
Theoretische Physik
kurzgefasst II

L.D. Landau E.M. Lifschitz

A K A D E M I E - V E R L A G  ∙  B E R L I N



L. D. LAND AU • E. M. LIFSCHITZ 

THEORETISCHE PHYSIK 
KURZGEFASST. 

BAND II 



L.D.LANDAUt · E.M.LIFSCHITZ 

THEORETISCHE PHYSIK 
KURZGEFASST 

B A N D  1 Mechanik 
·Elektrodynamik 

B A N D  u Quantentheorie 

B AN D  111 Makroskopische Physik 



L.D.LANDAU t · E.M.LIFSCHITZ 

QUANTENTHEORIE 

In deutscher Sprache herausgegeben von 

Dr. Siegfried Matthies 
Zentralinstitut für Kernforschung 

der Akademie der Wissenschaften der DDR, 

Rossendorf 

Mit 21 Abbildungen 

AKADEMIE-VERLAG . BERLIN 
1975 



JI . .IJ:. JIAH.IJ:AY H E. M. JIH<l>II.l;l-IU 

HpaTJ<HÜ Hypc TeOpCTH'JeCHOÜ I}JH3ßHH, HHHra li 

HBAHTOBAH MEXAHHHA 

Erschienen im Verlag Nauka, Moakau 

Aus dem Russischen übersetzt von 
Dr. DIRK-GUNNAR WELSCH, Friedrich-Schiller-Universität Jena, 
unter Verwendung von Teilen der Übersetzung der Bände 111 und IVa 
des Lehrbuches der Theoretischen Physik von L. D. LANDAU und E. M. LIFSCIDTZ 

Erschienen im Akademie-Verlag, 108 Berlin, Leipziger Str. 3-4 
@ Akademie-Verlag, Berlin, 1975 
Lizenznummer: 202 · 100/433/75 
Einband und Schutzumschlag: Karl Salzbrunn 
Gesamtherstellung: VEB Druckerei "Thomas Müntzer", 582 Bad Langensalza 
Bestellnummer: 761 848 1 (5879/11) · LSV 1114 
Printed in GDR 
EVP 22,-



Vorwort des Herausgebers 
zur deutschen Ausgabe 

Mit der vorliegenden Erstausgabe der deutschen Übersetzung des 
im russischen Original vor einem reichlichen Jahr erschienenen 
zweiten Bandes d.er dreibändigen Kurzfassung des "Lehrbuches der 
Theoretischen Physik" von L. D. LANDAU und E. M. LIFSCHITZ 
wird die Absicht des Verlages weiterverfolgt, diesen Lehrbuchzyklus 
dem breiten Leserkreis schnell zur Verfügung zu stellen. Auf Wunsch 
von Professor E. M. LIFSCHITZ hält sich die deutsche Ausgabe ge­
nau an die im russischen Original verwendete Formelschreibweise, 
die für die Schule von L: D. LANDAU in der Quantenmechanik 
typisch ist. 

Der Herausgeber, für den die "Quantenmechanik" der großen 
Lehrbuchreihe (Bd. III), beginnend mit dem Studium, zu einem 
ständigen Begleiter in seiner wissenschaftlichen Tätigkeit wurde, 
möchte Prof. E. M. Lifschitz bestätigen, daß es ihm gelungen ist, 
trotz erheblicher Reduzierung des Materials, Geist und Anlage 
dieses ausgezeichneten Lehrbuches auch in der Kurzfassung auf­
rechtzuerhalten. Aus diesem Grunde bin ich überzeugt, daß sich 
der vorliegende Band viele Anhänger in dem im Vorwort des Autors 
genannten potentiellen Leserkreis erobern wird. 

Dubna, März 1974 S. MATTRIES 





Vorwort 

Der vorliegende Band setzt das von L. D. LANDAU geplante Vorhaben fort, 
dessen Ziel bereits im Vorwort zum ersten Band dargelegt . wurde und darin 
besteht, ein Minimum an Kenntnissen auf dem Gebiet der theoretischen Physik 
zu vermitteln, das man jedem heutigen Physiker unabhängig von seinem spe­
ziellen Arbeitsgebiet zum Studium empfehlen könnte. 

Der erste Teil dieses Bandes, die nichtrelativistische Quantentheorie, folgt 
der von L. D. LANDAU und mir verfaßten "Quantenmeohanik" (Band III der 
großen Reihe). Die Kürzung des Stoffes wurde durch Weglassen sowohl ganzer 
Abschnitte von mehr speziellem Interesse als auch einer großen Anzahl me-

. thodischer, für den professionellen Theoretiker bestimmter Details erreicht. 
Natürlich mußte bei einer derartigen starken Reduzierung ein bedeutender 
Teil des Textes neu geschrieben werden. Dabei strebte ich jedoch danach, 
den gesamten Charakter und den Stil der Darlegung zu bewahren und nirgends 
Vereinfachungen auf dem Wege irgendeiner Vulgarisierung der Begriffe zuzu­
lassen. Die Vereinfachung wird ausschließlich auf Kosten einer geringeren 
Ausführlichkeit erreicht. Im ersten Teil des vorliegenden Bandes ist kaum die 
Formulierung "man kann zeigen" anzutreffen ; die hier dargelegten Resultate 
werden zusammen mit entsprechenden Herleitungen angegeben. 

Letzteres trifft allerdings nur in geringerem Maße auf den zweiten Teil dieses 
Bandes zu. Dieser Teil folgt dem Charakter der Darlegung nach der von mir 
gemeinsam mit W. B. BERESTETZKI und L. P. PrTAJEWSKI verfaßten "Rela­
tivistischen Quantentheorie" (Band IVa der großen Reihe des Lehrbuches der 
Theoretischen Physik) .  Teil II behandelt indessen nur die Grundlagen der Quan­
tenelektrodynamik. Auch hier strebte ich an, die Darlegung des Stoffes derart 
aufzubauen, daß nach Möglichkeit die physikalischen Voraussetzungen und die 
logische Struktur der Theorie klar hervortreten. Jedoch wegen der beträchtli-

• eben Kompliziertheit der Rechnungen, an die eine Lösung konkreter Probleme 
auf diesem Gebiet gewöhnlich geb::unden ist, wird eine Reihe von Anwendungen 
der Theorie nur in Form der Ergebnisse diskutiert. Bei der Auswahl des Mate­
rials für diesen Teil des vorliegenden Buches ließ ich mich darüber hinaus vom 
Inhalt der Vorlesungsreihe über Quantenelektrodynamik leiten, die L. D. LAN­

DAU im Studienjahr 1959/60 an der Moskauer LoMONossow-Universität hielt. 
In diesem Zusammenhang danke ich A. S. KOMPANEJETZ, N. I. BunKo und P. S. 
KoNDRATENKO, die mir ihre Mitschriften dieser Vorlesungen zur Verfügung 
stellten. 



VI II Vorwort 

Das letzte Kapitel des vorliegenden Buches ("FEYNMAN-Diagramme") fällt 
sowohl bezüglich seiner relativen Kompliziertheit als auch im Hinblick darauf, 
daß es weniger physikalischen Resultaten sondern mehr methodischen Fragen 
gewidmet ist, etwas aus dem allgemeinen Rahmen heraus. Ich hielt es jedoch 
für notwendig, dem Leser wenigstens eine Vorstellung vom Wesen und dem 
Sinn der Begriffswelt der sogenannten "Diagrammtechnik" zu geben, die den 
heutigen Apparat der theoretischen Physik tief durchdringt (dabei stellte ich 
mir nicht das Ziel zu zeigen, wie diese Technik zur Lösung konkreter Probleme 
tatsächlich anzuweden ist). Dieses Kapitel kann man nach Wunsch beim Lesen 
auslassen, ohne die geschlossene Anlage des Buches insgesamt zu verletzen. 

Zum Zeitpunkt des Erscheinens dieses Buches werden zehn Jahre vergangen 
sein seit dem verhängnisvollen 7. Januar 1962, als ein Verkehrsunfall das 
Wirken L.  D. LANDAUS in Forschung und Lehre abrupt beendete. Unter den­
jenigen, für die diese Kurzfassung der theoretischen Physik bestimmt ist, be­
saß schon niemand mehr das Glück, seine Vorlesungen zu hören. Ich möchte 
der Hoffnung Ausdruck verleihen, daß es mir mit diesen Büchern gelingen 
wird, die Leser bis zu einem gewissen Grad mit dem Geist seiner pädagogischen 
Ideen vertraut zu machen, seinem Streben nach Klarheit, dem Bestreben, 
komplizierte Dinge einfach zu gestalten, und damit unmittelbar in ihrer wahren 
Einfachheit die Schönheit der Naturgesetze zu enthüllen. 

Mai 1971 E. M. LIFSCHITZ 
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Einige Bezeichnungen 

Zeitabhängige Wellenfunktion : 'P 
Wellenfunktion ohne Zeitfaktor : V' 
Operatoren werden durch mit Dach A versehene Buchstaben be­
zeichnet. 

Transponierte Operatoren werden mit einer Tilde ,...._ versehen. 

Adjungierte Operatoren werden mit + als oberen Index gekenn­
zeichnet. 

Matrixelemente einer Größe j: fmn = (ml f ln) 
A 

HAMILTON -Operator : H 

Nichtrelativistische Energie : E 
Übergangsfrequenzen : Wnm = (En - Em)/li 
Relativistische Teilchenenergie, die die Ruhenergie einschließt : e 

Volumenelement des Konfigurationsraumes : dq 

Volumenelement des gewöhnlichen Ortsraumes : d V = dx dy dz 
Normierungsvolumen : Q 
Komponenten vierdimensionaler Vektoren (in Teil II) tragen als 
Indizes griechische Buchstaben Ä, p., Y, • • •  , die die Werte 0, 1, 2, 3 
durchlaufen. 

Im Teil II werden die auf Seite 237 definierten relativistischen 
Einheiten verwendet. 

Hinweise auf Paragraphen und Formeln des 1. Bandes dieses Lehr­
buches sind zusätzlich durch I gekennzeichnet. 
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Teil I. Nichtrelativistische Theorie 





Die Grundbegriffe der Quantenmechanik 

§ 1. Das Unbestimmtheitsprinzip 

I 

Versucht man, die klassische Mechanik und die klassische Elektrodynamik zur 
Erklärung der Erscheinungen in atomaren Bereichen zu verwenden, dann gelangt 
man zu Ergebnissen, die in krassem Widerspruch zum Experiment stehen. Man 
kann dies am deutlichsten bereits an dem Widerspruch bei der Anwendung der 
gewöhnlichen Elektrodynamik auf das Atommodell sehen, bei dem sich die Elek­
tronen auf klassischen Bahnen um den Kern bewegen. Bei dieser Bewegung 
müßten die Elektronen, wie bei jeder beschleunigten Bewegung von Ladungen, 
ununterbrochen elektromagnetische Wellen aussenden. Durch die Strahlung 
müßten die Elektronen ihre Energie verlieren, was letzten Endes dazu führen 
müßte,· daß sie in den Kern stürzen. Nach der klassischen Elektrodynamik 
wäre ein Atom also instabil; das entspricht in keiner Weise der Wirklichkeit. 

Dieser tiefe Widerspruch zwischen der Theorie und dem Experiment deutet 
darauf hin, daß der Aufbau einer Theorie für die atomaren Erscheinungen eine 
grundsätzliche Änderung in den grundlegenden klassischen Vorstellungen und 
Gesetzen erfordert. Atomare Erscheinungen sind solche, die an Teilchen mit 
sehr kleiner Masse und in sehr kleinen Raumgebieten vor sich gehen. 

Um diese Veränderungen zu erklären, gehen wir am einfachsten von der ex­
perimentell beobachtbaren Erscheinung der sogenannten Elektronenbeugung1) 
aus. Beim Durchgang eines homogenen Elektronenstrahls durch einen Kristall 
beobachtet man im durchgelassenen Strahl ein Bild aufeinanderfolgender In­
tensitätsmaxima und -minima völlig analog zu dem Bild bei der Beugung 
elektromagnetischer Wellen. Unter gewissen Bedingungen weist also das Ver­
halten materieller Teilchen - der Elektronen - Züge auf, die für Wellen­
vorgänge charakteristisch sind. 

Wie tief diese Erscheinung den üblichen Vorstellungen über die Bewegung 
widerspricht, kann man am besten aus dem folgenden Gedankenexperiment er­
sehen, das eine Idealisierung der Elektronenbeugung an einem Kristall ist. Wir 
stellen uns einen für die Elektronen undurchlässigen Schirm vor, in dem zwei 
Spalte eingeschnitten sind. Wir beobachten den Durchgang des Elektronen­
strahles durch einen Spalt, während der andere Spalt abgedeckt ist, und er-

1) Die Erscheinung der Elektronenbeugung wurde in Wirklichkeit erst nach der Schaf­
fung der Quantenmechanik entdeckt. In unserer Darstellung halten wir uns jedoch nicht 
an die historische Entwicklung der Theorie, sondern versuchen so vorzugehen, daß die 
Zusammenhänge zwischen den Grundprinzipien der Quantenmechanik und den experi­
mentell beobachtbaren Erscheinungen maximal deutlich werden. 

2 Kurzfassung li 
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halten auf einem Schirm hinter dem Spalt ein bestimmtes Bild der Intensitätß­
verteilung. Wir erhalten ein anderes Bild, wenn wir den zweiten Spalt ö'ffnen 
und den ersten abdecken. Beobachten wir nun den Durchgang des Strahles 
durch beide Spalte gleichzeitig, dann müßten wir auf Grund der üblichen Vor­
stellungen ein Bild erwarten, daß die einfache Überlagerung der beiden vorher­
gehenden ist. Jedes Elektron bewegt sich auf seiner Bahn und fliegt durch 
einen der Spalte, ohne auf die Elektronen, die durch den anderen Spalt hindurch­
gehen, einen Einfluß auszuüben. Die Erscheinung der Elektronenbeugung zeigt 
jedoch, daß wir in Wirklichkeit ein Beugungsbild erhalten, das sich wegen der 
Interferenz keineswegs auf die Summe der beiden Bilder von den einzelnen 
Spalten zurückführen läßt. Dieses Ergebnis kann natürlich in keiner Weise 
mit der Vorstellung über die Bewegung der Elektronen entlang einer Bahn in 
Einklang gebracht werden. 

Die Mechanik, derdie atomaren Erscheinungen gehorchen, die sogenannte Quan­
ten- oder Wellenmechanik, muß also Vorstellungen über die Bewegung zugrunde 
legen, die von den Vorstellungen der klassischen Mechanik prinzipiell verschieden 
sind. ln der Quantenmechanik gibt es den Begriff der Bahn eines Teilchens nicht. 
Dies ist der Inhalt des sogenannten U nhestimmtheitsprinzips, eines der Grundprin­
zipien der Quantenmechanik, das 1927 von W. REISENBERG entdeckt worden ist.1) 

Da es die üblichen Vorstellungen der klassischen Mechanik ablehnt, kann 
man sagen, das Unbestimmtheitsprinzip hat einen negativen Inhalt. Es ist 
natürlich für sich allein völlig unzureichend, um darauf eine neue Teilchen­
mechanik aufzubauen. Einer solchen Theorie müssen selbstverständlich irgend­
welche positiven Behauptungen zugrunde liegen; wir werden diese später be­
handeln (§ 2). Um aber diese Behauptungen formulieren zu können, müssen 
wir zuerst die Art der Fragestellung klären, der sich die Quantenmechanik 
gegenübersieht. Wir gehen dazu zunächst auf den bestmderen Charakter des 
Verhältnisses der Quantenmechanik zur klassischen Mechanik ein. 

Gewöhnlich kann eine allgemeinere Theorie unabhängig von einer weniger 
allgemeinen Theorie, die darin als Grenzfall enthalten ist, logisch geschlossen 
formuliert werden. So kann die relativistische Mechanik auf ihren eigenen 
Grundprinzipien aufgebaut werden, ohne irgendwie auf die NEWTONsehe Me­
chanik zurückzugreifen. Die Formulierung der Grundsätze der Quantenmecha­
nik ist prinzipiell unmöglich, ohne die klassische Mechanik heranzuziehen. 

Da das Elektron2) keine bestimmte Bahnkurve besitzt, hat es auch keine 
anderen dynamischen Charakteristiken3) • Es ist daher klar, daß für ein System 

1 ) Es ist interessant anzumerken, daß der gesamte mathematische Apparat der Quanten­
mechanik von H. HElSENBERG und E. SoHRÖDINGER vor (nämlich 1925-1926) der Ent­
deckung des Unbestimmtheitsprinzips geschaffen wurde, welches den physikalischen Inhalt 
dieses Apparates aufdeckt. 

· 

2) In diesem und dem folgenden Paragraphen sprechen wir der Kürze halber von einem 
Elektron und haben damit im allgemeinen ein beliebiges Quantenobjekt - ein Teilchen 
oder Teilchensystem - im Sinn, auf das die klassische Mechanik nicht anwendbar ist. 

3) Wir meinen damit Größen zur Beschreibung der Bewegung des Elektrons und nicht zur 
Charakterisierung des Elektrons als Teilchen (Ladung, Masse); die letzteren sind Parameter. 
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aus Quantenobjekten allein im allgemeinen keine logisch befriedigende Me­
chanik aufgebaut werden kann. Um die Bewegung eines Elektrons quantitativ 
beschreiben zu können, müssen auch physikalische Objekte vorhanden sein, 
die mit genügender Genauigkeit der klassischen Mechanik gehorchen. Wenn 
das Elektron mit einem klassischen Objekt wechselwirkt, dann wird sich der 
Zustand des letzteren im allgemeinen ändern. Die Art und die Größe dieser 
Änderung hängen von dem Zustand des Elektrons ab und können daher zur 
quantitativen Beschreibung desselben dienen. 

In diesem Zusammenhahg nennt man das klassische Objekt gewöhnlich Gerät, 
den Vorgang der Wechselwirkung mit dem Elektron bezeichnet man dabei als 
Messung. Man muß jedoch betonen, daß man damit keineswegs einen "Meß"­
Prozeß meint, an dem ein physikalischer Beobachter teilhat. Unter einer Mes­
sung versteht man in der Quantenmechanik jeden Wechselwirkung�prozeß zwi­
schen einem klassischen und einem Quantenobjekt, 'der unabhängig von irgend­
einem Beobachter abläuft. Es war N. BOHR, der die große Rolle des Begriffes 
der Messung in der Quantenmechanik klargestellt hat. 

Wir haben ein Gerät als ein physikalisches Objekt definiert, das mit genü­
gender Genauigkeit der klassischen Mechanik genügt. So ein Gerät ist zum 
Beispiel ein Körper mit einer genügend großen Masse. Man darf jedoch nicht 
denken, daß ein Gerät unbedingt ein makroskopischer Gegenstand sein muß. 
Unter bestimmten Verhältnissen kann auch ein offensichtlich mikroskopisches 
Objekt die Rolle eines Gerätes spielen, weil der Begriff "mit genügender Ge­
nauigkeit" von der konkreten Fragestellung abhängt. So wird die Bewegung 
eines Elektrons in der WILSON-Kammer durch die von ihm zurückgelassene 
Nebelspur beobachtet, deren Dicke im Vergleich zu atomaren Abmessungen 
groß ist. Bei dieser Genauigkeit der Bestimmung der Bahnkurve ist das Elek-
tron ein vollkommen klassisches Objekt. 

· 

Die Quantenmechanik nimmt also eine sehr eigenartige Stellung unter den 
physikalischen Theorien ein: Sie enthält die klassische Mechanik als Grenzfall 
und bedarf gleichzeitig dieses Grenzfalles zu ihrer eigenen Begründung. 

Wir können jetzt die Problemstellung der Quantenmechanik formulieren. 
Eine typische Problemstellung ist die Voraussage des Ergebnisses einer �ieder­
holten Messung aus dem bekannten Ergebnis vorangegangener Messungen. Wir 
werden im folgenden sehen, daß die Quantenmechanik im allgemeinen außerdem 
im Vergleich zur klassischen Mechanik die Werte beschränkt, die die verschie­
denen physikalischen Größen (zum Beispiel die Energie) annehmen können, 
d. h. die Werte, die als Meßergebnisse für eine gegebene Größe beobachtet 
werden können. Der Apparat der Quantenmechanik muß es ermöglichen, diese 
erlaubten Werte zu bestimmen. 

Der Meßprozeß hat in der Quantenmechanik eine sehr wesentliche Besonder­
heit: Er wirkt immer auf das der Messung unterworfene Elektron ein, und 
diese Einwirkung kann bei einer gegebenen Meßgenauigkeit prinzipiell nicht 
beliebig klein gemacht werden. Je genauer die Messung ist, desto. stärker ist 
die dabei erfolgende Einwirkung. Nur bei Mes�ungen mit sehr kleiner Genauig-
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keit kann der Einfluß auf das Meßobjekt schwach sein. Diese Eigenschaft der 
Messungen hängt logisch damit zusammen, daß die dynamischen Größen des 
Elektrons nur im Ergebnis der Messung selbst in Erscheinung treten. Wenn 
die Einwirkung des Meßprozesses auf das Objekt beliebig klein gemacht werden 
könnte, dann würde das bedeuten, daß die zu messende Größe an und für sich 
einen bestimmten Wert hat, unabhängig von der Messung. 

Unter den verschiedenen Messungen spielt die Messung der Koordinaten des 
Elektrons die grundlegende Rolle. Im Rahmen der Gültigkeit der Quanten­
mechanik können die Koordinaten eines Elektrons immer �it beliebiger Ge­
nauigkeit gemessen werden.1) 

Wir nehmen an, daß nach bestimmten Zeitintervallen Llt die Koordinaten 
eines Elektrons immer wieder gemessen werden. Die Meßergebnisse liegen im 
allgemeinen nicht auf einer glatten Kurve. Im Gegenteil, je genauer die Mes­
sungen ausgeführt werden, desto sprungartiger und ungeordneter ist der Gang 
der Meßergebnisse, weil ja der Begriff der Bahnkurve für ein Elektron fehlt. 
Eine mehr oder weniger glatte Bahnkurve erhält man nur, wenn man die Ko­
ordinaten des Elektrons mit einer geringen Genauigkeit mißt, wie zum Beispiel 
durch die Kondensation der Tröpfchen des Dampfes in der WrLSON-Kammer. 

Wenn man bei unveränderter Meßgenauigkeit die Intervalle Llt zwischen den 
Messungen verkürzt, dann werden benachbarte Messungen natürlich nahe bei­
einander gelegene Werte für die Koordinaten ergeben. Obwohl die Ergebnisse 
einer Reihe aufeinanderfolgender Messungen in einem kleinen Raumgebiet liegen 
werden, werden sie in diesem Gebiet vollkommen ungeordnet verteilt sein und 
keineswegs irgendeine glatte Kurve bedecken. 

Der letztere Sachverhalt zeigt, daß es in der Quantenmechanik den Begriff 
der Geschwindigkeit eines Teilchens im klassischen Sinne dieses Wortes nicht 
gibt, d. h. als Grenzwert, gegen den die Differenz der Koordinaten in zwei Zeit­
punkten, dividiert durch die Differenz Llt zwischen diesen Zeitpunkten, strebt. 
Wir werden jedoch im folgenden sehen, daß man in der Quantenmechanik nichts­
destoweniger eine vernünftige Definition der Geschwindigkeit eines Teilchens in 
einem bestimmten Zeitpunkt geben kann und daß diese Geschwindigkeit beim 
Übergang zur klassischen'Mechanik in die klassische Geschwindigkeit übergeht. 

Während aber in der klassischen Mechanik ein Teilchen in jedem gegebenen 
Zeitpunkt bestimmte Koordinaten und eine bestimmte Geschwindigkeit hat, 
liegt in der Quantenmechanik ein ganz anderer Sachverhalt vor. Wenn ein 
Elektron im Ergebnis einer Messung bestimmte Koordinaten erhalten hat, 
dann hat es dabei überhaupt keine bestimmte Geschwindigkeit. Hat das 
Elektron umgekehrt eine bestimmte Geschwindigkeit, dann kann es keinen be­
stimmten Ort im Raum einnehmen. Tatsächlich würde die gleichzeitige Exi­
stenz von Koordinaten und der Geschwindigkeit in einem beliebigen Zeitpunkt 

1) Wir betonen nochmals, daß unter "gemessen werden" die Wechselwirkung eines 
Elektrons mit einem klassischen "Meßgerät" gemeint ist, welche keinesfalls die Anwesen­
heit eines fremden Beobachters voraussetzt. 
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das Vorhandensein einer bestimmten Bahnkurve bedeuten, die das Elektron 
aber nicht hat. 

In der Quantenmechanik sind also die Koordinaten und die Geschwindigkeit 
eines Elektrons Größen, die nicht gleichzeitig exakt gemessen werden können, 
d. h., sie können nicht gleichzeitig bestimmte Werte haben. Man kann sagen, 
daß die Koordinaten und die Geschwindigkeit eines Elektrons Größen sind, die 
nicht gleichzeitig existieren. Im folgenden wird eine quantitative Beziehung 
hergeleitet werden, die angibt, wie ungenau die Koordinaten und die Geschwin­
digkeit in ein und demselben Zeitpunkt gemessen werden können. 

Durch die Vorgabe' aller Koordinaten und Geschwindigkeiten in einem ge­
gebenen Zeitpunkt wird in der klassischen Mechanik der Zustand eines physi­
kalischen Systems vollständig beschrieben. Aus diesen Anfangswerten bestim­
men die Bewegungsgleichungen das Verhalten des Systems in allen zukünftigen 
Zeitpunkten. In der Quantenmechanik ist eihe solche Beschreibung pripzipiell 
unmöglich, weil die Koordinaten und die zugehörigen Geschwindigkeiten nicht 
gleichzeitig existieren. Die Beschreibung des Zustandes eines quantenmecha­
nischen Systems erfolgt also durch eine kleinere Anzahl von Größen als in der 
klassischen Mechanik, d. h., sie ist nicht so eingehend wie die klassische. 

Daraus ergibt sich eine sehr wichtige Folgerung über die Art der Voraussagen 
in der Quantenmechanik. Während die klassische Beschreibung ausreicht, die 
Bewegung eines mechanischen Systems in der Zukunft völlig exakt voraus­
zusagen, kann die weniger eingehende Beschreibung in der Quantenmechanik 
dazu nicht ausreichen. Das bedeutet : Wenn sich ein Elektron in einem Zu­
stand befindet, der so vollständig wie in der Quantenmechanik nur möglich 
beschrieben wird, dann ist sein Verhalten in den folgenden Zeitpunkten trotzdem 
prinzipiell nicht eindeutig bestimmbar. Die Quantenmechanik kann daher keine 
streng bestimmten Voraussagen über das zukünftige Verhalten eines Elektrons 
machen. Für einen gegebenen Anfangszustand eines Elektrons kann eine fol­
gende Messung verschiedene Ergebnisse liefern. Die Aufgabe der Quanten­
mechanik besteht nur in der Bestimmung der Wahrscheinlichkeit, dieses oder 
jenes Ergebnis bei dieser Messung zu erhalten. Es versteht sich, daß die Wahr­
scheinlichkeit eines bestimmten Meßergebnisses in manchen Fällen gleich 1 
sein kann, d. h., sie kann zur Gewißheit werden, so daß das Ergebnis einer 
gegebenen Messung eindeutig wird. 
· Im weiteren werden wir uns vielfach davon überzeugen, daß bei weitem 
nicht jede Gesamtheit physikalischer Größen in der Quantenmechanik gleich­
zeitig gemessen werden kann, d. h. gleichzeitig bestimmte Werte haben kann. 
(Über ein Beispiel, die Geschwindigkeit und die Koordinaten eines Elektrons, 
haben wir bereits gesprochen.) 

Gewisse Sätze physikalischer Größen mit den folgenden Eigenschaften spielen 
in der Quantenmechanik eine große Rolle : Diese Größen sind gleichzeitig 
meßbar. Wenn sie alle gleichzeitig bestimmte Werte haben, dann kann keine 
andere physikalische Größe (die keine Funktion der genannten ist) in diesem 
Zustand einen bestimmten Wert haben. 
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Solche Sätze physikalischer Größen werden wir vollständige Sätze nennen. 
Jede Beschreibung eines Zustandes eines Elektrons erhält man im Ergebnis 

einer Messung. Wir formulieren jetzt, was wir unter der vollständigen Beschrei­
bung eines Zustandes in der Quantenmechanik verstehen wollen. Vollständig 
beschriebene Zustände erhält man als Ergebnis der gleichzeitigen Messung eines 
vollständigen Satzes physikalischer Größen. Aus den Ergebnissen dieser Mes­
sung kann man insbesondere die Wahrscheinlichkeit der Ergebnisse jeder fol­
genden Messung unabhängig davon bestimmen, was mit dem Elektron vor 
der ersten Messung geschehen ist. 

Wir werden im folgenden immer (mit Ausnahme von §§ 7 und 42) unter den 
Zuständen eines quantenmechanischen Systems gerade diese Zustände ver­
stehen. 

§ 2. Das Superpositionsprinzip 

Die radikale Änderung der physikalischen Vorstellungen über den Bewegungs­
ablauf in der Quantenmechanik im Vergleich zur klassischen Mechanik erfordert 
natürlich auch eine ebensolche grundsätzliche Anderung des mathematischen 
Apparates der Theorie. In· diesem Zusammenhang erhebt sich vor allem die 
Frage nach der Art und Weise der Beschreibung des Zustandes eines quanten­
mechanischen Systems. 

Mit q wollen wir die Gesamtheit der Koordinaten eines quantenmechanischen 
Systems, mit dq das Produkt der Differentiale dieser Koordinaten bezeichnen. 
Man nennt dq häufig das Volumenelement des Konfigurationsraumes des Sy­
stems. Für ein Teilchen stimmt dq mit dem Volumenelement d V des gewöhn-
lichen Raumes überein. 

· 

In der klassischen Mechanik wird der Zustand eines Systems dadurch be­
schrieben, daß man (für einen gewissen Zeitpunkt) alle seine Koordinaten q 
und Geschwindigkeiten q angibt. Wie wir sahen, ist in der Quantenmechanik 
eine solche Beschreibung offensichtlich nicht möglich. Eine vollständige Be­
schreibung des Systemzustandes bedeutet hier nur wesentlich weniger: Sie 
bedeutet die Möglichkeit vorauszusagen, mit welcher Wahrscheinlichkeit die 
einen oder anderen Resultate einer Koordinatenmessung (oder der Messung 
anderer Größen) zu beobachten sind. 

Die Grundlage des mathematischen Apparates der Quantenmechanik bildet 
die Behauptung, daß der Zustand eines Systems durch eine bestimmte (im 
allgemeinen komplexe) Ortsfunktion 'P(q) beschrieben werden kann. Das 
Betragsquadrat dieser Funktion bestimmt· dabei die Wahrscheinlichkeits­
verteilung der Koordinatenwerte : I 'Pi2 dq ist die Wahrscheinlichkeit dafür, daß 
sich bei einer Messung an dem System die Koordinatenwerte in dem Element dq 
des Konfigurationsraumes ergeben. Die Funktion 'P heißt die Wellenfunktion 
des Systems. I) 

1) Sie wurde 1926 erstmalig von E. ScHRÖDINGER in die Quantenmechanik eingeführt. 
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Die Kenntnis der Wellenfunktion ermöglicht im Prinzip die Berechnung der 
Wahrscheinlichkeit verschiedener Ergebnisse auch von irgendeiner anderen 
Messung (nicht der Messung der Koordinaten). Dabei werden alle diese Wahr­
scheinlichkeiten durch Ausdrücke gegeben, die in 'P und P* bilinear sind. Die 
allgemeinste Gestalt eines solchen Ausdruckes ist 

f f 'P(q) 'P* (q') q;(q, q') dq dq' . (2,1) 
Die Funktion q;(q, q') hängt dabei von der Art und dem Ergebnis der Messung 
ab. Die Integration wird über den ganzen Konfigurationsraum erstreckt. Die 
Wahrscheinlichkeit 'P 'P* für die verschiedenen Koordinatenwerte selbst ist 
ebenfalls ein Ausdruck dieser Art. 

Im Laufe der Zeit wird sich der Zustand eines Systems, und damit auch die 
Wellenfunktion, im allgemeinen ändern. In diesem Sinne kann man die Wellen­
funktion auch als Zeitfunktion auffassen. Wenn die Wellenfunktion in irgend­
einem Anfangszeitpunkt bekannt ist, dann ist sie im eigentlichen Sinne des Be­
griffes der vollständigen Beschreibung eines Zustandes damit prinzipiell auch 
für alle zukünftigen Zeitpunkte bestimmt. Die tatsächliche Abhängigkeit der 
Wellenfunktion von der Zeit wird durch Gleichungen bestimmt, die wir im 
folgenden noch ableiten werden. 

Die Summe der Wahrscheinlichkeiten aller möglichen Koordinatep.werte eines 
Systems muß nach Definition gleich 1 sein. Deshalb muß das Ergebnis der 
Integration von I 'PI 2 über den Konfigurationsraum des Systems gleich 1 sein : 

J I 'PI2 dq = 1 . (2,2) 

Diese Gleichung ist die sogenannte Normierungsvorschrift für die Wellenfunk­
tionen. Wenn das Integral über I'P12 konvergent ist, dann kann man durch 
Wahl eines geeigneten konstanten Faktors die Funktion 'P immer, wie man 
sagt, normieren. Wir werden später außerdem sehen, daß das Integral über 
l 'PI2 auch divergieren kann. Dann kann 'P überhaupt nicht nach der Bedin­
gung (2,2) normiert werden. In diesen Fällen bestimmt I'PI 2 natürlich nicht 
die Absolutwerte der Wahrscheinlichkeit für die Koordinaten; aber das Ver­
hältnis der Werte von I 'P12 in zwei verschiedenen Punkten des Konfigurations­
raumes bestimmt die relative Wahrscheinlichkeit der entsprechenden Koordi­
natenwerte. 

Alle mit Hilfe der Wellenfunktion berechenbaren Größen mit einem unmittel­
baren physikalischen Sinn haben die Gestalt (2,1). Darin wird die Funktion 'P 
immer mit P* multipliziert. Es ist daher klar, daß die normierte Wellen­
funktion nur bis auf einen konstanten Phasenfaktor der Gestalt ei" (mit einer 
beliebigen reellen Zahl cx) bestimmt ist. Diese Nichteindeutigkeit ist prinzi­
pieller Natur und kann nicht beseitigt werden ; sie ist jedoch unwesentlich, da 
sie keinerlei physikalische Ergebnisse beeinflußt. 

Die Grundlage des positiven Gehaltes der Quantenmechanik bilden einige 
Behauptungen über die Eigenschaften der W ellenfunktion. Diese Behaup­
tungen besagen folgendes. 



10 Kapitel I. Die Grundbegriffe der Quantenmechanik 

In einem Zustand mit der Wellenfunktion P1(q ) möge eine Messung mit 
Sicherheit ein bestimmtes Ergebnis (Ergebnis l) liefern, in dem Zustand P2(q) 
das Ergebnis 2. Es wird dann behauptet, daß jede Linearkombination von P1 
und P2, d. h. jede Funktion der Form' c1 P1 + c2 P2 (c1 und c2 sind Konstanten), 
einen Zustand ergibt, in dem dieselbe Messung entweder das Ergebnis l oder 
das Ergebnis 2 hat. Außerdem kann man behaupten, daß bei bekannter Zeit­
abhängigkeit der Zustände, die in dem einen Fall durch die Funktion 'P1(q, t) 
und im anderen durch P2(q, t) gegeben ist, eine beliebige Linearkombination 
ebenfalls eine mögliche Zeitabhängigkeit des Zustandes ergibt. 

Die Gesamtheit der ausgeprochenen Behauptungen über die Wellenfunktionen 
bildet den Inhalt des sogenannten Superpositionsprinzips. Insbesondere folgt 
daraus unmittelbar, daß alle Gleichungen, denen die Wellenfunktionen ge­
nügen, linear in 'P sein müssen. 

Wir betrachten ein System, das aus zwei Teilen besteht. Der Zustand dieses 
Systems sei so gegeben, daß jeder Teil vollständig beschrieben ist.1) Man kann 
dann behaupten, daß die Wahrscheinlichkeiten für die Koordinaten q1 des 
ersten Teiles unabhängig von den Wahrscheinlichkeiten für die Koordinaten q2 
des zweiten Teiles sind. Daher muß die Wahrscheinlichkeitsverteilung für das 
ganze System gleich dem Produkt der Wahrscheinlichkeiten für die einzelnen 
Teile sein. Das bedeutet, daß die Wellenfunktion 'P12(q1, q2) des Systems als 
Produkt aus den Wellenfunktionen P1(q1) und 'P2(q2) der einzelnen Teile dar­
gestellt werden kann. 

(2,3) 
Wenn die beiden Teile nicht miteinander wechselwirken, dann bleibt diese Be­
ziehung zwischen den Wellenfunktionen des Systems und dessen Teilen auch 
für zukünftige Zeitpunkte erhalten : 

§ 3. Operatoren 

(2,4) 

Wir betrachten irgendeine physikalische Größe f, die den Zustand eines quanten­
mechanischen Systems beschreibt. Streng genommen müßte man bei den fol­
genden Überlegungen nicht von einer Größe, sondern gleich von einem ganzen 
vollständigen Satz sprechen. Das Wesen aller folgenden Überlegungen wird 
davon jedoch nicht betroffen; der Kürze und der Einfachheit halber sprechen 
wir daher im weiteren immer nur von einer physikalischen Größe. 

1) Damit ist natürlich auch eine vollständige Beschreibung des ganzen Systems ge­
geben. Wir betonen jedoch, daß die umgekehrte Behauptung keinesfalls richtig ist: Die 
vollständige Beschreibung des Zustandes des Gesamtsystems bestimmt im allgemeinen 
die Zustände seiner einzelnen Teile nicht vollständig (wir werden auf diese Frage in § 7 
zurückkommen). 
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Die Werte, die eine gegebene physikalische Größe annehmen kann, heißen 
in der Quantenmechanik ihre Eigenwerte. Die Gesamtheit dieser Werte be­
zeichnet man als das Spektrum der .Eigenwerte der gegebenen Größe. In der 
klassischen Mechanik durchlaufen die Größen im allgemeinen eine kontinu­
ierliche Folge von Werten. In der Quantenmechanik gibt es auch physikalische 
Größen (zum Beispiel die Koordinaten), deren Eigenwerte kontinuierlich ver­
teilt sind. In diesen Fällen spricht man von einem kontinuierlichen Sp·ektrum 
der Eigenwerte. Neben diesen Größen gibt es in der Quantenmechanik aber 
auch noch andere, deren Eigenwerte einen diskreten Satz bilden; in diesen 
Fällen spricht man von einem diskreten Spektrum. 

Der Einfachheit halber wollen wir annehmen, daß die hier betrachtete Größe I 
ein diskretes Spektrum hat. Der Fall eines kontinuierlichen Spektrums wird 
im Paragraphen 5 behandelt werden. Die Eigenwerte der Größe I bezeichnen 
wir mit f", wobei der Index n die Werte 0, l, 2, 3, ... durchläuft. Ferner be­
zeichnen wir mit 'P" die Wellenfunktion des Systems in dem Zustand, in dem 
die Größe f den Wert fn hat. Die Wellenfunktionen 'Pn heißen die Eigenfunk­
tionen der gegebenen physikalischen Größe f. Jede dieser Funktionen wird 
normiert, so daß folgendes gilt: 

(3,1) 

Wenn sich das System in einem beliebigen Zustand mit der Wellenfunktion 'P 
befindet, dann ergibt eine an dem System ausgeführte Messung der Größe f.einen 
der Eigenwerte fn· Auf Grund des Superpositionsprinzips können wir behaupten, 
daß die Wellenfunktion 'P eine Linearkombination aus denjenigen Eigenfunk­
tionen 'P n sein muß, deren zugehörige Eigenwerte fn bei einer an dem System in 
dem betrachteten Zustand ausgeführten Messung mit einer von Null verschiedenen 
Wahrscheinlichkeit beobachtet werden können. Die Funktion 'P kann daher im 
allgemeinen für einen beliebigen Zustand als Reihe 

'P =}; a"'Pn (3,2) 
n 

dargestellt werden. Die Summation erfolgt über alle n, die a" sind konstante 
Koeffizienten. 

Wir gelangen also zu dem Schluß, daß jede Wellenfunktion, wie man sagt, 
nach den Eigenfunktionen einer beliebigen physikalischen Größe entwickelt 
werden kann. Ein System von Funktionen, nach denen man eine solche Ent­
wicklung vornehmen kann, heißt ein vollständiges Funktionensystem. 

Aus der Entwicklung (3,2) kann man die Wahrscheinlichkeit bestimmen, mit 
der dieser oder jener Wert fn der Größe f bei einer Messung an dem System in 
dem Zustand mit der Wellenfunktion 'P beobachtet wird (d. h. die Wahrschein­
lichkeit für das entsprechende Meßergebnis). Nach dem im vorhergehenden 
Paragraphen Gesagten müssen diese Wahrscheinlichkeiten durch irgendwelche 
in 'P und 'P* bilinearen Ausdrücke bestimmt werden und daher auch in a" 
und a! bilinear sein. Es versteht sich ferner, daß diese Ausdrücke positiv sein 
müssen. Schließlich muß die Wahrscheinlichkeit für den Wert fn gleich l sein, 
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wenn sich das System in dem Zustand mit der Wellenfunktion lJf = 'Pn be­
findet, und sie muß gleich Null sein, wenn das Glied mit dem gegebenen 'Pn 
in der Entwicklung (3,2) für die Wellenfunktion 'P fehlt. Die gesuchte Wahr­
scheinlichkeit muß deshalb gleich 1 sein, wenn alle Koeffizienten an gleich 
Null sind bis auf den einen (mit dem gegebenen n), der gleich 1 ist; sie muß 
gleich Null sein, wenn das gegebene an = 0 ist. Die einzige positive Größe, die 
dieser Bedingung genügt, ist das Betragsquadrat des Koeffizienten an. Wir 
kommen auf diese Weise zu dem Ergebnis, daß das Betragsquadrat \an\2 eines 
jeden Koeffizienten der Entwicklung (3,2) die Wahrscheinlichkeit des zuge­
hörigen Wertes ln der Größe I im Zustand mit der Wellenfunktion 'P bestimmt. 
Die Summe der Wahrscheinlichkeiten für alle möglichen Werte ln muß gleich 
1 sein. Es muß, mit anderen Worten, die folgende Beziehung gelten: 

(3,3) 
n 

Wir wollen den Begriff des Mittelwertes I der Größe I in einem gegebenen 
Zustand einführen. Entsprechend der üblichen Definition von Mittelwerten 

definieren wir I als die Summe aller Eigenwerte ln der gegebenen Größe, multi­
pliziert mit der zugehörigen Wahrscheinlichkeit \an\2• Es ist also 

I= E ln\an\2 • (3,4) n 
Wir drücken J jetzt nicht durch die Entwicklungskoeffizienten an der Funk­

tion 'P, sondern durch diese Funktion selbst aus. Da in (3,4) das Produkt an a: 
eingeht, ist klar, daß der gesuchte Ausdruck in lJf und lJf* bilin:ar sein muß. 
Wir führen einen mathematischen Operator ein, den wir mit I bezeichnen1) 

und folgen_?.ermaßen definieren: ({'P) möge das Ergebnis der
� 

Wirkung des 

Operators I auf die Funktion 'P bezeichnen. Wir definieren I so, daß das 

Integral über das Produkt von (['P) mit der konjugiert komplexen Funktion 'P* 
gleich dem Mittelwert I ist: 

7 = f 'P*(tlJf) dq. (3,5) 

Die BJlinearität des Ausdruckes (3,5) in 'P un� 'P* bedeutet, daß der Ope­

rator I selbst, wie man sagt, ein linearer Operator sein muß. So bezeichnet 
man Operatoren, die die Eigenschaften2) 

besitzen, wobei 'P1 und 1Jf2 beliebige Funktionen und a eine beliebige Kon­
stante sind. 

1) Wir vereinbaren, Operatoren überall durch mit Dach versehene Buchsta,ben zu 
bezeichnen. 

2) Sofern Mißverständnisse ausgeschlossen sind, werden wir im weiteren gewöhnlich 
die Klammern in dem Ausdruck (jtp) weglassen und verabreden, daß der Operator un· 
mittelbar auf den ihm folgenden Ausdruck anzuwenden ist. 
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Auf diese Weise finden wir, daß jeder physikalischen Größe in der Quanten­
mechanik ein linearer Operator entspricht. 

Falls es sich bei der Funktion 'P um eine Eigenfunktion 'P,. handelt, dann 
muß der Mittelwert f sich als derjenige Wert ln ergeben, d�n die Größe I in 
diesem Zustand besitzt : 

7 = f 'P: ['P,. dq = ln . 
Offenbar muß dafür � 

f'P,. -: ln p� ' 

2 
(3,6) 

� 

gelten, d. h., im Ergebnis der Anwendung des Operators I auf die Eigenfunk-
tion 'P,. wird diese einfach mit dem entsprechenden Eigenwert ln multipliziert. 

Wir können also sagen, daß die Eigenfunktionen einer gegebenen physika­
lischen Größe I die Lösungen der Gleichung 

I 'P = I 'P (3,7) 

sind� wobei � ist. Die Eigenwette sind diejenigen Werte dieser 
Konstanten, für die die aufgeschriebene Gleichung Lösungen hat, die den _er­
forderlichen Bedingungen genügen. Wie wir später sehen werden, kann die 
Gestalt der Operatoren für verschiedene physikalische Größen aus unmittel­
baren physikalischen Überlegungen bestimmt werden. Dann kann man mit 
Hilfe der angegebenen Eigenschaften der Operatoren die Eigenfunktionen und 
die Eigenwerte durch Lösung der Gleichungen (3,7) bestimmen. 

Wie die Eigenwerte einer reellen physikalischen Größe müssen auch die 
Mittelwerte für einen beliebigen Zustand reell sein. Dieser Umstand legt den 
Eigenschaften der entsprechenden Operatoren eine bestimmte Beschränkung 
auf. Wir setzen den Ausdruck (3,5) gleich dem dazu konjugiert komplexen 
und erhalten die Beziehung 

f 'P*(f'P) dq = f 'P(t* 'P*) dq ;  
A � 

(3,8) 

I* bedeutet darin den Operator, der zu I konjugiert · komplex ist. Für einen 
beliebigen linearen Operator gibt es im allgemeinen keine solche Beziehung, so 
daß diese eine gewisse Beschränkung für die mögliche Gestalt der Operatoren f 
darstellt. Für einen beliebigen Operator f kann man den sogenannten trans-

ponierten Operator j angeben ; er ist definiert durch 

(3,9) 

wobei 'P und (/) zwei verschiedene Funktionen sind. Wählt man als Funktion (/) 
die zu P konjugiert komplexe Funktion 'P*, dann ergibt sich aus dem Ver­
gleich mit (3,8) 

I=  f* . 
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Operatoren, die dieser Bedingung genügen, heißen hermitesche Operatoren. Die 
in dem mathematischen Apparat der Quantenmechanik zu den realen physi­
kalischen Größen gehörigen Operatoren müssen also hermitesch sein. 

Formal kann man auch komplexe physikalische Größen betrachten, d. h. 
Größen, deren Eigenwerte komplex sind. I sei eine solche Größe. Dann kann 
man die dazu konjugiert komplexe Größe I* einführen, deren Eigenwerte kon­
jugiert komplex zu den Eigenwerten von I sind. Den zur Größe I* gehörigen 
Operator bezeichnen wir mit j+ . Man nennt ihn den adjungierten Operator zu 
{ und muß ihn im allgemeinen von dem konjugiert komplexen Operator f* 
unterscheiden. In der Tat ist der Mittelwert der Größe I* über einen gewissen 
Zustand lJI entsprechend der Definition des Operators j+ gegeben als 

I* = ! P* I+ P dq . 

Andererseits haben wir 

(f} * = [ f P* f P dq]* = f lJI [* lJI* dq = f lfl* f* lJI dq . 
Setzen wir beide Ausdrücke gleich, so finden wir 

j+ = t* ' 
A A 

(3, 11 ) 

woraus klar ersichtlich ist, daß im allgemeinen I+ nicht mit I* übereinstimmt. 
Die Bedingung (3. 10) kann jetzt in der Gestalt 

A A 

I = I+ (3, 12) 

geschrieben werden, d. h., der Operator einer reellen physikalischen Größe ist 
gleich seinem Adjungierten (hermitesche Operatoren nennt man deshalb auch 
selbstadjungierte Operatoren) .  

Es  seien ln und Im zwei verschiedene Eigenwerte der Größe I und lJI11 und 
lJI m die zugehörigen Eigenfunktionen : 

l lfln = ln lfln , 
Wir multiplizieren beide Seiten der ersten Gleichung mit lJI!, die zur zweiten 
Gleichung konjugiert komplexe multiplizieren wir mit lJI11• Diese Produkte 
subtrahieren wir gliedweise voneinander und erhalten 

lfl! jpn - lfln i* lfl! = <ln - Im) lfln lfl! • 

Wir intergrieren beide Seiten dieser Gleichung über dq. Wegen f* = j und 
wegen (3,9) verschwindet das Integral über die linke Seite der Gleichung, so 
daß wir 

(ln - /m) J lfln lfl! dq = 0 

bekommen. Für ln =1= Im folgt hieraus, daß 

f lfl .. lfl! dq = 0 
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gilt, bzw. wie man sagt, daß unterschiedliche Eigenfunktionen zueinander 
orthogonal sind. Dieses Resultat kann man zusammen mit der Normierungs­
bedingung in der Form 

(3, 13) 

schreiben, wobei für n = m bnm = 1 und für n # m bnm = 0 ist. 
Die Gesamtheit ßer Eigenfunktionen 'Pn stellt auf diese Weise ein vollstän­

diges System orthogonaler und normierter (oder wie man kurz sagt, ortho­
normierter) Funktionen dar. 

Es ist jetzt leicht, die Koeffizienten an der Entwicklung (3,2) zu bestimmen. 
Dazu genügt es, beide Seiten von (3,2) mit 'P! zu multiplizieren und über dq 
zu integrieren. Infolge (3, 13) werden alle Glieder der Summe mit Ausnahme 
derjenigen mit n = m Null, und wir finden 

(3,14) 

Wir sprechen hier die ganze Zeit nur von einer physikalischen Größe f ,  
während wir, wie am Anfang dieses Paragraphen bemerkt worden ist, über ein 
vollständiges System physikalischer Größen sprechen müßten. Dann würden 

wir finden, daß zu jeder Größe f, g, . • .  ein Operator j, g, . . .  gehört. Die Eigen­
funktionen 'Pn gehören dann zu den Zuständen, für die alle betrachteten 
Größen bestimmte Werte haben, d. h., sie gehören zu bestimmten Sätzen von 
Eigenwerten fn, fJn, .. . und sind miteinander verträgliche Lösungen des Glei­
chungssystems 

f 'P = I 'P , g lJf = g 'P, . . . .  

§ 4. Addition und Multiplikation von Operatoren 

Den zwei physikalischen Größen I und g mögen die Operatoren f und g ent­

sprechen. Dann entspricht der Summe I +  g der Operator f + g. Der Sinn 
einer Addition unterschiedlicher physikalischer Größen hängt jedoch in der 
Quantenmechanik wesentlich davon ab, ob diese Größen gleichzeitig meßbar 
sind oder nicht. Wenn die Größen f und g gleichzeitig meßbar sind, dann 

besitzen die Operatoren j und g gemeinsame Eigenfunktionen, die gleichzeitig 

auch Eigenfunktione.n des Operators j + g sind, wobei sich die Eigenwerte 
dieses Operators als die Summen ln + fJn ergeben. 

Falls jedoch die Größen I und g gleichzeitig nicht bestimmte Werte annehmen 
können, dann ist der Sinn ihrer Summe I +  g begrenzter. Man kann dann 
nur behaupten, daß der Mittelwert dieser Summe für einen beliebigen Zustand 
gleich der Summe der Mittelwerte der einzelnen Summanden ist: 

f + g = l + fi .  (4, 1) 

Die Eigenwerte und die Eigenfunktionen des Operators j + g werden hier im 
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allgemeinen in keiner Beziehung zu den Eigenwerten und den Eigenfunktionen 
der Größen I und g stehen. Sind die Operatoren j und g selbstadjungiert, dann 
ist �uch der Operator j + g offensichtlich selbstadjungiert, so daß dessen 
Eigenwerte reell sind und die Eigenwerte der auf diese Weise definierten neuen 
Größe I + g darstellen. 

Jetzt seien I und g wieder zwei gleichzeitig meßbare Größen. Neben deren 
Summe kann man auch den Begriff des Produktes einführen. Dieses Produkt 
ist definiert als die Größe, deren Eigenwerte gleich den Produkten der Eigen­
werte der Größen I und g sind. Man kann leicht sehen, daß zu dieser Größe 
ein Operator gehört . Bei der Anwendung dieses Operators wird zuerst der 
eine und danach der andere Operator auf die Funktion angewandt. Dieser 
Operator wird · mathematisch als Produkt der Operatoren j und g dargestellt. 
Sind die '1',. die gemeinsamen Eigenfunktionen der Operatoren f und g, dann 
haben wir in der Tat 

fg '1',. = j(g 'J',.) = 1 fJn 'l'n = fJn 1'1'n = fJn ln '1',. (4,2) 

(das Symbol fg bedeutet den Operator, dessen Wirkung auf die Funktion 'l' 
in folgendem besteht : Zuerst wird der Operator g auf die Funktion 'l' an-
gewendet und danach der Operator f auf die Funktion g '1'). Mit demselben 
Erfolg könnten wir statt des Operators 1 g auch den Operator g 1 nehmen, der 
sich von dem ersteren nur durch die Reihenfolge der Faktoren unterscheidet. 
Das Ergebnis der Anwendung dieser beiden Operatoren auf die Funktionen '1',. 
ist offenbar das gleiche . .  Da jede Wellenfunktion 'l' als Linearkombination 
der Funktionen 'l'n dargestellt werden kann, folgt daraus, daß die Anwendung 
der Operatoren 1fi und g 1 auf eine beliebige Funktion dasselbe Ergebnis hervor­
bringt. Dieser Sachverhalt kann symbolisch jg = g j oder 

fg - g f= 0 (4,3) 

geschrieben werden. 
Man sagt, daß diese beiden Operatoren f und g miteinander vertauschbar 

sind, miteinander kommutieren1). 
Wir kommen auf diese Weise zu dem wichtigen Ergebnis :  Wenn zwei Größen I 

und g gleichzeitig bestimmte Werte haben können, dann kommutieren die 
zugehörigen Operatoren miteinander. 

Es kann auch der umgekehrte Satz bewiesen werden : Wenn die Operatoren 1 
und g vertauschbar sind, dann kann man für sie alle Eigenfunktionen gemeinsam 
wählen ; physikalisch bedeutet das die gleichzeitige Meßbarkeit der zugehörigen 
physikalischen Größen. Die Vertauschbarkeit der Operatoren ist also eine not­
wendige und hinreichende Bedingung für die gleichzeitige Meßbarkeit physi­
kalischer Größen. 

1) Die Differenz /fi - fj j selbst he�t Kommutator beider Operatoren. 
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Wenn die Größen I und g nicht gleichzeitig bestimmte Werte haben können, 
dann kann der Begriff des Produktes in der oben angegebenen Weise nicht 
definiert werden. Das offenbart sich schon darin, daß der Operator 1 g in 
diesem Falle nicht seihstadjungiert ist, daher kann er auch zu keiner physi­
kalischen Größe gehören. Nach der Definition des transponierten Operators 
haben wir 

Hier wirkt der Operator j nur auf die Funktion lJ', und der Operator g wirkt 
nur auf t/J. Wir wenden noch einmal die Definition des transponierten Ope­
rators an und erhalten 

f lJ' j g t/J dq = f (f lJ') (g t/J) dq = f t/J g J lJ' dq . 

Wir haben also ein Integral erhalten, in dem die Funktionen lJ' und t/J 
gegenüber dem Ausgangsintegral ihre Plätze vertauscht haben .. Der Operator 
g f ist mit anderen Worten der transponierte Operator zu {g, und wir können 
schreiben 

{4,4) 

Der transponierte Operator zu dem Produkt f g ist das Produkt der transpo­
nierten Faktoren in der umgekehrten Reihenfolge. Wir bilden von beiden 
Seiten der Gleichung (4,4) das konjugiert Komplexe ttnd finden 

(4,5) 

Wenn beide Operatoren j und g hermitesch sind, dann ist ({g)+ = g /. Daraus 
folgt, daß der Operator 1 g nur dann hermitesch ist, wenn die Faktoren 1 und g 
vertauschbar sind. 

§ ö. Das kontinuierliche Spektrum 

Alle in den §§ 3 und 4 hergeleiteten Beziehungen für die Eigenschaften der 
Eigenfunktionen des diskreten Spektrums können ohne Mühe atlf den Fall 
eines kontinuierlichen Spektrums von Eigenwerten verallgemeinert werden. 
Wir zählen sie hier auf, ohne von neuem alle entsprechenden Überlegungen zu 
:lViederholen. 

Es sei I eine physikalische Größe mit einem kontinuierlichen Spektrum. Ihre 
Eigenwerte werden wir einfach mit demselben Buchstaben f ohne Index be­
zeichnen. Die zu dem Eigenwert f gehörige Eigenfunktion werden wir mit 
lJI1 bezeichnen. Ahnlieh wie eine beliebige Wellenfunktion lJ' in eine Reihe 
{3,2) nach den Eigenfunktionen einer Größe mit einem diskreten Spektrum 
entwickelt werden kann, kann sie auch - diesmal in ein Integral - nach 
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dem vollständigen System der Eigenfunktionen einer Größe mit einem konti­
nuierlichen Spektrum entwickelt werden. Diese Entwicklung hat die Gestalt 

'P(q) = I  a1 'P,(q) dl .  (5, 1) 

Die Entwicklungskoeffizienten ergeben sich als 
a1 = I  'JI(q) 'P1*(q) dq . (5,2) 

Da I einen kontinuierlichen Wertebereich überstreichen kann, hat es keinen 
Sinn, von der Wahrscheinlichkeit des einen oder anderen Wertes zu reden, 
sondern man muß jetzt über die Wahrscheinlichkeit sprechen, mit der die 
Größe Werte aus einem infinitesimal kleinen Intervall zwischen I und I + dl 
annimmt. Diese Wahrscheinlichkeit ist durch j a1j 2  dl gegeben, analog dem Fall 
eines diskreten Spektrums, wo j a11 j2  die Wahrscheinlichkeit für den Eigenwert 1 .. 
bedeutet. Weil ferner die Summe der Wahrscheinlichkeiten für alle möglichen 
Werte I gleich 1 sein muß, haben wir 

I J a11 2 dl = 1 (5,3) 
(analog der Beziehung (3,3) für ein diskretes Spektrum) . . 

Die obigen Formeln beinhalten eine wohldefinierte Normierung der Eigen­
funktionen '1'1, nämlich gemäß der Regel 

I 'P/ '1'1 dq = tJ(f' - I) , (5,4) 
wo rechts die tJ-Funktion steht (ihre Definition und ihre Eigenschaften wurden 
in I §  54 gegeben).1) In der Tat, setzen wir (5,1) in (5,2) · ein, so erhalten wir 
die Beziehung 

a1 = I  ar( I 'Pr 'Pt dq) df' , 
welche identisch erfüllt sein muß. Unter Berücksichtigung von (5,4) ist diese 
Forderung tatsächlich erfüllt, da entsprechend der Eigenschaften der tJ-Funk­
tion gilt : 

I ar tJ(f' - I) df' = a1 .  

Die Normierungsbedingung (5,4) ersetzt die Bedingung (3, 13) für ein dis­
kretes Spektrum. Wir sehen, daß Funktionen '1'1 und 'Pr mit I =1= f' nach wie 
vor zueinander orthogonal sind. Jedoch Integrale über Quadrate j 'JI1j 2  von 
Eigenfunktionen eines kontinuierlichen Spektrums werden unendlich. Auf die 
Frage nach dem Ursprung und dem Sinn dieser Divergenz werden wir am Ende 
von § 10 zurückkommen. 

Wenn wir (5,2) in (5,1) einsetzen, erhalten wir 
'P(q) = I  'P(q') (/ 'Pt(q') 'PJ(q) dl) dq' . 

Daraus schließen wir sofort die Beziehung2) 
I 'P/ (q') 'P1(q) dl = �(q - q' )  . (5,5) 

1) Die 6-Funktion wurde von P. A. M. DmAc in die theoretische Physik eingeführt. 
2) Eine analoge Beziehung kann natürlich auch für den F!Lll des diskreten Spektrums 

eingeführt werden. Sie lautet dann 
.E 'l':(q') 'l',.(q) = <J(q - q') . (5,5a) 

. " 
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Wir vergleichen das Formelpaar (5,1)  und (5,4) mit dem Paar (5,2) und (5,5) 
und sehen, daß die Funktionen 'l'1(q) einerseits die Entwicklung der Funk­
tion 'l'(q) mit den Entwicklungskoeffizienten a1 realisieren. Auf der anderen 
Seite kann man die Formel (5,2) als völlig analoge Entwicklung der Funktion 
a1 _ a(f) nach den Funktionen 'l't*(q) ansehen. 'l'(q) spielt dabei die Rolle der 
Entwicklungskoeffizienten. Die Funktion a(/) bestimmt wie auch 'l'(q) den 
Zustand eines Systems vollständig. Man nennt die Funktion a(f) manchmal 
die Wellenfunktion in der /-Darstellung (und die Funktion 'l'(q) die Wellen­
funktion in der q-Darstellung). Ähnlich wie ! 'l'(q)! 2 die Wahrscheinlichkeit 
bestimmt, daß die Koordinaten eines Systems in einem vorgegebenen Inter­
vall dq liegen, bestimmt !a(/) 1 2  die Wahrscheinlichkeit dafür, daß die Werte 
der Größe f in einem vorgegebenen Intervall df liegen. Die Funktionen 'l'1(q) 

· sind die Eigenfunktionen der Größe f in der q-Darstellung, zum anderen sind 
die dazu konjugiert komplexen Funktionen 'l'/ (q) die Eigenfunktionen der 
Koordinate q in der /-Darstellung. 

Es gibt auch solche physikalischen Größen, die in einem bestimmten Werte­
bereich ein diskretes Spektrum und in einem anderen Bereich ein kontinu­
ierliches Spektrum haben. Für die Eigenfunktione'n einer solchen Größe gelten 
natürlich alle Beziehungen, die wir in diesem und im vorhergehenden Para­
graphen abgeleitet haben. Man muß nur beachten, daß das vollständige Funk­
tionensystem die Gesamtheit der Eigenfunktionen beider Spektren zusammen 
ist . Die Entwicklung einer beliebigen Wellenfunktion nach den Eigenfunk­
tionen dieser Größe hat daher die Gestalt 

{5,6) 
n 

Die Summe wird für das diskrete Spektrum gebildet, das Integral über das 
ganze kontinuierliche Spektrum erstreckt. 

Ein Beispiel für eine Größe mit einem kontinuierlichen Spektrum ist die 
Koordinate q selbst. Man kann leicht sehen, daß der zugehörige Operator die 
einfaclie Multiplikation mit q bedeutet. In der Tat, da die Wahrscheinlich­
keit für die verschiedenen Koordinatenwerte durch das Quadrat ! 'l'(q) !2 bestimmt 
wird, ist der Mittelwert für die Koordinate 

q = I q! 'l'! 2 dq = I  'l'* q 'l' dq . 
V ergleieben wir diesen Ausdruck mit der Definition der Operatoren entspre­
chend {3,5), so sehen wir, daß 

{5,7) 
gilt.1) Die Eigenfunktionen dieses Operators müssen nach der allgemeinen 
Regel aus der Gleichung q 'l'q, = q0 'l'q, bestimmt werden. Mit q0 bezeichnen 
wir vorübergehend die konkreten Koordinatenwerte, um sie von der Ver-

1) Im weiteren vereinbaren wir zur Vereinfachung der Bezeichnungsweise : Operatoren, 
deren Anwendung Multiplikation mit einer gewissen Größe bedeutet, schreiben wir einfach 
wie diese Größe selbst, d. h. ohne Dach. 

3 Kurzfassung li 
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änderlichen q zu unterscheiden. Da diese Gleichung entweder für ':Pq. = 0 oder 
für q = q0 erfüllt werden kann, ist klar, daß die der Normierungsbedingung 
genügenden Eigenfunktionen 

sind. 

§ 6. Der trbergang zur klassischen }lechanik 

(5,8) 

Die Quantenmechanik enthält die klassische Mechanik als Grenzfall. Es er­
hebt sich die Frage, wie dieser Grenzübergang ausgeführt werden muß. 

In der Quantenmechanik wird ein Elektron durch eine Wellenfunktion be­
schrieben, die seine verschiedenen Koordinatenwerte bestimmt. Von dieser 
Funktion wissen wir bisher nur, daß sie die Lösung einer linearen partiellen 
Differentialgleichung ist. In der klassischen Mechanik wird das Elektron als 
ein materielles Teilchen angesehen, das sich auf einer Bahn bewegt, die durch 
die Bewegungsgleichungen vollkommen bestimmt ist. In der Elektrodynamik 
besteht zwischen der Wellenoptik und der geometrischen Optik in gewissem 
Sinne eine analoge Wechselbeziehung wie zwischen der Quantenmechanik und 
der klassischen Mechanik. In der Wellenoptik werden die elektromagnetischen 
Wellen durch die Vektoren des elektrischen und des magnetischen Feldes be­
schrieben, die ein bestimmtes lineares Differentialgleichungssystem (die MAx­
WELLsehen Gleichungen) befriedigen. In der geometrischen Optik wird die 
Lichtausbreitung entlang bestimmter Trajektorien, den Strahlen, betrachtet. 
Auf Grund der genannten Analogie kann man den Schluß ziehen, daß der 
Übergang von der Quantenmechanik zur klassischen Mechanik analog zu dem 
Übergang von der Wellenoptik zur geometrischen Optik ist. 

Wir erinnern uns daran, wie man den zuletzt genannten Übergang mathe­
matisch durchführt (siehe I § 74). Es sei u eine beliebige Feldkomponente in 
einer elektromagnetischen Welle. Man kann sie in der Form u = a e''�' mit 
reeller Amplitude a und reeller Phase rp (in der geometrischen Optik nennt 

· man sie Eikonal). Der Grenzfall der geometrischen Optik entspricht kleinen 
Wellenlängen. Mathematisch wird das dadurch ausgedrückt, daß die Phase rp 
sich auf kleinen Strecken um große Beträge ändert. Das bedeutet insbesondere, 
daß man ihren absoluten Betrag als groß annehmen kann. 

Dementsprechend gehen wir von der Voraussetzung aus, daß in der Quanten­
mechanik dem Grenzfall der klassischen Mechanik Wellenfunktionen lJF = a ei 'I' 
entsprechen, bei denen a eine langsam veränderliche Funktion ist und rp große 
Werte annimmt. Bekanntlich kann man in der .Mechanik die Bahnkurve eines 
Teilchens aus einem Variationsprinzip bestimmen. Danach muß die sogenannte 
Wirkung S eines mechanischen Systems einen minimalen Wert annehmen 
(Prinzip der kleinsten Wirkung oder HAMILTON-Prinzip) .  In der geometrischen 
Optik wird der Verlauf eines Lichtstrahles durch das sogenannte FERMATsche 
Prinzip bestimmt, nach dem die "optische Weglänge" des Strahles, d. h. die 
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Differenz zwischen den Phasen am Ende und am Anfang des Weges, ein Mini­
mum sein muß. 

Von dieser Analogie ausgehend, können wir behaupten, die Phase q; einer 
Wellenfunktion muß im klassischen Grenzfall proportional zur mechanischen 
Wirkung S des betrachteten physikalischen Systems sein, d. h., es muß S = 
= const · p sein. Der Proportionalitätsfaktor heißt PLANCKsche Konstante und 
wird mit dem Buchstaben Ii bezeichnet.1) Sie hat die Dimension einer Wirkung 
(da q; dimensionslos ist) und ist gleich 

h = 1,054 · 10-27 erg · s . 

Die Wellenfunktion eines "beinahe klassischen" (oder, wie man sagt, quasi­
klassischen) physikalischen Systems hat also die Gestalt 

(6,1) 
I 

Die PLANCKsche Konstante spielt bei allen Quantenerscheinungen eine funda-
mentale Rolle. Ihre relative Größe (bezüglich anderer Größen derselben Di­
mension) bestimmt den "Grad der quantenmechanischen Natur" eines physi­
kalischen Systems. 

Der einer großen Phase entsprechende Übergang von der Quantenmechanik 
zur klassischen Mechanik kann formal als Grenzübergang Ii __,_.. 0 geschrieben 
werden (ähnlich wie der . Übergang von der Wellenoptik zur geometrischen 
Optik dem Grenzübergang zur Wellenlänge Null, Ä. __,_.. 0, entspricht) .  

Wir haben die Gestalt der Wellenfunktion in dem uns interessierenden Grenz­
fall gefunden. Es bleibt aber noch die Frage offen, wie sie mit der klassischen 
Bewegung entlang einer Bahn zusammenhängt. Im allgemeinen geht eine 
durch eine Wellenfunktion beschriebene Bewegung überhaupt nicht in eine 
Bewegung entlang einer bestimmten Bahnkurve über. Ihr Zusammenhang mit 
der klassischen Bewegung ist ein anderer. Wenn in einem Anfangszeitpunkt 
die Wellenfunktion und damit die Wahrscheinlichkeitsverteilung für die Ko­
ordinaten gegeben sind, dann wird sich diese Verteilung im Laufe der Zeit so 
"verschieben", wie es sich nach den Gesetzen der klassischen Mechanik gehört 
(näheres darüber siehe am Schluß von § 26). 

Um eine Bewegung entlang einer bestimmten Bahnkurve zu erhalten, muß 
man von einer Wellenfunktion besonderer Art ausgehen, die nur in einem sehr 
kleinen Raumgebiet von Null verschieden ist (von einem sogenannten Wellen­
paket). Die Ausdehnungen dieses Gebietes kann man zusammen mit Ii gegen 
Null streben lassen. Dann kann man behaupten, daß sich das Wellenpaket 
im quasiklassischen Fall entlang der klassischen Bahnkurve eines Teilchens im 
Raume verschiebt. 

1) Sie wurde 1900 von M. PLANCK in die Physik eingeführt. Die Konstante Ii, die wir 
in diesem Buch durchweg benutzen, ist eigentlich die durch 2 n dividierte PLANCKsche 
Konstante h (Bezeichnung nach P. A. M. DmAc). 

s •  
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Die quantenmechanischen Operatoren schließlich müssen in diesem Grenz­
fall einfach auf die Multiplikation mit der entsprechenden physikalischen Größe 
zurückgeführt werden. 

§ 7. Die Dichtematrix 

Die Beschreibung eines Systems mit Hilfe der Wellenfunktion entspricht der 
vollständigsten in der Quantenmechanik möglichen Beschreibung in dem Sinne, 
wie es am Ende von § 1 ausgeführt wurde. 

Mit Zuständen, die eine solche Beschreibung nicht zulassen, haben wir es 
zu tun, wenn wir ein System betrachten, das Teil eines gewissen großen ab­
geschlossenen Systems ist. Das abgeschlossene System als Ganzes soll sich 
nach Voraussetzung in einem gewissen, durch die Wellenfunktion lf'(q, x) be­
schriebenen Zustand befinden. x bezeichnet die Gesamtheit der Koordinaten 
des betrachteten Teilsystems, q die übrigen Koordinaten des abgeschlossenen 
Systems. Diese Funktion lf' wird im allgemeinen nicht in .ein Produkt von 
Funktionen zerfallen, die nur von x und nur von q abhängen, so daß das Teil­
system keine eigene Wellenfunktion hat. 

Es sei I eine physikalische Größe unseres (Teil-) Systems. Der zugehörige 
Operator wirkt daher nur auf die Koordinaten x, aber nicht auf q. Der Mittel­
wert dieser Größe in dem betrachteten Zustand ist 

f = I I lf'*(q, x) /lf'(q, x) dq dx . (7,1 )  

Wir führen die Funktion e(x', x) durch die folgende Definition ein : 

e(x', x) = I 'Jf*(q, x') lf'(q, x) dq . (7,2) 
Die Integration erfolgt dabei nur über die Koordinaten q. Die eben eingeführte 
Größe heißt die Dichtematrix des (Teil- )Systems. Die "Diagonalelemente" der 
Dichtematrix 

e(x, x) = I i'I'*(q, x)l 2 dq (7,3) 
geben offensichtlich die Wahrscheinlichkeitsverteilung für die Koordinaten des 
(Teil�)Systems. _ 

Mit Hilfe der Dichtematrix kann man den Mittelwert I in der Form 
- A 

I = I [f e(x', x)]"· =x dx 
A 

(7,4) 

schreiben, I wirkt in der Funktion e(x', x) nur auf die Variablen x. Nach der 
Anwendung des Operators muß man x' = x setzen. Wir sehen, daß man bei 
bekannter Dichtematrix den Mittelwert einer beliebigen für das System charak­
teristischen Größe berechnen kann. 

Folglich kann man mit Hilfe von e(x', x) auch die Wahrscheinlichkeiten für 
die verschiedenen Werte der physikalischen Größen des (Teil-)Systems be­
stimmen. Wir kommen also zu dem Schluß, daß der Zustand eines Systems, 
das keine Wellenfunktion hat, mittels der Dichtematrix beschrieben werden 
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kann1) .  Die Dichtematrix enthält die Koordinaten q nicht, die nicht zu dem 
gegebenen System gehören, obwohl sie ihrem Wesen nach natürlich von dem 
Zustand des abgeschlossenen Systems als Ganzem abhängig ist. 

Die Beschreibung mit Hilfe der Dichtematrix ist die allgemeinste Form der 
quantenmechanischen Beschreibung von Systemen. Die Beschreibung mittels 
einer ·wellenfunktion ist ein Spezialfall und entspricht einer Dichtematrix der 
Gestalt e(x', x) = P*(x') P(x). Zwischen diesem Spezialfall und dem allge­
meinen Fall besteht folgender wichtiger Unterschied. Für einen Zustand mit 
einer Wellenfunktion (ein solcher Zustand wird auch reiner Zustand genannt) 
existiert immer ein vollständiges System von Meßprozessen, die mit Sicherheit 
bestimmte Ergebnisse liefern. Für Zustände, die nur eine Dichtematrix haben 
(sie werden als gemischte Zustände bezeichnet), gibt es kein vollständiges Sy­
stem von Messungen, die eindeutig voraussagbare Ergebnisse liefern würden. 

\ 

1) L. D. LANDAU und F. BLOCH gaben unabhängig voneinander erstmals (1927) eine 
quantenmechanische Methode zur Beschreibung solcher Zustände an. 





Erha�tungssätze in der Quantenmechanik 

§ 8. Der HAMILTON·Operator 

II 

Die Wellenfunktion 'I' bestimmt den Zustand eines physikalischen Systems in 
der Quantenmechanik vollständig. Durch die Vorgabe dieser Funktion in einem 
gewissen Zeitpunkt werden nicht nur alle Eigenschaften des Systems in diesem 
Zeitpunkt beschrieben, sondern es wird auch das Verhalten des Systems in 
allen zukünftigen Zeitpunkten bestimmt, natürlich nur mit dem Genauigkeits­
grad, den die Quantenmechanik zuläßt. Mathematisch wird dieser Sachverhalt 
dadurch ausgedrückt, daß der Wert der Ableitung o':l'fot der Wellenfunktion 
nach der Zeit in jedem gegebenen Zeitpunkt durch den Wert der Funktion ':l' 
selbst in demselben Zeitpunkt bestimmt werden muß. Dieser Zusammenhang 
muß nach dem Superpositionsprinzip linear sein. In der allgemeinsten Form 
kann man schreiben 

(8,1 )  
" 

wobei H ein gewisser linearer Operator ist. Der Faktor ili ist mit einem weiter 
unten klar werdenden Ziel eingeführt worden. 

Da das Integral f ':l' ':l'* dq eine konstante, zeitunabhängige Größe ist, haben 
wir 

d J J o'l' J o'l'* - ':l'* tp dq = ':l'* - dq + - tp dq = 0 . dt at at 

Setzen wir hier (8,1) ein, und benutzen wir im zweiten Integral die Definition 
des transponierten Operators, so können wir schreiben (der gemeinsame Fak­
tor 1/ili wird weggelassen) 

1 ':l'* ii ':l' dq - 1 ':l' H* ':l'* dq = 1 ':l'* Ii ':l' dq - 1 ':l'* ii* ':l' dq 

= 1 ':l'* cit - it+> ':l' dq = o . 
Da diese Gleichung für eine beliebige Funktion ':l' erfüllt sein muß, folgt daraus, 
daß fi = fi+ identisch gelten muß, d. h., der Operator H ist hermitesch. 

Wir untersuchen jetzt, welcher klassischen Größe er entspricht. Dazu be­
nutzen wir den im klassischen Grenzfall gültigen Ausdruck (6,1) für die Wellen­
funktion und schreiben 
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(die langsam veränderliche Amplitude a braucht nicht differenziert zu werden). 
Wir vergleichen diese Gleichung mit der Definition (8,1) und sehen, daß sich 
der Operator fi in diesem Grenzfall auf die einfache Multiplikation mit der 
Größe - oSfot reduziert. Die let:tere ist also auch die physikalische Größe, 
in die der hermitesche Operator H übergeht. 

Wie aus der Mechanik bekannt ist, ist die Ableitung - oSfot nichts andere� 
als die HAMILTON-Funktion H eines mechanischen Systems. Der Operator H 
ist also der Operator, der in der Quantenmechanik der HAMILTON-Funktion 
entspricht. Man nennt ihn HAMILTON-Operator oder kürzer Hamiltonian eines 
Systems. Wenn die Gestalt des HAMILTON-Operators bekannt ist, dann be­
stimmt die· Gleichung (8,1) die Wellenfunktion eines gegebenen physikalischen 
Systems. Diese Grundgleichung der Quantenmechanik bezeichnet man als 
W ellengleichung. 

§ 9. Die Differentiation von Operatoren nach der Zeit 

Der Begriff der Ableitung einer physikalischen Größe nach der Zeit kann in 
der Quantenmechanik nicht in demselben Sinne definiert werden wie in der 
klassischen Mechanik. Die Definition der Ableitung in der klassischen Mechanik 
ist mit der Betrachtung der Werte einer Größe in zwei benachbarten, aber 
verschiedenen Zeitpunkten verknüpft. In der Quantenmechanik hat aber eine 
Größe, die in einem gewissen Zeitp11nkt einen bestimmten Wert hat, in den 
folgenden Zeitpunkten überhaupt keinen bestimmten Wert ; in § 1 ist darüber 
eingehender gesprochen worden. 

Der Begriff der Ableitung nach der Zeit muß deshalb in der Quantenmechanik 
anders definiert werden. Man definiert die Ableitung i der Größe I natürlicher­
weise als die Größe, deren Mittelwert gleich der zeitlichen Ableitung des Mittel-
wertes I ist. Wir haben also per definitionem 

I = 1 - (9,1) 

Wir gehen von dieser Definition aus und erhalten unschwer einen Ausdruck 
A . . 

für den quantenmechanischen Operator I, der zu der Größe I gehört . Es 
gilt 

f = t= !!_
fP* [P dq dt f af J alJf* A J A alJf 

= P*- P dq + -I Pdq +  P* f - dq at at at · 

Hier ist alJat der Operator, den man durch Differentiation des Operators f 
nach der Zeit erhält ; dieser kann von der Zeit wie von einem Parameter ab­
hängen. Setzen wir für die Ableitungen oPfot und oP*fot die Ausdrücke nach 
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(8,1) ein, dann erhalten wir 

1 = 1 lJI* :r tp dq + -�-1 di* lJI*) 1 tp dq _ ! rlJI* j(ii lJI) dq . 
� 

Da der Operator H hermitesch ist, gilt 

J (H* P*) (fP) dq = J P* fi.fp dq , 
und wir haben 

1 =J lJI* (ai + }__ ii f- }__ 1 ii) lJI dq i!t h h 
. 

- A . . 
Da andererseits nach der Definition der Mittelwerte I = f lJI* I lJI dq sein 

muß, erkennt man, daß der Ausdruck in der Klammer des Integranden den 
gesuchten Operator darstellt : 

� 

";" öf i A. A A A 

I = iit + -,; (H I - I H) . 
� � 

{9,2) 

Falls der Operator I nicht explizit von der Z�it abhängt, ist I bis auf einen 
Faktor gleich dem Kommutator des Operators I mit dern HAMILTON-Operator. 

Diejenigen physikalischen Größen, deren Operatoren nicht explizit von der · 

Zeit abh.fngen und außerdem mit dem HAMILTON-Operator vertauschbar sind, 
so daß I = 0 ist, bilden eine sehr wichtige Kategorie physikalischer Größen. 
sogenannte Erhaltungsgrößen. Für sie gilt I =  I = 0, d. h. I =  const. Der 
Mittelwert der Größe bleibt, mit anderen Worten, zeitlich konstant. Wenn 
die Größe I in einem gegebenen Zustand einen bestimmten Wert hat (d. h., 
die Wellenfunktion ist eine Eigenfunktion des Operators j), dann hat sie auch 
in späteren Zeitpunkten einen bestimmten - denselben - Wert. 

§ 10. Stationäre Zustände 

Der HAMILTON-Operator eines abgeschlossenen Systems (bzw. eines Systems, 
das sich in einem konstanten - auf keinen Fall in einem veränderlichen -
äußeren Felde befindet) kann die Zeit nicht explizit enthalten. Dies folgt 
daraus, daß bezüglich eines solchen physikalischen Systems alle Zeitpunkte 
äquivalent sind. Da andererseits natürlich jeder Operator mit sich selbst ver­
tauschbar ist, kommen wir zu dem Schluß, daß die HAMILTON-Funktion für 
ein System, das sich nicht in einem veränderlichen äußeren Feld befindet, 
erhalten bleibt. Bekanntlich bezeichnet man eine HAMILTON-Funktion, die 
erhalten bleibt, als Energie (siehe I § 6). Der Sinn des Energieerhaltungssatzes 
besteht in der Quantenmechanik in folgendem : Wenn die Energie in einem 
gegebenen Zustand einen bestimmten Wert hat, dann bleibt dieser Wert zeit­
lich konstant. 
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Die Zustände mit bestimmten Werten der Energie heißen stationäre Zustände 
eines Systems. Sie werden durch Wellenfunktionen lJf., beschrieb�n, die Eigen-
funktionen des HAMILTON-Operators sind, d. h., der Gleichung H 'P11 = E" lJf" 
genügen. Die E., sind die Eigenwerte der Energie. Dementsprechend kann die 
Wellengleichung (8, 1) für die Funktion lJf" 

. iJ'P., HA ITI E ITI t n --;;t =  r., = ., r" 
unmittelbar über die Zeit integriert werden und ergibt 

(10, 1) 

Die Funktion tp11 hängt dabei nur von den Koordinaten ab. Durch die Glei­
chung ( 10,1 )  wird die Zeitabhängigkeit der Wellenfunktionen für stationäre Zu­
stände bestimmt. 

Die Wellenfunktionen für stationäre Zustände ohne . den Zeitfaktor wollen 
wir mit dem kleinen Buchstaben tp bezeichnen. Diese Funktionen und auch 
die Eigenwerte der Energie selbst werden aus der Gleichung 

(10,2) 

bestimmt. Der stationäre Zustand mit der kleinsten möglichen Energie heißt 
Normal- oder Grundzustand eines Systems. 

Die Entwicklung einer beliebigen Wellenfunktion lJf nach den Wellenfunk­
tionen stationärer Zustände hat die Gestalt 

( 10,3) 
.. 

Die Quadrate la111 2 der Entwicklungskoeffizienten bestimmen wie üblich die 
W ahrscheinlichkeiten für die verschiedenen Energiewerte eines Systems. 

Die Wahrscheinlichkeitsverteilung für die Koordinaten in einem stationären 
Zustand wird durch das Quadrat I 'P"1 2 = ltpn l2 gegeben. Wir sehen, daß sie 
nicht von der Zeit abhängt. Dasselbe karin man von dem Mittelwert 

f = I P: f 'P" dq = I "P'! j tp., dq 

einer beliebigen physikalischen Größe f sagen (deren Operator nicht explizit 
zeitabhängig ist). 

Wie schon erwähnt worden ist, kommutiert der Operator jeder erhalten 
bleibenden Größe mit dem HAMILTON-Operator. Das bedeutet, daß jede phy­
sikalische Größe, für die ein Erhaltungssatz gilt, gleichzeitig mit der Energie 
gemessen werden kann. 

Unter den verschiedenen stationären Zuständen können auch solche sein, 
die zu ein und demselben Energiewert gehören, sich ab�r durch die Werte 
irgendwelcher anderer physikalischer Größen unterscheiden. Diese Eigenwerte 
deP Energie (oder, wie man auch sagt, Energieniveaus eines Systems), zu denen 
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jeweils mehrere verschiedene stationäre Zustände gehören, nennt man ,ent­
artet'. Physikalisch hängt die Möglichkeit der Existenz entarteter Niveaus 
damit zusammen, daß die Energie im allgemeinen für sich kein vollständiges · 

System physikalischer Größen bildet. 
Man kann insbesondere leicht erkennen, daß die Energieniveaus eines Systems 

im allgemeinen entartet sind, wenn zwei physikalische Größen f und g erhalten 
bleiben, deren Operatoren nicht vertauschbar sind. Es sei 1p die Wellenfunktion 
eines stationären Zustands, in dem außer der Energie die Größe f einen be­
stimmten Wert hat. Man kann dann behaupten, daß die Funktion g 1p mit 1p 
(einen konstanten Faktor lassen wir zu) nicht übereinstimmt. Das Gegenteil 
dazu würde bedeuten, daß auch die Größe g einen bestimmten Wert hat. Das 
ist aber unmöglich, weil f und g nicht gleichzeitig gemessen werden können. 
Auf der anderen Seite ist die Funktion fj 1p eine Eigenfunktion des HAMILTON­
Operators zu demselben Energiewert E wie 1p :  

H(g 1jJ) = g ii 1jJ = E(g 1jJ) • 

Wir sehen also, daß die Energie E zu mehr als einer Eigenfunktion gehört, 
d. h., das Energieniveau ist entartet. 

Eine beliebige Linearkombination der Wellenfunktionen, die zu ein und dem­
selben entarteten Energieniveau gehören, ist offensichtlich auch eine Eigen­
funktion zu demselben Energiewert. Mit anderen Worten : Die Wahl der 
Eigenfunktionen zu einem entarteten Energiewert ist nicht eindeutig. Will­
kürlich ausgewählte Eigenfunktionen zu einem entarteten Energieniveau sind 
im allgemeinen nicht orthogonal zueinander. Durch geeignete Zusammen­
stellung von Linearkombinationen kann man jedoch immer einen Satz zu­
einander orthogonaler (und normierter) Eigenfunktionen erhalten. 

Das Eigenwertspektrum der Energie kann sowohl diskret als auch konti­
nuierlich sein. Ein stationärer Zustand des diskreten Spektrums gehört immer 
zu einer endlichen (oder finiten) Bewegung, d. h. zu einer Bewegung, bei der 
das System oder ein beliebiger Teil desselben immer im Endlichen bleibt. Für 
die Eigenfunktionen des diskreten Spektrums ist in der Tat das über den 
ganzen' Raum erstreckte Integral f Jlf'J2  dq endlich. Das bedeutet auf jeden 
Fall, daß das Quadrat J lf'J 2  genügend schnell abnimmt und im Unendlichen 
verschwindet. Die Wahrscheinlichkeit für unendliche Koordinatenwerte ist, 
mit anderen Worten, gleich Null, d. h., das System führt eine im Endlichen 
verlaufende Bewegung aus, oder es befindet sich, wie man sagt, in einem 
gebundenen Zustand. 

Für die Wellenfunktionen des kontinuierlichen Spektrums divergiert das 
Integral f Jlf'J 2  dq. Das Quadrat der Wellenfunktion J lf'J 2  gibt hier nicht un­
mittelbar die Wahrscheinlichkeiten für die verschiedenen Koordinatenwerte an, 
es ist vielmehr nur eine zu dieser Wahrscheinlichkeit proportionale Größe. Die 
Divergenz des Integrals -f l lf'J 2 dq hängt immer damit zusammen, daß Jlf'J 2  
im Unendlichen nicht verschwindet (oder nicht schnell genug verschwindet) .  
Man kann daher behaupten, daß das Integral J Jlf'J 2  dq auch dann divergiert, 
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wenn es über ein Raumgebiet erstreckt wird, das außerhalb einer beliebig 
großen, aber endlichen geschlossenen Fläche liegt. Das System (oder irgendein 
Teil desselben) befindet sich demzufolge in diesem Zustand im Unendlichen. 
Die stationären Zustände des kontinuierlichen Spektrums entsprechen also einer 
bis ins Unendliche verlaufenden Bewegung des Systems. 

§ 11. Matr
_
izen physikalischer Größen 

Der Bequemlichkeit halber setzen wir voraus, daß das von uns betrachtete 
System ein diskretes Energiespektrum hat (alle unten erhaltenen Beziehungen 
können unmittelbar auch auf ein kontinuierliches Spektrum verallgemeinert 
werden) .  Es sei 'P = I: an 'Pn die Entwicklung einer beliebigen Wellenfunktion 
nach den Wellenfunktionen 'Pn stationärer Zustände. Setzt man diese Ent­
wicklung in-die Definition (3,5) für den Mittelwert der Größe I ein, dann erhält 
man 

f = l: L a! am lnm(t) · n m 
Darin bedeuten die lnm(t) die Integrale 

lnm = J 'P: f'Pm dq • 

(11 ,1 )  

( 11,2) 
Die Gesamtheit der Größen lnm(t) mit allen möglichen n und m bezeichnet man 
als die Matrix der Größe 1- Ein einzelnes lnm (t) nennt man das Matrixelement 
für den Obergang aus dem Zustand m in den Zustand n.1) 

Für Matrixelemente lnm wird auch die Schreibweise 

(nJ I Jm) ( 11,3) 
verwendet, die insbesondere dann zweckmäßig ist, wenn jeder der Indizes in 
Form einer Gesamtheit mehrerer Buchstaben geschrieben werden muß. Das 
Symbol ( 1 1 ,3) wird manchmal angesehen als eine Bildung aus der Bezeichnung 
der Größe I und den Symbolen Jm) und (nJ , die Anfangs- und Endzustand 
bezeichnen (Bezeichnung nach DrnAc). 

� 

Die Zeitabhängigkeit der Matrixelemente wird (wenn der Operator I die Zeit 
nicht explizit enthält) von der Zeitabhängigkeit der Funktionen 'Pn bestimmt. 
Setzen wir für diese Funktionen die Ausdrücke ( 10,1 )  ein, so finden wir 

( 11,4) 
mit 

( 1 1 ,5) 

1)  Die Darstellung physikalischer Größen durch Matrizen wurde (1925) von W. HElSEN­
BERG noch vor dem Auffinden der Wellengleichung durch E. SCHRÖDINGER eingeführt. 
Die Matrizenmechanik wurde später von M. BoRN, W. HElSENBERG und P. JoRDAN weiter­
E>ntwickelt. 
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w,.m ist die sogenannte Obergangsfrequenz zwischen den Zuständen m und n. 
Die Größen 

(11,6) 
bilden die der Größe f zugeordnete zeitunabhängige Matrix, die man üblicher­
weise verwenden muß. 

Die Matrixelemente der Ableitung f erhält man durch Differentiation der 
Matrixelemente der Größe f nach der Zeit. Das ergibt sich unmittelbar daraus, 
daß der Mittelwert 

i = f = 1: 1: a: am f�m(t) 
" m 

ist. Wegen (1 1,4) haben wir also für die Matrixelemente von f 
fnm(l) = i Wnm fnm(t} (11,7 ) 

oder (wenn wir auf beiden Seiten den Zeitfaktor e; Wnm t kürzen) für die zeit­
unabhängigen Matrixelemente 

. i (/)n m = i Wnm fnm = A (En - Em) fnm • ( 11,8) 

Um die Bezeichnungen in den Formeln zu vereinfachen, leiten wir im fol­
genden alle Beziehungen für die zeitunabhängigen Matrixelemente her. Genau 
dieselben Beziehungen gelten auch für die zeitabhängigen Matrizen. 

Für die Matrixelemente der zu f konjugiert komplexen Größe f* erhalten 
wir unter Berücksichtigung der Definition des adjungierten Operators 

(/*)" ,,. = I "P: f+ "Pm dq = I "P: f* "Pm dq = I "Pm f* "P! dq , 
d. h. 

(/*)n m = <fmn}* · ( 11,9) 
Wir haben folglich für reelle physikalische Größen, mit denen wir un·s normaler­
weise nur beschäftigen, 

fnm = f!n (11 ,10) 

(!! ,. steht anstelle von <fm,.)*). Diese Matrizen heißen wie die zugehörigen 
Operatoren hermitesch. 

Die Matrixelemente mit n = m nennt man die Diagonalelemente. Diese Ele­
mente hängen überhaupt nicht von der Zeit ab, und aus (11 ,10) erkennt man, 
daß sie reell sind. Das Element f,.,. ist der Mittelwert der Größe f in dem 
Zustand "Pn· 

Man kann leicht die Multiplikationsregel für Matrizen finden. Dazu schreiben 
wir zunächst die Formel 

(11 ,11 )  
m 

auf. Diese Formel ist nichts anderes als die Entwicklung der Funktion j "Pn 
nach den Funktionen "Pm mit den nach der allgemeinen Regel (3, 14) bestimmten 
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Koeffizienten. Unter Beachtung dieser Formel schreiben wir für das Ergebnis 
der Anwendung eines Produktes zweier Operatoren auf die Funktion "Pn 

jg 1p,. = f J:  (/Jen Vli: = L f/tn f'f/Jk = L f/tn lmt 'f/lm • k k k, m 
Da andererseits 

jg 'f/ln = L (I f/)mn "Pm m 
sein muß, kommen wir zu dem Ergebnis, daß die Matrixelemente des Produktes 
I g durch die Formel 

(I f/)mn = }; I"'" f/kn (11 ,12) 
" 

gegeben werden. Diese Regel stimmt mit der in der Mathematik üblichen 
Multiplikationsregel für Matrizen überein : Die Zeilen der ersten werden mit 
den Spalten der zweiten im Produkt stehenden Matrix multipliziert. 

Die Kenntnis einer Matrix ist äquivalent zur Kenntnis des Operators selbst. 
Insbesondere kann man aus der Kenntnis der Matrix prinzipiell die Eigenwerte 
der gegebenen physikalischen Größe und die zugehörigen Eigenfunktionen be-
stimmen. · 

Wir wollen die Werte aller Größen in einem bestimmten Zeitpunkt betrachten 
und entwickeln eine beliebige Wellenfunktion lJI (in diesem Zeitpunkt) nach 
den Eigenfunktionen des HAMILTON-Operators, d. h. nach den zeitunabhängigen 
Wellenfunktionen "Pm von stationären Zuständen : 

lJI = }; Cm "Pm • (11,13) 
m 

Die Entwicklungskoeffizienten haben wir mit Cm bezeichnet. Wir setzen diese 
Entwicklung in die Gleichung j lJI = I IJI zur Bestimmung der Eigenwerte und 
der Eigenfunktionen der Größe I ein und finden 

A 

}; CmU "Pm) = I }; Cm "Pm • m m 
Diese Gleichung multiplizieren wir von beiden Seiten .mit "P! und integrieren 
sie über dq. Die Integrale f VJ! f "Pm dq auf der linken Seite sind die entspre­
chenden Matrixelemente ln m· Auf der rechten Seite verschwinden alle Integrale 

.f "P! "Pm dq mit m =1= n wegen der Orthogonalität der Funktionen "Pm• aber es 
ist f VJ! tpn dq = 1 wegen der Normierung. Daher gilt 

}; lnm Cm = I  Cn m 
oder 

L Unm - f b,.m) Cm = 0 • (11,14) 
m 

Wir haben also ein homogenes algebraisches Gleichungssystem ersten Grades 
erhalten (mit den Unbekannten Cm)· Bekanntlich . hat ein solches System nur 
dann nicht-triviale Lösungen, wenn die Koeffizientendeterminante verschwin-
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det, d. h. unter der Bedingung 

1 /n-m - / !5nml = 0 • 

Die Wurzeln dieser Gleichung (in der f als Unbekannte angesehen wird) sind 
die möglichen Werte der Größe f. Die Gesamtheit der Größen Cm, die den 
Gleichungen (11,14) mit irgendeinem dieser Werte für f genügen, bestimmt die 
zugehörige Eigenfunktion. 

Wenn wir in der Definition (11,6) für die Matrixelemente der Größe I als 
"Pn die Eigenfunktionen eben dieser Größe nehmen, dann haben wir nach der 

Gleichung j 'lj}n = f,. 'lj}n 

fnm = f "P: f"Pm dq � fm f "P! "Pm dq • 

Da die Funktionen "Pm orthonormiert sind, ergibt sich fnm = 0 für n =I= m und 
fm m = fm· 

Es sind also nur die Diagonalelemente der Matrix von Null verschieden. 
Jedes Diagonalelement ist gleich dem zugehörigen Eigenwert der Größe f. 
Von einer Matrix, bei der nur die Diagonalelemente von Null verschieden sind, 
sagt man, man habe sie in die Diagonalform gebracht, sie diagonalisiert. Ins­
besondere ist in der üblichen Darstellung mit den Wellenfunktionen stationärer 
Zustände als Funktionen "Pn die Matrix der Energie diagonal (und auch die 
Matrizen aller anderen physikalischen Größen, die in stationären Zuständen 
bestimmte Werte haben). Von der mit Hilfe der Eigenfunktionen eines Opera­
tors fj bestimmten Matrix einer Größe f sagt man, sie sei die Matrix von f in 
der Darstellung, in der g diagonal ist. Überall, wo nichts anderes vereinbart 
ist, wollen wir im folgenden unter der Matrix einer physikalischen Größe die 
Matrix in der üblichen . Darstellung verstehen, in der die Energie diagonal ist. 
Alles, was oben über die Zeitabhängigkeit von Matrizen gesagt worden ist, 
bezieht sich selbstverständlich nur auf diese übliche Darstellung.1) 

§ 12. Der Impuls 

Wir betrachten ein abgeschlossenes System von Teilchen. Da alle Positionen 
dieses Systems im Raum (bei festen Relativkoordinaten der Teilchen) äqui­
valent sind, kann man insbesondere behaupten, daß sich der HAMILTON-Ope­
rator des Systems bei einer Parallelverschiebung des Gesamtsystems um eine 
beliebige Strecke nicht ändert. Es genügt, diese Bedingung für eine beliebige 
infinitesimale Verschiebung zu fordern, sie wird dann auch für jede endliche 
Verschiebung erfüllt. 

Eine infinitesimale Parallelverschiebung um die Strecke �r ist eine Trans­
formation, bei der die Ortsvektoren ra aller Teilchen (a ist die Nummer eines 

1) Wenn man daran denkt, daß die Matrix für die Energie diagonal ist, dann kann 
man sich leicht davon überzeugen, daß Gleichung (ll,S) die in Matrixform geschriebene 
Operatorbeziehung (9,2) ist. 
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Teilchens) dieselbe Veränderung bT erfahren : Ta -+ Ta + bT. Eine beliebige 
Funktion 1p(Tv T2, • • •  ) der Koordinaten der Teilchen geht bei dieser Trans­
formation über in die Funktion 

1p(T1 + bT, T2 + bT, • • •  ) = 1p(T1, T2, • • •  ) + bT E Va 1p a 
= (1 + OT f Va) 1p(T1, T2, • • •  ) 

(V a bedeutet den "Vektor" mit den Operatoren o foxa, o foya und o foza als Kom­
ponenten). Den Ausdru?k 

(12,1)  
a 

kann man als den Operator der infinitesimalen Transformation ansehen, die 
die Funktion 1p(Tl, T2, . . .  ) in die Funktion "P (Tl + OT, T2 + OT, . • •  ) über­
führt . 

Die Behauptung, daß eine Transformatio� den HAMILTON-Operator nicht 
ändert, bedeutet : Wenn man die Funktion H 1p dieser Transformation unter­
wirft, erhält man dasselbe Ergebnis, wie wenn manA nur die Funktion 1p trans­
formiert und dann darauf den JlAMILTON -Operator 1!_ anwendet. Mathematisch 
kann das in folgender Weise geschrieben werden. 0 sei der Operator, der die 
betrachtete Transformation "ausführt". Dann haben wir O(H 1p) = H(O 1p) 
und daraus 

/">. "' ,... ........ 
O H - H O = O ,  (12,2) 

A 
d. h., der HAMILTON-Operator muß mit dem Operator 0 vertauschbar sein. 

In dem vorliegenden Fall ist der Operator 0 der Operator der infinitesi­
malen Verschiebung (12, 1) .  Der Einheitsoperator (der Operator der Multi­
plikation mit 1) kommutiert natürlich mit jedem beliebigen Operator. Der 
konstante Faktor·OT kann vor den Operator H gezogen werden. Die Bedingung 
(12,2) führt also hier zu der Bedingung 

(12,3) 

Wie wir wissen, bedeutet die Vertauschbarkeit eines Operators (der die Zeit 
nicht explizit enthält) mit fi, daß die zu dem Operator gehörige physikalische 
Größe erhalten bleibt. Die Größe, deren Erhaltung für ein abgeschlossenes 
System aus der Homogenitätseigenschaft des Raumes folgt, ist der Impuls 
des Systems (vgl. I § 7). 

Die Beziehung (12,3) stellt also den Impulserhaltungssatz in der Quanten­
mechanik dar. Der Operator I; Va muß also bis auf einen konstanten Faktor 

a 
dem Gesamtimpuls des Systems entsprechen. Jedes einzelne Glied Va der Summe 
entspricht dem Impuls eines einzelnen Teilchens. 

Der Proportionalitätskoeffizient zwischen dem Operator p für den Impuls 
eines Teilchens und dem Operator V kann mit Hilfe des Grenzüberganges zur 
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klassischen Mechanik bestimmt werden. Wir schreiben p = c V, benutzen den 
Ausdruck (6,1) für die Wellenfunktion im klassischen Grenzfall und haben 

i 
A i ll s  i P 'P = - c a e V S = c - ITJ V S 1i 1i r ' 

d. h., in der klassischen Näherung bedeutet die Anwendung des Operators p 
i die Multiplikation mit --,; c V S. Der Gradient V S ist der Impuls p eines Teil-

chens (siehe I § 31) .  Deshalb muß c = - i Ii sein. 
Der Operator für den Impuls eines Teilchens ist also p = - i Ii V oder in 

Komponenten 
A • 

a A a 
Px = - � Ii ox ' Pu = - i Ii ay ' 

A a 
Pz = - i fi OZ • 

(12,4) 

Man kann sich leicht davon überzeugen, daß diese Operatoren, wie es sein 
muß, hermitesch sind. Tatsächlich haben wir für beliebige, im Unendlichen ver­
schwindende Funktionen '!jJ(X) und cp(x) 

J <p Px V' dx = -:- i Ii j cp �: dx = i Ii J V' :: dx = J V' p: cp dx ; 

das ist die Hermitezitätsbedingung für einen Operator. 
Da die Ableitung von Funktionen nach zwei verschiedenen Variablen nicht 

von der Reihenfolge der Differentiation abhängt, ist es klar, daß die Operatoren 
für die drei Impulskomponenten miteinander kommutieren : 

Px Pu - Pu Px = 0 ,  Px Pz - Pz Px = 0 ,  Pu Pz - Pz Pv = 0 • (12,5) 

Alle drei Impulskomponenten eines Teilchens können demnach gleichzeitig be­
stimmte Werte haben. 

Wir bestimmen die Eigenfunktionen und die Eigenwerte der Impulsopera­
toren. Sie werden aus der Vektorgleichung 

- i !i V 'lJ' = P 'lJ'  (12,6) 

gefunden. Ihre Lösungen sind 

(12,7) 

(0 ist eine Konstante). Die gleichzeitige Vorgabe aller drei Impulskomponenten 
bestimmt, wie wir sehen, die Wellenfunktion eines Teilchens vollständig. Die 
Größen Px, Pu und Pz stellen mit anderen Worten einen der möglichen voll­
ständigen Sätze physikalischer Größen dar. Ihre Eigenwerte bilden ein kon­
tinuierliches Spektrum, das sich von - oo bis +oo erstreckt. 

Nach 'der Normierungaregel (5,4) für die Eigenfunktionen eines kontinuier­
lichen Spektrums muß 

/'l/'p' 'l/'; d V  = C'J(p' - p) ( 12,8) 

• Kurzfassung II 
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sein, wobei die Integration über den ganzen Raum erstreckt wird (dV 
= dx dy dz). �(p' - p) ist die dreidimensionale �-Funktion.1) 

Die Integration erfolgt mit Hilfe der Formel2) 

Wir haben 

()() 
1 f . 2 n e" ' x dx = �(a:) . 

- oo  

(12,9) 

Daraus. entnimmt man, daß 02(2 n 1i)3 = 1 sein muß. Die normierten Funk­
tionen "PP sind also gleich 

i 

1 - p 1"  
.,, e il TP = (2 n Ji)3/2 (12,10) 

Die Entwicklung einer beliebigen Wellenfunktion eines Teilchens 'lfJ(t') nach 
den Eigenfunktionen "PP des zugehörigen Impulsoperators ist nichts anderes als 
die Darstellung durch ein FouRIER-Integral : 

'1jJ(1') = f a(p) "Pp (r) d3p = (2 n 11i)S/2 f a(p) e� P .. d3p ' 

d3p = dpx dp11 dp. • 

Die Entwicklungskoeffizienten a(p) sind nach der Formel (5,2) gleich 

i a(p) = f '1jJ(1') '1jJ;(r) dV = (2 n11i)S/2 J '1jJ(1') ß
-

t� P '" dV . 

(12,11)  

(12,12) 

Die Funktion a(p) kann man (siehe § 5) als die Wellenfunktion des Teil­
chens in der lmpulsdar8tellung auffassen ; j a(p)i 2 d3p ist die Wahrscheinlichkeit 
dafür, daß die Werte für den Impuls in dem Intervall d3p liegen. Die Formeln 
(12, 11-12) geben den Zusammenhang zwischen den Wellenfunktionen in den 
beiden Darstellungen an. 

1) Es sei daran erinnert, daß die 6-Funktion mit einem Vektor als Argument als das 
Produkt von 6-Funktionen bezüglich jeder seiner Komponenten definiert ist. 

2) Diese Gleichung stellt in dem Sinne eine Gleichheit ihrer beiden Seiten dar, daß das 
auf der linken Seite stehende Integral alle Eigenschaften einer 6-Funktion besitzt. Für 
"' = 0 divergiert das Integral, während es für "' =/= 0 als Integral über eine periodische, das 
Vorzeichen wechselnde Funktion Null wird. Integriert man dieses Integral nochmals 
über d"' in einem gewissen Bereich -L bis +L (der Punkt "' = 0 ist einbegriffen), so 
erhält man 
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Wir wollen die Vertauschungsregeln der Operatoren für den Impuls und die 
Koordinaten herleiten. Das Ergebnis der nacheinander ausgeführten Differen­
tiation nach einer der Variablen x, y oder z und der Multiplikation mit einer 
anderen Variablen hängt nicht von der Reihenfolge dieser Operationen ab, 
daher gilt ' 

Pz Y - Y .Pz = 0 , Pz Z - Z Pz = 0 
und analog für Pv und Pz· . 

Zur Ableitung der Vertauschungsregel von Pz mit x schreiben wir 

( � 

� . ", a . ", otp : ", 
P:r X - X Pz) 'ljJ = - t n ox (x 'ljJ) + t tb X ox = - t n 'ljJ .  

( 13,1 )  

Die Anwendung des Operators p., x - x Pz bedeutet demzufolge die Multipli­
kation einer Funktion mit -i n. Dasselbe gilt natürlich auch für den Kommu­
tator von p11 und y sowie Pz und z. Wir haben also1) 

Pz X - X Pz = - i n  ' 
:P. z __:__ z :P. = - i n . 

Pv y - Y}u = - i n ' 
( 13,2) 

Die Beziehungen (13,1 -2) zeigen, daß eine Komponente des Ortsvektors 
eines Teilchens und die beiden dazu senkrechten Impulskomponenten gleich­
zeitig bestimmte Werte haben können. Die Komponente des Ortsvektors und 
die Impulskomponenten bezüglich ein- und derselben Koordinatenachse existie­
ren nicht gleichzeitig. Insbesondere kann sich ein Teilchen nicht in einem be­
stimmten Raumpunkt befinden und gleichzeitig einen bestimmten Impuls p 
haben. 

Wir wollen jetzt voraussetzen, daß sich ein Teilchen in einem gewissen end­
lichen Raumgebiet befindet, dessen Abmessungen längs der drei Koordinaten­
achsen von der Größenordnung Llx, Lly und Llz sind. Ferner sei p0 der Mittel­
wert des Impulses des Teilchens. Mathematisch bedeutet das, daß die Wellen­
funktion die Gestalt "P = u(r) ei p, .. ,11 hat ; dabei ist u(r) eine Funktion, die 
nur in dem angegebenen Raumgebiet merklich von Null verschieden ist. 

Wir entwickeln die Funktion "P nach den Eigenfunktionen des Impuls­
operators (d. h., wir stellen sie als FouRIER-Integral dar). Die entsprechenden 
Entwicklungskoeffizienten a(p) werden durch die Integrale (12,12) über Funk­
tionen der Gestalt u(r) ei (p, -p) .. ,11 gegeben. Damit ein solches Integral merklich 
von Null verschieden ist, dürfen die Perioden des oszillierendenFaktors ei (p,-P) .. ,11 
im Vergleich zu den Abmessungen Llx, Lly  und Llz des Gebietes, in dem die 
Funktion u(r) von Null verschieden ist, nicht klein sein. a(p) wird also nur 
für p-Werte mit (Poz - p.,) Llxfn :$ 1, . . . merklich von Null verschieden sein. 
I a(p ) 1 2  gibt die Wahrscheinlichkeit für die verschiedenen Impulswerte an. 
Deshalb sind die Wertebereiche von Pz• p11 und p., in denen a(p) von Null 

1) Diese 1925 von W. HElSENBERG in Matrixform gefundenen Beziehungen dienten als 
Ausgangspunkt für die Schaffung der heutigen Quantenmechanik. 
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verschieden ist, gerade die Wertebereiche, in denen die Impulskomponenten 
des Teilchens in dem betrachteten Zustand liegen können. Wir bezeichnen diese 
Intervalle mit L1pz, Llp71 und LJp. und haben 

L1 Px L1x ,.._, 1i ' . LJpll Lly ,.._, 1i ' LJp. LJz ,.._, 1i • (13,3) 

Diese Beziehungen (die sogenannten Unschärferelationen) sind von REISEN­
BERG (1927) gefunden worden. 

Wir sehen, je genauer eine Komponente des Ortsvektors eines Teilchens be­
kannt ist (d. h., je kleiner LJx ist), desto größer ist die Unschärfe L1pz des Wertes 
für die Impulskomponente in derselben Richtung und umgekehrt. Wenn sich 
insbesondere ein Teilchen in einem streng bestimmten Raumpunkt befindet 
(L1x = L1y = Llz = 0) ,  dann sind Llpx = L1p11 = Llp. = oo .  Das heißt, daß alle 
Impulswerte dabei gleich wahrscheinlich sind. Wenn umgekehrt ein Teilchen 
einen scharf bestimmten Impuls p hat, dann sind alle Lagen im Raum gleich 
wahrscheinlich (das ist auch unmittelbar aus der Wellenfunktion (12,7) zu 
erkennen, deren Betragsquadrat überhaupt nicht von den Koordinaten ab­
hängt). 

