkraft, die dem Abstand der beiden Himmelskérper direkt
proportional ist. In der Physik treten Zentralkrifte dieser Art bei elastischen
und Pendelschwingungen kleiner Amplitude auf (harmonische Bewegung, siche
auch Abschn. 8g). Im Falle der Doppelsternbahnen ist diese Moglichkeit aus
demselben Grunde ausgeschlossen, aus dem wir weiter oben ausschlieSen
mubBten, daB es sich #u7 um Kreisbahnen handelt. Denn auch hier miiBte der
Hauptstern stets im Mittelpunkt der scheinbaren Ellipse zu finden sein, was
den Beobachtungen widerspricht. Das NEwTONsche Gesetz ist also das einzige,
das die Bewegungen der Doppelsterne zu erkliren vermag, und es besteht so-
mit kein Grund, an seiner universellen Giiltigkeit zu zweifeln.



KAPITEL IV

DIE BERECHNUNG
UNGESTORTER EPHEMERIDEN

30. Koordinatensysteme und Orier

Die Bewegung eines Massenpunktes um einen anderen oder um den gemein-
samen Schwerpunkt beider wird, als Losung einer vektoriellen Differential-
gleichung 2.0Ordnung, durch sechs unabhédngige Konstanten, die Bakhnelemente,
eindeutig bestimmt, sofern man annimmt, daB auBer diesen beiden Massen —
etwa Sonne und Planet — keine anderen Kérper vorhanden sind, die merkliche
Anziehungskrifte (stérende Krifte) ausiiben. Setzt man die Elemente einer
solchen ungestorten Bahn als bekannt voraus, so ermdglichen die im vorigen
Kapitel abgeleiteten Beziehungen in jedem Fall, die in irgendeinem raumlichen
Koordinatensystem definierten Orter des Himmelskérpers als Funktionen der
Zeit zu berechnen.

Eine Liste, in der Orter von Himmelskorpern — handle es sich um un-
gestorte Bahnen auf Grund der KepLERschen Gesetze oder um exakte Bahnen
unter Beriicksichtigung aller stérenden Krifte — fiir eine beliebig lange Reihe
von gleichabstindigen Zeitpunkten verzeichnet sind, heiBt ,Ephemeride”
(épmueots = Tagebuch). Die Bedeutung des Wortes weist auf eintigige Zeit-
intervalle hin, und in der Tat enthalten viele Ephemeriden, die in den astro-
nomischen Jahrbiichern zu finden sind, die Koordinaten der Himmelskérper
(Sonne, Mond und die Planeten bis einschlieBlich Saturn) fiir jeden Tag des
Jahres (meistens fiir o® Weltzeit). Daneben kommen auch andere Intervalle
vor: so einstiindige des Mondes in nautischen Jahrbiichern (Nautical Almanac!),
viertdgige fiir die Planeten Uranus, Neptun und Pluto, deren scheinbare Be-
wegung langsam erfolgt, und zehntigige fiir die scheinbaren Orter einer Aus-
wahl hellerer Fixsterne (Fundamentalsterne). SchlieSlich werden bei der ephe-
meridenmiBigen Berechnung der ,speziellen Stérungen” der Planeten- und
Kometenbahnen, die im Band II behandelt werden sollen, auch lingere Inter-
valle (20, 40 und 8o Tage) benutzt.

Die Berechnung von ungestérten Ephemeriden ebenso wie die von einzelnen
Ortern, die sich auf bestimmte vorgegebene Zeitpunkte beziehen, erfolgt teils
nach strengen Formeln, teils auf Grund von Reihenentwicklungen. Die hierbei
verwendeten Methoden sind duBerst vielgestaltig, und ihr Formalismus gewahrt
tiefe Einblicke in die Natur des Zweikorperproblems. Es ist daher gerechtfer-
tigt, ihnen einen breiten Raum in dieser Darstellung zu gewéihren, um so mehr,
als sie auch die Grundlage des umgekehrten Problems bilden, das eine sehr
grofe praktische Bedeutung hat: der Aufgabe nimlich, die Bahnelemente
eines Himmelskorpers aus einzelnen gegebenen oder beobachteten Ortern zu
bestimmen (Kapitel VIII und IX).

Bevor wir an das Problem der Ephemeridenrechnung selbst herangehen, muB
einiges iiber die Koordinatensysteme gesagt werden, die in der Astronomie be-

10 Stumpff, Himmelsmechanik



146 Die Berechnung ungestorter Ephemeriden

nutzt werden. Diese Dinge werden in der ,,Sphirischen Astronomie behandelt
und miissen hier als bekannt vorausgesetzt werden. Es geniigt daher, an dieser
Stelle eine kurze Zusammenfassung zu geben.

Die Mannigfaltigkeit der verwendeten Koordinatensysteme ist ziemlich groB.

Man unterscheidet :

1. nach der Lage des Koordinatenursprungs

a) heliozentrische Systeme (Ursprung im Sonnenmittelpunkt),

b) geozentrische Systeme (Ursprung im Erdmittelpunkt),

c) topozentrische Systeme (Ursprung im Beobachtungsort),

d) baryzentrische Systeme (Ursprung im Schwerpunkt Sonne-Planet oder
Erde-Mond, mitunter auch im Schwerpunkt des gesamten Planeten-

systems).

Die baryzentrischen Systeme haben in der Ephemeridenrechnung geringere Be-
deutung, sie werden aber hiufig in der Astronomie der Doppelsterne benutzt.
Die Systeme, deren Ursprung im Schwerpunkt Erde-Mond liegen, werden mit-
unter bei der Bestimmung von Planetenbahnen verwendet, da das Baryzentrum
des Systems Erde-Mond mit weit groBerer Anndherung eine KEPLERsche
Ellipse beschreibt, als dies fiir den Erdmittelpunkt (oder gar den auf der Erd-
oberfliche liegenden Beobachtungsort) der Fall ist, und da man aus diesem
Grunde die einfachen GesetzmaBigkeiten der Zweikorperbewegung fiir die Be-
wegung des Baryzentrums (als Koordinatenanfangspunkt) mit der gleichen
Berechtigung in Anspruch nehmen kann wie fiir die des beobachteten Planeten
oder Kometen. In der Stellarastronomie werden auch, wie hier nur am Rande
vermerkt sei, galakiozentrische Systeme (Ursprung im Mittelpunkt des Milch-
strafensystems) verwendet.

Ferner unterscheidet man

2. nach dev Lage der Hauptkoordinatenebene

a) ekliptikale Systeme (Hauptkoordinatenebene der Ekliptik parallel),
b) dquatoreale Systeme (Hauptkoordinatenebene der Ebene des Erddquators

parallel).

(In der Stellarastronomie benutzt man auch galaktische Systeme, deren
Hauptkoordinatenebene der Ebene des MilchstraBensystems parallel ist.)
Da Ekliptik und Aquator ihre Lage im Raume infolge der Planetenstérungen
und der Prizession und Nutation stindig verdndern, ist es nétig, zwecks ge-
nauer Definition dieser Systeme einen Zeitpunkt, die Epocke, anzugeben, auf
den sich die Orientierung der Koordinatenachsen beziehen soll. Einzelne Orter
pflegt man hiufig auf die nstantane Lage der Ebenen zu beziehen, eine zusam-
menhingende Folge von Ortern (etwa eine Ephemeride oder die fiir eine Bahn-
bestimmung erforderlichen Ortsangaben eines Himmelskérpers fiir verschie-
dene Beobachtungszeiten) meist auf die mittlere Lage von Ekliptik, Aquator
und Frithlingspunkt am Jahresanfang oder zu einer Normalepoche (1925.0,
1950.0, 1975.0 usw.). Unter der mittleren Lage versteht man dabei die Lage der
Ebenen ohne Riicksicht auf die periodischen Schwankungen infolge der Nu-
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tation. Die Hauptkoordinatenrichtung (die positive X-Achse) ist dabei stets
nach dem (instantanen bzw. mittleren) Frithlingspunkt gerichtet, der als
Schnittpunkt zwischen Ekliptik und Himmelsiquator an der Sphire beiden
Systemen gemeinsam ist.

3. Nach der Art des Systems unterscheidet man

a) rechtwinklige Koordinatensysteme,
b) Polarkoordinatensysteme.

Wenn nicht ausdriicklich anders vermerkt, wollen wir fiir die Koordinaten
stets folgende Bezeichnungen verwenden:

A. Rechtwinklige Koordinaten:

a) heliozentrisch im Ekliptiksystem: z, y, 2,

b) heliozentrisch im Aquatorsystem: Z, ¥, ,

c) geozentrisch im Ekliptiksystem: E_, n, ¢,
)

d) geozentrisch im Aquatorsystem: &, 7, £.

Den Querstrich iiber den Aquatorkoordinaten wollen wir nur da gebrauchen,
wo eine Unterscheidung gegeniiber den Ekliptikkoordinaten nétig ist. Wo ein
Zweifel oder eine Verwechslung ausgeschlossen ist oder wo es auf die Orien-
tierung des Systems nicht ankommt, wird der Strich fortgelassen. Die kleinen
parallaktischen Korrektionen, die an topozentrische Orter angebracht werden

miissen, um geozentrische zu erhalten, werden mit A&, 4 £: ... bezeichnet.

B. Polarkoordinaten:

a) heliozentrisch im Ekliptiksystem: 7, /, b
(r = heliozentrische Distanz, = heliozentrische Linge, b = heliozen-
trische Breite),

b) heliozentrisch im Aquatorsystem: 7, 1, b,

c) geozentrisch im Ekliptiksystem: g, 4, f
(e = geozentrische Distanz, 4 = geozentrische Linge, f = geozentrische
Breite),

d) geozentrisch im Aquatorsystem: o, «, &
(x = Rektaszension, 6 = Deklination).

C. Geozentrische Koordinaten der Sonne:

Fiir die geozentrischen Koordinaten der Sonne benutzt man groBeé latei-
nische Buchstaben:

a) rechtwinklige Koordinaten: X, Y, Z (Ekliptik), X’ , Y, Z (Aquator).
b) Polarkoordinaten: R, L, B (Ekliptik), R, 4, D (Aquator).

Diese Koordinaten werden im folgenden stets als gegeben vorausgesetzt, da sie
aus den Sonnenephemeriden der astronomischen Jahrbiicher fiir jeden belie-
bigen Zeitpunkt durch Interpolation entnommen werden konnen. Hierbei ist

10*
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zu bemerken, daB B (die Sonnenbreite) stets sehr klein ist und im Maximum 1"
nur wenig iiberschreitet. Mit den geozentrischen Koordinaten der Sonne sind
natiirlich gleichzeitig auch die heliozentrischen Koordinaten der Evde (des Erd-
mittelpunkts) gegeben. Die ekliptikalen Koordinaten der Erde sind

—X, —Y, —Z (rechtwinklig) bzw. R, L 4+ =, — B (polar).

Entsprechendes gilt fiir das Aquatorsystem. .

Der Ubergang von rechtwinkligen zu Polarkoordinaten vollzieht sich nach
einfachen Formeln. So gelten zwischen ¥, v, z einerseits und #, /, b andererseits
die aus der analytischen Geometrie bekannten Formeln

x=rcosbcosl, r =712+ y2 + 22,
(IV; 1) y =rcosbsinl, tgl = %,
z =rsinb, tgb=icosl=isinl,
x y

entsprechende Formeln fiir die iibrigen zusammenhingenden Koordinaten-
tripel. Insbesondere findet man fiir die ekliptikalen Koordinaten der Sonne

X =RcosBcos L,
(IV;2) Y=RcosBsinL,
Z=RsinB

oder, da B sehr klein ist, so da8 stets cos B =1 und sin B = B = B"” sin1"”
gesetzt werden darf,

X=RcosL,
(IV; 2a) Y =RsinL,
Z=RB

und fiir viele Zwecke auch B = ound Z = o.

Bezeichnet man mit g den geozentrischen Ortsvektor eines Planeten, mit p
seinen heliozentrischen Ortsvektor und mit 8 den geozentrischen Ortsvektor der
Sonne, so ist

g=p+5.
Es gelten also die Koordinatengleichungen

_I_
(IV;3) n=y+Y, 71=5+7Y,
(=7+
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fiir den Ubergang von den heliozentrischen auf die geozentrischen Koordinaten
eines Himmelskorpers.

Beim Ubergang vom System der Ekliptik auf das des Aquators wird das Ko-
ordinatensystem um die beiden Systemen gemeinsame X-Achse gedreht, und
zwar um den Winkel ¢ (mittlere Schiefe der Ekliptik) im negativen Sinne vom
positiven Ende der X-Achse (Frithlingspunkt) aus gesehen. Infolge der ,Pri-
zession in Schiefe” ist der Winkel ¢ schwach verinderlich:

e = 23° 26’ 44784 — 074685 (t — 1950.0),

wobei ¢ in tropischen Jahren auszudriicken ist. Die Drehungstransformation
ergibt in rechtwinkligen Koordinaten

r=2=, r=uz,
(IV;4) y=74gcose+ Zsineg, bzw. §=ycose—zsing,
z=172cose — jsineg, Z==zcose+ ysine.

Die kleinen Korrektionen,die man an die topozentrischen Orter anzubringen
hat, um geozentrische zu erhalten, ergeben sich dm einfachsten im System des
Aquators. Sei (Abb. 36) M der Mittel-
punkt der Erde, B ein Beobachtungs- Zenit
ort mit der geozentrischen Breite ¢’, sei
ferner die X-Achse des rechtwinkligen
geozentrischen =~ Koordinatensystems
nach dem Friithlingspunkt, die Z-Achse
nach dem Nordpol des Himmels gerich-
tet und sei 4 der Abstand M B, «’ die
Rektaszension und ¢’ die Deklination
des geozentrischen Zenits von B, ferner
O die Ortssternzeit der Beobachtung,
so ist?) nach den Definitionen der Sphi-
rischen Astronomiea’ = 0, §’ = ¢, und
man findet (IV; 5)

AE = A-cos¢' cos@ = Ccos O,
A= A-cos ¢’ sin® = Csin O,

v
(Fratlingspunit)

Abb. 36. Korrektion

AZ = A-sin¢’ =3, der rechtwinkligen dquatorialen
Koordinaten wegen der tiglichen
als geozentrische Koordinaten von B, Parallaxe.

wo Cund S zwei GréBen darstellen, die
fiir jeden Beobachtungsort konstant sind. Im Anhang A (Tafell) sind diese
GroBen alsFunktionen der geographischen Breite ¢ gegeben, die sich von der

1) Siehe K. Stumpff: Geographische Ortsbestimmungen. Deutscher Verlag der
Wissenschaften, Berlin 1955.
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geozentrischen um den stets kleinen Winkel 4¢ = ¢ — ¢’ unterscheidet. Es

sind dann AE, 47, A die Unterschiede ,geozentrische minus topozentrische
Koordinaten“ des Himmelskérpers.

Durch Anwendung der Formeln (IV; 4) erhilt man aus (IV; 5) die Korrek-
tionen auf das Geozentrum im System der Ekliptik:

A& = Ccos O,
An = Csin @cos e + Ssine,

AL = Scose — CsinBcos e.

31. Die Bahnelemente

Die sechs Integrationskonstanten des Zweikorperproblems, die als Bahn-
elemente die Grundlage der Ephemeridenrechnung bilden, erhielten wir in
Abschn. 19 zunidchst in folgender
Form: die ersten drei als Koordi-
naten des rdumlichen Vektors der
Flachengeschwindigkeit g, also etwa
als dessenrechtwinklige Koordinaten
¢, €y, €3 in einem vorgeschriebenen
Koordinatensystem ; zwei weitere als
die Koordinatend,, d,des ebenenVek-
tors f (des LapLacEschen Vektors) in
derdurchdenFlichensatz bereits fest-
gelegten Bahnebene; die sechste und
letzte Konstante schlieBlich als die
durch das Anomalieintegral (die KEp-
LERsche Gleichung bzw.ihreAnaloga)
definierte Periheldurchgangszeit T

Anstatt dieser sechs Konstanten
kann man auch beliebige Systeme
von Funktionen

€ = €;(C1, Cay G35 Ay, dp; T)
[t=1,2,...6]

dieser Konstanten als Bahnelemente benutzen, sofern die gegenseitige Zuord-
nung der beiden Systeme umkehrbar eindeutig ist. Aus der unbegrenzten
Mannigfaltigkeit solcher Moglichkeiten. heben wir hier die wichtigste und ge-
briuchlichste hervor: das System der gewohnlichen (elliptischen, parabolischen
oder hyperbolischen) Kegelschnittelemente.

Wir benutzen ein rechtwinkliges Koordinatensystem mit dem Urspring im
Mittelpunkt der Sonne. Die X Y-Ebene sei die der (instantanen oder mittleren)
EXkliptik zu irgendeiner Epoche, die positive X-Richtung die nach dem Friih-
lingspunkt. Die Lage der durch den Koordinatenanfang gehenden Bahnebene

Abb. 37. Lage der Bahnebene.
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ist dann durch die Richtung des Flichengeschwindigkeitsvektors § (c;, ¢s, C)
gegeben. Die Gleichung der Bahnebene lautet (III; 77)

6%+ 6y 3z = 0.

In der Astronomie beschreibt man die Lage einer durch den Koordinaten-
anfang gehenden Ebene durch zwei WinkelgréBen: die Linge des Knotens und
die Neigung der Ebene beziiglich der Hauptkoordinatenebene. In Abb. 37 sind
die Hauptkoordinatenebene XY (Ekliptik) und die Bahnebene A K B durch die
groBten Kreise dargestellt, in denen sie die um den Koordinatenursprung S
(Sonne) beschriebene Sphire schneiden. Der Bewegungssinn des Himmels-
kérpers P ist durch einen Pfeil gekennzeichnet. Zeigt die Z-Achse nach dem
Nordpol der Ekliptik, so stellt SK die Richtung nach dem aufsteigenden Knoten
der Bahn dar, d.h. nach demjenigen Punkt der Bahn, in dem der Himmels-
korper die Ekliptik von Siiden nach Norden durchschreitet. Der Winkel X S K
bzw. der Bogen X K heiBt die Linge S des aufsteigenden Knotens (kurz ,,Kno-
tenlinge”) und wird vom Friihlingspunkt X aus im positiven Sinne (d.h. von
Z aus gesehen dem Uhrzeigersinn entgegengesetzt) auf der Ekliptik von o bis
27 gezdhlt. Die Neigung © der Bahnebene gegen die Ekliptik wird durch den
sphirischen Winkel BKY bzw. durch den Winkel ZS N der Bahnnormale SN
gegen die Z-Achse oder durch den Bogen ZN angezeigt und kann also alle
Werte zwischen o und & annehmen. Die positive Richtung der Normale der
Bahnebene ist diejenige, von der aus die Bewegung des Planeten in der Bahn
positiv, also dem Uhrzeigersinn entgegengesetzt (rechtliufig) erscheint. Schreibt
man den Vektor der Flichengeschwindigkeit in der Form

9=01i+czi+ caf; tgl=c,

wo i, i, f die Einheitsvektoren in den Richtungen der positiven Koordinaten-
achsen bedeuten, so ist offenbar

¢ = (gi) = c cos (NX),
¢, = (i) = ccos (NY),
c3 = (8F) = c cos (NZ).
Man erhilt dann nach dem Cosinussatz aus den Dreiecken NKX und NKY,
in denen die Seite NK = -7-22 ist,
cos (NX) =sinsin8l, cos (NY) = —sinzcos 0,
auBerdem direkt cos (NZ) = cos ¢. Damit ergibt sich schlieSlich
¢, = csinssindd,
(IV;6) ¢, = —csinscos L,

Cg= C€cCOSt.
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Andererseits ist der Betrag der Flichengeschwindigkeit nach (II; 49)

c=VErdtd=x1p

und daher der Bahnparameter
p= —

In der Bahnebene (Abb. 38) sei nun SK die Richtung nach dem aufsteigen-
den Knoten, die gleichzeitig als Anfangsrichtung eines ebenen Polarkoordi-

a—P

Knotenlinie

Abb. 38. Form und Lage der Bahn in der Bahnebene.

natensystems oder als positive Abszissenrichtung eines rechtwinkligen Systems
diene. Nach S. g3 ist dann der LarracEsche Vektor f mit den rechtwinkligen
Koordinaten d,, d, bzw. den Polarkoordinaten &, w nach dem Perihel I1 gerich-
tet, und es ist

xv;y dy=dcosw, dy=dsinw.

Der Richtungswinkel w, der die Lage der groB8en Achse und damit die Orien-
tierung des Kegelschnitts in der Bahnebene angibt, und der in (III; 18) mit ¢,
bezeichnet wurde, wird Perihelabstand vom Knoten genannt. Der Betrag des
Vektors f, nach (III; 18)

d = x2e,

bestimmt die Exzentrizitit e der Bahn.

Im Zusammenhang ergeben sich also fiir die Umwandlung der Systeme
(€1, €5, €35 4y, dy; T) und (4, S; p, ¢, ; T) ineinander die Transformations-
forme

¢,= xYpsinisin®, d=x%ecosw,
(Iv; 8) ¢o= —x}psinicos &, d,==x’esinow,

¢g= xYpcosi, T=T.
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In der astronomischen Praxis sind noch folgende weiteren Bezeichnungen
iiblich:

1. Die Richtungskoordinate # des Planetenorts in der Bahnebene (Abb. 38),
die in der Richtung der Bahnbewegung vom aufsteigenden Knoten aus gezihlt
wird, heiBt Argument der Breite, da die Breite b des Planeten, die in den Knoten
null ist, in einfacher Weise von # abhingt: Es ist ndmlich (Abb. 39) in dem
rechtwinkligen Dreieck K PQ [siehe auch (IV; 11)]

sinb = sin ¢ sin %.

Der Richtungsunterschied zwischen dem Ortsvektor des Planeten und der Peri-
helrichtung ist (Abb. 38 u. 39) die wahre Anomalie

V=uU—W.

2. Neben der numerischen Exzentrizitit e ist, wie schon frither (II; 3) be-
merkt wurde, bei elliptischen Bahnen der Exzentrizititswinkel

@ =arcsine

gebriuchlich, unter dem von den Endpunkten der kleinen Achse aus der Ab-
stand Mittelpunkt-Brennpunkt (lineare Exzentrizitit ae) erscheint.

3. Anstatt des Parameters p wird gebraucht:
a) die grofe Halbachse

b

I — e?

a= = psectp (fir elliptische Bahnen)

oder ihr Logarithmus. Fiir Hyperbeln ist 2 negativ; man setzt dann

b

a=|a|l = ot

b) Bei Parabelbahnen, fiir die 2 = e wird, benutzt man statt $ hiufig die
Periheldistanz . Wie aus der Parabelgleichung » = /(x + cos v) fiir das Perihel
(v = o) unmittelbar folgt, ist

g=-b.
c) Bei Ellipsen ist statt p oder a auch die mittlere Bewegung in der Zeiteinhert

n=-—

]/-a“’
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gebriuchlich, die man vielfach auch in Bogensekunden ausdriickt:
" o__ *
Yaisin 1"

4. Anstatt der Perihelzest T wird bei elliptischen Bahnen oft die mittlere
Anomalie

n

M) =n(ty— T)

zu einer vorgegebenen Epoche f, eingefiihrt.

Nur bei elliptischen. und hyperbolischen Bahnen ist zu deren vollstindigen
Beschreibung die Angabe aller sechs Elemente, also von ¢, §, 4, ¢, w, T, er-
forderlich. Bei Parabeln braucht e = 1 nicht besonders angegeben zu werden.
Von den sechs Elementen (IV; 8) gilt dann zwischen 4; und d, fiir ¢ = 1 die
identische Beziehung d% 4 d% = »*; beide Konstanten sind durch w véllig be-
stimmt. Eine parabolische Bahn ist deshalb bereits durch fiinf Elemente (s, §,
g, w, T) vollig gesichert.

Bei Kreisbahnen ist e = o und, da ein Perihel nicht existiert, auch w iiber-
flissig. In (IV; 8) entfallen daher die beiden Konstanten d, = d, = 0. Die
Stelle der Perihelzeit T vertritt hier das Argument der Breite %, zur Epoche ;.
Eine Kreisbahn erfordert also vier Elemente (2, §U, a, u,).

Bei Bahnen mit kleiner oder verschwindender Neigung ist die Lage des
Knotens schlecht oder gar nicht bestimmbar. In diesen Fillen ist es vorteilhaft,
statt des Perihelabstands vom Knoten die Linge des Perihels (o = St + o)
zur Kennzeichnung der Perihellage zu benutzen. Dieser Winkel wird vom Friib-
lingspunkt bis zum aufsteigenden Knoten auf der Ekliptik, von dort an bis zum
Perihel auf der Bahn gezihlt; die Unsicherheit der Knotenlage fillt dabei her-
aus. Ebenso wird in solchen Fillen das Argument der Breite # durch die Linge
des Planeten in der Bahn

(IV;9) s=R+u=8+0t+tv=0+7v

ersetzt.
Auch die geradlinige Bahn wird durch vier Elemente bestimmt, nidmlich
durch die Linge und Breite des Fallstrahls (I, b), die halbe Fallstrecke (a) bzw. bei

dem hyperbolischen Typ die Geschwindigkeit im Unendlichen %), schlieBlich

o
die Zeit T des idealen Aufsturzes, die der Perihelzeit bei normalen Bahnen ent-
spricht.

Die Kegelschnittelemente zerfallen in zwei Gruppen: die drei Elemente 7,
Y, w, die von der Wahl des Koordinatensystems abhingen, also andere Zahlen-
werte annehmen, wenn wir etwa.statt der Ekliptik den Aquator als Haupt-
koordinatenebene einfiihren, und in die Gruppe der iibrigen drei, die gegen
Transformationen des Koordinatensystems ¢nvariant sind.

Als Beispiel fiir das vollstindige Elementensystem der Bahn eines Himmels-
kérpers sei hier das der elliptischen Bahn des Planetoiden (1106) CYypoONIA auf-
gefiihrt, wie es sich nach einer Bahnbestimmung auf Grund der ersten Beob-

achtungen nach seiner im Jahre 1929 erfolgten Entdeckung ergeben hatte:
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(1106) CYDONIA
Ekliptik und Aquinoktium 1929.0
Epoche: 1929 Mirz 7, 21P 50 56°%9 Weltzeit
M =338° o' 4%
i= 13 9 367
§L = 328 35 26.9
226 23 0.7
7 55-4
= 877 384 (a = :, 597870 A.E.)

W

II [l

32. Berechnung heliozentrischer und geozentrischer Orter
aus den Kegelschnittelementen

Die Ergebnisse des vorigen Kapitels liefern alle Mittel, um die Aufgabe der Be-
rechnung von ungestorten Planeten- oder Kometenértern aus den Bahnelemen-
ten im Prinzip zu 16sen.

Gegeben seien die Kegelschnittelemente der Bahn, die auf Ekliptik (oder
Aquator) und Aquinoktium irgendeiner Epoche bezogen sein mégen, gesucht
zunichst die rechtwinkligen heliozentrischen Koordinaten (z, y, z bzw. Z, 7, 2)
des Himmelskérpers zu einer vorgegebenen Zeit ¢. Diese Aufgabe 148t sich in
fiinf Schritten 16sen:

1. Berechnung der exzentrischen Anomalie E (Ellipse) bzw. des Hilfswinkels H
(Hyperbel) aus der KEPLERschen Gleichung (IIT; 44)

E—esinE=nt—T)=M({)+ n—1¢),
bzw. ihres hypérbolischen Analogons (IIT; 51)
n H %
etg H+ Int (———)=— t—T
g 8l7 2 Va?( )

nach Methoden, iiber die in Abschn. 35 berichtet werden wird.

2. Berechnung des Radiusvektors r und der wahren Anomalie v nach (II; 10,
14) bzw. (III; 47, 50):

r =a(1 — ecos E); tg%;VI+e

I

tg— (Ellipse),

- e el /et
r =a(esec H — 1); tg2 —Ve—l
Ist die Bahn eine Parabel, so findet man die wahre Anomalie, unter Umgehung
von Schritt 1, direkt aus der Zeit ¢ durch Auflésung der kubischen Gleichung

(II1; 43)

tg*l;£ (Hyperbel).

v I v

A
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nach Methoden, die in Abschn. 34 behandelt werden sollen. Der Radiusvektor
ergibt sich dann aus der Bahngleichung

) I
(IV; 10) 7= rp— = gsec —.

3. Das Argument der Breite u wird durch die Beziehung

u=v+ o
erhalten.

4. Berechnung der heliozentrischen Polarkoordinatenr,l,b. In Abb. 39 sind die
Spuren der Ekliptik und der Planetenbahnebene auf der (von auBen gesehenen)
heliozentrischen Sphire gezeichnet. X
seider Frithlingspunkt, K deraufsteigen-
de Knoten. Auf der Bahnspur bezeichne
II die Perihelrichtung, P die Richtung
nach dem Ort des Planeten zur Zeit .
Der Abstand PQ = b des Punktes P
e~ » von der Ekliptik ist dann die Breite,

@ Ekliptik X(Q = I die Linge des Planetenorts.

Abb. 39. Bahnebene und Ekliptik. ~ Fernerist XK = § die Linge des auf-

steigenden Knotens, KII = w der Ab-

stand des Perihels vom Knoten, I P = v die wahre Anomalie, KP=u=w -+ v

das Argument der Breite und der Winkel PK(Q = 7 die Neigung der Bahn

gegen die Ekliptik. Im rechtwinkligen Dreieck P KQ ist dann nach bekannten
Sitzen der Sphirischen Trigonometrie

© @ o
cos b cos (I — §b) = cos u cos §& | sin & 0

(IV;11) cosbsin (! — ) =sinucoss| —sin §& | cos & o
sin b =sinu sin ¢ 0 | o | I

Multipliziert man die Gleichungen (IV; 11) mit den Faktoren (I) bis (III) und
addiert, so ergibt sich das Formelsystem

cos b cos I = cosu cos §& — sin % sin § cos ¢,
(IV;12)  cosbsinl = cosusin § + sin % cos §b cos 7,
sin b =sin#sins,

aus dem man Linge und Breite des Planetenorts bestimmen kann. Zusammen
mit dem bereits berechneten Radiusvektor 7 sind dann die heliozentrischen
Polarkoordinaten des Planeten bekannt.
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5. Bestimmung der rechtwinkligen heliozentrischen Koordinaten x, y, z. Die
Transformationsformeln (IV; 1) ergeben mit (IV; 12) unmittelbar

% =7 (cos % cos §& — sin % sin § cos 4),
(IV; 13) y = 7 (cos # sin §b + sin % cos §t cos 1),
z=rsinusinz.

Hieraus folgt auch das hiufig gebrauchte Formelsystem

%cos §L 4 ysin & =7 cosw,
(IV; 14) y cos §& — xsin §& = 7 sin % cos %,
z =7sinusing,

cos
sin

das man auch erhilt, wenn man in (IV; 11) die Ausdriicke _. (! — St) auflost

und (IV; 1) beriicksichtigt.

Die Bestimmung der geozentrischen Koordinaten erfolgt dann nach den in
Abschn. 30 gegebenen Richtlinien. Am besten ermittelt man zunichst die
dquatorealen heliozentrischen Koordinaten &, 7, Z nach (IV; 4), sodann nach
(IV; 3) die geozentrischen Aquatorkoordinaten

E=F4+X, 1=5+7Y, (=i+2,

wobei die Sonnenkoordinaten X, Y, Z dem Jahrbuch entnommen werden.
SchlieBlich findet man dann die geozentrischen Polarkoordinaten g, «, § aus

pcosdcosa =&,

(IV; 15) gcosdsina =7,
.

I

gsin é

33. Die Gaussschen Konstanten

Wenn es sich darum handelt, die ungestorte Ephemeride eines Himmelskérpers
fiir eine Folge gleichabstdndiger Zeitpunkte aufzustellen, ist es unzweckmaBig,
die meist zahlreichen Orter einzeln nach den im vorigen Abschnitt gegebenen
Formeln zu berechnen. C.F.Gauss hat ein Verfahren eingefiihrt, nach dem
wenigstens fiir den vierten bzw. fiinften Schritt der oben entwickelten Rechen-
vorschrift wesentliche Ersparnisse an Zeit und Miihe erzielt werden.

Da die rechtwinkligen ekliptikalen Koordinaten, wie (IV; 13) zeigt, von
den Variablen 7 cos # und 7 sin # linear abhdngen und dasselbe auch, wovon
man sich durch Anwendung der Transformation (IV;4) tiberzeugt, fiir die
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dquatorealen Koordinaten gilt, so liegt es nahe, diese letzteren gleich in der
Form
Z=r(py,cosu -+ g,sinu) =rasin (4 + u),

(IV; 16) g=r(p,cosu + g,sinu) =7fsin (B + ),

Y
I

7(p,cosu + g,sinu) =rysin (C + )

aufzuschreiben, wo
p,=asind, g, =acosd,

(IV; 17) py=pfsinB, g¢,=fcosB,
p,=ypsinC, g,=ypcosC

konstante GréBen sind, die nur von ¢, §L und ¢ abhingen. Tatsichlich findet
man, wenn man (IV; 4) auf (IV; 13) anwendet,

Z = r[cos % cos §& — sin % sin §t cos 7],

7 = 7[(cos % sin §& + sin % cos §b cos 7) cos € — sin % sin ¢ sin €],

Z = r[sinu sin ¢ cos & + (cos % sin §& + sin % cos §b cos ) sin €],
also
P, = cos 8, ¢, = —sin § cos 7,

(IV;18) p,=sin Sl cose, g, = cos S cosicose — sinssine,
p,=sin L sine, ¢, = cos §b cosi sin ¢ + siné cos €.

Will man im System der Ekliptik bleiben, so hat man nur ¢ = o zu setzen und
erhilt dann #, ¥, z ebenfalls in der Form (IV; 16), aber mit

p,=cos 8, ¢,= —sin  cosz,
(IV; 19) py=sin &, g¢,= cos & cosi,
p,=o0, g,= sini.

Die sechs GréBen p,, ... g, bzw. die aus ihnen nach (IV; 17) abzuleitenden
Konstantena, f,y; 4, B, C heiBen die G4USSschen Konstanten. Sie werden vor
der Ephemeridenrechnung aus den gegebenen Bahnelementen ein fiir allemal
berechnet und fithren (IV; 13) auf die bequemere Form (IV; 16) zuriick. Zu-
dem wird, wenn Aquatorealkoordinaten zu berechnen sind, die listige Trans-
formation (IV;4) nur einmal, namlich bei der Berechnung der Konstanten
(IV; 18), durchzufiihren sein, die man zweckméBig fiir die Maschinenrechnung
benutzt, wihrend fiir logarithmische Rechnung die Verwendung von « ... C
vorteilhafter ist. Dabei ist zu beachten, daB die GréBen «, f8,  ohne Einschréin-
kung der Allgemeinheit als nicht negativ betrachtet werden diirfen, wihrend
die Vorzeichen der ,, ... g, die Quadranten bestimmen, in denen 4, B, C liegen.

Sind die Bahnen nur wenig gegen die Ekliptik geneigt, was bei den groBen
Planeten (auBer Pluto) stets, bei Planetoiden sehr hiufig zutrifft, so kann man
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nach einer Bemerkung von K.Bopa?) die Gaussschen Formeln so umwandeln,
daB die durch diesen Umstand gegebenen Moglichkeiten, die Rechengenauig-
keit zu erhohen, voll ausgeschopft werden. Setzt man nimlich in (IV; 13)
u=s— §, wo s die wahre Linge in der Bahn (IV;g) bedeutet, ferner

) L, 1 .
cosi = I — 2 sin? 5% findet man nach einfacher Rechnung
. C ol
x=vcoss+ rAsinu, A = 2sin ?smfl,,

y=vrsins + rusin%, mit y:zsmzj’—cos'ﬂ,,

z=rvsinu, y=sin¢,

wo die Konstanten 4, u von der 2., » von der 1.0Ordnung in der kleinen Grofe ¢
sind.

In allen bisherigen Formeln ist angenommen worden, da8 sich 7, §l, # stets
auf das System der Ekliptik beziehen. Sind diese GroSen auf das System des
Aquators bezogen (7, ,, @), so erhilt man natiirlich die rechtwinkligen Aquator-
koordinaten in der Form

E=7(p,cos& + g,sin%) usw.
mit den gemiB (IV; 19) gebildeten Konstanten
py=cos, p,=sing, p,=o0, usw.

Auch fiir die ephemeridenmiBige Berechnung der Geschwindigkeitskoordi-
naten eines Himmelskérpers, die fiir besondere Zwecke niitzlich sein kann,
lassen sich die Gaussschen Konstanten entsprechend verwenden. Die Unter-
scheidung zwischen x und & usw. lassen wir jetzt fallen, da ja die Formeln
(IV; 16) fiir beide Systeme gelten, wenn man die p,, ..., ¢,, den Umstédnden
entsprechend, nach (IV; 18 bzw. 19) berechnet.

Differenziert man die erste Gleichung (IV; 16) nach der Zeit, so erhilt man

% = fosin (A + u) + rie cos (4 + u)
oder, nach (II; 33, 32), mit c = »x}Jp und & = 9,

b= g esinvsin (4 + u) + écos(A-i—u) .

13

?
4

Setzt man dann

=I+4+ecosv, u—UV=wm,

1) Astron. Nachr. 173, 207 (1910).
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so ergibt sich

£ =a— [cos (A + u) + e cos (A + w)], ebenso

1]

(IV; 20) y=ﬁ%[cos(3+u)+ecos (B + w)],

z’=yi[cos(C+u)+ecos(C+ w)],

V%

wobei zu beachten ist, daB die GréBen e cos (4 + w), ... Konstante sind. Fiir
1= § = o0, w = v, d.h,, fiir ein nach den Hauptachsen der Bahn ausgerich-
tetes ebenes Koordmatensystem gehen diese Formeln in (III; 37) iiber.

Fiir Parabelbahnen erhilt man wegen e = 1, p = 2¢

+ w % —
2

Cos =

G= 2. 2acos(A+ p

V2q
—axl/2 Peos 2
—am‘/?cos<A+w—i-2)0052

usw., und wenn man nach (IV; 10) cos % durch V% ersetzt,
B v
T =oax V7 cos (A + o+ Z)’ ebenso

(IV; 21) y=Px V—j— cos (B + o+ %),

—1E v
z—yer cos(C-I—w—l— 2).

Die Gleichungen (IV; 16, 20) lassen sich sowohl fiir Ellipsen als auch fiir
Hyperbeln auf eine Form bringen, die auch die Berechnung von v (Schritt 2 im
Rechenschema des Abschn. 32) tiberfliissig macht, indem man die nach Schritt t
schon bekannte exzentrische Anomalie wieder einfiihrt. Setzt man in (IV; 16)
# = v + o, so erhilt man

(IV; 22) x=rasin(d + o+ v) =
= ra [sin (4 + o) cos v + cos (4 + ) sinv].
Nun ist fiir Ellipsen nach (III; 52)
rcosv=a(cosE —e¢); 7sinv=a}1 —etsink.
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Setzt man dies in (IV; 22) ein, so ergibt sich
x=DP,(cosE —e) + Q,sinE, ebenso
(IV; 23) y=P,(cosE —e) + Q,sinE,
z=P,(cosE —e)+ Q,sinE
mit den Konstanten
P, =aasin(4 + o), Q,=al1 —etacos(d+ w),
(IV; 24) , = afsin (B + o), Q, =a}1 — efcos (B + w),
P,=aysin (C+ w), Q,=ay1 —eycos(C+ w).
Fiir Hyperbeln benutzt man nach (III; 52)
7cosv = —a(e —secH); 7sinv= —a}e? — 1sinH
und findet entsprechend
%= P,(e —secH) +Q,tg H,
(IV; 25) y = P,(e —secH) + Q,tgH,
z2=DP,(e —secH) +Q,tgH
mit o
P,= —aasin(4 + o), Q,= —ale® —1acos(d + o),
(IV;26) P, = —afsin (B+ w), Q,= —a}e* —1fcos (B + w),
P,= —aysin (C+ w), Q,= —aye® — 1ycos (C+ w).

Fiir die Geschwindigkeitskoordinaten erhilt man, wenn man (IV;23) und
(IV; 25) nach der Zeit differenziert,

%= E(Q,cos E — P,sinE) (Ellipse),
& = Hsec H (), sec H — P, tg H) (Hyperbel).

Andererseits folgt durch Differenzieren der KEPLERschen Gleichung bzw. ihres
hyperbolischen Analogons

n na ; v va
= - =-" bzw. HsecH=— = — "=
I —e¢cosE 7 2w see esecH — 1 r’
% P
wenn man # = —, ¥ = ——— setzt. So entstehen die Geschwindigkeits-
ya o (e

11 Stumpff, Himmelsmechanik
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formeln

&= ”r_“ Qs cosE — P,sinE) (Ellipse),

(IV; 27)

8
I

- — (Q,, secH — P, tg H) (Hyperbel).

Fir Bahnen mit Exzentrizititen nahe eins (parabelnahe Ellipsen oder
Hyperbeln) sind die Formelsysteme (IV; 23-27) ungeeignet, fiir Parabeln ver-
lieren sie ihren Sinn ganz. Die Losung der Aufgaben der Ephemeridenrechnung
fiir parabelnahe Kegelschnittbahnen wird in den Abschnitten 36 und 37 be-
sonders behandelt.

34. Die Bestimmung der wahven Anomalie bes Parabelbahnen

Um die wahre Anomalie eines in einer Parabelbahn laufenden Himmelskérpers
(Kometen) als Funktion der Zeit zu bestimmen, hat man die kubische Glei-

chung (III; 43) nach tg _Z_ aufzulosen. Sie ist von der Form
v
y¥+ay=»> (y=tg;)

3x(t—T)
V243

SN ToogT i T

Setzt man b = 2 ctg y, so wird, da a = 3, die Diskriminante

b\2 AN R
CHERI—

mita = 3und b = und hat, da a > o, eine einzige reelle Lésung

Mithin ist

3,/ 3
y = ?/ctgzp -+ cosecy + i/ctggp — cosecy = l/ctg% - Vtg —g—

3
Setzt man ferner Vtg % = tg %, so ergibt sich

—te L =ctg L —tg L =
y—tg2 ctg2 tg2 2ctgy.
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Die Losung von (III; 43) erfolgt daher streng und auf eine fiir logarithmische
Rechnung sehr bequeme Weise nach dem Formelsatz

3%t —T) y 1/ v
ctgy="r=—, tg——=Vtg——,
/8¢° 2 2

(IV; 29) 7

v
tg — =2ctgy.
gz zcigy

Nach einer Bemerkung von B.KuLascuko!) 148t sich die letzte dieser drei
Gleichungen durch eine noch einfacheré ersetzen. Aus

Yt L A A
tg 2 tg 7 tg p ctg p tg 2
folgt namlich
3 _ el r
tg"v+v— tgz tgz-l-Ctgz B
2 g3 Y (ctg L —tg ¥
I tgz(ctg2 tg2>
Y Y
— tp2 tet L
TR E s ey
- gz_g 2 »

I—tgz%—}—tg‘%

da die Funktion 1 — x + x2 keine reellen Nullstellen besitzt und demnach der
Bruch in obiger Formel unter allen Umstinden den Wert eins hat. Damit ist
gezeigt, da8

v+ v+ y = 180°

die drei Winkel y, v, y daher als Winkel eines ebenen Dreiecks aufgefaBt werden
diirfen. Die letzte der drei Gleichungen (IV; 29) kann also durch die einfachere

(IV; 30) v=a—(p+7)

ersetzt werden. Das genannte Dreieck hat tibrigens eine einfache geometrische
Bedeutung. Setzt man in der Identitit

sin (v + y) = siny (sin v ctg y + cos v)
rechts nach der dritten Gleichung (IV; 29)

1, v
tgy = — tg —
cgy=-,1%®,

1) Astron: Nachr. 274, 217 (1944).

1*
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ferner

. . v , U L, U
sinv = 2 sin — cos —, cosv = cos? — — sin®? —,
2 2 2 2

und setzt man links wegen (IV; 30) sin (v + y) = sin y, so erhilt man

Das ist aber nichts anderes als der Sinussatz der ebenen Trigonometrie, an-
gewandt auf das Dreieck SITK (Abb. 40), das von Sonne, Perihel und Kometen-

Abb. 40. Parabolische Bahn.

ort gebildet wird, wenn man den Winkel am Perihel mit y und den am Kometen
mit yp bezeichnet. Da der dritte Winkel bei der Sonne die wahre Anomalie
darstellt, so gilt fiir dieses Dreieck in der Tat die Beziehung (IV; 30).

Fiir das Maschinenrechnen ist statt (IV; 29, 30) eine andere Form der Lo-

sung (IV; 28) geeigneter. Setzt man
=

so ergibt sich aus (IV; 28), da g =1,

X = -

y:j’/%{im_ifr_—;}z

_ i‘/i 2%
22 i+ 22+ Y — 2+ YT — 22
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. I x?
Esistaber 1 — #2 =1 — = 4 -5, also
B2
I+i
b2
b b\ /B b3
(1 — 42 (L _=__]/ — 2.
2% (x x)(zx); 2% 2% R
VT —x bm
Setzt man daher m = VI e so folgt y = I—-_|_m—+—m2.

Die Lésung der kubischen Gleichung wird also durch den Formelsatz

b —
b=—3x(l__éT); x=—_/ I ;
J2q 4
(IV; 31) T+
m—Aal_’x' I—b_—m ..... —
“Vixx YT iy mym
erhalten.

Da die Gleichung (III; 43) tg —;— in Abhéngigkeit von nur einem Parameter
%2t —=T)

— liefert, ist es moglich, ihre Losung v mit dem Argument Q zu
29

tabulieren. Die ,,BARKERsche Tafel“, die dies leistet, findet man in den Lehr-

biichern und Tafelwerken zur Bahnbestimmung, z.B. bei BAUSCHINGER,

OPPOLZER u.a.

35. Auflosung der KEPLERSchen Gleichung

Im Falle elliptischer Bahnen werden die Polarkoordinaten des Himmelskorpers
auf dem Wege iiber die exzentrische Anomalie erhalten, die ihrerseits durch die
KEPLERsche Gleichung

(IV; 32) E—esnE=M=nit—1T)
3
als Funktion der Zeit und der Bahnkonstanten ¢, # = xa 2, T bestimmt ist.
Diese Gleichung, die das Kernstiick der Ephemeridenrechnung darstellt, ist
transzendent und 148t sich nur durch Naherungsverfahren 16sen.
Angenommen, es liege ein Naherungswert E, fiir die Losung von (IV; 32)
vor. Dann ist

(Iv; 33) E, — esin E, = M,
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“von M verschieden, und subtrahiert man (IV; 33) von (IV; 32), so erhilt man,
wenn E = E + ] gesetzt wird, die kleine GroBe

A—el[sin(E,+ 1) —sinE)] =M — My = 4M,
oder, nach einfacher Umformung,
AMy = 2(x — ecos E)) + esin E (1 — cos 4) + e cos E (4 — sin 4).
Fithrt man fiir bekannte GréBen die Bezeichnungen

4aM, esin E,

e cos E,
= — 17'—_——-—’
I —ecosE)’ I —ecosk,

" 1 —ecosE,

£ ¢

ein, so ergibt sich fiir die gesuchte Verbesserung £ — E, = 1 die Gleichung
— cos 4 A —sind

o Ly

f=14 2

oder, wenn man die von 42 abhingigen Funktionen

I LI A
“2(12)=Z—ﬁ g
IV;
s c(p):i_iz. 2
3 31 5l gl

einfiihrt, die in der Theorie der Zweikérperbewegung eine bedeutende Rolle
spielen (siehe Kapitel V) und fiir die im Anhang B eine sechsstellige Tafel mit
dem Argument 42 gegeben ist,

At (%) A2+ o3 (%) LA = &.

Man kann nun offenbar statt der Reihen (IV; 34) ihre konstanten Glieder setzen,
wenn fiir #-stellige Rechnung die Bedingung

ﬁ < i Io_n

24 Nmax 2

erfiillt ist, d.h., da # den Maximalwert —°__ fiir cos E, = ¢ erreicht, fiir

Jr—e

Das bedeutet, wenn nicht gerade ¢ sehr nahe an eins liegt, einen betriachtlichen
Spielraum fiir 4. So erhilt man z.B. fiir ¢ = 0.5 und # = 6 die Abschitzung

1 < 0.06752 = 3°87,



Auflésung der KepLerschen Gleichung 167

d.h. also, daB bei sechsstelliger Rechnung der Ausgangswert E, von der exakten
Losung um nahezu 4° abweichen darf, wenn die Losung der kubischen Glei-
chung

(IV; 35) Aol LR =t

bereits zu dem endgiiltigen E = E + 1 fiihren soll. Da 4 klein ist, 148t sich
diese Gleichung leicht durch Naherungen 16sen. Die Ausgangshypothese 4 = 4,
entnimmt man etwa der Umkehrung von (IV; 35)

1=§—§n82+ %(3772—0&3—%(3772—2:)775%

indem man, je nach den Umstédnden,
bp=2E& oder 1= E(I — —Z—né)

setzt. Mit diesem Wert berechnet man
fo=ht B+ £ L8

und erhilt dann nach dem NEwToNschen Naherungsverfahren aus

Ady = foh h=ly+ A4

I+ ny+ %Clzo

eine neue Niherung 4,, die meist schon mit dem Endwert 4 identisch sein wird.
Bei kleinen und méaBigen Exzentrizititen wird man immer mit 4, = & be-
ginnen und die Iteration

4M,
lo_l—ecosEo’ Ey=Ey+ A,
(IV; 36) M, =E, —esinE,, AM,=M — M, ;
4M, _
ll—I—ecosE_l’ E,=E + 4, My=E,—¢sink,, -

durchfiihren, die so lange fortzusetzen ist, bis M, = M,_,, was fast immer
schon nach wenigen Schritten erreicht wird.
Einfacher (und besonders fiir Maschinenrechnen geeignet) ist die Iteration

(Iv;3y) E,=M+esinE,_,,
die man mit einer Ausgangsnaherung E, (bei kleinem e mit E, = M) beginnt

und so lange fortsetzt, bis sin E, = sin E,_;. Dieses Verfahren konvergiert
unter Umstéinden, besonders bei groBem e und kleinem sin E, erheblich lang-
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samer als das unter (IV; 36) beschriebene. Es 1aBt sich aber zeigen, daB man
spitestens nach zwei Schritten durch Extrapolation der bisherigen Ndherungen
so dicht an die Endlésung herankommt, daB die Rechnung durch eine weitere
differentielle Verbesserung abgeschlossen werden kann. Nach (IV; 37) haben
die sukzessiven Niherungen die Form

Ey=[{(E), Ex=[(E), -+ E,={E,")

Bildet man die Differenzen aufeinanderfolgender Niherungen, so findet man
nach dem TAvLoRschen Satz

&—aﬂm%ﬂm=@—mhw+§@—@wmwm}

By— By = 1B) — HE) = B = B) [{(B) + 5 (B = B 1"(B) + |
und daher )
FE) + 2~ B 1 E) +

E,—E, E,—E, , ] . ‘
2T TR P E) S - E) B+

I
Es"‘Ez E2_El.

Man kann nun zwei Fille unterscheiden: 1. f(E) ist klein von der GréBen-
ordnung der Differenzen E, — E,,_,. Dann konvergiert das Verfahren schnell,
da jede folgende Differenz von der GréBenordnung des Quadrates der vorher-
gehenden ist; 2. f' (E) ist gegen die Differenzen groB, was im Falle (IV; 37) ein-
tritt, wenn e cos E von eins wenig abweicht, also bei sehr langgestreckten
Ellipsen in der Nihe des Perihels. Dann ist bis auf Glieder héherer Ordnung

Ea—E2 _EZ_EI
E,—E, E —E,

usw.,

—E,_ .
ud "1 eine Konstante. Berechnet man also

d.h., es ist angendhert ¢ = —%

E

- aus dem Ausgangswert und ﬁerll ersten 2beiden Niherungen:
_E,—E,
"= E —F,
so ist
E*=E — 2L ) = E, — E,
=E+ (E,-E)@+g+¢+ )=E+ =

von E so wenig verschieden, daB man die Rechnung nach einer weiteren Ite-
ration abschlieBen kann.

Diese Methode, auf die J.HARTMANN!) aufmerksam gemacht hat, 148t sich
auf die KepLERsche Gleichung mit Erfolg anwenden, wie folgendes extrem un-

1) Astron. Nachr. 205, 309 (1918).
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giinstige Beispiel zeigt: Esseie = 0.7, M = 3% 0355. Die KEPLERsche Gleichung
liefert dann die strenge Lésung E = 10°. Beginnt man die Iteration mit dem
rohen Ausgangswert E, = M, so lauten die ersten Glieder der nur sehr langsam
konvergierenden Folge E,,

¢ = 370355
E, = 5.1593 ; ¢ = 0.69818,
E, = 6.6421

und man erhilt E* = 10°0720. Setzt man diesen Wert in die KEPLERsche Glei-
chung ein, so findet man M* = 320578, also AM = M — M* = —0%0223
und nach (IV; 36)

aAM

E — E* = m = —‘0?0718; E = 10° 0002,

einen Wert, der von dem exakten um weniger als eine Bogensekunde abweicht.

Natiirlich ist es erwiinscht, namentlich bei groSeren Exzentrizititen, die
Iteration schon mit einem moglichst guten Naherungswert beginnen zu konnen.
Zu ihm gelangt man auf verschiedene Weise:

1. Man benutzt Tafeln, die E, oder E;, — M mit zwei Eingingen (¢, M) zu
entnehmen gestatten. Die vorhandenen Tafeln dieser Art (AsTRANDsche Tafeln,
Tafeln zu BAUSCHINGERs und
STRACKES Lehrbiichern der Bahn-
bestimmung u.a.) liefern E auf
0’01bzw. 0’ 0oo1genau.ImAnhang
A, Tafel 11, ist die STRACKEsche
Tafel verkiirzt wiedergegeben.

2. Weniger genauist das graph:-
sche Verfahren, das durch Abb. 41
illustriert wird. Die Kurve
y = sinx sei auf Koordinaten-
papier vorgezeichnet. Die Ab-
szissenachse gibt x von 0°bis 180°
(fir x > 180° benutzt man —x
und — M) mit einer Genauigkeit
von ganzen oder halben Graden.
Trégt man auf der Abszissenachse
den Punkt M mit der Abszisse M Abb. 41. Graphische Losung
und den Punkt Q mit der Abszisse der Krprerschen Gleichung.

M+ e°=M+ ¢-57°2958 auf
und zeichnet iiber () den Punkt P mit der Ordinate 1,so gilt fiir den Winkel

PMQ = o die Beziehung tga = %, und die Gleichung der Geraden P M lautet
x —_—

. Die Abszisse des Schnittpunkts dieser Geraden mit der Sinus-

y:



170 Die Berechnung ungestérter Ephemeriden

kurve ist dann die Losung ¥ = E der KEpLERschen Gleichung. Andere graphi-
sche Losungen beruhen auf der Konstruktion von Nomogrammen.

3. Sehr zahlreich sind die rechnerischen Methoden, die entwickelt worden sind,
um mit moglichst geringem Aufwand zu einer brauchbaren Ausgangshypothese
E = E, zu gelangen. Aus der Vielzahl der Vorschlige, zu denen fast jede Gene-
ration der letzten hundertfiinfzig Jahre ihre Beitrige geleistet hat, kénnen hier
nur einige der interessantesten aufgefithrt werden. Auf andere weist das
Literaturverzeichnis hin. Am gebriuchlichsten ist wohl ein Verfahren, das auf
ENCKE zuriickgeht, aber im Laufe der Zeit mehrfach modifiziert worden ist.
Es liefert fiir kleine und mittlere Exzentrizititen verhiltnismaBig rasch gute
Niherungen.

Man fithre 2 = E — M als Unbekannte ein. Dann lautet die KEPLERsche
Gleichung

(IV; 38) z=esin (M + 2).
Setzt man nun

esin M e cos M
(IV; 39) T 1—ecosM’ ‘C_I—ecosM’

so erhilt (IV; 38) die Form
(IV; 40) z=mncosz — { (z —sinz).
Fiir kleinere und mittlere Exzentrizitaten sind #, { und z von der Ordnung e,

und da z — sin 2z von der 3.0rdnung ist, zerfillt (IV; 40) in zwei Summanden
von der 1. und der 4.Ordnung. Setzt man demnach z, = # cos 7, so darf man

im zweiten Gliede rechts z — sinz = %zg setzen und erhdlt mit
I .
(IV; 41) n=n-¢ £23

eine weitere Niherung, die bis zur 4.Ordnung in e genau ist.
Fithrt man in (IV; 40) fiir cos z und sin z die Potenzreihenentwicklungen ein,
so ist

T P TIPS B Sy L S o SN ST
K z+2nz+6gz 2477z4 IZOCZ+720772+

eine Reihe, deren Umkehrung

61
Ln“_i_...

i 1 1
z="[1—?"2+£"‘—720 ]_'

SRR NY - L SN BN W S
6577‘[1 2o:n+ ]—I-Izcn-'—
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bis zur 7.Ordnung in ¢ ergibt. Dafiir 148t sich genahert

I In2
_.__(77

(IV; 42) A= e TG

schreiben. Diese Formel ist genauer als (IV; 41), da sie auch die Glieder 5.0rd-
nung bis auf einen kleinen Rest beriicksichtigt. In der klassischen Literatur
wird die Darstellung '

(IV;43) n=tgy; z=siny — %%n‘cosan ~siny — Ctg()M sint y
bevorzugt, in der die Glieder 5.Ordnung genauer als in (IV; 41), aber weniger
gut als in (IV; 42) dargestellt werden.

Fiir groBe Exzentrizititen kann (IV;40) mit der Ausgangshypothese
z, = ncos n als Rekursionsformel benutzt werden, wobei selbst in extremen
Fillen, wie sie bei langgestreckten Kometenbahnen haufig vorkommen, wenige
Iterationen zum Ziele fithren. Auch hierbei kann das weiter oben beschriebene
Extrapolationsverfahren mit Nutzen verwendet werden.

Von den sehr zahlreichen Verfahren, auch bei groBem e durch direkte Rech-
nung gute Ausgangsniherungen zu gewinnen, mdgen hier nur drei genannt
werden:-

a) E.W.Brown?) schligt folgende hiibsche Methode vor: Man setze

Csinz, =esin M,
(IV; 44) o
Ccoszy=1—ecos M

und berechne daraus z, und C. Multipliziert man die beiden Gleichungen
(IV; 44) mit cos M bzw. sin M und addiert, so erhilt man

Csin (M + z) =sin M = %sinz0

oder
(IV; 45) sin z, = e sin (M + z).
Setzt man nun nach (IV; 38) z = e sin (M + 2), so ist

sinz — esin (M + 2) = —%e3sin3(M+z) + %e‘*sin**(M—l—z) —

Andererseits ist wegen (IV; 44)

sinz — esin (M + z) = sinz(r — ecos M) — cosz-esin M = Csin (z — z).

1) Monthly Notices of the Roy. Astron. Soc. 92, 104 (1932).
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Bis auf Restglieder, deren groftes = % e’ ist, gilt also

(IV; 46) Csin(z—zo)=—%essin3(M+z)+....

Da C2=1 — 2ecos M + €2, ist z — z, von der Ordnung €% Fiihrt man also
in (IV; 46) rechts z = z, ein, so begeht man einen Fehler 6.0rdnung, dessen
Betrag man folgendermaBen abschitzt: Setzt man z — z, = Az und differen-
ziert (IV; 46), so erhdlt man

Cdsindz=CcosAdzddz = — %e“sin3 (M + z) cos (M + z) dz

L)
e®

6C

oder, wenn man rechts dz = Az = — sin® (M -+ z), links cos 4z = 1 setzt,

e .
dAz—;Z—C—sm (M + 2) cos (M + z).

Das Maximum dieser Funktion wird fiir tg (M + z) = 5, M + z = 6529 an-
genommen und betrégt 0.2586; der Fehler 6. Ordnung in der Bestimmung von
6 5 g6\
Azist demnach < e—, der Gesamtfehler der Rechnung also < max (e—, E—).
46 120" 46
Die sehr einfache Gleichung

. I . 3
sin (2, — 2)) = — gc Sin’ 4,

die man erhilt, wenn man (IV; 45) in (IV; 46) einsetzt, fiihrt daher auf eine
Néherung z,, die merklich besser ist als die weiter oben gegebenen.

b) Einen Niherungswert, der bis zur 7. Ordnung in e genau ist und daher auch
groBen Anspriichen geniigt, gibt H.C. PLuMMER?) an. Es sei wieder z, der nach
(IV; 44) berechnete Wert und E, = M 4 z,. Aus der KEPLERschen Gleichung

E—M =esinE
und aus der wegen (IV; 45) giiltigen Beziehung

sin (E, — M) = esin E,
folgt durch Subtraktion

E—M —sin(Ey — M) = ¢ (sin E — sin E).
Setzt man andererseits
(IV; 47) Ey — M — sin (Ey — M) = — 27,

1) Monthly Notices of the Roy. Astron. Soc. 80, 207 (1919).
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so erhilt man

E—~E =27+ e(sinE —sinEy) =

(IV; 48) sinE — sin £
=2t elf —B) T
Nach (IV; 47) ist aber
I s
2N = — E(Eo —M)°+

von der 3.0rdnung in ¢, so daB man fiir E — E bis auf Terme von der 4.0Ord-
nung aufwirts die Niherung 27 benutzen darf. Aus (IV; 48) folgt nun

. sin E — sin Eo] _
(E — Ey) _1 _GTE{,— =217,
also streng
(IVi49) E—F 2
] — L2 = - .
sn £ Fo
I—ecos(E +E—E°)- 2
S E — &,

2

Setzt man im Nenner dieses Ausdrucks E — E; = 27 und den Quotienten

mE—%ﬁ—%
2

gleich eins, so ergibt die Formel
- 2n
E _ =
1= 5, 1 — ecos (Ey+ 1)

eine Naherung, die bis zur7.Ordnung genau ist und selbst in sehr ungiinstigen
Fillen zur endgiiltigen Losung fiihrt, wenn man in der strengen Formel (IV; 49)
rechts E = E, einfiihrt.

c) A.WEDEMEYER!?) geht in seinem Vorschlag zur Lésung unseres Problems
ebenfalls von dem aus (IV; 44) berechneten z, aus, und es sei

z=E —M=2z+ 4z.

, der von der Einheit nur um Glieder 6. Ordnung abweicht,

Aus (IV; 38):
2+ Az =esin (M + z, + Az) = e[sin (M + z,) cos Az + cos (M + z) sin 42]
und (IV; 45) folgt dann

Az = —z,+ sinzycos Az + e cos (M + z) sin 4z =

= —2z+ sinzo(I — zsinzézi) + ecos (M + z) [dz — (4z — sin 42)]

1) Astron. Nachr. 206, 147 (1918).
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oder
—Az[1 — ecos (M + z)] = (z, — sin z,) + 2 sin z sinz% +
+ ecos (M + z) (4z — sin 42)..
Fithrt man zur Abkiirzung

A= L

I —ecos(M+ z)

ein, so erhilt man streng

. Az‘\2
1 N

—dz=A(z — sinz) + ZA sin z, - (42)? Tz } +
2/
2 /

Az — sin 4z
+ (4 -1 (Az)a—z(AT.

Da nun Az von der 3.0rdnung in e ist, kann man bis auf Restglieder von der
#.0rdnung
Azy = —A(z) — sin z)

schreiben und diesen geniherten Wert zur Berechnung der iibrigen Glieder be-
nutzen. Das letzte Glied ist iibrigens von der 10.Ordnung und kann daher in
den weitaus meisten Fillen vernachlissigt werden. Ebenso kann man im mitt-

leren Gliede sin A—j/% = 1 setzen und erhilt dann

Az = —A(z — sinz) — %A sin z, + (A2)*
oder, bis zur 9.Ordnung genau,

Az = AZO(I —%AAzosinzo); E=M+4 2z + 4z.

Auf die Losung der transzendenten Gleichung (III; 51), die die KEpLERsche
Gleichung in der Theorie der Hyperbelbewegung vertritt, ist nicht anndhernd
so viel Miihe verwendet worden, wie auf die der KEPLERschen Gleichung selbst.
Der Grund hierfiir ist, daB (wenn wir von einer gewissen Klasse von Meteoren
absehen) in der astronomischen Praxis Hyperbelbahnen nur gelegentlich bei
Kometen vorkommen, daB aber die Exzentrizititen dieser Bahnen stets nur
geringfiigig groBer als eins sind. In diesem Falle wird aber die Gleichung
(IIT; 51) genau so unbrauchbar wie die KEpLERsche Gleichung fiir Exzentrizi-
titen, die nur wenig kleiner als eins sind. Fiir ¢ — 1 geht nimlich die KEPLER-
sche Gleichung in die nichtssagende Form o = o, die Gleichung (III; 51) aber
in die ebenfalls bedeutungslose Gestalt co — oo = o iiber. Fiir alle Fille, in
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denen sich die Exzentrizitit von der Einheit nur wenig nach der einen oder der
anderen Seite unterscheidet, hat man daher andere Methoden der Ephemeriden-
rechnung entwickelt, von denen in den nichsten beiden Abschnitten die Rede
sein soll.

36. Parabelnahe Bahnen: GAusssche Methode

Ist die Exzentrizitdt einer elliptischen Bahn nur wenig kleiner als eins, so
treten, wie erwihnt, Schwierigkeiten auf, die darauf beruhen, daB die KEPLER-
sche Gleichung

. T I—e)\®
(IV; 50) E—esmE=M=ﬁ=tV(—q—> ;o t=x(t—1T)

fiir ¢ > 1 degeneriert. SchlieBen wir ndmlich den Fall ¢ = o (geradlinige Bah-
nen) aus, so nimmt (IV; 50) fiir e = 1 die Form E — sin E = o an, deren ein-
zige Losung E = oist. Ist 1 — ¢ zwar von null verschieden, aber klein, so zeigt
die Differentialformel

(IV; 51) dE = aM

I—ecosE’

daB die Bestimmung von E sehr unsicher wird, wenn cos E nahezu eins ist. Das
trifft aber bei langgestreckten Bahnen immer in einem ausgedehnten Bogen um
das Perihel zu, gerade in jenem Bereich also, der bei der Berechnung parabel-
dhnlicher Kometenbahnen in der Praxis groBte Aufmerksamkeit erfordert. Ist
dagegen cos E hinreichend klein oder gar negativ (was in der sonnenfernen
Bahnhiilfte zutrifft), so macht die Auflosung der KepLERschen Gleichung keine
besondere Schwierigkeit.

Um die Aufgabe der Berechnung parabelnaher Bahnen in der Sonnennéhe
mit der erforderlichen Schirfe losen zu kénnen, sind besondere Methoden er-
forderlich. Die klassische Losung dieser Aufgabe, die auch heute noch in der
Praxis vielfach bevorzugt wird, verdanken wir Gauss, der sie in seiner ,, Theo-
ria motus corporum coelestium® beschrieben hat. Die linke Seite der Gleichung
(IV; 50) 14Bt sich in der Form

(t—elr =P E+ fsinE)+ (E —sinE) [f+ (1 — f) €]

schreiben, also, wenn E als klein von der 1.Ordnung angesehen wird, als
Summe zweier kleiner Summanden. Dabei soll § eine Konstante bedeuten, iiber
die noch in geeigneter Weise verfiigt werden wird. Dividiert man die so um-
geformte KEPLERsche Gleichung durch den ersten Summanden dieses Aus-
drucks, so erhilt man

(IV;52)1+EI_5inE. fra—pe _ _t yi—e

—¢ G—PE+fsmE |p 1—PE+PsmE
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Setzt man nun

oW _E—snE _ fi(-pe
& T3 T (t —B)E+ BsinE

und multipliziert (IV; 52) mit tg ?, so ergibt sich

w 1, W
tg— + —?’—tg"?:

1 V1 —e¢ 1/,E—sinE B+ (1—fe
‘W(x—ﬁ)EJrﬁsinE‘/ I1—¢ ({—PE+PBsnE

ZVQ' E —sinE
T 2 (1—PB)E+ BsinE
Vz—qa'/ﬁ“‘“ﬁ)e‘ @ —PE+psnE

oder, wenn zur Abkiirzung

A—i E —esinE

" 2 (1—B)E+BsinE’
1V;
(v 53) B=(I—ﬁ)E+ﬂsinE

214
gesetzt wird,
| Woox W _ o [fFE—Be

WVis) el + ST =0= 1 =

Vorausgesetzt, daB B und damit Q bekannt ist, 148t sich W aus (IV; 54) nach
den in Abschn. 34 beschriebenen Methoden berechnen oder aus einer Tafel
{BarkERsche Tafell) mit dem Argument @ entnehmen. Nun 1iBt sich aber
zeigen, daB bei geeigneter Wahl von f die noch unbekannte Gré8e B von der
Einheit so wenig abweicht, daB man mit der Ausgangshypothese B = 1 ein
duBerst rasch férderndes Iterationsverfahren beginnen kann. Entwickelt man
nimlich 4 und B in Potenzreihen nach E, so erhilt man nach kurzer Rechnung

E: 9>E2 ( 9) E*
A= _—a - 2_6 Z
" [14-(155 ) og T (1038 — 636 + 3780

:
eodl
90 2 L

B=I—(ﬁ—:—O)E—2+(ﬂ2+%ﬂ+

ﬁ) E
/4

700 E o
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C . I .
Es erweist sich also als zweckmiBig, § = o zu setzen, und es wird dann

A_ﬁw-ma_g_g__ﬁ_
~ 9E+snE 4 120 20160

3
B= —_— 4 .o
I-+_2800E T

I+ ge
5(—¢)"

B unterscheidet sich also von der Einheit nur um sehr kleine Glieder von der
4. und hoherer Ordnung in E. Kehrt man die Reihe 4 um, so erhilt man E? als
Funktion von 4 und damit auch B als Funktion von

5(1—c¢), W

(IV; 55) 4 =Tgetg Py

=A4-

w
t2__
gz

die (oder deren Logarithmus) man in eine Tafel mit dem Argument A bringen
kann, und zwar ist
3 2
= A+ — A%+ -
175 525 ¢
Die Niherungsrechnung gestaltet sich dann folgendermaBen: Die mit f§ = —I%

gebildete Gleichung (IV; 54)

I+ 9e
w I w T 10

2 3 2 2¢° B

B=1+4

16st man zunichst mit B = 1, berechnet dann 4 nach (IV; 55), verbessert da-
mit B und wiederholt das Verfahren, bis sich W nicht mehr 4dndert, was in den
meisten praktisch vorkommenden Fillen schon nach ein bis zwei Iterationen
der Fall sein wird.

Mit Hilfe von W lassen sich dann die Polarkoordinaten 7 und v des Himmels-

. E .
korpers leicht berechnen. Setzt man tgz—z— = ¢, so ist

2 3
E=zarctele = _( _EL E_F )’
arctgle 2]/61 3—|—5 7—|—

: 2)e -
=" —ove(r—ed+ et —e+ .-
sin E T+ 2)e(r —e4+ e —e 4+ -,

also

E —sinE —isz+ﬁe3—@fs

A=159E+sinE=e 5 35 2625

4_|_ .,

12 Stumpff, Himmelsmechanik
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eine Reihe, deren Umkehrung
E 4 104 )
e=tgl— =41+ A4 +—4%+ ---)=4¢
er —A(r+ La 4 ey
lautet. Nach (IT; 14) ist dann

e

I—e

oder, wenn man fiir A den Ausdruck (IV; 55) einsetzt,

v _ 1/5(1+¢) W
tgz _GVI—I-QG tg2 ’

wobei 6 = ¢ (4) eine von eins nur wenig verschiedene Funktion ist.
SchlieBlich findet man 7 aus der Kegelschnittgleichung oder aus der zweiten
Gleichung (IT; 13):
cos?—

(IVis6) r—afr—g T SE _, 2 _ 4

I+ cosv ] v\2»
cos? — ¥ COS —
2 2

wo v(A) = Y1+ € eine andere, ebenfalls von eins nur wenig abweichende
GroBe ist. Die Funktionen B, g, v oder deren Logarithmen werden aus Tafeln
mit dem Argument 4 entnommen. Man findet sie im Anhang A (Tabelle III).

Die gleichen Formeln lassen sich auch fiir parabelnahe Hyperbeln verwen-
den, wenn man fiir A und ¢ auch negative Werte zuliBt, die sich ergeben, wenn
E rein imaginir, also E? negativ wird.

57. Parabelnahe Bahnen: Neuere Methoden

Wie J.ILjINsKI') gezeigt hat, 1dBt sich die Gleichung fiir tg —1m Falle parabel-
naher Bahnen in der Form

(IV; 57) tg +aotg'°' +a1tg—+aztg—+ =0

schreiben, wo Q der seit dem Periheldurchgang verflossenen Zeit ¢ — T pro-
portional ist und die Koeffizienten «, von der #-ten Ordnung in der kleinen
GroBe 1 — e sind.

1) Astron. Nachr. 238, 319 (1930).
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Setzt man ¢ = 1 — (1 — ¢), so lautet die Bahngleichung fiir die Bewegung
in einem parabelnahen Kegelschnitt

4 _ 4

I+ cosv — (1 —é€)cosv

v
zcoszz — (1 —é)cosv
oder

2rcos2% =p+ (T —e)rcosv.

Setzt man hierin wieder nach der Kegelschnittgleichung

p—v

7COSV = s
e

so erhilt man

Man fiihre nun die konstanten GréBen

1:_ I—e'—ﬁ

2e o T3

ein, die fiir ¢ > 1 gegen ¢ (Periheldistanz der Parabel) bzw. o streben, und es
ist dann, mit

B I—e

y—I—{—ﬁ— 1t+e’
% sec?— I+ tgzl)—
L2
I+ﬁse02; I-l—ytg”;

Diese Formel gilt fiir alle Kegelschnitte, ist also in gleicher Weise fiir Ellipsen
(B, » > o), Hyperbeln (f, y < o) und Parabeln (f = y = 0) zu benutzen. Fiihrt
man nun (IV; 58) in das Anomalieintegral

v

[rrdv=xyp (¢ — T) =xV2eq, t — T)
0

ein, so erhdlt man mit y = tg%, dy = %dv se(:z% = %dv (x+ 9%

12#
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oder, wenn man den Integranden nach Potenzen von y? entwickelt und inte-
griert,

y+%ﬁh—Zﬂ—gﬁﬂw—w%+§fﬁe—w%~~=@

eine Formel von der Gestalt (IV; 57), die fiir § = y = o in (III; 43) iibergeht.
Da in den praktisch vorkommenden Fillen y stets sehr klein ist, geniigt es fast
immer, auf der linken Seite die Glieder mit y und y? zu beriicksichtigen. Man
wird die Hypothesenrechnung mit der Losung von

1
y+ -y =0
3
beginnen und diese Gleichung im zweiten Schritt mit

) e D)
Q+27<3+5 3y 5+7 +

statt Q) 16sen, wobei es wegen der kleinen Faktoren ausreicht, fiir y den bereits
bekannten ersten Naherungswert einzusetzen.

Von neueren Methoden, das Problem parabelnaher Kegelschnittbahnen zu
losen, verdient auch die von H. ANDOYER!) Beachtung, weil sie, anders als die
Gausssche Methode, neben der BARkERschen Tafel nur noch ein einziges, sehr
wenig umfangreiches Hilfstdfelchen erfordert, das zudem in vielen Fillen ent-
behrt werden kann.

Man fiihre statt der Exzentrizitit ¢ den bei parabelnahen Ellipsen stets
kleinen Hilfswinkel ¢ durch

sin p = VI—;e, cosy = Vlzﬂ (sin?y + cos®y = 1)

ein. Dann ist nach (II; 14) und (IV; 56)

E v E v
. £ _ r. ,_ 2L ezt
(IV; 59) tg2 tgaptgz, 7 = gcos®_-sec’ ..
Die KePLERsche Gleichung erhilt dann die Form
(IV; 60) E —e¢sinE = M = 4Psin®y,
wenn man P T

T
h V2¢® B V2ad(x — e)?

setzt. Nun ist nach dem Flichensatz

e) 2 2
do _ Vb _Veit+e _ (g\Peosy _ dP(q\
at 7% 72 7] Y2 dt \r

1) Cours de mécanique céleste, Bd. I (1923).
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also

(IV; 61) dv = 2d P cos“%sec‘—EZ—cos R

SchlieBlich folgt aus (IV; 60)
E—asinE _E—sinE  (1—¢sinE

4simldyp  4sindy 4sind3y
oder, mit
oo sin —
(IV; 62) 13=ﬂ, a=—.———=tg1cos£secw,
- sin p 2 2
4 sin® —
2
(1 —¢) sin E = 4sin?yp sin — cos %
die Formel
(IV; 63) P=(0F+o0 cos%.

Da nun im perihelnahen Teil der Bahn die Bewegung eines Kometen von der
in einer strengen Parabel nur wenig abweicht, erhilt man aus

/) I /)
1V; o 4~ yg3f0 _
(IV; 64) tg2+3tg2 p

eine gute Niherung v, fiir die wahre Anomalie, mit dieser aus (IV; 59) den
immer kleinen Niherungswert E, fiir die exzentrische Anomalie, sodann 4, o
nach (IV; 62) und schlieBlich aus (IV; 63) einen Kontrollwert P, fiir P. Dieser
wird von dem gegebenen P um einen kleinen Betrag ¢ P abweichen (P =
P,+d P). Die Beziehung (IV; 61) liefert dann die dazugehérige Verbesserung
dv fiir die wahre Anomalie.

Die rasche Konvergenz des Verfahrens beruht darauf, daB ¢ wegen der
Kleinheit von E sehr scharf berechnet werden kann und daB ferner 43 von der

Konstanten % nur um GréBen von der Ordnuhg E? abweicht. Es gilt ndmlich

die sehr rasch konvergente Entwicklung

(IV: 63) 23=E—51nE _
sin3£
4 2
E|[1 1 E I E 1 E
= sec?—|{— + tg?— — - tgt— + t‘——'--),
4(3 I'3'5g4 3'5’7g44 5'7'9g4



182 Die Berechnung ungestorter Ephemeriden

fiir die spiter (Abschn. 51) der Beweis erbracht werden wird, und die man,

mit ¢ = tg%, in der Form

13=(I+¢2)(£+ A + 48 _)
3 I35 357 5°7°9
oder auch

4

13 = sec? £ SCC? (arctg L) ‘8 (t2)
4 V2

schreiben kann, wo der Faktor g (t?) eine von % nur um Glieder 4.Ordnung in E

abweichende GroBe ist. Es geniigt also in der Tat ein kleines Tifelchen (An-
hangd, TafelIV), aus dem log g mit dem Argument E/4 entnommen werden kann
und das in den meisten vorkommenden Fillen tiberhaupt entbehrlich sein wird.
Ist v gefunden, so ergibt sich 7 ohne weitere Hilfsmittel aus der zweiten Glei-
chung (IV; 59).

Diese Methode, deren Vorziige Durchsichtigkeit und leichte Ausfithrung bei
logarithmischer Rechnung sind, 148t sich auch auf parabelnahe Hyperbeln an-
wenden, wenn man geringfiigige Umformungen vornimmt. Man setzt hier

tgy = V%, secy’ = V‘H-TI (sec?y’ — tg2y’ =1).

Ferner definiert man, als Ersatz fiir das rein imaginire E, den reellen Hilfs-
winkel E’ durch

’
E
! =tg— = —itg— = —1t,
4
setzt also ¢ = ¢, 12 = —1'2, ferner
B2t _ ozt L E
g?_l—tz_l-{-t’z_Hlnz'
secE 1+ 1?2 o !
—_— = = C! —_
2 1I—8# 14t 2
E E’ E’

sec?— =1+ 12=1—1?= cos—sec?—.
4 2 4

Damit erhilt das Formelsystem fiir Hyperbeln die Gestalt

sin— = sin 'tgv' v = secZE sec?”
2 LY 1 2 2z’
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’

v
0 = tg —sec — cos y’
gz 2 Y

4
3 E 2 ' 5
22 = cos - sec e cos® [arc tg

;—) g3,

/

!

P=(lo)3+o sec-%; dv = 2dP sec‘%sec"%sec v,

wo g'(#'?) im Anhang A, Tafel IV, mit dem Argument E’/4 gegeben ist. In
beiden Fillen ist das Iterationsverfahren abgeschlossen, wenn d P = o wird.
Die Koordinaten 7 und v aus der letzten Hypothese sind dann endgiiltig.})
Eine weitere Methode zur ephemeridenmiBigen Berechnung parabelnaher
Bahnen, bei der die Unterscheidung zwischen elliptischer und hyperbolischer
Bahnform ganz unwesentlich ist, beruht auf der Benutzung der schon im
Abschn. 35 (IV; 34) erwihnten Restfunktionen des Sinus und Cosinus

sin 4 A2 ro
(1% = = —?—i—;_ )
I—cosi 1 LI A
avie) e == gte
A —sind I A? Y&
6 (1) = ——5— BT T

die im Anhang B aufgeschlagen werden konnen.
Schreibt man die KEpLERsche Gleichung in der Form
E(1—¢)+ ¢(E —sinE) = M = 1%5]/(1 — 03,

so ergibt sich daraus, wenn man ¢, = ¢, (E?) einfiihrt,

I—e¢

e
-~ —~_E3 =
i E+c,ME I.

Fiihrt man nun statt E die neue Variable

. _1—e,. E q°
(IV; 68) 2= i E—‘IVI-e

1) Eine Variante dieser Methode, die aber keine wesentlich neuen Gesichtspunkte
erkennen 148t, wurde von T. SueBotiN [Astron. Nachr. 234, 287 (1928)] gegeben.
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ein, so erhilt man nach einfacher Umformung die Gleichung

: y.td—1 mt t= L _ o
(EV; 60) 24 ¢(E?) - {A=1 mit { G 7 72,
Diese Gleichung wird sich als spezielle Form einer allgemeineren Beziehung er-
weisen, die in den Uberlegungen des nichsten Kapitels eine zentrale Stellung
einnehmen wird und die ich daher als Hauptgleichung des Zweik6rperproblems
bezeichnen will.

Fiir kleine E ist ¢;(E?) nahezu konstant = — , und die kubische Gleichung

I

6
I o

(IV; 70) at g ld=1,

die fiir ¢ = 1, E = o streng gilt und mit (III; 43) wesensgleich ist, vermittelt
einen brauchbaren Niherungswert z = z,. Mit diesem 148t sich das Argument
der Funktion ¢,
1—e
E?= " (z27)2 = 422, ( = 12)
7 ‘=2 =g

genauer berechnen, so daB man mit diesem Argument den Faktor ¢; der Tafel
entnehmen und in (IV; 69) einfithren kann. Hat man nach Beendigung dieses
Iterationsverfahrens die endgiiltige Losung z der Gleichung (IV; 6g) gefunden,
so ergibt sich nach (II; 14)

(IV; 71) tg%=VI+et—— ] +“_.°°SE=VI+-635=

I—e I—e sinkE I—e¢ g

1/14+€e ¢y
= 5" 4T
q 1

und nach (II; 10)

r=a(l1 —ecosE) = 9

I—¢€

[t —e+ e(x —cosE)] =
(IV;72)

2
= q(1+ - ecz) =g (1 + ¢ (2%).

~ Die Hauptgleichung (IV; 69) kann man aufldsen, indem man sieauf die Form
(IV; 54) bringt. Multipliziert man (IV; 69) mit }3¢,{, so ergibt sich

Y360 + 22 V3630° = V3¢50
oder, wenn z}3¢;¢ = y gesetzt wird,

(IV; 73) y+§y3.=o=ve.c—st.
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Die Losung dieser Gleichung entnimmt man mit dem Naherungswert¢; = — der
Barkerschen Tafel und berechnet dann ¢, mit

neu. Schneller gelangt man mit dem NeEwToNschen Niherungsverfahren zum
Ziel. Mit der Nédherung z,, die man gemiB (IV; 70) einem Tafelchen mit dem
Eingang { (Anhang A, Tab.X) entnehmen kann, ergibt die Hauptgleichung

i) =o
(IV;74) fla) =2y + 6328 — 1 =dH,

wod H eine von null nur wenig verschiedene GroBe sein wird. Sei nun z = zy4-dz,
so bestimmt man dz, indem man (IV; 74) differenziert und

df =dz I—'———Cz"'-}- 3c5C2% = —dH

z2=12

setzt. Da nun aus (IV; 67), mit A = E = z}y>

deg 1 . dE _E dg _1

5 = F @36 o= Vi P T Pl C Rl 1)
folgt, so erhilt man
. dz(1+ {7, = —dH
oder nach (IV; 72)

dz = ——q—dH, z2=12z+ dz.
)

Man bemerkt, daB nach Einfithrung der c-Funktionen keine imaginiren
GroBen mehr auftreten, da diese Funktionen auch fiir imaginire E reell blei-
ben. Man wird also die hyperbolischen Fille mit erledigen, wenn man dafiir
sorgt, daB die Tafeln der c-Funktionen auch auf negative E? ausgedehnt wer-
den. Die Variable z ist, wie (IV; 68) lehrt, stets reell, da E und M immer nur
gleichzeitig reell, null oder imaginir sind. Im Falle strenger Parabelbewegung
wird

und nach (IV; 71)

SN TEREL S
e T T
(IV;73) geht dann in die bekannte kubische Gleichung (III; 43) iiber.

Die Konvergenz aller hier beschriebenen Iterationsverfahren wird schlechter,
wenn sich der Himmelskorper auf der sonnenfernen Hilfte einer stark exzen-
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trischen Ellipse befindet, insbesondere in der Umgebung des Aphels, in dem
tg% = + oo wird. Man kann in diesen Fillen die KEpLERsche Gleichung in

ihrer urspriinglichen Form verwenden. Es gibt aber auch eine Variante der
zuletzt beschriebenen Methode, die fiir sonnenferne Orter langgestreckter Ko-
metenbahnen brauchbar ist und darauf beruht, daB man die Anomalien und die
Zeiten statt vom Perihel vom Aphel aus zihlt. Sei T die Durchgangszeit durch
das Aphel, so setze man

t=k(t—-T), EE=E—n, M=M—a, VY=v—m.
Dann 148t sich die KEPLERsche Gleichung in der Form
E'(1+e) —ef —sinE)=M = VL_a}/(I T o)
s
I+ e

schreiben, wo s =a(1 +¢) = ¢ — die Apheldistanz des Himmelskorpers

_1+e., F s8
= E=7 VI-I-e’

so ist die Gleichung (IV; 69) mit

bedeutet. Sei nun

— _ & e =£2=I+"'2
¢ PR ( z s3
erfiillt. Da ferner
E E" v v
g =~ By = et

so erhidlt man

ti— ';—_et E' q/1—e1—cosE' /I—ec,(E)
82 = I+eg2— I+e sinE l1+ec(E'2)

und schlielich
s , eE’?
T [14+ e —e(t —cos E')] = S(I — I—_l_—cz) =s(I+ ¢¢2Y.
Nach einem Vorschlag von S.HERRICKY) lassen sich aphelnahe Orter durch
ein rasch férderndes Naherungsverfahren berechnen, wenn man die Bewegung
in erster Ndherung als geradlinig ansieht. Von einem weit entfernten Stand-

r =

1) Astron. Journ. 51, 123 (1946).
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punkt aus gesehen, erscheint ja die Bewegung in einer sehr langgestreckten
Ellipse einer geradlinigen Bewegung des elliptischen Typs dhnlich, und man
darf wenigstens in der weiteren Umgebung des Aphels die Bewegung des Kor-
pers in der Abszisse (also in Richtung der Apsidenlinie) angendhert als freien
Fall von der Ruhelage (Aphel) aus betrachten. Fiir den freien Fall ist ja (siehe
Abschn. 26) ¢ = 1 und « endlich; die rechtwinkligen Koordinaten in der Bahn-
ebene sind dann ‘

x=rcosv=a(cosE —1); y=rsinv=o,
und es ist
4

T .
Die Losung dieser Gleichung, die man im Anhang A, Tab. II in der Rubrik e = 1
genihert findet, liefert den Ausgangswert E, mit dem man die Iteration zur
Auflosung der strengen KEPLERschen Gleichung

E—snE=pMr=2 _I—¢
(4 (4

E—sinE=M-=

E

beginnt. Nach AbschluB dieses Verfahrens erhilt man dann fiirr die Koordi-
naten des Kometen die strengen Werte

x=a(cosE —¢), y=a})1 —e*sinE,

tgv=%, r=a(x —ecoskE).



KAPITEL V

DIE ZWEIKORPERBEWEGUNG ALS
ANFANGSWERTPROBLEM

38. Das Wurfproblem. Die Anfangswerte als lokale Elemente

Die ungestorte Bahn eines Himmelskorpers um die Zentralmasse ist raumlich
und zeitlich bestimmt durch sechs Bahnkonstanten (Elemente) und eine Zeit-
angabe (Epoche). Wir bezeichnen ganz allgemein, d.h. fiir jeden Bahntyp
passend, die Konstanten

(V; 1) 5,8, w; ge1,
als die Kegelschnittselemente der Bahn. Sie zerfallen in zwei Gruppen: Die
ersten drei bestimmen die Lage der Bahn im Raum und sind daher von der
Wahl des Koordinatensystems abhingig; die letzten drei dagegen bestimmen
die Bahnform und den Ort des Himmelskérpers in der Bahn zu der vorgegebe-
nen Epoche - sie sind gegen Koordinatentransformationen invariant. Ist die
Bahn parabolisch, so wird ¢ = 1; Ellipsen und Hyperbeln unterscheiden sich
durch ¢ = 1. Das Element 1, = % (¢, — T) ist die zur Epoche #, seit der Zeit T
des letzten Periheldurchgangs verflossene, in Einheiten von 1/ mittleren
Tagen ausgedriickte Zeitspanne. Bei Kreisbahnen wird ¢ = 0 und w unbe-
stimmt. Es ist dann zweckmaBig, unter T die Zeit des Durchgangs durch den
aufsteigenden Knoten der Bahn zu verstehen, d.h. 7, durch das Argument der
Breite 1, des Planeten zur Zeit {, zu ersetzen. Ist die Neigung : der Bahn
klein oder null, so wird die Knotenlinge $U unsicher bzw. unbestimmt. Man
kann diese Schwierigkeit durch den Ubergang auf ein anderes Koordinaten-
system (von der Ekliptik auf den Aquator als Hauptkoordinatenebene oder
umgekehrt) vermeiden, oder man wird, falls dies nicht erwiinscht ist, die Lage
des Perihels durch die ,Perihellinge” ®» = $ + w ausdriicken, durch jenen
gebrochenen Winkel also, der vom Friihlingspunkt lings der Ekliptik (bzw.
des Aquators) bis zum aufsteigenden Knoten, von da ab lings der Bahn bis zum
Perihel gezahlt wird. Ist die Bahn auSerdem ein Kreis, so wird man statt #,
die ,Linge in der Bahn“ s, des Planeten zur Epoche benutzen, die gleich
8 + uy ist.

Zu einer ganz anderen Form der Bahnelemente gelangt man, wenn man die
Bewegung des Himmelskdrpers durch ihren Anfangszustand zu der vorgegebe-
nen Epoche ¢ = {4, beschreibt, d.h. durch die Koordinaten des Ortsvektors p,

und des Geschwindigkeitsvektors P, = —z in diesem Zeitpunkt. Diese
(t==1g)

sechs GroBen, die in einem beliebig vorgegebenen rechtwinkligen Koordinaten-

system mit

(V; 2) 270, ?/o»zo; j:()»go:z‘o
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bezeichnet werden mogen, stellen die Anfangsbedingungen dar, unter denen die
Differentialgleichungen der Bewegung diejenige Losung liefern, die der Bahn
des Himmelskérpers in dem betrachteten konkreten Fall entspricht.

Die Elemente (V; 2) bezeichnet man sinngemi8 als ,lokale Elemente”, da
sie den Bewegungszustand des Himmelskérpers an einem bestimmten Ort der
Bahn definieren. Das Problem, aus Ort und Geschwindigkeit zur Epoche auf
Ort und Geschwindigkeit zu einer beliebigen Zeit ¢ iiberzugehen, d.h., also mit
Hilfe der lokalen Elemente eine Ephemeride zu berechnen, kann man auch als
das Anfangsweriproblem oder Wurfproblem bezeichnen: Es wird gefordert, die
Bahn zu berechnen, die ein Korper im Gravitationsfeld der Zentralmasse be-
schreibt, der von einem vorgegebenen Ort p, mit der nach GréBe und Richtung
vorgegebenen Geschwindigkeit §, startet (geworfen wird).

Bei vielen Aufgaben der praktischen Astronomie, z.B. bei der Bahnbestim-
mung der Himmelskérper aus beobachteten sphirischen Ortern (Kap. VIII
und IX) oder in der Stérungstheorie spielt das Wurfproblem eine wichtige
Rolle. Man kann es z. B. 16sen, indem man die vektorielle Ortsfunktion p (r) um
die Epoche £, herum in eine TavLoRsche Reihe

2 3

(Vi3)  p@) = v+ th+ =By + %‘m et =t — )]

entwickelt und mit Hilfe der Differentialgleichung z.Ordnung, die der Bewe-
gung zugrunde liegt, die zweite und die héheren Ableitungen des Ortsvektors
zur Epoche eliminiert. Man wird dann die Koordinaten von p als Funktionen
der lokalen Elemente (V; 2) und der ,, Zwischenzeit” t in Form von Potenz-
reihen erhalten. Wir wollen in der Folge immer, wenn es nicht ausdriicklich an-
ders vermerkt wird, den in den friiheren Formeln auftretenden Faktor x =

kY1 + m gleich eins setzen, also nicht nur als Zeiteinheit 1/ = 58.13244 Tage
einfithren, sondern auch annehmen, daB die Masse m des bewegten Korpers
gegen die der Sonne als Zentralkorper (M = 1) vernachlissigt werden darf, was
bei Kometen und Planetoiden, um die es sich in der Praxis fast ausschlieB8lich
handeln wird, immer zutrifft. Wir kénnen dann die vektorielle Differential-
gleichung der Bewegung immer in der einfachen Form

- I (o

(Vs 4) P=—up <M=;;; r=|v=)

schreiben. Ist die Elimination von §,, ¥,, ... durchgefiihrt, so wird auf der
rechten Seite von (V; 3) eine Potenzreihe nach 7 stehen, deren Koeffizienten
von den lokalen Elementen allein abhdngen und die, wenn z geniigend klein ist,
ziemlich rasch konvergiert. Ist dagegen die ,Zwischenzeit” z groBer als eine
gewisse von Fall zu Fall verschiedene Schranke, so konvergiert diese Reihe,
deren Glieder mit wachsender Ordnung bald sehr kompliziert und fiir die nu-
merische Rechnung unbequem werden, nur langsam oder gar nicht. Man wird
dann die Aufgabe durch strenge Formeln zu 16sen versuchen und kann dabei
zwei verschiedene Wege beschreiten:
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1. Man berechnet aus den lokalen Elementen (V; 2) die Kegelschnittelemente
(V; 1) nach dem im nichsten Abschnitt zu entwickelnden Verfahren und fiihrt
die Ephemeridenrechnung dann mit Hilfe der frither (Kap. IV) beschriebenen
Methoden durch.

2. Man sucht nach Wegen, aus den lokalen Elementen direkt, d.h. ohne den
zeitraubenden Umweg tiber die Kegelschnittelemente, die Ortskoordinaten und,
wenn erforderlich, auch die Geschwindigkeitskoordinaten des Himmelskérpers
fiir beliebige Zwischenzeiten auf Grund strenger und geschlossener Formeln zu
ermitteln. Diese Methode, der die Abschn. 4046 dieses Kapitels gewidmet wer-
den sollen, fiihrt zu einer neuen Losung des Ephemeridenproblems, die nicht
nur fiir viele praktische Anwendungen brauchbar ist, sondern auch vom mathe-
matischen Standpunkt aus befriedigt, weil bei ihr die listigen Fallunterschei-
dungen, unter denen alle bisher besprochenen Methoden der Ephemeridenrech-
nung leiden, ganz fortfallen oder dort, wo sie doch erscheinen, eine untergeord-
nete Rolle spielen.

39. Beziehungen zwischen den lokalen und den Kegelschnittelementen

Die Berechnung der lokalen Elemente, d.h. also der Orts- und Geschwindig-
keitskoordinaten eines Himmelskorpers fiir einen vorgegebenen Zeitpunkt aus
den Kegelschnittelementen, geschieht nach den in Abschn. 32-37 gegebenen
Formeln. Die umgekehrte Aufgabe, die Kegelschnittelemente einer Bahn aus
den lokalen Elementen einer Epoche abzuleiten, wird folgendermaBen gelost:
Seien i, j, ¥ die Einheitsvektoren in Richtung der positiven Achsen eines
rechtwinkligen Koordinatensystems (Frithlingspunkt, Ekliptik oder Aquator),
so ist fiir irgendeine Zeit ¢
p=szi+ yi+zel, p=ait+gj+ 2,
und die Vektoren ¢ (Flichengeschwindigkeitsvektor) und f (LAPLACEscher
Vektor) haben die Form
g=ci+ i+ 6l [f=dji+ doj+ dyf
mit konstanten Koordinaten. Nach den Regeln der Vektorrechnung findet man
dann aus (III; 13)
ijt
(Vis5) g=[pP] = |z yz| = (y¢ —29)i+ (& — z8) |+ (27 — y&)¥
&y i

und aus (III; 16) mit x = kY1 + m = 1
(V36) = (ha) = 7o = (099 — (99) 6 — S p = (V2= 3 Jp —reb,
da ja (by) = z& + y3 + 22 =ri.
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Aus (IV; 8) und (V; 5) folgt zunichst

= Vpsinisin = yi — 2,
V7 Cp= — ﬂsinicos&:za‘:——xz’,
cg = ]/{—)cosi = zy — Yy,

ein System, aus dem die GréBen 4, §t, p leicht berechnet werden kénnen.
In Abb. 42 seien X, Y, Z die Punkte, in denen die Achsen i, j, f die Sphire
durchstoBen (X = Frithlingspunkt, Z = Nordpol des Aquators bzw. der Eklip-

Abb. 42. Lage der Bahnebene.

tik). Ferner sei K P die Spur der Bahn, K ihr aufsteigender Knoten und P der
Ort des Himmelskérpers an der Sphire. Dann erhilt man, wenn # das Argu-
ment der Breite ist, aus den sphirischen Dreiecken K PX, K P Yiund KPZ

cos (PX) = cos u cos §, — sin # sin § cos ¢ = ;,
(V; 8) cos(PY)=cosusin87,+sinucosﬂcosi:%,
cos (PZ) = sinu sin¢ = %

als Richtungscosinus des Ortes P und, da fiir das Perihel « = o gilt,
cos (ITX) = cos w cos §& — sin w sin §b cos ¢

(V;9) cos (ITY) = cos w sin §& + sin @ cos §b cos ¢
cos (I1Z) = sinwsin+

als Richtungscosinus des Perihels.
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Da nun der Larracesche Vektor | nach dem Perihel zeigt und den Betrag
#%e = e hat, so erhilt man fiir seine Koordinaten nach (V; 6, ¢)

dy = e cos ([1X) = (V2 — %)x — r#d = fcos & — gsin § cos¢,
(V; x0) dy = ecos (I1Y) = (V2 — %)y — r#y = fsin § 4 g cos § cosz,

dy =ecos (I1Z) = <V2 — %)z — riz = gsint,

wobei
f=ecosw, g=c¢esinw

gesetzt wurde. Die drei Gleichungen (V; 10) liefern f, g und damit ¢ und w. Eine
der Gleichungen ist entbehrlich, in Ubereinstimmung mit der Tatsache, daB g
und f senkrecht aufeinander stehen und daher die Beziehung (III; 17) gilt, die
zur Kontrolle der Rechnung benutzt werden kann.

