11— -

= | = —

= | - =

= | - | c— —

= | = | —\— »
ROTECHNIK !

Institut fiir Rationalislerung
der Elektrotechnik/Elektronik

Zentralstelle
fir Aus- und Weiterbildung
des Industriebereiches

Lehrmaterial {iir die Elektrotechnik/Elektronik
Weiterbildung

Informationsverarbeitung
mit Kleincomputern

1

Grundlagen

Elok(ntocl_mih
Kreutzer Acromonion

oo

Steffen Kreutzer

Informationsverarbeitung mit Kleincomputern

Grundlagen

Herausgeber

Ingtitut fiir Rationalisierung der Elektrotechnik/Elekﬁronik
Institutsteil Dresden ' ‘
Zentralstelle fiir Aus- und Weiterbildung

des Industriebereiches

Elektrotechnik/Elektronik

8080 Dresden

Karl-Marx-Strafe

Autor:

Bearbeiter:

PSD Dipl.-Ing. Steffen Kreutszer
Ingenieurschule fiir Wissenschaftlichen Gerdtebau
"Carl Zeiss" Jena

Dipl.-Gwl, Heinz Riidger

Institut flir Rationalisierung der
Blektrotechnik/Elektronik

Zentralstelle fiir Aus- und Weiterbildung

Alle Rechte vorbehalten

1. Autlage

IR Dresden ZSB

Druckgenehmigungs-Nr.t Ag 682/037 /86 - H.417-3.0
Druck und Herstellungs NOWA DOBA Bautzen
Redaktionsschlufs 28,02.1986

Bestell-Nr,.3

T+2,04,0001

Vorwort

Die sich unter Fithrung der SED in der Volkswirtschaft der DDR
Immer stdrker und breiter vollziehende Entwicklung der Mikro-
elektronik, ihre planmédBige und durchgéngige Umsetzung in allen
Bereichen fiihrte und fiihrt besonders auch bel der Anwendung

der Rechentechnik zu neuen, qualitativ hoheren Anforderungen an
die Techniker und Ingenieure., Die Entwicklung der Mikrorechen-
technik gestattet, den Rechnereinsatz stark zu dezentralisieren,
Charakteristisch ist fiir groBere volkswirtschaftliche Einheiten,
wie zum Beispiel fiir Kombinate, die Strukturierung der einge-
setzten Rechentechnik zur Losung von Skonomischen, wissen-
schaftlich-technischen und leitungsmidBigen Aufgabenstellungen
in bezug auf die Einsatzebene, Im wesentlichen wird folgende
Struktur angestrebt:

~ Kombinatsebene: Einsatz von GroSrechnern des ESER

(Einheitliches System Elektronischer
Rechner der sozialistischen Staaten).

- Betriebsebene: Eingatz von mittleren Rechnern des SKR
(System der Klein-Rechner),

- Arbeitsplatzebene: Einsatz von Biirocomputern und spezifisch
aus Moduln eines Mikrorechnersystems
aufgebauten Rechnerarbeitsplatzen,

Am Arbeitsplatz wird der Rechner unmittelbarer Partner des Tech-

nikers und Ingenieurs zur Bewdltigung der Routineprozesse.

Die arbeitsplatzgebundene'Rechentechnik sichert bei ihrem Ein-

satz das Arbeiten nach einheitlichen Verfahren, ein weitgehend

objektives Bewerten von Ergebnissen durch Orientierung an ein-
heitlichen MaBstében und unterstiitzt die variantenreiche Suche
nach der optimalen L&sung.

Die neuen, qualitativ htheren Anforderungen an den Techniker
und Ingenieur erwachsen aus dieser spezifischen Anwendung des
Rechners am Arbeitsplatz, Es sind dies Forderungen an das
Grundwissen und ~kdnnen, en die grundlegenden Fdhigkeiten und
Fertigkeiten zur

- Algorithmierung technisch-technologischer Prozesse
- Programmierung anwendungsspezifischer Algorithmen
- Beherrschung des Dialogverkehrs,

Anliegen dieser Lehrmaterialreihe ist es, eine Einfiihrung in
die praktische Anwendung der Arbeitsplatzrechentechnik zu ge-
ben und den Umgang mit dieser Technik zur besseren Beherrschung
der Routineprozesse in den fachrichtungsspezifischen Aufgaben-
stellungen vorzubereiten.

Im 1, Teil - Grundlagen - werden die fiir die Informafionsverar-
beitung wichtigen Begriffe, wie

Physikelische GrdBe, Information, Signal, Kode usw,

erldutert, wesentliche Grundlagen der digitalen Signalverar-
beitung modellméBig dargestellt sowie Daten und Datenstrukturen
behandelt,

Im 2, Teil - Algorithmierung - steht die schopferische Bearbei-
tung einer gegebenen Aufgabenstellung im Mittelpunkt, so daB
die Losung mit einem Digitalrechner erfolgen kann,

Schwerpunkte sind:

- Aufbau und Wirkungsweise von Digitalrechnern
- Darstellung von Algorithmen

- Testen von Algorithmen

- Erstellen von Algorithmen.

Bei der Darstellung von Algorithmen wird vorzugsweise als gra-
fische Form der Programmablaufplan und als sprachliche Form die
Notierung in der problemorientierten Programmiersprache BASIC
verwendet,

Im 3, Teil - Programmiersprache BASIC - werden die Elemente
der Programmiersprache systematisch dargestellt und an einfa-
chen Belspielen erléutert.

Im 4, Teil - Programmierunﬁ mit BASIC - wird die Handhabung
der Programmiersprache an komplexeren Beispielen gezeigt und
einfache Ubungen am Rechnerarbeitsplatz vorgestellt.

Die Gestaltung der Reihe erfolgt so, daB jeder Teil in sich
abgeschlogsen dargestellt ist. Der praektische Gebrauch der
Reihe wird notwendige Verdnderungen und Ergénzungen deutlich
machen, Der Verfasser bittet dazu um einen regen Erfahrungs-
austausch,

Inhaltsverzeichnis Seite
Verzeichnis der Abkiirzungen und

Formelzeichen 6
1. Einfithrung 7
2 Ausgewthlte Grundlagen der

Informationsverarbeitung 10
2.1, Physikalische GrdBe - Information - Signal 10
2.1.1. Allgemeines 10
2¢1424 Information 1
2.1.3. Signale 16
2.1.3.1. Allgemeines 16
2¢1¢3.2, Klasgsifizierung 16
2.1.3.3. Bindre Signale 19
2.1.3.4. Digltale Signale 24
2.2, Kode - Kodierung - Dekodierung 27
2.2¢10 Allgemeines 27
2.2.2, Numerische Kode 28
2,243, Alphanumerische Kode 33
2,3, Zghlen und das Prinzip ihrer Darstellung 35
2.3.1. BCD-kodierte Dezimalzahlen 35
24342, Direkt dual kodierte Dezimalzshlen 36
2.3¢2.1s Dezimalgystem 37
2¢3e2.2. Dualsystem 38
2.3+2.3. Konvertierung 39
2.3e2.4, Vereinfachte Schreibweise fiir Dualzahlen

im Hexadezimalsystem 40
263430 Grundséhaltungen zur Ablage und Verar-

beitung von Zahlen im Rechner 43
2.3.3.1. Register 44
2,3.3.2, Adder 50
2.3¢3.3. Addierwerk fiir Tetraden 54
3. Sprachen und grundlegende Begriffe der

digitalen Rechentechnik 56
3.1. Mensch - Rechner - Kommunikation 56
3.2, Daten 60

Losungen der Aufgaben 64

Literaturverzeichnis 66

Verzeichnis der Abkiirzungen und Formelzeichen

Abkiirzungen

A Aufgaben

K Kontrollfragen

Formelzeichen

c Trigger-(Takt-) Signal

Di Dynamischer Triggereingang
Informaetionsgehalt

Hmax Maximaler Informationsgehalt
Informationsparaemeter

P Wahrscheinlichkeit eines Ereignisses

Q Triggerausgang
Ri Triggerloscheingang

Si Tgiggersetzeingang, Summenausgang beim Adder
Zeit
U Spannungsamplitude

Ui Uvertrag beim Adder
Xy Bin#ére Eingangssignale
vy Bindre Ausgangssignale

1. Einfiihrung

Im Wissenschaftlichen Gerdtebau begegnet dem Techniker und
Ingenieur die dezentrale Mikrorechentechnik in Form der rech-
nergestiitzten Arbeitspldtze (Bild 1) sowie in Gerdten und Anla-
gen des Gerdtebaus (Bild 2).

Programmbibliothek

Rechner
Eingabe Ausgabe
Tastatur Bildschirm
i
Nutzer

Bild 1: Nutzer-Rechner-Verkehr am rechnergestiitzten
Arbeitsplatz

Das Arbeitsprinzip im Umgang des Technikers und Ingenieurs mit
dem Rechnerarbeitsplatz beruht darauf, daB der Rechner unmittel-
barer "Partner" ist. In einer speziellen Programmbibliothek
stehen programmierte LOsungsalgorithmen fiir hdufig benstigte
Aufgebenklassen zur Verfligung, Der Nutzer "sitzt" am Rechner
(Sitzung) und "wihlt" sein "Menii",

Die Nutzung, stdndige Aktualisierung und Erweiterung der bereit-
gestellten Bibliothek fordert

- Pehigkeiten zur systematischen Problemldsungsfindung
- Fertigkeiten im Dialogbetrieb
- Kenntnisse iiber die Bibliotheksstruktur

- Pertigkeiten zur Algorithmierung ingenieurtechnischer
Aufgaebenstellungen

Fertigkeiten zur Rechnerprogrammierung.

Sloff; Energi Gerdte - Stoff; Energie
Information Prozep JInformation
Xs | Stellgropen MeBgropen | X
Steliglied Steuerung HeBkanal
Xa -
Rechner

o (Mikrorechner) Daten + Befehle

Ausgabe

Dialog Eingabe

Nutzer \

Bild 2: Informationsverarbeitung in einem Gerdt des
Wissenschaftlichen Gerédtebaus

Die Kopplung der arbeitsplatzgebundenen Rechentechnik mit den
Klein-, Mittel- und GroBrechnern der Betriebs- und Kombinats-
ebene erfordert dariiber hinaus die Beachtung der PaBfdhigkeit
(Kompatibilitédt) der Losungen zum iibergeordneten System. Im
wesentlichen sind dazu Kenntnisse iiber den konkreten Dateiauf-
bau notwendig und deren Folgen fiir die Gestaltung der Such- und
Sortierprogramme.,

Zur Informationsverarbeitung werden Digitalrechner zur Ldsung
von zwei Aufgaben eingesetzt, Zum ersten steuert der Mikrorech-
ner wesentliche Teile des Stoff-, Energie- qQder Informations-
flusses im ProzeB. Zum zweiten iibernimmt der Rechner (héufig

auch ein Kleinsteuerrechner, der mit dem Mikrorechner des Steuer-
kreises gekoppelt ist) die Gestaltung des Dialogverkehrs zwi-:
schen Nutzer und Gesamtgerdt. Typische Aufgaben sind

Uberpriifung und Signalisierung der Arbeitsfiéhigkeit des
Gerdtes

Unterstiitzung bei der Fehlersuche
Organisation der gewdhlten Betriebsart

Korrektur, Verdichtung und Aufbereitung der Ergebnis-
und ProzeBdaten,

Die Analyse der notwendigen Forderungen an die Bef&higung der
Techniker und Ingenieure fiihrt, sieht man von den Fragen und
Problemen der Hardware ab, auf die grundlegenden Forderungen
zur Realisierung des Arbeitsprinzips mit einem Rechnerarbeits-
platz.

Die Erfahrungen lehren, daB8 der ProzeB des Erlernens und der
Aneignung dieser Féhigkeiten, Fertigkeiten und Kenntnisse an
elner konkreten, sei es auch nur modellméBig aufbereiteten Rech-
nerkonfiguration realisiert werden sollte. Im Zentrum der weite-
ren Betrachtungen steht deshalb das Modell eines Rechnerarbeits-
platzes (Bild 3), das

- den Dialog-Verkehr realisiert und

- die Eingaebe, Korrektur und Testung anwendungsspezifischer
Programme ermdglicht.

Rechner

Kasettenmag-

netbandgerat

Drucker

Tastatur Bildschim]

)

Nutzer

Bild 3: Modell eines speziellen Rechnerarbeitsplatzes

Dieses Modell besteht aus

- dem "eigentlichen" Rechner

- einer Tastatur und einem Bildschirm
- einem Kassettenmagnetbandgerdt

- einem Drucker.

Im vorliegenden Heft werden im wesentlichen die hardwaresel ti-
gen und begrifflichen Grundlagen gelegt, um spdter bei der Algo-
rithnierung und Programmierung die Probleme sachkundig einord-
nen zu konnen., Einige Kapitel - wie zum Beispiel 2, und 3, -
sind so aufgebaut, daB ausgehend von den Darstellungen Probleme
der Mikrorechentechnik im Sinne der ProzeBsteuerung weiterge-
hend behandelt werden konnen,

2, Ausgéwﬁhlte Grundlagen der Informetionsverarbeitung
2¢1, Physikalische GréBe - Information - Signal

2101, Allgemeines

Beim Umgang mit realen Objekten unserer natiirlichen Umwelt haben
die Menschen gelernt, die Objekte zu bewerten und sie sich ziel-
gerichtet niitzlich zu machen, Um diese Bewertung mdglichst von
der sie untersuchenden oder vergleichenden Person, also von sub-
jektiven Faktoren, unabhiéngig zu machen, schuf man mdglichst
"objektive MaBstdbe" fiir die verschiedensten Eigenschaften realer
Objekte. So entstand im ProzeB der dialektischen Auseinander-
gsetzung des Menschen mit der Natur ein System untereinander abge-
stimmter Beschreibungs- und BewertungsgrsBSen, die aus der Phyéik
als physikalische GridSen bhekannt sind.

Belspiele dafiir sind:

- Zur Beschreibung von Objekten
. die Masse eines Korpers mit der Einheitenbenennung
Kilogramm und dem Einheitenzeichen kg;
. das Volumen mit der Einheitenbenennung Kubikmeter und
dem Einheltenzeichen m3;
. die L#nge, die Breite, die Hohe mit der Einheitenbenennung
Meter und dem Einheitenzeichen m,

10

- Zur Beschreibung von Zustinden
. die Temperatur eines Gases mit der Einheitenbenennung
Kelvin und dem Einheitenzeichen K;
o die Ladung eines Kondensators mit der Einheitenbenennung
Coulomb und dem Einheiltenzeichen Cj;
. die Energle eines Korpers mit der Einheitenbenennung
Newtonmeter und dem Einheitenzeichen N.m.

- Zur Beschreibung von Vorgingen
o die Ortsverdénderung eines Korpers mit der Einheitenbenen-
nung Meter je Sekunde und dem Einheitenzeichen m/s;
 die Stromstidrke in einem elektrischen Stromkreis mit der
Einheitenbenennung Ampere und dem Einheitenzeichen Aj
. der FluB in einem Magnetfeld mit der Einheitenbenennung
Weber und dem Einheitenzeichen Wb,

Allgemein gilts

Eine physikalische GriBe ist ein Merkmal eines physikalischen
Objektes, Zustandes oder Vorganges, das meBbar ist. Eine phy-
gikalische GrdBe besteht immer aus dem Produkt von MaBzahl und
MaBeinheit,
Beispiel: Masse m = 9,108 , 10~31 kg

(Ruhemasse eines Elektrons)

2.1,2, Information

Physikalische GroBen (eigentlich die damit immer verbundenen
MeBvorginge) bereichern den Menschen., Sein Wissen, seine Kennt-
nis iiber das Objekt, {iber den Zustand und iiber den Vorgang
wiichst., Man sagt, es erfolgt ein Zuwachs an Information. So all-
gemein gesehen ist Information beseitigtes Nichtwissen.

Dabei entsteht nun die Frage, wie groB8 der Zuwachs an Informa-
tion ist, Das ist die Frage nach der MeBbarkelt der Information.
Um zur Antwort zu gelangen, wird folgende Begebenheit betrach-
tet:

Peter, ein Junge im Dorf, ist schon sehr oft beim "Kirschen-
klauen" ertappt worden., Alle Dorfeinwohner wissen das.
Berichtet Frau Meier beim Einkaufen von einem erneuten Dieb-

1

stahl, so winken alle Frauen ab, was soviel heift wie:"was soll-
te auch anders sein",

Der Zuwachs an Information ist gering. Von Peter hat man nichts
anderes erwartet.

Kéme nun jedoch Frau Meier und berichtet: "Peter hat der alten
Paula die Kirschen abgetan, damit sie diese verkaufen kann", Alle
Frauen wiirden erstaunt dem Bericht folgen. Etwas unerwartetes ist
geschehen,

Der Zuwachs an Information ist hoch, Eine neue, bisher nicht be-
kannte Elgenschaft von Peter wurde erkannt,

Dem Leser werden geniigend eigene Beispiele aus dem tédglichen Le-
ben einfallen, Das MaB der Information hat, so muB man aus den
Beispielen folgern, etwas damit zu tun, ob ein Ergebnis, das ge-
rade eintritt, einer gewissen Erwartung mehr oder weniger ent-
spricht. Was aber erwartet wird, héngt davon ab, wie oft ein ge-
wisses, ganz bestimmtes Ereignis schon eingetreten ist. Das MaB
fiir die Erwartung ist bekannt., Es ist die Wehrscheinlichkeit fiir
das Eintreten eines Ereignisses aus einer Menge der mdglichen
Ereignisse, Praktisch benutzt man die relative Héufigkeit als
*Néherung fir die Wahrscheinlichkeit. Sie ist definiert durchs

Relative Hdufigkeit fiir _ Anzshl des Auftretens von A
das Auftreten des Ereignisses A = ZXnzahl aller unternommenen
Versuche

In dem hier interessierenden Zusammenhang wird zwischen relati-
ver Haufigkeit und Wahrscheinlichkeit nicht unterschieden.
Das betrachtete Ereignis E1 tritt mit der Wahrscheinlichkeit
Pgq auf, wobel

Anzahl des Auftretens von E1

Anzehl aller unternommenen
Versuche

= pE1 ist.

Ein Beispiel soll den Gesamtzusammenhang herstellen:

In einem Beh#dlter befinden sich insgesamt 100 Kugeln,
Der Behdlter wird geleert und die Kugeln werden nachgeziéhlt.
Das Ergebnis lautet:

12

25 rote Kugeln
20 blaue Kugeln
54 weiBe Kugeln
1 gelbe Kugel

= 100 Kugeln

Die Kugeln werden in den Behdlter zuriickgelegt und gut gemischt.
Stellt men sich nun die Frage, wie hoch die Erwartung (Wahr-
scheinlichkeit) dafiir ist, daB man beim Herausgreifen eine Kugel
mit einer bestimmten Farbe erhdlt, so findet man

- eine rote Kugel mit der Wehrscheinlichkeit p . = 758 = 0,25

- eine blaue Kugel mit der Wahrscheinlich- pyj.,= 78§ = 0420
keit

- ;222 weiBe Kugel mit der Wahrscheinlich- Preis= 1%% = 0,54

- giitgelbe Kugel mit der Wahrscheinlich- pgelb TU% = 0,01

Zu beachten ist, daB die Summe aller Wahrscheinlichkeiten
P = Ppot * Pplau * Pweis * Pgeip = 1 ist.

Das Ereignis, das man beim Herausgreifen entweder eine rote,
blaue, weiBe oder gelbe Kugel erh#lt, ist das sichere Ereignis.,
Dieses hat die Wahrscheinlichkeit p = 1.

Der amerikanische Informationstheoretiker SHANNON hat 1947 auf
der Basis derartiger Uberlegungen folgende Gleichung zur Be-
rechnung des Informationsgehaltes angegebens:

N

H= - X p; « 1d p; N = Anzghl aller mdglichen
i=1 Ereignisse
14 = 1og2 = 3,32 . 1og10
= Zweierlogarithmus
[H] = bit (binary digit)

Diese Gleichung soll zur Beurteilung des Inhalts dreier Beh#l-
ter B1, B2 und B3 herangezogen werden.
Im Behdélter B1 gind 100 weiBe Kugeln,

13

Im Behdlter B2 sind 100 Kugeln mit der Farbverteilung des ge-
nannten Beispiels, ’
Im Beh#lter B3 sind 25 rote, 25 blaue, 25 weiBe und 25 gelbe
Kugeln.

Berechnung des Informationsgehaltes:

2:351- N| H=-% p;uld py | py 14 py H
B1 1| H1= - p,ldp, y =188 | O H1 = O bit
B2 4| H2= -(p,.1dp,+ py = 0,25| -2,0
Poe 1D+ P, = 0,20 -2,32 | H2 = 1,51 bit
p3.ldp3+ P3 = 0,54| -0,89
p4.1dp4) p, = 0,01] -6,64
B3 4| H3= -(p4.ldp,+ pq = 0,25(-2,0
p2.1dp2+ py = 0,25 -2,0
p3.1dp3+ Py = 0,25| -2,0 | H3 = 2 bit
p4.ldp4) P, = 0,25 -2,0

Uber die MaBeinheit (bit) soll spidter nachgedacht werden, jetzt
geht es nur um den Vergleich der MaBzahlen.

ZusammengefafBSt kann ausgewertet werden, daB der Informations-
gehalt entsprechend den unterschiedlichen Wahrscheinlichkeiten
der Ereignisse unterschiedliche Werte annimmt.

H1 = O bit, der Informationsgehalt flir Ereignisse des Behdlters
B1 ist sofort versténdlich., Das man aus diesem Beh&dlter nur
weiBfe Kugeln entnehmen kann, ist das sichere Ereignis. Einen
Informationszuwachs kann es demnach nicht geben.

Entsprechend der Wahrscheinlichkeitsverteilung der Farben im
Behédlter B2 liefert die SHANNONsche Gleichung den Informations-
gehalt H2 = 1,51 bit., Im Abschnitt 2,1.3.4. wird gezeigt, was
dieser Wert bedeutet,

Von besonderer Bedeutung ist das Ergebnis, das der Behdlter B3
liefert. Da alle Parben mit der gleichen Wahrscheinlichkeit ge-

14

zogen werden konnen, stellt die Information, daB man eine ganz
bestimmte zieht, ein Maximum dar. Im Falle der vorliegenden
Verteilung der Wahrscheinlichkeiten,

1
Py =Py =P3 =Py =Dy gilt Py =1 wobei N die

Anzahl der mdglichen Ereignisse darstellt, Die SHANNONsche Glei-
chung vereinfacht sich unter dieser Voraussetzung zu
N

H==- % p .ldp =-Nflap =-1ag=1N

i=1
Im Falle der technischen Ubertragung von Information ist es
wichtig, die obere Schranke des Informationsgehalts zu erkennen,
um die Ubertragungseinrichtung dimensionieren zu kénnen. Da dem
Ingenieur die Wehrscheinlichkeitsverteilungen der mdglichen Er-
eignisse h#ufig nicht bekannt sind, kann unter der Annahme der
Gleichverteilung der maximale Informationsgehalt mit

H =1d N berechnet werden.

Information iliber Objekte, Zustédnde und Vorgénge wird also durch
die Auswertung physikalischer GroBen erhalten, Die Auswertung
kann so erfolgen, daB man eine physikalische GriBe sténdig mefB-
technisch erfaBt und iiber der Zeit auftrdgt (Bild 4).

J
Tt TX
Bild 4: Zeitlicher Verlauf Bild 5: Réumliche Anordnung
einer physikalischen einer physikalischen
GroBe GroBe

Eine zweite M&glichkeit besteht darin, die physikalische GridBSe
rédumlich "anzuordnen"; das ist im Bild 5 gezeigt.

15

2:143, Signale

2¢1.3.1, Allgemeines

Nutzt man die zeitliche Verédnderung einer physikalischen GriBSe
zur Darstellung von Information, so spricht man von einem
Signal, In diesem Zusammenhang bezeichnet man die physikalische
GroBe als Signaltrdger. Die GréBe, die innerhalb des Signaltrd-
gers die Information darstellt, nennt man Informationsparame-
ter I.

Die bekannte Sinusfunktion, beispielsweise eine Sinusspannung,
u=U, sin (0t + ¢)

als Signal "trigt" 3 GroBen, die jeder fir sich Information
tragen kann, Im einzelnen sind das

- die Amplitude U (Amplitudenmodulation)
- die Frequenz o (Frequenzmodulation)
~ der Phasenwinkel ¢ (Phasenmodulation)

2s1¢3.2., Klagsifizierung

Zur eindeutigen Vergtdndigung klassifiziert man die zeitliche
Verdnderung physikalischer GroSen in Signalarten, Men unter-
scheidet zwei prinzipielle Signalarten, die analogen und die
diskreten Signale (s. a. TGL 14 591).

Signal
1
I |
analog diskret
| l |
digital Mehrpunkt
1
T 1 |
Zweipunkt Dreipunkt o
(bindr)

- Analoge Signale: .
Der Informationsparameter I kann in den technisch mdglichen

Grenzen jeden beliebigen Wert annehmen.

Ein typisches Beispiel eines analogen Signals ist die Léngen-
@nderung der Quecksilbersdule in einem Thermometer,

16

Innerhalb der Gruppe der analogen Signale unterscheidet man
nochmals das zeitliche Verhalten,

. analog kontinuierliches Signel:
Der Informationsparameter kann seinen Wert zu beliebigen
Zeiten #ndern (Bild 6).

3 J
| gl
t bt 4 ... th t
Bild 6: analog Bild 7: analog
kontinuierliches diskontinuierliches
Signal Signal

« analog diskontinuierliches Signal:
Der Informationsparameter kann seinen Wert nur zu festgeleg-

ten Zeiten t1...tn verténdern (Bild 7).

- Diskrete Signale:
Der Informationsparameter I kann in den technisch mdglichen

Grenzen nur ganz bestimmte (diskrete) Werte annehmen,

Ein typisches Beispiel eines diskreten Signals ist das Drei-
Punktsignal zur Motorsteuerung Vorwdrts (V), Riickwarts (R),
Stop (S) (Bild 8).

A

V.

——
—=k 1115

=1

mY

Bild 8: Drei-Punktsignal

17

Ebenso wie bei den analogen Signalen unterscheidet man in der
Gruppe der diskreten Signele nochmals das zeitliche Verhalten

. diskrete kontinuierliche Signale (Bild 9):
. diskrete diskontinuierliche Signale (Bild 10):

Bild 9: diskretes

kontinuierliches

Signal

o

[
3 |
M } |
BN l
| |
T T m l ‘
|
! ! I ! —
| ! t
t4 t.;_ tn
Bild 10: diskretes
diskontinuierliches

Signal

Ubung zur Klessifizierung von Signalen

J
| Y
Bila 1
Ji
s

Bild U2

Informationsparameter: Amplitude

Signalart : analog
kontinuier-
lich

Informatlonsparameter~ Frequenz

Signalart : analog,
kontinuier-
lich

18

Informationsparameter: Amplitude

Signalart s diskret,
kontinu-
ierlich

| t
Bild U3
Informationsparameter: Amplitude
Ji Signalart t analog,
[I diskon-
| | | | I tinuier-
| lich
oo
I ‘
-) ! -
T | T t
Bild U4

Im Zusammenhang mit der Informationsverarbeitung in und mit
Rechnern sind zwei diskrete Signale von besonderem Interesse,
denen man besondere Namen gegeben hat, Es sind die bin&ren und
die digitalen Signale.

2+1,3.3. Bindre Signale

Der Informationsparameter kann nur zwel Werte annehmen,
Technische Baugruppen, die solche Signale erzeugen oder iiber-
tragen, sind beispielsweise

19

~ Relais: Die Relais R und M konnen nur

2 Zustdnde einnehmen, Im ge-
zeichneten Zustand des Bildes 11
sind beide Relais stromlos.

Wird E gedriickt, so zieht R an
und damit auch M, da r1 geschlos-
gsen wird. Uber r2 h#lt sich R
selbst.

Die zwel Werte des Signals sind
bei R und M: stromlos und strom-
durchflossen, nicht gezogen und
gezogen; bel E, A und r: offen
und geschlossen,

Bild 11: Relaisschaltung zur Ansteuerung
eines Motors

- Transistoren im Schalterbetrieb:

. > Die Spannung Ua im Bild 12 kenn

\ die Werte Ua = Ub annehmen, Der
\ Ub Transistor ist gesperrt und

| Betrieb Ua & 0 V, der Transistor ist

| Petreds= gurchgesteuert.

I

spannung (Hinweis: Die Schaltung kehrt
u ' das Vorzeichen des binédren Ein-
E / gangssignals Up um,)

) | R /

+
\
1 |ua
' I
|]
]

Bild 12: Transistorsteuerstufe

- Leitungen: Beisgpielswelse kann die Leitung
gegeniiber einem Bezugspotentional
EEEese— Spannung tragen oder nichtj
\ z. Bo +5 V und 0 V (Bild 13).
U

Bild 13: Leitung als Baugruppe

Trdgt man den Verlauf der Spannungsamplitude iiber der Zeit auf,
so ergibt sich das typische Signalbild des bindren Signals
(Bild 14).

20

[
1% P

L
AN AV 5:% Z%: Zf

Q) bindres lontinuierliches b) bingres dishontinurerliches
Signal Signal

Bild 14: Bin8res Signalverhalten

Die Einfachheit der Baugruppen zum Erzeugen und Ubertragen bi-
nérer Signale als auch die groB8e Sicherheit bei der Unterschei-
dung beider Zustidnde (2 Zustidnde kenn man besser unterscheiden
als 10, wenn man zum Belspiel an die Aufteilung eines 5 V-Be-
reiches denkt) haben das bindre Signgl zum Konig der Informa-
tionsverarbeitung werden lassen.

Nimmt man die Pulsbreite als Informationsparameter und legt
fest, daB es zweli Pulsbreiten gibt, 2z, B. so wie in Bild 15,

)
. Bild 15: Bindres Signal
0ms kurz___%____ t mit Pulsbreite
u als Informa-
tionsparameter
und 20ms-lang O ¢

dann kann man unter Beachtung einer Vereinbarung, wie z. B.
dem Morsealphabet, Nachrichten iibertragen. Unter Nachricht
801l die (technische)Information plus hineingelegte Bedeutung
(Semantik) verstanden werden,

Ubertragen wird im Bild 16 das Wort "Taeg", das nach dem Morse-
alphabet die Pulsfolge

lang kurz lang lang 1lang kurz hat,

21

7
4

N\
N

T;Aiie

Bild 16: Ubertragen einer Nachricht durch ein
binéres Signal

In der Informetionsverarbeitung zur Steuerung von Maschinen,
Gerdten und Anlagen hat das binédre Signal eine solche zentrale
Stellung erlangt, daB beim Entwurf von Steuerungen von der
technischen Realisierungsart (Relaissteuerung oder Transistor-
steuerung oder pneumatische, oder hydraulische Steuerung) ab-
strahiert wird., Man spricht nur von den beiden logischen Werten
Null ("O") und Eins ("1"), die das bindre Signal einnehmen kann,

Wenn man logisch O sagt, meint man

- das Relais hat nicht éezoggn

- der SchlieBer eines Relais ist offen

- der Transistor ist durchgesteuert (Ua = 0).

Wenn man logisch 1 sagt, meint man

- das Relals hat gezogen

- der SchlieBer eines Relais ist geschlossen
- der Transistor ist gesperrt (Ua = Ub).

Um die logische Verkniipfung der Signale unabhéngig von der
technischen Realisierungsart darstellen zu kdnnen, schuf man
logische Grundglieder. In Bild 17 sind die fundamentalen Logik-
glieder UND (AND), ODER (OR) und NICHT (NOT) dargestellt und

in ihrer Bedeutung erldutert.

Im Hinblick auf die Informationsverarbeitung in Speichern der
Rechentechnik wird noch ein Grundelement zur Speicherung bini-
rer Signale besprochen, Aus der PFiille der mdglichen Grund-
schaltungen soll die einfachste, der sogenannte D-Trigger dar-
gestellt werden, Die Bezeichnung D- kommt vom englischen Delay,
verzdgern, Bild 18 zeigt das Symbol des D-Triggers.

22

' . Erlguterung und
Symbol Bezeichnung| log bleichung Schallbelegungstabelle
N Y UND Y= X1Xz |gemeintisl : Das bindre Signal
x2 | ‘ AND y hat logisch 1, wenn dos bi -
= . ndre Signal x4 logrsch 1 tragl
Honjunktor und das bindre Signal X2
logisch 1tridgl. Ansonsten
ist das bindre Signal y
logisch 0. Daraus ergibt sich
folgende Tabelle :
oi10fo0
01110
110]0
1111
xa [71 LY ODER y=X1+X, X4 | X2] Y
Xa OR 0 I 0 O y:’l)wcnn
Disjunktor 2 I ?) :11 1= oder
1 ! o P X2 =1 tragt
NICHT y=X X 1Y .
1 Y=1, wenn x=0
_’S__} NOT o] y=0, wenn x=1
1 0
Inverter —

Bild 17: Logikglieder UND, ODER, NICHT

binares Eingangssignal
” Triggersignal
v Ausgangssignal
" Setzsignal
" Récksetzsignal

s K2 (5113
ooy

?_E_

Bild 18: Symbol des D-Triggers

23

Die Signalverarbeltung vom Eingengssignal D zum Ausgengssignal
Q wird durch das Triggersignal C gesteuert. Im einzelnen ist
folgende Verarbeitung festgelegt:

Erscheint am Triggereingang C die Vorderflanke (O — 1 Flanke)

eines binéren Signals, so iibernimmt der Ausgang Q den logischen
Wert von D genau zum Zeitpunkt dieser Vorderflanke.

Die Vorderflanke von C (Bild 19) ist somit der "Pf&rtner", der

/// t

Bild 19: Vorderflanke von C

die Tiir fir das D-Signal &ffnet, damit es zu Q kommen kann.
Ohne Vorderflanke von C hat eine Anderung des logischen Wertes
von D keinen EinfluB auf Q. In Q bleibt also das D-Signal vom
Zeltpunkt der letzten Vorderflanke von C gespeichert.

Neben dieser, wie man sagt, dynemischen Arbeitsweise besteht
noch die Mdglichkeit, das Ausgangssignal Q direkt (statisch,
ohne C-Flanke) ilber den Setzeinganhg S auf logisch 1 und ilber
den Riicksetzeingang R auf logisch O zu setzen,

Bei S =1 folgt Q = 1, bei R = 1 folgt Q = O,

Der ' Zustand S = 1 und R = 1 muB schaltungstechnisch vermieden
werden,

2+1¢3.4, Digitale Signale

Als digitales Signal bezeichnet man eine bestimmte Anzahl von
bindren Signalen, die gemeinsam bewertet werden, Was darunter
zu verstehen ist, soll folgendes Beilspiel zeigen, Ein Leitungs-
blindel von 4 Leitungen ist nach Bild 20 gegeben. Jede Leitung
iibertrégt ein bindres Signal (U1, Uy, Usg, U4).

Betrachtet man die 4 bindren Signale als Einheit, so ergibt
gich die Moglichkeit, 16 unterschiedliche Zusténde des nun
digitalen Signals zu unterscheiden., Im Bild 21 sind die Kombi-
nationen der bindren Stellen des digitalen Signals angegeben,

24

Das digitale Signal hat die "Breite" 4.

Us | U | U2 |'h | Zustand
[¢] o o o 1
o (o] (4] 1 2
(¢ 0 1 (4] 3
0 0 1 1 [
0 1 (o] 0 5
4] 1 o 7 6
D o |1 7 0 7
0 1 1 1 8
D 1 o 0 o 9
1 (4] 0 1 10
1 0 1 0 11
. 1 0 1 1 12
1 1 o (4] 13
1 i (4] 1 4
.} 1 1 1 0 15
U Uz |Us | Us 17 |11 |1 17 16
Bezugspotential
Bild 20: Zusammensetzung Bild 21: Mdgliche Unter-
bindrer Signale zu scheidung von Zu-
einem digitalen stédnden der 4 bi-
Signal ndren Signale im

digitalen Signal

An dieser Stelle soll die Briicke zum Begriff der Information und
ihrem MaB zuriickgeschlagen werden, das sich aus der SHANNONschen
Gleichung ergab,.

Dort wurde gefunden, daB sich der Informationsgehalt Hmax der
auszuwertenden Objekte, Zusténde oder Vorgénge nach der Glel-
chung Hmax = 1d N berechnet, N war hierbei die Anzahl der {iiber-
haupt m&glichen Ereignisse und "1d" der Zweierlogarithmus, Die
MaBeinheit wurde mit "bit" angegeben., Zur weiteren Versténdi-
gung werden fiir einige N die dazugehdrigen Hmax-Werte berechnet.

¥ Hmax
2 1 bit
4 2 bit
8 3 bit
16 4 bit

25

Interessant ist, daB8 N = 16 einen maximalen Informastionsgehalt
von 5 bit erbringt. Diese Tatsache korrespondiert sehr genau

mit dem 4stelligen digitalen Signal, das 16 Zustiénde unterscheid-
bar darstellen kann, womit nattirlich 16 Ereignisse eindeutig
Ubertragbar sind.

Nun ist auch klar, was unter der MaBeinheit "bit" (binary digit)
technisch zu verstehen ist, Dahinter versteckt sich - die Lei-
tung, des Relais, der Transistor - kurz, die Bitstelle., Sie ist
die technische Realisierungsform zur Erzeugung, Ubertragung
oder Speicherung des Informationsgehaltes von H = 1 bit,

Die MaBzehl des Informationsgehaltes gibt dann an, wie viele
Bitstellen benttigt werden, um die Information zu iibertragen,
zu speichern uswe.

Der maximale Informationsgehalt legt also die Breite des digi-
talen Signals fest.

Kontrollfragen und Aufgabens

K1, Was versteht man unter dem Begriff Information?

K2, Welcher Zusammenhang besteht zwischen den Begriffen
Information und Signal?

K3. Wie teilt man Signale ein?

K4, Charekterisieren Sie ein bindres Signal!

K5, Was versteht man unter dem Begriff "meximaler Informa-
tionsgehalt" und welcher Zusammenheng 188t sich zu
einem digitalen Signal herstellen?

26

A1. Klassifizieren Sie folgende Signale!

X Pulsbreite 3} Amplitude I Amplitude
J ! T T A
I 1 [
rT I (. | I
¢ ! t t
I\ Amplitude J Amplitude ar Amplitude
.y S
[| ST
N A o - —
t t t

Bilder A1 bis A6

2.2 Kode - Kodierung - Dekodierung

2,241, Allgemeines

Unter einem Kode versteht man ganz allgemein eine Vorschrift,
nach der Symbole einer "Sprache" in die Symbole einer anderen
"Sprache" iiberfithrt werden kdnnen,

Im Fall der Kommunikation des Menschen mit einer informations-
verarbeitenden Anlage (Rechner, NC-Maschine usw.) liegt der
Fall vor, daB die Symbole der "Menschensprache"

- Ziffern (0, 1, eeey9) — 10 numerische Zeichen
- Buchstaben (A, B, seeyZ) ~» 26 Alpha-Zeichen
- Sonderzeichen ~+$ Interpunktion

in Symbole der "Maschinensprache"

- bindre Signalzusténde
- digitale Signalzusténde

zu {iberfithren sind. Diesen Prozef nennt man Kodierung, den umge-
kehrten ProzeB nennt man Dekodierung (Bild 22).

27

Hodierung __

hine
LMensch Leitungsbondel : Laschine,
L ole cler
Symbole cer [J Ylochband-Magnetb) /‘%s-,fh/feggprac e
Menschen - . §
sprache -y] |
«Ziffern Drucker T - binare Sigral-
«Buchstaben Bildlschirm 3 zustdnadle
«Sonderzerichen X -digitale Signal-
, Dekodierung 8 zustande

Bild 22: Informationsbeziehung des Menschen mit
"intelligenten" Maschinen

2,2,2, Numerische Kode

Beschrénkt man sich in bezug auf die Menschensprache mit der
Ubertragung von Ziffern, so gilt:

Es existieren die Ziffern 0, 1, 2, eee,y, 9 und somit 10
mégliche Ereignisse., Der maximale Informationsgehalt der zu
iibertragen ist, ergibt sich damit zu

Ho.. = 14 10 = 3,32 bit.

Man benstigt also ein digitales Signal der Breite 4 zur Uber-
tragung dieser Information.

Bewertet man die einzelnen Bitstellen des digitalen Signals,
so daB die Abstufung in Potenzen zur Basis 2 erfolgt, so ent-
steht die sogenannte BCD (Binary-Coded-Dezimal)-Kodierung der
Dezimalziffern, '

Die Bewertung der Bitstellen Xgr Xq9 Xp und X3 erfolgt somit
durch

xo=21=1
x1—2 = 2
2
x2=2 =4
_ o3 8
x3-2

Daraus ergibt sich folgende Kodierungsvorschrift:

28

Da mit einem digitalen Signal
der Breite 4 insgesamt 16 Zu-

Dezimal- | BCD-Kode
ziffer X3 X, X4 X,
8 4 2 1
0 0 0 0 O
1 0O 0 0 1
2 0O 0 1 ©
3 o 0 1 1
4 0O 1 0 O
5 0 1 0 1
6 0O 1 1 0
7 o 1 1 1
8 1.0 0 O
9 1 0 0 1

stédnde unterscheidbar sind,

fiir die Dezimaelziffern aber nur
10. benstigt werden, bleiben 6
Kombinationen als sogenannte
Pgeudotetraden iibrig (Tetra -
vier).

Pseudotetraden beim BCD-Kode
sind:

Iz x2 X1 xo

TN G G Y
S a00
= d OO =
- O=20-20

Die Pseudotetraden konnen zur Verschliisselung (Kodierung) von
notwendigen Trennzeichen, wie z. B, dem Komma und dem Trenn-
zeichen von Zahl zu Zahl verwendet werden, Hier wird ohne Riick-
sicht auf praktische Belange festgelegt:

Trennzeichen Tetrade Bedeutung
Xy X, Xy Xy
Komma 1.0 1 1 trennt den ganzen vom gebrochenen
Teil einer Zehl
Punkt 1. 0 1 0 trennt zwei Zahlen

Die nach dieser Vorschrift kodierte Information wird auf einem
digitalen Datentridger (Magnetband, Lochband, Folienmagnetplatte
Ue 8.) dargestellt und ist somit von intelligenten Maschinen
ibernehmbar, Bild 23 stellt diesen Sachverhalt dar.

Der Kodierer besteht aus ODER-Gliedern., Die Bitstelle x4 trigt

1-Signal, wenn

- die Ziffer 8 oder

- das Komma
der Punkt

die Ziffer 9 oder

oder

29

ol
&
Q
~
g
bl

¥

ff'

Hodierer Lacheinrichtung_
)98768543 21

Oy

XIx

"800

4

1 |LXa) Steuersignal
[}
1 Xo
1p22
1
12
1 Xﬂ

Bild 23: Kodierung der Dezimalziffern und Ablegen
der kodierten Ziffer auf einem Lochband

angewdhlt wurde. Das Signal bewirkt, daB8 die Locheinrichtung

der Spur 23

= 8 in das Band ein Loch stanzt. Die 3 angeren

Locheinrichtungen arbeiten entsprechend.
Wird somit beispielsweise die Ziffer 6 angewihlt, so folgt

die Spur X4 wird nicht gelocht
die Spur X, wird gelocht
die Spur X, wird gelocht
die Spur Xg wird nicht gelocht
1] — — —
2 ——
b o —
L]
NN~

Bild 24: Ablage der Ziffer 6

30

Die Dezimalzahl 164,183 wird dann wie folgt auf einem digita-
len Datentréger dargestellt (Bild 25).

—_—_——— e 0 — — — — 1 Bitstelle Xo
—_— - —eoeo—————2 Bitstelle xr
—— e — — — 4 (Bitstelle Xz

B iy S S—————_] Bitstelle X3

— W

—_

chen— <
leichen— <
— Zeichen— e

Datenelement Marke

Bild 25: Darstellung von Dezimalzahlen auf einem Lochband

In bezug auf die Darstellung von Informationen zum Zwecke der
Verarbeitung in Rechnern spricht man von Daten,
Die im Bild 25 dargestellte Date hat die Struktur

1 Datenelement und 1 Marke,

Das Prinzip der Ubernahme der Daten durch den Rechner ist in
Bild 26 dargestellt. Die Synchronisation sorgt fiir die richtige
Ubernahme der Deten in einen Zwischenspeicher (Puffer). Zur
Erinnerung: Der Ausgang Q eines D-Triggers iibernimmt den logi-
schen Wert von D bei einer Vorderflanke vom Trigger-Signal C.

Bei der Ubertragung von Daten nach dem oben angegebenen Prin-
zip stellt sich die Frage nach der Stéranfédlligkeit,
Storungen kdnnen zum Beispiel sein:

- Ein Lochmagnet klemmt kurzzeitig.
- Das Lochband hat "diinne" Stellen im Papier,
- Die SchlieBkontekte sind durch Abrieb kurzzeitig isoliert,

Dadurch wiirden Fehler in der Kodlerung entstehen, die als solche
nicht erkannt werden. Aus diesem Grund nimmt men noch eine 5.
Bitstelle zu den 4 notwendigen hinzu und setzt diese auf logisch
1, wenn die Lochungen der Date im Lochband

31

7
zz Qo
C] &—T0
Ez T (ed]
2 Q1
=
; D] Q2
?»———Eé
Spannungsquelle -
(+5V)
e
= JF——4a5
Taktung

. .
Bild 26: Ubernehme der kodierten Daten in einen
Puffer aus D-Triggern

eine ungerade Anzahl von Lochungen erfordert,

—» man nennt diese Art die gerade Paritdtsbitsetzung

oder

eine gerade Anzahl von Lochungen erfordert,

—>» man nennt diese Art die ungerade Paritédtsbitsetzung.

Im Rechner wird dann gepriift, ob die Paritdt (gerade oder
ungerade) eingehalten wird. Damit lassen sich Fehler einer
Spur erkennen, da durch den Fehler gerade die falsche Paritat
erzeugt wird,

Neben dem hier benutzten BCD-Kode zur Darstellung von numeri-
schen Daten gibt es zahlreiche andere. Da diese in der Re-
chentechnik nicht eingesetzt werden, sollen die drei bekann-
testen nur mit ihrem Namen erwdhnt werdent

~ Aiken-Kode

- Gray-Kode

- DreiexzeB-Kode,

32

29203, Alphanumerische Kode

Wie der Name schon sagt, handelt es sich um Kode, die den ge-
samten Umfang der Symbole der "Menschensprache" kodieren konnen,
Mehrere nationale und internationale Kodes wurden entwickelt.
Stellvertretend soll der internationale Standardkode ISO-7-Bit-
Kode angegeben werden, Er ist mit dem in der Mikrorechentechnik
héufig eingesetzten ASCII-Kode (American Standard Code for Infor-
mation Interchange) identisch. Das 8te Bit des ASCII-Kodes ist
immer gleich logisch 0O, wenn Bild 27 benutzt wird.

71 o 0 0 0 7 1 1 1

6| o o] 1 0 (7] 1 1
Bit's |5| o 1 0 1 0 1 0 1
W 32/ L
0000| NUL |DLE | b 0 & P . Je)
0001 soH |DC? | ! 1 A Q a q
0010 sTv | DC2 | » 2 8 R b r
0011 ETx | DC3 | # 3 C S c 3
0100| €07 |STOP | M 4 D T d t
0101 ENG | NAK | % 5 E u e v
01 10| ECk | SYN € 6 F v f v
0111 BEL | €TB | 7 G w g w
17000 85 |CAN | ¢ 8 H X x
1 001| HT EM) .9 J Yy i Y
1010 LF | suB | * : 3 z i z
17011 vl EsC | + ; ® I'a U {
1 1 00| FF FS) < L \ L {
11701 CR | GS - = M b m 3
17 1 10| SO RS . bé N A n -
17 1 11| 87 us / 2 0 - o DEL

Bild 27: Kode des ISO-7-Bit-Kodes (s. a. Bild 29)

Entsprechend diesem Kode wiirde das Wort "TAG" auf einem Loch-
band wie folgt dargestellt werden (Bild 28):

33

Brtnummer

Bild 283

Die Bedeutung der im Kode angegebenen Kurzzeichen (wie z. B,

Darstellung des Wortes "TAG"

EOT) ist in Bild 29 beschrieben,

Symbol Bedeutung

englisch deutsch
NUL nil Null
SOH start of heading Anfang des Kopfes
STX start of text Anfang des Textes
ETX end of text Ende des Textes
EOT end of transmission Ende der Ubertragung
ENQ enquiry Antwort von Station
gefordert
ACK acknowledge positive Riickmeldung
BEL bell Klingel
BS backspace Rickwdrtsschritt
HT horizontal tabu- Horizontaltabulator
lation
LP Line feed Zeilenvorschub
VT vertical tabulator Vertikaltabulator
FP from feed Formularvorschub
CR carriage return Wagenriicklauf
SO shift out Dauerumschaltung
SI shift in Riickschaltung
DLE data link escape Dateniibertragungs-
umschaltung
DC device contiol Gerdtesteuerung
STOP stop Halt
NAK negative acknow- negative Riickmeldung
ledge
SYN synchronousidle Synchronisierung
ETB end of transmission Ende des Dateniiber-
’ block tragungsblocks
CAN cancel ungiiltig
EM end of medium Ende des Mediums
SUB substitute cha- Substitution
racter
ESC escape Umschaltung
FS file separator Filetrennzeichen
GS group separator Gruppentrennzeichen
RS record separator Satztrennzeichen

34

Symbol Bedeutung

englisch deutsch
Us unit separator Trennzeichen fir
Dateneinheiten
DEL delete Loschen

Bild 29: Erléduterung der Kurzzeichen des ISO-7-Bit-Kode

Kontrollfragen und Aufgabens

K6. Was verstehen Sie unter einem Kode?

K7, Wie werden Zahlen auf digitalen Datentrégern
dargestellt?

K8, Was verstehen Sie unter einem Datenwort?

K9, Wie kann man Fehler in Kodeeinrichtungen
erkennen?