§ 14. Der Drehimpuls 

In § 12 haben wir bei der Herleitung des Impulserha:ltungssatzes die Homo­
genität des Raumes in bezug auf ein abgeschlossenes System von Teilchen 
ausgenutzt. Der Raum ist aber nicht nur homogen, sondern auch isotrop, 
alle Raumrichtungen sind gleichwertig. Der HAMILTON-Operator für ein ab­
geschlossenes System darf sich daher bei einer Drehung des ganzen Systems 
um einen beliebigen Winkel und um eine beliebige Achse nicht ändern. Es 
genügt zu fordern, daß diese Bedingung für eine beliebige infinitesimale Drehung 
erfüllt ist. 

Es s�f dcp der infinitesimale Drehvektor ; sein Betrag ist gleich dem Dreh­
winkel drp, und seine Richtung gibt die Richtung der Drehachse an. Die Än­
derungen bra (der Ortsvektoren der Teilchen ra) sind bei einer solchen Drehung 
bekanntlich gleich 

bra = [bcp . ra] 

(siehe I § 9). Eine beliebige Funktion 1p(r1, r2, • • • ) geht bei dieser Transfor­
mation in die Funktion 

1p(r1 + br1 , r2 + dr2, • • •  ) = 1p(r1 , r2, • • •  ) + 1: bra 'Va'lfl a 

über. Den Ausdruck 

( 14, 1 )  
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kann man als den "Operator einer infinitesimalen Drehung" ansehen. Eine in­
finitesimale Drehung läßt den HAMILTON-Operator �ines Systems unverändert, 
deswegen ist der Drehoperator mit dem Operator H vertauschbar. Da (Jcp ein 
konstanter Vektor ist, folgt aus dieser Bedingung die Beziehung 

( 14,2) 

die einen gewissen Erhaltungssatz zum Ausdruck bringt. 
Die Größe, deren Erhaltung für ein abgeschlossenes System aus der Isotropie 

des Raumes folgt, ist der Drehimpuls des Systems (vergleiche I § 9). Der 
Operator }; (r,.'Va] muß also bis auf einen konstanten Faktor dem Gesamt­
drehimpuls des Systems entsprechen, jedes Glied in der Summe (ra Va] gehört 
zu dem Drehimpuls eines einzelnen Teilchens. 

Der Proportionalitätsfaktor muß gleich - i Ii gesetzt werden. Das wird un­
mittelbar dadurch bestätigt, daß dann der Ausdruck für den Drehimpuls­
operator eines Teilchen - i Ii (r V] = [r p] genau dem üblichen klassischen 
Ausdruck [r p] entspricht. Wir werden fernerhin immer den in Einheiten von 
Ii gemessenen Drehimpuls verwenden. Den so definierten Drehimpulsoperator 
für ein einzeln�s Teilchen werden wir mit f und den Drehimpuls eines ganzen 
Systems mit L bezeichnen. Auf diese Weise lautet der Drehimpulsoperator 
eines Teilchens 

Ii i = [r p] = - i Ii [r V] 
oder in Komponenten 

fi Zx = y P• - z Pv , fi lv = z Px - X P• ,  Ii � = X Pv - Y Pz . ( 14,3) 
Für ein System in einem äußeren Feld gilt im allgemeinen kein Erhaltungssatz 

für den Drehimpuls. Bei einer bestimmten Symmetrie des Feldes kann der 
Drehimpuls jedoch trotzdem erhalten bleiben. Befindet sich das System in 
einem kugelsymmetrischen Feld, dann sind alle von dem Symmetriezentrum 
ausgehenden Raumrichtungen äquivalent. Deshalb bleibt der Drehimpuls be­
züglich dieses Zentrums erhalten. Analog bleibt in einem axialsymmetrischen 
Feld die Komponente des Drehimpulses in Richtung der Symmetrieachse er­
halten. Alle diese Erhaltungssätze, die in der klassischen Mechanik gelten, 
sind auch in der Quantenmechanik gültig. 

Wir wollen jetzt die Vertauschungsregeln zwischen Drehimpulsoperatoren 
und den Orts- und Impulsoperatoren aufstellen. So ist z. B. 

� � 1 � � 1 � A 

l., y - y l., = h (y P• - z Pu) Y - h Y (y Pz - z P11) 

1 � � . - -f z (Pu y - y Pu) = t z • 

Auf die gleiche Weise finden wir weitere Vertauschungsregeln : 
"' " ,... "' 

l., x - x l,. = O , l,. y - y lx = i z ,  
� A 

lx Z - Z lx = - i y . ( 14,4) 
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Zwei restliche je drei solche Gleichungen enthaltende Sätze erhalten wir durch 
zyklische Vertauschunge� der Koordinaten (und Indizes) x, y, z. 

Man überzeugt sich leicht, daß ebensolche Vertauschungsregeln auch für die 
Drehimpuls- und Impulsoperatoren gelten : 

l., Px - Px l., = 0 , � Pu - Pu � = i p. ,  
f�: p. - P• z., = - i P, . 

(14,5) 

Mit Hilfe dieser Formeln kann man leicht die Vertauschungsregeln für die 
A A A 

Operatoren l.,, lv und z. finden. Wir haben 

Ii (l., 4 - 4 l.,) = l., (z p,. - x p,) - (z Pz - x p,) l., 
= (l., Z - Z �) Px - X ([. Pz - Pz lx) = - i Y Pz + i X Pu = i Ii � 

· 

Es ist also 
,r. I" r. r. r. A r. 

ly z. - z. z11 = i l., ' z. l,. - l., z. = i lu ' l., lv - lu lx = i z • •  (14,6) 
A A A 

Genau dieselben Beziehungen gelten auch für die Operatoren L.,, Lu und L, 
des Gesamtdrehimpulses. Da die Drehimpulsoperatoren für verschiedene Teil­
chen miteinander vertauschbar sind, ist zum Beispiel 

Somit gilt 

"" "' " "' "' "..... "' " " 

.E lau .E la z  - .E laz .E lau = .E (la11 laz - laz la u) = i .E lax • a a a a a a 
I 

A A A A A A 

L11 L, - L. Lu = iL., , L. L., - L., L, = i Lu , L., L11 - Lu L., = i  L, . 
(14,7) 

Die Beziehungen (14,7) besagen, daß die drei Komponenten des Drehimpulses 
nicht gleichzeitig bestimmte Werte haben können (eine Ausnahme ist nur der 
Fall, daß alle drei Komponenten gleichzeitig gleich Null sind, s. u. ) .  Der Dreh­
impuls unterscheidet sich in dieser Hinsicht wesentlich vom Impuls, dessen drei 
Komponenten gleichzeitig bestimmte Werte haben können. 

Wir bilden aus den Operatoren L.,, L11 und i. den Operator für das Quadrat 
des Betrages des Drehimpulsvektors : 

i2 = i; + i; + i� . (14,8) 
Dieser Operator ist mit allen Operatoren L.,, Lu und i. vertauschbar : 

A A  "' "  A A  A A  

L2 L., - L., L2 = 0 , L2 Lu - Lu L2 = 0 , 
" "' " "' 

L2 L. - L, L2 = 0 . (14,9) 
Unter Verwendung von ( 14,7) haben wir tatsächlich zum Beispiel 

i; i. - l. i; = i., <i,. i. - i. i,.) 
" ""  "' " " "' "  "' "  

+ (L., L, - L, L.,) L,. = - i (L,. Lu + L11 L.,) , 
i; i. - i. i; = i <ix L11 + iv i,J , 
l� i. - i. i� = o . 

Durch Addition dieser Gleichungen erhalten wir die letzte der Beziehungen (14,9). 
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Die Beziehungen (14,9) bedeuten physikalisch, daß das Quadrat des Dreh­
impulses (d. h. sein absoluter Betrag) gleichzeitig mit einer seiner Komponenten 
einen bestimmten Wert haben kann. 

Es ist häufig bequemer, statt der Operatoren L.: und L11 die komplexen Kom­
binationen 

"' "' ,... "' ,... 
L+ = L.: + i L11 ,  L_ = L.: - i L11 ( 14,10) 

zu verwenden. Durch direkte Rechnung kann man sich mit Hilfe von (14,7) 
leicht davon überzeugen, daß für diese Kombinationen die folgenden Ver­
tauschungsregeln gelten : 

"" "' "' ""' "' 

L+ L_ - L_ L+ = 2 L. , 
"" ,... ,... ,... 

L. L+ - L+ L. = L+ , L. L_ -: L_ L. = - L_ . 
Unschwer kann man auch die Beziehung 

i2 = i_ i+ + i; + i. 
verifizieren. 

(14, ll) 

(14,12) 

Wir schreiben schließlich noch die häufig verwendeten Ausdrücke fur den 
Drehimpulsoperator eines einzelnen Teilchens in Kugelkoordinaten auf. Wir 
führen die Kugelkoordinaten durch die üblichen Beziehungen 

x = r sin () cos q; , y = r sin () sin q; , z = r cos () 
ein und erhalten nach einer einfache,n Rechnung die folgenden Ausdrücke : 

� iJ z. = - i iltp ' . (14,13) 

f± = e± ''�'  ( ± a
a
o + i ctg () 

a
:) . ( 14,14) 

Diese Ausdrücke setzen wir in (14, 12) ein und erhalten den Operator für das 
Quadrat des Drehimpulses eines Teilchens in der Form 

i2 = - [si:z o a�: + si�O :o (sin O a
a
o)] . ( 14,15) 

Wir weisen darauf hin, daß dies bis auf einen Faktor der Winkelanteil des 
LAPLACE-Operators ist. 

§ 15. Die Eigenwerte des Drehimpulses 

Zur Bestimmung der Eigenwerte der Projektion des Drehimpulses eines Teil­
chens auf eine bestimmte Richtung verwendet man zweckmäßig den Ausdruck 
für den Drehimpulsoperator in Kugelkoordinaten ; die betrachtete Richtung 
�ählt man als Polarachse. Nach der Formel (14,13) kann man die Gleichung 
z. 1p = l. ?p in der Form 

• Otp l - '!, iltp = . ?p ( 15,1) 
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schreiben. Ihre Lösung ist 
tp = f(r, 0) ei l• 'l' , 

wobei f(r, 0 )  eine beliebige Funktion von r und 0 ist. Damit die Funktion tp 
eine eindeutige Funktion ist, muß sie in <p mit der Periode 2 n periodisch sein ; 
daraus finden wir1) 

l, = m ,  m --:- 0, ± 1, ±2, . . .  (15,2) 

Die Eigenwerte l, sind also die positiven und die negativen ganzen Zahlen 
einschließlich des Wertes Null.

� 
Den von <p abhängigen Faktor, der für die 

Eigenfunktionen des Operators z. charakteristisch ist, bezeichnen wir mit 
1 . 

<Pm(<p) = ,1- e' m "' .  (15,3) f 2 n  

Diese Funktionen sind folgendermaßen normiert : 
2 n 
f <P!(<p) <Pm• (<p) d<p = dm m' • (15,4) 

0 

Die Eigenwerte der z-Komponente des Gesamtdrehimpulses eines Systems 
sind offenbar auch die positiven und die negativen ganzen Zahlen : 

L, = M ,  M = 0, ± 1, ±2, . . .  (15,5) 

(das ist richtig, weil der Operator i. die Summe der miteinander vertauschbaren 
Operatoren z. für die einzelnen Teilchen ist). 

Die z-Achse ist von vornherein durch nichts ausgezeichnet. Daher ist es 
klar, daß man dasselbe Ergebnis für i.,, Lu und überhaupt für die Komponente 
des Drehimpulses in einer beliebigen Richtung erhält. Alle diese Komponenten 
können nur ganzzahlige Werte annehmen. Dieses Ergebnis kann auf den ersten 
Blick paradox erscheinen, besonders wenn man es auf zwei infinitesimal be­
nachbarte Richtungen anwendet. Man muß hier jedoch daran denken, daß die . ....... ....... "' 
einzige gemeinsame Eigenfunktion der Operatoren L.,, Lu und L. zu dem 
gleichzeitigen Wert 

Lx = L11 = L. = 0 

gehört. In diesem Fall ist der Drehimpulsvektor, und d!i;.mit auch dessen Pro­
jektion auf eine beliebige Richtung, gleich Null. Ist dagegen einer der Eigen­
werte L.,, Lu oder L, von Null verschieden, dann gibt es keine gemeinsamen 
Eigenfunktionen der Operatoren L.,, L11 und i.. Es existiert, mit anderen 
Worten, kein Zustand, in dem zwei oder drei Komponenten des Drehimpulses 
in verschiedenen Richtungen gleichzeitig bestimmte (von Null verschiedene) 

1) Die allgemein übliche Bezeichnung für die Eigenwerte der Drehimpulsprojektion mit 
dem Buchstaben m - demselben wie für die Teilchenmasse - kann offensichtlich zu 
keinen Mißverständnissen führen. 



§ 15. Die Eigenwerte des Drehimpulses 43 

Werte haben, so daß wir nur davon sprechen können, daß eine Komponente 
ganzzahlige Werte annimmt. 

· 

Stationäre Zustände eines Systems, die sich nur durch verschiedene Werte 
von M unterscheiden, haben dieselbe Energie. Das folgt bereits aus den all­
gemeinen Überlegungen, daß die Richtung der z-Achse von vornherein durch 
nichts ausgezeichnet ist. Die Energieniveaus eines Systems mit einem (von 
Null verschiedenen) Drehimpuls, für den ein Erhaltungssatz gilt, sind also auf 
jeden Fall entartet.l) 

Wir kommen jetzt zur Bestimmung der Eigenwerte des Drehimpulsquadrates 
und zeigen, wie man diese Werte finden kann, indem man lediglich von den 
Vertauschungsregeln ( 14,7) ausgeht. Mit tpM bezeichnen wir die Wellenfunk­
tionen der stationären Zustände mit gleichen Werten bzgl. des Quadrats L2, 
die zu einem entarteten Energieniveau gehören. 

Zunächst bemerken wir, daß es für jeden möglichen positiven Wert M = + IMI 
einen ebenso großen negativen M = - IMI gibt, da beide Richtungen der 
z-Achse physikalisch äquivalent sind. Wir bezeichnen mit L (positiv ganz­
zahlig) den größtmöglichen Wert IMI .  

Wenden wir den Operator i. L± auf die Eigenfunktion tpM des Operators i. 
an, und benutzen wir die Vertauschungsregel ( 14, 1 1) ,  so erhalten wir 

Lz L± tpM = L± Lz tpM ± L± tpM = (M ± 1) L± tpM • 

A 

Die Funktion L+ tpM ist demnach (bis auf einen Normierungsfaktor) die Eigen-
funktion der GrÖße L. zu dem Wert M ± 1, und wir können schreiben 

A A 

"PM+l = const · L+ tpM , "PM-l  = const · L_ tpM .  (15,6) 
Setzt man in der ersten Gleichung von (15,6) M = L, dann muß identisch 

( 15, 7) 

gelten, weil es nach der Definition keine Zustände mit M > L gibt. Auf diese 
Gleichung wenden wir den Operator L_ an und benutzen die Beziehung (14,12) ; 
es ergibt sich 

i_ L+ tpL = (L2 - L� - i.) tpL = 0 .  
A A 

Da aber die tp M gemeinsame Eigenfunktionen der Operatoren L2 und L. sind, 

gilt 
. 

L2 tpL = L2 tp L ' i; tpL = L2 tpL ' L. tpL = L tpL ' 
so daß die erhaltene Gleichung 

ergibt. 
L2 = L (L + 1)  (15,8) 

1) Dieser Sachverhalt ist ein Spezialfall des in § 10 angegebenen allgemeinen Satzes 
über die Entartung der Niveaus beim Vorhandensein von mindestens zwei Erhaltungs­
größen mit nichtvertauschbaren Operatoren. Hier sind diese Größen die Drehimpuls­
Komponenten. 
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Diese Formel gibt die gesuchten Eigenwerte des Betragsquadrates des Dreh­
impulses an: Die Zahl L durchläuft alle positiven ganzzahligen Werte ein­
schließlich des Wertes Null. Für einen gegebenen Wert der Zahl L kann die 
Komponente Lz = M des Drehimpulses die Werte 

L - 1, . . .  , - L (15,9) 

annehmen, d. h. insgesamt 2 L + l verschiedene Werte. Das Energieniveau 
mit d�m Drehimpuls L ist also (2 L + 1)-fach entartet. Von dieser Entartung 
spricht man gewöhnlich als von einer Richtungsentartung des Drehimpulses. 
Der Zustand mit verschwindendem Drehimpuls L = 0 (hierbei sind auch alle 
seine drei Komponenten Null) ist nicht entartet. Wir bemerken, daß die 
Wellenfunktion eines solchen Zustandes kugelsymmetrisch ist ; dies ist schon 
daraus ersichtlich, daß bei einer beliebigen infinitesimal kleinen Drehung ihre 
Änderung im gegebenen Fall Null wird. 

Der Kürze halber werden wir, wie es üblich ist, oft vom "Drehimpuls L" 
eines Systems sprechen, wobei wir darunter das Quadrat des Drehimpulses 
L (L + 1) verstehen werden ; den Drehimpuls eines Teilchens werden wir mit 
dem kleinen Buchstaben l bezeichnen. Von der z-Komponente des Dreh­
impulses spricht man gewöhnlich kurz als von der "Projektion des Dreh­
impulses". 

Wir wollen nun die Matrixelemente der Größen Lx, L11 für Übergänge zwischen 
Zuständen gleicher Energie und gleichen Drehimpulses L jedoch verschiedener 
Werte der Projektion M des Drehimpulses berechnen. 

� 

Aus den Gleichungen (15,6) ist ersichtlich, daß die Matrix des Operators L+ 
nur solche von Null verschiedene Elemente bes�tzt, die Übergängen M --+  M + 1 
entsprechen und die Matrix des Operators L_ nur solche mit M -+ M - l. 
Unter Berücksichtigung dieser Tatsache finden wir für die Diagonalmatrix­
elemente (für Übergänge L, M - 1 --+ L, M - 1) beider Seiten der Operator­
gleichun� (14, 12) 

L (L + 1) = (L_ )M-1, M (L+ )M, M-1  + M2 - ]yf . 

Diese Gleichung läßt sich auf Grund der aus der Hermitezität der Operatoren 
Lx, L11 folgenden Relation 

in 
I (L+ )M, M-1 1 2  = L (L + 1) - M (M - 1) = (L - M + 1) (L + M) 

umschreiben, woraus 

(MI L+ I M - 1) = (M - 11 L_ J M> 

= f(L + M) (L - M + 1) (15,10) 
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folgt (es wurde .die Schreibweise (11,3) verwendet). Für die von Null verschie­
denen Matrixelemente der Größen Lx und L11 selbst erhalten wir hieraus 

(Mi Lx i M - 1) = (M - 1i Lx i M) 

= � V(L + M). (L - M + 1) ' 

(Mi L11 i M - 1) = - (M - 1i L11 iM) 

= - � V (L + M) (L ---: M + 1) . (15,11) 

An dieser Stelle möchten wir die Nichtexistenz von Diagonalmatrixelementen 
der Größen Lx und L11 hervorheben. Da ein Diagonalmatrixelement den 
Mittelwert einer Größe im entsprechenden Zustand angibt, bedeutet dies, daß 
in Zuständen mit bestimmten Werten von L, die Mittelwerte Lx = L11 = 0 
sind. Wenn also ein bestimmter Wert der Drehimpulsprojektion bezüglich 
einer beliebigen Richtung im Raum vorliegt, so heißt dies, daß der Vektor L 
insgesamt ebenfalls in dieser Richtung liegt. 

§ 16. Die Eigenfunktionen des Drehimpulses 

Durch die Vorgabe der Werte von l und m ist die Wellenfunktion eines Teil­
chens nicht vollständig bestimmt. Das entnimmt man bereits daraus, daß die 
Ausdrücke für die Operatoren dieser Größen in Kugelkoordinaten nur · die 
\Yinkel () und g; enthalten. Die Eigenfunktionen können danach noch einen 
beliebigen, von r abhängigen Faktor enthalten. Wir werden hier nur den für 
die Eigenfunktionen des Drehimpulses charakteristischen Winkelanteil der 
Wellenfunktion behandeln. Wir bezeichnen diesen mit Y1 m ( 0, rp) und nor­
mieren ihn nach der Vorschrift 

/ 1 Yz mi 2 do = 1  
(do = sin 0 d() drp ist das Flächenelement auf der Einheitskugel). 

Die Funktionen Y1 m mit v�rschiedenen l oder m sind als Eigenfunktion 
der · Drehimpulsoperatoren zu verschiedenen Eigenwerten automatisch zuein­
<otnder orthogonal. Zusammen mit der N ormierungsbedingung bedeutet dies 

2 n  " 
f f Yz": m' Yz m sin () d() drp = bu· bm m' · 
0 0 . - (16,1) 

Das direkte Verfahren zur Berechnung der gesuchten Funktionen ist d�e 
unmittelbare Lösung der Gleichung für die Eigenfunktionen des Operators l2 

in Kugelkoordinaten. Die Gleichung 
A 

l2 "P = l (l + 1) "P 
lautet dann 

1 iJ ( • i!tp ) 1 iJ2"' 
sin (} iJ(} 

sm () 7i8 + sin2 (} iJrp2 + l (l + 1) "P 
.
= 0 .  (16,2) 
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Diese Gleichung gestattet einen Separationsansatz für die Lösung in der Form 

Y, m = 4>m(cp) e, m(O) , (16,3) 

wobei die 4>m Funktionen (15,3) darstellen. 
Wir setzen ( 16,3) in (16,2) ein und erhalten für die Funktion 81 m die Gleichung 1 d ( . d@z m) m2 a a 

sin (J d(J sm O (lO - sin2(J &z m + l (l + 1 ) &z m = O .  (16,4) 

Diese Gleichung ist aus der Theorie der Kugelfunktionen gut bekannt. Für 
positive ganzzahlige Werte l � lml besitzt sie Lösungen, die unseren For­
derungen nach Endlichkeit und Eindeutigkeit entsprechen ; es besteht also 
Übereinstimmung mit den oben nach der Matrizenmechanik gewonnenen Eigen­
werten des Drehimpulses. Die entsprechenden Lösungen sind die sogenannten 
zugeordneten LEGENDREschen Polynome .PJ"(cos 0). 

Auf diese Weise ergeben sich die winkelabhängigen Anteile der Wellenfunktion 
als 

Yz m(O, cp) = const · .PJ"(cos 0) ei mq; ,  ( 16,5)  

d. h. vom mathematischen Standpunkt aus als auf eine bestimmte Weise nor­
mierte Kugelfunktionen. Wir schreiben an dieser Stelle nicht den allgemeinen 
Ausdruck für die Normierungskonstante auf, sondern geben die exakten Aus­
drücke für die ersten (Z = 0, 1, 2) normierten Kugelfunktionen an : 

1 
Yoo = 

f4 n ' 

Ylo = v'4
3
n cos 0 ' Yl, ±1 = =F v's

3
n sin 0 . e± i q; ' 

Y20 = v1: n (3 cos2 0 - .1)  , 

V15 . 
Y2, ±l = =f 8 n cos 0 sin 0 · e ± • "'  , 

Y2, ±2 = Va!5n sin2 0 . e± 2 iq; . 

( 16,6) 

Für m = 0 werden die zugeordneten LEGENDREschen Polynome einfach 
LEGENDREsche Polynome P1 (cos 0) genannt. Die entsprechenden normierten 
Kugelfunktionen lauten 

V2 l +  1 
Y10 = � P1(cos 0) . (16,7) 

Für l = 0 (also auch m = 0) reduziert sich die Funktion (16,7) auf eine 
Konstante. Mit anderen Worten bedeutet dies, daß die Wellenfunktionen von 
Teilchenzuständen mit dem Drehimpuls l = 0 nur von r abhängen, d. h. , sie 
besitzen die volle Kugelsymmetrie in Übereinstimmung mit der in § 15 ge-
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machten allgemeinen Feststellung. Ferner bemerken wir, daß, falls in (16,1) 

eine der Kugelfunktionen Y 00 ist, für die andere gilt : 

/ Yz m do = 0 (l =I= 0) . (16,8) 

§ 17. Die Addition von Drehimpulsen 

Betrachten wir ein System, das aus zwei schwach wechselwirkenden Teilen be­
steht. Vernachlässigen wir die Wechselwirkung ganz, dann gilt für jeden Teil 
ein Drehimpulserhaltungssatz, und der Gesamtdrehimpuls L des ganzen Sy­
stems kann als Summe der Drehimpulse LI und L2 der einzelnen Teile aufge­
faßt werden. In der folgenden Näherung sind die Erhaltungssätze für LI und 
L2 bei Berücksichtigung der schwachen Wechselwirkung bereits nicht mehr 
streng erfüllt. Die Zahlen LI und L2 für die Beträge dieser Drehimpulse bleiben 
aber noch "gute" Quantenzahlen und sind zur näherungsweisen Beschreibung 
eines Zustandes des Systems geeignet. 

Bei der Betrachtung solcher Systeme taucht die Frage nach dem Additions­
gesetz für Drehimpulse auf. Wie sind die Werte von L bei gegebenen Werten 
von L1 und L2 beschaffen ? Das Additionsgesetz für die Komponenten des 

A A A 

Drehimpulses ist.unmittelbar evident : Aus L. = L1 • + L2• folgt 
M = M1 + M2 • (17,1) 

Für die Operatoren der Quadrate der Drehimpulse gibt es keine so einfache 
Beziehung. Um das "Additionsgesetz" dafür herzuleiten, gehen wir folgender­
maßen vor. 

Nehmen wir als vollständiges System physikalischer Größen die Größe L�, 

L;, L1:z; und L2 • 
I
), dann wird jeder Zustand durch die Zahlenwerte LI, L2, 

MI und M2 beschrieben. Für gegebene LI und L2 durchlaufen die Zahlen M1 

und M2 (2 LI + 1) bzw. (2 L2 + l) Werte, so daß es insgesamt (2 LI + 1) 

X (2 L2 + 1) verschiedene Zustände mit den gleichen Werten für LI und L2 

gibt. Wir bezeichnen die Wellenfunktionen der Zustände bei dieser Beschrei­
bung mit (jJL, L, M, M, · 

Statt der vier angegebenen Größen kann man auch die vier Größen L�, L�, L
2 

und L. als vollständiges System wählen. Dann wird jeder Zustand durch die 
Zahlenwerte von Lv L2, L und M charakterisiert (die entsprechenden Wellen­
funktionen bezeichnen wir mit "PL,L,L M) · Für gegebene Werte von LI und L2 

muß es selbstverständlich wie vorher (2 LI + 1) (2 L2 + 1) verschiedene Zu­
stände geben, d. h., für gegebene Werte von LI und L2 kann das Zahlenpaar L, M 

(2 LI + 1) (2 L2 + 1) Wertepaare annehmen. Diese Werte kann man mit Hilfe 
der folgenden Überlegungen bestimmen.· 

1) Und einige andere Größen, die zusammen mit den vier angegebenen ein vollständiges 
System bilden. Diese übrigen Größen spielen bei den folgenden Überlegungen keine Rolle. 
Um die Ausdrücke abzukürzen, sprechen wir von diesen Größen überhaupt nicht und nennen 
die vier angegebenen Größen in diesem Sinne ein vollständiges System. 
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Addieren wir verschiedene zulässige Werte MI und .11!2, so erhalten wir den 
entsprechenden Wert M gemäß folgender Tabelle : 

MI M2 M 

LI L2 LI + L2 
I-I LI - l  } LI + L2 - l  LI - l  L2 
LI - l  L2 - l  

} LI L2 - 2 LI + L2 - 2  
LI - 2 La 
. . . . . . . . . . . . . . . . . . 

Wir sehen, daß der größtmögliche Wert M gleich M = LI + L2 ist, wobei 
ihm ein einziger Zustand q; entspricht (ein einziges Wertepaar MI, M2). Des­
halb ist auch der größtmöglichste Wert M und demzufolge auch das größt­
möglichste L in den Zuständen 1p gleich LI + L2• Ferner gibt es zwei Zu­
stände q; mit M = LI + L2 - l. Folglich muß es auch zwei Zustände 1p mit 
diesem Wert von M geben. Der eine ist der Zustand mit L = LI + L2 (und 
M = L - l) und der andere offensichtlich mit L = LI +' L2 - l (und M = L). 
Für den Wert M = LI + L2 - 2 gibt es drei verschiedene Zustände q;. Das 
bedeutet, daß neben den Werten L = LI + L2 und L = LI + L2 - l auch 
der Wert L = LI + L2 - 2 möglich ist. 

Diese Überlegungen ·kann man in genau gleicher Weise fortsetzen, solange 
die Zahl . der Zustände für gegebenes M bei einer Verkleinerung von M um l 
sich um 1 vergrößert. Es ist leicht einzusehen, daß dies solange geschehen 
kann, bis M den Wert ILI :-- L21 erreicht. Bei einer weiteren Verkleinerung 
von M nimmt die Zahl der Zustände nicht mehr zu und bleibt gleich 2 L2 + l 
(für L2 < LI). Das bedeutet, daß ILI - L21 der kleinstmögliche Wert von L ist� 

Wir gelangen also zu dem Ergebnis, daß die Zahl L für gegebene Werte von 
LI und L2 die Werte 

(17 ,2) 
durchlaufen kann. Das sind (unter der Annahme L2 < LI) insgesamt 2 L2 + l 
verschiedene Werte. Man kann leicht verifizieren, daß sich tatsächlich (2 LI + l) 
(2 L2+ l) verschiedene Werte für das Zahlenpaar M und L ergeben. Dabei 
ist wesentlich (wenn man von den 2 L + 1 verschiedenen Werten M für vor­
gegebenes L absieht), daß jedem der möglichen Werte ( 17,2 ) jeweils ein einziger 
Zustand entspricht. 

Dieses Ergebnis kann man anschaulich mit Hilfe des sogenannten Vektor­
modells darstellen. Führt man die beiden Vektoren LI und L2 mit den Längen . 
L1 und L2 ein, dann kann man L als die ganzzahlige Länge der Vektoren L 
darstellen, die man aus LI und .L2 durch Vektoraddition erhält. Den größten 
L-Wert (LI + L2) erhält man bei paralleler, den kleinsten Wert ( ILI - L21 )  bei 
antiparalleler Lage der Vektoren L1 und L2• 
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In den Zuständen mit bestimmten Werten für die Drehimpulse L1 und L2 
sowie für den Gesamtdrehimpuls L haben auch die Skalarprodukte L1 L2, 
L L1 und L L2 bestimmte Werte. Man ka�n d�ese � erte leicht bestimmen. 
Zur Berechnung von L1 L2 schreiben wir L = L1 + L2 ; wir quadrieren und 
isolier�n das gemischte Produkt 

2 il i2 = b - i� - i; . 
Die Operatoren auf der rechten -8eite ersetzen wir durch ihre Eigenwerte und 
erhalten so den Eigenwert des Operators auf der linken Seite der Gleichung 

1 
L1 L2 = 2 {L (L + 1) - L1 (L1 + 1) - L2 (L2 + 1)} . 

Ahnlieh finden wir 
1 . 

L L1 = 2 {L (L + l) + L1 (L1 + 1) - L2 (L2 + 1 )} . 

(17,3) 

(17,4) 

Falls "P2!M, und "P�!M, die Wellenfunktion�n der zwei Teilsysteme sind, dann 
ist die Wellenfunktion des Gesamtsystems (wiederum b�i Vernachlässigung der 
Wechselwirkung der Untersysteme) gleich dem Produkt der Wellenfunktionen 
der beiden Teilsysteme : 

. - (1} (2} f{JL,L, M, M, - 1fJL, M, 1fJL, M, • (17,5) 

Diese Zustände besitzen definierte Werte M1 und M2 (neben L1 und L2). Zu­
stände mit bestimmten Werten L, M jedoch ergeben sich als Superpositionen 
von Zuständen (17,5) mit unterschiedlichen Wertepaaren M1, M2 unter der 
Nebenbedingung M = M1 + M2• Ihre Wellenfunktionen sind Linearkombi­
nationen der Gestalt 

111 - � QL, L, L M  m 
-rL,L, L M - .::.., L,L, M, M, -rL,L, M, !YI, 

MH MI 
(17,6) 

mit wohldefinierten Koeffizienten 0, die von allen ihnen in Form von Indizes 
zugeordneten Quantenzahlen abhängen. Diese Koeffizienten werden als Koelfi­
zienten der Vektoraddition oder als CLEBSH-GORDAN-Koeflizienten bezeichnet. 

§ 18 . . Auswahlregeln bezüglich des Drehimpulses 

Wir sahen, daß sowohl in der klassischen Mechanik als auch in der Quanten­
mechanik der Drehimpulserhaltungssatz aus der Isotropie des Raumes be­
züglich eines abgeschlossenen Systems folgt. Schon darin zeigt sich der Zu­
sammenhang des Drehimpulses mit den Symmetrieeigenschaften hinsichtlich 
Drehungen. In der Quantenmechanik jedoch äußert sich dieser Zusammenhang 
besonders stark ; er wird hier überhaupt zum Schlüssel für das Verständnis des 
Drehimpulses und dies um so mehr, da hier die klassische Definition des Dreh­
impulses eines Teilchens als das Produkt [r p] wegen der Unmöglichkeit, Dreh-
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impuls- und Impulsvektor gleichzeitig zu messen, ihren unmittelbaren Sinn 
verliert. 

In § 16 wurde ersichtlich, daß eine Vorgabe der Werte von l und m die 
Winkelabhängigkeit der Teilchenwellenfunktion und damit auch alle ihre Sym­
metrieeigenschaften bezüglich Drehungen festlegt. In allgemeinster Form lassen 
sich diese Eigenschaften durch Angabe der Transformationsvorschrift für die 
Wellenfunktionell bei Drehungen des Koordinatensystems formulieren. 

Die Wellenfunktion 1p LM eines Systems von Teilchen (mit vorgegebenen 
Werten von L und M) bleibt nur bei einer Drehung des Koordinatensystems 
um die z-Achse unverändert.1) Eine beliebige Drehung jedoch, die die Rich­
tung der z-Achse ändert, führt dazu, daß die Drehimpulsprojektion auf die 
neue z-Achse schon keinen definierten Wert mehr besitzt. Dies bedeutet, daß 
die Wellenfunktion bezüglich der neuen Koordinatenachsen im allgemeinen in 
eine Superposition (Linearkombination) aus 2 L + 1 Funktionen übergeht, die 
den (für festes L) möglichen M-Werten entsprechen. Man kann in diesem 
Zusammenhang davon sprechen, daß sich bei Drehungen des Koordinaten­
systems die 2 L + 1 Funktionen 1/'L M untereinander transformieren.2) Das 
entsprechende Transformationsgesetz (d. h. die funktionelle Abhängigkeit der 
Koeffizienten in der Linearkombination von den Drehwinkeln der Koordinaten­
achsen) wird vollständig durch Angabe des Wertes von L bestimmt. Auf diese 
Weise erlangt der Drehimpuls L die Bedeutung einer Quantenzahl, welche die 
Systemzustände nach ihren Transformationseigenschaften bezüglich Drehungen 
des Koordinatensystems klassifiziert. Dieser Gesichtspunkt für das Verständ­
nis des Drehimpulses in der Quantenmechanik ist insbesondere im Zusammen­
hang damit wesentlich, daß er nicht unmittelbar an eine explizite Winkel­
abhängigkeit der Wellenfunktionen gebunden ist ; die Vorschrift, nach der sich 
die Wellenfunktionen untereinander transformieren, kann für sich allein for­
muliert werden, d. h. ohne Bezug auf diese Abhängigkeit. 

Wir wollen nun zeigen, wie man, ausgehend vom oben dargelegten Stand­
punkt, Auswahlregeln (bezüglich des Drehimpulses) für die Matrixelemente ver­
schiedener Größen auffinden kann, d. h. Regeln, die angeben, für welche Über­
gänge die Matrixelemente von Null verschieden sein können. 

Dazu bemerken wir zunächst, daß im rein abstrakt mathematischen Sinn 
der Begriff des Drehimpulses als gewisses Klassifizierungskennzeichen nicht nur 
auf Wellenfunktionen sondern auch auf andere physikalische Größen anwend­
bar ist. So entspricht z. B. jeder skalaren Größe (d. h. einer Größe, die sich 
bei Koordinatentransformationen überhaupt nicht ändert) der "Drehimpuls" L = 0 in dem ·Sinne, daß 2 L + 1 = 1 für L = 0 gilt, daß also insgesamt nur 

1) Das heißt bis auf einen unwesentlichen Phasenfaktor. 
2) In der Terminologie der Mathematik spricht man davon, daß diese Funktionen 

sogenannte irreduzible Darstellungen der Drehgruppe realisieren. Die Anzahl der sich 
untereinander transformierenden Funktionen heißt Dimension einer Darstellung, wobei 
vorausgesetzt wird, daß diese Zahl durch keinerlei Wahl anderer Funktionen, die aus den 
ersten durch beliebige Linearkombinationen gebildet werden, verringert werden kann. 
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eine einzige Größe vorliegt, die sich in sich selbst transformiert.1) Analog 
kann man einer vektoriellen Größe den "Drehimpuls" L = 1 zuordnen, wobei 
berücksichtigt ist, daß sich bei Drehungen des Koordinatensystems drei un­
abhängige Vektorkomponenten untereinander transformieren. Verwenden wir 
zur Angabe der Vektorkomponenten die sphärischen Winkel (), q;, die die Rich­
tung des Vektors festlegen, so erhalten wir 

A+ = A., + i A11 = A sin () ei"' 

A_ = A., - i A11 = A sin () e- ; ",  

A. _ A cos (). 

(M = 1) , 

(M = - 1) , 

(M = 0) . 
(18,1) 

Ein Vergleich dieser Ausdrücke mit (16,6) macht deutlich, daß der Kompo­
nente A. die "Drehimpulsprojektion" M = 0 entspricht, während den kom­
plexen Kombinationen A+ und A_ die Werte M = 1 und M = - 1 entsprechen. 

Zur Vereinfachung und um die Überlegungen anschaulicher zu gestalten, 
werden wir solche Größen behandeln, die Einteilchenzustände charakterisieren 
(Zustände eines freien Teilchens bzw. eines Teilchens im zentralsymmetrischen 
äußeren Feld). Es möge I irgendeine skalare physikalische Größe sein. Unter­
suchen wir nun ihre Matrixelemente zwischen Zuständen definierter Werte von 
l und m :  

(18,2) 

Hierbei sind n, n' (neben l, m) weitere Indizes zur Festlegung der Zustände 
des Teilchens. 

Den drei Faktoren im Integranden (1p1"fm'• I und "Pl m) kann man in der an­
gegebenen Reihenfolge jeweils ein aus "Drehimpuls und Drehimpulsprojektion" 
bestehendes Wertepaar zuordnen : (l' , -m'),  (0, 0), (l, m) (komplexe Konju­
gation der Wellenfunktion ändert das Vorzeichen im Exponenten des Fak­
tors eim ", in (16,5), d. h. ,  das Vorzeichen der Drehimpulsprojektion wird fak­
tisch geändert). Wir addieren auf alle mögliche Art diese "Drehimpulse" zu 
einem "Gesamtdrehimpuls" und einer "Gesamtdrehimpulsprojektion" (diese 
seien mit A und J-l bezeichnet). Damit sind auch die Transformationseigen­
schaften derjenigen Funktionen klar, nach denen man im Sinne einer Linear­
kombination den Integranden in (18,2) prinzipiell entwickeln kann : 

(p = m  - m') . (18,3) 

In (18,3) sind aA,_. Konstanten und "PA·,.. Funktionen, die bezüglich ihrer Trans­
formationseigenschaften mit den Eigenfunktionen des Drehimpulses überein­
stimmen. Zur Beantwortung der aufgeworfenen Frage nach den Auswahlregeln 
ist es jedoch nicht notwendig, diese Entw.icklung explizit durchzuführen. Es 

1) Um keine Unklarheiten aufkommen zu lassen, sei betont, daß unter diesem Gesichts. 
punkt die Wellenfunktionen V' L M  (mit L i=  1) keine "Skalare" sind ; sämtliche '2 L + 1 
Funktionen "P L M  mit unterschiedlichen M·Werten müssen (von diesem Standpunkt aus) 
als Komponenten einer einzigen vielkomponentigen Größe angesehen werden. 

5 Kurzfassung II 
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genügt zu bemerken, daß bei den Winkelintegrationen alle Glieder der Summe, 
ausgenommen das Glied mit A = p = 0, Null werden (wegen der Eigenschaft 
(I6,8)). Deshalb kann das Matrixelement (I8,2) nur dann von Null verschieden 
sein, wenn in der Entwicklung (18,3) die Werte A = p = 0 auch wirklich 
realisiert sind. Nun kann man jedoch bei der Addition zweier Drehimpulse l 
und l' den Wert A = 0 nur erhalten, wenn l' = l ist. 

Demnach gelangen wir zu dem Schluß, daß die Matrixelemente eines Skalars 
nur für solche Übergänge von Null verschieden sein können, die nicht mit 
einer Änderung des Drehimpulses und seiner Projektion verbunden sind : · 

l' = l '  m' = m .  (I8,4) 
Da eine Vorgabe von m nur die Orientierung des Systems bezüglich der Ko­
ordinatenachsen festlegt, eine skalare Größe j jedoch nicht von dieser Orien­
tierung abhängt, kann man darüber hinaus behaupten, daß die Matrixelemente 
(n' l mi / i n l m) nicht von m abhängen. 

Auf analoge Weise kann man die Matrixelemente (n' l' m'i A i n  l m) eines 
Vektors A finden. Letzterem wird der "Drehimpuls" I zugeordnet. Addieren 
wir zu ihm den Drehimpuls l, so erhalten wir die Werte l + l, l, l - I (falls 
l =1= 0 gilt ; für l = 0 liefert die Addition nur den alleinigen Wert I) .  Die sich 
anschließende Addition mit dem Drehimpuls l' muß zum "Gesamtdrehimpuls" 
A = 0 führen, sofern wir ein von Null verschiedenes Integral wünschen. Dazu 
muß l' mit einem der aus der vorangegangenen Addition erhaltenen Werten 
übereinstimmen, d. h., es sind zugelassen 

l' = l ,  l ± I , ( I8 ,5) 
wobei zusätzlich Übergänge zwischen Zuständen mit l' = l = 0 verboten sind. 

Die Auswahlregeln bezüglich der Drehimpulsprojektion m sind verschieden 
für die einzelnen Vektorkomponenten. Unter Berücksichtigung von (I8,I) 
kann man leicht die folgenden Regeln finden : 

für A +  = A., + i A11 :  M' = M + I , 
für A _  == A., - i A11 :  

für A.:  

M'  = M - 1 ,  

M' = M .  

( 18,6) 

Die Matrixelemente einer vektoriellen Größe sind M -abhängig. Man kann 
zeigen (wir werden uns hier nicht damit aufhalten), daß diese Abhängigkeit 
darüber hinaus universellen Charakter trägt, indem sie eindeutig aus den Trans­
formationseigenschaften der Drehimpulseigenfunktionen folgt. 

Schließlich seien noch solche Größen erwähnt, die sich als symmetrische 
Tensoren 2. Stufe in der Form Au, darstellen lassen. Ein derartiger Tensor 
besitzt 6 verschiedene Komponenten. Hinsichtlich ihrer Transformationseigen­
schaften stellt die Gesamtheit dieser Komponenten jedoch kein einheitliches 
Ganzes dar. Der Grund liegt darin, daß die Spur des Tensors (d. h. die Summe 
Au = Au + A1111 + A •• ) ein Skalar ist ; dieser Skalar muß aus der Zahl der 
zu transformierenden Größen ausgeschlossen werden, d. h., es muß ein Tensor 
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mit der Spur Null betrachtet werden. Ein �olcher Tensor heißt irreduzibel ; er 
besitzt 5 unabhängige Komponenten, und somit kann ihm der "Drehimpuls" 

. L = 2 (2 L + 1 = 5) zugeordnet werden.1) 
Obwohl wir hier von Matrixelementen eines Teilchens sprachen, möchten 

wir betonen, daß in Wirklichkeit alle Resultate Folgen allgemeiner Transfor­
mationseigenschaften der Wellenfunktionen waren. Sie sind deshalb in gleichem 
Maße auch für ein beliebiges System von Teilchen gültig, falls der Drehimpuls 
eine Erhaltungsgröße darstellt. 

§ 19. Die Parität eines Zustandes 

Neben Parallelverschiebung und Drehung des Koordinatensystems (Invarianz 
bezüglich dieser Transformationen bedeutet Homogenität und Isotropie des 
Raumes) gibt es noch eine weitere Transformation, die den HAMILTON-Operator 
eines abgeschlossenen Systems invariant läßt. Das ist die sogenannte Inversion, 
die eine gleichzeitige Umkehrung der Vorzeichen aller Koordinaten, d. h. eine 
Umkehrung der Richtungen aller Koordinatenachsen, beinhaltet. Dabei geht 
ein Rechtssystem in ein Linkssystem und umgekehrt ein Linkssystem in ein 
Rechtssystem über. Invarianz des HAMILTON-Operators bezüglich einer solchen 
Transformation bedeutet, . daß der Raum bezüglich Spiegelungen symmetrisch 
ist.2) In der klassischen Mechanik führt die Invarianz der HAMILTON-Funktion 
bezüglich einer Inversion zu keinerlei neuen Erhaltungssätzen. In der Quanten-
mechanik allerdings ist die Situation wesentlich anders. .... 

Wir führen den symbolischen Inversions- oder Paritätsoperator P ein, der 
bei einer Anwendung auf die Wellenfunktion die Vorzeichen der Koordinaten 
umkehrt : 

A 

P 1p(r) = 1p( - r) . (19,1 )  

Die Eigenwerte P dieses Operators sind leicht zu finden ; sie sind über die 
Gleichung 

.... 

P 1p(r) = P 1p(r) (19,2) 

definiert, wobei zu bemerken ist, daß zweimalige Anwendung des Inversions­
operators auf die Identität zurückführt - die Argumente der Funktion ändern 
sich überhaupt nicht. Mit anderen Worten haben wir also p2 1p = P2 1p = 1p, 
d. h. P2 = 1, und daraus 

(19,3) 

1) Als Beispiel für eine solche physikalische Größe sei das elektrische Quadrupolmoment 
eines Systems genannt. 

2) Invariant bezüglich einer Inversion ist darüber hinaus auch der HAMILTON-Operator 
eines Systems von Teilchen, die sich in einem Zentralfeld befinden (wobei der Koordinaten­
sprung im Feldzentrum liegen muß). 

s• 
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Das heißt, die Eigenfunktionen des Inversionsoperators ändern sich bei seiner 
Anwendung überhaupt nicht, oder sie ändern ihr Vorzeichen. Im ersten Falle 
heißt die Wellenfunktion (und der zugehörige Zustand) gerade, im zweiten 
Falle ungerade . 

Invarianz des HAMILTO�-Oper�tors bezüglich einer Inversion (d. h. Kommu-
tati vität der Operatoren P und H) liefert folglich das Gesetz von der Erhaltung 
der Parität : Wenn ein Zustand eines abgeschlossenen Systems eine bestimmte 
Parität besitzt (d. h., wenn er gerade oder ungerade ist), dann bleibt diese 
Parität im Laufe der Zeit erhalten.1) 

Bezüglich einer Inversion ist auch ,der Drehimpulsoperator invariant. Eine 
Inversion verändert die Vorzeichen sowohl der Koordinaten als auch der 
Differentialoperatoren nach den Koordinaten, und deshalb bleiben die Opera­
toren ( 14,3) unverändert. Mit anderen Worten, der Inversionsoperator kommu­
tiert mit dem Drehimpulsoperator, und dies bedeutet, daß das System gleich­
zeitig eine bestimmte Parität und bestimmte Werte des Drehimpulses L und 
seiner Projektion M besitzen kann. 

Für die Matrixelemente verschiedener physikalischer Größen existieren be­
stimmte Auswahlregeln bezüglich der Parität. 

Betrachten wir zunächst skalare Größen. Hierbei hat man echte Skalare, die 
sich bei einer Inversion überhaupt nicht ändern, und Pseudoskalare, die bei 
einer Inversion das Vorzeichen umkehren, zu unterscheiden (ein Pseudoskalar 
ist zum Beispiel das Skalarprodukt eines axialen mit einem polaren Vektor) .  

Es ist leicht zu sehen, daß für eine echte skalare Größe I nur solche Matrix­
elemente von Null verschieden sein können, die Übergängen zwischen Zuständen 
gleicher Parität entsprechen. In der Tat, ein Matrixelement der Größe I für 
einen Übergang zwischen Zuständen unterschiedlicher Parität ist gegeben durch 
das Integral 

Iug = J tp: f tpg dq ' 
wobei die Funktion tpg gerade und die Funktion tpu ungerade ist. Bei einer 
Umkehrung der Vorzeichen aller Koordinaten ändert der Ausdruck unter dem 
Integral das Vorzeichen. Andererseits kann sich das über den ganzen Raum 
genommene Integral durch eine Bezeichnungsänderung der Integrationsvari­
ablen nicht ändern. Daraus folgt lu u = - lu u' d. h. Iug = 0. Umgekehrt sind 
für eine pseudoskalare Größe nur solche Matrixelemente von Null verschieden, 
die Übergängen zwischen Zuständen unterschiedlicher Parität entsprechen. 

Auf analoge Weise kann man Auswahlregeln für Vektorgrößen erhalten. 
Dabei muß man daran denken, daß gewöhnliche, d. h. polare Vektoren, bei 
einer Inversion das Vorzeichen umkehren, jedoch axiale Vektoren (wie z. B. 
der Drehimpulsvektor als Vektorprodukt aus den zwei polaren Vektoren p 
und r) sich bei dieser Transformation nicht ändern. Wenn wir dies berück-

1) Um Mißverständnisse auszuschließen, sei daran erinnert, daß es sich um die nicht· 
relativistische Theorie handelt. In der Natur existieren Wechselwirkungen (sie gehören in 
das Gebiet der relativistischen Theorie), welche die Paritätserhaltung zerstör�m -'-' siehe § 90. 
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sichtigen, dann finden wir, daß für einen polaren Vektor nur solche Matrix­
elemente, die Übergängen zwischen Zuständen unterschiedlicher Parität ent­
sprechen, und bezüglich axialer Vektoren nur diejenigen Matrixelemente für 
Übergänge gleicher Parität von Null verschieden sind. 

Wir wollen die Parität für den Zustand eines Teilchens mit dem Dreh­
impuls l bestimmen. Die Spiegelung (x -c+ - x, y -c+ - y, z -c+ - z) bedeutet 
für Kugelkoordinaten die Transformation 

r -c+ r , 0 -c+ n - 0 ,  q; -c+ q; + n . (19,4) 
Die Winkelabhängigkeit der Wellenfunktion eines Teilchens wird durch die 
Eigenfunktion Y1 m (16,5) des Drehimpulses gegeben. Ersetzt man q; durch 
q; + n, so wird der Faktor eim<p mit ( -1)m multipliziert. Beim Ersetzen von 
0 durch n - 0 geht P;"(cos 0) in Pl"(- cos 0) = ( -W-m P;"(cos 0 )  über. 
Die ganze Funktion wird also mit ( -1 )1 multipliziert (was in Übereinstimmung 
mit dem oben Gesagten nicht von m abhängt) . •  Die Parität eines Zustandes 
mit gegebenem Wert von l ist demnach 

p = (- l)Z .  (19,5) 

Wir sehen, daß alle Zustände mit geradzahligem l gerade und mit ungerad­
zahligem l ungerade sind. Die Parität eines Zustandes hängt nur von l, jedoch 
nicht von m ab. 

Jetzt wollen wir die Regel für die Addition der Paritäten aufstellen. Wie wir 
wissen, ist die Wellenfunktion lJf eines aus zwei unabhängigen Teilen beste­
henden Systems das Produkt aus den Wellenfunktionell PI und P2 dieser 
Teile. Wenn die beiden letzteren dieselbe Parität haben (d. h. ,  beide ändern 
ihr Vorzeichen bei einer Vorzeichenänderung aller Koordinaten, oder beide 
ändern ihr Vorzeichen dabei nicht), dann ist die Wellenfunktion des gesamten 
Systems offenbar gerade. Haben dagegen PI und P2 verschiedene Parität, 
dann wird die Funktion lJf ungerade. Diesen Sachverhalt kann man durch die 
Formel 

(19,6) 

ausdrücken, wo P die Parität des Gesamtsystems und PI, P2 die Paritäten 
seiner Untersysteme bedeuten. Selbstverständlich läßt sich diese Regel auf den 
Fall eines Systems verallgemeinern, das aus einer beliebigen Anzahl nicht­
wechselwirkender Teilsysteme besteht. 

Handelt es sich bei dem betrachteten System insbesondere um Teilchen in 
einem kugelsymmetrischen Feld (und kann man die Wechselwirkung zwischen 
den Teilchen als schwach ansehen), dann ist die Parität des gesamten Systems 

p = ( - 1)1, + 1, + . . . . (19,7) 

Iin Exponenten steht hier die algebraische Summe der Drehimpulse l1, die im 
allgemeinen nicht gleich ihrer "Vektorsumme" ist, d. h. nicht gleich dem 
Drehimpuls L des Systems. 
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Zerfällt ein abgeschlossenes System (unter dem Einfluß der in dem System 
selbst wirkenden Kräfte) in verschiedene Teile, dann müssen der Gesamtdreh­
impuls und die Parität erhalten bleiben. Diesel' Sachverhalt kann den Zerfall 
eines Systems unmöglich machen, selbst wenn dieser energetisch möglich wäre. 

Betrachten wir z. B. ein Atom, das sich in einem geraden Zustand mit dem 
Drehimpuls L = 0 befindet. Es soll energetisch möglich sein, daß es in ein 
freies Elektron und in ein Ion in einem ungeraden Zustand mit demselben Dreh­
impuls L = 0 zerfällt. Wie man leicht sieht, kann dieser Zerfall faktisch nicht 
stattfinden (er ist, wie man sagt, verboten). Wegen des Drehimpulserhaltungs­
satzes muß das freie Elektron ebenfalls den Drehimpuls Null haben und be­
findet sich deshalb in einem geraden Zustand (I = ( - 1)0 = + 1). Dann würde 
aber der Zustand des Systems Ion + freies Elektron ungerade sein, während 
der ursprüngliche Zustand des Atoms gerade war. 



Die ScHRöDINGER-Gleichung 

§ 20. Die ScHRÖDINGER·Gleiehung 

III 

Die Gestalt der Wellengleichung eines physikalischen Systems wird bestimmt 
durch seinen HAMILTON-Operator, der auf Grund dessen fundamentale Be­
deutung im gesamten mathematischen Apparat der Quantenmechanik gewinnt. 

Die Form des HAMILTON -Operators eines freien Teilchens ergibt sich schon 
aus allgemeinen Forderungen, die mit der Homogenität und Isotropie des 
Raumes sowie dem GALILEischen Relativitätsprinzip in Verbindung stehen. 
In der klassischen Mechanik führen diese Forderungen zu einer quadratischen 
Abhängigkeit der Energie des Teilchens von seinem Impuls : E = p2f2 m ;  die 
Konstante m wird als Teilchenmasse bezeichnet (siehe I § 4). In der Quanten­
mechanik führen die gleichen Forderungen zu einer ebensolchen Beziehung 
zwischen den Eigenwerten von Energie und Impuls, die gleichzeitig meßbare 
Erhaltungsgrößen (für ein freies Teilchen) darstellen. 

Damit nun die Beziehung E = p2f2 m für alle Eigenwerte von Energie und 
Impuls gilt, muß sie auch zwischen den zugehörigen Operatoren gelten : 

(20,1) 

Wir setzen hier (12,4) ein und erhalten den HAMII.TON-Operator für ein sich 
frei bewegendes Teilchen in der Form 

� f12 H = - - LI 
2 m  ' 

worin LI = ?Pfox2 + o2foy2 + o2foz2 der LAPLACE-Operator ist. 

(20,2) 

Für ein System nicht wechselwirkender Teilchen ist der HAMILTON-Operator 
gleich der Summe der HAMILTON -Operatoren für die einzelnen Teilchen : 

A f12 1 H = - - }.; - Li a 
2 a ma 

(20,3) 

(der Index a bezeichnet die einzelnen Teilchen, Lla  ist der LAPLACE-Operator, 
in dem nach den Koordinaten des a-ten Teilchens differenziert wird). 

In der klassischen (nichtrelativistischen) Mechanik wird die Wechselwirkung 
der Teilchen durch ein additives Glied in der HAMILTON-Funktion beschrieben, 
und zwar durch die potentielle Energie der Wechselwirkung U(r1, r2, • . .  ), die 
eine Funktion der Teilchenkoordinaten ist. In der Quantenmechanik wird die 
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Wechselwirkung der Teilchen ebenfalls durch Addition dieser Funktion zum 
HAMILTON -Operator des Systems erfaßt : 

(20,4) 

Das erste Glied kann man als den Operator für die kinetische Energie ansehen, 
das zweite als Operator für die potentielle Energie. Der letztere reduziert sich 
auf die einfache Multiplikation mit der Funktion U. Aus dem Grenzübergang 
zur klassischen Mechanik folgt, daß diese Funktion mit derjenigen für die 
potentielle Energie in der klassischen Mechanik übereinstimmen muß. Ins­
besondere ist der HAMILTON-Operator für ein Teilchen in einem äußeren Feld 

� p2 1i,2 
H = 2 m + U(x, y, z) = - 2 m  L1 + U(x, y, z) , (20,5) 

wobe.i U(x, y, z) die potentielle Energie des Teilchens in dem äußeren Feldjst. 
Setzen wir die Ausdrücke (20,2-5) in die allgemeine Gleichung (8, 1) ein, 

dann erhalten wir die Wellengleichungen für die entsprechenden Systeme. Wir 
schreiben hier die Wellengleichung für ein Teilchen in einem äußeren Feld auf : 

i)lJ' 1i,2 
i Ii Tt = - 2 m  Ll P + U(x, y, z) P .  (20,6) 

Die Gleichung (10,2) zur Bestimmung der stationären Zustände nimmt die 
folgende Gestalt an : 

1i,2 
im Ll1p + [E - U(x, y, z)] 1p = 0 .  (20,7) 

E. ScHRÖDINGER hat 1926 die Gleichungen (20,6-7) angegeben ; sie heißen 
ScHRÖDINGER-Gleichungen. 

Für ein freies Teilchen hat die ScHRÖDINGER-Gleichung (20,7) die Gestalt 
1i,2 

2 m  Ll1p + E 1p = 0 . (20,8) 

Sie hat für einen beliebigen positiven Energiewert im gesamten Raum Lö­
sungen. Für Zustände definierter Bewegungsrichtungen sind die Eigenfunk­
tionen des Impulsoperators ( 12,7) diese Lösungen, wobei E = p2f2 m gilt. Die 
vollständigen (zeitabhängigen) Wellenfunktionen der stationären Zustände 
haben dann die Gestalt 

- _i_ (E t - p r) 
P = const · e 11 (20,9) 

Jede solche Funktion beschreibt einen Zustand, in dem das Teilchen eine be­
stimmte Energie E und einen bestimmten Impuls p hat. Das ist eine ebene 
Welle,. die sich in p-Richtung ausbreitet, die Frequenz Efli und den Wellen­
zahlvektor k = pfli hat (die entsprechende Wellenlänge Ä. = 2 n lifp heißt die 
DE BROGLIE-Wellenlänge des Teilchens) .1 ) 

1) Die Vorstellung einer mit einem Teilchen verknüpften Welle wurde zum ersten Mal 
von L. DE BROGLIE im Jahre 1924 eingeführt. 
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Das Energiespektrum eines sich frei bewegenden Teilchens ist also ein kon­
tinuierliches Spektrum und erstreckt sich von 0 bis +qo. Jeder Eigenwert 
(mit der einzigen Ausnahme E = 0) ist entartet ; dabei handelt es sich um eine 
unendlichfache Entartung. Tatsächlich gehört zu jedem von Null verschie­
denen Wert von E eine unendliche Menge von Eigenfunktionen (20,9), die 
sich durch die Richtung des Vektors p unterscheiden, während der absolute 
Betrag von p immer derselbe ist. 

§ 21. Die Stromdichte 

In der klassischen Mechanik hängt die Geschwindigkeit v eines Teilchens mit 
seinem Impuls über die Beziehung p = m v zusammen. Diese Gleichung gilt 
in der Quantenmechanik, wie nicht anders zu erwarten ist, für die entsprechenden 
Operatoren. Davon überzeugt man sich leicht, indem man den Operator v = ;: 
nach der allgemeinen Regel (9,2) für die Zeitdifferentiation von Operatoren 
berechnet. Verwenden wir den Ausdruck (20,5) für den HAMILTON-Operator, 
so können wir schreiben 

i A A i h v = T (H r - r H) = - 2 m (LI r - r LI )  • 

Um den ·hier auftretenden Kommutator zu bestimmen, wenden wir ihn auf 
eine beliebige Funktion tp an : 

LI (r tp) - r(Litp) = 2(Vtp) • 

Wegen - i Ii V = p folgt also 
A p 

V = - . (21,1) m 
Dieselben Beziehungen gelten offensichtlich auch zwischen den Eigenwerten 
der Geschwindigkeit und des Impulses und zwischen deren Mit�elwerten in 
einem beliebigen Zustand. 

Die Geschwindigkeit kann wie der Impuls eines Teilchens nicht gleichzeitig 
mit den Koordinaten einen bestimmten Wert haben. Die Geschwindigkeit 
multipliziert mit dem infinitesimalen Zeitelement dt bestimmt die Verschiebung 
eines Teilchens nach der Zeit dt. Die Tatsache, daß die Geschwindigkeit nicht · 
gleichzeitig mit dem Ortsvektor existieren kann, bedeutet daher : Wenn sich 
ein Teilchen zu einer gewissen Zeit in einem bestimmten Raumpunkt befindet, 
dann wird es bereits in einem infinitesimal benachbarten folgenden Zeitpunkt 
keine bestimmte Lage im Raum mehr haben. 

Wir wollen weiter den Operator der Beschleunigung bestimmen. Es ist 
A i A A i A A 1 
v = T (H v - v H) = m 11 (H p - p H) = m (U V - V U) . 

Um den Sinn des so erhaltenen Operators zu klären, wenden wir ihn wiederum 
auf ein beliebiges tp an : 

U(V tp) - V(U tp) = - (VU) tp . 
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Demzufolge finden wir 
m1 = - V U .  (21,2) 

Diese Operatorgleichung stimmt in ihrer Form mit der Bewegungsgleichung 
(der NEWTONsehen Gleichung) der klassischen Mechanik genau überein. 

Das Integral f l lf'l2 dV über ein endliches Volumen V ist die Aufenthalts­
wahrscheinlichkeit eines Teilchens in diesem Volumen. Wir berechnen die zeit­
liche Ableitung dieser Größe und haben 

�j l lf'l 2 dV = J (lf' a'l'* + lf'* 8'l') dv ill M M 
V V 

= : f (lf' H* lf'* - lf'* H* lf') d V .  
V 

Setzen wir hier 
A A 11,2 

H = H* = - 2 m LI + U(x, y, z) 

ein und verwenden die Identität 

lf' Ll lf'* - lf'* Ll lf'  = div (lf' Vlf'* - lf'* Vlf') , 
dann erhalten wir 

! f l lf'l 2 d V = - f div j d V , , 
V V 

wobei j den folgenden Vektor bedeutet : 

j = � (lf' grad lf'* - lf'* grad lf') = � (lf'* v 'P + lf' v* lf'*) . 2 m 2 
(21,3) 

Das Integral über div j kann mit Hilfe des GAussschen Satzes in ein Ober­
flächenintegral über eine geschlossene Fläche S umgeformt werden, die das 
Volumen V umschließt : 

! f l lf'i2 dV = - fi df .1) (21,4) 
V S 

Der Vektor j kann also als Vektor der Wahrscheinlichkeitsstromdichte oder kurz 
als Stromdichtevektor bezeichnet werden. Das Oberflächenintegral über diesen 
Vektor ist die Wahrscheinlichkeit dafür, daß ein Teilchen in der Zeiteinheit diese 
Oberfläche durchdringt. 

Der Vektor j und die Wahrscheinlichkeitsdichte l lf'l 2 genügen der Gleichung 
o l '1'12 d' • o (21 5) at + lVJ = , , 

die der klassischen Kontinuitätsgleichung (I § 55) analog ist. 

1) Das Oberflächenelement df ist wie immer als der Vektor definiert, dessen Betrag 
gleich der Fläche df des Elements ist und der die Richtung der äußeren Normalen be­
züglich dieses Flächenelements besitzt. 
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Die Wellenfunktion der freien Bewegung, die ebene Welle (20,9), möge so 
normiert sein, daß sie einen Teilchenstrom der Stromdichteeinheit beschreibt 
(d. h. einen Strom, bei dem im Mittel durch die Flächeneinheit senkrecht zur 
Stromrichtung in der Zeiteinheit ein Teilchen fliegt). Eine solche Funktion ist 

1 - .!._ (E I - .P 1') 
'P = - e  II 

yv 
(21,6) 

worin v die Teilchengeschwindigkeit bedeutet. In der Tat, setzen wir diese Wellen­
funktion in (21,3) ein, so erhalten wir j = pfmv, d. h. den Einheitsvektor in 
Bewegungsrichtung. 

§ 22. Allgemeine Eigenschaften der Lösungen der 
ScHRÖDINGER· Gleichung 

Die Bedingungen, denen die Lösungen der ScHRÖDINGER-Gleichung genügen 
müssen, haben einen sehr allgemeinen Charakter. Vor allem muß die Wellen­
funktion · (zusammen mit ihren ersten Ableitungen) im ganzen Raum eindeutig 
und stetig sein) .  Die Forderung nach Stetigkeit der Ableitungen drückt aus, 
daß die Stromdichte stetig sein soll. 

Wenn das Feld U(x, y, z) nirgends unendlich wird, dann muß auch die 
Wellenfunktion im ganzen Raum endlich sein. Diese Bedingung muß auch 
dann erfüllt sein, wenn U in einem gewissen Punkt gegen -oo geht, aber 
nicht zu stark.1) 

Es sei Umin der kleinste Wert der Funktion U(x, y, z). Da der HAMILTON­
Operator eines Teilchens in zwei Glieder zerfällt (in den Operator der kinetischen 

· Energie T und den der potentiellen Energie) ist der Mittelwert der Energie in 
einem beliebigen Zustand gleich der Summe E = T + U. Alle Eigenwerte 
des Operators T (der mit dem HAMILTON-Operator eines freien Teilchens 
übereinstimmt) sind aber positiv ;  deshalb ist auch der Mittelwert T > 0. 
Wegen der offensichtlichen Ungleichung U > Umtn ist auch E > Umtn· Weil 
diese Ungleichung für einen beliebigen Zustand gilt, ist klar, daß sie auch für 
alle Eigenwerte der Energie zutrifft : 

E,. > Umin • (22,1) 

Wir wollen ein Teilchen in einem Kraftfeld betrachten, das im Unendlichen 
verschwindet. Die Funktion U(x, y, z) definieren wir wie üblich so, daß sie 
im Unendlichen verschwindet. Es ist leicht zu sehen, daß das Spektrum der 
negativen Energieeigenwerte dann diskret ist, d. h., alle Zustände mit E < 0 

1) Genau genommen muß dies langsamer als - lfr2 geschehen, wobei r der Abstand 
zum Punkt ist. Wenn das Potential schneller als -lfr2 gegen -oo strebt, dann kann 
man zeigen, daß der "Grund"-Zustand einem Teilchen entspricht, welches sich genau 
im Punkt r = 0 befindet, d. h., es erfolgt ein "Sturz'1 des Teilchens in diesen Punkt. 
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in einem Feld, das im Unendlichen verschwindet, sind gebundene Zustände. 
In der Tat, die stationären Zustände des kontinuierlichen Spektrums entspre­
chen bis ins Unendliche reichenden Bewegungen ; in einem solchen Zustand 
befindet sich das Teilchen irgendwo im unendlichen Raum (siehe § 10). In 
hinreichend großen Entfernungen kann man jedoch das Vorhandensein des 
Feldes vernachlässigen, und die Bewegung eines Teilchens kann als freie Be­
wegung angesehen werden. Bei einer freien Bewegung kann die Energie aber 
nur positiv sein. 

Umgekehrt bilden die positiven Eigenwerte ein kontinuierliches Spektrum 
und entsprechen einer ins Unendliche reichenden Bewegung. Für E > 0 hat 
die ScHRÖDINGER-Gleichung im allgemeinen (in dem betrachteten Feld) keine 
Lösungen, für die das Integral f IV' I2 d V konvergiert. 

In der Quantenmechanik kann sich ein Teilchen bei einer endlichen Bewegung 
auch in den Raumgebieten aufhalten, in denen E < U ist. Die Aufenthalts­
wahrscheinlichkeit IV'I 2  geht mit zunehmender Eindringtiefe in diesen Bereich 
rasch gegen Null, ist aber in allen endlichen Entfernungen von Null verschieden. 
In dieser Hinsicht besteht ein prinzipieller Unterschied zur klassischen Me­
chanik, nach der ein Teilchen in ein Gebiet mit U > E überhaupt nicht ein­
dringen kann. Nach der klassischen Mechanik kann ein Teilchen in einen 
solchen Bereich nicht eindringen, weil für E < U die kinetische Energie negativ 
würde, d. h., die Geschwindigkeit wäre imaginär, was unsinnig wäre. In der 
Quantenmechanik sind die Eigenwerte der kinetischen Energie ebenfalls positiv, 
trotzdem kommen wir hier zu keinem Widerspruch. Wenn durch einen Meß­
prozeß ein Teilchen in einem gewissen Raumpunkt lokalisiert wird, dann wird 
im Ergebnis dieses Prozesses der Zustand des Teilchens so gestört, daß es 
überhaupt aufhört, irgendeine bestimmte kinetische Energie zu haben. 

Illustrieren wir das Gesagte durch Beispiele der eindimensionalen Bewegung. 
Unter einer solchen versteht man die Bewegung im Felde U(x), das nur von 
einer J(oordinate abhängt. Die Bewegung in y- und z-Richtung geschieht frei, 
während diejenige entlang der x-Achse durch eine eindimensionale ScHRÖ­
DINGER-Gleichung bestimmt wird : 

d2tp 2 m  
dx2 + fj2 [E - U(x)] 1p = 0 .  (22,2) 

Im Falle des in Abb. la dargestellten "Potentialtopfes" ist für die Energien 
E < 0 der Bewegungstyp räumlich begrenzt (finit) und das entsprechende 

1/(x} 1/(x J 

Abb. I 

a) b) 
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Energieniveauspektrum diskret. Energien E > 0 jedoch führen zu einem kon­
tinuierlichen Spektrum, wobei die Bewegung räumlich unbegrenzt (infinit) ist. 
Wir bestimmen in beiden Fällen für große Entfernungen x die asymptotische 
Gestalt der Wellenfunktionen. Da für x � ± oo U � 0 gilt, kann man im Falle 
großer Entfernungen in Gleichung (22,2) das Feld U im Vergleich zu E ver­
nachlässigen und erhält so 

d� 2 m  
dx2 + V E 'lfJ = 0 • (22 ,3) 

Im Falle E > 0 ist dies die Gleichung der eindimensionalen, freien Bewegung. 
Ihre allgemeine Lösung hat die Gestalt 

l ,,­k = �t r2 m E , (22,4) 
d. h., sie stellt sich dar als Superposition zweier ebener Wellen, die jeweils der 
Bewegung in bzw. entgegengesetzt zur Richtung der x-Achse entsprechen. 
Jedes Energieniveau ist hierbei zweifach entartet gemäß den zwei Möglich­
keiten der Bewegung in entgegengesetzten Richtungen. 

Für Energien E < 0 erweist sich von den zwei unabhängigen Lösungen der 
Differentialgleichung zweiter Ordnung (22,2) nur eine als zulässig und zwar 
diejenige, die den Grenzbedingungen genügt, daß die Wellenfunktion einer 
räumlich begrenzten Bewegung für x � ± oo gegen Null streben muß. Unter 
der Voraussetzung großer Entfernungen gelangen wir von neuem zu Gleichung 
(22,3). Ihre Lösung besitzt jedoch jetzt die asymptotische Gestalt 

1fJ = const · e'f '"" für x � ± oo (" = � 1/2 m lEI ) , (22,5 ) 

d. h., sie klingt hinreichend weit entfernt innerhalb des im Rahmen der klas­
sischen Mechanik unzugänglichen Bereiches exponentiell ab (die zweite Lösung 
der Gleichung (22,3) wächst für x � ± oo über alle Grenzen an) . 

Falls man nur Aussagen über den finiten bzw. den infiniten Bewegungs­
charakter macht, so werden im Rahmen des betrachteten Feldtyps (Abb. la) 
in der klassischen Mechanik und der Quantenmechanik beide Möglichkeiten 
unter den gleichen Gegebenheiten realisiert (entsprechend E <  0 und E > 0). 
Dies gilt jedoch schon nicht mehr für das in Abb. 1 b dargestellte Feld, wo 
der Potentialtopf von einem "Potentialwall" endlicher Höhe U0 umgeben ist. 
Die Bewegung ist hier nach wie vor für E < 0 finit. In der klassischen Me­
chanik wäre sie für eine Bewegung innerhalb des Topfes und Energien 0 < E < U 0 
auch finit. In der Quantenmechanik jedoch ist die Bewegung für alle Energien 
E > 0 infinit, wobei E sowohl größer als auch kleine� als die Höhe der Po­
tentialbarriere sein kann. Ein Teilchen (mit E > 0), das sich zu einem bestimm­
ten Zeitpunkt "innerhalb des Topfes" befindet, kann im weiteren "die Bar­
riere durchdringen" und sich außerhalb der Grenzen des Potentialtopfes be� 
finden. 

Auf diese Weise läßt die Quantenmechanik eine infinite Bewegung unter 
Bedingungen zu, die sie in der klassischen Mechanik ausschlössen. Die Natur 
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dieser Erscheinung, des Durchgangs durch eine Potentialschwelle (sie wird 
noch ausführlich in § 28 untersucht werden), hängt mit dem oben erwähnten 
Umstand zusammen, daß die Wellenfunktion innerhalb des in der klassischen 
Mechanik unzugänglichen Bewegungsbereiches nicht streng Null wird. 

Die ScHRÖDINGER-Gleichung in der allgemeinen Form fi "P . E "P kann aus 
dem Variationsprinzip 

A 

tJ f 1p* (H - E) "P dq = 0 (22,6) 
gewonnen werden. Da "P komplex ist, kann man "P und 1p * unabhängig von­
einander variieren. Bei Variation von 1p* haben wir 

f tJ1p* (H - E) 1p dq = 0 .  

�egen der Willkür von Ö1p* erhalten wir daraus die gesuchte Gleichung 
H 1p = E "P· Die Variation von 1p liefert nichts N eues : Sie liefert nur die konju­
giert komplexe Gleichung H* 1p* = E 1p*. 

Mit den Methoden der Variationsrechnung kann eine Reihe wichtiger Theo­
reme über allgemeine Eigenschaften von Wellenfunktionen stationärer Teilchen­
zustände bewiesen werden. 

Die Wellenfunktion "Po des Grundzustandes verschwindet für keine endlichen 
Koordinatenwerte (oder wie man sagt, sie hat keine Knoten). Sie hat, mit 
anderen Worten, im ganzen Raum dasselbe Vorzeichen. Daraus folgt, daß die 
Wellenfunktionen "Pn (n > 0) der anderen stationären· Zustände, die zu "Po 
orthogonal sind, bestimmt Knoten haben (wenn "Pn ebenfalls nur ein Vorzeichen 
hätte, dann könnte das Integral f "Po "Pn dq nicht verschwinden) . 
. Da "Po keine Knoten hat, kann ferner das Energieniveau des Grundzustandes 

nicht entartet sein. Wir wollen das Gegenteil annehmen ; "Po und "P� seien zwei 
verschiedene Eigenfunktionen zu dem Energieniveau E0• Jede Linearkombi­
nation c "Po + c' 1p� ist auch eine Eigenfunktion. Durch geeignete Wahl der 
Konstanten c und c' kann man aber immer erreichen, daß diese Funktion in 
einem beliebigen vorgegebenen Raumpunkt verschwindet, d. h., wir würden 
eine Eigenfunktion mit Knoten erhalten. 

Für eine eindimensionale Bewegung ist darüber hinaus der sogenannte 
Knotensatz richtig : Die Wellenfunktion "Pn(x) eines diskreten Spektrums, die 
zu dem der Größe nach (n + 1)-ten Eigenwert E,. gehört, besitzt (für endliche 
Werte von x) n Nullstellen. 

§ 23. Die Zeitumkehr 

Die ScHRÖDINOER-Gleichung für die Wellenfunktionen stationärer Zustände 
wie auch die ihren Lösungen auferlegten Bedingungen sind reell. Deshalb 
können ihre Lösungen 1p immer reell gewählt werden. Auf Grund dessen er­
weisen sich die zu nicht entarteten Energieniveaus gehörenden Eigenfunktionen 
automatisch als reell (bis auf einen unwesentlichen Phasenfaktor). In der Tat 
genügt 1p* derselben Gleichung wie auch 1p und ist demzufolge Eigenfunktion 
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zu dem gleichen Energiewert. Wenn dieser Wert nicht entartet ist, dann 
müssen folglich "P und 1p*  dem Wesen nach übereinstimmen, d. h., sie können 
sich nur durch einen konstanten Phasenfaktor unterscheiden. Wellenfunktionell 
allerdings, die zu ein und demselben entarteten Energieniveau gehören, sind 
nicht unbedingt reell. Mittels einer geeigneten Auswahl ihrer Linearkombi­
nationen kann man jedoch immer einen Satz reeller Funktionen erhalten. 

Die vollständigen (von der Zeit abhängigen) Wellenfunktionen lJI werden 
durch eine Gleichung bestimmt, in deren Koeffizienten i eingeht. Diese Glei­
chung behält jedoch beim Übergang von t zu -t ihre Gestalt bei, wenn man 
gleichzeitig zum konjugiert Komplexen übergeht. Deshalb kann man die 
Funktionen lJI immer so wählen, daß sich lJI und lJ'* nur durch das Vorzeichen 
der Zeit unterscheiden. Dieses Resultat ist uns bereits aus den Formeln (10, 1), 
(10,3) bekannt. 

Die Gleichungen der klassischen Mechanik ändern sich bekanntlich bei einer 
Zeitumkehr nicht, d. h. beim Umkehren des Vorzeichens der Zeit. Wie wir 
sehen, äußert sich in der Quantenmechanik die Symmetrie bezüglich der beiden 
Zeitrichtungen darin, daß die Wellengleichung unverändert bleibt, wenn man 
das Vorzeichen von t ändert und gleichzeitig lJI durch lJ'* ersetzt. 

Wir möchten jedoch hervorheben, daß sich diese Symmetrie hier nur auf die 
Wellengleichung bezieht. Sie bezieht sich nicht auf den unmittelbaren Meß­
prozeß, der in der Quantenmechanik eine fundamentale Rolle spielt. Dieser 
besitzt hier einen "doppelsinnigen" Charakter ; seine !tollen in bezug auf V er­
gangenheit und Zukunft sind verschieden. Hinsichtlich der Vergangenheit 
bestätigt er die Wahrscheinlichkeiten für die verschiedenen möglichen Ergeb­
nisse, die sich gemäß demjenigen Zustand vorhersagen lassen, der durch die 
vorausgehende Messung geschaffen wurde. Bezüglich der Zukunft schafft er 
einen neuen Zustand (wir werden in § 37 darauf zurückkommen). Unmittelbar 
in der Natur des quantenmechanischen Meßprozesses wurzelt also eine tief­
gehende Nichtumkehrbarkeit. 

Diese Nichtumkehrbarkeit besitzt schwerwiegende prinzipielle Bedeutung. 
Obwohl die Grundgleichungen der Quantenmechanik an und für sich symme­
trisch sind bezüglich einer Vorzeichenänderung der Zeit (in dieser Hinsicht 
unterscheidet sich die Quantenmechanik nicht von der klassischen Mechanik), 
bringt jedoch die Nichtumkehrbarkeit des Meßprozesses für die quantenmecha­
nischen Erscheinungen eine physikalische Nichtäquivalenz der beiden Zeit­
richtungen mit sich, d. h., sie führt zu einem Unterschied zwischen Zukunft 
und Vergangenheit. 

§ 24. Der Potentialtopf 

Als einfaches Beispiel einer eindimensionalen Bewegung untersuchen wir die 
Bewegung in einem rechteckigen Potentialtopf, wie er in Abb. 2 dargestellt ist 
(da es hier bequemer ist, zählen wir die Energie vom Boden des Potentialtopfes 
aus und nicht vom Wert der potentiellen Energie im Unendlichen). Uns in-
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teressieren die Zustände finiter Bewegung, die zum diskreten Energiespektrum 
0 < E < U0 gehören. 

Im Bereich 0 < x < a haben wir die ScHRÖDINGER-Gleichung 

Abb. 2 

'P" + k2 'P .= 0 ' 

l ,,-­
k = -,; r 2 m E  

lf(x) 

---j lfo 

0 X 

(24, 1) 

(der Strich bedeutet Differentiation nach x) , während außerhalb des Potential­
topfes 

(24,2) 

gilt. An den Stellen x = 0 und x = a müssen die Lösungen dieser Gleichungen 
so aneinander anschließen, daß 'P und 1p' stetig sind. 

Die im Unendlichen verschwindende Lösung der Gleichung (24,2) ist 

'P = const · e 'f '"" (24,3) 

(die Vorzeichen - und + gehören zu den Bereichen x > a und x < 0). Statt 
der Stetigkeit von 'P und 1p' am Rande des Potentialtopfes fordert man zweck­
mäßig die Stetigkeit von 'P und der logarithmischen Ableitung 'P' f'P· Unter 
der Berücksichtigung von (24,3) erhalten wir die Randbedingung in der Form 

'P' 
- = =f " . (24,4) 
'P 

Wir verweilen hier nicht bei der Bestimmung• der Energieniveaus in einem 
Potentialtopf beliebiger Tiefe U0 (siehe Aufgabe 2) und besprechen nur den 
Grenzfall unendlich hoher Wände vollständig. 

Für U0 --+ oo wird die Funktion (24,3) identisch Null. Es versteht sich vo� 
selbst, daß das Teilchen überhaupt nicht in den Bereich vordringen kann, in 
dem die potentielle Energie Unendlich ist. Wir haben also die Lösung der 
Gleichung (24,1) unter der Randbedingung 

für x =  O, a (24,5) 

aufzufinden. Eine solche Lösung suchen wir in der Form einer "stehenden 
Welle" 

'P = c sin (k x + !5) • (24,6) 
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Die Bedingung 1p = 0 für x = 0 liefert � = 0 ;  desweiteren ergibt die Bedingung 
für x = 0 sin k a = 0, woraus k a = n (n + 1) mit n = 0, 1, 2, . . . folgt. 

Auf diese Weise lauten die Energieniveaus des Teilchens im Potentialtopf 
:n2 fj2 

En = 2--2 (n + 1)2 , n = 0, 1, 2, . . .  (24,7) m a 
Insbesondere ist die Energie des Grundzustandes als E0 = n2 1i2/2 m a2 gegeben. 
Wir bemerken, daß dieses Resultat im Einklang mit der Unschärferelation steht : 
Bei einer Ortsunschärfe ,...., a ist die Unschärfe des Impulses und damit auch 
die Größenordnung des Impulses selbst ,...., lifa ; die dazugehörige Energie ist 
,...., (lifa)2fm. 

Die normierten Wellenfunktionen der stationären Zustände lauten 
1 j2 . :n (n + I) x 

'ljJn = 
V -a 

sm a . (24,8) 

Entsprechend dem Knotensatz wird die Funktion 'lfJn(x) innerhalb des Bewe­
gungsgebietes n mal Null (die unmittelbaren Grenzen dieses Gebietes, im vor­
liegenden Fall die Punkte x = 0 und x = a, werden beim Abzählen der Null­
stellen ausgeschlossen) .  

In einem eindimensionalen Potentialtopf beliebiger Form liegt in jedem Fall 
mindestens ein Energieniveau, selbst dann, wenn die Tiefe des Topfes sehr klei� 
ist (siehe z .B.  Aufgabe 2). Diese Eigenschaft ist jedoch nur für den eindimen­
sionalen Fall spezifisch ; sie existiert nicht im realeren Falle eines dreidimen­
sionalen Potentialtopfes. Wenn die Tiefe I Ul eines solchen Topfes 

fj2 
I U! � m az (24,9) 

ist (wobei a die Größenordnung der Linearabmessungen des Topfes ist), dann 
liegt in ihm kein einziges diskretes Energieniveau. Mit anderen Worten, falls 
der Topf nicht hinreichend tief ist, so gibt es in ihm keine gebundenen Zu-· 
stände ; das Teilchen kann nicht von dem Potentialtopf "eingefangen" werden. 
Wir unterstreichen, daß diese Eigenschaft reinen Quantencharakter besitzt ; in 
der klassischen Mechanik kann ein Teilchen eine finite Bewegung in einem be­
liebigen Potentialtopf ausführen. Der Ursprung dieser Eigenschaft wird in 
§ 32 erläutert werden (in der Aufgabe 1, § 30 wird sie durch direkte Rechnung 
für den Spezialfall eines kugelsymmetrischen Potentialtopfes gezeigt werden). 

Aufgaben 

I.  Es  ist die Wahrscheinlichkeitsverteilung der verschiedenen Impulswerte für den 
Grundzustand der eindimensionalen Bewegung eines Teilchens in einem unendlich tiefen 
rechteckigen Potentialtopf zu bestimmen. 

Lösung. Die Wahrscheinlichkeit für den Impulswert p im Intervall dp ist ja(p)i2 dp, 
wobei a(p) im eindimensionalen Fall durch 

a 
1 f i 

a(p) = 
Y
- 'Po(x) e - I! P "'  dx 
2 :n 1i  

0 

6 Kurzfassung li 
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gegeben ist (vergleiche (12,12)). Setzen wir hier V'o(x) aus (24,8) ein und rechnen wir das 
Integral aus, so erhalten wir die Wahrscheinlichkeitsverteilung 

4 :n:  1i3 a p a 
Ja(p) J2 = (p2 a2 - :n;2 1;,2)2 

cos2 IT .  
2. Es sind die Energieniveaus für das in Abb. 2 dargestellte Potential zu berechnen. 

Lösung. Die Bedingung (24,4) an den Topfgrenzen liefert die Gleich�gen 

oder 

l f2 m  
k ctg 6 = - k ctg (a k + 6) = " = 

V 
---,;2 U0 - k2 

k1i 
sin 6 = - sin (k a + 6) = 

,; 
. 

r2 m  U0 

Durch Elimination von 6 erhalten wir die transzendente G:leichung 

k h  
k a = (n + 1 )  :n: - 2 arc sin 

,; r2 m  U0 
(1 ) 

(wobei n = 0, 1, 2, . . .  ist, und die Werte von arcsin zwischen 0 und :n:/2 genommen werden). 
Die Wurzeln dieser Gleichung bestimmen die Energieniveaus E = k2 1i2f2 m, wobei die 

Werte von n die Niveaus in der Reihenfolge wachsender Energie durchnumerieren. Ins­
gesamt ist die Anzahl der Niveaus (für endliches U0) endlich. · 

' Gleichung (1) kann man durch Einführen der Variablen � und des Parameters y gemäß 

� =
k
2
a

' y = !!:_ 1 /  2 
a V m U0 

in einer zweckmäßigeren Form aufschreiben. So erhalten wir für gerades n die Gleichung , 

COS � = ± f' � ,  (2) 
wobei diejenigen ihrer Wurzeln genommen werden müssen, für · die tg � > 0 ist. Für 
ungerades n bekommen wir die Gleichung 

sin � = ± y � .  (3) 

Hierbei sind diejenigen ihrer Wurzeln zu nehmen, für die tg � < 0 gilt. 
Speziell haben wir für einen flachen Topf, für den U0 � 1i2fma2 ist, y � 1, so daß die 

Gleichung (3) überhaupt keine Wurzeln besitzt. Gleichung (2) andererseits besitzt eine 
Wurzel (für das Pluszeichen auf der rechten Seite), die gleich 

� � 2_ (1 - _1 ) 
y 2 y2 

st. In diesem Falle liegt also im Topf nur ein Niveau, 

2 �2 1;,2 m a2 
E - -- � u U2 

o - m a2 � 
o - 2 1;,2 o • 

das sich nahe dem oberen Rand befindet. 
3. Es sind die Energieniveaus eines Teilchens zu bestimmen, das sich in einem recht­

eckigen "Potentialkasten" der Kantenlängen a, b, c bewegt. Innerhalb des Kastens sei 
U = 0 und außerhalb U = oo .  

Lösung. Die freie Bewegung des Teilchens innerhalb des Kastens vollzieht sich in 
jeder der drei Bewegungsrichtungen unabhängig von den beiden übrigen. Deshalb er-



§ 25. Der linear? harmonische Oszillator 69 

geben sich die Energieniveaus einfach als Summen von drei Ausdrücken der Form (24, 7 ) :  
;��;2 Ji2 (n� n� n� ) 

En, n, n, = 2 m  a2 + b2 + Ci"  • 
nt, n2, ns = 1, 2, . . . 

Die Intervalle zwischen den Niveaus streben gegen Null bei einer Vergrößerung der Kasten­
abmessungen. Für die stat'ionären Zustände lauten die Wellenfunktionen 

1 ;-s- .  n � x . n n2 y . n n3 z 
tpn, n, n, = V a b c stn -a- sm -b- sm -c- , 

wobei die x-, y- und z-Achse entlang der Kastenkanten gerichtet sind. 

§ 25. Der lineare harmonische Oszillator 

Wir betrachten ein Teilchen, das eindimensionale, kleine Schwingungen aus­
führt (einen sogenannten linearen harmonischen Oszillator). Die potentielle 
Energie dieses Teilchens ist bekanntlich m w2 x2f2, wobei w in der klassischen 
Mechanik die Eigenfrequenz ist (siehe I § 17). Dementsprechend ist der HA­
MILTON -Operator für einen Oszillator 

� p2 m wz x2 H = 2 m  + -2- . (25, 1) 

Da die potentielle Energie für x --+  ± oo gegen Unendlich strebt, kann das 
Teilchen nur eirie finite Bewegung ausführen. Dementsprechend ist das ge­
samte Energieeigenwertspektrum diskret. 

Wir wollen die Energieniveaus des Oszillators mit Hilfe der Matrizenmechanik 
bestimmen.1) Dazu gehen wir von der "Bewegungsgleichung" in der Form 
(21,2) aus ; im vorliegenden Falle liefert sie 

i + w2 x  = 0 .  

In Matrixschreibweise lautet diese Gleichung 
(x)mn + w2 Xmn = 0 . 

Für die Matrixelemente der Beschleunigung haben wir nach (1 1,8) 
(X)mn = i Wmn(X)mn = - w!,11 Xmn• Deshalb erhalten wir 

(w!n - W2) Xmn = 0 .  

(25,2) 

Daraus ist ersichtlich, daß alle Matrixelemente Xmn gleich Null sind bis auf 
diejenigen, für die Wmn = ± w ist. Wir numerieren alle stationären Zustände 
so, daß die Frequenzen ± w zu den Übergängen n --+  n =t= 1 gehören, d. h. 
w11, n :p = ± w. Dann sind nur die Matrixelemente x11, n±I von Null verschieden. 
· Es wird vorausgesetzt, daß die Wellenfunktionen V'n reell gewählt worden 
sind. Da x eine reelle Größe ist, sind auch alle Matrixelemente Xm n reell. Die 
Hermitezitätsbedingung (11 ,10) besagt jetzt, daß die Matrix Xmn symmetrisch 
ist : Xmn = Xnm · 

1) Dies wurde (1925) von W. HElSENBERG noch vor dem Auffinden der Wellengleichung 
durch E. ScHRÖDINGER getan. 
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Zur Berechnung der von Null verschiedenen Matrixelemente von x verwenden 
wir die Vertauschungsregel 

� A A ":" • 1t 
X X - X X = - t m ' 

in Matrixschreibweise 
. . i h  

(x X)mn - (x X)m n = - -�mn • m 

Mit Hilfe der Multiplikationsregel für Matrizen (11,12) erhalten wir daraus für 
m = n 

I h 
i };  (Wnz Xni Xz n - Xnl Wz n Xz n) = 2 i };  Wnl X�1 = - i - .  

l 1 m 

In dieser Summe sind nur die Glieder mit l = n ± 1 von Null verschieden, so 
daß sich 

ergibt. 

h 
(x )2 - (x )2 = --n+ 1, n  n, n - 1  2 m w (25,3) 

Wir schließen aus dieser Gleichung, daß die Größen (xn+l,  11)2 eine arithme­
tische Folge bilden. Diese Folge ist nach oben nicht beschränkt, sie ist aber 
unbedingt nach unten beschränkt, weil in ihr nur positive Glieder enthalten 
sein können. Bisher haben wir nur die relative Anordnung der Zustands­
indizes n, aber nicht deren absolute Werte festgelegt. Wir können daher will­
kürlich einen Wert von n auswählen, der zu dem ersten, dem Grundzustand 
des Oszillators, gehören soll. Wir setzen diesen Wert gleich Null. Dement­
sprechend muß man x0, _ 1 als identisch gleich Null ansehen. Die wiederholte 
Anwendung der GleichungP-n (25,3) mit n = 0, 1, . . . ergibt 

( 2 
n h 

Xn n -1 ) = -- . ' 2 m w  

Wir erhalten also endgültig den folgenden Ausdruck für die von Null verschie­
denen Matrixelemente von x :  

x - x  - --V n h  
n, n - 1 - n - 1 , n - 2 m w '  (25,4) 

Die Matrix des Operators fi ist diagonal, und die Matrixelemente Hn n sind 
die gesuchten Energieeigenwerte En des Oszillators. Um diese zu berechnen, 
schreiben wir 

E m 
. Hnn = ,. = 2 [ (x2)nn + w2(x2)n n] 

= � [f i wn l  Xnz i w, n Xz n + w2 f Xn z Xz n] 
m ,, ( 2 + 2 ) 2 = 2 � W Wnl Xtn • 

l .  
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In der Summe über l sind nur die Glieder mit l = n ± 1 von Null verschieden. 
Wir setzen (25,4) ein und erhalten 

· 

En = ( n .+ ! ) h w , n = 0, 1, 2, . . .  (25,5) 

Die Energieniveaus des Oszillators sind also äquidistant angeordnet, der 
Abstand zwischen zwei benachbarten Niveaus ist h w. Die Energie des Grund­
zustandes (n = 0) ist h wf2 ; wir betonen, daß sie von Null verschieden ist. 

Das Ergebnis (25,5) kann man auch durch Lösen der ScHRÖDINGER-Gleichung 
erhalten. Für den Oszillator hat diese Gleichung die Form 

d2!p 2 m ( m w2 x2 ) _ 

dx2 + 1i2 E 
- --2- 1J' - 0 

• 
(25,6) 

Hier führt man zweckmäßig statt der Koordinate x die dimensionslose Variable � 
durch die Beziehung 

(25,7) 

ein. Dann erhalten wir 

(25,8) 

(der Strich bedeutet hier die Ableitung nach �). 
Für große � kann man 2 E fh w gegenüber �2 vernachlässigen. Die Gleichung 

1p" = �2 1p hat die asymptotischen Integrale 1p = e± <'12 (die Differentiation 
dieser Funktion ergibt unter Vernachlässigung von Gliedern niedrigerer Ord­
nung in � tatsächlich 1p" = �2 1p) .  Da die Wellenfunktion für x = ± oo endlich 
bleiben muß, muß man im Exponenten das negative Vorzeichen wählen. Nach 
dem Gesagten erscheint es natürlich, in der Gleichung (25,8) die Substitution 

1p = e- ;'/2 X(�) (25,9) 

vorzunehmen. Für die Funktion x(�) erhalten wir mit der Bezeichnung 
2Efh w - 1 = 2 n 

x" - 2 � x' 
+ 2 n X = 0 .  (25,10) 

Die Funktion X(�) muß dabei für alle endlichen � endlich sein, für � =- ± oo 
darf sie gegen unendlich gehen, aber nicht schneller als eine endliche Potenz 
von � (so daß die Funktion 1p verschwindet). 

Wir suchen die Lösung der Gleichung (25, 10) in Gestalt der Reihe 
00 

X = I: a. �· .  
8 = 0  

Durch ihr Einsetzen in die Gleichung erhalten wir 
00 00 00 

I: a8 8 (8 - 1) �·-2 - 2 I: a8 8 �· + 2 n I: a8 �· = 0 . 
8 =2 s = O  s = O  

(25, 11)  
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In der ersten Summe nehmen wir eine Umbenennung des Summationsindexes 
vor, indem wir 8 durch 8 + 2 ersetzen. Dann folgt 

00 
E [as+2 (8 + 1) (8 + 2) + 2 (n - 8) a,] �· = 0 .  

8 = 0  

Damit diese Gleichung identisch erfüllt ist, muß für jede Potenz von � der 
zugehörige Koeffizient Null sein. Daraus finden wir die Rekursionsformel 

2 (n - 8) 
a•+2 = - (8 + 1) (s + 2) a, ,  (25,12) 

die die Koeffizienten aufeinanderfolgender Glieder der Reihe (25, 11) verknüpft. 
In erster Linie sehen wir, daß die Reihe entweder nur geradzahlige oder nur 
ungeradzahlige Potenzen von � enthält. Um die oben aufgestellte Bedingung 
zu erfüllen, darf diese 'Reihe nur Glieder endlicher Potenzen enthalten, d. h., 
sie muß bei einem gewissen endlichen 8 abbrechen. Aus (25,12) ist ersichtlich, 
daß dafür n eine ganze positive Zahl sein muß : Die Reihe bricht dann mit dem 
Glied der Potenz 8 = n ab, d. h. ,  sie führt auf ein Polynom vom Grade n. Auf 
diese Weise gelangen wir wieder zu dem uns schon bekannten Ergebnis (25,5) 
für die Energieeigenwerte. 

Wir schreiben nur für den Grundzustand des Oszillators die Wellenfunktion 
in expliziter For� auf. Für n = 0 reduziert sich das Polynom auf eine Kon­
stante. Bestimmen wir sie so, daß die Wellenfunktion der Normierungsbedin­
gung 

00 
f tp5(x) dx = 1 

- 00  

genügt, dann erhalten wir 
m ro  (m c.o)l/4 - - x• 

1/'o(x) �-= � e 2 � 

Wie es sein muß, hat diese Funktion keine Nullstellen für endliches x. 

Aufgabe 

(25,13) 

Es ist die Wahrscheinlichkeitsverteilung für die verschiedenen Impulswerte im Grund­
zustand eines Oszillators zu bestimmen. 

Lö sung. Analog zur Aufgabe 1, § 24 berechnen wir das Integral 
00 

1 J - .ip x  a(p) = ,1- 'l'o(x) e 11 dx .  
y 2 ;di 

- oo  

Nach der Substitution x + i pfm w = z führt es sich auf das PorssoNsche Integral zurück, 
und man erhält 

1 ( p2 ) la(p) i2 = ,/ exp - -11- • y :rr m ll w  m w 
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Sind die DE BROGLIE-Wellenlängen der Teilchen klein im Vergleich zu den 
Abmessungen, die die spezifischen Bedingungen einer gegebenen Aufgabe cha­
rakterisieren, dann kommen die Eigenschaften des Systems klassischen nahe. 
In § 6 wurde schon die allgemeine Gestalt der Wellenfunktionen in solchen 
quasiklassischen Fällen angegeben, und in §§  12 und 14 wurde diese zur Her­
leitung quantenmechanischer Operatoren für grundlegende physikalische Größen 
benutzt. Jetzt wollen wir eingehender verfolgen, auf welche Weise in der 
ScHRÖDINGER-Gleichung der Grenzübergang zum quasiklassischen Fall vor sich 
geht. 

In § 6 wurde festgestellt, daß der Grenzübergang von der Quantenmechanik 
zur klassischen Mechanik, formal gesehen, der Grenzübergang 1i -+ 0 ist. Im 
quasiklassischen Fall kann man folglich 1i als kleinen Parameter betrachten 
und den Ausdruck 

!:_ s  
lJI = a e 11 (26,1) 

( in dem die Größen a und S als nicht von ti abhängig angenommen werden) 
als Anfang einer Entwicklung der Wellenfunktion nach Potenzen dieses Para­
meters. Schreiben wir den Ausdruck (26,1) als { (i S + 1i ln a)jli } ,  dann sehen 
wir, daß er dem Beginn einer Entwicklung des Exponenten entspricht, wobei 
nur die ersten beiden Glieder berücksichtigt wurden. Deshalb müssen auch in 
den folgenden Re-chnungen nur die Terme bis zur ersten Potenz in 1i mitge­
nommen werden. 

Der Einfachheit halber werden wir ein Teilchen im äußeren Feld behandeln. 
Setzen wir (26,1) in die ScHRÖDINGER-Gleichung (20,6) ein, so erhalten wir bei 
Ausführung der Differentiationen und bei Berücksichtigung nur solcher Glieder, 
die proportional den ersten beiden Potenzen von ti sind, 

as . oa a . i Ii . i Ii a at - � 1i at + 2 m (V S)2 - 2 m a LJS - m V S Va + U a = 0 . 
(26,2) 

Da die Glieder nullter und erster Ordnung in 1i jedes für sich genommen Null 
werden müssen, finden wir hieraus die zwei Gleichungen 

as _I_ 

s 2 u - o at + 2 m (V ) + - ' 
(26,3) 

(26,4) 

Wie zu erwarten, ist die erste von ihnen die HAMILTON-JACOBI-Gleichung für 
die Wirkung S des Teilchens (siehe I § 31) .  Die zweite Gleichung, (26,4), kann 
nach Multiplikation mit 2 a in die Gestalt 

iJa2 ( LIS ) 
- + div a2 - = 0 at m (26,5) 
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umgeschrieben werden. Diese Gleichung besitzt einen anschaulichen physika­
lischen Sinn. Das Quadrat I lf'l2 = a2 ist die Aufenthaltswahrscheinlichkeits­
dichte des Teilchens im Raum ; V S Jm = pjm ist die klassische Teilchengeschwin­
digkeit v. Deshalb stellt Gleichung (26,5) nichts anderes dar als eine Konti­
nuitätsgleichung, die zum Ausdruck bringt, daß sich die Wahrscheinlichkeits­
dichte nach den Gesetzen der klassischen Mechanik "ausbreitet", und zwar 
mit der klassischen Geschwindigkeit v in jedem Raumpunkt. 

Für stationäre Zustände, d. h. bei vorgegebener Energie E, ergibt sich die 
Wirkung als 

S = - E t + S0(x, y, z) , (26,6) 

wo bei 80 eine Funktion <],er Koordinaten darstellt (die sogenannte "verkürzte 
Wirkung"),  die der Gleichung 

1 
2 m (V So)2 + U = E '(26,7) 

genügt. Die Amplitude a der Wellenfunktion ihrerseits hängt im Falle sta­
tionärer Zustände nicht von der Zeit ab und genügt der Gleichung 

div (a2 V S) = 0 . (26,8) 

Wir wollen nun die quasiklassische Funktion für stationäre Zustände im 
Falle einer eindimensionalen Bewegung eines Teilchens im Felde U (x) in expliziter 
Form aufschreiben. In Gleichung (26,7) haben wir dann (VS0)2 = (dS0Jdx)2, 
so daß ihre Lösung 

80 = ± f p dx , p(x) = f2 m (E - U) (26,9) 

lautet. Der Ausdruck p(x) unter dem Integral stellt weiter nichts dar als den 
klassischen Impuls des Teilchens, ausgedrückt als Funktion von den Koordi­
naten. Aus (26,8) finden wir nun 

d 
dx (a2 p) = 0 '  a2 p = const , 

so daß a = const Jlfp gilt. Auf diese Weise erhalten wir die allgemeine Lösung 
der ScHRÖDINGER-Gleichung in der Gestalt 

0 �jp dz 0 - ..!..jp d.:t: I 11 2 11 

tp = yi e  + yi e  
mit 01, 02 als konstante Koeffizienten. 

(26,10} 

Das Auftreten des Faktors lfyp in der Wellenfunktion kann einfach erklärt 
werden. Die Aufenthaltswahrscheinlichkeit eines Teilchens in den Punkten 
mit Koordinaten zwischen x und x + dx wird durch das Quadrat ltpl2 gegeben, 
d. h., sie ist im wesentlichen proportional zu lfp. Das ist gerade so, wie man 
es für ein "quasiklassisches Teilchen" erwarten würde, da bei einer klassischen 



§ 27. Die Quantisierungsvorschrift nach BoHR und SoMMERFELD 75 

Bewegung die Zeit, die ein Teilchen in dem Intervall dx verbringt, umgekehrt 
proportional zur Geschwindigkeit (oder dem Impuls) des Teilchens ist. 

In den "klassisch nicht erlaubten" Raumgebieten mit E < U(x) ist die Funk­
tion p(x) rein imaginär, so daß die Exponenten reell werden. Die Wellen­
funktion für diese Bereiche schreiben wir in der Form 

C' - �� lPl dx C' �� lPl dz 1 11 + 2 Ii 
1p = fiPI e YIPI e . (26, 11) 

Klären wir nun etwas genauer die Bedingung für die Anwendbarkeit der 
erhaltenen Resultate. Diejenigen Glieder in Gleichung (26,2), die Ii enthalten, 
müssen sehr klein sein im Vergleich zu den Gliedern ohne Ii. Vergleichen wir 
z. B. die Terme 

Die Bedingung, daß der zweite im Vergleich zum ersten klein ist, lautet 
(li/p2) idpfdxl � I oder 

ldA I � I dx. I 

(26, I2) 

mit ). = ).j2n und A(x) = 2 n li/p(x) als DE BROGLIE-Wellenlänge des Teilchens, 
die mit Hilfe der klassischen Funktion p(x) als Funktion von x ausgedrückt 
ist. Auf diese Weise erhalten wir eine quantitative Bedingung dafür, wann die 
Bewegung quasiklassisch ist : Die Wellenlänge des Teilchens darf sich auf einer 
Strecke von der Größenordnung der Wellenlänge selbst wenig ändern. Die hier 
hergeleiteten Formeln sind in denjenigen Raumbereichen nicht anwendbar, in 
denen diese Bedingung nicht erfüllt ist. 

Die quasiklassische Näherung ist offenkundig in der Nähe von Umkehr­
punkten nicht anwendbar, d. h., nahe jener Punkte, an denen entsprechend der 
klassischen Mechanik das Teilchen anhalten und sich danach in entgegen­
gesetzte Richtung bewegen würde. Diese Punkte bestimmen sich aus der 
Gleichung p(x) = 0. Für p � 0 strebt die DE BROGLIE-Wellenlänge gegen Un­
endlich und kann auf keinen Fall als klein angenommen werden. 

§ 27. Die Qnantisierungsvorschrift nach BoHR und SoMl\IERFELD 

Die im vorigen Paragraphen gewonnenen Formeln gestatten die Herleitung einer 
Vorschrift für die Bestimmung der quantenmechanischen Energieniveaus im 
quasiklassischen Falle. Dazu betrachten wir eine finite eindimensionale Be-
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wegung eines Teilchens
· 
in einem Potentialtopf ; der klassisch zulässige Bereich 

a :S: x < b wird durch zwei Umkehrpunkte begrenzt (Abb. 3).1) 
.Die Randbedingungen für die Wellenfunktion bestehen in den Forderungen, 

daß sie innerhalb jedes der zwei klassisch nicht erlaubten Gebiete I und I I I 
so abklingt, um schließlich für x --+  ± oo Null zu werden. Desweiteren wissen 

U(x} 

Abb. 3 

�E 
I I I I li 1 lll 
I I 
I I 

a b 

wir, daß die allgemeine Lösung der ScHRÖDINGER-Gleichung für diese Bereiche 
die Gestalt (26,11 )  und für das Gebiet II die Form (26,10) besitzt. Aus den 
obigen Bedingungen könnte man für jeden der Bereiche I-I I I konstante 
Koeffizienten zu diesen Lösungen bestimmen, indem man die Lösungen an den 
·Grenzen, d. h. den Punkten x = a und x = b, aneinander "anschlösse". Aller­
dings ist eine unmittelbare Verwirklichung_ eines solchen "Anschlusses" deshalb 
nicht möglich, weil gerade in der Nähe dieser Punkte die quasiklassische Nähe­
rung (in der die Funktionen (26, 10- 11) berechnet werden) nicht anwendbar ist. 

Diese Komplikation fällt weg, wenn man sich auf eine erste, gröbere Nähe­
rung beschränkt. Sie besteht darin, daß die Randbedingungen, die das Null­
werden der Wellenfunktion im Unendlichen fordern, durch solche ersetzt 
werden, die das Nullwerden schon in den Punkten x = a und x = b verlangen. 

Im klassischen Grenzfall sind diese Punkte die absoluten Bewegungsgrenzen, 
die das Teilchen in keinem Falle überwindet. Obwohl in der quasiklassischen 
Näherung das Teilchen auch in die klassisch nicht zulässigen Gebiete vor­
dringen kann, klingen jedoch die Wellenfunktionen in ihnen sehr schnell ab. 
Dieser Umstand ist die Grundlage für die angegebene Ersetzung der Rand­
bedingungen. 

Die Randbedingung tp = 0 an der Stelle x = a führt für die Wellenfunktion 
im Gebiet II zu dem Ausdruck · 

"' 
c . 1 J d tp = ,r:;: sm h p x . 
rP a 

(27, 1) 

1) In der klassischen Mechanik würde ein Teilchen in einem solchen Feld eine periodische 
Bewegung mit der Periode 

b b 

T = 2J�x = 2 mf� 
a a 

vom Punkt a zum Punkt b und wieder zurück ausführen (v - Teilchengeschwindigkeit) . 
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Auf die gleiche Weise würden wir andererseits durch Realisieren der Bedingung 
1p = 0 im Punkte x = b 

b C' l f  'P = yi sin T p dx 
X 

erhalten. Damit diese beiden Ausdrücke im gesamten Bereich übereinstimmen, 
muß die Summe ihrer Phasen (diese Summe ist eine konstante Größe) ein 
ganzzahliges Vielf"aches von n sein : 

b � Jp dx = n n 

a 

(wobei C = (- l )n C' gilt). In anderer Form kann man dies als 
cß p dx = 2 n h n  

(27,2) 

(27,3) 
schreiben ; hierbei wird das Integral über eine vollständige Periode der klas­
sischen Teilchenbewegung genommen (von a bis b und wieder zurück). Das ist 
genau die Bedingung, die im quasiklassischen Fall die stationären Zustände 
eines Teilchens bestimmt. Sie entspricht der Quantisierungsvorschrift nach BoHR 
und SoMMERFELD für die alte (korrespondenzmäßige) Quantenmechanik. 