Vorteilhafter ist es, statt (V; 10) durchzurechnen, zunichst ¢ und die wahre
Anomalie v aus den Beziehungen

p

ecosv =" —1; esiny = Jp =

B,
; (% + yy + 22)
abzuleiten, die aus der Kegelschnittgleichung (II; 1) und aus (II; 33) folgen,
sodann das Argument der Breite # aus (IV; 14) zu bestimmen, wobei sich » und
1 noch einmal als Kontrollwerte ergeben. Man erhdlt dann den Perihelabstand

vom Knoten aus
w=u—v,

Nunmehr sind die fiinf Elemente ¢, §, w; ¢,9 =

/4 __?

e bzw. a = I _ezbe
kannt, auBerdem v. Das noch fehlende Element 7, = k(f, — T) bzw. die Peri-
heldurchgangszeit T ergibt sich dann aus der KEPLERSChen Gleichung oder den
ihr analogen Beziehungen. Die Methode der Ermittlung von T hingt daher von
der Bahnform ab. Fir parabolische Bahnen ist

o
V243(tg— 3t ;) ,
fiir elliptische

iy
tg§=l/1 etg%; 7, = }a® (E — esin E)

I+e
und fiir hyperbolische

H .e—I v 4 H
= —. _]/_s Z =
g p Itg.z, Ty a[etgH+lntg( 2)]
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In allen drei Fillen ist dann

1
T = to -_ -k— To.
Ist die Bahn ein Kreis, so ist die Berechnung der Elemente mit der Bestim-
mung der vier GréBen ,
i, &, p=a, uy=ult)

abgeschlossen.

40. Die lokalen Invarianten

Die sechs lokalen Elemente (V; 2) sind simtlich von der Wahl des Koordinaten-
systems abhingig. Von den sechs Kegelschnittelementen (V; 1) gilt dies nur fiir
die drei ersten, wihrend die iibrigen, ndmlich ¢, ¢ und 7,,, gegen Koordinaten-
transformationen invariant sind. Daraus kann man schlieBen, daB es drei von-
einander unabhingige Funktionen der lokalen Elemente geben muB, die
ebenfalls invariant in diesem Sinne sind. In der Tat lassen sich alle GroBen,
die allein durch die geometrische Form, nicht aber durch die raumliche Orien-
tierung der Bahn bestimmt sind, durch solche invarianten Ausdriicke dar-
stellen. Drei Invarianten, die voneinander unabhingig sind und zur vollstin-
digen Charakterisierung der Bahngeometrie geniigen, erhilt man aus der Figur,
die von den beiden Vektoren des Ortes und der Geschwindigkeit des Himmels-
korpers zur Zeit der Epoche #, gebildet wird. Diese Figur wird ihrer Form nach
durch folgende drei GroBen bestimmt : dieLinger, des Ortsvektors p,, die Linge
V, des Geschwindigkeitsvektors , und den Winkel §,, den diese beiden Vektoren
miteinander bilden. Statt dessen kann man auch die drei skalaren Produkte,
die mit Hilfe von p, und p, gebildet werden kdnnen, nimlich

P = (PoPy) = % =23+ y§ + =4,
(V; II) P2 = (‘popo) = 70Vo cos 60 = zo‘to + yoyo + zoio,
bPaa = (Bo¥p) = v§ = %5+ 95 + 4

als ein System von unabhingigen Invarianten ansehen. Aus diesen elementaren
Invarianten lassen sich alle iibrigen BahngroBen aufbauen, die von der Wahl
des Koordinatensystems nicht abhingen. Das gilt z.B. fiir das Quadrat des
Flichengeschwindigkeitsvektors

(PoPg) (PoBo)
(PoPo) (PoPo) |

und das Quadrat des LarLacEschen Vektors

(88) = p = [Pyhp)2 = = pude — P2

SO SN N ) TRV B
(ffl=e=1 ik ?(, Va)—l (Pube: ?%2)(#—“ Pzz)-

13 Stumpff, Himmelsmechanik
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Fihrt man die Reihenentwicklung (V; 3) aus, indem man die hoheren Ab-
leitungen des Ortsvektors durch die Differentialgleichung (V; 4) und ihre Ab-
leitungen eliminiert, so ergibt sich der Ausdruck

(Vi 12) p(z) = Fpy+ G¥,,

in dem F und G zwei Funktionen der Zwischenzeit ¢ und der lokalen Elemente
bedeuten. Nach (V; 12) 1iBt sich also p () als Resultante zweier Vektoren mit
den Richtungen von p, bzw. J, darstellen. Nach dem oben Gesagten ist klar,
daB auch F und G von der speziellen Wahl des Koordinatensystems unabhingig
sind und daher die lokalen Elemente nur in der Gestalt von Funktionen der ele-
mentaren Invarianten (V; 11) enthalten.

Nach einer Bemerkung von F.KUHNERT, die spiter von C.V.L.CHARLIER
aufgegriffen wurde, kommen diese Invarianten in F und G stets in der Form

I -— 14 x4+ yy + 22
."'=ﬁ=1’1123 0=;=——?:—2‘—=%;
(V; 13) !
(V)2 a-:z_l_ y2+ z-z P22
w=\|— =—-—2_=—
r 4 Pu

vor.!) Wir wollen diese drei GroBen daher als die fundamentalen Invarianien
des Zweikorperproblems bezeichnen. In der Tat: Wenn man (V; 4) fortgesetzt
differenziert, wird man auf das Formelsystem

. 3

B=—3-3 = —3u0, (Vi 14)
. Rt wi PRyl B+ P

o= T Yyt =0 —p -2,
=R AR L@t i )= 20t o)

gefiihrt, aus dem hervorgeht, daB die Differentialquotienten der Invarianten
(V; 13) wiederum einfache Funktionen von u, 0, w sind, so daB auch in den
Ableitungen beliebig hoher Ordnung von u keine anderen GréBen als diese drei,
und zwar in Form von Polynomen, erscheinen werden.

Die Formeln (V; 14) stellen ein System von drei Differentialgleichungen
1.0rdnung dar, dessen Losung die Bahnbewegung im ungestorten Zweikorper-
problem ergeben muB, soweit die Orientierung der Bahn im Raum noch offen
‘gelassen wird. Die Integration des Systems 148t sich duBerst einfach durch-
fiilhren, wenn man nach Kombinationen x der fundamentalen Invarianten
(V; 13) sucht, deren Ableitungen die Form

t= —nox

1) Es ist darauf zu achten, daB die Invariante o nicht mit dem Bahnelement o
(Perihelabstand vom Knoten) verwechselt werden darf.
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haben, wo # einen Zahlenfaktor darstellt. Man findet leicht, daB es auBer u
noch zwei weitere einfache Funktionen der Invarianten gibt, die diese Eigen-
schaft haben. Setzt man allgemein

z=au-+ bw+ co?,
E=ap+ bw+ 2c66 =0[— 3ua —2(u+ )b+ 2(w —p —0%c],
so wird zwischen # und z die Beziehung
olu(— 3a — 2b — 2¢) + w(— 2b + 2¢) — 40%c] = —no(au + dbe + co?)

bestehen miissen. Vergleicht man beide Seiten dieser Identitit, so ergeben sich
die Bedingungen
(m —3)a —2b—2c=o0,

(n—z)b+zc=6,
(n—4)c=o.

Losungen dieses Systems von homogenen linearen Gleichungen fiir 4, b, ¢ be-
stehen, wenn die Determinante (n — 2) (» — 3) (» — 4) verschwindet, d.h. fiir
# = 2, 3, 4. Solche Losungen sind, wenn wir jeweils eine der Unbekannten
willkiirlich gleich 1 oder — 1 setzen,

mn=2): a=2, b= —1, ¢=o0,
m=3): a=1, b= o0, ¢c=o,
m=4): a=o0, b= 1, ¢=—1I,

und man erhilt fiir x die drei Invarianten

(V; 15) e=z2p—w; p=p;, ?=w—o0
zwischen denen die Identitit

(V; 16) o2=2u—90—1%

besteht und deren Ableitungen nach der Zeit

0= —200
(V; 17) B = —3uc
= — 430

sind. Eliminiert man o aus der ersten und dritten dieser Differentialgleichungen
mittels der zweiten, so ergeben sich die Gleichungen

13*
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deren Integrale mit den Konstanten «,
2
Ineg = gln,u-i- Ina; g=ap® =

4
—

=

4
m0=%hy+h& 0=m?=§

lauten. Die geometrische Bedeutung der neuen Invarianten g und & wird sicht-
bar, wenn man (V; 11, 13) in (V; 15) einsetzt:

2 V! 12 o\ _ I s 2 I .
9___(7)_’3(—; V)—1Ta’ da V—-7 " (Energiesatz),

2 2 2
4= (K) - (; cos 6) = (; sin 6) = %, da p = Vrsiné (Flichensatz).

7
Die Integrationskonstanten sind demnach « = %, f = p. Das dritte Integral
folgt dann aus der zweiten Differentialgleichung (V; 17)
p=—3p0

oder aus der mit ihr gleichbedeutenden
(V; 19) f=ro.
Setzt man hierin nach (V; 16)

o=tV —e-,

so findet man, wenn man g = 1/#3 und fiir g, & die Ausdriicke (V; 18) einfiihrt,
2 I 2 I
(V; 20) r‘:irl/_—_z.‘£=_‘/___._%_

Es ist demnach

a(l—e)

eine Formel, in der man unschwer (III; 83) wiedererkennt und die ja nichts
anderes als die Integralform der KEpLERschen Gleichung darstellt. Damit ist
gezeigt, daB man bei der Integration von (V; 17) tatsichlich die drei invarian-
ten Kegelschnittelemente 4, p, 7, bzw. ¢, ¢, 7, erhilt.

Zur Ableitung der drei iibrigen Kegelschnittelemente, der nichtinvarianten
Lageintegrale i, 8, w, kann man auBer der im vorigen Abschnitt gezeigten
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Methode auch folgendes Verfahren einschlagen, das nicht zuletzt wegen der
Symmetrie der Formeln, aber auch aus mancherlei praktischen Griinden den
Vorzug verdient:

Bezeichnen (Abb. 42) die Einheitsvektoren i, j, f wieder die Achsenrichtungen
des gewidhlten Koordinatensystems, etwa die des Aquatorsystems mit dem
Friihlingspunkt (X) in der positiven i-Richtung, und sei ferner durch die Ein-
heitsvektoren g, b, 3 ein anderes rechtwinkliges System von gleichem Drehungs-
sinn gegeben, das mit dem Vektorenpaar p,, §, fest verbunden ist und in dem
t die Richtung (P) von p,, ferner § die dazu senkrechte Richtung (Q) in der
Bahnebene und im Sinne wachsender Anomalien und 3 die Richtung (N) der
Normale der Bahnebene, also die des Flichengeschwindigkeitsvektors bedeu-
tet, dann ist offenbar, wenn wir kiirzehalber den Index o bei den Koordinaten
von p,, §, fortlassen,

< |~

1::

p=(xi+yi+1D,
(V;21) § = [32] = ——=[(az — &3 i+ (6% — 2)i+ (6 — A,
rVp

1 b S .
=—=0=—=(ai+ 6+ 6l
Ve Vp
oder, wenn man nach (V; 7)
G =Yi—2y;, ¢ =2 —xi; C3=2xYy — y*x,

ferner nach (V; 18) Yp = V8 und nach (V; 13) 2% + y§ + 22 = 720 setzt,

£= (@it yi+ 2,

y = 7f-x~rﬂbkw—y®k+h—2®ﬂ

b= oy = =it 62 =i+ wd — ¥,

Andererseits folgt aus (V; 21) fiir die Richtungscosinus der Achsen des ersten
Systems gegen die des zweiten

= () =

(Vi22) ) By = (i) =

= cos % cos §& — sin u sin § cos 7,

nach (IV; 13)

= cos % sin §& - sin % cos §b cos ¢
' " | oder (V;8)

| n Ve X8

=sin#sinz.

n=cHh=
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ﬁag = (pi) = z — %9 _sinwcos & — cosusin S cos g,
ry 9
ﬂz = (9j) = yr-]—/gya — —sinwin § + cos u cos §b cos 7,
2= (0} = ‘TR cos % sin 4,
ry9
(V; 22 i —2g
ag = (i) = yE— 2 sin § sin 7,
r2yd
Ps = (31) = z::z_;/-gi = —cos §sin, | nach (V;7)
rs = (3%) = fcy,z;gyx = cosi.

Das zweite Tripel dieser Formeln folgt aus dem ersten, indem man » mit » + %

vertauscht.

Nach einem Satz von EULER lassen sich die beiden Systeme ineinander iiber-
fithren, indem man eine einzige Drehung ausfiihrt. Sind 4, B, C die Richtungs-
cosinus der Drehungsachse gegen das (i, j, f)-System, und ist @ der Drehwinkel,
so bestehen nach diesem Satze die Gleichungen

@ _Bito_utn_ i S-u N+tu

Atg? aa__yl_ﬁl_%—tg;cos 7S )

P _rth_bta i S —u  R+tu

V;2 Btg— = = = tg—sin sec )
( 3) 8 2 B —a  y2—Ps g2 2 2

Cte 2 aa+7’1=7’2+ﬁa___tg9’+“

2 =B a%—n 2

y

aus denen 7, §& und % berechnet werden konnen, wenn die lokalen Elemente
bekannt sind. Diese Formeln zeigen vollkommene Symmetrie, da die Aus-
driicke in den Richtungscosinus ineinander iibergehen, wenn man «, 8, y und
gleichzeitig die Indices 1, 2, 3 zyklisch vertauscht. Die Identitit der beiden
Quotienten, die in jeder dieser drei Formeln auftreten, folgt unmittelbar aus
den Orthogonalititsbedingungen, die fiir die neun Gré8en (V; 22) gelten. Man
wird jeweils denjenigen Quotienten wihlen, dessen Zihler und Nenner die
groBeren Betrige haben. Wenn 4, §U,  bekannt sind, verlduft die weitere
Rechnung so: Es ist

p=r9=(+ y+ ) @+ 52+ ) — @3+ gy + 29

2
— =2y = — — (%2 72 7:,2
S =re=o @+ 9+ ),
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wihrend die iibrigen GroBen, e, v, w (oder @), 7,, nach den im Abschn. 39 ge-
gebenen Formeln berechnet werden.

Der Vorteil der Formeln (V; 23) zeigt sich besonders bei kleinen Bahnnei-
gungen, wo wegen der unsicheren Lage des Knotens die Bestimmung von §}
und # ungenau ist. Die Summe s = § + u, die Léinge in der Bahn, die aus der
dritten Gleichung (V; 23) folgt, ist von dieser Unsicherheit frei, wihrend die

Ungenauigkeit der Differenz & — % durch den kleinen Faktor tg% der ersten

beiden Gleichungen ausgeglichen wird. Durch die sichere Feststellung der
Linge in der Bahn wird vermieden, daB die in solchen Fillen unvermeidliche
Ungenauigkeit der Knotenlinge sich auf den Bahnort iibertrigt, wie das ge-
schehen kann, wenn man §0 und # einzeln bestimmt.

Auch die Anomalien v und E lassen sich als Funktionen der lokalen Inva-
rianten u, o, w; g, ¥ darstellen, denen man zweckméiBigerweise noch eine sechste

(Vi24) e=w—pu=p—9; é¢=—0(20 —p)=—0c(®w+ e
hinzufiigt. Aus
3 r

ecosv=£—1=——1; ecosE=I——=1—£=i;
L4 @ a u 1
(V; 25) — _
. , o8 . ro oo
esinv = ¢ =—" esinE = —siny = —
"= o
folgt B
_ ¥ _aYe.
tgv—m, th—T,
(V; 26) 9 2 2
52=I——£=I—Q—2=8+290
a I u
Bemerkenswert sind auch die Formeln
_3 '/_3
(V;27) 1’>=}/_5; E=VE; n=a2=i,

u
die aus dem Flichensatz 725 = VY und aus (IV; 51): E(1 —ecos E) = M =
Ve
——=— folgen.
o folg

Auf Grund aller dieser Beziehungen, die zwischen den lokalen Invarianten
und den geometrischen BahngroBen bestehen, erkennt man, daB diese In-
varianten, die aus den lokalen Elementen (V;2) (besonders mit Hilfe der
Rechenmaschine) leicht gebildet werden konnen, dem Rechner bereits gewisse
Informationen iiber die Art der Bahn und den Ort des Himmelskérpers in der
Bahn liefern, ohne daB die Umwandlung in Kegelschnittelemente nétig wire.



200 Die Zweikorperbewegung als Anfangswertproblem

Es handelt sich um folgende Kriterien:

1.0 = airz bestimmt die Form der Bahn, da ¢ Z o, je nachdem eine Ellipse,
Parabel oder Hyperbel vorliegt.

2.9 = —’;— ist stets = 0. Ist # = o (w = ¢?),s0 ist p = o, und es handelt sich
um den si;gulﬁren Fall einer geradlinigen Bahn.

3. Die Formel (V; 26) fiir e* zeigt, daB bei Kreisbahnen, fiir die ja, da sie dem
elliptischen Typ angehéren, o > o ist, ¢ und ¢ beide stets null sind. Daraus
folgt, daB diese Invarianten bei schwach exzentrischen Ellipsen wihrend der
ganzen Bahnbewegung klein von der Ordnung der Exzentrizitdt bleiben.

4. (V; 25) lehrt, daB o fiir v = o, x, also fiir die Apsiden, ¢ fir E = %, 3%,
also an den Endpunkten der kleinen Achse, verschwindet. Es ist ¢ = o, je
nachdem sich der Himmelskorper auf der dem Perihel folgenden oder auf der
dem Perihel vorangehenden Bahnhilfte befindet. Es ist ferner, wenn die Bahn
elliptisch ist, € > o auf der sonnennahen, ¢ << o auf der sonnenfernen Hilfte
der Bahn. Fiir Parabeln und Hyperbeln ist ¢ stets positiv.

Wegen der groBen Bedeutung, die den lokalen Invarianten in den Ausfiih-
rungen der folgenden Abschnitte zukommen wird, seien hier noch einmal die
wichtigsten Formeln, die sie betreffen, zusammengestellt:

A. Fundamentale Invarianten

(V; 28)

1 zt + yy + 2 f %2 4 g2 4 32 V\?
'u=—' 0’:—32——=7; w=T=7 .

B. Abgeleitcte Invarianten

I
0= =2
(V; 29) z9=r£4=w—02=2;¢—9—02,

E=0—p=p—e¢.
C. Differentialformeln
0 = —2¢0, a'>=—20(,u+w),

e
(Vi30) w=—3u0, (f=r0), é¢=—o(zw—p)=—o(2e+p),
)

= —4do, 6= &—20%.
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41. Die Hauptgleichung der Zweikirperbewegung

Jedes Tripel aus den sechs Invarianten (V; 28, 29)
u(bzw.7), o, o (bzw.V), o, &, ¢,

fiir das keine der identischen Beziehungen
p=2u—w=p—c¢; %=0w-—0% s=w—,u=§-(w—g)

besteht, bildet ein unabhingiges Invariantensystem und geniigt drei Differen-
tialgleichungen 1.Ordnung, durch deren Integration die geometrische Form der
Bewegung des Hinmelskoérpers vollstindig beschrieben wird. Daraus folgt, da8
jede dieser Invarianten, fiir sich allein genommen, einer Differentialgleichung
3.0rdnung geniigt. So leitet man die Differentialgleichung (III; 20) fiir den
Radiusvektor 7 in sehr eleganter Weise folgendermaBen ab: Aus

F =10
folgt durch zweimaliges Differenzieren
f =1%o+ ra;, ¥ =+Fo-+ 2764 78.
Bedenkt man nun, daB
6=¢—20% 0=¢—400=0(80%—6c—u),
so erhilt man das System
f= 70,
(V; 31) F= 1 —oY),
= —rol3le —o) +ul, w=7,
und eliminiert man hieraus o und ¢ -- 62, so folgt
i

L
(V; 32) F+3—+3=0

iibereinstimmend mit (III; 20), wenn man dort, unserer Gepflogenheit gemiBs,
» = I setzt.

Ahnliche Gleichungen lassen sich auch fiir die iibrigen Invarianten auf-
stellen. Das gelingt besonders leicht fiir 4, g, # und o; fiir w und ¢ sowie fiir
andere invariante Ausdriicke, wie z.B. die Gré8en F und G in (V; 12) oder fiir
die Geschwindigkeit V, ist das Eliminationsverfahren schwieriger und fithrt
auf algebraische Differentialgleichungen von verwickelter Gestalt, deren Ab-
leitung hier iibergangen werden darf, da sie kaum praktischen Nutzen haben.

Die Tatsache allein, daB solche Differentialgleichungen existieren, legt aber
den Gedanken nahe, durch Einfithrung einer neuen Variablen ¢(r) an Stelle der
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Zeit t diese Gleichungen auf eine einfachere und leicht integrable Form zu
bringen.

Es sei irgendeine Invariante — nennen wir sie ¢ — als Funktion der Zeit durch
die nach Potenzen der Zeit fortschreitende TAvLORsche Reihe

I . I
‘P(T) = %+ %T + Z¢ot2+ §¢0t3+ o

gegeben. Sei ferner ¢ = ¢(t) eine andere unabhingige Variable, und bezeichnen
wir die Ableitungen von ¢ nach ¢ durch ¢, ¢, ..., so wird man eine entspre-
chende Entwicklung

(V;33) ?(9) = @+ ®og + 2,<p 09° + 3,¢6"q + -

ansetzen kénnen. Damit ¢ geeignet ist, die Zeit t zu ersetzen, muB diese Va-
riable, die wir allgemein als , Anomalie” bezeichnen wollen, folgende Eigen-
schaften besitzen:

1. Es soll ¢ gleichzeitig mit 7 verschwinden {g(0) = o). Diese Eigenschaift ist
in der Form der Gleichung (V; 33) bereits beriicksichtigt worden, da ¢ fir

= 0 denselben Wert annimmt, wie fiir T = o.

2. Es soll ¢ monoton mit ¢ wachsen [¢(z) > o fiir alle 7].

Die notwendige und hinreichende Bedingung dafiir, daB diese Forderungen
erfiillt sind, ist, daB

(V; 34) g(1) = [1E) 4§, wo }(z) =4(r)
0

eine wesentlich positive Funktion der Zeit ist. Es 148t sich dann ¢ = ¢(t) ein-
deutig umkehren, und man darf schreiben

dq . [ae
)’ ; fé) -

Wir nennen diese Integralgleichung die Hauptgleichung des Problems.

Es sind nun zwei Wege denkbar, um die Invariante ¢ als Funktion einer
Anomalie darzustellen. Der erste besteht darin, daB man nach (V; 34) ¢ als
Funktion von ¢ willkiirlich durch Vorgabe irgendeiner wesentlich positiven
., Quellfunktion” f(r) = ¢ definiert. Dann folgt aus der Differentialgleichung
3.0rdnung, der ¢ (1) geniigt, durch Substitution von

¢=¢'¢ ¢=9¢"¢+ 9§ ¢=9"¢+3¢"4i+ ¢'q
eine Differentialgleichung 3.0Ordnung nach ¢, deren Koeffizienten bekannte
Funktionen der Zeit sind.

Diese Methode schlieBt ungezahlte Moglichkeiten in sich ein; ihr Nachteil
besteht darin, daB man nicht von vornherein iibersehen kann, ob die gewihlte

(V; 35) dt =
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Quellfunktion zu einer Vereinfachung der Differentialgleichung und ihrer Inte-
gration fithrt. Man wire also mehr oder weniger auf Versuche angewiesen. Sie
hat dagegen den Vorteil, daB man die zu der gewihlten Transformation ge-
hérige Hauptgleichung (V; 35) sofort hinschreiben kann.

Gehen wir z.B. von der fiir die Invariante ¢ = 7 bestehenden Differential-

gleichung (V; 32) aus und setzen qg= l , S0 ist die Bedingung fiir die Quell-

funktion erfiillt, da f(z) = — gewa immer positiv ist. Man erhilt dann suk-
zessive
F=rg= —',
r Py
- (T B ) T A
rl 3 7’III r' r'l rl 3
= —473 +3 )q=7—47+37—,

und setzt man dies in (V; 32) ein, so folgt nach kurzer Rechnung

11 1’7 v’ — " 1-—-7" r
4 = + " v =o0.
Da nun
L3 - ——Ir"'-{-I_r"r'—o also —"-a2—const
dg\ 7 oy v T ’
so erhilt die Differentialgleichung fiir 7 (g) die einfache Gestalt
(V; 36) "+ a%' =o,
deren vollstindiges Integral
fiir % > o (« reell): r=a+ bcosag+ csinag,

(V,37) fiir «2 = o: r=a-+ bq_l_cq?’
fiir a2 = — 2 < 0 (x imaginir): 7 = a + b o] fg + ¢ Gin fq

lautet. Mit Hilfe der Anomalie ¢ ist demnach 7 in geschlossener Form darstell-
bar. Die Hauptgleichung (V; 35) 148t sich in der Gestalt

(V; 38) T = fqr (&) de

hinschreiben und fithrt in jedem der drei Sonderfille ebenfalls auf geschlossene

Ausdriicke, die man durch Integration von (V; 37) unmittelbar erhalt. o
Der zweite der obenerwihnten Wege zum Ubergang auf eine neue unab-

hingige Variable ist der umgekehrte: Man gibt die Form der Differential-
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gleichung 3. Ordnung, der die Invariante ¢ = ¢ (g) geniigen soll, vor. Die
Quellfunktion f(7) ist dann nicht mehr in demselben MafBe willkiirlich wie vor-
her, sondern ist, auBer der Bedingung / > o, noch der schirferen

(V; 30) W=q=2%

4

unterworfen. Es leuchtet ein, daB man diese Bedingung, wenn {iberhaupt, nur
dann realisieren kann, wenn von den drei Integralen des Problems schon zwei
bekannt sind, also wenn sowohl ¢ als auch ¢’ als Funktionen von ¢ und zwei
Integrationskonstanten ausdriickbar sind. Es sieht also zunichst so aus, als ob
dieses Verfahren keinen besonderen Nutzen bringt, da es keine wesentlichen
Vorteile fiir die Integration selbst bietet. Wir werden aber sehen, daB es die
sehr erwiinschte Moglichkeit eroffnet, die Ergebnisse der Integration in ge-
schlossener Form darzustellen, statt in unendlichen Reihen von der Form
(V; 33), deren Konvergenz, soweit sie iiberhaupt garantiert ist, meist nur in sehr
beschrinkten Intervallen den Anspriichen des Praktikers geniigt.

Im Zweikorperproblem, dessen Integrale bekannt sind, lassen sich die hier
angedeuteten Uberlegungen durchfiihren. Wir kénnen die Form der Quell-
funktion nach (V; 39) hinschreiben, denn es ist ja in Abschn. 40 gezeigt worden,
daB, wenn ¢ einem Tripel ¢, y, ¥ von unabhingigen Invarianten angehért, ¢
als Funktion dieser drei GréBen ausgedriickt werden kann. Die bekannten
Integrale gestatten dann die Elimination von y und g, so daB ¢ = ¢(¢) be-
kannt ist. Ebenso ist natiirlich auch ¢’ = ¢’ (p) bekannt, da man ja der Diffe-
rentialgleichung fiir ¢ (¢) jede beliebige integrable Form geben kann.

Fordern wir etwa, daB ¢ (g) der linearen Differentialgleichung 3.Ordnung

(V; 40) ¢ + g =0

geniigen soll, und wihlen wir, wie oben, als konkretes Beispiel ¢ = 7, dann wird
die gesuchte Quellfunktion

7

o)==

4

lauten miissen. Aus der Differentialgleichung (V; 36) erhilt man nach zwei-
maliger Integration, wenn 4 und B zwei willkiirliche Konstanten darstellen,

¥ =+ayBt— (r — A)>.

Andererseits folgt aus (V; 20)
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Damit erhilt die Bedingung (V; 39) die Form
1 (ae)® — (r — a)?

f(t)zqzar}’; B> —(r —A)?

Uber die Konstanten 4, B und « kann man noch frei verfiigen, und man wird
dies in der Weise tun, daB f(r) fiir alle Zeiten wesentlich positiv bleibt. Das ist
offenbar der Fall, wenn man

I
A=a, B=ae, o= —
Va
setzt, und man erhilt dann, wie oben,

1=

. R . .. I e .
Die drei Fille «® 2 o, die eintreten, wenn " Z o ist, fithren auf den ellip-

tischen, parabolischen und hyperbolischen Bahntyp. Es besteht aber die Mog-
lichkeit, die Integrale (V; 37) - und dasselbe gilt auch fiir jede andere Inva-
riante @ (g) — auf eine andere, vom Bahntyp vo6llig unabhingige, Form zu brin-
gen.

Die Differentialgleichung (V; 40) besitzt das partikulire Integral
(V; 41) @ = cosag,

aus dem sich durch fortgesetzte Integration iiberq eine Folge von Hilfsfunktionen
(die kurz als c-Funktionen bezeichnet werden mogen)

7 g
(V; 42) cv=q£v/---/cosa§(d5)”
o 6
erzeugen liBt. Diese Folge beginnt mit den Funktionen
sinag I — cosag ag — sinag
C, =cosag, ¢ = , Cg= T, (= = ..,
PTERE AT Ty BT Tyt BT T g

auf die wir bereits frither — siehe (IV; 34, 67) — gestoBen sind, und die sich in
Form der stets konvergenten Potenzreihen

(Vi43)  olegfl = o - (v‘f):)! + (v“_’;"’w e G =0,1,2,..)

schreiben lassen. Sie hingen nur von dem auch fiir imaginires « immer reellen
Argument («g)? ab und beschrinken sich fiir « = o auf ihre von null verschie-
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denen konstanten Glieder. Aus der Definition (V; 42) bzw. den Reihen (V; 43)
folgt unmittelbar die Giiltigkeit der Rekursionsformel

(V; 44) &+ @g?cria =y

sowie der Differentialformel
d
(V; a5) a7 Cr+197Y) =c,q".

Setzen wir nun fiir die Invariante ¢ (¢) die TaAyLoRsche Entwicklung (V; 33)

an und eliminieren die Groflen % durch (V; 44), so entsteht die Reihe

(@) = Golco + @9)2 ) + Piley + (29)%es) g + Phlee + (@g)Ped @ + -

oder, wenn wir erneut nach Potenzen von ¢ ordnen,

rrr

P(9) = 6P + a1P0d + (96 + 2*@y) ¢ + ¢3(@0” + a®@) ¢° + -+
Diese Reihe bricht aber nach dem Gliede 2.Ordnung ab, da wegen (V; 40) die
Koeffizienten von der 3.Ordnung ab sidmtlich verschwinden. Der geschlossene
Ausdruck
(V:46) @) =@ + c®0g + (5 + 2*@) ¢° = 9o + 190q + 904",
da nach (V; 44) ¢, + (xg)?¢c, = 1, stellt also das vollstindige Integral von
(V; 40) mit den Konstanten ¢,, ¢q, ¢§ dar.

Fiir ¢ = 7 ergibt diese Formel
7(q) = 7, + aroq + carodh,

q2

wobei die c-Funktionen mit dem Argument 4% = (ag)? = - aus Tafeln (siehe

Anhang B) entnommen werden konnen. Es ist ferner, da ¢ = L ,
7

P
= — =ri=r0,

(V;47)
= %(1"2 + ri) = r¢

nach (V; 31) und somit, wenn #,, g,, &, die Werte der Invarianten firt = ¢ = o
bedeuten,

(V;48)  7(q) = 7o [1 4 c10y (159) + 28y (109)"]5 ¢, = ¢, (/09)°]-

Die Form dieser geschlossenen Formel ist vom Typus der Bewegung ganz un-
abhingig, da dieser sich nur in dem Vorzeichen von g, duBert, also in dem Vor-
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zeichen des Arguments der ¢-Funktionen, die fiir alle reellen Argumente reelle
Werte annehmen.

Die zugehdrige ,,Hauptgleichung”, die den Zusammenhang zwischen ¢ und ¢
vermittelt, ergibt sich nach (V; 38) in der Form

g
(V; 49) T = [7(6) A& = 109 [T+ 404 (1y9) + a8y (197,
0
wenn man beriicksichtigt, daB nach (V; 45)
g
[e.g?dg =co g+t
0
Es empfiehlt sich noch, statt ¢ die Variable

(V; 50) :=1d

einzufiihren. Die Gleichungen (V; 49) und (V; 48) erhalten dann die Gestalt

(V; 51) I =24 12?4 c3y23
(V; 52) r =1y [T+ nyz + €2842%)
mit

— 2
C,, - cv (on )’
wenn man zur Abkiirzung

(V; 53) by =T My =0pT, Co=2¢T% Jo=0T"

setzt. (Die GroBe & = p 12, die spiter oft benutzt werden wird, sei hier gleich-
falls schon definiert.)
"Die Gleichungen (V; 51, 52) lassen sich in einer noch etwas symmetrischeren
Form schreiben, wenn man wegen ¢ =y — ¢
{=&—y

setzt. Es ist dann

I=2 (I — c3xp2%) + Cay2® + C3607%,

7 =1, [(T — caxy?®) + Camyz + €2642%]

oder, wenn man (V; 44) beriicksichtigt,

(V; 54) I =62 + C1y2% + c36y23

-

(V; 55) 7 = 1y[c, + 1Mz + c6p2%.
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Die Hauptgleichung (V; 51) bzw. (V; 54) bildet den Kern einer Theorie der
Zweikorperbewegung, deren Formalismus die listigen Fallunterscheidungen
nicht enthilt, die in der klassischen Theorie, insbesondere in der Ephemeriden-
rechnung, stindig beachtet werden miissen. Sie ist nicht nur unabhingig vom
Bahntyp, sondern besitzt noch weitere bemerkenswerte Eigenschaften: Sie ist
dimensionslos, und ihre Transzendenzist schwach ausgeprigt,dadie c-Funktionen
(fiir nicht zu groBe Zwischenzeiten) nur schwach von z abhingen. Die Methoden,
die Hauptgleichung nach z aufzulésen, werden im Abschn. 43 beschrieben wer-
den. Mit Hilfe dieser GréBe z, die von der Zwischenzeit © = £ (¢ — %)) und den
lokalen Invarianten zur Epoche #, abhingt, wird man, ebenso wie dies oben
fiir 7 gezeigt worden ist, die Werte aller Invarianten fiir beliebige Zwischen-
zeiten bestimmen kénnen, einschlieBlich der Funktionen F und G und ihrer
Ableitungen, die nach (V; 12) die Entwicklung der rechtwinkligen Orts- und
Geschwindigkeitskoordinaten des Himmelskorpers nach t erméglichen. Der
Beweis hierfiir wird im nichsten Abschnitt erbracht werden.

42. Die lokalen Invarianten
als Funktionen der Losung der Hauptgleichung

Differenziert man (V; 48) zweimal nach ¢, so erhilt man wegen (V; 45, 44)
v =1,(60,7 + €16789) = 78[0, + €164%0q — €20,0, (7,9)%],
7 =1%(co8%0 — €10,00759) = 736 — €1000s70q — C2€o0p (799)%]-
Setzt man wieder, nach (V; 50), 7,g = z7, so ergibt sich

V; 56) v =13(cy0p + C16,72) = 750, + €169TZ — €50,0, (T2)%],
)
7" =13(Co — €10505T2) = 73[Ey — €10505TZ — 2,0, (12)%].

Andererseits ist nach (V; 47)

und da nach (V;52,53)
r=rd mit A =1+ ci0,7z + 367222,

so folgt
1 I 2,2
0 = —= (60 + 18,72) = ?(00 4 €16,T2 — €30,0,T%%),

A
(V; 57)

I
€= —A-I;(coeo — 0100002 7) = —5 (6 — €o(4 — 1))
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Ferner ist
I
B=-5, =5, also u=%,
. - - - &

(V!58) = T’Zﬂ’ Qo_ 7§a1 also Q= Ag;

_2? p 3,

¥ =3 790=E, also 0=A—°4,
und schlieBlich

b

(V5 59) ©=¢e+p=—zlw,— o4 —1)].

Damit sind alle Invarianten als Funktionen von z bekannt, und fiihrt man noch
die Ausdriicke (V; 53) ein, so erhilt man

A =1+ nyz + 6Ly,

I I
N=01=—5 (67 + 16e2) = 75 (g + 8oz — Camy2o2”),
4 4

(Vi6o)  ¢=e7®=—[ — 1 — 1,
I

E /412 Aa& P = Z—ﬂ
I

I
X=9’2=ﬁ?€or 0= [wo &(4 — 1)].

Es bleibt nun noch die Aufgabe zu losen, auch fiir die GréBen F und G sowie
deren Ableitungen nach der Zeit entsprechende Formeln abzuleiten. Nach:
(V; 12) ist

p(r) = PoF + PG,

(V; 61) P(1) = 0 F + 9,6,
P(z) = 9o F + 9,G usw.

Diese Formeln bedeuten nichts anderes, als daB man die Vektoren des Ortes,
der Geschwindigkeit, der Beschleunigung usw. und damit deren Koordinaten.
im gegebenen rechtwinkligen Koordinatensystem kennt, wenn man F, G und
die Ableitungen dieser GroBen als Funktionen der Zeit bzw. von z und den’
GroBen (V; 53) kennt. Sie bedeuten ferner eine Zerlegung dieser Vektoren
in ihre Komponenten beziiglich des konstanten Vektorenpaars p,, §,. Diese
beiden Vektoren definieren ein im allgemeinen schiefwinkliges Koordinaten-
system in der Bahnebene: Die GréBen 7, F und VG, denen F und G proportio--
nal sind, stellen die schiefwinkligen Koordinaten des Himmelskérpers in dlesem_
System dar.

14 Stumpff, Himmelsmechanik
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Fithren wir (V; 61) ein, so lauten die Bewegungsgleichungen (V; 4) in vek-
torieller Form

B4 pup=p,(F + uF)+ (G + p6) =o.

Da p, und $,, wenn wir den singuliren Fall der geradlinigen Bewegung aus-
schlieBen, stets von null verschieden und nicht kollinear sind, ist diese Diffe-
rentialgleichung nur dann identisch erfiillt, wenn

F+uF=o,
G+ u@=o.
Aus (V; 61) und (V; 62) liest man unmittelbar ab, daB fiir die Epoche 1 = o

(V; 62)

(V: 63) Fo=1, Fy=0, F,=—p,
G,=o0, G=1, G =0
gilt. Eliminiert man g aus (V; 62), so folgt

FG — QF = o,
eine Differentialgleichung, deren Integral
(V; 64) FG—-QF =1

lautet — der numerische Wert der Integrationskonstanten ergibt sich, wenn
man links die Epochenwerte (V;63) einsetzt. Diese Gleichung stellt den
Flichensatz in den Koordinaten F und G dar.

Fithrt man nun statt der Zwischenzeit v die Anomalie ¢ als unabhingige

Variable ein und bedenkt, dal ¢ = %, so beweist man leicht, daB 4, F, G

ebenso wie 7 einer Differentialgleichung 3.Ordnung nach ¢ von der Form
(V; 40) geniigen, daB also

(V, 65) A + o2 A" = F'"" + 2F =G’ + 222G’ = o
mit

I
2 — 425 — 42 —
at =70 =150, =

gilt. Fiir 4 ist das selbstverstindlich, da 4 = rL proportional 7 ist. Fiir F und
o
G zeigt man das folgendermaBen: Setzt man
_ FI . (FI/ Fl,l)q. _ FII F'O

P=Fi==" P00 —)i=g — 4

so erhilt man aus (V; 62)
(V; 66) 7F" —r2F + F = o.
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Differenziert man diese Gleichung noch einmal nach ¢, so findet man
rF"" + ¢'F" — 2vry'6F" — v*'F' —v*%F"' +F =0
oder, da v =r%,6' =ré6=r7r(e — 20%, 1 = 3y,
rF" + r3u — &) F' =v[F" 4+ v*gF'] = o.

Fiir G gilt dasselbe. Damit sind die Gleichungen (V; 65) bewiesen.
Aus der Giiltigkeit von (V; 65) folgt aber, daB man 4, F und G, ebenso wie 7,
mit Hilfe der c-Funktionen in geschlossener Form nach (V; 46) darstellen kann:

A(?) = Ao + 51469 + 4547,
(V; 67) F(q) = Fy, +aFgq + cFig?,

Glg) = Gy +6Goq + exGog*.
Die Anfangswerte von

’ rr

A=" g T
-7, =, =

1 o %

ergeben nach (V; 47)
(V; 68) dy=1, Ag=10, dj=r3¢,.

Die Anfangswerte von F, G, ... F"’, G' lassen sich nach (V; 63) berechnen, denn

esist .
F'=+F, F'=r*(F+0oF); @ =70, " =r(G+00),

also firt = o0 5 I \
=1, Fo=o, Fj=—p,
(Vv 69) G:=o, Go=1,, Gb=rio,. 0
Damit erhilt man aus (V; 67)
Fg) = 1 — capty (1p9)%
G(9) = c170q + €20, (19)* = 759 [T + 200709 — €30, (/,9)°]
und, wenn man nach ¢ differenziert und (V; 45) beriicksichtigt,
F'(q) = —aprly,
G'(g) = oo + T10y730 = 73X + 10470 — G0 (1p9)7)-
Setzt man nun nach (V; 49) und (V; 4@)
709 + €20y (109)* = T — cs&, (19)°%,
7o+ 10,759 = 7 — Cagy730%,
so ergibt sich wegen g, + &, = p,
Glg) =t — capiy (19)*; G'(g) =7 — caperiq™

14*
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Fiihrt man, wie friiher, 7,¢ = z7 und die Ausdriicke (V; 53) ein und bedenkt
man, da8
- _F . s ¢ _G

b ’
4 7,4 v 74

so entstehen schlieBlich die einfachen Formeln

F =1 — 6,2,

V; — 2
(Vi 70 6 ax ey, = o)

und
£o2°

i

F= —Clmé']“; G=1—c,
Setzt man hierin nach (V; 70) ¢;§,22 = 1 — F und nach (V; 54)
€2 =1 — Cny22 — ¢3€y23 = g — (0, T2,

so lassen sich die Ableitungen von F und G in der Form

F = 2ot — F) = G,

(V; 71) .
G=1-— Z(I —F)

schreiben.

Mit Hilfe der von der Bahnform unabhingigen Ausdriicke (V; 70, 71) kann
man nach (V; 61) Ort und Geschwindigkeit des Himmelskorpers in jedem be-
liebigen Koordinatensystem aus den lokalen Elementen und Invarianten der
Ausgangsepoche und der Zwischenzeit © berechnen, wenn man zuvor die Losung
der Hauptgleichung (V; 51) gefunden hat. Wenn « fiir eine der drei rechtwink-
ligen Koordinaten des Himmelskérpers steht, schreibt man zweckmaBig

(V; 72) T %= —270(1 —-F+ j"OGQ
’b/‘ & — 3y = g F — z,(1 — @),

wobel

1—F
4

I—F=cf2 1—6G=

bei kleinen Zwischenzeiten kleine GréSen 2.Ordnung darstellen, wihrend F
und G klein von der 1.0Ordnung sind. Man wird also die Differenzen x» — z,,
% — Z,, ... genauer berechnen kénnen, als dies fiir die Koordinaten z, %, ...
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selbst gefordert wird, und auf diese Weise bei der Berechnung einer Ephemeride
mit kleinen Intervallen (Abschn. 46) Abrundungsfehler vermeiden.

Sind F und G bekannt, so kann man mit ihrer Hilfe auch einige der Formeln
(V; 60) auf eine andere Form bringen. Wenn wir den parabolischen Fall g, = o,
a = o vorldufig ausschlieBen, so lauten die allgemeinen Losungen der Diffe-
rentialgleichungen (V; 65)

4 = ay+ f,cos g+ y,sinag,
(V5 73) F =0, 4+ pycosag+ p;sinag,
G =ay+ fycosaqg + y,sinag,

WO &y, ..., Y2 DEUN Integrationskonstantel} s@nd. Wenn 0p < 0, also & =7, 1/2;_0
rein imagindr ist, werden auch y,, y,, 7, rein imaginire Werte annehmen. Seien
nun x und y zwei noch unbestimmte Faktoren, so ist

(V;74) A+ Fx+Gy=
= (% + a% + 29) + (B + Bix + Pay) cosag +
+ (% + nx + 729) sinag,

und man kann nun iber x und y so verfiigen, daB dieser Ausdruck konstant
wird. Das ist offenbar der Fall, wenn die linearen Gleichungen

ﬁo+ﬂlx+ﬂ2y=0)
Yo+ 1%+ 7y =0

erfiillt sind. Nun lassen sich die Konstanten «, ..., 7, aus den Anfangswerten
von 4, F und G bestimmen. Aus

4 =oy+ f,cosag + y,sinag,
4" = afy, cosag — B sinag],
A" = —a?[f, cosag + y,sin ag]
folgt, wenn ¢ = o gesetzt wird,
dy =g+ By; do=ay,; 4d5= —o’f,.
Entsprechendes gilt auch fiir F und G. Es'ist daher
1 1

I
o, = A + _— " = —— " = —AI
0 (U a? 0 ﬁo o2 0, Yo e 0>

I . I
— " —_ _ __ _ Fmn — R/
= F, + azF' B = prRi Y N1 aFo,

I I I
Ko = G —G" = ——G" = —G’.
2 () + o? 0’ ﬁ2 o2 Ve o 0



214 Die Zweikorperbewegung als Anfangswertproblem

Benutzt man nun die Anfangswerte (V; 68, 69) und setzt «? = 7§g,, so erhilt
man

& _ M o )
a=I+—0=—.’ ﬁ:——’ y:——,
0 0 P 0 0 0 .Va
Ho & Ho
a:I——:—-—’ = —, }I:O’
1 @o 00 ﬁl Qo 1
o 0y I
% = —, fo=——", ro=—F—
@ % 1@
und damit
UgX — 0pY = &, Y = —0,,
d.h.
A2
x=u=&—1; y = —0,.

o Yo

Die Gleichung (V; 74), deren rechte Seite sich mit diesen Werten fiir », y auf
das konstante Glied beschrinkt, erhilt dann die Form

9, 9, 1
4 (—"——I)F——GG=—°+——2 — 0, — 05 — 9,
+ Yo 0 o go(ﬂo @ 5 — U
oder, da jad =2u — o — 0%,
)
(V3 75) 4=F+oG+ 2 -F),
)

und zwar gilt dies aus Griinden der Stetigkeit auch fiir den Fall g, = o, den wir
vorsorglich ausgeschlossen hatten. (V; 75) geht nach leichter Reduktion, wenn
man fiir F und G die Ausdriicke (V; 70) einsetzt, in die erste Gleichung (V; 60)
iiber. Beide Gleichungen gelten auf Grund der dynamischen Beziehungen im
Zweikorperproblem. Daneben leitet man aus

72 = (p9) = (B F + 9,G)2 = (Poho) F? + 2(9o¥) FG + (9, 9,) G

die geometrische Formel

(V; 76) A2 = F? 4 26,FG + ,G?

ab. Eliminiert man 4 aus (V; 75, 76), so erhilt man die quadratische Gleichung
(V;77)  (2p — 9o) F2 + 2034y FG + p3G* + 2(8y — pto) F — 20,44, G = 9y,

die nichts anderes als die in den schiefwinkligen Koordinaten F und G geschrie-
bene Bahngleichung des Himmelskorpers darstellt.
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Aus den letzten beiden Gleichungen (V; 73), die nach Einsetzen der Werte
fiir die Konstanten

0o F = — &y + pycosag,
Voo G = %(I — cosagq) + sinag
Qo

lauten, erhdlt man nach kurzer Rechnung

Veo

1 .
cosag = —(goF + &); sinag =-"——[u,G — o,(x — F)]
Ho o
und damit

A="—= rr_a = 7,4% = a (y, cosag — B, sinag) =
0

=2 (00 (00 + €0) F + 198Gl = 74 [0,F + £G]

.Uo]/Q_o

und somit fiir ¢ die schéne Formel

0, F + &G

(V;78) o= 71

43. Bedeutung und Auflosung der Hauptgleichung

DaB die transzendente Hauptgleichung (V; 51) lediglich eine Umschreibung der
KErLERschen Gleichung und ihrer Analoga darstellt, ist leicht einzusehen. Das
,Integral der Anomalie

’ dv -
/57755?=ﬁ§'“=k@—ML

Vo

das in (III; 41) iibergeht, wenn fiir ¢, die Penheldurchgangszelt T und dement-
sprechend v, = o eingesetzt wird, stellt ja bereits eine fiir alle Bahntypen giil-
tige Gleichung dar, aus der, wie in Abschn. 22 gezeigt worden ist, die KEPLER-
sche Gleichung und die ihr entsprechenden Formeln (III; 43) fiir den para-
bolischen und (III; 51) fiir den hyperbolischen Fall abgeleitet werden kénnen.
Diese Integralbeziehung nimmt aber, wenn wir

dv v yp . p

dq— q _rv=—r—, 1—|—ecosv=7; gy =20
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setzen, die Form (V; 38)
q
/ rdg=1
0

an, aus der durch Ausfithrung der Integration die Hauptgleichung folgt.
Natiirlich kann man die KepLERsche Gleichung auch direkt in die Haupt-
gleichung iiberfithren. Schreibt man fiir die Zeitpunkte ¢ und ¢,

E —esinE:M:ki__T )
P
- T

]/_3

so lautet, mit E — E, = 1, die Differenz dieser beiden Gleichungen

E,—e¢sinE, = M—k

A —elsin(E,+ 1) —sinEy) = =
ya*

oder

(1 —ecosEy)sini+ esinEy (1 —cosd) + 4 —sinl =

3
@

Setzt man hierin —— ‘[_0 , nach (V 25)

I
6SinE0=oo——VE—£, I—BCOSE(,:&,
o Ho

und fiihrt man ferner die ¢c-Funktionen

sin A I—cosi A —sin i

all) =55, () = 00, oy =20

ein, so erhilt man
v Jod
Ko

¢ l—l—ca Ve"l"’—l—cs/l'"’:
Mo o

oder, wenn man durch die rechte Seite dividiert und

A=zt ]/Eo
setzt,
' 612 + 60,122 + 3y 122% = 1; ¢, = ¢, (42) = ¢, (g, 7%2?)
bzw., da nach (V; 44) ¢, = 1 — A%¢, = I — ¢30,7%2% und da py — g, = &,

24 Ca0,T + C36,T%22 = 1.
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Mit den Bezeichnungen (V;53) nimmt also die Hauptgleichung die beiden
aquivalenten Formen (V; 51, 54)
2+ Cen2t + € =1,
(Vi 79) 24 cma? s _
N2+l =1
an. Die neue Variable z ist dabei durch

(V; 80) 2= l.
T V@o
definiert. Setzt man wieder E — E, = A und fiir die Differenz der mittleren

Vel

Anomalien M — My = nt = T——, so ist
0

M=Mo=n=&@undnach(V;z7)E0=]/g_o,

Ho
also )
. _E—E, E
(V; 81) Z—M—Mo'Mo'

In der elliptischen Bewegung bedeutet also z das Verhiltnis zwischen den
Quotienten aus den Differenzen- und Differentialquotienten der exzentrischen
und der mittleren Anomalie, wobei die Differenzenquotienten sich auf das zu
iberbriickende Zeitintervall £ — ¢,, die Differentialquotienten auf die Epoche
#, beziehen. Hieraus folgt, daB z — 1, wenn 7 — 0, was man auch aus (V; 79)
ablesen kann, da 7, und {, proportional  bzw. 72 sind. Ferner folgt aus (V; 81),
daB z stets reell ist, da E und M, E und M fiir hyperbolische Bahnen gleich-
zeitig imagindr werden. Da die beiden Anomalien ferner im gleichen Sinne
wachsen, ist z immer positiv. Eine andere, sehr anschauliche, geometrische
Deutung der GréBe z liest man aus (V; 50) ab. Da niamlich ¢ == 1/fr, also

q =f£i;, so folgt
(V; 812) U B B WP Y K
’ IR A2 A
d.h., zist der iiber das Zeitintervall [0,7] erstreckte Mittelwert von ’;l =d4-1,

Fiir Parabelbahnen nimmt (V; 81) die unbestimmte Form 0: 0 an. DaB dieser
Ausdruck aber fiir e — 1, p - 0 einem wohldefinierten Grenzwert zustrebt, folgt
aus (V; 79) selbst, da fiir p = o die Funktionen ¢, und ¢; in ihre konstanten

Glieder % bzw. 3% iibergehen und die algebraische Gleichung dritten Grades

(V; 82) z+ _;‘%zé + %5023 =1; (=&
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sicher eine reelle Losung besitzt. Da ¢ = B e also fiir Parabeln ¢ = u und
daher { = £, kann in dieser Formel auch &, statt {, gesetzt werden.

DaB die kubische Gleichung (V; 82) aus der kubischen Gleichung (III; 43)
folgt, 14Bt sich ebenfalls leicht zeigen. Schreibt man (III; 43) fiir die Zeit-
punkte ¢ und ¢, auf:

v I v t—T
tg— + —tgd— =*k

B, Toat% _ b= T
8 2 + 3 tg 2 k 25 !
so erhilt man als Differenz
LA T e L A 5 ) I
tgz tg2+3(tg32 '8 z) V2¢®

oder

(tg%—tg%)[ﬂr (tg—+tg—tg + tg? )] qu-

Setzt man zur Abkiirzung

v Y, v 9y,
A=tg_~tg}, B=1+tg_tg),

so gilt demnach

I T
V;8 A(B+—A2)= —.
(V; 83) 3 Tor
Nun ist nach (V; 26)
— Ztg_
ayd —u, v
tgy = — = , also tg?— 4 2 tg— =
? ,u 1 — tg?— }/5 2

Die Losung dieser quadratischen Gleichung lautet

tg% GV—[# 8+ Yu?— 8 (ep — 8 —0?)].

Da nach (V; 29) zu — & — 02 = ¢ = o, so erhdlt man

-9 4u
tg— = —_
8> v
also, je nach Wahl des Vorzeichens
tgi w9 =2 oder tg£=—]/—19.

2 o }/19 Ve ' 2 g
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Da aber nach Definition ¢ mit v (im Perihel) gleichzeitig verschwindet, so ist die
erste dieser beiden Losungen zu wihlen. Es ist demnach

. Y (] v o O+ HpT2
(V; 84) tg 2= 2 tg—=—=20"T%0"
2 T2 e,

wenn man bedenkt, daB fiir Parabeln ¢ = u — ¢ = u, ¢, = ¢; = 1, also nach

(V; 57, 58)
A%6 = 0y + pyt2, A’ﬁ = ]/1?_0.
Mit (V; 84) erhilt man fiir die GréBen A und B

A=”;/';_T; B=1+4+2 (oo+yozr)—%—(2+aozt)
(]
da ja 0§ = 2u, — 9,. Die Gleichung (V; 83) erhilt also die Form
7941 &(2 + 0,217) -I- 02212
V9, 1B 7 qu
oder
I 3, \3
(V:85) e+ Tyt Lew— ]/ (2.
Dieser Ausdruck ist aber mit (V; 82) identlsch, da fiir die Periheldistanz
_ 2% _ T —_ % _ 1% _ o
q = 7, oS A Bt o

y
1+tg2?° I-I-ﬂ—
[

4\ Ho
(2] = () -
und demnach die rechte Seite von (V; 85) gleich der Einheit.
Liegt die Epoche im Perihel, so folgt aus (V; 84) wegen 6, = o, also wegen

gilt. Es iét also

2
’[90 = 2”,0 = -q—s,
tgv Motz _ 2T

Setzt man dies in (III; 43) ein, so folgt ohne weitere Rechnung

(V; 86) it pht =T (=0

als die parabolische Form der Hauptgleichung fiir das Perihel als Ausga_ngsort.



220 Die Zweikorperbewegung als Anfangswertproblem

Die im allgemeinen transzendente Hauptgleichung wird in zwei Sonderfillen
rational:

1. fiir Kreisbahnen: Wegen ¢ = ¢ = o wird auch = { = o, und die Haupt-
gleichung nimmt die triviale Form

z2=1
an.

2. fiir Parabelbahnen: Wegen ¢ = y = o werden die c-Funktionen konstant,
und es ergibt sich, wie schon erwihnt, die kubische Gleichung (V; 82).

In allen anderen Fillen muB man die Hauptgleichung durch Iteration
lésen. Bei schwach exzentrischen Bahnen, im Falle kleiner Zwischen-
zeiten auch bei Bahnen beliebigen Typs, wird man die Rechnung stets mit der
Ausgangsniherung z, = 1 beginnen konnen. Bei parabelnahen Bahnen und
groBerer Zwischenzeit wird man die Losung der kubischen Gleichung (V; 82)
als Ausgangshypothese vorziehen. Das Iterationsverfahren selbst gestaltet sich
sehr einfach, wenn man sich der NEwTonschen Niherungsmethode bedient.
Es gilt, die Nullstelle der Funktion

(V; 87) H(2) = 24 camgz® + ¢3{y2® — 1.

aufzusuchen. Ist z, ein Ndherungswert der Losung von H (z) = o, so lautet die
TavLorsche Entwicklung von H (z) um z,

(V;88)  H = H,+ Hidz + — Hy(62)* + %Hg' 02+ -,

' s
_Ho— (W>z=z, usw.},

wenn z die strenge Losung und 0z = z — z, ist. Bei der Bildung der Differential-
quotienten von H nach z bedenken wir, daB

d
(V: 89) ) =0

Dies folgt aus (V; 45), wenn man ¢ = zrl setzt und beriicksichtigt, daB z hier

0
die einzige Variable ist, also 7 als konstanter Parameter auftritt, ebenso wie ja
auch 7, und {;, die = enthalten, als konstant anzusehen sind. Es ist also

d
H = d—I;I =TI+ gz + g2t =4
und somit
0z = —ﬂ; 7 =2+ 0z
AO

eine bessere Naherung fiir z, die wir erhalten, wenn wir in (V; 88) die hoheren
Potenzen von §z vernachlidssigen. Man kann dieses Verfahren wiederholen und
wird in praktischen Fillen meist mit ein bis zwei Iterationen auskommen.
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Es ist aber auch moglich, die Entwicklung (V; 88) so umzuformen, da8 ein
strenger und geschlossener Ausdruck entsteht. Differenzieren wir H (z) fort-
schreitend nach 2, so folgt neben H' = 4

H” = A" = cyny + 618z = o (1 — ca202%) + {o2(1 — c3292%) =
=1+ Loz — fo(H + 1 —2),
(Vigo) H" =4" =) — po(H —1) = — x4 — 1),
HYV = 4" = —gH' = —y 4',
woraus fiir 4 (z) und H (2) die Differentialgleichungen
(V; 01) A" + 4ol =0; HV 4 g H' =0

folgen, deren Giiltigkeit man tibrigens auch direkt aus (V; 65) ableitet, wenn
man die Differentialquotienten nach ¢ durch die nach z ersetzt. Es sei nun

Py = 6[2(02)7];
dann gilt, entsprechend (V; 44), die Rekursionsformel

(V; 92) Vot %02 prse=—. (=012 ..)

I
»!

Benutzt man (V; 92), um die reziproken Fakultiten in (V; 88) zu eliminieren,
so erhdlt man

0 = Hy[y, + 7220 (02)2] + Hobz[yy + 73%,(02)%] +
+ Hg (02)2[y, + Vak%o(02)3] 4 --- =
= yoHy + 1Hobz + yo[Hy + 2oHyl (82)® + p3[Ho + 2oHo) (82)

als geschlossenen Ausdruck, da die nachfolgenden Glieder wegen (V; 91) ver-
schwinden. Nach (V; go) ist aber Hy = 4, = 4 (z,) und

Hy + yoHy =g+ Loz + 2oz — 1) = 1y — o+ éo%,
Hy' + 2oHo = 8o+ 2 = é»
und fiir dz gilt daher die Gleichung
(V;03)  0=ypoHy+ 1ndydz+ y2lmy — %o + &%) (62)® + 754,(82)° .
Ist nun z, ein roher Naherungswert fiir z, so sind Hy = H (2) und 8z klein,
und man kann mit

H, __H,
(V5 94) by = L0~ 0

~ —

Y14, 4,
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die Funktionen y, = ¢,[x,(02)?] und die Glieder 2. und 3.Ordnung in (V; 93)
genau genug bestimmen. Es wird dann

(Vigs) dz=—— |T0H, + ~ry — o+ by2) (629 + 5 & (02
o L7 2 6

einen fast strengen Wert fiir die Verbesserung von z, darstellen. Je nach Giite

der Ausgangsniherung kann auf die Mitnahme des letzten oder der beiden

letzten Glieder verzichtet werden. Sollte z; = z, + 4z die Hauptgleichung noch

nicht befriedigen, so fiihrt eine weitere Verbesserung mit

H(z)
4

stets zum Ziel, wobei man, da H (z,) sehr klein ist, fiir 4 den Wert 4, = 4 (z,)
aus der ersten Hypothese iibernehmen darf, statt einen neuen Wert 4 (z,) zu
berechnen.

Ist die Bahn eine Parabel, so findet man z als Lésung der kubischen Glei-
chung (V; 82)

(V; 96) 0zy =2 —2 = —

z+ %nozz—i— %Coz"':z—}— az?+ bz = 1.

Fiihrt man statt z die neue Unbekannte

w=z— >
= 35
ein, so nimmt diese Gleichung die Normalform
. 3b —a? 2702 — 24® + gab
. 3 — = = M =
(V;io7) w2+ au=f, mit « 3 s

an, deren einzige reelle Losung durch die CARDANISche Formel

o o= L BT V-V

. 2
gegeben ist, da die Diskriminante (%) + (%) immer positiv ist. Das ist leicht
2
einzusehen: Es ist nimlich 36 — 4% = %(2 Lo — o) = % (2, — 07), und da
fiir die Parabel 4 = ¢,alsod =y + ¢ — 0% = 26 — 0% = % > 0, so ist auch

a>o.
Fiir die numerische Rechnung kann man dasselbe Verfahren einschlagen wie
am Schlufl des Abschn. 34. Setzt man zur Abkiirzung

I

4 @
V”-Z?

X =
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so wird

3, (@ 3 /7@
N e B =

25 it o+ Y12 + Ji— 2

Andererseits ist

400 _4B(af x-# g 1-(3BY
27 B2 27 \B N ’

x® \2«a

also

iz (I __xz)(3ﬂ)

2% 20%
und somit

i B

o« I+ m+ m’
21— % .

wenn m = gesetzt wird.

X
Man kann das hier skizzierte Losungsverfahren auch bei parabelnahen Bah-

nen verwenden, wobei es gleichgiiltig ist, ob es sich um solche von elliptischem
oder hyperbolischem Charakter handelt. Schreibt man

(V;99) A4 =2cmy, B=06¢c¢,; f=2B—A4% g=3B(4+ B)—43,
so ist

v 1 " /1 —x uo 28 m
- 7 “V14+x 7 Bf 14+ m+ m?
B
und schlieBlich
2=u+ %
Fiir strenge Parabelbahnen hat man

A=my, B={(=§)

zu setzen. Handelt es sich dagegen um eine parabeldhnliche Ellipse oder Hyper-
bel, so 16st man die Aufgabe zundchst mit diesen provisorischen Werten und
verbessert dann 4, B gemiB (V; gg), indem man mit der provisorischen Lo-
sung z, die Funktionen c,(y,2%), c5()y2%) der Tafel Anhang B entnimmt. Néti-
genfalls ist dieses Iterationsverfahren zu wiederholen, bis die Rechnung steht.

Besonders einfach gestaltet sich die Rechnung, wenn die Epoche auf das
Perihel fillt. Dann ist A = o, und das ganze Formelsystem reduziert sich auf

I =% 3m
r=—m, m=|—, 2=
]/I+ 4 I+« I+ m+4 m

/

27¢58,
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2

Fiir strenge Parabeln liefert dieser Algorithmus mit {, = 1—3 und ¢; = -;— die

Losung direkt, wihrend man bei parabelnahen Bahnen die Iteration mit dieser
Losung als Anfangswert beginnt.

Man kann die Lésung der kubischen Gleichung (V'; 97) oder der fiir das Perihel
als Ausgangsort giiltiger Hauptgleichung (V; 86) der Parabel auch direkt der

BarkERrschen Tafel entnehmen. Multipliziert man (V; 86) mit V% und setzt
9

man z |/ = = tg%y , so erhilt man in
w o1 W 1/
%7+§@7—V7

eine Gleichung, deren Losung man in der Tafel aufsuchen oder nach irgend-
einer der in Abschn. 34 beschriebenen Methoden errechnen kann. Multipliziert

man (V;97) mit V% und setzt » V% = tg%j , so ergibt sich die Gleichung

/2 S /36°
g+ gtga7= ]/i

ad’
die in derselben Weise gelést wird. Im Anhang A (Tafel X) findet man auch
geniherte Losungen der Gleichung (V; 86) mit b = %Co, die beim Aufsuchen

geeigneter Ausgangsniherungen fiir die Iteration gute Dienste leistet und die
man, mit b = ¢g{;, auch bei der Losung der allgemeinen Hauptgleichung fiir
das Perihel als Ausgangsort verwenden kann.

Will man, ausgehend von dem Bewegungszustand zur Epoche ¢ = ¢, eine
Ephemeride fiir gleichmiBig wachsende Zwischenzeiten

1,=n1 (n=1123,..)

berechnen, so kommt man, wenn das Ephemeridenintervall 7, geniigend klein
ist, bei der Losung der Hauptgleichung fiir den ersten Schritt (7, = 7,) immer
mit der Ausgangshypothese z, = 1 aus, und zwar ganz unabhingig von der
Bahnform. Fiir jeden folgenden Schritt wird man dann das z des vorhergehen-
den als Niherung benutzen — besser noch, wenn die Folge der strengen Losun-
gen fiir die Zwischenzeiten 7, durch z, (v = 1, 2, 3, ...) gegeben ist, einen auf
Grund dieser Folge zu extrapolierenden z-Wert. Man wird dann immer mit
einer einzigen Verbesserung nach (V; g6) zum Ziel kommen.

44. Ubergang auf die Apsiden

Im allgemeinen wird die Ausgangsepoche {,, auf die sich die lokalen Elemente
%y, +-+ %, und die Invarianten y,, g, ... beziehen, einem beliebigen Bahnpunkt
entsprechen. Unter Umstidnden wird es aber erwiinscht sein, von #, auf die
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Periheldurchgangszeit T (oder die Apheldurchgangszeit T”) iiberzugehen, da
fiir diese ausgezeichneten Punkte der Bahn die Formeln der Ephemeridenrech-
nung einfacher werden. Das fillt besonders bei stark exzentrischen Bahnen ins
Gewicht, wihrend es sich bei Bahnen kleiner Exzentrizitdt kaum lohnt, diesen
Ubergang zu vollziehen, da der Gewinn an Einfachheit der Rechnung nur ge-
ring ist und da ja bei solchen Bahnen die Lage der Apsiden ohnehin unsicher
ist und fiir ¢ — o sogar unbestimmt wird.

Im Abschn. 42 wurde gezeigt, wie man von jeder beliebigen Epoche 7, fiir
die man die lokalen Elemente und Invarianten kennt, auf jede beliebige andere
Epoche iibergehen kann. Die Formeln (V; 60) geben die Werte der Invarianten
fiir die neue Epoche ¢ mit der Zwischenzeit t = k(¢ — ¢,), die Formeln (V; 70,
71) die fiir die Berechnung der neuen Orts- und Geschwindigkeitskoordinaten
notigen GréBen F, G; F, @, die Formeln (V; 61) bzw. (V; 72) sodann die recht-
winkligen Koordinaten des Ortes und der Geschwindigkeit selbst, aus denen
sich dann (als Rechnungskontrolle) die neuen Invarianten nochmals berechnen
lassen. Auch die Formeln (V; 75, 78) fiir 4 und ¢ miissen in diesem Zusammen-
hang genannt werden.

Der Ubergang auf die Apsiden ist dadurch gekennzeichnet, daB fiir den
neuen Ort die Apsidenbedingung ¢ = o erfiillt sein muB. Man erhilt also, da
4 = o, nach (V; 57)

(V; 100) €0y + 01572 =0

als notwendige und hinreichende Bedingung dafiir, da der neue Ort im Perihel
oder Aphel der Bahn liegt. Setzt man fiir den Augenblick

tz=19, _
so erhilt man nach (V; 100) wegen ¢, = cos (y ]/Eo) , 6 = MQL), y aus
yVo
C— o
(V; z01) tglyVa) = — 2%,
0

und die Hauptgleichung ergibt dann, wenn man sie mit ¢ multipliziert, die ge-
suchte Zwischenzeit

(V; 102) T =19+ c00y* + ¢36,9%;  [¢, = ¢,(0¥%)]-

Die Formel (V; rox) lehrt, daB fiir elliptische Bahnen (g, > o) unendlich
viele Losungen y bzw. 7 existieren, in Ubereinstimmung mit der Tatsache, daB
der Himmelskérper die Apsiden unendlich oft durchlduft. Von diesen Losungen
interessieren nur die beiden absolut kleinsten, von denen die eine einem Perihel-,
die andere einem Apheldurchgang entspricht. Die Entscheidung dariiber, welche
dieser Losungen auf das Perihel fiihrt, liefert Formel (V; 57):

(V; 103) A3 = cygy — €,0,0,Y, (Cp = 1 — C20yy?).

Dem Ubergang auf das nichstliegende Perihel entspricht dasjenige y, das den
Ausdruck (V; 103) positiv macht.

15 Stumpff, Himmelsmechanik
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Ist die Bahn schwach exzentrisch, so sind Zihler und Nenner von (V; 101)
klein; die Bestimmung von y und t wird also unsicher. Fiir Kreisbahnen wird
sie unmoglich.

Bei Parabelbahnen wird (V; 101) wegen g, = o unbrauchbar. Dann ist aber
¢y = ¢, = I, und man liest aus (V; 100) ab, daB

Bei parabelnahen Ellipsen oder Hyperbeln kann man die Gleichung (V; 100)

_ % %(2Y?)

V; 10 v =
( 4 & €1(009%)

» (=1 — c2009?)

durch Iteration l6sen, was auf die Folge

O _ % (@5 _ ¢ (@3

= T TN e T M6 (00D)

y e

fithrt. Diese Folge konvergiert rasch, wenn der Himmelskorper sich zur Epoche
in der Néhe der Apsiden aufhilt. In der Ndhe der Endpunkte der kleinen Achse
einer langgestreckten Ellipse wiirde sie unbrauchbar werden. In diesen Punkten
wird nicht nur ¢, = o, sondern auch ¢, = cos (E — E,) = o, denn fiir den Uber-

gang zwischen diesen Bahnpunkten und den Apsiden ist ja E — E, = i% .In
diesem Falle setzt man in (V; 100) ¢, = 1 — g,%2 - ¢, und erhdlt mit
Oy + €16 — €30,0,¥% = 0

eine quadratische Gleichung, deren Losungen den Ubergang auf Perihel und
Aphel vermitteln, wenn man in ¢, (g, %), ¢5(gy¥?) in erster Ndherung die Losung
fiir die Endpunkte der kleinen Achse selbst einsetzt, ndmlich

I n
y== == ,
V c20y 2 I/Eo
7
x I—cos— 4
daja,mitE — E, = i;, =g = 3 In diesen Fillen (Ausgangs-

2

ort in der Néhe eines Endpunktes B der kleinen Achse) ist es vorteilhaft, auf B
statt auf die Apsiden tiberzugehen. Das geschieht nach (V; 103), da ¢ = o, mit
y= % (3%)

0 ey’ B
konvergierende Iteration 16sbar ist. Sind Koordinaten und Invarianten fiir B

, einer Gleichung, die dann ebenso wie (V; 104) durch schnell
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als Ausgangsort bekannt, so nimmt die Hauptgleichung fiir die Ephemeriden-
rechnung von diesem Punkt aus die Form einer quadratischen Gleichung

24 Cnyt =1
an.

Ist der Ubergang auf das Perihel vollzogen, d.h., hat man y, 7 und z = %
bestimmt, so findet man die Invarianten des Perihels aus (V; 60), ferner F, G, ...
und die Koordinaten x, ... 2 des Perihelsin der iiblichen Weise. Fiir die letzte-

ren muB insbesondere die Kontrollgleichung
x4+ yy+22=7r%¢=o0

erfiillt sein. Mit Hilfe der neuen Koordinaten und Invarianten liBt sich dann
die Berechnung beliebiger Bahnérter nach den fiir das Perihel als Ausgangsort
giiltigen einfacheren Formeln vornehmen. Insbesondere erhilt die Haupt-
gleichung fiir das Perihel die Form

(V; 105) 246l =1,
fiir deren Losung Tafel A X geeignete Niherungswerte liefert.

45. Diskussion der Hauptgleichung. Eindeutigkest dey Lisung

Die Losung der Hauptgleichung in ihrer allgemeinen Form (V; 51) hingt von
drei Konstanten #, £,  ab, die wir hier der Einfachheit halber ohne den Index o
schreiben. Die Gesamtheit der Losungen aller moglichen Gleichungen dieser
Art, von denen jede einen Fall der Ephemeridenrechnung mit gegebenen Aus-
gangswerten und gegebener Zwischenzeit reprasentiert, wird also durch die
einparametrige Flichenschar z = const im (5, {, y)-Raum dargestellt. Diese
Flichen sind transzendent, jhre Spuren auf den Ebenen y = const dagegen
sind gerade Linien, da fiir vorgegebenes y die Gleichung

(V; 106) C2* 4 €23 =1 — 2

in % und ¢ linear ist. Setzt man y = o, so stellt die Geradenschar
(V; 107) i@ =%zzn+ %z"&'-{—z—x:o

in der (», {)-Ebene die Lésungen aller Aufgaben der Ephemeridenrechnung dar,
die bei parabolischen Bahnen vorkommen. Wegen der Rationalitit dieser
Gleichung in bezug auf z ist die Diskussion dieser Fille besonders einfach. Die
Geradenschar (V; 107) besitzt eine Enveloppe, deren Gleichung man erhilt,
wenn man aus

=0 g)=L cripyLezzo

e =0 W =1, Ty

15*
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den Parameter z eliminiert. Das ergibt nach kurzer elementarer Rechnung als
Gleichung der Enveloppe

. 4 4 % 3Y
V; 108 =———-n+—=| |1+ =9,
( ) ¢ 5 nﬂgv e

also eine schiefe NEILLsche Parabel (Abb. 43), die aus zwei Asten besteht, ent-
sprechend den beiden Vorzeichen der Quadratwurzel. Diese laufen im Punkte

Abb. 43. Losungen der Hauptgleichung fiir y = o (Parabelbahnen).

in einer Spitze (S) zusammen. Links von dieser Spitze, d. h. fiiry << — 2 , hat die
Enveloppe keine reellen Punkte. 3

Fiir alle reellen Parabelbahnen ist #12 = 2{ — %2 > o. Alle Punkte 7, {, die
als Daten bei der Berechnung parabolischer Bahnen auftreten, liegen also ober-
halb der Parabel

(V; 109) =7,
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die die #-Achse im Koordinatenanfangspunkt beriihrt. Auf dieser die reellen
Fille einschlieBenden ,,Grenzparabel” ist # = o, verschwindet also der Bahn-
parameter p, d.h., jeder Punkt der Grenzparabel entspricht dem singulidren
Fall einer geradlinigen Bahn.

Die Enveloppe (V; 108) hat mit der Grenzparabel (V; 109) nur zwei Punkte
gemeinsam. Setzt man ndmlich (V; 109) in (V; 108) ein, so erhilt man

I .
14+ 120+ 97%) =30 + 2)* =0; {= 1’
Die beiden Punkte
n=o0, (=o0 (Koordinatenanfang)
(V; 110)

n= -3 L= % (Spitze der Enveloppe)

sind also beiden Kurven gemeinsam. Alle anderen Punkte der Enveloppe liegen
auBerhalb der Grenzparabel. Sei ndmlich ¢, () die Ordinate eines Punktes der
Grenzparabel und ¢, () die zur gleichen Abszisse 7 gehorige Ordinate des oberen
Astes der Enveloppe, so ist
S R A TN
L= & 9 n+9V<I.211,

also

A . 8 4 3 /
Cl—é}—'z—("?z‘}‘z’?‘rg)—g(l—i-z )V +
2

Sy 2

Da nun fiir alle reellen Punkte der Enveloppe 7 + % = o, so folgt daraus

¢y — &, = 0, so daB also, abgesehen von den beiden gemeinsamen Punkten
(V; 110) der beiden Kurven, die Enveloppe iiberall auBerhalb (unterhalb) der
Grenzparabel verlduft. Das geht iibrigens auch aus der Tatsache hervor, daB
auf der Enveloppe iiberall

glz) =1+ nz+ isz"=—7—=A=o
2 A
ist, was (abgesehen von den geradlinigen Bahnen, bei denen unter Umstinden
auch » = o vorkommt) bei reellen Bahnen niemals eintreten kann.

Alle Geraden z = const, die reellen Bahnbedingungen entsprechen, miissen
die Grenzparabel schneiden. Bringt man (V; 10g) mit der Schargeraden (V; 106)
zum Schnitt, so ergibt sich fiir die Abszissen der Schnittpunkte die quadra-
tische Gleichung

22

—n—l——n +z—1=0.
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Die Koordinaten der Schnittpunkte sind also

I1q/12— 32 I 6432z __ 1/12 — 32
%=_zi_]/__3, C°=?”%=—°3'+il/“—3'

2 2 2 28 22 z

Diese sind nur fiir 0 << 2 < 4 reell und endlich. Die Losung der Hauptgleichung
ist also, wie wir schon friiher erkannten, stets positiv. DaB sie auch eindeutig
ist, geht unmittelbar aus der Form der Enveloppe hervor. Alle Geraden
z = const erhidlt man, wenn man die Tangente der Enveloppe auf den beiden
Asten dieser Kurve abrollen 148t. Da nun der untere Ast der Enveloppe nach
oben, der obere nach unten gekriimmt ist, so folgt schon aus der Anschauung,
daB bei diesem Abrollen das auBerhalb der Enveloppe liegende Gebiet einfach
tiberstrichen wird, wihrend nur aus Punkten im Innern der Enveloppe mehrere
(drei!) Tangenten an diese Kurve gezogen werden kénnen. Die Kriimmung der
Enveloppe ergibt sich aus (V; 108) durch zweimaliges Differenzieren nach #:

a* 3
d_¢;2=i.———3_
4 ‘/I + 50

iibereinstimmend mit obiger Bemerkung, da das obere Zeichen fiir den oberen,
das untere fiir den unteren Ast gilt. Da das Innere der Grenzparabel und der
Enveloppe einander ausschlieBen, ist damit die Eindeutigkeit der Lésung der
Hauptgleichung fiir Parabelbahnen bewiesen. Dieser Beweis ist iibrigens schon
frither (Abschn. 43) erbracht worden, als gezeigt wurde, daB die Diskriminante
der cardanischen Formel (V; g8) fiir alle reellen Parabelbahnen positiv ist. Der
obige Beweis sagt aber noch mehr aus: Er zeigt, daB die kubische Hauptglei-
chung nur fiirr diejenigen imaginiren Fille der Ephemeridenrechnung drei
reelle Wurzeln hat (casus irreducibilis!), die durch Punkte #, { im Innern der
Enveloppe gekennzeichnet sind.

Die Diskussion der Hauptgleichung fiir elliptische und hyperbolische Bahnen
ist wesentlich komplizierter — sie fiihrt auf interessante geometrische Einsichten,
iiber die man in der Literatur!) nachlesen médge. Hier sollen nur einige wesent-
liche Punkte hervorgehoben werden.

Legt man durch die Flichenschar z = const eine zur (7, {)-Ebene parallele
Fliche y = const = 0, so sind in dieser Ebene die Spuren z = const ebenfalls
gerade Linien. Diejenigen Punkte #, {, die reellen Aufgaben der Ephemeriden-
rechnung entsprechen, liegen, ebenso wie im Falle ¥ = o, innerhalb einer Grenz-
parabel

’

'(V;III) d2=20 -2 —y=o0,
die derimFalle parabolischer Bahnen (V; 109) kongruent ist. Ihr Scheitel beriihrt
die Gerade { = — 2— %, d.h. also: Fiir elliptische Bahnen liegt der Koordinaten-

1) K. Stumprr : Neue Theorie und Methode der Ephemeridenrechnung. Abhandlg.
der Deutschen Akad. d. Wiss. Berlin 1949.
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ursprung im Innern der Grenzparabel; die Kreisbahn (y = { = o) ist also im
Bereich reeller Aufgaben eingeschlossen, wie es sein muf}; fiir hyperbolische
Bahnen (y < o) liegt die Grenzparabel ganz oberhalb der Abszissenachse. Im
(, ¢, x)-Raum ist die Grenzfliche, die die reellen Fille der Ephemeriden-
rechnung von den imaginiren trennt und auf der alle Fille geradliniger Bahnen
liegen, ein parabolischer Zylinder mit der Gleichung (V; 111).

Auch in den Schnitten y = const # o haben die Geraden z = const eine
Enveloppe. Diese besteht, wie hier nur erwihnt werden soll, im Falle ellip-
tischer Bahnen aus unendlich vielen asymptotisch ineinander iibergehenden
Asten und liegt, bis auf endlich viele Spitzen, ganz auBerhalb der Grenzparabel.
Es 148t sich ferner zeigen, daB die Schar der Geraden z = const das Innere der
Grenzparabel einfach iiberstreicht, so daB auch fiir nichtparabolische Bahnen
die Eindeutigkeit der Losung der Hauptgleichung unter allen Umstdnden ge-
wihrleistet ist. Der Beweis moge hier seiner grundsitzlichen Bedeutung wegen
Platz finden:

Betrachten wir in der Gleichung der Schargeraden
(V; 112) G2+ 2 =1 — 2, [c,=c,(x2?)]

die Abszisse 7 als konstant und differenzieren wir nach { und 2, so ergibt sich
nach (V; 8g)

Az (cr2m + €2%8) + dlcy2® = —dz,
also

Al 14emztetd 4

dz ¢y 28 cg2®’

Da nun ¢, (x2?) fiir alle endlichen Werte des Arguments positiv ist und dasselbe,
reelle Bahnen vorausgesetzt, auch fiir 4 gilt, so ist die Behauptung bewiesen,
wenn man nachweisen kann, daB z fiir alle reellen Fille positiv ist, d.h., daB
alle Geraden z = const, die ins Innere der Grenzparabel gelangen, zu positiven
Werten des Parameters z gehoren. In diesem Falle ist sicher, daB iiberall im

Innern der Grenzparabel % < 0, d.h. die Geraden z = const sich in diesem

Gebiet nirgends schneiden.

Nun ist der Nachweis, da3 z > o ist, schon frither auf Grund der Definition
dieser GroBe (V; 81) wenigstens fiir den elliptischen Fall erbracht worden. Er
folgt aber auch ohne jede Fallunterscheidung aus (V;81a), da z sich als Mittel-
wert einer stets positiven GroBe erweist. SchlieBlich kann man diesen Nach-
weis auch folgendermaBen fiithren, wobei gleichzeitig die Grenzen bestimmt
werden, innerhalb derer z liegen kann:

Die Abszissen 7 der Schnittpunkte der Schargeraden (V; 112) mit der Grenz-
parabel (V; 111) erfiillen die Gleichung

2(1—2)
€523

2 i B
w2 + 1
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deren Losungen

z 2
_ G c3z + 264(1 — 2) + 323y
= Tz + V c2z3
lauten. Setzt man nun nach (V; 44) ¢;32% = 1 — ¢, und bedenkt, da3
€3 — cg — €16 = —2¢4,

wie man aus der Definition der c-Funktionen leicht nachweist, so erhilt man

_ G / €y — C4Z
= T + ] 2Tas
Dieser Ausdruck ist aber reell nur fiir

¢
0<z§_3_;
Cs

da ¢y und ¢, positiv sind. Insbesondere entspricht z = o der unendlich fernen
Geraden und der Maximalwert

. . (2%
(V; 113) Zmax = e (12
derjenigen Schargeraden, die die Grenzparabel beriihrt. Fiir y = o wird ¢; = —;—

Cy = 2’ also 2may = 4, wWie schon bewiesen. Fiir elliptische Bahnen ist 2 < Zmax

< 4, fiir hyperbolische Bahnen 4 <C zZpax << «o. Man beweist das leicht folgen-
dermaBen: Im elliptischen Fall setze man 4 = z}/y. Dann ist
b _ Lﬂl—ez fir 42— oo,

cy 2
. I+ cos i

Im hyperbolischen Fall setze man 4 = z})/—y. Dann ist

A
. A —
%:1 6‘”"'12 .y @;’” oo filr Ao,
4 (&0]’1—(1+—;) 1-*—;22
' 1T TG0 A

da g 4 gegen eins, €oj 1 gegen oo strebt.

Die obenerwihnten Spitzen der Enveloppe verdienen deswegen Interesse,
weil sie singuldre Punkte der Grenzparabel darstellen (siehe auch Abschn. 64).
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In der Ebene 5 = const des (, {, x)-Raumes erfiillen die Punkte #, { der Enve-
loppe die beiden Gleichungen

fe) =2+ ezt 4 gl* —1=0,
gR) =14+ cnz +l2=4=o,
aus denen fiir die Koordinaten der Enveloppenpunkte die Parameterdarstellung

. _—awzta ., (—6z—q
(V; 114) n= (€% — cycq) 22 ° ¢= (c§ — c165) 28

folgt. Die Spitzen der Enveloppe sind dadurch charakterisiert, daB fiir sie
an _ a4l _

az _dz °
ist. Aus (V; 114) folgt aber nach kurzer Rechnung, wenn man beim Differen-
zieren die aus (V; 89g) folgende Beziehung

dc,
dz

I
= (1 —6)

und die zwischen den c-Funktionen bestehenden Identititen, wie
2 I
€3 — €103 = C3 — 2C4, Coly — €164 = ;03 — ¢

usw. beriicksichtigt,

. dn _c3 Cz—¢ AL 6 Cz—C
(Vs 113) dz 2 (2 —cc)? & LT T (c2 — ¢y o
A —sind . . e
Da nun ¢4(4%) = — fiir endliches A% immer positiv ist und dasselbe auch
fiir
o A
1 A4Sty 12

€ —cioy = F[(I —cos A2 —sin 4 (A —sin 3)] = T(I — ;-ctg;)

gilt, so sind die Gleichungen (V; 115) dann und nur dann gleichzeitig erfiillt, wenn

. _ . _ Glr#)
(V; 116) 2=z = & (1)

ist. - Die Losungen dieser transzendenten Gleichung ergeben also diejenigen
Werte z, des Parameters 2, fiir die die Enveloppe eine Spitze hat; die Gerade
2z = 2, geht durch die Enveloppenspitze hindurch und beriihrt die beiden in
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ihr zusammenstoBenden Aste der Enveloppe gemeinsam. Setzen wir (V; 116)
in (V; 114) ein, so erhalten wir fiir die Koordinaten der Spitze die Ausdriicke

(Vs 117)

_ (cy — €5) Ca + Ca65 .

$

(¢3 — c16q) €3

3= T o

¢ = (L — )G —1Cs o Gyl3
) (3 — c165) €3

3 =

)

o

wie leicht bewiesen wird, wenn man die ¢, (4?) in ihrer trigonometrischen Form
schreibt. Als Argument der c-Funktionen ist in (V; 117) natiirlich fiir z die

}
RO
- RRSEERIE (S
S (S |® S
of
Ellipsen
74+
ldusgarrgsw-r1 Ausgangsort
im‘/lphe/‘ o4 | im Perihet
54
43
a.
L)
i+

24
4
N 7l 2] 3

4 -y
N ‘Parabeln ©  ©

Abb. 44. Losungen
der Hauptgleichung fiir n = o
(Ausgangsort in den Apsiden).

Losung (bzw. eine der Losungen)
von (V; 116) einzusetzen. Fiihrt man
die Werte (V; 117) in die Gleichung
der Grenzparabel ein, so ergibt sich

9
[N
03

2C_772+X_ZT%‘_

2.2 2

c2c? c

1%3 3
- -|-12(—C) =o0,

Co 2

eine Beziehung, die identisch erfiillt
ist. Die Spitzen der Enveloppe sind
also gleichzeitig Punkte der Grenz-
parabel.

EinebesondereBeachtung verdient
noch der Schnitt n = o, der die
Spuren der Flichen z = const auf
der (¢, x)-Ebene enthilt, also simt-
liche Fille der Ephemeridenrechnung
von den Apsiden aus in sich ver-
einigt. Wahlt man (Abb. 44) die {-
Achse als Abszissenachse, so trennt
die Gerade

x+2f=o0

die reellen Fille von den imagindren.
Sie ist die Scheitellinie des paraboli-
schen Grenzzylinders (V; 1r1) und
enthdlt die Scheitel aller Grenz-
parabeln der Flichen y = const.
Rechts von dieser Geraden liegen die
reellen Fille, die hier allein inter-
essieren. Oberhalb der Abszissen-
achse ist der Ort der elliptischen

Fille (x > o), unterhalb der Ort der hyperbolischen (y < o), wihrend die
reellen parabolischen Fille auf der positiven {-Achse liegen. Die positive
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x-Achse dagegen entspricht den kreisformigen Bahnen ({ = o) und teilt den
reellen Raum der oberen Halbebene in zwei Gebiete: Im rechten oberen Qua-
drantenist £ > o, die Epoche fillt also in das Perihel; links der y-Achse, in dem
keilformigen Raum zwischen dieser und der Spur der Grenzparabeln, ist das
Gebiet derjenigen Punkte, die einer Ephemeridenrechnung vom Aphel aus ent-
sprechen.

Die Spuren z = const sind in der (£, y)-Ebene keine Geraden, sondern ge-
kriimmte Linien, die aber fiir kleine | {| fast parallel zur y-Achse verlaufen und
die {-Achse fast rechtwinklig schneiden. Es findet also nicht nur ein stetiger
Ubergang von der elliptischen in die hyperbolische Halbebene statt, sondern
man bemerkt auch, daB die Losungen der Hauptgleichung von der Invarian-
ten ¢ nur sehr wenig abhingen, so daB man schon mit rohen Niherungen fiir
die ¢c-Funktionen recht genaue z-Werte erhilt.

Die reellen hyperbolischen Fille haben ihren Platz in dem keilférmigen
Raum zwischen der positiven {-Achse und dem unteren Strahl der Grenz-
parabelspur. Dieses Gebiet wird durch die Gerade { + y = o in zwei Teil-
gebiete zerlegt, deren Bedeutung durch folgende Uberlegung klargestellt wird:
Da nimlich 4 = ¢ + g, also auch § = { + g, so folgt, daB auf der Ebene

¢ + x = o bzw. auf der Spur dieser Ebene in Abb. 44, § = — = 0, also fiir alle

endlichen Zwischenzeiten 7 = oo ist. Alle Punkte der Flache {+ x = o ent-
sprechen also Anfangswerten, die den unendlich fernen Punkten der Bahnen
angehoren. Da elliptische Bahnen solche Punkte nicht enthalten, ist klar, daB
die Gerade { + y = o0 in Abb. 44 nur in der unteren Halbebene im reellen Ge-
biet verlduft. Sie teilt den hyperbolischen Sektor in zwei Teilgebiete ein: ein
oberes, in dem { + y > o, d.h. 4 > o, und ein unteres, in dem g < o und da-
her auch 7 < oist. Das gilt aber, wie aus der Polargleichung der Hyperbel-
bahnen
14

= —
I+ ecosv

, (e>1)

abgelesen werden kann, fiir cosv < — %, also fiir die Punkte des zweiten Hy-

perbelastes, der den leeren Brennpunkt (den Antifokus) umschlieBt. Dieser
Hyperbelast stellt eine Bahnkurve dar, die ein Himmelskérper durchlaufen
wiirde, der von der Sonne mit einer dem Quadrat des Abstandes von der Sonne
umgekehrt proportionalen Kraft abgestofen wird. Repulsivkriften dieser Art,
wenn auch mit sehr unterschiedlichen Kraftgesetzen, sind z.B. die sehr kleinen
Teilchen in den Gas- und Staubhiillen der Kometen unterworfen, die bei An-
niherung an die Sonne teils durch den Lichtdruck, vor allem aber durch die
solare Korpuskularstrahlung aus der Kometenkoma abgedringt werden und
die bekannten von der Sonne abgewandten Schweife bilden.
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46. Bevechnung einer Ephemeride aus Anfangswerten

Die Berechnung einer Ephemeride fiir gleichabstindige Zeitpunkte kann mit
Hilfe der Gauvssschen Formeln (Abschn. 33) durchgefithrt werden. Diese Me-
thode ist fiir logarithmisch-trigonometrische Rechnung sehr bequem, erfordert
aber bei der Bestimmung der wahren Anomalie eine Auswahl des Rechenver-
fahrens, je nach dem gerade vorliegenden Bahntyp. Fiir Maschinenrechnung,
ganz besonders aber fiir die vollautomatische Ausfiihrung einer Ephemeriden-
rechnung mit programmgesteuerien elekironischen Rechenanlagen, eignen sich die-
jenigen Methoden bedeutend besser, die auf den in den vorhergehenden Abschnit-
ten entwickelten theoretischenGrundlagen beruhen. Diese Methoden sind erstens
vom Bahntyp unabhingig, zweitens erfordern sie nur zwei ,,Unterprogramme”
[z.B. ¢3 und c3, aus denen sich ¢; und, wenn nétig, auch ¢y nach (V; 44) leicht
ableiten lassen], wihrend bei Verwendung der klassischen Methoden mindestens
deren vier (sin, cos, arctg, In) nétig wiren. SchlieBlich wird bei einem Rechen-
schritt, der ¥, y, z; %, ¥,  liefern soll, nur zweimal ein Unterprogramm auf-
zurufen sein, wenn man von den auch bei den klassischen Verfahren auftreten-
den Iterationen absieht; hingegen wiirde z. B. fiir hyperbolische Bewegung,
wenn Orts- und Geschwindigkeitskoordinaten nach den klassischen Formeln
berechnet werden sollen, nicht weniger als dreizehnmal ein Unterprogramm
aufgerufen werden miissen. Die obigen Methoden sind also fiir programm-
gesteuertes Rechnen nicht nur einfacher, sondern zeichnen sich auch durcher-
hebliche Zeitersparnis aus.

Da die elektronischen Verfahren immer mehr an Bedeutung in der Praxis
umfangreicher astronomischer Rechnungen gewinnen, ist es nicht tiberfliissig,
ein Programm zusammenzustellen, nach dem eine ungestorte Ephemeride be-
rechnet werden kann:

A) Gegebene Grifen

Gegeben seien die zu der Anfangszeit ¢ = £, gehorenden Orts- und Geschwin-
digkeitskoordinaten des Himmelskorpers

Zos Yor %05 Tg» Yo %p-

Die Geschwindigkeiten mogen sich dabei auf die Zeiteinheit von
(V; 118) % = 58.13244 mittleren Tagen

beziehen. Gefordert sei die Berechnung einer Ephemeride der Orts- und Ge-
schwindigkeitskoordinaten fiir die Zeitpunkte ¢, ¢,, ... ¢y, deren konstante
Abstinde irgendeine ganze Zahl von Tagen betragen mége. Fiir eine Epheme-
ride mit #-tagigem Intervall sei also

T = kn = 0.0172021 %

die konstante Zwischenzeit in den Zeiteinheiten (V; 118).
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B) Invarianten
Mit Hilfe der Anfangsdaten werden die Invarianten fiir die Epoche #,
e =g+ Yo+ 25 rhoy = Tk + Yolo + 20i0; 7ew, = A3+ YR+ 4}

und hieraus 7,, 6,, w, berechnet, ferner

1
Uy = €y = Wy — ty, Qo= Mg — &

7§’

— 2 — — 2 o — 2
So=tT% Ny =10,T, ({o=1287% ¥ =g

C) Iteration zur Auflosung der Hauptgleichung
Die Hauptgleichung zum Ubergang von #; auf ¢, lautet
H =2+ canyz® + ¢y —~1=o0.

Man beginnt die Auflésung mit einer Naherung z = z, und rechnet

A2 = y,2%
1 22 At I A2 At
sl =g mate T W =gt

¢, (A% = 1 — 3¢,

Ay =1+ gz 4 638p2% Hy= 24 c3ny2® + ¢3{y28 — 1,

0z = —ZI—Z, =12+ 0z, B=y22 ...,
wiederholt die Rechnung mit der neuen Nédherung z und setzt dies so lange fort,
bis H = o erfiillt ist.

