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Vorwort des Herausgebers
zur deutschen Ausgabe

Mit der vorliegenden Erstausgabe der deutschen Ubersetzung des
im russischen Original vor einem reichlichen Jahr erschienenen
zweiten Bandes der dreibdndigen Kurzfassung des ,,Lehrbuches der
Theoretischen Physik von L. D.Laxpau und E. M. LiFScHITZ
wird die Absicht des Verlages weiterverfolgt, diesen Lehrbuchzyklus
dem breiten Leserkreis schnell zur Verfiigung zu stellen. Auf Wunsch
von Professor E. M. LirscHITZ hélt sich die deutsche Ausgabe ge-
nau an die im russischen Original verwendete Formelschreibweise,
die fiir die Schule von L.D.LANDAU in der Quantenmechanik
typisch ist.

Der Herausgeber, fiir den die ,,Quantenmechanik der grofien
Lehrbuchreihe (Bd. ITI), beginnend mit dem Studium, zu einem
stindigen Begleiter in seiner wissenschaftlichen Tétigkeit wurde,
moéchte Prof. E. M. Lifschitz bestédtigen, daB es ihm gelungen ist,
trotz erheblicher Reduzierung des Materials, Geist und Anlage
dieses ausgezeichneten Lehrbuches auch in der Kurzfassung auf-
rechtzuerhalten. Aus diesem Grunde bin ich iiberzeugt, dal sich
der vorliegende Band viele Anhénger in dem i Vorwort des Autors
genannten potentiellen Leserkreis erobern wird.

Dubna, Mirz 1974 S. MATTHIES






Yorwort

Der vorliegende Band setzt das von L. D. LANDAU geplante Vorhaben fort,
dessen Ziel bereits im Vorwort zum ersten Band dargelegt wurde und darin
besteht, ein Minimum an Kenntnissen auf dem Gebiet der theoretischen Physik
zu vermitteln, das man jedem heutigen Physiker unabhéngig von seinem spe-
ziellen Arbeitsgebiet zum Studium empfehlen konnte.

Der erste Teil dieses Bandes, die nichtrelativistische Quantentheorie, folgt
der von L. D. LANDAU und mir verfaflten ,,Quantenmechanik* (Band III der
grofBen Reihe). Die Kiirzung des Stoffes wurde durch Weglassen sowohl ganzer
Abschnitte von mehr speziellem Interesse als auch einer grofen Anzahl me-

" thodischer, fiir den professionellen Theoretiker bestimmter Details erreicht.

v

Natiirlich muBte bei einer derartigen starken Reduzierung ein bedeutender
Teil des Textes neu geschrieben werden. Dabei strebte ich jedoch danach,
den gesamten Charakter und den Stil der Darlegung zu bewahren und nirgends
Vereinfachungen auf dem Wege irgendeiner Vulgarisierung der Begriffe zuzu-
lassen. Die Vereinfachung wird ausschlieflich auf Kosten einer geringeren
Ausfiihrlichkeit erreicht. Im ersten Teil des vorliegenden Bandes ist kaum die
Formulierung ,,man kann zeigen‘ anzutreffen; die hier dargelegten Resultate
werden zusammen mit entsprechenden Herleitungen angegeben.

Letzteres trifft allerdings nur in geringerem Mafe auf den zweiten Teil dieses
Bandes zu. Dieser Teil folgt dem Charakter der Darlegung nach der von mir
gemeinsam mit W. B. BERESTETZEI und L. P. Prtasewskr verfaiten ,,Rela-
tivistischen Quantentheorie’ (Band IVa der groen Reihe des Lehrbuches der
Theoretischen Physik). Teil IT behandelt indessen nur die Grundlagen der Quan-
tenelektrodynamik. Auch hier strebte ich an, die Darlegung des Stoffes derart
aufzubauen, dal nach Moglichkeit die physikalischen Voraussetzungen und die
logische Struktur der Theorie klar hervortreten. Jedoch wegen der betrachtli-
chen Kompliziertheit der Rechnungen, an die eine Losung konkreter Probleme
auf diesem Gebiet gewohnlich gebunden ist, wird eine Reihe von Anwendungen
der Theorie nur in Form der Ergebnisse diskutiert. Bei der Auswahl des Mate-
rials fiir diesen Teil des vorliegenden Buches lie ich mich dariiber hinaus vom
Inhalt der Vorlesungsreihe iiber Quantenelektrodynamik leiten, die L. D. LAN-
DAU im Studienjahr 1959/60 an der Moskauer Lomonossow-Universitdt hielt.
In diesem Zusammenhang danke ich A. S. KompaneJETZ, N. I. BunDKO und P. S.
KoONDRATENKO, die mir ihre Mitschriften dieser Vorlesungen zur Verfiigung
stellten.



VIII Vorwort

Das letzte Kapitel des vorliegenden Buches (,,FEyNMaN-Diagramme*) fillt
sowohl beziiglich seiner relativen Kompliziertheit als auch im Hinblick darauf,
daB es weniger physikalischen Resultaten sondern mehr methodischen Fragen
gewidmet ist, etwas aus dem allgemeinen Rahmen heraus. Ich hielt es jedoch
fiir notwendig, dem Leser wenigstens eine Vorstellung vom Wesen und dem
Sinn der Begriffswelt der sogenannten ,,Diagrammtechnik® zu geben, die den
heutigen Apparat der theoretischen Physik tief durchdringt (dabei stellte ich
mir nicht das Ziel zu zeigen, wie diese Technik zur Lésung konkreter Probleme
tatsdchlich anzuweden ist). Dieses Kapitel kann man nach Wunsch beim Lesen
auslassen, ohne die geschlossene Anlage des Buches insgesamt zu verletzen.

Zum Zeitpunkt des Erscheinens dieses Buches werden zehn Jahre vergangen
sein seit dem verhdngnisvollen 7. Januar 1962, als ein Verkehrsunfall das
Wirken L. D. Lanpaus in Forschung und Lehre abrupt beendete. Unter den-
jenigen, fiir die diese Kurzfassung der theoretischen Physik bestimmt ist, be-
safl schon niemand mehr das Gliick, seine Vorlesungen zu horen. Ich mochte
der Hoffnung Ausdruck verleihen, dal es mir mit diesen Biichern gelingen
wird, die Leser bis zu einem gewissen Grad mit dem Geist seiner pidagogischen
Ideen vertraut zu machen, seinem Streben nach Klarheit, dem Bestreben,
komplizierte Dinge einfach zu gestalten, und damit unmittelbar in ihrer wahren
Einfachheit die Schonheit der Naturgesetze zu enthiillen.

Mai 1971 E. M. LirscHITZ
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Einige Bezeichnungen

Zeitabhingige Wellenfunktion: ¥
Wellenfunktion ohne Zeitfaktor:

Operatoren werden durch mit Dach ~ versehene Buchstaben be-
zeichnet.

Transponierte Operatoren werden mit einer Tilde ~ versehen.

Adjungierte Operatoren werden mit + als oberen Index gekenn-
zeichnet.

Matrixelemente einer GroBe f: fnn = {m|f |n)

Hammiron-Operator: H

Nichtrelativistische Energie: E

Ubergangsfrequenzen: wnm = (En — En)/k

Relativistische Teilchenenergie, die die Ruhenergie einschlieft: &
Volumenelement des Konfigurationsraumes: dg

Volumenelement des gewShnlichen Ortsraumes: dV = dz dy dz
Normierungsvolumen: 2

Komponenten vierdimensionaler Vektoren (in Teil IT) tragen als
Indizes griechische Buchstaben 4, g, », . . ., die die Werte 0, 1, 2, 3
durchlaufen.

Im Teil II werden die auf Seite 237 definierten relativistischen
Einheiten verwendet.

Hinweise auf Paragraphen und Formeln des 1. Bandes dieses Lehr-
buches sind zusétzlich durch I gekennzeichnet.






Teil I. Nichtrelativistische Theorie






Die Grundbegriffe der Quantenmeehanik I

§1. Das Unbestimmtheitsprinzip

Versucht man, die klassische Mechanik und die klassische Elektrodynamik zur
Erklirung der Erscheinungen in atomaren Bereichen zu verwenden, dann gelangt
man zu Ergebnissen, die in krassem Widerspruch zum Experiment stehen. Man
kann dies am deutlichsten bereits an dem Widerspruch bei der Anwendung der
gewohnlichen Elektrodynamik auf das Atommodell sehen, bei dem sich die Elek-
tronen auf klassischen Bahnen um den Kern bewegen. Bei dieser Bewegung
miiflten die Elektronen, wie bei jeder beschleunigten Bewegung von Ladungen,
ununterbrochen elektromagnetische Wellen aussenden. Durch die Strahlung
miiBten die Elektronen ihre Energie verlieren, was letzten Endes dazu fithren
miillte, daB sie in den Kern stiirzen. Nach der klassischen Elektrodynamik
wire ein Atom also instabil; das entspricht in keiner Weise der Wirklichkeit.

Dieser tiefe Widerspruch zwischen der Theorie und dem Experiment deutet
darauf hin, daBl der Aufbau einer Theorie fiir die atomaren Erscheinungen eine
grundsétzliche Anderung in den grundlegenden klassischen Vorstellungen und
Gesetzen erfordert. Atomare Erscheinungen sind solche, die an Teilchen mit
sehr kleiner Masse und in sehr kleinen Raumgebieten vor sich gehen.

Um diese Verinderungen zu erklidren, gehen wir am einfachsten von der ex-
perimentell beobachtbaren Erscheinung der sogenannten Elektronenbeugung?)
aus. Beim Durchgang eines homogenen Elektronenstrahls durch einen Kristall
beobachtet man im durchgelassenen Strahl ein Bild aufeinanderfolgender In-
tensitdtsmaxima und -minima voéllig analog zu dem Bild bei der Beugung
elektromagnetischer Wellen. Unter gewissen Bedingungen weist also das Ver-
halten materieller Teilchen — der Elektronen — Ziige auf, die fiir Wellen-
vorgéinge charakteristisch sind.

Wie tief diese Erscheinung den iiblichen Vorstellungen iiber die Bewegung
widerspricht, kann man am besten aus dem folgenden Gedankenexperiment er-
sehen, das eine Idealisierung der Elektronenbeugung an einem Kristall ist. Wir
stellen uns einen fiir die Elektronen undurchlédssigen Schirm vor, in dem zwei
Spalte eingeschnitten sind. Wir beobachten den Durchgang des Elektronen-
strahles durch einen Spalt, wiahrend der andere Spalt abgedeckt ist, und er-

1) Die Erscheinung der Elektronenbeugung wurde in Wirklichkeit erst nach der Schaf-
fung der Quantenmechanik entdeckt. In unserer Darstellung halten wir uns jedoch nicht
an die historische Entwicklung der Theorie, sondern versuchen so vorzugehen, daB die
Zusammenhiinge zwischen den Grundprinzipien der Quantenmechanik und den experi-
mentell beobachtbaren Erscheinungen maximal deutlich werden.

2 Kurzfassung II



4 Kapitel I. Die Grundbegriffe der Quantenmechanik

halten auf einem Schirm hinter dem Spalt ein bestimmtes Bild der Intensitéts-
verteilung. Wir erhalten ein anderes Bild, wenn wir den zweiten Spalt 6ffnen
und den ersten abdecken. Beobachten wir nun den Durchgang des Strahles
durch beide Spalte gleichzeitig, dann miilten wir auf Grund der iiblichen Vor-
stellungen ein Bild erwarten, daB die einfache Uberlagerung der beiden vorher-
gehenden ist. Jedes Elektron bewegt sich auf seiner Bahn und fliegt durch
einen der Spalte, ohne auf die Elektronen, die durch den anderen Spalt hindurch-
gehen, einen EinfluB auszuiiben. Die Erscheinung der Elektronenbeugung zeigt
jedoch, dafl wir in Wirklichkeit ein Beugungsbild erhalten, das sich wegen der
Interferenz keineswegs auf die Summe der beiden Bilder von den einzelnen
Spalten zuriickfithren 1d8t. Dieses Ergebnis kann natiirlich in keiner Weise
mit der Vorstellung iiber die Bewegung der Elektronen entlang einer Bahn in
Einklang gebracht werden.

DieMechanik, derdie atomaren Erscheinungen gehorchen, die sogenannte Quan-
ten- oder Wellenmechanik, muf} also Vorstellungen iiber die Bewegung zugrunde
legen, die von den Vorstellungen der klassischen Mechanik prinzipiell verschieden
sind. In der Quantenmechanik gibt es den Begriff der Bahn eines Teilchens nicht.
Dies ist der Inhalt des sogenannten Unbestimmtheitsprinzips, eines der Grundprin-
zipien der Quantenmechanik, das 1927 von W. HEISENBERG entdeckt worden ist.?)

Da es die iiblichen Vorstellungen der klassischen Mechanik ablehnt, kann
man sagen, das Unbestimmtheitsprinzip hat einen negativen Inhalt. Es ist
natiirlich fiir sich allein voéllig unzureichend, um darauf eine neue Teilchen-
mechanik aufzubauen. Einer solchen Theorie miissen selbstverstéindlich irgend-
welche positiven Behauptungen zugrunde liegen; wir werden diese spiter be-
handeln (§ 2). Um aber diese Behauptungen formulieren zu kénnen, miissen
wir zuerst die Art der Fragestellung kldren, der sich die Quantenmechanik
gegeniibersieht. Wir gehen dazu zundchst auf den besenderen Charakter des
Verhiltnisses der Quantenmechanik zur klassischen Mechanik ein.

Gewohnlich kann eine allgemeinere Theorie unabhéngig von einer weniget
allgemeinen Theorie, die darin als Grenzfall enthalten ist, logisch geschlossen
formuliert werden. So kann die relativistische Mechanik auf ihren eigenen
Grundprinzipien aufgebaut werden, ohne irgendwie auf die NEwToNsche Me-
chanik zuriickzugreifen. Die Formulierung der Grundsétze der Quantenmecha-
nik ist prinzipiell unmdéglich, ohne die klassische Mechanik heranzuziehen.

Da das Elektron?) keine bestimmte Bahnkurve besitzt, hat es auch keine
anderen dynamischen Charakteristiken?®) . Es ist daher klar, daB fiir ein System

1) Es ist interessant anzumerken, daB der gesamte mathematische Apparat der Quanten-
mechanik von H. HErsENBERG und E. ScHRODINGER vor (ndmlich 1925—1926) der Ent-
deckung des Unbestimmtheitsprinzips geschaffen wurde, welches den physikalischen Inhalt
dieses Apparates aufdeckt. '

%) In diesem und dem folgenden Paragraphen sprechen wir der Kiirze halber von einem
Elektron und haben damit im allgemeinen ein beliebiges Quantenobjekt — ein Teilchen
oder Teilchensystem — im Sinn, auf das die klassische Mechanik nicht anwendbar ist.

3) Wir meinen damit Gré8en zur Beschreibung der Bewegung des Elektrons und nicht zur
Charakterisierung des Elektrons als Teilchen (Ladung, Masse); die letzteren sind Parameter.
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aus Quantenobjekten allein im allgemeinen keine logisch befriedigende Me-
chanik aufgebaut werden kann. Um die Bewegung eines Elektrons quantitativ
beschreiben zu konnen, miissen auch physikalische Objekte vorhanden sein,
die mit geniigender Genauigkeit der klassischen Mechanik gehorchen. Wenn
das Elektron mit einem klassischen Objekt wechselwirkt, dann wird sich der
Zustand des letzteren im allgemeinen d&ndern. Die Art und die GrdoBe dieser
Anderung hingen von dem Zustand des Elektrons ab und kénnen daher zur
quantitativen Beschreibung desselben dienen.

In diesem Zusammenhang nennt man das klassische Objekt gewohnlich Gerdt,
den Vorgang der Wechselwirkung mit dem Elektron bezeichnet man dabei als
Messung. Man muBl jedoch betonen, daBl man damit keineswegs einen ,,Mef‘‘-
Proze meint, an dem ein physikalischer Beobachter teilhat. Unter einer Mes-
sung versteht man in der Quantenmechanik jeden Wechselwirkungsprozell zwi-
schen einem klassischen und einem Quantenobjekt, der unabhéngig von irgend-
einem Beobachter ablduft. Es war N. BoHR, der die groBe Rolle des Begriffes
der Messung in der Quantenmechanik klargestellt hat.

Wir haben ein Gerdt als ein physikalisches Objekt definiert, das mit genii-
gender Genauigkeit der klassischen Mechanik geniigt. So ein Gerdt ist zum
Beispiel ein Koérper mit einer geniigend groflen Masse. Man darf jedoch nicht
denken, daB ein Gerdt unbedingt ein makroskopischer Gegenstand sein mu8.
Unter bestimmten Verhiltnissen kann auch ein offensichtlich mikroskopisches
Objekt die Rolle eines Gerites spielen, weil der Begriff ,,mit geniigender Ge-
nauigkeit von der konkreten Fragestellung abhidngt. So wird die Bewegung
eines Elektrons in der WiLsoN-Kammer durch die von ihm zuriickgelassene
Nebelspur beobachtet, deren Dicke im Vergleich zu atomaren Abmessungen
groB ist. Bei dieser Genauigkeit der Bestimmung der Bahnkurve ist das Elek-
tron ein vollkommen klassisches Objekt. ’

Die Quantenmechanik nimmt also eine sehr eigenartige Stellung unter den
physikalischen Theorien ein: Sie enthilt die klassische Mechanik als Grenzfall
und bedarf gleichzeitig dieses Grenzfalles zu ihrer eigenen Begriindung.

Wir koénnen jetzt die Problemstellung der Quantenmechanik formulieren.
Eine typische Problemstellung ist die Voraussage des Ergebnisses einer wieder-
holten Messung aus dem bekannten Ergebnis vorangegangener Messungen. Wir
werden im folgenden sehen, dal die Quantenmechanik im allgemeinen auflerdem
im Vergleich zur klassischen Mechanik die Werte beschrankt, die die verschie-
denen physikalischen GréBen (zum Beispiel die Energie) annehmen konnen,
d. h. die Werte, die als MeBergebnisse fiir eine gegebene Grofe beobachtet
werden kénnen. Der Apparat der Quantenmechanik muf} es erméglichen, diese
erlaubten Werte zu bestimmen.

Der MeBproze8 hat in der Quantenmechanik eine sehr wesentliche Besonder-
heit: Er wirkt immer auf das der Messung unterworfene Elektron ein, und
diese Einwirkung kann bei einer gegebenen MeBgenauigkeit prinzipiell nicht
beliebig klein gemacht werden. Je genauer die Messung ist, desto. stédrker ist
die dabei erfolgende Einwirkung. Nur bei Meséungen mit sehr kleiner Genauig-

2
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keit kann der Einfluf auf das MeBobjekt schwach sein. Diese Eigenschaft der
Messungen hingt logisch damit zusammen, dal die dynamischen GréBen des
Elektrons nur im Ergebnis der Messung selbst in Erscheinung treten. Wenn
die Einwirkung des MeBprozesses auf das Objekt beliebig klein gemacht werden
konnte, dann wiirde das bedeuten, dafl die zu messende Grofle an und fiir sich
einen bestimmten Wert hat, unabhéngig von der Messung.

Unter den verschiedenen Messungen spielt die Messung der Koordinaten des
Elektrons die grundlegende Rolle. Im Rahmen der Giiltigkeit der Quanten-
mechanik konnen die Koordinaten eines Elektrons immer mit beliebiger Ge-
nauigkeit gemessen werden.!)

Wir nehmen an, daBl nach bestimmten Zeitintervallen At die Koordinaten
eines Elektrons immer wieder gemessen werden. Die MeBergebnisse liegen im
allgemeinen nicht auf einer glatten Kurve. Im Gegenteil, je genauer die Mes-
sungen ausgefiihrt werden, desto sprungartiger und ungeordneter ist der Gang
der MeBergebnisse, weil ja der Begriff der Bahnkurve fiir ein Elektron fehlt.
Eine mehr oder weniger glatte Bahnkurve erhilt man nur, wenn man die Ko-
ordinaten des Elektrons mit einer geringen Genauigkeit mifit, wie zum Beispiel
durch die Kondensation der Tropfchen des Dampfes in der WirsoN-Kammer.

Wenn man bei unverdnderter MeBgenauigkeit die Intervalle A¢ zwischen den
Messungen verkiirzt, dann werden benachbarte Messungen natiirlich nahe bei-
einander gelegene Werte fiir die Koordinaten ergeben. Obwohl die Ergebnisse
einer Reihe aufeinanderfolgender Messungen in einem kleinen Raumgebiet liegen
werden, werden sie in diesem Gebiet vollkommen ungeordnet verteilt sein und
keineswegs irgendeine glatte Kurve bedecken.

Der letztere Sachverhalt zeigt, daB es in der Quantenmechanik den Begriff
der Geschwindigkeit eines Teilchens im klassischen Sinne dieses Wortes nicht
gibt, d. h. als Grenzwert, gegen den die Differenz der Koordinaten in zwei Zeit-
punkten, dividiert durch die Differenz A¢ zwischen diesen Zeitpunkten, strebt.
Wir werden jedoch im folgenden sehen, dafl man in derQuantenmechanik nichts-
destoweniger eine verniinftige Definition der Geschwindigkeit eines Teilchens in
einem bestimmten Zeitpunkt geben kann und daB diese Geschwindigkeit beim
Ubergang zur klassischen Mechanik in die klassische Geschwindigkeit iibergeht.

Wiéhrend aber in der klassischen Mechanik ein Teilchen in jedem gegebenen
Zeitpunkt bestimmte Koordinaten und eine bestimmte Geschwindigkeit hat,
liegt in der Quantenmechanik ein ganz anderer Sachverhalt vor. Wenn ein
Elektron im Ergebnis einer Messung bestimmte Koordinaten erhalten hat,
dann hat es dabei iiberhaupt keine bestimmte Geschwindigkeit. Hat das
Elektron umgekehrt eine bestimmte Geschwindigkeit, dann kann es keinen be-
stimmten Ort im Raum einnehmen. Tatsédchlich wiirde die gleichzeitige Exi-
stenz von Koordinaten und der Geschwindigkeit in einem beliebigen Zeitpunkt

1) Wir betonen nochmals, daB unter ,,gemessen werden* die Wechselwirkung eines
Elektrons mit einem klassischen ,,MeBgerdt‘* gemeint ist, welche keinesfalls die Anwesen-
heit eines fremden Beobachters voraussetzt.
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das Vorhandensein einer bestimmten Bahnkurve bedeuten, die das Elektron
aber nicht hat.

In der Quantenmechanik sind also die Koordinaten und die Geschwindigkeit
eines Elektrons Grofen, die nicht gleichzeitig exakt gemessen werden kénnen,
d. h., sie kénnen nicht gleichzeitig bestimmte Werte haben. Man kann sagen,
daB die Koordinaten und die Geschwindigkeit eines Elektrons GréBen sind, die
nicht gleichzeitig existieren. Im folgenden wird eine quantitative Beziehung
hergeleitet werden, die angibt, wie ungenau die Koordinaten und die Geschwin-
digkeit in ein und demselben Zeitpunkt gemessen werden kénnen.

Durch die Vorgabe aller Koordinaten und Geschwindigkeiten in einem ge-
gebenen Zeitpunkt wird in der klassischen Mechanik der Zustand eines physi-
kalischen Systems vollstdndig beschrieben. Aus diesen Anfangswerten bestim-
men die Bewegungsgleichungen das Verhalten des Systems in allen zukiinftigen
Zeitpunkten. In der Quantenmechanik ist eine solche Beschreibung prinzipiell
unmoglich, weil die Koordinaten und die zugehorigen Geschwindigkeiten nicht
gleichzeitig existieren. Die Beschreibung des Zustandes eines quantenmecha-
nischen Systems erfolgt also durch eine kleinere Anzahl von GréSen als in der
klassischen Mechanik, d. h., sie ist nicht so eingehend wie die klassische.

Daraus ergibt sich eine sehr wichtige Folgerung iiber die Art der Voraussagen
in der Quantenmechanik. Wéhrend die klassische Beschreibung ausreicht, die
Bewegung eines mechanischen Systems in der Zukunft véllig exakt voraus-
zusagen, kann die weniger eingehende Beschreibung in der Quantenmechanik
dazu nicht ausreichen. Das bedeutet: Wenn sich ein Elektron in einem Zu-
stand befindet, der so vollstindig wie in der Quantenmechanik nur méglich
beschrieben wird, dann ist sein Verhaltenin den folgenden Zeitpunkten trotzdem
prinzipiell nicht eindeutig bestimmbar. Die Quantenmechanik kann daher keine
streng bestimmten Voraussagen iiber das zukiinftige Verhalten eines Elektrons
machen. Fiir einen gegebenen Anfangszustand eines Elektrons kann eine fol-
gende Messung verschiedene Ergebnisse liefern. Die Aufgabe der Quanten-
mechanik besteht nur in der Bestimmung der Wahrscheinlichkeit, dieses oder
jenes Ergebnis bei dieser Messung zu erhalten. Es versteht sich, daB die Wahr-
scheinlichkeit eines bestimmten MeBergebnisses in manchen Fillen gleich 1
sein kann, d. h., sie kann zur GewiBheit werden, so daBl das Ergebnis einer
gegebenen Messung eindeutig wird.

Im weiteren werden wir uns vielfach davon iiberzeugen, dafl bei weitem
nicht jede Gesamtheit physikalischer Grofen in der Quantenmechanik gleich-
zeitig gemessen werden kann, d. h. gleichzeitig bestimmte Werte haben kann.
(Uber ein Beispiel, die Geschwindigkeit und die Koordinaten eines Elektrons,
haben wir bereits gesprochen.)

Gewisse Satze physikalischer GroBen mit den folgenden Eigenschaften spielen
in der Quantenmechanik eine grofle Rolle: Diese Groflen sind gleichzeitig
meBbar. Wenn sie alle gleichzeitig bestimmte Werte haben, dann kann keine
andere physikalische Grée (die keine Funktion der genannten ist) in diesem
Zustand einen bestimmten Wert haben.
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Solche Sitze physikalischer Grofen werden wir vollstdndige Sdtze nennen.

Jede Beschreibung eines Zustandes eines Elektrons erhdlt man im Ergebnis
einer Messung. Wir formulieren jetzt, was wir unter der vollsténdigen Beschrei-
bung eines Zustandes in der Quantenmechanik verstehen wollen. Vollstindig
beschriebene Zusténde erhélt man als Ergebnis der gleichzeitigen Messung eines
vollstidndigen Satzes physikalischer Grofien. Aus den Ergebnissen dieser Mes-
sung kann man insbesondere die Wahrscheinlichkeit der Ergebnisse jeder fol-
genden Messung unabhingig davon bestimmen, was mit dem Elektron vor
der ersten Messung geschehen ist.

Wir werden im folgenden immer (mit Ausnahme von §§ 7 und 42) unter den
Zustinden eines quantenmechanischen Systems gerade diese Zustdnde ver-
stehen.

§2. Das Superpositionsprinzip

Die radikale Anderung der physikalischen Vorstellungen iiber den Bewegungs-
ablauf in der Quantenmechanik im Vergleich zur klassischen Mechanik erfordert
natiirlich auch eine ebensolche grundsitzliche Anderung des mathematischen
Apparates der Theorie. In diesem Zusammenhang erhebt sich vor allem die
Frage nach der Art und Weise der Beschreibung des Zustandes eines quanten-
mechanischen Systems. :

Mit ¢ wollen wir die Gesamtheit der Koordinaten eines quantenmechanischen
Systems, mit dg das Produkt der Differentiale dieser Koordinaten bezeichnen.
Man nennt dg hiaufig das Volumenelement des Konfigurationsraumes des Sy-
stems. Fiir ein Teilchen stimmt dg mit dem Volumenelement dV des gew6hn-
lichen Raumes iiberein.

In der klassischen Mechanik wird der Zustand eines Systems dadurch be-
schrieben, daBl man (fiir einen gewissen Zeitpunkt) alle seine Koordinaten g
und Geschwindigkeiten ¢ angibt. Wie wir sahen, ist in der Quantenmechanik
eine solche Beschreibung offensichtlich nicht moglich. Eine vollstindige Be-
schreibung des Systemzustandes bedeutet hier nur wesentlich weniger: Sie
bedeutet die Moglichkeit vorauszusagen, mit welcher Wahrscheinlichkeit die
einen oder anderen Resultate einer Koordinatenmessung (oder der Messung
anderer Groflen) zu beobachten sind.

Die Grundlage des mathematischen Apparates der Quantenmechanik bildet
die Behauptung, daBl der Zustand eines Systems durch eine bestimmte (im
allgemeinen komplexe) Ortsfunktion ¥(q) beschrieben werden kann. Das
Betragsquadrat dieser Funktion bestimmt- dabei die Wahrscheinlichkeits-
verteilung der Koordinatenwerte: |¥|2 dq ist die Wahrscheinlichkeit dafiir, da8
sich bei einer Messung an dem System die Koordinatenwerte in dem Element dq
des Konfigurationsraumes ergeben. Die Funktion ¥ heilit die Wellenfunktion
des Systems.?)

1) Sie wurde 1926 erstmalig von E. SCHRODINGER in die Quantenmechanik eingefiihrt.
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Die Kenntnis der Wellenfunktion ermoglicht im Prinzip die Berechnung der
Wahrscheinlichkeit verschiedener Ergebnisse auch von irgendeiner anderen
Messung (nicht der Messung der Koordinaten). Dabei werden alle diese Wahr-
scheinlichkeiten durch Ausdriicke gegeben, die in ¥ und ¥* bilinear sind. Die
allgemeinste Gestalt eines solchen Ausdruckes ist

SIS ¥(Q¥P*) lg, ¢') dgdg . (2,1)
Die Funktion ¢(q, ") hingt dabei von der Art und dem Ergebnis der Messung
ab. Die Integration wird iiber den ganzen Konfigurationsraum erstreckt. Die
Wahrscheinlichkeit ¥ #* fiir die verschiedenen Koordinatenwerte selbst ist
ebenfalls ein Ausdruck dieser Art.

Im Laufe der Zeit wird sich der Zustand eines Systems, und damit auch die
Wellenfunktion, im allgemeinen éndern. In diesem Sinne kann man die Wellen-
funktion auch als Zeitfunktion auffassen. Wenn die Wellenfunktion in irgend-
einem Anfangszeitpunkt bekannt ist, dann ist sie im eigentlichen Sinne des Be-
griffes der vollstindigen Beschreibung eines Zustandes damit prinzipiell auch
fiir alle zukiinftigen Zeitpunkte bestimmt. Die tatsidchliche Abhingigkeit der
Wellenfunktion von der Zeit wird durch Gleichungen bestimmt, die wir im
folgenden noch ableiten werden.

Die Summe der Wahrscheinlichkeiten aller moglichen Koordinatenwerte eines
Systems muBl nach Definition gleich 1 sein. Deshalb mufl das Ergebnis der
Integration von |¥|? iiber den Konfigurationsraum des Systems gleich 1 sein:

S1¥P|2dg=1. (2,2)

Diese Gleichung ist die sogenannte Normierungsvorschrift firr die Wellenfunk-
tionen. Wenn das Integral iiber |¥|? konvergent ist, dann kann man durch
Wahl eines geeigneten konstanten Faktors die Funktion ¥ immer, wie man
sagt, normieren. Wir werden spéter auBlerdem sehen, dafl das Integral iiber
|¥|2 auch divergieren kann. Dann kann ¥ iiberhaupt nicht nach der Bedin-
gung (2,2) normiert werden. In diesen Fillen bestimmt |¥|2 natiirlich nicht
die Absolutwerte der Wahrscheinlichkeit fiir die Koordinaten; aber das Ver-
héltnis der Werte von |¥|2 in zwei verschiedenen Punkten des Konfigurations-
raumes bestimmt die relative Wahrscheinlichkeit der entsprechenden Koordi-
natenwerte.

Alle mit Hilfe der Wellenfunktion berechenbaren Grélen mit einem unmittel-
baren physikalischen Sinn haben die Gestalt (2,1). Darin wird die Funktion ¥
immer mit ¥* multipliziert. Es ist daher klar, daB die normierte Wellen-
funktion nur bis auf einen konstanten Phasenfaktor der Gestalt e'* (mit einer
beliebigen reellen Zahl o) bestimmt ist. Diese Nichteindeutigkeit ist prinzi-
pieller Natur und kann nicht beseitigt werden; sie ist jedoch unwesentlich, da
sie keinerlei physikalische Ergebnisse beeinfluf3t.

Die Grundlage des positiven Gehaltes der Quantenmechanik bilden einige
Behauptungen iiber die Eigenschaften der Wellenfunktion. Diese Behaup-
tungen besagen folgendes.
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In einem Zustand mit der Wellenfunktion ¥(q) mége eine Messung mit
Sicherheit ein bestimmtes Ergebnis (Ergebnis 1) liefern, in dem Zustand ¥,(q)
das Ergebnis 2. Es wird dann behauptet, daBl jede Linearkombination von ¥,
und ¥, d. h. jede Funktion der Form'c, ¥, + ¢, ¥, (¢, und ¢, sind Konstanten),
einen Zustand ergibt, in dem dieselbe Messung entweder das Ergebnis 1 oder
das Ergebnis 2 hat. AuBlerdem kann man behaupten, dafl bei bekannter Zeit-
abhingigkeit der Zusténde, die in dem einen Fall durch die Funktion ¥(q, t)
und im anderen durch ¥,(q,t) gegeben ist, eine beliebige Linearkombination
ebenfalls eine mogliche Zeitabhéngigkeit des Zustandes ergibt.

Die Gesamtheit der ausgeprochenen Behauptungen iiber die Wellenfunktionen
bildet den Inhalt des sogenannten Superpositionsprinzips. Insbesondere folgt
daraus unmittelbar, daB alle Gleichungen, denen die Wellenfunktionen ge-
niigen, linear in ¥ sein miissen.

Wir betrachten ein System, das aus zwei Teilen besteht. Der Zustand dieses
Systems sei so gegeben, dall jeder Teil vollstdndig beschrieben ist.!) Man kann
dann behaupten, dal die Wahrscheinlichkeiten fiir die Koordinaten g, des
ersten Teiles unabhingig von den Wahrscheinlichkeiten fiir die Koordinaten g,
des zweiten Teiles sind. Daher mull die Wahrscheinlichkeitsverteilung fiir das
ganze System gleich dem Produkt der Wahrscheinlichkeiten fiir die einzelnen
Teile sein. Das bedeutet, daBl die Wellenfunktion ¥,(q,, ¢,) des Systems als
Produkt aus den Wellenfunktionen ¥,(g,) und ¥,(g,) der einzelnen Teile dar-
gestellt werden kann.

¥12(d1s 22) - ¥i(q)) Pa(ge) - (2,3)

Wenn die beiden Teile nicht miteinander wechselwirken, dann bleibt diese Be-
ziehung zwischen den Wellenfunktionen des Systems und dessen Teilen auch
fiir zukiinftige Zeitpunkte erhalten:

Violths s 1) = T1(4_1: t) Yalgy, 1) - (2,4)

§ 3. Operatoren

Wir betrachten irgendeine physikalische GroBe f, die den Zustand eines quanten-
mechanischen Systems beschreibt. Streng genommen miilte man bei den fol-
genden Uberlegungen nicht von einer GréBe, sondern gleich von einem ganzen
vollstandigen Satz sprechen. Das Wesen aller folgenden Uberlegungen wird
davon jedoch nicht betroffen; der Kiirze und der Einfachheit halber sprechen
wir daher im weiteren immer nur von einer physikalischen Gréfe.

1) Damit ist natiirlich auch eine vollstindige Beschreibung des ganzen Systems ge-
geben. Wir betonen jedoch, daB die umgekehrte Behauptung keinesfalls richtig ist: Die
vollstindige Beschreibung des Zustandes des Gesamtsystems bestimmt im allgemeinen
die Zustinde seiner einzelnen Teile nicht vollstindig (wir werden auf diese Frage in §7
zuriickkommen).
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Die Werte, die eine gegebene physikalische Gré8e annehmen kann, heilen
in der Quantenmechanik ihre Eigenwerte. Die Gesamtheit dieser Werte be-
zeichnet man als das Spektrum der Eigenwerte der gegebenen GroBe. In der
klassischen Mechanik durchlaufen die GréBen im allgemeinen eine kontinu-
ierliche Folge von Werten. In der Quantenmechanik gibt es auch physikalische
GroBen (zum Beispiel die Koordinaten), deren Eigenwerte kontinuierlich ver-
teilt sind. In diesen Fillen spricht man von einem kontinuierlichen Spektrum
der Eigenwerte. Neben diesen Groflen gibt es in der Quantenmechanik aber
auch noch andere, deren Eigenwerte einen diskreten Satz bilden; in diesen
Féllen spricht man von einem diskreten Spektrum.

Der Einfachheit halber wollen wir annehmen, dafl die hier betrachtete Grofe f
ein diskretes Spektrum hat. Der Fall eines kontinuierlichen Spektrums wird
im Paragraphen 5 behandelt werden. Die Eigenwerte der GroBe f bezeichnen
wir mit f,, wobei der Index » die Werte 0, 1, 2, 3, . . . durchlduft. Ferner be-
zeichnen wir mit ¥, die Wellenfunktion des Systems in dem Zustand, in dem
die GroBe f den Wert f, hat. Die Wellenfunktionen ¥, heilen die Eigenfunk-
tionen der gegebenen physikalischen GroBle f. Jede dieser Funktionen wird
normiert, so daf} folgendes gilt:

SI1¥alrdg=1. 3.1)

Wenn sich das System in einem beliebigen Zustand mit der Wellenfunktion ¥
befindet, dann ergibt eine an dem System ausgefiihrte Messung der Gréfe feinen
der Eigenwerte f,. Auf Grund des Superpositionsprinzips kénnen wir behaupten,
daB die Wellenfunktion ¥ eine Linearkombination aus denjenigen Eigenfunk-
tionen ¥, sein muf}, deren zugehérige Eigenwerte f, bei einer an dem System in
dem betrachteten Zustand ausgefiihrten Messung mit einer von Null verschiedenen
Wahrscheinlichkeit beobachtet werden kénnen. Die Funktion ¥ kann daher im
allgemeinen fiir einen beliebigen Zustand als Reihe

SU = Z an?’n (372)

dargestellt werden. Die Summation erfolgt iiber alle n, die a, sind konstante
Koeffizienten.

Wir gelangen also zu dem Schluf}, dal jede Wellenfunktion, wie man sagt,
nach den Eigenfunktionen einer beliebigen physikalischen GréB8e entwickelt
werdén kann. Ein System von Funktionen, nach denen man eine solche Ent-
wicklung vornehmen kann, heilt ein vollstindiges Funktionensystem.

Aus der Entwicklung (3,2) kann man die Wahrscheinlichkeit bestimmen, mit
der dieser oder jener Wert f, der Grofle f bei einer Messung an dem System in
dem Zustand mit der Wellenfunktion ¥ beobachtet wird (d. h. die Wahrschein-
lichkeit fiir das entsprechende MeBergebnis). Nach dem im vorhergehenden
Paragraphen Gesagten miissen diese Wahrscheinlichkeiten durch irgendwelche
in ¥ und ¥* bilinearen Ausdriicke bestimmt werden und daher auch in a,
und a} bilinear sein. Es versteht sich ferner, daB diese Ausdriicke positiv sein
miissen. SchlieBlich mufl die Wahrscheinlichkeit fiir den Wert f, gleich 1 sein,
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wenn sich das System in dem Zustand mit der Wellenfunktion ¥ = ¥, be-
findet, und sie muBl gleich Null sein, wenn das Glied mit dem gegebenen ¥,
in der Entwicklung (3,2) fiir die Wellenfunktion ¥ fehlt. Die gesuchte Wahr-
scheinlichkeit mufl deshalb gleich 1 sein, wenn alle Koeffizienten a, gleich
Null sind bis auf den einen (mit dem gegebenen =), der gleich 1 ist; sie muf}
gleich Null sein, wenn das gegebene a, = 0 ist. Die einzige positive GroBe, die
dieser Bedingung geniigt, ist das Betragsquadrat des Koeffizienten a,. Wir
kommen auf diese Weise zu dem Ergebnis, daBl das Betragsquadrat |a,|? eines
jeden Koeffizienten der Entwicklung (3,2) die Wahrscheinlichkeit des zuge-
horigen Wertes f, der GroBe f im Zustand mit der Wellenfunktion ¥ bestimmt.
Die Summe der Wahrscheinlichkeiten fiir alle méglichen Werte f, muB gleich
1 sein. Es muB, mit anderen Worten, die folgende Beziehung gelten:

2 laq*=1. 3,3)

n

Wir wollen den Begriff des Mittelwertes f der GroBe f in einem gegebenen

Zustand einfiihren. Entsprechend der iiblichen Definition von Mittelwerten
definieren wir f als die Summe aller Eigenwerte f, der gegebenen GréBe, multi-
pliziert mit der zugehérigen Wahrscheinlichkeit |a,|2. Es ist also

f_= Py fnlan|2 . (3,4)

Wir driicken f jetzt nicht durch die Entwicklungskoeffizienten a, der Funk-
tion ¥, sondern durch diese Funktion selbst aus. Da in (3,4) das Produkt a, a;*
eingeht, ist klar, dal der gesuchte Ausdruck in ¥ und ¥* bilinear sein muB.

Wir fiihren einen mathematischen Operator ein, den wir mit f bezeichnen?)
und folgendermaBen definieren: (f Y¥) moge das Ergebnis der Wirkung des
Operators f auf die Funktion ¥ bezeichnen. Wir definieren f so, dal das
Integral iiber das Produkt von ({A ¥) mit der konjugiert komplexen Funktion ¥*
gleich dem Mittelwert f ist:

f=r¥*j¥)dg. (3,5)
Die Bilinearitdt des Ausdruckes (3,5) in ¥ und ¥* bedeutet, daB der Ope-
rator; selbst, wie man sagt, ein linearer Operator sein muB. So bezeichnet
man Operatoren, die die Eigenschaften?)

fo+P) =70+,  ja¥)=af¥
besitzen, wobei ¥ und ¥, beliebige Funktionen und a eine beliebige Kon-
stante sind.

1) Wir vereinbaren, Operatoren iberall durch mit Dach versehene Buchstaben zu
bezeichnen.

2) Sofern MiBverstindnisse ausgeschlossen sind, werden wir im weiteren gewohnlich
die Klammern in dem Ausdruck (fy) weglassen und verabreden, daB der Operator un-
mittelbar auf den ihm folgenden Ausdruck anzuwenden ist.
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Auf diese Weise finden wir, daB} jeder physikalischen Gréfle in der Quanten-
mechanik ein linearer Operator entspricht.

Falls es sich bei der Funktion ¥ um eine Eigenfunktion ¥, handelt, dann
muBl der Mittelwert f sich als derjenige Wert f, ergeben, den die GréBe f in
diesem Zustand besitzt:

f=r¥r¥adg=ta.
Offenbar muB dafiir ' 2
1P =fs B ° (3,6)
gelten, d. h., im Ergebnis der Anwendung des Operatorsf auf die Eigenfunk-
tion ¥, wird diese einfach mit dem entsprechenden Eigenwert f, multipliziert.
Wir koénnen also sagen, dafl die Eigenfunktionen einer gegebenen physika-
lischen GroBe f die Losungen der Gleichung
fe=1¥ | 37

sind, wobei { eine Konstaqte ist. Die Eigenwerte sind diejenigen Werte dieser
Konstanten, fiir die die aufgeschriebene Gleichung Losungen hat, die den er-
forderlichen Bedingungen geniigen. Wie wir spiter sehen werden, kann die
Gestalt der Operatoren fiir verschiedene physikalische Grofien aus unmittel-
baren physikalischen Uberlegungen bestimmt werden. Dann kann man mit
Hilfe der angegebenen Eigenschaften der Operatoren die Eigenfunktionen und
die Eigenwerte durch Losung der Gleichungen (3,7) bestimmen.

Wie die Eigenwerte einer reellen physikalischen Grofe miissen auch die
Mittelwerte fiir einen beliebigen Zustand reell sein. Dieser Umstand legt den
Eigenschaften der entsprechenden Operatoren eine bestimmte Beschrinkung
auf. Wir setzen den Ausdruck (3,5) gleich dem dazu konjugiert komplexen
und erhalten die Beziehung

S ] P) dg = S P[> P dg; (38)
f* bedeutet darin den Operator, der zu f konjugiert . komplex ist. Fiir einen
beliebigen linearen Operator gibt es im allgemeinen keine solche Beziehung, so
daB diese eine gewisse Beschrinkung fiir die mégliche Gestalt der Operatoren ;
darstellt. Fiir einen beliebigen Operator f kann man den sogenannten trans-

ponierten Operator f angeben ; er ist definiert durch

SO(fP)dg =/ P(fP)dg, (3,9)
wobei ¥ und @ zwei verschiedene Funktionen sind. Wihlt man als Funktion @
die zu ¥ konjugiert komplexe Funktion ¥*, dann ergibt sich aus dem Ver-
gleich mit (3,8)

F=fx. W‘L&\S@\L%WW (3,10)

P A—
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Operatoren, die dieser Bedingung geniigen, heilen hermitesche Operatoren. Die
in dem mathematischen Apparat der Quantenmechanik zu den realen physi-
kalischen GroBen gehorigen Operatoren miissen also hermitesch sein.

Formal kann man auch komplexe physikalische GréBen betrachten, d. h.
GroBen, deren Eigenwerte komplex sind. f sei eine solche Grofe. Dann kann
man die dazu konjugiert komplexe GréBe f* einfithren, deren Eigenwerte kon-
jugiert komplex zu den Eigenwerten von f sind. Den zur GréBe f* gehorigen

Operator bezeichnen wir mit f*. Man nennt ihn den adjungierten Operator zu

fA und muf ihn im allgemeinen von dem konjugiert komplexen Operator f*
unterscheiden. In der Tat ist der Mittelwert der Grofle f* iiber einen gewissen

Zustand ¥ entsprechend der Definition des Operators f*‘ gegeben als
F=rwrfrydg.

Andererseits haben wir
(W* =/ ¥*fwaq =79 frwedg= v frwag.

Setzen wir beide Ausdriicke gleich, so finden wir
fat fel, (3,11)

woraus klar ersichtlich ist, daBl im allgemeinen f* nicht mit /A* iibereinstimmt.
Die Bedingung (3.10) kann jetzt in der Gestalt

F=iE (3,12)
geschrieben werden, d. h., der Operator einer reellen physikalischen Gréfie ist

gleich seinem Adjungierten (hermitesche Operatoren nennt man deshalb auch
selbstadjungierte Operatoren).

Es seien f, und f,, zwei verschiedene Eigenwerte der GréBe f und ¥, und
Y. die zugehorigen Eigenfunktionen:

fyln—fn 5 fglmzfmy’m

Wir multiplizieren beide Seiten der ersten Gleichung mit ¥}, die zur zweiten
Gleichung konjugiert komplexe multiplizieren wir mit ¥,. Diese Produkte
subtrahieren wir gliedweise voneinander und erhalten

YW, — W, eV = (f— o) U PE.

Wir intergrieren beide Seiten dieser Gleichung iiber dg. Wegen ;* = f und

wegen (3,9) verschwindet das Integral iiber die linke Seite der Gleichung, so
daBl wir

fn _fm)fg/nyl; dq:O
bekommen. Fiir f, # f, folgt hieraus, daB
SVu¥rdg=0
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gilt, bzw. wie man sagt, daB unterschiedliche Eigenfunktionen zueinander
orthogonal sind. Dieses Resultat kann man zusammen mit der Normierungs-
bedingung in der Form

S Y, Prdq = bnn (3,13)

schreiben, wobei fir n =m 0um = 1 und fiir n £ m Opm = O ist.

Die Gesamtheit der Eigenfunktionen ¥, stellt auf diese Weise ein vollstédn-
diges System orthogonaler und normierter (oder wie man kurz sagt, ortho-
normaierter) Funktionen dar.

Es ist jetzt leicht, die Koeffizienten a, der Entwicklung (3,2) zu bestimmen.
Dazu geniigt es, beide Seiten von (3,2) mit ¥ % zu multiplizieren und iiber dg
zu integrieren. Infolge (3,13) werden alle Glieder der Summe mit Ausnahme
derjenigen mit » = m Null, und wir finden

aw=fP¥Edg. (3,14)

Wir sprechen hier die ganze Zeit nur von einer physikalischen GréBe f,
wihrend wir, wie am Anfang dieses Paragraphen bemerkt worden ist, iiber ein
vollstdndiges System physikalischer Gréfen sprechen miiiten. Dann wiirden
wir finden, daB zu jeder Grée f, g, . . . ein Operator fA, g, - . . gehort. Die Eigen-
funktionen ¥, gehéren dann zu den Zustédnden, fiir die alle betrachteten
GroBen bestimmte Werte haben, d. h., sie gehdren zu bestimmten Sdtzen von

Eigenwerten f,, gn, . . . und sind miteinander vertrigliche Losungen des Glei-
chungssysterns

fe=1¥, G¥=g%....

§ 4. Addition und Multiplikation von Operatoren

Den zwei physikalischen Grofen f und g mogen die Operatorenf und ¢ ent-
sprechen. Dann entspricht der Summe f -} g der Operator f 4+ g. Der Sinn
einer Addition unterschiedlicher physikalischer Gré8en hiangt jedoch in der
Quantenmechanik wesentlich davon ab, ob diese GroBen gleichzeitig meBbar
sind oder nicht. Wenn die Gréoflen f und g gleichzeitig mefbar sind, dann
besitzen die Operatoren f und g gemeinsame Eigenfunktionen, die gleichzeitig
auch Eigenfunktionen des Operators f—{—ﬁ sind, wobei sich die Eigenwerte
dieses Operators als die Summen f, + g, ergeben. '

Falls jedoch die GréBen f und g gleichzeitig nicht bestimmte Werte annehmen
konnen, dann ist der Sinn ihrer Summe f + g begrenzter. Man kann dann
nur behaupten, dafl der Mittelwert dieser Summe fiir einen beliebigen Zustand
gleich der Summe der Mittelwerte der einzelnen Summanden ist:

f+g=1+3. (4,1)

Die Eigenwerte und die Eigenfunktionen des Operators f + g werden hier im
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allgemeinen in keiner Beziehung zu den Eigenwerten und den Eigenfunktionen
der Grofen f und g stehen. Sind die Operatoren ;und g selbsf:adjungiert, dann
ist auch der Operator f + g offensichtlich selbstadjungiert, so daB dessen
Eigenwerte reell sind und die Eigenwerte der auf diese Weise definierten neuen
GroBe f + g darstellen.

Jetzt seien f und g wieder zwei gleichzeitig me8bare Grofen. Neben deren
Summe kann man auch den Begriff des Produktes einfithren. Dieses Produkt
ist definiert als die GroBe, deren Eigenwerte gleich den Produkten der Eigen-
werte der GroBen f und g sind. Man kann leicht sehen, daBl zu dieser Grofie
ein Operator gehort. Bei der Anwendung dieses Operators wird zuerst der
eine und danach der andere Operator auf die Funktion angewandt. Dieser

Operator wird mathematisch als Produkt der Operatoren f und g dargestellt.

Sind die ¥, die gemeinsamen Eigenfunktionen der Operatoren /A und g, dann
haben wir in der Tat

F0P =f0¥) =9 =gn ¥ =gnfs P 4,2)

(das Symbol an bedeutet den Operator, dessen Wirkung auf die Funktion ¥
in folgendem besteht: Zuerst wird der Operator § auf die Funktion ¥ an-
gewendet und danach der Operator? auf die Funktion § ¥). Mit demselben
Erfolg kénnten wir statt des Operators fA g auch den Operator g ,? nehmen, der
sich von dem ersteren nur durch die Reihenfolge der Faktoren unterscheidet.
Das Ergebnis der Anwendung dieser beiden Operatoren auf die Funktionen ¥,
ist offenbar das gleiche. - Da jede Wellenfunktion ¥ als Linearkombination
der Funktionen ?P,, dargestellt werden kann, folgt daraus, dafl die Anwendung
der Operatoren / gundg / auf eine beliebige Funktlon dasselbe Ergebnis hervor-

bringt. Dieser Sachverhalt kann symbolisch fg =g / oder
fi—df=0 (4.3)

geschrieben werden.

Man sagt, daBl diese beiden Operatoren? und § miteinander vertauschbar
sind, miteinander kommuiierent).

Wir kommen auf diese Weise zu dem wichtigen Ergebnis: Wenn zwei Grofen f
und ¢ gleichzeitig bestimmte Werte haben konnen, dann kommutieren die
zugehorigen Operatoren miteinander.

Es kann auch der umgekehrte Satz bewiesen werden: Wenn die Operatoren l
und g vertauschbar sind, dann kann man fiir sie alle Eigenfunktionen gemeinsam
wihlen; physikalisch bedeutet das die gleichzeitige MeBbarkeit der zugehérigen
physikalischen GréBen. Die Vertauschbarkeit der Operatoren ist also eine not-
wendige und hinreichende Bedingung fiir die gleichzeitige MeBbarkeit physi-
kalischer Grofen.

~ ~
'~

1) Die Differenz fg — § f selbst heit Kommutator beider Operatoren.
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Wenn die GréBen f und g nicht gleichzeitig bestimmte Werte haben kénnen,
dann kann der Begriff des Produktes in der oben angegebenen Weise nicht
definiert werden. Das offenbart sich schon darin, daB8 der Operator fﬁ in
diesem Falle nicht selbstadjungiert ist, daher kann er auch zu keiner physi-
kalischen GroBe gehoren. Nach der Definition des transponierten Operators

.ha.ben wir
SPIGOdg=,GD) (¥ dg.

Hier wirkt der Operator /A nur auf die Funktion ¥, und der Operator § wirkt
nur auf @. Wir wenden noch einmal die Definition des transponierten Ope-
rators an und erhalten

JPiiPdg=s (PGP dg=/ PG Pdq.

Wir haben also ein Integral erhalten, in dem die Funktionen ¥ und @
gegeniiber dem Ausgangsintegral ihre Platze vertauscht haben. Der Operator

Z}\?ist mit anderen Worten der transponierte Operator zu f g, und wir konnen
schreiben

fg=3f- 4,4)

Der transponierte Operator zu dem Produkt fA g ist das Produkt der transpo-
nierten Faktoren in der umgekehrten Reihenfolge. Wir bilden von beiden
Seiten der Gleichung (4,4) das konjugiert Komplexe und finden

Forr =g+ fr. (4,5)

Wenn beide Operatoren f und § hermitesch sind, dann ist (f §)* = § f. Daraus
folgt, daB der Operator f § nur dann hermitesch ist, wenn die Faktoren f und g
vertauschbar sind.

§ 6. Das kontinuierliche Spektrum

Alle in den §§ 3 und 4 hergeleiteten Beziehungen fiir die Eigenschaften der
Eigenfunktionen des diskreten Spektrums konnen ohne Miihe auf den Fall
eines kontinuierlichen Spektrums von Eigenwerten verallgemeinert werden.
Wir zéhlen sie hier auf, ohne von neuem alle entsprechenden Uberlegungen zu
wiederholen.

Es sei f eine physikalische Groe mit einem kontinuierlichen Spektrum. Ihre
Eigenwerte werden wir einfach mit demselben Buchstaben f ohne Index be-
zeichnen. Die zu dem Eigenwert f gehorige Eigenfunktion werden wir mit
¥, bezeichnen. Ahnlich wie eine beliebige Wellenfunktion ¥ in eine Reihe
(3,2) nach den Eigenfunktionen einer GréBe mit einem diskreten Spektrum
entwickelt werden kann, kann sie auch — diesmal in ein Integral — nach
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dem vollstindigen System der Eigenfunktionen einer Grofe mit einem konti-
nuierlichen Spektrum entwickelt werden. Diese Entwicklung hat die Gestalt

¥(g) = S a, ¥y(g) df . (6,1)
Die Entwicklungskoeffizienten ergeben sich als
a, = [ ¥(q) ¥}(g) dg . (5,2)

Da f einen kontinuierlichen Wertebereich iiberstreichen kann, hat es keinen
Sinn, von der Wahrscheinlichkeit des einen oder anderen Wertes zu reden,
sondern man muf} jetzt iiber die Wahrscheinlichkeit sprechen, mit der die
Grofle Werte aus einem infinitesimal kleinen Intervall zwischen f und f + df
annimmt. Diese Wahrscheinlichkeit ist durch |a,|? df gegeben, analog dem Fall
eines diskreten Spektrums, wo |a,|? die Wahrscheinlichkeit fiir den Eigenwert f,
bedeutet. Weil ferner dic Summe der Wahrscheinlichkeiten fiir alle moglichen
Werte f gleich 1 sein muB}, haben wir

Slag*df =1 (5,3)
(analog der Beziehung (3,3) fiir ein diskretes Spektrum).

Die obigen Formeln beinhalten eine wohldefinierte Normierung der Eigen-

funktionen ¥, nimlich gemifl der Regel

SEEY,dg =6 —f), (5,4)
wo rechts die 0-Funktion steht (ihre Definition und ihre Eigenschaften wurden
in T § 54 gegeben).!) In der Tat, setzen wir (5,1) in (5,2)-ein, so erhalten wir
die Beziehung

ay = [ ap() ¥y ¥ dg) df',
welche identisch erfiillt sein muB. Unter Beriicksichtigung von (5,4) ist diese
Forderung tatsdchlich erfiillt, da entsprechend der Eigenschaften der -Funk-
tion gilt:

Sapo(f —Hdf =a.

Die Normierungsbedingung (5,4) ersetzt die Bedingung (3,13) fiir ein dis-
kretes Spektrum. Wir sehen, daBl Funktionen ¥, und ¥, mit f = f’ nach wie
vor zueinander orthogonal sind. Jedoch Integrale iiber Quadrate |¥,2 von
Eigenfunktionen eines kontinuierlichen Spektrums werden unendlich. Auf die
Frage nach dem Ursprung und dem Sinn dieser Divergenz werden wir am Ende
von § 10 zuriickkommen.

Wenn wir (5,2) in (5,1) einsetzen, erhalten wir

Y(g) =/ Y@ (S PF(@) P9 df) dg’ -
Daraus schlieBen wir sofort die Beziehung?)
S Q) Y@ df =dg —q) - : (65,5)

1) Die d-Funktion wurde von P. A. M. Dirac in die theoretische Physik eingefiihrt.
%) Eine analoge Beziehung kann natiirlich auch fiir den Fall des diskreten Spektrums
eingefithrt werden. Sie lautet dann

2P Pulg) =8¢ — ). (5,5a)

‘n
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Wir vergleichen das Formelpaar (5,1) und (5,4) mit dem Paar (5,2) und (5,5)
und sehen, dal die Funktionen ¥j(q) einerseits die Entwicklung der Funk-
tion ¥(g) mit den Entwicklungskoeffizienten a, realisieren. Auf der anderen
Seite kann man die Formel (5,2) als véllig analoge Entwicklung der Funktion
a; = a(f) nach den Funktionen ¥/(q) ansehen. ¥(q) spielt dabei die Rolle der
Entwicklungskoeffizienten. Die Funktion a(f) bestimmt wie auch ¥(q) den
Zustand eines Systems vollstindig. Man nennt die Funktion a(f) manchmal
die Wellenfunktion in der f-Darstellung (und die Funktion ¥(q) die Wellen-
funktion in der g-Darstellung). Ahnlich wie |¥(q)|? die Wahrscheinlichkeit
bestimmt, daf die Koordinaten eines Systems in einem vorgegebenen Inter-
vall dg liegen, bestimmt |a(f)|? die Wahrscheinlichkeit dafiir, daBl die Werte
der GroBe f in einem vorgegebenen Intervall df liegen. Die Funktionen ¥(q)
sind die Eigenfunktionen der GréBe f in der g-Darstellung, zum anderen sind
die dazu konjugiert komplexen Funktionen ¥}(q) die Eigenfunktionen der
Koordinate ¢ in der f-Darstellung.

Es gibt auch solche physikalischen Gréfen, die in einem bestimmten Werte-
bereich ein diskretes Spektrum und in einem anderen Bereich ein kontinu-
ierliches Spektrum haben. Fiir die Eigenfunktionen einer solchen GroBe gelten
natiirlich alle Beziehungen, die wir in diesem und im vorhergehenden Para-
graphen abgeleitet haben. Man mull nur beachten, dafl das vollstindige Funk-
tionensystem die Gesamtheit der Eigenfunktionen beider Spektren zusammen
ist. Die Entwicklung einer beliebigen Wellenfunktion nach den Eigenfunk-
tionen dieser Grofe hat daher die Gestalt

() = X ay ¥nlg) + S ar ¥ (q) df . (5,6)

Die Summe wird fiir das diskrete Spektrum gebildet, das Integral iiber das
ganze kontinuierliche Spektrum erstreckt.

Ein Beispiel fiir eine Grofe mit einem kontinuierlichen Spektrum ist die
. Koordinate g selbst. Man kann leicht sehen, daBl der zugehdrige Operator die
einfache Multiplikation mit ¢ bedeutet. In der Tat, da die Wahrscheinlich-
keit fiir die verschiedenen Koordinatenwerte durch das Quadrat|¥(q)|2 bestimmt
wird, ist der Mittelwert fiir die Koordinate

9=/ql¥I?Pdg=/P*q¥dg.
Vergleichen wir diesen Ausdruck mit der Definition der Operatoren entspre-
chend (3,5), so sehen wir, daB

@ =4 (5:7)
gilt.l) Die Eigenfunktionen dieses Operators miissen nach der allgemeinen

Regel aus der Gleichung q ¥, = g, ¥, bestimmt werden. Mit g, bezeichnen
wir voriibergehend die konkreten Koordinatenwerte, um sie von der Ver-

1) Im weiteren vereinbaren wir zur Vereinfachung der Bezeichnungsweise: Operatoren,
deren Anwendung Multiplikation mit einer gewissen GroBe bedeutet, schreiben wir einfach
wie diese GroBe selbst, d. h. ohne Dach.

3 Kurzfassung II
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anderlichen ¢ zu unterscheiden. Da diese Gleichung entweder fiir ¥, = 0 oder
fiir ¢ = g, erfiillt werden kann, ist klar, daB die der Normierungsbedingung
geniigenden Eigenfunktionen

¥y, =98¢ — @) (5,8)
sind.

§ 6. Der Ubergang zur klassischen Mechanik

Die Quantenmechanik enthélt die klassische Mechanik als Grenzfall. Es er-
hebt sich die Frage, wie dieser Grenziibergang ausgefiihrt werden muB.

In der Quantenmechanik wird ein Elektron durch eine Wellenfunktion be-
schrieben, die seine verschiedenen Koordinatenwerte bestimmt. Von dieser
Funktion wissen wir bisher nur, daB sie die Losung einer linearen partiellen
Differentialgleichung ist. In der klassischen Mechanik wird das Elektron als
ein materielles Teilchen angesehen, das sich auf einer Bahn bewegt, die durch
die Bewegungsgleichungen vollkommen bestimmt ist. In der Elektrodynamik
besteht zwischen der Wellenoptik und der geometrischen Optik in gewissem
Sinne eine analoge Wechselbeziehung wie zwischen der Quantenmechanik und
der klassischen Mechanik. In der Wellenoptik werden die elektromagnetischen
Wellen durch die Vektoren des elektrischen und des magnetischen Feldes be-
schrieben, die ein bestimmtes lineares Differentialgleichungssystem (die Max-
wELLschen Gleichungen) befriedigen. In der geometrischen Optik wird die
Lichtausbreitung entlang bestimmter Trajektorien, den Strahlen, betrachtet.
Auf Grund der genannten Analogie kann man den Schluf ziehen, daBl der
Ubergang von der Quantenmechanik zur klassischen Mechanik analog zu dem
Ubergang von der Wellenoptik zur geometrischen Optik ist.

Wir erinnern uns daran, wie man den zuletzt genannten Ubergang mathe-
matisch durchfiihrt (siehe I §74). Es sei u eine beliebige Feldkomponente in
einer elektromagnetischen Welle. Man kann sie in der Form u = a ' mit
reeller Amplitude a und reeller Phase ¢ (in der geometrischen Optik nennt
‘man sie Eikonal). Der Grenzfall der geometrischen Optik entspricht kleinen
Wellenlingen. Mathematisch wird das dadurch ausgedriickt, dafl die Phase ¢
sich auf kleinen Strecken um groBe Betrége dndert. Das bedeutet insbesondere,
daB man ihren absoluten Betrag als gro annehmen kann.

Dementsprechend gehen wir von der Voraussetzung aus, dafl in der Quanten-
mechanik dem Grenzfall der klassischen Mechanik Wellenfunktionen ¥ = a et?
entsprechen, bei denen a eine langsam verinderliche Funktion ist und ¢ grofe
Werte annimmt. Bekanntlich kann man in der Mechanik die Bahnkurve eines
Teilchens aus einem Variationsprinzip bestimmen. Danach muf} die sogenannte
Wirkung S eines mechanischen Systems einen minimalen Wert annehmen
(Prinzip der kleinsten Wirkung oder HaMILTON-Prinzip). In der geometrischen
Optik wird der Verlauf eines Lichtstrahles durch das sogenannte FERMATsche
Prinzip bestimmt, nach dem die ,,optische Weglinge® des Strahles, d. h. die
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Differenz zwischen den Phasen am Ende und am Anfang des Weges, ein Mini-
mum sein muB.

Von dieser Analogie ausgehend, kénnen wir behaupten, die Phase ¢ einer
Wellenfunktion mufl im klassischen Grenzfall proportional zur mechanischen
Wirkung S des betrachteten physikalischen Systems sein, d. h., es mufl § =
= const - ¢ sein. Der Proportionalitidtsfaktor heilt PLaNcKsche Konstante und
wird mit dem Buchstaben & bezeichnet.!) Sie hat die Dimension einer Wirkung
(da ¢ dimensionslos ist) und ist gleich

h=1,054-10"%erg-s.

Die Wellenfunktion eines ,,beinahe klassischen‘ (oder, wie man sagt, quast-
klassischen) physikalischen Systems hat also die Gestalt

s

Y—qge" . (6,1)

Die PLancEsche Konstante spielt bei allen Quantenerscheinungen eine funda-
mentale Rolle. Ihre relative GroBe (beziiglich anderer Grofen derselben Di-
mension) bestimmt den ,,Grad der quantenmechanischen Natur‘ eines physi-
kalischen Systems.

Der einer groBen Phase entsprechende Ubergang von der Quantenmechanik
zur klassischen Mechanik kann formal als Grenziibergang & —>0 geschrieben
werden (dhnlich wie der Ubergang von der Wellenoptik zur geometrischen
Optik dem Grenziibergang zur Wellenldnge Null, A — 0, entspricht).

Wir haben die Gestalt der Wellenfunktion in dem uns interessierenden Grenz-
fall gefunden. Es bleibt aber noch die Frage offen, wie sie mit der klassischen
Bewegung entlang einer Bahn zusammenhingt. Im allgemeinen geht eine
durch eine Wellenfunktion beschriebene Bewegung iiberhaupt nicht in eine
Bewegung entlang einer bestimmten Bahnkurve iiber. Ihr Zusammenhang mit
der klassischen Bewegung ist ein anderer. Wenn in einem Anfangszeitpunkt
die Wellenfunktion und damit die Wahrscheinlichkeitsverteilung fiir die Ko-
ordinaten gegeben sind, dann wird sich diese Verteilung im Laufe der Zeit so
,,verschieben, wie es sich nach den Gesetzen der klassischen Mechanik gehort
(ndheres dariiber siehe am Schlul von § 26).

Um eine Bewegung entlang einer bestimmten Bahnkurve zu erhalten, mufl
man von einer Wellenfunktion besonderer Art ausgehen, die nur in einem sehr
kleinen Raumgebiet von Null verschieden ist (von einem sogenannten Wellen-
paket). Die Ausdehnungen dieses Gebietes kann man zusammen mit & gegen
Null streben lassen. Dann kann man behaupten, daB sich das Wellenpaket
im quasiklassischen Fall entlang der klassischen Bahnkurve eines Teilchens im
Raume verschiebt.

1) Sie wurde 1900 von M. Praxck in die Physik eingefiihrt. Die Konstante &, die wir
in diesem Buch durchweg benutzen, ist eigentlich die durch 2 = dividierte PLaNcKsche
Konstante 2 (Bezeichnung nach P. A. M. Dirac).

8*
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Die quantenmechanischen Operatoren schlieflich miissen in diesem Grenz-
fall einfach auf die Multiplikation mit der entsprechenden physikalischen GréBe
zuriickgefithrt werden.

§7. Die Dichtematrix

Die Beschreibung eines Systems mit Hilfe der Wellenfunktion entspricht der
vollstindigsten in der Quantenmechanik méglichen Beschreibung in dem Sinne,
wie es am Ende von § 1 ausgefiihrt wurde.

Mit Zustinden, die eine solche Beschreibung nicht zulassen, haben wir es
zu tun, wenn wir ein System betrachten, das Teil eines gewissen groBlen ab-
geschlossenen Systems ist. Das abgeschlossene System als Ganzes soll sich
nach Voraussetzung in einem gewissen, durch die Wellenfunktion ¥(g, x) be-
schriebenen Zustand befinden. x bezeichnet die Gesamtheit der Koordinaten
des betrachteten Teilsystems, ¢ die iibrigen Koordinaten des abgeschlossenen
Systems. Diese Funktion ¥ wird im allgemeinen nicht in ein Produkt von
Funktionen zerfallen, die nur von # und nur von q abhéngen, so dafi das Teil-
system keine eigene Wellenfunktion hat.

Es sei f eine physikalische Grofe unseres (Teil-) Systems. Der zugehorige
Operator wirkt daher nur auf die Koordinaten x, aber nicht auf g. Der Mittel-
wert dieser GroBe in dem betrachteten Zustand ist

f=1/7%%g, ) [Pg, ) dgda. (7,1)
Wir fiihren die Funktion g(x’, ) durch die folgende Definition ein:
o(@', ) = [ ¥*g, z') ¥(g, x) dg . (7,2)

Die Integration erfolgt dabei nur iiber die Koordinaten q. Die eben eingefiihrte
GroBe heiflt die Dichtematrix des (Teil-)Systems. Die ,,Diagonalelemente’ der
Dichtematrix

o(@, z) = [ |¥*(g, z)|2dg : (7,3)

geben offensichtlich die Wahrscheinlichkeitsverteilung fiir die Koordinaten des

(Teil-)Systems. _
Mit Hilfe der Dichtematrix kann man den Mittelwert f in der Form

f=/1fo®, 2)lyey dz (7.4)

schreiben, wairkt in der Funktion g(z’, ) nur auf die Variablen x. Nach der
Anwendung des Operators mul man ' = = setzen. Wir sehen, da man bei
bekannter Dichtematrix den Mittelwert einer beliebigen fiir das System charak-
teristischen Grofle berechnen kann.

Folglich kann man mit Hilfe von p(x’, ) auch die Wahrscheinlichkeiten fiir
die verschiedenen Werte der physikalischen GréfSen des (Teil-)Systems be-
stimmen. Wir kommen also zu dem Schluf}, daBl der Zustand eines Systems,
das keine Wellenfunktion hat, mittels der Dichtematrix beschrieben werden
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kann!). Die Dichtematrix enthidlt die Koordinaten ¢ nicht, die nicht zu dem
gegebenen System gehéren, obwohl sie ihrem Wesen nach natiirlich von dem
Zustand des abgeschlossenen Systems als Ganzem abhingig ist.

Die Beschreibung mit Hilfe der Dichtematrix ist die allgemeinste Form der
quantenmechanischen Beschreibung von Systemen. Die Beschreibung mittels
einer Wellenfunktion ist ein Spezialfall und entspricht einer Dichtematrix der
Gestalt o(z’, ) = P*(2’') P(x). Zwischen diesem Spezialfall und dem allge-
meinen Fall besteht folgender wichtiger Unterschied. Fiir einen Zustand mit
einer Wellenfunktion (ein solcher Zustand wird auch reiner Zustand genannt)
existiert immer ein vollstdndiges System von MeBprozessen, die mit Sicherheit
bestimmte Ergebnisse liefern. Fiir Zusténde, die nur eine Dichtematrix haben
(sie werden als gemischte Zustinde bezeichnet), gibt es kein vollstindiges Sy-
stem von Messungen, die eindeutig voraussagbare Ergebnisse liefern wiirden.

1) L. D. Laxpav und F. BrLocH gaben unabhingig voneinander erstmals (1927) eine
quantenmechanische Methode zur Beschreibung solcher Zustdnde an.
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§8. Der Hamirron-Operator

Die Wellenfunktion ¥ bestimmt den Zustand eines physikalischen Systems in
der Quantenmechanik vollstindig. Durch die Vorgabe dieser Funktion in einem
gewissen Zeitpunkt werden nicht nur alle Eigenschaften des Systems in diesem
Zeitpunkt beschrieben, sondern es wird auch das Verhalten des Systems in
allen zukiinftigen Zeitpunkten bestimmt, natiirlich nur mit dem Genauigkeits-
grad, den die Quantenmechanik zuldft. Mathematisch wird dieser Sachverhalt
dadurch ausgedriickt, daBl der Wert der Ableitung 0¥ /ot der Wellenfunktion
nach der Zeit in jedem gegebenen Zeitpunkt durch den Wert der Funktion ¥
selbst in demselben Zeitpunkt bestimmt werden muBl. Dieser Zusammenhang
mufl nach dem Superpositionsprinzip linear sein. In der allgemeinsten Form
kann man schreiben

1 h a—!—I—I—HY’ (8,1)

wobei H ein gewisser linearer Operator ist. Der Faktor ¢ ist mit einem weiter
unten klar werdenden Ziel eingefiihrt worden.

Da das Integral f ¥ ¥* dq eine konstante, zeitunabhéngige Grole ist, haben
wir

flp*lpdq—flp* dg +f Wdg=0.

Setzen wir hier (8,1) ein, und benutzen wir im zweiten Integral die Definition
des transponierten Operators, so kénnen wir schreiben (der gemeinsame Fak-
tor 1/:k wird weggelassen)

SWrAWAq— [WH* W dg = [ @* H W dg — [ W* H* Wdg
—fP*H _HY¥Pdg=0.

Da dlese Glelchung fiir eine beliebige Funktion ¥ erfiillt seln mul, folgt daraus,

daB H — H* identisch gelten muf, d. h., der Operator H ist hermitesch.

Wir untersuchen jetzt, welcher klassischen Grofie er entspricht. Dazu be-
nutzen wir den im klassischen Grenzfall giiltigen Ausdruck (6,1) fiir die Wellen-
funktion und schreiben

oY ¢ o8

a=nal
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(die langsam verdnderliche Amplitude a braucht nicht differenziert zu werden).
Wir vergleichen diese Gleichung mit der Definition (8,1) und sehen, daf} sich

der Operatorl;f in diesem Grenzfall auf die einfache Multiplikation mit der
GroBe — 08/0t reduziert. Die letztere ist also auch die physikalische GréBe,

in die der hermitesche Operator H iibergeht.
Wie aus der Mechanik bekannt ist, ist die Ableitung — 98/0¢ nichts anderes

als die HamiLToN-Funktion H eines mechanischen Systems. Der Operator H
ist also der Operator, der in der Quantenmechanik der HamiLToN-Funktion
entspricht. Man nennt ihn HaMiLTON-Operator oder kiirzer Hamzltonian eines
Systems. Wenn die Gestalt des HamiLToN-Operators bekannt ist, dann be-
stimmt die- Gleichung (8,1) die Wellenfunktion eines gegebenen physikalischen
Systems. Diese Grundgleichung der Quantenmechanik bezeichnet man als
Wellengleichung.

§9. Die Differentiation von Operatoren nach der Zeit

Der Begriff der Ableitung einer physikalischen Gréf8e nach der Zeit kann in
der Quantenmechanik nicht in demselben Sinne definiert werden wie in der
klassischen Mechanik. Die Definition der Ableitung in der klassischen Mechanik
ist mit der Betrachtung der Werte einer GréBe in zwei benachbarten, aber
verschiedenen Zeitpunkten verkniipft. In der Quantenmechanik hat aber eine
GroBe, die in einem gewissen Zeitpunkt einen bestimmten Wert hat, in den
folgenden Zeitpunkten iiberhaupt keinen bestimmten Wert; in § 1 ist dariiber
eingehender gesprochen worden.

Der Begriff der Ableitung nach der Zeit mufl deshalb in der Quantenmechanik

anders definiert werden. Man definiert die Ableitung f der Grofe f natiirlicher-
weise als die Grofle, deren Mittelwert gleich der zeitlichen Ableitung des Mittel-

wertes f ist. Wir haben also per definitionem

f=7f. (9,1)
Wir gehen von dieser Definition aus und erhalten unschwer einen Ausdruck

fir den quantenmechanischen Operator f, der zu der Grofe f gehort. Es
gilt

~,

fyf*/'{qu

—fsp* W dg +f f!{qu+f¥f*

Hier ist a?/at der Operator, den man durch Differentiation des Operatorsf
nach der Zeit erhilt; dieser kann von der Zeit wie von einem Parameter ab-
hingen. Setzen wir fiir die Ableitungen 0¥ [0t und 0¥ */9¢ die Ausdriicke nach
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(8,1) ein, dann erhalten wir

~

= 3 o . ~ ~ . ~
;=flp*%y1dq +-’h—f(H* w*) f W dg —%f\Y’*f( ¥)dg.
Da der Operator H hermitesch ist, gilt

f(E*P* (W) dg=[P*HfWwdg,

und wir haben
g of i o~ dig o
_ (S, —
/~f¥f (at—{—hH th)Y/dq.
Da andererseits nach der Definition der Mittelwerte fT= S P* f‘Y’dq sein
muf}, erkennt man, dal der Ausdruck in der Klammer des Integranden den
gesuchten Operator darstellt:

f= S Ef—THy. 9.2)

Falls der Operator /Anicht explizit von der Zeit abhédngt, ist f bis auf einen
Faktor gleich dem Kommutator des Operators f mit dern HamiLroN-Operator.
Diejenigen physikalischen GréBen, deren Operatoren nicht explizit von der
Zeit abhéngen und auflerdem mit dem HamiLToN-Operator vertauschbar sind,

so daB f = 0 ist, bilden eine sehr wichtige Kategorie physikalischer Gré8en,

sogenannte Erhaltungsgroflen. TFiir sie gilt f‘=f—= 0, d.h. /_ = const. Der
Mittelwert der Grofle bleibt, mit anderen Worten, zeitlich konstant. Wenn
die GréBe f in einem gegebenen Zustand einen bestimmten Wert hat (d. h.,

die Wellenfunktion ist eine Eigenfunktion des Operators f), dann hat sie auch
in spidteren Zeitpunkten einen bestimmten — denselben — Wert.

§ 10. Stationire Zustinde

Der HamiLToN-Operator eines abgeschlossenen Systems (bzw. eines Systems,
das sich in einem konstanten — auf keinen Fall in einem verdnderlichen —
dulleren Felde befindet) kann die Zeit nicht explizit enthalten. Dies folgt
daraus, daB beziiglich eines solchen physikalischen Systems alle Zeitpunkte
dquivalent sind. Da andererseits natiirlich jeder Operator mit sich selbst ver-
tauschbar ist, kommen wir zu dem SchluBl, daB die HamMiLToN-Funktion fiir
ein System, das sich nicht in einem verdnderlichen duBleren Feld befindet,
erhalten bleibt. Bekanntlich bezeichnet man eine HamirLToN-Funktion, die
erhalten bleibt, als Energie (siehe I § 6). Der Sinn des Energieerhaltungssatzes
besteht in der Quantenmechanik in folgendem: Wenn die Energie in einem
gegebenen Zustand einen bestimmten Wert hat, dann bleibt dieser Wert zeit-
lich konstant.
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Die Zustinde mit bestimmten Werten der Energie heillen stationdre Zustinde
eines Systems. Sie werden durch Wellenfunktionen ¥, beschrieben, die Eigen-

funktionen des HamiLToN-Operators sind, d. h., der Gleichung I} Y, =E,¥,
geniigen. Die E, sind die Eigenwerte der Energie. Dementsprechend kann die
Wellengleichung (8,1) fiir die Funktion ¥,

Y, S
ih—a—tﬁzH’Fn=EnTﬂ

unmittelbar iiber die Zeit integriert werden und ergibt

-
Po=e " yulg). (10,1)
Die Funktion o, hingt dabei nur von den Koordinaten ab. Durch die Glei-
chung (10,1) wird die Zeitabhéngigkeit der Wellenfunktionen fiir stationédre Zu-
stdinde bestimmt.
Die Wellenfunktionen fiir stationdre Zustdnde ohne den Zeitfaktor wollen
wir mit dem kleinen Buehstaben y bezeichnen. Diese Funktionen und auch
die Eigenwerte der Energie selbst werden aus der Gleichung

Hy=Ey (10,2)

bestimmt. Der stationdre Zustand mit der kleinsten mdéglichen Energie heifit
Normal- oder Grundzustand eines Systems.

Die Entwicklung einer beliebigen Wellenfunktion ¥ nach den Wellenfunk-
tionen stationdrer Zustéinde hat die Gestalt

¥=Xae " yaq)- (10,3)

Die Quadrate |ay|2 der Entwicklungskoeffizienten bestimmen wie iiblich die
Wahrscheinlichkeiten fiir die verschiedenen Energiewerte eines Systems.

Die Wahrscheinlichkeitsverteilung fiir die Koordinaten in einem stationédren
Zustand wird durch das Quadrat |¥,|2 = |y,|® gegeben. Wir sehen, daf sie
nicht von der Zeit abhdngt. Dasselbe karin man von dem Mittelwert

f=fyj:;¥,ndq=fw:;'l’ndq

einer beliebigen physikalischen GroBe f sagen (deren Operator nicht explizit
zeitabhéngig ist).

Wie schon erwdéhnt worden ist, kommutiert der Operator jeder erhalten
bleibenden Gréfle mit dem HamiLToN-Operator. Das bedeutet, dafl jede phy-
sikalische GroBe, fiir die ein Erhaltungssatz gilt, gleichzeitig mit der Energie
gemessen werden kann.

Unter den verschiedenen stationdren Zustinden konnen auch solche sein,
die zu ein und demselben Energiewert gehoren, sich aber durch die Werte
irgendwelcher anderer physikalischer Grofen unterscheiden. Diese Eigenwerte
der Energie (oder, wie man auch sagt, Energieniveaus eines Systems), zu denen
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jeweils mehrere verschiedene stationdre Zustinde gehoéren, nennt man ent-
artet’. Physikalisch hdngt die Moglichkeit der Existenz entarteter Niveaus
damit zusammen, daBl die Energie im allgemeinen fiir sich kein vollstdndiges
System physikalischer Gréfen bildet.

Man kann insbesondere leicht erkennen, daf} die Energieniveaus eines Systems
im allgemeinen entartet sind, wenn zwei physikalische GroBen f und g erhalten
bleiben, deren Operatoren nicht vertauschbar sind. Es sei ¢ die Wellenfunktion
eines stationdren Zustands, in dem aufler der Energie die Grole f einen be-
stimmten Wert hat. Man kann dann behaupten, da8 die Funktion § ¢ mit
(einen konstanten Faktor lassen wir zu) nicht iibereinstimmt. Das Gegenteil
dazu wiirde bedeuten, dafl auch die Grée g einen bestimmten Wert hat. Das
ist aber unmoéglich, weil f und g nicht gleichzeitig gemessen werden kénnen.
Auf der anderen Seite ist die Funktion § 9 eine Eigenfunktion des HAMILTON-
Operators zu demselben Energiewert £ wie yp:

Hgy)=gHy =EGv).
Wir sehen also, dafl die Energie E zu mehr als einer Eigenfunktion gehort,
d. h., das Energieniveau ist entartet.

Eine beliebige Linearkombination der Wellenfunktionen, die zu ein und dem-
selben entarteten Energieniveau gehéren, ist offensichtlich auch eine Eigen-
funktion zu demselben Energiewert. Mit anderen Worten: Die Wahl der
Eigenfunktionen zu einem entarteten Energiewert ist nicht eindeutig. Will-
kiirlich ausgewdhlte Eigenfunktionen zu einem entarteten Energieniveau sind
im allgemeinen nicht orthogonal zueinander. Durch geeignete Zusammen-
stellung von Linearkombinationen kann man jedoch immer einen Satz zu-
einander orthogonaler (und normierter) Eigenfunktionen erhalten.

Das Eigenwertspektrum der Energie kann sowohl diskret als auch konti-
nuierlich sein. Ein stationdrer Zustand des diskreten Spektrums gehort immer
zu einer endlichen (oder finiten) Bewegung, d. h. zu einer Bewegung, bei der
das System oder ein beliebiger Teil desselben immer im Endlichen bleibt. Fiir
die Eigenfunktionen des diskreten Spektrums ist in der Tat das iiber den
ganzen Raum erstreckte Integral f |¥|2 dg endlich. Das bedeutet auf jeden
Fall, daBl das Quadrat |¥|? geniigend schnell abnimmt und im Unendlichen
verschwindet. Die Wahrscheinlichkeit fiir unendliche Koordinatenwerte ist,
mit anderen Worten, gleich Null, d. h., das System fiihrt eine im Endlichen
verlaufende Bewegung aus, oder es befindet sich, wie man sagt, in einem
gebundenen Zustand.

Fir die Wellenfunktionen des kontinuierlichen Spektrums divergiert das
Integral f|¥|2dq. Das Quadrat der Wellenfunktion |¥|2 gibt hier nicht un-
mittelbar die Wahrscheinlichkeiten fiir die verschiedenen Koordinatenwerte an,
es ist vielmehr nur eine zu dieser Wahrscheinlichkeit proportionale Gréfle. Die
Divergenz des Integrals y |¥|2dg hingt immer damit zusammen, daf |¥|2
im Unendlichen nicht verschwindet (oder nicht schnell genug verschwindet).
Man kann daher behaupten, daBl das Integral f|¥|2 dg auch dann divergiert,
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wenn es iiber ein Raumgebiet erstreckt wird, das auflerhalb einer beliebig
groBen, aber endlichen geschlossenen Fliche liegt. Das System (oder irgendein
Teil desselben) befindet sich demzufolge in diesem Zustand im Unendlichen.
Die stationdren Zustédnde des kontinuierlichen Spektrumsentsprechen also einer
bis ins Unendliche verlaufenden Bewegung des Systems.

§11. Matrizen physikalischer Grdfen

Der Bequemlichkeit halber setzen wir voraus, dall das von uns betrachtete
System ein diskretes Energiespektrum hat (alle unten erhaltenen Beziehungen
konnen unmittelbar auch auf ein kontinuierliches Spektrum verallgemeinert
werden). Es sei ¥ = 3 a, ¥, die Entwicklung einer beliebigen Wellenfunktion
nach den Wellenfunktionen ¥, stationdrer Zustinde. Setzt man diese Ent-
wicklung in-die Definition (3,5) fiir den Mittelwert der GroBle f ein, dann erhilt
man

f=2% X afanfam(t) . (11,1)

Darin bedeuten die f,m(t) die Integrale
fom =S PF [ dg. (11,2)

Die Gesamtheit der Groflen f,,(f) mit allen moglichen n und m bezeichnet man
als die Matriz der GroBe f. Ein einzelnes f,,,(f) nennt man das Matrizelement
fiir den Ubergang aus dem Zustand m in den Zustand n.)

Fiir Matrixelemente f,, wird auch die Schreibweise

{n| flm) (11,3)

verwendet, die inshesondere dann zweckmaéBig ist, wenn jeder der Indizes in
Form einer Gesamtheit mehrerer Buchstaben geschrieben werden muf. Das
Symbol (11,3) wird manchmal angesehen als eine Bildung aus der Bezeichnung
der Grofe f und den Symbolen |m) und (7|, die Anfangs- und Endzustand
bezeichnen (Bezeichnung nach Dirac). R

Die Zeitabhéngigkeit der Matrixelemente wird (wenn der Operator f die Zeit
nicht explizit enthilt) von der Zeitabhingigkeit der Funktionen ¥, bestimmt.
Setzen wir fiir diese Funktionen die Ausdriicke (10,1) ein, so finden wir

fan(t) = fam of Unmi (11,4)
mit

Dy m —_—-—‘—h— . (1155)

') Die Darstellung physikalischer GréBen durch Matrizen wurde (1925) von W. HEISEN-
BERG noch vor dem Auffinden der Wellengleichung durch E. SCHRODINGER eingefiihrt.
Die Matrizenmechanik wurde spiter von M. BorN, W. HEISENBERG und P. JoRDAN weiter-
entwickelt.
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Wnm ist die sogenannte Ubergangsfrequenz zwischen den Zustindenm und .
Die Gréfien

fam = vz fym dg (11,6)
bilden die der GroBe f zugeordnete zeitunabhidngige Matrix, die man iiblicher-
weise verwenden muB. .

Die Matrixelemente der Ableitung f erhédlt man durch Differentiation der
Matrixelemente der GroBe f nach der Zeit. Das ergibt sich unmittelbar daraus,
daB der Mittelwert

f.= ?= 2 Xayan fnm(t)
ist. Wegen (11,4) haben wir also fiir die Matrixelemente von f

/nm(t) =t Wnm fnm(t) (11:7)
oder (wenn wir auf beiden Seiten den Zeitfaktor e kiirzen) fiir die zeit-
unabhingigen Matrixelemente

(am = i Onm fam = o (Bn — En) fam - (11,8)

Um die Bezeichnungen in den Formeln zu vereinfachen, leiten wir im fol-
genden alle Beziehungen fiir die zeitunabhingigen Matrixelemente her. Genau
dieselben Beziehungen gelten auch fiir die zeitabhdngigen Matrizen.

Fiir die Matrixelemente der zu f konjugiert komplexen Grofle f* erhalten
wir unter Beriicksichtigung der Definition des adjungierten Operators

(}*)nm =fw: f+¢m dg =IV’:?*WM dg =/ Ym f* 1/’: dg,

(f*)nm — (fmn)* . (11,9)
Wir haben folglich fiir reelle physikalische Gro8en, mit denen wir uns normaler-
weise nur beschéftigen,

famw = fma (11,10)
(fmn steht anstelle von (fm)*). Diese Matrizen heiBen wie die zugehérigen
Operatoren hermsitesch.

Die Matrixelemente mit # = m nennt man die Diagonalelemente. Diese Ele-
mente hingen tiberhaupt nicht von der Zeit ab, und aus (11,10) erkennt man,
dafl sie reell sind. Das Element f,, ist der Mittelwert der GroBle f in dem
Zustand yp,,.

Man kann leicht die Multiplikationsregel fiir Matrizen finden. Dazu schreiben
wir zunéchst die Formel

.f7/)7l == 2 fmﬂ Ym (11’11)
m

d.h.

auf. Diese Formel ist nichts anderes als die Entwicklung der Funktion ; Ya
nach den Funktionen y,, mit den nach der allgemeinen Regel (3,14) bestimmten
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Koeffizienten. Unter Beachtung dieser Formel schreiben wir fiir das Ergebnis
der Anwendung eines Produktes zweier Operatoren auf die Funktion yp,

/ﬁwn=f%'gmw = %‘gknflﬂk =k29knfmkwm .
, m

Da andererseits
fa"/’ﬂ =2 (9 mnym

sein muf}, kommen wir zu dem Ergebnis, daf die Matrixelemente des Produktes
/g durch die Formel

(f mn = { fmr Gn - (11,12)

gegeben werden. Diese Regel stimmt mit der in der Mathematik iiblichen
Multiplikationsregel fiir Matrizen iiberein: Die Zeilen der ersten werden mit
den Spalten der zweiten im Produkt stehenden Matrix multipliziert.

Die Kenntnis einer Matrix ist &quivalent zur Kenntnis des Operators selbst.
Insbesondere kann man aus der Kenntnis der Matrix prinzipiell die Eigenwerte
der gegebenen physikalischen Grofie und die zugehérigen Eigenfunktionen be-
stimmen. . '

Wir wollen die Werte aller Grofen in einem bestimmten Zeitpunkt betrachten
und entwickeln eine beliebige Wellenfunktion ¥ (in diesem Zeitpunkt) nach
den Eigenfunktionen des HaAMILTON-Operators, d. h. nach den zeitunabhéngigen
Wellenfunktionen y,, von stationdren Zustdnden:

¥ = 5 tnpa- (11,13)

Die Entwicklungskoeffizienten haben wir mit ¢,, bezeichnet. Wir setzen diese

Entwicklung in die Gleichung f!{’ = [ ¥ zur Bestimmung der Eigenwerte und
der Eigenfunktionen der Grofle f ein und finden

Ecm(fw"l) =/ZcmTPm .
m m

Diese Gleichung multiplizieren wir von beiden Seiten .mit ¥ und integrieren
sie iiber dg. Die Integrale [y} ?w,,, dg auf der linken Seite sind die entspre-
chenden Matrixelemente f,,,. Auf der rechten Seite verschwinden alle Integrale
S X ymdg mit m 5= n wegen der Orthogonalitit der Funktionen yn., aber es
ist f9¥y,dg = 1 wegen der Normierung. Daher gilt

Zlnmcm=fcn =

oder
2 (fam — fOnm)emn = 0. (11,14)
m v
Wir haben also ein homogenes algebraisches Gleichungssystem ersten Grades
erhalten (mit den Unbekanntenc,). Bekanntlich hat ein solches System nur
dann nicht-triviale Losungen, wenn die Koeffizientendeterminante verschwin-
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det, d. h. unter der Bedingung
lfam — /(Snml =0.