Da in der quasiklassischen Näherung h die Rolle eines kleinen Parameters 
spielt, stellt der Ausdruck auf der linken Seite von Gleichung (27,2) eine große 
Größe dar. Das Gleiche trifft folglich auch auf die ganze Zahl n zu. Die Phase 
der Wellenfunktion (27, 1) durchläuft den Bereich von 0 im Punkte x = a bis 
n n für x = b, so daß der Sinus innerhalb dieses Intervalls n - l R; n mal 
Null wird. Auf diese Weise bestimmt die ganze Zahl n die Anzahl der Null­
stellen der Wellenfunktion. Sie spielt entsprechend dem Knotensatz (§ 22) da­
durch die Rolle einer Quantenzahl, die aufeinanderfolgende gequantelte Energie­
niveaus durchnumeriert.1 ) 

Die Tatsache, daß die quasiklassische Näherung ihren Ausdruck in großen 
Quantenzahlen n findet, hat einen einfachen und anschaulichen Hintergrund. 
Es ist offensichtlich, daß der Abstand zwischen benachbarten Nullstellen der 
Wellenfunktion der Größenordnung nach mit der DE BROGLIE-Wellenlänge 
übereinstimmt. Für große n ist dieser Abstand klein ("'(b - a)fn), so daß 
die Wellenlänge klein ist im Vergleich zu den Abmessungen des Bewegungs­
bereiches. 

Ausgehend von der Quantisierungsvorschrift (27 ,3) kann man den allge­
meinen Charakter der Verteilung der Niveaus im Energiespektrum erkennen. 
L1E sei der Abstand zwischen zwei benachbarten Niveaus, d. h. zwischen Ni-

1) Eine genauere Untersuchung, die die exakten (und nicht quasiklassischen) Lösungen 
der ScHRönrimER-Gleichung in der Nähe der Umkehrpunkte benutzt, führt zum Ersetzen 
der ganzen Zahl n in (27,2-3) durch n + 1/2. Sie zeigt ferner, daß die Anzahl der Null­
stellen der Wellenfunktion für endliche Abstände im gesamten Bewegungsbereich exakt 
n ist. 
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veaus, die sich in ihrer Quantenzahl n um 1 unterscheiden. LJE ist (für große n) 
im Vergleich zur Energie der Niveaus selbst klein. Auf Grund von (27,3) 
können wir deshalb 

LJE # :; dx = 2 n  Ii 

schreiben. Es ist aber oEfop = v, so daß 

#:� dx = #�x = T 

wird. Wir erhalten daher 
2n 

LJE = - Ii = Ii w . 
• T (27,4) 

Der Abstand zwischen zwei benachbarten Energieniveaus ist also gleich Ii w. 
Für eine ganze Reihe benachbarter Niveaus (für die die Differenz der Zahlen n 
klein gegenüber n selbst ist) kann man die zugehörigen Frequenzen w genähert 
als gleich ansehen. Wir kommen daher zu dem Schluß, daß die Niveaus jeweils 
in einem kleinen Abschnitt des quasiklassischen Teils des Spektrums äquidistant 
in Abständen von Ii w angeordnet sind. Dieses Ergebnis konnte man übrigens 
von vornherein erwarten, weil die zu den Übergängen zwischen verschiedenen 
Energieniveaus gehörigen Frequenzen im quasiklassischen Fall ganzzahlige Viel­
fache der klassischen Frequenz w sein müssen. 

Es ist interessant zu verfolgen, was im klassischen Grenzfall aus den Matrix­
elementen irgendeiner physikalischen Größe I wird. Wir gehen davon aus, daß 
der Mittelwert I für einen quantenmechanischen Zustand in der Grenze einfach 
in den klassischen Wert dieser Größe übergehen muß, wenn der Zustand selbst 
im klassischen Grenzfall die Bewegung eines Teilchens mit einer bestimmten 
Bahnkurve beschreibt. Zu einem solchen Zustand gehört ein Wellenpaket 
(siehe § 6), das man durch Superposition einiger stationärer Zustände mit be­
nachbarten Energiewerten erhält. Die Wellenfunktion eines derartigen Zu­
standes ist 

n 
Die Koeffizienten an sind dabei nur in einem kleinen Intervall LJn der Quanten­
zahl n von Null verschieden, 1 � LJn � n. Die Zahl n wird als groß voraus­
gesetzt, weil die stationären Zustände quasiklassisch sein sollen. Nach der 
Definition ist der Mittelwert von I 

J = f 'I'* f'l' dx = E E a! an lmn ei mm., t . 
n "' 

Ersetzen wir die Summation über n und m durch die Summation über n und 
die Differenz 8 = m - n, dann wird 

-1 _ .., .., * I ei w s t  - ""' ""' an+• an n+s, n . 
n • 

Gemäß (27,4) haben wir dabei W m n  = 8 wgeschrieben. 
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Die mit Hilfe der quasiklassischen Wellenfunktionen berechneten Matrix­
elemente lnm werden mit zunehmender Differenz m - n rasch kleiner. Gleich­
zeitig sind sie langsam veränderliche Funktionen der Zahl n selbst (bei fest­
gehaltenem m - n). Auf Grund dessen können wir näherungsweise 

1 = .E .E a! a,. I. ei w s t = .E la,.l 2 .E I. ei w s t  
n s 

mit der Bezeichnung 

1. = ln+•, n 

n 

schreiben. n ist ein gewisser Mittelwert der Quantenzahl in dem Intervall Lln. 
Wegen .E l anl 2 = 1 wird 

n 

1= .E ls ei w s t . (27,5) 

Die erhaltene Summe ist eine gewöhnliche FouRIER-Reihe. Im klassischen 
Grenzfall muß I mit der klassischen Größe f(t) übereinstimmen. Daher gehen 
die Matrixelemente lmn im klassischen Grenzfall in die Komponenten fm - n der 
FouRIER-Entwicklung der klassischen Funktion l(t) über. 

Die Beziehung (27,3) kann man noch auf andere Weise interpretieren. Das 
Integral p p dx ist die Fläche, die von der geschlossenen klassischen Phasen­
bahn des Teilchens begrenzt wird (d. h. von der Kurve in der p, x-Ebene, dem 
Phasenraum des Teilchens) . Teilen wir diese Fläche in Zellen· mit jeweils dem 
Flächeninhalt 2 n Ii ein, so erhalten wir insgesamt n Zellen. n ist aber die 
Zahl der gequantelten Zustände mit Energien, die nicht größer als ihr vor­
gegebener (der betrachteten Phasenbahn entsprechende) Wert sind. Auf diese 
Weise können wir sagen, daß im quasiklassischen Fall jedem gequantelten 
Zustand eine Zelle im Phasenraum mit dem Flächeninhalt 2 :n; Ii entspricht. 
Anders ausgedrückt, die Zahl der Zustände, die zum Volumenelement Llp Llx 
des Phasenraumes gehören, ist 

.dp .dx 
� · (27,6) 

Wenn man anstelle des Impulses den Wellenzahlvektor k = pf!i einführt, dann 
schreibt sich diese Zahl als Llk  Llx/2 :n;. Wie nicht anders zu erwarten ist, 
stimmt sie mit dem Ausdruck für die Anzahl der Eigenschwingungen eines 
Wellenfeldes überein (siehe I § 76). 

Die wichtige Begriffsbildung von "Zellen" im Phasenraum bezieht sich nicht nur 
auf die eindimensionale Bewegung, die wir hier betrachteten, sondern schlecht­
hin auf jede quasiklassische Bewegung. Das ist nach der obigen Bemerkung 
über den Zusammenhang mit der Zahl der Eigenschwingungen eines Wellen­
feldes in dem gegebenen Volumen klar. Allgemein enthält das Volumenelement 
des Phasenraumes eines Systems mit s Freiheitsgr.aden 

.dq] • • •  .dq, .dp] • . •  .dp, 
(2 n 1i)8 

(27,7) 
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Quantenzustände. Speziell ist die freie Bewegung in einem hinreichend großen 
Raumvolumen !)1) immer quasiklassisch. Die Zahl der Quantenzustände für 
eine derartige Bewegung mit Impulskomponenten in vorgegebenen Intervallen 
L1p.,, L1p11, L1p. ist gleich 

Q Llp., Llpll Llp. 
(2 n li)3 (27 ,8) 

Die Vorstellung von einem Teilchen, das sich in einem großen, jedoch end­
lichen Raum hereich Q bewegt, wird manchmal mit dem Ziel verwendet, die 
Behandlung eines kontinuierlichen d':Jrch diejenige eines diskreten Zustands­
spektrums zu ersetzen, wodurch eine Vereinfachung beim Aufschreiben der 
Formeln erreicht wird (wir werden diesen Kunstgriff im zweiten Teil dieses 
Buches verwenden). Für eine Bewegung in einem endlichen Volumen durch­
laufen die Eigenwerte der Impulskomponenten diskrete Zahlenfolgen (wobei die 
Intervalle zwischen benachbarten Werten umgekehrt proportional zu den 
Linearabmessu�gen des Bereiches sind und bei ihrer Vergrößerung gegen Null 
streben). Die Verteilungsdichte dieser Werte in einer solchen Folge (die Zu­
standsdichte) wird durch Ausdruck (27,8) bestimmt. Die normierten Wellen­
funktionen (ebene Wellen) für die stationären Zustände eines derartigen dis­
kreten Spektrums haben das Aussehen 

1 . 
VJ(r) = -=  e' P "  . yQ 

(wie man sagt, sind sie "auf 1 Teilchen im Volumen Q" normiert). 

§ 28. Der Durchgangskoeffizient 

(27,9) 

Uns interessiert jetzt die Bewegung eines Teilchens in einem Feld, wie es in 
Abb. 4 dargestellt ist : U(x) wächst monoton von einem konstanten Wert 
( U  = 0 für x - - oo) bis zu einem ander�n ( U  = U0 für x - + oo). Nach 
der klassischen Mechanik wird ein Teilchen, das sich in diesem Feld mit der 
Energie E < U0 von links nach rechts bewegt, bis an die Potentialschwelle 

IJ(xJ 

Abb. 4 

1) Überall dort, wo das Einführen eines "Normierungsvolumens" nötig wird, werden 
wir es mit dem Buchstaben Q bezeichnen. Dieses Volumen ist eine fiktive Größe, die 
stets aus den physikalischen Endresultaten herausfällt und deren Einführung nur aus 
Gründen der Bequemlichkeit hinsichtlich des zu erörternden Sachverhaltes erfolgt. 
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herankommen, dar_an reflektiert und sich in entgegengesetzte Richtung in 
Bewegung setzen. Für E > U0 bewegt sich das Teilchen mit verminderter 
Geschwindigkeit in der ursprünglichen Richtung weiter. In der Quanten­
mechanik tritt eine neue Erscheinung auf : Sogar fp.r E > U0 kann das Teilchen 
von der Potentialschwelle reflektiert werden. Die Reflexionswahrschein­
lichkeit muß man prinzipiell folgendermaßen ausrechnen. 

Das Teilchen soll sich von links nach rechts bewegen. Für große positive 
x-Werte muß die Wellenfunktion ein Teilchen beschreiben, das "über die 
Schwelle" hinweg gegangen ist und sich in positiver x-Richtung bewegt, d. h., 
sie muß für x --+ oo die asymptotische Gestalt 

1 
k2 = -,; V2 m (E - U0) (28, 1) 

haben (A ist eine Konstante). Um eine Lösung der SmmÖDINGER-Gleichung 
zu finden, die dieser Randbedingung genügt, berechnen wir den asymptotischen 
Ausdruck für x --+ - oo .  Er ist eine Linearkombination der beiden Lösungen 
der Gleichung für die freie Bewegung : 

l ,/­
k1 = -,;  y2 m E . (28,2) 

Das erste Glied entspricht einem auf die Schwelle zulaufenden Teilchen 
(1p sei so normiert, daß der Koeffizient dieses Gliedes gleich 1 ist). Das zweite 
Glied stellt ein an der Schwelle reflektiertes Teilchen dar. Die Wahrscheinlich­
keitsstromdichte in 'der einlaufenden Welle ist proportional kv in der reflek­
tierten proportional �IBI 2 und in der durchgegangenen proportional k2IAI 2• 
Wir definieren den DurchgaWJskoeffizienten D für das Teilchen als das Verhält­
nis der Wahrscheinlichkeitsstromdichte in der durchgegangenen Welle zu der 
Stromdichte in der einfallenden Welle : 

· 

(28 ,3 ) 

Analog kann man den Reflexionskoeffizienten R als das Verhältnis der Strom­
dichte der reflektierten Welle zur Stromdichte der einfallenden Welle definieren. 
Offensichtlich ist R = 1 - D :  

(28 ,4) 

(diese Beziehung zwische.n A und B ist automatisch erfüllt). 
Bewegt sich ein Teilchen mit einer Energie E < U0 von links nach rechts, 

dann ist k2 rein imaginär, und die Wellenfunktion klingt für x --+  + oo ex­
ponentiell ab. Der reflektierte Strom ist gleich dem einfallenden, d. h., das 
Teilchen wird an der Potentialschwelle total reflektiert. 

Auf analoge Weise wird die Erscheinung des Durchganges eines Teilchens 
durch eine Potentialbarriere (oder Potentialwall) behandelt, d. h. des Durch-
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gangs durch einen Raumbereich, in welchem die potentielle Energie die Gesamt­
energie des Teilchens übersteigt (in Abb. 5 ist eine eindimensionale Barriere dar­
gestellt) .  In § 22 wurde schon erwähnt, daß in der Quantenmechanik ein auf 
eine Barriere auftreffendes Teilchen diese mit einer vonNull verschiedenen Wahr­
scheinlichkeit "durchdringen" kann. Die Durchlässigkeit der Barriere für auf 
sie einfallende Teilchen kann man mittels des Durchgangskoeffizienten charak­
terisieren, der wiederum definiert wird als das Verhältnis der Dichten von durch-
gehendem zu einfallendem Teilchenstrom. 

· 

t/(X} 

Abb. 5 
a " 

Diesen Koeffizienten kann man in allgemeiner Form für eine eindimensionale 
Potentialbarriere abschätzen, die der Bedingung genügt, quasiklassisch zu sein. 

· Wir erinnern daran, daß sich entsprechend dieser Bedingung (siehe (26,12)) 
der "klassische Impuls" p(x) des Teilchens und mit ihm die potentielle Energie 
U(x) selbst hinreichend langsam mit x ändern müssen. Dies bedeutet, daß die 
Potentialbarriere einen geringen Anstieg besitzen und damit breit sein muß, 
so daß der Durchgangskoeffizient im quasiklassischen Falle klein wird. 

Die Teilchen mögen von links, aus dem Bereich I (Abb. 5), auf die Barriere 
einfallen. Im "klassisch nichterreich baren" Gebiet I I nimmt die Wellen­
funktion von links nach rechts nach dem Gesetz 

� - exp (- ! / )p) dx) , lpi = Y2 m (U - E) 

exponentiell ab (vgl. (26,11)) ,  wobei sie sich verhältnismäßig langsam ändert ; 
hier und im weiteren lassen wir Faktoren bei der Exponentialfunktion weg. 
Am anderen Rand der Barriere (im Punkte x = b) hat sich die Wellenfunktion 
um den Faktor 

exp (- ! ! )p) dx) 
im Vergleich zu ihrem Anfangswert in der einfallenden Welle (im Punkte x = a) 
verkleinert. Die Stromdichte ist proportional dem Betragsquadrat der Wellen­
funktion (wiederum nur bis auf langsam veränderliche Faktoren). Deshalb ist 
das Verhältnis der Dichten von durchgehendem zu einfallendem Strom gleich 

D � exp (- : I )p) dx) , (28,5) 
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Diese Abschätzung für den Durchgangskoeffizienten durch eine Potential­
barriere bleibt auch in solchen (realeren) Fällen richtig, in denen die Barriere 
nicht als Ganzes, sondern nur für den überwiegenden Teil ihrer Ausdehnung 
quasiklassisch ist. Solche Fälle liegen vor, wrnn die auf einer Seite schwach an­
steigende Kurve der potentiellen Energie auf der anderen derart steil abfällt, 
daß die quasiklassische Näherung nicht anwendbar wird. Die allgemeine Be­
dingung für eine Anwendbarkeit der Formel (28,5) besteht darin, daß die im 
E�ponenten stehende Größe groß sein muß.  

Aufgaben 

I. E s  ist der Reflexionskoeffizient an einer rechteckigen Potentialstufe zu bestimmen ; 
die Energie des Teilchens sei E > U0 (Abb. 6). 

{J(x) 

llo t-------

Abb. 6 ---�-------------x 

Lösung. In dem ganzen Bereich x > 0 hat die Wellenfunktion die Form (28, 1), in 
dem Bereich x < 0 die Form (28,2). Die Konstanten A und B werden aus den Anschluß­
bedingungen für 'I' und dtpjdx bei x = 0 bestimmt: 

1 + B = A ,  
daraus ergeben sich 

Der Reflexionskoeffizient (28,4) istl) 

R - (kt - kz )z - (Pt - Pz )z - k1 + kz - P1 + Pz · 

Für E = U0 (k2 = 0) wird R gleich 1, für E -+ oo strebt R wie R = ( U0j4 E)2 gegen Null. 
2. Man berechne den Durchgangskoeffizienten für einen rechteckigen Potentialwall 

(Abb. 7). 

L ö sung.  Es sei E > U0, und das einlaufende Teilchen bewege sich von links nach rechts. 
Wir haben dann für die Wellenfunktion in den verschiedenen Bereichen die folgenden 

1) Im klassischen Grenzfall muß der Reflexionskoeffizient Null werden. Indessen ent­
hält der gefundene Ausdruck überhaupt keine Quantenkonstante. Dieser scheinbare 
Widerspruch klärt sich folgendermaßen auf. Dem klassischen Grenzfall entspricht eine 
DE BROGLIE-Wellenlänge des Teilchens Ä - lifp, die im Vergleich zu den für das Problem 
charakteristischen Abmessungen klein ist, d. h., verglichen mit Abständen, in denen sich 
das Feld U(x) merklich ändert. In dem behandelten schematischen Beispiel ist dieser 
Abstand gleich Null (im Punkt x = 0), so daß der Grenzübergang nicht ausgeführt werden 
kann. 

7 Kurzfassung II 
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Ausdrücke : 

Abb. 7 

für x < 0 :  

für O <  x < a :  

für x > a :  

1/(x} 

llo 1----, 

a 
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IJ! = ei k, z  + A e -i k1 x , 

tp = B ei k, x + B' e -
-ik, x , 

IJ! = 0 ei k1 x  

(auf der Seite x > a darf nur die durchgegangene Welle vorhanden sein, die sich in po­
sitiver x-Richtung ausbreitet). Die Konstanten A, B, B' und C werden aus den Anschluß­
bedingungen für tp und dtpjdx in den Punkten x = 0 und x = a bestimmt. Der Durchgangs­
koeffizient ist definiert als D = k11Ci2fk1 = j0j2• Die Rechnungen ergeben 

4 k2 k2 D = 1 2 
• 

(ki - k�)2 sin2 a k2 + 4 ki k� 

Für E < U0 ist k2 eine rein imaginäre Größe. Den entsprechenden Ausdruck für D 
erhält man, in�em man k2 durch i u2, mit 1t u2 = Jf2 m ( U0 - E), ersetzt : 

4 k2 u2 
D _ 1 2 

- (k� + u�)2 �h2 a �e2 + 4 ki u� 

3. Es ist nach Formel (28,5) der Durchgangskoeffizient für die in Abb. 8 dargestellte 
Potentialbarriere abzuschätzen; U(x) = 0 für x < 0, U(x) = U0 - F x für x > 0. 

1/(x) 

llo 

Abb. 8 

Lö sung. Eine einfache Rechnung führt zu dem Ergebnis 

D - exp [- 4 f2 m ( U0 - E)3/2] . 
3 1t F 

4. Es ist die Wahrscheinlichkeit für den Austritt eines Teilchens (mit dem Drehimpuls 
Null) aus einem kugelsymmetrischen Potentialtopf abzuschätzen; U(r) = - U0 für r < r0, 
für r > r0 jedoch CoULOMB-Abstoßung : U(r) = afr (Abb. 9). 
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1/(r) 

Abb. 9 -llo r----' 

Lösung. Gemäß (28,5) haben wir1) 

und die Berechnung des Integrals gibt 

{ 2 o: [l/� 1 I E ro 1/E r0 ( E r")]} 
w - exp - --,; T arccos V -o:- - -o:- 1 - -o:- . 

· Im Grenzfall r0 --+  0 geht diese Formel über in ( :no: 1 I�) ( 2 n o: ) 
w - exp - T V E = exp - ----,;-;;-- . 

Diese Formeln sind anwendbar, wenn der Exponent groß ist, d. h. o:fli v � 1 gilt. 

§ 29. Die Bewegung im kugelsymmetrischen Feld 

85 

Das Problem der Bewegung zweier miteinander wechselwirkender Teilchen ka;nn 
in der Quantenmechanik auf ein Einkörperproblem zurückgeführt werden. Das 
geschieht ähnlich wie in der klassischen Mechanik (I § 11 ). Der HAMILTON­
Operator zweier mit dem Potential U(r) (r ist der Abstand zwischen den Teil­
chen) wech-selwirkender Teilchen (mit den Massen � und m2) hat die Form 

A fi2 fi2 
H = - 2 m1 

Ll1 - 2 m2 
Ll2 + U(r) . (29,1) 

Darin sind Ll1 und Ll2 die LAPLACE-Üperatoren in bezug auf die Koordinaten der 
Teilchen. Wir führen statt der Ortsvektoren der Teilchen, r1 und r2, die neuen 
Variablen R und r ein : 

(29,2) 

1) Hier wird der Umstand benutzt, daß sich das Problem der Bewegung eines Teilchens 
(mit Drehimpuls gleich Null) im Zentralfeld auf dasjenige einer eindimensionalen Be­
wegung mit derselben potentiellen Energie zurückführen läßt - siehe § 30. 

7 •  
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(r - Vektor des gegenseitigen Abstandes, R - Radiusvektor zum Massen­
schwerpunkt der Teilchen). Eine einfache Rechnung ergibt 

A h,2 h,2 
H = - 2 ( + ) LJR - -2 L1 + U(r) (29,3) m1 m� m 

(LJR und L1 sind die LAPLACE-Üperatoren _ bezüglich der Komponenten von R 
und r, � + m2 ist die Gesamtmasse des Systems, m = m1 m2/(� + m2) ist- die 
sogenannte reduzierte Masse). 

Der HAMILTON-Üperator zerfällt also in die Summe aus zwei unabhängigen 
Teilen. Dementsprechend kann man 1p(r1, r2) als Produkt cp(R) 1p(r) ansetzen. 
Die Funktion cp(R) beschreibt dabei die Bewegung des Schwerpunktes (als 
freie Bewegung eines Teilchens mit der Masse m1 + m2). 1p(r) beschreibt die 
Relativbewegung der Teilchen (als Bewegung eines Teilchens mit der Masse m 
in dem kugelsymmetrischen Feld U = U(r)). 

Die ScHRÖDINGER-Gleichung für die Bewegung eines Teilchens in einem 
kugelsymmetrischen Feld hat die Gestalt 

2 m  
L11p + V [E - U(r)] V' = 0 .  (29,4) 

Wir verwenden den bekannten Ausdruck für den LAPLACE-Üperator in Kugel­
koordinaten und schreiben diese Gleichung in der Form 

- - r2 - - -- - sm (J - . .L -- --1 iJ ( Ölp) 1 [ 1 iJ ( • Ölp) 1 iJ2lp ] 
r2 ör ör + r2 sin (J iJ(J iJ(J 1 sin2 (J ötp2 

2 m  + v [E - U(r)] 1p = o .  (29,5) 

Führen wir hier den Operator l2 (14,15) für das Quadrat des Drehimpulses ein, 
so erhalten wir 

h,2 [ 1 iJ ( iJ!p ) J2 ] 
- - - - r2 - + - V' + U(r) 1p = E 1p .  2 m  r2 ör ör r2 (29,6) 

Bei der Bewegung in einem kugelsymmetrischen Feld bleibt der Drehimpuls 
erhalten. Wir betrachten die stationären Zustände mit bestimmten Werten 
des Drehimpulses l und seiner Projektion m. Die Winkelabhängigkeit der 
Wellenfunktionen wird durch Vorgabe der Werte l und m festgelegt. Dem­
entsprechend suchen wir die Lösungen der Gleichung (26,6) in der Gestalt 

1p = R(r) Yt m((J, cp) . - (29,7) 
�erücksichtigen wir, daß eine Eigenfunktion des Drehimpulses der Gleichung 
l2 Y1m = l (l + 1) Y1m genügt, dann erhalten wir für die Radialfunktion R(r) 
die folgende Gleichung : 

-

2._ � (
r2 dR ) - l (l + 1) R 

2 m  [E - U(r ] R = 0 .  r2 dr dr r� + h,2 ) (29,8) 

Wir merken an, daß diese Gleichung die Werte l. = m überhaupt nicht enthält. 
Dies entspricht der uns schon bekannten .(2 l + !) -fachen Richtungsentartung 
von Niveaus bezüglich des Drehimpulses. 
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Wir wollen uns mit der Untersuchung des Radialanteils der Wellenfunk­
tionen beschäftigen. Durch die Substitution 

R(r) = x(r) (29,9) r 

wird aus der Gleichung (29,8) 

d2x [2 m l (l + 1)] 
dr2 + Tz (E - U) - r2 X = 0 · (29,10) 

Wir nehmen an, daß die potentielle Energie U(r), sollte sie auch für r --+ 0 
unendlich werden, langsamer ansteigt als 1/r2, d. h. der Bedingung 

r2 U(r) --+ 0 für r --+  0 (29, 11 )  

genügt. Damit wird (im Falle eines Feldes, für das U --+ - oo bei r --+  0 gilt) 
die Möglichkeit eines "Sturzes" des Teilchens ins Zentrum ausgeschlossen, wie 
bereits in der Fußnote auf S�ite 6 1  erwähnt wurde. Demzufolge bleibt die 
Wellenfunktion (und mit ihr die Wahrscheinlichkeitsdichte 11fJI 2 )  im gesamten 
Raum einschließlich des Punktes r = 0 endlich. Die Funktion X = r R ihrer­
seits muß folglich für r = 0 Null sein : 

x(O) = o .  (29,12) 

Die Gleichung (29, 10) stimmt formal mit der ScHRÖDINGER-Gleichung für 
eine eindimensionale Bewegung in einem Feld mit der potentiellen Energie 

11.2 l (l + 1 )  
U1(r) = U(r) + -2 2 m r (29,13) 

überein ; das zweite Glied kann man als Zentrifugalenergie bezeichnen. Das 
Problem der Bewegung in einem kugelsymmetrischen Feld wird also auf das 
Problem einer eindimensionalen Bewegung in einem Bereich zurückgeführt, der 
auf einer Seite beschränkt ist (Randbedingung X = 0 für r = 0). "Eindimen­
sionalen Charakter" besitzt auch die Normierungsbedingung für Funktionen x, 
die sich aus dem Integral 

bestimmt. 

00 00 
I I RI 2 r2 dr = I  IXI 2 dr = 1 
0 0 

(29,14) 

Zusammen mit der Randbedingung (29,12) wird durch Vorgabe eines (zu­
lässigen) Energiewertes die Lösung der Gleichung (29, 10) vollständig bestimmt. 
Das bedeutet, daß bei einer Bewegung in einem Zentralfeld ein Zustand völlig 
durch die Werte E, l, m festgelegt wird : Energie, Drehimpuls und seine Pro­
jektion bilden zusammen einen vollständigen Satz physikalischer Größen für 
eine solche Bewegung. 

Da die Bewegung in einem kugelsymmetrischen Feld auf eine eindimensionale 
Bewegung zurückgeführt worden ist, kann man den Knotensatz anwenden 
(siehe § 22). Wir ordnen die Energieeigenwerte (des diskreten Spektrums) bei 
gegebenem l nach wachsenden Werten der Energie und numerieren sie mit den 
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Ordnungszahlen n.. Dem niedrigsten Niveau wird die Nummer nr = 0 zu­
geordnet. nr gibt dann die Zahl der Knoten in dem Radialanteil der Wellen­
funktion für endliche r-Werte an (der Punkt r = 0 ·wird nicht mitgezählt). 
Die Zahl n. wird die radiale Quantenzahl genannt. Die Zahl l heißt bei einer 
Bewegung in einem kugelsymmetrischen Feld manchmal azimutale Quantenzahl, 
m nennt man die magnetische Quantenzahl. 

-

Für die Bezeichnung der Zustände mit verschiedenen Drehimpulswerten l 
gibt es eine allgemein übliche Symbolik. Die Zustände werden nach der fol­
genden Zuordnung mit den Buchstaben des lateinischen Alphabets bezeichnet : 

l = 0 1 2 3 4 5 6 7 . . .  
8 p d f  g h i  k . • •  (29, 15) 

Wir wollen die Gestalt der Radialfunktion in der Nähe des Koordinaten­
ursprungs bestimmen. Für kleine r suchen wir R(r) in der Form R = const · r•. 
Setzen wir das in die Gleichung 

:r (r2 ��) - l (l + 1) R = 0 

ein, die man aus (29,8) durch Multiplikation mit r2 und anschließenden Grenz­
übergang r -+  0 erhält, dann finden wir (unter Berücksichtigung von (29,11)) 

8 (8 + 1) = l (l + 1) • 

Daraus ergibt sich s = l oder s = - (l + 1). Die Lösung mit s = - (l + 1) 
erfüllt die erforderlichen Bedingungen nicht ; sie wird für r = 0 unendlich. 
Es bleibt also die Lösung mit s = l übrig, d. h., in der Nähe des Koordinaten­
ursprungs sind die Wellenfunktionen der Zustände mit gegebenem l propor­
tional zu r1 : 

(29,16) 
Die Wahrscheinlichkeit, daß sich das Teilchen in einer Entfernung vom Zen­
trum zwischen r und r + dr befindet, wird durch die Größe r2J RJ 2 gegeben und 
ist daher proportional zu r2 <1 +1>. Sie geht im Koordinatenursprung um so 
schneller gegen Null, je größer der Wert von l ist. 

§ 30. Kugelwellen 

Die ebene Welle (20,9) beschreibt einen stationären Zustand, in dem das 
Teilchen einen bestimmten Impuls p (und die Energie E = p2j2 m) hat. Wir 
wollen jetzt solche stationären Zustände eines freien Teilchens betrachten 
(Kugelwellen), in denen es neben der Energie bestimmte Werte für den Betrag 
und die Projektion des Drehimpulses hat. Statt der Energie führen wir zweck­
mäßigerweise den Betrag des Wellenzahlvektors ein : 

l ,,­k = fj r2 m E .  (30,1) 
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Die Wellenfunktion eines Zustandes mit dem Drehimpuls l und der Pro­
jektion m ist 

'ljJkl m  = R�r., (r) Yz m(O, rp) . (30,2) 

Die Radialfunktion wird dabei durch die Gleichung 
, 2 , [ l (l + I) ] 30 Rkl + r R"1 + k2 -

r2 R�r. z = 0 ( ,3) 

(Gleichung (29,8) ohne U(r)) bestimmt. Die zum (bzgl. k) kontinuierlichen 
Spektrum gehörenden Wellenfunktionen "Pk lm genügen der Orthonormierungs­
bedingung 

I "Ptz• m' "Pklm d V = bu· bmm' b(k' - k) • 

Für verschiedene l, l' und m, m' wird die Orthogonalität durch die winkel­
abhängigen Anteile der Wellenfunktionen gewährleistet. Die Radialfunktionen 
müssen nach der Vorschrift 

00 
I r2 R"' l R"1 dr = b(k' - k) 
0 ' 

normiert werden. 
Für l = 0 kann man die Gleichung (30,3) auch als 

d2 

dr2 (r Rko) + k2 r Rk o = 0 

(30,4) 

(30,5) 

schreiben. Ihre für r = 0 endliche und nach der Vorschrift (30,4) normierte 
Lösung ist 

R 1 j2 sin k r  
k O  = V -;; -r- . 

Um die Richtigkeit der Normierung zu überprüfen, schreiben wir 
00 00 J r2 Rk' O R"0 dr = � J sin k' r sin k r · dr 

0 0 
00 00 

(30,6) 

= � J cos (k' - k) r · dr + � J cos (�' + k) r · dr . (30,7) 

Gemäß der Formel 
00 

0 0 

I cos cx x · dx = n b(cx) 
0 

(30,8) 

liefert das erste Integral in (30,7) die geforderte b-Funktion ; das zweite Integral 
wird Null, da k + k' =1= 0 gilt.1) 

I 
1) Formel (30,8) folgt aus (12,9) durch Abspalten des Realteils in beiden Gleichungs­

seiten und durch Ersetzen des Integrals mit den Grenzen - oo und oo durch das mit zwei 
zu multiplizierende Integral von 0 bis oo .  
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Für l =I= 0 haben die Funktionen R1c1 ein kompliziertes Aussehen. Sie können 
sich jedoch für große Entfernungen r von (30,6) nur durch die Phase der trigo­
nometrischen Funktion unterscheiden. Dies folgt daraus, daß man für r � oo 
in der Gleichung (30,3) das Glied l (l + l)jr2 weglassen kann und die Gleichung 
sich damit nicht von derjenigen für l = 0 unterscheidet (da eine solche Glei­
chung sich jedoch nur auf Bereiche großer r bezieht, entfällt die Möglichkeit, 
eine der beiden unabhängigen Lösungen aus der Endlichkeitsbedingung für 
r = 0 auszuwählen). Die Phasenänderung erweist sich im Vergleich zu dem 
Fall l = 0 als n lf2, so daß sich für große Entfernungen die asymptotische 
Gestalt 

ergibt.l) 

R 
1 j2 sin {k r - n l/2) 

/c l = v -n r (30,9) 

Ein analoger asymptotischer Ausdruck gilt nicht nur für den Radialanteil 
der Wellenfunktion einer freien Bewegung, sondern auch für die Bewegung 
(mit positiver Energie) in einem beliebigen Feld, das für r � oo genügend 
schnell abnimmt.2) In großen Entfernungen können wir in der ScHRÖDINGER­
Gleichung sowohl das Feld als auch die Zentrifugalenergie vernachläs�igen, 
und wir erhalten wiederum für R"1 eine Gleichung der Form (30,5). Die all­
gemeine Lösung dieser Gleichung ist 

1 j2 1 . ( :rt l  ) Rk l R::; V n 
r sm k r - 2 + 151 • (30,10) 

Darin ist 151 eine konstante Phasenverschiebung ; das Glied -l n/2 im Argument 
des Sinus ist deshalb eingeführt worden, damit bei Abwesenheit des Feldes 
t51 = 0 ist. Die konstante Phase t51 wird durch die Randbedingung (R�cz soll für 
r � 0 endlich sein) festgelegt, für die die exakte ScHRÖDINGER-Gleichung gelöst 
werden muß, und kann nicht allgemein berechnet werden. Die Phasen 151 sind 
selbstverständlich Funktionen von l und von k ;  sie sind ein wesentliches Cha­
rakteristikum für die Eigenfunktionen des kontinuierlichen Spektrums. 

Wir betrachten ein freies Teilchen, das sich mit bestimmtem Impuls p = k Ii 
in positiver z-Richtung bewegt. Die Wellenfunktion eines solchen Teilchens 
hat die Gestalt 

1p = const · eikz = const . ei k r cos 0 • (30, 11) 
Wir entwickeln diese Funktion nach den Wellenfunktionen "P�c 1 ". für die freie 
Bewegung mit bestimmten Drehimpulsen. Da die Funktion (30, 11) axial­
symmetrisch zur z-Achse ist, können in die Entwicklung nur diejenigen Funk-

1) Die für r = 0 endlich bleibende Lösung der Gleichung {30,3) läßt sich durch die 
BEBBEL-Funktion mit halbzahligem Index ausdrücken : 

R1cz = Jl+l/2(k r)/Jfkr. 
Der bekannte asymptotische Ausdruck für die BEBBEL-Funktionen führt auf {30,9). 2) Genauer, das Feld U(r) muß schneller abklingen als lfr. 
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tionen eingehen, die von dem Winkel cp unabhängig sind, d. h. die Funktionen 
mit m = 0. Diese Funktionen sind "Pklo  = const · P1(cos ()) R�cz, und demzufolge 
muß die gesuchte Entwicklung die Gestalt 

00 
eikz = }; a1 R�c1 (r) P1(cos 6) 

l�O 
besitzen, worin die a1 konstante Koeffizienten bedeuten. 

(30,12) 

Zur Bestimmung dieser Koeffizienten multiplizieren wir Gleichung (30, 12) 
mit P1(cos ()) sin () und integrieren beide Seiten über d(). Berücksichtigen wir 
die Orthogonalität der Polynome P1 für verschiedene l sowie den Wert des 
N ormierungsintegrals 

"' J PHcos ()) sin () d() = 2 l: 
I 

, 
0 

dann erhalten wir 
"' I eikr cos 8 P1(cos ()) sin () d() = a, 2 l: I Rk l(r) · 

0 

(30,13) 

(30,14) 

Das Integral auf der linken Seite der Gleichung läßt sich für das Gebiet großer 
r leicht berechnen, da man dann alle Glieder mit höheren Potenzen von 1/r 
vernachlässigen kann. Im Rahmen dieser Genauigkeit erhalten wir nach Ein­
führen der neuen Integrationsvariablen p, = cos () durch partielle Integration 

1 I 
. 

eikrp/1 eikr_ (- I)l e - ikr  
e•krp Pz(p,) dp, ::::::: Pz(p,) --:----k = 

. k � r - 1 � r 
- 1 

(hierbei wurden außerdem die bekannten Relationen P1(1) = 1, P1(-1) = ( - 1)1 
verwendet). Diesen Ausdruck kann man in der Form 2 il sin (k r - :!....!_) k r 2 
aufschreiben, so daß schließlich Gleichung (30,14) mit den R�c1 aus (30,9) 

(30,15) 

liefert. Mit diesen Koeffizienten nimmt die Entwicklung (30,12) für große 
Entfernungen r die folgende asymptotische Form an : 

eikz :=::::: k
i
r 1
�

0 
i1 (2 l  + 1) P1(cos ()) sin ( k r - n2l ) .  (30,16) 

Diese Entwicklung werden wir im weiteren, in der Theorie der Streuung eines 
Teilchens, benötigen. 
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Aufgaben 

I .  Es sind die Energieniveaus für die Bewegung eines Teilchens mit dem Drehimpuls 
l = 0 in einem kugelsymmetrischen Potentialtopf zu bestimmen: U(r) = - U0 für r < a 
und U(r) = 0 für r > a. 

Lösung. Für l = 0 hängt die Wellenfunktion nur von r ab. Für das Innere des Po­
tentialto� lautet die ScHRÖDINGER-Gleichung 

I d2 I 
7 dr2 (r 1p) + k2 1p = 0 ,  k = h y'2 m ( U0 - lEI ) . 

Die für r = 0 endliche Lösung ist 

sin k r  
1p = A -- . 

r 
Für r > a haben wir die Gleichung 

I d2 . 
7 dr2 

(r V') - "2 V' = 0 ,  I t/­" = -,;  r 2 m lEI .  

Die im Unendlichen verschwindende Lösung ist 

e - � r  
V' = A' -- . 

r 

/ 

Die Anschlußbedingung für die logarithmische Ableitung von 1p r bei r = a ergibt 

oder 

1 j2 m U0 
k ctg k a = - " = - V � - k2 (I)  

sin k a = ± k a V 2 m:: Uo 
k a .  (2) 

Durch diese Gleichung werden implizit die Energieniveaus bestimmt (es müssen diejenigen 
Wurzeln der Gleichung genommen werden, für die ctg k a < 0 ist, wie aus (I) folgt) . 
Das erste dieser Niveaus (das Niveau mit l = 0) ist gleichzeitig das niedrigste mögliche 
Energieniveau,

. 
d. h., es ents.pricht dem Grundzustand des Teilchens. 

' 
Abb. IO ' 

Ist der Potentialtopf zu flach (U0 zu klein), dann gibt es überhaupt keine negativen 
Energieniveaus, d. h., das Teilchen kann nicht vom Potentialtopf "festgehalten werden". 
Das kann man an Hand der Gleichung (2) mit Hilfe der folgenden graphischen Konstruk­
tion leicht einsehen. Die Wurzeln einer Gleichung der Gestalt ± sin x = cx x werden durch 
die Schnittpunkte der Geraden y = cx x mit den Kurven y = ± sin x dargestellt. Wir 
müssen dabei nur diejenigen Schnittpunkte berücksichtigen, für die ctg x < 0 ist. Die 
entsprechenden Teile der Kurven y = ± sin x sind in Abb. IO durch eine ausgezogene Linie 
wiedergegeben .. Für zu großes cx (zu kleines U0) gibt es, wie wir sehen, überhaupt keine 
solchen Schnittpunkte. 
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2. Für den räumlichen harmonischen Oszillator (ein Teilchen in dem Feld U = m w2 r2/2) 
sind die Energieniveaus und der Grad ihrer Entartung zu bestimmen. 

Lösung. Die SoHRÖDINGER-Gleichung für ein Teilchen in dem Feld U = 1/2 m X 
w2 (x2 + y2 + z2) erlaubt die Separation der Variablen, so daß man drei Gleichungen wie 
für je einen linearen Oszillator erhält. Die Energieniveaus sind deshalb 

E = 1i w (n1 + n2 + na +  !) = li w (n +  !) · 
Der Entartungsgrad des n-ten Niveaus ist gleich der Zahl der Möglichkeiten, n als Summe 

dreier positiver ganzer Zahlen1) (einschließlich der Zahl 0) darzustellen; diese ist 

1 
. 

2 (n + 1) (n + 2) • 

§ 31. Die Bewegung im CouLoMB-Feld 

Betrachten wir nun die Bewegung eines Elektrons im Wasserstoffatom oder 
im wasserstoffähnlichen Ion, d. h. im Felde eines Kernes der Ladung +Ze. 
Setzt man voraus, daß der Kern unbeweglich ist, dann reduziert sich die 
Problemstellung auf die Frage nach der Bewegung eines Teilchens im an­
ziehenden CouLOMB-Feld 

Z e2 
U = - - . r (31,1) 

Von den in § 22 dargelegten allgemeinen Überlegungen her ist sofort klar, daß 
das Spektrum der positiven Energieeigenwerte E kont�nuierlich und dasjenige 
negativer Energien diskret ist. Das letztere wiederum entspricht gebundenen 
Elektronenzuständen und interessiert uns hier. 

Bei Aufgaben, die m�t dem CouLOMB-Feld verknüpft sind, ist es zweck­
mäßig, für alle Größen spezielle Maßeinheiten, sogenannte atomare Maß­
einheiten, zu verwenden. Und zwar werden als Maßeinheiten für Masse, Länge 
und Zeit entsprechend 

m = 9,11 · I0-28 g, 
fi3 

- = 2 42 . I0-17 s m e' ' 

fi2 - = 0 529 · I0-8 cm 
m e2 ' ' 

(m - Elektronenmasse) gewählt ; die atomare Längeneinheit nennt man BoHR­
scher Radius. Alle übrigen Einheiten werden hieraus abgeleitet ; so lautet die 
Energieeinheit2) . 

m e' 
Tz =  4,36 · I0-11 erg = 27,21 eV . 

Die atomare Ladungseinheit ist die Elementarladung e · 4,80 · 10-10 CGSE. 
Den Übergang ,zu atomaren Einheiten kann man in den Formeln dadurch 
vollziehen, daß man in ihnen e = 1, m = 1, 1i = 1 setzt. 

1) Mit anderen Worten ist dies die Zahl der Möglichkeiten, n gleichartige Kugeln auf 
drei Kästen zu verteilen. 

2) Die Hälfte dieser Energie trägt die Bezeichnung Ry - R YDBERG. 
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Die Gleichung (29,8) für die Radialfunktionen hat die Gestalt 
d2R � dR __:_ l (l + I) R 

2 m  (E Z e2 ) 
R = O dr2 + r dr r2 + 1i2 + 

r 

oder in den neuen Einheiten 

(31,2) 

(31,3) 

Statt des Parameters E und der Variablen r führen wir die neuen Größen 

z 
n = -=== y- 2 E ' 2 r Z  

e = ­n 
(31,4) 

ein (für negative E ist n eine positive reelle Zahl). Aus der Gleichung (31,3) 
wird nach dem Einsetzen von (31,4) 

R" + � R' + [- _!_ + � - l (l + I)] R = 0 (31,5) 
e 4 e e2 

(die Striche bedeuten die Ableitung nach e) .  
Für kleine e ist die Lösung, die den notwendigen Endlichkeitsbedingungen 

genügt, proportional zu e1 (siehe (29,16)). Zur Untersuchung des asymptotischen 
Verhaltens von R für große e lassen wir in (31,5) die Glieder mit 1/e und l/e2 
weg und erhalten 

R" = R 
4 

und daraus R = e±Q/2• Die uns interessierende, im Unendlichen verschwin­
dende Lösung verhält sich für große e folglich wie e-e/2• 

Auf Grund dessen substituiert man natürlich 

R = e1 e- Q/2 w(e) ; 

danach lautet die Gleichung (31,5) 
e w" + (2 l + 2 - e)  w' + (n - l - 1) w = 0 .  

(31,6) 

(31,7) 

Die Lösung dieser Gleichung darf im Unendlichen nicht schneller als eine end­
liche Potenz von e divergieren, für e = 0 muß sie endlich sein. 

Wir gehen nach dem genau gleichen Konzept wie in § 25 vor und suchen 
die Lösung in Gestalt einer Reihe 

00 
w = I: a. (!8 • 

•=0  
Setzen wir diese in (31,7) ein, so finden wir 

00 
I: [a. 8 (8 - 1) + (2 l + 2) a, 8] e·- 1 

• = 1  
00 

+ I: [- a. 8 + a, (n - l -- 1)] rl = 0 
8=0 

(31,8) 
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oder nach Ersetzen des Summationsindexes 8 in der ersten Summe durch 8 + 1 
00 

J: [as+1 (8 + 1) (8 + 2 l + 2) + a, (n - l - 1 - 8)] (/ = 0 .  
8 = 0  

Durch Nullsetzen der Entwicklungskoeffizienten finden wir die Rekursions­
formel 

n - l - 1 - s 
a,+l = - a, 

(s + 1) (s + 2 l  + 2) 
(31,9) 

Hieraus folgern wir, daß die Reihe (31,8) auf ein Polynom (der Ordnung 
n - l - 1) führt, wenn n = l + 1, l + 2, . . •  ist. 

Die Zahl n muß auf diese Weise positiv ganzzahlig sein, wobei für gegebenes l 
gilt : 

(31, 10) 

Nach der Definition (3 1,4) des Parameters n haben wir 

n = 1, 2, . . .  (3 1,11) 

Damit sind die Energieniveaus des diskreten Spektrums im CouLOMB-Feld 
bestimmt. Es gibt unendlich viele Niveaus zwischen dem Grundzustand 
E1 = - 1/2 und Null. Die Abstände zwischen zwei aufeinanderfolgenden Ni­
veaus werden mit zunehmendem n immer kleiner ; bei der Annäherung an den 
Wert E = 0 liegen die Niveaus immer dichter, sie häufen sich bei E = 0, wo 
sich das diskrete Spektrum an das kontinuierliche anschließt. In den üblichen 
Einheiten lautet die Formel (31,11)1) 

Z2 m e' 
E = - 2 fi2 n2 . (31,12) 

Die ganze Zahl n heißt die H auptquantenzahl. Die in § 29 definierte radiale 
Quantenzahl ist 

nr = n - l - 1 .  

Für einen festen Wert der Hauptquantenzahl kann die Zahl l die Werte 
l = 0, 1, . . .  , n - 1 (31,13) 

annehmen, das sind insgesamt n verschiedene Werte. In den Ausdruck (31 ,11)  
für die Energie geht nur die Hauptquantenzahl n ein. Alle Zustände mit ver­
schiedenen l, aber den gleichen n, haben die gleiche Energie. Jeder Eigenwert 
ist also nicht nur in bezug auf die magnetische Quantenzahl m entartet (wie 
bei jeder Bewegung in einem kugelsymmetrischen Feld), sondern auch in bezug 
auf die Zahl l. Diese letztere Entartung (man nennt sie zufällig) ist eine Eigen-

1) Formel (31,12) wurde erstmalig von N. BoHR im Jahre 1913 noch vor der Schaffung 
der Quantenmechanik angegeben. In der Quantenmechanik wurde sie von W. PAULI (1926) 
aus der Matrizenmechanik und einige Monate später von E. SoHRÖDINGER mit Hilfe der 
Wellengleichung hergeleitet. 

· 

I 
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art des CoULOMB-Feldes. Zu jedem Wert von l gehören, wie wir wissen, 2 l  + 1 
verschiedene Werte von m. Der Entartungsgrad des n-ten ' Energieniveaus 
ist deshalb 

n -1 
}; (2 l + 1) = n2 . (31,14) 
1=0 

Wir werden nicht den allgemeinen Ausdruck für die Wellenfunktionen des 
Elektrons aufschreiben, sondern beschränken uns auf die Wellenfunktion für 
seinen Grundzustand. Für n = 1, l = 0 liefert die Reihe (31,8) eine Konstante ; 
das Gleiche trifft auch für den Winkelanteil der Wellenfunktion Y00 zu. Des­
halb lautet die Wellenfunktion 

z3/2 1p = - e-Z r 
F 

Sie ist durch die übliche Bedingung 

normiert. 

00 
I ltpl 2 dV = 4 n f r2 ltpl 2 dr = 1 

0 

(31,15) 

Der "Radius" eines Atoms wird durch diejenige Entfernung r charakterisiert, 
in der ein merklicher Abfall der Dichte ltpl 2 für die Aufenthaltswahrscheinlich­
keit der Elektronen eintritt. Im Falle des Wasserstoffatoms (Z = 1) ergibt 
sich als Größenordnung dieser Entfernung gerade die atomare Längeneinheit, 
wie dü�s aus (31,15) ersichtlich ist. In üblichen Einheiten ist das der BoHRsehe 
Radius a8 = 1i,2fm e2• Die Größenordnung für die Elektronengeschwindigkeit 
im Atom wird aus der Unschärferelation bestimmt : m v ,...., hfa8, woraus 
v ,...., e2fh folgt. 

Aufgaben 

1.  Es ist die Wahrscheinlichkeitsverteilung für die verschiedenen Impulswerte im Grund­
zustand des Wasserstoffatoms (Z = 1) zu bestimmen. 

Lösung. Die Wellenfunktion in der p-Darstellung erhält man aus (31 ,15) als Integral 
(12,12). Das Integral wird durch Übergang zu Kugelkoordinaten berechnet, wobei die 
z-Achse mit der p-Richtung übereinstimmt: 

' 

00 1 

a(p) = --1-f lp(T) e-iP�" dV = � J Je-r-ipr cos 6 d cos (} .  r2 dr . (2 :n)3/2 :n y'2 0 - 1  
Im Ergebnis dessen erhalten wir 

2 y'2 1 
a(p) = -:n- (1 + p2)2 • 

Die Wahrscheinlichkeitsdichte im p-Raum ist la(p)l2• 



§ 31. Die Bewegung im CouLOMB-Feld 97 

2. Es ist das mittlere Potential des Feldes zu berechnen, das vom Kern und von dem 
Elektron im Grundzustand des Wasserstoffatoms erz!lugt wird. 

Lösung. Am einfachsten bestimmt man das mittlere Potential f/Je der Elektronen­
hülle in einem beliebigen Punkt 1' als kugelsymmetrische Lösung der POlSBON-Gleichung 
mit der Ladungsdichte e = - 1'1'12 : 

1 d2 
7 dr2 (r rpe) = - 4 n e = 4 e -2r . 

Wir integrieren diese Gleichung und wähle� die Konstanten so, daß rpe(O) endlich und 
rpe( oo) = 0 ist. Dann addieren wir das Potential des Kernfeldes und erhalten 

rp = ! + f/Je(r) = (! + 1) e - 2 r . 

Für r � 1 haben wir rp � 1/r (Kernfeld), und für r ?> 1 ist das Potential rp � e -2• (Ab­
schirmung des Kerns durch das Elektron). 





Störungstheorie 

§ 32. Zeitunabhängige Störungen 

IV 

Nur für relativ wenige, sehr einfache Fälle kann eine exakte Lösung der ScHRÖ­
DINGER-Gleichung gefunden werden. Die meisten Probleme der Quantenmecha­
nik führen auf zu komplizierte Gleichungen, die man nicht mehr exakt lösen 
kann. Häufig kommen jedoch in den Problemstellungen Größen verschiedener 
Größenordnungen vor ; darunter können auch kleine Größen sein. Wenn man 
diese kleinen Größen vernachlässigt, kam� sich das Problem so vereinfachen, 
daß eine exakte Lösung möglich wird. In einem solchen Fall ist der erste 
Schritt bei der Bewältigung des vorliegenden physikalischen Problems die 
exakte Lösung des vereinfachten Problems. Der nächste Schritt besteht dann 
in der genäherten Berechnung der Korrekturen infolge der kleinen Größen, 
die bei dem vereinfachten Problem weggelassen worden sind. Die allgemeine 
Methode zur Berechnung aieser Korrekturen heißt Störungstheorie. 

Der HAMILTON-Operator des gegebenen physikalischen Systems soll nach 
Voraussetzung die Gestalt 

� � � 

H = H0 + V  

haben, wobei V eine kleine Korrektur (Störung) zu dem "ungestörten" Opera­
tor H0 sein soll. In §§ 32 und 33 werden wir eine Störung V behandeln, die 
nicht explizit von der Zeit abhängt (dasselbe wird auch von H0 vorausgesetzt). 
Die notwendigen Bedingungen dafür, daß man den Operator V als klein gegen­
über dem Operator H ansehen kann, werden später abgeleitet werden. 

Das Problem der Störungstheorie kann für ein diskretes Spektrum folgender­
maßen formuliert werden. Es wird vorausgesetzt, daß die Eigenfunktionen tp�0> 
und die Eigenwerte E�> des diskreten Spektrums des ungestörten Operators H0 
bekannt sind, d. h., es sind die exakten Lösungen der Gleichung 

Ho tp<o> = E(O) tp<o> . (32, 1) 

bekannt. Zu bestimmen sind Näherungslösungen der Gleichung 

fi tp = (H0 + J1} tp = E tP , (32,2) 

d. h. Näherungsausdrücke für die Eigenfunktionen tpn und die Eigenwerte En 
des gestörten Operators H. 
8 Kurzfassung li 
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In diesem Paragraphen werden wir voraussetzen, daß alle Eigenwerte des 
Operators H0 nicht entartet sind. Außerdem werden' wir zur Vereinfachung der 
Rechnungen annehmen, daß es nur das diskrete Eigenwertspektrum gibt. 

Man führt die Rechnungen zweckmäßig von allem Anfang an in der Matrix­
schreibweise durch. Dazu entwickeln wir die gesuchte Funktion 1p nach den 
Funktionen 1p�> : 

1p = }; Cm 1p�) • (32,3} 
m 

Diese Entwicklung setzen wir in (32,2) ein und erhalten 

}; Cm (E�) + i') 1p�) = }; Cm E 1p�) • 

m nl 
Wir multiplizieren diese Gleichung von beiden Seiten mit "PkOJ" , integrieren 
darüber und finden 

(E - Ek0)} CJ: = }; V km  Cm • (32,4} 
m 

Hier ist die Matrix Vkm des Störoperators V eingeführt worden, die mit Hilfe 
der ungestörten Funktionen 1p�> bestimmt wird : 

V km = f "Pko)• V 1p�) dq . (32,5) 

Wir setzen die Koeffizienten Cm und die Energie E als Reihen an : 

E = E<0> + E<ll + E<2> + · · · , Cm = c�> + cl,!> + c�> + · · · . 

Darin sind die Größen E<1> und cl,!> von derselben Größenordnung wie die Stö­
rung V. E<2> und c};> sind Größen zweiter Ordnung usw. 

Zur Bestimmung der Korrekturen zum n-ten Eigenwert und zu der zugehörigen 
Eigenfunktion setzen wir c�6l = l und c�> = 0 für m =1= n. Bei der Berech­
nung der ersten Näherung setzen wir E = E�0l + E�l und c�: = c�> + ck1l 
in die Gleichung (32,4) ein und nehmen nur die Glieder erster Ordnung mit. Die 
Gleichung für k = n ergibt 

E�l) = V,.,. = f 1p�O)" V 1p�O) dq • (32,6) 

In erster Näherung ist also die Korrektur zum Energieeigenwert E�0l gleich 
dem Mittelwert der Störung im Zustand 1p�0> .  

Die Gleichung (32,4) liefert für k =1= n 

. (l) 
_ 

Vkn ck - (O) (O) (k =I= n) . (32,7) 
E,. - Ek 

c�1) bleibt willkürlich und muß so gewählt werden, daß die Funktion "Pn = 1p�> +1p�> 
bis einschließlich Glieder erster Ordnung normiert ist. Dazu müssen wir 
c�1l � 0 setzen. Tatsächlich ist die Funktion 

(l) _ �· Vmn (O) "Pn - � E(O) E(O) "Pm m n - m 
(32,8)  

(der Strich an dem Summenzeichen bedeutet, daß das Glied mit � = n bei 
der Summation über m auszulassen ist) orthogonal zu 1p�>, und das Integral 
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über ltp�0> + tp�>l2 unterscheidet sich nur durch eine Größe zweiter Ordnung 
von 1 .  

Die Formel (32,8) gibt die Korrektur zu den Wellenfunktionen in erster 
Näherung an. Aus dieser Korrektur ist nebenbei auch zu sehen, wie die Be­
dingung für die Anwendbarkeit der behandelten Methode der Störungstheorie 
beschaffen ist. Es muß nämlich die Ungleichung 

I V mnl � jE�> - E�> j 
A 

(21,9) 
gelten, d. h., die Matrixelemente des Operators V müssen klein sein gegenüber 
den entsprechenden Differenzen zwischen den ungestörten Energieniveaus. 

Wir wollen ferner die Korrektur zum Eigenwert E<:!> in zweiter Ordnung 
berechnen. Dazu setzen wir E = E�> + E�> + Et;> und c,. = 4°> + c�1> + c�2> 
in (32,4) ein und betrachten nur die Glieder zweiter Ordnung. Die Gleichung 
für k = n ergibt 

Et;> c�> = }.,'' Vnm c�> ;  
"' 

daraus folgt 

E<2> - .,., IV"' nl2 (32, 10) 
" - � E�> - E�> 

(wir haben c�> = V mn/(E<j!> - E�>) eingesetzt und V m n = V!m benutzt, was 
wegen der Hermitezität des Operators V gilt) .  

In der zweiten Näherung ist die Korrektu� zur Energie des Grundzustandes 
immer negativ. Wenn E�0> der kleinste Wert ist, dann sind tatsächlich alle 
Glieder in der Summe (32,10) negativ. 

Die erhaltenen Ergebnisse kann man unmittelbar für den Fall verallge-
meinern, daß der Operator Ho auch ein kontinuierliches Spektrum hat (wobei 
nach wie vor ein gestörter Zustand des diskreten Spektrums untersucht wird). 
Zu diesem Zweck braucht man nur zu den Summen über das diskrete Spek­
trum die entsprechenden Integrale über das kontinuierliche Spektrum zu 
addieren. 

Für Zustände eines kontinuierlichen Spektrums tritt die Frage nach einer 
Veränderung der Energieniveaus offensichtlich überhaupt nicht auf, und es 
kann nur die Rede sein von einer Berechnung der Korrekturen zu den Eigen­
funktionen. 

Wir erwähnen in diesem Zusammenhang den Fall, in dem die potentielle 
Energie eines Teilchens, das sich in einem schwachen äußeren Feld - einem 
hinreichend flachen Potentialtopf - befindet, die Rolle der Störung spielt. Die 
ungestörte ScHRÖDINGER-Gleichung ist dann einfach die Gleichung für die Be­
wegung des Teilchens, wobei die Energien positiv sind und ein kontinuierliches 
Spektrum bilden. 

Am Ende von § 24 wurde erwähnt, daß in einem solchen Potentialtopf keine 
gebundenen Zustände, d. h. keine negativen Energieniveaus, existieren. In der 
Tat, für die Energie E = 0 liefert die ungestörte Wellenfunktion der freien 
Bewegung eine Konstante : 1p<0> = const. Da für die Korrektur tp<1> � 1p<0> 
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gilt, ist klar, daß die gestörte Wellenfunktion 1p = 1p<0> + 1p<1 > für die Bewegung 
im Potentialtopf nirgends Null wird. Eine derartige Eigenfunktion ohne· 
Knoten gehört zum Grundzustand (§ 22) . Mit anderen Worten, E = 0 erweist 
sich als kleiostmöglicher Energiewert des Teilchens. 

Die Bedingung für die Anwendbarkeit der Störungstheorie auf diesen Fall 
besteht in der Forderung, daß die Tiefe des Potentialtopfes I Ul klein ist im 
Vergleich zu der mittleren kinetischen Energie, die ein Teilchen besäße, dessen 
Bewegung auf das Innere des Potentialtopfes beschränkt ist. Entsprechend der 
Unschärferelation wäre der Impuls eines solchen Teilchens p ,....., 1ifa (worin a 
die Größenordnung der linearen Abmessungen des Topfes ist), woraus sich die 
in § 24 genannte Bedingung I Ul � 1i2fm a2 ergibt.1) 

Aufgaben 

Man berechne die Energieniveaus des anharmonischen linearen Oszillators mit dem 
HAMILTON -Operator 

� p2 m w2 x2 
H =  2 m + -2- + (l r + ß x4 .  

Lösung. Unter Verwendung des Ausdruckes (25,4) für die Matrixelemente von x kann 
man die Matrixelemente für x3 und x4 unmittelbar durch Matrizenmultiplikation erhalten. 
Die von Null verschiedenen Matrixelemente von x3 sind 

(r)n -3, n = (r)n, n- 3  "== (2 � wt2 yn (n - 1 )  (n - 2) ,  
(r)n- 1, n = (r)n, n- 1  = 3 (2 � wr2 n3/2 • 

In dieser Matrix fehlen die Diagonalelemente, so daß es von dem Glied (l x3 im HAMILTON· 
Operator in erster Näherung keine Korrektur gibt (das Glied (l x3 wird als Störung des 
harmonischen Oszillators angesehen). In der zweiten Näherung ist die von diesem Glied 
stammende Korrektur von derselben Größenordnung wie die Korrektur von dem Glied 
ß x4 in erster Näherung. Die Diagonalelemente der Matrix für x4 sind 

(x4)n, n = (mliwr ! (2 n2 + 2 n  + 1 ) . 
Mit Hilfe der Formeln (32,6) und (32,10) finden wir schließlich folgenden genäherten Aus­
druck für die Energieniveaus des anharmonischen Oszillators : 

En = liw (n + �) _ 
1: lia:(mliwr ( n2 + n+ ��) + 

3:(mliwr ( n2 + n + � ) · 

§ 33. Die Säkulargleichung 

Wir wenden uns jetzt dem Fall zu, daß der ungestörte Operator Ü0 entartete 
Eigenwerte hat. Die zu ein und demselben Energieeigenwert E<:;> gehörigen 

1) Der ein- bzw. zweidimensionale Potentialtopf (das Feld hängt nur von einer bzw. 
nur von zwei Koordinaten ab) ist bzgl. zwei Dimensionen bzw. einer Dimension unendlich 
ausgedehnt. Deshalb ist die angegebene Bedingung unerfüllbar. Mit diesem Umstancl. 
hängt die Nichtanwendbarkeit der Störungstheorie auf die Bewegung (mit kleiner Energie) 
in einem solchen Potentialtopf zusammen. Demzufolge kann auch nicht auf das Fehlen 
gebundener Zustände geschlossen werden. 
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Eigenfunktionen bezeichnen wir mit V'�>, "1'�0), • • •  Die Wahl dieser Funk­
tionen ist, wie wir wissen, nicht eindeutig. Man kann statt dieser Funktionen 8 
(8 ist der Grad der Entartung des Niveaus E�>) unabhängige Linearkombina­
tionen da von wählen. Die Willkür bei der Wahl der Funktionen geht jedoch 
verloren, wenn wir von den Wellenfunktionen fordern, daß sie sich unter dem 
Einfluß einer kleinen Störung nur wenig ändern. 

Vorläufig werden wir unter den 1p�0>, V'��>, • . .  irgendwelche wiÜkürlich ge­
wählte ungestörte Eigenfunktionen verstehen. Die richtigen Funktionen für die 
nullte Näherung sind Linearkombinationen der Gestalt c�0> 1p�0> + c�> 1p�) + . . .  
Die Koeffizienten in diesen Linearkombinationen werden zusammen mit den 
Korrekturen zu den Eigenwerten in er�ter Näherung folgendermaßen berech­
net. ' 

Wir schreiben die Gleichungen (32,4) mit k = n, n' , . . .  auf und setzen in erster 
Näherung E = E�> + E(l) ein. Für die Größen er.: kann man dabei die Werte 
in nullter Näherung nehmen : c" = c�>, cn' = c�), . • .  ; Cm = 0 für m =I= n, n' , . . . 
Es ergibt 'li!ich 

E(l) c�> = }; V nn' c�) 
n' 

oder 
}; ( V  nn' - E(l) dnn') C��) = 0 ;  (33,1) 
n' 

n und n' durchlaufen dabei alle Werte, die zur Numerierung der Zustände zu 
dem gegebenen ungestörten Eigenwert E�> notwendig sind. Dieses lineare 
homogene Gleichungssystem für die Größen c�> hat nur dann nichttriviale 
Lösungen, wenn die Koeffizientendeterminante verschwindet. Wir erhalten 
deshalb die Gleichung 

(33,2) 

Das ist eine Gleichung 8-ten Grades in E(1l, sie hat im allgemeinen 8 ver­
schiedene reelle Wurzeln. Diese Wurzeln sind in erster Näherung die ge­
suchten Korrekturen zu den Eigenwerten. Die Gleichung (39,2) heißt Säkularglei­
chung.1) 

Setzen wir die Wurzeln der Gleichung (33,2) in das System (33,1) ein und 
lösen das letztere, dann finden wir die Koeffizienten c�>. Damit b�kommen 
wir auch die Eigenfunktionen in nullter Näherung. 

Infolge der Störung verschwindet im allgemeinen die ursprüngliche Ent­
artung des Energieniveaus (die Wurzeln der Gleichung (33,2) sind im allge­
meinen verschieden), die Störung "hebt" die Entartung "auf". Die Entartung 
kann dabei vollkommen oder nur teilweise aufgehoben werden (in letzterem 
Fall verbleibt nach dem Einschalten der Störung eine geringere Entartung 
als vorher) .  

1)  Diese Bezeichnung stammt aus der Himmelsmechanik. 
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Aufgaben 

I.  Man bestimme die Korrekturen zum Eigenwert in  erster Näherung und die richtigen 
Funktionen nuiiter Näherung für ein zweifach entartetes Niveau. 

Lösung. Die Gleichung (33,2) ist hier 

Vu . , 
v22 - E<1> = o 

(die Indizes 1 und 2 entsprechen den beiden willkürlich gewählten ungestörten Eigen­
funktionen 'Plo) und 'P�o) zu dem gegebenen zweifach entarteten Niveau). Wir lösen diese 
Gleichung und finden 

1 
E<1> = 2 [ Vu + v22 ± Ii w<1l] ' Ii wO) = Y< Vu - v22)2 + 4 I Vl212 ' (1) 

wobei die Bezeichnung Ii w(1) für die Differenz der zwei Korrekturwerte E(1) eingeführt 
wurde. Durch Lösen der Gleichung (33,1 ) mit diesen Werten E(1) erhalten wir die Ko­
effizienten in den normierten richtigen Funktionen nuiiter Ordnung 'P(o) = clo) 'Plo) + c�o) 'P�o) 
zu 

clo) = { 2 ,i:zl [ 1 ± Vl� :(1;22 ]} 1/2 ' 
�o> = ± {� [1 =F Vu - Vz2]}1'2 c_ 2 1 v121 Ii w(1) 

(2) 

2. Zur Zeit t = 0 befinde sich ein System in dem Zustand 'Plo>, der zu einem zweifach 
entarteten Niveau gehört. Mit welcher Wahrscheinlichkeit befindet sich das System zu 
einer späteren Zeit t in dem anderen Zustand 'P�o) mit derselben Energie ? Der Übergang 
erfolge unter der Wirkung einer konstanten Störung. 

Lösung. Wir stellen die richtigen Funktionen nullter Näherung auf: 

Darin sind c1, c2 und c�, c� die beiden Koeffizientenpaare, die durch die Formeln (2) der ,Auf­
gabe 1 gegeben werden (die Indizes (0) lassen wir der Kürze halber bei allen Größen weg). 
Umgekehrt ist 

c� 'P - c2 'P' 'Pt = ' ' • 

Cl C2 - Cl Cz 

Die Funktionen 'P und 'P' gehören zu den Zuständen mit den gestörten Energien E + E<1> 
und E + E(1)' ;  E(1) und E(1)' sind die beiden Werte der Korrektur (1) der Aufgabe I. Wir 
führen die Zeitfaktoren ein und gehen zu den zeitabhängigen Weilenfunktionen über: 

e -i Et/11 '1'1 = , , [c; 'P e -i E<'l t/11 _ c2 'P' e -i E<•J' tffl] 
Cl C2 - Cl Cz 

(zur Zeit t = 0 ist '1'1 = !p1). Schließlich drücken wir" 'P und 'P' wieder durch 'Pt und !p2 
aus und erhalten '1'1 als Linearkombination aus 'PI und 'Pz mit zeitabhängigen Koeffizienten. 
Das Betragsquadrat des Koeffizienten von 1J12 gibt die gesuchte Übergangswahrscheinlich­
keit w12 an. Unter Berücksichtigung von (1) und (2) ergibt die 

,
Rechnung 

1 Vul2 ( )  W12 = 2 (Ii w<1>)2 [1 - cos w 1 t)] • 

Wir sehen, daß die Wahrscheinlichkeit mit der Frequenz w<1> periodisch schwankt. 
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Wir .wollen uns jetzt mit dem Studium explizit zeitabhängiger Störungen be­
fassen. In diesem Falle kann man nicht von Korrekturen zu den Energie­
eigenwerten sprechen, denn die Energie bleibt für einen zeitabhängigen HA-
MILTON-Operator (der gestörte Operator fi = H0 + V(t) ist zeitabhängig) nicht 
erhalten, so daß es überhaupt keine stationären Zustände gibt. Hier besteht 
das Problem, aus den Wellenfunktionen der stationären Zustände des unge­
störten Systems die W ellenfunktionepc des gestörten Systems näherungsweise 
zu berechnen. 

Zu diesem Zweck verwenden wir eine ähnliche Methode wie die Methode der 
Variation der Konstanten bei der Lösung von linearen Differentialgleichungen.1 ) 
pko) seien die Wellenfunktionen (mit dem Zeitfaktor) der stationären Zustände 
des ungestörten Systems. Eine beliebige Lösung der ungestörten Wellen­
gleichung kann dann als Summe P = }; a�c P�0> geschrieben werden. Wir 

k 
werden jetzt die Lösung der gestörten Gleichung 

als Summe 

iJ'P A A 

i fi at = (H0 + V) P 

P = }; a�c(t) P�0> 
k 

(34,1) 

(34,2) 

ansetzen, wobei die Entwicklungskoeffizienten Funktionen der Zeit sind. Setzen 
wir (34,2) in (34,1) ein und beachten, daß die Funktionen 'P�0> der Gleichung 

j)IJI(O) A 

. fi _Je_ = H lji(O) � iJt 0 k 
genügen, dann erhalten wir 

i fi }; pko) d:/' = }; ak V pko) . 
Je k 

Wir multiplizieren beide Seiten der Gleichung von links mit P�?>• und inte­
grieren ; danach haben wir 

mit 

. dam � n dt = }; V .u(t) a�c (34,3) 
" 

1 
w k - - (E(O) - E(O)) • m - 1i m k ' 

das sind die Matrixelemente der Störung mit dem Zeitfaktor (man muß übrigens 
beachten, daß die Größen V m t für explizit zeitabhängiges V ebenfalls Funk­
tionen der Zeit sind) .  

1) Die Anwendung dieser Methode in der Quantenmechanik geht auf P. A. M. DIRAO 
zurück (1926). 
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Als ungestörte Wellenfunktion nehmen wir die Wellenfunktion des i-ten 
stationären Zustandes ; dazu gehören die folgenden Werte für die Koeffizienten 
in (34,2) : a�0> = 1 und a�0> = 0 für k =1= i. Zur Bestimmung der ersten Nä­
herung schreiben wir a1c als a�: = a�> + a�1>. Auf der rechten Seite der Glei­
chung (34,3) (die schon die kleinen Größen V mk enthält) setzen wir a�: = a�0> 
ein. Das ergibt 

da<l) i Ii dt" = V�c;(t) • (34,4) 

Um anzugeben, für welche ungestörte Funktion die Korrektur berechnet 
wird, führen wir einen zweiten Index für die Koeffizienten a�c ein und schreiben 

'l'; = 1: a�c;(t) p�o> . 
k 

(34,5) 

Dementsprechend schreiben wir das Ergebnis der Integration über die Glei­
chung (34,4) als 

(34,6) 

Damit sind die Wellenfunktionen in erster Näherung bestimmt. 
Die Wahl der Grenzen in den Integralen (34,6) hängt von den Bedingungen 

der konkreten Aufgabe ab. Die Störung V(t) soll z.B .  nach Voraussetzung ins­
gesamt nur während eines endlichen Zeitintervalls wirken (oder V(t) soll für 
t -+ ± oo genügend schnell abklingen). Vor der Einwirkung der Störung (oder 
in der Grenze t -+ - oo) soll sich das System im i-ten stationären Zustand 
(des diskreten Spektrums) befunden haben. In einem beliebigen späteren Zeit · 
punkt wird das System durch die Funktion (34,5) beschrieben. In erster Nähe­
rung ist dabei 

t 
(1) i J akt  = ak i = - r; (k =I= i) ' 

- 00 
t 

a; ; = 1 + afP = 1 - ! J V; ; dt . (34,7) 
- 00  

Die Integrationsgrenzen in (34,7 )  sind so gewählt, daß alle a�1l- für t -+  - oo 
verschwinden. Nach der Einwirkung der Störung (oder in der Grenze t -+  oo )  
nehmen die Koeffizienten a�c ; die konstanten ·werte a�c1(oo) an, - und das Sy­
stem befindet sich in einem Zustand mit der Wellenfunktion 

'l' = 1.: a�c1(oo) 'l'�> , 
k 

die wieder der ungestörten Wellengleichung genügt, aber von der ursprüng­
lichen Funktion 'l'�0> verschieden ist. Nach den allgemeinen Regeln gibt das 
Betragsquadrat des Koeffizienten a�c1(oo) die Wahrscheinlichkeit dafür an, daß 
das System die Energie E�> hat, d. h., daß es sich in dem k-ten stationären 
Zustand befindet. 
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Das System kann also unter dem Einfluß der Störung aus dem ursprüng­
lichen stationären Zustand in einen beliebigen anderen Zustand übergehen. 
Der Einheitlichkeit halber verabreden wir, hier und in den folgenden Para­
graphen den Anfangszustand durch den Index i und den Endzustand durch 
den Index f zu kennzeichnen. Die Wahrscheinlichkeit für den Übergang i -+ f 
ist gleich 

1 w - ­
- 1!2 

00 2 
J VJi ei WJII dt • 

- 00  

(34,8) 

Ändert sich die Störung V(t) während eines Zeitintervalls der Größenordnung 
lfwfi nur wenig, dann wird der Wert des Integrals in (34,8) sehr klein : Durch 
die Anwesenheit des oszillierenden, das Vorzeichen ändernden Faktors 
exp (i w11 t) im Integranden hebt sich das Integral auf. Im Grenzfall einer 
beliebig langsamen Änderung der Störung strebt die Wahrscheinlichkeit für 
einen Übergang, der mit einer Energieänderung verbunden ist (d. h. mit einer 
von Null verschiedenen Frequenz w11), gegen Null. Bei hinreichend langsamer 
(adiabatischer) Änderung der einwirkenden Störung verbleibt ein System, das 
sich in einem nicht entarteten stationären Zustand befunden hat, in demselben 
Zustand. 

§ 36. tJbergänge im kontinuierlichen Spektrum 

Eine der wichtigsten Anwendungen der Störungstheorie ist die Berechnung der 
Übergangswahrscheinlichkeiten im kontinuierlichen Spektrum unter dem Ein­
fluß einer konstanten (zeitunabhängigen) Störung. Hierzu gehören die ver­
schiedenen Streuprozesse, d. h. Prozesse, bei denen sich das System im Anfangs­
und im Endzustand als die Gesamtheit der aneinander streuenden Teilchen 
darstellt, und die Wechselwirkung zwischen ihnen die Rolle der Störung über­
nimmt. Zur Kategorie der Erscheinungen, die von der weiter unten darzu­
legenden Methode erfaßt werden, gehören auch Prozesse, in deren Verlauf ein 
System (das sich in einem gewissen seiner gebundenen Zustände befindet) in 
sich frei bewegende Teile zerfällt. Um klare Verhältnisse zu schaffen, werden 
wir zunächst speziell den letzten Fall im Blickwinkel haben .I) 

Wir bezeichnen mit dem Symbol v die Gesamtheit der Größen, die eine, die 
Zustände des kontinuierlichen Spektrums charakterisierende, kontinuierliche 
Zahlenfolge durchlaufen. Unter dv verstehen wir das Produkt der Differentiale 
dieser Größen. Die ungestörten Wellenfunktionen des kontinuierlichen Spek­
trums nehmen wir als auf die t5-Funktion bezüglich der Größe v normiert an 
(so können die Größen v die Impulskomponenten freier Teilchen sein ; ihre 

1) Zustände, die zum diskreten Spektrum eines Systems gehören und zerfallen können, 
sind, streng genommen, keine stationären sondern quasistationäre Zustände (siehe weiter 
unten, § 38). Dieser Umstand ist für die hier anzustellenden Untersuchungen unwesentlich. 
Wir werden jedoch auf diese Frage in § 102 zurückkommen. 
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Wellenfunktionen müssen dann auf die <'!-Funktion als Funktion des Impulses 
normiert sein). Mit einer solchen Normierung nimmt die Entwicklung der 
Wellenfunktion die Gestalt ' 

'I' = }.; a"(t) 'I'j.0> + f a,(t) p�o) dv 
k 

(35,1) 

(anstelle von (34,2)) an, worin die Summe über das, gesamte diskrete und das 
Integral über das gesamte kontinuierliche Spektrum genommen wird ; hierbei 
ist l a.(t) l2 dv die Wahrscheinlichkeit dafür, das System (zum Zeitpunkt t) in 
einem Zustand aus dem Intervall zwische� v und v + dv anzutreffen (vergleiche 
§ 5). 

So möge sich zum Zeitpunkt t = 0 das System im Anfangszustand befinden, 
den wir durch den Index i kennzeichnen. Es soll die Wahrscheinlichkeit für 
seinen Übergang in den Zustand f gefunden werden, für den die Größen v 
Werte im Intervall dv1 annehmen. · 

Ändern wir in entsprechender Weise die Bezeichnung der Indizes in (34,6) 
ab, und führen wir die Integration (für nicht zeitabhängiges V1;) durch, dann 
erhalten wir 

t 

i f . 1 - ei "''' '  afi = - h Vfi e' "'Ji l dt = vfi li Wji • 
0 

(35,2) 

Die untere Integrationsgrenze wurde in Übereinstimmung mit der festgelegten 
Anfangsbedingung so gewählt, daß für t = 0 a1 ; = 0 gilt. 

Das Betragsquadrat des Ausdruckes (35,2) ist gleich 

(35,3) 

Es ist leicht zu sehen, daß die hier stehende Funktion für großes t proportional 
zu t wird. 

Dazu bemerken wir, daß folgende Formel gilt : 

. sin2 o: t 
hm -t-2 = <'l(a) . 

t-+CO :n; 0: 
(35,4) 

In der Tat ist für a =1= 0 der aufgeschriebene Grenzwert gleich Null, während 
wir für a = 0 sin2 a tfa2 t haben, so daß der Grenz�ert Unendlich wird. Inte­
grieren wir also über da in den Grenzen · von -oo bis +oo, so erhalten wir 
(mit der Substitution a t = �) 

- co  - CO  

Demzufolge besitzt die Funktion auf der linken Seite der Gleichung (35,4) 
tatsächlich alle Eigenschaften einer <'!-Funktion. 
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Gemäß dieser Formel können wir für große t 

2 - l I V 1 2 .ll(W'i ) l a,; l - ß2 fi :n t u 2 
oder (indem wir in Betracht ziehen, daß b (a x) = b(x)f!X gilt) 

2 :n:  l a,; l 2 = T I v,; l 2 �(EI - E;) t 
schreiben. 
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(35,5) 

Der Ausdruck l a1; 1 2  dv1 ist die Wahrscheinlichkeit für einen Übergang aus 
dem Anfangszustand in einen Zustand aus dem Intervall dv1. Wir sehen, daß 
sie für großes t proportional der seit dem Zeitpunkt t = 0 verflossenen Zeit­
spanne wird. Ohne den Faktor t gibt dieser Ausdruck die auf die Zeiteinheit 
bezogene Übergangswahrscheinlichkeit dw an (eine solche Vbergangswahrschein­
zichkeit pro Zeiteinheit hat im Gegensatz ZU der dimensionslosen Wahrschein­
lichkeit (34,7) die Dimension 1/s) : 

2 :n:  
dw = T I V1t l 2 � (E1 - E;) dv1 . (35,6) 

Diese Wahrscheinlichkeit ist nur für Übergänge zwischen Zuständen mit den 
Energien E1 = E; von Null verschieden, wie es in Übereinstimmung mit dem 
Energieerhaltungssatz zu erwarten ist. Die Anwesenheit der �-Funktionen in 
(35,6), die diese Gesetzmäßigkeit zum Ausdruck bringt, bedeutet natürlich 
nicht, daß die Wahrscheinlichkeit für E1 = E; unendlich wird, was sinnlos 
wäre ; tatsächlich verschwindet die b-Funktion bei einer Integration über ein , 
endliches Intervall von Zuständen. Sind die Zustände des kontinuierlichen 
Spektrums nicht entartet, dann kann man unter dv1 allein nur die Energiewerte 
verstehen. In diesem Falle führt die Integration (35,6) über dv1 = dE1 zu ' 
folgendem Wert für die Übergangswahrscheinlichkeit : 2 :n: V 2 W = ---,; 1 Ji l • (35,7) 

Formel (35,6) ist auch in jenen Fällen anwendbar, in denen der Anfangszustand 
ebenfalls zum kontinuierlichen Spektrum gehört (dies tritt bei StreuprÖble­
men auf ; ein entsprechendes Anwendungsbeispiel wird in § 67 gegeben werden). 
Es ist jedoch notwendig zu bemerken, daß in solchen Fällen die durch Formel 
(35,6) bestimmte Größe dw nicht unmittelbar die Übergangswahrscheinlichkeit 
ist ; auch besitzt sie nicht die Dimension (1/s). Der Ausdruck (35,6) ist pro­
portional zur Zahl der Übergänge in der Zeiteinheit, jedoch hängen seine Di­
mension und sein genauer Sinn davon ab, auf welche Weise die Anfangsweileu­
funktionen des kontinuierlichen Spektrums normiert sind (so kann sich dw als 
Streuquerschnitt erweisen, siehe z. B. § 67). 

§ 36. Zwischenzustände 

Es kann vorkommen, daß das Matrixelement V1; für den betrachteten Über­
gang Null wird. Dann gibt die Formel (35,6) keine Antwort auf die gestellte 
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Frage, und man muß sich zur Bestimmung der Übergangswahrscheinlichkeit 
der nächsthöheren Näherung der Störungstheorie bedienen. 

Zusammen mit V1t wird auch das Zusatzglied a_W Null. Für das Korrektur­
glied zweiter Ordnung a)P ergibt Gleichung (34,3) 

d ( 2) ; �o afi _ '\' V ei"'Jkl a<I> • n -d - � fk k i ' t 1: 
(36,1) 

worin die Summation über die Zustände läuft, für die die Übergangsmatrix­
elemente k � I  von Null verschieden sind. Die Korrekturglieder I. Ordnung 
a�1{ werden durch die Gleichungen 

da<1> 
i 1i � = V ei "'k 't dt k i  

bestimmt (vergleiche (34,4)), woraus 

aCI) = _ � (eiwu t _ I) 1:1 /i Wki 

folgt. Setzen wir diesen Ausdruck in (36,I) ein, und führen wir die Integration 
aus, dann erhalten wir 

t 

a<�> = .!..__ }; V,�: V t t f (ei "'''t - ei"'Jkl) dt f• Ji2 k Wtt 
' 

0 

Im Integral muß nur der erste Term mitgenommen werden, der bei Integration 
den kleinen Nenner w11 liefert. In diesem Sinne folgt 

a<2J = }; --- . ( v,k vki) ei Wfi ! - l  
ft k Ii Wf<i Ii Wft 

Dieser Ausdruck unterscheidet sich von (35,2) nur dadurch, daß das Matrix­
element V1; durch die in Klammern stehende Summe ersetzt ist. Demgemäß 
erhalten wir anstelle von (35,6) 

(36,2) 
. 

Von den Zuständen k, für die die Matrixelemente V1e und Vti von Null 
verschieden sind, spricht man in diesem Zusammenhang als von Zwischen­
zuständen für den Übergang i � f. Anschaulich kann man sagen, daß dieser 
Übergang gewissermaßen in zwei Etappen realisiert wird ; i � k und k � I  (es 
versteht sich jedoch von selbst, daß man einer solchen Beschreibung keine wört­
}i('he Bedeutung zumessen kann). 

§ 37. Die Unschärferelation für die Energie 

Betrachten wir ein System aus zwei schwach miteinander wechselwirkenden 
Teilen. Wir setzen voraus, daß diese Teile zu einer gewissen Zeit bestimmte 
Energiewerte haben, die wir mit E hzw. e bezeichnen wollen. Nach einem ge-
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wissen Zeitintervall Lft soll die Energie erneut gemessen werden. Diese Mes­
sung liefert gewisse Werte E' und e' , die im allgemeinen von E und e verschie­
den sind. Man kann leicht die Größenordnung des wahrscheinlichsten Wertes 
der Differenz E' + e' - E - e berechnen, die bei der Messung beobachtet wird. 

Nach der Formel (35,3) ist die Übergangswahrscheinlichkeit für das System, 
(nach der Zeit t) unter dem Einfluß einer zeitunabhängigen Störung aus dem 
Zustand mit der Energie E in den Zustand mit der Energie E' überzugehen, 
proportional 

Der wahrscheinlichste Wert der Differenz E' - E hat demnach die Größen­
ordnung Iift. 

Wir wenden dieses Ergebnis auf unser betrachtetes System an (die Wechsel­
wirkung zwischen den Teilen deß Systems ist die Störung) und erhalten 

I E  + e - E' - e'l Lft ,...., Ii .  (37 , 1) 

Je kleiner das Zeitintervall Lft  ist, desto größer ist also die beobachtete Energie­
änderung. Es ist wesentlich, daß die Größenordnung der Energieänderung fijLft 
nicht von der Größe der Störung abhängt. Die durch die Beziehung (37,1) ge­
gebene Energieänderung wird sogar bei einer beliebig schwachen Wechsel­
wirkung zwischen den beiden Teilen des Systems beobachtet. Dieses Ergebnis 
hat einen rein quantenmechanischen Charakter und einen tiefen physikalischen 
Sinn. Es zeigt, daß der Energieerhaltungssatz zu der Quantenmechanik mit 
Hilfe zweier Messungen nur mit einer Genauigkeit der Größenordnung fijLft 
nachgeprüft werden kann : Lft ist das �eitintervall zwischen den Messungen. 

Die Beziehung (37,1) bezeichnet man oft als die Unschärferelation für die 
Energie. Man muß jedoch betonen, daß sie einen wesentlich anderen Sinn hat 
als die Unschärferelation Lfp Lfx ,...., Ii für Ort und Impuls. In der letzteren 
sind Lfp und Lfx die Orts- und Impulsunschärfen zu ein und demselben Zeit­
punkt. Sie zeigen, daß diese beiden Größen nicht gleichzeitig scharf bestimmte 
Werte haben können. Die Energien E und e können dagegen in jedem belie­
bigen Zeitpunkt mit beliebiger Genauigkeit gemessen werden. Die Größe 
(E + e) - (E' + e' ) in (37,1) ist die Differenz der beiden zu zwei verschiedenen 
Zeitpunkten genau gemessenen Energiewerte E + e, sie ist keineswegs eine 
Unschärfe in dem Energiewert zu einer bestimmten Zeit. 

Wir wollen E als die Energie eines Systems und e als die Energie eines "Meß­
gerätes" ansehen. Dann können wir sagen, daß die Wechselwirkungsenergie 
von System und Gerät nur mit einer Genauigkeit bis 1iJL1t berücksichtigt wer­
den kann. Mit L1E, Lfe, . . .  bezeichnen wir die Meßfehler für die entsprechenden 
Größen. Im günstigsten Fall, wenn e und e' genau bekannt sind (Lfe = Lfe' = 0), 
haben wir 

L1 (E - E') ,...., :t . (37,2) 
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Aus dieser Beziehung kann man wichtige Schlüsse über die Messung des 
Impulses ziehen. Der Meßprozeß für den Impuls eines Teilchens (wir werden 
weiter von einem Elektron sprechen) besteht aus dem Stoß des Elektrons mit 
einem anderen ("Meß"-)Teilchen, dessen Impulse vor und nach dem Stoß als 
genau bekannt angesehen werden können. Auf diesen Prozeß müssen die 
Erhaltungssätze für Impuls und Energie angewendet werden. Der letztere 
kann aber, wie wir gesehen haben, nur mit einer Genauigkeit bis zu der Größen­
ordnung 1ifLJt angewandt werden ; LJt ist dabei die Zeitspanne zwischen Beginn 
und Ende des betrachteten· Prozesses . 

. Zur Vereinfachung der weiteren Überlegungen ziehen wir einen idealisierten 
Gedankenversuch heran : Das "Meß"-Teilchen sei ein ideal reflektierender ebener 
Spiegel. Es spielt dann nur die eine Impulskomponente senkrecht zur Spiegel­
ebene eine Rolle. Impuls- und Energiesatz ergeben zur Bestimmung des Im­
pulses P des Teilchens die Gleichungen 

p' + P' - p - p = 0 ' 

I I E' E' 1i 
e + - e - .:�I "' ­Llt 

(37,3) 

(37,4) 

(P und E sind Impuls und Energie des Teilchens, p und e die entsprechenden 
Größen des Spiegels ; die Buchstaben ohne und mit Strichen gehören zu den 
entsprechenden Größen vor und nach dem Stoß).  Die Größen p, p', e , e' für 
das "Meß"-Teilchen können als genau bekannt angesehen werden, d. h., ihre 
Fehler sind gleich Null. Aus den angegebenen Gleichungen erhalten wir dann 
für die Fehler in den übrigen Größen 

LJ P  = LJ P' ' LJE' - AE ,.._ � LJ Llt • 
· aE 

Es ist aber LJE = oP LJ P  = v LJ P  mit der Geschwindigkeit v des Elektrons 
(vor dem Stoß) ; ähnlich gilt auch LJE' = v' LJ P' = v' LJ P. Deshalb haben wir 

' A 1i 
(v., - v.,) LJ P., ,...., Llt • (37,5) 

Wir haben hier die Indizes x, y an Geschwindigkeit und Impuls angehängt, 
um zu unterstreichen, daß diese Beziehung für jede Komponente einzeln gilt. 

Das ist auch die gesuchte Beziehung. Sie besagt, daß eine Messung des 
Elektronenimpulses (bei vorgegebener Genauigkeit LJ P) unbedingt mit einer 
Geschwindigkeitsänderung des Elektrons verbunden ist (d. h. auch mit einer 
Änderung des Impulses selbst) .  Je kürzer der eigentliche Meßprozeß ist, desto 
größer ist diese Änderung. Die Geschwindigkeitsänderung kann nur für Llt --+ oo 
beliebig klein gemacht werden. Eine Impulsmessung über eine lange Zeit 
kann aber überhaupt nur für ein freies Teilchen einen Sinn haben. Hier tritt 
besonders klar hervor, daß die Impulsmessung nach kurzen Zeitabständen nicht 
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reproduzierbar ist und daß die Messung in  der Quantenmechanik eine Doppel­
rolle spielt : Man muß zwischen den Meßwerten einer Größe und dem Wert 
unterscheiden, der als Ergebnis des Meßproze.sses geschaffen wird.1) 

§ 38. Quasistationäre Zustände 

Man kann die am Anfang dieses Paragraphen gegebene Herleitung auf Grund 
der Störungstheorie auch unter einem anderen Gesichtspunkt sehen, wenn man 
sie auf den Zerfall eines Systems unter dem Einfluß irgendeiner Störung an­
wendet. E0 sei ein Energieniveau des Systems ; bei der Berechnung dieses 
Niveaus sei die Möglichkeit eines Zerfalls völlig vernachlässigt worden. Mit 7: 
wollen wir die Lebensdauer dieses Zustandes des Systems bezeichnen, d. h. die 
reziproke Zerfallswahrscheinlichkeit w pro Zeiteinheit : 

1 
7: = - .  

w 

Nach demselben Verfahren finden wir dann 
h 

i E0 - E - el '""' -:,;- ; 

(38,1 ) 

E und e sind die Energien der beiden Teile, in die das System zerfällt. Aus der 
Summe E + e kann man auf die Energie des Systems vor dem Zerfall schlie­
ßen. Die erhaltene Beziehung besagt daher, daß die Energie eines Systems, 
das zerfallen kann, in einem quasistationären Zustand nur bis auf eine Unschärfe 
der Größenordnung nf• bestimmt werden kann. 

Ein System, das zerfallen kann, besitzt, streng genommen, kein diskretes 
Energiespektrum. Das aus ihm beim Zerfall herausfliegende Teilchen ent­
weicht ins Unendliche ; in diesem Sinne ist die Bewegung des System:s unbe­
grenzt, und deshalb ist das Energiespektrum kontinuierlich. 

Es kann sich jedoch erweisen, daß die Zerfallswahrscheinlichkeit des Systems 
sehr klein ist (das einfachste Beispiel dieser Art ist ein Teilchen, das von einer 
hinreichend hohen und breiten Potentialschwelle umgeben ist). Für solche 
Systeme mit einer kleinen Zerfallswahrscheinlichkeit kann man den Begriff 
·der quasistationären Zustände einführen, in denen sich die Teilchen im Verlauf 
einer längeren Zeit "innerhalb des Systems" bewegen können und es nur nach 
Ablauf einer bedeutenden Zeitspanne verlassen. Das Energiespektrum dieser 
Zustände wird quasidiskret ;  es besteht aus einer Reihe verschmierter Niveaus, 
deren Breiten sich aus ihren Lebensdauern bestimmen. Als quantitatives 
Charakteristikum für die Niveaubreite kann man die Größe 

h 
T = - = n w 

• (38,2) 

1) Die Beziehung (37,5) sowie die physikalische Interpretation der Unschärferelation 
für die Energie stammen von N. BoHR (1928). 
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ansehen. Die Breite der quasidiskreten Niveaus ist klein im Vergleich zu den 
Abständen zwischen ihnen. 

Bei der Betrachtung der quasistationären Zustände kann man folgende Me­
thode anwenden. Bis jetzt betrachteten wir immer die Lösung der Scrmö­
DINGER-Gleichung mit einer Randbedingung, die die Endlichkeit der Wellen­
funktion im Unendlichen fordert . Anstelle dieser werden wir jetzt diejenige 
Lösung suchen, die im Unendlichen durch eine auslaufende Kugelwelle dar­
gestellt wird (tp ,...." ei "'f'r) ; das entspricht einem Teilchen, das aus dem System 
beim Zerfall herausfliegt. Weil diese Randbedingung komplex ist, kann man 
nicht erwarten, daß die Energieeigenwerte reell sein müssen. Tatsächlich er­
halten wir bei der Lösung der ScHRÖDINGER-Gleichung einen Satz komplexer 
Eigenwerte, die wir als 

E - E  i r  
- 0 - 2 

schreiben werden, wobei E0 und F zwei positive Größen sind. 

(38,3) 

Es ist leicht zu sehen, worin der physikalische Sinn der komplexen Energie ­
werte liegt. Der Zeitfaktor der Wellenfunktion eines quasistationären Zu­
standes hat die Gestalt 

i i r - - E t - - E0 t - - t 
e 11 = e h e 2 11  

Deshalb sind alle Wahrscheinlichkeiten, die durch die Quadrate des Betrages 
der Wellenfunktion bestimmt sind, nach dem Gesetz e-rtfTI zeitlich gedämpft. 
Nach diesem Gesetz ist auch die Wahrscheinlichkeit, das Teilchen "innerhalb 
des Systems" zu finden, gedämpft. 

Mit einer breiten Palette quasistationärer Zustände haben wir es auf dem 
Gebiet nicht sehr hochenergetischer Kernreaktionen zu tun, die das Stadium 
der Bildung von Compound-Kernen durchlaufen.1) Das anschauliche physi­
kalische Bild der dabei stattfindenden Prozesse besteht darin, daß das auf den 
Kern fallende Teilchen (z. B. ein Neutron), das mit den Nukleonen des Kerns 
wechselwirkt, mit ihm "verschmolzen" wird und ein zusammengesetztes Sy­
stem bildet, in dem die durch das Teilchen eingebrachte Energie auf viele 
Nukleonen verteilt wird. Die (im Vergleich zu den "Perioden" der Nukleonen­
bewegung im Kern) große Lebensdauer der quasistationären Zustände hängt 
damit zusammen, daß während der meisten Zeit die Energie auf viele Teilchen 

- verteilt wird, so daß jedes von ihnen eine Energie besitzt, die nicht dazu aus­
reicht, um aus dem Kern herauszufliegen und die Anziehung der restlichen 
Teilchen zu überwinden. Nur relativ selten konzentriert sich eine hinreichend 
große Energie auf ein Teilchen und führt zum Zerfall des Kerns. 

1) Die Vorstellung vom Compound-Kern wurde 1936 von N. BoHR entwickelt. 
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§ 39. Der Spin 

Betrachten wir ein zusammengesetztes Teilchen (sagen wir einen Atomkern), 
das als Ganzes ruht und sich in einem bestimmten inneren Zustand befindet. 
Außer definierter innerer Energie besitzt es des weiteren auch einen der Größe 
nach definierten Drehimpuls L, der mit der Bewegung der Teilchen inner­
halb des Kernes zusammenhängt. Bei gegebenem Drehimpuls L besteht noch 
die Möglichkeit für, wie wir wissen, 2 L + 1 verschiedene Orientierungen im 
Raum. 

In § 18 wurde ausgeführt, daß der wesentliche Aspekt für das Verständnis 
des Drehimpulses in der Quantenmechanik darin besteht, daß diese Größe durch 
die Symmetrieeigenschaften der Systemzustände in bezug auf Drehungen im 
Raum bestimmt wird. Bei Drehungen des Koordinatensystems nämlich trans­
formieren sich die 2 L + 1 Wellenfunktionen 1JlLM•  die den verschiedenen 
Werten der Drehimpulsprojektion M entsprechen, untereinander nach einer 
wohldefinierten Regel. 

In einer solchen Formulierung wird die Frage nach dem Ursprung des Dreh­
impulses unwesentlich, und wir gelangen zwanglos zu der Vorstellung vom 
"Eigendrehimpuls", der einem Teilchen unabhi!,ngig davon zugeschrieben wer­
den muß, ob es ein "zusammengesetztes" oder "elementares" Teilchen darstellt. 

Auf diese Weise macht es sich in der Quantenmechanik notwendig, einem 
Teilchen ein�n gewissen "Eigendrehimpuls" zuzuordnen, der nicht an seine 
Bewegung im Raum gebunden ist. Diese Eigenschaft der Elementarteilchen ist 
eine spezifische Quanteneigenschaft (die beim Übergang n � 0 verschwindet) 
und erlaubt prinzipiell keine klassische Interpretation.1) 

Der Eigendrehimpu"ls eines Teilchens heißt dessen Spin. Im Unterschied 
dazu nennt man den mit der Bewegung des Teilchens im Raum verknüpften 
Drehimpuls den Bahndrehimpuls. Es kann sich dabei sowohl um ein Elementar­
teilchen als auch um ein Teilchen handeln, das zwar zusammengesetzt ist, sich 
aber bei bestimmten Erscheinungen wie ein elementares Teilchen verhält (zum 
Beispiel um einen Atomkern).  Wir wollen den Spin eines Teilchens (der wie 
der Bahndrehimpuls in Vielfachen von n gemessen wird) mit s bezeichnen.2) 

1) So wäre es zum Beispiel völlig unsinnig, sich den Eigendrehimpuls eines Elementar· 
teilchens als Ergebnis der Rotation des Teilchens um "seine eigene Achse" vorzustellen. 

2) Die physikalische Idee von der Existenz eines Eigendrehimpulses des Elektrons 
stammt von G. E. UHLENBECK und S .  GouDSMIT aus dem Jahre 1925. 1927 wurde der 
Spin von W. PAULI in die Quantenmechanik eingeführt. 

g Kurzfassung 11 
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Für Teilchen, die einen Spin besitzen, muß die Beschreibung eines Zustandes 
mit Hilfe der Wellenfunktion nicht nur die Bestimmung der Aufenthaltswahr­
scheinlichkeit des Teilchens im Raum gewährleisten, sondern auch die Be­
stimmung der Wahrscheinlichkeiten für seine verschiedenen möglichen Spin­
orientierungen. Mit anderen Worten muß die Wellenfunktion nicht nur von 
den drei kontinuierlichen Variablen, den Teilchenkoordinaten, sondern auch 
von einer diskreten Spinvariablen abhängen, die die Größe der Spinprojektion 
bezüglich einer gewissen herausgegriffenen Raumrichtung (z-Achse) angibt und 
eine endliche Anzahl diskreter Werte (die wir im weiteren mit den Buchstaben a 
bezeichnen werden) durchläuft. 

VJ(X, y, z ;  a) möge eine solche Funktion sein. Im Grunde genommen stellt 
sie die Gesamtheit einiger unterschiedlicher Funktionen der Koordinaten dar, 
die den verschiedenen Werten von a entsprechen ; von diesen Funktionen wer­
den wir als von den Spinkomponenten der Wellenfunktion sprechen. In diesem 
Zusammenhang bestimmt das Integral 

f IVJ(X, y, z ;  a)l2 dV 
die Wahrscheinlichkeit dafür, daß das Teilchen einen definierten Wert a be­
sitzt. Andererseits ist die Wahrscheinlichkeit dafür, daß sich das Teilchen bei 
beliebigem a im Volumenelement dV befindet, 

}.; IVJ(X, y, z ;  a)l 2 • 
a 

Der quantenmechanische Operator für den Spin wirkt bei seiner Anwendung 
auf die Wellenfunktion unmittelbar auf die Spinvariable a. Mit anderen Worten, 
er transformiert in irgendeiner bestimmten Weise die Komponenten der Wellen­
funktion untereinander. Die Gestalt dieses Operators wird weiter unten fest­
gestellt werden. Von vornherein ist jedoch schon klar, daß die Operatoren für 
die drei Spinkomponenten 8.,, 811, 8z ebensolchen Vertauschungsregeln genügen 
wie auch die Operatoren für den Bahndrehimpuls. Die allgemeine Definition 
der Drehimpulsoperatoren ergibt sich aus ihrer Verknüpfung mit den Opera­
toren für infinitesimal kleine Drehungen. In § 14 wurde bei der Herleitung 
der Ausdrücke und später der Vertauschungsregeln für diese Operatoren zum 
Verständnis angenommen, daß sie auf Funktionen von Koordinaten wirken. 
Tatsächlich jedoch drücken diese Regeln Eigenschaften von Drehungen aus 
und sind wie diese unabhängig davon, auf welches mathematische Objekt sie 
angewendet werden ; sie besitzen demzufolge uni verseHen Charakter. 

Bei Kenntnis der Vertauschungsregeln kann man die möglichen Werte des 
Absolutbetrages des Spins und der Spinkomponenten bestimmen. Die ganze 
Ableitung in § 15 (Formeln (15,6-8)) war allein auf den Vertauschungsrela­
tionen aufgebaut und ist daher in ganzem Umfange auch hier anwendbar. 
Man muß in diesen Formeln lediglich unter L jetzt s verstehen. Aus den 
Formeln (15,6) folgt für die Eigenwerte der z-Komponente des Spins eine 
Zahlenfolge, bei der sich eine Zahl von der vorhergehenden jeweils um 1 unter­
scheidet. Wir können jetzt aber nicht behaupten, daß diese Werte ganzzahlig 
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sein müssen, wie es für die Projektion l. des Bahndrehimpulses der Fall war 
(die zu Beginn von § 15 angegebene Herleitung ist hier nicht anwendbar, d� 
sie auf einen für den Bahndrehimpuls spezifischen Ausdruck des Operators lz 
beruht, der auf eine Funktion der Koordinaten wirkt). 

Die Folge der Eigenwerte Sz ist nach oben und nach unten begrenzt. Die 
Grenzen haben denselben absoluten Betrag und entgegengesetzte Vorzeichen, 
wir bezeichnen sie mit ±8. Die Differenz 2 8 zwischen dem größten und dem 
kleinsten Wert von 8z muß eine ganze Zahl oder Null sein. Die Zahl 8 kann 
demnach die Werte 0, 1/2, 1, 3/2, . . .  annehmen. 

Die Eigenwerte des Quadrates des Spins sind also 
s2 = s (s + I) ;  (39,1 )  

8 kann darin entweder eine ganze Zahl (einschließlich der Null) sein oder halb­
zahlige Werte annehmen. Bei vorgegebenem s kann die Komponente s. = u die 
Werte s, s - 1, . . .  , -8, insgesamt 2 8 + 1 Werte durchlaufen. Ebensoviele 
Komponenten hat, entsprechend dem oben Gesagten, die Wellenfunktion eines 
Teilchens mit dem Spin s. 1 )  

Die Mehrzahl der Elementarteilchen (darunter Elektronen, Protonen, Neu­
tronen, ,u-Mesonen) besitzt den Spin 1/2. Es existieren jedoch auch Elementar­
teilchen mit anderen Spins' (so besitzen n-Mesonen und K-Mesonen den Spin 0) . 

Der Gesamtdrehimpuls eines Teilchens (wir bezeichnen ihn mit j) ergibt sich 
durch Addition des Bahndrehimpulses l und des Spins s. Die zugehörigen Ope­
ratoren wirken auf Funktionen ganz verschiedener Veränderlicher und kommu­
tieren natürlich miteinander. Die Eigenwerte des Gesamtdrehimpulses 

(39,2) 
erhält man nach derselben Regel im "Vektormodell" wie die Summe der 
Bahndrehimpulse zweier verschiedener Teilchen (§ 17). Für gegebene Werte von 
l und s kann der Gesamtdrehimpuls die Werte l + s, l + s - 1, . . .  , i l - sl 
annehmen. Ein Elektron (Spin 1/2) mit von Null verschiedenem Bahndreh­
impuls l kann den Gesamtdrehimpuls j = l ± 1/2 haben ; für l = 0 hat der Dreh-
impuls j natürlich nur den einen Wert j = 1/2. 

· 

Der Operator für den Gesamtdrehimpuls J eines Systems von Teilchen ist 
die Summe der Operatoren für die Drehimpulse j der einzelnen Teilchen, so 
daß seine Werte wieder durch die Regeln des Vektormodells bestimmt werden. 
Man kann den Drehimpuls J in der Form J = L + S darstellen ; dabei kann 
man S als den Gesamtspin und L als den gesamten Bahndrehimpuls bezeichnen. 

Zusammen mit den Vertauschungsregeln besitzen auch die Formeln (15,11 )  
für die Matrixelemente der Drehimpulskomponenten universellen Charakter 
(d. h., sie sind für einen beliebigen Drehimpuls gültig). Desweiteren bleiben 

1) Da für jede Teilchensorte 8 eihe feste Zahl ist, wird der Spindrehimpuls Ii s beim 
Grenzübergang zur klassischen Mechanik (h -+ 0) Null. Für den Bahndrehimpuls hat eine 
solche Überlegung keinen Sinn. Beim Übergang zur klassischen Mechanik streben gleich­
zeitig Ii gegen Null und l gegen Unendlich, so daß das Produkt Ii l endlich bleibt. 
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auch (bei entsprechender Abänderung der Bezeichnungen) die in § 18 bezüglich 
des Drehimpulses aufgestellten Auswahlregeln für die Matrixelemente der ver­
schiedenen physikalischen Größen richtig. 

§ 40. Der Spinoperator 

Im folgenden (in diesem und den §§ 41, 42) werden wir uns nicht für die Orts­
abhängigkeit der Wellenfunktionen interessieren. Wenn wir zum Beispiel vom 
Verhalten der Funktionen 1p (a) bei einer Drehung des Koordinatensystems 
sprechen, dann kann man sich vorstellen, daß sich das Teilchen im Koordinaten­
ursprung befindet. Seine Koordinaten bleiben dann bei einer solchen Drehung 
unverändert, und die erhaltenen Ergebnisse sind gerade für das Verhalten der 
Funktion 1p(a) bezüglich der Spinvariablen a charakteristisch. 

Die Variable a unterscheidet sich von den gewöhnlichen Variablen (den Ko­
ordinaten) dadurch, daß sie nur diskrete Werte annimmt. Die allgemeinste 
Gestalt eines linearen Operators, der auf eine Funktion der diskreten Variablen a 
wirkt, ist 

A 

f 'lp(O') = J.: laa' 'l/'(a' ) , 
a' 

wobei die laa' Konstanten sind. 

(40, 1) 

Es ist leicht zu sehen, daß diese Größen mit den nach der üblichen Regel 
( 11 .6) bezüglich der Eigenfunktionen des Operators Sz definierten Matrix-
elementen des Operators f zusammenfallen. Die Koordinatenintegration in der 
Definition (1 1,6) wird jetzt durch die Summation über die diskrete Variable 
ersetzt, so daß die Definition für ein Matrixelement die Form 

(40,2) 
a 

annimmt. 'll'a,(a) und 'll'a,(a) sind hier Eigenfunktionen des Operators 8., die 
zu den Eigenwerten s. = a1 und s. = a2 gehören ; jede Funktion dieser Art 
entspricht einem Zustand, in dem das Teilchen einen definierten Wert s. be­
sitzt, d. h. , von allen Komponenten der Wellenfunktion ist nur eine von Null 
verschieden1) : 

'll'a,(<1) = ba, a , 
Gemäß ( 40, 1) haben wir 

A 

f 'll'a,(a) = J.: la a' 'l/'a,(a' ) = J.: la a' ba, a' = fa a1 • 

a' a' 

1) Genauer müßte man 

!pa,(X, y, z ; a) = !p(X, y, z) Oa1a, . . •  

(40,3) 

schreiben ; in (40,3) sind die in unserem Zusammenhang unwesentlichen Koordinaten­
funktionen weggelassen. 

Wir betonen ein weiteres Mal die Notwendigkeit, zwischen gegebenem Eigenwert 8z 
(a1 bzw. a2) und der unabhängigen Variablen a zu unterscheiden ! 
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Setzen wir diesen Ausdruck zusammen mit "Pa,(a) in (40,2) ein, dann wird 
letztere Gleichung identisch befriedigt, womit die aufgestellte Behauptung be­
wiesen ist. 