A2, Geben Sie die BCD-Kodierung flir die Dezimalziffern
1 bis 9 an!

A3, Stellen Sie auf einem 8-Kanallochband das Wort
"Lernen" dar., Benutzen Sie dazu den ASCII-Kode!l

2.3, Zahlen und das Prinzip ihrer Darstellung

2.3,1, BCD-kodierte Dezimalzahlen

Bei der Kodierung der Ziffern des Dezimalsystems in den BCD-
Kode und der Darstellung einer Zshl auf einem digitalen Daten-
trdger wurde eine prinzipielle Darstellungsform von Zahlen in
informationsverarbeitenden Anlagen schon erldutert,

Die Darstellungsform geht davon aus, daB jede Ziffer der Dezi-
malzahl fiir sich in eine Tetrade kodiert wird. Die Anordnung
der Tetraden gibt die Stellenwertigkeit der Tetrade an., Diese
Form der Zahlendarstellung nennt ‘man

BCD-kodierte Dezimalzahldarstellung,

Ein Beisplel soll diese Form der Zahlendarstellung vertiefen,
Dargestellt werden soll die Zahl 183,42:

35

1o Schritt: Kodierung der Ziffern nach dem BCD-Kode
Ziffer BCD-Kode

1 0001
8 1000
3 0011
4 0100
2 0010

2. Schritt: Stellenwertrichtige Darstellung der BCD-kodierten
Dezimalzahl, Dabei ist zu berlicksichtigen, daB8 die
Darstellung der Dezimalzahl in der Form "183,42"
eine Kurzform ist fiir die vollsténdige Darstellung
der Dezimalzahl

Z = 1,102 + 8.10" + 3.10% + 4,107 4+ 2.1072

Daraus folgt folgende Darstellungsform:

Stellenwert der. 2 0
Tetrade 10

10! 10 10~1 102

Wertigkeit in

der Tetrade 8421 8421 8421 8421 8421

kodierter
Ziffernwert 0001 1000 0011 0100 0O0O0O10O0

Bei der Verarbeltung derartig dargestellter Zahlen ist nun
darauf zu achten, daB8 nur Tetraden gleicher Stellenwerte ver-
kniipft werden.

2.3.2, Direkt dual kodierte Dezimalzahlen

Eine weltere Mdglichkeit der Zahlendarstellﬁng in Rechnern ba-
siert darauf, eine Dezimalzahl aus dem dezimalen Zahlensystem
in das "duale Zahlensystem" zu konvertieren (zu tiberfiihren).

So wie das dezimale Zahlensystem, das Zahlensystem des Menschen,
ist das duale Zahlensystem, das der "Maschine", "Dual" - deutet
darauf hin, daB8 die Zahl 2 in diesem System genau die gleiche
Rolle wie die Zahl 10 im Dezimalsystem spielt., Es ist niitzlich,
sich noch einmal den Aufbau des Dezimalsystems zu vergegenwdrti-
gen, bevor man sich dem "fremden" Dualsystem zuwendet.

36

2.3.2.1, Dezimalsystem

Schreibt man die Ziffernfolge 39700,204 auf und fragt nach dem
Zahlenwert dieser Zahl, so wilrde jeder im Rechnen ausgebildete
Mensch antworten

'NaununddreiBigtausendsiebenhundert Komma zwei null vier.

Die ausgeschriebene Form zeigt, daB die oben angegebene Ziffern-
folge eine abkilrzende Schreibweise fiir Zahlen der "Menschenspra-
che" 1ist.

Den Zahlenwert erhdlt man aus der Ziffernfolge, wenn man den
Pogitionswert der Ziffer mit dem Ziffernwert multipliziert und.
alle Zwischenergebnisse addiert. Der Zahlenwert ergibt sich also
aus: '

Zahlenwert = 3.10%+9.1034+7,10240,1040.10%+2,107140,107244, 1073

= 30000, Das Komma dient zur Erkennung
+ 9000, der Stelle, an jener das Vor-
+ 700, zeichen des Exponenten wechselt,
+ 00, Das ist eine sinnvolle Abma-
+ o, chung und fiihrt zur Kurzform
+ ’2 der Zahlendarstellung.
v + ,00
+ ,004
39700,204

-1 2

Die Zehnerpotenzen 104, 103, eeey 1077, 1074, 1073 sind die
Positionswerte des Dezimalsystems., Die "10" nennt man Basis.
Die Ziffernwerte sind O, 1, 2, 3, 4, 5, 6, 7, 8 und 9.

Den Zahlenwert einer Zahl erhdlt man im Dezimelsystem, indem
man die Summe

Zehlenwert =T Ziffernwert . jobxponent

errechnet, Das Prinzip der Errechnung des Zahlenwertes gilt

fiir alle Zghlensysteme, die von der Positionierung der Ziffern
ausgehen, also Positionssysteme sind. Verédndert werden die Basis
und die Ziffernwerte, Es gilt flir Positionssysteme demnach
immer:

Zahlenwert = X Ziffernwert . BasisExPonent.

37

2.3.2,2, Dualsystem

Das Dualsystem ist auf der Zahl 2 aufgebaut. Die Zahl 2 ist die
Basis des dualen Zahlensystems, Die Ziffernwerte des Dualsystems
sind O und 1.

Es wird sofort deutlich, warum das Dualsystem das Zahlensystem
der Maschine ist. Kann doch, wie schon gezeigt, der Zustand "O"
und der Zustand "1" technisch einfach und gut unterscheidbar
realisiert und gegen Stdrungen gesichert werden.

Zur Bildung von Zahlen stehen im dvualen Zahlensystem demnach die
Ziffernwerte O und 1 und als Positionswerte Potenzen zur Basis
2, z. B, 22, 2%, 271, 273, zur Verfiigung., Eine Zshl im Sinne des
Dualsystems ist zum Beispiel 11101,101,

Auch diese Darstellung ist eine Kurzform. Den Zahlenwert erhdlt
man durch Auswertung der Summe

Zahlenwert = LZiffernwert . 2Exponent.

Also:

Zehlenwert = 1.2%41.2341.2240,2141.2%1,27%40.27241,273

Das Ausrechnen dieser Summe liefert den Wert der Zahl,

Dieser ist immer gleich, gleichgiiltig in welcher Form (Zahlen-
system) dieser Wert aufgeschrieben wird, Der Wert einer Zahl
ergibt damit immer die Dezimalzahl.

2= 1.2% =16
+1.22 = 8
+ 1.22 = 4
+0.2!' = o0
+1.2° = 1
+1.277 = 0,5
+0.22. 0
+ (0]

1.273 = 0,125

29,625

Zur Unterscheidung der Zahlen in den unterschiedlichen Zahlen-
systemen gibt man héufig die Basiszahl an (z. B. (Z)4).

38

2 2 Konvertier

Die Uberfilhrung (Konvertierung) einer Dezimelzahl in das Dual-
system ist letztlich die Beantwortung der Frage, wie oft die
Basis 2 des Dualsystems in der vorgegebenen Dezimalzahl enthal-
ten iBt.
- Fir ganze Zahlen gilt die Regel: Wiederholte ganzzahlige
Division der gegebenen
Dezimalzahl durch die
Basis 2. Der Rest ergibt

die Ziffern der Zahl im
Dualsystem.

. Ganzzahlige Division: 3 + 2 : 1 Rest 1
4 +2 : 2 Rest O

+ Beisplel: Konvertierung der Dezimalzahl 29

29 + 2 : 14 Rest 1

4 + 2 : 7 Rest 0 (Z), = 11101
T+ 2 : 3 Rest 1

3+2 : 1 Rest 1

1+ 2 O Rest 1

- Fir gebrochene Zahlen gelten die Regeln:

1. Der ganzzahlige Teil der Zahl ist nach der Regel fiir
ganze Zahlen zu behandeln,

2. Piir den gebrochenen Teil gilt:

Wiederholte Multiplikation mit der Basis 2.

Die Vorkommastelle jedes Zwischenergebnisses ist

ein Ziffernwert der gesuchten Dualzahl,

Die Fortfiihrung der Multiplikation erfolgt jeweils
nur mit dem gebrochenen Teil des Zwischenergebnisses.

3. Zusammenfiigen des ganzen und gebrochenen Teils der
Einzelergebnisse,
Gebrochener und ganzer Teil sind durch Komma zu
trennen.

An einem Beispiel soll das Verfshren erldutert we:den.
Zu konvertieren ist die Dezimslzahl 29,625,

1. Der ganzzahlige Anteil "29" wurde schon konvertiert
und ergab (Z), = 11101.

39

2. Konvertierung des gebrochenen Teils "0,625"

0,625 , 2 = 1,250
0,250 , 2 = 0,500
0,5 .2=1,0

Der Rest ist nicht mehr zu multiplizieren,
also

(2), = 101 (Aufschreibrichtung von oben nach
unten)
3. Die konvertierte Gesamtzahl ist (Z)2 = 11101,101,

Die durch die Konvertierung erhaltene Zahl nennt man Dualzahl
oder auch direkt dualkedierte Dezimalzahl.

Ein derartiges Zahlenformat im Rechner (oder anderen informa-

tionsverarbeitenden Maschinen) abzulegen, erfordért geritetech-

nisch realisierte Bitstellen, die entsprechend dem Dualsystem

"bewertet" werden. So kann man beispielsweise in einem Ensemble

von 8-Bitstellen beli direkter dualer Bewertung in der Form
27,28,25 24,23 22 21 20

die Dezimalzahlen O bis 255 als ganze Zahlen darstellen.
In Bild 30 sind einige Beispiele angegeben.

W@’ ﬁg - © + © ® < o~ -

Dezi- heit b"v! 0.‘0 'nl z .*l - f'\. N. ..u 0.
malzahlen NOfa NN N N NN
0 ol|lo|o|o|o oo |o
16 o 0 0 1 (o] o (o] (o]
131 1 o 0 0 o 0 1 1

255 1 1 1 1 1 1 1 1

Bild 30: Beispiele zur Abspeicherung von direkt dualkodierten

Dezimalzahlen

2.3,2.4, Vereinfachte Schreibweise fiir Dualzahlen

Die recht langen Ziffernfolgen der Dualzahlen sind stdrend und
bieten Fehlerquellen durch die Monotonie beim Aufschreiben,
Aus diesem Grund benutzt man zum Notieren von Dualzahlen Kurz-
formen und zwar die gleichwertigen Oktalzahlen oder Hexadezi-

40

malzaehlen, Es ist zu beobachten, daB sich die Hexadezimaldar-
stellung immer mehr durchsetzt., Deshalb soll diese Form der
Darstellung hier angegeben werden.

Hexadezimalzahlen .sind Zahlen im Hexadezimalsystem (auch Sede-
zimalsystem genannt). Die Basis dieses Zahlensystems ist die
"16", Da 16 = 2% ist, kenn jede Dualzahl so umgeschrieben wer-
den, daB die neue Basis "16" entsteht. Gezeigt werden soll die
Methode an einer 8stelligen Dualzahl:

7 6 5 4 3 2 1 0
(Z)2=ZW2.2 +ZW2.2 +ZW2.2 +ZW2.2 +ZW2.2 +ZW2.2 +ZW2.2 +ZW,.2

3 2 1 0y (ody1 3 2
= (2W,.2742W,.2%42W,. 2" +20,.29) L (21 T 4 (2w, 2042w, 2
+2W,.2"420,.29) . (24 ©
- 1 0
(z)16 = IWyg o 167 + ZW o 16

Das Prinzip besteht darin, daB Potenzen von 16 = 24 ausgeklam-
mert werden, Dabel 1st zu beachten, daB von rechts begonnen
wird und somit zuerst 160, also "1" ausgeklammert wird. Das
zweite Mal ist 161 also 24 auszuklammern, Wie zu sehen ist,
entstehen durch das systematische Ausklammern neue Ziffernwer-
te ZW16. Diese ergeben sich aus der Summe der Produkte

3
ZW2. 27 + ZW2

2 1 . [
. 2 + ZW2. 2 + sz. 2 .
Die Ziffernwerte ZW2 des Dualsystems kdnnen die Werte O und 1
annehmen, Somit ergeben sich fiir die Ziffernwerte ZW16 die in

Bild 31 dargestellten Varianten.

Auf den ersten Blick sieht das Verfahren komplizierter aus als
es ist,
Praktisch hat man

- die Dualzahl von rechts beginnend in Vierergruppen einzu-
teilen, '
(Z)2 = 11010110 = 1101 0110

- die dualen Wertigkeiten zuzuordnen,
(Z)2 =1 1 0 1 0O 1 1 0
23 22 21 20 23 22 51 20

a1

Ziffernwert | Bezeichnung der Ziffer im Bild 31:
Hexadezimalsystem Ziffernwerte und ihre
- Bezeichnung im Hexa=-
? ? dezimalsystem -

2 2
3 3
4 4
5 5
6 6
T T
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F

~ den Wert Jjeder Vierergruppe zu bestimmen,
171 0 1 0O 1 1 0
(2)5 = 33 32 51 0 33 52 51 50

1.22 -8 0,23 =0
+1.22 = 4 1.22 =2
+0.2" =0 1.21 -2
+1.20 = 1 0.20 = 0

13 6

- die Werte der Vierergruppen in der Bezeichnung der Hexade-
zimalziffern aufzuschreiben unter Beibehaltung der Reihen-
folge der Vierergruppen
(2)y=1_1 0 1 01 10

23 22 21 0 53 52 51 50
= 13 6
= D 6
(2)¢ = D6

Der umgekehrte Weg fithrt zur Dualzahl zuriick, Nach nur wenig
U'bung kann man die Darstellungsformen ineinander im Kopf iiber-
filhren., Einige Beispiele sollen das Erworbene sichern.

42

- Beispiele:

. (Z)2 —> (Z)16: (11001101)é = 1100 1101
32 13
D

1011 1111
115
B F

(10111111)2

) (Z)16 - (Z)2= (A9)16) 2310 13%116

=(1o1o1oo1)2
(87)16 = (8 T)16

1000 0111
=(1oooo111)2

Zur Kennzeichnung von Zahlen, die in unterschiedlichen Systemen
dargestellt sind, werden in der Literatur h&ufig auch folgende
Zeichen verwendet:

D = Dezimalzahl H = Hexadezimalzahl

B = Dualzahl Q = Oktalzahl

Eine Zahl ohne Kennzeichnung ist immer eine Dezimalzahl.

2.3.3. Grundschaltungen zur Ablage und Verarbeitung von
Zghlen im Rechner

In diesem Abschnitt werden Grundschaltungen zur Ablage und
Verarbeitung von Zahlen im Rechner behandelt. Ziel ist eine
Einfithrung in die Begriffe und Modelle der Signalverarbeitung
im Digitalrechner. Diese Kenntnisse sind bel der Programmierung
von Vorteil, Die Schaltungen beziehen sich auf die Verarbei-
tung von vierstelligen Dualzahlen (Tetraden)., Die Verarbeitung
breiterer Dualzahlen (allgemein Bitmuster), z. B. 8-, 16-

oder 32-Bitstellen, ist als logische Erweiterung der Bitstel-
lenanzahl erklérbar,

43

2.3,3.1, Register

Ein Register ist die vergegenstiéndlichte Form einer bestimmten
Anzehl von Bitstellen, mit der Moglichkeit, eine Date (Zahl)

zu speichern. ‘

Beispielsweise kann ein Register aus mehreren D-Triggern beste-
hen, wie sie im Bild 32 dargestellt sind.

Bild 32: Register zur Speicherung einer Tetrade

Im dargestellten Register besteht die Moglichkeit, eine vier-
stellige Dualzahl (Tetrade) zu speichern, Im Modell kann es
so geschehen, daB8 zum Beispiel

TS3’ TS2 und TSO und TR1 gedriickt werden.
Als Resultat nehmen die Ausginge Q folgende logischen Werte an:

Q3 =1
Q, =1
Q=0
Qo=1
Vergibt man weiter die Wertigkeiten: 23 -8= Q3
22 = 4 = qQ,
2! =2 - q
20=1'—'Q09

so wurde im Register der Zahlenwert 13 in dualer Form gespei-
chert,

44

~ Schieberegister

Nachdem gezeigt wurde, wie in einem Register eine Tetrade ge-
speichert werden kann, soll eine Schaltung zur Verschiebung
der Zahl dargestellt werden., Neu in der Schaltung nach Bild 33
ist

- die Zusammenschaltung der D-Trigger-Taktleitungen
zu einem Takt

- die Verbindung des Q-Ausgangs mit dem nachfolgenden
D-Eingang.

T 6. K| as Tl @

—H

0 T

Qs
(o [Ar [
C . 2

[S8]

Bild 33: Zusammenschaltung von D-Triggern zu einem
Schieberegister

Die Arbeitsweise dieser Art von Schaltungen erldutert man vor-
teilhaft mit Hilfe von Impulsdiagrammen., Im Regisfer moge als

Ausgangszustand die 13 gespeichert sein, Dies sei der Zustand

Z, der Schaltung (Bila 34).

Bild 34: Darstellung des
Zustands Z_ im
Impulsdiag%amm

45

Zum Zeitpunkt t1 erscheint nun eine Vorderflanke von C.
Was geschieht?

- Q3 fibernimmt den logischen Wert von D3 und wird
alg Folge der Vorderflanke von C den logischen Wert O
annehmen (siehe Bild 35).

- 02 tibernimmt den logischen Wert wvon D2 = Q3.
Zum Zeitpunkt der Vorderflanke ist Q3 logisch 1,
also wird Q2 den logischen Wert 1 beibehalten
(von Q, Ubernehmen) .

- Q1 tilbernimmt den logischen Wert von D1 = Q2, wird
also logisch 1 werden.

- Qo iibernimmt den logischen Wert von Do = Q1 und
wird logisch O,

In Bild 35 ist der sich neu einstellende Zustand Z1 der
Schaltung dargestellt.

Bild 35: Impulsdiagramm

| zur Erzeugung
Q3 des Zustands Z1

(
)

g——- g—*—b‘
Zo | Z1 t

t1

Wie lange dieser Zustand von der Schaltung eingenommen wird,
héngt davon ab, wann erneut eine Vorderflanke von C die Schal-
tung ektiviert. Erscheint nun eine erneute Vorderflanke wvon C,
80 reagiert die Schaltung wie Bild 36 zeigt.

46

Bild 36: Impulsdiagramm
zur Erzeu

b | des Zustands 2,
@ % |)
Q2 N ' j
VA f
Qs 7222077 .
Nid 1)
c M
Zo | Zr 1221 T

t1 ta

Wie lange dieser Zustand aufrecht erhalten bleibt, hidngt wie-
derum nur vom Erscheinen einer erneuten Vorderflanke von C ab,
Bild 37 zeigt die Schaltung im Zustand Z4, nachdem noch zwei-
mal Vorderflanken von C die Schaltung aktivierten.

Qll
il /IJ&) I —
o L) | |
& | |
@ 7z o
)
clm ml.
zo[z1 Zz' 23 Zu t
t1 ta ts ty

Bild 37: Impulsdiagramm des Schieberegisters nach
4 Vorderflanken von C

Der Zustand Z. stellt sich zum Zeitpunkt t3 ein, indem

3

A7

Q3 logisch O von D3 ibernimmt
Q2 1o%isch 0 von Q3 ibernimmt
Q1 logisch O von 02 ibernimmt
Qo logisch 1 von Q1 Ubernimmt und

der Zustand Z4 ist dadurch gekennzeichnet, dafl alle Q-Ausginge
der D-Trigger den logischen Wert O tragen. Man sagt, die Null
von D3 wurde durch des Register geschoben und hat es "genullt",
Hétte man immer konstant an D3 eine logisch 1 angelegt, so wire
diese durchgeschoben worden und alle Q-Ausgiénge wdren im Zu-
stand Z4 logisch 1, ‘

Aus dem Impulsdiagramm nach Bild 37 1&8t sich jedoch noch eine
andere Aussage treffen, die in der bisherigen Betrachtung noch
keine Rolle spielte. Schaut man sich die Impulsfolge auf der
Leitung Qo an, so findet man, daB es genau die Impulsfolge ist,
die dem Zustand Z, des Registers entsprach.

Der Zustand Zo war gekennzeichnet durch:

Q =15 Q =0,Q =1, Q=1

Die Impulsfolge, die Qo beim "Schieben" annimmt, zeigt
Bild 38.

Zo | Z1 [Z2 Z3 |
bao-1 % Qo =0 { Qo = 1 Qo = 1 I
| | l

77 T 77777 .

Bild 38: Impulsfolge von Qo

Damit wurde die Tetrade parallel in das Register eingegeben
und seriell aus dem Register herausgeschoben., Man nennt eine
solche Arbeitsweise Parallel-Serien-Umsetzung (Bild 39).

In den Bildern 40 und 41 ist gezeigt, was in einem zweiten
Schieberegister, dessen Eingang D3 mit dem Ausgang Qo des
ersten zusammengeschalten wird, geschieht,

48

Bild 39:

I | | IE/‘ngang

Takt

Register

Ausgan
hnpfhsﬂ%ge

Parallel-Serien-Umsetzer

Register 1

0 T o, T

I8

[

-
2k |ao

| RS

—
19

Bild 40:

&

A 4

Schaltung zweier Schieberegister

#

N

Register 1
Q9

DQ
N
N

o & oz,
U
g% l 707
& el ! |
“lL L g
¢ -
20 |Z1 122 |Z3 |z, ¢

49

Bild 41: Impulsdiagramm
der Zusammen-
schaltung
zweier Schiebe-
register

Das Impulsdiagremm zeigt, daB8 der Zustand Zo im Register 1 .
dem Zustand Z4 des Registers 2 entspricht. Das heiBt nichts
anderes, als daB8 die Zahl 13 vom Register 1 in das Register 2
"umgeladen" wurde. Das Register 2 realisiert eine Serien-
Parallel-Umsetzung, Uber D3 wird dem Register 2 eine serielle
Eingangsimpulsfolge zugefiihrt. Die Information liegt an den

Q-Ausgingen der 4 D-Trigger parallel an.

- Umlaufregister

Will man die Information, die Date, die Zahl, ins Register 2
schieben und trotzdem im Register 1 erhalten, so muS man den
Ausgang QO des Registers 1 zum eigenen Eingeang D3 des Regi-
sters 1 zuriickfilhren, Die Date "l#uft" nun beim Tekten (schie-
ben) im Register 1 "um" (Umleufregister).

Die Bilder 42 und 43 zeigenbdazu Schaltung und Impulsdiagramm,
Der Zustand Z4 stimmt mit dem Zustand ZO iUberein. Uber Qo wurde
die Impulsfolge trotzdem ilibertragen.

|
Q
? 7
i Tl el @2 bl '
7 i al A0
[C C C & N
l P f 7
* . . Go o7
C
Zo |21 |Z2 |Z3 |Z« t
Bild 42: Schaltung eines Bild 43: Impulsdiagramm
Umlaufregisters eines Umlauf-

registers

2. 2. 20 2. Adder

Im Bild 44 ist eine logische Schaltung angegeben, die man als
Halbadder bezeichnet.

50

Bild 44: Logikplan
ines

e
% Xo z Halbadders

So

Zur Analyse dieser Schaeltung gibt man sich die mdglichen Kombi-
nationen der binéren Siénale X, und ¥, vor und untersucht,
welche Reaktionen die Ausginge Uo und So zeigen, Das bindre
Ausgaengssignal Uo wird den logischen Wert 1 annehmen, wenn

X, =1und y, = 1 sind.

Das bindre Ausgangssignal So wird den logischen Wert 1 annehmen,
wenn

(%, = 1 oder y, = 1) und U nicht = 1

= (x, =1 und Uo = 0) oder (y, = 1 und Uo = 0),

Somit ergeben sich flir die Eingangskombinationen von X, und Yo
folgende Ausgangssignale:
X, Y, Uo S, Das sind aber genau die logischen
o o o0 o Signalwerte, die bei der dualen
0 1 0 1 Addition entstehen konnen,
1 0 0 1 Bitstelle 1. Operand
1 1 1 0 + Bitstelle 2, Operand
= Summe und Ubertrag
Folgende Zwischenergebnisse sind mdglich:
(] (0] 1 1 Beli der dualen Addition von 1 + 1 = 10
+0 +1 +0 +1 ist es so, daB das Summenergebnis = 0
o -? -T ;6 erscheint und ein Ubertrag in die néch-

ste Stelle, so als ob man im Dezimalen
iiber die Zehn hinaus addiert.

51

- Addition mehrstelliger Dualzahlen

Als Beispiel sollen die Zahlen 9 und 5 addiert werden,
Die dezimale Addition ergibt:
9
3
14
Die 4 ist das Ergebnis der Summe, die 1 ist der Ubertrag in
die ndéchste Spalte. '
Die duale Addition der Dualzahlen 1001
' + 0101
erfolgt genau so, wie im Dezimalen, nur daB8 der Ubertrag beim
Erreichen der 2 erfolgt, also

1001
+ 0101 Ubertrag in die nichste Bitstelle

1110 Summe der Bitstelle

Sollen also mehrstellige Dualzahlen addiert werden, muB als

3. EingangsgrdBe elnes Adders der Ubertrag der zuvor addier-
ten Bitstelle eingehen., Es reicht demnach die Schaltung des

Halbadders nicht aus.

- Volladder

Eine Adderschaltung, die als EingangsgriBe die Bitstellen x4
und A der Dualzahlen x und y als auch den Ubertrag der Bit-
stelle 1 - 1, also ﬁi—1 verarbeitet, nennt man Volladder, Die
Bilder 45, 46, 47 zeigen den Logikplan, die Schaltbelegungsta-
belle und das Symbol eines Volladders.

(.) HS[s 9 5 = Summe

. HS = Halbsurmmierer
g =y - P N P = Ubertrag
Ui-1 I \

Bild 45: Logikplan des Volladders

52

Eingan Ausgang

Xi |Yi |Oir || St | O

o\|0 o o g

0|0 1 7

ol|17 |0 (1] 0 Xi | SM |g) Sc M=

o711 |o}|1 Yi Summierer

7100 (7110 Ji-t plt:

1710 1 0 1

1 1 o 0 1

1 1 1 1 1

Bild 4631 Schaltbelegungstabelle Bild 47: Symbol des
eines Volladders Volladders

Technigch realisiert man die EingangsgréBe U1—1 als Verzogerung
der AusgangsgrbBe ﬁi genau um einen Takt.
Bild 48 zeigt eine mdgliche Grundschaltung zur Realisierung

der "Verschiebung".
Der D-Trigger schaltet den logischen Wert des D-Eingangs nur

durch, wenn eine Vorderflanke von C das Tor Gffnet.

Erst dann wird der Uberirag Ui dem Adder wieder zugefiihrt.

Ist nun gesichert, daB die néchste Bitkombination an X und ¥y
anliegt, so wird der Ubertrag von der vorigen Bitkombination

mit verarbeitet.

Bild 48: Schaltung zur

. Sié
Xi | SM S Realisierung
Yi . der Ubertra-
oo LT Ui-1 gungsverschie-
1 ppYL D bung

53

2,3,3.3, Addierwerk fiir Tetraden

Ein komplettes Addierwerk regelt neben der direkten Addition
die Zufiihrung der einzelnen Bitkombinationen an den Adder.
Die wesentlichen Baugruppen sind

- 1 Schieberegister
- 1 modifiziertes Umlaufregister, genannt Akkumulator
- 1 Volladder mit Ubertragsverschiebung

Bild 49 zeigt eine mdgliche Schaltung.

Akkumulator SM 1S Si l

T T T g LEA

Q3 Q2 D a Dy Yi . [T

C C a C] P D|

[y Tt

Tas "o 51"l o b={ TR0
D)
LERNE=RR AN

Taikt C

Bild 49: Serienaddierwerk fiir Tetraden

Neben den schon bekannten Grundschaltungen ist insbesondere ,
bemerkenswert, daB das Additionsergebnis (Si) in den Akkumula-
tor so hineingeschoben wird (iiber D3), wie der dort befindliche
‘eine Operand in den Adder. Somit erfiillt dieses Register zwei
Funktionen, Vor der Addition steht in ihm ein Operand, nach
der Addition das Ergebnis. Das wesentliche dieser Schaltung

ist die synchrone Taktung aller Baugruppen durch den System-
takt C, Er sichert die serielle Zufilhrung der Bitstellen der
Operanden und die stellenwertrichtige Verschiebung der Uber-
trége.

54

Die exakte Arbeitsweise ist daran gebunden, daB der Systemtakt
genau 4 Vorderflanken von C liefert, wenn die Register aus 4
Bitstellen bestehen, "Verschlucken" oder "Verhaspeln" hat in
dieser Schaltung katastrophale Folgen.

In dem dargestellten Addierwerk werden die Bits der Operanden
seriell verarbeitet. Deshalb nennt man diese Form der Schal-
tung ein Serienaddierwerk.

Es gibt auch Paralleladdierwerke., In diesen werden die Q-Aus-
génge der D-Trigger der Register direkt den Volladdern zuge-
filhrt, die fiir jede Bitstelle installiert sind. Fiir die O-te
Bitstelle benstigt men nur einen Halbadder., Hier kann kein
Ubertrag von der vorherigen Stelle vorliegen.

Kontrollfragen und Aufgsben:

K10, Welcher Unterschied besteht zwischen der Darstellung
einer Dezimalzahl als BCD-kodierte oder direkt-dual-
kodierte Zahl?

K11, Was ist ein Reglister und welcher Zusammenhang besteht
zwischen seiner Bitstellenzahl und der Datenverarbei-
tung?

K12, Was kennzeichnet ein Umlaufregister?

A4, Stellen Sie folgende Dualzahlen in Hexadezimalschreib-
weise dar!

01101100
11001011
00001111
11110000
11111111

A5, Stellen Sie folgende Hexadezimalzahlen als Dualzahlen
dar!

A6, Vervollsténdigen Sie das folgende Impulsdiagramm eines
3stelligen Schieberegisters! An D, ist stdndig logisch 1
gelegt,

55

[
9_2____‘.___{___[1______ Bild A7

| l
@ |l

G 77 N D D

Zo

3. Sprachen und grundlegende Begriffe der digitalen
Rechentechnik

3,1, Mensch - Rechner - Kommunikation

Die Kommunikation zwischen Nutzer und Rechner erfolgt

- bei der Realisierung des Dialogs am Rechner und
- beim Aufschreiben von Programmen.

Belde Tdtigkeiten verlangen eine Verstiéndigungsform zwischen
Mensch und Rechner, denn
- der Rechner "versteht" letztlich nur seine

Maschinensprache und
- der Mensch mdchte sich nicht mit den ihm fremden

Nullen und Einsen herumquélen.
Um dieses Problem zu ldsen, wurden technische Sprachen entwor-
fen, die eine Formulierung der Programme und Dialogkommandos
in einer menschenfreundlichen Form ermdglichen., Solche Sprachen
nennt man "Problemorientierte Sprachen", weil der Mensch das
ihn interessierendé technische oder technologische Problem auf-
schreiben kann, ohne sich um die Null-Eins-Sprache des Rechners
zu kilmmern,

Die Null-Eins-Sprache des Rechners nennt man Maschinensprache,
Jeder Rechner hat seine eigene Maschinensprache. Programme,
die in einer Maschinensprache aufgeschrieben sind, nennt man
Maschinenprogramme (auf die Maschine zugeschnitten).

56

- Maschinensprachniveau

Das Aufsochreiben von Programmen mit Hilfe der Maschinensprache

(Maschinenprogramm) durch den Menschen hat den

- Nachteil, da8 man unbequem und storanféllige
Null-Eins-Folgen aufschreiben muB8, hat aber den

- Vorteil, daB8 beim Aufschreiben des Programms die
besonderen Eigenheiten des speziellen Maschinen-
kodes beachtet werden ktnnen und damit Programme
entstehen, die dem Rechner optimal "liegen"., Das
zeigt sich dann in einer sehr kurzen Rechenzeit
der Programme,

Bel der Gestaltung des Nutzer-Rechner-Dialogs schlégt der

schon gezeigte Nachteil voll zu Buche, ohne den Vorteil,

Um den Vorteil voll zu nutzen und den Nachteil mdglichst zu
beseitigen wurden eingefiihrt
1, die Zusemmenfassung der Null-Eins-Folgen in oktaler bzw,

hexadezimaler Form. Der Dialog erfolgt iiber.entsprechende
Pastaturen (Oktal-, Hexadezimaltastaturen) und

2. eine neue Spraohform, die Assemblersprache.

- Assemblersprachniveau

Das Aufschreiben der Programme und die Gestaltung des Dialogs
wird durch Folgen von festgelegten alphanumerischen Zeichen,
sogenannte Mnemoniks (Symbole) realisiert. Fiir jede Null-Eins-
Folge in der Maschinensprache wird im wesentlichen in der
Assemblersprache ein Mnemonik definiert.

Beispielsweise fiir

- die Eingabe von Daten das Symbol: IN
- die Ausgabe von Daten das Symbol: ouT
- das Laden eines Registers das Symbol: LD
- die Addition von Daten das Symbol: ADD

Es leuchtet sofort ein, daB diese Form der Kommunikation schon
wesentlich menschenfreundlicher ist, als jene der Null-Eins-
Folgen Form, Programme, die in einer Assemblersprache aufge-

schrieben sind, nennt man Assembler-Quellprogramme,

57

Da der Rechner letztlich jedoch nur seine Magchinensprache
"versteht", taucht nun das Problem der Uberfiihrung des
Assembler-Quellprogramms in das Maschinenprogramm auf, Diese
formale Arbeit realisiert ein Programm, das im Rechner gespei-
chert ist., Man nennt es ASSEMBLER. Der ASSEMBLER iiberfiihrt
Assembler-Quellprogramme in Objektprogramme, die dann durch
den Rechner realisiert werden kdnnen.

Trotz des grofSen Fortschritts stdrt noch die Maschinennshe der
Programmiersprache., Zu umstéindlich ist die Formulierung schon
einfachster zum Beispiel mathematischer Zusammenhiénge, wie

¢ =a+ b, Im Prinzip mu8 man dafiir in der Assemblersprache
schreiben:

1D A,a Lade den Akkumulator A mit a
LD B,b Lade das Register B mit b
ADD Addiere

1D C,A Lade das Register C mit dem Inhalt vom
Akxkumuletor (Im Akkumulator steht nach der
Addition das Ergebnis von a + b)

- problemorientiertes Sprachniveau

Die Zusammenfassung der genannten Mnemonikfolge zu einer Anwei-
sung der Form ¢ = a + b filhrt zur problemorientierten Sprache.
Beim Aufschreiben der Gleichung ¢ = & + b muB man nicht an
einen Rechner denken, Es ist allein wichtig, daB dieser mathe-
matische Zusammenhang zwischen a, b und ¢ das vorliegende
Problem 1&st.

Im Laufe der Zeit entstanden verschiedene problemorientierte
Sprachen, die weltweit Verbreitung gefunden haben, so zum Bei-
spiel .

- ALGOL : ALGOrytmic Language (algorithmische Sprache)

- FORTRAN: FORmula TRANslation (formale Ubersetzung)

- COBOL. : COmmon Bussiness Oriendet Language
(kommerzielle Sprache - Okonomie

BASIC : Beginners Allpurpose Symbolic Instruction Code
(symbolischer Instruktionskode fiir Anfénger)

Programming Language one (Programmiersprache 1).

- PL1

.

58

Programme, die in einer problemorientierten Sprache geschrieben
sind, nennt man Compiler-Quellprogremme, Das Vorwort "Compiler"
deutet schon auf das Programm hin, das die Ubersetzung des vor-
liegenden Quellprogramms in eine Form des Assemblersprachniveaus
realisiert. Ein solches Programm nennt man COMPILER,

Firmen, die Rechner herstellen oder vertreiben, bieten fiir den
spegiellen Rechner stets auch COMPILER fiir die iUlblichsten pro-
blemorientierten Sprachen an., Somit kann der Nutzer davon aus-
gehen, daB er, gleichgiiltig in welcher Sprache er sein Programm
notiert hat, das notwendige Ubersetzungsprogramm vorliegen hat.,
Anders ist es der Fall bei der Nutzung von Kleincomputern. Hier
einigt man sich aus Griinden der Sparsamkeit, der Einheitlich-
keit und des minimierten Speicherbedarfs auf eine Programmier-
sprache und damit auf ein Ubersetzungsprogremm. Die Bereitstel-
lung des Objektprogramms erfolgt wie in Bild 50 gezeigt.

ler - Bild 50: Uberfithrung
Compiler - Quellprogramm eines Compller-
Quellprogramms
COMPILER in ein Maschi-
nenprogramm

Assembler - (Quell) programm

LL ASSEMBLER

Maschinenprogramm

Fir manche problemorientierte Programmiersprache, insbesondere
fiir solche, die den Mensch~Rechner-Dialog ausgezeichnet unter-
stiitzen, erfolgt keine geschlossene Uberfiihrung vom Quellpro-
gramm in das Objektprogramm. Man nennt eine solche Arbeitsweise
"interpretierende" Arbeitsweise und die Programme, die diesen
ProzeB realisieren INTERPRETER,

Der Interpreter nimmt Teile des Quellprogramms, iUberfiihrt die-
se in die Maschinensprache (Kode) und startet den Rechner zur
Ausfithrung des Teilprogramms. Dann nimmt er sich den nédchsten

59

Teil des Quellprogramms und verfiéhrt entsprechend. Eine typische
Interpretersprache ist BASIC,

- Entwicklungstendenzen

Weltweit wird gegenwHrtig an zwei .Problemen gearbeitet. Erstens
geht es darum, die Compiler und Interpreter so zu vervollkomm-
nen, daB in bezug auf die Laufzeit der Objektprogramme solche
Zeiten wie bei der Programmierung auf Maschinenniveau erreicht
werden, Die Ldosung dieses Problems ist besonders wichtig fiir
die effektivere Programmentwicklung in der Mikrorechentechnik
zur Steuerung von Echtzeitprozessen in Gerdten, Maschinen und
Anlagen.

Zweltens geht es darum, die Rechner mit einer segenannten
"intelligenten Oberfliiche" auszuriisten, Der grundlegende Ge-
danke besteht darin, da8 zum Beispiel

- Okonomen

- Technolegen

- Konstrukteure

- MeStechniker usw,

einen ganz bestimmten Wortschatz besitzen, mit dem sie ihre
fachlichen Probleme beschreiben. Diese Fachsprache gilt es,
dem Rechner anzubieten.

Beide Problemkreise sind in Anfiéngen bzw. vereinzelt einer
Realisierung zugefiihrt. In den néchsten Jahren ist mit einer
verbreiteten Anwendung zu rechnen.

3.2, Daten
Nechdem schon mehrmals Begriffe, wie Daten, Befehle, Anweisun-
gen und Programme benutzt wurden und bewuSt die mannigfaltigen
Vorstellungen nicht beseitigt wurden, um den iibergeordneten
Zusammenhang nicht zu zerreiBen, ist es nun hdchste Zeit, diese
Begriffe im Sinne der Informationsverarbeitung durch ihre Ar-
beitsdefinition festzuschreiben.

Unter Daten soll nach /1/ Information verstanden werden, die
zum Zwecke der Verarbeitung auf einem Rechner formuliert wurde,

60

Dabei unterscheidet man prinzipiell zwei Formen von Daten,

den

- Logischen Datenbestand des Menschen und den

- Physischen Datenbestand des Rechners, des Automaten,
des Speichermediums.

Das Wort "logisch" deutet darauf hin, daB der Mensch seinen be-
notigten Datenbestand (seine benttigten Informationen) nach
glischen, den Daten innewohnenden Zusammenh&ngen ordnet,

Das Wort "physisch" deutet darauf hin, da8 der Rechner, der
Speicher, den physischen Gegebenheiten des Speichermediums

Rechnung tregen muB, Der Zusemmenhang ist der, da8 der phy-
sische Datenbestand den logischen Datenbestand, vollstédndig

enthdlt, Bild 51 zeigt, daB dabeil die Art der Ordnung in beiden

Datenbestdnden nicht einheitlich sein muf.

~ Dateneinheiten

lo-

In Bild 51 sind #dquivalente Dateneinheiten logischer und phy-
sischer Datenbestidnde dargestellt.

Logische Dateneinheiten

Physische Dateneinheiten

Zeichen (Buchstaben,
Ziffern,
Sonderzeichen)

Byte = Summe mehrerer Bit-
stellen (hiufig:
8 Bitstellen)

Datenelement = Summe von
Zeichen
mit einer selbsténdigen
semantischen Bedeutung
(Attribut und Wert einer
Eigenschaft)

Feld = Summe von Byts,

die als Gebiet eines
reellen physischen Speicher-
mediums ein Datenelement auf-
nehmen kdnnen. Es gibt Felder
variabler Liénge (vom Datene-
lement abhiéingig) und konstan-~
ter Liénge. Bei Feldern kon-
stanter Lénge spricht man bei
2 Byte von lbwort
4 Byte von Wort
8 Byte von Doppelwort

Logischer Satz = Menge aller

Datenelemente, die zu einem
%emeinsamen Oberbegriff
Schliissel) gehdren

Physischer Satz: Gebiet eines

reellen Speichermediums, in
dem mindestens ein logischer
Satz abgelegt ist.

61

\

Physischer Satz = Block, wenn
mehrere logische S@tze einem
hysischen Satz abgelegt

? "geblockt") sind

Logischer Datenbestand = Ge- Physigcher Datenbestand = Ge-
samthe aller logischen S&tze, et elnes reellen Spelcher-

die im Sinne eines grdBeren mediums, in dem ein logischer
Aufgabenkomplexes zur Ldsung Datenbestand abgelegt ist.

benstigt werden,

Bild 51: ‘Dateneinheiten (nach /2/)

Ublich sind auch die Begriffe Datei (bzw. englisch "file")
fiilr bestimmte abgeschlossene Gruppen von Daten., Im einzelnen
ist jedoch immer zu priifen, um welche Dateneinheit und welche
Form (logisch oder physisch) es sich handelt.

Files sind abgeschlossene Datengruppen, die ﬁnter einem Namen
abgelegt und aufgefunden werden.

- Datentyp

Entsprechend ihrer Bedeutung unterscheidet man 2 Grundgruppen
von Daten

< Zahlen- und Zeichenkettendaten wund
- Befehlsdaten.

Beispiele fiir Zehlen sind: ganze Zahlen (10003 =4; +138)

Pestkomma- (0,438; 18,3)
zahlen

Gleitkomma- (1,37.10%; -4,8.1072)
zahlen
Beispiele fiir Zeichenketten sind: OMA, LEIPZIG, BASIC
Belspiele fiir Befehle sind: Addiere, Eingabe, Ausgabe

Im Sprachgebrauch hat sich eingebiirgert, den Begriff Daten im
engeren Sinne als Bezeichnung fiir Zehlen- und Zeichenkettenda-
ten zu verwenden, Obwohl nicht exakt, kann man es doch akzeptie-
ren, da der Begriff im Sinne der "Rechendaten", die einem Pro-
gramm zur "Bearbeitung" ﬁbergeben werden oder der "Ergebnis-
daten", die ein Programm erzeugt, gemeint ist.

62

- Gliederung von Befehlsdaten

Ein Befehl besteht im Sinne der Informationsverarbeitung aus
Zeichen:
- Im Maschinensprachniveau sind das die Zeichen "Null"

und "Eins",
- Im assembler- und problemorientierten Sprachniveau sind

es wieder Buchstaben, Ziffern und Sonderzeichen,
Der Bedeutung nach soll ein Befehl ganz allgemein eine nicht
mehr unterteilbare Beauflagung eines Rechners sein. Mit dieser
Definition dient der Befehl als Grundelement der Strukturierung
der Befehls-Daten in:

Befehl
Anweisung
Programm
Programmsystem,

- Anweisung: Zusammenfassung mehrerer Befehle

Beispiel: Befehle Anweisung
Eingabe a
Eingabe b
Addiere c=a+b
Speichere

- Programm: Geordnete Folge von Befehlen und Anweisungen
zur Losung einer bestimmten Aufgabenstellung,
aufgeschrieben in Maschinen-Assembler- oder
problemorientierter Sprache

Beispiele:

- Programm zum Sortieren von Zahlen nach ihrer
GroSe

- Programm zur Berechnung des arithmetischen
Mittelwertes einer MeBwertreihe

- Programm zur Steuerung eines Motors-Rechts-
lauf-Linkslauf-Stopp.

Die Ordnung der Folge der Befehle und Anweisun-
gen richtet sich nach den

Algorithmen,

die zur Losung der Problemstellung genutzt
werden., (Eine Definition des Begriffs Algorith-
mus erfolgt im Teil 2 dieser Lehrmaterialreihe.)

63

- Programmsystem: Variable Anzahl von Programmen zur Ldsung
einer bestimmten Aufgabenklasse,

Beispieles
Programmsystem zur Realisierung der-
arithmetischen Verkniipfung von Daten

« Addition

+« Subtraktion

o Multiplikation
o Division

« Potenzieren

Programmsystem zur Realisierung der
statistischen Auswertung von MeBdaten

+ Mittelwertbildung
« Standardabweichung
« Korrelationsanalyse

Kontrollfragen und Aufgaben:

K13, Welche Sprachniveaus kennen Sie? Welche Vor- und
Nachteile kennzeichnen ihren Zusammenhang?

K14, Was verstehen Sie unter den Begriffen ASSEMBLER,
COMPILER und INTERPRETER?

K15. Welcher Zusammenhang besteht zwischen Zeichen, Satsz,
Datenbestand?

K16, Was kennzeichnet die Begriffe File und Block?

Losungen der Aufgaben

A 1, Bild A1t analog kontinulerliches Signal
Bild A2: analog diskontinuierliches Signal
Bild A3: analog kontinuierliches Signal
Bild A4: analog kontinuierliches Signal
Bild AS5: diskret kontinuierliches Signal (bindr)
Bild A6: analog kontinuierliches Signal

A 2, Ziffern BCD-Kodierung
8421

0001
0010
0011
0100
0101
0110
0111
1000
1001

O OO WN =

64

A 3.

®OAPL LT Whs

Bild A8
A 4, 6C
CB
OF
FO
FF
A 5. 1011111
00111101
10100111
0100011111110011
A 6,
A6
e 707
@ 200 77 A
Wl 77/ AT
Zo (Z1 |Z2 | Z3 t

Bild A9

65

Literaturverzeichnig

/1/

/2/

/3/

/4/

/5/

/6/

Fritzsch, W.: ProzeSrechentechnik, Berlin:
VEB Verlag Technik 1984,

Autorenkollektiv: Wissensspeicher Datenverarbeitung
Berlinsg Verlag Die Wirtschaft 1982,

Schnabel, U,; Brduning, G.; Heinold, H,: Informationsver-
arbeitung fiir Ingenieure.
Berlin: VEB Verlag Technik 1982,

Paulin, G.: Kleines Lexikon der Mikrorechentechnik,
Berlin: VEB Verlag Technik 1982,

Hartmann, G.: Praxis der elektronischen Datenverarbeitung.
Berlin: VEB Verlag Technik 1970,

Schwarz, W.; Meyer, G.; Eckhardt, D.,: Mikrorechner.
Berlins VEB Verlag Technik 1980,

66

Institut fir Rationalisierung
der Elektrotechnik/Elektronik
Zentralstelle

fiir Aus- und Weiterbildung

des Industriebereiches
Elektrotechnik/Elektronik

Lehrmaterial fir die
Weiterbildung

Informationsverarbeitung
mit Kleincomputern

2

Algorithmierung Teil 1

Kreutzer { ’
Elektrotechnik
Elektronik
Automation

o

steffen Kreutzer

Informationsverarbeitung mit Kleincomputern
2

Algorithmierung, Teil 1

Herausgeber

Institut fUr Rationalisierung der Elektrotechnik/Elektronik
Institutsteil Dresden _ '

Zentralstelle fir Aus- und Weiterbildung

des Industriebereiches Elektrotechnik/Elektronik
Karl-Marx-StraBe, Dresden

8080

Autor: FSD Dipl.-Ing. Steffen Kreutzer
Ingenieurschule fir Wissenschaftlichen Ger#tebau
"Carl Zeiss" Jena

Gutachter: Dr.rer.nat,, Dipl.-Math, Siegfried Neuber
Ingenieurschule fir Maschinenbeu und
Elektrotechnik Berlin

Bearbeiter: Dipl.-Gwl. Heinz Ridger
Institut fir Rationalisierung der
Elektrotechnik/Elektronik
Zentralstelle fiir Aus- und Weiterbildung

Alle Rechte varbehalten

1. Auflage -

IR Dresden ZSB

Druckgenehmigungs-Nr.: Ag 682/043/86

Druck und Herstellung: NOWA DOBA Bautzen III-4;9
RedektionsschluB: 30, 04, 1986

Bestell-Nr,: T.2.04,0002
Vorzugsschutzgebihr: 2,00 M

Vorwort

Im voriiegenden Heft wird auf den Aufbau und die Wirkungsweise
von Digitalrechnern sowie auf Grundlagen der Algorithmierung
eingegangen. Der Abschnitt "Erstellen von Algorithmen" wird

in einem 2. Teil behandelt. Das erschien notwendig, weil in
den Lehrveranstaltungen und Weiterbildungskursen diese Aufga-
benstellung im ProzeB der Vorbereitung des Rechnereinsatzes
die groBten Probleme bereitet.

'Bei der Beschreibung von Algorithmen wird unter anderem auch
auf die problemorientierte Programmiersprache BASIC (Beginners
All-purpose Symbolic Instruction Code) zuriickgegriffen. Die
Programmiersprache BASIC hat sich als eine sehr leistupgsfa-
hige und besonders fir Lernende leicht annehmbare Sprache in
vielen "Dialekten" international weit verbreitet. In der DDR
existieren zum Beispiel BASIC-Varianten fiur

- die Biurocomputer A 5120, A 5130 als Bestandteile der Betriebs-
systeme SIOS oder SCP,

- die mittlere Rechentechnik auf der Basis des Mikrorechner-
systems K 1600,

- die Kleincomputer KC 85/1, KC 85/2 und Z 9001 sowie andere
Rechner auf der Basis des Prozessors U 880, wie der MC 80
und seine Nachfolger und eigene Rechnerkonfigurationen
vieler Anwender auf der Basis der Module des Mikrorechner-
systems K 1520.