Die Wurzeln dieser Gleichung (in der f als Unbekannte angesehen wird) sind
die moglichen Werte der Grofie f. Die Gesamtheit der GroSlen ¢, die den
Gleichungen (11,14) mit irgendeinem dieser Werte fiir f geniigen, bestimmt die
zugehorige Eigenfunktion.

Wenn wir in der Definition (11,6) fiir die Matrixelemente der GroBe f als
yn die Eigenfunktionen eben dieser Grofle nehmen, dann haben wir nach der

Gleichung f Yn = [a¥n

fam =S 9% [ Ym g = fu S Y2 Ymdq -

Da die Funktionen y,, orthonormiert sind, ergibt sich f,,, = 0 fiir n % m und
fam = fme

Es sind also nur die Diagonalelemente der Matrix von Null verschieden.
Jedes Diagonalelement ist gleich dem zugehérigen Eigenwert der Grofle f.
Von einer Matrix, bei der nur die Diagonalelemente von Null verschieden sind,
sagt man, man habe sie in die Diagonalform gebracht, sie diagonalisiert. Ins-
besondere ist in der iiblichen Darstellung mit den Wellenfunktionen stationérer
Zusténde als Funktionen y, die Matrix der Energie diagonal (und auch die
Matrizen aller anderen physikalischen Grofien, die in stationdren Zustédnden
bestimmte Werte haben). Von der mit Hilfe der Eigenfunktionen eines Opera-
tors g bestimmten Matrix einer GréBe f sagt man, sie sei die Matrix von f in
der Darstellung, in der g diagonal ist. Uberall, wo nichts anderes vereinbart
ist, wollen wir im folgenden unter der Matrix einer physikalischen Groéfe die
Matrix in der iiblichen Darstellung verstehen, in der die Energie diagonal ist.
Alles, was oben iiber die Zeitabhéngigkeit von Matrizen gesagt worden ist,
bezieht sich selbstverstédndlich nur auf diese iibliche Darstellung.l)

§12. Der Impuls

Wir betrachten ein abgeschlossenes System von Teilchen. Da alle Positionen
dieses Systems im Raum (bei festen Relativkoordinaten der Teilchen) &dqui-
valent sind, kann man insbesondere behaupten, dal sich der HamriLToN-Ope-
rator des Systems bei einer Parallelverschiebung des Gesamtsystems um eine
beliebige Strecke nicht d&ndert. Es geniigt, diese Bedingung fiir eine beliebige
infinitestmale Verschiebung zu fordern, sie wird dann auch fiir jede endliche
Verschiebung erfiillt.

Eine infinitesimale Parallelverschiebung um die Strecke 6» ist eine Trans-
formation, bei der die Ortsvektoren r, aller Teilchen (a ist die Nummer eines

1) Wenn man daran denkt, daB die Matrix fiir die Energie diagonal ist, dann kann
man sich leicht davon iiberzeugen, daB Gleichung (11,8) die in Matrixform geschriebene
Operatorbeziehung (9,2) ist.
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Teilchens) dieselbe Verdnderungdr erfahren: r, -1, + 0r. Eine beliebige
Funktion y(r;, 1, . ..) der Koordinaten der Teilchen geht bei dieser Trans-
formation iiber in die Funktion

Py + O,y 01, ) = Pl Ty )+ O 5 Vay
= (1 + or Zva)w(rlr Ty .. .)

(V, bedeutet den ,,Vektor mit den Operatoren 9/0%,, 3/0y, und 9/0z, als Kom-
ponenten). Den Ausdruck

1+6r XV, (12,1

kann man als den Operator der infinitesimalen Transformation ansehen, die
die Funktion (1, 75,...) in die Funktion v (r; 4+ ér,7r, + o, ...) iiber-

fithrt.
Die Behauptung, daB eine Transformation den HamirLTON-Operator nicht

éndert, bedeutet: Wenn man die Funktion H y dieser Transformation unter-
wirft, erhdlt man dasselbe Ergebnis, wie wenn man nur die Funktiony trans-
formiert und dann darauf den HamMmrTon-Operator ﬁ anwendet. Mathematisch
kann das in folgender Weise geschrieben werden. O sei der Operator der die
betrachtete Transformation ,,ausfiihrt. Dann haben wir O(H Y) = H(O ()
und daraus
OH—HO=0, (12,2)
d. h., der HaMiLTON-Operator mu8 mit dem Operator O vertauschbar sein.
In dem vorliegenden Fall ist der Operator 0 der Operator der infinitesi-
malen Verschiebung (12,1). Der Einheitsoperator (der Operator der Multi-
plikation mit 1) kommutiert natiirlich mit jedem beliebigen Operator. Der

konstante Faktor-dr kann vor den Operator H gezogen werden. Die Bedingung
(12,2) fithrt also hier zu der Bedingung

(ZV,,)H—H(ZVE)=O. (12,3)
a a

Wie wir wissen, bedeutet die Vertauschbarkeit eines Operators (der die Zeit
nicht explizit enthélt) mit H , daB} die zu dem Operator gehérige physikalische
Grofe erhalten bleibt. Die Grofle, deren Erhaltung fiir ein abgeschlossenes
System aus der Homogenitédtseigenschaft des Raumes folgt, ist der Impuls
des Systems (vgl. I § 7).

Die Beziehung (12,3) stellt also den Impulserhaltungssatz in der Quanten-
mechanik dar. Der Operator }; V, muB} also bis auf einen konstanten Faktor

a
dem Gesamtimpuls des Systems entsprechen. Jedes einzelne Glied V, der Summe
entspricht dem Impuls eines einzelnen Teilchens.
Der Proportionalitatskoeffizient zwischen dem Operator p fiir den Impuls
eines Teilchens und dem Operator V kann mit Hilfe des Grenziiberganges zur
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klassischen Mechanik bestimmt werden. Wir schreiben p = ¢V, benutzen den
Ausdruck (6,1) fiir die Wellenfunktion im klassischen Grenzfall und haben

1

A D o) i

pY¥Y = peae VS:cTY’VS,
d. h, in der klassischen Niherung bedeutet die Anwendung des Operators p
die Multiplikation mit %; ¢V 8. Der Gradient V S ist der Impuls p eines Teil-

chens (siehe I § 31). Deshalb mul ¢ = — 7 i sein.
Der Operator fiir den Impuls eines Teilchens ist also p = — i & V oder in
Komponenten
~ ., 0 ~ ., 0 ~ ., 0
p,:—zha—x, py=—zﬁa§, pz=—zh5;. (12,4)

Man kann sich leicht davon iiberzeugen, dal diese Operatoren, wie es sein
mul, hermitesch sind. Tatsédchlich haben wir fiir beliebige, im Unendlichen ver-
schwindende Funktionen %(x) und ¢(x)

~ 0 0 ~
f‘PP:wdx:—ihjqa%dx=ihf1p£dx=fy)p;"¢pdx;

das ist die Hermitezitdtsbedingung fiir einen Operator.

Da die Ableitung von Funktionen nach zwei verschiedenen Variablen nicht
von der Reihenfolge der Differentiation abhingt, ist es klar, daB die Operatoren
fiir die drei Impulskomponenten miteinander kommutieren:

271271/ _;’ui’x =0, i’zgx _ﬁzf’x =0, ﬁyﬁz _/Z\’le\’y = 0. (12,5)
Alle drei Impulskomponenten eines Teilchens kénnen demnach gleichzeitig be-
stimmte Werte haben.

Wir bestimmen die Eigenfunktionen und die Eigenwerte der Impulsopera-
toren. Sie werden aus der Vektorgleichung

—ihVp=py (12,6)

gefunden. Ihre Loésungen sind

1
r

=P
py=0Ce" (12,7
(Cist eine Konstante). Die gleichzeitige Vorgabe aller drei Impulskomponenten
bestimmt, wie wir sehen, die Wellenfunktion eines Teilchens vollstindig. Die
GroéBen p,, p, und p, stellen mit anderen Worten einen der méglichen voll-
stindigen Sdtze physikalischer Groflen dar. Ihre Eigenwerte bilden ein kon-
tinuierliches Spektrum, das sich von —oo bis 4o erstreckt.
Nach der Normierungsregel (5,4) fiir die Eigenfunktionen eines kontinuier-
lichen Spektrums muf}

Sypyp AV =6(p' — p) (12,8)

4 ZEKurzfassung IT
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v
sein, wobei die Integration iiber den ganzen Raum erstreckt wird (dV
= dzdydz). §(p’ — p) ist die dreidimensionale §-Funktion.?)

Die Integration erfolgt mit Hilfe der Formel?)

[ee]

2—1; ef*rde = §(a) . (12,9)

Wir haben

" '7 -pr 2
Sy dV =0C%fe dV = C*2x k)2 d(p’ — p) .

Daraus entnimmt man, daB C%2 = )3 = 1 sein muB. Die normierten Funk-
tionen vy, sind also gleich

i
1 P

2= @anpe e’ (12,10)

Die Entwicklung einer beliebigen Wellenfunktion eines Teilchens %(#) nach
den Eigenfunktionen y, des zugehorigen Impulsoperators ist nichts anderes als
die Darstellung durch ein Fourier-Integral:

1 i‘"’
p(r) =fa(P) yp(r) d®p sza(p) e’ d%p, (12,11)
d3p = dp, dp, dp. .
Die Entwicklungskoeffizienten a(p) sind nach der Formel (5,2) gleich

a(p) = fw(r)wz(r) av = ?,:T)gﬁfw(r) T ar. (212

Die Funktion a(p) kann man (siehe § 5) als die Wellenfunktion des Teil-
chens in der Impulsdarstellung auffassen; |a(p)|? d3p ist die Wahrscheinlichkeit
dafiir, daB die Werte fiir den Impuls in dem Intervall d®p liegen. Die Formeln
(12,11—12) geben den Zusammenhang zwischen den Wellenfunktionen in den
beiden Darstellungen an.

1) Es sei daran erinnert, daB die §-Funktion mit einem Vektor als Argument als das
Produkt von é-Funktionen beziiglich jeder seiner Komponenten definiert ist.

2) Diese Gleichung stellt in dem Sinne eine Gleichheit ihrer beiden Seiten dar, daB das
auf der linken Seite stehende Integral alle Eigenschaften einer J-Funktion besitzt. Fiir
o = 0 divergiert das Integral, wihrend es fiir & 5= O als Integral iiber eine periodische, das
Vorzeichen wechselnde Funktion Null wird. Integriert man dieses Integral nochmals
iber da in einem gewissen Bereich —L bis 4L (der Punkt o = O ist einbegriffen), so
erhélt man

oo

(e 9] L ©o
1 . 1 sin L x 1 sin &
— t =— = — == 3
5 fdz [e‘”’da B f ~ dx - F df =1
— 00 —-L — 00 — o0
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§13. Die Unschirferelationen

Wir wollen die Vertauschungsregeln der Operatoren fiir den Impuls und die
Koordinaten herleiten. Das Ergebnis der nacheinander ausgefiihrten Differen-
tiation nach einer der Variablen z, y oder z und der Multiplikation mit einer
anderen Variablen hdngt nicht von der Reihenfolge dieser Operationen ab,
daher gilt

f’xy—y%z:()’ Pez—2P,=0 (13,1)
und analog fiir P, und ..

Zur Ableitung der Vertauschungsregel von P, mit z schreiben wir

R ~ e 0 . oy .
(prx—2p)yp = _1ha(xW)+lhx;x= —1hy.

Die Anwendung des Operators p, * — z P, bedeutet demzufolge die Multipli-
kation einer Funktion mit —¢ . Dasselbe gilt natiirlich auch fiir den Kommu-
tator von P, und y sowie p, und z. Wir haben also!)

f’zx—xﬁz=_ih, %1/?/“3!@/:—%71,
ﬁzz—zﬁz=——ih.

(13,2)

Die Beziehungen (13,1—2) zeigen, daB eine Komponente des Ortsvektors
eines Teilchens und die beiden dazu senkrechten Impulskomponenten gleich-
zeitig bestimmte Werte haben kénnen. Die Komponente des Ortsvektors und
die Impulskomponenten beziiglich ein- und derselben Koordinatenachse existie-
ren nicht gleichzeitig. Insbesondere kann sich ein Teilchen nicht in einem be-
stimmten Raumpunkt befinden und gleichzeitig einen bestimmten Impuls p
haben.

Wir wollen jetzt voraussetzen, dal} sich ein Teilchen in einem gewissen end-
lichen Raumgebiet befindet, dessen Abmessungen lings der drei Koordinaten-
achsen von der GréBenordnung Az, Ay und Az sind. Ferner sei p, der Mittel-
wert des Impulses des Teilchens. Mathematisch bedeutet das, dal die Wellen-
funktion die Gestalt p = w(r) e’ ™® hat; dabei ist u(r) eine Funktion, die
nur in dem angegebenen Raumgebiet merklich von Null verschieden ist.

Wir entwickeln die Funktiony nach den Eigenfunktionen des Impuls-
operators (d. h., wir stellen sie als FOURIER-Integral dar). Die entsprechenden
Entwicklungskoeffizienten a(p) werden durch die Integrale (12,12) iiber Funk-
tionen der Gestalt (r) e!®—P) 7/t gegeben. Damit einsolches Integral merklich
von Null verschieden ist, diirfen die Perioden des oszillierendenFaktors ef s —P) 7i%
im Vergleich zu den Abmessungen Az, Ay und Az des Gebietes, in dem die
Funktion %(r) von Null verschieden ist, nicht klein sein. a(p) wird also nur
fir p-Werte mit (po, — p;) 42/ < 1, ... merklich von Null verschieden sein.
|a(p)|? gibt die Wahrscheinlichkeit fiir die verschiedenen Impulswerte an.
Deshalb sind die Wertebereiche von p,, p, und p,, in denen a(p) von Null

1) Diese 1925 von W. HEISENBERG in Matrixform gefundenen Beziehungen dienten als
Ausgangspunkt fiir die Schaffung der heutigen Quantenmechanik.

4*
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verschieden ist, gerade die Wertebereiche, in denen die Impulskomponenten
des Teilchens in dem betrachteten Zustand liegen kénnen. Wir bezeichnen diese
Intervalle mit Ap,, Ap, und A4p, und haben

Adp, dx ~ |, Apy Ay ~ 1, Ap, Az ~ ki . (13,3)

Diese Beziehungen (die sogenannten Unschirferelationen) sind von HEISEN-
BERG (1927) gefunden worden.

Wir sehen, je genauer eine Komponente des Ortsvektors eines Teilchens be-
kannt ist (d. h., je kleiner Az ist), desto groBer ist die Unschéirfe Ap, des Wertes
fiir die Impulskomponente in derselben Richtung und umgekehrt. Wenn sich
insbesondere ein Teilchen in einem streng bestimmten Raumpunkt befindet
(dx = Ay = Az = 0), dann sind Ap, = Ap, = Ap, = co. Das heilt, daB alle
Impulswerte dabei gleich wahrscheinlich sind. Wenn umgekehrt ein Teilchen
einen scharf bestimmten Impuls p hat, dann sind alle Lagen im Raum gleich
wahrscheinlich (das ist auch unmittelbar aus der Wellenfunktion (12,7) zu
erkennen, deren Betragsquadrat iiberhaupt nicht von den Koordinaten ab-
héngt).

§ 14. Der Drehimpuls

In § 12 haben wir bei der Herleitung des Impulserhaltungssatzes die Homo-
genitit des Raumes in bezug auf ein abgeschlossenes System von Teilchen
ausgenutzt. Der Raum ist aber nicht nur homogen, sondern auch isotrop,
alle Raumrichtungen sind gleichwertig. Der HamiLToN-Operator fiir ein ab-
geschlossenes System darf sich daher bei einer Drehung des ganzen Systems
um einen Leliebigen Winkel und um eine beliebige Achse nicht &@ndern. Es
geniigt zu fordern, daB diese Bedingung fiir eine beliebige infinitesimale Drehung
erfiillt ist.

Es sei d¢ der infinitesimale Drehvektor; sein Betrag ist gleich dem Dreh-
winkel dp, und seine Richtung gibt die Richtung der Drehachse an. Die An-
derungen dr, (der Ortsvektoren der Teilchen #,) sind bei einer solchen Drehung
bekanntlich gleich

or, = [0g - 1,]

(sieche I § 9). Eine beliebige Funktion y(ry, 1y, . . .) geht bei dieser Transfor-
mation in die Funktion '

yir + Oy, Ty +0ry .. ) =y, 1y . 2) + 2 ora Voy

= (1 + 6¢ aZ‘ [ra Va]) Py, 1y, .. )

iiber. Den Ausdruck

1+ ép X [r, V] : (14,1)
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kann man als den ,,Operator einer infinitesimalen Drehung‘‘ ansehen. Eine in-
finitesimale Drehung ld8t den HamiLToN-Operator eines Systems unverédndert,

deswegen ist der Drehoperator mit dem Operator H vertauschbar. Da dgp ein
konstanter Vektor ist, folgt aus dieser Bedingung die Beziehung

EaVa\H —H (X [r.V,])=0, (14,2)
(£ tra Val) (£ traVa))

die einen gewissen Erhaltungssatz zum Ausdruck bringt.

Die Gro6fle, deren Erhaltung fiir ein abgeschlossenes System aus der Isotropie
des Raumes folgt, ist der Drehimpuls des Systems (vergleiche I § 9). Der
Operator X [r,V,] muB also bis auf einen konstanten Faktor dem Gesamt-
drehimpuls des Systems entsprechen, jedes Glied in der Summe [r, V,] gehort
zu dem Drehimpuls eines einzelnen Teilchens.

Der Proportionalitdtsfaktor mufl gleich — 7 & gesetzt werden. Das wird un-
mittelbar dadurch bestédtigt, daB dann der Ausdruck fiir den Drehimpuls-
operator eines Teilchen — ¢ /i [ V] = [r p] genau dem iiblichen klassischen
Ausdruck [r p] entspricht. Wir werden fernerhin immer den in Einheiten von
k gemessenen Drehimpuls verwenden. Den so definierten Drehimpulsoperator

~
fiir ein einzelnes Teilchen werden wir mit I und den Drehimpuls eines ganzen

Systems mit L bezeichnen. Auf diese Weise lautet der Drehimpulsoperator
eines Teilchens

hl=[rpl= —ik[rV]
oder in Komponenten

hix =yp—zPy, hiy =20 —2% P, hl,;:xﬁv_y?’zw (14,3)

Fiir ein System in einem dufleren Feld gilt im allgemeinen kein Erhaltungssatz

fir den Drehimpuls. Bei einer bestimmten Symmetrie des Feldes kann der
Drehimpuls jedoch trotzdem erhalten bleiben. Befindet sich das System in
einem kugelsymmetrischen Feld, dann sind alle von dem Symmetriezentrum
ausgehenden Raumrichtungen dquivalent. Deshalb bleibt der Drehimpuls be-
ziiglich dieses Zentrums erhalten. Analog bleibt in einem axialsymmetrischen
Feld die Komponente des Drehimpulses in Richtung der Symmetrieachse er-
halten. Alle diese Erhaltungssdtze, die in der klassischen Mechanik gelten,
sind auch in der Quantenmechanik giiltig.

Wir wollen jetzt die Vertauschungsregeln zwischen Drehimpulsoperatoren
und den Orts- und Impulsoperatoren aufstellen. So ist z. B.

(=

~

> ~ 1 = A~
Ly—yb= 3 @P.—2P)y — 3y yp:.— 2Py

1 ~ ~ 5
=—5 2Dy —Yyp)=12.

Auf die gleiche Weise finden wir weitere Vertauschungsregeln:

Lhe—alh=0, Ly—yl=iz, Lz—zl=—iy. (14,4)
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Zwei restliche je drei solche Gleichungen enthaltende Sitze erhalten wir durch
zyklische Vertauschungen der Koordinaten (und Indizes) z, y, .

Man iiberzeugt sich leicht, dal ebensolche Vertauschungsregeln auch fiir die
Drehimpuls- und Impulsoperatoren gelten:

izf’x—f’ziz=0: i;f’u_f’ulx:i%zr
12232 _i)zlz = —ii)!,-
Mit Hilfe dieser Formeln kann man leicht die Vertauschungsregeln fiir die

Operatoren iz, lA, und iz finden. Wir haben

fi (iz L, —1 Z,,) = ia: (2 Pz — zP) — (Zf’z - xﬁz)iz

=lbz—2b)p—2ULp.—plL)= —typ +izp, =1kl.
Es ist also

Wl — Ly =ily, Ll—ld,=1il,, lLl—LL=:i. (146
Genau dieselben Beziehungen gelten auch fiir die Operatoren i,, 13,, und iz
des Gesamtdrehimpulses. Da die Drehimpulsoperatoren fiir verschiedene Teil-
chen miteinander vertauschbar sind, ist zum Beispiel

Doy Xla: — Xla: Nlay=25 (layla: — lazlay) =7 YN laz -

a

(14,5)

Somit gilt
L,L,=iL,, L,L,—IL,L,=:L,, L L,—L,L,=iL,.
(14,7)
Die Beziehungen (14,7) besagen, dal die drei Komponenten des Drehimpulses
nicht gleichzeitig bestimmte Werte haben kénnen (eine Ausnahme ist nur der
Fall, daB alle drei Komponenten gleichzeitig gleich Null sind, s. u.). Der Dreh-
impuls unterscheidet sich in dieser Hinsicht wesentlich vom Impuls, dessen drei
Komponenten gleichzeitig bestimmte Werte haben kénnen.
Wir bilden aus den Operatoren I:,, z,, und iz den Operator fiir das Quadrat
des Betrages des Drehimpulsvektors:

™~
<
&~
|
&
&~

L=0D2+L3+ 1. (14,8)
Dieser Operator ist mit allen Operatoren E,, II;,, und LAz vertauschbar:

2L, —L,i2=0, L[2L,—L,1*=0,

2L, —L,12=o0. (14,9)

Unter Verwendung von (14,7) haben wir tatsdchlich zum Beispiel
-i: -iz - z.z ii = i:c (-ia: ia d iz Ez)

+(£ziz_iz-£x) Az=_74(iziu+ Ay-iz)»
L L, —L L =i, L,+ L, L),

1L, —L,I2=0.
Durch Addition dieser Gleichungen erhalten wir die letzte der Beziehungen (14,9).
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Die Beziehungen (14,9) bedeuten physikalisch, daBl das Quadrat des Dreh-
impulses (d. h. sein absoluter Betrag) gleichzeitig mit einer seiner Komponenten
einen bestimmten Wert haben kann. . .

Es ist haufig bequemer, statt der Operatoren L, und L, die komplexen Kom-
binationen

L,=L,+:L,, IL.=L,—:L, (14,10)
zu verwenden. Durch direkte Rechnung kann man sich mit Hilfe von (14,7)

leicht davon iiberzeugen, daf} fiir diese Kombinationen die folgenden Ver-
tauschungsregeln gelten:

~

L L —L L, =2L,,

e A " & & A o ~ (14,11)
L.L,—L,L,=1L,, L,L_—L_L,=—L_

Unschwer kann man auch die Beziehung
2=L_L,+I?+ L, (14,12)

verifizieren.

Wir schreiben schlieSlich noch die hidufig verwendeten Ausdriicke fiir den
Drehimpulsoperator eines einzelnen Teilchens in Kugelkoordinaten auf. Wir
fithren die Kugelkoordinaten durch die iiblichen Beziehungen

z=rsinfcosg, y=rsinfsing, z=rcosl

ein und erhalten nach einer einfachen Rechnung die folgenden Ausdriicke:

= )
L=—ig, 43)
I, =etio(4 2 4 jotg (14,14)
= EL) g a‘p q )

Diese Ausdriicke setzen wir in (14,12) ein und erhalten den Operator fiir das
Quadrat des Drehimpulses eines Teilchens in der Form

~ 1 1 0 ] '

T (NS i N T MR (P,

U [sinzo op? i3 sin 6 96 (sm 0 69)] i (14,15)
Wir weisen darauf hin, daB dies bis auf einen Faktor der Winkelanteil des
LarLace-Operators ist.

§ 15. Die Eigenwerte des Drehimpulses

Zur Bestimmung der Eigenwerte der Projektion des Drehimpulses eines Teil-
chens auf eine bestimmte Richtung verwendet man zweckméBig den Ausdruck
fiir den Drehimpulsoperator in Kugelkoordinaten; die betrachtete Richtung
wihlt man als Polarachse. Nach der Formel (14,13) kann man die Gleichung

~

l,v =1,y in der Form

a
— i Ly (15,1)
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schreiben. Ihre Losung ist
v = f(r, 0) e'=?,

wobei f(r, 0) eine beliebige Funktion von r und 0 ist. Damit die Funktion y
eine eindeutige Funktion ist, muB sie in ¢ mit der Periode 2 7 periodisch sein;
daraus finden wirl)

L=m, m=0,+1,+2,... (15,2)

Die Eigenwerte I/, sind also die positiven und die negativen ganzen Zahlen
einschlieflich des Wertes Null. Den von ¢ abhidngigen Faktor, der fiir die

Eigenfunktionen des Opera.torsi, charakteristisch ist, bezeichnen wir mit

d)m((P) =

1 .
— '™, 15,3
Vo © (15,3)

Diese Funktionen sind folgendermafen normiert :
2
Of ¢1’:(‘P) ¢m'((p) d(P = 6m m - (15:4)

Die Eigenwerte der z-Komponente des Gesamtdrehimpulses eines Systems
sind offenbar auch die positiven und die negativen ganzen Zahlen:

L.=M, M=041,42,... (15,5)

(dasist richtig, weil der Operator L, die Summe der miteinander vertauschbaren

Operatoren i, fiir die einzelnen Teilchen ist).

Die z-Achse ist von vornherein durch nichts ausgezeichnet. Daher ist es
klar, dal man dasselbe Ergebnis fiir Lz, L,, und iiberhaupt fiir die Komponente
des Drehimpulses in einer beliebigen Richtung erhélt. Alle diese Komponenten
konnen nur ganzzahlige Werte annehmen. Dieses Ergebnis kann auf den ersten
Blick paradox erscheinen, besonders wenn man es auf zwei infinitesimal be-
nachbarte Richtungen anwendet. Man muf} hier ]edoch daran denken, dall die
einzige gemeinsame Eigenfunktion der Operatoren L,, L und L zu dem
gleichzeitigen Wert

By = Ly= Es=0

gehort. In diesem Fall ist der Drehimpulsvektor, und damit auch dessen Pro-
jektion auf eine beliebige Richtung, gleich Null. Ist dagegen einer der Eigen-
werte L;, L, oder L, von Null verschleden dann gibt es keine gemeinsamen
Eigenfunktionen der Operatoren Lx, L und L Es existiert, mit anderen
Worten, kein Zustand, in dem zwei oder drei Komponenten des Drehimpulses
in verschiedenen Richtungen gleichzeitig bestimmte (von Null verschiedene)

1) Die allgemein iibliche Bezeichnung fiir die Eigenwerte der Drehimpulsprojektion mit
dem Buchstaben m — demselben wie fiir die Teilchenmasse — kann offensichtlich zu
keinen MiBverstiandnissen fithren.
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Werte haben, so dal wir nur davon sprechen kénnen, daBl eine Komponente
ganzzahlige Werte annimmt.

Stationdre Zusténde eines Systems, die sich nur durch verschiedene Werte
von M unterscheiden, haben dieselbe Energie. Das folgt bereits aus den all-
gemeinen Uberlegungen, daB die Richtung der z-Achse von vornherein durch
nichts ausgezeichnet ist. Die Energieniveaus eines Systems mit einem (von
Null verschiedenen) Drehimpuls, fiir den ein Erhaltungssatz gilt, sind also auf
jeden Fall entartet.!)

Wir kommen jetzt zur Bestimmung der Eigenwerte des Drehimpulsquadrates
und zeigen, wie man diese Werte finden kann, indem man lediglich von den
Vertauschungsregeln (14,7) ausgeht. Mit y, bezeichnen wir die Wellenfunk-
tionen der stationdren Zustdnde mit gleichen Werten bzgl. des Quadrats L?,
die zu einem entarteten Energieniveau gehoren.

Zunichst bemerken wir, daf es fiir jeden méglichen positiven Wert M = + | M|
einen ebenso groBen negativen M = — |M| gibt, da beide Richtungen der
z-Achse physikalisch dquivalent sind. Wir bezeichnen mit L (positiv ganz-
zahlig) den gréBtmoglichen Wert | M.

Wenden wir den Operator i, L + auf die Eigenfunktion g, des Operators ﬁz
an, und benutzen wir die Vertauschungsregel (14,11), so erhalten wir

izLAi#’M = ii f/z'PM + -Z;{;'I’M= M £ i-_t'pM .
Die Funktion Zi Yy ist demnach (bis auf einen Normierungsfaktor) die Eigen-
funktion der GréBe L, zu dem Wert M + 1, und wir kénnen schreiben
Y41 = const i+ Yy, wum-; = const - L_ Yy - (15,6)
Setzt man in der ersten Gleichung von (15,6) M = L, dann muf} identisch
L,y,=0 (15,7)

gelten, weil es nach der Definition keine Zustinde mit M > L gibt. Auf diese
Gleichung wenden wir den Operator L_ an und benutzen die Beziehung (14,12);
es ergibt sich
L Liy,=(U2—L;—L)yp,=0.
Da aber die p,, gemeinsame Eigenfunktionen der Operatoren L? und L, sind,
gilt R 4 .
L2y, = Ly, Ly, = L*yp, L.y, = Lys,
so daB die erhaltene Gleichung
L2=L(L+1) (15.8)
ergibt.
1) Dieser Sachverhalt ist ein Spezialfall des in § 10 angegebenen allgemeinen Satzes
iber die Entartung der Niveaus beim Vorhandensein von mindestens zwei Erhaltungs-

groBen mit nichtvertauschbaren Operatoren. Hier sind diese GroBen die Drehimpuls-
Komponenten.
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Diese Formel gibt die gesuchten Eigenwerte des Betragsquadrates des Dreh-
impulses an. Die Zahl L durchlduft alle positiven ganzzahligen Werte ein-
schlieflich des Wertes Null. Fiir einen gegebenen Wert der Zahl L kann die
Komponente L, = M des Drehimpulses die Werte

M=L, L-1...,—1L (15,9)

annehmen, d. h. insgesamt 2 L 4 1 verschiedene Werte. Das Energieniveau
mit dem Drehimpuls L ist also (2 L + 1)-fach entartet. Von dieser Entartung
spricht man gewdhnlich als von einer Richtungsentartung des Drehimpulses.
Der Zustand mit verschwindendem Drehimpuls L = 0 (hierbei sind auch alle
seine drei Komponenten Null) ist nicht entartet. Wir bemerken, daBl die
Wellenfunktion eines solchen Zustandes kugelsymmetrisch ist; dies ist schon
daraus ersichtlich, dal bei einer beliebigen infinitesimal kleinen Drehung ihre
Anderung im gegebenen Fall Null wird.

Der Kiirze halber werden wir, wie es iiblich ist, oft vom ,,Drehimpuls L‘‘
eines Systems sprechen, wobei wir darunter das Quadrat des Drehimpulses
L (L + 1) verstehen werden; den Drehimpuls eines Teilchens werden wir mit
dem kleinen Buchstaben ! bezeichnen. Von der z-Komponente des Dreh-
impulses spricht man gewo6hnlich kurz als von der ,,Projektion des Dreh-
impulses*.

Wir wollen nun die Matrixelemente der GréBen L, L, fiir Uberginge zwischen
Zustdnden gleicher Energie und gleichen Drehimpulses L jedoch verschiedener
Werte der Projektion M des Drehimpulses berechnen.

Aus den Gleichungen (15,6) ist ersichtlich, dal die Matrix des Operators L+
nur solche von Null verschiedene Elemente besitzt, die Ubergangen M — M 4 1

entsprechen und die Matrix des Operators L_ nur solche mit M —-M — 1L
Unter Beriicksichtigung dieser Tatsache finden wir fiir die Diagonalmatrix-
elemente (fiir Ubergidnge L, M — 1 —> L, M — 1) beider Seiten der Operator-
gleichung (14,12)

LILA+1Y)= L)y, Ly)s, g1 +M2— M.

Diese Gleichung la8t sich auf Grund der aus der Hermitezitdt der Operatoren
L;, L, folgenden Relation

(L) sg-1, 0 = (L)t -1
in
L), pe-12=LL+1)—MM—-1)= (L —M+ 1) (L+ M)

umschreiben, woraus

(M| Ly |M —1)=(M — 1 L_| M)

=YZL+M)(L—-M+) (15,10)
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folgt (es wurde die Schreibweise (11,3) verwendet). Fiir die von Null verschie-
denen Matrixelemente der Grofien L, und L, selbst erhalten wir hieraus

(M) Le| M — 1y = (M — 1| L | 30
—VE+ M E—H+1),
QMY Ly | M — 1y = — (M — 1| Ly |}

=_%ﬂbum@fM+n. (15,11)

An dieser Stelle mochten wir die Nichtexistenz von Diagonalmatrixelementen
der GréBen L, und L, hervorheben. Da ein Diagonalmatrixelement den
Mittelwert einer Grofe im entsprechenden Zustand angibt, bedeutet dies, daf
in Zustdinden mit bestimmten Werten von L, die Mittelwerte f, = Z,, =0
sind. Wenn also ein bestimmter Wert der Drehimpulsprojektion beziiglich
einer beliebigen Richtung im Raum vorliegt, so heit dies, dal der Vektor L
insgesamt ebenfalls in dieser Richtung liegt.

§ 16. Die Eigenfunktionen des Drehimpulses

Durch die Vorgabe der Werte von I und m ist die Wellenfunktion eines Teil-
chens nicht vollstindig bestimmt. Das entnimmt man bereits daraus, daf die
Ausdriicke fiir die Operatoren dieser Grofien in Kugelkoordinaten nur die
Winkel 6 und ¢ enthalten. Die Eigenfunktionen kénnen danach noch einen
beliebigen, von r abhingigen Faktor enthalten. Wir werden hier nur den fiir
die Eigenfunktionen des Drehimpulses charakteristischen Winkelanteil der
Wellenfunktion behandeln. Wir bezeichnen diesen mit Y;,(6, ) und nor-
mieren ihn nach der Vorschrift

S1Y wl2do=1

(do = sin 6 df do ist das Flichenelement auf der Einheitskugel).

Die Funktionen Y;, mit verschiedenen ! oder m sind als Eigenfunktion
der Drehimpulsoperatoren zu verschiedenen Eigenwerten automatisch zuein-
ander orthogonal. Zusammen mit der Normierungsbedingung bedeutet dies

2n =
S Y Ysin0d0dep =6,y 0pp - (16,1)
00
Das direkte Verfahren zur Berechnung der gesuchten Funktionen ist die
unmittelbare Losung der Gleichung fiir die Eigenfunktionen des Operators I
in Kugelkoordinaten. Die Gleichung
By=11+1)y
lautet dann

1 o/. 0 1 02
- —(smﬁi)‘f‘sinzg %+l(l+ hy=0. (16,2)
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Diese Gleichung gestattet einen Separationsansatz fiir die Losung in der Form
Yim = Ppu(9p) O m(0) , (16,3)

wobei die @,, Funktionen (15,3) darstellen.
Wir setzen (16,3) in (16,2) ein und erhalten fiir die Funktion @), ,, die Gleichung

1
sin 6 df Tdb ) sin6

Diese Gleichung ist aus der Theorie der Kugelfunktionen gut bekannt. Fiir
positive ganzzahlige Werte I = |m| besitzt sie Losungen, die unseren For-
derungen nach Endlichkeit und Eindeutigkeit entsprechen; es besteht also
Ubereinstimmung mit den oben nach der Matrizenmechanik gewonnenen Eigen-
werten des Drehimpulses. Die entsprechenden Losungen sind die sogenannten
zugeordneten LEGENDREschen Polynome P7}*(cos 6).

Auf diese Weise ergeben sich die winkelabhédngigen Anteile der Wellenfunktion
als

d (sined@‘—"‘> I e U+ 18y =0. (16,4)

Y:m(0, ¢) = const - PP(cos 6) &i™?, (16,5)

d. h. vom mathematischen Standpunkt aus als auf eine bestimmte Weise nor-
mierte Kugelfunktionen. Wir schreiben an dieser Stelle nicht den allgemeinen
Ausdruck fiir die Normierungskonstante auf, sondern geben die exakten Aus-
driicke fiir die ersten (! = 0, 1, 2) normierten Kugelfunktionen an:

1

= s ,

3 "3l ,
Y, = l/i_” cosf, Y, =F 1/8—3:: sin - e*i?
Yoo = /-2 (Boost — 1
0= |ig, Beost0—1), (16,6)

15 ) .
Yz’ﬂ::FI/S—Tz cosfsinf-eti?

Yoo

15 ;
Yo, 42 = l/m- sin? § - e+ 277,

Fir m = 0 werden die zugeordneten LEGENDREschen Polynome einfach
LecENDREsche Polynome P;(cos ) genannt. Die entsprechenden normierten
Kugelfunktionen lauten

2 1
Yo = V“% Py(cos ) - (16,7)

Fir 1t =0 (also auch m = 0) reduziert sich die Funktion (16,7) auf eine
Konstante. Mit anderen Worten bedeutet dies, daBl die Wellenfunktionen von
Teilchenzustinden mit dem Drehimpuls I = 0 nur von r abhéngen, d. h., sie
besitzen die volle Kugelsymmetrie in Ubereinstimmung mit der in § 15 ge-
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machten allgemeinen Feststellung. Ferner bemerken wir, daf}, falls in (16,1)
eine der Kugelfunktionen Y, ist, fiir die andere gilt:

S Yimdo=0 15 0). (16,8)

§17. Die Addition von Drehimpulsen

Betrachten wir ein System, das aus zwei schwach wechselwirkenden Teilen be-
steht. Vernachlidssigen wir die Wechselwirkung ganz, dann gilt fiir jeden Teil
ein Drehimpulserhaltungssatz, und der Gesamtdrehimpuls L des ganzen Sy-
stems kann als Summe der Drehimpulse L, und L, der einzelnen Teile aufge-
faBt werden. In der folgenden Naherung sind die Erhaltungssitze fiir L, und
L, bei Beriicksichtigung der schwachen Wechselwirkung bereits nicht mehr
streng erfiillt. Die Zahlen L, und L, fiir die Betridge dieser Drehimpulse bleiben
aber noch ,,gute’* Quantenzahlen und sind zur nidherungsweisen Beschreibung
eines Zustandes des Systems geeignet.

Bei der Betrachtung solcher Systeme taucht die Frage nach dem Additions-
gesetz fiir Drehimpulse auf. Wie sind die Werte von L bei gegebenen Werten
von L, und L, beschaffen? Das Additionsgesetz fiir die Komponenten des

Drehimpulses ist unmittelbar evident: Aus L= flz + Ezz folgt
M=M +M,. (17,1)

Fiir die Operatoren der Quadrate der Drehimpulse gibt es keine so einfache
Beziehung. Um das ,,Additionsgesetz‘‘ dafiir herzuleiten, gehen wir folgender-
mafen vor.

Nehmen wir als vollstindiges System physikalischer Grofen die Grofie L2,
L}, L, und L,,!), dann wird jeder Zustand durch die Zahlenwerte L., L,,
M, und M, beschrieben. Fiir gegebene L, und L, durchlaufen die Zahlen M,
und M, (2L, + 1) bzw. (2 L, + 1) Werte, so dall es insgesamt (2 L, + 1)
X (2 L, + 1) verschiedene Zustéinde mit den gleichen Werten fiir L, und L,
gibt. Wir bezeichnen die Wellenfunktionen der Zusténde bei dieser Beschrei-
bung mit @y, 1, u, a, -

Statt der vier angegebenen GréfBen kann man auch die vier Grofen L?, L}, L?
und L, als vollstindiges System wiahlen. Dann wird jeder Zustand durch die
Zahlenwerte von L;, L,, L und M charakterisiert (die entsprechenden Wellen-
funktionen bezeichnen wir mit Yr,1,Lu)- Fir gegebene Werte von L, und L,
mull es selbstverstdndlich wie vorher (2 L, + 1) (2 L, + 1) verschiedene Zu-
stinde geben, d. h., fiir gegebene Werte von L, und L, kann das Zahlenpaar L, M
(2L, + 1) (2L, + 1) Wertepaare annehmen. Diese Werte kann man mit Hilfe
der folgenden Uberlegungen bestimmen.’

1) Und einige andere GroBen, die zusammen mit den vier angegebenen ein vollstindiges
System bilden. Diese iibrigen GroBen spielen bei den folgenden Uberlegungen keine Rolle.

Um die Ausdriicke abzukiirzen, sprechen wir von diesen GréBen iiberhaupt nicht und nennen
die vier angegebenen GroBen in diesem Sinne ein vollstindiges System.
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Addieren wir vexl‘schiedene zuldssige Werte M, und M,, so erhalten wir den
entsprechenden Wert M gemil folgender Tabelle:

M, M, M

L L, L+ L

I3 =1

Ll—l L2 } L1'+'L2_l
L —1 |

i L2—2} L+ L,—2
Ly =12 L,

Wir sehen, daBl der groBtmogliche Wert M gleich M = L, + L, ist, wobei
ihm ein einziger Zustand ¢ entspricht (ein einziges Wertepaar M,, M,). Des-
halb ist auch der gréBtmoglichste Wert # und demzufolge auch das groBt-
moglichste L in den Zusténdeny gleich L, + L,. Ferner gibt es zwei Zu-
stande ¢ mit M = L, + L, — 1. Folglich muBl es auch zwei Zustdnde p mit
diesem Wert von M geben. Der eine ist der Zustand mit L = L, 4+ L, (und
M = L — 1) und der andere offensichtlich mit L = L, + L, — 1 (und M = L).
Fiir den Wert M = L, + L, — 2 gibt es drei verschiedene Zustinde ¢p. Das
bedeutet, daB neben den Werten L = L, + L, und L = L, + L, — 1 auch
der Wert L = L, 4+ L, — 2 moglich ist.

Diese Uberlegungen kann man in genau gleicher Weise fortsetzen, solange
die Zahl der Zusténde fiir gegebenes M bei einer Verkleinerung von M um 1
sich um 1 vergréfert. Es ist leicht einzusehen, dafl dies solange geschehen
kann, bis M den Wert |L, — L,| erreicht. Bei einer weiteren Verkleinerung
von M nimmt die Zahl der Zustdnde nicht mehr zu und bleibt gleich 2 L, 4 1
(fiir L, < L,). Das bedeutet, daB |L, — L,| der kleinstmégliche Wert von L ist.

Wir gelangen also zu dem Ergebnis, dafl die Zahl L fiir gegebene Werte von
L, und L, die Werte

Pkl L3b~Lioowl=5% (17,2)

durchlaufen kann. Das sind (unter der Annahme L, < L,) insgesamt 2 L, 4 1
verschiedene Werte. Man kann leicht verifizieren, da8 sich tatséchlich (2 L, + 1)
(2 L, 4+ 1) verschiedene Werte fiir das Zahlenpaar M und L ergeben. Dabei
ist wesentlich (wenn man von den 2 L + 1 verschiedenen Werten M fiir vor-
gegebenes L absieht), dafl jedem der méglichen Werte (17,2) jeweils ein einziger
Zustand entspricht.

Dieses Ergebnis kann man anschaulich mit Hilfe des sogenannten Vektor-
modells darstellen. Fiihrt man die beiden Vektoren L, und L, mit den Lingen
L, und L, ein, dann kann man L als die ganzzahlige Linge der Vektoren L
darstellen, die man aus L, und .L, durch Vektoraddition erhélt. Den gréBten
L-Wert (L, + L,) erhdlt man bei paralleler, den kleinsten Wert (|L, — L,|) bei
antiparalleler Lage der Vektoren L, und L,.
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In den Zustinden mit bestimmten Werten fiir die Drehimpulse L, und L,
sowie fiir den Gesamtdrehimpuls L haben auch die Skalarprodukte L, L,,
L L, und L L, bestimmte Werte. Man kann diese Werte leicht bestimmen.

Zur Berechnung von L, L, schreiben wir L= il + izg wir quadrieren und
isolieren das gemischte Produkt

o f, B, — ir— B2 — i3

Die Operatoren auf der rechten -Seite ersetzen wir durch ihre Eigenwerte und
erhalten so den Eigenwert des Operators auf der linken Seite der Gleichung

1
L, Lz ) {L(L+1) — L1 (Ll + 1) - Lz (Lz + 1)} . (17,3)
Ahnlich finden wir
LL =y LI+ D +L G+ D) — L L+ 1) (17,4)

Falls '/’(1}.) », und y)(f‘] u, die Wellenfunktionen der zwei Teilsysteme sind, dann
ist die Wellenfunktion des Gesamtsystems (wiederum bei Vernachldssigung der
Wechselwirkung der Untersysteme) gleich dem Produkt der Wellenfunktionen
der beiden Teilsysteme:

L.z, 0,50, = V5 or, Y o, - | (17,5)
Diese Zustdnde besitzen definierte Werte M; und M, (neben L, und L,). Zu-
stinde mit bestimmten Werten L, M jedoch ergeben sich als Superpositionen
von Zustdnden (17,5) mit unterschiedlichen Wertepaaren M,, M, unter der
Nebenbedingung M = M, + M,. Ihre Wellenfunktionen sind Linearkombi-
nationen der Gestalt ’

YooM= 2 Cf‘,‘ﬁ:fl%{, @L, L, M, M, (17,6)
mit wohldefinierten Koeffizienten C, die von allen ihnen in Form von Indizes
zugeordneten Quantenzahlen abhingen. Diese Koeffizienten werden als Koeffi-
zienten der Vektoraddition oder als CLEBSH-GORDAN-K oeffizienten bezeichnet.

§ 18.. Auswahlregeln beziiglich des Drehimpulses

Wir sahen, daBl sowohl in der klassischen Mechanik als auch in der Quanten-
mechanik der Drehimpulserhaltungssatz aus der Isotropie des Raumes be-
ziiglich eines abgeschlossenen Systems folgt. Schon darin zeigt sich der Zu-
sammenhang des Drehimpulses mit den Symmetrieeigenschaften hinsichtlich
Drehungen. In der Quantenmechanik jedoch duBlert sich dieser Zusammenhang
besonders stark; er wird hier iiberhaupt zum Schliissel fiir das Verstdndnis des
Drehimpulses und dies um so mehr, da hier die klassische Definition des Dreh-
impulses eines Teilchens als das Produkt [* p] wegen der Unmdéglichkeit, Dreh-
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impuls- und Impulsvektor gleichzeitig zu messen, ihren unmittelbaren Sinn
verliert.

In § 16 wurde ersichtlich, dafl eine Vorgabe der Werte von I und m die
Winkelabhéngigkeit der Teilchenwellenfunktion und damit auch alle ihre Sym-
metrieeigenschaften beziiglich Drehungen festlegt. In allgemeinster Form lassen
sich diese Eigenschaften durch Angabe der Transformationsvorschrift fiir die
Wellenfunktionen bei Drehungen des Koordinaténsystems formulieren.

Die Wellenfunktiony y eines Systems von Teilchen (mit vorgegebenen
Werten von L und M) bleibt nur bei einer Drehung des Koordinatensystems
um die z-Achse unverdndert.!) Eine beliebige Drehung jedoch, die die Rich-
tung der z-Achse @ndert, fithrt dazu, dal die Drehimpulsprojektion auf die
neue z-Achse schon keinen definierten Wert mehr besitzt. Dies bedeutet, daf3
die Wellenfunktion beziiglich der neuen Koordinatenachsen im allgemeinen in
eine Superposition (Linearkombination) aus 2 L + 1 Funktionen iibergeht, die
den (fiir festes L) moglichen M-Werten entsprechen. Man kann in diesem
Zusammenhang davon sprechen, dal sich bei Drehungen des Koordinaten-
systems die 2 L 4+ 1 Funktioneny;, untereinander transformieren.?) Das
entsprechende Transformationsgesetz (d. h. die funktionelle Abhdngigkeit der
Koeffizienten in der Linearkombination von den Drehwinkeln der Koordinaten-
achsen) wird vollsténdig durch Angabe des Wertes von L bestimmt. Auf diese
Weise erlangt der Drehimpuls L die Bedeutung einer Quantenzahl, welche die
Systemzusténde nach ihren Transformationseigenschaften beziiglich Drehungen
des Koordinatensystems klassifiziert. Dieser Gesichtspunkt fiir das Verstidnd-
nis des Drehimpulses in der Quantenmechanik ist insbesondere im Zusammen-
hang damit wesentlich, daBl er nicht unmittelbar an eine explizite Winkel-
abhéngigkeit der Wellenfunktionen gebunden ist; die Vorschrift, nach der sich
die Wellenfunktionen untereinander transformieren, kann fiir sich allein for-
muliert werden, d. h. ohne Bezug auf diese Abhéingigkeit.

Wir wollen nun zeigen, wie man, ausgehend vom oben dargelegten Stand-
punkt, Auswahlregeln (beziiglich des Drehimpulses) fiir die Matrixelemente ver-
schiedener GréBen auffinden kann, d. h. Regeln, die angeben, fiir welche Uber-
ginge die Matrixelemente von Null verschieden sein kénnen.

Dazu bemerken wir zunichst, dafl im rein abstrakt mathematischen Sinn
der Begriff des Drehimpulses als gewisses Klassifizierungskennzeichen nicht nur
auf Wellenfunktionen sondern auch auf andere physikalische Gré8en anwend-
bar ist. So entspricht z. B. jeder skalaren GréfSie (d. h. einer Grofle, die sich
bei Koordinatentransformationen iiberhaupt nicht é&ndert) der ,,Drehimpuls¢
L =0 in dem'Sinne, dal 2 L 4+ 1 =1 fiir L = 0 gilt, daB also insgesamt nur

1) Das heiBt bis auf einen unwesentlichen Phasenfaktor.

2) In der Terminologie der Mathematik spricht man davon, daB diese Funktionen
sogenannte irreduzible Darstellungen der Drehgruppe realisieren. Die Anzahl der sich
untereinander transformierenden Funktionen heit Dimension einer Darstellung, wobei
vorausgesetzt wird, daB diese Zahl durch keinerlei Wahl anderer Funktionen, die aus den
ersten durch beliebige Linearkombinationen gebildet werden, verringert werden kann.
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eine einzige Grofle vorliegt, die sich in sich selbst transformiert.!) Analog
kann man einer vektoriellen Gréfle den ,,Drehimpuls“ L = 1 zuordnen, wobei
beriicksichtigt ist, daB sich bei Drehungen des Koordinatensystems drei un-
abhéngige Vektorkomponenten untereinander transformieren. Verwenden wir
zur Angabe der Vektorkomponenten die sphérischen Winkel 6, ¢, die die Rich-
tung des Vektors festlegen, so erhalten wir

A, = A, + 714, = Asinf e ' M=1,
A=A, —1A4,=Asinf e '* M=-1)), (18,1)
A, = A cos O (M =0).

Ein Vergleich dieser Ausdriicke mit (16,6) macht deutlich, daBl der Kompo-
nente 4, die ,,Drehimpulsprojektion“ M = 0 entspricht, wihrend den kom-
plexen Kombinationen 4, und 4_ die Werte M = 1und M = — 1entsprechen.

Zur Vereinfachung und um die Uberlegungen anschaulicher zu gestalten,
werden wir solche GréB8en behandeln, die Einteilchenzustdnde charakterisieren
(Zusténde eines freien Teilchens bzw. eines Teilchens im zentralsymmetrischen
dufleren Feld). Es moge f irgendeine skalare physikalische Grofle sein. Unter-
suchen wir nun ihre Matrixelemente zwischen Zustinden definierter Werte von
lund m: . ‘

Hierbei sind n, n’

des Teilchens.

Den drei Faktoren im Integranden (5, f und 9,,) kann man in der an-
gegebenen Reihenfolge jeweils ein aus ,,Drehimpuls und Drehimpulsprojektion‘
bestehendes Wertepaar zuordnen: (I, —m’), (0, 0), (I, m) (komplexe Konju-
gation der Wellenfunktion éndert das Vorzeichen im Exponenten des Fak-
tors e™? in (16,5), d. h., das Vorzeichen der Drehimpulsprojektion wird fak-
tisch gedndert). Wir addieren auf alle mogliche Art diese ,,Drehimpulse® zu
einem ,,Gesamtdrehimpuls® und einer ,,Gesamtdrehimpulsprojektion“ (diese
seien mit A und g bezeichnet). Damit sind auch die Transformationseigen-
schaften derjenigen Funktionen klar, nach denen man im Sinne einer Linear-
kombination den Integranden in (18,2) prinzipiell entwickeln kann:

(neben I, m) weitere Indizes zur Festlegung der Zusténde

wl,!‘m' fwtm = %‘ CapPap (,u =m — ml) . (18:3)

In (18,3) sind a 4, Konstanten und v 4, Funktionen, die beziiglich ihrer Trans-
formationseigenschaften mit den Eigenfunktionen des Drehimpulses iiberein-
stimmen. Zur Beantwortung der aufgeworfenen Frage nach den Auswahlregeln
ist es jedoch nicht notwendig, diese Entwicklung explizit durchzufiihren. Es

1) Um keine Unklarheiten aufkommen zu lassen, sei betont, daB unter diesem Gesichts-
punkt die Wellenfunktionenyy, (mit L # 1) keine ,Skalare” sind; siémtliche 2L +1
Funktionen w5 mit unterschiedlichen M-Werten miissen (von diesem Standpunkt aus)
als Komponenten einer einzigen vielkomponentigen GréBe angesehen werden.

5 Kurzfassung II
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geniigt zu bemerken, daBl bei den Winkelintegrationen alle Glieder der Summe,
ausgenommen das Glied mit 4 = g = 0, Null werden (wegen der Eigenschaft
(16,8)). Deshalb kann das Matrixelement (18,2) nur dann von Null verschieden
sein, wenn in der Entwicklung (18,3) die Werte 4 = u = 0 auch wirklich
realisiert sind. Nun kann man jedoch bei der Addition zweier Drehimpulse
und ! den Wert 4 = 0 nur erhalten, wenn I’ = [ ist.

Demnach gelangen wir zu dem SchluB, daBl die Matrixelemente eines Skalars
nur fiir solche Ubergiinge von Null verschieden sein konnen, die nicht mit
einer Anderung des Drehimpulses und seiner Projektion verbunden sind:

=1, m' =m. (18,4)

Da eine Vorgabe von m nur die Orientierung des Systems beziiglich der Ko-
ordinatenachsen festlegt, eine skalare Grofle f jedoch nicht von dieser Orien-
tierung abhdngt, kann man dariiber hinaus behaupten, daf die Matrixelemente
{n' Im| f|nlm) nicht von m abhingen.

Auf analoge Weise kann man die Matrixelemente (»’ I’ m’| A |n I m}) eines
Vektors 4 finden. Letzterem wird der ,,.Drehimpuls“ 1 zugeordnet. Addieren
wir zu ihm den Drehimpuls /, so erhalten wir die Werte ! 4 1,1, — 1 (falls
1 # 0 gilt; fiir I = 0 liefert die Addition nur den alleinigen Wert 1). Die sich
anschlieBende Addition mit dem Drehimpuls I’ mufl zum ,,Gesamtdrehimpuls‘
A = 0 fiithren, sofern wir ein von Null verschiedenes Integral wiinschen. Dazu
mull ' mit einem der aus der vorangegangenen Addition erhaltenen Werten
iibereinstimmen, d. h., es sind zugelassen

'=1, 1+1, (18,5)
wobei zusétzlich Uberginge zwischen Zusténden mit I’ = I = 0 verboten sind.
Die Auswahlregeln beziiglich der Drehimpulsprojektion m sind verschieden

fir die einzelnen Vektorkomponenten. Unter Beriicksichtigung von (18,1)
kann man leicht die folgenden Regeln finden:

fir A, =A; +7A4,: M=M4+1,
fir A_=A4, —14,: M=M-1, (18,6)
fir A, M =M.

Die Matrixelemente einer vektoriellen GroBe sind M-abhingig. Man kann
zeigen (wir werden uns hier nicht damit aufhalten), daBl diese Abhdngigkeit
dariiber hinaus universellen Charakter trigt, indem sie eindeutig aus den Trans-
formationseigenschaften der Drehimpulseigenfunktionen folgt.

SchlieBlich seien noch solche Gréflen erwihnt, die sich als symmetrische
Tensoren 2. Stufe in der Form A;; darstellen lassen. Ein derartiger Tensor
besitzt 6 verschiedene Komponenten. Hinsichtlich ihrer Transformationseigen-
schaften stellt die Gesamtheit dieser Komponenten jedoch kein einheitliches
Ganzes dar. Der Grund liegt darin, dal die Spur des Tensors (d. h. die Summe
Ay = Azz + Ayy + A,;) ein Skalar ist; dieser Skalar muBl aus der Zahl der
zu transformierenden Groéfen ausgeschlossen werden, d. h., es mull ein Tensor
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mit der Spur Null betrachtet werden. Ein solcher Tensor heilit irreduzibel; er
besitzt 5 unabhédngige Komponenten, und somit kann ihm der ,,Drehimpuls‘
L =2 (2 L+ 1= 5) zugeordnet werden.!)

Obwohl wir hier von Matrixelementen eines Teilchens sprachen, méchten
wir betonen, dafl in Wirklichkeit alle Resultate Folgen allgemeiner Transfor-
mationseigenschaften der Wellenfunktionen waren. Sie sind deshalb in gleichem
MaBe auch fiir ein beliebiges System von Teilchen giiltig, falls der Drehimpuls
eine Erhaltungsgrofe darstellt.

§ 19. Die Paritit eines Zustandes

Neben Parallelverschiebung und Drehung des Koordinatensystems (Invarianz
beziiglich dieser Transformationen bedeutet Homogenitdt und Isotropie des
Raumes) gibt es noch eine weitere Transformation, die den HamiLToN-Operator
eines abgeschlossenen Systems invariant 1a8t. Das ist die sogenannte Inversion,
die eine gleichzeitige Umkehrung der Vorzeichen aller Koordinaten, d. h. eine
Umkehrung der Richtungen aller Koordinatenachsen, beinhaltet. Dabei geht
ein Rechtssystem in ein Linkssystem und umgekehrt ein Linkssystem in ein
Rechtssystem iiber. Invarianz des HamILToN-Operators beziiglich einer solchen
Transformation bedeutet, dall der Raum beziiglich Spiegelungen symmetrisch
ist.2) In der klassischen Mechanik fiihrt die Invarianz der HamiLToN-Funktion
beziiglich einer Inversion zu keinerlei neuen Erhaltungssidtzen. In der Quanten-
mechanik allerdings ist die Situation wesentlich anders.

Wir fiihren den symbolischen Inversions- oder Parititsoperator P ein, der
bei einer Anwendung auf die Wellenfunktion die Vorzeichen der Koordinaten
umkehrt:

Py(r) =y(—1). (19,1)

Die Eigenwerte P dieses Operators sind leicht zu finden; sie sind iiber die
Gleichung

P y(r) = Py(r) (19,2)

definiert, wobei zu bemerken ist, dall zweimalige Anwendung des Inversions-

operators auf die Identitdt zuriickfithrt — die Argumente der Funktion éndern

sich tiberhaupt nicht. Mit anderen Worten haben wir also 1321/) =Ply=y,
d. h. P? = 1, und daraus

Bl ) (19,3)

1) Als Beispiel fiir eine solche physikalische GroBe sei das elektrische Quadrupolmoment
eines Systems genannt.

3) Invariant beziiglich einer Inversionist dariiber hinaus auch der HaminroN-Operator
eines Systems von Teilchen, die sich in einem Zentralfeld befinden (wobei der Koordinaten-
sprung im Feldzentrum liegen muB).

5°
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Das heillt, die Eigenfunktionen des Inversionsoperators dndern sich bei seiner
Anwendung iiberhaupt nicht, oder sie &ndern ihr Vorzeichen. Im ersten Falle
heilt die Wellenfunktion (und der zugehérige Zustand) gerade, im zweiten
Falle ungerade.

Invarianz des HamMirtoN-Operators beziiglich einer Inversion (d. h. Kommu-
tativitit der Operatoren P und H) liefert folglich das Gesetz von der Erhaltung
der Paritdt: Wenn ein Zustand eines abgeschlossenen Systems eine bestimmte
Paritdt besitzt (d. h., wenn er gerade oder ungerade ist), dann bleibt diese
Paritit im Laufe der Zeit erhalten.?)

Beziiglich einer Inversion ist auch der Drehimpulsoperator invariant. Eine
Inversion verdndert die Vorzeichen sowohl der Koordinaten als auch der
Differentialoperatoren nach den Koordinaten, und deshalb bleiben die Opera-
toren (14,3) unverdndert. Mit anderen Worten, der Inversionsoperator kommu-
tiert mit dem Drehimpulsoperator, und dies bedeutet, daBl das System gleich-
zeitig eine bestimmte Paritdt und bestimmte Werte des Drehimpulses Z und
seiner Projektion M besitzen kann.

Fiir die Matrixelemente verschiedener physikalischer GroBlen existieren be-
stimmte Auswahlregeln beziiglich der Paritat.

Betrachten wir zunichst skalare Gréen. Hierbei hat man echie Skalare, die
sich bei einer Inversion iiberhaupt nicht &ndern, und Pseudoskalare, die bei
einer Inversion das Vorzeichen umkehren, zu unterscheiden (ein Pseudoskalar
ist zum Beispiel das Skalarprodukt eines axialen mit einem polaren Vektor).

Es ist leicht zu sehen, daB fiir eine echte skalare GroBe f nur solche Matrix-
elemente von Null verschieden sein kénnen, die Ubergingen zwischen Zustinden
gleicher Paritét entsprechen. In der Tat, ein Matrixelement der GroBe f fiir
einen Ubergang zwischen Zustinden unterschiedlicher Paritit ist gegeben durch
das Integral

fug= [ w2 Fwo g,

wobei die Funktiony, gerade und die Funktion v, ungerade ist. Bei einer
Umkehrung der Vorzeichen aller Koordinaten éndert der Ausdruck unter dem
Integral das Vorzeichen. Andererseits kann sich das iiber den ganzen Raum
genommene Integral durch eine Bezeichnungséinderung der Integrationsvari-
ablen nicht dndern. Daraus folgt f,; = — fu0, d. h. f,, = 0. Umgekehrt sind
fiir eine pseudoskalare Grofle nur solche Matrixelemente von Null verschieden,
die Ubergiingen zwischen Zustinden unterschiedlicher Paritit entsprechen.

Auf analoge Weise kann man Auswahlregeln fiir VektorgroBen erhalten.
Dabei mufl man daran denken, daB gewdhnliche, d. h. polare Vektoren, bei
einer Inversion das Vorzeichen umkehren, jedoch axiale Vektoren (wie z. B.
der Drehimpulsvektor als Vektorprodukt aus den zwei polaren Vektoren p
und 7) sich bei dieser Transformation nicht &ndern. Wenn wir dies beriick-

1) Um MiBverstindnisse auszuschlieBen, sei daran erinnert, daB es _sich um die nicht-
relativistische Theorie handelt. In der Natur existieren Wechselwirkungen (sie gehérenin
das Gebiet der relativistischen Theorie), welche die Paritétserhaltung zerstéren — siehe § 90.
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sichtigen, dann finden wir, daBl fiir einen.polaren Vektor nur solche Matrix-
elemente, die Ubergiingen zwischen Zustdnden unterschiedlicher Paritdt ent-
sprechen, und beziiglich axialer Vektoren nur diejenigen Matrixelemente fiir
Ubergiinge gleicher Paritdt von Null verschieden sind.

Wir wollen die Paritdat fiir den Zustand eines Teilchens mit dem Dreh-
impuls ! bestimmen. Die Spiegelung (z — — 2, y - — y, z = — 2) bedeutet
fiir Kugelkoordinaten die Transformation

r—>r, 0—>n—0, ¢ ~>p+mx. (19,4)

Die Winkelabhdngigkeit der Wellenfunktion eines Teilchens wird durch die
Eigenfunktion Y;,, (16,5) des Drehimpulses gegeben. Ersetzt man ¢ durch
@ + 7, so wird der Faktor €™% mit (—1)® multipliziert. Beim Ersetzen von
0 durch = — 6 geht PP(cos ) in PP (— cos ) = (—1)!~™ PP(cos ) iiber.
Die ganze Funktion wird also mit (—1)" multipliziert (was in Ubereinstimmung
mit dem oben Gesagten nicht von m abhdngt). .Die Paritdt eines Zustandes
mit gegebenem Wert von [/ ist demnach

P = (—1). (19,5)

Wir sehen, dafl alle Zustdnde mit geradzahligem ! gerade und mit ungerad-
zahligem [ ungerade sind. Die Paritdt eines Zustandes hdngt nur von I, jedoch
nicht von m ab.

Jetzt wollen wir die Regel fiir die Addition der Parititen aufstellen. Wie wir
wissen, ist die Wellenfunktion ¥ eines aus zwei unabhingigen Teilen beste-
henden Systems das Produkt aus den Wellenfunktionen ¥; und ¥, dieser
Teile. Wenn die beiden letzteren dieselbe Paritit haben (d. h., beide d&ndern
ihr Vorzeichen bei einer Vorzeichenidnderung aller Koordinaten, oder beide
dndern ihr Vorzeichen dabei nicht), dann ist die Wellenfunktion des gesamten
Systems offenbar gerade. Haben dagegen ¥, und ¥, verschiedene Paritit,
dann wird die Funktion ¥ ungerade. Diesen Sachverhalt kann man durch die
Formel

P=P, P, (19,6)

ausdriicken, wo P die Paritit des Gesamtsystems und P,, P, die Paritdten
seiner Untersysteme bedeuten. Selbstverstdndlich 1aBt sich diese Regel auf den
Fall eines Systems verallgemeinern, das aus einer beliebigen Anzahl nicht-
wechselwirkender Teilsysteme besteht.

Handelt es sich bei dem betrachteten System insbesondere um Teilchen in
einem kugelsymmetrischen Feld (und kann man die Wechselwirkung zwischen
den Teilchen als schwach ansehen), dann ist die Paritéit des gesamten Systems

P=(—1ptht-, (19,7

Im Exponenten steht hier die algebraische Summe der Drehimpulse I;, die im
allgemeinen nicht gleich ihrer ,,Vektorsumme ist, d. h. nicht gleich dem
Drehimpuls L des Systems.
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Zerfillt ein abgeschlossenes System (unter dem Einflul der in dem System
selbst wirkenden Krifte) in verschiedene Teile, dann miissen der Gesamtdreh-
impuls und die Paritdt erhalten bleiben. Dieser Sachverhalt kann den Zerfall
eines Systems unméglich machen, selbst wenn dieser energetisch moglich wire.

Betrachten wir z. B. ein Atom, das sich in einem geraden Zustand mit dem
Drehimpuls L = 0 befindet. Es soll energetisch moglich sein, daf es in ein
freies Elektron und in ein Ion in einem ungeraden Zustand mit demselben Dreh-
impuls L = 0 zerféllt. Wie man leicht sieht, kann dieser Zerfall faktisch nicht
stattfinden (er ist, wie man sagt, verboten). Wegen des Drehimpulserhaltungs-
satzes mull das freie Elektron ebenfalls den Drehimpuls Null haben und be-
findet sich deshalb in einem geraden Zustand (I = (—1)° = + 1). Dann wiirde
aber der Zustand des Systems Ion + freies Elektron ungerade sein, wéihrend
der urspriingliche Zustand des Atoms gerade war.



Die ScHRODINGER-Gleichung III

§ 20. Die ScHRODINGER-Gleichung

Die Gestalt der Wellengleichung eines physikalischen Systems wird bestimmt
durch seinen HamirToN-Operator, der auf Grund dessen fundamentale Be-
deutung im gesamten mathematischen Apparat der Quantenmechanik gewinnt.

Die Form des HamiLToN-Operators eines freien Teilchens ergibt sich schon
aus allgemeinen Forderungen, die mit der Homogenitdt und Isotropie des
Raumes sowie dem GaLiLEischen Relativitatsprinzip in Verbindung stehen.
In der klassischen Mechanik fithren diese Forderungen zu einer quadratischen
Abhédngigkeit der Energie des Teilchens von seinem Impuls: E = p?/2 m; die
Konstante m wird als Teilchenmasse bezeichnet (siehe I § 4). In der Quanten-
mechanik fithren die gleichen Forderungen zu einer ebensolchen Beziehung
zwischen den Eigenwerten von Energie und Impuls, die gleichzeitig meflbare
Erhaltungsgrofen (fiir ein freies Teilchen) darstellen.

Damit nun die Beziehung E = p%/2 m fiir alle Eigenwerte von Energie und
Impuls gilt, mull sie auch zwischen den zugehédrigen Operatoren gelten:

~ I & e P
H =5 (p; + Dy + p3) - (20,1)

Wir setzen hier (12,4) ein und erhalten den HaminToN-Operator fiir ein sich
frei bewegendes Teilchen in der Form

~ B2
worin A = 92/9x? + 02/0y? + 02/0z2 der LapLACE-Operator ist.
Fiir ein System nicht wechselwirkender Teilchen ist der HamiLToN-Operator

gleich der Summe der HamiLToN-Operatoren fiir die einzelnen Teilchen:
~ h? 1
H = _?,,Zm_,/'“ (20,3)

(der Index a bezeichnet die einzelnen Teilchen, 4, ist der LapLacE-Operator,
in dem nach den Koordinaten des a-ten Teilchens differenziert wird).

In der klassischen (nichtrelativistischen) Mechanik wird die Wechselwirkung
der Teilchen durch ein additives Glied in der HaAMiLTON-Funktion beschrieben,
und zwar durch die potentielle Energie der Wechselwirkung U(ry, 1,, . . .), die
eine Funktion der Teilchenkoordinaten ist. In der Quantenmechanik wird die
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Wechselwirkung der Teilchen ebenfalls durch Addition dieser Funktion zum
HamiLToN-Operator des Systems erfaft:

A B 4,
A= — g B4 Utru .. ). (20
a a

Das erste Glied kann man als den Operator fiir die kinetische Energie ansehen,
das zweite als Operator fiir die potentielle Energie. Der letztere reduziert sich
auf die einfache Multiplikation mit der Funktion U. Aus dem Grenziibergang
zur klassischen Mechanik folgt, dafl diese Funktion mit derjenigen fiir die
potentielle Energie in der klassischen Mechanik iibereinstimmen mufl. Ins-
besondere ist der HamiLToN-Operator fiir ein Teilchen in einem dufleren Feld

~

";2 h2
:2—m+U(x,y,z)= —mA+ Ukx,vy,2), (20,5)

wobei U(z, y, z) die potentielle Energie des Teilchens in dem dufleren Feld ist.

Setzen wir die Ausdriicke (20,2—5) in die allgemeine Gleichung (8,1) ein,
dann erhalten wir die Wellengleichungen fiir die entsprechenden Systeme. Wir
schreiben hier die Wellengleichung fiir ein Teilchen in einem duBleren Feld auf:

L 4 n?
zh7= —ﬁAY’+ Ux,y,2) ¥ . (20,6)

Die Gleichung (10,2) zur Bestimmung der stationdren Zustinde nimmt die
folgende Gestalt an:

hz
sy +[E— U y,2)]p=0. (20,7)

E. ScHR6DINGER hat 1926 die Gleichungen (20,6—7) angegeben; sie heillen
SCHRODINGER-Gleichungen.
Fiir ein freies Teilchen hat die SCHRODINGER-Gleichung (20,7) die Gestalt

h2

Sie hat fiir einen beliebigen positiven Energiewert im gesamten Raum L6-
sungen. Fiir Zustinde definierter Bewegungsrichtungen sind die Eigenfunk-
tionen des Impulsoperators (12,7) diese Losungen, wobei £ = p?%/2 m gilt. Die
vollstindigen (zeitabhiéngigen) Wellenfunktionen der stationdren Zusténde
haben dann die Gestalt

- i(Et-pn
Y —const-e " : (20,9)

Jede solche Funktion beschreibt einen Zustand, in dem das Teilchen eine be-
stimmte Energie £ und einen bestimmten Impuls p hat. Das ist eine ebene
Welle, die sich in p-Richtung ausbreitet, die Frequenz E/k und den Wellen-
zahlvektor k = p/i hat (die entsprechende Wellenlinge 1 = 2z i/p heilt die
DE BroGLIE-Wellenlinge des Teilchens).!)

1) Die Vorstellung einer mit einem Teilchen verkniipften Welle wurde zum ersten Mal
von L. pE BROGLIE im Jahre 1924 eingefiihrt.
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Das Energiespektrum eines sich frei bewegenden Teilchens ist also ein kon-
tinuierliches Spektrum und erstreckt sich von 0 bis +co. Jeder Eigenwert
(mit der einzigen Ausnahme E = 0) ist entartet ; dabei handelt es sich um eine
unendlichfache Entartung. Tatsédchlich gehort zu jedem von Null verschie-
denen Wert von E eine unendliche Menge von Eigenfunktionen (20,9), die
sich durch die Richtung des Vektors p unterscheiden, wahrend der absolute
Betrag von p immer derselbe ist.

§ 21. Die Stromdichte

In der klassischen Mechanik hidngt die Geschwindigkeit v eines Teilchens mit
seinem Impuls iiber die Beziehung p = m v zusammen. Diese Gleichung gilt
in der Quantenmechanik, wie nicht anders zu erwarten ist, fiir die entsprechenden
Operatoren. Davon iiberzeugt man sich leicht, indem man den Operator ¥ = r
nach der allgemeinen Regel (9,2) fiir die Zeitdifferentiation von Operatoren
berechnet. Verwenden wir den Ausdruck (20,5) fiir den HamirTon-Operator,
so kénnen wir schreiben

= T~ ~ ih

v = T(Hr —rH) = —-2—m(Ar—rA).
Um den hier auftretenden Kommutator zu bestimmen, wenden wir ihn auf
eine beliebige Funktiony an:

A(ry) — r(dy) = 2(Vy) .
Wegen — ¢ 5V = p folgt also

6=2L, (21,1)

m

Dieselben Beziehungen gelten offensichtlich auch zwischen den Eigenwerten
der Geschwindigkeit und des Impulses und zwischen deren Mittelwerten in
einem beliebigen Zustand.

Die Geschwindigkeit kann wie der Impuls eines Teilchens nicht gleichzeitig
mit den Koordinaten einen bestimmten Wert haben. Die Geschwindigkeit
multipliziert mit dem infinitesimalen Zeitelement d¢ bestimmt die Verschiebung
eines Teilchens nach der Zeit dt. Die Tatsache, dal die Geschwindigkeit nicht -
gleichzeitig mit dem Ortsvektor existieren kann, bedeutet daher: Wenn sich
ein Teilchen zu einer gewissen Zeit in einem bestimmten Raumpunkt befindet,
dann wird es bereits in einem infinitesimal benachbarten folgenden Zeitpunkt
keine bestimmte Lage im Raum mehr haben.

Wir wollen weiter den Operator der Beschleunigung bestimmen. Es ist

~ s oA P ha ah 1
v=¥(Hv—vH)=m—h—(Hp—PH)=%(UV—VU)-

Um den Sinn des so erhaltenen Operators zu kldren, wenden wir ihn wiederum
auf ein beliebiges y an:

UVy) —V({Uyp)=—(VO)y.
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Demzufolge finden wir
mo=—VU. (21,2)
Diese Operatorgleichung stimmt in ihrer Form mit der Bewegungsgleichung
(der NEwTONschen Gleichung) der klassischen Mechanik genau iiberein.
Das Integral / |¥|% dV iiber ein endliches Volumen V ist die Aufenthalts-
wahrscheinlichkeit eines Teilchens in diesem Volumen. Wir berechnen die zeit-
liche Ableitung dieser Gréfe und haben

f|¥’|2dV f(av—+sv* )

=7f(svH*IP*—W*ﬁ*W)dV
14

Setzen wir hier
~ ~ 2
— g —
H = H* = 2mA+U(x,y,z)
ein und verwenden die Identitit

Y AP* — P* AV = div (P VP* — P*VYP),

dann erhalten wir

a [1eray = - [awjav, -
14 1 4

wobei j den folgenden Vektor bedeutet:
s B 1 . ~
j=5— (Pgrad P* —Wrgrad V) = (P* 6 ¥ + ¥ &% %)
(21,3)
Das Integral iiber divj kann mit Hilfe des Gaussschen Satzes in ein Ober-

flichenintegral iiber eine geschlossene Fliche S umgeformt werden, die das
Volumen V umschliefit:

(%fﬂ’l’dv = —gﬁj af ) (21,4)
14 S

Der Vektor j kann also als Vektor der Wahrscheinlichkeitsstromdichte oder kurz
als Stromdichtevektor bezeichnet werden. Das Oberflichenintegral iiber diesen
Vektor ist die Wahrscheinlichkeit dafiir, dafl ein Teilchen in der Zeiteinheit diese
Oberfliche durchdringt.

Der Vektor j und die Wahrscheinlichkeitsdichte |¥|? geniigen der Gleichung

AW fawj=o, (21,5)

die der klassischen Kontinuitdtsgleichung (I § 55) analog ist.

1) Das Oberflichenelement df ist wie immer als der Vektor definiert, dessen Betrag
gleich der Fliche df des Elements ist und der die Richtung der &uBeren Normalen be-
ziiglich dieses Flachenelements besitzt.
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Die Wellenfunktion der freien Bewegung, die ebene Welle (20,9), mége so
normiert sein, dafl sie einen Teilchenstrom der Stromdichteeinheit beschreibt
(d. h. einen Strom, bei dem im Mittel durch die Flidcheneinheit senkrecht zur
Stromrichtung in der Zeiteinheit ein Teilchen fliegt). Eine solche Funktion ist

1 - (Et-p7)
Ye—e * T, (21,6)

worin v die Teilchengeschwindigkeit bedeutet. Inder Tat,setzen wir diese Wellen-
funktion in (21,3) ein, so erhalten wir j = p/mv, d. h. den Einheitsvektor in
Bewegungsrichtung.

§ 22. Allgemeine Eigenschaften der Losungen der
ScHRODINGER-(Gleichung

Die Bedingungen, denen die Lésungen der SCHRODINGER-Gleichung geniigen
miissen, haben einen sehr allgemeinen Charakter. Vor allem mufl die Wellen-
funktion (zusammen mit ihren ersten Ableitungen) im ganzen Raum eindeutig
und stetig sein). Die Forderung nach Stetigkeit der Ableitungen driickt aus,
daB die Stromdichte stetig sein soll.

Wenn das Feld U(z, y, 2) nirgends unendlich wird, dann mufl auch die
Wellenfunktion im ganzen Raum endlich sein. Diese Bedingung mufl auch
dann erfiillt sein, wenn U in einem gewissen Punkt gegen —oo geht, aber
nicht zu stark.l)

Es sei Uy, der kleinste Wert der Funktion U(z, y, z). Da der HamMILTON-
Operator eines Teilchens in zwei Glieder zerfillt (in den Operator der kinetischen

Energie T und den der potentiellen Energie) ist der Mittelwert der Energie in
einem beheblgen Zustand gleich der Summe E=T+ U. Ale Eigenwerte
des Operators Vi (der mit dem HamiLTON-Operator eines freien Teilchens
iibereinstimmt) sind aber positiv; deshalb ist auch der Mittelwert 7 = 0.
Wegen der offensichtlichen Ungleichung U > Uy, ist auch E > U Weil

diese Ungleichung fiir einen beliebigen Zustand gilt, ist klar, dafl sie auch fiir
alle Eigenwerte der Energie zutrifft:

E,> Uy - (22,1)

Wir wollen ein Teilchen in einem Kraftfeld betrachten, das im Unendlichen
verschwindet. Die Funktion U(z, y, z) definieren wir wie iiblich so, dal} sie
im Unendlichen verschwindet. Es ist leicht zu sehen, dall das Spektrum der
negativen Energieeigenwerte dann diskret ist, d. h., alle Zustdnde mit £ < 0

1) Genau genommen muB dies langsamer als — 1/r? geschehen, wobei r der Abstand
zum Punkt ist. Wenn das Potential schneller als —1/r? gegen —oco strebt, dann kann
man zeigen, daB der ,,Grund‘-Zustand einem Teilchen entspricht, welches sich genau
im Punkt r = 0 befindet, d. h., es erfolgt ein ,,Sturz? des Teilchens in diesen Punkt.
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in einem Feld, das im Unendlichen verschwindet, sind gebundene Zusténde.
In der Tat, die stationdren Zustdnde des kontinuierlichen Spektrums entspre-
chen bis ins Unendliche reichenden Bewegungen; in einem solchen Zustand
befindet sich das Teilchen irgendwo im unendlichen Raum (siehe § 10). In
hinreichend grofen Entfernungen kann man jedoch das Vorhandensein des
Feldes vernachlissigen, und die Bewegung eines Teilchens kann als freie Be-
wegung angesehen werden. Bei einer freien Bewegung kann die Energie aber
nur positiv sein.

Umgekehrt bilden die positiven Eigenwerte ein kontinuierliches Spektrum
und entsprechen einer ins Unendliche reichenden Bewegung. Fiir £ > 0 hat
die SCHRODINGER-Gleichung im allgemeinen (in dem betrachteten Feld) keine
Losungen, fiir die das Integral / || dV konvergiert.

In derQuantenmechanik kann sich ein Teilchen bei einer endlichen Bewegung
auch in den Raumgebieten aufhalten, in denen E < U ist. Die Aufenthalts-
wahrscheinlichkeit ||2 geht mit zunehmender Eindringtiefe in diesen Bereich
rasch gegen Null, ist aber in allen endlichen Entfernungen von Null verschieden.
In dieser Hinsicht besteht ein prinzipieller Unterschied zur klassischen Me-
chanik, nach der ein Teilchen in ein Gebiet mit U > E iiberhaupt nicht ein-
dringen kann. Nach der klassischen Mechanik kann ein Teilchen in einen
solchen Bereich nicht eindringen, weil fiir £ < U die kinetische Energie negativ
wiirde, d. h., die Geschwindigkeit wire imagindr, was unsinnig wére. In der
Quantenmechanik sind die Eigenwerte der kinetischen Energie ebenfalls positiv,
trotzdem kommen wir hier zu keinem Widerspruch. Wenn durch einen Me8-
prozeB ein Teilchen in einem gewissen Raumpunkt lokalisiert wird, dann wird
im Ergebnis dieses Prozesses der Zustand des Teilchens so gestort, daBl es
iiberhaupt aufhort, irgendeine bestimmte kinetische Energie zu haben.

Illustrieren wir das Gesagte durch Beispiele der eindimensionalen Bewegung.
Unter einer solchen versteht man die Bewegung im Felde U(z), das nur von
einer Koordinate abhingt. Die Bewegung in y- und z-Richtung geschieht frei,
wahrend diejenige entlang der z-Achse durch eine eindimensionale ScHRO-
DINGER-Gleichung bestimmt wird:

d2 2
g+ [E— U@y =0. (22,2)

Im Falle des in Abb. la dargestellten ,,Potentialtopfes‘ ist fiir die Energien
E < 0 der Bewegungstyp rdumlich begrenzt (finit) und das entsprechende

Yix)
UWx)
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Energieniveauspektrum diskret. Energien £ > 0 jedoch fiihren zu einem kon-
tinuierlichen Spektrum, wobei die Bewegung rdumlich unbegrenzt (infinit) ist.
Wir bestimmen in beiden Féllen fiir grofie Entfernungen = die asymptotische
Gestalt der Wellenfunktionen. Da fiir x — 4+ co U — 0gilt, kann man im Falle
grofer Entfernungen in Gleichung (22,2) das Feld U im Vergleich zu E ver-
nachlédssigen und erhélt so
dw 2m

Im Falle E > 0 ist dies die Gleichung der eindimensionalen, freien Bewegung.
Ihre allgemeine Losung hat die Gestalt

i . 1 —
p=a,e% fge" i, | = £y V2mE, (22,4)

d. h., sie stellt sich dar als Superposition zweier ebener Wellen, die jeweils der
Bewegung in bzw. entgegengesetzt zur Richtung der z-Achse entsprechen.
Jedes Energieniveau ist hierbei zweifach entartet gemaB den zwei Moglich-
keiten der Bewegung in entgegengesetzten Richtungen.

Fiir Energien E < 0 erweist sich von den zwei unabhéngigen Losungen der
Differentialgleichung zweiter Ordnung (22,2) nur eine als zulédssig und zwar
diejenige, die den Grenzbedingungen geniigt, dall die Wellenfunktion einer
rdaumlich begrenzten Bewegung fiir x — + oo gegen Null streben mufl. Unter
der Voraussetzung grofier Entfernungen gelangen wir von neuem zu Gleichung
(22,3). Ihre Losung besitzt jedoch jetzt die asymptotische Gestalt

1 — e
w =const - e¥** fir x4 oo (x=~h—l/2mlE|), (22,5)

d. h., sie klingt hinreichend weit entfernt innerhalb des im Rahmen der klas-
sischen Mechanik unzuginglichen Bereiches exponentiell ab (die zweite Losung
der Gleichung (22,3) wichst fiir # — 4 oco iiber alle Grenzen an).

Falls man nur Aussagen iiber den finiten bzw. den infiniten Bewegungs-
charakter macht, so werden im Rahmen des betrachteten Feldtyps (Abb. 1la)
in der klassischen Mechanik und der Quantenmechanik beide Moglichkeiten
unter den gleichen Gegebenheiten realisiert (entsprechend £ < 0 und E > 0).
Dies gilt jedoch schon nicht mehr fiir das in Abb. 1b dargestellte Feld, wo
der Potentialtopf von einem ,,Potentialwall“ endlicher Héhe U, umgeben ist.
Die Bewegung ist hier nach wie vor fiir £ < O finit. In der klassischen Me-
chanik wire sie fiir eine Bewegung innerhalb des Topfes und Energien 0 << E < U,
auch finit. In der Quantenmechanik jedoch ist die Bewegung fiir alle Energien
E > 0 infinit, wobei E sowohl grofler als auch kleiner als die Héhe der Po-
tentialbarriere sein kann. Ein Teilchen (mit £ > 0), das sich zu einem bestimm-
ten Zeitpunkt ,,innerhalb des Topfes“ befindet, kann im weiteren ,,die Bar-
riere durchdringen* und sich aufBlerhalb der Grenzen des Potentialtopfes be-
finden.

Auf diese Weise liBit die Quantenmechanik eine infinite Bewegung unter
Bedingungen zu, die sie in der klassischen Mechanik ausschléssen. Die Natur
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dieser Erscheinung, des Durchgangs durch eine Potentialschwelle (sie wird
noch ausfiihrlich in § 28 untersucht werden), hangt mit dem oben erwihnten
Umstand zusammen, daBl die Wellenfunktion innerhalb des in der klassischen
Mechanik unzugénglichen Bewegungsbereiches nicht streng Null wird.

Die ScHRODINGER-Gleichung in der allgemeinen Form H v = E p kann aus
dem Variationsprinzip

8fy*(H —E)pdg =0 (22,6)

gewonnen werden. Da y komplex ist, kann man p und y* unabhéngig von-
einander variieren. Bei Variation von y* haben wir

Soyp* (H —E)pdg=0.
Wegen der Willkiir von dyp* erhalten wir daraus die gesuchte Gleichung
H vy = E . Die Variation von y liefert nichts Neues: Sie liefert nur die konju-

giert komplexe Gleichung H* p* = Ep*

Mit den Methoden der Variationsrechnung kann eine Reihe wichtiger Theo-
reme iiber allgemeine Eigenschaften von Wellenfunktionen stationérer Teilchen-
zustédnde bewiesen werden.

Die Wellenfunktion y, des Grundzustandes verschwindet fiir keine endlichen
Koordinatenwerte (oder wie man sagt, sie hat keine Knoten). Sie hat, mit
anderen Worten, im ganzen Raum dasselbe Vorzeichen. Daraus folgt, dal die
Wellenfunktionen g, (n > 0) der anderen stationdren Zustdnde, die zu wp,
orthogonal sind, bestimmt Knoten haben (wenn y, ebenfalls nur ein Vorzeichen
hétte, dann konnte das Integral /vy, dg nicht verschwinden).

Da p, keine Knoten hat, kann ferner das Energieniveau des Grundzustandes
nicht entartet sein. Wir wollen das Gegenteil annehmen; y, und p, seien zwei
verschiedene Eigenfunktionen zu dem Energieniveau E,. Jede Linearkombi-
nation cy, + ¢’ y, ist auch eine Eigenfunktion. Durch geeignete Wahl der
Konstanten ¢ und ¢’ kann man aber immer erreichen, daBl diese Funktion in
einem beliebigen vorgegebenen Raumpunkt verschwindet, d. h., wir wiirden
eine Eigenfunktion mit Knoten erhalten.

Fiir eine eindimensionale Bewegung ist dariiber hinaus der sogenannte
Knotensatz richtig: Die Wellenfunktion yu(z) eines diskreten Spektrums, die
zu dem der GréBe nach (n 4 1)-ten Eigenwert E, gehort, besitzt (fiir endliche
Werte von z) n Nullstellen.

§ 23. Die Zeitumkehr

Die ScHRODINGER-Gleichung fiir die Wellenfunktionen stationdrer Zustédnde
wie auch die ihren Losungen auferlegten Bedingungen sind reell. Deshalb
kénnen ihre Losungeny immer reell gewihlt werden. Auf Grund dessen er-
weisen sich die zu nicht entarteten Energieniveaus gehérenden Eigenfunktionen
automatisch als reell (bis auf einen unwesentlichen Phasenfaktor). In der Tat
geniigt y* derselben Gleichung wie auch g und ist demzufolge Eigenfunktion
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zu dem gleichen Energiewert. Wenn dieser Wert nicht entartet ist, dann
miissen folglich y und p* dem Wesen nach iibereinstimmen, d. h., sie konnen
sich nur durch einen konstanten Phasenfaktor unterscheiden. Wellenfunktionen
allerdings, die zu ein und demselben entarteten Energieniveau gehéren, sind
nicht unbedingt reell. Mittels einer geeigneten Auswahl ihrer Linearkombi-
nationen kann man jedoch immer einen Satz reeller Funktionen erhalten.

Die vollstindigen (von der Zeit abhdngigen) Wellenfunktionen ¥ werden
durch eine Gleichung bestimmt, in deren Koeffizienten 7 eingeht. Diese Glei-
chung behilt jedoch beim Ubergang von ¢ zu —t¢ ihre Gestalt bei, wenn man
gleichzeitig zum konjugiert Komplexen iibergeht. Deshalb kann man die
Funktionen ¥ immer so wahlen, daB sich ¥ und ¥* nur durch das Vorzeichen
der Zeit unterscheiden. Dieses Resultat ist uns bereits aus den Formeln (10,1),
(10,3) bekannt.

Die Gleichungen der klassischen Mechanik @ndern sich bekanntlich bei einer
Zeitumkehr nicht, d. h. beim Umkehren des Vorzeichens der Zeit. Wie wir
sehen, dullert sich in der Quantenmechanik die Symmetrie beziiglich der beiden
Zeitrichtungen darin, daBl die Wellengleichung unverédndert bleibt, wenn man
das Vorzeichen von ¢ éndert und gleichzeitig ¥ durch ¥* ersetzt.

Wir méchten jedoch hervorheben, daB sich diese Symmetrie hier nur auf die
Wellengleichung bezieht. Sie bezieht sich nicht auf den unmittelbaren Me8-
prozel}, der in der Quantenmechanik eine fundamentale Rolle spielt. Dieser
besitzt hier einen ,,doppelsinnigen‘‘ Charakter; seine Rollen in bezug auf Ver-
gangenheit und Zukunft sind verschieden. Hinsichtlich der Vergangenheit
bestétigt er die Wahrscheinlichkeiten fiir die verschiedenen méglichen Ergeb-
nisse, die sich gemifl demjenigen Zustand vorhersagen lassen, der durch die
vorausgehende Messung geschaffen wurde. Beziiglich der Zukunft schafft er
einen neuen Zustand (wir werden in § 37 darauf zuriickkommen). Unmittelbar
in der Natur des quantenmechanischen MeBprozesses wurzelt also eine tief-
gehende Nichtumkehrbarkeit. :

Diese Nichtumkehrbarkeit besitzt schwerwiegende prinzipielle Bedeutung.
Obwohl die Grundgleichungen der Quantenmechanik an und fiir sich symme-
trisch sind beziiglich einer Vorzeichendnderung der Zeit (in dieser Hinsicht
unterscheidet sich die Quantenmechanik nicht von der klassischen Mechanik),
bringt jedoch die Nichtumkehrbarkeit des Melprozesses fiir die quantenmecha-
nischen Erscheinungen eine physikalische Nichtdquivalenz der beiden Zeit-
richtungen mit sich, d. h., sie filhrt zu einem Unterschied zwischen Zukunft
und Vergangenheit.

§ 24. Der Potentialtopt

Als einfaches Beispiel einer eindimensionalen Bewegung untersuchen wir die
Bewegung in einem rechteckigen Potentialtopf, wie er in Abb. 2 dargestellt ist
(da es hier bequemer ist, zéhlen wir die Energie vom Boden des Potentialtopfes
aus und nicht vom Wert der potentiellen Energie im Unendlichen). Uns in-
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teressieren die Zustédnde finiter Bewegung, die zum diskreten Energiespektrum
0 < E < U, gehoren.
Im Bereich 0 < z < a haben wir die SCHRODINGER-Gleichung

V' +ky=0,

k=1 12ZmE 24,1)

Ulx)

Abb. 2

a X

(der Strich bedeutet Differentiation nach z), wihrend aulerhalb des Potential-
topfes

W o=ty =0,  x=—V2mU—B) (24,2)

gilt. An den Stellen # = 0 und = a miissen die Losungen dieser Gleichungen
so aneinander anschlieen, daBl y und 3’ stetig sind.
Die im Unendlichen verschwindende Losung der Gleichung (24,2) ist

p = const - eT *7 (24,3)

(die Vorzeichen — und + gehdren zu den Bereichen z >> a und z < 0). Statt
der Stetigkeit von y und 9’ am Rande des Potentialtopfes fordert man zweck-
mafBig die Stetigkeit von y und der logarithmischen Ableitung y’/y. Unter
der Beriicksichtigung von (24,3) erhalten wir die Randbedingung in der Form
v

v = F . (24,4)
Wir verweilen hier nicht bei der Bestimmungeder Energieniveaus in einem
Potentialtopf beliebiger Tiefe U, (siehe Aufgabe 2) und besprechen nur den
Grenzfall unendlich hoher Wénde vollsténdig.