Demnach können die auf die Wellenfunktionen eines Teilchens mit dem 
Spin 8 wirkenden Operatoren als (2 8 + 1)-reihige Matrizen dargestellt werden. 
Insbesondere haben wir für die Spinoper�toren selbst 

8., 1p(a) = .E (8:z:)a a' 1p(a'), • . • (40,4) 
a' 

Gemäß dem oben Gesagten (siehe das Ende von § 39) stimmen die Matrizen 
8.,, 811, 8. mit den in § 15 erhaltenen Matrizen der Größen L.,, L11, Lz überein, 
wenn man nur in den Formeln (15,11) die Buchstaben L und M durch die 
Buchstaben 8 und a ersetzt. Damit haben wir direkt die Spinoperatoren be­
stimmt. 

In dem sehr wichtigen Fall Spin 1/2 (8 = 1/2, a = ± 1/2) sind diese Matrizen 
zweireihig. Man schreibt sie in der Form 

1 8:z; = 2 (]"' ' 
mitl) 

a., = (� �) ' 
� 1 811 = 2- a11 , 

e -i

) av = i 0 ' 

� 1 
(40,5) 8z = 2 az 

a. = (� -�) · (40,6) 

Die Matrizen (40,6) heißen PAULI-11fatrizen. vVir bemerken, daß die Matrix 8z 
diagonal ist, wie es auch für die Matrix sein muß, die bezüglich der Eigen­
funktionen des ihr äquivalenten Operators 8z dargestellt wird. 

§ 41. Spinoren 

Wir gehen nun zu einer ausführlicheren Betrachtung der Spineigenschaften der 
Wellenfunktionen über. 

Die Wellenfunktion eines Teilchens mit dem Spin 0 besitzt irisgesamt eine 
sich bei Drehungen des Koordinatensystems nicht ändernde Komponente, d. h. ,  
sie ist · ein Skalar. 

Für die Wellenfunktionen von Teilchen mit Spin ungleich Null geben wir 
zunächst ihr Verhalten bei Drehungen um die z-Achse an. Der Operator für 
eine infinitesimal kleine Drehung bezüglich der z-Achse um den Winkel (Jcp 
wird mit Hilfe des Drehimpulsoperators (im gegebenen Fall des Spinoperators) 

1) In der Matrizenschreibweise (40,6) werden die Zeilen und Spalten durch die a·Werte 
durchnumeriert, wobei die Zeilennummer dem ersten und die SpaltennJimmer dem 
zweiten Index eines Matrixelements entspricht. Im vorliegenden Fall sind diese Nummern 
1/2, - 1/2. Anwendung eines solchen Operators bedeutet gemäß Regel (40,1)  Multipli­
kation der a-ten Zeile der Matrix mit den Komponenten der Wellenfunktion, die in Form 

. . ( "P(1/2) ) 
emer Spalte angeordnet smd : "P = I . "P(- 1  2) 
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durch 1 + i tJq; • 8. ausgedrückt. Deshalb gehen im Ergebnis der Drehung die 
Funktionen 1p(a) in 1p(a) -1:- tJ1jl(a) über, wobei 

tJ1p(<1) = i tJq; • Sz 1p(O') 
gilt. Nun ist jedoch 8. eine diagonale Matrix, und ihre Diagonalelemente 
stimmen mit den Eigenwerten Sz = a überein. Deshalb ist 8. 1p(a) = a 1p(a), 
so daß 

tJ1p(a) = i a 1p(a) · tJq; 
folgt. Schreiben wir diese Gleichung nun als Differentialgleichung d1p/dq; = i a 1p 
und integrieren sie, so finden wir den Wert der Funktion 1p(a) nach der Drehung 
um einen beliebigen endlichen Winkel q; ;  wir erhalten, kennzeichnen wir diesen 
Wert durch einen Strich an der Funktion, 

(41,1) 
Speziell werden bei einer Drehung um den Winkel q; = 2 :rr, alle Kompo­

nenten 1p(a) mit dem gleichen Faktor 
e2n i a  = (-1)2a = (-1)2 • 

multipliziert (die Zahlen 2 a sind offensichtlich immer geradzahlig für gerad­
zahliges 2 s und ungeradzahlig für ungeradzahliges 2 s). Demzufolge gehen 
bei einer vollen Drehung des Koordinatensystems um die Achse die Wellen­
funktionen von Teilchen mit ganzzahligem Spin in ihrem Ausgangswert über, 
während diejenigen für Teilchen mit halbzahligem Spin ihr Vorzeichen ändern. 

Die Wellenfunktionen eines Teilchens mit Spin 1/2 (z. B. eines Elektrons) 
besitzen zwei Komponenten : 1p( 1/2) und 1p( -1/2). Zwecks späterer Verall­
gemeinerungen kennzeichnen wir diese Komponenten durch e inen oberen In­
dex, der die Werte 1 und 2 durchläuft, wobei gilt : 

(41,2) 
Bei einer beliebigen Drehung des Koordinatensystems transformieren sich 

1p1 und 1p2 untereinander, d. h., sie werden einer linearen Transformation unter­
worfen : 

(41,3) 

Die Koeffizi"enten c:\ ,  ß, y, () sind im allgemeinen komplex und Funktionen der 
DrehwinkeL Sie sind durch bestimmte Beziehungen miteinander verknüpft, 
die im weiteren abgeleitet werden. 

Betrachten wir ein System aus zwei Elektronen (der Bahndrehimpuls bezüg­
lich der relativen Bewegung möge Null sein). Sein Gesamtspin kann S = 0 
oder S = 1 sein. Im ersten Falle verhält sich das System als Ganzes wie ein 
Teilchen mit dem Spin 0, so daß seine Wellenfunktion ein Skalar sein muß. 
Wenn man andererseits annimmt, daß die Teilchen nicht miteinander wechsel­
wirken, dann muß sich die Wellenfunktion des Systems in Gestalt von Pro­
dukten aus \\7ellenfunktionen der einzelnen Teilchen (die wir mit 1p und q; 
bezeichnen) darstellen lassen. Es ist leicht einzusehen, daß sie aus den Korn-
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ponenten von "'' und rp als bilineare Form gebildet werden muß, die in den 
Indizes I und 2 antisymmetrisch ist : 

1 y2 ('1/'1 rp2 - '1/'2 rp1) • 

In der Tat ergibt eine einfache Rechnung mit Hilfe von (41,3) 

_1_ ('1/'1' rp2' - '1/'2' rp1') = ((X <5 - ß y) _1_ ('1/'1 rp2 - '1/'2 rp1) V2 V2 ' 

(41,4) 

d. h. die Größe (41,4) transformiert sich bei einer Drehung des Koordinaten­
systems in sich selbst. Dies bedeutet, daß sie ein Skalar ist, wobei gelten muß : 

(l b - ß y = l . 

Damit haben wir auch eine der gesuchten Beziehungen. 
Der Ausdruck 

· 

'""1' 2  + '""2'2 = '1/'1 "PI* + '1/'2 "1'2* 

(41,5) 

für die Aufenthaltswahrscheinlichkeit eines Teilchens in einem bestimmten 
Raumpunkt muß offensichtlich auch ein Skalar sein. Vergleichen wir ihn mit 
dem Skalar (41,4), so erkennen wir, daß sich die zu '1/'1 und '1/'2 konjugiert kom­
plexen Komponenten "''�* und "1'2* der \Vellenfunktion wie '1/'2 bzw. -"1'1 trans­
formieren müssen ; d. h., es muß gelten 

"PI*' = <5 "1'1* _ y "1'2* , "1'2*' = _ ß "Pu + (X "Pu . 

Schreiben wir andererseits die konjugiert komplexen Gleichungen (41,3) auf, 

und vergleichen sie mit den vorstehenden, so finden wir noch eine weitere 
Beziehung zwischen den Koeffizienten (X, ß, y und b :  

(X = b* ' ß = - y* . (41,6) 

Wegen der Beziehungen (41,5-6) ent4alten die vier komplexen Größen (X ,  ß, 
y und b in Wirklichkeit insgesamt nur drei unabhängige reelle Parameter. Diese 
entsprechen gerade den drei Drehwinkeln bei der Drehung eines dreidimen-
sionalen Koordinatensystems. 1 

Eine zweikomponentige Größe "'' = (�2) , die sich bei Drehungen des Ko-

ordinatensystems nach der Vorschrift (41,3) transformiert, heißt Spinor 1. Stufe 
oder einfach Spinor. Demnach stellt die Wellenfunktion eines Teilchens mit 
dem Spin 1/2 einen Spinor dar. 

Kehren wir zu dem System aus zwei Elektronen zurück, und betrachten wir 
jetzt seine Zustände mit dem Spin S = 1. Seine Wellenfunktion muß drei 
Komponenten besitzen, die den Spinprojektionen + 1, 0, - 1  entsprechen. Dies 
sind aus Produkten von Komponenten der Spinoren "'' und rp aufgebaute Aus­
drücke, die in ihren Indizes symmetrisch sind und sich bei Transformationen 
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(41,3) untereinander transformieren : 
1 1jJl ({Jl '  V2 (1jJl ({J2 + 1jJ2 ({Jl) ' 1jJ2 ({J2 · (41,7) 

Die Projektion a des Gesamtspins des Systems ist gleich der Summe der Spin­
projektionen beider Elektronen. Deshalb ergibt sich die Zuordnung der Funk­
tionen (41,7) hinsichtlich der Werte a eindeutig aus der Bedeutung der Spin­
indizes 1 und 2, die die Werte für die Spinprojektionen der einzelnen Elektronen 
angeben : So besitzt die erste dieser Funktionen als Indizes zweimal die 1 und 
entspricht deshalb der Projektion a = 1/2 + 1/2 = 1 ;  die zweite Funktion hat 
als Indizes jeweils einmal die 1 und einmal die 2, so daß a = 1/2 - 1/2 = 0 
ist ; für die dritte Funktion mit der 2 als den beiden Indizes haben wir schließ­
lich a = - 1/2 - 1/2 = - 1. 

Es versteht sich von selbst, daß die Spineigenschaften der Wellenfunktionen, 
die ja im Grunde genommen durch ihre Eigenschaften in bezug auf Drehungen 
des Koordinatensystems gegeben sind, für ein Teilchen mit dem Spin 1 und 
für ein System von Teilchen mit dem Gesamtspin 1 identisch sind. Deshalb 
besitzt das Resultat (41,7) auch allgemeineren Charakter : Die Wellenfunktion 
eines beliebigen Teilchens mit dem Spin 1 stellt einen, wie man sagt, symme­
trischen Spinor 2. Stufe dar. Allgemein heißt eine Gesamtheit von vier Größen 
1p11, 1p22, 1p12, 1p21, die sich bei Drehungen des Koordinatensystems wie die Pro­
dukte aus den entsprechenden Komponenten zweier Spinoren 1. Stufe trans­
formieren (selbstverständlich brauchen sie sich in Wirklichkeit keineswegs auf 
derartige Produkte zurückführen lassen) Spinor 2. Stufe.1) Für einen symme­
trischen Spinor 2. Stufe gilt 1p12 = 1p21, so daß er im ganzen drei unabhängige 
Komponenten besitzt.2) Ihr Zusammenhang mit den Komponenten der Wellen­
funktion 1p(a) ergibt sich aus den Formeln 

1jJ (1) = 1jJll ' 1jJ(Ü) = V21jJ12 ' 1jJ( -1) = 1jJ22 . (41,8) 

Die Wellenfunktion eines Teilchens mit dem Spin 1 kann auch als 3-dimen­
sionaler Vektor 1J' dargestellt werden. Das ist schon daraus ersichtlich, daß ein 
3-dimensionaler Vektor eine Gesamtheit von ebenso vielen (drei) Größen ist, 
die sich bei Drehungen des Koordinatensystems untereinander transformieren. 
Die Zuordnung zwischen den Komponenten eines symmetrischen Spinors 
2. Stufe und den Vektorkomponenten geschieht über folgende Formeln : 

1jJll = - (1jJz - i 1jJy) ' 1jJ22 = 'lf'x + i 'ljJy ' 1jJ12 = 1jJz • 
(41,9) 

Ihr Sinn besteht darin, daß sowohl die auf den linken Seiten der Gleichungen 
stehenden Spinorkomponenten als auch die rechts stehenden Kombinationen 

1) Dies ist ähnlich dem Fall eines Tensors 2. Stufe, einer Gesamtheit von Größen, die 
sich wie Produkte von Vektorkomponenten transformieren. 

2) Ein antisymmetrischer Spinor 2. Stufe besitzt jedoch insgesamt nur eine unabhängige 
Komponente (tp11 = tp22 = 0, tp12 = - tp21). Ihre Eigenschaften stimmen mit denjenigen 
der weiter oben betrachteten Größen (41,4) überein. Mit anderen Worten läßt sich ein 
antisymmetrischer Spinor 2. Stufe auf einen Skalar zurückführen. 
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aus den Vektorkomponenten sich nach ein und derselben Vorschrift trans­
formieren. Von der Richtigkeit dieser Übereinstimmung kann man sich anhand 
einer Drehung um die z-Achse überzeugen, für die sich die Transformations­
vorschrift bezüglich der Spinoren aus (41,1) ergibt.!) Andererseits kann man 
aus dem allgemein bekannten Transformationsgesetz für Vektorkomponenten 
bei einer beliebigen Drehung der Koordinatenachsen durch Vergleich mit den 
Formeln (41 ,9) die allgemeine Transformationsvorschrift für Spinoren finden 
(d. h. die Abhängigkeit der Transformationskoeffizienten (41,3) von den Dreh­
winkeln) ;  wir werden uns aber hier nicht damit aufhalten. 

Im allgemeinen Falle schließlich eines Teilchens mit beliebigem Spin stellt 
die Wellenfunktion einen in allen seinen Indizes symmetrischen Spinor 2 s-ter 
Stufe dar. Es ist leicht zu sehen, daß die Zahl der unabhängigen Komponenten 
eines solchen Spinors, wie es auch sein muß, gleich 2 s + 1 ist. Da die An­
ordnung der Indizes für einen symmetrischen Spinor unwesentlich ist, sind 
tatsächlich nur diejenigen Komponenten voneinander verschieden, in deren 
Indizes 2 s Einsen und 0 Zweien, 2 s - 1 Einsen und eine Zwei usw. bis 0 Einsen 
und 2 s Zweien vorkommen.11) 

§ 42. Die Polarisation von Elektronen 

Eine wichtige, für Teilchen mit dem Spin l/2 (wir werden von Elektronen 
sprechen) spezifische Eigenschaft besteht darin, daß, wenn der Zustand eines 
Elektrons durch eine gewisse Wellenfunktion beschrieben wird, eine solche 
Raumrichtung existiert, längs derer die Spinprojektion den definierten Wert 
s. = l/2 besitzt. Diese Richtung kann man als Polarisationsrichtung des Elek­
trons bezeichnen, während man vom Elektron in einem solchen Zustand sagt, 
es sei vollständig polarisiert. 

In der Tat kann man die Richtung der z-Achse derart wählen, daß eine von 

den Komponenten (z. B .  1p2) eines gegebenen Spinors 1J! = (�:) - der Wellen-

1) Entsprechend (41 ,1 )  und (41,2) haben wir 

1Jl2' = e- irp/2 1Jl2 ,  
worin 1p1', 1p2' die Spinorkomponenten bezüglich des Koordinatensystems sind, das gegen­
über dem Ausgangssystem um den Winkel rp um die z-Achse gedreht ist. Für die Kompo­
nenten eines 2stufigen Spinors gilt deshalb 

Durch eben diese Formeln sind die Vektorkomponenten 1Jlx - i 1flv• 1Jlz, 1Jlx + i !p11 in beiden 
Koordinatensystemen verknüpft. 2) In der Terminologie der Mathematik spricht man davon, daß die symmetrischen 
Spinoren 1.,  2., 3., . . .  Stufe alle irreduziblen Darstellungen der Drehgruppe realisieren 
(vergleiche die Fußnote auf Seite '50). Die Dimension dieser Darstellungen bestimmt sich 
gemäß 2 8 + 1 und durchläuft alle Werte 1, 2, 3, . . .  für 8 = 0, 1/2, 1, . . . Die durch 
die Eigenfunktionen des Bahndrehimpulses 1JlLM (von denen die Rede in § 18 war) reali­
sierten Darstellun

_
gen sind ein Spezialfall, der den Dimensionen 1, 3, 5, . . .  entspricht. 
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funktion eines Teilchens mit dem Spin 1/2 - Null wird. Dies ist schon daraus 
ersichtlich, daß eine Richtung im Raum durch zwei Größen festgelegt wird 
(z. B. in Kugelkoordinaten durch zwei Winkel), d. h., die Zahl der uns zur 
Verfügung stehenden Parameter ist genau gleich derjenigen Anzahl von Größen 
(Real- und Imaginärteil des komplexen 1p2) ,  die wir Null setzen wollen. Die 
Gleichung "1'2 = 0 ihrerseits bedeutet die Wahrscheinlichkeit Null für den 
Eigenwert s. = - 1/2. Wir weisen darauf hin, daß es für ein Teilchen mit 
dem Spin s > 1/2 unmöglich wäre, auf die gleiche Weise alle Komponenten 
der Wellenfunktionen mit Ausnahme einer einzigen Null zu setzen, da ihre 
Anzahl einfach zu groß ist. 

Die z-Achse möge in Polarisationsrichtung des Elektrons gewählt sein. 
Offensichtlich ist auch der gemittelte Spinvektor s entlang dieser Achse ge­
richtet, wobei er dem Betrag nach 1/2 ist. Wir wollen die W ahrscheinlichkeiten w ± 
für die Werte Sz• = ± 1/2 der Spinprojektion bezüglich einer anderen Rich­
tung (Achse z') bestimmen, die mit der z-Achse· den Winkel () einschließt. 
Projizieren wir s auf die z' -Achse, dann finden wir für den Mittelwert des 
Spins entlang dieser Achse 8. = 1/2 cos (). Gemäß der Definition für die Wahr­
scheinlichkeiten w± haben wir andererseits 

- 1 sz' = 2 (w+ - w_ ) . 

Berücksichtigen wir ferner, daß w+ + w_ = 1 gilt, so finden wir 

() w = cos2 -+ 2 ' 
. 2 () w_ = sm 2 . (42,1) 

Neben vollständig polarisierten existieren auch solche Zustände eines Elek­
trons, die man als teilweise polarisiert bezeichnen kann. Diese Zustände werden 
(in Hinblick auf ihre Spineigenschaften) nicht durch Wellenfunktionen sondern 
durch Dichtematrizen beschrieben, d. h., sie sind (hinsichtlich des Spins) ge­
mischte Zustände (eine analoge Begriffsbildung für Bahnzustände von Teilchen 
wurde in § 7 eingeführt). 

Wir gelangen in natürlicher Weise zur Methodik der Beschreibung solcher 
Zustände, indem wir zunächst genau die Definition für den Mittelwert des 
Spinvektors in einem reinen Zustand (einem Zustand vollständiger Polari­
sation) betrachten. Gemäß der Definition von Operatoren physikalischer Grö­
ßen haben wir für einen Zustand mit der Wellenfunktion 1p 1) 

s = I: ""�· <s "P�l , (42,2) 
� 

1) Es sei daran erinnert, daß in diesem Paragraphen (wie auch in §§ 40, 41) unser 
Interesse nicht der Koordinatenabhängigkeit der Wellenfunktionen gilt, und deshalb in 
(42,2) die Raumintegration nicht aufgeführt ist. Dabei wird für die Normierung des 
spinors V' 

angenommen. 
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wobei die Summierung bezüglich der Spinvariablen a in Form einer Summation 
über die Spinorkomponenten geschieht ; mit den Buchstaben c.x, ß bezeichnen 
wir in diesem Paragraphen die die Werte 1 und 2 durchlaufenden Spinorindizes. 
Des weiteren fassen wir die PAuLr-Matrizen ax, a11, a. als Komponenten eines 
Matrixcharakter tragenden Vektors auf, für den wir als Bezeichnung den fett­
gedruckten Buchstaben a verwenden. Gemäß ·(40,1 )  heißt Anwendung des 
Spinoperators s = 1/2 a 

s tp"' = � I.: a"'ß 1pß , 
ß 

worin a"' ß Matrixelemente bedeuten. Deshalb kann man den Ausdruck (42,2) 
als 

mit 
rl "' = VJß VJ"'. 

schreiben. Offensichtlich gilt 

(e"'ß)* = e
ß"' 

und auf Grund der Normierungsvorschrift für Wellenfunktionen 
eu + e22 

= 1 .  

(42,3) 

(42,4) 

(42,5) 

(42,6) 

Im allgemeinen Falle nun einer teilweisen Polarisation wird der Zustand des 
Elektrons durch eine Polarisationsdichtematrix (eu e12) 

e"'ß = e21 !?22 

beschrieben, die den Bedingungen (42,5 -6) genügt und s entsprechend (42,3) 
bestimmt ; jedoch im Unterschied zu einem reinen Zustand zerfallen ·die Ele­
mente dieser Matrix nicht in Produkte (42,4). Der Betrag des Vektors s kann 
Werte von 0 bis 1/2 annehmen. Vollständiger Polarisation entspricht der Wert 
1/2 und dem umgekehrten Fall eines nichtpolarisierten Zustandes der Wert 0. 

Die vier komplexen Größen e"' ß  sind acht reellen Parametern äquiv:alent, 
jedoch sind infolge der fünf Relationen (42,5-6) nur drei von ihnen voneinander 
unabhängig. Gerade so viele Größen (Komponenten) enthält der reelle Vektor s. 
Es ist deshalb klar, daß sich eine Reihe von Größen untereinander in eindeutiger 
Weise bestimmen. Mit anderen Worten ist der Polarisationszustand eines 
Teilchens mit dem Spin 1/2 völlig durch Angabe des Mittelwertes für den Spin­
vektor bestimmt. 

Der Mittelwert für die z-Komponente des Spins lautet 
- 1 ß ß 1 
Sz = - L a� (! "' = - ((!11 _ (!22) • 

2 Cl, ß 2 
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Hieraus ist ersichtlich, daß e11 und e22 die Wahrscheinlichkeiten für die Eigen­
werte 8z = 1/2 und 8z = - 1/2 sind. Die Größe e12 hängt mit den Mittel­
werten für 8., und 8y zusammen. Unter Verwendung der Matrizen a.,, a11 aus 
(40,6) überzeugt man sich leicht davon, daß gilt 

et2 = 8., - i 8u . 

§ 43. Ein Teilchen im Magnetfeld 

Ein Teilchen mit Spin besitzt desweiteren auch ein bestimmtes magnetisches 
Eigenmoment p. Der ihm entsprechende quantenmechanische Operator ist 
proportional dem Operator s ,  d. h. , er kann in der Gestalt, 

(43,1) 

geschrieben werden, wobei 8 die Größe des Teilchenspins ist, und f-t eine für 
das Teilchen charakteristische Konstante bedeutet. Die Eigenwerte der Pro­
jektion des magnetischen Moments sind gleich f-t• = f-t a/8. Hieraus· ist ersicht­
lich, daß der Koeffizient f-t (der gewöhnlich auch einfach als Größe des magne­
tischen Moments bezeichnet wird) den größtmöglichsten Wert f-t•• der sich für 
a = 8 ergibt, darstellt. 

Der Ausdruck f-tfli8 gibt das Verhältnis von magnetischem Eigenmoment 
eines Teilchens zu seinem mechanischen Eigendrehimpuls an (sofern beide in 
Richtung der z-Achse liegen). Bekanntlich ist dieses Verhältnis bezüglich des 
gewöhnlichen (Bahn-) Drehimpulses gleich ef2 m c (siehe I § 66). Der Propor­
tionalitätsfaktor zwischen magnetischem Eigenmoment und Spin eines Teil­
chens hat jedoch einen anderen Wert. Für ein Elektron ist er gleich - ie i fm c, 
d. h. um den Faktor Zwei größer als der übliche Wert (im weiteren werden 
wir sehen, daß man einen solchen Wert aus der relativistischen DIRAC-Glei­
chung erhält). Folglich ist das magnetische Eigenmoment eines Elektrons 
(Spin 1/2) gleich -/-tB mit 

Iei n  /-tB = -2 - = 0,927 · I0-20 ergJGauß. m c  
Diese Größe heißt BoHR8che8 Magneton. 

(43,2) 

Das magnetische Moment schwerer Teilchen wird gewöhnlich in Kernmagne­
tonen gemessen, die als e li/2 mp c mit mp als Protonenmasse definiert sind. Für 
das magnetische Eigenmoment eines Protons gibt das Experiment 2,79 Kern­
magnetonen, wobei das Moment parallel zum Spin ist. Das magnetische Mo­
ment eines Neutrons ist antiparallel zum Spin und gleich 1,91 Kernmagnetonen. 

Wenden wir nun unsere Aufmerksamkeit der Tatsache zu, daß die auf beiden 
Seiten der Gleichung (43,1 )  stehenden Größen p und s hinsichtlich ihres 
Vektorcharakters erwartungsgemäß übereinstimmen : Beide sind axiale Vek­
toren (sie sind jeweils als Vektorprodukte zweier polarer Vektoren definiert). 
Eine genau analoge Gleichung für das elektrische Dipolmoment d (d = const · s) I 



§ 43. Ein Teilchen im Magnetfeld 127 

stände im Widerspruch zur Inversionssymmetrie :  Bei einer Inversion würde 
sich das relative Vorzeichen bezüglich beider Seiten dieser Gleichung ändern.1) 

Wir wollen klären, in welcher Form man die ScHRÖDrNGER-Gleichung für 
ein Teilchen schreiben muß, das sich sowohl in einem äußeren elektrischen als 
auch in einem äußeren magnetischen Feld bewegt. 

In der klassischen Theorie hat die HAMILTON-Funktion für ein geladenes 
Teilchen im elektromagnetischen Feld die Gestalt H = 2 � (P - : Ar + e <P , 

wobei <P das skalare Potential, A das Vektorpotential des Feldes und p der 
generalisierte Teilchenimpuls sind (siehe I § 43). Falls das Teilchen keinen 
Spin besitzt, geschieht der Übergang zur Quantenmechanik in der üblichen Art : 
Der generalisierte Impuls muß durch den Operator p = - i Ii V ersetzt werden, 
und wir erhalten den HAMILTON-0perator2) 

� 1 ( A e ) H =- p - - A + e <P . 2 m  c 
(43,3) 

Wenn jedoch das Teilchen einen Spin besitzt, dann ist ein derartiges Vor­
gehen nicht ausreichend. Dies liegt daran, daß das magnetische Eigenmoment 
eines Teilchens unmittelbar mit dem Magnetfeld wechselwirkt. In der klas­
sischen HAMILTON-Funktion tritt diese Wechselwirkung überhaupt nicht auf, 
da der Spin selbst, einen reinen Quanteneffekt verkörpernd, beim Übergang 
zum klassischen Grenzfall verschwindet. Den richtigen Ausdruck für den 
HAMILTON-Operator erhält man, indem man in (43,3) ein zusätzliches Glied 
- ji H einführt, das der Energie eines magnetischen Moments p. im Felde H 
entspricht.3) Demzufolge besitzt der HAMILTON-Operator für ein sich in einem 
Magnetfeld befindendes Teilchen mit Spin die Gestalt 

A 1 (A e )2 A H =- p - - A - p. H . 2 m  c 
(43,4) 

Die Gleichung H 1p = E 1p für die Eigenwerte dieses Operators stellt dann die 
gesuchte verallgemeinerte ScHRÖDrNGER-Gleichung für den Fall einer Bewegung 
im Magnetfeld dar. In dieser Gleichung ist die Wellenfunktion 1p ein Spinor der 
Stufe 2 s + 1. 

1) Wir bemerken, daß eine solche Gleichung (und damit auch unmittelbar die Existenz 
eines elektrischen Dipolmoments eines Elementarteilchens) der Symmetrie bezüglich der 
Zeitumkehr widerspräche : Eine Vorzeichenumkehr hinsichtlich der Zeit ändert das elek­
trische Dipolmoment nicht, jedoch ändert sich das Vorzeichen des Spins (das ist z. B. 
aus der Definition dieser Größen bezüglich der Bahnbewegung ersichtlich ; in die De­
finition von d gehen nur die Koordinaten ein, während in derjenigen für das magnetische 
Moment außerdem die Teilchengeschwindigkeit auftritt). 

2) Wir bezeichnen hier den generalisierten Impuls mit demselben Buchstaben p wie 
auch den gewöhnlichen Impuls (anstelle von P in I § 43), um zu unterstreichen, daß ihm 
der gleiche Operator entspricht. 

3) Die Wahl gleicher Buchstaben für Feldstärke und HAMILTON-Operator kann hier 
nicht zu Verwechslungen führen, da der HAMILTON-Operator mit einem Dach versehen ist. 
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§ 44. Die Bewegung im homogenen Magnetfeld 

Wir wollen die Energieniveaus eines Elektrons in einem konstanten homogenen 
Magnetfeld bestimmen. 

Die z-Achse legen wir in Richtung des Feldes H, und das Vektorpotential 
des Feldes schreiben wir als 

A., = -'-- H y , Au = A. = 0 (44, 1) 

(es ist leicht zu verifizieren, daß rot A tatsächlich mit H übereinstimmt). Der 
HAMILTON-Operator des Elektrons (mit der Ladung e = - Ie i  und dem magne­
tischen Moment f.t = - #B) nimmt dann die folgende Gestalt an : 

H _ _  1_ (� e H  )2 p� p� _ :!!..._ s 
- 2 m P:r: + c Y + 2 m + 2 m m c • · (44,2) 

Wir bemerken zunächst, daß der Operator Sz mit dem HAMILTON -Operator 
kommutiert (da letzterer die Operatoren der anderen Spinkomponenten nicht 
enthält). Dies bedeutet, daß die Projektion des Spins in z-Richtung erhalten 
bleibt und daß man deshalb 8. durch den Eigenwert 81 = a ersetzen kann. 
Nach dieser Ersetzung wird die Spinabhängigkeit der Wellenfunktion unwesent­
lich und man kann 'fJJ in der ScHRÖDINGER-Gleichung als gewöhnliche Koordi­
natenfunktion auffassen. Für diese Funktion haben wir die Gleichung 

1 [(� e H  )2 r 2  �2] e H  
2 m P:r: + -c- y + Pu + Pz 'ljJ - -:;;;c a"P = E 'ljJ . (44,3) 

Der HAMILTON-Operator (44,2) enthält nicht explizit die Koordinaten x und 
z. Deshalb kommutieren mit ihm auch die Operatoren p., und Pz (Differen­
tiation nach x und z}, d. h. ,  die x- und z-Komponente des generalisierten 
Impulses bleiben erhalten. Dementsprechend suchen wir 'fJJ in der Gestalt 

i II (PzZ + P••>. 'ljJ = e x(y) .  (44,4) 

Die Eigenwerte p., und Pz durchlaufen alle Werte von -oo bis + oo .  Da 
A. = 0 ist, fällt die z-Komponente d(ls generalisierten Impulses p, mit der 
Komponente des gewöhnlichen Impulses zusammen : p. = m v.. Somit kann 
die Geschwindigkeit des Elektrons in Feldrichtung beliebige Werte annehmen ; 
man kann sagen, daß die Bewegung längs der z-Achse "nicht quantisiert wird". 

Setzen wir (44,4) in (44,3) ein, so erhalten wir folgende Gleichung für die 
Funktion x : 

" 2 m [E p� m 2 ] 0 X + � - We a - 2 m - 2 We (y - Yo)2 X = , 

wobei die Bezeichnungen y0 = - c p.,fe H und 

I ei H 
we = --;nc (44,5) 
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eingeführt wurden. Diese Gleichung stimmt formal mit der ScHRÖDINGER­
Gleichung (25,6) für einen linearen Oszillator überein, der mit der Frequenz wH 
um den Punkt y = y0 schwingt. Deshalb können wir sofort schließen, daß die 
Konstante (E - a wH - p�/2 m), die die Rolle der Energie des Oszillators 
spielt, die Werte (n + l/2) 'fi wH annehmen'kann, wobei n ganze Zahlen sind. 

Wir erhalten so folgenden Ausdruck für die Energieniveaus eines Elektrons 
im homogenen Magnetfeld : 

( I ) Pi E =  n + 2 + a  'fi wH + 2 m ·  (44,6) 

Das erste Glied in (44,6) liefert die diskreten Energiewerte, die der Bewegung 
in der zur Feldrichtung orthogonalen Ebene entsprechen; sie werden LANDAU­
Niveaus genannt.1) 

1) Dieses Problem wurde erstmalig von L. D. LANDAU (1930) im Zusammenhang mit 
dem des Diamagnetismus von Elektronen in Metallen untersucht. 





Identische Teilchen 

§ 45. Das Prinzip der Unonterscheidbarkeit gleichartiger Teilchen 

VI 

In der klassischen Mechanik verlieren gleichartige Teilchen (sagen wir Elek­
tronen) trotz der Identität ihrer physikalischen Eigenschaften ihre "Indivi­
dualität" nicht. · Man kann sich nämlich die Teilchen eines gegebenen physi­
kalischen Systems "durchnumeriert" vorstellen und dann die Bewegung jedes 
einzelnen Teilchens auf dessen Bahnkurve verfolgen. In einem beliebigen Zeit­
punkt können die Teilchen wieder identifiziert werden. 

In der Quantenmechanik ist die Sachlage ganz anders, wie unmittelbar aus 
dem Unbestimmtheitsprinzip folgt. Wir haben bereits mehrfach darauf hin­
gewiesen, daß der Begriff der Bahnkurve eines Elektrons wegen des Unbestimmt­
heitsprinzips seinen Sinn vollkommen verliert. Ist die Lage eines Elektrons in 
einem bestimmten Zeitpunkt genau bekannt, dann haben seine Koordinaten 
schon in einem infinitesimal benachbarten Zeitpunkt überhaupt keinen be­
stimmten Wert mehr. Lokalisieren wir die Elektronen und numerieren sie zu 
einem gewissen Zeitpunkt durch, so haben wir dadurch nichts für ihre Identi­
fizierung in späteren Zeitpunkten gewonnen. Wenn wir eines der Elektronen 
in einem anderen Zeitpunkt an einer Stelle des Raumes lokalisieren, dann 
können wir nicht angeben, welches der Elektronen an diesen Punkt gelangt ist. 

In der Quantenmechanik gibt es also prinzipiell keine Möglichkeit, ein ein­
zelnes von gleichartigen Teilchen gesondert zu verfolgen und damit die Teil­
chen zu unterscheiden. Man kann sagen, daß gleichartige Teilchen ihre "Indi­
vidualität" in der Quantenmechanik vollkommen verlieren. Die Tatsache, daß 
Teilchen gleichartige physikalische Eigenschaften haben, hat hier eine sehr 
tief liegende Bedeutung : Sie bewirkt die völlige Ununterscheidbarkeit der 
Teilchen. 

Dieses sogenannte Prinzip der Ununterscheidbarkeit gleichartiger Teilchen 
spielt eine grundlegende Rolle in der quantenmechanischen Untersuchung von 
Systemen aus gleichartigen Teilchen. Wir beginnen mit der Behandlung eines 
Systems aus nur zwei Teilchen. Wegen der Identität der Teilchen müssen die 
Zustände des Systems, die einfach durch Vertauschung der beiden Teilchen 
miteinander entstehen, physikalisch völlig äquivalent sein. Bei einer solchen 
Vertauschung kann sich die Wellenfunktion des Systems nur um einen un­
wesentlichen Phasenfaktor ändern. tp(�1, �2) sei die Wellenfunktion des Systems, 
�1 und �2 sollen die Gesamtheiten der drei Koordinaten und der Spinprojektion 
der beiden Teilchen bezeichnen. Es muß dann 

, tp(�v �2) = ei" tp(�2' �1) 

10 Kurzfassung li 
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mit einer reellen Konstanten (X gelten. Bei nochmaliger Vertauschung kommen 
wir zum Ausgangszustand zurück, während die Funktion tp mit e2 ;"' multi­
pliziert wird. Daraus folgt e2 ;"' = l oder e;"' = ± l. Es ist also tp(ev e2) 
= ± tpce2, e�) .  

Wir gelangen zu dem Resultat, daß es insgesamt zwei Möglichkeiten gibt : 
Die Wellenfunktion kann .entweder symmetrisch (d. h., sie ändert sich bei einer 
Vertauschung der Teilchen überhaupt nicht) oder antisymmetrisch sein (d. h., 
sie ändert ihr Vorzeichen bei einer Vertauschung). Offensichtlich müssen die 
Wellenfunktionen für alle Zustände ein und desselben Systems dasselbe Sym­
metrieverhalten haben. Anderenfalls wäre die Wellenfunktion eines Zustandes, 
der durch Überlagerung von Zuständen mit verschiedenem Symmetrieverhalten 
entsteht, weder symmetrisch noch antisymmetrisch. 

Dieses Ergebnis kann man unmittelbar auf Systeme mit beliebig vielen gleich­
artigen Teilchen verallgemeinern. Besitzt irgendein Paar dieser Teilchen die 
Eigenschaft, sagen wir, durch symmetrische Wellenfunktionen beschrieben 
zu werden, dann hat auch jedes andere solche Teilchenpaar dieselbe Eigen­
schaft ; das ist unmittelbar evident, weil die Teilchen gleichartig sind. Die 
Wellenfunktion gleichartiger Teilchen darf sich also bei der Vertauschung eines 
beliebigen Teilchenpaares entweder überhaupt nicht ändern, oder sie muß bei 
der Vertauschung eines beliebigen Paares ihr Vorzeichen wechseln (das gilt 
auch für eine beliebige Vertauschung von Teilchen miteinander) .  Im ersten 
Falle spricht man von einer symmetrischen, im zweiten Falle von einer anti­
symmetrischen W ellenfunktion. 

Je nach der Art der Teilchen werden diese durch symmetrische oder durch 
antisymmetrische Wellenfunktionen beschrieben. Durch antisymmetrische 
Funktionen beschriebene Teilchen gehorchen der FERMI-DmAc-Statistik und 
heißen Fermionen ;  durch symmetrische Funktionen beschriebene Teilchen ge­
horchen der BosE-EINSTEIN-Statistik und werden Bosonen genannt.1) 

Im weiteren werden wir sehen (§ 87), daß aus den Gesetzen der relativisti­
schen Quantenmechanik ein eindeutiger Zusammenhang zwischen der Statistik, 
der die Teilchen unterworfen sind, und ihrem Spin folgt : Teilchen mit halb­
zahligem Spin sind Fermionen, Teilchen mit ganzzahligem Spin sind Bosonen. 

Die Statistik zusammengesetzter Teilchen wird dadurch bestimmt, ob diese 
eine gerade oder eine ungerade Anzahl :von elementaren Fermionen enthalten. 
Die Vertauschung zweier gleichartiger zusammengesetzter Teilchen ist tat­
sächlich der gleichzeitigen Vertauschung einiger Paare gleichartiger Elementar­
teilchen äquivalent. Die Vertauschung von Bosonen ändert die Wellenfunktion 

1) Diese Terminologie hängt mit der Bezeichnung der Statistik für ein ideales Gas 
zusammen, das aus Teilchen mit antisymmetrischen bzw. symmetrischen Wellenfunktionen 
besteht. Tatsächlich haben wir es hier nicht nur mit verschiedenen Statistiken zu tun, 
sondern dem Wesen nach auch mit einer verschiedenen Mechanik. Die FERMI-Statistik 
wurde von E. FERMI 1926 für Elektronen vorgeschlagen, ihr Zusammenhang mit der 
Quantenmechanik (1926) von P. A. M. DIRAC hergestellt. Die BüsE-Statistik wurde von 
D. BosE für Lichtquanten vorgeschlagen und von A. ErNSTEIN (1924) verallgemeinert. 
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überhaupt nicht, die Vertauschung von Fermionen ändert ihr Vorzeichen. 
Daher gehorchen zusammengesetzte Teilchen mit einer ungeraden Anzahl von 
elementaren Fermionen der FERMI-Statistik, Teilchen mit einer geraden An­
zahl von elementaren Fermionen sind der BüsE-Statistik unterworfen. Dieses 
Ergebnis steht natürlich im Einklang mit der oben angegebenen allg�meinen 
Regel ; denn ein zusammengesetztes Teilchen hat einen ganzzahligen oder einen 
halbzahligen Spin, je nachdem, ob es aus einer geraden oder einer ungeraden 
Anzahl von Teilchen mit halbzahligem Spin aufgebaut ist. 

Die Atomkerne mit einem nicht geradzahligen Atomgewicht (d. h. ein Zu­
stand aus einer ungeraden Zahl von Protonen und Neutronen) befolgen die 
FERMI-Statistik, diejenigen mit geradzahligem Atomgewicht gehorchen der 
BüSE-Statistik. Für die Atome selbst, die außer den Kernen auch Elektronen 
enthalten, wird die Statistik offensichtlich dadurch bestimmt, ob die Summe 
aus Atomgewicht und Ordnungszahl geradzahlig ist oder nicht. 

Behandeln wir ein System aus N gleichartigen Teilchen. Die Wechselwirkung 
zwischen den Teilchen soll vernachlässigt werden können. "Pt• 1p2, • • •  seien die 
Wellenfunktionen der verschiedenen stationären Zustände, in denen sich jedes 
einzelne der Teilchen befinden kann. Den Zustand des Gesamtsystems kann 
man durch die Nummern der Zustände angeben, in denen sich die einzelnen 
Teilchen befinden. Es erhebt sich die Frage, wie die Wellenfunktion lJI des 
Gesamtsystems aus den Funktionen "Pt• 1p2 , • • • aufgebaut werden muß. 

Es seien Pt• p2, • • •  , PN die Nummern der Zustände, in denen sich die ein­
zelnen Teilchen befinden (darunter können auch gleiche Nummern sein). Für 
ein System aus Bosonen ist die Wellenfunktion P(�t• �2, • • •  , � N) eine Summe 
von Produkten der Art 

· 

(45,1)  

mit allen möglichen Permutationen der verschiedenen Indizes p1, p2, • • • Diese 
Summe besitzt offenkundig die erforderliche Symmetrieeigenschaft. Für ein 
System aus zwei Teilchen, die sich in verschiedenen Zuständen (p1 =1= p2) be­
finden, ist z. B. 

1 
?p(�l> �2). = V2 [?pp,(�l) 1pp,(�2) + 1pp,(�2) 'ljJp, (�l)] . (45,2) 

Der Faktor 1jV2 ist wegen der Normierung eingeführt worden (alle Funktionen 
"Pt• 1p2, • • •  sind zueinander orthogonal und werden als normiert vorausgesetzt). 
Im allgemeinen Falle eines Systems mit beliebiger An zahl N von Teilchen 
lautet die normierte Wellenfunktion 

(Nl ! Nz ! . . .  )t/2 
1p = -�N!- L 'ljJp, (�t ) 1pp,(�2) . • • 1ppN(�N) ' (45 ,3) 

wobei die Summe über alle Permutationen der verschiedenen Indizes Pt, p2, • • •  , PN 
genommen wird und die Zahlen N1 angeben, wie viele von diesen Indizes gleiche 
Werte i besitzen (dabei ist 1: N1 = N). Bei einer Integration des Quadrates 
I"PI 2 über d�1 d�2 • • • d�N werden alle Glieder mit Ausnahme nur der Absolut-

t o •  
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quadrate aller Summanden Null ;1) da die Gesamtzahl der Summanden in 
(45,3) offensichtlich gleich 

N !  
Nl ! Nz !  . . .  

ist, erhält man hieraus den Normierungsfaktor in (45,3). 
· Für ein System aus Fermionen ist die Wellenfunktion "P eine antisymme­
trische Linearkombination von Produkten (45,1). So haben wir für ein System 
aus zwei Teilchen 

(45,4) 

Im allgemeinen Falle von N Teilchen läßt sich die Wellenfunktion des Systems 
in Form einer Determinante aufschreiben : 

'ljJp,(�t) 'IJl P• (�2) 'IJlp. (�N) 
I 'ljlp, (�1) 'ljlp, (�2) 'ljlp, (�N) (45,5) 'IJl =

VNT . . . . . 

'IJlpN (�t) 'IJlpN(�2) . . . 'IJlpN(�N) 
Der Vertauschung zweier Teilchen entspricht hier die Vertauschung zweier 
Spalten der Determinante ; bei einer solchen Vertauschung ändert sich be­
kanntlich das Vorzeichen der Determinante. 

Aus dem Ausdruck (45,5) ergibt sich das folgende· wichtige Resultat. Wenn 
unter den Ziffern Pt• p2, • • •  zwei gleiche sind, dann werden zwei Zeilen der 
Determinante gleich, und die ganze Determinante verschwindet identisch. Sie 
ist nur dann von Null verschieden, wenn alle Ziffern Pt• p2, • • •  voneinander 
verschieden sind. In einem System gleichartiger Fermionen können sich also 
nicht gleichzeitig zwei (oder mehr) Teilchen in ein und demselben Zustand 
befinden. Das ist das sogenannte PAULI-Prinzip (1925). 

§ 46. Die Austauschwechselwirkung 

In der ScHRÖDINGER-Gleichung ist nicht berücksichtigt, daß die Teilchen auch 
einen Spin haben können. Durch diesen Mangel werden aber diese Gleichung 
und alle mit ihrer Hilfe gewonnenen Ergebnisse nicht wertlos. Das liegt daran, 
daß die elektrische Wechselwirkung der Teilchen nicht vom Spin abhängt.2) 
Mathematisch bedeutet dies, daß im HAMILTON·Üperator eines Systems von 
Teilchen mit elektrischer Wechselwirkung (in Abwesenheit eines Magnetfeldes) 
der Spinoperator nicht vorkommt . Wird der HAMILTON-Operator auf die 

1) Unter einer d�-Integration wird (hier und in §§ 46, 47) vereinbarungsgemäß Inte­
gration bezüglich der Koordinaten und gleichzeitige Summation über a verstanden. 

2) Dies ist nur für die nichtrelativistische Näherung richtig. Bei Berücksichtigung 
relativistischer Effekte hängt die Wechselwirkung geladener Teilchen vom Spin ab. 
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Wellenfunktion angewendet, dann wirkt er in keiner Weise auf die Spin variablen. 
Jede Komponente der Wellenfunktion genügt daher tatsächlich einer Smmö­
DINGER-Gleichung. Die Wellenfunktion des Systems kann daher als Produkt 

(46,1) 

der Funktion q;, die nur von den Koordinaten der Teilchen abhängt, mit der 
Funktion z, die nur von den Teilchenspins abhängt, geschrieben werden (die 
erste werden wir Ortsanteil oder orbitale, die zweite Spin-Wellenfunktion nennen).  
Die ScHRÖDINGER-Gleichung bestimmt ihrem Wesen nach nur die Ortsfunktion q; 
und läßt die Funktion X willkürlich. Immer dann, wenn uns der Spin der Teilchen 
nicht interessiert, können wir folglich die ScHRÖDINGER-Gleichung verwenden 
und nur die Ortsfunktion als Wellenfunktion ansehen, wie es auch in der ganzen 
bisherigen Darstellung getan worden ist. 

Trotz der erwähnten Unabhängigkeit der elektrischen Wechselwirkung von 
Teilchen von deren Spin existiert eine eigenartige Abhängigkeit der Energie 
eines Systems von dessen Gesamtspin. Diese Abhängigkeit folgt letzten Endes 
aus dem Prinzip von der Ununterscheidbarkeit gleichartiger Teilchen. 

Wir wollen ein System aus insgesamt nur zwei gleichartigen Teilchen be­
trachten. Durch Lösen der ScHRÖDINGER-Gleichung finden wir eine Reihe von · 
Energieniveaus ; zu jedem gehört eine bestimmte symmetrische oder anti­
symmetrische Wellenfunktion q;(r1, r2). Da die Teilchen gleichartig sind, ist 
der HAMILTON-Operator (und daher auch die ScHRÖDINGER-Gleichung) des 
Systems gegenüber einer Vertauschung derselben invariant. Sind die Energie­
niveaus nicht entartet, dann kann sich die Funktion q;(r1, r2) bei einer Ver­
tauschung der Koordinaten r1 und r2 nur um einen konstanten Faktor ändern. 
Durch nochmalige Vertauschung überzeugen wir uns davon, daß dieser Faktor 
nur ± 1 sein kann.1) 

Zunächst setzen wir voraus, daß die Teilchen den Spin Null haben. Für 
solche Teilchen gibt es überhaupt keinen Spinfaktor, und die Wellenfunktion 
reduziert sich auf die Funktion q;(r1, r2) allein, die symmetrisch sein muß (da 
Teilchen mit dem Spin Null der BasE-Statistik gehorchen).  Es können also 
nicht alle Energieniveaus, die man beim formalen Lösen der ScHRÖDINGER­
Gleichung erhält, tatsächlich realisiert werden ; diejenigen, zu denen anti­
symmetrische Funktionen q; gehören, kommen für das betrachtete System nicht 
in Frage. 

Die Vertauschung zweier gleichartiger Teilchen ist einer Inversion des Ko­
ordinatensystems äquivalent (dessen Ursprung auf der Mitte der Verbindungs­
geraden beider Teilchen liegt) .  Andererseits muß sich die Wellenfunktion q; bei 
einer Inversion mit dem Faktor ( - 1)1 multiplizieren, wobei l der Bahndreh­
impuls der Relativbewegung der beiden Teilchen ist (siehe § 19) . Wir stellen 
diese Überlegungen dem oben Gesagten gegenüber und gelangen zu dem 

1) Liegt Entartung vor, so kann man immer solche Linearkombinationen der zu diesem 
Niveau gehörigen Funktionen wählen, die dieser Bedingung auch genügen. 
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Schluß, daß ein System aus zwei gleichartigen Teilchen mit dem Spin Null 
'nur einen geradzahligen Bahndrehimpuls haben kann. 

Jetzt wollen wir annehmen, daß das System aus zwei Teilchen mit dem 
Spin 1/2 besteht (sagen wir, aus zwei Elektronen). Die gesamte Wellenfunktion 
des Systems (d. h. das Produkt der Funktion q;(r1, r2) mit der Spinfunktion 
x(u1, u2)) muß bei einer Vertauschung der beiden Elektronen unbedingt anti­
symmetrisch sein. Bei einer symmetrischen Ortsfunktion muß die Spinfunktion 
antisymmetrisch sein oder umgekehrt. Wir werden die Spinfunktion in spino­
rieller Form schreiben, d. h. als Spinor zweiter Stufe x"'ß. Jeder Index dieses 
Spinors entspricht dem Spin eines der Elektronen. Zu der in den Spins der 
beiden Teilchen symmetrischen Funktion gehört ein symmetrischer Spinor 
(X"'ß = xß "'), zu der antisymmetrischen Funktion ein antisymmetrischer Spinor 
(x"'ß = - xß"'). Wir wissen aber, daß ein symmetrischer Spinor zweiter Stufe 
ein System mit dem Gesamtspin 1 beschreibt. Der antisymmetrische Spinor 
reduziert sich auf einen Skalar, das entspricht dem Spin Null. 

Wir finden also das folgende Ergebnis : Die Energieniveaus mit symmetri­
schen Lösungen q;(r1, r2) der ScHRÖDINGER-Gleichung können faktisch nur reali­
siert werden, wenn der Gesamtspin des Systems Null ist, d. h., wenn die Spins 
der beiden Elektronen "antiparallel" gerichtet sind und addiert Null ergeben. 
Die Energiewerte mit antisymmetrischen Funktionen q;(r1 , r2) verlangen den 
Gesamtspin 1, d. h., die Spins der beiden Elektronen müssen "parallel" sein. 

Es hängt, mit anderen Worten, von dem Gesamtspin des Systems ab, welche 
Energiewerte der Elektronen möglich sind. Auf Grund dessen kann man von 
einer eigenartigen Wechselwirkung der Teilchen sprechen, die diese Abhängig­
keit hervorbringt. Diese Wechselwirkung heißt Austauschwechselwirkung. Sie 
ist ein reiner Quanteneffekt und verschwindet (wie auch der Spin selbst) beim 
Grenzübergang zur klassischen Mechanik vollkommen. 

§ 47. Die zweite Quantisierung. Der Fall der BosE·Statistik 

Für die quantenmechanische Untersuchung von Systemen, die aus sehr vielen, 
beliebig miteinander wechselwirkenden gleichartigen Teilchen bestehen, ist eine 
besondere Methode der Behandlung nützlich ; diese Methode ist unter dem 
Namen zweite Quantisierung bekannt. In der relativistischen Theorie wird sie 
überhaupt unumgänglich. Dort hat man es mit Systemen zu tun, bei denen 
die Teilchenzahl selbst veränderlich ist.1) 

Mit 1p1(�), 1p2(�), • • •  bezeichnen wir ein gewisses vollständiges System ortho­
normierter Wellenfunktionen stationärer Einteilchenzustände. Als solche wählt, 
man gewöhnlich ebene Wellen - Wellenfunktionen eines freien Teilchens für 
bestimmte Werte des Impulses (und der Spinprojektion). Um das Zustands-

1) Die Methode der zweiten Quantisierung wurde von P. A. M. DmAc (1927) für Photo· 
nen in Anwendung auf die Strahlungstheorie entwickelt und später von E. WIGNER und 
P. JORDAN (1928) auf FERMI-Teilchen ausgedehnt. 
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spektrum auf ein diskretes zurückzuführen, betrachtet man dabei die Bewe­
gung der TE>ilchen in einem großen, jedoch endlichen Raumbereich Q (wie dies 
am Ende von § 27 erklärt wurde). 

In einem System freier Teilchen bleiben die Teilchenimpulse einzeln erhalten. 
Dadurch stellen auch die Besetzungszahlen für die Zustände - die Zahlen 
Nv N2, • • •  , welche angeben, wieviel Teilchen sich in jedem der Zustände 
'I{Jv 'lp2, • • •  befinden - Erhaltungsgrößen dar. In einem System wechselwir­
kender Teilchen bleiben die einzelnen Teilchenimpulse und damit die Beset­
zungszahlen schon keine Erhaltungsgrößen mehr. Im Hinblick auf ein solches 
System kann man nur von einer Wahrscheinlichkeitsverteilung für die ver­
schiedenen Besetzungszahlen sprechen. Wir stellen uns das Ziel, einen mathe­
matischen Apparat aufzubauen, in dem die Besetzungszahlen (und nicht die 
Koordinaten und Spinprojektionen der Teilchen) unmittelbar die Rolle der 
unabhängigen Variablen übernehmen. 

In einem solchen Apparat wird der Zustand eines Systems durch eine, wie 
man sagt, "Wellenfunktion im Raum der Besetzungszahlen" beschrieben, die 
wir .als W(N1, N2, • • •  ; t) bezeichnen (um ihren Unterschied zu einer gewöhn­
lichen, von den Koordinaten und den Spins abhängenden Wellenfunktion 
'P(�1, �2, • • •  , �N ; t) hervorzuheben). Das Betragsquadrat I Wl 2 bestimmt die 
Wahrscheinlichkeit für die verschiedenen Werte der Zahlen N1, N2, • • •  

Entsprechend einer solchen Wahl der unabhängigen Variablen müssen auch 
die Operatoren für die verschiedenen physikalischen Größen (unter ihnen der 
HAMILTON-Operator des Systems) hinsichtlich ihrer Anwendung auf Funk­
tionen von Besetzungszahlen formuliert werden. Zu einer derartigen Formu­
lierung kann man kommen, wenn man von der gewöhnlichen Matrizendarstel­
lung von Operatoren ausgeht. Dabei müssen die mit den Wellenfunktionen 
der stationären Zustände eines Systems nichtwechselwirkender Teilchen zu 
bildenden Matrixelemente der Operatoren untersu�ht werden. Dadurch, daß 
man diese Zustände durch Angabe definierter Werte für die Besetzungszahlen 
beschreiben kann, wird der Charakter einer Anwendung der Operatoren auf 
diese Veränderlichen klar. 

Betrachten wir zunächst Systeme von Teilchen, die der BüSE-Statistik ge­
horchen. 

Es sei f}> der auf das a-te Teilchen bezogene Operator irgendeiner physi­
kalischen Größe, d. h., er wirkt nur auf Funktionen von �a· Wir führen den 
in allen Teilchen symmetrischen Operator 

(47,1) 

ein (Summation über alle Teilchen) und bestimmen dessen Matrixelemente mit 
Hilfe der Wellenfunktion (45,3) .  Zuerst kann man sich leicht überlegen, daß 
die Matrixelemente nur für Übergänge ohne Änderung der Zahlen N1, N2, • • •  

(Diagonalelemente) und für Übergänge, bei denen eine dieser Zahlen um 1 ver­
größert und eine andere um 1 verkleinert wird, von Null verschieden sind. 
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Da jeder Operator fa1> nur auf eine Funktion in dem Produkt 1pp,(�1) 1pp, (�2) • • . 
• 

• • 1ppN(�)N wirkt, können seine Matrixelemente nur für Übergänge, die Zu­
standsänderungen eines Teilchens beschreiben, von Null verschieden sein. Das 
bedeutet, daß die Zahl der Teilchen in einem Zustand um l verringert wird und 
dementsprechend in einem anderen um 1 erhöht wird. Die Berechnung dieser 
Matrixelemente ist im wesentlichen sehr einfach ; man kann sie leichter selbst 
durchführen, als ihre Wiedergabe verfolgen. Deshalb geben wir nur das Er­
gebnis der Rechnung an. Die Nichtdiagonalelemente sind 

(N;, N" - 11 p<t> iN, - l, N�e> = lW V N; N,. . (47,2) 
Dabei haben wir nur diejenigen Indizes hingeschrieben, in denen das Matrix­
element nicht diagonal ist, die anderen haben wir der Kürze halber weggelassen. 
lW ist das Matrixelement 

1m = 1 VJt(�> f<t> 1pk(�> d� . (47,3) 
Man muß hierbei bedenken, daß sich die Operatoren f<i> nur durch die Be­
zeichnung der Veränderlichen unterscheiden, auf die sie wirken. Die Inte­
grale ��� hängen daher vom Index a nicht ab. Die Diagonalelemente der Ma­
trix für F<1> sind die Mittelwerte der Größe p<t> in den Zuständen 'P N, N, 0 0 o •  

Die Rechnung ergibt 
p<l) = I: lW N; . (47,4) i 

Wir führen jetzt die bei der Methode der zweiten Quantisierung grund­
legenden Operatoren a, ein, die nicht mehr auf Ortsfunktionen wirken, sondern 
auf Funktionen von Besetzungszahlen. Dazu geben wir folgende Definition. 
Bei Anwendung auf die Funktion tP(N1, N2, • • •  ) erniedrigt der Operator a; 
den Wert der Variablen N; um 1, gleichzeitig wird die Wellenfunktion mit l'N; 
multipliziert : 

a,, tP(N1, N2, • • •  , N;, . .  · > = VM tP(N1, N2, • • •  , N; - 1, . .  ·> . (47,5) 

Man kann sagen, daß der Operator a; die Zahl der Teilchen im i-ten Zustand 
um 1 verringert (man nennt ihn daher Vernichtungsoperator der Teilchen). 
Man kann ihn als Matrix darstellen, deren einziges von Null verschiedenes Ele­
ment das folgende ist : 

(N; - 11 a; j N;) = lf"Nt . (47,6) 
Der zu a, adjungierte Operator at wird laut Definition (siehe 

die Matrix mit den Elementen 
� +  � y-(N;i ai IN; - 1) = (Nt - 1 1  a; iN;)* = N, 

(11,9)) durch 

(47,7)  

dargestellt, d .  h., bei der Anwendung auf die Funktion tP(N1, N2, • • •  ) ver­
größert er die Zahl N; um l :  

at tP(NI, N2, . . .  , N;, . .  · > 
= VN; + 1 tP(Nl, N2, . . .  ' Nt +  1, . . .  ) . (47,8} 
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Der Operator at vergrößert mit anderen Worten die Zahl der Teilchen im i-ten 
Zustand um 1 (man nennt ihn daher Erzeugungsoperator der Teilchen). 

Das Operatorprodukt at ai bewirkt bei der Anwendung auf die Wellen­
funktion offensichtlich nur die Multiplikation mit einer Konstanten, alle Ver­
änderlichen N1 , N2, • • •  bleiben dabei unverändert : Der Operator ai verkleinert 
Ni um 1 ,  at bringt es auf den Ausgangswert zurück. Die unmittelbare Multipli­
kation der Matrizen (47,6) und (47,7) zeigt in der Tat, daß at ai durch eine 
Diagonalmatrix mit den Diagonalelementen Ni dargestellt wird. Man kann 

(47,9) 

schreiben. Analog finden wir 

a1 at = Ni +  1 .  (47,10) 

Die D}fferenz A dieser Ausdrücke liefert die Vertauschungsregel für die Ope­
ratoren a1 und at : 

(47,ll) 

Operatoren mit verschiedenen Indizes i und k wirken auf verschiedene Ver­
änderliche (Ni und Nk) und sind daher vertauschbar : 

(i # k) . (47,12) 

Ausgehend von den angegebenen Eigenschaften der Operatoren ai und at 
kann man leicht erkennen, daß der Operator 

f}<l> = 1: JW at ak (47,13) ' 
i, k 

mit dem Operator (47,1) übereinstimmt. Tatsächlich stimmen alle Matrix­
elemente, die man mit Hilfe von (47,6-7) berechnen kann, mit den Elemen­
ten (47,2) überein. Dieses Ergebnis ist sehr wichtig. In der Formel (47,13) 
sind die Größen JW einfach Zahlen. Es ist uns damit gelungen, einen gewöhn­
lichen Operator, der auf Ortsfunktionen wirkt, durch einen Operator auszu­
drücken, der auf die Funktionen der neuen Variablen, der Besetzungszahlen Ni, 
wirkt. 

Das erhaltene Resultat kann leicht auch für Operatoren anderer Gestalt 
verallgemeinert werden. Es sei 

FA(2) - � /A(2 ) - "-' a b ·  a > b  
(47,14) 

Darin ist f�2l der Operator einer physikalischen Größe, die sich sofort auf ein 
Teilchenpaar bezieht ; er wirkt daher auf Funktionen von ;a und ;b. Analoge 
Rechnungen zeigen, daß ein solcher Operator nach der Relation 

F(2) = _!_  � (f2l)ik A + A+ A A 
2 "-' l m a; ak am az i, k, l, m 

durch die Operatoren ai und at ausgedrückt werden kann ; dabei ist 
(f<2>)i!, = f f 1p{(;1) VJt(;2) j<z> VJM1l VJm(;2) d;l d;2 · 

(47,15) 
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Die Verallgemeinerung dieser Formeln für in allen Teilchen symmetrische 
Operatoren beliebiger anderer Gestalt ist unmittelbar evident. 

Mit Hilfe obiger Formeln kann man auch den HAMILTON-Operator des tatsäch­
lich untersuchten physikalischen Systems aus N miteinander wechselwirkenden 
gleichartigen Teilchen durch die Operatoren a�, at ausdrücken. Der HAMILTON­
Operator eines solchen Systems ist selbstverständlich in allen Teilchen sym­
metrisch. Wenn sich die Wechselwirkung im System auf eine paarweise Wechsel­
wirkung der Teilchen zurückführen läßt, dann hat der HAMILTON-Operator 
die Gestalt 

iJ = x; ii�l) + 1: u<z><ra, rb> .  (47,16) 
a a > b  

Hier ist H�l der Teil des HAMILTON-Operators, der nur von den Koordi­
naten eines (des a-ten) Teilchens abhängt, d. h. der HAMILTON-Operator des 
freien Teilchens 

HA (l) _ - �  A a - 2 m Lla • (47,17) 

Die Funktion u<2>(ra, rb) ist die Wechselwirkungsenergie zweier Teilchen. 
Wenden wir auf (47, 16) die Formeln (47,13) und (47,15) an, so erhalten wir 

jj = � HW at ak + � . 1: (U<2> );� at at am az . 
1, k t, k,l, m 

(47,18) 

Damit ergibt sich der gesuchte Ausdruck des HAMILTON-Operators als Operator, 
der auf Funktionen der Besetzungszahlen wirkt. ' 

Für ein System aus nicht miteinander wechselwirkenden Teilchen bleibt in 
dem Ausdruck (47, 18) nur das erste Glied stehen : 

HA - � H(l ) A+ A - "-"' ik ai a.�: • (47,19) 
i, k 

Nimmt man als Funktionen 1p1 (wie vereinbart) die Eigenfunktionen des HA­
MILTON-Operators ii<1> des freien Teilchens, dann ist die Matrix HW diagonal, 
und die Diagonalelemente sind die Energieeigenwerte e1 des Teilchens. Es ist 
also A H = x: ei at at . (47,20) 

i 

Ersetzen wir den Operator at at durch seine Eigenwerte (47,9), dann erhalten 
wir für die Energieniveaus des Systems 

(47,21) 

Das ist ein triviales Ergebnis, das man bekommen muß. 
Der hier entwickelte Apparat der zweiten Quantisierung kann durch die Ein­

führung der sogenannten 1p-Operatoren 

�m = x: "P'<�> a; ,  �+<e> = x: "P:<�> at (47,22) 
' i 
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in einer geschlosseneueren Form dargestellt werden ; die Veränderlichen � 
werden dabei als Parameter angesehen. Aus den obigen Ausführungen über die 
Operatoren lit und at ist klar, daß der Operator VJ die Gesamtzahl der Teilchen 
in dem System um 1 verringert, während sie der Operator V!+ um 1 vergrößert.l) 

Mit Hilfe der 1j!-Operato:ren erhält der HAMILTON-Operator H aus (47,18) die 
Gestalt 

ii = f �+<�) iJ<I> 1f<�) d� 
+ � f f �+(�) 1p+(�') u<2l 1p(f}�(�) d� d�' . (47,23) 

Davon überzeugt man sich leicht durch direktes Einsetzen der 1j!-Operatoren 
(47,22).  

Der Operator fp+ 1p, der aus den 1j!-Operatoren ähnlich dem Produkt 'II'* 'II' 
aufgebaut ist, welche� die Wahrscheinlichkeitsdichte für ein Teilchen im Zu­
stand mit der Wellenfunktion 'II' bestimmt, heißt Teilchenzahldichteoperator. 
Das Integral 

ß = 1 �+ v; d� (47,24) 

spielt im Apparat der zweiten Quantisierung die Rolle des Operators für die 
Gesamtteilchenzahl im System. Setzen wir hierin die 1j!-Operatoren in der Form 
(47,22) ein, und berücksichtigen wir die Orthonormiertheit der Wellenfunktionen 
tpt, erhalten wir in der Tat 

A 

N = E at a1 .  
i 

(47,25) . 

. . 

Jedes Glied dieser Summe ist ein Teilchenzahloperator für einen Zustand i, 
dessen Eigenwerte gemäß (47,9) gleich den Besetzungszahlen Nt sind ; die 
Summe wiederum aus allen diesen Zahlen ergibt die Gesamtzahl der Teilchen 
im System. Für Systeme mit gegebenen Teilchenzahlen sind diese Feststel­
lungen (wie auch die Eigenschaften des HAMILTON-Operators (47, 19) eines Sy­
stems freier Teilchen) trivial. Wir werden jedoch sehen, daß ihre Verallgemeine­
rung in der relativistischen Theorie zu neuen, keineswegs trivialen Ergebnissen 
führt. 

. 

§ 48. Die zweite Quantisierung. Der Fall der FERMI-Statistik 

Alles Prinzipielle der Methode der zweiten Quantisierung bleibt auch für Sy­
steme aus gleichartigen Fermionen ohne Abänderungen gültig. Die konkreten 
Formeln für die Matrixelemente der Größen und für die Operatoren at sind 
natürlich andere. 

1) Es sei auf die Analogie zwischen den Ausdrücken (47,22) und der Entwicklung 
1p = }; ai lJ'i einer belie'Qigen Wellenfunktion bezüglich eines gewissen vollständigen Sy­
stems von Funktionen hingewiesen. Man könnte deshalb denken, diese Entwicklung 
würde von neuem einer Quantisierung unterworfen. Hiervon ist die Bezeichnung zweite 
Quantisierung für die dargelegten Methoden abgeleitet. 
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Wir werden hier nicht die entsprechenden Rechnungen im einzelnen durch­
führen, sondern nur die in ihnen enthaltenen wesentlichen Gesichtspunkte 
hervorheben, die sich bezüglich der Rechnungen im vorigen Paragraphen 
unterscheiden. 

Die Wellenfunktion "PN, N, . . .  besitzt jetzt die Gestalt (45,5). Wie schon 
gezeigt, können unter den Zahlen Pt' p2, • • •  , die die besetzten Zustände nu­
merieren, keine gleichen vorkommen, da im umgekehrten Falle die Deter­
minante Null wird. Mit anderen Worten können die Besetzungszahlen Nt nur 
die Werte 0 und 1 annehmen. 

Wegen der Antisymmetrie der Funktion (45,5) tritt uns zunächst das Problem 
der Wahl ihres Vorzeichens entgegen. Im Falle der BasE-Statistik gab es dieses 
Problem nicht, weil das einmal gewählte Vorzeichen wegen der Symmetrie der 
Wellenfunktion bei allen Vertauschungen der Teilchen erhalten blieb. Um 
das Vorzeichen der Funktion (45,5) in bestimmter Weise festzulegen, treffen 
wir die folgende Vereinbarung. Wir numerieren ein für allemal alle Zustände "Pt 
mit fortlaufenden Zahlen. Dann füllen wir die Zeilen der Determinante (45,5) 
immer so aus, daß p1 < p2 < p3 < · · · < PN gilt. In den Spalten stehen da­
bei Funktionen verschiedener Veränderlicher in der Reihenfolge �I> �2, • • • , �N· 
Das Vorzeichen der Wellenfunktion hängt auf diese Weise von der Gesamtheit 
der Nummern Pt' p2, • • •  ab, d. h. von allen Besetzungszahlen. 

Im Ergebnis dessen erweisen sich auch die Vorzeichen der Matrixelemente 
für die Teilchenerzeugungs- und Teilchenvernichtungsoperatoren als von ihnen 
abhängig. Und zwar zeigt sich, daß diese Operatoren definiert werden müssen 
als Matrizen mit einem einzigen von Null verschiedenen Element, das gleich ist 

i - 1  1: NJr. 
(0; 1  a; 1 1t) = (1tl at l Ot) = (-1)k�l (48, 1) 

Durch Matrizenmultiplikation kann man sich davon überzeugen, daß die 
Produkte at a, und a, at diagonal sind, wobei 

(48,2) 

gilt, und ihre Summe 

(48,3) 

ist. Wenden wir nun unser Augenmerk darauf, daß die Produkte at a1 für N; = 0 
und die Produkte a1 at für Ni = 1 automatisch Null werden. In diesen Pro­
dukten wird der rechts stehende Operator als erster angewendet ; natürlich 
kann man kein Teilchen im i-ten Zustand vernichten, wenn sich dort keins 
befindet (Nt = 0), und entsprechend dem PAULI-Prinzip kann kein Teilchen 
im i-ten Zustand erzeugt werden, wenn dieser Zustand schon besetzt ist, d. h., 
wenn Nt = 1 ist. Auf Grund dieses Prinzips ist von vornherein klar, daß gilt 

(48,4) 



§ 48. Die zweite Quantisierung. Der Fall der FERMI-Statistik 143 

Für alle Paare von Operatoren mit verschiedenen i und k ergibt sich 
ai ak + ak ai = o , 
at at + at a, = 0 (i � k) ' (48,5) 

d. h., sie sind alle, wie man sagt, antikommutativ im Sinne der Vorzeichen­
änderung eines Produkts bei Vertauschung der Faktoren. Dieser Unterschied 
zum Fall der BasE-Statistik ist völlig natürlich. Im Falle der BasE-Statistik 
waren die Operatoren a1 und ak überhaupt nicht voneinander abhängig. Jeder 
Operator a. wirkte nur auf eine Variable N,. Das Ergebnis der Anwendung 
dieses Operators war von den Werten der übrigen Besetzungszahlen unabhängig. 
Im Falle der FERMI-Statistik hängt das Ergebnis der Anwendung des Opera­
tors a1 nicht nur von der Zahl Nt selbst ab, sondern auch von den Besetzungs­
zahlen aller vorangehenden Zustände. Die Anwendung verschiedener Opera­
toren a, und ak kann deshalb nicht als unabhängig voneinander angesehen 
werden. 

Nachdem wir so die Eigenschaften der Operatoren fit und at ' bestimmt 
haben, bleiben alle übrigen Formeln . (47,13-25) in Kraft. 





Das Atom 

§ 49. Die Energieniveaus eines Atoms 

VII 

In der nichtrelativistischen Näherung werden die stationären Zustände eines 
Atoms aus der ScHRÖDINGER-Gleichung für das System der Elektronen bestimmt, 
die sich im CouLOMB-Feld des Kernes bewegen und miteinander in elektrischer 
Wechselwirkung stehen. Wie wir wissen, bleibt für ein System von Teilchen 
in einem äußeren kugelsymmetrischen Feld der gesamte Bahndrehimpuls L 
erhalten, auch die Parität eines Zustandes bleibt erhalten. Jeder stationäre 
Zustand eines Atoms wird daher durch einen bestimmten Wert für den Dreh­
impuls L und durch seine Parität charakterisiert. Außerdem wird jeder statio­
näre Zustand eines Atoms auf Grund des in § 46 beschriebenen Effektes der 
Austauschwechselwirkung auch durch den Wert des Gesamtspins S der Elek­
tronen charakterisiert. 

Auf diese Weise werden in der nichtrelativistischen Näherung die Energie­
niveaus eines Atoms nach den Werten von L, S und der Parität klassifiziert 
(selbstverständlich gilt in diesem Zusammenhang das Umgekehrte nicht : Die 
Werte dieser Quantenzahlen allein bestimmen noch nicht in eindeutiger Weise 
die Energie eines Zustandes). Jedes derartiges Energieniveau ist bezüglich der 
verschiedenen möglichen Richtungen der Vektoren L und S im Raum entartet. 
Die Vielfachheit der Entartung bezüglich dieser Richtungen ist 2 L + l und 
2 S + l. Insgesamt ist demnach die Vielfachheit der Entartung eines Niveaus 
mit gegebenen L und S gleich dem Produkt (2 L + l) (2 S + 1). 

In Wirklichkeit existiert aber immer eine gewisse relativistische elektro­
magnetische Wechselwirkung der Elektronen untereinander, die auch von den 
Elektronenspins abhängig ist (sie wird ausführlicher in § 51 behandelt) .  Wegen 
dieser Wechselwirkung hängt die Energie eines Atoms nicht nur von den Be­
trägen der Vektoren L und S ab, sondern auch von deren relativer Lage. Streng 
genommen bleiben unter Berücksichtigung der relativistischen Wechselwir­
kungen der Drehimpuls L und der Spin S eines Atoms nicht mehr einzeln erhalten. 
Es bleibt nur der Gesamtdrehimpuls J = L + S erhalten. Die Erhaltung des 
Gesamtdrehimpulses ist ein exaktes und universelles Gesetz, . das unmittelbar 
aus der Isotropie des Raumes in bezug auf ein abgeschlossenes System folgt. Im 
Zusammenhang damit müssen die Energieniveaus durch die Werte J des Ge­
samtdrehimpulses charakterisiert werden. 

Sind die relativistischen Effekte aber relativ klein (wie es häufig der Fall 
ist), dann kann man sie als Störung berücksichtigen. Unter dem Einfluß 
dieser Störung wird ein (2 L + l) (2 S + 1)-fach entartetes Niveau mit ge-
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gebenen L und S in eine Reihe verschiedener (nahe beieinander liegender) 
Niveaus "aufgespalten", die sich durch die Werte des Gesamtdrehimpulses J 
unterscheiden. Diese Niveaus werden (in erster Näherung) aus der entsprechen­
den Säkulargleichung bestimmt (§ 33). Ihre Wellenfunktionen (in nullter 
Näherung) sind gewisse Linearkombinationen der Wellenfunktionen des ur­
sprünglichen entarteten Niveaus mit den gegebenen Werten von L und S. In 
dieser Näherung kann man folglich wie früher annehmen, daß die Beträge des 
Bahndrehimpulses und des Spins (aber nicht deren Richtungen) erhalten 
bleiben, und man kann die Niveaus auch durch die Werte von L und S charak­
terisieren. 

Infolge der relativistischen Effekte wird also ein Niveau mit gegebenen 
Werten von L und S in eine Reihe von Niveaus mit verschiedenen Werten von J 
aufgespalten. Diese Aufspaltung nennt man die Feinstruktur (oder die Multi­
plettaufspaltu11{!) eines Niveaus. Wie wir wissen, durchläuft J die Werte von 
L + S bis IL - Si . Ein Niveau mit gegebenen L und S wird daher in 2 S + I 
(für L > S) oder in 2 L + I (für L < S) verschiedene Niveaus aufgespalten. 
Jedes dieser Niveaus bleibt bezüglich der Richtungen des Vektors J entartet ; 
die Vielfachheit dieser Entartung ist 2 J + 1.1) Man kann leicht nachprüfen, 
daß die Summe der Zahlen 2 J + I mit allen möglichen Werten für J gleich 
(2 L + I) (2 S + I) ist, wie es sein muß. 

Die Energieniveaus eines Atoms (oder, wie man sagt, die Spektralterme der 
Atome) werden üblicherweise mit ähnlichen Symbolen bezeichnet, wie sie zur 
Bezeichnung der Zustände einzelner Teilchen mit bestimmten Drehimpuls­
werten verwendet werden (§ 29). Die Zustände mit verschiedenen Werten des 
Gesamtbahndrehimpulses L werden nach der folgenden Zuordnung mit großen 
lateinischen Buchstaben bezeichnet : 

L = O I 2 3 4 5 . .  . 
S P D F G H . .  . 

Links oben an diesem Symbol wird die Zahl 2 S + I angegeben, die sogenannte 
Multiplizität des Termes (man muß aber daran denken, daß diese Zahl nur für 
L � S die Zahl der Komponenten der Feinstruktur eines Niveaus ist).2) Rechts 
unten wird der Wert des Gesamtdrehimpulses J angebracht. So bedeuten die 
Symbole 2P112 und 2P312 die Niveaus mit L = I, S = If2, J = I/2 und J = 3/2 . 

§ 50. Die Elektronenzustände in einem Atom 

Ein Atom mit mehr als einem Elektron stellt ein kompliziertes System mit­
einander wechselwirkender Elektronen dar, die sich im Feld des Kerns bewegen. 

1) Die Feinstruktur der Energieniveaus des Wasserstoffatoms besitzt gewisse spezifische 
Besonderheiten (siehe § 94). 

2)  Entsprechend 2 S + 1 = 1,  2, 3, . . .  nennt man einen Term Singlett, Dublett, 
Triplett, . . .  



§ 50. Die Elektronenzustände in einem Atom . 147 

Für ein solches System kann man streng nur Zustände des Gesamtsystems 
betrachten. Nichtsdestoweniger zeigt es sich, daß man in einem Atom in guter 
Näherung den Begriff der Zustände eines jeden einzelnen Elektrons einführen 
kann. Diese sind die stationären Zustände der Bewegung des Elektrons in einem 
gewissen effektiven kugelsymmetrischen Feld, das vom Kern und allen übrigen 
Elektronen gemeinsam erzeugt wird. Diese Felder sind für die verschiedenen 
Elektronen in einem Atom im allgemeinen verschieden. Sie müssen alle gleich­
zeitig bestimmt werden, weil jedes einzelne von den Zuständen aller übrigen 
Elektronen abhängt. Dieses Feld wird 8elf-consi8tent-field genannt. 

Da das so gewonnene Feld kugelsymmetrisch ist, wird jeder Zustand eines 
Elektrons durch einen bestimmten Wert für seinen Bahndrehimpuls l charak­
terisiert. Die Zustände eines einzelnen Elektrons für ein festes l werden (in der 
Reibenfolge zunehmender Energie) mit Hilfe der Hauptquantenzahl n numeriert, 
die die Werte n = l + 1, l + 2, . . .  annimmt. Diese Reibenfolge der Numerie­
rung ist so festgelegt worden, wie sie für das Wasserstoffatom üblich ist. Man 
muß aber beachten, daß die Reibenfolge bei der Zunahme der Energieniveaus 
mit verschiedenen l in komplizierten Atomen im allgemeinen anders ist als beim 
Wasserstoff. Beim Wasserstoffatom hängt die Energie von l überhaupt nicht 
ab, so daß die Zustände mit größeren n immer die größere Energie haben. Bei 
komplizierten Atomen liegt z. B. das Niveau mit n = 5, l = 0 tiefer als das 
Niveau mit n = 4, l = 2 (genaueres darüber siehe § 52). 

· Die Zustände der einzelnen Elektronen mit verschiedenen n und l bezeichnet 
man üblicherweise mit Symbolen aus einer Ziffer für dt>n Wert der Hauptquan­
tenzahl und einem Buchstaben für den Wert von l.l) So bezeichnet 4 d den 
Zustand mit n = 4 und l = 2. Die vollständige Beschreibung des Zustandes 
eines Atoms erfordert neben der Angabe der Werte von L, S und J auch die 
Aufzählung der Zustände aller Elektronen. Das Symbol 1 8 2 p 3 P0 bedeutet 
z. B. den Zustand eines Heliumatoms mit L = 1, S = 1 und J = 0, die beiden 
Elektronen befinden sich in den Zuständen 1 '8 und 2 p. Befinden sich mehrere 
Elektronen in Zuständen mit gleichen l und n, dann pflegt man das kurz durch 
einen Potenzexponenten anzugeben, so bedeutet 3 p2 zwei Elektronen in 3 p­
Zuständen. Die Verteilung der Elektronen in einem Atom über die Zustände 
mit verschiedenen l und n nennt man Elektronenkonfiguration. 

Bei festen Werten von n und l kann ein Elektron verschiedene Werte für die 
Projektionen des Bahndrehimpulses m und des Spins a auf die z-Acbse haben. 
Die Zahl m kann 2 l + 1 Werte bei festem l annehmen ; die Zahl a ist auf ins­
gesamt nur zwei Werte ( ± 1/2) beschränkt. Daher gibt es insgesamt 2 (2 l + 1) 
verschiedene Zustände mit den gleichen Werten n und Z. Diese Zustände heißen 
äquivalent. In jedem solchen Zustand kann nach dem PAULI-Prinzip je ein 
Elektron sein. In einem Atom können also nicht mehr als 2 (2 l + 1) Elektronen 
gleichzeitig dieselben Werte n und l haben. Die Gesamtheit der Elektronen, die 

1) Es ist auch üblich, Elektronen mit den Hauptquantenzahlen n = 1, 2, 3, . . .  als 
Elektronen der K-, L-, M- . . .  Schalen zu bezeichnen. 

11 Kurzfassung II 



148 Kapitel VII. Das Atom 

alle Zustände mit gegebenen n und l besetzen, nennt man eine abgeschlossene 
Schale der betreffenden Art. 

Der Unterschied in der Energie der Atomniveaus mit verschiedenen L und S 
bei gleicher Elektronenkonfiguration hängt mit der elektrostatischen Wechsel­
wirkung der Elektronen zusammen (wir sehen hier von der Feinstruktur eines 
jeden einzelnen Multipletterms ab). Normalerweise sind die Differenzen zwi­
schen diesen Energien relativ klein - einige Male kleiner als die Abstände 
zwischen den Niveaus mit verschiedenen Konfigurationen. Über die relative 
Lage der Niveaus mit gleicher Konfiguration, aber verschiedenen L und S 
besteht die folgende, empirisch aufgestellte Regel (HUNDsche Regel) : 

Der Term mit dem für die gegebene Elektronenkonfiguration größtmöglichen 
Wert von S und dem größten (bei diesem S möglichen) Wert von L hat die 
kleinste Energie. 

Wir wollen zeigen, wie man die für eine gegebene Elektronenkonfiguration 
möglichen Atomterme finden kann. Sind die Elektronen nicht äquivalent, so 
erfolgt die Bestimmung der möglichen Werte von L und S unmittelbar nach der 
Additionsregel für die Drehimpulse. So können zum Beispiel für die Konfi­
guration n p, n' p (mit verschiedenen n und n') der Gesamtdrehimpuls L die 
Werte 2, 1, 0 und der Gesamtspin S die Werte 0 und 1 haben. Kombinieren 
wir diese Werte miteinander, so erhalten wir die Terme 1•3S, 1•3P und 1•3D. 

Bei äquivalenten Elektronen müssen wir die Beschränkungen infolge des 
PAuLr-Prinzips beachten. Betrachten wir als Beispiel die Konfiguration n p2• 
Für l = 1 (p-Zustand) kann die Projektion m des Bahndrehimpulses die Werte 
m = 1, 0, -1  annehmen, so daß sechs Zustände mit den folgenden Zahlen­
paaren für m und a möglich sind : 

a) 1, 1/2, 
a') 1, -1/2, 

b) 0, 1/2, 
b') 0, -1/2, 

c) . -1, 1/2 , 
c') -1, -1/2 . 

Die zwei Elektronen können auf zwei beliebige dieser Zustände verteilt werden, 
so daß nicht mehr als ein Elektron in einen Zustand kommt. Im Ergebnis er­
halten wir Atomzustände mit den folgenden Werten für die Projektionen 
ML = L: m und Ms = L: (J des Gesamtbahndrehimpulses und des Gesamt­
spins : 

a + a') 2, 0 ,  a + b) 1, 1 ,  
a + b') 1 ,  0 ,  

a' + b) 1, 0 ,  

a + c) 0, 1 ,  
a f c') 0, 0 ,  
a' + c) 0, 0 ,  
b + b') 0, 0 

(man braucht die Zustände mit negativen Werten für ML und M8 nicht auf­
zuschreiben, weil sie nichts Neues ergeben).  Das Vorhandensein eines Zustandes 
mit ML = 2 und M8 = 0 deutet darauf hin, daß es einen 1D-Term geben muß. 
Zu diesem Term muß auch noch je ein Zustand mit (1, 0) und (0, 0) gehören. 
Ferner bleibt noch ein Zustand mit (1 ,  1), so daß es einen Term 3P geben muß ; 
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zu diesem gehören noch die Zustände mit (0, 1) , (1,  0), (0, 0). Schließlich 
verbleibt noch der Zustand (0, 0), der einem Term 18 entspricht. Für eine Kon­
figuration aus zwei äquivalenten p-Elektronen ist also jeweils ein Term der 
Art 18, 3P und ID möglich. 

Für die Konfiguration mit maximaler Zahl äquivalenter Elektronen (d. h. 
für eine abgeschlossene Schale) ist stets nur ein 1S-Zustand möglich, da sich 
die Drehimpulse der Elektronen in einer solchen Schale gegenseitig kompen­
sieren. 

Die Terme für Konfigurationen, von denen eine so viele Elektronen hat, wie 
der anderen zum Auffüllen 1einer Schale fehlen, sind von derselben Art (so 
besitzt die Konfiguration np4 Terme des gleichen Typs wie die weiter oben ge­
fundenen der Ko�figuration np2). Dieses Ergebnis ergibt sich folgendermaßen 
ganz von selbst : Ein fehlendes Elektron in einer Schale kann als.Loch angesehen 
werden, dessen Zustand durch dieselben Quantenzahlen bestimmt wird wie der 
Zustand des fehlenden Elektrons. 

§ 51. Die Feinstruktur der Atomniveaus 

Wie schon angegeben wurde, hängt der HAMILTON-Operator eines Atomes nur 
bei Berücksichtigung relativistischer Effekte, d. h. von Effekten, die beim 
Grenzübergang c -+ oo verschwinden, von den Spinoperatoren der Elektronen 
ab. Auf die Frage nach dem Ursprung der relativistischen Glieder im HAMIL­
TON-Operator werden wir in § 94 zurückkommen ; vorläufig nehmen wir die all-

. gemeine Gestalt dieser Glieder als gegeben an. 
Die relativistischen Terme im HAMILTON-Operator eines Atoms zerfallen in 

zwei Kategorien : Die einen sind linear in den Operatoren der Elektronenspins, 
die anderen hängen quadratisch davon ab. Die ersteren entsprechen einer 
Wechselwirkung der Bahnbewegung der Elektronen mit den Spins, diese nennt 
man Spin-Bahn-Wechselwirkung. Die anderen gehören zu einer Wechselwirkung 
zwischen den Spins der Elektronen (Spin-Spin-Wechselwirkung). Beide Arten 
von Wechselwirkungen sind von derselb en (zweiten) Ordnung in vjc, dem Ver­
hältnis der Geschwindigkeit der Elektron en zur Lichtgeschwindigkeit. Faktisch 
ist aber in schweren Atomen die Spin-Bahn-Wechselwirkung bedeutend stärker 
als die Spin-Spin-Wechselwirkung. Das hängt damit zusammen, daß die 
Spin-Bahn-Wechselwirkung mit zunehmender Ordnungszahl rasch größer wird, 
während die Spin-Spin-Wechselwirkung im wesentlichen von Z überhaupt 
nicht abhängt. Letzteres ist schon aus der unmittelbaren Natur der Spin-Spin­
Wechselwirkung als direkte Wechselwirkung der Elektronen untereinander, 
die keine Beziehung zum Kernfeld hat, ersichtlich. 

Der Operator für die Spin-Bahnwechselwirkung besitzt die Gestalt 

v. l = J: a:a ia sa (5 1,1) a 



150 Kapitel VII. Das Atom 

(die Summation geschieht über aJle Elektronen im Atom),  wobei Sa und z: die 
Operatoren für Spin- und Bahndrehimpulse der Elektronen und aca Funktionen 
ihrer Koordinaten sind. 

Die Energieberechnung für die F�nstruktur der Atomniveaus besteht in 
einer Mittelung des Störoperators V,1 über die ungestörten Zustände der 
Elektronenhülle. Eine solche Mittelung geschieht in zwei Etappen. Zunächst 
mitteln wir über einen atomaren Elektronenzustand mit gegebenen Größen L 
und S für den Ge samtbahn- und den Gesamtspindrehimpuls des Atoms, wobei 
i_.?re Richtungen nicht festgelegt sind. Nach einer derartigen Mittelung bleibt 
V,1 weiterhin ein Operator, der jedoch bereits nur durch Operatoren von Größen 
ausgedrückt werden muß, die das Atom als Ganzes (undA nicht :inzelne Elek­
tronen in ihm) charakterisieren. Solche Operatoren sind S und �.1) 

Wi� bezeichne n die auf di�se Weise gemittelte Spin-Bahnwechselwirkung 
mit V Ls · Indem sie linear in S ist, hat sie die Gestalt 

(5 1,2) 

mit A als für den gegebenen (nicht aufgespalteten) Term charakteristische 
Konstante, die demzufolge von S und L aber nicht vom Gesamtdrehimpuls J 
des Atoms abhängt. 

Zur Berechnung der Energie bei der Aufspaltung des entarteten Niveaus (mit 
gegebenen S und L) muß man die Säkulargleichung lösen, die aus den Matrix­
elementen des Operators (51,2) zusammengestellt wird. Im vorliegenden Falle 
wissen wir jedoch schon vorher die richtigen Funktionen nullter Näherung, in 
denen die Matrix V s L diagonal ist. Das sind die Wellenfunktionen der Zustände 
mit bestimmten Werten des Gesamtdrehirnpul�e� J. Bei der Mittelung über 
einen solchen Zustand hat man den Operator S L durch seinen Eigenwert zu 
ersetzen ; dieser ist nach der allgerneinen Formel ( 17,3) gleich 

L S = � [J (J + 1) - L (L + 1) - S (S + 1)] . 

Für alle Multiplettkomponenten sind die Werte für L und S dieselben. Wir sind 
nur an der relativen Lage der Multiplattkomponenten interessiert ; daher können 

1) Zum besseren Verständnis des angegebenen Verfahrens sei daran erinnert, daß Mitte­
Jung in der Quantenmechanik allgemein Bildung eines entsprechenden Diagonalmatrix­
elementes bedeutet. Partielle MitteJung heißt nun, Matrixelemente zu bilden, die bezüglich 
einiger (jedoch nicht aller) die Systemzustände charakterisierenden Quantenzahlen diagonal 
sind. Im vorliegenden Fall der MitteJung des Operators (51 ,1 )  sind dies die Matrixelemente 
(n M.i, Msi Vst l n ML M8) mit allen möglichen ML, M.i, und Ms, M8, wobei sie jedoch 
in allen übrigen Quantenzahlen diagonal sind (die Gesamtheit dieser Quantenzahlen ist 
mit n bezeichnet). Entsprechend müssen auch die Operatoren S und i als Matrizen 
<M s I s I M  s> und <Mi I L I M L) verstanden werden, deren Elemente durch die Formeln 
(15,11)  gegeben sind. Ein ähnliches Vorgehen eta.ppenweiser MitteJung werden wir im 
weiteren noch öfters anwenden müssen. 
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wir die Energie der Aufspaltung in der Form 
1 2 A  J (J + 1) 
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(51,3) 

schreiben. Die Abstände zwischen benachbarten Komponenten (die durch die 
Zahlen J und J - 1 charakterisiert werden) sind demnach gleich 

LlEJ, J- l  = A J .  (51,4) 
Diese Formel beinhaltet die sogenannte LANDEsche Intervallregel. 

Die Konstante A kann sowohl positiv als auch negativ sein. Für A > 0 ist 
die niedrigste Multiplettkomponente des Niveaus das Niveau mit dem kleinst­
möglichen J, d. h. mit J = IL - Si ; diese Multipletts heißen normale Multipletts. 
Ist A < 0, dann liegt das Niveau mit J = L + S am tiefsten (umgekehrtes 
Multiplett). 

Für den gemittelten Operator der Spin-Spin-Wechselwirkung muß man eine� 
Ausdruck erhalten, der ähnlich wie die Formel (51 ,2) aufgebaut ist, aber in S 
quadratisch ist. In S quadratische Ausdrücke sind S2 und (S L)2• Der erste 
Ausdruck hat von J unabhängige Eigenwerte und gibt daher keinen Anlaß zur 
Aufspaltung eines Termes. Man kann ihn daher weglassen und 

A 

Vs s = B (S L)2 (51,5) 
schreiben ; darin ist B eine Konstante . Die Eigenwerte dieses Operators ent­
halten von J unabhängige Terme, zu J (J + 1) proportionale Glieder und 
schließlich ein Glied proportional zu J2 (J + 1)2• Die erstgenannten Glieder 
ergeben keine Aufspaltung und sind deshalb uninteressant. Die zweiten Glieder 
können in den Ausdruck (51,3) aufgenommen werden ; das ist einfach einer 
Änderung der Konstanten A äquivalent. Die dritten tragen schließlich zur 
Energie des Termes den folgenden Ausdruck bei : 

B 
4 J2 (J + 1)2 . (5 1,6) 

Das dargestellte Schema zur Konstruktion der Atomniveaus beruht auf der 
Vorstellung, daß die Bahndrehimpulse der Elektronen zum Gesamthahn­
drehimpuls L_ des Atoms und die Elektronenspins zum Gesamtspin S addiert 
werden. Wie bereits erwähnt worden ist, ist eine solche Betrachtungsweise nur 
dann möglich, wenn die relativistischen Effekte klein sind. Genauer, die Fein­
strukturaufspaltung muß klein sein gegenüber den Differenzen zwischen Niveaus 
mit verschiedenen L und S. In dieser Näherung spricht man von der RussELL­
SAUNDERs-Kopplung oder vön L-S-Kopplung. 

Der Anwendungsbereich dieser Näherung ist aber faktisch beschränkt. Nach 
der L-S-Kopplung könneri die Niveaus der leichten Atome bestimmt werden. 
Mit zunehmender Ordnungszahl werden die relativistischen Wechselwirkungen 
im Atom stärker, und die RussELL-SAUNDERS-Näherung ist nicht mehr anwend­
bar. 
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Im entgegengesetzten Grenzfall ist die relativistische Wechselwirkung groß 
gegenüber der elektrostatischen. In diesem Falle kann man nicht vom Bahn­
drehimpuls und vom Spin einzeln sprechen, weil diese nicht erhalten bleiben. 
Die einzelnen Elektronen werden durch ihre Gesamtdrehimpulse i charakteri­
siert, die zum Gesamtdrehimpuls J des Atoms zusammengesetzt werden. In 
diesem Falle spricht man von der j-j-Kopplunq. In Wirklichkeit tritt dieser 
Kopplungstyp in reiner Form nicht auf. Unter den Niveaus sehr schwerer 
Atome beobachtet man verschiedene Zwischenstufen zwischen der L-S- und 
der j-j-Kopplung. 

Eine weitere (nach der Feinstruktur kommende) Aufspaltung der atomaren 
Energieniveaus resultiert aus der Wechselwirkung der magnetischen Momente 
von Elektron und Kern ; sie fühi·t zur sogenannten Hyperfeinstruktur. Wegen 
der Kleinheit der magnetischen Kernmomente (im Vergleich zu den Elektropen­
momenten) ist diese Wechselwirkung relativ klein, und deshalb sind auch die 
durch sie bewirkten Aufspaltungsabstände, verglichen mit den Abständen der 
Feinstruktur, klein. Folglich muß die Hyperfeinstruktur für jede Feinstruktur­
komponente einzeln untersucht werden. 

Wir bezeichnen den Kernspin mit i (wie dies in der Atomspektroskopie üblich 
ist). Der Gesamtdrehimpuls eines Atoms (zusammen mit dem Kern) ist F 
= J + i, wobei J nach wie vor den Gesamtdrehimpuls der Elektronenhülle 

· kennzeichnet. Jede Komponente der Hyperfeinstruktur wird durch einen be­
stimmten Wert F gekennzeichnet . Nach den allgemeinen Regeln für

. 
die Addi­

tion von Drehimpulsen nimmt die Quantenzahl F folgende Werte an : 

F = J + i , J + i - 1 ,  . . .  , j J - ij . (51,7) 

§ 52. Das ME�DELEJEwsche Periodensystem der Elemente 

Die Natur der periodischen Änderung der Eigenschaften, die bei einigen in der 
Reihenfolge zunehmender Ordnungszahlen geordneten Elementen von D. I. 
MENDELEJEW beobachtet wurde, kann erklärt werden, indem man die Besonder­
heiten bei der fortschreitenden Auffüllung der Elektronenhülle der Atome 
untersucht (N. BoHR, 1922). 

Beim Fortschreiten von einem Atom zum nächsten nimmt die Ladung um l 
zu, und zur Elektronenhülle wird ein Elektron hinzugefügt. Auf den ersten 
Blick könnte man erwarten, daß die Bindungsenergie eines jeden der nachein­
ander zugefügten Elektronen sich mit zunehmender Ordnungszahl monoton 
ändert. In Wirklichkeit ist das jedoch nicht so. 

Im Grundzustand des Wasserstoffatoms gibt es insgesamt nur ein Elektron. 
im Zustand 1 s. In dem Atom des folgenden Elementes - des Ht>liums - kommt 
noch ein Elektron in demselben 1 s-Zustand dazu. Die Bindungsenergie eines 
der l s-Elektronen im Heliumatom ist aber bedeutend größer als die Bindungs­
energie des Elektrons im W asserstoffatom. Dies ist eine natürliche Folge des 
Unterschiedes zwischen dem Feld , in dem sich das Elektron im H-Atom befindet, 
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und dem Feld, in das das zum He+-Ion hinzugefügte Elektron kommt : In großen 
Abständen stimmen diese Felder ungefähr überein, aber in der Nähe des Kernes 
mit der Ladung Z = 2 ist das Feld des He+-Ions stärker als das Kernfeld des 
Wasserstoffatoms mit Z = l. 

Im Lithiumatom (Z = 3) kommt das dritte Elektron in einen 2 8-Zustand, 
weil es in den 1 8-Zuständen gleichzeitig nicht mehr als zwei Elektronen 
geben kann. Für festes Z liegt das 2 8-Niveau oberhalb des 1 8-Niveaus. Mit 
zunehmender Kernladung werden beide erniedrigt. Beim Übergang von Z = 2 
zu Z = 3 überwiegt der erste Effekt den zweiten beträchtlich und die Bindungs­
energie des dritten Elektrons im Lithiumatom ist bedeutend kleiner als die 
Bindungsenergie der Elektronen im Heliumatom. Weiter werden in den Atomen 
von Be (Z = 4) bis Ne (Z = 10) zunächst noch ein 2 8-Elektron und dann 
sechs 2 p-Elektronen hinzugefügt. Die Binqungsenergie der in dieser Reihe 
zugefügten Elektronen nimmt wegen der Vergrößerung der Kernladung im 
allgemeinen zu. Das nächste, beim Übergang zum Na-Atom (Z = 11) zugefügte 
Elektron kommt in einen 3 8-Zustand. Die Auswirkung des Überganges in eine 
höhere Schale übertrifft dabei den Einfluß der vergrößerten Kernladung, und 
die Bindungsenergie fällt erneut stark ab. 

Dieses Bild der Auffüllung der Elektronenschalen ist für die ganze Reihenfolge 
der Elemente charakteristisch. Alle Elektronenzustände kann man in Gruppen 
(Schalen) einteilen, die nacheinander aufgefüllt werden : In der Reihe der Ele­
mente wachsen im allgemeinen mit fortschreitender Auffüllung die Bindungs­
energien der Elemente, wenn jedoch mit der Auffüllung einer nächsten Schale 
begonnen wird, fällt die Bindungsenergie stark ab. 

In Abb. 11 sind die aus den spektroskopischen Daten bekannten Ionisations­
potentiale der Elemente aufgetragen. Sie sind ein Maß für die Bindungsenergie 
der Elektronen, die beim Übergang von einem Element zum folgenden hinzu­
gefügt werden. 

Die verschiedenen Zustände verteilen sich folgendermaßen auf die nach­
einander aufgefüllten Schalen : 

1 8  2 Elektronen 
2 8, 2 p 8 Elektronen 
3 8, 3 p 8 Elektronen 
4 s, 3 d, 4 p 18 Elektronen (52,1) 
5 8, 4 d, 5 p  18 Elektronen 

ß 8, 4 j, 5 d, ß p 32 Elektronen 
7 8, ß d, 5 f, . . .  

Die erste Schale wird bei H und He aufgefüllt ; die Auffüllung der zweiten und 
der dritten Schale entspricht den beiden ersten (kleinen) Perioden des Perioden­
systems mit je acht Elementen. Dann folgen zwei große Perioden mit je 
18 Elementen und eine große Periode, die die Seltenen Erden enthält und aus 
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insgesamt 32 Elementen besteht. Die letzte Schale wird durch die in der 
Natur vorkommenden Elementen (und durch die künstlich erzeugten Tran­
surane) nicht vollständig aufgefüllt. 

Zum Verständnis des Ganges der Eigenschaften der Elemente bei der Auf­
füllung der Zustände einer Schale ist die folgende Besonderheit der d- und 
/-Zustände wesentlich, die diese von den 8- und p-Zuständen unterscheidet. 
Die Kurven für die effektive potentielle Energie eines kugelsymmetrischen 
Feldes (das sich aus dem elektrostatischen Feld und dem Zentrifugalfeld zu­

. sammensetzt) haben für ein Elektron in einem schweren Atom nach einem 
schroffen, beinahe vertikalen Abfall ein tiefes Minimum ; danach steigen sie 
wieder an und nähern sich asymptotisch Null. Für 8- und p-Zustände verlaufen 
diese Kurven in ihren aufsteigenden Teilen sehr nahe beieinander. Das be­
deutet, daß sich die Elektronen in diesen Zuständen etwa in denselben Ent­
fernungen vom Kern befinden . Die Kurven für die d- und besonders für die 
/-Zustände verlaufen wesentlich weiter links. Der "klassisch erlaubte" Bereich 
endet bedeutend näher am Kern als für 8- und p-Zustände mit derselben Ge­
samtenergie des Elektrons. Mit anderen Worten befindet sich ein Elektron 
in d- und /-Zuständen im allgemeinen wesentlich näher am Kern als in 8- und 
p-Zuständen. 

Einige Eigenschaften der Atome (darunter auch die chemischen Eigen­
schaften der Elemente, siehe § 58) hängen hauptsächlich von den äußeren Be­
reichen der Elektronenhülle ab. In diesem Zusammenhang ist die beschriebene 
Besonderheit der d- und /-Zustände besonders wesentlich. So werden zum 
Beispiel bei der Auffüllung der 4 /-Zustände (bei den Seltenen Erden, s. u.) 
die zugefügten Elektronen bedeutend näher am Kern untergebracht als die 
Elektronen der vorher aufgefüllten Zustände. Infolgedessen beeinflussen diese 
Elektronen die chemischen Eigenschaften beinahe gar nicht, und alle Seltenen 
Erden sind chemisch sehr ähnlich. 

Die Elemente mit abgeschlossenen d- und /-Schalen (oder überhaupt ohne 
solche Schalen) heißen Elemente der Hauptgruppen. Diejenigen Elemente, bei 
denen diese Zustände gerade aufgefüllt werden, nennt man Elemente der 
N ebengruppen. Die Elemente dieser Gruppen behandelt man zweckmäßig ge­
trennt. 

Wir beginnen mit den Elementen der Hauptgruppen . Wasserstoff und He­
lium haben die Grundzustände 

(der Index li�ks an dem chemischen Symbol bedeutet stets die Ordnungs­
zahl). Die Elektronenkonfigurationen der übrigen Elemente der Hauptgruppen 
sind in der Tabelle l zusammengestellt. In jedem Atom sind die Schalen voll­
ständig abgeschlossen, die rechts von der Tabelle in derselben und in allen 
höheren Zeilen angegeben sind. Die Elektronenkonfiguration in den abge­
schlossenen Schalen ist oben angeführt. Die Hauptquantenzahl der Elektro-
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Tabelle 1 
Elektronenkonfigurationen der Elemente der Hauptgruppen 

8 

3Li 
nN 
1vK 

2vc 
a?R 
,7A 
65c 
?vA 
s7F 

a 

u b 
g 
8 
u 
r 

12 g 1 3 

20Ca 
aoZn a1Ga 

ssSr 
48Cd ,vin 
5eBa 

eoHg 

I slTl 
ssRa 

u l 

32Ge 

so Sn 

s2Pb 
I 

7N 
p 1 5  

3aAs 

slSb 
83Bi 

I 
sO 
s 16 

34Se 

52 Te 

84Po -

I 

vF 
Cl 17 

asBr 

53J 

s5At 

1 s r 

36Kr 

54 Xe 

seRn 

28112 I 180 I 2 P112 I 3 Po I '83/2 / 3 P2 I 2 Ps/2 / 18o 

8 p 
3 s2 3 p6 
3 dl0 

4 s2 4 p6 
4 dl0 1 5 s2 5 pe 
4fl' 5 d10 1 6 s2 6 p' 

nen ist dabei durch die Ziffern angegeben, die links von der Tabelle in dersel­
ben Zeile stehen. Unten finden wir die Grundzustände d�s ganzen Atoms. So 
hat das Al-Atom die Elektronenkonfiguration 1 82 2 82 2 p6 3 82 3 p 2P112• 

Die Atome der Edelgase (He, Ne, Ar, Kr, Xe, Rn) nehmen in der Tabelle 
eine besondere Stellung ein. Bei jedem Edelgas wird der Aufbau der in (52,1) 
aufgezählten Schalen von Zuständen abgeschlossen. Ihre Elektronenkonfi­
gurationen haben eine besondere Beständigkeit (die Ionisationspotentiale sind 
in den entsprechenden Reihen die größten). Damit hängt auch die chemische 
Trägheit dieser Elemente zusammen. 

Die Auffüllung der verschiedenen Zustände erfolgt für die Elemente der 
Hauptgruppen sehr gesetzmäßig : Es werden zuerst die 8- und danach die 
p-Zustände einer jeden Hauptquantenzahl n besetzt. Ebenso gesetzmäßig sind 
auch die Elektronenkonfigurationen dieser Elemente (solange bei der Ionisation 
die Elektronen der d- und /-Schalen nicht angegriffen werden). Jedes Ion hat 
die Konfiguration des vorangehenden Atoms. So hat das Mg+-Ion die Kon­
figuration des Na-Atoms, das Mg++-Ion die Konfiguration des Ne. 

Kommen wir jetzt zu den Elementen der Nebengruppen. Die Auffüllung der 
3 d-, 4 d- und 5 d-Schalen erfolgt in Gruppen von Elementen, die entsprechend 
Eisen-, Palladium- und Platingruppe heißen. In der Tabelle 2 sind die Elek­
tronenkonfigurationen und die Terme der Atome dieser Gruppen aufgeführt, 
die aus den experimentellen spektroskopischen Daten bekannt sind. Wie man 
aus diesen Tabellen entnimmt, werden die d-Schalen bedeutend weniger 
gesetzmäßig aufgefüllt als die 8- und p-Schalen in den Atomen der Haupt­
gruppen. Ein charakteristischer Zug ist hier die "Konkurrenz". zwischen den 
8- und den d-Zuständen. Sie äußert sich darin, daß anstelle der gesetzmäßigen 
Folge der Konfigurationen der Art dP 82 mit zunehmendem p häufig die Kon­
figurationen der Art dP+l 8 oder dP+2 vorteilhafter werden. In der Eisengruppe 
hat das Cr-Atom die Konfiguration 3 d6 4 8 und nicht 3 d4 4 82• Nach . dem Ni 
mit 8 d-Elektronen folgt sofort das Cu-Atom mit einer völlig abgeschlossenen 
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d-Schale (das deshalb von uns zu den Hauptgruppen gezählt wird). Auch bei 
den Ionentermen fehlt die Gesetzmäßigkeit in gleicher Weise, die Elektronen­
konfigurationen der Ionen stimmen gewöhnlich nicht mit der Konfiguration 
der vorhergehenden Atome überein. Zum Beispiel hat das V+-Ion die Kon­
-figuration 3 d4 (und nicht 3 d2 4 82 wie das Ti) ,  das Fe+-Ion hat die Konfigu­
ration 3 d6 4 8 (statt der Konfiguration 3 d5 4 82 ·des Mn-Atoms). Alle Ionen, 
die in natürlicher Form in Kristallen und Lösungen vorkommen, enthalten in 
den unabgeschlossenen Schalen nur d- (aber keine 8- und p-)Elektronen. Das 
Eisen kommt zum Beispiel in Kristallen oder Lösungen nur als Fe++- und 
Fe+++-Ion mit den Konfigurationen 3 d6 bzw. 3 d5 vor. 

Eine ähnliche Situation finden wir auch beim Aufbau der 4 /-Schale, der 
bei den Elementen vor sich geht, die unter der Bezeichnung Seltene Erden 
bekannt sind (Tabelle 3). Die 4 /-Schale wird ebenfalls nicht ganz gesetzmäßig 
aufgefüllt, dabei "konkurrieren" die 4 /-, 5 d- und 6 8-Zustände. 

Die letzte Gruppe von Übergangselementen beginnt mit dem Aktinium. Bei 
ihr werden die 6 d- und die 5 /-Schalen aufgebaut, ähnlich wie bei den Seltenen 
Erden. 