Als Ausgangsnidherung benutzt man, falls ¢ nicht sehr groB ist, beim ersten
Schritt 2z, = 1, bei spiteren Schritten beginnt man die Iteration mit der Lo-
sung z aus dem vorhergehenden Intervall oder mit einem auf Grund der bereits
vorliegenden 2-Folge extrapolierten Wert.

D) Koordinaten fiir t = #;
Sind z, 42, ¢,, 4 die aus der letzten Iteration stammenden Werte, mit denen die

Hauptgleichung H = o erfiillt ist, so erhilt man
P 61692

I —F =c¢,& 22 ,
0 2507 » 0 A1

Gy=1(1 — ), 1—Gy= t —;’F"
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und damit z,, %, aus

¥ — 1y = — (1 — F) 2y + G, %y,

&y — 3, = Fymy — (1 — @) .

Entsprechende Formeln liefern yy, #;, 2, %;.

E) Fortsetzung und Kontrollen

Hat man mit den Ausgangsdaten des nichsten Schrittes,
Ty, Y7 %% 4,
die Invarianten yy, 0, ... yy nach (B) berechnet, so gelten die Kontrollen

o, F, + ¢,G,
n="14; Ql:j—%; e oA% 2

Ferner miissen nach jedem Schritt die Bahnkonstanten

L 2 o b2 (y20) — (120)2
Pl L p =72 (rPw) — (?0)
denselben Wert ergeben.

Mit den neuen Invarianten werden dann (C) und (D) durchgerechnet; man
erhilt so die Koordinaten fiir £ = £, usf.

Dieses Verfahren, das an Einfachheit und Durchsichtigkeit nichts zu wiin-
schen {ibrig 148t, ist den Erfordernissen einer programmgesteuerten Rechnung
gut angepaBt. Es sind aber noch einige ergidnzende Bemerkungen niitzlich:

1. Um die Aufsummierung von Abrundungsfehlern moglichst unschédlich zu
machen, ist es zweckmiBig, die Rechnung auf ein bis zwei Dezimalstellen ge-
nauer durchzufithren als im Endergebnis verlangt wird. Insbesondere sollte
man kleine GroBen (z.B. die Invarianten und ihre Produkte mit 7 bzw. 7%
immer auf eine Mindestzahl von zihlenden Stellen angeben. Im elektronischen
Verfahren bedeutet die Mitnahme weiterer Stellen keine Mehrarbeit.

2. Wenn nur die Ortskoordinaten, nicht aber die Geschwindigkeitskoordi-
naten ephemeridenmifBig zu berechnen sind, wird man nicht, wie oben, jeden
Schritt der Rechnung von neuen Anfangswerten aus unternehmen, sondern
eine groBere Anzahl von Schritten von einem und demselben Anfangszustand
aus rechnen, indem man (B) bis (D) mit den Zwischenzeiten 1, 27, ... #t durch-
fithrt und in (D) nur F, G; x, y, 2 berechnet. Als Kontrolle dient dann nur die
Gleichung 7,,,, = 7,4,,. Erst nach einer gewissen Anzahl von Schritten, wenn
die c-Funktionen, deren Argument stindig wichst, schlechter zu konvergieren
beginnen, wird man auch die Geschwindigkeitskoordinaten in (D) berechnen
und dann die weitere Rechnung mit (nach E sorgfiltig kontrollierten) neuen
Ausgangswerten fortsetzen.
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3. Uber die Giite der Konvergenz der Reihen fiir die c-Funktionen 1iBt sich
folgendes sagen: Bei parabelnahen Bahnen ist ¢ und daher (bei kleinen und
maBigen Zwischenzeiten) erst recht y = % sehr klein. Es reichen dann stets
die beiden ersten Glieder der nach 42 = 22 fortschreitenden Potenzreihen aus.
Bei Planetoiden dient zur Abschitzung von 42 die Formel

2

T
R=oraprt=—— .
0 ort=—;

Setzt man, um mittlere Verhiltnisse zugrunde zu legen, 7 = a = 2.5 und nimmt
man als Zwischenzeit 40 Tage (t = 0.688) an, wie es bei der Berechnung spe-
zieller Stérungen iiblich ist, so erhilt man A2 =~ 0.03 und fiir die Betrige der
Entwicklungsglieder von ¢, (4%) gendhert

I; 5-10% #%.5-10% 54-107% ...,

so daB fiir siebenstellige Rechnung (die bei der Berechnung der c-Funktionen
immer ausreicht) bereits das Glied mit A% unmerklich wird. Die Reihen fiir
Cs, Cg, - .. konvergieren noch besser. Fiir die Programmierung im elektronischen
Verfahren dient der geschachtelte Ausdruck

6 (%) =

AT e+l et eral erse+e N

der die automatische Rechnung von innen heraus erméglicht und auch fiir un-
giinstige Fille genau genug ist, fiir giinstigere aber durch eine einfachere Formel
mit weniger Einschachtelungen ersetzt werden kann.

4. Um bei groBen Zwischenzeiten die erste Iteration (Auflésung der Haupt-
gleichung fiir das erste Intervall) abzukiirzen, kann man vorteilhaft die Formel
(V; 95) benutzen, indem man in ihr zy = 1 setzt. Hat man mit diesem Anfangs-
wert 62 = — —- berechnet, so ist

4

_ . _ n+& &
2=1+dz mit dz=06z|1 Y 0z 64

(62)®

eine Niherungslésung, die auch bei groBen Zwischenzeiten und ungewéhnlichen

Bahnverhiltnissen héchstens noch einmal verbessert zu werden braucht.
Eine andere Moglichkeit zur Beschaffung eines guten Niherungswertes fiir z

ergibt sich, wenn man die Hauptgleichung in Form einer Potenzreihe schreibt,

indem man die ¢c-Funktionen entwickelt:

I 22 2z4 I ZZ 2z4
R FT T e R v B s
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Durch Umkehrung dieser Reihe erhilt man den Ausdruck

Z—I——n—-—’“-l- n+ C——n +—nx4—-~-

der sich beliebig weit fortsetzen 148t und in praktischen Fillen meist rasch
konvergiert. Bricht man die Reihe an geeigneter Stelle ab, so erhilt man eine
Formel, die einen brauchbaren Ausgangswert fiir die erste Iteration liefert und
auch fiir elektronische Rechnung sehr bequem ist.

5. Wie oben erwahnt, wird man bei den weiteren Schritten der Ephemeriden-
rechnung mit konstanten Zeitintervallen die Iteration zur Aufldsung der
Hauptgleichung mit dem z des vorhergehenden Intervalls beginnen. Aber auch
hier 148t sich leicht eine noch bessere Niherung erzielen:

Angenommen, man suche die Lésung z der Hauptgleichung fiir den Uber-
gang ¢, — f,, wihrend die Losung z, fiir den Ubergang ¢, - ¢, bereits vorliegt.
Es lassen sich dann auch die Invarianten und das z fiir den Ubergang ¢, — t,,
d.h. also fiir die Riickwirtsberechnung der Daten fiir #, aus den Daten fiir ¢,,
leicht angeben. Es ist dann die Zwischenzeit — 7 statt r zu nehmen, und man
erhilt, wenn man die fiir diesen Ubergang nétigen GroBen mit dem Index 1 und
auBerdem (zum Zeichen, daB der Ubergang nach riickwirts gemeint ist) mit
einem Strich bezeichnet,

E1=&, m=-nm, LG=0, nu=n
Ferner lautet die Hauptgleichung fiir £, — ¢,

_ T =2 —cima® + oyla® o) = ol (3],
und es ist

’ I 7 ’ ’ ’
(V; 119) 4 === A= I — Mz + 628321
0

AuBerdem ist gemiB der Bedeutung von z

’ 1{ ’ 00

2] = - , wo Ai=E,—E, =—1, = =1,

1 __”/91 1 0 1 00 O A2
also

b= 4 =24,
'”/Qo
ferner
¢y (41%) = ¢, (23).

Es ist daher

I = 24y — o (A3) mz5 AT + ¢y (43) L12843.
Andererseits gilt fiir den Ubergang ¢, — 7,
I =2+ 6 (43) mat + 5 (A]) G278
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Sei nun z = 2z, + 0z, vernachlissigt man hohere Potenzen von 4z und setzt
(fiir diesen Zweck genau genug) c,(4%) = ¢, (A3) = i', so ergibt die Differenz
beider Gleichungen v

0= z(dy— 1) — —mAA+ 1) + £ LyrBd3— 1) -

1
— 0z (I + ey + ;C‘VZ%)
Den Faktor von — dz darf man mit ausreichender Genauigkeit gleich 4, setzen,
und schreibt man ferner
A3+ 1= (4, — 12 + 24, = 24,,
43— 1= (4, — 1+ 34, (4y — 1) = 34, (4 — 1),

indem man héhere Potenzen der kleinen GréBe 4, — 1 unterdriickt, so erhalt
man

4,02 = 2|4y — T — Mz 4y + %Clzﬁdo (4y — 1)

oder, da nach (V; 119) gendhert

I 1
1 — 2z, dy + —&i(204,)2 = ——
Mo 21(00 4,

gesetzt werden kann,

/.

A062=zo(Ao — 24

I

I

oder

_ 2 S P
0z =2z KI Ao) 2 (28

Wenn man auf die Gleichabstindigkeit der Zeiten einer Ephemeride ver-
zichtet, kann man die Auflésung der KEPLERschen Gleichung, ihrer Analoga
bzw. der Hauptgleichung umgehen. So lassen sich nach den frither entwickelten
Formeln bei elliptischen Bahnen Koordinaten des Ortes und, wenn erforderlich,
auch der Geschwindigkeit fiir gleiche Intervalle der wahren, exzentrischen oder
antifokalen Anomalie berechnen und die zugehérigen Zeiten bei elliptischen
Bahnen iiber die KEpLERsche Gleichung

t=T+ @(E—esinE)

16 Stumpff, Himmelsmechanik
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ermitteln, wobei gegebenenfalls E aus

E I—e, v E I+e, w
tg7—V1+etg2 oder tg7—V1_etg;

gewonnen wird. Diese Formeln sind fiir trigonometrische Rechnung geeignet.
Wihlt man dquidistante w, so erhilt man, falls die Exzentrizitdt der Bahn klein
ist, eine Ephemeride fiir nahezu gleichabstindige Zeiten. Fiir dquidistante E ist

dr=dE¢=dE~r}/_a,

d.h., die zugehorigen r-Intervalle sind im Perihel am kleinsten, im Aphel am

groBten. Das gilt noch ausgeprégter fiir quidistante v, da ja nach dem Flichen-
2

satz dt = dv - —.

Diese Art der punktweisen Berechnung einer Bahn hat auBer der Einfachheit
der Rechenvorschrift noch den Vorzug, daB der schneller durchlaufene Teil der
Bahn entsprechend dichter belegt wird als bei dquidistanten Zeiten. Das macht
sich besonders bei stark exzentrischen Kometenbahnen vorteilhaft bemerkbar:
Bei Ephemeriden mit gleichabstdndigen Zeiten miiBte man in der Sonnenferne
wegen der dort sehr langsamen Anderung der Koordinaten zu groBeren Zwi-
schenzeiten iibergehen, evtl. diese sprunghaften Anderungen sogar mehrfach
vornehmen. DaB Ephemeriden mit ungleichen Zeitintervallen auch erhebliche
Nachteile besitzen, braucht nicht besonders hervorgehoben zu werden.

Was hier gesagt wurde, gilt auch fiir die vom Bahntyp freien Methoden der
Ephemeridenrechnung, die in diesem Kapitel beschrieben wurden. Hier ist es
zweckmiBig, statt der gleichmidBig von einer Epoche /, aus wachsenden
Zwischenzeiten t gleichabstindige Argumente y = z7 zu wihlen. Geht man
von den der Epoche ¢ = 4, zugehorigen lokalen Elementen x,, ... %, aus, und
hat man mit ihnen die Invarianten y,, 6,, &), g, berechnet, so wird der weitere
Verlauf der Rechnung folgendermaBen vor sich gehen: Man bilde fiir gleich-
miBig wachsende

Yn = "1, (n =123, )'

wobei y, eine zweckmiBig zu wihlende Konstante bedeutet, die GréBen
1~ F, = k.
. 6™ = ¢, (g9 93)]
Gn = yn(cln) + c2n)ooy0) ’
mit denen man die Folge der x,,, v, 2, berechnet. Legt man auch auf Geschwin-
digkeitskoordinaten Wert, so vervollstindigt man das Programm durch
4, =1+ cMayy, + csMeyy2,

4,F, = —cuyy,; A,0—G)=1—F

n
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Die Folge der zugehérigen Zwischenzeiten wird aus der mit 7, multiplizierten
Hauptgleichung

Ty = 9+ 8700 ¥5 + Ve yi
erhalten. Da y = z1 = A proportional der Differenz E — E, verliuft, folgt,

daB die Zeitintervalle dem Sonnenabstand proportional sind, und zwar gilt das
fiir beliebige Bahntypen.



KAPITEL VI

DIE ZWEIKORPERBEWEGUNG ALS
RANDWERTPROBLEM

47. Die Integralgleichung der Zweikirperbewegung

Unsere bisherigen Uberlegungen, das Zweikérperproblem betreffend, beruhten
auf der Tatsache, daB die Bewegung zweier Massenpunkte um den gemein-
samen Schwerpunkt oder die Relativbewegung des einen Massenpunktes um
den andern durch eine vektorielle Differentialgleichung 2.Ordnung

(VI; 1) ptwt=o (=s)

beschrieben wird. Dieser Differentialgleichung geniigen alle derartigen Bewe-
gungen unter dem EinfluB der NEwToNschen Gravitationskraft; jede konkrete
Bewegung bedarf zu ihrer Kennzeichnung noch gewisser Anfangsbedingungen,
die am besten durch die beiden Vektoren p, und §, gegeben werden, die den
Ort und die Geschwindigkeit des Massenpunktes zu einer bestimmten Zeit, der
Epoche {,, darstellen.

Diese Anfangsbedingungen, die es gestatten, die Bewegung als eine Wurf-
bewegung in einem gegebenen Gravitationsfeld aufzufassen, gehen durch Grenz-
iibergang aus einem anderen System von Bedingungen hervor, das man folgen-
dermaBen definieren kann: Es werde verlangt, daB der Massenpunkt, der zu
einem Zeitpunkt ¢, den Ort p, einnimmt, an einem spiteren Zeitpunkt ¢, den
Ort p, erreicht. Man konnte demnach das Problem als das des gezielten Wurfs
bezeichnen, doch ist dabei wesentlich, daB nicht nur der Ort des Ziels, sondern
auch die Flugdauer des Geschosses vorgegeben wird, da sonst die Losung des
Problems nicht eindeutig wire. Bei oberflidchlicher Betrachtung scheint es also,
als erfordere die Determinierung des Problems durch Anfangs- und durch
Randwerte eine verschiedene Anzahl von Konstanten. Die Anfangsbedingungen
der Wurfbewegung lassen sich durch sechs Konstanten, nimlich die drei Ko-
ordinaten des Anfangsortes und die drei Koordinaten der Anfangsgeschwindig-
keit, ‘vollstindig beschreiben, wihrend die Randbedingungen des gezielten
Waurfs die sechs Koordinaten des Start- und Zielortes, auBerdem aber als sie-
bente Konstante die ,,Zwischenzeit” oder , Flugdauer” ¢; — #, erfordern. Dieser
Widerspruch klirt sich auf, wenn wir den Zielort p; in den Startpunkt p, hin-
einriicken lassen. Im Grenzfall haben wir dann zwei unendlich benachbarte
Orter b, und p, + 4P, zwischen denen das GeschoB sich linear in der unendlich
kleinen Flugzeit 4¢ bewegt. Im Falle der Determinierung durch Anfangswerte
steckt also die Zwischenzeit als Differential in den drei Koordinaten der An-
fangsgeschwindigkeit, wihrend sie im Fall der Determinierung durch Rand-
werte eines Intervalls neben den sechs Ortskoordinaten als endlicher Ausdruck
erscheint. Die Zwischenzeit #, — £, ist dann das Integral iiber unendlich viele
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differentielle Zeitelemente, in denen der Massenpunkt seine Bahn zwischen den
beiden vorgegebenen Ortern beschreibt. Dem entspricht, daB die Losung des
Problems der Losung einer Integralgleichung dquivalent ist.

Die Bedeutung der Integralgleichungstheorie fiir die mathematische Be-
handlung des Zweikorperproblems und anderer mechanischer Probleme her-
vorgehoben und auf die Vorteile einer solchen Betrachtungsweise bei gewissen
Aufgaben der Himmelsmechanik hingewiesen zu haben, ist das Verdienst von
H.Bucerivs. Er schreibt die Integralgleichung der Zweikérperbewegung
zwischen den vorgegebenen Ortern p, und , in der Form

4

) p(s)
(VI; 2) P =5 u+xﬂ'@n7;a,r=r@,
to
wobei der Kern dieser nichtlinearen Integralgleichung die symmetrische Ge-
stalt
Eiéi%lﬁlfm t,<s<t,
(VI; 3) K(s,t) = o
(_tﬂi). fiir ¢ <s< b4 1
t—1,

besitzt und
t—1,

- — 14
(VI; 4) p(t)=po+t_t-(p1—p)~p.,t +p1t ;
1 (1] 1

%

einer gleichférmig-geradlinigen Bewegung zwischen den beiden Ortern in der
vorgegebenen Zwischenzeit entsprechen wiirde. Tatsichlich erhdlt man aus
(VI; 2) p = $, wenn man » = o setzt, d.h., wenn man annimmt, daB keine
Anziehungskraft auf den Massenpunkt wirkt.

Die Form der Gleichungen (VI; 2-4) wird einfacher, wenn man die Zwischen-
zeit ¢, — 4, als Zeiteinheit wahlt und die Anfangszeit 4, = o setzt. Dann erhilt
man, mit T =% (¢} — §) =%,

1
b = <)+r2/ K5, 28as,
0

t_]s —1) fir o=s=t,
> _|t1—s) fir t<s<1,

ﬁ(t) - ‘po(I - t) + p,t.

(VI; 5) 3
K(

Der Kern K (s, t) stellt fiir jeden Wert von ¢ eine gebrochene lineare Funktion
von s dar, die fiir s = o und s = 1 verschwindet und an der Stelle s = ¢ den
Maximalwert ¢(1 — ) erreicht, Sie besitzt dort einen Knick: Die Steigung ist
vor dem Knick 1 — ¢, nachher —¢.
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DaB die Integralgleichung (VI; 5) der Differentialgleichung (VI; 1) dquiva-
lent ist, zeigt man durch zweimaliges Differenzieren nach ¢. Zu diesem Zwecke
ist es notwendig, wegen der Unstetigkeit der ersten Ableitung des Kerns das
Integral in zwei Teile zu zerlegen:

t

1
0 t

Hieraus ergibt sich zunichst

p=5p+ % —t)pr—g) —1{/3@(18 —
0
1
— —t)%t)gr 12/(1 —s)@ds =

1
~

1
=ﬁ—t2-/sp—r(:—)ds+tz/¥ds.
0 ¢

Bei nochmaliger Dfferentiation verschwindet §, da p eine lineare Funktion der
Zeit ist. Ebenso verschwindet die Ableitung des ersten Integrals, das von £ un-
abhingig ist, und man erhilt, wenn man das zweite Integral nach der unteren
Grenze differenziert, die Gleichung (VI; 1), wie zu beweisen war. )

Die Losung der Integralgleichung (VI; 2) oder (VI;5) 1aBt sich ohne Zu-
hilfenahme anderer Variabler durch Iteration erzwingen, wenn die Zwischen-
zeit nicht sehr groB ist. Auf diesen Umstand lassen sich, wie BUCER1US gezeigt
hat, viele Ndherungsmethoden zuriickfiihren, die bei den Methoden der Bahn-
bestimmung (siehe Abschn. 80) gebriuchlich sind.

48. Die LamBERTSche und die EULERsche Gleichung

Im Verlauf der klassischen Untersuchungen iiber das Problem der Berechnung
von Bahnen aus Randbedingungen, also aus zwei rdumlichen Ortern einer
Kegelschnittbahn und der zugehérigen Zwischenzeit, sind verschiedene wich-
tige Sitze gefunden worden, die den dynamischen Zusammenhang zwischen
den Ortern und der Zwischenzeit charakterisieren und daher neben den rein
geometrischen Beziehungen eine entscheidende Rolle spielen. Eine der wich-
tigsten und zugleich merkwiirdigsten Beziehungen dieser Art wurde zunéchst
von EULER fiir die Bwegung in der Parabel gefunden; spiter hat LAMBERT
eine allgemeinere Formel entwickelt, die fiir alle Kegelschnittbahnen gilt und
die EuLErsche Formel als Spezialfall enthilt. Die LAMBERTsche Gleichung ist
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eine Umformung der KEPLERschen Gleichung. Sie ist dadurch ausgezeichnet,
daB in ihr auBer der Zwischenzeit © = #(f, — ¢;) und der groBen Halbachse a
der Bahn nur die Summe 7, + 7, der zu den Randértern P, und P, gehoérenden
Radiusvektoren und die Linge s der zwischen diesen Ortern ausgespannten
Sehne der Bahn vorkommt. ’

Wir beschrinken uns zunichst auf den elliptischen Bahntyp. Driickt man
7, und 7, durch die exzentrischen Anomalien aus:

r,=a(t —ecosE,), #,=a(I —ecoskE,),

E, + E, cos E, — El.),’
2

so ist

rl+rz=a[2—-e(cosE1+cosEz)]=2a(1 — e cos p

also, wenn man

u=g, ecosM.: COSh, O<g<n’
2 2 oZh<m
setzt,
(VI; 6) . 1n+7=2a(1 —cosgcosh).

Ferner ist, wenn man die rechtwinkligen Koord.iﬁaten eines Bahnortes mit
E=rcosv=a(cosE —e), n=rsinv = a]/I_—__ezsinE
bezeichnet, das Quadrat der Sehne zwischen P, und P,
$?= (6 — &)+ (e — m)>

Da nun

& — & = a(cos E, — cos E}) = — 2asin Ey _2_ E, sin El_’; E,

o — My = aJ1 — e2(sin E, — sin E;) = 2a}/1 — €2sin 2 ; Er cos 1t Eal,

2
also

s?2 = 4a’sin’g sin2~E—]42_—E2 + (x — €?) cos? —E}—%ﬁ = 44®sin® g sin?h, .
so erhilt man schlieBlich
(VI; 7) s = 2asingsinh.

Andererseits liefert die KEPLERsche Gleichung fiir die beiden Orter
ty— T t—T

]fa_s , Ey—esinE; =% 1/; ,

E, — E E + E
2Bt 2 —2¢g —2singcosh =

T
2 2 }/E )

Ey, —esinE, =x

also, nach Subtraktion,

(VI; 8) 2g — 2esin
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Setzt man nun
(VI; 9) e=h+g d=h—g &—0=2,
so folgt aus (VI; 6, 7)
71+ 73+ s = 2a[1 — cos(h + g)] = 4a sinz—z ,

7,4+ 75 —s = 2a[1 — cos(h — g)] = 4a sinzg—

und aus (VI; 8)

L = 2g —[sin(k + g) — sin(h — g)].

Ja?

Es gilt also die LAMBERTsche Gleichung

(VI; 10) —— = (¢ —sing) — (0 —sind) |,

VE

wobei € und é durch

sinf — Vw_s;
2 4a
(VI; 11)

bestimmt sind. Da nach bekannten Sitzen der Geometrie 7, + 7, — s = o und
(elliptische Bahnen vorausgesetzt) 7, + 7, + s < 44 ist, so sind die Radikanden
niemals negativ und stets <1, ¢ und § also stets reell.

Fiir Parabeln und Hyperbeln gelten diese Uberlegungen nicht. Man kann
aber dem LamBERTschen Satz mit Hilfe von Reihenentwicklungen eine Form
geben, die von der Bahngestalt unabhingig ist und fiir Parabeln und parabel-
nahe Ellipsen und Hyperbeln praktisch verwendbar ist. Man setze zur Abkiir-
zung

. € .
sin— = x; sin— = y.
2 2

Dann gelten die Reihenentwicklungen

. 1 A
e=2zarcsinx = 2 x+;-__|_

. . € Lo € I, I .
sine=2sin—|/1 —sinf—=2|x — =4 — — - — — —=F.— —...
2 2 A 2 24 :
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und entsprechende fiir § und sin 4. Aus ihnen folgt durch Subtraktion

— _4 3 3 5 9 .7 i94_...
£ Sin € 3[x+10x+56x+ 8x | ],
— g1 —i 3+i 5_|_i 7+i 9+...
0 —sind= 3[y 10”7 56y 48y }

Setzt man fiir x und y die Werte (VI; 11) ein, und setzt man ferner zur Ab-
kiirzung

ntrets=m;, rnt+r,—s=mn,

so ergibt sich die L4MBERTsche Rethe

5 5 7 7
3 3 2 2 2 2
) A _ 2 3m”-—n g m-—n
(VI; 12) 67 (m " )-[— o 12 + % o +

Fiir Parabelbahnen wird% = 0, und die Reihe beschrinkt sich auf ihr erstes
Glied. Das ist die EULERsche Gleichung

3

3 |
- 2=V("1+’2+3) 1/(”1""'2_3)3 I

3
2

(VI; 13) 6t =m

Fiir Hyperbeln wird a negativ; die LAMBERTsche Reihe erhilt also alternie-
rende Vorzeichen, wenn man unter ¢ den Betrag der groBen Halbachse ver-
steht. Fiir parabelnahe Bahnen konvergiert (VI; 12) rasch.

Die Formeln (VI; 12, 13) gelten zunichst fiir den Fall, daB die Differenz der
wahren Anomalien beider Orter v, — v, < mist. Es gilt ndmlich, wie aus (II; 13)
folgt, fiir elliptische Bahnen

o, R
eros;l:]/a(x—e cos— ]/_sm—= I+e)51n—2—

Ly e 2 % V¥ o) sinl2
Vacos y = Ya(x — €) cos 2 }/rzsm 2 = Va(x + e) sin p

und daraus durch Kombination

vy — v . €& .0
(VI; 14) Vri7, cos 2 l=a(cosg—cosh)=zasm-;sm7,

— . Yy — . —s .. £ —
(VI; 15)  Vny7y sin 022 ! =a)1— etsing =ay1 — e*sin



250 Die Zweikorperbewegung als Randwertproblem

. h . . . .
Nun ist % = -: € immer positiv und <z. Es gilt also stets sm% > o. Fiir

v, — v, < @ ist die linke Seite von (VI; 14) positiv, also auch sin % > o,

=

d.h., beide Quadratwurzeln in (VI; 11) erhalten, wie dies oben auch geschehen
ist,das positive Vorzeichen. Ist dagegenv, — v, > m,s0 werden beide Seiten von

(VI; 14) negativ. Es ist dann sin % << 0, und die zweite der Quadratwurzeln

(VI; 11) ist negativ zu nehmen. Die LAMBERTsche Gleichung hat also genauer
die Gestalt

3 3 s 5
(VI; 16) 6r = (m? F #2) 4 3?7 07) 4 ...
40a
wobei das obere Zeichen gilt, wenn die Differenz der wahren Anomalien <,
das untere, wenn sie > 7 ist. Fiir v, — v; = & wird # = 0, da dann die Sehne s
gleich der Summe 7, + 7, ist.
Die EuLersche Gleichung 148t sich natiirlich auch direkt aus den Formeln

fiir die Parabelbewegung ableiten. Wenn ¢ die Periheldistanz bedeutet, so ist
nach (IV; 1o)

_ 2 U1 _ 2Ny, _ 2 Y2 _ to2 2
7, = g sec 2 q<1-|-tg 2), 75 = ¢ SeC 2 q(1+ g 2]
Setzt man fiir den Augenblick ¢, = V—tg—, oy = ]/—tg— so ist

2 _ 2 __
] ="1"—¢g, Ag =173 —4¢,

UV — V.
Ccos iﬁl

v,
g + o = q(I + tg;’tgf) =g¢g———"— = Ynrycosf,

U
COos — COS
2

(VI; 17)

wenn man mit f die halbe Differenz der wahren Anomalien bezeichnet. Aus der
kubischen Gleichung (III; 43) ergibt sich dann

T

. _
— =g |tg 2 g Lt s
V2 q[tgz tg2+3(tg32 tg"z)]

2
oder

3T 3y — ) + (6 — o) = (1 — @) (3q + o2 + ooy + ) =
/2

= Yo — 20,0 + 03 (3¢ + of + oy + af) =

=Vn+ 17— 2Vnmcos f{n+r + Yrrycos f),
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wenn fiir 2%, «f und o, «, die Werte (VI; 17) wieder eingesetzt werden. Nun ist
aber in dem Dreieck zwischen der Sonne und den beiden Ortern der Parabel-
bahn nach dem Cosinussatz der ebenen Trigonometrie

s2 =124 7§ — 277,c08(vy — ) =13 + 7§ — 2n7a(2cOs? f — 1) =
= (ry + 75)* — 4ny7p cos? f.

Setzt man nun wie oben m =7, + 7, + s, n = 7, + ¥, — s, so folgt

(VI; 18) 2firacosf = £ Ymm; b r="0"
und man erhilt

. 3t m+n _ —([(m+n ]/W
i =) % (212 1 127)

oder, wie oben,
: 3 3
6t = (Ym F Vn) (m + ymn +n) =m? Fn?.
Aus (VI; 18) folgt unmittelbar, daB das obere Zeichen fiir f < g , das untere

fiir f > %gﬂt.

49. Ubertragung der Sétze von EULER und LaMBERT auf das
Geschwindigkeitsdreieck

Der EuLERsche Satz, der fiir die Parabelbewegung in jedem aus zwei Ortsvek-
toren gebildeten Dreieck gilt, 148t sich auch auf das Geschwindigkestsdreieck
iibertragen, das von den zwei zugehérigen Geschwindigkeitsvektoren gebildet
wird.

Bezeichnen wir mit ¥, und ¥, die zu den zwei Ortern P, und P, der Parabel-
bahn gehorigen Geschwindigkeiten und seien (Abb. 45) @, und Q, die ent-
sprechenden Punkte des Hodographen, so ist nach dem am SchluB von
Abschn. 21 bewiesenen Satz der von den beiden Vektoren OQ; und OQ, ein-
geschlossene Winkel

1
f= Z (v — v9),
und es gilt daher, wenn S die Linge der Sehne des Geschwindigkeitsdreiecks
bedeutet,
(VI; 20) S2=V24+VE—2V,V,cosf.
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Wird nun die Zeiteinheit so festgelegt, daB » = 1 ist, so gilt nach (III; 33) fiir
die Parabelbewegung 7 = 2 es ist also

e
=2 Zcosf_%
R AT A
a
S
&) 2
Z
f
0

Abb. 45. Hodograph der Parabelbewegung. Geschwindigkeitsdreieck.

und man kann an Stelle der Formeln (VI; 18)

2 2 _ g2
+ Ymn =z% = 2(M? — N?); mi—n = 2M?
172 =

schreiben, wenn man zur Abkiirzung

(VI; 21) M= l/ 73 + V2’ 7151/.—2
setzt. Nach (VI; 19) ist dann
(VI; 22) 31 = 2N (3M?% —N?),
was man auch in der Form
3it = (M + ¢N)® — (M — iN)3

schreiben kann. Diese Gleichung, in der die Verwandtschaft mit der EVLERschen
Gleichung deutlich hervortritt, ist reell, da beide Seiten rein imaginir sind.
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Eine Ubertragung des LamBERTschen Satzes (VI; 12) auf das Geschwindig-
keitsdreieck nach dem gleichen Prinzip 148t sich nicht ohne eine gewisse Will-
kiir vornehmen. Sie fithrt aber auf folgende Weise zu einer einfach gebauten
Reihenentwicklung: '

Wenn wir den allgemeinen, insbesondere den elliptischen Fall der Bahn-
bewegung zugrunde legen, so ist, wie im Abschn. 21 bewiesen wurde, der Winkel
zwischen zwei Geschwindigkeitsvektoren gleich f 4 f', wenn 2f = v, — v; die
Differenz der beiden wahren Anomalien und 2f = w, — w, die Differenz der
beiden antifokalen Anomalien bedeutet. Fiir die Sehne S im Geschwindigkeits-
dreieck gilt also

(VI; 23) §*=Vi+ Vg — 2V Vycos(f+ 1),

eine Gleichung, die im Fall der Parabel (' = o) in (VI; 20) iibergeht. Im Orts-
dreieck ist, wie frither,

s? = (1, + 75)® — 4nrpcos?f,
also

(VI; 24) 4772 c.oszf =n+ra+s)(r+r—s) =mn,
4717y SIN? | = 47,7, — mn.

Andererseits ist in dem von den beiden antifokalen Distanzen 77, #; gebildeten

Dreieck, dessen dritte Seite ja ebenfalls die Sehne s ist,

= (i + 73" — 4rirg ot f,
also
4rirgcos® f = (r1+ 75+ ) (r1+ 75 — 9)

oder, dar; = 2a — 7, 75 = 2a — 7,,
4rirs cost ' = (4a — m) (40 — n),
(VI;25) |4rirssinf = 4(2a —n) (2a — 1) — (42 — m) (42 — 1) =
= 417y — MmN
SchlieBlich ist nach dem Energiesatz (I1I; 34)

’ ’
% %
Lo vE="2 also 7irg=rra? VIV

2 _
= 2
Y7 arn’ ar,

und somit nach (VI; 24, 25)

2Ynrcosf = Ymn, zynraViVycosf = Y(4a —m) (4a —n),

2Yntysinf = Y4nr, —mn, 2ynr,aV,Vysinf = Varr, — mn.
Man erhilt demnach aus (VI; 23)
gnrpa ViVocos (f+ f) = zann(Vi + V§ — 5% =

= Ymn(4a —m) (42 —n) — (47,7, — mn)
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oder
mn(4a — m) (4a — n) = [2a 17y (V3 + V3 — S?) + 4, — mal?,

woraus nach einfacher Rechnung folgt, wenn man wieder m 4+ #z = 2(r; + 7,)
setzt,

mn [4:1 —2(r, + 1) + 117, (V‘f + Vi+ % — Sz)} =
(V; 26) 2 2
=r§r§<V% + Vi 4+ i 52) .
Nun ist aber nach dem Energiesatz (III; 31), wenn, wie oben, » = 1 gesetzt
wird,

2 I
pr=2_~,
v a

I . ..
also, wenn man W2 =V? 4 — einfiihrt,
a

2
¥ = Wz .
Definiert man nun die HilfsgréBen M und N in der Form
I I S
Viiz7) v~ Vit Y=

die fiir den Fall der Parabel (1/a = o) in (VI; 21) iibergeht, so nimmt (VI; 26)
die Gestalt '

2
mn (1 - %) = 4(M*% — N??

an, und man erhilt statt (VI; 18) die Beziehungen

. . . . 4(M2_N2)2
(VI; 28) m+ n = 4M3, mn———x—lNz ,

wo A = 1/a eine Konstante ist, die fiir parabelnahe Bahnen klein ist und fiir
Parabeln verschwindet.

Durch eine umstdndliche Rechnung, die hier iibergangen werden darf, 148t
sich die LAMBERTsche Reihe (VI; 12) umformen, indem man aus (VI; 28) m
und # als Funktionen von 4 bestimmt und in (VI; 12) einsetzt. Man erhilt
dann schlieBlich die Reihe

37 = 2N (M — N + S AN* (5M* — 30%) +
(VI; 29)
+ 5%(1N2)2 (7M2 — 5N + -,

die fiir 4 =.0 in (VI; 22) iibergeht.
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50. Berechnung der Bahnelemente aus Randwerten

Im Abschn. 39 ist die Aufgabe gelost worden, die Bahnelemente aus Anfangs-
werten, d.h. aus den Koordinaten des Ortsvektors p, und des Geschwindigkeits-
vektors P, zur Epoche #, abzuleiten. Die entsprechende Aufgabe, aus Rand-
werten, d.h. aus den Koordinaten zweier zu den Zeiten #, und ?, gehdrenden
Ortsvektoren p; und p, und der Zwischenzeit © = % (f, — ¢,) das System der
Kegelschnittelemente zu bestimmen, ist nicht immer mit der gleichen Exakt-
heit und Eindeutigkeit 16sbar. Wenn z.B. die beiden Ortsvektoren entgegen-
gesetzt gerichtet sind, also zwei in bezug auf das Attraktionszentrum gegen-
iiberliegenden Bahnpunkten zugehéren, dann gibt es offenbar ein ganzes
Biischel von Ebenen, in denen die Bahn liegen kann. In diesem Fall ist also eine
eindeutige Losung nicht vorhanden, und auch in benachbarten Fillen werden
gewisse Bahnelemente, wie Neigung und Knotenldnge, nur mit erheblicher Un-
sicherheit ermittelt werden konnen. Abgesehen von diesen Ausnahmefillen, die
in der Praxis kaum Bedeutung haben, besonders aber dann, wenn die beiden
Ortsvektoren zu benachbarten Bahnpunkten gehéren, also einen nicht sehr
groBen Bahnbogen und (im Falle elliptischer Bahnen) eine im Vergleich zur
Umlaufszeit kleine Zwischenzeit einschlieBen, ist die Losung eindeutig und
ohne besondere Schwierigkeiten maoglich.

Die klassische Methode der Bestimmung der Bahnelemente aus Randwerten
geht von der Voraussetzung aus, dal der Parameter der Bahn bereits bekannt
ist bzw. durch ein besonderes Verfahren berechnet worden ist, das im nichsten
Abschnitt beschrieben werden soll.

Die beiden Ortsvektoren liefern zunichst unmittelbar die Lageelemente (Nei-
gung und Knotenlinge) der Bahnebene, vorausgesetzt, daB die beiden Vektoren
nicht kollinear, d.h. gleich oder entgegengesetzt gerichtet sind. Sind

%15 Y10 %15 X, V2, 22

die Koordinaten der gegebenen Ortsvektoren, so lautet die Gleichung der Bahn-
ebene
Xy z
ppe)) = |2 9 2| =0,
%2 Y2 %
d.h., der Inhalt des von dem variablen Vektor p(x, ¥, 2) eines beliebigen Bahn-
punktes und den beiden festen Vektoren p,, p, gebildeten Parallelepipeds muBl

verschwinden. Zur Bestimmung der Knotenlinge &l und der Neigung ¢ der
Bahnebene benutzt man meistens Polarkoordinaten. Es ist nach (IV; 1)

%, = 7, €08 by cos [y, %, = 7, COS by coOs Iy,
(VI; 30) Yy =7, co8 by sinly, 1y, = 7,08 b, sinly,

2y =7, sinby, 2y = 7, Sin b,.
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Aus diesen Gleichungen erhilt man die Radiusvektoren # der beiden Orter sowie
deren Lingen !/ und Breiten b in dem gewihlten Koordinatensystem. Aus
(IV; 11) - siehe auch Abb. 39 — ergeben sich dann die Beziehungen

(VI; 31) tg 1sin(l — ) = tgb,
(VI; 32) tgu cos ¢ =tg(l — ),

aus denen s, §t und die Argumente der Breite u,, uy der beiden Orter folgen.
Wendet man nidmlich (VI; 31) auf p, an, so erhélt man

tgby =tgisin (ly — ) =tgesin[(h — N) + L —14)] =
= tg i [sin (; — §L) cos (§y — ;) + cos (i, — §b) sin (ly — 1)].

Da aber fiir p,

(VI; 33) tgisin (i — ) = tgb,,

so ist schlieBlich

(VI; 34) tgicos(y — Q) = Bla—tEhcos—h)

sin (I, — 1)

Die Gleichungen (VI; 33, 34) liefern 4, §} streng. Eine Losung von groBerer
Symmetrie erhilt man, wenn man

johth g _hoh
2 ’

2
setzt. Dann ergibt die Anwendung von (VI; 31) auf beide Orter
tgisin(l — & — 1) = tg by,
tgisin (0 — U+ 1) = tgb,,
woraus man leicht die symmetrischen Formeln

tgisin(l — ) = —;—(tgbl—i— tg by) sec 4,

tgicos (I — §Y) = % (tg b, — tg b,) cosec 4

ableitet. SchlieBlich kann man 7 und §U auch direkt als Funktionen der recht-
winkligen Ortskoordinaten bestimmen. Multipliziert man (VI; 31) mit 7 cos b,
so findet man wegen (VI; 30)

ytgicos & — xtgesin §b = 2.
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Wendet man diese Formel, die Gleichung der Bahnebene in rechtwinkligen

Koordinaten, auf beide Orter an, so ergeben sich zwei Gleichungen fiir tg 7 cos §
und tg 4 sin §1, aus denen

tgicos = Mg tgisin N = M

%1Ye — N%e %1Y2 — Y1%e

folgt. Diese Losung ist besonders fiir Maschinenrechnung bequem.

Aus (VI; 32) erhilt man die Argumente der Breite, #, und #,, deren Differenz
#, — #, der Differenz dér wahren Anomalien v, — v, gleich ist.

Immer unter der Voraussetzung, daB der Bahnparameter p bekannt ist, findet
man aus der Bahngleichung fiir beide Orter

4

(VI; 35) ST I=ecosy =my; ?—I=ecosv2=m2.

1 2
Schreibt man die zweite Gleichung
My = ¢ cos[vy + (v — v)] = e cos [y + (g — uy)] =
= m, cos (s — ;) — e sin v; sin (uy — %),
so folgen e, v, und v, aus
€cos v, = my,

My COS (g — ty) — 7y

(VI; 36) esiny, = sin (uy — ) ,
v2=vl+u2_ul.

Setzt man
f=“2“‘“1=2’2_”1

(VI; 37) 2 2

n=v—f, vn=v+f,

so leitet man aus (VI; 35) die symmetrische Losung

eCcosy = ; (my + my) secf,
(VL; 38) )
. 1
esinv = — (my — m,) cosec f

zur Bestimmung von ¢, v und damit von v,, v, nach (VI; 37) ab.
Nunmebhr sind auch die groBe Halbachse

4

1 —e?

a =

17 Stumpff, Himmelsmechanik
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und der Perihelabstand vom Knoten

w=ul—v1=u'2—02
bekannt. Das letzte der noch zu bestimmenden Elemente, die Periheldurch-
gangszeit T, erhilt man mit Hilfe der KepLERschen Gleichung und ibrer Ana-

loga. Im Fall elliptischer Bahnen bestimmt man die exzentrische Anomalie E
fiir einen der beiden Orter aus (II; 14 oder 15)

E qyj1—e o (o ¢ v .
tg;—l/1+etg;—tg(z ;)tg;. (sing = ¢)

bzw., wenn e klein ist, also » und E nur wenig voneinander verschieden sind,

nach (III; 61) .
1/ @
= VP sin —~sinv.
Die Perihelzeit ergibt sich dann aus der KEpLERschen Gleichung

%t — T) = (E — esin E) Ja%.

Man kann diese Rechnung fiir beide Orter durchfiihren und hat damit eine
wichtige Kontrolle.

G.MERrTON 16st die Aufgabe der Elementenbestimmung aus Randwerten
auf folgende elegante Weise: Es sei

7.
Po =P = (plpz) —z =D —:COS (g — ) py =

sin

(VI; 39)
_ X%+ Y12+ %12
=P — 72 P

ein Hilfsvektor (MErTONscher Vektor), dessen Koordinaten mit denen von p,
und p, bekannt sind. Es gilt dann

(P1py) =0, d.h. |[p1po]| = ",

[papo] = [pupe), also auch |[[pipel| = 717y,

(PoPo) = 75 = (PyP2) = (P2P2) — —(p‘,‘?)

oder

I
5= r—% 373 — (mp2)?.

Man erhilt dann, ohne den oben beschrittenen Umweg iiber die Polarkoordi-
naten J, b und die Lagekoordinaten 7, §i der Bahnebene,
|[91P2]| ’1"0

. . 7,
sin (#y — ;) = sin (v, — v)) = v v =r£’
172 172
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(p1P2) _ T %+ NYe + 22

COS (#y — Uy) = COS — V.
(1 — ) = cos 1y — ) = 2%

o1

t 2] = - )
g2f X%+ MY+ 5%

worauf ¢, vy, v, direkt nach (VI; 36 oder 38) bestimmt werden kénnen, sofern
der Parameter der Bahn als bekannt angesehen werden darf.

Die Bahnlagekoordinaten 7, §%, w findet man sodann aus den GAussschen
Gleichungen (Abschn. 33), indem man die Vektoren mit den Koordinaten
(IV; 18)

B(ba, by, 1) 200 9. 42)
einfiihrt. Es ist dann wegen (IV; 16)
P =7 (R cosu, + Qsinuy); py = 7,(P cos u, + £ sin u,)
oder, wenn man nach (VI; 39) p, einfiihrt,
Py = 72 (B cos uy + O sin u,) — 7, (P cos u, + 0 sin u,) cos (uy — uy) =

= sm—(u:l——-u_l) {B[cos u, — cos u, cos (uy — u,)] +

+ D[sin u, — sin u; cos (uy — u,)]}.
Setzt man hierin u, = u, + (u; — #,), so erhilt man
Po =1L cosuy; — Psinuy).

Multipliziert man nun die Gleichungen

@O I

%1—= PBcosu, + isinu, | cosw |siny,
1
p—"=chosul—‘,Bsinu1 —sin v, | cos v,
7
(]

mit den Faktoren (I) bzw. (II) und addiert, so folgt, mit #, — v; = w,

A= Pcosw+ s,Bsmw——p—lcosv ——ﬁsinvl,
n %
P

B=90Dcosw— Psinw =+ S siny +—cosv1
1 )

Die Koordinaten a,, ,, a, bzw. b,, b, b, der Vektoren %, % sind numerisch
durch die Koordinaten von p,, p, und durch v, gegeben. Setzt man andererseits

17*
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die Koordinaten von P und £ nach (IV; 18) ein, so bestitigt man leicht die
Giiltigkeit folgender Identit4ten:

sin7 sin w = a,cos ¢ — a, sin ¢,

sin ¢ cos w = b, cos € — b;, sin g,
—cos ¢ sin § = a, sin w + b, cos w,
cos ¢ sin § = a, cos w — b, sinw,
cos §& = a, cos w — b, sin w,

aus denen w, §U, ¢ der Reihe nach bestimmt werden koénnen.
Im Fall parabolischer Bahnen wird man statt des Parameters $ den Perihel-

abstand ¢ = %benutzen, und es ist

(VI; 40) n=—"2_, n=""=t_ -1

v v
cos? -2—’ cos? 72 cos*( + f)

Es bestehen also die beiden Béziehungen

v, Uy . Uy
cos—* cos — sin —

T

I vy I .V . .
aus denen man — cos ;’ , —=sin ;1 und damit ¢, »; und v, = v, + 2f bestimmen

Va

kann. Esist also, ebenso wie im Fall einer Kreisbahn, wop = a =7, = 7,, auch
im Parabelfall nicht nétig, den im nichsten Abschnitt zu beschreibenden Weg
zur Berechnung des Parameters zu beschreiten. Hier geniigen zur Bestimmung
von ¢ und v, die beiden Gleichungen (VI; 40), wihrend im elliptischen und
hyperbolischen Fall die beiden Gleichungen (VI; 35) drei Unbekannte (p, v,, €)
enthalten, so dafl man, um sie verwenden zu konnen, eine von ihnen (p) als
gegeben voraussetzen muB.

Die Perihelzeit bestimmt man bei parabolischen Bahnen direkt aus der
Gleichung (III; 43). Bei parabelnahen Ellipsen oder Hyperbeln wird man auf
die Formeln der Abschn. 36, 37 zuriickgreifen, bei Hyperbeln mit gro8er Exzen-
trizitit auf (III; 51).

5%, Das Verhdltnis Sektor:Dreieck
Alle im vorigen Abschnitt gegebenen Rechenvorschriften zur Bestimmung der

Kegelschnittelemente aus Randwerten beruhen, wenn wir Parabel- und Kreis-
bahnen ausnehmen, auf der Voraussetzung, daB der Bahnparameter  bekannt
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sei. Das Problem, p mit ‘Hilfe der gegebenen Daten der Randwertaufgabe zu
berechnen, ist mit gewissen Schwierigkeiten verkniipft, die im wesentlichen
davon herriihren, daB $ durch die Konstante des Flichensatzes bestimmt ist,
also von den Koordinaten der Geschwindigkeit abhéingt, die in den Daten des
Randwertproblems nicht enthalten sind.

Natiirlich ist es moglich — dies moge der Vollstindigkeit wegen hier erwihnt
werden — den Parameter aus dre: Bahnortern zu berechnen. Dann sind drei
Gleichungen (VI; 35) vorhanden, aus denen man die Exzentrizitit e eliminieren
kann. Schreibt man niamlich

ﬁ—r:ecosvl ' sin (v — )
"

i—I———ecosvz-- —sin (v, — vy)
4

% — I =€C0S, sin (v, — )
3

und multipliziert diese Gleichungen mit den am Rande vermerkten Faktoren,
so erhdlt man

b

~—sin (v — vp) — 2 sin (v; — v) + f—sin (v, — ) =
" £} €]
= sin (v; — vy) — sin (v; — v;) + sin (v, — v)

oder, wenn man die doppelten Inhalte der von den Vektoren p,, p, eingeschlos-
senen Dreiecksflichen mit

[rir) = 7ysin (v — v) = —[ryr], (> v)
bezeichnet,
71 [rats) — ta(17s) + 13[17e) (7l
VI: 41 — 1l72%s 2”173 sl”1 — 1 ,
( 41) P (ra73] — [1173] + (7172 2 rmnl

wobei die Folge 1, §, k& bei der Summation die drei zyklischen Permutationen
der Folge 1, 2, 3 durchlduft. Diese schone und symmetrisch gebaute Formel
erweist sich aber fiir die praktische Rechnung als ungeeignet: Sie hat namlich,
wenn die Zwischenzeiten klein sind (und das ist bei weitaus den meisten An-
wendungen der Fall), die Form eines Quotienten aus kleinen Gréfen, da der
Nenner, wie geometrisch evident ist, den doppelten Inhalt des von den drei
Planetencrtern gebildeten Dreiecks wiedergibt, einer Flache also, die im Ver-
gleich zu den Dreiecksflichen selbst von geringerer GroSenordnung ist.

Eine sehr genaue Methode der Bestimmung des Parameters aus Randwerten
ist folgende: Ist T = x(fy — #;) die Zwischenzeit, so ist nach dem Flichensatz
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der InhaltS des zwischen den Ortsvektoren p, , p, eingeschlossenen Kegelschnitt-
sektors
S = —:— 5.

Diese GroBe iibertrifft bei kleinen Zwischenzeiten den Flicheninhalt

1 .
D= P (v, — vy)

des von den Ortsvektoren gebildeten Drejecks nur wenig. Das Verhdiltnis
Sektor :Dreieck,

' _S__ tp
(VI; 42) =D T trpsin (v — v)

ist fiir v, — vy << 7 stets positiv und bei kleinem 7 nur wenig groer als die Ein-
heit. Ist y bekannt, so 148t sich der Bahnparameter aus

N7y sin (v, — vy)
4

(VI; 43) Vo =

berechnen. Das Problem reduziert sich also auf die Aufgabe der Bestimmung
von y. Es wird gezeigt werden, dal diese GroBe sich aus einer leicht l6sbaren
transzendenten Gleichung berechnen 14Bt.

Driickt man nach (V; 12) den Ortsvektor p, durch p, und p, mit Hilfe der
Gr6Ben F und G aus, so ist das skalare Produkt

(VI; 44) (m1pe) = %1% + %192 + %12 = 1173 €08 (v — 0y) = 7%(F + 6,6),

wenn man, wie frither, gy = iz (% + ¥1 9 + 2 %;) setzt. Ferner ist nach
(V3 75) n

(VI; 43) ’_2=A=F+olc+%(1—F).

SchlieBlich erhilt man den Betrag des Vektorprodukts [p,p,] aus

(P1P1) (P1P2)

= 1 [A2 — (F + 0,G)?].
(Papy) (g |~ 1T E g

[pp.)? =

Da nach (V; 76) und wegen ¢ = w — o2
A2 = F? 4 20/FG + 0,G? = (F + 0,G)* + 4,G?,

so ist also

(VI; 46) |[P1Pal| = 7a72 [sin (v, — vy) | = 72784 | G|.
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Setzt man zur Abkiirzung v, — v; = 2f und beschrinkt sich auf f < i , so folgt
aus (VI; 44, 46) 2

(VI; 47) A cos 2f =F + 0,G,
(VI; 48) A sin 2f = 18,G.

Aus (VI; 46) ergibt sich ferner, wenn man (V; 18) beriicksichtigt,

nrysin2f = YpG
und somit nach (VI; 42)

(VL; 49) Y=z

Die Aufgabe der Bestimmung des Verhiltnisses Sektor : Dreieck ist damit auf
das Problem zuriickgefiihrt, die Entwicklungsgréie G durch die gegebenen
Daten des Randwertproblems auszudriicken. Das gelingt mit Hilfe der Glei-
chungen (V; 70)

(VI; 50) F=1—0c§2% G=r1(1— &2,

in denen &, = t%r7® gesetzt ist und z die Losung der Hauptgleichung (V; 51)
fiir den Ubergang von p, auf p, bedeutet. Setzt man die Differenz der exzen-
trischen Anomalien

A=E, —E, = 2g,

so ist auf Grund der Definition der ¢-Funktionen und nach (V; 80)

I — Ccos2g __2g —sin2g ,_ 28

T Tt T @ Vo

zu setzen, wobei g gegebenenfalls auch null (Parabel) oder imaginir (Hyperbel)
sein darf, ohne daB c,, ¢; und z ihre Eigenschaft als reelle Gr68en einbiien. Aus
(VI; 50) erhilt man dann

T — cos2g (28) P
VI; 51 1—F=——0nr——— - yy1* =2sin’g:—,
(VE; 51) 2 T T S
G 2g —sin 2 2g)3
(VI; 52) G 2oz I,z.(_§)3=
T (28) gl]/glt
=1—(zg—sin2g)L.
o1t

Subtrahiert man (VI; 47) von (VI; 45), so ergibt sich

A (1 — cos 2f) = 24 sin2f=%(1 —F)
1
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oder, wenn man &, durch (VI; 48) eliminiert,

A? sin? 2f

24 sin?f = e (1 — F),
woraus
. o U G?
(V1; 53) 1= F = o]

als wichtige Beziehung zwischen F, G und den Daten des Randwertproblems
folgt. Berechnet man nun g, aus (VI; 51, 53):

) _ 2msin’g  4Asin? g cos® f
(VI; 54) O=—"1_"F — G2

und setzt dies in (VI; 52) ein, so entsteht
&.zg-—sinzg.( G )3_
T sin® g 2Y4 cos f
2g — sin 2¢ & G\3
sifg  (zYdcosfP (?)

als Beziehung zwischen G und g. Eine zweite, davon unabhingige Gleichung
zwischen diesen beiden Grofen ergibt sich aus der Identitit (V; 16)

G
(VI; 55) =1

2y = 0, + 9, + of.
Ersetzt man ndmlich g, durch (VI; 54) und bestimmt man aus (VI; 48, 47)

A sin 2f\2 Acos2f —F
(VI; 56) 01#( C i); 01=——Gf—,

so liefert diese Identitit eine quadratische Gleichung fiir 1 — F, deren Lésungen
man nach einfacher Rechnung in der Form

(VI; 57) 1—F=14+AF2)dcosfcosg =

=1+47F zﬁcosf(l - zsinzé)

erhilt. Ist die Zwischenzeit 7 klein, so ist stets das negative Zeichen vor der
Woaurzel zu nehmen, da dann 1 — F, f und g klein sind und 4 nahezu gleich der
Einheit ist. Vergleicht man (VI; 57) mit (VI; 53), so findet man als zweite Be-
ziehung zwischen G und g

2 ( 3
(VI; 58) (g) _ Lz VZE ;:os /)

14-4 —__ZVAcosf +sin2£- .
4V cos f 2
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Fiihrt man als Abkiirzungen fiir bekannte GroBen die in der klassischen Lite-
ratur iiblichen und in den Koordinaten der beiden Orter symmetrischen Aus-
driicke

1+ A4—2Ydcosf 7,4+ 7, —2)nrcosf 7+ 7o I
l= = - =_ 17T - =
(V:i ) 4 ]/A_cos f 4 ]/rlr2 cos f 4 ]/7112 cosf 2
» 59
m = El = ‘[2
(24 cos f)® (2777, cos f)?
ein, so erhilt man fiir % = y statt (VI; 55, 58) die beiden Gleichungen
2o m2E—sinze
Porem—ma mW(g),
(VI; 60)
. m __m
1+ sinz £ b+l
2
mit

-— ?g_—'zﬂ_g.; w = sinz ,g_,
sind g 2

aus denen y durch Elimination von g zu bestimmen sein wird. Das Verfahren

der Elimination wird dadurch erleichtert, daB W sich als Funktion von w

schreiben und tabulieren 148t. Man geht etwa mit einem plausiblen Niherungs-

wert von w in die Gleichung

(VI; 61) y=14+W(®)-(+ »)

ein, die entsteht, wenn man die erste Gleichung (VI; 60) durch die zweite divi-
diert. Mit dem so erhaltenen geniherten y berechnet man dann w» aus

(VI; 62) w=—_]

. 4

neu und benutzt (VI; 61, 62) abwechselnd so lange, bis die Rechnung steht. In
der Praxis ist es selten schwierig, brauchbare Niherungswerte w» fiir diesen
IterationsprozeB zu finden, da man - je nach der Natur des Problems - iiber
die Bahneigenschaften des Himmelskérpers in dieser oder jener Hinsicht einige
Vorstellungen hat. Fiir Hyperbeln ist g imaginir und daher » negativ; fiir
Parabeln ist w = o, fiir Ellipsen positiv. Fiir Kreise ist g = f und daher

w = sin? % bekannt. Bei Planetoidenbahnen, die meist schwach exzentrisch

sind, wird man daher mit diesem Anfangswert beginnen, wihrend man bei
Kometen, die meist in parabelihnlichen Bahnen laufen, die Iteration mit
w = 0 einleiten wird.
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Die Funktion W () leitet man folgendermaBen ab: Differenziert man
W sin® g = 2g — sin 2g,
so ergibt sich
dWsin®g = dg(2 — 2cos 2g — 3Wsin2g cosg) = dgsin?g(4 — 3Wcosg)

oder
aw _4- 3Wcosg
dg sin g

d .
Andererseits ist = = L sin g, also
dg 2

. dW 8 —6Wcosg 4 —3W(1 —w)
(VI; 63) dw sin2 g T 2w(i—w)

. 2g — sin 2g gV _ g al(28)] :
Fiir o strebt W = - 8= =38 egen —, da ja
£ s 8lang) —t g e 58
die Funktionen ¢, fiir verschwindendes Argument gegen vi streben. Setzt
man demnach

aw
W=§[I+“1w+dzw2+ el o %[al—l_ 200w + 3050% + - -]

und fiihrt diese Reihen in (VI; 63) ein, so lassen sich die Konstanten «;, a, ...
durch Koefﬁzientenvergleichung bestimmen, und man erhilt
6-8 6-8-10

5 2 s ...
3 = 5er st T

(VI;64)  W(e) =

Diese Reihe ist von der Entwicklung

4 6 (6 )2 } 4 1
_I+_w+ —w +... —_ D . —
3] 5 5 3 1—%:0

nur um Glieder von der Ordnung %? verschieden. Setzt man also

(VI; 65) w=24%. I ,
3 I—E(w—'n)
5
so ist
I0 5 2 52
VI; 66 = 0 4y e 9% s
( ) 9 6 " 35 +1575 +
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eine kleine Korrektion, die in praktischen Fillen in erster Naherung gleich null
gesetzt werden darf. Bei ersten Bahnbestimmungen von Planetoiden ist nur

selten g > 10°, also w > 0.0076 =~ 3 Man wird also meistens # < 0.000 0033
annehmen diirfen. 400

Eine bedeutend rascher konvergente Reihe fiir W (w), die wir schon fruher
(IV; 65) ohne Beweis benutzt haben, ergibt sich aus (VI; 64) durch folgenden
Kunstgriff:

Man setze

W (w) = %Fo(w).

Dann ist F,(w) das Anfangsglied einer Folge von Reihen

6 6-8
Fw) =1+ ot oo et )

6:-8-10
(zn +5) (21 + 7) (2 + 9)

w? +

+ )

fiir die, wie man durch Einsetzen leicht verifiziert, die Funktionalgleichung
2n — 3

(I_w)Fn—l‘:I—zn_l_?) n

gilt. Es ist also speziell

(1—w)F,=1-— (—51) wF,,

—w)F=1-— %sz,
(1 =wF,=1 —%wF,

(1 —w)Fy=1— —wkF,,

Driickt man nun in jeder dieser Rekursionsformeln die Funktion F der rechten
Seite durch die folgende Gleichung aus, so erhilt man

(1—w)F,=
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:also, wenn
w=sin2£, 1—w=cos2£, i =tg2£
2 2 I—w 2
gesetzt wird,
(VI; 67) W=%F0=
g|r I g I g I g '
=g4sec? S|4~ g2 S~ g4 4 tgs> — ...
et T T3 E e T s

In der Praxis zieht man es aber vor, statt dieser nach Potenzen von { = tg2%
fortschreitenden Reihe die Formeln (VI; 64-66) zu benutzen, weil der Zusam-
menhang (VI; 62) zwischen y und w einfacher ist als der entsprechende zwischen
y und {. Setzt man (VI; 65, 62) in (VI; 61) ein, so erhilt man

5m
I—;(w—n) -€+l+n—F
od;ar, wenn man zur Abkiirzung
(VI; 68) b= i
€+l+n

einfiihrt,

y=1+ %oythh
woraus die Gleichung
(V1; 69) P -y—by=h

folgt. Beginnt man das sehr rasch konvergierende Naherungsverfahren zur Auf-

" , so liefert (VI; 69)
oy

sofort einen guten Naherungswert fiir y, mit dem man w nach (VI; 62), #» nach
(VI; 66) oder aus einem fiir diesen Zweck konstruierten Téfelchen (Anhang A V)
neu bestimmt.

Fiir die Auflésung der kubischen Gleichung (VI; 69) selbst, die in Wirklich-
keit transzendent ist, da % die von y abhingige GroBe # enthilt, sind zahlreiche
Methoden vorgeschlagen worden; iiber die wichtigsten soll im nichsten Ab-
schnitt berichtet werden. *

losung dieser Gleichung mit der Hypothese n = 0, 5 =



Auflosung der Gleichung fiir das Verhiltnis Sektor : Dreieck 269

52. Auflosung der Gleichung fiiv das Verhiltnis Sektor: Dreieck

Es liegt nahe, die kubische Gleichung (VI; 69) nach den aus der Algebra be-
kannten Verfahren auszulésen. Setzt man

cen I
=u + —
y 3
so nimmt sie die Normalform
(VI; 70) w—oau =4

mit « = % (14 3h),8= :—7 (x 4 64) an. Die Auflésung dieser Gleichung kann
auf dhnliche Weise erfolgen wie die von (III; 43), die in Abschn. 34 gezeigt

worden ist. Setzt man nimlich
T Vﬁ,
3
so erhilt man statt (VI; 70)
o B2
v3*—3t'=b=V27ﬁ .

4o

Die CarpvaNische Formel liefert dann

3 —_—— 37 ——
VI _Ve e ]/i_ b
(VI; 71) v_]/2+l R I.

2 4
Nun sei
(VI; 72) b = Siiw , b; —1=ctg?y = 27/324;3 4 _ 3h= tff_;;ﬁ?:;w
In praktisch vorkommenden Fillen wird die Diskriminante
f(am = 3 2 30— GIE

(x + 3h)?

positiv sein. Beschrianken wir uns ndmlich, was immer erlaubt ist, auf die Fille
vg — vy <, so ist y > 1, also

Y1

h=y > o.

I
+ =
’ 9

Die Diskriminante ist demnach positiv, wenn 34> ozwischendenbeiden Wurzeln
der quadratischen Gleichung > — x = 1 liegt. Es muB also

(VI; 73) 0<h< %(1 1+ V3) ~ 054
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sein, was in der iiberwiegenden Mehrzahl aller praktischen Fille zutreffen
wird. (VI; 71) ist dann die einzige reelle Wurzel der Gleichung (V1; 69). Dariiber
hinaus kann man aber aus der Form dieser Gleichung schlie8en, daB sie nicht
mehr als eine positive Wurzel besitzt. Ein Satz von DESCARTES besagt namlich,
daB die Anzahl von positiven Wurzeln der algebraischen Gleichung

4 g b i ere g, ¥+ a,=0

héchstens so groB ist wie die Anzahl der Vorzeichenwechsel zwischen aufein-

anderfolgenden Gliedern dieses Ausdrucks. Wegen % > o findet in (VI; 69)

aber nur ein Vorzeichenwechsel statt. Selbst wenn die Bedingung (VI; 73)

nicht erfiillt ist (casus irreducibilis) und drei reelle Wurzeln vorhanden sind, ist

das Problem eindeutig losbar, da ja y (fiir v, — v; < @) positiv ist, die beiden

iiberzahligen Wurzeln also wegen des DEscaRTESschen Satzes negativ sind.
Fiihrt man (VI; 72) in (VI; 71) €in, so erhilt man

3 3
v = ]a/coseczp + ctgy + i/cosecy) —ctgy = |/ ctg% + Vtg%,

und setzt man Vtg% = tg%’ , o ergibt sich

4

v = tg% + ,ctg; = 2 cosec @.

Die Losung von (VI; 69) erfolgt demnach streng durch den einfachen Algo-
rithmus

14 3h — (3h)°

2 — —

: 2 _ 1wk
(VI; 74) g Vtg 2

1 x I 2 —
= —+4 ZV—cosec =—4 —J1 hcosec @.
7=3 3 ¢ =3 3V +3 9

Diese Loésung braucht nur dann noch verbessert zu werden, wenn sich 4
durch Beriicksichtigung von # bzw. eines verbesserten Wertes fiir » dndert. Istd4
diese (stets kleine) Anderung, so ist

y+ =
-9
32 —2y —h

die entsprechende Verbesserung von y.

Bei kleinen Bahnbogen, also in den meisten bei ersten Bahnbestimmungen
vorkommenden praktischen Fillen, wird y nur wenig gréBer als 1 sein, und es
erweist sich dann als vorteilhaft,

(VI; 75) y=1+z

dy an
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zu setzen und eine gendherte Losung anzustreben, bei der hohere Ordnungen
in z vernachlissigt werden konnen. Durch die Substitution (VI;75) nimmt
(VI; 69) die Form

2 10 9
z2(1+ 2)2 = 5 h(I-l— Ioz)

an oder, da (1 + 2)2 = (1 + Iioz) (1 + %z) + Lz“,

I00
. II I 28 __ 1o
I+EZ

In den meisten Fillen darf man das Glied 3.0rdnung, das noch dazu mit dem

Kleinen Faktor IIE behaftet ist, unbedenklich unterdriicken und erhilt dann
fir y = %z die quadratische Gleichung

II
yIr+y) = _g—h'

- 1 sl
y= 2+2V1+ 5"

dieser Gleichung kann nach TIETJEN in eine trigonometrische Form gebracht
werden, wenn man den Hilfswinkel y durch

tg22y = 49—4h

Die positive Losung

einfiihrt. Dann ist nidmlich

I I II
y = (secay —1)= —tgy tgzy = V?h tgx
und somit

1/100
=1+4+o0|/—Vhtgy,
y l/ggl/_gx

wo ¢ ein von der Einheit nur wenig verschiedener Korrektionsfaktor ist, durch
den die Vernachldssigung der héheren Glieder in (VI; 76) wieder in Ordnung

gebracht wird. TIETJEN hat log (a VBO— mit dem Argument 4 in eine Tafel

(Anhang A VI) gebracht, die aber nur selten gebraucht wird, da man meist mit
o = 1 auskommt. P. A. HANSEN 16st die Gleichung (VI; 76), ohne das Glied
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mit 23, durch den Kettenbruch

dessen Auswertung sich besonders fiir das Maschinenrechnen eignet. Der Feh-
ler, der durch die Unterdriickung der dritten und hoheren Potenzen von z ent-
steht, bleibt bei kleinen Bahnbogen (g < 10°) fiir siebenstellige Rechnung un-

merklich - es darf dann auch # vernachlissigt und 4 = gesetzt werden.

6T
Fiir groBere Zwischenzeiten wiederholt man die Rechnung mit
3 3 y
Op 20y __ & _Do,__ 9% |
9 9 100 (I + i—z) 9 1000 (I + 2 z)
10 10
also mit
3
W =h—— 9% 9 ~l—‘m$2,
1000 (I + o z)

wobei % noch wegen # verbessert werden muB.

Von den Methoden, die Gleichung (VI; 69) durch Reihenentwicklung zu
lésen, verdient die von ENCKE erwihnt zu werden, der log y nach Potenzen der
bei kleinen Zwischenzeiten kleinen GroBe

2
= (r + 75

entwickelt. Wegen der Ausfithrung sei auf die Literatur verwiesen. Einfacher
ist die Entwicklung, die man erhilt, wenn man (VI; 6g) durch den Ansatz

y =14 Bib+ Pl + Boh® + -

l6st. Fiihrt man diese Reihe in (VI; 69) ein, so ergeben sich die f, durch Ver-
gleichung der Koeffizienten gleicher Potenzen von 4 auf beiden Seiten, und man

erhilt bis zur 5.0rdnung, wenn man noch 2 = 19—0 h einfiihrt,

(VI;77) 7y =14k — 1.I1k*+ 241 k® — 6.501 k* + 20.176T £®> — ---.
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Vergleicht man diese Reihe mit der geschlossenen Formel

k
Vi+33k
=1+ k— 1.IR+ 242 k% — 6.211 k% + 21.0879 R® — - --,

(VI;78) ' =1+

so findet man

k3
(VI;79)  y=y" —dy; dy=_—[1+38%k+ gri8k* 4 -]

bis zur 5.0rdnung in &, also bis zur 10.Ordnung in der Zwischenzeit.
Die Form des Kegelschnitts erkennt man aus dem Vorzeichen von w nach
(VI; 62). Bei parabolischen Bahnen (w = o) ergibt sich y besonders einfach,

denn es ist dann W = %, also nach (VI; 61)

4 I nt7
VI; 8o =14+ 1l= |14+ 2""72|.
( ) y + 3 3 [ + ]/rlrzcosf]

53. Das Verhdltnis Sektor:Dreieck und die LAMBERTsche Gleichung

Es 148t sich zeigen, daB das Verhiltnis Sektor : Dreieck, ebenso wie auf Grund
3

der LaMBERTschen Gleichung (VI; 10) die GroBe ta 2, lediglich von den Ver-

hiltnissen
n+r S

’

4a 4a

abhingt und als Funktion der durch (VI; 11) definierten Winkel ¢ und 4 dar-
stellbar ist. Da ndmlich nach (VI; 14, 15)

. g . 0 . — . €—0
V717, cos f = 2a sin - Sin—; Yri7y sin f = Yap sin P
so ist

. . € . 0 . e—90
717y sin 2f = 4 Ja® sin — sin — sin —-—,

also nach (VI; 42), wenn man v durch die LamMBERTsche Formel VI; 10) aus-
driickt,

(VI; 81)
tYp (e —0) — (sine —sind) (e — 0) — (sin & — sin §)

T nrysinzf

e—0 sin(e —0) — (sine —sind)’

L€ . 0 .
4 sin— sin — sin
2 2

18 Stumpff, Himmelsmechanik
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Diese bemerkenswerte Beziehung ermoglicht eine andere Losung unseres Pro-
blems der Elementenbestimmung aus Randwerten, nimlich die durch Auf-
16sung des Gleichungssystems

(VI; 82) sin2i=M. Sin2£= ntr—s,
, 2 4a ’ 2 4a ’
(VI; 83) v = Ja® [(¢ — &) — (sin & — sin 8))]

nach ¢, 6 und a. Ist diese Aufgabe mit Hilfe eines geeigneten Niherungsver-
fahrens geldst, so ergibt sich y aus (VI; 81) und damit auch p. Bei der weiteren
Analyse nach Abschn. 50 hat man den Vorteil, daB auch a bereits bekannt ist
und gegebenenfalls zur Kontrolle der Rechnung verwendet werden kann.

Man kann die Iteration mit einem plausiblen Naherungswert von a beginnen,
mit jhm nach (VI; 82) ¢ und 6 bestimmen und aus (VI; 83) einen verbesserten
Wert a ableiten. Oder man berechnet ¢ aus verschiedenen hypothetischen «
und bestimmt durch Interpolation dasjenige @, das auf das gegebene 7 fiihrt. Bei
kleinen Exzentrizitdten wird man mit der Ausgangsniherung a =7, oder 7,
rasch zum Ziele kommen. Hingegen ist das Verfahren in dieser Form fiir para-
bolische oder parabelnahe Bahnen nicht geeignet.

Bei der praktischen Durchfithrung der Rechnung wird man meist auf die
Schwierigkeit stoBen, daB (VI; 83) die Zwischenzeit als Differenz zweier kleiner
GroBen liefert, deren numerische Bestimmung unsicher ist. Das ist besonders
bei kleinen Bahnbogen der Fall, wo s gegen 7, + 7, klein ist und daher ¢ und §
nicht sehr verschieden voneinander sind. Noch unvorteilhafter macht sich das
bei der Berechnung von y nach (VI; 81) bemerkbar, da dort der Quotient aus
zwei kleinen Differenzen zu bilden ist. Eine Umwandlung der Formeln (VI; 81,
83) in Ausdriicke, die diese Nachteile vermeiden, ist daher angebracht.

Aus der Identitat

. &e—0
2 sin

— (sine — sin §) =

=zsin£_6(1—cose_i_(s)=4sin£_6sin2$+(s
2 2 2 4

bestimmt man sin ¢ — sin §. Fithrt man dies in (VI; 83) ein, so erhilt man

‘L’=Va—3[(€—6)—25in8-2—6+4sinf_;_6sin2#

oder, wenn man nach (VI; g)
€—0 e+ 0

(VI; 84) g=—— h=—

setzt und nach (V; 43) die Funktionen

__sing _g—sing
a(g?) = T, c(g?) = T
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einfiihrt,

. — 3 o _ cs(g?) 2 i 2&_
(VI; 8s5) T =2}adsing o & sin? g + 2 sin p

Diese Formel liefert v als Summe zweier positiver Gré8en und damit rechne-
3

risch genau. Setzt man an Stelle des Zahlers von (VI; 81) ra 2 aus (VI; 85) ein,
so folgt fiir das Verhiltnis Sektor : Dreieck zunichst

Gy . ., h
2 2
5 Sin® g + 2 sin
c? 2

. & .
2 sin —sin —
2 2
An Stelle des Nenners schreibt man besser

cose;-.‘s — cos 8+6 z(sm2 Z —sin"’i).

2
Setzt man sodann zur Abkiirzung

. g & L0 .0 e
sm; sin ;cos I — sm;cos -
cosy = =
y . . & .0 I
sin — sln — €0s® — 4 sin — cos® —
2 2 4 2

“

bzw. .

. 0 €
y I — cos y Sln; COSZ
. 2/ _ = .
(V1; 86) tg 2 I+ cosy . € o]
sin— |\ cos —
2\ 4

so ergibt sich

¢

1+ 2 —gcoszycosz—g—

c1
I — cos?y

c
y = = cosec?y + 2 c—g ctg? y cos? %
1

oder

(VI; 8%) y =1+ ctg? y[l-}— 2[ ((gz)) cos? g}

Diese strenge Formel gibt y mit jeder wiinschenswerten Genauigkeit, wenn ¢
und § bekannt sind. Selbst im Falle parabelnaher Bahnen, wo a sehr gro8
gegen r,, 7, und s ist, und daher ¢, d, g, & klein sind, 148t sich y aus (VI; 86)

genau bestimmen, da man
6
2 _ N+t —S
€ Vm - Vrl + 7+ s

sin —
2

(VI; 88)

18+
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stets sicher berechnen kann. Ist die Bahn eine Parabel, so erhilt man wegen

I
6G=1,6=—,8=0

6
(VI; 89) y=1+ ;*ctg ’.

Vergleicht man dies mit (VI; 80), so findet man ctg? y =/, was auch aus
(VI; 71, 73) direkt abgeleitet werden kann.

Die hier beschriebene Methode ist in der Praxis der im vorigen Abschnitt
beschriebenen unterlegen, weil es oft schwierig ist, die durch die Formeln
(VI; 82, 83) angedeutete Iteration mit einem hinreichend guten Ndherungswert
einer der drei Variablen 4, ¢, § zu beginnen. Da8 es trotzdem nicht aussichtslos
ist, auch bei volliger Unkenntnis der Bahnverhiltnisse beliebig genaue An-
fangswerte fiir diese Niherungsrechnung zu erlangen, hat H.C.PLuMMER!)

gezeigt.
Nach Definition ist

g € m .26 %
2sinf — =71 —cose=—; 2sin?—=1I—cosd=—.
2 2a 2 24

Die Punkte P,, P, mit den Koordinaten
%, =0 —sind, x =¢ — sing,
0<e)
9 =I—cosd, yp=1I—COSE
liegen auf der Zykloide mit der Parameterdarstellung
x=60 —sin@; y=1—cos@

und entsprechen den Werten § bzw. ¢ des Parameters @. Zwischen den Koordi-
naten dieser beiden Punkte bestehen die Beziehungen

” m
T=]/‘F("’2—x1); “Q’1=‘;? “y‘z:?-

Eliminiert man a durch die erste dieser Gleichungen, so folgen aus den beiden
letzten die Zusammenhinge

212yl = V3 (% — x); 27V293 = Vm (%, — ).

Ebenso bestehen zwischen den entsprechenden Punkten @, (£,, ;) und Qy (&, #5)
der zykloidenartigen Kurve

E=%=0—5sin@; n=17y= YT —cosO) = zl/z_sin“g
die Gleichungen

ZV—”h }/_ & —&); 2}/_“72 V_(‘Sz_fl)

1) Monthly Notices of the Roy. Astron. Soc. 63, 147 (London 1903).
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Verbindet man (Abb. 46) in der (£, #)-Ebene die Punkte Q,, Q, der Kurve durch
eine Sehne und zeichnet die zu ihr parallele Tangente, deren Beriihrungspunkt
in Q (@ = o) liegen moge, so ist deren Richtungskonstante

dn n
) d& O=0 4 Q ,’/’02

_ o -
oder, da dn = 32 sinzg cos— d0; =" A

2
. 2]
dé = (1 — cos ©) dO = 2sin* -, d6B,

|

|

|

[}

|

3.0 _m—m :
2 &£ !

(VI; go) g P |
|

tgl=—=cos— =
_ Y — i —
= , 3 =S
2)2t & § &
d.h., es ist g (6-6) (8-0) (6-¢)
o ]/W - ]Mﬁ Abb. 46. Lampertsche Gleichung.
(VI; 91)  cos P 67 , Analyse von H.C.PLUMMER.

und der Winkel ¢ daher bekannt. Bei nicht zu groBen Zwischenzeiten darf man
annehmen, daB der zu Q gehorige Parameter o ungefahr gleich dem arithme-
tischen Mittel der zu Q, und @, gehérigen Parameter § bzw. ¢ ist, daB also

azs+6
2

. 0 n . €
sin— = |/ —sin —,
2 m 2

n
also, wenn man V— = cos z setzt,
m

(VI; 92) = h.

Ferner ist nach (VI; 88)

. & h . & .
SIn — C0S — Sm — — SIn —
g h 2

. h . E. . 0
coS L sln — sin — + sin —
2 2 2

2
I-Vm et
I-I-V_
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Man erhilt also eine erste Ndherungslosung der Gleichungen (VI; 8z, 83) be-
reits durch das Formelsystem

"
s 3 I'V_
cos_=u; tg2i= —-—2—; I1,=O';
VI; 93) ’ o tor)n
(VI; 93 m
14 h z
tg> =tg_tg?— e=h+g 6=h—g anach (VI;85).

Eine bessere Niherung ergibt sich, wenn man in (VI; go) m, #» und t wieder
durch ¢, 6 bzw. durch g, % ausdriickt. Es ist dann

— sind

sin? & — sin3£ sin3 hte h—g
L tgi=3cosZ = 2 2 C= 2 2
2V2 J 4 2 (e —0) — (sine —sin ) 2g —2singsink

Entwickelt man, indem man diesen Ausdruck benutzt, cos% — cos% nach

Potenzen der meist sehr kleinen GréBe g, so findet man nach etwas umstéind-
licher, aber elementarer Rechnung

5

h o 2h) 1 o
cos— cosz-cos—[ g+ I9I — 64 ctg 2‘+ -.’—Rcosz,

576og (

wobei man in dem Koeffizienten des Gliedes 4.Ordnung ohne merklichen Feh-
ler & = o setzen darf. Sei allgemein

h=0—A4h,

(o Ah) o
cos|— — =—] —cos—
2 2

o
COos —
2

so ist dann

Ah o

. Adh
(VI; 94) = cos— + tg?sm—z— —1=R.

Ah . . . . .
Da x = —sehr klein ist, geniigt es, um diese trigonometrische Gleichung auf-
2
x2
zuldsen, cos ¥ = I — —, sin ¥ = x zu setzen. Man erhilt dann fiir x die qua-
2

=

dratische Gleichung
¥ — 2% tg% = —2R,

in der R und x klein von der Ordnung g2 sind. Die Lésung dieser Gleichung, in
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der das negative Vorzeichen der Quadratwurzel gilt,
Ak o 2 0 ] _
F=—= tg; [1 —VI— 2R ctg ;}

g (Rctg——{— — R2?ctg*— + -),

stimmt dann mit der Losung von (V; 94) bis zu Gliedern 4.Ordnung in g iiber-
ein, und wenn man fiir R die obige Reihenentwicklung bis zu dieser Ordnung
benutzt, so erhilt man

4 o 5 2, I0T 61
Fithrt man hierin statt g
E_8. 8 .
tg 2 2 + 24 + -
d.h. g2 = 4tg2 § gtg‘% + --- ein, so ergibt sich schlieBlich

Ah=%ctg~g—tg2 [ +——tg (6Ictg——9)+ ]

Mit dem gendherten Wert
8 gt ® e Ty E
. g, =L~ E S

wird man zunéchst
B L S N
Ah—stgztg‘z, h=0— 4k
und dann genauer
k) higt? ..
Ah = 3 ctg tg? tg p +
erhalten. Hat man auf diese Weise # und damit nach (VI; 93) auch g, ¢, J ge-

funden, so erhilt man a aus (VI; 82):
m

a= e
o &
4sin®—

Das mit diesen Werten «, g, # nach (VI; 83) berechnete ¢ wird mit dem ge-

gebenen noch nicht genau iibereinstimmen. Der Widerspruch 4z fiihrt dann zu
einer Korrektion da. Differenziert man (VI; 83)

(VI; 95) dt = %ﬁda [(e — 0) — (sine — sin 8)] +
+ ]/ﬁ[ds(l — cos &) — dd(x — cos )],
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beobachtet man, daB aus (VI; 82)
(VI; g6) de=—tge%; d6=—tg6da—a

., & o .
folgt, und setzt man 1 — cos & = 2 sm“’; usw., so ergibt sich

.o € .. 0
sin3 —  sin®—
2

dt = %]/;da [(e — 8) — (sine — sin §)] — zﬁda

i &
COS — Cos —
2 2

Da nun nach (VI; 83, 91)

. L€ .
. sm“; ——sm"';
(e—&)—(sine—siné):——:i———,

ya* 3 cos <
2
so entsteht schlieBlich der symmetrische Ausdruck
: _ int % (sec % — secZ) — simd 2 (sec L — sec
(VI;97) dt=2Vada [sm p (sec 5~ Se¢ 2) sin® — (sec ; sl

der zur Berechnung von da dient. Ist g klein, was bei kleinen Zwischenzeiten
und besonders bei parabelnahen Bahnen zutrifft, so kann man statt (VI; g7)
eine bequemere Formel benutzen, in der Glieder 3.Ordnung in g vernachlissigt

werden. Schreibt man nidmlich in (VI; 95) T — cose = 2 |1 — cos? —:—) usw.,

und fiihrt man fiir de, 40 wieder die Ausdriicke (VI; 96) ein, so ergibt sich
— Yada|3 ¢ = 6) — X (sine —sind) — 2 (tg " — tg
dr = ]/a_da[z (e —19) 2 (sin ¢ — sin é) 2<tg p tg 2)]
oder, indem man wieder ¢, § durch g, & ersetzt,

— s 4
dt = V;da [3g smg(cosh —+ cos T cos g)]'

Setzt man nun im ersten Glied rechts g = sin g, im zweiten Glied cos g = 1,
so ist bis auf Glieder 3.0rdnung in g

dt = Ja da [3sing — sing{I —2 sin2%+ 2(1-|— tgz—Z—)}J =

= —2Yadasing tgzgsinzg.
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Mit derselben Genauigkeit ist aber

T = zVﬁ[g —singcosh] =2 Vﬁsing (r — cosh) = 4]/Fsingsin2%
so daB man schlieBlich fiir da die einfache Niherung

da = -za?ctg ﬁ

erhilt, mit der man in den meisten praktisch vorkommenden Fillen rasch zum
Ziel gelangt.

54. Berechnung einer gleichabstindigen Ephemeride
aus den Randwerten eines Intervalls

Im Abschn. 46 wurde die Aufgabe gelost, die heliozentrische Ephemeride eines
sich auf einer chelschnittbahn bewegenden Himmelskorpers fiir die gleich-
abstidndigen Zeitpunkte , 4, t3, ... zu berechnen, wenn die Anfangswerte
Ty, Yo» %; xo, o» % flir t = ¢, und die konstante Zwischenzeit t = k(# — %))
= k(¢, —¢,_,) gegeben sind. Das gleiche Ziel 148t sich auch erreichen, wenn
als Ausgangsdaten neben v die Randwerte x,, 4, %,; %, 91, %4 des ersten Inter-
valls (£, —¢;) vorliegen. In diesem Problem, fiir das auch ein fiir programm-
gesteuertes Rechnen geeignetes Laufschema aufgestellt werdensoll, tritt an Stelle
der transzendenten, aber fiir kleine Zwischenzeiten nahezu kubischen Haupt-
gleichung die ebenfalls transzendente und nahezu kubische Gleichung (VI; 69)
fiir das Verhiltnis Sektor : Dreieck auf.

Aus den vorgelegten Daten berechnet man als Invarianten des ersten Inter-
valls

i=a5+ Yo+ 2 1hue=mm+ Yo+ zn; =+ i+ 4

und bestimmt hieraus 7, %, , 7, sowie 4, = 7,/7,. AuBerdem ist, wenn 2f, = v, —,
die Differenz der wahren Anomalien an den Intervallrinden ist,

A cos 2fy = u,.
Setzt man nun

I 72
_ _ I, _
Ao+ 1y = 24y cos® fo = o0 3= &0
0

so ist nach (VI; 59)
__i lo_ I+A_q0'

mo = _%g_____ = =
(2Ydgcosfy)® @b 29
Einen Niherungswert fiir das Verhiltnis Sektor: Dreieck des Intervalls
(t, — %,) leitet man mit
) — My 50
0 =

3 (It 4 4
6th q°( 2 +3>
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aus dem HaNsenschen Kettenbruch

iO IxI II II |
Yo=1+ ?’%3 {I + ?hoz {1 + ,_5-}‘0: (1 + ?ho )H

ab, dessen Entwicklung nach wenigen Gliedern abgebrochen werden kann. Die
exakte Bestimmung von y, erfolgt dann mit dieser Naherung als Ausgangswert
durch die Iteration

I—w 31 571

lt= Y s w=1 iw[1+~1¢ll;%é(l——t )}]

y=1+W+1);, w=-

Die eigentliche Aufgabe besteht dann darin, nach dieser Vorbereitung die Orts-
koordinaten 5, ¥,, 2, fiir den Zeitpunkt ¢, aufzusuchen. Ist dies geschehen, so
sind die Daten fiir eine Fortsetzung der Ephemeridenrechnung verfiigbar.
Nach (V; 12) ist

(VL; 99) 2, = 2, F,) + 4G,
(VI; 100) 2, = 2, F; + #,G,,
wenn E,, G,; Fy, Gy die frither definierten Funktionen der Zwischenzeit T und
der fiir die Zeitpunkte £, bzw. ¢ gultlgen Invarianten (V; 28, 29) sind. Setzt
man in (VI; 100)

&y = 3 B, + %,6,,
so erhilt man
Eliminiert man aus dieser Gleichung und (VI; 99) #,, so ergibt sich

%Gy = %, (FyG) + G1Gy) — %61 (FoGy — GoFy)

oder, nach dem Flichensatz (V; 64) und nach (V; 71),

(VL; z01) %Gy = — %61+ |F1Go + G (I -= ;Fo )‘ .

0

Da nun die GroBen y,, 4,, %, bekannt sind, folgt aus (VI; 49, 53)

T U, G2 S 250
VI;102) Gy =—; 1—F, = Chul N e = .
( ) % ¢ 24,c082f,  yi(dy + ) (70%)*




Berechnung einer gleichabstindigen Ephemeride 283

Man kann also #, aus (VI; 101) und y,, 2, aus entsprechenden Formeln berech-
nen, wenn es gelungen sein wird, F; und G, zu bestimmen. Man erreicht dies auf

folgendem Wege:
Nach (VI; 56) ist
(VI; 103)
_ (dgsin2f\2  AF—uf ,  dycoszfy —Fy uy—F,
%—< G )T @ v %= G, <

Es folgt demnach aus (VI; 102, 103)

I
So = —(I —Fo) ‘I%ﬁp
(VI; 104) Ny = 0T = (uy — Fy) vy,
'9 12 = (4F — u) v§

und aus der Identitit (V; 16), wenn man diese mit 72 multipliziert und die
Bezeichnungen (V; 53) einfiihrt,

(VI; 105) 19 = 28, — 1§ — 0,72 = [2(uy + 4p) — (Fy + 4p)% 78
Setzt man nun zur Abkurzung

1 —F,=s,, Fy+ 4=, und wie oben 2(u,+ 4,) = g3,
so ist
2

£ = %soq?ﬂ%; My = (%q% - ?o) Yoi %o = (4§ — %) v
Ebenso gilt natiirlich auch fiir das nichste Intervall (¢, - £,):
(VI; 106) & = %51‘1%}’%} h= (%!ﬁ - Pl) y = (g — -
Andererseits sind aber, nach (V; 60) und (V; 78),

& — Xo
F, + 222
£ &. 0 Fy + &Gy o Yo . Zo
) 07 =

I ;T

(VI; 107)
bekannte GréBen. Wenn man daher aus (VI; 106) ¢,, ¢, s, berechnet:

Xl 2§,
=1 I+ 2 = — § = ——,
h=1t y y2’ q‘ Pt VT @)

(wobei in der Formel fiir p, das positive Zeichen vor der Quadratwurzel zu wih-
len ist, da $ — 2 fiir T — 0), so enthalten diese Ausdriicke nur noch das un-

bekannte Verhiltnis y, fiir das Intervall ¢, — #,. Da aber bei kleinen Zwischen-
zeiten &, 7y, x; klein sind, darf man in erster Naherung y; = y, setzen, zumal
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sich das Verhiltnis Sektor : Dreieck von Intervall zu Intervall nur wenig dndert.
Mit
&, @, h=p+s—1
kann man dann
_ 51’ _I+ 4 —q
a 2

berechnen und mit ihnen ein neues y, bestimmen. Liegt der endgiiltige Wert
von y, fest, so ist, mit den GréBen p,, ¢, 5, ¥, der letzten Iteration,

T I
Fi=1—35; G1=y—; A, =p — Fy; “1=;‘]%—Al

1

und damit die Aufgabe im Prinzip gelost.
Anstatt (VI; 101) schreibt man, indem man auf beiden Seiten x,G, subtra-
hiert, durch G, dividiert und

_ Gy _ %
ThEw G n
einfiihrt,
(VI; 108) x2——xl=ﬁ(xl—xo)—x1(sl+ Zﬂs—°).
" n 4,

Die Formel (VI; 107) fiir #, 1Bt sich auf eine einfachere Form bringen, wenn

man &, 7,, X, durch (VI; 104, 105) ausdriickt und dann w1eder—q0 =u,+ 4,
und 1 — F = s, setzt. Es ist dann 2

So % )
= I -_— = —T7_ .
Ui 70 ( Ao Aﬁ ,

Nachfolgend sei das Programm fiir die Ephemeridenrechnung aus Randwerten
in dhnlicher Form zusammengestellt, wie dies in Abschn. 46 fiir die Ephe-
meridenrechnung aus Anfangswerten geschehenist. Diese Formeln sind besonders
in Hinblick auf die Verwendung programmgesteuerter Rechenanlagen aus-
gewihlt. Das ist auch der Grund, weshalb zur Berechnung von y das Iterations-
verfahren (VI; 61, 62) an Stelle der fiir Handrechnung geeigneteren Methoden
gewihlt worden ist: Es ist streng und erfordert an Funktionswerten lediglich
W (w), dessen Berechnung durch die rasch konvergenten Reihen (VI; ¢8) fiir
programmgesteuertes Rechnen kein Problem bedeutet.

A. Gegebene Grifen
Gegeben seien die zu ¢ = £, und ¢ = ¢, gehérigen Ortskoordinaten

Xor Yo %5 %1501 %4
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Die Zwischenzeit sei, in Einheiten von 1/k mittleren Tagen, durch
T=k(t —4)

vorgegeben. Gefordert sei die Berechnung einer Ephemeride der Ortskoordi-
naten fiir die Zeitpunkte #,, f,, ... in gleichabstindiger Folge.

B. Invarianten des Ausgangsintervalls
Aus

9.8 a2 2. L2, R 2
=23+ v+ 25 7iuy= %%+ vyn+ nu =24+ 91+4

berechnet man 7, %,, 7;, ferner

72 7. ]
E.,=r—%; b =25 g = V2 + 4y);

"
£ 14+ 4 I m,
my= "3, b= 8 — = k= .
’H) Zqo 2 i_l_l
6 (1}

C. Verhiltnis Sekior: Dreieck im Ausgangsintervall

Mit der Ausgangsniherung
10 11 II / I
=14+ —h: |1+ —bh x4+ —h: |1+ —h \)}
Yo 9 0 l 9 o{ g 0 ( g 0

fithrt man die Iteration

'y

w = —ly;
vy
4 6 8 10 '
W=—=|t14+ —wlt14+ —w(1+ —w... oder
R A Gl

__w SRS SN PN 5 SRS Y - DA I
€_I—w—’ W_? 1—~w[1+5€{I 7C(I 96”.)”’

Vo=I+Ww++1l), w=--

durch, bis sich @ nicht mehr dndert. Der Wert y, der letzten Iteration ist dann
endgiiltig. Mit ihm ermittelt man die weiteren Invarianten

2§,
o= 2=s Fy=1—s5; po=Fy+ do; 2= (a5 — 8375
(Yo%)
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D. Verhiltnis Sektor : Dreteck im ndichsten Intervall
Aus dem vorhergehenden Intervall liegen die GréBen
}’o » AO » uo » So ’ 50 ’ xo
vor, mit denen man

& s, "
§1=A_%; nl:”o(I—A—‘:—Z%_); X1=Z—o%

bestimmt. Zur Berechnung von y, dient dann folgende Iteration:

o
ny = y—; =14 V14 2mu — vt ¢ =20+ mv);

1

§ .
31=2?%‘v%; Fi=1-—5; &=p—F; w=F+mny;

& 1+ 4, 1
=— h= -
" g3 ! 24y 2

® = myw? — ly; Wnach (VI; 08); 3, = 14+ W(w+1); vl=yi.-.,

1

die man mit y, = y, beginnt und so lange wiederholt, bis sich w nicht mehr
dndert.

E. Koordinaten fiir t = iy

Mit den GréBen y,, s, der letzten Iteration bildet man die rechtwinkligen
Koordinaten fiir ¢ = ¢, aus

S
xz_xl"_“%(xl—xo)—xl(sl'l'";’—old_o)
0

und entsprechenden Formeln fiir y, und z,.

F. Kontrollen und Fortsetzung
Mit den Randwerten des Intervalls (f, — £,) und p, bildet man
Yy = ng‘l' ys+ 23
und die GréBen

_ k%t N+ 2, f="
7 ' ! "

%

12
=g m=—F)y n=6 -
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die mit den unter (D) berechneten GréBen iibereinstimmen miissen. Mit

_ & . _ $1 U\, _ XN
T4y "2‘71(1 &) TR

fithrt man dann die Iteration (D) zur Bestimmung von y, durch, die man mit
ys = 7, beginnen kann. Liegen bereits mehr als drei Ephemeridendrter vor,
also mindestens drei Werte der Folge y,, 7;, ¥s, - .., 50 kann man die Iteration (D)
mit einem extrapolierten y beginnen. Sind etwa y,,_,, ¥,_1, ¥, bekannt, so wird
das parabolisch extrapolierte

&

Ynt1=VYn-2+ 3(Vn — Va-1)

meist schon so nahe richtig sein, daB eine einzige Verbesserungsrechnung zur
Sicherung des endgiiltigen Wertes geniigt.

Andere Verfahren zur Berechnung gleichabstindiger Ephemeriden beruhen
auf den Methoden der numerischen Integration der Differentialgleichungen der
Bewegung. Sie werden - im Zusammenhang mit dem Problem der speziellen
Storungsrechnung — im Band II behandelt werden.



KAPITEL VII

REIHENENTWICKLUNGEN IM ZWEIKORPERPROBLEM

55. Allgemeines viber Reshenentwicklungen

In den vorhergehenden Kapiteln haben wir gelernt, die heliozentrischen Koordi-
naten und andere geometrische GroBen der Zweikérperbewegung durch strenge
Formeln zu berechnen, wobei der Weg im allgemeinen iiber die Lsung einer
transzendenten Gleichung (KepLERsche Gleichung, Hauptgleichung, Gleichung
fiir das Verhéltnis Sektor : Dreieck) fiihrte. Vielfach ist es aber niitzlich, direkte
Formeln zur Verfiigung zu haben, in denen diese Gr68en durch Reihenentwick-
lung nach Potenzen der Zeit oder nach anderen Funktionen der Zeit dargestellt
werden. Solche Reihen werden in der Praxis haufig benutzt, wenn sie unter den
gegebenen Umstdnden so rasch konvergieren, daB die Berechnung weniger
Glieder ausreicht.