Fiir Uy, — oo wird die Funktion (24,3) identisch Null. Es versteht sich von
selbst, dal das Teilchen iiberhaupt nicht in den Bereich vordringen kann, in
dem die potentielle Energie Unendlich ist. Wir haben also die Lésung der
Gleichung (24,1) unter der Randbedingung

p=20 fur r=0,a (24,5)

aufzufinden. Eine solche Losung suchen wir in der Form einer ,stehenden
Welle*¢

w=csin (kz + 0) . (24,6)



§ 24. Der Potentialtopf y 67

Die Bedingung y = 0 fiir x = 0 liefert 6 = 0; desweiteren ergibt die Bedingung
fir x =0 sinka =0, woraus ka=m (n + 1) mit » =0, 1, 2, . . . folgt.
Auf diese Weise lauten die Energieniveaus des Teilchens im Potentialtopf

2 j2
E, = 2’;7@ + 1), n=0,12... (24,7)

Insbesondere ist die Energie des Grundzustandes als E, = n? #%/2 m a? gegeben.
Wir bemerken, dal dieses Resultat im Einklang mit der Unschérferelation steht :
Bei einer Ortsunschirfe ~ a ist die Unschédrfe des Impulses und damit auch
die Gr6Benordnung des Impulses selbst ~ /a; die dazugehorige Energie ist
~ (kla)?|m.

Die normierten Wellenfunktionen der stationidren Zustinde lauten :

2 1)
w,,:l/; smn—(ny. (24,8)

Entsprechend dem Knotensatz wird die Funktion y,(x) innerhalb des Bewe-
gungsgebietes » mal Null (die unmittelbaren Grenzen dieses Gebietes, im vor-
liegenden Fall die Punkte = 0 und = a, werden beim Abzdhlen der Null-
stellen ausgeschlossen).

In einem eindimensionalen Potentialtopf beliebiger Form liegt in jedem Fall
mindestens ein Energieniveau, selbst dann, wenn die Tiefe des Topfes sehr kleia
ist (siehe z.B. Aufgabe 2). Diese Eigenschaft ist jedoch nur fiir den eindimen-
sionalen Fall spezifisch; sie existiert nicht im realeren Falle eines dreidimen-
sionalen Potentialtopfes. Wenn die Tiefe |U| eines solchen Topfes

Ul < —

m a?
ist (wobei a die GréBenordnung der Linearabmessungen des Topfes ist), dann
liegt in ihm kein einziges diskretes Energieniveau. Mit anderen Worten, falls
der Topf nicht hinreichend tief ist, so gibt es in ihm keine gebundenen Zu-
stinde; das Teilchen kann nicht von dem Potentialtopf ,,eingefangen‘‘ werden.
Wir unterstreichen, daf diese Eigenschaft reinen Quantencharakter besitzt; in
der klassischen Mechanik kann ein Teilchen eine finite Bewegung in einem be-
liebigen Potentialtopf ausfithren. Der Ursprung dieser Eigenschaft wird in
§ 32 erldutert werden (in der Aufgabe 1, § 30 wird sie durch direkte Rechnung
fiir den Spezialfall eines kugelsymmetrischen Potentialtopfes gezeigt werden).

(24,9)

Aufgaben

1. Es ist die Wahrscheinlichkeitsverteilung der verschiedenen Impulswerte fiir den
Grundzustand der eindimensionalen Bewegung eines Teilchens in einem unendlich tiefen
rechteckigen Potentialtopf zu bestimmen.

Loésung. Die Wahrscheinlichkeit fiir den Impulswert p im Intervall dp ist |a(p)}? dp,
wobei a(p) im eindimensionalen Fall durch

i

a(p) ! f (@e” ®P*d

e o(Z) €

P ]/27zh v ‘
0

6 Kurzfassung IT
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gegeben ist (vergleiche (12,12)). Setzen wir hier yy(x) aus (24,8) ein und rechnen wir das
Integral aus, so erhalten wir die Wahrscheinlichkeitsverteilung
dnhla pa
la(p)|? = P — W cos? o7
2. Es sind die Energieniveaus fiir das in Abb. 2 dargestellte Potential zu berechnen.

Lésung. Die Bedingung (24,4) an den Topfgrenzen liefert die Gleichmigen

2m .
ketgd = —ketg(ak +6) =x= h_nUo_k
oder
in 6 in (k a + 9) 4
sind = —sin (ka S
]/2 m U,
Durch Elimination von § erhalten wir die transzendente Gleichung
kh
ka=(n+ 1)n — 2arcsin ———— (1)
]/2 m U,

(wobein = 0, 1, 2, . . . ist, und die Werte von arcsin zwischen 0 und /2 genommen werden).
Die Wurzeln dieser Gleichung bestimmen die Energieniveaus £ = k2 k%/2 m, wobei die

Werte von n die Niveaus in der Reihenfolge wachsender Energie durchnumerieren. Ins-

gesamt ist die Anzahl der Niveaus (fir endliches U,) endlich.

* Gleichung (1) kann man durch Einfithren der Variablen £ und des Parameters y gemi8

£ ka k 2
T2 "= {mU, ‘
in einer zweckmaBigeren Form aufschreiben. So erhalten wir fiir gerades n die Gleichung.
cosé = t7§, 2

wobei diejenigen ihrer Wurzeln genommen werden miissen, fir die tg& > 0 ist. Fir
ungerades n bekommen wir die Gleichung

sin§=4y¢§. 3)
Hierbei sind diejenigen ihrer Wurzeln zu nehmen, fiir die tg & < 0 gilt.
Speziell haben wir fiir einen flachen Topf, fir den U, < k?/ma? ist, y > 1, so daB die

Gleichung (3) iiberhaupt keine Wurzeln besitzt. Gleichung (2) andererseits besitzt eine
Wurzel (fir das Pluszeichen auf der rechten Seite), die gleich

11
£~y( _2?)

st. In diesem Falle liegt also im Topf nur ein Niveau,

2&2p2 m a?
Bo = o~ g Vo

das sich nahe dem oberen Rand befindet.

3. Es sind die Energieniveaus eines Teilchens zu bestimmen, das sich in einem recht-

eckigen ,,Potentialkasten‘ der Kantenlingen a, b, c bewegt. Innerhalb des Kastens sei
U = 0 und auBerhalb U = oco.

~
~

m a?

Losung. Die freie Bewegung des Teilchens innerhalb des Kastens vollzieht sich in
jeder der drei Bewegungsrichtungen unabhidngig von den beiden iibrigen. Deshalb er-
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geben sich die Energieniveaus einfach als Summen von drei Ausdriicken der Form (24,7):
n2h?(n} nl  nd
Bumm =gl T8 T o

Die Intervalle zwischen den Niveausstreben gegen Null bei einer VergréBerung der Kasten-
abmessungen. Fiir die stationdren Zustdnde lauten die Wellenfunktionen

), ny, Mg, Mg =1,2,...

/78 L AN T | WNgY | TMgR
= |/ —— sin sin sin
¥ my ny ]/abc a b ¢ ’

wobei die z-, y- und 2-Achse entlang der Kastenkanten gerichtet sind.

§ 25. Der lineare harmonische Oszillator

Wir betrachten ein Teilchen, das eindimensionale, kleine Schwingungen aus-
filhrt (einen sogenannten linearen harmonischen Oszillator). Die potentielle
Energie dieses Teilchens ist bekanntlich m w? 22/2, wobei w in der klassischen
Mechanik die Eigenfrequenz ist (siche I § 17). Dementsprechend ist der Ha-
miLTON-Operator fiir einen Oszillator :

~ 2 m w? 22

T 2m 2

Da die potentielle Energie fiir x — 4 oo gegen Unendlich strebt, kann das

Teilchen nur eine finite Bewegung ausfithren. Dementsprechend ist das ge-
samte Energieeigenwertspektrum diskret.

Wir wollen die Energieniveaus des Oszillators mit Hilfe der Matrizenmechanik

bestimmen.l) Dazu gehen wir von der ,,Bewegungsgleichung*“ in der Form

(21,2) aus; im vorliegenden Falle liefert sie

Z+arez=0. (25,2)
In Matrixschreibweise lautet diese Gleichung

(T)mn + 02 ZTmpn = 0.

Fir die Matrixelemente der Beschleunigung haben wir nach (11,8)

(@)mn = Omal@)mn = — ©2 p Tma. Deshalb erhalten wir

(25,1)

i

(w;m — ) Ty =0.

Daraus ist ersichtlich, daBl alle Matrixelemente z,,, gleich Null sind bis auf
diejenigen, fiir die wp, = + w ist. Wir numerieren alle stationdren Zustdande
so, daB die Frequenzen -+ w zu den Ubergingen n —n F 1 gehoren, d. h.
Wy, n71 = + . Dann sind nur die Matrixelemente %, ,; von Null verschieden.

Es wird vorausgesetzt, dal die Wellenfunktionen y, reell gewahlt worden
sind. Da =z eine reelle Gréle ist, sind auch alle Matrixelemente z,, reell. Die
Hermitezitdtsbedingung (11,10) besagt jetzt, daBl die Matrix x,, symmetrisch
ist: Tpp = Tpm.

1) Dies wurde (1925) von W. HEISENBERG noch vor dem Auffinden der Wellengleichung
durch E. SCHRODINGER getan.

6"
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Zur Berechnung der von Null verschiedenen Matrixelemente von z verwenden
wir die Vertauschungsregel

oA 2o .
XX —Tx = —1

’

S|

in Matrixschreibweise

th
= .

(% Z)mn — (T X)mn = — p-

Mit Hilfe der Multiplikationsregel fiir Matrizen (11,12) erhalten wir daraus fiir
m=n
! k

llz‘ (Wn1 Tni Tin — Tpy Wy g Tyn) = 2 Zzl‘ (7Y xfu = — 'L;
In dieser Summe sind nur die Glieder mit = n 4- 1 von Null verschieden, so
daf sich

(xn+1, n)2 . (xn, n—l)2 = 2% (25,3)
ergibt.

Wir schlieBen aus dieser Gleichung, dal die Grofien (z,..;,,)? eine arithme-
tische Folge bilden. Diese Folge ist nach oben nicht beschriankt, sie ist aber
unbedingt nach unten beschriankt, weil in ihr nur positive Glieder enthalten
sein konnen. Bisher haben wir nur die relative Anordnung der Zustands-
indizes n, aber nicht deren absolute Werte festgelegt. Wir kénnen daher will-
kiirlich einen Wert von n auswahlen, der zu dem ersten, dem Grundzustand
des Oszillators, gehéren soll. Wir setzen diesen Wert gleich Null. Dement-
sprechend mufl man %, _, als identisch gleich Null ansehen. Die wiederholte
Anwendung der Gleichungen (25,3) mit » =0, 1, ... ergibt

nh
2mw

(xn, n-1)? =

Wir erhalten also endgiiltig den folgenden Ausdruck fiir die von Null verschie-
denen Matrixelemente von z:

nk
ZTon-1=%p_1,n =V . (25’4)

2mw

Die Matrix des Operators H ist diagonal, und die Matrixelemente H,, sind
die gesuchten Energieeigenwerte E, des Oszillators. Um diese zu berechnen,
schreiben wir

H,, = (-’132)7;7» + w?(x?), nl

I

N\ﬁ Ml§ w|§

-~

[
[Z TWny Tny TWin Tin + 0% 3 Ty xln]
l

(w2 + wnl) xln .
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In der Summe iiber I sind nur die Glieder mit I = = =+ 1 von Null verschieden.
Wir setzen (25,4) ein und erhalten

E,:(n,-y%)rzw, n=0,12,... (25,5)

Die Energieniveaus des Oszillators sind also dquidistant angeordnet, der
Abstand zwischen zwei benachbarten Niveaus ist # w. Die Energie des Grund-
zustandes (n = 0) ist % w/2; wir betonen, dal sie von Null verschieden ist.

Das Ergebnis (25,5) kann man auch durch Lésen der SCHRODINGER-Gleichung
erhalten. Fiir den Oszillator hat diese Gleichung die Form

d2py 2m m w? 22
Hier fithrt man zweckmaBig statt der Koordinate x die dimensionslose Variable &
durch die Beziehung

=/ = (25,7)
ein. Dann erhalten wir
2E
v+ (5 — &) =0 (25.9)
(der Strich bedeutet hier die Ableitung nach £).

Fiir grofle £ kann man 2 E/k w gegeniiber £2 vernachldssigen. Die Gleichung
y'" = £29 hat die asymptotischen Integrale y = e*®/? (die Differentiation
dieser Funktion ergibt unter Vernachldssigung von Gliedern niedrigerer Ord-
nung in & tatsdchlich "’ = £%2 ). Da die Wellenfunktion fiir x = 4 oo endlich

bleiben mufl, mufl man im Exponenten das negative Vorzeichen wiahlen. Nach
dem Gesagten erscheint es natiirlich, in der Gleichung (25,8) die Substitution

v =e "2 y(&) (25,9)

vorzunehmen. Fiir die Funktion y(£) erhalten wir mit der Bezeichnung
2Ehw —1=2n

y' —2Ey +2ny=0. (25,10)

Die Funktion y(£) muBl dabei fiir alle endlichen & endlich sein, fiir § = 4 o
darf sie gegen unendlich gehen, aber nicht schneller als eine endliche Potenz
von £ (so daB die Funktion ¢ verschwindet).

Wir suchen die Lésung der Gleichung (25,10) in Gestalt der Reihe

x=Z ok (25,11)
8=0
Durch ihr Einsetzen in die Gleichung erhalten wir

Sas(s—1DE2—25as8+2n 5 a8 =0.
8=2 §=0

§=0
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In der ersten Summe nehmen wir eine Umbenennung des Summationsindexes
vor, indem wir s durch s + 2 ersetzen. Dann folgt

é‘o[a3+2(8+1)(s+2)+2(n—s)a,].5’=0.

Damit diese Gleichung identisch erfiillt ist, muB fiir jede Potenz von & der
zugehorige Koeffizient Null sein. Daraus finden wir die Rekursionsformel
2(n—2s)
B2 = T e e+ Y
die die Koeffizienten aufeinanderfolgender Glieder der Reihe (25,11) verkniipft.
In erster Linie sehen wir, dal die Reihe entweder nur geradzahlige oder nur
ungeradzahlige Potenzen von £ enthélt. Um die oben aufgestellte Bedingung
zu erfiillen, darf diese Reihe nur Glieder endlicher Potenzen enthalten, d. h.,
sie muf} bei einem gewissen endlichen s abbrechen. Aus (25,12) ist ersichtlich,
daf dafiir » eine ganze positive Zahl sein muB: Die Reihe bricht dann mit dem
Glied der Potenz s = n ab, d. h., sie fiihrt auf ein Polynom vom Grade n. Auf
diese Weise gelangen wir wieder zu dem uns schon bekannten Ergebnis (25,5)
fir die Energieeigenwerte.
Wir schreiben nur fiir den Grundzustand des Oszillators die Wellenfunktion
in expliziter Form auf. Fir n = 0 reduziert sich das Polynom auf eine Kon-
stante. Bestimmen wir sie so, dafl die Wellenfunktion der Normierungsbedin-

gung

a,, (25,12)

S yi(x) dz =1

geniigt, dann erhalten wir

me

Yo(@) = ("‘ “’)m e T (25,13)

h

Wie es sein mul}, hat diese Funktion keine Nullstellen fiir endliches z.

Aufgabe

Es ist die Wahrscheinlichkeitsverteilung fiir die verschiedenen Impulswerte im Grund-
zustand eines Oszillators zu bestimmen.

Losung. Analog zur Aufgabe 1, § 24 berechnen wir das Integral

(o]

1 =l
a(p>=72ﬁ wo@)e " dz.

Nach der Substitution « + ¢ p/m w = 2 fiihrt es sich auf das PorssoNsche Integral zuriick,
und man erhilt

1 p?
N T (~+5=)
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§ 26. Die quasiklassische Wellenfunktion

Sind die pE BroGLIE-Wellenldngen der Teilchen klein im Vergleich zu den
Abmessungen, die die spezifischen Bedingungen einer gegebenen Aufgabe cha-
rakterisieren, dann kommen die Eigenschaften des Systems klassischen nahe.
In § 6 wurde schon die allgemeine Gestalt der Wellenfunktionen in solchen
quastklassischen Fillen angegeben, und in §§ 12 und 14 wurde diese zur Her-
leitung quantenmechanischer Operatoren fiir grundlegende physikalische Gré8en
benutzt. Jetzt wollen wir eingehender verfolgen, auf welche Weise in der
ScHRODINGER-Gleichung der Grenziibergang zum quasiklassischen Fall vor sich
geht.

In § 6 wurde festgestellt, daf} der Grenziibergang von der Quantenmechanik
zur klassischen Mechanik, formal gesehen, der Grenziibergang i —0 ist. Im
quasiklassischen Fall kann man folglich % als kleinen Parameter betrachten
und den Ausdruck

W—ae (26,1)
(in dem die GréBen a und S als nicht von % abhingig angenommen werden)
als Anfang einer Entwicklung der Wellenfunktion nach Potenzen dieses Para-
meters. Schreiben wir den Ausdruck (26,1) als {(z S 4 % In a)/i}, dann sehen
wir, daBl er dem Beginn einer Entwicklung des Exponenten entspricht, wobei
nur die ersten beiden Glieder beriicksichtigt wurden. Deshalb miissen auch in
den folgenden Rechnungen nur die Terme bis zur ersten Potenz in i mitge-
nommen werden.

Der Einfachheit halber werden wir ein Teilchen im duBleren Feld behandeln.
Setzen wir (26,1) in die ScCHRODINGER-Gleichung (20,6) ein, so erhalten wir bei
Ausfiithrung der Differentiationen und bei Beriicksichtigung nur solcher Glieder,
die proportional den ersten beiden Potenzen von % sind,

o8 oa
ot

as —ihy

:

a k ih
(26,2)
Da die Glieder nullter und erster Ordnung in % jedes fiir sich genommen Null
werden miissen, finden wir hieraus die zwei Gleichungen
oS 1

Tt (VSE+U=0, (26,3)
da a 1

Wie zu erwarten, ist die erste von ihnen die HamiLToN-JacoBI-Gleichung fiir
die Wirkung S des Teilchens (siehe I § 31). Die zweite Gleichung, (26,4), kann
nach Multiplikation mit 2 a in die Gestalt

da? . 48 :
Tl div (a2 7) =0 (26,5)
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umgeschrieben werden. Diese Gleichung besitzt einen anschaulichen physika-
lischen Sinn. Das Quadrat |¥|? = a? ist die Aufenthaltswahrscheinlichkeits-
dichte des Teilchens im Raum; VS/m = p/m ist die klassische Teilchengeschwin-
digkeit ». Deshalb stellt Gleichung (26,5) nichts anderes dar als eine Konti-
nuitétsgleichung, die zum Ausdruck bringt, daBl sich die Wahrscheinlichkeits-
dichte nach den Gesetzen der klassischen Mechanik ,ausbreitet‘, und zwar
mit der klassischen Geschwindigkeit » in jedem Raumpunkt.

Fiir stationdre Zustédnde, d. h. bei vorgegebener Energie E, ergibt sich die
Wirkung als

S=—Et+ Sy, v, 2), (26,6)

wobei S, eine Funktion der Koordinaten darstellt (die sogenannte ,,verkiirzte
Wirkung‘‘), die der Gleichung

1 .
am VS +U=E (26,7)

geniigt. Die Amplitude a der Wellenfunktion ihrerseits hingt im Falle sta-
tiondrer Zustédnde nicht von der Zeit ab und geniigt der Gleichung

div (a2 VS) = 0. (26,8)

Wir wollen nun die quasiklassische Funktion fiir stationdre Zustdnde im
Falle einer eindimensionalen Bewegung eines Teilchens im Felde U(x) in expliziter
Form aufschreiben. In Gleichung (26,7) haben wir dann (VS;)? = (dS,/dz)2,
so daB ihre Losung

S==x/pdx, @) =})2m (E — U) (26.,9)

lautet. Der Ausdruck p(z) unter dem Integral stellt weiter nichts dar als den
klassischen Impuls des Teilchens, ausgedriickt als Funktion von den Koordi-
naten. Aus (26,8) finden wir nun

d
d—x(azp)=0, a?p = const ,

so daB a = const /{p gilt. Auf diese Weise erhalten wir die allgemeine Lisung
der SCHRODINGER-Gleichung in der Gestalt

C L dz - l dz
_Ogrlre 6 -5 ) (26,10)
7] V»
mit C,, C, als konstante Koeffizienten.
Das Auftreten des Faktors l/]/;_z in der Wellenfunktion kann einfach erklart
werden. Die Aufenthaltswahrscheinlichkeit eines Teilchens in den Punkten
mit Koordinaten zwischen z und x + dx wird durch das Quadrat |y|? gegeben,

d. h., sie ist im wesentlichen proportional zu 1/p. Das ist gerade so, wie man
es fiir ein ,,quasiklassisches Teilchen‘‘ erwarten wiirde, da bei einer klassischen
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Bewegung die Zeit, die ein Teilchen in dem Intervall d# verbringt, umgekehrt
proportional zur Geschwindigkeit (oder dem Impuls) des Teilchens ist.

In den ,klassischnicht erlaubten‘‘ Raumgebieten mit £ < U(z) ist die Funk-
tion p(x) rein imaginir, so daBl die Exponenten reell werden. Die Wellen-
funktion fiir diese Bereiche schreiben wir in der Form

o, -wfma ¢ L[iwe

py=-—e ==Je .
Viel Vizl

Kléren wir nun etwas genauer die Bedingung fiir die Anwendbarkeit der

erhaltenen Resultate. Diejenigen Glieder in Gleichung (26,2), die % enthalten,

miissen sehr klein sein im Vergleich zu den Gliedern ohne #. Vergleichen wir
z. B. die Terme

(26,11)

@ z__“_(‘_l§2_L 2
Zm N —Em i) —am
tha tha d®28  dha dp
2mAS_2m?1x—2—2md_x

Die Bedingung, daBl der zweite im Vergleich zum ersten klein ist, lautet
(2/p?)|dp/de| < 1 oder

di
al <1 (26,12)

mit # = /2 und A(x) = 2 = &i/p(x) als DE BrRoGLIE-Wellenldnge des Teilchens,
die mit Hilfe der klassischen Funktion p(x) als Funktion von x ausgedriickt
ist. Auf diese Weise erhalten wir eine quantitative Bedingung dafiir, wann die
Bewegung quasiklassisch ist: Die Wellenldnge des Teilchens darf sich auf einer
Strecke von der GréBenordnung der Wellenlidnge selbst wenig @ndern. Die hier
hergeleiteten Formeln sind in denjenigen Raumbereichen nicht anwendbar, in
denen diese Bedingung nicht erfiillt ist.

Die quasiklassische Néaherung ist offenkundig in der Niéhe von Umkehr-
punkten nicht anwendbar, d. h. nahe jener Punkte, an denen entsprechend der
klassischen Mechanik das Teilchen anhalten und sich danach in entgegen-
gesetzte Richtung bewegen wiirde. Diese Punkte bestimmen sich aus der
Gleichung p(x) = 0. Fiir p — 0 strebt die DE BrocLIE-Wellenlinge gegen Un-
endlich und kann auf keinen Fall als klein angenommen werden.

§ 27. Die Quantisierungsvorschrift nach Bour und SOMMERFELD

Die im vorigen Paragraphen gewonnenen Formeln gestatten die Herleitung einer
Vorschrift fiir die Bestimmung der quantenmechanischen Energieniveaus im
quasiklassischen Falle. Dazu betrachten wir eine finite eindimensionale Be-
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wegung eines Teilchens in einem Potentialtopf; der klassisch zuléssige Bereich
a < z < b wird durch zwei Umkehrpunkte begrenzt (Abb. 3).1)

.Die Randbedingungen fiir die Wellenfunktion bestehen in den Forderungen,
daB sie innerhalb jedes der zwei klassisch nicht erlaubten Gebiete I und 111
so abklingt, um schliefilich fiir x — 4 oo Null zu werden. Desweiteren wissen

Ylx)

i

|

l
Abb.3 | i

a

wir, daf} die allgemeine Losung der SCHRODINGER-Gleichung fiir diese Bereiche
die Gestalt (26,11) und fiir das Gebiet I/ die Form (26,10) besitzt. Aus den
obigen Bedingungen kénnte man fiir jeden der Bereiche I —III konstante
Koeffizienten zu diesen Losungen bestimmen, indem man die Lésungen an den
‘Grenzen, d. h. den Punkten z = a und z = b, aneinander ,,anschlosse. Aller-
dings ist eine unmittelbare Verwirklichung eines solchen ,,Anschlusses‘‘ deshalb
nicht méglich, weil gerade in der Néhe dieser Punkte die quasiklassische Néhe-
rung (in der die Funktionen (26, 10— 11) berechnet werden) nicht anwendbar ist.

Diese Komplikation fdllt weg, wenn man sich auf eine erste, grobere Nahe-
rung beschrinkt. Sie besteht darin, daB die Randbedingungen, die das Null-
werden der Wellenfunktion im Unendlichen fordern, durch solche ersetzt
werden, die das Nullwerden schon in den Punkten # = @ und z = b verlangen.

Im klassischen Grenzfall sind diese Punkte die absoluten Bewegungsgrenzen,
die das Teilchen in keinem Falle iiberwindet. Obwohl in der quasiklassischen
Néherung das Teilchen auch in die klassisch nicht zuldssigen Gebiete vor-
dringen kann, klingen jedoch die Wellenfunktionen in ihnen sehr schnell ab.
Dieser Umstand ist die Grundlage fiir die angegebene Ersetzung der Rand-
bedingungen.

Die Randbedingung y = 0 an der Stelle z = a fiihrt fiir die Wellenfunktion
im Gebiet I1 zu dem Ausdruck

x
c .1
zp=—sm7fpdx. (27,1)
7Y 4
1) In der klassischen Mechanik wiirde ein Teilchen in einem solchen Feld eine periodische
Bewegung mit der Periode
b b
dx dz
T'=2| —=2m| —
v r

vom Punkte zum Punktd und wieder zuriick ausfithren (v — Teilchengeschwindigkeit).
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Auf die gleiche Weise wiirden wir andererseits durch Realisieren der Bedingung
w = 0 im Punkte x = b
b
(04 1
P = ——=sin + f pdz .
ypoot,
erhalten. Damit diese beiden Ausdriicke im gesamten Bereich iibereinstimmen,

muB die Summe ihrer Phasen (diese Summe ist eine konstante Grofe) ein
ganzzahliges Vielfaches von 7 sein:

b
1
7/‘1) de =n=n (27,2)

(wobei C = (—1)* ¢’ gilt). In anderer Form kann man dies als
¢pdx=2nhn (27,3)

schreiben; hierbei wird das Integral iiber eine vollstindige Periode der klas-
sischen Teilchenbewegung genommen (von a bis b und wieder zuriick). Das ist
genau die Bedingung, die im quasiklassischen Fall die stationdren Zustdnde
eines Teilchens bestimmt. Sie entspricht der Quaniisierungsvorschrift nach BoHR
und SOMMERFELD fiir die alte (korrespondenzmdifige) Quantenmechanik.

Da in der quasiklassischen Néherung % die Rolle eines kleinen Parameters
spielt, stellt der Ausdruck auf der linken Seite von Gleichung (27,2) eine grofie
Grofe dar. Das Gleiche trifft folglich auch auf die ganze Zahl n zu. Die Phase
der Wellenfunktion (27,1) durchlduft den Bereich von 0 im Punkte z = a bis
nn fiir x = b, so daB der Sinus innerhalb dieses Intervalls n — 1 ~ n mal
Null wird. Auf diese Weise bestimmt die ganze Zahl n die Anzahl der Null-
stellen der Wellenfunktion. Sie spielt entsprechend dem Knotensatz (§ 22) da-
durch die Rolle einer Quantenzahl, die aufeinanderfolgende gequantelte Energie-
niveaus durchnumeriert.!)

Die Tatsache, daBl die quasiklassische Néaherung ihren Ausdruck in grofen
Quantenzahlen = findet, hat einen einfachen und anschaulichen Hintergrund.
Es ist offensichtlich, daBB der Abstand zwischen benachbarten Nullstellen der
Wellenfunktion der GroBenordnung nach mit der DE BrocLie-Wellenlinge
iibereinstimmt. Fiir groBe n ist dieser Abstand klein (~(b — a)[n), so daB
die Wellenldnge klein ist im Vergleich zu den Abmessungen des Bewegungs-
bereiches.

Ausgehend von der Quantisierungsvorschrift (27,3) kann man den allge-
meinen Charakter der Verteilung der Niveaus im Energiespektrum erkennen.
AE sei der Abstand zwischen zwei benachbarten Niveaus, d. h. zwischen Ni-

1) Eine genauere Untersuchung, die die exakten (und nicht quasiklassischen) Losungen
der SCERODINGER-G]elchung in der Nihe der Umkehrpunkte benutzt, fiihrt zum Ersetzen
der ganzen Zahl » in (27,2—3) durch » + 1/2. Sie zelgt ferner, daB die Anzahl der Null-
stellen der Wellenfunktion fiir endliche Absténde im gesamten Bewegungsbereich exakt
n ist.
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veaus, die sich in ihrer Quantenzahl » um 1 unterscheiden. AE ist (fiir groBe )
im Vergleich zur Energie der Niveaus selbst klein. Auf Grund von (27,3)
kénnen wir deshalb

AE ﬁ%dx=2nh

schreiben. Es ist aber dE/dp = v, so daBl

op _ fdz

wird. Wir erhalten daher
4E=%h=hw. (27,4)

Der Abstand zwischen zwei benachbarten Energieniveaus ist also gleich 7 w.
Fiir eine ganze Reihe benachbarter Niveaus (fiir die die Differenz der Zahlen »
klein gegeniiber n selbst ist) kann man die zugehérigen Frequenzen w genéhert
als gleich ansehen. Wir kommen daher zu dem Schluf}, daf die Niveaus jeweils
in einem kleinen Abschnitt des quasiklassischen Teils des Spektrums dquidistant
in Abstdnden von % w angeordnet sind. Dieses Ergebnis konnte man iibrigens
von vornherein erwarten, weil die zu den Ubergingen zwischen verschiedenen
Energieniveaus gehorigen Frequenzen im quasiklassischen Fall ganzzahlige Viel-
fache der klassischen Frequenz w sein miissen.

Es ist interessant zu verfolgen, was im klassischen Grenzfall aus den Matrix-
elementen irgendeiner physikalischen Grofe f wird. Wir gehen davon aus, da§
der Mittelwert f fiir einen quantenmechanischen Zustand in der Grenze einfach
in den klassischen Wert dieser Gréfle iibergehen mull, wenn der Zustand selbst
im klassischen Grenzfall die Bewegung eines Teilchens mit einer bestimmten
Bahnkurve beschreibt. Zu einem solchen Zustand gehért ein Wellenpaket
(siehe § 6), das man durch Superposition einiger stationdrer Zustdnde mit be-
nachbarten Energiewerten erhdlt. Die Wellenfunktion eines derartigen Zu-
standes ist

V=X ag ¥y

Die Koeffizienten a, sind dabei nur in einem kleinen Intervall An der Quanten-
zahln von Null verschieden, 1 € An < n. Die Zahl n wird als gro voraus-
gesetzt, weil die stationdren Zustinde quasiklassisch sein sollen. Nach der
Definition ist der Mittelwert von f

f=SP*[Wds =3 ¥ akayfuneot.

Ersetzen wir die Summation iiber n und m durch die Summation iiber » und
die Differenz s = m — n, dann wird

/=X Za:—uaﬂfn—i»s,neiw” .
n o8

Gemal (27,4) haben wir dabei wn., = s wgeschrieben.
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Die mit Hilfe der quasiklassischen Wellenfunktionen berechneten Matrix-
elemente f,,» werden mit zunehmender Differenz m — n rasch kleiner. Gleich-
zeitig sind sie langsam verdnderliche Funktionen der Zahl n selbst (bei fest-
gehaltenem m — n). Auf Grund dessen kénnen wir ndherungsweise

f—ZZa asfse efwst = 2|a"|22fe“"“

mit der Bezeichnung

fs = fa+s,a
schreiben. 7 ist ein gewisser Mittelwert der Quantenzahl in dem Intervall An.
Wegen ' |a,/2 = 1 wird
n

f=2Xfetest. (27,5)

8
Die erhaltene Summe ist eine gewShnliche Fourier-Reihe. Im klassischen

Grenzfall mufl f— mit der klassischen Gréfle f(t) iibereinstimmen. Daher gehen
die Matrixelemente fnn» im klassischen Grenzfall in die Komponenten f,, _, der
Fourier-Entwicklung der klassischen Funktion f(¢) iiber.

Die Beziehung (27,3) kann man noch auf andere Weise interpretieren. Das
Integral gSp dz ist die Fldche, die von der geschlossenen klassischen Phasen-
bahn des Teilchens begrenzt wird (d. h. von der Kurve in der p, z-Ebene, dem
Phasenraum des Teilchens). Teilen wir diese Flidche in Zellen mit jeweils dem
Flacheninhalt 27 i ein, so erhalten wir insgesamt = Zellen. = ist aber die
Zahl der gequantelten Zustinde mit Energien, die nicht gréBer als ihr vor-
gegebener (der betrachteten Phasenbahn entsprechende) Wert sind. Auf diese
Weise kénnen wir sagen, dafl im quasiklassischen Fall jedem gequantelten
Zustand eine Zelle vm Phasenraum mit dem Flacheninhalt 2z i entspricht.
Anders ausgedriickt, die Zahl der Zustdnde, die zum Volumeneleinent Ap Az
des Phasenraumes gehoren, ist

Ap Az

PE2 I
Wenn man anstelle des Impulses den Wellenzahlvektor ¥ = p/& einfiihrt, dann
schreibt sich diese Zahl als Ak Az/2 7. Wie nicht anders zu erwarten ist,
stimmt sie mit dem Ausdruck fiir die Anzahl der Elgenschwmgungen eines
Wellenfeldes iiberein (siehe I § 76).

Diewichtige Begriffsbildung von ,,Zellen‘‘ im Phasenraum bezieht sich nicht nur
auf die eindimensionale Bewegung, die wir hier betrachteten, sondern schlecht-
hin auf jede quasiklassische Bewegung. Das ist nach der obigen Bemerkung
iiber den Zusammenhang mit der Zahl der Eigenschwingungen eines Wellen-
feldes in dem gegebenen Volumen klar. Allgemein enthélt das Volumenelement
des Phasenraumes eines Systems mit s Freiheitsgraden

A4qy ... 49, Apy . . . dp,
(2 7 b

(217,6)

(27,7)
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Quantenzusténde. Speziell ist die freie Bewegung in einem hinreichend groflen
Raumvolumen Q') immer quasiklassisch. Die Zahl der Quantenzustinde fiir
eine derartige Bewegung mit Impulskomponenten in vorgegebenen Intervallen
Aps, Apy, Ap, ist gleich
2 4p, 4py Ap.
(2 7 &)®
Die Vorstellung von einem Teilchen, das sich in einem grofien, jedoch end-
lichen Raumbereich 2 bewegt, wird manchmal mit dem Ziel verwendet, die
Behandlung eines kontinuierlichen durch diejenige eines diskreten Zustands-
spektrums zu ersetzen, wodurch eine Vereinfachung beim Aufschreiben der
Formeln erreicht wird (wir werden diesen Kunstgriff im zweiten Teil dieses
Buches verwenden). Fiir eine Bewegung in einem endlichen Volumen durch-
laufen die Eigenwerte der Impulskomponenten diskrete Zahlenfolgen (wobei die
Intervalle zwischen benachbarten Werten umgekehrt proportional zu den
Linearabmessungen des Bereiches sind und bei ihrer Vergroferung gegen Null
streben). Die Verteilungsdichte dieser Werte in einer solchen Folge (die Zu-
standsdichte) wird durch Ausdruck (27,8) bestimmt. Die normierten Wellen-
funktionen (ebene Wellen) fiir die stationdren Zustinde eines derartigen dis-
kreten Spektrums haben das Aussehen

27,8)

y(r) = V% S (27,9)

(wie man sagt, sind sie ,,auf 1 Teilchen im Volumen Q¢ normiert).

§ 28. Der Durchgangskoeffizient

Uns interessiert jetzt die Bewegung eines Teilchens in einem Feld, wie es in
Abb. 4 dargestellt ist: U(z) wichst monoton von einem konstanten Wert
(U = 0 fiir x - — oo0) bis zu einem anderen (U = U, fiir # — 4 o0). Nach
der klassischen Mechanik wird ein Teilchen, das sich in diesem Feld mit der
Energie E < U, von links nach rechts bewegt, bis an die Potentialschwelle

Abb. 4

X

1) Uberall dort, wo das Einfiihren eines ,,Normierungsvolumens* nétig wird, werden
wir es mit dem Buchstaben 2 bezeichnen. Dieses Volumen ist eine fiktive GréBe, die
stets aus den physikalischen Endresultaten herausfallt und deren Einfithrung nur aus
Griinden der Bequemlichkeit hinsichtlich des zu erorternden Sachverhaltes erfolgt.
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herankommen, daran reflektiert und sich in entgegengesetzte Richtung in
Bewegung setzen. Fiir £ > U, bewegt sich das Teilchen mit verminderter
Geschwindigkeit in der urspriinglichen Richtung weiter. In der Quanten-
mechanik tritt eine neue Erscheinung auf: Sogar fiir £ > U, kann das Teilchen
von der Potentialschwelle reflektiert werden. Die Reflexionswahrschein-
lichkeit mufl man prinzipiell folgendermafen ausrechnen.

Das Teilchen soll sich von links nach rechts bewegen. Fiir groBle positive
z-Werte muBB die Wellenfunktion ein Teilchen beschreiben, das ,,iber die
Schwelle‘ hinweg gegangen ist und sich in positiver z-Richtung bewegt, d. h.,
sie muf} fiir x — oo die asymptotische Gestalt

) | QI — .

p~ Aeihr ky =4 V2 m (E — U,) (28,1)
haben (4 ist eine Konstante). Um eine Lésung der ScARODINGER-Gleichung
zu finden, die dieser Randbedingung geniigt, berechnen wir den asymptotischen
Ausdruck fiir x — — co. Er ist eine Linearkombination der beiden Lésungen
der Gleichung fiir die freie Bewegung:

z—>—o00: preh® L Be k7, lc1=%)/2mE. (28,2)

Das erste Glied entspricht einem auf die Schwelle zulaufenden Teilchen
(w sei so normiert, daBl der Koeffizient dieses Gliedes gleich 1 ist). Das zweite -
Glied stellt ein an der Schwelle reflektiertes Teilchen dar. Die Wahrscheinlich-
keitsstromdichte in der einlaufenden Welle ist proportional &, in der reflek-
tierten proportional k,|B|? und in der durchgegangenen proportional k,|A|2.
Wir definieren den Durchgangskoeffizienten D fiir das Teilchen als das Verhilt-
nis der Wahrscheinlichkeitsstromdichte in der durchgegangenen Welle zu der
Stromdichte in der einfallenden Welle:

k
— Ii—]AP . . (28,3)

Analog kann man den Reflexionskoeffizienten R als das Verhdltnis der Strom-
dichte der reflektierten Welle zur Stromdichte der einfallenden Welle definieren.
Offensichtlich ist R =1 — D:

R=|Bz=1— I;—’IAP (28 4)
1

(diese Beziehung zwischen 4 und B ist automatisch erfiillt).

Bewegt sich ein Teilchen mit einer Energie E < U, von links nach rechts,
dann ist k, rein imagindr, und die Wellenfunktion klingt fir x - + oo ex-
ponentiell ab. Der reflektierte Strom ist gleich dem einfallenden, d. h., das
Teilchen wird an der Potentialschwelle total reflektiert.

Auf analoge Weise wird die Erscheinung des Durchganges eines Teilchens
durch eine Potentialbarriere (oder Potentialwall) behandelt, d. h. des Durch-

Ug
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gangs durch einen Raumbereich, in welchem die potentielle Energie die Gesamt-
energie des Teilchens iibersteigt (in Abb. 5 ist eine eindimensionale Barriere dar-
gestellt). In § 22 wurde schon erwihnt, dafl in der Quantenmechanik ein auf
eine Barriere auftreffendes Teilchen diese mit einer vonNull verschiedenen Wahr-
scheinlichkeit ,,durchdringen® kann. Die Durchlissigkeit der Barriere fiir auf
sie einfallende Teilchen kann man mittels des Durchgangskoeffizienten charak-
terisieren, der wiederum definiert wird als das Verhiltnis der Dichten von durch-
gehendem zu einfallendem Teilchenstrom. '

Ylx)

Abb. 5

|
|
1
a

Diesen Koeffizienten kann man in allgemeiner Form fiir eine eindimensionale
Potentialbarriere abschitzen, die der Bedingung geniigt, quasiklassisch zu sein.
"Wir erinnern daran, daB sich entsprechend dieser Bedingung (siehe (26,12))
der , klassische Impuls‘‘ p(x) des Teilchens und mit ihm die potentielle Energie
U(z) selbst hinreichend langsam mit # &ndern miissen. Dies bedeutet, dafl die
Potentialbarriere einen geringen Anstieg besitzen und damit breit sein mu8,
so daBl der Durchgangskoeffizient im quasiklassischen Falle klein wird.
Die Teilchen mégen von links, aus dem Bereich I (Abb. 5), auf die Barriere
einfallen. Im ,klassisch nichterreichbaren Gebiet 7I nimmt die Wellen-
funktion von links nach rechts nach dem Gesetz

i .
1p~exp(—7f|pldx), Ipl = V2m (U — E)
a

exponentiell ab (vgl. (26,11)), wobei sie sich verhéltnisméBig langsam &ndert;
hier und im weiteren lassen wir Faktoren bei der Exponentialfunktion weg.
Am anderen Rand der Barriere (im Punkte x = b) hat sich die Wellenfunktion
um den Faktor

b
1
exp(— v [ 19 dx)

im Vergleich zu ihrem Anfangswert in der einfallenden Welle (im Punkte z = a)
verkleinert. Die Stromdichte ist proportional dem Betragsquadrat der Wellen-
funktion (wiederum nur bis auf langsam verdnderliche Faktoren). Deshalb ist
das Verhiltnis der Dichten von durchgehendem zu einfallendem Strom gleich

b
D ~ exp (— i—f |p| dx) . (28,5)
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Diese Abschidtzung fiir den Durchgangskoeffizienten durch eine Potential-
barriere bleibt auch in solchen (realeren) Fillen richtig, in denen die Barriere
nicht als Ganzes, sondern nur fiir den iiberwiegenden Teil ihrer Ausdehnung
quasiklassisch ist. Solche Fille liegen vor, wrnn die auf einer Seite schwach an-
steigende Kurve der potentiellen Energie auf der anderen derart steil abfallt,
dafl die quasiklassische Néherung nicht anwendbar wird. Die allgemeine Be-
dingung fiir eine Anwendbarkeit der Formel (28,5) besteht darin, daf§ die im
Exponenten stehende GréBe grol sein muf.

Aufgaben

1. Es ist der Reflexionskoeffizient an einer rechteckigen Potentialstufe zu bestimmen;
die Energie des Teilchens sei £ > U, (Abb. 6).

Ulx)

—

Abb. 6

X

L6sung. In dem ganzen Bereich > 0 hat die Wellenfunktion die Form (28,1), in
dem Bereich x < 0 die Form (28,2). Die Konstanten 4 und B werden aus den AnschluB-
bedingungen fiir y und dy/dz bei * = 0 bestimmt:

1+ B=A4, ky(1—B)=k, 4
daraus ergeben sich

2k, B ky — &y
by 4 ky Tkt ky
Der Reflexionskoeffizient (28,4) ist?)

R= (kl — ka)z =(P1 "Pz)z
by + &, P»tpa)
Fir E = U, (k, = 0) wird R gleich 1, fiir £ — oo strebt R wie R = (U,/4 E)? gegen Null.

2. Man berechne den Durchgangskoeffizienten fir einen rechteckigen Potentialwall
(Abb. 7).

Losung. Essei E > U,, und das einlaufende Teilchen bewege sich von links nach rechts.
Wir haben dann fiir die Wellenfunktion in den verschiedenen Bereichen die folgenden

A=

1) Im klassischen Grenzfall muB der Reflexionskoeffizient Null werden. Indessen ent-
hdlt der gefundene Ausdruck iiberhaupt keine Quantenkonstante. Dieser scheinbare
Widerspruch klért sich folgendermaBen auf. Dem klassischen Grenzfall entspricht eine
pE BrogLIE-Wellenlinge des Teilchens 4 ~ #/p, die im Vergleich zu den fiir das Problem
charakteristischen Abmessungen klein ist, d. h., verglichen mit Abstéinden, in denen sich
das Feld U(x) merklich éndert. In dem behandelten schematischen Beispiel ist dieser
Abstand gleich Null (im Punkt x = 0), so daB der Grenziibergang nicht ausgefiihrt werden
kann.

7 Kurzfassung II
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Ausdriicke:
fir x < 0: p=¢ethiz L Qe-thz,
fir0< e < a: w=Beihiz + Be-ikiz,
fir z > a: y=Ceikz
Ufx)
%
" Abb. 7
a

(auf der Seite « > a darf nur die durchgegangene Welle vorhanden sein, die sich in po-
sitiver z-Richtung ausbreitet). Die Konstanten A, B, B’ und C werden aus den AnschluB-
bedingungen fiiry und dy/dz in den Punkten 2 = 0 und 2 = a bestimmt. Der Durchgangs-
koeffizient ist definiert als D = k,|C|?/k, = |C|?. Die Rechnungen ergeben

» 42K
D= :
(k2 — K sinta k, + 4 k2 k3

Fir E < U, ist k, eine rein imagindre GroéBe. Den entsprechenden Ausdruck fir D
erhdlt man, indem man k, durch 1 x,, mit % », = ]/2 m (U, — E), ersetzt:
4 k3 3

D= aititan rilia

3. Es ist nach Formel (28,5) der Durchgangskoeffizient fiir die in Abb. 8 dargestellte
Potentialbarriere abzuschitzen; U(z) = 0 fir <0, U(z) = Uy — F « fir 2 > 0.

Ylx)

Abb. 8

LSl

Losung. Eine einfache Rechnung fihrt zu dem Ergebnis

472m
D~ exp [— %;(Uo . E)3I2].

4. Es ist die Wahrscheinlichkeit fiir den Austritt eines Teilchens (mit dem Drehimpuls
Null) aus einem kugelsymmetrischen Potentialtopf abzuschitzen; U(r) = — U, fiir r < 7y,
fir r > ry jedoch CouLomB-AbstoBung: U(r) = a/r (Abb. 9).
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Ylr)

Abb. 9 v

Lésung. GemdB (28,5) haben wirl)
«fE

e s

und die Berechnung des Integrals gibt

el /2_m Eﬁ %1 Ery
w ~ exp —Tl F Brecos = " — ==}

" Im Grenzfall 7, — 0 geht diese Formel iber in

T« 2m . 270
w~exp|—3- g | ==\~ 7, |-

Diese Formeln sind anwendbar, wenn der Exponent gro8 ist, d. h. a/k v > 1 gilt.

§ 29. Die Bewegung im kugelsymmetrischen Feld

Das Problem der Bewegung zweier miteinander wechselwirkender Teilchen kann
in der Quantenmechanik auf ein Einkérperproblem zuriickgefiithrt werden. Das
geschieht dhnlich wie in der klassischen Mechanik (I § 11). Der HamrivrTon-
Operator zweier mit dem Potential U(r) (r ist der Abstand zwischen den Teil-
chen) wechselwirkender Teilchen (mit den Massen m, und m,) hat die Form
h2

T 2my
Darin sind 4, und 4, die LApLACE-Operatoren in bezug auf die Koordinaten der
Teilchen. Wir fiithren statt der Ortsvektoren der Teilchen, #; und 7,, die neuen
Variablen R und » ein:

-~ A2
H= My = g B+ U) - - (29,1)

e, R (29.2)

my -+ My
1) Hier wird der Umstand benutzt, daB sich das Problem der Bewegung eines Teilchens

(mit Drehimpuls gleich Null) im Zentralfeld auf dasjenige einer eindimensionalen Be-
wegung mit derselben potentiellen Energie zuriickfithren laBt — siehe § 30.

7
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(r — Vektor des gegenseitigen Abstandes, R — Radiusvektor zum Massen-
schwerpunkt der Teilchen). Eine einfache Rechnung ergibt

2 B?
mAR — 2_mA + U(r) (29,3)
(4g und A sind die Laprace-Operatoren beziiglich der Komponenten von R
und 7, m, + m, ist die Gesamtmasse des Systems, m = m, myf(m, + my) ist. die
sogenannte reduzierte Masse).

Der HamiLToN-Operator zerfillt also in die Summe aus zwei unabhéngigen
Teilen. Dementsprechend kann man p(»y, 1) als Produkt ¢(R) (r) ansetzen.
Die Funktion ¢(R) beschreibt dabei die Bewegung des Schwerpunktes (als
freie Bewegung eines Teilchens mit der Masse m, + m;). w(r) beschreibt die
Relativbewegung der Teilchen (als Bewegung eines Teilchens mit der Masse m
in dem kugelsymmetrischen Feld U = U(r)).

Die ScHRODINGER-Gleichung fiir die Bewegung eines Teilchens in einem
kugelsymmetrischen Feld hat die Gestalt

Ay + 55 (B — Uty =0. (29,4

H=—

Wir verwenden den bekannten Ausdruck fiir den Larrace-Operator in Kugel-
koordinaten und schreiben diese Gleichung in der Form

1 9 ay\ 171 of. .op 1 &
aliy P Tk I PR b | T il
r2 or (r 6r> + 72 [sin 6 a6 (Sm f 86) ' sin? 6 og?

2_':n (B —Ur))y = 0. (29,5)

Fiihren wir hier den Operator 2 (14,15) fiir das Quadrat des Drehimpulses ein,
so erhalten wir
e 1o, oy
i r—)+,2«p +UNy=Ey. (29,6)
Bei der Bewegung in einem kugelsymmetrischen Feld bleibt der Drehimpuls

erhalten. Wir betrachten die stationdren Zusténde mit bestimmten Werten
des Drehimpulses! und seiner Projektion m. Die Winkelabhéngigkeit der
Wellenfunktionen wird durch Vorgabe der Werte ! und m festgelegt. Dem-
entsprechend suchen wir die Losungen der Glelchung (26,6) in der Gestalt

v = R(r) Yin(0, @) ‘ -(29,7)
Beriicksichtigen wir, daBl eine Eigenfunktion des Drehimpulses der Gleichung
1*Y;, =1(+ 1) Yy, geniigt, dann erhalten wir fiir die Radialfunktion R(r)
die folgende Gleichung:

1d/(_dR\ I( + 1)

rzdr(r dr) R+2%E - UM E=0. (29.8)
Wir merken an, daf diese Glelchung die Werte I, = m iiberhaupt nicht enthalt.
Dies entspricht der uns schon bekannten (27 + 1)-fachen Richtungsentartung
von Niveaus beziiglich des Drehimpulses.
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Wir wollen uns mit der Untersuchung des Radialanteils der Wellenfunk-
tionen beschiftigen. Durch die Substitution

Ry =22 (29,9)

r

wird aus der Gleichung (29,8)
d
dr72‘+[ h? E—U)—
Wir nehmen an, daBl die potentielle Energie U(r), sollte sie auch fiir r — 0
unendlich werden, langsamer ansteigt als 1/r2, d. h. der Bedingung

r2U(r) >0 fiir r—0 (29,11)

geniigt. Damit wird (im Falle eines Feldes, fiir das U — — oo bei r — 0 gilt)
die Moglichkeit eines ,,Sturzes“ des Teilchens ins Zentrum ausgeschlossen, wie
bereits in der FuBlnote auf Seite 61 erwdhnt wurde. Demzufolge bleibt die
Wellenfunktion (und mit ihr die Wahrscheinlichkeitsdichte |y|2) im gesamten
Raum einschlieBlich des Punktes » = 0 endlich. Die Funktion y = r R ihrer-
seits muf folglich fiir » = 0 Null sein:

%(0) =0. (29,12)

Die Gleichung (29,10) stimmt formal mit der SCHRODINGER-Gleichung fiir
eine eindimensionale Bewegung in einem Feld mit der potentiellen Energie
B oIl +1)

Ur) = U + 50 — (29,13)
iiberein; das zweite Glied kann man als Zentrifugalenergie bezeichnen. Das
Problem der Bewegung in einem kugelsymmetrischen Feld wird also auf das
Problem einer eindimensionalen Bewegung in einem Bereich zuriickgefiihrt, der
auf einer Seite beschrénkt ist (Randbedingung y = 0 fiir » = 0). ,,Eindimen-
sionalen Charakter besitzt auch die Normierungsbedingung fiir Funktionen y,
die sich aus dem Integral

i’;ﬂ] 2=0. (29,10)

SIR2r2dr = [|x2dr =1 (29,14)
0 0

bestimmt.

Zusammen mit der Randbedingung (29,12) wird durch Vorgabe eines (zu-
lassigen) Energiewertes die Losung der Gleichung (29,10) vollstindig bestimmt.
Das bedeutet, dal} bei einer Bewegung in einem Zentralfeld ein Zustand véllig
durch die Werte E, I, m festgelegt wird: Energie, Drehimpuls und seine Pro-
jektion bilden zusammen einen vollsténdigen Satz physukallscher GroBen fiir
eine solche Bewegung.

Da die Bewegung in einem kugelsymmetrischen Feld auf eine eindimensionale
Bewegung zuriickgefiihrt worden ist, kann man den Knotensatz anwenden
(sieche § 22). Wir ordnen die Energieeigenwerte (des diskreten Spektrums) bei
gegebenem ! nach wachsenden Werten der Energie und numerieren sie mit den
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Ordnungszahlen #,. Dem niedrigsten Niveau wird die Nummer n, = 0 zu-
geordnet. n, gibt dann die Zahl der Knoten jn dem Radialanteil der Wellen-
funktion fiir endliche r-Werte an (der Punkt » = 0 wird nicht mitgezéhlt).
Die Zahl n, wird die radiale Quantenzahl genannt. Die Zahll heiit bei einer
Bewegung in einem kugelsymmetrischen Feld manchmal aztmutale Quantenzahl,
m nennt man die magnetische Quantenzahl.

Fiir die Bezeichnung der Zustdnde mit verschiedenen Drehimpulswerten [
gibt es eine allgemein iibliche Symbolik. Die Zustinde werden nach der fol-
genden Zuordnung mit den Buchstaben des lateinischen Alphabe‘ts bezeichnet :

I=0 1 2 3 4 5 6 7...
s p 4 f g Rk <t k... (29,15)
Wir wollen die Gestalt der Radialfunktion in der Néhe des Koordinaten-
ursprungs bestimmen. Fiir kleine r suchen wir R(r) in der Form R = const - %
Setzen wir das in die Gleichung
d dR
= () -
’dr(r dr) Il+1)R=0
ein, die man aus (29,8) durch Multiplikation mit 72 und anschlieBenden Grenz-
iibergang r — 0 erhilt, dann finden wir (unter Beriicksichtigung von (29,11))

ss+1)=101+1.
Daraus ergibt sich s =1 oder s = — (I + 1). Die Losung mit s = — (I + 1)
erfiillt die erforderlichen Bedingungen nicht; sie wird fiir » = 0 unendlich.
Es bleibt also die Lésung mit s = 1 iibrig, d. h., in der Néhe des Koordinaten-
ursprungs sind die Wellenfunktionen der Zustinde mit gegebenem [ propor-
tional zu r:

R, ~ const - 7. (29,16)

Die Wahrscheinlichkeit, daf sich das Teilchen in einer Entfernung vom Zen-
trum zwischen r und r + dr befindet, wird durch die GréBe 72| R|2 gegeben und
ist daher proportional zu r2¢+1). Sje geht im Koordinatenursprung um so
schneller gegen Null, je gréBer der Wert von 1 ist.

§ 30. Kugelwellen

Die ebene Welle (20,9) beschreibt einen stationdren Zustand, in dem das
Teilchen einen bestimmten Impuls p (und die Energie £ = p%/2 m) hat. Wir
wollen jetzt solche stationdren Zusténde eines freien Teilchens betrachten
(Kugelwellen), in denen es neben der Energie bestimmte Werte fiir den Betrag
und die Projektion des Drehimpulses hat. Statt der Energie fithren wir zweck-
maéBigerweise den Betrag des Wellenzahlvektors ein:

b=21ZmE. (30,1)
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Die Wellenfunktion eines Zustandes mit dem Drehimpuls! und der Pro-
jektion m ist

Yeim = Rkl (1‘) Yl m(e’ QD) . (30:2)
Die Radialfunktion wird dabei durch die Gleichung
" 2 Ig+1
R N e [ (30,3)

(Gleichung (29,8) ohne U(r)) bestimmt. Die zum (bzgl. k) kontinuierlichen
Spektrum gehérenden Wellenfunktionen g, geniigen der Orthonormierungs-
bedingung

fw:'l'm’ Yiim dV = 6”’ 6mm’ 6(k’ - k) .
Fiir verschiedene I, I’ und m, m’ wird die Orthogonalitdt durch die winkel-
abhidngigen Anteile der Wellenfunktionen gewéhrleistet. Die Radialfunktionen
miissen nach der Vorschrift

f 72 Rk'l qul dr = é(kl — k) (30,4)
0

normiert werden.
Fiir I = 0 kann man die Gleichung (30,3) auch als
d2
g2 (" Beo) + K27 Byo = 0 (30,5)
schreiben. Thre fiir » = O endliche und nach der Vorschrift (30,4) normierte

Loésung ist

2 sinkr
Rko:V; ® .

Um die Richtigkeit der Normierung zu iiberpriifen, schreiben wir

[e<] [ee]

2
f’z By o Byo dr =-;z—fsink’rsinkr-dr
o 0

(30,6)

=%fmﬂy—hwm+%fmﬂk+hw&.(%m
] 0 '

Gemaéf der Formel
Scosazx-dxr = md(x) (30,8)
0

liefert das erste Integral in (30,7) die geforderte 6-Funktion ; das zweite Integral

wird Null, da & + & 7 0 gilt.!)

1) Formel (30,8) folgt aus (12,9) durch Abspaiten des Realteils in beiden Gleichungs-
seiten und durch Ersetzen des Integrals mit den Grenzen —oo und co durch das mit zwei
zu multiplizierende Integral von O bis co.
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Fiir 7 £ 0 haben die Funktionen Ry, ein kompliziertes Aussehen. Sie kénnen
sich jedoch fiir grofle Entfernungen r von (30,6) nur durch die Phase der trigo-
nometrischen Funktion unterscheiden. Dies folgt daraus, daB man fiir r — oo
in der Gleichung (30,3) das Glied ! (I + 1)/72 weglassen kann und die Gleichung
sich damit nicht von derjenigen fiir I = O unterscheidet (da eine solche Glei-
chung sich jedoch nur auf Bereiche groBler r bezieht, entfdllt die Moglichkeit,
eine der beiden unabhéngigen Losungen aus der Endlichkeitsbedingung fiir
r = 0 auszuwiéhlen). Die Phasendnderung erweist sich im Vergleich zu dem
Fall I =0 als = 1/2, so daB sich fiir groBe Entfernungen die asymptotische

Gestalt
2 sin(kr —al/2
Ry ”V? sin (kr —al2) (30.9)

N r
ergibt.)

Ein analoger asymptotischer Ausdruck gilt nicht nur fiir den Radialanteil
der Wellenfunktion einer freien Bewegung, sondern auch fiir die Bewegung
(mit positiver Energie) in einem beliebigen Feld, das fiir r — oo geniigend
schnell abnimmt.2) In groBen Entfernungen kénnen wir in der SCHRODINGER-
Gleichung sowohl das Feld als auch die Zentrifugalenergie vernachlissigen,
und wir erhalten wiederum fiir R;; eine Gleichung der Form (30,5). Die all-
gemeine Losung dieser Gleichung ist

B 1
Ry~ -I/; =i sin (Ic r — n?l + 5,) 5 (30,10)

Darin ist §; eine konstante Phasenverschiebung; das Glied —I /2 im Argument
des Sinus ist deshalb eingefiihrt worden, damit bei Abwesenheit des Feldes
d; = 0 ist. Die konstante Phase §; wird durch die Randbedingung (R, soll fiir
r — 0 endlich sein) festgelegt, fiir die die exakte SCHRODINGER-Gleichung gel6st
werden muB}, und kann nicht allgemein berechnet werden. Die Phasen ¢, sind
selbstverstindlich Funktionen von ! und von k; sie sind ein wesentliches Cha-
rakteristikum fiir die Eigenfunktionen des kontinuierlichen Spektrums.

Wir betrachten ein freies Teilchen, das sich mit bestimmtem Impuls p = k &
in positiver z-Richtung bewegt. Die Wellenfunktion eines solchen Teilchens
hat die Gestalt

w = const - e'¥? = const . ei*rcos o (30,11)
Wir entwickeln diese Funktion nach den Wellenfunktionen yy;,, fiir die freie

Bewegung mit bestimmten Drehimpulsen. Da die Funktion (30,11) axial-
symmetrisch zur z-Achse ist, kénnen in die Entwicklung nur diejenigen Funk-

1) Die fir r = 0 endlich bleibende Lésung der Gleichung (30,3) 1aBt sich durch die
BesseL-Funktion mit halbzahligem Index ausdriicken:
Ry = Ji+1)2(k r)/}/lﬁ.

Der bekannte asymptotische Ausdruck fiir die BEssEL-Funktionen fithrt auf (30,9).
2) Genauer, das Feld U(r) muB schneller abklingen als 1/r.
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tionen eingehen, die von dem Winkel ¢ unabhéngig sind, d. h. die Funktionen
mit m = 0. Diese Funktionen sind y;;, = const - Pj(cos 6) Ry;, und demzufolge
muBl die gesuchte Entwicklung die Gestalt

eikz — lz a; Ry1(r) Py(cos 6) (30,12)
-0

besitzen, worin die a; konstante Koeffizienten bedeuten.

Zur Bestimmung dieser Koeffizienten multiplizieren wir Gleichung (30,12)
mit Py(cos 0) sin 6 und integrieren beide Seiten iiber df. Beriicksichtigen wir
die Orthogonalitdt der Polynome P, fiir verschiedene ! sowie den Wert des
Normierungsintegrals

2
fP}"(cos ) sin 6 d6 = TET (30,13)
0
dann erhalten wir
. 2
fezkrcos g PI(COS 0) sin 6 d§ = a; m R“(r) . (30,14)

0
Das Integral auf der linken Seite der Gleichung 1a8t sich fiir das Gebiet grofler
r leicht berechnen, da man dann alle Glieder mit héheren Potenzen von 1/r
vernachldssigen kann. Im Rahmen dieser Genauigkeit erhalten wir nach Ein-
filhren der neuen Integrationsvariablen 4 = cos § durch partielle Integration

! o etkru
[ et P du ~ P S

-1

(hierbei wurden auBerdem die bekannten Relationen P)(1) = 1, Pj(—1) = (—1)!
verwendet). Diesen Ausdruck kann man in der Form

24 l
—sm(lcr—n—)

1 eikr_ (— 1)le—-ikr

._1_ ikr

kr 2
aufschreiben, so dafl schlieBlich Gleichung (30,14) mit den Ry, aus (30,9)

4
= l/;' % @1+ 1) (30,15)

liefert. Mit diesen Koeffizienten nimmt die Entwicklung (30,12) fiir grofe
Entfernungen r die folgende asymptotische Form an:

. 1 > . !
et*z ~ k_’zgo ? (214 1) Py(cos ) sin (lc r — 7—12—) ; (30,16)

Diese Entwicklung werden wir im weiteren, in der Theorie der Streuung eines
Teilchens, bendtigen.
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Aufgaben

1. Es sind die Energieniveaus fiir die Bewegung eines Teilchens mit dem Drehimpuls
! = 0 in einem kugelsymmetrischen Potentialtopf zu bestimmen: U(r) = — U, firr < a
und U(r) = 0 fir r > a.

Losung. Fuar ! = 0 hingt die Wellenfunktion nur von r ab. Fir das Innere des Po-
tentialto& lautet die SCERODINGER-Gleichung

1 g 1 -
TV +Ey=0, k=, y2m (U —I|EI).

Die fiur r = 0 endliche Losung ist

A sin kr
py=A4—]—.
Fir 7 > a haben wir die Gleichung

1 42 . | R —
T gErY —y=0, x=7ﬁmm.
Die im Unendlichen verschwindende Losung ist

e—nr
py=A .
r

Die AnschluBbedingung fiir die logarithmische Ableitung von v r bei r = a ergibt

kctgka=_;¢=_"/2";zU0_kz )

. -I/ B
smka—:l:ka mka. (2)

Durch diese Gleichung werden implizit die Energieniveaus bestimmt (es miissen diejenigen
Wurzeln der Gleichung genommen werden, fir die ctgka < 0 ist, wie aus (1) folgt).
Das erste dieser Niveaus (das Niveau mit I = 0) ist gleichzeitig das niedrigste mogliche
Energieniveau, d. h., es entspricht dem Grundzustand des Teilchens.

oder

Abb. 10

Ist der Potentialtopf zu flach (U, zu klein), dann gibt es iiberhaupt keine negativen
Energieniveaus, d. h., das Teilchen kann nicht vom Potentialtopf ,,festgehalten werden.
Das kann man an Hand der Gleichung (2) mit Hilfe der folgenden graphischen Konstruk-
tion leicht einsehen. Die Wurzeln einer Gleichung der Gestalt 4 sin = &« z werden durch
die Schnittpunkte der Geraden y = a 2 mit den Kurven y = -4 sin z dargestellt. Wir
miissen dabei nur diejenigen Schnittpunkte beriicksichtigen, fiir die ctg » < 0 ist. Die
entsprechenden Teile der Kurven y = 4 sin z sind in Abb. 10 durch eine ausgezogene Linie
wiedergegeben. Fir zu groBes « (zu kleines U,) gibt es, wie wir sehen, iiberhaupt keine
solchen Schnittpunkte.
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2. Fiir den rdumlichen harmonischen Oszillator (ein Teilchen in dem Feld U = m w? 7%/2)
sind die Energieniveaus und der Grad ihrer Entartung zu bestimmen.

Loésung. Die ScHRODINGER-Gleichung fiir ein Teilchen in dem Feld U =1/2m X
w? (22 + y? + 2?) erlaubt die Separation der Variablen, so daB man drei Gleichungen wie
fiir je einen linearen Oszillator erhélt. Die Energieniveaus sind deshalb

3 3
E=hw(n1+n2+n3+ ?)Ehw(n-*-?)'

Der Entartungsgrad des »-ten Niveausist gleich der Zahl der Méglichkeiten, » als Summe
dreier positiver ganzer Zahlen!) (einschlieBlich der Zahl 0) darzustellen; diese ist

1
Sm+1)m+2).

§ 31. Die Bewegung im CouLome-Feld

Betrachten wir nun die Bewegung eines Elektrons im Wasserstoffatom oder
im wasserstoffihnlichen Ion, d. h. im Felde eines Kernes der Ladung +Ze.
Setzt man voraus, dafl der Kern unbeweglich ist, dann reduziert sich die
Problemstellung auf die Frage nach der Bewegung eines Teilchens im an-
ziehenden CouLomB-Feld

U=——. - (3L1)

Von den in § 22 dargelegten allgemeinen Uberlegungen her ist sofort klar, daB
das Spektrum der positiven Energieeigenwerte E kontinuierlich und dasjenige
negativer Energien diskret ist. Das letztere wiederum entspricht gebundenen
Elektronenzustinden und interessiert uns hier.

Bei Aufgaben, die mit dem Couroms-Feld verkniipft sind, ist es zweck-
maBig, fiir alle GroBen spezielle MaBeinheiten, sogenannte atomare MaB-
einheiten, zu verwenden. Und zwar werden als MaBeinheiten fiir Masse, Linge
und Zeit entsprechend

m=911.10-28g,

3
B 242.10175

met
(m — Elektronenmasse) gewahlt; die atomare Langeneinheit nennt man Bozk-
scher Radius. Alle iibrigen Einheiten werden hieraus abgeleitet; so lautet die
Energieeinheit?)

m e 4,36 101 erg =

5 = 436 erg = 27,21 eV .
Die atomare Ladungseinheit ist die Elementarladung e = 4,80 - 10-10 CGSE.
Den Ubergang zu atomaren Einheiten kann man in den Formeln dadurch
vollziehen, dafl man in ihnen e =1, m = 1, & = 1 setzt.

= 0,529 .- 108 cm ,

me

1) Mit anderen Worten ist dies die Zahl der Méglichkeiten, n gleichartige Kugeln auf
drei Kisten zu verteilen.
2) Die Halfte dieser Energie tragt die Bezeichnung Ry — R YDBERG.
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Die Gleichung (29,8) fiir die Radialfunktionen hat die Gestalt

d*R  2dR l(l+ 1)

- e (B + 2 R =0 (31.2)

oder in den neuen Einheiten

d*R 2 dR l(l+1)
T ra R+2(E+ ) == O (31,3)

Statt des Parameters £ und der Variablen r fithren wir die neuen Gréfen

Z 2r2
y—2E e
ein (fiir negative E ist n eine positive reelle Zahl). Aus der Gleichung (31,3)
wird nach dem Einsetzen von (31,4)

L2 1 10+1)
R+9R+[—4+Q— e ]R—O (31,5)
(die Striche bedeuten die Ableitung nach ).

Fiir kleine g ist die Losung, die den notwendigen Endlichkeitsbedingungen
geniigt, proportional zu ¢! (siehe (29,16)). Zur Untersuchung des asymptotischen
Verhaltens von R fiir groBe ¢ lassen wir in (31,5) die Glieder mit 1/p und 1/p?
weg und erhalten

(3L4)

n =

R
7’
R = e

und daraus R = e*®2, Die uns interessierende, im Unendlichen verschwin-
dende Lésung verhilt sich fiir groBe o folglich wie e~¢/2.
Auf Grund dessen substituiert man natiirlich

R =g e w() ; (31,6)
danach lautet die Gleichung (31,5)
ew' + 2l4+2—0)w +m—1—1)w=0. (31,7)

Die Losung dieser Gleichung darf im Unendlichen nicht schneller als eine end-
liche Potenz von g divergieren, fiir ¢ = 0 mull sie endlich sein.

Wir gehen nach dem genau gleichen Konzept wie in § 25 vor und suchen
die Losung in Gestalt einer Reihe

oo
w=}a,0° . (31,8)
8=0
Setzen wir diese in (31,7) ein, so finden wir

Slans(s—1) o 21+ 2) 0,81
8=1

F S l—astam—1-1)]g =0

8=0
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oder nach Ersetzen des Summationsindexes s in der ersten Summe durch s 4+ 1

[oo]

Xlagpi 6+ D) (s+21+2)+a;(n—1—1—39)]0°=0.
8=0

Durch Nullsetzen der Entwicklungskoeffizienten finden wir die Rekursions-
formel
n—Il—1—3s

Bi1= WG T 121+ 2)

Hieraus folgern wir, dafl die Reihe (31,8) auf ein Polynom (der Ordnung
n—1—1) fihrt, wenn n =14+ 1, I 4+ 2, . .. ist.

Die Zahl n muf} auf diese Weise positiv ganzzahlig sein, wobei fiir gegebenes [
gilt:

(31,9)

n=l+1. (31,10)
Nach der Definition (31,4) des Parameters n haben wir
Z2
E=—m, n=1,2,... (31,11)

Damit sind die Energieniveaus des diskreten Spektrums im Couroms-Feld
bestimmt. Es gibt unendlich viele Niveaus zwischen dem Grundzustand
E, = — 1/2 und Null. Die Abstdnde zwischen zwei aufeinanderfolgenden Ni-
veaus werden mit zunehmendem 7 immer kleiner; bei der Anndherung an den
Wert £ = 0 liegen die Niveaus immer dichter, sie hdufen sich bei £ = 0, wo
sich das diskrete Spektruim an das kontinuierliche anschlieft. In den iiblichen
Einheiten lautet die Formel (31,11)1)
Z met
Die ganze Zahl n heit die Hauptquantenzahl. Die in § 29 definierte radiale

Quantenzahl ist
ne=n—171—1.
Fiir einen festen Wert der Hauptquantenzahl kann die Zahl I die Werte
1=0,1,...,n—1 (31,13)

annehmen, das sind insgesamt n verschiedene Werte. In den Ausdruck (31,11)
fir die Energie geht nur die Hauptquantenzahl n ein. Alle Zustinde mit ver-
schiedenen [, aber den gleichen n, haben die gleiche Energie. Jeder Eigenwert
ist also nicht nur in bezug auf die magnetische Quantenzahl m entartet (wie
bei jeder Bewegung in einem kugelsymmetrischen Feld), sondern auch in bezug
auf die Zahl l. Diese letztere Entartung (man nennt sie zufdllig) ist eine Eigen-

1) Formel (31,12) wurde erstmalig von N. BoER im Jahre 1913 noch vor der Schaffung
der Quantenmechanik angegeben. In der Quantenmechanik wurde sie von W. PauL1 (1926)
aus der Matrizenmechanik und einige Monate spéter von E. SCHERODINGER mit Hilfe der
Wellengleichung hergeleitet. '



96 Kapitel III. Die ScERGDINGER-Gleichung

art des CouLoMB-Feldes. Zu jedem Wert von I gehéren, wie wir wissen, 21 4+ 1
verschiedene Werte von m. Der Entartungsgrad des n-ten Energieniveaus
ist deshalb

n—-1

T @I+l =n2. (31,14)

=0

Wir werden nicht den allgemeinen Ausdruck fiir die Wellenfunktionen des
Elektrons aufschreiben, sondern beschrinken uns auf die Wellenfunktion fiir
seinen Grundzustand. Fiir n = 1,1 = 0 liefert die Reihe (31,8) eine Konstante;
das Gleiche trifft auch fiir den Winkelanteil der Wellenfunktion ¥, zu. Des-
halb lautet die Wellenfunktion

p=—e"2r, (31,15)
Sie ist durch die iibliche Bedingung

SIpl2dV =4q fr? lpl2dr =1
0

normiert.

Der ,,Radius‘‘ eines Atoms wird durch diejenige Entfernung r charakterisiert,
in der ein merklicher Abfall der Dichte |y|? fiir die Aufenthaltswahrscheinlich-
keit der Elektronen eintritt. Im Falle des Wasserstoffatoms (Z = 1) ergibt
sich als Grofenordnung dieser Entfernung gerade die atomare Léngeneinheit,
wie dies aus (31,15) ersichtlich ist. In iiblichen Einheiten ist das der Boursche
Radius ap = #%/m e?. Die GréBenordnung fiir die Elektronengeschwindigkeit
im Atom wird aus der Unschérferelation bestimmt: m v ~ fi/ag, woraus
v ~ e?[h folgt.

Aufgaben

1. Esist die Wahrscheinlichkeitsverteilung fiir die verschiedenen Impulswerte im Grund-
zustand des Wasserstoffatoms (Z = 1) zu bestimmen.

Lésung. Die Wellenfunktion in der p-Darstellung erhdlt man aus (31,15) als Integral
(12,12). Das Integral wird durch Ubergang zu Kugelkoordinaten berechnet, wobei die
z-Achse mit der p-Richtung iibereinstimmt:

o 1
1 1
_ —ip — - —r—iprcos6 d 6.r2dr.
a(p) —(2ﬂ)3/2f'l’(r)e iprdy -~ 6{ i/e cos 6. 72dr

Im Ergebnis dessen erhalten wir
22 1
W= T

Die Wahrscheinlichkeitsdichte im p-Raum ist |a(p)}?.
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2. Es ist das mittlere Potential des Feldes zu berechnen, das vom Kern und von dem
Elektron im Grundzustand des Wasserstoffatoms erzeugt wird.

Lésung. Am einfachsten bestimmt man das mittlere Potential ¢, der Elektronen-
hiille in einem beliebigen Punkt » als kugelsymmetrische Losung der PoissoN-Gleichung
mit der Ladungsdichte ¢ = — [y[*:

4z

rar
Wir integrieren diese Gleichung und wihlen die Konstanten so, daB @¢(0) endlich und
@o(00) = 0 ist. Dann addieren wir das Potential des Kernfeldes und erhalten

(rgy) = —4mp=4e-2r.

_ 4 (1 1\ oz
9”—7+‘}’e(r)— 7+ )e .

Fiir » < 1 haben wir ¢ =~ 1/r (Kernfeld), und fiir » > 1 ist das Potential ¢ =~ e~2" (Ab-
schirmung des Kerns durch das Elektron).






Storungstheorie ' IV

§ 32. Zeitunabhingige Stérungen

Nur fiir relativ wenige, sehr einfache Fille kann eine exakte Losung der ScHRO-
DINGER-Gleichung gefunden werden. Die meisten Probleme der Quantenmecha-
nik fithren auf zu komplizierte Gleichungen, die man nicht mehr exakt 16sen
kann. Héufig kommen jedoch in den Problemstellungen Gréflen verschiedener
GroBenordnungen vor; darunter kénnen auch kleine Groflen sein. Wenn man
diese kleinen GroBen vernachldssigt, kany sich das Problem so vereinfachen,
daBl eine exakte Losung moglich wird. In einem solchen Fall ist der erste
Schritt bei der Bewiltigung des vorliegenden physikalischen Problems die
exakte Losung des vereinfachten Problems. Der ndchste Schritt besteht dann
in der gendherten Berechnung der Korrekturen infolge der kleinen Gréfen,
die bei dem vereinfachten Problem weggelassen worden sind. Die allgemeine
Methode zur Berechnung dieser Korrekturen heillt Stérungstheorie.

Der HamiLToN-Operator des gegebenen physikalischen Systems soll nach
Voraussetzung die Gestalt

H=H+7V
haben, wobei ¥ eine kleine Korrektur (Storung) zu dem ,,ungestérten‘‘ Opera-
tor H, sein soll. In §§ 32 und 33 werden wir eine Storung ¥ behandeln, die
nicht explizit von der Zeit abhéngt (dasselbe wird auch von H vorausgesetzt).

Die not wendigen Bedingungen dafiir, dal man den Operator ¥ als klein gegen-

iiber dem Operator H ansehen kann, werden spiter abgeleitet werden.
Das Problem der Stérungstheorie kann fiir ein diskretes Spektrum folgender-
maBen formuliert werden. Es wird vorausgesetzt, daB die Eigenfunktionen y{?

und die Eigenwerte E'? des diskreten Spektrums des ungestérten Operators ﬁo
bekannt sind, d. h., es sind die exakten Losungen der Gleichung

ﬁu p© = FO O - (32,1)
bekannt. Zu bestimmen sind Ndherungslésungen der Gleichung
Hy=H,+ Vy=Evy, (32,2)

d. h. Néherungsausdriicke fiir die Eigenfunktioneny, und die Eigenwerte E,
des gestorten Operators H.

8 Kurzfassung I1
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In diesem Paragraphen werden wir voraussetzen, dafl alle Eigenwerte des

Operators H nicht entartet sind. Aulerdem werden"wir zur Vereinfachung der
Rechnungen annehmen, daB es nur das diskrete Eigenwertspektrum gibt.

Man fiihrt die Rechnungen zweckméfig von allem Anfang an in der Matrix-
schreibweise durch. Dazu entwickeln wir die gesuchte Funktiony nach den
Funktionen ¢{:

p=2cayply . (32,3)
m

Diese Entwicklung setzen wir in (32,2) ein und erhalten

~

Zem (BEQ + V)yl = T en Byl .

Wir multiplizieren diese Gleichung von beiden Seiten mit y{°, integrieren
dariiber und finden

(B — Eﬁ?’) =2 VimCn - (32,4)

Hier ist die Matrix V;,, des Storoperators v eingefiihrt worden, die mit Hilfe
der ungestérten Funktionen (9 bestimmt wird:

Vim = S 90" f’wi,?) dg . (32,5)
Wir setzen die Koeffizienten ¢, und die Energie E als Reihen an:
E=EO+EV 4+ B® 4 .o, on=o + &+ +---

Darin sind die Gréien E® und ¢!’ von derselben GréBenordnung wie die Sté-

rung V. E@ und ¢{? sind GréBen zweiter Ordnung usw.

Zur Bestimmung der Korrekturen zum n-ten Eigenwert und zu der zugehdorigen
Eigenfunktion setzen wir ¢ =1 und ¢{Q = 0 fiir m % n. Bei der Berech-
nung der ersten Niherung setzen wir E = EQ + EQ und ¢ = ¢Q + ¢
in die Gleichung (32,4) ein und nehmen nur die Glieder erster Ordnung mit. Die
Gleichung fiir £ = n ergibt

BN = Vou = [9* V© dg . (32,6)
In erster Niherung ist also die Korrektur zum Energieeigenwert E{ gleich
dem Mittelwert der Stérung im Zustand ¢{.
Die Gleichung (32,4) liefert firr k 7% n

. Vin
(1) L~
P = 50— 5P (k = n). (32,7)

P bleibt willkiirlich und muB so gewihlt werden, daB die Funktiony, = ¢ + P
bis einschlieBlich Glieder erster Ordnung normiert ist. Dazu miissen wir
o) = 0 setzen. Tatsichlich ist die Funktion
14
M — y' ™% 0
= %:“ E® _ g9 v =22
(der Strich an dem Summenzeichen bedeutet, daB das Glied mit m = n bei

der Summation iiber m auszulassen ist) orthogonal zu %9, und das Integral
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iiber |p{® + |2 unterscheidet sich nur durch eine GroBe zweiter Ordnung
von 1.

Die Formel (32,8) gibt die Korrektur zu den Wellenfunktionen in erster
Naherung an. Aus dieser Korrektur ist nebenbei auch zu sehen, wie die Be-
dingung fiir die Anwendbarkeit der behandelten Methode der Stérungstheorie
beschaffen ist. Es mufl nidmlich die Ungleichung

| Vinal <|ED — ED)| (2L,9)
gelten, d. h., die Matrixelemente des Operators ¥ miissen klein sein gegeniiber
den entsprechenden Differenzen zwischen den ungestorten Energieniveaus.

Wir wollen ferner die Korrektur zum Eigenwert E{” in zweiter Ordnung
berechnen. Dazu setzen wir E = E® + E® + E® und ¢, = ¢’ + & + ¢{?
in (32,4) ein und betrachten nur die Glieder zweiter Ordnung. Die Gleichung
fir £ = n ergibt

BD o9 = 5" Vol
"
daraus folgt
;| Vmal?
B =2 g
(wir haben ¢{? = Vyua/(EQ® — E9) eingesetzt und V,, = V¥, benutzt, was
wegen der Hermitezitdt des Operators 17 gilt).

In der zweiten Néherung ist die Korrektur zur Energie des Grundzustandes
immer negativ. Wenn E{® der kleinste Wert ist, dann sind tatséchlich alle
Glieder in der Summe (32,10) negativ.

Die erhaltenen Ergebnisse kann man unmittelbar fiir den Fall verallge-

(32,10)

meinern, daB} der Operator If; auch ein kontinuierliches Spektrum hat (wobei
nach wie vor ein gestérter Zustand des diskreten Spektrums untersucht wird).
Zu diesem Zweck braucht man nur zu den Summen iiber das diskrete Spek-
trum die entsprechenden Integrale iiber das kontinuierliche Spektrsm zu
addieren.

Fir Zustinde eines kontinuierlichen Spektrums tritt die Frage nach einer
Verinderung der Energieniveaus offensichtlich iiberhaupt nicht auf, und es
kann nur die Rede sein von einer Berechnung der Korrekturen zu den Eigen-
funktionen.

Wir erwéhnen in diesem Zusammenhang den Fall, in dem die potentielle
Energie eines Teilchens, das sich in einem schwachen dufleren Feld — einem
hinreichend flachen Potentialtopf — befindet, die Rolle der Stérung spielt. Die
ungestorte SCHRODINGER-Gleichung ist dann einfach die Gleichung fiir die Be-
wegung des Teilchens, wobei die Energien positiv sind und ein kontinuierliches
Spektrum bilden.

Am Ende von § 24 wurde erwdhnt, dafl in einem solchen Potentialtopf keine
gebundenen Zustdnde, d. h. keine negativen Energieniveaus, existieren. In der
Tat, fiir die Energie £ = 0 liefert die ungestorte Wellenfunktion der freien
Bewegung eine Konstante: y© — const. Da fiir die Korrektur y® <& y©®

8*
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gilt, ist klar, daB die gestorte Wellenfunktion y = ¢© + ) fiir die Bewegung
im Potentialtopf nirgends Null wird. Eine derartige Eigenfunktion ohne
Knoten gehort zum Grundzustand (§ 22). Mit anderen Worten, £ = 0 erweist
sich als kleinstmoglicher Energiewert des Teilchens.

Die Bedingung fiir die Anwendbarkeit der Stérungstheorie auf diesen Fall
besteht in der Forderung, dafl die Tiefe des Potentialtopfes |U| klein ist im
Vergleich zu der mittleren kinetischen Energie, die ein Teilchen beséfBle, dessen
Bewegung auf das Innere des Potentialtopfes beschriankt ist. Entsprechend der
Unschérferelation wire der Impuls eines solchen Teilchens p ~ #ja (worin a
die GroBenordnung der linearen Abmessungen des Topfes ist), woraus sich die
in § 24 genannte Bedingung |U| <€ #?/m a? ergibt.l)

Aufgaben

Man berechne die Energieniveaus des anharmonischen linearen Oszillators mit dem

HaminToN-Operator
B :’,‘,z m w? 22

=emT 2

Losung. Unter Verwendung des Ausdruckes (25,4) fur die Matrixelemente von z kann
man die Matrixelemente far 2° und z* unmittelbar durch Matrizenmultiplikation erhalten.
Die von Null verschiedenen Matrixelemente von 2® sind

! Bo\%2 _
(=)0 -3,n = ()0, n-3 = (m) Yrn —1)(n —2),

+azd+ Bat.

k
(xs)n—l,n=(xs)n,n—1=3(2m—w) n3/2

In dieser Matrix fehlen die Diagonalelemente, so da es von dem Glied « #° im HaMILTON-
Operator in erster Néherung keine Korrektur gibt (das Glied « 2® wird als Storung des
harmonischen Oszillators angesehen). In der zweiten Niaherung ist die von diesem Glied
stammende Korrektur von derselben GroSenordnung wie die Korrektur von dem Glied
B 2 in erster Néherung. Die Diagonalelemente der Matrix fiir 2* sind

h\23
(x“)n,n=(%) Z(2n2—|—2n+1).

Mit Hilfe der Formeln (32,6) und (32,10) finden wir schlieBlich folgenden genéherten Aus-
druck fiir die Energieniveaus des anharmonischen Oszillators:

1 15 a2 ( B \3 11 3B/ k \* I§
E”=h“’(”+?)‘2"n’6(m> (”2+”+%)+?<W) ("2+"+‘2‘)~
§ 33. Die Sdkulargleichung

Wir wenden uns jetzt dem Fall zu, dal der ungestorte Operator Iio entartete
Eigenwerte hat. Die zu ein und demselben Energieeigenwert E{? gehérigen

1) Der ein- bzw. zweidimensionale Potentialtopf (das Feld hingt nur von einer bzw.
nur von zwei Koordinaten ab) ist bzgl. zwei Dimensionen bzw. einer Dimension unendlich
ausgedehnt. Deshalb ist die angegebene Bedingung unerfillbar. Mit diesem Umstand.
héngt die Nichtanwendbarkeit der Storungstheorie auf die Bewegung (mit kleiner Energie)
in einem solchen Potentialtopf zusammen. Demzufolge kann auch nicht auf das Fehlen
gebundener Zustdnde geschlossen werden.
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Eigenfunktionen bezeichnen wir mit %, (%, ... Die Wahl dieser Funk-
tionen ist, wie wir wissen, nicht eindeutig. Man kann statt dieser Funktionen s
(s ist der Grad der Entartung des Niveaus E{) unabhingige Linearkombina-
tionen davon wihlen. Die Willkiir bei der Wahl der Funktionen geht jedoch
verloren, wenn wir von den Wellenfunktionen fordern, daf} sie sich unter dem
EinfluB einer kleinen Stérung nur wenig éndern. )

Vorldufig werden wir unter den 9, (%), ... irgendwelche willkiirlich ge-
wiahlte ungestorte Eigenfunktionen verstehen. Die richtigen Funktionen fiir die
nullte Néherung sind Linearkombinationen der Gestalt ¢/ ¢{0 + ¢ 4@ + ...
Die Koeffizienten in diesen Linearkombinationen werden zusammen mit den
Korrekturen zu den Eigenwerten in erster Néherung folgendermaBen berech-
net. )

Wir schreiben die Gleichungen (32,4) mit k ==, n’, . . . auf und setzen in erster
Néherung £ = E® + EM ein. Fiir die GroBen ¢, kann man dabei die Werte
in nullter Naherung nehmen: ¢, = ¢, ¢, = ¢!?,.. ;¢ =0fiir m % n, n/, . .

Es ergibt wich
E® cg)) =2 Vaw 6(1?')
=

oder
2 (Vnn' e E’(l) 61m') C;O') == 0; (33:1)
”
n und n’ durchlaufen dabei alle Werte, die zur Numerierung der Zustinde zu
dem gegebenen ungestorten Eigenwert E® notwendig sind. Dieses lineare
homogene Gleichungssystem fiir die GroBen ¢ hat nur dann nichttriviale

Losungen, wenn die Koeffizientendeterminante verschwindet. Wir erhalten
deshalb die Gleichung

| Vpw — BV, ] =0. (33,2)

Das ist eine Gleichung s-ten Grades in E‘), sie hat im allgemeinen s ver-
schiedene reelle Wurzeln. Diese Wurzeln sind in erster Nédherung die ge-
suchten Korrekturen zu den Eigenwerten. Die Gleichung (39,2) heilt Sdkulargler-
chung.?) .

Setzen wir die Wurzeln der Gleichung (33,2) in das System (33,1) ein und
16sen das letztere, dann finden wir die Koeffizienten ¢{?). Damit bekommen
wir auch die Eigenfunktionen in nullter Néherung.

Infolge der Stérung verschwindet im allgemeinen die urspriingliche Ent-
artung des Energieniveaus (die Wurzeln der Gleichung (33,2) sind im allge-
meinen verschieden), die Stoérung ,,hebt‘ die Entartung ,,auf. Die Entartung
kann dabei vollkommen oder nur teilweise aufgehoben werden (in letzterem
Fall verbleibt nach dem Einschalten der Stérung eine geringere Entartung
als vorher).

1) Diese Bezeichnung stammt aus der Himmelsmechanik.
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Aufgaben
1. Man bestimme die Korrekturen zum Eigenwert in erster Néherung und die richtigen
Funktionen nullter Naherung fir ein zweifach entartetes Niveau.
Loésung. Die Gleichung (33,2) ist hier
Vu—EO Wy |
Vzl sz — EM)|
(die Indizes 1 und 2 entsprechen den beiden willkiirlich gewéhlten ungestérten Eigen-

funktionen y{” und y{®) zu dem gegebenen zweifach entarteten Niveau). Wir 1dsen diese
Gleichung und finden

0

1
EM = r} [Vu+ Vet o], ho®) = }/(Vu — Vool + 4| Vyl?, (1)

wobei die Bezeichnung % () fiir die Differenz der zwei Korrekturwerte E(1) eingefiihrt
wurde. Durch Losen der Gleichung (33,1) mit diesen Werten E(1) erhalten wir die Ko-
effizienten in den normierten richtigen Funktionen nullter Ordnung (®) = ¢{0 {® - ¢{*)

zu
V. Vi — Voo JJ12
(0) — 12 11 22
% {2|Vm| [li o ]} ’

V. Vi — V] 12
(0) — 21 1 22 )
s {2 Ve [1 T ham ]}

2. Zur Zeit t = 0 befinde sich ein System in dem Zustand {?, der zu einem zweifach
entarteten Niveau gehort. Mit welcher Wahrscheinlichkeit befindet sich das System zu
einer spiiteren Zeit ¢ in dem anderen Zustand {”) mit derselben Energie ? Der Ubergang
erfolge unter der Wirkung einer konstanten Stérung.

Losung. Wir stellen die richtigen Funktionen nullter Niaherung auf:

(2)

Y=0CYP+ CY;, W'=°1’/’1+";fl’2'

Darin sind ¢,, ¢, und c¢;, ¢; die beiden Koeffizientenpaare, die durch die Formeln (2) der Auf-
gabe 1 gegeben werden (die Indizes (9) lassen wir der Kiirze halber bei allen GroBen weg).
Umgekehrt ist

’ ,
_C¥ —CYy

Yi=ce —cicy

Die Funktionen  und " gehéren zu den Zustinden mit den gestérten Energien E + E)
und E + EM’; EO und EQ)’ sind die beiden Werte der Korrektur (1) der Aufgabe 1. Wir
fithren die Zeitfaktoren ein und gehen zu den zeitabhéingigen Wellenfunktionen iber:

e—i Et/n

¥, = [cope—fENUR ¢,y e —i EOF a1

€ €, — Cy Gy
(zur Zeit ¢ = 0 ist ¥; = ;). SchlieBlich driicken wir' y und " wieder durch y, und y,
aus und erhalten ¥; als Linearkombination aus y, und y, mit zeitabhédngigen Koeffizienten.
Das Betragsquadrat des Koeffizienten von y, gibt die gesuchte Ubergangswahrscheinlich-
keit w;, an. Unter Beriicksichtigung von (1) und (2) ergibt die Rechnung

[ Vasl?