Schale Ar + 

Schale Kr + 

Tabelle 2 
Elektronenkonfigurationen der Atome der Elemente der Eisen-, Palladium­
und Platingruppe 

Eisengruppe 

I 3d 4s2 J ·  3d2 4s2 2Datz aF2 

Palladiumgruppe 

1 3d5 4s2 1 3d6 4s2 J 3d7 4s2 J 3as 4s2 . 6Ss12 5D, "t4>F9f2 3F-{ 

39Y I ,0Zr 41Nb ,2Mo I ,3Tc I uRu I 45Rh 
4d 5s�-�:--4-d_2_5-s2�--4-d4--5s--+--4d_5_5_s_2_1�4-d_5_5_s_2+1-4-d7_5_s-+l-4_d_8_5_s�-4-d-10--
2Datz 3F2 6D112 783 8Sstz 5F5 4F9/2 180 

Platingruppe 

I 57La --
Schale Xe +  I 
Schale I 
Xe +

4f4 + 1 1 5ds 6s2 J 5ds 6s2 J 5d7 6s2 1 5d9 6s 6Sstz 5D, 4F9/2 3Da 
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Tabelle 3 

Elektronenkonfigurationen der Atome der Seltenen Erden 

5sCe s9Pr soNd 61Pm &2Sm saEu 

4f5d 6s2 4f3 6s2 4f4 6s2 4j5 6s2 4J6 6s2 4J7 6s2 
1G, 419/2 5J4 6H512 ?Fo 887/2 

Schale Xe + s,Gd ssTb seDY s?Ho ssEr seTu ?oYb 

4f7 5d 6s2 4J9 6s2 4fl0 6s2 1 4/u 6s2 4fl2 6s2 1 4pa 6s2 1 4/14 682 I 9fl2 6H1512 5[8 4li5/2 ans 2F112 1So 

§ 53. Die RöNTGEN-Terme 

Die Bindungsenergie der inneren Elektronen in einem Atom ist relativ groß. 
Geht ein solches Elektron in eine äußere unbesetzte Schale über (oder wird es 
ganz aus dem Atom entfernt), dann ist das angeregte Atom (oder das Ion) 
mechanisch instabil gegen eine Ionisierung. Bei dieser Ionisierung wird die 
Elektronenhülle umgebaut, und es wird ein stabiles Ion gebildet. Wegen der 
relativ schwachen Wechselwirkung der Elektronen im Atom ist aber die Wahr­
scheinlichkeit für einen solchen Übergang relativ klein, so daß die Lebens­
dauer -c des angeregten Zustandes groß ist. Die Breite des Niveaus fij-c (siehe 
§ 38) ist genügend klein, so daß es Sinn hat, die Energien eines Atoms mit einem 
angeregten inneren Elektron als diskrete Energieniveaus "quasistationärer" 
Zustände des Atoms zu betrachten: Diese Niveaus heißen RöNTGEN-Terme1). 

Die RöNTGEN-Terme werden vor allem durch die Angabe der Schale klassi­
fiziert, aus der das Elektron entfernt worden ist, oder wie man auch sagt, in 
der ein "Loch" gebildet worden ist. Wohin das Elektron dabei gekommen ist, 
wirkt sich auf die Energie des Atoms fast überhaupt nicht aus und ist daher 
unwesentlich. 

' 

Der Gesamtdrehimpuls der Elektronen einer abgeschlossenen Schale ist 
gleich Null. Nach der Entfernung eines Elektrons aus einer solchen Schale 
erhält diese einen gewissen Drehimpuls j. Für eine Schale mit gegebenen n 
und l kann der Drehimpuls j offensichtlich nur die Werte l ± 1/2 annehmen. 
Wir erhalten so Energieniveaus, die man mit 1 8112, 2 8112, 2 p112 , 2 P3/2• • • • 

bezeichnen könnte. Dabei ist der Wert von j als Index an das Symbol für die 
Lage des "Loches" angehängt worden. Es sind jedoch spezielle Symbole nach 
der folgenden Gegenüberstellung allgemein üblich : 

1 81/2 2 81/2 2 P112 2 Ps12 3 81/2 3 P112 3 Ps12 3 d3/2 3 d5/2 

K Lr Ln Lnr Mr Mn Mm Mrv Mv 

1) Bei Übergängen zwischen diesen Niveaus sendet das Atom RöNTGEN-Strahlen aus, 
daher diese Bezeichnung. 
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Die Niveaus mit gleichen n (die mit demselben großen Buchstaben bezeichnet 
werden) liegen dicht beieinander und weit entfernt von den Niveaus mit an­
deren n. Die Ursache dafür ist folgende. Das Feld, in dem sich die inneren 
Elektronen befinden, ist das fast unabgeschirmte Kernfeld, weil die inneren 
Elektronen relativ nahe am Kern sind. Infolgedessen sind ihre Zustände 
"wasserstoffähnlich", d. h. , ihre Energie fällt näherungsweist> mit derjenigen 
zusammen, die ein Elektron im Felde eines Kerns der Ladung Ze besäße ; 
letztere jedoch hängt nur von der Hauptquantenzahl n ab (§ 31). 

Bei Berücksichtigung der relativistischen Effekte werden die Terme mit ver­
schiedenen j voneinander abgetrennt, wie etwa Li und Ln von Luv MI und 
Mn von Mm und Miv· Diese Paare von Niveaus heißen echte (oder rela-
tivistische) Du bletts. . 

Die Aufspaltung der Terme mit verschiedenen l für gleiches j (beispielsweise 
LI und Ln, MI und Mn) hängt mit der Abweichung des Feldes, in dem sich 
die inneren Elektronen befinden, vom CouLOMB-Feld zusammen, d. h., sie tritt 
bei Berücksichtigung der Wechselwirkung des Elektrons mit den anderen 
Elektronen auf. Diese Dubletts heißen unechte (oder abgeschirmte) Dubletts. 

Die Breite eines RöNTGEN-Terms wird durch die Gesamtwahrscheinlichkeit 
aller möglichen Prozesse zum Umbau der Elektronenhülle des Atoms unter 
Auffüllung des gegebenen "Loches" bestimmt. Bei schweren Atomen spielen 
dabei die Übergänge des Loches aus der gegebenen Schale in eine (energetisch) 
höher liegende Schale (d. h. Übergänge des Elektrons aus höher gelegenen in 
niedriger gelegene Zustände) die Hauptrolle. Diese Übergänge werden von der 
Emission eines RöNTGEN-Quants begleitet. Die Wahrscheinlichkeit dieser 
"Strahlungs"-Übergänge und damit auch der entsprechende Teii der Niveau­
breite werden mit zunehmender Ordnungszahl sehr rasch größer. 

Bei leichteren Atomen (und höheren Niveaus) spielen die strahlungslosen 
Übergänge die wesentliche und sogar vorherrschende Rolle. Die durch die 
Auffüllung des Loches mit einem äußeren Elektron frei werdende Energie wird 
bei diesen Übergängen dazu benutzt, ein anderes inneres Elektron aus dem 
Atom herauszuschlagen (sogenannter AuGER-Effekt). Nach einem solchen Pro­
zeß befindet sich das Atom in einem Zustand mit zwei Löchern. 

§ 54. Das Atom im elektrischen Feld 

Bekanntlich werden die elektrischen Eigenschaften eines Systems von Teilchen 
in der klassichen Theorie durch die elektrischen Multipolmomente verschiedener 
Ordnungen bestimmt (siehe I §§  62, 63). In der Quantentheorie werden diese 
Größen in derselben Weise definiert, nur muß man sie als Operatiren ansehen. 

Das erste Multipolmoment ist das Dipolmoment, definiert als Vektor 
d = }; e r .  (54,1) 

Für ein Atom (dessen Kern als im Koordinatenursprung ruhend angenommen 
wird) läuft die Summation über alle Elektronen in seiner Hülle (der Kürze 
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halber lassen wir den Index, der die Elektronen numeriert, weg). Der Mittel­
wert des Dipolmomentes für einen stationären Atomzustand ergibt sich durch 
Mittelung des Operators (54, 1) bezüglich der Wellenfunkti�n dieses Zustande�, 
d. h. durch Berechnung des entsprechenden Diagonalmatrixelementes. Nun 
werden die Matrixelemente des Operators (54,1) wie auch die eines beliebigen 
polaren Vektors (siehe § 19) für Übergänge zwischen zwei Zuständen gleicher 
Parität Null. Deshalb werden auf jeden Fall die Diagonalelemente Null, so 
daß der Mittelwert des Dipolmomentes eines Atoms für stationäre Zustände 
Null ist.1) 

Das Quadrupolmoment des Systems ist als symmetrischer Tensor 

(54,2) 

definiert, wobei die Summe über die Diagonalglieder Null ergibt. 
Wir bemerken zunächst, daß die Mittelwerte des Quadrupolmoments eines 

Atoms bezüglich aller Zustände mit Gesamtdrehimpuls J = 0 oder J = 1/2 
Null sind. Davon kann man sich mit Hilfe der in § 18 angegebenen Methode 
zur Bestimmung der Auswahlregeln für Matrixelemente 

·
von Vektoren und 

Tensoren überzeugen. In diesem Sinne ersetzen wir den Tensor (54,2) durch 
einen entsprechenden "Drehimpuls" L = 2. Ein Matrixelement ist von Null 
verschieden, wenn man bei einer Addition dieses "Drehimpulses" zu den Dreh­
impulsen J1 und J2 von Anfangs- und Endzustand den Wert 0 erhalten kann. 
Nun kann man aus den drei Drehimpulsen 2, 0, 0 oder 2, 1/2, 1/2 auf keinerlei 
Weise einen solchen Wert erhalten, und deshalb werden die Diagonalmatrix­
elemente mit J1 = J2 = 0 .oder J1 = J2 = 1/2 Null. 

Für einen Atomzustand mit gegebenem Gesamtdrehimpuls J hängt der 
Mittelwert des Quadrupolmoments noch vom Wert der Drehimpulsprojektion 
MJ ab. Wir wollen diese Abhängigkeit auffinden. 

Die Mittelung des Operators (54,2) über einen Atomzustand geschieht zweck­
mäßig in zwei Schritten (vergleiche § 51). Zunächst mitteln wir über die Zu­
stände mit gegebenem Wert von J, jedoch nicht festgelegtem MJ. Der .auf 
diese Weise gemittelte Operator (wir bezeichnen ihn mit Qtk) kann nur durch 
Operatoren von Größen ausgedrückt werden, die den Atomzustand als Ganzes 

' 
� 

charakterisieren. Der "Vektor" J ist der einzige derartige Vektor. Deshalb 

1) Dabei setzen wir voraus, daß die Energieniveaus des Atoms nur bezüglich der Rich­
tungen seines Gesamtdrehimpulses entartet sind. Alle Zustände, die sich nur duroh die 
Werte der Projektion des Gesamtdrehimpulses unterscheiden, besitzen gleiche Parität; 
einer beliebigen Linearkombination aus ihnen ist demzufolge auch eine definierte Parität 
zuzuordnen (und zwar diejenige der Ausgangswellenfunktionen). In diesem Sinne stellt 
das Wasserstoffatom eine Ausnahme dar, da seine Energieniveaus darüber hinaus eine 
"zufällige" Entartung aufweisen. Untereinander entartete Zustände mit unterschied­
lichem Bahndrehimpuls l können verschiedene Parität besitzen. Aus ihren Wellenfunk­
tionen kann man solche Superpositionen aufbauen, die überhaupt keine bestimmte Parität 
besitzen ; die ihnen entsprechenden Diagonalmatrixelemente des elektrischen Dipolmoments 
müssen nicht Null werden. 
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A 

muß der Operator Qu, die Gestalt 

Qilc = 2 J (: J- 1 )  ( Ji jlc + Jk J, - � 15ik.P) (54,3) 

haben, wobei der Ausdruck in der Klammer so aufgebaut ist, daß er in den 
Indizes i, k symmetrisch ist und bei der Summation über i = k Null ergi�t 
(über den Sinn des Koeffizienten Q siehe weiter unten) .  Die Operatoren J1 
müssen hier als die uns bekannten (§ 15) Matrizen bezüglich Zuständen mit 
verschiedenen Werten M J verstanden werden. 

Da die drei Komponenten des Drehimpulsvektors nicht gleichzeitig bestimmte 
Werte besitzen können, trifft d�s auch auf die Komponenten des Tensors 
(54,3) zu. Für die Komponente Qzz haben wir 

Q •• = J (2 � � 1) ( J� - � .i2) . 
Die Mittelung dieses Operators in bezug auf einen Zustand mit gegebenen 
Werten J und MJ besteht jetzt einfach im Ersetzen der Operatoren durch 
ihre Eigenwerte. Auf diese Weise finden wir - 3 Q  [ 2 1 ] Q •• = J (2 J - 1) 

MJ - 3 J (J + I) ' (54,4) 

wodurch auch die gesuchte Abhängigkeit bestimmt ist. Für MJ = J (der 
J?rehimpuls liegt "vollständig" in Richtung der z-Achse) haben wir Q •• = Q ;  
diese Größe heißt gewöhnlich auch einfach Quadrupolmoment. 

In einem Atom, das in ein homogenes äußeres elektrisches Feld E gebracht 
worden ist, haben wir es mit einem System von Elektronen in einem axial­
symmetrischen Feld zu tun (Kernfeld plus äußeres Feld). Infolgedessen bleibt 
der Gesamtdrehimpuls J des Atoms nicht mehr streng erhalten. Es bleibt nur 
seine Projektion auf die Richtung der Symmetrieachse (z-Achse) erhalten. 

Indem das äußere Feld eine bestimmte Vorzugsrichtung im Raum festlegt, 
hebt es die Entartung der Niveaus bezüglich der Drehimpulsrichtungen auf : 
Zustände, die sich durch die Werte J. = MJ unterscheiden und bezüglich des 
freien Atoms die gleiche Energie besitzen, erhalten im elektrischen Feld unter­
schiedliche Energien (sogenannter STARK-Effekt) .  Die Entartung der Niveaus 
wird aber nicht vollständig aufgehoben. Die Zustände, die sich nur durch das 
Vorzeichen von MJ unterscheiden, bleiben nach wie vor untereinander entartet. 
Dieser Umstand ist eine unmittelbare Folge der Symmetrie bezüglich der Zeit­
umkehr (§ 23). Indem sich die Richtungen aller Geschwindigkeiten umkehren, 
ändert die Zeitumkehr das Vorzeichen der Drehimpulsprojektion, während sie die 
Energie des Systems unverändert . läßt ; außerdem bleibt auch das Feld E un­
verändert (siehe I § 44). 

Demzufolge bleiben mit Ausnahme nur der Niveaus mit MJ = 0 die Energie­
niveaus eines Atoms in solch einem elektrischen Feld zweifach entartet. Wenn 
jedoch der Gesamtdrehimpuls J halbzahlig ist, dann ist der Wert MJ = 0 
nicht möglich, und alle Niveaus bleiben ohne Ausnahme zweifach entartet. 
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Dieser Sachverhalt ist ein Spezialfall einer allgemeineren Regel. Man kann 
zeigen (indem man von der Forderung nach Symmetrie bezüglich der Zeitum­
kehr ausgeht), daß für ein System mit halbzahligen J eine zweifache Niveau­
entartung in einem beliebigen (und nicht nur im homogenen) elektrischen 
Feld erhalten bleibt (sogenanntes KRAMERS-Theorem).1) 

Wir werden voraussetzen, daß das elektrische Feld genügend schwach ist 
- so schwach, daß die von ihm stammende Energie klein gegenüber den Ab­
ständen zwischen benachbarten Energieniveaus des Atoms und auch klein 
gegenüber der Feinstrukturaufspaltung ist. Dann können wir zur Berechnung 
der Ni veauverschiebung in dem elektrischen Feld die Störungstheorie ver­
wenden. Der Störoperator ist dabei die potentielle Energie des Systems der 
Elektronen im homogenen Feld E, diese ist 

V = - E d = - l EI d • .  (54,5) 
Darin ist d das Dipolmoment �es Atoms. Die Verschiebung der Energie­
niveaus wird · in erster Näherung durch die Diagonalelemente der Matrix des 
Störoperators gegeben. Die Diagonalelemente der Matrix für das Dipolmonent 
sind aber identisch gleich Null, da das Dipolmoment im Mittel verschwindet. 
Die Aufspaltung der Niveaus im elektrischen Feld ist also ein Effekt zweiter 
Ordnung und proportional zum Quadrat des Feldes.2) 

Die Verschiebung LIE,. des Niveaus E,. muß als im Feld E quadratische Größe 
durch eine Formel der Gestalt 

. l LIE,. = - 2  cx�"J E1 Ek (54,6 ) 

gegeben werden, wobei a�"J ein symmetrischer Tensor zweiter Stufe ist. Wir 
legen die z-Achse in Feldrichtung und erhalten 

(54,7) 
Der in den aufgeschriebenen Formeln vorkommende Tensor cx�"J ist an­

dererseits die Polarisierbarkeit des Atoms in einem äußeren elektrischen Feld. 
Diese Behauptung folgt aus der allgemeinen Formel 

( aii) aE,. 
M nn 

= a.f" · (54,8) 
A A 

Hier steht links ein Diagonalmatrixelement des Operators oH jo). mit H als 
HAMILTON-Operator des Systems, der von einem gewissen Parameter A ab­
hängt ; zusammen mit dem HAMILTON-Üperator sind auch seine Eigenwerte E,. 
Funktionen dieses Parameters. Wenn wir in dieser Formel unter dem Para-

1) Es sei jedoch betont, daß ein Atom in einem beliebigen elektrischen Feld nicht mehr 
durch die Werte der Drehimpulsprojektion charakterisiert werden kann, da in einem 
inhomogenen Feld nicht nur der Betrag des Drehimpulsvektors, sondern auch alle seine 
Komponenten keine Erhaltungsgrößen darstellen. 

2) Eine Ausnahme bildet das Wasserstoffatom, für dessen stationäre Zustände der 
Mittelwert des Dipolmoments von Null verschieden sein kann·. Deshalb ist die Energie­
niveauaufspaltung des Wasserstoffatoms linear in der Feldstärke. 
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meter A. den Feldstärkebetrag !Ei verstehen und 
,/'\. ,/'\. A "'-

H = H0 + V = H0 - !E i dz 
ansetzen, so .erhalten wir unter Verwendung des Ausdruckes (54,7) 

d. = a�n} IEI . 
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(54,9) 
Der Proportionalitätsfaktor zwischen dem Dipolmoment, das ein Atom im 
Feld erhält , und der Feldstärke heißt nun gerade Polarisierbarkeit des Atoms. 

Zum Beweis der Formel (54,8) gehen wir von der Gleichung 
(H - En) 'ljln = 0 

A 

aus, die die Eigenwerte des Operators H bestimmt. Differenzieren wir diese 
Gleichung nachA. und multiplizieren wir sie danach von links mit 'ljl: , so erhalten 
wir 

A 

* A Otpn * (iJEn oH ) 'IJln (ll.,- E.,) M = 'IJln aJ: - � 'ljln • 

Bei der Integration dieser Gleichung über d� wird die linke Seite Null, da wir 
auf Grund der Hermitezität des Operators H 

f * H
A 

E Otpn d -f otp., A * * 'IJln ( - n) ßT q - -äf (H - E.,) 'IJln dq 

haben (siehe (3, 10)), und (H* - E.,) 'ljl: = 0 ist. Die rechte Seite gibt die 
gesuchte Formel. 

§ 55. Das Atom im Magnetfeld 

Betrachten wir ein Atom, das sich in einem homogenen Magnetfeld H befindet. 
Entsprechend (43,4) lautet sein HAMILTON-Operator 

A 1 [ A Ie i  ]2 Ii I ei A 
H = 2- E  Pa + - A(ra) + U + - H S , m a c m c  (55, 1) 

wobei die Summation über alle Elektronen läuft (die Elektronenladung ist als 
e = - I e i  geschrieben) ; U ist die Energie der Wechselwirkung der Elektronen 
mit dem.Kern und der Elektronen untereinander ; S = I Sa stellt den Operator 
für den Gesamtspin (der Elektronen) des Atoms dar. 

Das Vektorpotential für ein homogenes Feld wählen wir als 

(55,2) 

(siehe I § 46). Es ist leicht zu sehen, daß bei einer solchen Wahl der Operator 
p = - i n V mit A kommutiert . In der Tat liefert die Anwendung auf irgend­
eine Funktion '!jJ(r) 

(p A - A p) 'IJl = - i n V(A 'IJl) + i n A V'IJl =  - i fi '!jJ div A , 

12 Kurzfassung li 
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d. h. 
p A - A p = - i li divA . 

I 
Nun gilt für denVektor (55,2) div A = - 2 H rot . r = 0. Indem wir diesen 
Umstand bei der Ausrechnung des Quadrates in (55,1) berücksichtigen, schrei­
ben wir den HAMILTON-Operator in die Gestalt 

A 

um, worin H0 der HAMILTON-Operator des Atoms ohne Feld ist. Setzen wir 
hierin A aus (55,2) ein, so erhalten wir 

A A Ie i A e2 Ie i 1i A 

H = Ho + 2-- H I [1'a Pa] + -8 2 I [H ra]2 + - H S .  m c  a m c  a m c  
Das Vektorprodukt [ r a Pa] ist der Operator für den Bahndrehimpuls eines 
Elektrons, und die Summation über alle Elektronen liefert den Operator Ii L 
des Gesamtbahndrehimpulses des Atoms. Auf diese Weise haben wir 

,.... ,... " " ez H = H0 + p.a (L + 2 S) H + -8 2 I [H ra]2 m c  a 
(55,3) 

mit p.8 als BoHRsehern Magneton. 
Wie auch ein elektrisches Feld spaltet ein äußeres Magnetfeld die Atom­

niveaus auf, indem es die Richtungsentartung bezüglich des Gesamtdreh­
impulses aufhebt (ZEEMAN-Effekt). Wir wollen die Energie dieser Aufspaltung 
für Atomniveaus bestimmen, die charakterisiert werden durch definierte Werte 
der Quantenzahlen J, L, S (d. h., wir setzen für sie den Fall der LS-Kopplung 
voraus, siehe § 51). 

Wir nehmen das Magnetfeld so schwach an, daß p.81HI klein ist im Vergleich 
zu den Abständen der Energieniveaus des Atoms und speziell damit im Ver­
gleich zu den Abständen der Niveaufeinstruktur. Dann kann man das zweite 
und das dritte Glied in (55,3) als Störung ansehen, wobei die einzelnen Multi­
plettkomponenten die ungestörten Niveaus darstellen. In erster Näherung 
kann man das in der Feldstärke quadratische dritte Glied im Vergleich zu dem 
linearen zweiten Glied vernachlässigen. 

In der ersten Näherung der Störungstheorie wird die Aufspaltungsenergie LlE 
durch die Mittelwerte der Störung bezÜglich der (ungestörten) Zustände be­
stimmt, die sich in den Werten der Drehimpulsprojektion in Feldrichtung 
unterscheiden. Wählen wir diese Richtung parallel zur z-Achse, so haben wir 

LlE = p. a iHI (L. + 2 S,) = #BIHI (J. + S,) . (55,4) 

Der Mittelwert J, fällt einfach mit dem gegebenen Eigenwert J. = M J zu­
sammen. Den Mittelwert s. kann man mit Hilfe einer "etappenweisen" Mitte­
Jung (vergleiche § 51) auf folgende Weise finden. 
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Wir mitteln zunächst den Operator S über einen Atomzustand mit gegebenen 
Werten S, L und J, jedoch nicht festgelegtem MJ. Der auf diese Weiee ge-
mittelte Operator S kann nur entlang .i "gerichtet" sein, dem einzigen "Vek­
tor", der das freie Atom charakterisiert und erhalten bleibt. Deshalb kann 
man schreiben 

S = const . J .  

In einer solchen Form ist jedoch diese Gleichung nur bedingt sinnvoll, da die 
drei Komponenten des VektorsJ nicht gleichzeitig definierte Werte annehmen 
können. Unmittelbaren Sinn haben ihre z-Projektion 

S, = const · J, = const · MJ · 

und die Beziehung 

S J  = const . J2 = const · J (J + l) ,  

die man durch Multiplikation beider Gleichungsseiten mit J erhält. Wir be­
ziehen den VektorJ, der erhalten bleibt, in die MitteJung ein und schreiben 
S J = S J. Der Mittelwert S J stimmt jedoch mit seinem Eigenwert 

l . 
S J  = 2 [J (J + l) - L (L + l) + S (S + l)] 

für Zustände mit definierten Werten L2, 82, J2 überein (gemäß Formel (17 ,3), 
in der man für den gegebenen Fall unter L1 , L2, L die entsprechenden Größen 
S, L, J verstehen muß). Indem wir const aus der zweiten Beziehung bestimmen 
und in die erste einsetzen, finden wir 

(55,5) 

Sammeln wir die erhaltenen Ausdrücke auf, und setzen wir sie in (55,4) 
ein, so finden wir den folgenden Endausdruck für die Aufspaltungsenergie 

worin 

_ l J (J + l) - L (L + I )  + S (S + 1 )  
g - + 2 J  (J + 1 )  

(55,6) 

(55,7) 

der sogenannte LANDE-Faktor oder gyromagnetische Koeffizient ist. Wir be­
merken, daß g = l ist, wenn der Spin fehlt (S = 0, so daß J = L gilt), und 
g = 2, wenn L = 0 gilt (so daß J = S ist). 

Die Formel (55,6) liefert verschiede�e Energiewerte für alle 2 J + l Werte 
M; = J, J - l, . . .  , - J. Mit anderen Worten hebt ein Magnetfeld die 
Niveauentartung bezüglich der Drehimpulsrichtungen vollständig auf im 
Gegensatz zu einem elektrischen Feld, das Niveaus mit M; = ± I MJI nicht 

12 • 
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aufspaltet.l) Wir bemerken jedoch, daß die durch Formel (55,6) bestimmte 
lineare Aufspaltung fehlt, wenn g = 0 ist (dies ist im Falle J =F 0 z. B. für den 
Zustand 4D112 möglich). 

Im vorigen Paragraphen sahen wir, daß ein Zusammenhang zwischen der 
Energieniveauverschiebung eines Atoms im elektrischen Feld und seinem mitt­
leren elektrischen Dipolmoment besteht. Ein analoger Zusammenhang existiert 
auch im magnetischen Fall. Die potentielle Energie eines Systems von La­
dungen im homogenen Magnetfeld ergibt sich in der klassischen Theorie durch 
den Ausdruck -{l H mit fl als dem magnetischen Moment des Systems. In 
der Quantentheorie wird diese Beziehung durch den entsprechenden Operator 
ersetzt, so daß der HAMILTON-Üperator des Systems 

H = H0 - fi H = H0 - jl,. IHI 
lautet. Wenden wir hier Formel (54,8) an (mit dem Feld IHI als Parameter A.), 
so finden wir, daß das mittlere magnetische Moment 

ME 
flz = - iJ IHI · (55,8) 

ist mit L1E als mittlerer Energieniveauverschiebung eines gegebenen Atom­
zustandes. Wir setzen hierin (55,6) ein und sehen, daß ein Atom in einem 
Zustand mit definiertem 'Vert MJ für die Projektion des Gesamtdrehimpulses 
bezüglich einer gewissen z-Richtung ein mittleres magnetisches Moment in 
genau dieser Richtung besitzt : 

/iz = - {lB g MJ . (55,9) 

Wenn das Atom weder einen Spin noch einen Bahndrehimpuls hat (S = L = 0), 
dann liefert das zweite Glied in (55,3) weder in erster noch in höherer störungs­
theoretischer Näherung eine Niveauverschiebung (da alle Matrixelemente von 
L und S verschwinden). Deshalb hängt in diesem Fall der gesamte Effekt 
mit dem dritten Glied in (55,3) zusammen, und in der ersten störungstheore­
tischen Näherung ist die Niveauverschiebung gleich dem Mittelwert 

e2 ---
iJE = -8 2 }; [H Ta]2 . 

m c  a 
(55,10) 

Wir wollen über die Richtungen von Ta mitteln und schreiben zu diesem Zweck 
[H Ta]2 = H2 T! sin2 () (mit () als Winkel zwischen H und Ta)· Für L = S = 0 
ist der Atomzustand kugelsymmetrisch. Deshalb wird die Richtungsmittelung 
unabhängig von der Mittelung über die Entfernungen ra ausgeführt, wobei sie 

1) Die in diesem Zusammenhang bezüglich des elektrischen Fal\es im vorigen Para­
graphen angestellten Überlegungen sind für das Magnetfeld gegenstandslos. Die Ursache 
dafür liegt darin, daß die Zeitumkehr durch die Substitution ll --+ - H begleitet sein muß 
(siehe I § 44). Deshalb beziehen sich im Grunde genommen Zustände, die im Resultat 
dieser Transformation auseinander hervorgehen, auf Atome in verschiedenen Feldern und 
nicht auf Atome in ein und demselben Feld. 
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sin2 Oa = 1 - cos2 ()a = 2/3 liefert. Auf diese Weise finden wir 
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(55, 11 )  

Das nach Formel (55,8) berechnete magnetische Moment eines Atoms ist 
proportional zur Feldstärke (in Abwesenheit des Feldes besitzt ein Atom mit 
L = S = 0 natürlich kein magnetisches Moment). Schreiben wir es in der 
Gestalt xiHI , so können wir den Koeffizienten X als magnetische Suszeptibili­
tät des Atoms ansehen. Für sie erhalten wir die folgende LANGEVIN-Formel : 

e2 
• 

-

x =  - 6� .E r! .  m c  a 
(55,12) 

Diese Größe ist negativ, d. h., das Atom ist diamagnetisch. 





Das zweiatomige Molekül 

§ 56. Die Elektronenterme des zweiatomigen Moleküls 

VIII 

In der Theorie der Moleküle spielt die Tatsache, daß die Massen der Atom­
kerne im Vergleich zu der Elektronenmasse sehr groß sind, eine grundlegende 
Rolle. Dank die�es Massenunterschiedes ist die Geschwindigkeit der Kerne im 
Molekül im Vergleich zu den Elektronengeschwindigkeiten sehr klein. Das gibt 
die Möglichkeit, die Elektronenbewegung bei festen Kernen in gegebenen Ab­
ständen voneinander zu betrachten. Wir werden bei der Bestimmung des 
Energieniveaus Un eines solchen Systems die sogenannten Elektronenterme des 
Moleküls finden. Im Gegensatz zu den Atomen, wo die Energieniveaus durch 
bestimmte Zahlen gegeben wurden, sind hier die Elektronenterme keine Zahlen, 
sondern Funktionen von Parametern - den Kernabständen im Molekül. In 
der Energie Un ist auch die elektrostatische Wechselwirkungsenergie der Kerne 
untereinander enthalten, so daß Un die Gesamtenergie des Moleküls bei ge­
gebener Lage der unbeweglichen Kerne darstellt. 

Wir werden das Studium der Moleküle mit dem einfachsten Typ des zwei­
atomigen Moleküls, das eine vollständige theoretische Untersuchung zuläßt, 
beginnen. Die Elektronenterme eines zweiatomigen Moleküls sind Funktionen 
von insgesamt e'inem Parameter, des Abstandes r der Kerne. 

Eines der Hauptprinzipien der Klassifikation der Atomterme war die Ein­
teilung nach den Werten des Gesamtbahndrehimpulses L. Bei den Molekülen 
gilt aber das Gesetz der Erhaltung des Gesamtbahndrehimpulses der Elek­
tronen nicht mehr allgemein, da das resultierende elektrische Feld einiger 
Kerne keine Kugelsymmetrie mehr besitzt. 

In zweiatomigen Molekülen besitzt das Feld jedoch Axialsymmetrie bezüglich 
der Achse, die durch beide Kerne geht. Deshalb bleibt hier die Projektion des 
Bahndrehimpulses auf diese Achse erhalten, und wir können die Elektronen­
terme des Moleküls nach der Größe dieser Projektion einteilen. Der Betrag 
der Projektion des Bahndrehimpulses auf die Molekülachse wird mit dem Buch­
staben A bezeichnet ; er durchläuft die Werte 0, l, 2, . . . . Die Terme mit 
verschiedenen Werten A kennzeichnet man mit großen griechischen Buch­
staben, die den lateinischen Symbolen der Atomterme mit verschiedenen L 
entsprechen. So spricht man bei A = 0, l, 2 von 1:-, II-, LI-Termen. 

Jeder Elektronenzustand des Moleküls wird weiterhin charakterisiert durch 
den Gesamtspin S aller Elektronen im Molekül. Bei Vernachlässigung aller 
relativistischen Wechselwirkungen (d. h. der Feinstruktur des Terms, vergleiche 
§ 51) ist ein Term mit dem Spin S bezüglich der Spinrichtung (2 S + 1)-fach 
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entartet. Die Zahl 2 S + l heißt hier wie bei den Atomen M ultiplizität des 
Terms und wird als Index an das Termsymbol geschrieben ; so kennzeichnet 
3[J den Term mit A = l, S = l.  

Außer den Rotationen um die Achse mit einem willkürlichen Winkel erlaubt 
die Symmetrie des Moleküls auch eine Spiegelung an einer beliebigen Ebene, 
die durch diese Achse geht. Wenn man solch eine Spiegelung ausführt, bleibt 
natürlich die Energie des Moleküls unverändert. Der dadurch erreichte Zu­
stand wird aber mit dem Ausgangszustand nicht identisch sein ; denn bei einer 
Spiegelung an einer Ebene, in der die Molekülachse liegt, wird das Vorzeichen 
des Drehmomentes bezüglich dieser Achse geändert.!) So erhalten wir das 
Resultat, daß alle Elektronenterme mit nichtverschwindendem A zweifach ent­
artet sind - jedem Energiewert entsprechen zwei Zustände, die sich durch die 
Richtung der Projektion des Bahndrehimpulses auf die Molekülachse unter­
scheiden. Was den Fall A = 0 betrifft, so wird bei Spiegelungen der Zustand 
des Moleküls im allgemeinen nicht geändert, so daß die .E-Terme nicht ent­
artet sind. Die Wellenfunktion des .E-Terms kann bei Spiegelungen nur mit 
einer Konstanten multipliziert werden. Da die doppelte Spiegelung an der 
gleichen Ebene die identische Transformation ist, ist diese Konstante gleich 
± l. So muß man die .E-Terme, deren Wellenfunktion sich bei Spiegelungen 
nicht ändert, und die Terme, deren Wellenfunktion das Vorzeichen wechselt , 
unterscheiden. Die ersten bezeichnet man als .E+ und die zweiten als E-. 

Wenn das Molekül aus zwei gleichen Atomen besteht, dann tritt eine neue 
Symmetrie auf und mit ihr auch eine zusätzliche Charakteristik der Elektronen­
terme. Das zweiatomige Molekül mit gleichen Kernen besitzt nämlich noch 
eine Zentralsymmetrie bezüglich des Punktes, der die Verbindungslinie der 
beiden Kerne halbiert. (Diesen Punkt wählen wir als Koordinatenursprung.) 
Deshalb ist der HAMILTON-Operator invariant gegenüber der gleichzeitigen Än­
derung der Vorzeichen aller Elektronenkoordinaten im Molekül (bei ungeän­
derten Kernkoordinaten). Da der Operator dieser Transformation auch mit 
dem Operator des Bahndrehimpulses kommutiert, erhalten wir die Möglich­
keit, die Terme mit bestimmten Werten A auch noch nach ihrer Parität einzu­
teilen : die Wellenfunktion des geraden (g) Zustandes ändert sich bei Umkehrung 
des Vorzeichens aller Elektronenkoordinaten nicht, bei den ungeraden (u) 
ändert sich das Vorzeichen. Die Indizes u, g, die die Parität anzeigen, schreibt 
man gewöhnlich unten an das Termsymbol :  Ilu, Ilg usw. 

Schließlich gehen wir eine empirische Regel an, nach der bei der Mehrheit 
der chemisch stabilen zweiatomigen Moleküle der normale Elektronenzustand 
volle Symmetrie besitzt - die Elektronenwellenfunktion ist invariant gegen­
über allen Symmetrietransformationen des Moleküls. Wie in § 58 gezeigt wer­
den wird, ist in der Mehrzahl der Fälle im Normalzustand sogar der Gesamt-

1) Dazu betrachten wir eine Spiegelung bezüglich der xz-Ebene, wobei die Molekül­
achse die z-Achse sein soll. Eine solche Transformation ändert nur die Vorzeichen der 
y-Komponenten der Vektoren r und p ;  die Größe [ r p ], = x Pu - y Px ändert deshalb 
ihr Vorzeichen. 
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spin S gleich Null. Mit anderen Worten, der Grundterm des Moleküls ist 1};+, 
und wenn das Molekül aus gleichartigen Atomen besteht, so ist er 1Et Be­
kannte Ausnahmen dieser Regeln sind das Molekül 02 (Normalzustand 3Ei ) 
und das Molekül NO (Normalzustand 2ll). 

§ 57. Das Vberschneiden der Elektronenterme 

Die Elektronenterme des zweiatomigen Mole}Iüls sind Funktionen eines Para­
meters - des Abstandes r zwischen den Kernen. Man kann sie graphisch dar­
stellen, wenn man die Energie als Funktion von r aufträgt. Besonders interes­
sant ist die Frage, ob sich die Kurven, die die verschiedenen Terme darstellen, 
überschneiden. 

Es seien U1{r) und U2(r) zwei verschiedene Elektronenterme. Wenn sie sich 
in irgendeinem Punkt durchkreuzen, dann haben die Funktionen U1 (r) und U2(r) 
in der Nähe dieses Punktes fast gleiche Werte. Um zu entscheiden, ob solch 
ein Durchschneiden auftreten kann, stellt man die Aufgabe auf folgende Weise. 

Wir betrachten den Punkt r0, in dem die beiden Funktionen U1(r), U2(r) 
beinahe gleiche Werte haben (wir bezeichnen sie mit E1 und E2), und wollen 
sehen, ob wir U1 und U2 gleichmachen können oder nicht, wenn wir den Punkt 
um die kleine Größe tJr ve�schieben. Die Energien E1 und E2 sind Eigenwerte 
des HAMILTON-Operators H0 des ·systems der Elektronen im Feld der Kerne, 
die sich im Abstand r0 voneinander befinden. Wenn man dem Abstand r0 d�n 

. � � � aH 
Zuwachs tJr gibt, geht der HAMILTON-Operator über in H0 + V, wobei V = tJr • a/ 
eine kleine Korrektur ist ; die Werte der Funktionen U1, U2 im Punkt r0 + tJr 
kann man als Eigenwerte des neuen HAMILTON-Operators betrachten. Diese 
Betrachtungsweise erlaubt, die Werte der Terme U1(r) un� U2(r) im Punkte 
r0 + tJr mi�tels der Störungstheorie zu bestimmen, wobei V als Störung zum 
Operator H0 betrachtet wird. 

Die gewöhnliche Methode der Störungstheorie ist hier aber nicht zu ge­
brauchen, da die Energieeigenwerte E1 und E2 des ungestörten Problems sehr 
nahe beieinander liegen und ihre Differenz im allgemeinen klein im Vergleich 
zur Größe der Störung ist (Bedingung (32,9) ist nicht erfüllt) . Da wir im Grenz­
fall verschwindender Differenz E2 - E1 zum Fall entarteter Eigenwerte kom­
men, ist es natürlich zu versuchen, auf den Fall eng benachbarter Eigenwerte 
eine Methode, die der im § 33 entwickelten ahalog ist, anzuwenden. 

� 

Es seien tp1 und tp2 die Eigenfunktionen des ungestörten Operators H0, die 
entsprechenden Energien seien E1 und E2• Als nullte Näherung nehmen wir 
statt tp1 und tp2 ihre Linearkombinationen 

tp = C1 VJ1 + c2 '1/-'2 • (57,1)  

Setzt man diesen Ausdruck in die gestörte Gleichung ein, 
� � 

(H0 + V) tp = E tp , 
• 

(57,2) 
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so erhalten wir 
� � 

c1 (E1 + V - E) 1p1 + c2 (E2 + V - E) 1p2 = 0 . 
Multipliziert man diese Gleichung der Reihe nach mit "Pt und "P: und integriert, 
so erhält man zwei algebraische Gleichungen 

Cl (El + vll - E) + c2 vl2 = 0 ' 
Cl v21 + c2 (E2 + v22 - E) = 0 ' 

wobei Vtk  = f 'lfJ't V 1pk dq ist. Wegen der Hermitezität des Operators V sind 
die Größen V11 und V22 reell und V12 = V�. Die Lösbarkeitsbedingung dieser 
Gleichungen lautet 

\E1 + V11 - E 
V21 

woraus durch Auflösung 
I 

E = 2 (E1 + E2 + V11 + V22) 

± V ! (E1 - E2 + V11 - V22)2 + I V12! 2 (57,3) 

folgt. Durch diese Formel sind die gesuchten Energieeigenwerte in der ersten 
Näherung bestimmt. 

Wenn die Energiewerte beider Terme im Punkt r0 + br gleich sind (die 
Terme überschneiden sich), so bedeutet das, daß beide Werte E, die durch die 
Formel (57,3) bestimmt sind, übereinstimmen. Dazu ist notwendig, daß der 
Ausdruck unter der Wurzel in (57,3) verschwindet. Da er eine Summe zweier 
Quadrate ist, erhalten wir als Existenzbedingung für das Überschneiden der 
Terme die Gleichungen 

E1 - E2 + V11 - V22 = o ,  V12 = o .  (57,4) 
� 

In ihnen ist nur ein willkürlicher Parameter enthalten, der die Störung V be-
stimmt - die Verschiebungsgröße br. Deshalb können die beiden (wir setzen 
voraus, daß die Funktionen 1p1, 1p2 reell gewählt sind ; dann ist V12 auch reell) 
Gleichungen (57,4) im allgemeinen nicht gleichzeitig erfüllt werden. 

Es kann aber geschehen1 daß das Matrixelement V12 identisch Null ist ; dann 
bleibt nur eine Gleichung (57,4) übrig, die man durch entsprechende Wahl 
von br befriedigen kann. Das geschieht in allen Fällen, wenn die zwei be­
trachteten Terme verschiedene Symmetrie besitzen. Unter Symmetrie ver­
stehen wir hier alle möglichen Symmetriearten - Drehungen um die Achse, 
Spiegelungen an Ebenen, Inversionen, aber auch Elektronenvertauschungen. 
Beim zweiatomigen Molekül betrifft das Terme mit verschiedenen A, verschie­
dener Parität oder Multiplizität und bei .E-Termen auch .E+ und .E-. 

Zum Beveis dieser Behauptung ist es wichtig, daß der Operator V (wie auch 
der ganze HAMILTON-Operator) mit allen Symmetrieoperatoren des Moleküls 
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kommutiert - mit dem Operator des Drehimpulses bezüglich der Achse, den 
Operatoren der Spiegelungen und Inversionen, den Vertauschungsoperatoren 
der Elektro nen. In §§ 18 und 19 wurde gezeigt, daß für eine skalare Größe, 
deren Oper ator mit den Drehimpuls- und Inversionsoperatoren kommutiert, 
nur die Matrixelemente für Übergänge zwischen Zuständen mit gleichem Dreh­
impuls und gleicher Parität von Null verschieden sind. Dieser Beweis blt>ibt 
im wesentlichen auch für den allgemeinen Fall eines beliebigen Symmetrie­
operators erhalten. 

Auf diese Weise kommen wir zu dem Resultat, daß sich beim zweiatomigen 
Molekül nur Terme verschiedener Symmetrie durchkreuzen können, d�s Über­
schneiden von Termen mit gleichei: Symmetrie ist unmöglich (E. WIGNER und 
J. v. NEUMANN, 1929). Wenn wir im Resultat irgendeiner Näherungsrechnung 
zwei sich überschneidende Terme gleicher Symmetrie erhalten würden, dann 
würden sie sich bei der Berechnung der folgenden Näherung als auseinander­
gerückt erweisen, wie das in Abb. 12 durch die ausgezogenen Linien dar­
gestellt ist. 

{J{r) 

Abb. 12  �------------------ r 

§ 5 8. Die Valenz 

Die Eigenschaften der Atome, die sich zu einem Molekül vere1mgen, werden 
mit Hilfe des Begriffs der Valenz (Wertigkeit) beschrieben. Jedem Atom wird 
eine bestimmte Valenz zugeschrieben, und bei der Vereinigung der Atome 
müssen·sich ihre Valenzen gegenseitig absättigen, d. h., jeder Valenzbindung eines 
Atoms muß die Valenzbindung eines anderen Atoms entsprechen. Zum Bei­
spiel sind in dem Molekül CH� die vier Valenzen des Kohlenstoffatoms durch 
die Valenzen der vier einwertigen Wasserstoffatome abgesättigt. Wir gehen zur 
physikalischen Deutung der Wertigkeit über und beginnen mit dem einfachsten 
Beispiel - der Verbindung zweier Wasserstoffatome zum Molekül H2• 

Wir betrachten zwei Wasserstoffatome, die sich im Grundzustand (2S) be­
finden. Bei ihrer Annäherung kann man ein System erhalten, das sich in den 
Molekülzuständen 1Et oder 3E;1" befindet. Der Singuletterm entspricht dem 
antisymmetrischen Spinanteil der Wellenfunktion und der Tripletterm der 
symmetrischen Funktion. Der Koordinatenanteil der Wellenfunktion ist um­
gekehrt beim 1E-Term symmetrisch und beim 3E antisymmetrisch. Es ist 



174 Kapitel VIII. Das zweiatomige Molekül 

klar, daß der Grundterm des Moleküls H2 nur der Term 1 I: sein kann. Die 
antisymmetrische Wellenfunktion cp(rv r2) (rv r2 sind die Radiusvektoren 
beider Elektronen) besitzt wirklich in jedem Fall Knoten (sie verschwindet 
bei r1 = r2) ,  und deshalb kann sie nicht zum niedrigsten Zustand des Systems 
gehören. 

Die numerische Rechnung zeigt, daß der Elektronenterm 1 I: wirklich ein tiefes 
Minimum annimmt, das der Bildung eines stabilen Moleküls H2 entspricht. Im 
Zustand 31: fällt die Energie U(r) monoton mit wachsendem Abstand der 
Kerne, was der gegenseitigen Abstoßung der beiden H-Atome entspricht 
(Abb. 13).1) 

tJ(r) 

r 

Abb. 13 

So ist der Gesamtspin des Wasserstoffmoleküls im Grundzustand gleich 
Null, S = 0. Es zeigt sich, daß die Moleküle praktisch aller chemisch stabilen 
Verbindungen der Elemente der Hauptgruppen diese Eigenschaft besitzen. 
Unter den anorganischen Molekülen stellen die zweiatomigen Moleküle 02 
(Grundzustand 3.1') und NO (Grundzustand 2Il) und die dreiatomigen Moleküle 
N02, Cl02 Ausnahmen dar (Gesamtspin S = 1/2). Die Elemente der Über­
gangsgruppen besitzen besondere Eigenschaften, über die später diskutiert wird, 
nachdem wir die Valenzeigenschaften der Elemente der Hauptgruppen studiert 
haben. 

Die Fähigkeit der Atome, sich miteinander zu verbinden, ist auf diese Weise 
mit ihren Spins verknüpft (W. HEITLER und F. LüNDON, 1927). Die Verbin­
dung geschieht so, daß sich die Spins der Atome kompensieren. Als qualita­
tiven Ausdruck der Fähigkeit der Atome sich zu verbinden, benutzt. man 
ganze Zahlen - die doppelten Spins der Atome. Diese Zahl fällt mit der ehe-

1) Wir sehen hier von den VAN DER WAALSschen Anziehungskräften zwischen den Atomen 
ab (siehe § 61). Die Existenz dieser Kräfte bedeutet, daß (bei größeren Abständen) die 
Kurve U(r) des Terms 31.: auch ein Minimum besitzt. Dieses Minimum ist jedoch im 
Vergleich zu dem Minimum der 11.:-Kurve sehr flach und wäre entsprechend dem in Abb. 13 
verwendeten Maßstab überhaupt nicht zu bemerken. 



§ 58. Die Valenz 175 

mischen Wertigkeit (Valenz) der Atome zusammen. Dabei muß man aber 
beachten, daß ein und dasselbe Atom verschiedene Wertigkeiten besitzen kann 
in Abhängigkeit davon, in welchem Zustand es sich befindet. 

Wir betrachten von diesem Gesichtspunkt aus die Elemente der Haupt­
gruppen des Periodensystems. Die Elemente der ersten Gruppe (erste Spalte 
in Tabelle 1 auf Seite 156, die Gruppe der Alkalimetalle) besitzen im Normal­
zustand den Spin S = 1/2, und demgemäß ist ihre Wertigkeit gleich Eins. 
Den angeregten Zustand mit größerem Spin kann man nur durch Anregung 
eines Elektrons aus einer vollen Schale erhalten. Deshalb sind diese Zustände 
so hoch, daß das angeregte Atom kein stabiles Molekül bilden kann. 

Die Atome der Elemente der zweiten Gruppe (zweite Spalte in Tabelle 1 ,  
die Gruppe der Erdalkalimetalle) besitzen im Normalzustand den Spin S = 0. 
Deshalb können diese Atome im Normalzustand keine chemische Verbindung 
eingehen. Aber verhältnismäßig nahe zum Grundzustand liegt der angeregte 
Zustand, der in der Valenzschale die Konfigurat.ion 8 p statt 82 und den Ge­
samtspin S = 1 besitzt. Die Wertigkeit der Atome in diesem Zustand ist 
gleich 2 ;  das ist auch die Hauptwertigkeit der Elemente der zweiten Gruppe. 

Die Elemente der dritten Gruppe besitzen im Normalzustand die Elektronen­
konfiguration 82 p mit dem Spin 1/2. Aber durch Anregung eines Elektrons aus 
der gefüllten 8-Schale erhält man einen angeregten Zustand mit der Konfigu­
ration 8 p2 und dem Spin = 3/2, der dem Grundzustand eng benachbart ist. 
Dementsprechend verhalten sich die Elemente dieser Gruppe sowohl ein- als 
auch dreiwertig. Dabei verhalten sich die ersten Elemente dieser Gruppe 
(B, Al) nur dreiwertig. Die Neigung zur Wertigkeit 1 wächst mit dem Ansteigen 
der Atomgewichte, und Tl verhält sich im gleichen Maße wie ein ein- und drei­
wertiges Element (z. B. in den Verbindungen TlCl und TlCl3). Das hängt damit 
zusammen, daß bei den ersten Elementen der Gruppe der energetische Vorteil 
großer Bindungsenergie in den Verbindungen des dreiwertigen Elements (im 
Vergleich zu den Verbindungen des einwertigen Elementes) die Anregungs­
energie des Atoms übersteigt. 

Bei den Elementen der vierten Gruppe hat der Grundzustand die Konfigu­
ration 82 p2 mit dem Spin 1, aber dicht bei ihm liegt der angeregte Zustand mit 
der Konfiguration 8 p3 und dem Spin 2. Diesen Zuständen entsprechen die 
Wertigkeiten 2 und 4. Wie bei der dritten Gruppe zeigen die ersten Elemente 
der vierten Gruppe (C, Si) im allgemeinen die höhere Wertigkeit (eine Aus­
nahme zeigt sich z. B. in der Verbindung CO), aber die Neigung zu niedriger 
Valenz wächst mit steigendem Atomgewicht. 

Bei den Elementen der fünften Gruppe besitzt der Grundzustand die Kon­
figuration 82 p3 mit dem Spin 3/2, so daß die entsprechende Wertigkeit 3 ist. 
Den angeregten Zustand mit größerem Spin erhält man nur durch den Über­
gang eines der Elektronen in die Schale mit dem folgenden Wert der Haupt­
quantenzahl.. Der am engsten benachbarte Zustand hat die Konfiguration 
8 p3 8' und den Spin S = 5/2 (durch 8' kennzeichnen wir hier den 8-Zustand 
des Elektrons mit einer Hauptquantenzahl, die um Eins größer als im Zustand 8 
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ist). Obgleich die Anregungsenergie dieses Zustandes verhältnismäßig groß 
ist, kann das angeregte Atom eine stabile Verbindung bilden. Demgemäß 
verhalten sich die Elemente der fünften Gruppe drei- und fünfwertig (so ist. 
der Stickstoff in NH3 dreiwertig und in HN03 fünfwertig) .  

In  der . sechsten Gruppe der Elemente ist der Spin im Grundzustand (Kon­
figuration s2 p4) gleich 1, so daß das Atom zweiwertig ist. Die Anregung eines 
der p-Elektronen führt zum Zustand s2 p3 s' mit dem Spin 2, und die zusätz­
liche Anregung eines &-Elektrons führt zum Zustand s p3 s' p' mit dem Spin 3. 
In beiden angeregten Zuständen kann das Atom stabile Moleküle bilden mit 
den entsprechenden Wertigkeiten 4 und 6. Dabei zeigt das erste Element der 
sechsten Gruppe (Sauerstoff) nur die Wertigkeit 2, aber die folgenden Ele­
mente der Gruppe zeigen auch höhere Wertigkeiten (so ist Schwefel in H2S, 
S02, S03 zwei-, vier- bzw. sechswertig). " 

In der siebenten Gruppe (Gruppe der Halogene) sind die Atome im Grund­
zustand (Konfiguration s2 p5, Spin 1/2) einwertig. Sie können jedoch auch in 
angeregten Zuständen mit den Konfigurationen s2 p4 s', s2 p3 s' p', s p3 s' p'2 
und den entsprechenden Spins 3/2, 5/2, 7/2 an stabilen Verbindungen teil­
nehmen, die Wertigkeit ist dann 3, 5, 7. Das erste Element der Gruppe (F) 
ist dabei immer einwertig, aber die folgenden Elemente zeigen auch höhere 
Wertigkeiten (so ist Chlor in HCl, HC102, HC103, HC104 ein-, drei-, fünf- bzw. 
siebenwertig). Schließlich besitzen die Atome der Gruppe der Edelgase im 
Grundzustand vollständig besetzte Schalen (so daß der Spin 8 = 0 ist), und 
ihre Anregungsenergie ist groß. Demgemäß ist die Valenz Null, und diese 
Elemente sind chemisch inaktiv. 

Bei der Vereinigung der Atome zum Molekül verändern sich die vollen Elek­
tronenschalen der Atome wenig. Die Verteilung der Elektronendichte in den 
nicht vollbesetzten Schalen kann sich wesentlich ändern. In den am deut­
lichsten ausgeprägten Fällen, der sogenannten heteropolaren Bindung, gehen 
alle Valenzelektronen von einem Atom zum anderen über, so daß man sagen 
kann, daß das Molekül aus Ionen mit einer Ladung, die gleich ihrer Wertigkeit 
(in Einheiten von e) ist, besteht. Die Elemente der ersten Gruppe sind elektro­
positiv - in heteropolaren Verbindungen geben sie ein Elektron ab und bilden 
positive Ionen. Beim Übergang zu den folgenden Gruppen fällt die Elektl'O­
positivität schrittweise ab und geht zur Elektronegativität über, die bei den 
Elementen der siebenten Gruppe am deutlichsten ist. Zu der heteropolaren 
Bindung muß man jedoch folgende Bemerkung machen. 

Wenn das Molekül heteropolar ist, so braucht das nicht zu bedeuten, daß 
wir bei der Trennung der Atome unbedingt zwei Ionen erhalten. Aus dem 
Molekül KCl würden wir wirklich die Ionen K+ und CI- erhalten, aber das 
Molekül NaCl gibt im Grenzfall die neutralen Atome Na und Cl (da die Affi­
nitäi des Chlors zum Elektron stärker als das Ionisationspotential des Kaliums, 
aber schwächer als das Ionisationspotential des Natriums ist) . 

Im entgegengesetzten Grenzfall, der sogenannten homöopolaren Bindung, 
bleiben die Atome im Molekül im Mittel neutral. Die homöopolaren Moleküle 
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besitzen im Gegensatz zu den heteropolaren kein merkliches Dipolmoment. 
Der Unterschied zwischen den hetero- und homöopolaren Bindungstypen ist 
rein quantitativ, und es können alle Übergangsfälle auftreten. 

Wir gehen nun zu den Elementen der Nebengruppen über. Die Elemente 
der Gruppen des Palladiums und Platins unterscheiden sich nach dem Cha­
rakter ihrer Valenzeigenschaften wenig von den Elementen den Hauptgruppen. 
Der Unteischied besteht ·darin, daß sie wegen der verhältnismäßig tiefen Lage 
der d-Elektronen im Atom mit den anderen Atomen im Molekül schwächer 
wechselwirken. Dadurch trifft man unter den Verbindungen dieser Elemente 
relativ oft "ungesättigte" Verbindungen mit Molekülen, die einen von Null 
verschiedenen Spin haben (der praktisch 1/2 nicht übersteigt). Jedes dieser 
Elemente kann verschiedene Wertigkeiten zeigen, wobei diese sich nur um 
eine Einheit unterscheiden können, aber nicht um zwei, wie bei den Elementen 
der Hauptgruppen (wo die Änderung der Wertigkeit mit der Anregung eines 
beliebigen Elektrons mit kompensiertem Spin zusammenhing, dadurch wurden 
gleichzeitig die Spins eines Elektronenpaares frei) .  

Die Elemente der Gruppe der Seltenen Erden werden charakterisieFt durch 
nicht vollständig besetzte /-Schalen. Die /-Elektronen liegen weitaus tiefer 
als die d-Elektronen und sind deshalb nicht an der Valenz beteiligt. So ist die 
Wertigkeit der Elemente der Seltenen Erden nur durch die 8- und p-Elektronen 
der unvollständig besetzten Schalen bestimmt.l) Man muß aber bedenken, 
daß bei der Anregung des Atoms die /-Elektronen in 8- oder p-Zustände über­
gehen können und so die Wertigkeit um Eins vergrößern können. Deshalb 
zeigen auch die Elemente der Seltenen Erden um Eins verschiedene Wertig­
keiten (praktisch sind sie drei- und vierwertig). 

Die Elemente der Eisengruppe nehmen nach ihren Valenzeigenschaften eine 
Zwischenstellung zwischen den Elementen der Seltenen Erden und denen der 
Palladium- und Platingruppe ein. In ihren Atomen liegen die d-Elektronen 
verhältnismäßig tief und nehmen in einer ganzen Reihe von Verbindungen 
nicht an der Valenzbindung teil. In diesen Verbindungen verhalten sich folg­
lich die Elemente der Eisengruppe ähnlich wie die der Seltenen Erden. Hierzu 
gehören die Verbindungen des Ionentyps (z. B. FeCl2, FeCl3), in die das Metall­
atom als einfaches Kation eingeht. Ähnlich den Elementen der Seltenen Erden 
können die Elemente der Eisengruppe in diesen Verbindungen verschiedene 
W ertigkeiten haben. 

Ein anderer Verbindungstyp der Elemente der Eisengruppe sind die soge­
nannten Komplex-Verbindungen. Sie werden dadurch charakterisiert, daß das 
Atom des Nebengruppenelementes in das Molekül nicht als einfaches Ion ein­
geht, sondern einen Teil eines komplizierten, komplexen Ions bildet (z. B. das 
Ion MnO:;- in KMn04, das Ion Fe(CN)8 ____ in K4Fe(CN6)) . 1n diesen Kom-
plexionen sind die Atome enger aneinander gelagert als in einfachen Ionen-

1) Die d-Elektronen, die sich in den nicht vollbesetzten Schalen der Atome einiger 
Seltener Erden befinden, sind unwesentlich, da diese Atome praktisch immer in solchen 
angeregten Zuständen Verbindungen eingehen, in denen es keine d-Elektronen gibt. 
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verbindungen, und die d-Elektronen in ihnen nehmen an der Valenzbindung 
teil. Demnach verhalten sich die Elemente der Eisengruppe in den Komplex­
verbindungen wie die Elemente der Palladium- und Platingruppe. 

Schließlich muß noch darauf hingewiesen werden, · daß sich die Elemente 
Cu, Ag und Au, die von uns in § 52 zu den Hauptgruppen gezählt wurden, in 
einer Reihe von Verbindungen wie Nebengruppenelemente verhalten. Diese 
Elemente können wegen des Übergangs von Elektronen aus der d-Schale in 
die energetisch benachbarte p-Schale, z. B. bei Cu aus 3 d  in 4 p, eine Wertig­
keit größer als Eins aufweisen. In diesen Verbindungen haben die Atome eine 
nicht vollbesetzte d-Schale und verhalten sich deshalb wie Nebengruppen­
elemente (Cu wie ein Element der Eisengruppe und Ag und Au wie Elemente 
der Pd- und Pt-Gruppe). 

§ 59. Die Schwingungs- und die Rotationsstruktur der Terme 
eines zweiatomigen Moleküls ' 

Wie schon am Anfang dieses Kapitels bemerkt wurde, gibt der große Massen­
unterschied zwischen Kern und Elektron die Möglichkeit, die Bestimmung der 
Energieniveaus eines Moleküls in zwei Etappen dur>chzuführen. Zuerst werden 
die Energieniveaus des Elektronensystems bei unbeweglichen Kernen als Funk­
tionen der Abstände zwischen den letzteren bestimmt (Elektronenterme). Da- , 
nach kann man die Bewegung der Kerne bei gegebenen Elektronenzuständen 
betrachten ; das führt dazu, daß die Kerne als Teilchen betrachtet werden 
müssen, die miteinander nach dem Gesetz Un(r) wechselwirken, wobei Un der 
entsprechende Elektronenterm ist. Die Bewegung des Moleküls setzt sich zu­
sammen aus seiner Translation als Ganzes und der Bewegung der Kerne relativ 
zum Schwerpunkt. Die Translation ist nicht wesentlich, und wir können den 
Schwerpunkt als fest annehmen. 

Der Bequemlichkeit halber betrachten wir zuerst die Elektronenterme, in 
denen der Gesamtspin S des Moleküls verschwindet (Singuletterme) .  Schon 
dieser einfachste Fall erfaßt alle grundlegenden qualitativen Züge der Energie­
niveausstruktur zweiatomiger Moleküle. 

Das Problem der Relativbewegung zweier Teilchen (Kerne) ,  die über das 
Potential U(r) in Wechselwirkung stehen, führt, wie wir wissen, zur Bestim­
mung der Bewegung eines Teilchens mit der Masse M (reduzierte Masse beider 
Teilchen) in dem kugelsymmetrischen Feld U(r). Diese Bestimmung der Be­
wegung im kugelsymmetrischen Feld U(r) führt ihrerseits auf das Problem 
einer eindimensionalen Bewegung in einem Feld mit einer effektiven Energie, 
die gleich der Summe von U(r) und der Zentrifugalenergie ist (siehe § 29). 

Für den Fall Spin gleich Null setzt sich der Gesamtdrehimpuls eines Mole­
küls J aus dem Bahndrehimpuls der Elektronen L und dem Drehimpuls für die 
RotatiQll der Kerne zusammen ; dem letzteren entspricht folglich der Opera-_ 
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tor J - L, und der Operator für die Rotationsenergie ist 

112 A A 

2 M r2 (J - L)2 . 

Die effektive potentielle Energie bestimmt sich als 

112 . 
UJ(r) = U(r) + 2 M rz (J - L)2 , 
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(59,1) 

wobei die Mittelung über den Molekülzustand bei festem Wert r geschieht. 
Führen wir nun die Mittelung für einen Zustand aus, in dem das Molekül 

definierte Werte des GesamtdrehimpulsquadratesJ2 = J (J + l) und der Dreh­
impulsprojektion der Elektronen bezüglich der Molekülachse (z-Achse) besitzt : 
L. = A. Durch Auflösen der Klammer in (59,1) haben wir 

112 112 - 112 -
UJ(r) = U(r) + 2 M r2 J (J + l) - M r2 L J  + 2 M r2 L2 . (59,2) 

Das letzte Glied hängt nur vom Elektronenzustand ab und enthält insgesamt 
die Quantenzahl J nicht ; dieses Glied kann man einfach in die potentielle 
Energie U(r) einbeziehen. Wir zeigen, daß dies auch auf das vorletzte Glied 
zutrifft. 

Dazu erinnern wir daran, daß, wenn die Drehimpulsprojektion bezüglich 
irgendeiner Achse einen definierten Wert besitzt, auch der Mittelwert des ge­
samten Drehimpulsvektors entlang eben dieser Achse gerichtet ist (siehe die 
Bemerkung am Ende von § 15). Bezeichnen wir mit n den Einheitsvektor in 
z-Richtung., dann haben wir demzufolge L = A n. Weiterhin ist in der klas­
sischen Mechanik der Drehimpuls für die Rotation eines Systems aus zwei 
Teilchen (Kernen) gleich [r p], worin 1· = r n der Radiusvektor zwischen 
beiden Teilchen und p der Impuls ihrer relativen Bewegung sind ; letztere 
Größe steht senkrecht �:�-uf der Richtung n. In der Quantenmechanik liegt genau 
der gleiche Sachverhalt in bezug auf den Drehimpulsoperator für die Rotation 
der Kerne vor : (J - L) n = 0 oder .i n = i n. Schließlich folgt aus der 
Gleichheit der Operatoren auch die Gleichheit ihrer Eigenwerte, und da 
n L = Lz = A gilt, folgt 

J. = A .  (59,3) 
Demzufolge haben wir im vorletzten Glied von (59,2) für die Größe LJ 

= nJ A = A2, d .  h., sie hängt nicht von J ab. Durch Neudefinition der 
Funktion U(r) kann man schließlich die effektive potentielle Energie in fol­
gender Form schreiben : 

• 112 UJ(r) = U(r) + 2 M r2 J (J + l) . (59,4) 

Lösen wir die eindimensionale ScHRÖDINGER-Gleichung mit dieser potentiellen 
Energie, so erhalten wir eine Serie von Energieniveaus. Wir verabreden, diese 
Niveaus (für jedes gegebene J) in der Reihenfolge ihres Anwachsens durch den 

13 Kurzfassung II 
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Index v zu numerieren, der die Werte v = 0, 1 ,  2, . . . durchläuft ; v = 0 ent­
spricht dem niedrigsten Niveau. Auf diese Weise führt die Kernbewegung zu 
einer Aufspaltung jedes Elektronenterms in eine Reihe von Niveaus, die durch 
die Werte der zwei Quantenzahlen J und v charakterisiert werden. 

Die Abhängigkeit der Energieniveaus von den Quantenzahlen kann im all­
gemeinen Fall nicht vollständig berechnet werden. Diese Berechnung ist nur 
für relativ schwach angeregte Niveaus möglich, die nur wenig über dem Grund­
zustand liegen. Diesen Niveaus entsprechen kleine Werte der Quantenzahlen 
J und v. Mit eben diesen Niveaus hat man es gewöhnlich bei der Untersuchung 
von Molekülspektren zu tun, und deshalb sind sie besonders interessant. 

Die Bewegung der Kerne in den schwach angeregten Zuständen kann man 
charakterisieren als kleine Schwingungen um die Gleichgewichtslage. Dem­
entsprechend müssen wir U(r) in eine Reihe nach Potenzen der Differenz 
� = r - r, entwickeln, wobei r, der Wert von r ist, bei dem U(r) ein Minimum 
hat. Da U' (r.) = 0 ist, haben wir mit einer Genauigkeit bis zu den Gliedern 
zweiter Ordnung 

M w2 U(r) = U, + -2- �2 , 

wobei U8 = U(r,) und w = VU" (r,)/M die Schwingungsfrequenz ist (siehe I 
§ 17). Im zweiten Glied in (59,4) - der Zentrifugalenergie - genügt es, r = re 
zu setzen. Deshalb gilt 

M w2 UJ(r) = U, + B J (J + 1) + -2- �2 , (59,5) 

wobei B = ll2/2 M r! = ll2f2 I die sogenannte Rotationskonstante ist (I = M r! 
ist das Trägheitsmoment des Moleküls). 

Die ersten. zwei Glieder in (59,5) sind Konstanten, und das dritte entspricht 
einem eindimensionalen harmonischen Oszillator. Deshalb können wir für die 
gesuchten Energieniveaus sofort 

E = Ue + B J (J + 1) + Ii w ( v + �) (59,6) 

schreiben. 
Auf diese Weise setzen sich in der betrachteten Näherung die Energieniveaus 

aus drei unabhängigen Teilen zusammen : 
E = E•l + E' + EV . (59,7) 

Hier ist E•1 = Ue die Elektronenenergie (einschließlich der Energie der Cou­
LOMBsehen Wechselwirkung der Kerne) ; 

E' = B J  (J + 1) (59,8) 

ist die Rotationsenergie, die mit der Drehung des Moleküls zusammenhängt!) .  
Wir bemerken, daß gemäß (59,3) die Quantenzahl J nur die Werte 

J = A, A + 1, A + 2, . . . (59,9) 

1) Ein rotierendes System aus zwei fest miteinander verbundenen Teilchen nennt man 
oft einen Rotator. Die Formel (59,8) bestimmt die quantenmechanischen Energieniveaus 
des Rotators. 
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durchlaufen kann, da die Projektion des Drehimpulses seine Größe J nicht 
überschreiten kann. Das dritte Glied schließlich in (59,7), 

Ev = h w  (v + 1/2), (50,10) 

ist die Energie der Kernschwingungen innerhalb des Moleküls. Die Zahl v 
numeriert, in Übereinstimmung mit der gewählten Definition, die Niveaus mit 
gegebenem J in wachsender Reihenfolge ; diese Zahl nennt man die Schwingungs­
( oder Vibrations-) Quantenzahl. 

Bei der gegebenen Form der Kurve der potentiellen Energie U(r) ist die 
Frequenz w umgekehrt proportional zu VM. Daher sind auch die Intervalle 
LJEv zwischen den Schwingungsniveaus proportional zu ljV M. Die Inter­
valle LJE' zwischen den Rotationsniveaus enthalten im Nenner das Trägheits­
moment I, d. h., sie sind proportional zu 1/M. Die Intervalle LJE.Z zwischen 
den Elektronenniveaus, wie auch diese Niveaus selbst, enthalten M nicht. 
Da m/M (m ist die Elektronenmasse) in der Theorie der zweiatomigen Moleküle 
ein kleiner Parameter ist, sehen wir, daß 

(59, 11) 

gilt. Diese Ungleichungen spiegeln den spezifischen Charakter der Grup­
pierung von Molekülniveaus wider. Die Schwingungen der Kerne spalten die 
Elektronenterme in relativ dicht beieinander liegende Niveaus · auf. Diese 
Niveaus erleiden ihrerseits nochmals eine Feinaufspaltung unter dem Einfluß 
der Molekülrotation. 

Als Beispiel geben wir hier die Werte Ue, Ii w und B (in eV) für einige Mole­
küle an : 

- u. 
h w . 
IOa B 

4,7 
0,54 
7,6 

7,5 
0,29 
0,25 
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5,2 
0,20 
0,18 

In § 56 untersuchten wir schon einige Symmetrieeigenschaften von Zuständen 
eines zweiatomigen Moleküls. Diese Eigenschaften bezogen sich auf Elektronen­
terme, d. h., sie charakterisierten das Verhalten der Wellenfunktion der Elek­
tronen bei Transformationen, die die Kernkoordinaten nicht berühren. Indem 
auch die Kernbewegungen (Rotation und Schwingungen) für das Verständnis 
eines Molekülzustandes herangezogen werden, ergeben sich auch neue Symmetrie­
eigenschaften, die sich nunmehr auf das Molekül als Ganzes beziehen. Wir 
wollen hier bei einer interessanten Erscheinung verweilen, welche mit der 

13° 



182 Kapitel VIII. Das zweiatomige Molekül 

Symmetrie von Zuständen zweiatomiger Moleküle zusammenhängt,  die aus 
gleichartigen Atomen bestehen (es versteht sich, daß es sich dabei nicht nur 
um Atome ein und desselben Elements, sondern auch ein und desselben Isotops 
handelt, so daß beide Kerne identisch sind). 

Um konkret zu sein, beschränken wir uns auf den Elektronengrundzustand 
(1Et -Singulett) des W asserstoffmoleküls. 

Der HAMILTON-Operator eines aus zwei gleichartigen Atomen bestehenden 
Moleküls ist invariant bezüglich einer Vertauschung der Kerne. Im Zusammen­
hang damit ergibt sich eine neue Symmetrieeigenschaft der Zustände : Die 
Wellenfunktion des Moleküls kann symmetrisch oder antisymmetrisch im Hin­
blick auf die Vorzeichenänderung des von dem einen zum anderen Kern ge­
richteten Radiusvektors r sein. 

Die Wellenfunktion des Moleküls ist ein Produkt aus Elektronen- und Kern­
wellenfunktion. Gemäß § 59 stimmt letztere mit der Wellenfunktion für die 
Bewegung eines Teilchens mit dem Bahndrehimpuls J im zentralsymmetrischen 
Feld U(r) überein. Unter diesem Gesichtspunkt stellt die Transformation 
r � - r eine Koordinateninversion bezüglich des Feldzentrums dar, und ent­
sprechend (19,5) führt eine solche Transformation zur Multiplikation der 
Wellenfunktion mit dem Faktor ( -1)J. Die Elektronenwellenfunktion hängt 
auch von den Kernkoordinaten in Form von Parametern ab. Für den Elek­
tronengrundzustand ist diese Funktion bezüglich einer Kernvertauschung sym­
metrisch.1) Deshalb bestimmt der Faktor (- 1)J die Symmetrie oder Anti­
symmetrie nicht nur des Kernanteils sondern auch der gesamten Wellen­
funktion des Moleküls als Ganzem. 

In § 46 wurde ein allgemeines Theorem aufgestellt, welches besagt, daß für 
ein System aus zwei gleichartigen Teilchen vom Spin i = 1/2 symmetrische 
(bezüglich der Teilchenkoordinaten) Zustände nur bei verschwindendem Ge­
samtspin I der Teilchen und antisymmetrische Zustände nur im Falle I = 1 
existieren können. Wenden wir nun diese Regel auf die zwei Kerne des Wasser­
stoffmoleküls an (Protonen mit dem Spin l/2). Wir gelangen dann zu dem 
Ergebnis, daß für parallele Kernspins (I = 1) das Molekül in seinem Elek­
tronengrundzustand nur ungeradzahlige Werte des Drehimpulses J und für 
antiparallele Kernspins (I = 0) nur geradzahlige J besitzen kann. Dies ist 
ein bemerkenswertes Beispiel für den quantenmechanischen Austauscheffekt : 
Die Kernspins üben einen starken indirekten Einfluß auf die Molekülterme aus, 
obwohl ihr direkter Einfluß auf die Größe der Energie (Hyperfeinstruktur der 
Terme) im Vergleich dazu gering ist. 

j 
1) Diese Eigenschaft entspricht der in § 56 angegebenen allgemeinen, empirischen Regel, 

nach der die Mehrzahl zweiatomiger Moleküle einen Elektronengrundzustand mit voller 
Symmetrie besitzt. Darüber hinaus kann man direkt zeigen, daß die Symmetrie bezüglich 
einer Kernvertauschung aus anderen Eigenschaften des Zustandes 1.E+ folgt und zwar 
aus dem Symmetrien in bezug auf die Spiegelung an einer durch die Mole,ülachse gehenden 
Ebene und in bezug auf eine Vorzeichenumkehr aller Elektronenkoordinaten bei unver­
änderten Kernkoordinaten. 
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Auf Grund der außerordentlichen Kleinheit der magnetischen Momente der 
Protonen und desweiteren wegen der Kleinheit der Wechselwirkung ihrer Spins 
mit den Elektronen im Molekül ist die Wahrscheinlichkeit für eine Änderung 
von I sogar im Falle von Molekülstößen sehr gering. Deshalb verhalten sich 
Moleküle mit I = l und I = 0 praktisch wie verschiedene Modifikationen einer 
Verbindung ; sie werden in der angegebenen Reihenfolge als Ortho- und Para­
wasserstoffmoleküle bezeichnet. 

Der Grundzustand des Parawasserstoffmoleküls entspricht der Drehimpuls­
quantenzahl J = 0. Im Falle des Orthowasserstoffmoleküls, für das nur 
ungeradzahlige Werte von J möglich sind, stellt das Niveau mit J = l den 
Grundzustand dar, der höher als der Grundzustand von Parawasserstoff ge­
legen ist. 

§ 61. VAN DER WAALS·Kräfte 

Wir betrachten zwei Atome in S-Zuständen, die sich in großen Abständen 
(im Vergleich zu ihren Ausmaßen) voneinander befinden und bestimmen ihre 
Wechselwirkungsenergie. Mit anderen Worten, es soll die Gestalt der Elek­
tronenterme U n(r) bei großen Kernabständen bestimmt werden. 

Um diese Aufgabe zu lösen, wenden wir die Störungstheorie an und betrachten 
die zwei isolierten Atome als ungestörtes System und die potentielle Energie 
ihrer elektrischen Wechselwirkung als Störoperator. Wie aus der Elektrostatik 
(siehe I § 64) bekannt ist, kann man die elektrische Wechselwirkung zweier 
im Abstand 'f voneinander befindlichen Ladungssysteme nach Potenzen von lfr 
entwickeln, wobei die aufeinanderfolgenden Glieder dieser Entwicklung der 
Wechselwirkung der Gesamtladungen, der Dipol-, Quadrupolmomente usw. der 
beiden Systeme entsprechen. Bei neutralen Atomen ist die Gesamtladung 
Null. Die Entwicklung beginnt hier mit der _ Dipol-Dipol-Wechselwirkung 
(,....., l/r3) ; nach ihr folgen die Dipol-Quadrupol-Glieder ( ....._, lfr4), die Quadrupol­
Quadrupol (und die Dipol-Oktupol-) Glieder (,...., Jfr6) usw. 

Stellen wir uns zunächst vor, beide Atome befinden sich in S-Zuständen. 
Es ist leicht zu sehen, daß sich in der ersten störungstheoretischen Näherung 
kein Effekt aus der Wechselwirkung der Atome ergibt. In der Tat bestimmt 
sich die Wechselwirkungsenergie in erster Näherung als Diagonalmatrixelement 
des Störoperators, das bezüglich der ungestörten Wellenfunktionen des Systems ' 
berechnet wird (diese drücken sich ihrerseits durch Produkte · von Wellen­
funktionen der beiden Atome aus). Nun sind jedoch für S-Zustände die Diagonal­
matrixelemente, d. h. die Mittelwerte der Dipol-, Quadrupol- usw. Momente 
gleich Null, wie dies unmittelbar aus der Kugelsymmetrie für die Verteilung 
der mittleren Ladungsdichte in den Atomen folgt. 

In der zweiten Näherung genügt es, wenn man sich auf die Dipolwechsel­
wirkung im Störoperator beschränkt, da sie am langsamsten mit wachsendem 
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r abnimmt, d. h. auf das Glied 

V _ - d1 d2 + 3 (d1 n) (d2 n) . - r3 
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(61 ,1 )  

(n ist der Einheitsvektor in der die beiden Atome verbindenden Richtung). 
Da die Nichtdiagonalelemente des Dipolmoments im allgemeinen nicht ver­
schwinden, erhalten wir in der zweiten Näherung der Störungstheorie ein von 
Null ' verschiedenes Ergebnis, das proportional zu 1fr6 ist, weil es quadratisch 
in V war. Die Korrektur zweiter Ordnung zum tiefsten Eigenwert ist, wie wir 
wissen, immer negativ (§ 32). Deshalb erhalten wir für die Wechselwirkungs­
energie der Atome im Normalzustand einen Ausdruck der Form 

U(r) = _ 
const 

r' ' 

wobei const eine positive Konstante ist (F. LoNDON, 1928). 

(61,2) 

Zwei Atome in normalen S-Zuständen, die sich in großen Abständen von­
einander befinden, ziehen sich so mit einer Kraft ( - dU fdr) an, die der sie­
benten Potenz des Abstandes umgekehrt proportional ist. Die Anziehungs­
kräfte zwischen den Atomen bei großen Abständen werden gewöhnlich VAN 
DER W AALS-Kräfte genannt. Diese Kräfte führen zu Mulden auch auf den 
Kurven der potentiellen Energie der F;Iektronenterme der Atome, die keine 
stabilen Moleküle bilden. Die Mulden sind jedoch sehr flach (ihre Tiefe beträgt 
nur Zehntel oder Hundertstel eV), und sie liegen bei Abständen, die einigemal 
größer als die zwischenatomaren Abstände in stabilen Molekülen sind. 

Die Wichtigkeit von Formel (61,2) hängt darüber hinaus damit zusammen, 
daß einem derartigen Gesetz die Wechselwirkungskräfte auch für solche weit­
entfernte Atome genügen, die sich in beliebigen (nicht unbedingt S-) Zuständen 
'befinden, wenn nur diese Wechselwirkung über alle möglichen Orientierungen 
der Atome gemittelt wird ; gerade dieser Fragestellung entspricht z. B. das 
Problem der Wechselwirkung von Atomen in einem Gas1). 

Tatsächlich kann sich, obwohl das mittlere Dipolmoment bezüglich eines 
beliebigen stationären Zustandes Null ist, bereits der Mittelwert für das Qua­
drupolmoment eines Atoms mit von Null verschiedenem Drehimpuls J von 
Null unterscheiden (§ 54). Deshalb kann das Quadrupol-Quadrupolglied im 
Wechselwirkungsoperator schon in erster störungstheoretischer Näherung ein 
von Null verschiedenes Resultat ergeben. Nun hängen jedoch die Mittelwerte 
des Quadrupolmoments (wie auch die Multipolmomente höherer Ordnung) von 
der Orientierung seines Drehimpulses J ab, und auf Grund von Symmetrie­
überlegungen werden sie bei der Mittelung über diese Orientierungen Null. 

1) Es sei jedoch hervorgehoben, daß dieses auf der Basis der nichtrelativistischen Theorie 
erhaltene Gesetz nur gültig ist, solange die aus elektromagnetischen Wechselwirkungen 
resultierenden Retardierungseffekte unwesentlich sind. Dies setzt voraus, daß der inter­
atomare Abstand r im Vergleich zu cfwon klein ist, wobei Won die Übergangsfrequenzen 
für Übergänge zwischen dem Atomgrundzustand und den angeregten Atomzuständen 
bedeuten. 
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Aufgabe  

Für zwei gleiche Atome, die sich in S-Zuständen befinden, ist die Formel abzuleiten, die 
die VAN DER W AALS-Kräfte durch die Matrixelemente ihrer Dipolmomente ausdrückt. 

Lösung. Die Lösung erhält man aus der allgemeinen Formel (32,10) der Störungstheorie, 
die man auf den Operator (61 ,1)  anwendet. Wegen der Isotropie der Atome in S-Zuständen 
ist es klar, daß bei der Summation über alle Zwischenzustände die Quadrate der Matrix· 
elemente der drei Komponenten jedes der Vektoren d1 und d2 gleiche Beiträge liefern; 
die Glieder, die Produkte der verschiedenen Komponenten enthalten, verschwinden. Als 
Ergebnis erhalten wir 

U(r) _
_ � }; (d.)�,. (dz)�n' -

r8 , 2 E0 - E,. - E,.• ' n, n 
wobei E0, E11 die ungestörten Energiewerte der Grundzustände und der angeregten Zu­
stände sind. 





Die Theorie der elastischen Stöße 

§ 62. Die Streuamplitude 

IX 

In der klassischen Mechanik sind die Stöße zweier Teilchen vollständig durch 
ihre Geschwindigkeiten und den "Stoßparameter" (d. h. den Abstand, in dem 
sie bei fehlender Wechselwirkung aneinander vorbeifliegen würden) bestimmt. 
In der Quantenmechanik ändert sich die Problemstellung selbst, weil bei Be­
wegungen mit bestimmten Geschwindigkeiten der Begriff der Bahnen und mit 
ihm auch der des "Stoßparameters" seinen Sinn verliert. Das Ziel der Theorie 
ist hier nur die Berechnung der Wahrscheinlichkeit dafür, daß im Resultat 
eines Stoßes die Teilchen um diesen oder jenen Winkel abgelenkt (oder wie 
man sagt, gestreut) werden. Wir sprechen hier über die sogenannten elastischen 
Stöße, bei denen keinerlei Umwandlung del' Teilchen stattfindet bzw. bei 
denen sich ihr innerer Zustand nicht ändert (wenn diese Teilchen zusammen­
gesetzt sind). 

Das Problem des elastischen Stoßes führt wie jedes Zweikörperproblem zu 
dem Problem der Streuung eines Teilchens mit reduzierter Masse in dem 
Feld U(r) eines festen Kraftzentrums.l) Das geschieht/durch den Übergang 
zu einem Koordinatensystem, in dem der Schwerpunkt beider Teilchen ruht. 
Den Streuwinkel werden wir in diesem System mit () bezeichnen. Er hängt 
durch einfache Formeln mit den Ablenkwinkeln #1 und #2 beider Teilchen in 
dem Koordinatensystem zusammen, in dem ein Teilchen (das zweite) vor dem 
Stoß ruhte : 

_n m2 sin 0 
tg 'V - ---=---7 

1 - m1 + m2 cos 0 ' 
:n: - 0  

{}2 =
-2- , 

wobei m1 und m2 die Massen der Teilchen sind (siehe I § 14). 
beider Teilchen gleich sind (m1 = m2), erhält man einfach 

:n: - 0  
{}2 = -2- ; 

(62,1) 

Wenn die Massen 

(62,2) 

die Summe ist #1 + #2 = nf2, d. h., die Teilchen werden unter einem rechten 
Winkel gestreut. 

Im weiteren werden wir in diesem Paragraphen überall (wo es nicht aus­
drücklich anders vereinbart ist) ein Koordinatensystem mit dem Massen-

1) Wir vernachlässigen hier die Spin-Bahn-Wechselwirkung der Teilchen (falls sie einen 
Spin besitzen). Setzen wir das Feld zentralsymmetrisch voraus, so schließen wir damit 
auch solche Prozesse aus der Betrachtung aus, wie z. B. die Streuung von Elektronen an 
Molekülen. 
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schwerpunkt als Ursprung verwenden und unter m die reduzierte Masse der 
stoßenden Teilchen verstehen. 

Ein freies Teilchen, daß sich in Richtung der positiven z-Achse bewegt, wird 
durch eine ebene Welle beschrieben, die wir als 1p = eilcz schreiben, d. h., wir 
wählen dieN ormierung, bei der die entsprechende Stromdichte gleich derTeilcpen­
geschwindigkeit v ist (vergleiche mit der Normierung auf den Einheitsstrom in 
(21,6)). Die Streuung des Teilchens muß weit vom Zentrum entfernt durch 
eine nach außen laufende Kugelwelle der Gestalt /( 0)  e i  k 'fr beschrieben werdenl), 
wobei f(O) eine gewisse Funktion des Streuwinkels 0 ist (des Winkels zwischen 
z-Achse und Richtung des gestreuten Teilchens) ; diese Funktion nennt man 
Streuamplitude. Die Lösung der ScHRÖDINGER-Gleichung, die den Streuprozeß 
im Feld U(r) beschreibt, muß also bei großen Abständen die asymptotische 
Gestalt 

haben. 

i k z  + j(O) i k r  1p = e - e  
r 

(62,3) 

Die Wahrscheinlichkeit, daß das gestreute Teilchen in der Zeiteinheit durch 
das Oberflächenelement dS = r2 do geht (do ist das Raumwinkelelement), ist 
gleich v r-2 1/1 2 dS = v 1 /1 2 do.2) Ihr Verhältnis zur Stromdichte der einfallenden 
Welle ist gleich 

da = 1/(0)1 2 do . (62,4) 
Diese Größe hat die Dimension einer Fläche und wird effektiver Streuquerschnitt 
(oder einfach Streuquerschnitt) für die Streuung in den Raumwinkel do genannt. 
Wenn wir do = 2 n sin () dO setzen, erhalten wir den Streuquerschnitt : 

da = 2 n sin 0 1/(0)12 d() (62,5) 

für die Streuung in das Win�elint�rvall zwischen 0 und () + dO. 
Für eine Streuung im Zentralfeld ist die Lösung der ScHRÖDINGER-Gleichung 

zylindersymmetrisch bezüglich der z-Achse. Die allgemeine Gestalt einer sol­
chen Lösung kann in Form der Reihe 

00 
1p = .E A1 P1 (cos 0) Rt l (r) (62,6) 

l = O  

dargestellt werden, worin R�:1 die der Gleichung (29,8) (mit der Energie 
E = h2 k2f2 m) genügenden Radialfunktionen sind. Das asymptotische Ver­
halten dieser Funktionen für große Entfernungen ist durch stehende Wellen 

1) Eine auslaufende Kugelwelle enthält den Exponentialfaktor eikr (eine in Richtung 
Zentrum einlaufende Welle hat dementsprechend den Faktor e - Hr) anstelle der trigono­
metrischen Funktion für die in § 30 betrachteten "stehenden" Kugelwellen. 

2) Bei dieser Betrachtung wird stillschweigend angenommen, daß der einfallende 
Teilchenstrom durch eine große (um Beugungseffekte auszuschließen) aber endliche 
Blende begrenzt wird, wie das bei realen Streuexperimenten der Fall ist. Aus diesem 
Grund gibt es keine Interferenz zwischen den Gliedern in dem Ausdruck (62,3) ; das Qua­
drat 1'1'12 wird in den Punkten genommen, in denen die einfallende Welle fehlt. 
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(30.10) gegeben. Wir wollen zeigen, auf welche Weise man die Streuamplitude 
durch die Phasenverschiebungen {)1 dieser Funktionen ausdrücken kann. 

Wir setzen (30, 10) in (62,6) ein und schreiben die allgemeine asymptotische 
Gestalt der Wellenfunktion in der Form 

· 

Die Koeffizienten A1 müssen so gewählt werden, daß die Funktion die Gestalt 
(62,3) hat. Dazu benutzen wir die in § 30 erhaltene Entwicldung einer ebenen 
Welle nach Kugelwellen. Die asymptotische Form dieser Entwicklung ist (30, 16) : 

eikz � 2 � r 1� i1 
(2 l + 1) Pz { exp [- i ( k r - l;) J 

Die Differenz tp - ei kz muß eine auslaufende Welle darstellen, d. h., aus ihr 
müssen alle Glieder herausfallen, die e -i

_
k r  enthalten. Dazu muß man setzen 

A1 = ! -v; (2 l + 1) i1 ei 61 • 

So ist die Wellenfunktion 

i 00 
tp :=:::: -2 k J: (2 l + 1) P, (cos 0) [(- W e - i k r _ e2 i 6z eikr] . (62,7) r i=O 

Für die Koeffizienten bei eik •fr in der Differenz tp - eil:z finden wir dann 

1 00 
/(0) = 2 . k 1: (2 l + 1) (e2 i61 - 1) P1 (cos 0) . 

' 1=0 
(62,8) 

Diese Formel löst das Problem, die Streuamplitude durch die Phasen {)1 aus­
zudrücken (H. FAXEN, J. HoLTSMARK, 1927). 
Jedes Glied dieser Summe wird partielle Streuamplitude für die Streuung 
von Teilchen mit dem Bahndrehimpuls l genannt. 

Integrieren wir da über alle Winkel, so erhalten wir den totalen Streuquer­
schnitt a, der das Verhältnis der Gesamtwahrscheinlichkeit der Streuung eines 
Teilchens (in der Zeiteinheit) zur Wahrscheinlichkeitsstromdichte in der ein­
fallenden Welle ist. Wir setzen (62,8) in das Integral ein : 

" 
a = 2 n f 1 /(0)1 2 sin 0 dO . 

0 
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Da die Polynome P1 (cos 0) untereinander orthogonal sind, bleiben in dem 
Integral nur die Quadrate aller Summanden aus (62,8) übrig, und wir erhalten 
unter Berücksichtigung des bekannten Wertes für das Normierungsintegral 
(30, 13) 

4 n  00 
11 = V }; (2 l + 1) sin2 c51 • 

l � O 

§ 63. Die quasiklassische Streubedingung 

(62,9) 

Der Grenzübergang von den im vorigen Paragraphen erhaltenen quanten­
mechanischen Formeln der Streutheorie zu den klassischen Formeln ist ziemlich 
aufwendig. Wir werden ihn hier nicht durchführen, sondern uns nur auf einige 
Bemerkungen bezüglich der Bedingungen beschränken, unter denen ein solcher 
Übergang zulässig ist. 

Dafür, daß man von einer klassischen Streuung um den Winkel (J, wenn das 
Teilchen mit dem Stoßparameter e vorbeifliegt, sprechen kann, ist notwendig, 
daß die quantenmechanische Unbestimmtheit des einen und des anderen relativ 
klein sind : Lle � (!, Ll(J � (J. Die Unbestimmtheit des Streuwinkels hat die 
Größenordnung Ll (J  {"ooJ Llpfp, wobei p der Teilchenimpuls und Llp die Unbe­
stimmtheit seiner transversalen Komponente sind. Weil Llp {"ooJ nJLie � nfe ist, 
gilt LIO � njp (!, und deshalb ist in jedem Fall auch 

h 
(J � - . (63,1)  g m v  

Ersetzen wir den Drehimpuls m v e durch Ii l, so erhalten wir (J l � l ,  woraus 
ersichtlich ist, daß offenbar l � 1 sein muß, in Übereinstimmung mit der 
allgemeinen Regel, daß dem quasiklassischen Fall große Werte für die Quanten­
zahlen entsprechen (§ 27). 

Den klassischen Ablenkwinkel für ein Teilchen kann man als das Verhältnis 
von transversaler Impulsänderung Llp während der "Stoßzeit" T {"ooJ efv zum 
Anfangsimpuls m v abschätzen. Die Kraft , die im Felde U(r) auf das Teilchen 
im Abstand e wirkt, ist F = - dU(e )/de ; deshalb gilt Llp '""' F efv, so daß wir 
(J {"ooJ e Ffm v2 haben. Diese Abschätzung ist streng gültig, wenn der Winkel 
(J � 1 ist, der Größenordnung nach kann sie aber auch bis (J {"ooJ l ausgedehnt 
werden. Wenn wir diesen Ausdruck in (63 ,1) einsetzen, erhalten wir die Be­
dingung dafür, daß die Streuung quasiklassisch ist, in der Gestalt 

(63,2) 

Wenn das Feld U(r) schneller als 1/r abfällt, dann ist die Bedingung (63,2) 
bei hinreichend großen e nicht erfüllt. Große e entsprechen aber kleinen (J ;  
die Streuung bei hinreichend kleinen Winkeln ist demnach in keinem Falle klas­
sisch. SpeziPli ist der Quantencharakter der Streuung für kleine Winkel der 
Grund dafür, daß sich der Gesamtstreuquerschnitt endlich erweisen kann . 
Erinnern wir uns in diesem Zusammenhang daran, daß in der klassischen Me-
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chanik ein Teilchen, welches ein beliebiges Feld, das nur für r -+ oo Null wird 
(d. h., es fällt nicht schon in endlicher Entfernung steil ab), mit einem beliebig 
großen, jedoch endlichen Streuparameter durchläuft, dennoch eine Ablenkung 
um einen gewissen kleinen, aber von Null verschiedenen Winkel erfährt ; der 
Gesamtquerschnitt ist deshalb immer unendlich. Wie aus dem oben Gesagten 
klar wird, ist eine solche Schlußfolgerung in der Quantenmechanik schon deshalb 
nicht anwendbar, da der Begriff der Streuung seinen Sinn verliert, wenn der 
Streuwinkel kleiner wird als die Richtungsunschärfe der Teilchenbewegung. 

§ 64. Diskrete Energieniveaus als Pole der Streuamplitude 

Es existiert ein bestimmter Zusammenhang zwischen dem Streugesetz von 
Teilchen (mit positiver Energie E) in einem gegebenen Feld und dem diskreten 
Spektrum der negativen Energieniveaus im gleichen Feld (falls solche vor­
handen sind). 

Um das Aufschreiben der Formeln zu vereinfachen, beschränken wir uns auf 
die Bewegung. von Teilchen mit dem Bahndrehimpuls l = 0. Den asympto­
tischen Ausdruck der Wellenfunktion für positive Energie fern vom Feld­
zentrum schreiben wir in Form einer Summe aus einlaufender und auslaufender 
Kugelwelle : 

1p = � {a(k) eikr + b(k) e- ikr} . (64, 1) r 

Die Koeffizienten a(k) und b(k) sind gewisse Funktionen von k, die nur über 
die Lösung der ScHRÖDINGER-Gleichung füJ kleine Entfernungen unter Berück­
sichtigung der Endlichkeit der Wellenfunktion bei r = 0 bestimmt werden 
könnten. Dabei sind beide Funktionen nicht voneinander unabhängig, sondern 
sie werden durch einfache Beziehungen miteinander verknüpft. Eine dieser 
Relationen folgt unmittelbar daraus, daß die Funktion 1p als Wellenfunktion 
eines nichtentarteten Zustandes reell sein muß : 

b(k) = a*(k) . (64,2) 
Wenn wir jetzt formal beliebige, darunter auch komplexe k-Werte betrachten, 

dann werden a(k) und b(k) Funktionen einer komplexen Variablen, die nach 
wie vor der Gleichung (64,2) genügen und darüber hinaus über die Beziehung 

a( -k) = b(k) (64,3) 
zusammenhängen, welche unmittelbar aus der Definition von a und b im Aus­
druck (64,1) folgt (das Ersetzen von k durch -k vertauscht die Rollen der 
Koeffizienten a und b ) .  Die Funktion 1p mit komplexen k als analytische Fort­
setzung der Lösung der ScHRÖDINGER-Gleichung für reelles k wird weiterhin 
eine Lösung dieser Gleichung bleiben und im Koordinatenursprung endlich 
sein. Sie wird jedoch nicht der Bedingung genügen, im gesamten Raum endlich 
zu sein : Für r -+ oo wird das erste oder das zweite Glied in (64, 1) (je nach dem 
Vorzeichen des Imaginärteils von k) unendlich werden. 



192 Kapitel IX. Die Theorie der elastischen Stöße 

Speziell bei rein imagmaren k-Werten bestimmt der Ausdruck (64,1) die 
asymptotische Gestalt der Lösung der ScHRÖDINGER-Gleichung für negative 
Energie E. Damit diese Lösung einem stationären Zustand des diskreten 
Spektrums entspricht, muß die Funktion 1p für r � oo endlich bleiben. Jedem 
negativen Energiewert E entspricht ein Paar rein imaginärer Werte k = 

± i V  2 m lEI Jli. Iin Falle des oberen Vorzeichens genügt das zweite Glied in (64, 1) 
der Endlichkeitsbedingung für r � oo nicht ; deshalb muß für einen E-Wert, 
der einem diskreten Energieniveau entspricht, 

b(i l kl ) = 0 (64,4) 
gelten (analog muß für k = - i l k l die Funktion a(k) Null werden ). 

Vergleicht man andererseits (64,1 )  mit dem asymptotischen Ausdruck für die 
Wellenfunktion eines Teilchens mit der Energie E > 0, wie er in (30,10) ge­
schrieben wurde, 

111 = 1 / 2 � (ei (kr + 6,) - e- i (k r + <lo)) 
T V n 2 � r  ' 

so sehen wir, daß das Verhältnis afb mit der Phase !50 über die Beziehung 

2 i6,(k) _ 
a(k) e 

- b(k) 
· (64,5) 

zusammenhängt. Dieser Ausdruck besitzt einen Pol in dem Punkt, für den 
b(k) Null wird. Erinnern wir uns jetzt, daß die partielle Amplitude der s-Streuung 

/o = 2 � k (e2 i 6, - 1) 

ist, so kommen wir zu dem Schluß, daß diese Amplitude als analytische Funk­
tion der komplexen Variablen k in der oberen Halbebene dieser Variablen bei 
imaginären k-Werten Pole besitzt, die den Energieniveaus gebundener s-Zu­
stände des Teilchens im Feld entsprechen. 

Ein analoger Zusammenhang herrscht zwischen den Energieniveaus gebun­
dener Zustände mit l =1= 0 und den Polen der entsprechenden partiellen Streu­
amplituden. 

§ 65. Die Streuung langsamer Teilchen 

Wir betrachten die Eigenschaften des Streuquerschnitts im Grenzfall kleiner 
Geschwindigkeiten der gestreuten Teilchen. Die Geschwindigkeit wird so klein 
vorausgesetzt, daß die DE BROGLIE-Wellenlänge des Teilchens groß im Vergleich 
mit der'Reichweite a 1) des Feldes U(r) ist (d. h. k a � 1) und seine Energie klein 

1) Unter a werden die Linearabmessungen des Raumgebietes verstanden, in dem das 
Feld U wesentlich von Null verschieden ist. So spielt bei der Neutronenstreuung an 
Kernen der Kernradius die Rolle des Parameters a; für die Elektronenstreuung am neu­
tralen Atom ist dementsprechend der Atomradius zu nehmen. 
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im Vergleich mit dem Betrag des Feldes innerhalb dieser Reichweite :  
k2 li2j2 m� ! Ui .  , 

Die Wahrscheinlichkeit dafür, das Teilchen in der Nähe des Feldzentrums 
(in Abständen, die im Vergleich zu seiner Wellenlänge klein sind) anzutreffen, 
nimmt mit wachsendem Bahndrehimpuls l schnell ab (vergleiche das Ende von 
§ 29). Bei der Streuung langsamer Teilchen spielt deshalb die Streuung mit l = 0 
(s-Strei.mng) die grundlegende Rolle. Um für diesen Fall die Streueigenschaften 
aufzufinden, ist es notwendig, das asymptotische Gesetz für die Abhängigkeit 
der Phase <50 vom Wellenzahlvektor k bei kleinen Werten des letzteren zu be­
stimmen. 

Die Wellenfunktion des s-Zustandes hängt nur von r ab. Für r :;S a (inner­
halb der Feldreichweite) kann man in der exakten ScHRÖDINGER-Gleichung 

2 m  Lhp + lc2 "P = Tz U(r) "P 

nur das Glied mit k2 vernachlässigen : 
1 2 m  Lhp = --;  (r -rp)" = fi2 U(r) "P 

(65,1) 

(r :;S a) (65,2) 

(hierbei bedeutet der Strich Ableitung nach r). Im Gebiet großer Entfernungen 
jedoch, a � r � 1Jk, kann man sogar auch das Glied mit U(r) weglassen, so daß 

(r -rp)" = O  (65,3) 
übrigbleibt. Die allgemeine Lösung dieser Gleichung lautet 

(65,4) 

Die Werte der reellen Konstanten Cv c2 können im Prinzip nur über die Lösung 
der Gleichung (65,2) mit einer konkreten Funktion U(r) bestimmt werden. 

Bei noch größeren Entfernungen, r ;;:::: 1/k, kann in Gleichung (65,1) das 
Glied mit U(r),. nicht jedoch das Glied mit k2 weggelassen werden, so daß wir 

I 
- (r -rp)" + k2 -rp = 0 
r 

haben, d. h. die Gleichung der freien Bewegung. Diese Gleichung hat die 
Lösung 

c1 sin k r cos k r 
'" = - -- + c --r k r 2 r 

(65,5) 

Die Koeffizienten in ihr werden so gewählt, daß für lc r � 1 diese Lösung in 
(65,4) übergeht ; auf die gleiche Weise erreicht man, daß die Lösungen für die 
Bereiche k r � 1 und k r ......., 1 aneinander anschließen. 

Stellen wir die Summe (65,5) als 
Cl • k .<: "P = kr  

sm ( r + u0) 
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dar, so erhalten wir für die Phase <50 

(65,6) 

auf Grund der Kleinheit von k ist auch die Phase <50 klein. Nehmen wir in der 
Summe (62,8) nur das erste Glied mit, dann finden wir schließlich für die 
Streuamplitude 

1 2 '6 bo c. I =  2ik (e ' • -
l) = k = c: . (65,7) 

Auf diese Weise ergibt sich die Streuamplitude als konstante Größe, die 
weder vom Streuwinkel noch von der Teilchengeschwindigkeit abhängt. Mit 
anderen Worten ist die Streuung langsamer Teilchen isotrop bezüglich aller 
Richtungen und der entsprechende Streuquerschnitt a = 4 n(o2Jc1)2 hängt nicht 
von der Energie ab1). 

Aufgaben 
1 .  Es ist die Streuamplitude langsamer Teilchen an  einem sphärischen Potentialtopf 

der Tiefe U0 und dem Radius a zu bestimmen [U(r) = - U0 bei r < a, U(r) = 0 bei 
r > a]. 

Lösung. Der Wellenzahlvektor des Teilchens erfülle die Bedingungen k a � 1 und 
k � x, wobei x = V2 m U0fh ist. Die Gleichung (65,2) 
für die Funktion X = n p  lautet 

x" + X2 X = 0 

bei r < a. Die Lösung dieser Gleichung, die bei r = 0 gegen Null geht (xfr muß bei r = 0 
endlich sein) ist 

x = A sin x r  (r < a) . 

Bei r > a genügt die Funktion x der Gleichung x" + k2 x = 0, woraus 
X = B sin (k r + !50) (r > a) 

folgt. Die Stetigkeitsbedingung für x' /x bei r = a gibt 
k 

x ctg a x = k ctg ( k a + !50) :::::: 
k 

15 , 
a + o 

woraus wir !50 bestimmen. Als Resultat erhalten wir für die Streuamplitude 
f = �g x a - x a

. . ( l )  X 
Werin nicht nur k a � I  sondern auch x a � I  (d. h. U0 � h2fm a2) gilt, dann folgt 

1 f = 3 a(x a)2 
• (2) 

1) In den dargestellten Überlegungen ist stillschweigend angenommen, daß das Feld 
U(r) für große Abstände (r � a) hinreichend schnell abklingt. Es ist leicht zu klären, 
was das geforderte schnelle Abklingen genauer bedeutet. Für große r ist das zweite Glied 
in der Funktion (65,4), verglichen mit dem ersten, klein. Damit die Mitnahme dieses Gliedes 
dennoch begründet ist, muß das in Gleichung (65,2) belassene kleine Glied -c2fr immer 
noch groß im Vergleich zu dem Glied U 'P - U c1 sein, das beim Übergang von (65,2) 
zu (65,3) weggelassen wurde. Hieraus folgt, daß U schneller als l/r3 abklingen muß. 
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Formel (1) ist nicht anwendbar, wenn U0 und a dergestalt sind, daß x a nahe einem 
ungeradzahligen Vielfachen von n/2 liegt. Bei derartigen Werten x a gibt es im Potential­
topf innerhalb des diskreten Spektrums negativer Energieniveaus ein Niveau, das in der 
Nähe von Null liegt1), und die Streuung wird durch Formeln beschrieben, die im nächsten 
Paragraphen hergeleitet werden. 

2. Aufgabe 1 ist für den Fall eines "Potentialhöckers" zu lösen : U(r) = U0 für r < a, 
U = 0 für r > a. 

. 

Lösung. Der Übergang vom Fall des Potentialtopfes zu diesem Fall geschieht durch 
die Ersetzung U0 -+ - U0, d. h. x -+  i x. Aus (1 )  ergibt sich dann 

th x a - x a 
J = ---x 

(wobei nach wie vor x = V2 m U0fli gilt). Speziell haben wir im Grenzfall x a � 1 (große 
U0-Werte) 

! = - a , a = 4 n a2 • 
Dieses Resultat entspricht der Streuung an einer harten Kugel mit dem Radius a ;  wir 
bemerken, daß die klassische Mechl!,nik eine um viermal kleinere Größe lieferte (a = n a2). 

§ 66. Die Resonanzstreuung bei niedrigen Energien 

Eine gesonderte Betrachtung der Streuung langsamer (k a � 1) Teilchen in einem 
anziehenden Potential macht sich dann erforderlich, wenn es in dem diskreten 
Spektrum der negativen Energieniveaus einen s-Zustand mit einer Energie gibt, 
die klein im Vergleich zur Größe des Potentials U innerhalb seiner Reichweite a 
ist. Wir werden dieses Niveau mit �e (e > 0) bezeichnen. Die Energie E des ge­
streuten Teilchens, die eine kleine Größe ist, liegt in der Nähe des Niveaus -e, 
d. h., sie befindet sich, wie man sagt, fast in Resonanz mit ihm. Das führt, 
wie wir sehen, zu einer wesentlichen Vergrößerung des Streuquerschnittes. 

Die Existenz eines nicht allzu tiefen Niveaus kann man in der Streutheorie 
durch eine formale Methode beschreiben, die auf den folgenden Bemerkungen 
basiert. 

Wie auch in § 65 untersuchen wir wiederum die ScHRÖDINGER-Gleichung für 
verschiedene Feldbereiche. Die exakte Gleichung, die wir für die Funktion 
X = r "P anstelle von "P aufschreiben, lautet 

I I  
2 m  

E U X + 1i"2 [ - (r)] X =  0 .  

Im "inneren" Feldbereich (r ::S a) kann man das Glied (2 m Efli2) X = k2 X 
im Vergleich zu x" vernachlässigen : 

1 1  
2 m  

X - h2 U(r) X = 0 , r ,..., a .  (66,1) 

1 )  Siehe Aufgabe 1 § 30. Die dort erhaltene Gleichung (1)  zeigt, daß für das Energie­
niveau !Ei < U0 gilt, falls sin (a V2 m U0fh) :::::: ± 1 ist. 

14 Kurzfassung II 
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In dem "äußeren" Gebiet (T � a) kann man umgekehrt U vernachlässigen : 
" 2 m 

E 0 � (66 2) X + � x = ' T "?-- a ·  ' 

Die Lösung der Gleichung (66,2) kann bei irgendeinem T1 (so, daß 1/k � T1 � a 
ist) an die Lösung der Gleichung (66,1), die der Randbedingung x(O) = 0 ge­
nügt, "angenäht" werden ; die Bedingung für das Annähen besteht in der 
Stetigkeit des Verhältnisses x'fx, das von dem allgemeinen Normierungstaktor 
der Wellenfunktion nicht abhängt. 

Statt jedoch die Bewegung in dem Gebiet T ,....., a zu betrachten, erlegen wir 
der Lösung in dem äußeren Gebiet eine Randbedingung für x' /x bei kleinen 
Werten r auf ; da die äußere Lösung sich bei r � o  langsam ändert, kann man 
diese Bedingung formal auf den Punkt r = 0 ausdehnen. Die Gleichung (66,1) 
enthält E in dem Gebiet r ,....., a nicht, deshalb kann die sie ersetzende Rand­
bedingung auch nicht von der Teilchenenergie abhängen. Mit anderen Worten, 
sie muß die Gestalt 

x' I X r-+0 = - "  (66,3) 

haben, wobei x irgendeine Konstante ist. Da x nicht von E abhängt, muß 
diese Bedingung (66,3) auch zur Lösung der ScHRÖDINGER-Gleichung für eine 
kleine negative Energie E = - e gehören, d. h. zur Wellenfunktion des ent­
sprechenden stationären Zustandes des Teilchens. Bei E = - e haben wir 
aus (66,2) 

X = const . e- r Y2mefll ' 

und die Substitution dieser Funktion in (66,3) zeigt, daß x eine positive Größe 

ist. 
" = V2 m efn (66,4) 

Wir wenden jetzt die Randbedingung (66,3) auf die Wellenfunktion der 
freien Bewegung 

x = const · sin (k T + 150) 
an, die die allgemeine exakte Lösung der Gleichung (66,2) bei E > 0 dar­
stellt. Für die gesuchte Phase 150 erhalten wir 

ctg 150 = - ; = 
- v ]-- . (66,5) 

Da die Energie E hier 'nur durch die Bedingung k a � l begrenzt wird, sie 
jedoch im Vergleich zu e nicht klein sein muß, können sich die Phase 150 und 
mit ihr die Amplitude der s-Streuung als nicht kleine Größen erweisen. Die 
partiellen Streuamplituden mit l =F 0 bleiben nach wie. vor klein. Deshalb 
kann man immer noch annehmen, daß die Gesamtstreuamplitude mit derjenigen 
für die s-Streuung zusammenfällt : 

I - _I_ (e2 i6, 1) - I 
- 2  i k - - k (ctg <50 - i) 



§ 67. Die BoRNsehe Formel 

Setzen wir hierin (66,5) ein, so erhalten wir 
1 

1 = - " + i k " 
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(66,6) 

Wir bemerken, daß dieser Ausdruck an der Stelle k = i u in Übereinstimmung 
mit dem in § 64 erhaltenen allgemeinen Resultat einen Pol besitzt. 