Grundlage der hier verwendeten BASIC-Version bildet eine
Interprétervariante der Firma Luxor Elektronik GMBH, die
unter der Bezeichnung "ABC-80-Basic" in vielen Lernsystemen
implementiert ist. ‘

Bei der Beschreibung von Algorithmen wird jedoch soweit wie
moéglich von Besonderheiten dieser Sprachvariante abgesehen,
und es werden solche Sprachelemente ins Zentrum geriuckt, die
in allen Varianten groRBe Gemeinsamkeiten aufweisen. Abwei-
chungen zur BASIC-Variante des KC 85/2 sind im Text ausge-
wiesen.

Inhaltsverzeichnis -

1.2.4.

1.2.4.1.
1.2.4.2.

1.2.5.

2.
2.1.

2.2.
2,3,
2.4.

2.4.1,
2.4.2.
2.4.3.
2.4.4.
2.5.

¢ o o
uuun u
.

.« o

L] .

N DN P
o e
N

NN N

Aufbau und Wirkungsweise von Digital-
rechnern

Gesamtstruktur
Zentraleinheit
Baugruppen und Struktur
Interner Speicher

Speichertyp RAM
Speichertyp ROM
Nutzung der ROM-Module
Nutzung der RAM-Module

Programmiermodell fir einen RAM

Speicherverwaltung

Ablegen von ganzen Zahlen in Integer-
speicherplatzen

Ablegen von reellen Zahlen in Realspeicher-
platzen

Ablegen von Zeichen in Zeichenkettenspeicher-
platzen

Verarbeitungseinheit

Steuerung der Programmabarbeitung
Verarbeitung der Daten

Ein-Ausgabe-Tore

Grundlagen der Algorithmierung

Aufgabenstellung - lésender Algorithmus -
Programm

Darstellungsformen von Algorithmen
Darstellung von Algorithmen mittels PAP

"Darstellung von Algorithmen mittels der pro-

plemorientierten Programmiersprache BASIC
Variablenbezeichnung

Zahlen

Mathematische Ausdriicke

Erste Anweisungen

Analyse von Algorithmen
Drei'Algorithmenelemente

Summenbildung
Zahlen
Prufen

Ein Algorithmus zur Mittelwertbildung

.Loésungen zu den Aufgaben

Seite

~N oy o U1 W\,

2

10

12
13
13
16
18

21

23

23
25

26

23
29

1. Aufbau und Wirkungsweise von Digitalrechnern

1.1, Gesamtstruktur

Die Gesamtheit der Gerdtetechnik &ines Digitalrechners be-
zeichnet man mit dem Begriff Hardware ("harte Ware").
Ausgehend von der

Zentraleinheit, die alle Gerate und Baugruppen des "eigent-
lichen" Rechners umfaBt, gliedert- man die weiteren Bau-
gruppen und‘Geréte in sogenannte Peripherien.

Gerédte der 1.. Peripherie: Darunter versteht man die Ein-
und Ausgabegeratetechnik, die
unmittelbar mit der Zentral-
einheit korrespondiert.’

Beispiele dafur sind: Tastatur, Bildschirm, Lochband-
leser, Lochbandstanzer, Druck-
werke, externe Speicher
(Magnetbandspeicher, Folien-
speicher, Magnetplattenspeicher
usw.), ProzeBkoppelbaugruppen
zur unmittelbaren Anbindung
eines Rechners an einen technisch-
technologischen Proze8.

Gerate der 2. Peripherie: 1Im wesentlichen faBt man darunter
die Geratetechnik zusammen, die
maschinenlesbare Datentréger er-
stellen oder Daten zur Verar-
beitung auf dem Rechner in irgend
einer Weise vorbereiten.

Beispiele dafur sind: Lochbanddatenerfassungsgerate,
Lochkartendatenerfassungsgeriate,
Sortierautomaten, Fakturier-~
automaten, Datensammelsysteme

Gerate der 3. Peripherie: Unter diesem Begriff faBt man die
. Geratetechnik zusammen, die den
Rechenproze® maBgeblich unterstat- -
zen und Hilfsgerate darstellen.

Beispiele dafur sind: Klimatechnik, Stromversorgung uswe

Typisch fur die weitere Entwicklung der Geratetechnik ist,
daB auch die Geréte'der 1. und 2. Peripherie durch eigene,
integrierte Rechnereinheiten gesfeuert werden.

Die dargestellte Gliederung in Peripherien ist fir den Ge-
samtbereich der Rechentechnik méglich, sinnvoll erscheint
sie unbedingt in groBen Rechenzentren. Weniger sinnvoll er-
scheint die Einteilung fur Ingenieurarbeitsplatae. In diesem
Bereich spricht man besser von

- Zentraleinheit

- Dateneingabe~ und Datenausgabegeraten: . Tastatur

- Externen Speichern:

1.2, Zentraieinheit

. Bildschirm
. Drucker

.'Kasaettenmagnetband-
gerate

.« Folienspeicher
(Floppy-Disk-
Speicher)

1.2.1., Baugruppen und Struktur

Die Zentraleinheit eines Digitalrechners besteht im wesent-

lichen aus den Baugruppen

- Interner Speicher
- Verarbeitungseinheit
- Ein-Ausgabetore.

Das Zusammenwirken dieser Baugruppen wird vorwiegend durch
ein sogenanntes Bussystem realisiert (Bild 1).

Interner - Verar-
Speicher, beitungs1
L . leinheit

‘-”"’g"“s' AnschluB zu Gerdifen
979 e und Baugruppen der
ore 7. Perjpherie

T/ Steverbus A/ ¥/~ V¥

SN dareBous NANTRNNNNNY Systembus

¥/ /Datenbus /// /" / /4

Bild 1: Busstruktur der Zentraleinheit

Unter einem Bus versteht man eine Anzahl von Leitungen zur

Ubertragung von

- Steuerinformationen
- Daten
- Adressen

Steuerbus
Datenbus
AdreBbus.

Das Strukturprinzip besteht darin, daB jeder Baugruppe,
die angeschlossen ist, alle Informationen potentiell zur
Verfugung stehen.

1.2.2. Interner Speicher

Interne Speicher werden gegenwéartig mit integrierten Schalt-
kreisen der Mikroelektronik aufgebaut. Nach dem Wirkungs-
prinzip unterscheidet man zwei Speichertypen, den Speicher'
mit wahlfreiem Zugriff (RAM) und den "Nur-Lese"-Speicher
(ROM) .

1.2.2.1. Speichertyp RAM (Random Access Memory)

Dieser Speicheftyp gestattet im laufenden Rechnerbetrieb

das Lesen und das Beschreiben der Speicherzelleh. Unabhan-
gig von der tatsichlichen technischen Realisierung wird hier
die logische Struktur und der modulare Aufbau dieses Spei-
chertyps erléutert. ‘

Als Grundelement eines RAM kann ein dynamischer D-Trigger
angenommen Werden. Im Bilg 2 sinq Symbol und Wirkungsweise
zur Erinnerung nochmals dargestellt.

1>

u]
m % 2 logisch,,1”

} to i Zeit
Bild 2: Symbol und Impulsdiagramm eines D-Triggers

logisch,0®

SHES)

(oY lu[m

Das Impulsdiagramm zeigt, daB

1, der Trigger nur reeglert, wenn C eine Vorderflanke hat;

2. der Ausgang Q infolge der Vorderflanke von C genau den
logischen Wert von D annimmt und diesen bis zur nachsten
Vorderflanke beibehalt.

Damit wird der logische Wert von D im Trigger gespeichert
und kann an Q abgerufen werden.

Ausgehend von diesem Speicherelement fir 1 Bit (Q kann den
logischen Wert 1 oder O annehmen) baut man in integrierten
Schaltkreisen Matrizen auf, in deren Kreuzungspunkten je
ein D-Trigger gedacht werden kann. Oftmals werden Matrizen
mit 1024 Bit = 220 Bit = 1 Kilobit = 1 K Bit aufgebaut.
Bild 3 zeigt die Zeilen- und Spaltenstruktur eines 1 K Bit-

S1 S l XX
7 N GO
R
o | | Speichermatrix
* | I 7024 Bit
¢ - 7K Bit
[
I
Z
i’*——?—

Bild 3: Speicherhatrix Bild 4: Logik eines Kreuzungs-
: punktes

Aktiviert werden konnen die Gatter G1 und G2 in Bild 4 nur

durch Signale Z und Sj' die_einer Zeile und einer Spalte

entsprechen. Damit wird immer nur ein Kreuzungspunkt aktiviert.

Lesen: Wird auf die Signalleitung "LesenL eine logische "1"
gegeben und ist Z, =1 und S = }, so stellt sich der
Datenoutput DO auf den logischen Wert von Q. Der
Speicheépunkt wurde gelesen.

Schreiben:
Die logische Funktion des Gatters Gl ist die Und-Ver-

knupfung der Signale "Schreiben", Zi und SJ

C = "Sghreiben". Zi . SJ

Werden alle 3 Eingangssignale auf logisch 1 gesetzt,
so vollzieht der Ausgang des Gatters Gl eine Vorder-
flanke von O auf 1 und aktiviert den D-Trigger.

Der Ausgang Q des Triggers Ubernimmt den logischen

Wert von DJ. Der Speicherpunkt wurde beschrieben.

8

Entsprechend dem modularen Grundkonzept werden derartige
Bitspeichermatrizen zu gréBeren Einheiten zusammengefaBt,
Bild 5 zeigt den prinzipiellen Aufbau eines 1 K Byte RAM,
wobei 8 Bit zu einem Byte zusammengefaBt sind.

3
R |seaiten
A %
bus 2 Q |Zeiken
8
3§

e N

Datenbus

1M Bt

Speicher
ma trigr

’EE;!; Schreiben
‘ lesen

Bild 5: Aufbau eines 1 K Byte RAM

Im dargestellten Beispiel sind 8 Bitspeichermatrizen so zu-
sammengeschalten, daB alle Zeilen der einzelnen Matrizen mit
gleichem Index (also beispielsweise alle 8 Zeilen mit dem
Index 10 usw.) Uber eine zentrale Zeile angesprochen werden.
Gleiches gilt sinngemeaB fur die Spalten.

Wird nun dber den AdreBbus der Zentraleinheit eine Adresse
eingespeist, so dekodiert der Zeilen- und Spaltendekoder
diese Adresse in eine Zeile'zi und eine Spalte S,. Die Sig-
nale z; und sj aktivieren auf jeder der 8 Matrizen den
Kreuzungspunkt ij gleichzeitig.

Je nachdem, ob Uber den Steuerbus das Signal "Schreiben"
‘oder “"Lesen" kommt, entnehmen die DI (Dateninput) dem Dareﬁ-
bus die 8-Bit breite Date oder geben Uber die DO (Datenout-
put) die 8-Bit breite Date an den Datenbus ab.

1.2.2.2. Speichertyp ROM (Read Only meméry)

Dieser Speichertyp gestattet im laufenden Rechnerbetrieb nur

das Lesen der Speicherzellen. Das Beschreiben der Zellen mit

Daten erfolgt auBerhalb des eigentlichen Rechenbetriebes ent-
weder ‘

- im ProduktionsprozeB der Herstellung der Speicherschalt-
kreise.

Diese Speicherschaltkreise sind dann fest programmiert.
Ssie sind somit nur fur den programmierten Zweck zu
verwenden. Man bezeichnet solche Schaltkreise mit MROM
(maskenprogrammierte ROM);

oder

- im ProzeB der Anpassung eines Rechners an zu loésende

Aufgaben.

Das geschieht durch den Rechnerhersteller oder durch

den Rechnernutzer. Die Programmierung (Beschreiben)

der Schaltkreise erfolgt auf sogenannten Entwicklungs-
systemen mittels spezieller Programmiergeréte. Solche
Schaltkreise bezeichnet man als EPROM- (Erasable Programmable-
ROM). Wie der Name besagt, sind es umprogrammierbare Spei-
‘cherschaltkreise. Mittels ultravioletter Strahlung besteht
die Moglichkeit, die Daten im Schaltkreis zu léschen. An-
schlieBend kann der Schaltkreis neu programmiert werden.

Obwohl sich die technische Realisierung der ROMs von denen
der RAMs wesentlich unterscheidet, ist der modulare'Grundauf-
bau und die logische Struktur als Denkmodell fir den Rechner-
nutzer Ubernehmbar. Lediglich die Méglichkeit der Datenuber-
nahme vom Datenbus in den Speicherschaltkreis, also daa
Schreiben, entfallt.

Ein wesentliches Merkmal des Speichertyps ROM besteht darin,
deB die einmal eingespeicherten Daten im Nutzerbetrieb standig
erhalten bleiben. Das gilt insbesondere beim Abschalten des
Rechners oder bei Netzausfall. Bild 6 zeigt das Modell, das
diesem Anliegen gerecht wird.

10

Bild 6: Modellvorstellung zum 1 KByte ROM

Im Kreuzungsbereich der Matrizen liegen Bricken. Bleibt diese
Bricke erhalten, so wird die logische Information' "1 wan die
Datenbusleitung ubergeben.
Brennt man die Briicke durch, so wird sténdig logisch "0" an
die Datenbusleitung Ubergeben.
- Reale Speichermodule und ihre Bewertung
Die Rechnerindustrie stellt Leiterkarten her, die Speicher-
module darstellen. Ubliche Speicherkapazitéten sind bei-
spielsweise 4 KByte, 16 KByte, 32 KByte, aber auch 64 KByte
und schon 1 MByte. Es besteht die Tendenz, auf der Basis
des immer hdheren Integrationsgrades in der Mikroelektronik,
die Speicherkapazitat je Fliche weiter zu erhdhen.
Somit ist man als Rechnernutzer in der Lage, die Speicher-
kapazitét "seines" Rechners in den gegebenen Abstufungen
selbst zy bestimmen.
Die Speicherkapazitat ist dabei ein wesentlicher Faktor zur
Bewertung eines Speichers und daruberhinaus einer ganzen
Rechenanlage. ‘
Ein weiteres Bewertungskriterium ist die sogenannte Zyklus-
zeit. Man versteht darunter die Zeit, die beim Lesen und
wieder Beschreiben einer Speicherzelle (Byte) vergeht.
Typische Werte liegen im Bereich von etwa 200 Nanosekunden,

11

1.2.2.3. Nutzung der ROM-Module

Der ROM-Speicherbereich wird genutzt, um Programme und

Konstante im Speicher abzulegen, die beim Rechnereinsatz

Uber eine léhgere Einsatzzeit oder uberhaupt keine Anderung

erfahren sollen.

Im wesentlichen sind das

- Programme, die den Rechnerbetrieb an sich im engen Zusam-
menwirken mit der Hardware sichern. Ein aufeinander abge-
stimmtes System solcher Programme bezeichnet man als Be-
triebssystem eines Rechners. Betriebssysteme werden in den
Rechnerfirmen erarbeitet und fir kleine Rechner in ROMs

dem Nutzer zur Verfligung gestellt (MONITOR, COMPILER,
ASSEMBLER)

- Programme, die von vielen Nutzern hdufig benétigt werden
und somit nutzerfreundlichen Charakter tragen.
Beispiele dafir sind Programme, die oft gebrauchte mathe-
matische Funktionen realisieren, wie y = sin x usw.. Auch
solche Programme werden in Rechnerfirmen erarbeitet und
als STANDARD-Programmsysteme bereitgestellt.

- Programme, die vom Nutzer des Rechners selbst geschrieben
wurden und sehr haufig genutzt werden missen.

In ROMs bereitgestellte Programme bezeichnet man als
"Residente Software" (Software = weiche Ware, im Gegensatz
zu Hardware).

1.2.2.4. Nutzung der RAM=-Module

Im RAM-Speicherbereich bringt der Rechnernutzer seine An-
wenderprogramme unter. Haufig werden dabei relativ groBe
Datenmengen bendétigt, wenn man beispielsweise an Rechner-
arbeitsplatze im Bereich der technologischen Vorbereitung
der Produktion, der Produktionsiberwachung oder den Bereich
der Konstruktion denkt. ’

Die Eingabe der Programme und Daten erfolgt dabei entweder
Uber die Tastatur oder externe Speichermedien, wie Magnet-
béndern, Magnetplatten, Disketten oder Lochbandern.

Auch Teile vom Betriebssystem eines Rechners, die weniger
hdufig bendtigt werden oder sehr speicherplatzintensiv sind,
werden auf externen Speichermedien abgelegt und bei Bedarf
von dort in.den RAM-Bereich eingeleéen. -

Zum dritten wird der RAM-Bereich des internen Speichers vom
Betriebssystem des Rechners selbst genutzt, um variable
Daten zwischenzuspeichern. Dieser RAM-Bereich wird durch das

Betriebssystem fUr den Nutzer gesperrt.

12

Insgesamt nennt man die im RAM abgelegten Programme "variable
Software"” und speziell die Programme, die von Anwendern
selbst geschrieben werden —» Anwendersoftware. .

1.2.3. Programmiermodell fir einen RAM

1.2.3.1. Speicherverwaltung

Ausgehend von den Kenntnissen Uber den Aufbau eines Speichers
besteht die Méglichkeit, durch Angabe einer Adresse eine
Speicherzelle (im Beispiel besteht die Speicherzelle aus

1 Byte = 8 Bit) "anzusprechen", "aufzurufen". Man .ist nun

in der Lage, in diese Zelle ein Bitmuster von der Breite

8 Bit abzulegen, oder ein Bitmuster, das friher abgespeichert
wurde, Uber den Datenbus auszulesen (Bitmuster = beliebige
Folge:von "1" und "0" im Byte).

Beim Auslesen eines Bytes soll folgendes Bitmuster am Daten-
bus anliegen:

Bitnummer 76543210
Bitwert 01000110

Fragt man nach der Bedeutung dieses Bitmusters, so findet man

keine eindeutige Antwort. Viele Bedeutungen sind sinnvoll

denkbar.

Beispiele:

- Die Dezimalzahl 86; wenn man den Bitnummern O bis 7 die
Wertigkeiten 2" mit 7 S n £ O zuordnet. Dann wére

z=1.2% + 1.2% + 1,22 + 1.2 = ge.

- Der Buchstabe F; wenn die Kodierung nach dem American
standard Code for Information Interchange (ASCII)
zugrunde gelegt wird.

- Der Ladebefehl LD B,M; wenn die Maschinenbefehlstabelle
des Mikroprozessors U 880 D zugrunde gelegt wird.

Die Beispiele sollen genigen, obwohl weitere Interpretationen
méglich sind. Wenn eine eindeutige Ruckgewinnung der voll-
sténdigen Information aus dem Bitmuster allein nicht még-
lich iét, so muB gesichert sein, daB "derjenige" der zu

einer Speicherzelle "greift" genau weiB, welche Art (Typ)

von Date "er" ablegt oder liest.

13

Allgemein gesagt bedeutet das; der Speicher muB verwaltet
werden.

Auf der Ebene der Maschinen - bzw. Assemblerprogrammierung
muB der Programmierer diese Verwaltung selbst realisieren.
Das erfolgt durch das Anlegen eines Speicherbelegungsplanes.
Aus diesem ist zu ersehen, welche Adresse des Speichers mit
welcher Art von Date und mit welchem Wert belegt ist

(—» Mikrorechner als Steuerrechner).

Auf der Ebene der problemorientierten Programmierung lber-
nimmt die.Speicherverwaltung ein Dienstprogramm (LADER,
COMPILER). Dieses Programm sichert die getrennte Abspeiche-
rung von Anweisungen und Befehlen eines Programms sowie be-
nétigte Zahlen und Zeichen. Dazu ist es erforderlich, daB sich
der Programmierer an Regeln h<, die in einer Sprachsyntax
festgelegt sind, damit das Dienstprogramm klar “"erkennt", um
welchen batentyp es sich handelt.

Man'kann also els Progremmierer (Anwender des Rechnérs) auf
dieser Ebene der Rechnerkommunikation von dem Modell aus-
gehen, das im Bild 7 gezeigt. ist.

- .] Speicherbereich zur
| Byte Programmablage

T - NE— Speicherbereich zur
- — —3+————- | Ablage von Zahlen und Zeichen

Bild 7: Prinzip der"Aufteilung des RAM-Bereiches

Dabei muB dem Nutzer nicht bekannt sein, unter welchen
Adressen die Bereiche innerhalb des gesamten Adressumfangs
liegen. Das Dienstprogramm regelt es so, daB

14

-.im Speicherbereich fiur Programme alle Anweisungen und
Befehle eines Programmes in geordneter Folge so .abgelegt
werden, daB dem ersten Befehl der zweite auf der nachst
hoheren Adresse folgt und so weiter bis alle Befehle ‘ab-
gelegt sind. Als Beispiel soll die Ablage eines kleinen
Programms (c = a: + b) im Programmspeicherbereich gezeigt
werden (Bild 8).

1.,Programm” in Befehisrolge-)4b/a e cles ,,Programms ”

problemorientierter beschreibung als Bitmuster m” Speicher
Sprache) (U880 Maschinencode)
Anweisungen Befehle 8yte- | Byte
: Adressel7 6 54|32 10
1. Anweisung | A = 3° ‘Lade A mit 3 100 00111110
' 101 0000|0011
2Anweisung | 8 = 4 Lade 8 mit & 102 00000110
: , : | 03 oooolo100
3 Anweisung C =A+8 | Addiere Amit8 |- 104 1000|0000
Transportiere 105 1017 oof1 111
das Ergebnis . .

.

Bild 8: Ablage der Anweisung c = a + b

Wie in Bild 8 zu sehen ist, werden fur einen Befehl oft

2 Byte zur Abspeicherung bendtigt. (Fiur andere, hier nicht
aufgeschrieben, auch 3 und 4‘ByteJ .

All das ist auf der Ebene der problemorientierten Betrachtung
aber unwichtig. Wichtig ist nur, daB das Ordnungsprinzip ein-
gehalten wird, wovon man sich Uberzeugen konnte.

Das Dienstprogramm regelt es weiterhin so, daB

- im Speicherbereich. fur Zahlen und Zeichen dié im Programm
geforderten - Speicherplétze - organisiert werden.
Speicherplétze werden in problemorientierten Sprachen
durch Buchstaben und Buchstabenfolgen sowie Buchstaben und
Ziffernfolgen, kurz durch Variable definiert. Wie die Defi-
nition im einzelnen zu erfolgen hat, ist in der problem-
orientierten Sprache festgelegt.

Beispiele fiur Variable sind: MAX A32 BETA ALPHA4
OTTO UsSW. .- ‘)

Die angegebenen Beispiele sind Namen fir variable (Speicher-
platze). Neben dem Namen muf nun noch der Typ der Variablen
bekannt sein. Man unterscheidet im wesentlichen zwischen

3 Crundtypen von variablen:

15

Numerische Variable:

Integervariable = variable, die Rur fir ganze Zahlen
. ‘stehen kann

Realvariable = Varfiable, die fir reelle Zahlen stehen
kann

Zeichenketten~- = Variable, die nur fir Zelchenfolgen (Buch-

variable staben ‘usw.) stehen kann, ;

Das Dienstprogramm reserviert nun im Speicherbereich fir
Zahlen und Zeichen fur jede Variable eine bestimmte Anzahl
von Bytés und sorgt fur das Ablegen des aktuellen Wertes
der Variablen (Bild 9). o

T Wert
Variablenname 1. 8yte .
Var/l'ab/em‘yp 2. Byte 2 Speicherplatz
. Byi‘es for den Wert.
‘. der Variablen ;
variablenname
variablentyp .
E Wert
/—‘/———’

Bild 9: Speicherplatz im RAM

Die Anzahl der Bytes fur den Wert der Variablen ist vom

Typ der Variablen und von der Programmiersprache sowie dem
speziellen'Diehstprogramm abhangig. Damit bestimmt die Soft-
-ware eines Rechners im wesentlichen den verwendbaren Zahlen-
bereich und die Rechengenauigkeit eines Rechners.
Beispielsweise kann durch die Software (Betriebssystem) fest -
gelegt sein, daB die im folgenden gezeigfe Organiéation rea-
lisiert wird.s ' T

1.2.3.2, Ablegen von ganzen Zahlen in Integerspeicherplatzen

Der Wert der ganzen Zahl wird direkt aus dem Dezimalbereich
in den Dualbereich uberfihrt (konvertiert) und in 2 Bytes
abgelegt. Damit stehen 16 Bit zur Verfiigung, um ganze Zahlen
abzdspeichern, wie im Bild 10 gezeigt.

16 -

. P

Variablennarne
\77/:/;'5 g 5% /: Integerspeicherplatz = & Byte
2. Werthyte _J

Bild 10: Integerspeicherplatz

Der Wert wird wie im Bild 11 gezeigt abgelegt.

Biytebezeichnung - . 2 Wertbyte 7 Wertbyte
Bitnummer : 716]5[«]3]2]1]o][7]6]5]«[3[2]7]0
20 2™ 2R 0 2" é"’z’é' 2726 25 2+ 22 2+ 2 20
festgelegter ., -
Stetllenwert s NOOF VO[O N GDS N~
' LR 2338385 Q¥en s
. :4) 2 ® F N~

Bild 11: Wertzuordnung im Integerspeicherplatz
LaBt man nur positive ganzefzahlen z,iu, so kénnte man mit
Hilfe dieser -2 Byte einen Zahlenbereich von

0 < ganze zahl < 65535
angeben, wobei die Zahl 0O alle Bitpositionen mit O und die
Zahl 65535 alle Bitpositionen mit 1 belegen.

Um posifiye und negative ganze Zahlen abspeichern zu kénnen,
wird folgendes festgelegt:
- Fur pqsifive zahlen: Abgelegt wird die dualkodierte De~
: ‘ zimalzahl aus dem Zahlenbereich
0 < ganze Zahl £ 32767 (Bild 12)

Stellenwer-

) : O +{N|OlD|F Q0| N[O DT N~
Coheit | 981218128 5|/NS|7|" -
Beispiel- | © |||~
2ahlen M= :
2.0 olololo|o|olololo|olololololalo
Z-z3b olololololololo|7|1|1]|0l0]|7 |7|0f
Z - 32767 lo|7|7l1(7 (277 |7 |7 |7 (1]7|7|7|1}

Bild 12: Ablegen von posifiven Zahlen

17

Eine positive Zahl wird vom Dienstprogramm in ihrer abge-
speicherten Dualform daran -erkannt, daB das Bit 215
Wert @ tragte.

den

- Fir negative Zahlen: Abgelegt wird der dualkodierte Wert
des Ausdrucks ’

A = 216 . | ganze zahl |
A = 65536 -| ganze Zzahl |

Die ganze Zahl muB dabei im Zahlenbereich von

-32768 £ ganze Zahl £ -1 1liegen

(Bild 13)
Sfe/lenwerﬁg-m +
et N[O N0 0|+ ouf© |+ o]
RN ER R
Nl |o| 3| N~

Beispiel- M=
zahlen
Z = -1 :
A =65535 V11|77 7|71 7| 7f7|1|7|1|7|7|?
Z = -230 .
A =65306 11171771 |7|7|7(0|0(0|7|7|0]|71|0O
Z = -32768
A = 32768 1|lo0lo|lolo|ojo|o|olo|ojal|o|o 0|0

Bild 13: Ablegen von negativen Zahlen

, |
Eine negative Zahl wird in ihrer abgespeicherten Dualform
daran-erkannt, da8 das Bit 215 den Wert 1 tragt.

Die hier gezeigte Form der‘ZahlendarstellunQ nennt man
"Zweierkomplementdarstellung”. Sie wird sehr héufig angewen-
det. '

Das angenbgmene Betriebssystem (und damit der Rechner) wiirde
also in bezug auf ganze Zahlen (Integervariable) einen
Zahlenbereich

-32768 £ ganze Zahlen £ 32767

gestatten.

1.2.3.3. Ablegen von reellen Zahlen in Realspeicherplatzen

Zum Aufschreiben von .reellen Zshlen sind 2 Formen vor-
""herrschend:

18

- Der Dezimalbruch, zum Beispiel: 528,27.
- Die halblogarithmische Darstellung, zum Beispiel: 5,2827.102.

Allgemein gilt fir die halblogarithmische Form die Darstellung

Z = Mantisse . loExponent

Die Darstellung des Wertes reeller Zahlen im Speicher des
Rechners geht von der halblogarithmischen Darstellung aus.
Dabei sind die Mantisse und der Exponent abgelegt. Beispiels-
weise so, daB 3 Byte fiur die Mantisse, 1 Byte fur das Vor-
zeichen der Mantisse und 1 Byte fir den Exponenten bereitge-
stellt werden.
—'—_/_\—4

Variablenname
REAL

7. Mantissenbyte Realspeicherplatz
2 " Bild 14:

3. . . =7 Byte Realspeicher-
Vorzeichen der |. platz im RAM

Mantisse
Exponent.

L

Das Ablegen des aktuellen Wertes einer Realvariablen er-
"folgt dabei nach folgendem Algorithmus:

1. Herstellung der halblogarithmischen Schreibweise in der
Form, daB das Komma der Mantisse vor der ersten Ziffer
steht (Normalisierung), die groBer als Null ist.

Beispiele: 314,73 0,314473.103

31,473.10% 0,31473.10°

2. BCD-Kodierung der Mantissenziffern. -Da fur jede Ziffer

4 Bit bendtigt werden, konnen in 3 Byte nur insgesamt
6 Ziffern untergebracht werden.’

19

-Ziffern BCD-Kode Beispiel;\

. 8 4 2 1
o] 0O 0o o 1. Mantissenbyte: Ziffern 3 und .1
1 0 0 0 1 00110001
2 0O 0 1 o 4 .
3 0 0 1 1
4 0 1 0 0 2. Mantissenbyte: Ziffern 4 und 7
5 0 1 0 1 01000111
6 0 1 1 0
7 01 1 1 v)
8 i- 0 0 o 3. Mantissenbyte: Ziffern 3 und O
9 1 0 0 1 ' ‘ 00110000

bie maiimallmﬁgliche Mantisse ist damit 0.999999.

3..Kodierung des Vorzeichens der Mantisse.
"Plus. = 00000000
. Minus = 0000000 1

4. Behandlung des Expongnten} Abgelegt wird der dualkodierte
Wert des Ausdrucks:
' A = Exponent + 128
Der maximal darstellbare Exponent ergibt sich aus:
Exponent = A ‘- 128 =255 - 128 = 127

Dgr,minimél'darstellbare Exponent ergibt sich aus:
Exponent =.Amin.' 12§ = 0 - 128 = -128

Demnach kdénnen folgende Exponenten dargeéteilt werden:

= =128 £ ganze zahl £ 127

I angenommenen Beispiel wird dér Exponent = 3 -dargestellt als

A =3 #.128 = 131 1. 0 0 00 0 1 1

Die ‘Anweisung Z ='314,73 wirde vom Dienstprogramm wie folgt
erledigt werden:

- Kodierung des Namen;lder variablen (z. B. nach ASCII)
~ Kodierung des Typs .der Variablen
- Abarbeitung des Algorithmus zur Wertbehandlung

Ablegen im Speicherbereich fir Zahlen und Zeichen
(siehe Bild 15)

20

~
Node forZ Variablenname Z-
HWode fur REAL Variablentyp REAL
00110001 Mantissenziffern 3 und 1
01000111 : n L und 7
00110000 A 3 und 0
00000000 Vorzeichen (+)-der Mantisse
10000011 Exponent 3
f\/_—\

Diese Form der internen Darstellung von Zahlen nennt man
Gleitkommadarstellung. -

Das angenommene Betriebssystem (und damit der Rechner) ver-
arbeitet reelle Zahlen im Zahlenbereich

-0.999999 . 10?7 £ reelle zahl £ 0.999999 . 10%%7

Das kleinste Intervall, das dargestellt werden kann, ist
-128 ‘ ‘
10 .

\

1.2.3.4. Ablegen von Zeichen in Zeichenkettenspeicherplatzen

Das Ablegen von Zeicheh_erfolgt so, -daB eine Kodierung vom
angegebénen Zeichen in ein durch. den Kode festgeiegtes Bit~-
muster der Breite 8 Bit erfolgt. In einem' Zeichenkettenspeicher-
platz wird meistens eine Folge von Zeichen abgelegt.

‘OTTO = WIR . WERDEN .. BASIC .. LERNEN

(OTTO ist der Zeichénketfenvariablenname} . ist das Zeichen.
fur Leerzeichen). Die maximale L&nge der Zeichenkette ist
im Betriebssystem festgelegt.

Beispiele dafur sind 80 Bytes und 120 Bytes fur den "Wert"
der Zeichenkettenvariable. Bild 16 zeigt ein Beispiel.

21

w =

Hode fur OTTO variablenname
UETTE 1 Varmablentypo

HUode for w 1. Wertbyte

“ W J X "

] v R .

» L] o . °

N " W 1 .

" ‘ Zeichen-

) ,“:: kettenspeicherplatz auch

STRING - speicherplatz
r genannt
= 82 Byte

.

22. Wertbyte
23 Wertbyte

CQT

®
Y SN

S

XMm2ymr

80. Wertbyte

Bild 16: Ablegen von Zeichenkettenvariablen

AbschlieBend soll zum Ablegen von Zahlen und Zeichen im RAM
noch ausgefihrt werden, daB die problemorientierten Program-
miersprachen zwei Méglichkeiten zeigen, den Typ der Variablen
festzulegen:
1. Festlegung des Typs durch Vereinbarungen zu Beginn des
Programms hinter festgelegten Kodeworten’
Beispiele: REAL A, BETA, ... , MAX

INTEGER I, MIN, .. , K

STRING OTTO, ... , X, Z

(REAL 2 reelle numerische Variable; INTEGER £ ganze numerische

Variable; STRING £ Zeichenkettenvariable)

2. Festlegung des Typs durch Kennzeichnung nach dem vari-
ablennamen.
Beispiele: Name ohne Kennzeichen = Real
Name mit Kennung % Integer
Name mit Kennung ¥ (string) Zeichenkette

u

22

1.2.4. Verarbeitungseinheit

Der Name dieser Baugruppe deutet schon auf die Aufgabe hin.
Die Verarbeitungseinheit organisiert und realisiert

- die Steuerung der Programmabarbeitung

- die Verarbeitung der Daten.

Geratetechnischer Kern der Verarbeitungseinheit ist ein Mikro-
prozessor, der mit seiner Hard- und Softwarestruktur die
Steuerung und Verarbeitung bestimmt.

1.2.4.1. Steuerung der Programmabarbeitung

Die Steuerung der Programmabarbeitung geht davon aus, daR das
Dienstprogramm zur Speicherverwaltung das Anwenderprogramm im
Maschinenkode auf hintereinanderliegende Bytes ablegt.

Die Programmabarbeitung erfolgt durch ein Steuerprogramm, das

mit zwel Registern zusammenarbeitet.

- Dem Befehlszeiger (Programmcounter); Ein 16 Bit Register,
damit eine vollsténdige 16 Bit lange Adresse des Speichérs
darin Platz hat.

- Dem Befehlsregister, in dem der Befehl zur Auswertung
zwischengespeichert wird.

Das Steuerprogramm laBt sich vereinfacht durch folgende
Schleife beschreiben:

1. Nachdem in den Programmcounter (PC) die Anfangsadresse
des Programmg, das im Speicher steht, abgelegt wurde,
tritt folgender Automatismus in Kraft:

2., Das Bitmuster des PC wird auf den AdreBbus gegeben und
damit die Speicherzelle mit dem Befehl des Programms im
Speicher gefunden.

3. Der Befehl (das ist der Inhalt der Speicherzelle) wird
uber den Datenbus in das Befehlsregister transportiert.

4. Der Inhalt des PC wird um 1,2,3 oder 4 erhdoht, je nachdem
der Befehl 1,2,3 oder 4 Bytes im Speicher beansprucht
hatte, somit zeigt der Zeiger auf die Adresse des nichsten
Befehls.

5. Auswertung des Befehls, der sich im Befehlsregister be-
findet.

6. Ausfihrung des Befehls.
7. Sprung zu 2.

Durch die fortlaufende Erhohung des Inhalts des Programm-
counters (PC) bei jedem Schleifendurchlauf wird gesichert,

23

daB nacheinander alle Befehle des Programms im Befehlsregister
ausgewertet und ausgefihrt werden, bis ein STOP-Befehl ausge-
wertet und ausgefihrt wird,

Auswertung des Befehls

Die Auswertung eines Befehls ist im wesentlichen eine Deko-
dierung. Ausgangspunkt ist das Befehlsregister. Durch die
Abarbeitung der Schleife des Steuerprogramms wird dieses Re-
gister mit dem aktuellen Befehl geladen. Ausgangsseitig wird
das Bitmuster des Registers den Dekodern Uber ein Ausgabetor
zugeflhrt. Bild 17 zeigt das Logikmodell.

o))
3
=
‘(‘)—'— Dekoder fur | e O
[V — .
E__‘T :E[& i 8"" Operationsteil . g
L 4 . R
des Befehls 8
a] | &
iy :
Garj?
e
Qu 3
,_Ej ¢,| Dekoder fur 0
AdreBter! . 8
o des Befehls .
0s (Operarnden- | e T
& M adresse) AN
o{C
Q7 F
2 Befents-TE
Q -Ybernahme
{j freigabe Dekodierung
Y Operationsdekodierung
% AdreBdekodierung

Bild 17: Logikmodell zur Befehlsauswertung

Dabei ist zu beachten, daB ein Befehl immer aus zwei prin-
zipiellen Teilen besteht. Der eine Teil gibt an, was zu reali-

24

sieren ist (Operation), der zweite Teil mit wem (Adresse,
Operand) etwas zu geschehen hat.

Deshalb miussen diese beiden Teile auch dekodiert werden.
Die Anweisung ¢ = @ + b hat beispielsweise aus dieser Sicht
- den Operationsteil - Addition

- den AdreBteil - a, b, c, dabei sind a und b Operan-
denadressen und c die Ziel-(Ergebnis-)
adresse.

Einen Rechner, der diese Befehlsstruktur intern so verarbeiten
kann, wirde man DreiadreBmaschine nennen.

Moderne Rechnerkonzepte realisieren jedoch vorwiegend das
EinadreBprinzip. Dieses Rechnerkonzept basiert im wesentlichen
auf einem speziellen Register, genannt Akkumulator. Der Sinn
dieses speziellen Registers besteht darin, daB sich viele Ope-
rationen immer direkt auf dieses Register beziehen und vor der
Operation der erste Operand und nach der Operation das Resul-
tat dort gespeichert wird. Unter dieser Voraussetzung kann die
"3~-AdreBanweisung" ¢ = a + b wie folgt zerlegt werden:

1. Einspeichern a - Der Inhalt des Speicherplatzes mit der

Adresse a wird in den Akkumulator umge-
speichert.

2. Addiere b - Zum Inhalt des Akkumulators wird der
Inhalt des Speicherplatzes mit der Adres-
se b addiert. Das Resultat dieser Addi-
tion ist der neue Inhalt des Akkumula-
tors.

3. Ausspeichern ¢ - Der Inhalt des Akkumulators wird in den
Speicherplatz mit der Adresse c umge-
speichert.

Jeder der drei neuen Befehle hat die Struktur: Operationsteil

und AdreBteil mit einer Adresse —» EinadreBbefehle.

Derartige Grundbefehle sind in Maschinenbefehlslisten zusammen-

gefaBt dargestellt und dienen dem Programmierer zur Program-

mierung auf der Ebene der Maschinenprogrammierung (—» Ma-
schinenkode).

1.2.4.2. Verarbeitung der Daten

Die Verarbeitung der Daten erfolgt geratetechnisch im Mikro-
prozessor in der Arithmetisch-Logischen-Einheit (ALU- von
Arithmetic-Logic-Unit).

25

Vorwiegend realisieren moderne Mikroprozessoren in ihren ALUs
hardwareseitig (z. B. der Mikroprozessor U 880)

- die duale Addition und Subtraktion zweier Bytes

- die bitweise logische Verknipfung zweier Bytes (AND,
OR, XOR)

- den GroéBenvergleich zweier Bytes (<, = , >)

- die Verschiebung des Bitmusters im Byte eines Registers
oder einer Speicherzelle.

Das ist nicht viel, aber ausreichend, Deutlich ist an dieser
Stelle der Ausfihrungen der Stellenwert der Software zu er-
kennen. Denn alle ilber diese hardwareseitig zu realisierenden
Verknipfungen hinausgehenden Winsche der Anwender von Rech-
nern sind in Programmen zu realisieren. Das beginnt schon bei
der einfachen Addition zweier ganzer Zahlen, wenn jede 2 Byte-
Breite aufweist. Schon dafir muB es ein STANDARD-Programm ge-
ben. STANDARDs werden weiter benétigt, um die arithmetische
Verknipfung von Gleitkommazahlen zu realisieren (Addition,
Multiplikation, Division, Potenzieren), um Funktionszuwei-
sungen, z, B. sin, zu realisieren und weiteres mehr, Die System-
software, deren Bestandteil die STANDARDs sind, macht den
Rechner erst zu dem, als den der Nichteingeweihte ihn von
vornherein ansieht.

1.2.5. Ein-Ausgabe-Tore

Die Ein-Ausgabe-Tore realisieren die hardwarem&Bige Kopplung
der Zentraleinheit mit der Gerédtetechnik der 1. Peripherie.
Im wesentlichen sind das

- Tastaturen

-~ Bildschirme

- Drucker

- externe Speicher (Kassettenmagnetbandspeicher,
Floppy-Disk~Speicher).

Aber auch die direkte Koppldng der Zentraleinheit an einen

technisch-technologischen ProzeB zum Datenempfang und Daten-

senden kann Uber die Ein-Ausgabe-Tore gesichert werden.

Gerdtetechnisch haben sich 3 wesentliche Typen von Ein-Aus-

gabe-Tore international durchgesetzt.

26

- Das Parallele-Ein-Ausgabetor (Parallel-Input-Qutput), abge-
kirzt mit PIO.

- Das Serielle-Ein-Ausgabetor (Serial-Input-Output), abge-
kdrzt mit SIO.

- Der Zadhler-Zeitgeber-Baustein (Counter-Timer-Circuit),
abgekiirzt mit CTC.

Die Bezeichnung "Parallel” und "Seriell" bei den Toren PIO und
SIO beziehen sich auf die Art des Datenaustausches zwischen
der Zentraleinheit und dem peripheren Gerat (Bild 18).

Das Pio gestattet die gleichzeitige (geschlossene) Ubergabe
eines Datenbyte von 8 Bit. Wahrend das SIO nur 1 Bit zum
Ubergabezeitpunkt t, ubergeben kann, also 1 Byte nur als
8-Bit~Folge Ubertragen kann.

D Y72 7
Steuersignale, 0 Do Y/ 7N TN LN L -—
S ¢ 5| Z —
'O & s 7774 77 —
-~
Q Sa g g PN 777170074 —
+ D1 g IYY, —
g 7777 774777 —
* EE Takt 1 2 3 4 15 ... 2
]] .
<158 . b) Bit-parallele ; Byte -serielle
Clod)
| &§ . Ubertragung von Daten einer
5229 RJO .
Cl L 04
RS 2
[N
& 9 g'u; *Steuersighale " | | | |
N)
e [w) Datenleitung ak, 77
O |zur Ubertragung <
0 |eimer Bitfolce Q5 fawt| 1 1213 [wls ... ¢
8
C) Prinzip der |
I Bit-seriellen Uberfragung von
a) Schaltungsprinzip PJ70,530 Daten einer SIO

Bild 18: Parallele und serielle Datenubertragung

Die Tore PIO und SIO sind programmierbar. Das heiBt, die
Tore sind auf den Anwendungsfall spezifizierbar. Das be-
trifft insbesondere solche Fragen, wie

. Soll der spezielle Baustein als Ein- oder als Ausga-
betor arbeiten?

27

. Darf der Baustein bei Datenangebot des peripheren Gerdtes
den Programmablauf der Zentraleinheit unterbrechen?
(Interrupterlaubnis erteilen oder nicht).

Die Dateniibertragung zwischen dem Tor (PIO oder SIO) und dem
peripheren Ger&t wird in einem Steuersignal (Handshaking) ge-
regelt,

Datenausgabe: - ?%8 fordert Gerdte zur Datenibernahme

Ger#ét meldet die fertige Dateniibernahme
Dateneingabe: - Geradt fordert gig zur Datenibernahme auf
- gig sperrt weitere Eingabe bis interner

Datenpuffer (Speicher der SIO, PIO) leer ist,

Der Zahler-Zeitgeber-Baustein (CTC)

Der Baustein kann wahlweise als Zihler oder Zeitgeber arbeiten.
Als Zihler programmiert gestattet er Impulse peripherer Ein-
richtungen aufzunehmen und mit einem einstellbaren Sollwert
(Impulsanzahl) zu vergleichen. Beim Erreichen des Sollwertes

wird ein Signal en die Verarbeitungseinheit abgegeben, das
programmtechnisch ausgewertet werden kann,

Als Zeitgeber programmiert gibt der CTC-Baustein an die
angeschlossene periphere Einheit einen Steuerimpuls ab, wenn
die eingestellte Solldifferenzzeit vergangen ist.

Kontrollfragen und Aufgaben

K1. Welche Speichertypen kennen Sie? Wodurch unterscheiden
sich diese?

K2, Welchen Zusammenhang charakterisieren die Begriffe
Speicherplatz und Variable?

K3, Welche Méglichkeiten der Kapazitatsangabe fiur Speicher
kennen Sie? Wie ist ihr Zusammenhang?

K4, Welche Arten der Kennzeichnung von Variablen kennen Sie?

28

2. Grundlagen der Algorithmierung

2.1. Aufgabenstellung - lésender Algorithmus - Programm

Eine einfache Aufgabenstellung fihrt zu den Fragen, die in
diesem Abschnitt behandelt werden.

Aufgabe: Von zwei reellen Zahlen soll die Summe gebildet und
der Betrag der Summe auf dem Bildschirm angezeigt
werden.

Es ist gar kein Problem, wenn man vergessen hat, was der Be-
trag bedeutete. In dem hier betrachteten Fall wére dieser Zu-
stand sogar winschenswert, denn dann befinden siche Rechner
und Mensch in bezug auf die Losung dieser konkreten Aufgabe
ungefahr auf einer Startlinie. Der Mensch tut nun genau das,
was er spater dem Rechner zu "sagen" hat:

- Er geht in die Handbibliothek, schlagt nach und liest:

"Der Betrag einer reellen Zahl x ist gleich x, wenn x
groBer oder gleich Null ist. Der Betrag von x ist gleich
-x, wenn x kleiner als Null ist."”

- Er Uberlegt nun, was praktisch zu tun ist und findet:

"Die reelle Zahl x habe ich zu priufen; ist sie nicht negativ
(gréBer oder gleich Null), so ist die Zahl x schon der Be-
trag. Ist sie negativ (kleiner als Null), so muB ich die
Zahl x mit minus Eins multiplizieren.

Das Ergebnis der Multiplikation ist dann der Betrag der

Zahl x.

- Er probiert diese Berechnungsvorschrift an Beispielen aus
und bekommt die Bestatigung dafur, daB das Ergebnis unab-
hdngig von der Wahl der reellen Zahlen richtig wird.

Was gefunden wurde, ist ein Algorithmus. Verallgemeinert kann
man sagen: -

Ein Algorithmus ist ein geordneter Komplex von Regeln, nach
denen EingabegroéBen (reelle Zahl) in gewinschte Ausgabegréfen
(Betrag der Zahl) zu “uberfiuhren" sind. Wichtig ist dabei, daB
der geordnete Komplex von Regeln nicht nur fir ein Beispiel
der EingabegroéBen zum Ergebnis fihrt, sondern fir eine be-
stimmte Klasse von EingabegréBen (im Beispiel sind es alle
reellen Zahlen) gilt.

Der Algorithmus soll nun noch exakt geordnet aufgeschrieben
werden. Die Ordnung soll dabei so exakt sein, daB ein Mensch
den Betrag errechnet, ohne das er iberhaupt weiB, was der Be-~
trag ist.

29

In der nachfolgend angegebenen Anweisungsfolge ist zum Bei-
spiel vom Betrag bilden keine Rede mehr. Trotzdem schreibt
der den Algorithmus Ausfihrende den Betrag von x auf das
Papier:

1. Wenn x groBer oder gleich Null ist, so bilde y = x,
Wenn x kleiner als Null ist, so bilde y = =-x

2. Schreibe y auf ein Blatt Papier

3. Stopp

Der Algorithmus ist nun in bezug auf die gegebene Aufgaben-
stellung dahingehend zu erweitern, daB er die konkrete Aufga-
be lost. Die Erweiterung besteht darin, daB von zwei reellen
Zahlen erst die Summe zu bilden ist. Von dieser Summe ist dann
der Betrag zu bilden. Damit moglichst der gefundene Algorith-
mus zur Betragsbildung verwendet werden kann, wird fur die
Summe der Name x verwendet. Der losende Algorithmus kann

dann wie folgt aufgeschrieben werden:

1. Nimm die 1. Zahl

2. Nimm die 2. Zahl

3. Bilde x = 1. Zahl + 2. Zahl

4, Wenn x groBer oder gleich Null ist, so ist y gleich x,
wenn x kleiner als Null ist, so ist y = =x

5. Schreibe y auf ein Blatt Papier

6. Stopp

Im Wissen darum, daB der Algorithmus von einem Rechner be-
arbeitet werden soll, ist der "Ausdruck" dieser Sachlage
anzupassen. Man schreibt deshalb kirzer:

1. Eingabe von a (a: variable fur die 1. Zahl)
2. Eingabe von b (b: variable fur die 2. Zahl)
3. x =a+b

4. Wenn x2 O ist, dann y = x, anderenfalls y = -x

5. Ausgabe von y

6. Stopp

Sehr anschaulich kann der Algorithmus grafisch dargestellt
werden. Als Beispiel ist in Bild 19 die grafische Darstellung
entsprechend der TGL 22451 nach der Programmlinienmethode
gezeigt.