Bei den Problemen der Bahnbestimmung, die in den nichsten beiden Ka-
piteln behandelt werden sollen, wird man meist den Ubergang von einem
Bahnort auf einen benachbarten zu vollziehen haben, um die dynamischen
Zusammenhinge zwischen diesen Ortern zum Ausdruck zu bringen. Man wird
dann mit Vorteil Entwicklungen nach Potenzen der Zwischenzeit t von der
Form

(VIT; 1) (@) =ay+ a3t + a12 + ag® 4 ---

benutzen, die bei geniigend kleinem t schon nach wenigen Gliedern ab-
gebrochen werden kénnen. Selbst wenn die vernachlissigten Restglieder bei
der meist sechs- oder siebenstelligen Rechnung noch merkliche Betrige er-
reichen sollten, wird ihre Unterdriickung statthaft sein, weil die bei ersten
Bahnbestimmungen immer zu vernachlissigenden Stdrungen der Bahnbewe-
gung durch andere Himmelskérper (groBe Planeten) Fehler von der gleichen
GroBenordnung hervorrufen, die Genauigkeit der Rechnung also ohnehin be-
schrinkt ist. Andererseits wird man bei der Losung der Aufgaben der Stérungs-
theorie genaue Entwicklungen der ungestérten Koordinaten brauchen, die sich
iiber groBere (in der Theorie der ,allgemeinen Stérungen“, die im Band III
behandelt werden soll, sogar iiber sehr lange) Zeitriume erstrecken. Hier kann
man, insbesondere wenn es sich um Planetoidenbahnen mit kleiner Exzentrizi-
tdt handelt, an Stelle der strengen Formeln trigonometrische Reihen benutzen,
die nach den Sinus und Cosinus der Vielfachen der mittleren Anomalie M fort-
schreiten, deren allgemeine Form

(VII; 2) (M) = a,+ a,cos M + aycos 2M + --- M=k t—1,
+ by sin M + by sin 2M + --- Va2
lautet, und die beispielsweise bei kleiner Exzentrizitit fiir beliebige Zeiten

rasch konvergieren, da die Koeffizienten a,, b, gewShnlich von der n#-ten Ord-
nung in der Exzentrizitit sind.
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Natiirlich haben solche trigonometrischen Reihen nur dann einen Sinn, wenn
die Bewegung periodisch ist, d.h. fiir elliptische Bahnen. Die trigonometrische
(Fouriersche) Reihe (VII; 2) stellt dann dieim Intervall o < M < 2 periodische
und in allen hier vorkommenden Fillen iiberall stetige und beliebig oft diffe-
renzierbare Funktion f(M) fiir alle Zeiten dar und ist stets konvergent.

Die praktische Bedeutung der Reihen (VII; 2) beruht darauf, daB M der Zeit
proportional ist, so daB diese Reihen unmittelbar auch als Funktionen der Zeit
angesehen werden diirfen. Diesem Vorteil steht der Nachteil gegeniiber, daB
ihre Konvergenz mit wachsendem ¢ immer schlechter wird. Ganz anders ver-
halten sich in dieser Hinsicht andere Anomalien der Zweikorperbewegung, die
wir kennen gelernt haben: die exzentrische Anomalie E, die wahre Anomalie v
und die antifokale Anomalie w. Die meisten BahngréBen lassen sich als ge-
schlossene Ausdriicke in diesen Variablen darstellen, vielfach auch als endliche
trigonometrische Reihen mit wenigen Gliedern. Man erinnere sich an die

Formeln
7cosv = a(cos E — e), r=a(x —ecosE),

. . I I
rsinv =a)r —e’sinE, 7=;(1+ecosv)

und andere, die sehr einfach sind, wihrend die entsprechenden Zusammen-
hinge mit der mittleren Anomalie, die ja erst durch die transzendente KEPLER-
sche Gleichung vermittelt werden, sehr kompliziert werden. Es ist daher auch
wiinschenswert, die Differenzen E — M, v — M, w — M usw. als periodische
Funktionen der Zeit in Gestalt von Fourierreihen nach Vielfachen der mittleren
Anomalie darzustellen. Besondere Bedeutung kommt dabei den Entwicklungen
v — M und w — M zu: Die erstere, die sogenannte Mittelpunkisgleichung, lie-
fert die wahre Anomalie, also eine der Polarkoordinaten des Planeten in der
Bahnebene, direkt als Funktion der Zeit, wihrend die andere Koordinate, der
Radiusvektor 7, sodann durch die Kegelschnittgleichung erhalten wird; die
letztere zeichnet sich dadurch aus, daB sie von der 2.0rdnung in der Exzen-
trizitit, also fiir kreisihnliche Bahnen stets sehr klein ist. Die Potenzen von 7,
insbesondere die ungeraden negativen, werden in der Stérungsrechnung ge-
braucht; ihre Entwicklung in trigonometrische Reihen ist daher ebenfalls von
groBer Bedeutung.

Die Funktionen F und G, die bei der Darstellung der rechtwinkligen Koordi-
naten auftreten, lassen sich bequem als endliche trigonometrische Ausdriicke
in E bzw. v darstellen, wihrend ihre Entwicklung nach M wiederum auf unend-
liche Fourigrreihen fiihrt. Nach (V; 70) ist

F=1—0¢§2 G=1(1—c)
oder, wenn man die Hauptgleichung in der Form (V; 54) heranzieht,
' G = t(c12 + cmy2Y).
Setzt man nun E — Ej = 1, ferner

sin 4 —cosd

I
¢ (43 = 7’ 6y (4%) = 7 Ey =WUT% My =0T, X = 0

19 Stumpff, Himmelsmechanik
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und nach (V; 80)

so ergeben sich die einfachen Formeln
F=1——g—(1—coszg)

(VIL; 3)
(1 — cos 2g),

1
G =—sinz2g + —
Ve, Ve_o

in denen, wie in der Literatur allgemein iiblich, 4 = 2g gesetzt worden ist.
Andererseits erhidlt man eine Darstellung dieser beiden GréBen auch als
Funktionen von v — v, = 2, indem man (VI; 47, 48) nach F und G auflost

und definitionsgemiB 4 = —-: setzt. So folgt zunichst
‘ 0
F = ;’:-(cos 2f — % gin 2 ),

o 19

(VIL; ) ,
G = sin 2f.
. 70V,
Es ist aber
7 _I4ecosyy I+ ecosy,
70 I-+ecosv I ecos (v, — 2f)
und nach (V;25) ecosy, = % — I, esiny,= °V_, mithin
0
'—”:ﬁ[z-[—(&—l)cosz — °V—sm2
v 9 Ho ! =
_ .“o) %%
=1—(1— ) (1 — cosz2f) — -—=sin 2f.
=% s

Fiir F und G als Funktionen von zf erhilt man also die geschlossenen Aus-
driicke o
{ cos 2f — —%sin 2f
F = 1o
I— (I—ﬁ) (x ——coszf)'—-isinzf

3, 78,

(VII; 5)
T .
——sin 2f

6= 12,

p-(x=b0) - cosa) - Pesingg

3, Vs,
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56. Entwicklung der rechtwinkligen heliozentrischen Koovdinaten
nach Potenzen der Zeit

Sind
(VII; 6) Ty, Yor %5 Zo» Yor %o

die rechtwinkligen heliozentrischen Orts- und Geschwindigkeitskoordinaten
des Hlmmelskorpers zur Zeit ¢ = {4, so erhdlt man, wie gezeigt, die Koordi-
naten eines benachbarten Bahnpunktes durch

(VIL; 7)  2(v) = 2, F 4 2,G; y(r) = yF + 9,G; 2(v) = 2, F 4 4,G,

wenn 7 = k(t — ¢) die in Einheiten von 1/k mittleren Tagen ausgedriickte
Zwischenzeit bedeutet. F und G sind dann Funktionen der Zwischenzeit und
der ,lokalen Invarianten‘ u,, 6, , &, oder eines anderen Tripels von unabhéngigen
GroBen dieser Art, die aus den Koordinaten (VII; 6) symmetrisch aufgebaut
sind. Die Taviorsche Entwicklung einer Koordinate nach Potenzen von 7
hat dann die Form

3

(VIL; 8) z(t)—zo—l—xot-}-xo +x0 ! F +x<n> +...,

WO %,, %y, &, ... die Koordinate und ihre Ableitungen nach der Zeit, genommen
fiir die Epoche t = o, bedeuten. Andererseits lassen sich auch die Funktionen F
und G in Potenzreihen

2 n an
F=fo+,flt+f2%+'--+f.,,%!—+---; f,,=(d—r,,) :
(VIL; o) e

12 arG
C=gt+ar+gy+- - +g,. + g,,=(dt,,)
° =0

entwickeln. Setzt man das in (VII; 7) ein und beriicksichtigt (VII; 8) so findet
man
o) = oo+ 9%

ng-l) "‘_"fnxo + g.nzo + fn :i?o + g”.’fo
oder, da ja wegen der Bewegungsgleichung (V; 4) £ = —puuz,
x(()n+1) = (fa— Bo9n) %o+ (G + fa) %y
Die GréBen f,, g, lassen sich also aus den Anfangswerten
=1, gg=0
mit Hilfe der Rekursionsformeln

(VII; 10) fas1= fn — U Gn+1=9n+ fu

19*
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sukzessive berechnen, wobei offensichtlich die fiir t+ = o genommenen Ablei-
tungen der Invarianten g = »~3 auftreten. Diese Ausdriicke, die man auf die
in Abschn. 40 geschilderte Weise nach (V; 14) bildet, erhalten verschiedene
Form, wenn man bei ihrer Bildung verschiedene Tripel von Invarianten be-
nutzt. Wihlt man z.B. das Tripel g, 0, ¢, das bei schwach exzentrischen Bahnen
gewisse Vorteile bietet, da ¢ und ¢ fiir Kreisbahnen identisch verschwinden,
fiir kreisihnliche Ellipsen also stets klein von der GréBenordnung der Exzen-
trizitdt sind, so hat man die Differentialformeln

(VII; 11) = —3u0; 6=¢—20% &= —o(u+ 29

zu verwenden. Die Formeln (VII; 10) ergeben dann sukzessive (wobei jetzt der
Index o iiberall weggelassen werden mage)

h= Y
fo=—p
fs =+ 3uo

(VII; 12) f, = — 15402 + 3ue + u?
fs = + 10540° — 45060 — 154%0
fo = — 945p0* + 630uec? 4 2104%0% — 45u€? — 24p%c — pd
f» = +1039510° — 94500 €0% — 31500%0° + 1575u¢%0 + 882p’ec

+ 6340
= I
82= O
&= — 4

(VII; 13) g4 = + 6puo
8s = — 4540° + gpe + p?
g = + 420u0® — 180uco — 30uc
g7 = —4725p0" + 31504€0° 4 6304%0° — 225u¢® — 54u%c — p?

...........................................................................

Multipliziert man £, mit t*, g, mit 1, so erkennt man, daB8 diese Polynome
sich als Funktionen der drei GréBen

E=ur®, n=o901, {=c¢1?
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schreiben lassen. Daraus folgt, daB F und G/t [die letztere GroBe ist, wie in
Abschn. 51 (VI; 49) gezeigt worden ist, das Verhiltnis Dreieck : Sektor im
Intervall £, — ?] ebenfalls Funktionen von &, 7,, £, allein sind.

Das Gesetz der Koeffizienten der Polynome (VII; 12, 13) ist trotz der Ein-
fachheit der Rekursionsformeln (VII; 10) sehr verwickelt. Es ist eingehend von
K. StumPrF untersucht worden.!) Es eriibrigt sich aber, die Ergebnisse dieser
Untersuchung hier im einzelnen wiederzugeben, da man in der Praxis (z.B. bei
der Bahnbestimmung, wo Entwicklungen der rechtwinkligen heliozentrischen
Koordinaten fiir kleine Zwischenzeiten hiufig nétig sind) meist mit den ersten
fiinf Gliedern der Reihen (VII; g) auskommt, deren Koeffizienten noch ver-
hiltnismiBig einfach gebaut sind.

Fiir schwach exzentrische Bahnen und hinreichend kleines t liegt der Ge-
danke nahe, die Entwicklungen fiir F und G in der Form

F =@y, + (D191 + Dy18} + (DP2on® + Pranl + Pyal? + -+,
VuG = Pio + (Pron + Por 8} + (Paon® + Pranl + Poold + -+

zu schreiben, da % und ¢ klein sind und man die Glieder 3.Ordnung, oft genug
auch schon die quadratischen, vernachlissigen kann. Die Gr6Ben @,,,, ¥, sind
Funktionen von £ allein und konnen als solche in Tafeln gebracht werden. Ins-
besondere ist

@y, = cos V& = cos tYu; Wy, =sin}& =sintyp,

wie man unmittelbar aus (VII; 12, 13) abliest, wenn man # = { = o setzt.
Man kann dies auch auf elementare Weise zeigen. Fiir diesen Fall (Kreisbahn)
ist, wenn » = a = const den Halbmesser der Bahn bezeichnet,

(VIL; 14)

% = acosv = a[cos v, cos (v — v,) — sin g, sin(v — y,)].
Da nun in der Kreisbahn

v—vo=M—-Mo=L_=t]/;_¢; 6:]//7;

ya?
Z= —asinv-v= —ajusinv,

so erhilt man fiir ¢ = ¢,

T, = acosv,, %= —ausinv,
und daher
. . sintyp
2 =xyF + i,G =z, cos 7 pu + xo—Tp——,

woraus die Behauptung folgt. Die iibrigen GréBen @,;, ¥y, lassen sich als end-
liche Ausdriicke in den Cosinus und Sinus der Vielfachen von 7 }/u darstellen.

1) Astron. Nachr. 274, 49 (1943) und 275, 203 (1947).
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An Stelle der Entwicklung (VII; 14) lassen sich noch zahlreiche Varianten
bilden. Man kann etwa das Tripel g, 0, € durch ein anderes ersetzen, z.B. durch
u, o, o, was bei Parabeln oder parabelihnlichen Bahnen Vorteile bietet, da
dann g bzw. y = g1? verschwindet oder klein ist. AuBerdem gestattet jedes
Tripel selbst drei Varianten, da man die Entwicklung als Potenzreihe nach
zwei der drei Invarianten schreiben kann, wihrend die Koeffizienten Funk-
tionen der dritten sind. In der Bahnbestimmung der Kleinen Planeten hat sich
z.B. die Entwicklung

F = @y + {9106 + @018} + (9208 + @128 + @83 + -+,

VII; G
( 1) < = Yoo + W106 + Vo18} + (¥208% + Y1268 + peal? + -

bewihrt, die gegeniiber (VIII; 14) besondere praktische Vorziige besitzt. In
ihr bedeuten @, ¥;; Funktionen der meist sehr kleinen GréBe #. Aus (VII; 12,
13) liest man ab:

Poo = Yoo = I»

[ 1 1 5 7.5 2L 33
Pro=—, 1,1~ 8’7+3’7 En+16n—
5
8

auBerdem

7

3 ..
24 <Mt

I I
(VII; 16) {Poo = — g0+ -1 —

24

-1_3 _ 35
‘P11—8 8”+ 77 8’7+ ’

(o = X X 3 o, 7 .4 15, 995
Yo=—gt o grt P gt g
) - T I 2_ 5 3, ..
(VII; 17) {¥20 120 24n+8n 16’7+ ,
3 _1 - 45 5, ..
%1—40 n+ 32n+ ,

wihrend @g1, @oa; Y1, Yoo (allgemein alle @, p,, fiir ¢ = 1) gleich null sind.
Ferner besteht eine fiir die praktische Rechnung vorteilhafte Eigenschaft dieses
Systems darin, da8

(VIL; 18) P11 = 3Pa0

ist. AuBerdem findet man

I 5
P11 — P = %(‘on — Pg0) = E(I - %’7 + 57— %’734' )
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oder, wenn man ¢,, durch (VII; 18) eliminiert,

(VII; 19) Y= ’2‘(9’20 + ¥20)-

Setzt man also
F=1+¢; G=1(1+vy),

so erhilt man auf Grund von (VII; 18, 19)

¢ =ElProt+ @20 (€ + 30+ -],
P =0+ [0 =0 + = (£ 20) - .

Man kann daher die ersten Glieder der Entwicklung in der Form

¢=2E&A4+ B(E+30)],

VII;
(Viti 20 w=¢+&[C+D(£+%¢)]

zusammenfassen, wo A, B, C, D durch folgende Funktionen von 7 dargestellt
werden:

A=—i(1—-n+ 5

_2_13 ﬂ4_§_5
> i 4n+8n g T+ )
- L. D S
B= pa—sntyf—1sm+--),

__ X _3 3.2 7,3, 9.4 ..
C (I n+4n 8’7+ n )

3 4 8
- X(;_5 2 _ 75,3 ...
D 30(1 , 1+ 51 g Tt )

die man (siche Anhang AVII) leicht in Tafeln bringen kann. Die Formeln (VII; 20)
sind bis zur 5.0rdnung in der Zwischenzeit genau und enthalten auch noch er-
hebliche Teile der Glieder héherer Ordnung. Von den Gliedern 6.Ordnung sind
nur die GroBen

I 9
%5(52 + 248C + 4589

in der Reihe fiir ¢ vernachlissigt, die man in Zweifelsfillen durch die beque-
mere Formel

I
72—0'5(5 + 20) (& + 22{)
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abschitzen kann, in der nur ein Glied von der Gestalt % & £ unberiicksichtigt

geblieben ist. Die Erfahrung hat gelehrt, daB die Formel (VII; 20) selbst in
ungiinstigen Fillen der Bahnbestimmung genau genug ist, zumal bei groSeren
Zwischenzeiten, wenn die vernachlissigten Glieder merklich werden, die Sto-
rungen Betridge von mindestens der gleichen GréBenordnung erreichen kénnen.
In allen Fillen, in denen diese Formeln nicht ausreichen, also die unbequeme
Berechnung hoéherer Glieder erforderlich wire, wird der Rechner ohnehin die
im Kapitel V entwickelten strengen Methoden bevorzugen, da die dann er-
forderliche Losung der Hauptgleichung (V; 51) weniger Miihe macht.

In manchen Fillen ist es wiinschenswert, auch den Radiusvektor 7 in eine
Potenzreihe nach 7 zu entwickeln. Die Berechnung der Koeffizienten der

TavLoRrschen Reihe
2

r=r0+7"01:+';‘0—:—!-+---
erfolgt etwa nach dem Schema
f=r0; 6=¢—20% &= —o(u+ 2¢); (L= —3u0
und ergibt
4 ="o[1 + 0,t + %(&:0 — 203) 12 + —;-00(403 — 6gy — po) T8+ ]
(VII; 21)
=T+ 71+ %(Co — 2mg) + %’70(4773 — 60, — zg‘cr)'f""] .

Ahnliche Potenzreihen lassen sich gleichermaBen fiir g = =3 und beliebige
andere positive und negative Potenzen von » nach Bedarf aufstellen.

57. Die BESSELschen Funktionen

Bei der Losung der Aufgabe, die Koordinaten und andere geometrische Grofen
des Zweikorperproblems in FourieRrreihen nach den Vielfachen der mittleren
Anomalie zu entwickeln, wird man auf die B~SSEl schen Funktionen gefiihrt.
Ein kurz gefaBBter Exkurs iiber diese fiir die Himmelsmechanik so wichtigen
Funktionen und ihre hauptsichlichsten Eigenschaften wird daher nicht iiber-
fliissig sein.

Die BesseLschen Funktionen [, (x) treten als Koeffizienten von z” auf, wenn
man die ,,erzeugende Funktion®

H-3
Hz, x) = e? z
nach den positiven und negativen Potenzen von z entwickelt. Es sei also

(VIL; 22) Hi o) =Jo@+ L@+ L@ 2+
+ Ja@®) 2+ Jao(x) 224 -
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Andererseits ist auf Grund der bekannten Potenzreihenentwicklung der Ex-
ponentialfunktion

Hi2) =% -6 % = : L(i‘f)“.go(;;)"(i)t

2z

= 5‘ i’ (— I)ﬂﬁ (ﬁ>a+ﬂz“'ﬁ.

2

Setzt man nun « — f = #, also « = f + #, und beschrinkt man sich vorldufig
auf die Glieder mit # = o, so erkennt man, daB der Koeffizient von 2*

Jo#) =3 ..(——I)ﬁ)!(i)zun

el

N O ) S O

x n+4
2)

2l + 2)t

Die BesseLschen Funktionen mit negativem Index ergeben sich aus denen mit
positivem Index sodann durch die Beziehungen

(VIL; 24) Jon(®) = (=1)* Ja(#),

wie man unmittelbar einsieht, wenn man bedenkt, da8 die Funktion H (z, x)
und damit auch deren Entwicklung (VII; 22) unverindert bleibt, wenn man z
mit —z~1 vertauscht. Aus der Reihenentwicklung selbst folgt

]n(—x) = (_ I)n ]n(x)’
also ist nach (VII; 24) auch

(VIL; 25) J-n(—=2) = Ja(%).
Wegen (VII; 24) kann man (VII; 22) auch in der Form

lautet. Speziell ist also

und fiir ganze # >0

(VII; 23)  Ja(%) = @)n (%)HZ

T al 1+ 1)! t

z

1

(VIL; 26)  e? ( ‘) =Jo®) + 1(®) (2 — 271 + Jo (%) (*+ 27%) +
+J3(8) (@ =29 + -

schreiben. Setzt man hierin z = ¢'? und bedenkt, daB

€% 4 ei9 = 2 cos @; €9 — e % = 24sing,
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so erhilt man
(VIL; 27) ei=sine = J (%) + 2[]Jz(x) cos 29 + J,(#) cos 49 + - -] +
+ 2:[J;(%) sing + J5(#) sin 3¢ + --].

Andererseits ist ¢** = cos « + 1 sin «, also, wenn man die reellen und die ima-
gindren Teile beider Seiten von (VII; 27) trennt,

cos (xsin @) = Jy(x) + 20Ja(x) cos 2¢ + J4(x) cos 49 + -+,
sin (¥ sin ¢) = zUl(x) sin g + J4(¥) sin 3¢ + --].

Aus (VII; 28) folgt, daB man die Besserschen Funktionen auch in Form von
bestimmten Integralen schreiben kann.-Entwickelt man eine im Intervall
0 < ¢ < 27 periodische Funktion f(¢) in eine FouRiERreihe

flp) =ay+ a;cosp + agcos 29+ - - -+ a,cosnp 4 -+ -+
+ bysinp+ by sinzp+ ---4 b, sinng + -

so lassen sich, wie aus der Theorie dieser Reihen bekannt, die Koeffizienten ih
der Integralform

(VII; 28) {

I
. = f 1) cos npdg,
I 0
=;;’/‘f((p) dq); on (”= I, 2, 3,...)
0 I .
= ;/f(sv) sinngdg
0

darstellen. Wendet man diesen Satz auf die Reihen (VII; 28) an, so folgt un-
mittelbar

2n
Jo(%) = / cos (x sin ¢) do,
0
27
(VII; 29) Jon(%) = —; cos (x sin @) cos zn@ do,
0
2n

Jon-1(%) = % sin (% sin @) sin (2n — 1) p d@.
o

Andererseits bemerkt man, daf3 die Integrale
2n 2z

(VII; 30) fsin (% sin @) sinznp de, fcos (% sin @) cos (2n — 1) pde
0 0
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verschwinden, da nach (VII; 28) die trigonometi’ische Entwicklung von
cos (# sin ) nur Funktionen der geraden, die von sin {# sin @) nur Funktionen
der ungeraden Vielfachen von ¢ enthilt, und da

2n 2n
fcos mxcosnxdx =/sin mxsinnxdx = o fiir ganzem +n
0 0

ist. Man kann also zu den Ausdriicken (VII; 29) beliebige Vielfache der Inte-
grale (VII; 30) hinzufiigen und beweist so die Formel

2n

(VIL; 31)  J,(#) = 2% cos (np — xsing)dp, (n=o0,1,2,..),

J
0

die man, da der Integrand symmetrisch zu ¢ = & verlduft, auch

n

Jalx) = ;zI— cos (np — xsin @) de
0
schreiben kann.

Zwischen je drei aufeinanderfolgenden Besserschen Funktionen desselben
Arguments besteht eine Rekursionsformel. Differenziert man (VII; 26) nach z,
so erhdlt man

z

—(1 + —) eg(z'—%) = %(I + ':?) DAY, =+Zm"]n(x) 1

n=-o00 N =-o00

und durch Vergleich der Koeffizienten von 2" auf beiden Seiten:
%
(VIL; 32) nJa(®) = —Un-1(®) + Jpsa (2]

Eine dhnliche Beziehung ergibt sich, wenn man (VII; 26) nach x differenziert.
Es ist dann

LY PR B n s 41.()

2 (z z)ng; Ja(x) 2 _,.=Z_; dx 2
woraus durch Koeffizientenvergleich

' aj,(x I

(VIL; 3) ) 2 fya®) = Taa)

folgt.

Man kann (VII; 32, 33) zur Herleitung einer Differentialgleichung zweiter
Ordnung benutzen, der alle BesseLschen Funktionen geniigen: Man differen-
ziere (VII; 33) noch einmal nach x:

@PJn%) _ 1[d]p1(¥) _ 4T (%)
dx? 2 dx dx
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und wende auf die rechte Seite (VII; 33) an. Dann folgt zunichst

PIal®) _ L7 ) = 20,8) + Tara(2)]-

(VIL; 34) P

Nach (VII ; 32) ist ferner
(4 1) Tos(6) = ZUa(®) + Jara (9],
(= 1) Jaca (9) = = UJa(0) + Joma (9,
also, wenn man diese beiden Gleichungen addiert,

"’(]n+l+]n—l) + (]n+1 '—]n—l) = %( n-2 2]n+ ]n+2) + Zx]n'

Formt man dies nach (VII; 32, 33, 34) um und dividiert durch 2, so erhilt
man die BESSELsche Differentialgleichung

. @J,(%) | 1 a],(%) n’ -
R O R e PATEE
fiir die Funktionen ], (x).

58. Entwicklung von Funktionen der exzentrischen Anomalie
in FOURIERyeihen nach der mittleren Anomalie

Wir haben gesehen, daB verschiedene BahngroBen (z.B. die rechtwinkligen
Koordinaten x = 7 cos v, y = 7 sin v in der Bahnebene, die Hilfsgrofen F und
G, der Radiusvektor und seine Potenzen) sich sehr einfach als endliche Aus-
driicke in den Cosinus und Sinus der exzentrischen Anomalie und ihrer Viel-
fachen darstellen lassen. Die Aufgabe, diese GréBen in periodische Reihen nach
der Zeit, d.h. in Fourierreihen nach den Vielfachen der mittleren Anomalie M
zu entwickeln, wird also bereits weitgehend gel6st sein, wenn es gelingt, die
Funktionen cos E und sin E, allgemeiner cos#E und sin #E, durch solche
Reihen darzustellen. Bei der Losung dieser Aufgabe werden uns die Ergebnisse
des vorigen Abschnitts sehr niitzlich sein.
Offenbar ist der Ansatz

cosnE = a™ + a{™ cos M + a{™ cos 2M + - - - + a{™ cosvM + - - -,
sinnE = bMsin M + bW sinzM + -+ + b® sinv M + -

gerechtfertigt, denn da E(—M) = —E (M), ist cos nE eine gerade Funktion
von E und M, so daB ihre Reihenentwicklung nur cos-Glieder enthalten wird.
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Ebenso ist sin #E ungerade in E und M, kann also nur sin-Glieder enthalten.
Die Fourierkoeffizienten der obigen Entwicklung sind demnach durch

2n 27
1 1
aM=—[cosnEdM; a™= —[cos nE cosyM dM,
27 7,
0 6
y =
2 r=123..)

bW = % / sin nE sin vM dM

0
gegeben.

Zur Berechnung von a{™ setzt man
dM =dE(1 —ecos E),
was ja unmittelbar durch Differenzieren der KepLErschen Gleichung
(VII; 36) M=FE —esinE

folgt. Es ist demnach, da E und M die Intervallgrenzen o und 2x gleichzeitig

durchlaufen,
2n

a) = L/cosnE(I —ecosE)dE.
2,
0

Da nun
2n 2m

fcosnEdE=o; /cosnEcosEdE:{

0 0

o fir #>1,
nw fir n=1,

so ergibt sich

(VII; 37) a31)=—%; a™=o0 fir n> 1.

Das Integral fiir a{™ (» > o) formt man durch partielle Integration um:

2n
dsinvM
m_ I il § ¥
al vn/cos nE T aM
[1]
2n
. 27
_ [cosnEsva] _ ifdcosnEsindeM.
V24 o V7 iM

0
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Das erste Glied rechts ist null, das zweite 148t sich schreiben:
2n 2n
I [dcosnE n o[ . .
M= —_— | —"sinvMdE = — | sinnE sinvM dE.
v dE VI,
0 0

Substituiert man nun M durch (VII; 36), so erhilt man

2n
a) = | sin nE sin WE — vesin E) dE
0

oder nach Anwendung einer bekannten trigonometrischen Formel

2
a® = 2if—nf{cos [®W —n) E —vesin E] — cos (v + %) E — vesin E]} dE.
0

Das ist aber nach (VII; 31)
”
agn) = " Uv—n("e) - ]v+n(ve)]'

Auf ganz entsprechende Weise berechnet man

2z
d cosvM
= — L [snng25¥7
b wz/smnE T iM,
0
woraus nach partieller Integration
2n 27
b = l/cos nE cosyM dE = ﬁ—/cos nE cos (WE — vesin E) dE
v v
0

oder, nach Umformung des Cosinusproduktes und Anwendung von (VII; 31),

B = = (T, v0) + Josn06)]

folgt.

Fiir # > 1 erhilt man somit
cos vM

c0snE =1 3 [,-40) = Toralre)] 5=,

sinvM

sinuE = n‘é'l[],_n(ve) 4+ Joinve)] ”

(VIL; 38)
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oder, wenn man nach (VII; 25) J,,,(ve) = J,_,(—ve) setzt,

+ oo
cosnE=mn3"J_,_.(ve) cosva ,
(VIL; 39) T .
sinnE =nY"J,_, () S‘“:M )

wobei das Zeichen X’ bedeuten soll, daB bei der Summierung das Glied mit
» = o auszuschlieBen ist.

Fiir #» = 1 tritt der Sonderfall ein, daB nach (VII; 37) das konstante Glied
nicht verschwindet. Ferner lassen sich die Koeffizienten der periodischen Glie-
der mit Hilfe von (VII; 32, 33) umformen:

m_X _ _24dJpe) _ 2 d](e)
a, v []v—l (1/3) ]v+1(ve)] v d(’ve) 1’2 de )
2

B = - Uys-100) + a0l = - 1, 00)-

Es ist also
cosE =2 S M cova__e_’

) v—1 de 92 2

(VII; 40 N
: sinE-%Z' ve) sva'

Mit Hilfe der Formeln (VII; 40) lassen sich bereits verschiedene in der ellip-
tischen Zweikdrperbewegung auftretende GréBen in FouRrierreihen nach den
Vielfachen der mittleren Anomalie entwickeln. So folgt z.B. aus

(VII; 41) 7 =a(1 — ecos E)
unmittelbar

. 7 _ I, 4]0 cova
(VII; 42) =1 + S & 2 D P

Hierbei moge darauf hingewiesen werden, da3 J,(ve), wenn e klein von der
1.Ordnung ist, die Ordnung v, also —— ]"( d die Ordnung v — 1 hat. Das Glied

mit cos v M in obiger Reihe ist also von der v-ten Ordnung in der Exzentrizitat.

Auch die auf die Ap51denhn1e als Abszissenachse bezogenen rechtwinkligen
heliozentrischen Koordinaten eines Planeten in der Bahnebene lassen sich so-
fort als trigonometrische Reihen nach M hinschreiben. Aus

x=7rcosv=a(l —ecosE); y=rsinv=a})1— e*sinE
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folgt
(ve) cosvM 3

.g y2 2
V — e? i’,]( sva

’

(VII; 43)

Die Entwicklung des reziproken Radiusvektors erhilt man bequem auf fol-
gende Weise: Auf Grund der KepLERschen Gleichung ist zunichst
(VIL; 44) E—M=esnE=23 J,pe) S

v=1

Differenziert man diese Gleichung nach M, so erhilt man wegen
dE 1 a

dM 1 —ecosE 7
(VIL; 45) Lot+2 S T, (ve) cos v M.
v=1

Von den iibrigen Potenzen von 7 wollen wir an dieser Stelle nur die hiufig
gebrauchten Funktionen 72 und #~3 entwickeln. Die Reihe fiir 2 ergibt sich
ohne Schwierigkeit, wenn man

2 2
(VII; 46) (%) = (1—ecosE)?=1—2¢ecos E + %(1 + cos 2E)

mit Hilfe von (VII; 38, 40) umformt. Man findet, wenn man kurz J,(ve) = J,
schreibt,

(L)2 =1I + - - [4 2 d]” o vM j' + e U'—z - ]v+2] cosvM =

a v=1 y2 v

- 3. &4y _ ¥ -
=14 S 2 2 e (],_2 Jysd)|-

v=1

= cova[ dJ,

Setzt man nun nach (VII; 33), mit x = ve,

P CI A

und nach (VII; 32), wenn man v — 1 bzw. » + 1 statt » einfiihrt,

oa= —Ueat TN+ T

Ty = =2+ L + Josns
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so erhilt man

z% - 72—6(],_2 - ]v+2) = ]v-l —]v+1 = ;],(ve),

also schlieBlich die einfache Formel

cos vM

a

(VIL; 47) (L)2—1+_52—42],( ¢)

Eine kiirzere und elegantere Ableitung von (VII; 47) ergibt sich, wenn man
(VII; 46) differenziert:
sin vM

a (7 . . dE . o
W(?>=2(I—ecosM)esmEW—zesmE—4v§1],( )—

Integriert man dies wieder iiber M, so findet man

(1)2 = —4ﬂ=ZwlL(ve) 2

a

Der Wert der Integrationskonstanten folgt aber aus (VII; 46) und aus der oben

bewiesenen Tatsache, daB die Entwicklung von cos E das konstante Glied — £
hat, wihrend das der Entwicklung von cos 2E gleich null ist. 2
In der Stérungstheorie werden Entwicklungen der Funktionen

(r » 7\® .

—| cosmv; |—| sinmv

e ()

gebraucht, wo # eine beliebige ganze, m eine positive ganze Zahl bedeutet. Wir
wollen an dieser Stelle, auBer den schon erledigten Fillen m = % = 1 und
m =0, #n =2, T und — 1, nur noch die beiden Fialle m = 1; # = o und —2
behandeln. Der erstere ergibt die Funktionen cos v und sin v selbst. Aus der
Kegelschnittgleichung erhilt man

(VII; 48) sy = — —

I dr dv I esinv

d (r
und aus dM( )—ZE'dM T Y Yai-a) “

. o Jri—e a (r
(VII, 49) SIn v = -—e—d—M ;).

3

Setzt man in (VII; 48) die Reihe (VII; 45) und in (VII; 49) die Ableitung der

20 Stumpff, Himmelsmechanik
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Reihe (VII; 42) nach M ein, so ist

— 2 o=

cosv =2 2 J,(ve) cosvM — e,
. v=1
(VII; 50) .
l sinv =2)1— ¢ Z‘ d]” Sm:M .
v=1

Der zweite Fall betrifft die Funktionen »~2 cos » und 7~ 2 sin v, deren Bedeutung
sichtbar wird, wenn man die Differentialgleichungen der ebenen Zweikérper-
bewegung,

E=—xr3 fj= —yr3
betrachtet. Es sind ndmlich, wegen x = 7 cos v, y = 7 sin v,

cos v i sin v
72 72

= —§

die negativ genommenen Beschleunigungskoordinaten des Himmelskorpers.
Da nun

d2 aM\" 1 d’z b . I d?y

F)0E (dt) =sar PP V= G

so ergeben sich die gesuchten Formeln, wenn man (VII; 43) zweimal nach M
differenziert. Es ist demnach

2 o
(%) cosv =2 d]"i )cova,

v=1

2 ]/ 2 o
<%) siny = zl—ee— D' v],(ve)sinvM.

(VII; 51)

V=

Statt dessen kann man auch symmetrischer

[ (i)zcos‘v = S'lv( y—1 ]v+1) cosvM = 21;]” 1(’1’8) COS’VM

14 P = —o0

2 oo
(VII; 52) (%) sino =71 — & ZUpr Towa) sinvM =

+ oo
=Y1—¢e Xv],_,ve)sinvM

Y = —o0

schreiben, indem man (VII; 33, 32) benutzt und J,, (v¢) nach (VII; 25) durch
J_,—1(—ve) ersetzt. In diesen Summen braucht man nicht, wie in (VII; 39),
das Glied mit v = o auszuschlieBen, da dieses ohnehin verschwindet.

Wenn man will, kann man auch die wichtigen Gré8en F und G in FOURIER-
reihen nach Vielfachen von M entwickeln, da sie nach (VII; 3) lineare Funk-



Entwicklung von Anomaliedifferenzen 307

tionen von
cos 2g = cos (E — Ej) = cos Eycos E + sin Esin E,

sin 2g = sin (E — Ey) = cos E, sin E — sin Eo cos E
sind, wobei

2 .
cos E, = —; sinE, = 21 %

efty el

nur von ¢ und den lokalen Invarianten der Epoche £ = £, abhingen. Man braucht
also nur die Entwicklungen (VII; 38) einzusetzen. Aber diese Reihen haben
kaum praktischen Wert, da bei der Entwicklung der rechtwinkligen Koordi-
naten die Zwischenzeit v = k(f — ,) als unabhingige Variable auftritt, eine
gleichwertige trigonometrische Entwicklung also nicht nach Vielfachen von M,

1/_0

sondern vielmehr nach denen von M — M, = erfolgen miiBte.

a3
Eine solche Entwicklung ist mit Hilfe des Ansatzes

cos2g = ap + 3 [a,cosy (M — My) + B,sinv (M — My)],
v=1

sinzg = y, + f‘ [y,cosv (M — My) + d,siny (M — M,)]
v=1

tatsichlich moglich. Die von den lokalen Invarianten abhingigen FOURIER-
koeffizienten erweisen sich aber als so verwickelt, daB ein praktisches Bediirf-
nis nach Formeln dieser Art kaum besteht. Es zeigt sich iiberdies, daB — ab-
gesehen von den konstanten Gliedern, die von der Ordnung der Exzentrizitit
sind - die Terme mit cos # (M — M) und sin # (M — M) von der (n — 1)-ten
Ordnung sind, so daB man auch bei kleinen Exzentrmtaten wie sie bei der
Mehrzahl der Planetoidenbahnen vorkommen, ziemlich viele Glieder berechnen
miiBte, um die Genauigkeit sechs- oder siebenstelliger Rechnung auszuschép-
fen. Die frither bewiesenen strengen Formeln fiir F und G leisten das bedeutend
miiheloser.

59. Entwicklung von Anomaliedifferenzen

Die Anomalien M, E und v unterscheiden sich um Gr6Ben von der Ordnung der
Exzentrizitit voneinander. Es ist daher niitzlich, die Entwicklungen der Diffe-
renzen E — M,v — M, v — E in FouriERreihen nach Vielfachen der mittleren
Anomalie zu besitzen, die fiir kleine ¢ rasch konvergieren. Diese Aufgaben, die
sich leicht vermehren lassen, wenn man 1. auch die ,,antifokale Anomalie” w
und andere in der Zweikorperbewegung vorkommende Winkel von Anomalie-
charakter mit einbezieht, 2. auch trigonometrische Reihen nach E, v, w usw.
zu entwickeln sucht, bieten sehr unterschiedliche Schwierigkeiten. Sehr leicht
ist z.B. die Differenz E — M nach E und M zu entwickeln, wie dies in (VII; 44)
geschehen ist.

20*
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VerhiltnismaBig einfach losbar ist auch die Aufgabe, die Differenzen zwischen
den Winkeln E, v und w nach Funktionen der Vielfachen jedes dieser drei
Winkel zu entwickeln. Man bedient sich dazu der schon frither (II; 14, 21) be-
wiesenen Zusammenhinge

v 1+é E E q/1+e, w, v _ I+e w
tg?_VI—etgz’ tg7_V1—etg2’ B, = 1—c%%

Diese Beziehungen sind von der Form
tgy =atgx,

wo a (im Falle schwach exzentrischer Ellipsen, fiir den allein das Problem prak-
tische Bedeutung hat) wenig von der Einheit verschieden ist. In diesem Falle
148t sich y — x in der Form der aus der Analysis wohlbekannten trigonome-
trischen Reihe?)

a—1. I (a—1\%, I
y—x—a+I51nzx+;(a+I) sin 4% 4 ?(

a—1\3 .
a+1) sin6x 4 -+

schreiben. Setzt manin den vorliegenden Fillen fiir a die Werte VII i i , II i ee
a —_—

ein, so erhilt man fiir
a+

Vi+te—7Ji—e e _ sing e ?

I, . .
beziehungsweise
bs

Vitetii—c 14fi—e I1tcsg 2’
e
und daher die Reihen
v—E=2 :tg%sinE-}— %tgzgsian-k %tg3%sin3E+ ],
(VII;53) E—w=2 Ttg%sinw{— %tgzgsinzw+ %tg“%sinyv—}— },

. I, . I, .
v —w=2esinw + ;e2sm2w+—3—e35m3w+ }

1) Den Beweis findet man in den meisten Lehrbiichern der Sphérischen Astrono-
mie, z.B. auch in K. Stumprr: ,,Geographische Ortsbestimmungen*, S. 208/209

(Berlin 1955).
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Umgekehrt ist aber auch

E I—e v w 1—e¢ FE I—e, 6 v
tg—z_—VI-l-etg?’ tg;_l/1+etg_z-—1+eth’

so daB man in (VII; 53) die beiden Variablen miteinander und gleichzeitig ¢ mit
— e vertauschen darf. Es gilt demnach ebenfalls

r

Q . I ,9

v—E=2 tg;smv—?tg —Z-sinzv—i—% s 9

tg ;sin3v—---J,

(VII;54)E—w=2tg%sinE— tgzsvssz—l- tg3<psm3E— ],

. I . I .
V—w=2 esmv—;ezsmzv—{— §e351n3v—— }

Durch Bildung von Differenzen zwischen je zwei dieser Reihen erhilt man zu-
sitzlich die Formeln

v—E=@w—w) —(E—w) =

N R AW I, .9\ )
—z_e ’cg2 smw+? e? tg22 sin2w 4 ---|,
(VIL;55) E—w=(@—w)—(@—E)=

2l — te®\siny — L )\
_2_(e tgz)smv 2( tg? )smzw-l— ],
v—w=@v—E)4+ (E—w) =

—4[tg—smE+—tg3£sm3E+ 5quir15E-|-...},

in denen die Differenz zweier der drei Anomalien durch die dritte ausgedriickt
wird. Die letzte dieser Rejhen kann dazu dienen, den Winkel '

v—-w
2

Jt'
6=;—

zu berechnen, der von den Vektoren des Ortes und der Geschwindigkeit ein-
geschlossen wird [siehe (III; 66)]. Diese Reihe konvergiert besonders rasch, da
sie nur die ungeraden Potenzen der Exzentrizitit enthilt.

Nach einem Vorschlag von J.G.BEHRENSs!) lassen sich trigonometrische
Reihen von bemerkenswert guter Konvergenz auch finden, wenn man als wei-

1) Astron. Nachr. 284, 145 (1958).
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tere ,,Anomalie“ den Richtungswinkel y der Bahnnormale gegen die Perihel-
richtung der groBen Achse hinzunimmt oder, was dasselbe ist, den Winkel, den
der Geschwindigkeitsvektor mit der Richtung der Perihelgeschwindigkeit
bildet. Dieser Winkel, der ebenso wie die anderen Anomalien wihrend eines
Umlaufs von Perihel zu Perihel von o bis 2z wichst, ist, wie in Abschn. 23
(IIT; 67) gezeigt wurde,

v+ w

(VII; 56) y=—"

und man findet leicht, daB

tg§+tg% (V;tz + VI —e)tg—

I
tgy = = = tg E.

I—tg—;)—tg% I—tg— yi—e

Es bestehen also die Zusammenhinge
(VII; 57) tgy =secptgE; tgE =cosptgy,
aus denen man wegen

SeCp — 1 _ P, OS¢ I =—tg22

sec® + I 2’ cosp+I 2

die beiden fiir kleines ¢ = arc sin e rasch abklingenden Reihen

VII;s8) y—E = tg? Lsin2E + ~tg 2sm4EJ-I L sin6E 4 -
¥ 2 2 3 ° 2

4 V4

=tg2 smzzp—-—tg sm4zp+—tg°—sm6tp+--o

herleitet. Weiter folgt aus (VII; 57)

Asiny =sinE,
(VIL; 59)

(A =} 1 — €% cos? E)

Acosy =171 —e*cosE.
Setzt man rechts die Ausdriicke (III; 60)

. ——  sinv cosv + e
smE=]/I—e2——; cosE = ——M—
I+ ecosv I+ ecosv

ein, so ergibt sich
Bsiny = sinv,

(VII; 60) (B =11+ 2ecosv + ¢2)
Bcosy =cosv + e.

Multipliziert man die beiden Gleichungen (VII; 60) mit cos  bzw. —sin g und
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addiert, so entsteht
sin (v — y) =esiny; v — yp = arcsin (esin p)

oder, wenn man den arc sin in eine Potenzreihe entwickelt,
p—esiny+ L (esinu) + 3 (esin )+ S (esinp) 4 -
v—yp=esiny+ 6 (e siny)® + 10 {esiny)® + - (esiny)? +

Mit Hilfe der bekannten trigonometrischen Formeln
2?sin®p = 3siny — sin 3p,
2'sin®y = 10siny — 5sin 3y + sin 5y,
(VII; 61) 2%sin”y = 35sinyp — 2Isin 3y 4 7sin 5y — sin 7y,

..................................................................

verwandelt man diese Reihe, bis zur 7. Ordnung genau, in

) _ — i i 3 _3_ 5 25 7 eee] —
(VII;62) v —y smw[e+ 8 T 60 T o ¢ T ]
| 1

_g3+ —3—85+ I—567+...:|_|_

T sm3y | 24 128 1024

(ies_i_iev_,_...]_

+sinsy | 640 1024

_sin7'p '715?37-'-"'}"'"‘0

Nun ist nach (II; 23), wenn s den Abstand des Planeten vom Antifokus be-
deutet,

Es ist demnach
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mithin
dlv—1y) s—r
dy s+
oder,da s = 2a — 7,
dv—y) _ _ 7
dy a’
Differenziert man also (VII; 62) nach y, so ergibt sich fiir r/é die Entwicklung
. LA Tp 3 5. % g, ...
(VII; 63) ’ I cosz,ue+86+64e-1 I024¢a-|— +
Ts0 9 oy 45 a0 ..
—|—cos31p-8e + 128 ° + 10245 +
- (3 50 5 oy ...
cos5zp~128e + 1024 e+ ]+
+C057?p_ 5 87-*"“‘—"’
| 1024

Diese Reihe konvergiert erheblich rascher als die Entwicklung (VII; 42) dieser
GroBe nach den Cosinus der Vielfachen der mittleren Anomalie, die man auch
in der expliziten Form

. r_ I, 30 S5 57 g |
(VII; 64) a—1+ze cos M |e 86+1928 92166—{- ]
M o2 4 6
—COSZMe——i- 8__]_
| 2 3 16
_ (3,0 45 5, 57 o ]_
€08 3M_8 ¢ 128 ° + 5120 ¢
(1 2
— cos 4M | —et — =68 --]——
4 3 5 +
_ 125 5 _ 4375 2 ..
cossM-384e 9216 + ]
—cos6M2—76°—-~--]—
| 80
16807 ,
cos y M | 26080 e ]

schreiben kann, wenn man die BesseLschen Funktionen durch ihre Potenz-
reihen nach e ersetzt.
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60. Die Mittelpunktsgleichung

Bedeutsamer als die Entwicklungen nach Funktionen von E, v, w, v sind die
trigonometrischen Reihen, die nach den Vielfachen der mittleren Anomalie fort-
schreiten, da sie die zu entwickelnden GréBen unmittelbar als periodische Funk-
tionen der Zeit liefern. Fiir verschiedene Bahngrofen haben wir dieses Problem
schon in Abschn. 58 gel6st, so fiir einige Potenzen des Radiusvektors, fiir trigono-
metrische Funktionen von E und v, fiir die Differenz E — M und andere. Unter
allen Formeln dieser Art ist aber die unter dem Namen , Mittelpunktsgleichung®
bekannte Differenz v — M besonders wichtig, da sie die wahre Anomalie direkt
als Funktion der seit dem Periheldurchgang verflossenen Zeit auszudriicken
gestattet.

In der klassischen Literatur ist daher auch auf die Berechnung der von e ab-
hingigen Koeffizienten der Reihe

(VII; 65) v— M=o sin M+ aysin2M + azsin 3M + .-

sehr viel Mithe verwendet worden, und die Mathematiker haben auBerordent-
lich reizvolle, tief in die Funktionentheorie fiihrende Uberlegungen angestellt,
um diese Aufgabe zu 16sen. Der Leser, der sich fiir diese Dinge interessiert, sei
besonders auf die schone und glinzend dargestellte Untersuchung dieses Pro-
blems hingewiesen, die F.TisseranDp im Kapitel XIV des Bandes I seines
,Iraité de Mécanique céleste” ausgefiihrt hat. Jeder, der sich eingehender mit
Himmelsmechanik beschiftigt, sollte diese klassische Darstellung gelesen
haben, deren mathematische Eleganz und Klarheit uniibertrefflich ist. Es
moge daher hier ein anderer Weg gezeigt werden, der ohne anspruchsvolle Hilfs-
mittel zu dem gewiinschten Ziele fiihrt.
Man kann etwa so vorgehen, daBl man zunichst

v—M=(E —M) + (v — E)

setzt und fiir die beiden Summanden der rechten Seite ihre Entwicklungen nach
Funktionen von E einsetzt, die nach (VII; 44, 53) bereits vorliegen. Man erhilt
dann

4

M= PG T2 ® RIS
v—M 2[(tg2+2)smE+2tg 2sm2E+3tg 2sm3E-|— .

Setzt man hierin nun nach (VII; 38) die Entwicklungen von sin # E ein, so er-
gibt sich unmittelbar eine Reihe von der Form (VII; 65). Man erkennt leicht,
daB «,, der Koeffizient von sin #M, von der #-ten Ordnung in der Exentrizitit
ist. In der Reihe (VII; 38) fiir sin #E enthidlt nimlich jeder Koeffizient einen
Beitrag nullter Ordnung, nimlich J,(ne), wihrend alle iibrigen Glieder von

hoéherer Ordnung sind. Der Koeffizient tg"%ist aber von der #-ten Ordnung.
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Es bietet somit wenig Schwierigkeiten, wenn man noch

@ _1-V¥1—¢ 1., Ia, Ts, 5
8, = e _ze+86+ Ct gt T
beriicksichtigt, die oben angedeutete Rechnung bis zu einer miBig hohen Ord-

nung in e durchzufithren. So ergibt sich bis zur 7. Ordnung

. o I3 107
(VII; 66) v — M =sinM |2e 46 + +4608 + ]—l—
i _§_ 2_24 I_G_...
+51n2M_4e 248 + 66 ]—l—

. B 45, 95,
-l—sm3M-12e b4 +512 ]—f—

: (103 4 451 6

+ sin 4M -E'e 4‘78 + +
: (1097 5 _ 5957

—i—smsM-960 e 1608 e+ - ]
. 1223 .

+ sin6M 560 } +

inoar 42283 0 ] o
+ siny M -322566 }+

Auf gleiche Weise erhilt man aus (VII; 44,54) w — M = (E — M) — (E — ),
also nach Ausfithrung der Rechnung

: 1 5 5, 113
II; —M=— Bl BT &
(VII; 67) w smM[Ze+2 e+768 + - ]+
+ sin 2M iez—;eu. e ]+
insh 2o~ 3, .
+Sm3M_6e +1280 ]+
i (5 19,6, ...
+sm4M_32e 96e+ ].|.
. (37 o 181 ,
+Sln5M-%e ;@ + ‘]+
+ sin6M I%Ize‘—--»}-F

+ singM [ 4721 _ } + o
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Man bemerkt auch hier die schon frither bewiesene Eigenschaft der antifokalen-
Anomalie, sich von der mittleren nur um Gré8en 2. und héherer Ordnung in
der Exzentrizitit zu unterscheiden — jene Eigenschaft, die den zweiten Brenn-
punkt der Bahnellipse fiir kleine Exzentrizititen angenihert zum ,,punctum
aequans” der antiken Planetentheorie macht. AuBerdem ist in (VII; 67) die
Konvergenz der Potenzreihen in ¢, durch die die FouriErkoeffizienten von der
2.0rdnung an dargestellt werden, erheblich besser als die der entsprechenden
Ausdriicke in (VII; 66).

Noch bessere Konvergenz erzielt man, wenn man die Mittelpunktsgleichung
nach der ,Geschwindigkeitsanomalie” y entwickelt. Zur Vorbereitung dieser
Aufgabe entwickeln wir zundchst

E—-—M=esinE
nach y. Aus (VII; 59) folgt
A2 =1 — > cos? E =1 — ¢ + €2A4%sin?yp,
also A%(1 — e?sin®p) = 1 — ¢? und somit

esiny

E—M=c¢Asiny =71 — VI——-—=

— e%sin®
=711 —elesiny + %(esinw)3+%(esinzp)5+ %(esinw)7+ ]

Ersetzt man hierin die Potenzen von sin  nach (VII; 61) durch die Sinus der
Vielfachen von p, und setzt man fiir 1 — ¢? die Potenzreihe

2 1 I I I s
Jr—e=1 (2e+8e+16e+
ein, so erhilt man schlieBlich

. — M =si _rp_ S s 57 a_.|_
(VII; 68) E—-M smzp[e g ¢ 64e 10246 ]

_7_. 65 + __29

74 ...
128 10248 + ]+

— sin 3p .-I—e3 +
8

sinsy | gt Lo +---]—

—sin7y |—— 1024 e+ ]+

Die Mittelpunktsgleichung 148t sich dann in der Form
v-M=@kw—E+@—-y)+ (E—-HM)
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schreiben, wobei man fiir die drei Differenzen der rechten Seite die in (VII; 58,
62, 68) gefundenen Rejhen einsetzt und noch

_]/ — 2\?
tg2%=(1_1_8) =iez+ _I_e4+ 5

= e84 ..
e 4 8 64e+

beriicksichtigt. Ebenso erhilt man, wegenw — p = — (v — y),
w—M=(y—E—(@—y)+ (E—-M).
Nach Ausfithrung der einfachen Rechnung ergeben sich die Reihen

. M — I s L.
(VII,69) v—M smgv[ze 323 32e ]-l—
+ sin 29 %e2+ le4+-——

. [
—sin3y |-+ —e+ —
— sin 4y ie‘—{- ie"-i—m]-}-

+ sin 5y EX

+ sin 6y |— €8 + } —

_sin7w ,:%87_'_...} —_— e
und
(VII; 70) @ —M = —sin p Bes+ Iy 2

inzw|Eeq Loy 5oy ]
+sm21p_4e+8e+64e-|- }

Csingp| Lot Lot L

7 e —
| 12 32 5126 + J

— & T Loy .
sm4zp.328+32e+ ]—l—

+sinsp | 2o+ 5—22e7+ ] +
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+ sin 6y lngzee_*_ ] —

584

die man noch, indem man zwischen (VII; 66) und (VII; 67) das arithmetische
Mittel bildet, durch die miBig konvergente Entwicklung von y nach Viel-
fachen von M,

) — M =si _ 33 55T a0
(VIIL; 71) v — M =sin M[e 5% "6’ 92168 +

—sln7zp[ 5 7_|_...:|_..-,

+ sin 2M iez—le4+ 47, ]-}-

[ 4 24 384

-
; S, _ 55 5, 557 0 ...
J.-sm3M-85 Izse + 51208 ]-I—

. 59 ot —
+ sin4M 96 160 et ]+

. (83 5 7083 ;
+sinsM 128 9216 L
689
| 960

(37813 , _
46080 ] +

+ sin6M ]-l—

+ sin 7 M

ergdnzen kann.

61. Konvergenz der Rethen in der elliptischen Bewegung

Die Frage nach der Konvergenz der Reihenentwicklungen ist fiir den prak-
tischen Rechner meist von untergeordneter Bedeutung, da er Entwicklungen
nach Potenzen oder anderen Funktionen der unabhéingigen Variablen nur dort
verwenden wird, wo er sicher sein darf, daB wenige Glieder der Reihe aus-
reichen, um die betreffende GroBe mit der gewiinschten Genauigkeit darzu-
stellen. Den Theoretiker wird dagegen auch die Begrenzung des Konvergenz-
bereiches interessieren, also etwa die Frage, fiir wie groBe Zwischenzeiten
7 = k(t —¢,) die nach Potenzen von 7 fortschreitenden Reihen noch konver-
gieren und die betreffende Funktion darstellen.

Die trigonometrischen Entwicklungen nach den Sinus bzw. Cosinus der Viel-
fachen der mittleren und anderer Anomalien, von denen wir in den Abschn. 58
bis 60 die wichtigsten kennengelernt haben, sind fiir alle e < 1 sicher konver-
gent, also fiir alle Flle elliptischer Bahnbewegung, denn die periodischen Funk-
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tionen, die hier in FouriERreihen entwickelt werden, gehoren alle dem Typus
von beschrinkten, iiberall stetigen und beliebig oft differenzierbaren, in ihrem
ganzen Verlauf ,glatten” Funktionen an, deren Entwickelbarkeit in FOURIER-
reihen auBer Frage steht. Gewisse Schwierigkeiten treten aber mitunter auf,
wenn sich e der Einheit nihert. So verliert z.B. die Reihe (VII; 58)

p— E—tgzzssz—}- tg4%sin4E+—§tg6%sin6E+---

fiir e = 1 ihren Sinn. Dann wird nimlich die exzentrische Anomalie null, und
die Gleichung wiirde fiir tg 2 = 1 den Wert p = o liefern, wihrend aus der
Geometrie der Parabel p = — folgt Der FehlschluB ist darauf zuriickzufiihren,
daB die Reihe

f(x) = sin x + %sin 2% + %sin3x+

im Intervall 0 £ ¥ < 2x die Funktion
w—x
o =12

o) fir x=0 und x =2z

fir o< ¥ < 2m,

periodisch darstellt, also eine sigezahnartige Kurve ergibt, die fiir x = o,
x = 2nu unstetig ist. Im Parabelfall wird also die stetige Funktion y durch die
obige Reihe nicht mehr dargestellt, und fiir parabelnahe Ellipsen wird die
Reihe in der Umgebung des Perihels schlecht konvergieren, da E dort sehr
klein ist und die rechte Seite nur durch sehr viele kleine Summanden angenéhert
werden koénnte.

Die Fourierreihen, die nach den Vielfachen von E, v, w oder y fortschreiten,
sind fiir alle ¢ < 1 sogar unbedingt konvergent, d.h., die Konvergenz der Reihe
und ihre Summe 4ndern sich nicht, wenn die Reihenfolge der Glieder beliebig
gedndert wird. Man kann z.B. die Glieder gleicher Ordnung in e zusammen-
fassen und die Reihe als Potenzreihe nach der Exzentrizitit auffassen. Das ist
hiufig notwendig, z.B. in der Stérungstheorie, wo Entwicklungen nach Poten-
zen von e gebraucht werden.

Fiir endliche Reihen, wie etwa (VII; 36, 41), versteht sich das von selbst.
Gebrochene rationale Funktionen von cos E, sin E usw., wie

cosE —e

I—c¢cosE (cosE —¢) (14 ecosE 4 €2cos’E + ---),

(VII; 72) cosv =
lassen sich durch Anwendung der binomischen Reihe direkt nach Potenzen
von ¢ entwickeln: Die Reihe (VII; 72) konvergiert bekanntlich fiir [¢ cos E | <1,
also erst recht fiir e < 1. Ebenso sind alle Reihen, die wir aus Gleichungen von
der Form

tgy=atgx
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erhalten haben, auch als Potenzreihen nach e fiir alle elliptischen Bahnfille
konvergent. Diese Reihen waren ja simtlich von der Form

Yy — % =aysinx + aysin2x 4 agsin3x + ---,

und es war immer a, = «,¢", wo a,, beschrinkt, d.h. | e, | fiir alle # kleiner als
eine endliche Schranke war. Reihen dieser Art konvergieren aber mindestens
so gut wie die geometrische Reihe, deren Konvergenzradius gleich der Einheit
ist. Sie konvergieren also sicher fiir ¢ << 1 und fiir diese Werte sogar absolut
und unbedingt, so daB beliebige Umordnungen, z.B. nach Potenzen von e,
vorgenommen werden diirfen.

GroBere Schwierigkeiten bereitet die Konvergenzfrage bei den Entwick-
lungen nach der Zeit t = & (¢ — £,) bzw. nach der ihr proportionalen mittleren
Anomalie M. Wir miissen hier zwei Fragestellungen unterscheiden: die nach der
Konvergenz der trigonometrischen Reihen nach den Vielfachen von M und die
nach der Konvergenz der nach Potenzen von M bzw. 7 fortschreitenden Reihen.

Es 14Bt sich zeigen, dafl die Fourierreihen nach den Vielfachen von M, die
natiirlich fiir alle in der elliptischen Bahnbewegung vorkommenden perio-
dischen Funktionen konvergieren, nicht immer unbedingt konvergent sind, d.h.,
daB es nicht immer erlaubt ist, sie beliebig umzuordnen, also etwa als Potenz-
reihen nach e zu schreiben. Sammelt man in den Reihen (VII; 42 bzw. 64) und
(VII; 44) die Glieder mit gleicher Potenz der Exzentrizitit, so erhilt man zu-
nichst formal

2
§=I—ecosM—|—BT(I—coszM)+%e3(cosM—cos3M)+°-~,
e? el
E—M=esinM + TsinzM—l—?(3sin3M—sinM)-|—---

oder allgemein, wenn man das Koeffizientengesetz der Potenzreihenentwick-
lung (VII; 23) der BesseELschen Funktionen beriicksichtigt,

en I
w=1(n — 1) 2*?

{n"‘z cosnM — (7:) (m — 2)""%cos (n — 2) M +

+(3)e—arrenm— g~

el L §
n=1n! 2n-1

{n"‘lsin nM — (’I’) (n — 2" tsin(n — 2) M +

/

+(5) o= arrsin — g ar -,



320 Reihenentwicklungen im Zweikorperproblem

wobei die Summen in den geschweiften Klammern bis zu denjenigen Gliedern
fortzusetzen sind, die die trigonometrischen Funktionen von M (bei unge-
radem#) bzw. 2M (bei geradem #) enthalten. Die Reihen (VII; 73) lassen sich
noch bequemer in der Form

7 e en  dr?sin® M
1——=¢cosE =ecosM — > —
a oo (m—1)!  dM®

. > e d*1lsin® M
E —M=esmE=n§1—!W

(VII; 74)

schreiben, wie man leicht beweist, wenn man die trigonometrischen Gleichun-
gen (n = 2m gerade bzw. n = 2m 4 I ungerade)

. I(2m 2m 2m
22""151n2"‘x=.—( )—( I)coszx+(m_2)cos4x—---—|-

2\m m —

+ (—1)™cos z2mx,

g 2m+ 1\ . 2m + 1\ .
22mgin?mtly = + sin x — + sin 3x +
m m—1

+ (2:1— I)sinsx — o 4 (—1)msin (2m + 1) ¥
(» — 2)mal bzw. (» — 1)mal nach M differenziert und die Ergebnisse mit den
Koeffizienten von e® der Reihen (VII; 73) vergleicht. Ubrigens folgen, wie hier
nur am Rande vermerkt werden soll, die merkwiirdigen Formeln (VII; 74) aus
einem sehr viel allgemeineren Satz, der zuerst von LAGRANGE bewiesen worden
ist und folgendes besagt: Ist f(y) eine in einem gewissen Gebiet regulire Funk-
tion, z ein Parameter, und gilt die Funktionalgleichung

(VII; 75) y(2) =y + 2f(¥),

so lassen sich im gleichen Gebiet regulire Funktionen g (y) in Potenzreihen nach
z von der Form
(VIL76)  g0) =gl + 3 2 L2 |(8) iy

V7 §V) =80 as1nl dyg™t (\dy Jy=y, %
entwickeln. Die KepLERsche Gleichung ist von der Form (VII; 75), und zwar
istz =c¢, y(z) =E, f(y) =sin Eund y, = y(0) = M. Setzt man nunin (VII; 76)
g(E) =ecos E bzw. g(E) = E, so erhdlt man in der Tat die Potenzreihen
(VII; 74).

Um nun den Konvergenzbereich der Reihen (VII; 74) und anderer aus der
KEerLERschen Gleichung abgeleiteter Potenzreihenentwicklungen nach e zu
bestimmen, geniigt es, die Entwicklung von E (¢) selbst zu untersuchen, wobei
M als konstanter Parameter von beliebiger GroBe angesehen werden moge.
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Denn alle iibrigen Ausdriicke, um die es sich hier handeln kénnte, werden ent-
weder (wie e cos E) durch Differentiation der KepLERschen Gleichung oder als
analytische Funktionen von sin E bzw. cos E erhalten, so daB die Konvergenz
ihrer Entwicklung nach Potenzen von e iiberall dort gesichert ist, wo die Ent-
wicklung E = E (¢) selbst konvergiert.

Um den Konvergenzradius von E (¢) zu ermitteln, ist es erforderlich, die sin-
guliren Stellen in der komplexen e-Ebene zu bestimmen, die diese Funktion
fiir beliebige Werte des Parameters M aufweist. Der Konvergenzradius von
E(e; M) ist.dann der Abstand der nichstgelegenen Singularitit vom Null-
punkt. Sind die Abstinde (Betrége) der Singularititen fiir verschiedene M ver-
schieden groB, so wird der kleinste dieser Betrige den Radius desjenigen Krei-
ses angeben, in dem die Reihe fiir alle M konvergiert. Oder, anders ausgedriickt:
Ist ¢, der Betrag der dem Nullpunkt nichstgelegenen Singularitit, so konver-
gieren die Reihen fiir alle ¢ < ¢,, wihrend sie fiir ¢ = ¢, hochstens fiir gewisse
Bereiche der mittleren Anomalie konvergieren.

Aus der KepLERschen Gleichung

E—-M=esinE
folgt durch Differenzieren nach e, wenn M konstant ist,

dE ] dE
= sinE 4 ecos E T
oder

dE sin E

de 1—ecosE’

Da nun die Funktion E (e) iiberall regulir ist, wo ihr Differentialquotient exi-
stiert, so folgt, daB die singuldren Stellen durch diejenigen Lésungen der KEPLER-
schen Gleichung gegeben sind, fiir die der Nenner dieses Ausdruckes verschwin-
det. Das Gleichungssystem

E—esinE=M,

VII;
( 77) I—¢ecosE=o0

wird also durch diejenigen komplexen e befriedigt, fiir die E (¢; M) singulir ist.
Man kann statt dessen auch

E—-tgE=M,

VII; 78
( 7 secE =e
schreiben.

Es sei nun E = « + ¢f eine komplexe Funktion in der e-Ebene, die diese
Gleichungen fiir irgendein reelles M befriedigt. Die Argumente ¢ (M), die diesen
Losungen entsprechen, liegen, wenn man M alle Werte von — o bis + oo
durchlaufen 148t, auf irgendeiner Kurve, die den Nullpunkt nicht enthilt, da
ja e = o der zweiten Gleichung (VII; 78) widerspricht, solange E endlich ist.

21 Stumpff, Himmelsmechanik
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Die Aufgabe besteht also darin, dasjenige M zu suchen, fiir das der Betrag des
zugehorigen e (M) ein Minimum besitzt.
Nun ist aber nach (VII; 78)

I
e=secE =

cos (x + 1)’
und es folgt durch Differenzieren der beiden Gleichungen (VII; 78)

4dE I ., 4de sinE 4E 1 I
dM 1 —se?E’ dM = cos!E dM = sinE  sin(x+ if)’

- Die Gleichungen (VII; 77) bzw. (VII; #8) sind ebenfalls erfiillt, wenn man E
und e durch ihre konjugiert komplexen Werte E und ¢ ersetzt. Setzt man nim-
feh sin E = sin (« 4 4f) = sina €of f + i cos a €in f = a + 1,
cos E = cos (@ + iff) = cosa Cof f — ¢ sinaGinf = ¢ + id
und ferner e = f + ¢g, so erhilt man aus (VII; 77)
atif—(f+ig @+ i) =4 +iB=M,
(f +ig) (c + id) = C+iD = 1.

Geht man nun auf die konjugiert komplexen Werte iiber, d.h., wechselt man
das Vorzeichen von f, g, b, 4, so bleiben die GréBen 4 und C unverindert, wih-
rend B und D das entgegengesetzte Vorzeichen annehmen. Da aber M und 1
reell, also B und D null sind, so 4ndert sich gar nichts, und die Gleichungen
bleiben erfiillt. Man darf also schreiben

I de I
cos (x —if)’ dM = sin(x —if)’

=

Es ist nun | e*| = ¢ - &, also

dle|  di | _de
ar = Cam T tawr T

aM

I

I
- {cos (@ + 1p) sin (x — ¢f) + sin (« +viﬂ) cos (& — iﬁ)} -

—2 1 _|_ I —
o sin2a —1@in 2f ' sin2a + 1 Gin zﬁ} -

4 sin 2«
T sin?®2a 4 Gin2 28

= — A%sin 2¢,

wo 42> o und (wenn wir den Fall « = f§ = o ausschliefen, der ja der Parabel-
losung ¢ = 1 entsprechen wiirde) endlich ist. Dieser Ausdruck verschwindet
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also nur fiir « = k%, wo k irgendeine ganze Zahl bedeutet. Die Minima der
. . d 2

Funktion |¢?| entsprechen den ungeraden k, da an diesen Stellen 7';;,—' von

negativen zu positiven Werten iibergeht, die zweite Ableitung also positiv ist.

Setzt man a = (27 + 1) %in die erste Gleichung (VII; 78) ein, so erhilt man

(2n+1)%+iﬂ—fg (2n+1)%+iﬁ.=M

oder, wenn man den reellen und den imaginiren Teil dieser Gleichung gesondert
schreibt,

M = (2n + 1)%; f = Ctgp.

Das Minimum | ¢,| von | e| tritt demnach ein fiir
€ = sec (& + ify); & = sec (% — i),

wenn o, = (27 + 1) % gesetzt wird und f, die Losung der Gleichung

(VII; 79) p=Cigp
bedeutet. Man findet daher
2 _ 2 1
leo] =" &% =5 200+ G0j2f,  cos?a, + Gin? B,
oder, da
oS &y = €os (27 + 1) % =o,
I
leo| = [Sin |~
Setzt man hierin die Losung f, = 1.199678. . von (VIL; 79) ein, so ergibt sich
(VII; 80) €, = 0.662744

als obere Grenze derjenigen Exzentrizitdten, bei denen die Reihen (VII; 73)
und andere, wie z.B. die als Potenzreihe nach e geschriebene Mittelpunkts-
gleichung (VII; 66)

v — M =2esinM + i‘«:2sinzM+ II—Z-e3 (13sin3M — 3sin M) 4

4
+ %e" (103 sin 4M — 44 sin2M) + ---,
9

21*
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fiir alle M konvergieren, und zwar tritt fiir ¢ = ¢, die Singularitét ein, wenn M
ein ungerades Vielfaches von%ist. Der Grenzwert (VII; 80) wurde denn auch

zuerst von LAPLACE gefunden, als er zeigte, daB fiir M = 7 die Glieder der
Potenzreihen (VII; 74) fiir ¢ = ¢, iiber alle Grenzen wachsen. 2

Um den Verlauf der Kurve in der komplexen ¢-Ebene zu bestimmen, auf der
alle zu beliebigen M gehorenden Singularititen liegen, sind weitere Uber-
legungen nétig. Um einer Verwechslung mit der Basis der natiirlichen Logarith-
men vorzubeugen, bezeichnen wir voriibergehend die Exzentrizitit der Bahn-
ellipse mit €. Aus (VII; 77) entnimmt man dann, daB fiir die singuldren Stellen
E(e; M)

cosE=—2—, esinE = +Yye? —1, ({E=1iM +}1— ¢

und
. . v . . I
e = eiMEV1-¢ = cosE + isinE = " (1 +y1—¢Y

ist. Multipliziert man dies mit ¢, was immer gestattet ist, da ja ¢ = o, wie schon
weiter oben erwdhnt,; der Kurve der Singularititen nicht angehort, so erhilt

man
I4+)1— e =geiMt-e
oder, wenn man ¢ = sin @ setzt, je nach Wahl des Vorzeichens,

2 cos2—Zi =sin @ &M +cose; 2 sinz% = sin petM -cose

bzw.
= 1 M + cosg- — 2 M —cos @
I=1tg 2 e ; I=ctg 2 [4 .
Es ist also
(VII; 81) n=tg 9 geose — grint =cosM +isin M

2z
die Gleichung, aus der fiir gegebenes M diejenigen ¢ = arc sin ¢ zu bestimmen
sind, fiir die E () singuldr wird. Alle %, die diesen ¢ entsprechen, liegen also auf

dem Einheitskreis. Potenzreihen nach 7 sind also, wie zuerst von T.LEVI-
CivITA (1904) bemerkt worden ist, fiir alle | n| < I konvergent, insbesondere

also auch fiir alle reellen |@| < %
Zur Diskussion der Singularititskurve (M) kann man folgenden Weg ein-
schlagen. Es ist, wenn man sich auf positive M beschrinkt,
I —cos¢Q )
VII; 8 2 — — "7V 2cosp — 2iM
( 2 T=7 + cos ¢ ¢ ¢
eine Funktion von cos ¢. Setzt man
cosp =u+ tv,
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so kann man (VII; 82) in der Form

(1 — % — 1) 2% (cos 2v + 4 sin 2v) = (T + % + ¢v) (cos 2M + ¢ sin 2M)

schreiben, da man mit 1 + cos ¢, das fiir | p| < %nirgends verschwindet, her-

aufmultiplizieren darf. Schreibt man den reellen und den imaginiren Teil dieser
Gleichung gesondert, so erhdlt man

o I
€% [(1 — u) cos 20 + vsin2v] = (1 + %) cos2M — vsin2M |cos 2v| sin 2v
e3¢ [(1 — u) sin2v —vcos2v] = (I + #) sin2M + vcos2M | sin 2v | —cos 2v

zur Bestimmung von # und v. Multipliziert man diese Gleichungen mit den
unter (I) und (II) angegebenen Faktoren und addiert, so entstehen die Glei-
chungen

e (1 —u) = (1+ u)cos 2(v — M) + v sin2(v — M),

e*ty =(1+ ) sinz2(v — M) —vcos2(v — M),
aus denen man durch Elimination von e2#

27

(VIL; 83) 20— M) =iy

und durch Quadrieren und Addieren

(T + 2)% 4 02

. duy
(VII» 84) et = (I _ u)2 + 2
erhilt. Die Gleichungen (VII; 83, 84) lassen sich auch in der Form
(VII; 85) ut=1—1v®—2vctg2(v — M),
(VII; 86) 12 = —(1+ %% + 2u Clg2u

—i; — Gig 2u ist. (VII; 84) ist

L3
schreiben, wenn man beriicksichtigt, da8 ;u
immer erfiillt, wenn # = o ist. Das zugehérige v bestimmt sich dann nach
(VII; 85) aus
_ 2tgv—M) 20
tg2(v — M) = I—tg2v— M) 1-—02

einer Gleichung, die auf
tg(v —M)=v oder tg(v—M)= —%

fithrt, so daB jedem beliebigen v unendlich viele M zugeordnet sind. Jedem
Punkt der v-Achse » = o entspricht also sicher fiir irgendein M eine Singu-
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laritit. SchlieBen wir # = o aus, so liefern die Gleichungen (VII; 85, 86) die
itbrigen Singularititen, und zwar geniigt es, (VII; 86) zu betrachten, die den
Parameter M nicht enthilt. Denn fiir jedes Wertepaar (x, v), das diese Glei-
chung befriedigt, liefert (VII;85) bestimmte Wertefolgen M. Die Kurve
(VII; 86) ist daher neben der Geraden # = o der geometrische Ort aller Singu-
larititen unseres Problems in der cos ¢-Ebene.
Die Kurve (VII; 86) ist zu den Achsen # = 0 und v = o symmetrisch, da
sich die Gleichung nicht dndert, wenn man die Vorzeichen von # oder v wech-
v selt. Die Funktion 22 () hat zwei
1‘ Nullstellen, nimlich die Wurzeln
der Gleichung

23gu _ 2u
T 1432w 1+ ud’

\i
R

Diese quadratische Gleichung fiir

u-Lhgu %g u fithrt auf die Losungen
Yau=u bzw. Clgu =u,

Abb. 47. Elliptische Bewegung: die nur fiir ¥=o0 bzw.
Singularitiatskurve in der cos -Ebene. u = 1.199678... [siehe (VII; 79)]
erfiillt sind. Zwischen diesen bei-

den Nullstellen ist v reell, da 92 > o fiir kleine # ist. Die Kurve besitzt daher
die in Abb. 47 dargestellte lemniskatendhnliche Gestalt.

Sind die Punkte (#, v) bekannt, so lassen sich die zugehérigen Exzentnz1taten
€ = ge'v leicht ermitteln. Denn aus

cosp =u+ iv = J1 — ¢

folgt ja
(VII; 87) &%= g%(cos 2y + isin2y) =1 — %% 4 v? — 2inv,
also

2cos 2y = I — u? 4 12,
(VII; 88) ¢ v

g%sin2y = —2uv.

Die Gerade » = o geht also in y = 0, ¢ = 41 + v? iiber, d.h. in die reelle
Achse der e-Ebene, mit Ausnahme derjenigen Strecke, die im Innern des Ein-
heitskreises liegt. Die leminiskatendhnliche Figur hingegen wird in der e-Ebene
zu einer im Innern des Einheitskreises verlaufenden Kurve. Diese besteht aus
zwei zu den Hauptachsen symmetrischen Bogen, die die Punkte + 1 und —1
verbinden und die imaginidre Achse in den Punkten 4 - 0.6627. .. schneiden.
Setzen wir nidmlich fiir #, v die Koordinaten der duBersten Punkte der Kurve
(VII; 86) ein, also v = 0, # = €tg %, so ergibt sich

I 1
Tt — 2 1 Gty = —— - g —
cosg=7Y1 — & =0tgu; & =1— Cig2u &t | 6mu|

also fiir den Betrag der Exzentrizitit genau der Lapracesche Wert (VII; 8o).



Konvergenz der Reihen in der elliptischen Bewegung 327

An den Verzweigungspunkten ¢ = 41, die in der cos ¢-Ebene dem Null-
punkt # = v = o entsprechen, stoBen die drei Aste der singuliren Kurve zu-
sammen. Um zu untersuchen, unter welchen Winkeln dies geschieht, bestim-
men wir zunichst die Richtungswinkel der Tangenten an die Kurve (VII; 86)
im Nullpunkt. Durch Differenzieren von (VII; 86) erhdlt man

- — __4%
2vdv = —2udu -+ [2Ctg2u Sl ou du
oder
v dv  Gingu —4qu
u du  2uGin®2u
Fiir sehr kleine # geht die rechte Seite bei Vernachldssigung hoherer Potenzen

ind ;2% iiber; in der Umgebung des Nullpunkts ist daher gendhert

dv? 1
dwr 3’
Die Kurve (VII; 86) verhilt sich dort also wie das Geradenpaar
I I
vP=—u? oder v=+—u,
3 18

d.h., es ist im Nullpunkt
(VIL; 89)

v dv
“ au

L1
18]
Setzen wir nun ¢ = & + ¢, so ist nach (VII; 87)
e2=a?—f2+ 20af =1 —u?+ v¥ — 204,
d.h., es gilt
a?_ﬁ2= I'__“2_|_ 1)2,
aff = —uv.

Differenziert man dies, so erhilt man

ada —fdf= vdv—udu,

Bdo+ adf = —udv —vdu

und hieraus, nachdem man diese Gleichungen nach da, df aufgelost hat,
dv v v

i _ el e)* (v )

de  dv [ v v\’
aulov—#) = (0

In der Umgebung von e =1 (¢ =1, f = 0) bzw. cosp = 0 (4 = v = 0) ist

(VII; 9o)



328

Reihenentwicklungen im Zweikdrperproblem

demnach, wenn wir diese Werte und (VII; 89) einsetzen,
ap
a_; - i -‘/E ’

d.h., die drei Zweige der singuliren Kurve in der e-Ebene treffen in e = +1

8

N

Abb. 48. Elliptische Bewegung.
Singularititskurve
in der ¢ = (& + ¢f)-Ebene.

K = Konvergenzkreis der Potenzreihen nach &

K, = Konvergenzkreis der Potenzreihen nach & — ¢,

unter Winkeln von je 120° zusam-
men.

Abb. 48 148t erkennen, daB der
Konvergenzkreis der Entwicklungen
nach Potenzen der Exzentrizitit die
beiden Zweige der singuliren Kurve
in den beiden Punkten 4-7 - 0.6627. .
der imaginiren Achse beriihrt. Inner-
halb dieses Kreises sind also diese
Potenzreihen, unabhingig von M,
konvergent. Entwickelt man die zu
entwickelnden GréB8en nach Poten-
zen von & — g, Wo g < I irgend-
eine von null verschiedene reelle Ex-
zentrizitit sein moge, so ist der Kon-
vergenzkreis kleiner, umfaBt aber
noch Werte, die gréBer sind als die
Schranke (VII; 80).

62. Konvergenz der Reihen in der hyperbolischen Bewegung

Die Entwicklung der geometrischen BahngroBen in Fourierreihen ist an sich
nur sinnvoll, wenn es sich um elliptische Bahnen, also um Funktionen handelt,
die nach Ablauf einer endlichen Zeit (Umlaufszeit) periodisch in sich zuriick-
kehren. Wendet man die Theorie der Fourierreihen an, so lassen sich manche
dieser Entwicklungen sehr leicht durchfithren. So fiihrt der Ansatz

a oo
— = >c,cosvM; r=a(t —ecosE
7 v

vy=0

auf die Fourierkoeffizienten

2n
a [dM
C=—"—"[|—:
27 4 .
0 0

und beriicksichtigt man die Beziehung

2n
¢, = %/COS:MdM, v=1,23..),

iM = (1 —ecosE)dE:%dE; M=E —esinE,
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so findet man sofort
2n

2n

1 1 .

=5 dE = 1; c,=;/cos[v(E—esmE)]dE=2],(ve),
0 0

wenn man die durch (VII; 31) definierten BesseLschen Funktionen einfiihrt.

H.Bucerius?) hat gezeigt, wie man dieses einfache Verfahren durch An-
wendung des FoU RIERschen Integraltheorems auch auf den hyperbolischen Fall
iibertragen kann. Wenn wir wie in Abschn. 22 den Betrag der (bei Hyperbeln

negativen) groBen Halbachsemit @ = —a bezeichnen, so wird Ya® = —a}—«
= —i}a3, die mittlere Anomalie nimmt also den rein imaginéiren Wert
T _ it
iVa® a3
-3
N=—iM=1a 2

eine reelle GroBe, die in der Hyperbelbewegung die Rolle der mittleren Ano-
malie vertritt und wie diese der Zeit proportional verliuft. Wenn wir (aus den-
selben Griinden wie im vorigen Abschnitt) die Exzentrizitit wieder mit ¢ be-
zeichnen, so nimmt die KepLERsche Gleichung die Form

tE —igsinE = —N
an oder, wenn ¢E = F, ¢ sin E = Gin F gesetzt wird,
(VII; 91) e@nF —F=N.
Ebenso geht die Formel fiir #/a in

M=—

an. Es ist demnach

(VII; g2) £=e@oiF—1

iiber. Die Funktion «/r 148t sich dann durch das Fouriersche Integral

oo

—(; =/c(v) cosvN dvy
0
darstellen, wobei die Koeffizientenfunktion ¢ (») durch

+oo + oo
cl) = %[%costdv = %/cos [(e@inF — F)]dF =

+ oo
I . . ~ry(1) -
F— —
— _/ely(eel“ i)dF = 1Hi' (we),

—-00

1) Astron. Nachr. 275, 193 (1949).
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also durch die den Besserschen Funktionen verwandten HANKELschen Funk-
tionen mit rein imagindren Argumenten und Indices ausgedriickt wird.

Die sich an diese Bemerkung kniipfenden reizvollen mathematischen Uber-
legungen sollen hier nicht weiter ausgefiihrt werden, da sie fiir die Praxis wenig
Bedeutung haben. Von gréBerem Interesse ist aber die Frage, wie es sich im
Falle der Hyperbelbewegung mit der Konvergenz von Reihen verhélt, die nach
Potenzen der Exzentrizitit fortschreiten. In der Tat lassen sich die im vorigen
Abschnitt erzielten Ergebnisse leicht auf den Hyperbelfall tibertragen, wie es
zuerst von H.G.BLock!) versucht worden ist. ‘

Sei N irgendein reeller Parameter, der alle Werte von — e bis 4 <= an-
nehmen kann, und sei F (¢) eine komplexe Funktion der komplexen Variablen ¢,
fiir die (VII; g1) gilt, so ist

aF GinF
(VIL; 3) de 1 —¢@ofF’

und F (¢, N) wird singulir fiir diejenigen ¢ (N), fiir die neben (VII; 91) die Be-
ziehung
(vir; 94) eCofF =1

gilt. Um den Verlauf der singuldren Kurve in Abhéngigkeit von N zu bestim-
men, setze man also nach (VII; 94, 91)

(&niF=—i—, 6inF=:I_—V%—I; F=+4)1—e&—-N

und

. 1 1
e"‘=(§oiF+6mF=?j; T I=e

Multipliziert man mit ¢, so ergibt sich daher

1-¢-N
86F=IiVI—€2=86iV ey,
Sei nun & = sin ¢, + JI — €2 = cos @, so erhilt man
2 0052% = sin @pe®s?-¥  oder tg%ecm"N =1,
also
n= tggecosw =eV; 2= I—cosg £20059 — (2N
2 I+ cosg

Setzt man wieder, wie in Abschn. 61, cos ¢ = # + ¢v, und schlieft man den
Fall cos ¢ = — 1 aus, der fiir endliche N nicht eintreten kann, so 148t sich diese
Gleichung in der Form '

(T — u — 1v) €2 (cos 2v + 7 sin 20) = (T + u + 7v) ¥

1) Meddelande fran Lunds Observatorium Nr. 23, 1904.
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schreiben oder, wenn man den reellen und den imaginiren Teil trennt,
2~ [(1 — u) cos 2v + vsin 2v] = 1 + #,
e2@-Y) [(1 — u) sin 2v — v cos 2] = v.

Eliminiert man e2®-%, so ergibt sich

(VIL; 95) t§2v =

und durch Quadrieren und Addieren erhilt man

(VIL; g6) AU (r — )+ 07 = (14 W) o
Statt (VII; 95, 96) kann man auch schreiben

(VII; 97) u? =1 — v — 2vctg 2v,

(VII; ¢8) ¥ = — (1 + u?) + 2u Cig2(w — N).

Die Gleichung (VII; g7), die den Parameter N nicht enthilt, stellt den geo-
metrischen Ort der singuliren Punkte dar. In der Form (VII; g5) ist sie iiber-
dies fiir beliebige » erfiillt, wenn v = oist. Jedem Wertepaar («, v), das (VII; g7)
befriedigt, ist durch (VII; ¢8),

2u
Zg2(w — N) = L@t ot

ein reelles N zugeordnet, da der Betrag der rechten Seite stets < 1 ist. Die sin-
guliren Punkte des Problems erfiillen also die Kurven (VII; g7) und v = o
iiberall dicht. Die Kurve (VII; g7) verliuft zu
den Achsen der (#,v)-Ebene symmetrisch. Die
Funktion #(v) nimmt unendlich groBe Werte

v

2

R T, .
an, wenn v ein Vielfaches von Py ist; sie besteht

also aus unendlich vielen voneinander getrenn-
ten Zweigen. Hier interessiert nur derjenige -l
Zweig, der durch #» = v = o hindurchgeht, also
unmittelbar an cos @ = o0, & =1 anschlieBt.
Man erkennt leicht, daB dieser Zweig die Ge-
stalt der Abb. 49 hat, d.h. im Nullpunkt einen _&|________“"T0=——=_
Doppelpunkt besitzt und sich den Geraden

2

v=+ z asymptotisch nihert. Abb. 49. Hyperbolische
B 2 ) o . Bewegung: Singularititskurve
Ubertragt man wieder mit Hilfe der Gleichun- in der cos p-Ebene.

gen (VII; 87) diese Singularititskurve auf die

uns hier alleininteressierende rechte Halbebene der & = getv, so findet man
zunichst, daB die Achse v = oin y = o, p = J1 — %2 iibergeht, d.h. in das-
jenige Stiick der positiven reellen Achse, das im Innern des Einheitskreises
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der e-Ebene liegt. Der Nullpunkt der (%, v)-Ebene, in dem sich die Kurve
verzweigt, geht in den Endpunkt & = + 1 dieser Strecke iiber. Differenzierung
von (VII; g7) ergibt

4v

sin? 2v

2udu = —2vdv + — 2ctg2v|dv

udu  4v — sin4v
vdv 2v sin? 2v

oder

Fiir sehr kleine v geht diese Gleichung (unter Vernachlissigung héherer Po-

tenzen) in
dv?

I
udu=§udv oder T =3

iiber, d.h., es ist in der Umgebung des Nullpunkts
v dv
(VII; 99) o dn +153.

Setzt man ¢ = a + 1§, so kann man zur Bestimmung der Tangentenrichtungen
im Verzweigungspunkt ¢ = 1 die Formel (VII; go) benutzen, indem mana = 1,
B = o und die Werte (VII; gg) einsetzt. Man erhilt dann

ap —

oo = 173,
d.h., die drei Zweige der Singularititskurve in der e-Ebene treffen sichine = 1
unter Winkeln von je 120°. Die singuliren Kurveniste des hyperbolischen
Falles gehen also im Verzweigungspunkt stetig und differenzierbar in die ent-
sprechenden Kurveniste des elliptischen Falles iiber. Dieser Sachverhalt ist in
Abb. 50 angedeutet, in der die hyperbolische Singularititskurve stark aus-
gezogen, die elliptische gestrichelt gezeichnet ist.

Um die Frage der Entwickelbarkeit in Potenzreihen nach der Exzentrizitat
zu kldren, weisen wir noch nach, daB auf dem in der reellen Achse liegenden
Ast 0 < & << 1 bereits fiir jedes reelle N Singularititspunkte liegen. Hier ist
nimlich » = o0 und in der e-Ebene § = 0, « = J1 — #?, d.h,, es ist |#| < I.
Andererseits ergeben sich zu diesen # und zu v = o die zugehérigen N-Werte
nach (VII; ¢8) aus der Gleichung

Fa2u — g 2N 2%

E“:QZ(“_N)=I—i{gzuigzN=I+u2'

Setzt man nun
u=3gw, Igz2(u — N)= 3g2w,

was wegen |u| = |¥gw| < 1 fiir alle # dieses Bereiches erlaubt ist, so erhalt
man .
N=u—w.
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Da aber w fiir |#| < 1 alle reellen Werte annehmen kann, gilt dasselbe auch
firN =u — w.

Jeder Kreis um den Nullpunkt der e-Ebene, dessen Radius =1 ist, enthilt
also sicher fiir jedes N, d.h. fiir alle Zeiten, mindestens eine Singularitit, so daB
fiir € > 1 keine fiir alle N konvergenten Potenzreihenentwicklungen nach &
moglich sind. Dagegen 148t sich um jedes reelle & = &, > I ein Kreis schlagen,
in dessen Innern keine Singularititen liegen. Man kann also Entwicklungen
nach Potenzen von ¢ — ¢, ausfiihren, die fiir beschrinkte Betrige |& — &
konvergieren. DaB dies fiir beliebig groBe ¢, méglich ist, folgt aus der Tatsache,
daB die singulire Kurve f = f(a) auBer fiir || =<1 keine Nullstellen be-
sitzt, denn (VII; ¢4) ist ja fiir kein reelles £ > 1
erfiillt. Die iibrigen Zweige der singuldren Kurve
B = B («), die Nullstellen |a|> 7/2 enthalten,
sind also auszuschlieBen. Ist &, nur wenig groSer
als 1, so hat der Konvergenzkreis der Potenz-
reihenach ¢ — ¢, derdie beiden dort nur schwach
gekriimmten Aste der singuliren Kurve (Abb. 50)
beriihrt, ungefihr den Radius

Ry = (6, — 1) sin 60° = %(eo - 113,

SR

und zwar ist R, eine untere Schranke fiir den
wahren Konvergenzradius R.

Abb. 50. Hyperbelbewegung.
Singularititskurve in der ¢ = (a + B4)-Ebene.

K = Konvergenzkreis der Potenzreihen nach & — ¢,

63. Konvergenz der Potenzreihen nach der Zeit

Ein Problem von groBer praktischer Bedeutung betrifft die Ermittlung des
Konvergenzbereichs fiir Reihen, die nach Potenzen der von irgendeiner Epoche
¢t =1, aus gezdhlten ,Zwischenzeit“ t = k(f —#)) fortschreiten. Diese Auf-
gabe wird auf ganz dhnlichem Wege gelést wie die in den. Abschn. 61 und
62 behandelte. Die Koordinaten eines Planeten und andere GroBen der Zwei-
koérperbewegung (z.B. die fiir die Berechnung von Ephemeriden so wichtigen
Funktionen F und G) sind ja als einfache Funktionen der exzentrischen Ano-
malie darstellbar. So sind, wenn wir mit 1 = E — E, die Differenz der zu den
Zeitpunkten ¢ und {, gehorenden exzentrischen Anomalien bezeichnen, die
rechtwinkligen XKoordinaten in der Bahnebene durch

x=afcos (E,4- 1) —e€]; y=a}1 — esin (E,+ 1)
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und die Gré8en F und G durch (VII; 3) -

F—I—‘u—"(l—-cosl)' G= _sml-l— (1 — cos 4)

% , V@o V"o

darstellbar. Entwickelt man nun cos 4 und sin 4 nach Potenzen von 4, so sind
die Potenzreihen

i=3ak, y=3bi; F=3fV, G=3gk
v=0 y=0 =0 v=0

fiir alle 1 konvergent, da ja die Funktionen cos 4 und sin 1 in der ganzen
A-Ebene regulir sind. Entwickelt man nun 2 = 1(z) in eine Potenzreihe

a0
[
1M
~
-
]
- -

so haben die entstehenden Reihen
x = Za,t", y= Zﬂvtv'
=0 v==0

den gleichen Konvergenzradius wie 4 (z) selbst. Um diesen zu bestimmen, ist es
erforderlich, in der komplexen t-Ebene diejenigen Stellen aufzusuchen, an
denen fiir gegebene reelle Exzentrizititen die komplexe Funktion 2 (t) singulir
wird oder, was auf dasselbe herauskommt, die Singularititen von E (e, M) in
der M-Ebene als Funktionen der Exzentrizitit als eines reellen Parameters zu
bestimmen, den wir jetzt wieder wie frither (da Verwechslungen nicht mehr zu
befiirchten sind) mit ¢ bezeichnen wollen. Der Unterschied des vorliegenden
Problems gegen das frithere ist also der, daB dort die Exzentrizitit e als kom-
plexes Argument, die mittlere Anomalie M als reeller Parameter auftrat, wah-
rend hier die Rollen von e und M vertauscht sind.

Die Funktion E (M) wird, konstantes e > o vorausgesetzt, singulér, wenn die
KEepLERsche Gleichung

(VII; 100) E—esinE=M
erfiillt ist, aber der Differentialquotient
dE I

dM 1 —ecosE
nicht existiert, also
(VII; 101) I1—ecosE=o0
ist. Die Singularitdtsbedingungen (VII; 100, 101) sind also die gleichen wie die
Bedingungen (VII; 77) des friitheren Problems, nur, daB hier e reell und positiv,
M = u + iv komplex ist. Setzen wir ferner E = « 4 78, so sind die Glei-
chungen
(VII; 102) o+ if —e(sina@off + ¢ cosalinf) = + iv,
(VII; 103) e(cosa@off —isinaBinf) =1
gleichzeitig zu erfiillen.
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Die Gleichung (VII; 103) erfordert, daB

(VII; 104) cos a Gof f = 2,

e
(VII; 105) sina@inf = o
ist. Die Losung von (VII; 105) ist entweder
B = 0; a beliebig
oder
a=*kx (k=o0,1,2,..); [ beliebig.

Im ersteren Fall liefert (VII; 104) cos @ = 1/e, so daB diese Méglichkeit nur fiir
e > 1 (Hyperbelbahnen) gegeben ist; der Grenzfall e = 1 soll vorliufig aus-
geschlossen werden, da er eine gesonderte Behandlung erfordert. Im zweiten
Fall bleibt, da €of § und e beide positiv sind, « auf die geraden Vielfachen von z
beschrankt. Dann ist aber €of f = 1/e, was nur fiir e < 1 (Ellipsenbahnen) auf
reelle B fithrt. Die Singularititsbedingungen fiir E sind also fiir nichtparabo-
lische Bahnen folgende:

a) fiir Ellipsen:
a=2kx(k=o0,+1, +2, ..);Cfp = —E— oder f = +Inctg
gesetzt wird. Die letztere Formel beweist man, indem man

f4ef 1
2  sing

@

o wenne=sing

Cof p =

" setzt. Das ergibt fiir ¢f die quadratische Gleichung

deren Losung, ¢f = Ii—,cosi’ =
fithrt ; sing

b) fir Hyperbeln:

I
f=o0; cosa=— oder
[

ctg% bzw. tg %, auf f= 4In ctg%}~

o« = i(arc cos—:— — zkn)z ;I_—(arctg jet — 1 — zkn).