Wy = 2 m[l — Ccos8 (1)(1) ﬂ)] .

Wir sehen, daB die Wahrscheinlichkeit mit der Frequenz w(1) periodisch schwankt.



§ 34. Zeitabhingige Stérungen 105
§ 34. Zeitabhingige Storungen

Wir wollen uns jetzt mit dem Studium explizit zeitabhingiger Stérungen be-
fassen. In diesem Falle kann man nicht von Korrekturen zu den Energie-
eigenwerten sprechen, denn die Energle bleibt fiir einen zeitabhéngigen Ha-
MILTON-Operator (der gestérte Operator H= H + V(t) ist zeitabhéngig) nicht
erhalten, so dal es iiberhaupt keine stationdren Zustéinde gibt. Hier besteht
das Problem, aus den Wellenfunktionen der stationdren Zusténde des unge-
stérten Systems die Wellenfunktionen des gestorten Systems ndherungsweise
zu berechnen.

Zu diesem Zweck verwenden wir eine dhnliche Methode wie die Methode der
Variation der Konstanten bei der Losung von linearen Differentialgleichungen.?!)
PO geien die Wellenfunktionen (mit dem Zeitfaktor) der stationiren Zustinde
des ungestorten Systems. Eine beliebige Losung der ungestorten Wellen-
gleichung kann dann als Summe ¥ = J a, ¥{®) geschriecben werden. Wir

k

werden jetzt die Losung der gestorten Gleichung

F) ~ A
in 2 — Hy+ PP (34,1)
als Summe

¥ = 3 at) P , (34,2)
k

ansetzen, wobei die Entwicklungskoeffizienten Funktionen der Zeit sind. Setzen
wir (34,2) in (34,1) ein und beachten, daB die Funktionen ¥{? der Gleichung
8w

zhat

= H, PO
geniigen, dann erhalten wir
ik ):5!"0)-‘1“" %‘ak VPO,
Wir multiplizieren beide Seiten der Gleichung von links mit ¥{®* und inte-

grieren ; danach haben wir

dam

th— =2 Valt) ax (34,3)
&
mit
A : ) 1
Vine(t) =f¥’1(y?)' VPO dg = Vape' ™,  om =5 (B —EP);
das sind die Matrixelemente der Storung mit dem Zeitfaktor (man muf iibrigens

beachten, dafl die GroéBen V,,, fiir explizit zeitabhédngiges V ebenfalls Funk-
tionen der Zeit sind).

1) Die Anwendung dieser Methode in der Quantenmechanik geht auf P. A. M. Drrac
zuriick (1926).
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Als ungestérte Wellenfunktion nehmen wir die Wellenfunktion des i-ten
stationdren Zustandes; dazu gehéren die folgenden Werte fiir die Koeffizienten
in (34,2): a® =1 und a{¥ =0 fiir k5 7. Zur Bestimmung der ersten Ni-
herung schreiben wir a;, als a; = a) + a{). Auf der rechten Seite der Glei-
chung (34,3) (die schon die kleinen GroBen V mx enthdlt) setzen wir a; = a(o)
ein. Das ergibt

(1)
ik j:‘k = Vilt) - (34,4)

Um anzugeben, fiir welche ungestorte Funktion die Korrektur berechnet
wird, fithren wir einen zweiten Index fiir die Koeffizienten a; ein und schreiben

Y= X aw(t) PP . (34,5)
k

Dementsprechend schreiben wir das Ergebnis der Integration iiber die Glei-
chung (34,4) als

af) =~y [ Vet = — [ Vacotorstar. (34,6)

Damit sind die Wellenfunktionen in erster Ndherung bestimmt.

Die Wahl der Grenzen in den Integralen (34,6) hingt von den Bedingungen
der konkreten Aufgabe ab. Die Stérung V() soll z.B. nach Voraussetzung ins-
gesamt nur wihrend eines endlichen Zeitintervalls wirken (oder V(t) soll fiir
t — 4 oo geniigend schnell abklingen). Vor der Einwirkung der Stérung (oder
in der Grenze { — — o) soll sich das System im i-ten stationdren Zustand
(des diskreten Spektrums) befunden haben. In einem beliebigen spéiteren Zeit-

punkt wird das System durch die Funktion (34,5) beschrieben. In erster Néhe-
rung ist dabei

a“=a§“)= — = f Vki e“‘”“‘dt (k#l),

Aii = 1 + a“) =1-—- fV” dt (34,7)

Die Integrationsgrenzen in (34,7) sind so gewihlt, daB alle a{). fiir ¢ > — oo
verschwinden. Nach der Einwirkung der Stérung (oder in der Grenze ¢ — o)
nehmen die Koeffizienten a;; die konstanten Werte ay;(co) an, und das Sy-
stem befindet sich in einem Zustand mit der Wellenfunktion

T = Z‘ aki(oo) EI’(],?) )
k

die wieder der ungestorten Wellengleichung geniigt, aber von der urspriing-
lichen Funktion ¥{® verschieden ist. Nach den allgemeinen Regeln gibt das
Betragsquadrat des Koeffizienten a;;(co) die Wahrscheinlichkeit dafiir an, da
das System die Energie E{Y hat, d. h., daB es sich in dem k-ten stationdren
Zustand befindet.
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Das System kann also unter dem EinfluB der Stérung aus dem urspriing-
lichen stationdren Zustand in einen beliebigen anderen Zustand iibergehen.
Der Einheitlichkeit halber verabreden wir, hier und in den folgenden Para-
graphen den Anfangszustand durch den Index ¢ und den Endzustand durch
den Index f zu kennzeichnen. Die Wahrscheinlichkeit fiir den Ubergang © — f
ist gleich

2

W= hlz f Vi eierd d| . (34,8)

Andert sich die Stérung V(t) wihrend eines Zeitintervalls der Gré8enordnung
1/wy; nur wenig, dann wird der Wert des Integrals in (34,8) sehr klein: Durch
die Anwesenheit des oszillierenden, das Vorzeichen #@ndernden Faktors
exp (?wy¢ t) im Integranden hebt sich das Integral auf. Im Grenzfall einer
beliebig langsamen Anderung der Stérung strebt die Wahrscheinlichkeit fiir
einen Ubergang, der mit einer Energieinderung verbunden ist (d. h. mit einer
von Null verschiedenen Frequenz wy;), gegen Null. Bei hinreichend langsamer
(adiabatischer) Anderung der einwirkenden Stérung verbleibt ein System, das
sich in einem nicht entarteten stationdren Zustand befunden hat, in demselben
Zustand.

§ 3b. Ubergiinge im kontinuierlichen Spektrum

Eine der wichtigsten Anwendungen der Storungstheorie ist die Berechnung der
Ubergangswahrscheinlichkeiten im kontinuierlichen Spektrum unter dem Ein-
fluB einer konstanten (zeitunabhéngigen) Stérung. Hierzu gehdren die ver-
schiedenen Streuprozesse, d. h. Prozesse, bei denen sich das System im Anfangs-
und im Endzustand als die Gesamtheit der aneinander streuenden Teilchen
darstellt, und die Wechselwirkung zwischen ihnen die Rolle der Storung iiber-
nimmt. Zur Kategorie der Erscheinungen, die von der weiter unten darzu-
legenden Methode erfalt werden, gehéren auch Prozesse, in deren Verlauf ein
System (das sich in einem gewissen seiner gebundenen Zustdnde befindet) in
sich frei bewegende Teile zerfallt. Um klare Verhiltnisse zu schaffen, werden
wir zunédchst speziell den letzten Fall im Blickwinkel haben.!)

Wir bezeichnen mit dem Symbol v die Gesamtheit der GréBen, die eine, die
Zustinde des kontinuierlichen Spektrums charakterisierende, kontinuierliche
Zahlenfolge durchlaufen. Unter dy verstehen wir das Produkt der Differentiale
dieser GroBlen. Die ungestérten Wellenfunktionen des kontinuierlichen Spek-
trums nehmen wir als auf die §-Funktion beziiglich der GréBe » normiert an
(so konnen die GroBeny die Impulskomponenten freier Teilchen sein; ihre

1) Zustéinde, die zum diskreten Spektrum eines Systems gehéren und zerfallen kénnen,
sind, streng genommen, keine stationdren sondern quasistationdre Zusténde (sieche weiter
unten, § 38). Dieser Umstand ist firr die hier anzustellenden Untersuchungen unwesentlich.
Wir werden jedoch auf diese Frage in § 102 zuriickkommen.
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Wellenfunktionen miissen dann auf die -Funktion als Funktion des Impulses
normiert sein). Mit einer solchen Normlerung nimmt die Entwicklung der
Wellenfunktion die Gestalt

¥ =3 axt) 77 + S a,t) V" dv ' (35,1)
k

(anstelle von (34,2)) an, worin die Summe iiber das gesamte diskrete und das
Integral iiber das gesamte kontinuierliche Spektrum genommen wird; hierbei
ist |a,(t)|? dv die Wahrscheinlichkeit dafiir, das System (zum Zeitpunkt ¢) in
einem Zustand aus dem Intervall zwischen v und » + dv anzutreffen (vergleiche
§ 5).

So mége sich zum Zeitpunkt ¢ = 0 das System im Anfangszustand befinden,
den wir durch den Index ¢ kennzeichnen. Es soll die Wahrscheinlichkeit fiir
seinen Ubergang in den Zustand f gefunden werden, fir den die GroBenw
Werte im Intervall dv, annehmen.

Andern wir in entsprechender Weise die Bezeichnung der Indizes in (34,6)
ab, und fithren wir die Integration (fiir nicht zeitabhdngiges V;;) durch, dann
erhalten wir

1 — eiwrit

i (35,2)

afi SSNEES %f Vfi e"“’!“ dt = Vfi
0

Die untere Integrationsgrenze wurde in Ubereinstimmung mit der festgelegten
Anfangsbedingung so gewdhlt, daB fiir ¢ = 0 a;; = 0 gilt.
Das Betragsquadrat des Ausdruckes (35,2) ist gleich
) sin? s ¢
lagil® = | Vyil® ek (35,3)
Es ist leicht zu sehen, daB die hier stehende Funktion fiir grofes ¢ proportional
zu ¢ wird.
Dazu bemerken wir, dal folgende Formel gilt:

. t
lim S;“t £ — b() - (35.4)

t—>o00
In der Tat ist fiir « 7 O der aufgeschriebene Grenzwert glelch Null, wihrend
wir fiir « = 0 sin? a #/a? ¢ haben, so daf} der Grenzwert Unendlich wird. Inte-
grieren wir also iiber da in den Grenzen von —oo bis 400, so erhalten wir
(mit der Substitution a ¢ = &)

sm’at 1 sin? &
_f t a2 nf dé=1.

Demzufolge besitzt die Funktion auf der linken Seite der Gleichung (35,4)
tatsdchlich alle Eigenschaften einer d-Funktion.
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Gemdl dieser Formel kénnen wir fiir grofle ¢
1 ri
lagl? = g5 1 V2 ¢ (5"
oder (indem wir in Betracht ziehen, daB d(a z) = d(x)/x gilt)
2
lagil? = 5 | Vpl2 8(E, — By t (35,5)
schreiben.

Der Ausdruck |a|?dv, ist die Wahrscheinlichkeit fiir einen Ubergang aus
dem Anfangszustand in einen Zustand aus dem Intervall dv,., Wir sehen, daf}
sie fiir grofles ¢ proportional der seit dem Zeitpunkt ¢ = 0 verflossenen Zeit-
spanne wird. Ohne den Faktor ¢ gibt dieser Ausdruck die auf die Zeiteinheit
bezogene Ubergangswalrscheinlichkeit dw an (eine solche Ubergangswakhrschein-

lichkeit pro Zettevnheit hat im Gegensatz zu der dimensionslosen Wahrschein-
lichkeit (34,7) die Dimension 1/s):

2
dw == Tn|V/1|2 6(Ef - Ei) dv! . (35’6)

Diese Wahrscheinlichkeit ist nur fiir Ubergéinge zwischen Zusténden mit den
Energien E, = E; von Null verschieden, wie es in Ubereinstimmung mit dem
Energieerhaltungssatz zu erwarten ist. Die Anwesenheit der 6-Funktionen in
(35,6), die diese GesetzméBigkeit zum Ausdruck bringt, bedeutet natiirlich
nicht, daB die Wahrscheinlichkeit fiir £, = E; unendlich wird, was sinnlos
wire; tatsdchlich verschwindet die §-Funktion bei einer Integration iiber ein.
endliches Intervall von Zustinden. Sind die Zustinde des kontinuierlichen
Spektrums nicht entartet, dann kann man unter dv, allein nur die Energiewerte
verstehen. In diesem Falle fiihrt die Integration (35,6) iiber dv, = dE, zu
folgendem Wert fiir die Ubergangswahrscheinlichkeit:

o 27" V2 . (35,7)

\

Formel (35,6) ist auch in jenen Féllen anwendbar, in denen der Anfangszustand
ebenfalls zum kontinuierlichen Spektrum gehért (dies tritt bei Streuproble-
men auf; ein entsprechendes Anwendungsbeispiel wirdin § 67 gegeben werden).
Es ist jedoch notwendig zu bemerken, daBl in solchen Féllen die durch Formel
(35,6) bestimmte GréBe dw nicht unmittelbar die Ubergangswahrscheinlichkeit
ist; auch besitzt sie nicht die Dimension (1/s). Der Ausdruck (35,6) ist pro-
portional zur Zahl der Ubergiinge in der Zeiteinheit, jedoch hingen seine Di-
mension und sein genauer Sinn davon ab, auf welche Weise die Anfangswellen-
funktionen des kontinuierlichen Spektrums normiert sind (so kann sich dw als
Streuquerschnitt erweisen, siehe z. B. § 67).

§ 36. Zwischenzustinde

Es kann vorkommen, dal das Matrixelement V,; fiir den betrachteten Uber-
gang Null wird. Dann gibt die Formel (35,6) keine Antwort auf die gestellte
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Frage, und man muB sich zur Bestimmung der Ubergangswahrscheinlichkeit
der nichsthéheren Naherung der Storungstheorie bedienen.

Zusammen mit V,; wird auch das Zusatzglied af}) Null. Fiir das Korrektur-
glied zweiter Ordnung a{? ergibt Gleichung (34,3)

(2) .
iR = 3V, etont o) (36,1)
de k
worin die Summation iiber die Zusténde lauft, fiir die die Ubergangsmatrix-

elemente ¥ — f von Null verschieden sind. Die Korrekturglieder 1. Ordnung
a{t) werden durch die Gleichungen

d (1)
1k Z;“ = V]“ el writ
bestimmt (verglelche (34,4)), woraus
14 .
) — Tk iwopit _
akl - hwh- (e 1)

folgt. Setzen wir diesen Ausdruck in (36,1) ein, und fithren wir die Integration
aus, dann erhalten wir

t
] Ve V . .
o) b g Jsk Vit farit __ giogkt
o = s 5T [e eiosity df
0

Im Integral muB nur der erste Term mitgenommen werden, der bei Integration
den kleinen Nenner wy; liefert. In diesem Sinne folgt
Vie Vi) eterit — 1
(2) — ( gp Sk "Bt os o
a'“ (%‘ hw“ ) hwﬁ ’

Dieser Ausdruck unterscheidet sich von (35,2) nur dadurch, dafl das Matrix-
element V,; durch die in Klammern stehende Summe ersetzt ist. Demgema
erhalten wir anstelle von (35,6)
ij Vii |2

Z g gy | 0 — By dyy (36,2)

h

Von den Zustdnden k, fiir die die Matrixelemente V,; und Vy; vbn Null
verschieden sind, spricht man in diesem Zusammenhang als von Zwischen-
zustinden fiir den Ubergang ¢ — f. Anschaulich kann man sagen, daB dieser
Ubergang gewissermaBen in zwei Etappen realisiert wird; ¢ — k und k& — f (es
versteht sich jedoch von selbst, dal man einer solchen Beschreibung keine wort-
liche Bedeutung zumessen kann).

§ 37. Die Unschirferelation fiir die Energie

Betrachten wir ein System aus zwei schwach miteinander wechselwirkenden
Teilen. Wir setzen voraus, daB diese Teile zu einer gewissen Zeit bestimmte
Energiewerte haben, die wir mit Z hzw. ¢ bezeichnen wollen. Nach einem ge-
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wissen Zeitintervall A¢ soll die Energie erneut gemessen werden. Diese Mes-
sung liefert gewisse Werte E’ und &', die im allgemeinen von E und ¢ verschie-
den sind. Man kann leicht die GréBenordnung des wahrscheinlichsten Wertes
der Differenz E' 4+ ¢ — E — ¢ berechnen, die bei der Messung beobachtet wird.

Nach der Formel (35,3) ist die Ubergangswahrscheinlichkeit fiir das System,
(nach der Zeit ¢) unter dem Einflul einer zeitunabhingigen Storung aus dem
Zustand mit der Energie £ in den Zustand mit der Energie E’ iiberzugehen,

proportional

S LT
& =B T2n

Der wahrscheinlichste Wert der Differenz E' — E hat demnach die GréBen-
ordnung #/t.

Wir wenden dieses Ergebnis auf unser betrachtetes System an (die Wechsel-
wirkung zwischen den Teilen des Systems ist die Stérung) und erhalten

|E+e—E —¢&|Adt~k. . (37,1)

Je kleiner das Zeitintervall At ist, desto grofer ist also die beobachtete Energie-
dnderung. Es ist wesentlich, daBl die GréBenordnung der Energiedinderung i/ A¢
nicht von der Grofle der Stérung abhidngt. Die durch die Beziehung (37,1) ge-
gebene Energieinderung wird sogar bei einer beliebig schwachen Wechsel-
wirkung zwischen den beiden Teilen des Systems beobachtet. Dieses Ergebnis
hat einen rein quantenmechanischen Charakter und einen tiefen physikalischen
Sinn. Es zeigt, daBl der Energieerhaltungssatz zu der Quantenmechanik mit
Hilfe zweier Messungen nur mit einer Genauigkeit der GréBenordnung 7%/A¢
nachgepriift werden kann: At ist das Zeitintervall zwischen den Messungen.

Die Beziehung (37,1) bezeichnet man oft als die Unschérferelation fiir die
Energie. Man mull jedoch betonen, daB sie einen wesentlich anderen Sinn hat
als die Unschéirferelation Ap Ax ~ k& fir Ort und Impuls. In der letzteren
sind Ap und Az die Orts- und Impulsunschéirfen zu ein und demselben Zeit-
punkt. Sie zeigen, dal diese beiden GroB8en nicht gleichzeitig scharf bestimmte
Werte haben konnen. Die Energien £ und ¢ konnen dagegen in jedem belie-
bigen Zeitpunkt mit beliebiger Genauigkeit gemessen werden. Die Grofe
(E + &) — (B’ + &) in (37,1) ist die Differenz der beiden zu zwei verschiedenen
Zeitpunkten genau gemessenen Energiewerte E + ¢, sie ist keineswegs eine
Unschiirfe in dem Energiewert zu einer bestimmten Zeit.

Wir wollen E als die Energie eines Systems und ¢ als die Energie eines ,,MeB-
geridtes’ ansehen. Dann koénnen wir sagen, dafl die Wechselwirkungsenergie
von System und Gerédt nur mit einer Genauigkeit bis %/4¢ beriicksichtigt wer-
den kann. Mit AE, Ae, . . . bezeichnen wir die MeBfehler fiir die entsprechenden
Grofen. Im giinstigsten Fall, wenn ¢ und ¢’ genau bekannt sind (4e = 4¢’ = 0),
haben wir

h

AE — B ~ . (37,2)
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Aus dieser Beziehung kann man wichtige Schliisse iiber die Messung des
Impulses ziehen. Der MeBprozeB fiir den Impuls eines Teilchens (wir werden
weiter von einem Elektron sprechen) besteht aus dem Sto des Elektrons mit
einem anderen (,,Mef‘“-)Teilchen, dessen Impulse vor und nach dem StoB als
genau bekannt angesehen werden koénnen. Auf diesen ProzeB miissen die
Erhaltungssdtze fiir Impuls und Energie angewendet werden. Der letztere
kann aber, wie wir gesehen haben, nur mit einer Genauigkeit bis zu der Grofen-
ordnung %/At angewandt werden; At ist dabei die Zeitspanne zwischen Beginn
und Ende des betrachteten Prozesses.

Zur Vereinfachung der weiteren Uberlegungen ziehen wir einen idealisierten
Gedankenversuch heran: Das ,,MeB‘‘-Teilchen sei ein ideal reflektierender ebener
Spiegel. Es spielt dann nur die eine Impulskomponente senkrecht zur Spiegel-
ebene eine Rolle. Impuls- und Energiesatz ergeben zur Bestimmung des Im-
pulses P des Teilchens die Gleichungen

pP+P —p—P=0, (37,3)
7 4 nl h
l& + B —¢— B~ (37,4)

(P und E sind Impuls und Energie des Teilchens, p und ¢ die entsprechenden
GroBen des Spiegels; die Buchstaben ohne und mit Strichen gehdren zu den
entsprechenden Grofen vor und nach dem StoB). Die Groflen p, p’, &, €' fiir
das ,,MeB‘“-Teilchen konnen als genau bekannt angesehen werden, d. h., ihre
Fehler sind gleich Null. Aus den angegebenen Gleichungen erhalten wir dann
fiir die Fehler in den iibrigen GréBen

B

AP=AP',  AE —AE~ .

' oE
Es ist aber AE =ﬁAP = v AP mit der Geschwindigkeit v des Elektrons
(vor dem StoB); dhnlich gilt auch AE’ = v’ AP’ = v’ AP. Deshalb haben wir

h

T (37,5)

(v; — V) AP ~

Wir haben hier die Indizes z, y an Geschwindigkeit und Impuls angehéngt,
um zu unterstreichen, dafl diese Beziehung fiir jede Komponente einzeln gilt.
Das ist auch die gesuchte Beziehung. Sie besagt, da eine Messung des
Elektronenimpulses (bei vorgegebener Genauigkeit AP) unbedingt mit einer
Geschwindigkeitsinderung des Elektrons verbunden ist (d. h. auch mit einer
Anderung des Impulses selbst). Je kiirzer der eigentliche MeBproze8 ist, desto
groBer ist diese Anderung. Die Geschwindigkeitsinderung kann nur fiir 4¢ — oo
beliebig klein gemacht werden. Eine Impulsmessung iiber eine lange Zeit
kann aber iiberhaupt nur fiir ein freies Teilchen einen Sinn haben. Hier tritt
besonders klar hervor, daBl die Impulsmessung nach kurzen Zeitabstdnden nicht



§ 38. Quasistationiire Zustinde 113

reproduzierbar ist und dafl die Messung in der Quantenmechanik eine Doppel-
rolle spielt: Man muBl zwischen den MeBwerten einer Groe und dem Wert
unterscheiden, der als Ergebnis des MeBproze sses geschaffen wird.!)

§ 38. Quasistationire Zustinde

Man kann die am Anfang dieses Paragraphen gegebene Herleitung auf Grund
der Stoérungstheorie auch unter einem anderen Gesichtspunkt sehen, wenn man
sie auf den Zerfall eines Systems unter dem Einflul irgendeiner Stérung an-
wendet. E, sei ein Energieniveau des Systems; bei der Berechnung dieses
Niveaus sei die Moglichkeit eines Zerfalls véllig vernachlissigt worden. Mit ¢
wollen wir die Lebensdauer dieses Zustandes des Systems bezeichnen, d. h. die
reziproke Zerfallswahrscheinlichkeit w pro Zeiteinheit :

. .
T = —u; . (38v1)
Nach demselben Verfahren finden wir dann
k
|E0_E _El""’"_[‘§

E und ¢ sind die Energien der beiden Teile, in die das System zerfallt. Aus der
Summe E + ¢ kann man auf die Energie des Systems vor dem Zerfall schlie-
Ben. Die erhaltene Beziehung besagt daher, da die Energie eines Systems,
das zerfallen kann, in einem quasistationiren Zustand nur bis auf eine Unschérfe
der GroBenordnung %/t bestimmt werden kann.

Ein System, das zerfallen kann, besitzt, streng genommen, kein diskretes
Energiespektrum. Das aus ihm beim Zerfall heraustliegende Teilchen ent-
weicht ins Unendliche; in diesem Sinne ist die Bewegung des Systems unbe-
grenzt, und deshalb ist das Energiespektrum kontinuierlich.

Es kann sich jedoch erweisen, daf die Zerfallswahrscheinlichkeit des Systems
sehr klein ist (das einfachste Beispiel dieser Art ist ein Teilchen, das von einer
hinreichend hohen und breiten Potentialschwelle umgeben ist). Fiir solche
Systeme mit einer kleinen Zerfallswahrscheinlichkeit kann man den Begriff
der quasistationdren Zustinde einfiihren, in denen sich die Teilchen im Verlauf
einer lingeren Zeit ,,innerhalb des Systems‘ bewegen kénnen und es nur nach
Ablauf einer bedeutenden Zeitspanne verlassen. Das Energiespektrum dieser
Zustinde wird quasidiskret; es besteht aus einer Reihe verschmierter Niveaus,
deren Breiten sich aus ihren Lebensdauern bestimmen. Als quantitatives
Charakteristikum fiir die Niveaubreite kann man die Grole

I’=%=hw (38,2)

1) Die Beziehung (37,5) sowie die physikalische Interpretation der Unschérferelation
fir die Energie stammen von N. BoER (1928).
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ansehen. Die Breite der quasidiskreten Niveaus ist klein im Vergleich zu den
Abstédnden zwischen ihnen.

Bei der Betrachtung der quasistationdren Zustdnde kann man folgende Me-
thode anwenden. Bis jetzt betrachteten wir immer die Losung der ScHRO-
DPINGER-Gleichung mit einer Randbedingung, die die Endlichkeit der Wellen-
funktion im Unendlichen fordert. Anstelle dieser werden wir jetzt diejenige
Loésung suchen, die im Unendlichen durch eine auslaufende Kugelwelle dar-
gestellt wird (p ~ e**[r); das entspricht einem Teilchen, das aus dem System
beim Zerfall herausfliegt. Weil diese Randbedingung komplex ist, kann man
nicht erwarten, dafl die Energieeigenwerte reell sein miissen. Tatséchlich er-
halten wir bei der Losung der ScHRODINGER-Gleichung einen Satz komplexer
Eigenwerte, die wir als
i I
2
schreiben werden, wobei E, und I" zwei positive GréBen sind.

Es ist leicht zu sehen, worin der physikalische Sinn der komplexen Energie-
werte liegt. Der Zeitfaktor der Wellenfunktion eines quasistationdren Zu-
standes hat die Gestalt

E=E,— (38,3)

: r
——;-Et - 5Bt ~ 53¢
e =e e .

Deshalb sind alle Wahrscheinlichkeiten, die durch die Quadrate des Betrages
der Wellenfunktion bestimmt sind, nach dem Gesetz e~7%* zeitlich geddmpft.
Nach diesem Gesetz ist auch die Wahrscheinlichkeit, das Teilchen ,,innerhalb
des Systems® zu finden, geddmpft. '

Mit einer breiten Palette quasistationdrer Zustdnde haben wir es auf dem
Gebiet nicht sehr hochenergetischer Kernreaktionen zu tun, die das Stadium
der Bildung von Compound-Kernen durchlaufen.!) Das anschauliche physi-
kalische Bild der dabei stattfindenden Prozesse besteht darin, daB3 das auf den
Kern fallende Teilchen (z. B. ein Neutron), das mit den Nukleonen des Kerns
wechselwirkt, mit ihm ,,verschmolzen* wird und ein zusammengesetztes Sy-
stem bildet, in dem die durch das Teilchen eingebrachte Energie auf viele
Nukleonen verteilt wird. Die (im Vergleich zu den ,,Perioden‘* der Nukleonen-
bewegung im Kern) grofe Lebensdauer der quasistationdren Zustdnde héngt
damit zusammen, dafl wahrend der meisten Zeit die Energie auf viele Teilchen
verteilt wird, so daB jedes von ihnen eine Energie besitzt, die nicht dazu aus-
reicht, um aus dem Kern herauszufliegen und die Anziehung der restlichen
Teilchen zu iiberwinden. Nur relativ selten konzentriert sich eine hinreichend
grofe Energie auf ein Teilchen und fithrt zum Zerfall des Kerns.

1) Die Vorstellung vom Compound-Kern wurde 1936 von N. BoHR entwickelt.
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§ 39. Der Spin

Betrachten wir ein zusammengesetztes Teilchen (sagen wir einen Atomkern),
das als Ganzes ruht und sich in einem bestimmten inneren Zustand befindet.
AuBer definierter innerer Energie besitzt es des weiteren auch einen der Groe
nach definierten Drehimpuls L, der mit der Bewegung der Teilchen inner-
halb des Kernes zusammenhingt. Bei gegebenem Drehimpuls L besteht noch
die Moglichkeit fiir, wie wir wissen, 2 L + 1 verschiedene Orientierungen im
Raum.

In § 18 wurde ausgefiihrt, dal der wesentliche Aspekt fiir das Verstdndnis
des Drehimpulses in der Quantenmechanik darin besteht, dal diese Gré8e durch
die Symmetrieeigenschaften der Systemzustdnde in bezug auf Drehungen im
Raum bestimmt wird. Bei Drehungen des Koordinatensystems ndamlich trans-
formieren sich die 2L + 1 Wellenfunktionen w4, die den verschiedenen
Werten der Drehimpulsprojektion M entsprechen, untereinander nach einer
wohldefinierten Regel.

In einer solchen Formulierung wird die Frage nach dem Ursprung des Dreh-
impulses unwesentlich, und wir gelangen zwanglos zu der Vorstellung vom
» Eigendrehimpuls®, der einem Teilchen unabhéingig davon zugeschrieben wer-
den mu$B, ob es ein ,,zusammengesetztes*‘ oder ,,elementares‘‘ Teilchen darstellt.

Auf diese Weise macht es sich in der Quantenmechanik notwendig, einem
Teilchen einen gewissen ,,Eigendrehimpuls® zuzuordnen, der nicht an seine
Bewegung im Raum gebunden ist. Diese Eigenschaft der Elementarteilchen ist
eine spezifische Quanteneigenschaft (die beim Ubergang % — 0 verschwindet)
und erlaubt prinzipiell keine klassische Interpretation.l)

Der Eigendrehimpuls eines Teilchens heifit dessen Spin. Im Unterschied
dazu nennt man den mit der Bewegung des Teilchens im Raum verkniipften
Drehimpuls den Bahndrehimpuls. Es kann sich dabei sowohl um ein Elementar-
teilchen als auch um ein Teilchen handeln, das zwar zusammengesetzt ist, sich
aber bei bestimmten Erscheinungen wie ein elementares Teilchen verhélt (zum
Beispiel um einen Atomkern). Wir wollen den Spin eines Teilchens (der wie
der Bahndrehimpuls in Vielfachen von % gemessen wird) mit s bezeichnen.?)

1) So wiire es zum Beispiel véllig unsinnig, sich den Eigendrehimpuls eines Elementar-
teilchens als Ergebnis der Rotation des Teilchens um ,,seine eigene Achse'* vorzustellen.

%) Die physikalische Idee von der Existenz eines Eigendrehimpulses des Elektrons
stammt von G. E. URLENBECK und S. GoupsmaT aus dem Jahre 1925. 1927 wurde der
Spin von W. PavwI in die Quantenmechanik eingefiihrt.

9 Kurzfassung II
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Fiir Teilchen, die einen Spin besitzen, mufl die Beschreibung eines Zustandes
mit Hilfe der Wellenfunktion nicht nur die Bestimmung der Aufenthaltswahr-
scheinlichkeit des Teilchens im Raum gewéhrleisten, sondern auch die Be-
stimmung der Wahrscheinlichkeiten fiir seine verschiedenen moglichen Spin-
orientierungen. Mit anderen Worten mufl die Wellenfunktion nicht nur von
den drei kontinuierlichen Variablen, den Teilchenkoordinaten, sondern auch
von einer diskreten Spinvariablen abhingen, die die GroBle der Spinprojektion
beziiglich einer gewissen herausgegriffenen Raumrichtung (z-Achse) angibt und
eine endliche Anzahl diskreter Werte (die wir im weiteren mit den Buchstaben ¢
bezeichnen werden) durchlduft.

¥(, ¥, 2; ) moge eine solche Funktion sein. Im Grunde genommen stellt
sie die Gesamtheit einiger unterschiedlicher Funktionen der Koordinaten dar,
die den verschiedenen Werten von ¢ entsprechen; von diesen Funktionen wer-
den wir als von den Spinkomponenten der Wellenfunktion sprechen. In diesem
Zusammenhang bestimmt das Integral

Sy, y, 25 0)2dV
die Wahrscheinlichkeit dafiir, dafl das Teilchen einen definierten Wert ¢ be-
sitzt. Andererseits ist die Wahrscheinlichkeit dafiir, dafl sich das Teilchen bei
beliebigem ¢ im Volumenelement dV befindet,

2y, y,2z;0)2.

Der quantenmechanische Operator fiir den Spin wirkt bei seiner Anwendung
auf die Wellenfunktion unmittelbar auf die Spinvariable ¢. Mit anderen Worten,
er transformiert in irgendeiner bestimmten Weise die Komponenten der Wellen-
funktion untereinander. Die Gestalt dieses Operators wird weiter unten fest-
gestellt werden. Von vornherein ist jedoch schon klar, da die Operatoren fiir
die drei Spinkomponenten §,, s, s, ebensolchen Vertauschungsregeln geniigen
wie auch die Operatoren fiir den Bahndrehimpuls. Die allgemeine Definition
der Drehimpulsoperatoren ergibt sich aus ihrer Verkniipfung mit den Opera-
toren fiir infinitesimal kleine Drehungen. In § 14 wurde bei der Herleitung
der Ausdriicke und spéter der Vertauschungsregeln fiir diese Operatoren zum
Verstindnis angenommen, dafl sie auf Funktionen von Koordinaten wirken.
Tatsdchlich jedoch driicken diese Regeln Eigenschaften von Drehungen aus
und sind wie diese unabhéngig davon, auf welches mathematische Objekt sie
angewendet werden; sie besitzen demzufolge universellen Charakter.

Bei Kenntnis der Vertauschungsregeln kann man die méglichen Werte des
Absolutbetrages des Spins und der Spinkomponenten bestimmen. Die ganze
Ableitung in § 15 (Formeln (15,6—8)) war allein auf den Vertauschungsrela-
tionen aufgebaut und ist daher in ganzem Umfange auch hier anwendbar.
Man mufl in diesen Formeln lediglich unter L jetzt s verstehen. Aus den
Formeln (15,6) folgt fiir die Eigenwerte der z-Komponente des Spins eine
Zahlenfolge, bei der sich eine Zahl von der vorhergehenden jeweils um 1 unter-
scheidet. Wir kénnen jetzt aber nicht behaupten, dafl diese Werte ganzzahlig
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sein miissen, wie es fiir die Projektion /, des Bahndrehimpulses der Fall war
(die zu Beginn von § 15 angegebene Herleitung ist hier nicht anwendbar, da
sie auf einen fiir den Bahndrehimpuls spezifischen Ausdruck des Operators ’l;
beruht, der auf eine Funktion der Koordinaten wirkt).

Die Folge der Eigenwerte 8, ist nach oben und nach unten begrenzt. Die
Grenzen haben denselben absoluten Betrag und entgegengesetzte Vorzeichen,
wir bezeichnen sie mit +s. Die Differenz 2 s zwischen dem gré8ten und dem
kleinsten Wert von s, mufl eine ganze Zahl oder Null sein. Die Zahl s kann
demnach die Werte 0, 1/2, 1, 3/2, . . . annehmen.

Die Eigenwerte des Quadrates des Spins sind also

§2 =3 (s + 1); (39,1)

s kann darin entweder eine ganze Zahl (einschlieflich der Null) sein oder halb-
zahlige Werte annehmen. Bei vorgegebenem s kann die Komponente s, = o die
Werte 8,8 — 1, ..., —s, insgesamt 2 s + 1 Werte durchlaufen. Ebensoviele
Komponenten hat, entsprechend dem oben Gesagten, die Wellenfunktion eines
Teilchens mit dem Spin s. 1)

Die Mehrzahl der Elementarteilchen (darunter Elektronen, Protonen, Neu-
tronen, u-Mesonen) besitzt den Spin 1/2. Es existieren jedoch auch Elementar-
teilchen mit anderen Spins (so besitzen z-Mesonen und K-Mesonen den Spin 0).

Der Gesamtdrehimpuls eines Teilchens (wir bezeichnen ihn mit j) ergibt sich
durch Addition des Bahndrehimpulses Z und des Spins s. Die zugehérigen Ope-
ratoren wirken auf Funktionen ganz verschiedener Verinderlicher und kommu-
tieren natiirlich miteinander. Die Eigenwerte des Gesamtdrehimpulses

j=1+s (39,2)
erhidlt man nach derselben Regel im ,,Vektormodell“ wie die Summe der
Bahndrehimpulse zweier verschiedener Teilchen (§ 17). Fiir gegebene Werte von
! und s kann der Gesamtdrehimpuls die Werte I + s,l +s —1,...,|l — g
annehmen. Ein Elektron (Spin 1/2) mit von Null verschiedenem Bahndreh-
impuls  kann den Gesamtdrehimpuls j = 7 4 1/2 haben; fiir I = 0 hat der Dreh-
impuls j natiirlich nur den einen Wert j = 1/2.

Der Operator fiir den GesamtdrehimpulsdJ eines Systems von Tellchen ist
die Summe der Operatoren fiir die Drehimpulse j der einzelnen Teilchen, so
daf seine Werte wieder durch die Regeln des Vektormodells bestimmt werden.
Man kann den Drehimpulse in der Form J = L + S darstellen; dabei kann
man S als den Gesamtspin und L als den gesamten Bahndrehimpuls bezeichnen.

Zusammen mit den Vertauschungsregeln besitzen auch die Formeln (15,11)
fir die Matrixelemente der Drehimpulskomponenten universellen Charakter
(d. h., sie sind fiir einen beliebigen Drehimpuls giiltig). Desweiteren bleiben

1) Da fir jede Teilchensorte s eine feste Zahl ist, wird der Spindrehimpuls % s beim
Grenziibergang zur klassischen Mechanik (% — 0) Null. Fiir den Bahndrehimpuls hat eine
solche Uberlegung keinen Sinn. Beim Ubergang zur klassischen Mechanik streben gleich-
zeitig % gegen Null und ! gegen Unendlich, so daB das Produkt &l endlich bleibt.

9
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auch (bei entsprechender Abénderung der Bezeichnungen) die in § 18 beziiglich
des Drehimpulses aufgestellten Auswahlregeln fiir die Matrixelemente der ver-
schiedenen physikalischen GréBen richtig.

§ 40. Der Spinoperator

Im folgenden (in diesem und den §§ 41, 42) werden wir uns nicht fiir die Orts-
abhéngigkeit der Wellenfunktionen interessieren. Wenn wir zum Beispiel vom
Verhalten der Funktionen (o) bei einer Drehung des Koordinatensystems
sprechen, dann kann man sich vorstellen, daB sich das Teilchen im Koordinaten-
ursprung befindet. Seine Koordinaten bleiben dann bei einer solchen Drehung
unverindert, und die erhaltenen Ergebnisse sind gerade fiir das Verhalten der
Funktion (o) beziiglich der Spinvariablen ¢ charakteristisch.

Die Variable ¢ unterscheidet sich von den gew6hnlichen Variablen (den Ko-
ordinaten) dadurch, dafl sie nur diskrete Werte annimmt. Die allgemeinste
Gestalt eines linearen Operators, der auf eine Funktion der diskreten Variablen ¢
wirkt, ist

fp(o) = X fow v(o) , (40,1)

wobei die f,,» Konstanten sind.

Es ist leicht zu sehen, dafl diese GroBen mit den nach der iiblichen Regel
(11.6) beziiglich der Eigenfunktionen des Operators s, definierten Matrix-
elementen des Operators f zusammenfallen. Die Koordinatenintegration in der
Definition (11,6) wird jetzt durch die Summation iiber die diskrete Variable
ersetzt, so dafl die Definition fiir ein Matrixelement die Form

foron = Z 020) [f 0,(0)] (40,2)

annimmt. (o) und v, (o) sind hier Eigenfunktionen des Operators sz die
zu den Eigenwerten s, = o, und s, = o, gehéren; jede Funktion dieser Art
entspricht einem Zustand, in dem das Teilchen einen definierten Wert s, be-
sitzt, d. h., von allen Komponenten der Wellenfunktion ist nur eine von Null
verschieden?) :

WG.(G) = 60,0 i wa,(o') = 60,0 e (40,3)
Geméal (40,1) haben wir

/A"pa,(o') = Z" fo‘ o 'po'l(o',) - 4\7 faa‘ 6(110" = /o'a, .

1) Genauer miiBte man

wax(x’ Y, 2; U) = ’P(x, Y Z) 60169 cee
schreiben; in (40,3) sind die in unserem Zusammenhang unwesentlichen Koordinaten-

funktionen weggelassen.
Wir betonen ein weiteres Mal die Notwendigkeit, zwischen gegebenem Eigenwert s,

(0, bzw. 0,) und der unabhéngigen Variablen ¢ zu unterscheiden !



§ 41. Spinoren : i 119

Setzen wir diesen Ausdruck zusammen mit y,(c) in (40,2) ein, dann wird
letztere Gleichung identisch befriedigt, womit die aufgestellte Behauptung be-
wiesen ist.

Demnach kénnen die auf die Wellenfunktionen eines Teilchens mit dem
Spin s wirkenden Operatoren als (2 s 4 1)-reihige Matrizen dargestellt werden.
Insbesondere haben wir fiir die Spinoperatoren selbst

5:9(0) = X (s)oo 907 - - - (40,4)
Gemil dem oben Gesagten (siehe das Ende von § 39) stimmen die Matrizen
Sz 8y S; mit den in § 15 erhaltenen Matrizen der GroBen L,, L,, L, iiberein,
wenn man nur in den Formeln (15,11) die Buchstaben L und M durch die
Buchstaben s und o ersetzt. Damit haben wir direkt die Spinoperatoren be-
stimmt.

In dem sehr wichtigen Fall Spin 1/2 (s = 1/2, ¢ = 4 1/2) sind diese Matrizen
zweireihig. Man schreibt sie in der Form

-0z , 8y =4 0y, 8z = 4 0z (40,5)

(01 (0 — (O 106
01—10, a”—i O, 02—0_1‘ (!)

Die Matrizen (40,6) heien PAuLI-Matrizen. Wir bemerken, dafl die Matrix s,
diagonal ist, wie es auch fiir die Matrix sein muBl, die beziiglich der Eigen-
funktionen des ihr dquivalenten Operatorss, dargestellt wird.

mit?)

§ 41. Spinoren

Wir gehen nun zu einer ausfiihrlicheren Betrachtung der Spineigenschaften der
Wellenfunktionen iiber.

Die Wellenfunktion eines Teilchens mit dem Spin O besitzt insgesamt eine
sich bei Drehungen des Koordinatensystems nicht &ndernde Komponente, d. h.,
sie ist ein Skalar. )

Fiir die Wellenfunktionen von Teilchen mit Spin ungleich Null geben wir
zunichst ihr Verhalten bei Drehungen um die z-Achse an. Der Operator fiir
eine infinitesimal kleine Drehung beziiglich der z-Achse um den Winkel d¢p
wird mit Hilfe des Drehimpulsoperators (im gegebenen Fall des Spinoperators)

1) In der Matrizenschreibweise (40,6) werden die Zeilen und Spalten durch die o-Werte
durchnumeriert, wobei die Zeilennummer dem ersten und die Spaltennpmmer dem
zweiten Index eines Matrixelements entspricht. Im vorliegenden Fall sind diese Nummern
1/2, —1/2. Anwendung eines solchen Operators bedeutet gemiaB Regel (40,1) Multipli-
kation der o-ten Zeile der Matrix mit den Komponenten der Wellenfunktion, die in Form

. . y(1/2) )
einer Spalte eordnet sind: p = .
iner Spalte angeordnet sind: y (’P (—1/2)
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durch 1 4 % dp - 3, ausgedriickt. Deshalb gehen im Ergebnis der Drehung die
Funktionen y(o) in y(g) + dy(o) iiber, wobei

(o) = i g - 5, 9(0)
gilt. Nun ist jedoch §, eine diagonale Matrix, und ihre Diagonalelemente
stimmen mit den Eigenwerten s, = ¢ iiberein. Deshalb ist 3, y(o) = oy(o),
so daB

y(o) =i 0 yl(o) - b
folgt. Schreiben wir diese Gleichung nun als Differentialgleichung dy/dp = 10y
und integrieren sie, so finden wir den Wert der Funktion y(c) nach der Drehung

um einen beliebigen endlichen Winkel ¢ ; wir erhalten, kennzeichnen wir diesen
Wert durch einen Strich an der Funktion,

p(0) = y(0) €77 . (41,1)

Speziell werden bei einer Drehung um den Winkel ¢ = 27 alle Kompo-
nenten y(o) mit dem gleichen Faktor

e2nioc (_1)20 — (_1)23

multipliziert (die Zahlen 2 ¢ sind offensichtlich immer geradzahlig fiir gerad-
zahliges 2 s und ungeradzahlig fiir ungeradzahliges 2 s). Demzufolge gehen
bei einer vollen Drehung des Koordinatensystems um die Achse die Wellen-
funktionen von Teilchen mit ganzzahligem Spin in ihrem Ausgangswert iiber,
wihrend diejenigen fiir Teilchen mit halbzahligem Spin ihr Vorzeichen éndern.

Die Wellenfunktionen eines Teilchens mit Spin 1/2 (z. B. eines Elektrons)
besitzen zwei Komponenten: y(1/2) und y(—1/2). Zwecks spéterer Verall-
gemeinerungen kennzeichnen wir diese Komponenten durch einen oberen In-
dex, der die Werte 1 und 2 durchlduft, wobei gilt:

pt=1yp(12), p?=1yp(—1/2). (41,2)
Bei einer beliebigen Drehung des Koordinatensystems transformieren sich

! und y? untereinander, d. h., sie werden einer linearen Transformation unter-
worfen:

Y=oyl F By, oy =yyl 0P, (41.3)

Die Koeffizienten o, B, v, 0 sind im allgemeinen komplex und Funktionen der
Drehwinkel. Sie sind durch bestimmte Beziehungen miteinander verkniipft,
die im weiteren abgeleitet werden.

Betrachten wir ein System aus zwei Elektronen (der Bahndrehlmpuls beziig-
lich der relativen Bewegung moége Null sein). Sein Gesamtspin kann § = 0
oder § = 1 sein. Im ersten Falle verhélt sich das System als Ganzes wie ein
Teilchen mit dem Spin 0, so daB seine Wellenfunktion ein Skalar sein muf.
Wenn man andererseits annimmt, daf3 die Teilchen nicht miteinander wechsel-
wirken, dann mulB sich die Wellenfunktion des Systems in Gestalt von Pro-
dukten aus Wellenfunktionen der einzelnen Teilchen (die wir mit 9 und ¢
bezeichnen) darstellen lassen. Es ist leicht einzusehen, dafl sie aus den Kom-
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ponenten von y und ¢ als bilineare Form gebildet werden muB, die in den
Indizes 1 und 2 antisymmetrisch ist:

1
— (pl@? —y2ol). 414
l/2 '@ y* ol) ( )
In der Tat ergibt eine einfache Rechnung mit Hilfe von (41,3)
1 ’ ’ ’ ’ 1
ﬁ(@p‘ ¥ —y¥ V)= (a0 —p y)—V? (¥ * — 92 ol),

d. h. die Grofe (41,4) transformiert sich bei einer Drehung des Koordinaten-
systems in sich selbst. Dies bedeutet, daf sie ein Skalar ist, wobei gelten muf:

ad—By=1. (41,5)
Damit haben wir auch eine der gesuchten Beziehungen.
Der Ausdriick '

[ + [9?1? =y pt* + pPy?*
fiir die Aufenthaltswahrscheinlichkeit eines Teilchens in einem bestimmten
Raumpunkt mufl offensichtlich auch ein Skalar sein. Vergleichen wir ihn mit
dem Skalar (41,4), so erkennen wir, da8 sich die zu 3! und y? konjugiert kom-

plexen Komponenten '* und y2* der Wellenfunktion wie y? bzw. —y? trans-
formieren miissen; d. h., es mufl gelten

P = Syl — gk PR = — Byl* 4 ayl*,
Schreiben wir andererseits die konjugiert komplexen Gleichungen (41,3) auf,
P = a* pl* | B g2k O A . LRV L

und vergleichen sie mit den vorstehenden, so finden wir noch eine weitere
Beziehung zwischen den Koeffizienten «, §,  und 6:

a=0%, f=—yp*. (41,6)

Wegen der Beziehungen (41,5—6) enthalten die vier komplexen GréBen «, 8,
v und é in Wirklichkeit insgesamt nur drei unabhéngige reelle Parameter. Diese
entsprechen gerade den drei Drehwinkeln bei der Drehung eines dreidimen-
sionalen Koordinatensystems.

Eine zweikomponentige Gréfe yp =

1!
'Pz) , die sich bei Drehungen des Ko-
{4
ordinatensystems nach der Vorschrift (41,3) transformiert, heit Spinor 1. Stufe
oder einfach Spinor. Demnach stellt die Wellenfunktion eines Teilchens mit
dem Spin 1/2 einen Spinor dar.

Kehren wir zu dem System aus zwei Elektronen zuriick, und betrachten wir
jetzt seine Zusténde mit dem Spin § == 1. Seine Wellenfunktion mufl drei
Komponenten besitzen, die den Spinprojektionen + 1, 0, —1 entsprechen. Dies
sind aus Produkten von Komponenten der Spinoren ¢ und ¢ aufgebaute Aus-
driicke, die in ihren Indizes symmetrisch sind und sich bei Transformationen
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(41,3) untereinander transformieren:
1
1ot =yl =2 2 1) | 2 02 . 41,7
Ve T Vet vie (41,7)

Die Projektion ¢ des Gesamtspins des Systems ist gleich der Summe der Spin-
projektionen beider Elektronen. Deshalb ergibt sich die Zuordnung der Funk-
tionen (41,7) hinsichtlich der Werte ¢ eindeutig aus der Bedeutung der Spin-
indizes 1 und 2, die die Werte fiir die Spinprojektionen der einzelnen Elektronen
angeben: So besitzt die erste dieser Funktionen als Indizes zweimal die 1 und
entspricht deshalb der Projektion ¢ = 1/2 + 1/2 = 1; die zweite Funktion hat
als Indizes jeweils einmal die 1 und einmal die 2, so dal ¢ = 1/2 —1/2 =0
ist; fiir die dritte Funktion mit der 2 als den beiden Indizes haben wir schlie3-
licheg=—12—-12=—1

Es versteht sich von selbst, daBl die Spineigenschaften der Wellenfunktionen,
die ja im Grunde genommen durch ihre Eigenschaften in bezug auf Drehungen
des Koordinatensystems gegeben sind, fiir ein Teilchen mit dem Spin 1 und -
fiir ein System von Teilchen mit dem Gesamtspin 1 identisch sind. Deshalb
besitzt das Resultat (41,7) auch allgemeineren Charakter: Die Wellenfunktion
eines beliebigen Teilchens mit dem Spin 1 stellt einen, wie man sagt, symme-
trischen Spinor 2. Stufe dar. Allgemein heiBit eine Gesamtheit von vier Gréflen
11, 922, 12 2 die sich bei Drehungen des Koordinatensystems wie die Pro-
dukte aus den entsprechenden Komponenten zweier Spinoren 1. Stufe trans-
formieren (selbstverstandlich brauchen sie sich in Wirklichkeit keineswegs auf
derartige Produkte zuriickfiithren lassen) Spinor 2. Stufe.l) Fiir einen symme-
trischen Spinor 2. Stufe gilt 9% = y?!, so dall er im ganzen drei unabhéngige
Komponenten besitzt.2) Thr Zusammenhang mit den Komponenten der Wellen-
funktion y(c) ergibt sich aus den Formeln

p() =9,  pO0)=V2y2,  y(—1) =y2. (4L,8)

Die Wellenfunktion eines Teilchens mit dem Spin 1 kann auch als 3-dimen-
sionaler Vektor o dargestellt werden. Das ist schon daraus ersichtlich, daf} ein
3-dimensionaler Vektor eine Gesamtheit von ebenso vielen (drei) Groflen ist,
die sich bei Drehungen des Koordinatensystems untereinander transformieren.
Die Zuordnung zwischen den Komponenten eines symmetrischen Spinors
2. Stufe und den Vektorkomponenten geschieht iiber folgende Formeln:

Prl=—(p:—iw), ¥P=wtiy, PE=vy. (41,9)
Ihr Sinn besteht darin, daB sowohl die auf den linken Seiten der Gleichungen
stehenden Spinorkomponenten als auch die rechts stehenden Kombinationen

1) Dies ist dhnlich dem Fall eines Tensors 2. Stufe, einer Gesamtheit von GréBen, die
sich wie Produkte von Vektorkomponenten transformieren.

2) Ein antisymmetrischer Spinor 2. Stufe besitzt jedoch insgesamt nur eine unabhéngige
Komponente (yp! = 9?2 = 0, 92 = — p?1). Ihre Eigenschaften stimmen mit denjenigen
der weiter oben betrachteten GroBen (41,4) iberein. Mit anderen Worten laBt sich ein
antisymmetrischer Spinor 2. Stufe auf einen Skalar zuriickfithren.
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aus den Vektorkomponenten sich nach ein und derselben Vorschrift trans-
formieren. Von der Richtigkeit dieser Ubereinstimmung kann man sich anhand
einer Drehung um die z-Achse iiberzeugen, fiir die sich die Transformations-
vorschrift beziiglich der Spinoren aus (41,1) ergibt.!) Andererseits kann man
aus dem allgemein bekannten Transformationsgesetz fiir Vektorkomponenten
bei einer beliebigen Drehung der Koordinatenachsen durch Vergleich mit den
Formeln (41,9) die allgemeine Transformationsvorschrift fiir Spinoren finden
(d. h. die Abhéngigkeit der Transformationskoeffizienten (41,3) von den Dreh-
winkeln); wir werden uns aber hier nicht damit aufhalten.

Im allgemeinen Falle schlieBlich eines Teilchens mit beliebigem Spin stellt
die Wellenfunktion einen in allen seinen Indizes symmetrischen Spinor 2 s-ter
Stufe dar. Esist leicht zu sehen, dal die Zahl der unabhidngigen Komponenten
eines solchen Spinors, wie es auch sein muB, gleich 2 s 4+ 1 ist. Da die An-
ordnung der Indizes fiir einen symmetrischen Spinor unwesentlich ist, sind
tatsdchlich nur diejenigen Komponenten voneinander verschieden, in deren
Indizes 2 s Einsen und 0 Zweien, 2 s — 1 Einsen und eine Zwei usw. bis 0 Einsen
und 2 s Zweien vorkommen.2)

§ 42. Die Polarisation von Elektronen

Eine wichtige, fiir Teilchen mit dem Spin 1/2 (wir werden von Elektronen
sprechen) spezifische Eigenschaft besteht darin, daBl, wenn der Zustand eines
Elektrons durch eine gewisse Wellenfunktion beschrieben wird, eine solche
Raumrichtung existiert, langs derer die Spinprojektion den definierten Wert
8, = 1/2 besitzt. Diese Richtung kann man als Polarisatvonsrichtung des Elek-
trons bezeichnen, wihrend man vom Elektron in einem solchen Zustand sagt,
es sei vollstindig polarisvert.

In der Tat kann man die Richtung der z-Achse derart wéihlen, dal eine von
1

¥ ) — der Wellen-

den Komponenten (z. B. 9?) eines gegebenen Spinors p = ('Pz

1) Entsprechend (41,1) und (41,2) haben wir
wl’ = et@/2 wl 5 1,02’ — e—1i9/2 wZ s

worin y', 2’ die Spinorkomponenten beziiglich des Koordinatensystems sind, das gegen-
iiber dem Ausgangssystem um den Winkel ¢ um die z-Achse gedreht ist. Fiir die Kompo-
nenten eines 2stufigen Spinors gilt deshalb

P = el it Pl = 12, P2 = e—ip g2,

Durch eben diese Formeln sind die Vektorkomponenten v, — © 1y, ¥;, ¥z + ¢ ¥, in beiden
Koordinatensystemen verkniipft. B

2) In der Terminologie der Mathematik spricht man davon, da8 die symmetrischen
Spinoren 1., 2., 3., ... Stufe alle irreduziblen Darstellungen der Drehgruppe realisieren
(vergleiche die FuBnote auf Seite 50). Die Dimension dieser Darstellungen bestimmt sich
geméB 2 s + 1 und durchlduft alle Werte 1,2,3,... fir ¢ =0, 1/2, 1,... Die durch
die Eigenfunktionen des Bahndrehimpulses %3 (von denen die Rede in § 18 war) reali-
sierten Darstellungen sind ein Spezialfall, der den Dimensionen 1, 3, 5, . . . entspricht.
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funktion eines Teilchens mit dem Spin 1/2 — Null wird. Dies ist schon daraus
ersichtlich, dall eine Richtung im Raum durch zwei GréBen festgelegt wird
(z. B. in Kugelkoordinaten durch zwei Winkel), d. h., die Zahl der uns zur
Verfiigung stehenden Parameter ist genau gleich derjenigen Anzahl von Gréfien
(Real- und Imaginérteil des komplexen %2), die wir Null setzen wollen. Die
Gleichung 92 = 0 ihrerseits bedeutet die Wahrscheinlichkeit Null fiir den
Eigenwert s, = — 1/2. Wir weisen darauf hin, daB es fiir ein Teilchen mit
dem Spin s > 1/2 unmoéglich wire, auf die gleiche Weise alle Komponenten
der Wellenfunktionen mit Ausnahme einer einzigen Null zu setzen, da ihre
Anzahl einfach zu grof} ist.

Die 2z-Achse mége in Polarisationsrichtung des Elektrons gewihlt sein.
Offensichtlich ist auch der gemittelte Spinvektor s entlang dieser Achse ge-
richtet,wobeierdem Betragnach 1/2 ist. Wir wollen die Wahrscheinlichkeitenw ..
fir die Werte s, = 4 1/2 der Spinprojektion beziiglich einer anderen Rich-
tung (Achsez’) bestimmen, die mit der z-Achse den Winkel § einschlief3t.
Projizieren wir s auf die z’-Achse, dann finden wir fiir den Mittelwert des
Spins entlang dieser Achse s, = 1/2 cos §. GeméB der Defmltlon fiir die Wahr-
scheinlichkeiten w, haben wir andererseits

- 1
8p = E(w+ —w_).
Beriicksichtigen wir ferner, dal w, + w_ = 1 gilt, so finden wir
w, = cos? g w_. = sin? i (42,1)
+ 92 ) = P) . )

Neben vollstindig polarisierten existieren auch solche Zustinde eines Elek-
trons, die man als tetlwerse polarisiert bezeichnen kann. Diese Zustinde werden
(in Hinblick auf ihre Spineigenschaften) nicht durch Wellenfunktionen sondern
durch Dichtematrizen beschrieben, d. h., sie sind (hinsichtlich des Spins) ge-
mischte Zusténde (eine analoge Begriffsbildung fiir Bahnzustdnde von Teilchen
wurde in § 7 eingefiihrt).

Wir gelangen in natiirlicher Weise zur Methodik der Beschreibung solcher
Zusténde, indem wir zundchst genau die Definition fiir den Mittelwert des
Spinvektors in einem reinen Zustand (einem Zustand vollstindiger Polari-
sation) betrachten. Gemi8 der Definition von Operatoren physikalischer Gro-
Ben haben wir fiir einen Zustand mit der Wellenfunktion y !)

§= Ty (Ey, (42,2)

1) Es sei daran erinnert, daB in diesem Paragraphen (wie auch in §§ 40, 41) unser
Interesse nicht der Koordinatenabhéngigkeit der Wellenfunktionen gilt, und deshalb in
(42,2) die Raumintegration nicht aufgefiihrt ist. Dabei wird fiir die Normierung des
gpinors y

P2+ 9?2 = 1.

angenommen.



§ 42. Die Polarisation von Elektronen 125

wobei die Summierung beziiglich der Spinvariablen ¢ in Form einer Summation
iiber die Spinorkomponenten geschieht; mit den Buchstaben «, § bezeichnen
wir in diesem Paragraphen die die Werte 1 und 2 durchlaufenden Spinorindizes.
Des weiteren fassen wir die PauLi-Matrizen oz, 0y, 0, als Komponenten eines
Matrixcharakter tragenden Vektors auf, fiir den wir als Bezeichnung den fett-
gedruckten Buchstaben o verwenden. Gemdaf (40,1) heift Anwendung des
Spinoperators § = 1/2 ¢

~ 1
sw“:—z—%‘o“ﬂy)ﬁ,

worin ¢®f Matrixelemente bedeuten. Deshalb kann man den Ausdruck (42,2)
als

= 1
S = 2 Zgﬂ“ o*f ' (42,3)
o, B
mit
95"‘ = 'wﬁ 'w"“ (42,4)
schreiben. Offensichtlich gilt
(@*f)* = ¢ (42,5)

und auf Grund der Normierungsvorschrift fiir Wellenfunktionen
et +e®=1. (42,6)

Im allgemeinen Falle nun einer teilweisen Polarisation wird der Zustand des
Elektrons durch eine Polarisationsdichtematrix

eaﬂ _ (Qll 912)
021 922

beschrieben, die den Bedingungen (42,5—6) geniigt und s entsprechend (42,3)
bestimmt; jedoch im Unterschied zu einem reinen Zustand zerfallen die Ele-
mente dieser Matrix nicht in Produkte (42,4). Der Betrag des Vektors s kann
Werte von 0 bis 1/2 annehmen. Vollstindiger Polarisation entspricht der Wert
1/2 und dem umgekehrten Fall eines nichtpolarisierten Zustandes der Wert 0.

Die vier komplexen GréBen p*# sind acht reellen Parametern dquivalent,
jedoch sind infolge der fiinf Relationen (42,5—6) nur drei von ihnen voneinander
unabhingig. Gerade so viele GréBen (Komponenten) enthélt der reelle Vektor s.
Esist deshalb klar, daB sich eine Reihe von Gréflen untereinander in eindeutiger
Weise bestimmen. Mit anderen Worten ist der Polarisationszustand eines
Teilchens mit dem Spin 1/2 véllig durch Angabe des Mittelwertes fiir den Spin-
vektor bestimmt.

Der Mittelwert fiir die z-Komponente des Spins lautet

- 1 1
=5 200 =5 (0" — o).
20(’(i 2
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Hieraus ist ersichtlich, dall o und g2 die Wahrscheinlichkeiten fiir die Eigen-
werte s, = 1/2 und s, = — 1/2 sind. Die Gro6Be g'? hiangt mit den Mittel-
werten fiir s, und s, zusammen. Unter Verwendung der Matrizen o, g, aus
(40,6) iiberzeugt man sich leicht davon, daf gilt

12 _ 3 x
e =8, — 1 8.

§ 43. Ein Teilchen im Magnetfeld

Ein Teilchen mit Spin besitzt desweiteren auch ein bestimmtes magnetisches
Eigenmoment g. Der ihm entsprechende quantenmechanische Operator ist
proportional dem Operator 8, d. h., er kann in der Gestalt.

~

A~ S

p=p (43,1)
geschrieben werden, wobei s die Grofle des Teilchenspins ist, und g eine fiir
das Teilchen charakteristische Konstante bedeutet. Die Eigenwerte der Pro-
jektion des magnetischen Moments sind gleich u, = u ofs. Hieraus ist ersicht-
lich, daB8 der Koeffizient & (der gew6hnlich auch einfach als GréBe des magne-
tischen Moments bezeichnet wird) den groBtmoglichsten Wert y., der sich fiir
o = s ergibt, darstellt.

Der Ausdruck pffis gibt das Verhdltnis von magnetischem Eigenmoment
eines Teilchens zu seinem mechanischen Eigendrehimpuls an (sofern beide in
Richtung der z-Achse liegen). Bekanntlich ist dieses Verhéltnis beziiglich des
gewohnlichen (Bahn-) Drehimpulses gleich e/2 m ¢ (siehe I § 66). Der Propor-
tionalitdtsfaktor zwischen magnetischem Eigenmoment und Spin eines Teil-
chens hat jedoch einen anderen Wert. Fiir ein Elektron ist er gleich — |e|/m c,
d.h. um den Faktor Zwei groBer als der iibliche Wert (im weiteren werden
wir sehen, dal man einen solchen Wert aus der relativistischen Drirac-Glei-
chung erhilt). Folglich ist das magnetische Eigenmoment eines Elektrons
(Spin 1/2) gleich —yug mit

h
ts =50k — 0,927 10-2 erg/Gaus. (43,2)

Diese Grofle heilt BoHRrsches Magneton.

Das magnetische Moment schwerer Teilchen wird gewéhnlich in Kernmagne-
tonen gemessen, die als e %/2 m, ¢ mit m, als Protonenmasse definiert sind. Fiir
das magnetische Eigenmoment eines Protons gibt das Experiment 2,79 Kern-
magnetonen, wobei das Moment parallel zum Spin ist. Das magnetische Mo-
ment eines Neutrons ist antiparallel zum Spin und gleich 1,91 Kernmagnetonen.

Wenden wir nun unsere Aufmerksamkeit der Tatsache zu, daB die auf beiden
Seiten der Gleichung (43,1) stehenden GroBen g und s hinsichtlich ihres
Vektorcharakters erwartungsgemdf iibereinstimmen: Beide sind axiale Vek-
toren (sie sind jeweils als Vektorprodukte zweier polarer Vektoren definiert).
Eine genau analoge Gleichung fiir das elektrische Dipolmoment d (d = const - 5)
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stinde im Widerspruch zur Inversionssymmetrie: Bei einer Inversion wiirde
sich das relative Vorzeichen beziiglich beider Seiten dieser Gleichung éndern.!)

Wir wollen kldren, in welcher Form man die SCHRODINGER-Gleichung fiir
ein Teilchen schreiben muB, das sich sowohl in einem &duBeren elektrischen als
auch in einem duBleren magnetischen Feld bewegt.

In der klassischen Theorie hat die HamiLToN-Funktion fiir ein geladenes
Teilchen im elektromagnetischen Feld die Gestalt

2
H=2Lm(p—%A) +ed,

wobei @ das skalare Potential, A das Vektorpotential des Feldes und p der
generalisierte Teilchenimpuls sind (siehe I § 43). Falls das Teilchen keinen
Spin besitzt, geschieht der Ubergang zur Quantenmechanik in der iiblichen Art:

Der generalisierte Impuls muB durch den Operator p — — 7 i V ersetzt werden,
und wir erhalten den HamiLToN-Operator?) '
2 1 (A e

Wenn jedoch das Teilchen einen Spin besitzt, dann ist ein derartiges Vor-
gehen nicht ausreichend. Dies liegt daran, dafl das magnetische Eigenmoment
eines Teilchens unmittelbar mit dem Magnetfeld wechselwirkt. In der klas-
sischen HamiLToN-Funktion tritt diese Wechselwirkung iiberhaupt nicht auf,
da der Spin selbst, einen reinen Quanteneffekt verkoérpernd, beim Ubergang
zum klassischen Grenzfall verschwindet. Den richtigen Ausdruck fiir den
Hamrvron-Operator erhidlt man, indem man in (43,3) ein zusédtzliches Glied
— it H einfiihrt, das der Energie eines magnetischen Moments g im Felde H
entspricht.?) Demzufolge besitzt der HamMILTON-Operator fiir ein sich in einem
Magnetfeld befindendes Teilchen mit Spin die Gestalt

~ 1 (. e 2 ~

Die Gleichung H y = E y fiir die Eigenwerte dieses Operators stellt dann die
gesuchte verallgemeinerte SCHRODINGER-Gleichung fiir den Fall einer Bewegung
im Magnetfeld dar. In dieser Gleichung ist die Wellenfunktion  ein Spinor der
Stufe 2 s + 1.

1) Wir bemerken, daB eine solche Gleichung (und damit auch unmittelbar die Existenz
eines elektrischen Dipolmoments eines Elementarteilchens) der Symmetrie beziiglich der
Zeitumkehr widerspriche: Eine Vorzeichenumkehr hinsichtlich der Zeit éndert das elek-
trische Dipolmoment nicht, jedoch éndert sich das Vorzeichen des Spins (das ist z. B.
aus der Definition dieser Grofen beziiglich der Bahnbewegung ersichtlich; in die De-
finition von d gehen nur die Koordinaten ein, wihrend in derjenigen fiir das magnetische
Moment auBerdem die Teilchengeschwindigkeit auftritt).

2) Wir bezeichnen hier den generalisierten Impuls mit demselben Buchstabenp wie
auch den gewohnlichen Impuls (anstelle von P in I § 43), um zu unterstreichen, dal ihm
der gleiche Operator entspricht.

3) Die Wahl gleicher Buchstaben fiir Feldstirke und HaMrLToN-Operator kann hier
nicht zu Verwechslungen fithren, da der HamMILTON-Operator mit einem Dach versehen ist.



128 Kapitel V. Der Spin
§ 4. Die Bewegung im homogenen Magnetfeld

Wir wollen die Energieniveaus eines Elektrons in einem konstanten homogenen
Magnetfeld bestimmen.

Die z-Achse legen wir in Richtung des Feldes H, und das Vektorpotential
des Feldes schreiben wir als

A,=—~Hy, A, =A4,=0 (44,1)

(es ist leicht zu verifizieren, dafl rot A tatsichlich mit H iibereinstimmt). Der
HamirroN-Operator des Elektrons (mit der Ladung e = — |e| und dem magne-
tischen Moment yg = — g ) nimmt dann die folgende Gestalt an:
~ 1 (~ ,eH \* P 22 eH .
H=2—m(1’x+7y) tom tim T me - (d:2)
Wir bemerken zunichst, daB der Operator s, mit dem HamrLToN-Operator
kommutiert (da letzterer die Operatoren der anderen Spinkomponenten nicht
enthélt). Dies bedeutet, dafl die Projektion des Spins in z-Richtung erhalten
bleibt und daB man deshalb 5, durch den Eigenwert s, = o ersetzen kann.
Nach dieser Ersetzung wird die Spinabhéngigkeit der Wellenfunktion unwesent-
lich und man kann 9 in der SCHRODINGER-Gleichung als gewdhnliche Koordi-
natenfunktion auffassen. Fiir diese Funktion haben wir die Gleichung
1 ~ eH 2 =~ eH
2—m[(pz+7y) +p;+p3]w—m—cvw=Ew- (44,3)
Der HamiLToN-Operator (44,2) enthélt nicht explizit die Koordinaten z und
z. Deshalb kommutieren mit ihm auch die Operatoren p, und p, (Differen-
tiation nach 2z und 2), d. h., die 2- und z-Komponente des generalisierten
Impulses bleiben erhalten. Dementsprechend suchen wir ¢ in der Gestalt

% (Pzz + p.Z)‘
y=e 1Y) . (444)

Die Eigenwerte p, und p, durchlaufen alle Werte von —oo bis 4-co. Da
A, =0 ist, fallt die z-\Komponente des generalisierten Impulses p, mit der
Komponente des gewohnlichen Impulses zusammen: p, = m v,. Somit kann
die Geschwindigkeit des Elektrons in Feldrichtung beliebige Werte annehmen;
man kann sagen, dall die Bewegung langs der z-Achse ,,nicht quantisiert wird.

Setzen wir (44,4) in (44,3) ein, so erhalten wir folgende Gleichung fiir die
Funktion y:

2

" 2m Pz m
X +7[E —oyo —5 = o0 Y —yo)z]x=0’
wobei die Bezeichnungen y, = — ¢ p,/e H und
g =i (44.5)

mec
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eingefithrt wurden. Diese Gleichung stimmt formal mit der SCHRODINGER-
Gleichung (25,6) fiir einen linearen Oszillator iiberein, der mit der Frequenz wg
um den Punkt y = y, schwingt. Deshalb kénnen wir sofort schlieBen, dafl die
Konstante (E — ¢ wg — p3/2m), die die Rolle der Energie des Oszillators
spielt, die Werte (n + 1/2) & wgy annehmen kann, wobei 7 ganze Zahlen sind.

Wir erhalten so folgenden Ausdruck fiir die Energieniveaus eines Elektrons
im homogenen Magnetfeld:

1 2
E=(n+5+a)hw3+2%. (44,6)

Das erste Glied in (44,6) liefert die diskreten Energiewerte, die der Bewegung
in der zur Feldrichtung orthogonalen Ebene entsprechen; sie werden LANDAU-
Niveaus genannt.?)

1) Dieses Problem wurde erstmalig von L. D. LaANpavU (1930) im Zusammenhang mit
dem des Diamagnetismus von Elektronen in Metallen untersucht.






Identische Teilchen VI

§ 46. Das Prinzip der Ununterscheidbarkeit gleichartiger Teilchen

In der klassischen Mechanik verlieren gleichartige Teilchen (sagen wir Elek-
tronen) trotz der Identitdt ihrer physikalischen Eigenschaften ihre ,,Indivi-
dualitdt nicht. Man kann sich ndmlich die Teilchen eines gegebenen physi-
kalischen Systems ,,durchnumeriert‘ vorstellen und dann die Bewegung jedes
einzelnen Teilchens auf dessen Bahnkurve verfolgen. In einem beliebigen Zeit-
punkt konnen die Teilchen wieder identifiziert werden.

In der Quantenmechanik ist die Sachlage ganz anders, wie unmittelbar aus
dem Unbestimmtheitsprinzip folgt. Wir haben bereits mehrfach darauf hin-
gewiesen, daf} der Begriff der Bahnkurve eines Elektrons wegen des Unbestimmt-
heitsprinzips seinen Sinn vollkommen verliert. Ist die Lage eines Elektrons in
einem bestimmten Zeitpunkt genau bekannt, dann haben seine Koordinaten
schon in einem infinitesimal benachbarten Zeitpunkt iiberhaupt keinen be-
stimmten Wert mehr. Lokalisieren wir die Elektronen und numerieren sie zu
einem gewissen Zeitpunkt durch, so haben wir dadurch nichts fiir ihre Identi-
fizierung in spiteren Zeitpunkten gewonnen. Wenn wir eines der Elektronen
in einem anderen Zeitpunkt an einer Stelle des Raumes lokalisieren, dann
kénnen wir nicht angeben, welches der Elektronen an diesen Punkt gelangt ist.

In der Quantenmechanik gibt es also prinzipiell keine Moglichkeit, ein ein-
zelnes von gleichartigen Teilchen gesondert zu verfolgen und damit die Teil-
chen zu unterscheiden. Man kann sagen, da} gleichartige Teilchen ihre ,,Indi-
vidualitdt‘ in der Quantenmechanik vollkommen verlieren. Die Tatsache, dal
Teilchen gleichartige physikalische Eigenschaften haben, hat hier eine sehr
tief liegende Bedeutung: Sie bewirkt die vollige Ununterscheidbarkeit der
Teilchen.

Dieses sogenannte Prinzip der Ununterscherdbarkert gleichartiger Teilchen
spielt eine grundlegende Rolle in der quantenmechanischen Untersuchung von
Systemen aus gleichartigen Teilchen. Wir beginnen mit der Behandlung eines
Systems aus nur zwei Teilchen. Wegen der Identitdt der Teilchen miissen die
Zustinde des Systems, die einfach durch Vertauschung der beiden Teilchen
miteinander entstehen, physikalisch vollig 4quivalent sein. Bei einer solchen
Vertauschung kann sich die Wellenfunktion des Systems nur um einen un-
wesentlichen Phasenfaktor &ndern. u(&;, &) sei die Wellenfunktion des Systems,
&, und &, sollen die Gesamtheiten der drei Koordinaten und der Spinprojektion
der beiden Teilchen bezeichnen. Es muBl dann

(& &) = e® (&, &)

10 KurzfassungII



132 Kapitel VI. Identische Teilchen

mit einer reellen Konstanten a gelten. Bei nochmaliger Vertauschung kommen
wir zum Ausgangszustand zuriick, wihrend die Funktiony mit e?** multi-
pliziert wird. Daraus folgt e*** = 1 oder e = 4+ 1. Es ist also (&, &)
= +y(& &)

Wir gelangen zu dem Resultat, dall es insgesamt zwei Moglichkeiten gibt:
Die Wellenfunktion kann entweder symmetrisch (d. h., sie éndert sich bei einer
Vertauschung der Teilchen iiberhaupt nicht) oder antisymmetrisch sein (d. h.,
sie dndert ihr Vorzeichen bei einer Vertauschung). Offensichtlich miissen die
Wellenfunktionen fiir alle Zustdnde ein und desselben Systems dasselbe Sym-
metrieverhalten haben. Anderenfalls wire die Wellenfunktion eines Zustandes,
der durch Uberlagerung von Zusténden mit verschiedenem Symmetrieverhalten
entsteht, weder symmetrisch noch antisymmetrisch.

Dieses Ergebnis kann man unmittelbar auf Systeme mit beliebig vielen gleich-
artigen Teilchen verallgemeinern. Besitzt irgendein Paar dieser Teilchen die
Eigenschaft, sagen wir, durch symmetrische Wellenfunktionen beschrieben
zu werden, dann hat auch jedes andere solche Teilchenpaar dieselbe Eigen-
schaft; das ist unmittelbar evident, weil die Teilchen gleichartig sind. Die
Wellenfunktion gleichartiger Teilchen darf sich also bei der Vertauschung eines
beliebigen Teilchenpaares entweder iiberhaupt nicht &ndern, oder sie mufl bei
der Vertauschung eines beliebigen Paares ihr Vorzeichen wechseln (das gilt
auch fiir eine beliebige Vertauschung von Teilchen miteinander). Im ersten
Falle spricht man von einer symmetrischen, im zweiten Falle von einer anti-
symmetrischen Wellenfunktion.

Je nach der Art der Teilchen werden diese durch symmetrische oder durch
antisymmetrische Wellenfunktionen beschrieben. Durch antisymmetrische
Funktionen beschriebene Teilchen gehorchen der FerMI-Dmrac-Statistrk und
heilen Fermionen; durch symmetrische Funktionen beschriebene Teilchen ge-
horchen der Bose-EINsTEIN-Statistik und werden Bosonen genannt.!)

Im weiteren werden wir sehen (§87), dafl aus den Gesetzen der relativisti-
schen Quantenmechanik ein eindeutiger Zusammenhang zwischen der Statistik,
der die Teilchen unterworfen sind, und ihrem Spin folgt: Teilchen mit halb-
zahligem Spin sind Fermionen, Teilchen mit ganzzahligem Spin sind Bosonen.

Die Statistik zusammengesetzter Teilchen wird dadurch bestimmt, ob diese
eine gerade oder eine ungerade Anzahl von elementaren Fermionen enthalten.
Die Vertauschung zweier gleichartiger zusammengesetzter Teilchen ist tat-
sichlich der gleichzeitigen Vertauschung einiger Paare gleichartiger Elementar-
teilchen dquivalent. Die Vertauschung von Bosonen éndert die Wellenfunktion

1) Diese Terminologie hdngt mit der Bezeichnung der Statistik fiir ein ideales Gas
zusammen, das aus Teilchen mit antisymmetrischen bzw. symmetrischen Wellenfunktionen
besteht. Tatsichlich haben wir es hier nicht nur mit verschiedenen Statistiken zu tun,
sondern dem Wesen nach auch mit einer verschiedenen Mechanik. Die FErMI-Statistik
wurde von E. FErMI 1926 fiir Elektronen vorgeschlagen, ihr Zusammenhang mit der
Quantenmechanik (1926) von P. A. M. Dirac hergestellt. Die Bose-Statistik wurde von
D. Bosk fiir Lichtquanten vorgeschlagen und von A. EINSTEIN (1924) verallgemeinert.
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iiberhaupt nicht, die Vertauschung von Fermionen #ndert ihr Vorzeichen.
Daher gehorchen zusammengesetzte Teilchen mit einer ungeraden Anzahl von
elementaren Fermionen der FErMI-Statistik, Teilchen mit einer geraden An-
zahl von elementaren Fermionen sind der Bosk-Statistik unterworfen. Dieses
Ergebnis steht natiirlich im Einklang mit der oben angegebenen allgemeinen
Regel; denn ein zusammengesetztes Teilchen hat einen ganzzahligen oder einen
halbzahligen Spin, je nachdem, ob es aus einer geraden oder einer ungeraden
Anzahl von Teilchen mit halbzahligem Spin aufgebaut ist.

Die Atomkerne mit einem nicht geradzahligen Atomgewicht (d. h. ein Zu-
stand aus einer ungeraden Zahl von Protonen und Neutronen) befolgen die
FerMi-Statistik, diejenigen mit geradzahligem Atomgewicht gehorchen der
BosEe-Statistik. Fiir die Atome selbst, die auBler den Kernen auch Elektronen
enthalten, wird die Statistik offensichtlich dadurch bestimmt, ob die Summe
aus Atomgewicht und Ordnungszahl geradzahlig ist oder nicht.

Behandeln wir ein System aus N gleichartigen Teilchen. Die Wechselwirkung
zwischen den Teilchen soll vernachlissigt werden konnen. w,, ,, . . . seien die
Wellenfunktionen der verschiedenen stationdren Zustédnde, in denen sich jedes
einzelne der Teilchen befinden kann. Den Zustand des Gesamtsystems kann
man durch die Nummern der Zustdnde angeben, in denen sich die einzelnen
Teilchen befinden. Es erhebt sich die Frage, wie die Wellenfunktion ¥ des
Gesamtsystems aus den Funktionen vy, v,, . . . aufgebaut werden muB.

Es seien p,, p, - - ., py die Nummern der Zusténde, in denen sich die ein-
zelnen Teilchen befinden (darunter kénnen auch gleiche Nummern sein). Fiir

ein System aus Bosonen ist die Wellenfunktion ¥(&,, &,,- . ., &v) eine Summe
von Produkten der Art '
Yp,(&1) V5, (&) - - - vy (Ew) (45,1)

mit allen moglichen Permutationender verschiedenen Indizes p,, p,, ... Diese
Summe besitzt offenkundig die erforderliche Symmetrieeigenschaft. Fiir ein
System aus zwei Teilchen, die sich in verschiedenen Zusténden (p, % p,) be-
finden, ist z. B.

wam=%wwmwm+%@wmm 45,2)

Der Faktor 1 /V2_ ist wegen der Normierung eingefiihrt worden (alle Funktionen
%1, Yo, - - - sind zueinander orthogonal und werden als normiert vorausgesetzt).
Im allgemeinen Falle eines Systems mit beliebiger Anzahl N von Teilchen
lautet die normierte Wellenfunktion
NI N, |2

p= () T a0 va) i) 45.9)
wobeidie Summe iiber alle Permutationen der verschiedenen Indizes py, P, « - - > Py
genommen wird und die Zahlen N; angeben, wie viele von diesen Indizes gleiche
Werte ¢ besitzen (dabei ist ' N; = N). Bei einer Integration des Quadrates
[p|? tiber d&; d&, - - - déy werden alle Glieder mit Ausnahme nur der Absolut-

10+
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quadrate aller Summanden Null;!) da die Gesamtzahl der Summanden in
(45,3) offensichtlich gleich

N!
NN,...
ist, erhilt man hieraus den Normierungsfaktor in (45,3).
' Fiir ein System aus Fermionen ist die Wellenfunktion y eine antisymme-
trische Linearkombination von Produkten (45,1). So haben wir fiir ein System
aus zwei Teilchen

= % 0,60 ¥ (E0) — ¥, (E2) Wi (6] - (45,4)

Im allgemeinen Falle von N Teilchen 148t sich die Wellenfunktion des Systems
in Form einer Determinante aufschreiben:

vu(é) vpn) .- Pp, ()
,/,ZL Yo,(&) ¥p (&) - wp(Ew) . (45,5)

Yo (&1) wox(€2) - wox(én)

Der Vertauschung zweier Teilchen entspricht hier die Vertauschung zweier
Spalten der Determinante; bei einer solchen Vertauschung #ndert sich be-
kanntlich das Vorzeichen der Determinante.

Aus dem Ausdruck (45,5) ergibt sich das folgende wichtige Resultat. Wenn
unter den Ziffern p,, p,, ... zwei gleiche sind, dann werden zwei Zeilen der
Determinante gleich, und die ganze Determinante verschwindet identisch. Sie
ist nur dann von Null verschieden, wenn alle Ziffern p,, p,, . . . voneinander
verschieden sind. In einem System gleichartiger Fermionen kénnen sich also
nicht gleichzeitig zwei (oder mehr) Teilchen in ein und demselben Zustand
befinden. Das ist das sogenannte PAULI-Prinzip (1925).

§ 46. Die Austauschwechselwirkung

In der SCHRODINGER-Gleichung ist nicht beriicksichtigt, dall die Teilchen auch
einen Spin haben kénnen. Durch diesen Mangel werden aber diese Gleichung
und alle mit ihrer Hilfe gewonnenen Ergebnisse nicht wertlos. Das liegt daran,
dafl die elektrische Wechselwirkung der Teilchen nicht vom Spin abhéngt.?)
Mathematisch bedeutet dies, daBl im HamirToN-Operator eines Systems von
Teilchen mit elektrischer Wechselwirkung (in Abwesenheit eines Magnetfeldes)
der Spinoperator nicht vorkommt. Wird der Hamirron-Operator auf die

1) Unter einer dé&-Integration wird (hier und in §§ 46, 47) vereinbarungsgeméB Inte-
gration beziiglich der Koordinaten und gleichzeitige Summation iiber ¢ verstanden.

%) Dies ist nur fir die nichtrelativistische Néherung richtig. Bei Beriicksichtigung
relativistischer Effekte hdngt die Wechselwirkung geladener Teilchen vom Spin ab.
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Wellenfunktion angewendet, dann wirkt er in keiner Weise auf die Spinvariablen.
Jede Komponente der Wellenfunktion geniigt daher tatsidchlich einer ScHRO-
DINGER-Gleichung. Die Wellenfunktion des Systems kann daher als Produkt

P& &gs e o 2) = 201,05 - - ) Py, Ty, - 4 L) (46,1)

der Funktion ¢, die nur von den Koordinaten der Teilchen abhéngt, mit der
Funktion g, die nur von den Teilchenspins abhéngt, geschrieben werden (die
erste werden wir Ortsanteil oder orbitale, die zweite Spin-Wellenfunktion nennen).
Die ScERODINGER-Gleichung bestimmt ihrem Wesen nach nur die Ortsfunktion ¢
und ldBt die Funktion y willkiirlich. Immer dann, wenn uns der Spin der Teilchen
nicht interessiert, kénnen wir folglich die SCBRODINGER-Gleichung verwenden
und nur die Ortsfunktion als Wellenfunktion ansehen, wie es auch in der ganzen
bisherigen Darstellung getan worden ist.

Trotz der erwahnten Unabhingigkeit der elektrischen Wechselwirkung von
Teilchen von deren Spin existiert eine eigenartige Abhingigkeit der Energie
eines Systems von dessen Gesamtspin. Diese Abhingigkeit folgt letzten Endes
aus dem Prinzip von der Ununterscheidbarkeit gleichartiger Teilchen.

Wir wollen ein System aus insgesamt nur zwei gleichartigen Teilchen be-
trachten. Durch Lésen der SCHRODINGER-Gleichung finden wir eine Reihe von-
Energieniveaus; zu jedem gehort eine bestimmte symmetrische oder anti-
symmetrische Wellenfunktion @(r;, 7). Da die Teilchen gleichartig sind, ist
der HamiLToN-Operator (und daher auch die ScHRODINGER-Gleichung) des
Systems gegeniiber einer Vertauschung derselben invariant. Sind die Energie-
niveaus nicht entartet, dann kann sich die Funktion ¢(r,, r,) bei einer Ver-
tauschung der Koordinaten 7, und 7, nur um einen konstanten Faktor @&ndern.
Durch nochmalige Vertauschung iiberzeugen wir uns davon, daf dieser Faktor
nur 41 sein kann.?)

Zunichst setzen wir voraus, dafl die Teilchen den Spin Null haben. Fiir
solche Teilchen gibt es iiberhaupt keinen Spinfaktor, und die Wellenfunktion
reduziert sich auf die Funktion ¢(r, r,) allein, die symmetrisch sein muf8 (da
Teilchen mit dem Spin Null der Bose-Statistik gehorchen). Es konnen also
nicht alle Energieniveaus, die man beim formalen Losen der SCHRODINGER-
Gleichung erhilt, tatsdchlich realisiert werden; diejenigen, zu denen anti-
symmetrische Funktionen ¢ gehoren, kommen fiir das betrachtete System nicht
in Frage.

Die Vertauschung zweier gleichartiger Teilchen ist einer Inversion des Ko-
ordinatensystems dquivalent (dessen Ursprung auf der Mitte der Verbindungs-
geraden beider Teilchen liegt). Andererseits muf} sich die Wellenfunktion ¢ bei
einer Inversion mit dem Faktor (—1)* multiplizieren, wobei ¢ der Bahndreh-
impuls der Relativbewegung der beiden Teilchen ist (siehe § 19). Wir stellen
diese Uberlegungen dem oben Gesagten gegeniiber und gelangen zu dem

1) Liegt Entartung vor, so kann man immer solche Linearkombinationen der zu diesem
Niveau gehorigen Funktionen wihlen, die dieser Bedingung auch geniigen.
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SchluB}, dal ein System aus zwei gleichartigen Teilchen mit dem Spin Null
nur einen geradzahligen Bahndrehimpuls haben kann.

Jetzt wollen wir annehmen, dafl das System aus zwei Teilchen mit dem
Spin 1/2 besteht (sagen wir, aus zwei Elektronen). Die gesamte Wellenfunktion
des Systems (d. h. das Produkt der Funktion ¢(ry, 7,) mit der Spinfunktion
#(01, 65)) muB bei einer Vertauschung der beiden Elektronen unbedingt anti-
symmetrisch sein. Bei einer symmetrischen Ortsfunktion muf} die Spinfunktion
antisymmetrisch sein oder umgekehrt. Wir werden die Spinfunktion in spino-
rieller Form schreiben, d. h. als Spinor zweiter Stufe y*/. Jeder Index dieses
Spinors entspricht dem Spin eines der Elektronen. Zu der in den Spins der
beiden Teilchen symmetrischen Funktion gehért ein symmetrischer Spinor
(*f = ##*), zu der antisymmetrischen Funktion ein antisymmetrischer Spinor
(x*# = — x#*). Wir wissen aber, daBl ein symmetrischer Spinor zweiter Stufe
ein System mit dem Gesamtspin 1 beschreibt. Der antisymmetrische Spinor
reduziert sich auf einen Skalar, das entspricht dem Spin Null.

Wir finden also das folgende Ergebnis: Die Energieniveaus mit symmetri-
schen Losungen ¢(ry, 7,) der SCHRODINGER-Gleichung kénnen faktisch nur reali-
siert werden, wenn der Gesamtspin des Systems Null ist, d. h., wenn die Spins
der beiden Elektronen ,antiparallel“ gerichtet sind und addiert Null ergeben.
Die Energiewerte mit antisymmetrischen Funktionen ¢(n,r,) verlangen den
Gesamtspin 1, d. h., die Spins der beiden Elektronen miissen ,,parallel*“ sein.

Es hingt, mit anderen Worten, von dem Gesamtspin des Systems ab, welche
Energiewerte der Elektronen méglich sind. Auf Grund dessen kann man von
einer eigenartigen Wechselwirkung der Teilchen sprechen, die diese Abhéngig-
keit hervorbringt. Diese Wechselwirkung heit Austauschwechselwirkung. Sie
ist ein reiner Quanteneffekt und verschwindet (wie auch der Spin selbst) beim
Grenziibergang zur klassischen Mechanik vollkommen.

\

§ 47, Die zweite Quantisierung. Der Fall der BosEe-Statistik

Fiir die quantenmechanische Untersuchung von Systemen, die aus sehr vielen,
beliebig miteinander wechselwirkenden gleichartigen Teilchen bestehen, ist eine
besondere Methode der Behandlung niitzlich; diese Methode ist unter dem
Namen zweite Quantisierung bekannt. In der relativistischen Theorie wird sie
iitberhaupt unumgénglich. Dort hat man es mit Systemen zu tun, bei denen
die Teilchenzahl selbst verdnderlich ist.l)

Mit p,(£), pa(£), . . . bezeichnen wir ein gewisses vollstdndiges System ortho-
normierter Wellenfunktionen stationdrer Einteilchenzustdnde. Als solche wahlt:
man gewohnlich ebene Wellen — Wellenfunktionen eines freien Teilchens fiir
bestimmte Werte des Impulses (und der Spinprojektion). Um das Zustands-

1) Die Methode der zweiten Quantisierung wurde von P. A. M. Dmrac (1927) fiir Photo-
nen in Anwendung auf die Strahlungstheorie entwickelt und spiater von E. WieNER und
P. JorpAN (1928) auf Fermi-Teilchen ausgedehnt.
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spektrum auf ein diskretes zuriickzufiihren, betrachtet man dabei die Bewe-
gung der Teilchen in einem groBen, jedoch endlichen Raumbereich 2 (wie dies
am Ende von § 27 erklart wurde).