Für den Gesamtstreuquerschnitt a = 4 11:  1 /1 2 finden wir 
4 n  2 n  1i2 1 

a = "2 + k2 = ---;n- E + e · (66,7) 

Demzufolge ist die Streuung nach wie vor isotrop (die Amplitude (66,6) ist 
richtungsunabhängig), während der entsprechende Streuquerschnitt jedoch 
energieabhängig ist und sich im Resonanzbereich (E ,.._ e) als groß im Vergleich 
zum Quadrat der Feldreichweite a2 erweist (da 1/k � a gilt). Wir betonen, daß 
die Gestalt der Formel (66,7) nicht von Details der Wechselwirkung der Teil­
chen für kleine Teilchenabstände abhängt und völlig durch den Wert für das 
Resonanzniveau bestimmt ist .1 ) 

Die erhaltene Formel hat einen allgemeineren Charakter als die bei ihrem 
Beweis gemachte Voraussetzung. Wir unterwerfen -die Funktion U(r) einer 
kleinen Veränderung ; dabei ändert sich auch der Wert der Konstanten u in 
der Randbedingung (66,3). Durch eine entsprechende Veränderung von U(r) 
kann man u zu Null machen und später zu einer kleinen negativen Größe. 
Dabei erhalten wir die gleiche Formel (66,6) für die Streuamplitude und die­
selbe Formel (66,7) für den Streuquerschnitt. In der letzteren ist jedoch die 
Größe e = li2 u2/2 m jetzt einfach eine für das Potential U(r) charakteristische 
Konstante, aber keineswegs ein Energieniveau in diesem Potential. In diesen 
Fällen sagt man, daß es in dem Potential ein virtuelles Niveau gibt, wobei man 
zu bedenken hat, daß, obgleich es in Wirklichkeit kein Niveau in der Nähe 
des Ausgangsniveaus gibt, schon eine kleine Veränderung des Feldes genügen 
würde, damit ein solches Niveau erscheint.2) 

§ 67. Die BoRNsehe Formel 

In allgemeiner Form kann der Streuquerschnitt für den sehr wichtigen Fall 
berechnet werden, bei dem das streuende Feld (bezüglich seiner Wirkung auf 
die' Bewegung des zu streuenden Teilchens) als schwache Störung angesehen 
werden kann. Auf die Frage nach den Bedingungen für die Anwendbarkeit 

1) Formel (66,7) wurde erstmalig von E. P. WIGNER (1933) erhalten; die Idee des hier 
durchgeführten Beweises stammt von H. A. BETHE und R. PEIERLS (1935). 

2) Als Beispiel sei die Neutronenstreuung an Protonen angeführt, bei der beide Reso­
nanzfälle (Resonanz mit wirklich existierendem und Resonanz mit virtuellem Niveau) 
auftreten. Für die Wechselwirkung von Neutron und Proton mit parallelen Spins 
existiert ein echtes Niveau der Energie e = 2,23 MeV (Grundzustand des Deuterons). 
Die Wechselwirkung von Neutron und Proton mit antiparallelen Spins wird durch die 
Existenz des virtuellen Niveaus e = 0,067 MeV charakterisiert. 

1 4 °  
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einer solchen Näherung in der Streutheorie werden wir am Ende dieses Para­
graphen zurückkommen. 

Die ungestörte Bewegung eines auf das Streuzentrum mit dem Impuls 
p = 1i k einfallenden Teilchens wird durch eine ebene Welle 1p<0> = eikr be­
schrieben, die der ScHRÖDINGER-Gleichung genügt : 

LJ1p(O) + k2 1p(O) = 0 • 

Wir suchen die Lösung der exakten Gleichung 

L11p + ( k2 - 2h� u) 1p = 0 

in der Form 1p = 1p<0> + 1p(l) , wobei die kleine Korrektur 1p(l) ,  die die ge­
streute Welle beschreibt, der (bezüglich 1p<1>) inhomogenen Gleichung 

(67, 1 ) 

genügen muß, in der das Glied zweiter Ordnung (..-.1p<1> U) weggelassen ist. 
Die Lösung dieser Gleichung kann unmittelbar in Analogie zu der aus der 

Elektrodynamik bekannten Gleichung für die retardierten Potentiale ge­
schrieben werde'll :  

1 iJ2rp Llrp - C2 iii2 = - 4 n (! • 

Hierin ist (! eine Funktion der Koordinaten und der Zeit 
Lösung lautet 

(siehe I § 77). Ihre 

f l  ( , R ) , rp(r, t) = R (! r ,  t - c d V , dV' = dx' dy' dz' , 

mit R = r - r' als Radiusvektor vom Volumenelement dV' zum Beobach­
tungspunkt r, für den der Wert von rp gesucht wird. Wenn die Zeitabhängig­
keit der Funktion (! als Faktor e- ik c t  gegeben ist und wir 

(! = f!o(r) e-i kc t , rp = IPo(r) e-ik c t  
schreiben, dann haben wir für rp0 die Gleichung 

Llrp0 + k2 rp0 = - 4 n f!o 

und als ihre Lösung 

( ) f ( , ) i k R d V' 
IPo r = (!o r e R . 

(67,2) 

(67,3) 

Auf Grund der offensichtlichen Analogie der Gleichungen (67 ,2) und (67,1)  
kann die Lösung der letzteren in folgender Form dargestellt werden : 

.,,(l>(r) = - �J U(r') ei (k'r' + k R) dV' 
(67,4) "' 2 n h2 R · 

Es ist jetzt leicht, den asymptotischen Ausdruck dieser Funktion für große 
Entfernungen r vom Streuzentrum anzugeben. Für r � r' haben wir 
R = Ir - r'! :::::: r - r' n' mit n' als Einheitsvektor in Streurichtung ; es ist 
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ausreichend, im Faktor IfR des Integranden von (67,4) einfach R � r zu 
setzen. Dann erhalten wir 

m eikr f "'<1> = --- -- U(r') ei (k - k'l,.' d V' T 2 n 11,2 r ' 

worin k' = k n' den Wellenzahlvektor des Teilchens nach der Streuung be­
deutet. Gemäß der Definition (62,3) liefert der Koeffizient bei eikrfr in dieser 
Funktion die gesuchte Streuamplitude ; indem wir den Strich an der Inte­
grationsvariablen weglassen, schreiben wir sie in der Form 

m J . 
f = - 2 n h2 U(r) e- • q "  dV . 

Hierin ist der Vektor 
q = k' - k  

eingeführt, dessen Betrag 

q = 2 k sin !_ 2 

(67,5) 

(67,6) 

(67,7) 

lautet, wobei () der Winkel zwischen k und k' ist, d. h. der StreuwinkeL Wir 
sehen, daß die Streuamplitude für die Impulsänderung des Teilchens um Ii q 
durch die entsprechende FouRIER-Komponente des Feldes U(r) bestimmt wird. 
Der differentielle Streuquerschnitt für das Raumwinkelelement do' ist gleich 

(67,8) 

Diese Formel wurde zuerst von M. BORN erhalten (1926) ; die entsprechende 
Näherung in der Streutheorie heißt BoRNsehe Näherung. 

Die Formel (67,8) kann auch auf andere Art gewonnen werden und zwar 
direkt nach der Störungstheorie aus der allgemeinen Formel (35,6), die die 
Übergangswahrscheinlichkeit zwischen zwei Zuständen eines kontinuierlichen 
Spektrums angibt. Im vorliegenden Fall haben wir es mit dem Übergang 
zwischen den Zuständen eines sich frei bewegenden Teilchens mit den Impul­
sen p und p' zu tun, wobei die Funktion U(r) die Rolle des Störoperators spielt. 
Als Zustandsintervall dv1 verwenden wir das Volumenelement im Impulsraum 
dp� dp� dp;. Dann nimmt Formel (35,6) die Gestalt 

dw = 2; 1 up•pl 2 t5 (:: - 2
P�) dp� dp� dp; (67 ,9) 

an. Die Wellenfunktion für den Endzustand muß dabei auf eine !5-Funktion 
im Impulsraum normiert sein (vergleiche die Bemerkung vor (35,1 ) ; gemäß 
(12, 10) ist die ebene Welle 

l ip' 1"/11 
"PP' = (2 n 1i)3/2 e (67,10) 
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auf diese Weise normiert. Die Funktion für den Anfangszustand normieren 
wir auf die Einheitsstromdichte : 

"PP = y; eip .. /11 (67,11) 

(vergleiche (2 1,6)). Dann hat die "Wahrscheinlichkeit" (67,9) die Dimension 
einer Fläche und stellt den differentiellen Streuquerschnitt dar. 

Die in (67 ,9) als Faktor auftretende 15-Funktion drückt die Energieerhaltung 
bei der elastischen Streuung aus, auf Grund dessen sich der Impulsbetrag nicht 
ändert : p' = p. Man kann die 15-Funktion eliminieren, indem man zu "Kugel­
koordinaten" im Impulsraum übergeht ( d. h. dp� dp� dp; durch p'2 dp' do' 
= 1/2 p' d(p'2) do' ersetzt) und über d(p'2) integriert. Die Integration läuft 
darauf hinaus, den Betrag p' durch p im Integranden zu ersetzen, und wir 
erhalten 2 n mp lf 12 da = --A- "P;' U 1pp dV do' . (67,12) 

Setzen wir hier die Funktionen (67, 10) und (67,11) ein, so kommen wir erneut 
zur Formel (67,8) zurück. Diese Art der Herleitung, die unmittelbar zum 
Streuquerschnitt führt, läßt jedoch die Phase der Streuamplitude unbestimmt. 

In den Formeln (67,5) und (67,8) wird das Streufeld U(t•) nicht als kugel­
symmetrisch vorausgesetzt. Wenn jedoch U = U(r) gilt , kann die dortige 
Integration in allgemeiner Form noch etwas weiter durchgeführt werden. Dazu 
benutzen wir die Kugelkoordinaten r, {}, q; mit der Pol!'trachse in Richtung des 
Vektors q (den Polarwinkel bezeichnen wir im Unterschied zum Streuwinkel (j 
mit {}). Dann folgt 

oo 2n n 
J U(r) e-iq"' dV = f f J U(r) e- i q r cos iJ r2 sin {} d{} dq; dr . 

0 0 0 

Die Integration über {} und q; kann ausgeführt werden, und wir erhalten im 
Ergebnis die folgende Formel für die Streuamplitude in einem Zentralfeld :  

00 

I =  - !a: J U(r) sin q r · r dr . 
0 

(67,13) 

Die Reichweite des Feldes möge a sein. Untersuchen wir nun Formel (67,13) 
für die Grenzfälle kleiner und großer Werte des Produktes k a. 

Für k a <{ 1 (kleine Geschwindigkeiten) kann man siq q r :::::::: q r setzen, so 
daß die Streuamplitude · 

00 ' 

I =  - 211"; J U(r) r2 dr 
0 

(67,14) 

lautet. Die Streuung ist hier den Richtungen nach isotrop und hängt nicht 
von der Geschwindigkeit ab, was mit den allgemeinen Ergebnissen des § 65 
übereinstimmt. 



§ 67. Die BoRNsehe Formel 201 

Im entgegengesetzten Grenzfall großer Geschwindigkeiten (k a � 1) ist die 
Streuung stark anisotrop und vorwärts getichtet, in einen engen Kegel mit 
dem Öffnungswinkel L10 ,.._ 1/k a. Außerhalb dieses Kegels ist die Größe a groß 
(q � 1/a) , der Faktor sin q r ist im Wirkungsbereich des Feldes eine schnell 
oszillier.ende Funktion, und das Integral ihres Produktes mit der langsam ver­
änderlichen Funktion U ist fast Null. 

Klären wir nun die Bedingungen für die Anwendbarkeit der betrachteten 
Näherung. 

Die Herleitung der Formel (67,5) basiert auf einer genäherten Lösung der 
SCimÖDINGER-Gleichung in der Gestalt tp = tp<0> + tp(l), wobei tp<1> � tp<0> an­
genommen wird. Es genügt zu fordern, daß diese Bedingung im "gefährlichsten" 
Bereich nahe dem Streuzentrum (r = 0) erfüllt ist, und da ltp<0>1 = 1 gilt, muß 
tp<1> � 1 gefordert werden. Andererseits haben wir für r = 0 im Integral 
(67,4) R = r', so daß 

tp<t>(O) = - �� U(r') ei(k r' + l:r') d�' 2 :n: A2 r 
(67, 15) 

folgt. Wir wollen dieses Integral für die Fälle kleiner und großer Werte von 
k a abschätzen. 

· 

Für k a � 1 kann man den Exponentialfaktor im Integranden durch 1 er­
setzen, und die Abschätzung des Integrals liefert dann 

'"<t> (O) ;.., m I UI aa 
.,- . Ji2 a 

mit I Ul als Größenordnung des Feldes in den Grenzen seiner Reichweite. Als 
Resultat finden wir die Bedingung 

(67,16) 

Im Falle der Abschätzung des Integrals für k a � 1 führen wir zunächst 
die Integration bezüglich der r' -Richtungen aus (es wird ein Zentralfeld an­
genommen). Analog dev Herleitung von Formel (67, 13) haben wir 

00 "' 

tp<t>(O) = - 2: 
Ji2 
f f U(r' )  eik r' (cos i H  1) 2 :n: sin {} d{} . r' dr' 

. 0 0 
00 

= - Ji2: k I U(r') (e2 i kr' - 1) dr' . 

0 

Für k a � 1 ist das Integral des Ausdrucks mit dem ozillierenden Faktor 
exp (2 i k r' ) fast Null, während sich das Integral des zweiten Ausdruckes als 
"'I Ul a ergibt. Als Ergebnis erhalten wir die Bedingung 

1i2 k a 1i v 
I UI --g: - = -""" m a2 a ' k a �  1 .  (67,17) 
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Wenn das Feld der Bedingung (67,16) genügt, dann genügt es offensichtlich 
auch der schwächeren Bedingung (67, 17) für k a ";?:> 1 ;  die BoRNsehe Näherung 
ist demzufolge in diesem Fall sowohl für kleine als auch für große Geschwin­
digkeiten anwendbar. Jedenfalls ist jedoch die BoRNsehe Näherung für hin­
reichend große Geschwindigkeiten auf Grund von (67,17) anwendbar, selbst 
wenn die Bedingung (67,16) für ihre Anwendbarkeit bei kleinen Geschwindig­
keiten nicht erfüllt ist. 

Aufgaben 

I .  Es ist in der BoRNsehen Näherung der Streuquerschnitt eines kugelsymmetrischen 
Potentialtopfes zu bestimmen: U = - U0 bei r < a, U = 0 bei r > a. 

Lösung. Die Berechnung des Integrals in (67,13) führt auf 

_ 

2 
(m U0 a2 )2 (sin q a - q a cos q a)2 

da - 4 a h2 (q a)
6 do . 

Die Integration über alle Winkel (die man zweckmäßig so ausführt, daß man zu der 
Variablen q = 2 k sin (0/2) übergeht und do durch 2 n q dqfk2 ersetzt) gibt den totalen 
Streuquerschnitt 

· 

2 n (m U0 a2 )2 [  1 
a = k2 _ß_2_ 1 - (2 k a)2 + 

In den Grenzfällen gibt diese Formel 

a = 
16 n a2 (m Uo a2 )2 

für 
9 h2 

sin 4 k a _ sin2 2 k a] 
(2 k a)3 (2 k a)' · 

= 

2 n (m Uo a2 )2 
für G k2 ß2 k a '}> 1 .  

Der erste dieser Ausdrücke entspricht der in Aufgabe 1 § 65 auf andere Weise gefundenen 
Amplitude (2). 

" 
2. Das gleiche ist für das Feld U = - e-rfa zu machen. 

r 

Lösung. Die Berechnung des Integrals in (67,13) gibt 

da = 4 a2 ("; a r (q2 a�: 1)2 
. (1) 

Der totale Streuquerschnitt ist folglich 

Die Bedingung für die Anwendbarkeit dieser Formeln erhält man aus (67,16) und (67,17} 
mit afa als U: a m afh2 � I oder tx/h v � I. 

Das betrachtete Potential stellt ein "abgeschirmtes" CouLOMB-Feld mit dem Abschirm­
radius a dar. Für a -+ oo ergibt sich exakt das CoULOMB-Feld, und der differentielle 
Querschnitt (1) geht in die RuTHERFORDsche Formel (§ 68) über. 
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§ 68. Die RuTHERFoansche Formel 

203 

Wir wenden die BoRNsehe Formel auf die Streuung im CouLOMB-Feld an. Der 
Konkretheit halber wollen wir die Streuung von Teilchen der Ladung e an 
Kernen der Ladung Ze behandeln ; demnach gilt U = Ze2fr. 

Die Aufgabe führt gemäß (67,5) auf die Berechnung der FouRIER-Transfor­
mierten der Funktion 1/r. Unter Umgehung der direkten Berechnung ist es 
bequemer, von der Differentialgleichung 

1 LI r = - 4 n !5(r) (68,1) 

auszugehen, der die Funktion 1/r genügt (siehe I (59,10)).1) Im Hinblick auf 
weitere Anwendungen betrachten wir zunächst den allgemeineren Fall einer 
Funktion q:>(r), die der Gleichung 

Llq:> = - 4 n e(r) (68,2) 
mit vorgegebener rechter Seite 4 n e(r) genügt. 

Wir stellen die Funktion tp(r) als FouRIER-Integral dar : 

Dabei gilt 

( ) - J iqr d3q d3 d d d q:> r - e q:>q (2 n)3 ' q = q" qu q • .  

q:>q = f tp(r) e-iqr  dV . 

(68 ,3) 

(68,4) 
Wenden wir auf beide Seiten der Gleichung (68,3) den ·LAPLACE-Operator an, 
und differenzieren wir dabei unter dem Integralzeichen, so erhalten wir 

A _ _  J 2 iq r d3q atp - q e q:>q (2 n)a • 

Dies bedeutet, daß die FouRIER-Transformierte des Ausdrucks Llq:> gleich 
(Llq:>)q = - q2 tpq ist. Andererseits kann man (Llq:>)q dadurch finden, daß man 
von beiden Seiten der Gleichung (68,2) die FoURIER-Transformierten bildet : 
(Llq:>)q = - 4 n !?q· Wir vergleichen beide Ausdrücke und finden 

4 n 4 n J . q:>q = � !?q = � e(r) e - •qr  d V . 

In Anwendung auf die Funktion q:> = 1/r haben wir e = !5(1"). 
das Integral auf der rechten Seite von (68,5) 1, so daß folgt (_!_) = 4 n 

. r q q2 

(68,5) 

Demnach wird 

(68,6) 

Die Streuamplitude für das CouLOMB-Feld lautet gemäß (67,5) und (67,7) 

(68,7) 

1) Eine andere Berechnungsvariante besteht darin, zunächst ein "abgeschirmtes" 
CouLOMB·Feld einzuführen und im folgenden den Abschirmradius nach unendlich streben 
zu lassen (vgl. Aufgabe 2, § 67). 



204 Kapitel IX. Die Theorie der elastischen Stöße 

mit v als Geschwindigkeit der gestreuten Teilchen : Ii k = m v. Hieraus finden 
wir für den Streuquerschnitt die Formel 

( z e2 )2 do 
da = 2 m v2 --(}- ' 

sin' -2 

die mit der klassischen RuTHERFORDschen Formel übereinstimmt. 

(68,8) 

Auf Grund des langsamen Abklingens des CouLOMB-Potentials ist es nicht 
möglich, einen endlichen Raumbereich zu definieren, innerhalb dessen U we­
sentlich größer ist als außerhalb dieses Bereichs. Die Bedingungen für die 
Anwendbarkeit der BoRNsehen Näherung auf die Streuung in einem solchen 
Potential erhalten wir aus (67, 17), indem wir dort anstelle des Parameters a 
die Abstandsvariable r einsetzen ; dies führt zu der Ungleichung 

Z e2 
hV <{ 1 . (68,9) 

Aus (63,2) ergibt sich gerade die umgekehrte Ungleichung als Bedingung für 
die quasiklassische Streuung im CouLOMB-Feld : Ze2fn v � I. Offensichtlich 
muß die Streuung in diesem Falle durch die RuTHERFORDsche Formel beschrie­
ben werden. Wir sehen folglich, daß sich diese·Formel in den Grenzfällen sowohl 
großer als auch kleiner Geschwindigkeiten ergibt. Unter diesen Umständen 
führt die auf der exakten Lösung der ScHRÖDINGER-Gleichung im CouLOMB­
Potential beruhende Quantentheorie der Streuung auf das natürliche Ergebnis : 
Die exakte quantenmechanische Formel für den Streuquerschnitt stimmt mit 
der klassischen RuTHERFORDschen Formel überein (N. MoTT, W. GoRDON, 
1928).1) 

§ 69. Stöße gleichartiger Teilchen 

Eine besondere Betrachtung erfordert der Fall eines Stoßes zweier gleich­
artiger Teilchen. Die Identität der Teilchen führt, wie wir wissen (siehe § 46) ,  
in der Quantenmechanik zur Erscheinung der eigenartigen Austauschwechsel­
wirkung zwischen ihnen. Sie wirkt sich auch wesentlich auf die Streuung aus 
(N. MOTT, 1930). 

Um konkret zu sein, beschränken wir uns auf den Stoß zweier identischer 
Teilchen mit Spin 1/2 (zwei Elektronen, zwei Nukleonen). Der Bahnanteil der 
Wellenfunktion für ein System aus zwei derartigen Teilchen muß bezüglich 
einem Vertauschen der Teilchen symmetrisch sein, wenn der Gesamtspin S = 0 
ist, und antisymmetrisch im Falle S = 1 (§ 46). Deshalb muß die die Streuung 
beschreibende Wellenfunktion, die man durch Lösen der gewöhnlichen ScHRÖ-

1) Um Mißverständnisse auszuschließen, sei jedoch betont, daß sich dies nicht auf den 
Ausdruck (68,7) für die Streuamplitude bezieht ; der exakte Ausdruck für j(B) unterscheidet 
sich von (68,7) durch einen Phasenfaktor, der von (} und v abhängt und nur unter der 
Bedingung (68,9) 1 ist. 
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DINGER-Gleichung erhält, bezüglich der Teilchen symmetrisiert oder antisym­
metrisiert werden. Die Vertauschung der Teilchen ist äquivalent dem Ersetzen 
der Richtung des sie verbindenden Radiusvektors durch die umgekehrte. In 
dem Koordinatensystem, in dem der Schwerpunkt ruht, bedeutet das, daß r 
ungeändert bleibt und der Winkel 0 durch :n; - 0 ersetzt wird �m Zusammen­
hang damit geht z = r cos 0 in -z über). Deshalb müssen wir anstelle des 
asymptotischen Ausdrucks (62,3) der Wellenfunktion 

schreiben. 

1p = eikz ± e- ikz + 2._ eikr [1(0) ± 1 (:n; _ 0)] (69,1) r 

Wegen der Identität der Teilchen kann man natürlich nicht angeben, welches 
von ihnen das streuende und welches das gestreute ist. Im Schwerpunktsystem 
haben wir zwei gleiche, gegeneinander laufende ebene Wellen (e'h und e -i h 
in (69,1)). Die auslaufende Kugelwelle in (69,1) berücksichtigt die Streuung 
beider Teilchen, und der mit ihrer Hilfe berechnete Wahrscheinlichkeitsstrom 
bestimmt die Wahrscheinlichkeit dafür, daß irgendeines der Teilchen in das 
gegebene Element do des Raumwinkels gestreut ist. Der Wirkungsquerschnitt 
ist das Verhältnis dieses Stroms zur Stromdichte in jeder der einfallenden 
ebenen Wellen, d. h.,  er wird wie früher durch das Quadrat des Betrages des 
Koeffizienten bei eikrfr in der Wellenfunktion (69, 1) bestimmt. 

Wenn also der Gesamtspin der abstoßenden Teilchen S = 0 ist, dann hat 
der Streuquerschnitt die Gestalt 

da0 = 1 / (0) + I (:n: - 0)1 2  do , (69,2) 
und wenn er S = 1 ist, dann wird 

dq1 = 1/(0) - I (:n; - 0) 1 2  do . (69,3) 
Charakteristisch für die Austauschwechselwirkung ist das Auftreten eines 
"Intevferenz"-Gliedes /(0) f* (:n; - 0) + 1*(0) I (:n: - 0).  Wenn die Teilchen 
voneinander verschieden wären wie in der klassischen Mechanik, dann wäre 
die Wahrscheinlichkeit der Streuung eines von ihnen in das gegebene Raurn­
winkelelement do einfach gleich der Summe der W ahrscheinlichkeiten für die 
Ablenkung eines von ihnen um den Winkel 0 und des sich ihm entgegen be­
wegenden um den 'Vinkel :n; - 0 ;  mit anderen Worten, der Wirkungsquer-
schnitt wäre gleich 

· 

{ 1 1(0) 12  + II (:n: - 0)1 2} do . (69,4) 
In den Formeln (69,2) und (69,3) wurde angenommen, daß der Gesamtspin 

der stoßenden Teilchen einen bestimmten Wert hat. Gewöhnlich hat man es 
jedoch mit einem Stoß von Teilchen zu tun, die sich nicht in bestimmten 
Spinzuständen befinden. Zur Bestimmung des Wirkungsquerschnitts muß man 
in diesem Fall eine Mittelung über alle möglichen Spinzustände durchführen ; 
man nimmt sie dabei alle als gleichwahrscheinlich an. Von den 2 · 2 = 4 ver­
schiedenen Spinzuständen eines Systems zweier Teilchen mit Spin 1/2 ent­
spricht ein Zustand dem Gesamtspin S = 0 (die Spinprojektionen der Teilchen 
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sind 1J2, -1/2). Die restlichen drei Zustände gehören zum Gesamtspin S = 1 
(es handelt sich um Zustände mit folgenden, für die beiden Teilchen möglichen 
Spinprojektionen : 1/2, 1/2 ; -1/2, -1/2 ; -1/2, 1/2). Deshalb ist die Wahr­
scheinlichkeit, für das System den Gesamtspin S = 0 bzw. S = 1 vorzufinden, 
gleich 1/4 bzw. 3/4, so daß sich der Wirkungsquerschnitt wie folgt ergibt : 

1 3 { 
da = 4 da0 + 4 da1 = 1 /(0)1 2 + 1 /  (n - 0)1 2 

- ! [/(0) /* (n - 0) + /*(0) f (n - 0)]} do . (69,5) 

Untersuchen wir nun als Beispiel den Stoß zweier schneller Elektronen, die 
über das CouLOMB-Gesetz wechselwirken (U = e2Jr) . Ist die Bedingung (68,9), 
e2jli v � 1 (v - Relativgeschwindigkeit der Teilchen), erfüllt, so kann man für 
die Streuamplitude in BoRNscher Näherung den Ausdruck (68,7) verwenden. 
Dabei muß man berücksichtigen, daß m in dieser Formel die reduzierte Masse 
beider Teilchen bedeutet und im vorliegenden Fall gleich me/2 mit me als der 
Elektronenmasse ist. Nach Einsetzen von (68,7) in (69,5) erhalten wir 

da = (m::2 rr� +� - / (J] do . (69,6) 
sin4 2 cos4 2 sin2 2 cos2 2 

Diese Formel bezieht sich auf das Koordinatensystem, in dem der Schwerpunkt 
ruht. Der Übergang zu dem System, in dem vor dem Stoß eines der Elektronen 
ruhte, wird durchgeführt, wenn man 0 durch 2 -& ersetzt (siehe 62,2). So erhalten 
wir 

da = 
(�)2 [-1- + --1- - 1 ] cos -& do (69,7) 

m. v2 sin' f} cos' f} sin2 f} cos2 f} ' 
wobei do das Raumwinkelelement in dem neuen Koordinatensystem ist (bei 
Ersetzen von () durch 2 {} muß das Raumwinkelelement do durch 4 cos -& do 
ersetzt werden, da sin 0 dO dtp = 4 cos -& sin -& dß dtp ist). Die letzten Glieder 
in (69,6-7) unterscheiden diese Formeln von den klassischen (siehe I § 16). 

Aufgabe 
Es ist der Wirkungsquerschnitt für die Streuung zweier identischer Teilchen mit dem 

Spin 1/2 zu bestimmen, deren Polarisationsrichtungen den Winkel a: einschließen. 
Lösu ng. Die Abhängigkeit des Streuquerschnitts a von den Teilchenpolarisationen 

muß sich durch ein Glied ausdrücken lassen, das proportional ist dem Skalar s1 st, d. h. 
dem Produkt aus den Mittelwerten der Spinvektoren beider Teilchen ; für Teilchen, deren 
Polarisationsrichtungen den Winkel a: einschließen, ist dieses Produkt 81 82 = 1/4 cos a:. 
Wir suchen a in der Gestalt a = a + 4 b 81 82• Für unpolarisierte Teilchen fehlt das 
zweite Glied ("d1 = 82 = 0), und es gilt gemäß (69,5) a = a = 1/4 (a0 + 3 a1). Wenn die 
Polarisationsrichtungen beider Teilchen übereinstimmen (a: = 0), d. h., ihre Spinprojek­
tionen bezüglich dieser Richtung gleich sind, dann befindet sich das System offenbar in 
einem Zustand mit S = 1 ;  folglich gilt in diesem Fall a = a + b = ap Indem wir aus 
den zwei erhaltenen Gleichungen a und b bestimmen, finden wir 

1 
a = 4 { (a0 + 3 a1 )  + (a1 - a0) cos a: }  . 
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Die elastischen Stöße schneller Elektronen mit Atomen kann man mit Hilfe 
der BoRNsehen Näherung behandeln, wenn die Geschwindigkeit des einfallen­
den Elektrons groß im Vergleich mit der Geschwindigkeit der Atomelektronen 
ist. 

Wegen der großen Massendifferenz zwischen Elektron und Atom kann das 
letztere bei dem Stoß als unbeweglich angenommen werden, und das Koordi­
natensy�tem, in dem der Schwerpunkt fest bleibt, fällt mit dem Laborsystem 
zusammen, in dem das Atom ruht. Dann bezeichnen p und p' in den For­
meln des § 67 die Impulse des Elektrons vor und nach dem Stoß, m ist die 
Masse des Elektrons, und der Winkel () fällt mit dem Ablenkwinkel {} des 
Elektrons zusammen. 

In § 67 berechneten wir das Matrixelement UP' P der Wechselwirkungsenergie 
bezüglic)l der Wellenfunktionen des freien Teilchens vor und nach dem Stoß. 
Beim Stoß mit einem Atom muß man auch die Wellenfunktionen berücksich­
tigen, die den inneren Zustand des Atoms beschreiben. Deshalb muß in For­
mel (67 ,8) anstelle von U p' P das Matrixelemente der Energie U für die Wechsel­
wirkung des Elektrons mit dem Atom stehen, wobei dieses Matrixelement 
bezüglich der Wellenfunktionen sowohl des Elektrons als auch des Atoms 
zu bilden ist. Da sich bei elastischer Streuung der Atomzustand nicht ändert, 
ist das Matrixelement in bezug auf ihn diagonal. Demzufolge muß die Formel 
für den Streuquerschnitt in der Form 

da = 4 ;21i• lf J "P� U e-iqr "Po d7: dVI 2 do (70,1) 

geschrieben werden, worin "Po die Atomwellenfunktion (in Abhängigkeit von 
den Koordinaten aller Z Elektronen des Atoms)�nd d< = d V1 • • •  d V z das 
Volumenelement im Konfigurationsraum der Atomelektronen sind. 

Das Integral 

f "Pt U 1jJ0 dr 
ist die über den Atomzustand gemittelte Wechselwirkungsenergie des Elektrons 
mit dem Atom. Diese kann man auch in der Form e rp(r) darstellen, wobei rp(r) 
das von der mittleren Ladungsverteilung des Atoms erzeugte Potential be­
deutet. 

Bezeichnen wir die Dichte dieser Ladungsverteilung mit e(r), so können 
wir für das Potential rp die PoiSSON-Gleichung 

Llrp = - 4 n e(r) 
schreiben. Das gesuchte Matrixelement in (70,1) ist die FoURIER-Transfor­
mierte e rpq· Gemäß (68,5) läßt sich ihre Berechnung auf diejenige der FouRIER­
Transformierten der Ladungsverteilung e zurückführen. Letztere setzt sich aus 
den Ladungen der Elektronen und des Kerns zusammen : 

e = -· I e i  n(r) + Ziel ö(r) 
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mit n(r) als der Anzahldichte der Ele�tronen im Atom. Multiplizieren wir diese 
Gleichung mit e-iqr, so finden wir nach Integration 

f e e-i9 .. dV = - l e l l n e-iqr dV + Ziel . 
Auf diese Weise erhalten wir für das uns interessierende Matrixelement den 

Ausdruck 

J J tpt U e-iq r  tp0 d-r d V =  - 4 :2e
2 [Z - F(q)] , 

worin der Atcrm-Formfaktor F(q) über die Formel 

F(q) = f n e-iq .. d V 

(70,2) 

(70,3) 

definiert ist. Er stellt eine Funktion des Streuwinkels und der Geschwindigkeit 
des einfallenden Elektrons dar. 

Setzen wir schließlich (70,2) in (70,1) ein, so gelangen wir zu folgendem 
Endausdruck für den Wirkungsquerschnitt der elastischen Streuung schneller 
Elektronen an einem Atom :1 ) 

4 m2 e' da = Ii' q4 [Z - F(q)]2 do . (70,4) 

Die Variable Ti q ist der dem Atom vom Elektron übertragene Impulsbetrag. 
Dieser hängt mit der Elektronengeschwindigkeit v und dem Streuwinkel {) 
über die Formel 

2 m v  . {} q = -,;- sm2 
zusammen (vergleiche (67,7)). 

(70,5) 

Wir wollen den Grenzfall kleiner q-Werte untersuchen, d. h., q soll klein sein 
im Vergleich zu 1/a mit a �s Größenordnung der Atomausdehnung (q a � 1). 
Kleinem q entsprechen kleine Streuwinkel : {) � v0fv, v0 ,...., Ti/m a ist die Größen­
ordnung für die Geschwindigkeit der Atomelektronen. 

F(q) entwickeln wir in eine Reihe nach Potenzen von q. Das Glied nullter 
Ordnung ist gleich I n  d V, d. h. gleich der Gesamtzahl Z der Elektronen im 
Atom. 

Das Glied erster Ordnung ist proportional I r  n(r) d V, d. h. proportional 
dem Mittelwert des Dipolmoments des Atoms ; es ist identisch Null (§ 54). 
Deshalb hat die Entwicklung bis zum Glied zweiter Ordnung zu geschehen, 
so daß sich 

1) Austauscheffekte zwischen dem zu streuenden Elektron und den Atomelektronen 
vernachlässigen wir, d. h., wir antisymmetrisieren die Wellenfunktion des Systems nicht. 
Diese Vernachlässigung läßt sich folgendermaßen rechtfertigen : Da dif'l Wellenfunktion des 
einfallenden Teilchens bezüglich des Atomvolumens, über das sich die langsam veränder­
liche Wellenfunktion der Atomelektronen erstreckt, schnell oszillierend ist, heben sich die 
Interferenzterme im Wirkungsquerschnitt auf. 
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ergibt ; nach Einsetzen in (70,4) erhalten wir lm e2 J 12 da = 3 A1 n r2 d V do . 
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(70,6) 

Demzufolge ist im Bereich kleiner Streuwinkel der Streuquerschnitt winkel- \ 
unabhängig und wird durch das mittlere Abstandsquadrat der Atomelektronen 
vom Kern bestimmt. 

Im umgekehrten Grenzfall großer q (q a � 1) stellt der Faktor e - iq.- im 
Integranden des Ausdruckes (70,3) eine schnell oszillierende Funktion dar, 
und das gesamte Integral ist demzufolge näherungsweise Null. Man kann 
deshalb F(q) gegenüber Z vernachlässigen. Es verbleibt dann 

da = (�)2 �-2 m v2 {} '  
sin4 -2 

d. h. die RuTHERFORD-Formel für die Streuung am Atomkern. 

\. 
Aufgabe 

Es ist der Streuquerschnitt für die Streuung schneller Elektronen am sich i m  Grund­
zustand befindlichen Wasserstoffatom zu berechnen. 

Lösung. Die Wellenfunktion für den Grundzustand des Wasserstoffatoms lautet (in 
üblichen Einheiten) V' = n- 1/2 e - r/aB mit aB = A2/m e2 - dem BoHRsehen Radius (siehe 
(31,15)). Die Elektronendichte ist n = IV'I2• Analog der Herleitung von Formel (67,13) 
wird die Integration in (70,3) ausgeführt, wobei sich 

00 
4 n J ( a1J q2 )-2 F = q n(r) sin q r · r dr = 1 + -4-

o 
ergibt. Nach Einsetzen in (70,4) erhalten wir 

(8 + a1J q2)2 
da = 4 a1J (4 + a1J ql)' do . 

Der totale Wirkungsquerschnitt läßt sich bequem ausrechnen, wenn man 

do = 2 :1t sin {} d{} = 2 :1t (:V r q dq 

schreibt und über dq integriert; es ist dabei selbstverständlich, daß (in BORNscher Näherung!) 
nur das Glied mit der niedrigsten Potenz von 1/v mitgenommen werden muß. Im Ergebnis 
erhalten wir 





Die Theorie unelastischer Stöße X 

§ 71. Das Prinzip des detaillierten Gleichgewichts 

Unelastisch heißen Stöße, die von einer Veränderung des inneren Zustandes 
der stoßenden Teilchen begleitet werden. Diese Veränderungen verstehen wir 
hier im weitesten Sinne, speziell kann sich auch die Teilchenart ändern. So 
kann man an die Anregung oder Ionisation von Atomen, an die Anregung oder 
den Zerfall von Kernen usw. denken. In den Fällen, wenn der Stoß (z. B. eine 
Kernreaktion) von verschiedenen physikalischen Prozessen begleitet werden 
kann, spricht man von verschiedenen Reaktionskanälen. 

Geht man von der Symmetrie der Theorie bezüglich der Zeitumkehr aus, 
kann man einen ganz allgemeinen Zusammenhang zwischen den Wahr­
scheinlichkeiten bzw. Wirkungsquerschnitten für die verschiedenartigen UJ?.­
elastischen Prozesse aufstellen. Um konkret zu sein, beschränken wir uns an 
dieser Stelle auf Prozesse der Art a + b � c + d, bei denen sowohl im Anfangs­
als auch im Endzustand jeweils zwei Teilchen vorhanden sind. 

Für die flillgenden Überlegungen ist es bequem, zunächst anzunehmen, daß 
sich die Teilchen in einem gewissen großen, jedoch endlichen Volumen Q 
bewegen (dabei haben wir im Auge, daß später der Grenzübergang Q � oo 
erfolgt). Dann wird das kontinuierliche Spektrum sich frei bewegender Teilchen 
zu einem diskreten mit sehr kleinen Abständen zwischen den Energieniveaus, 
die für Q � oo gegen Null streben (vgl. das Ende von § 27). 

Es möge w1, die Wahrscheinlichkeit für den Übergang eines Systems stoßender 
Teilchen aus einem gewissen Zustand i in einen Zustand f sein.1) Jeder dieser 
Zustände wird (neben der Teilchensorte) durch festgelegte Vektoren der Teil­
chengeschwindigkeiten und definierte Werte für die Spinprojektionen der 
Teilchen· charakterisiert.2) Eine Zeitumkehr ändert zunächst die Vorzeichen 
der Geschwindigkeiten und der Spinprojektionen3) ;  die sich auf Grund dieser 

1) Im Einklang mit der allgemein üblichen Anordnungsvorschrift für die Indizes in 
Übergangsmatrixelementen steht der Index des Endzustands links vom Index des 
Anfangszustands. 

2) Für "zusammengesetzte" Teilchen (Atom, Atomkern) muß hier unter "Spin" der 
Gesamteigendrehimpuls verstanden werden, der sich sowohl aus den Spins als auch den 
Bahndrehimpulsen für die innere Bewegung der Bestandteile , (Elektronen, Nukleonen) 
zusammensetzt. 

3) Definiertes Verhalten bei einer Zeitumkehr ist eine Eigenschaft jeder physikalischen 
Größe, die natürlich nicht von der Anwendung der einen oder anderen Mechanik abhängt. 
Das Verhalten des Impulses ist aus seinem klassischen Ausdruck [1' p] = m[1' v] ersichtlich; 
er ändert zusammen mit der Geschwindigkeit das Vorzeichen. 

15 Kurzfassung II 
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Änderungen von den Zuständen i und I unterscheidenden bezeichnen wir mit i* 
und I*. Letztere nennt man auch zeitinvers bezüglich der Zustände i und I· 
Außerdem wird der Anfangs- zum Endzustand und der End- zum Anfangs­
zustand. Da die quantenmechanischen Gleichungen symmetrisch bezüglich der 
Zeitumkehr sind, müssen die Übergangswahrscheinlichkeiten i -+ I  und I* -+ i* 
gleich sein: 

{71,1) 
Diese Behauptung ist der Inhalt vom Prinzip des detaülierten Gleichgewichts. 

Gehen wir nun von den Übergangswahrscheinlichkeiten zu den Reaktionsquer­
schnitten über. Wir bezeichnen mit Pt, V; und PI> v1 die Impulse und Geschwin­
digkeiten für die Relativbewegung der beiden Teilchen, die jeweils im Anfangs­
und Endzustand vorhanden sind. Es möge da1i der Wirkungsquerschnitt für 
Stöße sein, in deren Ergebnis die Richtung von v1 im Raumwinkelelement do1 
liegt (dies bezieht sich auf das Schwerpunktsystem beider Teilchen). Die 
Gesamtenergie beider Teilchen ist natürlich vor und nach dem Stoß die gleiche 
(Et = E1) .  Wir führen nun den Wirkungsquerschnitt ein, der sich formal 
auf das Intervall dE1 für die Werte der Energie im Endzustand bezieht, wobei 
diese Energie als veränderliche Größe angesehen wird. Ein solcher Wirkungs­
querschnitt muß in der Form 

da1i · (J (E1 - Ei) dE1 (7 1,2) 
geschrieben werden. Die hier stehende b-Funktion gewährleistet den Energie­
erhaltungssatz. 

Nach Definition ergibt sich der Stoßquerschnitt bei Division der Wahrschein­
lichkeit (pro Zeiteinheit) für den vorliegenden Prozeß durch die Stromdichte der 
einfallendenTeilchen. Letztere ist gleich Vi/Q (der Faktor 1/Q ist diejenige An­
zahldichte der Teilchen, die einem Teilchen im Volumen Q entspricht). Außerdem 
muß berücksichtigt werden, daß sich der Wirkungsquerschnitt (71,2) auf die Inter­
valle do1 und dE1 bezieht, während die Waprscheinlichkeit w1i zu streng defi­
nierten Werten v1 und E1 gehört. Um den Wirkungsquerschnitt da1; zu erhal­
ten, muß also w1; noch mit der Zahl der Quantenzustände multipliziert' werden, 
die zu dem gegebenen Intervall für die Richtungen und Beträge der Geschwin­
digkeit v1 (oder des Impulses p1) gehören. Diese Zahl ist gleich 

!J p} dp1 dof 
(2 :n; A)3 

(vgl. (27,8)). 
Im Ergebnis dieser Überlegungen können wir folgende Beziehung zwischen 

Querschnitt und Wahrscheinlichkeit aufschreiben : 

Wfi !J p} dpf do1 
dafi • (J (E1 - Ei) dEJ = v;f!J (2 :n: A)s • 

Hieraus folgt 

w 
. 

= 
(2 :n 11)3 v; dafi · t5 (Ef - E;) dE1 _ (J 

E 
_ 

E 
(2 :n; li)3 Vi Vf dafi 

'b !J2 P} dpf dof - ( I i) Q2 P} do! 
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(die Geschwindigkeit v1 wurde hier gemäß der Gleichung dE1jdp1 = v1 einge­
führt, die sich offenbar daraus ergibt, daß die kinetische Energie für die Relativ­
bewegung der Teilchen in E1 als Summand eingeht). Schreiben wir schließlich 
in derselben Art die Wahrscheinlichkeit w1• ;• auf, und setzen wir beide Aus­
drücke gleich, so erhalten wir nach Kürzen gemeinsamer Faktoren 

dafi da;• t• 
p} do1 = p� do; · (71,3) 

Diese Beziehung drückt das Prinzip des detaillierten Gleichgewichts in seiner 
Formulierung für Wirkungsquerschnitte aus. Da in ihr das Volumen Q nicht 
mehr vorkommt, bleibt sie in obiger Form auch für den Grenzfall Q ---+ oo 
gültig. 

Die Gleichungen (71,1) und (71,3) stellen einen Zusammenhang zwischen den 
Wahrscheinlichkeiten bzw. den Wirkungsquerschnitten für die beiden Prozesse 
i ---+ I und I* ---+ i* her, die, obwohl wortwörtlich nicht als direkter und inverser 
Prozeß interpretierbar (i ---+ I und I ---+ i), ip ihrem physikalischen Sinn dieser 
Deutung sehr nahe kommen. 

Der Unterschied zwischen den Übergängen i ---+ I und i* ---+ f* verschwindet 
völlig, wenn man den integralen Wirkungsquerschnitt betrachtet, der sich durch 
Integration über alle PrRichtungen, Summation über die Spinrichtungen 
811, 82 1 der Teilchen im Endzustand und Mittelung über die Richtungen des 
Impulses Pi und der Spins 81 ,, 82 i der Teilchen im Anfangszustand ergibt. 
Wir bezeichnen diesen Wirkungsquerschnitt mit a1; :  

- 1 
n,, = 

4 :n (2 8 · + 1) (2 8 . + 1 )  E f f dn,, do, ; 
u 2 •  (m,) 

(71,4) 

die Summation läuft über die Spinprojektionen aller Teilchen, der Faktor vor 
dem Summen- und den Integralzeichen hängt damit zusammen, daß über die 
sich auf die Ausgangsteilchen beziehenden Größen gemittelt und nicht summiert 
wird. Schreiben wir (71,3) in der Form 

p� dn1, do1 = pj dn,. 1• do1 

und gehen wir im Sinne des oben Gesagten zu den integralen Wirkungsquer­
schnitten über, so erhalten wir die gesuchte Beziehung : 

2 - 2 -f/i P; n,, = '}f P1 n;f • 

Mit g; und g 1 wurden hierbei die Größen 

g; = (2 s1 ; + l) (2 s2 ; + 1) , 
g1 = (2 s1 _, + 1) (2 s21 + 1)  

(71,5) 

(71,6) 

bezeichnet, die die Zahl der möglichen Spinorientierungen der Teilchenpaare 
im Anfangs- und Endzustand angeben ; diese Zahlen heißen statistische Spin­
gewichtsfaktoren der Zustände i und f. 
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Aufgab en1) 
I. Es ist der Zusammenhang zwischen den Wirkungsquerschnitten für den Photo­

effekt aph (Ionisation eines Atoms unter Absorption eines Photons der Energie n ro) und 
der Rekombinationsstrahlung O'Rek (Einfangen eines freien Elektrons durch das Ion und 
Bildung eines neutralen Atoms bei gleichzeitigem Aussenden eines Photons) herzustellen. 

Lösung. Im vorliegenden Fall sind die Zustände i undf die Systemzustände Ion + Elek­
tron und Atom + Photon. Die gesuchte Beziehung hat die Gestalt 

(2 Jion + 1 ) p2 i1Rek = 2 (2 JAtom + 1 )  (ncror aPh . 
worin J1on und J Atom die Drehimpulse von Ion und Atom, p = m v der Impuls des auf 
das ruhende Ion einfallenden Elektrons und n roje der Photonenimpuls sind ; der Faktor 2 
ist das statistische Gewicht des Photons (zwei Polarisationsrichtungen). 

2. Es ist der Zusammenhang zwischen Wirkungsquerschnitten der Photodissoziation 
des Deuterons und der Strahlungsrekombination von Proton und Neutron aufzufinden. 

Lösung. Der Spingewichtsfaktor des Systems aus Neutron + Proton ist gleich 2 · 2 = 4, 
während der Gewichtsfaktor des Deutrons (im Grundzustand mit S = 1)  + Photon gleich 
3 . 2 = 6 ist. Deshalb gilt 4 p2 GRek = 6(n ro/c)2 aph mit p als Impuls für die Relativ­
bewegung der stoßenden Teilchen Proton und Neutron. Dieser Impuls hängt mit der 
Bindungsenergie des Deuterons I und der Energie n w des bei der Bildung des Deuterons 
emittierten y-Quants über den Energieerhaltungssatz zusammen : I + p2fM (die reduzierte 
Masse ist gleich Mf2 mit M als Nukleonenmasse) .  Schließlich ergibt sich 

2 M  c2 (n w - I) i1Rek = 3 (n ro)2 aph . 
§ 72. Die elastische Streuung beim Vorbandensein unelastiscber Prozesse 

Das Vorhandensein unelastischer Kanäle wirkt sich in bestimmter Hinsicht 
auch auf die Eigenschaften der elastischen Streuung aus. 

Die Wellenfunktion 1p, die die elastische Streuung beschreibt, setzt sich aus. 
einer einfallenden ebenen Welle und einer auslaufenden Kugelwelle zusammen. 
Man kann sie auch als Summe einlaufender und auslaufender "Partialwellen" 
darstellen (die Partialwellen entsprechen definierten Werten des Bahndreh­
impulses l), wie dies in § 62 getan wurde. In der dort erhaltenen Formel (62,7) 
stimmen die Amplituden der beiden Wellen eines Paars aus einlaufender und 
auslaufender Welle überein : Jeder Summand enthält in der rechteckigen Klam­
mer dem Betrag nach gleiche (der Betrag ist gleich l) Koeffizienten der Fak­
toren e -i k r und eik r, Bei rein elastischer Streuung entspricht das dem physika­
lischen Sinn des Problems, wenn aber unelastische Kanäle vorhanden sind, 
so müssen die Amplituden der auslaufenden Wellen kleiner als die der einlau­
fenden sein. Deshalb wird der asymptotische Ausdruck für 1p durch die Formel 

1p = 
2 � r E (2 l + 1 ) P1 (cos 8) [ (- 1)! e-ik r _ S1 ei kr] 

1 = 0  
(72, 1) 

1)  In diesen Aufgaben werden einige (sich auf das Photon beziehende) Begriffe ver­
wendet, die in Kapitel XI eingeführt werden. 
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gegeben sein, die sich von (62,7) dadurch unterscheidet, daß als Koeffizienten 
bei eik r (anstelle von exp (2 i ()1)) gewisse komplexe Größen S1 stehen, die betrags­
mäßig kleiner als 1 sind. Dementsprechend wird auch die Amplitude der . 
elastischen Streuung durch einen Ausdruck bestimmt, der sich von (62,8) durch 
obige Substitution unterscheidet : 

1 00 
f(O) = 2 i k 

1
�

0 
(2 l + 1) (S1 - 1) P1 (cos 0) . (72,2) 

Für den totalen Wirkungsquerschnitt Cfe der elastischen Streuung erhalten wir 
anstelle von (62,9) die Formel -

oo n 
Cfe = }; k2 (2 l + 1) 1 1 - Sz i 2 • (72,3) 

1 =0 

Der totale Wirkungsquerschnitt der Unelastischen Streuung oder, wie man 
auch sagt, der Reaktionsquerschnitt a, bezüglich aller möglichen Kanäle, kann 
auch durch die GrößenS1 ausgedrückt werden. Dazu genügt es zu bemerken, daß 
für jeden Wert l die Intensität der auslaufenden Welle im Vergleich zur Inten­
sität der einlaufenden Welle in dem Verhältnis iSd 2 abgeschwächt ist. Diese 
Abschwächung muß völlig der Unelastischen Streuung zugeschrieben werden. 
Deshalb ist klar, daß 

n oo 

a, = k2 .E (2 l + 1) (1 - i Sz i 2) (72,4) 
1 = 0  

gilt, und der totale Wirkungsquerschnitt ist 

oo n 
Cft = Cfe + a, = }; k2 (2 l + 1) (2 - S1 - S1 ) . 

1 =0 
(72,5) 

Die einzelnen Summanden in (72,3) bzw. (72,4) sind die partiellen Wirkungs­
querschnitte für die elastische bzw. unelastische Streuung von Teilchen mit dem 
Bahndrehimpuls l. Der Wert S1 = 1 entspricht dem Fall, daß überhaupt keine 
Streuung (bei gegebenem Z) vorliegt. Dagegen bedeutet S1 = 0 vollständige 
"Absorption" von Teilchen mit gegebenem l (in (72,1) fehlt die auslaufende 
Partialwelle mit diesem l) ; in diesem Fall sind die Wirkungsquerschnitte für 
elastische und Unelastische Streuung einander gleich. Wir bemerken, daß 
unelastische Streuung bei Abwesenheit elastischer Streuung nicht auftreten 
kann, obwohl das Umgekehrte möglich ist (für iSz i  = 1) : Das Vorhandensein 
unelastischer Streuung führt unmittelbar zu einem gleichzeitigen . Auftreten 
elastischer Streuung. 

Für (} --* 0 strebt die Amplitude (72,2) der elastischen Streuung gegen den 
Wert 

I oo /(0) = IT .E (2 l + 1) i ( 1  - Sz ) . 
l = O  

Vergleichen wir diesen Ausdruck mit (72,5), so finden wir die folgende Beziehung 
zwischen dem Imaginärteil der Amplitude für die elastische Streuung unter 
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dem Winkel Null und dem totalen Streuquerschnitt über alle Kanäle : 
k 

Im /(0) = 4 n at 

(dies ist das sogenannte optische Theorem für die Streuung). 

§ 73. Die unelastische Streuung langsamer Teilchen 

(72,6) 

Die in § 65 dargestellte Ableitung des Grenzgesetzes der elastischen Streuung 
bei kleinen Energien kann leicht auf den Fall unelastischer Prozesse verall­
gemeinert werden. 

Wie schon früher spielt die wesentliche Rolle bei kleinen Energien die 
Streuung mit l = 0. Wir erinnern daran, daß nach den in § 65 erhaltenen 
Resultaten die Größe S0 = exp (2 i b0) bei kleinen k gleich 

S0 � I + 2 i b0 = I + 2 i k ß , (73,I) 

mit der reellen Konstanten ß = c2f�,  war (siehe (65,6)). c1 , c2 waren reell, 
weil sie in der Lösung "P einer reellen Gleichung (der ScHRÖDINGER-Gleichung) 
mit reellen Randbedingungen (es handelte sich um die asymptotische Gestalt 
einer stehenden Welle für r ---+ oo) als Koeffizienten auftraten. Beim Vorhan­
densein unelastischer Streuprozesse ändern sich die Eigenschaften der Wellen­
funktionen"P nur in der Hinsicht, daß dieRandbedingung, der sie im Unendlichen 
genügen muß, nunmehr komplex ist ; der asymptotische Ausdruck (72,I) mit 
den unterschiedlichen Amplituden für einlaufende und auslaufende Wellen 
läßt sich nun nicht mehr auf eine reelle stehende Welle zurückführen. 

In diesem Zusammenhang wird auch die Konstante ß komplex : ß = ß' + i ß". 
Damit ist der Betrag !Sol nicht mehr gleich 1. Die Bedingung !Sol < I bedeutet, 
daß der Imaginärteil von ß negativ sein muß : ß" < 0. 

Berücksichtigen wir in den Summen (72,3-4) jeweils nur das erste Glied, 
und setzen wir in diese Glieder (73,I) ein, so finden wir als Wirkungsquerschnitte 
für elastische und unelastische Streuung 

a. = 4 nlßl2 , 
4 :n: 

ß" ar = T i  I ·  

(73,2) 

(73,3) 

Demnach ist der Wirkungsquerschnitt für die elastische Streuung nach wie 
vor geschwindigkeitsunabhängig. Der Wirkungsquerschnitt unelastischer Pro­
zesse jedoch ist umgekehrt proportional der Geschwindigkeit der Teilchen -
dies ist das sogenannte I/v-Gesetz (H. A. BETHE, I935). Folglich wächst die 
Rolle der nichtelastischen Prozesse im Vergleich zur elastischen Streuung mit 
kleiner werdenden Geschwindigkeiten an. 

Das I/v-Gesetz kann man weniger streng und dafür anschaulicher noch auf 
andere Weise begründen. Dazu nehmen wir an, daß die Reaktionswahrschein-
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lichkeit bei einem Stoß dem Betragsquadrat der Wellenfunktion für die ein­
fallende Welle im Punkte r = 0 proportional ist. Physikalisch spiegelt diese 
Voraussetzung den Tatbestand wider, daß z. B. ein auf einen Kern fallendes 
langsames Neutron eine Reaktion nur auslösen kann, nachdem es in den 
Kern "eingedrungen" ist. Nach Division von IV'rau(O)i 2 durch die Stromdichte 
des einfallenden Teilchens (oder, was das gleiche ist, durch Normierung von �ran 
auf den Einheitsstrom) erhalten wir den Reaktionsquerschnitt. Für eine auf 
den Einheitsstrom normierte ebene Welle haben wir IV'raul 2 "' lfv, d. h., es 
ergibt sich das gesuchte Resultat. 

Im Rahmen dieser Überlegung ist klar, daß sich V'rau(O) aus der bezüglich 
des Feldes ungestörten Wellenfunktion (ebene Welle) berechnen läßt. Dafür 
und damit auch für die Richtigkeit des I/v-Gesetzes ist es notwendig, daß das 
auf das einfallende Teilchen wirkende Feld U(r) mit wachsendem Abstand 
hinreichend schnell abklingt.l) Wir unterstreichen, daß insbesondere für Reak­
tionen geladener Teilchen, die über das CouLOMB-Gesetz wechselwirken, das 
I/v-Gesetz nicht gültig ist. 

§ 74. Unelastische Stöße schneller Elektronen mit Atomen 

Beim Stoß eines schnellen Teilchens mit einem Atom können neben elastischer 
Streuung auch verschiedene Unelastische Prozesse, z. B. eine Anregung des 
Atoms oder seine Ionisation, auftreten. Analog dem Vorgehen in § 70 hinsicht­
lich der elastischen Streuung schneller Elektronen, können diese Prozesse in 
BoRNscher Näherung behandelt werden. Dies geschieht unter der Annahme, 
daß die Geschwindigkeit des schnellen Teilchens, verglichen mit derjenigen der 
Atomelektronen, groß ist. 

Wie schon in § 70 ausgeführt wurde, kann man beim Stoß eines Elektrons 
mit einem Atom so vorgehen, als ob das Schwerpunkts-Koordinatensystem mit 
dem Laborsystem, i-n dem das Atom ruht, übereinstimmt. Wiederum mögen p 
bzw. p' Anfangs- bzw. Endimpuls und m die Masse des Elektrons sein. Wir 
führen außerdem den Vektor des vom Elektron auf das Atom übertragenen 
Impulses 1i q = p' - p ein. Die Größe q spielt eine wichtige Rolle beim Prozeß, 

, da sie im wesentlichen den Charakter des Stoßes bestimmt. Wir werden zwei 
Grenzfälle behandeln und zwar Stöße mit im Vergleich zu 1ifa großen bzw. 
kleinen übertragenen Impulsen, wobei a die Größenordnung der Atomdimen­
sionen ist. 

Die Ungleichung q a ?> 1 bedeutet, daß dem Atom ein Impuls übertragen 
wird, der groß ist, verglichen mit demjenigen, den d,.e Atomelektronen zu Beginn 
des Stoßprozesses besitzen. Physikalisch ist klar, daß man in diesem Fall die 
Atomelektronen als freie Elektronen und den Stoß des schnellen Elektrons mit 
dem Atom als elastischen Stoß mit einem bei Stoßbeginn ruhenden Atom-

1) Man kann zeigen, daß U schneller als l/r2 abklingen muß. 
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elektron betrachten kann. Der Wirkungsquerschnitt für die Streuung an 
jedem der Z Elektronen wird durch die RuTHERFORD-Formel gegeben (sollten 
dabei beide Elektronen, d. h. einfallendes und atomares Elektron, betragsmäßig 
vergleichbare Geschwindigkeiten erlangen, dann werden Austauscheffekte we­
sentlich, und der Wirkungsquerschnitt bestimmt sich nach Formel (69,7)) • 

Untersuchen wir nun den umgekehrten Fall kleiner Impulsübertragunge;n : 
q a � l. Dies bedeutet, daß der Ablenkungswinkel des Elektrons sehr klein 
ist und die von ihm dem Atom übertragene Energie klein ist im Vergleich zur 
Ausgangsenergie des Atoms. Diese Eigenschaften erlauben p ""=" p' zu setzen ; 
der Vektor q ergibt sich dann einfach im Resultat einer Drehung von p mit 
unverändertem Betrag des letzteren. Für kleine Streuwinkel {} haben wir 
somit 

li q "'==' p {}· .  (74,1) 
Nur bei äußerst kleinen Winkeln ist diese Formel unbrauchbar : Im Grenzfall 
{} -+  0 strebt q gegen den Grenzwert qmin = (p - p')fli, der durch die kleine 
Differenz p - p' gegeben ist. Die Bedingung der Energieerhaltung für den Stoß 
liefert 

En - Eo = _2 1  (p2 - p'2) ""=" !'_ (p - p') = V (p - p') m m 
mit En - E0 als Anregungsenergie des Atoms bei seinem Übergang vom Grund­
zustand in den n-ten Zustand und v als Geschwindigkeit des einfallenden Elek­
trons. Deshalb ist der minimale Wert für die Impulsübertragung 

(74,2) 

Nach einer derartigen Vereinfachung besteht der einzige Unterschied zur 
elastischen Streuung darin, daß Anfangs- und Endzustand des Atoms ver­
schieden sind. Deshalb finden wir für den Wirkungsquerschnitt die frühere 
Formel (70, 1), in der jedoch im Integral anstelle von tp0 und tpt unterschiedliche 
Wellenfunktionen tp0 und tp! geschrieben werden müssen : 

da = 4;21i' /ff U e-iqr tp! tp0 dr dV ,2• (74,3) 

Die Energie U enthält die Wechselwirkung des einfallenden Teilchens sowohl 
mit dem Atomkern als auch mit allen Z Atomelektronen : 

Z ez z ez u - - +  "' --- - r ._, 1-r - 1' I a=l a (74,4) 

(r - Radiusvektor des einfallenden Teilchens, ra - Radiusvektoren der Atom­
elektronen ; der Koordinatenursprung stimmt mit der Kernlage überein).  

Beim Einsetzen von (74,4) in (74,3) ist ersichtlich, daß für unelastische 
Prozesse das Glied, welches die Wechselwirkung mit dem Kern, d. h. Ze2fr, 
enthält, verschwindet ; die Integration dieses Gliedes über dr läuft auf die Be­
rechnung des Integrals f tp! tp0 dr hinaus, das wegen der Orthogonalität der 



§ 74. Unelastische Stöße schneller Elektronen mit Atomen 219 

Funktionen "Po und 'ljJn Null ergibt. Die verbleibenden Glieder werden mit 
Hilfe der Formel 

--- dV  = -e-•q .-. f e- iq.- 4 n  . 

Jr - ral q
2 (74,5) 

integriert (für deren Herleitung nur zu bemerken ist, daß durch die Substitution 
r = r a + r' das Integral in 

übergeht und die FOURIER-Transformierte von 1/r durch die Formel (68,6) 
gegeben ist). Als Ergebnis erhalten wir 

da .. = (2�/7 J (f e- iq.-tl�' ' 
worin das Matrixelement mit den Atomwellenfunktionen zu bilden ist : (}.; e- iq.-.) = }.; f e-iqr. 'lfJ! "Po dr . 

a nO a 
(74,6) 

Jetzt kann man die Kleinheit von q benutzen. Die Integrationsvariablen r a 
in (74,6) durchlaufen gerade einen Raumbereich, dessen lineare. Abmessungen 
,..._, a sind. Deshalb ist für q a � 1 in diesem gesamten Bereich auch q ra klein, 
so daß man 

(74,7) 
setzen kann (die x-Achse ist so gewählt, daß sie mit der Richtung von q zu­
sammenfällt). Dann gilt 

(}.; e- iq.-•) = - i q (I.: Xa) = - i !!__ (dx)no a n O  a nO e 

mit dx = }.; e Xa als kartesischer Komponente des atomaren Dipolmoments 
a 

(das Glied mit der 1 wird wegen der Orthogonalität der Funktionen "Po und "Pn 
Null). S�tzen wir weiterhin 

do' = 2 n sin ß dß = 2 n ß dß = 2 n (mhv r q dq ' 

so erhalten wir für den Wirkungsquerschnitt den Ausdruck 

da .. = 8 n (hevr \ (dx) .. o\ 2�q 0 (74,8) 

Wir sehen, daß der Wirkungsquerschnitt durch das Betragsquadrat des Matrix­
elements für das Dipolmoment des Atoms bestimmt wird.1) 

1) Natürlich wird hierbei vorausgesetzt, daß dieses Matrixelement von Null verschieden 
ist. Im umgekehrten Fall müßte die Entwicklung (74, 7) bis zu Gliedern höherer Ordnung 
fortgesetzt werden. 





Teil 11. Relativistische Theorie 





Das Photon 

§ 75. Unschärferelationen im relativistischen Bereich 

XI 

Die gesamte in Teil I dieses Lehrbuches behandelte Quantentheorie ist nicht­
relativistisch ; sie kann nicht auf Erscheinungen angewandt werden, bei denen 
Bewegungen mit Geschwindigkeiten, die gegenüber der Lichtgeschwindigkeit 
nicht klein sind, vorkommen. Auf den ersten Blick konnte man erwarten, daß 

· der Übergang zu einer relativistischen Theorie durch eine mehr oder weniger 
direkte Verallgemeinerung des Apparates der nichtrelativistischen Quanten­
mechanik möglich wäre. Eine sorgfältige Betrachtung zeigt dagegen, daß dies 
nicht der Fall ist. 

Wir haben gesehen, daß die Quantenmechanik die Möglichkeiten der gleich­
zeitigen Existenz verschiedener dynamischer Veränderlicher eines Elektrons1 ) 
stark einschränkt. Die Unschärfen L1q und L1p, die bei einer gleichzeitigen Mes­
sung von Ort und Impuls unvermeidlich sind, erfüllen die Beziehung L1q L1p ,._, Ii ;  
je genauer man eine dieser Größen mißt, desto weniger genau kann die andere 
gleichzeitig gemessen werden. 

Es ist aber wesentlich, daß jede dynamische Veränderliche eines Elektrons 
für sich allein beliebig genau gemessen werden kann ; die Messung kann in 
einem beliebig kleinen Zeitintervall erfolgen. Dieser Sachverhalt spielt für die 
ganze nichtrelativistische Quantenmechanik eine fundamentale Rolle. Nur 
auf Grund dessen konnte man den Begriff der \Vellenfunktion 1p(q) einfüh­
ren, deren Betragsquadrat die Wahrscheinlichkeit angibt, mit der man (bei 
einer Messung zu einem bestimmten Zeitpunkt) das Elektron an dem betref­
fenden Ort vorfindet. Eine notwendige Voraussetzung, den Begriff einer 
solchen Wellenfunktion einführen zu können, ist offensichtlich die prinzipielle 
Möglichkeit, den Ort beliebig genau und schnell messen zu können ; anderen­
falls würde dieser Begriff gegenstandslos und würde seinen physikalischen 
Sinn verlieren. 

Die Existenz einer Grenzgeschwindigkeit (der Lichtgeschwindigkeit c) führt 
zu neuen prinzipiellen Einschränkungen der Möglichkeiten, verschiedene physi­
kalische Größen zu messen (L. D. LANDAU, R. PEIERLS, 1930). 

In § 37 haben wir die Beziehung 

(v' - v) Llp Ll t  ,._, Ii (75,1 )  

1 )  Wie in § 1 sprechen wir der Kürze halber von einem Elektron, denken dabei aber 
an ein beliebiges quantenmechanisches Objekt. 
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abgeleitet, die die Unschärfe L1p der Impulsmessung an einem Elektron 
mit der Dauer L1t  des Meßprozesses verknüpft ; v und v' sind die Geschwindig­
keiten des Elektrons vor und nach der Messung. Aus dieser Beziehung folgt : 
�an kann eine genügend genaue Impulsmessung in einer relativ kurzen Zeit 
(d. h. kleines L1p bei kleinem .1t) nur auf Kosten einer recht großen Ge­
schwindigkeitsänderung während des Meßprozesses erreichen. In der nicht­
relativistischen Theorie äußerte sich dieser Sachverhalt darin, daß eine 
Impulsmessung nicht nach kurzen Zeitintervallen reproduziert werden kann ; 
in keiner Weise wird davon aber die prinzipielle Möglichkeit einer beliebig 
genauen Impulsmessung berührt, da die Differenz v' - v immer beliebig groß 
gemacht werden konnte. 

Die Existenz einer Grenzgeschwindigkeit ändert die Sachlage grundlegend. 
Die Differenz v' - v kann wie die Geschwindigkeiten selbst jetzt nicht größer 
als c (genauer 2 c) sein. Ersetzen wir in (75, 1) v' - v durch c, dann erhalten wir 
die Beziehung 

h 
L1p L1t "' - .  c (75,2) 

Diese Beziehung bestimmt die beste, prinzipiell erreichbare Genauigkeit einer 
Impulsmessung bei gegebener Meßdauer L1t. In einer relativistischen Theorie 
ist es also prinzipiell unmöglich, den Impuls beliebig genau und beliebig schnell 
zu messen. Eine genaue Impulsmessung (Jp --+ 0) ist nur im Grenzfall einer 
unendlich langen Meßzeit möglich. 

Auch die Meßbarkeit des Ortes erfährt eine tiefgreifende Abänderung : J;n 
einer relativistischen Theorie ist der Ort nur bis zu einer gewissen Genauigkeit 
meßbar, eine bestimmte untere Grenze der Ortsunschärfe kann nicht unter­
schritten werden. Der Begriff der Lokalisierung eines Elektrons wird in seinem 
physikalischen Sinn weiter eingeschränkt. 

Im mathematischen Formalismus der Theorie äußert sich diese Situation so, 
daß eine genaue Ortsmessung mit der Forderung nach positiver Energie des freien 
Teilchens unvereinbar ist. Wie wir später noch sehen werden, enthält das voll­
ständige System der Eigenfunktion einer relativistischen Wellengleichung für 
ein freies Teilchen (neben Lösungen mit der "richtigen" Zeitabhängigkeit) auch 
Lösungen mit einer "negativen Frequenz". Diese Fun�tionen gehen im allge­
meinen auch in die Entwicklung des Wellenpaketes ein, das einem in einem 
kleinen Raumgebiet lokalisierten Elektron entspricht. 

Die Wellenfunktionen mit "negativer Frequenz" hängen, wie noch gezeigt 
wird, mit der Existenz von Antiteilchen - Positronen - zusammen. Das Auf­
treten dieser Funktionen in der Entwicklung eines Wellenpaketes ist der Aus­
druck dafür, daß bei einer Ortsmessung für ein Elektron im allgemeinen unver­
meidlich Elektron-Positron-Paare gebildet werden. Die durch den Prozeß selbst 
hervorgerufene, unkontrollierbare Erzeugung neuer Teilchen nimmt der Orts­
messung offensichtlich ihren Sinn. 
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Im Ruhsystem des Elektrons ist der minimale Fehler bei einer Ortsmessung 

n 
Llq ....... - . m c  (75,3) 

Diesem Wert (dem einzigen, der schon aus Dimensionsbetrachtungen herau.s 
möglich ist) entspricht die Impulsunschärfe Llp ......, m c, die ihrerseits der kleinsten 
Schwellenenergie für die Paarerzeugung entspricht. 

In einem Bezugssystem, in dem sich das Elektron mit der Energie e bewegt, 
haben wir statt (75,3) 

n c 
Llq ....... - .  

e (75,4) 

Im ultrarelatiyistischen Grenzfall besteht zwischen Energie und Impuls die 
Beziehung e = c p, und es ist dann speziell 

n 
Llq ......, ­

p ' 
(75,5) 

d. h., der · Fehler Llq stimmt mit der DE BROGLIE-Wellenlänge des Teilchens 
überein. 

Aus den obigen Feststellungen wird klar, daß in einer konsequenten relati­
vistischen Quantenmechanik die Koordinaten eines Teilchens als dynamische 
Veränderliche überhaupt nicht vorkommen dürfen, da sie ihrer Natur nach 
einen ganz bestimmten Sinn haben müssen. Auch der Impuls eines Teilchens 
kann in seinem früheren Sinn nicht beibehalten werden. Da zu einer genauen 
Impulsmessung eine genügend lange Zeit erforderlich ist, kann seine Änderung 
im Verlaufe eines Prozesses nicht verfolgt werden. 

Erinnern wir uns an das, was am Anfang dieses Paragraphen gesagt worden 
ist, so gelangen wir zu dem Schluß ,  daß der gesamte Apparat der nichtrelati­
vistischen Quantenmechanik für den Übergang zum relativistischen Bereich 
inadäquat ist. Die in ihrem früheren Sinn aufgefaßten Wellenfunktionen tp(q) 
als Träger einer unbeobachtbaren Information können in einer konsequenten 
relativistischen Theorie nicht vorkommen. 

Der Impuls kann in einer konsequenten Theorie nur in den Anwendungen auf 
freie Teilchen enthalten sein ; denn für diese bleibt der Impuls erhalten und kann 
daher mit beliebiger Genauigkeit gemessen werden. Man könnte daher denken, 
daß eine künftige Theorie von der Betrachtung des zeitlichen Ablaufs von 
Wechselwirkungsprozessen zwischen Teilchen ganz abgeht. Die einzigen beob­
achtbaren Größen werden die Charakteristika (Impulse, Polarisationen) freier 
Teilchen sein - der Teilchen, die miteinander in Wechselwirkung treten (An­
fangsteilchen), und der Teilchen, die infolge des Prozesses entstehen (End­
teilchen) .  

Die charakteristische Problemstellung in  der relativistischen Quantentheorie 
verlangt die Bestimmung der Wahrscheinlichkeitsamplituden für Übergänge 
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zwischen gegebenen Anfangs- und Endzuständen von Teilchensystemen. Die 
Gesamtheit dieser Amplituden zwischen allen möglichen Zuständen bildet die 
Streumatrix oder S-Matrix.1) Diese Matrix ist der Träger der gesamten, physi­
kalisch sinnvollen und beobachtbaren Information über die Wechselwirkungs­
prozesse zwischen Teilchen (W. HEISENBERG, 1938). 

In einer solchen Theorie müssen die Begriffe "elementares" und "zusammen­
gesetztes" Teilchen ihren früheren Sinn verlieren - die Frage, was woraus 
besteht, wird hinfällig. Diese Frage kann nicht gestellt werden, ohne den 

. W echselwirkungsprozeß zwischen den Teilchen zu untersuchen ; der Verzicht 
auf eine solche Untersuchung macht die Frage gegenstandslos. Alle Teilchen, 
die im Anfangs- oder Endzustand bei irgendeinem physikalischen Stoßprozeß 
vorkommen, müssen in der Theorie gleichberechtigt auftreten. In diesem Sinne 
ist der Unterschied zwischen Teilchen, die man normalerweise als "zusammen­
gesetzt" oder als "elementar" bezeichnet, rein quantitativer Natur und bezieht 
sich auf die Größe des Massendefektes beim Zerfall in diese oder jene "Bestand­
teile". Die Behauptung, daß ein Deuteron zusammengesetzt ist (mit einer 
relativ kleinen Bindungsenergie bezüglich des Zerfalls in ein Proton und ein 
Neutron), unterscheidet sich nur quantitativ von der Behauptung, daß ein 
Neutron aus einem Proton und einem n-Meson "besteht". 

Gegenwärtig gibt es noch keine vollständige, logisch abgeschlossene relativi­
stische Quantentheorie. Vi "ir werden sehen, daß die vorhandene Theorie neue 
physikalische Aspekte in die Art der Beschreibung von Teilchenzuständen 
hineinbringt ; diese neue Beschreibung erhält gewisse Züge der Feldtheorie. 
Sie wird aber weitgehend nach dem Vorbild und mit Hilfe der Begriffe der 
üblichen Quantenmechanik aufgebaut. Dieser Aufbau der Theorie führte auf 
dem Gebiet der Quantenelektrodynamik zum Erfolg. Das Fehlen einer voll­
ständigen logischen Abgeschlossenheit äußert sich in dieser Theorie im Auf­
treten divergenter Ausdrücke bei der direkten Anwendung ihres mathematischen 
Apparates ; zur Beseitigung dieser Divergenzen existieren aber eindeutige Ver­
fahren. Trotzdem haben diese Verfahren weitgehend den Charakter halbempi­
rischer Rezepte, und unsere Überzeugung von der Richtigkeit der auf diesem 
Wege erhaltenen Ergebnisse beruht letzten Endes auf ihrer hervorragenden 
Übereinstimmung mit dem Experiment, aber nicht auf der inneren Konsistenz 
und der logischen Klarheit der Grundprinzipien der Theorie. 

Ganz anders ist die Sachlage in der Theorie der Erscheinungen, die mit den 
sogenannten starken Wechselwirkungen von Teilchen (den Kernkräften) zu­
sammenhängen. Hier haben die Versuche zur Schaffung einer Theorie, auf­
bauend auf denselben Methoden, zu keinerlei bedeutenden realen physikalischen 
Ergebnissen geführt. Die Schaffung einer vollständigen . Theorie, die auch die 
starken Wechselwirkungen umfaßt, erfordert wahrscheinlich, prinzipiell neue 
physikalische Vorstellungen heranzuziehen. 

1) Diese Bezeichnung ist vom englischen Wort scattering bzw. dem deutschen Streuung 
abgeleitet. 
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§ 76. Die Quantisierung des freien elektromagnetischen Feldes1) 

Der Übergang von der klassischen zur quantenmechanischen Beschreibung des 
elektromagnetischen Feldes erfolgt am natürlichsten mit Hilfe der klassischen 
Entwicklung des Feldes nach Oszillatoren. Erinnern wir daran, worin der 
Hauptinhalt dieser -Entwicklung besteht (s. I § 76). 

Wir werden das freie elektromagnetische Feld (elektromagnetische Wellen) 
mit Hilfe vo"n Potentialen beschreiben, die so geeicht sind, daß das skalare 
Potential verschwindet und nur noch das Vektorpotential A übrig bleibt. 
Wird das Feld in einem großen, aber endlichen Raumvolumen Q betrachtet, so 
kann es nach fortlaufenden ebenen Wellen entwickelt werden ; das Potential 
stellt sich dann als Reihe der Art 

A = f' V!� (ck eikr + c� e-ik7') (76, 1) 

dar. Die Koeffizienten ck hängen über die Beziehung 
c,. ,.._ e-iw t  ' w = lki (76,2) 

von der Zeit ab, und jeder von ihnen steht senkrecht auf dem zugehörigen 
Wellenzahlvektor : c� k = 0.2) 

Die Summation in (76,1 )  erfolgt über einen unendlichen, aber diskreten Satz 
nahe beieinanderliegender Werte des Wellenzahlvektors (seiner drei Kompo­
nenten k:z, ku, k2). Der Übergang zur Integration über eine stetige Verteilung 
kann mit Hilfe des Ausdrucks 

Q dk., dkll dk. 
(2 n)s (76,3) 

für die Zahl der möglichen k-Werte pro Volumeneinheit des k-Raumes vor­
genommen werden. 

Durch die Vorgabe der Vektoren ck ist das Feld in dem betrachteten Vo­
lumen vollständig bestimmt. Man kann also diese Größen als diskreten Satz 
klassischer "Feldvariablen" ansehen. Um zur Quantentheorie überzugehen, 
muß man diese Variablen zuerst noch so transformieren, daß die Feldgleichung 
eine Gestalt erhält, die den kanonischen Gleichungen (HAMILTONschen Glei­
chungen) der klassischen Mechanik analog ist. Die kanonischen Feldvariablen 

1) Vön dieser Stelle an verwenden wir in den Kapiteln XI-XVI (mit Ausnahme be­
�timmter Abschnitte, auf die speziell verwiesen wird) die sogenannten relativistischen 
Maßeinheiten, in denen die Lichtgeschwindigkeit c und die quantenmechanische Kon­
stante h gleich I gesetzt sind; damit wird eine bedeutende Vereinfachung der Formel­
schreibweise erreicht. In diesen Maßeinheiten besitzen Energie, Impuls und Masse die 
gleiche Dimension, die mit der Dimension der reziproken Länge zusammenfällt. Das 
Quadrat der Einheitsladung nimmt in diesen Einheiten den Wert der (in gewöhnlich<>n 
Maßeinheiten) Konstanten e2Jh c an, d. h. ist gleich 1/137. 

2) Die Definition der Koeffizienten c,. in (76,1) unterscheidet sich von der Definition 
der Koeffizienten ak in I (76,1)  durch den Faktor : c,. = a,. V w Qj2 n. Der Vorteil dieser 
Definition beim Übergang zur Quantentheorie wird aus dem weiteren ersichtlich. 

16 Kurzfassung li 
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werden als reelle Größen definiert : 

(76,4) 

Die HAMILTON-Funktion (Energie) des Feldes ist in diesen Variablen durch 
den Ausdruck 

H = -! }; (Pi + w2 Q�) k 
gegeben. Jeder Vektor Pk und Qk steht senkrecht auf dem Wellenzahlvektor k, 
d. h., jeder Vektor hat zwei unabhängige Komponenten. Die Richtung dieser Vek­
toren bestimmt die Polarisationsrichtung der betreffenden Welle. Wir bezeichnen 
die beiden Komponenten der Vektoren Pk und Q�c (in der Ebene senkrecht 
zu k) mit P�ca bzw. Qha (a = 1, 2) und schreiben die HAMILTON-Funktion in 
der Gestalt 

· n  1 p2 2 Q2 H = J: Hha ' ka  = 2 ( ha + W ka) • ka (76,5) 

Die HAMILTON-Funktion zerfällt also in eine Summe voneinander unab­
hängiger Terme ; jeder einzelne Summand enthält nur je ein Paar Pha und Qka· 
Jeder dieser Summanden entspricht einer fortschreitenden Welle mit einem 
bestimmten Wellenzahlvektor und einer bestimmten Polarisation und hat die 
Gestalt der HAMILTON-Funktion eines eindimensionalen harmonischen Oszilla­
tors. 

Die dargestellte Art der klassischen Beschreibung des Feldes läßt den Weg 
für den Übergang zur Quantentheorie bereits erkennen. vVir müssen die kano­
nischen Variablen - die verallgemeinerten Koordinaten Qka und die verallge­
meinerten Impulse P�ca - jetzt als Operatoren mit der Vertauschungsregel 

A A -" A 

Pka Qha - Qka Pha = - i (76,6) 

auffassen (alle Operatoren mit verschiedenen k a sind miteinander vertausch­
bar). Mit diesen Größen wird auch das Potential A zu einem Operator. 

Den HAMILTON-Operator des Feldes erhält man, indem man in (76;5) die 
kanonischen Variablen durch die entsprechenden Operatoren ersetzt : 

A Ä H = };  H�ca ' ka (76,7) 

Die Bestimmung der Eigenwerte dieses HAMILTON-Operators erfordert keine 
besonderen Rechllungen, da sie auf das bekannte Problem der Energieniveaus 
linearer harmonischer Oszillatoren zurückgeführt werden kann, dessen Lösung 
uns schon bekannt ist (§ 25). Wir können daher sofort die Energieniveaus 
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des Feldes aufschreiben : 

(76,8) 

mit ganzen Zahlen Nka· 
Der klassische Ausdruck für den Impuls des Feldes ist 

p = I: n Hka ' k a  
mit n = kjk (s. I (76,122)· Den dazugehörigen Operator erhält man nach 
Ersetzen von Hk a  durch Hka> und seine Eigenwerte sind folglich 

(76,9) 

Wir werden die Formeln (76,8-9) erst im folgenden Paragraphen diskutieren. 
Jetzt wollen wir die Matrixelemente für die Größen Qka aufschreiben ; das 
kann unmittelbar mit Hilfe der bekannten Formeln (25,4) für die Matrix­
elemente der Koordinate eines Oszillators geschehen. Die von Null verschie­
denen Matrixelemente sind 

1 /Nka (Nkal Qka I Nka - 1) = (Nka - 1 1 Qka I Nka) = v 2 W • (76, 10) 

Die Matrixelemente der Größen Pka = Qka  unterscheiden sich (nach der all­
gemeinen Regel (11 ,8)) von den . Matrixelementen Qka nur durch den Faktor 
+i w t :  

(Nkal Pka I Nka - 1) = - (Nka  :__ 1 1  Pka  I Nka) = i W V�':: • 

Wie aus dem weiteren ersichtlich wird, besitzen jedoch nicht unmittelbar die 
Operatoren Qka und Pka  einen tieferen Sinn, sondern deren Linearkombi­
nationen : 

A 1 A A 

Cka = l'-- (w Qka + i Pka) , 2 w  
A 1 A I"'. 

cta = ,r;;- (w Qka - i Pka) , y � w 

(76,11 )  

die gerade der Definition der Koeffizienten cka in der klassischen Entwicklung 
(76,1 )  entsprechen. Die einzigen von Null verschiedenen Matrixelemente dieser 
Operatoren sind 

<Nka - 11 Ck a I Nka> = <Nkal cta I Nka -- 1) = VNka . (76, 12) 

Mit Hilfe der Definition (76,11)  und der Regel {76,6) lassen sich die Vertau­
schungsregeln zwischen den Operatoren cka und cta leicht finden : 

(76, 13) 

1 6 ° 
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Auf diese Weise kommen wir zum Ausdruck für den Operator des elektro­
magnetischen Feldes in der Gestalt 

i = f -v � � (cho- e<"> eikt- + ct" e<">· e-ik") . (76, 14) 

Hier wurde die Bezeichnung e<"> für die Einheitsvektoren eingeführt, die die 
Polarisation der Oszillatoren beschreiben ; die Vektoren e<"> stehen senkrecht 
auf den Wellenzahlvektoren k, für jedes k gibt es zwei unabhängige Polari­
sationsrichtungen, die durch den Index a = 1, 2 beschrieben werden.1) 

Der Ausdruck (76, 14) entspricht der gewöhnlichen Darstellung von Opera­
toren in der nichtrelativistischen Quantentheorie, die im Verlaufe des ge­
samten ersten Teiles dieses Buches benutzt wurde. In dieser Beschreibungsart 
(man nennt sie ScHRÖDINGER-Bild) enthalten die Operatoren der verschiedenen 
physikalischen Größen selbst keine explizite ZeitabhängigkeiL Die zeitliche 
Entwicklung des Systems wird durch die Zeitabhängigkeit der Wellenfunktion 
beschrieben. Den Apparat der Quantenmechanik kann man jedoch auch in 
einem etwas anderen, äquivalenten Bild formulieren, in dem die explizite 
Zeitabhängigkeit von den Wellenfunktionen auf die Operatoren übertragen 
wird ; diese Darstellung wird HEISENBERG-Bild genannt. Eine solche Formu­
lierung des Apparates stellt sich als besonders geeignet für die Beschreibung 
von Feldern in der relativistischen Quantentheorie heraus ; die gleichberech­
tigte Abhängigkeit der Operatoren von den Koordinaten und der Zeit erlaubt 
es, in ü hersichtlichererWeise die relativistische Raum-Zeit-Invarianz der Theorie 
aufzuzeigen (in die ScHRÖDINGERsche Formulierung gehen die Raumkoordi­
naten und die Zeit hingegen extrem asymmetrisch ein). 

Für den Operator A besteht der Übergang in das HEISENBERG-Bild darin, 
daß man jedes Glied der Summe (76, 14) mit dem Faktor e -i wt (oder der ihm 
konjugiert komplexen Größe) multipliziert, der der zeitlichen Abhängigkeit 
der "stationären Zustände d�r Feldoszillatoren" entspricht. Den endgültigen 
Ausdruck für den Operator A schreiben wir in der Form 

A(r, t) = I: (ck a  Alca + cta AZa) ' (76, 15) 

mit 
k a  

A - e(a) 1 / 2 :Tl e- i (wt - k1') lc a - V w D  . (76, 16) 

Im folgenden (sowohl bei der Behandlung des elektromagnetischen Feldes als 
auch der Felder von Teilchen) werden wir für die Operatoren immer das 
HEISENBERG-Bild zugrunde legen. 

. 

1) Wir erinnern daran (vgl. I § 70), daß der Einheitsvektor e bei linearer Polarisation 
reell ist und unmittelbar die Polarisationsrichtung anzeigt. Bei zirkularer Polarisation 
(oder im allgemeinen Fall elliptischer Polarisation) ist der Vektor e komplex, wobei sich 
sein Realteil in einem bestimmten Verhältnis zum Imaginärteil befindet ; sein Charakter 
als Einheitsvektor ergibt sich aus der Gleichung e e * = 1 .  
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Wir wollen jetzt die erhaltenen For�eln für die Feldquantisierung disku­
tieren. 

Zunächst weist die Formel (76,8) für die Feldenergie folgende Schwierigkeit 
auf. Zum niedrigsten Energieniveau des Feldes gehören die Werte Null für die 
Quantenzahlen N,. G aller Oszillatoren (dieser Zustand wird als Vakuumzustand 
des elektromagnetischen Feldes bezeichnet). Aber bereits in diesem Zustand hat 
jeder Oszillator die von Null verschiedene "Nullpunktsenergie" wf2. Bei der 
Summation über die unendlich vielen Oszillatoren erhalten wir ein unendliches 
Ergebnis. Wir stoßen auf diese Weise auf eine der "Divergenzen", die die vor­
handene Theorie enthält, weil sie nicht vollständig und nicht logisch abge­
schlossen ist. 

Solange es sich um die Eigenwerte der Feldenergie handelt, können wir diese 
Schwierigkeit beseitigen, indem wir einfach die Energie der Nullpunktschwin­
gungen subtrahieren, d. h. , indem wir für Feldenergie und -impuls (in gewöhn-
lichen Maßeinheiten) schreiben 

· 

(77,1) 

Anband dieser Formeln kann man den für die ganze Quantenelektrodynamik 
grundlegenden Begriff der Lichtquanten oder Photonen einführen.1 ) Wir können 
nämlich das freie elektromagnetische Feld als eine Gesamtheit von Teilchen 
ansehen, von denen jedes die Energie 1i w und den Impuls 1i k = n 1i wfc hat. 
Die Beziehung zwischen Energie und Impuls eines Photons ist so, wie sie in 
der relativistischen Mechanik für Teilchen mit der Ruhmasse Null, die sich 
mit Lichtgeschwindigkeit bewegen, sein muß. Die Besetzungszahlen N,.·" er­
halten den Sinn von Photonenzahlen zu gegebenen Impulsen k und Polari­
sationen e<"> . Die Eigenschaft der Polarisation eines Photons ist dem Begriff 
des Spins anderer Teilchen analog (spezifische Besonderheiten des Photons in 
dieser Hinsicht werden später in § 78 behandelt). 

Der ganze im vorigen Paragraphen entwickelte mathematische Formalismus 
entspricht völlig der Vorstellung vom elektromagnetischen Feld als einer Ge­
samtheit von Photonen ; es handelt sich dabei um den Apparat der sogenannten 
zweiten Quantisierung in Anwendung auf ein Photonensystem. Bei dieser 
Methode (§ 47) spielen die Besetzungszahlen der Zustände (im gegebenen Falle 
die Zahlen N,.") die Rolle der unabhängigen Veränderlichen, und die Operatoren 
wirken auf Funktionen dieser Besetzungszahlen. Dabei spielen die "Vernich­
tungs"- und "Erzeugungs"-Operatoren eine wesentliche Rolle ; diese Opera­
toren verkleinern bzw. vergrößern die Besetzungszahlen um 1. Solche Opera­
toren sind gerade c,.a und ct a ;  der Operator c,.a vernichtet ein Photon im 
Zustand k rr (seine Matrixelemente sind nur für die Übergänge N,." --+ N,. a - 1 

1) Der Begriff des Photons wurde erstmals von A. EINSTEIN (1905) in Verbindung mit 
der Theorie des Photoeffektes eingeführt. 
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von Null verschieden - s. (76,12)) ; der Operator c�a erzeugt ein Photon in 
diesem Zustand - er besitzt Matrixelemente für die Übergänge Nka -+ Nka + 1 . 
. Die ebenen Wellen (76, 16) ,  die im Operator (76,15) als Faktoren b'ei den 
Vernichtungsoperatoren für die Photonen auftreten, kann man als Wellen­
funktionen der Photonen mit bestimmten Impulsen k und Polarisationen e<a> 
ansehen ; diese Funktionen sind auf "ein Phonon im Volumen Q" normiert. 
Eine solche Betrachtungsweise entspricht der Entwicklung (47,22) des 1p-Ope­
rators nach Wellenfunktionen stationärer Zustände eines Teilchens im nicht­
relativistischen Apparat der zweiten QÜantisierung.1) 

In diesem Zusammenhang wollen wir noch einmal betonen, daß man die 
"Wellenfunktion" eines Photons im Gegensatz zur Interpretation der Wellen­
funktion in der nichtrelativistischen Quantenmechanik keinesfalls als Wahr­
scheinlichkeitsamplitude für die räumliche Lokalisierung des Photons auffassen 
darf. Im Falle des Photons ist diese Situation besonders scharf ausgeprägt. 
Für das Photon trifft immer der ultrarelativistische Fall zu, so daß wir für den 
minimalen Fehler bei der Bestimmung seiner Koordinaten in Übereinstimmung 
mit (75,5) Llq """"' 1Jk ........, A. erhalten. Es  ist also nur in den Fällen sinnvoll, von 
Photonenkoordinaten zu sprechen, wenn die für die Aufgabe charakteristischen 
Abmessungen groß gegenüber der Wellenlänge sind. Das ist aber nichts anderes 
als der "klassische" Grenzfall, der der geometrischen Optik entspricht, bei 
der man von der Ausbreitung des Lichtes entlang bestimmter Bahnen (Licht­
strahlen) sprechen darf. Im Falle der Quantenmechanik hingegen, für den die 
Wellenlänge nicht als klein betrachtet werden kann, verliert der Begriff der 
Photonenkoordinate seinen Sinn. 

Die Vertauschungsregeln der Erzeugungs- und Vernichtungsoperatoren von 
Photonen (76,13) entsprechen dem Fall, der Teilchen beschreibt, die der BüsE­
Statistik unterliegen (s. (47 ,11)). Photonen sind folglich Bosonen. In Überein­
stimmung mit den Eigenschaften dieser Statistik kann die Zahl von Photonen, 
die sich gleichzeitig in irgendeinem vorgegebenen Zustand befinden, beliebig sein. 

Die Beschreibung des Feldes als Gesamtheit von Photonen ist die einzige 
Beschreibung, die dem physikalischen Sinn des elektromagnetischen Feldes 
in der Quantentheorie völlig adäquat ist. Sie ersetzt die klassische Beschreibung 
mit Hilfe der Feldpotentiale (und ü her sie mit Hilfe der Feldstärken). Letztere 
gehen in den mathematischen App arat des Photonenbildes als Operatoren der 
zweiten Quantisierung ein. 

Bekanntlich ähneln die Eigenschaften eines quantenmechanischen Systems 
den klassischen Eigenschaften in den Fällen, in denen die Quantenzahlen für 
die stationären Zustände eines Systems groß sind (§ 27). Für ein freies elektro­
magnetisches Feld (in einem vorgegebenen Volumen) bedeutet das, daß die 
Quantenzahlen der Oszillatoren, d. h. die Photonenzahlen Nka• groß sein müs­
sen. In dieser Hinsicht ist es von großer Bedeutung, daß die Photonen der 

1) Im Unterschied zu (47,22) gehen in die Entwicklung (76,15) gleichzeitig sowohl 
Teilchenvernichtungsoperatoren, als auch -erzeugungsoperatoren ein. Der Sinn dieses 
Unterschieds wird im Kapitel XI II geklärt. 
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BüsE-Statistik gehorchen. Im mathematischen Fol'IIlaJismus der Theorie zeigt 
sich der Zusammenhang der BüsE-Statistik mit den Eigenschaften des klas­
sischen Feldes in den Vertauschungsregeln für die Operatoren c,.� und cta· 
Für große N lca> wenn die Matrixelemente dieser Operatoren groß sind, kann 
man die 1 auf der rechten Seite der Vertauschungsregel (76,13) vernachlässigen, 
und es ergibt sich c,.a cta + cta c�c a, d. h., diese Operatoren gehen in mit­
einander vertauschbare klassische Größen c,.a und c:a über, die die klassischen 
Feldstärken bestimmen. 

§ 78. Drehimpuls und Parität des Photons 

Wie jedes Teilchen hat auch das Photon einen bestimmten Drehimpuls. Die 
Eigenschaften dieser Größe unterscheiden sich jedoch für das Photon etwas 
von ihren Eigenschaften bei gewöhnlichen Teilchen. Um die Ursachen dieses 
Unterschiedes aufzuklären, erinnern wir zunächst daran, wie im mathematischen 
Apparat der Quantenmechanik die Eigenschaften der Wellenfunktion eines 
Teilchens mit seinem Drehimpuls zusammenhängen. 

Der Drehimpuls j eines Teilchens setzt sich aus dem Bahndrehimpuls l und 
dem Eigendrehimpuls, dem Spin s, zusammen. Die Wellenfunktion eines Teil­
chens mit dem Spin 8 ist ein symmetrischer Spinor der Stufe 2 8, d. h., sie hat 
2 8 + 1 Komponenten, die sich bei Drehung des Koordinatensystems nach 
einer bestimmten Vorschrift durcheinander ausdrücken (§ 41). Der Bahndreh­
impuls hängt mit der Ortsabhängigkeit der Wellenfunktion zusammen : Zu Zu­
ständen mit dem Bahndrehimpuls l gehören Wellenfunktionen, deren Kompo­
nenten sich (linear) durch Kugelfunktionen l-ter Ordnung beschreiben lassen. 

Die Rolle der Wellenfunktion des Photons spielt der Vektor A. Ein Vektor 
ist einem Spinor zweiter Stufe äquivalent und in diesem Sinne kann man dem 
Photon den Spin 1 zuordnen. Da dieser Wert ganzzahlig ist, folgt hieraus, 
daß auch der Gesamtdrehimpuls des Photons nur ganzzahlige Werte durch­
laufen kann : j = 1, 2, 3, . . .  Der Wert j = 0 entfällt für das Photon : Die 
Wellenfunktion eines Zustandes mit dem Drehimpuls Null muß kugelsymme­
trisch sein, was für eine Transversalwelle nicht zu realisieren ist. 

Obwohl 1 einerseits der Begriff des Gesamtdrehimpulses des Photons .einen 
völlig bestimmten Sinn besitzt, hat andererseits der Begriff des Photonenspins 
nur formale Bedeutung : Für das Photon gibt es keine Möglichkeit, auf folge­
richtige Weise Spin und Bahndrehimpuls als Bestandteile seines Gesamtdreh­
impulses voneinande1· zu unterscheiden. Das Problem besteht daxin, daß eine 
solche Möglichkeit die Unabhängigkeit der "Spin"- und "Koordinateneigen­
schaften" der Wellenfunktionen voraussetzt : Die Abhängigkeit der Spinor-

. 
komponenten (im gegebenen Fall - der Vektorkomponenten) von den Raum­
koordinaten darf durch keinerlei zusätzliche Bedingungen eingeschränkt sein. 
Die vektorielle Wellenfunktion A des Photons unterliegt aber der zusätzlichen 
Transversalitätsbedingung; wonach die Abhängigkeit von den Koordinaten für 
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alle ihre Komponenten schon nicht mehr gleichzeitig beliebig vorgehbar ist. 
Ergänzend kann man hinzufügen, daß für das Photon auch die Definition des 
Spins als Drehmoment eines ruhenden Teilchens nicht anwendbar ist, da für 
das sich mit Lichtgeschwindigkeit bewegende Photon kein Ruhsystem existiert. 

Wie auch für jedes andere Teilchen, wird der Zustand eines Photons ferner 
durch seine Parität charakterisiert, die mit dem Verhalten der Wellenfunktion 
bei einer Inversion des Koordinatensystems zusammenhängt : Der Zustand 
heißt gerade, wenn die vektorielle Wellenfunktion A(r) bei der Inversion un­
verändert bleibt. und ungerade, wenn A(r) das Vorzeichen wechselt.!) Es gibt 
eine einheitliche Terminologie für die verschiedenen Zustände des Photons 
mit bestimmten Drehimpulsen und Paritäten : Ein Photon im Zustand mit 
dem Drehimpuls i und der Parität ( - l)i wird als elektrisches 2i-Pol-Photon 
(oder Ej-Photon) und das mit der Parität (- I)i+1 als magnetisches 2LPol­
Photon (oder Mj-Photon) bezeichnet.2) Drehimpuls und Parität eines Teilchens 
werden oft durch ein zusammenhängendes Symbol gekennzeichnet, bei dem 
die Zahl den Wert von i und der obere Index + oder - die Parität P = + I 
oder - I angeben. So entsprechen beispielsweise den Photonen des elektri­
schen Typs die Zustände I-, 2+, 3- , 4 + usw. und den magnetischen Photonen 
die Zustände I+, 2-, 3+, 4-, . . . Insbesondere entspricht dem elektrischen 
Dipol-Photon der Zustand I- und dem magnetischen Dipol-Photon der Zu­
stand I+. 

Ein Photon mit einem definierten i-Wert entspricht einer Kugelwelle, für 
die keine ausgezeichnete Bewegungsrichtung existiert. Besitzt im Gegensatz 
dazu ein Photon eine ausgezeichnete Bewegungsrichtung (d. h . ,  es wird durch 
einen bestimmten Impulsvektor k charakterisiert) ,  so ist sein i-Wert völlig 
unbestimmt. Ein Photon mit einer gegebenen Bewegungsrichtung k kann je­
doch auch einen bestimmten Wert der Projektion des Drehimpulses auf diese 
Richtung besitzen ; die Projektion des Drehimpulses auf die Richtung des Im­
pulses nennt man Spiralität (oder Helizität), und wir bezeichnen sie mit Ä..3) 

Die Erhaltung der Spiralität, wie auch im allgemeinen die Erhaltung jeglicher 
Projektion des Drehimpulses, hängt mit bestimmten Symmetrieeigenschaften 
des Raumes gegenüber einem freien Teilchen zusammen. Der Impuls k zeichnet 

1) Das Resultat der Anwendung der Inversionsoperation auf eine skalare Funktion q:>(r) 
besteht in der Vorzeichenänderung ihres Arguments : P q:>(r) = q:>(- r). Beim Anwenden 
dieser Operation auf eine vektorielle Funktion A(r) muß noch berücksichtigt werden, daß 
das Umkehren der Richtung der Koordinatenachsen gleichzeitig das Vorzeichen aller 
Vektorkomponenten (eines polaren Vektors) ändert. Mit anderen Worten bedeutet die 
Inversion P A(r) = - A(- r). Deshalb muß z. B. für einen geraden Zustand A(- r) 
= - A(r) gelten, damit P A(r) = A(r) ist. 

2) Diese Bezeichnungen entsprechen der Terminologie der Strahlungstheorie : Die Emis­
sion von Photonen des elektrischen oder magnetischen Typs wird durch die entsprechenden 
elektrischen bzw. magnetischen Multipolmomente des Ladungssystems b.estimmt (vg!. 
§ 98). 

8) Diese Projektion darf man nicht mit der Projektion des Drehimpulses m auf die fest­
gelegte Richtung (der z-Achse) im Raum verwechseln ! 
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eine spezielle Richtung im Raum aus. Das Vorhandensein dieser Richtung zer­
stört die vollständige Symmetrie gegenüber beliebigen Drehungen des Ko­
ordinatensystems (infolgedessen hört der Vektor des Drehimpulses auf, eine 
Erhaltungsgröße zu sein). Es verbleibt jedoch die Axialsymmetrie bezüglich 
der Drehungen um die hervorgehobene Achse - die Richtung k. Ausdruck 
dieser Symmetrie ist gerade die Erhaltung der Spiralität. 

Der Operator des Bahndrehimpulses ist durch f = [r p] definiert. Der' 
Operator der Projektion dieses Drehimpulses auf die Richtung des Impulses 
ist identisch Null (dasselbe gilt damit auch für die Eigenwerte dieser Pro­
jektion). Aus diesem Grunde fällt die Spiralität mit der Projektion des Spins 

. des Teilchens auf seine Bewegungsrichtung zusammen. Für ein gewöhnliches 
Teilchen mit dem Spin 1 könnte die Spiralität folglich die Werte 0, ± 1 an­
nehmen. Für das Photon sind jedoch, wie wir gleich zeigen werden, nur die 
Werte Ä = ± 1 möglich ; hier zeigt sich von neuem die Bedingtheit des Be­
griffes des Photonenspins. 

Es ist leicht zu sehen, daß die Photonenzustände mit bestimmten Spirali­
täten mit den Zirkularpolarisationszuständen des Photons zusammenfallen. 
;, 'fJ• C - sei ein Koordinatensystem mit der C-Achse entlang der Impuls­
richtung des Photons (im Unterschied zur z-Achse, deren Lage nicht mit der 
Bewegung des Teilchens gekoppelt ist) .  Betrachten wir z. B. den Photonen­
zustand mit der Spiralität .?. = + 1. Nach den Formeln (41,9), die den Zu­
sammenhang z�ischen den Komponenten der vektoriellen Wellenfunktion 
(Teilchen mit dem Spin 1) und den Komponenten des Spinors 2ter Stufe her­
stellen, entspricht einem solchen Zustand die Wellenfunktion A, deren Kom­
ponenten durch die Beziehungen A., = i A�, Ac = 0 miteinander verknüpft 
sind. In der Tat ist dann von den drei Spinorkomponenten nur tp11 von Null 
verschieden, die gerade für die + 1  C-Projektion des Spins zuständig ist. Auf 
analoge Weise entspricht die Wellenfunktion mit den Komponenten 
A., = - i A;, Ac = 0 dem Wert .?. = - 1. Die gleichen Beziehungen befrie­
digt gemeinsam mit dem Vektor A der Polarisationsvektor e, der als Faktor in 
den Ausdruck (76,16) eingeht. Der Zusammenhang e'l = ± i e0 besehreibt 
aber gerade die zirkulare Polarisation (s. I § 70). 

Die Nichtrealisierbarkeit des Falles .?. = 0 wird daraus offensichtlich, daß 
einem solchen Wert der C-Projektion des Spins eine Wellenfunktion mit den 
Komponenten A� = A., = 0, Ac =I= 0 entsprechen würde, die (gemäß (41,9)) 
der Spinorkomponente tp12 äquivalent ist ; eine solche Funktion wird aber durch 
die Forderung nach Orthogonalität des Vektors A gegenüber der Richtung k 
ausgeschlossen. 





Die DIRAc-Gleichung 

§ 79; Die KLEIN·FOCK·Gleichung 

XII 

Wir beginnen die Darlegung der relativistischen Quantentheorie von. Teilchen 
mit der Untersuchung der Eigenschaften der Wellenfunktion, die diese Teil­
chen beschreiben, und mit der Konstruktion der Wellengleichung, der diese 
Funktionen genügen. Es sei nochmals daran erinnert, daß in der nichtrelati­
vistischen Theorie die Wellenfunktionen der Teilchen mit verschiedenen Spins 
Spinoren verschiedener Stufen sind und daß die Wellenfunktionen freier Teil­
chen ein und derselben Gleichung - der ScHRÖDINGER-Gleichung für die freie 
Bewegung - genügen. Wie wir sehen werden, hängt im Gegensatz dazu in 
der relativistischen Theorie schon allein die Gestalt der Wellengleichung der 
freien Bewegung beträchtlich vom Spin des Teilchens ab. 

Am allereinfachsten ist natürlich der Fall von Teilchen mit dem Spin 0. 
In der nichtrelativistischen Theorie werden sie durch skalare Wellenfunktionen 
beschrieben. In der relativistischen Theorie nimmt den Platz des dreidimen­
sionalen SkQ:lars ein vierdimensionaler Skalar ein, der nicht nur gegenüber der 
Transformation der Raumkoordinaten, sondern auch gegenüber den LoRENTZ­
Transformationen invariant ist. 

In der relativistischen Mechanik bilden die Energie des Teilchens e und ihr 
Impuls p einen 4-Vektor p�' = (e, p).1) Entsprechend bilden auch die Opera­
toren, die diese Größen beschreiben, einen 4-Vektor p�'. Dem dreidimensionalen 
Impuls p entspricht der Operator fi = - i V, und der Energie (HAMILTON­
Funktion) wird in der Wellengleichung der Operator die Differentiation nach 
der Zeit i ofot (s. (8,1)) zugeordnet. 

Auf diese Weise stellt sich der Operator des 4-Impulses als 

A ( . a . '"') p�' = t ät , - t v , (79,1) 

bzw. (in vierdimensionaler Schreibweise) in der Form 

(79,2) 
dar. 

Wir wenden jetzt den skalaren Operator pl' p�-' - das Quadrat des 4-Vektors 
� - auf die Wellenfunktion 'P an. Bekanntlich läßt sich das Quadrat des 4-Im-

1) In den Kapiteln XII-XVI werden wir die relativistische Energie eines einzelnen 
Teilchens, die die Ruhenergie mit einschließt, durch den Buchstaben e bezeichnen. 
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pulses auf eine konstante Größe, das Quadrat der Teilchenmasse m, zurückführen. 
Deshalb muß sich auch das Ergebnis einer Anwendung des erwähnten Opera­
tors auf eine beliebige Wellenfunktion 'P auf deren Multiplikation mit dem 
Faktor m2 zurückführen lassen. Wir kommen somit zur Gleichung 

p"' P"' 'P = m2 'P 
oder (in ausgeschriebener Form) 

(- !: + LI )  'P = m2 'P 

(0. KLEIN, V. A. FocK, 1926). 

(79,3) 

(79,4) 

Es sei darauf hingewiesen, daß für ein relativistisches Teilchen mit dem 
Spin 0 keine HAMILTON-Funktion in dem Sinne existiert, wie sie in der nicht­
relativistischen Theorie definiert wurde. Tatsächlich, (79,4) ist eine Differential­
gleichung zweiter Ordnung bezüglich der Zeitvariablen. Im Unterschied dazu 

• A 

besteht der Sinn des HAMILTON-Operators H ja gera�e darin, daß er die erste 
Zeitableitung der Wellenfunktion gemäß i o'Pfot = H 'P liefert. 

Aus formalen Überlegungen folgt außerdem von vornherein (ganz zu schwei­
gen von den in § 75 dargelegten allgemeinen physikalischen Gesichtspunkten, 
die überhaupt der Betrachtung der Wellenfunktion als Träger der Information 
über die räumliche Lokalisierung eines Teilchens entgegenstehen), daß für ein 
Teilchen mit dem Spin 0 die Wahrscheinlichkeitsdichte seiner Lokalisierung in 
den verschiedenen Raumpunkten nicht durch das Betragsquadrat 1 '1'12  be­
stimmt werden kann. Der Grund dafür liegt darin, daß in der relativistischen 
Theorie die Verteilungsdichte der Teilchen und ihre Stromdichte einen 4-Vek­
tor bilden (vergleiche das in I § 54 zum 4-Vektor der Stromdichte Gesagte) .  
Die Teilchendichte ist die zeitliche Komponente dieses 4-Vektors und somit 
kein Skalar. Deshalb kann sie sich keinesfalls durch eine skalare Größe, wie 
es das Betragsquadrat einer skalaren Funktion ist, bestimmen. 

Aus Gründen, auf die in § 92 eingegangen wird, ist die Beschreibung von 
Teilchen mit Hilfe einer skalaren Wellengleichung (79,4) im allgemeinen sehr 
begrenzt. Wir werden uns deshalb an dieser Stelle nicht mit der Klärung der 
mathematischen Struktur der Größen aufhalten, die für diese Gleichung die 
Rolle des 4-Vektors der Stromdichte und der Energiedichte der Teilchen 
spielen. 