30

In bezug auf die Abarbeitung der An-
(START) weisungsfolge gilt:

- FluBlinie von oben nach unten
T Eingabe:a abarbeiten oder
. - bei Verzweigung in Pfeilrichtung.
1 .Eingabe: b
L Das Zeichen ":=" bedeutet “ergibt
T X ~-Q*b sich aus". Es weist darauf hin, daB
T x 2p2 z. B.. die Anweisung
. ia X := a + b aus zwei Teilen besteht:
nein 4 :
1. Teil: Bildung der Summe von
= - 1 = a und b
TY="% Yi=X 2. Teil: Zuweisung des Ergebnisses
zur Variable x.
4+ Ausgabe:y

(sTOP)

Bild 19: Grafische Darstellung des
Algorithmus Betragsbildung
einer Summe

Der im Bild 19 dargestellte Algorithmus 16st unsere Aufgaben-
stellung so, daB die einzugebende 1. Zahl der Variablen a und
die 2. Zahl der variablen b zugewiesen wird. Fir den Zahlen-
bereich gelten keine weiteren Einschrénkungen. Es milssen aber
reelle Zahlen sein. Die Variablen werden nach den angegebenen
Regeln “behandelt", bis der Algorithmus gestoppt wird.

Zur vollsténdigen Lésung der Aufgabenstellung soll dieser
Algorithmus nun in einem Rechner (Rechnerarbeitsplatz) imple-
mentiert werden. Implementieren heiBt "hineinpflanzen",
"anpassen und verankern", aber auch "bereitstellen”. Die
Implementierung erfolgt durch das Aufschreiben und Eingeben
eines Programms. .

Das Programm soll in der problemorientierten Sprache BASIC
aufgeschrieben werden. Folgende Anweisungsfolge entspricht
dieser Forderung:

19 INPUT A

2@ INPUT B

39X =A +8B

49 IF X 2 @ THEN Y = X ELSE Y = -X
50 PRINT Y

6@ STOP

31

Hinweis: INPUT bedeutet Eingabe

IF " wenn
THEN . dann
ELSE " sonst
PRINT " Ausgabe

Vefgleicht man den Algorithmus mit dem Programm, so wird deut-

lich, daB

- das Programm den Algorithmus als wesentliches Element ent-
halt und in seiner Struktur realisiert,

- das Aufschreiben des Algorithmus in Form eines Programms
jedoch an Regeln der Sprache gebunden ist.

Die im Beispiel verwendeten BASIC-Regeln sind:

- Angabe der Zeilennummer. Sie muB eine positive ganze Zahl
sein. DaB im Beispiel die Zeilennummern in 10er Schritten
wachsen, ist Ublich aber nicht notwendig (Vorteilhaft bei
Einfigungen),

- Verwendung von festgelegten Symbolen:

INPUT, IF, THEN, ELSE, PRINT, STOP,

- Verwendung von nur groBen Buchstaben fir variable:
A, B, X, Y.

Die wesentliche Einschrankung erfahrt der fir reelle Zahlen
allgemeine Algorithmus jedoch durch die im Interpreter fest-
geschriebene Verarbeitungsbreite der reellen Zahlen. Bei der
Realisierung des dargestellten Programms legt der Interpreter
die konkreten Zahlen in Speicherplétzen ab, die die Namen

A, B, X, Y tragen.

Obwohl alle 4 Speicherplatze unterschiedliche Adressen im
Speicher haben, so haben sie doch gemeinsam, daB in jedem

Speicherplatz nur Zahlen im Bereich von
+0.999999 - 10127

gespeichert werden koénnen. Die spezielle Organisation der
Abspeicherung und Verarbeitung von Zahlen durch den Interpre-
ter schrankt die Anwendung des Programmes ein

-~ auf den Zahlenbereich
- und auf die Genauigkeit von 6 Mantissenstellen.

32

Der dargestellte Sachverhalt tritt bei jeder Implementierung
eines Algorithmus in einem konkreten Rechner auf. Er ist
objektiver Natur. Wie stark die Einschrankungen sind, be-
ziehungsweise wie sie den Nutzer stdren, hangt vom Compiler,
vom Interpreter und von der Syntax der problemorientierten
Sprache ab.

Die Bearbeitung einer Aufgabenstellung mit dem Rechner erfor-
dert, so wurde gezeigt, eine Vorbehandlung. Diese Vorbehand-
lung gliedert sich im wesentlichen in

- die Analyse der Aufgabenstellung: Ziel der Analyse ist es,
wesentliche Teilkomplexe der Aufgabe aufzufinden, die in
ihrer Gesamtheit die Aufgabe bestimmen.

- die Algorithmierung: Ziel der Algorithmierung ist die Er-
arbeitung von Algorithmen zur Lésung der Teilkomplexe und
die Darstellung des lisenden Gesemtalgorithmus.

- die Programmierung: Ziel der Programmierung ist die Imple-
mentierung des losenden Algorithmus in einem speziellen
Rechner.

Die zentrale Aufgabe des Bearbeiters der Aufgabenstellung be-
steht zweifellos im Erarbeiten und Bereitstellen des ldsenden
Algorithmus. In den weiteren Ausfithrungen wird deshalb die
Algorithmierung im Mittelpunkt stehen.

2.2, Darstellungsformen von Algorithmen

Zur Darstellung von Algorithmen haben sich im wesentlichen
bewshrt:

- Die sprachliche Darstellung mit lebenden und kinstlichen
Sprachen, wie zum Beispiel problemorientierten Rechnerspra-
chen und Pseudosprache.

- Die grafische Darstellung in Form von Programmablaufplénen
und Struktogrammen.

Im folgenden werden diese Darstellungsformen fur das Beispiel
der Summen- und Betragsbildung im Komplex gezeigt.

33

- sprachliche Darstellung:
. mit einer lebenden Sprache

1. Eingabe von a
2. Eingabe von b

3. x

4. Wenn x 2 O ist, dann y = x

=a +b

ansonsten y = =X

5. Ausgabe von y
6. Stopp

. mit Pseudocode:

SEQ
Eingabe: a
Eingabe: b
x=a+b

IF (x 2 0) THEN Y = X ELSE Y

END

IF

Ausgabe: y
ENDSEQ

SEQ

. mit BASIC:
19 INPUT A
29 INPUT B
3PX=A+8B

49 IF X2 P THEN Y =
ELSE Y = -X

5@ PRINT Y
6@ STOP

[M

Symbol fiur eine Folge, (Se~-
quenz) von Anweisungen

=X

"

-~ grafische Darstellung mit Programmablaufpléanen (PAP) nach
TGL 22451

. Programmlinienmethode

(START)

-
T

3
T

"
T

Eingabe: a
Eingabe: b
+ x :=qa+b
X 202

i
=4

TYy:=-X

..Y:=X

(sToP)

Bild 20: PAP-Programmlinien-

methode

T Ausgabe:y

34

. Kastchenmethode

START

Bild 21: PAP-Késtchenmethode

X

- grafische Darstellung in Form eines Struktogrammes

Eingabe : a,b
Bild 22:
Xi=a+b Struktogramm
2 -
nein ~X29 Ja
yi=-¥ y:=x
Ausgabe : y

Die einzelnen Darstellungsformen von Algorithmen ergénzen
sich in ihren Vorteilen. So findet man sie teilweise gleich-
berechtigt vor. Einige Vor- und Nachteile sollen zeigen, daB
alle Darstellungsformen ihre Berechtigung haben.

Darstellungsform

Vorteil

Nachteil

lebende Sprache

Ohne neues Lernen

von Symbolen oder

Sprachen verstand-
lich

Aufwendige Dar-
stellung bei kom-
plizierteren Al-
gorithmen. Leben-
dige Sprachen ha-
ben oft zwei- oder
mehrdeutige Sprach-
elemente

problemorientierte
Sprache (POS)

Kurze, uUbliche Form
des Aufschreibens
von Anweisungen in
Zeilen,

Kann gleichzeitig
zur Programmierung
verwendet werden

Lernen der Sprache
notwendig. Ein-
schrénkung des
Gultigkeitsberei-
ches des Algorith-
mus

(Genauigkeit, Zah-
lenbereich usw.),
Einschrankung der
Namenwahl far vari-
able

PAP.in Form der
Programmlinien-
methode

Ubersichtlich,
anderungsfreundlich,
Variablen durfen
beliebige Namen
tragen

Neue Symbole mis-
sen gelernt werden

Pseudosprache

Kurze, ubliche Form
des Aufschreibens
von Anweisungen in
Zeilen,

keine Einschrankun-
gen wie bei POS

Lernen der Sprache
notwendig. Kann
nicht auf einem
Rechner direkt im-
plementiert werden

35.

Darstellungsform Vorteil Nachteil

Struktogramm Vereinigung wesent- Wenig &nderungs-
licher Vorteile der freundlich
Sprachbeschreibung
in bezug auf
- Ubersichtlichkeit

- Zeilendarstellung
- beliebige Namen
fur variable

In der praktischen Programmierarbeit ist der Trend zu erkennen,
daB

im Entwurfstadium der Algorithmierung die grafische Darstellung
mittels Programmablaufplanen und die sprach-
liche Beschreibung mittels Pseudo- oder pro-
blemorientierter Sprache erfolgt und

bei der

Dokumentation von Algorithmen die Darstellung der Algorith-

men durch Struktogramme immer héufiger Anwen-
dung findet.

2.3. Darstellung von Algorithmen mittels PAP (Programmlinien-
methode

Im weiteren wird bei der Darstellung der Algorithmen der Pro-
grammablaufplan (PAP) nach der Programmlinienmethode und die
Sprachbeschreibung mittels der problemorientierten Programmier-
sprache BASIC verwendet. Dazu sind in Bild 23 wesentliche Sinn-
bilder als Auszug aus der TGL 22451 dargestellt.

Fir die Darstellung der Variablen, Anweisungen und Zeichen im
PAP wird vereinbart:

- Namen und Variablen:

. Alle Bezeichnungen, die in der mathematischen Beschreibung
iblich sind und alle Bezeichnungen, die in der Umgangs-
sprache gebrauchlich sind, werden als Namen zugelassen.
Beispiele: Max als Variablenname fir einen Maximalwert

MIN als Variablenname flir einen Minimalwert
&,B als Vvariablenname flUr einen Winkel usw.

o

. Jede Veranderung in der Bezeichnung bedeutete eine andere
variable

Beispiele: Max ist nicht die Variable max oder MAX, son-
dern das sind 3 unterschiedliche Variablen.

36

- Anweisungen:
. Abkirzungen: “"E:" - bedeutet Eingabe; "A:" - bedeutet Aus-
gabe
“NL:" - bedeutet "neue Zeile" bei der Ausgabe

. Alle anderen Anweisungen werden als Frage oder Ergibt-
anweisung geschrieben.
Beispiele: Ergibtanweisung: x' t= Al + Max

Frage : K>0? (Alpha groBer Null?)

. Sollen weitere Anweisungen Verwendung finden, so sind sie

im PAP zu erléutern.
- Zeichen
Erlaubt sind alle mathematisch Ublichen Zeichen, wie
+y =, [/, +, 8in, arctan, », ¢, ; , § u.a.

37

- Sinnbilder und ihre Bedeutung:‘

Sinnbild Bezeichnung und Erlduterung

. FluBlinie mit Zuordnung einer Anweisung. Die An -
X=A+B | \eisung ist rechts neben die Fluplinic zu schrei -

ben.

Start - und Stopzeichen

STOP

b Erlduterung

Nach einem parallel zur FluBlinie verlaufendem
Strich konnen Erlduterungen gegeben werden.

a Zusammenfshren (a) und Verzweigen (b)
i ..
b von FluBlinien

+X 202 Kennzeichnung der Programmverzweigung
N Ja naoch einer Vergleichsoperation
nein
Zusammenfihren mehrerer FluBlinien von
'—l links und rechts

Zeichenkonnektoren zur Unterbrechung und
Fortsetzung der Programmlinie aus zeichen-
o technischen Grinden.

IE Symbol fir einen Algorithmus; der komplett

" in einen anderen integriert wird.

Banbid Unterprogramm ; geschlossener Programm-
: teil. EundA sind Eingangs- und Ausgangs-
A

variable. Rechts neben das Unterprogramm
ist der Name zu schreiben .

Bild 23: Sinnbilder zur Darstellung von Programmablaufpléanen
nach der Programmlinienmethode (Auszug aus TGL 22451)

38

2.4. Darstellung von Algorithmen mit der problemorientierten
Programmiersprache BASIC

(BASIC = Beginners All-purpose Symbolic Instruction Code)
Bei der Darstellung der Algorithmen im Programmablaufplan
gelten keine wesentlichen Einschrankungen in bezug auf die Ver-
wendung, z. B. von Namen und mathematischen Symbolen und Zei-
chen. Das ist bei der Verwendung einer problemorientierten
Sprache anders. Hier darf man nur das zur Beschreibung ver-
wenden, was in der Sprache definiert ist. Man kdnnte nun so
vorgehen, daB der gesamt. Sprachumfang von BASIC (etwa des
Standard-BASIC) angegeben wird, um dann danach zu handeln.
Dieser Weg ist jedoch abschreckend und fihrt nur bei denen
zum Ziel, die schon eine Programmiersprache beherrschen. Fir
den Lernenden ist es wertvoller, mit einem gewissen "Grund-
wortschaft" zu beginnen und diesen schrittweise auszubauen.
So soll verfahren werden.,

2.,4.1. Variablenbezeichnung

- Namen von einfachen Variablen
Der Name einer Variablen wird aus einem groBen Buchstaben
des lateinischen Alphabets oder aus der Folgé eines solchen
Buchstabens und einer Dezimalziffer 0,1, ...,9 gebildet.
Beispiele: A; B1; Z9; X; Y3; M@; 03
(Um die Ziffer O eindeutig vom Buchstaben O zu unterschei-
den, schreibt man die Ziffer O als @).

- Typen von einfachen Variablen
Die Beispiele der Variablennamen A; Bl; Z9; usw. bezeichnen
alle Variablen vom Typ “"real" (reelle-variable, im Sinne
von Bereich der reellen Zahlen)

Tragt also der Name der Variable keine weitere "Kennung"
so legt der BASIC-Interpreter fiir diese Variable einen
Speicherplatz an, .

. der Betrage von Zahler im Bereich von 0,999999 . 107128

bis 0,999999 . 10127 aufnehmen kann. Man nennt diese Va-
riablen auch “Realvariable”.

(Beim KC 85/2-BASIC gilt:

9,40396 . 10-39 £1z] £ 1,70141.. 108

39

Hinter dem Variablennamen kann auch'eine Kennung angegeben
werden. Schrezbt man z. B.:

A% (A-Prozentzelchen), s0 legt der BASIC-Inﬁerpreter far
diese’ Vafiable einen Speicherplatz-an, der nur ganze zahlen
im Bereich von -32768 bis +32767 aufnehmen kann. Man nennt
diese Variablen "Integervariable“ ’
(Beim-KC 85/2 gilt -999999 < <999999)

Die Variablen A und A% dirfen gemeinsam in einem Proaramm
auftreten. ES ‘sind zwei unterschiedllche Variable, und sie
bazeichnen unterschledliche Speicherplatze.

Hinter dem Varlablennamen kann auch eine:Kennung.mit dam
Zeichenﬁ angegeben werden. (Beim KC 85/2-BASIC gilt: Kennung
1st das Dollar-Zexchen $)

Der BASIC-Interpreter legt fir diese Variable elnen Speicher-
platz an, der eine "ZEICHENFOLGE“ aufnehmen kann.’

In den Spelcherplat; ist standardmaslg,fur 80 Zeichen Platz.
Eine solche Variable nennt man'“Zeichenkéttehvariable" oder
“Stringvariable". Braucht ‘man weniger oder will man mehr.
Platz, so kann man mit der Anweisung

Zeilennummer DIM Variablenname = ganze Zahl, .

(Beim KC 85/2—BASIC nicht .méglich) ‘den Speicherplatz zuge-
schnitten dmmenSLOnLeren.

Beispiel: 12¢ DIM. AR = 42

Der BASIC—I'qterpret,er legt: fur die variable AX einen sp-éi-
cherpl@tz'an, der eine Zeichenfolge von maximal 42 Zeichen
aufnehmen kann. '

Die Variable A darf neben der variablen A und der Variablen
A% im gleichen Programm auftreten.f

2.4. 2. ZaHlen

Der BASIC Interpreter erkennt

- ganze Zahlen: Sie missen wie Ublich aufgeschrleben Werden.
dirfen jedoch nur im Bereich von -32768 bis"
+32767 liegen. Das positive Vorzelchen kann
weggelassen werden.
Beispiele: 123 / 23p@@ / -43 / +18 /

40

- reelle.Zahlen; sie missen im Bereich von 20.999999 . 10:127
‘ liegen. -
Sie. kénnen, in zwei Formen aufgeschrxaben
'(notiert) werden, als
Festgunktzahl 3 14/ -17. 348/ 9 437
oder
Gle;;punktzahl 314 E-2/ -1. 7348 E1
9437 ‘E-3
(Dem iblichen Komma Entsprichf im BASIC
der . Punkt. E steht fur die Basis 10)

2.4.3.“Mathematiéche Ausdriicke

B

Haufig sind 4in Algorithmen mathématische Beziehungen darzustel-
len. Ublicherweisa werden- ‘sie . durch Formeln angegeben, die aus
Variablen und mathematischen Verknupfungsoperatoren bestehen.

- BASIC kennt folgende arlthmet;sche Oppratqren.

arifhmetischer' Bedeutung Prioritat Beispiel eines

Operator .) Ausdruckes
. Addition 3 As+B \
- ‘Subtraktion 3 A-B
* Multiplikation 2 A % B
/- Division 2 A/ B
**bderT Potenzieren 1 Al B

Die Ausflhrung der Operationen innerhalb:eines arithmetischen
Ausdrucks erfolgt entsprechend der angegebenen Prloritat
(Wertigkeit). Die héchste Prioritat ist die Priorltat 1. Bei
gleicher Prioritét wird die'Abarbeitung von links-nach rechts .
organisiert. Mit Klammern (es sind nur runde Klammern zuge-~
lassen) kann die Abarbeltungsfolge verandert werden.

‘Klammern: haben die héchste Prioritat, die“Priorltat g.

41

-~ Beispiele von arithmetischen Ausdriicken

Obliche BASIC
Schreibweise Schreibweise

Erlauterung zur Ausfihrung der

Operation

Es wird gebildet: (R1+R2), dann
R1 % R2, dann das Divisionsergeb-
nis. Die Klammer im Nenner muB
gesetzt werden, da sonst R1¥ R2/R1
gebildet wird und dazu R2 ad-
diert wird

Ry « Ry R1 % R2/(R1+R2)
R1 + R2
d“n D12 %3,14/4

Abarbeitung erfolgt von links nach
rechts) :

Po(1+% <43) P % (146G * T1) .

Es wird gebildet: (1+G %T1)
und das Ergebnis wird mit P
multipliziert

1 2 :
Mg ¢ V +h .fg M%xV1i2/2+H % F

Es wird gebildet:Vt2, dann mit M
multipliziert, dann durch 2 di-
vidiert, dann die Multiplika-
tion H* F und danach die Addi-
tion der Teilergebnisse

Achtung! Bei der BASIC-Schreibweise der Variablen ist darauf
zu achten, daB bei der Namensbildung nur ein Buchstabe genom-
men werden darf. Deshalb: m, > M und f_ — F. (Es gibt jedoch

auch BASIC-Versionen, die als
einen Buchstaben zulassen.)

Namen von Variablen mehr als

- BASIC kennt folgqnqe Vergleichsoperatoren:

Vergleichs- Bedeutung
operatoren’

Prioritat

> gréBer als
>= gréBer als oder
= gleich

< kleiner als

<= kleiner als oder

gleich '

= gleich

<> ungleich

alle Vergleichsoperatoren
haben die Prioritat 4

Werden zwei arithmetische Ausdricke miteinander verglichen, -
so besagt die Prioritét 4 fir die Vergleichsoperatoren, -daB
erst die arithmetischen Ausdriicke berechnet werden und dann
der Vergleich erfolgt.

42

Bei dem Vergleich
ML1%C1l*T1 = M2%C2 % T2

werden also erst die Werte M*C*T berechnet und anschlieBend

der‘Vergleich realisiert.

- Mathematische Standardfunktionen

In jeder problem6r1entierten Programmiersprache sind ge-
brauchliche mathematische Funktionen, wie die Sinusfunktion,
Cosinusfunktion usw. als sogenannte Standardfunktionen in
Form fertiger Programﬁe verankert. Der Nutzer kann sie in
seinem Programm dann einfach aufrufen, indem er im Programm
z. B. schreibt:

Y = SIN(X).

Es ist nur dafir Sorge zu tragen, daB im Speicherplatz X das
Argument (der Wert, von dem der Sinus zu berechnen ist) vor-
liegt. Im Speicherplatz mit dem Namen Y findet man dann .den -
Sinuswert von X.

Der BASIC-Interpreter kennt folgende mathematische Standard-
funktionen: ' '

Standardfunktion Erlauterung

SIN(A) sin a; a muB im BogenmaB angegeben werden

COS(A) cos a; " " o " "

TAN(A) tan a; " " oo " "

ATN(A) . arctan a; Ergebnis im BogenmaB

LOG(A)l) 1n a; natirlicher Logarighmus von a>0

LOG 10(A)2) 1lg a; dekadischer Logarithmus von a> O

EXP(A) e?

SQR(A) Ve

INT(A) GroBte ganze Zahl kleiner als oder gleich
a; INT(2.3)=2

ABS(A) |al; absoluter Betrag von a

PI 3.14159

SGN(A) -1% fur a <@; @% fur a = @; 1% fir a>pP

RND Zufallszahl zwischen @ und §.999999

RANDOMIZEZ) Gibt RND'neuen Startwert

1) Beim KC 85/2-BASIC gilt LN(A)
2} Beim KC 85/2-BASIC nicht vorhanden

43

2.4.4. Erste Anweisungen

bnter'einer Anweisung wird die Beaﬁfléguhg an einen Rechner
verstanden, die er im. Spelcher als. Teil eines Programmslab-
legt. Die. geordnete Folge aller Anwelsungen bildet .dann das
geschlossene Programm._Dle Ausfuhrung der Anweisungen er-‘
‘folgt erst nach dem ProgrammStart.

Der BASIC-Interpreter findet die. gewollte Ordnung durch die
‘Suche nach der immer nachst hoheren Zeilennummer," hinter der
eine Anwgzsgng_steht. Er wirde also ein Programm

i@ Anwéisung 1.
.25 Anweisung 2
8¢'Anwei§hng 3
2@ Anweisung 4
~usﬁ..

s0 abarbeifen}.a}s ware das Progrémh aufgesdhrieben als

19 Anweisung.1

2@ Anweisung 4.

25 Anweisung 2

8@ Anweisung 3.
Anweisungen. mussen demnach als ‘Bestandteil -von Programmen’ 1n
Zellenform untereinander geschrleben werden. Jede Zelle be-
ginnt. m1t einer Zeilennummer. Dle Zeilennummer muB e1ne po~
sitive ganze zahl sein. v
Die Stufung der Zeilennummern’ ist bellebig. Eingeburgert hat
sich eine Zéhnerstufung, da sie sehr einfach Korrekturmég-
lic‘:hkeiten*‘zdl’é&t7
- ‘Die LET=Ariweisung
Durch die'Anweisung

15¢ 'LET RS = R1 % R2/(R1 + R2)
weist der BAgIC Interpreter den errechneten Wert des arith-
metischen Ausdrucks. auf der rechten Seite des Glelchhelts-
'zelchens der Variablen R3 zu und speichert damit deri Wert im
/Spelcherplatz R3. Es erfolgt also eine Wertzuwei§ung im Sinne
von: R3 ergibt sich aus dem Wert des Ausdrucksr

Die allgemelne Form’ einer LET-Anweisung 1st.
znr LET Variable = Ausdruck oder Variable .oder

‘Konstante oder' Standardfunktion

44

Aut-der réchten Seite kann demnach statt .einem Ausdruck auch
eine Variable, eine Konstante oder eine Stardardfunktlon
stehen. LET kann Gblicherweise auch entfallen.

Beispiele: 120 A = B
13 2 = 4
249 X = SIN(Y) '
'325 A = ATN(Y/X) Das Argument einer Standardfunk-
' tion' kann auch ein. arithmetischer,
Ausdruck sein. °
199 B = R1*R2/(R1+R2)

In den blsherigen Beispielen sind .nur. Zuweisungen zwischen
Realgrosen y gezeigt worden. Die Anweisung
N% = K% + 3% '
ist eine typlsche Zuweisung zw1schen Integergro&en. Diese Art
der Anwelsung kann der Interpreter schnell abarbeiten. Des-

2

halb ist jeder BASIC-Programmierer gut beraten. wenn er: mog-
lichst Integervarlable verwendet. Das Kennungszeichen "%"
hinter der 3 mutet unsinnig an. Fir den Interpreter:ist
die 3% eine zahl, die er sofort mit dem Inhalt von K% ver-.
knipfen kann; ‘
die 3 aber ist eine zahl, dié er erst aus der “real”-
Form in die "integer"~Form uberfihren muB.

Selbstverstandlich gilt die Zuweisungsanweisung auch fur
Strihgvariable.‘ /
Die Anweisung

39 G = "WIR . . LERNEN BASIC"
ist eine .Zuweisung einer Zelchankette zu einer Zeichenketten=
variablen..Dxese Anweisung weist dem Speicherplatz. G;tdie'
Zeichenkette - WIR . LERNEN gABASIC - Zu.

- Steueranweisungen
. Die IF-THEN—ELSE—Anweisung‘(bedingte Verzweigqng)
Die Ahweisung
8@ IF X):p THEN Y = X ELSE ¥ = =X
steuert die Programmabarbeitung so, daB bei X< @ dem
Wert von Y der Wert von. =X zqgewieseh wird., Ist X>=0,
wird dem Wert von Y der Wert von X zugewiesen.
(IF = Wenn; THEN = Dann; ELSE = Sonst)

45

Allgemein gilt fir diese Art der Anweisung
znr IF Vergleich THEN Anweisung ELSE Anweisung.

Wenn der Vergleich positiv ausgeht, also die Antwort "ja"
annimmt, so gilt die Anweisung hinter THEN. In diesem Fall
entfallt die Anweisung hinter ELSE.

Ergibt der Vergleich die Antwort "nein", geht er also negativ
aus, so gilt die Anweisung hinter ELSE. In diesem Fall ent-
fallt die Anweisung hinter THEN.

Beim KC 85/2 ist vor ELSE ein Doppelpunkt zu setzen, also

znr IF Vergleich THEN Anweisung : ELSE Anweisung

Die GOT-Anweisung (unbedingte Verzweigung)
mit der Anweisung
znr GOTO znr (GOTO = Gehe =zu)

kann der Programmierer die lbliche Programmabarbeitung ver-
éandern. Ublicherweise sucht der Interpreter nach der Abar-
beitung einer Anweisung die nachst hdhere Zeilennummer.
Anders aber, wenn zum Beispiel die Anweisung
13p GOTO 49
realisiert wird. Der Interpreter "springt" von der Zeile 13@
zuriick zur Zeile mit der Zeilennummer 4@. Bei der Anweisung
13@ GOTO 24¢ '
wirde der Interpreter bei der Anweisung mit der Zeilennummer
249 die Programmabarbeitung fortsetzen.

Einfach Ein-Ausgabe-Anweisungen

BASIC bietet mehrere Eingabembglichkeiten, insbesondere je-
doch vielféltige Formen und Moglichkeiten zur Variation der
Ausgabeanweisung.

. Die INPUT-Anweisung:

Die Anweisung 3@ INPUT K bewirkt, daB der Interpreter an der
Zeile 3@ seine Programmabarbeitung unterbricht.

Er gibt Uber den Bildschirm ein Fragezeichen aus und wartet
auf die Eingabe einer Zahl Uber die Tastatur.

Der Arbeitsplatzbenutzer wird durch den Interpreter aufge-
fordert, Uber die Tastatur eine Zahl einzugeben. Soll bei-
spielsweise die Zahl 2,37 eingegeben werden, so muB

46

1. die Taste - 2 -~ gedriuckt werden v

2. die Taste - . - gedrickt werden (Achtung! "." statt ",

3. die Taste - 3 - gedriickt werden

4, die\Taste - 7 - gedrickt werden.

Die Ziffern und Zeichen werden auf dem Bildschirm hinter dem

" aufgeschriebeh.ADamit eindeutig ist, daB keine weitere

Ziffer mehr folgt, die Zahl also komplett ist, muB

5. die Taste - ENTER - gedrickt werden. (ENTER ist die Ab- ..
schluBtaste fiur Zeilen, Kommandos und Zahlen.)
Nach dem Dricken der Taste ENTER weist der Interpreter
dem Speicherplatz, der hinter INPUT steht, im obigen Bei-
spiel .elso dem Speicherplatz K, den eingegebenen Wert zu.
Das Programm wird mit der Anweisung mit der néchst héheren
Zeilennummer fortgesetzt. '

Die allgemeine Form der INPUT-Anweisung lautet:
znr INPUT Variable. (INPUT = Eingang).

« Die PRINT-Anweisung:

Die Anweisung: znr PRINT Variable

bewirkt, daB der Inhalt des Speicherplatzes der Variablen auf
den Bildschirm geschriében wird. Die Ausgabe erfolgt dabei so,
daB auf die @P-te Position der neuen Zeile das Vorzeichen ge-
schrieben wird, ein "-"-Zeichen bei negativem Wert, ein

" "-Leerzeichen bei positivem Wert der Variablen. Auf die
néchsten Positionen der Zeile werden nun, die ziffern geschrie-
ben. ‘ :

Mit PRINT kann man auch Text auf den Bildschirm schreiben.

Mit der Anweisungsfolge

1@ PRINT “EINGABE .. VON .. X"

29 INPUT X

3@ PRINT "WERT .. VON . X="; X
gibt der Interpreter folgendes Bild Uber den Bildschirm aus:

1. Zeile: EINGABE VON X

2, Zeile:? 3.14 (3.14 wird als Eingabewert
3. Zeile: WERT VON X = 3.14 angenommen) .
Das Semikolon zwischen "WERT s VON.w X =" und X bewirkt,

daB der Inhalt von X unmittelbar nach der Textausgabe in der
gleichen Zeile erfolgt.

47

Schreibt man hinter PRINT zwei Variable durch Komma getrennt
auf, also beispielsweise

125 PRINT A, X
so gibt der Interpreter den Wert von A ab der "O"ten Position
einer neuen Zeile und den Wert von X ab der "15"ten Position
dieser Zeile aus. Da der Bildschirm 80 Positionen je Zeile hat,
kann man so maximal 6 Variable in eirfe Zeile schreiben.
Dabei wird die .

1. Variable ab Position "O" der Zeile ausgegeben,

die 2. " v "15" " " * '
die 3. “ v 30" " * " ’
die 4. " v "45" " " " ’
die 5. " o “60" * " "

’

die 6. Variable ab Position "75" der Zeile ausgegeben.

Aufgaben zur Darstellung von Algdrithmen mit BASIC

Al. Bestimmen Sie, welche der angegebenen Variablen BASIC-
Variable sind!
B3, XZ, Y12, A%, X1,«3, Z, X, Max '
Ootto, O, 4z, G7, B3%, MW, M9K , BETA

A2. Bestimmen Sie, welche der angegebenen Zahlen BASIC-
Zahlen sind!
3,7; 4.37; 3.1¢4; 4%:; 78,15; 4.31 E-3; =3,7;

14.23; 137pp@%: 137999; 37.483757

A3. Bestimmen Sie, welche der angegebenen arithmetischen
Ausdricke in BASIC richtig geschrieben sind!

R2% 4Z3/3 % X; Z4*3% + A %K¥; XY®X4xTR3;

%*013 i AXPI*3/4 i My o+ 1%

A4, Schreiben Sie fur die angegebenen arithmetischen Aus-
driicke die BASIC-Version!

Vg, = V
1 2 a.t
V. + a,.t; ————_ + V_ .t + 8 3
o ty -ty 2 o o
2 2 1 1
2 . r ; ve o+ .)% e My o My o (== = =),
= o (9 Y 1 2 ry rs

48

2.5 Analyse von Algorithmen

2.5.1. Drei Algorithmenelemente

2.5.1.1. Summenbildung

Es soll folgende Aufgabe geldst werdens

Ein Algorithmus soll Eingabedaten sténdig aufsummieren.
Eine Ldsung ist im PAP (Programmablaufplan) Bild 24 darge-
stellt:

Wird der Algorithmus gestartet, so
nimmt die Variable S den Wert Null

START an. Das ist der Anfangswert fir S.
. Erfolgt nun die Eingabe, so wird
- 5:=0 die aktuelle Eingabezahl der
Variablen X zugeordnet.
1 e) . Im néachsten Schritt wird gebildet:
Eingabe: X S+X; X ist in diesem Zustand
die 1. Eingabezahl zugeord-
net,
T S5=5+X S ist in diesem Zustand der

Wert Null zugeordnet.
Das Ergebnis der Addition O+X wird
nun der Variablen S zugeordnet. In
diesem Zustand ist S der Wert der 1.
Eingabezahl zugeordnet.

. Die FluBlinie fihrt nun direkt
wieder zur Eingabe von X

Der Algorithmus ist "bereit", eine
2, Eingabedate zu verarbeiten.

. Erfolgt nun die 2. Eingabe, so
wird die aktuelle Eingabe der Va-
riablen X zugeordnet.

. Im nachsten Schritt wird gebildet
S+X; X ist in diesem Zustand die

Bild 24: PAP Summe 2. Eingabezahl zugeordnet.

S ist in diesem Zustand der
Wert der 1. Eingabedate zuge-
ordnet.

Das Ergebnis der Addition 1., Eingabe-

date plus 2. Eingabedate wird der

Variablen S zugeordnet; das ist die

Summe der bisher eingegebenen Daten.

. Die FluBlinie fuhrt nun direkt
wieder zur Eingabe von X.

Der Algorithmus ist "bereit", eine 3. Eingabedate zu verarbeiten.
Der Algorithmus findet aelbst‘kein Ende, sondern “"wartet" an
der Eingabe.

Deutlich wird der Sinn einer Anweisung der Form S := S + X,

49

Diese Anweisung realisiert die Summenbildung, weil die Schlei-
fe des Algorithmus immer neue Eingabewerte zufiihrt, DaB das
Ergebnis der Summenbildung die Summe aller Eingabewerte ist,
sichert die Anfengswertsetzung der Variablen S auBerhalb der
Schleife auf den Wert Null,

Ein mdgliches BASIC-Programm zur Implementierung des Algorith-
mus wére:

1S =9 Hinweis: GOTO bedeutet: Gehe zu.

2@ INPUT X STOP bedeutet: Stopp des Pro-
3PS =85S &+ X gramms

49 GOTO 2@

5@ STOP

Die Schleife des Algorithmus wird 4im BASIC-Programm reali-
siert durch die Anweisung !

GOTO 2@. (Gehe zur Zeile mit der Zeilennummer 20.)

Die Anweisung STOP wird niemals erreicht., Sie dient der Kenn-
zeichnung des Programmendes. Wollte man dieses Programm auf
dem Arbeitspletz testen (ausprobieren), so wére nichts zu
sehen, de keine Ausgaben erfolgen. Gibt man dagegen ein:

19S5 =P

2@ INPUT X

WS =S + X

4P PRINT X,S

5@ GOTO 29

6@ STOP
80 realisiert men nun inxjedem Schleifendurchlauf die Ausgabe
des sktuellen Wertes von X und S,

Das Programm soll fir die Eingabedaten 2; 3 und.-4 getestet
werden:

50 .

Folge der Anweisungen

Rechnerreaktion und Bildschirmausgabe

S=p

INPUT X

S =8 + X

PRINT X,S

GOTO 29

. ner mit

>

Auf dem Speicherplatz S wird eine @
abgelegt, Es erfolgt keine Bildschirm-

-ausgabe.

Auf dem Bildschirm erscheint ein Fra-
gezeichen "?", : .
Der Programmlauf ist unterbrochen, Der
Rechner wartet auf die Eingabe einer
Date iUber die Testatur, Diese Date muB
eine Zahl sein, da X ein Speicherplatz
far Zahlen ist,

Es muB nun die erste Testdate "2"' ein-
gegeben werden: Taste 2 der Tastatur
dricken. Auf dem Bildschirm wird hin-
ter dem Fragezeichen die Ziffer 2 aus-
geschrieben.

? 2 Taste ENTER driicken
Auf die Taste ENTER reagiert der Rech-

. Ablegen des Wertes “2" im Speicher-
platz X
. Fortsetzen des Programmlaufes.

Der aktuelle Wert von S ist "O", dazu
wird der ektuelle Wert von X addiert.
Des Ergebnis wird nun neuer Wert von S.
In S ist jetzt der Wert "2" gespei-
chert.

Auf dem Bildschirm' wird susgegeben:
2 2)

Auf Position 16 der Bild-
schirmzeile die 1, Ziffer
dgs S-Wert

Auf Position 1 der Bildschirmzeile die
erste Ziffer des aktuellen X-Wert,

Der Abstand zwischen den Ausgabe-
positionen ist die Rechnerreaktion
euf das Komma in der PRINT-Anweisung
zwischen X und S.

Die néchste zu bearbeitende -Anweisung

steht unter der Zeilennummer 2@, Das
Programm wird dort fortgesetzt,

51

INPUT X

S =86 +X

PRINT X,S

GOTO 29

INPUT X

S =8 + X

PRINT X,S

GOTO 2¢
INPUT X

Reaktion wie schon gezeigt.
- Programmunterbrechnung
- Bildschirmausgabe: “?"

- Bei Eingabe der neuen Testdate wird
diese hinter "?" ausgegeben: ? 3

- Nach ENTER: Der Wert "3" wird im
Speicherplatz X als neuer Inhalt
abgelegt. Der alte ist damit “iber-
schrieben”.

- Fortsetzuhg des Programms,

Der aktuelle Wert von S ist "2", Der
aktuelle Wert von X ist "3", Die Summe
von "2+3" wird neuer Wert von S,

Bildsehirmausgabe in einer neuen Zeile:

3 5
S-Wert auf
Position 16
X-Wert auf Position 1
der neuen Zeile.
Insgesamt ist auf dem Bildschirm fol-
gendes Ausgabebild zu sehen:

?2
-2 2
?3

3 5

Fortsetzung des Programms mit der An-
weisung der Zeile 29

? -4 (-4 ist die eingegebene Testdate)
Zuweisung von "-4" als sktuellen Inhalt
des Speicherplatzes X.

Fortsetzen des Programms.

Aktueller Inhalt des Speicherplatzes S
wird die Summe "5 + (-4)" = 1,

Vollstindiges Ausgabebild
? 2 .
2 2
? 3
3 5
? -4
-4 1

Fortsetzung des Programms in Zeile 2@.

Bildschirmausgabe: “?"

52

An dieser Stelle des Programms wartet der Rechner nun "endlos"
lange, wenn keine weitere Eingabe erfolgt. Das Programm kann
nur durch fehlerhafte Bedienung oder Ausschalten beendet werden.

2.5.2.2. Zéhlen

In Erweiterung der Aufgabenstellung zur Summenbildung soll zu-
satzlich gezéhlt werden, wie viele Eingabedaten in die Summe
einbezogen werden. ’

Der folgende Algorithmus lést diese Aufgabenstellung:

(SIART) Zusatzlich zum PAﬁ fur die Summen-

bildung sind die Anweisungen n:=@

L 5 = und n:=n+1 eingefligt worden. Im
. Grunde genommen ist das Zahlen eine
n:=g Summenbildung mit der konstanten

Date von Eins. Immer wenn eine neue

| . Eingabedate in die Summe gebracht
Eingabe : X wird, wird der aktuelle Wert der
L S 1= 5+X variablen um "1" erhéht. Die Variab-

le n "z&éhlt" also die Anzahl der in

. die¢ Summe gebrachten Eingabedaten.
t N = n+1

Bild 25: PAP zaéhlen

Das BASIC-Programm kann dafur aus folgenden Anweisungen be-
stehen:

ips=9 Eingeflgt ist wieder die Ausgabe
20N =0 der aktuellen Werte auf dem Bild-
3@ INPUT X schirm. Das Komma zwischen den Aus-
40 5 =85 + X gabevariablen X und S und N in der
50 N =N+ 1 PRINT-Anweisung realisiert die Aus-
6@ PRINT X, S, N gabe der 1. Ziffer des Wertes von
70 GOTO 3@ - X auf die Positibn 1 der Bildschirm-
8P STOP zeile
von S auf die Position 16 der Bild-
schirmzeile,
von N auf die Position 31 der Bild-
schirmzeile.

Der Test mit den Daten 2, 3 und -4 ergibt die Bildschirmaus-
schrift:

"My 2 1
3 . 2
"It 3

Der Rechner wartet wieder bei INPUT X auf eine weitere Eingabe.

53

2,5.2.3, Prifen

Die Aufgabenstellung der Summenbildung und des Z&hlens soll nun
so erweitert werden, daB nur positive Eingabedaten in die Summe
gebracht und gez#hlt werden., Die erste negative Eingabedate soll
den Stopp des Programms herbeifihren,

Der Algorithmus ist im Programmablaufplan und im BASIC-Programm:
dergestellt:

(sTART) 19 S=p
20 N=g
3@ INPUT X
t 5 .= 49 IF X<P THEN 99
g 50 S =5 +X
n: 60 N =N + 1
. 78 PRINT X, S, N
Eingabe: X 89 GOTO 3p
| 9 STOP
L X <02
Ja
nein 1 S5=5+X
I N:i=n+1

(sTOP)

Bild 26: PAP Prifen

Das neue an diesem Algorithmus ist die Untersuchung, ob die ge-
rade eingegebene Date negativ ist, wenn ja, wird der Algorith-
mus und das Programm gestoppt, wenn nicht, so wird die Date in
die Summe gebrascht und geziahit,

Der Test mit den Daten 2, 3 und -4 ergibt folgendes Ergebnis,
das auf dem Bildschirm ausgeschrieben wird:

"er 2
2 2 1
" 3
3 5 2
" -4

STOP LINE 99
(Beim KC 85/2 steht: BREAK in 9@)
Der Rechner gibt auf dem Bildschirm aus, daB ein programmge-
steuertes Stopp befohlen ist und in welcher Zeile des Pro-
gremms die STOP-Anweisung steht,

54

Neu im BASIC-Programm ist die Anweisung IF X <@ THEN 9.

Sie besagt, daB bei X <P mit Zeile 9@ das Programm fortgesetzt
wird., Tritt der Fall nicht ein, ist also X2 @, dann wird das
Programm mit der Anweisung fortgesetzt, die nach der IF-THEN=-
Anweisung die néchst hohere Zeilennummer trégt.

Aufgaben zum Testen von Algorithmen

AS5.
1PN =1
2 =
1 Aufgabe: (START) A
40 PRINT N, S
1l ni=1 S@ IF N<1@ THEN 7@
5 =g 6@ GOTO 9@
1 i 7B N = N + 1
8@ GOTO 3@
§:=9§+n 9@ STOP
+ n<10¢2
‘ nein
Ja + N:=n+1
(sTOP >
Bild AS
A6.
1 N = 1
. 208 = 2
2.Aufgabe: (START) 3Ps=5+N
49 PRINT N, S
+ N = 5@ IF N»>=1@ THEN 8@
L § = 6@ N =N+ 1
7@ GOTO 3@
+ §:=5+n 8@ STOP
i n<102
o in
Ja
n :=n+1
Bild A6

55

A7.

- 5 ;=¢
r N:=1
P 2:=X
» z <w?"nein
Al B=z(M t B =E
B < ¢ j 011&
Ja
neint S:=6+Z2 _x? A5
27 Z- (Y
n:= N+2 STOP
Bild A7
19 INPUT X
2p S =0
IgN =1
40 Z = X

58 IF Z<@ THEN B = Z * (-1) ELSE B = Z
6@ IF B< @.01 THEN 129

79 S =S + Z

8@ PRINT X, N, Z, S

9P Z = X% X% Z/((N+1) % (N+2))

1086 N = N + 2

118 GOTO 5@

12¢ STOP

Das Programm soll fir X=@.523 getestet werden.

2.5.2. Ein Algorithmus zur Mittelwertbildung

Die Gesamtheit der im vorangegangenen Abschnitt behandelten

Algorithmenelemente - Summenbildung - Zéhlen - Priifen -

ist ein lésender Algorithmus fir folgende Aufgabenstellung:
Von MeBwerten, die dem Rechner einzeln Uber die Tastatur
als Eingabedaten zugefihrt werden, soll der arithmetische
Mittelwert gebildet werden. Die Anzahl der MeBwerte

liegt nicht vor. Alle MeBwerte sind positiv. Das SchluB-
zeichen der Eingabedaten ist eine negative Zahl.

Der im Bild 27 dargestellte Algorithmus 16st diese Aufgaben-

stellung. Der Algorithmus entspricht genau dem aus Bild 26
bis auf die Anweisungen:

X = S/n und At X

56

Die Anweisung X = §/n bestimmt aus den Ergebnissen der Summen-
bildung (S) und des Z&hlens (n) den Mittelwert aller Eingabe-
daten durch
¥ o Summe eller MeBwerte
nza aller MeBwerte

Die Anweisung A: X sichert die Ausgabe des Mittelwertes als

(START)

L S5:a¢
+ n:=¢

Ergebnis.

+ E: X

4+ x< g2
Ja

nemn

n
t

S: =S+x 1 x: -S/n
T A: X

(sror)

Bild 27: PAP Mittelwertbildung

b Riene?

Erstmals liegt damit der loésende Algorithmus einer iﬁ’sich
geschlossenen, praktischen Aufgabenstellung vor. Bei der
Implementierung dieses Algorithmus in einem Rechner méchte

man diesem Programm gern einen Namen geben, so daB beim Auf-
rufen des Programms der Name auf den Inhalt hinweist.

Dazu gibt es in BASIC die REM-Anweisung.

Hinter dem Symbol REM kann der Programmierer beliebige BASIC-
Zeichen aufschreiben. Diese Zeichen haben fir den Programm=-
lauf .keinerlei Bedeutung. Sie kommentieren nur den Programmauf-
bau.

Beispiel:

19 REM MEIN _ ERSTES L. BASIC-PROGRAMM
2@ REM IST . DIE.. MITTELWERTBILDUNG
g .

. Anweisungen

23@ REM BEGINN . DER . DATENAUSGABE
. Anweisungen
‘57@ REM X, Y, Z .. UND .. B . SIND .. EINGABEGROESSEN

57

Das BASIC-Programm zur Mittelwertbildung kénnte nun wie folgt
aufgeschrieben werden:

1 REM MITTELWERTBILDUNG

20 REM X = MESSWERT; S = SUMME; N% = ZAEHLER
39 REM M = MITTELWERT

4 s =g

50 N¥ = @%

6@ PRINT "MESSWERTEINGABE X"

79 INPUT X

80 IF X<@ THEN 149

9@ REM SUMMENBILDUNG - ZAEHLEN
199 S =8 + X

110 N% = N% + 1%

12§ GOTO 6@ .

13g REM MITTELWERTBERECHNUNG

148 M = S/N%

150 PRINT "MITTELWERT M = —"; M
16¢ STOP

In den ersten drei REM-Anweisungen wird dem’ Programmnutzer
folgendes mitgeteilt:

1. Das Programm heiBt MITTELWERTBILDUNG.

2. Es werden die Variablen X, S,N¥% und M benutzt.

Die REM-Anweisungen der Zeilen 9@ und 13@ geben Hinweise dazu,
was in dem nachfolgenden Anweisungskomplex im wesentlichen
inhaltlich bearbeitet wird.

Der Programmlauf mit den Testdaten
2121311141313 2]| -1
ergibt dann folgendes Ergebnis auf dem Bildschirm:

MESSWERTEINGABE: X

? 2
MESSWERTEINGABE: X
? 2
MESSWERTEINGABE: X
? 3
usw. bis
MESSWERTEINGABE: X
? -1

MITTELWERT M = 2,5

Damit wird auch der Unterschied zwischen REM und PRINT noch-
mals deutlich. REM hat mit der Bildschirmausgabe im Programm-
lauf nichts zu tun. Die REM-Anweisungen kommentieren tatséch-
lich nur den aufgeschriebenen Programmaufbau.