In einem System freier Teilchen bleiben die Teilchenimpulse einzeln erhalten.
Dadurch stellen auch die Besetzungszahlen fiir die Zustinde — die Zahlen
Ny, N,, ..., welche angeben, wieviel Teilchen sich in jedem der Zustdnde
¥y, Yy, - . . befinden — Erhaltungsgrofen dar. In einem System wechselwir-
kender Teilchen bleiben die einzelnen Teilchenimpulse und damit die Beset-
zungszahlen schon keine Erhaltungsgr68en mehr. Im Hinblick auf ein solches
System kann man nur von einer Wahrscheinlichkeitsverteilung fiir die ver-
schiedenen Besetzungszahlen sprechen. Wir stellen uns das Ziel, einen mathe-
matischen Apparat aufzubauen, in dem die Besetzungszahlen (und nicht die
Koordinaten und Spinprojektionen der Teilchen) unmittelbar die Rolle der
unabhéngigen Variablen iibernehmen. .

In einem solchen Apparat wird der Zustand eines Systems durch eine, wie
man sagt, ,,Wellenfunktion im Raum der Besetzungszahlen* beschrieben, die
wir als @ (N, N,, . ..;t) bezeichnen (um ihren Unterschied zu einer gew6hn-
lichen, von den Koordinaten und den Spins abhingenden Wellenfunktion
Y&, & - - -5 Exns t) hervorzuheben). Das Betragsquadrat |D|2 bestimmt die
Wahrscheinlichkeit fiir die verschiedenen Werte der Zahlen N, N,, . ..

Entsprechend einer solchen Wahl der unabhingigen Variablen miissen auch
die Operatoren fiir die verschiedenen physikalischen Gréflen (unter ihnen der
HavrrToN-Operator des Systems) hinsichtlich ihrer Anwendung auf Funk-
tionen von Besetzungszahlen formuliert werden. Zu einer derartigen Formu-
lierung kann man kommen, wenn man von der gewohnlichen Matrizendarstel-
lung von Operatoren ausgeht. Dabei miissen die mit den Wellenfunktionen
der stationdren Zustinde eines Systems nichtwechselwirkender Teilchen zu
bildenden Matrixelemente der Operatoren untersucht werden. Dadurch, da
man diese Zustdnde durch Angabe definierter Werte fiir die Besetzungszahlen
beschreiben kann, wird der Charakter einer Anwendung der Operatoren auf
diese Verinderlichen klar.

Betrachten wir zundchst Systeme von Teilchen, die der Bose-Statistik ge-
horchen.

Es sei f) der auf das a-te Teilchen bezogene Operator irgendeiner physi-
kalischen Gro6Be, d. h., er wirkt nur auf Funktionen von &,. Wir fithren den
in allen Teilchen symmetrischen Operator

FO = 3 fo (47,1)
a

ein (Summation iiber alle Teilchen) und bestimmen dessen Matrixelemente mit
Hilfe der Wellenfunktion (45,3). Zuerst kann man sich leicht iiberlegen, daf}
die Matrixelemente nur fiir Uberginge ohne Anderung der Zahlen N, N,, . ..
(Diagonalelemente) und fiir Ubergénge, bei denen eine dieser Zahlen um 1 ver-
groBert und eine andere um 1 verkleinert wird, von Null verschieden sind.
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Da jeder Operator 75,1) nur auf eine Funktion in dem Produkt Y. (&1) pp, (&) -
-+ py(€)y wirkt, konnen seine Matrixelemente nur fiir Uberginge, die Zu-
standséinderungen eines Teilchens beschreiben, von Null verschieden sein. Das
bedeutet, daB die Zahl der Teilchen in einem Zustand um 1 verringert wird und
dementsprechend in einem anderen um 1 erh6ht wird. Die Berechnung dieser
Matrixelemente ist im wesentlichen sehr einfach; man kann sie leichter selbst
durchfiihren, als ihre Wiedergabe verfolgen. Deshalb geben wir nur das Er-
gebnis der Rechnung an. Die Nichtdiagonalelemente sind

(Ny Ne — | FOIN, — LN = fRVN; N, . (47,2)
Dabei haben wir nur diejenigen Indizes hingeschrieben, in denen das Matrix-

element nicht diagonal ist, die anderen haben wir der Kiirze halber weggelassen.
(1) st das Matrixelement

Q=S pFE) [P () d&. (47.3)
Man muB hierbei bedenken, daB sich die Operatoren f’ nur durch die Be-
zeichnung der Verdnderlichen unterscheiden, auf die sie wirken. Die Inte-
grale f)) hingen daher vom Index a nicht ab. Die Diagonalelemente der Ma-
trix fiir F® sind die Mittelwerte der GréBe F® in den Zustinden ¥y, , .
Die Rechnung ergibt

7O — 3O N, (47.4)

Wir fithren jetzt die bei der Methode der zweiten Quantisierung grund-
legenden Operatoren a ein, die nicht mehr auf Ortsfunktionen wirken, sondern
auf Funktionen von Besetzungszahlen. Dazu geben wir folgende Definition.
Bei Anwendung auf die Funktion @(N,, N,,...) erniedrigt der Operator a;
den Wert der Variablen N; um 1, gleichzeitig wird die Wellenfunktion mit m
multipliziert :

8 DNy, Ny ooy Noy . ) =VN BN, Ny, .., Ni— 1,.. ) . (47,5)

Man kann sagen, daB der Operator a; die Zahl der Teilchen im i-ten Zustand
um 1 verringert (man nennt ihn daher Vernichtungsoperator der Teilchen).
Man kapn ihn als Matrix darstellen, deren einziges von Null verschiedenes Ele-

ment das folgende ist:
(N, — 1 &Ny =VN,. (47,6)

Der zu a; adjungierte Operator a;” wird laut Definition (siche (11,9)) durch
die Matrix mit den Elementen

(N aF |Ne — 1) = (Ne — 1] & [N:op* = VN, (47,7)
dargestellt, d. h., bei der Anwendung auf die Funktion ®N,, N, ...) ver-
groBert er die Zahl N; um 1:

af (N, Ny ..., Nyl L)

=VN+10N,, N, ..., N+ 1,...). (47,8)
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Der Operator a; vergroBert mit anderen Worten die Zahl der Teilchen im 7-ten
Zustand um 1 (man nennt ihn daher Erzeugungsoperator der Teilchen).

Das Operatorprodukt @; @; bewirkt bei der Anwendung auf die Wellen-
funktion offensichtlich nur die Multiplikation mit einer Konstanten, alle Ver-
anderlichen N,, N,, . . . bleiben dabei unveriandert: Der Operator a; verkleinert
N;um 1, a; bringt es auf den Ausgangswert zuriick. Die unmittelbare Multipli-
kation der Matrizen (47,6) und (47,7) zeigt in der Tat, dall 8;" a; durch eine
Diagonalmatrix mit den Diagonalelementen N; dargestellt wird. Man kann

ai a; = N; . (47,9)
schreiben. Analog finden wir
aiaf =N+ 1. (47,10)

Die Differenz dieser Ausdriicke liefert die Vertauschungsregel fiir die Ope-
ratoren a; und a; :

g a4 —afai=1. (47,11)

Operatoren mit verschiedenen Indizes¢ und k wirken auf verschiedene Ver-
anderliche (&; und N) und sind daher vertauschbar:

Gy —apag =0, a0 —aFa =0 C£ k).  (47,12)

Ausgehend von den angegebenen Eigenschaften der Operatoren @; und a;
kann man leicht erkennen, dafl der Operator

FO = 5 fDaF (47,13)
i,k

mit dem Operator (47,1) iibereinstimmt. Tatsdchlich stimmen alle Matrix-
elemente, die man mit Hilfe von (47,6 —7) berechnen kann, mit den Elemen-
ten (47,2) iiberein. Dieses Ergebnis ist sehr wichtig. In der Formel (47,13)
sind die GroBen f¢) einfach Zahlen. Es ist uns damit gelungen, einen gewShn-
lichen Operator, der auf Ortsfunktionen wirkt, durch einen Operator auszu-
driicken, der auf die Funktionen der neuen Variablen, der Besetzungszahlen N,
wirkt.

Das erhaltene Resultat kann leicht auch fiir Operatoren anderer Gestalt
verallgemeinert werden. Es sei

FO = 3 @ (47,14)
a>b

Darin ist ?,‘fg der Operator einer physikalischen Grofe, die sich sofort auf ein
Teilchenpaar bezieht; er wirkt daher auf Funktionen von &, und &, Analoge
Rechnungen zeigen, dafl ein solcher Operator nach der Relation

~ 1 AL AL A A
FO = o 5 (O af by (47,15)
1, K, L, m

durch die Operatoren @; und a; ausgedriickt werden kann; dabei ist

POk = [ [ odE) wEED) 12 wiEy) vmlsy) dE, A&, .
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Die Verallgemeinerung dieser Formeln fiir in allen Teilchen symmetrische
Operatoren beliebiger anderer Gestalt ist unmittelbar evident.

Mit Hilfe obiger Formeln kann man auch den HamiLToN-Operator des tatsédch-
lich untersuchten physikalischen Systems aus N miteinander wechselwirkenden
gleichartigen Teilchen durch die Operatoren ai, a; ausdriicken. Der HAMILTON-
Operator eines solchen Systems ist selbstverstdndlich in allen Teilchen sym-
metrisch. Wenn sich die Wechselwirkung im System auf eine paarweise Wechsel-
wirkung der Teilchen zuriickfiithren laft, dann hat der HamiLToN-Operator
die Gestalt

H=ZHY + 2 U9, m). - (47,16)
a a>b
Hier ist fI(j) der Teil des HamiLTON-Operators, der nur von den Koordi-
naten eines (des a-ten) Teilchens abhingt, d. h. der HamiLToN-Operator des
freien Teilchens

o _ ¥ (47,17
a 2m a- . I

Die Funktion U®(r, 1) ist die Wechselwirkungsenergie zweier Teilchen.
Wenden wir auf (47,16) die Formeln (47,13) und (47,15) an, so erhalten wir

2 PN 1 kAL AL A A
H =3 HYaf a +5 2 (U®)naf e ana. (47,18)
ik i, k,l,m
Damit ergibt sich der gesuchte Ausdruck des HamMrLToN-Operators als Operator,
der auf Funktionen der Besetzungszahlen wirkt.
Fiir ein System aus nicht miteinander wechselwirkenden Teilchen bleibt in

dem Ausdruck (47,18) nur das erste Glied stehen:
H=3HY6} 6. , (47,19)
ik

Nimmt man als Funktioneny; (wie vereinbart) die Eigenfunktionen des Ha-
»aroN-Operators HD des freien Teilchens, dann ist die Matrix H{) diagonal,
und die Diagonalelemente sind die Energieeigenwerte &; des Teilchens. Es ist

also R
H=}¢ata,. (47,20)

Ersetzen wir den Operator a;i a; durch seine Eigenwerte (47,9), dann erhalten
wir fiir die Energieniveaus des Systems

E = 281 Ng . (47,21)

Das ist ein triviales Ergebnis, das man bekommen mu8.
Der hier entwickelte Apparat der zweiten Quantisierung kann durch die Ein-
fithrung der sogenannten y-Operatoren

VO = Zpdd)a, g = ZypMoar (47,22)
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in einer geschlosseneneren Form dargestellt werden; die Veranderlichen &
werden dabei als Parameter angesehen. Aus den obigen Ausfiihrungen iiber die
Operatoren a@; und aj ist klar, daB der Operator ¢ die Gesamtzahl der Teilchen
in dem System um 1 verringert, wihrend sie der Operator ¢+ um 1 vergréBert.l)

Mit Hilfe der y-Operatoren erhédlt der HamrmLroN-Operator H aus (47,18) die
Gestalt

B = [ A0 5 ag
1 ~ ~ —
+3 f f PHE) HE) U p(&)p(€) dE d&’ . (47,23)

Davon iiberzeugt man sich leicht durch direktes Einsetzen der y)—Opefatoren
(47,22).

Der Operator #+ ¢, der aus den y-Operatoren #hnlich dem Produkt y* y
aufgebaut ist, welches die Wahrscheinlichkeitsdichte fiir ein Teilchen im Zu-
stand mit der Wellenfunktiony bestimmt, heit Teilchenzahldichteoperator.
Das Integral

N=ysptipds (47,24)

spielt im Apparat der zweiten Quantisierung die Rolle des Operators fiir die
Gesamtteilchenzahl im System. Setzen wir hierin die y-Operatoren in der Form
(47,22) ein, und beriicksichtigen wir die Orthonormiertheit der Wellenfunktionen
¥i, erhalten wir in der Tat

N —=-PIaE s (47,25)

Jedes Glied dieser Summe ist ein Teilchenzahloperator fiir einen Zustand 3,
dessen Eigenwerte gemifl (47,9) gleich den Besetzungszahlen N; sind; die
Summe wiederum aus allen diesen Zahlen ergibt die Gesamtzahl der Teilchen
im System. Fiir Systeme mit gegebenen Teilchenzahlen sind diese Feststel-
lungen (wie auch die Eigenschaften des HamrmuroN-Operators (47,19) eines Sy-
stems freier Teilchen) trivial. Wir werden jedoch sehen, da8 ihre Verallgemeine-
rung in der relativistischen Theorie zu neuen, keineswegs trivialen Ergebnissen
fithrt.

§48. _ Die zweite Quantisierung. Der Fall der Fermi-Statistik

Alles Prinzipielle der Methode der zweiten Quantisierung bleibt auch fiir Sy-
steme aus gleichartigen Fermionen ohne Abénderungen giiltig. Die konkreten
Formeln fiir die Matrixelemente der GroBen und fiir die Operatoren a; sind
natiirlich andere.

1) Es sei auf die Analogie zwischen den Ausdriicken (47,22) und der Entwicklung
yp = 3 a;y; einer beliebigen Wellenfunktion beziiglich eines gewissen vollstindigen Sy-
stems von Funktionen hingewiesen. Man konnte deshalb denken, diese Entwicklung
wiirde von neuem einer Quantisierung unterworfen. Hiervon ist die Bezeichnung zweite
Quantisierung fir die dargelegten Methoden abgeleitet.
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Wir werden hier nicht die entsprechenden Rechnungen im einzelnen durch-
filhren, sondern nur die in ihnen enthaltenen wesentlichen Gesichtspunkte
hervorheben, die sich beziiglich der Rechnungen im vorigen Paragraphen
unterscheiden.

Die Wellenfunktion py y, .. besitzt jetzt die Gestalt (45,5). Wie schon
gezeigt, konnen unter den Zahlen p,, p,, . . ., die die besetzten Zusténde nu-
merieren, keine gleichen vorkommen, da im umgekehrten Falle die Deter-
minante Null wird. Mit anderen Worten kénnen die Besetzungszahlen N nur
die Werte O und 1 annehmen.

Wegen der Antisymmetrie der Funktion (45,5) tritt uns zunéchst das Problem
der Wahl ihres Vorzeichens entgegen. Im Falle der Bosk-Statistik gab es dieses
Problem nicht, weil das einmal gewdhlte Vorzeichen wegen der Symmetrie der
Wellenfunktion bei allen Vertauschungen der Teilchen erhalten blieb. Um
das Vorzeichen der Funktion (45,5) in bestimmter Weise festzulegen, treffen
wir die folgende Vereinbarung. Wir numerieren ein fiir allemal alle Zusténde y,
mit fortlaufenden Zahlen. Dann fiillen wir die Zeilen der Determinante (45,5)
immert so aus, daB p, < p, < ps < - - - < py gilt. In den Spalten stehen da-
bei Funktionen verschiedener Veridnderlicher in der Reihenfolge &, &,, . . ., &y.
Das Vorzeichen der Wellenfunktion hingt auf diese Weise von der Gesamtheit
der Nummern p,, Py, . . . ab, d. h. von allen Besetzungszahlen.

Im Ergebnis dessen erweisen sich auch die Vorzeichen der Matrixelemente
fiir die Teilchenerzeugungs- und Teilchenvernichtungsoperatoren als von ihnen
abhidngig. Und zwar zeigt sich, dafl diese Operatoren definiert werden miissen
als Matrizen mit einem einzigen von Null verschiedenen Element, das gleich ist

i—1
Z Ni

0if ai |1 = <Ll af |0y = (—)*~1 . (48,1)

Durch Matrizenmultiplikation kann man sich davon iiberzeugen, dafl die
Produkte a;t @; und a;a;" diagonal sind, wobei

af a; = N, a;af =1— N; (48,2)
gilt, und ihre Summe
aat +afa, =1 (48,3)

ist. Wenden wir nun unser Augenmerk darauf, daB die Produkte @;" a; fiir N; = 0
und die Produkte a; a;-*’ fir N; = 1 automatisch Null werden. In diesen Pro-
dukten wird der rechts stehende Operator als erster angewendet; natiirlich
kann man kein Teilchen im 7-ten Zustand vernichten, wenn sich dort keins
befindet (N: = 0), und entsprechend dem PaULI-Prinzip kann kein Teilchen
im i-ten Zustand erzeugt werden, wenn dieser Zustand schon besetzt ist, d. h.,
wenn Ny = 1 ist. Auf Grund dieses Prinzips ist von vornherein klar, da8 gilt

dia;i=0, atai =0. (48,4)
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Fiir alle Paare von Operatoren mit verschiedenen ¢ und k ergibt sich
aaf +af a; =0 (@ k), (48,5)

d. h., sie sind alle, wie man sagt, anttkommutativ im Sinne der Vorzeichen-
dnderung eines Produkts bei Vertauschung der Faktoren. Dieser Unterschied
zum Fall der Bose-Statistik ist vollig natiirlich. Im Falle der Bose-Statistik
waren die Operatoren a; und @, iiberhaupt nicht voneinander abhéngig. Jeder
Operator a. wirkte nur auf eine Variable N;. Das Ergebnis der Anwendung -
dieses Operators war von den Werten der iibrigen Besetzungszahlen unabhéngig.
Im Falle der FERMI-Statistik héingt das Ergebnis der Anwendung des Opera-
tors @; nicht nur von der Zahl N; selbst ab, sondern auch von den Besetzungs-
zahlen aller vorangehenden Zustédnde. Die Anwendung verschiedener Opera-
toren @; und a@; kann deshalb nicht als unabhingig voneinander angesehen
werden.

Nachdem wir so die Eigenschaften der Operatoren a; und a; bestimmt
haben, bleiben alle iibrigen Formeln . (47,13—25) in Kraft.






‘Das Atom | V[I

§ 49. Die Energieniveaus eines Atoms

In der nichtrelativistischen Ndherung werden die stationdren Zusténde eines
Atoms aus der SCHRODINGER-Gleichung fiir das System der Elektronen bestimmt,
die sich im CouLomB-Feld des Kernes bewegen und miteinander in elektrischer
Wechselwirkung stehen. Wie wir wissen, bleibt fiir ein System von Teilchen
in einem &ulleren kugelsymmetrischen Feld der gesamte Bahndrehimpuls L
erhalten, auch die Paritdt eines Zustandes bleibt erhalten. Jeder stationire
Zustand eines Atoms wird daher durch einen bestimmten Wert fiir den Dreh-
impuls L und durch seine Paritdt charakterisiert. Auflerdem wird jeder statio-
ndre Zustand eines Atoms auf Grund des in § 46 beschriebenen Effektes der
Austauschwechselwirkung auch durch den Wert des Gesamtspins S der Elek-
tronen charakterisiert.

Auf diese Weise werden in der nichtrelativistischen Niherung die Energie-
niveaus eines Atoms nach den Werten von L, S und der Paritdt klassifiziert
(selbstverstdndlich gilt in diesem Zusammenhang das Umgekehrte nicht: Die
Werte dieser Quantenzahlen allein bestimmen noch nicht in eindeutiger Weise
die Energie eines Zustandes). Jedesderartiges Energieniveau ist beziiglich der
verschiedenen méglichen Richtungen der Vektoren L und S im Raum entartet.
Die Vielfachheit der Entartung beziiglich dieser Richtungen ist 2 L + 1 und
2 8§ + 1. Insgesamt ist demnach die Vielfachheit der Entartung eines Niveaus
mit gegebenen L und S gleich dem Produkt (2 L + 1) (2 S + 1).

In Wirklichkeit existiert aber immer eine gewisse relativistische elektro-
magnetische Wechselwirkung der Elektronen untereinander, die auch von den
Elektronenspins abhingig ist (sie wird ausfiihrlicher in § 51 behandelt). Wegen
dieser Wechselwirkung héngt die Energie eines Atoms nicht nur von den Be-
trigen der Vektoren L und S ab, sondern auch von deren relativer Lage. Streng
genommen bleiben unter Beriicksichtigung der relativistischen Wechselwir-
kungen der Drehimpuls L und der Spin S eines Atoms nicht mehr einzeln erhalten.
Es bleibt nur der Gesamtdrehimpuls J = L 4 S erhalten. Die Erhaltung des
Gesamtdrehimpulses ist ein exaktes und universelles Gesetz, das unmittelbar
aus der Isotropie des Raumes in bezug auf ein abgeschlossenes System folgt. Im
Zusammenhang damit miissen die Energieniveaus durch die Werte J des Ge-
samtdrehimpulses charakterisiert werden.

Sind die relativistischen Effekte aber relativ klein (wie es haufig der Fall
ist), dann kann man sie als Stérung beriicksichtigen. Unter dem Einfluf}
dieser Storung wird ein (2 L + 1) (28 + 1)-fach entartetes Niveau mit ge-
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gebenen L und 8 in eine Reihe verschiedener (nahe beieinander liegender)
Niveaus ,,aufgespalten‘, die sich durch die Werte des Gesamtdrehimpulses J
unterscheiden. Diese Niveaus werden (in erster Naherung) aus der entsprechen-
den Sékulargleichung bestimmt (§ 33). Ihre Wellenfunktionen (in nullter
Néherung) sind gewisse Linearkombinationen der Wellenfunktionen des ur-
spriinglichen entarteten Niveaus mit den gegebenen Werten von L und S. In
dieser Naherung kann man folglich wie frither annehmen, dafl die Betrdge des
Bahndrehimpulses und des Spins (aber nicht deren Richtungen) erhalten
bleiben, und man kann die Niveaus auch durch die Werte von L und S charak-
terisieren.

Infolge der relativistischen Effekte wird also ein Niveau mit gegebenen
Werten von L und 8§ in eine Reihe von Niveaus mit verschiedenen Werten von J
aufgespalten. Diese Aufspaltung nennt man die Feinstruktur (oder die Multi-
plettaufspaltung) eines Niveaus. Wie wir wissen, durchlduft J die Werte von
L + 8 bis |L — S|. Ein Niveau mit gegebenen L und S wird daher in 2 § + 1
(fir L > 8) oder in 2 L 4+ 1 (fiir L < S) verschiedene Niveaus aufgespalten.
Jedes dieser Niveaus bleibt beziiglich der Richtungen des Vektors.J entartet;
die Vielfachheit dieser Entartung ist 2 J 4+ 1.}) Man kann leicht nachpriifen,
daB die Summe der Zahlen 2 J + 1 mit allen méglichen Werten fiir J gleich
(2L 4+ 1) (28 + 1) ist, wie es sein muB.

Die Energieniveaus eines Atoms (oder, wie man sagt, die Spektralterme der
Atome) werden iiblicherweise mit dhnlichen Symbolen bezeichnet, wie sie zur
Bezeichnung der Zusténde einzelner Teilchen mit bestimmten Drehimpuls-
werten verwendet werden (§ 29). Die Zustdnde mit verschiedenen Werten des
Gesamtbahndrehimpulses L werden nach der folgenden Zuordnung mit grofen
lateinischen Buchstaben bezeichnet :

L=0 1 2 3 4 5...
S P D F G H...

Links oben an diesem Symbol wird die Zahl 2 § 4 1 angegeben, die sogenannte
Multiplizatit des Termes (man mufl aber daran denken, dafl diese Zahl nur fiir
L = 8 die Zahl der Komponenten der Feinstruktur eines Niveaus ist).2) Rechts
unten wird der Wert des Gesamtdrehimpulses J angebracht. So bedeuten die
Symbole 2P, ;, und 2Py, die Niveaus mit L = 1, 8 = 1/2, J = 1/2 und J = 3/2.

§ 50. Die Elektronenzustinde in einem Atom

Ein Atom mit mehr als einem Elektron stellt ein kompliziertes System mit-
einander wechselwirkender Elektronen dar, die sich im Feld des Kerns bewegen.

1) Die Feinstruktur der Energieniveaus des Wasserstoffatoms besitzt gewisse spezifische
Besonderheiten (siehe § 94).

2) Entsprechend 28 4-1=1,2,3,... nennt man einen Term Singlett, Dublett,
Triplett, . . .
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Fir ein solches System kann man streng nur Zustdnde des Gesamtsystems
betrachten. Nichtsdestoweniger zeigt es sich, dafl man in einem Atom in guter
Néherung den Begriff der Zusténde eines jeden einzelnen Elektrons einfiihren
kann. Diese sind die stationdren Zustdnde der Bewegung des Elektrons in einem
gewissen effektiven kugelsymmetrischen Feld, das vom Kern und allen iibrigen
Elektronen gemeinsam erzeugt wird. Diese Felder sind fiir die verschiedenen
Elektronen in einem Atom im allgemeinen verschieden. Sie miissen alle gleich-
zeitig bestimmt werden, weil jedes einzelne von den Zusténden aller iibrigen
Elektronen abhingt. Dieses Feld wird self-consistent-field genannt.

Da das so gewonnene Feld kugelsymmetrisch ist, wird jeder Zustand eines
Elektrons durch einen bestimmten Wert fiir seinen Bahndrehimpuls I charak-
terisiert. Die Zustdnde eines einzelnen Elektrons fiir ein festes I werden (in der
Reihenfolge zunehmender Energie) mit Hilfe der Hauptquantenzahl » numeriert,
die die Werte . =1 + 1,1 + 2, ... annimmt. Diese Reihenfolge der Numerie-
rung ist so festgelegt worden, wie sie fiir das Wasserstoffatom iiblich ist. Man
muBl aber beachten, daBl die Reihenfolge bei der Zunahme der Energieniveaus
mit verschiedenen ! in komplizierten Atomen im allgemeinen anders ist als beim
Wasserstoff. Beim Wasserstoffatom hdngt die Energie von ! iiberhaupt nicht
ab, so daBl die Zusténde mit gréBeren n immer die grofere Energie haben. Bei
komplizierten Atomen liegt z. B. das Niveau mit n = 5, I = 0 tiefer als das
Niveau mit n = 4, I = 2 (genaueres dariiber siehe § 52).

Die Zustdnde der einzelnen Elektronen mit verschiedenen » und ! bezeichnet
man iiblicherweise mit Symbolen aus einer Ziffer fiir den Wert der Hauptquan-
tenzahl und einem Buchstaben fiir den Wert von l.}) So bezeichnet 4 d den
Zustand mit » = 4 und I = 2. Die vollstindige Beschreibung des Zustandes
eines Atoms erfordert neben der Angabe der Werte von L, S und J auch die
Aufzdhlung der Zusténde aller Elektronen. Das Symbol 1s 2 p 3P, bedeutet
z. B. den Zustand eines Heliumatoms mit L = 1, S = 1 und J = 0, die beiden
Elektronen befinden sich in den Zustdnden 1‘s und 2 p. Befinden sich mehrere
Elektronen in Zustinden mit gleichen [ und », dann pflegt man das kurz durch
einen Potenzexponenten anzugeben, so bedeutet 3 p? zwei Elektronen in 3 p-
Zustdnden. Die Verteilung der Elektronen in einem Atom iiber die Zustéinde
mit verschiedenen ! und » nennt man Elektronenkonfiguration.

Bei festen Werten von n und ! kann ein Elektron verschiedene Werte fiir die
Projektionen des Bahndrehimpulses 7 und des Spins ¢ auf die z-Achse haben.
Die Zahl m kann 21 4+ 1 Werte bei festem ! annehmen; die Zahl ¢ ist auf ins-
gesamt nur zwei Werte (4 1/2) beschrénkt. Daher gibt es insgesamt 2 (2 7 4 1)
verschiedene Zustinde mit den gleichen Werten n und 1. Diese Zustidnde heilen
dquivalent. In jedem solchen Zustand kann nach dem PaAvLI-Prinzip je ein
Elektron sein. In einem Atom kénnen also nicht mehr als 2 (27 4 1) Elektronen
gleichzeitig dieselben Werte » und I haben. Die Gesamtheit der Elektronen, die

1) Es ist auch iiblich, Elektronen mit den Hauptquantenzahlen n = 1,2,3,... als
Elektronen der K-, L-, M- ... Schalen zu bezeichnen.

11 Kurzfassung I
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alle Zustdnde mit gegebenen n und ! besetzen, nennt man eine abgeschlossene
Schale der betreffenden Art.

Der Unterschied in der Energie der Atomniveaus mit verschiedenen L und S
bei gleicher Elektronenkonfiguration hingt mit der elektrostatischen Wechsel-
wirkung der Elektronen zusammen (wir sehen hier von der Feinstruktur eines
jeden einzelnen Multipletterms ab). Normalerweise sind die Differenzen zwi-
schen diesen Energien relativ klein — einige Male kleiner als die Abstédnde
zwischen den Niveaus mit verschiedenen Konfigurationen. Uber die relative
Lage der Niveaus mit gleicher Konfiguration, aber verschiedenen L und S
besteht die folgende, empirisch aufgestellte Regel (HunDsche Regel):

Der Term mit dem fiir die gegebene Elektronenkonfiguration groftméglichen
Wert von S und dem groéften (bei diesem S moglichen) Wert von L hat die
kleinste Energie.

Wir wollen zeigen, wie man die fiir eine gegebene Elektronenkonfiguration
moglichen Atomterme finden kann. Sind die Elektronen nicht dquivalent, so
erfolgt die Bestimmung der moglichen Werte von L und S unmittelbar nach der
Additionsregel fiir die Drehimpulse. So kénnen zum Beispiel fiir die Konfi-
guration n p, »’ p (mit verschiedenen n und »') der Gesamtdrehimpuls L die
Werte 2, 1, 0 und der Gesamtspin S die Werte 0 und 1 haben. Kombinieren
wir diese Werte miteinander, so erhalten wir die Terme %3S, 3P und »3D.

Bei édquivalenten Elektronen miissen wir die Beschrinkungen infolge des
PauLi-Prinzips beachten. Betrachten wir als Beispiel die Konfiguration n p2.
Fiir I = 1 (p-Zustand) kann die Projektion m des Bahndrehimpulses die Werte
m = 1,0, —1 annehmen, so daB sechs Zustinde mit den folgenden Zahlen-
paaren fiir m und o moglich sind:

a) 1, 1/2, b) 0,1/2, ) —1,1/2,
a’) 1, —1/2, b) 0, —1/2, ) —1, —1/2.

Die zwei Elektronen kénnen auf zwei beliebige dieser Zusténde verteilt werden,
so daB} nicht mehr als ein Elektron in einen Zustand kommt. Im Ergebnis er-
halten wir Atomzustinde mit den folgenden Werten fiir die Projektionen
My =2m und Ms = } o des Gesamtbahndrehimpulses und des Gesamt-
spins: -

a+a) 20, a+0b) 1,1, a+¢)0,1,
a+b5)1,0, a-!-c’)0,0,

a+b)10, a+¢)0,0,

b+108)0,0

(man braucht die Zustdnde mit negativen Werten fiir 2/, und My nicht auf-
zuschreiben, weil sie nichts Neues ergeben). Das Vorhandensein eines Zustandes
mit M, = 2 und Ms = 0 deutet darauf hin, dal es einen 1D-Term geben muf.
Zu diesem Term muf} auch noch je ein Zustand mit (1,0) und (0, 0) gehdren.
Ferner bleibt noch ein Zustand mit (1, 1), so dafl es einen Term 3P geben muf;
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zu diesem gehéren noch die Zustinde mit (0, 1), (1,0), (0, 0). SchlieBlich
verbleibt noch der Zustand (0, 0), der einem Term 1S entspricht. Fiir eine Kon-
figuration aus zwei dquivalenten p-Elektronen ist also jeweils ein Term der
Art 18, 3P und D méglich.

Fiir die Konfiguration mit maximaler Zahl dquivalenter Elektronen (d. h.
fiir eine abgeschlossene Schale) ist stets nur ein 'S-Zustand moglich, da sich
die Drehimpulse der Elektronen in einer solchen Schale gegenseitig kompen-
sieren.

Die Terme fiir Konfigurationen, von denen eine so viele Elektronen hat, wie
der anderen zum Auffiillen einer Schale fehlen, sind von derselben Art (so
besitzt die Konfiguration np* Terme des gleichen Typs wie die weiter oben ge-
fundenen der Konfiguration np2). Dieses Ergebnis ergibt sich folgendermafen
ganz von selbst : Ein fehlendes Elektron in einer Schale kann als Lock angesehen
werden, dessen Zustand durch dieselben Quantenzahlen bestimmt wird wie der
Zustand des fehlenden Elektrons.

§ 61. Die Feinstruktur der Atomniveaus

Wie schon angegeben wurde, hingt der HaMiLToN-Operator eines Atomes nur

bei Beriicksichtigung relativistischer Effekte, d. h. von Effekten, die beim

Grenziibergang ¢ — co verschwinden, von den Spinoperatoren der Elektronen

ab. Auf die Frage nach dem Ursprung der relativistischen Glieder im Hamir-

TON-Operator werden wir in § 94 zuriickkommen; vorldufig nehmen wir die all-
" gemeine Gestalt dieser Glieder als gegeben an.

Die relativistischen Terme im HamirToN-Operator eines Atoms zerfallen in
zwei Kategorien: Die einen sind linear in den Operatoren der Elektronenspins,
die anderen hingen quadratisch davon ab. Die ersteren entsprechen einer
Wechselwirkung der Bahnbewegung der Elektronen mit den Spins, diese nennt
man Sptn—Bahn-Wechselwirkung. Die anderen gehéren zu einer Wechselwirkung
zwischen den Spins der Elektronen (Sprn—Spin-Wechselwirkung). Beide Arten
von Wechselwirkungen sind von derselben (zweiten) Ordnung in v/c, dem Ver-
héiltnis der Geschwindigkeit der Elektronen zur Lichtgeschwindigkeit. Faktisch
ist aber in schweren Atomen die Spin-Bahn-Wechselwirkung bedeutend stérker
als die Spin-Spin-Wechselwirkung. Das héngt damit zusammen, daf die
Spin-Bahn-Wechselwirkung mit zunehmender Ordnungszahl rasch gréfler wird,
wihrend die Spin-Spin-Wechselwirkung im wesentlichen von Z iiberhaupt
nicht abhéngt. Letzteres ist schon aus der unmittelbaren Natur der Spin-Spin-
Wechselwirkung als direkte Wechselwirkung der Elektronen untereinander,
die keine Beziehung zum Kernfeld hat, ersichtlich.

Der Operator fiir die Spin-Bahnwechselwirkung besitzt die Gestalt

Vsl =) &g la §a (51:1)
a

11
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(die Summation geschieht iiber alle Elektronen im Atom), wobei S, und l; die
Operatoren fiir Spin- und Bahndrehimpulse der Elektronen und «, Funktionen
ihrer Koordinaten sind.

Die Energieberechnung fiir die Feinstruktur der Atomniveaus besteht in
einer Mittelung des Storoperators f’,,, iiber die ungestorten Zustéinde der
Elektronenhiille. Eine solche Mittelung geschieht in zwei Etappen. Zunéchst
mitteln wir iiber einen atomaren Elektronenzustand mit gegebenen Gréflen L
und § fiir den Gesamtbahn- und den Gesamtspindrehimpuls des Atoms, wobei
ihre Richtungen nicht festgelegt sind. Nach einer derartigen Mittelung bleibt

V,; weiterhin ein Operator, der jedoch bereits nur durch Operatoren von Gréfen
ausgedriickt werden muB, die das Atom als Ganzes (und nicht einzelne Elek-

tronen in ihm) charakterisieren. Solche Operatoren sind S und i.l)
Wir bezeichnen die auf diese Weise gemittelte Spin-Bahnwechselwirkung

mit, 171,5. Indem sie linear in S ist, hat sie die Gestalt
II}LS -:Aié (51,2)

mit A als fiir den gegebenen (nicht aufgespalteten) Term charakteristische
Konstante, die demzufolge von S und L aber nicht vom Gesamtdrehimpuls J
des Atoms abhingt.

Zur Berechnung der Energie bei der Aufspaltung des entarteten Niveaus (mit
gegebenen S und L) mufl man die Sékulargleichung lésen, die aus den Matrix-
elementen des Operators (51,2) zusammengestellt wird. Im vorliegenden Falle
wissen wir jedoch schon vorher die richtigen Funktionen nullter Naherung, in
denen die Matrix Vs diagonal ist. Dassind die Wellenfunktionen der Zusténde
mit bestimmten Werten des Gesamtdrehimpulses J. Bei der Mittelung iiber

einen solchen Zustand hat man den Operator S L durch seinen Eigenwert zu
ersetzen; dieser ist nach der allgemeinen Formel (17,3) gleich

LS=%[J(J+1)—L(L+1)—S(S+1)]-

Fiir alle Multiplettkomponenten sind die Werte fiir L und S dieselben. Wir sind
nur an der relativen Lage der Multiplettkomponenten interessiert ; daher kénnen

1) Zum besseren Verstindnis des angegebenen Verfahrens sei daran erinnert, da Mitte-
lung in der Quantenmechanik allgemein Bildung eines entsprechenden Diagonalmatrix-
elementes bedeutet. Partielle Mittelung heit nun, Matrixelemente zu bilden, die beziiglich
einiger (jedoch nicht aller) die Systemzustdnde charakterisierenden Quantenzahlen diagonal
sind. Im vorliegenden Fall der Mittelung des Operators (51,1) sind dies die Matrixelemente
My MgiVsi|n My Mgy mit allen méglichen My, My und Mg, Mg, wobei sie jedoch
in allen dbrigen Quantenzahlen diagonal sind (die Gesamtheit dieser Quantenzahlen ist
mit » bezeichnet). Entsprechend miissen auch die Operatoren S und L als Matrizen
(Mg|8S|Ms) und <M 7| L| M) verstanden werden, deren Elemente durch die Formeln
(15,11) gegeben sind. Ein dhnliches Vorgehen etappenweiser Mittelung werden wir im
weiteren noch 6fters anwenden miissen.



§ 51. Die Feinstruktur der Atomniveaus 151
wir die Energie der Aufspaltung in der Form

1

?A JJ+1) (51,3)

schreiben. Die Abstdnde zwischen benachbarten Komponenten (die durch die
Zahlen J und J — 1 charakterisiert werden) sind demnach gleich

AEJ’J_l = A J . (51,4)

Diese Formel beinhaltet die sogenannte LANDEsche Intervallregel.

Die Konstante A kann sowohl positiv als auch negativ sein. Fiir 4 > 0 ist
die niedrigste Multiplettkomponente des Niveaus das Niveau mit dem kleinst-
moglichen J,d. h. mitJ = |L — §|; diese Multipletts heiBen normale Multipletts.
Ist A <0, dann liegt das Niveau mit J = L + § am tiefsten (umgekehrtes
Multiplett).

Fiir den gemittelten Operator der Spin-Spin-Wechselwirkung mufl man elnen
Ausdruck erhalten, der dhnlich wie die Formel (51,2) a.ufgebaut ist, aber in S

quadratisch ist. In S quadratische Ausdriicke sind S und (S L) Der erste
Ausdruck hat von J unabhéngige Eigenwerte und gibt daher keinen Anlaf zur
Aufspaltung eines Termes. Man kann ihn daher weglassen und

Vss = B (S Ly (51,5)

schreiben; darin ist B eine Konstante. Die Eigenwerte dieses Operators ent-
halten von J unabhéngige Terme, zu J (J + 1) proportionale Glieder und
schlieBlich ein Glied proportional zu J2 (J + 1)2. Die erstgenannten Glieder
ergeben keine Aufspaltung und sind deshalb uninteressant. Die zweiten Glieder
kénnen in den Ausdruck (51,3) aufgenommen werden; das ist einfach einer
Anderung der Konstanten 4 dquivalent. Die dritten tragen schlieBlich zur
Energie des Termes den folgenden Ausdruck bei:

2ru+. (51,6)

Das dargestellte Schema zur Konstruktion der Atomniveaus beruht auf der
Vorstellung, daB die Bahndrehimpulse der Elektronen zum Gesamtbahn-
drehimpuls L des Atoms und die Elektronenspins zum Gesamtspin S addiert
werden. Wie bereits erwahnt worden ist, ist eine solche Betrachtungsweise nur
dann moglich, wenn die relativistischen Effekte klein sind. Genauer, die Fein-
strukturaufspaltung muB klein sein gegeniiber den Differenzen zwischen Niveaus
mit verschiedenen L und S. In dieser Néherung spricht man von der RUSSELL-
SAUNDERs-Kopplung oder von L-S-Kopplung.

Der Anwendungsbereich dieser Naherung ist aber faktisch beschrankt. Nach
der L-S-Kopplung kénnen die Niveaus der leichten Atome bestimmt werden.
Mit zunehmender Ordnungszahl werden die relativistischen Wechselwirkungen
im Atom stérker, und die RusSELL-SAUNDERS-Néaherung ist nicht mehr anwend-
bar.
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Im entgegengesetzten Grenzfall ist die relativistische Wechselwirkung grof3
gegeniiber der elektrostatischen. In diesem Falle kann man nicht vom Bahn-
drehimpuls und vom Spin einzeln sprechen, weil diese nicht erhalten bleiben.
Die einzelnen Elektronen werden durch ihre Gesamtdrehimpulse j charakteri-
siert, die zum Gesamtdrehimpuls J des Atoms zusammengesetzt werden. In
diesem Falle spricht man von der j—j-Kopplung. In Wirklichkeit tritt dieser
Kopplungstyp in reiner Form nicht auf. Unter den Niveaus sehr schwerer
Atome beobachtet man verschiedene Zwischenstufen zwischen der L—S- und
der j—j-Kopplung.

Eine weitere (nach der Feinstruktur kommende) Aufspaltung der atomaren
Energieniveaus resultiert aus der Wechselwirkung der magnetischen Momente
von Elektron und Kern; sie fiihrt zur sogenannten Hyperfeinstrukiur. Wegen
der Kleinheit der magnetischen Kernmomente (im Vergleich zu den Elektronen-
momenten) ist diese Wechselwirkung relativ klein, und deshalb sind auch die
durch sie bewirkten Aufspaltungsabsténde, verglichen mit den Abstdnden der
Feinstruktur, klein. Folglich muf} die Hyperfeinstruktur fiir jede Feinstruktur-
komponente einzeln untersucht werden.

Wir bezeichnen den Kernspin mit ¢ (wie dies in der Atomspektroskopie iiblich
ist). Der Gesamtdrehimpuls eines Atoms (zusammen mit- dem Kern) ist F
=dJ + 1, wobei J nach wie vor den Gesamtdrehimpuls der Elektronenhiille

- kennzeichnet. Jede Komponente der Hyperfeinstruktur wird durch einen be-
stimmten Wert F gekennzeichnet. Nach den allgemeinen Regeln fiir die Addi-
tion von Drehimpulsen nimmt die Quantenzahl F folgende Werte an:

F=J+i, J4+i—1,...,|J—1. (51,7)

§ b2. Das MENDELEJEWSche Periodensystem der Elemente

Die Natur der periodischen Anderung der Eigenschaften, die bei einigen in der
Reihenfolge zunehmender Ordnungszahlen geordneten Elementen von D. L
MENDELEJEW beobachtet wurde, kann erklirt werden, indem man die Besonder-
heiten bei der fortschreitenden Auffiilllung der Elektronenhiille der Atome
untersucht (N. BoHR, 1922).

Beim Fortschreiten von einem Atom zum néchsten nimmt die Ladung um 1
zu, und zur Elektronenhiille wird ein Elektron hinzugefiigt. Auf den ersten
Blick konnte man erwarten, dafl die Bindungsenergie eines jeden der nachein-
ander zugefiigten Elektronen sich mit zunehmender Ordnungszahl monoton
dndert. In Wirklichkeit ist das jedoch nicht so.

Im Grundzustand des Wasserstoffatoms gibt es insgesamt nur ein Elektron
im Zustand 1 s. Indem Atom des folgenden Elementes — des Heliums — kommt
noch ein Elektron in demselben 1 s-Zustand dazu. Die Bindungsenergie eines
der 1 s-Elektronen im Heliumatom ist aber bedeutend grofer als die Bindungs-
energie des Elektrons im Wasserstoffatom. Dies ist eine natiirliche Folge des
Unterschiedes zwischen dem Feld, in dem sich das Elektron im H-Atom befindet,
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und dem Feld, in das das zum He+-Ion hinzugefiigte Elektron kommt: In grofen
Abstdnden stimmen diese Felder ungefiahr tiberein, aber in der Ndhe des Kernes
mit der Ladung Z = 2 ist das Feld des He*-Ions stédrker als das Kernfeld des
Wasserstoffatoms mit Z = 1.

Im Lithiumatom (Z = 3) kommt das dritte Elektron in einen 2 s-Zustand,
weil es in den 1 s-Zustdnden gleichzeitig nicht mehr als zwei Elektronen
geben kann. Fiir festes Z liegt das 2 s-Niveau oberhalb des 1 s-Niveaus. Mit
zunehmender Kernladung werden beide erniedrigt. Beim Ubergang von Z = 2
zu Z = 3 iiberwiegt der erste Effekt den zweiten betrachtlich und die Bindungs-
energie des dritten Elektrons im Lithiumatom ist bedeutend kleiner als die
Bindungsenergie der Elektronen im Heliumatom. Weiter werden in den Atomen
von Be (Z = 4) bis Ne (Z = 10) zunidchst noch ein 2 s-Elektron und dann
sechs 2 p-Elektronen hinzugefiigt. Die Bindungsenergie der in dieser Reihe
zugefiigten Elektronen nimmt wegen der VergréBerung der Kernladung im
allgemeinen zu. Das nichste, beim Ubergang zum Na-Atom (Z = 11) zugefiigte
Elektron kommt in einen 3 s-Zustand. Die Auswirkung des Uberganges in eine
hohere Schale tibertrifft dabei den Einflull der vergroBerten Kernladung, und
die Bindungsenergie fillt erneut stark ab.

Dieses Bild der Auffiillung der Elektronenschalen ist fiir die ganze Reihenfolge
der Elemente charakteristisch. Alle Elektronenzustdnde kann man in Gruppen
(Schalen) einteilen, die nacheinander aufgefiillt werden: In der Reihe der Ele-
mente wachsen im allgemeinen mit fortschreitender Auffiillung die Bindungs-
energien der Elemente, wenn jedoch mit der Auffiillung einer néchsten Schale
begonnen wird, fallt die Bindungsenergie stark ab.

In Abb. 11 sind die aus den spektroskopischen Daten bekannten Ionisations-
potentiale der Elemente aufgetragen. Sie sind ein Ma8 fiir die Bindungsenergie
der Elektronen, die beim Ubergang von einem Element zum folgenden hinzu-
gefiigt werden.

Die verschiedenen Zustinde verteilen sich folgendermafen auf die nach-
einander aufgefiillten Schalen:

ls 2 Elektronen

2s 2p 8 Elektronen

3s, 3p 8 Elektronen

4s,3d,4p 18 Elektronen (52,1)
5s,4d, 5p 18 Elektronen

6s,4f 5d,6p 32 Elektronen

7s, 6d, 5f,...

Die erste Schale wird bei H und He aufgefiillt; die Auffiillung der zweiten und
der dritten Schale entspricht den beiden ersten (kleinen) Perioden des Perioden-
systems mit je acht Elementen. Dann folgen zwei grofle Perioden mit je
18 Elementen und eine grofle Periode, die die Seltenen Erden enthilt und aus
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insgesamt 32 Elementen besteht. Die letzte Schale wird durch die in der
Natur vorkommenden Elementen (und durch die kiinstlich erzeugten Tran-
surane) nicht vollstindig aufgefiillt. ‘

Zum Verstdandnis des Ganges der Eigenschaften der Elemente bei der Auf-
filllung der Zustdnde einer Schale ist die folgende Besonderheit der d- und
/-Zustinde wesentlich, die diese von den s- und p-Zustinden unterscheidet.
Die Kurven fiir die effektive potentielle Energie eines kugelsymmetrischen
Feldes (das sich aus dem elektrostatischen Feld und dem Zentrifugalfeld zu-
~sammensetzt) haben fiir ein Elektron in einem schweren Atom nach einem
schroffen, beinahe vertikalen Abfall ein tiefes Minimum; danach steigen sie
wieder an und nahern sich asymptotisch Null. Fiir s- und p-Zustédnde verlaufen
diese Kurven in ihren aufsteigenden Teilen sehr nahe beieinander. Das be-
deutet, dafl sich die Elektronen in diesen Zustidnden etwa in denselben Ent-
fernungen vom Kern befinden. Die Kurven fiir die d- und besonders fiir die
f-Zustdnde verlaufen wesentlich weiter links. Der ,,klassisch erlaubte‘ Bereich
endet bedeutend ndher am Kern als fiir s- und p-Zustdnde mit derselben Ge-
samtenergie des Elektrons. Mit anderen Worten befindet sich ein Elektron
in d- und f-Zusténden im allgemeinen wesentlich ndher am Kern als in s- und
p-Zustianden.

Einige Eigenschaften der Atome (darunter auch die chemischen Eigen-
schaften der Elemente, siehe § 58) hangen hauptsédchlich von den dufleren Be-
reichen der Elektronenhiille ab. In diesem Zusammenhang ist die beschriebene
Besonderheit der d- und f-Zustinde besonders wesentlich. So werden zum
Beispiel bei der Auffiilllung der 4 f-Zustdnde (bei den Seltenen Erden, s. u.)
die zugefiigten Elektronen bedeutend ndher am Kern untergebracht als die
Elektronen der vorher aufgefiillten Zustdnde. Infolgedessen beeinflussen diese
Elektronen die chemischen Eigenschaften beinahe gar nicht, und alle Seltenen
Erden sind chemisch sehr éhnlich.

Die Elemente mit abgeschlossenen d- und f-Schalen (oder iiberhaupt ohne
solche Schalen) heiflen Elemente der Haupigruppen. Diejenigen Elemente, bei
denen diese Zustdnde gerade aufgefiillt werden, nennt man Elemente der
Nebengruppen. Die Elemente dieser Gruppen behandelt man zweckmiBig ge-
trennt.

Wir beginnen mit den Elementen der Hauptgruppen. Wasserstoff und He-
lium haben die Grundzustdnde

H i 1s28;,, JHe : 1215,

(der Index links an dem chemischen Symbol bedeutet stets die Ordnungs-
zahl). Die Elektronenkonfigurationen der iibrigen Elemente der Hauptgruppen
sind in der Tabelle 1 zusammengestellt. In jedem Atom sind die Schalen voll-
stindig abgeschlossen, die rechts von der Tabelle in derselben und in allen
hoheren Zeilen angegeben sind. Die Elektronenkonfiguration in den abge-
schlossenen Schalen ist oben angefiihrt. Die Hauptquantenzahl der Elektro-
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Tabelle 1

Elektronenkonfigurationen der Elemente der Hauptgruppen

e ‘ 82 ‘ stp ‘ % p? 1 82 p3 §2 pt : 82 ps { s p8 [
n=2 | ,Li | .Be B | N | 0 | F | oNe |16
3 ) nNa 1:Mg 138l | 4S80 15 168 1:Cl 1841 2% 2p®
4 10K 20Ca 3523 pb
, 4 20CU VA 2Ga 32Ge 3A8 3a5€ 3sBr seKr | 3dY
5 37Rb 3g5T 4824 p8
5 wAg 4sCd sln 500 515b s2Te sad saXe | 441
6 5508 seBa | 5825 ps
6 wAu eoHg a1 Tl ‘ 0Pb | gBi 8aP0 - | gsAt gsBn | 4 f14541
7 g Fr sRa , l 6 52 6 p®
Wy | 8 | Pyz P | Sy | P, 2Py | 28, |

nen ist dabei durch die Ziffern angegeben, die links von der Tabelle in dersel-
ben Zeile stehen. Unten finden wir die Grundzustinde des ganzen Atoms. So
hat das Al-Atom die Elektronenkonfiguration 1s? 2522 p® 352 3 p 2Py,.

Die Atome der Edelgase (He, Ne, Ar, Kr, Xe, Rn) nehmen in der Tabelle
eine besondere Stellung ein. Bei jedem Edelgas wird der Aufbau der in (52,1)
aufgezéhlten Schalen von Zustinden abgeschlossen. Ihre Elektronenkonfi-
gurationen haben eine besondere Bestandigkeit (die Ionisationspotentiale sind
in den entsprechenden Reihen die gréB8ten). Damit hingt auch die chemische
Tréigheit dieser Elemente zusammen.

Die Auffiillung der verschiedenen Zustidnde erfolgt fiir die Elemente der
Hauptgruppen sehr gesetzmifBig: Es werden zuerst die s- und danach die
p-Zusténde einer jeden Hauptquantenzahl n besetzt. Ebenso gesetzméfig sind
auch die Elektronenkonfigurationen dieser Elemente (solange bei der Ionisation
die Elektronen der d- und f-Schalen nicht angegriffen werden). Jedes Ion hat
die Konfiguration des vorangehenden Atoms. So hat das Mg*-Ion die Kon-
figuration des Na-Atoms, das Mg*+-Ion die Konfiguration des Ne.

Kommen wir jetzt zu den Elementen der Nebengruppen. Die Auffiillung der
3 d-, 4 d- und 5 d-Schalen erfolgt in Gruppen von Elementen, die entsprechend
Eisen-, Palladium- und Platingruppe heilen. In der Tabelle 2 sind die Elek-
tronenkonfigurationen und die Terme der Atome dieser Gruppen aufgefiihrt,
die aus den experimentellen spektroskopischen Daten bekannt sind. Wie man
aus diesen Tabellen entnimmt, werden die d-Schalen bedeutend weniger
gesetzmdafig aufgefiillt als die s- und p-Schalen in den Atomen der Haupt-
gruppen. Ein charakteristischer Zug ist hier die ,, Konkurrenz‘. zwischen den
s- und den d-Zusténden. Sie dullert sich darin, dall anstelle der gesetzméaBigen
Folge der Konfigurationen der Art d” s? mit zunehmendem p héufig die Kon-
figurationen der Art dP*! s oder d?+2 vorteilhafter werden. In der Eisengruppe
hat das Cr-Atom die Konfiguration 3 d® 4 s und nicht 3 d* 4 s2 Nach ,dem Ni
mit 8 d-Elektronen folgt sofort das Cu-Atom mit einer v6llig abgeschlossenen
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d-Schale (das deshalb von uns zu den Hauptgruppen gezéhlt wird). Auch bei
den Tonentermen fehlt die GesetzmiBigkeit in gleicher Weise, die Elektronen-
konfigurationen der Ionen stimmen gewdhnlich nicht mit der Konfiguration
der vorhergehenden Atome iiberein. Zum Beispiel hat das V+*-Ion die Kon-
figuration 3 d* (und nicht 3 d24 s? wie das Ti), das Fe*-Ion hat die Konfigu-
ration 3 d® 4 s (statt der Konfiguration 3 d°4 s2 des Mn-Atoms). Alle Ionen,
die in natiirlicher Form in Kristallen und Lésungen vorkommen, enthalten in
den unabgeschlossenen Schalen nur d- (aber keine s- und p-)Elektronen. Das
Eisen kommt zum Beispiel in Kristallen oder Losungen nur als Fet*- und
Fe***-Ton mit den Konfigurationen 3 d® bzw. 3 d° vor. '

Eine dhnliche Situation finden wir auch beim Aufbau der 4 f-Schale, der
bei den Elementen vor sich geht, die unter der Bezeichnung Seltene Erden
bekannt sind (Tabelle 3). Die 4 f-Schale wird ebenfalls nicht ganz gesetzmaBig
aufgefiillt, dabei ,,konkurrieren‘ die 4 f-, 5 d- und 6 s-Zustéande.

Die letzte Gruppe von Ubergangselementen beginnt mit dem Aktinium. Bei
ihr werden die 6 d- und die 5 f-Schalen aufgebaut, dhnlich wie bei den Seltenen
Erden.

Tabelle 2

Elektronenkonfigurationen der Atome der Elemente der Eisen-, Palladium-
und Platingruppe

Eisengruppe
| 215¢ ’ 2o Ti 23V 24Cr l 2sMn { PPLL l 2700 2Ni
Schale Ar + ‘ .
3d 452 3d%4s? | 3d34s® | 3dS4s | 3d°4s®| 3d®4s® | 3d74s | 3d84s?
2D3;2 3F, 4F3/2 7S 885/2 5D, | %Fyp 3Ry
Palladiumgruppe
|
wY | wZr | aNb | oMo | oTe | Ru | 4R | 4Pd
Schale Kr + | .
4d 5s% 4d% 55 | 4d45s 4d5 5s® | 4d5 552 | 4d7 5s | 4d85s | 4d'0
2Dg3j2 L8 $Dyj2 78, ¢85/2 5F, 4F9s2 18,
Platingruppe
s7La
Schale Xe + | 5d 652
D32
| nlu 7o Hf \ 73la i uW ‘ Re ’ 7608 } It ‘ N
Schale | N
Xe+4f"+ | 5465 | 5d26s2 | 5d56s2 | 5d*6s? ‘ 5d5 62 | 5d° 652 | 5d7 6s® | 5d° 6s
2D3jz 3E, 4F3/2 5Dy | %852 | 5D, 4F9j2 3D,
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Tabelle 3
Elektronenkonfigurationen der Atome der Seltenen Erden
s6Ce l soPT ’ eoNd ‘ aPm ‘ eSm ‘ ssBu
4f 5d 652 4f% 652 4f46s2 | 4f56s? 4f56s2 | 4f7 682
Q, g0 51, 8Hs/o F, 1 8872
SchaleXe + | 4Gd | &Tb WDy | oHo | &Fr | oTu | YD
4f7 5d 6s* 4f° 6s? 4f10 652 | 411 6s? 1 4f12 652 | 413 6s% | 4f14 652
°D, SHis/2 51, sIse | 3H, 2F7/2 1S
§ 63. Die RonTGEN-Terme

Die Bindungsenergie der inneren Elektronen in einem Atom ist relativ grof.
Geht ein solches Elektron in eine dullere unbesetzte Schale iiber (oder wird es
ganz aus dem Atom entfernt), dann ist das angeregte Atom (oder das Ion)
mechanisch instabil gegen eine Ionisierung. Bei dieser Ionisierung wird die
Elektronenhiille umgebaut, und es wird ein stabiles Ion gebildet. Wegen der
relativ schwachen Wechselwirkung der Elektronen im Atom ist aber die Wahr-
scheinlichkeit fiir einen solchen Ubergang relativ klein, so daB die Lebens-
dauer 7 des angeregten Zustandes groB ist. Die Breite des Niveaus 7/t (siehe
§ 38) ist geniigend klein, so daB es Sinn hat, die Energien eines Atoms mit einem
angeregten inneren Elektron als diskrete Energieniveaus ,,quasistationdrer
Zustinde des Atoms zu betrachten. Diese Niveaus heilen RONTGEN-T'erme?).

Die RONTGEN-Terme werden vor allem durch die Angabe der Schale klassi-
fiziert, aus der das Elektron entfernt worden ist, oder wie man auch sagt, in
der ein ,,Loch‘ gebildet worden ist. Wohin das Elektron dabei gekommen ist,
wirkt sich auf die Energie des Atoms fast iiberhaupt nicht aus und ist daher
unwesentlich. '

Der Gesamtdrehimpuls der Elektronen einer abgeschlossenen Schale ist
gleich Null. Nach der Entfernung eines Elektrons aus einer solchen Schale
erhdlt diese einen gewissen Drehimpulsj. Fiir eine Schale mit gegebenen =
und ! kann der Drehimpuls j offensichtlich nur die Werte I 4+ 1/2 annehmen.
Wir erhalten so Energieniveaus, die man mit 1 sy, 2 82, 2 P12, 2 P3j2s « -
bezeichnen konnte. Dabei ist der Wert von j als Index an das Symbol fiir die
Lage des ,,Loches” angehidngt worden. Es sind jedoch spezielle Symbole nach
der folgenden Gegeniiberstellung allgemein iiblich:

131/2 281/2 2 pye 2 p3je 331/2 3 py2 3P 3d3/2 3d5/2
K L, Ly Ly My My My My My

1) Bei Ubergiingen zwischen diesen Niveaus sendet das Atom RONTGEN-Strahlen aus,
daher diese Bezeichnung.
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Die Niveaus mit gleichen n (die mit demselben grofen Buchstaben bezeichnet
werden) liegen dicht beieinander und weit entfernt von den Niveaus mit an-
deren n. Die Ursache dafiir ist folgende. Das Feld, in dem sich die inneren
Elektronen befinden, ist das fast unabgeschirmte Kernfeld, weil die inneren
Elektronen relativ nahe am Kern sind. Infolgedessen sind ihre Zusténde
,,wasserstoffadhnlich®, d. h., ihre Energie fillt ndherungsweise mit derjenigen
zusammen, die ein Elektron im Felde eines Kerns der Ladung Ze besifle;
letztere jedoch hdngt nur von der Hauptquantenzahl n ab (§ 31).

Bei Beriicksichtigung der relativistischen Effekte werden die Terme mit ver-
schiedenen j voneinander abgetrennt, wie etwa L} und Ly von Ly, My und
My; von My und M;y. Diese Paare von Niveaus heilen echie (oder rela-
tivistische) Dubletts. )

Die Aufspaltung der Terme mit verschiedenen [ fiir gleiches j (beispielsweise
Ly und Ly, M; und My;) hingt mit der Abweichung des Feldes, in dem sich
die inneren Elektronen befinden, vom CouroMB-Feld zusammen, d. h., sie tritt
bei Beriicksichtigung der Wechselwirkung des Elektrons mit den anderen
Elektronen auf. Diese Dubletts heilen unechte (oder abgeschirmte) Dubletts.

Die Breite eines RONTGEN-Terms wird durch die Gesamtwahrscheinlichkeit
aller moglichen Prozesse zum Umbau der Elektronenhiille des Atoms unter
Auffiilllung des gegebenen ,,Loches”“ bestimmt. Bei schweren Atomen spielen
dabei die Uberginge des Loches aus der gegebenen Schale in eine (energetisch)
héher liegende Schale (d. h. Ubergiinge des Elektrons aus héher gelegenen in
niedriger gelegene Zustinde) die Hauptrolle. Diese Ubergéinge werden von der
Emission eines RONTGEN-Quants begleitet. Die Wahrscheinlichkeit dieser
,,Strahlungs‘‘-Ubergéinge und damit auch der entsprechende Teil der Niveau-
breite werden mit zunehmender Ordnungszahl sehr rasch gréBer.

Bei leichteren Atomen (und héheren Niveaus) spielen die strahlungslosen
Ubergiinge die wesentliche und sogar vorherrschende Rolle. Die durch die
Auffiillung des Loches mit einem duBleren Elektron frei werdende Energie wird
bei diesen Ubergingen dazu benutzt, ein anderes inneres Elektron aus dem
Atom herauszuschlagen (sogenannter AUGER-Effekt). Nach einem solchen Pro-
zel befindet sich das Atom in einem Zustand mit zwei Lochern.

§ b4. Das Atom im elektrischen Feld

Bekanntlich werden die elektrischen Eigenschaften eines Systems von Teilchen

in der klassichen Theorie durch die elektrischen Multipolmomente verschiedener

Ordnungen bestimmt (sieche I §§ 62, 63). In der Quantentheorie werden diese

GroBen in derselben Weise definiert, nur mufl man sie als Operatiren ansehen.
Das erste Multipolmoment ist das Dipolmoment, definiert als Vektor

d=JYer. (64,1)

Fiir ein Atom (dessen Kern als im Koordinatenursprung ruhend angenommen
wird) lduft die Summation iiber alle Elektronen in seiner Hiille (der Kiirze
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halber lassen wir den Index, der die Elektronen numeriert, weg). Der Mittel-
wert des Dipolmomentes fiir einen stationdren Atomzustand ergibt sich durch
Mittelung des Operators (54,1) beziiglich der Wellenfunktion dieses Zustandes,
d. h. durch Berechnung des entsprechenden Diagonalmatrixelementes. Nun
werden die Matrixelemente des Operators (54,1) wie auch die eines beliebigen
polaren Vektors (siehe § 19) fiir Ubergiinge zwischen zwei Zustinden gleicher
Paritdt Null. Deshalb werden auf jeden Fall die Diagonalelemente Null, so
daB der Mittelwert des Dipolmomentes eines Atoms fiir stationdre Zustinde
Null ist.)
Das Quadrupolmoment des Systems ist als symmetrischer Tensor

Qur = X e (B wiwp — 04y 72) (54,2)

definiert, wobei die Summe iiber die Diagonalglieder Null ergibt.

Wir bemerken zunichst, dafl die Mittelwerte des Quadrupolmoments eines
Atoms beziiglich aller Zustdnde mit Gesamtdrehimpuls J = 0 oder J = 1/2
Null sind. Davon kann man sich mit Hilfe der in § 18 angegebenen Methode
zur Bestimmung der Auswahlregeln fiir Matrixelemente von Vektoren und
Tensoren iiberzeugen. In diesem Sinne ersetzen wir den Tensor (54,2) durch
einen entsprechenden ,,Drehimpuls® L = 2. Ein Matrixelement ist von Null
verschieden, wenn man bei einer Addition dieses ,,Drehimpulses zu den Dreh-
impulsen J; und J, von Anfangs- und Endzustand den Wert O erhalten kann.
Nun kann man aus den drei Drehimpulsen 2, 0, 0 oder 2, 1/2, 1/2 auf keinerlei
Weise einen solchen Wert erhalten, und deshalb werden die Diagonalmatrix-
elemente mit J; = J, = 0 oder J; = J, = 1/2 Null.

Fiir einen Atomzustand mit gegebenem GesamtdrehimpulsJ héngt der
Mittelwert des Quadrupolmoments noch vom Wert der Drehimpulsprojektion
M, ab. Wir wollen diese Abhéngigkeit auffinden.

Die Mittelung des Operators (54,2) iiber einen Atomzustand geschieht zweck-
miBig in zwei Schritten (vergleiche § 51). Zunédchst mitteln wir tiber die Zu-
stinde mit gegebenem Wert von J, jedoch nicht festgelegtem ;. Der auf

diese Weise gemittelte Operator (wir bezeichnen ihn mit @) kann nur durch
Operatoren von GroBen ausgedriickt werden, die den Atomzustand als Ganzes

charakterisieren. Der ,,Vektor”dJ ist der einzige derartige Vektor. Deshalb

1) Dabei setzen wir voraus, da die Energieniveaus des Atoms nur beziiglich der Rich-
tungen seines Gesamtdrehimpulses entartet sind. Alle Zusténde, die sich nur duroh die
Werte der Projektion des Gesamtdrehimpulses unterscheiden, besitzen gleiche Paritit;
einer beliebigen Linearkombination aus ihnen ist demzufolge auch eine definierte Paritit
zuzuordnen (und zwar diejenige der Ausgangswellenfunktionen). In diesem Sinne stellt
das Wasserstoffatom eine Ausnahme dar, da seine Energieniveaus dariiber hinaus eine
,zuféllige Entartung aufweisen. Untereinander entartete Zustinde mit unterschied-
lichem Bahndrehimpuls ! kénnen verschiedene Paritit besitzen. Aus ihren Wellenfunk-
tionen kann man solche Superpositionen aufbauen, die iiberhaupt keine bestimmte Paritit
besitzen ; die ihnen entsprechenden Diagonalmatrixelemente des elektrischen Dipolmoments
missen nicht Null werden.
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mull der Operator @"5 die Gestalt
~ 3¢Q Ao A R 9 a
Qik=‘2—J(2J——l)(Ji Jk-*—Jth—'_?’_a”ch) (54’3)
haben, wobei der Ausdruck in der Klammer so aufgebaut ist, daBl er in den
Indizes ¢, k symmetrisch ist und bei der Summation iiber ¢ = & Null ergibt

(iber den Sinn des Koeffizienten @ siehe weiter unten). Die Operatoren J;
miissen hier als die uns bekannten (§ 15) Matrizen beziiglich Zusténden mit
verschiedenen Werten M ; verstanden werden.

Da die drei Komponenten des Drehimpulsvektors nicht gleichzeitig bestimmte
Werte besitzen koénnen, trifft dies auch auf die Komponenten des Tensors

(64,3) zu. Fiir die Komponente é,z haben wir

A~ 3Q ~ 1o
Qe —JEeI—) ("* - ?Jg)'

Die Mittelung dieses Operators in bezug auf einen Zustand mit gegebenen

Werten J und M; besteht jetzt einfach im Ersetzen der Operatoren durch

ihre Eigenwerte. Auf diese Weise finden wir

~ 3Q 1
O =y M- 37T+ 1), (54,4

wodurch auch die gesuchte Abhidngigkeit bestimmt ist. Fir M, = J (der
Drehimpuls liegt ,,vollstindig® in Richtung der z-Achse) haben wir Q.. = Q;
diese Grofe heiit gewohnlich auch einfach Quadrupolmoment.

In einem Atom, das in ein homogenes dulleres elektrisches Feld E gebracht
worden ist, haben wir es mit einem System von Elektronen in einem axial-
symmetrischen Feld zu tun (Kernfeld plus duleres Feld). Infolgedessen bleibt
der GesamtdrehimpulsJ des Atoms nicht mehr streng erhalten. Es bleibt nur
seine Projektion auf die Richtung der Symmetrieachse (z-Achse) erhalten.

Indem das dullere Feld eine bestimmte Vorzugsrichtung im Raum festlegt,
hebt es die Entartung der Niveaus beziiglich der Drehimpulsrichtungen auf:
Zustinde, die sich durch die Werte J, = M ; unterscheiden und beziiglich des
freien Atoms die gleiche Energie besitzen, erhalten im elektrischen Feld unter-
schiedliche Energien (sogenannter STARE-Effekt). Die Entartung der Niveaus
wird aber nicht vollstindig aufgehoben. Die Zustédnde, die sich nur durch das
Vorzeichen von M ; unterscheiden, bleiben nach wie vor untereinander entartet.
Dieser Umstand ist eine unmittelbare Folge der Symmetrie beziiglich der Zeit-
umkehr (§ 23). Indem &gich die Richtungen aller Geschwindigkeiten umkehren,
dndert die Zeitumkehr das Vorzeichen der Drehimpulsprojektion, wihrend sie die
Energie des Systems unverdndert.laBt; aullerdem bleibt auch das Feld E un-
verdndert (siehe I § 44).

Demzufolge bleiben mit Ausnahme nur der Niveaus mit M; = 0 die Energie-
niveaus eines Atoms in solch einem elektrischen Feld zweifach entartet. Wenn
jedoch der Gesamtdrehimpuls J halbzahlig ist, dann ist der Wert M; =0
nicht méglich, und alle Niveaus bleiben ohne Ausnahme zweifach entartet.
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Dieser Sachverhalt ist ein Spezialfall einer allgemeineren Regel. Man kann
zeigen (indem man von der Forderung nach Symmetrie beziiglich der Zeitum-
kehr ausgeht), daB fiir ein System mit halbzahligen J eine zweifache Niveau-
entartung in einem beliebigen (und nicht nur im homogenen) elektrischen
Feld erhalten bleibt (sogenanntes KRAMERS-Theorem).1)

Wir werden voraussetzen, daBl das elektrische Feld geniigend schwach ist
— so schwach, daBl die von ihm stammende Energie klein gegeniiber den Ab-
stdinden zwischen benachbarten Energieniveaus des Atoms und auch klein
gegeniiber der Feinstrukturaufspaltung ist. Dann kénnen wir zur Berechnung
der Niveauverschiebung in dem elektrischen Feld die Storungstheorie ver-
wenden. Der Stéroperator ist dabei die potentielle Energie des Systems der
Elektronen im homogenen Feld E, diese ist

V=—Ed=—|Ed,. (54,5)

Darin ist d das Dipolmoment des Atoms. Die Verschiebung der Energie-
niveaus wird in erster Naherung durch die Diagonalelemente der Matrix des
Stéroperators gegeben. Die Diagonalelemente der Matrix fiir das Dipolmorent
sind aber identisch gleich Null, da das Dipolmoment im Mittel verschwindet.
Die Aufspaltung der Niveaus im elektrischen Feld ist also ein Effekt zweiter
Ordnung und proportional zum Quadrat des Feldes.2)

Die Verschiebung AE, des Niveaus E, muf} als im Feld E quadratische GroSe
durch eine Formel der Gestalt

1
AE, = — 5 o) E/ B (546)

gegeben werden, wobei of%) ein symmetrischer Tensor zweiter Stufe ist. Wir
legen die z-Achse in Feldrichtung und erhalten

AB, = — o |E|2. (54,7)

Der in den aufgeschriebenen Formeln vorkommende Tensor o) ist an-
dererseits die Polarisierbarkeit des Atoms in einem &ufleren elektrischen Feld.
Diese Behauptung folgt aus der allgemeinen Formel

oH 0B,
(ﬁ)m = (54,8)
Hier steht links ein Diagonalmatrixelement des Operators 0H /04 mit H als
HamirroNn-Operator des Systems, der von einem gewissen Parameter i ab-
héngt ; zusammen mit dem HamiLTON-Operator sind auch seine Eigenwerte £,
Funktionen dieses Parameters. Wenn wir in dieser Formel unter dem Para-

1) Es sei jedoch betont, daf ein Atom in einem beliebigen elektrischen Feld nicht mehr
durch die Werte der Drehimpulsprojektion charakterisiert werden kann, da in einem
inhomogenen Feld nicht nur der Betrag des Drehimpulsvektors, sondern auch alle seine
Komponenten keine ErhaltungsgréBen darstellen.

2) Eine Ausnahme bildet das Wasserstoffatom, fiir dessen stationire Zustinde der
Mittelwert des Dipolmoments von Null verschieden sein kann. Deshalb ist die Energie-
niveauaufspaltung des Wasserstoffatoms linear in der Feldstirke.
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meter A den Feldstarkebetrag |E| verstehen und
H=H,+ V=H,— |E|d.
ansetzen, so erhalten wir unter Verwendung des Ausdruckes (54,7)
d, = af? |E| . (54.9)

Der Proportionalitatsfaktor zwischen dem Dipolmoment, das ein Atom im
Feld erhilt, und der Feldstirke heiit nun gerade Polarisierbarkeit des Atoms.
Zum Beweis der Formel (54,8) gehen wir von der Gleichung

(H — En)yu =0
aus, die die Eigenwerte des Operators H bestimmt. Differenzieren wir diese
Gleichung nach A und multiplizieren wir sie danach von links mit ¥, so erhalten
wir

~ oy, oE oH

vt @ — B = vt (G- v
Bei der Integration dieser Gleichung iiber dg wird die linke Seite Null, da wir
auf Grund der Hermitezitdt des Operators H

fwn (H — Ey) aw"d —f%’f(ﬁ*—En)wqu

haben (siehe (3,10)), und (H * — E,)yF =0 ist. Die rechte Seite gibt die
gesuchte Formel.

§ b5. Das Atom im Magnetfeld

Betrachten wir ein Atom, das sich in einem homogenen Magnetfeld H befindet.
Entsprechend (43,4) lautet sein HAMILTON-Operator

H——Z[a—i-llA(ra)] +U+y§, (85,1)

wobei die Summation iiber alle Elektronen ldauft (die Elektronenladung ist als
e = — |e| geschrieben); U ist die Energie der Wechselwirkung der Elektronen

mit dem Kern und der Elektronen untereinander; S = Y §, stellt den Operator
fir den Gesamtspin (der Elektronen) des Atoms dar.
Das Vektorpotential fiir ein homogenes Feld wihlen wir als

A= [Hr] (55,2)

(siehe I § 46). Es ist leicht zu sehen, daf bei einer solchen Wahl der Operator
P = — 1% V mit 4 kommutiert. In der Tat liefert die Anwendung auf irgend-
eine Funktion y(r)

(PA—Ap)y=—ihVAyp)+ihAVp = —ikpdiva,

12 Kurzfassung IT
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d. h.
PA—Ap=—ikdivA.

1
Nun gilt fiir denVektor (55,2) div4A = — - Hrot.r = 0. Indem wir diesen

Umstand bei der Ausrechnung des Quadrates in (55,1) beriicksichtigen, schrei-
ben wir den HamiLToN-Operator in die Gestalt

]
sa+9p g

2
2mc z

e H+"”2Apa

um, worin ﬁo der HamrLToN-Operator des Atoms ohne Feld ist. Setzen wir
hierin A aus (55,2) ein, so erhalten wir

i
IeI HS.

H H0+2m HE['apa]+8mczz[H a,]2
Das Vektorprodukt [7, p,] ist der Operator fiir den Bahndrehimpuls eines
Elektrons, und die Summation iiber alle Elektronen liefert den Operator % L
des Gesamtbahndrehimpulses des Atoms. Auf diese Weise haben wir

H=Hy+ps L+28H+— SE[HraP (55,3)

mit up als BoHrRschem Magneton.

Wie auch ein elektrisches Feld spaltet ein duBeres Magnetfeld die Atom-
niveaus auf, indem es die Richtungsentartung beziiglich des Gesamtdreh-
impulses aufhebt (ZEEMaN-Effekt). Wir wollen die Energie dieser Aufspaltung
fiir Atomniveaus bestimmen, die charakterisiert werden durch definierte Werte
der Quantenzahlen J, L, S (d. h., wir setzen fiir sie den Fall der LS-Kopplung
voraus, siehe § 51).

Wir nehmen das Magnetfeld so schwach an, daB pg|H| klein ist im Vergleich
zu den Abstinden der Energieniveaus des Atoms und speziell damit im Ver-
gleich zu den Absténden der Niveaufeinstruktur. Dann kann man das zweite
und das dritte Glied in (55,3) als Storung ansehen, wobei die einzelnen Multi-
plettkomponenten die ungestérten Niveaus darstellen. In erster Néherung
kann man das in der Feldstirke quadratische dritte Glied im Vergleich zu dem
linearen zweiten Glied vernachldssigen.

In der ersten Naherung der Storungstheorie wird die Aufspaltungserergie AE
durch die Mittelwerte der Stérung beziiglich der (ungestérten) Zustdnde be-
stimmt, die sich in den Werten der Drehimpulsprojektion in Feldrichtung
unterscheiden. Wéhlen wir diese Richtung parallel zur z-Achse, so haben wir

AE = pplH| (L: + 2 8,) = pslH| (J. + 85 . (55,4)

Der Mittelwert J, fillt einfach mit dem gegebenen Eigenwert J, = M, zu-

sammen. Den Mittelwert S, kann man mit Hilfe einer , etappenweisen‘‘ Mitte-
lung (vergleiche § 51) auf folgende Weise finden.
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Wir mitteln zundchst den Operator S iiber einen Atomzustand mit gegebenen
Werten S, L und J, jedoch nicht festgelegtem M ;. Der auf diese Weise ge-

mittelte Operator .§ kann nur entlang j »gerichtet'* sein, dem einzigen ,,Vek-
tor‘, der das freie Atom charakterisiert und erhalten bleibt. Deshalb kann
man schreiben

S = const - J .

In einer solchen Form ist jedoch diese Gleichung nur bedingt sinnvoll, da die
drei Komponenten des VektorsdJ nicht gleichzeitig definierte Werte annehmen
kénnen. Unmittelbaren Sinn haben ihre z-Projektion

S, = const - J, = const - M,
und die Beziehung
SJ = const -J2 = const - J (J + 1),

die man durch Multiplikation beider Gleichungsseiten mit J erhalt. Wir be-
ziehen den Vektord, der erhalten bleibt, in die Mittelung ein und schreiben

SJ = SJ. Der Mittelwert SJ stimmt jedoch mit seinem Eigenwert
1 g
SI=5WW@+D)—LEL+D+8E+1)

fiir Zustinde mit definierten Werten L2, §2,J2 iiberein (gemiiB Formel (17,3),
in der man fiir den gegebenen Fall unter L,, L,, L die entsprechenden Gréen
S, L, J verstehen muB). Indem wir const aus der zweiten Beziehung bestimmen
und in die erste einsetzen, finden wir

JS
8 =M; 5. (55,5)

Sammeln wir die erhaltenen Ausdriicke auf, und setzen wir sie in (55,4)
ein, so finden wir den folgenden Endausdruck fiir die Aufspaltungsenergie

AE = up g M ;|H| , (55,6)
worin
JWIJ+1) —LL+1)+ 88 +1)

g=1+— 2T+ 1) (65,7)

der sogenannte LANDE-Faktor oder gyromagnetische Koeffizient ist. Wir be-
merken, dal g = 1 ist, wenn der Spin fehlt (S = 0, so daf J = L gilt), und
g =2, wenn L =0 gilt (so dafl J = 8§ ist).

Die Formel (55,6) liefert verschiedene Energiewerte fiir alle 2 J + 1 Werte
M;=J,J—1,...,—J. Mit anderen Worten hebt ein Magnetfeld die
Niveauentartung beziiglich der Drehimpulsrichtungen vollstindig auf im
Gegensatz zu einem elektrischen Feld, das Niveaus mit M; = 4 | M| nicht

12+
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aufspaltet.!) Wir bemerken jedoch, daBl die durch Formel (55,6) bestimmte
lineare Aufspaltung fehlt, wenn g = 0 ist (dies ist im Falle J 5= 0 z. B. fiir den
Zustand 4D, méglich).

Im vorigen Paragraphen sahen wir, dafl ein Zusammenhang zwischen der
Energieniveauverschiebung eines Atoms im elektrischen Feld und seinem mitt-
leren elektrischen Dipolmoment besteht. Ein analoger Zusammenhang existiert
auch im magnetischen Fall. Die potentielle Energie eines Systems von La-
dungen im homogenen Magnetfeld ergibt sich in der klassischen Theorie durch
den Ausdruck —p H mit g als dem magnetischen Moment des Systems. In
der Quantentheorie wird diese Beziehung durch den entsprechenden Operator
ersetzt, so dafl der HamMiLToN-Operator des Systems

H=H,— iH=H,—p,|H|
lautet. Wenden wir hier Formel (54,8) an (mit dem Feld | H| als Parameter ),
so finden wir, daBl das mittlere magnetische Moment

. 0AE
U = — al—H‘l (55,8)

ist mit AE als mittlerer Energieniveauverschiebung eines gegebenen Atom-
zustandes. Wir setzen hierin (55,6) ein und sehen, dal ein Atom in einem
Zustand mit definiertem Wert M fiir die Projektion des Gesamtdrehimpulses
beziiglich einer gewissen z-Richtung ein mittleres magnetisches Moment in
genau dieser Richtung besitzt:

O (85,9)

Wenn das Atom weder einen Spin noch einen Bahndrehimpulshat (S = L =0),
dann liefert das zweite Glied in (55,3) weder in erster noch in hoherer stérungs-
theoretischer Naherung eine Niveauverschiebung (da alle Matrixelemente von
L und S verschwinden). Deshalb hidngt in diesem Fall der gesamte Effekt
mit dem dritten Glied in (55,3) zusammen, und in der ersten storungstheore-
tischen Néherung ist die Niveauverschiebung gleich dem Mittelwert

AE — %cz STHvE. (55,10)

Wir wollen iiber die Richtungen von 7, mitteln und schreiben zu diesem Zweck
[H 7,2 = H?r] sin% § (mit § als Winkel zwischen H und 7,). Fir L=8 =0
ist der Atomzustand kugelsymmetrisch. Deshalb wird die Richtungsmittelung
unabhéngig von der Mittelung iiber die Entfernungen r, ausgefiihrt, wobei sie

1) Die in diesem Zusammenhang beziiglich des elektrischen Falles im vorigen Para-
graphen angestellten Uberlegungen sind fiir das Magnetfeld gegenstandslos. Die Ursache
dafirr liegt darin, daB die Zeitumkehr durch die Substitution I — — H begleitet sein mufl
(sieche I §44). Deshalb beziehen sich im Grunde genommen Zustéinde, die im Resultat
dieser Transformation auseinander hervorgehen, auf Atome in verschiedenen Feldern und
nicht auf Atome in ein und demselben Feld.
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sin? 6, = 1 — cos? 0, = 2/3 liefert. Auf diese Weise finden wir
et -
AE = WH2§72 . (55,11)

Das nach Formel (55,8) berechnete magnetische Moment eines Atoms ist
proportional zur Feldstdrke (in Abwesenheit des Feldes besitzt ein Atom mit
L = § = 0 natiirlich kein magnetisches Moment). Schreiben wir es in der
Gestalt y|H|, so kénnen wir den Koeffizienten y als magnetische Suszeptibili-
tdt des Atoms ansehen. Fiir sie erhalten wir die folgende LANGEVIN-Formel:

e —
L= —gmaTa (65,12)

Diese Grofle ist negativ, d. h., das Atom ist diamagnetisch.






Das zweiatomige Molekiil VIII

§ 56. Die Elektronenterme des zweiatomigen Molekiils

In der Theorie der Molekiile spielt die Tatsache, dafl die Massen der Atom-
kerne im Vergleich zu der Elektronenmasse sehr gro8 sind, eine grundlegende
Rolle. Dank dieses Massenunterschiedes ist die Geschwindigkeit der Kerne im
Molekiil im Vergleich zu den Elektronengeschwindigkeiten sehr klein. Das gibt
die Moglichkeit, die Elektronenbewegung bei festen Kernen in gegebenen Ab-
stinden voneinander zu betrachten. Wir werden bei der Bestimmung des
Energieniveaus U, eines solchen Systems die sogenannten Elekironenterme des
Molekiils finden. Im Gegensatz zu den Atomen, wo die Energieniveaus durch
bestimmte Zahlen gegeben wurden, sind hier die Elektronenterme keine Zahlen,
sondern Funktionen von Parametern — den Kernabstdnden im Molekiil. In
der Energie U, ist auch die elektrostatische Wechselwirkungsenergie der Kerne
untereinander enthalten, so daBl U, die Gesamtenergie des Molekiils bei ge-
gebener Lage der unbeweglichen Kerne darstellt.

Wir werden das Studium der Molekiile mit dem einfachsten Typ des zwet-
atomigen Molekiils, das eine vollstindige theoretische Untersuchung zuldfBt,
beginnen. Die Elektronenterme eines zweiatomigen Molekiils sind Funktionen
von insgesamt einem Parameter, des Abstandes r der Kerne.

Eines der Hauptprinzipien der Klassifikation der Atomterme war die Ein-
teilung nach den Werten des Gesamtbahndrehimpulses L. Bei den Molekiilen
gilt aber das Gesetz der Erhaltung des Gesamtbahndrehimpulses der Elek-
tronen nicht mehr allgemein, da das resultierende elektrische Feld einiger
Kerne keine Kugelsymmetrie mehr besitzt.

In zweiatomigen Molekiilen besitzt das Feld jedoch Axialsymmetrie beziiglich
der Achse, die durch beide Kerne geht. Deshalb bleibt hier die Projektion des
Bahndrehimpulses auf diese Achse erhalten, und wir konnen die Elektronen-
terme des Molekiils nach der GroBe dieser Projektion einteilen. Der Betrag
der Projektion des Bahndrehimpulses auf die Molekiilachse wird mit dem Buch-
staben A bezeichnet; er durchliuft die Werte 0,1,2,... . Die Terme mit
verschiedenen Werten 4 kennzeichnet man mit groBen griechischen Buch-
staben, die den lateinischen Symbolen der Atomterme mit verschiedenen L
entsprechen. So spricht man bei A = 0, 1, 2 von X-, [1-, A-Termen.

Jeder Elektronenzustand des Molekiils wird weiterhin charakterisiert durch
den Gesamtspin § aller Elektronen im Molekiil. Bei Vernachldssigung aller
relativistischen Wechselwirkungen (d. h. der Feinstruktur des Terms, vergleiche
§ 51) ist ein Term mit dem Spin S beziiglich der Spinrichtung (2.8 4 1)-fach
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entartet. Die Zahl 2.8 4+ 1 heiflt hier wie bei den Atomen Multvplizitit des
Terms und wird als Index an das Termsymbol geschrieben; so kennzeichnet
3] den Term mit A =1, S = 1.

AuBer den Rotationen um die Achse mit einem willkiirlichen Winkel erlaubt
die Symmetrie des Molekiils auch eine Spiegelung an einer beliebigen Ebene,
die durch diese Achse geht. Wenn man solch eine Spiegelung ausfiihrt, bleibt
natiirlich die Energie des Molekiils unverdndert. Der dadurch erreichte Zu-
stand wird aber mit dem Ausgangszustand nicht identisch sein; denn bei einer
Spiegelung an einer Ebene, in der die Molekiilachse liegt, wird das Vorzeichen
des Drehmomentes beziiglich dieser Achse geéndert.!) So erhalten wir das
Resultat, daB alle Elektronenterme mit nichtverschwindendem A zweifach ent-
artet sind — jedem Energiewert entsprechen zwei Zusténde, die sich durch die
Richtung der Projektion des Bahndrehimpulses auf die Molekiilachse unter-
scheiden. Was den Fall 4 = 0 betrifft, so wird bei Spiegelungen der Zustand
des Molekiils im allgemeinen nicht gedndert, so dal die X-Terme nicht ent-
artet sind. Die Wellenfunktion des 2-Terms kann bei Spiegelungen nur mit
einer Konstanten multipliziert werden. Da die doppelte Spiegelung an der
gleichen Ebene die identische Transformation ist, ist diese Konstante gleich
+1. So muB man die 2-Terme, deren Wellenfunktion sich bei Spiegelungen
nicht dndert, und die Terme, deren Wellenfunktion das Vorzeichen wechselt,
unterscheiden. Die ersten bezeichnet man als 2* und die zweiten als 2.

Wenn das Molekiil aus zwei gleichen Atomen besteht, dann tritt eine neue
Symmetrie auf und mit ihr auch eine zusétzliche Charakteristik der Elektronen-
terme. Das zweiatomige Molekiil mit gleichen Kernen besitzt ndmlich noch
eine Zentralsymmetrie beziiglich des Punktes, der die Verbindungslinie der
beiden Kerne halbiert. (Diesen Punkt wihlen wir als Koordinatenursprung.)
Deshalb ist der HaMiLToN-Operator invariant gegeniiber der gleichzeitigen An-
derung der Vorzeichen aller Elektronenkoordinaten im Molekiil (bei ungeén-
derten Kernkoordinaten). Da der Operator dieser Transformation auch mit
dem Operator des Bahndrehimpulses kommutiert, erhalten wir die Moglich-
keit, die Terme mit bestimmten Werten 4 auch noch nach ihrer Paritit einzu-
teilen : die Wellenfunktion des geraden (g) Zustandes dndert sich bei Umkehrung
des Vorzeichens aller Elektronenkoordinaten nicht, bei den wungeraden (u)
andert sich das Vorzeichen. Die Indizes u, ¢, die die Paritdt anzeigen, schreibt
man gewdhnlich unten an das Termsymbol: II,, II, usw.

Schlieflich gehen wir eine empirische Regel an, nach der bei der Mehrheit
der chemisch stabilen zweiatomigen Molekiile der normale Elektronenzustand
volle Symmetrie besitzt — die Elektronenwellenfunktion ist invariant gegen-
iiber allen Symmetrietransformationen des Molekiils. Wie in § 58 gezeigt wer-
den wird, ist in der Mehrzahl der Fille im Normalzustand sogar der Gesamt-

1) Dazu betrachten wir eine Spiegelung beziiglich der xz-Ebene, wobei die Molekiil-
achse die z-Achse sein soll. Eine solche Transformation éndert nur die Vorzeichen der
y-Komponenten der Vektoren » und p; die GroBe [+ p], = = p, — y p, dndert deshalb
ihr Vorzeichen.
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spin § gleich Null. Mit anderen Worten, der Grundterm des Molekiils ist 1.2,
und wenn das Molekiil aus gleichartigen Atomen besteht, so ist er 1Zf. Be-
kannte Ausnahmen dieser Regeln sind das Molekiil O, (Normalzustand 327")
und das Molekiill NO (Normalzustand 2I7).

§ 7. Das Uberschneiden der Elektronenterme

Die Elektronenterme des zweiatomigen Molekiils sind Funktionen eines Para-
meters — des Abstandes r zwischen den Kernen. Man kann sie graphisch dar-
stellen, wenn man die Energie als Funktion von r auftragt. Besonders interes-
sant ist die Frage, ob sich die Kurven, die die verschiedenen Terme darstellen,
iiberschneiden.

Es seien U,(r) und U,(r) zwei verschiedene Elektronenterme. Wenn sie sich
in irgendeinem Punkt durchkreuzen, dann haben die Funktionen U,(r) und U,(r)
in der Néhe dieses Punktes fast gleiche Werte. Um zu entscheiden, ob solch
ein Durchschneiden auftreten kann, stellt man die Aufgabe auf folgende Weise.