Es bleibt noch iibrig zu zeigen, welche Werte M bzw. welche Wertepaare %, v
sich ergeben, wenn man diese Losungen in (VII; 102) einsetzt. Schreibt man
den reellen und den imaginiren Teil dieser Gleichung gesondert, so wird

# =a — esina Cof §,

v =8 — ecosa®inf.
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Fiir Ellipsen erhilt man also mit den Lésungen (a)
u = 2km,

v = j:lnctgg FeyCof2f — 1 = i[lnctg—zi — coscp] = +v,.

Fiir Hyperbeln setzt man statt M = » + ¢v, wie in Abschn. 62,

(VII; 106)

=—iM=v—iu=ua+1i?
und fiihrt die Lésungen (b) ein. Es wird dann
U=v=0

T=—u= -!_-(Vez— I —arctgye® — 1+ zkn).

Im elliptischen Fall ergibt sich das in Abb. 51 gezeichnete Bild. Fiir jedes
Vielfache von 2z als Abszisse gibt es zwei konjugiert komplexe Singularitdts-

(VII; 107)

v
A
. Yy o
K
: I / 7 +— f -z
=2 - My 27
- -va

Abb. 51. Elliptische Bewegung. Singuldre Punkte in der M-Ebene.

K = Konvergenzkreis der Potenzreihen nach M — M,

stellen mit den nach (VII; 106) berechneten Ordinaten v = ;. Da es wegen
der Periodizitit der elliptischen Bewegung geniigt, sich auf den Bereich
—n < M <+ n zu beschrinken, so ist fiir irgendein reelles M, dieses Inter-
valls die Entwicklung nach Potenzen von M — M, konvergent, wenn | M — M, |
kleiner ist als der Abstand des Punktes M von der auf der (positiven oder
negativen) imaginaren Achse liegenden Singularititsstelle. Der zu M|, gehérige
Konvergenzradius R (M,) ist demnach

(VII; 108) R=V}i+ M3, vy=In ctg% — cos .
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Im hyperbolischen Fall zeigt Abb. 52 die hier etwas anders liegenden Ver-
hiltnisse. In der N-Ebene liegen die Singularititspunkte, die zu einem ge-
gebenen e > 1 gehoren, simtlich auf der imaginidren Achse, und zwar, wenn
arc tg den Hauptwert dieser Funktion bezeichnet, von den Punkten

Ty = + (Yt — 1 — arctgyer — 1)

aus in Abstinden von der Linge 2 beliebig oft abgetragen, d.h., es ist
3] = (3| 4 27,
wo k eine ganze positive Zahl oder null sein kann. DaB % nicht negativ sein

kann, hat einen besonderen Grund. Wire nim-
lich % < o, so gibe es immer ein ¢ > 1, fiir das

Je2 — 1 —arctgye? — 1 4 2k = o,

alsonach (VII;107) % =5 =o0(d.h.N =M = o)
wire. Dasist aber mit den Singularitdtsbedingun-
gen nur fiir ¢ = 1 vereinbar. Dann ist aber nach _
der obigen Gleichung % = o. In diesen Grenzfall y

muB derjenige Zweig der Singularitatskurve ein- '
miinden, der uns hier interessiert. Wenn wir also \ N, -

o~

Tyt 2308

e von ¢ = I aus wachsen lassen, wird derjenige
Singularititspunkt, der dem Nullpunkt am
nichsten liegt, auf der imaginiren Achse die Or-
dinaten %, einnehmen, deren Betrige mit e stindig
zunehmen. Wenn man also eine Reihenentwick- — -(vp#27)s
lung nach Potenzen von N — N, vornimmt, wo
N, irgendein reeller Wert ist, so wird der Kon-
vergenzradius - ()9

R=y&%+ N}

seln. Abb. 52. Hyperbolische

Im hyperbolischen Fil.ll ist der Konvefgenz- Bewegung. Singulire Punkte
radius am Kkleinsten fiir N, = o, also fiir das in der N-Ebene.
Perihel der Bahn, und wichst iiber alle Grenzen, K = Konvergengkreis der Potenzreihen
wenn der Bahnpunkt, fiir den N = N, ist und S N W,

von dem die Entwicklung ausgeht, ins Unend-

liche riickt. Das ist auch anschaulich verstindlich, denn die Bewegung des
Himmelskorpers néhert sich ja bei wachsender Entfernung vom Zentralkérper
asymptotisch der geradlinig-gleichformigen Bewegung; sie kann also fiir Zeit-
rdume, die mit N, immer groBer werden, praktisch schon durch das lineare
Glied der Potenzreihenentwicklung nach der Zwischenzeit genau genug ange-
ndhert werden.

Im elliptischen Fall hat der Konvergenzradius fiir My = o, also fiir das
Perihel als Ausgangspunkt, ein Minimum, fiir M, = 7, also fiir das Aphel, ein
Maximum. Im Fall einer Kreisbahn (¢ = o) wird v, = e und daher auch, un-
abhingig von M,, R = 0. Tatsichlich 148t sich die Kreisbewegung ja in der

22 Stumpff, Himmelsmechanik
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Bahnebene durch ¥ = a cos M, y = a sin M darstellen, also in stets konver-
gente Reihen nach Potenzen von M entwickeln.

Besondere Uberlegungen erfordert noch der Fall einer Parabelbahn. Hier
verlieren die GréBen M bzw. N ihren Sinn, ebenso wie die exzentrische Ano-
malie E oder die entsprechende hyperbolische GréBe ¢E = F. Dagegen bleibt
die wahre Anomalie v fiir alle Zeiten reell und durch die kubische Gleichung

(I11; 43) WE—T) 2k~ 1)

v I v - 2k(t —
VII; 10 tg—+ —tg?— = = = P(t
( 9) g, 383 " 5 ®)
als Funktion der Zeit bestimmbar. In der komplexen P-Ebene werden also die
Singularititen der Funktion v(P) dort liegen, wo fiir die Lésungen der Glei-
chung (VII; 109)

v
apP

I

v
2
I+ tg p

nicht existiert, also

21 = M t -11 = )
I+ tgf =0 tg_ =1
ist. Setzen wir dies in (VII; 109) ein, so erhalten wir fiir die singuliren Punkte P
P=+2i kt—T) = +24i)p.
3 3
Der Konvergenzradius fiir Potenzreihen nach t = k(¢ — {) ist demnach

k2 :
R=yFE= T+ 56— T = 295 |fx+ 206, — 1 =

ELRVre N V-
S 1P V , T
2k
V%

Der parabolische Fall ist zuerst von W.A.HamiLToN?) behandelt worden.
F.A.MourToN?) hat die Untersuchung auf alle Bahnformen ausgedehnt. Be-
trachtet man auch in den nichtparabolischen Fillen die Entwicklungen nach

der Zwischenzeit ¢ — {; selbst statt nach M — M, bzw. N — N, so erhdlt man
leicht wegen

M =

mit P, = — (¢, — T).

Be—T), o _kt—T) , _2k¢—T)
N

1) Astron. Journal 23, 49 (1903).
?) Astron. Journal 23, 93 (1903).
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die folgende Zusammenstellung aller Konvergenzbedingungen:

3
I) e=singp<I: R(t@:@yMng vg,

(vo =In ctg—g — cos qo) ,

. R _ VF’ e, 4
(VII; 110) 2) e=1: R(t")—EVPO-I_g ,

3) e>1: R(t0)=LZ—i]/N§+ g,
(8, = Yo — 1 —arctgye® — 1).

-Hier bedeutet R (f)) den Konvergenzradius fiir Entwicklungen nach Potenzen
von ¢ — 4. Die GréBen N, = N ({,), P, = P(¢,) konnen alle reellen Werte an-
nehmen, wahrend fiir M, die Beschrinkung |M,| < gilt. Abgesehen von
Kreisbahnen (und von nichtelliptischen Bahnen in hinreichend groBer Ent-
fernung vom Zentralkorper) sind also die Potenzreihen nach der Zwischenzeit
nur fiir beschrinkte Zeitintervalle moglich. MouLToN hat loc. cit. Tabellen fiir
die Konvergenzgrenzen in verschiedenen Fillen berechnet, die fiir den Rechner
sehr niitzlich sind (siehe Anhang A VIII).

Zu Beginn dieses Abschnitts hatten wir festgestellt, daB diese Konvergenz-
beschriankungen fiir Potenzreihen nach E bzw. F nicht gelten, da sich die zu
entwickelnden Funktionen im allgemeinen in einfacher Weise aus Ausdriicken
wie sin E, cos E, ... zusammensetzen, die fiir alle Werte des Arguments in
konvergente Potenzreihen entwickelbar sind. Dasselbe gilt auch, wenn wir Ent-
wicklungen nach Potenzen der Lgsung z der Hauptgleichung (V; 51) durch-
fithren oder besser noch Entwicklungen nach Potenzen von

y=zt,

einer Variablen, die den Charakter einer Anomalie besitzt und im elliptischen
Fall wegen (V; 80)
_E-E
7o,
der Differenz 4 = E — E, proportional ist. Wenn wir die Hauptgleichung mit t
multiplizieren, erhalten wir die transzendente Gleichung
T =9+ cl0y?) - 0y" + ca(ey’) " &>

aus der y, unabhingig von der Bahnform, als Funktion von r bestimmt werden
kann. Alle Bahngr6B8en, wie die Funktionen F und G oder wie

4

7
4= PR + c1(ey?) - gy + caley?) - &Y
o

22%



340 Reihenentwicklungen im Zweikorperproblem

lassen sich dann, ohne daB man auf Fallunterscheidungen wegen der Exzen-
trizitit Riicksicht zu nehmen hat, in stets konvergente Potenzreihen nach y
entwickeln, denn die Funktionen ¢, ¢,, ¢5, ... konvergieren ja fiir jeden Wert
ihres Arguments, und zwar mit wachsendem Index immer besser und stets
besser als ¢, = cos (y Vo) -

Ebenso wie man durch Einfithrung der Variablen z oder y die Bahnbewegung
einheitlich fiir alle Bahntypen formulieren kann, lassen sich auch die Konver-
genzbedingungen (VII; 110) fiir Potenzreihen nach r auf eine einheitliche Ge-
stalt bringen. Setzt man der Einfachheit halber

0, = k(t, — T)

fiir die Zeit vom Periheldurchgang bis zu dem Zeitpunkt {,, um den entwickelt
werden soll, und sei wie bisher 7 = k(¢ — {,) die unabhéngige Variable der Po-
tenzreihenentwicklung, so ist

— —_ I —
M,Ja*=N,a® = 5 PVp* = 6,

in den drei Fillen (VII; 110) zu setzen. Der Konvergenzradius der Potenz-
reihen um @), ist dann

fir e<1: R(@)=716%+ a0%; a=%,

I
fir e=1: R(@0)=V@3+%153;
fir e>1: R(O,) = VO + o333 ; a=t—.

Setzt man nun

#*=1—¢, dh x=)1—¢€, ix=7ye—1,

so erhilt man fiir

lnctg? — cos g Ipit®_,

— 2 2 1—x%
e<1: Jady, = |p N =’ e '
V2—I—arctg]/1—e2= 5% —arctgix

e>1: Y37, = Jp L

Ve —1p 4 (1)
Es ist also fiir beliebige Exzentrizititen

RO, = &% + RE,
wo

(VIL; 111) R, = 1p°C ()



Reihenentwicklung bei geradliniger Bewegung 341
den Konvergenzradius fiir Entwicklungen vom Perihel aus darstellt. Dabei ist

I I+ %
?lnx—x~x ix —arctgix
¢ = o N

eine Funktion von 2% = 1 — ¢?, die fiir alle positiven und negativen Argumente

%2 definiert ist und fiir — 1 < 22 < 41, d.h. fiir ]/?g ¢ > o in der Form einer
konvergenten Potenzreihe

I I I
C(x?) = 2 1 T 44
W) =S+ oxt et

geschrieben werden kann. Fiir Kreisbahnen (¥ = 1) wird C (x?) und damit auch
der Konvergenzradius unendlich. Fiir Parabeln (¥ = o) beschrdnkt sich C auf

das konstante Glied, und es wird R, = %VE Wichst die Exzentrizitat tiber 1

hinaus, so nimmt C weiterhin ab: So ergibt sich fiir x2 = —1 (e = ]/Z)
I 1 I F./
C(—-1)=———+4+ = —-+-=1—— =0.21460...
(=2 -5+7 1 4

Fiir groBere e versagt die Reihenentwicklung, und C wird durch
Je? — 1 —arctgle? — 1
C= —
vt —1?

dargestellt. Wichst e iiber alle Grenzen, so geht C offensichtlich gegen null
wie e~ 2. Da andererseits

p=4q(+e),

'so geht bei konstant gehaltener Periheldistanz ¢ auch der Konvergenzradius im
Perihel,
Ry=7V¢(x+¢?-C,
1

immer noch wie ¢ 2 gegen null, wenn e gegen unendlich strebt.

64. Rethenentwicklung bei geradliniger Bewegung.
Zusammenstof und Regularvisierung

Bei den bisherigen Betrachtungen haben wir den in Abschn. 26 behandelten
geradlinigen Bahntypus ganz auBer acht gelassen. Der Vollstindigkeit halber
soll das jetzt nachgeholt werden. Nach (III; 87, 84, 89) ist, wenn wir mit T
die Zeit der Koinzidenz der beiden Massen (also die Zeit des ZusammenstoBes
bzw. der Ejektion) bezeichnen, zu der der Abstand » = o gehort,
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a) elliptischer Typ [0 <7v < 2a; a>0]:

kE—T)= i—}[a_a{zarcthzay_r _ V7(2a _”)}’

a

b) parabolischer Typ (0 < 7 << o0):
b R
(VII; 112) R(t—T) = 4_—‘51/273,

c) hyperbolischer Typ [0 <7 < eo; a= —a>o0]:

Rt —T +1/—{ Vead 7 — V7 @}

]za + 7+ ]/1' '
In allen drei Fillen ist nach (III 82)

I
(VII; 113) V— -7

Sei also in der komplexen ¢-Ebene 7 (¢) als komplexe Funktion definiert, so
sind singuldre Punkte nur dort vorhanden wo dr/d? als endliche GroBe nicht
mehr existiert; das ist aber, da ja a + o vorausgesetzt werden darf (denna = o
wiirde ja bedeuten, daB beide Massen dauernd zusammenfallen, eine Bewegung
also nicht stattfindet), nur fiir » = o der Fall. Der einzige singulidre Punkt ist
also ¢ = T, d.h. derjenige Punkt der reellen ¢-Achse, in dem 7 = o wird. Ent-
wicklungen der Funktion 7 (f) nach Potenzen von ¢ — #; sind daher dann und
nur dann konvergent, wenn |¢ —{,| < |¢, — T| ist. Dasselbe folgt auch aus
(VII; 111), denn fiir geradlinige Bewegung ist ja p = o; lassen wir also p gegen
null streben, so wird R, = o und daher R = |, — T|, wie oben.

DaB diese Singularitit besteht, folgt auch aus den Betrachtungen des
Abschn. 45. Dort ist gezeigt worden, daB die Spitzen der Enveloppe der Ge-
radenschar z = const in die Grenzparabel einmiinden, die ja den geometrischen
Ort derjenigen Fille der Ephemeridenrechnung darstellt, die einer geradlinigen
Bewegung entsprechen. Ist etwa 7, = 7(f,) der Ausgangspunkt, r, = 7 (¢;) der
Endpunkt der Entwicklung, so entspncht wie dort bewiesen worden ist, die
Enveloppenspitze demjenigen Spezialfall, in dem #,/r, = o ist, d.h. der End-
punkt der Entwicklung im Attraktionszentrum liegt. Die Entwicklung selbst
148t sich, wenn 7, > o, immer nach (VII; 21) durchfiihren, wenn man beriick-
sichtigt, daB im Fall der geradlinigen Bewegung « = ¢* und

4

"_3=’90=280+90_0(2)=0' also 28+ g, — M5 =0

ist. Die Geschwindigkeit des Kérpers ist ja hier durch ¥V = 4 ¢# definiert, wo #
positiv in der Steigbewegung, negativ in der Fallbewegung ist. Es ist daher in
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der geradlinigen Bewegung

fo 2 o \?
U°=r—’ %—250'1'90—00—;— .
0 0

Setzt man demnach in (VII; 21) gy = w — ¢ = 0% — ¢; § = 5% — {, so erhilt
man .

T=" I+n+§(€—2n’)+%n(3n2—5C)+---}.

Befindet sich der Ausgangspunkt der Entwicklung im singuliren Punkt
selbst, so divergiert diese Reihe natiirlich immer, da fiir 7, = o schon 7,y = 7t
der Geschwindigkeit proportional ist, die im Kollisionspunkt unendlich wird.
Man kann aber dennoch vom singuliren Punkt aus Reihenentwicklungen
durchfithren, wenn man statt der Zwischenzeit = k(! — T) eine neue Va-
riable @ benutzt, fiir die die Singularitét nicht besteht. Dieses Verfahren, in der
Umgebung von Kollisionen oder Ejektionen das Verhalten des bewegten Mas-
senpunktes zu untersuchen, wird spiter (Band II) bei der Diskussion der Drei-
korperbewegung, in der Zusammenst6Be eine wichtige Rolle spielen, noch
hiufig angewandt werden. Im Zweikérperproblem sind Zusammenst6e (unter
der Voraussetzung ausdehnungsloser Massen) nur bei der geradlinigen Bewe-
gung moglich. Der hier betrachtete Fall ist daher der einfachste in der Himmels-
mechanik, in dem eine ,Regularisierung” durch Einfithrung neuer Variabler
notwendig wird.

Es zeigt sich, daB es geniigt,

3 1
3 4 1
T =x02%2; —dé = %x@z

zu setzen, wo x ein noch geeignet zu bestimmender konstanter Faktor ist. Man
erhilt dann

dr 3 %dr
0~
also wegen (VII; 113) und fir » = 1
. dr 3 2 1
(VIT; 114) LA i;xV@(7 —;).

Man erkennt hieraus, daB der Ansatz
7 =00 + 0,0%+ ;0% + --.
zum Ziel fithrt, denn setzt man in (VII; 114) rechts diese Potenzreihe und links

ar

56 = oy + 20,0 + 30,60% 4 .-
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ein, so fiihrt diese Beziehung fiir @ = o auf
g ——
o = __——xV— oder oy = %xz.

Speziell wird @y = 1, wenn manx? = — setzt

9

Eine solche Regularisierung ist von C.Burrau?) fiir den Fall eines Zusam-
menstoBes zweier Massenpunkte im Dreikorperproblem durchgefiihrt worden.
Man kann seine Ergebnisse aber leicht auf den hier vorliegenden Fall der ge-
radlinigen Zweikérperbewegung spezialisieren. Setzt man ¢, = 1 und a, = 4,
so kann man-auch

r=0[1+ 10 + §, (10)* + B, (l@)3 + -],
. - dr

(VIL; 115) 79— 't 240 + 3B, (10)* + 4f; (16)* + -]

schreiben. Andererseits ist nach (VII; 114) mit 2 =

dr \? 7
7’(@) =@(I—a).

Setzt man die Reihen (VII; 115) ein und fithrt die Multiplikationen aus, so er-
gibt sich

01+ 5260 + (8 + 7B, (10)* + (4 + 22f; + 9Bs) (10)* +
+ (1565 + 168, + 285 + 11f,) (AO)* + - - - =

=~ 11+ 10+ fy GO + o (16 + )| -
=01+ 540 (1+ 10 + B, (10)2 4 £, (10)3 + -- )],

\O|N v

da ja aus der Gleichsetzung der quadratischen Glieder _2@_(1 = 34 folgt. Die

Koeffizientenvergleichung der héheren Glieder ergibt dann sukzessive

18
o = -3, Bs = s Ba= 4,

’

7 4851’

“ey

also schlieBlich

1 0 3 (@)2 23 (@)3 1894 (@)4 }
Y = @ I-—— — — o —_— | — —_— el
10 a 700 63000 \ @ 48510000 \ a

Fiir den parabolischen Typ der geradlinigen Bewegung (x/a = o) erhilt man

einfach
g ——
= VQ— ‘(2 N
2

was auch unmittelbar aus (VII; 112b) folgt.

1) Astron. Nachr. 136, 161 (1894).



KAPITEL VIII

BAHNBESTIMMUNG DER HIMMELSKORPER
NACH DEM LAPLACESCHEN PRINZIP

65. Aligemeines und Historisches tiber das Problem der Bahnbestimmung

Mit der Aufgabe, die Bahnelemente eines Himmelskérpers zu bestimmen, wenn
fiir eine gewisse Anzahl von Zeitpunkten seine Orter an der Sphire (Rektaszen-
sion und Deklination oder ekliptikale Linge und Breite) durch Beobachtung
bekannt sind, hat sich bereits NEwTON in seinem Werk ,,Philosophiae naturalis
principia mathematica“ (1687) beschiftigt. Er gibt dort (im Abschn. 5 des
Bandes III) eine im wesentlichen graphische Methode der Bestimmung einer
parabolischen Kometenbahn an, die iiber sukzessive Niherungen zur Ldsung
fiihrt, und er wendet dieses noch recht komplizierte Verfahren auf die Bestim-
mung der Bahn des groBen Kometen von 1680/81 an.

Die Bemiithungen um dieses von NEwTON selbst als schwierig bezeichnete
Problem dauerten im 18. Jh. an und beschéftigten die groBen Mathematiker
jener Zeit. Bei dieser Gelegenheit fand L.EuLER die berithmte nach ihm be-
nannte Gleichung (VI; 13). Seine 1740 verdffentlichte Methode der parabo-
lischen Bahnbestimmung fuBt auf dem angenihert giiltigen Satz, daB bei drei
benachbarten Kometendsrtern Py, P,, P, der Radiusvektor von P, die Sehne P; P,
im Verhiltnis der Zwischenzeiten (f, — ¢,) : (£, — £,) teilt. In Wirklichkeit ist das
Verhdltnis der beiden Sehnenabschnitte dem Verhiltnis der Inhalte der beiden
Dreiecke gleich, die von den Radiusvektoren nach P; und P, bzw. nach P, und
P, eingeschlossen werden, wie eine einfache geometrische Uberlegung lehrt.
Andererseits ist das Verhiltnis der Zwischenzeiten nach dem Flichensatz dem
Verhiltnis der Inhalte der beiden Kegelschnittsektoren gleich, die diesen Drei-
ecken entsprechen. Die EuLeERsche Naherung beruht also darauf, daB man bei
hinreichend dicht benachbarten Ortern des Himmelskérpers das Verhltnis der
Sektoren durch das der Dreiecke ersetzen kann, ohne allzu groBe Fehler be-
fiirchten zu miissen. Es ist also, wenn wir die Inhalte der beiden Dreiecke mit
D,, Dy, die der Sektoren mit S;, S, und die Sehnenabschnitte mit s,, s; bezeich-
nen und wenn die Zwischenzeiten 7, = k(f, — %,), 1, = k(f; — ¢,) sind,

a_D S _|u
ss Dy’ Sy |t
Andererseits ist nach (VI; 49) das Verhiltnis Sektor : Dreieck
S T 1 L E o 72
D '"TCTI—gtr T AR’

wenn z die Lésung der Hauptgleichung (V; 51) fiir den Ubergang von P, auf P,

bzw. P, bedeutet. Sind die Zwischenzeiten klein, so ist 2~ 1,¢3 =~ % (bei Para-
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I . -
beln streng ¢; = 3-) , und es ist also genédhert

I
2,3
I ——57i%
67% 11

(VIII; 1) ﬁ=%=&;sa_cﬂ=ﬁ _
S 3 4 £} Ts| ;1 2.8
673 373
Y

I 2
{I_6_r§(ti__t§)+”'}’

73

und man erkennt, daB die Abweichungen von der EuLERrschen Niherung im
allgemeinen von der 2.Ordnung, bei gleichen (oder nahezu gleichen) Zwischen-
zeiten (r; = — 7,) sogar von der 3.Ordnung in den Zwischenzeiten sind.

Obwohl die EuLerschen Ergebnisse, die einige Jahrzehnte spiter von
J.H.LaMBERT weiterentwickelt wurden, wichtige Ansitze fiir eine analytische
Losung des Bahnbestimmungsproblems gebracht haben, erwies sich der einge-
schlagene Weg als ungeeignet fiir die praktische Anwendung. Erst W.OLBERs
gelang es, auf Grund der EuLErschen Gleichung und des oben bewiesenen
Satzes eine Methode zu entwickeln, die durch eine rasch fordernde Hypothesen-
rechnung zum Ziele fithrt und mit wenigen Verbesserungen noch heute zur
Berechnung vorliufiger parabolischer Elemente von neu entdeckten Kometen
benutzt wird. OLBERS’ Schrift , Uber die leichteste und bequemste Methode,
die Bahn eines Kometen aus einigen Beobachtungen zu berechnen“ (Weimar
1797) ist in das klassische Schrifttum der praktischen Himmelsmechanik ein-
gegangen. _

Vor dem Beginn des 19. Jhs. war die Aufgabe der Bestimmung von Kometen-
bahnen das den Praktiker fast ausschlieBlich interessierende Problem. Trotz-
dem haben sich die Theoretiker auch schon damals mit dem allgemeineren Fall
der Bestimmung KEepLERscher Bahnen ohne Voraussetzung iiber die Exzen-
trizitit beschiftigt. Fast gleichzeitig haben LAGRANGE (1778) und LAPLACE
(1780) Losungen dieser komplizierteren Aufgabe entwickelt, die aber in ihrer
urspriinglichen Form wenig Beachtung gefunden haben. Erst sehr viel spiter,
seit dem Ende des vorigen Jahrhunderts und im Laufe der ersten Jahrzehnte
des jetzigen, ist das von ihnen befolgte Prinzip in einer Reihe von Bahn-
bestimmungsmethoden, die sich durch groBe Eleganz und Durchsichtigkeit aus-
zeichnen, wieder zu Ehren gelangt.

Die praktische Notwendigkeit, rasch zum Ziele fithrende Methoden zur Be-
stimmung elliptischer Planetenbahnen zur Hand zu haben, ergab sich erst, als
1801 der erste der ,Kleinen Planeten, Ceres, von P1azzi entdeckt wurde.
C.F.Gauss begriindete seinen Ruhm als groBer Mathematiker mit jenem Ver-
fahren, mit dem er damals, kaum 24-jdhrig, die Bahn der Ceres aus den P1azzi-
schen Beobachtungen zu berechnen wuBte und die Wiederauffindung des in-
zwischen verlorengegangenen Planetoiden ermoglichte. Er hat diese Methode
spéter in seinem berithmten Werk ,, Theoria corporum coelestium in sectionibus
conicis solem ambientium® (Hamburg 1809) zu groBer Vollkommenheit ent-
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wickelt; auch sie ist heute, mit gewissen von ENCKE, TIETJEN, HANSEN u.a. ein-
gefithrten unwesentlichen Verbesserungen, noch allgemein im Gebrauch. Das
Prinzip, das der Gaussschen Methode und ihren zahlreichen in neuerer Zeit ent-
wickelten Abarten (die insbesondere auf Verwendbarkeit fiir das Maschinen-
rechnen abzielen) zugrundeliegt, unterscheidet sich wesentlich von dem Prinzip
der Methoden von LAGRANGE-LAPLACE. Wihrend diese als Arbeitsunbekanntedie
Koordinaten des heliozentrischen Ortes und der heliozentrischen Geschwindig-
keit einer der beobachteten Planetenpositionen (bei drei Beobachtungen der
mittleren) einfiihren, berechnet Gauss die Koordinaten zweier Orter (bei drei
Beobachtungen die der beiden duBeren). In jedem Falle betragt also die Zahl
der zu berechnenden Unbekannten sechs, entsprechend der Zahl der zu be-
stimmenden Bahnelemente des Himmelskorpers. Sind diese GroSen bekannt,
so 1aBt sich ja, wie in Kapitel V (Abschn: 39) und Kapitel VI (Abschn. 50-52)
gezeigt worden ist, das System der Kegelschnittelemente als Lsung eines An-
fangswertproblems bzw. eines Randwertproblems leicht finden.

Die Hauptschwierigkeit der Bahnbestimmung liegt darin, daB die sechs Un-
bekannten mit den beobachteten Daten, also den topozentrischen sphérischen
Koordinaten ¢;, d; von drei oder mehr Planetenértern in sehr komplizierter
Weise verbunden sind. Eine Losung des Problems ist, wenn iiberhaupt, nur
durch Niherungsmethoden méglich, d.h., es wird zuerst eine noch rohe provi-
sorische Losung gesucht, die dann durch Iteration in mehreren Schritten ver-
bessert wird, bis alle Widerspriiche zwischen Beobachtung und Rechnung ver-
schwunden sind. Wir haben im Kapitel I (Abschn. 10) gesehen, daB schon
PToLEMAUS ein solches Ndherungsverfahren einschlagen muBte, um auf Grund
seiner Epizykeltheorie die Bahnelemente der groBen Planeten festzulegen. Er
kannte aber bereits den zeitlichen Ablauf der scheinbaren Bewegungen der
Planeten an der Sphire und konnte daher die sphirischen Orter, die er zur
Bahnbestimmung heranzog, so auswihlen, daB die Rechnung mit den ein-
fachen geometrischen Hilfsmitteln, die ihm zur Verfiigung standen, leicht durch-
fithrbar war. So benutzte er z.B. fiir die Bahnbestimmung der duBeren Pla-
neten drei Oppositionsérter. In der modernen Bahnbestimmung hat der Rech-
ner von einem eben entdeckten Planetoiden oder Kometen nur wenige, zeitlich
dicht aufeinanderfolgende, Beobachtungen zur Hand, und er kennt zu Beginn
der Hypothesenrechnung noch keines der Bahnelemente (auch nicht die Um-
laufszeit, die ProLEMAUS bei seiner Rechnung schon vorgegeben fand). Um
nun die dynamischen Beziehungen zwischen den beobachteten Ortern beriick-
sichtigen zu kénnen, wird der Rechner die Entwicklung der Koordinaten (oder
geeigneter Funktionen der Koordinaten) nach Potenzen der Zwischenzeiten
benutzen. Diese Entwicklungen sind aber nur dann von praktischem Wert,
wenn sie so rasch konvergieren, da3 wenige Glieder ausreichen; denn nur in den
ersten Gliedern sind die unbekannten GréBen des Problems in so einfacher
Form enthalten, daB ihre schrittweise Eliminierung ohne allzugro8e Schwierig-
keiten méglich ist. Die Hypothesenrechnung wird daher nur dann rasch zum
AbschluB kommen, wenn die Zwischenzeiten hinreichend klein sind. Anderer-
seits wird aber das Ergebnis der Rechnung um so ungenauer ausfallen, je kiirzer
der Bahnbogen ist, auf dem sich der Himmelskérper wihrend der Zeit seiner
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Entdeckungsbeobachtungen bewegt hat. Es wird also, je nach den obwaltenden
Umstédnden, ein gewisses Optimum fiir die Linge der Zwischenzeiten geben.
Sind sie zu groB, so wird das Iterationsverfahren nur langsam oder gar nicht
konvergieren; auBerdem werden sich bei gréBeren Zwischenzeiten auch die
Storungen der Bahnbewegung durch die groBen Planeten (bei Planetoiden ins-
besondere die des Jupiter) unliebsam bemerkbar machen. Sind dagegen die
Zwischenzeiten sehr klein, so werden die den Ausgangsdaten anhaftenden zu-
falligen Beobachtungsfehler mit allzu groBem Gewicht in die Rechnung ein-
gehen und das Ergebnis in unkontrollierbarer Weise filschen.

Wir werden im folgenden die wichtigsten Verfahren der Bahnbestimmung
behandeln, ohne auf Feinheiten einzugehen, die nur den praktischen Rechner
interessieren, und ohne explizite Rechenvorschriften bis ins Einzelne anzu-
geben, die der Leser in speziellen Lehrbiichern der Bahnbestimmung?) und in
Originalabhandlungen finden wird. Uns kommt es mehr darauf an, die geistige
Struktur der verschiedenen Methoden bloBzulegen und sichtbar werden zu
lassen. Wir beginnen dabei mit den auf LAGRANGE und LAPLACE zuriickgehen-
den Methoden, die sich durch mathematische Eleganz und Klarheit der Ge-
dankenfithrung besonders auszeichnen und die wir hier der Kiirze halber als
die Methoden nach dem LAPLACEschen Prinzip bezeichnen wollen. Erst
im Kapitel IX werden wir uns den Methoden zuwenden, die auf dem GA4USS-
schen Prinzip beruhen. Sie stehen in dem Ruf groBerer Undurchsichtigkeit; es
1aBt sich aber zeigen, daB die Kompliziertheit der Rechenvorschriften haupt-
sichlich darauf beruht, da8 sie in ihrer urspriinglichen Form ganz auf logarith-
misch-trigonometrisches Rechnen zugeschnitten waren.

AuBler dem allgemeinen Fall der Bahnbestimmung werden die Spezial-
fille der Kreis- und Parabelbewegung behandelt werden. Da eine Kreisbahn
durch vier Elemente bestimmt ist, sind zu ihrer Berechnung nur zwei vollstan-
dige sphirische Orter notig. Eine Parabelbahn erfordert fiinf unabhingige
Daten zur Bestimmung ihrer fiinf Elemente. Es sind also zur Berechnung einer
parabolischen Bahn drei Beobachtungen notwendig, doch ist dann eine der
sechs sphirischen Koordinaten iiberzihlig. Man kann also etwa eine Koordinate
der mittleren Beobachtung beiseite lassen und nach Abschlu der Bahnrech-
nung als Kontrollwert benutzen. Oder man verwendet, wie es OLBERS getan
hat, von der mittleren Beobachtung nur eine Funktion der beiden Koordinaten
und benutzt die Koordinaten selbst zur Kontrolle der Rechnung oder als Test
fiir die Richtigkeit der Annahme, daB der betreffende Himmelskérper sich
wirklich auf einer Parabel bewegt.

66. Reduktion der Beobachtungen

Die sphirischen Koordinaten eines Planetoiden oder Kometen werden meist
durch direkten AnschluB an benachbarte Fixsterne gewonnen, sei es durch

1) Z. B. G.StrACKE: Bahnbestimmung der Planeten und Kometen. Berlin 1929.
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mikrometrische Messung am Fernrohr oder (heute fast ausschlieBlich) durch
Ausmessung photographischer Himmelsaufnahmen. Sie liegen also meist in
Form von Rektazension und Deklination vor und beziehen sich auf eine be-
stimmte Lage des Himmelsiquators und des Friihlingspunktes, und zwar ent-
weder auf das fiir den jeweiligen Beobachtungszeitpunkt giiltige Koordinaten-
system (scheinbare Orter) oder auf die mittlere (von Aberration und Nutation
freie) Lage der Koordinatenebenen zu Beginn des Beobachtungsjahres (mitt-
lere Orter fiir den Jahresanfang, z.B. 1959.0) oder auf ein mittleres Normal-
dquinoktium (1925.0, 1950.0, 1975.0 usw.). Ferner wird die Zeit der Beobach-
tung angegeben, und zwar entweder als mittlere Ortszeit, als Zonenzeit (z.B.
Mitteleuropdische Zeit) oder als Weltzeit (Universal Time = U.T.), d.h. als
mittlere Zeit des Meridians von Greenwich. Der Bahnrechner hat darauf zu
achten, daB sich sowohl die Zeitangaben auf das gleiche Zeitsystem als auch die
sphérischen Orter auf das gleiche Koordinatensystem beziehen. Ist dies nicht
der Fall, so muB vor Beginn der Bahnrechnung eine Reduktion der Angaben
vorgenommen werden. Sind scheinbare Orter gegeben, so werden diese durch
Beriicksichtigung von Prizession, Nutation und Aberration auf das mittlere
Aquinoktium des Jahresanfangs zu reduzieren sein; sind bereits mittlere Orter
gegeben, beziehen sich diese aber (wie es oft vorkommt, wenn die Beobachtun-
gen sich iiber eine Jahreswende erstrecken) auf verschiedene Jahresanfinge, so
wird man einen Teil der Daten durch Beriicksichtigung der Prizession auf das
mittlere Aquinoktium der iibrigen bringen miissen. Die fiir diese Reduktions-
arbeit noétigen Formeln werden in der Sphirischen Astronomie entwickelt;
ihre Ableitung und Zusammenstellung findet man in den Lehrbiichern dieser
Disziplin und in allen Spezialwerken iiber Bahnbestimmung.

Es gibt aber noch zwei weitere Umstéinde, die beriicksichtigt werden miissen,
wenn man die beobachteten sphirischen Orter fiir eine Bahnbestimmung be-
nutzen will: Die vom Beobachter gelieferten Daten enthalten noch die Zigliche
Parallaxe und die Lichtzeit. Die Bewegung der Erde um die Sonne (die man
braucht, um geozentrische in heliozentrische Koordinaten zu verwandeln) wird
als bekannt vorausgesetzt. Die dazu nétigen Unterlagen sind in den astro-
nomischen Jahrbiichern in Form von geozentrischen Koordinaten der Sonne ent-
halten, die téglich fiir o® Weltzeit gegeben werden, und zwar sowohl als recht-
winklige Aquatorkoordinaten (X, Y, Z) als auch in Form von ekliptikalen Polar-
koordinaten (R, L, B), wobei die Breite B sehr klein ist. Zwischen den recht-
winkligen geozentrischen Koordinaten (&, #, {) des beobachteten Himmels-
korpers, seinen heliozentrischen Koordinaten (#, v, z) und den geozentrischen
Koordinaten der Sonne bestehen die Gleichungen (IV; 3)

(VIII; 2) E=2+X, n=9+Y, {=24+2.
Andererseits ist in Polarkoordinaten -
(VIII;3) & =pcosdcosa, n=pcosdsina, ¢ =psind.

Der geozentrische Abstand ¢ des Himmelskorpers ist a priori unbekannt; die
beobachteten Richtungskoordinaten «, & sind aber topozentrische, d.h. vom
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Beobachtungsort aus gesehene und miissen daher, damit die Beziehungen
(VIII; 2) erfiillt sind, auf den Erdmittelpunkt reduziert, d.h. wegen der tig-
lichen Parallaxe verbessert werden. Die Berechnung dieser Korrektion erfor-
dert aber die Kenntnis der Entfernung p, die erst im Laufe der Bahnrechnung
mit hinreichender Sicherheit erlangt wird. Das gleiche gilt auch fiir die ,, Licht-
zeit” oder ,, Planetenaberration”. Da das Licht eine endliche Geschwindigkeit ¢
hat, erblickt der Beobachter das Objekt im Beobachtungszeitpunkt ¢ dort, wo

es zu einer etwas fritheren Zeit ¢ — A¢ gestanden hat. Die Lichtzeit A = I 0
ist aber ebenfalls von der noch unbekannten Entfernung ¢ abhingig. ¢
Beide Einfliisse konnen die Beobachtungsdaten merklich verfilschen, doch
ist der EinfluB der Lichtzeit (Aberrationszeit) aus folgendem Grund weniger
storend: Wahrend des verhiltnismiBig kurzen Zeitintervalls, das die fiir die
Bahnbestimmung benutzten Beobachtungen iiberdecken, dndert sich der Ab-
stand des Himmelskorpers verhiltnismdBig wenig. Man kann also die Ab-
stinde g, in der Form g, 4 4p; schreiben, wo die 4, kleine, teils positive,
teils negative Korrektionen des mittleren Abstandes g, bedeuten. Wihrend
nun g, in der Formel fiir die Lichtzeit lediglich eine konstante Verschiebung
der Zeitskala zur Folge hat, also keine wesentliche Verzerrung der Bahnver-
hiltnisse bewirken kann, wird nur der von den ZusatzgréBen 4 p; herrithrende
Lichtzeiteffekt die Daten wesentlich beeinflussen. Nun ist aber auch der Fak-

tor " sehr klein (wenn man die Langen in astronomischen Einheiten, die Zeiten
in mittleren Tagen miBt, ist I 0.00577, d.h., die Aberrationszeit betriagt
¢

rund 8 Minuten fiir einen Abstand von 1 A.E.), so daB man die sehr kleinen
Effekte 4p,/c zu Beginn der Hypothesenrechnung unbedenklich vernachlissigen
kann, um sie schlieBlich bei der letzten Iteration, wenn die g, bereits geniigend
genau vorliegen, zu beriicksichtigen.

Die Wirkung der téglichen Parallaxe ist hingegen in den meisten Fillen
schon von Beginn der Rechnung an ernst zu nehmen. Nur bei der Bestimmung
von Kometenbahnen pflegt man sie — wenigstens bei ersten Bahnbestimmungen
nach der Entdeckung — ganz zu vernachlissigen, da der sphirische Ort eines
so diffusen Himmelskorpers weit unsicherer bestimmbar ist als der eines punkt-
f6rmig definierten Planetoiden. Wihrend bei den letzteren parallaktische Diffe-
renzen von I0” und dariiber die Beobachtungsgenauigkeit um eine volle
GroBenordnung iibertreffen, werden Vernachlissigungen von diesem Betrage
bei Kometen meist noch innerhalb des Bereiches der Beobachtungsunsicherheit
bleiben, so daB sich der Versuch, die Wirkung der téglichen Parallaxe unschad-
lich zu machen, kaum lohnt.

Man hat das Problem der Ausschaltung des parallaktischen Fehlers auf
mehrere Arten zu l6sen versucht. Die dlteste dieser Methoden ist die ,, Reduktion
auf den locus fictus", ein etwas umstindliches Verfahren, das heute kaum noch
angewandt wird. Es hatte seine Bedeutung, als man — wie schon OLBERs und
Gauss in ihren klassischen Arbeiten — bei der Bahnbestimmung mit eklipti-
kalen Koordinaten zu rechnen gewohnt war. Der Vorteil dieses Verfahrens be-
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steht darin, daB die ekliptikale Breite der Sonne sehr klein ist, was eine nicht
unbedeutende Vereinfachung der Rechenvorschriften bewirkt. Dafiir besteht
allerdings der Nachteil, daB die im Aquatorsystem gegebenen Beobachtungs-
daten (;, ;) auf das Ekliptiksystem transformiert werden miissen, eine Mehr-
arbeit, die nur teilweise dadurch gerechtfertigt erscheint, da8 man die vom
Koordinatensystem abhingigen Bahnelemente (Neigung, Knotenlinge, Peri-
helabstand vom Knoten) nach
Beendigung der Bahnbestim-
mung direktim Ekliptiksystem
erhilt, das fiir GroBen dieser
Art als Bezugssystem bevor-
zugt wird. Die Reduktion auf
den locus fictus besteht nun
darin, daB man (Abb. 53) die
Verbindungslinie des Be- Ebene der Ekliptik
obachtungsorts (B) mit dem
Planeten (P) zum Schnitt mit Abb. 53. Reduktion auf den locus fictus.
der Ekliptikebene bringt..Der

Schnittpunkt F (locus fictus) wird dann fiir die Dauer der Rechnung anstatt
des Beobachtungsortes benutzt. Er hat folgende bemerkenswerte Eigenschaf-
ten: 1. ist fiir ihn die Breite der Sonne streng gleich null; diese GréBe ver-
schwindet also véllig aus den Formeln, die dadurch wesentlich einfacher wer-
den; 2. sind fiir ihn die ekliptikalen Richtungskoordinaten (4, §;) des Pla-
neten die gleichen wie fiir B; durch Einfithrung der loci ficti wird also eine
Beriicksichtigung der tiglichen Parallaxe tberflissig. Es dndern sich nur die
Koordinaten (R, L) der Sonne, die in den Jahrbiichern fiir den Erdmittelpunkt
gegeben sind und von diesem auf denlocus fictus transformiert werden miissen,
schlieBlich auch die Entfernung B P = p, die um die berechenbare Strecke F B
zu korrigieren ist.

Ein Nachteil dieser Methode ist, daB F unter Umstinden sehr weit von B
entfernt liegen kann, wenn die ekliptikale Breite von P klein ist, und da8 die
Lage von F iiberhaupt unbestimmbar wird, wenn P sich in der Ekliptik selbst
befindet. Heute, wo das Rechnen mit Maschinen das mit Logarithmen immer
mehr verdringt, zieht man es im allgemeinen vor, die im Aquatorsystem be-
obachteten topozentrischen Planetenorter unverdndert zu benutzen. Man um-
geht dann die Reduktion dieser Orter wegen der tiglichen Parallaxe, indem
man die in den Jahrbiichern gegebenen rechtwinkligen geozentrischen dqua-
torealen Sonnenkoordinaten (X,, Y,, Z,) auf topozentrische (X, Y, Z) trans-
formiert. Es ist dann

(VIII; 4) X=X,4+ 4X, Y=Y, 4+ AY, Z=2,+ 4Z,

wo AX, AY, AZ Korrektionen der rechtwinkligen Sonnenkoordinaten im
Sinne ,,topozentrische minus geozentrische Koordinaten* darstellen. Sie sind

also den im Abschn. 30 (IV; 5) definierten GroBen A&, 47, 4¢ entgegengesetzt
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gleich, und es ist

AX = —Acosgp’ cos® = —Ccos B,
(VIII; 5) AY = —Acos¢ sin@ = —C sin6,

AZ = — A sing’ = -5,

wo C und S nur von der geographischen Lage des Beobachtungsortes abhingen
und (siehe Anhang A I) als Funktionen der geographischen Breite tabuliert oder
auch in einer Liste fiir alle Sternwarten, an denen Beobachtungen von Planeten
und Kometen gemacht werden, zusammengestellt werden kénnen.

Korrigiert man vor Beginn der eigentlichen Bahnrechnung die Sonnenkoordi-
naten auf diese einfache Weise, so gelten die Gleichungen (VIII; 2) streng fiir
den Beobachtungsort, der dann in der Rechnung als ,, Erdort” bezeichnet wird.

67. Bahnbestimmung nach dem LapPLACESchen Prinzip

LAGRANGE und LApLACE erreichten auf verschiedenen Wegen das Ziel, aus
einer Reihe beobachteter sphérischer Orter die Orts- und Geschwindigkeits-
koordinaten des Himmelskérpers fiir einen bestimmten Zeitpunkt abzuleiten
und damit die Aufgabe der Bestimmung der Bahnelemente auf das in Abschn. 39
geloste Anfangswertproblem zuriickzufithren. LAPLACE hat seine Methode im
Band I seines , Traité de mécanique céleste” (2.Buch, 4. Kapitel) beschrieben.
Erst ein Jahrhundert spiter hat P. HARzZER!) dieser Methode eine neue Form
gegeben, in der gewisse theoretische und praktische Méngel vermieden wurden,
die ihr in der urspriinglichen Gestalt anhafteten, und die offenbar schuld daran
gewesen sind, daf diese an sich elegante, geistreiche und durchsichtige Methode
im Schatten der von OLBERs und Gauss entwickelten Verfahren fast in Ver-
gessenheit geraten war. Da die HarzeErsche Fassung der LapLaceschen Me-
thode auch fiir neuere Losungen der Bahnbestimmungsaufgabe nach dem An-
fangswertprinzip richtungweisend gewesen ist, soll sie hier beschrieben werden,
obwohl sie in die Praxis kaum Eingang gefunden hat.

Um eine angendherte Losung zu erzielen, die als Ausgangspunkt fiir ein
Iterationsverfahren geeignet ist, machen wir folgende Voraussetzungen, die in
Wirklichkeit nur mehr oder weniger unvollkommen erfiillbar sind und iiber
deren Berechtigung weiter unten (Abschn. 71) noch einiges zu sagen sein wird:

1. Es wird angenommen, daB es gelungen sei, fiir einen bestimmten, moglichst
in der Mitte des durch Beobachtungen von Rektaszension («) und Deklina-
tion (d) des Himmelskorpers belegten Zeitintervalls liegenden, Zeitpunkt ¢ = ¢,
den Wert von « und y = tg § nebst den beiden ersten Ableitungen dieser
GroBen nach der Zeit durch Interpolation zu ermitteln.

1) Astron. Nachr. 141, 177 (1896).
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2. Es wird angenommen, dafl die beobachteten sphirischen Koordinaten a;,
0; sich auf den Schwerpunkt Erde-Mond (das Baryzentrum des Systems
Erde-Mond, das sich stets im Innern des Erdkérpers befindet) beziehen und
daB dieser Punkt sich stérungsfrei in einer KepLERschen Bahn bewege, ebenso
wie der beobachtete Himmelskorper selbst. Die beobachteten Koordinaten
werden also, unter vorldufiger Vernachlissigung von Parallaxe und Lichtzeit,
als baryzentrische angesehen.

Sind nun #, ¥, z die rechtwinkligen heliozentrischen Koordinaten des Planeten,
X, Y, Z die baryzentrischen Koordinaten der Sonne im Aquatorsystem, und ist
Y= ]/x2 + 42 4 22 der Radiusvektor des Himmelskérpers, R =} X% 4+ Y2 + Z2
der Abstand des Baryzentrums von der Sonne, so gelten, wenn man als Zeit-
1
k
des Systems Erde-Mond gegen die Masseneinheit (Sonne) vernachlissigt, die
Gleichungen

einheit — mittlere Sonnentage wihlt und die Massen des Himmelskorpers und

N z . X
x+F=0, X‘+-1—2§—=0

und entsprechende Beziehungen fiir die iibrigen Koordinaten. Andererseits
folgt, wenn &, #, ¢ die baryzentrischen Koordinaten des Himmelskérpers sind,
aus (VIII; 2)

. X
(VIIL; 6) £=x+X=—_(:’—3+ﬁ)
oder, wenn man x = § — X setzt,
. . £ I I
(VILL; 7) 5= (W—F)x,

und es gelten entsprechende Beziehungen fiir % und ¢.
Seien nun im System des Aquators g, ¢, 6 und R, 4, D die baryzentrischen
Polarkoordinaten des Himmelskérpers und der Sonne, so ist, wenn

6=gpcosd, S=RcosD, y=1tgé
gesetzt wird,

E=o0cosa, =osinea, =gy,
(VIIL; 8) r =0

X=ScosA, Y=Ssind, Z=StgD,
und die Gleichungen (VIII; 7) nehmen die Gestalt

cos a I 1
.. i . s _ofI _
gcosa — 26asin a a(a cosa 4+ dsina s )—5(73 _R3) cos A4,
. . .. o . sin & I T\ .
asmaz-l-zoacosaz—a(a’sma—-acosa— p )=S(ﬁ———3)smA,

67+26?+o(7+%)=5(

23 Stumpff, Himmelsmechanik
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an. Multlplmert man die ersten beiden dieser Gleichungen mit den Faktoren
cos a, sin @ bzw. —sin«, cos «, addiert sie und schreibt die dritte Glelchung
unverdndert wieder dazu, so entsteht das System

o ay

.. . I I I . .
0—0(&2—;—3')=S(—’—3-—F)C05(A—a) —ya ya

. . I I\ s "

(VIII; 9) 20‘a+aa=5(ﬁ - F)sm A—-a)|—y jaly+
) . . I I . .
3}'+267+0(}'+:—3)=5<W_F)tgp @ —d,

aus dem man durch Multiplikation mit den Faktoren (I) bzw. (II) und Addi-
tion o und ¢ ableitet, und zwar ist ‘

(VIII; 10) a——x(I —is); 6:1(i_i)=a._l_,

7 R r® RS %
wo
‘e — a[ycos(A—az)-—th]-|—;'sm(A-—a)
@y —dp + ap
(VILE; 1) 1- a[y cos (A —a) —tg D] + (¢®y + #)sin (4 — a)
@y — &y + &y

zwei aus gegebenen GroBSen berechenbare Ausdriicke darstellen. Die dritte Un-
bekannte, ¢, kann dann aus der ersten oder dritten Gleichung (VIII; g) eben-
falls berechnet werden, wird aber in der weiteren Analyse nicht unbedmgt
gebraucht

Die Gleichungen (VIII; 10) enthalten nun den noch unbekannten Abstand »
des Himmelskérpers von der Sonne. Fiir ihn gilt aber die geometrische Be-
ziehung

72=x2+ y2+22=
= (6cosa — Scos A)? + (osina — Ssin 4)2 4 (o tgd — S tg D)2
= o (1 + tg? ) — 205 [cos (4 — &) + tg 8tg. D] + S? (1 + tg? D)

oder
VIII ” ® 265 cos (4 s\
( ;12) 7 =(cos§) — 20 [cos ( —a)+tg6th]+(cosD>’
wihrend aus (VIII; 10) und R = _S_

cos D

I o cos D\3
(VIIT; 13) 2=+ ( )
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folgt. Multipliziert man nun die dritte Potenz von (VIII; 12) mit dem Quadrat
von (VIII; 13), so erhidlt man in

(VIII; 14) 1= [( )2 —20S{cos(4 —a) + tgdtgD} + (co%)zrx

o cos D\3]2
<o (5]
eine algebraische Gleichung zur Bestimmung von o. Diese Gleichung ist vom
achten Grade; da aber die von o freien Glieder sich aufheben, ist ¢ = 0 eine
Losung, und der Grad der Gleichung reduziert sich also auf den siebenten. Die
triviale Losung 0 = o entspricht ¢ = 0, d.h. dem Baryzentrum selbst, das
natiirlich die Gleichungen (VIII; 7) befriedigt, denn fiir diesen Punkt ist ja
E=np={=ound7=R.

Liegt o vor?) [iiber die Moglichkeit mehrfacher Losungen von (VIII; 14) und
damit des Bahnbestimmungsproblems wird im nichsten Abschnitt alles Nétige
gesagt werden], so findet man ¢ nach (VIII; 10). Man bestimmt dann &, #,
¢ nach (VIII; 8) und berechnet

& =dcoso —oa sina,

cos &

)= ¢sina+ oa&cosa,

{ =6y +oy.
Die heliozentrischen Ortskoordinaten ergeben sich dann nach (VIII;2) und
die Geschwindigkeitskoordinaten nach

t=¢(—X, y=5—-Y, :=({-12,

wobei X, ¥, Z aus dem Jahrbuch durch Interpolation entnommen werden.
Die Gleichung (VIII; 14), die in dieser oder dhnlicher Form als ,,Schliissel-
gleichung” des Problems in jeder Bahnbestimmungsmethode erscheint, ist
streng erfiillt, wenn man die oben aufgefithrten Voraussetzungen gelten 148t.
In Wirklichkeit wird man die ersten und zweiten Ableitungen der sphirischen
Koordinaten nur mit mehr oder weniger guter Anniherung kennen (siehe
Abschn. 71), und man wird auBerdem anstatt der baryzentrischen Koordinaten
die topozentrischen verwenden, woraus folgt, daB die Differentialgleichungen
. (VIII; 7) nicht ganz streng erfiillt sind. Aus diesen Griinden werden die nach
dem oben beschriebenen Verfahren gewonnenen Anfangswerte x,, ¥,, %;
%y, y» %, eine Bahn definieren, die nur als Anndherung an die wahre anzusehen
ist.

Man kann nun aber mit diesen fiir den Zeitpunkt ¢ = {, giiltigen proviso-
rischen Anfangswerten nach den im Kapitel V beschriebenen Verfahren oder,
was bei kleinen Zwischenzeiten vorzuziehen ist, durch die in Abschn. 56 ge-

" 1)g = pcos 6 (oder bei Verwendung ekliptikaler Koordinaten ¢ = g cos f) ist die
Projektion der Distanz g auf die Hauptkoordinatenebene. Man bezeichnet ¢ daher
auch als , kurtierte (verkiirzte) Distanz”.

23¢
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gebenen Reihenentwicklungen fiir alle vorliegenden Beobachtungszeiten#, ... £,
die zugehorigen Koordinaten x,, y,, 2z, (? =1, 2, ... ) berechnen, wobei
1, = k(t, — ¢,) als Zwischenzeiten dienen. Mit diesen Werten sind aber auch

&, =%+ X,=p,cosd,cosq,,
(VIII; 15) 7, =% +Y,=g,cos0,sinoa,,
{,=2,+2Z,=p,siné,

bekannt ; die Sonnenkoordinaten sind dabei die nach (VIII; 5) wegen Parallaxe
verbesserten Jahrbuchwerte. Aus (VIII; 15) bestimmt man provisorische
Werte von g,, «,, 0,. Die g, werden im allgemeinen schon auf Grund dieser
ersten Niherung genau genug fiir die Ermittlung der Lichtzeit sein, die «,, 4,
werden aber mit den beobachteten sphirischen Koordinaten nicht iiberein-
stimmen, sondern gewisse Abweichungen Aa,, 46, (im Sinne Beobachtung
minus Rechnung) iibriglassen. Diese kénnen dann, etwa nach dem nach-
stehend skizzierten Verfahren, zur Verbesserung der Anfangswerte %, ¥;, %;
%y, Yo, %, dienen.

Variiert man die Gleichungen (VIII; 15), so erhilt man, da die Sonnen-
koordinaten keiner Verbesserung mehr bediirfen, die Gleichungen

Ax,= Ao, cos é, cosa, — 9,49, sin , cos «, — g, 4, cos d, sin a,,
Ay, = Ap,cos éd,sina, — g,49, sin §, sina, + g,4a, cos é, cos a,,
Az, = Ag, sin §, + 0,49, cos 9,

die streng giiltig sind, sofern man Quadrate der Variationen 4o, usw. vernach-
lissigen darf. Aus ihnen leitet man

g,da, cos b, = —Ax,sina, + 4y, cosa,,
(VIII; 16) ) )
0,46, = —Ax,sin d,cosa, — Ay, sin , sin«, + Az, cos 6,

und die zu Kontrollzwecken und zur Verbesserung der Lichtzeit niitzliche
Gleichung

Ao, = Ax,cos d,cosa, + Ay, cosd,sina, + Az, sin J,

ab. Andererseits bestehen aber zwischen den x,, ¥,, 2, und den provisorischen
Anfangswerten z,, ¥,, 2,; %), ¥,, ¢, die Beziehungen

(VIIT; 17) =z, = Fyxy + G, % 9y, =F,y,+ G,4y; 2, = F,2+ G,%,

wobei F,, G, die bekannten Funktionen (V; 70) der Zwischenzeiten 7, und der
aus den Anfangswerten zu bildenden lokalen Invarianten sind. Es gilt demnach

(VIIT; 18) Az, =F, Az + G, 4%y + z,4F, + £,4G, usw.,
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und es ist nun auch ohne Schwierigkeit méglich, die Variationen 4F,, 4G,,
bei konstant gehaltenem t,, in der Form

dF, dF, oF,
(VI xg)  AF,= 3o A+ x Ay oo o
als lineare Funktionen von 4x,, 4%,, ... 4%, zu schreiben. Man erhilt somit
Gleichungen von der Form

Az, = a,dzy+ b4y, + ¢, A 2+ u, 4%, + v,44, + w,4%,

und durch Einsetzen dieser Ausdriicke in (VIII; 16) ein System linearer Glei-
chungen, aus denen man (wenn # > 3, durch Ausgleichung nach der Methode
der kleinsten Quadrate) aus den Abweichungen 4a,, 46, die Verbesserungen
Ax,, ... A%, bestimmen kann. Mit den verbesserten Anfangswerten wird dann die
Rechnung wiederholt und so lange fortgesetzt, bis die Restfehler verschwinden
oder (bei mehr als drei Beobachtungen) klein von der Ordnung der Beobach-
tungsfehler sind und keinen systematischen Gang mehr zeigen. Die endgiiltigen
Werte der Orts- und Geschwindigkeitskoordinaten fiir die Epoche £, bilden
dann die Grundlage fiir die Berechnung der Kegelschnittelemente nach
Abschn. 39.

4%,

68. Die LaGRANGESche Schliisselgleichung. Mehrfache Lisungen.
Die CeARLIERSChen Bereiche

Im vorigen Abschnitt ist die von HARZER auf eine praktisch verwendbare Form
gebrachte LarLacEsche Methode nur in groBen Ziigen dargestellt worden, um —
unter Beiseitestellung aller nur fiir die rechnerische Durchfithrung wichtigen
Feinheiten — um so deutlicher die Idee dieses Verfahrens hervortreten zu lassen,
die auch in allen spiteren Varianten der Methode in mehr oder weniger ab-
gewandelter Form sichtbar wird. Es wird nun unsere Aufgabe sein, auf einzelne
Punkte hinzuweisen, die zu besonderen Untersuchungen anregen. Einer dieser
Punkte betrifft die algebraische Gleichung (VIII; 14), die Methoden ihrer
Lésung und vor allem die Schwierigkeiten beim Auftreten mehrfacher Losungen.

Es wurde schon erwihnt, daB eine solche algebraische Gleichung achten
Grades, wie sie zuerst von LAGRANGE aufgestellt wurde, in allen Bahnbestim-
mungsmethoden, gleich welcher Art, auftritt. Diese Gleichung bildet gewisser-
maBen den Kern des Problems: Ihre Auflésung vermittelt den Zugang zur
Losung der eigentlichen Aufgabe. Man kann sie daher mit einiger Berechtigung.
als die Schlisselgleichung der Bahnbestimmung bezeichnen. Thre Form wird in
allen Varianten der Bahnbestimmungsmethoden nach dem Larrackschen wie
nach dem Gaussschen Prinzip die gleiche sein; verschieden sind nur die Wege,
auf denen man zu ihr gelangt, und verschieden ist auch vielfach die geome-
trische Bedeutung der Unbekannten, die aus ihr zu bestimmen ist.

HARzER 16st die Gleichung (VIII; 14) durch Versuche auf, ein Verfahren,
das mit erheblicher Rechenarbeit verbunden ist, wenn man nicht von vorn-
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herein tiber einen guten Ndherungswert fiir die , kurtierte Distanz*“ ¢ verfiigt.
TH. v. OPPOLZER hat in seinem ,,Lehrbuch zur Bahnbestimmung der Kometen
und Planeten” ein Verfahren zur raschen Auflésung der Schliisselgleichung
angegeben und im Anhang jenes Lehrbuchs
(Tafel XIIIa) eine Hilfstafel versffentlicht, aus
der man dreistellige Ndherungswerte fiir die
Losung der Gleichung entnehmen kann. Die An-
wendung dieses im Zusammenhang mit der
Gaussschen Methode der Bahnbestimmung ent-
wickelten Verfahrens auf die Gleichung (VIII; 14)
ist, wie R.SPRAGUE!) gezeigt hat, recht ein-
fach.

Abb. 54. Bezeichnet man (Abb. 54) mit p den geo-
Dreieck Sonne-Erde-Planet. zentrischen (topozentrischen) Winkel zwischen
den Richtungen zur Sonne S und zum Planeten

P, so kann man (VIII; 12) nach dem ebenen Cosinussatz in der Form

72 = g* — 2pR cos y + R?
schreiben, wo
o S

€= oso’ cosD’

oRcosy =X+ nY + {Z =0S [cos (4 — a) + tg dtg D]

ist. Setzt man nun % =, so ist

(VIII; 20) (%)2 =1—2{cosy+ (%

Andererseits ist nach (VIII; 10)
3
i—i——%[x—(ﬁ)]= _@gcosd _ _RCcosé

R ## R 7 P x
also, wenn man
®
(VIII, 21) m = —m
einfiihrt,
R 3
c=mle- (7]
oder ‘
_3
(VIIT; 22) m—C=m(1—2{cosyp+ (% 2.

Eine Losung dieser Gleichung, { = ¢ (, ), entnimmt man mit den Argumen-

1) Astron. Nachr. 153, 385 (1900).
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ten 9 und % der obengenannten Tafel, die hier im Anhang A IX wiedergegeben
ist. Man kann ohne Schwierigkeit aus dieser Tafel dreistellige {-Werte inter-
polieren, mit Ausnahme der Umgebung der Stelle ¢ = 1, = o, fiir die % un-

endlich groB wird. Dieser Fall ist aber praktisch bedeutungslos, da fiir ihn der
Ort des Himmelskérpers mit dem Ort der Sonne zusammenfillt. In der Tat
wird, wenn man in (VIII; 11) @ = 4, § = D setzt, x = o und daher nach
(VIII; 21) auchm = o.Mit dem dreistelligen Ndherungswert fiir { findet man die
strenge Losung der Gleichung in einem oder zwei Schritten nach der regula falsi.

v. OpPoLZER hat auch Untersuchungen iiber die Anzahl der reellen positiven
Wourzeln der Gleichung (VIII; 22) durchgefithrt — nur diese Wurzeln sind ja
interessant, da ¢ als Verhiltnis zweier Strecken eine reelle und wesentlich
positive GroBe darstellt, wenn man die triviale Losung { = o ausscheidet. Die
Diskussion der Gleichung siebenten Grades, die nach Eliminierung der , Erd-
bahnwurzel“ ¢ = o iibrigbleibt, ist aber etwas schwierig, was schon daraus
hervorgeht, daB ihre Koeffizienten im allgemeinen sidmtlich von null verschie-
den sind. Viel einfacher ist es, wenn man anstatt { das Verhiltnis

4
1=f

als Unbekannte einfiihrt. Dann ist ndmlich nach (VIII; 20)
(VIII; 23) A®=1—2fcosy+ (% also ¢ =cosyp 4 }4A? — sin® ,

und man erhilt aus (VIII; 22)
m
m —cosy F Y22 —sinfy =75

oder, wenn man die Quadratwurzel durch Quadrieren beseitigt, die Gleichung
achten Grades

(VIII; 24)

f(A) =28 —(1—2mcosyp+ m?) 284 2m (m —cosy) B —m2=o0 |,

die durch die triviale Losung 4 = 1 (r = R) befriedigt wird. Man kénnte also,
indem man f(4) durch 2 — 1 dividiert, den Grad der Gleichung um eins ver-
mindern; dabei ist aber weder fiir die praktische Rechnung noch fiir die Dis-
kussion etwas gewonnen, zumal die Form der entstehenden Gleichung sieben-
ten Grades weniger einfach ist als die von (VIII; 24). Es mag bei dieser Ge-
legenheit noch einmal darauf hingewiesen werden, daB die Gleichung (VIII; 24)
und ihre triviale Losung nur unter der Voraussetzung gelten, daB die Beziehung
(VIII; 7) streng erfiillt ist, d.h., daB sich auBer dem Planeten oder Kometen
auch der ,,Erdort” zu allen verwendeten Beobachtungszeiten auf einer Kep-
LERschen Bahn befindet. Das ist aber (wenn wir Stérungen der Bahnbewegun-
gen durch die Planeten vernachlissigen) nur dann streng der Fall, wenn man
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den Erdort im Baryzentrum des Systems Erde-Mond annehmen darf. Da
dieser Punkt aber, wie schon erwihnt, stets im Innern des Erdkérpers liegt!),
so iibersteigen die Vernachldssigungen, die man begeht, wenn man topozen-
trische statt baryzentrische Koordinaten benutzt, nicht die GroSenordnung
der téglichen Parallaxen von Sonne und Himmelskérper.

Da 4 = 7/R als Verhiltnis zweier Strecken wesentlich positiv ist, interessieren
von den acht Wurzeln der Gleichung (VIII; 24) nur die reellen positiven. Nach
dem schon in Abschn. 52 benutzten Satz von DESCARTES ist aber die Anzahl
der reellen positiven Wurzeln einer algebraischen Gleichung (1) = o héch-
stens gleich der Anzahl der zwischen den Koeffizienten aufeinanderfolgender
Glieder auftretenden Vorzeichenwechsel. Nun ist in (VIII; 24) der Koeffizient
von A8sicher negativ, das konstante Glied (— m?) ebenfalls. SchlieBlich 148t sich
leicht iibersehen, daB der Koeffizient von 43 stets positiv ist. Denn da

(VIII; 25) {=m(1— 179

stets positiv ist, haben m und 4 — 1 stets das gleiche Vorzeichen. Der Ausdruck
2m(m — cos y) ist demnach sicher positiv, wenn m <C o ist, denn dann ist,

wegen7 < R, o< p < %, d.h. cos y > o. Ist aber m > o und daher 1> 1,
so ist

m-—coszp:%i]/lz—sinzip

ebenfalls positiv; von den beiden Vorzeichen der Quadratwurzel kann nimlich
nur das positive richtig sein, denn aus 4 > 1 folgt ja 42 — sin? p > cos? p, und
nach (VIII; 23) wire sonst { < o,

f(2) was der geometrischen Bedeutung
! dieser GroBe widerspricht. Damit ist
bewiesen, da8 die Gleichung (VIII;
24) hochstens drei positive Wurzeln
haben kann; andererseits muB sie
(wenn den Beobachtungen iiber-
haupt eine reelle Bahn entsprechen
soll) auBer der trivialen Erdbahn-
o~ l6sung 4 = 1 mindestens eine weitere
). positive Wurzel besitzen. Die Funk-

© ﬂ ) 1) tion f(4) = o wird also etwa die in
-m Abb. 55 skizzierte Form haben: Fiir
groBe | 2| wird f(4) beliebig groB po-

sitiv. Da f(0) = —m?, muB es also

Abb. 55. eine negative Wurzel (D) geben, die
Waurzeln der Lagranceschen Gleichung.  praktisch ohne Bedeutung ist. Von
den drei positiven Wurzeln (4, B,

1) Die Massen von Mond und Erde verhalten sich wie 1 : 81; die mittlere Distanz
Erde-Mond ist rund 6o Erdhalbmesser. Nach (III; 6) betrigt also die mittlere
Distanz des Baryzentrums vom Erdmittelpunkt rund 60/82 = 0.73 Erdradien.
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C), von denen in Grenzfillen zwei benachbarte zusammenfallen konnen, ist eine
die triviale Losung 4 = 1, und wir haben also drei Fille zu unterscheiden, je
nachdem die Erdbahnlésung auf die kleinste, mittlere oder gréBte Nullstelle
fallt.

Entspricht die Erdbahnlésung 4 = 1 der mittleren Nullstelle (B), so gilt fiir
die beiden anderen positiven Wurzeln » < R und # > R. In diesem Falle kann
eine Entscheidung dariiber, welche von beiden die richtige ist, sofort getroffen

werden. Ist || > %, d.h., steht der Himmelskérper zur Zeit £, zwischen

Quadratur und Opposition in bezug auf die Sonne (wie stets bei Erstbeobach-
tungen von Planetoiden, die meist in der Nihe der Opposition entdeckt wer-

den), so ist ja sicher » > R. Ist dagegen |y| < %, wie das bei Kometen hiufig

der Fall ist, so kann man zur Entscheidung, ob7 = R,d.h. 1 = 1, die GréBe m
heranziehen, da ja nach (VIII; 25) m das Vorzeichen von 4 — 1 hat, also 1 =1,
wenn m = o. Dieses Kriterium ist, wie spiter (Abschn. 70) gezeigt werden soll,
identisch mit dem von J.H.LaMBERT gefundenen Satz: -

»Die scheinbare Bahn eines Himmelskirpers ist konvex gegen den sphirischen
Ort der Sonne gekriimmt, wenn v > R, konkav, wenn r < R.“

Anders ist es, wenn die nicht trivialen Losungen beide > 1 oder beide < 1
sind. Wenn nur drei Beobachtungen zur Bahnbestimmung verfiigbar sind,
fiihrt jede dieser beiden Losungen auf eine Bahn, die mit den sechs beobachte-
ten sphirischen Koordinaten vertraglich ist, und es handelt sich daher um eine
echte Doppellésung. Die wahre Losung wird erst ermittelt werden kénnen,
wenn mindestens eine weitere Beobachtung vorliegt, die dann durch die aus
der Pseudolésung ermittelten Bahnelemente nicht dargestellt wird. Ahnlich
liegen die Dinge, wenn man die Grundlagen der Bahnrechnung von vornherein
aus mehr als drei Beobachtungen abgeleitet hat. In der Methode von LAPLACE-
HaRrzer 1aBt sich z.B. aus #» Beobachtungen mittels der nach dem Gliede

(» — 1)ter Ordnung abgebrochenen TavLorschen Entwicklung
2 n-1

(VIIL; 26)  a, = o+ dy7, + & ,+ B e

durch Eliminierung von &, und den hoheren Ableitungen ein lineares Glei-
chungssystem zur Bestimmung von «,, &,, &, herstellen. Diese GroBen und die
entsprechend abgeleiteten GroBen y,, 7,, 7, liefern ein genahertes System von
Bahnelementen. Hat nun die Schliisselgleichung eine Doppellésung, so werden
die mit den falschen Elementen berechneten Widerspriiche (VIII; 16) durch
groBe Betrige und starken systematischen Gang im allgemeinen so sehr auf-
fallen, daB die Wahl der richtigen Losung nicht schwer fillt.

Eindeutigkeit der Losung besteht also nur, wenn die Erdbahnlésung auf die
mittlere der drei positiven Nullstellen fillt. An dieser Stelle ist aber, wie Abb. 55
zeigt, die Ableitung von /(1) negativ. Differenziert man (VIII; 24)

af

d—1=817—6(1-2mcos1p+m2) B+ 6m (m — cos p) 12,
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und setzt man 4 = 1, so erhilt man als Kriterium fiir die Eindeutigkeit

2+ 6bmcosy <o, dh mcoszp<—§.

Driickt man m nach (VIII; 25) und cos g nach (VIII; 23) durch { = o/R und
A = 7/R aus, so 1iBt sich diese Ungleichung auch

Iy .1+C2—-12_l1+¢2—12< I

1— A8 2 2 1—13% 3
oder
. 2 5  fn
(VIII; 27) =14 W _3 fir 1=1

schreiben. Mit Hilfe dieser Beziehung kann man nach C.V.L.CHARLIER den
Raum in Gebiete einteilen, in denen die Ungleichung gilt, also Eindeutigkeit
der Bahnbestimmung gewihrleistet ist, und in solche, in denen sie nicht gilt
und daher Doppellosungen zu erwarten sind. Die Trennungsfliche zwischen
diesen Gebieten ist eine um die Verbindungsgerade Erde-Sonne symmetrische
Rotationsfliche mit der Gleichung

VIII; 28 o2y 2 5|
( 28) =1 3E T3

wo 4 und { bipolare Koordinaten in bezug auf zwei feste Punkte [Sonne (4 = o)
und Erde (¢ = o)] bedeuten, deren Abstand gleich der Einheit ist.

Die Form der Trennungsfliche ist durch ihren Schnitt mit einer beliebigen,
durch diese festen Punkte gehenden Ebene bestimmt. In dieser Ebene stellt
(VIII; 28) die Grenzkurve der Eindeutigkeitsbereiche in ebenen Bipolarkoordi-
naten dar, die offenbar in bezug auf die Achse Erde-Sonne symmetrisch ver-
lauft. Fir 4 = 1 wird ¢ = o; die Erde (E in Abb. 56), die diese Koordinaten
hat, ist also ein Punkt der Grenzkurve. Setzt man anstatt £ und 4 rechtwink-
lige Koordinaten %, y mit dem Nullpunkt in E (positive x-Richtung nach S
zeigend), so ist

D=4 g2 2= (x— 124 92

Anstatt (VIII; 28) erhilt man dann
(VIII; 29)

x—}—i:

I I :
3 34

= 5= [1— (2% — 22 — y2)] %
3[(x — 12 +73°

Firx = — —3— wird y = 4 oo, d.h., die Kurve ndhert sich der Geraden x = —%

asymptotisch. Fiir ¥ < —% ist sie nicht mehr definiert, da ja der Ausdruck auf
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der rechten Seite von (VIII; 29) seiner geometrischen Bedeutung nach wesent-
lich positiv ist. Andererseits kann x auch nicht beliebig groBe positive Werte
annehmen, da sonst die rechte Seite gegen null, die linke gegen oo streben
wiirde. Der Maximalwert, den x annehmen kann, wird aus Symmetriegriinden

————— (Grenzkurve
———= Singuldre Kurve
e« Einheitskreis um die Sonne

Abb. 56. Die Crartierschen Bereiche.

Grenzkurve

— — — — singuldre Kurve
————— Einheitskreis um die Sonne

erreicht, wenn y = o ist. Setzt man also y = o und # = x — 1, so folgt aus
(VIII; 29)

1
3u+4=m

mit der positiven Wurzel # = 0.56042566.., x = 1 + #.

In der Umgebung der Erde, wo x und y klein sind, kann man (VIII; 29) in
eine Potenzreihe entwickeln und erhilt, wenn man Glieder héherer als 2.0rd-
nung vernachlissigt,

42 — y2 =o.
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Die Tangenten an die Grenzkurve im Nullpunkt (E) haben demnach die Rich-
tungen

tgy = % =42 bzw. = 463°261.

Die Grenzkurve (VIII; 29) besitzt demnach die in Abb. 56 gezeichnete Ge-
stalt. Fiir 4 > 1, also auBerhalb des um die Sonne gezogenen Einheitskreises,
wird die Grenzkurve aus den beiden vom Erdort aus ins Unendliche gehenden
Asten gebildet. Sie teilt das Gebiet 4 > 1 in zwei Bereiche (4) und (B), von
denen der von der Sonne abgewandte Bereich (4) die eindeutigen, der den Ein-
heitskreis umschlieBende Bereich (B) die Doppellésungen enthélt. Man erkennt
das sofort, wenn man die Punkte der ganz im Gebiet (B) liegenden y-Achse
betrachtet. Fiir sie ist (wenn wir den Nullpunkt E selbst ausschlieBen) 4 > 1
und

Y M S T PO _i>
=1 I>Z-l—3'13 3—1 I 3(1 7)
So daB also auf ihr und damit im ganzen Bereich (B) die Ungleichung (VIII; 27)
nicht erfiillt ist. Fiir 4 < 1, also innerhalb des Einheitskreises, herrscht Ein-
deutigkeit in dem auBerhalb der Kurvenschleife liegenden Gebiet (C), wihrend
Doppellésungen innerhalb der Schleife selbst, in (D), zu erwarten sind, denn

fiir hinreichend kleine 4 (in unmittelbarer Umgebung von S) ist ja

2~ e 2 35
i< Y 3 .'

Liegt der Punkt (£, 4) auf der Kurve (VIII; 28) oder auf dem Einheitskreis
um S, also irgendwo auf der Grenze zwischen den vier Bereichen, so tritt der
schon oben erwidhnte Fall ein, daB zwei Wurzeln der Schliisselgleichung zu-
sammenfallen. Liegt der Punkt auf der Grenze zwischen (4) und (B), so ist die
richtige Losung 4 die groBte unter den drei positiven Wurzeln; die Pseudo-
I6sung fillt also mit der trivialen zusammen. Liegt aber der Punkt ({, 1) auf
der Kurvenschleife innerhalb des Einheitskreises, also auf der Grenze zwischen
(C) und (D), so ist 4 < 1 und die kleinste der drei Wurzeln; die Pseudolésung
fallt wiederum mit der Erdbahn zusammen. Liegt schlieBlich (£, 4) auf dem
Einheitskreis, so ist 4 = 1, d.h., die richtige Lésung und die triviale fallen zu-
sammen. Es ist dann 4 = 1 eine Doppelwurzel; zu der einen gehort { = o, zu
der anderen { = 2 cos p.

SchlieBlich besteht noch die Moglichkeit, daB die beiden Wurzeln 4 # 1 zu-
sammenfallen, daB also die Kurve (VIII; 24) an der Stelle 1 die Abszissenachse
beriihrt. Die Punkte (£, ), fiir die das zutrifft, liegen natiirlich innerhalb der
(schraffierten) Gebiete (B) und (D). Die Bedingung fiir das Eintreten dieses
Sonderfalls 148t sich aus der Forderung herleiten, daB fiir die nichttriviale
Waurzel 2 die Gleichungen

fA=8—alf4+b0B—c=o,
(VIII; 30) af

Ll 81 _ a5 2
7 84 6ad®+ 3b642=o0
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erfiillt sein miissen, wo zur Abkiirzung
(VIII; 31) a=1—2mcosy + m? b =2m(m —cosy), ¢=m?

gesetzt worden ist. Aus (VIII; 30) berechnet man  und b als Funktionen voiﬁ c:

_f 5 op_,C 25
a_le+3l,b 213—}—31.

Da aber auBerdem aus (VIII; 31) ¢ — b + ¢ = 1 folgt, gilt

AT D I S T
0(1 13—1-26)—{-.32. 31—1.
Andererseits ist aber nach (VIII;25) ¢ = m? = (1 — A73)72 so daB als
Gleichung des geometrischen Orts aller Punkte, fiir die die richtige Losung 4
mit der Pseudolésung zusammenfillt,

(VIII; 32) =1— %12 + _;_15
erhalten wird.

Diese Gleichung ist sowohl fiir { = 1, 4 = o (Sonne) als auch fiir { = o,
A = 1 (Erde) erfiillt. Die ihr entsprechende ,singulire Kurve“ geht demnach
durch diese beiden Orter hindurch. Sie besteht aus zwei Schleifen, die sich
(siehe die gestrichelte Kurve in Abb. 56) im Erdort E kreuzen und von denen
eine ganz im Gebiet (B), die andere ganz im Gebiet (D) verlduft.

Wihrend Losungen der Schliisselgleichung, die auf der Kurve (VIII; 28)
bzw. auf der durch sie definierten Rotationsfliche liegen, der Bahnbestimmung
keine wesentlichen Schwierigkeiten bereiten, da ja die richtige Lésung 4 iso-
liert und scharf definiert ist, ergeben sich Komplikationen, wenn die Lésung
auf der singuliren Kurve (VIII; 32) oder auf dem (in Abb. 56 strichpunktiert
gezelchneten) Einheitskreis 4 = 1 liegt. In diesen Fillen beriihrt die Kurve
f(4) = oin 1 die Abszissenachse. Die echte Losung fallt also im ersten Fall mit
der Pseudolésung, im zweiten mit der trivialen Lésung zusammen. Hier han-
delt es sich um Ausnahmefille, in denen das hier eingeschlagene Verfahren zur
Bahnbestimmung versagt, sei es, daB die Determinante des Gleichungssystems
(VIII; g) verschwindet, sei es, daB das Iterationsverfahren nicht konvergiert.

69. Die Gausssche Gleichung

C.F.Gauss hat die LacranGesche Schliisselgleichung auf eine andere Form
gebracht, die unter dem Namen , Gausssche Gleichung” bekannt ist und be-
sonders bei Bahnbestimmungen von Planetoiden Vorteile bietet.

Die Schliisselgleichung (VIII; 24) war ja durch Elimination von { aus den
beiden Beziehungen (VIII; 23, 25)

B=1—2fcosyp+ (% C=m(— 19
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hervorgegangen, wobei 4 = 7/R, { = g/R war, y den Winkel an der Erde im
Dreieck Sonne-Erde-Planet (Abb. 54) und m eine aus den Beobachtungen her-
geleitete GroBe bedeutete. Gauss fithrt statt y den Winkel z am Planeten ein.
Dieser Winkel ist bei kleinen Planeten, die meist in der Nihe der Opposition
beobachtet werden, gewohnlich klein; sein Betrag ist in praktischen Fillen
selten groBer als 8°.

Zwischen z und ¥ bestehen (Abb. 54) nach dem Sinussatz die-beiden Be-
ziehungen

(VIII; 33) rsinz= Rsiny; psinz = Rsin (p + 2)
oder
(VIII; 34) Asinz =siny; {sinz=sin (p + 2).
Setzt man nun
@
(VIIL; 35) siny =y sing| — c?s z
M — COS Y = W COS ¢ sin z,

so erhilt man durch Multiplizieren mit den Faktoren (I) und Addieren
msinz —sin (z+ y) = (m — {)sinz = psin (z — ¢q),
wenn man noch sin (y + z) durch (VIII; 34) eliminiert. Nach (VIII; 25, 34)
ist aber
m—C=m1‘3=m(ﬂ),
A \sin y
so daB man schlieBlich

intz = P cindwsin (z —
sin z = —sin® y sin (z—14q)
erhilt oder, mit M = .ma ,
g sty
(VILL; 36) “sin (z — ¢) = M sin*z

Das ist die GAUSSsche Gleichung, aus der man 2z bestimmen kann, nachdem man
u und ¢ aus (VIII; 35) berechnet hat. Ist dies geschehen, so ergeben die Glei-
chungen (VIII; 33, 34) 7 und p bzw. 4 und ¢.

Ahnlich wie fiir die Lésung der KepLErschen Gleichung (siehe Abschn. 35)
sind auch fiir die Losung der Gaussschen Gleichung zahlreiche Verfahren er-
sonnen worden, von denen hier die wichtigsten wiedergegeben werden mégen.

Wenn bereits — etwa aus einer Tafel mit den Eingdngen M und g - ein guter
Néherungswert fiir z vorliegt, 14Bt sich die exakte Losung bequem durch das
folgende Approximationsverfahren gewinnen. Sei die vorhandene Néherung zl,
so kann man aus

(VIII; 37) sin (zz — ¢) = M sin® z,
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sogleich eine bessere Naherung z, herleiten. Logarithmiert man (VIII; 36, 37),
so erhilt man

(VIII; 38) log M + 4logsinz —logsin(z —gq) = o,
(VIIL; 39) log M 4+ 4logsin z — logsin (z, — ¢) = o.

Andererseits ist die Gausssche Gleichung durch 2z, noch nicht exakt erfiillt, es
ist also

(VIII; 40) log M + 4log sin z, — log sin (z, — ¢) = f,,

wo f, ein kleiner Fehlbetrag ist. Subtrahiert man (VIII; 40) von (VIII; 38) und
(VIII; 39), so ergeben sich fiir f, zwei Ausdriicke, die man einander gleichsetzen
kann; es ist also

4 (log sin z — log sin z,) — [log sin (z — ¢) — log sin (z, — ¢)] =
= 4 (log sin 2z, — log sin z,).

Nun seien d und D die fiir 1"’ giiltigen Tafeldifferenzen von log sin  an den
Stellen ¥ = z und ¥ = z — ¢. Dann ist, wenn man die Differenz der Winkel in
Bogensekunden ausdriickt,

4d (z —2) — D (z — 2) = 44 (5 — 2).

Man hat also, wenn man die Tafeldifferenzen 4 und D an den Stellen z, bzw.
2z, — ¢ abliest, in
44

ARt g

(22— 2)
einen weiteren Niherungswert, der in den meisten Fillen die Gleichung
(VIII; 36) schon befriedigen wird. Ist das nicht der Fall, so ist wegen (VIII; 40)
und (VIII; 38)

log M + 4log sin z; — log sin (2 — ¢) = f,

log M + 4logsinz —logsin(z —g) =o,
und es folgt aus der Differenz dieser Gleichungen

_ h
1=+ 5 ad”
Im Falle der Bahnbestimmung eines Planetoiden ist z klein, und obwohl M
unter Umstédnden recht groBe Werte annehmen kann, wird die rechte Seite der
Gleichung (VIII; 36) durch den Faktor sin? z so stark herabgedriickt, da man
die Iteration meist schon mit der rohen Ausgangsniherung z = ¢ erfolgreich
beginnen kann. TIETJEN gibt folgenden Weg an, um auf Anhieb zu einer weit
besseren Niherung zu gelangen. Setzt man '

z2=q+4dz
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in (VIII; 36) ein, so erhilt man
(VIIL; 41) sindz = M sin® (g + dz) = M [sin g cos dz + cos g sin dz]*

und hieraus, wenn man cos dz = 1, sin dz = dz setzt und héhere Potenzen von
dz vernachlissigt,

dz = M [sinq + dz cos ¢g]* = M [sin® ¢ + 4dz sind q cos q]
oder

ind
(VIII; 42) dz = Msin® g

I—4Msintgctgqg’

Varianten dieses Verfahrens sind u.a. von G.WitT!), spiter von F.KAISER?)
und F.ANGELITTI?) angegeben worden; sie beruhen sinngemiB auf den folgen-
den Uberlegungen:

Schreibt man (VIII; 41) in der Form

sin 6z = M sin® g cos? 6z (1 + ctg g tg 62)%,
und setzt man
ctgqtgdz=1x; Msin®gctggcos®dz =1y,

so gilt die Beziehung
(VIIL; 43) x=y(1+4 %)%,

in der x und y klein sind und y bis auf den Faktor cos® §z (der in erster Nihe-
rung und meist auch ein fiir alle Mal gleich eins gesetzt werden darf) bekannt
ist. Lost man diese Gleichung mit

y =19 =Msin*qctgg
auf, so ist
tgdz==xtgyq,

und man kann, wenn nétig, die Rechnung mit y = y, cos® 4z wiederholen.
Die Auflésung von (VIII; 43) geschieht etwa durch die Reihe

%=y + 4y* + 229° + 1409 + -,

die man aus (VIII; 43) mit Hilfe der Methode der unbestimmten Koeffizienten
leicht ableitet, oder, falls diese Reihe zu langsam abklingt, durch das Nihe-
rungsverfahren '

f

%=y + 94 0%y = I—4y(1+ x%)3’

f=y@+ %) — %, %=1+ 0%,

1) Astron. Nachr. 172, 129 (1906).
%) Astron. Nachr. 228, 121 (1926); 277, 255 (1949).
3) Astron. Nachr. 229, 93 (1926).
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Eine noch andere Form kann man der Gaussschen Gleichung geben, wenn
man (nach Karser und ANGELITTI)

sin z cos ¢ = cos zsing + M sin? z
schreibt und beide Seiten dieser Gleichung durch sin z cos ¢ dividiert:

I =ctgztgqg+ Msin®zsecq.
Man darf dann setzen

(VIII; 44) ctgztgg = cos®w; M sin®zsecq = sin? @
und erhdlt daraus

sin?wcos® w =Y = M tgd ¢ sec g cos® 6z
oder

sin? 20 (1 4 cos 2w)2 = 16Y bzw. sinz2w(1 4 coszw) = 417,

eine Gleichung, deren Auflésung man, da o klein ist, mit der Niherung

sin 2w = 21Y beginnen kann.

Es darf noch bemerkt werden, daB bei der Bestimmung von ¢ und p aus
(VIII; 35) durch geeignete Wahl des Quadranten von ¢ immer erreicht werden
kann, daB p das gleiche Vorzeichen wie 7 erhilt. Denn es ist, wie auf S. 360
bewiesen worden ist,

m—cosyp>o0 fir m>o0 (r>R),
m—cosy<<o fir m<o (r<R).

Hieraus folgt, daB man zu dem genannten Zweck
T ..
0ol g< Py fir m>o
T .
Y <g<o fir m<o

setzen muB, da ja sin p > o ist.
Wenn nun s und p stets das gleiche Vorzeichen haben, ist M immer positiv
und daher auch sin (z — ¢) > o. Fiir Planetoiden oder andere Himmelskérper

auBerhalb der Erdbahn ist aber immer ¢ > o und z < — . Es ist daher auch
o< g<z < —,d.h., z und ¢ liegen im ersten Quadranten Damit ist gezeigt,

daB die hnken Seiten der Gleichungen (VIII; 44) beide positiv sind und daB
ctg z tg ¢ < 1 ist, so daB w als ein reeller Winkel angesehen werden darf.

24 Stumpff, Himmelsmechanik
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70. Der LaMBERTsche Satz von der Kriimmung der scheinbaren Bahn

Im Abschn. 68 wurde dieser Satz bereits formuliert: Die scheinbare Bahn eines
sich nach den KE PLERschen Gesetzen um die Sonne bewegenden Himmelskorpers
ist gegen den jeweiligen sphirischen Ort dev Somne konvex oder konkav gekriimmd,
fe nachdem sein Abstand von dev Somne grofer oder kleiner ist als der der Evde.

LamBeRT hat diesen Satz auf geometrischem Wege bewiesen. Hier soll der
zuerst von H.BRuns!) erbrachte analytische Beweis dieses merkwiirdigen
Satzes Platz finden.

Esseien X, Y, Z die drei Hauptkoordinatenrichtungen eines rechtsdrehenden
Koordinatensystems an der Sphire, also etwa (im System des Aquators) X die
Richtung nach dem Frithlingspunkt, Y die nach dem Punkt des Himmels-

dquators mit der Rektaszension a = % und Z die nach dem Nordpol des Him-
mels. Sei nun zu irgendeiner Zeit ¢ der scheinbare Ort des Planeten P und
/V, a=cos (PX), b=cos(PY), c=cos(P2)

die Richtungscosinus, die gleichzeitig als Koor-
dinaten eines den Ort P an der Sphire (der Ein-
heitskugel um den Ort des Beobachters) im
XYZ-System definierenden Einheitsvektors p
aufzufassen sind. Ferner sei T der von P um go°
\ entfernte Punkt (der instantane Apex), auf den
_*; die instantane scheinbare Bewegung von P hin-
‘ s zielt, so daB also der groBte Kreis P T die sphi-
) rische Tangente an die scheinbare Bahnkurve im
Abb. 57. Kriimmung Punkte P darstellt. Der Einheitsvektor, der T
der scheinbaren Bahn. definiert, heiBe t, und es ist dann (pt) = o.
SchlieBlich sei N der zu dem gré8ten Kreis PT
gehorige Pol, n der ihn definierende Einheitsvektor, und zwar sollen die
Vektoren p, 1, n ein Rechtssystem bilden, wie dies auch fiir das gewihlte Koor-
dinatensystem der Fall war. Es ist dann

(VIII; 45) J n=[pt]; (n[pt]) = (ptn) =1.
Nun sei V = d—; die instantane Geschwindigkeit der scheinbaren Bewegung

in P, d.h. ds der in der kleinen Zeit d¢ beschriebene Bogen. Es ist dann offenbar
(VIIL; 46) p=Vi P=Vt+ Vi,

da ja die Richtung der Bewegung von P durch den Einheitsvektor t gegeben ist.
Nun wird die ,, Kriimmung® der Bahnkurve in P durch den Winkel d¢ ge-
geben sein, um den sich die Tangente dreht, wihrend P den Bogen d's beschreibt.

1) Astron. Nachr. 118, 241 (1888).
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Dieser Winkel ist aber gleich dem Bogen, den in der Zeit d¢ der Pol N zuriick-
legt. Sind nun P,, Ty, N, die neuen Orter der drei Punkte zur Zeit ¢ + d¢,
so ist (Abb. 57)

(VIIL; 47) dp=NN,~Z — (T,N),

und man hat
dp ~sindp = cos (T)N) = (t + dt, n) = (dtn),

da ja (tn) = o ist.
Wenn man nun (VIII; 45, 46) verwendet, so folgt

? = (im) = (1p1) = = 6P — o (Ep1).

Das letzte Glied rechts ist aber null, da t auf [p{] senkrecht steht. Man erhilt
demnach, wenn man noch t durch p ausdriickt,

. I ... I
¢ =z BIP¥) = 37 (PP

und fiir die Kriimmung aer scheinbaren Bahn den Ausdruck

i ) a & a
_%9 _ 9 _ T ey =21 7 s
c ¢ ¢
oder, da ja ) ]
I
a=—, a=—, G=—
e 4 e

(denn bei der Differenzierung der RichtungsgréBen a, b, ¢ bleibt ja der Abstand
konstant), o

£ ¢ ¢

V3K =|n 5 #|=|§&, &, &|,

t¢e
wenn wir fiir die Determinante kiirzehalber ihre erste Zeile setzen. Da ¥ und ¢
wesentlich positiv sind, ist K > o, wenn die Vektoren p, §, b, in dieser Reihen-
folge geschrieben, durch Rechtsdrehung ineinander iibergehen, d.h., wenn
auf der N zugewandten Seite der Bahnkurve liegt. Dann ist nidmlich nach
(VIII; 47) dp > o, da sich T dem Pol N nihert, also T, N < go°ist. K == o

bedeutet also: N liegt auf der konkaven oder konvexen Seite der Bahnkurve.
Nun ist im Fall der KEpPLERschen Bewegung nach (VIII; 7)

E=——+ X(yi3 - %’) usw.,

24*
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demnach

(VIIL; 48) VK = ]e, -S4 X(i - )|~z

=(F-%)l£.£,Xl-

Andererseits ist, wenn 3 den nach dem Sonnenort an der Sphire gerichteten
Einheitsvektor bezeichnet und wenn F den Winkelabstand des Sonnenorts von

78 R3

der instantanen sphirischen Bahntangente, ® _F also den Abstand des
Sonnenorts vom Pol N bedeutet, 2

sinF = (8n) = (8[pt]) = %(p[bél)

oder
. I .
(VIII; 49) smF=—IT02|E,§,X|.
Somit ergibt sich, wenn man aus (VIII; 48, 49) die Determinante eliminiert,
. 2@ g (X _ X
(VIII; 50) 14 R K (ra R"’) sin F,

Aus dieser Gleichung folgt aber der LaAMBERTsche Satz unmittelbar. Denn
haben sin F und K dasselbe Vorzeichen, liegt also der Sonnenort auf der kon-

kaven Seite der Bahn, so muB » < R sein, da ja VZ% positiv ist. Haben da-

gegen sin F und K verschiedene Vorzeichen, liegt also die Sonne auf der kon-
vexen Bahnseite, so folgt » > R.

Gleichung (VIII; 50) ist iibrigens, wenn man wie frither ¢ = % und 1 = %
setzt, von der Form (VIII; 25)
C=m(1— 13
und offensichtlich mit dieser Beziehung identisch. Wegen (VIII; 21) ist dann
__RcosdsinF
- Ky

und vergleicht man diesen Wert mit (VIII; 11), so ergibt sich, daB die Deter-
minante

@y —dy+aj (y=tgd)

des linearen Gleichungssystems (VIII; g) gleichzeitig mit K verschwindet.
Hieraus folgt, daB die Bahnbestimmung auf dem vorgezeichneten Weg nicht
gelingt, wenn die Kriimmung der scheinbaren Bahn zur Zeit ¢ = #, null ist.
Dann ist aber nach dem LamBErTschen Theorem 7 = R. Durch diese Uber-
legung wird also die Singularitit dieses Ausnahmefalls erhirtet, die wir schon
am SchluB des Abschn. 69 festgestellt haben.
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71. Untersuchungen von POINCARE

Die sehr zahlreichen Varianten der LarLaceschen Methode, die im Laufe der
Zeit vorgeschlagen worden sind, nachdem die Untersuchungen von P. HARZER
und spidter von A.O.LEUSCHNER gezeigt hatten, daB die praktischen und
theoretischen Schwierigkeiten, die man in ihr gesehen hatte, leicht zu tiber-
winden sind, unterscheiden sich hauptsichlich durch das Verfahren, mit dem
erste Naherungen fiir die ,lokalen Elemente” z,, y,, 2,; Z,, %, %, gewonnen
werden, die als Grundlage fiir die Hypothesenrechnung dienen konnen, Sind
sie erst gefunden, so wird sich die Hypothesenrechnung zu ihrer schrittweisen-
Verbesserung der Elemente im Wesentlichen nach dem in Abschn. 67 beschrie-
benen Prinzip abspielen — einige der unterschiedlichen Wege, die dabei ein-
geschlagen worden sind, sollen in Abschn. 73 behandelt werden.