58

Lésungen zu den Aufgaben

Al.: - BASIC-Variable sind: B3, A%, X1, Z, O, G7, B3%, MM ,

‘A2, :

A3.:

A4, :

Mo

Fehler bei den Ubrigen Vvariablen:

Xz - Zweites Zeichen ist ein Buchstabe
Y12 - besteht aus 3 Zeichen

«3 - ist unbekanntes Zeichen

X ~ Querstrich nicht zulassig

Max - 3 Zeichen und kleine Buchstaben
Otto - 4 Zeichen und kleine Buchstaben
4z - 1, Zeichen ist ziffer

BETA - 4 Zeichen

BASIC-Zahlen sind: 4.37; 4%; 4.31 E-3; 1379¢9;
37.4837 die zZiffern 5 und‘7 ent-

fallen
Fehler bei den lbrigen Zahlen:
3,7 - Komma statt Punkt
3.1¢4 - Multiplikationszeichen, Zehnerpotenz
78,15 - Komma statt Punkt
-3,7 - Komma statt Punkt
14;23 - Multiplikationszeichen, Zweierpotenz

1379P@% - Integerzahl ist groBer als 32767

BASIC-Ausdriicke sind: Z4 * 3% + 4 ¥ K%
A% PI* 3/4
ME + 1%
Fehler bei den Ubrigen Ausdricken:
R2 % 423/3 % X - Zwischen 4 und 23 fehlt ein Operator

XY % 4 % Tx 3 - Zwischen X und Y fehlt ein Operator
3 und das Zeichen mgibt es nicht
Z*0t3 - falsches Operationszeichen, richtig

ware 3/4% D13

‘Die BASIC-Versionen konnen sein:

VRHA ¥ T; (VI-V@)/(T1-T@): A% T12/2+V@ % T+S@;
2% PI%R/T; SQR(VP12+(G *F)12);
G * M1* M2 % (1/R1-1/R2) ‘

59

A5.: Auf dem Bildschirm wird ausgegeben:

fir N

1

O O N OB B WN

=
-

fur S

1

3

6
19
15
21
28
36
45
55

A6.: Auf dem Bildschirm wird ausgegeben:

far N

1

O O N O U _ DN

[
-«

far S

3

5

8
12
17
23
39
38
47
57

A7.: Auf dem Bildschirm wird ausgegeben:

for X fur N
@.523 1
@.523 3
P.523 5

60

fir 2 fur s
?.523 ?.523
-p.0238 @.4992

2.0003

== —
== =
sl= = »
I\ »
—_—— e —
1
[eLextRoTECHNIK |
ELE

xxxxxxxx

Institut fiir Rationalisierung
der Elektrotechnik/Elektromk
Zentralstelle
fiir Aus- und Weiterbildung
des Industriebereiches
. . . E ik/Elektronik
Lehrmaterial fiir die lektrotechnik/Elektron

Weiterbildung

Informationsverarbeitung
mit Kleincomputern

3

Algorithmierung Teil 2

Elektrotechnik
Elektronik
Automation

Nt

Kreutzer

Steffen Kreutzer

Informationsverarbeitung mit Kleincomputern

Algorithmierung, Teil 2

Herausgeber

Institut fur Rationalisierung der Elektrotechhik/EleLtronik
Institutsteil Dresden

Zentralstelle fir Aus- und Weiterbildung

des Industriebereiches Elektrotechnik/Elektronik
Karl-Marx-StraBe, Dresden

8080

Autor: FSD Dipl.-Ing. Steffen Kreutzer
Ingenieurschule fiur Wissenschaftlichen
Gerétebau "Carl Zeiss"” Jena

Gutachter: Dipl.-Ing. Claus Paul
Institut fir Rationalisierung der
Elektrotechnik/Elektronik

Bearbeiter: Dipl.-Gwl. Heinz Riudger
Institut fur. Rationalisierung der
Elektrotechnik/Elektronik
-Zentralstelle fir Aus- und Weiterbildung

. Alle Rechte vbrbehalten
1. Auflage
IR Dresden ZSB
Druckgenehmigungs=Nr.: Ag 682/043/86
Druck und Herstellung: NOWA DOBA Bautzen III-4-9
RedaktionsschluB: 31, 7. 1986
Bestell=Nr,: T.2.04,0003
Vorzugsschutzgebihr: 2,- M

Inhaltsverzeichnis

3.
3.1,
3.2,
3.3,
3.4,
3.5,
3.5.1.
3.5.2,

3.5.3.
4.
4.1.
4.2,
4.,2.1.
4.,2.2,
4.,2.3,

Synthese von Algorithmen

Ein einfihrendes Beispiel
Verallgemeinerung der Loésungsfindung
Obungen zu einfachverzweigten Algorithmen
Ubungen zu mehrfachverzweigten Algorithmen
Algorithmen zur Arbeit mit Feldern
Einfuhrende Bemérkungen

Realisierung von Vektoren und Matrizen im
Speicher des Rechnerarbeitsplatzes
Laufanweisung

Strukturierte Algorithmen

Grundgedanke

Logische Grundstrukturen

Folge

Einfache Verzweigung

Bedingte Wiederholung

Lésungen zu den Aufgaben

Seite

NO b

17
26
26

29
33
40
40
41
42
43
44
50

3, Synthese von Algorithmen

Soll eine gegebene Aufgabenstellung mit einem Digitalrechner
bearbeitet werden, so ist sofort die Frage nach dem lésenden
Algorithmus gestellt, Ohne ihn kann kein Programm aufge-
schrieben werden, nach dem der Rechner die Losung schritt-
weise erarbeitet.

Wie kommt man von der Aufgabenstellung zu einem lésenden
Algorithmus?

3.1, Ein einfihrendes Beispiel

Das bekannte Beispiel der Mittelwertbildung soll nochmals
untersucht werden. Im Abschnitt 2,5, des Heftes 2 dieser Lehr-
materialreihe ergab sich die Losung durch die Gesamtheit der
drei Algorithmenelemente Summenbildung - Zdhlen - Prufen.
Jetzt soll von der Aufgabenstellung ausgegangen werden.

Sie lautet: '

Von MeBwerten, die dem Rechner einzeln:iber die Tastatur als
Eingabedaten zugefihrt werden, ist das arithmetische Mittel
zu bilden. Die Anzahl der MeBwerte liegt nicht vor, Alle MeB-
werte sind positiv,

Das SchluBzeichen der Eingabedaten ist eine negative Zahl.

- Analyse der Aufgabenstellung

Die Analyse der Aufgabenstellung erfolgt ginstig durch die
Beantwortung folgender Fragen:

1., Frage: Gibt es ein zentrales Problem in der Gesamtaufga-
benstellung?

Antwort: Ja. Die Bildung des arithmetischen Mittels.

2. Frége: Existiert ein bekannter Algorithmus (Vorschrift)
zur Lbésung des zentralen Problems?

Antwort: Ja, Das arithmetische Mittel ist die Summe
aller MeBwerte geteilt durch die Anzahl
aller MeBwerte

X

(x1+x2+x3+x4+ ove +xn)/n

n
1
X == I X
n yoq i

3. Frage: Welche Forderungen stellt der zentrale Algorithmus?
Antwort: 1, Die Bildung der Summe aller MeBwerte.
2, Er benttigt die Anzahl aller MeBwerte.

Mit der Kenntnis des Algorithmenelementes Summenbildung kann
der zentrale Algorithmus aufgeschrieben werden (Bild 28).

Bild 28:

PAP - zentraler Algorith-
mus, Summenbildung

Der zentrale Algorithmus kann zum l6senden Algorithmus ergénzt
werden, indem die speziellen Bedingungen der Eingabedaten be-
achtet werden,

- Analyse der Eingabedaten

1. Frage: Ist die Anzahl der Daten begrenzt und damit bekannt?

Antwort: Nein, Es wird deshalb notwendig, die An- -
zahl durch “Zahlen" der Eingabedaten zu
bestimmen,

2, Frage: Unterliegen die Eingabedaten bestimmten Einschrén-
kungen?

Antwort: Ja. MeBwerte sind positive Werte., Ein nega-
tiver Wert entspricht dem Schlufzeichen,
Die Eingabedaten sind also zu prifen, ob
sie negativ sind., Bei negativer Eingabedate
.ist die Summenbildung abgeschlossen.

- Grobkonzept des iésenden Algorithmus

Das zusammenfassende Durchdenken aller Forderungen fihrt zu

1. Daten einzeln einlesen;
2. Eingabedate prifen, ob sie negativ ist;

3. Positive Werte aufsummieren und zdhlen;
4, Zu 1, zurick,

Diese Form stellt ein grobes Konzept der Lésung dar. Das
Aufschreiben des Grobkonzeptes in einem Programmablaufplan
(PAP) ist die erste Stufe zum ldsenden Algorithmus. Davon
ausgehend wird der Algorithmus schrittweise erganzt, bis er
der Aufgabenstellung voll entspricht.

START
.p‘,-¢

n:=¢g

L E @ X
X<p@e.
¢ 2

nein ‘
Bild 29:

PAP Mittelwertbildung

Die weiteren Ergénzungen des Grobkonzepts laufen darauf hin-
aus, daB zu uUberlegen ist, was zu geschehen hat, wenn der
SchluBwert der Daten eingegeben wurde. Nun, dann sind alle
positiven MeBwerte schon in die Summe gebracht worden und
in n wurde gezdhlt, wieviele positive Werte in S summiert
worten sind, Damit ist im Falle der Erkennung des SchluBwer=-
tes der Mittelwert durch

X = 'S/n zu berechnen und auszugeben.
Somit ergibt sich der im Bild 29 dargestellte PAP zur Aufga=-
benstellung Mittelwertbildung als Ldésung.

3.2, Verallgemeinerung der Lésungsfindung

Gefunden wurde die Lésung im Abschnitt 3.1, durch zwei An-
satze, Der erste Ansatz besteht darin, daB fir das zentrale
Problem ein Algorithmus vorliegt. Oftmals findet man ihn in
der mathematischen Formulierung des zentralen Problems. Damit

ist dieser Ansatz nicht so unreal, wie er vielleicht erschei-
nen mag. Fur viele praktische Probleme liegt die mathemati-
sche Formulierung vor.

Der zweite Ansatz besteht in der notwendigen Kenntnis einiger
Algorithmenelemente, Dieser Sachverhalt ist typisch fir die
rechentechnische Bearbeitung von Aufgabenstellungen, Die Lé=~
sungsfindung ist stark vom Kénnen des Programmierers abhéngig,
von: der Kenntnis vieler Algorithmen.

Die nachfolgenden Obungen dienen dem Zweck, mbglichst viele
Grundalgorithmen kennenzulernen, die dann in komplexere L&-
sungen einflieBen konnen.

Allgemein kann folgender Verfahrensweg zum Auffinden eines
lésenden Algorithmus angegeben werden:

1. Analyse der Aufgabenstellung hinsichtlich ihrer zentralen
Probleme und deren mathematischen Darstellung

2, Formulieren der zentralen Algorithmen

3. Analyse der Eingabedaten

4, Darstellung des Grobkonzeptes im PAP

5. Erganzung des. PAP zum ldsenden Algorithmus

6. Aufschreiben des Programms.

3,3, Ubungen zu einfachverzweigten Algorithmen

Beigpiel 1: Einem Rechner werden als Eingabedaten Stickzahlen
und Stickpreise eingegeben. Die Reihenfolge ist
die, daR zuerst immer die Stickzahl einer Waren-
position und danach der zur Warenposition gehd-~
rende Stuckpreis ‘eingegeben wird. Das Ende der
Daten ist eine negative Stiickzahl,

Es ist ein Algorithmus zu entwerfen, der nach jeder Waren-
positionseingabe diese adsgibt, den Preis der Position be-
rechnet und diesen sowie zum SchluB den Gesamtpreis der Lie=-
ferung ausgibt,

- Analyse der Aufgabenstellung

Ein bekannter Algorithmus liegt nicht vor. Man kann sich je-
doch schnell die mathematische Formulierung des Problems
tberlegen,

Der Preis fir jede Warenposition ist:

P = Stickzahl mal Stuckpreis
P =nx p.

Der Gesamtpreis der Warenlieferung ist dann die Summe aller
Warenpositionspreise:

G

P, + P

1 2 + P3 + eoe *+ Pi

mit P, = Preis der 1, Warenposition
P

2 ‘Preis der 2, Warenposition usw,

- Formulieruhg des zentralen Algorithmus

Der zentrale Algorithmus ist im wesentlichen durch die Sum-
menbildung bestimmt.

r 6:=40
- E:nj
L po anar- Bild 30:
) E PAP - zentraler Algorithmus
r GG Rechnungslegung

Mit der Eingabe von n und p, deren Multiplikation zu P und
der Summenbildung aller P ist die wesentliche Struktur des
Algorithmus bestimmt,

- Analyse der Eingabedaten

Die Stiickzahlen .und Stickpreise, die als solche verarbeitet
werden sollen, sind hositive Zahlen, Das SchluRzeichen der
Daten bildet eine negative Stickzahl, Somit ist jede Stick-
zahl daraufhin zu prifen, ob sie negativ ist. Erst wenn klar
ist, daB die aktuell eingegebene Stiickzahl positiv ist, darf

ein Stuckpreis zur Eingabe kommen.

- Darstellung des Grobkonzepts

1. n einlesen
2, n prufen, ob negativ
3., Wenn n positiv, p einlesen

4, P bilden
5. G bilden
6. 2Zu 1, zurick
L G:-ﬂ
o
+ E:n
t n<pe ;o
. ————
nein Bild 31:
T E:p PAP - Grobkonzept
Rechnungslegung
L Pi=nwp
] G::Gfp

- Ergidnzung des PAPs zum lésenden Algorithmus

Die notwendigen Ergénzungen betreffen in diesem Beispiel die
Gestaltung der Ausgabe. Laut Aufgabenstellung ist die Eingabe
von n und p zu quittieren, die Ausgabe von P vorzunehmen und
das Endergebnis von G anzuzeigen,

Die Ausgabe von n,p und P muB, da alle Positionen ausgegeben
werden sollen, innerhalb der Schleife erfolgen., Die Ausgabe
von G darf erst erfolgen, wenn die Summenbildung beendet ist,
also muB diese Ausgabeanweisung im ja-Zweig der Programmver-’
zweigung stehen, Die Lésung zeigt Bild 32,

- Das BASIC-Programm

Bevor das zugehérige BASIC-Programm aufgeschrieben werden
kann, missen noch zwei Erweiterungen der im Heft 2, Abschnitt
2.4.1.,kdargeste11ten Mdglichkeiten des BASIC-Interpreters zur
Gestaltung der Ausgabe genannt werden. '

Im Prinzip gilt, dap jede neue PRINT-Anweisung in einer neuen

(‘srAnT)'

+ G:=¢

L E:n
3 n<ﬂf.’—_ja

nein
o E;P
A:njp
L P=nep T+ A:6
+ A:P
G:= 6¢P

—

Bild 32:

PAP zum Algorithmus
STOP Rechnungslegung

Bildschirmzeile realisiert wird, Dieses Prinzip wird aufge-
hoben, wenn die letzte PRINT-Anweisung vor der aktuellen mit
einem Semikolon abgeschlossen wurde.

Beispiele: 118 PRINT "BASIC"
12@ PRINT “INTERPRETER®

.
.

Dieses Beispiel gibt die Bezeichnung in zwei
Zeilen aus, namlich
1. Zeile BASIC
2. Zeile INTERPRETER
112 PRINT "BASIC";
120 PRINT "=-INTERPRETER"

Dieses Beispiel gibt die Bezeichnung in einer
Zeile aus, namlich

1. Zeile BASIC - INTERPRETER

10

Der BASIC-Interpreter gestattet auch die Ausgabe ab einer ge-
wiinschten Position innerhalb einer Zeile. Die Zeile des Bild-
schirms ist in die Positionen O ... 64 eingeteilt,
Mit der Anweisung

13@ PRINT TAB (4@2); “"ABC"
wird das A auf die Position 41 der Zeile

das B auf die Position 42 der Zeile

das C auf die Position 43 der Zeile geschrieben.

Das BASIC-Progremm fur den Gesamtpreis kann nun folgenderma-
Ben aufgeschrieben werden:

10 REM RECHNUNGSLEGUNG

20 REM EINGABE-VARIABLEN : N, P
30 REM AUSGABE-VARIABLEN : P1, G

40 G=0

50 PRINT "EINGABE - N "

60 INPUT N

70 IF N<O THEN 150

80 PRINT "EINGABE — P "

90 INPUT P

100 PRINT N;" STK";P;" M";

110 P1=N*P

120 PRINT TAB(30);P1;" M"

130 G=G+P1

140 GOTO 50

150 PRINT "GESAMTPREIS ";TAB(30);G;" M"
160 STOP

Bei der Abarbeitung des Programms entsteht entsprechend den
Eingabedaten folgendes Ergebnisprotokoll:

. auf dem Bildschirm ein . auf dem Drucker (nach
Eingabe~Ausgabe-Dialog: Programmveriénderung)
’ eine Ergebnisliste:
RUN
EINGABE - N
1000
EINGABE — P BASIC
.02
1000 STK .02 M 20 M
EINGABE - N ERGEBNISLISTE
130
EINGABE - F 1000 STK .02 H 20 M
wru PO Ky
EINGABE - N GESAMTPREIS 303 M

200

1

EINGABE - P

1.1

200 STK .7 M 140 M
EINGABE - N

-1

GESAMTPREIS 303 M

STOP LINE 160

Beispiel 2: Als Ubungsbeispiel soll vom Inhalt eines Speicher-
platzes mit dem Namen X der Sinus berechnet werden..
Die Berechnung soll nach der unendlichen Rgihe
. 3 5 7
o _x _x X~ _x -
Yy =S8in X =y - ITHET-TT 7 e

erfolgen, Das Ergebnis ist im Speicherplatz Y ab-
zulegen, Die Berechnung der Reihe soll abgebrochen
werden, wenn ein Summenglied betragsmdBig kleiner
als eine vorgegebene Schranke wird,

- Analyse der ‘Aufgabenstellung

In der Aufgébenstellung ist die mathematische Formulierung des
Problems schon gegeben. Man kodnnte nun ausgehend von der Ein-
gabe von x die einzelnen Summenglieder

X . x> . x> . usw

TT 73T P BT G ousw.
berechnen und alle Summenglieder vorzeichenbehaftet summieren.
Dieses Vorgehen kostet jedoch sehr viel Rechenzeit, da zum
Beispiel x5 berechnet wird, als wére nicht gerade zuvor.x3 be-
rechnet worden. Somit soll die Aufgabe so geldést werden, daB

der neue Zuwachs aus dem jeweils alten berechnet wird.
Es soll also

'%T aus %T berechnet werden und

5
57 Eus -%T berechnet werden usw,

Um diese Forderung realisieren zu konnen, muB man davon aus-
gehen, daB

12

1! (Eins-Fakultat) definitionsgem3B gleich 1 ist

2! (Zwei~-Fakultét) 'definitionsgeméR gleich 1 . 2 ist

31 (Drei-Fakultdt) definitionsgemsB gleich 1 - 2 « 3 ist also

nt (n=-Fakultat) definitionsgemsR gleich 1 « 2 ¢ 3 o ,,, o n
ist.,

Somit kann man

31 aus 11 durch Multiplikation mit 2 . 3 erhalten

$1 aus 3! durch Multiplikation mit 4 , 5 erhalten

7! aus 51 durch Multiplikation mit 6 ., 7 erhalten.

Allgemein erhzlt man
(n+2) ! aus n! durch MultiplikaFion mit (n+1) .(n+2).

Die Potenzen von x errechnet man &hnlich. Man erhalt

-x3 aus x durch Multiplikation mit -x

x> aus -x> durch Muitiplikation mit -x
-x’ aus +x$ durch Multiplikation mit -x“ und
allgemein) \

1
:x"+2 aus ;xn durch Multiplikation mit -x2

1
Um ein neues Summenglied aus dem' jeweils alten zu berechnen,
muB also
2

_ ~X
Zneu = Zalt . m gerechnet werden.

Sorgt man dafiir, daR der erste alte Zuwachs (Summenglied)
gleich dem Eingabewert x ist und n mit dem Viert 1 beginnt,
so ist der erste neue Zuwachs

z = x -Xz __Xs_.‘x3 '
neu * +1) . (1+2) 28 1

- Formulierung des zentralen Algorithmus

Der zentrale Algorithmus besteht darin, daB alle Summenglie-
der (Zuwachs) aufsummiert werden und jedes neue Summenglied

(Z) sich aus dem zuvor berechneten (Zalt) ergibt

neu

13

r E: X
- S5:=f
t 2:=X
+ n:=1
1t S=5+7
; Bild 33:
. -x? PAP - zentraler Algorithmus
-2 T Z () (mz) Sinusbildung
T Nn:zn+2

- Analyse der Eingabedaten

Als Eingabedaten sind in diesem Beispiel der Wert einzugeben,
von dem der Sinus zu bilden ist und der Prifwert e (Epsilon);
Er wird bendtigt, um die Summenbildung abzubrechen, wenn ein
neu berechneter Summenzuwachs betragsmdBig kleiner als ¢ wird,
wahlt man e als Zehnerpotenzen z. B. 0,01; 0,001 oder 0,0001,
so wird der Sinuswert als richtig angesehen, wenn keine Ver-
anderungen an der 2., 3. oder 4, Ziffernstelle mehr erfolgt.

- Formulierung des Grobkonzeptes

1. Eingabe von x und €
2, x-Wert zum ersten Z erklaren
. 3. Prifen, ob Z-Betrag <¢
4, Summe bilden, wenn |Z| > oder = ¢
5. 2 berechnen

neu
6, Zurick zu 3,

Die notwendigen Erginzungen zum ldsenden Algorithmus sind:

1, Die Erhdhung von n um 2 in jedem Durchlauf, um die Be-
rechnung des neuen Zuwachs vorzubereiten und

2. Das Ablegen der Summe in den Speicherplati Y, wenn die
Prifung des Z-Betrages ¢¢ ergibt,

14

+ E:E;X
L s;gn
F Z:=X
- nN:=1
L 1ZI<€E2 5,
nein
[5:=5+Z
1 z. _xz
b .-Z'(n‘,”.(n'z)
.I-Ylts
T N7 ne2 Bild 34:

PAP

Sinusbildung
(sTOP)

- BASIC-Programm
10 REM SINUSBILDUNG

20 REM E = PRUEFGROESSE EPSILON
30 REM X = EINGANGSVARIABLE
40 REM Y = AUSGANGSVARIABLE

50 PRINT "EINGABE X E"
60 INPUT X,E

70 S=0

80 z=X

90 N=1

100 A=ABS(Z)

110 IF A<E THEN 160
120 S=S+Z

130 Z=-X*X*Z/((N+1)*(N+2))
140 N=N+2

150 GOTO 100

160 Y=S

170 STOP

Aufgaben zu einfachverzweigten Algorithmen

Fur die folgenden Aufgaben ist als Lésung immer der Algorith-
mus in seiner grafischen Darstellungsform als PAP und das
BASIC=-Programm gefordert,

15

A 12,

Al13.4,y

A13,2.y = " 14+

Einem Rechner werden laufend iUber die Tastatur MeBwerte
eingegeben. SchluBzeichen ist eine -1. Die MeBwerte sind
positiv. In einem Programm soll jedoch nur immer jeder
2, MeBwert zur Bildung des arithmetischen Mittels heran-
gezogen werden.,

Gebildet werden soll n-Fakultidt, Die ganze Zahl n wird
tuber die Tastatur eingegeben, Sie ist immer gréBer oder
gleich 2.n!1, n-Fakultadt soll i(ber Bildschirm ausgegeben
werden.,

Hinweis: n! = n.(n=1).(N=2)e o.. «(2).(1)

Es ist das Skalarprodukt zweier Vektoren X und Y zu
bilden. Skalarprodukt = Xy oY #X5eYo+XgeYgH v

Die Daten X0 Yy werden dem Rechner iUber Tastatur einge-
geben, Stets werden Wertepaare eingegeben. Nur zum SchluB

"folgt einzlig die Eingabe des Wertes -1 als SchluBzeichen.

Wie Aufgabe A 10 mit folgender Dateneingabe. Als erste
Eingabe erfolgt die Angabe der Anzahl der Wertepaare

Xgo¥ge Dann folgen die Wertepaare x, und Yy ohne SchluB-~

i
zeichen,

wie Aufgabe A 10 mit folgender Dateneingabe. Es ist be=-
kannt, daB nur 10 Wertepaare vorliegen. Die 10 Werte-
paare werden iber Tastatur eingegeben,

Mit dem Inhalt des Speicherplatzes X soll jeweils die
unten angegebene Funktion berechnet werden, Das Ergeb-
nis ist im Speicherplétz Y abzuspeichern, Die Rechﬂung
soll abgebrochen werden, wenn ein Summenglied betrags-

m&Big kleiner als 1073 wird.

x
o

cos X

n
-
]
oM
+
=
1
9
+
)
.
:
:

X2 X

!+-2—!l+-ﬂ:‘- eee
3 5

n

(]

[}

lx
(7]

)

X

A 13,3,y = arctan x = = - X 4 = =+ ... for Xl <1

1 3

3.4, Obungen zu mehrfachverzweigten Algorithmen

Mehrfachverzweigte Algorithmen entstehen in der Praxis h&u=-
fig dann, wenn anfallendes Datenmaterial nach unterschied-
lichen Gesichtspunkten untersucht werden soll.

Beispiel 1: Der in Bild 35 gezeigte Algorithmus sortiert die
Eingabedaten so, daB alle positiven Eingabedaten eine Ausga-
befolge bilden und alle negativen Eingabedaten ebenfalls eine
eigene Ausgabefolge bilden, Beim Eingeben einer @ wird der
Algorithmus gestoppt.

(sTART)

- E:2
X z..¢g .
Ja
nein
L Z Y P2
Ja
nein

L A:Z r A:Z

Bild 35:

PAP

Sortieren von Zahlen
sTOP nach dem Vorzeichen

Im BASIC~Programm ist darauf zu achten, daB die Ausgabe
moglichst Ubersichtlich gestaltet wird. Die sortierten Fol-
gen sollen unter den Uberschriften “POSITIV" und "NEGATIV"
untereinander angezeigt werden,

Folgendes BASIC-Programm erfillt diese Forderung:

10 REM SORTIEREN VON ZAHLEN

20 REM NACH IHREM VORZEICHEN

30 REM

40 PRINT TAB(40);"POSITIV";TAB(50);"NEGATIV"

50 INPUT Z

60 IF Z=0 THEN 90

70 IF Z>0 THEN PRINT TAB(43);Z ELSE PRINT TAB(53);%Z
80 GOTO 50

90 STOP

17

'Beisgiel 2: Fur die Planung von Investitionen interessieren
in einer Hauptabteilung die Verteilung der anfallenden Ar-
beitsginge. Zu .diesem Zweck wird einem Rechner die Arbeits-
gangfolge fir jedes zu fertigende Einzelteil kodiert einge-
geben. Zur Ubung sollen nur die Arbeitsgiénge

Ségen, Hobeln, Frasen, Drehen, Bohren und Schleifen

verwendet werden. Die kodierte Eingabe erfolgt durch
SG fur Séagen

HO * Hobeln
FR Frasen
DR " Drehen
BO * Bohren
SL Schleifen.

Gesucht ist ein Algorithmus, der die Anzahl jedes Arbeits-
ganges und seinen propzentualen Anteil an der untersuchten Ge-
samtzahl aller Arbeitsginge bestimmt, Die Eingabe von "EN"
soll zum STOP fuhren,

« Analyse der Aufgabenstellung

Das zentrale Problem besteht darin, daB jede Eingabe darauf-
hin zu untersuchen ist, um welchen Arbeitsgang es sich handelt.
Dafiir existiert kein bekannter Algorithmus, aber es wird sofort
klar, da® mehrmaliges "Nachfragen" die Aufgabe 16$t.

18

Der zentrale Algorithmus

E:AQ
t Ag ="s6"2
? Ja
nein .
- AR = "HD"2
Ja
nein i .
+ AW = "FRR2
ja
nein ? ~ .
} A = "DR"C
) Ja
nein o
- AR = BD? Bild 36: }
nei | S Zentraler Algorithmus
ein zur
1 Al ="a"2 Arbeitsgangerkennung

Ja
nmn‘

Fir jeden Arbeitsgang kann nun im jeweiligen Ja-Zweig des
Algorithmus nach Bild 36 sein Auftreten gezdhlt werden. Somit
sind alle Voraussetzungen geschaffen, um auch den prozentualen
Anteil jedes Arbeitsganges zu bestimmen, denn es gilt zum Bei~-
spiel fur den Arbeitsgang Frésen:

Anzahl FR

prozentualer Anteil FR = T 51Ter ATBSITsgange * 198,

. Analyse der Eingabedaten

Die Behandlung der Eingabedaten entsprechend dem Algorithmus
in Bild 36 ist daraufhin zu ergénzen, daB® die Eingabe von
"EN" erkannt wird und zum STOP des Algofithmus fohrt. Fehler-
hafte Eingaben werden nicht "behandelt"., Findet der Algorith-
mus keine der definierten Eingabedaten, so werden immer nur
die Nein-Zweige durchlaufen. Am Ende. der Nein-Zweige ist des~-
halb eine Ausgabe "Fehleingabe" angebracht,

. Darstellung des Grobkonzepts im PAP

START

51 := H:=F:=D:=B:= 52 ::w

(sToP)

« Erganzung des PAPs zum lésenden Algorithmus

+ E:AR
AR ="EN"2
Ja
nein AL = "66° 2
Ja
nein [-
L AX = "HO® 2 1651:=51| -
Ja +1
nein
+ AR = "FR"Z +H:=H
Ja *
nein .
AR = "DRZ 1 F=F
Ja
nein AK = 'fBD'_a lp=
_ Ja
nein Al‘(- 5‘.‘8 ..B:=BM
Ja
nein
152:=52
R
A:Fehlein-~
gabe
Bild 37: PAP-Grobkonzept Arbeitsgangverteilung

Noch nicht gelést ist die Aufgabenstellung hinsichtlich der
Berechnung des prozentualen Anteils und der Ausgabe der Er-
gebnisse, In bezug auf die Ausgabe bestehen zwei prinzipiell
unterschiedliche Moglichkeiten, Da die Aufgabenstellung dazu
keine Aussage macht, sollen beide erliutert werden.

1. Moglichkeit: Die Ausgabe erfolgt nach jeder bearbeiteten

20

Eingabe. Das bedeutet, die Berechnung dee prozentualen An-
teils muB innerhalb der Schleife erfolgen, ebenso die Ausgabe
(Bild 38).

2, Mbglichkeit: Die Ausgabe erfolgt nur bei Endezeicheneingabe
“EN", Dann wird die Berechnung des prozentualen Anteils nur’
einmal im STOP-Zweig realisiert., Ebenso die Ausgabe. Im lésen-
den Algorithmus soll diese Variante zum Einsatz kommen (Bild 39).

(START)

4 951 :=H:=F:=D:=B:=92 :=¢.

- E: AN

1 Al ~"EN
Ja

® Abfragen und
® zéhlen

L Ag s,
24 ’

nein

4 A: Fehlein-
- qgabe

- A: 51;H;F;D; B; 52

F 9 =S1+H*F+D+B+52
L S1:=51/5 » 199

H/ & * 190

F/5 % 4

o/ 5 *4’%

=8/5 * Apf
T S2:=52/9 * Apf

H~
t F:
D :
8 :

+ A:51;H;F;D; B; 52 Bild 38:

PAP

sTOP Ausgabe in der
Schleife

21

41 81:=H:=F:=D:=B :=92 =¢
L E:AHR
L AR ="EN"2 _
A : a
emn
"Rl AR =562
) Ja
nemn
AR = "HO"2
. Ja 51 I
nein T2
F AR = "FR“z, 51¢+1
nein da 4 H:=
L Ax = "DR"2 H* |
_ ja len TA:S1, K,
L AlX = "80 2 15:251+H
. lp:= +F+D+B+952
nein . D+4
L AR =75L"2 151 := S1%4pp
) Ja 4B:= Ht,fm_
nein ‘ B+1 1H:= s
L A: Fehlein- 4-52:=
gabe 5241 F= F ¥ 10¢
’ 5
D DX
L D : 5
g DX
)
52.=M
S
L A: S H;F;
D; 85
(STOP >
Bild 39: PAP - L&sender Algorithmus Arbeitsgangverteilung

22

- Das BASIC-Programm

Im BASIC~-Programm wird der Cestaltung des Mensch-Rechner-Dia-
loges besondere Beachtung geschenkt, Aus der Sicht des Pro-
grammnutzers stellt sich das Programm in zwei Teilen dar,

1, Teil: Eingabedialog (mit Zidhlen, aber das ist fir den
*Nutzer schon sekundir)

2. Teil: Ausgabebildgestaltung.

Im PAP nach Bild 39 ist schon auf die Méglichkeit der Fehl-
eingabe eingegangen. Die Aussage des Rechners soll im BASIC-
Programm noch verfeinert werden, indem in diesem Fall folgende
PRINT-Anweisung eingegeben wird:

Znr PRINT “FEHLEINGABE . ! «u SIE ., HABEN: *; A}
Znr PRINT "EINGEGEBEN" ‘
Znr PRINT "“GEBEN v« SIE s ERNEUT o, EIN"

Da der Eingabedialog auf dem Bildschirm mit verbleibt (proto-
kolliert wird) soll im Falle der Eingabe von “"EN" (Schlufzei=-
chen) der Bildschirm geléscht werden. Das erfolgt durch die
Anweisung

Znr PRINT CHR ¥ (12)

Der Bildschirm wird mit Leerzeichen “vollgeschrieben", also
geléscht, Danach steht nun der gesamte Bildschirm zur Gestal=-
tung der Ausgabe zur Verfiigung. Folgendes Ausgabebild wird
durch das nachfolgende Programm realisiert,

¢

ARBEITS=- ABSOLUTE PROZENTUALER
GANG ANZAHL ANTEIL
SAEGEN x x
HOBELN x x
FRAESEN x X
DREHEN x x
BOHREN x X
SCHLEIFEN X X

An die Stellen x werden die aktuellen Zahlenwerte geschrieben,

23

240
250
260
270
280
290
300
310
320
330
340
350
360
370
375
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

REM PROGRAMM ARBEITSGANGVERTEILUNG
REM EINGABEVARIABLE : An
REM MOEGLICHE EINGABEN : SG, HO, FR, DR,

REM

REM ~ EN - IST SCHLUSSZEICHEN

REM

BO, SL, EN

REM EINGABEDIALOG

- REM

S1=0 :
PRINT

H=0 : F=0 : D=0 : B=0 : S2=0
"EINGABE DER ARBEITSGAENGE"

DIM Ar=2

INPUT

An

IF Aa="EN" THEN 360
IF An="SG" THEN 240
IF Aa="HQ" THEN 260
IF Au="FR" THEN 280
IF An="DR" THEN 300
IF An="BO" THEN 320

IF Am=

PRINT
PRINT
PRINT

"SL" THEN 340

"FEHLEINGABE ! SIE HABEN : ";An
"EINGEGEBEN"

"GEBEN SIE NEU EIN"

GOTO 120
S1=51+1
GOTO 120

H=H+1

GOTO 120

F=F+1

GOTO 120

D=D+1

GOTO 120

B=B+1

GOTO 120
S52=52+1
GOTO 120

REM

REM AUSGABEGESTALTUNG

PRINT

CHRm(12)

S= S1+H+F+D+B+S2

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT '
PRINT
PRINT
PRINT
PRINT
PRINT
STOP

"I ARBEITS- T ABSOLUTE T PROZENTUALER "
"{ GANG | ANZAHL I ANTEIL ::
" “
nln TAB(19),"|" TABZBQ) lll" TAB(58) llln

"y SAEGEN sTAB(25);81; TAB(39) R
TAB(45);S1%100/S; TAB(sé) s
" HOBELN " TAB(25);H;TAB(39);"| ";TAB(45);H*100/5;
TAB(58);"I"
" FRAESEN I1";TAB(25);F;TAB(39);" |";TAB(45);F*100/5;
TAB(58) nln
" REHEN [";TAB(25);D;TAB(39) ;" |";TAB(45);D*100/S;
TAB(58) "I"

BOHREN |";TAB(25);B;TAB(39);"|";TAB(45);
B*100/S;TAB(58);"|" \
"y SCHLEIFEN |";TAB(25);S2;TAB(39) ;" |";TAB(45);
32*100/5 TAB(58) e

24

Aufgaben zu mehrfachverzweigten Algorithmen

Gefordert wird als Lésung jeweils der ldsende Algorithmus in
Form des Programmablaufplanes und des BASIC-Programms.,

A 14.

A 17,

A 18,

In einem SortierprozeR fallen MeBdaten an, die einem
Rechner wie folgt zugefihrt werden: Xg1 Xos Xgreee,=1.
Es bedeutet:

10,95 £ x1 £ 11,05: Qualitst 1
Xi> 11,05: Qualitét 2
Xi <€ 10,95: Rucksendung
Zu berechnen ist: a) der proientuale Anteil der Rick-
sendungen

b) die Anzahl der Qualitdt 1 sowie
die Anzahl der Qualitat 2.

In einem Rechner werden Uber die Tastatur KantenmaRBe a,b
und ¢ von beliebig vielen Quadern eingegeben, SchluB-
zeichen ist eine -1, Gesucht wird:

- das Gesamtvolumen aller Quader

- die Anzahl aller Quader mit min=-
destens zwei einander gleichen
KantenmaRen,

Als Datenmaterial stehen von beliebig vielen Rechtecken
die SeitenmaBe a und b (reelle Zahlen) bereit., Schluf-
zeichen ist eine -1, Es soll berechnet und gearuckt wer-
den:

a) die Gesamtfliche F aller Rechtecke :

b) die Anzahl k der Rechtecke mit den SeitenmaBen

3 und 5 (dabei kann a = 3 und b = 5, aber auch
b= 3 und a = 5 sein).

Datenfolge: a b1, as, b2, eee 4 =1,

11
Einem Rechnér werden die Kartesischen Koordinaten x, y
von beliebig vielen Punkten einer Ebene zugefihrt,
SchluBzeichen ist -10000. Gesucht wird:

- die Anzahl der Punkte innerhalb
des 1, Quadranten

- die Anzahl der Punkte, die auf
den Achsen liegen.

Zur Planung von Investitionen wird jede Einweisung auf
die Stationen einer Klinik durch die Angabe der Stations-

25

nummer registriert. Es existieren 5 Stationen, so daB
folgendes Datenmaterial entsteht:

1,1, 3, 4, 1,5,5,4,2,2, .o , -1

Gesucht ist die Anzahl der Einweisungen je Station und
ihr prozentualer Anteil,

3.5, Algorithmen zur Arbeit mit Feldern

3.5.1, Einfuhrende Bemerkungen

Viele technische und .6konomische Probleme lassen sich durch
sogenannte Vektoren und Matrizen sehr Ubersichtlich darstel-
len und mit den fur diese mathematischen Gebilde definierten
Rechenvorschriften elegant bearbeiten, Beispielsweise kann
man die morgens, mittags und abends gemessenen Temperaturen
in den R&umen R1, R2, R3 und R4 wie folgt Ubersichtlich auf-
schreibeh:

o~ Zeit
N .

R&ume ~ _ morgens mittags abends
- -
I

R1 : Timo Timi T1a

R2 : Tamo Tomi T2a

R3 | szo T3mi T3a
|

R4 | T4mo T4m1 T4a
L

Die Ordnung ist derart, daB alle Temperaturen, die zu einem
Raum gehoéren, in einer Zeile geschrieben sind. Der erste Index
an T (Temperatur) sagt dabei, zu welchem Raum die Temperatur
gehdrt. Da 4 Raume vorliegen, hat unsere Matrix 4 Zeilen.

Alle Temperaturen, die zu einer Tageszeit gehéren, sind zu-
dem in eine Spalte geschrieben. Der zweite Index von .T sagt
aus, zu welcher Tageszeit die Temperatur gehort.

uUm von den Bezeichnungen unabhdngig zu werden, kann man
schreiben

/

. 26

Tia Ti2 Ty3
T, T, T

Temperaturmatrix = 21 22 23
Ts1 T3z Taz
T, T,, T

41 42 43

Es liegt eine Matrix von Temperaturwerten vor. Sie besteht
aus 4 Zeilen und 3 Spalten. Der Temperaturwert T:,’2 ist bei=~ -
spielsweise jener, der im Raum R3 (Zeilennummer 3) mittags
(Spaltennummer 2) gemessen wurde.,

Wie Ubersichtlich es sich mit Matrizen arbeiten 158t, sollen
zwei Algorithmen zeigen., Im ersten Algorithmus (Bild 40) wird
die Frage nach dem mittleren Temperaturwert des Raumes R2 be~
antwortet. Das wesentliche dieses Algorithmus besteht darin,
daB der Name der Variablen T1J durch konkrete Wertzuweisungen
fur 1 und j veréndert wird und damit symbolisch durch die An-
weisung i'= 2 und j = 1 der Temperaturwert T21, also der erste
Wert der 2, Zeile in die Summe S gebracht wird. Indem man i
konstant auf dem Wert 2 Hélt‘und j von 1 bis 3 variiert, wird
in die Summe S nacheinander T

217 T22, T23 eingebracht, Die ab-
schlieBende Division von S durch j bringt den arithmetischen
Mittelwert zur Anzeige.,

‘ START).

- 5:‘=¢
L =2
=

L 5:55+T()
L J =3¢

. ia

nemn .
L j1=j‘1 1 A;gvj Bild 40:
PAP zur Bildung des

Mittelwertes der
(srop) 2, Zeile

27

Im zweiten Algorithmus (Bild 41) wird die Summe der 3. Spalte
gebildet, so daB der mittlere Temperaturwert der vier Raume
am Abend berechnet wird.

Wesentlich ist auch hier, daB der Name der Variablen durch

Aktualisierung von i und j veréndert wird,

Durch j = 3 und der Variation von i werden die Variablen
T31, T32, T33 und T34 angesprochen,

{ START)

I s:p

4 j;:?,

1 =1

g = S*Tl_)
4 =42
Ja

nein Bild 41:

L= v1 T A: 5/ PAP zur Bildung des

Mittelwertes der

3. Spalte
(oTOP) -

Wahrend Matrizen zweidimensionale mathematische Gebilde sind,
sind Vektoren sogenannte eindimensionale Matrizen., Das heiBt,
eine Zeile (—» Zeilenvektor) oder eine Spalte (= Spalten=-
vektor) kann als Vektor betrachtet werden. Die Variation der
Variablennamen wird nur durch einen Index realisiert,

X = Xl, X2, x3. X4, ee ey Xi, ecey Xn

Der Index i des Vektors X zur Bezeichnung der Komponenten
lauft von 1 bis n, sagt man.

28

3.5.2, Realisierung von Vektoren und Matrizen im Speicher
des Rechnerarbeitsplatzes

7

Der BASIC-Interpreter sichert die Ablage von Vektoren und Ma=-
trizen im Arbeitsspeicher des Rechnerarbeitsplatzes wenn man

im Programm die GréBe des Vektors oder der Matrix dimensioniert,
Das geschieht mit der Anweisung.

Znr DIM variabienname groBter grédter)

‘\Zeilenindex, Spaltenindex
Beispielsweise wiirde die Anweisung
20 DIM T (3,2)

insgesamt 12 = (3+1) . (2+1) Raalspeicherplétzg im Arbeits-
speicher reservieren, Die einzelnen Speicherplétze, haben fol-
gende Namen :

(2.9, T(2,1), T(P,2), T(1,9), T(1,1), T(1,2)
T(2,8), T(2,1), T(2,2), T(3.,8), T(3.,1), T(3,2).

Der Interpreter beginnt also mit dem Index @, Das stiftet zu=-
weilen Verwirrung, da das in der mathematischen Beschreibung
uniblich ist. Man muB sich darangerst gewdhnen. '

DaB der Interpreter im obigen Beispiel 12 Realspeicherplétze
reserviert, liegf an dem Variablennamen.

Die Anweisung \

2p DIM T% (3,2)

wiirde 12 Integerspeicherpiétze mit den Namen T%(@,P) .. .T%(3,2)
bereitstellen und die Anweisung

2@ DIM Tx (3,2) 12 Stringpléatze mit den Namen

™™ (P.P)...TH (3,2). Dabei hat jeder Stringplatz eine Kapa~
zitdt von 120 Byte. Soll diese ‘Kapazitédt variiert werden, so
wirde

29 DIM TH (3,2) = 19

die Kapazitédt jedes TH (i,j) auf 1@ Bytes beschridnken und die

29

Anweisung
28 TIMTH (3,2) = 189

die Kapazitéit,jedes TH (i,j) auf 18@ Bytes erhsher.

- Programm zum Einlesen einer Matrix

2p,3 21,90 29,8

: 19,7 21,2 19,8

Die Matrix T = 18:3 ‘2¢:3 2¢:3
20,8 22,1 21,8

soll im Rechnerarbeitsplatz géspeichert werden; sie besteht
aus 4 Zeilen und 3 Spalten. Zu dimensionieren ist also

Znr DIM- T (3,2).

Foigendes Programm realisiert die zeilenweise Eingabe der
Matrix:

10 DIM T(3,2)

20 I=0

30 J=0 ,

40 PRINT "BINGABE VON T(";I;",";J;")n
50 INPUT T(I,J)

60 IF J=2 THEN 90

70 J=J+1

80 GOTO 40

90 IF I=3 THEN 120

100 I=I+1 ‘

110 GOTO 30

120 PRINT "EINGABE BEENDET"
130 STOP

Das Programm realisiert folgenden Dialog:

Anforderung des Rechners Reaktion des Nutzers
EINGABE VON Eingeben von
T (2.92) 20,3

T (2,1) 21,9

T (8.,2) 29,8

T (1,9) 19,7

T (1,1) 21,2

T (1,2) 19,8

T (2,9) 18,3

T (2,1) 20,3

T (2,2) 20,3

T (32,2) 20,9

T (3,1) 22,1

T (3,2) 21,9

EINGABE BEENDET

30

Nach der Abarbeitunb des Einleseprogramms stehen nun die
Matrixelemente 2¢,3 ... 21,8 in den Feldelementen T(Z,8) «..
T(3.2).

Die Feldelemente (Feldvariablen) sind in Programmen genau so
verwendbar, wie die schon bekannten einfachen Variablen.

Es ist nur darauf zu achten, daB die Indizes immer einen kon-
kreten Wert haben missen, In dem Programm

10 DIM T(3,2

20 c=1(I, J5+T(K 1)

30 sToP

ist zum Beispiel unklar, wie gro® I, J, K und M sind. Demzu-
folge ist nicht klar, welche Feldelemente zu addieren sind.

Iim folgenden Programm dagegen ist alles klar:

10 DIM T(3,2)
20 I=1
30 J=2
40 K
50 M
60

=0

=2

=T(I,d)+T(K,H)
70 STOP

Hier wird die Addition von T(1,2) und T(@,2) realisiert und
das Ergebnis auf dem Speicherplatz C abgelegt.

Als Beispiel soll im AnschluB an das Einleseprogramm die mitt-
lere Temperatur des Raumes R2 berechnet werden., Der Algorith-
mus dazu ist im Bild 40 angegeben, Im BASIC-Programm ist zu
beachten, daB die Indizes der Feldelemente stets um 1 niedri-
ger sind, als im PAP angegeben. Die Temperaturen des Raumes

R2 stehen in den Feldelementen T(1,9), T(1,1), T(1,2).

In der Ausgabeanweisung muB die Summe S-durch J + 1 dividiert
werden, da 3 Temperasturwerte in die Summe gebracht werden,

31

10 DINM T(3,2)

20 I=0

30 J=0

40 PRINT "EINGABE VON T(";I;" ,";J;")"
50 INPUT T(I,J) ’
60 IF J=2 THEN 90

70 J=J+1

80 GOTO 40

90 IF I=3 THEN 120

100 I=I+1

110 GOTO 30

120 PRINT "EINGABE BEENDET"

130 5=0 ’

140 TI=1

150 J=0

160 S=S+T(I1,J)

170 IF J=2 THEN 200

180 J=J+1

190 GOTO 160

200 PRINT "R2-MITTEL =";S/(J+1)
210 STOP

- Algorithmus zur Maximumsuche in einem Vektor

Ein Vektor ist eine eindimensibnale Matrix. Der Vektor ent=-
spricht in der Rechentechnik also einem eindimensionalen Feld.,
Durch die Anweisung

Znr DIM X (19)

werden im Arbeitsspeicher des Rechners 11 Realspeicherpléatze
mit dem Namen

X(8), X(1), X(2), X(3), X(4), X(5), X(6), X(7), X(8), X(9) und
) X(12)

bereitgestellt, Die Namen der Feldelemente des Vektors X durfen
nicht mit dem Namen der einfachen Variablen Xi, X2, ..., X9
verwechselt werden. Diese sind neben den Feldelementen zur
Nutzung in Programmen zugelassen.

Als Beispiel soll angenommen werden, daR 1P beliebige reelle
Zahlen vorliegen, von denen das Maximum zu bestimmen ist,

Die 1P reellen Zahlen sollen in ein Feld eingelesen und an-
schliefend durdhgemustert werden. Anzugeben ist der Index des
Maximalelements und der Wert des Maximums.

32

Das Einleseprogramm ist relativ einfach:

10 DIM X(9)

20 I=0

30 PRINT "EINGABE VON X(";I;")"

40 "INPUT X(I)

50 IF I=9 THEN 80

60 I=I+1

70 GOTO 30

80 PRINT "EINGABE BEENDET"

Komplizierter ist das Suchprogramm, um den Maximalwert und

dessen Index zu finden. Eine Moglichkeit wére:

1, Man nimmt die erste Zahl, das ist das Feldelement 'X(9),
und sagt: Das ist das Maximum, Dazu schreibt man sich Wert
und Index auf ein Blatt Papier,

2. Man nimmt nun X(1) und vergleicht mit dem Maximum, ist X(1)
gréBer als das Maximum, dann streicht man dieses Maximum
und sagt: X(1) ist das Maximum., Ist X(1) aber kleiner oder
gleich dem Maximum, so behdlt man X(@) als Maximum bei.

3, So verfahrt man mit allen Feldelementen, zum SchluB steht
der Wert und der Index des Maximalelements auf dem Papier.

In Bild 42 ist der Algorithmus in Form des PAP aufgeschrieben.

(5TART)

| Einleseprogramm

max := X(@)
L K:=0
Lt J:=1

L X(J) > mox?
) npein

ja Bild 42:

L max:= X(3J) :)

y PAP - lésender Algorith-
L K=173 mus zur Maximumsuche in
einem eindimensionalen
Feld mit 19 Feldelementen

33

Dan

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

3.5

J=92
Ja

Je31 L AXOGK

(‘'srop)

ach lautet das vollstidndige BASIC-Programm:

REM MAXIMUMSUCHE IH VEKTOR X(9)
DIM X(9)

‘I=0

PRINT "EINGABE VON X(";I;")"
INPUT X(I)

IF I=9 THEN 90

I=I+1
GOTO 40
PRINT "EINGABE BEENDET"
M=X(0)

K=0

I=1

IF X(I)>M THEN 150

GOTO 170

=X (1)

K=I

IF I=9 THEN 200"

I=I#+1

GOTO 130

PRINT "MAXIMALWERT =";X(K);" INDEX =";K
STOP

Die
3.5
Gru

1.

2.

.3, Laufanweisung

bisherigen Uberlegungen und Beispiele des Abschnitts
.2, fuhrten auf Algorithmen, die .im wesentlichen folgende

ndstruktur hatten:

Variable, die als Indizes von Feldelementen dienten, wurden

auf einen Anfangswert gesetzt,

Mit dem damit festgelegten Feldelement wurde entsprechend

der konkreten Aufgabe “"gearbeitet”.