Wir betrachten den Punkt rj,, in dem die beiden Funktionen U,(r), U,(r)
beinahe gleiche Werte haben (wir bezeichnen sie mit E, und E,), und wollen
sehen, ob wir U, und U, gleichmachen kénnen oder nicht, wenn wir den Punkt
um die kleine GroBe ér verschieben. Die Energien E, und E, sind Eigenwerte
des HamILTON-Operators ﬁo des Systems der Elektronen im Feld der Kerne,
die sich im Abstand 7, voneinander befinden. Wenn man dem Abstand r, den
aH,
“or
eine kleine Korrektur ist; die Werte der Funktionen U,, U, im Punkt ry + dr
kann man als Eigenwerte des neuen HaMILTON-Operators betrachten. Diese
Betrachtungsweise erlaubt, die Werte der Terme U,(r) und U,(r) im Punkte
7o + Or mittels der Stérungstheorie zu bestimmen, wobei V als Storung zum

Operator H o betrachtet wird.

Die gewohnliche Methode der Storungstheorie ist hier aber nicht zu ge-
brauchen, da die Energieeigenwerte E; und E, des ungestorten Problems sehr
nahe beieinander liegen und ihre Differenz im allgemeinen klein im Vergleich
zur GroBe der Storung ist (Bedingung (32,9) ist nicht erfiillt). Da wir im Grenz-
fall verschwindender Differenz E, — E, zum Fall entarteter Eigenwerte kom-
men, ist es natiirlich zu versuchen, auf den Fall eng benachbarter Eigenwerte
eine Methode, die der im § 33 entwickelten analog ist, anzuwenden.

Es seien y; und y, die Eigenfunktionen des ungestérten Operators H,, die
entsprechenden Energien seien E; und E,. Als nullte Naherung nehmen wir
statt 9, und y, ihre Linearkombinationen

Y=+ Y- (57,1)
Setzt man diesen Ausdruck in die gestorte Gleichung ein,
~ ~ L]
Ho+Vy=Evyp, (87,2)

Zuwachs ¢r gibt, geht der HAMiLTON-Operator iiber in IAIO + ﬁ, wobei ¥ = or -
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so erhalten wir

Acl(E1+ V—E)py,+c(By+V —E)y,=0.
Multipliziert man diese Gleichung der Reihe nach mit »§ und ¥ und integriert,
so erhdlt man zwei algebraische Gleichungen

¢ (By+Vy —E)+c; V=0,
e Va+tc(By+ Ve —E)=0,

wobei Vi = [ ¥ f’"wk dg ist. Wegen der Hermitezitit des Operators V sind
die GréBen V,; und V, reell und Vy, = VX, Die Losbarkeitsbedingung dieser
Gleichungen lautet

E,+Vy—EFE Vis sl
Va Ey+ Vo, — B ’
woraus durch Auflésung
1
E =?(E1 + Ey+ Vi + Vi)
1
E= VZ (By— By + Vi — Vao)* + |V 1al? (57,3)

folgt. Durch diese Formel sind die gesuchten Energieeigenwerte in der ersten
Néherung bestimmt.

Wenn die Energiewerte beider Terme im Punkt ry, + dr gleich sind (die
Terme iiberschneiden sich), so bedeutet das, dafl beide Werte E, die durch die
Formel (57,3) bestimmt sind, iibereinstimmen. Dazu ist notwendig, dafl der
Ausdruck unter der Wurzel in (57,3) verschwindet. Da er eine Summe zweier
Quadrate ist, erhalten wir als Existenzbedingung fiir das Uberschneiden der
Terme die Gleichungen

Ei,—E,+Vy—V,,,=0, Vie=0. (57,4)

In ihnen ist nur ein willkiirlicher Parameter enthalten, der die Stérung ¥ be-
stimmt — die Verschiebungsgréfe dr. Deshalb konnen die beiden (wir setzen
voraus, dal die Funktionen ,, 9, reell gewdhlt sind; dann ist V;, auch reell)
Gleichungen (57,4) im allgemeinen nicht gleichzeitig erfiillt werden.

Es kann aber geschehen, dal das Matrixelement ¥V, identisch Null ist; dann
bleibt nur eine Gleichung (57,4) iibrig, die man durch entsprechende Wahl
von Or befriedigen kann. Das geschieht in allen Fillen, wenn die zwei be-
trachteten Terme verschiedene Symmetrie besitzen. Unter Symmetrie ver-
stehen wir hier alle moglichen Symmetriearten — Drehungen um die Achse,
Spiegelungen an Ebenen, Inversionen, aber auch Elektronenvertauschungen.
Beim zweiatomigen Molekiil betrifft das Terme mit verschiedenen A, verschie-
dener Paritdt oder Multiplizitdt und bei 2-Termen auch 2+ und 2-.

Zum Beyeis dieser Behauptung ist es wichtig, dal der Operator ¥V (wie auch
der ganze HamiLTON-Operator) mit allen Symmetrieoperatoren des Molekiils
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kommutiert — mit dem Operator des Drehimpulses beziiglich der Achse, den
Operatoren der Spiegelungen und Inversionen, den Vertauschungsoperatoren
der Elektronen. In §§ 18 und 19 wurde gezeigt, daf fiir eine skalare Grofe,
deren Operator mit den Drehimpuls- und Inversionsoperatoren kommutiert,
nur die Matrixelemente fiir Uberginge zwischen Zustinden mit gleichem Dreh-
impuls und gleicher Paritdt von Null verschieden sind. Dieser Beweis bleibt
im wesentlichen auch fiir den allgemeinen Fall eines beliebigen Symmetrie-
operators erhalten.

Auf diese Weise kommen wir zu dem Resultat, daf} sich beim zweiatomigen
Molekiil nur Terme verschiedener Symmetrie durchkreuzen kénnen, das Uber-
schneiden von Termen mit gleicher Symmetrie ist unmdéglich (E. WiGNER und
J. v. NEUMANN, 1929). Wenn wir im Resultat irgendeiner Naherungsrechnung
zwei sich iiberschneidende Terme gleicher Symmetrie erhalten wiirden, dann
wiirden sie sich bei der Berechnung der folgenden Naherung als auseinander-
geriickt erweisen, wie das in Abb. 12 durch die ausgezogenen Linien dar-
gestellt ist.

Utr)

—

r

Abb. 12

§568. Die Valenz

Die Eigenschaften der Atome, die sich zu einem Molekiil vereinigen, werden
mit Hilfe des Begriffs der Valenz (Wertigkeit) beschrieben. Jedem Atom wird
eine bestimmte Valenz zugeschrieben, und bei der Vereinigung der Atome
miissen'sich ihre Valenzen gegenseitigabséattigen, d. h., jeder Valenzbindung eines
Atoms mulB die Valenzbindung eines anderen Atoms entsprechen. Zum Bei-
spiel sind in dem Molekiil CH, die vier Valenzen des Kohlenstoffatoms durch
die Valenzen der vier einwertigen Wasserstoffatome abgesittigt. Wir gehen zur
physikalischen Deutung der Wertigkeit iiber und beginnen mit dem einfachsten
Beispiel — der Verbindung zweier Wasserstoffatome zum Molekiil H,.

Wir betrachten zwei Wasserstoffatome, die sich im Grundzustand (28) be-
finden. Bei ihrer Anndherung kann man ein System erhalten, das sich in den
Molekiilzustinden *X; oder 32} befindet. Der Singuletterm entspricht dem
antisymmetrischen Spinanteil der Wellenfunktion und der Tripletterm der
symmetrischen Funktion. Der Koordinatenanteil der Wellenfunktion ist um-
gekehrt beim !2-Term symmetrisch und beim 32 antisymmetrisch. Es ist
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klar, daB der Grundterm des Molekiils H, nur der Term !X sein kann. Die
antisymmetrische Wellenfunktion ¢(ry, r,) (r,,r, sind die Radiusvektoren
beider Elektronen) besitzt wirklich in jedem Fall Knoten (sie verschwindet
bei 1, = 71,), und deshalb kann sie nicht zum niedrigsten Zustand des Systems
gehdren.

Die numerische Rechnung zeigt, daf der Elektronenterm 2’ wirklich ein tiefes
Minimum annimmt, das der Bildung eines stabilen Molekiils H, entspricht. Im
Zustand 32X fillt die Energie U(r) monoton mit wachsendem Abstand der
Kerne, was der gegenseitigen AbstoBung der beiden H-Atome entspricht
(Abb. 13).1)

Ulr) [

Abb. 13

So ist der Gesamtspin des Wasserstoffmolekiils im Grundzustand gleich
Null, § = 0. Es zeigt sich, dal die Molekiile praktisch aller chemisch stabilen
Verbindungen der Elemente der Hauptgruppen diese Eigenschaft besitzen.
Unter den anorganischen Molekiilen stellen die zweiatomigen Molekile O,
(Grundzustand 3%) und NO (Grundzustand 2/7) und die dreiatomigen Molekiile
NO,, ClO, Ausnahmen dar (Gesamtspin S = 1/2). Die Elemente der Uber-
gangsgruppen besitzen besondere Eigenschaften, iiber die spéter diskutiert wird,
nachdem wir die Valenzeigenschaften der Elemente der Hauptgruppen studiert
haben.

Die Féhigkeit der Atome, sich miteinander zu verbinden, ist auf diese Weise
mit ihren Spins verkniipft (W. HEITLER und F. Lonpon, 1927). Die Verbin-
dung geschieht so, daBl sich die Spins der Atome kompensieren. Als qualita-
tiven Ausdruck der Fihigkeit der Atome sich zu verbinden, benutzt man
ganze Zahlen — die doppelten Spins der Atome. Diese Zahl féllt mit der che-

1) Wir sehen hier von den van DER WaaLsschen Anziehungskriiften zwischen den Atomen
ab (siche § 61). Die Existenz dieser Krifte bedeutet, daB (bei groBeren Absténden) die
Kurve U(r) des Terms3X auch ein Minimum besitzt. Dieses Minimum ist jedoch im
Vergleich zu dem Minimum der 1.X-Kurve sehr flach und wiére entsprechend dem in Abb. 13
verwendeten MaBstab iiberhaupt nicht zu bemerken.
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mischen Wertigkeit (Valenz) der Atome zusammen. Dabei muBl man aber
beachten, dal ein und dasselbe Atom verschiedene Wertigkeiten besitzen kann
in Abhédngigkeit davon, in welchem Zustand es sich befindet.

Wir betrachten von diesem Gesichtspunkt aus die Elemente der Haupt-
gruppen des Periodensystems. Die Elemente der ersten Gruppe (erste Spalte
in Tabelle 1 auf Seite 156, die Gruppe der Alkalimetalle) besitzen im Normal-
zustand den Spin 8 = 1/2, und demgemdB ist ihre Wertigkeit gleich Eins.
Den angeregten Zustand mit gréBerem Spin kann man nur durch Anregung
eines Elektrons aus einer vollen Schale erhalten. Deshalb sind diese Zustédnde
so hoch, dafl das angeregte Atom kein stabiles Molekiil bilden kann.

Die Atome der Elemente der zweiten Gruppe (zweite Spalte in Tabelle 1,
die Gruppe der Erdalkalimetalle) besitzen im Normalzustand den Spin § = 0.
Deshalb koénnen diese Atome im Normalzustand keine chemische Verbindung
eingehen. Aber verhiltnismdfBig nahe zum Grundzustand liegt der angeregte
Zustand, der in der Valenzschale die Konfiguration s p statt s2 und den Ge-
samtspin 8§ = 1 besitzt. Die Wertigkeit der Atome in diesem Zustand ist
gleich 2; das ist auch die Hauptwertigkeit der Elemente der zweiten Gruppe.

Die Elemente der dritten Gruppe besitzen im Normalzustand die Elektronen-
konfiguration s2 p mit dem Spin 1/2. Aber durch Anregung eines Elektrons aus
der gefiillten s-Schale erhélt man einen angeregten Zustand mit der Konfigu-
ration s p? und dem Spin = 3/2, der dem Grundzustand eng benachbart ist.
Dementsprechend verhalten sich die Elemente dieser Gruppe sowohl ein- als
auch dreiwertig. Dabei verhalten sich die ersten Elemente dieser Gruppe
(B, Al) nur dreiwertig. Die Nejgung zur Wertigkeit 1 wiachst mit dem Ansteigen
der Atomgewichte, und Tl verhilt sich im gleichen Mafle wie ein ein- und drei-
wertiges Element (z. B. in den Verbindungen TICI und TICl;). Das hangt damit
zusammen, dal bei den ersten Elementen der Gruppe der energetische Vorteil
grofler Bindungsenergie in den Verbindungen des dreiwertigen Elements (im
Vergleich zu den Verbindungen des einwertigen Elementes) die Anregungs-
energie des Atoms iibersteigt.

Bei den Elementen der vierten Gruppe hat der Grundzustand die Konfigu-
ration s2 p2 mit dem Spin 1, aber dicht bei ihm liegt der angeregte Zustand mit
der Konfiguration s p® und dem Spin 2. Diesen Zustdnden entsprechen die
Wertigkeiten 2 und 4. Wie bei der dritten Gruppe zeigen die ersten Elemente
der vierten Gruppe (C, Si) im allgemeinen die héhere Wertigkeit (eine Aus-
nahme zeigt sich z. B. in der Verbindung CO), aber die Neigung zu niedriger
Valenz wichst mit steigendem Atomgewicht.

Bei den Elementen der fiinften Gruppe besitzt der Grundzustand die Kon-
figuration s% p* mit dem Spin 3/2, so daf die entsprechende Wertigkeit 3 ist.
Den angeregten Zustand mit gréBerem Spin erhilt man nur durch den Uber-
gang eines der Elektronen in die Schale mit dem folgenden Wert der Haaupt-
quantenzahl. Der am engsten benachbarte Zustand hat die Konfiguration
sp3s und den Spin S = 5/2 (durch s’ kennzeichnen wir hier den s-Zustand
des Elektrons mit einer Hauptquantenzahl, die um Eins gréBer als im Zustand s
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ist). Obgleich die Anregungsenergie dieses Zustandes verhdltnismaflig grof3
ist, kann das angeregte Atom eine stabile Verbindung bilden. Demgemaf
verhalten sich die Elemente der fiinften Gruppe drei- und fiinfwertig (so ist
der Stickstoff in NH; dreiwertig und in HNO, fiinfwertig).

In der sechsten Gruppe der Elemente ist der Spin im Grundzustand (Kon-
figuration s2 p?) gleich 1, so dafl das Atom zweiwertig ist. Die Anregung eines
der p-Elektronen fiithrt zum Zustand s? p® s’ mit dem Spin 2, und die zusétz-
liche Anregung eines s-Elektrons fithrt zum Zustand s p® s’ p’ mit dem Spin 3.
In beiden angeregten Zustdnden kann das Atom stabile Molekiile bilden mit
den entsprechenden Wertigkeiten 4 und 6. Dabei zeigt das erste Element der
~ sechsten Gruppe (Sauerstoff) nur die Wertigkeit 2, aber die folgenden Ele-
mente der Gruppe zeigen auch héhere Wertigkeiten (so ist Schwefel in H,S,
S0,, SO, zwei-, vier- bzw. sechswertig). D

In der siebenten Gruppe (Gruppe der Halogene) sind die Atome im Grund-
zustand (Konfiguration s2 p% Spin 1/2) einwertig. Sie kénnen jedoch auch in
angeregten Zustinden mit den Konfigurationen s2 pts’, s% p® s’ p’, s p3s' p’2
und den entsprechenden Spins 3/2, 5/2, 7/2 an stabilen Verbindungen teil-
nehmen, die Wertigkeit ist dann 3, 5, 7. Das erste Element der Gruppe (F)
ist dabei immer einwertig, aber die folgenden Elemente zeigen auch hdhere
Wertigkeiten (so ist Chlor in HCl, HCIO,, HCIO;, HCIO, ein-, drei-, fiinf- bzw.
siebenwertig). Schlieflich besitzen die Atome der Gruppe der Edelgase im
Grundzustand vollstdndig besetzte Schalen (so daf der Spin § = 0 ist), und
ihre Anregungsenergie ist grof. Demgemdl ist die Valenz Null, und diese
Elemente sind chemisch inaktiv.

Bei der Vereinigung der Atome zum Molekiil verdndern sich die vollen Elek-
tronenschalen der Atome wenig. Die Verteilung der Elektronendichte in den
nicht vollbesetzten Schalen kann sich wesentlich dndern. In den am deut-
lichsten ausgeprigten Fillen, der sogenannten heteropolaren Bindung, gehen
alle Valenzelektronen von einem Atom zum anderen iiber, so da man sagen
kann, daB das Molekiil aus Ionen mit einer Ladung, die gleich ihrer Wertigkeit
(in Einheiten von e) ist, besteht. Die Elemente der ersten Gruppe sind elektro-
positiv — in heteropolaren Verbindungen geben sie ein Elektron ab und bilden
positive Tonen. Beim Ubergang zu den folgenden Gruppen fillt die Elektro-
positivitdt schrittweise ab und geht zur Elektronegativitdt iiber, die bei den
Elementen der siebenten Gruppe am deutlichsten ist. Zu der heteropolaren
Bindung muBl man jedoch folgende Bemerkung machen.

Wenn das Molekiil heteropolar ist, so braucht das nicht zu bedeuten, dal
wir bei der Trennung der Atome unbedingt zwei Ionen erhalten. Aus dem
Molekiil KCl wiirden wir wirklich die Jonen K* und Cl- erhalten, aber das
Molekiil NaCl gibt im Grenzfall die neutralen Atome Na und Cl (da die Affi-
nitédg des Chlors zum Elektron stéirker als das Ionisationspotential des Kaliums,
aber schwicher als das Ionisationspotential des Natriums ist).

Im entgegengesetzten Grenzfall, der sogenannten homdopolaren Bindung,
bleiben die Atome im Molekiil im Mittel neutral. Die homéopolaren Molekiile

-
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besitzen im Gegensatz zu den heteropolaren kein merkliches Dipolmoment.
Der Unterschied zwischen den hetero- und homdopolaren Bindungstypen ist
rein quantitativ, und es konnen alle Ubergangsfille auftreten.

Wir gehen nun zu den Elementen der Nebengruppen iiber. Die Elemente
der Gruppen des Palladiums und Platins unterscheiden sich nach dem Cha-
rakter ihrer Valenzeigenschaften wenig von den Elementen der Hauptgruppen.
Der Unterschied besteht darin, daB sie wegen der verhdltnismédBig tiefen Lage
der d-Elektronen im Atom mit den anderen Atomen im Molekiil schwacher
wechselwirken. Dadurch trifft man unter den Verbindungen dieser Elemente
relativ oft ,,ungesittigte’* Verbindungen mit Molekiilen, die einen von Null
verschiedenen Spin haben (der praktisch 1/2 nicht iibersteigt). Jedes dieser
Elemente kann verschiedene Wertigkeiten zeigen, wobei diese sich nur um
eine Einheit unterscheiden kénnen, aber nicht um zwei, wie bei den Elementen
der Hauptgruppen (wo die Anderung der Wertigkeit mit der Anregung eines
beliebigen Elektrons mit kompensiertem Spin zusammenhing, dadurch wurden
gleichzeitig die Spins eines Elektronenpaares frei).

Die Elemente der Gruppe der Seltenen Erden werden charakterisiert durch
nicht vollstdndig besetzte f-Schalen. Die f-Elektronen liegen weitaus tiefer
als die d-Elektronen und sind deshalb nicht an der Valenz beteiligt. So ist die
Wertigkeit der Elemente der Seltenen Erden nur durch die s- und p-Elektronen
der unvollstdndig besetzten Schalen bestimmt.!) Man mufl aber bedenken,
daBl bei der Anregung des Atoms die f-Elektronen in s- oder p-Zustédnde iiber-
gehen konnen und so die Wertigkeit um Eins vergrofiern kénnen. Deshalb
zeigen auch die Elemente der Seltenen Erden um Eins verschiedene Wertig-
keiten (praktisch sind sie drei- und vierwertig).

Die Elemente der Eisengruppe nehmen nach ihren Valenzeigenschaften eine
Zwischenstellung zwischen den Elementen der Seltenen Erden und denen der
Palladium- und Platingruppe ein. In ihren Atomen liegen die d-Elektronen
verhdltnismédBig tief und nehmen in einer ganzen Reihe von Verbindungen
nicht an der Valenzbindung teil. In diesen Verbindungen verhalten sich folg-
lich die Elemente der Eisengruppe dhnlich wie die der Seltenen Erden. Hierzu
gehoren die Verbindungen des Ionentyps (z. B. FeCl,, FeCl;), in die das Metall-
atom als einfaches Kation eingeht. Ahnlich den Elementen der Seltenen Erden
kénnen die Elemente der Eisengruppe in diesen Verbindungen verschiedene
Wertigkeiten haben.

Ein anderer Verbindungstyp der Elemente der Eisengruppe sind die soge-
nannten Komplex-Verbindungen. Sie werden dadurch charakterisiert, dal das
Atom des Nebengruppenelementes in das Molekiil nicht als einfaches Ion ein-
geht, sondern einen Teil eines komplizierten, komplexen Ions bildet (z. B. das
Ion MnO; in KMnO,, das Ion Fe(CN);~~~~ in K ,Fe(CN;)). In diesen Kom-
plexionen sind die Atome enger aneinander gelagert als in einfachen Ionen-

1) Die d-Elektronen, die sich in den nicht vollbesetzten Schalen der Atome einiger
Seltener Erden befinden, sind unwesentlich, da diese Atome praktisch immer in solchen
angeregten Zustinden Verbindungen eingehen, in denen es keine d-Elektronen gibt.
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verbindungen, und die d-Elektronen in ihnen nehmen an der Valenzbindung
teil. Demnach verhalten sich die Elemente der Eisengruppe in den Komplex-
verbindungen wie die Elemente der Palladium- und Platingruppe.

Schlieflich mufl noch darauf hingewiesen werden, dal sich die Elemente
Cu, Ag und Au, die von uns in § 52 zu den Hauptgruppen gezahlt wurden, in
einer Reihe von Verbindungen wie Nebengruppenelemente verhalten. Diese
Elemente konnen wegen des Ubergangs von Elektronen aus der d-Schale in
die energetisch benachbarte p-Schale, z. B. bei Cu aus 3 d in 4 p, eine Wertig-
keit grofer als Eins aufweisen. In diesen Verbindungen haben die Atome eine
nicht vollbesetzte d-Schale und verhalten sich deshalb wie Nebengruppen-
elemente (Cu wie ein Element der Eisengruppe und Ag und Au wie Elemente
der Pd- und Pt-Gruppe).

§ 59. Die Schwingungs- und die Rotationsstruktur der Terme
eines zweiatomigen Molekiils ~

Wie schon am Anfang dieses Kapitels bemerkt wurde, gibt der grofe Massen-
unterschied zwischen Kern und Elektron die Moglichkeit, die Bestimmung der
Energieniveaus eines Molekiils in zwei Etappen durchzufiihren. Zuerst werden
die Energieniveaus des Elektronensystems bei unbeweglichen Kernen als Funk-
tionen der Abstdnde zwischen den letzteren bestimmt (Elektronenterme). Da- -
nach kann man die Bewegung der Kerne bei gegebenen Elektronenzustinden
betrachten; das fithrt dazu, daB die Kerne als Teilchen betrachtet werden
miissen, die miteinander nach dem Gesetz U,(r) wechselwirken, wobei U, der
entsprechende Elektronenterm ist. Die Bewegung des Molekiils setzt sich zu-
sammen aus seiner Translation als Ganzes und der Bewegung der Kerne relativ
zum Schwerpunkt. Die Translation ist nicht wesentlich, und wir kénnen den
Schwerpunkt als fest annehmen. '

Der Bequemlichkeit halber betrachten wir zuerst die Elektronenterme, in
denen der Gesamtspin 8 des Molekiils verschwindet (Singuletterme). Schon
dieser einfachste Fall erfafit alle grundlegenden qualitativen Ziige der Energie-
niveausstruktur zweiatomiger Molekiile.

Das Problem der Relativbewegung zweier Teilchen (Kerne), die iiber das
Potential U(r) in Wechselwirkung stehen, fiihrt, wie wir wissen, zur Bestim-
mung der Bewegung eines Teilchens mit der Masse M (reduzierte Masse beider
Teilchen) in dem kugelsymmetrischen Feld U(r). Diese Bestimmung der Be-
wegung im kugelsymmetrischen Feld U(r) fiihrt ihrerseits auf das Problem
einer eindimensionalen Bewegung in einem Feld mit einer effektiven Energie,
die gleich der Summe von U(r) und der Zentrifugalenergie ist (siehe § 29).

Fiir den Fall Spin gleich Null setzt sich der Gesamtdrehimpuls eines Mole-
kiils J aus dem Bahndrehimpuls der Elektronen L und dem Drehimpuls fiir die
Rotatien der Kerne zusammen; dem letzteren entspricht folglich der Opera-
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tor J — i, und der Operator fiir die Rotationsenergie ist
h2
2Mr

Die effektive potentielle Energie bestimmt sich als

o —Ly.

UJ(r) = U(r) + 2M r2 (J L) (59,1)

wobei die Mittelung iiber den Molekiilzustand bei festem Wert » geschieht.
Fithren wir nun die Mittelung fiir einen Zustand aus, in dem das Molekiil

definierte Werte des Gesamtdrehimpulsquadratesd? = J (J + 1) und der Dreh-

impulsprojektion der Elektronen beziiglich der Molekiilachse (z-Achse) besitzt:
= A. Durch Auflésen der Klammer in (59,1) haben wir

2

I3 B o— B —

Das letzte Glied hingt nur vom Elektronenzustand ab und enthilt insgesamt
die Quantenzahl J nicht; dieses Glied kann man einfach in die potentielle
Energie U(r) einbeziehen. Wir zeigen, dal dies auch auf das vorletzte Glied
zutrifft.

Dazu erinnern wir daran, daB, wenn die Drehimpulsprojektion beziiglich
irgendeiner Achse einen definierten Wert besitzt, auch der Mittelwert des ge-
samten Drehimpulsvektors entlang eben dieser Achse gerichtet ist (siehe die
Bemerkung am Ende von § 15). Bezeichnen wir mit n den Einheitsvektor in

z-Richtung, dann haben wir demzufolge L = A n. Weiterhin ist in der klas-
sischen Mechanik der Drehimpuls fiir die Rotation eines Systems aus zwei
Teilchen (Kernen) gleich [ p], worin » = r n der Radiusvektor zwischen
beiden Teilchen und p der Impuls ihrer relativen Bewegung sind; letztere
GroBe steht senkrecht auf der Richtung n. In der Quantenmechanik liegt genau
der gleiche Sachverhalt lIl bezug auf den Drehlmpulsoperator fir die Rotation
der Kerne vor: (J L)n =0 oder Jn = Ln. SchlieBlich folgt aus der
Gleichheit der Operatoren auch die Gleichheit ihrer Eigenwerte, und da
n L = L, = A gilt, folgt

J.=4. (59,3)

Demzufolge haben wir im vorletzten Glied von (59,2) fiir die Grofie LeJ
=nd A = A2%, d.h., sie hingt nicht von J ab. Durch Neudefinition der
Funktion U(r) kann man schlieBllich die effektive potentielle Energie in fol-
gender Form schreiben:

2

Uslr) = U0) + 537 d 0+ 1). (59.4)
Lésen wir die eindimensionale ScHROD®NGER-Gleichung mit dieser potentiellen
Energie, so erhalten wir eine Serie von Energieniveaus. Wir verabreden, diese

Niveaus (fiir jedes gegebene J) in der Reihenfolge ihres Anwachsens durch den

13 Kurzfassung II
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Index » zu numerieren, der die Werte v = 0, 1, 2, . . . durchlduft; » = 0 ent-
spricht dem niedrigsten Niveau. Auf diese Weise fiihrt die Kernbewegung zu
einer Aufspaltung jedes Elektronenterms in eine Reihe von Niveaus, die durch
die Werte der zwei Quantenzahlen J und v charakterisiert werden.

Die Abhéngigkeit der Energieniveaus von den Quantenzahlen kann im all-
gemeinen Fall nicht vollsténdig berechnet werden. Diese Berechnung ist nur
fiir relativ schwach angeregte Niveaus maglich, die nur wenig iiber dem Grund-
zustand liegen. Diesen Niveaus entsprechen kleine Werte der Quantenzahlen
J und v. Mit eben diesen Niveaus hat man es gewohnlich bei der Untersuchung
von Molekiilspektren zu tun, und deshalb sind sie besonders interessant.

Die Bewegung der Kerne in den schwach angeregten Zustinden kann man
charakterisieren als kleine Schwingungen um die Gleichgewichtslage. Dem-
entsprechend miissen wir U(r) in eine Reihe nach Potenzen der Differenz
& = r — r, entwickeln, wobei r, der Wert von r ist, bei dem U(r) ein Minimum
hat. Da U’(r,) = O ist, haben wir mit einer Genauigkeit bis zu den Gliedern
zweiter Ordnung

U = Ve + a2,

"wobei U, = U(r,) und w = VU" (r,))M die Schwingungsfrequenz ist (siehe I
§ 17). Im zweiten Glied in (59,4) — der Zentrifugalenergie — geniigt es, r =r,
zu setzen. Deshalb gilt

U =U,+BJJ+1)+52 e, (59,5)

wobei B = h%[2 M r2 = h?/2 I die sogenannte Rotationskonstante ist (I = M 7}
ist das Tragheitsmoment des Molekiils).

Die ersten zwei Glieder in (59,5) sind Konstanten, und das dritte entspricht
einem eindimensionalen harmonischen Oszillator. Deshalb kénnen wir fiir die
gesuchten Energieniveaus sofort

E=Ue+BJ(J+1)+hw(v+%) (59,6)

schreiben.
Auf diese Weise setzen sich in der betrachteten Néherung die Energieniveaus
aus drei unabhéngigen Teilen zusammen:
E=E" 4+ E +E. (59,7)

Hier ist £ = U, die Elektronenenergie (einschlieBlich der Energie der Cou-
LomBschen Wechselwirkung der Kerne);

E'=BJ(J +1) (59,8)
ist die Rotationsenergie, die mit der Drehung des Molekiils zusammenhéangt?).
Wir bemerken, dafl gema8 (59,3) die Quantenzahl J nur die Werte

J=4,4+1 A+2,... (59,9)

1) Ein rotierendes System aus zwei fest miteinander verbundenen Teilchen nennt man

oft einen Rotator. Die Formel (59,8) bestimmt die quantenmechanischen Energieniveaus
des Rotators.
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durchlaufen kann, da die Projektion des Drehimpulses seine Gréfe J nicht
iiberschreiten kann. Das dritte Glied schlieflich in (59,7),

B =ho(v+ 1/2), , (50,10)

ist die Energie der Kernschwingungen innerhalb des Molekiils. Die Zahl v
numeriert, in Ubereinstimmung mit der gewihlten Definition, die Niveaus mit
gegebenem J in wachsender Reihenfolge; diese Zahl nennt man die Schwingungs-
(oder Vibrations-) Quantenzahl.

Bei der gegebenen Form der Kurve der potentiellen Energie U(r) ist die
Frequenz w umgekehrt proportional zu VM. Daher sind auch die Intervalle
AE? zwischen den Schwingungsniveaus proportional zu 1//M. Die Inter-
valle AE’ zwischen den Rotationsniveaus enthalten im Nenner das Trigheits-
moment I, d. h., sie sind proportional zu 1/M. Die Intervalle 4E** zwischen
den Elektronenniveaus, wie auch diese Niveaus selbst, enthalten M nicht.
Da m/M (m ist die Elektronenmasse) in der Theorie der zweiatomigen Molekiile
ein kleiner Parameter ist, sehen wir, daBl

AE*> AE®> AE (59,11)

gilt. Diese Ungleichungen spiegeln den spezifischen Charakter der Grup-
pierung von Molekiilniveaus wider. Die Schwingungen der Kerne spalten die
Elektronenterme in relativ dicht beieinander liegende Niveaus-auf. Diese
Niveaus erleiden ihrerseits nochmals eine Feinaufspaltung unter dem Einflufl
der Molekiilrotation.

Als Beispiel geben wir hier die Werte U,, i w und B (in eV) fiir einige Mole-
kiile an:

H, f N, ’ 0,
- U, 4,7 7,5 5,2
ho 0,54 0,29 0,20
103 B 7,6 0,25 0,18
§ 60. Para- und Orthowasserstoff

In § 56 untersuchten wir schon einige Symmetrieeigenschaften von Zustdénden
eines zweiatomigen Molekiils. Diese Eigenschaften bezogen sich auf Elektronen-
terme, d. h., sie charakterisierten das Verhalten der Wellenfunktion der Elek-
tronen bei Transformationen, die die Kernkoordinaten nicht beriihren. Indem
auch die Kernbewegungen (Rotation und Schwingungen) fiir das Verstdndnis
eines Molekiilzustandes herangezogen werden, ergeben sich auch neue Symmetrie-
eigenschaften, die sich nunmehr auf das Molekiil als Ganzes beziehen. Wir
wollen hier bei einer interessanten Erscheinung verweilen, welche mit der

13+
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Symmetrie von Zustinden zweiatomiger Molekiile zusammenhingt, die aus
gleichartigen Atomen bestehen (es versteht sich, dal es sich dabei nicht nur
um Atome ein und desselben Elements, sondern auch ein und desselben Isotops
handelt, so daBl beide Kerne identisch sind).

Um konkret zu sein, beschrinken wir uns auf den Elektronengrundzustand
(12} -Singulett) des Wasserstoffmolekiils.

Der HamrrToN-Operator eines aus zwei gleichartigen Atomen bestehenden
Molekiils ist invariant beziiglich einer Vertauschung der Kerne. Im Zusammen-
hang damit ergibt sich eine neue Symmetrieeigenschaft der Zusténde: Die
Wellenfunktion des Molekiils kann symmetrisch oder antisymmetrisch im Hin-
blick auf die Vorzeichendnderung des von dem einen zum anderen Kern ge-
richteten Radiusvektors » sein.

Die Wellenfunktion des Molekiils ist ein Produkt aus Elektronen- und Kern-
wellenfunktion. Gemif § 59 stimmt letztere mit der Wellenfunktion fiir die
Bewegung eines Teilchens mit dem Bahndrehimpuls J im zentralsymmetrischen
Feld U(r) iiberein. Unter diesem Gesichtspunkt stellt die Transformation
r — — r eine Koordinateninversion beziiglich des Feldzentrums dar, und ent-
sprechend (19,5) fiihrt eine solche Transformation zur Multiplikation der
Wellenfunktion mit dem Faktor (—1)’. Die Elektronenwellenfunktion hingt
auch von den Kernkoordinaten in Form von Parametern ab. Fiir den Elek-
tronengrundzustand ist diese Funktion beziiglich einer Kernvertauschung sym-
metrisch.!) Deshalb bestimmt der Faktor (—1)’ die Symmetrie oder Anti-
symmetrie nicht nur des Kernanteils sondern auch der gesamten Wellen-
funktion des Molekiils als Ganzem.

In § 46 wurde ein allgemeines Theorem aufgestellt, welches besagt, daf fiir
ein System aus zwei gleichartigen Teilchen vom Spin 7 = 1/2 symmetrische
(beziiglich der Teilchenkoordinaten) Zustdnde nur bei verschwindendem Ge-
samtspin I der Teilchen und antisymmetrische Zustdnde nur im Falle I =1
existieren konnen. Wenden wir nun diese Regel auf die zwei Kerne des Wasser-
stoffmolekiils an (Protonen mit dem Spin 1/2). Wir gelangen dann zu dem
Ergebnis, daB fiir parallele Kernspins (I = 1) das Molekiil in seinem Elek-
tronengrundzustand nur ungeradzahlige Werte des Drehimpulses J und fiir
antiparallele Kernspins (I = 0) nur geradzahlige J besitzen kann. Dies ist
ein bemerkenswertes Beispiel fiir den quantenmechanischen Austauscheffekt:
Die Kernspins iiben einen starken indirekten EinfluBl auf die Molekiilterme aus,
obwohl ihr direkter EinfluB auf die GréBe der Energie (Hyperfemstruktur der
Terme) im Vergleich dazu gering ist.

1) Diese Eigenschaft entspricht der in § 56 angegebenen allgemeinen, empirischen Regel,
nach der die Mehrzahl zweiatomiger Molekiile einen Elektronengrundzustand mit voller
Symmetrie besitzt. Dariiber hinaus kann man direkt zeigen, daB die Symmetrie beziiglich
einer Kernvertauschung aus anderen Eigenschaften des Zustandes !X+ folgt und zwar
aus dem Symmetrien in bezug auf die Spiegelung an einer durch die Moleﬂul achse gehenden
Ebene und in bezug auf eine Vorzeichenumkehr aller Elektronenkoordinaten bei unver-
dnderten Kernkoordinaten.
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Auf Grund der aulerordentlichen Kleinheit der magnetischen Momente der
Protonen und desweiteren wegen der Kleinheit der Wechselwirkung ihrer Spins
mit den Elektronen im Molekiil ist die Wahrscheinlichkeit fiir eine Anderung
von I sogar im Falle von Molekiilst6Ben sehr gering. Deshalb verhalten sich
Molekiile mit I = 1 und I = 0 praktisch wie verschiedene Modifikationen einer
Verbindung; sie werden in der angegebenen Reihenfolge als Ortho- und Para-
wasserstoffmolekiile bezeichnet.

Der Grundzustand des Parawasserstoffmolekiils entspricht der Drehimpuls-
quantenzahl J = 0. Im Falle des Orthowasserstoffmolekiils, fiir das nur
ungeradzahlige Werte von J moéglich sind, stellt das Niveau mit J =1 den
Grundzustand dar, der héher als der Grundzustand von Parawasserstoff ge-
legen ist.

§ 61. vAN DER WaaLs-Krifte

Wir betrachten zwei Atome in S-Zustdnden, die sich in groflen Abstdénden
(im Vergleich zu ihren Ausmaflen) voneinander befinden und bestimmen ihre
Wechselwirkungsenergie. Mit anderen Worten, es soll die Gestalt der Elek-
tronenterme U, (r) bei grofen Kernabstdnden bestimmt werden.

Um diese Aufgabe zu 16sen, wenden wir die Stérungstheorie an und betrachten
die zwei isolierten Atome als ungestortes System und die potentielle Energie
ihrer elektrischen Wechselwirkung als Stéroperator. Wie aus der Elektrostatik
(siehe I § 64) bekannt ist, kann man die elektrische Wechselwirkung zweier
im Abstand r voneinander befindlichen Ladungssysteme nach Potenzen von 1/r
entwickeln, wobei die aufeinanderfolgenden Glieder dieser Entwicklung der
Wechsel wirkung der Gesamtladungen, der Dipol-, Quadrupolmomente usw. der
beiden Systeme entsprechen. Bei neutralen Atomen ist die Gesamtladung
Null. Die Entwicklung beginnt hier mit der Dipol-Dipol-Wechselwirkung
(~1/r3); nach ihr folgen die Dipol-Quadrupol-Glieder (~1/r%), die Quadrupol-
Quadrupol (und die Dipol-Oktupol-) Glieder (~1/r5) usw.

Stellen wir uns zunichst vor, beide Atome befinden sich in S-Zustdnden.
Es ist leicht zu sehen, dafBl sich in der ersten stérungstheoretischen Néherung
kein Effekt aus der Wechselwirkung der Atome ergibt. In der Tat bestimmt
sich die Wechselwirkungsenergie in erster Naherung als Diagonalmatrixelement
des Stéroperators, das beziiglich der ungestérten Wellenfunktionen des Systems
berechnet wird (diese driicken sich ihrerseits durch Produkte von Wellen-
funktionen der beiden Atome aus). Nun sind jedoch fiir S-Zustédnde die Diagonal-
matrixelemente, d. h. die Mittelwerte der Dipol-, Quadrupol- usw. Momente
gleich Null, wie dies unmittelbar aus der Kugelsymmetrie fiir die Verteilung
der mittleren Ladungsdichte in den Atomen folgt.

In der zweiten Néherung geniigt es, wenn man sich auf die Dipolwechsel-
wirkung im Stéroperator beschrinkt, da sie am langsamsten mit wachsendem
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r abnimmt, d. h. auf das Glied
—d,d, + 3 (d, n)(d;n)
)

(m ist der Einheitsvektor in der die beiden Atome verbindenden Richtung).
Da die Nichtdiagonalelemente des Dipolmoments im allgemeinen nicht ver-
schwinden, erhalten wir in der zweiten Niherung der Stérungstheorie ein von
Null verschiedenes Ergebnis, das proportional zu 1/r% ist, weil es quadratisch
in ¥V war. Die Korrektur zweiter Ordnung zum tiefsten Eigenwert ist, wie wir
wissen, immer negativ (§ 32). Deshalb erhalten wir fiir die Wechselwirkungs-
energie der Atome im Normalzustand einen Ausdruck der Form

V= (61,1)

U = — 25, (61,2)

wobei const eine positive Konstante ist (F. LoNDoN, 1928).

Zwei Atome in normalen S-Zustédnden, die sich in groBen Abstinden von-
einander befinden, ziehen sich so mit einer Kraft (— dU/dr) an, die der sie-
benten Potenz des Abstandes umgekehrt proportional ist. Die Anziehungs-
krifte zwischen den Atomen bei groBen Abstinden werden gewohnlich van
DER WaaLs-Krifte genannt. Diese Krifte fiihren zu Mulden auch auf den
Kurven der potentiellen Energie der Elektronenterme der Atome, die keine
stabilen Molekiile bilden. Die Mulden sind jedoch sehr flach (ihre Tiefe betrigt
nur Zehntel oder Hundertstel eV), und sie liegen bei Abstinden, die einigemal
grofer als die zwischenatomaren Abstdnde in stabilen Molekiilen sind.

Die Wichtigkeit von Formel (61,2) hiangt dariiber hinaus damit zusammen,
daBl einem derartigen Gesetz die Wechselwirkungskréfte auch fiir solche weit-
entfernte Atome geniigen, die sich in beliebigen (nicht unbedingt S-) Zustdnden
‘befinden, wenn nur diese Wechselwirkung iiber alle moglichen Orientierungen
der Atome gemittelt wird; gerade dieser Fragestellung entspricht z. B. das
Problem der Wechselwirkung von Atomen in einem Gas?).

Tatsdchlich kann sich, obwohl das mittlere Dipolmoment beziiglich eines
beliebigen stationdren Zustandes Null ist, bereits der Mittelwert fiir das Qua-
drupolmoment eines Atoms mit von Null verschiedenem DrehimpulsJ von
Null unterscheiden (§ 54). Deshalb kann das Quadrupol-Quadrupolglied im
Wechselwirkungsoperator schon in erster storungstheoretischer Néherung ein
von Null verschiedenes Resultat ergeben. Nun hédngen jedoch die Mittelwerte
des Quadrupolmoments (wie auch die Multipolmomente héherer Ordnung) von
der Orientierung seines DrehimpulsesJ ab, und auf Grund von Symmetrie-
iiberlegungen werden sie bei der Mittelung iiber diese Orientierungen Null.

1) Essei jedoch hervorgehoben, daB dieses auf der Basis der nichtrelativistischen Theorie
erhaltene Gesetz nur giltig ist, solange die aus elektromagnetischen Wechselwirkungen
resultierenden Retardierungseffekte unwesentlich sind. Dies setzt voraus, daB der inter-
atomare Abstand r im Vergleich zu c¢/w,, klein ist, wobei w,, die Ubergangsfrequenzen
fiir Uberginge zwischen dem Atomgrundzustand und den angeregten Atomzusténden
bedeuten.
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Aufgabe

Fiir zwei gleiche Atome, die sich in 8-Zustinden befinden, ist die Formel abzuleiten, die
die vaN DER Waars-Krifte durch die Matrixelemente ihrer Dipolmomente ausdriickt.

Loésung. Die Losungerhilt man aus der allgemeinen Formel (32,10) der Stérungstheorie,
die man auf den Operator (61,1) anwendet. Wegen der Isotropie der Atome in S-Zustdnden
ist es klar, daB bei der Summation iiber alle Zwischenzustinde die Quadrate der Matrix-
elemente der drei Komponenten jedes der Vektoren d,; und d, gleiche Beitrige liefern;
die Glieder, die Produkte der verschiedenen Komponenten enthalten, verschwinden. Als
Ergebnis erhalten wir

(d2)3n (d2)5n’

U")—*—Z 3B, — B, — By’

wobei Eg, E, die ungestorten Energiewerte der Grundzustéinde und der angeregten Zu-
stinde sind.






Die Theorie der elastischen Sto8e IX

§ 62. Die Streuamplitude

In der klassischen Mechanik sind die St68e zweier Teilchen vollstindig durch
ihre Geschwindigkeiten und den ,,StoBparameter (d. h. den Abstand, in dem
sie bei fehlender Wechselwirkung aneinander vorbeifliegen wiirden) bestimmt.
In der Quantenmechanik dndert sich die Problemstellung selbst, weil bei Be-
wegungen mit bestimmten Geschwindigkeiten der Begriff der Bahnen und mit
ihm auch der des ,,StoBparameters‘ seinen Sinn verliert. Das Ziel der Theorie
ist hier nur die Berechnung der Wahrscheinlichkeit dafiir, da im Resultat
eines Stofles die Teilchen um diesen oder jenen Winkel abgelenkt (oder wie
man sagt, gestreut) werden. Wir sprechen hier iiber die sogenannten elastischen
St6Be, bei denen keinerlei Umwandlung der Teilchen stattfindet bzw. bei
denen sich ihr innerer Zustand nicht dndert (wenn diese Teilchen zusammen-
gesetzt sind).

Das Problem des elastischen Stofes fithrt wie jedes Zweikorperproblem zu
dem Problem der Streuung eines Teilchens mit reduzierter Masse in dem
Feld U(r) eines festen Kraftzentrums.!) Das geschieht”durch den Ubergang
zu einem Koordinatensystem, in dem der Schwerpunkt beider Teilchen ruht.
Den Streuwinkel werden wir in diesem System mit 6 bezeichnen. Er hingt
durch einfache Formeln mit den Ablenkwinkeln &, und #, beider Teilchen in
dem Koordinatensystem zusammen, in dem ein Teilchen (das zweite) vor dem
StoB ruhte:

m, sin 0 T —0
tgﬂl:ml—}-mzcose’ 9, = 2

(62,1)

wobei m, und m, die Massen der Teilchen sind (siehe I § 14). Wenn die Massen
beider Teilchen gleich sind (m, = m,), erhédlt man einfach

0 T —0
5 =100 (62,2)
die Summe ist 4, + ¥, = =/2, d. h., die Teilchen werden unter einem rechten
Winkel gestreut.

Im weiteren werden wir in diesem Paragraphen iiberall (wo es nicht aus-
driicklich anders vereinbart ist) ein Koordinatensystem mit dem Massen-

9 =

1) Wir vernachlidssigen hier die Spin-Bahn-Wechselwirkung der Teilchen (falls sie einen
Spin besitzen). Setzen wir das Feld zentralsymmetrisch voraus, so schlieBen wir damit
auch solche Prozesse aus der Betrachtung aus, wie z. B. die Streuung von Elektronen an
Molekiilen.
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schwerpunkt als Ursprung verwenden und unter m die reduzierte Masse der
stoenden Teilchen verstehen.

Ein freies Teilchen, daf sich in Richtung der positiven z-Achse bewegt, wird
durch eine ebene Welle beschrieben, die wir als 9 = e'*? schreiben, d. h., wir
withlen dieNormierung, bei der dieentsprechende Stromdichte gleich derTeilchen-
geschwindigkeit v ist (vergleiche mit der Normierung auf den Einheitsstrom in
(21,6)). Die Streuung des Teilchens muB weit vom Zentrum entfernt durch
eine nach auBen laufende Kugelwelle der Gestalt f(6) e?*"/r beschrieben werden?),
wobei f(0) eine gewisse Funktion des Streuwinkels 6 ist (des Winkels zwischen
z-Achse und Richtung des gestreuten Teilchens); diese Funktion nennt man
Streuamplitude. Die Losung der SCHRODINGER-Gleichung, die den Streuprozel
im Feld U(r) beschreibt, mufl also bei groBlen Abstinden die asymptotische
Gestalt

p = etkz +-@eikr (62,3)
haben.

Die Wahrscheinlichkeit, dafl das gestreute Teilchen in der Zeiteinheit durch
das Oberflichenelement dS = 72 do geht (do ist das Raumwinkelelement), ist
gleich v 72 [f|2dS = v |f|2 do.?) Thr Verhéltnis zur Stromdichte der einfallenden
Welle ist gleich

do = |f(6)i2do . (62,4)

Diese Grofle hat die Dimension einer Fliache und wird effektiver Streuquerschnuitt
(oder einfach Streuquerschnatt) fiir die Streuung in den Raumwinkel do genannt.
Wenn wir do = 2 & sin § df setzen, erhalten wir den Streuquerschnitt:

do = 2z sin 0 |f(6)2 dO (62,5)

fiir die Streuung in das Winkelintervall zwischen 6 und 6 + dé.

Fiir eine Streuung im Zentralfeld ist die Lésung der SCHRODINGER-Gleichung
zylindersymmetrisch beziiglich der z-Achse. Die allgemeine Gestalt einer sol-
chen Loésung kann in Form der Reihe

Y= 5 A; P, (cos 0) Rei(r) (62,6)
=0

dargestellt werden, worin Ry, die der Gleichung (29,8) (mit der Energie
E = h% k%/2 m) geniigenden Radialfunktionen sind. Das asymptotische Ver-
halten dieser Funktionen fiir grofe Entfernungen ist durch stehende Wellen

1) Eine auslaufende Kugelwelle enthilt den Exponentialfaktor ei*r (eine in Richtung
Zentrum einlaufende Welle hat dementsprechend den Faktor e —i*r) anstelle der trigono-
metrischen Funktion fir die in § 30 betrachteten ,,stehenden‘* Kugelwellen.

2) Bei dieser Betrachtung wird stillschweigend angenommen, daB der einfallende
Teilchenstrom durch eine groBe (um Beugungseffekte auszuschlieBen) aber endliche
Blende begrenzt wird, wie das bei realen Streuexperimenten der Fall ist. Aus diesem
Grund gibt es keine Interferenz zwischen den Gliedern in dem Ausdruck (62,3); das Qua-
drat |¢|2 wird in den Punkten genommen, in denen die einfallende Welle fehlt.
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(30.10) gegeben. Wir wollen zeigen, auf welche Weise man die Streuamplitude
durch die Phasenverschiebungen ¢, dieser Funktionen ausdriicken kann.

Wir setzen (30,10) in (62,6) ein und schreiben die allgemeine asymptotische
Gestalt der Wellenfunktion in der Form \

Yy = ELZAIPZSID(’CT———‘}'al)

T

__1/3 = E‘A, P,{eXP[—%(’“"?”Ld’)]
—exn[i(kr — 7 + o)}

Die Koeffizienten 4, miissen so gewéhlt werden, dal die Funktion die Gestalt
(62,3) hat. Dazu benutzen wir die in § 30 erhaltene Entwicklung einer ebenen
Welle nach Kugelwellen. Die asymptotische Form dieser Entwicklung ist (30,16):

2

~enlfer 2.

Die Differenz p — e'¥2 muB eine auslaufende Welle darstellen, d. h., aus ihr
miissen alle Glieder herausfallen, die e""’" enthalten. Dazu mull man setzer

_%]/g 21+ 1) e,

So ist die Wellenfunktion

eikz o 2t @l+ )Pl{eXP[—l(kr_l—n)]

)

V= 3%, E (214 1) Py (cos ) [(—1) e ikr —ePi¥ets].  (62,7)
Fiir die Koeffizienten bei e'*"/r in der Differenz p — e’*? finden wir dann

0) = 575 Z @1+ 1 (€% — 1) Py (cos ). (62,8

Diese Formel 16st das Problem, die Streuamplitude durch die Phasen §; aus-
zudriicken (H. Faxen, J. HOLTSMARK, 1927).

Jedes Glied dieser Summe wird partielle Streuamplitude fir die Streuung
von Teilchen mit dem Bahndrehimpuls ! genannt.

Integrieren wir do iiber alle Winkel, so erhalten wir den totalen Streuquer-
schnitt ¢, der das Verhéltnis der Gesamtwahrscheinlichkeit der Streuung eines
Teilchens (in der Zeiteinheit) zur Wahrscheinlichkeitsstromdichte in der ein-
fallenden Welle ist. Wir setzen (62,8) in das Integral ein:

o= 27tf”|i(0)|2 sin 6 df .
0 ,
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Da die Polynome P; (cos 0) untereinander orthogonal sind, bleiben in dem
Integral nur die Quadrate aller Summanden aus (62,8) iibrig, und wir erhalten
unter Beriicksichtigung des bekannten Wertes fiir das Normierungsintegral
(30,13)

4 o<}
o =k—’,’l_20 @1+ 1) sin? 6, . (62,9)
§ 63. Die quasiklassische Streubédingung

Der Grenziibergang von den im vorigen Paragraphen erhaltenen quanten-
mechanischen Formeln der Streutheorie zu den klassischen Formeln ist ziemlich
aufwendig. Wir werden ihn hier nicht durchfiihren, sondern uns nur auf einige
Bemerkungen beziiglich der Bedingungen beschrénken, unter denen ein solcher
Ubergang zulissig ist.

Dafiir, dal man von einer klassischen Streuung um den Winkel 6, wenn das
Teilchen mit dem Stolparameter ¢ vorbeifliegt, sprechen kann, ist notwendig,
daf die quantenmechanische Unbestimmtheit des einen und des anderen relativ
klein sind: 4o <p, 40 < 6. Die Unbestimmtheit des Streuwinkels hat die
GréBenordnung A6 ~ Ap/p, wobei p der Teilchenimpuls und A4p die Unbe-
stimmtheit seiner transversalen Komponente sind. Weil Adp ~ &/4do > F/o ist,
gilt 46 > %/p o, und deshalb ist in jedem Fall auch

B
6>

omw
Ersetzen wir den Drehimpuls m v ¢ durch % I, so erhalten wir 6 1> 1, woraus
ersichtlich ist, daB8 offenbar 15> 1 sein muB, in Ubereinstimmung mit der
allgemeinen Regel, dal dem quasiklassischen Fall groBe Werte fiir die Quanten-
zahlen entsprechen (§ 27).

Den klassischen Ablenkwinkel fiir ein Teilchen kann man als das Verhéltnis
von transversaler Impulsinderung Ap wihrend der ,StoBzeit = ~ g/v zum
Anfangsimpuls m v abschitzen. Die Kraft, die im Felde U(r) auf das Teilchen
im Abstand ¢ wirkt, ist F = — dU(g)/dg; deshalb gilt Ap ~ F p/v, so dafl wir
60 ~ o F|m v* haben. Diese Abschitzung ist streng giiltig, wenn der Winkel
0 < list, der GroBenordnung nach kann sie aber auch bis § ~ 1 ausgedehnt
werden. Wenn wir diesen Ausdruck in (63,1) einsetzen, erhalten wir die Be-
dingung dafiir, daBl die Streuung quasiklassisch ist, in der Gestalt

Fe*>hv. (63,2)

Wenn das Feld U(r) schneller als 1/r abfillt, dann ist die Bedingung (63,2)
bei hinreichend groBen g nicht erfiillt. Grofle o entsprechen aber kleinen 0;
die Streuung bei hinreichend kleinen Winkeln ist demnach in keinem Falle klas-
sisch. Speziell ist der Quantencharakter der Streuung fiir kleine Winkel der
Grund dafiir, dal sich der Gesamtstreuquerschnitt endlich erweisen kann.
Erinnern wir uns in diesem Zusammenhang daran, daB in der klassischen Me-

(63,1)
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chanik ein Teilchen, welches ein beliebiges Feld, das nur fiir » — co Null wird
(d. h., es fallt nicht schon in endlicher Entfernung steil ab), mit einem beliebig
groflen, jedoch endlichen Streuparameter durchlduft, dennoch eine Ablenkung
um einen gewissen kleinen, aber von Null verschiedenen Winkel erféhrt; der
Gesamtquerschnitt ist deshalb immer unendlich. Wie aus dem oben Gesagten
klar wird, ist eine solche SchluBfolgerung in der Quantenmechanik schon deshalb
nicht anwendbar, da der Begriff der Streuung seinen Sinn verliert, wenn der
Streuwinkel kleiner wird als die Richtungsunschéirfe der Teilchenbewegung.

§ 64. Diskrete Energieniveaus als Pole der Strenamplitude

Es existiert ein bestimmter Zusammenhang zwischen dem Streugesetz von
Teilchen (mit positiver Energie E) in einem gegebenen Feld und dem diskreten
Spektrum der negativen Energieniveaus im gleichen Feld (falls solche vor-
handen sind).

Um das Aufschreiben der Formeln zu vereinfachen, beschranken wir uns auf
die Bewegung, von Teilchen mit dem Bahndrehimpuls ! = 0. Den asympto-
tischen Ausdruck der Wellenfunktion fiir positive Energie fern vom Feld-
zentrum schreiben wir in Foim einer Summe aus einlaufender und auslaufender
Kugelwelle:

v = + {a(k) € 4 b(k) e~ 7} . 64,1)

Die Koeffizienten a(k) und b(k) sind gewisse Funktionen von k, die nur iiber
die Losung der SCHRODINGER-Gleichung fiir kleine Entfernungen unter Beriick-
sichtigung der Endlichkeit der Wellenfunktion bei r = 0 bestimmt werden
kénnten. Dabei sind beide Funktionen nicht voneinander unabhéngig, sondern
sie werden durch einfache Beziehungen miteinander verkniipft. Eine dieser
Relationen folgt unmittelbar daraus, daf die Funktion 9 als Wellenfunktion
eines nichtentarteten Zustandes reell sein muf:

b(k) = a*(k) . (64,2)
Wenn wir jetzt formal beliebige, darunter auch komplexe k-Werte betrachten,

dann werden a(k) und b(k) Funktionen einer komplexen Variablen, die nach
wie vor der Gleichung (64,2) geniigen und dariiber hinaus iiber die Beziehung

a(—k) = b(k) (64,3)
zusammenhédngen, welche unmittelbar aus der Definition von a und b im Aus-
druck (64,1) folgt (das Ersetzen von k durch —k vertauscht die Rollen der
Koeffizienten a und b). Die Funktion y mit komplexen k als analytische Fort-
setzung der Losung der SCHRODINGER-Gleichung fiir reelles & wird weiterhin
eine Losung dieser Gleichung bleiben und im Koordinatenursprung endlich
sein. Sie wird jedoch nicht der Bedingung geniigen, im gesamten Raum endlich
zu sein: Fiir » — oo wird das erste oder das zweite Glied in (64,1) (je nach dem
Vorzeichen des Imaginirteils von k) unendlich werden.
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Speziell bei rein imagindren k-Werten bestimmt der Ausdruck (64,1) die
asymptotische Gestalt der Losung der SCHRODINGER-Gleichung fiir negative
Energie E. Damit diese Loésung einem stationdren Zustand des diskreten
Spektrums entspricht, mufl die Funktion y fiir r — co endlich bleiben. Jedem
negativen Energiewert E entspricht ein Paar rein imagindrer Werte k =
+ V2 m |E|/h. Im Falle des oberen Vorzeichens geniigt das zweite Glied in (64, 1)
der Endlichkeitsbedingung fiir » — oo nicht; deshalb muB fiir einen E-Wert,
der einem diskreten Energieniveau entspricht,

bz |kl) =0 (64,4)
gelten (analog muB fiir k = — 7 |k| die Funktion a(k) Null werden).

Vergleicht man andererseits (64,1) mit dem asymptotischen Ausdruck fiir die
Wellenfunktion eines Teilchens mit der Energie E > 0, wie er in (30,10) ge-
schrieben wurde, '

2 1

Y= = 57;(ei(kr+f5») _ e-i(kr-f-ﬁo)) ,

so sehen wir, dal} das Verhéltnis a/b mit der Phase d, iiber die Beziehung

2iohy _ %K)
e = ) (64,5)
zusammenhéngt. Dieser Ausdruck besitzt einen Pol in dem Punkt, fiir den
b(k) Null wird. Erinnern wir uns jetzt, daB die partielle Amplitude der s-Streuung

=L ez
/0_2@"‘:(61 ‘1)

ist, so kommen wir zu dem SchluB, da diese Amplitude als analytische Funk-
tion der komplexen Variablen k in der oberen Halbebene dieser Variablen bei
imagindren k-Werten Pole besitzt, die den Energieniveaus gebundener s-Zu-
stdnde des Teilchens im Feld entsprechen. -

Ein analoger Zusammenhang herrscht zwischen den Energieniveaus gebun-
dener Zustdnde mit I # 0 und den Polen der entsprechenden partiellen Streu-
amplituden.

§ 66. Die Streuung langsamer Teilchen

Wir betrachten die Eigenschaften des Streuquerschnitts im Grenzfall kleiner
Geschwindigkeiten der gestreuten Teilchen. Die Geschwindigkeit wird so klein
vorausgesetzt, daf} die DE BRoGLIE-Wellenldnge des Teilchens groB im Vergleich
mit derReichweite a 1) des Feldes U(r) ist (d. h. k @ < 1) und seine Energie klein

) Unter @ werden die Linearabmessungen des Raumgebietes verstanden, in dem das
Feld U wesentlich von Null verschieden ist. So spielt bei der Neutronenstreuung an
Kernen der Kernradius die Rolle des Parameters a; fiir die Elektronenstreuung am neu-
tralen Atom ist dementsprechend der Atomradius zu nehmen.
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im Vergleich mit dem Betrag des Feldes innerhalb dieser Reichweite:
k? m2)2 m<L|U|. S

Die Wahrscheinlichkeit dafiir, das Teilchen in der Ndhe des Feldzentrums
(in Abstdnden, die im Vergleich zu seiner Wellenlidnge klein sind) anzutreffen,
nimmt mit wachsendem Bahndrehimpuls schnell ab (vergleiche das Ende von
§ 29). Bei der Streuung langsamer Teilchen spielt deshalb die Streuung mit 7 = 0
(s-Streuung) die grundlegende Rolle. Um fiir diesen Fall die Streueigenschaften
aufzufinden, ist es notwendig, das asymptotische Gesetz fiir die Abhingigkeit
der Phase §, vom Wellenzahlvektor & bei kleinen Werten des letzteren zu be-
stimmen. ’

Die Wellenfunktion des s-Zustandes héngt nur von r ab. Fiir » < a (inner-
halb der Feldreichweite) kann man in der exakten SCHRODINGER-Gleichung

2m
Ay + By =—3Ulny (65,1)
nur das Glied mit #® vernachldssigen:
1 2m
Ay = - ) =45 Ur)y (r<a) (65,2)

(hierbei bedeutet der Strich Ableitung nach r). Im Gebiet grofer Entfernungen
jedoch, a € r <L 1/k, kann man sogar auch das Glied mit U(r) weglassen, so daf

(ry)’' =0 (65,3)
iibrigbleibt. Die allgemeine Losung dieser Gleichung lautet

1/):01 —-]-—E:— (a<r<%) (65’4)

Die Werte der reellen Konstanten ¢,, ¢, konnen im Prinzip nur iiber die Losung

der Gleichung (65,2) mit einer konkreten Funktion U(r) bestimmt werden.
Bei noch groferen Entfernungen, r = 1/k, kann in Gleichung (65,1) das

Glied mit U(r), nicht jedoch das Glied mit %* weggelassen werden, so dal wir

1
S+ By =0

haben, d. h. die Gleichung der freien Bewegung. Diese Gleichung hat die
Losung

¢, sinkr coskr (

1
lp:'l? = el = 7 T>—). (65,5)

~ &
Die Koeffizienten in ihr werden so gewdhlt, dafl fiir £ r <€ 1 diese Losung in
(65,4) iibergeht; auf die gleiche Weise erreicht man, daB die Losungen fiir die
Bereiche £ r € 1 und kr ~ 1 aneinander anschliefen.

Stellen wir die Summe (65,5) als

6 .
1p=k—'rsm(kr+60)
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dar, so erhalten wir fiir die Phase d,
tg g~ 8y = 2 k3 (65,6)
1

auf Grund der Kleinheit von k ist auch die Phase §, klein. Nehmen wir in der

Summe (62,8) nur das erste Glied mit, dann finden wir schlieBlich fiir die
Streuamplitude

1 . 0 c.

f = 5Tk (ez“’" e 1) =~ To = c:" . (65’7)

Auf diese Weise ergibt sich die Streuamplitude als konstante Grofle, die

weder vom Streuwinkel noch von der Teilchengeschwindigkeit abhangt. Mit

anderen Worten ist die Streuung langsamer Teilchen isotrop beziiglich aller

Richtungen und der entsprechende Streuquerschnitt ¢ = 4 7(0,/c,)? hdngt nicht

von der Energie ab?l).

Aufgaben
1. Es ist die Streuamplitude langsamer Teilchen an einem sphdrischen Potentialtopf
der Tiefe Uy und dem Radiusa zu bestimmen {U(r) = — U, bei r < a, U(r) = 0 bei
r>al

Lo6sung. Der Wellenzahlvektor des Teilchens erfiille die Bedingungen ka <1 und

k < %, wobei »x = l/2 m Ugy/h ist. Die Gleichung (65,2)
fiir die Funktion y = r y lautet

X+ =0
bei r < a. Die Losung dieser Gleichung, die bei » = 0 gegen Null geht (y/r muB bei r = 0
endlich sein) ist

7 =Asinxr (r<a).
Bei 7 > a geniigt die Funktion y der Gleichung x”* + k? y = 0, woraus

x = Bsin (k7 + &) (r>a)
folgt. Die Stetigkeitsbedingung fiir y’/y bei r = a gibt

xetga x = ketg (ka + 6p) =~ m’
woraus wir d, bestimmen. Als Resultat erhalten wir firr die Streuamplitude
tgxa —xa
f= =1 (1)
Werin nicht nur ke <1 sondern auch x a <1 (d. h. U, < #*/m a?) gilt, dann folgt

1
=5 a(x a)? . @)

1) In den dargestellten Uberlegungen ist stillschweigend angenommen, daB8 das Feld
U(r) fir groBe Abstdinde (r > a) hinreichend schnell abklingt. Es ist leicht zu kldren,
was das geforderte schnelle Abklingen genauer bedeutet. Fiir groBe r ist das zweite Glied
in der Funktion (65,4), verglichen mit dem ersten, klein. Damit die Mitnahme dieses Gliedes
dennoch begriindet ist, muB das in Gleichung (65,2) belassene kleine Glied ~c,/r® immer
noch groB im Vergleich zu dem Glied Uy ~ U c, sein, das beim Ubergang von (65,2)
zu (65,3) weggelassen wurde. Hieraus folgt, daB U schneller als 1/r® abklingen muB.
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Formel (1) ist nicht anwendbar, wenn U, und a dergestalt sind, daB » ¢ nahe einem
ungeradzahligen Vielfachen von n/2 liegt. Bei derartigen Werten x a gibt es im Potential-
topf innerhalb des diskreten Spektrums negativer Energieniveaus ein Niveau, das in der
Niahe von Null liegt!), und die Streuung wird durch Formeln beschrieben, die im néchsten
Paragraphen hergeleitet werden.

2. Aufgabe 1 ist fiir den Fall eines ,,Potentialhéckers* zu lésen: U(r) = U, fir r < q,
U = 0fiirr > a.

Loésung. Der Ubergang vom Fall des Potentialtopfes zu diesem Fall geschieht durch
die Ersetzung U, -~ — U,, d. h. x — ¢ %. Aus (1) ergibt sich dann

thxa —xa

f=-

x

(wobei nach wie vor x = /2 m U,/h gilt). Speziell haben wir im Grenzfall x a > 1 (groBe
U,-Werte)
f=—a, c=4ma®.

Dieses Resultat entspricht der Streuung an einer harten Kugel mit dem Radiusa; wir
bemerken, daB die klassische Mechanik eine um viermal kleinere GréBe lieferte (6 = 7 a2).

§ 66. Die Resonanzstreuung bei niedrigen Energien

Eine gesonderte Betrachtung der Streuung langsamer (ka < 1) Teilchen in einem
anziehenden Potential macht sich dann erforderlich, wenn es in dem diskreten
Spektrum der negativen Energieniveaus einen s-Zustand mit einer Energie gibt,
die klein im Vergleich zur Gréfe des Potentials U innerhalb seiner Reichweite a
ist. Wir werden dieses Niveau mit —e& (¢ > 0) bezeichnen. Die Energie E des ge-
streuten Teilchens, die eine kleine Grofie ist, liegt in der Nahe des Niveaus —e,
d. h., sie befindet sich, wie man sagt, fast in Resonanz mit ihm. Das fiihrt,
wie wir sehen, zu einer wesentlichen Vergroflerung des Streuquerschnittes.

Die Existenz eines nicht allzu tiefen Niveaus kann man in der Streutheorie
durch eine formale Methode beschreiben, die auf den folgenden Bemerkungen
basiert.

Wie auch in § 65 untersuchen wir wiederum die SCHRODINGER-Gleichung fiir
verschiedene Feldbereiche. Die exakte Gleichung, die wir fiir die Funktion
x = r vy anstelle von g aufschreiben, lautet

2m
2+ B —Umly=0.

Im ,,inneren‘ Feldbereich (r < a) kann man das Glied (2m E[h?) y = k? y
im Vergleich zu y'" vernachlédssigen:

2m

2 — Uryx=0, re~a. (66,1)

s

1) Siehe Aufgabe 1 §30. Die dort erhaltene Gleichung (1) zeigt, daB fiir das Energie-
niveau |B| € U, gilt, falls sin (a V2 m Uy/k) =~ + 1 ist.

14 Kurzfassung IT
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In dem ,,z'iuBeren“ Gebiet (r > a) kann man umgekehrt U vernachldssigen:
"—{— Ex—O r>a. (66,2)

Die Losung der Glelchung (66,2) kann bei irgendeinem r; (so, dal 1/k>7r > a
ist) an die Losung der Gleichung (66,1), die der Randbedingung x(0) = 0 ge-
niigt, ,,angendht werden; die Bedingung fiir das Anndhen besteht in der
Stetigkeit des Verhéltnisses y’[y, das von dem allgemeinen Normierungsfaktor
der Wellenfunktion nicht abhadngt.

Statt jedoch die Bewegung in dem Gebiet r ~ a zu betrachten, erlegen wir
der Losung in dem &ufleren Gebiet eine Randbedingung fiir x’/x bei kleinen
Werten r auf; da die dullere Losung sich bei r — 0 langsam @ndert, kann man
diese Bedingung formal auf den Punkt » = 0 ausdehnen. Die Gleichung (66,1)
enthdlt £ in dem Gebiet r ~ a nicht, deshalb kann die sie ersetzende Rand-
bedingung auch nicht von der Teilchenenergie abhéngen. Mit anderen Worten,
sie mul} die Gestalt

v
Ao * (66,3)

haben, wobei » irgendeine Konstante ist. Da x nicht von E abhingt, muf}
diese Bedingung (66,3) auch zur Losung der SCHRODINGER-Gleichung fiir eine

kleine negative Energie £ = — ¢ gehoren, d. h. zur Wellenfunktion des ent-
sprechenden stationdren Zustandes des Teilchens. Bei £ = — ¢ haben wir
aus (66,2)

x = const - e~ TV2meln
und die Substitution dieser Funktion in (66,3) zeigt, daf} » eine positive Grofie

x=12m ek (66,4)
ist.
Wir wenden jetzt die Randbedingung (66,3) auf die Wellenfunktion der
freien Bewegung
x = const - sin (k 7 4 &)

an, die die allgemeine exakte Losung der Gleichung (66,2) bei £ > 0 dar-
stellt. Fiir die gesuchte Phase §, erhalten wir

ctgéo———_—V_ (66,5)

Da die Energie E hier \nur durch die Bedingung & a < 1 begrenzt wird, sie
]edoch im Vergleich zu ¢ nicht klein sein muf}, konnen sich die Phase §, und
mit ihr die Amplitude der s-Streuung als nicht kleine Grofien erweisen. Die
partiellen Streuamplituden mit I O bleiben nach wie vor klein. Deshalb
kann man immer noch annehmen, dafl die Gesamtstreuamplitude mit derjenigen
fiir die s-Streuung zusammenféllt:
1
T k(ctgo, — i)

=gz @™ =1
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Setzen wir hierin (66,5) ein, so erhalten wir
1
t=—5%1- (66.6)
Wir bemerken, daB dieser Ausdruck an der Stelle ¥ = % x» in Ubereinstimmung
mit dem in § 64 erhaltenen allgemeinen Resultat einen Pol besitzt.
Fiir den Gesamtstreuquerschnitt ¢ = 4 7 |f|{? finden wir

4x 2nh2 1
®2 -+ k? = "m E +¢°
Demzufolge ist die Streuung nach wie vor isotrop (die Amplitude (66,6) ist
richtungsunabhéngig), wihrend der entsprechende Streuquerschnitt jedoch
energieabhingig ist und sich im Resonanzbereich (E ~ &) als gro im Vergleich
zum Quadrat der Feldreichweite a? erweist (da 1/k > a gilt). Wir betonen, da}
die Gestalt der Formel (66,7) nicht von Details der Wechselwirkung der Teil-
chen fiir kleine Teilchenabstdnde abhdngt und vollig durch den Wert fiir das
Resonanzniveau bestimmt ist.!)

Die erhaltene Formel hat einen allgemeineren Charakter als die bei ihrem
Beweis gemachte Voraussetzung. Wir unterwerfen die Funktion U(r) einer
kleinen Verdnderung; dabei dndert sich auch der Wert der Konstanten » in
der Randbedingung (66,3). Durch eine entsprechende Veranderung von U(r)
kann man x» zu Null machen und spiter zu einer kleinen negativen GréfBe.
Dabei erhalten wir die gleiche Formel (66,6) fiir die Streuamplitude und die-
selbe Formel (66,7) fiir den Streuquerschnitt. In der letzteren ist jedoch die
Grolle e = k2 %%/2 m jetzt einfach eine fiir das Potential U(r) charakteristische
Konstante, aber keineswegs ein Energieniveau in diesem Potential. In diesen
Fillen sagt man, daf} es in dem Potential ein virtuelles Niveau gibt, wobei man
zu bedenken hat, daB, obgleich es in Wirklichkeit kein Niveau in der Néhe
des Ausgangsniveaus gibt, schon eine kleine Verdnderung des Feldes geniigen
wiirde, damit ein solches Niveau erscheint.?)

o= (66,7)

§ 67. Die Bornsche Formel

In allgemeiner Form kann der Streuquerschnitt fiir den sehr wichtigen Fall
berechnet werden, bei dem das streuende Feld (beziiglich seiner Wirkung auf
die' Bewegung des zu streuenden Teilchens) als schwache Storung angesehen
werden kann. Auf die Frage nach den Bedingungen fiir die Anwendbarkeit

1) Formel (66,7) wurde erstmalig von E. P. WiGNER (1933) erhalten; die Idee des hier
durchgefithrten Beweises stammt von H. A. BETEE und R. PEIERLS (1935).

2) Als Beispiel sei die Neutronenstreuung an Protonen angefiihrt, bei der beide Reso-
nanzfille (Resonanz mit wirklich existierendem und Resonanz mit virtuellem Niveau)
auftreten. Fir die Wechselwirkung von Neutron und Proton mit parallelen Spins
existiert ein echtes Niveau der Energie ¢ = 2,23 MeV (Grundzustand des Deuterons).
Die Wechselwirkung von Neutron und Proton mit antiparallelen Spins wird durch die
Existenz des virtuellen Niveaus ¢ = 0,067 MeV charakterisiert.

14*
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einer solchen Niherung in der Streutheorie werden wir am Ende dieses Para-
graphen zuriickkommen.

Die ungestérte Bewegung eines auf das Streuzentrum mit dem Impuls
p = i k einfallenden Teilchens wird durch eine ebene Welle p(® = ei%" be-
schrieben, die der SCHRODINGER-Gleichung geniigt :

Ay® + k2@ = 0.

Wir suchen die Lésung der exakten Gleichung
2m

A’(p _+_(k2 —? U)Q/J =0
in der Form y = 9@ 4 9@, wobei die kleine Korrektur y®), die die ge-
streute Welle beschreibt, der (beziiglich ?’) inhomogenen Gleichung

2m 2m
A’P(l) + k2 1/)(” = hTw(O) =3 etkr (67,1)

geniigen muB, in der das Glied zweiter Ordnung (~y‘V U) weggelassen ist.

Die Loésung dieser Gleichung kann unmittelbar in Analogie zu der aus der
Elektrodynamik bekannten Gleichung fiir die retardierten Potentiale ge-
schrieben werden :

Hierin ist ¢ eine Funktion der Koordinaten und der Zeit (siehe I § 77). Ihre
Losung lautet

l ’ R ’ ’ ’ ’ ’
(p('r,t)=f—R—g(’r,t—?)dV, dV’' =d2’ dy’ d7’,

mit B =» — 7' als Radiusvektor vom Volumenelement dV’ zum Beobach-
tungspunkt 7, fiir den der Wert von ¢ gesucht wird. Wenn die Zeitabhéngig-
keit der Funktion o als Faktor e~"%¢! gegeben ist und wir

0 = go(r) e~ **et, @ = go(r) e k!
schreiben, dann haben wir fiir ¢, die Gleichung
Apo + kP gy = — 47 g, (67,2)
und als ihre Losung
— 'y otk R av
wolr) = [ eotry 682 4 (67.3)

Auf Grund der offensichtlichen Analogie der Gleichungen (67,2) und (67,1)
kann die Losung der letzteren in folgender Form dargestellt werden:

m T, av’
y V) = — o hzf U(r') eitkr +kR) s (67,4)
Es ist jetzt leicht, den asymptotischen Ausdruck dieser Funktion fiir grofle

Entfernungen r vom Streuzentrum anzugeben. Fir r> 7 haben wir
R= —7|=r—7"n mit n’ als Einheitsvektor in Streurichtung; es ist
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ausreichend, im Faktor 1/R des Integranden von (67,4) einfach R ~ r zu
setzen. Dann erhalten wir

ikr
o __m "N itk =k qV
Y Py T Ur') e dv’,

worin k' = kn’ den Wellenzahlvektor des Teilchens nach der Streuung be-
deutet. GemiB der Definition (62,3) liefert der Koeffizient bei e**”/r in dieser
Funktion die gesuchte Streuamplitude; indem wir den Strich an der Inte-
grationsvariablen weglassen, schreiben wir sie in der Form

f=—gaw [ Umearav. (67,5)
Hierin ist der Vektor
q=FK —k (67,8)

eingefiihrt, dessen Betrag
0
q = 2 ksin 5 (67,7)

lautet, wobei 6 der Winkel zwischen k und k' ist, d. h. der Streuwinkel. Wir
sehen, daBl die Streuamplitude fiir die Impulsinderung des Teilchens um % g
durch die entsprechende Fourier-Komponente des Feldes U(r) bestimmt wird.
Der differentielle Streuquerschnitt fiir das Raumwinkelelement do’ ist gleich

m?
Tin

|
do fU o= i1 | do’ . (67.8)

Diese Formel wurde zuerst von M. BorN erhalten (1926); die entsprechende
Néherung in der Streutheorie heiflt BorNsche Ndiherung.

Die Formel (67,8) kann auch auf andere Art gewonnen werden und zwar
direkt nach der Storungstheorie aus der allgemeinen Formel (35,6), die die
Ubergangswahrscheinlichkeit zwischen zwei Zustinden eines kontinuierlichen
Spektrums angibt. Im vorliegenden Fall haben wir es mit dem Ubergang
zwischen den Zustdnden eines sich frei bewegenden Teilchens mit den Impul-
sen p und p’ zu tun, wobei die Funktion U(r) die Rolle des Stéroperators spielt.
Als Zustandsintervall dy, verwenden wir das Volumenelement im Impulsraum
dp, dp, dp,. Dann nimmt Formel (35,6) die Gestalt

2n p’? p? G )
dw = 7 [ Up'plz 0 ('2_m - 5;) dpz dpll dp, (67’9)

an. Die Wellenfunktion fiir den Endzustand mufl dabei auf eine d-Funktion
im Impulsraum normiert sein (vergleiche die Bemerkung vor (35,1); gemifl
(12,10) ist die ebene Welle

Vo = GampE ¢ (67,10)
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auf diese Weise normiert. Die Funktion fiir den Anfangszustand normieren
wir auf die Einheitsstromdichte:

Yo = % eiPrit (67,11)

(vergleiche (21,6)). Dann hat die ,,Wahrscheinlichkeit (67,9) die Dimension
einer Fliche und stellt den differentiellen Streuquerschnitt dar. '

Die in (67,9) als Faktor auftretende §-Funktion driickt die Energieerhaltung
bei der elastischen Streuung aus, auf Grund dessen sich der Impulsbetrag nicht
dndert: p’ = p. Man kann die §-Funktion eliminieren, indem man zu ,,Kugel-
koordinaten“ im Impulsraum iibergeht (d.h. dp, dp,dp, durch p'2dp’ do’
= 1/2p’ d(p’?) do’ ersetzt) und iiber d(p’%) integriert. Die Integration lduft
darauf hinaus, den Betrag p’ durch p im Integranden zu ersetzen, und wir
erhalten

do‘-—znmip

do’ . (67,12)

’f‘/’p U"/’pdV

Setzen wir hier die Funktionen (67,10) und (67,11) ein, so kommen wir erneut
zur Formel (67,8) zuriick. Diese Art der Herleitung, die unmittelbar zum
Streuquerschnitt fithrt, 148t jedoch die Phase der Streuamplitude unbestimmt.

In den Formeln (67,5) und (67,8) wird das Streufeld U(») nicht als kugel-
symmetrisch vorausgesetzt. Wenn jedoch U = U(r) gilt, kann die dortige
Integration in allgemeiner Form noch etwas weiter durchgefiihrt werden. Dazu
benutzen wir die Kugelkoordinaten r, 4, ¢ mit der Polarachse in Richtung des
Vektors q (den Polarwinkel bezeichnen wir im Unterschied zum Streuwinkel 6
mit §). Dann folgt

oo 2n =
SUm e 1mdV =7 f fU(r)e 97?2 5in 9 dy dp dr.

000

Die Integration iiber # und ¢ kann ausgefiihrt werden, und wir erhalten im
Ergebnis die folgende Formel fiir die Streuamplitude in einem Zentralfeld:

2m
=~

(r)ysing r.rdr. (67,13)

Die Reichweite des Feldes mége a sein. Untersuchen wir nun Formel (67,13)
fiir die Grenzfille kleiner und groer Werte des Produktes k a.

Fiir ka <€ 1 (kleine Geschwindigkeiten) kann man sin ¢ r ~ g r setzen, so
daB die Streuamplitude ’

2 [ee]
o f Ur) 72 dr (67,14)
0

lautet. Die Streuung ist hier den Richtungen nach isotrop und héngt nicht
von der Geschwindigkeit ab, was mit den allgemeinen Ergebnissen des § 65
iibereinstimmt.
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Im entgegengesetzten Grenzfall groBer Geschwindigkeiten (ka > 1) ist die
Streuung stark anisotrop und vorwirts geiichtet, in einen engen Kegel mit
dem Offnungswinkel A0 ~ 1/k a. AuBerhalb dieses Kegels ist die GroBe a groB
(g> 1/a), der Faktor sin g7 ist im Wirkungsbereich des Feldes eine schnell
oszillierende Funktion, und das Integral ihres Produktes mit der langsam ver-
énderlichen Funktion U ist fast Null.

Kléren wir nun die Bedingungen fiir die Anwendbarkeit der betrachteten
Néherung.

Die Herleitung der Formel (67,5) basiert auf einer genaherten Losung der
ScCHRODINGER-Gleichung in der Gestalt p = p©@ + ¢, wobei pV) L p©@ an-
genommen wird. Es geniigt zu fordern, dal} diese Bedingung im ,,geféhrlichsten‘
Bereich nahe dem Streuzentrum (r = 0) erfiillt ist, und da |y‘®| = 1 gilt, muB
ypM L1 gefordert werden. Andererseits haben wir fiir # = 0 im Integral
(67,4) R = 7', so daB

P(O0) = — s f U@ ef(kr'H")g (67,15)
folgt. Wir wollen dieses Integral fiir die Fille kleiner und groBer Werte von
k a abschitzen. '

Fiir £ a <€ 1 kann man den Exponentialfaktor im Integranden durch 1 er-

setzen, und die Abschdtzung des Integrals liefert dann

m |U]

3
a
ha

P (0) ~

mit |U| als Gr6Benordnung des Feldes in den Grenzen seiner Reichweite. Als
Resultat finden wir die Bedingung

h2
U<, ka<l. (67,16)

Im Falle der Abschédtzung des Integrals fiir ka> 1 fithren wir zunéchst
die Integration beziiglich der r’-Richtungen aus (es wird ein Zentralfeld an-
genommen). Analog der Herleitung von Formel (67,13) haben wir

P D(0) = _ﬁﬁffmr') ek (08 0+1) 9 1 gin @ df - 7 A’

0 o

m

—_ mf U(r') (e2* — 1)dr .
0

Fir ka> 1 ist das Integral des Ausdrucks mit dem ozillierenden Faktor
exp (27 k ') fast Null, wihrend sich das Integral des zweiten Ausdruckes als
~|U| a ergibt. Als Ergebnis erhalten wir die Bedingung

mk i
V<5 =" ka>1. (67,17)

a
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Wenn das Feld der Bedingung (67,16) geniigt, dann geniigt es offensichtlich
auch der schwicheren Bedingung (67,17) fiir £ @ > 1; die BorNsche Néherung
ist demzufolge in diesem Fall sowohl fiir kleine als auch fiir groBe Geschwin-
digkeiten anwendbar. Jedenfalls ist jedoch die BorNsche Naherung fiir hin-
reichend groBe Geschwindigkeiten auf Grund von (67,17) anwendbar, selbst
wenn die Bedingung (67,16) fiir ihre Anwendbarkeit bei kleinen Geschwindig-

keiten nicht erfiillt ist.

Aufgaben

1. Es ist in der BorNschen Néherung der Streuquerschnitt eines kugelsymmetrischen
Potentialtopfes zu bestimmen: U = — Uy bei r < a, U =0 bei r > a.

Lésung. Die Berechnung des Integrals in (67,13) fiihrt auf

do .

mU,,a’)2 (sin g a — q a cos q a)?

- 2
do =4a ( M @ar

Die Integration iber alle Winkel (die man zweckmidBig so ausfithrt, da man zu der
Variablen ¢ = 2 k sin (6/2) ubergeht und do durch 2 x ¢ dg/k? ersetzt) gibt den totalen
Streuquerschnitt

2xn (m U, a?\? i 1 sindka sin?2ka
=\ TR T Ckap T 2kap T (2ka)

In den Grenzfillen gibt diese Formel

16 7 a® (m U, a?

=" B2

27 (m an2)2

T\ R

2
) fir ka<l,

g = fiir ka>1.

Der erste dieser Ausdriicke entspricht der in Aufgabe 1 § 65 auf andere Weise gefundenen
Amplitude (2).

2. Das gleiche ist fiir das Feld U = ire—’/“ zu machen.

Lésung. Die Berechnung des Integrals in (67,13) gibt

d_42ama3 da_ X
T\ ) @er e =

Der totale Streuquerschnitt ist folglich
ama )2 1

. 2
a—lt?u-;a(h2 PP
Die Bedingung fiir die Anwendbarkeit dieser Formeln erhélt man aus (67,16) und (67,17)
mit afa als U: amalh2 €1 oder afiv L 1.

Das betrachtete Potential stellt ein ,,abgeschirmtes** CouLoMB-Feld mit dem Abschirm-
radius @ dar. Fir @ — co ergibt sich exakt das Couroms-Feld, und der differentielle
Querschnitt (1) geht in die RuTHERFORDsche Formel (§ 68) uber.
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§ 68. Die RuTHERFORDsche Formel

Wir wenden die Bornsche Formel auf die Streuung im CouLomB-Feld an. Der
Konkretheit halber wollen wir die Streuung von Teilchen der Ladunge an
Kernen der Ladung Ze behandeln; demnach gilt U = Ze?/r.

Die Aufgabe fiihrt gemd8 (67,5) auf die Berechnung der Fourier-Transfor-
mierten der Funktion 1/r. Unter Umgehung der direkten Berechnung ist es
bequemer, von der Differentialgleichung

Av = —dzsm) 68,1)

auszugehen, der die Funktion 1/r geniigt (siehe I (59,10)).)) Im Hinblick auf
weitere Anwendungen betrachten wir zunéchst den allgemeineren Fall einer
Funktion ¢(r), die der Gleichung
Adp = — 47 o(r) (68,2)
mit vorgegebener rechter Seite 4 zz o(r) geniigt.
Wir stellen die Funktion ¢(r) als FouriEr-Integral dar:

iqr dsq
#r) = [0 gy o, 4% = dg, dg, das. (653
Dabei gilt
@q =/ (r)e=i9mdV . (68,4)

Wenden wir auf beide Seiten der Gleichung (68,3) den LapLacE-Operator an,
und differenzieren wir dabei unter dem Integralzeichen, so erhalten wir

iqr dsq
dg =~ [ ¢ 6 gy
Dies bedeutet, da die FouriEr-Transformierte des Ausdrucks Ag gleich
(Ap)qg = — ¢* pq ist. Andererseits kann man (4p), dadurch finden, daB man
von beiden Seiten der Gleichung (68,2) die Fourier-Transformierten bildet:
(dp)qg = — 4w 0q. Wir vergleichen beide Ausdriicke und finden
4n 4z .
Pq =z 0¢ = ng(r) e~ v dvy. (68,5)

In Anwendung auf die Funktion ¢ = 1/r haben wir p = §(+*). Demnach wird
das Integral auf der rechten Seite von (68,5) 1, so daf} folgt

1 4n
el
Die Streuamplitude fiir das CouLoMB-Feld lautet gemafl (67,5) und (67,7)
mZe* 4x Z e* 1
0= —aw @ = " ime 0 (68,7)
s ?

1) Eine andere Berechnungsvariante besteht darin, zundchst ein ,,abgeschirmtes*
CouLome-Feld einzufithren und im folgenden den Abschirmradius nach unendlich streben
zu lassen (vgl. Aufgabe 2, § 67).
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mit » als Geschwindigkeit der gestreuten Teilchen: & k¥ = m v. Hieraus finden

wir fiir den Streuquerschnitt die Formel

Zer 2 d
= ) —5 (68,8)

in®
sin® —
2

da=(

2mv?

die mit der klassischen RuTHERFORDschen Formel iibereinstimmt.

Auf Grund des langsamen Abklingens des CouLoMB-Potentials ist es nicht
moglich, einen endlichen Raumbereich zu definieren, innerhalb dessen U we-
sentlich gréBer ist als auflerhalb dieses Bereichs. Die Bedingungen fiir die
Anwendbarkeit der Bornschen Néherung auf die Streuung in einem solchen
Potential erhalten wir aus (67,17), indem wir dort anstelle des Parameters a
die Abstandsvariable r einsetzen; dies fiihrt zu der Ungleichung

Z 2
%< 1. (68,9)

Aus (63,2) ergibt sich gerade die umgekehrte Ungleichung als Bedingung fiir
die quasiklassische Streuung im Couroms-Feld: Ze?[ii v> 1. Offensichtlich
muB die Streuung in diesem Falle durch die RUTHERFORDsche Formel beschrie-
ben werden. Wir sehen folglich, daB sich diese Formel in den Grenzféllen sowohl
grofler als auch kleiner Geschwindigkeiten ergibt. Unter diesen Umstédnden
fithrt die auf der exakten Losung der ScHRODINGER-Gleichung im CourLoms-
Potential beruhende Quantentheorie der Streuung auf das natiirliche Ergebnis:
Die exakte quantenmechanische Formel fiir den Streuquerschnitt stimmt mit
der klassischen RuUTHERFORDschen Formel iiberein (N.Mort, W.GORDON,
1928).1)

§ 69. StéBe gleichartiger Teilchen

Eine besondere Betrachtung erfordert der Fall eines Stofles zweier gleich-
artiger Teilchen. Die Identitét der Teilchen fithrt, wie wir wissen (siehe § 46),
in der Quantenmechanik zur Erscheinung der eigenartigen Austauschwechsel-
wirkung zwischen ihnen. Sie wirkt sich auch wesentlich auf die Streuung aus
(N. MotT, 1930).

Um konkret zu sein, beschrinken wir uns auf den StoB zweier identischer
Teilchen mit Spin 1/2 (zwei Elektronen, zwei Nukleonen). Der Bahnanteil der
Wellenfunktion fiir ein System aus zwei derartigen Teilchen muf beziiglich
einem Vertauschen der Teilchen symmetrisch sein, wenn der Gesamtspin S = 0
ist, und antisymmetrisch im Falle S = 1 (§ 46). Deshalb mu8} die die Streuung
beschreibende Wellenfunktion, die man durch Losen der gewShnlichen ScHRO-

1) Um MiBverstindnisse auszuschlieBen, sei jedoch betont, daB sich dies nicht auf den
Ausdruck (68,7) fiir die Streuamplitude bezieht; der exakte Ausdruck fiir f(6) unterscheidet
sich von (68,7) durch einen Phasenfaktor, der von 6 und v abhéngt und nur unter der
Bedingung (68,9) 1 ist.
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DINGER-Gleichung erhilt, beziiglich der Teilchen symmetrisiert oder antisym-
metrisiert werden. Die Vertauschung der Teilchen ist dquivalent dem Ersetzen
der Richtung des sie verbindenden Radiusvektors durch die umgekehrte. In
dem Koordinatensystem, in dem der Schwerpunkt ruht, bedeutet das, daf »
ungeéindert bleibt und der Winkel 6 durch 7 — 0 ersetzt wird (im Zusammen-
hang damit geht z = r cos 6 in —z iiber). Deshalb miissen wir anstelle des
asymptotischen Ausdrucks (62,3) der Wellenfunktion

p =t etk 4 ek [f(0) £ f (x — O)) (69,1)
schreiben.