§ 80. Vierdimensionale Spinoren 

In der nichtrelativistischen Quantentheorie wird ein Teilchen mit dem Spin s 
durch einen symmetrischen Spinor der Stufe 2 8 beschrieben, der eine Gesamt­
heit von 2 8 + l Größen darstellt, die sich bei der Drehung des Koordinaten­
systems nach eine� bestimmten Gesetz untereinander transformieren. Dieses 
Gesetz spiegelt die Symmetrieeigenschaften des Teilchens wider, die mit der 
Isotropie des Raumes im Zusammenhang stehen. 
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In der relativistischen Theorie hingegen treten die Drehungen des räum­
lichen Koordinatensystems nur als Spezialfall vierdimensionaler Drehungen, 
der Drehungen des vierdimensionalen Raum-Zeit-Koordinatensystems, auf. Die 
Gesamtheit aller dieser möglichen Transformationen bildet die sogenannte 
LORENTZ-Gruppe. Neben den dreidimensionalen Drehungen, die die Richtung 
der Zeitachse unverändert lassen, gehören hierzu auch noch die gewöhnlichen 
LORENTz-Transformationen (Drehungen in einer der Ebenen xt, yt oder zt 
(s. I § 36)) . Im allgemeinen Fall besteht eine vierdimensionale Drehung aus 
einer gewöhnlichen LoRENTZ-Transformation und einer Drehung des räum­
lichen Koordinatensystems. 

Bei der Beschreibung von Teilchen mit einem Spin tritt in der relativistischen 
Quantentheorie folglich die Notwendigkeit auf, eine Theorie vierdimensionaler 
Spinoren . (4-Spinoren) aufzubauen, die gegenüber den Transformationen der 
LORENTz-Gruppe die gleiche Rolle spielen, wie die gewöhnlichen (dreidimensio­
nalen) Spinoren gegenüber der Gruppe der räumlichen Drehungen.1) 

Der 4-Spinor erster Stufe 

(80,1) 

ist eine zweikomponentige Größe, die sich bei allen Transformationen der 
LORENTz-Gruppe nach (41,3)-analogen Formeln umwandelt : 

;1' = o; ;1 + ß ;2 ' ;2' = y ;1 + <5 ;2 . (80,2) 

Die komplexen Koeffizienten o: ,  ß, y, <5 sind hierbei bestimmte Funktionen der 
Drehwinkel des 4-Koordinatensystems (im allgemeinen Fall sind das 6 solche 
Winkel - entsprechend der Zahl der Drehungen in den sechs Koordinaten­
ebenen xy, xz, yz, tx, ty, tz). Genau wie die Komponenten der Wellenfunktion 
eines Teilchens mit dem Spin 1/2 entsprechen ;1 und ;2 Zuständen mit Eigen­
werten + 1/2 bzw. - 1/2 der z-Projektion des Spins. 

Aus dem gleichen Grunde wie bei den dreidimensionalen Spinoren, sind die 
Koeffizienten der Transformation (80,2) durch Beziehung (41,5) miteinander 
gekoppelt, die wir nochmals anführen : 

o: ö - y ß = l .  (80,3) 

Durch diese Gleichung wird die Invarianz der bilinearen antisymmetrischen 
Kombination 

(80,4) 

aus den Komponenten zweier beliebiger Spinoren ; und E gewährleistet. Wie 
auch im Falle dreidimensionaler Spinoren definiert die Beziehung (80,4) die 
Regel für die Bildung des Skalarproduktes zweier Spinoren. 

1) Mit anderen Worten verkörpern die 4-Spinoren irreduzible Darstellung�n der Lo­
RENTZ-Gruppe, ähnlich wie die dreidimensionalen Spinaren irreduzible Darstellungen der 
Drehgruppe liefern. 
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Ein Unterschied zum dreidimensionalen Fall entsteht jedoch bei der Be­
trachtung komplex konjugierter Spinoren. In der Theorie dreidimensionaler 
Spinoren (§ 41) wird das Transformationsgesetz eines konjugiert komplexen 
Spinors aus der Forderung gewonnen, daß die Summe 

�1 �1*  + �2 �2* ' (80,5) 
. die die Wahrscheinlichkeitsdichte für die Lokalisierung des Teilchens im Raum 

bestimmt, ein Skalar sein muß ; hieraus entstanden die Beziehungen (41,6) 
zwischen den Koeffizienten (X ,  ß, y, 15. In der relativistischen Theorie ist die 
Teilchendichte jedoch kein Skalar, sondern repräsentiert die zeitliche Kompo­
nente eines 4-Vektors (wie schon im vorhergehenden Paragraphen erwähnt).  
In Verbindung damit entfällt die angeführte Beziehung, und den Transforma­
tionskoeffizienten werden (außer (80,3)) keinerlei zusätzliche Bedingungen auf­
erlegt. Die vier komplexen Größen, die nur durch die eine Bedingung (80,3) 
miteinander gekoppelt sind, sind 8 - 2 = 6 reellen Parametern in Überein­
stimmung mit der Zahl der Transformationsparameter der LORENTz-Gruppe 
äquivalent. 
, Die Transformation (80,2) und die zu ihr komplex konjugierte erweisen sich 

somit als völlig verschieden. Daraus folgt, daß es in der relativistischen Theorie 
zwei Spinortypen gibt. Um diese zwei Typen voneinander zu unterscheiden, 
werden spezielle Bezeichnungen verwendet : Die Indizes der Spinorkompo­
nenten, die sich nach den komplex konjugierten Formeln (80,2) transformieren, 
werden als Ziffern mit einem darüber liegenden Punkt (punktierte Indizes) 
geschrieben : 

n = (�:) . (80,6) 

Der Zusammenhang zwischen den Transformationsgesetzen dieses Spinors und 
des Spinors �* wird durch die Regel . . 

n1 ,...., �z* , nz ,...., - �1* (80,7) 
hergestellt (das Zeichen ,...., bedeutet hier und im weiteren Text dieses Para­
graphen die Wörter "transformiert sich wie"). 

Wie schon gesagt, enthält die LORENTz-Gruppe u. a. auch die rein räum­
lichen Drehungen - Drehungen des dreidimensionalen Koordinatensystems. 
Diesen Transformationen gegenüber verhalten sich die 4-Spinoren genau so 
wie die dreidimensionalen Spinoren. Dabei verschwindet natürlich der Unter­
schied zwischen den punktierten und nichtpunktierten 4-Spinoren, d. h., 
beide Typen transformieren sich auf die gleiche Weise. Eben darin besteht 
sozusagen auch der Sinn der Einführung der punktierten 4-Spinoren nach 
der Regel (80,7). Tatsächlich, ein konjugiert komplexer dreidimensionaler 
Spinor transformiert sich (wie aus § 43 bekannt) nach der Regel �1* ,...., �2, 
�2* ,.._ - �1 ; ein Vergleich mit (80,7) zeigt, daß folglich bezüglich räumlicher 
Drehungen auch 

(80,8) 
gilt. 
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Ein 4-Spinor höherer Stufe wird als Gesamtheit von Größen definiert, die 
sich wie Produkte von Komponenten mehrerer Spinoren erster Stufe trans­
formieren. Dabei können unter den Indizes des Spinors höherer Stufe sowohl 
punktierte als auch nichtpunktierte Indizes auftreten. So existieren z. B. drei 
Spinortypen 2ter Stufe :1) 

�"'ß ,..._, �"' Eß , C"'ß. ,..._, �"' r/, r/ß. ,..._, rj"'.Hß . (80,9) 

Ein Spinor 2ter Stufe besitzt 2 · 2 = 4 Komponenten. Wenn beide seiner 
Indizes von derselben Art sind (beide punktiert, bzw. beide nichtpunktiert), so 
kann man den Spinor in einen symmetnischen 1/2 (�"' ß + �ß"')  und einen anti­
symmetrischen Teil 1/2 (e"'ß - �ß"')  zerlegen. Der antisymmetrische Teil hat 
nur eine Komponente, 1/2 (�12 - �21), die einen Skalar darstellt (vgl. mit dem 
Skalar (80,4)). Der symmetrische Teil hingegen ist eine Gesamtheit von drei 
unabhängigen Größen (�u, �22, 1/2 (�12 + �21)) , die sich bei Transformationen 
der LORENTz-Gruppe durcheinander ausdrücken. 

Für einen Spinor "gemischten" Typs, �"'ß, ist die Reihenfolge der punk­
tierten und nichtpunktierten Indizes im allgemeinen nur durch Vereinbarung 
festgelegt, da diesen Indizes verschiedene Transformationsgesetze entsprechen. 
Alle vier Komponenten eines solchen Spinors drücken sich dabei durcheinander 
aus und diese Zahl kann durch keinerlei Linearkombinationen von Spinor­
komponenten reduziert werden. Ein 4-Vektor besitzt auch vier Komponenten 
und diese .Komponenten transformieren sich ebenfalls bei LoRENTz-Transfor­
mationen untereinander. Es ist deshalb klar, daß es zwischen den Kompo­
nenten eines gemischten 4-Spinors 2ter Stufe und den Komponenten eines 
4-Vektors einen bestimmten Zusammenhang geben muß.  

Dieser Zusammenhang wird durch folgende Formeln geliefert : 

c12 = as + ao , 
cu = - at + i a2 , 

(80,10) 

wobei a" = (a0, a) irgendein 4-Vektor ist. Die Richtigkeit dieser Formeln ergibt 
sich aus folgenden Überlegungen. 

Wie schon erwähnt, verschwindet bezüglich räumliche!' Drehungen der Unter­
schied zwischen punktierten und nichtpunktierten Spinoren, wobei sich sowohl 
die einen als auch die anderen dabei wie dreidimensionale Spinoren verhalten, 
Aus diesem Grunde muß sich die Gesamtheit der drei Größen 

wie ein dreidimensionaler symmetrischer Spinor 2ter Stufe verhalten, und die 
angeführten Formeln müssen mit dem in § 41 erhaltenen Zusammenhang zwi­
schen den Komponenten eines · solchen Spinors und den Komponenten eines 

. 1) Mit den ersten Buchstaben des griechischen Alphabets («, ß, . . .  ) bezeichnen wir in 
§§ 80-82 Spinorindizes, die die Werte I, 2 durchlaufen. 
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dreidimensionalen Vektors zusammenfallen ; ein Vergleich mit den Formeln 
(41,9) zeigt, daß diese Bedingung in der Tat erfüllt ist. 

Die antisymmetrische Kombination ;12 - ;21 transformiert sich (bei allen 
Transformationen der LoRENTz-Gruppe) wie die Differenz ;1 'YJ2 - ; 2 'YJi ; m 
Übereinstimmung mit der Definition (80,7) ist dies der Beziehung 

äquivalent. 
Eine solche Summe muß jedoch, wie s�hon in Verbindung mit (80,5) unter­

strichen wurde, die zeitliche Komponente eines 4-Vektors darstellen. Diese 
Bedingung ist ebenfalls erfüllt, denn in Übereinstimmung mit (80,10) gilt 

1 . . _ (C12 _ C21) = ao . 
2 

§ 81. Die Inversion von Spinoren 

Bei der Diskussion der dreidimensionalen Theorie der Spinoren (in § 41) haben 
wir deren Verhalten gegenüber der Operation der räumlichen Inversion nicht 
betrachtet, da dies in der nichtrelativistischen Theorie zu keinerlei neuen 
physikalischen Ergebnissen geführt hätte. Wir verweilen jedoch jetzt etwas 
bei dieser Fragestellung, da dies dem besseren Verständnis der sich anschlie­
ßenden Betrachtung der Inversionseigenschaften der 4-Spinoren dient. 

Die Inversion kehrt die Richtungen der räumlichen x-, y-, z-Koordinaten­
achsen um. Nach einer zweimaligen Inversion kommt man zum ursprünglichen 
Koordinatensystem zurück. Im Fall von Spinoren kann die Rückkehr zur 
anfänglichen Lage jedoch unter zwei verschiedenen Gesichtspunkten betrachtet 
werden : als eine Drehung des Systems um 0° oder um 360°. Für Spinoren sind 

diese beiden Operationen nicht äquivalent, da ein Spinor 1p = (::) bei einer 

Drehung um 360° das Vorzeichen ändert. Deshalb sind zwei alternative Kon­
ventionen für die Spinorinversion möglich : Eine zweifache Inversion läßt den 
Spinor unverändert bzw. ändert dessen Vorzeichen. Die Wahl einer dieser 
zwei Definitionen hat keinen Einfluß auf die im folgenden besprochenen physi­
kalischen Resultate ; wir legen uns der Bestimmtheit wegen auf die erste fest, 
d. h. ,  es sei : 

A 

P2 = + 1 .  (81,1)  

Die Inversion der Koordinaten ändert das Vorzeichen von Polarvektoren, 
läßt aber Axialvektoren unverändert. Zu den l�tzteren gehören die Vektoren 
des Drehimpulses, u. a. auch der Vektor des Spins. Deshalb ändert sich also 
auch die Projektion des Spins auf die z-Achse nicht. Hieraus folgt, daß sich 
bei der Inversion jede der Komponenten 1p1, 1p2 eines dreidimensionalen Spinors 
(die für einen bestimmten Wert s. zuständig ist) nur durch sich selbst trans-
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formieren kann. In Übereinstimmung mit (81,1) heißt das : 

P tp"" = ± tp"" (()( = 1, 2) . (8 1,2) 

Wir müssen aber unterstreichen, daß die Zuordnung dieser oder jener Parität 
(+ 1 oder - 1) für den Spinor keine absolut zu verstehende Bedeutung hat, 
da der Spinor bei einer Drehung um 2 n sein Vorzeichen wechselt, und diese 
Drehung in jedem Fall gleichzeitig mit der Inversion durchgeführt werden 
kann. Abso\uten Charakter besitzt aber die "relative Parität" zweier Spinore tp 
und q;, die als Parität des aus ihnen gebildeten Skalars 1p1 q;2 - 1p2 q;1 definiert 
ist ; da bei einer Drehung um 2 n alle Spinoren gleichzeitig ihr Vorzeichen 
ändern, hat die damit verbundene Unbestimmtheit keinen Einfluß auf die 
Parität ( - 1  oder + 1 )  des angeführten Skalars. 

Wir wenden uns jetzt den vierdimensionalen Spinoren zu. 
Die Forderung, daß sich nur Größen, die zu den gleichen Werten Sz gehören, 

untereinander transformieren, bleibt verständlicherweise auch in diesem Fall 
erhalten. Es kann dies aber schon nicht mehr die Transformation (81,2) (und 
dieselbe für die punktierten Spinoren) sein, wie z. B. aus folgenden Über­
legungen ersichtlich ist. Als Folge von (81,2) würden sich auch die Kompo­
nenten von 4-Spinoren höherer Stufe nur in sich selbst transformieren. 
Das würde aber den Formeln (80,10) widersprechen : Bei der Inversion der 
räumlichen Koordinaten ändern die Komponenten a1, a2, a3 eines (polaren) 
Vektors a ihr Vorzeichen, ao bleibt jedoch unverändert ; deshalb können sich 
C12 und C21 prinzipiell nicht in sich selbst transformieren. 

Eine Inversion muß also die Komponenten eines 4-Spinors e"" in andere 
Größen transformieren. Solche Größen können nur die Komponenten eines 
anderen Spinors rt sein, der ein anderes Transformationsverhalten zeigt als e"". 
Wenn man wiederum die Inversion als Operation versteht, die der Bedingung 
(81,1)  genügt, kann man das Ergebnis ihrer Anwendung mit Hilfe der Formeln 

� 0 

P e"" = rJ"" , P rt = e"' (81,3) 

definieren . Bei zweifacher Wiederholung dieser Operation gehen in Überein- . 
stimmung mit der Definition (81,1) �"' bzw. ri" in sich selbst über. 

Auf diese Weise fordert die Einbeziehung der Inversion in die Reihe der 
zulässigen Symmetrietransformationen die gleichzeitige Betrachtung eines 
Spinarenpaares (�"', 'I'J"') ; ein solches Paar wird als Bispinor bezeichnet. 

§ 82. Die DIRAc-Gleichung 

Am wichtigsten ist der Fall des Spins 1/2, zu dem der größte Teil der Elementar­
teilchen gehört. Wie aus dem eben Besprochenen klar hervorgeht, ist die 
Wellenfunktion, die solche Teilchen in der relativistischen Theorie beschreibt, 
ein Bispinor ; sie stellt eine Gesamtheit von vier Komponenten dar anstelle 

17 Kurzfassung II 
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der zwei Komponenten der Spinorwellenfunktion der nichtrelativistischen 
Theorie. Wir ,kommen jetzt zur Ableitung der Wellengleichung, der die Bi­
spinorwellenfunktion eines freien Teilchens genügen muß. 

Aus den gleichen Überlegungen, wie sie in § 79 dargelegt wurden, ist von 
vornherein klar, daß bei jeder Komponente der Wellenfunktion im Resultat 
der Anwendung des Operators pl' p�' der Faktor m2 auftauchen muß, d. h., daß 
jede Komponente der KLEIN-FOCK-Gleichung genügen muß. Von vornherein ist 
jedoch auch offensichtlich, daß im gegebenen Falle diese Gleichung zweifellos 
nicht hinreichend ist. Tatsächlich, von den vier Komponenten der Bispinor­
wellenfunktion können nur zwei linear unabhängig sein, entsprechend der Zahl 
von Werten, die die Projektion des Spins 1/2 annehmen kann. Das vollständige 
System der Wellengleichungen muß folglich eine lineare differentielle Kopplung 
zwischen den Komponenten des Bispinors beinhalten, die mit Hilfe des Ope­
rators p�' = i ofox�' verwirklicht wird, wobei diese Kopplung offensichtlich 
durch relativistisch invariante Beziehungen ausgedrückt sein muß. 

Da die Wellenfunktion aus einem Satz von zwei Spinoren (wir bezeichnen 
sie mit �"' und 17.;.) besteht, erscheint es für das Erreichen des vorgegebenen 
Ziels natürlich, anstelle des 4-Vektors p�' den ihm (gemäß (80, 10)) äquivalenten 
Spinoroperator 2-ter Stufe p"'iJ mit den Komponenten 

pl2 = :pa + :po , 
:Pli = - pl + i p2 , 

einzuführen. 

(82, 1)  

Wir wenden den Operator p"'ß auf den Spinor �"' an und bilden (nach der 
Regel (80,4)) das Skalarprodukt hinsichtlich des Paares nichtpunktierter In­
dizes : 

:ptti �2 _ :p2ß �� . 

Dieses Produkt ist noch ein Spinor erster Stufe bezüglich des punktierten 
Indexes ; es kann sich als� nur durch den punktierten Spinor 'YJß ausdrücken 
lassen. Somit erhält man die Gleichung 

(82,2 a) 

mit m - einer Konstanten (die, wie aus dem Folgenden ersichtlich, die Teil­
chenmasse ist). Analog erhält man nach Anwenden des Operators p"'ß auf den 
Spinor 17/J unter Bildung des Skalarproduktes bezüglich des punktierten Index­
paares die Gleichung 

(82,2b) 

Die relativistische Invarianz dieser Gleichungen wird automatisch durch die 
Spinorschreibweise gewährleistet : Auf beiden Seiten jeder Gleichung st.ehen 
Spinoren des gleichen Typs (punktiert bzw. nichtpunktiert), die sich bei 
LoRENTz-Transformationen nach ein und denselben Regeln transformieren. 
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Die relativistische Wellengleichung, die durch das System (82,2) wieder­
gegeben wird, heißt DIRAc-Gleichung (sie wurde 1928 von P. A. M. DrnAc auf­
gestellt). 

Nach Einsetzen der Ausdrücke (82,1 )  für die Operatorkomponenten p"'ß in 
die Gleichungen (82,2) erhält man 

Po ;1 - Px ;2 + i Pv ;z - Pz ;1 = m rJi. , 

} Po ;z - Px ;1 - i Pv ;1 + Pz ;2 = m ?]2 , 
Po rJi + Px rJ2 - i Pv rJ2 + Pz rJi. = m ;1 , 

} Po rJ2 + Px rJi + i Pv 17i - Pz rJ2 = m ;2 

(82,3) 

mit Po = i ojot ; Px, py, Pz sind die drei Komponenten des Vektoroperators 
p = - i 'V. 1 

Für ein freies Teilchen, das sich mit einem bestimmten Impuls p und der 
Energie e bewegt, sind alle Komponenten der Wellenfunktion dem Faktor 
ei (p r-•t> (ebene Welle) proportional. Das Anwenden des Operators p0 führt 
zur Multiplikation einer solchen Funktion mit e und das Anwenden des Ope­
rators p zur Multiplikation mit p. Also läßt sich das System von Differential­
gleichungen (82,3) auf ein System homogener linearer algebraischer Gleichungen 
zurückführen : 

(e - Pz) ;1 - (Pz - i p11) ;z = m rj1 , 
} - (Pz + i Pv) ;1 + (e + Pz) ;2 = m rj2 , 

. . 

(e + Pz) ?]1 +, (Pz - i p11) rj2 = m ;1 , 
. . 

(Pz + i P11) ?]1 + (e - Pz) rj2 = m ;2 • } 
(82,4) 

Jedes dieser zwei Gleichungspaare bestimmt zwei Komponenten des Bi­
spinors bei vorgegebenen zwei restlichen Komponenten. Damit diese beiden 
Gleichungspaare miteinander verträglich sind, muß z. B. das Einsetzen von 
rJi und 1]2 aus dem ersten �aar in das zweite zu einer Identität führen. Wie 
man sich leicht überzeugen kann, muß dafür 

102 _ p; -'-- p� _ p: = 102 _ p2 = m2 

erfüllt sein ; dies entspricht gerade dem relativistischen Zusammenhang zwischen 
der Energie des Teilchens und seinem Impuls, wenn m die Teilchenmasse ist. 
Damit ist der Sinn der in die Gleichung (82,2) eingeführten Konstante m geklärt. 

Der Tatbestand, daß von den vier Komponenten der Bispinorwellenfunktion 
eines freien Teilchens nur zwei unabhängig vorgehbar sind, steht im Einklang 
damit, daß sich bei vorgegebenem Impuls die Teilchenzustände nur noch durch 
die Spinprojektion unterscheiden können, die insgesamt nur zwei verschiedene 
Werte annehmen kann. 

Im nichtrelativistischen Grenzfall kleiner Geschwindigkeiten darf das Teil­
chen nur durch eine zweikomponentige Größe - einen dreidimensionalen 



246 Kapitel XII. Die DIRAC-Gleichung 

Spinor - beschrieben werden. Wenn die Geschwindigkeit v --+  
0 

geht, strebt 
der Impuls p ebenfalls gegen Null, und die Energie e strebt gegen die Ruhe­
energie m (m c2 - in gewöhnlichen Maßeinheiten) .  Aus den Gleichungen (82,4) 
folgt dann �" = 'YJ", d. h., beide Spinoren, die den Bispinor · bilden, sind in 
der Tat gleich. 

Die beiden Gleichungspaare (82,3) kann man mit Hilfe de� PAULI-Matrizen 

ax = G �) '  av = (� -�) ' az = (� -�) (82,5) 

(die schon in § 40 eingeführt wurden) in kürzerer Form schreiben. Vereinigt 
man diese drei Matrizen zu einem "Matrizenvektor" a, so sieht die Kurzschreib­
weise des Gleichungspaares (82,3) wie folgt aus : 

(Po - p a) � = m 1') , (p0 + p a) 'YJ = m � • (82,6) 
Wie immer verstehen wir unter der Multiplikation der PAULI-Matrizen mit den 
zweikomponentigen Größen ; oder 'YJ eine Multiplikation nach der üblichen Ma­
trizenregel : Die Zeilen der Matrix werden mit den Spalten � bzw. 'YJ multi ­
pliziert ; z. B. ist 

usw. 

(0 ") (�1) ( . �2) 
av � = 

i -� �2 = -: �1 

§ 83. Die DIRAc-Matrizen 

Die Spinorschreibweise der DIRAc-Gleichung ist in dem Problem dem Sinne 
angepaßt, daß sie unmittelbar die relativistische Invarianz der Gleichung 
hervorhebt. Nachdem auf diese Weise die Form der Gleichung gefunden ist, 
kann man mit gleichem Recht für die vier unabhängigen Komponenten der 
Wellenfunktion irgendwelche andere linear unabhängige Kombinationen der 
ursprünglichen Komponenten wählen. Beim Umgang mit der DIRAc-Gleichung 
ist es oftmals bequemer, sie in ihrer allgemeinsten Schreibweise zu benutzen, 
für die die Art der Wahl der Komponenten der Wellenfunktion nicht von 
vornherein festgelegt ist. 

Wir werden die vierkomponentige Wellenfunktion mit dem Symbol lJf be­
zeichnen. Sie besitzt die Komponenten Pi, die durch die Indizes i = 1, 2, 3, 4 
numeriert sind. Die Wellenfunktion kann als Spalte1) dargestellt werden : 

(83, 1 ) 

1) Für eine zweckmäßige Gestaltung der Ausdrücke verabreden Wir, die vierkomponentige 
Größe lJF nicht nur im Falle ihrer Spinordarstellung, sondern auch in jeder beliebigen 
Darstellung Bispinor zu nennen. Dementsprechend werden auch die Indizes, die ihre 
Komponenten numerieren, als Bispinorindizes bezeichnet. 
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Das System der DIRAc-Gleichungen schreiben wir in der Form : 
PI' Y�k IJI�c = m IJI1 , (83,2) 

wobei y�" (f-l = 0, 1, 2, 3) vierspaltige Matrizen mit den Elementen �k (i, k 
= 1 ,  2, 3, 4) sind ; die Summation auf der linken Seite von (83,2) wird sowohl 
über den Matrizenindex (Bispinorindex) k als auch über den 4-Vektorindex t-t 
ausgeführt.l) Die Matrizenindizes werden gewöhnlich weggelassen, so daß die 
Gleichung in symbolischer Form 

mit 
[y�' p - m] lJI = 0 (83,3) . I' 

(83,4) 

lautet. Das Symbol y steht für den dreidimensionalen "Matrizenvektor" mit den 
Komponenten y1, y2 und y3• Die Darstellung von tp i:ri Form einer Spalte 
(83,1) führt dazu, daß die Multiplikation der Matrix y�' mit tp in (83,3) gemäß 
der gewöhnlichen Matrizenregel vor sich geht : Jede Zeile der Matrix y�' multi­
pliziert sich mit der Spalte tp: 

(y�' IJI)t · rtk IJI1c .  (83,5) 
Die Matrizen y�' heißen DmAc-Matrizen. Im allgemeinen Falle einer belie­

bigen · Darstellung der Wellenfunktion müssen sie nur den Bedingungen ge­
nügen, daß die Gleichung 

(p�' PI') lJI = m2 lJI 
erfüllt ist - jede Komponente tp muß der KLEIN-FocK-Gleichung genügen. 

Zum besseren Verständnis dieser Bedingungen multiplizieren wir (83,3) von 
links mit y• P.· Wir erhalten 

(y• P.) (y�' PI') tp = (y' P.) m lJI = m2 tp .  
Da alle Operatoren p�-' untereinander vertauschbar sind, ist das Produkt pl' p, 
ein symmetrischer Tensor : p�-' Pv = p. p�-'. Das Produkt y�' y• zerlegen wir in 
einen symmetrischen und einen antisymmetrischen Teil : 

1 1 
y' yl' = 2 (y• y�' + yl' y' )  + 2 (y• y�' - y�' y' ) . 

1) Zur Illustration schreiben wir die Ausdrücke für die Matrizen y�' auf, die der Spinor· 
darstellung der Wellenfunktion entsprechen. Wenn 'P1 = i1, 'P2 = i2, 'Pa = �1, 'Pa � TJ2 
ist, so haben wir · 

y
0 = (� � � r) . y1 =·(g � -! -�) · 

0 1 0 0 1 0  0 0 

(0 0 O i) (0 0 1 0) 
0 0 -i 0 3 0 0 -0 1 'Y2 = ? -i 0 0 ' y 

= 1 0 0 0 
. 

• 0 0 0 0 - 1  0 0 
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Nach der Multiplikation mit p. p"' verschwindet der letzte Teil, so daß 
1 A A 'I' 'I' 2 (y' Y"' + Y"' y• ) Pv PP. = m2 

verbleibt. Damit der Operator der linken Seite der Gleichung auf p"' P"' zurück­
geführt werden kann, müssen alle Matrizenpaare mit p. =1= v antikommutieren 
(y"' y• = - y• y"') und die Quadrate der Matrizen gleich 

(yl)2 = (y2)2 = (ya)2 = I , (y0)2 = _ I (83,6) 
sein (die I auf den rechten Seiten der Gleichungen ist natürlich als Einheits­
matrix zu verstehen).  Alle diese Bedingungen kann man in der zusammen­
gefaßten Form 

(83,7) 

schreiben ; g"'' ist der sogenannte metrische Tensor mit den Komponenten 

(-I 0 0 0) 
0 I 0 0 

g"' • = g"' , = 0 0 I 0 . 
0 0 0 I 

(83,8) 

Die Gleichungen (83,7) bestimmen alle Eigenschaften der DIRAc-Matrizen, 
die notwendig sind, um mit ihnen operieren zu können. Im allgemeinen ist es 
nicht notwendig, jeweils zu konkreten Darstellungen dieser Matrizen überzu­
gehen� 

Die DIRAc-Gleichung kann in einer Form dargestellt werden, in der die Ab ­
leitung nach der Zeit explizit auftritt, so daß es für Teilchen mit dem Spin 1/2 
möglich ist, den Begriff des HAMILTON-Operators einzuführen. Indem wir die 
Gleichung 

von links mit y0 multiplizieren, führen wir den Koeffizienten bei i o'I'jot auf 
eins zurück (genauer - auf die Einheitsmatrix). Somit erhalten wir 

. a'P A 0 'I' � Tt = (yo y p + m y ) . 

Der Operator, der auf der rechten Seite dieser Gleichung auf 'I' angewendet 
wird, ist also der HAMILTON-Operator des Teilchens. Gewöhnlich schrei,!>t man 
ihn in der Form 

(83,9) 

unter Einführung spezieller Bezeichnungen für die Matrizen : oc = y0 y, ß = y0• 
Man kann sich leicht (mit Hilfe der Beziehungen (83,7)) davon überzeugen, 
daß das Quadrat des Operators (83,9) gleich 

jj2 = p2 + m2 
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ist, wie zu erwarten war. In diesem Sinne kann man sagen, daß deu Ausdruck 
(83,9) die Quadratwurzel aus der Summe p2 + m2 darstellt. 

Am Ende des vorhergehenden Paragraphen wurde unterstrichen, daß im 
Grenzfall kleiner Geschwindigkeiten die beiden Spinoren � und 'YJ, die den Bi­
spinor lJI bilden, einander gleich werden. Hierbei zeigt sich jedoch ein gewisser 
Nachteil der Spinorschreibweise der DmAc-Gleichung : Beim Grenzübergang 
bleiben alle vier Komponenten der Wellenfunktion von Null verschieden, ob­
gleich in Wirklichkeit nur zwei von ihnen unabhängig voneinander sind. Des­
halb kann sich solch eine Darstellung der Wellenfunktion als praktischer er­
weisen, bei der zwei ihrer Komponenten im Grenzfall verschwinden. 

Dieses Ziel wird durch das Einführen von Linearkombinationen aus � und 'YJ 

erreicht bzw. (in ausgeschriebener Form) : - (f/Jl) -_1 (�\ + 'YJ�) q; - f/J2 - V2 �2 + 'Y/2 ' 

(83, 10) 

Für ein ruhendes Teilchen ist dann X = 0. Die Darstellung, in der als lJ'-Kom­
ponenten q;1, q;2, XI> x2 auftreten, heißt Standarddarstellung. Wir benutzen sie 
in § 93 bei der Untersuchung der Bewegung eines Elektrons in einem· �ußeren 
Feld. Hier schreiben wir die DmAc-Gleichung in dieser Darstellung zunächst 
für ein freies Teilchen auf. Indem man die Gleichungen (82,6) gliedweise 
summiert bzw. subtrahiert, ergibt sich 

A A 

Po q; - p a X = m q; ' 
- Po X + P a q; = m X · 

(83, 11) 

§ 84. Die Stromdichte in der DIRAc-Gleichung 

Wir konstruieren jetzt zwei Größen, die für die DmAc-Gleichung die Rolle der 
Teilchendichte e und des Teilchenstromesj spielen. In der relativistischen 
Theorie bilden diese Größen den 4-Vektor j" = (g, j) .  Sie genügen der Kon­
tinuitätsgleichung, die sich in vierdimensionaler Form als 

8jJJ - = 0 (84, 1) axJJ 
darstellt (vgl. I § 53). Diese Gleichung drückt den Erhaltungssatz für die 
Größe 

Q = J e dV (84,2) 

aus. In der nichtrelativistischen Theorie ist das einfach der Erhaltungssatz 
für die Zahl der Teilchen ; in der relativistischen Theorie hingegen ändert sich 
der Sinn des durch die Gleichung (84,1)  ausgedrückten Gesetzes, wie in § 86 
gezeigt wird. 
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Die Größen j'" stellen bilineare Ausdrücke in der Wellenfunktion 'P und der zu 
ihr komplex konjugierten Größe 'P* dar. Um diese Ausdrücke zu erhalten, 
ist es deshalb notwendig, zuerst die Form der Gleichung aufzufinden, der die 
Funktion 'P* genügt. Die Wellenfunktion selbst erfüllt die DIRAc-Gleichung 

(p'" y'" - m) 'P = (i y0:e + i y V - m) 'P = O .  (84,3) 

Die komplexe Konjugation liefert 

(- i yO* :e - i y*  V - m) 'P* = 0 .  

Aus den in der Fußnote auf Seite 247 enthaltenen Ausdrücken für die Ma­
trizen y'" folgt. 

y+ = - y '  (84,4) 

d. h. ,  die Matrix y0 ist hermitesch, während die Matrizen y1, y2, y3 "anti­
hermitesch" sind (wir erinnern daran, daß das Zeichen r--.J die Transponierung, 
d. h. das Vertauschen von Zeilen Und Spalten einer Matrix, bedeutet).1) Des­
halb gilt yo* = y0, y*  = - ji*,  so daß wir 

(- i ji0 0� + i y V - m) 'P* = 0 

erhalten. Um zu den ursprünglichen (nichttransponierten) Matrizen zurück­
zukehren, bemerken wir, daß . 

r'" 'P* = rfk 'P: = 'P: rri = 'P* y'" 
ist ; in der symbolischen Schreibweise 'P* y'" (ohne Matrixindizes) ist 'P* als 
die Zeile 

'P* = ('Pt,  'P:,  'Pa*, 'P: ) 
zu verstehen, die mit den Spalten der Matrix y'" zu multiplizieren ist. Hiermit 
erhalten wir 

'P* (- i y� 0� + i y V - m) = 0 , 

wobei angenommen wird, daß die Differentialoperatoren auf die links von ihnen 
stehende Funktion 'P* angewendet werden. Da sich die Vorzeichen des ersten 
und zweiten Gliedes des Klammerausdruckes unterscheiden, können sie noch 
nicht zu einer vierdimensionalen Form gebracht werden. Um diese Unzuläng­
lichkeit zu überwinden, multiplizieren wir die ganze Gleichung mit y0, und 
durch y y0 = - y0 y gewinnen wir 

'Jf* yo ( i yo :e + i y 'il + m) = 0 . 

1) Die Ausdrücke auf S. 247 beziehen sich auf eine konkrete Darstellung der Matrizen 
(Spinordarstellung) ; die Eigenschaften (84,4) hängen aber in Wirklichkeit nicht von der 
Darstellung ab. 
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Die Funktion 'P* yo heißt DmAc-konjugiert in bezug auf die Funktion 'P und 
wird mit einem über dem Symbol 'P befindlichen Strich geschrieben : 

'Jf = 'Jf* yO '  'Jf* = 'Jf yO • (84,5) 
Somit erhalten wir endgültig 

'P (p" y" + m) = 0 .  (84,6) 
Jetzt ist es nicht mehr schwierig, einen Ausdruck für die Stromdichte als 

4-Vektor zu finden, der die Kontinuitätsgleichung (84, 1) erfüllt. Dazu multi­
plizieren wir die Gleic;hung (84,6) von rechts mit 'P, die Gleichung (84,3) von 
links mit 'P* und addieren beide gliedweise. Die Glieder ± m 'P* 'P kürzen 
sich dabei gegenseitig, und es verbleibt 

alJ' - alJ' a -
i ox�' Y" 'P + i 'P Y" ox�' = i ox�' ('P Y" 'P) = 0 · 

Diese Beziehung hat in der Tat die Form der Kontinuitätsgleichung, in der die 
Rolle der Stromdichte der 4-Vektor 

j" = 'P y" 'P (84,7) 

spielt (in der ausführlichen Schreibweise mit Matrixindizes :  j" =·'Pt yfk 'Pk)· 
Die zeitliche Komponente des 4-Vektors (84,7) ist gleich der Teilchendichte 

(84,8) 
und die drei räumlichen Komponenten bilden den dreidimensionalen Strom­
vektor 

j = 'P " 'P = 'P* oc 'P (84,9) 

mit oc = y0 y dem "Matrixvektor", der schon in (83,9) eingeführt wurde. Wir 
möchten die Aufmerksamkeit darauf lenken, daß oc hier die Rolle des Operators 
der Teilchengeschwindigkeit spielt. 

Die Beziehung (84,7) wird jetzt zur Normierung der ebenen Welle - der 
Wellenfunktion des Zustandes eines freien Teilchens mit bestimmten Werten 
für den Impuls p und der Energie s - benutzt. Mit dem Ziel, die Normierung 
"1  Teilchen im Volumen Q" zu gewinnen, schreiben wir die Welle in der 
Form 

'P = y� u(p) e- i <• t -pr) ;  (84,10) 

die Wellenamplitude u(p) _ u(s, p) ist ein konstanter Bispinor, der vom 
4-lmpuls des Teilchens abhängt. Die Komponenten dieses Bispinors genügen 
dem algebraischen Gleichungssystem 

(y" p" - m) u = 0 ,  (84,11) 

das beim Einsetzen von (84,10) in die DmAc-Gleichung (84,3) erhalten wird 
(die Operatoren p" gehen dabei einfach in die Größen p" über). Wir zeigen 
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riun, daß man die geforderte Normierung der Funktion (84, 10) erhält, wenn 
die Amplitude u(p) durch die Bedingung 

m 
U U = ­e (84, 12) 

normiert wird. In der Tat, nach Multiplikation der Gleichung (84, 11) von 
links mit u erhält man 

- - m2 
(u yP. u) p = m(u u) = - . P. e 

Daraus ist zu sehen, daß u yP. u = pP./e ist, so daß sich der 4-Vektor des Stromes 
als 

- 1 pP. r = 'Ji yP. 'l' = - - u yP. u = -n !Je (84,13) 

ergibt . Die Teilchendichte ist dabei (! = pOfe Q = 1/Q und liefert somit 
gerade die geforderte Normierung. Die dreidimensionale Stromdichte hat den 
Wert j = p/e Q = vfQ mit v als Teilchengeschwindigkeit. 



Teilchen und Antiteilchen 

§ 85. 'P-Operatoren 

XIII 

In Kapitel XI haben wir gezeigt, auf welche Weise man ein freies elektro­
magnetisches Feld quantentheoretisch beschreiben kann. Dabei sind wir von 
den bekannten Eigenschaften des Feldes im klassischen Grenzfall ausgegangen 
und haben uns auf die Vorstellungen der üblichen Quantenmechanik ge­
stützt. Die so erhaltene Beschreibung des Feldes als Photonensystem besitzt 
viele Züge, die auch auf die relativistische Beschreibung von Teilchen in der 
Quantentheorie übertragen werden können. 

Das elektromagnetische Feld ist ein System mit unendlich vielen Freiheits­
graden. Es existiert kein Erhaltungssatz für die Teilchenzahl (Photonenzahl) ,  
und unter den möglichen Zuständen gibt es Zustände mit beliebigen Teilchen- . 
zahlen.1) In einer relativistischen Theorie müssen auch Systeme beliebiger 
Teilchen im allgemeinen diese Eigenschaft haben. Die Erhaltung der Teilchen­
zahl in der nichtrelativistischen Theorie hängt mit dem Erhaltungssatz für die 
Masse zusammen : Die Summe der Teilchenmassen (Ruhmassen) ändert sich 
bei einer Wechselwirkung nicht ; die Erhaltung der Gesamtmasse in einem 
Teilchensystem bedeutet aber auch, daß die Teilchenzahl tinveränderlich ist. 
In der relativistischen Mechanik gibt es keinen Erhaltungssatz für die Masse, 
es muß nur die Gesamtenergie eines Systems erhalten bleiben (die die 
Ruhenergien der Teilchen mit einschließt) .  Deshalb braucht die Teilchen­
zahl nicht mehr erhalten zu bleiben, und jede relativistische Theorie für 
Teilchen muß eine Theorie mit uneJ;J.dlich vielen Freiheitsgraden sein. Eine 
solche Theorie wird mit anderen Worten den Charakter einer Feldtheorie 
annehmen. 
- Der zur Beschreibung von Systemen mit veränderlicher Teilchenzahl adä­
quate mathematische Apparat ist der Apparat der zweiten Quantisierung, in 
dem die Besetzungszahlen für die verschiedenen Teilchenzustände die Rolle 
der unabhängigen Variablen spielen. Bei der quantentheoretische� Beschrei­
bung des elektromagnetischen Feldes übernimmt das 4-Potential A die Rolle 
des Operators der zweiten Quantisierung. Es wird durch die Wellenfunktionen 
der einzelnen Photonen und deren Erzeugungs- und Vernichtungsoperatoren 
ausgedrückt. Bei der Beschreibung eines Systems von Teilchen spielt der 
Oper�tor der quantisierten Wellenfunktion eine ähnliche Rolle. 

1) Natürlich ändert sich die Zahl der Photonen praktisch nur im Ergebnis verschiedener 
Wechselwirkungsprozesse. 
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Die in diesem Paragraphen anzustellenden Überlegungen sind in gleichem Maße 
für Teilchen mit beliebigem Spin gültig. Wir werden deshalb die mathematische 
Struktur der Wellenfunktionen nicht genauer festlegen. Wenn wir eine ebene 
Welle in der Form 

(85,1 )  

schreiben, so soll das heißen, daß die Wellenamplitude u(p) (eine Funktion 
des 4-Impulses) ein Skalar (für Teilchen mit dem Spin 0), ein Bispinor (für 
Teilchen mit dem Spin 1/2) usw. sein kann. 

Nach den allgemeinen Regeln für die Durchführung der zweiten Quanti­
sierung müssen wir die Entwicklung einer beliebigen Wellenfunktion nach den 
Eigenfunktionen eines vollständigen Satzes möglicher Zustände eines freien 
Teilchens betrachten, zum Beispiel die Entwicklung nach ebenen Wellen P1,1) :  

P = I: aP PP , P* = I: a; P; . 
p p 

Anschließend müssen die Koeffizienten aP und a; als Vernichtungs- und Er­
zeugungsoperatoren aP bzw. a; für die Teilchen in den betreffenden Zuständen 
aufgefaßt werden. 

Dabei stoßen wir jedoch sofort auf folgenden (gegenüber der nichtrelativi­
stischen Theorie) neuen und ganz wesentlichen Sachverhalt. In einer ebenen 
Welle, die eine Lösung der Gleichung (85,1) ist, braucht die Energie (bei ge­
gebenem Impuls p) nur die Bedingung e2 = p2 + m2 zu erfüllen, d. h., sie kann 
zwei Werte annehmen : ± Vp2 + m2• Aber nur positive Werte von e sind für 
ein freies Teilchen physikalisch sinnvoll. Andererseits ist es unzulässig, die 
negativen Werte einfach wegzulassen : Die allgemeine Lösung der Wellen­
gleichung ist die Überlagerung aller unabhängigen speziellen Lösungen. Dieser 
Sachverhalt macht es erforderlich, die Interpretation der Entwicklungskoeffi­
zienten von P und P* bei .der zweiten Quantisierup.g in gewisser Weise abzu­
ändern. 

Wir schreiben diese Entwicklung in der Gestalt 

p = V
I 

1: a�+> u(e, p) e- i (e t - pr) 
[} p 

+ V
I 

1: a�-> u (- e, p) ei(e t + pr) • (85,2) 
[} p 

In der ersten Summe stehen die normierten ebenen Wellen mit positiven "Fre­
quenzen", in der zweiten Summe diejenigen mit negativen "Frequenzen" ; 
e ist überall die positive Größe e = + Vp2 + m2• Bei der zweiten Quanti­
sierung ersetzen wir die Koeffizienten a�+> in der ersten Summe in der �blichen 
Weise durch Teilchenvernichtungsoperatoren aP. 

1) Für Teilchen mit Spin muß die Summation ebenfalls über die Polarisationen der Teil­
chen ausgeführt werden ; den entsprechenden Index schreiben wir der Kürze halber nicht 
an. 
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In der zweiten Summe nehmen wir zunächst eine Umbenennung des Summa­
tionsindexesp in -p vor ; da sich die Summation über alle möglichen p-Werte er­
streckt, ändern sich dadurch weder das Summationsgebiet noch der Wert der 
Summe. Nach dieser Umbenennung nimmt der Exponentialfaktor unter dem 
Summenzeichen die Gestalt ei(• t -

P'�") an, die mit dem Ausdruck für den Exponen­
tialfaktor der komplex konjugierten Wellenfunktionen 'P; mit "positiven" Fre­
quenzen übereinstimmt. Bei der zweittim Quantisierung müssen solche Funk­
tionen mit Erzeugungsoperatoren multipliziert werden. DenJ.entsprechend 
ersetzen wir die Koeffizienten a�J durch die Erzeugungsoperatoren b"j; von 
Teilchen, die sich im allgemeinen von den Teilchen unterscheiden, zu denen die 
Operatoren aP gehören. Im Ergebnis dessen erhalten wir für die 'P-Operatoren 
unter Verwendung von u ( - p) = u(- B, - p) den Ausdruck 

'P = V� f { ap u(p)_e- i (et - P .. > + it; u(- p) ei <e t - P'�">} , 

� 1 � 

tp+ = v- I: { a: u*(p) ei (et - pr)+ bp u *(- p) e- i (e t -pr)} . 
[} p 

(85,3) 

Alle Operatoren aP und bp werden auf diese Weise mit Funktionen der 
"richtigen" Zeitabhängigkeit ("' e- iS:t) multipliziert, die Operatoren a"j; und 
b"j; werden mit den dazu konjugiert kompiexen Funktionen multipliziert. Das 
erlaubt in Einklang mit den allgemeinen Regeln, die Operatoren aP und bP 
als Vernichtungsoperatoren und at sowie b"j; als Erzeugungsoperatoren von 
Teilchen mit den Impulsen p und den Energien B zu interpretieren. 

Wir gelangen so zur Vorstellung von zwei Teilchensorten, die gemeinsam 
und gleichberechtigt vorkommen. Man spricht dabei von Teilchen und Anti­
teilchen (der Sinn der letzteren Bezeichnung wird im nächsten Paragraphen 
erklärt werden). Zu der einen Sorte gehören im Apparat der zweiten Quan�isierung 
die Operatoren aP und ai;, zur anderen bP und b"j;. Beide Teilchensorten, deren 
Operatoren in ein und denselben 'P-Operator eingehen, der wiederum ein und 
derselben Wellengleichung genügt, haben folglich die gleichen Massen. 

§ 86. Teilchen und Antiteilchen 

Zur weiteren Klärung der Eigenschaften und Beziehungen von Teilchen und 
Antiteilchen zueinander ist es notwendig, Ausdrücke für die Operatoren der 
Gesamtenergie und der Gesamtzahl der Teilchen des Systems zu gewinnen. Die 
Art und Weise der Ableitung dieser Ausdrücke hängt vom Spin der Teilchen ab ; 
wir betrachten im weiteren das Feld von Teilchen mit dem Spin 1/2 (oder das 
sogenannte Spinorfeld). 

Alles, was man für diesen Fall wissen muß, um die gesuchten Ausdrücke ab­
leiten zu können, ist die Tatsache, daß es für Teilchen, die mit Hilfe der DIRAC-
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Gleichung beschrieben werd�n, einen HAMILTON-Operator gibt und daß das 
Produkt 'P* lJf die Rolle der Te.ilchendichte spielt. Dieser Umstand erlaubt es 
sofort, die Ergebnisse zu benutzen, die in §§  4 7, 48 im Rahmen der nichtrelati vi­
stischen Theorie erhalten wurden (dort besaßen Teilchen mit beliebigem Spin 
beide angeführten Eigenschaften).1) 

Wir sahen, daß im mathematischen Apparat der zweiten Quantisierung der . � HAMILTON-Operator H eines Teilchensystems aus dem HAMILTON-Operator 
eines Teilchens fi<1> über das Integral 2) 

fj = f p+ H(l) p dV (86, 1) 

erhalten wird. In der nichtrelativistischen Theorie führte das zu einem trivialen 
Ergebnis. Beim Einsetzen der 'P-Operatoren 

ifi = 1: ap 'Pp , tJ+ = 1: a� 'P: (86,2) 
p p 

ergibt sich unabhängig von den Vertauschungsregeln der Operatoren aP, a� 
� �+ � H = }; eP aP aP (86,3) 

p 
mit fp als den Eigenwerten des HAMILTON-Operators fi(l>, d. h. den Energien 
des freien Teilchens. Die Eigenwerte der Operatorprodukte a; aP sind die 
Zustandsbesetzungszahlen NP ; die Eigenwerte für die Gesamtenergie des 
Systems ergeben sich deshalb aus der offensichtlichen Beziehung E = }; eP Np · 

Auf analoge Weise wurde auch das triviale Ergebnis für die Gesamtzahl der 
Teilchen des Systems gewonnen, deren Operator durch das Integral 

N = J P+ P dV (86,4) 

gegeben ist. Beim Einsetzen der 'P-Operatoren ergab sich 
� 

N = L a; ap , (86,5) 
p 

so daß die Eigenwerte N = }; NP sind. 
In der relativistischen Theorie hingegen ändert die Existenz negativer Eigen-

werte (ies Teilchen-HAMILTON�Operators fi<Il die Situation grundlegend. An­
stelle von (86,3) ergibt sich jetzt H� '""' �+ � . '""' b

� �b+ = "-' eP aP aP - "-' eP P P • p p 
(86,6) 

Die erste Summe beschreibt positive Eigenwerte eP = + Vp2 + m2 ; sie hat 
dieselbe Gestalt wie die Summe (86,3). Die zweite Summe beschreibt negative 
Eigenwerte - eP ; daher das Minuszeichen vor der Summe. Die (im Ver-

1) Wir erinnern gleichzeitig daran (§ 79), daß für relativistische Teilchen mit dem Spin 0, 
die durch die skalare KLEIN-FocK-Gleichung beschrieben werden, keine einzige dieser 
Eigenschaften zutriff� ! 

2) Der Index (1) am HAMILTON-Üperator des Teilchens wurde hier eingeführt, um 
ihn vom HAMILTON-Üperator des Gesamtsystems zu unterscheiden. 
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gleich zur ersten Summe) umgekehrte Reihenfolge der Faktoren bP und b� 
in der zweiten Summe hängt damit zusammen, daß in den P-Operatoren (85,3) 
zusammen mit ap und a; entsprechend b� und r;p auftreten. AAuf analoge 
Weise erhalten wir für den Operator (86,4) (er wird jetzt mit Q bezeichnet) 
anstelle von (86,5) 

Q = .E af; ap + .E bp 'b; . p p (86,7) 

Um die Eigenwerte der Operatoren (86,6) und (86,7) zu bestimmen, ist es 
notwendig, die Reihenfolge der Faktoren in den zweiten Summen zuerst in die 
Standardform b� bP zu bringen ; die Eigenwerte von Produkten dieser Gestalt 
sind gleich den Besetzungszahlen. Dazu sind jedoch die Vertauschungsregeln 
wesentlich, denen die Erzeugungs- und Vernichtungsoperatoren der Teilchen 
genügen. 

Wie leicht zu sehen ist, erhält man für die Eigenwerte des HAMILTON­
Operators (86,6) nur in dem Fall ein sinnvolles Ergebnis, wenn die Erzeugungs­
und Vernichtungsoperatoren der Teilchen die FERMI-Vertauschungsregeln 
erfüllen : 

""' ""'+ " + ".,. aP aP + aP aP = 1 , 

bp b� + b� bp = 1 .  (86,8) 

In diesem' Fall nimmt der HAMIL'fON-Operator die Form 

H
A 

" "'+ A Ab+ Ab 1 = ":;..., Ep (ap aP + P P - ) p 

an. Die Eigenwerte der Produkte a� aP und b� bP sind die positiven ganzen 
Zahlen NP bzw. NP, die die Zahl der Teilchen und Antiteilchen in den ent­
sprechenden Zuständen angeben. Die unendliche additive Konstante - }; Ep 
("Vakuumenergie")  kann man einfach weglassen, wie dies schon aus ähnlichem 
Anlaß im Falle der Photonen (§ 77) getan wurde. Danach bekommt man für 
die Energie des Systems den positiv definiten Ausdruck 

E = .E Ep (Np + Np) ' (86,9) 
p 

der gerade der Vorstellung von zwei Sorten real existierender Teilchen entspricht : 
Die Gesamtenergie des Systems ist gleich der Summe der Energien aller Teilchen 
und Antiteilchen, aus denen das System besteht. 

Hätten wir anstelle von (86,8) die BüsE-Vertauschungsregeln (Kommutatoren 
statt Antikommutatoren) gewählt, dann hätten wir 

H
A � A+ A "+ ""' 1 

= ":;..., Ep (ap aP - bP bP + ) p 
erhalten und statt (86,9) den physikalisch sinnlosen Ausdruck }; Ep (Np - Np) 
bekommen, der nicht positiv definit ist und folglich nicht die Energie eines 
Systems freier Teilchen beschreiben kann. 
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Nachdem wir auf diese Weise die Vertauschungsregeln für die Erzeugungs­
und Vernichtungsoperatoren der Teilchen abgeleitet haben, wenden wir uns 
jetzt dem Operator (86,7) zu. Nach der Änderung der Reihenfolge der Faktoren 
mit Hilfe von (86,6) ergibt sich 

QA - � "'+ A "'+ " - .c.. (ap aP - bP bP + 1) . 
p 

Die Eigenwerte dieses Operators (ebenfalls nach Subtraktion der unwesentlichen 
additiven Konstante I; 1) sind : 

Q = I; (Np - Np) , (86,10) 
p 

d. h. gleich den Differenzen zwischen den Gesamtzahlen von Teilchen und Anti­
teilchen. 

"' 

Dieses Ergebnis ist besonders wichtig. Der Operator Q beschreibt diejenige 
Größe (84,2), deren Erhaltungssatz durch die Kontinuitätsgleichung (84, 1) 
geliefert wird. Wir sehen jetzt, daß dieses Gesetz keine Erhaltung der Ge­
samtzahl der Teilchen und Antiteilchen im einzelnen bzw. ihrer Summe fordert . 
Es muß nur die Differenz zwischen beiden Zahlen erhalten bleiben. Mit anderen 
Worten, bei den verschiedenen Wechselwirkungsprozessen können "Teilchen­
Antiteilchen-Paare" entstehen und verschwinden.1 ) Natürlich müssen alle 
diese Prozesse unter Wahrung der Erhaltungssätze für die Energie und den 
Impuls des gesamten Systems der miteinander wechselwirkenden Teilchen ver­
laufen. Insbesondere muß das Verschwinden eines Paares beim Aufeinander­
treffen eines Teilchens mit seinem Antiteilchen vom Entstehen irgend­
welcher anderer Teilchen begleitet sein, die die Energie- und Impulserhaltung 
gewährleisten ; solche Teilchen können Photonen sein. In diesem Falle spricht 
man von Paarvernichtung (oder Annihilation eines Paares) . 

Falls ein Teilchen eine elektrische Ladung hat, muß das zugehörige Anti­
teilchen die entgegengesetzte Ladung haben ; denn wenn beide gleiche Ladungen 
hätten, würde die Erzeugung oder Vernichtung eines Paares einem streng 
gültigen Naturgesetz widersprechen - dem Erhaltungssatz für die elektrische 
Ladung. 

· 

Man bezeichnet die Größe Q mitunter als Ladung des Feldes für die betreffen­
den Teilchen. Für elektrisch geladene Teilchen ist Q die gesamte elektrische 

, Ladung des Systems (in Einheiten der Elementarladung e).  Wir betonen aber, 
daß Teilchen und Antiteilchen auch elektrisch neutral sein können.2) 

Wir haben auf diese Weise gesehen, wie die Art der relativistischen Ver­
knüpfung von Energie und Impuls (die Zweideutigkeit der Wurzel der Glei­
chung e2 = p2 + m2) zusammen mit den Forderungen nach relativistischer 

1) Dabei wird natürlich vorausgesetzt, daß die Wechselwirkung die Erhaltung der 
Größe Q nicht verletzt. Alle in der Natur bekannten Wechselwirkungen erfüllen diese 
Bedingung. 

2) Von den Fermionen besitzen z. B. Neutron und Neutrino (Spin 1/2), von den Bosonen 
die neutralen X-Mesonen (Spin 0) diese Eigenschaft. 
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Invarianz in der Quantentheorie ein neues Prinzip zur Klassifizierung von 
Teilchen ergibt - es können Paare verschiedener Teilchen (Teilchen-Anti­
teilchen) in dem oben beschriebenen Verhältnis zueinander existieren. Diese 
bemerkenswerte Voraussage ist erstmalig von P. A. M. DIRAC 1930 (für Teil­
chen mit dem Spin l/2) ausgesprochen worden, noch bevor das erste Antiteil­
chen - das Positron - tatsächlich entdeckt worden war.1) 

§ 87. Der Zusammenhang zwischen Spin und Statistik 

Die im vorigen Paragraphen besprochenen Ergebnisse sind noch unter einem 
anderen Aspekt wichtig : Wir sahen, daß physikalisch sinnvolle Forderungen 
automatisch dazu führen, daß Teilchen mit dem Spin l/2 der FERMI-Statistik 
genügen müssen. 

Daraus folgt nun die allgemeine Behauptung : Alle Teilchen mit halbzahligem 
Spin sind Fermionen, und Teilchen mit ganzzahligem Spin (einschließlich der 
Teilchen mit dem Spin 0) sind Bosonen.2) 

Die Richtigkeit dieser Aussage wird sofort nach der Bemerkung offensichtlich, 
daß man sich jedes Teilchen mit einem von Null verschiedenen Spin 8 bezüglich 
seiner Spineigenschaften als ein aus 2 8 Teilchen mit parallelen Spins l/2 
"zusammengesetztes" Teilchen vorstellen kann (ein Teilchen mit dem Spin 0 
"besteht" in diesem Sinne aus zwei Teilchen mit antiparallelen Spins l/2) .  
Bei halbzahligem 8 ist 2 8 eine ungerade und bei ganzzahligem 8 eine gerade 
Zahl. Wie schon in § 45 besprochen, ist aber ein aus einer ungeraden Zahl 
von Fermionen "zusammengesetztes" Teilchen ebenfalls ein Fermion und ein aus 
einer geraden Zahl von Fermionen bestehendes Teilchen ein Boson. Das Kriterium 
für die Zugehörigkeit zu der einen oder anderen Statistik ist gerade das Verhalten 
der Wellenfunktion eines Teilchensystems bezüglich der Vertauschung eines 
beliebigen Teilchenpaares : Die Wellenfunktion ändert ihr Vorzeichen bei der 
Vertauschung zweier Fermionen und bleibt unverändert beim Vertauschen von 
Bosonen. Die Vertauschung zweier Teilchen mit halbzahligem Spin ist, ent­
sprechend dem oben Gesagten, der gleichzeitigen Vertauschung einer ungeraden 
Anzahl von Paaren aus Fermionen mit dem Spin 1/2 äquivalent und ändert 
deshalb das Vorzeichen der Wellenfunktion. Die Vertauschung zweier Teilchen 
mit ganzzahligem Spin ist dagegen dem Vertauschen einer geraden Zahl vofl 

1) DIRAC selbst kam zum Begriff des Positrons mit Hilfe der Vorstellung von einem 
"Loch" im Kontinuum der Zustände negativer Energien, das von Elektronen besetzt ist. 
Eine solche Vorstellung besitzt jedoch offensichtlich nicht nur keinen buchstäblichen 
Sinn, sondem ist auch insofem nicht adäquat, weil sich die Begriffe von Teilchen und Anti­
teilchen in Wirklichkeit auf Teilchen mit beliebigem Spin beziehen und nicht nur auf 
Teilchen mit halbzahligem Spin, für die das PAULr-Prinzip gilt. 

2) Zu den Teilchen mit ganzzahligem Spin gehören auch die Photonen. Der Umstand, 
daß Photonen Bosonen sind, wurde schon in § 77 geklärt. Dabei gingen wir von der Ana­
logie mit Oszillatoren aus, d. h. im Grunde genommen von den Eigenschaften des elektro­
magnetischen Feldes im klassischen Grenzfall. 

18 Kurzfassung II 
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Fermionenpaaren äquivalent und läßt das Vorzeichen der Wellenfunktion unver­
ändert. 

Die besondere Eigenschaft von Teilchen mit dem Spin 1/2, die bei der im 
vorigen Paragraphen dargelegten Schlußfolgerung benutzt wurde, bestand ledig­
lich in der Existenz des HAMILTON-Operators und des Ausdruckes IJ'* lJI für die 
Teilchendichte. Die Existenz des einen wie des anderen hängt mit den Spinar­
eigenschaften der Wellenfunktionell solcher Teilchen und den Eigenschaften 
der DmAc:Gleichung, der diese Funktionen genügen, zusammen. Alle diese 
Eigenschaften folgen ihrerseits dem Wesen nach nur aus den Forderungen 
nach relativistischer Invarianz und nach Isotropie des Raumes (d. h., sie sind 
Folgen der Symmetrie bezüglich den Transformationen der LoRENTz-Gruppe) . 
In diesem Sinne kann man davon sprechen, daß der Zusammenhang zwischen 
dem Spin eines Teilchens und der Statistik, der das Teilchen unterliegt, eben­
falls eine direkte Folge dieser Forderungen ist .I) Die tiefere Ursache dieses 
Zusammenhanges wurde erstmalig- von W. PAULI (1940) geklärt. 

§ 88. Streng neutrale Teilchen 

Bei der zweiten Quantisierung der Wellenfunktion (85,2) wurden die Koeffi­
zienten a�+> und a�-> durch Vernichtungs- und Erzeugungsoperatoren unter­
schiedlicher Teilchen ersetzt. Das ist aber nicht zwangsläufig ; als Spezialfall 
können die in lJI enthaltenen Erzeugungs- und Vernichtungsoperatoren zu 
gleichen Teilchen gehören. Es ist nur zu gewährleisten, daß bei den "positiv­
frequenten" Wellenfunktionen Vernichtungsoperatoren und bei den "negativ­
frequenten" Wellenfunktionen entsprechend Erzeugungsoperatoren stehen. Wir 
bezeichnen die betreffenden Operatoren in diesem Fall mit cP und c; und 
schreiben den IJ'-Operator in der Gestalt 

lp = 1� I; {Cp U(p) e- i (e t - pT) + c;i u* (- p) ei (e t - PT)} (88,1 )  
y Q  p 

Das durch einen solchen IJ'-Operator beschriebene Feld entspricht einem System 
identischer Teilchen, von denen man sagen kann, daß sie "mit ihren Anti­
teilchen ü hereinstimmen". 

Offensichtlich muß die elektrische Ladung solcher Teilchen auf jeden Fall 
gleich Null sein. Derartige Teilchen werden als streng neutrale Teilchen be­
zeichnet, im Unterschied zu elektrisch neutralen Teilchen, die ein Antiteilchen 
besitzen. 

1) Die Verallgemeinerung des Zusammenhangs zwischen Spin und Statistik für den 
Fall eines Teilchens mit dem Spin 1/2 auf den Fall von Teilchen mit beliebigem Spin 
gründete sich im bisherigen Text auf die Betrachtungsweise von "zusammengesetzten" 
Teilchen. Zu dem gleichen Resultat würde man gelangen, wenn man die mathematische 
Struktur der Ausdrücke untersuchen würde, die für die Felder dieser Teilchen die Rolle 
der Operatoren H und Q spielen, wobei letztere in Übereinstimmung mit den Forderungen 
nach relativistischer Invarianz zu konstruieren sind. 
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Für streng neutrale Teilchen gibt es keinen Erhaltungssatz für die "Feld� 
ladung" Q :  .Die Identität zwischen Teilchen und Antiteilchen führt dazu, daß 
die Zahlen NP und NP identisch gleich sind, so daß die Größe (86,10) identisch 
Null ist. Wegen des Fehlens der aus dem Erhaltungssatz folgenden Auswahl­
regel können streng neutrale Teilchen einzeln und nicht unbedingt paarweise 
entstehen bzw. vernichtet werden (sich in Photonen verwandeln) .  

Von d(m "Elementarteilchen" mit dem Spin 0 sind die :n:0-Mesonen streng 
neutral. Ein Beispiel für ein streng neutrales "zusammengesetztes" Teilchen 
ist das Positronium - ein wasserstoffähnliches System, bestehend aus einem 
Positron und einem Elektron ; der Spin des Positroniums kann gleich 0 oder 1 
sein. Strerig neutrale Teilchen mit halbzahligem Spin sind in der Natur unbe­
kannt. 

Der !�'-Operator (88, 1)  hat die gleiche Struktur wie der Operator des elektro­
magnetischen Feldes (76,15) : In beiden Fällen gehen die Erzeugungs- und Ver­
nichtungsoperatoren der Teilchen in ein und denselben Feldoperator ein. In 
diesem Sinne kann man sagen, daß auch die Photonen streng neutrale Teilchen 
sind. Ihre Erzeugung oder Vernichtung beschreibt die gewöhnliche Emission 
oder Absorption von Photonen durch ein System geladener Teilchen. 

Beschäftigen wir uns nun mit einer völlig neuen Symmetrieeigenschaft , die 
zu einem neuen spezifischen Charakteristikum des Teilchens führt und kein 
Analogon in der nichtrelativistischen Theorie besitzt. Wir meinen die Transfor­
mation, die als Ladungskonjugation bezeichnet wird und das Vertauschen von 
Teilchen und Antite�lchen beinhaltet ; der Operator. dieser Transformation wird 
durch das Symbol 0 beschrieben. Ist ein Teilchen (bzw. ein Teilchensystem) 
nicht streng neutral, so wird es durch die Ladungskonjugation durch ein anderes 
physikalisches System ersetzt. So überführt z. B. die Ladungskonjugation ein 
aus Elektronen bestehendes System in ein Positronensystem ;  dabei entsteht 
kein neues Charakteristikum für das Teilchen als solches. Ist aber das Teilchen 
(oder das Teilchensystem) streng neutral, so läßt es die Ladungskonjugation 
unverändert. In diesem Sinne kann man vom Verhalten der Wellenfunktion 
des Systems bezüglich dieser Transformation sprechen und damit auch von den 
Eigenwerten des Operators 0. Die zweimalige Wiederholung der La

"_
dungs­

konjugation ist offensichtlich der identischen Transformation gleich : ,  02 = 1 .  
Wie auch für jeden anderen Operator, der diese Eigenschaft besitzt, sind seine 
Eigenwerte 0 = ± 1 ;  diese Werte werden als Ladungsparität bezeichnet. Be­
sitzt ein System eine bestimmte Ladungsparität, so bedeutet das, daß seine 
Wellenfunktionen nach der Ladungskonjugation unverändert bleiben bzw. 
ihr Vorzeichen ändern (im ersteil Fall spricht man von einem System mit gerader 
und im zweiten Fall mit ungerader Ladungsparität) .  

Als Beispiel wollen wir die Ladungsparität des oben erwähnten Positroniums 
bestimmen. Um die Ladungsparität eines Systems zu b�schreiben, muß man 
Teilchen und Antiteilchen (im vorliegenden Fall - Elektron und Positron) als 
zwei verschiedene "Ladungszustände" ein und desselben Teilchens betrachten, 

18· 
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die sich durch den Wert der "Ladungsquantenzahl" Q = ± 1 voneinander 
unterscheiden. Die Wellenfunktion des Systems stellt ein Produkt aus Bahn­
(hierin ist die Abhängigkeit von den Teilchenkoordinaten enthalten),  Spin­
und sogenanntem "Ladungs"-faktor dar : 'P = 'PBahn • 'Pspin · 'PLad.· 

Im betrachteten Fall ist die Ladungskonjugation dem Vertauschen beider 
Teilchen äquivalent. Der Austausch der Koordinaten dieser zwei Teilchen ist 
seinerseits wiederum der Inversion (bezüglich des Punktes, der den Abstand 
zwischen den Teilchen halbiert) äquivalent ; 'P Bahn wird dabei mit ( -1 )1 multi­
pliziert, wobei l der Bahndrehimpuls des Positroniums (s. (19,5)) ist. Des­
weiteren ist die Spinfunktion bezüglich des V ertauschens der Teilchen symme­
trisch, wenn deren Spins parallel (Gesamtspin S = 1) sind und antisymmetrisch, 
wenn die Spine antiparallel (S = 0) zueinander liegen - s. § 46 ; demzufolge 
er�ält 'P Spin den Faktor (- 1 )8 +1.  Der Ladungsfaktor 'P Lad. wird schließlich 
mit dem gesuchten Wert 0 nmltipliziert. 

Andererseits muß das Vertauschen zweier Fermionen das Vorzeichen der Ge­
samtwellenfunktion 'Pändern. D. h., esmuß gelten (-Tl (- 1)8+1 0 = - 1, woraus 

0 = (-l)l+S (88,2) 
folgt. Die Niveaus mit dem Spin S = 0 werden als Niveaus des Parapositroniums 
bezeichnet und die Energieniveaus mit S = 1 nennt man Niveaus des Ortho­
positroniums. Im Grundzustand ist der Bahndrehimpuls l = 0, deshalb besitzt 
der Grundzustand des Parapositroniums eine gerade Ladungsparität (0 = 1) 
und der Grundzustand des Orthopositroniums eine ungerade (0 = -1) 
Ladungsparität. 

Das Positronium ist ein instabiles Ge bilde ; seine Bestandteile - Elektron 
und Positron - vernichten sich im Endeffekt gegenseitig. Durch die Ladungs­
parität werden den möglichen Arten einer solchen Paarvernichtung bestimmte 
Beschränkungen auferlegt. Wie wir im weiteren sehen werden (s. die Fußnote 
auf S. 279), hat das Photon eine ungerade Ladungsparität. Deshalb ist z. B. 
bei der Vernichtung des Parapositroniums im Grundzustand (0 = 1) die Ent­
stehung zwei er Photonen möglich (die Ladungsparität eines Systems aus zwei 
Photonen ist gleich 0 = ( - 1) ( -1) = 1). Im Gegensatz dazu ist der Zerfall 
des sich im Grundzustand befindlichen Orthopositroniums (0 = -1) in zwei 
Photonen nicht möglich, und die Positroniumvernichtung geschieht unter Bil­
dung von drei Photonen.1 ) 

Das schon erwähnte Elementarteilchen, das :n°-Meson, ist ebenfalls instabil 
und zerfällt in zwei Photonen. Daraus folgt, daß es eine gerade Ladungsparität 
besitzt ; aus eben diesem Grunde ist sein Zerfall in eine ungerade Anzahl von 
Photonen verboten.2) 

1) Die Lebensdauer des Parapositroniums (d. h. eine Größe, die seiner Zerfallswahr­
scheinlichkeit entgegengesetzt proportional ist) beträgt 1 ,2 . I0-1o s. Die Lebensdauer des 
Orthopositroniums ist hingegen wegen seiner geringeren Zerfallswahrscheinlichkeit in eine 
größere Zahl von Photonen bedeutend länger (1 ,4 . I0-7 s). 

2) Bei diesen Betrachtungen wurde stillschweigend vorausgesetzt, daß die Ladungs­
parität des Systems erhalten bleibt. Wir kehren zu dieser Frage in § 90 zurück. 
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Bei der Behandlung der nichtrelativistischen Quantentheorie sahen wir bereits ,  
auf welche Weise die Symmetrie gegenüber der Inversion der Raumkoordinaten 
zum Entstehen eines neuen Charakteristikums für den Zustand eines Teilchens 
führt - zu seiner Parität. Die relativistische Theorie fügt diesem Begriff noch 
einen neuen Gesichtspunkt hinzu. 

Wir betrachten zuerst Teilchen mit dem Spin 0, die durch skalare Wellen­
funktionen beschrieben werden. Es gibt jedoch zwei Arten von Skalaren, die 
sich gerade durch ihr Verhalten gegenüber der Inversion unterscheiden. Die 
Inversion ändert das Vorzeichen der Koordinaten in den Argumenten einer 
Funktion und kann außerdem das Gesamtvorzeichen ändern bzw. unverändert 
lassen : 

P 'P(t, r) = ± 'P(t, -r) (89,1) 

die Vorzeichen + oder - auf der rechten Seite charakterisieren in der angege­
benen Reihenfolge einen Skalar oder einen Pseudoskalar. 

Daraus ist ersichtlich, daß man beim Verhalten der Wellenfunktion gegenüber 
der Inversion zwei Aspekte auseinanderhalten muß. Der eine Aspekt hängt 
mit der Abhängigkeit der Wellenfunktion von den Koordinaten zusammen. 
In der nichtrelativistischen Quantenmechanik wurde nur dieser Aspekt betrach­
tet ; er führte zum Begriff der Parität eines Zustandes (die wir im weiteren 
Bahnparität nennen wollen), die die Symmetrieeigenschaften der Bewegung 
des Teilchens charakterisiert. Wenn ein Zustand eine bestimmte Bahnparität 
+ 1 oder - 1  besitzt, so gilt 

'P(t, -r) = ± 'P(t, r) . 
Der andere Aspekt steht mit dem Verhalten der Wellenfunktion (bei einer 

Inversion der Koordinatenachsen) in einem vorgegebenen Punkt des Raumes 
(den man sich zweckmäßigerweise als Koordinatenursprung denken kann) im 
Zusammenhang. Er führt zum Begriff der inneren Parität eines Teilchens. 
Den inneren Paritäten + 1  bzw. - 1  entsprechen (für ein Teilchen mit dem 
Spin 0) die beiden Vorzeichen in der Definition (89,1) .  Die Gesamtparität eines 
Systems von Teilchen ergibt sich als Produkt ihrer inneren Paritäten und der 
Bahnparität ihrer Relativbewegung. 

Die "inneren" Symmetrieeigenschaften der verschiedenen Teilchen treten 
selbstverständlich nur bei Prozessen in Erscheinung, bei denen sich die Teilchen 
ineinander umwandeln. Das Analogon zur inneren Parität ist in der nicht­
relativistischen Quantenmechanik die Parität gebundener Zustände eines 
komplizierten Systems (z. B. eines Kernes) .  Vom Standpunkt der relativisti­
schen Theorie aus gesehen, in der es keinen prinzipiellen Unterschied zwischen 
zusammengesetzten und elementaren Teilchen gibt, unterscheidet sich diese 
innere Parität nicht von der inneren Parität der Teilchen, die in der nicht­
relativistischen Theorie als elementar angesehen werden. Im nichtrelativisti-
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sehen Bereich, in dem sich letztere wie unveränderliche Teilchen verhalten, 
sind ihre inneren Symmetrieeigenschaften nicht beobachtbar, und deshalb 
hätte es keinen Sinn, sich mit ihnen zu befassen. 

Den Begriff der inneren Parität formuliert man natürlicherweise im Ruh­
system des Teilchens. In diesem Koordinatensystem reduziert sich die Wellen­
funktion auf eine von den Koordinaten unabhängige Größe (die Wellenamplitude 
u in den Funktionen (85, 1)). Für Teilchen mit dem Spin 0 ist das ein Skalar 
oder Pseudoskalar, dessen Transformation sich bei der Inversion einfach auf 
eine Multiplikation mit + 1 oder - 1  zurückführen läßt. 

Für ein Teilchen mit dem Spin 1/2 reduziert sich die Wellenfunktion im 
Ruhsystem auf einen dreidimensionalen Spinor (s. das Ende von § 82). Der 
Begriff der inneren Parität eines solchen Teilchens hängt mit dem Inversions­
verhalten dieses Spinors zusammen. In § 81 wurde jedoch schon darauf hinge­
wiesen, daß es, obgleich die zwei möglichen Transformationsgesetze für drei­
dimensionale Spinoren (die beiden Vorzeichen in (81 ,2)) nicht zueinander 
äquivalent sind, keinen absolut zu verstehenden Sinn hat, einem Spinor eine 
bestimmte Parität zuzuschreiben. Es hat deshalb auch keinen Sinn, von einer 
inneren Parität an sich eines Teilchens mit dem Spin 1/2 zu sprechen. Berechti­
gung hingegen besitzt der B�griff der relativen inneren Parität zweier solcher 
Teilchen. 

Betrachten wir nun aus dieser Sicht die Fragestellung der relativen inneren 
Parität von Teilchen und Antiteilchen. Für Teilchen mit dem Spin 0 ist diese 
Frage trivial : Teilchen und Antiteilchen werden durch ein und dieselben 
(skalaren oder pseudoskalaren) Wellenfunktionen beschrieben, und deshalb 
sind ihre inneren Paritäten offensichtlich gleich. 

Zwei Spinore g = (�:) und 'YJ = (��) , die einen Bispinor lJ' = (�) bilden, 

der ein Teilchen mit dem Spin 1/2 beschreibt (wir werden der Kürze halber 
von einem Elektron sprechen), lassen sich im Ruhsystem des Teilchens auf ein 

' �1) 
und 

.
denselben dreidimensionalen Spinor zurückführen, den wir mit �(E) = (�2 

bezeichnen : · 

g = 'f) = �(E) (89,2) 

Die Operation der Inversion, die über (81,3) definiert ist, ersetzt g durch 'YJ ;  die 
Beziehung (89;2) zeigt., daß dieser Definition eine Transformation des dreidimen­
sionalen Spinors �(E) gemäß 

p �'<E) = �(E) (89,3) 
entspricht. · 

Das Positron beschreiben "negativ-frequente" Wellenfunktionen, die in der 
DIRAc-Gleichung beim Vorzeichenwechsel des 4-Impulses p�' auftreten (wir 
erinnern daran, daß die Positronoperatoren bp, bt als Koeffizienten bei den 
Wellenfunktionen mit den Amplituden u(-p) in die lJ'-Operatoren (85,3) 
eingehen). Die Gleichung (89,2) für ein Elektron im Ruhsystem folgte aus der 
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DIRAc-Gleichung (82,4) für p = 0, e = rn. Wenn man in diesen Gleichungen 
(e, p) durch ( - e, -p) ersetzt und danach p = 0, e = rn setzt, so erhält man 

� = - 'YJ = t;p(P) • (89,4) 

Die Operation der Inversion, die � durch 'YJ ersetzt, bedeutet jetzt für den drei­
dimensionalen Spinor cp<P> die Transformation 

p t;p(P) = _ t;p(P) (89,5) 

. mit einem bezüglich (89,3) entgegengesetzten Vorzeichen. Aus diesem Grunde 
ändert ein Skalar, der aus Produkten der Komponenten cp<E> und cp<P> besteht, 
bei der Inversion sein Vorzeichen. Wir erhalten somit das Ergebnis, daß die 
inneren Paritäten von Teilchen und Antiteilchen mit dem Spin 1/2 einander 
entgegengesetzt sind (W. B. BERESTETZE;Y, 1948). 

§ 90. Das CPT-Theorem 

Die Eigenschaften der Raum-Zeit-Symmetrie von physikalischen Erscheinungen 
drücken sich in der Invarianz der sie beschreibenden Gleichungen in bezug auf 
gewisse Transformationen des vierdimensionalen Koordinatensystems aus. 

Ein universelles Naturgesetz ist die relativistische Invarianz, d. h. die In­
varianz gegenüber den Transformationen der LORENTZ-Gruppe.1) Wie schon 
in § 80 erläutert, enthalten diese sowohl die gewöhnlichen dreidimensionalen 
Drehungen als auch die LORENTZ-Transformationen, d. h. Drehungen des vier­
dimensionalen Koordinatensystems, die die Richtung der Zeitachse ändern. 

Neben diesen Transformationen gibt es noch andere, die nicht auf Drehungen 
zurückgeführt werden können : die räumliche Inversion - eine gleichzeitige 
Umkehr der Richtungen der drei räumlichen Koordinatenachsen - und die Zeit­
umkehr - ein Wechsel der Richtung der Zeitachse in die entgegengesetzte. 
Die Invarianz gegenüber der räumlichen Inversion (P-Invarianz) ist ein Aus­
druck der Spiegelsymmetrie des Raumes. Die Invarianz gegenüber der Zeit­
umkehr (T-Invarianz) ist dagegen Ausdruck der Äquivalenz beider Zeitrich­
tungen. Im Rahmen der Erscheinungen, die durch die nichtrelativistische 
Theorie beschrieben werden, sind diese beiden Gesetze erfüllt. 

Im Unterschied dazu verliert bei Erscheinungen, die zum relativistischen 
Gebiet gehören, die Symmetrie gegenüber der räumlichen Inversion (und der 
damit im Zusammenhang stehende Satz von der Erhaltung der räumlichen 
Parität) ihre Universalität. Alle vorliegenden Experimente zeigen, daß diese 
Symmetrie bei elektromagnetischen Wechselwirkungen und den sogenannten 
starken Wechselwirkungen (Kernkräfte) gewahrt ist. Sie wird jedoch bei den 
schwachen Wechselwirkungen verletzt (d. h. Wechselwirkungen, die zur Mehrzahl 

1) Um Mißverständnisse zu vermeiden, möchten wir unterstreichen, daß von Erschei­
nungen die Rede ist, die nicht mit Gravitationsfeldern im Zusammenhang stehen. 
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der vergleichsweise langsam ablaufenden Zerfälle von Elementarteilchen, 
z. B. zum ß-Zerfall, führen) .1) 

Bei den schwachen Wechselwirkungen wird außerdem die Symmetrie zwischen 
Teilchen und Antiteilchen verletzt, die sich durch die Ladungskonjugation 
(0-Invarianz) ausdrückt. Es sind jedoch keine Versuchsergebnisse bekannt, 
die auf eine Verletzung dieser Symmetrie bei den elektromagnetischen und 
starken Wechselwirkungen hinweisen. 

Die Verletzung der Symmetrie gegenüber der räumlichen Inversion bei den 
einen oder anderen Wechselwirkungsprozessen braucht an sich noch nicht 
das Fehlen der Spiegelsymmetrie des Raumes zu bedeuten. Die Symmetrie 
des Raumes könnte "gerettet" werden, wenn sich die Invarianz bezüglich einer 
Transformation, die aus der räumlichen Inversion und einer gleichzeitigen 
Ladungskonjugation (CF-Transformation oder kombinierte Inversion) besteht, 
als universelles Naturgesetz erweisen würde.2) Bei dieser Transformation erfolgt 
neben der räumlichen Inversion ein Austausch von Teilchen und Antiteilchen. 
Bei vorliegender OP-Invarianz würden sich Prozesse mit Teilchen bzw. Anti­
teilchen durch eine Inversion des Raumes voneinander unterscheiden. Im 
Rahmen einer solchen Konzeption bleibt der Raum vollständig symmetrisch ;  
die Asymmetrie verlagert sich auf die geladenen Teilchen. Die Symmetrie 
des Raumes würde durch eine solche Asymmetrie in demselben Maße nicht 
berührt werden, wie sie auch nicht durch die Existenz stereoisomerer Moleküle 
(Moleküle, die zueinander in solch einem Verhältnis stehen, wie ein Körper 
und sein Spiegelbild) beeinträchtigt wird. 

Die Erfahrung bestätigt diese Vorstellungen jedoch nicht vollständig. Ob­
gleich die Mehrzahl der Prozesse der schwachen Wechselwirkung tatsächlich 
OP-invariant ist, gibt es auch Erscheinungen, die diese Invarianz verletzen. 
Welchen Platz diese Verletzungen in einer künftigen Theorie einnehmen werden , 
ist zum jetzigen Zeitpunkt noch unklar. 

Somit ist die Forderung nach eine!' Symmetrie bezüglich der Transformatio­
nen 0, P (oder auch T) im einzelnen kein universelles Naturgesetz. Dabei ist 
hervorzuheben, daß ihre Universalität nicht nur vom Experiment nicht 
bestätigt wird, sondern auch keine logisch notwendige Folge der Grundprin­
zipien der existierenden Theorie ist. Eine Folge dieser Prinzipien ist jedoch die 
Invarianz gegenüber der gleichzeitigen Anwendung aller drei Transformationen. 
Wir zeigen im folgenden, wie sich diese Symmetrie als natürliche Folgerung der 
Forderung nach relativistischer Invarianz ergibt. 

Zum besseren Verständnis der sich anschließenden Überlegungen erinnern 
wir vorher an einige Begriffe, die mit den Transformationen des dreidimensiona­
len Raumes im Zusammenhang stehen. 

Die Umkehr der Richtung einer der Koordinatenachsen x, y, z bedeutet 
eine Spiegelung an einer bestimmten Ebene ; z. B. ist die Transformation 

1) Die Idee einer möglichen Nichterhaltung der Parität bei schwachen Wechselwir­
kungen wurde erstmalig von T. D. LEE und C. N. YANG (1956) geäußert. 

2) Diese Vorstellungen wurden von L. D. LANDAU ( 1957) entwickelt. 
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x --+ - x, y --+  y, z --+ z die Spiegelung an der yz-Ebene. Diese Transfor­
mation läßt sich nicht auf irgendwelche Drehungen des Koordinatensystems 
zurückführen. Im Gegensatz dazu ist die Umkehr der Richtung zweier 
Achsen einer bestimmten Drehung äquivalent ; so entspricht z. B. die Trans­
formation x --+ - x, y --+ - y, z --+ z einer Drehung um 180° um die z-Achse. 
Schließlich ist die gleichzeitige Umkehr der Richtung aller drei Achsen (Inver­
sion des Koordinatensystems) eine Transformation, die sich nicht auf Dre­
hungen zurückführen läßt. Inversion und Spiegelung an einer Ebene sind jedoch 
in dem Sinne ineinander überführbar, daß sich die eine Transformation von der 
anderen nur durch eine Drehung um eine Koordinatenachse unterscheidet.l,) 

Eine analoge Situation liegt im Falle eines vierdimensionalen Raum-Zeit­
Koordinatensystems vor. Zusätzlich zur Richtungsumkehr von einer, zwei oder 
drei Achsen ist hier jedoch noch die gemeinsame Umkehr der Richtung aller vier 
Achsen ( vierdimensionale Inversion) möglich. Im rein mathematischen Sinne ist 
diese Transformation eine Drehung des 4-Koordinatensystems. In Wirklichkeit 
gibt es jedoch zwischen der 4-Inversion und den Drehungen, die die LORENTZ­
Gruppe bilden, einen spezifischen Unterschied, der mit der Pseudoeuklidizität 
der vierdimensionalen Raum-Zeit-Geometrie in Zusammenhang steht. Kraft 
dieser Eigenschaft kann keine physikalische Transformation des Bezugss"ystems 
(LORENTZ-Transformation) die Zeitachse über die Grenzen der inneren Bereiche 
des Lichtkegels (der Begriff des Lichtkegels wurde in I § 34 eingeführt) hinaus­
führen ; physikalisch bedeutet dies die Unmöglichkeit einer Relativbewegung 
zweier Bezugssysteme mit einer Geschwindigkeit, die die Lichtgeschwindigkeit 
übersteigt. Im Gegensatz dazu wird die Zeitachse (genauer : beide ihrer Halb­
achsen) bei einer 4-Inversion von einem Bereich des Lichtkegels in den anderen 
überführt. 

Obgleich dieser Umstand die physikalische Unmöglichkeit der Realisierung 
der 4-Inversion als Transformation eines physikalischen Bezugssystems bedeutet, 
kann ma!l natürlich annehmen, daß dieser Unterschied im Vergleich zu den ande­
ren vierdimensionalen Drehungen (LORENTz-Transformationen) unwichtig ist, 
wenn man die mathematische Invarianz der einen oder anderen Gleichungen 
betrachtet. Somit kommen wir zum Schluß ,  daß jedes relativistisch invariante 
Naturgesetz auch invariant gegenüber der 4-Inversion sein muß. Es verbleibt 
nur zu klären, was diese Behauptung vom Standpunkt einer quantenfeldtheo­
retischen Teilchenbeschreibung bedeutet. Wir führen dies am einfachsten 
Beispiel eines Feldes für Teilchen mit dem Spin 0 durch. 

In diesem Fall sind in den IJI-Operatoren (85,3) die Wellenamplituden u(p) 
Skalare und hängen als solche nicht vom Vorzeichen ihres Arguments, des 

1) Mathematisch zeigt sich der Unterschied zwischen den zwei Typen linearer Koordi­
natentransformationen xi = I; "'ik Xk (mit x1 = x, x2 = y, x3 = z) am Wert der Deter-k 
minante, die aus den Transformationskoeffizienten gebildet wird. Für beliebige Drehungen 
des Koordinatensystems ist die Determinante J cxi kl = 1. Für Spiegelungen, die sich nicht 
auf Drehungen zurückführen lassen, gilt l"'ikl = - 1. 
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4-Impulses p�', ab. Indem wir sie vor die Klammer ziehen, können wir deshalb 
einfach schreiben : 

'P(t, r) = vl }.; u  {ap e - i (e t - pr) + b_t ei (e t - pr)} .  (90, 1) 
Q p 

Bei der 4-lnversion werden t und r dUPch -t und -r ersetzt, so daß dieser 
Ausdruck in 

'P(-t, -r) = � � u {ap e• <• t - p r) + b_t e- i (e t - pr) } (90,2) 

übergeht. Im Apparat der zweiten Quantisierung jedoch muß der Übergang 
. von (90,1) zu (90,2) durch eine bestimmte Transformation der Erzeugungs­
und Vernichtungsoperatoren der Teilchen ausgedrückt werden. Wie · aus 
dem Vergleich von (90,1) mit (90,2) zu ersehen ist, besteht diese Transfor-
mation im gegenseitigen Platzwechsel der Operatoren aP und b_t oder, was das 
gleiche ist, im Ersetzen 

A A + bA A+ aP -+ bP , P -+ aP 
• 

(90,3) 
Der Sinn der Transformation (90,3) ist eindeutig. Die Inversion ändert das 

Vorzeichen des Impulsvektors p, sein Vorzeichen ändert sich aber gleichfalls 
bei der Zeitumkehr (die Geschwindigkeitsrichtung des Teilchens wird umge­
dreht) .  Deshalb läßt die gemeinsame Anwendung der Transformationen P 
und T die Impulse der ':!'eilchen unverändert, so daß sich Operatoren ineinander 
transformieren, die zu Zustä�den mit gleichen p gehören. Weiterhin vertauscht 
die Zeitumkehr Vergangenheit und Zukunft und verwandelt deshalb die Er­
zeugung eines Teilchens in seine Vernichtung. In Übereinstimmung damit wer� 
den die Erzeugungs- und Vernichtungsoperatoren der Teilchen gegenseitig er­
setzt. Außerdem sehen wir, daß in (90,3) a-Operatoren und b-Operatoren in­
einander übergehen, das heißt, die Transformation (90,3) beinhaltet auch den 
gegenseitigen Austausch von Teilchen und Antiteilchen. 

Auf diese Weise ergibt sich in der relativistischen Theorie auf natürlichem 
Wege die Forderung nach einer Invarianz gegenüber der Transformation, bei 
der gleichzeitig mit der räumlichen Inversion und der Zeitumkehr auch eine 
Ladungskonjugation erfolgt ; diese Behauptung wird OFT-Theorem genannt.1) 

Es sei bemerkt, daß infolge dieses Theorems eine Verletzung der OP-Invarianz 
bei irgendwelchen Erscheinungen automatisch eine Verletzung der T-Invarianz 
bedeutet. 

§ 91.  Das Neutrino 

Die DIRAc-Gleichung ist inversionsinvariant. Diese Invarianz wird dadurch 
gewährleistet, daß die Wellenfunktion als Bispinor beide Spinore enthält, die bei 
der Inversion ineinander übergehen. Die Notwendigkeit der Einbeziehung 

1) Es wurde von G. LÜDERS, W. PAULI, J. SCHWINGER ( 1955) formuliert. 
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zweier Spinore in die Beschreibung des Teilchens hängt jedoch ihrerseits mit 
der Teilchenmas.se zusammen: Wie aus (82,2) oder (82,6) ersichtlich ist, erfolgt 
gerade durch die Größe m die gegenseitige "Verkettung" dieser Spinore in der 
Wellengleichung. 

Diese Notwendigkeit entfällt, wenn die Teilchenmasse gleich Null ist. Ein 
solches Teilchen mit dem Spin 1/2 ist das Neutrino. Die Wellengleichung, die 
ein derartiges Teilchen beschreibt, kann mit Hilfe nur eines einzigen 4-Spinors, 
sagen wir z. B. des nichtpunktierten Spinors 

formuliert werden. 
Sie hat die Form 

(p0 - P o) � = 0 (91,1) 

(die erste der Gleichungen (82,6) mit m = 0). 
Für eine ebene Welle (ein Teilchen mit dem Impuls p und der Energie e) 

läßt
.
sich die Gleichung (91,1) auf das algebraische System 

(e - p oH = O  

zurückführen. Im Falle eines Teilchens mit der Masse Null ist die Energie mit 
dem Impuls durch die Gleichung e = IPI verknüpft. Nach Einführung des 
�inheitsvektors n in Bewegungsrichtung erhalten wir 

(n aH = � .  (91,2) 

Diese Gleichung hat einen einfachen Sinn. Erinnern wir uns daran, daß für die 
zweikomponentige Wellenfunktion die Matrix s = 1/2 o ein Operator des 
Teilchenspins (§ 40) ist. Das Produkt 1/2 n o ist folglich der Operator der 
Teilchen'spiralität Ä - der Spinprojektion auf die Bewegungsrichtung. Die 
Gleichung (91,2) besagt folglich, daß das Teilchen eine bestimmte Spiralität 
Ä .= + 1/2 besitzt - der Spin ist in Bewegungsrichtung ausgerichtet. 

Wir kommen s9mit zu dem Schluß, daß ein Teilchen, das nur durch einen 
(nichtpunktierten) Spinor beschrieben wird, immer die feste Spiralität Ä = + 1/2 
besitzen muß. Auf völlig analoge Weise ergibt sich für ein Teilchen, das durch 
den punktierten Spinor 

beschrieben wird, anstelle von (91,2) die Gleichung 

(n o) 1J = - 1J , (91,3) 

d. h., ein solches Teilchen hat immer die Spiralität Ä = - 1/2 - sein Spin 
ist dem Impuls entgegengesetzt ausgerichtet. Man kann deshalb sagen, daß 
sich in beiden Fällen zwangsläufig eine longitudinale Polarisation ergibt. 
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Es ist leicht zu sehen, daß Teilchen und Antiteilchen entgegengesetzte Spira­
lität besitzen müssen. In der Tat, wenn eins von ihnen durch die Spinoren � 
beschrieben wird, muß sich das andere durch die komplex konjugierten Spinoren 
� * beschreiben lassen ; das ist aus der Form der 'l'-Operatoren (85,3) ersichtlich, in 
die die Vernichtungsoperatoren der Teilchen und Antiteilchen aP und bP als 
Faktoren bei den komplex konjugierten Funktionen eingehen. Nun ist aber 
ein Spinor �*, der in bezug auf den unpunktierten Spinor � komplex konjugiert 
ist, einem punktierten äquivalent, womit die angeführte Behauptung bewiesen 
ist. Vereinbarungsgemäß nennt man ein Teilchen mit der Spiralität -1/2 Neu­
trino und das Teilchen mit der Spiralität 1/2 Antineutrino. !) 

Die Inversion ändert das Vorzeichen der Spiralität. Die Projektion des 
Spins auf die Bewegungsrichtung erhält man ale Skalarprodukt der Vektoren 
des Drehimpulses und des Impulses des Teilchens ; der erste (als axialer Vektor) 
bleibt bei der Inversion unverändert, der zweite (polare) Vektor ändert seiri 
Vorzeichen. Daraus ist die Asymmetrie des Neutrinos gegenüber der Inversion 
klar ersichtlich : Die Inversion "verwandelt" das Neutrino in ein in der Natur 
nicht existierendes Teilchen - ein Neutrino mit entgegengesetztem Vorzeichen 
der Spiralität. Die Symmetrie bleibt nur gegenüber der kombinierten Inversion 
erhalten - der Inversion mit gleichzeitiger Umwandlung des Neutrinos in ein 
Antineutrino. Darum ist eine Verletzung der Spiegelsymmetrie bei Prozessen, 
an denen ein Neutrino beteiligt ist (z. B. der ß-Zerfall des Neutrons in ein Proton, 
Elektron und Antineutrino : n --+ p + e + v) auch vollständig natürlich. 

1) Die Existenz des Neutrinos (eines neutralen Teilchens mit der Masse Null und dem 
Spin 1/2) wurde im Zusammenhang mit der Erklärung der Eigenschaften des ß-Zerfalls 
von W. PAULI (1931) theoretisch vorausgesagt. Die Theorie des Neutrinos als Teilchen, 
das durch einen zweikomponentigen 4-Spinor beschrieben wird, wurde von L. D. LANDAU, 
A. SALAlii, T. D. LEE und C. N. YANG (1957) formuliert. 



Das Elektron in einem äußeren Feld 

§ 92. Die DmAc-Gleichung für ein Elektron im äußeren Feld · 

XIV 

Die Wellengleichungen für freie Teilchen drücken streng genommen nur die 
Eigenschaften aus, die mit den allgemeinen Forderungen nach Symmetrie von 
Raum und Zeit zusammenhängen. Die physikalischen Vorgänge unter Beteili­
gung von Teilchen hängen von den Eigenschaften der Wechselwirkungen zwi­
schen den betreffenden Teilchen ab. 

Für das Verhalten von Teilchen mit starken Wechselwirkungen ist in der 
relativistischen Theorie eine Beschreibung unmöglich, die auf irgendeiner ein­
fachen Verallgemeinerung der Wellengleichungen beruht, eine Beschreibung, 
die über den Rahmen der in den Gleichungen für die freien Teilchen enthaltenen 
Informationen hinausgeht. 

Die Methode der Wellengleichungen ist dagegen zur Beschreibung der elektro­
magnetischen Wechselwirkungen von Teilchen, die keiner starken Wechsel­
wirkungen fähig sind, brauchbar. Hierher gehören die Elektronen (und Posi­
tronen} ,  und auf diese Weise ist der ganze, große Bereich der Quantenelektro­
dynamik der Elektronen für die vorhandene Theorie zugänglich.1) In diesem 
Kapitel behandeln wir einige Fragen der Quantenelektrodynamik im Rahmen 
einer Einteilchentheorie. Dabei handelt es sich um Probleme, bei denen die 
Teilchenzahl konstant bleibt und die Wechselwirkung durch ein äußeres elektro­
magnetisches Feld erfaßt werden kann, dessen Zustand sich im Verlaufe des 
Prozesses nicht ändert. 

Die Wellengleichung für ein Elektron in einem gegebenen äußeren Feld 
kann man auf ähnliche Weise wie in der nichtrelativistischen Theorie (§ 43) 
ableiten. tP sei das skalare Potential und A das Vektorpotential des Feldes. 
Die gesuchte Gleichung wird erhalten, indem im HAMILTON-Üperator der DIRAC­
Gleichung (83,9) der Impulsoperator p = - i V durch die Differenz p - e A 
ersetzt wird und außerdem zum HAMILTON-Üperator die potentielle Energie des 
Teilchens e tP hinzugefügt wird2) :  

ii = oc (p - e A) + ß m + e tP . (92,1) 

1) Die instabilen ,u-Mesonen sind ebenfalls nicht in der Lage, starke Wechselwirkungen 
einzugehen; sie besitzen den gleichen Spin (1/2) wie das Elektron und werden durch die 
gleiche Quantenelektrodynamik beschrieben. Das gilt natürlich nur für Erscheinungen, 
die in Zeiten vor sich gehen, die klein im Vergleich zur Lebensdauer der ,u-Mesonen sind, 
welche durch die schwache Wechselwirkung bestimmt wird. 

2) Der Buchstabe e bezeichnet die Ladung einschließlich ihres Vorzeichens, so daß für 
das Elektron e = - Iei und für das Positron e = + Iei ist. 
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Damit sind alle notwendigen Veränderungen erfolgt ; die Einführung irgend­
welcher zusätzlicher Glieder (ähnlich dem in (43,4) eingeführten Glied) macht 
sich an dieser Stelle nicht erforderlich. Wir sehen im weiteren, daß sich das 
magnetische Moment des Elektrons nunmehr automatisch ergibt. 

In der vierdimensionalen Schreibweise bedeutet der Übergang von (83,9) 
zu (92,1) das Ersetzen des Operators des 4-Impulses PI' = i ofox�' gemäß 

p,. -+ p" - e A" (92,2) 
mit A�-' = (1/J, A), A" = (1/J, - A) - dem 4-Potential des Feldes. Daher kann 
die DIRAc-Gleichung für das Teilchen in einem Feld auch in der Form 

[y" (p" - e A") - m] 'JI = 0 (92,3) 
geschrieben werden, die mit Hilfe dieser Substitution aus (83,3) erhalten wird. 

Die Stromdichte, ausgedrückt durch die Wellenfunktion, ist durch die gleiche 
Formel (84,7) gegeben, die auch den Fall ohne äußeres Feld beschreibt. Wie 
man sich leicht überzeugt, fällt das 4-Potential Al-' aus dem Endergebnis heraus, 
wenn mit der Gleichung (92,3) dieselben Operationen wiederholt werden, 
welche bei der Ableitung von (84,7) erfolgten. Für diesen, schon früher gefun­
denen, Ausdruck des Stromes gilt wieder die Kontinuitätsgleichung. 

§ 93. Das magnetische Moment des Elektrons1) 

In § 43 wurde für die Bewegung eines Teilchens mit Spin im äußeren Magnetfeld 
die Gestalt des nichtrelativistischen HAMILTON-Operators abgeleitet. In 
diesen Ausdruck ging jedoch das magnetische Moment des Teilchens als empi­
rischer Parameter ein, dessen Wert durch die Theorie nicht berechnet werden 
konnte. Für ein Teilchen, dessen Verhalten im elektromagnetischen Feld der 
DIRAc-Gleichung (92,3) unterliegt (wir werden im weiteren von einem Elektron 
sprechen), ist die Größe des magnetischen Moments automatisch durch die 
Gleichung selbst festgelegt. 

Unter diesem Aspekt zeigen wir jetzt, wie die DIRAc-Gleichung in eine 
genäherte Form gebracht werden kann, die dem nichtrelativistischen HAMILTON­
Operator (43,4) entspricht. Da es sich um die Bewegung eines Teilchens mit 
Geschwindigkeiten v � c handelt, geht man zweckmäßigerweise von der Stan­
darddarstellung der Bispinor-Funktion 'JI aus, bei der ein Komponentenpaar 
klein im Verglei�h zum anderen ist : X �  q; (s. das Ende von § 83). 

In § 83 ist die DIRAc-Gleichung in Komponentenform in der StandaPddar­
stellung der Wellenfunktion für den Fall eines freien Teilchens aufgeschrieben 
(83,11) .  Die Einführung des äußeren elektromagnetischen Feldes erfolgt durch 
Ersetzen der Operatoren gemäß (92,2) mit dem Ergebnis 

(p0 � e 1/J) q; - a (P - : A) x = m c q; , 

- (Po - e 1/J) x + o (v - �· A) q; = m c x . 
(93,1)  

1) In diesem und im nächsten Paragraphen verwenden wir gewöhnliche Maßeinheiten. 
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Hierbei ist 
� i n  a 
Po = c- m •  'P = - i n '\1 . 

273 

Um zur nichtrelativistischen Näherung überzugehen, muß man jedoch noch 
eine bestimmte Veränderung der Wellenfunktion vornehmen. Das Problem 
besteht darin, daß der relativistische Ausdruck für die Teilchenenergie (und 
mit ihm auch der relativistische HAMILTON-Üperator) das (im Vergleich zum 
nichtrelativistischen Ausdruck) "überflüssige" Glied der Ruhenergie mc2 ent­
hält. Das führt in der Zeitabhängigkeit der Wellenfunktion zum Auftauchen 
des überflüssigen Faktors exp (- i m  c2 tfn). Um diesen Faktor auszuschließen, 
führen wir anstelle von 'P die neue Wellenfunktion 'P' ein : 

'P = 'P' e- i m c't/11 
• (93,2) 

Nach Einsetzen von (93,2) in (93,1) erhält man folgende Gleichungen für die 
zweikomponentigen 'Größen q/ und x', die die vierkomponentige Wellenfunk­
tion 'P' bilden : 

(i n �  - e w) tp' = co (p - : A) x' , (93,3) 

(i n :e - e W + 2 m c2) i = c o (P - : A) tp' (93,4) 

(im weiteren werden wir die Striche bei tp' und x' · weglassen ; das führt zu 
keinen Mißverständnissen, da wir in diesem Paragraphen nur die transfor­
mierte Wellenfunktion 'P' benutzen). 

In erster Näherung belassen wir in der Klammer der linken Seite der Glei · 
chung (93,4) nur das größte Glied 2 m c2• Dann erlaubt diese Gleichung sofort, X 
durch tp auszudrücken : 

1 
( 

� e ) X = 2 m c  0 p - cA IP 
· 

(93,5) 

Der Faktor 1/c auf der rechten Seite der Gleichung drückt gerade die Kleinheit 
von X gegenüber tp aus. Wenn wir jetzt (93,5) in (93,3) einsetzen, ergibt sich 
eine Gleichung, die nur noch tp enthält : 

(i n:e - e w) tp = 21m (o ('P - : A)rtp . 
Der Ausdruck auf der rechten Seite dieser Gleichung läßt sich umschreiben. 

Dazu verwenden wir folgende Eigenschaften der PAULI-Matritzen, die sich 
unmittelbar aus ihrer Definition (82,5) ergeben : 

a; = a� = a� = 1 , 

O'u O'z = - O'z 0'11 = i a., , (93,6) 

O'z O'y = - O'y O'x = i O'z • 
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� e 
Mit der zeitweiligen Bezeichnung f = p - -A ergibt sich • c 

A A A A A A A 

(<1 /)2 = (a., fx + O"y /y + O"z fz) (O"x fx + O"y fv + O"z /,) 
= j; + /; + fz + i O"z (/:c fv - fy fx) + · · · 

A A A A 

Wären fx, /11, fz vertauschbar, würde man einfach f2 erhalten. Im vorliegenden 
Falle gilt aber 

f:c tv - fy h = (- i fi :x - : A.,) (- i fi 0
°
y - : Ay) 

- (- i fi !_ _ !_ A ) (- i n !_ _ !_A ) ay c Y ax c "' 

= 
i e Ii (oA11 

_ 
aA.,) 

= 
i e Ii 

H c ax ay c z usw. 

mit H = rot A - dem Magnetfeld. Auf diese Weise erhalten wir 

( a ( P - : A) r = ( p - : Ar - e c� a H , 

und im Ergebnis dessen kommen wir zu folgender Gleichung für die zwei­
komponentige Wellenfunktion q; : 

. oq; [ 1 ( e )2 e Ii ] � t fi - = - p - -A - - a H + e <P  q; = H q; . . ot 2 m  c 2 m  c (93,7) 

Das ist die sogenannte PAULI-Gleichung. Der Vergleich des darin enthaltenen 
HAMILTON-Operators mit (43,4) zeigt, daß das Elektron ein magnetisches 
Moment besitzt, dem der Operator 

� e Ii e Ii � 

p = -- a = - s 2 m c  m c  (93,8) 

mit s = 1/2 a als Spinoperator des Elektrons entspricht. Der Wert dieses Mo­
mentes, der über (43,1) definiert ist, lautet 

e li  
fl = 2 m c  • (93,9) 

Wie schon in § 43 erwähnt wurde, ist das gyromagnetische Verhältnis für das 
magnetische Eigenmoment des Elektrons (efm c) zweimal größer als für den 
Fall, wenn das magnetische Moment mit einer Bahnbewegung gekoppelt ist.l) 

Die Formel (93,9) gilt auch für das magnetische Moment des p,-Mesons (mit 
dessen Masse für m im Nenner der Formel) .  Sie ist aber für Protonen und 
Neutronen völlig unbrauchbar, obgleich diese Teilchen ebenfalls den Spin 1/2 

1) Dieses Resultat wurde von P. A. M. DmAc (1928) erhalten. Die zweikomponentige 
Wellenfunktion, die der Gleichung (93,7) genügt, wurde von W. PAULI (1927) eingeführt, 
noch bevor DmAC seine Gleichung gefunden hatte. 
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haben. Besonders gravierend ist die Abweichung im Falle des Neutrons : Da 
es elektrisch neutral ist, dürfte es gemäß (93,9) überhaupt kein magnetisches 
Moment besitzen. An dieser Stelle zeigt sich mit großer Anschaulichkeit die 
Nichtanwendbarkeit der existierenden Quantenelektrodynamik auf Teilchen, 
die fähig sind, starke Wechselwirkungen einzugehen. 

§ 94. Die Spin-Bahn-Wechselwirkung 

Die im vorigen Paragraphen durchgeführten Rechnungen stellen im Grunde ge­
nommen den Beginn einer Entwicklung der exakten Lösung der DIRAc-Gleichung 
nach Potenzen des kleinen Verhältnisses vfc dar. Die Gleichung (93,7) berück­
sichtigt bei solch einer Entwicklung nur Glieder der ersten Ordnung (worauf 
der Faktor 1/c im zusätzlich entstehenden Glied des HAMILTON-Operators 
- p H hinweist). 

In der nächsten, der zweiten, Näherung kommen zum HAMILTON-Operator 
noch neue Glieder hinzu. Die entsprechenden Rechnungen werden jedoch um­
fangreicher, und wir führen sie nicht an. Wir geben nur das Endresultat für 
den HAMILTON-Operator eines Elektrons im äußeren elektrischen Feld mit einer 
Genauigkeit bis zu Gliedern der Ordnung lfc2 an : · 

A p2 p4 e Ii A e 1i2 • 

H = 2
- + e 11> - g------a--2- 4� a  [E p] - 8�2 d1v E , (94, 1 )  

m m c  m c  m c  

dabei ist (/> das Potential und E = - grad (/> die Feldstärke. Wie in (93,7) 
ist dieser HAMILTON-Operator auf eine zweikomponentige Wellenfunktion anzu­
wenden. 

Die letzten drei Glieder in (94,1 )  sind die uns interessierenden Korrekturen 
der Ordnung lfc2. Das erste entspricht einer relativistischeil Korrektur zum 
klassischen Ausdruck für die kinetische Energie des Teilchens :  

p2 p4 V c2 p2 + m2 c4 - m c2 � - - -- + . . .  
2 m  8 m3 cz 

Das zweite Korrekturglied in (94,1), das als Energie der Spin-Bahn-Wechsel­
wirkung bezeichnet werden kann, beschreibt die Wechselwirkungsenergie 
eines bewegten magnetischen Moments mit dem elektrischen Feld. Ist das 
elektrische Feld zentralsymmetrisch, 

1' dcJ> E = - - ­r dr ' 
so nimmt der Operator der Spin-Bahn-Wechselwirkung folgende Gestalt an : 

A e Ii A dcJ> 1i2 dU A A V sl = 4 mz ca r a [ r P] dr = 2 mz cz r dr- l s 
. 

(94,2) 

Hierbei sind Ii i = [r p] der Operator des Bahndrehimpulses des Elektrons, 
s = 1/2 a der Operator seines Spins und U = e q; die potentielle Energie des 
Elektrons im Feld. Eine Wechselwirkung dieses Typs wurde schon in § 51 

19 Kurzfassung II 
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als eine der Ursachen für die Feinstruktur der Energieniveaus der Atome betrach­
tet.�) 
. Das letzte Korrekturglied in (94, 1) ist nur in den Punkten von Null verschie­

den, in denen sich die das Feld erzeugenden Ladungen befinden ; nur in diesen 
Punkten verschwindet div E nicht. 