. Beispiele dazu sin&:

- Mit Wert versehen im Einleseprogramm;

- vergleichen mit Maximalwert bei der Maximumsuche;
- in die Summe gebracht beim Mittelwertbilden.

)

34

3. Das unter 2, angegebene "Verarbeiten” wurde schritt-
weise fiur alle Feldelemente realisiert, bis der Index
den Endwert erreicht hat, '

Diese allgemeine Struktur ist im Bild 43 nochmals dargestellt,

(START) Fur diese Struktur kennen

. alle problemorientierten
. Programmiersprachen eine
1 .= An spezielle Anweisung, die
Index Anfanqswert sogenannte Laufanweisung.
. Sie hat im allgemeinen
s | Verarbeitung der folgende Form:
» | Feldelemente
. FOR Laufvariable = Anfangs-
4 2 i wert
Index = Endwert ¢ BIS zum Endwert
. L] IN SCHRITTEN der Schritt-
nemn weite
MACHE: Anweisung 1 °
1 Index:= Jn-: Anweisung 2
. . . '
dex + Schritt .
weite Anweisung n
STOP ENDE der Laufanweisung

Bild 43: PAP - allgemeine Struktur der Feldverarbeitung
‘ .
In BASIC hat die Laufanweisung folgende allgemeine Form:
Znr FOR Laufvariable = Anfangswert TO Endwert STEP Schrittweite

Znr Anweisung 1
. .
L] .
Znr Anweisung n

Znr NEXT Laufvariable

Als Beispiel soll das Einleseprogramm fir den Vektor X(9) aus
Abschnitt 3,5.2, nochmals arigegeben und unter Verwendung einer
Laufanweisung umgeschrieben werden,

10 REM EINLESEPROGKAMM

20 REM SO WIE BISHER

30 DI X(9)

40 I=0 4

50 PRINT "EINGABE VON X(";I;")"

60 INPUT X(I)

35

70 IF I=9 THEN 100

80 I=I#1

90 GOTO 50

100 PRINT "EINGABE BEENDET"

Nun das gleiche Programm unter Verwendung der Laufanweisung:

10 REM EINLESEPROGRAMM

20 REM MIT LAUFANWEISUNG

30 DIN X(9)

40 FOR I=0 TO 9 STEP 1

50 PRINT "EINGABE VON X(";I;")"

60 INPUT X(I)

70 NEXT I

80 PRINT "EINGABE BEENDET"

Das Programm wurde kirzer und Ubersichtlicher. Das, was mit

dem Feldelement zu “arbeiten” ist, steht zwischen den Zeilen

4@ FOR I=p TO-9 STEP 1

und 79 NEXT I

FOR bedeutet Fir
TO bedeutet Bis
STEP bedeutet In Schritten von
NEXT bedeutet Nachster Wert der Laufvariablen
(ergibt sich immer aus altem Wert plus Schrittweite)

Die Anweisungen zwischen den Zeilen 4@ und 7@ werden realisiert
fiir die Werte von I = ¢,1,2,3,4,5,6,7,8 und 9, Nach dem die-
Anvieisungen fur den Wert I = 9 realisiert sind, bildet der In-
terpreter abermals den nichsten Wert I. Da I nun jedoch groBer
als der Endwert ist, werden die Anweisungen zwischen den Zei-
len '4p und 79 nicht mehr ausgefihrt und die Laufanweisung wird.
verlassen. Das Programm wird mit Zeile 8@ fortgesetzt. Der Wert
der Laufvariablen nach Verlassen der Laufanweisung ist jedoch

I = Endwert + Schrittweite = 1p.

Auch bei der Darstellung von Algorithmen mit dem PAP hat sich
die verkurzende Form der Laufanweisung praktisch durchgesetzt.
Es muB aber darauf hingewiesen werden, daB diese Darstellungs-
form nicht der TGL 22451 entspricht (Bilder 44 und 45),

36

{ START)

| Dim X (9)
T J:=p

T E:Xx(3J)
1 J=92
 e—Ja
nein
T J=3+1 T A: Eingabe

beendet
(stoP)

‘Bild 44: PAP-Einlesealgorith-
mus nach TGL 22451

START-
| Dim X(3)

I=9:,9

4 E:X(3J)

L1

+ A:Eingabe
beendet

STOP

Bild 45: PAP-Einlesealgorith-

mus mit Darstellung
der Laufanweisung.

Die Vereinfachung in der Darstellungsvariante mit Laufanweisung

leuchtet ein, Das, was innerhalb der Laufanweisung "geschehen"

soll, wird in die Klammer geschrieben. Der Klammerkopf gibt an:

(START)

| DIMX (9)

J-7;11) ;8 l

P E: X(J)
]

—

r A: Eingabe beendet
T max = X(@)

+ K = g

[I=1, 1@ ;9 %

t X(J) > max 2

+ A: XCK);K

(sTOP)

37

Laufvariable = Anfangswert,
(Schrittweite), Endwert.

Das Programm MAXIMUMSUCHE
IM VEKTOR X(9)
des Abschnitts 3.5.,2, hat
unter Verwendung der Dar-
stellungsform mit Laufan-

* weisung den PAP nach Bild

46,

Bild 46:

PAP-Maximumsuche mit Lauf-
anweisung

Das dem Algorithmus nach Bild 46 entanrechende BASIC-Programm
lautet:

10 REM MAXIMUMSUCHE IM VEKTOR X(9)
20 DIM X(9)

30. FOR I=0 TO 9 STEP 1

40 PRINT "EINGABE VON X(";I;")"
50 INPUT X(I) o

60 NEXT I

70 PRINT "EINGABE BEENDET"

80 M=X(0) -

90 K=0

100 FOR I=1 TO 9 STEP 1

110 IF X(I)>M THEN 130

120 GOTO 150

130 H=X(I)

140 K=I

150 NEXT I

160 PRINT "MAXIMALWERT =";X(K);" INDEX =";K
170 STOP

Auch das Einleseprcgramm fir die Matrix T aus dem Abschnitt
3.5.1. kann mit 2 Laufanweisungen geschrieben werden. Dabei
tritt der Fall ein, daB diese Laufanweisungen ineinander ge-
schachtelt sind, Die folgenden Laufanweisungen geben ein Bei-

spiel fiir die Abarbeitung geschachtelter Laufanweisungens

10 FOR I=0 TO 2 STEP 1
20 FOR J=0 TO 2 STEP 1
30 PRINT I;J

40 NEXT J

50 NEXT I

60 STOP

Die I-Laufanweisung stellt I auf @
Rie J-Laufanweisung gibt nun aus:

N RPe

2
2
2
.Jetzt ist die J-Laufanweisung beendet, die nichste
Anweisung ist jedoch Zeile 5@ NEXT I, also-

‘Die I-Laufanweisung stellt I auf 1

Die J-Laufanweisung beginnt von vorn: 1
1
1

SRk S

Die J-Laufanweisung ist abermals beendet.
Die I-Laufanweisung stellt I auf 2
Die J-Laufanweisung beginnt von vorn:

2 g
2 1
2 2
Beide Laufanweisungen sind beendet,

38

Das Einleseprogramm fur die Matrix T kann also wie folgt ge-

schrieben werden:

10 DIM T(3,2) ,

20 FOR I=0 TO 3 STEP 1

30 FOR J=0 TO 2 STEP 1

40 PRINT "EINGABE VON T(";I;",";J;")"
50 INPUT T(I,J)

60 NEXT J

70 NEXT I

80 PRINT "EINGABE BEENDET"

90 .STOP

Aufgaben zu Algorithmen mit Feldern

Al19, Anzdgeben sind die BASIC-Programmteile zur Dimensionierung

von Feldern:

19.1. Es werden bendtigt eine 3 x 4 Matrix und ein Vektor der

19.2.

19.3.

Dimension 10.

Zu dimensionieren ist ein eindimensionales Feld. Die Gro-
Be .des Feldes wird erst durch eine Tastatureingabe aktua-
lisiert. ’ :

Wie 19,2, fir ein zweidimensionales Feld.,

Als Ldsung der nachfolgenden Aufgaben ist jeweils der PAP und

das BASIC~Programm aufzustellen:

A20,

A21.,

A22,

A23,

Eine 4 x 5 Matrix ist spaltenweise einzulesen,

Von einer 3 x 4 Matrix, deren Elemente positive reelle
Zahlen sind, sollen gesucht werden:

21.1, alle Spalcanminima;

21.2, alle Zeilenmaxima.

Zwei Felder A(3,3) und B(3,3) sind zu addieren und im Feld
C(3,3) abzulegen.

Cij = Aij +,BiJ'

Das Feld C ist auf dem Bildschirm auszugeben.

In einem Feld A(n,m) ist das Maximalelement zu suchen.

Auszugeben ist der Wert des Maximalelements und die Indi=~
zes, n und m sind uUber die Tastatur durch das Programm an=
zufordern.

39

A24, Zwei Felder A(1gp@) und B(1gP@) sollen wie folgt ge-
mischt werden:

C(®) := A(P) : C(1) := B(P)
C(2) := A(1) ; C(3) := B(1) usw,

4, Strukturierte Algorithmen

4,1, Grundgedanke

Wohldurchdachte Ordnung im Sinne der Ubersichtlichkeit im Pro-
gramm erleichtert das Verstindnis, die Anwendung, die Wartung
und die Anderung. Das ist der Grund dafir, daB beim Entwurf von
Programmen und Algorithmen immer stérker auf "Wohlstrukturiert-
heit" geachtet wird. Raffinesse und besonders ausgeknobelte
Programmiertricks treten dagegen in den Hintergrund, Der struk-
turierte Entwurf geht davon aus, daB

- die Programme und Algorithmen sich aus standardisierten Grund-
elementen zusammensetzen, wobei

- die Grundelemente jeweils nur einen Eingang und einen Ausgang
haben.

40

Programme sind dann hierarchische Strukturen der Grundelemente
(Bild 47), Folgen (Bild 48) von Grundelementen oder aus beiden
gemischte Strukturen (Bild 49).

? (l;’uE'nﬁelement GE 1
GE?2
GE 2 GE 3
GE 3 .
v
Bild 47: Struktogramm bi1d 48: struktogramm - Folge

hierarchische Struktur

GE1
GE?2
GE 31
GE 32
GE 33
GE 4 BeLd 49 B ehae Struktur

1

Die Darstellungsformen von Algorithmen unterstiitzen das Vorhaben
der strukturierten Programmierung mehr oder weniger gut.
Besonders gut leisten das

- von den grafischen Darstellungsformen, das Struktogramm

- von den sprachlichen Formen, der sogenannte Pseudocode.

Aber auch einige, besonders fast alle modernen problemorientier=-
ten Programmiersprachen unterstiitzen die strukturierte Program-
mierung. Als Beispiel sei hier die Sprache PASCAL genannt, die
sich einer Zunehmenden Verbreitung erfreut. BASIC dagegen ist
eine Sprache, die die strukturierte Programmierung weniger unter-
stiitzt, Das zeigt sich beispielsweise an der Anweisung

GOoTO ‘Zeilennummer,

Diese Anweisung gestattet das "Springen" an jede beliebige Zei~-
lennummer ohne Einschridnkung. Somit ist aber unter Umsténden

ein neuer Eingang in einen Algorithmenabschnitt geschaffen.
Trotzdem kann natiirlich der Programmierer im Wissen um die Vor-
teile der strukturierten Programmierung derartige Sprachelemente
mit der notwendigen Sorgfalt einsetzen und somit dem Anliegen
der Strukturierung Rechnung tragen. '

4,2, Logische Grundstrukturen

Als Grurfdelemente werden in der strukturierten Programmierung
logische Grundstrukturen definiert, Drei wesentliche davon sind

- die Folge (Sequenz)
- die einfache Verzweigung (Alternative)
- die bedingte Wiederholung (Iteration).

Nachfolgend soll fur diese logischen Grundstrukturen jeweils

- der Programmablaufplan (PAP)

- das Struktogramm (STG)

- der Pseudocode (PSC)

- die BASIC-Formulierung (BASIC)

angegeben werden,

2

4.2.1, Folge

Die Folge oder Sequenz von Aktionen ist die einfache Aneinander-
setzung von Aktionen, dig‘der Computer in eben dieser Reihen-
folge abarbejiten soll.

Als Aktion soll dabei eine einfache, nicht m2hr unterteilbare
Beauflagung eines Computers verstanden werden. In BASIC kdénnte
das zum Beispiel eine Anweisung der Form '

sein,

- Darstellung

Programmablaufplan:

+ aktion 1
1t aktion 2
1+ aktion n

Bild 50: PAP-Folge

BASIC=~Variante:

Zeilennummer
znr.

LET A =B + 3 ¥ C

Struktogramm:

aktion 1
aktion 2
aktion n
B8ild 51:
Anweisung 1
Anweisung 2
Anweisung n

STG=-Folge

Pseudocode:

SEQ
aktion_1
aktion_2

.
3
o

aktion _n
ENDSEQ

Bei der Darstellung der Folge im Pseudocode (PSC) fallt auf,
dal die logische Grundstruktur einen eindeutigen Beginn (Sym-
bol SEQ) und ein eindeutiges Ende (Symbol ENDSEQ) hat. Diese

Form der Darstellung zeigt schon die vollstédndige Anwendung
des Prinzips der Wohlstrukturiertheit, Der Querstrich bei den
aktionen und den aktionsnummern bedeutet, daB z, B, der Be-
griff aktion_1 als ein Bégriff gemeint ist, Die Darstellung
als sktion 1, also ohne Querstrich, wiirde zwei Bezeichnungen
bedeuten, namlich "aktion" und "1",

4,2.2. Einfache Verzweigung

Die einfache Verzweigung oder auch Alternative ermdglicht die
wahlweise Abarbeitung genau einer Aktion von zwei méglichen in
Abhiangigkeit von einer Bedingung.

- Darstellung

Programmablaufplan: Struktogramm:
--Bemn?ung
erfally ? Bedingung—
ja n_ — Jd
. neln - a-..
nein oﬁlo .Jokhon
Tnein-aktion T ja-aktion
Bild 52: PAP - einfache Bild 53: STG - einfache
Verzweigung Verzweigung

. Pseudocode: R
IF (Bedingung) THEN ja_aktion [ELSE nein_aktion)
ENDIF

. BASIC-Variante:
znr IF bedingung THEN ja-Anweisung [ELSE nein-Anweisung]

Die eckigen Klammern deuten an, daB der eingeschlossene Teil
auch entfallen kann, wenn ein nein-aktion oder nein-Anweisung
nicht gebraucht wird, Es fallt wieder auf, daB in der BASIC-
Variante die Darstellung nicht explizit abgeschlossen wird,
widhrend dies im Pseudocode mit ENDIF eindeutig geschieht,

44

4.2.3. Bedingte Wiederholung

Die Grundstruktur Wiederholung oder Iteration kommt zur Anwen=-
dung, wenn eine Anweisung oder Aktion in Abhingigkeit von einer
bestimmten Bedingung wiederholt asusgefihrt werden soll.

Entsprechend der Art der Interpretation der Bedingung unter-
scheidet man 3 Formen der Grundstruktur Wiederholung:

- die FOR=-Form (Indizierte Wiederholung)
die WHILE~Form (Abweisende Wiederholung)
die UNTIL-Form (Abbrechende Wiederholung).

Die FOR-Form der Wiederholung

Die FOR-Form der Wiederholung entspricht der Laufanweisung,
die im Abschnitt 3.,5.3, dargestellt ist.

Fir jeden Wert einer eingefihrten Laufvariablen (LV), wird be-
ginnend von einem definierten Anfangswert (AW) in einer fest-
gelegten Schrittweite (SW) bis zu einem Endwert (EW) eine An-
weisung oder Aktion genau einmal ausgefihrt.

. Darstellung

Programmablaufplan:

T LV .= AW
[
TV > EW V=AW, (SWIEW
Ia
nein 1 aktion 4 aktion
T LV:= LV+SW L \
Bild 54: PAP-FOR-Form der Bild 55: PAP-FOR-Form der

Wiederholung voll- Wiederholung ver=-
stindig kirzt

45

Struktogramm: Pseudocode:

’FOR LV:=AW(SW) EW FOR (LV := AW (SW) EW)
“aktion aktion
ENDFOR

uild 56: STG-FOR=-Form der
Wiederholung

BASIC=~-Variante:

znr FOR LV = AW TO EW STEP sw
znr Anweisung

znr NEXT LV

. Ein Beispiel

Der Algorithmus zur Bestimmung des Maximums eines zweidimen-

sionalen Feldes ist als Losung der Aufgabe A23 im Losungsteil
als PAP und BASIC-Variante angegeben. Hier soll das Strukto-

gramm und dervPseudocode angggeben werden:

Eingabe: n,m

max : = A (0,0)
FOR J:=0(1)n
FOR J:=0(1) m
max >=A(J,J)
nein ja Bild 57:
STG Maximum eines
max:-A(J,J) (Feldes
K:=
L:=J

Ausgabe: max , K, L

46

Pseudocode:

SEQ Eingabe: n, m
max := A (0,0)
FOR I := 0 (1) n
FOR J := 0 (1) m

IF (max := A (I,J3)) THEN max := A (I,J)
K := I
L := 3
ENDIF
ENDFOR
ENDFOR
Ausgabe: max, K, L
ENDSEQ

~ Die WHILE=-Form der Wiederholung

Eine Anweisung oder Aktion wird solange wiederholt ausgefihrt
wie eine gegebene Bedingung erfillt ist,

. Darétellung

Programmablaufplan: Struktogramm:
—
T Bedingun .
erfumgg 9 WHILE bedingung
nein .
. aktion
Ja ‘
taktion
Bild 58: PAP-WHILE=-Form Bild 59: STG-WHILE=-Form
der Wiederholung der Wiederholung
Pseudocode: BASIC~Variante:
WHILE bedingung Die WHILE-Form der Wiederho-

lung ist in den meisten BASIC-

aktion Versionen nicht definiert.

ENDWHILE

)

47 !

. Ein Beispiel
Die Ldsung der Aufgabenstellung, nach der unendlichen Reihe

3 5
X X X .
Y =TT "7 *ET~ - den Sinus zu berechnen, fihrte im

Abschnitt 3,3, (2. Beispiel) zu dem Algorithmus entsprechend
Bild 34,

Der Programmablaufplan und das Struktogramm sowie der Pseudo-
code zur Darstellung dieses Algorithmus soll nun zum Vergleich
gezeigt werden,

tE: €, x
.-S:-o
+tZ:=X
+N:el
1lzlcgn
ja
nein
T S:=S+z +Yy:=5
-x?
T2 =2 (na1){ne2)
tn :=n+2 (SlDP)

Bild 60: PAP=-Sinusbildung

Eingabe: €, X
S:=0
Z:.=X
n - 1

WHILE |Z] >-¢

S:= S+2Z
—_x?
2: =2 (FT(ne2l
N:=n+2 Bild 61:
yie=s . STG-Sinusbildung

Im Pseudocode erhilt der Algorithmus folgende Form:

SEQ Eingabe ¢€,x
S =0
Z := x
n = 1
WHILE (ABS (Z) >=¢
S := S+Z
Z = ~(Z* x*xx) / ((n+l) x (n+2))
n := n+2) '
ENDWHILE
Y = S
ENDSEQ

- Die UNTIL-Form der Wiederholqu

Die Anwendung dieser Form der Wiederholung erfolgt durch eine
fortlaufende Ausfiihrung einer Anweisung oder Aktion bis eine
Bedingung erfiullt ist,

49

. Darstellung

Programmablaufplan:
————————
+ aktion

1 Beqlngt.;‘)ng

erful
nein
ja
Bild 62: PAP-UNTIL=-Form

der Wiederholung

Pseudocode:
UNTIL (bedingung)
aktion

ENDUNTIL

50

Struktogramm:

aktion
UNTIL bedingung

Bild 63: STG-UNTIL=-Form
der Wiederholung
BASIC-Variante:

Die YNTIL-Form der Wieder-
holung ist in den meisten
BASIC-Versionen nicht defi-
niert.

Ldésungen zu den Aufgaben

48.: (START
10 REM MITTELWERT JEDES
S=g 20 REM ZWEITEN EINGABEWERTES
n;:ﬂ 30 S5=0
40 N=0
50 INPUT X
) 60 IF X<0O THEN. 110
+ E:X go INPUT X
, 0 S=S+X
t X<p2 ! 90 N=N+1
_ ,,____.tc_l_T 5 100 GOTO 50
mln 1 E‘X L R = n 110 S=S/N
: T 120 PRINT "MITTELWERT =";S
F 5:=5+X 1 A: ¥ 130 STOP
N = N+

(sToP)

A9.: (START

3

a:=1 10 REM FAKULTAET VON
T E:n 20 REM N >= 2
4+ p:=n 30 A=1
- 40 INPUT N
1 = P# -a 50 P=N
P (n) 60 P=P*(N-A)
L a=(n-1)2 70 IF A=N-1 THEN 100
Ja 80 A=A+
. 90 GOTO 60
nein 100 PRINT "N =";N;" N =";P
L q:=q+1 1+ A:n;P 110 STOP

(sTOP) .

A10.3(START

+ 5:=f 10 REM SKALARPRODUKT
20 S=0
30 INPUT X
40 IF X=—1 THEN 80
1 E:x 50 INPUT Y
‘ 60 S=S+X*Y
} x=-12 70 GOTO 30
a 80 PRINT "SKALARP. =";S
nein 90 STOP
- E:Y .
- A:S
5:=5+X#Y

(oTOP)

51

AMer (sTART)

nein §

10 REM SKALARPRODUKT MIT
S 20 REM ENDLICHER WERTE-
E 30 REM PAARANZAHL
) S o
. 50 INPU
E:x;Y ‘60 I=0
S:=6+X8Y 70 INPUT X,Y
L= (+1 80 S=S+X*Y
. 90 I=I+1
Lt=ng 100 IF I=N THEN 120
a_ : 110 GQTO 70 -
A:S 120 PRINT "SKALARP. =";S

' 130 STOP
STOP >

Al2¢3 ((START 10 REM SKALARPRODUKT VON
. 20 REM 10 WERTEPAAREN

g 30 5=0
40 I=0
X; 20 INPUT X,Y
= 0 S=S+X*Y
)»i Y 70 I=I+1
2 80 IF I=10 THEN 100
Ja " 90 GOTO 50

nein

100 PRINT "SKALARP. =";S
110 STOP

A13.%02 ((START) 10 REM Y=C0S(X)

’

Aein

20 Y=0
Y:=f 30 N=0
- 40 INPUT X
N:=p 50 7=1
£:X 60 A=ABS(Z)
70 IF A<.001 THEN 120
Z:=1": 80 Y=Y+2
90 Z=-2Z*¥X*X/((N+1)*(N+2))
100 N=N+2
110 GOTO 60
A:=1ZI 120 PRINT "Y =",y
< 4¢—3 2 130 STOP
Ja
L Y =V +Z
xl
FE e A
N =N+2

(sToP)

52

A13e2.8

(START)

T v =¢
+ N:=1
t E: X
Z2:=1
+ A:=IZI
A< 10732
nein| yi= y+z
Z=Z* T A:Y
+ N = N41
(sT0P)
A130308
(START)
4 \/:=¢
N:=1
3 E:
+1 Z =X
T+ A:=lZ|
- A< 1002
nein; .=
YEYHE
L - ;ﬁ&:ﬂia :
Z=Z*—\0y A:Y
- N:=N+2

(STOP)

53

10 REM Y = E HOCH X
20 Y=0

30 N=1

40 INPUT X

50 Z=1

60 A=ABS(Z)

70 IF A<.001 THEN 120
B0 Y=Y+Z

90 Z=Z*X/N

100 N=K+1

110 GOTO 60

120 PRINT "Y =";Y
130 STOP

10 REM Y= ARCTAN(X)
20 'Y=0

30 N=1

40 INPUT X

50 2=X

60 A=ABS(2)

70 IF A<.001 THEN 120
80 Y=Y+Z

90 Z=Z*(-X)*X*N/(N+2)
100 N=N+2

110 GOTO 60

120 PRINT "Y =";Y

130 STOP

Aldes

Ja

t

X > 105

Ja R ’

t Re=Ranem * W

X < 40,95
. Ja

<+

rA: R}NJM
N =N+t L R:=R+1 L M:=M+q

10
20

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

(sTOP)

'REM QUALITAET

R=0

N=0

M=0

INPUT X

IF X=-1 THEN 150

IF X>11.05 THEN 130

IF X<10.95 THEN 1410

N=N+1

GOTO 50

R=R+1

GOTO 50

M=M+1

GOTO 50

PRINT "RUECKSENDUNG =";R*100/(R+N+M);"%"
PRINT "QUALITAET1 =";N;" STK"
PRINT "QUALITAET2 =";M;" STK"
STOP

54

A15.3

T A: VK

L v:=¢(
K: =g
5 E: a
i =-12
+ E:bjc
- V:=V+asbsc
L a=be .
. Ja
nein
- a=c?
J
nein
L Cc=b?
Ja
nein

+ K=K+

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

< STOP)

REM UNTERSUCHUNG VON QUADERN

V=0
K=0

PRINT "EINGABE VON A"

INPUT A

IF A=-1 THEN 160
PRINT "EINGABE VON B UND C"

INPUT B,C
V=V+A*B*C

IF A=B THEN
IF A=C THEN
IF C=B THEN
GOTO 40
K=K+1

GOTO 40

140
140
140

PRINT "GESAMTVOLUMEN =";V
PRINT "ANZAHL DER QUADER"
PRINT "MIT 2 GLEICHEN KANTEN =";K

STOP

55

A16.:

p M X T
R
D wWw

Fﬁ.

nein

Ja

nein

nein

+a-52

Ja

4 b.5§

nein

~ Ki=K#1

nein

10
20

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

REM RECHTECKE

F=0
K=0 *
INPUT A

IF A=-1 THEN 170

INPUT B
F=TF+A*B

IF A=3 THEN 130
IF B=3 THEN 110

GOTO 40

IF A=5 THEN 150

GOTO 40

IF B=5 THEN 15

GOTO 40
K=K+1
GOTO 40

(sTOP)

PRINT "GESAMTFLAECHE =";F;" ANZAHL

STOP

=N

A F,K

;K

nein

tr>0e

Ja

nein

J
- X =@ 2

nein

Ja

T y-02

.J_mln_

+ A=A+

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
10
190

REM KARTESISCHE KOORDINATEN

Q=0
A=0
INPUT X

IF X=-1000 THEN 170

INPUT Y
IF X>0 THEN
IF X=0 THEN

‘GOTO 40

100
130

IF Y>0 THEN 150

IF Y=0 THEN

GOTO 40
A=A+1

GOTO 40
Q=0Q+1

GO"O 40
EHIHL "AUF
STOP

130

ADT A

DEN AC

57

°Bu LIEGEN"

+Q=0Q0+1

U.f I' =1

T+ A: QJA

(sTOP)

T DH
A " PIJN {TE"

A18.1

(START)

nein

58

"] 91 =62:253 m54:=55:=9
+ E:X
- X =-1 2
L X =12
rA:51,52
53; 54,55
F X = 2?
- 51
| v =32 S1+1
x a . - ‘-5'54‘52
-gg; +53+54+55
L x = 42 51 "ﬁ%ﬂl
*fggf 182:= 52010y
)
+X=52 " 83:= 53 * 400
4 S4:» L S .
54+ S4:=sun10p
+ A: Fehlein' 4 55:= 85+ 29#
gabe 55+1 [A: 61,52, 63
54. 55

(srop)

REM STATIONSPLANUNG

$1=0

S2=0

$3=0

Si=0

$5=0

INPUT X .

IF X=—1 THEN 260
IF X=1 THEN 240
IF X=2 THEN 220
IF X=3 THEN 200
IF X=4 THEN 180
IF X=5 THEN 160

PRINT "FEHLEINGABE - BITTE NEU EINGEBEN"

GOTO 70
S5=S5+1
GOTO 70
S4 =S4 +1
GOTO: 70
53=S3+1
GOTO 70
S2=52+1
GOTO 70
S1=51+1
GOTO 70
S=S1+S2+S3+S4+S5
PRINT "S1 =";S1;"
PRINT "S2 =";S2;"
PRINT "SB .__";SB;II
PRINT "S4 =";54;"
ggggr{l "SS =";S5;Il

STK" «n
STK" : L
STK" : "
STK'I 3 ”n
STKI! ; "

59

ENTSPRICHT
ENTSPRICHT
ENTSPRICHT
ENTSPRICHT
ENTSPRICHT

":51%100/5;"%"
";52%100/S;"%"
" ;53%100/5 ;" %"
" Sh*100/S ;" %"
" ;35*100/3;"%"

A19.1.: 1@ DIM A (2,3), B(9)
A19.2.1 1§ PRINT “EINGABE wu DER « DIMENSION-N"
2@ INPUT N
3@ DIM V(N)

A19.3.: 1§ PRINT "EINGABE iy DER « DIMENSIONEN=N,M"
2§ INPUT N, M
3@ DIM F(N,M)

(sTART)

A20,:

| oimAc3;
3=8;| (1,4
=g @, >
+ E:A(T;)
L

1 A: Eingabe beendet

(sTOP) :

10 REK SPALTENWEISES EINLESEN
20 DIN A(3,4)

30 FOR J=0 TO & STEP 1

40 FOR I=0 TO 3 STEP 1

50 PRINT "EINGABE A(";I;J;")"
60 INPUT A(I,J)

70 NEXT I

80 NEXT J

90 PRINT "EINGABE BEENDET"
100 STOP

60

A21.,1,: Es wird bei der L&ésung davon ausgegangen, daB B(2,3)
dimensioniert ist,

START
73=8;]1 (1 ;3
T min:=B(¢;3)
4 K:‘:ﬂ .
J=4;1 (1, 2
- min< B(J;])2
Ja
nein .
- min:=B(I-JK
+ K= J
I 1
1+-A:min; K; 3

(sTop)

10 REM SPALTENMINIMA

20 FOR J=0 ‘TO 3 STEP 1

30 4=B(0,J)

40 K=0

50 REN INNERE LAUFANWEISUNG
60 FOR I=1 TO 2 STEP 1

70 IF M<B(I,J) THEN 100

80 M=B(I,J)

90 K=I

100 NEXT I

110 PRINT "SPALTENMINIMUM “;J;
120 PRINT " =";H

130 PRINT "ZEILENINDEX =";K
140 NEXT J
150 STOP

61

A24.3

10
20
30
40

60
70
80

(START)

| DIM A (1899); B1pggh); C(2881)
ST MGTIET 7.7

1

+ C(2%3) = AQ)

T C(2#%3+1) :=B(J)

l |

(sTOP)

REM MISCHEN
DIM A(1000),B(1000)
DIM €(2001) :

FOR I=0 TO 1000 STEP 1
C(2*I)=A(I)
C(2*I+1)=B(I)

NEXT I

STOP

64

———
—_————
—
- ——
————
ELEKTROTECHNIK.
ELEKTRONIK

Institut fiir Rationalisierung
der Elektrotechnik/Elektronik
Zentralstelle

fir Aus- und Weiterbildung

des Industriebereiches

. . . Elektrotechnik/Elektronik
Lehrmaterial fur die

Weiterbildung

Informationsverarbeitung
mit Kleincomputern

4

BASIC-Programmierung

KreUtzer Elektrotechnik
Elektronik
SChUh mann Automation

oo

Steffen Kreutzer
Detlef Schuhmeann

Informationsvererbeitung mit Kleincomputern
‘4

BASIC~Programmierung

Herausgeber

Institut fur Rationalisierung der Elektrotechnik/Elektronik
Institutsteil Dresden

Zentrelstelle fir Aus- und Weiterbildung

des Industriebereiches Elektrotechnik/Elektronik
Karl-Merx-StraBe, Dresden

8080

Autoren: FSD Dipl.-Ing. Steffen Kreutzer
FSL Dipl.-Ing. Detlef Schuhmann
Ingenieurschule fiir Wissenschaftlichen Geratebau
“Cerl Zeiss” Jens

Gutachter: Dipl.,-Ing., Claus Paul
Institut fur Rationelisierung der
Elektrotechnik/Elektronik

Beerbeiter: Dipl,-Gwl, Heinz Riidger
Institut fir Rationalisierung der
Elektrotechnik/Elektronik
Zentralstelle fir Aus-~ und Weiterbildung

Alle Rechte vorbehalten

1. Auvflage

IR Dresden ZSB

Druckgenehmigungs=Nr,: Ag 682/047/87

Druck und Herstellung: NOWA DOBA Bautzen III-4-9-H,958-3,0

Redak tionsschluB: 31,01,1987
Bestell=Nr,: T.,2,04,0004
Vorzugsschutzgebiihr: 2,50 M

Inhaltsverzeichnis

o.

1.
1.1,
1.2,
1.3,
1.4,
1.4.1.
1.4.2.
1.4.3.
1.5.

2,
2.1,
2.2,
2,2,1.
2.2.2,
2.2,3,
2,2,4,
2,2,5.
2,2,6,
2,2.7,
2.2.8,
2,2,9,

3.
3.1
3.2,
3.3,
3.4,
3.5,
3.6,
3.6.1.
3.6.2,
3.7.
3.7.1,
3.7.2.

4,

Einfiihrung

Grundelem=nte der Sprache BASIC
Zeichensatz

Zahlendarstellung in BASIC
Konstanten

Variablen

Erklarung zum Begriff
Verisblentypen

Wertzuweisung fir Variable
Aufbau einer Progremmzeile

Anweisungen
Kommandos

Befehle

Erklarung zum Begriff
Ausgebeanweisung)
Eingabeanweisung
Programmverzweigung
Zahlschleifen
Konstantenfelder

Unterprogremme und Anwenderfunktionen

Felder
Tischrechnermodus

Spezielle BASIC-Anweisungen
Farbe und Grafik
Bildschirmfenster

Zeichenketten und Zeichenkettenfunktionen

Zufallsgenerator
Sprungverteiler

Speicherzugriff und Maschinenunterprogramme

Speicherzugriff
Maschinenunterprogréemme

Kursorpositionierung bei Aus- und Eingabe

Ausgabegestaltung
Eingabeanforderung

Standerdfunktionen

Seite

O ® © N NN O »

I T T S S S e i o
O VW NOUMMW DNNMNDOO

W DD NN NNNDDNNDNDDN
O 0 ® O N NO MW NP P

(&)
(=]

Se Ubungen zum Umgang mit dem Kleincomputer
KC 85/3 und Programmbeispiele

5.1. Ubungen zur Programmeingabe und zum Programm-
test

5.2, Gesteltung von Programmen

5.3, Programmbeispiele

5.3.1, Sortieren von Datenfolgen

5.3.2, Unterprogrammsystem zur Matrizenrechnung

5.,3.2, Dateiarbeit mit dem KC 85/3

6. Befehlsibersicht

Literaturverzeichnis

Seite

32

32

588 8

60

65

72

O, EinfGhrung

Anliegen dieses Lehrmeterials soll es sein, dem Nutzer ohne spe-
zielle Kenntnis von Rechnersystemen einen Einstieg in die pro=-
blemorientierte Progremmierung mittels BASIC zu erméglichen, Da-
bei steht die Nutzung des Rechners als Arbeitsmittel des Inge-
nieurs im Mittelpunkt, Die im Heft angefilhrten Beispiele sollten
zur Ubung sofort am Rechner nachvollzogen werden,

Die Beschreibung der Sprache BASIC erfolgt auf der Besis einer
Implementstionsvariante suf dem Kleincomputer KC 85/2 oder /3.
Eine Obertragung auf andere BASIC-Varianten ist leicht méglich,
de auf die Besonderheiten des BASIC euf dem KC 85/2 bzw, /3 in
jedem Kapitel hingewiesen wird.

Die Progrenmiersprache BASIC wurde schon 1960 in den USA fir ein
Mehrnutzersystem entworfen, BASIC steht fir Beginners All-pur-
pose Symbolic Instruction Code, "symbolischer Anweisungskode fir
Anfgnger aller Anwendungsbereiche” und deutet den vorgesehenen
Einsatzbereich an, BASIC sollte den “"Einstieg” in die Program-
mierung auf einem niedrigen Niveau realisieren. So enthielt des~
halb auch das Ur-BASIC nur 17 Sprachelemente.

Eine weitere Eigenschaft ist die relstiv leichte Implementier=-
barkeit der Sprache BASIC auf beliebige Rechner, wes die weite
Verbreitung érklart, Dies fihrte jedoch auch dezu, deB bei fast
jedem Neueinsatz von BASIC Sprachelemente veréndert und neue
hinzugefiigt wurden, Daher ist es notwendig, sich auf das BASIC
seines konkreten Rechners zu spezialisieren.

1, Grundelemente der Sprache BASIC

1.1, Zeichensatz

Der Zeichensetz der Sprache BASIC besteht aus:

- den GroBbuchstaben des lateinischen Alphabets A, B, C, D, E,
F, G, H, I, J, K, L, M, N, O, P, Q, R, S,T, U, V, W, X, ¥, Z

- den Ziffern O, 1, 2, %, 4, 5, 6, 7, 8, 9

- den Sonderzeichen

Zeichen Verwendung in BASIC

. Trennzeichen zwischen ganzem und gebrochenem
Teil einer reellen Zahl

. Verwendung innerhalb der Anweisung PRINT
; Verwendung innerhalb der Anweisung PRINT
() einzig zugelassener Klammertyp
Nummernzeichen, Daeteinummer
- Leerzeichean
= Wertzuweisung, Vergleichsoperator
< > Vergleichsoperetoren
+ Addition
- Subtraktion, Vorzeichen
* Multiplikation
Division
Potenzfunktion
$ Zeichenksttenkennung

Begrenzer fir Zeichenketten

1.2, Zehlendarstellung in BASIC

Zahlen werden mit einer vom BASIC-Interpreter festgelegten maxi-
malen Ziffernanzahl dargestellt, Diese Anzahl kann zwischen 6
und 12 Dezimelstellen schwanken, Zur Trennung von genzem und ge-
brochenem Anteil einer reellen Zehl wird der Punkt verwendet.

Im allgemeinen wird eine vorangestellte @ bei Zehlen <1 nicht
mit susgegeben, ebenso wie das positive Vorzeichen.

In der Exponentialdarstellung kennzeichnet der GroBbuchstabe E
mit nachfolgender vorzeichenbshafteter Zehl den Exponenten.

Beispiel:

mathematische Schreibweise BASIC-Darstellung
765,432 765,432
?,345 « 345
=33 =-33
1,2-1p°8 1,26-8

1,3, Konstanten

Konstanten sind Zehlen oder Zeichenketten, die bei Erstellung
des Programms fest vorgegeben werden,
Konetenten k&nnen seins

- vorzeichenbehaftete Zahlen z, B, «77, 1234E+7, $.456
-~ Zeichenketten z, B, "Mittelwert".

1.4, Variaeblen

104.,1., Erkldrung zum Beqriff

In hdheren Programmiersprachen erfolgt die Speicherpletzzuord-
nung Gber Veriablen, Dies sind Symbole, welche der Anwender de-
finiert, Der BASIC-Interpreter Ubernimmt es, dafiir einen physi-
schen Speicherplatz im Rechner zu reservieren, Es kann somit in
BASIC oder auch in einer anderen problemorientierten Sprache
programmiert wérden. ohne den SpeiEheraufbau des konkreten Rech-
ners zu kennen. Eine Varisble (= symbolische Speicherplatzadres-
se) wird gebildet

= durch einen GroBbuchsteben bzw, eine Folge von GroBbuchstaben
« durch einen oder mehrere Buchstaben und Ziffern,

Jede Varieble muB mit einem Buchstsben beginnen., Die Lénge des
Variablennamens wird durch die Eigenschaften des Interpreterse
bestimmt, FUr den KC 85/2-3 gilt:

~ Die L&nge des Variablennemens ist beliebig, jedoch sind nur
die ersten beiden Zeichen signifikent,

- Er darf keine fir die Sprache BASIC reservierten Worte enthal-
ten; z. B, LETTER enthélt das reservierte Wort LET,

1.4.2, Varieblentypen

BASIC unterscheidet je nach ebzuspeicherndem Wert verschiedene
Typen von Variablen. Der Varieblennesme schlieBt deshalb mit ei-
ner Typenkennzeichnung ab, Es gibt folgende Varisblentypen:

- Gleitpunktvariable einfacher Genauigkeit., Dies ist der Stan-
dardverieblentyp. Aus diesem Grund kann eine Kennzeichnung
entfallen;

z, B, A! ist identisch mit A; MAX! entspricht MAX,

s
- Gleitpunktvariable doppelter Genasuigkeit verwenden des Kenn-
zeichend#; z, B, B# oder MIN#,

- Integervariable sind nur ganzzahlig und haben einen kleineren
Wertebereich, Gekennzeichnet werden sie durch %; z. B. C% oder
ZAHL%.

- Zeichenkettenvariable enthelten beliebige Uber Tastatur ein-
gebbare Zeichenfolgen (Texte). Gekennzeichnet werden sie durch
$ oder $; z. B, D$ oder KETTES$.

Beim KC 85/2-3 gilts

- Es gibt nur Gleitpunktvarieble einfacher Genauigkeit ohne
Kennzeichen,
- Zeichenkettenvarieble kénnen maximel 255 Zeichen énthalten.

Sie missen mit $ gekennzeichnet werden.

Nur diese beiden Varisblentypen sind verfiigbar.

1.4.3, Wertzuweisung fur Veriable

Um einer Variablen einen Wert zuzuweisen, ist die Schreibweise
der Ergibtanweisung notwendig, d. h., links vom Ergibtzeichen
steht immer die Verieble, welcher der Wert zugewiesen werden

soll, Eine Ausnahme bildet hierbei die Eingsbeanweisung INPUT.

A=1234 heiBt -z, B,, schreibe in den Speicherpletz mit der symbo-
lischen Adresse (= Name) A die Zahl 1234, MAX=Ax@.7 bedeutet, in
dem Speicher mit dem Varisblennemen (Adresse) MAX soll das Pro-
dukt aus dem Inhalt der Variablen A multipliziert mit der Kon-
stanten @,7 gespeichert werden. '

1.5. Aufbau einer Programmzeile

BASIC fordert einen bestimmten Progremmzeilenauftesu. Eine Zeile,
welche in das Programm aufgenommen werden soll, muB immer mit
einer Zeilennummer beginnen. Steht keine Zeilennummer am Anfeng,
so nimmt BASIC an, daB diese Zeile sofort nach AbschluB ausge-
fuhrt werden soll, Diese Arbeitsweise wird els Kommandomodus be-
zeichnet, Soll eine Zeile mehrere Anweisungen enthalten, so ist
als Trennzeichen zwischen ‘den einzelnen Anweisungen ein : zu
schreiben.

zZnr anwl : anw2 : anw3: 8NWN

Die Zeilennummern liegen im allgemeinen im Bereich von

1 <= 2znr <= 65535.

Als ZeilenabschluB werden die Tasten -_7 -, <«ET~, =ENTER- oder
=RETURN- verwendet.

Eine Programmzeile kann 8@ Zeichen oder mehr enthelten. Die Pro-
grammzeilenlénge entspricht nur der suf dem Bildschirm derstell-
baren Zeilenlénge, Oft erstreckt sich eine Programmzeile iber
mehrere Bildschirmzeilen,

Beim KC 85/2-3 wird als ZeilenebschluB die Taste - _ 7~ verwendet.
Die Programmzeilenldnge betridgt meximal 8p Zeichen. Dies ent-
spricht 2 Bildschirmzeilen. ’

2. Anweisungen

2.1. Kommandos

Wird eine Programmzeile ohne Zeilennummer eingegeben, so wird
diese Zeile &ls Kommando verstanden und unmittelbar nach dem
ZeilenebschluB ausgefihrt, Kommandos dienen zur Steuerung des
BASIC~Interpreters,

RUN

RUN startet ein BASIC-Programm mit der niedrigsten Zeile., Durch
Angabe einer Zeilennummer nach RUN kann ein Programm auch von
einer beliebigen Zeile gestartet werden;

z, B, >RUN oder >RUN 5@

LIST

LIST 148t des Progremm auf dem Bildschirm euflisten., Wird eine
Zeilennummer angegeben, so beginnt des Auflisten bei dieser;
z, B, >LIST oder >LIST 199

EDIT zeilennummer

EDIT veranlaBt BASIC, die angegebene Zeile zur Korrektur auf dem
Bildschirm darzustellen, Die einzelnen Korrekturzeichen sind in-
terpreterspezifisch, Ein Uberschreiben ist meist durch Stellen
des Schreibzeigers (Kursor) auf die entsprechende Stelle und
Eingabe des Zeichens mdglich, Nach ZeilenabschluB wird die kor-
rigierte Zeile in den Speicher eingetregen, N
Die Anwendumng von EDIT beim KC 85/2-3 wird im KC-Ubungsteil die-
ses Lehrmcterials dargestellt,

AUTO zeilennummer, schrittweite

AUTO fithrt zur Progremmzeileneingabe, wobei mit der Programmzeile
zeilennummer begonnen wird und der Abstand der Zeilennummern
durch die 3chrittweite festgelegt wird, Es gilt: Wenn keine Zei-
lennummer und Schrittweite angegeben werden, so beginnt BASIC

mit dcr Zeile 1@ zu numerieren in einer Schrittweite von 1¢:

z. B,

10

>AUTO 1@

9 ...
2¢ ece
w ceoe

CLS

CLS 1ldscht den Bildschirm und setzt den Schreibzeiger auf den
Bildschirmenfang.

CONT

CONT setzt ein unterbrochenes Programm mit der nachfolgenden An-
weisung fort, wenn keine Verénderung an ihm vorgenommen wurde.

CSAVE "neme"”

CSAVE speichert ein BASIC-Programm auf einen externen Speicher,
meist Kassette, unter dem Namen name. Der Programmname kann aus
8 Zeichen bestehen, darf keine Sonderzeichen enthalten und muB
mit einem Buchstaben beginnen,

CLEAR

CLEAR léscht die Werte im Variablenspeicher,

NEW

NEW léscht das im Speicher befindliche Progremm und den Variab-
lenspeichar,

CLOAD * name"

CLOAD ladet das BASIC-Progremm mit Namen name vom externen Spei-
cher. Die Nemenbildung entspricht CSAVE, Der Programmspeicher
wird nicht automatisch geldscht. Daes zu ladende Progremm wird
hinter ein eventuell im Speicher befindliches geladen, Es ist des-
halb sinnvoll, den Speicher vor CLOAD mittels NEW zu léschen. °

RENUMBER

RENUMBER fihrt ein Neunumerieren des Gesamtprogramms im Speicher
durch,

11

TRON

TRON scheltet die Anzeige der abgearbeiteten Zeilennummer auf
dem Bildschirm ein, Die Anzeige der Zeilennummer erfolgt in
eckigen Klammern; z., B,

>TRON

>RUN

<1P><2@><25><26><3P><1PP>e e e

TROFF

TROFF schaltet die Anzeige der Zeilennummer im Programmlauf ab,

2,2, Befehle

2.2,1, Erklarung zum Begriff

Befehle sind Anweisungen, welche im Programmlauf ausgefilhrt wer-
den sollen, Um einen Befehl in BASIC in den Programmspeicher
aufzunehmen, muB am Anfang einer solchen Befehlszeile eine Zei-
lennummer geschrieben werden, BASIC arbeitet Programme immer
nach steigenden Zeilennummern ab, Befehle werden erst nach Star-
ten des Progremmleufs mittels der Anweisung RUN esusgefihrt. Dies
schlieft nicht aus, daB eine Anzahl vorn Befehlen auch im Komman-
domodus ausfiuhrber ist, Ein Beispiel ist der Tischrechnermodus
fur die angefihrten Ausgabebefehle,

2.,2,2, Ausgabeanweisung

PRINT

PRINT ist der Befehl fir die Ausgebe auf dem Bildschirm; z,., B.
SPRINT 245 ’
7

Da keine Zeilennummer angegeben wurde, antwortet der Rechner so-
fort mit dem Ergebnis der Addition. Danach ist die Anweisung
vergessen, der Rechner wartet auf ein neues Kommando.

12

Im folgenden Beispiel ist PRINT Bestandteil eines Progremms,

1P A=245
2¢ B=1¢

3@ C=AxB
49 PRINT C
5@ END
>RUN

7%
Das Beispielprogramm wurde mit dem Kommando RUN gestartet. BASIC

fihrt in der Zeile 4¢ die Ausgabe des Wertes der Variablen C aus.
Es erscheint auf dem Bildschirm die Zahl 7@.

2.,2.,3, Eingabeanweisung

znr INPUT variablenname

Diese Form der Wertzuweisung fir eine Variasble weist der Variab-
len den Wert zu, welcher von der Tastatur eingegeben wurde. Als
Eingabeanforderung setzt BASIC ein ? bei der Abarbeitung von
INPUT auf den Bildschirm,

1@ INPUT A
2@ INPUT B
3@ C=AxB
4@ PRINT C
5@ END
>RUN
? 7
? 19

7

Nach dem Programmstart mit RUN fordert BASIC in Zeile 1¢ die
Eingabe eines Wertes fir die Variable A an., Als Reaktion des
Bedieners auf das ? wurde die Zahl 7 eingegeben, Ahnlich wurde
mit dem 2, ? verfahren., BASIC gibt das Produkt der beiden Variab-
len aus.

13

2,2.,4, Progremmverzweigung

znr GOTO zeilennummer

Die Anweisung GOTO veranlaBt BASIC, den linearen Programmlauf zu
verlassen und die Abarbeitung an der mit zeilennummer beschrie-

benen Stelle fortzusetzen, Diese Verzweigung wird ohne Test auf

eine Bedingung stets ausgefihrt,

znr IF bedingung THEN anweisungl ELSE anweisung2

Diese Anweisung testet eine Bedingung und fihrt entsprechend dem
Testergebnis die Anweisungl oder die Anweisung2 sus. Es gilt:
Ist die Bedingung erfiillt, so wird mit der Anweisung nach THEN
fortgesetzt., Wenn nicht, dann mit der nach ELSE folgenden. Soll
bei nicht erfilllter Bedingung mit der nachsten Pragremmzeile
fortgesetzt werden, so kann ELSE... entfallen.