Wegen der Identitét der Teilchen kann man natiirlich nicht angeben, welches
von ihnen das streuende und welches das gestreute ist. Im Schwerpunktsystem
haben wir zwei gleiche, gegeneinander laufende ebene Wellen (e'*¥? und e~*¥z
in (69,1)). Die auslaufende Kugelwelle in (69,1) beriicksichtigt die Streuung
beider Teilchen, und der mit ihrer Hilfe berechnete Wahrscheinlichkeitsstrom
bestimmt die Wahrscheinlichkeit dafiir, dal irgendeines der Teilchen in das
gegebene Element do des Raumwinkels gestreut ist. Der Wirkungsquerschnitt
ist das Verhéltnis dieses Stroms zur Stromdichte in jeder der einfallenden
ebenen Wellen, d. h., er wird wie frither durch das Quadrat des Betrages des
Koeffizienten bei e'*”/r in der Wellenfunktion (69,1) bestimmt.

Wenn also der Gesamtspin der abstoBenden Teilchen S = 0 ist, dann hat
der Streuquerschnitt die Gestalt

do, = |£(6) + f (@ — B)I2 do, (69,2)
und wenn er § = 1 ist, dann wird
doy = 1/(6) — f (= — 6)|2do . (69,3)

Charakteristisch fiir die Austauschwechselwirkung ist das Auftreten eines
,,Interferenz‘‘-Gliedes f(0) f* (= — 6) + f*(0) f (= — 0). Wenn die Teilchen
voneinander verschieden widren wie in der klassischen Mechanik, dann wére
die Wahrscheinlichkeit der Streuung eines von ihnen in das gegebene Raum-
winkelelement do einfach gleich der Summe der Wahrscheinlichkeiten fiir die
Ablenkung eines von ihnen um den Winkel § und des sich ihm entgegen be-
wegenden um den Winkel 7 — 6; mit anderen Worten, der Wirkungsquer-
schnitt wére gleich '

{I{O)* + |f (x — 6)I2} do . (69,4)

In den Formeln (69,2) und (69,3) wurde angenommen, dafl der Gesamtspin
der stoBenden Teilchen einen bestimmten Wert hat. Gewdhnlich hat man es
jedoch mit einem Sto von Teilchen zu tun, die sich nicht in bestimmten
Spinzustéinden befinden. Zur Bestimmung des Wirkungsquerschnitts mufl man
in diesem Fall eine Mittelung iiber alle méglichen Spinzusténde durchfiihren;
man nimmt sie dabei alle als gleichwahrscheinlich an. Von den 2 - 2 = 4 ver-
schiedenen Spinzustdnden eines Systems zweier Teilchen mit Spin 1/2 ent-
spricht ein Zustand dem Gesamtspin S = 0 (die Spinprojektionen der Teilchen
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sind 1/2, —1/2). Die restlichen drei Zustdnde gehéren zum Gesamtspin § =1
(es handelt sich um Zusténde mit folgenden, fiir die beiden Teilchen mdoglichen
Spinprojektionen: 1/2, 1/2; —1/2, —1/2; —1/2, 1/2). Deshalb ist die Wahr-
scheinlichkeit, fiir das System den Gesamtspin § = 0 bzw. § = 1 vorzufinden,
gleich 1/4 bzw. 3/4, so dall sich der Wirkungsquerschnitt wie folgt ergibt:

do = doy + 5 doy = {IfOI +1f (z — o)1

— S U6) * = 0) + 1*6) f (n — O} do . (69,5)

Untersuchen wir nun als Beispiel den Sto zweier schneller Elektronen, die
iiber das CouLoMB-Gesetz wechselwirken (U = €?/r). Ist die Bedingung (68,9),
ek v <1 (v — Relativgeschwindigkeit der Teilchen), erfiillt, so kann man fiir
die Streuamplitude in BorNscher Niherung den Ausdruck (68,7) verwenden.
Dabei mufl man beriicksichtigen, dal m in dieser Formel die reduzierte Masse
beider Teilchen bedeutet und im vorliegenden Fall gleich m,/2 mit m, als der
Elektronenmasse ist. Nach Einsetzen von (68,7) in (69,5) erhalten wir

2 \2 1 1 1
da:(e—) { g — o]do. (69,6)

me v? Y q
sin® — cos* —  sin?— cos? —

2 2 2 2

DieseForme) bezieht sich auf das Koordinatensystem,in dem der Schwerpunkt
ruht. Der Ubergang zu dem System, in dem vor dem Stof eines der Elektronen
ruhte, wird durchgefiihrt, wenn man 6 durch 2 ¢ ersetzt (siehe 62,2). So erhalten
wir

do =( 24 )2 L ! ! ! ] cos ¥ do, (69,7)

mg v in? & + cost # ~ sin? & cos? B
wobei do das Raumwinkelelement in dem neuen Koordinatensystem ist (bei
Ersetzen von 6 durch 2 # mufl das Raumwinkelelement do durch 4 cos & do
ersetzt werden, da sin 6 df dp = 4 cos ¢ sin ¥ d& dg ist). Die letzten Glieder
in (69,6—7) unterscheiden diese Formeln von den klassischen (siehe I § 16).

Aufgabe

Es ist der Wirkungsquerschnitt fiir die Streuung zweier identischer Teilchen mit dem
Spin 1/2 zu bestimmen, deren Polarisationsrichtungen den Winkel « einschlieBen.

Loésung. Die Abhingigkeit des Streuquerschnitts ¢ von den Teilchenpolarisationen
muB sich durch ein Glied ausdriicken lassen, das proportional ist dem Skalar 5, 5,, d. h.
dem Produkt aus den Mittelwerten der Spinvektoren beider Teilchen; fiir Teilchen, deren
Polarisationsrichtungen den Winkel a einschlieBen, ist dieses Produkt 8; 38, = 1/4 cos a.
Wir suchen ¢ in der Gestalt 0 =a + 4b8;8,. Fir unpolarisierte Teilchen fehlt das
zweite Glied (3, =8, = 0), und es gilt gemdB (69,5) 0 = a = 1/4 (0, + 3 0,). Wenn die
Polarisationsrichtungen beider Teilchen iibereinstimmen (« = 0), d. h., ihre Spinprojek-
tionen beziglich dieser Richtung gleich sind, dann befindet sich das System offenbar in
einem Zustand mit S = 1; folglich gilt in diesem Fall 6 = a + b = 0;,. Indem wir aus
den zwei erhaltenen Gleichungen ¢ und b bestimmen, finden wir

1
0= {6 +30a)+ (61 —ag) cosa}.
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§ 70. Die elastischen Stofe schneller Elektronen mit Atomen

Die elastischen St6Be schneller Elektronen mit Atomen kann man mit Hilfe
der Bornschen Niaherung behandeln, wenn die Geschwindigkeit des einfallen-
den Elektrons groB im Vergleich mit der Geschwindigkeit der Atomelektronen
ist.

Wegen der groflen Massendifferenz zwischen Elektron und Atom kann das
letztere bei dem Stof als unbeweglich angenommen werden, und das Koordi-
natensystem, in dem der Schwerpunkt fest bleibt, fillt mit dem Laborsystem
zusammen, in dem das Atom ruht. Dann bezeichnen p und p’ in den For-
meln des § 67 die Impulse des Elektrons vor und nach dem Stof8, m ist die
Masse des Elektrons, und der Winkel § fillt mit dem Ablenkwinkel 4 des
Elektrons zusammen.

In § 67 berechneten wir das Matrixelement U, ,, der Wechselwirkungsenergie
beziiglich der Wellenfunktionen des freien Teilchens vor und nach dem Stof.
Beim Stof mit einem Atom mufl man auch die Wellenfunktionen beriicksich-
tigen, die den inneren Zustand des Atoms beschreiben. Deshalb muf} in For-
mel (67,8) anstelle von U, , das Matrixelemente der Energie U fiir die Wechsel-
wirkung des Elektrons mit dem Atom stehen, wobei dieses Matrixelement
beziiglich der Wellenfunktionen sowohl des Elektrons als auch des Atoms
zu bilden ist. Da sich bei elastischer Streuung der Atomzustand nicht éndert,
ist das Matrixelement in bezug auf ihn diagonal. Demzufolge muf} die Formel
fiir den Streuquerschnitt in der Form

ffng Ue 9 yydr dV|2 do (70,1)

geschrieben werden, worin y, die Atomwellenfunktion (in Abh#dngigkeit von
den Koordinaten aller Z Elektronen des Atoms)eund dz = dV,...dV, das
Volumenelement im Konfigurationsraum der Atomelektronen sind.

Das Integral

Sys Uyydr
ist die iiber den Atomzustand gemittelte Wechselwirkungsenergie des Elektrons
mit dem Atom. Diese kann man auch in der Form e ¢(r) darstellen, wobei g(r)
das von der mittleren Ladungsverteilung des Atoms erzeugte Potential be-
deutet.
Bezeichnen wir die Dichte dieser Ladungsverteilung mit o(r), so kénnen
wir fiir das Potential ¢ die PoissoN-Gleichung

dp = —4mo(r)

do

mﬁ
Y

schreiben. Das gesuchte Matrixelement in (70,1) ist die Fourier-Transfor-
mierte e @g. GeméB (68,5) laBt sich ihre Berechnung auf diejenige der FOURIER-
Transformierten der Ladungsverteilung o zuriickfiihren. Letztere setzt sich aus
den Ladungen der Elektronen und des Kerns zusammen:

0 = — el nl(r) + Zle| é(r)
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mit n(r) als der Anzahldichte der Elektronen im Atom. Multiplizieren wir diese
Gleichung mit e ~?97, so finden wir nach Integration

Soe AV = —|e| fne 9" AV + Z|e| .
Auf diese Weise erhalten wir fiir das uns interessierende Matrixelement den
Ausdruck
47 e
qﬁ
worin der Atom-Formfaktor F(q) iiber die Formel
Fg)=/fne '97dV (70,3)

definiert ist. Er stellt eine Funktion des Streuwinkels und der Geschwindigkeit
des einfallenden Elektrons dar.

Setzen wir schlieflich (70,2) in (70,1) ein, so gelangen wir zu folgendem
Endausdruck fiir den Wirkungsquerschnitt der elastischen Streuung schneller
Elektronen an einem Atom:?!)

4 m? et
do =~ (2 — F(@F do. (70,4)
Die Variable % g ist der dem Atom vom Elektron iibertragene Impulsbetrag.
Dieser hiéngt mit der Elektronengeschwindigkeit » und dem Streuwinkel
iiber die Formel

2
¢ =222 5in? (70,5)

zusammen (vergleiche (67,7)).

Wir wollen den Grenzfall kleiner g-Werte untersuchen, d. h., g soll klein sein
im Vergleich zu 1l/a mit a als GréBenordnung der Atomausdehnung (g a < 1).
Kleinem g entsprechen kleine Streuwinkel : # <€ vyfv, vy ~ k/m a ist die Grofen-
ordnung fiir die Geschwindigkeit der Atomelektronen.

F(q) entwickeln wir in eine Reihe nach Potenzen von ¢. Das Glied nullter
Ordnung ist gleich f»dV, d.h. gleich der Gesamtzahl Z der Elektronen im
Atom.

Das Glied erster Ordnung ist proportional f = »(r) dV, d.h. proportional
dem Mittelwert des Dipolmoments des Atoms; es ist identisch Null (§ 54).
Deshalb hat die Entwicklung bis zum Glied zweiter Ordnung zu geschehen,
so daB sich

Z — F(g) :%f(qr)%de:%ffnr?dV

[[vsveiarpparar = 221z~ Fan, 10.2)

1) Austauscheffekte zwischen dem zu streuenden Elektron und den Atomelektronen
vernachldssigen wir, d. h., wir antisymmetrisieren die Wellenfunktion des Systems nicht.
Diese Vernachlassigung 1aBt sich folgendermaBen rechtfertigen: Da die Wellenfunktion des
einfallenden Teilchens beziiglich des Atomvolumens, iiber das sich die langsam verénder-
liche Wellenfunktion der Atomelektronen erstreckt, schnell oszillierend ist, heben sich die
Interferenzterme im Wirkungsquerschnitt auf.
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ergibt; nach Einsetzen in (70,4) erhalten wir

2 2
7;;2 fnrz dv

Demzufolge ist im Bereich kleiner Streuwinkel der Streuquerschnitt winkel- |
unabhéngig und wird durch das mittlere Abstandsquadrat der Atomelektronen
vom Kern bestimmt.

Im umgekehrten Grenzfall groBer ¢ (ga> 1) stellt der Faktor e~ f¢" im
Integranden des Ausdruckes (70,3) eine schnell oszillierende Funktion dar,
und das gesamte Integral ist demzufolge ndherungsweise Null. Man kann
deshalb F(q) gegeniiber Z vernachlissigen. Es verbleibt dann
Zet \2 do
2mvz) f‘_ ’

do = do . (70,6)

do = ( (70,7)

d. h. die RuTHERFORD-Formel fiir die Streuung am Atomkern.

\,
Aufgabe

Es ist der Streuquerschnitt fir die Streuung schneller Elektronen am sich im Grund-
zustand befindlichen Wasserstoffatom zu berechnen.

Losung. Die Wellenfunktion fiir den Grundzustand des Wasserstoffatoms lautet (in
iiblichen Einheiten) y = n~1/2 e~r/a8 mit ag = h%*/m e — dem Bonrschen Radius (siehe
(31,15)). Die Elektronendichte ist » = |p|2. Analog der Herleitung von Formel (67,13)
wird die Integration in (70,3) ausgefithrt, wobei sich

oo
4 2 g2\ "2
F=—nfn(r)sinqr-rdr= (l + g )
q 4
0
ergibt. Nach Einsetzen in (70,4) erhalten wir
, (8 + ak¢?) .
P +aper

'Der totale Wirkungsquerschnitt 148t sich bequem ausrechnen, wenn man

do=4a

. B \?
do=2nsm0d0—2:r<m) q dg

schreibt und iiber dg integriert; es ist dabei selbstversténdlich,daB (in BorNscher Néherung!)
nur das Glied mit der niedrigsten Potenz von 1/v mitgenommen werden muB. Im Ergebnis
erhalten wir

To [ h\2
7= 3 \mv)"






Die Theorie unelastischer Stofe X

§ 71. Das Prinzip des detaillierten Gleichgewichts

Unelastisch heilen Stofle, die von einer Verdnderung des inneren Zustandes
der stofenden Teilchen begleitet werden. Diese Verdnderungen verstehen wir
hier im weitesten Sinne, speziell kann sich auch die Teilchenart d&ndern. So
kann man an die Anregung oder Ionisation von Atomen, an die Anregung oder
den Zerfall von Kernen usw. denken. In den Fillen, wenn der Stol (z. B. eine
Kernreaktion) von verschiedenen physikalischen Prozessen begleitet werden
kann, spricht man von verschiedenen Reaktionskandlen.

Geht man von der Symmetrie der Theorie beziiglich der Zeitumkehr aus,
kann man einen ganz allgemeinen Zusammenhang zwischen den Wahr-
scheinlichkeiten bzw. Wirkungsquerschnitten fiir die verschiedenartigen ugp-
elastischen Prozesse aufstellen. Um konkret zu sein, beschrinken wir uns an
dieser Stelle auf Prozesse der Art a + b —c¢ + d, bei denen sowohl im Anfangs-
als auch im Endzustand jeweils zwei Teilchen vorhanden sind.

Fiir die felgenden Uberlegungen ist es bequem, zunéchst anzunehmen, daB
sich die Teilchen in einem gewissen groBen, jedoch endlichen Volumen £
bewegen (dabei haben wir im Auge, dall spiter der Grenziibergang £ — oo
erfolgt). Dann wird das kontinuierliche Spektrum sich frei bewegender Teilchen
zu einem diskreten mit sehr kleinen Abstdnden zwischen den Energieniveaus,
die fiir 2 — co gegen Null streben (vgl. das Ende von § 27).

Es moge wy die Wahrscheinlichkeit fiir den Ubergang eines Systems stoBender
Teilchen aus einem gewissen Zustand 7 in einen Zustand f sein.) Jeder dieser
Zustdnde wird (neben der Teilchensorte) durch festgelegte Vektoren der Teil-
chengeschwindigkeiten und definierte Werte fiir die Spinprojektionen der
Teilchen charakterisiert.2) Eine Zeitumkehr dndert zunidchst die Vorzeichen
der Geschwindigkeiten und der Spinprojektionen?); die sich auf Grund dieser

1) Im Einklang mit der allgemein iiblichen Anordnungsvorschrift firr die Indizes in
Ubergangsmatrixelementen steht der Index des Endzustands links vom Index des
Anfangszustands.

2) Fir ,,zusammengesetzte’* Teilchen (Atom, Atomkern) muB hier unter ,,Spin‘ der
Gesamteigendrehimpuls verstanden werden, der sich sowohl aus den Spins als auch den
Babhndrehimpulsen fiir die innere Bewegung der Bestandteile - (Elektronen, Nukleonen)
zusammensetzt.

3) Definiertes Verhalten bei einer Zeitumkehr ist eine Eigenschaft jeder physikalischen
GroBe, die natiirlich nicht von der Anwendung der einen oder anderen Mechanik abhéngt.
Das Verhalten des Impulses ist aus seinem klassischen Ausdruck [» p] = m[» ¥] ersichtlich;
er andert zusammen mit der Geschwindigkeit das Vorzeichen.

15 Kurzfassung II
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Anderungen von den Zustinden ¢ und f unterscheidenden bezeichnen wir mit 7*
und f*. Letztere nennt man auch zeiftnvers beziiglich der Zusténde ¢ und f.
Auflerdem wird der Anfangs- zum Endzustand und der End- zum Anfangs-
zustand. Da die quantenmechanischen Gleichungen symmetrisch beziiglich der
Zeitumkehr sind, miissen die Ubergangswahrscheinlichkeiten © — f und f* — i*
gleich sein:
) Wrs = Wisgpe - (71,1)
Diese Behauptung ist der Inhalt vom Prinzip des detaillierten Qleichgewichts.
Gehen wir nun von den Ubergangswahrscheinlichkeiten zu den Reaktionsquer-
schnitten iiber. Wir bezeichnen mit py, ©; und py, v, die Impulse und Geschwin-
digkeiten fiir die Relativbewegung der beiden Teilchen, die jeweils im Anfangs-
und Endzustand vorhanden sind. Es mége doy; der Wirkungsquerschnitt fiir
StoBe sein, in deren Ergebnis die Richtung von @, im Raumwinkelelement do,
liegt (dies bezieht sich auf das Schwerpunktsystem beider Teilchen). Die
Gesamtenergie beider Teilchen ist natiirlich vor und nach dem Stof8 die gleiche
(B; = E;). Wir fithren nun den Wirkungsquerschnitt ein, der sich formal
auf das Intervall dE fiir die Werte der Energie im Endzustand bezieht, wobei
diese Energie als verénderliche Grofe angesehen wird. Ein solcher Wirkungs-
querschnitt muf} in der Form

geschrieben werden. Die hier stehende J-Funktion gewéhrleistet den Energie-
erhaltungssatz.

Nach Definition ergibt sich der StoBquerschnitt bei Division der Wahrschein-
lichkeit (pro Zeiteinheit) fiir den vorliegenden Proze durch die Stromdichte der
einfallendenTeilchen. Letztere ist gleich v/ (der Faktor 1/Q2 ist diejenige An-
zahldichte der Teilchen, die einem Teilchen im Volumen {2 entspricht). Auflerdem
muB beriicksichtigt werden, daf sich der Wirkungsquerschnitt (71,2) auf die Inter-
valle do; und dE; bezieht, wihrend die Wahrscheinlichkeit wy; zu streng defi-
nierten Werten v und E; gehort. Um den Wirkungsquerschnitt doy; zu erhal-
ten, mufB also wy; noch mit der Zahl der Quantenzustdnde multipliziert werden,
die zu dem gegebenen Intervall fiir die Richtungen und Betrdge der Geschwin-
digkeit vy (oder des Impulses py) gehéren. Diese Zahl ist gleich

Q pj dpy doy
(2= R)?
(vgl. (27,8))-

Im Ergebnis dieser Uberlegungen kénnen wir folgende Beziehung zwischen
Querschnitt und Wahrscheinlichkeit aufschreiben:
wyi 2 pf dpydos

doyi- & (By — B dBy =15 —omhp

Hieraus folgt

_ (2=A) vidoyi- 6 (B, — Ey) dB,

(27 R)Pvivy dogs
rs @ 27 dpydo, =0 —B) g —

§22 p7 do,
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(die Geschwindigkeit v, wurde hier gemaB der Gleichung dE/dp, = v, einge-
fithrt, die sich offenbar daraus ergibt, daB die kinetische Energie fiir die Relativ-
bewegung der Teilchen in E; als Summand eingeht). Schreiben wir schlielich
in derselben Art die Wahrscheinlichkeit wy+ ;o auf, und setzen wir beide Aus-
driicke gleich, so erhalten wir nach Kiirzen gemeinsamer Faktoren

dU_ﬁ . da.-o FAd
»} doj T pido; T

(71,3)

Diese Beziehung driickt das Prinzip des detaillierten Gleichgewichts in seiner
Formulierung fiir Wirkungsquerschnitte aus. Da in ihr das Volumen 2 nicht
mehr vorkommt, bleibt sie in obiger Form auch fiir den Grenzfall 2 — oo
giiltig.

Die Gleichungen (71,1) und (71,3) stellen einen Zusammenhang zwischen den
Wabhrscheinlichkeiten bzw. den Wirkungsquerschnitten fiir die beiden Prozesse
1 — f und f* — 7* her, die, obwohl wortwortlich nicht als direkter und inverser
ProzeB interpretierbar (¢ — f und f —<?), in ihrem physikalischen Sinn dieser
Deutung sehr nahe kommen.

Der Unterschied zwischen den Ubergingen 7 — f und i* — f* verschwindet
vo6llig, wenn man den integralen Wirkungsquerschnitt betrachtet, der sich durch
Integration iiber alle ppRichtungen, Summation iiber die Spinrichtungen
8,7 8,4 der Teilchen im Endzustand und Mittelung iiber die Richtungen des
Impulses p; und der Spins s;;, s,; der Teilchen im Anfangszustand ergibt.
Wir bezeichnen diesen Wirkungsquerschnitt mit oy, :

— 1

= fn@ait+ D@ai+ 1) (%Z)ffdaﬁdo‘ ’ (71.4)

die Summation lduft iiber die Spinprojektionen aller Teilchen, der Faktor vor
dem Summen- und den Integralzeichen hingt damit zusammen, dafl iiber die
sich auf die Ausgangsteilchen beziehenden Gr68en gemittelt und nicht summiert
wird. Schreiben wir (71,3) in der Form

pz dO'fi doi = p; dO’l'tft dOf

und gehen wir im Sinne des oben Gesagten zu den integralen Wirkungsquer-
schnitten iiber, so erhalten wir die gesuchte Beziehung:

g; P} 0y = gy D} Gig - (71,5)
Mit g; und g, wurden hierbei die Grolen

9i = (28;+ 1) 2s; + 1),

gr=128;+1)(2s,+1)
bezeichnet, die die Zahl der moglichen Spinorientierungen der Teilchenpaare

im Anfangs- und Endzustand angeben; diese Zahlen heilen statistische Spin-
gewichisfaktoren der Zustinde ¢ und f.

(71,6)

15*
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Aufgaben?)

1. Es ist der Zusammenhang zwischen den Wirkungsquerschnitten fiir den Photo-
effekt opy (Ionisation eines Atoms unter Absorption eines Photons der Energie & w) und
der Rekombinationsstrahlung orex (Einfangen eines freien Elektrons durch das Ion und
Bildung eines neutralen Atoms bei gleichzeitigem Aussenden eines Photons) herzustellen.

Loésung. Im vorliegenden Fall sind die Zustdnde 1 und f die Systemzusténde Ion + Elek-
tron und Atom 4 Photon. Die gesuchte Beziehung hat die Gestalt

_ hw\?_
(2 J1on + 1) p? ORek = 2 (2 J atom + 1) <T) OPh »

worin Jyop und Jatom die Drehimpulse von Ion und Atom, p = m v der Impuls des auf
das ruhende Ion einfallenden Elektrons und % w/c der Photonenimpuls sind; der Faktor 2
ist das statistische Gewicht des Photons (zwei Polarisationsrichtungen).

2. Es ist der Zusammenhang zwischen Wirkungsquerschnitten der Photodissoziation
des Deuterons und der Strahlungsrekombination von Proton und Neutron aufzufinden.

Losung. Der Spingewichtsfaktor des Systemsaus Neutron + Proton ist gleich 2 - 2 = 4,
wihrend der Gewichtsfaktor des Deutrons (im Grundzustand mit 8 = 1) 4+ Photon gleich
3.2 =6 ist. Deshalb gilt 4 p? 6rek = 6(k w/c)? opn mit p als Impuls firr die Relativ-
bewegung der stoBenden Teilchen Proton und Neutron. Dieser Impuls hingt mit der
Bindungsenergie des Deuterons I und der Energie % w des bei der Bildung des Deuterons
emittierten y-Quants iiber den Energieerhaltungssatz zusammen: 7 + p2/M (die reduzierte
Masse ist gleich M /2 mit M als Nukleonenmasse). SchlieBlich ergibt sich

2Mc?(hw — I)TRex = 3(k w)? Oph -

§ 72. Die elastische Streuung heim Vorhandensein unelastischer Prozesse

Das Vorhandensein unelastischer Kanédle wirkt sich in bestimmter Hinsicht
auch auf die Eigenschaften der elastischen Streuung aus.

Die Wellenfunktion v, die die elastische Streuung beschreibt, setzt sich aus
einer einfallenden ebenen Welle und einer auslaufenden Kugelwelle zusammen.
Man kann sie auch alsSumme einlaufender und auslaufender ,,Partialwellen
darstellen (die Partialwellen entsprechen definierten Werten des Bahndreh-
impulses l), wie dies in § 62 getan wurde. In der dort erhaltenen Formel (62,7)
stimmen die Amplituden der beiden Wellen eines Paars aus einlaufender und
auslaufender Welle iiberein : Jeder Summand enthélt in der rechteckigen Klam-
mer dem Betrag nach gleiche (der Betrag ist gleich 1) Koeffizienten der Fak-
toren e "¢*7 und e**". Bei rein elastischer Streuung entspricht das dem physika-
lischen Sinn des Problems, wenn aber unelastische Kanile vorhanden sind,
so miissen die Amplituden der auslaufenden Wellen kleiner als die der einlau-
fenden sein. Deshalb wird der asymptotische Ausdruck fiir y durch die Formel

(o0}

=i 5 @UH D PosO) [(— Ve — 6] (3

1) In diesen Aufgaben werden einige (sich auf das Photon beziehende) Begriffe ver-
wendet, die in Kapitel XI eingefithrt werden.

»
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gegeben sein, die sich von (62,7) dadurch unterscheidet, dal als Koeffizienten
bei e?*7 (anstelle von exp (2 ¢ 8,)) gewisse komplexe GréBen S, stehen, die betrags-
méaBig kleiner als 1 sind. Dementsprechend wird auch die Amplitude der,
elastischen Streuung durch einen Ausdruck bestimmt, der sich von (62,8) durch
obige Substitution unterscheidet:

1(6) =2%kli (214 1) (S, — 1) P, (cos 6) . . (72,2)

Fiir den totalen Wirkungsquerschnitt o, der elastischen Streuung erhalten wir
anstelle von (62,9) die Formel ’

[oo]

o,= Xz @l+ 11— 8. (72,3)

Der totale Wirkungsquerschnitt der unelastischen Streuung oder, wie man
auch sagt, der Reakiionsquerschnitt o, beziiglich aller moglichen Kanile, kann
auch durch die GréBen S; ausgedriickt werden. Dazu geniigt es zu bemerken, dafl
fiir jeden Wert ! die Intensitdt der auslaufenden Welle im Vergleich zur Inten-
sitdt der einlaufenden Welle in dem Verhiltnis |S;|2 abgeschwicht ist. Diese
Abschwachung mull voéllig der unelastischen Streuung zugeschrieben werden.
Deshalb ist klar, da

o= X @I+ 1 (1—|8 (72,4)
=0
gilt, und der totale Wirkungsquerschnitt ist
oo=0,+0, =%z @I+1)@2—8—8. (72,5)
1=0

Die einzelnen Summanden in (72,3) bzw. (72,4) sind die partiellen Wirkungs-
querschnitte fiir die elastische bzw. unelastische Streuung von Teilchen mit dem
Bahndrehimpuls I. Der Wert S; = 1 entspricht dem Fall, daBl iiberhaupt keine
Streuung (bei gegebenem I) vorliegt. Dagegen bedeutet S; = 0 vollsténdige
,>»Absorption* von Teilchen mit gegebenem I (in (72,1) fehlt die auslaufende
Partialwelle mit diesem 1}; in diesem Fall sind die Wirkungsquerschnitte fiir
elastische und unelastische Streuung einander gleich. Wir bemerken, daf
unelastische Streuung bei Abwesenheit elastischer Streuung nicht auftreten
kann, obwohl das Umgekehrte méglich ist (fiir |S;| = 1): Das Vorhandensein
unelastischer Streuung fithrt unmittelbar zu einem gleichzeitigen. Auftreten
elastischer Streuung.

Fiir 6 — O strebt die Amplitude (72,2) der elastischen Streuung gegen den
Wert

/(0)=2—1k—§(')(2l+ Di(l—8).

Vergleichen wir diesen Ausdruck mit (72,5), so finden wir die folgende Beziehung
zwischen dem Imaginérteil der Amplitude fiir die elastische Streuung unter
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dem Winkel Null und dem totalen Streuquerschnitt iiber alle Kanéle:

Im /(0) = o~

iz O

(72,6)

(dies ist das sogenannte optische Theorem fiir die Streuung).

§ 73. Die unelastische Streuung langsamer Teilchen

Die in § 65 dargestellte Ableitung des Grenzgesetzes der elastischen Streuung
bei kleinen Energien kann leicht auf den Fall unelastischer Prozesse verall-
gemeinert werden.

Wie schon friiher spielt die wesentliche Rolle bei kleinen Energien die .
Streuung mit ! = 0. Wir erinnern daran, daB nach den in § 65 erhaltenen
Resultaten die Grée S, = exp (2 7 d,) bei kleinen k gleich

Som 14200, =1+2ikf, (73,1)

mit der reellen Konstanten § = ¢,/c,, war (siehe (65,6)). ¢,, ¢, waren reell,
weil sie in der Losung y einer reellen Gleichung (der SCHRODINGER-Gleichung)
mit reellen Randbedingungen (es handelte sich um die asymptotische Gestalt
einer stehenden Welle fiir » — oo) als Koeffizienten auftraten. Beim Vorhan-
densein unelastischer Streuprozesse dndern sich die Eigenschaften der Wellen-
funktioneny nurin der Hinsicht, daB dieRandbedingung, der sie im Unendlichen
geniigen muf}, nunmehr komplex ist; der asymptotische Ausdruck (72,1) mit
den unterschiedlichen Amplituden fiir einlaufende und auslaufende Wellen
18t sich nun nicht mehr auf eine reelle stehende Welle zuriickfiihren.

In diesem Zusammenhang wird auch die Konstante § komplex: == ' + ¢ "".
Damit ist der Betrag |Sy| nicht mehr gleich 1. Die Bedingung |S;| < 1 bedeutet,
daB der Imaginirteil von § negativ sein muf}: "' < 0.

Beriicksichtigen wir in den Summen (72,3—4) jeweils nur das erste Glied,
und setzen wir in diese Glieder (73,1) ein, so finden wir als Wirkungsquerschnitte
fiir elastische und unelastische Streuung

O¢g = 4 n|ﬂ|2 ) (73’2)
4 1
o, =181 - (73,3)

Demnach ist der Wirkungsquerschnitt fiir die elastische Streuung nach wie
vor geschwindigkeitsunabhéngig. Der Wirkungsquerschnitt unelastischer Pro-
zesse jedoch ist umgekehrt proportional der Geschwindigkeit der Teilchen —
dies ist das sogenannte 1/v-Geseiz (H. A. BETHE, 1935). Folglich wichst die
Rolle der nichtelastischen Prozesse im Vergleich zur elastischen Streuung mit
kleiner werdenden Geschwindigkeiten an.

Das 1/v-Gesetz kann man weniger streng und dafiir anschaulicher noch auf
andere Weise begriinden. Dazu nehmen wir an, dafl die Reaktionswahrschein-
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lichkeit bei einem Stol dem Betragsquadrat der Wellenfunktion fiir die ein-
fallende Welle im Punkte r = 0 proportional ist. Physikalisch spiegelt diese
Voraussetzung den Tatbestand wider, daf z. B. ein auf einen Kern fallendes
langsames Neutron eine Reaktion nur auslésen kann, nachdem es in den
Kern ,,eingedrungen‘‘ ist. Nach Division von |¢gy(0)|2 durch die Stromdichte
des einfallenden Teilchens (oder, was das gleiche ist, durch Normierung von g,y
auf den Einheitsstrom) erhalten wir den Reaktionsquerschnitt. Fiir eine auf
den Einheitsstrom normierte ebene Welle haben wir |¢gul2 ~ 1/v, d. h., es
ergibt sich das gesuchte Resultat.

Im Rahmen dieser Uberlegung ist klar, daB sich t¢,;(0) aus der beziiglich
des Feldes ungestérten Wellenfunktion (ebene Welle) berechnen laft. Dafiir
und damit auch fiir die Richtigkeit des 1/v-Gesetzes ist es notwendig, dafl das
auf das einfallende Teilchen wirkende Feld U(r) mit wachsendem Abstand
hinreichend schnell abklingt.!) Wir unterstreichen, daf} insbesondere fiir Reak-
tionen geladener Teilchen, die iiber das CouLoMB-Gesetz wechselwirken, das
1/v-Gesetz nicht giiltig ist.

§ 74. Unelastische StoBe schneller Elektronen mit Atomen

Beim StoB eines schnellen Teilchens mit einem Atom kénnen neben elastischer
Streuung auch verschiedene unelastische Prozesse, z. B. eine Anregung des
Atoms oder seine Ionisation, auftreten. Analog dem Vorgehen in § 70 hinsicht-
lich der elastischen Streuung schneller Elektronen, kénnen diese Prozesse in
Bornscher Naherung behandelt werden. Dies geschieht unter der Annahme,
daB die Geschwindigkeit des schnellen Teilchens, verglichen mit derjenigen der
Atomelektronen, grof} ist.

Wie schon in § 70 ausgefiihrt wurde, kann man beim StoB eines Elektrons
mit einem Atom so vorgehen, als ob das Schwerpunkts-Koordinatensystem mit
dem Laborsystem, in dem das Atom ruht, iibereinstimmt. Wiederum mogen p
bzw. p° Anfangs- bzw. Endimpuls und m die Masse des Elektrons sein. Wir
fithren auBlerdem den Vektor des vom Elektron auf das Atom iibertragenen
Impulses# ¢ = p’ — p ein. Die GroBle q spielt eine wichtige Rolle beim Proze8,
da sie im wesentlichen den Charakter des StoBes bestimmt. Wir werden zwei
Grenzfille behandeln und zwar St68e mit im Vergleich zu #ifa groBen bzw.
kleinen iibertragenen Impulsen, wobei a die Gréfenordnung der Atomdimen-
sionen ist.

Die Ungleichung g a > 1 bedeutet, dall dem Atom ein Impuls iibertragen
wird, der groB ist, verglichen mit demjenigen, den dje Atomelektronen zu Beginn
des StoBprozesses besitzen. Physikalisch ist klar,, daB man in diesem Fall die
Atomelektronen als freie Elektronen und den StoB des schnellen Elektrons mit
dem Atom als elastischen Stol mit einem bei StoBbeginn ruhenden Atom-

1) Man kann zeigen, daB U schneller als 1/? abklingen muB.
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elektron betrachten kann. Der Wirkungsquerschnitt fiir die Streuung an
jedem der Z Elektronen wird durch die RuTHERFORD-Formel gegeben (sollten
dabei beide Elektronen, d. h. einfallendes und atomares Elektron, betragsméBig
vergleichbare Geschwindigkeiten erlangen, dann werden Austauscheffekte we-
sentlich, und der Wirkungsquerschnitt bestimmt sich nach Formel (69,7)).
Untersuchen wir nun den umgekehrten Fall kleiner Impulsiibertragungen:
ga <1 Dies bedeutet, dal der Ablenkungswinkel des Elektrons sehr klein
ist und die von ihm dem Atom iibertragene Energie klein ist im Vergleich zur
Ausgangsenergie des Atoms. Diese Eigenschaften erlauben p =~ p’ zu setzen;
der Vektor q ergibt sich dann einfach im Resultat einer Drehung von p mit
unverindertem Betrag des letzteren. Fiir kleine Streuwinkel ¢ haben wir
somit
g~ po. (74,1)

Nur bei dullerst kleinen Winkeln ist diese Formel unbrauchbar: Im Grenzfall
# — 0 strebt q gegen den Grenzwert g, = (p — p’)/%, der durch die kleine
Differenz p — p’ gegeben ist. Die Bedingung der Energieerhaltung fiir den Stof}
liefert

1 / P ' '
By —Ey=5-(0*—p®) = _—~(p—p)=v(p—p)

mit B, — E, als Anregungsenergie des Atoms bei seinem Ubergang vom Grund-
zustand in den n-ten Zustand und v als Geschwindigkeit des einfallenden Elek-
trons. Deshalb ist der minimale Wert fiir die Impulsiibertragung
En— B,

-

i Inmin = (74;2)

Nach einer derartigen Vereinfachung besteht der einzige Unterschied zur
elastischen Streuung darin, dal Anfangs- und Endzustand des Atoms ver-
schieden sind. Deshalb finden wir fiir den Wirkungsquerschnitt die friihere
Formel (70,1), in der jedoch im Integral anstelle von v, und ¢ unterschiedliche
Wellenfunktionen y, und ¥ geschrieben werden miissen :

fo e i yXy, dz dV ’ (74,3)

Die Energie U enthilt die Wechselwirkung des einfallenden Teilchens sowohl
mit dem Atomkern als auch mit allen Z Atomelektronen:

do

me
i ht

Z e? 2z e?

U= —— 4+
r = lr =gl

(74,4)

(r — Radiusvektor des einfallenden Teilchens, r, — Radiusvektoren der Atom-
elektronen; der Koordinatenursprung stimmt mit der Kernlage iiberein).
Beim Einsetzen von (74,4) in (74,3) ist ersichtlich, daf fiir unelastische
Prozesse das Glied, welches die Wechselwirkung mit dem Kern, d. h. Ze?|r,
enthilt, verschwindet; die Integration dieses Gliedes iiber dz lduft auf die Be-
rechnung des Integrals f u} v, dz hinaus, das wegen der Orthogonalitit der
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Funktionen v, und y, Null ergibt. Die verbleibenden Glieder werden mit
Hilfe der Formel
e—igr 4=

AV =2 e-iare (74,5)

qi

|7 — w4}

integriert (fiir deren Herleitung nur zu bemerken ist, da3 durch die Substitution
r = r, + 7’ das Integral in

e—-iqra e-iqr’dV Ee-—iqra l
v 7 Jq

iibergeht und die Fourier-Transformierte von 1/r durch die Formel (68,6)
gegeben ist). Als Ergebnis erhalten wir

2m e2\2 ; sdo”
do, = (——) (Z e—“"“) —
n h2 = q4 ’
worin das Matrixelement mit den Atomwellenfunktionen zu bilden ist:

(2 e"""") = X femitmeyXy dr. (74,6)

n0

n0

Jetzt kann man die Kleinheit vong benutzen. Die Integrationsvariablen 7,
in (74,6) durchlaufen gerade einen Raumbereich, dessen lineare Abmessungen
~ a sind. Deshalb ist fiir ¢ a < 1 in diesem gesamten Bereich auch q 7, klein,
so dafl man

e—iqrazl_iqtrazl_iqxa (74,7)

setzen kann (die z-Achse ist so gewéhlt, daB sie mit der Richtung von q zu-
sammenfillt). Dann gilt

(Zeiom), = —ie(Zm) = =it @

mit d, = 3, ex, als kartesischer Komponente des atomaren Dipolmoments

(das Glied mit der 1 wird wegen der Orthogonalitdt der Funktionen y, und y,
Null). Setzen wir weiterhin

do’ = 2z sin ¢ d¥ = 2n0dt9=2n(1—:—v-)2qdq,
so erhalten wir fiir den Wirkungsquerschnitt den Ausdruck
e \2 dg
don =8 (5 ) 1 @anol? 2 (148)

Wir sehen, dafl der Wirkungsquerschnitt durch das Betragsquadrat des Matrix-
elements fiir das Dipolmoment des Atoms bestimmt wird.2)

1) Natiirlich wird hierbei vorausgesetzt, da dieses Matrixelement von Null verschieden
ist. Im umgekehrten Fall mite die Entwicklung (74,7) bis zu Gliedern héherer Ordnung
fortgesetzt werden.
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Das Photon XI

§ 75. Unschirferelationen im relativistischen Bereich

Die gesamte in Teil I dieses Lehrbuches behandelte Quantentheorie ist nicht-
relativistisch ; sie kann nicht auf Erscheinungen angewandt werden, bei denen
Bewegungen mit- Geschwindigkeiten, die gegeniiber der Lichtgeschwindigkeit
nicht klein sind, vorkommen. Auf den ersten Blick kénnte man erwarten, dafl

" der Ubergang zu einer relativistischen Theorie durch eine mehr oder weniger
direkte Verallgemeinerung des Apparates der nichtrelativistischen Quanten-
mechanik moéglich wire. Eine sorgfiltige Betrachtung zeigt dagegen, dafl dies
nicht der Fall ist.

Wir haben gesehen, dafl die Quantenmechanik die Moglichkeiten der gleich-
zeitigen Existenz verschiedener dynamischer Verdnderlicher eines Elektrons!)
stark einschrinkt. Die Unschirfen 4q und Ap, die bei einer gleichzeitigen Mes-
sung von Ort und Impuls unvermeidlich sind, erfiillen die Beziehung Ag Ap ~ I;
je genauer man eine dieser Grofen mifit, desto weniger genau kann die andere
gleichzeitig gemessen werden.

Es ist aber wesentlich, dafl jede dynamische Verdnderliche eines Elektrons
fir sich allein beliebig genau gemessen werden kann; die Messung kann in
einem beliebig kleinen Zeitintervall erfolgen. Dieser Sachverhalt spielt fiir die
ganze nichtrelativistische Quantenmechanik eine fundamentale Rolle. Nur
auf Grund dessen konnte man den Begriff der Wellenfunktion y(q) einfiih-
ren, deren Betragsquadrat die Wahrscheinlichkeit angibt, mit der man (bei
einer Messung zu einem bestimmten Zeitpunkt) das Elektron an dem betref-
fenden Ort vorfindet. Eine notwendige Voraussetzung, den Begriff einer
solchen Wellenfunktion einfithren zu kénnen, ist offensichtlich die prinzipielle
Moglichkeit, den Ort beliebig genau und schnell messen zu kénnen; anderen-
falls wiirde dieser Begriff gegenstandslos und wiirde seinen physikalischen
Sinn verlieren.

Die Existenz einer Grenzgeschwindigkeit (der Lichtgeschwindigkeit c) fithrt
zu neuen prinzipiellen Einschrdankungen der Moglichkeiten, verschiedene physi-
kalische GroBen zu messen (L. D. LANDAU, R. PEIERLS, 1930).

In § 37 haben wir die Beziehung

W —v)dp At~k ' (75,1)

1) Wie in § 1 sprechen wir der Kiirze halber von einem Elektron, denken dabei aber
an ein beliebiges quantenmechanisches Objekt.
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abgeleitet, die die Unschirfe Ap der Impulsmessung an einem Elektron
mit der Dauer At des MeBprozesses verkniipft; v und v’ sind die Geschwindig-
keiten des Elektrons vor und nach der Messung. Aus dieser Beziehung folgt:
Man kann eine geniigend genaue Impulsmessung in einer relativ kurzen Zeit
(d. h. kleines Ap bei kleinem A4t) nur auf Kosten einer recht groBen Ge-
schwindigkeitsinderung wihrend des MeBprozesses erreichen. In der nicht-
relativistischen Theorie #duBerte sich dieser Sachverhalt darin, daB eine
Impulsmessung nicht nach kurzen Zeitintervallen reproduziert werden kann;
in keiner Weise wird davon aber die prinzipielle Moglichkeit einer beliebig
genauen Impulsmessung beriihrt, da die Differenz v — v immer beliebig grof3
gemacht werden konnte.

Die Existenz einer Grenzgeschwindigkeit dndert die Sachlage grundlegend.
Die Differenz v" — v kann wie die Geschwindigkeiten selbst jetzt nicht gréfer
als ¢ (genauer 2 c) sein. Ersetzen wir in (75,1) »* — v durch ¢, dann erhalten wir
die Beziehung

Ap At~ (75,2)

Diese Beziehung bestimmt die beste, prinzipiell erreichbare Genauigkeit einer
Impulsmessung bei gegebener MeSdauer 4¢. In einer relativistischen Theorie -
ist es also prinzipiell unméglich, den Impuls beliebig genau und beliebig schnell
zu messen. Eine genaue Impulsmessung (4p —0) ist nur im Grenzfall einer
unendlich langen MeBzeit moglich.

Auch die MeBbarkeit des Ortes erfihrt eine tiefgreifende Abédnderung: In
einer relativistischen Theorie ist der Ort nur bis zu einer gewissen Genauigkeit
meBbar, eine bestimmte untere Grenze der Ortsunschirfe kann nicht unter-
schritten werden. Der Begriff der Lokalisierung eines Elektrons wird in seinem
physikalischen Sinn weiter eingeschrankt.

Im mathematischen Formalismus der Theorie dulert sich diese Situation so,
daB eine genaue Ortsmessung mit der Forderungnach positiver Energie des freien
Teilchens unvereinbar ist. Wie wir spater noch sehen werden, enthilt das voll-
stindige System der Eigenfunktion einer relativistischen Wellengleichung fiir
ein freies Teilchen (neben Losungen mit der ,,richtigen* Zeitabhangigkeit) auch
Losungen mit einer ,,negativen Frequenz‘. Diese Funktionen gehen im allge-
meinen auch in die Entwicklung des Wellenpaketes ein, das einem in einem
kleinen Raumgebiet lokalisierten Elektron entspricht.

Die Wellenfunktionen mit ,,negativer Frequenz‘‘ hingen, wie noch gezeigt
wird, mit der Existenz von Antiteilchen — Positronen — zusammen. Das Auf-
treten dieser Funktionen in der Entwicklung eines Wellenpaketes ist der Aus-
druck dafiir, daB bei einer Ortsmessung fiir ein Elektron im allgemeinen unver-
meidlich Elektron—Positron-Paare gebildet werden. Die durch den ProzeB3 selbst
hervorgerufene, unkontrollierbare Erzeugung neuer Teilchen nimmt der Orts-
messung offensichtlich ihren Sinn.
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Im Ruhsystem des Elektrons ist der minimale Fehler bei einer Ortsmessung

h
Aq ~ o (75,3)
Diesem Wert (dem einzigen, der schon aus Dimensionsbetrachtungen heraus
moglich ist) entspricht die Impulsunschirfe Ap ~ m ¢, die ihrerseits der kleinsten
Schwellenenergie fiir die Paarerzeugung entspricht.
In einem Bezugssystem, in dem sich das Elektron mit der Energie ¢ bewegt,
haben wir statt (75,3)

Im ultrarelativistischen Grenzfall besteht zwischen Energie und Impuls die
Beziehung ¢ = ¢ p, und es ist dann speziell

I3

d. h., der Fehler Aq stimmt mit der DE BrooLIE-Wellenlinge des Teilchens
iiberein.

Aus den obigen Feststellungen wird klar, daBl in einer konsequenten relati-
vistischen Quantenmechanik die Koordinaten eines Teilchens als dynamische
Verédnderliche iiberhaupt nicht vorkommen diirfen, da sie ihrer Natur nach
einen ganz bestimmten Sinn haben miissen. Auch der Impuls eines Teilchens
kann in seinem fritheren Sinn nicht beibehalten werden. Da zu einer genauen
Impulsmessung eine geniigend lange Zeit erforderlich ist, kann seine Anderung
im Verlaufe eines Prozesses nicht verfolgt werden.

Erinnern wir uns an das, was am Anfang dieses Paragraphen gesagt worden
ist, so gelangen wir zu dem SchluBl, dal der gesamte Apparat der nichtrelati-
vistischen Quantenmechanik fiir den Ubergang zum relativistischen Bereich
inaddquat ist. Die in ihrem fritheren Sinn aufgefaften Wellenfunktionen y(q)
als Tréiger einer unbeobachtbaren Information kénnen in einer konsequenten
relativistischen Theorie nicht vorkommen.

Der Impuls kann in einer konsequenten Theorie nur in den Anwendungen auf
freie Teilchen enthalten sein ; denn fiir diese bleibt der Impuls erhalten und kann
daher mit beliebiger Genauigkeit gemessen werden. Man konnte daher denken,
daB eine kiinftige Theorie von der Betrachtung des zeitlichen Ablaufs von
Wechselwirkungsprozessen zwischen Teilchen ganz abgeht. Die einzigen beob-
achtbaren Groflen werden die Charakteristika (Impulse, Polarisationen) freier
Teilchen sein — der Teilchen, die miteinander in Wechselwirkung treten (An-
fangsteilchen), und der Teilchen, die infolge des Prozesses entstehen (End-
teilchen).

Die charakteristische Problemstellung in der relativistischen Quantentheorie
verlangt die Bestimmung der Wahrscheinlichkeitsamplituden fiir Uberginge
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zwischen gegebenen Anfangs- und Endzustdnden von Teilchensystemen. Die
Gesamtheit dieser Amplituden zwischen allen moglichen Zusténden bildet die
Streumatriz oder S-Matriz.') Diese Matrix ist der Tréiger der gesamten, physi-
kalisch sinnvollen und beobachtbaren Information iiber die Wechselwirkungs-
prozesse zwischen Teilchen (W. HEISENBERG, 1938).

In einer solchen Theorie miissen die Begriffe ,,elementares® und ,,zusammen-
gesetztes Teilchen ihren fritheren Sinn verlieren — die Frage, was woraus
besteht, wird hinféllig. Diese Frage kann nicht gestellt werden, ohne den
- Wechselwirkungsprozefl zwischen den Teilchen zu untersuchen; der Verzicht
auf eine solche Untersuchung macht die Frage gegenstandslos. Alle Teilchen,
die im Anfangs- oder Endzustand bei irgendeinem physikalischen Sto8prozef3
vorkommen, miissen in der Theorie gleichberechtigt auftreten. In diesem Sinne
ist der Unterschied zwischen Teilchen, die man normalerweise als ,,zusammen-
gesetzt‘‘ oder als ,elementar‘ bezeichnet, rein quantitativer Natur und bezieht
sich auf die GroBe des Massendefektes beim Zerfall in diese oder jene ,,Bestand-
teile“. Die Behauptung, daB ein Deuteron zusammengesetzt ist (mit einer
relativ kleinen Bindungsenergie beziiglich des Zerfalls in ein Proton und ein
Neutron), unterscheidet sich nur quantitativ von der Behauptung, daBl ein
Neutron aus einem Proton und einem z-Meson ,,besteht*‘.

Gegenwirtig gibt es noch keine vollstdndige, logisch abgeschlossene relativi-
stische Quantentheorie. Wir werden sehen, dafl die vorhandene Theorie neue
physikalische Aspekte in die Art der Beschreibung von Teilchenzustéinden
hineinbringt; diese neue Beschreibung erhilt gewisse Ziige der Feldtheorie.
Sie wird aber weitgehend nach dem Vorbild und mit Hilfe der Begriffe der
iiblichen Quantenmechanik aufgebaut. Dieser Aufbau der Theorie fiihrte auf
dem Gebiet der Quantenelektrodynamik zum Erfolg. Das Fehlen einer voll-
stindigen logischen Abgeschlossenheit duflert sich in dieser Theorie im Auf-
treten divergenter Ausdriicke bei der direkten Anwendung ihres mathematischen
Apparates; zur Beseitigung dieser Divergenzen existieren aber eindeutige Ver-
fahren. Trotzdem haben diese Verfahren weitgehend den Charakter halbempi-
rischer Rezepte, und unsere Uberzeugung von der Richtigkeit der auf diesem
Wege erhaltenen Ergebnisse beruht letzten Endes auf ihrer hervorragenden
Ubereinstimmung mit dem Experiment, aber nicht auf der inneren Konsistenz
und der logischen Klarheit der Grundprinzipien der Theorie.

Ganz anders ist die Sachlage in der Theorie der Erscheinungen, die mit den
sogenannten starken Wechselwirkungen von Teilchen (den Kernkriften) zu-
sammenhéngen. Hier haben die Versuche zur Schaffung einer Theorie, auf-
bauend auf denselben Methoden, zu keinerlei bedeutenden realen physikalischen
Ergebnissen gefithrt. Die Schaffung einer vollstindigen Theorie, die auch die
starken Wechselwirkungen umfaflt, erfordert wahrscheinlich, prinzipiell neue
physikalische Vorstellungen heranzuziehen.

1) Diese Bezeichnung ist vom englischen Wort scattering bzw. dem deutschen Streuung
abgeleitet.
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§ 76. Die Quantisierung des freien elektromagnetischen Feldes?)

Der Ubergang von der klassischen zur quantenmechanischen Beschreibung des
elektromagnetischen Feldes erfolgt am natiirlichsten mit Hilfe der klassischen
Entwicklung des Feldes nach Oszillatoren. Erinnern wir daran, worin der
Hauptinhalt dieser Entwicklung besteht (s. I § 76).

Wir werden das freie elektromagnetische Feld (elektromagnetische Wellen)
mijt Hilfe von Potentialen beschreiben, die so geeicht sind, daBl das skalare
Potential verschwindet und nur noch das Vektorpotential A iibrig bleibt.
Wird das Feld in einem groBien, aber endlichen Raumvolumen 2 betrachtet, so
kann es nach fortlaufenden ebenen Wellen entwickelt werden; das Potential
stellt sich dann als Reihe der Art

— 2—_3— ikr * —thr
A—%‘ng (e + cp e ) (76,1)

dar. Die Koeffizienten ¢, hédngen iiber die Beziehung
Cp ~ e, o = |kl (76,2)

von der Zeit ab, und jeder von ihnen steht senkrecht auf dem zugehérigen
Wellenzahlvektor: ¢, k = 0.2)

Die Summation in (76,1) erfolgt iiber einen unendlichen, aber diskreten Satz
nahe beieinanderliegender Werte des Wellenzahlvektors (seiner drei Kompo-
nenten k,, ky, k;). Der Ubergang zur Integration iiber eine stetige Verteilung
kann mit Hilfe des Ausdrucks

dk, dk, dk,
e (2 m)®
fiir die Zahl der moéglichen k-Werte pro Volumeneinheit des k-Raumes vor-
genommen werden.

Durch die Vorgabe der Vektoren ¢, ist das Feld in dem betrachteten Vo-
lumen vollstindig bestimmt. Man kann also diese GréBlen als diskreten Satz
klassischer ,,Feldvariablen ansehen. Um zur Quantentheorie iiberzugehen,
mufl man diese Variablen zuerst noch so transformieren, dafl die Feldgleichung
eine Gestalt erhélt, die den kanonischen Gleichungen (HamrmroNschen Glei-
chungen) der klassischen Mechanik analog ist. Die kanonischen Feldvariablen

(76,3)

1) Von dieser Stelle an verwenden wir in den Kapiteln XI—XVI (mit Ausnahme be-
stimmter Abschnitte, auf die speziell verwiesen wird) die sogenannten relativistischen
Mafeinheiten, in denen die Lichtgeschwindigkeit¢ und die quantenmechanische Kon-
stante # gleich 1 gesetzt sind; damit wird eine bedeutende Vereinfachung der Formel-
schreibweise erreicht. In diesen MaBeinheiten besitzen Energie, Impuls und Masse die
gleiche Dimension, die mit der Dimension der reziproken Linge zusammenfillt. Das
Quadrat der Einheitsladung nimmt in diesen Einheiten den Wert der (in gewohnlichen
MaBeinheiten) Konstanten e?/k ¢ an, d. h. ist gleich 1/137.

2) Die Definition der Koeffizienten ¢j in (76,1) unterscheidet sich von der Definition

der Koeffizienten az in I (76,1) durch den Faktor: ¢ = ay, Vo Q/2 n. Der Vorteil dieser
Definition beim Ubergang zur Quantentheorie wird aus dem weiteren ersichtlich.

16 KurzfassungII
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werden als reelle Gréen definiert :

1
O =— (¢, + ¢§)
fe (76,4)
Pk = —

V;—l:)(cn—clf)=gk-

Die HamiLToN-Funktion (Energie) des Feldes ist in diesen Variablen durch
den Ausdruck

H= 5 (P + 0t Q)
k

gegeben. Jeder Vektor Pjund Q, steht senkrecht auf dem Wellenzahlvektor k,
d.h., jeder Vektor hat zwei unabhédngige Komponenten. Die Richtung dieser Vek-
toren bestimmt die Polarisationsrichtung der betreffenden Welle. Wir bezeichnen
die beiden Komponenten der Vektoren P, und Q, (in der Ebene senkrecht
zu k) mit P, bzw. @, (6 = 1, 2) und schreiben die HamiLToN-Funktion in
der Gestalt

H=SHu, = Hu=y (Pho+ 0t Go). (76,5)

Die HamivroN-Funktion zerfdllt also in eine Summe voneinander unab-
héngiger Terme; jeder einzelne Summand enthélt nur je ein Paar P, und Q,,,.
Jeder dieser Summanden entspricht einer fortschreitenden Welle mit einem
bestimmten Wellenzahlvektor und einer bestimmten Polarisation und hat die
Gestalt der HamiLToN-Funktion eines eindimensionalen harmonischen Oszilla-
tors.

Die dargestellte Art der klassischen Beschreibung des Feldes a3t den Weg
fiir den Ubergang zur Quantentheorie bereits erkennen. Wir miissen die kano-
nischen Variablen — die verallgemeinerten Koordinaten @,,, und die verallge-
meinerten Impulse P, — jetzt als Operatoren mit der Vertauschungsregel

B O =05 Py se—w==s (76,6)

auffassen (alle Operatoren mit verschiedenen k ¢ sind miteinander vertausch-
bar). Mit diesen GréBen wird auch das Potential A zu einem Operator.

Den HamirLToN-Operator des Feldes erhidlt man, indem man in (76,5) die
kanonischen Variablen durch die entsprechenden Operatoren ersetzt:

~ ~ A 1 - A
H= kz' H,,, Hy, = 9 (Pic + 0? Qk,) - (76,7)

Die Bestimmung der Eigenwerte dieses HamrLroN-Operators erfordert keine
besonderen Rechnungen, da sie auf das bekannte Problem der Energieniveaus
linearer harmonischer Oszillatoren zuriickgefithrt werden kann, dessen Losung
uns schon bekannt ist (§ 25). Wir kénnen daher sofort die Energieniveaus
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des Feldes aufschreiben:
1
E=2 (N +y)o (76.8)
ko
mit ganzen Zahlen N, .
Der klassische Ausdruck fiir den Impuls des Feldes ist
P=3nH,,,
ko

mit n = kfk (s. I (76,12)). Den dazugehérigen Operator erhilt man nach
Ersetzen von Hj , durch H,,, und seine Eigenwerte sind folglich

P-z k(N,,,, + %) (76,9)

Wir werden die Formeln (76,8 —9) erst im folgenden Paragraphen diskutieren.
Jetzt wollen wir die Matrixelemente fiir die GroBen @, aufschreiben; das
kann unmittelbar mit Hilfe der bekannten Formeln (25,4) fiir die Matrix-
elemente der Koordinate eines Oszillators geschehen. Die von Null verschie-
denen Matrixelemente sind

Nio
{Niol Quo | Ny — 1> =Ny — 1| Qpo [N oD =1/2tu . (76,10)

Die Matrixelemente der Groflen Py, = Q',“7 unterscheiden sich (nach der all-
gemeinen Regel (11,8)) von den Matrixelementen Q,, nur durch den Faktor

+rTwt:
, .1 /Nks
{Niol Pro|Npo — 1> = — (Vo = U Piy[Nyo) = ’Lw‘/m .
Wie aus dem weiteren ersichtlich wird, besitzen jedoch nicht unmittelbar die
Operatoren é,w und 16,“, einen tieferen Sinn, sondern deren Linearkombi-
nationen:

N 1 ~ A
Cho = o= (0 Qro + 7 Pi,) ,
12w
(76,11)
B 1 . LA
6;:_0= V2_—w (kau_lpka) ’

die gerade der Definition der Koeffizienten ¢, in der klassischen Entwicklung
(76,1) entsprechen. Die einzigen von Null verschiedenen Matrixelemente dieser
Operatoren sind

(Nio — U g | Niod = Niol cito | Nuo — 1> = VN, . (76,12)

Mit Hilfe der Definition (76,11) und der Regel (76,6) lassen sich die Vertau-
schungsregeln zwischen den Operatoren ¢, und ¢, leicht finden:

8lurzl-:a a Ic\l-ta aka =1. (76’13)

16+
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Auf diese Weise kommen wir zum Ausdruck fiir den Operator des elektro-
magnetischen Feldes in der Gestalt

~ 27 A . - -
A=3% ﬁ (Cro € €57 + GF, €@ g=ikT) | (76,14)
ko

Hier wurde die Bezeichnung e fiir die Einheitsvektoren eingefiihrt, die die
Polarisation der Oszillatoren beschreiben; die Vektoren €(® stehen senkrecht
auf den Wellenzahlvektoren k, fiir jedes k gibt es zwei unabhédngige Polari-
sationsrichtungen, die durch den Index ¢ = 1, 2 beschrieben werden.!)

Der Ausdruck (76,14) entspricht der gewdhnlichen Darstellung von Opera-
toren in der nichtrelativistischen Quantentheorie, die im Verlaufe des ge-
samten ersten Teiles dieses Buches benutzt wurde. In dieser Beschreibungsart
(man nennt sie SCHRODINGER-Bild) enthalten die Operatoren der verschiedenen
physikalischen Gréflen selbst keine explizite Zeitabhingigkeit. Die zeitliche
Entwicklung des Systems wird durch die Zeitabhéngigkeit der Wellenfunktion
beschrieben. Den Apparat der Quantenmechanik kann man jedoch auch in
einem etwas anderen, dquivalenten Bild formulieren, in dem die explizite
Zeitabhingigkeit von den Wellenfunktionen auf die Operatoren iibertragen
wird ; diese Darstellung wird HEISENBERG-Btld genannt. Eine solche Formu-
lierung des Apparates stellt sich als besonders geeignet fiir die Beschreibung
von Feldern in der relativistischen Quantentheorie heraus; die gleichberech-
tigte Abhdngigkeit der Operatoren von den Koordinaten und der Zeit erlaubt
es, in iibersichtlicherer Weise die relativistische Raum-Zeit-Invarianz der Theorie
aufzuzeigen (in die ScERODINGERsche Formulierung gehen die Raumkoordi-
naten und die Zeit hingegen extrem asymmetrisch ein).

Fiir den Operatorfi\ besteht der Ubergang in das HeisENBERG-Bild darin,
daB man jedes Glied der Summe (76,14) mit dem Faktor e ~*®! (oder der ihm
konjugiert komplexen Grofe) multipliziert, der der zeitlichen Abhéngigkeit
der ,,stationdren Zustinde der Feldoszillatoren entspricht. Den endgiiltigen

Ausdruck fiir den Operatorff schreiben wir in der Form

A, t) = X (Brg Ayo + Gty AL, (76,15)
ko
mit
2n .
4, = &9 l/w_ﬂ o itot —kn), (76,16)

Im folgenden (sowohl bei der Behandlung des elektromagnetischen Feldes als
auch der Felder von Teilchen) werden wir fiir die Operatoren immer das
HE1sENBERG-Bild zugrunde legen. ‘

1) Wir erinnern daran (vgl. I §70), daB der Einheitsvektor e bei linearer Polarisation
reell ist und unmittelbar die Polarisationsrichtung anzeigt. Bei zirkularer Polarisation
(oder im allgemeinen Fall elliptischer Polarisation) ist der Vektor e komplex, wobei sich
sein Realteil in einem bestimmten Verhéltnis zum Imaginédrteil befindet; sein Charakter
als Einheitsvektor ergibt sich aus der Gleichung e e* = 1.
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§ 77. Photonen

Wir wollen jetzt die erhaltenen Formeln fiir die Feldquantisierung disku-
tieren.

Zunidchst weist die Formel (76,8) fiir die Feldenergie folgende Schwierigkeit
auf. Zum niedrigsten Energieniveau des Feldes gehéren die Werte Null fiir die
Quantenzahlen N, , aller Oszillatoren (dieser Zustand wird als Vakuumezustand
des elektromagnetischen Feldes bezeichnet). Aber bereits in diesem Zustand hat
jeder Oszillator die von Null verschiedene ,,Nullpunktsenergie w/2. Bei der
Summation iiber die unendlich vielen Oszillatoren erhalten wir ein unendliches
Ergebnis. Wir stoflen auf diese Weise auf eine der ,,Divergenzen, die die vor-
handene Theorie enthilt, weil sie nicht vollstindig und nicht logisch abge-
schlossen ist.

Solange es sich um die Eigenwerte der Feldenergie handelt, konnen wir diese
Schwierigkeit beseitigen, indem wir einfach die Energie der Nullpunktschwin-
gungen subtrahieren, d. h., indem wir fiir Feldenergie und -impuls (in gew6hn-
lichen MaBeinheiten) schreiben

E=XNoho, P=JXN,kk. (17,1)
ko ko

Anhand dieser Formeln kann man den fiir die ganze Quantenelektrodynamik
grundlegenden Begriff der Lichiquanten oder Photonen einfithren.!) Wir kénnen
niamlich das freie elektromagnetische Feld als eine Gesamtheit von Teilchen
ansehen, von denen jedes die Energie % w und den Impuls # k = n # w/c hat.
Die Beziehung zwischen Energie und Impuls eines Photons ist so, wie sie in
der relativistischen Mechanik fiir Teilchen mit der Ruhmasse Null, die sich
mit Lichtgeschwindigkeit bewegen, sein muB. Die Besetzungszahlen N, er-
halten den Sinn von Photonenzahlen zu gegebenen Impulsen k und Polari-
sationen e®. Die Eigenschaft der Polarisation eines Photons ist dem Begriff
des Spins anderer Teilchen analog (spezifische Besonderheiten des Photons in
dieser Hinsicht werden spater in § 78 behandelt).

Der ganze im vorigen Paragraphen entwickelte mathematische Formalismus
entspricht vollig der Vorstellung vom elektromagnetischen Feld als einer Ge-
samtheit von Photonen; es handelt sich dabei um den Apparat der sogenannten
zweiten Quantisierung in Anwendung auf ein Photonensystem. Bei dieser
Methode (§ 47) spielen die Besetzungszahlen der Zustédnde (im gegebenen Falle
die Zahlen N,,) die Rolle der unabhéngigen Verdnderlichen, und die Operatoren
wirken auf Funktionen dieser Besetzungszahlen. Dabei spielen die ,,Vernich-
tungs‘‘- und ,,Erzeugungs‘‘-Operatoren eine wesentliche Rolle; diese Opera-
toren verkleinern bzw. vergréBern die Besetzungszahlen um 1. Solche Opera-
toren sind gerade ¢, und ¢j,; der Operator ¢,, vernichtet ein Photon im
Zustand k ¢ (seine Matrixelemente sind nur fiir die Ubergéinge Ny, — Ny, — 1

1) Der Begriff des Photons wurde erstmals von A. EINSTEIN (1905) in Verbindung mit
der Theorie des Photoeffektes eingefiihrt.
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von Null verschieden — s. (76,12)); der Operator 'c\};‘7 erzeugt ein Photon in
diesem Zustand — er besitzt Matrixelemente fiir die Uberginge Nj, — Ny + 1.

Die ebenen Wellen (76,16), die im Operator (76,15) als Faktoren bei den
Vernichtungsoperatoren fiir die Photonen auftreten, kann man als Wellen-
funktionen der Photonen mit bestimmten Impulsen k und Polarisationen e(®
ansehen; diese Funktionen sind auf ,,ein Phonon im Volumen Q¢ normiert.
Eine solche Betrachtungsweise entspricht der Entwicklung (47,22) des y-Ope-
rators nach Wellenfunktionen stationdrer Zustédnde eines Teilchens im nicht-
relativistischen Apparat der zweiten Quantisierung.l)

In diesem Zusammenhang wollen wir noch einmal betonen, dall man die
,,Wellenfunktion‘ eines Photons im Gegensatz zur Interpretation der Wellen-
funktion in der nichtrelativistischen Quantenmechanik keinesfalls als Wahr-
scheinlichkeitsamplitude fiir die rdumliche Lokalisierung des Photons auffassen
darf. Im Falle des Photons ist diese Situation besonders scharf ausgeprigt.
Fiir das Photon trifft immer der ultrarelativistische Fall zu, so dafl wir fiir den
minimalen Fehler bei der Bestimmung seiner Koordinaten in Ubereinstimmung
mit (75,5) 4q ~ 1/k ~ A erhalten. Es ist also nur in den Fillen sinnvoll, von
Photonenkoordinaten zu sprechen, wenn die fiir die Aufgabe charakteristischen
Abmessungen grofl gegeniiber der Wellenlidnge sind. Das ist aber nichts anderes
als der ,klassische’* Grenzfall, der der geometrischen Optik entspricht, bei
der man von der Ausbreitung des Lichtes entlang bestimmter Bahnen (Licht-
strahlen) sprechen darf. Im Falle der Quantenmechanik hingegen, fiir den die
Wellenldnge nicht als klein betrachtet werden kann, verliert der Begriff der
Photonenkoordinate seinen Sinn.

Die Vertauschungsregeln der Erzeugungs- und Vernichtungsoperatoren von
Photonen (76,13) entsprechen dem Fall, der Teilchen beschreibt, die der BosE-
Statistik unterliegen (s. (47,11)). Photonen sind folglich Bosonen. In Uberein-
stimmung mit den Eigenschaften dieser Statistik kann die Zahl von Photonen,
die sich gleichzeitig in irgendeinem vorgegebenen Zustand befinden, beliebig sein.

Die Beschreibung des Feldes als Gesamtheit von Photonen ist die einzige
Beschreibung, die dem physikalischen Sinn des elektromagnetischen Feldes
in der Quantentheorie véllig adédquat ist. Sie ersetzt die klassische Beschreibung
mit Hilfe der Feldpotentiale (und iiber sie mit Hilfe der Feldstdrken). Letztere
gehen in den mathematischen Apparat des Photonenbildes als Operatoren der
zweiten Quantisierung ein.

Bekanntlich dhneln die Eigenschaften eines quantenmechanischen Systems
den klassischen Eigenschaften in den Féllen, in denen die Quantenzahlen fiir
die stationdren Zustinde eines Systems groll sind (§ 27). Fiir ein freies elektro-
magnetisches Feld (in einem vorgegebenen Volumen) bedeutet das, dafl die
Quantenzahlen der Oszillatoren, d. h. die Photonenzahlen N,,, groll sein miis-
sen. In dieser Hinsicht ist es von grofler Bedeutung, dal die Photonen der

1) Im Unterschied zu (47,22) gehen in die Entwicklung (76,15) gleichzeitig sowohl
Teilchenvernichtungsoperatoren, als auch -erzeugungsoperatoren ein. Der Sinn dieses
Unterschieds wird im Kapitel XIII geklart.
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BosEe-Statistik gehorchen. Im mathematischen Formalismus der Theorie zeigt
sich der Zusammenhang der Bose-Statistik mit den Eigenschaften des klas-
sischen Feldes in den Vertauschungsregeln fiir die Operatoren &, und ¢,.
Fir grofe N,,, wenn die Matrixelemente dieser Operatoren gro8 sind, kann
man die 1 auf der rechten Seite der Vertauschungsregel (76,13) vernachlissigen,
und es ergibt sich Gg, €fy + Ciy Ckg» d. h., diese Operatoren gehen in mit-
einander vertauschbare klassische GréBen c;, und cj¥, iiber, die die klassischen
Feldstiarken bestimmen. ‘

§ 78. Drehimpuls und Paritit des Photons :

Wie jedes Teilchen hat auch das Photon einen bestimmten Drehimpuls. Die
Eigenschaften dieser GroBe unterscheiden sich jedoch fiir das Photon etwas
von ihren Eigenschaften bei gewoéhnlichen Teilchen. Um die Ursachen dieses
Unterschiedes aufzukldren, erinnern wir zunidchst daran, wie im mathematischen
Apparat der Quantenmechanik die Eigenschaften der Wellenfunktion eines
Teilchens mit seinem Drehimpuls zusammenhéngen.

Der Drehimpuls j eines Teilchens setzt sich aus dem Bahndrehimpuls I und
dem Eigendrehimpuls, dem Spin s, zusammen. Die Wellenfunktion eines Teil-
chens mit dem Spin s ist ein symmetrischer Spinor der Stufe 2 s, d. h., sie hat
2 s + 1 Komponenten, die sich bei Drehung des Koordinatensystems nach
einer bestimmten Vorschrift durcheinander ausdriicken (§ 41). Der Bahndreh-
impuls hingt mit der Ortsabhingigkeit der Wellenfunktion zusammen: Zu Zu-
stinden mit dem Bahndrehimpuls I gehéren Wellenfunktionen, deren Kompo-
nenten sich (linear) durch Kugelfunktionen I-ter Ordnung beschreiben lassen.

Die Rolle der Wellenfunktion des Photons spielt der Vektor A. Ein Vektor
ist einem Spinor zweiter Stufe dquivalent und in diesem Sinne kann man dem
Photon den Spin 1 zuordnen. Da dieser Wert ganzzahlig ist, folgt hieraus,
daB auch der Gesamtdrehimpuls des Photons nur ganzzahlige Werte durch-
laufen kann: j=1,2,3,... Der Wert j = 0 entfillt fir das Photon: Die
Wellenfunktion eines Zustandes mit dem Drehimpuls Null mufl kugelsymme-
trisch sein, was fiir eine Transversalwelle nicht zu realisieren ist.

Obwohl, einerseits der Begriff des Gesamtdrehimpulses des Photons einen
vollig bestimmten Sinn besitzt, hat andererseits der Begriff des Photonenspins
nur formale Bedeutung: Fiir das Photon gibt es keine Moglichkeit, auf folge-
richtige Weise Spin vnd Bahndrehimpuls als Bestandteile seines Gesamtdreh-
impulses voneinander zu unterscheiden. Das Problem besteht darin, dall eine
solche Moglichkeit die Unabhingigkeit der ,,Spin“- und ,,Koordinateneigen-
schaften der Wellenfunktionen voraussetzt: Die Abhédngigkeit der Spinor-
komponenten (im gegebenen Fall — der Vektorkomponenten) von den Raum-
koordinaten darf durch keinerlei zusétzliche Bedingungen eingeschrankt sein.
Die vektorielle Wellenfunktion A des Photons unterliegt aber der zusétzlichen
Transversalitdtsbedingung, wonach die Abhédngigkeit von den Koordinaten fiir
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alle ihre Komponenten schon nicht mehr gleichzeitig beliebig vorgebbar ist.
Erginzend kann man hinzufiigen, daB fiir das Photon auch die Definition des
Spins als Drehmoment eines ruhenden Teilchens nicht anwendbar ist, da fir
das sich mit Lichtgeschwindigkeit bewegende Photon kein Ruhsystem existiert.

Wie auch fiir jedes andere Teilchen, wird der Zustand eines Photons ferner
durch seine Paritdt charakterisiert, die mit dem Verhalten der Wellenfunktion
bei einer Inversion des Koordinatensystems zusammenhéngt: Der Zustand
heilt gerade, wenn die vektorielle Wellenfunktion A(r) bei der Inversion un-
verindert bleibt und ungerade, wenn A(r) das Vorzeichen wechselt.!) Es gibt
eine einheitliche Terminologie fiir die verschiedenen Zustinde des Photons
mit bestimmten Drehimpulsen und Paritdten: Ein Photon im Zustand mit
dem Drehimpuls j und der Paritit (—1)7 wird als elektrisches 2/-Pol-Photon
(oder Ej-Photon) und das mit der Paritdt (—1)i*! als magnetisches 2/-Pol-
Photon (oder Mj-Photon) bezeichnet.2) Drehimpuls und Paritit eines Teilchens
werden oft durch ein zusammenhingendes Symbol gekennzeichnet, bei dem
die Zahl den Wert von j und der obere Index + oder — die Paritit P = + 1
oder — 1 angeben. So entsprechen beispielsweise den Photonen des elektri-
schen Typs die Zustdnde 1-, 2+, 3—, 4* usw. und den magnetischen Photonen
die Zustinde 1*, 2—, 3+, 4-,... Insbesondere entspricht dem elektrischen
Dipol-Photon der Zustand 1~ und dem magnetischen Dipol-Photon der Zu-
stand 1*.

Ein Photon mit einem definierten j-Wert entspricht einer Kugelwelle, fiir
die keine ausgezeichnete Bewegungsrichtung existiert. Besitzt im Gegensatz
dazu ein Photon eine ausgezeichnete Bewegungsrichtung (d. h., es wird durch
einen bestimmten Impulsvektor k& charakterisiert), so ist sein j-Wert véllig
unbestimmt. Ein Photon mit einer gegebenen Bewegungsrichtung k kann je-
doch auch einen bestimmten Wert der Projektion des Drehimpulses auf diese
Richtung besitzen; die Projektion des Drehimpulses auf die Richtung des Im-
pulses nennt man Spiralitit (oder Helizitit), und wir bezeichnen sie mit 1.3)

Die Erhaltung der Spiralitidt, wie auch im allgemeinen die Erhaltung jeglicher
Projektion des Drehimpulses, hingt mit bestimmten Symmetrieeigenschaften
des Raumes gegeniiber einem freien Teilchen zusammen. Der Impuls k zeichnet

1) Das Resultat der Anwendung der Inversionsoperation auf eine skalare Funktion ¢(7)
besteht in der Vorzeichenédnderung ihres Arguments: P ¢(r) = ¢(— ). Beim Anwenden
dieser Operation auf eine vektorielle Funktion A(r) muB noch beriicksichtigt werden, da8
das Umkehren der Richtung der Koordinatenachsen gleichzeitig das Vorzeichen aller
Vektorkomponenten (eines polaren Vektors) d&ndert. Mit anderen Worten bedeutet die
Inversion P A(r) = — A(— r). Deshalb muB z. B. fiir einen geraden Zustand A(— r)
= — A(r) gelten, damit P A(r) = A(r) ist.

2) Diese Bezeichnungen entsprechen der Terminologie der Strahlungstheorie: Die Emis-
sion von Photonen des elektrischen oder magnetischen Typs wird durch die entsprechenden
elektrischen bzw. magnetischen Multipolmomente des Ladungssystems bestimmt (vgl.
§98).

3) Diese Projektion darf man nicht mit der Projektion des Drehimpulses m auf die fest-
gelegte Richtung (der z-Achse) im Raum verwechseln!
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eine spezielle Richtung im Raum aus. Das Vorhandensein dieser Richtung zer-
stort die vollstindige Symmetrie gegeniiber beliebigen Drehungen des Ko-
ordinatensystems (infolgedessen hort der Vektor des Drehimpulses auf, eine
Erhaltungsgrofe zu sein). Es verbleibt jedoch die Axialsymmetrie beziiglich
der Drehungen um die hervorgehobene Achse — die Richtung k. Ausdruck
dieser Symmetrie ist gerade die Erhaltung der Spiralitét.

Der Operator des Bahndrehimpulses ist durch I = [r p] definiert. Der
Operator der Projektion dieses Drehimpulses auf die Richtung des Impulses
ist identisch Null (dasselbe gilt damit auch fiir die Eigenwerte dieser Pro-
jektion). Aus diesem Grunde féllt die Spiralitdt mit der Projektion des Spins

_ des Teilchens auf seine Bewegungsrichtung zusammen. Fiir ein gewohnliches
Teilchen mit dem Spin 1 konnte die Spiralitdt folglich die Werte 0, 41 an-
nehmen. Fiir das Photon sind jedoch, wie wir gleich zeigen werden, nur die
Werte A = 4+ 1 moéglich; hier zeigt sich von neuem die Bedingtheit des Be-
griffes des Photonenspins.

Es ist leicht zu sehen, dafl die Photonenzustinde mit bestimmten Spirali-
titen mit den Zirkularpolarisationszustinden des Photons zusammenfallen.
&mn,{ — sei ein Koordinatensystem mit der {-Achse entlang der Impuls-
richtung des Photons (im Unterschied zur z-Achse, deren Lage nicht mit der
Bewegung des Teilchens gekoppelt ist). Betrachten wir z. B. den Photonen-
zustand mit der Spiralitdit A = 4+ 1. Nach den Formeln (41,9), die den Zu-
sammenhang zwischen den Komponenten der vektoriellen Wellenfunktion
(Teilchen mit dem Spin 1) und den Komponenten des Spinors 2ter Stufe her-
stellen, entspricht einem solchen Zustand die Wellenfunktion 4, deren Kom-
ponenten durch die Beziehungen 4, = 1 4,, A, = 0 miteinander verkniipft
sind. In der Tat ist dann von den drei Spinorkomponenten nur y!! von Null
verschieden, die gerade fiir die +1 {-Projektion des Spins zusténdig ist. Auf
analoge Weise entspricht die Wellenfunktion mit den Komponenten
A,= —14;, A, =0 dem Wert A = — 1. Die gleichen Beziehungen befrie-
digt gemeinsam mit dem Vektor A der Polarisationsvektor e, der als Faktor in
den Ausdruck (76,16) eingeht. Der Zusammenhang e, = 4 7e; besehreibt
aber gerade die zirkulare Polarisation (s. I § 70).

Die Nichtrealisierbarkeit des Falles 4 = 0 wird daraus offensichtlich, daB
einem solchen Wert der {-Projektion des Spins eine Wellenfunktion mit den
Komponenten 4 = 4, = 0, 4, 7 0 entsprechen wiirde, die (geméiB (41,9))
der Spinorkomponente g2 dquivalent ist; eine solche Funktion wird aber durch
die Forderung nach Orthogonalitit des Vektors A gegeniiber der Richtung k
ausgeschlossen.
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§79. Die KLEIN-Fock-Gleichung

Wir beginnen die Darlegung der relativistischen Quantentheorie von Teilchen
mit der Untersuchung der Eigenschaften der Wellenfunktion, die diese Teil-
chen beschreiben, und mit der Konstruktion der Wellengleichung, der diese
Funktionen geniigen. Es sei nochmals daran erinnert, dafl in der nichtrelati-
vistischen Theorie die Wellenfunktionen der Teilchen mit verschiedenen Spins
Spinoren verschiedener Stufen sind und dafl die Wellenfunktionen freier Teil-
chen ein und derselben Gleichung — der ScHRODINGER-Gleichung fiir die freie
Bewegung — geniigen. Wie wir sehen werden, hingt im Gegensatz dazu in
der relativistischen Theorie schon allein die Gestalt der Wellengleichung der
freien Bewegung betriachtlich vom Spin des Teilchens ab.

Am allereinfachsten ist natiirlich der Fall von Teilchen mit dem Spin 0.
In der nichtrelativistischen Theorie werden sie durch skalare Wellenfunktionen
beschrieben. In der relativistischen Theorie nimmt den Platz des dreidimen-
sionalen Skalars ein vierdimensionaler Skalar ein, der nicht nur gegeniiber der
Transformation der Raumkoordinaten, sondern auch gegeniiber den LORENTz-
Transformationen invariant ist.

In der relativistischen Mechanik bilden die Energie des Teilchens ¢ und ihr
Impuls p einen 4-Vektor p* = (¢, p).!) Entsprechend bilden auch die Opera-
toren, die diese GroBen beschreiben, einen 4-Vektor p#. Dem dreidimensionalen
Impuls p entspricht der Operator p = — ¢V, und der Energie (HamILTON-
Funktion) wird in der Wellengleichung der Operator die Differentiation nach
der Zeit ¢ 9/t (s. (8,1)) zugeordnet.

Auf diese Weise stellt sich der Operator des 4-Impulses als

- . ; ~ - 0 .
ﬂ:(tﬁ, —1V), pﬂ=(z~ﬁ, tV) (79,1)
bzw. (in vierdimensionaler Schreibweise) in der Form

K 7] .
; (79,2)

dar.
Wir wenden jetzt den skalaren Operator 22# P* — das Quadrat des 4-Vektors
p* — auf die Wellenfunktion ¥ an. Bekanntlich laBt sich das Quadrat des 4-Im-

1) In den Kapiteln XII—XVI werden wir die relativistische Energie eines einzelnen
Teilchens, die die Ruhenergie mit einschlieBt, durch den Buchstaben & bezeichnen.
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pulses auf eine konstante Gréfle, das Quadrat der Teilchenmasse m, zuriickfithren.
Deshalb muB} sich auch das Ergebnis einer Anwendung des erwdhnten Opera-
tors auf eine beliebige Wellenfunktion ¥ auf deren Multiplikation mit dem
Faktor m? zuriickfiihren lassen. Wir kommen somit zur Gleichung

P,PPY=m¥ (79,3)

oder (in ausgeschriebener Form)
2
(—5—2-+A)‘P=m“l/ (79.4)

(0. KLEIN, V. A. Focg, 1926).

Es sei darauf hingewiesen, daf fiir ein relativistisches Teilchen mit dem
Spin 0 keine HamiLTON-Funktion in dem Sinne existiert, wie sie in der nicht-
relativistischen Theorie definiert wurde. Tatsédchlich, (79,4) ist eine Differential-
_gleichung zweiter Ordnung beziiglich der Zeitvariablen. Im Unterschied dazu
besteht der Sinn des HAMILTON-Operatorsﬁ ja gerade darin, daB er die erste
Zeitableitung der Wellenfunktion geméB ¢ 0%¥/ot = H ¥ liefert.

Aus formalen Uberlegungen folgt auBerdem von vornherein (ganz zu schwei-
gen von den in § 75 dargelegten allgemeinen physikalischen Gesichtspunkten,
die iiberhaupt der Betrachtung der Wellenfunktion als Trager der Information
iiber die rdumliche Lokalisierung eines Teilchens entgegenstehen), daf fiir ein
Teilchen mit dem Spin 0 die Wahrscheinlichkeitsdichte seiner Lokalisierung in
den verschiedenen Raumpunkten nicht durch das Betragsquadrat |72 be-
stimmt werden kann. Der Grund dafiir liegt darin, daf in der relativistischen
Theorie die Verteilungsdichte der Teilchen und ihre Stromdichte einen 4-Vek-
tor bilden (vergleiche das in I § 54 zum 4-Vektor der Stromdichte Gesagte).
Die Teilchendichte ist die zeitliche Komponente dieses 4-Vektors und somit
kein Skalar. Deshalb kann sie sich keinesfalls durch eine skalare Grofe, wie
es das Betragsquadrat einer skalaren Funktion ist, bestimmen.

Aus Griinden, auf die in § 92 eingegangen wird, ist die Beschreibung von
Teilchen mit Hilfe einer skalaren Wellengleichung (79,4) im allgemeinen sehr
begrenzt. Wir werden uns deshalb an dieser Stelle nicht mit der Klidrung der
mathematischen Struktur der Gréfen aufhalten, die fiir diese Gleichung die
Rolle des 4-Vektors der Stromdichte und der Energiedichte der Teilchen
spielen.

§ 80. Vierdimensionale Spinoren

In der nichtrelativistischen Quantentheorie wird ein Teilchen mit dem Spin s
durch einen' symmetrischen Spinor der Stufe 2 s beschrieben, der eine Gesamt-
heit von 2 s 4+ 1 GroBen darstellt, die sich bei der Drehung des Koordinaten-
systems nach einem bestimmten Gesetz untereinander transformieren. Dieses
Gesetz spiegelt die Symmetrieeigenschaften des Teilchens wider, die mit der
Isotropie des Raumes im Zusammenhang stehen.
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In der relativistischen Theorie hingegen treten die Drehungen des rdum-
lichen Koordinatensystems nur als Spezialfall vierdimensionaler Drehungen,
der Drehungen des vierdimensionalen Raum-Zeit-Koordinatensystems, auf. Die
Gesamtheit aller dieser moglichen Transformationen bildet die sogenannte
LorENTz-Gruppe. Neben den dreidimensionalen Drehungen, die die Richtung
der Zeitachse unveridndert lassen, gehoren hierzu auch noch die gewdhnlichen
LorenTz-Transformationen (Drehungen in einer der Ebenen xt, yt oder zt
(s. I §36)). Im allgemeinen Fall besteht eine vierdimensionale Drehung aus
einer gewohnlichen LorENTz-Transformation und einer Drehung des rdaum-
lichen Koordinatensystems.

Bei der Beschreibung von Teilchen mit einem Spin tritt in der relativistischen
Quantentheorie folglich die Notwendigkeit auf, eine Theorie vierdimensionaler
Spinoren  (4-Spinoren) aufzubauen, die gegeniiber den Transformationen der
LoreNTz-Gruppe die gleiche Rolle spielen, wie die gewohnlichen (dreidimensio-
nalen) Spinoren gegeniiber der Gruppe der rdumlichen Drehungen.)

Der 4-Spinor erster Stufe

: .
£ = (iz) (80,1)

ist eine zweikomponentige GroBe, die sich bei allen Transformationen der
LorENTz-Gruppe nach (41,3)-analogen Formeln umwandelt:

=l i, =yP 48, (80.2)

Die komplexen Koeffizienten a, 8, y, d sind hierbei bestimmte Funktionen der
Drehwinkel des 4-Koordinatensystems (im allgemeinen Fall sind das 6 solche
Winkel — entsprechend der Zahl der Drehungen in den sechs Koordinaten-
ebenen zy, xz, yz, iz, ty, tz). Genau wie die Komponenten der Wellenfunktion
eines Teilchens mit dem Spin 1/2 entsprechen &' und &2 Zustinden mit Eigen-
werten +1/2 bzw. —1/2 der z-Projektion des Spins.

Aus dem gleichen Grunde wie bei den dreidimensionalen Spinoren, sind die
Koeffizienten der Transformation (80,2) durch Beziehung (41,5) miteinander
gekoppelt, die wir nochmals anfiihren:

xd—yp=1. (80,3)

Durch diese Gleichung wird die Invarianz der bilinearen antisymmetrischen
Kombination

pE_pm (80,4)

aus den Komponenten zweier beliebiger Spinoren £ und = gewihrleistet. Wie
auch im Falle dreidimensionaler Spinoren definiert die Beziehung (80,4) die
Regel fiir die Bildung des Skalarproduktes zweier Spinoren.

1) Mit anderen Worten verkérpern die 4-Spinoren irreduzible Darstellungén der Lo-
RENTZ-Gruppe, dhnlich wie die dreidimensionalen Spinoren irreduzible Darstellungen der
Drehgruppe liefern.
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Ein Unterschied zum dreidimensionalen Fall entsteht jedoch bei der Be-
trachtung komplex konjugierter Spinoren. In der Theorie dreidimensionaler
Spinoren (§ 41) wird das Transformationsgesetz eines konjugiert komplexen
Spinors aus der Forderung gewonnen, dafl die Summe

grérx 4 g2 e (80,5)
die die Wahrscheinlichkeitsdichte fiir die Lokalisierung des Teilchens im Raum
bestimmt, ein Skalar sein muf}; hieraus entstanden die Beziehungen (41,6)
zwischen den Koeffizienten «, 3,7, . In der relativistischen Theorie ist die
Teilchendichte jedoch kein Skalar, sondern reprisentiert die zeitliche Kompo-
nente eines 4-Vektors (wie schon im vorhergehenden Paragraphen erwihnt).
In Verbindung damit entfillt die angefiihrte Beziehung, und den Transforma-
tionskoeffizienten werden (auBer (80,3)) keinerlei zusitzliche Bedingungen auf-
erlegt. Die vier komplexen GréfBen, die nur durch die eine Bedingung (80,3)
miteinander gekoppelt sind, sind 8 — 2 = 6 reellen Parametern in Uberein-
stimmung mit der Zahl der Transformationsparameter der LORENTz-Gruppe
dquivalent.

. Die Transformation (80,2) und die zu ihr komplex konjugierte erweisen sich
somit als vollig verschieden. Daraus folgt, daf es in der relativistischen Theorie
zwei Spinortypen gibt. Um diese zwei Typen voneinander zu unterscheiden,
werden spezielle Bezeichnungen verwendet: Die Indizes der Spinorkompo-
nenten, die sich nach den komplex konjugierten Formeln (80,2) transformieren,
werden als Ziffern mit einem dariiber liegenden Punkt (punktierte Indizes)
geschrieben:

ni

n= (ﬂé) . ' (80,6)
Der Zusammenhang zwischen den Transformationsgesetzen dieses Spinors und
des Spinors é* wird durch die Regel

,7i ~ 2% ni ~ — £1% (80,7)
hergestellt (das Zeichen ~ bedeutet hier und im weiteren Text dieses Para-
graphen die Worter ,transformiert sich wie®).