H.Poincarg?) hat in einer kritischen Studie iiber die LApLACEsche Methode
gerade auch die Moéglichkeiten zur Bestimmung erster Ndherungen eingehend
behandelt. Es wird fast immer darauf ankommen, fiir eine noch zu wihlende
Epoche ¢ = £, gewisse Funktionen f(¢), g (¢), ... — bei LAPLACE-HARZER z.B. «
und tg § — nebst ihren ersten und zweiten Ableitungen an der Stelle #, zu er-
mitteln, wenn mindestens drei (zu den Zeiten ?,, £,, ¢, geh6rende) Werte f,, f,, f5
jeder dieser Funktionen bekannt sind. Sind nur diese drei Werte gegeben, so
kann man die Unbekannten f,, f,, f, aus den TavLorschen Reihen

h=h+ho+ —hi+e,
VILsY)  f=fh+htt Shd+e [n=hG —4)]

1
ls=h+fors+ ;fotg + &
genihert bestimmen, indem man die Reste
1 1
f= g hit+ o

einstweilen vernachlissigt. Bessere Niherungen erhilt man natiirlich, wenn
mehr als drei Beobachtungen verfiigbar sind. Man wird dann die TAYLORschen
Reihen erst bei einem spiteren Glied abzubrechen brauchen und die GréBen
fo, 18V, ..., soweit sie noch mitgenommen werden kénnen, eliminieren. Anderer-
seits wird die Genauigkeit durch Beriicksichtigung von Gliedern beliebig hoher
Ordnung durchaus nicht beliebig gesteigert, da sich die unvermeidlichen zu-
filligen Beobachtungsfehler (von groben Fehlern ganz abgesehen) gerade in den

1) Bull. astron. 23, 161 (1906).
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Entwicklungsgliedern héherer Ordnung am stdrksten auswirken. HARZER hilt,
zweifellos mit Recht, fiinf (moglichst gleichmiBig iiber das Beobachtungsinter-
vall verteilte) Werte der beobachteten GréBe fiir das Optimum.

Fir die praktische Anwendung der Methode ist es aber notwendig, tiber die
Genauigkeit der nach (VIII; 51) berechneten GréBen gerade in dem Fall in-
formiert zu werden, daB die Mlndestzahl drei der Beobachtungen nicht iiber-

schritten wird. Seien nun fo' fo» fo die Losungen von (VIII; 51), wenn die ¢,
unterdriickt werden, so erfiillen die Verbesserungen df,, éf,, df,, die an diese.
genidherten Losungen angebracht werden miiten, wenn von den Resten ¢, die
Glieder 3.0rdnung beriicksichtigt wiirden, die Gleichungen

Sht Shu+ o+ chid=o.

Die Zwischenzeiten t,, 7,, 7, sind also die drei Wurzeln der kubischen Glei-
chung

o3y 66f°+66f° o,
fo fo

und es ist daher

I
0fy = _gfo T 7213,
1
(VIII; 52) of, = gfo (7179 + T2ty + T37y),
I 1
F0h=—ghmt+ntw).

Im allgemeinen ist also der von der Vernachlissigung der Entwicklungsglieder
3.Ordnung herrithrende Fehler in f, von der 3.Ordnung in den Zwischenzeiten,
der von f; von der 2. und der von f, von der 1.Ordnung.

In der Praxis wird meistens #, = 7, gesetzt, d.h. die Epoche auf den Zeit-
punkt der mittleren der drei Beobachtungen gelegt. Das hat verschiedene Vor-
teile, Zunichst wird der Funktionswert selbst streng dargestellt, da ja 7, = 0
und f, = f, ist. Das System (VIII; 51) reduziert sich also auf zwei Glelchungen
zur Bestimmung von £, und f,. Die Fehler (VIII; 52) nehmen dann die ein-
fachere Form

I I I
5f°=0, 6f0=‘gﬁ)flta; ;6f0= —E'fo (tl+13)

an. Sind iiberdies die Zwischenzeiten gleich, ist also 7; = — 1, so wird auch
7,4+ 73 =0, also §f, = o (d.h., der Fehler von f, hingt nicht mehr von den
vernachlissigten Gliedern 3.Ordnung, sondern nur noch von denen der 4. und
der héheren Ordnungen ab).

Die Gleichheit der Zwischenzeiten erweist sich also als eine besonders giin-
stige Vorbedingung fiir die Giite der ersten Niherung im IterationsprozeB.
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Leider hingt es im Fall der Bahnbestimmung eines eben entdeckten Planeten
oder Kometen sehr vom Zufall ab, ob die wenigen vorliegenden Beobachtungen
diese Bedingung wenigstens annihernd erfiillen. Wenn eine gréere Anzahl von
Beobachtungen zur Verfiigung steht, wird sich der Bahnrechner immer be-
miihen, unter ihnen fiir eine erste Bahnbestimmung drei Beobachtungen in
moglichst nicht sehr verschiedenen Zeitabstinden auszuwihlen. Sehr oft ist
das aber nicht méglich, und dann wiirde die Festsetzung der Epoche auf die
mittlere Beobachtung zur Folge haben, daB die zweiten Ableitungen der Funk-
tionen f, g, ... Fehler von der 1.0Ordnung aufweisen und daB daher die Ermitt-
lung geniherter Bahnelemente, die von der Giite dieser Ableitung wesentlich
beeinfluBt wird, unsicher wird. Man kann aber dann, wie die Formeln (VIII; 52)
erkennen lassen, die Festsetzung

L+ T+ 13=0
oder, was dasselbe ist,

to=§(t1+tz+ta)

treffen, d.h. die Epoche auf das arithmetische Mittel der Beobachtungszeiten
legen. Dann wird man zwar lineare Gleichungssysteme mit drez Unbekannten
aufzul6sen haben, und die f, werden nicht streng sein, sondern Fehler 3.0rd-
nung in den Zwischenzeiten aufweisen; die Fehler der zweiten Ableitungen
werden aber von f; unabhéngig. Um den FehlereinfluB des Terms mit /3" in den
vernachlissigten Restreihen ¢, abzuschitzen, bestimmen wir jetzt die Ver-
besserungen df,, 8f,, 8 f, so, daB sie auch die Glieder 4.Ordnung in den &, dar-
stellen. Es ist dann fiir die drei Zwischenzeiten

ofy+ 6fy1, + = 6f0t+ }:)t,, 4f},vt3=o.

Die drei GroBen 1, 7, 7, stellen also drei der vier Wurzeln der biquadratischen
Gleichung
fo Sty 8

4 4% 13+12,Ivt2+24f0‘[-|—24f
dar, und wenn wir die vierte Wurzel mit t, bezeichnen, so ist

5fo = 21—4%‘7 T1Ta737y,
éfo = —2_I4'ftl)v [(t1Ta + Tty + yT) T4+ 11757,
—0fy = VIt + ot 1) T+ (T4 1275 + 77)],

2 24

sh= g Mot ntat).



376  Bahnbestimmung der Himmelskdrper nach dem Lapraceschen Prinzip

Unter der speziellen Annahme 7, + 7, + 7, = o wird 1, = — 4%, und man
erhilt fo
I
8 = _Eﬁﬂlfzfs»
1 1
ofy = gfo (s — 1) — 2_4f(1)v 1727,
I I
;‘Wo = —Z 5" (17 — 13)

fiir den Fehler der Unbekannten in Abhingigkeit von den Entwicklungskoeffi-
zienten bis zur 4. Ordnung einschlieSlich. Sind auBerdem noch die Zwischen-
zeiten gleich, ist also 7; + 13 =0, 7, =0, so kann man 7, = — 3= —71
setzen und erhilt dann, bis auf Terme mit 77, ...,
I I I
0fy=0; ofy= —B‘fof2; ;‘Wo = '2—4‘ o %

Damit ist gezeigt worden, daB es immer moglich ist, die Fehler der Unbekann-
ten des Systems (VIII; 51) soweit herabzudriicken, daB sie bei kleinen Zwischen-
zeiten nicht iibermiBig ins Gewicht fallen.

Von den in den ersten drei Jahrzehnten dieses Jahrhunderts entwickelten
Arbeiten iiber Bahnbestimmung nach dem Laprackschen Prinzip, das nach
den Arbeiten von HArRzER und PoINCARE wieder an Bedeutung und Interesse
gewonnen hatte, zeichnet sich besonders die von A.O.LEuscHNER!) durch
Griindlichkeit und kritische Untersuchung aller mit der praktischen Durch-
fithrung verbundenen Fragen aus. Das Studium dieser Arbeit sei jedem emp-
fohlen, der sich mit Bahnbestimmungen praktisch befassen will. Hier geniigt
es, um den Grundgedanken dieser und dhnlicher Methoden klarzustellen, die
von POINCARE loc. cit. gegebene Analyse des Problems in Kiirze wieder-
zugeben.

Die verschiedenen Methoden der Bahnbestimmung nach dem LapLaCEschen
Prinzip unterscheiden sich in erster Linie durch die Wahl der Funktionen
1. g, ... LAPLACE selbst setzte f = «, g = 8, wihrend HaRZER g = tg § wihlte.
Andere Funktionen von «, § werden in den Methoden eingefiihrt werden, die
in den nichsten Abschnitten behandelt werden sollen. POINCARE benutzt in
seiner Analyse die Richtungskonstanten der drei sphirischen Orter

f=cosdcosa; g=cosdsina; h=sind

und deren Ableitungen (wobei strenggenommen noch zu beriicksichtigen wire,
daB die Bedingungen

Pre+m=1; ff+gi+hh=0; ff+gj+hh=—(+ ¢+ )"

1) Lick Obs. Public. VII (1913).
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auch fiir die interpolierten Funktionen verbindlich sind). Im tiibrigen gelangt
man rasch zu einer Naherung fiir die gesuchten Anfangswerte 2, y, z; £, 9, £ zur
Epoche,, wenn man folgenden Weg einschligt: Es sind, wenn g die unbekannte
Entfernung des Himmelskorpers zur Epoche bedeutet, fiir diesen Zeitpunkt die
geozentrischen (topozentrischen) Koordinaten

§=e¢f, n=1cg {=0h,

und der zweite Differentialquotient dieser Ausdriicke nach der Zeit ist nach
(VIII; 7)

of + 20f + of = =& 1+ (,% —%)X,
(VIIL; 53) 89+ 269+ ef = —,%g+ (% - %)Y»
6h+ 26k + oh = —,%h+ (713' - %)Z,

wenn X, Y, Z die nach (VIII; 5) verbesserten Sonnenkoordinaten darstellen.
Die Auflésung dieses Systems ergibt, wenn man

f' f' f
D =|g,¢g, §| oder, in abgekiirzter Schreibweise, D = |f, {, f|
h kK
und ebenso )
1)1= IX’f:.f,r D2= |f,X1fl: D3= }f;f:Xl
setzt,
b I
DQ=D3(1_3 - F):
b I I 1D,
De= zDZ(Ts—ﬁ)’ =20,
(VIIL; 54)

5o _ I\ (D _I),_ D
e=elp, ~#) " \p, ®° D,
Die Gleichung zwischen ¢ und »~3 gibt zusammen mit der geometrischen Be-

ziehung (VIII; 20)
7 =*—20(Xf+ Yg+ Zh) + R?

die LaGranGEsche Gleichung 8.Grades fiir # bzw. 7.Grades fiir o. Ist o be-
rechnet, so liefert die zweite Gleichung (VIII; 54) ¢, und man erhilt dann fiir
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die gesuchten Anfangswerte die Ndherungen
c=of —X; =¢0f+0of —X usw,

mit denen man ein Iterationsverfahren beginnen kann, iiber dessen zweck-
maBige Anlage in Abschn. 73 noch einiges gesagt werden muB.

72. Die Methode von STUMPFF- HERGET

Ein anderer Weg zur Bestimmung der gendherten Anfangswerte ist von
K.StumprF!) eingeschlagen und spiter von P.HERGET durch wertvolle Er-
gdnzungen verbessert worden. Seine Methode vermeidet, dhnlich wie die etwas
dltere von A.WILKENS (Abschn. 74)?), den Umweg iiber die geozentrische
Distanz. Diese wird vielmehr aus (VIII; 15) eliminiert, indem man #, und ¢,
durch &, dividiert. Man erhélt somit die nur von den beobachteten sphérischen
Koordinaten abhéingigen GréBen

U,=tge,; V,=tgd,seca, (v =1,2,3),
und es bestehen dann die Beziehungen

Uv(xv+ Xv) = yv+ Yw oder vav — Y= Pv = Yv - Uer

(VIII; 55)
V,(x,-I-X,,) = Z,+Z,, var—zv =Qv =Zv - Vva’

in denen die GréBen P,, Q, ebenso wie die U,, V, bekannt sind. Man kann nun
die vier Wertetripel U,, V,, P,, Q, (v = 1, 2, 3) nach dem in Abschn. 71 be-
schriebenen Verfahren interpolieren und dadurch fiir die Epoche £, = ¢, oder

auch fir f, = — (ty + 2, + 2,;) die Werte der Funktionen U (¢) ... Q (f) und ihrer
0= 3 3

ersten beiden Ableitungen genihert bestimmen. Seien U, = U, ..., Q, = Q die
Funktionswerte fiir £ = #), so gilt '

Ur—y=P, Uz+Ui—y=P,

VIII; 56
und )
(VIIL; 57) Uz+ 204+ Ut — j =P,

Ve +2Ve+ Vi—2=0.
Setzt man in den beiden Gleichungen (VIII; 57) noch
z y . 2

r = —— y=—ﬁ" z2 = 73

1) Astron. Nachr. 243, 317; 244, 433 (1931-1932).
%) Astron. Nachr. 210, 81, 127 (1919).
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und eliminiert y und z durch (VIII; 56), so erhilt man schlieBlich

Us +2Us = P+ =,
(VIII; 58) ' 0
Ve42Ve=0+ e

Die sechs linearen Gleichungen (VIII; 56, 58) liefern dann die Unbekannten
des Problems direkt als Funktionen des noch unbestimmten Parameters 1/,
und zwar ergeben sich zunidchst x und % aus (VIII; 58) in der Form

2(UV — UV) = (PV — QD) + —:.E(PV —QU),

—23(UV — UV) = (PV — QU) + — (PV — QU)
oder, wenn man entsprechende Abkiirzungen einfiihrt,
m . n
(VIII; 59) x=M+r—3; —2x=N+?

Die erste dieser Gleichungen ergibt in Verbindung mit der geometrischen Be-
ziehung
=924 24 2 =x24 (Ux — P)2+ (Vx — Q)2

oder
(VIII; 60) = 2214 U4 V3 —2x(UP+ VQ) + (P2 + Q¥

die Gleichung achten Grades fur 7, worauf dann « und & aus (VIII 59) und die
iibrigen Anfangswerte aus (VIII; 56) folgen.

Zu diesem duBerst einfachen und durchsichtigen Verfahren sind noch einige
fiir die praktische Ausfithrung wichtige Bemerkungen notwendig. Bei der An-
wendung der im vorigen Abschnitt beschriebenen Methode zur Interpolation
der Funktionen f, g, ..., hier also U, ... Q, hat man zu priifen, ob diese
auch so beschaffen sind, daB die interpolierten GréB8en U, U, U usw. moglichst
gute Anndherungen an die wahren Werte darstellen. Dazu ist offenbar nétig,
daB diese Funktionen im Bereich der Beobachtungszeiten stetig und moglichst
glatt und flach verlaufen. Das ist aber z.B. nicht mehr der Fall, wenn die
Rektaszensionen «, die Werte go° oder 270° iiberschreiten, bei denen tg « und
sec « unendlich werden. Da sich Planetoiden meist in kleinen Deklinationen
aufhalten, ist eine derartige Schwierigkeit fiir tg § im allgemeinen nicht zu be-
fiirchten; dagegen wird man hier vorsichtig sein miissen, wenn es sich um Ko-
meten handelt, die sich in der Nahe der Himmelspole bewegen.

Man kann diese Schwierigkeit aber umgehen. K. STumPFF schligt vor, das
Koordinatensystem vor Beginn der Rechnung um die z-Achse zu drehen, so
daB die Rektaszension des mittleren Planetenorts null wird. Dann sind also
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alle Rektaszensionen um a, zu vermindern, und die rechtwinkligen Koordi-
naten der Sonne, X,, Y,, Z,, sind durch die Transformation

X, =X, cosay+ Y,sinay,
Y,=Y, cosa, — X, sina,
zZ,=2,
in die des gedrehten Systems iiberzufithren. Darn bleiben die GroBen
U,=tg (e, —a); V,=1tgd,sec (e, —x)

klein, solange sich der Himmelskérper in méBigen Deklinationen bewegt. Har.-
delt es sich um einen Kometen in der Nihe eines der Himmelspole, so benutzt
man statt U und V die GroBen

(VIII; 61) C=-§ = ctg dcosa; S=%=ctgésina,

die sich dann (und zwar unabhingig von den a) regulir verhalten.

Wie P.HErRGET!) hierzu bemerkt hat, ist die Drehung des Systems, die nach
Beendigung der Bahnrechnung wieder riickgingig gemacht werden muB, in-
dem man die endgiiltigen ,lokalen Elemente“ x, ... Z der entgegengesetzten
Drehungstransformation unterwirft, fiir den Rechner sehr listig. Bequemer ist
es, je nach der Gegend der Sphire, in der die beobachteten Orter des Himmels-
kérpers liegen, verschiedene Varianten zur Definition der HilfsgréBen U, V;
P, Q zu verwenden. Man kann z.B. unter den drei Moglichkeiten

(@) =%=tga. =%=tg¢§seca;
P=Y-UX, Q=Z-VX,
(VIIL; 62) U=—%=tgécoseca, V==>=ctga;
; 62
() U=§=ctg6cosa, V=%=ctg65ina;

P=X-UZ, Q=Y -VZ

diejenige wihlen, bei der die U und V fiir das ganze Beobachtungsintervall end-
lich bleiben. Alle iibrigen Formeln gehen dann aus denen des Falls (), den wir
hier als gegeben angenommen haben, durch zyklische Vertauschung der Koordi-
naten hervor.

) P.HerGeT: The computation of orbits. Ann Arbor 1949, im Selbstverlag.
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Die Methode versagt, wenn die Determinante des Systems (VIII; 58) ver-
schwindet, d.h. ] .
A=UV —-UV=o0

ist. Setzt man hierin U = 5/§, V = (/£ oder, wenn man, wie in Abschn. 71,
& = of, =08, ¢ = ph schreibt, U = g/f, V = hff, so findet man leicht

. EEE . fif
A=§ n09 =7 9§4§|-
¢ hhh

Das Verschwinden von A ist also identisch mit der Bedingung dafiir, daB das
Gleichungssystem (VIII; 53) keine Losung hat oder dafiir, daB die beiden
Seiten von (VIII; 54) null werden. Es ist dann entweder » = R (d.h., es tritt
der am SchluB3 von Abschn. 68 erwahnte singulire Fall 1 = 1 ein), oder es ver-
schwindet auch die Determinante D3 auf derrechten Seite von (VIII; 54), was z. B.
dann geschieht, wenn der sphirische Ort (f, g, #) des Himmelskorpers mit dem
der Sonne (X/R, Y/R, Z|R) oder dem Gegenpunkt der Sonne zusammenfillt.
Eine Bahnbestimmung aus drei Beobachtungen ist also u.a. dann nicht mdog-
lich, wenn sich der Himmelskérper zur Zeit der Epoche genau in Opposition
zur Sonne befindet.

73. Das Verbesserungsverfahren

Das im Abschn. 67 skizzierte Verbesserungsverfahren, iiber dessen praktische
Durchfithrung man bei HARZER?) nachlesen moge, ist ziemlich kompliziert und
tir die Rechnung unbequem. Im AnschluB an die im vorigen Abschnitt be-
schriebene Methode nimmt es eine wesentlich einfachere Gestalt an.

Liegt ein gendhertes System der Anfangswerte

(VIII; 63) s Yor %05 For Yoo %

vor, so kann man die Koordinaten zx,, ,, z, fiir die Beobachtungszeiten ¢,
mittels der Entwicklungsformeln (VIII; 17) berechnen, indem man die Gré-
Ben F,, G, aus den Zwischenzeiten t, und den mit Hilfe von (VIII; 63) ge-
bildeten Invarianten y,, g,, &, berechnet. Die gendherten Anfangswerte lassen
sich dann folgendermaBen verbessern: '
Es seien x¥, y¥, z¥ die mit (VIII; 63) berechneten Koordinaten. Mit jhnen
bilde man
242,

Y+ Y,
4+ X,

i s SO

Der Vergleich dieser berechneten GréBen mit den beobachteten gibt die Ab-

weichungen
AU, =U,—-U¥, AV, =V,—V}.

1) Astron. Nachr. 141, 177 (1896).
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Es seien nun
Az, Ay, Az, Az, Ay, A%; AF,, AG,

die an x,, ¥, ... %, und an die mit ihnen provisorisch berechneten GroBenF,, G,
anzubringenden Korrektionen. Dann gelten streng die Beziehungen

7, = (@ + 42) (F, + AF) + (¢ + 42) G, + 4G,),

zf =ux,F, + %,G,,
also

(VIII; 64) Az, ==z, —2f = (F,+ AF,) dz + (G, + 4G,) 4% +
+ 2, AF, + #,4G,

und entsprechende Gleichungen fiir 4y, und A4z,. Andererseits erhilt man aus
(VIIL; 55)

v+ Ay, + Y, = (xf+ 4%,+ X,) (US + 4U,),
2+ Az, + Z, = (xF + Ax,+ X,) (VI + 4V)).
Subtrahiert man hiervon
W+ Y, =+ X) Uy,
o+ Z,=(+ X)),
so bleibt

A4y,=U, 4%, + (x,+ X,) 4U,,
(VIII; 65) > + )

4z, =V, 4%, + (x,+ X,) 4V,

oder, wenn man (VIII; 64) in (VIII; 65) einsetzt und umordnet,
G, 4y - UG 4%+ F, Ay — U, F, Az = (x,+ X,) AU, + R,,
G,4: —-V,G, A2+ F, 42 — V,F, Az = (x,+ X,) AV, + S,
mit R, = AF,[U, @+ 42) — (y,+ 49)] +
(VIII; 66) + 4G, [U, (%, + 42) — (4, + 49)],
S, =AF,[V,(x,+ dx) — (2 + 42)] +

+ 4GV, (%, + 4%) — (4, + 42)],
{ v=r1,2,3).

Diese Gleichungen, die streng gelten, kann man etwas einfacher schreiben,
wenn die Epoche auf den mittleren Beobachtungszeitpunkt gelegt wird. Dann
ist

(VIII; 67) dy=U,d%; Adz=7V,A4x,
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und man erhilt (nach der Formulierung von HERGET) in
G, A4y — U,G, A2 —F (U, — U,) 4z = (z,+ X,) AU, + R,,
(VIII; 68) G, 4: —V,G, A% — F,(V, - V,) dz = (z,+ X,) AV, + S,,
v=13)

ein System von vier Gleichungen mit den vier Unbekannten 4z, 4%, 43, 44,
nach dessen Auflésung 4y und 4z aus (VIII; 67) folgen und das man durch
Iteration zu befriedigen sucht, indem man zuerst die Reste R,, S, vernach-
lassigt, da ja F,, G, bei kleinen Zwischenzeiten nur schwach von den Fehlern
der Koordinaten (VIII; 63) beeinfluBt werden. Mit den so erhaltenen verbesser-
ten Koordinaten berechnet man die vernachlissigten Terme R,, S, und wieder-
holt das Verfahren, bis sich nichts mehr dndert. Bei dieser Iteration bleiben die
linken Seiten von (VIII; 68) stets unverdndert; auf den rechten Seiten dndern
sich #,, R,, S, von Schritt zu Schritt. Die letzte Iteration wird mit den um die
Lichtzeit verminderten Beobachtungszeiten durchgefiihrt; die zu ihrer Be-
rechnung nétigen geozentrischen Distanzen

o, = (%, + X,) sec §, seca,

-lassen sich mit den x, der vorhergehenden Hypothese genau genug ermitteln.
Nach HERGET kann man das Verbesserungsverfahren auch so durchfiihren,
daB man in den strengen Beziehungen

»=Ux—P,; 2,=V,% -0,
die x,, y,, 2, durch die Entwicklungsformeln ausdriickt. Es ist dann
%F, + 96, = U,@&F, + 2G) — P,
% F,+ 2,G, =V, (@, F,+ %,G,) —0Q,

oder, wenn man ¥, = ¥, %, = 2 durch :

(VIII; 69) Yo=Us% — Py; 2= Voxy— Qs
eliminiert,
%G, =2y (U, — U))F, + %,U,G, + F,P, — P,
(VII;70) | 4G, = %,(V, — Vo) F, + 4,V,G, + F,0, — 0,
(v=1,3).

Aus den vier Gleichungen (VIII; 70) erhilt man durch Elimination von g, und %,
2 [(Uy — Up) Fy Gy — (U — Up) FyGy] + %,G1 Gy (Uy — Us) =
= PGy — P3G, — P(F1Gy — F3Gy),
%[(Vl — Vo) FyGy — (V5 — Vy) Fs Gy + :i:oGlGa (Vi — Va) =
=01G3 — 03Gy — Qo (Fy Gy — F3Gy)

(VIII; 71)
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zur Bestimmung von , und %,. Diese Werte erlauben dann die Berechnung der
iibrigen Unbekannten aus (VIII; 69, 70).

Das Verbesserungsverfahren geht in diesem Fall so vor sich, daB man die
GroBen F,, G, mit den in erster Ndherung vorliegenden GréBen (VIII; 63) und
den Zwischenzeiten berechnet und dann aus (VIII; 71, 69, 70) ein verbessertes
System von Anfangswerten herleitet. Diese Rechnung wird so lange wiederholt,
bis sich die F,, G, nicht mehr dndern.

Eine andere Variante des Verbesserungsverfahrens besteht darin, daB man
(nach StumpFF) R,, S, in (VIII; 66 bzw. 68) ganz vernachlissigt und statt dessen
nach jeder Iteration die Abweichungen AU, , 4V, net berechnet, bis sie schlieBlich
verschwinden. Man braucht die F,, G, bei diesem Verfahren im Lauf der Hypo-
thesenrechnung normalerweise nicht mehr zu verbessern, ebensowenig wie die
GroBen x, auf der rechten Seite von (VIII; 66), da ja die Faktoren 4x, ... AV
nach jedem Schritt kleiner werden und das Gewicht fehlerhafter F,, G,, x,
herabdriicken. Das Verfahren ist beendet, wenn alle AU,, 4V, null sind, da
dann die Ubereinstimmung zwischen Beobachtung und Rechnung hergestellt
ist.

Die Konvergenz des Verbesserungsverfahrens wird schlecht, wenn die Deter-
minante von (VIII; 71) klein ist; die Methode versagt ganz, wenn diese Deter-
minante verschwindet., Thr Wert ist, wie eine einfache Rechnung zeigt,

1U, 7,
D =G,G; (F1G3 — G, F3)» |1 U, Vy|.
1U, V,

Nun ist, wenn p,, ps, p; die drei Ortsvektoren des Himmelskorpers zu den drei
Zeiten ¢, 4y, Ly sind,

(P19e] = [P Fy + $2Gy, o] = —[Po¥0] Gy,
(VIIT; 72) [Pehg] = [Pa, PoF3+ 9G] = [pe$,] Gy,

[Plps] = [PzFl + 15261» szs + f’eGa] = [Pzi’z] (F1Gs - FaGl)’

und es ist daher, wenn wir allgemein mit {a by die zu dem Vektorprodukt [a b]
gehorige PlangroBe bezeichnen, (p,p,) = 2, also

. 10U, 7,
(VIIL; 73) D= 7 P1p2) P2 PP (1 U, V, |-
4 1 U, V,

Da aber | {p;p) | gleich dem doppelten Flicheninhalt des von den Vektoren p,
und p, eingeschlossenen Drejecks ist, so sind die ersten Faktoren von (VIII; 73)
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simtlich von null verschieden, und D verschwindet nur, wenn

10V, I Eim &
10, V,| = 5152 E, Lmb| =0
11U Vy £33 Gy

ist, d.h. aber, wenn der Rauminhalt des von den drei topozentrischen Orts-
vektoren gebildeten Parallelepipeds verschwindet. Dann liegen die drei sphi-
rischen Orter des Planeten auf einem groBten Kreis. Insbesondere ist die Bahn-
bestlmmung unméglich, wenn die drei Orter auf der Ekliptik liegen oder wenn
zwei Orter zusammenfallen. Das letztere kann vorkommen, wenn die schein-
bare Bahn des Planeten eine Schleife bildet und zwei der beobachteten Orter
auf den Doppelpunkt dieser Schleife fallen. In allen diesen Fillen muBB man
mindestens noch eine weitere Beobachtung hmzuzxehen um das Problem zu
16sen.

74. Bahnbestimmung nach WILKENS und VAISALA

Von den zahlreichen Varianten, die auBer den bereits geschilderten die Bahn-
bestimmungsmethode nach dem Lapraceschen Prinzip gefunden hat, seit
Harzer, PoINCARE, LEUSCHNER und CHARLIER durch ihre Untersuchungen
gezeigt haben, daB diese Methode an Genauigkeit und praktischer Verwend-
barkeit der Gaussschen Methode keineswegs unterlegen ist, sollen hier nur
noch die Losungen von A.WILKENS und Y.VAIsALA gewiirdigt werden. Der
Leser, der tiefer in die Materie einzudringen wiinscht, als es hier im Rahmen
eines allgemeinen Lehrbuchs der Himmelsmechanik méglich ist, sei auf die
duBerst griindlichen Arbeiten von LEUSCHNER (die schon weiter oben erwihnt
wurde) und CHARLIER!) hingewiesen. In der Analyse des Problems, die wir
CHARLIER verdanken, und die von O.A.AKEsson?) erginzt worden ist, sind
auch die schénen Untersuchungen iiber die mehrfachen Lésungen und die singu-
liren Fille der Bahnbestimmung aus drei Beobachtungen enthalten, deren
Ergebnisse im Abschn. 68 dargestellt worden sind.

. A.WIiLkENS?) benutzt zur Bildung der Grundgleichungen die aus den Beob-
achtungen ableitbaren GréBen (VIII; 61)

%, + X,
Tz, 4+ Z,

»wt+Y,
2,4+ Z,

= ctgd,cosa,; S,=

=ctgd,sina,; (»=1,2,3),

die dem Fall (¢) der Zusammenstellung (VIII; 62) entsprechen. Die Entwick-
lungsformeln

z, = 2, I, + %G,,... (v=1,3)

1) Meddelande fran Lunds Observatorium Nr. 45-47 (191 I).
%) ibid. Nr. 48.
%) Astron. Nachr. 210, 81, 127 (1919).

25 Stumpff, Himmelsmechanik
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schreibt er in der Form

2
I . I
:vv.=x2(1-—?r—é—)+z2t,+€t3R,(x), ey

wo R,(x), R,(y), R,(z) Restglieder bedeuten, die vorldufig vernachlissigt wer-
den und erst zu beriicksichtigen sind, wenn im Laufe der Hypothesenrechnung
Niherungen der Unbekannten x,, ... 2, vorliegen. Man erhilt also, wenn zur
Abkiirzung

gesetzt wird, vier Gleichungen (» = 1, 3)

Taa, + ‘i’zT' - Cv(z2av + 2210) = _Xf + Cva - %Tg [R,(:t) - C,R,(Z)], ’
(VIII; 74)
Yoa, + g2tv - Sv(z2av + 22tv) = _Yv + Sva - %13 [Rv(y) - S‘,R,(Z)]

und zwei Gleichungen
% — Gz = — X, + CZ,,

(VIII; 75)
Yo — Sazy = — Y, + 5,2y,

insgesamt also sechs Gleichungen zur Bestimmung der sechs Unbekannten als

Funktionen der gegebenen GroBen und der noch unbestimmten GrﬁBe%so-
2
wie der in erster Niherung zu unterdriickenden Restglieder. Diese Formeln

werden noch etwas einfacher, wenn man im System der Ekliptik rechnet und
die Koordinaten der Sonne auf den locus fictus (siehe Abschn. 66) bezieht.
Dann wird streng Z, = o.

Durch Elimination der iibrigen Unbekannten 148t sich das System auf zwei
Gleichungen fiir 2, und #, reduzieren. Aus ihnen ergibt sich 2, als Funktion von

;:% , auBerdem besteht die geometrische Beziehung
2

n=xn+y+8=[Clt+Z) — X1+ [Si(e+Z) — Y+ 3'22’

Aus beiden Beziehungen erhdlt man durch Elimination von z, die Gleichung
achten Grades fiir #,. Der weitere Verlauf der Rechnung ist dann klar: Mit 7, er-
gebensichaus den Grundgleichungen (VIII; 74, 75) die ersten Niherungen fiir
alle sechs Koordinaten, und man wiederholt dann die ganze Rechnung, nach-
dem man die Restglieder mit diesen gendherten Daten berechnet und den
rechten Seiten von (VIII; 74) hinzugefiigt hat. Die Iteration ist beendet, wenn
sich die Restglieder nicht mehr dndern.
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Y. VArsALAl) vermeidet in seiner Methode die Gleichung achten Grades ganz
und beginnt statt dessen das Niherungsverfahren mit zwei verschiedenen
Hypothesen iiber g,. Es sei '

0y = @ COS 0y

die mit einem solchen willkiirlich angenommenen g, gerechnete ,kurtierte
Distanz”. Dann ist

Xy =0,C080 — Xy, Yy =0p8Ina, —Y,, z,=0,1tg80, —2Z,
und

o=V + i+ 4.
Ferner ist gendhert (fir v = 1, 3)
1 72 1 12
Bty G"’”(I"EE)'
Setzt man dann, wie in Abschn. 72, U, = tg a,, so ergeben sich aus
¥+ Y, =Ulx+X,),
T, = x2Fv + £2Gv; Y = y2Fv + gZGv
die beiden Gleichungen
G192 — UyGy %y = Uy (0 Fy + X)) — (9.F1 + YY),
Gsyy — UsGyy = U (2, F3 + Xy) — (42Fs + Y3)
zur Bestimmung von %, und g,. Aus

%, =0, cosa, — X,
folgt dann, firv =1, 3,

0, = (x,F, + #,G, + X,) seca,.
Andererseits ist aber

z2,= z2Fv + Z.ZGV =0, tg 61' - Zv’
d.h.

0,180, —2,F, — Z,
22 = .
G,
Diese GroBe erhilt man also zweifach, je nachdem man sie aus der Gleichung
fiir v = 1 oder » = 3 ableitet. Die Ubereinstimmung der beiden Resultate ist

das Kriterium fiir die Richtigkeit der Hypothese iiber g, bzw. o,. Ergeben sich
verschiedene 2,, so bildet die Differenz

D = (3)5 — (22)1
die Grundlage fiir die Verbesserung der Hypothese.

1) Ann. Acad. Scient. Fennicae, Ser. A, 52, Nr. 2, Helsinki 1939.
25%
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Geht man nun von zwei Annahmen o, und o3 aus, so erhilt man die beiden
Differenzen D und D’. Es ist dann zweckmiBig, als dritte Hypothese

oy 3D —o'D
2T D' —D

zu versuchen, die D" = o liefern wiirde, wenn die Funktion D (o,) linear ver-

liefe. Ist D" noch nicht geniigend klein, so wird man am besten so verfahren,

daB man die zu den drei Argumenten o,, 05, 0 gehérenden Ordinaten D, D', D"

durch eine Funktion zweiten Grades interpoliert und deren Nullstellen auf-

sucht.

Ist die Hypothesenrechnung so weit vorgeschritten, daB die Differenz D hin-
reichend klein geworden ist, so wird man die F,, G, mit den aus der letzten
Hypothese erlangten Werten 2, ys, 25; &5, ¥s, 2, genauer berechnen — an Stelle.
der beiden noch verschiedenen Werte 2, benutzt man dabei den interpolierten
Wert

. , GsD ., GD
2 = (%), + Eza——Gl = (f)s + wl_—c_l

Sind die U, = tg a, sehr groB (« = 9o° oder 270°), so wird man die Rollen von
x und y bzw. tg a und ctg x vertauschen. Man wird also nétigenfalls von der
Méoglichkeit Gebrauch machen, den Algorithmus den vorliegenden Verhilt-
nissen anzupassen, so wie dies in der Zusammenstellung (VIII; 62) gezeigt wor-
den ist.

Das insbesondere fiir die Bahnbestimmung von Planetoiden geeignete Ver-
fahren erfordert eine gewisse Erfahrung, ohne die es in vielen Fillen schwierig
sein wird, sofort die giinstigsten Ausgangshypothesen fiir die geozentrische
Distanz zu finden. Bei normalen Planetoiden (und meist auch bei Kometen)
wird man mit g, = 1 und o5 = 1.5 A. E. gewdhnlich Erfolg haben.

75. Bestimmung parabolischer Bahnen

Die bisher beschriebenen Methoden der Bahnbestimmung eines Himmelskor-
pers stimmen darin iiberein, daB3 genauso viele unabhingige Beobachtungs-
daten benutzt werden, wie es Bahnelemente zu berechnen gilt, also fiir eine
Bahnbestimmung ohne Voraussetzung iiber die Exzentrizitit sechs Daten (drei
vollstindige spharische Orter).

Wenn man zu der Annahme berechtigt ist, da8 die Bahn eine besondere Form
(Parabel oder Kreis) hat, kommt man sogar mit weniger Daten aus. So wird
man bei Kometen, die neu auftauchen und nicht zu den verhiltnismiBig we-
nigen Himmelskorpern dieser Art mit periodischen Bahnen gehdren, fast immer
iiberzeugt sein diirfen, daB die Bahn eine Parabel ist oder doch von einer Pa-
rabel nur sehr wenig abweicht. Bei Planetoiden kommt es zuweilen vor, da3
nach der Entdeckung nur noch eine weitere Beobachtung gelingt. Man wird
dann, um das Objekt nicht ganz aus den Augen zu verlieren, gezwungen sein,
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zunichst eine Kreisbahn zu berechnen, indem man von der Erfahrung aus-
geht, daB die Mehrzahl der Planetoidenbahnen schwach exzentrische Ellipsen
sind. Da Kreisbahnen schon durch vier Elemente bestimmt sind, braucht man zu
ihrer Berechnung nur zwei vollstandige Orter (o, d;; %y, d,).

Ist die Bahn eine Parabel, so geniigen fiinf unabhingige Daten zur Ablei-
tung ihrer Elemente. Es wird also von den sechs sphirischen Koordinaten, die
zu den drei Beobachtungszeiten ¢, ¢,, #, gemessen werden, eine iiberzihlig sein.
A.WILKENS, der das Problem der parabolischen Bahnbestimmung nach dem
Lapraceschen Prinzip im AnschluB an seine allgemeine Methode der Bahn-
bestimmung (Abschn. 74) sehr griindlich diskutiert hat!), schldgt vor, die
GroBen Cy, S;; Gy, S; und von der mittleren der drei Beobachtungen nur die
Rektaszension (bzw. die ekliptikale Linge), also etwa U, = tg a, (bzw. tg 4,)
heranzuziehen. Zur Bestimmung der sechs Grofen x,, ys, 25; %5, ¥s, 2, und von 7,
als siebenter Unbekannter sind dann fiinf Gleichungen gegeben, auBerdem aber
die Bedingungsgleichungen

=123+ y5+ 24
und (als Bedingung dafiir, daB die Bahn eine Parabel ist)
(VIIT; 76) Vi=ai+ i+ 4 =—.
2

Die fiinf Gleichungen

Cley+2)=%+X: S+2Z)=9+Y, 0=13
. Up(te+ Xo) = 9.+ Yo
liefern, wenn man

z, = 2, F, + 2,Gy; ¥y, = 1 F, + 9,G,; z,=2F, + %G,

setzt, die Unbekannten y,, 2,; &,, 95, £, als lineare Funktionen von z,, in denen
allerdings noch die Entwicklungsfaktoren F,,G, vorkommen. Es geniigt aber hier,
in erster Ndherung F, = 1, G, = t, zu setzen, im Gegensatz zur Bahnbestim-

2

. s . It .
mung fiir alle Exzentrizititen, in der WILKENS F = 1 — > —3',' setzte, um eine
72
gendherte dynamische Beziehung zwischen den Koordinaten und 7, zu erhalten.

Hier wird diese dynamische Beziehung durch die Parabelbedingung (VIII; 76)
eingefiihrt.

Man darf also schreiben
Yo = ay%+ by, Z = a,%+ b,;
&y = a7 + B Yo =ayZ+ By; 4=+ B,
wobei die Koeffizienten in erster Ndherung aus den Beobachtungen bekannt

sind und erst im Laufe der Hypothesenrechnung durch genauere Bestimmung

1) Sitz. Ber. Bayer. Akad. d. Wiss. (math.-natw. Abt.) 1928.
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der Faktoren F,, G, verbessert zu werden brauchen. Es ergeben sich dann fiir 7,
die beiden Gleichungen

75 =3+ (a,% + )2 + (@,%, + b,)? = ax§ + 2bx, + 2,
(VI 77) = = (@%+ B+ (%t B+ [+ B =
2

= a?xf + 2f%, + p?

und aus ihnen durch Elimination von %, eine Gleichung sechsten Grades fiir 7,,
die also im Falle der parabolischen Bahnbestimmung die Rolle der LAGRANGE-
schen Gleichung achten Grades iibernimmt.

Abb. 58. Mehrfache Losungen bei Parabelbahnen.

Die Diskussion dieser Gleichung, die WILKENS loc. cit. sehr griindlich durch-
gefiihrt hat, zeigt, daB im Normalfall zwei, in gewissen seltenen Sonderfillen
auch vier reelle Losungen existieren. Setzt man nimlich

73 = f(x) = a’x3 + 2bx, + 2,

2 _ _ 4

73 =g(x) = (@242 + 2B % + 22’

so stellt die erste dieser Funktionen eine Parabel dar, deren Achse parallel zur
Ordinatenachse verlduft und die ganz in der oberen Halbebene liegt. Die zweite
Funktion ist das Quadrat der Reziproken einer solchen Parabel - sie hat ein
Maximum und fillt zu dessen beiden Seiten asymptotisch zur Abszissenachse
ab. Abb. 58 148t erkennen, daB vier Schnittpunkte der beiden Kurven nur mog-
lich sind, wenn die Parabel mit dem Scheitel sehr nahe an den Nullpunkt her-
anreicht, so daB sie sowohl den sich der Abszissenachse nihernden Ast der
zweiten Kurve als auch die Flanke ihrer Erhebung zum Maximum je zweimal
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schneidet. In Abb. 58 ist die erste Kurve (Parabel) in zwei Lagen dargestellt:
1) Mit zwei Schnittpunkten (ausgezogene Kurve); 2) mit vier Schnittpunkten
(gestrichelte Kurve). Eine ins einzelne gehende Diskussion, die man in der
oben zitierten Abhandlung von A.WILKENS nachlesen mége, lehrt, daB im
Falle einer Doppellésung die Pseudolésung von der wahren auch unabhingig
vom LamBERTschen Kriterium trennbar ist — eine , Erdbahnlésung® wie im
allgemeinen Fall der Bahnbestimmung gibt es hier nicht, da ja die Erdbahn die
Parabelbedingung (VIII; 76) nicht erfiillt. Im Fall einer vierfachen Losung
sind entweder drei giiltige Bahnen oder nur eine vorhanden. Das 148t sich am
deutlichsten in dem speziellen Fall sichtbar machen, daB die rechte Seite der
ersten Gleichung (VIII; 77) sich auf das erste Glied reduziert. Dann wird
r = +ax, und die zweite Gleichung geht dann in eine kubische Gleichung fiir
x oder 7 iiber, besitzt also entweder eine oder drei reelle Losungen, so da auch
drei positive Losungen 7 méglich sind.

Man kann, nach Cauchy, die Schliisselgleichung der parabolischen Bahn-
bestimmung auch allgemein auf den dritten Grad reduzieren, wenn man g als
Unbekannte einfiihrt. Setzt man wie am SchluB von Abschn. 71

z=pof —X; &=0f+of — X usw.,

b,

Dy
t=(Kf+fHe—X, ... 2=(Kh+ho—12

und setzt man nach (VIII; 54) ¢ = % ¢ = K, so kann man auch

schreiben und erhilt also die Parabelbedingung (VIII; 76) in der Form
2
(a) ~ =L+ Me+N.

Andererseits folgt aus

I I D
'ﬁ—F-*- D_30’

=02 —200+ R, Q=Xf+Yg+2Zh)

durch Multiplikation eine Gleichung von der Form
I _ 4 2 I
(b) S =4¢+ B+ Ceo+ &

Vergleicht man (a) mit (b), so ergibt sich tatsichlich eine Gleichung dritten
Grades fiir p.

Ist die Bahn ein Krers, so tritt an Stelle der Parabelbedingung (a) die Kreis-
bedingung

) —:~=L92+M9+N,
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die aber, wenn man die Erdbahn ebenfalls als Kreis ansieht, fiir p = o erfiillt

sein muB. Es ist also N = -1% Setzt man (b) = (c), so ergibt sich daher

I

A4+ B-L)*+ (C-Me=N- 45

=O,

d.h., wenn man die triviale Losung ¢ = o ausscheidet, eine guadratische Glei-
chung fiir p.

Die Moglichkeit einer dreifachen Losung bei der Bestimmung parabolischer
Bahnen wurde zuerst von TH. v. OPPOLZER analytisch bewiesen und bei der
Bahnbestimmung des groBen Septemberkometen von 1882 auch evident ge-
macht. Trotzdem ist diese Moglichkeit von verschiedener Seite angezweifelt
worden, bis T.BaNacHIEWICZ!) ein fingiertes Beispiel veroffentlichte, in dem
die vorgegebenen Daten sich durch drei verschiedene Parabelbahnen darstellen
lieBen. Die Untersuchung von WILKENsS hat eine lange, mit groBem Eifer
gefiihrte Diskussion iiber diese interessante Frage auch von der Theorie her
beendet.

76. Bahnbestimmung aus vier Beobachtungen

Wir haben bemerkt, daB unter gewissen Umstinden eine Bahnbestimmung
aus drei vollstindigen sphirischen Ortern nicht méglich ist, nimlich dann,
wenn gewisse Determinanten verschwinden, so daB die Auflgsung der linearen
Grundgleichungen oder auch der Verbesserungsgleichungen unmoglich wird.
Insbesondere gehort hierher der Sonderfall, daB die drei Orter in der Ekliptik
(oder in der unmittelbaren Nihe der Ekliptik) liegen. In diesen Ausnahme-
fillen wird man eine vierte Beobachtung zur Bahnbestimmung heranziehen
miissen. Das gleiche ist der Fall, wenn die erste Bahnbestimmung auf mehr-
fache Losungen fithrt und es nicht méglich ist, die Pseudolosung von der rich-
tigen zu unterscheiden. Man wird dann allerdings die vierte Beobachtung nur
als Kriterium fiir die Giiltigkeit der einen oder der anderen Losung, nicht aber
zur Bahnbestimmung selbst benétigen. )

In der in Abschn. 72 beschriebenen Methode dienten die Gleichungen
(VIII; 56, 58) zur Bestimmung -der fiir die Epoche ¢ = 4, giiltigen Anfangs-
werte

z,Y,2;, %92

als Funktionen von =3, wenn geniherte Werte der GréBen U, V, P, Q und ihrer
ersten beiden Ableitungen nach der Zeit durch Interpolation der gegebenen
Werte U, V,, P,, Q, ermittelt worden waren. Dieser Weg fithrte nur dann
zum Ziel, wenn die Determinante des linearen Gleichungssystems (VIII; 58)
von null geniigend verschieden war.

Ist dies nicht der Fall, so kann man durch Hinzunahme eines vierten Ortes
die Ableitungen der Funktionen U, V, P, Q bis zur 3.0Ordnung einschlieBlich

1) Bull. Acad. Polon. des Sciences et des Lettres, Ser. A, 1924.
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bestimmen und erhilt dann auBer (VIII; 56, 57) noch zwei weitere Gleichungen
Uz 43Uz 4+ 30z 4 Uz — i =P,

Ve+3Ve+3Vi+ Vi—7% =0,

aus denen sich wegen

E= —pz; B= —pé+ 3u0, (_1 oszM)

el e
anstatt (VIII; 58) die beiden Gleichungen
U o T 2%+ yy + 22
R=z<U—2?)+3xU— (P+73—-|-3P__75___) =o,
(VIII; 78)

s:x(i?—z%)+3a;-i7 (Q+Q

n sz+ ¥y + zZ)

herleiten lassen.

Nach einem Vorschlag von P.HERGET!) kann man dann so verfahren, daB
man mit zwei verschiedenen Ausgangshypothesen iiber x die iibrigen Anfangs-
werte nach (VIII; 56, 58) berechnet und dann die Gleichungen (VIII; 78) durch
Interpolation und Variation der angenommenen x-Werte zu befriedigen sucht.
DaB dieses Verfahren auch dann Aussicht auf Erfolg hat, wenn die Bahn-
bestimmung aus drei Beobachtungen ganz unméglich ist, z. B. wenn alle Orter
des Himmelskorpers in der Ekliptik liegen, 148t sich leicht zeigen. Angenom-
men, man fiihre die Bahnrechnung im System der Ekliptik durch. Dann sind
in diesem Ausnahmefall alle 8, und daher auch alle V, = tg f, sec 4,, alle z,
und alle Q, nebst ihren Ableitungen null. Das Bestehen der zweiten Glelchung
(VIII; 48), S = o, ist daher trivial. Das Problem beschrinkt sich dann auf die
Losung des Systems

y=Uz— P, r=7y22+ %, zUaL'=_P—|—§~—Ux,

(VIII; 79) y=Ux+Uz— P, R=o,

das aus vier Gleichungen mit den vier Unbekannten z, y; %, ¥ besteht, und
dessen Auflgsung durch Versuche auf Grund verschiedener Hypothesen iiber »
(bis sich R = o ergibt) immer moglich ist. Es scheint allerdings, als versage
dieses Verfahren, wenn U = o, d.h., wenn % (tg 1) =~ o ist, der Planet sich
also z.Z. der Epoche gerade in der Néhe eines der Umkehrpunkte seiner schein-
baren Bewegung befindet, denn dann ist die Bestimmung von & aus der dritten
Gleichung (VIII; 79) nicht oder nur ungenau moglich. In diesem Fall ist aber

1) Astron. Journ. 48, 122 (1939).
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sicher U # o, und man wird, nachdem man mit vorgegebenem z die GroBen
y und 7 bestimmt hat, & aus der Beziehung R = o ermitteln konnen, in der
man § nach (VIII; 79) substituiert hat (z und 2 sind ja null). Es ist dann »
solange zu variieren, bis die Gleichung

. ..P
20 =P+ r Uz
befriedigt ist. Fiir den Fall, daB genau U = o ist, kann man auch aus
y=Ux— P; 0=P+§——Ux; 7= 22 + 42

durch Elimination von z und y eine Gleichung achten Grades fiir 7 herleiten,
nach deren Auflésung man « und y erhilt, wihrend sich & und y aus R = o
und § = U% — P berechnen lassen.

DaB eine Bahnbestimmung aus vier Beobachtungen nur eine Losung auBer
der trivialen Erdbahnlésung hat, 148t sich folgendermaBen zeigen:

Nach (VIII; 54) kann man (nach C.V.L.CHARLIER) schreiben

0 =Ko; ¢=K,0+ K0,

wo K, K;, K, Funktionen der RichtungsgréBen f, g, # bzw. der sphirischen
Koordinaten «, § und deren ersten beiden Ableitungen sind. Differenziert man
die erste dieser Gleichungen noch einmal nach der Zeit:

6=Ko+ K¢=(K+ K%

und vergleicht sie mit der zweiten, so entsteht, nachdem man die triviale
Losung p = o ausgeschieden hat, die lineare Gleichung

K,o =K+ K2 — K,

fiir g, in der K auch die dritten Ableitungen von « und 6 enthilt, die ja (an-
gendhert) bekannt sind, wenn vier Beobachtungen vorliegen.

Waihrend fiir die Anwendbarkeit der hier skizzierten Methode noch sehr
wenig Erfahrungen vorliegen, ist das entsprechende auf dem Gaussschen
Randwertprinzip beruhende Verfahren der Bahnbestimmung aus vier Beob-
achtungen (siehe Abschn. 85) hiufig angewandt und von einem so erfahrenen
Rechner wie A. BERBERICH auf eine praktisch bewdhrte Form gebracht worden.

74. Bahnverbesserung auf Grund zusdtzlicher Beobachtungen

Einer der einleuchtendsten Vorteile der Bahnbestimmungsmethoden nach dem
Larraceschen Prinzip besteht darin, daB man die Formeln des Verbesserungs-
verfahrens unverindert dazu benutzen kann, beliebig viele weitere Be-
obachtungsdaten zur Verbesserung des aus den unumgéinglich nétigen drei
Ortern bestimmten Systems der Bahnelemente heranzuziehen.
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Berechnet man z.B. mit den aus einer ersten Bahnbestimmung stammenden
Anfangswerten #,, ... %,, die zu der Epoche ¢ = #, gehdren mogen, nacheinander
fiir alle verfiigbaren Beobachtungszeiten die Gré8en F,, G,; x,, ¥,, 2,; 4U,,
4V,, so erhilt man (fiir » = 1, 2, ... %) 2 Gleichungen (VIII; 66), in denen
man die Reste R,, S, unbedenklich vernachlissigen kann, da die eventuell
noch erforderlichen Korrektionen 4F,, AG, kaum noch ins Gewicht fallen
werden. Ist # > 3, so hat man also zur Bestimmung der sechs Korrektionen
Az, ... A% 2n — 6 iiberzihlige Gleichungen zur Verfiigung. Das System von
insgesamt 27 Gleichungen 148t sich durch keine Lésung voll befriedigen, da die
Daten (U,, V,) durch Beobachtungsfehler (evtl. auch durch Stérungen) ent-
stellt, die dynamisch-geometrischen Zusammenhinge zwischen ihnen also nicht
ganz streng erfiillt sind. Fiir irgendein System Ay, ... 44 wird also

G, 4y — U,G Ai + F, Ay — U, F, Ax =
=+ X,)4U,+ R, =,,
(VIII; 80) G 42—V, G, 4¢+F, Az —V,F, A% =
= (o, + X)) 4V, + S, =5,
v=1,2...7n)

gelten, wo §,, ¢, kleine GroBen (Widerspriiche) bedeuten, die nur bei vélliger
Fehlerfreiheit der Beobachtungsdaten und der vorldufigen Elemente verschwin-
den wiirden.

Gauss hat die Aufgabe, unter allen méglichen Lésungen eines iiberbestimm-
ten Systems von linearen Gleichungen das mit der gréBten Wahrscheinlichkeit
richtige auszuwihlen, durch seine ,, Ausgleichungsrechnung nach der Methode der
kleinsten Quadrate gelost. Nach ihr wird das wahrscheinlichste System der
Unbekannten so bestimmt, daB die Quadratsumme der Widerspriiche,

n
> (6% + &2), so klein wie moglich wird. Sei
v=1

a,Ax +b,Ay+c,dz+d, A+ e, Ay + [, di=¢, (v =1,2,...22)

die allgemeine Form der gegebenen Gleichungen, so findet man diejenige Lo-
sung mit der kleinsten ,Fehlerquadratsumme® durch Auflésung der sechs
»Normalgleichungen®

[aa) Ax + [ab) Ay + [ac) Az + - - - + [af] 4% = [ag],
[ba] A% + (8] Ay + [be] Az + - -~ + [bf) 42 = [bg),

..............................................................

(fa] Adx + [f0] Ay + [fe) Az + - - - + [{1 42 = [fg],
in denen \ \
[aa] = 3 a; [ab] = [ba] = 3 a,b,;
=1

gesetzt ist.
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Hierzu mégen noch einige praktische Bemerkungen Platz finden:

1. Es ist zweckmiBig, die , Epoche”, fiir die die vorldufigen Elemente x,, ... 4,
gelten, moglichst auf die Mitte des von allen # Beobachtungen tiberdeckten
Intervalls zu legen, damit die Betrige der Zwischenzeiten auch fiir diejenigen
Beobachtungen, die an den Réndern des Intervalls liegen, so klein wie moglich
bleiben. Man erreicht das, indem man die aus der ersten Bahnbestimmung
stammenden und fiir die mittlere der dabei benutzten Beobachtungszeiten giil-
tigen Anfangswerte mit Hilfe der Entwicklungsformeln (V; 61) auf einen an-
deren Zeitpunkt iibertragt, der in der Mitte des gesamten mit Beobachtungen
belegten Zeitraums liegt.

2. Die Beriicksichtigung der von AF,, 4G, abhingigen RestgroBen R,, S,,
die man nach einer ersten Auflésung der Normalgleichungen berechnen und in
einem zweiten Rechnungsgang in die Ausgleichung einbeziehen kénnte, wird
nur dann erforderlich sein, wenn ijhre Betrige an den Réndern des Intervalls
mit den nach der Ausgleichung noch iibrigbleibenden Widerspriichen groBen-
ordnungsmaBig vergleichbar sind. Das wird aber nur selten der Fall sein.

3. Wenn die Widerspriiche auch nach erfolgter Ausgleichung noch einen
deutlichen zeitlichen Gang zeigen, was bei grofSerer Ausdehnung des von den
Beobachtungen eingenommenen Zeitintervalls moglich ist, so ist dies ein
Zeichen dafiir, daB die Voraussetzung einer ungestérten KEpLERschen Bewe-
gung nicht streng erfiillt ist, daB sich also die Stérungen durch die groBen
Planeten (bei Planetoiden in erster Linie die Stérungen durch Jupiter) bemerk-
bar machen. Eine Methode, diese Stérungen fiir beschrinkte Zeitintervalle zu
beriicksichtigen, soll im nichsten Abschnitt entwickelt werden. Wenn es sich
um lingere Zeiten handelt oder wenn gar die Beobachtungen eines Planetoiden
aus mehreren Oppositionen zu berticksichtigen sind, wachsen die Stoérungs-
betrige so stark an, daB ihre Berechnung besondere numerische Methoden
(,,spezielle Stérungsrechnung”) erfordert, die erst im Band II dieses Werkes im
Zusammenhang mit dem Dreikérperproblem entwickelt werden sollen. Eine
Methode, bei der die Storungen schon im Zuge der ersten Bahnbestimmung in
Rechnung gestellt werden, ist von LEUSCHNER angegeben worden, eine andere
(Methode von NuMEROFF) findet der Leser im nichsten Kapitel (Abschn. 87).

4. Meistens werden die Widerspriiche, die beim Einsetzen der aus der ersten
Bahnbestimmung stammenden Anfangswerte tibrigbleiben, bereits so klein
sein, daB ihre durch die zufilligen Beobachtungsfehler hervorgerufene Streunung
merklich groBer ist als der aus den Fehlern der Anfangswerte stammende zeit-
liche Gang (,, Trend). Dieser systematische Gang der Widerspriiche, den man
auch durch Glittung der als Funktion der Zwischenzeit aufgetragenen Wider-
spriiche §,(r) und ¢,(7) herausarbeiten konnte, wird im allgemeinen sehr wenig
gekriimmt sein, so daB man ihn fiir kleinere Zeitintervalle als linear ansehen
kann. In diesem Fall wird man das Ergebnis der Ausgleichung nur unmerklich
(d.h. weit innerhalb der durch die zufilligen Beobachtungsfehler gegebenen
Unsicherheitsgrenzen) beeinflussen, wenn man jeweils mehrere zeitlich benach-
barte Beobachtungsdaten durch Bildung arithmetischer Mittel zusammenfaBt
(d.h., daB man das Mittel der Widerspriiche dem Mittel der Beobachtungs-
zeiten zuschreibt) und diese ,,Normalérter der Ausgleichung unterwirft. Man
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kann auf diese Weise die Zahl der Fehlergleichungen erheblich vermindern und
dadurch die Bildung der Normalgleichungen wesentlich erleichtern. In giinstig
gelegenen Fillen gelingt es mitunter, die Anzahl der Normalérter auf drei
herabzudriicken. Das Problem ist dann bereits bestimmt, eine Ausgleichung
eriibrigt sich also.

78. Beriicksichtigung von Storungen. Definitive Bahnen

Bei allen bisherigen Losungen des Bahnbestimmungsproblems wurde voraus-
gesetzt, daB der Himmelskorper sich streng in einer ungestérten Kegelschnitt-
bahn bewegt. Das ist zuldssig, solange die Beobachtungen, auf denen die Bahn-
bestimmung beruht, ein.so kurzes Bahnstiick
iiberdecken, da8 die Gestalt der Bahn durch
die deformierende Wirkung der stérenden
Krifte weniger beeinfluBt wird als ihre Be-
rechnung durch die zufilligen Beobachtungs-
fehler. Als obere Schranke fiir das Zeitintervall,
in dem die Beobachtungen eingeschlossen sein
miissen, damit eine Bahnbestimmung ohne Be- §¢—
riicksichtigung der Storungen zulissig ist, wird Abb. 59.
bei Planetoiden meist eine Spanne von sechug Dreieck Sonne-Planet-Jupiter.
Tagen angesetzt, doch kann dieser Betrag je
nach den Umstinden und nach der angestrebten Rechengenamgkelt auch
groBer oder kleiner sein.

Die Kegelschmttbahn die sich ergibt, wenn man die Anfangswerte x, ..
zur Epoche ¢ = #, einer ungestorten Bewegung um die Sonne zugrunde legt
heiBt die ,,oskuherende Bahn“ (lat. osculari = anschmiegen, kiissen), da sie
sich der wirklichen, gestorten, mit der sie die Anfangswerte (den Ortsvektor p,
und den Geschwindigkeitsvektor §, zur Zeit #) gemeinsam hat, im Zeitpunkt £,
der ,,Oskulationsepoche”, anschmiegt. Erst die zweite Ableitung des Ortsvek-
tors nach der Zeit, die Beschleunigung §,, und die héheren Differentialquotien-
ten sind fiir die wahre und die oskulierende Bahn verschieden, da infolge des
Hinzutretens der stérenden Krifte der gestérten Bewegung ein anderes Attrak-
tionsgesetz zugrundeliegt.

Sei p der von der Sonne zum Planeten fithrende Ortsvektor (Abb. 59), p;, der
heliozentrische Ortsvektor des storenden Planeten J, (Jupiter) und g, = PP
der Vektor, der vom Planetoiden zum stérenden Planeten fiihrt, und sei

|p|=", |91|="1» |Q1|=01-

Dann wird, wie bekannt, die ungestérte Bewegung des Planetoiden durch die
Differentialgleichung

dargestellt. Durch den Stérplaneten J;, dessen Masse, ausgedriickt in Einheiten
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der Sonnenmasse, 7, sei, erleiden Planetoid und Sonne Beschleunigungen, die
nach GroBe und Richtung durch die Vektoren

(VIII; 81) m 8 bow. my L
(41 41

dargestellt werden. Die Beschleunigung des Vektors SP = p wird also durch
die Differenz der beiden Beschleunigungen (VIII; 81) vermehrt, die seine Enden
P und S zusitzlich erleiden. Die Bewegung des Planetoiden geniigt also, wenn
wir nur die Stérung durch den Planeten Jupiter (m, = 1/1047) beriicksich-
tigen, der Differentialgleichung

(VIIL; 82) j=—2 ml(&—i’g).

3 3
7 o 7

Fiir jeden weiteren Storplaneten, dessen EinfluB beriicksichtigt werden soll,
tritt ein entsprechendes, seiner Masse proportionales Stérungsglied hinzu.

Ist ein Himmelskorper lange Zeit hindurch beobachtet worden (z.B. ein
Komet wihrend der gesamten Sichtbarkeitsdauer oder ein Planetoid in meh-
reren Oppositionen), so wird man die Abweichungen zwischen der gestérten
und der oskulierenden Bahn durch Integration des Differentialgleichungs-
systems (VIII; 82) zu ermitteln haben. Das geschieht, wie schon im vorigen
Abschnitt erwidhnt wurde, durch die Berechnung ,,spezieller Stérungen”, deren
Methoden im nichsten Band behandelt werden sollen. Bei der Verbesserung
der oskulierenden Bahnelemente wegen der Storungen wird man so vorgehen,
daB man die Stérungsbetrige, um die sich die Koordinaten infolge der Wirkung
der Storungskrifte dndern, von den beobachteten Koordinaten abzieht. Man
erhilt dann ungestérte GroBen, mit denen man nach den im Abschn. 77 be-
handelten Methoden der Bahnverbesserung die urspriinglichen Ausgangswerte
korrigieren kann. Wenn noétig, ist das Verfahren mit den verbesserten Anfangs-
werten zu wiederholen. Die so erhaltenen endgiiltigen Orts- und Geschwindig-
keitskoordinaten bestimmen die definstive oskulierende Bahn des Himmelskor-
pers. Thre Elemente werden die gro8tmaogliche Genauigkeit aufweisen, die auf
Grund des verfiigbaren Beobachtungsmaterials erwartet werden kann.

Wenn es sich nur darum handelt, eine Bahnbestimmung aus einem Zeitinter-
vall durchzufiihren, das relativ kurz, aber doch zu lang ist, als daB man die
Stérungen ganz auBer acht lassen diirfte, so geniigt es, fiir die Stérungen ge-
niherte Werte zu benutzen, wie man sie leicht erhilt, wenn man die gestérten
Koordinaten in Potenzreihen nach der Zwischenzeit entwickelt und von den
mit der Masse des stérenden Kérpers multiplizierten Termen nur die ersten
beriicksichtigt. Eine Entwicklungsformel, die fiir Planetoidenérter im Laufe
einer Sichtbarkeitsperiode brauchbar ist, erhilt man leicht, wenn man (wie es
in Abschn. 56 fiir die ungestérte Bewegung gezeigt wurde) die Koeffizienten

der TayLorschen Reihe
3

, LT T
z(t) =2, + xo""’“'oj‘l'%?‘i‘“'
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(und entsprechender Reihen fiir y und z) mit Hilfe der Differentialgleichung
(VIII; 82)

.. x xry—x X
(VIII; 83) i= —W+’”1<l—s_—l>

01 r
und der fiir Jupiter giiltigen Bewegungsgleichung?)

(VIII; 84) & = —(1+ m,) %
1

nebst den sukzessiven Ableitungen dieser Ausdriicke nach der Zeit bestimmt.
Die beim Differenzieren neu auftretenden zweiten Ableitungen sind dabei stets
durch (VIII; 83, 84) zu eliminieren.
Schreibt man zur Abkiirzung
n—x=&, n—y=m, n—z2=§, E+n+=2e)

so erhilt man

Ferner setze man symbolisch
(rn#) = &% + whh + 24 (06) = &6+ mi + &by

Dann ergibt sich fiir die von der Masse des Stérplaneten abhidngigen Anteile an
den Koordinaten des gestorten Korpers bis zur 3.0rdnung in den Zwischen-
zeiten einschlieBlich

(VIII; 85) . o . . B
o (%) =mlf_(£1_ _ x_l) n ,,,lt_[_é'_l & 3(51(0191) __a:l(:cl:cl))] e

3 3 5 5
2 6 |of 41 4 41

Die nichst héheren Terme haben bereits eine sehr verwickelte Form, anderer-
seits sind sie (wenn nicht gerade eine sehr nahe Begegnung der beiden Korper
stattfindet, also g, klein wird) bei den médBigen Zwischenzeiten, die bei Plane-
toiden wihrend einer Opposition vorkommen, stets klein genug, um vernach-
lissigt zu werden.

Fiir eine rohe Abschitzung der Stérungsbetrdge fiir den Fall eines Plane-
toiden in mittlerem Sonnenabstand geniigt es, den ersten Term der Reihe
(VIII; 85) zu berechnen. Der Einfachheit halber sei angenommen, da8 beide
Korper in der x, y-Ebene um die Sonne laufen und daB die Bahnen kreis-
férmig sind. Wir setzen dann die runden Zahlenwerte m, = 1/1000, 7, = 5,
7 = 2.5 an, die etwa den durchschnittlichen Verhiltnissen entsprechen, die man
bei den durch Jupiter gestorten Planetoiden antrifft. Die y-Achse des Koordi-

1) Da die Koordinaten #,, .. 2, in (VIII; 83) mit dem kleinen Faktor m, behaftet .
sind, geniigt es, eine ungestorte Bahnbewegung des storenden Planeten gemif
(VIII; 84) anzusetzen.
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natensystems sei z. Z. der Epoche #, nach dem Ort des Jupiter gerichtet, die
Langendifferenz zwischen Planetoid und Jupiter sei 4. Dannist %, = 0, y, = 7,;
%= —rsind, y =rcos 4, und man erhilt fiir drei. charakteristische Stel-
lungen

4 = 0° (Konjunktion); 1 = 4-90° (Quadratur); 1 = 180° (Opposition)

des Planeten zu Jupiter folgende numerischen Werte fiir die in den Stérungs-
gliedern

_ (% — % %)\ _ -y x
o0 = (gt =) e -m g -

2
mit m, Eo— multiplizierten Ausdriicke:

i | ATE M| o n—y %

3 ?‘3 3 73

€1 1 €1 1
o° o) 0.120
+90° +0.014 —0.0II
180° o —0.022

Fiir eine Zwischenzeit von 1/k = 58.13 Tagen (r = 4 1), die, wenn man von
der Mitte des Beobachtungszeitraums als Epoche ausgeht, nur selten iiber-
troffen wird, sind diese Betrage noch mit 1/2000 zu multiplizieren. Der groBte
Stérungseffekt, der sich wihrend der groBten Anndherung der beiden Him-
melskorper bemerkbar macht, vergroBert also die nach dem Storplaneten ge-
richtete Komponente des Ortsvektors um etwa 6 Einheiten der fiinften Dezi-
male, wihrend in der Quadratur und in der Opposition der stérende EinfluB
dieses Terms etwa um eine GréBenordnung kleiner ist.

Diese Abschitzung zeigt, daB es bei ersten Bahnbestimmungen auch bei
groBeren Zwischenzeiten nicht nétig ist, die Entwicklung der Koordinaten bzw.
der GréBen F und G genauer durchzufiihren, als dies etwa mit Hilfe der For-
meln (VII; 20) vorgesehen ist. Denn wenn die in diesen fiir die Rechnung sehr
bequemen Formeln vernachléssigten Glieder merkliche Betrége erreichen soll-
ten, werden diese kaum groBer sein als die ebenfalls vernachlissigten Jupiter-
storungen. Eine strenge Berechnung der Koordinaten lohnt sich nur dann,
wenn man auch die Stérungen mit beriicksichtigt, soweit sie die Genauigkeits-
schwelle der Rechnung iiberschreiten. Hierzu werden normalerweise die Aus-
driicke (VIII; 85) ausreichen?).

1) Siehe auch K. Stumprr: Untersuchungen iiber das Problem der speziellen St6-
rungen in den rechtwinkligen Koordinaten. Astron. Nachr. 273, 105 (1942).



KAPITEL IX

BAHNBESTIMMUNG DER HIMMELSKORPER
NACH DEM GAUSSSCHEN PRINZIP

79. Bahnbestimmung als Randwertproblem

Wihrend die bisher beschriebenen Methoden der Bahnbestimmung stets auf
die Ermittlung der Anfangsbedingungen (VIII; 63) fir die Bewegung des
Himmelskérpers, bezogen auf einen Zeitpunkt ¢ = £, abzielten, ist das von
C.F. Gauss und W. OLBERs in ihren klassischen Arbeiten verfolgte Prinzip
(das iibrigens auch schon von LAGRANGE formuliert, aber noch nicht auf eine
praktisch verwendbare Form gebracht worden ist) das der Ermittlung von zwei
vollstindigen heliozentrischen Ortern

X1, Y1521, %3, Y3, %3

des Himmelskoérpers zu den beiden Beobachtungszeiten ¢, und ¢;. Aus ihnen
kénnen ja (siehe Abschn. 50-52) die Kegelschnittelemente der Bahn berechnet
werden. Ein wesentlicher Vorteil dieses Prinzips springt in die Augen: Wihrend
es bei den Bahnbestimmungen iiber die Anfangswerte nétig war, sechs Un-
bekannte in die Rechnung einzufiihren und fortlaufend zu iterieren, erfordert
das Gausssche Prinzip im wesentlichen nur deren zwei, nimlich die geozen-
trischen Distanzen g, , g der beiden duBeren der drei Orter, denn durch sie und
die beobachteten sphirischen Koordinaten ay, d; a3, 0; bzw. 4, f;; 45, Bs,
wenn man im System der Ekliptik rechnet, sind ja die topozentrischen Koordi-
naten &, 9, { und demnach, in Verbindung mit den Sonnenkoordinaten X, Y, Z,
die beiden zu ¢, und ¢, gehtrenden raumlichen Orter bestimmt.

Der Grundgedanke der Gaussschen Methode 14Bt sich leicht geometrisch
verstdndlich machen. Gegeben sind durch die Beobachtungen drei Richtungen
im Raum, die von den drej Beobachtungsortern B,, B,, By (oder von den drei
locis fictis F, F,, Fy) zu denin unbekannten Entfernungen liegenden Planeten-
ortern Py, P,, Py hinfithren. Von diesen wissen wir, daB sie auf einer Ebene
liegen, die durch den Sonnenmittelpunkt hindurchgeht. Die Aufgabe lautet
dann, die Lagekoordinaten (s, §1) dieser Ebene so zu bestimmen, daB die
Schnittpunkte der Ebene mit den drei Geraden so beschaffen sind, daB sie den
KErLERschen Gesetzen geniigen. Das bedeutet aber folgendes: Aus Abschn. 50
wissen wir, daB je zwei Orter, etwa P, und P,, zusammen mit der Zwischen-
zeit ¢, — ¢,, eine KEpLERsche Bahn definieren; die Aufgabe wird also gelost
sein, wenn es gelingt, die Ebene (¢, §8) bzw. die Distanzen (g;, 05, 05) SO zu
bestimmen, daB jede der drei Kombinationen (P, P,), (P,, P,), (P;, P,) auf
dieselbe Bahn fithrt. Es miissen also insbesondere die zwischen den Endpunkten
dieser Intervalle ausgespannten Kegelschnittsektoren den zugehorigen Zwi-
schenzeiten proportional sein.

Man kénnte eine erste Niherung fiir die gesuchten GréBen erlangen, wenn
man die Verhiltnisse der Sektoren durch die der Dreiecke ersetzt, deren In-

26 Stumpff, Himmelsmechanik
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halte man direkt durch die Koordinaten der Orter ausdriicken kann. In
Abschn. 65 ist gezeigt worden, daB die Dreiecksflichen sich angenihert wie die
Zwischenzeiten verhalten, wenn diese klein sind, und daB die Abweichungen
von der zweiten, bei anndhernd 4quidistanten Beobachtungszeiten von der
3.0rdnung in den Zwischenzeiten sind. Diese Ndherung wire aber streng nur
fiir eine geradlinig-gleichférmige Bewegung zwischen den beiden Bahnpunkten
erfiillt, d.h. unter Vernachlissigung der auf den Planeten wirkenden Attrak-
tionskraft. Es ist aber notwendig (und hier gelten die gleichen Uberlegungen
wie im vorigen Kapitel), die dynamischen Beziehungen zwischen den Planeten-
értern von Anfang an wenigstens genihert zu beriicksichtigen. Man kann also
die eben angedeutete Vereinfachung nur dann anwenden, wenn die dynami-
schen Zusammenhinge anderweitig zum Ausdruck kommen. Das ist z.B. bei
der Bestimmung von Parabelbahnen der Fall, denn dort konnte (Abschn. 75)
die Bedingung (VIII; 76) eingefiihrt werden; auch die EuLErsche Gleichung
(VI; 13), die OLBERS in seiner Methode der Kometenbestimmung (Abschn. 84)
verwendet, leistet dieselben Dienste.

Bei der Bahnbestimmung aus drei Beobachtungen ohne Voraussetzung iiber
die Exzentrizitit wird man, um die Dynamik des Vorgangs wenigstens ge-
nihert ausdriicken zu kénnen (ohne andere Unbekannte auBer den Ortskoordi-
naten benutzen zu miissen), die Entwicklung der Verhaltnisse der Dreiecks-
flichen nach Potenzen der Zwischenzeit bis zu jenem Gliede ausdehnen miissen,
das y = 732 als Faktor enthilt. Es ist also

D

a

D,

ta
Tg

I
WP

zu setzen, und in Verbindung mit den rein geometrischen Gegebenheiten fiihrt
diese Beziehung wieder auf die Gleichung achten Grades fiir 7, bzw. die Gauss-
sche Gleichung (VIII; 36), die somit auch hier als Schliisselgleichung des Pro-
blems auftreten wird.

Aus diesen zunichst ganz heuristischen Uberlegungen geht bereits hervor,
daB in bestimmten Fillen eine Bahnbestimmung aus drei Beobachtungen un-
moglich ist, ndmlich immer dann, wenn mindestens eine der drei Richtungs-
geraden B, P, in der Bahnebene liegt, da dann ein eindeutig definierter Schnitt-
punkt zwischen der Geraden und der Ebene nicht existiert. Das trifft nament-
lich dann zu, wenn sich der Himmelskorper in der Ekliptik bewegt, denn dann
fallen sogar alle drei Geraden in die Bahnebene; ferner dann, wenn einer der
drei spharischen Orter mit dem Gegenpunkt der Sonne (oder, was allerdings
praktisch bedeutungslos ist, mit dem sphirischen Sonnenort selbst) zusammen-
fillt, denn dann geht ja die betreffende Gerade durch die Sonne und gehért
somit der Bahnebene an.

Die Gausssche Methode der Bahnbestimmung wird dem Anfinger, im
Gegensatz zu den Methoden nach dem LarLaceschen Prinzip, immer sehr ver-
wickelt und undurchsichtig erscheinen. Das liegt daran, daB Gauss in aller-
dings genialer Weise den Formalismus seines Verfahrens den Bediirfnissen des
praktischen Rechners (zu seiner Zeit also der logarithmisch-trigonometrischen
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Rechenweise) anzupassen bemiiht war. Dadurch ist in den klassischen Dar-
stellungen dieser Methode die Klarheit der Gedankenfithrung durch z.T. un-
iibersichtliche Rechenoperationen verdeckt worden. Dennoch ist es kaum
schwieriger als bei den im vorigen Kapitel behandelten Methoden, den Gang
der Uberlegungen mit wenigen Strichen deutlich werden zu lassen, wenn man
das Gewicht zunichst auf die Idee und weniger auf die Art ihrer rechnerischen
Verwirklichung legt. Sehr zustatten kommt diesem Zweck die Verwendung der
vektoriellen Schreibweise, die in den 4lteren Darstellungen fast immer vermie-
den worden ist.

Hier moge auf die sehr eindrucksvolle Analyse des Bahnbestimmungsproblems
als einer Randwertaufgabe verwiesen werden, die wir H. Bucerius!) verdan-
ken und die an das ankniipft, was in Abschn. 47 iiber die Integralgleichung des
Zweikorperproblems gesagt worden ist. Seien p, (/) und p,(4;) die Randwerte
des Ortsvektors p(¢) im Intervall ¢, < ¢ < #; und wihlt man #, — £, als Zeit-
einheit, so ist, mit » = &({; — ¢,) als Gravitationskonstante und #; = o, 4, = 1,

1

(IX; 1) P@=ﬁ@+%/K@0

Serdsi 76 =190

die Integralgleichung, der p (t) geniigt. Dabei ist

(IX; 2) p) = pl 7, + 'ps f = Po(r —8) + py(¢)

eine lineare Funktion der Zeit, die einer Bewegung entspricht, die geradlinig
und gleichférmig zwischen den beiden Randértern erfolgt. Ferner ist der Kern
der Integralgleichung
s(x—19%) fir o=s=4,
(IX;3) K(s, 1) = Ve
1 —s) fir i<s<1.

Man kann nun, falls p, und p, nicht kollinear, d. h. nicht gleich oder entgegen-
gesetzt gerichtet sind (was man immer ausschlieBen darf), p(f) als Resultante
zweier Vektoren betrachten, deren Richtungen in die von p; und p, fallen, d.h.,
es darf '

(IX; 4) PE) = n.(0) 9y + n5() 9y

gesetzt werden, wo #,(f) und 7, (f) zwei skalare Funktionen der Zeit und der
Koordinaten von p, und p, sind. Diese Komponentenzerlegung des Ortsvektors
tritt an die Stelle der Zerlegung (V; 12) im Anfangswertproblem.

Multipliziert man (IX; 4) vektoriell mit p; bzw. p,, so erhilt man

[phs] = ny[Pyhs];  [P1P] = 75Dy 0,)

1) ,,Bahnbestimmung als Randwertproblem® I-V: Astron. Nachr. 278, 193, 204;
280, 73; 281, 97; 282, 107 (1950-1955).
26¢
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oder, wenn man unter [p;9,] die Betrige dieser samtlich kollinearen, nimlich
nach dem Pol der Bahnebene gerichteten Vektorprodukte versteht,

[P hs] (P, ¥]
;o ) = ——=.
ror = Ty
Diese Grofen, die im Randwertproblem die gleiche Rolle spielen wie im An-
fangswertproblem die Funktionen F und G, sind demnach nichts anderes als die

Verhiltnisse der von den betreffenden Vektoren gebildeten Dreiecke. Speziell
ist fiir £ =4,

(IX;5) ()

() =

AR _ [pibo]
[pyhs] ’ [9195] °

Setzt man (IX; 4) in die Integralgleichung (IX; 1) ein, so ergibt sich

g (t2)

1
mm+mm=mu—n+m“*7k@nm“Q%¢M”a.

0

Diese Gleichung zerfdllt also in zwei skalare Integralgleichungen

1
m) =1—1+ “2fK(5’ ?) nlr(:;s()s;is ’
(IX; 6) ’
n(t) = t+u2'/‘K(s,t)”—3r(:()s#-,
wobei ’

(IX;7)  72(s) = p* = ni(s) T+ 2my(s) my(s) (PrPs) + 73 (s) P

zu setzen ist.
Wiren nun die Dreiecksverhidltnisse (IX; 5) bekannt, so lieBe sich das Pro-
blem streng lésen. Es ist

(IX;8) p=0-3% (=1123),
wenn durch die Vektoren
p(x, y,2) die heliozentrischen Planetenérter,
(IX; 9) q(&,m, £) die topozentrischen Planetendrter,
8(X, Y,Z) die topozentrischen Sonnenérter

dargestellt werden. Setzt man, fiir £ = ,, (IX; 8) in (IX; 4) ein und schreibt
man kiirzer #,(f,) = »,; (¢ = 1, 3), so erhdlt man

(IX; 10) MG — Qo+ 7303 = 1,3, — B + 7,5,
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Fiir die Erdbahnlésung (Beobachtungsort oder locus fictus) sind die q; = o,
und es ist, wenn die der Erdbahn entsprechenden Dreiecksverhiltnisse mit
_Ba o _ [BE)
T BE T T

bezeichnet werden,

(IX; 11) 0= N,;8, — 8, + N,35,,

so daB man statt (IX; 10) auch

(IX; 12) MG — Q2+ Mg = (ny — Ny) B, + (3 — Ny) 3

schreiben kann.
Nun seien im System der Ekliptik

0, = 0y cos fi;

die ,kurtierten Distanzen“, d.h. die Projektionen der topozentrischen Di-
stanzen g, auf die Ekliptikebene. Wenn man dann mit

(IX; 13) i(f, g0, B); fr=cosdy, g =sink, h,=tgp
Vektoren in der Richtung der g, bezeichnet, so wird
G = 04i,.

Setzt man dies in (IX; 12) ein und multipliziert diese Gleichung skalar mit
[i,i3], so erhilt man

(IX; 14) 0z (hizly) = (Ny — ny) (i;8115) + (V3 — 1) (113515) -

Dabei ist fiir gemischte Produkte aus Vektoren af(a,, a,, 5), b(by, bo, by),
c(cy, ¢, ¢5) allgemein
a b o

(a[bc]) =|a b ¢ | = (abo)
ag by ¢
gesetzt worden, und es darf dabei die Reihenfolge der Vektoren zyklisch ver-
tauscht werden, wihrend der Ausdruck das entgegengesetzte Vorzeichen an-
nimmt, wenn zwei Vektoren die Plitze wechseln.

Multipliziert man ferner (IX; 12) nacheinander vektoriell mit i;, i; und da-
nach nacheinander skalar mit 3,, ;, so entstehen die Beziehungen

—0y(131181) + 71305 (131131) = (13 — N3) (331,3,),

1,01 (111335) — 02 (iai383) = (1, — Ny) (B1is3y)
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oder
- Gy . . N, .
01 (i1 1385) = n_2 (i1585) + (71 - I) (CEANE
1 1
(IX; 15)
- Oy . . N, .
03 (iy13%,) = n—(‘ﬂz?’l) + 7 T (8158511)
3 3

zur Bestimmung von ¢; und o, aus o,. Multipliziert man schlieBlich (IX; 12)
vektoriell mit i, und danach skalar mit &,, so erhilt man als Kontrollbeziehung
zwischen g; und gy noch die Gleichung

7,0y (i1ia8y) -+ 7505 (iaizgz) = (n, — Ny) (3,123,) + (13 — Ny) (85ip5,)

oder
. " . . N, — , N, — = \
03 (15133,) = 0y —nl (hig8) + —4—2 " e! (Byigd) — ——2 " 2 (8a23y).
3 3 3

Es ist aber nach (IX; 11)
, . \ N, ..
N1(81128,) + Ny(8518,) = 0, also (85ix85) = F: (811232)

Setzt man dies ein, so nimmt die soeben abgeleitete Kontrollgleichung die be-
merkenswerte Form
. ny . . n N, .
(IX; 16) 03 (i5158,) = Uli (t2i282) + (n—; - F:) (81521
an.

Die Aufgabe der Bahnbestimmung ist 16sbar, wenn es gelingt, fiir die Drei-
ecksverhaltnisse #,, #, hinreichend gute Ndherungswerte abzuleiten. Dann er-
hilt man ¢, aus (IX; 14) und 0y, 0y aus (IX; 15) und damit gendherte p;. Es
sind dann alle Daten gegeben, um die Dreiecksverhiltnisse genauer berechnen
zu kénnen und mit ihnen das Iterationsverfahren fortzusetzen. Mit dieser Be-
merkung ist der Gang der Hypothesenrechnung, der spiter (Abschn. 81) noch
préziser zu formulieren sein wird, in groBen Ziigen angedeutet. In der Praxis
kommt es also darauf an, eine Methode zu entwickeln, um geeignete Ausgangs-
werte fiir die Dreiecksverhiltnisse zu gewinnen, die eine mdglichst rasche Kon-
vergenz des Iterationsverfahrens gewihrleisten. DaB die rohen Niherungen, die
man erhilt, wenn man die Dreiecksverhiltnisse den Verhiltnissen der Zwischen-
zeit gleichsetzt, dazu nicht ausreichen, haben wir bereits weiter oben begriindet.

80. Die Entwicklung der Dretecksverhiltnisse nach Potenzen der
Zwischenzeten

Die Dreiecksverhiltnisse lassen sich nach den uns schon bekannten Methoden
als Funktionen der Zwischenzeiten darstellen, die wir hier, um die Nomen-
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klatur der klassischen Literatur zu verwenden, abweichend von den friiheren
Bezeichnungen, in der Form

n=k(ls—1); =kl —4);, =kl —1)

festsetzen wollen. Alle 7, sind hier also positiv, und es gilt zwischen ihnen die
Beziehung
12 = tl + 1:3.

Es ist dann, wenn wir p; und p, in iiblicher Weise durch p, und p, ausdriicken,
P = PFy + 0:Gy; 9y = PoFy + 9,6y,

und es gilt nach (VIII; 72) fiir die Inhalte der doppelten Dreiecksflichen
[(P1he] = — (929 Gy5  [Paba] = [Poe) Gs;
(P1hs] = [Pe¥,] (F1G3 — F3Gy).

Fiir die Verhiltnisse der Dreiecksflichen erhilt man somit

I & S &
mW=Fe-Re MY TR -RG

Ferner ist nach (VII; g, 12, 13)
—r X, e X o = X e e —...)
F=1 2/1t+2;40t ;) G t(I 6,ut+4(wt _),

also, wenn wir in F;, G, bzw. Fy, G, entsprechend der oben eingefiihrten neuen
Bezeichnung der Zwischenzeiten,

T=—1, bzw. =1
setzen,
: 1 I 1 I
FF=1——pti——pot3—+++, Gy=—15|1 — —pti — —uotd — .-
! o MTs — K0T » 3 6 M 4.“ 3 )

I I I 1
F,=1-— ?ytﬁ-l-;,uat% — ey, Gy= rl<1 - Eﬂt%—}— ;;wt? - )

und schlieBlich, wegen 7, + 7, = 15,

FiGy — F3Gy = 1|1 — %,ut% + %,uotg (1 — 1) — }

bis zur 4.0rdnung in den Zwischenzeiten genau. Es ist demnach

1—%@1“{-}- l;wt‘{'—

‘1

) = 2 ——— 4 :
t1- Turdt Tuordln - ) — o
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I o, I
7 - ”6““”3 - Z/“”s -
ny(ta) = —~
2

I-— g/”z + #072(11 — 1) —
oder, wenn man die Division ausfiihrt, bis zur 3.0rdnung genau

() = :—: [I + %ytz (ty+ 19) + %,u,ats (taTy — %) + }'
(IX; 17) .
”3(tz =2 [I + l‘rl (72 + '53) - Z”Utl (1,'1‘[2 — 13) + - ]

In diesen Formeln ist g = 73% und yo = #,73*. Da nun aber in der Gaussschen
Methode (im Gegensatz zu den Methoden nach dem Lapraceschen Prinzip)
die Verwendung von Geschwindigkeiten prinzipiell vermieden wird, werden die
Glieder von der 3.0rdnung ab vernachléssigt. Die Ndherungswerte

I g+t T, |, Tt T
”1—_[ +L 1+ 2)] 5% 6ly:<1+_{:)’
I1X; 18
e n_&I+Lﬂlﬂ£=ﬁ+ﬁ&I+&
R 6 73 7, = 673 T,

sind von ENCKE eingefiihrt worden, wihrend Gauss noch die weniger genauen
Werte
(IX; 19) m = fl(r -——t‘?); ny = -2 (1 —"”)

273 T, 273

benutzt hat, in die die ENcKEschen iibergehen, wenn die Zwischenzeiten gleich
sind, denn dann kann 1, = 21, = 271, gesetzt werden.

Ubrigens ist es sehr leicht, wie BuCERIUS!) gezeigt hat, diese und andere
Niherungen direkt aus den Integralgleichungen (IX;6) zu gewinnen. Setzt
man x = k(f; — ¢;) = 1, und nach (IX; 2)

—_— = —tl = —ts
I—1= . 2y %’
so folgt aus (IX; 6)
71 " (3)
n () = — !
1( 2) tz / ( 2) 3( )

(IX; 20) ° .

mw=%+@[(m%8
0

1) Astron. Nachr. 278, 193 (1950).
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Man kann dann nach dem Mittelwertsatz der Integralrechnung
1 1
[K(s.t) 1(s) ds = }(0) [K (s.t;) ds
0 0

setzen, wo /(o) einen Mittelwert der stets positiven Funktionen

10 =T b )= 00
darstellt. Da nun

1 t 1
/K(s,t,)ds=/s(x—tz)ds+/t2(1—s)ds=%(x—t2)=’1—’;,

212
i} 0 t

so erhdlt man eine Néherung fiir die Ausdriicke (IX; 20), wenn man als Mittel-
werte fiir #;, bzw. ny die Verhiltnisse der Zwischenzeiten t,/7, bzw. 75/7, und
als Mittelwert von 7 (s) den Wert 7, annimmt. Es folgen dann unmittelbar die
Gaussschen Naherungen (IX; 19).

Eine weitaus bessere Naherung erhilt man, wenn man in den Ausdriicken

[p(s )pa] _ (P19 (5)]
L P AL A P

im Integranden den unbekannten Verlauf der Funktion p(s) dadurch anzu-
ndhern sucht, daB man p(s) = P(s) setzt, also eine geradlinig-gleichférmige
Bewegung lings der Sehne annimmt. Man erhilt dann nach (IX; 2)

(P (s) ps] = [P1bs] (1 —5); [P1B(s)] = [Pys] s,

und es ist

I 4Ty

JEea-9ds=Fhb-DE- =g F mtn),
1

T3
[rmsis= G-t =F Fub- =gt
T3
0

Auf diese Weise ergeben sich die ENckeschen Formeln (IX; 18).

In diesen Versuchen ist immer 7, als Mittelwert der Funktion 7 (s) vor das
Integral gesetzt worden, obwobl das nicht immer vertretbar ist, denn es kénnte
der Fall eintreten, daB 7, gerade einem Extremum der Funktion 7 (s) entspricht,
d.h. also £, auf die Durchgangszeit durch das Perihel oder Aphel der Bahn
fillt. In den meisten Fillen wird aber 7, zwischen den Randwerten 7, und 74
liegen, und es bedeutet natiirlich eine wesentliche Erleichterung des Problems,
wenn man 7, als Mittelwert benutzen kann. Die allgemeinste Losung, die sich
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auf diese Weise erzielen 14Bt, fithrt auf lineare Integralgleichungen von der
Form

1
(IX; 21) filt) = m(t) — 2[K(s,t) m, (s)ds, (i=1,3)
0
wo
T 3
f1=?2=1—t2; fa———tz» 1_=§

gesetzt worden ist. Die Losungen der homogenen Integralgleichung
1
(IX; 22) o=g() — A/K(S» L) @(s) ds
0

sind, wenn & und b zwei konstante GréBen bedeuten, von der Form
@ = asin (t2 }/I) + b cos (tz ]/7)
denn durch zweimaliges Differenzieren von (IX 22) nach ¢, entsteht die dqui-
valente Differentialgleichung
P =—1g,
die diese allgemeine Losung hat. Nun folgen aber aus (IX;22) die Rand-
bedingungen
p(0) = ¢(1) =0,
da der Kern fiir 4, = ound?, = 1 identisch verschwindet. Als einzige Lésungen
der homogenen Gleichung erhélt man demnach die , Eigenfunktionen”

(pv(t2) = asin (tzﬁ) » (V =523 "')

die den , Eigenwerten” 1, = (v7)? entsprechen.

Die Theorie der linearen Integralgleichungen lehrt, daB die inhomogene Glei-
chung (IX; 21) nur dann eine wohlbestimmte Losung hat, wenn 4 von den
Eigenwerten 1, des homogenen Problems verschieden ist. In unserem Fall be-

3

sagt das, daB 7,7, ® + v sein muB; speziell soll also (bei kleinen Zwischen-

zeiten) Y1 < & sein.
Die Losung der Integralgleichung (IX; 21) 148t sich dann durch die Nzu-
MANNSsche Reihe

=A(oi) + A‘f’l—l— A‘zi’12+ A?’Z:‘-l- (,;__. 1, 3)
dai‘stellen, wo die Koeffizienten 4 nacheinander durch die Rekursion
Aa"=fi(tz)={1—t2 T
b, fir 1=3,

1
AP = f K(s, ) AP(s) ds; AP = [K(s, 1) AP (s) ds
0 0
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gefunden werden. Wendet man diese Formeln auf den Kern (IX; 3) und die
Funktionen f, an, so erhilt man die Reihenentwicklungen

_n (47w |, 3ti—Totiti+yef
=, [I + 673 + 360 7§ T
IX; 2
( 3),1—&14- ,1(,24_13)+3z§—xor§t§+7t‘é+“_
8T g, 673 360 7% ’

deren Anfangsglieder wiederum der EnckEschen Niherung entsprechen. Diese
Entwicklungen, die iibrigens auch in der geschlossenen Form

_sin (t,,/VE)
" sin (zyfYrg?)’

geschrieben werden konnen, sind streng, wenn die Bahn ein Kreis ist, da dann
r = 7, = const ist, die Gleichung (IX; 21) also exakt gilt. Bei Planetoiden mit
schwach exzentrischen Bahnen wird also der Fehler dieser Niherung (und bei
geniigend kleinen und méglichst gleichen Zwischenzeiten auch der Fehler der
Enckeschen Formel) klein sein, wihrend er bei langgestreckten Ellipsen, ins-
besondere in Perihelnidhe, groBere Betrige annehmen kann. H.Bucerius hat
loc. cit. verschiedene interessante Versuche unternommen, um noch bessere
Naherungen zu erzielen, etwa dadurch, daB er auch im Nenner der im Inte-
granden von (IX; 20) auftretenden Funktion #/73 die lineare Abhingigkeit von
der Zeit einfithrt, d.h. den Vektor p durch p ersetzt. Die sich dabei ergebenden
Formeln sind aber fiir die Bediirfnisse der praktischen Rechnung bereits zu
kompliziert. Es kommt ja hier nicht unbedingt darauf an, auf Anhieb schon die
endgiiltige L6sung in die Hand zu bekommen, sondern man verlangt Ndherun-
gen, die als Ausgangsbasis fiir ein Iterationsverfahren brauchbar sind. Das
leisten aber die ENckEschen Formeln, die einen ausgezeichneten Kompromif3
zwischen den beiden einander widerstrebenden Forderungen nach gré8tmog-
licher Einfachheit und gréBtmoglicher Genauigkeit darstellen.