Fir den KC 85/2-3 muB vor ELSE ein Doppelpunkt geschrieben wer-
den,

znr IF bedingung THEN anweisungl :ELSE enweisung2

Beispiel:

1@ INPUT A

2¢ INPUT B

39 IF A=B THEN GOTO 5@ :ELSE GOTO 49

AP C=A%B : GOTO 6@

5@ C=A+B

6@ PRINT C

79 END

>SRUN >RUN
?7 ?5

? 1. ?5
7% 1@

Steht hinter THEN bzw, :ELSE nur eine Zahl, so nimmt BASIC diese
als die Zeilennummer, bei der das Programm fortzusetzen ist.
GOTO hinter THEN und :ELSE kann elso entfalien. Im Beispiel kann
auch bei gleicher Funktion des Programms :ELSE entfallen,

14

2,2,5, Zsdhlschleifen
znr FOR variable=enfangswert TO endwert STEP schrittweite

Fur hdufig suftretende Zdhlaufgeben gibt es im BASIC die Z&hl-
schleife. Sie beginnt mit der Definition des Anfangswertes der
Laufvariablen, dem Festlegen des Endwertes des Zihlvorganges und
der Schrittweite. Abgeschlossen wird eine solche Laufenweisung
mit

znr NEXT variable

Beispiel:

Es soll das Quadrat der Zahlen von 1 bis 1P ausgegeben werden
sowie die Zahl selbst,
Zwei Losungen sind im BASIC realisierbars

I. I1I,

19 I=1 1p FOR I=1 TO 1@ STEP 1
20 A=IxI 20 A=IxI

3@ PRINT I,A 3@ PRINT I,A

49 I=I+1 49 NEXT I

5P IF I<=1p THEN 2¢ 5@ END

6@ END

RUN

W N e
O » B

ese
see

19 199

Die Anweisung NEXT variable fihrt intern folgendes aus:

1, variable = variable + schrittweite
2, IF variable <= endwert THEN GOTO 1.anweisung nach FOR,..

Ein absteigendes Zihlen kann erreicht werden durch eine negative
Schrittweite und Anfangswert > Endwert., Die Schrittweite wird
vorzeichenbehaftet addiert.

15

Regeln fir das Aufstellen von Zihlschleifen:
- In eine Zdhlschleife darf nie hineingesprungen wercen.

- Eine Zahlschleife darf nur Uber das zugehdrige NEXT verlassen
werden.

- Zahlschleifen durfen auch verschschtelt werden, dabei ist auf
eine strenge Symmetrie zwischen FOR variable und NEXT variab-
le zu achten,

2.,2,6, Kongtantenfelder

znr DATA wertil, wert2, wert3, ..., wertn

Die Anweisung DATA mit nachfolgender Datenliste stellt Konstan-
ten eines beliebigen Typs im Speicher bereit.

znr READ varieblei, variable2, ...

READ weist Varisblen einen Wert sus der Datenliste zu. Diese
Zuweisung geschieht in der gleichen Reihenfolge:wie sie in der
Datenliste steht., Die Datenliste wird Uber einen Zeiger verwsl-
tet, welcher bei jedem Lesen zuf den nachfolgenden Wert weiter-
gestellt wird. Alle im Programm vorhandenen DATA-Zeilen stehen
beim Lesen hintereinander, unabhidngig von ihrer Zeilennummer.
Das Einstellen des Datenzeigers auf eine bestimmte Programmzei-
le erfolgt mit der Anweisung

znr RESTORE zeilennummer
Das Auslesen beginnt &b der vorgegebenen Zeile,

Beispiel fir cdas Auslesen aus einem Konstantenfeld:

1@ RESTORE 1P

2@ FOR I=1 TO 5

3@ READ X

40 A=A+X

5@ NEXT I

6@ PRINT A/5

78 END

19@ DATA 1,2,3,4,5

16

Beispiel: Runden eines Eingabewertes auf den nachsten Wert der
Reihe E 12,

1f# REM Normierung eines Wertes auf die E-Reihe E 24

2@ DEF FNLG(X)=LN(X)/LN(19)

INPUT "Wert:";X

X@ = LN(X)/LN(1P) : E = INT(XP) : X1 = X@-E : X1 = 1@~X1
RESTORE 2@@

FOR I=1 TO 24

7@ READ Y

8 IF Y=>X1 THEN I=25

9@ NEXT I

18P X=Y*1@~E

11 PRINT “genormter Wert:" ;X

12@ END

2¢P DATA 1,1.1,1.2,1.3,1.5,1.6,1.8,2,2.2,2.,4,2.7,3,3.3,3.6
210 DATA 3.9,4.3,84.745.1,5.6,6.2,6.8,7.5,8.2,9.1

2888

2.2.,7. Unterprogramme und Anwenderfunktionen

Unterprogrammeufrufe sind Programmverzweigungen mit der Absicht,
spater an der Verzweigungsstelle die Abarbeitung fortzusetzen,
Unterprogramme koénnen von beliebigen Stellen im Programm aufge-
rufen werden, BASIC orgenisiert die Rickkehr an die @ufrufende
Stelle. Dies bedingt einige Regeln:

- Ein Unterprogramm darf nur Uber die Anweisung GOSUB erreicht
werden,
- Unterprogremme dirfen selbst wieder Unterprogramme aufrufen,

- Meist ist es nicht zul&dssig, daB ein Unterprogremm sich selbst
eufruft (rekursive Programmierung).

- Im Unterprogremm gelten die gleichen Varisblen wie im uUberge-
ordneten, d. h,,bei der Ubergabe von Werten ins bzw. vom Un-
terprogramm konnen die gleichen Variablen wie im enderen Pro-
gremmteil benutzt werden.

17

znr GOSUB zeilennummer

GOSUB ruft ein Unterprogramm suf der angegebenen Zeile auf, Die
Stelle im Programm, von welcher das Unterprogramm aufgerufen
wurde, hat sich der BASIC-Interpreter gemerkt und setzt die Ab-
arbeitung mit dem UnterprogrammabschluBbefehl dort fort.

znr RETURN

RETURN schlieBt ein Unterprogramm ab, Unterprogramme missen im-
mer mit RETURN abgeschlossen werden,

Beispiel: Bildung der Fakultat N

1§ REM FAKULTAET NI
2@ INPUT “N:"iN

3@ GOSUB 1¢@

49 PRINT “Ni:“,M

1PP REM UP FAKULTAETSBILDUNG MaN!
119 M=1

12¢ FOR I=2 TO N

13@ MaMxI

148 NEXT I

15@ RETURN

fine spezielle Unterprogrammform sind die Anwenderfunktionen,
Sie werden vereinbart und dirfen nur eine Programmzeile umfas-
sen, Mit ihrer Hilfe 14Bt sich bei Bedarf der Wortschatz von
BASIC erweitern,

znr DEFFN variablenname (variable) = ausdruck

DEFFN vereinbert eine Nutzerfunktion. Diese kann unter dem Vari-
ablennamen aufgerufen werden, wobei die Variasble in Klammern den
Platz fur die konkrete Eingangsvariable freihalt,

18

znr FN varisblenname (varisble)

Aufruf der Anwenderfunktion, die vorher vereinbart werden muB,
Beispiel: Bildung der Arcussinus im BogenmaB

1§ REM FUNKTIONSVEREINBARUNG
2 DEFFNASIN(X)=ATN(X/SQR(1-X*X))

19§ REM FUNKTIONSAUFRUF
11 Y=FNASIN(X)

2,2.,8, FELDER

Ein Feld enthalt eine Menge gleicher Veriabler mit einem gemein-
samen Namen, BASIC ermdglicht das Aufstellen ein- und zweidimen-
sionaler Felder, die den Matrizen und Vektoren in der Mathematik
entsprechen,

- Zweidimensionale Felder (Matrizen):

8@ 8 8 co0c0.08
8 8 8 ,.0.008
A = 8 8 8 se00008
8 8 @ eccesel
8 8 8 csec000b

Dieses zweidimensionele Zahlenfeld besitzt (x+1)-Zeilen und
(y+1)-Spalten. Die Koordinatenangeaben werden auch .els Zeilen-
bzw, Spaltenindex bezeichnet, BASIC erreicht ein konkretes Ma-
trixelement durch Angebe der Indizes., Es ist zu beachten, daB
BASIC mit der Koordinete @ beginnt,

X(3,7) meint den Wert, der im Feld mit dem Namen X steht &n den
Koordinatenpunkten 3 und 7.

- Eindimensionale Felder (Vektoren):
A= (888 ¢e00se8)

Ein Vektor entsteht durch Angsbe nur einer Koordinate,

19

Beispiel: Aus einem Vektor V soll der Variablen K der Wert an
der Koordinate, welche in der Veriablen I steht, zu-
gewiesen werden,

2@P K=V(I) mit dem Vektoraufbau V=12 45,7 3 6
und I=3 wiurde in K stehen K=5,7

Es ist moglich, die Angabe der Koordinate implizit lber eine
Varieble zu realisieren,

znr DIM variablennamen (anzahl1l, &nzahl2)

DIM vereinbart den Speicherplatz fiir ein Feld mit einer Anzahl
von Zeilen und Spelten, Die erste Feldkoordinate ist dabei im-
mer @; z. B,

1@ INPUT X,Y
29 DIM V(3g),M(X,Y)

Diese Angebe weist dem Vektor V 31 Elemente und der Matrix M
X-Zeilen, Y-Spalten zu, Bei der Dimensionierung sind folgende
Regeln zu beachten:

- Die Feldvereinberung muB vor der 1. Feldbenutzung stehen.
- Sie darf fir des Feld nur einmal im Progremm erfolgen,

Hinweis: Erfolgt ein Zugriff auf ein Feld, ohne dieses vorher

in seiner Gr6Be zu vereinbaren, so nimmt BASIC ein
Feld der Dimension 1¢,1@ an,

2,2,9, Tischrechnermodus

Einige Befehle konnen auch als Kommendos im sogenannten Tisch-
rechnermodus ausgefiuhrt wercden, Es ist jedoch nur‘eine Zeile mit
Anweisungen mdglich, Die Befehle im Tischrechnermodus werden so-
fort nach ZeilenabschluB ausgefihrt und sind denach vergessen.
Beispiel:
PRINT 445

9

20

3., Spezielle BASIC-Anweisungen

3.1, Farbe und Grafik

BASIC-Interpreter auf Kleincomputern wie dem KC 85/2-3 verfugen
meist lber erweiterte Méglichkeiten zur grafischen Darstellung
und zur Verinderung der Farbdarstellung auf dem Bildschirm, Die
aufgefihrten Anweisungen gel ten flr die genannten Rechner, sind
jedoch auch auf andere Systeme sinngemaB Ubertragbar,

znr COLOR vordergrundfarbe, hintergrundfarbe

COLOR stellt die Farbkombination auf dem Bildschirm ein., Den
Kode fir die Farben enthidlt die KC-Befehlsibersicht,

znr PAPER hintergrundfarbe

PAPER stellt die Hintergrundfarbe, die Farbe des Papiers ein,
auf dem geschrieben werden soll,

znr INK vordergrundfarbe

INK stellt die Vordergrundfarbe, die Farbe der Tinte ein, mit
der geschrieben werden soll,

znr PSET x-koordinate, y-koordinate, farbe

PSET setzt einen Grafikpunkt, Fur die Koordinaten gilt:
@ <= x <= 319 H @ <=y <= 255

Die Farbe des Punktes kann unabhingig von der eingestellten Bild-
schirmfarbe gewdhlt werden, Die Hintergrundfarbe bleibt erhalten.
Beispiel: Darstellen der Funktion y=sin(x)

1@ CLS

2@ FOR X=@ TO 319

3@ Y=128+5@xSIN(X/159.5PI)
AP Y=INF(Y+@.5)

5@ PSET X,Y

7@ NEXT X

8¢ END

21

znr PRESET x-koordinate, y-koordinate

PRESET léscht den Punkt mit den angegebenen Koordinaten.

znr LINE x anf,, y anf., x ende, y ende, ferbe

LINE zeichnet beim KC 85/3 und beim KC 85/2 mit BASIC-Modul eine
Linie vom Anfangspunkt der x- und y-Koordinate zu den Endpunkten
der angegebenen x- und y-Koordinaten, Die Farbe der Linie kann
wie bei PSET gewdhlt werden.

Beispiel:

1¢@ line 2,0,319,255

znr CIRCLE x~koordinate, y~koordinate, fadius, farbe

CIRCLE zeichnet einen Kreis um die Mittelpunktkoordinaten mit
einem vorgegebenen Radius,.

Beispiel:

1@ *CLS

2@ FOR I=1 TO 15

3@ CIRCLE 154,128,2%I,1

48 NEXT I

5@ END

3.2, Bildschirmfenster

znr WINDOW zeilenanfang, zeilenende, spaltenanfang, spaltenende

Mit der Anweisung WINDOW kenn der Bildschirm in Bereiche, soge-
nannte Fenster, unterteilt werden. Ausgaben auf den Bildschirm
sind nur im gerede aktuellen Fenster mdglich., Damit ist es mdg-
lich, daB nur ein Teil des Bildschirms sich infolge von Ausga-
ben verindert, z. B. nur eine Spalte einer Tabelle, wdhrend der
gesemte endere Teil unveridndert bleibt, Der Loschbefehl CLS ist
ebenfalls nur im aktuellen Fenster wirksem,

Beispiel:s Erzeugen eines farbigen Fensters

3@ WINDOW 20,25,10,15

49 PAPER 2
5@ CLS

>WINDOW @,31,9, 39
stellt daes grdBtmdégliche Fenster ein,

3,3, Zeichenketten und Zeichenkettenfunktionen

Zeichenketten sind Folgen von beliebigen Zeichen, GroB- oder
Kleinbuchstaben, Ziffern und Symbolen, die in unverdnderter Form
im Speicher abgelegt werden. Zeichenketten konnen komplette Tex-
te enthalten., Sie werden in der Form ihrer Schreibweise im Spei-
cher abgelegt. Dies begriindet den hohen Platzbedarf im Speicher.
Fur die meisten BASIC-Varianten gilt:

- Die maximale Lénge einer Zeichenkette ist vorgegeben, oft 255

\

Zeichen,
- Eine Verdnderung ist mit Hilfe der Anweisung DIM méglich.

Beispiel:

3% X$="Zeichenkette 1"
49 Y$="Zeichenkette 2"

Bestimmte Manipulationen sind mit Zeichenketten moglich.
Ketten kdnnen getrennt und zusammengefiigt werden., Sie k&nnen,
sofern sie numerisch sind, in die Realzahlderstellung uUberfihrt
werden und umgekehrt,

znr LEFT$ (variable $, position)

LEFT$ liefert eine Anzahl von Zeichen bis zur Position vom An-
fang der Kette,

5@ A$=LEFT$(X$,7)
liefert “Zeichen" in der Variablen A$

23

znr RIGHT$ (veriable$, anzahl)

RIGHT$ liefert eine Anzehl von Zeichen ab der Position bis zum
Ende der Kette.

6@ B$=RIGHT$(X$,8)

liefert “kette 1% in der Variablen B$,

znr MID$ (variable$. position, anzahl)

MID$ liefert Zeichen eus einer Kette sb einer Position.
79 C$=MID$(X$,8,5)

liefert "kette” in der Variablen C$.

znr INSTR$ (veriable1$, veriable2$)

INSTR§ sucht die Kette 1 in der Kette 2 und meldet die Position
des ersten Auftretens,

8p KaINSTR$("e",x$)
K erhédlt den Wert 2,
znr STRING$ (anzehl, variable$)

Die Funktion STRING$ vervielfacht die angegebene Kette; z. B.
9@ D$=(39,"x")
erzeugt 39mal das Zeichen "x" in D$.

3,4, Zufallsgenerator

Fur mathematisch-statistische Untersuchungen und aucH fur Spiele
werden oft Zahlen oder Zahlenfolgen bendtiqt, deren Wert nicht
voraussagbar ist (z, B, fur ein Wurfelspiel), Diese Zufallszah-
len kann BASIC erzeugen., Es ist mdglich, wie beim Wirfeln fest-
zulegen, ob alle Wirfel neu zu mischen sind oder ob vom derzei=-
tigen Stand ausgegangen werden soll.

24

znr RND(x)

Die Funktion RND(x) erzeugt eine Zufallszanhl im Bereich von
@ <= RND(x) <1, Das Argument x kann die Bildung der Zufallszehl
beeinflussen,

znr RANDOMIZE

Der Aufruf von RANDOMIZE legt fest, daB mit der Bildung der Zu-
fallszahl jedesmal erst ein neuer Startwert gebildet werden soll,
Dies &hnelt dem neuen Mischen aller Wirfel,

Fir den KC 85/2-3 'gilt:
~ RANDOMIZE kann nicht asufgerufen werden,

- Der Startwert wird durch das Argument von RND festgelegt.
x >@, der Startwert wird neu gebildet, entspricht RANDOMIZE;
x =@, die letzte Zufallszahl wird erneut ausgegeben;
x < @, der Zufallsgenerator wird neu initialisiert,

Beispiel: Test der Verteilung von 1@PP@ Zufallszahlen

1¢ DIM X(1@)

2@ REM Test des Zufallszahlengenerators
3@ RANDOMIZE

4g FOR I=1 TO 1P@PP
5@ A=INT(1@*RND(1)+.5)
6@ X(A)=X(A)+1

7@ NEXT I

8¢ FOR I=@ TO 1@

9@ PRINT X(I)/19@:

1P@ NEXT

11¢ END

Wird das Programm mit RUN gestartet, meldet es sich nach einiger
Zeit mit der prozentualen Verteilung der Zufallszahlen,

>RUN

19.28 19.p3 9,72 1$.33 9,91 9,51 9.84 1P.37 1P.16 5.25

25

3.5. Sprungverteiler - ON-Satz

Um den Aufwand fir bedingte Programmverzweigungen gering zu hal-
ten, wurde der Sprungverteiler in BASIC aufgenommen, Dgs folgen-
de Beispiel zeigt die Funktion des Sprungverteilers,

1P@ IF A=1 THEN 2¢@ 1¢@ ON A GOTO 2@@,30@, 499
11 IF A=2 THEN 3¢

12¢ IF A=4 THEN app

ohne Sprungverteiler mit Sprungverteiler

Der Sprungverteiler testet also den Wert der Variablen nach ON
und verzweigt entsprechend, Die '‘Position der Absprungadresse
entspricht dem Wert der Variablen. Der Wert @ fir die Variable
ist nicht zugelassen.

znr ON variable GOTO zeilel, zeile2, zeile3, ...

Der Satz ON .., GOTO realisiert einen Sprungverteiler zu absolu-
ten Adressen,

znr ON variable GOSUB zeilel, zeile2, zeile3, ...

Der Satz ON ... GOSUB reslisiert einen Unterprogrammsprungver~
teiler. Es wird des Unterprogremm entsprechend dem Wert der Ve-
riablen aufgerufen,

znr ONERRORGOTO zeile

Der Setz ONERRORGOTO 14Rt eine Beseitigung bestimmter Fehler zu,
die im Interpreter festgelegt worden sind. Auf der angewiesenen
Zeile muB ein Programm stehen, des den Fehler beseitigt. Es kdn=-
nen nur Fehler aufgefangen werden, die nicht zu inneren Konflik-
ten im Interpreter fihren, Fehlerhafte Felddimensionen oder Ver-
schechtelungsfehler bei Laufeanweisungen kénnen hiermit also
nicht beseitigt'werden. Beachtet werden muB weiterhin, daB
ONERRORGOTO bis zu seinem Aufheben, z. B, durch Angsbe einer neu-
en Zeile, gemerkt wird, Dies kann zu sehr komplizierten Fehlern
26

fuhren,
ONERRORGOTO ist beim KC 85/2-3 nicht vorhanden,

3.6, Speicherzugriff und Meschinenunterprogramme

Fir die Anwendung der folgenden Befehle ist eine genaue Kenntnis
des technischen Aufbaus des Rechners notwendig. Der Schutz, den
BASIC dem Nutzer bei Fehlbedienung gibt, ist hier wirkungslos.

3.6.1. Speicherzugriff

znr POKE adresse, byte

Der Befehl POKE schreibt einen dezimalen Zahlenwert auf den mit

der Dezimeledresse angegebenen Speicherplatz im Systemspeicher
des Rechners,

znr PEEK (edresse)

Der Befehl PEEK liest ein Byte vom Speicherplatz mit dezimal an-
gegebener Adresse.

znr DOKE adresse, bytelbyte2

Der Befehl DOKE &hnelt POKE, jedoch wird hier eine zwei Byte
lange Zahl suf den dezimel engegebenen Speicherplatz und den
folgenden geschrieben,

znr DEEK (adresse)

Der Befehl DEEK entspricht PEEK; angewandt auf eine zwei Byte
lange Zahl,

Beim KC 85/2-3 gibt es noch die Befehles
znr VPOKE adresse, byte

VPOKE schreibt wie POKE ein Byte, jédoch in den Bildwiederhole
speicher, Dieser beginnt beim Angprechen mit VPOKE auf der
Adresse @ und ist 16 KByte lang., Alle Parameter in VPOKE sind
dezimal einzugeben,

27

znr VPEEK (adresse)

VPEEK entspricht dém Befehl PEEK mit der Wirkung auf den Bild-
wiederholspeicher, Die Adresse beginnt bei @.

3.6.,2, Maschinenunterprogrammaufrufe

Die Ubermittlung von Werten vom - ins Unterprogramm muB der je-
weiligen Programmbeschreibung des Rechners entnommen werden.

znr CALL adresse

Der Befehl CALL ruft ein Maschinenunterprogramm auf, welches mit
dem Maschinenbefehl "RET" bzw. dem Hexadezimalkode PCoh abge-
schlossen sein muB, Die Adresse des Unterprogramms kann entweder
dezimal angegeben werden oder durch Voranstellen eines "x" hexse-
dezimal,

‘Beispiel:

345 CALL 256 oder 345 CALL *1@@

znr USR (x)

Die Funktion USR entspricht weitestgehend dem Befehl CALL, Es
ist jedoch méglich, Parameter direkt ins Unterprogramm zu iber-
mitteln, Die Startadresse des Unterprogremms ist auf vereinbar-
ten Speicherpléatzen abzulegen,

3,7, Kursorpositionierung bei Aus- und Eingabe

Die Kursorpositionierung ist immer nur im ektuellen Fenster mog-
lich,

37,1, Ausgabegestalt&ng

Um das Druckbild fiur die Ausgabe gestalten zu kdnnen, gibt es

eine Reihe von speziellen Funktionen, welche nur innerhelb des
Befehls PRINT wirken,

28

Das Semikolon ";" verhindert den AbschluB einer Ausgabezeile.
Die nachste Ausgabe erfolgt somit auf der gleichen Zeile, auf
der folgenden freien Schreibposition,

Das Komma "," bewirkt einen Taebulatorsprung auf eine Zeilenposi-
‘tion, die ein Vielfaches von 15 ist, Es steht somit ein einfa-
cher Tabulator mit den Adressen @,15,3@,... innerhelb einer Zei-

le zur Verfigung.

TAB (spalte)

Die Funktion TAB bewirkt einen Tabulatorsprung in die engegebene
Spalte in der Zeile.

AT (zeile, spelte)

Die Funktion AT bewirkt eine Positionierung des Kursors in die
angegebene Zeile auf die Spalte. Es kenn mit AT auf dem gesamten
Bildschirm gearbeitet werden, jedoch nur im ektuellen Fenster.

Die Funktion CUR (zeile, spalte) entspricht der Funktion AT,

Der Befehl PRINT ... ohne AbschluB mit Semikolon oder Komma
schlieBt immer eine Ausgabezeile ab, Die weiteren Ausgeben er-
folgen in der nachsten Bildschirmzeile. Steht PRINT allein, so
schlieBt es entweder eine Zeile 8ab oder, ist die Zeile schon ab-
geschlossen, erzeugt er eine Leerzeile.

Beispiele fur die Wirkung der Anweisungen innerhalb von PRINT.

1¢ FOR I=1 TO 1@

2¢ PRINT I

3P NEXT I

a9 END

Augsgabe der 1@ Zahlen untereinender.

29

19 FOR I=1 TO 1P 19 FOR I=1 TO 1@

2@ PRINT I; 2P PRINT I,

3@ NEXT I 3P NEXT I

48 END 42 END

Ausgabe ohne Zwischenraum mit einem Tebulator auf 15 Posi-
tion

1@ FOR I=1 TO 1¢ 1@ FOR I=1 TO 1¢

2@ PRINT TAB(I*5);I: 2@ PRINT AT(18,I%5);I;

3¢ NEXT I 3% NEXT I

4P REM ZEILENABSCHLUSS 4F REM ZEILENABSCHLUSS

5@ PRINT S@ PRINT

6@ END 6@ END

Ausgabe mit Tabuletor euf Zeile 1@ mit Tabulator

im 5 Abstand im 5 Abstand

3.7+2, Eingabeanforderung

LOCATE zeile, spalte

Der Befehl LOCATE positioniert den Kursor innerhelb des sektuel=-
len Fensters auf die engegetane Zeile in die Spelte.

INPUT "text"”; veriable

Bei Eingaben kann der einzugebende Wert mit einem Text auf dem
Bildschirm angefordert werden.

4, Standardfunktionen

Im BASIC sind fir erithmetische Ausdricke Stendardfunktionen de-
finiert. Diese konnen durch ihren Namen sufgerufen werden. Das
Argument muB in runde Klemmern geschrieben werden, Weiterhin ist
zu beachten, deR fir die trigonometrischen Funktionen die Be-
rechnung im BogenmaB durchgefihrt wird.

SIN(x) bildet den Sinus von x

COS(x) bildet den Cosinus von x
TAN(x) bildet den Tangens von x

ATN(x) bildet den Arcustengens von x

30

EXP(x)

LOG(x) oder LN(x)
LOG1@(x)

YAaX

SQR(x)

ABS(x)

INT(x)

FIX(x)
SGN(x)

RND(x)

RANDOMIZE
PI

x AND y
x OR y

x XOR vy

x IMP y

Beispiele:

entspricht e

entspricht 1ln(x)

entspricht 1lg(x)

entspricht dem Potenzoperator yx

bildet die Quadratwurzel von x (x > @)
bildet den Betreg von x

bildet die gréBte ganze Zahl von x, welche
kleiner oder gleich x ist

bildet den ganzzahligen Anteil von x
liefert das Vorzeichen von x

SGN(X) =-1 fur X < P

SGN(X) =@ fir X = @

SGN(X) =1 far X > @

bildet eine Zufallszehl im Bereich von

@ <= x <= 1, Die Bedeutung des Argumentes x
ist interpreterspezifisch

startet den Zufallsgenerator bei jedem Auf-
ruf neu

liefert die Konstente pi = 3,14,..., mit
der Genauigkeit des Interpreters

bildet das logische UND zwischen x und y
bildet des logische ODER zwischen x oder y
bildet das EXKLUSIVODER zwischen x und y
bildet die IMPLIKATION von x,y

1. Es s0ll eine Tabelle der Werte des Sinus im Intervell von
P < x< 2 % pi in Schritten von P.1 euf dem Bildschirm er-

stellt werden,

1P FOR I=@ TO 2%PI STEP .1

2@ PRINT I,SIN(I)

3@ NEXT I
42 END

2, Die Tebelle soll in Grad eusgegeben werden,

1@ FOR I=@ TO 2%PI STEP .1
2@ PRINT 18@%I/PI,SIN(I)

3P NEXT I
49 END

31

3. Der natirliche Logarithmus soll im Intervall von 1 < x < 2@
in Schritten von { auf dem Bildschirm tabelliert werden,

1@ FOR I=1 TO 2@ STEP 1
2@ PRINT I;LN(I),

3P NEXT I

AP END ‘

4, Es sollen die Zahlen von P bis 1@ quadriert werden.

1@ FOR I=@ TO 1@
2¢ PRINT I,I~2
3P NEXT I

49 END

Das Programm fihrt im allgemeinen zu einer Fehlermeldung, da
die Bildung der Potenzfunktion intern lber den Logarithmus
realisiert wird, Es empfiehlt sich daher, des Quaedrieren als
Mehrfachmultiplikation zu schreiben oder vor Aufruf der Po-
tenzfynktion das Argument zu testen.

1 FOR I=@ TO 1@
2@ PRINT I,I¥I
3% NEXT I

49 END

5., Es soll eine einzugebende Zahl gerundet und auf dem Bildschirm
wieder ausgegeben werden,

19 INPUT X
2@ X=INT(X+.5)
3@ PRINT X
49 GOTO 1¢

5. Ubungen zum Umgang mit dem Kleincomputer KC 85/3 und Pro=-
grammbeispiele

5.1, Ubungen zur Programmeingabe und zum Programmtest

Eine programmierte Einfihrung in die Arbeit mit dem Kleincompu-
ter KC 85/3 soll den nicht stindig mit dem Rechner arbeitenden
Leser den Einstieg in die Nutzung erleichtern, Die Ubung ist di-
rekt am Rechner zu realisieren und fuhrt in die Handhabung grund-

32

legender Kommandos zur Programmeingabe und zum Programmtest ein.
Realisieren Sie folgende Arbeitsgénge:

1, Einschalten des Rechners
- Fernsehgerdt einschalten
- Taste =POWER- am Grundgerit betdtigen.
(Auf dem Bildschirm erscheint das Grundmeni des Betriebssy-
stems)

2, Aufrufen des BASIC-Interpreters
- Eingabe der Tastenfolge BASIC und Taste ~ENTER-()
(Rechner fragt nach dem Speicherende fir BASIC)
-~ Quittierung mit Taste -ENTER-
(Der gesamte Speicherbereich wird fir BASIC genutzt.
BASIC meldet sich mit: OK
>)

3, Programmeingabe
- Geben Sie ein: 1@ FR I=1 TO
Jetzt merken Sie, daB ein Schreibfehler vorliegt (FR statt
FOR). Sie mussen ein Zeichen einfiigen!
« Kursor mit Taste = «— - auf Zeichen nach der Einfligestelle
setzen (also auf =R=-)
« Taste -INS- (insert=einfigen)
. Buchstabentaste -0-
o Kursor mit Teste - — -~ auf alte Schreibposition stellen.
Es steht nun auf dem Bildschirm: 1§ FOR I=1 TO
- Geben Sie weiter ein: ,,.5 STAP
Sie merken jetzt, daB Sie einen falschen Buchstaben ge-
schrieben haben (STAP statt STEP), Sie mussen ein Zeichen
loschen und ein anderes einfiigen!
Zeichen loschen:
. Kursor auf falsches Zeichen setzen
. Taste -DEL~ (delete=1ldschen; die Zeile wird um ein Zeichen
verkirzt, Restzeile riuckt nach)
Zeichen einfugen:
. Taste ~INS=~
« Zeichentaste =~E-
o Taste = — - bis Kursor hinter STEP steht.

33

Auf dem Bildschirm steht nun folgende Zeile:
1@ FOR I=1 TO 5 STEP

- Geben Sie weiter ein:...1
und betidtigen Sie die Taste -ENTER=-
(Hinweis: Mit der Taste -ENTER- haben Sie die Zeile abge-
schlossen, Sie wurde dadurch in den Progremmspeicher Uber-
nommen, Der Kursor stellt sich automatisch an den Anfang der
nédchsten Zeile.)

~ Geben Sie weiter mdglichst fehlerfrei ein:

2@ PRINT I,I+I Teste -ENTER-
3P NEXT I Teste -ENTER-
4g GOTO 2¢ Teste -ENTER-

Beim Lesen des Programms auf dem Bildschirm stellen Sie fest,

daB Sie eigentlich I*I statt I+I haben wollten, Sie missen

editieren, also eine Programmkorrektur vornehmen!

. Eingabe der Tastenfolge EDIT 2¢
(Damit wird die Zeile 2@ aus dem Programmspeicher auf dem
Bildschirm angezeigt und zur Korrektur zur Verfiigung ge-
stellt)

. Kursor auf Zeichen + stellen

. Taste -DEL=-

o Teste =INS-

. Taste =x- !

. Taste -ENTER- (Zeile ist damit gultig erkliart)

. Taste =-BRK~- (AbschluB der EDIT-Funktion).

Die Unordnung auf dem Bildschirm stért. Sie méchten den Bild-

schirm l6schen und nur Ihr Progremm esuf dem Bildschirm sehen.

o Taétenfolge CLS (cleare screen)

. Taste ~ENTER-

. Tastenfolge LIST

. Taste -ENTER-

4,Programmtest
- Starten Sie Ihr Programm mit der Tastenfolge RUN und der Ta-
ste -ENTER~
- Auf dem Bildschirm erscheint folgende Ausschrift:

34

1 1

2 4

3 9

4 16
5 25
6 36
? NF ERROR IN 3¢
oK

>

Im Progremm ist ein logischer Fehler, Die Fehlermeldung NF
ERROR IN 3@ bedeutet, deB in der 3@. Zeile ein NEXT steht,
ohne deB zuvor ein FOR steht. Diese Meldung kommt deshalb
zustande, weil Sie von der Zeile 4@ mit GOTO zur Zeile 2@
springen (elso mitten in die Laufanweisung hinein), Sie mus-
sen die Zeile 4¢ editieren und an den Anfang der Laufanwei-
sung springent

- Editieren Sie:

Tastenfolge EDIT 4p

Taste ~ENTER-

Kursor auf Zeichen 2 stellen

Taste ~DEL-

Taste -INS-~

Taste -1~

Kursor an das Ende der Zeile stellen
Taste -ENTER-

Taste =BRK=

- Starten Sie das Prog?amm erneut und beobachten Sie den Bild-
schirm:

.

Tastenfolge RUN
Taste ~ENTER~

Das Programm enthilt '‘eine Endlosschleife. Um die Abarbeitung
zu unterbrechen, dricken Sie die Teste =-BRK-, Der Rechner

meldet:
BREAK IN xx (xx = Zeilennummer, in der der Abbruch
erfolgt)
OK
>

Um des Progremm zu einem Ende zu fiilhren, muB die Zeile 49
veriandert werden, Das ist moglich durch:

35

. Uberschreiben der Zeile oder
. Ldschen der Zeile und Eingsbe einer neuen.

- Uberschreiben einer Programmzeile:
Geben Sie ein: 4@ END und dricken Sie die Taste -ENTER=-
Die alte Zeile 4@ (GOTO 1@) ist nun durch die neue Uber-
"schrieben,

- Léschen einer Programmzeile:
Geben Sie ein: 4@ und dricken Sie die Taste -ENTER-
Beachten Sie: Durch Eingabe nur der Zeilennummer wird diese
Zeile geldscht, Jetzt missen Sie natirlich die Zeile 4¢ neu
eingebenl

- Testen Sie beide Varianten!

5. Loschen des Progremms
- Tastenfolge NEW
- Taste =-ENTER=-
Uberprifen Sie das Léschen durch:
- Testenfolge LIST
- Taste -ENTER=-
Der Rechner meldet sich mit: OK

5,2, Gestaltung von Programmen

Beim Entwurf von Programmen zur rechnerunterstitzten Lésung kom-
plexer Aufgabenstellungen tritt das Problem der Ubersichtlich-
keit sowohl im Entwurfsstedium als such bei der spadteren Nutzung
der Programme gegenuber anderen Fragen, wie der Programmléange
oder der Rechenzeit, in den Vordergrund., In der Literetur werden
fir-den Programmentwurf im wesentlichen zwei Wege gezeigt, die
"Top down"- und die “Botton up“-Methode., Bei der "Top down"=Me-
thode geht man beim Programmentwurf so vor, wie die spatere Nut-
zung des Programms erfolgt, also von der allgemeineren, uberge-
ordneten Aufgabenstellung oder Fragestellung zur immer konkrete-
ren, untergeordneten, Die "Botton up"-Methode verfolgt genau den
umgekehrten Weg. Es werden Teilprogremme fir die Loésung von Teil-
sufgaben geschaffen, die dann zur Lésung komplexer Aufgaben ge-
eignet zusammengefaBt und vecknipft werden, In der Praxis schléagt

36

man meist einen Zwischenweg ein, Nach Méglichkeit sollte eber

dem "Top down"-Entwurf der Vorzug gegeben werden, weil dadurch
Ubersichtliche, direkt zweckgebundene und zielgerichtete Pro-

grammstrukturen entstehen.

Gleichgiltig aber, welche Methode angewendet wird, sollte man

auch bei der BASIC-Programmierung folgendes beachten:

1, Einfeche und ubersichtliche Progremme und Strukturen reali-
sieren durch ’
- Ldsung einer Teilaufgabe in einem Programmteil (Modul)
- Anwendung der strukturierten Programmierung, auch wenn das
mit BASIC nicht gut und durchgéngig méglich ist,

2. Nutzerfreundliche Programme schaffen durch
- Fihrung des Nutzers durch das Programm
- Ausgabe von Fehlermeldungen und Angebote zu ihrer Beseiti-
gung
- Vermeidung von Anpassungsproblemen durch Gebrauch einer im
Nutzerkreis gebrauchlichen Sprache und Datenschreibweise.

Eine Moglichkeit zum Entwurf Ubersichtlicher Programmstrukturen
ist die Unterprogremmtechnik, Dabei wird fur jede zu lésende Auf-
gabenstellung ein Unterprogramm (UP) geschrieben. In BASIC sind
Unterprogramme tbliche BASIC-Programme, die als letzte Anweisung
die RETURN-Anweisung enthelten missen (und nicht END oder STOP),
Jdie Einordnung des Unterprogramms zur Losung einer Teilaufgabe
im Komplex einer Gesamtaufgabenlésung regelt (steuert) ein iber-
geordnetes Programm, das sogenannte Hauptprogramm (HP). Der Zu-
sammenhang zwischen HP und UP ist der, daB das HP das UP aufruft
und nech dem Abarbeiten des UPs autometisch (das regelt die
RETURN~Anweisung am SchluB des UPs) in das HP zuruckgekehrt wird.
Das Verlessen des HPs erreicht men durch die Anweisung

znrhp GOSUB znrup
(znrhp=Zeilennummer im HP, znrup=Zeilennummer, mit der das UP be-
ginnt).
Nach der Abarbeitung des UPs wird an die nachsthohere Zeilennum-
mer des HPs nach znrhp gesprungen.
Eine Menge von Unterprogrammen faBt man in einem Unterprogremm-
system zusanmen, Die einzelnen UPs eines solchen Unterprogramm-
systems werden dann je nach Bedarf durch das Hauptprogramm auf-
gerufen. An folgendem allgemeingiltigen Beispiel soll der Zusam-

37

menhang nochmsls verdeutlicht werden:

znr REM HAUPTPROGRAMM
- L]

® Anweisungen im HP

znrl REM UP1 ®
.
" Anweisungen UP1 3P@@ GOSuB znr2
* 3P1¢ REM von UP2
znr RETURN -
znr2 REM UP2 ® Anweisungen im HP
- -
® Anweisungen UP2 32¢p GOSUB znri
- 321@ REM von UP1
znr RETURN .
e ® Anweisungen im HP
© znr END
znr REM UPn

® Anweisungen UPn

znr RETURN

Durch die GOSUB-Anweisung des HPs in Zeile 3@@@ wird in das UP2
gesprungen, Die Anweisungen des UP2 werden abgearbeitet und beim
Erreichen der RETURN-Anweisung wird zur Zeile 3@1i@ der HPs zu=-
riickgekehrt, da 3@1@ die nach 3p@@ néchsthéhere Zeilennummer im
HP ist, Nun werden die Anweisungen im HP reelisiert, bis bei Zei-
le 32¢P der Sprung in das UP1 erfolgt. Nach Ricksprung aus dem
UP1 en die Zeile 321Q des HPs werden die Anweisungen des HPs
ausgefihrt und das Ende des Hauptprogramms erreicht.

Im hier dargestellten Hauptprogramm erfolgt eine feste Abfolge
der Unterprogrammaufrufe, Haufig liegt aber der Fall vor, deB, -
vom Hauptprogremm ausgehend, der Nutzer entscheiden méchte, wel-
ches UP jetzt in der Folge aktuell angesprungen werden soll. Der
Nutzer will sich also sein eigenes “Meni" zusesmmenstellen, Mit
der Realisierung dieser Forderung erreicht man eine flexiblere
Nutzung und demit breitere Anwendung des UP-Systems,

Im Hinblick auf die nutzerfreundliche Programmgesteltung kann
dieses Problem wie folgt geldst werden:

38

- Ausgebe eines “Meniis” euf dem Bildschirm, z., B, in folgender
Form:

UP-System Kennung
UP1 1
upP2 2
: :
UPn n

Wahlen Sie eine Kennungs

- Aufruf des-aktuellen UPs durch einen Sprungverteiler, der
durch die eingegebene Kennung gesteuert wird:

ON variable GOSUB znri,znfz,znrs.....znrn

Zur Erinnerung: Nimmt die =-variable~ hinter ON den Wert 1 en,
so erfolgt der Aufruf des UPs, welches bei der Zeilennummer
znrl beginnt, Nimmt sie dagegen den Wert 3 an, so wird das UP
angesprungen, welches bei der Zeilennummer znr3 beginnt, da

znr3 an der 3, Stelle nach GOSUB in der Verteileranweisung
steht,

Folgendes Programmbeispiel wiirde dieser interasktiven Arbeitswei-
se des Nutzers mit dem Rechner Rechnung tragen:
-

PRINT"UP~-MENUE"

PRINT"UP-SYSTEM KENNUNG*
PRINT" .
PRINT" UP1 1"
PRINT" UP2 2~

- -

L] -
PRINT* UP3 3"
PRINT" .
PRINT

PRINT"WAEHLEN SIE EINE KENNUNG:*
39

INPUT N
ON N GOSUB znri,znr2,...,znrn

In den folgenden Progremmbeispielsn wird die konkrete Anwendung
dieser "Meniitechnik" gezeigt. Alle Programme sind fir den Klein-
computer KC 85/3 geschrieben und auf diesem getestet.

5.3, Programmbeispiele

5,3.1, Sortieren von Datenfolgen

Eine Datenfolge ist eine Menge von Daten, die unter einem Sam-
melbegriff zusammengefaBt werden kénnen., Beispiele dafir sind

- die Menge aller Zeichnungsnummern der Einzelteile eines Gera-
tes odsr

- die Menge sller Arbeitsgédnge zur Herstellung eines Einzeltei-
les oder

- die Menge aller Kérpertemperaturen, Blutdricke und Herzfre-
quenzen einer Patientengruppe.

Sortierte Folgen sind Folgen, deren Daten oder deren Ordnungs-~
nummern nach einem Ordnungsprinzip geordnet sind. Beispielsweise
kann man eine Zahlenfolge aufsteigend, beginnend mit dem Minimum
bis zum Maximum, geordnet in einem Feld im Hauptspeicher (Ar-
beitsspeicher des Rechners) ablegen., Zur Lésung einer solchen
Aufgabenstellung werden in der Literatur mehrere mogliche Algo-~
rithmen angegeben. Drei davon sollen beschrieben werden, Es wird
davon ausgegengen, daB in einem Feld A im Arbeitsspeicher des
Rechners eine ungeordnete Folge vorliegt.

- Sortieren durch Aussondern aus der Folge:
1. Im Feld A das Minimum suchen.

2, Des Minimum von A in das erste Feldelement des Feldes B ab-
legen.

3. Das Feldelement von A, in dem das Minimum gefunden wurde,
mit der gréBten Zehl des Rechners belegen.

40

4, Weiter bei 1., bis alle Feldelemente von A bearbeitet sind,
- Sortieren durch Umspeichern in der Folge:

1. Im Feld A des Minimum suchen.

2, Das gefundene Minimum gegen den Wert von A(1) tauschen.

3. Minimumsuche ab Feldelement A(2) fortsetzen und das gefun-
dene Minimum gegen den Wert des Feldelementes A(2) sustau-
schen.

4, Wie 3, fur alle Feldelemente von A,
- Sortieren durch Permutetion:

1, Beginnend mit I=1 Vergleich von A(I+1) mit A(I) bis die Re-~
lation A(I+1)<A(I) suftritt,

2, Austausch von A(I+1) mit A(I).
3., Rickwdrts weiter Austauschen bis A(I-1)<A(I) gilt.

4, Weiter bei 1, mit I= Wert von Abbruchstelle.

Nachfolgend sind die drei Algorithmen in drei Unterprogremmen
realisiert.

586 REM AUSSORTIEREWK AU5S DER FOLGE
516 PRINT"AUSSORTIEREN ALS DER FOLGE"
588 DIHBINY

536 FOR J=86 TO N

548 H=1.76L141E+38

558 FOR I=6T0 N

566 IFACII<H THEN H=RA{I):K=1

576 MNEXTI

586 B{(Jr=HM: AIK»=1.78141E+38

538 HEATJ

383 RETURN

566 REM UMSPEICHERN IN DER FOLGE
616 PRIMNT"UMSPEICHERN IN DER FOLGE"
526 FOR J=8 TO HN-1

638 M=RCJIMiK=J

648 FOR I=J TO H-1

636 IF ACISCH THEN M=R{iI):K=I

666 HEATI

676 AIKI=R{JIIIACTI=H

688 HNEXTJ

656 RETURN

766 REM PERMUTATION

716 PRINT"FERMUTARTION"

726 FOR J=6 70 N-2

736 IFRCJ+LXCACTS THEN 750

746 GOTO 7350

41

708 I=J+#1:K=J+1
768 Z=ACIY:ACI)=ACI-1):ACI-1)=2:1=1-14
776 IF 1=8 THEN 790

786 IF R{IYCACI-1> THEN 760
738 NEXTJ

795 RETURHN

Das angegebene kleine Unterprogrammsystem soll nun mit einem
Testprogremm getestet werden. Das nachfolgende Pfogramm “Test-
Sortieren” stellt eine mégliche Lésung dieser Aufgabenstellung
dar, Von Zeile 1@ bis Zeile 44f steht das Hauptprogramm. Ab Zei-
le 5¢@ bis Zeile 795 stehen die 3 UPs “"Aussortieren“, "Umspei~
chern” und “Permutation”.

Des Hauptprogramm realisiert im wesentlichen

die Dimensionierung des Feldes A und die Handei ngebe der Daten
(Zeile 37 bis Zeile 9P):

die Ausgaebe des Menis auf dem Bildschirm (Zeile 1¢@ bis Zeile
15@);

die Eingebeenforderung der auszuwdhlenden Kennung fir des ge-
winschte UP und die Priufung der Kennung auf ihre Zulissigkeit
(Zeile 16@ bis Zeile 18@);

(Fehlerhafte Eingaben werden durch Ausschrift “FEHLEINGABE®
angezeigt und filhren automatisch zur erneuten Ausgabe des Me~
nli-Angebotes und zur Eingabe einer Kennung zurick.);

die Verteilung zu den UPs entsprechend der gewdhlten Kennung
(Zeile 198); |

die Verteilung zu zwei méglichen Ausgabeprogrammen, die ab Zei-
le 3@@ bzw. Zeile 4¢P des Hauptprogramms stehen (Zeile 2¢@).

Zu beachten ist, deB nach erfolgter Sortierurg in einem UP
durch die Anweisung RETURN immer an die Zeile 2p@ des Hauptpro-
gramms zuriickgekehrt wird, Hier findet automatisch die Zuwei~
sung des Ausgabeprogremms statt, Bei Wahl des UPs “Aussortie-
ren” (Kennung=1) wird das Ausgabeprogramm asb Zeile 3@ und bei
Wahl von UP “"Umspeichern” und “Permutation®” (Kennung 2 oder 3)
das Ausgabeprogramm ab Zeile 4@@ zugewiesen.

42

Der Test der Unterprogramme wird nun durch den Start des Pro-~
gremms “"Test-Sortieren” vorgenommen., Die nachfolgend dargestell-
ten Testprotokolle zeigen zuerst den Test des UPs "Aussortieren®
und anschlieBend den der Unterprogramme “Umspeichern” und “Per-
mutation", Als Beispiel ist die ungeordnete Zshlenfolge 3,8,7,4,
2,18,12 in des Feld A eingegeben worden., Durch die Wahl der Ken-
nung 1,2 und 3 erfolgt die “Rechnung"” in den UPs und die Ausgabe
der Ergebnisse auf dem Bildschirm,

Im Protokoll "Aussortieren” ist bemerkenswert, daeB die Folge in
A in der Ergebnisanzeige nur noch die Zahl 1.,7@141E+38 enthalt.
Das ist die groBte darstellbare Zahl des KC 85/3, Sie wurde im
UP "Aussortieren” nach der jeweiligen Minimumsuche in slle Feld-
elemente von A gespeichert.