Den HAMILTON-Operator (94,1) kann man zur Berechnung relativistischer 
Korrekturen für die Energieniveaus des Wasserstoffatoms verwenden, d. h. 
für den Fall eines Elektrons im CoULOMB-Feld des unbeweglichen Atomkerns 
(eines Protons mit der Ladung + I ei ) . 

Das Potential des Feldes der Ladung + I el ist f/J = I e l fr und dessen Di ver­
genz div E = - LJ (jj = 4 n  I ei b(r) (vgl. I (59,10). Damit nehmen die Korrek­
turglieder im HAMILTON-Üperator des Wasserstoffatoms, die wir zusammen-
gefaßt durch V<2> bezeichnen, die Form 

"' ft,2 ß2 e2 "' "'  :n; e2 ß2 

V<2> = -8 3 2 Ll2 + 2 · 2 z rs  l s + 2� t5(·r) (94,3) 
m c  m c  m c  

an. 
Hier sei an den nichtrelativistischen Ausdruck für die Energieniveaus des 

Wasserstoffatoms erinnert (§ 31) : 
m e' 

E =
-

--n. r. 2 11.2 n2 • 
(94,4) 

Dieser Ausdruck hängt nur von der Hauptquantenzahl n und nicht vom 
Bahndrehimpuls Z ab, der (bei vorgegebenem n) die Werte l = 0, 1, . . .  , n - 1 

durchläuft. Die nichtrelativistischen Energieniveaus (94,4) hängen auch nicht 
von der Orient'ierung des Elektronenspins bezüglich des Bahndrehimpulses 
des Elektrons ab, d. h. vom Gesamtdrehimpuls j, der (bei vorgegebenem l =1= 0) 
die zwei Werte j = l ± 1/2 annehmen kann. 

Die gesuchten Energiekorrekturen LlE können nach den allgemeinen Regeln 
der Störungstheorie (§ 32) gefunden werden, indem man (94,3) als Operator 
einer kleinen Störung betrachte� und seinen Mittelwert (das Diagonalmatrix­
element) bezüglich der ungestörten Wellenfunktionen, d. h. der üblichen nicht­
relativistischen Wellenfunktionen des Wasserstoffatoms, bestimmt. Die Rech­
nung liefert folgendes Resultat : ( 1 3 ) m e4 a:2 

LIE = - j + 1/2 - 4 n 2 1i2 n3 
(94,5) 

mit 
e2 1 

(X 
= 

1i c = 137,04 
(94,6) 

(die Größe IX heißt Feinstruktfrkonstante).2) Die Kleinheit der Korrektur (94;5) 
im Verhältnis zu (94,4) wird durch den Faktor �X2 ausgedrückt. 

1) Ein anderer Typ relativistischer Wechselwirkungen, die Spin-Spin-Wechselwirkung, 
entsteht natürlich nur in einem System aus mehreren Teilchen und fehlt im Falle eines 
Elektrons im äußeren Feld. 

· · 

2) Diese Formel wurde zuerst von A. SoMMERFELD, ausgehend von der alten BoHRsehen 
Theorie, noch vor der Schaffung der Quantenmechanik abgeleitet. 
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Die Verschiebung des Niveaus (94,5) hängt nun schon nicht mehr nur von n 
ab, sondern auch von j. Diese Abhängigkeit bedeutet gerade die Aufspaltung 
der Niveaus (94,4) in Feinstrukturkomponenten ; es erfolgt, wie man sagt, ein 
Aufheben der Entartung, die in der nichtrelativistischen Näherung vorlag. 
Die Entartung wird jedoch nicht vollständig aufgehoben ; es verbleiben zwei­
fach entartete Niveaus mit gleichen n und j aber verschiedene n l = j ± 1/2 
(hier zeigt sich wiederum im Vergleich zu komplizie�teren Atomen die Spezifik 
des Wasserstoffatoms mit seinem reinen CouLOMB-Feld des Kerns). Auf diese 
Weise ergibt sich unter Berücksichtigung der Feinstruktur folgende Reihenfolge 
der Wasserstoffniveaus :  

1 81/2 

2 P112 , 
3 81/2 ' 3 PI/2 ' 
� 

2 Ps12 
3 Ps12 , 3 ds12 , 

� 
3 ds12 

Durch geschweifte Klammern sind die zu einem Energiewert gehörigen (ent­
arteten) Zustände erfaßt. Nicht entartet sind nur Niveaus mit maximal mög­
lichem j (bei gegebenem n). 

Wir werden später noch sehen, daß die hier verbleibende Entartung durch 
die sogenannten Strahlungskorrekturen aufgehoben wird (LAMB- V er8chiebung 
oder LAMB-shijt), die in der DIRAc-Gleichung für das Einelektronenproblem 
nicht berücksichtigt werden ; diese Korrekturen werden in § 106 behandelt . 

1 9 * 





Strahlung 

§ 95. Der Operator für die elektromagnetische Wechselwirkung 

XV 

Nach der Behandlung von Fragestellungen, bei denen das elektromagnetische 
Feld in der passiven Rolle von äußeren Bedingungen für die Teilc:hen auftrat, 
wenden wir uns jetzt einer etwas breiteren Kategorie von elektrodynamischen 
Erscheinungen zu, die von der Veränderung des Zustands des Feldes selbst 
begleitet sind. Es handelt sich dabei um Prozesse der Emission, Absorption und 
Streuung von Photonen durch Systeme geladener Teilchen. 

Die Wechselwirkung von Elektronen mit dem Feld der elektromagnetischen 
Strahlung kann in der Regel mit Hilfe der Störungstheorie behandelt werden. 
Dieser Umstand resultiert aus der relativ geringen Stärke der elektromagne­
tischen Wechselwirkungen. Die Wechselwirkung des Elektrons mit dem Feld 
wird durch seine Ladung e bestimmt. Dabei spielt die aus e, c und n gebildete 
dimensionslose Größe IX =  e2f n c, die schon in § 94 als Feinstrukturkonstante ein­
geführt wurde, die Rolle der "Kopplungskonstanten", die die Stärke der Wechsel­
wirkung angibt. Die geringe Stärke der elektromagnetischen WechselwiPkungen 
drückt sich in dem kleinen Zahlenwert dieser Konstanten IX = 1/137 aus. Dieser 
kleine Wert spielt eine fundamentale Rolle in der Quantenelektrodynamik. 

Wir leiten zunächst den Ausdruck für den Wechselwirkungsoperator des 
Elektrons mit dem Strahlungsfeld ab, der die Rolle des Störoperators spielt. 
Wir vereinbaren (wie im Kap. XI) die Eichung des Feldes in der Weise, daß 
das skalare Potential <P = 0 ist, so daß das Feld nur durch das Vektorpotential A 
allein beschrieben wird. Gemäß (92,1) wird die Wechselwirkung des Elektrons 
mit einem gegebenen elektromagnetischen Feld durch das Glied V = - e oc A 
in seinem HAMILTON-Operator erfaßt. Um zum allgemeineren Fall von Prozessen 
übergehen zu können, die mit Veränderungen des Feldzustandes gekoppelt 
sind, muß das Potential A durch einen Operator A der zweiten Quantisierung 
ersetzt. werden ; dann ist der Wechselwirkungsoperator durch 

gegeben.1) 

A A ' 

V =  -- e ocA (95, 1) 

Der Operator A ist eine Summe 
A A -"+ * A(t, r) = ];  { cn An(t, r) + Cn An (t, r)} 

n 
(95,2) 

1) Die Operation der Ladungskonjugation - das Ersetzen von Teilchen durch ihre Anti­
teilchen - darfnicht die Gestalt des Wechselwirkungsoperators ändern- Werden positiv ge­
ladene Teilchen durch negativ geladene ersetzt, so bedeutet diese Transformation insbeson-
dere den Austausch e -+ - e. Die Invarianz von V fordert ein gleichzeitiges Ersetzen von 
A durch -A. Das bedeutet, daß Photonen Teilchen mit ungerader Ladungsparität sind. 
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aus Erzeugungs- und Vernichtungsoperatoren von Photonen der verschiedenen 
Zustände (die durch den Index n numeriert sind) ; die Koeffizienten A11(t, r) 
spielen die Rolle der Wellenfunktionen dieser Zustände. Der Feldzustand ist 
durch die Gesamtheit der Besetzungszahlen N n für alle Photonenzustände ge­
geben. Die Photonenzustände selbst können in Abhängigkeit von der Frage­
stellung der einen oder anderen konkreten Aufgabe auf verschiedene Weise 
angegeben werden. Interessiert uns z. B. die Emission bzw. Absorption von 
Photonen mit bestimmten Wellenzahlvektoren k und der Polarisation e, so 
sind die Wellenfunktionen A11(t, r) ebene Wellen (76,16): Untersuchen wir 
hingegen di� Emission von Photonen mit bestimmten Werten des Drehim­
pulses j, so sind die An Kugelwellen, die in § 78 besprochen wurden. 

In der ersten Nä�erung der Störungsrechnung wird die Wahrscheinlichkeit 
des einen oder anderen Prozesses durch das Quadrat I V1,1 2 des Matrixele­
mentes des Störoperators für den Übergang zwischen Anfangs- (Index i) und 
Endzustand (Index /) des Ladungssystems und Feldes bestimmt. Jeder der 
Operatoren c11, c;t hat nichtverschwindende Matrixelemente nur bei Vergrö­
ßerung oder Verkleinerung der entsprechenden Besetzungszahl Nn um 1 (alle 
anderen Besetzungszahlen bleiben unverändert) .  Daher hat auch der Opera-
tor A von Null verschiedene Matrixelemente nur für Übergänge, bei denen 
sich die Photonenzahl um 1 ändert. In der ersten Näherung der Störungs­
theorie treten, mit anderen Worten, nur Einphotonenemissions- bzw. Ein­
photonenabsorptionsprozesse auf. 

Nach (76,12) sind das die Matrixelemente 

' (Nn - 1 1 Cn INn) = VN:" , 
(Nn + 1 1 c;t INn) = V  Nn + 1 .  

(95,3) 

(95,4) 

Das erste beschreibt die Absorption eines Photons (der Sorte n) - die Be­
setzungszahl verringert sich um 1 ; das zweite entspricht der Emission eines 
Photons - die Besetzungszahl wächst um 1. Fehlen im Anfangszustand des 
Feldes Photonen (der Sorte n), so ist ( 1 1 c;t 10) = 1 ;  das Matrixelement des 
Operators A enthält jedoch außerdem noch den Faktor A! , der in der Summ� 
(95,2) als Koeffizient bei c: steht. Somit erhält man für das volle Matrix­
element des Operators (95, 1) im Falle der Photonenemission 

(95,5) 

mit den Wellenfunktionen 'P1 und 'P1 des Anfangs- und Endzustandes _ des 
strahlenden Systems (des Elektrons).1) Analog ergibt sich das Matrixelement 

1) Um Mißverständnisse zu vermeiden, betonen wir, daß ein einzelnes Elektron nur 
bei einer Bewegung in einem äußeren Feld strahlen kann. Daß insbesondere ein freies 
Elektron (welches sich mit konstanter Geschwindigkeit bewegt) unmöglich Photonen emit­
ti�ren kann, wird offensichtlich, wenn wir es in dem Bezugssystem betrachten, in dem es 
ruht :  In diesem System ist die Elektronenenergie gleich m und kann sich nicht verkleinern, 
wie das bei einer Photonenemission der Fall sein müßte. 



§ 95. Der Operator für die elektromagnetische Wechselwirkung 281 

für die Absorption eines Photons 
V1,(t) = - e f (P/ ot: Pt) A11 dV . (95,6) 

Es unterscheidet sich von (95,5) nur dadurch, daß statt A! jetzt An steht. 
Durch die Angabe des Argumentes t bei v1, heben wir hervor, daß es sich 

um ein zeitabhängiges Matrixelement handelt. Man kann in der üblichen Weise 
(in Übereinstimmung mit der Regel (1 1,4)) zu zeitunabhängigen Matrixelemen­
ten übergeben, indem man die Zeitfaktoren in der Wellenfunktion abspaltet : 

(95,7) 

(E, und E1 sind die Energien von Anfangs- bzw. Endzustand des strahlenden · 
Systems, " =F '' entspricht der Emission bzw. Absorption eines Photons der 
Energie w). 

Das in den Integralen (95,5) oder (95,6) auftretende Produkt 

(95,8) 

besitzt eine analoge Struktur wie der Ausdruck j = P* ot: tp (84,9) für den 
Strom in der DIRAc-Gleicbung ; anstelle der zwei gleichen Wellenfunktionen 
stehen jetzt verschiedene Wellenfunktionen (für den Anfangs- bzw. Endzu­
stand). Die Größe (95,8) wird Obergangsstrom genannt. 

Betrachten wir die Emission (oder Absorption) eines Photons mit einer be­
stimmten Richtung des Wellenzahlvektors k und einer fixierten Polarisation e, 
so sind für A"(1·) die Funktionen 

1 /� ' k 5 An(r) = e 
V w [} e' ,. (9 ,9) 

zu nehmen (die ebene Welle (76,16) ohne den Faktor e-iwt) . Für das Über­
gangsmatrixelement der Emission eines solchen �hotons erhalten wir 

mit 

V1; = - e -v�� e*j,;(k) (95,10) 

(95, 11) 

Das Integral (95,11) stellt die FouRIER-Komponente der Funktion iJ;(r) dar, 
es wird als Obergangsstrom in der Impulsdarstellung bezeichnet. 

Die Emissionswahrscheinlichkeit eines Photons findet man über das Matrix­
element (95, 10) unmittelbar mit Hilfe der allgemeinen Formel der Störungs­
theorie, die in § 35 abgeleitet wurde. Wir betrachten im weiteren den Fall, 
daß Anfangs- und Endzustand des strahlenden Systems zum diskreten Spek­
trum seiner Energieniveaus gehören. Der Endzustand des Gesamtsystems 
Elektron + Feld gehört jedoch auf Grund des emittierten Photons zum 
kontinuierlichen Spektrum, da das Spektrum der möglichen Energiezustände 

' des Photons kontinuierlich ist. Somit liegt hier gerade die Fragestellung vor, 
die in § 35 behandelt wurde. Gemäß (35,6) ist die Übergangswahrscheinlichkeit 



282 Kapitel XV. S�rahlung 

(pro Sekunde) für den Übergang i -+ f unter Emission eines Photons gleich 
dw = 2 n I V11i2 b(E1 - E1 - w) dv , (95,12) 

wobei v vereinbarungsgemäß die Gesamtheit der Größen beschreiben soll, die 
den Zustand des Photons charakterisieren und einen stetigen Wertebereich 
durchlaufen. Für Photonen mit festem Wert des Wellenzahlvektors sind die 
Größen v die Komponenten von k, so daß dv = dk:r: dk11 dk. = w2 dw do ist 
(do ist das Raumwinkelelement in k-Richtung) .  Bei einer solchen Wahl der 
Größen v wird in der Formel (95, 12) vorausgesetzt, daß die Wellenfunktion 
des Photons auf b(k) normiert ist. Die Funktion (95, 9) ist aber auf "1 Photon 
pro Volumeneinheit" normiert ; bei dieser Normierung hat die Wellenfunktion 
den Faktor 1/W anstelle des Faktors (2 n) - 312, der im Falle der Normierung 
auf die Deltafunktion b(k) (vgl. (27,9) und (27, 10)) auftritt. Wir müssen des­
halb die Formel (95,12) in der Form 

2 !J w2 dw do dw = 2 n I V1ii  b(E, - E1 - w) (2 n)a (95,13) 
schreiben. 

Die in diese Formel eingehende Deltafunktion drückt den Energieerhaltungs­
satz aus : Die Energie des emittierten Photons ist gleich dem Energieverlust 
des strahlenden Systems : w = E1 - E1. Die Integration der Formel (95,13) 
über dw bringt diese Deltafunktion zum Verschwinden und führt zu folgendem 
Endergebnis für die Emissionswahrscheinlichkeit eines Photons der Energie 
w = E, - E1 in den Raumwinkel : do :  

In diese Formel muß das Matrixelement aus (95, 10) eingesetzt werden. 

§ 96. Spontane und induzierte Emission1) 

(95, 14) 

In den folgenden Paragraphen werden wir die eben erhaltenen Formeln zur 
Berechnung der Übergangswahrscheinlichkeit auf eine Reihe konkreter Fälle 
anwenden. Hier befassen wir uns zunächst mit einigen allgemeinen Beziehungen 
zwischen den verschiedenartigen Strahlungsprozessen. 

Das Matrixelement (95,5) gehört zu einem Photonenemissionsprozeß, wenn 
im AnfangsZustand das Feld keine Photonen der betrachteten Sorte enthält. 
Wenn im Anfangszustand bereits eine von Null verschiedene Zahl N,. solcher 
Photonen vorhanden ist, so ist das Übergangsmatrixelement (gemäß (95,4)) 
noch mit Y N,. + 1 zu multiplizieren. Die Übergangswahrscheinlichkeit ver­
größert sich entsprechend um den Faktor N,. + 1. Die 1 in diesem Faktor ent­
spricht der spontanen Emission, die auch bei N,. = 0 vorkommt. Das Glied 
N,. bedingt eine erzwungene (oder induzierte) Emission. Wir sehen, daß die 

1) In diesem Paragraphen verwenden wir gewöhnliche Maßeinheiten. 
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Existenz von Photonen im Anfangszustand des Feldes eine zusätzliche EmiE­
sion dieser Photonen stimuliert. 

Wenn der Übergang i -+ f die Emission eines Photons durch das System 
darstellt, welches dabei von einem Niveau Et in ein tieferliegendes Niveau E1 
übergeht, so bedeutet der umgekehrte Übergang / -+  i die Absorption ei�s 
solchen Photons durch das System, wobei letzteres vom Niveau E1 in das 
Niveau E1 übergeht. Das Matrixelement dieses inversen Übergangs unter­
scheidet sich vom Matrixelement des direkten Prozesses durch den Austausch 
des Faktors (95,4) mit (95,3), d. h., VN11 + 1 wird durch VN11 ersetzt. Daraus 
folgt, daß zwischen den Emissions- und Absorptionswahrscheinlichkeiten eines 
Photons (bei Übergängen zwischen einem vorgegebenen Niveaupaar des strah­
lenden Systems) folgende Beziehung gilt : 

Wem N11 + l  
Wab N11 

(96, 1) 

(sie wurde erstmalig 1916 von A. EINSTEIN angegeben, der damit die Erschei­
nung der induzierten Emission voraussagte). 

Wir wollen die Zahl der Photonen mit der Intensität der von außen auf 
das System einfallenden' Strahlung in Verbindung bringen. Es sei 

(96,2) 

die Strahlungsenergie, die in 1 s auf die Fläche 1 cm2 auftrifft und die Polarisa­
tim:i e, die Frequenz im Intervall dw und die Richtung des Wellenzahlvektors im 
Raumwinkel do hat. Den angegebenen Intervallen entsprechen Q k2 dk dof(2 :n;)3 
Feldoszillatoren (im Volumen Q). Auf jeden Oszillator entfallen N ke  Photonen 
mit einer bestimmten Polarisation. Wir erhalten daher dieselbe Energie wie in 
(96,2), wenn wir das Produkt 

c 

bilden. Hieraus finden wir die gesuchte Beziehung 
8 n3 c2 N,.e = � fke · (96,3) 

dw��> sei die Wahrscheinlichkeit für die spontane Emission eines Photons 
mit der Polarisation e in den Raumwinkel do ; die Indizes (in) und (ab) werden 
den entsprechenden Wahrscheinlichkeiten für induzierte Emission und Ab­
sorption angehängt. Nach (96,1 )  und (96,3) sind diese Wahrscheinlichkeiten 
durch die folgenden Beziehungen miteinander verknüpft : 

8 3 2 
dw(ab) - dw(in) - dw(sp) � I Iee - ke  - Iee ll wa Iee  • (96,4) 

Wenn die einfallende Strahlung isotrop und unpolarisiert ist (I,.e hängt 
nicht von den Richtungen von k und e ab), dann ergeben die Integration von 
(96,4) über do und die Summation über e analoge Beziehungen zwischen den 
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Gesamtwahrscheinlichkeiten für die Strahlungsübergänge (zwischen gegebenen 
Zuständen i und I des Systems) 

:n:2 c2 w<ab) = w<ln) = w<sp) __ I A w3 ' (96,5) 

wenn I =  2 · 4:n; Ik e die gesamte spektrale Intensität der einfallenden Strah­
lung ist. 

Falls die Zustände i und I des emittierenden (oder absorbierenden) Systems 
entartet sind1), el'gibt sich die gesamte Emissions- (oder Absorptions-) Wahr­
scheinlichkeit für die gegebenen Photonen durch Summation über·alle entarteten 
Endzustände und durch Mittelung über alle möglichen Anfangszustände. Wir 
bezeichnen die Entartungsgrade (die statistischen Gewichte) der Zustände i 
und I mit g1 bzw. g1. Für die spontane und die induzierte Emission sind die 
Zustände i die Anfangszustände, für die Absorption die Zustände I· Unter der 
Voraussetzung, daß in jedem Fall alle f/1 oder g1 Anfangszustände gleichwahr­
scheinlich sind, erhalten wir statt (96,5) offensichtlich die folgenden Beziehungen : 

§ 97. Die Dipolstrahlung 

(96,6) 

Ein sehr wichtiger Fall liegt dann vor, wenn die Wellenlänge des PhotonsA. 
groß im Vergleich zu den Abmessungen a des strahlenden Systems ist. Dieser 
Fall tritt gewöhnlich dann auf, wenn die Geschwindigkeiten der Teilchen klein 
im Verhältnis zur Lichtgeschwindigkeit sind (vgl. I § 80). 

In erster Näherung bezüglich des kleinen Verhältnisses aj). kann man im 
Integral (95,11) den Faktor e-ilet' durch l ersetzen, denn dieser ändert sich in 
dem Gebiet, in dem 1p1 und "P! merklich von Nul:l verschieden sind, nur wenig. 
Mit anderen Worten bedeutet eine solche Näherung die Vernachlässigung des 
Photonenimpulses gegenüber den Impulsen der Teilchen im System (in gewöhn­
lichen Maßeinheiten ist der erstere gleich 1i k und besitzen die letzteren die 
Größenordnung !ifa). Diese Näh�rung entspricht der Dipolstrahlung der klas­
sischen Strahlungstheorie. 

In derselben Näherung kann das Integral 

if,(O) = I  VJ! IX 1pt d V 

durch den entsprechenden nichtrelativistischen Ausdruck ersetzt werden, d. h. 
einfach durch das Matrixelement der Elektronengeschwindigkeit v, das mit 
den ScHRÖDINGERschen (nichtrelativistischen) Wellenfunktionen gebildet wird. 
Dieses Matrixelement v1; kann seinerseits durch ein ebensolches Matrixelement 
des Radiusvektors des Elektrons ausgedrückt werden : Da V = r ist, haben 
wir nach (1 1,8) v1; = i (E1 - Et) '*i; ; die Differenz E1 - E1 fällt mit der 

1) Das kann z. B. eine Entartung nach den Richtungen des Drehimpulses des strahlenden 
Atoms sein. 
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Kreisfrequenz w des emittierten Photons zusammen, so daß 
• . ' i w

d
· 

]fi = v,, = - � w r,, = - 7 fi 

285 

(97, 1) 

ist (d = e r ist das Dipolmoment des Elektrons infolge seiner Bahnbewegung) .  
Nach Einsetzen von (97,1)  in (95,10) finden wil:1) 

TT _ · 1 /2 n w * d . (97,2) fi - � V Q e :f; ' 

und im Anschluß daran entsteht über (95,14) folgende Formel für die Wahr­
scheinlichkeit der Dipolstrahlung : 

(97,3) 

(die Richtung des Wellenzahlvektors k des Photons tritt hierbei implizit auf : 
Der Polarisationsvektor e muß senkrecht auf k stehen) .  

Die Gesamtemissionswahrscheinlichkeit erhält man aus (97 ,3) nach der Inte­
gration über alle Photonenrichtungen und der Summation über die beiden 
unabhängigen Polarisationen. e soll einer linearen Polarisation entsprechen ; 
dann ist e ein reeller Einheitsvektor und da� Produkt e* d1, stellt eine der 
kartesischen Vektorkomponenten d1; dar. Beim Ersetzen des Quadrats I (d1;)"\ 2 
durch seinen Mittelwert; der gleich 1/3 \ d1;\ 2 ist, wird die weitere Integration 
über do auf eine einfache Multiplikation mit 4 n zurückgeführt , und die Sum­
mation über die Polarisationen ersetzt eine Multiplikation mit dem Faktor 2. 
Die Gesamtemissionswahrscheinlichkeit eines Photons ist somit 

4 w3 
W = T \ dfi1 2  

oder in gewöhnlichen Maßeinheiten 
4 w3 

w = 3 A ca l d,,\ 2 . (97,4) 

Die Intensität I der Strahlung ergibt sich durch Multiplikation der Wahr­
scheinlichkeit mit 1i w :  

4 w' 
I =  3 ca ! d,;\ 2 .  (97 ,5) 

Wir möchten darauf hinweisen, daß der genäherte Ausdruck für das Matrix­
element (97 ,2) das Matrixelement des Operators 

� � 

V = - E d  (97,6) 

1) Der analoge Ausdruck für das Übergangsmatrixelement im Falle der Absorption 
eines Photons ist 

Vti = - i v2 �w e dti .  (97,2a) 

Er ergibt sich aus (95,6) auf die gleiche Weise, wie (97,2) aus (95,5) erhalten wird.' 
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ist, wobei E = - oAfot der Operator der elektrischen Feldstarke und d der 
Operator des Dipolmomentes des Elektrons sind ; (97 ,2) erhält man aus (97,6) 
auf genau die gleiche Art wie (95,5) aus (95, 1). Der genäherte Wechselwirkungs­
operator (97,6) entspricht gerade dem klassischen nichtrelativistischen Aus­
druck fül' die potentielle Energie eines Systems von Ladungen in einem quasi­
homogenen elektrischen Feld (vgl. I § 64). Dieser Umstand ist in der Be­
ziehung bedeutungsvoll, daß er erlaubt, den Anwendungsbereich der in diesem 
Paragraphen erhaltenen Formeln beträchtlich zu erweitern : Die Formeln gelten 
nicht nur für einen "Einelektronenstrahler", sondern auch für die Strahlung 
eines beliebigen nichtrelativistischen Teilchensystems. 

Die Formel (97,5) zeigt eine direkte Analogie zur klassischen Formel (vgl. I 
(80,12)) für die Intensität der Dipolstrahlung eines Systems periodisch bewegter 
Teilchen : Die Strahlungsintensität zur Frequenz w = n w0 (w0 ist die Frequenz 
der Teilchenbewegung, n eine ganze Zahl) ist 

(97,7) 

wobei dn die FoURIER-Komponenten des Dipolmoments sind, d. h. die Ent­
wicklungskoeffizienten in 

()() 
d(t) = }; dn e- in w, t . (97,8) 

n = - oo  

Die quantentheoretische Formel (97,5) ergibt sich aus (97,7), indem man 
diese FoURIER-Komponenten durch die Matrixelemente für die betreffenden 
Übergänge ersetzt. Diese Regel (die ein Ausdruck für das BoHRsehe Korre­
spondenzprinzip ist) ist ein Spezialfall der allgemeinen Korrespondenz zwischen 
den FoURIER-Komponenten der klassischen Größen und den quantentheore­
tischen Matrixelementen im quasiklassischen Fall (§ 27). Die Strahlung ist 
quasiklassisch für Übergänge zwischen Zuständen mit großen Quantenzahlen ; 
dabei ist die Frequenz des Überganges Ii w = Ei - E1 klein gegenüber den 
Energien Ei und E1 des strahlenden Systems. Die genaue (nicht an die Be­
dingung für das Vorliegen des quasiklassischen Falls gebundene) Formel (95,7) 
hat jedoch sowohl für kleine als auch für beliebige w dasselbe Aussehen. Da­
durch wird die (bekanntlich zufällige) Tatsache erklärt, daß das Korrespondenz­
prinzip für die Strahlungsintensität nicht nur im quasiklassischen, sondern auch 

. im allgemeinen quantenmechanischen Fall gilt. 

§ 98. Multipolstrahlung 

Anstelle der Emission von Photonen mit vorgegebenem Impuls (d. h. in eine 
gegebene Richtung) behandeln wir jetzt die Emission von Photonen mit einem 
bestimmten Drehimpuls j. Dabei wird auch der tiefere quantenmechanische 
Sinn der Dipolnäherung geklärt. 
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Für die Emission solcher Photonen existieren strenge .Auswahlregeln, die 
Folgen des Drehimpulserhaltungssatzes sind : Der Drehimpuls des Anfangs­
zustandes des strahlenden Systems muß übereinstimmen mit der Summe der 
Drehimpulse des Endzustandes des Systems und des Photons. Nach der 
quantenmechanischen Regel über die Addition von Drehimpulsen heißt dies, 
daß das System im Endzustand nur die Werte des Drehimpulses 

(98,I) 
annehmen kann, wenn es im Anfangszustand den Drehimpuls Ji besaß und 
ein Photon mit dem Drehimpuls j emittiert wurde. 

Auch die Paritäten Pt und P1 des Anfangs- und Endzustandes des Systems 
unterliegen einer bestimmten Bedingung : Die Parität des Anfangszustandes 
muß mit der Gesamtparität des Endzustandes des Systems und des Photons 
übereinstimmen, d. h. ,  es muß Pt = P1 Pph gelten mit · PPh als Parität des 
Photons. Da alle Paritäten nur die Werte ± I  annehmen können, kann man 
diese Bedingung auch in folgender Form schreiben1) :  

Pt P1 = PPh . (98,2) 
Der Drehimpuls des Photons durchläuft, von l beginnend, ganzzahlige Werte 

(der Wert j = 0 ist nicht erlaubt). Für beliebige dieser Werte des Drehimpulses 
verbietet die Regel (98,1)  beim Übergang des Systems zwischen zwei Zuständen 
mit J = 0 (0 -+ 0-Übergänge) die Emission eines einzelnen Photons. Ein 
Strahlungsübergang zwischen zwei solchen Zuständen ist nur für eine gleich­
zeitige Emission zweier Photonen mit antiparallelen Drehimpulsen möglich 
(dieser Prozeß tritt aber erst in höherer Näherung der Störungstheorie auf und 
ist deshalb von relativ geringer Wahrscheinlichkeit). 

Für die Emission eines Photons der Art I- (ein EI-Photon nach der in § 78 
eingeführten Bezeichnungsweise) erlauben die Auswahlregeln (98,I-2) nur 
Übergänge zwischen Zuständen entgegengesetzter Parität bei folgenden zu­
lässigen .Änderungen des Drehimpulses J des strahlenden Systems : 

J -+ J + I , J , J - I  (für J � I) ;  
I/2 -+ 3/2 ' I/2 ; 0 -+ 1 . 

(98,3) 

Diese Regeln stimmen mit den Auswahlregeln der Matrixelemente eines po­
laren Vektors (§§ I8, I9) überein. Das elektrische Dipolmoment d des Systems, 
dessen Matrixelemente die Übergangswahrscheinlichkeit (97,4) bestimmen, ist 
gerade ein solcher Vektor. Daraus wird ersichtlich, daß die Dipolnäherung die 
Emission eines 1--Photons beschreibt. 

Die Auswahlregeln für die Emission eines !+-Photons (MI-Photons) unter­
scheiden sich von denen für die Emission eines EI-Photons nur bezüglich der 
Parität : Anfangs- und Endzustand des strahlenden Systems müssen die gleiche 
Parität besitzen. Das entspricht den Auswahlregeln für die Matrixelemente 

1) Die Auswahlregel bezüglich der Parität wurde erstmalig von 0. LAPORT (1924) auf· 
gestellt. 
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eines axialen Vektors. Der V �ktor des magnetischen Dipolmoments eines Sy­
stems ist ein Vektor dieser Art. Seine Matl'ixelemente bestimmen für diesen 
Fall die Photonenemissionswahrscheinlichkeit. Hieraus leitet sich auch die Be­
zeichnung magnetische Dipolstrahlung ab. 

Völlig analog bestimmt sich die Emission eines beliebigen Ej-Photons durch 
die Matrixelemente des elektrischen 2i-Polmoments des Systems und die Emis­
sion eines Mj-Photons durch die Matrixelemente des magnetischen 2i-Pol­
moments. 

§ 99. Die Strahlung von Atomen1) 

Die Energien der äußeren Elektronen eines Atoms (die an optischen Über­
gängen beteiligt sind) sind nach einer groben Abschätzung von der Größen­
ordnung E f'oJ m e4j!i2, so daß die emittierten Wellenlängen.A. f'oJ Ii cjE f'oJ li2jcx. m e2 

sind. Die Atomdurchmesser sind a f'oJ li2jm e2• Deshalb ist für optische Atom­
spektren die Ungleichung aj.A. f'oJ cx. � 1 in der Regel erfüllt. Dieselbe Größen­
ordnung hat das Verhältnis vfc f'oJ cx., wobei v die Geschwindigkeit der optischen 
Elektronen ist. 

Für optische Atomspektren ist also die Bedingung erfüllt, unter der die 
Wahrscheinlichkeit für die elektrische Dipolstrahlung (wenn sie nicht durch 
Auswahlregeln verboten wird) viel größer ist als die Wahrscheinlichkeit für 
Multipolübergänge. Auf · Grund dessen spielen gerade die elektrischen Dipol­
übergänge die wichtigste Rolle in der Atomspektroskopie.2) 

Die im vorigen Paragraphen angeführten Auswahlregeln bezüglich des Ge­
samtdrehimpulses und der Parität der Elektronenhülle des Atoms sind völlig 
streng.3) Neben diesen Regeln kann es auch andere, genäherte Auswahlregeln 
geben, deren Gültigkeit mit bestimmten Eigenschaften verbunden ist, die einige 
Gruppen von Atomzuständen genähert charakterisieren. 

Zustände, die nach dem Typ der LS-Kopplung (§ 51) aufgebaut sind, gehören 
z. B. zu dieser Art. Neben dem Gesamtdrehimpuls werden diese Zustände 
noch durch bestimmte Werte des in diesem Fall erhalten bleibenden Bahn­
arehimpulses L und des Atomspins S charakterisiert. Da das elektrische Dipol­
moment eine reine Bahngröße ist, ist sein Operator mit dem Spinoperator 

1) In diesem Paragraphen verwenden wir gewöhnliche Maßeinheiten. 
2) Typische Werte für die Übergangswahrscheinlichkeit von Dipolübergängen im op­

tischen Bereich der Atomspektren haben die Größenordnung von 108 s-1• 
8) Um Mißverständnisse zu vermeiden, weisen .wir .der Exaktheit wegen darauf hin, 

daß sich der Gesamtdrehimpuls des Atoms aus dem Drehimpuls seiner ElektronenhÜlle 
und dem Kernspin zusammensetzt (in § 51 wurde dieser Gesamtdrehimpuls mit F be­
zeichnet). Die absolut strengen Auswa}j.lregeln beziehen sich auf diesen Gesamtdnih­
impuls. Wegen der äußerst geringen Wechselwirkung der Elektronen mit dem Kernspin 
kann man aber seinen Einfluß auf die Wahrscheinlichkeit von Elektronenübergängen 
völlig vernachlässigen, und demnach beziehen sich die Auswahlregeln nur noch auf die 
Charakteristika des Elektronenzustands des Atoms. 
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vertauschbar, d. h., seine Matrix ist bezüglich S diagonal. Für die Matrix­
elemente des Dipolmoments mit den Wellenfunktionen der Bahnbewegung der 
Elektronen gelten somit die gleichen Auswahlregeln bezüglich L wie für jeden 
beliebigen Bahnvektor (§ I8). Übergänge zwischen den nach der Art der LS­
Kopplung aufgebauten Zuständen sind also noch den zusätzlichen Auswahl­
regeln 

S1 = S; , 

L1 = L; + I , Li , L; - I (99, I) 

unterworfen. Wir betonen noch einmal, daß diese Regeln nur genäherten Cha­
rakter haben und nur bei Vernachlässigung der Spin-Bahn-Wechselwirkung, 
die die separate Erhaltung von Bahndrehimpuls und Spin verletzt, gültig sind. 

In der klassischen Theorie ist die Größenordnung des magnetischen Moments 
eines Systems (s. seine Definition I (66,2)) mit der Größenordnung seines elek­
trischen Dipolmoments über fl ,..._, (vjc) d gekoppelt. Dieselbe Beziehung bleibt 
auch bei der quantentheoretischen Beschreibung eines Atoms erhalten. Die 
Größenordnung des magnetischen Moments eines Atoms ist durch das BoHRsehe 
Magneton gegeben : fl ,..._, e tijm c ;  dieser abgeschätzte Wert unterscheidet sich 
von der Größenordnung des Dipolmoments d ,..._, e a ,..._, 1i2jm e um den Faktor a .  
Da  aber vjc ,..._, a gilt, erhält man hieraus die angeführte Beziehung zwischen fl 
und d. 

Die Wahrscheinlichkeit für die magnetische (MI) Dipolstrahlung ist dem 
Quadrat des magnetischen (Dipol-) Moments proportional und ist folglich im Ver­
gleich zur Wahrscheinlichkeit der elektrischen Dipolstrahlung (derselben Fre­
quenz) ungefähr a2-mal kleiner. Aus diesem Grunde spielt die · magnetische 
Strahlung praktisch nur für die Übergänge eine Rolle, für die der entspre­
chende elektrische Strahlungstyp nach den Auswahlregeln verboten ist. 

Dasselbe gilt auch bezüglich der elektrischen Quadrupolstrahlung (E2-Strah­
lung). Die Größenordnung des elektrischen Quadrupolmoments eines Atoms 
beträgt e a2• Dieser Wert enthält im Vergleich zum Dipolmoment d ,..._, e a den 
zusätzlichen Faktor a. Dementsprechend bekommt das Übergangsmatrix­
element für die Quadrupolstrahlung im Vergleich zum Matrixelement der Dipol­
strahlung den zusätzlichen Faktor k a ,..._, aj). ; mit den oben angegebenen Ab­
schätzungen bezüglich der Größenordnungen von a und). erhalten wir wiederum 
den kleinen Faktor ,...."a .  

Der Umstand, daß dieser Faktor für die beiden Strahlungstypen (MI- bzw. 
E2-Strahlung) auf unterschiedliche Weise zustandekommt (aus dem Verhältnis 
vjc im ersten und aus aj). im zweiten Fall), kann jedoch dazu führen, daß 
unter bestimmten Bedingungen die MI-Strahlung gegenüber der E2-Strahlung 
(vorausgesetzt, daß beide die Auswahlregeln erfüllen1 eine größere Wahr­
scheinlichkeit besitzt. Das Verhältnis beider Wahrscheinlichkeiten ist von der 
Ordnung 

w(E 2) ,..._, (a/).}2 ,..._, (a w)2 ,..._, (.dE )2 
m(M 1) (vjc)2 v E 
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mit E ,...., V nfa, der Atomenergie, und LIE = Ii w, der Änderung der Energie 
des Atoms auf Grund des Strahlungsübergangs. Wir erkennen, daß dieses Ver­
hältnis für LIE ,......, E genähert I ist, für LIE � E jedoch klein sein kann. 

Der letztere Fall tritt z. B. bei Übergängen zwischen den Komponenten der 
Hyperfeinstruktur ein und desselben Niveaus auf (die Übergangsfrequenzen 
liegen dabei im Radiowellenbereich). Diese Übergänge können prinzipiell nicht 
über eine elektrische Dipolstrahlung erfolgen, da alle Komponenten der Hyper­
feinstruktur, die sich nur durch den summaren Drehimpuls aus Kern- und 
Elektronendrehimpuls unterscheiden, die gleiche Parität besitzen. E2- und 
MI-Übergänge gehen ohne Paritätsänderung vor sich. Da jedoch der Energie­
abstand zwischen den Komponenten der Hyperfeinstruktur relativ klein ist, 
hat die E2-Strahlung im Verhältnis zur MI-Strahlung eine bedeutend geringere 
Wahrscheinlichkeit, so daß diese Übergänge über die magnetische Dipol­
strahlung erfolgen. 

§ 100. Die Infrarotkatastrophe 

Der Stoß zweier geladener Teilchen ist im allgemeinen mit Photonenemission 
(der sogenannten Bremsstrahlung) verbunden. Die möglichen Frequenzwerte 
des Photons durchlaufen kontinuierlich den Bereich von Null bis zur Größe 
der kinetischen Energie der Relativbewegung der stoßenden Teilchen. Wir 
wollen im folgenden einige Eigenschaften dieser Strahlung im Grenzfall 
kleiner Frequenzen betrachten. 

Wenn die Photonenenergie Ii w gegen Null strebt, müssen die quanten­
mechanischen Formeln in die klassischen übergehen. Dabei können wir na­
türlich nur die Berechnung solcher Charakteristika des Strahlungsprozesses 
diskutieren, die sich unabhängig vom Begriff des Photons formulieren lassen. 
Eine solche charakteristische Größe ist die Gesamtstrahlungsintensität - die 
Gesamtenergie, die die stoßenden Teilchen durch die Strahlung verlieren. 

Nach der klassischen Theorie strebt die spektrale Energieverteilung der 
Bremsstrahlung für w --+ 0 zu einem Ausdruck der Form 

d� = const · dw , (100, 1) 

const ist hier eine Größe, die nicht von w abhängt (s. Aufgabe 4 in I § 80, 
wo der nichtrelativistische Stoß zweier Teilchen untersucht wird, die unter­
schiedliche Verhältnisse von Ladung und Masse besitzen) .  

Obgleich dieses ·Gesetz für den Grenzfall, in Übereinstimmung mit dem oben 
Gesagten, auch in der Quantentheorie gültig bleibt, gibt es hierbei jedoch noch 
einen anderen Aspekt. Die Strahlung wird nälnlich nicht nur durch ihre Ge­
samtenergie, sondern auch durch die Zahl der emittierten Photonen charak­
terisiert. Die Zahl der Photonen im Intervall dw erhält man über Division von 
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d� durch Ii w. Wir finden dafür im selben Grenzfall den Ausdruck 
dw dN = const - .  
w 
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(100,2) 

Die Gesamtzahl der emittierten Photonen ergibt sich nach Integration von 
dN fdw über dw. Wir sehen, daß das Integral (logarithmisch) an der unteren 
Integrationsgrenze (w = 0) divergiert. Das heißt mit anderen Worten, daß 
unendlich viele Photonen mit unendlich kleinen Energien emittiert werden. Man 
bezeichnet diese Situation als I nfrarotkatastrophe. 

Wir möchten unterstreichen, daß diese Divergenz die reale physikalische 
Situation widerspiegelt und nichts gemein hat mit den fiktiven Divergenzen, 
die als Folge der Unzulänglichkeit der existierenden Theorie entstehen. Das 
Auftreten der infraroten Divergenz hängt damit zusammen, daß die Mas8e des 
Photons gleich Null ist, so daß seine Energie beliebig klein sein kann. 

Obwohl Photonen beliebig kleiner Frequenzen faktisch nicht beobachtbar 
sind, ist jedoch die infrarote Divergenz von prinzipieller Bedeutung. Streng­
genommen wird jeder Stoß geladener Teilchen von der Emission einer unend­
lichen Zahl weicher Quanten begleitet ; die Wahrscheinlichkeit für einen Stoß 
ohne jegliche Photonenemission, bzw. unter Emission einer endlichen Zahl von 
Photonen ist Null. In diesem Sinne kann man sagen, daß ein Stoß geladener 
Teilchen nie streng elastisch sein kann. Bei der genauen Berechnung der Ge­
samtwahrscheinlichkeit solcher Stöße ist es notwendig, das Spektrum der 
emittierten Photonen "abzuschneiden" : Man muß vereinbaren, alle die Fälle 
als "elastische" zu betrachten, in denen Photonen mit Frequenzen emittiert 
werden, die einen bestimmten. kleinen, aber endlichen Grenzwert nicht über­
schreiten. 

Aufgab el) 
Man bestimme den Wirkungsquerschnitt der Bremsstrahlung beim Vorbeifliegen eines 

Elektrons an einem unbeweglichen Atomkern mit der Ladung + Z e. Es wird voraus­
gesetzt, daß v � c ist, aber gleichzeitig Z e2fli v � 1, Z e2fli v' � 1 gilt, mit v und v' - der 
Anfangs- und Endgeschwindigkeit des Elektrons (die letzten Ungleichungen sind die Be­
dingungen für die Anwendbarkeit der BoRNsehen Näherung, bei der der Einfluß des 
elektrischen Kernfeldes auf die Wellenfunktionen des Elektrons vor und nach dem Stoß 
vernachlässigt wird). 

L ö s u ng. Entsprechend (97,4) ist der Wirkungsquerschnitt für Stöße, bei denen ein 
Photon der Energie Ii w emittiert wird und in deren Ergebnis das Elektron den Impuls 
p' = m v' besitzt, der im Raumwinkelelement do' liegt, durch folgende Formel gegeben : 

4 w3 
der = 

3 Ii c3 ldJ;l2 p'2 dp' do' . ( 1 )  

Der Zusatzfaktor d3p' = p'2 dp' do' rührt daher, daß der Endzustand (ein freies Elektron 
mit dem Impuls p') zum kontinuierlichen Spektrum gehört. Der Übergang von der Wahr­
scheinlichkeit (in (97,4)) zum Wirkungsquerschnitt erfolgt durch die entsprechende Nor-

1) Wir verwenden gewöhnliche Maßeinheiten. 

20 Kurzfassung li 
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mierung der Weilenfunktion des Anfangszustands des Elektrons auf die Einheitsstrom­
dichte : 

i 
1 -p r 

'Pi = - e n 
vv (2) 

mit p = m v  (vgl. (21,6)). Die Wellenfunktion des Endzustandes des Elektronswird durch 
eine ebene Welle beschrieben, die im Impulsraum auf eine CJ-Funktion normiert ist : 

i 
1 l!p' r 'P! 

= (2 n h)3/2 e (3) 

Die Frequenz des emittierten Photons hängt mit p und p' über den Energieerhaltungssatz 
zusammen: 

1 
1i w  = - (p2 _ p'2) .  

2 m  (4) 
Die Berechnung des Matrixelements für das Elektronendipolmoment d = e 1' (bei Be­

wegung des Elektrons bezüglich des Feldzentrums) darf man jedoch nicht unmittelbar 
mit den Funktionen (2) und (3) ausführen, sondern erst nach Berücksichtigung der Be­
wegungsgleichung des Elektron& im Kernfeld: 

Z e2 m r = l7 -r- . 
In der Quantenmechanik muß man diese Gleichung als Beziehung zwischen den ent­
sprechenden Operatoren verstehen (vgl. (21,2)). Für die Matrixelemente dieser Operatoren 
erhält man: 

m(�)1; = - m w2 '�'!i = Z e2 (v � ),; . 
Das Matrixelement (r _!_) bezüglich der Funktionen (2), (3) führt (unter Benutzung 

r fi 
von (68,6)) auf die FouRIER-Transformierte 

(v � t = J (v �) e-i qr  d v = i q (! t = 4:: q , 

hierbei ist 1i q = p' - p. Im Ergebnis dessen erhält man für (1)  

da = -Z2 .x -- ----- - • 

8 ( e2 )2 v' c2 do' dw 
.3 n m c2 v (v - v')2 w 

Um die Integration über die Richtungen von v' durchzuführen, schreiben wir 
(v - v')2 = v2 + v'2 - 2 v v' cos () , do' = 2 n sin () d() 

und finden nach der Integration über d(J endgültig 
16 ( e2 )2 c2 v + v' dw 

da = -Z2 "' -- - ln ---, - .  
3 m c2 v2 v - v w 

Der Infrarotkatastrophe entspricht die Divergenz dieses Ausdruckes bei w -+ 0. 

§ 101. Lichtstreuung 

Die Streuung eines Photons an einem Atom stellt eine Absorption des anfäng­
lich vorhandenen Photons (mit dem Impuls k) und die gleichzeit.ige Emission 
eines anderen Photons mit k' dar. Dabei kann das Atom entweder im An­
fangszustand verbleiben bzw. in irgendein anderes Energieniveau übergehen. 
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Im ersten Fall bleibt die Frequenz des Photons unverändert (RAYLEIGH· 
Streuung), im zweiten Fall ändert sie sich um die Größe 

w ' - w = Ei - E1 , (101,1)  
mit E, und E1 als den Anfangs- und Endenergien des Atoms (Kombinations­
streuung). Befindet sich das Atom anfänglich im Grundzustand, so kann die 
Frequenz nur kleiner werden. Bei der Streuung an einem angeregten Atom 
kann der Endzustand sowohl höher als auch tiefer in bezug auf den Anfangs­
zustand liegen, so daß die Kombinationsstreuung sowohl zu einer Verringerung 
als auch zu einem Anwachsen der Frequenz führen kann. 

Da der Operator für die elektromagnetische Wechselwirkung keine von Null 
verschiedenen Matrixelemente für Übergänge besitzt, bei denen gleichzeitig 
zwei Photonenbesetzungszahlen verändert werden, tritt ein Streueffekt erst in 
zweiter Ordnung der Störungsrechnung auf. Man muß ihn sich als einen Pro­
zeß vorstellen, der übe� bestimmte Zwischenzustände verläuft, für die zwei 
verschiedene Arten möglich sind : 
I. Das Photon k wird absorbiel't und das Atom geht vom Anfangszustand Et 

in einen seiner möglichen Zustände E11 über ; beim anschließenden Über­
gang des Atoms in den Endzustand E1 wird das Photon k' emittiert. 

II. Es wird das Photon k' emittiert und das Atom geht von E, in den Zu­
st�i-nd En über ; beim Übergang in den Endzustand wird das Photon k ab­
sorbiert. 

Gemäß (36,2) spielt die Summe 

V . = 
IJ..' (Vfn Vn; Vfn V�; ) 

f• · <&>. <&>I + <R .  <RII n 0, - en to �  - e»n (101,2) 

die Rolle des Matrixelementes für den betrachteten Prozeß. Hierbei sind 
�; = Et + w die Anfangsenergie des Systems "Atom + Photonen" und 
�� und ��I die Energien der beschriebenen zwei Arten von Zwischenzuständen : 

�� = En , ��I = En + w + w' ; 
V11 ; und V111 sind die Matrixelemente für die Übergänge mittels Photonen­
absorption, V/n und V�; - Übergangsmatrixelemente bei Photonenemission ; 
der Anfangszustand des Atoms wird bei der Summation über n ausgelassen 
(Strich am Summenzeichen). 

Unsere Aufgabe besteht in der Berechnung des Wirkungsquerschnitts des 
Streuprozesses. Das kann mit Hilfe von Formel (95,14) erfolgen, die schon 
früher zur Berechnung der Wahrscheinlichkeit der spontanen Emission benutzt 
wurde. Der Unterschied besteht nur darin, daß die "Strahlungsquelle" für 
die Emission eines Photons w' jetzt kein isoliertes Atom, sondern ein System 
aus Atom plus einfallendes Photon w ist. Der Streuquerschnitt ergibt sich aus 
der Übergangswahrscheinlichkeit (pro Zeiteinh�it), indem man diese einfach 
durch die Stromdichte der auf das Atom einfallE)nden Photonen dividiert. Der 
Wellenfunktion des Photons, die auf "1 Photon im Volumen Q" normiert 

20* 
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ist, entspricht die Stromdichte cf!J, die das Produkt aus der Geschwindig­
keit c und der Photonenzahldichte 1/!J ist. In relativistischen Einheiten ist 
c = 1, und der Streuquerschnitt berechnet sich somit nach der Formel 

f./2 
da = 4 :n:2 I V1;1 2 w'2 do' (101,3) 

mit do' als dem Raumwinkelelement in Richtung des gestreuten Photons. 
Wenn wir annehmen, daß die Wellenlängen der Photonen im Anfangs- und 

Endzustand groß gegenüber den Abmessungen des streuenden Atoms sind, 
dann können wir für die Matrixelemente aller Übergänge die Dipolnäherung 
verwenden. Nach (97,2) und (97,2a) ergeben sich 

V, · l /2 :n: w' '* d fn = � V -Q (e fn) 

und analoge Ausdrücke für V� ; und V/n (e und e' sind die Polarisations­
vektoren der Photonen w und w'). 

Setzt man alle d�ese Ausdrücke in (101,2) und danach in (101,3) ein, so 
erhält man für den Streuquerschnitt!) 

'3 
d - lA l 2 w w  d '  0" - Ii fi2 c2 0 

mit der Streuamplitude 

A 
. = }; { (dfn e'*) (dni e) (djn e) (dni e'*) } 

/t 11 Wni - W + Wnj + w ' 
1i Wni  = E11 - E{, 

(101,4) 

(101,5) 

diese Formel wurde ( 1925) von H. A. KRAMERS und W. REISENBERG abgeleitet. 
Es wird über alle möglichen Atomzustände n einschließlich der Zustände des 
kontinuierlichen Spektrums summiert (dabei fallen die Zustände i und I auto­
matisch aus der Summe heraus, weil die Diagonalelemente dtt  = dff = 0 sind 
- s. § 54).2) 

Es ist leicht zu erkennen, daß die Streuamplitude nur für Übergänge zwi­
schen Zuständen gleicher Parität (darunter auch für den Fall, daß i und I 
zusammenfallen) von Null verschieden ist. Das folgt daraus, daß die Matrix­
elemente des Vektors d nur für Übergänge zwischen Zuständen unterschied-

1) Hier und im weiteren verwenden wir gewöhnliche Maßeinheiten. 
2) Die Formeln (101,4-5) sind im Resonanzfall, für den die Frequenz w in der Nähe 

einer der Frequenzen Wni oder Wfn liegt, nicht anwendbar. In diesem Fall (der sogenannten 
Resonanzfl1UJreszenz) muß man die natürliche Breite der Spektrallinen (§ 102) berück­
sichtigen. · 
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licher Parität ungleich Null sind ; deshalb müssen sich die Paritäten der Zu­
stände i und I jeweils von der Parität des Zustandes n (in jedem Glied der 
Summe (101,5)) unterscheiden und sind deshalb gleich. Diese 'Regel ist der 
Auswahlregel bezüglich der Parität im Falle der Strahlung (elektrische Dipol­
strahlung) entgegengesetzt, so daß ein sogenanntes Alternativverbot vorliegt : 
Strahlungsübergänge, die in (direkter) Emission oder Absorption erlaubt sind, 
können nicht durch die oben besprochenen Streuprozesse realisiert werden und 
umgekehrt. 

Für w -+  0 strebt die Streuamplitude gegen einen endlichen Grenzwert. Der 
Streuquerschnitt der RAYLEIGH-Streuung (w' = w) wird deshalb bei kleinen w 
proportional zu w4• 

Im entgegengesetzten Fall, wenn die Frequenz w groß gegenüber allen in 
der Summe (101,5) wesentlichen Frequenzen Wni• wnf ist (die Wellenlänge aber 
natürlich nach wie vor groß gegenüber den Atomabmessungen ist), müssen 
sich die Formeln der klassischen Theorie ergeben. 

Die Berechnung des ersten von Null verschiedenen Gliedes in der Entwicklung 
der Amplitude (101,5) nach Potenzen von 1/w (auf die wir hier verzichten) 
liefert den Streuquerschnitt ( e2 )2 

da = Z2 m c2 J e' *  eJ Z do' , (101,6) 

mit Z als der Zahl der Elektronen ini Atom. Nach der Summation von (101,6) 
über alle Polarisationen des gestreuten Photons e' kommt man zur klassischen 
THOMSONschen Formel I (84,10). 

Wir wollen nun die Streuung von Licht an N gleichartigen Atomen in einem 
Volumen behandeln, dessen Abmessungen klein gegenüber der Wellenlänge sind. 
Die Streuamplitude für das System aus N Atomen ist die Summe der Streu­
amplituden der einzelnen Atome. Dabei hat man jedoch zu beachten, daß 
die Wellenfunktionen (mit denen die Matrixelemente für das Dipolmoment 
berechnet werden) für mehrere gleichartige und gemeinsam betrachtete Atome 
nicht einfach als gleich angenommen werden dürfen. Die Wellenfunktionen 
sind an sich nur bis auf einen beliebigen Phasenfaktor bestimmt und diese 
Faktoren können für die einzelnen Atome verschieden sein. Der Streuquer­
schnitt muß daher über die Phasenfaktoren der einzelnen Atome unabhängig 
voneinander gemittelt werden. 

Die Streuamplitude A1; jedes einzelnen Atoms enthält den Faktor exp 
{ i ( IP' - IPJ)} ,  wenn lpi und IPJ die Phasen der Wellenfunktionen für Anfangs­
und Endzustand sind. Für die Kombinationsstreuung ist dieser Faktor von 1 
verschieden, da sich die Zustände i und I unterscheiden. Im Betragsquadrat 
l .E  A1;1 2 (die Summe läuft über alle N Atome) werden die Produkte von Sum­
manden zu verschiedenen Atomen Phasenfaktoren enthalten, die bei unab­
hängiger Mittelung über die Phasen der Atome verschwinden ; es bleiben nur 
die Betragsquadrate der einzelnen Glieder stehen. Das bedeutet, daß sich 
der totale Streuquerschnitt für N Atome durch Multiplikation des Streu-
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querschnitts für ein Atom mit N ergibt - es addieren sich die Streuquer­
schnitte und nicht die Streuamplituden. Man spricht in diesem Fall von der 
inkohärenten Streuung. 

Wenn Anfangs- und Endzustand des Atoms gleich sind, dann sind die Fak­
toren exp {i (cpt - cp1)} = 1. In diesem Fall ist die Streuamplitude für N Atome 
das Nfache der Streuamplitude für ein Atom ; der Streuquerschnitt wird dem­
entsprechend mit dem Faktor N2 multipliziert. In diesem Fall spricht man 
von der kohärenten Streuung. 

Die kohärente Streuung ist in jedem Falle eine RA YLEIGH-Streuung ; die 
umgekehrte Behauptung ist jedoch nicht unbedingt zutreffend. Eine RAY­
LEIGH-Stre;uung ist nur dann vollständig kohärent, wenn sich das streuende 
Atom in einem nichtentarteten Energiezustand befindet. Für ein entartetes 
Energieniveau wird es auch eine nichtkohärente RAYLEIGH-Streuung geben, 
die von den Übergängen zwischen den verschiedenen Komponenten des ent­
arteten Niveaus herrührt. Wir möchten unterstreichen, daß die Nichtkohärenz 
bei RA YLEIGH -Streuung ein reiner Quanteneffekt ist. In der klassischen Theorie 
ist eine Streuung ohne Änderung der Frequenz somit kohärent (so wurde 
gerade der Begriff der kohärenten Streuung in I § 84 definiert) .  

§ 102. Die natürliche Breite von Spektrallinien 

Bisher haben wir beim Studium der Emission und Streuung von Licht alle 
Niveaus des Systems (sagen wir, des Atoms) als streng diskrete Niveaus an­
gesehen. Angeregte Niveaus haben aber eine Wahrscheinlichkeit zu strahlen 
und besitzen somit eine endliche Lebensdauer. Dies führt dazu, daß die Ni­
veaus quasidiskret werden und eine kleine, aber endliche Breite bekommen ; 
die Niveauenergien schreibt man in der Form E � i Ff2, mit F (Fjli in ge­
wöhnlichen Maßeinheiten) als der Wahrscheinlichkeit (pro Sekunde) für alle 
möglichen "Zerfalls"-Prozesse des betreffenden Zustands.1) 

Wir wollen jetzt das Problem untersuchen, wie sich dieser Sachverhalt auf den 
Strahlungsprozeß auswirkt. Es ist von vornherein klar, daß das emittierte 
Licht · wegen der endlichen Breite des Niveaus nicht streng monochromatisch 
ist ; die Frequenzen werden in einem Intervall Llro "' r liegen. Um aber die 
Verteilung der Photonen über die Frequenzen mit einer derartigen Genauigkeit 
messen zu können, wird eine Zeit T � lfLico "' lfF benötigt. In dieser Zeit 
wird das Niveau jedoch mit sehr großer Wahrscheinlichkeit ein Photon emit­
tiert haben. Deshalb kann hier nur die Rede sein von der Bestimmung der 
Wahrscheinlichkeit für die Emission eines Photons bestimmter Frequenz und 
nicht von seiner Emissionswahrscheinlichkeit pro Zeiteinheit. Wir berechnen 
erstere für den Übergang eines Atoms aus einem angeregten Niveau Et - i Ft/2 
in den Grundzustand (E1) , der eine unendliche Lebensdauer besitzt und folg-

1) Die natürliche Linienbreite ist praktisch sehr klein. So entspricht z. B. einer Zerfalls­
wahrscheinlichkeit w - 108 - 109 s-1 die Breite T - w-o - I0-7 eV. 
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lieh diskret ist. Zur Vereinfachung der Überlegungen setzen wir dabei vor­
aus, daß dieser Übergang die einzige Möglichkeit einer Ausstrahlung von 
diesem angeregten Niveau ist. 

Wir kehren zu der in § 35 erfolgten Ableitung der Formel für die Übergangs­
wahrscheinlichkeit (35,6) zurück (mit deren Hilfe in § 95 die Emissionswahr­
scheinlichkeit berechnet wurde) und erinnern daran, daß wir die Funktion 
a1,(t) für große Zeiten t betrachteten. Das Verhältnis J a1;1 2ft ergab die gesuchte 
Übergangswahrscheinlichkeit pro Zeiteinheit. Wir können jetzt den Sinn dieser 
Prozedur etwas genauer klären : Sie bezieht sich auf Zeiten, die klein gegenüber 
der Lebensdauer des angeregten Zustandes sind ; große t bedeuten dabei 
Zeiten, die groß gegenüber der Periode lf(Ei - E1), jedoch noch klein gegenüber 
lfF sind. Eben aus diesem Grunde konnte man die Existenz einer endlichen 
Breite des Niveaus vernachlässigen. Da wir jetzt Zeiten betrachten müssen, 
die mit 1/F vergleichbar sind, darf man die Breite des angeregten Niveaus 
schon nicht mehr vernachlässigen. 

Bei dem betrachteten Strahlungsproblem haben wir es mit einem System Atom 
+ Photonen zu tun ; dementsprechend spielt jetzt die Differenz E1 + w - Ei 
im Ausdruck (35,2) die Rolle der Übergangsfrequenz w1;. Wenn wir die Energie 
des Anfangsniveaus mit E1 - i Fi/2 angeben, erhalten wir 

( ) _ V 1 - exp {i (EJ + w - E;) t - {F;/2) t } 
afi t - fi Et - E; + w + i F;/2 

. (102,1) 

Die gesuchte Gesamtübergangswahrscheinlichkeit (für die gesamte Zeit) be­
stimmt sich aus dem Grenzwert des Betragsquadrates J a1; (t) J 2  für t � oo .  
Für die Emission eines Photons mit Frequenzen im Intervall dw und im 
Raumwinkelbereich do ergibt sich 

_ 
2 fJ w2 dw do dW - Ja1, (oo ) J 

(2 n)3 
(102,2) 

(hier ist Q wie in (95,13) das Normierungsvolumen der Photonenwellenfunk­
tion) . Nach Einsetzen von (102,1)  folgt 

_ 
fJ w1 do 

2 
dw d W - (2 n)3 I VJi l [w - (E; - Et)]2 + FU4 

Da wir uns nur für die Spektralverteilung der Emissionswahrscheinlichkeit 
interessieren, integrieren wir diesen Ausdruck über alle Ausbreitungsrichtungen 
des Photons. Nach (95,14) ist das Integral 

mit w als der gewöhnlichen (auf die Zeiteinheit bezogenen) Gesamtemissions­
wahrscheinlichkeit, die nach ihrer Definition mit Ti zusammenfällt. Im End-
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ergebnis finden wir somit 

dW = 
ri dw 

2 n  [w - (Ei - EJ)]2 + f"t/4 

Kapitel XV. Strahlung 

,(102,3) 

Wenn wir diesen Ausdruck über alle Frequenzen von -oo bis oo integrieren, 
erhalten wir in Übereinstimmung damit, daß das Atom in einem unendlichen 
Zeitraum mit Sicherheit ein Photon der einen oder anderen Frequenz emittiert, 
den Wert 1. 

Die Formel (102,3) bestimmt das sogenannte Profil der Spektrallinie, d. h. 
die Verteilung der Intensität über ihre Breite. Die Linienform, die durch 
(102,3) beschrieben wird, ist fÜr ein isoliertes Atom charakteristisch und heißt 
natürliche Linienform.1) 

1) Sie heißt natürlich im Unterschied zur Linienverbreiterung, die mit der Wechsel­
wirkung des strahlenden Atoms mit anderen Atomen (Verbreitung durch Stoß) im Zu­
sammenhang steht, bzw. die auf das Vorhandensein von Atomen in der Lichtquelle zurück­
zuführen ist, die sich mit unterschiedlichen Geschwindigkeiten bewegen (DOPPLER-Ver­
breitung). 
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§ 103. Die Streumatrix 

Bereits in § 75 wurde davon gesprochen, daß die typische Aufgabenstellung 
der relativistischen Quantentheorie darin besteht, die Wahrscheinlichkeits­
amplituden der verschiedensten Streuprozesse, d. h. von Übergängen zwischen 
unterschiedlichen Zuständen eines Systems freier Teilchen, zu bestimmen. Im 
Rahmen der Quantenelektrodynamik, die Prozesse untersucht, die durch die 
elektromagnetische Wechselwirkung bedingt sind, kann man diese Aufgabe 
zum gegenwärtigen Zeitpunkt als im Prinzip gelöst betrachten. Die geringe 
Stärke dieser Wechselwirkung (die sich in dem kleinen Zahlenwert der Fein­
strukturkonstante 1X ausdrückt) erlaubt es, solche Prozesse mit Hilfe der Stö­
rungstheorie zu untersuchen. In seiner gewöhnlichen Form (für die nichtrt:>la­
tivistische Quantenmechanik) hat der Apparat dieser Theorie die Unzulänglich­
keit, daß in ihm die Forderung nach relativistischer Invarianz nicht in expli­
ziter Form in Erscheinung tritt. Dieser Nachteil wurde in der konsequent 
relativistischen Störungstheorie überwunden, die von R. P. FEYNMAN (1948) ent­
wickelt wurde. Der Apparat dieser Theorie vereinfacht in außerordentlichem 
Maße die Rechnungen, die sich in der gewöhnlichen Form der Störungsrechnung 
sogar als praktisch undurchführbar erweisen könnten. Außerdem erlaubt er, in 
eindeutiger Weise die im Verlaufe der Rechnungen auftretenden Divergenzen 
von Integralen zu beseitigen, die schon in § 75 erwähnt wurden.1) 

Wir zeigen zunächst, in welcher Weise der allgemeinste Ausdruck für die 
Streuamplitude beliebiger Prozesse aufgebaut wird. 

Das Teilchensystem wird mit Hilfe des Apparates der zweiten Quantisierung 
beschrieben. Die Wellenfunktion dieses Systems, deren unabhängige Veränder-

, liehen die Besetzungszahlen der Zustände der freien Teilchen sind, wird durch 
das Symbol f/J beschrieben (das erfolgt mit dem Ziel, ihren Unterschied zu 
den gewöhnlichen, von den Koordinaten der Teilchen abhängigen Wellen­
funktion�n zuA unte�treich�n). Der HAMILTON-Operator des Systems hat die 
Gest�lt H = H0 + V mit H0 als dem HAMILTON-Operator der freien Teilchen 
und V als dem Operator der elektromagnetischen Wechselwirkung. Die Funk-

1) In diesem Kapitel verfolgen wir nur das Ziel, eine Vorstellung von den Grundideen 
der Theorie, vom Entstehen und dem Sinn der in ihr enthaltenen Begriffe und Größen 
zu geben. Deshalb sind die notwendigen Ableitungen nicht vollständig wiedergegeben ; 
ihr Ablauf ist nur skizziert, um damit die ihnen zugrunde liegenden Ideen klar aufzu­
zeigen. 
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tion <!> bestimmt sich aus der Wellengleichung 
i! C/J  A A 

i Tt = (H0 + V) <!> • (103,1) 

Hierbei wurde das gewöhnliche ScHRÖDINGER-Bild zur Beschreibung der Ope­
ratoren und Wellenfunktionen verwendet : Die Operatoren hängen nicht von 
der Zeit ab ; die zeitliche Entwicklung des Systems wird durch die Zeitabhängig­
keit der Wellenfunktionen beschrieben. 

Schon in § 76 wurde, erwähnt, daß auch eine andere Formulierung des Appa­
rates der Quantenmechanik möglich ist, bei der die Zeitabhängigkeit von 
den Wellenfunktionen auf die Operatoren übertragen wird ; in diesem Bild, 
dem HEISENBERG-Bild, hängen die Wellenfunktionen überhaupt nicht von der 
Zeit ab. Für die jetzt vor uns stehende Aufgabe erscheint jedoch ein bestimmtes 
"Zwischen"-Bild natürlicher, in dem nicht die gesamte Zeitabhängigkeit, son­
dern nur die, die dem Zustand eines Systems freier Teilchen entspricht, auf die 
Operatoren übertragen wird. Mit anderen Worten heißt das, daß in diesem 
Bild (dem Wechselwirkungsbild oder DIRAC-Bild) die Wellenfunktion von der 
Zeit abhängt, diese Zeitabhängigkeit jedoch nur mit dem Wirken der Störung 
im Zusammenhang steht. Sie erfaßt gerade die uns interessierenden Streu­
prozesse, die auf Grund der gegenseitigen Wechselwirkung der Teilchen vor 
sich gehen. 

In Übereinstimmung mit dem eber.. Gesagten h�:� � die Wellengleichung für 
die Funktion <!> im Weehselwirkungsbild die Form 

() (/>  � 

i Tt = V(t) <!> • (103,2) 
A 

die sich von (103,1) durcp das Fehlen von H0 auf der rechten Seite unter-
scheidet. Der Operator V(t) enthält das Argument t, um zu unterstreichen, 
daß er im betrachteten Bild von der Zeit abhängt - im Unterschied zum 
Operator V im ScHRÖDINGER-Bild in (103,1), der nicht von der Zeit abhängt. 

tP(t) und tP (t + bt) seien die Werte von <!> in zwei infinitesimal benach­
barten Zeitpunkten. Wegen (103,2) sind sie dann folgendermaßen miteinander 
verknüpft : 

A 

tP (t + bt) = [1 - i bt • V(t)] tP(t) , 

bzw. mit derselben Genauigkeit durch tP (t + &) = e-i <� t · V(t) <l>(t). Wenn 
wir diese Formel auf alle von t = - oo bis t = + oo aufeinanderfolgende 
Zeitintervalle Mn anwenden, können wir den Wert des Endzustands <P( + oo) 
durch den des Anfangszustandes tP(-oo) ausdrückei1. Der Operator, der beide 
Werte mite�nander verknüpft, wird mit S bezeichnet. Wir haben somit 
tP(+oo) = S <1>(-oo) mit 

§ = IJ e -i 6tn • V(tn) . (103,3) 
n 

Das Symbol II bedeutet hierin den Grenzwert des Produktes über alle Inter­
valle btn. Wäre V(t) eine gewöhnliche Funktion, so würde sich dieser Grenz-
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wert einfach auf 

exp (- i f bt,. · V(t,.)) = exp (- i _z V(t) dt) 
zurückführen. Diese Vereinfachung beruht aber auf der Vertauschbarkeit der 
Faktoren zu verschiedenen Zeitpunkten, die beim Übergang vom ProduktA in 
(103,3) zur Summe im Exponenten vorauszusetzen ist. Für den Operator V(t) 
ist diese Vertauschbarkeit im allgemeinen nicht gewährleistet, und das Produk­
kann nicht auf ein gewöhnliches Integral zu.rückgeführt werden. 

Wir schreiben jetzt (103,3) in der symbolischen Form 

s = f exp {- i_[ v<t)} / ( 103,4) 

A 
mit dem Zeitordnungsoperator T, der eine bestimmte Zeitordnung in der Reihen-
folge der Faktoren des Produktes (103,3) herstellt. Diese Schreibweise besitzt 
zunächst nur formalen Charakter . . Sie liefert jedoch die Möglichkeit, diejenige 
Reihe leicht aufzuschreiben, die die Entwicklung von S nach Potenzen der 
Störung darstellt : 

00 00 00 
A 00 (- i)k f f f A A A A 

S = k�o � dt1 dt2 • • • dte T { V(t1 ) V(t2) • • •  V(t.t)} . 
- 00  - 00  - 00  ( 103,5) 

Hier ist in jedem Glied die k-t� Potenz des Integrals als k-faches Integral 
geschrieben, und der Operator T verlangt, daß in jede':? We�ebereich Ader 
Veränderlichen t1, t2, • • •  , l.t die zugehörigen Operatoren V(t1) , V(t2), • • • , V(t.�:) 
in chronologischer Reihenfolge anzuordnen sind : Die t-Werte dürfen von rechts 
nach links nicht abnehmen. Da sich die Zeitordnung jetzt auf ein Produkt 
(und nicht auf einen Exponentialausdruck wie in (103,4)) bezieht, hat der 
Ausdruck für jedes Glied der Summe (103,5) schon einen realen und nicht nur 
symbolischen Charakter. 

A 

Aus der Definition des Operators S ist folgendes offensichtlich : Wenn sich 
ein System vor der Wechselwirkung im Zustand if>t befand (ein bestimmtes 
Ensemble freier Teilchen) ,  dann ist die Wahrscheinlichkeitsamplitude für den 
Übergang in den Zustand if>1 (ein anderes Ensembel freier Teilchen) das Matrix­
element S1; .  Das folgt daraus, daß na�h der Definition der Matrixelemente 
eines Operators die Funktion $( oo) = S $1 in der Form einer Entwicklung 

if>(oo) = .E s,i f/J.r 
I 

dargestellt werden kann (vgl. (11,11)) ; das Betragsquadrat iS1; 1 2 liefert folglich 
die Wahrscheinlichkeit dafür, daß sich das System bei t - oo (d. h. nach Ab;: 
lauf des Wechselwirkungsprozesses) im Endzustand $1 befindet. Der Operator S 
wird Stre�toperator genannt, und die Gesamtheit seiner Matrixelemente wird 
als Streumatrix . oder S-M atrix bezeichnet (dieser Begriff wurde schon in § 75 
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erwähnt). Die nichtdiagonalen (i =1= f) Elemente dieser Matrix sind die Am­
plituden der Streuprozesse i - f.1) 

Um der Formel (103,5) einen konkreten S�nn zu geben, muß noch die allge-
meine Form des Wechselwirkungsoperators V(t) abgeleitet werden, der in sich 
alle möglichen elektrodynamischen Prozesse vereint. Das läßt sich leicht über 
eine direkte Verallgemeinerung der Formeln erreichen, die schon in § 95 auf­
geschrieben wurden. �ort wurde nur das elektromagnetische Feld, das in (95, 1) 
durch den Operator A dargestellt ist, der zweiten Quantisierung unterzogen. 
Jetzt müssen wir auch bei der Beschreibung des Elektron-Positron-Feldes zur 
zweiten Quantisierung übergehen. Dieser Übergang erfolgt einfach dadurch, 
daß wir die Wellenfunktionen des Elektrons in den Matrixelementen (95,5-6) 
durch die entsprechenden P-Operatoren ersetzen. Wir kommen somit zum 
Ausdruck 

A 

V(t) = - e I j A  dax , 
A A A 

(103,6) 

in dem j = P* oc P der Operator der Teilchenstromdichte in der Sprache der 
zweiten Quantisierung ist (d3x = dx dy dz - das Volu�enelem!nt). 

In (103,6) kommen die dreidimensionalen Vektorenj und A vor, was mit 
der speziellen Wahl der Eichung der Feldpotentiale, die wir bisher benutzt 
haben, im Zusammenhang steht (wir hatten die Eichung so · vollzogen, daß das 
skalare Potential gleich Null wurde). Um relativistisch invariante Beziehungen 
zu erhalten, müssen wir zur vierdimensionalen Schreibweise übergehen : 

A 

V(t) = e I j" A"' d3x . 
"' � "' 

. (103,7) 

I� dieser Formel ist j"' = P y"' P der Operator des 4-Vektors der Stromdichte, 
A"' ist der Operator des 4-Potentials, bei dem die Frage der Eichung offen 
g!lassen ist (bei A�-' = (0, A) geht ( 103,7) in (103,6) über) . Der Ausdruck für 
A"' unterscheidet sich von (76,15) nur durch das Ersetzen des Polarisations­
vektors der Photonen e durch den Einheits-4-Vektor e"' (der sich auf e"' = (0, e) 
nur bei einer speziellen Wahl der Eichung zurÜckführt )2) : 

A"' = f V�: (�,. e"' e- i(h) + ci; e"'· ei(k :t)) . ( 103,8) 

1) Die Herleitung der relativistischen Störungstheorie mit Hilfe der Entwicklung (103,5) 
erfolgte durch P. DAYSON. 

2) Der Kürze halber werden überall die Polarisationsindizes der Teilchen weggelassen. 
In diesem Kapitel werden wir oft die speziell vereinbarte Schweibweise für die 4-Vektoren 
verwenden, bei der diese als einfache (nicht fett gedruckte) Buchstaben geschrieben 
werden und die Komponentenindizes p., v, . . .  fehlen. Die Buchstaben x und p beschreiben 
z. B .  die 4-Vektoren x�-< = (t, r) bzw. p�-< = (e, p). Skalarprodukte von 4-Vektoren werden 
ebenfalls ohne Indizes geschrieben. So bedeutet z. B. (p x) = Pi-< x�-< = e t - p r; die 

. Gleichung Pi-< p�-< = m2 für den 4-lmpuls eines Teilchens mit der Masse m schreibt sich 
jetzt in der Form p2 = m2 ; die Gleichung k"' k!' = 0 für den 4-Impuls eines Photons hat 
die Gestalt k2 = 0 usw. Diese Schreibweise ist in der modernen Literatur weit verbreitet. 
Dieser Kompromiß zwischen dem begrenzten Umfang des Alphabets und den "Anfor­
derungen der Physik" erfordert natürlich vom Leser eine erhöhte Aufmerksamkeit. 



J 
§ 104. FEYNMAN-Diagramme 303 

Die Ausdrücke für die P-Operatoren in der Schreibweise mit Erzeugungs- . 
und Vernichtungsoperatoren von Elektronen und Positronen finden wir mit 
Hilfe der Formeln (85,3). Wir geben sie in der Form 

P = 1: (a" Pv + i� P -p> , 
� 

ifi = 1: (a� ifi11 + b" ift -p> (103,9) 
p p 

an ; die Funktionen P11 beschreiben ebene Wellen mit dem 4-Impuls p :  

P11 = ( 1/W) u(p) e- i(p z) . ( 103, 10) 
Es sei darauf hingewiesen, daß die Zeitabhängigkeit der Operatoren ( 103,8-9) 

und damit auch die Zeitabhängigkeit des Wechselwirkungsoperators (103,7) 
von den Wellenfunktionen der freien Teilchenbewegung, d. h. von ebenen 
Wellen, auf sie übertragen wurde. Das bedeutet mit anderen Worten, daß diese 
Operatoren gerade im geforderten Bild, dem Wechselwirkungsbild, aufgeschrie­
ben sind. 

§ 104. FEYN�IAN·Diagramme 

Den Gang der Berechnung von Elementen der Streumatrix illustrieren wir an 
konkreten Beispielen. 

Wir wollen Prozesse untersuchen, die in zweiter Ordnung der Störungstheorie 
entstehen. Ihnen entspricht das Glied zweiter Ordnung in der Entwicklung 
( 103,5) (k = 2) ; nach Einsetzen von ( 103,7) kann man dieses Glied in der Form 

§<2> = - e; J J d4x d4x' T {f�'(x) All(x) ]'{x') .A.�x') } (104,1 )  

schreiben mit d4x = dt d3x als dem 4-Volumenelement. Es ist wesentlich, daß 
diese Formel relativistisch invariant ist : Das Produkt (jA) ist ein 4-Skalar ; 
die Integration über das 4-Volumen ist ebenfalls eine skalare Operation.1) 

Als erstes Beispiel behandeln wir die elastische Streuung zwei er Elektronen : 
Im Anfangszustand sind zwei Elektronen mit den 4-Impulsen p1 und p2 vor­
handen, im Endzustand zwei Elektronen mit anderen 4-Impulsen p3 und p4• 
Da die Photonen- und Elektronenoperatoren auf unterschiedliche Veränderliche 
(Photonen- und Elektronenbesetzungszahlen) wirken, berechnen sich ihre Ma­
trixelemente unabhängig voneinander. Im gegebenen Fall sind im Anfangs­
und Endzustand überhaupt keine Photonen vorhanden. Wir benötigen des-
halb bezüglich der Photonenoperatoren A"(x) A.(x') das Diagonalmatrixelement 
(01 · · · 1 0) ;  das Symbol 10) bedeutet den Zustand des elektromagnetischen 
Feldes ohne Photonen oder, wie man sagt, den Vakuumzustand der Photonen. 
Dieses Matrixelement ist eine bestimmte Funktion der 4-Koordinaten x und 
x'. Wegen der Homogenität des Raumes und der Zeit kann diese Funktion 

1) Wir halten uns hier nicht bei Überlegungen auf, die beweisen, daß die Operation 
der Zeitordnung ebenfalls zu keiner Verletzung der relativistischen Invarianz führt. 

2 1  Kurzfassung II 
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nur von den Raum- (r - r') und Zeitintervallen (t - t') abhängen, d. h. nur 
von der Differenz (x - x') und nicht von den einzelnen Werten x und x'. Auf 
diese Weise entsteht einer der neuen Grundbegriffe der zu beschreibenden 
Theorie - der Begriff der ,sogenannten Photonenausbreitungsfunktion oder 
des Photonenpropagators1 ), der folgendermaßen definiert ist : 

, {i (01 A,..(x) A.(x') IO> für t' < t ,  
D,...(x - x )  = i (01 A (x') A,..(x) I O> für t < t' 

( 104,2) 

(die unterschiedliche Reihenfolge der Faktoren bei t' < t und t < t' hängt mit 
dem Wirken des T-Operators in ( 104,1) zusammen) . 

Wir betrachten nun die Elektronenoperatoren in �104,�) .  J
A
eder der zwei dort 

· auftretenden Stromoperatoren ist ein Produkt j = 'P y 'P, und jeder der 
'P-Operat�en �st durch eine Summe (103,9) gegeben. Daraus folgt, daß das 
Produkt j"'(x) j"(x') eine Summe verschiedener Glieder darstellt, von denen 
jedes Glied ein Produkt aus vier Operatoren des Typs aP, at, bp, bt enthält. 
Einen von Null verschiedenen Beitrag zu dem von uns benötigten Matrix­
element liefern nur die Glieder, in denen die Oper�toren die Vernichtung der 
Elektronen des Anfangszustandes p1 und p2 und die Erzeugung der Elektronen 
des Endzustandes Pa und p4 gewährleisten. Mit anderen Worten heißt das, 
daß dies die Glieder sind, die das Produkt der Operatoren ap,, ap,, a:. und at, 
enthalten. Die unter diesen Gesichtspunkten durchgeführte Rechnung führt 
zu folgendem Resultat : 

s,i = i e2 I I d4x d4x' D,.. .(x - x') W P4 y" 'P2) ('P� y• 'P�) 

mit 'P1 = 'Pp,(x), 'P� = 'Pp,(x') usw. 
- (lfr4 r" 'P1) (tJi� r· 'P�>} ( 104,3) 

Die Elektronenwellenfunktionen sind die ebenen Wellen (103,10). Deshalb 
enthält z. B. das erste Glied in der geschweiften Klammer von (104,3) den 
E�ponentialfaktor 

e- i ((p,-p,) x) - i ((p,-p,)x') . 
. 

Auf Grund des Erhaltungssatzes des 4-Impulses beim Stoß folgt p1 + p2 
= Pa + p4 bzw. p2 - p4 = Pa - p1 • Der angegebene Faktor geht damit in 

ei ((p,-p,) (x-x')) 

über, und die Integration über d4(x - x') in (104,3) bedeutet das Auffinden 
derjenigen Komponente in der Entwicklung der Funktion D,...(x - x') in ein 
vierdimensionales FoURIER-Integral, die dem 4-Impuls k = p4 - p2 entspricht. 
Die über diese Entwicklung definierte Funktion 

· 

D,.. .(k) = I D,...(x - x') ei (k <x-x')) d4(x - x') ( 104,4) 

heißt Photonenpropagator in der lmpulsdarstellung. 

1) Dieser Begriff leitet sich vom englischen Wort propagation - Ausbreitung ab. 
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Auf analoge Weise wird das zweite Glied in ( 104,3) umgewandelt, und wir 
erhalten im.Endergebnis 

s,. ,..._, e2(u, y�-' Uz) D,.. .(k) (� r' �) - e2(u, y�-' �) D,...(k') (� r' Uz) 
(104,5) 

mit k = p4 - p2, k' = p4 - p1•1) Das erste und das zweite Glied dieser Streu­
amplitude können symbolisch durch sogenannte EEYNMAN-Diagramme oder 
FEYNMAN-Graph_en dargestellt werden (Abb. 14). Zu jedem Schnittpunkt v<>n 

Abb. 14 

Linien (Eckpunkt oder Vertex des Graphen) gehört ein Faktor e y�-'. "Ein­
laufende" ausgezogene Linien mit dem Pfeil zum Eckteil hin entsprechen den 
Elektronen im Anfangszustand ; ihnen werden Faktoren u - die Bispinor­
amplituden der betreffenden Elektronenzustände - zugeordnet. "Auslaufende" 
ausgezogene Lini�n mit Pfeilen vom Eckpunkt weg bedeuten die Elektronen 
im Endzustand ; zu diesen J�inien gehören Faktoren u. Beim "Lesen" 
eines Diagramms werden die angegebenen Faktoren von links nach rechts 
in derjenigen Reihenfolge aufgeschrieben, die dem Durchlaufen der ausgezoge­
nen Linien gegen die Pfeilrichtung entspricht. Die beiden Eckpunkte werden 
durch eine gestrichelte Linie miteinander verbunden, die einem virtuellen 
(Zwischen-)Photon entspricht, das in einem Eckpunkt "emittiert" und im 
anderen "absorbiert" wird. Dieser Linie entspricht der Faktor D,.. .(k). Der 
4-Impuls des virtuellen Photons (k oder k') wird durch die "Erhaltung des 
4-Impulses im Eckteil" bestimmt : Die resultierenden Impulse der einlaufenden 
und der auslaufenden Linien müssen gleich sein. Die Linien für die Teilchen 
im Anfangs- und Endzustand werden als äußere Linien · oder als freie Enden 
eines Diagramms bezeichnet. Die beiden Graphen auf Abb. 14 unterscheiden 
sich voneinander nur durch den Austausch der beiden freien Elektronenenden. 

Wir möchten unterstreichen, daß das Quadrat des 4-Impulses des virtuellen 
Photons k2 = k,.. k�-' keineswegs gleich Null ist, wie das für ein reales Photon 
der Fall sein müßte. In diesem Zusammenhang heben wir ebenfalls hervor, 
daß die Beschreibung des Prozesses (in Übereinstimmung mit dem Diagramm-

1) Wir interessieren uns nur für die mathematische Struktur der Elemente der S-Matrix. 
Aus diesem Grunde lassen wir alle allgemeinen Faktoren wegfallen,

' 
die auf diese Struktur 

keinen Einfluß haben. Wir werden uns ebenfalls nicht damit aufhalten, den Weg der 
Umwandlung des Quadrats JSt;J2 in eine beobachtbare Größe - den Streuquerschnitt -
zu beschreiben. 

21° 
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bild) als Emission eines virtuellen Photons mit seiner anschließenden Ab­
sorption natürlich nirht im buchstäblichen Sinne zu verstehen ist, sondern nur 
ein praktisches Mittel der anschaulichen Beschreibung der Struktur der Aus­
drücke ist, die in die Streuamplitude eingehen. 

Jetzt wollen wir uns mit der Elektron-Positron-Streuung befassen. Die ent­
sprechenden Anfangsimpulse der Teilchen bezeichnen wir mit p_ und P-t ,  die 
Endimpulse mit p'__ und p�. Wie wir in diesem Fall die Diagram�e verändern 
müssen, geht schon klar aus dem Charakter der Struktur der �-Operatoren 
(103,9) hervor : In diese Ausdrücke gehen die Erzeugungs- und Vernichtungs­
operatoren der Positronen 'zusammen mit den entsprechenden Vernichtungs­
und Erzeugungsoperatoren der Elektronen ein, wobei anstelle von u(p) und 
u(p) die Faktoren u( -p) und u( -p) stehen. Daraus folgt, daß wir für den 
Elektron-Positron-Streuprozeß statt der in Abb. 14 dargestellten Diagramme, 
die in Abb. 15 angeführten Graphen erhalten. Die Regeln für das Zusammen­
stellen der Diagramme ändern sich nur in den Teilen, die die Positronen be­
treffen. Nach wie vor entspricht einer einlaufenden ausgezogenen Linie ein 
Faktor u und einer auslaufenden Linie ein Faktor u. Einlaufende Linien ent­
sprechen aber jetzt Positronen im Endzustand, auslaufende Linien - Posi­
tronen im Anfangszustand ; die Impulse der beiden Positronen sind mit dem 
entgegengesetzten Vorzeichen zu nehmen. Wir lenken die Aufmerksamkeit auf 
den verschiedenartigen Charakter der beiden Diagramme in Abb. 15. Das 
erste trägt den Charakter der Diagramme aus Abb. 14 : In einem Eckpunkt 
schneiden sich die beiden Elektronenlinien des Anfangs- und Endzustands und 
in dem anderen die entsprechenden Positronenlinien ("Streu"-Diagramm). Im 
zweiten Diagramm stoßen in jedem Eckpunkt Elektronen- und Positronen­
linien zusammen, einmal die der Anfangsteilchen und einmal die der End­
teilchen. Im oberen Eckpunkt wird gewissermaßen ein Elektron-Positron­
Paar vernichtet und ein Photon emittiert, und im unteren wird ein Paar aus 
einem Photon erzeugt ("Vernichtungs"-Diagramm). 

Abb. I5 

Wir kommen nun zu einem anderen Effekt zweiter Ordnung, zur Streuung 
eines Photons an einem Elektron (CoMPTON-Effekt). Photon und Elektron 
sollen im Anfangszustand die 4-Impulse k1 und p1 und im Endzustand k2 und 
p2 haben. 

A A 

Im entsprechenden S-Matrixelement gewährleisten die Operatoren A�'(x) A.(x') 
in (104,1) (mittels der in ihnen enthaltenen Operatoren c,., und ct,) die Ver­
nichtung des Photons � und die Erzeugung des Photons k2• Die Vernichtung 
des Elektrons p1 und die Erzeugung des Elektrons p2 erfolgt durch eines der 
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beiden Operatorpaare JjJ bzw. lfr (auf Grund der darin enthaltenen ap, und 
a:,) . Bezüglich des zweiten Paares de11 in (104,1)  enthaltenen 'l'-Operatoren 
verbleibt danach nur das Diagonalmatrixelement (01 · · · 1 0) , wobei das Sym­
bol I 0) jetzt den Zustand des Elektron-Positron-Vakuums, des Feldes ohne 
Teilchen, bedeutet. Auf diese Weise taucht der zweite Grundbegriff dieser 
Theorie, die sogenannte Elektronenausbreitungsfunktion oder der Elektronen­
propagatur auf, der wie folgt definiert ist : · 

J - i (01 Pt(x) P�c(x') 1 0) für t' < t ,  
Gu(x - x') = � ( 104,6) 

· l i (01 P.,(x') 'l';(x) 1 0) fii.r t < t' . 

G;�c ist ein Bispinor zweiter Stufe, i und k sind dabei die Spinorindizes. 
Für die Streuamplitude ergibt sich im Ergebnis folgender Ausdruck : 

(104,7) 

mit p = Pt + kv p' = Pt - k2 ; et und e2 sind die 4-Polarisationsvektoren der 
Photonen im Anfangs- und Endzustand.1) G(p) und G(p') sind die Elektronen­
propagataren in der Impulsdarstellung. 

Abb. 16 

Das erste und das zweite Glied dieses Ausdruckes werden durch die ent­
sprechenden Diagramme in Abb. 16 dargestellt. Die gestrichelten freien Enden 
der Diagramme beschreiben reale Photonen. Einet einlaufenden Linie (Photon 
im Anfangszustand) wird der Faktor et (4-Vektor) und einer auslaufenden 
Linie (Photon im Endzustand) der Faktor e:' zugeordnet. Die ausgezogene 
innere Linie, die die beiden Eckpunkte miteinander verbindet, entspricht 
einem virtuellen Elektron ; zu dieser Linie gehört der Faktor G(p). Der 4-Im­
puls des virtuellen Elektrons (p oder p') bestimmt sich aus der Erhaltung des 
4-Impulses in den Eckpunkten. Es sei besonders betont, daß sein Quadrat 
keinesfalls gleich m2 ist; wie es für ein reales Elektron der Fall sein müßte. 

In ähnlicher Weise, wie sich aus den Diagrammen der Abb. 14 durch die 
Änderung des Sinnes der freien Elektronenenden Diagramme ergaben, die die 
Elektron-Positron-Streuung beschreiben, bekommt man aus den Diagrammen 
der Abb. 16 Graphen, die einem anderen Prozeß entsprechen, nämlich der 
gegenseitigen Vernichtung (Annihilation) eines Elektrons p_ und Positrons P+ 
unter Erzeugung zweier Photonen kt und k2 (Abb. 17). 

1) Die Bezeichnung der 4-Vektoren der Polaris�tion nicht mit der Elektronenladung e 
verwechseln ! Das Quadrat der letzteren geht in (104,7) als gemeinsamer Faktor ein. 
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Die hier an konkreten Beispielen beschriebenen Regeln bilden die Grundlage 
der sogenannten Diagrammtechnik, die es erlaubt, die Amplituden der ver­
schiedenen elektrodynamischen Prozesse aufzuschreiben. Die Amplitude eines 
Streuprozesses, der in der n-ten Ordnung der Störungstheorie auftritt, wird 
durch die Gesamtheit aller Diagramme beschrieben, die n Eckpunkte und 

Abb. 17 

k2 \ I f-1 \ , 

-p,hp_ 
soviel freie Enden enthalten, wie Anfangs- und Endteilchen insgesamt am 
Prozeß teilnehmen. In jedem Eckpunkt laufen drei Linien zusammen : eine 
Photonenlinie und zwei Elektronenlinien (eine einlaufende und eine aus­
laufende) . 

In diesem Sinne ist das Diagramm mit drei Eckpunkten (Abb. 18) eines der 
acht Diagramme, die (in dritter Ordnung der Störungstheorie) die Emission 
eines Photons k beim Stoß zweier Elektronen mit den 4-Impulsen p1 und p2 
(p3 und p4 sind die 4-Impulse der Elektronen nach dem Stoß) beschreiben. In 
diesem Diagramm wird das Photon k von einem der Elektronen im Endzustand 
emittiert ; in den restlichen Diagrammen wird das Photon von den anderen 
Elektronen emittiert (und außerdem können noch p3 und p4 vertauscht sein). 

Abb. 18 Abb. 19 

Das Diagramm vierter Ordnung in Abb. 19 ist eines von sechs, die die 
Photon-Photon-Streuung beschreiben ; die restlichen Diagramme unterscheiden 
sich von dem abgebildeten durch Vertauschung der Photonenenden.1) Gegen­
über den früher besprochenen unterscheidet sich das Diagramm in Abb. 19 
dadurch, daß die Erhaltung des 4-Impulses in seinen Eckpunkten (bei vorge­
gebenen Anfangs- k1, k2 und Endwerten k3, k4) die 4-Impulse der virtuellen 
Elektronen (diese entsprechen den inneren ausgezogenen Diagrammlinien) 
nicht eindeutig bestimmt ; einem von ihnen kann man den beliebigen Wert p 
zuordnen. In solch einem Falle muß der nach einem Diagramm zusammen-

1) Die Photon-Photon-Streuung ist ein spezifisch quantenelektrodynamischer Prozeß ; 
in der klassischen Elektrodynamik fehlt diese Streuung wegen der Linearität der MAXWELL­
Gleichungen. Die Existenz dieses Prozesses bedeutet, daß dieser Quanteneffekt zum Ent­
stehen kleiner niehtlinearer Zusatzglieder in den MAXWELL-Gleichungen führt. 
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gestellte Ausdruck noch über alle Werte der Komponenten des 4-Impulses p 
integriert werden. 

Die Propogatoren spielen eine grundlegende Rolle im Apparat der Quanten­
elektrodynamik. Um die konkreten Formeln für die verschiedenen Streu­
amplituden zu bestimmen, ist es nötig, ein für allemal diese Propogatoren zu 
berechnen. Den Ausgangspunkt einer solchen Berechnung bildet eine wichtige 
mathematische Eigenschaft dieser Propogatoren, die in Folgendem besteht. 

Der Operator IP(x) erfüllt die DIRAc-Gleichung [(p y) - m] P(x) = 0,
· 
da 

jede der in der Entwicklung (103,9) auftretenden Wellenfunktionen 'l'p dieser 
Gleichung genügt. Daraus folgt, daß ·auch die Anwendung des Operators 
(y p) - m auf die Funktion G(x - x') (in der nach ihrer Definition ( 104,6) 
der Operator P(x) vorkommt ) für alle Punkte x den We�t Null liefert, mit 
Ausnahme der Punkte, für die t = t' ist. Letzteres hängt damit zusammen, 
daß die Funktion G(x - x'), gemäß ihrer Definition (104,6) in Abhängigkeit 
von der Art der Annäherung von t an t' (t � t' + 0 oder t � t' - 0) zu ver­
schiedenen Grenzwerten strebt. Die Berechnung der Differenz dieser Grenz­
werte führt zu dem einfachen Resultat : Die Funktion G erfährt bei t = t' 
einen Sprung der Größe 

L1G = (Glt-+t' +O - Glt-+t' _0) = - i y0 b (r - r') . 

Wenn aber die Funktion G(t - t', r - r') bei t - t' = 0 einen Sprung macht, 
bedeutet dies, daß in ihrer Ableitung ein Glied mit einer b-Funktion auftaucht : 
L1G · b(t - t'). 1) In den Operator (y p) - m geht die Ableitung nach der 
Zeit in der Form i y0 ofot ein. Wir finden somit im Endergebnis 

[(y p) - m] G(x - x') = t5<4>(x - x') , 
wobei das Symbol 15<4> das Produkt von vier b-Funktionen bezüglich der vier 
Komponenten des im Argument stehenden 4-Vektors bedeutet : t5<4>(x - x') 
= b(t - t') b(r - r' ) . 

Die Funktion G(x - x') genügt einer inhomogenen Differentialgleichung, 
der DIRAc-Gleichung, der auf der rechten Seite eine b-Funktion hinzugefügt 
wurde. Eine Funktion dieser Art nennt man in der mathematischen Physik 
GREENsehe Funktion der entsprechenden homogenen Gleichung - im vor­
liegenden Falle der DIRAc-Gleichung. Im Zusammenhang damit spricht man 
oft auch von der GREENsehen Funktion der Elektronen. 

Auf analoge Weise ergibt sich, daß der Photonenpropogator die GREENsehe 
Funktion der Wellengleichung ist, der die Potentiale des elektromagnetischen 
Feldes genügen (daher auch die für ihn geläufige Bezeichnung GREENsehe 
Funktion der Photonen). 

1) In der Tat, nach Integration der Ableitung iJGfiJt über das kleine Zeitintervall t 
um den Punkt t' müssen wir die Differenz der Werte für G an den beiden Enden des Zeit­
intervalls um den Zeitpunkt t = t' erhalten ; da die Integration über die <5-Funktion den 
Wert 1 liefert, bekommen wir folglich das geforderte LIG. 
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§ 105. Strahlungskorrekturen 

Die Diagrammtechnik liefert im Prinzip die Möglichkeit, die Streuamplituden 
nicht nur in der ersten von Null verschiedenen Ordnung der Störungsrechnung 
zu berechnen, sondern auch die Korrekturen zu bestimmen, die von den nächst­
höheren Ordnungen der Störungsrechnung herrühren. Diese Beiträge werden 
Strahlungskorrekturen genannt. 

Bei den Berechnung der Strahlungskorrekturen treten in der Regel Kom­
plikationen auf, die mit dem Auftauchen divergierender Integrale zusammen­
hängen. Darin drückt sich die logische Ungeschlossenheit der existierenden 
Quantenelektrodynamik aus. In dieser Theorie gelingt es jedoch, bestimmte 
Vorschriften aufzustellen, mit deren Hilfe es möglich ist, auf eindeutige Weise 
die "Differenzbildung unendlich großer Größen" durchzuführen, so daß im 
Endergebnis endliche Werte für alle Größen erhalten werden, die einen beob­
achtbaren physikalischen Sinn besitzen. Die Basis dieser Vorschriften bilden 
augenscheinliche physikalische Forderungen, die sich darauf zurückführen 
lassen, daß die Masse des Photons gleich Null sein muß, und Masse und La­
dung des Elektrons ihren experimentell gemessenen Werten gleich sein müssen. 
Die Prozedur, die darin besteht, bestimmten divergierenden Ausdrücken von 
vornherein gegebene Werte zuzuordnen, die aus physikalischen Forderungen 
erwachsen, nennt man Renarmierung der entsprechenden Größen. 

Die Diagramme, die Strahlungskorrekturen zu den Streuamplituden dar­
stellen, erhält man aus den Grunddiagrammen, indem man sie in der Weise 
verkompliziert, daß neue Eckpunkte bei festgehaltener Zahl der freien Enden 
hinzugefügt werden. So kann man z. B. eine Linie, die ein virtuelles Photon 
beschreibt, dahingehend erweitern, daß man in sie eine "Elektronenschleife" 
mit zwei neuen Eckpunkten einbaut (Abb. 20a). Dabei bleibt der Wert des: 
4-Impulses p unbestimmt und über ihn muß integriert werden ; dieses Integral 
divergiert und erfordert eine Renormierung. Anschaulich kann man dieses 
Diagramm interpretieren als die durch das virtuelle Photon k aus dem Vakuum 
erfolgende Erzeugung eines virtuellen Elektron-Positron-Paares (mit den 4-Im­
pulsen p und k - p) und der anschließenden Vernichtung dieses Paares, bei 
der das ursprüngliche Photon wiederentsteht. In Verbindung damit spricht. 
man von Strahlungskorrekturen, die mit Diagr�mmen des in Abb. 20a ange­
führten Typs in Zusammenhang stehen, als von einem Effekt der Polarisation 
des Vakuums. Dieser Effekt führt z. B. zu einer gewissen Verzerrung dea 
CouLOMB-Feldes in der Nähe eines geladenen Teilchens.1 ) 

p 

Abb. 20 ;----<::>--; ;_(k-p) 
1) Diese Deformationen erstrecken sich über den Abstand -· lifm c mit m als der Elek-

tronenmasse. · 



§ 106. Strahlungskorrekturen atomarer Energieniveaus 311 

Auf ähnliche Weise kann man durch das Hinzufügen zweier zusätzlicher Eck­
punkte die Linie eines virtuellen Elektrons komplizierter gestalten (Abb. 20b). 
Das virtuelle Elektron p emittiert scheinbar ein virtuelles Photon und ab­
sorbiert dieses wieder zu einem späteren Zeitpunkt. 

k I 
k l  

A Abb. 21  A 
Pz P1 Pz P1 

a) b) 

Die Wechselwirkung eines Elektrons mit einem Photon wird in der Sprache 
der FEYNMAN-Diagramme mit Hilfe eines Eckpunktes dargestellt, in dem eine 
Photonenlinie k die Elektronenlinien p1 und p2 kreuzt (Abb. 21a). Der kom­
pliziertere "Diagrammblock" (Abb. 21, b) stellt die Strahlungskorrektur zum 
einfachen Eckpunkt dar. Diese Korrektur führt u. a. zu einem wichtigen 
Resultat : Das magnetische Moment des Elektrons t-t ist nicht mehr streng dem 
Wert (93,9) gleich, der aus der DIRAc-Gleichung folgt. Unter Berücksichtigung 
der Strahlungskorrektur ergibt sich für !-' (in gewöhnlichen Maßeinheiten) 

1-' = 2 e: e ( 1 + 2
.x
n ) 

mit <X als der Feinstrukturkonstanten (diese Formel wurde erstmals von J. 
ScHWINGER 1949 abgeleitet) . 

§ 106. Strahlungskorrekturen atomarer Energieniveaus 

Einer der interessantesten Effekte, der auf Strahlungskorrekturen zurückgeht, 
besteht in der Verschiebung der Energiewerte der Atomniveaus (sogenannte 
LAMB- Verschiebung oder LAMB-shift) .  Diese Verschiebung führt insbesondere 
zur Aufhebung der letzten Entartung der Wasserstoffatomniveaus, die noch 
nach der DIRAC-Gleichung verblieb (§ 94). Da wir hier keine Möglichkeit haben, 
die volle Berechnung dieser Korrektur durchzuführen, geben wir nur eine ein­
fache Ableitung im Rahmen der nichtrelativistischen Theorie an. Obgleich 
diese Ableitung keinesfalls in jedem Schritt folgerichtig ist, zeigt sie doch in 
anschaulicher Weise das Entstehen der Strahlungskorrekturen.1) 

Der Wechselwirkungsoperator eines Elektronensystems (wir werden von 
einem Wasserstoffatom sprechen) mit dem Photonenfeld hat keine von Null 
verschiedenen Diagonalelemente (§ 95). Aus diesem Grunde liefert diese 
W echselw.irkung in erster Ordnung der Störungsrechnung keine Korrekturen 

1) Diese Able�',ung erfolgte erstmalig durch H. BETHE (1947) und gab den Anstoß für 
die gesamte weitere Entwicklung der Quantenelektrodynamik. 
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zu den Energieniveaus des Atoms. Eine solche Korrektur entsteht jedoch in 
der zweiten Ordnung. Nach der allgemeinen Formel (32,10) bestimmt sich 
die Korrektur zu den Energieniveaus in zweiter Ordnung über die nichtdiago� 
nalen Matrixelemente der Störung, die Übergängen aus dem vorgegebenen 
Zustand in Zwischenzustände entsprechen. Im vorliegenden Falle bezieht sich 
das auf Zustände eines Systems, das aus dem Atom und dem Feld der Photonen 
besteht. Im Anfangspustand befindet sich das Atom in einem (dem n-ten) 
seiner Niveaus, und es sind keinerlei Photonen vorhanden. In den Zwischen­
zuständen kann sich das Atom in jedem seiner Niveaus aufhalten, und das 
Feld enthält ein Photon. Anschaulich gesprochen kann man sagen, daß die 
Energiekorrektur im Zusammenhang damit steht, daß das Atom virtuelle 
Photonen emittiert und sie danach wieder absorbiert.1) 

Die Matrixelemente des Operators der elektromagnetischen Wechselwirkung, 
die der Emission eines Photons entsprechen, sind im nichtrelativistischen Fall 
nach (97�2) und (97,1) gleich 

J ! 2 n  * 
- e V w !J (e Vnm) • 

Die Summation über die Zwischenzustände beinhaltet sowohl die Summe über 
die Atomzustände (die mit dem Index m versehen sind) als auch die Integra­
tion über die Impulse des Photons (d. h. über [} dk.: dk11 dk./(2 n)3) und die 
Summe über seine Polarisationszustände. Die Integration über die Richtungen 
von k und die Summation über die Polarisationen erfolgt genau so wie bei 
der Ableitung von (97 ,4) ; im Ergebnis folgt für die Energiekorrektur 

( 106,1) 

mit En, Em als den ungestörten Energieniveaus des Atoms. Dieses Integral 
divergiert jedoch an seiner oberen Grenze. 

Für ein freies Elektron würde der Ausdruck (106,1)  eine Korrektur zur Masse 
liefern, und die Operation der Renormierung bestände darin, den gesamten 
Ausdruck zu vernachlässigen, da schon die "nichtgestörte" Masse des .Elek­
trons gleich seinem experimentell beobachtbaren Wert ist. Andererseits be� 
sitzt der Geschwindigkeitsoperator v = pfm des freien Elektrons nur Diagonal­
elemente Vnn• die mit bestimmten Werten v (für das freie Teilchen) überein� 
stimmen. Die Summe überm in (106,1) reduziert sich dabeiaufeinGlied (m = n) : 2 ez f  - 3 n  va dw . 

1) In der nichtrelativistischen Theorie zeigt sich die Virtualität des Photons an der 
Nichterfüllung des Energieerhaltungssatzes bei der Emission oder Absorption des Pho­
tons. Bezüglich des Entstehens von Elektron-Positron-Paaren ist zu sagen, daß sie in 
der nichtrelativistischen Näherung nicht auftreten. 
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Wir erhalten die Renarmierungskonstante für ein (im Atom) gebundenes 
Elektron, indem wir das Geschwindigkeitsquadrat v2 durch seinen Mittelwert 
im vorgegebenen Atomzustand, d. h. durch das Matrixelement (v2)nn ersetzen. 
Nach der Multiplikationsregel für Matrizen gilt 

(V2)nn = L Vn m Vmn = L iVnm l 2 • 

m m 
Wir erhalten somit den Ausdruck 

- �: � J iVnm l 2 dw , 

den wir von ( 106,1 )  abziehen müssen, um dem beobachtbaren Korrekturwert 
für die Niveauenergie zu bestimmen : 

oE,. = 
2 e2 L f Jvnml2 (Em - E,.) dw . 
3 n  m Em - En + w (106,2) 

Dieses Integral divergiert immer noch an der oberen Grenze, jedoch nur noch 
logarithmisch ; in einer konsequent relativistischen Theorie verschwindet diese 
Divergenz von selbst. Im Rahmen einer nichtrelativistischen Theorie erhält 
man eine gute Abschätzung für oE,., wenn man die Integration in ( 106,2) nur 
von Null bis zum Wert der Elektronenmasse m durchführt. Dabei gehen wir 
davon aus, daß eine nichtrelativistische Betrachtungsweise nur für Frequenz­
bereiche der Photonen w � m zulässig ist, und daß der Wert eines logarith­
mischen Integrals ziemlich unempfindlich bezüglich der genauen Wahl seiner 
oberen Grenze ist (deren Wert groß gegenüber allen Differenzen zwischen den 
Energien der Atomniveaus Em - E., ist). 

Wenn wir schließlich die Matrixelemente der Elektronengeschwindigkeit 
durch die Matrixelemente des Dipolmoments nach (97, 1 )  ersetzen, erhalten wir 
endgültig (in gewöhnlichen Maßeinheiten) 

(106,3) 

Diese Energieverschiebung hängt von allen Quantenzahlen eines Elektrons im 
Atom - von der Hauptquantenzahl n, dem Gesamtdrehimpuls j und vom 
Bahndrehimpuls l - ab. Daher unterscheiden sich nach Einführung der Kor� 
rektur ( 106,3) auch die früher entarteten Niveaus mit gleichen n, j und ver­
schiedenen l = j ± 1/2 voneinander.1) 

1) Für die Frequenz, die der Energiedifferenz E(2 s112) - E(2 Pl/2) entspricht, führt 
die Berechnung nach Formel (106,3) zum Wert "'"1000 MHz (die genaue relativistische 
Rechnung liefert den Wert 1050 MHz). 
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