Formeln, die genauer als die ENckEschen sind, sind schon von ENCKE selbst
und von TH. v. OPPoLZER vorgeschlagen worden. Man erhilt sie, wenn man
aus den ersten Gliedern der Entwicklungen

(‘V = I, 3)

r1=r2—131'~2+ cees rs=72+ 1:11'»2+

7o und #, bestimmt:

¥y — 7
7-_2=_st li
2
(IX; 24)
71Ty + 73T, I T, — T
72=‘L%=Z(’1+’s)+ 3 l(’s_"l)~
2



412 Bahnbestimmung der Himmelskorper nach dem Gaussschen Prinzip

Fiihrt man dies in (IX; 17) ein, so ergibt sich nach kurzer Rechnung

”1=£1‘[ 4 unt+ 1) iy, n—1n }

T2 3 (n+mn?t T, (17t ’
(IX; 25)

Y 4 ulnt 1) nty n—1 . J

"s Ty [ 3 (n+7)? +4 Ty (n+ 1)t '

Diese Ndherungen, die auch die Glieder 3. Ordnung beriicksichtigen, haben aber
geringere praktische Bedeutung, weil die Koeffizienten von zwei Werten des
Radiusvektors abhdngen. Dasselbe gilt fiir die Ndherungsformeln von J. W.
GiBBs, die die Formeln (IX; 25) sowohl an Genauigkeit als auch an Einfach-
heit iibertreffen und aus diesem Grunde Beachtung verdienen. Sie enthalten
zwar alle drei Abstdnde 7,, beriicksichtigen aber alle Glieder der Entwick-
lungen (IX; 17) bis zur 4.Ordnung und sind bei gleichen Zwischenzeiten sogar
bis zur 5.0rdnung genau.

Um die Gisesschen Formeln abzuleiten, eliminiert man aus den fiinf Glei-
chungen

I 5. I ,. I
=10 — b+ ;r%!pz - E‘tgpz + azgp%" — .,

b3 =P+ 1bs+ — t11324' t1b2+_tlp

: I
. e 21
P=—5=P -1+ —13p3V —

. I
Py = _ﬁ =P, + 1,9, + ?thév—l—
73

indem man die héheren Glieder vernachlissigt, die vier GréBen §,, ... pL¥ und
erhilt dann nach elementarer Rechnung die merkwiirdige Beziehung

A4,
(it ) - m(e )+ ) =0
T2 3

in der

1 I 1
Al = E (fzfa - t%); Ag = —'i; (‘[11.’3 + 1%); A3 ="a‘ (tlt2 - T%)

bekannte Funktionen der Zwischenzeiten sind. Multipliziert man diese Glei-
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chung vektoriell mit p, bzw. py, so findet man

A T A
- [plp2] (I + 732) + [plps] 32 (I + —33) =0,
2 Tg 73
T A A
[Py ps] ;:—(I + ,—{) — [P2py] (I . T§> =0
oder
4 2 T 22
T 14 T 14
T e S o
1+ P 1+ F

Das sind die GiBesschen Niherungsausdriicke fiir die Dreiecksverhiltnisse,
die an Genauigkeit die ENcKEschen bedeutend iibertreffen. Ein Verfahren zur
praktischen Verwendung dieser Formeln ist von R.VoGeL und W.FaBRITIUS
angegeben worden, iiber das man in den Originalarbeitenl) oder in Ab-
schn.g4 von J.BAUSCHINGERs ,,Bahnbestimmung "der Himmelskérper” nach-
lesen moge.

81. Das Iterationsverfahven nach Gauss-ENCKE

Die Naherungswerte fiir die Dreiecksverhéltnisse haben die Form

0 v;o) 0 'Vf?'O)

— ;! . —_
=0+ = my=ny + 3

. 73 7
(IX; 27)
. 2 17
mit #® = P 7O = r (x + =),
2

wenn man sich der ENckEschen Formeln (IX; 18) bedient. Dabei ist zu be-
merken, daB die GréBen #{® bekannt sind und nur noch eine geringfiigige An-
derung erfahren, wenn im Laufe des Verbesserungsverfahrens die Zwischen-
zeiten wegen der Lichtzeit korrigiert werden. Die GréBen #® dagegen sind noch
hypothetisch, da sie Fehler von der 3.0rdnung in den Zwischenzeiten ent-
halten.
Fithrt man die #, in der Form (IX; 27) in die Gleichung (IX; 14) ein, so
erhilt man zunichst
(0)
(IX; 28) 02 = Oy seC B, = KO — lr—3,
2

wo £® und /? von bekannten GréBen und den noch verbesserungsbediirftigen
»{® abhiingen. Andererseits gilt die geometrische Beziehung

(IX; 29) 75 = 0§ — 20 Ry cos y, + R,

1) Astron. Nachr. 128, 225 (1891) und 129; 37 (1892).
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in der y, den bekannten Winkel zwischen den beiden topozentrischen Rich-
tungen nach dem Planeten und nach der Sonne zur Zeit £, darstellt. Aus
(IX; 28, 29) folgt dann die Gleichung achten Grades oder die Gausssche
Gleichung, nach deren Auflésung 7, und g, bekannt werden. Damit sind aber
nach (IX;27) die #; und nach (IX; 15) auch die GroBen o,, 05 bzw. g,, g5 be-
kannt.

Das Verbesserungsverfahren, das nach Vorliegen der ersten Niherung ein-
setzt, geschieht nun mit Hilfe der Verhiltnisse Sektor: Dreieck, iiber deren
Bestimmung in Abschn. 52 und 53 das Notige gesagt worden ist. Aus

T VP TzV— _ Tﬂ/_

Tl T ekl 72T (Teepa|

folgt fiir die Dreiecksverhiltnisse

(PePs] _ 72 T Dpibe] _ 72 Y
(p1hs] no T’ T Inbs 7 T

Mit den Niherungen fiir die g, sind nun auch die drei heliozentrischen Orter
genihert bekannt geworden, und man hat also alle Daten zur Hand, um die y,
zu berechnen. Ist dies geschehen, so werden die nach (IX; 30) berechneten 7,
im allgemeinen mit den Ausgangswerten (IX; 27) nicht iibereinstimmen. Setzt
man aber

(IX; 30) n =

0 1’(11) 0. V2 0 %1 0. Y2
— gl — (0), . — pnt 0) ,
m=n + S5 =0 = nmg=n 4 - =n =,

73 bg! 3 Vs

so erhilt man in

W0 = 0 (ﬁ . 1); WD = 5 ®73 (ﬁ _ I)
"1 Vs

neue Gréfen »;, v, mit denen man das Verfahren zur Bestimmung von 7,, g,
usw. nach dem gleichen Algorithmus wiederholen kann, und man tut dies
so oft, bis sich die y; nicht mehr dndern und somit die nach (IX; 30) bestimm-
ten Dreiecksverhiltnisse als endgiiltig betrachtet werden diirfen. Die Berech-
nung der Kegelschnittelemente nach Abschn. 50, wobei zur Bestimmung von p
die Verhiltnisse y,, y;, y; aus der letzten Hypothese benutzt werden (die Uber-
einstimmung der drei Werte p liefert eine wertvolle Kontrolle der Rechnung!),
macht dann keine Schwierigkeiten mehr.

Eine Variante dieses Verfahrens, die eine besonders gute Konvergenz ver-
spricht, verdanken wir P.HERGET'). Er benutzt dabei die schon in Abschn. 72
von K. STuMPFF eingefithrten GréBen

U,=tga; V,=tg d;secay,

(¢=1,23)
P=Y,—UX; Q;=2,—V,X,.

1) The Computation of Orbits, S. 6off.
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Nach (IX; 4) ist dann, wenn wir ¢ = {, setzen,
Xy = M % + Ng¥y,
(IX; 31) Yo =My + 1Y,

Zy =My 2 + Ny 2.
Da nun nach (VIII; 56)

(IX; 32) Vi=Ux — Py, z,=V%— 0y,
so kann man die letzten beiden Gleichungen (IX; 31) auch
1y Uy, — Py) + n3(Usg — Py) = Uy (%) + my%) — Py,
(Vg — Q1) + n5(Vaxg — Qp) = Va(my 2y + m3%5) — Q;
schreiben. Das sind aber zwei lineare Gleichungen in %, und x,:
Mm% (Uy — Up) + n323(Ug — Up) =m Py — Pp+ m Py = P,
mx (Ve — Vo) + m323(Vy — V) = mQy — Qo+ 1305 = Q.
Setzt man fiir die Determinante dieses Systems

I I 1!
Uu,-U, U,-U,
D= V‘ Vz V“ V2 =—|U, U, Uy,
1 2 3 2 | V1V2V3

so sind nach
Duyzy =PV, —V,) —Q(Us — Uy),
Dug %= P(U; — Uy) — Q(Vy — V)

%, und x, bekannt, wenn #, und #,, die auch in P und Q enthalten sind, vor-
liegen. Aus der ersten Gleichung (IX; 31) und den Gleichungen (IX; 32) folgen
dann die iibrigen Koordinaten der drei Orter.

Dieser Algorithmus, der sich besonders gut fiir die Maschinenrechnung eignet,
kann mit dem Gauss-EnckEschen Verfahren zur Bestimmung der Dreiecks-
verhiltnisse verbunden werden. Es ist aber auch moglich, den Weg tiiber die
Gausssche Gleichung (bzw. die Gleichung achten Grades) zu umgehen, indem
man (Ghnlich wie VAIsALA in seinem Abschn. 74 beschriebenen Verfahren) von
plausiblen Annahmen iiber die Distanzen des Himmelskérpers ausgeht. Diese
Methode, die allerdings Erfahrung und Einfithlungsvermégen erfordert, kann bei
Bahnbestimmungen von Planetoiden mit Erfolg angewandt werden. Man darf
dabei zwecks Ableitung erster Niherungen fiir die Dreiecksverhiltnisse von
der Annahme ausgehen, daB alle #; nahezu gleich sind. Mit einem plausiblen
Wert fiir 7 (bei normalen Planetoiden etwa 2.0 oder 2.5) geht man in die
Gleichungen (IX; 23) ein, die HERGET in der Form

(IX; 33)

(Xis) wo=pot PO (4 2230 g) oy
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schreibt, wo
T; T2
—po = Y. 12
? [3 ] 12 ’ q ’,3

gesetzt ist. Bequemer ist es, die geschlossenen Formeln

. _ sin(z/y7%) _ sin (p,Yg)
(1X; 35) n= sin (tz/]/ﬁ) " sin 13

zu benutzen, deren strenge Giiltigkeit fiir Kreisbahnen evident ist. Die Glei-
chungen (IX; 34) bzw. (IX; 23) geben die ersten Entwicklungsglieder dieser
Ausdriicke nach Potenzen von ¢ wieder.

HEerGET benutzt statt (IX; 35) die Funktionen

X sin (5, 14.) 3
( 3 ) 1 sin ,—qi qi 7‘3 ,

deren erste Entwicklungsglieder er auf dem Weg einer Interpolation der Vek-
torfunktion p (f) zwischen den Randwerten p, und p, unter Vernachlissigung
aller von der Bahnexzentrizitit abhdngigen Terme ableitet. Diese Formeln sind
fiir kreisahnliche Bahnen den Ausdriicken (IX; 34) gleichwertig, was die Giite
der Niherungen anbelangt. Dariiber hinaus haben sie den Vorteil, daBl nun-
mehr #, nur von 7,, #, nur von 7; abhingt; dadurch gelingt es, das Iterations-
verfahren betrichtlich abzukiirzen. Beginnt man die Hypothesenrechnung mit
irgendeinem 7, = 7, = 7, so erhilt man aus (IX; 35) die #;, mit denen man nach
(IX; 33) #, und %, berechnet. Dann folgen aus

(IX;37) 2= (14 Ui+ V] 22 — 2(UP; + V.Q)  + (PF+ QP

7, und 7, mit denen man nach (IX; 36) sofort verbesserte , erhilt.

Allerdings ist dieses Verfahren nicht streng, da die dynamischen Beziehungen
zwischen den #; und den Zwischenzeiten durch (IX; 36) nur gendhert aus-
gedriickt werden. Man gelangt aber auf diesem Weg — selbst wenn man mit
einem roh geschitzten » beginnt — sehr rasch zu so guten Naherungswerten fiir
die Dreiecksverhiltnisse, daB dann das Gauss-ENckEsche Verfahren iiber die
Verhiltnisse Sektor: Dreieck (in denen die dynamischen Zusammenhinge
ihren prizisen Ausdruck finden) meist in einem einzigen Schritt zum Ziel fiihrt.
Die dazu nétigen Formeln sind von C. VEITHEN und G.MERTON fiir die Arbeit
mit der Rechenmaschine zurechtgemacht worden:

Aus

. :
fs= P (vo — v)); nrecos2fy =117, (2008% f3 — 1) = ;% + N1V + 212

leitet man

I 1
775 C0S? fy = Y (%1% + MY+ 22+ 117] = ;"%
ab.
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~ Danach erhilt man zur Bestimmung des Verhiltnisses y; = Sektor : Dreieck
im Intervall (¢, ;) an Stelle der Formeln (VI; 59, 68)

2
7+ 75 1 T3
ls=——--—; ma::—- . h3_=

2Y2% 2 (V22 )"

L

- :
x5 gﬁ”a‘i"&‘l"z

und entsprechende Ausdriicke fiir die Intervalle (%, ;) und (%, %) durch Ver-
tauschung der Indizes. Die y, leitet man am bequemsten (und meistens auch mit
hinreichender Genauigkeit) mit Hilfe des HaNsENschen Kettenbruchs ab. Die
Hypothesenrechnung ist abgeschlossen, wenn die Ausdriicke

U1 Y T3 Y2
IX; 38 M=t gy =202
( ) ! T2 N 3 T2 Vs

nach der letzten Verbesserung der 7, unverdndert geblieben sind.

82. Die Bahnbestimmung nach BAZENOW

Die Methode von Gauss-ENCKE hat im Laufe der Zeit noch zahlreiche Va-
rianten erfahren, die jedoch an dem Prinzip und an dem der Losung zugrunde-
liegenden Gedankengang nichts Wesentliches geindert haben. Bemerkenswert
ist, daB das Verfahren immer darauf abzielt, zwei GréBen (g,, g, oder 7,, 7, oder
%y, %3) zu bestimmen, durch die man die Schnittpunkte zwischen der Bahn-
ebene und den beiden von den Erdértern E;, E5 nach den entsprechenden
Planetenértern P;, P, fithrenden und aus den Beobachtungen bekannten Vi-
sierlinien festlegt. Wenn diese Geraden die Ebene unter sehr kleinen Winkeln
schneiden, wird die rdumliche Lage von P;, P; unsicher, d.h., die obengenann-
ten GroBenpaare lassen sich aus ihren Bestimmungsgleichungen, deren Deter-
minante klein ist, nur mit geringem Genauigkeitsgrad ableiten. Dagegen ist die
Lage der Bahnebene meistens auch in solchen Fillen, in denen das Problem
selbst unlosbar ist (z.B. wenn die drei Orter in der Ekliptik liegen), scharf de-
finiert. -

Es liegt daher nahe, die Bestimmung der Lagekoordinaten der Bahnebene in
den Vordergrund zu riicken, also anstatt der GréBen g,, g5 oder der kurtierten
Distanzen g, = g, cos f, oder anderer in ungiinstigen Fillen unscharf bestimm-
barer GroBenpaare die Winkel 7, §U oder besser noch die Funktionen

(IX; 39) f=tgicos t; g=tgisinf

als Hauptunbekannte einzufiihren. Dieser interessante Versuch ist von G.Ba-
ZENOW!) unternommen worden.

1) Astron. Nachr. 234, 427 (1929).

27 Stumbﬂ', Himmelsmechanik
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Es seien fiir irgendeine Zeit ¢ im System der Ekliptik die Koordinaten (IX; g)
gegeben — die GroBen &, 7, { und X, Y, (Z = o) mogen sich auf die Ekliptik und
den locus fictus beziehen. Setzt man dann

x=(-X, y=9-Y, z2=¢,
so erhilt man nach (IV; 14)
7 cos u =(E—X)cos & + (p— Y)sin ,
r sinwcosi = (p — Y)cos & — (£ — X) sin ,
r sinu sins = {
oder, wenn man, wie in Abschn. 74,

C=%=ctgﬁc051; S=g-=cigﬂsinl

7 cosu = {(Ccos §& + Ssin ) — (X cos L + Y sin ),
(IX;40) 7 sinwucosi = {(Scos§ — Csin ) — (Y cos §& — X sin ),

einfiihrt,

7 sinu sings = {.
Dividiert man die zweite Gleichung (IX; 40) durch die dritte, so ergibt sich

I

ctgs = (Scos & — Csin ) C(YcosSl—XsinSl)

oder, wenn man mit tg ¢ multipliziert und die Abkiirzungen (IX; 39) benutzt,
1

1= (Sf — Cg) C(Yf—Xg),
d.h.
. _ Xe—-Yf
(IX; 41) t= 5

Setzt man (IX; 41) in die ersten beiden Gleichungen (IX; 40) ein, und be-

riicksichtigt man, dafl
fcos §L 4+ gsin L = tg¢

fsin§l —gcos & =o,
so folgt nach einfacher Rechnung, mitQ = SX — CY,
_ Qtgi — (Xcos & + Ysin )

rYCcosu =

1—Sf+ Cg ’
IX; 42
(1X; 42) , sing — X sin §& — Y cos §U
T 1-Sf+Cg

Das sind die Grundgleichungen, auf denen die Methode beruht.
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Fiir die Zeitpunkte £, #,, ¢, sind die doppelten Inhalte der Dreiecksflichen
gleich den Betrigen der Ausdriicke
Ay = #a7y sin (ug — uy),
Ay = 737y sin (uy — u),
Ay = 77, 8in (uy — o),
die durch zyklische Vertauschung der Indices auseinander hervorgehen. Setzt
man (IX; 42) ein, so ergibt sich, wenn unter der Indexfolge 7, {, & eine der drei
zyklischen Permutationen von 1, 2, 3 verstanden wird, nach leichter Umfor-

mung
4i(x = S;f + Cig) (1 — Spf + Cug) = Dysecs (1 — wf + 7:8),

wo zur Abkiirzung
D;=X;Y, — X;Y,;; Dy, =0Q,;Y; — Q:Y;; D= Q;Xk — Qe X;

gesetzt worden ist. Die Betrage der D, sind dabei die doppelten Inhalte der von
den Erdértern E;, E; gebildeten Dreiecksflichen. Setzen wir daher, wie schon
friiher,

D. 1. Aa

-1 gy=—_2 D,
Dzy 3 — Ag’

Ny = ——=
3 ‘D2 ’
(wobei man bedenken mége, daB 4, und D, negativ sind), so stellen die GréBen
S S ]
TN RTH,
die Quotienten zwischen den Dreiecksverhiltnissen der Planetenbahn und den
entsprechenden der Erdbahn dar, und es gelten die Beziehungen

&(1 — Sof + Cog) (1 — pof + 728) = (1 — Sif + Cyg) (1 — af + mg),
& (1 — Sof + Cog) (T — pof + v28) = (1 — Syf + Cyg) (T — usf + %58),
die auf zwei quadratische Gleichungen fiir f und g von der Form
aff+ bfg+ g+ dif+eg+k=o,
ayf? + byfg + 38 + dsf + &3 + by =0

fithren. Multipliziert man diese Gleichungen mit 4, bzw. — @, und addiert sie,
so erhilt man eine weitere Gleichung von der Form

bofg + Cog® + dof + e3¢ + By = 0,
Gt g+ by
bog + d

folgt. Setzt man dies in eine der beiden Gleichungen (IX; 43) ein, so entsteht
eine Gleichung vierten Grades fiir g, die in dieser Methode die Stelle der GAuss-

27*

(IX; 43)

aus der

(IX; 44) f=
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schen Gleichung bzw. der LAGRANGEschen Gleichung achten Grades vertritt,
und deren Auflssung durch Niherungsrechnung keine gro8en Schwierigkeiten
macht, zumal bei Planetoidenbahnen, wo f und g gew6hnlich klein sind. Ist
g gefunden, ergibt sich f aus (IX; 44).

Man beginnt die Hypothesenrechnung, indem man #;, #; mit einem geschitz-
ten 7, nach der Enckeschen Formel (IX; 19) berechnet, bestimmt dann, wie
eben geschildert, / und g, womit gendherte Werte 4, §i bekannt sind. Aus
(IX; 42) folgen dann fiir die drei Orter die 7,, die Argumente der Breite %, und
damit auch die Differenzen #; — u; = v; — v, der wahren Anomalien. Mit
Hilfe dieser GroBen lassen sich aber die Verhiltnisse Sektor : Dreieck berech-
nen, worauf nach (IX; 38) neue #, folgen, mit denen man die Rechnung wieder-
holt.

Bazenow fiihrt diese hiibsche Methode, deren Ausfiihrung hier nur skizziert
werden sollte, etwas anders durch, indem er aus (IX; 43) die konstanten Glieder

eliminiert und dann eine Gleichung vierten Grades fiir 1 = tg §) aufstellt, Der

oben beschriebene Weg ist aber vorzuziehen, da bei kleinen Neigungen die
Knotenlinge unsicher bestimmbar wird, wihrend die GroBen f und g, die dann’
beide klein sind, in jedem Fall mit hinreichender Schirfe berechnet werden
konnen.

83. Bestimmung einer Kreisbahn

Sind von einem neu entdeckten Planetoiden nur zwei vollstindige Beobach-
tungen ay, d;; «p, 0, verfiigbar, so ist die Bestimmung einer elliptischen Bahn
unméglich. Man muB sich dann damit begniigen, eine Kreisbahn zu bestimmen,
die die beiden Beobachtungen befriedigt. Das gelingt im allgemeinen, da
eine Kreisbahn durch vier unabhingige Elemente [4, §, , % (t,)] charakterisiert
ist. In vielen Fillen wird die auf Grund einer solchen provisorischen Bahn be-
rechnete Ephemeride die Wiederauffindung des Objekts und dann, mit Hilfe
weiterer Beobachtungsdaten, die Berechnung elliptischer Bahnelemente er-
moglichen.

Fiihren wir fiir die Zeiten ¢,, £, die Vektoren p,, q;, 8, (¢ = 1, 2) nach (IX; )
ein, und seien

9 = @i

die topozentrischen Ortsvektoren des Planeten, wo
i;(cos d; cos @;; cos §;sinay; sin §y)

die Einheitsvektoren in der Richtung vom Beobachtungsort zum Planeten im.
Aquatorsystem bedeuten, ferner X,, Y;, Z; als Koordinaten der Vektoren 8, die
wegen der téglichen Parallaxe verbesserten Sonnenkoordinaten, so ist

=0l — 3
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und, da fiir eine Kreisbahn |pi| = a = const,

Ly — U
(pype) = a2 cos (uy — %,) = a%|1 — 2sin% 2 - Y —

= (0111 — 81) (ele — %) = @102 (ixis) — 01(1132) — 02(1231) + (8:5,)-

Es besteht also die geometrische Beziehung

. oYy — U I .. , .
(IX; 45) sz% = %& (@ — 0105 (i11) + 01(1132) + €2(1281) — (1321,

wihrend die dynamische Bedingung aus dem Flichensatz (bzw. der fir e = o
genommenen KepLERschen Gleichung)

T
IX; 46 Uy — Uy = —
( 4) 2 1 ]/F

folgt. SchlieBlich ist, mit (3,8;) = R?,
(pep)) = a® = of — 2¢,(1,3,) + R},

also der Zusammenhang zwischen a und den g, durch

(IX; 47) 0, = (13) = V(i£§‘)2 + a® — R}

gegeben. Bei Planetoiden, die immer in der Nihe der Opposition beobachtet
werden, ist (i;8,) negativ, denn es ist dieses skalare Produkt dem Cosinus des
Winkels zwischen den scheinbaren Ortern des Planeten und der Sonne propor-
tional, der in diesem Fall immer > go° ist. Es ist demnach, da g, >o0, das posi-
tive Vorzeichen der Quadratwurzel zu wihlen. '

Die Hypothesenrechnung wird so durchgefiihrt, daB man mit einem plau-
siblen Wert fiir a die g, aus (IX; 47), sodann #, — %, sowohl aus der geome-
trischen Beziehung (IX; 45) als auch aus der dynamischen Gleichung (IX; 46)
berechnet. Die Differenz

d = (3 — y)geom. — (%2 — %y)ayn.

wird dann durch Variation von @ zum Verschwinden gebracht.

Die Ableitung der Elemente ist einfach, nachdem aus der letzten Hypothese
a, o;, #; — u, endgiiltig bekannt geworden sind. Nach Abschn. 33 sind die
rechtwinkligen Koordinaten im Aquatorsystem durch die Gaussschen Glei-
chungen

%, = @, cos §; cos a; = a (p, cos u; + g, sinu;),

(IX; 48) i = 04 €0 0; sin a; = a (p, cos u, + g, sin u;),

2, = p;sin 0 =a cos u; + q, sin #;
i 1 3 z (4 z
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darstellbar, wobei die Konstanten ¢, ... ¢, durch (IV; 18) als Funktionen von

1, §b und der Schiefe der Ekliptik ¢ gegeben sind. Setzt manu = u (f) = tat

L+ 1
2

als das zum Zeitpunkt ¢, = gehorende Argument der Breite an (in der

Kreisbewegung l4uft ja # der Zeit proportional), so kann man

x1=a[pxcos(u S ul) + q,sin(u - 1‘2—_“1”,

2 2

X =a [7), cos (u + %2%“1) + ¢, sin (u 42 ; ul)]
schreiben und daraus

I . Uy — U
Z(x1-|— %y) = a (p,cos u + ¢, sinu) coszT,

uz—‘ul

1 . .
P (% — %) = a (g, cos u — P, sin %) sin
oder

. 1 Uy — U
P,=p,cosu + q,smu:z—a(xl—l— %) sec = . L

(IX; 49) L .
Q, =g cosu — p,sinu = 72 (%2 — %) cosec—z—z—--l

ableiten. Entsprechende Formeln gelten fiir y und z. Da nun aus (IX; 48) die
%;, ¥, 2; bekannt sind, liefern (IX; 49) die GroBen P,, ... Q,. Aus (IX; 49)
und (IV; 18) leitet man aber leicht die Gleichungen

sinisinu = P,cos¢ — P,sine; sin § = (P, cosu — Q, sin ) sec ¢;
sinécosu = Q,cos e — Q,sing; cos §& = P,cosu — Q,sinu

ab, aus denen 4, §¢, % (%)) bestimmt werden kénnen. Als Rechenkontrolle dienen
die Beziehungen

P.Q.+ P,Q,+ P,Q,=0; P,sinu+ Q,cosu = —coszsin .

Eine andere Moglichkeit, die Elemente abzuleiten, ergibt sich folgender-
maBen, Schreibt man

xz = xlF + :tIG; y2.= ylF + glG; 22 = le + Z'IG,

so ist fiir Kreisbahnen nach (VII; 14) wegenn = ¢ =o

F = cos t]/,;;’ ]/,EG = sin t}/;;,
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wenn t = k(f, — ¢)und p = % gesetzt wird. Man findet demnach, wenn z und

nach (IX; 48) die rechtwinkligen Koordinaten der beiden Orter bekannt sind,

i _ xz - xl COos t}/;
! sin ‘[]/[7

und entsprechende Formeln fiir g, 2. Dann erhilt man nach (V;7), da hier
p=a,

Va cosi =219 — N1 %1,
]/; sinssin & = y1%, — 28,
—7Va sinicos §& = 2%, — =,

zur Bestimmung von 7, §l; auBerdem ergibt sich @ als Kontrollwert. Nach
(IV; 14) ist schlieBlich

a cos u, = %, cos § + y,sin §,
a sin u; cos ¢ = ¥, cos §& — x,sin §Y,
asinu, sint = z,

woraus #, als Abstand des Ortes P; vom aufsteigenden Knoten folgt, auBerdem
a und ¢ nochmals zur Kontrolle.

84. Bestimmung einer Parabelbahn. Methode von OLBERS

Bei Kometen wird man eine vorliufige Bahnbestimmung meist unter der An-
nahme durchfiihren, daB es sich um eine Parabelbahn handelt. In der Nihe des
Perihels, in der sich Kometen zur Zeit der Entdeckung meist aufhalten, unter-
scheidet sich eine stark exzentrische Ellipse so wenig von einer Parabel, da8 die
Darstellung der ersten Beobachtungen des Objekts, die meist nur einen kurzen
Bahnbogen iiberspannen, durch eine Parabelbahn fast immer befriedigend ist.
Dieses Verfahren ist um so mehr gerechtfertigt, als die beobachteten Orter in-
folge des verwaschenen Aussehens der Kometen merklich unschirfer definiert
sind als die von Planetoiden. Man wird daher bei der Bestimmung von Kome-
tenbahnen aus den ersten Beobachtungen nach der Entdeckung nicht nur von
der vereinfachenden Annahme ¢ = 1 Gebrauch machen, sondern auch die klei-
nen Korrektionen wegen téglicher Parallaxe und Lichtzeit vernachlissigen diir-
fen, da diese weit innerhalb der durch die Unsicherheit der Beobachtungs-
daten gesetzten Grenzen liegen. Aus denselben Griinden wird man solche Bahn-
bestimmungen auch meist mit fiinfstelliger Rechnung durchfiihren, wihrend
bei der Berechnung von Planetoidenbahnen sechs- oder siebenstellige Rech-
nung angebracht ist.
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Eine Parabel ist durch fiinf Elemente (7, §, w, ¢, T) bestimmt; es reichen
also auch fiinf unabhingige Beobachtungsdaten zu deren Ableitung aus. Man
kann dieser Besonderheit dadurch Rechnung tragen, da8 man etwa von der
mittleren der drei Beobachtungen nur die Rektaszension o, oder die Deklina-
tion 4, heranzieht, oder daB man statt a, und d, nur eine Funktion dieser beiden
Werte benutzt. So benutzt WILKENS in seiner Methode (Abschn. 74), wenn es
sich um die Bestimmung einer Parabelbahn handelt, von den beiden Funk-
tionen C,, S, der Koordinaten des mittleren Orts nur die eine, oder er fiihrt

(Abschn. 75) statt ihrer den Quotienten U, = % = tg a, ein. Es bleibt also von
2

sechs verfiigbaren unabhingigen Gr6Ben eine unbenutzt. Sie dient nach be-
endeter Bahnrechnung als Kontrolle: Wenn sie durch die aus den iibrigen fiinf
GroBen errechnete Bahn nicht dargestellt wird, der Fehler Beobachtung minus
Rechnung also gréBer ist, als die Genauigkeit der beobachteten Orter erwarten
148t, so wird die hypothetische Voraussetzung einer Parabelbahn als unzurei-
chend aufgegeben und eine nichtparabolische Lésung unter Verwendung aller
sechs Daten versucht werden miissen.

Die klassische Methode der Bestimmung einer Parabelbahn durch W. OLBERS,
deren Gedankengang hier beschrieben werden soll, ist von Gauss und ENCKE
in einigen Einzelheiten verbessert, neuerdings von T.BANACHIEWICZ und an-
deren in eine fiir das Maschinenrechnen bequemere Form gebracht worden.

Ausgangsbasis der OLBERSschen Analyse bildet die Gleichung (IX; 16), die
man in der Form

(IX; 50) o =Mo+m

schreiben kann, wenn man an Stelle der kurtierten Distanzen o, = p; cos f§, die
Distanzen g, selbst wieder einfiihrt. Es gelten dann die Formeln des Abschn. 79
unverindert, wenn man g, statt o, setzt und unter i, die Einheitsvektoren

i; (cos B; cos 4;; cos f;sin 4;; sin f;)

versteht, die von den Erdértern zu den Kometenértern fithren. Dabei ist M
durch

7y (i3123,) T
IX; 51 M= 12122 5 1K
( ) 7y (iz133,) T3

darstellbar, also angendhert dem Verhiltnis der Zwischenzeiten proportional,
wihrend der Faktor K eine bekannte GréBe ist. Ferner ist

N\ (5,51) n N
Xis)  om— (2o QB (m R,
( ) ng Nyl (izi35,) ng N

verschwindend klein, denn ebenso wie die Dreiecksverhiltnisse der Kometen-
bahn sind auch die der Erdbahn den Zwischenzeiten angenihert proportional,
so daB die Quotienten #,/n; und N,/N; bis auf Terme héherer Ordnung ein-
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ander gleich sind. Man darf daher in erster Ndherung
(IX; 53) 6=Mo

setzen.
DaB man hier, im Gegensatz zu den Methoden der Bahnbestimmung ohne

Voraussetzungen iiber die Exzentrizitit, die grobe Niherung — ! A verwen-

den darf, liegt daran, daB die Gleichung (IX; 53) nicht dazu verwendet wird,
um die dynamischen Beziehungen zwischen den Ortern zum Ausdruck zu brin-
gen. Zu diesem Zwecke stehen hier andere Gleichungen zur Verfiigung, die fiir
die Parabelbewegung streng giiltig sind. In der Methode von OLBERs dient als
dynamische Bedingung die EuLeErsche Gleichung (VI; 13)

<«

3
(IX; 54) 61, =(n+7+5)> — (n+7r—>9)>
Im System der Ekliptik seien nun wieder
Pilxe ¥, 2)s 6= @ili; 8,(X,, Yy, 0)

die Vektoren, die den heliozentrischen Ort des Kometen und die topozen-
trischen (bzw. die auf den locus fictus bezogenen) Orter des Kometen und der
Sonne bestimmen. Dann gilt

Pi=q; — 4.

Ferner sind die Quadrate der Kometenabstinde von der Sonne und der zwischen
den beiden duBeren Kometendrtern ausgespannten Sehne
(IX; 55) i = of — 20,(,3) + R},

’ = (0 — P = (@sfs — €11y — 85 + 8"

Setzt man nun nach (IX; 53) gy = Mg,, was in dieser geometrischen Formel
als Ndherung, und in den meisten Fillen auch endgiiltig, ausreicht, so ergeben
sich 72, 72, s? als quadratische Funktionen von g, allein, die man leicht in der

Form
=+ h*+4

(IX; 56) 73 = M?*[(o, + f5)2 + ),
st = Bl(ey+ 1)+ 2]

schreiben kann, Dabei sind f,, l;; f5, &s; f, } und 4 gewisse Funktionen bekannter
GroBen, deren explizite Wiedergabe hier nicht erforderlich ist. Fithrt man nun
die drei Winkel &,, 8;, # durch

(IX; 57) tgﬂ1=gl—l|;fl; tg?93=.gl-l:f3; tgz?:gl_;'_f
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ein, so folgt aus (IX; 56)

(IX; 58) ry=1lsecd; 7y =Mlysecd,
und
(IX; 59) s = hlsec?.

Der Wert (IX; 59) fiir die Sehnenlinge stammt aus der geometrischen Be-
ziehung (IX; 55). Zu einem dynamisch bedingten s, das mit diesem geome-
trischen in Einklang gebracht werden muB, verhilft dann die EuLERsche Glei-
chung (IX; 54). Aus ihr ergibt sich

m= ) (I+"1+73) B (I—’l""’a)

= ¢ setzt und die Ausdriicke in der eckigen Klammer

oder, wenn man

entwickelt, nT
3
-5 I I
2‘52(71-}- ) —?]—S(I——z—4'2—'l—28—84 ">.
Kehrt man diese Potenzreihe um, so erhilt man
I 5 s
e=nl1+ —n?
"( + 24" + 384’7 - ) ntr

und damit s = 5 (r,+ 73) - u (%%, wo
2) — X
pof) =1+ - n + 384n +

leicht mit dem stets kleinen Argument #? tabuliert werden kann. Fiir s folgen
demnach die beiden Ausdriicke
Sgeom. = hlsecd;

(IX; 60) Sayn. = 11y + 7)) pl) mit = —25

» dyn. = N7 s) L\ n—(’,l_l_rs)a‘

Die Hypothesenrechnung 148t sich nun auf zwei verschiedene Arten durch-
fithren:

1. Man beginnt mit einem geschidtzten Wert fiir 7, + 7,; bei Kometen z.Z. der
Entdeckung wird die Schitzung #; + 7, = 2 selten allzusehr von der Wahrheit
abweichen. Geht man hiermit in die zweite Gleichung (IX; 60) ein, so erhilt
man den dynamischen Wert von s. Mit ihm berechnet man & aus (IX; 59), so-
dann g, aus der letzten: Gleichung (IX; 57), 9, und &, aus den ersten beiden
Gleichungen (IX; 57), schlieBlich 7, und 7, aus (IX; 58), worauf die Rechnung
wiederholt wird. Das Niherungsverfahren ist abgeschlossen, wenn sich & nicht
mehr dndert und daher sgeom, = Sayn, ist.



Bestimmung einer Parabelbahn. Methode von OLBERs 427

2. Man berechnet mit einer plausiblen Annahme iiber g, (etwa g, = 1) nach-
einander &, &5, ¢ aus (IX; 57),7, 7, aus (IX; 58) und schlieBlich die beiden
Werte fiir s aus (IX; 60) und sorgt dann durch Variation des Anfangswertes
dafiir, daB beide s iibereinstimmen.

In den Konstanten der Gleichung (IX; 56) sind von den sphérischen Koordi-
naten des Kometen nur die des ersten und des dritten Ortes enthalten, wihrend
M (und ebenfalls #) auch von denen des mittleren Ortes abhédngen. Es 148t sich
nun zeigen, daB die am Beginn dieses Abschnitts gestellte Forderung erfiillt ist,
daB nédmlich nicht beide Koordinaten des mittleren Ortes in die Rechnung ein-
gehen, sondern nur eine Funktion beider.

Durch Ausfithrung der Operationen (IX; 51, 52) erhidlt man nach Auflésung
der durch die gemischten Produkte dargestellten Determinanten

_ Cos B g Bysin (A, — Ly) — tg By sin (4, — Ly)
cosfy tgfysin (A3 — Ly) — tg fysin (A — Ly)’
_ I R;sin (L, — L)) tgfe
cosfy tgPysin (1, — Ly) — tgfysin (43 — Lg)
Diese beiden Ausdriicke lassen sich aber in der Form

_ tg B . .
tg]i_ Sin(li—Lz) (1"—1’2:3)»

K Cospisin(h —Ly) tg], —tg ],
cos fysin (A3 — Ly) tgla—tg s’
_ Rl Sin (L2 h Ll) . tg ]2
cos fysin (43 — Ly) tg ]y — tg ],

schreiben, aus der ersichtlich ist, daB K und % bzw. M und m von 4,, ff, nur inso-
fern abhingen, als in ihnen die GréBe

. _ tg B,
(IX; 61) tg .= e (____—12 ~ 1)

erscheint. Das bedeutet aber folgendes: Seien K, der Ort des Kometen und
S, (auf der Ekliptik) der Ort der Sonne z.Z. der mittleren Beobachtung, dann
gilt fiir den Neigungswinkel ], des GroBtkreises S, K, gegen die Ekliptik eben die
Formel (IX; 61). Diese Beziehung erfiillen aber, auBer den Koordinaten von
K,, auch die Koordinaten jedes anderen auf diesem GroBtkreise liegenden
Punktes. Der Ort K, wird also bei der Bahnbestimmung nur insofern heran-
gezogen, als die Tatsache benutzt wird, daB er jenem Kreise angehort.!)

1) In der klassischen Literatur werden meistens statt der Sonnenlingen die von
ihnen um 180° verschiedenen heliozentrischen Lingen der Erde (des locus fictus)
benutzt. Bezeichnet man diese mit L;, so dndert sich in dem obigen Formelsystem
nur das Vorzeichen von &.
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Die Niherungswerte m =0, M = K % bediirfen bei ersten Bahnbestim-
3
mungen von Kometen selten einer Verbesserung. Bei gréBeren Zwischenzeiten —
besonders wenn diese auch noch stark verschieden sind - ist es jedoch notig,
strengere Ausdriicke einzufiihren, d.h. das Dreiecksverhiltnis

h_4a.¥%

Hg 3 N

durch Bestimmung der Verhiltnisse Sektor : Dreieck zu korrigieren, wobei man
die fiir Parabelbahnen giiltige einfache Formel (VI; 80) verwendet. Zu diesem
Zweck benétigt man neben 7; und 7; auch einen Wert fiir 7,, den man mit hin-
reichender Genauigkeit aus (IX; 24)

TaTy = 1171+ 7373

erhilt. Ist dies geschehen und sind M und m neu bestimmt, so kann man mit
m
0= el(M + —) = o M*
(51

die Analyse unter Verwendung des gleichen Formelsatzes wiederholen. Der in
der Klammer auftretende Ausdruck - wird dabei (wegen des sehr kleinen m)

1
geniigend genau mit dem aus der vorangegangenen Rechnung bekannten Nihe-
rungswert g, berechnet.

Eine Kontrolle der Rechnung erzielt man, indem man die Koordinaten des
mittleren Ortes mit Hilfe der nach AbschluB des Verfahrens erhaltenen Bahn-
elemente ableitet und mit den beobachteten vergleicht. Die Bahnrechnung
selbst ist in Ordnung, wenn die Funktion (IX; 61) mit den berechneten Koordi-
naten 4,, f, innerhalb der Rechengenauigkeit den gleichen Wert ergibt wie mit
den beobachteten. Bestehen dariiber hinaus noch fiithlbare Abweichungen in
den Werten 1, und §, selbst, so ist die Annahme einer Parabelbahn unzulissig
gewesen, und man muB die Bahnbestimmung ohne Voraussetzung iiber die
Exzentrizitit nach einem der frither geschilderten Verfahren wiederholen.

85. Bahnbestimmung aus vier Ortern

In jenem Ausnahmefall, daB alle Orter des Himmelskérpers in der Ekliptik
liegen, sind, da die Neigung (: = o) und die Knotenlinge entfallen, nur noch
vier Elemente zu bestimmen. Es sind also, da die ekliptikalen Breiten alle null
sind, vier ekliptikale Langen 4, zur Festlegung der Bahn nétig. Man wird aber
auch dann, wenn die Neigung der Bahn gegen die Ekliptik zwar nicht ver-
schwindet, aber klein ist, vier Beobachtungen brauchen, da dann das Problem
aus drei Beobachtungen, wie schon im Abschn. 73 festgestellt wurde, nur un-
genau losbar ist. Man wird dann acht Daten zur Bestimmung der sechs
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Bahnelemente zur Verfiigung haben — von den vier ekliptikalen Breiten, die
sdmtlich klein sind, wird man also nur zwei brauchen. In der nachfolgend be-
schriebenen Methode werden statt dessen von den vier Breiten nur die Cosinus
verwendet, die sich von eins nur wenig unterscheiden. Diese Methode ist von
A.BerBERICH auf eine Form gebracht worden, die sich in der Praxis bewahrt
hat. J.BauscHINGER hat ihr einige Verbesserungen hinzugefiigt, wihrend
C.VeITHEN ihr die auch dem Folgenden zugrundeliegende Gestalt gegeben hat,
die fiir das Maschinenrechnen besonders geeignet ist.

Von den Verhiltnissen der Inhalte der zwischen den vier Planetendrtern
moglichen sechs Dreiecke werden die folgenden vier benutzt, nimlich

_ [pehd] B (LY IO % ) R L J

T b T b T Tkl T e

Es bestehen dann, entsprechend (IX; 10), die beiden Vektorgleichungen

51

MGy — Qo+ %4 Gs = 13y — 8 + my3y,
30y — Qg+ R0y = %3, — 33+ 7,5,
oder, wenn wir, wie in Abschn. 84,
6 = ol
setzen und unter den i, die Einheitsvektoren mit den Koordinaten

cos f; cos 4;, cosf,sin i, sinf;
verstehen,

(IX; 62) n191i1 - @ziz + n4@4i4 = ”151 — 62 + n4§4'

M1018; — Qaly + My04ly = 7,8 — 3 + 7,3,

Das sind also sechs skalare Gleichungen, in denen aufBler den vier Distanzen g,
noch die vier Dreiecksverhiltnisse als unbekannte GroBen auftreten. Multipli-
ziert man die Gleichungen (IX; 62) vektoriell mit i, bzw. i3, dann skalar mit
dem Einheitsvektor e, der nach dem Nordpol der Ekliptik zeigt, so daB z.B.

o o I
(e[iyis)) = (eiyiy) = | cos 4, sin 4, tg B, | cos B, cos B,
cos 1, sin A, tg f,

= cos fy cos By sin (A3 — 4y)

und ebenso auch die iibrigen gemischten Produkte von den Sinus der Breiten
des Planeten und der Sonne unabhingig werden, so erhilt man

101 (elydy) — 7404 (elp1y) = 7y (e311) — (eBp1y) 4 74 (e841y),

7,0 (eiyly) — 404 (elgly) = 7, (eB,i5) — (eB415) + 7, (€3413).
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Zwischen g; und p, bestehen also zwei Gleichungen von der Form
4—A2‘—01+Bz—_+cz ‘I‘Dzr

(IX; 63)

Wenn man nun

fl=k(t4—t2), ‘[2=?2=k(t4—-t1), z4=k(t2—'tl);
L=kt — 1), Ta=kls —t)
setzt, so erhilt man nach (IX; 25)

4 4t t+ w) 117y 7 ]
)

"= T2 [I 3 (rn+7)? A T2 ("1 + 7))t

n=2[1 4ubt ), utd - }
! Ty 3 (n+7)? T (14 74! ’
also
7 T T
L TP Y
4 Ty :
(IX; 64) N 4
2 172
— == === (1t + 1) — 4&n1y7
" T 3 (2 ) — 4énrT —
wenn
_ b ) _nh—n
5_("1""4)3’ K 7+ 7

gesetzt wird. Entsprechende Formeln ergeben sich fiir %; /%, und 1/#,, wenn man
die 7; durch die 7, ersetzt. Fithrt man diese ziemlich genauen Ausdriicke in die
Gleichungen (IX; 63) ein, so ergeben sich dynamische Zusammenhinge zwischen
01, 04 einerseits und 7, 7, andererseits. Daneben bestehen die geometrischen
Beziehungen (IX; 55)

7t =0} — 2410, + by,

(IX; 65)
i = 0% — 24,0, + bs.

Die Auflosung der Gleichungen (IX; 63; 65) erfolgt durch Versuche. Es wird
nur selten nétig sein, die Ausdriicke (IX; 64) noch mittels der Verhiltnisse
Sektor : Dreieck zu verbessern, wofiir nach Vorliegen von g,, g, und nach Be-
rechnung von g,, g5 aus (IX; 62) alle Vorbedingungen gegeben sind. Die Ab-
leitung der Bahnelemente erfolgt nach AbschluB der Niherungsrechnung aus
den Koordinaten der duBeren Orter.
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86. Bahnverbesserung durch Variation der geozentrischen Distanzen

Von denjenigen Methoden der Bahnverbesserung durch Beriicksichtigung wei-
terer Beobachtungsdaten, die sich auf das Gausssche Bahnbestimmungsprin-
zip stiitzen, zeichnet sich die der ,Variation der geozentrischen Distanzen
durch ihre Einfachheit besonders aus.

Bei der Bahnbestimmung aus Randwerten werden ja, wie gezeigt worden ist,
zwei Orter des Himmelskorpers im Raume festgelegt, indem man zu zwei durch
Beobachtung bekannten sphérischen Positionen a, dy; o, d, die zugehérigen
geozentrischen Distanzen g, g, ermittelt. Diese beiden geozentrischen Orter,
die man leicht in heliozentrische transformieren kann, ergeben dann, zusammen
mit der Zwischenzeit t = & (f; — #,), die Bahnelemente.

Die Methode der Variation der geozentrischen Distanzen beruht auf dem Ge-
danken, die beiden aus der ersten Bahnbestimmung folgenden Abstdnde g, o,
so abzuindern, daB die mit den verinderten Distanzen g, + dg,, 0, + 0g, ge-
rechneten Orter des Himmelskérpers, nétigenfalls nach Beriicksichtigung der
Stérungen, die Menge der beobachteten Positionen so gut wie moglich dar-
stellen — etwa so, daB die Quadratsumme der iibrigbleibenden Abweichungen
(Widerspriiche) moglichst klein wird (vgl. Abschn. 77).

Es seien a;, §; (¢ = 1, 2, ... %) die beobachteten Koordinaten zu den Zeiten £,
(wobei die Folge der Indices 7 nicht unbedingt eine zeitliche zu sein braucht),
und es seien?, , £, diejenigen beiden Zeitpunkte (etwa die beiden duBeren der drei
Zeiten, mit denen die erste Bahnbestimmung durchgefiihrt worden ist), die zu
den zu variierenden Abstinden g,, g, gehtren. Man berechne nun drei Elemen-
tensysteme, und zwar

1. das System E® mit g,, g,;
2. das System ED mit o, + Ag,, 0,;
3. das System EUID mit o,, g, + 4og,,

wo 4 ¢,, 4 ¢, zwei willkiirlich gewihlte kleine GréBen (etwa 49, = 4g,=0.001)
bedeuten. Die mit diesen Elementen berechneten sphirischen Koordinaten
all, §P; oD, §ID; MDD werden von den beobachteten mehr oder weniger
abweichen. Dagegen seien, wie schon erwihnt, o, + d¢,, g5 + ¢, die Distan-
zen, die dasjenige Elementensystem liefern, das die Beobachtungen im Sinne
der Methode der kleinsten Quadrate am befriedigendsten darstellt. Setzt man
nun
boy=x4¢;; b=y des,

so werden die Faktoren x und y die Unbekannten des Problems sein.

Solange man nun die Variationen dg,, dg, als differentielle Gr68en ansehen
darf (also als GroBen, deren Quadrate unter die Schwelle der Rechengenauig-
keit fallen), kann man irgendeine Funktion der Argumente g,, g, nach dem
TavLogrschen Satz in die Reihe

flout i e 90 = flewi 0 + 50+ 5 dou-+ -+



432 Bahnbestimmung der Himmelsk6rper nach dem Gaussschen Prinzip

entwickeln und Glieder héherer Ordnung vernachlissigen. Das gilt insbeson-
dere fiir «; und 4, als Funktionen der beiden Distanzen. Es ist dann

a;(01; 02) = ag),

da; o — oD da, oD — oD

’3_91 - 4o, ' 3_02 B de, '

und es gelten daher die Beziehungen

a — o = 2@ — o) + y @D — &),

8 — 8P = £(3 — oF) + y (8§ — 8,
aus denen x und y durch Ausgleichung zu bestimmen sind. Man hat dabei die
Gleichungen in «; noch mit den ,,Gewichten“ cos d, zu multiplizieren. Als
,» Widerspriiche®, deren Quadratsumme zu einem Minimum zu machen ist, wird
man nimlich die sphirischen Abstinde der berechneten Orter von den beob-
achteten wihlen miissen. Es ist aber (Abb. 60) in dem sphirischen Drejeck
zwischen dem Himmelsnordpol N und den beiden sehr dicht benachbarten

Ortern P, (beobachtet) und P, (berechnet) des Planeten oder Kometen nach
dem Cosinussatz der sphirischen Trigonometrie

cos ¢ = sin d, sin d, + cos &; cos §, cos (@ — @),
wenn ¢ den kleinen Abstand zwischen P, und P, bedeutet. Setzt man nun
., 0 s —
CoS0 =TI — 25m2—2—; cos (o — o) =1 — zsm‘~’—12—a°;
. a0 — 0
cos (0, — &) =1 — 251n2—1—2—,

so erhilt man leicht die Beziehung

é, — 6, 4 —
e S inz2 1 — %
5 1 cos 0, cos d, sin Pt

. 0 .
sin? — = sin?
2
-aus der, wenn man die Sinus der kleinen Winkel mit den Bégen vertauscht und
cos 0, cos §, = cos? J setzt,
0% = (0, — )% + (oy — )® cos?

folgt. Sind also A«, und 4 §, die Widerspriiche zwischen Beobachtung und Rech-
nung, so erfordert die Methode der kleinsten Quadrate, daB die Bedingung

1

0% = 3 [(Aet; cos 8)° + (4897 = Min.
=1 i=1
erfiillt wird.
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Die Methode der Variation der geozentrischen Distanzen in der hier geprig-
ten Form zeichnet sich dadurch aus, daB8 die Normalgleichungen nur zwei Un-
bekannte haben und daher leicht zu 16sen sind, wahrend die in Abschn. 77 be-
schriebene Methode der Bahnverbesserung auf
sechs (bzw. vier) Unbekannte fithrt. Diesem
Vorteil steht aber als Nachteil gegeniiber, da8
zur Berechnung der Widerspriiche die zeit-
raubende Ableitung der Bahnelemente und mit
deren Hilfe die Berechnung der Orter mehrfach
durchgefiihrt werden muB, wihrend bei den auf
dem Anfangswertprinzip beruhenden Methoden
die Orter auf einfachste Weise, ohne den Um-
weg iiber die Kegelschnittelemente, direkt nach
(V; 12) erhalten werden. Vorziige und Nachteile
beider Rechnungsarten stehen sich also gegen-
iiber, und es bleibt letzten Endes dem Geschmack
und der Gewohnheit des Rechners iiberlassen, Abb. 60.
welcher von beiden (und welcher der zahlreichen
Varianten, diein Lehrbiichern und Abhandlungen
zu finden sind) er den Vorzug geben will.

Abweichung des berechneten
vom beobachteten Planetenort.

87. Bahnbestimmung mit gleichzeitiger Berticksichtigung der Storungen

Als letzte Variante der nach dem Gaussschen Prinzip aufgebauten Bahn-
bestimmungsmethoden verdient hier noch die von B.NuMEROFF?) erwidhnt zu
werden. Sie unterscheidet sich von der iiberwiegenden Mehrzahl der anderen
Methoden dieser Art und natiirlich auch von der Gaussschen Methode selbst
dadurch, daB die Frage des Einflusses der Planetenstorungen nicht erst in einer
der ersten Bahnbestimmung folgenden Bahnverbesserung aufgeworfen, son-
dern bereits von vornherein in Betracht gezogen wird. Tatsédchlich spielen die
Stérungen, wie in Abschn. 78 gezeigt worden ist, schon bei Zwischenzeiten, wie
sie bei Bahnbestimmungen von Planetoiden gewohnlich vorkommen, eine merk-
liche Rolle: Das dort diskutierte Beispiel zeigt, daB bei einer Zwischenzeit von
58 Tagen die Koordinatenstérungen eines Planetoiden in dem sehr hiufig vor-
kommenden Sonnenabstand von 2.5 A.E. sechs Einheiten der fiinften Dezimale
erreichen, wenn der Planet in Konjunktion mit Jupiter steht. Auch bei einer
Zwischenzeit von 30 Tagen wiirde also diese (mit der zweiten Potenz der
Zwischenzeit wachsende) Stoérung immer noch rund 15 Einheiten der sechsten
Dezimale betragen. Damit ist gezeigt, daB eine Rechengenauigkeit von sechs
Dezimalstellen, wie sie bei Bahnbestimmungen von Planetoiden angestrebt
wird, sehr wohl zu falschen Vorstellungen iiber die Sicherheit der Resultate
fithren kann, wenn nicht die Stérungen mit einbezogen werden. Jedenfalls sind
die Fehler, die man begeht, wenn man in der Entwicklung der Koordinaten nach

1) Publ. Observ. Astrophys. Central de Russie 2, 188. Moskau 1923.

28 Stumpff, Himmelsmechanik
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Potenzen der Zwischenzeiten Glieder der 5. und 6.Ordnung vernachlissigt, be-
deutend geringer als diejenigen, die entstehen, wenn man die Einfliisse der
storenden Krifte auBer acht 148t.

Fiihrt man, wie in Abschn. 72, die GréBen?)

%t Y, _ .
U,= —xt IX, =tgay;
(¢=1,2,3)
2+ Z
(IX; 66) V¢=ﬁ = tg 0, sec a;;

P=Y,-UX; 0=2,—-VX

ein, so gelten zwischen den neun heliozentrischen Koordinaten x;, y,, 2, die
sechs linearen Gleichungen

(IX; 67) y=Ux; — Py; 2,=Vx — Q.

Zur vollstindigen Kenntnis der drei Orter fehlen also noch drei Gleichungen,
die durch die dynamischen Beziehungen zwischen den Positionen des Himmels-
korpers aufgestellt werden konnen. NUMEROFF leitet sie folgendermaBen ab:
Allgemein ist

z=a,+ &7+ a1+ ag3 + -+,

& = 2ay + 6ayt + 12044124 -+,

WO a,, a,, ... gewisse Koeffizienten bedeuten, in denen (mit Ausnahme von 4,)
auch Stérungsglieder enthalten sind. Setzt man, wenn drei Beobachtungen zu
den Zeiten ¢, t,, t, vorliegen, die Epoche auf den mittleren Ort (£, = o) fest, so
ist speziell

(IX; 68) Ty =Ty, 28y = I,
Ferner soll fiir die Zwischenzeiten

w==Fk{l—t); no==~Fk({t; —1)

ty — 1y, . . A .

gesetzt werden. Der Faktor n = ;——f ist speziell gleich der Einheit, wenn die
2 —h

Zwischenzeiten gleich sind. Fiir die TayLorsche Entwicklung der x-Koordinate

(fiir ¥ und z gilt entsprechendes) des ersten und dritten Ortes von #, aus

erhilt man dann

1) Wenn es die Umstinde verlangen, kdnnen die Funktionen U, V, P, Q auch
gemiB (VIII; 62) anders definiert werden. Der nachfolgend beschriebene Algorith-
mus ist dann entsprechend umzuformen.
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@ @D [

Ty =T — a0 + e — 4ot 4+ a0t + 6, ! I n
Ty=1Ty+ anw + anPw?+ agniew® 4+  antot + 4, 1
&y = & —ba;0 4+ 12040% &, | —n: | n
Iy = &, + 6ba3nw + 12a1n%0% + &, I I

wenn mit §;, & Restglieder von 5. und héherer Ordnung bezeichnet werden.

Multipliziert man diese Gleichungen mit den Faktoren (I) bis (III) und addjert,

so ergibt sich

(I) & — (x — n?) & — 02, = 6ayn(T + n) 0 — n2¢ + &,

() & —(1+n) &+ #& = 1204n(1 + n) 0* + ne; + &,

(III) 23 — (T + n) 2, + n2, = aynw? — agn (1 — #2) w? + ayn (1 + 73) Wi+
+ nd; + 6.

Setzt man dann die aus (IX; 68), (I) und (II) abgeleiteten Ausdriicke

I "
aQnw? = ;nwzxz,

a;n w? [£3 — (1 — n?) &, — n%%; + nPe — &),

w2
= 6(x+ »)
2
anwt = #_{:7)[:83 — X+ n) ZH+ ni —ne, — &)

in (III) ein, so entsteht die fiir die x-Koordinaten giiltige dynamische Beziehung
in Gestalt der Gleichung

2
23— (1 4+ n) 2+ n2 — %‘[”(I'l'”—”z)ﬁz‘l‘ (14 2) (1+ 31+ n?) & +
2

(IX; 69) + (02 m = 1) ) = mdy+ 8 — (1 — ) (WP — &) —

? . y
—1—2(1—”+”)("€1+€s)= x.

Entsprechende Formeln gelten fiir y und z.
In (IX; 69) sind die Entwicklungsglieder der 3. und 4.Ordnung, und zwar
einschlieBlich der in ihnen enthaltenen Stérungen, eliminiert worden, wihrend

23%
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die Stérungen der 2.Ordnung, als die Hauptstérungsterme, beriicksichtigt wer-
den, wenn man nach (VIII; 83) '
x R(x) %,

. . %, — % A
(IX; 70) t=-=3 pe mit R(x)=w2§m,(T—r—3)

setzt. Die Summe erstreckt sich iiber alle Planeten, deren Stérungen merklich
sind; bei ersten Bahnbestimmungen von Planetoiden geniigt es immer, sich auf
den von Jupiter (m, = 1/1047) herrithrenden Summanden zu beschrinken.

Der ,Rest” 4, auf der rechten Seite von (IX; 69) setzt sich also aus den
Entwicklungs- und Stérungsgliedern von der 5.0rdnung an zusammen. Man
kann diese Glieder in der Form

A = Z.o'Ata,w'
1=5

zusammenfassen. Aus

oo oo
o =2 (—1'aet, &=23 (-1 —1)a0?
i=5 i=5

8y = Dantot, &= 2i(l — 1) ani—2 ' 2
i=s i=5

erhilt man namlich
ndy + 0 = Ja,0t [n' + (— 1)t 2],
nk, — &= — il — I) a0~ [(nt"2 — (— 1)tn?,
ney+ &= Sili — 1) 4,00 (w2 + (— 1)in)

und daher, nach kurzer Rechnung,

it — 1)

d;=n+ (— 1)'n — -

(—1)tn(x+n—n®)+n"2n+n—1)].

Speziell ist firz =1

m=u+hnmb

it — 1)
iz |
d.h. 4, = o fiir ungerade Ordnungen . Bei gleichen Zwischenzeiten werden die
Reste 4 also erst in den geraden Ordnungen von der 6. ab bemerkbar.
Setzt man nun in (IX; 69) die Ausdriicke (IX; 70) ein, so erhilt man, wenn
als Abkiirzungen

(IX; 71)
,1-.”.“L2- a—1+”_”2 a__3n—n2—1 w4 n—1
e YT (x4 T 67 © BT Gam+ 1)
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eingefiihrt werden,

(X:72)  6,= 2

et 2 R )+ (0~ m) R + R (5] =

=x1(I_T_n+0‘111>—"2[I_(1_“2)12]+

+ x“(1+ aals).

Zwei weitere Gleichungen dieser Art erhilt man fiir die y und z, die man aber
mit Hilfe der Beziehungen (IX; 67) auf die x zuriickfiihren kann. Setzt man
voriibergehend

b= I + " ok fo=1—(1-a)l; f= + + a3dy,
Zo=xf; Pi=Pph; Q:=0h, (=123),
so erscheinen die drei Gleichungen
T — EH+ F=90,
(IX;73) Uy&, — UpZy + Uy = 8, + Py — P, + Py,

Vit — VaZy + Viy =6, + 61“ Q_z‘l‘ @.
als Grundgleichungen der NuMEROFFschen Methode. Sie enthalten auBer den
Arbeitsunbekannten #;, %,, x3 noch die Gré8en 4,, die den reziproken Kuben

der heliozentrischen Distanzen 7; proportional sind. Die Losung des Systems
ist immer méglich, wenn die Determinante

I I I
ViV V.

nicht verschwindet, und kann durch Iteration gewonnen werden, wenn man die
geometrischen Beziehungen (IX; 37)

(IX;74) 7= (14 UZ+ VE) — 2%, (U; Py + V,Qi) + (P + QF)
(t=17273)

benutzt. Man beginnt etwa mit der Hypothese 7, = 7, = 7, = 2.5 (oder irgend-
einem anderen plausiblen Wert), rechnet nach (IX; 73) geniherte x, und ver-
bessert mit ihnen die7; nach (IX;74). Dabei reicht es aus,in der ersten Hypo-
thesenrechnung é, = 8, = 8, = o zusetzen, und meistens geniigt es auch spiter,
die gendherten Ausdriicke

n " "
8, = ;Rz(x); 0y=—Ry(y); 0, = 5 ()
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statt (IX;72) zu gebrauchen. Hierbei sind nicht nur die gegen die Haupt-
stérungsglieder immer kleinen Reste 4, 4,,, 4, vernachléssigt, sondern es ist in

0, = %R2 (%) + %[‘ZIRI (") — 3Ry (%) 4 a5 Ry ()]

der Klammerausdruck gleich null gesetzt worden. Fiir » = 1 wird nimlich
I

1
G ==, = und daher

I
Ry — Ry + 3Ry = 5 (R — 2R, + Ry).

Der Klammerausdruck ist also (auch wenn die Zwischenzeiten nicht genau
gleich sind) von der GréBenordnung der zweiten Differenzen der Stérungs-
groBen, die immer sehr klein sind. '

Sind brauchbare Ausgangswerte fiir die heliozentrischen Distanzen nicht zu
erlangen oder handelt es sich um einen der Fille, in denen man mit dem Auf-
treten von Doppellésungen zu rechnen hat, 148t sich aus der Gleichung fiir x,,
die man aus (IX; 73) durch Elimination von x, und x, erhilt, und aus (IX; 74)
leicht die LAcraNGEsche Gleichung achten Grades fiir 7, herleiten, etwa indem
man zunichst alle 7, gleich groB annimmt und die 0 vernachlissigt. Form und
Losungen dieser Schliisselgleichung liefern dann sowohl die nétigen Informa-
tionen iiber Ein- oder Mehrdeutigkeit des Problems als auch einen geeigneten
Ausgangswert fiir das Iterationsverfahren.

Ein fiir die praktische Durchfithrung der Bahnbestimmung geeignetes For-
melschema 148t sich aus den Gleichungen (IX; 73) leicht ableiten und soll daher
hier nicht explizit angegeben werden, zumal der weitere Ausbau der Theorie
auf Uberlegungen fiihrt, die den Rahmen der im Band I dieses Werkes zu
behandelnden Themen iiberschreiten. Soist es z. B. genaugenommen nicht még-
lich, aus den drei heliozentrischen Ortern, die nach Abschlu8 der Hypothesen-
rechnung vorliegen, das System der Elemente einer oskulierenden Kegelschnitt-
bahn abzuleiten, weil es sich ja hier bereits um gestérte Orter handelt. NuME-
ROFF hat deshalb im AnschluB an die Methode der Bahnbestimmung ein Ver-
fahren entwickelt, ausgehend von diesen Ortern eine Ephemeride der gestérten
Bewegung des Himmelskérpers durch numerische Integration der Bewegungs-
gleichungen zu berechnen. Das interessante Verfahren, das er dabei entwickelt
und das in gewisser Hinsicht den aus der klassischen Astronomie bekannten
Methoden der speziellen Stérungsrechnung iiberlegen ist, wird mit diesen zu-
sammen im Band II gewiirdigt werden. Nachdem eine solche Ephemeride der
gestorten heliozentrischen Koordinaten berechnet ist, kann man die Koordi-
naten und jhre ersten Ableitungen nach der Zeit fiir irgendeine Epoche durch
Interpolation aus ihr entnehmen und diese GroBen zur Ableitung der oskulie-
renden Bahnelemente nach dem in Abschn. 39 entwickelten Verfahren ver-
wenden.



KAPITEL X

DAS ALLGEMEINE ZWEIKORPERPROBLEM

88. Zweikorperbewegung unter dem Einfluf beliebiger Zentralkrifte

Seit NEwToN sind viele Versuche unternommen worden, die Bewegung von
Massenpunkten zu diskutieren, die unter der Annahme verschiedener Kraft-
gesetze vor sich gehen wiirde. Schon NEwToN selbst hat in seinem grundlegen-
den Werk dieses Problem angeschnitten, und die Mathematiker des 18. und
19. Jh. haben den von ihm untersuchten Beispielen viele andere hinzugefiigt.
Obwohl das Problem vorwiegend mathematisches Interesse hat, ist es fiir die
Himmelsmechanik nicht ohne praktische Bedeutung. Vor allem sind es zwei
Sonderfille, in denen es wichtig ist, auBer dem NEwToONschen Gravitations-
gesetz noch andere Annahmen iiber die Abhingigkeit der Attraktionskraft von
der Entfernung » des bewegten Kérpers vom Attraktionszentrum zuzulassen.
In Abschn. 27 haben wir gefunden, daB ein Stern im Innern eines kugelf6r-
migen Sternhaufens sich nicht nach dem NewroNnschen Gesetz bewegt, son-
dern (wenn wir die Bewegung im statistischen Sinne betrachten, d.h., wenn wir
den Fall groBerer Anndherung an einzelne Individuen des Haufens ausschlieBen
und die Potentialfunktion als stetige Funktion des Abstandes vom Haufen-
mittelpunkt ansehen) unter dem EinfluB einer Zentralkraft, deren GroéBe
irgendeine von der Dichteverteilung der Massen im Haufen abhingige Funktion
ist und von der wir a priori nur aussagen kénnen, daB sie im Mittelpunkt des
Haufens verschwindet und an seiner Oberfliche in das NEwToNsche Gesetz
iibergeht. Bei konstanter Massendichte (eine Annahme, die praktisch nur im
Kern des Haufens annihernd verwirklicht sein wird) fanden wir, daB die Be-
wegung sich nach dem Kraftgesetz f(r) ~ 7 vollzieht; nach Abschn. z9 ist
dieses Gesetz auBer dem NEwTonschen f(¥) ~ 7~2 das einzige, das geschlossene
Ellipsen als allgemeine Bahnformen liefert. Der zweite Fall, in dem Abwei-
chungen vom NEwToNschen Gesetz eine Rolle in der Himmelsmechanik spie-
len, betrifft die Bewegung sonnennaher Planeten (Merkur!) auf Grund der all-
gemeinen Relativititstheorie.

Eigentlich gehoren auch noch jene Varianten der Zweikoérpertheorie hierher,
in denen die Anziehungskraft nicht nur vom Radiusvektor, sondern auch von
der riumlichen Richtung abhingt,in der sich, vom Zentralkérper aus gesehen,
der bewegte Massenpunkt befindet. Auch hieriiber sind Untersuchungen an-
gestellt worden, z.B. iiber den Fall einer ebenen Bewegung, bei der das Kraft-
gesetz die Form f(7, ¢) hat, wenn 7, ¢ die Polarkoordinaten in der Bahnebene
sind. Fiir die Himmelsmechanik sind diese mathematischen Probleme aber un-
interessant. Anders ist es, wenn rdumliche Bewegungen untersucht werden
sollen, die sich in einem Kraftfeld abspielen, dessen Potentialfunktion nicht
kugelsymmetrisch, sondern nur symmetrisch zu einer festen Achse im Raum
gestaltet ist. In Abschn. 28 haben wir gesehen, daB Potentialfunktionen dieser
Art das Kraftfeld eines abgeplatteten Himmelskorpers bestimmen: Die
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Niveauflichen der Potentialfunktion eines abgeplatteten Gestirns sind ellipsoid-
dhnliche Rotationsflichen; die zu diesen Flichen normalen Kraftvektoren
haben keinen gemeinsamen Schnittpunkt, und es handelt sich daher nicht um
Zentralkrifte, wenn auch die Abweichungen von der Zentralbewegung klein
sind und in groBerer Entfernung vom Zentralkérper unmerklich werden. Fiir
die Theorie des Mondes und der Satelliten dergroBen Planeten, insbesondere aber
fiir die Theorie der kiinstlichen Erdsatelliten hat dieses Problem auBerordent-
lich groBe Bedeutung. Es soll daher auch erst im Zusammenhang mit der
Theorie der Satelliten behandelt werden, und wir begniigen uns hier noch mit
der einfacheren Voraussetzung, daB die Potentialfunktion U bzw. das Kraft-
gesetz f(r) eine Funktion des Abstandes 7 allein ist.

Die Bewegung ist in diesem Fall eine Zentralbewegung, deren Differential-
gleichung in vektorieller Form

»

(X;1) b=—10) = tgradU()

lautet. Das Vorzeichen ist so zu wihlen, daB f(r) wesentlich positiv ist, wenn es
sich um attraktive Krifte handeln soll. Setzt man, wenn i, j, ¥ die Einheits-
vektoren in Richtung der positiven Achsen eines rechtwinkligen Koordinaten-
systems bedeuten,

P=xi+yi+zf,
1Y U au (dr . or . 0r
grad U = a i+ ay i+ Bz f——w‘(a—xl’l‘w]-l-m‘f),
so ist, da aus 72 = x2 4 9% 4 22
o _x o _y 0 _z
dx. v’ dy r' 09z 7
folgt,
au »p _|dU
grad U= —=-—2; f{)=|—7~|

Multipliziert man (X; 1) vektoriell mit p bzw. skalar mit §, so erhilt man

[p§] = + [pgrad U] = o,

%2 op = 1 peat) = £ @30 44 340 =zu.

In der zweiten Gleichung (X; 2) wird U = U (z, y, ?) als Funktion der Zeit
angesehen, insofern als der Ort p (z, y, 2) eine Funktion der Zeit ist. Dagegen ist
%[j = o, d.h., die Potentialfunktion selbst dndert sich nicht mit der Zeit. Das
ist durchaus nicht selbstverstindlich: Man kénnte z.B. annehmen, daB3 die
Masse des Zentralkorpers im Laufe der Zeit zu- oder abnimmt, etwa, daB die
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Sonne durch Aufsammeln interplanetarer Materie (Meteoriten) an Masse ge-
winnt oder durch Abstrahlung an Masse verliert.
Die Integration, von (X; 2) ergibt den Flichensatz

(X;3) (pp] =g =const; |g|=¢g
und den Energiesatz
(X; 4) (99) + 2U = % = const.

Der Flichensatz besagt, daB die Bewegung eben ist; er 18t sich mithin (mit
x =7 cos ¢, ¥y = 7 sin ¢ als Koordinaten) skalar in der Form

(X;5) 2y — y& =r?¢p = g = const

schreiben. Den Energiesatz erhilt man weniger einfach, aber ohne Vorzeichen-
schwierigkeiten, wenn man die zweite Gleichung (X; 2)

(95) = —0() (D) DE) = --10)

schreibt. Durch partielle Integration folgt dann

b I b
S 68 = ——00) p0) + - [B- (pp) dt + b
oder, da
. 4D dr
— 42 == .27
wp = 6=""-,
.. . . ad
(X;0) (Pp) =224 g2 = —r2@P(r) + 727‘#-'_ h.
Die Bahngleichung » = r(p) ist implizit durch die Differentialgleichung
(IT; 39)
. 12(5)
. - & . X
(X;7) 10 =% |+ 5

gegeben, wihrend der Zusammenhang zwischen ¢ und der Zeit ¢ (in Einheiten
von 1/ Tagen) aus dem Flichensatz

(4
(X;8) gdi =rdg; gt —1)=[r(p)dy
G0

folgt.

Die Hauptschwierigkeit des in dieser Form erweiterten Zweikorperproblems
besteht in der Integration der Differentialgleichung 2.Ordnung (X; 7). Viel
leichter ist natiirlich das umgekehrte Problem zu lsen, zu einer vorgegebenen
Bahn 7 = 7(p) das Beschleunigungsgesetz derjenigen Zentralkraft zu finden,
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die den Massenpunkt diese Bahn beschreiben 148t. Als Beispiel hierfiir sei eine
Bahn von der Gestalt

(X;9) 7 = 24 COS ¢

vorgelegt, die firr=o| — %g <+ %) einen durch das Attraktionszentrum

r = o gehenden Kreis vom Halbmesser a darstellt. Man findet dann aus (X; 7)

“()

I I 8a®
dg? Tty = acosp 13
und damit
8a2 2
1) = =5,

also eine Beschleunigung, die der fiinften Potenz des Abstandes umgekehrt
proportional ist. Die Kreisbahn (X; g) stellt allerdings nur eine partikuldre
Losung des Problems f(r) ~ 7% dar; die allgemeine Losung, auf die wir im
nichsten Abschnitt noch zuriickkommen werden, ist viel komplizierter.

Fiir f(r) ~772 und f(r) ~ r 1aBt sich die Losung der Differentialgleichung
leicht erzwingen: Wir wissen, da8 sie im ersteren Fall auf die NEwTOoNschen
Kegelschnittbahnen mit dem Attraktionszentrum im Brennpunkt, im letz-
teren auf die ,,harmonische Bewegung* fithrt. Fiir andere Formen des Kraft-
gesetzes ergeben sich durchweg groBere Schwierigkeiten, die zu eingehenden,
aber weniger den Astronomen als den Mathematiker interessierenden Unter-
suchungen AnlaB gegeben haben.

Bei dem Versuch, die Integration des erweiterten Zweikorperproblems unter
sehr allgemeinen Annahmen iiber das Kraftgesetz durchzufiihren, konnen die
im Kapitel V, insbesondere im Abschn. 41, entwickelten Gedankenginge mit
Nutzen verwendet werden. Es sei ¢ (7) eine Funktion von 7 (etwa eine Potenz
mit ganzzahligem Exponenten), deren Bestimmung als Funktion der Zeit ge-
wiinscht werde. Es sei ferner die Aufgabe gestellt, anstatt der Zeit 1 = x (¢ — £))
eine ,,Anomalie” ¢ einzufiihren, die mit ¢ gleichzeitig verschwindet und mit ¢
monoton wichst und die so beschaffen ist, daB y als Funktion von ¢ der Diffe-
rentialgleichung

(X; 10) P +aty’' =0

geniigt, in der a® eine reelle Konstante ist und die Striche Ableitungen nach ¢
bedeuten.

Fiir den Fall, daB es gelingen sollte, ¢ = ¢(t) so zu bestimmen, daB (X; 10)
gilt, ist es nach Abschn. 41 immer méglich, y in der geschlossenen Form

¥(9) = v + avod + c¥ig®

darzustellen, wo y,, yo, ¥; Integrationskonstanten sind und die Funktionen
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¢, = ¢,(x%¢? die in (V; 43) definierten c-Funktionen bedeuten. Die Anomalie ¢
soll nach (V; 34) die Form

(X; 11) q(r) = [p(&) d¢
0
haben, wo p (t) eine fiir alle Zeiten positive Funktion ist, die der Bedingung
(X; 12) P =L =4
k4
unterworfen ist. Um diese ,, Quellfunktion” zu finden, wird man sowohl ¢ = ‘Z—f
als auch ¢’ = %—? als Funktion von y(g) darstellen miissen. Man erhilt dann
dq 3. .
aus dtv = —~ die ,,Hauptgleichung"
7 preeiEns
q
_ [
(X;13) =3
0

die den Zusammenhang zwischen 7 und ¢ herstellt. Nun sind aber von den drei
Integralen von (X; 10) zwei bekannt, ndmlich der Energiesatz (X; 6) und der
Flichensatz (X; 5). Dadurch ist die Moglichkeit gegeben, # als Funktion von 7
auszudriicken, damit aber auch ¢ als Funktion von y. Es folgt ndmlich aus
(IT; 30) die fiir alle ebenen Bewegungen giiltige Beziehung

(85) = 1* + 1292
Driickt man hierin (p$) durch (X; 6) und ¢ durch (X; 5) aus, so ergibt sich

o ay
iz #=+)/-ro0) + [rlarrh-L; =T

Andererseits besitzt (X; 10) die Integrale (V; 37)
py=a+ bcosag+ csinag, (2> o)
(X; 15) y=a+bg+cg, | (e? =)
py=a+bCffg+cCinfqg. (®*=—p><0)
In diesen drei Fillen ist dann
Y =dafB+ i —(py—aP, (>0
(X; 16) v = £+ 4¢c(y — a), (@® = o)
v=1plp—aF —F o). @=—-f<o

Um das Prinzip der folgenden Schliisse zu erldutern, geniigt es, sich auf den
elliptischen Typ (¢ > o) zu beschrinken, wenn es auch gelegentlich nétig sein
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wird, sich der iibrigen Fille zu erinnern. Man erhilt dann aus (X; 12), wenn
man, wie schon frither, a = 4, b2 4+ ¢? = B2 setzt,

2
— 7P + 72@.d1’+h—-g—2
Xy p=ii & !
’ a dr B*— (p — A)?

Die Bedingung, daB 4 () wesentlich positiv sein soll, wird immer dann erfiillt
sein, wenn es gelingt, eine stets reelle Funktion F (r) zu finden, die das Vor-

zeichen von ‘fi—'f hat und so beschaffen ist, daB3

p0)=F() 2

geschrieben werden kann. Es muB also die Identitit

2
(X;18) a?F2[B:— (y — A)2] = —r2d -l-fr?‘%dr +h-5

erfiillt sein. Man hat also, wenn @ (7) vorgelegt ist, durch geeignete Wahl von y
und F als Funktionen von » dafiir zu sorgen, daB beide Seiten von (X; 18) die
gleiche mathematische Form erhalten und daB die Identitit durch Vergleich
der auf beiden Seiten auftretenden willkiirlichen Koeffizienten hergestellt wird.

Ist dies gelungen, was man in vielen Fillen erwarten darf, so ist y(r) als
Losung von (X; 10) in der Form (X; 15) darstellbar, und man erhilt daraus
auch 7 = 7(g). Daneben gilt die Hauptgleichung (X; 13), die den Zusammen-
hang zwischen ¢ und der Zeit t herstellt. SchlieBlich wird man noch die Glei-
chung 7 = 7(p) aufzustellen wiinschen. Zu diesem Zweck bildet man nach
(X; 5, 14) '

dp _ 8. dr_ .. %9 _ ¢

dt ~ 2’ E_r(r), dr ~ 12§

und hieraus durch Integration die Bahngleichung in Polarkoordinaten

: ar
(X; 19) ¢—%=g/rz_—f(r).

7o

Ob die Hauptgleichung (X;'13) und die Bahngleichung (X; 19) sich durch
Auswertung der Integrale in geschlossener Form oder durch konvergente
Reihenentwicklungen darstellen lassen, ist eine Frage fiir sich, die in jedem
Sonderfall individuell beantwortet werden muB. Einige dieser speziellen Fille
werden in den nichsten Abschnitten behandelt werden.
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89. Zentralkrifte, die Potenzen des Abstandes proportional sind

Ist die Beschleunigung f(7) einer Potenz von 7 proportional, also

10) = B() =1,

ad . n—1
2 o — n = n+ 1
/r 7 dr = (n I)f? ar LA

und die Identitdt (X; 18) nimmt die Form

so ist

(X; 20) a?F? (B2 — (y —A)Y = — Pl p— g2 = 2

%4 I

an. Der Fall # = — 1 muB also ausgeschlossen bleiben; er entspricht der Po-
tentialfunktion U = log 7 (logarithmisches Potential), die in diesem Problem
mathematisch eine Sonderstellung einnimmt und hier iibergangen werden darf.
Fiir alle anderen ganzzahligen positiven oder negativen # 148t sich (X; 20)
durch geeignete algebraische Funktionen F2(r), y(r) erfiillen. Man darf sich
dabei auf p = 7* (R = 41, 12, ...) beschrinken.

Setzt man auch F = 7™ als Potenz von 7 an, so zeigt sich, daB die Identitit
nur fiir gewisse # gilt. Es ist in diesen einfachsten Sonderfillen

2
n+4+ I

(X;21) a®2m[B2 — A2 4 247F — p2¥] = — Yl b — g2,

Beide Seiten haben nur dann die gleiche algebraische Form, wenn die Expo-
nenten 2m, 2m + k, 2m + 2k der linken Seite mit den Exponenten #» + 1,
0, — 2 der rechten Seite in Ubereinstimmung gebracht werden kdnnen. Da die
ersteren eine arithmetische Folge (eine aufsteigende oder absteigende, je nach-
dem % positiv oder negativ ist) bilden, muB dies auch fiir die letzteren gefordert
werden. Das ist aber nur dann moglich, wenn # einen der drei Werte 1, — 2, —5
annimmt. Fiir jedes dieser drei Beschleunigungsgesetze f(r) =7, 72, 75 er-
geben sich zwei Moglichkeiten m, k, ndmlich

1) fir = 1: a) k=2, m=—1; b) k=—2, m=1,
2) fir w=—2: a) k=1, m=—1; b) k=—1, m=o,
3) fir n=—5: a) k=2, m=—2;, b) k= —2, m=o.

Setzt man die Koeffizienten gleicher Potenzen von 7 in (X; 21) gleich, so er-
geben sich in diesen Spezialfillen die jeweiligen Zusammenhinge zwischen «
und den Integrationskonstanten A, B einerseits, # und g andererseits. Folgende
Zusammenstellung zeigt fiir diese einfachsten Typen des allgemeinen Zwei-
kérperproblems das Ergebnis dieser Untersuchung:
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n R | m | & | 4 B g
Bo| ok 482
a) 2 1| 1 Py -l_—; Ty 2
1
h h 1/ 48| 2
- 2 | D -~ — 45 1 =
b) 2 e 2g% t 2g® h? r?
—1| -k | -1 +iyiTae z
(X; 22) a) I I k 7 + % 1+ hg
—2
1 I 1
b) —I (0] g2 —gg i? VI -+ hgz 7
o —n| 8| L8 2h |2
a) 2 2 k 2 izh 2
’ b) —2 0 _..:E. 2 i 2 I — Eﬁ —2—
2 g g N gt 73

Im einzelnen ist dazu noch zu bemerken:

1. n = 1: Beschleunigung dem Abstand direkt proportional (harmonische
Bewegung, elastische Schwingung). Da hier «* = o (das Gleichheitszeichen wird
nurim Fall (b) bei der geradlinigen Bewegung angenommen, da dann die Flachen-
konstante g verschwindet), so beschrinkt sich die Form der Bewegung auf den
elliptischen Typ. Es gilt also

a)r?=A+ Becos[ax(g —g)mita =1und § =2,dh.g=27.Istg, =0
der Wert, den ¢ fiir r = o0 annimmt, so gilt also

72=A4 4 Bcos2rt.
Tatsichlich 148t sich die harmonische Bewegung mit der Zeit t als Parameter
durch
(X; 23) x=uacost, y=hbsint
beschreiben, und es folgt hieraus

2 2 2 2
. a4 b a®—b
72 = x2 4+ y2 =a2cos® 7 + b2sin’t = p, + p Cos 27.

Im geradlinigen Fall (g = o) ist A = B, d.h. b = o, und die Bewegung ver-
lduft ldngs der x-Achse nach der Gleichung x = @ cos 7. Oder esist 4 = — B,
a=ound y =bsinr.
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b) Setzt man y = r~2, so erhilt man

1
S =4+ Boslzlg — g)]
mit
a=g j=—2=2¢; ag=-2

=& 9= = gtp, q=29.
Diese Gleichung stellt also die Bahn in Polarkoordinaten, 7 = r(p) dar. Ist
gp = 0 der Wert der Anomalie fiir ¢ = o, so ist demnach

b

7,;=A+Bcosz<p.

Das ist aber die Mittelpunktsgleichung einer Ellipse; denn sind a, b deren Halb-
achsen, so ist
b2x2 + a?y? = a%h2,

Das geht aber, wenn man x = 7 cos ¢, y = 7 sin ¢ einfiihrt, in

. a4 b a% — b2
2 [h2 cos2 2 cin2 o] = 72 —
72 [b® cos® ¢ + a® sin? ¢] r[ P

cos 2| = a2b?

iiber, also in eine Gleichung der obigen Form.
Die Hauptgleichung lautet in diesem Fall, mit « = g,

7
pxif 4y
" 2| A+ Bcosag

0

Sie ist, nach Ausfithrung des Integrals, von der Form
T = arc tg(ﬂtg—a;—q) oder tgrt=pftggp.

Tatsichlich geht aus (X; 23)

hervor.

2. # = —2: Beschleunigung dem Quadrat des Abstandes umgekehrt pro-
portional (NEwToNsches Gravitationsgesetz). Auch hier gibt es zwei Moglich-
keiten, eine Funktion g (r) durch eine Anomalie g in der geschlossenen Form
(X; 18) darzustellen, nimlich (wenn wir uns auf den elliptischen Typ der Be-
wegung beschrinken)

a) r=A+ Bcecosag=a(x —ecosE),
1

2

b) %=A+Bcosaq= (1 + ecos ).
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Im Fall (a) finden wir, mit ¢ = -;—, in der Hauptgleichung

q

4 B .
T =/rdq=7 (xq) + —sin (xq)

0

die KepLERsche Gleichung wieder. Im Fall (b) ist

aq‘=%, also 7?(@g)=a=g,

somit ag = v die vom Perihel aus gezihlte ,,wahre Anomalie” und (b) die
Bahngleichung (Polargleichung der Kegelschnitte).
Da im Fall (b) a% = o, so folgt, daB % im allgemeinen beschrinkt ist, also 7

stets oberhalb einer unteren positiven Grenze (Periheldistanz) liegt. Nur fiir
g = o (geradlinige Bewegung) wird #» = o erreicht.

3. # = —5: Beschleunigung der fiinften Potenz des Abstandes umgekehrt
proportional.

a) Fiir £ = 2 erhilt man
(X;24) 7*=A+ Beos[a(g —g)] = A+ BCf [V (g — ¢,

je nachdem a? = —# positiv oder negativ ist, was a priori nicht entschieden
werden kann. Die Hauptgleichung hat die Form

H g

1 I

T =—2—/rdq=;'/]/A + Bcos [a(g — g,)] 4¢.
0 '

Da ferner nach (X; 20)

F= V%r‘i + b — g,

so folgt als Bahngleichung nach (X; 19)

T

dr
— @ =t -
V;_ 8'272 + hi“

(X; 25) ®

In beiden Fillen treten also elliptische Integrale auf, die nur unter besonderen
Verhiltnissen in geschlossener Form ausgefiihrt werden konnen. So erhélt man
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z.B. fiir & = o (parabolischer Typ), wenn man noch g% = %setzt, als Bahn-
gleichung a

T

/l
9=+ : dr—=:|:i —l__=4_-arccosi
a8 1 7 2a 7 \? 2a
V;_ 8a? VI_(Z)

oder 7 = 2a cos ¢, d.h. die partikuldre Losung (X; g).

Ein weiterer einfacher Sonderfall ergibt sich, wenn 24 = g* ist. In (X; 22)
wird dann B = o und daher 7> = 4 = const. Diese Lésung, die eine Kreisbahn
darstellt, ist aber nicht die einzige, die unter der obigen Bedingung existiert.

Da nimlich # = %g‘ > 0, so ist hier «> = —}k < 0; es liegt also der hyper-
bolische Fall (X; 15, 16) vor. Die Identitit (X; 18) lautet dann mit F = »~2,

I
p =12 2= _“2=jg4

SE0Y — ot — (0 — ] =gt [ —

Die linke Seite wird ein vollstindiges Quadrat fiir 9% = ¢?, also b = +c¢. Esist

dann a = iz, und die Losung (X; 15) nimmt die Gestalt
g

ol
I tT——=(@—)
q =

e g . g
r=_—4 b|C¢g +Gin — —+e 12
e ( i 2 1+ V2 hl

=

an. Die Kreishahn7 = —;—stellt also nur den Grenzfall dieses Bahntyps fiird = o
dar.

Die Bahngleichung (X; 25) erhilt fiir 2 = % g* die Form

ar :
(X; 26) ¢—¢o—gﬁfw—_l=ﬁﬂt@f98’
oder
‘7”“%.

7z

Die Kreisbahnl6sung ist in (X; 26) als Grenzfall enthalten; fiir sie werden Z&h-
ler und Nenner des Integranden null [siche FuBnoten!) und 2) auf S. 450].

b) Fiir 2 = — 2 erhilt man ebenfalls elliptische Integrale in Haupt- und
Bahngleichung.

I
r = — Gt
i g

Um andere Kraftgesetze f(r) = #* zu diskutieren, wird man fiir 2(7) irgend-
welche gebrochenen rationalen Funktionen wihlen miissen. Hier wollen wir,

29 Stumpff, Himmelsmechanik
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ohne auf Einzelheiten einzugehen, nur das Prinzip, nach dem man zu verfahren
hat, an zwei weiteren Beispielen erliutern:

4.m = —3: Man setze p =72 und F? = . Dann ergibt (X; 20)

T
731 + 7?3
a?(B: — A%+ 24r — ) =1 — g2+ 2 (h — g*+ 1) + kot
Die Koeffizientenvergleichung liefert
a‘Z(B?. —_ AZ) =71 — gZ,
20°A =1 —g%+ b,
at = —h,

woraus a2, 4, B als Funktionen von g und % folgen.

1+ yr?
7,6

Konstante ist. Die Identitit (X; 20) nimmt dann die Form

5.% = —7:Mansetzey = %, F? = , Wo y eine noch zu bestimmende

a?(B2 — A%+ 2A47* — 1Y) (1 4 pr¥) =8 (%r‘s — g4 h)
an. Vergleicht man die Koeffizienten gleicher Potenzen von 7, so folgt
o2(B? — A% = % o2(1 — 2y 4) = g,

24+ y(B2— A% =0, a%y= —h.

Aus diesen vier Gleichungen erhilt man, indem man 4 und B eliminiert, y als
Funktion von g, & aus der kubischen Gleichung

y® — 378% = 3h;
sodann 2___£ o _ a2 _ 7 _Lz
a = " B A = e =

Alle diese Beispiele lehren, daB die Zentralbewegungen auf Grund verschie-
dener Kraftgesetze f(r) gewisse gemeinsame Eigenschaften haben. Es soll hier
nicht auf die interessante Frage eingegangen werden, ob immer, d.h. fiir be-

1) Im Newrtonschen Problem (#» = 2; p = #) konnte man dhnliche Uberlegungen
anstellen. Fiir # = —iz wird nach (X; 22) B = o, und es ergibt sich die Kreis-
bahnlosung » = 4 = g*. Hier handelt es sich aber wegen o* = —k = % > oum

den elliptischen Typ; auf der linken Seite von (X; 20) erscheint ein vollstindiges
Quadrat nur fiir 4* 4+ ¢ = o, d.h. fiir b = ¢ = o. Die Kreisbahn ist also hier die
einzige Losung dieses Typs.

%) Eine vollstindige Diskussion des Falles # = — 5 findet man bei McMILLAN in
The American Journ. of Math. XXX, 282 (1908). Siehe auch F.R.Mourton: Ein-
filhrung in die Himmelsmechanik (Ubersetzung von W.FenDEr), Leipzig 1927,
S. 8off.
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liebige (stetige und differenzierbare) Funktionen f(r) die Differentialgleichungen
fiir () durch Ubergang auf eine mit  monoton wachsende Anomalie ¢ auf
die Normalform (X; 10) gebracht werden kénnen. Die obigen Beispiele haben
aber gezeigt, daB dieser Versuch fiir viele Beschleunigungsgesetze Erfolg hat
und daB die Aussicht, ihn fiir eine sehr umfangreiche Gruppe von Gesetzen,
etwa fiir alle rationalen Funktionen f (r), durchfiihren zu kénnen, recht groB ist.
Soweit dies aber der Fall ist, gilt folgender Satz: Die Bewegung erfolgt so,
daB der Abstand 7 entweder periodisch zwischen zwei endlichen Grenzen (Peri-
zentrum und Apozentrum) hin- und herschwankt (elliptischer Typ), oder so,

daB 7 |oder % zwischen null und einem endlichen Wert einfach variiert. Als ein

partikuldres Integral gibt es stets die Kreisbahn 7 = const, da es immer ein 7
gibt, fiir das Attraktions- und Zentrifugalkraft im Gleichgewicht stehen.

Besonderes Interesse verdienen die periodischen Ldsungen. In den beiden
Fillen f(r) = » und »~2 sind alle Losungen (im letzteren Fall alle Lésungen des
elliptischen Typs) periodisch und haben die Gestalt geschlossener Ellipsen. Fiir
andere Zentralkrifte sind die Bahnen nur fiir besondere Werte der Integrations-
konstanten g, 2 Kurven, die sich nach jedem Umlauf oder nach einer endlichen
Zahl von Umldufen schlieBen. Andernfalls wird der bewegte Korper im Laufe
der Zeit jeden Punkt der Bahnebene erreichen, der in dem Kreisring #min < 7
< 7max liegt. Die Bahnkurve ist dann , kn4uelférmig” und tiberdeckt die Fliche
des Kreisrings in unendlich vielen Windungen. Besonders wichtig erscheinen in
dieser Hinsicht die ,fast geschlossenen Bahnen, die man sich so entstanden
denken kann, daB eine geschlossene Bahnbewegung (etwa eine elliptische) durch
eine sehr langsame Drehung der groBen Achse (Apsidenbewegung) in eine nicht-
geschlossene iibergefiihrt wird.

Bei den nichtelliptischen Bahntypen wird die Bewegung im allgemeinen in
Spiralen erfolgen, wie sie geometrisch erzeugt werden, wenn man eine para-
bolische oder hyperbolische Bewegung in einem sich (schnell oder langsam)
drehenden Koordinatensystem betrachtet.

90. Die relativistische Zweikorperbewegung

" Unter den fast geschlossenen Bewegungen, die im allgerﬁeinen Zweikorperpro-
blem unter gewissen Bedingungen auftreten, nimmt die Bahnbewegung sonnen-
naher Planeten auf Grund der allgemeinen Relativititstheorie eine besonders
wichtige Stellung ein. Man kann das Beschleunigungsgesetz, das dieser Be-
wegung zugrunde liegt, in der Form

1
0=2+2
schreiben, wo § eine sehr kleine Konstante bedeutet. Setzt man also
_1 B, (.42, 3,58
o0) = AT f’ drdr_ r T 3 73
20



452 Das allgemeine Zweikorperproblem
in (X; 18) ein, so erhilt diese Identitit mit
I
F2 = l, =
T+ PR S
die sinnvolle Gestalt

e L

°al"cza

+2

r2 3 7
und es folgt durch Koeffizientenvergleichung

a¥(B* — A% =h, o%(2Ay —1)= —¢g°
a2 + (B — 4%)] = 2, wy = —2f.

E].iminiert mana, A, B2 — A?, so erhilt man fiir die Konstante y die Gleichung
(X;27) hy? —2y® — g%y = %ﬂ = —a?y.

3t

In der allgemeinen Relativititstheorie ist § = =

KepLerschen Ellipse, ¢ die Lichtgeschwindigkeit darstellt. Benutzt man, wie

, wo p den Parameter der

iiblich, als Lingeneinheit 1 A.E. = 1.495 - 108km, als Zeiteinheit % = 58.13244
mittlere Tage, so wird ¢ = 10071.6. Fiir die Bahn des Planeten Merkur
(p = 0.37) wird also f =~ 1078 zu setzen sein, so daB Quadrate und hohere Po-
tenzen dieser kleinen Zahl unbedenklich vernachlissigt werden kénnen. Aus
(X; 27) folgt daher

__2B  ,_ 2( 2_r)= z(l_iﬂ)
}/ a gI+ 3 g 3g4)

3’
2 ﬁ)
a=glr — —
g( 3¢
Ferner ist )
. | dy 1 y I 2 1 B
i=F| G =)t =) e =)
also
: (%) _ 8| _ B (1 3)
(¥%:29) aq—(d"r')rel._ 2 [I 3g2(r t+ g2/|’
wihrend fiir die KEPLERsche Bewegung
dq:) 1
X; 2 == _____5_=_P
(X; 29) ag ( T Jxel. 7 2

die Winkelbewegung in der Zeiteinheit darstellt.