180 REM TEST-SORTIEREN

20 CLS:PRINT"TEST-SORTIEREN"

30 PRINT:PRINT"GEBEM SIE LAENGE DER FOLGE EIN":INPUTN
40 PRINT:PRINT"GEBEN SIE DIE FOLGE EIN"

S0 DIM ACN-1>

608 FORI=OTON-1

70 PRINT"AC"; I+1; ">="; : INPUTRCI>

80 NEXTI

90 PRINT:PRINT"EINGABE BEENDET"

100 PRINT:PRINT"SORTIERPROGRAMMAUSWAHL"

110 PRINT:PRINT"PROGRAMM KENMUNG"
120 PRINT" "

130 PRINT:PRINT"AUSSORTIEREM A
148 PRINT"UMSPEICHERN 2"

158 PRINT"PERMUTATION 3"

160 PRINT:PRINT:PRINT"WAEHLEN SIE EINE KENNUMG"; : INPUTH
178 IF W=1 OR W=2 OR W=3 THEN 156

180 "FEHLEINGABE":PAUSE(30::G0T0180

150 ON W GOSUB 508,500, 700

200 ON W GOTO 300,400,408

308 CLS:PRINT:PRINT:PRINT"ANZEIGE DER FOLGEN"
318 PRINT:PRINT"FOLGE A FOLGE B"

320 PRINT" "

338 FOR I=0 TO N-1

340 PRINTTABC1; ACIN; TABC23%; BCIX

350 NEXTI:GOTO 448

400 CLS:PRIMT:PRINT"ANZEIGE DER SORTIERTEM FOLGE"
410 FOR I=8 TO N-1

428 PRINTTABCL»; ACIS

430 NEAXTI

4489 END

43

Se0
510
520
530
S48
5560
560
579
5809
590
595
500
610
520
630
640
650
660
570
630
590
Voo
710
720
730
740
750
760
77e
780
790
795

REM AUSSORTIEREM RUS DER FOLGE
PRINT"AUSSORTIEREN AUS DER FOLGE"

DIMBCN-1

FOR J=8 TO N-1
M=1.70141E+38

FOR I=8TO N-1

IFACIX<M THEM M=RCI»:K=I
HEAXTI

B{J»=M: ACKH)I=1.70141E+38
HEATJ

RETURN

REM UMSPEICHERN IM DER FOLGE

PRIMT"UMSPEICHERM IM DER FOLGE"

FOR J=8 TO HN-1
M=R{JI»sK=J
FOR I=J TO N-1

IF ACI®<M THEN M=R{I>:K=I

MEAXTI

RCKI=ARCIH:ACI =1

NEXTJ

RETURN

REM PERMUTATION
PRINT"RERMUTATION"

FOR J=0 TO N-2
IFRCJI+L5<CACTY THEN 758
GOTO 798

I=3+1:K=J+1

Z2=ACINEACIX=ACI-12:ALI-10=22

IF I=0 THEN 790

IF ACIVCACI-1> THEN 768
NEXT.J

RETURM

44

I=I-1

;$EET—SORTIEREN

GEBEM SIE LAREMGE DER FOLGE EIM

? v

GEBEM 5IE DIE FOLGE EIM

AC 1 =7 3
AC 2 ¥=? 3
AC 3 ¥=2 7
AC 4 ¥=7 4
AC 5 =2 2
AC 5 =7 1
AC 7 =7 12

EINGARBE BEEMNDET

SORT IERPROGRAMMAUSWAHL

PROGRRAMM KEMMUMNG
AUS50RTIEREN 1
UMSPEICHERHN 2
PERMUTATION 3

WAEHLEM SIE EIME KEMHUMG? 1
RUSSORTIEREM AUS DER FOLGE

ANZEIGE DER FOLGEM
FOLGE A FOLGE B

1.70141E+38
1.78141E+33
1.70141E+38
1.79141E+38
1.70141E+38
1.70141E+38
1.78141E+33
OK

-

PR ONBEWR

wr

RUN
»TEST-SORTIEREN

GEBEN SIE LRENGE DER FOLGE EIN
? 7

GEBEN
A<
A¢
A<
A¢
RY
AC
AC

E DIE FOLGE EIN

v

NN BN
o v

PO I I P N e
$l0&\l0)l»l

~
8
(V]

EINGRBE BEENDET
SORTIERPROGRAMMAUSHAHL

PROGRAMM KENNUNG
AUSSORTIEREH 1
UMSPEICHERN 2
PERHUTATION 3

WAEHLEN SIE EINE KENNUNG? 2
UMSPEICHERN IN DER FOLGE

ES
ANZEIGE DER SORTIERTEN FOLGE

TR ON AW

on

RUN
+» TEST-SORTIEREN

GEBEM SIE LAENGE DER FOLGE EIN

? v

GEBEM SIE DIE FOLGE EIM

AC 4 »=? 3
RC 2 »=? 3
AL 3 »=7 7
AC 4 =7 4
RC 5 »=7 2
AL & »=? 13
AC 7 x=? 42

EINGRBE BEENDET
SORT IERPROGRAMMAUSWAHL
PROGRAMM KEMNUNG

AUSSORTIEREM 1
UMSPEICHERN 2
PERMUTATIOM 3

WAEHLEN SIE EINE KEMNUNG? 3
PERMUTATION

) .
AMZEIGE DER SORTIERTEN FOLGE
2

v N2

(s) N]

OK

5.3.2. Unterprogrammsystem zur Matrizenrechnung

Im folgenden wird ein Unterprogrammsystem zur Matrizenrechnung

vorgestellt, seine Testung mit einem Testprogramm vorgenommen
und die Nutzung em Beispiel der Lésung eines linearen Glei-
churigssystems gezeigt. Das Unterprogrammsystem besteht aus fol-

qenden UPs:

UP-Name Erliuterung 1. Zeilennummer
Addition C=A+B 19999
Substraktion C=A-B 19199
Transponieren C=A(T) 19299
Mult, mit Konst, Cak*A 19399
Multiplikation C=A*B 10499
A=Nullmatrix Alle Elemente=g 19509
B=Nullmatrix Alle Elemente={f 19520
A=Einheitsmatrix Elemente der HD=1 196@@
B=Einheitsmetrix Elemente der HD=1 14550
Tausch A mit C Ce>A 19799
Tausch B mit C Ce>B 1975@
Laden A mit C A=C 19899
Laden B mit C B=C 1985¢@
Inversion von A A=AA(=1) 11909

Das UP-System beginnt bei der Zeilennummer 1@PP@ und endet bei
der Zeilennummer 1131, Die Dimensionierung der Felder muB im

aufrufenden Hauptprogramm erfolgen, Neben den Feldern A, B und C
benutzt'das UP-System noch intern das Feld S(1,3@). Auch dieses
Feld muB im aufrufenden Programm definiert werden. Sollen ein-

dimensionale Felder (Vektoren) zum Einsatz kommen, so sind diese

als zweidimensionale: Felder mit dem jeweiligen Zeilen- oder Spal-
tenindex=@ zu dimensiopieren (z. B, B(3@,P), wenn B ein Zeilen-
vektor mit 3@ Elementen sein soll). Die -maximal mégliche GroBe

der Indizes ist 3@.

48

Das UP-System Matrizenrechnung benutzt (und verbraucht somit)
folgende Variablenbezeichnungen:

- Felder: A(21,51),B(z2,S2),C(23,S3),S(1,3P)
Z1,22,23,51,52,S3 sind die jeweils zu dimensionieren-
den Zeilen~ und Spaltenindizes der Felder

- Einfache Var{gble: 21,22,23,28,Z9
$1,52,$3,57,58,S9
K,L

Nachfolgend ist das komplette Unterprogrammsystem angegeben.

19088 REM UP-5YSTEM MATRIZEMRECHMUNMG

18085 53=51:Z3=Z1:REM FELD+FELD{C=R+B>

18016 IF Zi=22 AMD S1=S2THEM 10620

18015 PRINT"DIMENSIOMIERUNGSFEHLER": PRUSE (381 :G0TO19058
189828 FOR 59=8 TO S1:FOR 22=8 TO Z1

18030 C(29,531=A"Z3,S53:+BL23, 532

106840 MEHTI9:HEXTSS

168058 RETURNM

18169 REM FELD-FELDCC=R-BX

18185 53=51:23=21

18118 IF Z1=22 AND S51=52 THEM 189120

18115 PRINT"DIMEMSIOMIERUNGSFEHLER" :PAUSEC 382 : G0TO18158
18120 FOR 55=8 TO S51:FOR Z3=0 TO Z1

16130 CuZ9, S30=ACZ5,59:-BLZ9s 530

19140 MHEXTZI:HERXTSS

19158 RETURM

19280 REM TRAMSPOMIERE FELD A IM FELD C

18205 53=21:23=51

18218 FOR 23=0 TO Z1:FOR 53=0 TO 51

18220 C(53,23=AC23,53%

18238 MEXTS53:HEXTZ9: RETURN

18360 REM KOMSTAMTE+FELD R CC=K#R)

18385 23=21:53=51

19310 FOR 58=0 TO 51:FOR 2Z9=8 T0O Z1i

10328 CC23»530=K+RI258, 532

18338 HNEXTIR:NEXTS3:RETURN -
10480 Z3=21:53=52:REM FELD+FELDCC=A+B

10418 IF 51=22 THEN 184208

189415 PRIMT"WERKETTUMGSFEHLER : PRUSE <392 :GOTOL108443
189428 FOR Z3=8 TOZ2:FOR 53=0 TO S2:C(Z29,580=0

16425 FOR HK=8 TO Z3:iCC22,530=C(Z23, 530 +ACE3r KBk 530
19438 HEXTKIMEXTS3:MEXTZ3

18448 RETURM

49

18500
10518
10515
18528
1953

19540
16500
10610
19515
186209
18530
18548
18645
18558
18558
10555
18570
18575
1685309
18530
18706
10710
18715
18va2e
18725
18736
18740
18756
18750
18765
18778
18775
18730
18798
16366
15316
18315
16828
10325
1083368
18340
188568
18360
183865
1688vVH
183875
108306
1893358
11680
116286
11030
11040
110508

REM MULLFELD AUF FELD RCA=0>

FOR 53=8 T0O 51:FOR Z3=0 TO 21
ACZ9,590=0: NEATZI: HEXTS53: RETURN

REM MULLFELD AUF FELD BiB=8x

FOR S$3=8 TO S2:FOR 29=0 T0Z2
B{29,531=0: NEXTZ2S: NEXTS59: RETURN

REM EIMHEITSMATRIX AUF A

IF Z1=51 THEN 10520

PRIMT"MATRIX MICHT QUATRATISCH":PARUSE(38::G0TO10545
FOR 29=0 TO 21:FOR S9=0 TD S1i

IF 55=23 THEM R(Z9,53»=1:ELSE RCZ3,53=0

HEAT593: NEXATZS

RETURM

REM EIMHEITSMATRIX AUF B

IF 22=52 THEM 10678 : :
PRINT"MATRIX MICHT QUARDRATISCH":PRUSE!385:G0T018690
FOR 29=0 TO Z2:FOR 59=0 T0S2 .

IF 595=239 THEN BvZ39,539:=1:ELSE B(29,539)=

HEXTS9: NEAT23

RETURN

REM TAUSCH FELD AR MIT FELD C

IF S1=53 AND 21=23 THEN 18720

PRINT"MATRIZEN SIND UNTERSCHIEDLICH":PRUSEY30::G0T018740
FOR 29=0 T 21:FOR S5=08 TO 51

K=AZ9, 591 RCZ, 53 0=C29, S35 C(29, S90=K

NEHXTS9: MEATZS

RETURHN

REM TRAUSCH FELLD B MIT FELD C

IF 52=53 RAND 22=23 THEN 1877

PRIMT"MATRIZEM SIND UNTERSCHIEDLICH" :PRUSEC(38::G0TO18759
FOR 29=8 TO Z2:FOR 59=0 T0S2
K=B{(Z93,S301B29, S34=Cu23, 532 L2, S 0=K

HEXTS9: NERTZ23 ’

RETURN

REM LADEN-FELD AR MIT FELD C

IF 512=53 RND Z12=Z3 THEMN16320

PRIMNT"FELD A KLEINER FELD C":PRUSE(38>:G0T0160340
FOR 53=6 TO S3:FOR 2S=B TO 23

A{Z9, 530=C(Z9r SN IMNEXTII I HEXTSS

21=23:51=53

RETURM

REM LADEM FELD B MIT FELD C

IF S20=53 AMD 222>=23 THEM 18370

PRINT"FELD B KLEIMER FELD C":PAUSE¢30::G0T018390
FOR 59=8 TO S3:FOR 29=0 TO 23

BY 29, 584=C29, 59t NEATZ29: NEXKTS2

22=23:152=53

RETURN

REM MATRIZEMIMWERSION YON A

IF 21<>S1 THEM PRINT" A WICHT AcM,N>»":PRUSEC30>:G0T0112909
FOR 28=0 TOZ21:51,23»=28:5/0,28:»=23:MEXT 28
S8=-1

S?==1

50

11060 S9=0:57=57+1

11076 IF SP=21+1i THEM 57=1:GOTO 113086

11680 IF S5¢8,57»=-1 THEM 57=57+1:G0T011070

1183268 IF 59>=21+1 THEN 11060

11100 IF S<{1,59»=-1 THEM S$9=53+1: GOTOilBSQ

111108 23=5C1,532:129=5(B,57¢>

11120 IF ACZ8,29»=0THEN 11136

11130 5¢1,280=-1:500, 230=-1

11140 S3=53+1

11166 GOSUB 111506

11478 IF S8=2Z1 THEM RETURM:ELSE11056

11130 IF 58=21-1 THEM 11300:ELSE 53=53+1:G0T0 1109390
11198 ACZ8,293=1/AL28,293:FOR L=0 TO 21 /
11200 IF L=59 THEN 11210:ELSERCZ8,L>=AC28,L sk -12*AC28, 2902
11218 NEXTL

11220 FOR K=0 TO Z4:FOR L=0 TO 21

11236 IF K=28 THEM 11260

11246 IF Z29=L THEM 11268

11258 ACK, Lo=ACK, LO+ACK, 2304ACZ8, L2

11258 MEATL:MEXTK

11270 FOR K=8 TO 21

11275 IF K=28 THEM 11288:ELSE ACK,232=ACK,29:#A{28, 292
112808 MEXT K

112598 RETURM

11308 FOR I=8 TO S:PRIMNTSCO, I12,5¢1s IXINEXTI

11318 PRIMT"MATRIX SINGULAR":PAUSESH>:G0T011290

Mit dem anschlieBend vorgestellten "Programm zum UP-Systemtest"

kann das Unterprogrammsystem “Matrizenrechnung" getestet werden.
Das Progremm beginnt bei der Zeilennummer 3@@ und endet mit der

Zeilennummer 11PP. Es ist als Hauptprogremm geschrieben und rea-
lisiert die Steuerung des Testes Uber zwei Menis,

Im "Einstiegsmeni” (Zeile 32@ bis Zeile 41@) ist realisiert

- das Laden der Felder A und B mit konstenten Werten, Feld A im~

mer mits 1 2 3
5 6

7 8 9

Feld B immer mit: 9 8 7
6 5 4

3 2 1

Des Laden erfolgt Gber das Auslesen von DATA-Files in den Zei~-
len 5¢@ bis 55¢ und 6@P bis 65@;

51

- das geschlossene Anzeigen der Felder A, B und C auf dem Bild-
schirm;

- das Aufrufen des Meniis "UP-Menu=Matrizenrechnung”;

- die Eingsbe der Konstanten K zum Test des UP "Mult, mit
Konst.";

- der Abbruch des Testes,

Das nach dem Programm angegebene Testprotokoll zeigt die Reeli-
sierung des Testes fur

~ das Laden des Feldes A (Kennung 1 im Einstiegsmeni);

- das Anzeigen der Felder A, B und C (Kennung 3 im Einstiegsme~
ni);

- den Aufruf des "UP-Menus Matrizenrechnung” (Kennung 5 im Ein-
stiegsmend);

- den Aufruf des UP "Addition" C=A+B (Kegnnung 1 im UP=Meni Matri-
zenrechnung);

- das Anzeigen der Felder A, B und 'C (Kennung 3 im Einstiegsme-
nil);

- den Testabbruch (Kennung 6 im Einstiegsment).

368 REM PROGRAMM ZUM UP-5YSTEMTEST

3085 REM DIMEMSIOMIERUMG DER FELDER

305 Z1=2:51=2:1Z82=2:52=21 23=2:53=2

387 DIM ACZirS10Bra2, 520, CCE3, 530, 501, 380
318 CLS:PRIMT:PRINT:PRINT"UP-SYSTEMTEST"
328 PRINT:PRINT"EIMSTIEGSHMEMUE"

338 PRIMT:PRIMNT"PROGRAMM KEMMUNG"
348 PRINT" "
358 PRINT
368 PRIMT"LADEM FELD R ¢ oan

378 PRIMT"LRDEM FELLD- B 2"

336 PRIMT"AMZEIGE FELD A-B.C 3"

398 PRIMT"EINGABE KOMSTRHMTE 4"

435 PRIMT"AUFRUF UP-MEMUE S"

485 PRIMT"TESTRBBRUCH 5"

418 PRIMT:PRIMT"WAEHLEM S5IE EIME KEMMUNG"; : INPUT H
428 IF H=10RH=2Z0RH=30RH=40RH=5S0ORH=ETHEN 44D

438 PRIMT"FEHLEIMGARBE":PRUSEC183:50T0 310

448 DH H GOTO 588. 588, THH, 308, 308, 1160

52

598 DATAL, 2, 3,9, 0rBr7Tr3:s3

516 RESTORESHO

528 FOR I=BTO2:FOR J=BTO2

530 READ AL, JasMEXTIEHESTI

548 PRIWT"FELD A EINGELESENW “OM DATAFILE"

558 PAUSEC18»:G0TO310

&0 DATAZ, 3B, Tr5reSrdr 32,1

518 RESTORESOH

520 FORI=DTO2:FORJ=OTO2

538 READ Br I, JitHEXTJIIMEATI

5483 PRINT"FELD B EIMGELESEM WwOM DARTAFILE"

558 PAUSECLB»:GOTO 318

VOO CLS:PRIMTIPRIMTTABCS»: "A"SPRINT

718 FORI=BTD2:PRIMT:FORI=BTO2:P=J+1:PRINTRI,d2: TABP+102;
T28 HEXTJIsHEXTI

T30 PRIMNT:PRIMT:PRIMT:PRINTTAB.S,: "B":PRIMNT

V48 FORI=OTD2:PRIMT:FORJI=ATO2:P=J+1:PRINTB.I,J}; TABCP+182;
758 MEAXTJISHERTI

750 PRIMT:PRIMT:PRIMT:PRINTTABR.S: "C"sPRINT

VO FORI=BTD2:PRIMT:FORI=BTO2:P=J+1:PRINTC I, J>; TABCP+183;
T7L HEXTJSHESXTI

TV2 PRIMT:PRINT:PRIMT"MIT EMTER-TASTE ZURUECK"

V3 PRIMT"IM DAS MEMUE": IMPUT" ":R:GOTO318

868 PRIMT"EIMGABE EIMER REELLEM KDHSTANTEN"

518 PRIMT"IM DEW SPEICHERPLATZ K:":INPUT K

3280 PRIMT"UMTER K WURDE DER WERT'"; K; "ABGELEGT"

830 PRUSEC3H>:G0TO 310

208 CLS:PRIMT"UP~MEMHUE-MATRIZEHRECHMHUMNG"

318 PRIMT:PRINT"UNTERPROGRAMM KENMUMG"
228 PRIMT" "

938 PRIMT:PRIMNT"ADDITION C=R+B "
548 PRIMT"SUBTRAKTIOM C=R-B 2"

958 PRIMT"MULTIPLIKRTIOM C=R+B 3"

958 PRIMT"MULT.A MIT KOMST. C=K#A 4"

579 PRIMT"IMWERSIOM YONM A 3"

930 PRIMT"TAUSCH A MIT C 8"

399 PRIMT"TAUSCH B MIT C "

1809 PRIMNT"LRDEW A MIT C a"

1819 PRIMT"LADEM B MIT C "

1828 PRINT"TRAMSPOMIEREM A IM C io"

18235 PRINT"A=0-MATRIX "

16839 PRIMT"B=8-MATRIX 2"

1848 PRIMT"EIMHEITSMATRIX IM A 13"

1858 PRIMT"EIMHEITSMATRIX IM B 14"

1958 PRIMT:PRINT"WAEHLEM SIE EIME KEMMUNG"; : INPUTG

1865 IF GJA0RGH140R INMTCGH<G THEMPRIMT"FEHLER":PAUSEC10::GOTO309
1978 IF G<3 THEM 1038:ELSE 18590

1630 OHG GOSUB 168000, 10160, 1600, 10300, 11006, 16708, 187560

18385 G0TO318

1999 OH G-7¥ GOSUB 19300, 18850, 16200, 18500, 18528, 10600, 18650

1835 GOTOZ168

1168 END

53

RUN3B8

’

UP-SYSTEMTEST
EINSTIEGSMENUE

PROGRAMM KEMMUNG

LADEN FELD A
LADEM FELD B
ANZEIGE FELD AsB-C
EINGABE KOMSTANTE
AUFRUF UP-MEMUE
TESTABBRUCH

AL W

WAEHLEM SIE EIME KEMMUMG? 1
FeLD A EIMGELESEM YOM DRTAFILE
UP-5YSTEMTEST

EINSTIEGSMENUE

PROGRAHMM KEMNUMG

LADEM FELD R

LRADEM FELD B
ANZEIGE FELD AsB-C
EINGABE KOMSTANMTE
AUFRUF UP-MEMUE
TESTARBBRIJCH

CUNHEWNE

WAEHLEM SIE EIME KEMMUMG? 3

k4

A
1 2 3
4 S 5
7 3 3
B
[5) 8- o}
) 8 7]
8 =] a

54

8 <] =]
¢}] a
=} 9 2}

MIT EMNTER-TASTE ZURUECK
IN DAS HMEMUE

UP-SYSTEMTEST
EIMSTIEGSHMENUE

PROGRAMM KEMMUNG

LADEM FELD R

LADEM FELD B
RMZEIGE FELD R,BsC
EIMGABE KOMSTAMTE
AUFRUF UP-MENUE
TESTRBBRUCH

TN H WM

WAEHLEM SIE EINE KEMHUMNG? 3
» UP-HMENUE-MATRIZEMRECHNUNG

UNTERPROGRAFMM KEMMUNG
ADDITIOM C=R+B 1
SUBTRAKTION C=A-B 2
MULTIPLIKATIOM C=R*B 3
MULT.A MIT KOMST. C=k*A <4
IMVERSIOM VOMN A S
TAUSCH R MIT C 6
TAUSCH B MIT C 7
LADEH A MIT C 8
LADEM B MIT C 3
TRAMSPOMIEREHN A IM 18
A=8-MATRIA 11
B=B-MATRIX 12
EINHEITSHATRIK IM A 13
EIMHEITSHMATRIKX IM B 14

WAEHLEN SIE EIME KEMMUNG? 1

UP-SYSTEMTEST
EINSTIEGSMEMUE

PROGRAHM KEMMUNG

LADEN FELD R
LADEN FELD B
AMZEIGE FELD AsBrC
EINGRBE KOMSTANTE
RAUFRUF UP-MEMUE
TESTABBRUCH

oI B N PN (N Y

WAEHLEN SIE EIME KEMMUNG?

A
1 ' 2 2
4 5 5
7 3)
B
) 0 2}
9) 5}
0 0 B
C
1 2 3
4 S 5
? S 3

MIT EMTER-TASTE ZURUECK
IM DRS MENUE

»
UP-SYSTEMTEST
EIMSTIEGSHMENUE

PROGRAMM KENMUNG

LADEH FELD A

LADEH FELD B
AMZEIGE FELD A,B-C
EINGRABE KDMSTANTE
AUFRUF UP-MEMUE
TESTABBRUCH

DAL LI

WAEHLEN SIE EIME KEMHUNWG? 5
OK

o

AbschlieBend wird nun die Anwendung des Unterprogrammsystems

"Matrizenrechnung" am Beispiel der Lésung des folgenden linea-
ren Gleichungssystems gezeigt:

X1 + 2%X2 = 2
2*%X1 + 5%X2 4+ 3*xX3 = @
X1 - 5%X3 = 4

Bei der Losung dieser Aufgabe geht man so vor, daB man das Glei-
chungssystem wie folgt umschreibt:

1 2 @ X1 2
2 5 3 * X2 = | g
1 # -5 X3 4

In mathematischer Schreibweise ist das eine Matrizengleichung der
Form:
A ¥ X=8B

Dabei ist: A die Matrix der Koeffizienten der Variablen
X der Yarieblenvektor
B der Konstantenvektor.

Den Losungsvektor X erhalt men, indem man aufldst und schreibt:

X = AA(=1) * B,

Der Losungsvektor ergibt sich also aus der Multiplikation der
transponierten Matrix A mit dem Vektor B, Fir beide mathemati-

57

schen Operationen stellt das UP-System Unterprogramme bereit.
Somit hat man sich nur noch um die Anpassung des Problems an das
UP-System zu kimmern. Im wesentlichen sind 3 Problemkreise zu
beachten:

1. Das UP=-System kennt kein Feld mit dem Nemen X, Das Ergebnis
der Matrizenmultiplikation s teht automatisch im Feld C. Man
wird also das Ergebnis von

X1 in C(2.P)

X2 in C(1,9)

X3 in C(2,9)
finden,

2, Die bendtigten Felder sind zu dimensionieren, Das Feld A muB
zur Aufnahme der Matrix A sus 3 Zeilen und 3 Spalten beste-
hen, Daes Feld B und C jeweils aus 3 Zeilen und 1 Spalte, Des
Feld S dimensioniert man vorsichtshalber so, wie es in der
Anwenderinformation steht, Man erspart sich demit eventuell
auftretende Fehler durch Unterdimensionierung. Das Feld S
erhélt also die Dimension (1,3@). ’

3., SchlieBlich ist noch die Eingabe der aktuellen Werte der Ma-
trizen zu realisieren und eine geeignete Ausgasbe vorzusehen,

Das zu schreibende Hauptprogramm besteht somit aus 4 wesentli=-
chen Bestandteilen:

1. Dimensionierung der Felder.

2. Eingabe der Werte der Matrizen.

3. Aufruf der UPs “Invertierung” und "Multipliketion®.
4, Ausgabe der Losungen,

Das anschlieBende Testprotokoll zeigt die Lésung der gegebenen
Aufgabenstellung.

58

18 REM HAJPTPROGRAMM

20 REM LIMEARES GLEICHUMGSSYSTEM

38 CL5:PRINT"LINERRES GLEICHUMGSSYSTEM"

48 REM DIMENSIONIERUMG DER MATRIZEM

50 2i=2:51=2:22=2:52=0:23=2:53=0

50 DIM ACE1,S12,B(22,520,C(23,535,501,30%

78 PRINT"EINGABE MATRIX A"

890 FOR I=0 TOZ21:FOR J=0 TO Si

98 PRIMT"RC"; I+d; "» " J+1; "0="; t INPUTACI,J2

188 MEXTJ:PRIMT

118 MEXTI:PRINT:PRINT

128 PRIMT"EIMGABE VEKTOR B"

1368 FOR I=B TO 22

148 PRINT"BC'; I+d; "»="; : INPUT BCI,8%

158 MERT I

153 REM RECHHUMG IM UP-SYSTEM

179 PRINT"ES ERFOLGT RECHHUNG IM UP-SYSTEM"

138 §0SUB11860:REM UP-IMVERSION WOM A

138 GOSUB 18408:REM UP-MULTIPLIKATION WON R+B

200 REM AUSGABE DES ERGEBMISSES

218 PRIMT:PRIMT"DAS GLEICHUNGSSYSTEM HAT FOLGEMDE ":PRINT"LODE
SUNGEM: "

220 PRINT:PRIMT

230 PRINT"®1 =";C<B,82

248 PRIMT"®2 =";Cll,02

250 PRIMT"KWI =";Cd2,02

268 END

RUN
»LINERRES GLEICHUNGSSYSTEH
EINGABE MATRIX R

AC 1 » 1 2=2 1
AC 1 » 2 2=? 2
AC L » 3 =210
AC 2 » 1 =22
AC 2, 2 =235
AC 2 » 3 »=? 3
AC 3, 1 =21
AC 3 ,» 2 =2 8
AC 3, 3 »=? =5

59

EINGRBE YEKTOR B

BC 1 =2 2

BC 2 »=?2 89

B(C 3 =2 4

ES ERFOLGT RECHNUNG IM UP-SYSTEM

DAS GLEICHUNGSSYSTEM HAT FOLGENDE

LOESUNGEN:
X1 =-26
X2 = 14

X3 =-6

0K

7

5.,3.3. Dateiarbeit mit dem KC 85/3

Eine héufig vorkommende Aufgabe besteht darin, enfallende Daten
in einer Detei geordnet aufzubewahren. Gleichgiiltig, ob dienst-
lich oder privat, liegt das dringende Bedirfnis vor, den Rechner
als groBen Notizblock zu gebrauchen und daebei den Vorteil der
Sortierung nach unterschiedlichen Kriterien und Protokollierung
zu nutzen, Beim KC 85/3 wird als externes Speichermedium die
Kessette eingesetzt, Damit ergeben 'sich folgende minimalen For-
derungen an ein Dateiprogramm:

- Eingabe einer Dateli Uber die Tastatur
- Ausgebe einer Datei auf die Kassette

- Eingabe einer Datei von Kassette und

- Anzeige einer Datei auf dem Bildschirm.

Das nachfolgend aufgefiihrte "Kleine Dateiprogremm” ermdglicht
die Realisierung dieser Forderungen fir eine Minidstei, beste-
hend sus Name, Geburtsdatum und Telefonnummer zum Beispiel ei-
nes Bekanntenkreises. Gegeniber den Programmbeispielen in den
Gliederungspunkten 5.,3.,1, und 5.3.2, ist dieses Programm als ge-
schlossenes Progremm geschrieben. Besonders hervorgehoben muB
werden, daB bei der Ein- und Ausgabe der Datei von der und auf

60

die Kassette die einzelnen Felder der Datei auch einzeln im Pro-
gramm ein- bzw. ausgegeben werden missen. Bei der Eingabe ist
zudem zu beachten, deB jede Eingabe eines Feldes mit einer
PRINT-Anweisung abzuschlieBen ist.,

Im AnschluB an das Programm werden zwei Testprotokolle angegeben.
Im ersten Testprotokoll ist nach der Eingabe der Kennung 1 die
Handeingebe der Datei angedeutet., Sie wurde durch den Bediener
nach der Forderung der Daten zur zweiten Person abgebrochen mit
dem BREAK-Kommendo, de keine neuen Erkenntnisse gewonnen werden.
Im zweiten Testprotokoll wurde eine Datei von 1@ Personen von
Kassette eingelesen und auf dem Bildschirm angezeigt.

18 REM KLEINES DATEIPROGRAMM

28 CLS5:PRINT: PRINT PRINT"KLEINES DATEIPROGRAMM"

38 PRINT smmnsmsSsSsssssssssss !

48 PRINT:PRIMT"GEBEM 5IE ANZAHL DER PERSOHEM AM"; : INPUTN
58 DIM NACH-12, GRCH-10s TCH-12

58 REM MEMNUE

70 CLS3:PRINT:PRINT:PRINT"MEMUE ZUR ARBEIT MIT DER DATEI"
86 PRINT:PRINT:PRIMTTAB:S; "PROGRAMM"; TﬂBfBB,;'LENNUNP"

98 PRINTTABCSM; " - ———

168 PRINTTABCS:"HANDEIMGRBE DER DHTEI";THB(EQ»;l

118 PRINTTAB:S!; "AUSGABE AUF KASSETTE"; TAB(321; 2

120 PRINTTAB¢S»; "EIMGABE WOM KASSETTE"; TAB(321; 3

138 PRINTTABCS»: "ANZEIGE AUF DEM BILDSCHIRM") TAB(32M; 4

140 PRINTTABCS); "PROGRAMMENDE"; TRB(32); S:PRINT:PRINT:PRINT
158 PRINT"WAEHLEN SIE EIHE KENMUMG"; : INPUT K

160 IF K=10RK=20RK=30RK=40RK=5 THEM 130

1780 PRIMT:PRINT

180 PRINT"FEHLER, KEMMUMG IST NICHT DEFIMIERT!":PRUSECS8::G0TO 78
198 ON K GOTO 200,308, 490,508, 589

208 CLS:PRINT"HANDEIMGABE CER DATEI"

61

210
220
230
248
250
260
270
280
3009
310
320
330
348
350
369
400
. 410
420
430
4408
4506
460
470
480
5683
565
588
510
520

38
548
550
5608
S7e
500
610
528
&30
640
558
560
678

FOR I=0 TO H-1

PRINT:FRINT:PRINT:PRINT"PERSON"; I+1

PRINT"MAME"; : INPUT H={IX

PRINT"GEBURTSDATUM"; : INPUT Gx{IX

PRINT"TELEFON"; : INPUT T.IX

CL5 :

NEXTI

PRINT:PRINT:PRINT"EINGRBE IST BEENDET";PAUSE(GO»:G0TOVE
PRINT:PRINT:PRINT"RAUSGABE AUF KASSETTE"
PRINT:PRINT"BEREITEN SIE IHR KASSETTEMGERRET VOR."
PRINT"QUITTIEREN SIE BEI AUFFORDERUNG MIT DER ENTER-TASTE"
INPUT"ENTER": M: CSAVE+"HAME"; Hx
INPUT"ENTER"; M: CSAVE*"GEBURTSDATUM"; Gx
IMPUT"ENTER"; M: CSAVE*"TELEFON"; T

PRINT:PRINT:PRIMNT"ENDE DER AUSGABE":PARUSECSH»:GOTO 7O
PRIMT:PRIMT:PRINT"EIMGARBE VOM KARSSETTE"

PRINT"BEREITEN SIE IHR KASSETTEMGERAET YOR": INPUT"ENWTER"; M

CLORD#*"MRME"; N=

PRINT

CLOAD*"GEBURTSDATUM"; Gx

PRIMT

CLORD#*"TELEFOM"; T

PRINT -

PRINT"EMDE DER EINGRBE":PAUSE(S9::GOTO 78

CLS:PRINT:PRINT:PRINT"AMZEIGE AUF DEM BILDSCHIRM":PRINT:PRINT
PRINT"NAME"; TABY162; "G.-DATUM"; TABC27 2 "TELEFON"
PRINT" S e "SPRINT
FOR I=0 TO H-1i

PRINTHS I TRBUAS; G I3 TABL2T 2 TCID
MEAXTI:PRINT:PRINT

PRIMNT"MIT EMTER-TASTE KOMMEM SIE WIEDER"
PRINT"IN DAS MENUE

INPUT"ENTER"; M

PRINT"EMDE DER RANZEIGE":PRUSE(18:»:G0T0 v8
CLS:PRINT:PRINT:PRINT"PROGRAMMEMNDE"
PRIMT"ACHTUMNG !'!! DIE DRTEI WIRD GELOESCHT"
PRIMT"MIT -MENUE- KOMMEN SIE ZURLECK"

PRIWNT"IM DAS MEMUE"

PRINT"ALLES AMNDERE FUEHRT ZUM PROGRAMMEMDE"
INPUTAx

IF RA=a="MENUE" THEM VO

END

62

RN

r

KLEIMES DATEIPROGRAMM

GEBEM SIE AMZAHL DER PERSONEM AN? 18

»

MEHUE 2UR ARBEIT MIT DER DATEI

PROGRAMM KEMMUNG

HAMDEINGABE DER DATEI
AUSGABE AUF KARSSETTE
EINGABE WOM KASSETTE
AHZEIGE AUF DEM BILDSCHIRM
PROGRAMMENDE

[L RN RPN VD

WAEHLEHM SIE EIME KENMUNG? 1
+HANDEINGABE DER DATEI

PERSON 1

MAME? ANTON
GEBURTSDATUM? 28.81.53
TELEFOM? 27142

»

PERSONM 2
HAME?
BRERK IH 2
DK

L
]

RUN

r

KLEINES DATEIPROGRAMM

GEBEM SIE AMZAHL DER PERSDHEM RMN? 18

r

MEMUE ZUR ARBEIT MIT DER DRTEI

63

PROGRAMM

KEMNUNG

HAMDEIMGABE DER DATEI
AUSGABE AUF KRSSETTE
EINGABE YOM KASSETTE
AMNZEIGE AUF DEM BILDSCHIRHM

PROGRAMMEMD!

WAEHLEM SIE EIME KEMMUMG? 3

EINGRBE WOM KASS

E

ETTE

U WN K

BEREITEM SIE IHR KASSETTEMGERAET WOR

ENTER
EMDE DER EINGABE

MENUE Z2UR RARBEIT MIT DER DRTET

PROGRAMM -

KEMNUNG

HAMDEIMGABE DER DRTEI
AUSGABE AUF KASSETTE
EIMGARBE VOMN KRSSETTE
AMZEIGE AUF DEM BILDSCHIRM

PROGRAMMEMD!

WAEHLEM SIE EINE KEMMUNG? 4

»

ANZEIGE AUF DEM BILDSCHIRM

E

[NV N

MAME G.-DATUM TELEFOM
ANTON 20.981.863 27142
BERTR 21.084.54 34632
CORMELIR 12.11.54 43563
DORA - 81.03.55 27443
EMIL 17.87.52 54555
FRAMZ 23.86.51 43223
GUSTAY 31.88.54 22187
HEIMRICH 89.18.57 556433
IDA 12.12.51 74623
JUERGEM 07.07v.563 58532

MIT ENTER-TASTE KOMMEM SIE WIEDER

IN DAS MEMUE
EMNTER

64

6., Befehlsibersicht

Monitorkommandos

BASIC Ruft BASIC-Interpreter auf

REBASIC Ruft BASIC-Interpreter ohne Zerstorung
geledener BASIC-Progremme auf

KEY n Definiert Funktionstaste n

KEYLIST Zeigt vereinbarte Funktionstastenbelegung
an

Kommandos

AUTO [znr] [,9w]
BLOAD

BYE

CLEAR

CLOAD “ name"

CLS

CONT

CSAVE "name"
DELETE [anf] [,end]

EDIT zeile
LINES zeahl
LIST [zeile]
NEW
RENUMBER
RUN

TROFF

TRON

WIDTH lange

AUTOMATISCHE Zeilennumerierung

Liest Maschinenprogram@ ein

Ruckkehr zum Betriebssystem

Loscht Variablenspeicher

Ladt BASIC~Programm von Ksssette
Léscht Bildschirm

Setzt unterbrochenes Programm fort
Speichert BASIC-Programm auf Kassette
Léscht Zeile (n)

Programmkorrektur in Zeile

Anzshl der Zeilen fiur LIST

Listet Programm auf

Léscht Programm und Variesblenspeicher
Numeriert Programmzeilen neu

Startet Programm

Schaltet Testmodus aus

Schaltet Testmodus ein

Legt Lange fiur Ausgebezeile fest

Anweisungen

BEEP [dauer]
CALL adresse

Erzeugt einen Ton festgelegter Dauer
Ruft ein Maschinenprogramm auf

CIRCLE xm,ym,r[,ferbe] Zeichnet einen Kreis auf dem Bildschirm
mit den Mittelpunktkoordinaten xm,ym und
dem Radius r

Stellt Vordergrund- und Hintergrundfarbe
ein

COLOR v,h

65

DATA wert[,wert]
DEEK (edr)
DEFFNn(x)

DIM
DOKE edr,wert

END

Datenfolge, der durch READ zu lesen-
den Werte

Liest Inhalt der Speicherplétze adr
und edr+l

Definiert eine Anwenderfunktion n mit
dem Parameter x

Dimensioniert Variablenfelder
Schreibt Doppelbyte-Wert auf die
Speicherplétze adr und adr+l

Ende des Programms

FOR lvar=anf TO end [STEP schrittw]

GOSuUB znr

GOTO znr

IF eusdruck THEN ausdrucki

INK v

INKEY$

INP adr

INPUT ver[,vari]

LET ausdruck = eausdrucki
LINE xa,ya,xe,ye [, ferbe]

LOCATE znr,spnr

NEXT [lvar].
ON ausdr GOTO znr[,znr]

Festlegung einer Progremmschleife,
lvar léauft von enf bis end in Schrit-
ten von schrittw (Standart ist 1)
Ruft Unterprogramm auf Zeilennummer
znr auf

Sprung zu Zeilennummer znr

[sELSE ausdruck2]

Bedingter Sprung- oder Handlungsan-
weisung, wenn Ausdruck wahr, denn
THEN-Zweig, sonst néchste Progremmzei-
le oder ELSE=-Zweig

Stellt Vordergrundfarbe ein

Liefert ektuellen Tastencode

Liefert das von dem Port adr gelesene
Byte

Eingebe von Werten Uber Tastatur in
Veriable [n] nach Ausgabe von "?"
auf Bildschirm

Wertzuweisung ausdruckl nach susdruck
Zeichnet eine Linie auf dem Bild-
schirm von Punkt xa,ya bis Punkt xe,
yve

Positioniert den Cursor an Bild-
schirmposition Zeilennummer, Spalten-
numme r

Ende der Programmschleife

Mehrfache Programmverzweigung entspre=-
chend Ausdruck ausdr

66

ON eusdr GOSUB znr [,znr]

OUT eadr,wert

PAPER h
PAUSE dauer

PEEK(adr)
POKE adr,wert

PRESET x,y

PRINT wert[,wert]
PSET x,y[,farbe]
PTEST(x)

RANDOMIZE
READ var [,ver]

REM text
RESTORE [znr]

RETURN
STOP
WINDOW za,ze,sa,se

Mehrfache Programmverzweigung in Un-

terprogramme entsprechend Ausdruck

susdr

Ausgebe des Bytes wert aus dem Port

adr

Stellt Hintergrundfarbe ein

Unterbricht Programmeberbeitung fur

dauver * @.1 s

Liest Inhalt von Speicherplatz adr

Schreibt Byte-Wert in den Speicher-

platz adr

Loscht Bildpunkt an Position x,y

Ausgabe auf Bildschirm

Setzt Bildpunkt auf Position x,y

Test, ob Bildpunkt gesetzt; y gilt

eus letzter Graefikanweisung. Als Er-

gebnis wird fir einen Punkt der Wert

1, anderenfalls der Vert @ erzeugt

Startet Zufallsgenerator mit einem

zufalligen Anfangswert

Liest Vierte aus DATA-Anweisung in

Veariable

Textzeile text ist Kommentar

Setzt DATA-Zeiger auf den Anfang der

Liste bzw., euf Zeilennummer znr

Beendet ein Unterprogramm

Stoppt die Programmabarbeitung

Unterteilt den Bildschirm in Fenster
Fenster : Zeilenanfaeng,Zeilenende,

Spaltenanfang,Spaltenen-
de

Methemetische Funktionen

ABS(x)
ATN(x)
COS(x)
EXP(x)
INT(x)
LN(x)

absoluter Betrag von x

arctan x, Resultat im BogenmaB
cos x, x im BogenmeB

eX, x <= 87,3365

Genzer Teil von x

Inx, x> P

67

PI

PI = 3.14159

SCN(x) Signumfunktion : -1 fir x< @
g fir x = @
1 fur x> P2
SIN(x) sin x, x im BogenmaB
SQR(x) Quadratwurzel von x, x > @
TAN(x) tan x, x im BogenmaB
String-Funktionen
INSTR(8$,b$) Liefert die Position, ab der die Zei-
chenkette a$ in der Zeichenkette b$
enthelten ist, @ wenn nicht enthalten
LEFT$(a$,x) Liefert die ersten x Zeichen von a$
LEN(x$) Zeichenlinge des Strings x$
MID$(a$,x,y) y Zeichen von a$, beginnend nit dem
x-ten Zeichen von a$
RIGHT$(a$,x) Liefert die letzten x Zeichen von a$
STRING$(n,a$) Vervielfacht a$ n-mal
STR$(x) Formt den Wert X in einen String um
VAL(a$) Liefert den numerischen Wert von a$

Sonstige Funktionen

AsC(x$)
AT(zeile,spalte)

CHR$(x)
FRE(Veriable)

POS(1)

RND(x)
SPC(1)

TAB(spalte)

USR(x)

Liefert den ASCII-Code des ersten
Zeichens von x$
Schreibt Printanweisung an bestimmte
Stelle des Bildschirms
Liefert des Zeichen des ASCII-Codes x
Gibt die GroBe des noch freien Anwen-
derspeichers an
Liefert die aktuelle Schreibposition
in der Zeile i
Erzeugt Zufallszanl zwischen @ und 1
Erzeugt i Leerzeichen nach letzter
Schreibposition auf dem Bildschirm
Setzt aktuelle Schreibposition auf
Spalte
Ruft eine Funktion mit Parametervor-
gebe suf, die &ls Maschinenprogramm
geschnrieben ist

68

VGET$ Liefert den Inhslt auf Cursorposition
als String (1 Zeichen)

Operatoren

Prioritét Symbo1l Bedeutung
1 () Klammern
2 - Negative Vorzeichen
3 * Multiplikation
3 / Division
4 + Addition
4 - Subtraktion
5 = "gleich"”
5 < “"kleiner als"
5 > “groBer els”
5 <= “kleiner oder gleich”
5 >= “groker oder gleich”
5 <> "nicht gleich"
7 NOT Negation (“nicht")
8 AND Konjunktion ("und")
9 OR Disjunktion ("oder")

Die logischen Operatoren wirken bitweise auf 16-Bit-~Integerzah-~
len im Bereich von ~32768 bis +32767.

Die Vergleichsoperatoren und die Addition als VerkniUpfung sind
auch auf Strings anwendbar,

Konstanten

Zahlen~ und StringgréBen:

Zahlenbereich: 9.48396E-39 <= |x| <= 1,7P141E+38
Stringlénge: @ <= lénge <= 255
BildschirmgroBe fur Textdarstellung:
Spaltenanzahl: @ <= spalte <= 39
Zeilenanzahl: P <= zeile <= 31

BildschirmgroBe fiir Grafik:
Horizontalkoordinate: P <
P <

Vertikalkoordinate:
|

x <= 319
y <= 255

69

Farbwerte:
Der Farbcode fir den Vordergrund errechnet sich wie folgt:

Farbcode v = 16 * b + f
mit:
f - Code fir Vordergrundferbe
b - Code zum Blinken der Vordergrundfarbe:

b=¢g fur Nicht-Blinken
b =1 far Blinken

Vordergrundfarbe f Numme r Hintergrundfarbe h
Schwarz "] Schwarz
Blau 1 Blau
Rot 2 Rot
Purpur 3 Purpur
Grin 4 Grin
Tirkis 5 Turkis
Gelb 6 Gelb
Weil 7 Grau
Schwarz 8

Violett 9

Orange 19

Purpurrot 11

Grinblau 12

Blaugrin 13

Gelbgrin 14

WeiB 15

Beispiele weiterer mathematischer Funktionen

(z. B. Programmierung mittels Anwenderfunktionen)

Funktion Berechnung in BASIC

SEKANS FNS(x)=1/C0S(x)

COSEKANS FNC(x)=1/SIN(x)

COTANGENS FNT(x)=1/TAN(x)

ARCUSSINUS FNA(x)=ATN(x/SQR(1-x#x))
ARCUSCOSINUS FNA(x)==ATN(x/SQR(1-x%xx))+PI/2
ARCUSCOTANGENS FNA(x)=ATN(x)+PI/2

70

Funktion Berechnung in BASIC

ARCUSSEKANS FNA(x)=ATN(x/SQR(x%x=1))
ARCUSCOSECANS FNA(x)=ATN(x/SQR(x%x~1))+(SGN(x)=~1)*PI/2
SINUS HYPERBOLICUS FNH(x)=(EXP (x)~EXP(=-x))/2

COSINUS HYPERBOLICUS FNH(x)=(EXP(x)+EXP(~=x))/2

TANGENS HYPERBOLICUS FNH(x)=EXP(=x)/(EXP(x)+EXP(~x))*2+1
COTANGENS HYPERBOLICUS FNH(x)=EXP(=x)/(EXP(x)=EXP(=x))*2+1
SEKANS HYPERBOLICUS FNH(x)=2/(EXP(x)+EXP(~=x))

COSEKANS HYPERBOLICUS FNH(x)=2/(EXP(x)=EXP(=-x))
ARCUSSINUS HYPERBOLICUS FNH(x)=LN(x+SQR(xxx+1))

ARCUSCOSINUS

HYPERBOLICUS FNH(x)=LN(x+SQR(x*x-1))
ARCUSTANGENS

HYPERBOLICUS FNH(x)=LN((1+x)/(1-x))/2
ARCUSCOTANGENS

HYPERBOLICUS FNH(x)=LN((x+1)/(x=1))/2
ARCUSSEKANS

HYPERBOLICUS FNH(x)=LN((SQR(1=xxx)+1)/x)
ARCUSCOSEKANS

HYPERBOLICUS FNH(x)=LN((SQR(1+x%x)+1)/x)*SGN(x)

Liste der Fehlermeldungen

BS Feldelement auberhalb des dimensionierten
Bereichs aufgerufen

DD Feld mehrfach dimensioniert

FC Unzulédssiger Funktionsaufruf -

D Fehlerhzfte Eingabe im Direktbetrieb
(INPUT und DEF sind im Direktbetrieb unzu-
lassig)

MO Anweisung unvollstindig, Operand fehlt

NF Variablen von NEXT und FOR passen nicht zu=
sammen

oD Es wurden durch die DATA-Anweisung zuwenig
Daten fur eine READ-Anweisung spezifiziert

OM Vorhandener Speicherplatz im RAM reicht fir
die Ablage bzw. Abarbeitung eines Programms
nicht aus

ov Ergebnis einer Berechnung ist groéBer als
1.70141E38

71

SN Syntaktischer Fehler

RG RETURN trat vor GOSUB auf

uL Es wurde eine nicht existierende Zeilennum-
mer angegeben

/9 Division durch Null

CN Progremm kann nicht mit CONT fortgesetzt
werden _

LS String langer als 255 Zeichen

[o}) Vereinbarter Speicherplatz fur Strings
reicht nicht sus

ST String zu lang oder zu komplex

™ Variablen einer Gleichung indizieren ver-

schiedene Typen, z. B, Zahl und String; oder
einer Funktion wurde anstatt einer Zahl ein
String Ubergeben oder umgekehrt

UF Funktion noch nicht definiert

I0 Felscher Neme beim Programmladen

BAD Fehler beim Laden oder Retten von Feldern
EXTRA IGNORED Zu viele Daten bei INPUT eingegeben

? REDO FROM START String anstatt numerischer Wert oder umge-
kehrt bei INPUT eingegeben
?? Zu wenige Daten bei INPUT eingegeben

Literaturverzeichnis

/1/ Muller, S.: Programmieren mit BASIC. Berlin: VEB Verlag
Technik 1985.

/2/‘ Adler, H.; Karl, H.-U,: Die Programmiersprache BASIC. Lehr-
brief fir das Hochschulfernstudium, Herausgeber: Zentral-
'gtelle fir das Hochschulfernstudium des Ministeriums fir
Hoch- und Fachschulwesen Dresden. Bestell=Nr,: @2 1566 @1 1.

/3/ Werner, D.: BASIC fur Mikrorechner, Berlin: VEB Verlag Tech=-
nik 1986.

/4/ veb mikroelektronik “wilhelm pieck" mihlhausen: Beschrei-
bung zu C@111 BASIC-Interpreter.

/5/ Schmidt, J,: UP-System‘Matrizenrechnung. IS Jena 1985.

72