Die relativistische Zweikorperbewegung 453

In beiden Fillen ist I
S =4+ Beosalg —qp),

d.h., eine Bewegungsperiode (von Perihel zu Perihel) ist vollendet, wenn ag
um 2 7 zugenommen hat. Nun ist aber die relativistische Winkelgeschwindigkeit
(X; 28) um einen geringfiigigen Bruchteil kleiner als die Winkelgeschwindigkeit
der KepLERschen Bewegung (X; 29). Es wird also, wenn die wahre Anomalie
der KEPLERschen Bewegung um 2 7 gewachsen ist, d.h. nach einem siderischen
Umlauf, die anomalistische Bewegung in der relativistischen Bahn noch nicht
ganz beendet sein. Integrieren wir also die Ausdriicke (X; 28, 2¢) iiber die
siderische Umlaufszeit T des Planeten, so erhalten wir

T T
dg [z [ 2 o
./(dt)ml’dr _/72 [x i (7 + gz)} dv = 27 — b,
T T
](d_«p) d‘t=/édt=2n,
AT |Kepl. r?

wo d¢ die in der Zeit T entstandene Differenz zwischen den Apsidenrichtungen
der beiden Bahnen bedeutet. Es ist daher, wenn wir noch annehmen, da3 beide
Bewegungen unter den gleichen Anfangsbedingungen, also auch mit derselben
Flachenkonstanten g, beginnen,

T
I I 2
a¢_5/3g72(7+?>d1

2
.. 4
oder wenn wir im Integranden g2 = $, dtv = — dg setzen,

=ﬁ[(g 2
dp 3, 7+1’d¢'

Nun ist aber nach Abschn. 25 der iiber die wahre Anomalie ¢ genommene
Mittelwert von —i— gleich % Man erhilt also

_2np_ 6
W T e

Ist nun U die in tropischen Jahren ausgedriickte Umlaufszeit des Planeten
Merkur, so betrigt die Perihelverschiebung in hundert Jahren, ausgedriickt
in Bogensekunden, 600 71

dw = U—ch - 200265" = 4279,
wenn ¢ = 10071.6 A.E.[k~1Tage, p = 0.37073 A.E., U = 0.24084 gesetzt wird.
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1
@ o —¢ log ¢ 10’ C 10’ S
o° o’ o%o 0.000000 427 o
10 3'5772 | 9.999956 420 74
20 7’2671 9.999830 401 145
30 10° 175 9.999637 370 212
40 1172478 | 9.999398 327 273
50 11’2576 9.999144 275 325
60 100 376 9.998904 214 368
70 7" 2874 | 9.998708 146 399

KorrektionsgréBen C, S der rechtwinkligen dquatorealen Koordinaten beim Uber-
gang vom geozentrischen auf das topozentrische System und umgekehrt, in Ein-
heiten der siebenten Dezimale, fiir Beobachtungsorte mit der geographischen
Breite ¢.

¢ — ¢’ ist der Unterschied zwischen geographischer und geozentrischer Breite,
¢ der Abstand des Beobachtungsortes vom Erdmittelpunkt in Einheiten des
dquatorealen Erdhalbmessers. Ist np = 8780 die mittlere Sonnenparallaxe, so ist

C = gnp sin 1”7 - cos ¢,
S = gn sin 1" - sin ¢'.

Fiir siidliche Breiten erhalten ¢ — ¢’ und S das negative Vorzeichen. Das Vor-
zeichen von C bleibt unverindert.
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Differenz E — M (exzentrische minus mittlere Anomalie) fiir ganze Zehntel der
numerischen Exzentrizitit ¢, als Funktion von M. Fiir 180° < M < 360° (rechter
Tafeleingang) ist der Tafelwert negativ zu nehmen.

Nl 01 |02 | 03 | 04 | 05| 06| 07| 08 | 09 | 1.0 %
0°| o%0 | 0% | o%0 | 0% | 0% | o%0 | o%0 | o’0 [ o%0 | 0% | 360°
5 | 0.6 1.2 | 21| 33| 50| 7.4 | 11.2 | 17.7 | 28.3 | 41.7 | 355
10 | I.I 25| 42| 65| 9.6 | 14.0 | 20.1 | 28.6 | 38.8 | 49.2 | 350
15 1.6 37| 6.2 | 9.5|13.8| 19.4 | 26.7 | 35.2 | 44.4 | 53.2 | 345
20 | 2.2 48| 81| 122|174 | 238 | 31.3(39.5| 47.7| 555 | 340
25 | 2.7 59| 9.8 14.6 | 20.4 | 27.1 | 34.6 | 42.3 | 49.8 | 56.7 | 335
30°| 3.1 6.9 | 11.4 | 16.7 | 22.8 | 20.7 | 36.9 | 44.1 | 50.9 | 57.2 | 330°
35 | 3.6 7.8 | 12.7 | 18.4 | 24.8 | 31.5 | 38.4 | 45.2 | 51.5 | 57.2 | 325
40 | 4.0 8.6 | 13.9 | 19.8 | 26.2 | 32.8 | 39.4 | 45.7 | 51.6 | 56.9 | 320
45 | 44 9.3 | 14.9 | 209 | 27.3 | 33.7 | 40.0 | 45.8 | 51.3 | 56.2 | 315
50 | 4.7 9.9 | 15.7 | 21.8 | 28.0 | 34.2 | 40.1 | 45.6 | 50.7 | 55.3 | 310
55 | 5.0 | 10.4 | 16.3 | 22.4 | 28.5 | 34.4 | 40.0 | 45.1 | 49.9 | 54.1 | 305
60°| 5.2 | 10.8 | 16.7 | 22.7 | 28.6 | 34.3 | 39.6 | 44.4 | 48.8 | 52.8 | 300°
65 | 54 | 11.1 | 17.0 | 22.9 | 28.6 | 34.0 | 38.9 | 43.5 | 47.6 | 51.3 | 295
70 | 5.5 | 11.3 | 17.2 | 22.9 | 28.3 | 33.4 | 38.1 | 42.4 | 46.2 | 49.8 | 290
75 | 5.6 | 11.4 | 17.2 | 22.7 | 27.9 | 32.7 | 37.2 | 41.2 | 44.8 | 48.0 | 285
8 | 5.7 | 11.5 | 17.1 | 22.4 | 27.3 | 31.9 | 36.0 | 39.8 | 43.2 | 46.2 | 280
8 | 57 | 11.4 | 16.8 | 21.9 | 26.6 | 30.9 | 34.8 | 38.3 | 41.5 | 44-3 | 275
90°| 5.7 | 11.2 | 16.5 | 21.4 | 25.8 | 29.8 | 33.5 | 36.7 | 39.7 | 42.3 | 270°
95 | 5.6 | 11.0 | 16.0 | 20.7 | 24.8 | 28.6 | 32.0 | 35.1 | 37.8 | 40.3 | 265
100 | 5.5 | 10.7 | 15.5 | 19.9 | 23.8 | 27.3 | 30.5 | 33.3 | 35.9 | 38.2 | 260
105 | 5.4 | 10.4 | 14.9 | 19.0 | 22.7 | 26.0 | 28.9 | 31.5 | 33.9 | 36.0 | 255
110 | 5.2 9.9 | 14.2 | 18.0 | 21.5 | 24.5 | 27.2 | 29.7 | 31.8 | 33.8 | 250
115 | 50 | 9.4 | 13.5 | 17.0 | 20.2 | 23.0 | 25.5 | 27.7 | 20.8 | 31.6 | 245
120°| 4.7 8.9 | 12.6 | 15.9 | 18.9 | 21.4 | 23.7 | 25.8 | 27.6 | 29.3 | 240°
125 | 4.4 83| 11.8| 14.8 | 17.5 | 10.8 | 21.9 | 23.8 | 25.4 | 27.0 | 235
130 | 4.1 7.7 | 10.8 | 13.6 | 16.0 | 18.1 | 20.0 | 21.7 | 23.2 | 24.6 | 230
135 3.8 7.0 9.9 | 12.4 | 14.5 | 16.4 | 18.1 | 19.6 | 21.0 | 22.2 | 225
140 | 3.4 6.4 | 89| 11.1 | 13.0 | 14.7 | 16.2 | 17.5 | 18.7 | 19.8 | 220
145 3.0 5.6 7.8 9.8 | 11.4 | 12.9 | 14.2 | 15.4 | 16.4 | 17.4 | 215
150°| 2.6 | 49| 68| 84| 9.9 | I1.I | 12.2 | 13.2 | 14.f | 14.9 | 210°
155 | 2.2 41| 57| 71| 82| 93| 102 | 11.0 | I1.8 | 12.5 | 205
160 | 1.8 33| 46| 57| 66| 75| 82| 89| 9.4 | 10.0 | 200
165 | 1.4 25| 34| 43| 50| 56| 62| 66| 7.1I 7.5 | 195
170 | 0.9 1.7 23| 28| 33| 38| 41 4.4 4.7 5.0 | 190
175 | 0.4 0.8 1.1 1.4 | 1.7 1.9 | 2.1 2.2 | 24| 25185
180°| 0.0 00| o0o| 00| 00| 00| 00| 00| 0.0| o0.0|180°
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II1
Hilfstafeln zur Ephemeridenrechnung bei parabelnahen Ellipsen.
Gavusssche Methode
4 | 10gB log o log »
0.00 0.000000 0.000000 0.000000
.01 001 .001743 .002178
.02 003 .003498 .004369
.03 007 .005266 .006574
.04 o12 .007046 .008792
0.05 0.000019 0.008838 0.011024
.06 027 .010643 .013269
.07 037 .012461 .015529
.08 049 014292 .017803
.09 061 .016137 .020092
o.10 0.000076 0.017995 0.022395
JIX 092 .019866 0.24713
12 110 .021751 .027046
.13 130 .023650 .029395
.14 151 .025564 0.31759
0.15 0.000173 0.027492 0.034138
.16 198 .029434 .036534
.17 224 .03139I 038046
.18 251 .033364 041374
.19 281 .035351 .043818
0.20 0.000312 0.037354 0.046280
.21 345 -039373 -048758
.22 379 .041408 .051254
23 416 -043459 053768
24 454 -045526 -056299
0.25 0.000493 0.047610 0.058849
.26 535 .049711 .061417
.27 578 .051829 .064003
.28 624 .053965 .066609
.29 671 .056118 069234
.30 720 .058289 .071878
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Anhang A
Iv

Zur Ephemeridenrechnung. Faktoren g(¢?) und g’ (%) nach ANpDovER.

E
a) Ellipsen t = tg e

E E E
— log g (2 — log g (2 — log g (£
2 g & (#) p 8 g(#%) n g g (%)
o° 0.0000000 15° 0.0000034 30° 0.000081
1° 0.0000000 16° 0045 31° 095
2 0000 17 0058 32 112
3 0000 18 0075 33 132
4 0001 19 0095 34 154
5 0001 20 o120 35 180
6° 0.0000001 21° 0.000015 36° 0.000209
7 0002 22 018 37 242
8 0003 23 022 38 281
9 0004 24 027 39 324
Io 0007 25 033 40 374
11° 0.00000I0 26° 0.000040 41° | 0.00043I
12 0014 27 048 42 495
13 0019 28 057 43 568
14 0026 29 068 44 651
15 0034 | 30 081 45 744
. FE e—1I v E’
b) Hyperbeln sin —- = Ve+ . tg—; t=tg p
E log g’ (%) E log g’ (¢'?) E log g’(t’?)
0 0, o
4 54 4 ¥ U 4 44
o° 0.0000000 15° 0.0000030 30° 0.000034
1° 0.0000000 16° 0.0000039 31° 0.000034
2 0000 17 0050 32 032
3 0000 18 0062 33 027
4 0001 19 0077 34 018
5 0001 20 0094 35 oor
6° 0.000001 21° 0.0000113 36° 9.999973
7 0002 22 0135 37 930
8 0003 23 o160 38 864
9 ooo4 | 24 o187 | 39 763
10 0006 25 0215 40 610
11° 0.0000009 26° 0.0000245 41° 9.99937
12 0013 27 0275 42 9.99901
13 0017 28 0303 43 9.99841
- 14 0023 29 0327 44 9-99741
15 0030 30 0343 45 9-99547
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v
#(w) zur Bestimmung des Verhiltnisses Sektor: Dreieck:
2
n = -w’=w3—+--).
# (35
Hier ist log 4 mit dem Argument w gegeben.

w log p w log u w log p
0.00 8.75696 o.10 8.78292 0.20 8.81085
0.0I 8.75950 0.1 8.78562 0.21 8.81376
0.02 8.76204 0.12 8.78834 0.22 8.81670
0.03 8.76459 0.13 8.79108 0.23 8.81966
0.04 8.76716 0.14 8.79384 0.24 8.82265
0.05 8.76974 0.15 8.79662 0.25 8.82566
0.06 8.77234 0.16 8.79942 0.26 8.82869
0.07 8.77495 0.17 8.80224 0.27 8.83175
0.08 8.77758 0.18 8.80509 0.28 8.83483
0.09 8.78024 0.19 8.80796 0.29 8.83794
o.10 8.78292 0.20 8.81085 0.30 8.84109

V1

Zur Bestimmung des Verhiltnisses Sektor : Dreieck. Tierjenscher Faktor.

A . 100 f i 100 P ) ‘100
og o % og o 9 og aV P

0.00 0.0021824 0.20 0.0020921 0.40 0.0019740
.01 819 .21 861 41 685
.02 805 22 800 .42 630
-03 783 -23 739 -43 575
04 755 24 678 44 521
.05 721 .25 617 45 467
.06 683 .26 557 .46 414
07 641 27 497 -47 361
.08 596 .28 437 48 308
.09 548 29 377 -49 255
o.10 0.0021497 0.30 0.0020317 0.50 0.0019203
II 444 .31 258 .51 152
12 390 .32 199 .52 102
13 335 -33 140 -53 o51
14 278 .34 082 .54 001
.15 220 .35 024 .55 0.0018951
.16 161 .36 0.0019966 .56 902
17 102 37 909 .57 853
.18 042 .38 852 .58 805
.I9 0.0020981 .39 796 .59 757
0.20 0.0020921 0.40 0.0019740 0.60 0.0018709
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VII

Entwicklung der rechtwinkligen Koordinaten (—o.100 < 9 < — 0.060)

n Y| B Cc D
—0.100 —0.55728 + 0.0579 —0.36116 + 0.0437
-099 662 577 085 436
.098 597 575 054 435
-097 531 572 023 433
.096 466 570 —0.35993 432
.095 401 568 962 431
-004 337 566 931 430
.093 272 564 901 428
.092 208 562 870 427
.09I 144 560 840 426
— 0.090 — 0.55080 + 0.0558 —o0.35810 + 0.0425
.089 016 556 779 423
.088 -~ 0.54953 554 749 422
.087 889 553 719 421
.086 826 551 689 420
085 763 549 659 418
084 700 547 629 417
.083 638 545 599 416
082 575 543 569 415
.081 513 541 539 414
—0.080 — 0.54451 + 0.0540 —0.35510 + 0.0413
079 389 538 480 411
.078 327 536 451 410
077 266 534 421 409
.076 204 532 392 408
075 143 530 362 407
.074 082 528 333 406
.073 021 526 304 404
-072 —0.53961 525 275 403
.071 900 523 246 402
— 0.070 —0.53840 + 0.0521 —0.35217 + 0.0401
.069 780 519 188 400
.068 720 517 159 399
.067 660 516 130 398
.066 600 514 101 397
.065 541 512 073 396
.064 481 510 044 394
.063 422 509 o015 393
.062 363 507 —0.34987 392
-061 304 505 958 391
— 0.060 — 0.53246 + 0.0504 — 0.34930 + 0.0390
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VII
(—o0.060 < 7 £ — 0.020)
n A B Cc D
—o0.060 — 0.53246 + 0.0504 — 0.34930 + 0.0390
.059 187 502 902 389
.058 129 500 874 388
057 o71 499 845 387
.056 013 497 817 386
.055 —0.52955 495 789 385
054 897 494 761 384
053 840 492 733 383
.052 782 491 705 382
.051 725 489 678 381
—0.050 — 0.52668 + 0.0487 — 0.34650 + 0.0380
.049 611 486 622 379
048 554 484 594 378
047 498 483 567 377
.046 441 481 539 376
-045 385 479 512 375
044 329 478 484 374
-043 273 476 457 373
-042 217 475 430 372
.041 162 473 402 371
— 0.040 — 0.52106 + 0.0472 —0.34375 + 0.0370
.039 050 470 348 369
.038 — 0.51995 469 321 368
.037 940 467 294 367
.036 885 466 267 366
.035 830 464 240 365
-034 776 463 213 364
.033 721 461 187 363
.032 667 460 160 362
.03I 613 458 133 361
— 0.030 —0.51559 +0.0457 —0.34107 + 0.0360
.029 505 456 o8o 359
028 451 454 054 358
-027 397 452, 027 357
.026 344 451 oo1 356
-025 290 450 —0.33974 355
024 237 448 948 354
.023 184 447 922 353
.022 131 446 896 353
.021 078 444 870 352
—0.020 — 0.51026 4+ 0.0443 —0.33844 + 0.0351
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VII

(—0.020 £ 7 < + 0.020)

n A B C D
— 0.020 — 0.51026 + 0.0443 — 0.33844 -+ 0.0351
.0I9 — 0.50973 442 818 350
018 921 440 792 349
.o17 868 439 766 348
016 816 437 740 347
015 764 436 714 346
014 712 435 688 345
.013 661 433 662 344
.012 609 432 637 344
.oII 558 431 611 343
— 0.010 — 0.50506 + 0.0430 —0.33586 + 0.0342
.009 455 428 560 341
.008 404 427 535 340
-007 353 425 5Io 339
.006 302 424 484 338
.005 252 423 459 338
004 201 422 434 337
.003 150 420 408 336
.002 100 419 383 335
— .00I 050 418 358 334
0.000 — 0.50000 + 0.0417 —0.33333 + 0.0333
+.001 — 0.49950 415 308 333
.002 900 414 283 332
.003 850 413 258 331
.004 8or 411 234 330
.005 752 410 209 329
.006 702 409 184 328
.007 653 408 160 328
.008 604 407 135 327
.009 555 406 110 326
+ o0.010 — 0.49506 + 0.0404 —0.33086 + 0.0325
.0II 457 403 061 324
.012 409 402 037 324
.013 360 401 o012 323
.014 312 399 —0.32988 322
.015 264 398 964 321
.016 216 397 940 320
017 168 396 915 320
.018 120 395 891 319
.019 072 394 867 318
+ 0.020 — 0.49024 + 0.0393 —0.32843 + 0.0317
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VII
(4 0.020 £ 9 < +0.060)
7 A B C D
-+ o.020 — 0.49024 +0.0393 —0.32843 + 0.0317
.021 —0.48977 391 819 317
.022 929 390 795 316
.023 882 389 771 315
024 835 388 747 314
-025 788 387 724 313
.026 741 386 700 313
.027 694 385 676 312
.028 647 384 652 311
.029 600 383 629 310
+ 0.030 —0.48554 + 0.0382 —0.32605 + 0.0310
.03I 508 381 582 309
.032 461 379 558 308
.033 415 378 534 308
034 369 377 511 307
.035 323 376 488 306
.036 277 375 464 305
037 231 374 441 305
.038 186 373 418 304
-039 140 372 395 303
+ 0.040 — 0.48095 + 0.0371 —0.32372 + 0.0302
041 049 370 348 302
.042 004 369 325 301
-043 —0.47959 368 302 300
044 914 367 279 300
.045 869 366 256 299
.046 824 365 234 298
047 780 364 211 298
-048 735 363 188 297
.049 690 362 165 296
+ 0.050 — 0.47646 + 0.0361 —0.32142 + 0.0295
.051 602 360 120 295
.052 558 359 097 204
-053 514 358 074 293
-054 470 357 052 293
.055 426 356 029 292
.056 382 355 007 291
057 338 354 —0.31984 291
058 294 353 962 290
.059 251 352 940 289
+ 0.060 — 0.47208 + 0.0351 —0.31918 + 0.0289
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VII
(4 0.060 < n < + 0.100)

n A B C D
+o0.060 — 0.47208 4 0.0351 —0.31918 + 0.0289
.061 164 350 895 288
.062 121 349 873 287
.063 078 348 851 287
.064 035 347 829 286
.065 — 0.46992 346 807 285
.066 949 345 785 285
.067 907 344 763 284
.068 864 343 741 283
.069 822 342 719 283
+ o0.070 — 0.46779 + 0.0342 —0.31697 + 0.0282
.071 437. 341 675 281
.072 604 340 653 281
.073 652" 339 631 280
.074 610 338 610 279
-075 568 337 588 279
.076 526 336 566 278
077 485 335 544 277
078 443 334 523 277
.079 401 333 501 276
+ 0.080 — 0.46360 + 0.0333 —0.31480 + 0.0275
.081 318 332 458 275
-082 277 331 437 274
.083 236 330 416 274
084 195 329 394 273
-085 154 328 373 273
.086 113 327 352 272
.087 072 327 330 272
.088 031 326 309 271
.089 — 0.45990 325 288 270
" 4+ 0.090 — 0.45950 + 0.0324 —0.31267 + 0.0270
.091 909 323 246 269
.092 869 322 225 269
.093 829 321 204 268
.094 788 321 183 268
- .095 748 320 162 267
.096 708 319 141 267
.097 668 318 120 266
.098 628 317 099 265
.099 588 316 079 265
+ 0.100 — 0.45549 + 0.0316 —0.31058 + 0.0264




Konvergenzbereich der Potenzreihen in Tagen. Nach F.R.MouLToN

Anhang A

VIII

a) Ellipsen mit ¢ = 2.65

e | M, = o° | My = 60° | My = 120° | M, = 180°
0.0 oo oo oo oo
o1 sordz 553%0 72630 933%7
0.2 329.3 42I.1 620.0 854.0
0.3 230.7 349.6 573.7 821.0
0.4 163.1 302.2 550.1 805.1
0.5 1I13.0 285.9 537.3 796.0
0.6 749 273.1 530.5 791.5
0.7 45.5 266.5 527.3 789.3
0.8 23.4 263.7 525.8 788.4
0.9 7.9 262.7 525.3 788.0
0.95 2.8 262.6 525.2 788.0

b) ¢ = 1; M, = o (Ausgangspunkt Perihel)

"Ellipsen Hyperbeln

e R() e R(t)
0.0 o 1.0 5448
o.1 13641 1.05 53.8
0.2 106.7 I.I 52.3
0.3 91.3 1.2 50.1
0.4 81.3 1.3 48.5
0.5 74.1 2.0 39.9
0.6 68.6 5.0 25.7
0.7 64.1 10.0 18.3
0.8 60.5 100.0 5.8
0.9 57.4 1000.0 1.8
0.95 55.6

30 Stumpff, Himmelsmechanik
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466 Anhang A
IX
mi = f(&, y) zur Auflésung der Gleichung
3
-;i— =1—(1—2fcosy+ (% 2. (nach OpporzER)

{ yp=10° 20° 30° 40° 50° 60° 70° 80° 90°
0.0 |— 2.954 |— 2.819|—2.598|—2.298{—1.928 | —1.500|—1.026|—0.52I | 0.000
0.I|— 3.64I | — 3.417|—3.064|—2.609|—2.084|—1.520|—0.945|—0.383 |+0.148
0.2 |— 4.628 | — 4.238|—3.656,—2.958 | —2.218 |—1.495|—0.825|—0.229 |+ 0.286
0.3 |— 6.120|— 5.400|—4.405(—3.327|—2.306|—1.414|—0.672|—0.072 |+ 0.404
0.4 |— 8.512 |— 7.084|—5.329|—3.677|—2.318|—1.273|—0.496 | +0.077 |+ 0.499
0.5 |— 12.645 [ — 9.570|—6.406|—3.940|—2.227 | —1.079 |—0.312|+0.209 |+ 0.569
0.6 |— 20.48 |—13.21 |—7.507|—4.029!—2.024|—0.849|—0.134|+0.318|40.616
0.7 |— 37.06 |—18.18 |—8.340|—3.866|—1.723|—0.606|+0.025|+40.403 |+0.643
0.8 |— 75.41 |—23.54 |—8.494|—3.437|—1.364|—0.374|+0.156|+0.464|+0.655
0.9 [—152.84 | —26.11 |—7.717|—2.814(—0.995|—0.169|+0.260|+0.505|+0.655
1.0 |—187.80 |—22.87 |—6.210|—2.124|—0.656| 0.000|40.338|4-0.529|+0.646
I.I|— 99.56 |—15.96 |—4.495|—1.483(—0.371{40.132|+0.392|+0.541|+0.632
1.2 |— 38.58 |— 9.662|—3.000[—0.953(—0.147|+0.230|+0.429|+0.544 |+ 0.615
1.3|— 15.74 |— 5.505|—1.881(—0.549 4 0.021|+0.300|4+0.451 | +0.540|+0.595
1.4|— 7.122|— 3.073|—1.110|—0.256|+0.143|+0.348|+0.462 |4 0.531 !+ 0.574
1.5|— 3.482|— 1.690|—0.600|—0.05I|+0.228[+40.379|+0.466|+0.519|4+0.553
1.6 |— 1.768 [— 0.895|—0.267|+0.090|+0.286|+0.397 |40.463 |+ 0.505 |+ 0.532
1.7|— 0.887|— 0.427|—0.052|+40.185(+0.324|+0.407|+0.458 |+ 0.490 |+ 0.512
1.8 (— 0.404 | — 0.145|+0.088|+0.248|+0.348|4+0.410|+0.449|+0.475|+0.492
1.9 |— o0.125|+ 0.029(+0.179|+40.289|+0.361 |+0.408 |4 0.439|+0.459 |+ 0.473
2.0 |+ 0.042 |+ 0.138|+40.237|+0.314|+0.368 (+0.404 |+0.428 |+ 0.444|+0.455
2.1|+ o0.145|+ 0.207|+0.274|4+0.329|4+0.369|+0.397 [+0.416|+0.429 | +0.438
2.2 |+ 0.209 |+ 0.250(+40.297|+0.337|+0.368 |+0.389 |+ 0.404|+0.415|+0.422
2.3|+ o0.249 |+ 0.277|4+0.311|4+0.340|40.363 |+0.380(+0.392|40.401 | +0.407
2.4 |+ 0.273 |+ 0.293|+0.317|+0.340|+0.358|+0.371|+40.381|4+0.388|+0.393
2.5+ 0.287!+ o0.302|+4+0.320(+40.337|+0.351|+0.361|+40.369|+0.375|+0.379
2.6 |+ 0.295 |+ 0.306|+0.319|+0.332|+0.343|+0.352|+0.358|+0.363|+0.367
2.7 |+ 0.298 |4 0.306|+0.316|+0.327[+0.335|+0.342|+0.348|+0.352|4+0.355
2.8 |+ 0.2908 |4+ 0.304|4+0.312{4+0.320|+4+0.327|4+0.333{+0.337|+0.341 |+0.343
2.9 |+ 0.296 |+ 0.301|+0.307(4+0.314|+40.319|+0.324|+0.328|+40.331|+0.333
3.0 |+ 0.293 |+ 0.297|+0.302|+0.307|+0.311 |+0.315|+0.318 |+ 0.321 |+0.323
3.1 |+ 0.289 |+ 0.202(40.296|40.300|+0.304 [+0.307 |+0.310|+0.312|+0.314
3.2 [+ 0.284 [+ 0.286|+0.289|4+0.293 |+0.296 |+0.299 |+ 0.301I | +0.303 | +0.304
3.3|+ 0.279 |+ 0.281|+0.283|+0.286 |+ 0.289 |+0.291 |+0.293 | + 0.294 [ +0.296
3.4 |+ 0.273 |4+ 0.275|4+0.277|4+0.279 [+ 0.282 |+ 0.284 |+ 0.285 |+ 0.286 [ +-0.287
3.5 |+ 0.268 [+ 0.269 |+0.271|40.273 [+0.275|40.276 |+0.278 | +0.279 | +0.280
3.6 |+ 0.262 |4 0.263|+0.265|+0.266 [+ 0.268 |+ 0.269 |4-0.271 | +0.272 [ 4-0.272
3.7|+ o0.257 |4+ 0.258|40.259|+0.260(+0.262 |+ 0.263 |+ 0.264 [ +0.265 | +0.265
3.8+ o0.251 4+ 0.252|+0.253|+0.254|+0.255|+0.256|+0.257 |+ 0.258 | +0.259
3.9 |+ 0.246 |+ 0.247|+0.248|+0.249|+0.250 (4 0.250 |+ 0.251 |+ 0.252 |4 0.252
4.0 |+ 0.240 |+ 0.241|40.242|+0.243 |+ 0.244 |4 0.245|+0.245|+0.246 | +0.247




Anhang A 467
IX

1

=1
{ p=100° 110° 120° 130° 140° 150° 160° 170° 180°
0.0 |+0.521|+1.026|+1.500|+1.928 |+2.298|+2.598 |+2.819|42.954 |+ 3.000
0.1 0.635| 1.070| I.449| 1.769| 2.029| 2.229| 2.373| 2.458| 2.487
0.2 | 0.721| 1.083| 1I1.379| 1I1.615| 1.800| 1.937| 2.032| 2.088| 2.106
0.3 | 0.779| 1.072| 1.299| 1.474| 1.605| I.701| 1.766/ 1.804| 1.816
0.4 | 0.811| 1.044| 1.217| 1.346| 1.441| 1.509| 1.554( 1.580| 1.589
0.5 | 0.823| 1.004| 1.136| 1.232| 1.30I| I.350| 1.383| 1.401| 1.407

|06 | 0.818| o0.959| 1.059| 1.131{ 1.182| 1.218| 1.242| 1.255{ 1.260
0.7 | o.80z| o.911| 0.988| 1.042| 1.080| 1I1.107| 1.I25| I.135| I.I38
08| 0.779| 0.864| o0.922{ 0.963 0.992| 1.012| 1.026| 1.033| 1.036
0.9 | 0.752| o0.817| 0.862| 0.894| 0.916| 0.93I| 0.94I| 0.947 ' 0.949
1.0 |4+0.722(+40.773 |+ 0.807|+0.832|+0.849|+0.861|+0.869|+0.874|+0.875
I.I1 | 0.691{ o0.731| 0.758| 0.777| 0.791| o0.800| 0.806| 0.810{ o0.811
1.2 | 0.661| 0.692| o0.713| 0.728| 0.739| 0.747| 0.751| 0.754| 0.755
1.3 0.631| 0.656( 0.673| 0.685| 0.603| 0.699| o0.703| 0.705| 0.706
1.4 | 0.603| o0.622| 0.636| 0.645| o0.652| 0.657| 0.660| 0.662| 0.663
1.5 | 0.576] o0.591| 0.602| 0.610| 0.616| 0.619| 0.622| 0.623| 0.624
1.6 | o0.550| 0.563| o0.572| 0.578| 0.583| 0.586( 0.588| 0.589| o0.589
1.7 0.526| 0.536| 0.544| 0.549| o0.553| 0.555| 0.557| 0.558| 0.558
1.8 | o0.504| o.512| o0.518| o0.522| o0.525| 0.528| 0.529| 0.530| 0.530
1.9 | 0.483| 0.490| 0.495| 0.498| o0.501| 0.503| 0.504| 0.504| o0.505
2.0 |4+0.463|+0.469|+0.473|4+0.476|+0.478 |+ 0.480|+0.481|+0.481 +o.481_
2.1 | 0.445| 0.450| 0.453| 0.456| 0.457| 0.459| 0.459| 0.460| o0.460
2.2 | 0.428] 0.432| 0.435| 0.437| 0.438| 0.439| 0.440| 0.440| 0.44I
2.3 | 0.4I2| 0.415| 0.417| 0.419| 0.42I| 0.422| 0.422| 0.423| 0.423
2.4 | 0.397| 0.400| 0.402| 0.403| 0.404| 0.405| 0.406| 0.406( 0.406
2.5 | 0.383] 0.385| 0.387( 0.388| 0.389| 0.390| 0.390| o0.391| 0.391I
2.6 | 0.369| o0.372| 0.373| 0.374| o0.375| 0.376] 0.376| 0.376] 0.376
2.7 | 0.357| o0.359| 0.360| 0.361| 0.362| 0.362| 0.363| 0.363| 0.363
2.8 | 0.345| 0.347| 0.348| 0.349| o0.350| o0.350| 0.350| 0.35I| o0.351
2.9 | 0.335| 0.336| o0.337 0.338] 0.338| 0.338| 0.339| 0.339| 0.339
3.0 |+0.324|+0.325|+0.326|+0 327|+0.327|+0.328 | +0.328 |+ 0.328 4+ 0.328
3. | 0.314| o0.315| 0.316| o0.317| o0.317| 0.317| 0.318| 0.318| 0.318
3.2 0.305| 0.306| o0.307| 0.307| 0.308] o0.308| 0.308| 0.308| o0.308
3.3 | 0.297| o0.297| 0.298] 0.298| 0.299| 0.299| 0.299| 0.299| 0.300
3.4 0.288| 0.289| 0.289| 0.290| o0.290( 0.290| 0.290| 0.29I| 0.29I
3.5 | 0.280| 0.281| 0.281| o0.282| 0.282| 0.282| 0.282| 0.283( 0.283
3.6 | 0.273| o0.274| 0.274| o0.274| o.275| o0.275| o0.275| 0.275| 0.275
3.7 | 0.266| 0.266{ 0.267| 0.267| 0.267| 0.267| 0.268| 0.268| 0.268
3.8 | o0.259| 0.260| 0.260| 0.260 0.261| 0.261| 0.261|. 0.261| 0.261
[39| 0253 o0.253| 0.254| 0.254| 0.254| 0.254| 0.254| 0.254| 0.254

4.0 |+0.247|+0.247{+0.248|+0.248 |+ 0.248 | +0.248 | +0.248 | +0.248 [+ 0.248

80a Stumpff, Himmelsmechanik
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Hilfstafel zur geniherten Losung der Hauptgleichung
fiir die Apsiden als Ausgangsort: z + 523 = 1

Anhang A

X

z b z b z b
0.50 + 4.00 0.80 +o0.301 1.10 — 0.0751
0.5I 3.69 0.81 +o0.357 I.II — 0.0804
0.52 3.41 0.82 + 0.326 1.12 — 0.0854
0.53 3.16 0.83 + 0.297 1.13 — 0.0901
0.54 2.92 0.84 +0.270 1.14 — 0.0945
0.55 2.71 0.85 +0.244 1.15 —0.0986
0.56 2.51 0.86 + 0.220 1.16 — 0.1025
0.57 2.32 0.87 +0.197 1.17 — 0.1061
0.58 2.15 0.88 + 0.176 1.18 — 0.1095
0.59 2.00 0.89 + 0.156 1.1I9 —o0.1128
0.60 +1.85 0.90 +0.137 1.20 —o0.1158
0.61 1.72 0.91 4 o0.119 1.21 —0.1186
0.62 1.59 0.92 +o0.103 1.22 — 0.I2II
0.63 1.48 0.93 + 0.087 1.23 —0.1236
0.64 1.37 0.94 + 0.072 1.24 —0.1259
0.65 1.27 0.95 + 0.058 1.25 —o0.1280
0.66 1.18 0.96 + 0.045 1.26 — 0.1299
0.67 1.I10 0.97 +0.033 1.27 —o0.1318
0.68 1.02 0.98 + 0.021 1.28 —0.1335
0.69 0.944 0.99 + o.010 1.29 —0.1351
0.70 +0.875 1.00 0.000 1.30 —0.1366
0.71 o.810 1.01 — 0.01I0 1.31 —0.1379
0.72 0.750 1.02 —o0.019 1.32 —0.1391
0.73 0.694 1.03 — 0.027 1.33 — 0.1403
0.74 0.642 1.04 —0.036 1.34 — 0.I413
0.75 0.593 1.05 —0.043 1.35 —0.1423
0.76 0.547 1.06 —0.050 1.36 —0.1431
0.77 0.504 1.07 — 0.057 1.37 —0.1439
0.78 0.464 1.08 — 0.064 1.38 —0.1446
0.79 0.426 1.09 — 0.070 1.39 —0.1452
0.80 4 0.391 1.10 —0.075 1.40 —0.1458




ANHANG B

Tafel der Funktionen

sin 4 A2 At A8
¢ (4%) = 7 =I—?+’a‘—?+'”.
I — cosi I A2 At A8
al)=—p— = gtea -t
A—sind I A? At 28
03(;‘2)=T=§F_§+7| 9!+"

auf sechs Dezimalstellen fiir jedes Tausendstel des Arguments im Bereich

—o0.250 < A* < +1.250.

Man berechnet auBerdem leicht:

co(A%) = cosd = 1 — A%¢c,.

80a*



At 6 Cy €3
—0.250 1.042191 0.510504 0.168762
249 020 461 754
248 1.041849 419 746
247 678 377 737
-246 507 334 729
245 336 292 720
244 166 250 712
243 | 1.040995 207 703
242 824 165 695
241 653 123 687
—0.240 | 1.040483 0.510080 0.168678
.239 312 038 670
.238 141 0.509996 661
237 | 1.039971 953 653
236 800 911 644
.235 629 869 636
.234 459 826 628
233 288 784 619
232 118 742 611
231 1.038947 699 602
—0.230 1.038777 0.509657 0.168594
.229 606 615 585
228 436 572 577
227 265 530 569
.226 095 488 560
.225 1.037924 446 552
224 754 403 543
223 583 361 535
222 413 319 526
221 242 276 518
—o0.220 | 1.037072 0.509234 0.168510
.219 1.036902 192 501
218 731 150 493
217 561 107 484
.216 391 065 476
215 221 023 468
214 050 0.508981 459
213 1.035880 938 451
212 710 896 442
-211 540 854 434
—o0.210 1.035369 0.508811 0.168425
-209 199 769 417
.208 029 727 409
.207 1.034859 685 400
.206 689 642 392
.205 519 600 383
-204 348 558 375
.203 178 516 367
.202 008 474 358
.201 1.033838 431 350
— 0.200 1.033668 0.508389 0.168341

171 170
1| 171 1| 17.0
2| 34.2 2| 340
3| 51.3 3| srI.0
4| 68.4 4| 68.0
5| 855 5| 8s.0
6 | 102.6 6 | 102.0
7| 119.7 7 | 119.0
8| 136.8 8| 136.0
9| 1539 9 | 153.0

43
1 4.3
2 8.6
3| 12.9
4| 17.2
5| 2I.5
6| 258
7| 301
8| 344
9| 387
42
1 4.2
2 8.4
3| 12.6
4| 168
5| 2r1.0
6| 252
7| 294
8| 33.6
9| 378




A2 o c, cs
— 0.200 1.033668 0.508389 0.168341
-199 498 347 333
.198 328 305 324
197 158 262 316
.196 1.032988 220 308
.195 818 178 299
194 648 136 291
-193 479 094 282
192 309 051 274
191 139 009 266
— 0.190 1.031969 0.507967 0.168257
189 799 925 249
.188 629 883 240
.187 459 840 232
.186 " 290 798 224
.185 120 756 215
184 1.030950 714 207
.183 780 672 198
.182 611 629 . 190
.181 441 587 182
—o0.180 1.030271 0.507545 0.168173
179 101 503 165
.178 1.029932 461 156
177 762 419 148
176 593 376 139
175 423 . 334 131
174 253 292 123
173 084 250 114
.172 | 1.028914 208 106
S 574 ¢ 745 166 097
—0.170 1.028575 0.507124 0.168089
.169 406 081 081
.168 236 039 072
.167 067 0.506997 064
.166 1.027897 955 055
.165 728 913 047
.164 558 871 039
.163 389 829 030
‘162 220 787 022
161 050 744 013
— 0.160 1.026881 0.506702 0.168005
.159 711 660 0.167997
.158 542 618 988
157 373 576 980
156 204 534 972
155 034 492 963
154 | 1.025865 450 955
153 696 408 946
152 527 366 938
I51 357 323 930
— 0.150 1.025188 0.506281 0.167921

170 169
I 17.0 1 16.9
2| 34.0 2| 338
3| 510 3| 50.7
4| 68.0 4| 67.6
5| 8s.0 5| 84.5
6 | 102.0 6 | 101.4
7 | 119.0 7| 118.3
8| 136.0 8| 135.2
9 | 153.0 9| 152.1

43
I 4.3
2 8.6
3| 12.9
4| 17.2
5| 2I.5
6| 258
7| 30.1
8| 344
9| 387
42
1 4.2
2 8.4
3| 12.6
4| 168
5| 2r1.0
6| 252
7| 294
8| 33.6
9| 378




A2

170 169
b 17.0 1 16.9
2| 34.0 2| 33.8
3| s5Io0 3| 50.7
4| 68.0 4| 67.6
5| 8s.0 5| 84.5
6 | 102.0 6 | 101.4
7| 119.0 7| 118.3
8| 136.0 8| 135.2
9| 153.0 9 | 152.1

168 43
1 16.8 1 4.3
2| 33.6 2| 86
3| 50.4 31| 129
4| 67.2 4| 172
5 84.0 5| 21.5
6 | 100.8 6| 258
7| 117.6 7| 30.I
8| 1344 8| 344
9| 151.2 9| 38.7

42 41
I 4.2 1 4.1
2 8.4 2 8.2
3| 126 3| 12.3
4| 16.8 4| 16.4
5| 21.0 5| 20.5
6| 252 6| 24.6
7| 294 7| 287
8| 33.6 8| 32.8
91 37 9| 369

¢ C, Cy

—o.150 | 1.025188 0.506281 0.167921
-149 o019 239 913
148 | 1.024850 197 904
147 681 155 896
.146 512 113 888
145 342 o71 879
144 173 029 871
143 004 0.505987 862
.142 | 1.023835 945 854
.I41 666 903 846

— 0.140 1.023497 0.505861 0.167837
.139 328 819 829
.138 159 777 820
.137 | 1.022990 734 812
.I36 821 692 804
135 652 650 795
134 483 608 787
133 315 566 779
132 146 524 770
.I3I 1.021977 482 762
—0.130 1.021808 | 0.505440 0.167753
.129 639 398 745
128 470 356 737
127 301 314 728
.126 133 272 720
125 1.020964 230 711
124 795 188 703
123 626 146 695
122 458 104 686
121 289 062 678
—o0.120 1.020120 0.505020 0.167670
.II9 1.019952 0.504978 661
.118 783 936 653
117 614 894 644
.I116 446 852 636
115 277 810 628
114 109 768 619
.I13 1.018940 726 611
112 771 684 602
III 603 642 594

© —o0.1I0 | 1.018434 0.504600 0.167586
.109 266 558 577
.108 097 516 569
.107 1.017929 474 561
.106 761 432 552
-105 592 390 544
-104 424 348 535
.103 255 306 527
.102 087 264 519
.I0I 1.016919 223 510

— 0.100 1.016750 0.504181 0.167502




A2 ¢ ¢y Cy
—o0.100 | I.016750 0.504181 0.167502
099 582 139 494
098 414 097 485
097 245 055 477
.096 077 013 468
.095 1.015909 0.503971 460
-094 740 929 452
-093 572 887 443
092 404 845 435
.091 236 803 427
— 0.090 1.015068 0.503761 0.167418
.089 1.014899 719 410
.088 731 677 402
.087 563 636 393
.086 395 594 385
.085 227 552 376
.084 059 510 368
.083 1.013891 468 360
.082 723 426 351
-081 555 384 343
—o0.080 | 1.013387 0.503342 0.167335
.079 219 300 326
.078 051 258 318
.077 1.012883" 217 310
.076 715 175 301
-075 547 133 293
074 379 091 284
.073 211 049 276
.072 043 007 268
.071 1.011875 0.502965 259
—o0.070 | I.011708 0.502923 0.167251
.069 540 882 243
.068 372 840 234
.067 204 798 226
.066 036 756 218
.065 | 1.010869 714 209
.064 701 672 201
.063 533 631 192
.062 365 589 184
.061 198 547 176
— 0.060 1.010030 0.502505 0.167167
.059 1.009862 463 159
.058 695 421 151
.057 527 380 142
.056 360 338 134
.055 192 296 126
.054 024 254 117
.053 1.008857 212 109
.052 689 170 101
.051 522 129 092
— 0.050 1.008354 0.502087 0.167084

169 168
I 16.9 I 16.8
2| 338 2| 336
3| 507 3| 504
4| 67.6 41| 67.2
5| 845 5| 84.0
6 | 101.4 6 | 100.8
7| 118.3 7| 117.6
8] 135.2 8| 134.4
9 | 152.1 9 | I51.2
167

I 16.7

2 334

3| 50.I

4| 668

5| 835

6 | 100.2

7 | 116.9

8| 133.6

9 | 150.3

42 41

1 4.2 1 4.1
2 8.4 2 8.2
3| 12.6 3| 12.3
4| 168 4| 16.4
5| 21.0 - 5| 20.5
6| 252 6| 24.6
7| 294 7| 287
8| 33.6 8| 32.8
9] 378 9| 369




A2

168 167
1| 168 I 16.7
2| 336 2| 334 |
3] 504 3| 50.I
4| 67.2 4| 66.8
5 84.0 5 83.5
6 | 100.8 6 | 100.2
7| 117.6 7| 116.9
8| 134.4 8| 133.6
9| 151.2 9| 150.3
166

1 16.6

2| 332

3| 498

4| 66.4

5 83.0

6 99.6

7 | 116.2

8| 132.8

9 ].1494

42 41

1 4.2 1 4.1
2 8.4 2 8.2
3| 12.6 3| 12.3
4| 16.8 4| 16.4
5| 21.0 5| 20.5
6| 252 6| 24.6
7| 294 7| 287
8| 33.6 8| 32.8
9| 378 9| 369

¢ (A Cy
— 0.050 1.008354 0.502087 0.167084
-049 187 045 075
.048 019 003 067
.047 1.007852 0.501961 059
.046 684 920 050
.045 517 878 042
044 349 836 034
1043 182 794 025
.042 oI5 752 o17
.04I | 1.006847 711 009
—0.040 | 1.006680 0.501669 0.167000
© .039 513 627 0.166992
.038 345 585 984
037 178 544 975
.036 oIl 502 967
035 | 1.005844 460 959
.034 676 418 950
033 509 377 942
032 342 335 934
-031 175 293 925
— 0.030 1.005008 0.501251 0.166917
.029 1.004840 210 908
.028 673 168 900
.027 506 126 892
.026 339 084 883
.025 172 043 875
024 005 001 867
.023 1.003838 0.500959 858
.022 671 917 850
.02I 504 876 842
— 0.020 1.003337 0.500834 0.166833
.019 170 792 825
.018 003 750 817
.017 1.002836 709 808
.016 669 667 800
.015 502 625 792
014 335 584 783
013 168 542 775
012 001 500 767
.0II 1.001834 459 758
— 0.0I0 1.001667 0.500417 0.166750
-009 501 375 742
-008 334 333 733
.007 167 292 725
.006 000 250 717
.005 1.000834 208 708
.004 667 167 700
.003 500 125 692
.002 333 083 683
.001 167 042 675
0.000 1.000000 0.500000 | 6.166667




A2 o ¢y Gy

0.000 1.000000 0.500000 0.166667
.00I 0.999833 0.499958 658
.002 667 917 650
.003 500 875 642
-004 333 833 633
.005 167 792 625
.006 000 750 617
.007 | 0.998834 708 608
.008 667 667 600
.009 50I 625 592
+o0.010 | 0.998334 0.499583 0.166583
.0II 168 542 575
.012 001 500 567
013 | 0.997835 459 558
.014 668 417 550
‘015 502 375 542
.016 335 334 533
.017 169 292 525
.018 003 250 517
.0IQ 0.996836 209 508
+ 0.020 | 0.996670 0.499167 0.166500
.021 504 126 492
.022 337 084 483
.023 171 042 475
.024 005 ool 467
025 | 0.995839 | 0.498959 458
.026 672 918 450
027 506 876 442
028 340 834 433
-029 174 793 425
+0.030 | 0.995007 0.498751 0.166417
.03I | 0.994841 710 409
.032 675 668 400
.033 509 627 392
-034 343 585 384
-035 177 543 375
.036 oI1 502 367
037 | ©0.993845 460 359
-038 679 419 350
-039 513 377 342
+ 0.040 0:993347 0.498336 0.166334
.041 181 294 325
.042 oI5 252 317
.043 0.992849 211 309
.044 683 169 300
.045 517 128 292
.046 351 086 284
047 185 045 275
.048 019 003 267
049 | 0.991853 | 0.497962 259
+ 0.050 0.991687 0.497920 0.166250

167 166
1 16.7 1 16.6
2| 334 2| 332
3| 50I 3| 498
4| 66.8 4| 66.4
5| 835 5| 83.0
6 | 100.2 6| 99.6
7 | 116.9 7| 116.2
8| 133.6 8| 132.8
9| 1503 9 | 1494

42
1 4.2
2 8.4
3| 12.6
4| 168
5( 2I1.0
6| 25.2
71 294
8| 33.6
9| 37.8
41
1 4.1
2 8.2
3| 123
4| 16.4
5| 205
6| 24.6
7| 28.7
8| 328
9| 369




A2 o Cy Cq
+0.050 | 0.991687 0.497920 0.166250
.051 522 879 242
.052 356 837 234
.053 190 796 226
054 024 754 217
.055 0.990859 713 209 -
.056 693 671 201
.057 527 630 192
.058 361 588 184
.059 196 546 176
+ 0.060 0.990030 0.497505 0.166167
.061 | 0.989864 463 159
.062 699 422 151
.063 533 381 142
.064 367 339 134
.065 202 298 126
.066 036 256 118
.067 | 0.988871 215 109
.068 705 173 101
.069 540 - 132 093
+ 0.070 0.988374 0.497090 0.166084
.071 209 049 076
.072 043 007 068
.073 | 0.987878 0.496966 059
074 712 924 051
075 547 883 043
.076 381 841 034
.077 216 800 026
.078 051 758 018
.079 0.986885 717 oI1o
+0.080 | 0.986720 0.496676 0.166001
.081 555 634 | 0.165993
.082 389 593 985
.083 224 551 976
.084 059 510 968
.085 | 0.985893 468 960
.086 728 427 951
.087 563 385 943
.088 398 344 935
-089 233 303 927
+0.090 | 0.985067 0.496261 0.165918
.091 0.984902 220 910
.092 | 737 178 902
.093 572 137 893
.094 407 096 88s
.095 242 054 877
.096 077 013 868
.097 0.983912 0.495971 860
.098 747 930 852
.099 581 889 844
+0.100 | 0.983416 0.495847 0.165835

166 165
1 16.6 1 16.5
2| 33.2 2| 33.0
3| 498 3| 495 |
4| 66.4 4| 66.0
5| 83.0 5| 825 |
6| 99.6 6| 99.0
7| 116.2 7| 115.5 |
8| 132.8 8| 132.0
91 1494 9| 1485
42

I 4.2

2 8.4

3| 12.6

4 | 16.8

5| 21.0

6 | 25.2

7| 294

8| 336

9| 378

41

1 4.1

2 8.2

3| 12.3

4| 16.4

5| 20.5

6| 24.6

71| 287

8| 32.8

9| 369




A2 ¢, Cy Cs
+o0.100 | 0.983416 0.495847 0.165835
.101 251 806 827
.102 086 764 819
.103 | 0.982922 723 810
.104 757 682 802
.105 592 640 794
.106 427 599 786
.107 262 558 777
.108 097 516 769
.109 | 0.981932 475 761
4+o0.110 | 0.981767 0.495433 0.165752
JIIX 602 392 744
112 438 351 736
113 273 309 728
114 108 268 719
.I15 0.980943 227 711
.116 778 185 703
117 614 144 694
.118 449 103 686
.II9 284 . 061 678
+ 0.120 0.980120 0.495020 0.165670
-I2I | 0.979955 0.494979 661
-122 790 937 653
123 626 896 645
124 461 855 636
.125 296 813 628
.126 132 772 620
.127 | 0.978967 731 612
.128 803 689 603
.129 638 648 595
+o0.130 0.978474 0.494607 0.165587
131 309 565 578
132 145 524 570
133 0.977980 483 562
134 816 442 554
135 651 400 545
-136 487 359 537
137 323 318 529
.138 158 276 520
139 | 0976994 235 512
+o0.140 | 0.976829 0.494194 0.165504
141 665 153 496
142 501 IIX 487
143 336 o70 479
144 172 029 471
145 008 0.493987 462
146 | 0.975844 946 454
147 679 905 446
148 515 864 438
.I49 351 822 429
+ 0.150 0.975187 0.493781 0.165421

31 Stumpff, Himmelsmechanik

165 164
1 16.5 I 16.4
2| 33.0 2| 32.8
3| 495 3| 492
4| 66.0 4| 65.6
5| 82.5 5| 82.0
6| 99.0 6| 98.4
7 | 115.5 7 | 114.8
8 | 132.0 8| 131.2
9| 1485 9| 1476

42
1 4.2
2 8.4
3| 12.6
4| 16.8
5| 21.0
6 ( 252
7| 294
8| 33.6
9| 37.8
41
1 4.I
2 8.2
3| 12.3
4| 16.4
5| 20.5
6| 24.6
7| 287
8| 32.8
9] 369




A2 ¢ Cy Cs
+o0.150 | 0.975187 0.493781 0.165421 l
I5I 023 740 413
152 | 0.974859 699 405
153 694 657 396
154 530 616 388
155 366 575 380
.156 202 534 371
157 038 492 363
158 | 0.973874 451 355
-159 710 410 . 347
+o0.160 | 0.973546 0.493369 0.165338
161 382 328 330
.162 218 286 322
163 054 245 314
.164 | 0.972890 204 305
.165 726 163 297
.166 562 121 289
167 398 o080 281
.168 234 039 272
.169 070 0.492998 264
+o0.170 | 0.971907 0.492957 0.165256
171 743 915 247
172 579 874 239
173 415 833 231
174 251 792 223
175 087 751 214
176 | 0.970924 710 206
177 760 668 198
.178 596 627 190
.179 433 586 181
+0.180 | 0.970269 0.492545 0.165173
181 105 504 165
182 0.969942 463 157
.183 778 421 148
.184 614 380 140
185 " 451 339 132
.186 287 298 124
.187 123 257 115
.188 0.968960 216 107
.189 796 174 099
+ 0.190 0.968633 0.492133 0.165090
.IQI 469 092 082
192 306 o051 074
.193 142 o1o 066
194 | 0.967979 | ©0.491969 057
.195 815 928 049
.196 652 887 041
197 489 845 033
.198 325 804 024
.199 162 763 016
4+ 0.200 | 0.966998 0.491722 0.165008

165 164
I 16.5 I 16.4
2| 33.0 2| 328
3] 495 3| 492
4| 66.0 4| 65.6
5| 825 5| 82.0
6| 99.0 6 98.4
7| 115.5 7| 114.8
8| 132.0 8| 131.2
9 | 148.5 9| 147.6
163
I 16.3
2 32.6
3| 489
4| 652
5| 815
6| 97.8
7| 114.1
8 | 130.4
9| 146.7
42 41
1 4.2 1 4.1
2 8.4 2 8.2
3| 12.6 3| 1I2.3
4| 168 4| 16.4
5] 2I.0 5| 20.5
6| 252 6| 24.6
7| 29-4 7| 287
8| 33.6 8| 32.8
9| 378 9| 369




A2

164 163
I 16.4 I 16.3
2| 32.8 2| 32.6
3| 492 3| 489
4| 65.6 4| 652
5| 82.0 5| 815
6 98.4 6 97.8
7| 114.8 7| 114.1
8| 131.2 8 | 130.4
9| 147.6 9 | 146.7
162

1 16.2

2| 32.4

3| 48.6

4| 64.8

5| 8r.0

6| 97.2

7| 1134

8 | 120.6

9| 1458

42 41

b 4.2 1 4.1
2 8.4 2 8.2
3| 12.6 3| 12.3
4| 16.8 4| 16.4
5| 21.0 5| 20.5
6| 252 6| 24.6
7| 294 7| 287
8| 33.6 8| 32.8
9| 378 9| 369

a 2] C3
+ 0.200 0.966998 0.491722 0.165008
.201 835 681 000
.202 672 640 0.164991
.203 508 599 983
.204 345 558 975
.205 182 516 967
.206 019 475 958
207 | 0.965855 434 950
.208 692 393 942
-209 529 352 934
+ 0.210 0.965366 0.49131I 0.164925
211 202 270 917
212 039 229 909
.213 | 0.964876 188 901
214 713 147 892
215 550 106 884
216 387 065 876
217 224 023 868
218 o061 0.490982 859
219 | 0.963898 941 851
+ 0.220 735 0.490900 0.164843
221 572 859 835
222 409 818 826
223 246 777 818
224 083 736 810
.225 0.962920 695 802
-226 757 654 793
227 594 613 785
.228 431 572 777
.229 268 531 769
+o0.230 0.962105 0.490490 0.164760 .
231 | 0.961942 449 752
232 779 408 744
233 617 367 736
234 454 326 727
.235 291 285 719
236 128 244 711
237 0.960965 203 703
.238 803 162 695
.239 640 121 686
+0.240 | 0.960477 0.490080 0.164678
241 315 039 670
242 152 0.489998 662
243 | ©0.959989 957 653
244 827 . 916 645
245 664 875 637
246 501 834 629
247 339 793 620
248 176 752 612
249 014 711 604
+o0.250 0.958851 0.489670 0.164596

81*




163 162
1 16.3 1 16.2
2| 326 2| 32.4
3| 489 3| 486
4| 652 4| 64.8
5| 8.5 5| 8.0
6| 97.8 6| 97.2
7| 1141 7 | 113.4
8| 130.4 8 | 129.6
9| 146.7 9| 145.8
161

1 16.1

2| 32.2

3| 483

4| 644

5| 8o.5

6| 96.6

7| 112.7

8 | 128.8

9| 1449

41 40

1 4.1 1 4.0
2 8.2 2 8.0
3| 12.3 3| 12.0
4| 16.4 4| 16.0
5| 20.5 5| 20.0
6| 24.6 6| 24.0
7| 287 7| 28.0
8| 32.8 8| 32.0
9| 369 9| 36.0

a2 a Gy 3
+o0.250 | 0.958851 0.489670 0.164596
251 689 629 587
.252 526 538 579
253 364 547 571
.254 201 506 563
-255 039 465 555
.256 | 0.957876 424 546
-257 714 383 538
-258 551 342 530
.259 389 301 522
+0.260 | 0.957227 0.489260 0.164513
261 064 219 505
.262 | 0.956902 178 497
263 739 137 489
.264 577 096 480
-265 415 055 472
.266 253 014 464
.267 090 0.488974 456
.268 | 0.955928 933 448
.269 766 892 439
+o0.270 | 0.955604 0.488851 0.164431
271 441 810 423
-272 279 769 415
.273 117 728 406
274 | 0.954955 687 398
-275 793 646 390
.276 631 605 382
277 469 564 373
278 306 523 365
-279 144 483 357
+0.280 | 0.953982 0.488442 0.164349
281 820 401 341
282 658 360 332
.283 496 319 324
284 334 278 316
.285 172 237 308
.286 o1o 196 299
.287 0.952848 155 291
.288 686 115 283
-289 525 074 275
+0.290 | 0.952363 0.488033 0.164267
201 201 0.487992 258
.292 039 951 250
.203 0.951877 910 242
-294 715 869 234
.295 553 829 226
.296 392 788 217
-297 230 747 209
.298 068 706 201
.299 0.950906 665 193
+0.300 | 0.950745 0.487624 0.164184




A? 6 Cy C4
+ 0.300 0.950745 0.487624 0.164184
.301 583 583 176
.302 421 543 168
.303 260 502 160
.304 098 461 152
-305 | 0.949936 420 143
-306 775 379 135
-307 613 339 127
.308 451 298 119
.309 290 257 111
+0.310 | 0.949128 0.487216 0.164102
311 0.948967 175 094
312 805 134 086
313 644 094 078
.314 482 053 069
.315 321 012 061
.316 159 0.486971 053
-317 | 0.947998 930 045
.318 836 890 037
.319 675 849 028
+0.320 | 0.947514 0.486808 0.164020
.321 352 767 o012
.322 191 727 004
.323 029 686 0.163996
324 0.946868 645 987
325 707 604 979
-326 545 563 971
-327 384 523 963
.328 223 482 955
.329 062 441 946
+0.330 | 0.945900 0.486400 0.163938
-331 739 360 930
-332 578 319 922
-333 417 278 914
334 256 237 905
-335 |- 094 - 197 897
-336 | 0.944933 156 889
.337 772 115 881
.338 611 074 873
-339 450 034 864
+0.340 | 0.944289 0.485993 0.163856
.341 128 952 848
.342 | 0.943967 91I 840
.343 806 871 832
344 645 830 823
-345 484 789 815
-346 323 749 8o7
-347 162 708 799
.348 001 667 791
.349 | 0.942840 626 782
+ 0.350 0.942679 0.485586 0.163774

162 161
I 16.2 1 16.1
2| 32.4 2| 32.2
3| 486 3| 483
4| 64.8 4| 64.4
5 81.0 5 80.5
6 97.2 6 96.6
7| 113.4 7| 1127
8| 129.6 8 | 128.8
9| 14538 91 1449
41

1 4.I -

2 8.2

3| 12.3

4| 16.4

5| 2o0.5

6| 24.6

7| 28.7

8| 32.8

9| 369

40

1 4.0

2 8.0

3| 12.0

4| 16.0

5| 20.0

6| 24.0

71 28.0

81 32.0

9| 36.0




2

%

2

Cs

4+ 0.350 | 0.942679 0.485586 0.163774
-351 518 545 766
-352 357 504 758
-353 196 464 750
-354 036 423 741
-355 | 0.941875 382 733
-356 714 342 725
-357 553 301 717
.358 302 260 709
.359 232 220 700

+ 0.360 0.941071 0.485179 0.163692
.361 | 0.940910 138 684
.362 749 097 676
.363 589 057 668
.364 428 016 659
.365 267 0.484975 651
-366 107 935 643.
-367 | 0.939946 894 635
.368 785 854 627
.369 625 813 619

+0.370 0.939464 0.484772 0.163610
.371 304 732 602
-372 143 691 594
.373 | 0.938982 650 586
374 822 610 578
-375 661 569 569
.376 501 528 561
-377 340 488 553
-378 180 447 545
-379 020 406 537

+ 0.380 0.937859 0.484366 0.163529
.381 699 325 520
.382 538 285 512
-383 378 244 504
.384 218 203 496
.385 057 163 488
.386 0.936897 122 479
-387 737 082 471
.388 576 o41 463
.389 416 000 455

+0.390 | 0.936256 0.483960 0.163447
-391 096 919 439
-392 | 0.935935 879 430
-393 775 838 422
-394 615 797 414
-395 455 757 406
-396 295 716 398
-397 134 676 389
-398 | 0.934974 635 381
-399 814 595 373

+0.400 | 0.934654 | 0.483554 | 0.163365

161 160
1 16.1 I 16.0
2| 32.2 2| 32.0
31 483 3| 480
4| 64.4 4| 64.0
5| 8o.5 5| 8o.0
6| 96.6 6| 9g6.0
7| 1129 7| 112.0
8| 128.8 8| 128.0
9| T44.9 9 | I44.0

41
1 4.1
2 8.2
3| 12.3
4| 16.4
5| 20.5
6| 24.6
71 28.7
8| 32.8
9] 369

40
1 4.0
2 8.0
3| 12.0
4| 16.0
5| 20.0
6| 24.0
7| 28.0
8| 32.0
9| 36.0




A2 ¢ Cq Cy
+0.400 | 0.934654 | 0.483554 | 0.163365
.401 494 513 357
-402 334 473 349
-403 174 432 340
-404 or4 392 332
-405 | 0.933854 351 324
.406 694 311 316
-407 534 270 308
.408 374 230 300
.409 214 189 291
+ 0.410 | 0.933054 0.483148 0.163283
411 0.932894 108 275
412 734 067 267
413 574 027 259
414 414 0.482986 250
-415 254 946 242
-416 095 905 234
.417 | 0.931935 865 226
418 775 824 218
419 615 784 210
+0.420 | 0.931455 0.482743 0.163201
421 296 703 193
422 136 662 185
.423 0.930976 622 177
424 816 581 169
.425 657 541 161
426 497 500 152
-427 337 460 144
.428 178 419 136
- .429 o18 379 128
+0.430 | 0.929858 0.482338 0.163120
431 699 298 112
432 539 257 103
433 380 217 095
.434 220 176 087
-435 061 136 079
.436 | 0.928901 095 071
-437 742 055 063
438 582 o014 054
-439 423 | 0.481974 046
+0.440 | 0.928263 0.481933 0.163038
44X 104 893 o030
-442 | 0.927944 853 022
-443 785 812 o14
444 626 772 006
-445 466 731 | 0.162997
446 307 691 989
447 147 650 981
.448 | 0.926988 610 973
-449 829 569 965
4 0.450 | 0.926670 0.481529 0.162957

160 159
1 16.0 1 15.9
2| 32.0 2| 318
3| 480 3| 477
4| 64.0 4| 63.6
5| 8o 5| 795
6| g6.0 6 95.4
7| 112.0 7 | 1I1.3
8 | 128.0 8| 127.2
9 | I44.0 9 | 143.1
41

I 4.1

2 8.2

3| 12.3

4| 16.4

5| 20.5

6| 24.6

7| 287

8| 32.8

91 369

40

b 4.0

2 8.0

3| 12.0

4| 16.0

5| 20.0

6| 24.0

7| 28.0

8| 32.0

9| 36.0




A2

a

Cy

Cs

160 159
I 16.0 I 15.9
2 32.0 2| 31.8
3| 480 3| 477
4| 64.0 4| 63.6
5| 8o.0 5| 795
6| 96.0 6| 954
7| 112.0 7 | 11I1.3
8 | 128.0 8 | 127.2
9 | I44.0 9 | I43.1
158

1 15.8

2 31.6

3| 474

4| 63.2

5| 790

6| 94.8

7 | 110.6

8 | 126.4

9 | 142.2

41 40

1 4.1 1 4.0
2 8.2 2 8.0
3| 12.3 3| 120
4| 16.4 4 | 16.0
51 20.5 5| 20.0
6| 24.6 6 24.0
7| 287 71 28.0
8| 32.8 8| 32.0
91 369 9| 36.0

+o0.450 | 0.926670 0.481529 0.162957
-451 510 489 948
-452 351 448 940
.453 192 408 932
454 033 367 924
-455 | 0.925873 327 916
.456 714 286 908
457 555 246 900
.458 396 206 891
-459 237 165 883

+0.460 | 0.925077 0.481125 0.162875
461 | 0.924918 084 867
462 759 044 859
.463 600 004 851
464 441 0.480963 842
.465 282 923 834
.466 123 882 826
.467 | 0.923964 842 818
.468 8o5 802 810
.469 646 761 802

+0.470 | 0.923487 0.480721 0.162794
471 328 681 785
-472 169 640 777
473 oI0 600 769
474 | ©0.922851I 559 761
-475 692 519 753
-476 534 479 745
-477 375 438 737
.478 216 398 728
-479 057 358 720

+0.480 | 0.921898 0.480317 0.162712
-481 739 277 704
.482 581 237 696
483 422 196 688
.484 263 156 679
.485 104 116 671
.486 | 0.920946 075 663
-487 787 035 655
-488 628 | 0.479995 647
-489 470 954 639

+ 0.490 0.920311 0.479914 0.162631
491 152 874 623
492 | 0.919994 833 614
-493 835 793 606
-494 677 753 598
-495 518 712 590
-496 359 672 582
-497 201 632 574
.498 042 591 566
499 | 0.918884 - 551 557

+o0.500 | 0.918725 0.479511 0.162549




159 158
1 15.9 1 15.8
2| 31.8 2| 316
3| 4777 3| 474
4| 63.6 4 63.2
5| 795 5| 790
6| 954 6] 094.8
7| 1I1.3 "7 | 110.6
8 | 127.2 8| 126.4
9 | 143.1 9| 142.2
157

1 15.7

2| 31.4

3 471

4| 628

5| 785

6| 94.2

7 | 1099

81 125.6

9 | I41.3

41 40

1 4.1 1 4.0
2 8.2 2 8.0
3| 12.3 3| 12.0
4| 16.4 4| 16.0
5| 20.5 5| 20.0
6| 24.6 6| 24.0
71 28.7 7| 28.0
8| 32.8 8| 32.0
9| 36.9 9| 36.0

A ¢ Cy Cy
+ 0.500 0.918725 0.479511 0.162549
-501 567 471 541
.502 408 430 533
-503 250 390 525
-504 092 350 517
-505 0.917933 309 509
.506 775 269 500
.507 616 229 492
.508 458 189 484
.509 300 148 476
+0.510 | 0.9I714I .| 0.479108 0.162468
511 0.916983 068 460
512 825 027 452
.513 666 0.478987 444
514 508 947 435
-5I5 350 907 427
.5I6 192 866 419
517 034 826 411
.518 0.915875 786 403
-519 717 746 395
+0.520 | 0.915559 0.478705 0.162387
.521 401 665 378
.522 243 625 370
.523 085 585 362
.524 | 0.914926 544 354 -
-525 768 504 346
.526 610 464 338
527 452 424 330
.528 294 384 322
-529 136 343 313
4+ 0.530 0.913978 0.478303 0.162305
.531I 820 263 297
.532 662 223 289
.533 504 183 281
-534 346 142 273
.535 188 102 265
.536 030 062 257
.537 0.912873 022 248
.538 715 0.477982 240
-539 557 941 232
+ 0.540 0.912399 0.477901 0.162224
.541 241 861 216
542 083 821 208
.543 | 0.911926 781 200
-544 768 740 192
.545 610 700 183
.546 452 660 175
.547 295 620 167
-548 137 580 159
-549 0.910979 540 I51
+ 0.550 0.910821 0.477499 0.162143




A2

a

Gy

C3

+o0.550 | 0.910821 0.477499 0.162143
-551 664 459 135
.552 506 419 127
-553 348 379 119
-554 191 339 110
-555 033 299 102
.556 | 0.909876 258 004
.557 718 218 086
.558 560 178 078
-559 403 138 o070

+ 0.560 0.909245 0.477098 0.162062
.561 088 058 054
.562 0.908930 o18 046
-563 773 | 0.476978 037
.564 615 937 029
.565 458 897 [s73
.566 301 857 013
.567 143 817 005
.568 | 0.907986 777 0.161997
-569 828 737 989

4+ 0.570 | 0.907671 0.476697 0.161981
571 514 657 973
.572 356 616 964
-573 199 576 956
-574 042 536 948
.575 | 0.906884 496 940
-576 727 456 932
-577 570 416 924
-578 413 376 916
-579 255 336 908

+0.580 | 0.906098 0.476296 0.161900
.581 0.905941 256 891
.582 784 216 883
.583 627 176 875
-584 470 135 867
-585 312 095 859
.586 155 055 851
-587 | 0.904998 o15 843
.588 841 | 0.475975 835
-589 684 935 827

+0.590 | 0.904527 0.475895 0.161819
.591 370 855 810
.592 213 815 802
-593 056 775 794
594 | 0.903899 735 786
-595 742 695 778
-596 585 655 770
.597 428 615 762
-598 271 575 754
-599 114 535 746

+ 0.600 | 0.902957 0.475495 0.161738

158 . 157
I 15.8 1 15.7
2| 31.6 2| 3I.4
3| 474 3| 471
4| 63.2 4| 62.8
5| 790 5| 785
6| 94.8 6| 94.2
7| 110.6 7 | 109.9
8| 126.4 8| 125.6
9| 142.2 9 | 141.3

41
1 4.1
2 8.2
3| 12.3
4| 16.4
5| 20.5
6| 24.6
71 287
8! 32.8
9] 369

40
1 4.0
2 8.0
3| 120
4| 16.0
5| 20.0
6| 24.0
7| 28.0
8| 32.0
9| 36.0




A2

Ce

Cs

+ 0.600 0.902957%7 0.475495 0.161738
.601 8o1 455 729
.602 644 415 721
-603 487 375 713
-604 330 335 705
-605 173 295 697
.606 o17 255 689
.607 0.901860 215 681
.608 703 175 673
.609 546 135 665

+0.610 | 0.901390 0.475095 0.161657
611 233 055 648
612 076 015 640
613 0.900919 0.474975 632
614 763 935 624
.615 606 895 616
.616 449 855 608
617 293 815 600
.618 136 775 592
.619 | 0.899980 735 584

+0.620 | 0.899823 0.474695 0.161576
.621 667 655 568
.622 510 615 559
-623 354 575 551
624 197 535 543
.625 041 495 535
.626 | 0.898884 455 527
627 728 415 519
.628 571 375 511
-629 415 335 593

+0.630 | 0.898258 0.474295 0.161495
.631 102 255 487
632 | 0.897946 215 479
-633 789 175 470
-634 633 135 462
-635 477 095 454
.636 320 055 446
637 164 016 438
.638 008 0.473976 430
.639 0.896851 936 422

+0.640 | 0.896695 0.473896 0.161414
.641 539 856 406
642 383 816 398
643 226 776 390
644 070 736 382
645 | 0.895914 696 373
.646 758 656 365
647 602 616 357
648 446 576 349
-649 290 537 341

+0.650 | 0.895133 0.473497 0.161333

157 156
I 15.7 1 15.6
2| 31.4 2| 31.2
3| 471 3| 46.
4| 628 4| 62.4
5| 785 5| 780
6 94.2 6 93.6
7 | 109.9 7 | 109.2
8| 125.6 8 | 124.8
9 | 141.3 9.| 1404
40

1 4.0

2 8.0

3| 12.0

4| 16.0

5| 20.0

6| 24.0

71 28.0

8| 32.0

9| 36.0

39

1] 39

2 7.8

3| 1.7

4| 15.6

5| 195

6| 23.4

71 273

8| 31.2

9] 351




A2 ¢ Cy ¢y
+0.650 | 0.895133 | 0.473497 | 0.161333
651 | 0.894977 457 325
652 821 417 317
-653 665 377 309
-654 509 337 301
-655 353 297 293
.656 197 257 285
.657 041 218 277
.658 | 0.893885 178 268
.659 729 138 260
4 0.660 | 0.893573 0.473098 0.161252
.661 418 058 244
.662 262 o18 236
.663 106 0.472978 228
.664 0.892950 938 220
.665 794 899 212
.666 638 859 204
.667 482 819 196
.668 327 779 188
.669 171 739 180
+0.670 | 0.892015 0.472699 0.161172
671 0.891859 660 164
672 704 620 155
-673 548 580 147
674 392 540 139
.675 236 500 131
676 081 460 123
.677 | 0.890925 421 115
678 769 381 107
679 614 341 099
+0.680 | 0.890458 0.472301 0.161091
.681 303 261 083
.682 147 222 075
.683 0.889991 182 067
.684 836 142 059
.685 680 102 051
.686 525 062 042
.687 369 023 034
.688 214 0.471983 026
.689 058 943 o18
+ 0.690 0.888903 0.471903 0.161010
.691 748 863 002
.692 592 824 0.160994
.693 437 784 986
694 281 744 978
.695 126 704 970
.696 0.887971 665 962
-697 815 625 954
.608 660 585 946
-699 505 545 938
+ 0.700 0.887349 0.471505 0.160930

156 155
1 15.6 I 15.5
2| 31.2 2| 310
3| 468 3| 465
4| 62.4 4| 62.0
5| 780 51 775
61 93.6 6| 93.0
7 | 109.2 7 | 108.5
8 | 124.8 8 | 124.0
9| I404 9| 1395
40

1 4.0

2| 8o

3| 120

4| 16.0

5| z0.0

6| 24.0

7| 28.0

8| 32.0

9 36.0

39

1 3.9

2 7.8

3| 117

4| 156

5| 195

6| 234

71 273

8| 31.2

9] 351




156 155
I 15.6 ¢ 15.5
2| 3I.2 2| 3I.0
3| 468 3| 465
4| 62.4 4| 620
5| 780 5 775
6| 93.6 6| o930
7 | 109.2 7 | 108.5
8 | 124.8 8 | 124.0
9 | I404 91 1395
154

1| 154

2| 30.8

3| 46.2

4| 61.6

5( 770

6| 924

7 | 107.8

8 | 123.2

9| 138.6

40 39

1 4.0 1 3.9
2 8.0 2 7.8
3| 120 3| 11.7
4| 160 4| 156
5| 20.0 5| 19.5
6| 24.0 6| 23.4
7| 28.0 71 27.3
81| 320 8| 312
9] 360 9] 351

A2 o Cy Cy
+ 0.700 0.887349 0.471505 0.160930
701 194 466 922
702 039 426 913
.703 0.886883 386 905
-704 728 346 897
-705 573 307 889
.706 418 267 881
707 263 227 873
.708 107 187 865
.709 | 0.885952 148 857
+o0.710 | 0.885797 0.471108 0.160849
711 642 068 841
712 487 029 833
713 332 0.470989 825
714 177 949 817
715 022 909 809
716 | 0.884867 870 8or
J17 712 830 793
718 557 790 785
719 402 751 777
+o0.720 | 0.884247 0.470711 0.160769
721 092 671 760
722 0.883937 631 752
-723 782 592 744
724 627 552 736
725 472 512 728
-726 317 473 720
727 162 433 712
728 ooy 393 704
729 | 0.882853 354 696
+0.730 | 0.882698 0.470314 0.160688
731 543 274 680
732 388 235 672
733 233 195 664
-734 079 155 656
735 0.881924 116 648
736 769 076 640
737 614 036 632
-738 460 | 0.469997 624
-739 305 957 616
+o0.740 | 0.881150 0.469917 0.160608
741 0.880996 878 599
742 841 838 591
-743 687 798 583
744 532 759 575
745 377 719 567
-746 223 679 559
747 068 640 551
-748 | 0.879914 600 543
-749 759 560 535
+0.750 | 0.879605 0.469521 0.160527




155 154
1| 155 1| 154
2| 310 2| 30.8
3| 465 3| 46.2
4| 62.0 4| 61.6
5| 775 5| 770
6| 93.0 6| 924
7 | 108.5 7 | 107.8
8 | 124.0 8 | 123.2
9| 139.5 9| 1386
153

1| 153

2| 306

3| 459

4| 61.2

5[ 765

6| o91.8

7 | 107.1

8 | 122.4

9| 1377

40 39

I 4.0 I 3.9
2 8.0 2 7.8
3| 120 3| 117
4| 16.0 4| 15.6
51| 20.0 5| 19.5
6| 24.0 6| 23.4
71 28.0 71 27.3
8 32.0 8| 31.2
9| 360 9] 351

A2 ¢ Cy Cy
+ 0750 | 0.879605 0.469521 0.160527
.751 450 481 519
752 296 442 511
+753 141 402 503
754 | ©0.878987 362 495
755 832 323 487
756 678 283 479
757 524 244 471
758 369 204 463
759 215 164 455
+o0.760 | 0.878060 0.469125 0.160447
761 0.877906 085 439
762 752 046 431
763 598 006 423
.764 443 0.468966 415
-765 289 927 407
766 135 887 399
.767 | 0.876980 848 390
768 826 808 382
-769 672 768 374
+o0.770 | 0.876518 0.468729 0.160366
771 364 689 358
772 210 650 350
773 055 610 342
774 | ©.875901 571 334
775 747 531 326
-776 593 492 318
777 439 452 310
778 285 412 302
-779 131 373 294
+o0.780 | 0.874977 0.468333 0.160286
781 823 294 278
782 669 254 270
783 515 215 262
784 361 175 254
785 207 136 246
786 053 096 238
787 0.873899 057 230
.788 745 o017 222
.789 591 0.467978 214
+o0.790 | 0.873437 0.467938 0.160206
.791 284 899 198
792 130 859 190
793 | 0.872976 819 182
794 822 780 174
795 668 740 166
.796 514 701 158
797 361 661 150
.798 207 622 142
-799. 053 582 134
+ 0.800 0.871900 0.467543 0.160126




154 153
1| 154 1| 153
2| 30.8 2| 30.6
3| 46.2 3| 459
4| 61.6 4| 61.2
5| 770 51 765
6| 92.4 6| 91.8
7| 107.8 7| 107.1
8| 123.2 8| 1224
9| 138.6 9| 1377
152

1| 152

2| 30.4

3| 456

4| 60.8

5| 76.0

6| o91.2

7 | 106.4

8| 121.6

9| 136.8

40 39

1 4.0 1 3.9
2 8.0° 2 7.8
3| 120 3| 117
4| 16.0 4| 15.6.
51 20.0 5| 19.5
6 ( 24.0 6| 23.4
7| 28.0 71 273
8| 32.0 8| 31.2
9] 36.0 9| 351

A2 G C, Cs
+0.800 | 0.871900 0.467543 0.160126
.8or 746 503 118
802 592 464 110
.803 438 425 102
.804 285 385 094
.805 131 346 085
.806 | 0.870978 306 077
807 824 267 069
.808 670 227 061
.809 517 188 053
+0.810 | 0.870363 0.467148 0.160045
811 210 109 037
812 056 069 029
.813 | 0.869903 030 021
814 749 0.466990 013
.815 596 951 005
.816 442 9II 0.159997
817 289 872 989
.818 135 833 981
.819 | 0.868982 793 973
+o0.820 | 0.868829 0.466754 0.159965
821 675 714 957
.822 522 675 949
.823 368 635 941
824 215 596 933
.825 062 557 925
826 | 0.867908 517 917
.827 755 478 909
.828 602 438 goI
.829 449 399 893
+0.830 | 0.867295 0.466359 0.159885
.831 142 320 877
.832 0.866989 281 869
.833 836 241 861
834 683 202 853
.835 529 162 845
.836 376 123 837
.837 223 084 829
.838 o070 044 821
.839 | 0.865917 005 813
+ 0.840 0.865764 0.465965 0.159805
841 611 926 797
842 458 887 789
843 305 847 781
844 152 808 773
845 | 0.864999 769 765
846 846 729 757
847 693 690 749
.848 540 650 741
-849 387 611 733
+0.850 | 0.864234 0.465572 0.159725




A% 6 Cy Cs
+0.850 | 0.864234 0.465572 0.159725
851 081 532 717
.852 0.863928 493 709
853 775 454 701
854 622 414 693
-855 469 375 685
.856 316 336 677
857 164 296 669
.858 oIl 257 661
.859 | 0.862858 218 653
+0.860 | 0.862705 0.465178 0.159645
.861 553 139 637
.862 400 100 629
.863 247 o060 621
.864 004 021 613
.865 | 0.861942 0.464982 605
.866 789 942 597
.867 636 903 589
.868 484 864 581
.869 331 824 573
+o0.870 | 0.861178 0.464785 0.159565
871 026 746 557
.872 | 0.860873 706 549
.873 721 667 541
.874 568 628 533
-875 416 589 525
.876 263 549 517
877 III 5I0 509
.878 | 0.859958 471 501
879 806 431 493
+ 0.880 0.859653 0.464392 0.159485
.881 501 353 477
.882 348 314 469
.883 196 274 461
.884 043 235 453
.885 | 0.858891 196 445
.886 739 157 437
.887 586 117 429
.888 434 078 421
.889 282 039 413
+0.890 | 0.858129 0.463999 0.159405
801 | 0.857977 960 397
.892 825 921 389
.893 673 882 381
-804 520 843 373
.895 368 803 365
.896 216 764 357
-897 064 725 349
.898 | 0.856911 686 341
-899 759 646 333
+0.900 | 0.856607 0.463607 0.159325

153 152
I 15.3 1| 152
2| 306 2| 304
3| 459 3| 456
4| 61.2 4| 608
5| 765 5; 76.0
6 01.8 6 91.2
7 | 107.1 7 | 106.4
8 | 122.4 8 | 121.6
9| 137.7 9 | 136.8
40

1 4.0

2 8.0

3| 12.0

4| 16.0

5| 20.0

6| 24.0

71 28.0

8| 32.0

9| 36.0

39

I 3.9

2 7.8

3| 117

4| 156

5| 195

6| 234

71 273

8] 31.2

94 351




A2 o cy 4
+ 0.900 | 0.856607 0.463607 0.159325
-901 455 568 317
-902 303 529 309
.903 151 489 301
-904 | 0.855999 450 293
.9o5 847 411 285
-906 695 372 277
-907 543 333 270
.9o8 391 293 262
-909 239 254 254
+o0.910 | 0.855087 0.463215 0.159246
9II 0.854935 176 238
912 783 137 230
.913 631 097 222
014 479 058 214
915 327 019 206
916 175 0.462980 198
.917 023 941 190
.918 | 0.853871 901 182
.919 719 862 174
+0.920 | 0.853567 0.462823 0.159166
921 416 784 158
922 264 745 150
.923 112 706 142
924 0.852960 666 134
.925 809 627 126
.926 657 588 118
-927 505 549 110
.928 353 510 102
.929 202 471 004
+o0.930 | 0.852050 0.462432 0.159086
.931 | 0.851898 392 078
932 747 353 070
-933 595 314 062
934 443 275 054
.935 292 236 046
.936 140 197 038
.937 | 0.850989 158 030
.938 837 118 022
. .939 686 079 o014
+ 0.940 0.850534 0.462040 0.159006
.041 382 001 0.158998
942 231 0.461962 990
943 080 923 982
944 | 0.849928 884 975
945 777 845 967
-946 625 8os 959
-947 474 766 951
-948 322 727 943
-949 171 688 935
+0.950 | 0.849020 0.461649 0.158927

32 Stumpff, Himmelsmechanik

152 151
1| 15.2 1 15.1
2| 304 2| 30.2
3| 456 3| 453
4| 6o. 4| 60.4
5| 760 5] 755
6 91.2 6 90.6
7 | 106.4 7 | 105.7
8| 121.6 8 | 120.8
9] 136.8 9| 1359
40

1 4.0

2 8.0

3| 120

4| 16.0

5| 2o0.0

6| 24.0

7| 28.0

8| 320

9| 36.0

39

1 3.9

2 7.8

3| 11.7

4| 156

5| 195

6| 23.4

71 273

8| 31.2

9] 35.1




A? G [ G
+ 0.950 0.849020 0.461649 0.158927
.95I 0.848868 610 919
952 717 571 911
953 566 532 203
954 414 493 95
055 263 454 887 152 151
.956 112 415 879 1 15.2 I 15.1
.957 | 0.847960 376 871 2| 30.4 2| 30.2
958 809 336 863 3| 456 3| 453
.959 658 297 855 4| 60.8 4| 60.4
+o0.960 | 0.847507 0.461258 0.158847 5| 76.0 50 755 °
.961 356 219 839 6| or.2 6| 906
.962 204 180 831 7 | 106.4 7 | 105.7
.963 053 141 823 8 | 121.6 8 | 120.8
.964 0.846902 102 815 9| 136.8 9| 135.9
.965 751 063 8o7
.966 600 024 799
-967 449 | 0.460985 791
.968 298 946 783
-969 147 907 775
+0.970 | 0.845995 0.460868 0.158768 150 40
971 844 829 760 1| 15.0 I 4.0
.972 693 790 752 2 30.0 2| .8.0
973 542 751 744 3| 450 3| 12.0
.974 391 712 736 4| 60.0 4| 160
.975 240 673 728 5| 75.0 5| 20.0
-976 089 634 720 6| 9o.0 6| 24.0
.977 | 0.844939 595 712 7 | 105.0 71 28.0
.978 788 556 704 8 | 120.0 81| 320
- .979 637 516 696 9| 135.0 9| 36.0
+0.980 | 0.844486 0.460477 0.158688
.981 335 438 680
.982 184 399 672
.983 033 360 664
984 | 0.843882 321 656 39 38
.985 731 282 648 I 3.9 I 3.8
.986 581 243 640 2 7.8 2 7.6
.987 430 204 632 3| 117 3| 114
988 279 165 624 4| 156 4| 152
.989 128 126 616 5| 19.5 5| 19.0
+0.990 | 0.842978 0.460087 0.158608 6| 234 6| 22.8
.99I 827 048 601 71 273 7| 26.6
-992 676 009 593 8| 31.2 8| 304
993 525 | 0.459970 585 9| 35.1 9| 342
-994 375 932 577
995 224 893 569
996 073 854 561
997 | 0.841923 815 553
-998 772 776 545
-999 622 737 537
+ 1.000 | 0.841471 0.459698 0.158529




151 150
1 15.1 1 15.0
2| 302 2| 30.0
3| 453 3| 450
4 60.4 4 60.0
5 755 5 75-0
6 90.6 6 90.0
7 105.7 7 105.0
8| 120.8 8 | 120.0
91 1359 9| 135.0
149

1 14.9

2 29.8

3| 447

4| 596

5 74-5

6| 89.4

7 | 104.3

8| 119.2

9 | 1341

39 38

1 3.9 1 3.8
2 7.8 2 7.6
3| 117 3| 114
4| 15.6 4| 152
5| 19.5 5| 19.0
6| 23.4 6| 22.8
71 273 7| 26.6
8| 31.2 8| 304
91 351 91 342

A? I C, Cy
+ 1.000 | 0.841471 0.459698 | ~0.158529
1.00I 320 659 521
1.002 170 620 513
1.003 o019 581 505
1.004 | 0.840869 542 497
1.005 718 503 489
1.006 568 464 481
1.007 417 425 473
1.008 267 386 465
1.009 116 347 458
+1.010 | 0.839966 0.459308 0.158450
1.0II 815 269 442
1.0I2 665 230 434
1.013 5I5 191 426
1.0I4 364 152 418
1.0I5 214 114 410
1.016 064 075 402
1.017 | 0.838913 036 394
1.018 - 763 0.458997 386
1.019 613 958 378
+1.020 | 0.838462 0.458919 0.158370
1.021 312 880 362
1.022 162 841 354
1.023 012 802 346
1.024 | 0.837861 763 338
1.025 711 724 331
1.026 561 686 323
1.027 411 647 315
1.028 261 608 307
1.029 IIX 569 299
+ 1.030 | 0.836960 0.458530 0.158291
1.031 810 491 283
1.032 660 452 275
1.033 5I0 413 267
1.034 360 374 259
1.035 210 336 251
1.036 060 297 243
1.037 0.835910 258 235
1.038 760 219 227.
1.039 610 180 219
+ 1.040 0.835460 0.458141 0.158212
1.041 310 102 204
1.042 160 064 196
1.043 010 025 188
1.044 | 0.834860 0.457986 180
1.045 710 947 172
1.046 560 908 164
1.047 411 869 156
1.048 261 831 148
1.049 III 792 140
+ 1.050 | 0.833961 0.457753 0.158132

92+




A2 o Cy Cs
+ 1.050 | 0.833961 0.457753 0.158132
1.051I 811 714 124
1.052 662 675 116
1.053 512 636 108
1.054 362 598 101
1.055 212 559 093
1.056 063 520 085
1.057 | 0.832913 481 077
1.058 763 442 069
1.059 613 403 061
+ 1.060 | 0.832464 0.457365 0.158053
1.061 314 326 045
1.062 165 287 037
1.063, oI5 248 029
1.064 0.831865 209 021
1.065 716 171 013
1.066 566 132 005
1.067 417 093 0.157998
1.068 267 054 990
1.069 118 o016 982
+ 1.070 0.830968 0.456977 0.157974
1.071 819 938 966
1.072 669 899 958
1.073 520 860 950
1.074 370 822 942
1.075 221 783 934
1.076 o071 744 926
1.077 | 0.829922 705 918
1.078 772 667 910
1.079 623 628 903
+ 1.080 | 0.829474 0.456589 0.157895
1.081 324 550 887
1.082 175 512 879
1.083 026 473 871
1.084 | 0.828877 434 863
1.085 727 395 855
1.086 578 357 847
1.087 429 318 839
1.088 279 279 831
1.089 130 240 823
+1.090 | 0.827981 0.456202 0.157816
1.091 832 163 808
1.092 683 124 8oo
1.093 534 086 792
1.094 384 047 784
1.095 235 008 776
1.096 086 0.455969 768
1.097 | 0.826937 931 760
1.098 788 892 752
1.099 639 853 744
+ 1.100 | 0.826490 0.455815 0.157736

150 149
1 15.0 1 14.9
2| 30.0 2 29.8
3| 450 3| 447
4| 60.0 4| 596
5| 750 5| 745
6| 9go.0 6 89.4
7 | 105.0 7 | 104.3
8 | 120.0 8| 119.2
9] 1350 9] 1341
39

1 3.9

2 7.8

3| 117

4| 156

5] 195

6| 23.4

71| 273

8| 31.2

9] 351

38

1 3.8

2 7.6

3| 11.4

4| 15.2

5| I9.0

6| 22.8

7| 26.6

8| 30.4
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A2 ¢ Cy Cy

+ 1.100 | 0.826490 0.455815 0.157736
1.1I01 341 776 729
1.102 192 737 721
1.103 043 699 713
1.104 | 0.825894 660 705
1.105 745 621 697
1.106 596 582 689
1.107 447 544 681
1.108 298 505 673
1.109 149 466 665
+1.110 | 0.825000 0.455428 0.157657
I.IIX 0.824851 389 649
1.1I2 703 350 642
I.II3 554 312 634
1.114 405 273 626
I.1I5 256 234 618
1.116 107 196 610
1.117 | 0.823958 157 602
1.118 810 118 594

. I.II9 661 o080 586
+1.120 | 0.823512 0.455041 0.157578
I1.121 363 002 570
1.122 215 0.454964 563
1.123 066 925 555
1.124 | 0.822917 887 547
I.125 769 - 848 539
1.126 620 809 531
1.127 471 771 523
1.128 323 732 515
1.129 174 693 507

+ 1.130 0.822026 0.454655 0.157499
1.I131 | 0.821877 616 492
I.132 729 578 484
1.133 580 539 476
1.134 431 500 468
1.135 283 462 460
1.136 134 423 452
1.137 0.820986 385 444
1.138 838 346 436
1.139 689 307 428

+ 1.140 | 0.820541 0.454269 0.157420
1.141 392 230 413
1.142 244 192 405
1.143 095 153 397
1.144 | 0.819947 114 389
1.145 799 076 381
1.146 650 037 373
1.147 502 | 0.453999 365
1.148 354 960 357
I.149 205 921 349
+1.150 | 0.819057 0.453883 0.157342

149 148
1 14.9 1 14.8
2 29.8 2 29.6
31 447 3| 444
4| 596 4| 592
51 745 5| 740
6| 89.4 6| 8838
7 | 104.3 7 | 103.6
8| 119.2 81 1184
9 | I34.1 9| 1332
39

I 39

2 7.8

3| 117

4| 156

5| 195

6| 23.4

71 273

8| 31.2

9] 351

38

1 3.8

2 7.6

3| 11.4

4| 15.2

5| 19.0

6| 228

7| 26.6

8| 304

91 342




A2

149 148
1| 149 1| 148
2| 298 2 29.6
3| 447 3| 444 .
4| 59.6 4| 592
5( 745 | 5| 740
6| 89.4 6| 888
7| 104.3 7 | 103.6
8| 119.2 8| 118.4
9| 134.1 9| 133.2
147

1| 147

2| 29.4

31 441

4| 588

51 735

6| 88.2

7 | 102.9

8| 117.6

9] 132.3

39 38

1 3.9 1 3.8
2 7.8 2 7.6
3| 117 3| I1.4 -
4| 15.6 4| 15.2 .
5| 19.5 5| 19.0
6| 234 6| 22.8
71 273 71 26.6
8| 31.2 8| 304
9| 351 9| 342

4 Co Cs
+1.150 | 0.819057 0.453883 0.157342
1.I51I 0.818909 844 334
1.152 761 806 326
1.153 612 767 318
1.154 464 729 310
1.155 316 690 302
1.156 168 652 " 204
1.157 020 613 286
1.158 | 0.817872 574 278
1.159 723 536 271
+1.160 | 0.817575 0.453497 0.157263
1.161 427 459 255
1.162 279 420 247
1.163 131 382 239
1.164 | 0.816083 343 231
1.165 835 305 223
1.166 687 266 215
1.167 539 228 208
1.168 391 189 200
1.169 243 151 192
+ 1.170 | 0.816095 0.453112 0.157184
1.171 0.815047 074 176
1.172 799 035 168
1.173 651 0.452996 160
L.174 503 958 152
I.175 355 919 145
1.176 207 881 137
1.177 059 842 129
1.178 | 0.814912 8o4 121
1.179 764 765 113
+ 1.180 0.814616 0.452727 0.157105
1.181 468 689 097
1.182 320 650 089
1.183 173 612 o081
1.184 025 573 074
1.185 |- 0.813877 535 066
1.186 729 496 058
1.187 582 458 050
1.188 434 419 042
1.189 286 381 034
+1.190 | 0.813139 0.452342 0.157026
1.191 0.812991 304 o019
1.192 843 265 011
1.193 696 227 003
1.194 548 . 188 0.156995
1.195 401 150 987
1.196 253 III 979
1.197 105 073 971
1.198 0.811958 035 963
1.199 810 0.451996 956
+ 1.200 | 0.811663 0.451958 0.156948




148 147
1 14.8 I 14.7
2| 296 2| 29.4
3| 444 3| 441
4| 592 4| 588
5| 740 5| 735
6| 88.38 6| 88.2
7 | 103.6 7| 102.9
8| 118.4 8| 117.6
9| 133.2 9| 132.3
146

1| 146

2| 29.2

3| 438

4| 584

5( 73.0

6| 87.6

7 | 102.2

‘8| 116.8

9| 1314

39 38

I 3.9 I 3.8
2 7.8 2 7.6
3| 117 3| 11.4
4| 156 4| 1I5.2
5| 19.5 5| I19.0
6| 23.4 6| 22.8
71 27.3 7| 26.6
8| 31.2 8| 304
9] 351 9] 342

A2 G Cy G

+1.200 | 0.811663 0.451958 0.156948
1.201 515 919 940
1.202. 368 881 932
1.203 220 842 924
1.204 073 804 916
1.205 0.810925 766 908
1.206 778 727 900
1.207 631 689 893
1.208 483 650 885
1.209 336 612 877

- +1.210 | 0.810189 0.451573 0.156869
I.211 041 535 861
1.212 | 0.809894 497 853
1.213 747 458 845
1.214 599 420 838
1.215 452 381 830
1.216 305 343 822
1.217 157 305 814
1.218 oI1o 266 806
1.219 | 0.808863 228 798

+ 1.220 | 0.808716 0.451189 0.156790
1.221 569 151 783
1.222 S421 113 775
1.223 274 074 767
1.224 127 036 759
1.225 0.807980 0.450998 751
1.226 833 959 743
1.227 686 921 735
1.228 539 882 727
1.229 392 844 720
+1.230 | 0.807245 0.450806 0.156712
1.231 097 767 704
1.232 0.806950 729 696
1.233 803 691 688
1.234 656 652 680
1.235 509 614 672
1.236 363 576 665
1.237 216 537 657
1.238 069 499 649
1.239 0.805922 461 641

+ 1.240 0.805775 0.450422 0.156633
1.241 628 384 625
1.242 481 346 618
1.243 334 307 610
1.244 187 269 602
1.245 041 231 594
1.246 | 0.804894 192 586
1.247 747 154 578
1.248 600 116 570
1.249 453 077 563

+ 1.250 0.804307 0.450039 0.156555
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