Wie schon gesagt, enthilt die LORENTz-Gruppe u. a. auch die rein rdum-
lichen Drehungen — Drehungen des dreidimensionalen Koordinatensystems.
Diesen Transformationen gegeniiber verhalten sich die 4-Spinoren genau so
wie die dreidimensionalen Spinoren. Dabei verschwindet natiirlich der Unter-
schied zwischen den punktierten und nichtpunktierten 4-Spinoren, d. h.,
beide Typen transformieren sich auf die gleiche Weise. Eben darin besteht
sozusagen auch der Sinn der Einfithrung der punktierten 4-Spinoren nach
der Regel (80,7). Tatsichlich, ein konjugiert komplexer dreidimensionaler
Spinor transformiert sich (wie aus § 43 bekannt) nach der Regel &% ~ £2,
£2¥ ~ — £1; ein Vergleich mit (80,7) zeigt, daB folglich beziiglich rdumlicher
Drehungen auch

i~ e~ | (80,8)
gilt.
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Ein 4-Spinor hoherer Stufe wird als Gesamtheit von Grofen definiert, die
sich wie Produkte von Komponenten mehrerer Spinoren erster Stufe trans-
formieren. Dabei kénnen unter den Indizes des Spinors héherer Stufe sowohl
punktierte als auch nichtpunktierte Indizes auftreten. So existieren z. B. drei
Spinortypen 2ter Stufe:!)

f"ﬂ ~ &= =P 5 C“ﬁ. ~ & 77#., 17“"3. ~ n“'H‘é B (80,9)
Ein Spinor 2ter Stufe besitzt 2.2 =4 Komponenten. Wenn beide seiner
Indizes von derselben Art sind (beide punktiert, bzw. beide nichtpunktiert), so
kann man den Spinor in einen symmetrischen 1/2 (£*# 4 £#°) und einen anti-
symmetrischen Teil 1/2 (§*f — £#*) zerlegen. Der antisymmetrische Teil hat
nur eine Komponente, 1/2 (£12 — £21), die einen Skalar darstellt (Vgl. mit dem
Skalar (80,4)). Der symmetrische Teil hingegen ist eine Gesamtheit von drei
unabhédngigen GréBen (611, £22, 1/2 (&2 + 521)), die sich bei Transformationen
der LorENTz-Gruppe durcheinander ausdriicken.

Fiir einen Spinor ,,gemischten Typs, g8, ist die Reihenfolge der punk-
tierten und nichtpunktierten Indizes im allgemeinen nur durch Vereinbarung
festgelegt, da diesen Indizes verschiedene Transformationsgesetze entsprechen.
Alle vier Komponenten eines solchen Spinors driicken sich dabei durcheinander
aus und diese Zahl kann durch keinerlei Linearkombinationen von Spinor-
komponenten reduziert werden. Ein 4-Vektor besitzt auch vier Komponenten
und diese . Komponenten transformieren sich ebenfalls bei LorENTz-Transfor-
mationen untereinander. Es ist deshalb klar, dal es zwischen den Kompo-
nenten eines gemischten 4-Spinors 2ter Stufe und den Komponenten eines
4-Vektors einen bestimmten Zusammenhang geben muB.

Dieser Zusammenhang wird durch folgende Formeln geliefert :

12 —gd 4 g0, t2l — g3 _ qo,

) ; 80,1
M— gl 4 a2, 722 —gl 4 a2, (80,10)

wobei a* = (a®, @) irgendein 4-Vektor ist. Die Richtigkeit dieser Formeln ergibt
sich aus folgenden Uberlegungen.

Wie schon erwéihnt, verschwindet beziiglich raumlicher Drehungen der Unter-
schied zwischen punktierten und nichtpunktierten Spinoren, wobei sich sowohl
die einen als auch die anderen dabei wie dreidimensionale Spinoren verhalten,
Aus diesem Grunde muf} sich die Gesamtheit der drei Grofien

Pl gl g8, {22 =gt iq?, _;(C’é+52i)=a3

wie ein dreidimensionaler symmetrischer Spinor 2ter Stufe verhalten, und die
angefiithrten Formeln miissen mit dem in § 41 erhaltenen Zusammenhang zwi-
schen den Komponenten eines solchen Spinors und den Komponenten eines

1) Mit den ersten Buchstaben des griechischen Alphabets (a, 8, . . .) bezeichnen wir in
§§ 80 —82 Spinorindizes, die die Werte 1, 2 durchlaufen.
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dreidimensionalen Vektors zusammenfallen; ein Vergleich mit den Formeln
(41,9) zeigt, daB diese Bedingung in der Tat erfiillt ist.
Die antisymmetrische Kombination &2 — &21 transformiert sich (bei allen

Transformationen der LORENTz-Gruppe) wie die Differenz &! né — §2ni; n
Ubereinstimmung mit der Definition (80,7) ist dies der Beziehung

P12 [ o EL ELX L R g2k
dquivalent.
Eine solche Summe muf} jedoch, wie schon in Verbindung mit (80,5) unter-

strichen wurde, die zeitliche Komponente eines 4-Vektors darstellen. Diese
Bedingung ist ebenfalls erfiillt, denn in Ubereinstimmung mit (80,10) gilt

1 . .
T (12 — 21y = o,
§ 81. Die Inversion von Spinoren

Bei der Diskussion der dreidimensionalen Theorie der Spinoren (in § 41) haben
wir deren Verhalten gegeniiber der Operation der rdumlichen Inversion nicht
betrachtet, da dies in der nichtrelativistischen Theorie zu keinerlei neuen
physikalischen Ergebnissen gefiihrt hdtte. Wir verweilen jedoch jetzt etwas
bei dieser Fragestellung, da dies dem besseren Verstindnis der sich anschlie-
Benden Betrachtung der Inversionseigenschaften der 4-Spinoren dient.

Die Inversion kehrt die Richtungen der riumlichen z-, y-, z-Koordinaten-
achsen um. Nach einer zweimaligen Inversion kommt man zum urspriinglichen
Koordinatensystem zuriick. Im Fall von Spinoren kann die Riickkehr zur
anfinglichen Lage jedoch unter zwei verschiedenen Gesichtspunkten betrachtet
werden: als eine Drehung des Systems um 0° oder um 360°. Fiir Spinoren sind

1

diese beiden Operationen nicht dquivalent, da ein Spinor y = (zz) bei einer
Drehung um 360° das Vorzeichen dndert. Deshalb sind zwei alternative Kon-
ventionen fiir die Spinorinversion moglich: Eine zweifache Inversion 148t den
Spinor unverdndert bzw. éndert dessen Vorzeichen. Die Wahl einer dieser
zwei Definitionen hat keinen Einfluf} auf die im folgenden besprochenen physi-
kalischen Resultate; wir legen uns der Bestimmtheit wegen auf die erste fest,
d. h., es sei:

Pr=q1. (81,1)

Die Inversion der Koordinaten dndert das Vorzeichen von Polarvektoren,
laBt aber Axialvektoren unverdndert. Zu den letzteren gehoren die Vektoren
des Drehimpulses, u. a. auch der Vektor des Spins. Deshalb dndert sich also
auch die Projektion des Spins auf die z-Achse nicht. Hieraus folgt, daB sich
bei der Inversion jede der Komponenten !, 92 eines dreidimensionalen Spinors
(die fiir einen bestimmten Wert s, zusténdig ist) nur durch sich selbst trans-
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formieren kann. In Ubereinstimmung mit (81,1) heiBt das:
ﬁw“ = 4 1/)"‘ (L! = 1, 2) . (81:2)

Wir miissen aber unterstreichen, dafl die Zuordnung dieser oder jener Paritit
(+1 oder —1) fiir den Spinor keine absolut zu verstehende Bedeutung hat,
da der Spinor bei einer Drehung um 2 7 sein Vorzeichen wechselt, und diese
Drehung in jedem Fall gleichzeitig mit der Inversion durchgefiihrt werden
kann. Absoluten Charakter besitzt aber die ,relative Paritdt‘ zweier Spinore y
und ¢, die als Paritdt des aus ihnen gebildeten Skalars y! ¢? — ¢? ¢! definiert
ist; da bei einer Dreliung um 27z alle Spinoren gleichzeitig ihr Vorzeichen
dndern, hat die damit verbundene Unbestimmtheit keinen Einfluf auf die
Paritdt (—1 oder 4 1) des angefiihrten Skalars.

Wir wenden uns jetzt den vierdimensionalen Spinoren zu.

Die Forderung, dafl sich nur Groflen, die zu den gleichen Werten s, gehoren,
untereinander transformieren, bleibt verstdndlicherweise auch in diesem Fall
erhalten. Es kann dies aber schon nicht mehr die Transformation (81,2) (und
dieselbe fiir die punktierten Spinoren) sein, wie z. B. aus folgenden Uber-
legungen ersichtlich ist. Als Folge von (81,2) wiirden sich auch die Kompo-
nenten von 4-Spinoren hoéherer Stufe nur in sich selbst transformieren.
Das wiirde aber den Formeln (80,10) widersprechen: Bei der Inversion der
rdumlichen Koordinaten éndern die Komponenten a!, a?, a® eines (polaren)
Vektors @ ihr Vorzeichen, a® bleibt jedoch unverdndert; deshalb kénnen sich
{12 und {2 prinzipiell nicht in sich selbst transformieren.

Eine Inversion mufl also die Komponenten eines 4-Spinors &£* in andere
GroBen transformieren. Solche Grofien kénnen nur die Komponenten eines

anderen Spinors 1]';‘ sein, der ein anderes Transformationsverhalten zeigt als &
Wenn man wiederum die Inversion als Operation versteht, die der Bedingung
(81,1) geniigt, kann man das Ergebnis ihrer Anwendung mit Hilfe der Formeln

Pe—=y, Ppr=¢ (81,3)
definieren. Bei zweifacher Wiederholung dieser Operation gehen in Uberein- .

stimmung mit der Definition (81,1) &* bzw. 7;“" in sich selbst iiber.
Auf diese Weise fordert die Einbeziehung der Inversion in die Reihe der
zuléssigen Symmetrietransformationen die gleichzeitige Betrachtung eines

Spinorenpaares (£°% 1;";); ein solches Paar wird als Bispinor bezeichnet.

§ 82. Die Dirac-Gleichung

Am wichtigsten ist der Fall des Spins 1/2, zu dem der groBite Teil der Elementar-
teilchen gehért. Wie aus dem eben Besprochenen klar hervorgeht, ist die
Wellenfunktion, die solche Teilchen in der relativistischen Theorie beschreibt,
ein Bispinor; sie stellt eine Gesamtheit von vier Komponenten dar anstelle

17 Xurzfassung II
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der zwei Komponenten der Spinorwellenfunktion der nichtrelativistischen
Theorie. Wir kommen jetzt zur Ableitung der Wellengleichung, der die Bi-
spinorwellenfunktion eines freien Teilchens geniigen mu8.

Aus den gleichen Uberlegungen, wie sie in § 79 dargelegt wurden, ist von
vornherein klar, daB bei jeder Komponente der Wellenfunktion im Resultat
der Anwendung des Operators p, p* der Faktor m? auftauchen mu8, d. h., da8
jede Komponente der KLEIN-Fock-Gleichung geniigen mu. Von vornherein ist
jedoch auch offensichtlich, dal im gegebenen Falle diese Gleichung zweifellos
nicht hinreichend ist. Tatsdchlich, von den vier Komponenten der Bispinor-
wellenfunktion kénnen nur zwei linear unabhéngig sein, entsprechend der Zahl
von Werten, die die Projektion des Spins 1/2 annehmen kann. Das vollstandige
System der Wellengleichungen muf folglich eine lineare differentielle Kopplung
zwischen den Komponenten des Bispinors beinhalten, die mit Hilfe des Ope-
rators P, = ¢ 8/dz* verwirklicht wird, wobei diese Kopplung offensichtlich
durch relativistisch invariante Beziehungen ausgedriickt sein mu8.

Da die Wellenfunktion aus einem Satz von zwei Spinoren (wir bezeichnen

sie mit £* und 17‘;) besteht, erscheint es fiir das Erreichen des vorgegebenen
Ziels natiirlich, anstelle des 4-Vektors p* den ihm (gemi8 (80,10)) dquivalenten

Spinoroperator 2-ter Stufe *# mit den Komponenten
pri = 5+ 30, P = — 0,
Pi= —ppiRt,  pE—prip
einzufiihren.

Wir wenden den Operator i)“i’ auf den Spinor £* an und bilden (nach der
Regel (80,4)) das Skalarprodukt hinsichtlich des Paares nichtpunktierter In-

dizes:

(82,1)

pb g —peb g1,
Dieses Produkt ist noch ein Spinor erster Stufe beziiglich des punktierten

Indexes; es kann sich also nur durch den punktierten Spinor nﬁ ausdriicken
lassen. Somit erhélt man die Gleichung

Prhge R EL — gy (82,2a)
mit m — einer Konstanten (die, wie aus dem Folgenden ersichtlich, die Teil-

chenmasse ist). Analog erhélt man nach Anwenden des Operators @“B auf den

Spinor 77‘" unter Bildung des Skalarproduktes beziiglich des punktierten Index-
paares die Gleichung

f)aé 1"1 _ ’z‘)ai,,?é =mé. (82,2b)

Die relativistische Invarianz dieser Gleichungen wird automatisch durch die
Spinorschreibweise gewahrleistet: Auf beiden Seiten jeder Gleichung stehen
Spinoren des gleichen Typs (punktiert bzw. nichtpunktiert), die sich bei
LoreNTz-Transformationen nach ein und denselben Regeln transformieren.



§ 82. Die Dirac-Gleichung 245

Die relativistische Wellengleichung, die durch das System (82,2) wieder-
gegeben wird, heilt Dimac-Gleichung (sie wurde 1928 von P. A. M. Dirac auf-
gestellt).

Nach Einsetzen der Ausdriicke (82,1) fiir die Operatorkomponenten p“ﬂ in
die Gleichungen (82,2) erhilt man

%’062 _ixél —iﬁyél +§9252 =m772 3
Do + Patf — i Py + Pt =m &, }
Pon® + Pamt+ iPy 0 — Pt = m £
mlt po =1t 0/0t; Des Dy» ?, sind die drei Komponenten des Vektoroperators
p = - 1' v ’

Fiir ein freies Teilchen, das sich mit einem bestimmten Impuls p und der
Energie & bewegt, sind alle Komponenten der Wellenfunktion dem Faktor
¢Pr—¢0) (gebene Welle) proportional. Das Anwenden des Operators p, fiihrt
zur Multiplikation einer solchen Funktion mit £ und das Anwenden des Ope-
rators p zur Multiplikation mit p. Also 1Bt sich das System von Differential-

gleichungen (82,3) auf ein System homogener linearer algebraischer Gleichungen
zuriickfithren:

i’ofl_i’zgz'*‘if’vfz_%z'fl:m’?i; }

(82,3)

(€ —P) & — (p —ip,) E =mui, }
— @+ i) E 4 e+ p) 8 = mopt,

82,4
e+ PN+ (B —ip) P2 =m &, } i

(
(P +ip)m} + (6 — p) 7P = m 2.

Jedes dieser zwei Gleichungspaare bestimmt zwei Komponenten des Bi-
spinors bei vorgegebenen zwei restlichen Komponenten. Damit diese beiden
Glelchungspaare miteinander vertrdglich sind, mufl z. B. das Einsetzen von
n* und 7? aus dem ersten Paar in das zweite zu einer Identitdt filhren. Wie
man sich leicht iiberzeugen kann, mu$ dafiir

&2 —px ';py _pz = g? —P2=m2

erfiillt sein; dies entspricht gerade dem relativistischen Zusammenhang zwischen
der Energie des Teilchens und seinem Impuls, wenn m die Teilchenmasse ist.
Damit ist der Sinnderin die Gleichung (82,2) eingefiihrten Konstante m geklart.

Der Tatbestand, dafl von den vier Komponenten der Bispinorwellenfunktion
eines freien Teilchens nur zwei unabhéngig vorgebbar sind, steht im Einklang
damit, daB sich bei vorgegebenem Impuls die Teilchenzusténde nur noch durch
die Spinprojektion unterscheiden konnen, die insgesamt nur zwei verschiedene
Werte annehmen kann.

Im nichtrelativistischen Grenzfall kleiner Geschwindigkeiten darf das Teil-
chen nur durch eine zweikomponentige Grole — einen dreidimensionalen

17x
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Spinor — beschrieben werden. Wenn die Geschwindigkeit ® — 0 geht, strebt
der Impuls p ebenfalls gegen Null, und die Energie ¢ strebt gegen die Ruhe-
energie m (m ¢ — in gewShnlichen MaBleinheiten). Aus den Gleichungen (82,4)
folgt dann & = #°*, d. h., beide Spinoren, die den Bispinor bilden, sind in
der Tat gleich.

Die beiden Gleichungspaare (82,3) kann man mit Hilfe der PauLi-Matrizen

01 0 —i 1 o0 6o
9% =\10)" %=\ o) %=\0 —1 (82,9)

(die schon in § 40 eingefiithrt wurden) in kiirzerer Form schreiben. Vereinigt
man diesedrei Matrizen zu einem ,,Matrizenvektor ¢, so sieht die Kurzschreib-
weise des Gleichungspaares (82,3) wie folgt aus: :

(Po—poO)E=my, (Do +Po)yn=mé&. (82,6)
Wie immer verstehen wir unter der Multiplikation der PauLi-Matrizen mit den
zweikomponentigen Groflen £ oder % eine Multiplikation nach der iiblichen Ma-
trizenregel: Die Zeilen der Matrix werden mit den Spalten & bzw.  multi-
pliziert; z. B. ist

we=( (E)=(7F)

§ 83. Die Dirac-Matrizen

usw.

Die Spinorschreibweise der Dirac-Gleichung ist in dem Problem dem Sinne
angepalBt, daBl sie unmittelbar die relativistische Invarianz der Gleichung
hervorhebt. Nachdem auf diese Weise die Form der Gleichung gefunden ist,
kann man mit gleichem Recht fiir die vier unabhiéngigen Komponenten der
Wellenfunktion irgendwelche andere linear unabhéngige Kombinationen der
urspriinglichen Komponenten wihlen. Beim Umgang mit der Dirac-Gleichung
ist es oftmals bequemer, sie in ihrer allgemeinsten Schreibweise zu benutzen,
fir die die Art der Wahl der Komponenten der Wellenfunktion nicht von
vornherein festgelegt ist.

Wir werden die vierkomponentige Wellenfunktion mit dem Symbol ¥ be-
zeichnen. Sie besitzt die Komponenten ¥;, die durch die Indizes i = 1, 2, 3, 4
numeriert sind. Die Wellenfunktion kann als Spalte!) dargestellt werden:

~ . Tl
(83,1)

1) Fiir einezweckméBige Gestaltung der Ausdriicke verabreden wir, die vierkomponentige
GroBe ¥ nicht nur im Falle ihrer Spinordarstellung, sondern auch in jeder beliebigen
Darstellung Bispinor zu nennen. Dementsprechend werden auch die Indizes, die ihre
Komponenten numerieren, als Bispinorindizes bezeichnet.
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Das System der Dirac-Gleichungen schreiben wir in der Form:
PV Pr=m¥,, (83,2)

wobei y# (u =0, 1, 2,3) vierspaltige Matrizen mit den Elementen y4; (¢, k
=1, 2, 3, 4) sind; die Summation auf der linken Seite von (83,2) wird sowohl
iiber den Matrizenindex (Bispinorindex) k als auch iiber den 4-Vektorindex u
ausgefiihrt.!) Die Matrizenindizes werden gewdhnlich weggelassen, so dal die
Gleichung in symbolischer Form

[V P —m]¥ =0 (83,3)

mit
s ~ ~ . 4

?"p;‘:poy"—lw=z(y°g+yv) (83,4)
lautet. Das Symbol y steht fiir den dreidimensionalen ,,Matrizenvektor‘ mit den
Komponenten y!, 92 und 3. Die Darstellung von ¥ in Form einer Spalte
(83,1) fiihrt dazu, daB die Multiplikation der Matrix y* mit ¥ in (83,3) gemd8
der gewdhnlichen Matrizenregel vor sich geht: Jede Zeile der Matrix y* multi-
pliziert sich mit der Spalte ¥':

" V) =¥ P - (83,5)

Die Matrizen p* heilen Dirac-Matrizen. Im allgemeinen Falle einer belie-
bigen Darstellung der Wellenfunktion miissen sie nur den Bedingungen ge-
niigen, dafl die Gleichung

(P* D) ¥ =m ¥
erfiillt ist — jede Komponente ¥ mufl der KLEIN-Fock-Gleichung geniigen.
Zum besseren Verstdndnis dieser Bedingungen multiplizieren wir (83,3) von
links mit 9* p,. Wir erhalten
D)D) =0 p)mP =m¥.

Da alle Operatoren f)“ untereinander vertauschbar sind, ist das Produkt , ,
ein symmetrischer Tensor: p, D, =7, fi),, Das Produkt y* 4" zerlegen wir in
einen symmetrischen und einen antisymmetrischen Teil:

1 1
YV =g WY YY)+ Y =Y.
1) Zur Illustration schreiben wir die Ausdriicke fir die Matrizen y# auf, die der Spinor-

darstellung der Wellenfunktion entsprechen. Wenn ¥, = &1, ¥, = &, ¥; = 7].5 Y, =n?
ist, so haben wir -

0010 00 0 —1
) 0001 X 00 —1 0)
Y=l1000]’ =101 o o)’
0100 10 0 0
0 0 034 0 0-10
,_ [0 o0 —io s [0 o o1
=10—-i o00])] =11 o0 oo
i 0 00 0—-1 00
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Nach der Multiplikation mit p, p, verschwindet der letzte Teil, so daB

1 Ao~

sV +yyInp ¥ =m¥

verbleibt. Damit der Operator der linken Seite der Gleichung auf 13” P* zuriick-
gefithrt werden kann, miissen alle Matrizenpaare mit u 7= » antikommutieren
(p# 9" = — 9’ 9*) und die Quadrate der Matrizen gleich

PPR=0=0p=1, 2=—-1 (83,6)
sein (die 1 auf den rechten Seiten der Gleichungen ist natiirlich als Einheits-

matrix zu verstehen). Alle diese Bedingungen kann man in der zusammen-
gefafiten Form

Y Yy =2g" ' (83,7
schreiben; g#* ist der sogenannte metrische Tensor mit den Komponenten
—-1000
0100
my — p—
*=9.=| 0010 (83,8)
0001

Die Gleichungen (83,7) bestimmen alle Eigenschaften der Dirac-Matrizen,
die notwendig sind, um mit ihnen operieren zu kénnen. Im allgemeinen ist es
nicht notwendig, jeweils zu konkreten Darstellungen dieser Matrizen iiberzu-
gehen.

Die Dirac-Gleichung kann in einer Form dargestellt werden, in der die Ab-
leitung nach der Zeit explizit auftritt, so daf es fiir Teilchen mit dem Spin 1/2
moglich ist, den Begriff des HaMiLTON-Operators einzufiihren. Indem wir die
Gleichung

~ A 4 ~
P p—mP =iy — —yp¥ —m¥=0
von links mit 9° multiplizieren, fithren wir den Koeffizienten bei ¢ 0¥/t auf
eins zuriick (genauer — auf die Einheitsmatrix). Somit erhalten wir
k4 2
1 =0"yP+my) ¥,

Der Operator, der auf der rechten Seite dieser Gleichung auf ¥ angewendet
wird, ist also der HaMinToN-Operator des Teilchens. Gewdhnlich schreibt man
ihn in der Form

H=ap+mp (83,9)

unter Einfiihrung spezieller Bezeichnungen fiir die Matrizen: & = %y, f# = »°.
Man kann sich leicht (mit Hilfe der Beziehungen (83,7)) davon iiberzeugen,
daBl das Quadrat des Operators (83,9) gleich

ﬁ2=f32+m2
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ist, wie zu erwarten war. In diesem Sinne kann man sagen, daBl der Ausdruck
(83,9) die Quadratwurzel aus der Summe p? 4 m? darstellt.

Am Ende des vorhergehenden Paragraphen wurde unterstrichen, daB im
Grenzfall kleiner Geschwindigkeiten die beiden Spinoren £ und #, die den Bi-
spinor ¥ bilden, einander gleich werden. Hierbei zeigt sich jedoch ein gewisser
Nachteil der Spinorschreibweise der Dirac-Gleichung: Beim Grenziibergang
bleiben alle vier Komponenten der Wellenfunktion von Null verschieden, ob-
gleich in Wirklichkeit nur zwei von ihnen unabhingig voneinander sind. Des-
halb kann sich solch eine Darstellung der Wellenfunktion als praktischer er-
weisen, bei der zwei ihrer Komponenten im Grenzfall verschwinden.

Dieses Ziel wird durch das Einfiihren von Linearkombinationen aus & und y

R R TR (83,10)

erreicht bzw. (in ausgeschriebener Form):

R
Y= =75 \g2 2]’ = =7a \g2 — p2)°
®) V2 \&+1 xe] V2 \&¥—17

Fiir ein ruhendes Teilchen ist dann y = 0. Die Darstellung, in der als ¥-Kom-
ponenten @y, @y, ¥, X; auftreten, heilt Standarddarstellung. Wir benutzen sie
in § 93 bei der Untersuchung der Bewegung eines Elektrons in einem' &ufleren
Feld. Hier schreiben wir die Dmrac-Gleichung in dieser Darstellung zunédchst
fir ein freies Teilchen auf. Indem man die Gleichungen (82,6) gliedweise
summiert bzw. subtrahiert, ergibt sich

Do —POy=mep,

- (83,11)
—Poxt+tpop=my.

§ 84. Die Stromdichte in der Dirac-Gleichung

Wir konstruieren jetzt zwei Gréfen, die fir die DmAC-Gleichung die Rolle der
Teilchendichte ¢ und des Teilchenstromesj spielen. In der relativistischen
Theorie bilden diese Grofilen den 4-Vektor j# = (0,j). Sie geniigen der Kon-
tinuitdtsgleichung, die sich in vierdimensionaler Form als

o

9 _ o (84,1)

dxr

darstellt (vgl. I § 53). Diese Gleichung driickt den Erhaltungssatz fiir die
GroBe

Q=S pdV (84,2)
aus. In der nichtrelativistischen Theorie ist das einfach der Erhaltungssatz
fir die Zahl der Teilchen; in der relativistischen Theorie hingegen éndert sich
der Sinn des durch die Gleichung (84,1) ausgedriickten Gesetzes, wie in § 86
gezeigt wird.
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Die GroBen j* stellen bilineare Ausdriicke in der Wellenfunktion ¥ und der zu
ihr komplex konjugierten GréBe ¥* dar. Um diese Ausdriicke zu erhalten,
ist es deshalb notwendig, zuerst die Form der Gleichung aufzufinden, der die
Funktion ¥* geniigt. Die Wellenfunktion selbst erfiillt die Dirac-Gleichung

0 .
(puy”—m)kt’:(iy“%—-i—‘LyV—m)‘P:O. (84,3)
Die komplexe Konjugation liefert
0
(—iy°*5t——iy*V —m)?’* =J0P

Aus den in der FuBnote auf Seite 247 enthaltenen Ausdriicken fiir die Ma-
trizen y* folgt

POt = PO* =0, »=—v, (84,4)

d. h., die Matrix 9° ist hermitesch, widhrend die Matrizen y!,y2,93 ,anti-
hermitesch® sind (wir erinnern daran, dafl das Zeichen ~ die Transponierung,
d. h. das Vertauschen von Zeilen und Spalten einer Matrix, bedeutet).!) Des-
halb gilt y%* = 90, y* = — p*, so daB wir

(—i;°£+wv—m)5v*=o

erhalten. Um zu den urspriinglichen (nichttransponierten) Matrizen zuriick-
zukehren, bemerken wir, daf’

PV =y P =y =Py
ist; in der symbolischen Schreibweise ¥* y* (ohne Matrixindizes) ist ¥* als

die Zeile
P — R

zu verstehen, die mit den Spalten der Matrix * zu multiplizieren ist. Hiermit
erhalten wir

0

YI* (__ 7 yo el

= +i;vV—m)=0,

wobei angenommen wird, daf die Differentialoperatoren auf die links von ihnen
stehende Funktion ¥* angewendet werden. Da sich die Vorzeichen des ersten
und zweiten Gliedes des Klammerausdruckes unterscheiden, kénnen sie noch
nicht zu einer vierdimensionalen Form gebracht werden. Um diese Unzuldng-
lichkeit zu iiberwinden, multiplizieren wir die ganze Gleichung mit 9°, und
durch y 9® = — 9%y gewinnen wir

Y’*y°(iy°%+iyv+m)=0.

1) Die Ausdriicke auf S. 247 beziehen sich auf eine konkrete Darstellung der Matrizen
(Spinordarstellung); die Eigenschaften (84,4) hdngen aber in Wirklichkeit nicht von der
Darstellung ab.
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Die Funktion ¥* 0 heifit Drrac-konjugiert in bezug auf die Funktion ¥ und
wird mit einem iiber dem Symbol ¥ befindlichen Strich geschrieben:

Y= koo, Pr = Py, (84,5)
Somit erhalten wir endgiiltig
Y (p,y* +m) =0. (84,6)

Jetzt ist es nicht mehr schwierig, einen Ausdruck fiir die Stromdichte als
4-Vektor zu finden, der die Kontinuitdtsgleichung (84,1) erfiillt. Dazu multi-
plizieren wir die Gleichung (84,6) von rechts mit ¥, die Gleichung (84,3) von
links mit ¥* und addieren beide gliedweise. Die Glieder + m ¥* ¥ kiirzen
sich dabei gegenseitig, und es verbleibt
¥ L v =o0.

R A
G VY = o

Diese Beziehung hat in der Tat die Form der Kontinuitédtsgleichung, in der die
Rolle der Stromdichte der 4-Vektor

=P (84,7)

spielt (in der ausfiihrlichen Schreibweise mit Matrixindizes: j# ='¥7¢yfk ).
Die zeitliche Komponente des 4-Vektors (84,7) ist gleich der Teilchendichte

g=H P e W= [W® + [F0 3|5 + BRI (84,8)

und die drei rdumlichen Komponenten bilden den dreidimensionalen Strom-
vektor

mit & = 9%y dem ,,Matrixvektor‘’, der schon in (83,9) eingefithrt wurde. Wir
mochten die Aufmerksamkeit darauf lenken, daB3 e hier die Rolle des Operators
der Teilchengeschwindigkeit spielt.

Die Beziehung (84,7) wird jetzt zur Normierung der ebenen Welle — der
Wellenfunktion des Zustandes eines freien Teilchens mit bestimmten Werten
fir den Impuls p und der Energie ¢ — benutzt. Mit dem Ziel, die Normierung
»1 Teilchen im Volumen £ zu gewinnen, schreiben wir die Welle in der
Form

1 .
lp:]/fu(p) g-iti-pm, (84,10)

die Wellenamplitude u(p) = u(e, p) ist ein konstanter Bispinor, der vom
4-Impuls des Teilchens abhingt. Die Komponenten dieses Bispinors geniigen
dem algebraischen Gleichungssystem

@ p,—m)u=0, (84,11)

das beim Einsetzen von (84,10) in die Dirac-Gleichung (84,3) erhalten wird
(die Operatoren f)y gehen dabei einfach in die GroBen p, iiber). Wir zeigen
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nun, dafl man die geforderte Normierung der Funktion (84,10) erhilt, wenn
die Amplitude u(p) durch die Bedingung

wu= ’:— (84,12)

normiert wird. In der Tat, nach Multiplikation der Gleichung (84,11) von

links mit % erhdlt man '
(uy* u) p, = m(% u) =m72.

Daraus ist zu sehen, dal u y* u = p*/e ist, so daB sich der 4-Vektor des Stromes

als B . y

?‘” =97}}"¥I=D-Ey#u:g—e (84,13)

ergibt. Die Teilchendichte ist dabei ¢ = p%e 2 = 1/£2 und liefert somit
gerade die geforderte Normierung. Die dreidimensionale Stromdichte hat den
Wert j = pfe 2 = v/ mit v als Teilchengeschwindigkeit.



Teilchen und Antiteilchen : XIII

§ 85. ¥ -.Operatoren

In Kapitel XI haben wir gezeigt, auf welche Weise man ein freies elektro-
magnetisches Feld quantentheoretisch beschreiben kann. Dabei sind wir von
den bekannten Eigenschaften des Feldes im klassischen Grenzfall ausgegangen
und haben uns auf die Vorstellungen der iiblichen Quantenmechanik ge-
stiitzt. Die so erhaltene Beschreibung des Feldes als Photonensystem besitzt
viele Ziige, die auch auf die relativistische Beschreibung von Teilchen in der
Quantentheorie iibertragen werden kénnen.

Das elektromagnetische Feld ist ein System mit unendlich vielen Freiheits-
graden. Es existiert kein Erhaltungssatz fiir die Teilchenzahl (Photonenzahl),
und unter den moglichen Zustdnden gibt es Zustdnde mit beliebigen Teilchen-
zahlen.l) In einer relativistischen Theorie miissen auch Systeme beliebiger
Teilchen im allgemeinen diese Eigenschaft haben. Die Erhaltung der Teilchen-
zahl in der nichtrelativistischen Theorie hingt mit dem Erhaltungssatz fiir die
Masse zusammen: Die Summe der Teilchenmassen (Ruhmassen) dndert sich
bei einer Wechselwirkung nicht; die Erhaltung der Gesamtmasse in einem
Teilchensystem bedeutet aber auch, dall die Teilchenzahl tinverdnderlich ist.
In der relativistischen Mechanik gibt es keinen Erhaltungssatz fiir die Masse,
es muBl nur die Gesamtenergie eines Systems erhalten bleiben (die die
Ruhenergien der Teilchen mit einschlieft). Deshalb braucht die Teilchen-
zahl nicht mehr erhalten zu bleiben, und jede relativistische Theorie fiir
Teilchen muB eine Theorie mit unendlich vielen Freiheitsgraden sein. Eine
solche Theorie wird mit anderen Worten den Charakter einer Feldtheorie
annehmen.

Der zur Beschreibung von Systemen mit verdnderlicher Teilchenzahl adé-
quate mathematische Apparat ist ‘der Apparat der zweiten Quantisierung, in
dem die Besetzungszahlen fiir die verschiedenen Teilchenzustinde die Rolle
der unabhéngigen Variablen spielen. Bei der quantentheoretischen Beschrei-

bung des elektromagnetischen Feldes iibernimmt das 4-Potential A die Rolle
des Operators der zweiten Quantisierung. Es wird durch die Wellenfunktionen
der einzelnen Photonen und deren Erzeugungs- und Vernichtungsoperatoren
ausgedriickt. Bei der Beschreibung eines Systems von Teilchen spielt der
Operator der quantisierten Wellenfunktion eine &hnliche Rolle.

1) Natirlich éndert sich die Zahl der Photonen praktisch nur im Ergebnis verschiedener
Wechselwirkungsprozesse.
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Die in diesem Paragraphen anzustellenden Uberlegungen sind in gleichem MaBe
fiir Teilchen mit beliebigem Spin giiltig. Wir werden deshalb die mathematische
Struktur der Wellenfunktionen nicht genauer festlegen. Wenn wir eine ebene
Welle in der Form

1 ;
Y :V—ﬁ—u(p)e“(”“"’ (85,1)

schreiben, so soll das heillen, dall die Wellenamplitude u(p) (eine Funktion
des 4-Impulses) ein Skalar (fiir Teilchen mit dem Spin 0), ein Bispinor (fiir
Teilchen mit dem Spin 1/2) usw. sein kann.

Nach den allgemeinen Regeln fiir die Durchfiilhrung der zweiten Quanti-
sierung miissen wir die Entwicklung einer beliebigen Wellenfunktion nach den
Eigenfunktionen eines vollstindigen Satzes moglicher Zustdnde eines freien
Teilchens betrachten, zum Beispiel die Entwicklung nach ebenen Wellen ¥,1):

¥=Sa ¥, P*=Ia¥?.
p p

AnschlieBend miissen die Koeffizienten a, und aj als Vernichtungs- und Er-
zeugungsoperatoren @, bzw. a}} fiir die Teilchen in den betreffenden Zustéinden
aufgefalit werden.

Dabei stoen wir jedoch sofort auf folgenden (gegeniiber der nichtrelativi-
stischen Theorie) neuen und ganz wesentlichen Sachverhalt. In einer ebenen
Welle, die eine Losung der Gleichung (85,1) ist, braucht die Energie (bei ge-
gebenem Impuls p) nur die Bedingung & = p? + m? zu erfiillen, d. h., sie kann
zwei Werte annehmen: + Vp?' + m2 Aber nur positive Werte von ¢ sind fiir
ein freies Teilchen physikalisch sinnvoll. Andererseits ist es unzulédssig, die
negativen Werte einfach wegzulassen: Die allgemeine Losung der Wellen-
gleichung ist die Uberlagerung aller unabhéngigen speziellen Losungen. Dieser
Sachverhalt macht es erforderlich, die Interpretation der Entwicklungskoeffi-
zienten von ¥ und ¥* bei der zweiten Quantisierung in gewisser Weise abzu-
éndern.

Wir schreiben diese Entwicklung in der Gestalt

1 .
=5 Z & ule, p) e~ -#D
p

+ V_IQ;_Za;—) u (— ¢, p) eifet+pm) (85,2)
P

In der ersten Summe stehen die normierten ebenen Wellen mit positiven ,,Fre-
quenzen, in der zweiten Summe diejenigen mit negativen ,,Frequenzen‘‘;
¢ ist iiberall die positive Grofle ¢ = + sz + m? Bei der zweiten Quanti-
sierung ersetzen wir die Koeffizienten ag") in der ersten Summe in der iiblichen
Weise durch Teilchenvernichtungsoperatoren &p.

1) Fiir Teilchen mit Spin muB die Summation ebenfalls iiber die Polarisationen der Teil-
chen ausgefiithrt werden; den entsprechenden Index schreiben wir der Kiirze halber nicht
an.
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In der zweiten Summe nehmen wir zundchst eine Umbenennung des Summa-
tionsindexesp in —p vor; da sich die Summation iiber alle moglichen p-Werte er-
streckt, dndern sich dadurch weder das Summationsgebiet noch der Wert der
Summe. Nach dieser Umbenennung nimmt der Exponentialfaktor unter dem
Summenzeichen die Gestalt €'“*~P" an, die mit dem Ausdruck fiir den Exponen-
tialfaktor der komplex konjugierten Wellenfunktionen ¥ mit ,,positiven* Fre-
quenzen iibereinstimmt. Bei der zweiten Quantisierung miissen solche Funk-
tionen mit Erzeugungsoperatoren multipliziert werden. Dementsprechend
ersetzen wir die Koeffizienten a5) durch die Erzeugungsoperatoren 5; von
Teilchen, die sich im allgemeinen von den Teilchen unterscheiden, zu denen die
Operatoren @, gehoren. Im Ergebnis dessen erhalten wir fiir die ¥-Operatoren
unter Verwendung von #(— p) = u(— ¢, — p) den Ausdruck

B — = Xy u(p) o™ =2 4 B u(— p) eft-27)
P . (85,3)

~ 1 R I o S T
P+ — Vf%‘ {af u*(p) e P4 b, u¥(— p) e~ iCi=Pn),

Alle Operatoren 81, und l;;, werden auf diese Weise mit Funktionen der
,richtigen Zeitabhingigkeit (~ e~ %) multipliziert, die Operatoren a; und
g;: werden mit den dazu konjugiert kompiexen Funktionen multipliziert. Das
erlaubt in Einklang mit den allgemeinen Regeln, die Operatoren a, und ?’p
als Vernichtungsoperatoren und a; sowie I;:,’ als Erzeugungsoperatoren von
Teilchen mit den Impulsen p und den Energien ¢ zu interpretieren.

Wir gelangen so zur Vorstellung von zwei Teilchensorten, die gemeinsam
und gleichberechtigt vorkommen. Man spricht dabei von Teilchen und Aniz-
tetlchen (der Sinn der letzteren Bezeichnung wird im nédchsten Paragraphen
erklirt werden). Zu der einen Sorte geh6ren im Apparat der zweiten Quantisierung

die Operatoren @, und a;, zur anderen b, und . Beide Teilchensorten, deren
Operatoren in ein und denselben ¥-Operator eingehen, der wiederum ein und

derselben Wellengleichung geniigt, haben folglich die gleichen Massen.

§ 86. Teilchen und Antiteilchen

Zur weiteren Klarung der Eigenschaften und Beziehungen von Teilchen und
Antiteilchen zueinander ist es notwendig, Ausdriicke fiir die Operatoren der
Gesamtenergie und der Gesamtzahl der Teilchen des Systems zu gewinnen. Die
Art und Weise der Ableitung dieser Ausdriicke hingt vom Spin der Teilchen ab;
wir betrachten im weiteren das Feld von Teilchen mit dem Spin 1/2 (oder das
sogenannte Spinorfeld).

Alles, was man fiir diesen Fall wissen muB}, um die gesuchten Ausdriicke ab-
leiten zu koénnen, ist die Tatsache, daB es fiir Teilchen, die mit Hilfe der Dirac-
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Gleichung beschrieben werden, einen HamiLTon-Operator gibt und daB das
Produkt ¥* ¥ die Rolle der Teilchendichte spielt. Dieser Umstand erlaubt es
sofort, die Ergebnisse zu benutzen, die in §§ 47, 48 im Rahmen der nichtrelativi-
stischen Theorie erhalten wurden (dort besaBen Teilchen mit beliebigem Spin
beide angefiihrten Eigenschaften).?)

Wir sahen, daBl im mathematischen Apparat der zweiten Quantisierung der
HamirToN-Operator H eines Teilchensystems aus dem HamrLToN-Operator

eines Teilchens H® iiber das Integral 2)
H =¥+ HO Way ' (86,1)

erhalten wird. In der nichtrelativistischen Theorie fiihrte das zu einem trivialen
Ergebnis. Beim Einsetzen der ¥-Operatoren

V= Ya,¥,, P = yap v (86,2)
P P
ergibt sich unabhingig von den Vertauschungsregeln der Operatoren @, @
H = X &, ap (86.3)
P

mit ¢, als den Eigenwerten des HamiLToN-Operators HW, d. h. den Energien
des freien Teilchens. Die Eigenwerte der Operatorprodukte a}a, sind die
Zustandsbesetzungszahlen N,; die Eigenwerte fiir die Gesamtenergie des
Systems ergeben sich deshalb aus der offensichtlichen Beziehung £ = 3’ ¢, N

Auf analoge Weise wurde auch das triviale Ergebnis fiir die Gesamtzahl der
Teilchen des Systems gewonnen, deren Operator durch das Integral

N=s9+@av (86,4)
gegeben ist. Beim Einsetzen der ¥-Operatoren ergab sich
= 2 aha,, (86,5)

so daB die Elgenwerte N = )’ N, sind.
In der relativistischen Theorie hlngegen andert die Existenz negativer Eigen-

werte des Teilchen-HamiLToN-Operators H® die Situation grundlegend. An-
stelle von (86,3) ergibt sich ]etzt

H= Zep 2 5 b ﬁ (86,6)

Die erste Summe beschreibt positive Eigenwerte e, = + Vp? 4 m?; sie hat
dieselbe Gestalt wie die Summe (86,3). Die zweite Summe beschreibt negative
Eigenwerte — ¢,; daher das Minuszeichen vor der Summe. Die (im Ver-

1) Wir erinnern gleichzeitig daran (§ 79), daB fiir relativistische Teilchen mit dem Spin 0,
die durch die skalare KLEIN-Fock-Gleichung beschrieben werden, keine einzige dieser
Eigenschaften zutrifft!

2) Der Index (1) am HamiLToN-Operator des Teilchens wurde hier eingefithrt, um
ihn vom HamiLToN-Operator des Gesamtsystems zu unterscheiden.
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gleich zur ersten Summe) umgekehrte Reihenfolge der Faktorena undg

in der zweiten Summe hangt damit zusammen, daB i in den ¥- Opera.toren (85, 3)

~ 4
P

Weise erhalten wir fiir den Operator (86,4) (er wird jetzt mit Q bezeichnet)
anstelle von (86,5)

Q=Xata,+ Zb,b;. (86,7)
p p

zusammen mit @, und @7 entsprechend bJr und b auftreten. Auf analoge

Um die Eigenwerte der Operatoren (86,6) und (86,7) zu bestimmen, ist es
notwendig, die Reihenfolge der Faktoren in den zweiten Summen zuerst in die

Standardform 8; Zp zu bringen; die Eigenwerte von Produkten dieser Gestalt
sind gleich den Besetzungszahlen. Dazu sind jedoch die Vertauschungsregeln
wesentlich, denen die Erzeugungs- und Vernichtungsoperatoren der Teilchen
geniigen.

Wie leicht zu sehen ist, erhdlt man fir die Eigenwerte des HamILTON-
Operators (86,6) nur in dem Fall ein sinnvolles Ergebnis, wenn die Erzeugungs-
und Vernichtungsoperatoren der Teilchen die FErMI-Vertauschungsregeln
erfiillen:

Goat +ata, =1,
bpby + 850, =1. ‘ (86,8)
In diesem Fall nimmt der HamrLtoN-Operator die Form

] = Se,@fap+ § p—1)
p

an. Die Eigenwerte der Produkte @, a, und I;; I;,, sind die positiven ganzen
Zahlen N, bzw. Z_Vp, die die Zahl der Teilchen und Antiteilchen in den ent-
sprechenden Zustinden angeben. Die unendliche additive Konstante — ¢,
(,, Vakuumenergie‘‘) kann man einfach weglassen, wie dies schon aus dhnlichem
Anla im Falle der Photonen (§ 77) getan wurde. Danach bekommt man fiir
die Energie des Systems den positiv definiten Ausdruck

E=3e, (N, + N,), (86,9)
p

der gerade der Vorstellung von zwei Sorten real existierender Teilchen entspricht :
Die Gesamtenergie des Systems ist gleich der Summe der Energien aller Teilchen
und Antiteilchen, aus denen das System besteht.

Hitten wir anstelle von (86,8) die BosE-Vertauschungsregeln (Kommutatoren
statt Antikommutatoren) gewdhlt, dann hitten wir

~

H=Xe, @} ap — b5+ 1)
p

erhalten und statt (86,9) den physikalisch sinnlosen Ausdruck ' &, (N, — ﬁp)
bekommen, der nicht positiv definit ist und folglich nicht die Energie eines
Systems freier Teilchen beschreiben kann.
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Nachdem wir auf diese Weise die Vertauschungsregeln fiir die Erzeugungs-
und Vernichtungsoperatoren der Teilchen abgeleitet haben, wenden wir uns
jetzt dem Operator (86,7) zu. Nach der Anderung der Reihenfolge der Faktoren
mit Hilfe von (86,6) ergibt sich

Q=X (afa, —bjby+1).
»

Die Eigenwerte dieses Operators (ebenfalls nach Subtraktion der unwesentlichen
additiven Konstante }; 1) sind:

Q=X N, —N,), (86,10)
»

d. h. gleich den Differenzen zwischen den Gesamtzahlen von Teilchen und Anti-
teilchen. .

Dieses Ergebnis ist besonders wichtig. Der Operator @ beschreibt diejenige
GroBe (84,2), deren Erhaltungssatz durch die Kontinuitdtsgleichung (84,1)
geliefert wird. Wir sehen jetzt, daBl dieses Gesetz keine Erhaltung der Ge-
samtzahl der Teilchen und Antiteilchen im einzelnen bzw. ihrer Summe fordert.
Es muB nur die Differenz zwischen beiden Zahlen erhalten bleiben. Mit anderen
Worten, bei den verschiedenen Wechselwirkungsprozessen konnen ,,Teilchen-
Antiteilchen-Paare“ entstehen und verschwinden.!) Natiirlich miissen alle
diese Prozesse unter Wahrung der Erhaltungssitze fiir die Energie und den
Impuls des gesamten Systems der miteinander wechselwirkenden Teilchen ver-
laufen. Insbesondere mull das Verschwinden eines Paares beim Aufeinander-
treffen eines Teilchens mit seinem Antiteilchen vom Entstehen irgend-
welcher anderer Teilchen begleitet sein, die die Energie- und Impulserhaltung
gewihrleisten; solche Teilchen kénnen Photonen sein. In diesem Falle spricht
man von Paarvernichtung (oder Annihilation eines Paares).

Falls ein Teilchen eine elektrische Ladung hat, mull das zugehérige Anti-
teilchen die entgegengesetzte Ladung haben ; denn wenn beide gleiche Ladungen
hitten, wiirde die Erzeugung oder Vernichtung eines Paares einem streng
giiltigen Naturgesetz widersprechen — dem Erhaltungssatz fiir die elektrische
Ladung. )

Man bezeichnet die Grofe @ mitunter als Ladung des Feldes fiir die betreffen-
den Teilchen. Fiir elektrisch geladene Teilchen ist Q die gesamte elektrische
Ladung des Systems (in Einheiten der Elementarladung e). Wir betonen aber,
daB Teilchen und Antiteilchen auch elektrisch neutral sein kénnen.?)

Wir haben auf diese Weise gesehen, wie die Art der relativistischen Ver-
kniipfung von Energie und Impuls (die Zweideutigkeit der Wurzel der Glei-
chung & = p? 4+ m?) zusammen mit den Forderungen nach relativistischer

!) Dabei wird natiirlich vorausgesetzt, daB die Wechselwirkung die Erhaltung der
GroBe @ nicht verletzt. Alle in der Natur bekannten Wechselwirkungen erfiillen diese
Bedingung.

%) Von den Fermionen besitzen z. B. Neutron und Neutrino (Spin 1/2), von den Bosonen
die neutralen K-Mesonen (Spin 0) diese Eigenschaft.
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Invarianz in der Quantentheorie ein neues Prinzip zur Klassifizierung von
Teilchen ergibt — es konnen Paare verschiedener Teilchen (Teilchen-Anti-
teilchen) in dem oben beschriebenen Verhiltnis zueinander existieren. Diese
bemerkenswerte Voraussage ist erstmalig von P. A. M. Dirac 1930 (fiir Teil-
chen mit dem Spin 1/2) ausgesprochen worden, noch bevor das erste Antiteil-
chen — das Positron — tatsidchlich entdeckt worden war.1)

§ 87. Der Zusammenhang zwischen Spin und Statistik

Die im vorigen Paragraphen besprochenen Ergebnisse sind noch unter einem
anderen Aspekt wichtig: Wir sahen, daB physikalisch sinnvolle Forderungen
automatisch dazu fiihren, daB8 Teilchen mit dem Spin 1/2 der FErRMI-Statistik
geniigen miissen.

Daraus folgt nun die allgemeine Behauptung: Alle Teilchen mit halbzahligem
Spin sind Fermionen, und Teilchen mit ganzzahligem Spin (einschlieflich der
Teilchen mit dem Spin 0) sind Bosonen.2)

Die Richtigkeit dieser Aussage wird sofort nach der Bemerkung offensichtlich,
daBl man sich jedes Teilchen mit einem von Null verschiedenen Spin s beziiglich
seiner Spineigenschaften als ein aus 2 s Teilchen mit parallelen Spins 1/2
»zusammengesetztes’ Teilchen vorstellen kann (ein Teilchen mit dem Spin 0
,;besteht in diesem Sinne aus zwei Teilchen mit antiparallelen Spins 1/2).
Bei halbzahligem s ist 2 s eine ungerade und bei ganzzahligem s eine gerade
Zahl. Wie schon in § 45 besprochen, ist aber ein aus einer ungeraden Zahl
von Fermionen ,,zusammengesetztes‘ Teilchen ebenfalls ein Fermion und ein aus
einer geraden Zahl von Fermionen bestehendes Teilchen ein Boson. Das Kriterium
fiir die Zugehorigkeit zu der einen oder anderen Statistik ist gerade dasVerhalten
der Wellenfunktion eines Teilchensystems beziiglich der Vertauschung eines
beliebigen Teilchenpaares: Die Wellenfunktion &ndert ihr Vorzeichen bei der
Vertauschung zweier Fermionen und bleibt unverdndert beim Vertauschen von
Bosonen. Die Vertauschung zweier Teilchen mit halbzahligem Spin ist, ent-
sprechend dem oben Gesagten, der gleichzeitigen Vertauschung einer ungeraden
Anzahl von Paaren aus Fermionen mit dem Spin 1/2 #dquivalent und é@ndert
deshalb das Vorzeichen der Wellenfunktion. Die Vertauschung zweier Teilchen
mit ganzzahligem Spin ist dagegen dem Vertauschen einer geraden Zahl vorn:

1) Dirac selbst kam zum Begriff des Positrons mit Hilfe der Vorstellung von einem
»Loch* im Kontinuum der Zustdnde negativer Energien, das von Elektronen besetzt ist.
Eine solche Vorstellung besitzt jedoch offensichtlich nicht nur keinen buchstéblichen
Sinn, sondern ist auch insofern nicht addquat, weil sich die Begriffe von Teilchen und Anti-
teilchen in Wirklichkeit auf Teilchen mit beliebigem Spin beziehen und nicht nur auf
Teilchen mit halbzahligem Spin, fiir die das Pavri-Prinzip gilt.

2) Zu den Teilchen mit ganzzahligem Spin gehéren auch die Photonen. Der Umstand,
daB Photonen Bosonen sind, wurde schon in § 77 geklart. Dabei gingen wir von der Ana-
logie mit Oszillatoren aus, d. h. im Grunde genommen von den Eigenschaften des elektro-
magnetischen Feldes im klassischen Grenzfall.

18 Kurzfassung II
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Fermionenpaaren dquivalent und 148t das Vorzeichen der Wellenfunktion unver-
dndert.

Die besondere Eigenschaft von Teilchen mit dem Spin 1/2, die bei der im
vorigen Paragraphen dargelegten Schluffolgerung benutzt wurde, bestand ledig-
lich in der Existenz des HamiLToN-Operators und des Ausdruckes ¥* ¥ fiir die
Teilchendichte. Die Existenz des einen wie des anderen hingt mit den Spinor-
eigenschaften der Wellenfunktionen solcher Teilchen und den Eigenschaften
der Dirac-Gleichung, der diese Funktionen geniigen, zusammen. Alle diese
Eigenschaften folgen ihrerseits dem Wesen nach nur aus den Forderungen
nach relativistischer Invarianz und nach Isotropie des Raumes (d. h., sie sind
Folgen der Symmetrie beziiglich den Transformationen der LoRENTz-Gruppe).
In diesem Sinne kann man davon sprechen, dafl der Zusammenhang zwischen
dem Spin eines Teilchens und der Statistik, der das Teilchen unterliegt, eben-
falls eine direkte Folge dieser Forderungen ist.!) Die tiefere Ursache dieses
Zusammenhanges wurde erstmalig von W. PauLr (1940) geklért.

§ 88. Streng neutrale Teilchen

Bei der zweiten Quantisierung der Wellenfunktion (85,2) wurden die Koeffi-
zienten al") und a§” durch Vernichtungs- und Erzeugungsoperatoren unter-
schiedlicher Teilchen ersetzt. Das ist aber nicht zwangsldufig; als Spezialfall

kénnen die in ¥ enthaltenen Erzeugungs- und Vernichtungsoperatoren zu
gleichen Teilchen gehéren. Es ist nur zu gewihrleisten, dafl bei den ,,positiv-
frequenten‘‘ Wellenfunktionen Vernichtungsoperatoren und bei den ,,negativ-
frequenten‘‘ Wellenfunktionen entsprechend Erzeugungsoperatoren stehen. Wir
bezeichnen die betreffenden Operatoren in diesem Fall mit 3‘, und 8; und
schreiben den ¥-Operator in der Gestalt

() 1 ~ . ~ .

W= "__/E %v {Cp u(p) e-ilet—pn) | c;- u*(— p) et (et -P'r)} . (88,1)
Das durch einen solchen ¥-Operator beschriebene Feld entspricht einem System
identischer Teilchen, von denen man sagen kann, daB sie ,,mit ihren Anti-
teilchen iibereinstimmen®‘.

Offensichtlich mufl die elektrische Ladung solcher Teilchen auf jeden Fall
gleich Null sein. Derartige Teilchen werden als streng neutrale Teilchen be-
zeichnet, im Unterschied zu elektrisch neutralen Teilchen, die ein Antiteilchen
besitzen.

1) Die Verallgemeinerung des Zusammenhangs zwischen Spin und Statistik fiir den
Fall eines Teilchens mit dem Spin 1/2 auf den Fall von Teilchen mit beliebigem Spin
griindete sich im bisherigen Text auf die Betrachtungsweise von ,,zusammengesetzten
Teilchen. Zu dem gleichen Resultat wiirde man gelangen, wenn man die mathematische
Struktur der Alf\sdriickf untersuchen wiirde, die fiir die Felder dieser Teilchen die Rolle
der Operatoren H und @ spielen, wobei letztere in Ubereinstimmung mit den Forderungen
nach relativistischer Invarianz zu konstruieren sind.
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Fiir streng neutrale Teilchen gibt es keinen Erhaltungssatz fiir die ,,Feld-
ladung’‘ @: Die Identitit zwischen Teilchen und Antiteilchen fiihrt dazu, dafl

die Zahlen N, und ZV,, identisch gleich sind, so dal die Gréie (86,10) identisch
Null ist. Wegen des Fehlens der aus dem Erhaltungssatz folgenden Auswahl-
regel konnen streng neutrale Teilchen einzeln und nicht unbedingt paarweise
entstehen bzw. vernichtet werden (sich in Photonen verwandeln).

Von den ,,Elementarteilchen‘* mit dem Spin 0 sind die #°-Mesonen streng
neutral. Ein Beispiel fiir ein streng neutrales ,,zusammengesetztes“ Teilchen
ist das Positrontum — ein wasserstoffihnliches System, bestehend aus einem
Positron und einem Elektron; der Spin des Positroniums kann gleich 0 oder 1
sein. Stref]g neutrale Teilchen mit halbzahligem Spin sind in der Natur unbe-
kannt.

Der W-Operator (88,1) hat die gleiche Struktur wie der Operator des elektro-
magnetischen Feldes (76,15): In beiden Féllen gehen die Erzeugungs- und Ver-
nichtungsoperatoren der Teilchen in ein und denselben Feldoperator ein. In
diesem Sinne kann man sagen, dafl auch die Photonen streng neutrale Teilchen
sind. Thre Erzeugung oder Vernichtung beschreibt die gewohnliche Emission
oder Absorption von Photonen durch ein System geladener Teilchen.

Beschiftigen wir uns nun mit einer vollig neuen Symmetrieeigenschaft, die
zu einem neuen spezifischen Charakteristikum des Teilchens fiihrt und kein
Analogon in der nichtrelativistischen Theorie besitzt. Wir meinen die Transfor-
mation, die als Ladungskonjugation bezeichnet wird und das Vertauschen von
Teilchen und Antiteilchen beinhaltet; der Operator.dieser Transformation wird

durch das Symbol C beschrieben. Ist ein Teilchen (bzw. ein Teilchensystem)
nicht streng neutral, so wird es durch die Ladungskonjugation durch ein anderes
physikalisches System ersetzt. So iiberfithrt z. B. die Ladungskonjugation ein
aus Elektronen bestehendes System in ein Positronensystem; dabei entsteht
kein neues Charakteristikum fiir das Teilchen als solches. Ist aber das Teilchen
(oder das Teilchensystem) streng neutral, so 1d8t es die Ladungskonjugation
unverdndert. In diesem Sinne kann man vom Verhalten der Wellenfunktion
des Systems beziiglich dieser Transformation sprechen und damit auch von den
Eigenwerten des Operators C. Die zweimalige Wiederholung der Ladungs-

konjugation ist offensichtlich der identischen Transformation gleich: 02 =1.
Wie auch fiir jeden anderen Operator, der diese Eigenschaft besitzt, sind seine
Eigenwerte C = 4 1; diese Werte werden als Ladungsparitit bezeichnet. Be-
sitzt ein System eine bestimmte Ladungsparitit, so bedeutet das, daB seine
Wellenfunktionen nach der Ladungskonjugation unverdndert bleiben bzw.
ihr Vorzeichen éndern (im ersten Fall spricht man von einem System mit gerader
und im zweiten Fall mit ungerader Ladungsparitit).

Als Beispiel wollen wir die Ladungsparitidt des oben erwahnten Positroniums
bestimmen. Um die Ladungsparitidt eines Systems zu beschreiben, mufl man
Teilchen und Antiteilchen (im vorliegenden Fall — Elektron und Positron) als
zwei verschiedene ,,.Ladungszustinde‘‘ ein und desselben Teilchens betrachten,

18*
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die sich durch den Wert der ,,Ladungsquantenzahl®“ ¢ = + 1 voneinander
unterscheiden. Die Wellenfunktion des Systems stellt ein Produkt aus Bahn-
(hierin ist die Abhingigkeit von den Teilchenkoordinaten enthalten), Spin-
und sogenanntem ,,Ladungs“-faktor dar: ¥ = Ygup * Pspin * Prgan

Im betrachteten Fall ist die Ladungskonjugation dem Vertauschen beider
Teilchen dquivalent. Der Austausch der Koordinaten dieser zwei Teilchen ist
seinerseits wiederum der Inversion (beziiglich des Punktes, der den Abstand
zwischen den Teilchen halbiert) dquivalent; ¥g,s, wird dabei mit (—1) multi-
pliziert, wobei I der Bahndrehimpuls des Positroniums (s. (19,5)) ist. Des-
weiteren ist die Spinfunktion beziiglich des Vertauschens der Teilchen symme-
trisch, wenn deren Spins parallel (Gesamtspin § = 1) sind und antisymmetrisch,
wenn die Spine antiparallel (S = 0) zueinander liegen — s. § 46; demzufolge
erhilt ¥, den Faktor (— 1)5*1. Der Ladungsfaktor ¥;,, wird schlieBlich
mit dem gesuchten Wert C' multipliziert.

Andererseits muf das Vertauschen zweier Fermionen das Vorzeichen der Ge-
samtwellenfunktion ¥ éndern. D. h.,esmuB gelten (— 1)} (—1)S*1 C = — 1, woraus

C = (—1)+s (88,2)
folgt. Die Niveaus mit dem Spin 8 = 0 werden als Niveaus des Paraposttroniums
bezeichnet und die Energieniveaus mit S = 1 nennt man Niveaus des Ortho-
positrontums. Im Grundzustand ist der Bahndrehimpuls I = 0, deshalb besitzt
der Grundzustand des Parapositroniums eine gerade Ladungsparitit (C = 1)
und der Grundzustand des Orthopositroniums eine ungerade (C = —1)
Ladungsparitat.

Das Positronium ist ein instabiles Gebilde; seine Bestandteile — Elektron
und Positron — vernichten sich im Endeffekt gegenseitig. Durch die Ladungs-
paritit werden den mdéglichen Arten einer solchen Paarvernichtung bestimmte
Beschrankungen auferlegt. Wie wir im weiteren sehen werden (s. die FuBnote
auf 8. 279), hat das Photon eine ungerade Ladungsparitdt. Deshalb ist z. B.
bei der Vernichtung des Parapositroniums im Grundzustand (C = 1) die Ent-
stehung zweier Photonen méoglich (die Ladungsparitit eines Systems aus zwei
Photonen ist gleich ¢ = (—1) (—1) = 1). Im Gegensatz dazu ist der Zerfall
des sich im Grundzustand befindlichen Orthopositroniums (C = —1) in zwei
Photonen nicht méglich, und die Positroniumvernichtung geschieht unter Bil-
dung von drei Photonen.!)

Das schon erwidhnte Elementarteilchen, das n°-Meson, ist ebenfalls instabil
und zerféllt in zwei Photonen. Daraus folgt, dafB es eine gerade Ladungsparitit
besitzt ; aus eben diesem Grunde ist sein Zerfall in eine ungerade Anzahl von
Photonen verboten.?)

1) Die Lebensdauer des Parapositroniums (d. h. eine GréBe, die seiner Zerfallswahr-
scheinlichkeit entgegengesetzt proportional ist) betrdgt 1,2 . 1071° s. Die Lebensdauer des
Orthopositroniums ist hingegen wegen seiner geringeren Zerfallswahrscheinlichkeit in eine
groBere Zahl von Photonen bedeutend ldnger (1,4- 1077 s).

%) Bei diesen Betrachtungen wurde stillschweigend vorausgesetzt, daB die Ladungs-
paritidt des Systems erhalten bleibt. Wir kehren zu dieser Frage in § 90 zuriick.
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§ 89. Die innere Paritit von Teilchen

Bei der Behandlung der nichtrelativistischen Quantentheorie sahen wir bereits,
auf welche Weise die Symmetrie gegeniiber der Inversion der Raumkoordinaten
zum Entstehen eines neuen Charakteristikums fiir den Zustand eines Teilchens
fithrt — zu seiner Paritdt. Die relativistische Theorie fiigt diesem Begriff noch
einen neuen Gesichtspunkt hinzu.

Wir betrachten zuerst Teilchen mit dem Spin 0, die durch skalare Wellen-
funktionen beschrieben werden. Es gibt jedoch zwei Arten von Skalaren, die
sich gerade durch ihr Verhalten gegeniiber der Inversion unterscheiden. Die
Inversion dndert das Vorzeichen der Koordinaten in den Argumenten einer
Funktion und kann auflerdem das Gesamtvorzeichen éndern bzw. unverdndert
lassen:

P r) =+ ¥t —7) ; (89,1)

die Vorzeichen + oder — auf der rechten Seite charakterisieren in der angege-
benen Reihenfolge einen Skalar oder einen Pseudoskalar.

Daraus ist ersichtlich, dafl man beim Verhalten der Wellenfunktion gegeniiber
der Inversion zwei Aspekte auseinanderhalten niu. Der eine Aspekt hingt
mit der Abhédngigkeit der Wellenfunktion von den Koordinaten zusammen.
In der nichtrelativistischen Quantenmechanik wurde nur dieser Aspekt betrach-
tet; er fithrte zum Begriff der Paritdt eines Zustandes (die wir im weiteren
Bahnparitit nennen wollen), die die Symmetrieeigenschaften der Bewegung
des Teilchens charakterisiert. Wenn ein Zustand eine bestimmte Bahnparitét
+1 oder —1 besitzt, so gilt

Y, —r) =+ P, r).

Der andere Aspekt steht mit dem Verhalten der Wellenfunktion (bei einer
Inversion der Koordinatenachsen) in einem vorgegebenen Punkt des Raumes
(den man sich zweckmafigerweise als Koordinatenursprung denken kann) im
Zusammenhang. Er fiihrt zum Begriff der tnneren Paritdt eines Teilchens.
Den inneren Paritdten +1 bzw. —1 entsprechen (fiir ein Teilchen mit dem
Spin 0) die beiden Vorzeichen in der Definition (89,1). Die Gesamtparitdt eines
Systems von Teilchen ergibt sich als Produkt ihrer inneren Paritéten und der
Bahnparitdt ihrer Relativbewegung.

Die ,,inneren‘“ Symmetrieeigenschaften der verschiedenen Teilchen treten
selbstverstandlich nur bei Prozessen in Erscheinung, bei denen sich die Teilchen
ineinander umwandeln. Das Analogon zur inneren Paritdt ist in der nicht-
relativistischen Quantenmechanik die Paritdt gebundener Zustdnde eines
komplizierten Systems (z. B. eines Kernes). Vom Standpunkt der relativisti-
schen Theorie aus gesehen, in der es keinen prinzipiellen Unterschied zwischen
zusammengesetzten und elementaren Teilchen gibt, unterscheidet sich diese
innere Paritdt nicht von der inneren Paritdt der Teilchen, die in der nicht-
relativistischen Theorie als elementar angesehen werden. Im nichtrelativisti-
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schen Bereich, in dem sich letztere wie unverdnderliche Teilchen verhalten,
sind ihre inneren Symmetrieeigenschaften nicht beobachtbar, und deshalb
hétte es keinen Sinn, sich mit ihnen zu befassen.

Den Begriff der inneren Paritdt formuliert man natiirlicherweise im Ruh-
system des Teilchens. In diesem Koordinatensystem reduziert sich die Wellen-
funktion auf eine von den Koordinaten unabhingige Gréofe (die Wellenamplitude
u in den Funktionen (85,1)). Fiir Teilchen mit dem Spin 0 ist das ein Skalar
oder Pseudoskalar, dessen Transformation sich bei der Inversion einfach auf
eine Multiplikation mit 41 oder —1 zuriickfiihren laBt. :

Fiir ein Teilchen mit dem Spin 1/2 reduziert sich die Wellenfunktion im
Ruhsystem auf einen dreidimensionalen Spinor (s. das Ende von § 82). Der
Begriff der inneren Paritét eines solchen Teilchens hidngt mit dem Inversions-
verhalten dieses Spinors zusammen. In § 81 wurde jedoch schon darauf hinge-
wiesen, daBl es, obgleich die zwei moéglichen Transformationsgesetze fiir drei-
dimensionale Spinoren (die beiden Vorzeichen in (81,2)) nicht zueinander
dquivalent sind, keinen absolut zu verstehenden Sinn hat, einem Spinor eine
bestimmte Paritdt zuzuschreiben. Es hat deshalb auch keinen Sinn, von einer
inneren Paritét an sich eines Teilchens mit dem Spin 1/2 zu sprechen. Berechti-
gung hingegen besitzt der Bégriff der relativen inneren Paritdt zweier solcher
Teilchen.

Betrachten wir nun aus dieser Sicht die Fragestellung der relativen inneren
Paritdt von Teilchen und Antiteilchen. Fiir Teilchen mit dem Spin O ist diese
Frage trivial: Teilchen und Antiteilchen werden durch ein und dieselben
(skalaren oder pseudoskalaren) Wellenfunktionen beschrieben, und deshalb
sind ihre inneren Paritdten offensichtlich gleich.

1 1

5] und 5 = (22) , die einen Bispinor ¥ = (i) bilden,
der ein Teilchen mit dem Spin 1/2 beschreibt (wir werden der Kiirze halber
von einem Elektron sprechen), lassen sich im Ruhsystem des Teilchens auf ein

Zwei Spinore & =

D
und denselben dreidimensionalen Spinor zuriickfithren, den wir mit @& = ( @2)

bezeichnen: .
E=n=¢® (89,2)

Die Operation der Inversion, die iiber (81,3) definiert ist, ersetzt & durch 7; die
Beziehung (89,2) zeigt, dall dieser Definition eine Transformation des dreidimen-
sionalen Spinors @) gemiB

P OB — @B (89,3)
entspricht.

Das Positron beschreiben ,,negativ-frequente* Wellenfunktionen, die in der
Dirac-Gleichung beim Vorzeichenwechsel des 4-Impulses p* auftreten (wir
erinnern daran, daB die Positronoperatoren 8,,, I;; als Koeffizienten bei den
Wellenfunktionen mit den Amplituden u(—p) in die ¥-Operatoren (85,3)
eingehen). Die Gleichung (89,2) fiir ein Elektron im Ruhsystem folgte aus der
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Dirac-Gleichung (82,4) fiir p = 0, ¢ = m. Wenn man in diesen Gleichungen
(&, p) durch (—e, —p) ersetzt und danach p = 0, ¢ = m setzt, so erhdlt man

5 = - ')7 =3 (b(P) . . (89:4)

Die Operation der Inversion, die & durch # ersetzt, bedeutet jetzt fiir den drei-
dimensionalen Spinor @) die Transformation

PP — _ pP : (89,5)

. mit einem beziiglich (89,3) entgegengesetzten Vorzeichen. Aus diesem Grunde
andert ein Skalar, der aus Produkten der Komponenten @& und &F) besteht,
bei der Inversion sein Vorzeichen. Wir erhalten somit das Ergebnis, dal} die
inneren Paritdten von Teilchen und Antiteilchen mit dem Spin 1/2 einander
entgegengesetzt sind (W. B. BERESTETZKY, 1948).

§ 90. Das CPT-Theorem

Die Eigenschaften der Raum-Zeit-Symmetrie von physikalischen Erscheinungen
driicken sich in der Invarianz der sie beschreibenden Gleichungen in bezug auf
gewisse Transformationen des vierdimensionalen Koordinatensystems aus.

Ein universelles Naturgesetz ist die relativistische Invarianz, d. h. die In-
varianz gegeniiber den Transformationen der LorRENTz-Gruppe.!) Wie schon
in § 80 erldutert, enthalten diese sowohl die gewdhnlichen dreidimensionalen
Drehungen als auch die LorRENTZ-Transformationen, d. h. Drehungen des vier-
dimensionalen Koordinatensystems, die die Richtung der Zeitachse éndern.

Neben diesen Transformationen gibt es noch andere, die nicht auf Drehungen
zuriickgefiihrt werden koénnen: die rdumliche Inversion — eine gleichzeitige
Umkehr der Richtungen der drei rdumlichen Koordinatenachsen — und die Zeit-
umkehr — ein Wechsel der Richtung der Zeitachse in die entgegengesetzte.
Die Invarianz gegeniiber der rdumlichen Inversion (P-Invarianz) ist ein Aus-
druck der Spiegelsymmetrie des Raumes. Die Invarianz gegeniiber der Zeit-
umkehr (T-Invarianz) ist dagegen Ausdruck der Aquivalenz beider Zeitrich-
tungen. Im Rahmen der Erscheinungen, die durch die nichtrelativistische
Theorie beschrieben werden, sind diese beiden Gesetze erfiillt.

Im Unterschied dazu verliert bei Erscheinungen, die zum relativistischen
Gebiet gehoren, die Symmetrie gegeniiber der rdumlichen Inversion (und der
damit im Zusammenhang stehende Satz von der Erhaltung der rdumlichen
Paritdt) ihre Universalitdt. Alle vorliegenden Experimente zeigen, dall diese
Symmetrie bei elektromagnetischen Wechselwirkungen und den sogenannten
starken Wechselwirkungen (Kernkrifte) gewahrt ist. Sie wird jedoch bei den
schwachen Wechselwirkungen verletzt (d. h. Wechselwirkungen, die zur Mehrzahl

1) Um MiBverstindnisse zu vermeiden, méchten wir unterstreichen, da8 von Erschei-
nungen die Rede ist, die nicht mit Gravitationsfeldern im Zusammenhang stehen.
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der vergleichsweise langsam ablaufenden Zerfille von Elementarteilchen,
z. B. zum §-Zerfall, fithren).)

Bei den schwachen Wechselwirkungen wird aulerdem die Symmetrie zwischen
Teilchen und Antiteilchen verletzt, die sich durch die Ladungskonjugation
(C-Invarianz) ausdriickt. Es sind jedoch keine Versuchsergebnisse bekannt,
die auf eine Verletzung dieser Symmetrie bei den elektromagnetischen und
starken Wechselwirkungen hinweisen.

Die Verletzung der Symmetrie gegeniiber der rdumlichen Inversion bei den
einen oder anderen Wechselwirkungsprozessen braucht an sich noch nicht
das Fehlen der Spiegelsymmetrie des Raumes zu bedeuten. Die Symmetrie
des Raumes kdénnte ,,gerettet’* werden, wenn sich die Invarianz beziiglich einer
Transformation, die aus der rdumlichen Inversion und einer gleichzeitigen
Ladungskonjugation (CP-Transformation oder kombinierte Inversion) besteht,
als universelles Naturgesetz erweisen wiirde.2) Bei dieser Transformation erfolgt
neben der rdumlichen Inversion ein Austausch von Teilchen und Antiteilchen.
Bei vorliegender CP-Invarianz wiirden sich Prozesse mit Teilchen bzw. Anti-
teilchen durch eine Inversion des Raumes voneinander unterscheiden. Im
Rahmen einer solchen Konzeption bleibt der Raum vollstdndig symmetrisch;
die Asymmetrie verlagert sich auf die geladenen Teilchen. Die Symmetrie
des Raumes wiirde durch eine solche Asymmetrie in demselben MafBe nicht
beriihrt werden, wie sie auch nicht durch die Existenz stereoisomerer Molekiile
(Molekiile, die zueinander in solch einem Verhéltnis stehen, wie ein Korper
und sein Spiegelbild) beeintrachtigt wird.

Die Erfahrung bestétigt diese Vorstellungen jedoch nicht vollstdndig. Ob-
gleich die Mehrzahl der Prozesse der schwachen Wechselwirkung tatséchlich
CP-invariant ist, gibt es auch Erscheinungen, die diese Invarianz verletzen.
Welchen Platz diese Verletzungen in einer kiinftigen Theorie einnehmen werden,
ist zum jetzigen Zeitpunkt noch unklar.

Somit ist die Forderung nach einer Symmetrie beziiglich der Transformatio-
nen C, P (oder auch 7T') im einzelnen kein universelles Naturgesetz. Dabei ist
hervorzuheben, daBl ihre Universalitit nicht nur vom Experiment nicht
bestétigt wird, sondern auch keine logisch notwendige Folge der Grundprin-
zipien der existierenden Theorie ist. Eine Folge dieser Prinzipien ist jedoch die
Invarianz gegeniiber der gleichzeitigen Anwendung aller drei Transformationen.
Wir zeigen im folgenden, wie sich diese Symmetrie als natiirliche Folgerung der
Forderung nach relativistischer Invarianz ergibt.

Zum besseren Verstindnis der sich anschlieBenden Uberlegungen erinnern
wir vorher an einige Begriffe, die mit den Transformationen des dreidimensiona-
len Raumes im Zusammenhang stehen.

Die Umkehr der Richtung einer der Koordinatenachsen z, y, z bedeutet
eine Spiegelung an einer bestimmten Ebene; z. B. ist die Transformation

1) Die Idee einer méglichen Nichterhaltung der Paritdt bei schwachen Wechselwir-
kungen wurde erstmalig von T. D. LEE und C. N. Yana (1956) geiduBert.
2) Diese Vorstellungen wurden von L. D. LANDAU (1957) entwickelt.
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z->—1z, y—>y, z->2 die Spiegelung an der yz-Ebene. Diese Transfor-
mation 1aBt sich nicht auf irgendwelche Drehungen des Koordinatensystems
zuriickfithren. Im Gegensatz dazu ist die Umkehr der Richtung zweier
Achsen einer bestimmten Drehung équivalent; so entspricht z. B. die Trans-
formation £ - — z, y -> — y, z —2 einer Drehung um 180° um die z-Achse.
SchlieBlich ist die gleichzeitige Umkehr der Richtung aller drei Achsen (Inver-
sion des Koordinatensystems) eine Transformation, die sich nicht auf Dre.
hungen zuriickfithren 1dBt. Inversion und Spiegelung an einer Ebene sind jedoch
in dem Sinne ineinander iiberfithrbar, daf} sich die eine Transformation vonder
anderen nur durch eine Drehung um eine Koordinatenachse unterscheidet.l)

Eine analoge Situation liegt im Falle eines vierdimensionalen Raum-Zeit-
Koordinatensystems vor. Zusétzlich zur Richtungsumkehr von einer, zwei oder
drei Achsen ist hier jedoch noch die gemeinsame Umkehr der Richtung aller vier
Achsen (vierdvmensionale Inversion) moglich. Im rein mathematischen Sinne ist
diese Transformation eine Drehung des 4-Koordinatensystems. In Wirklichkeit
gibt es jedoch zwischen der 4-Inversion und den Drehungen, die die LorENTZ-
Gruppe bilden, einen spezifischen Unterschied, der mit der Pseudoeuklidizitét
der vierdimensionalen Raum-Zeit-Geometrie in Zusammenhang steht. Kraft
dieser Eigenschaft kann keine physikalische Transformation des Bezugssystems
(LorENTz-Transformation) die Zeitachse iiber die Grenzen der inneren Bereiche
des Lichtkegels (der Begriff des Lichtkegels wurde in I § 34 eingefiihrt) hinaus-
fithren ; physikalisch bedeutet dies die Unmoéglichkeit einer Relativbewegung
zweier Bezugssysteme mit einer Geschwindigkeit, die die Lichtgeschwindigkeit
iibersteigt. Im Gegensatz dazu wird die Zeitachse (genauer: beide ihrer Halb-
achsen) bei einer 4-Inversion von einem Bereich des Lichtkegels in den anderen
iiberfiihrt.

Obgleich dieser Umstand die physikalische Unméglichkeit der Realisierung
der 4-Inversion als Transformation eines physikalischen Bezugssystems bedeutet,
kann mannatiirlich annehmen, daB dieser Unterschied im Vergleich zu den ande-
ren vierdimensionalen Drehungen (LORENTz-Transformationen) unwichtig ist,
wenn man die mathematische Invarianz der einen oder anderen Gleichungen
betrachtet. Somit kommen wir zum SchluB}, dal jedes relativistisch invariante
Naturgesetz auch invariant gegeniiber der 4-Inversion sein mufl. Es verbleibt
nur zu kldren, was diese Behauptung vom Standpunkt einer quantenfeldtheo-
retischen Teilchenbeschreibung bedeutet. Wir fiihren dies am einfachsten
Beispiel eines Feldes fiir Teilchen mit dem Spin 0 durch.

In diesem Fall sind in den ¥-Operatoren (85,3) die Wellenamplituden u(p)
Skalare und hédngen als solche nicht vom Vorzeichen ihres Arguments, des

1) Mathematisch zeigt sich der Unterschied zwischen den zwei Typen linearer Koordi-
natentransformationen z; = 3 a;x 2 (mit », =z, 2, =y, 2; = z) am Wert der Deter-
k

minante, die aus den Transformationskoeffizienten gebildet wird. Fiir beliebige Drehungen
des Koordinatensystems ist die Determinante |«;;] = 1. Fir Spiegelungen, die sich nicht
auf Drehungen zuriickfithren lassen, gilt |ajx| = — 1.
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4-Impulses p*, ab. Indem wir sie vor die Klammer ziehen, konnen wir deshalb
einfach schreiben:

1 g . ~
Y, r) = T 2 u{ay, e iei-pn 4 pl giel—pm)y (90,1)
3

Bei der 4-Inversion werden ¢ und » durch —¢ und —7 ersetzt, so dal} dieser
Ausdruck in

1 N = .
P(—t, —r)= Tl S ufa,eft-pn 4 ple-ili-pny (90,2)
p

iibergeht. Im Apparat der zweiten Quantisierung jedoch muB der Ubergang
-von (90,1) zu (90,2) durch eine bestimmte Transformation der Erzeugungs-
und Vernichtungsoperatoren der Teilchen ausgedriickt werden. Wie aus
dem Vergleich von (90,1) mit (90,2) zu ersehen ist, besteht diese Transfor-

mation im gegenseitigen Platzwechsel der Operatoren a,, und S;' oder, was das
gleiche ist, im Ersetzen
U by, by —>ah . (90,3)

Der Sinn der Transformation (90,3) ist eindeutig. Die Inversion dndert das
Vorzeichen des Impulsvektors p, sein Vorzeichen dndert sich aber gleichfalls
bei der Zeitumkehr (die Geschwindigkeitsrichtung des Teilchens wird umge-
dreht). Deshalb 148t die gemeinsame Anwendung der Transformationen P
und 7' die Impulse der Teilchen unveridndert, so daf} sich Operatoren ineinander
transformieren, die zu Zustdnden mit gleichen p gehéren. Weiterhin vertauscht
die Zeitumkehr Vergangenheit und Zukunft und verwandelt deshalb die Er-
zeugung eines Teilchens in seine Vernichtung. In Ubereinstimmung damit wer-
den die Erzeugungs- und Vernichtungsoperatoren der Teilchen gegenseitig er-
setzt. Aullerdem sehen wir, daBl in (90,3) a-Operatoren und b-Operatoren in-
einander iibergehen, das heifit, die Transformation (90,3) beinhaltet auch den
gegenseitigen Austausch von Teilchen und Antiteilchen.

Auf diese Weise ergibt sich in der relativistischen Theorie auf natiirlichem
Wege die Forderung nach einer Invarianz gegeniiber der Transformation, bei
der gleichzeitig mit der rdumlichen Inversion und der Zeitumkehr auch eine
Ladungskonjugation erfolgt; diese Behauptung wird CPT-Theorem genannt.!)

Es sei bemerkt, daf} infolge dieses Theorems eine Verletzung der C P-Invarianz
bei irgendwelchen Erscheinungen automatisch eine Verletzung der T-Invarianz
bedeutet.

§ 91. Das Neutrino

Die Dirac-Gleichung ist inversionsinvariant. Diese Invarianz wird dadurch
gewahrleistet, dafl die Wellenfunktion als Bispinor beide Spinore enthilt, die bei
der Inversion ineinander iibergehen. Die Notwendigkeit der Einbeziehung

1) Es wurde von G. LtpErs, W. PavuLi, J. SCEWINGER (1955) formuliert.
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zweier Spinore in die Beschreibung des Teilchens hingt jedoch ihrerseits mit
der Teilchenmasse zusammen: Wie aus (82,2) oder (82,6) ersichtlich ist, erfolgt
gerade durch die GroBe m die gegenseitige ,,Verkettung’ dieser Spinore in der

Wellengleichung. »
Diese Notwendigkeit entfdllt, wenn die Teilchenmasse gleich Null ist. Ein

solches Teilchen mit dem Spin 1/2 ist das Neutrino. Die Wellengleichung, die
ein derartiges Teilchen beschreibt, kann mit Hilfe nur eines einzigen 4-Spinors,
sagen wir z. B. des nichtpunktierten Spinors

51
§=(52)’ +

formuliert werden.
Sie hat die Form

(o —Po)E=0 (91,1)

(die erste der Gleichungen (82,6) mit m = 0).
Fiir eine ebene Welle (ein Teilchen mit dem Impuls p und der Energie ¢)
148t sich die Gleichung (91,1) auf das algebraische System

(e—po)é=0
zuriickfithren. Im Falle eines Teilchens mit der Masse Null ist die Energie mit

dem Impuls durch die Gleichung & = |p| verkniipft. Nach Einfiihrung des
Einheitsvektors n in Bewegungsrichtung erhalten wir

mo)t =¢&. (91,2)
Diese Gleichung hat einen einfachen Sinn. Erinnern wir uns daran, daB fiir die
zweikomponentige Wellenfunktion die Matrix § = 1/2 ¢ ein Operator des
Teilchenspins (§ 40) ist. Das Produkt 1/2m o ist folglich der Operator der
Teilchenspiralitit A — der Spinprojektion auf die Bewegungsrichtung. Die
Gleichung (91,2) besagt folglich, da das Teilchen eine bestimmte Spiralitat
A.= + 1/2 besitzt — der Spin ist in Bewegungsrichtung ausgerichtet.
. Wir kommen somit zu dem SchluB, daB ein Teilchen, das nur durch einen
(nichtpunktierten) Spinor beschrieben wird, immer die feste Spiralitdit A = + 1/2
besitzen mufl. Auf vollig analoge Weise ergibt sich fiir ein Teilchen, das durch
den punktierten Spinor

’7i
~f)
712
beschrieben wird, anstelle von (91,2) die Gleichung

mo)yy=—n, (91,3)

d. h., ein solches Teilchen hat immer die Spiralitit A = — 1/2 — sein Spin
ist dem Impuls entgegengesetzt ausgerichtet. Man kann deshalb sagen, dal
sich in beiden Fillen zwangsliufig eine longitudinale Polarisation ergibt.
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Es ist leicht zu sehen, daf Teilchen und Antiteilchen entgegengesetzte Spira-
litdt besitzen miissen. In der Tat, wenn eins von ihnen durch die Spinoren &
beschrieben wird, mu8 sich das andere durch die komplex konjugierten Spinoren
£*beschreiben lassen ; das ist aus der Form der ¥-Operatoren (85,3) ersichtlich, in

die die Vernichtungsoperatoren der Teilchen und Antiteilchen @, und b, als
Faktoren bei den komplex konjugierten Funktionen eingehen. Nun ist aber
ein Spinor £*, der in bezug auf den unpunktierten Spinor £ komplex konjugiert
ist, einem punktierten dquivalent, womit die angefiihrte Behauptung bewiesen
ist. Vereinbarungsgemdf nennt man ein Teilchen mit der Spiralitdit —1/2 Neu-
trino und das Teilchen mit der Spiralitdat 1/2 Antineutrino.?)

Die Inversion éndert das Vorzeichen der Spiralitdt. Die Projektion des
Spins auf die Bewegungsrichtung erhélt man als Skalarprodukt der Vektoren
des Drehimpulses und des Impulses des Teilchens; der erste (als axialer Vektor)
bleibt bei der Inversion unverdndert, der zweite (polare) Vektor dndert sein
Vorzeichen. Daraus ist die Asymmetrie des Neutrinos gegeniiber der Inversion
klar ersichtlich: Die Inversion ,,verwandelt‘‘ das Neutrino in ein in der Natur
nicht existierendes Teilchen — ein Neutrino mit entgegengesetztem Vorzeichen
der Spiralitdt. Die Symmetrie bleibt nur gegeniiber der kombinierten Inversion
erhalten — der Inversion mit gleichzeitiger Umwandlung des Neutrinos in ein
Antineutrino. Darum ist eine Verletzung der Spiegelsymmetrie bei Prozessen,
an denen ein Neutrino beteiligt ist (z. B. der -Zerfall des Neutrons in ein Proton,
Elektron und Antineutrino: n —p 4 ¢ + v) auch vollstdndig natiirlich.

1) Die Existenz des Neutrinos (eines neutralen Teilchens mit der Masse Null und dem
Spin 1/2) wurde im Zusammenhang mit der Erklirung der Eigenschaften des f-Zerfalls
von W. PavuLrr (1931) theoretisch vorausgesagt. Die Theorie des Neutrinos als Teilchen,
das durch einen zweikomponentigen 4-Spinor beschrieben wird, wurde von L. D. LANDATD,
A. Saram, T. D. L und C. N. Yan~a (1957) formuliert.
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§ 92. Die Dirac-Gleichung fiir ein Elektron im f#uBeren Feld

Die Wellengleichungen fiir freie Teilchen driicken streng genommen nur die
Eigenschaften aus, die mit den allgemeinen Forderungen nach Symmetrie von
Raum und Zeit zusammenhédngen. Die physikalischen Vorgidnge unter Beteili-
gung von Teilchen hingen von den Eigenschaften der Wechselwirkungen zwi-
schen den betreffenden Teilchen ab.

Fiir das Verhalten von Teilchen mit starken Wechselwirkungen ist in der
relativistischen Theorie eine Beschreibung unmdéglich, die auf irgendeiner ein-
fachen Verallgemeinerung der Wellengleichungen beruht, eine Beschreibung,
die iiber den Rahmen der in den Gleichungen fiir die freien Teilchen enthaltenen
Informationen hinausgeht.

Die Methode der Wellengleichungen ist dagegen zur Beschreibung der elektro-
magnetischen Wechselwirkungen von Teilchen, die keiner starken Wechsel-
wirkungen fiahig sind, brauchbar. Hierher gehéren die Elektronen (und Posi-
tronen), und auf diese Weise ist der ganze, grole Bereich der Quantenelektro-
dynamik der Elektronen fiir die vorhandene Theorie zugéinglich.!) In diesem
Kapitel behandeln wir einige Fragen der Quantenelektrodynamik im Rahmen
einer Einteilchentheorie. Dabei handelt es sich um Probleme, bei denen die
Teilchenzahl konstant bleibt und die Wechselwirkung durch ein duBleres elektro-
magnetisches Feld erfafit werden kann, dessen Zustand sich im Verlaufe des
Prozesses nicht @ndert.

Die Wellengleichung fiir ein Elektron in einem gegebenen duBeren Feld
kann man auf dhnliche Weise wie in der nichtrelativistischen Theorie (§ 43)
ableiten. @ sei das skalare Potential und A das Vektorpotential des Feldes.
Die gesuchte Gleichung wird erhalten, indem im HamMiLToN-Operator der Dirac-
Gleichung (83,9) der Impulsoperator p = — 7V durch die Differenz p —e A
ersetzt wird und auerdem zum HamiLToN-Operator die potentielle Energie des
Teilchens e @ hinzugefiigt wird?):

H=a(p—ecA)+pm+ed. (92,1)

1) Die instabilen u-Mesonen sind ebenfalls nicht in der Lage, starke Wechselwirkungen
einzugehen; sie besitzen den gleichen Spin (1/2) wie das Elektron und werden durch die
gleiche Quantenelektrodynamik beschrieben. Das gilt natiirlich nur fiir Erscheinungen,
die in Zeiten vor sich gehen, die klein im Vergleich zur Lebensdauer der u-Mesonen sind,
welche durch die schwache Wechselwirkung bestimmt wird.

2) Der Buchstabe e bezeichnet die Ladung einschlieBlich ihres Vorzeichens, so daB fiir
das Elektron e = — |¢| und fiir das Positron e = + |e| ist.
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Damit sind alle notwendigen Verdénderungen erfolgt; die Einfithrung irgend-
welcher zusitzlicher Glieder (ihnlich dem in (43,4) eingefithrten Glied) macht
sich an dieser Stelle nicht erforderlich. Wir sehen im weiteren, daB sich das
magnetische Moment des Elektrons nunmehr automatisch ergibt.

In der vierdimensionalen Schreibweise bedeutet der Ubergang von (83,9)
zu (92,1) das Ersetzen des Operators des 4-Impulses p, = % 9/02* gemiB

i)u _)'i);: — € Aﬂ (92,2)
mit 4* = (P, A), A, = (P, — A) — dem 4-Potential des Feldes. Daher kann
die Dirac-Gleichung fiir das Teilchen in einem Feld auch in der Form

[y P, —ed) —m]l¥ =0 (92,3)
geschrieben werden, die mit Hilfe dieser Substitution aus (83,3) erhalten wird.

Die Stromdichte, ausgedriickt durch die Wellenfunktion, ist durch die gleiche
Formel (84,7) gegeben, die auch den Fall ohne duBleres Feld beschreibt. Wie
man sich leicht iiberzeugt, fillt das 4-Potential 4, aus dem Endergebnis heraus,
wenn mit der Gleichung (92,3) dieselben Operationen wiederholt werden,
welche bei der Ableitung von (84,7) erfolgten. Fiir diesen, schon friither gefun-
denen, Ausdruck des Stromes gilt wieder die Kontinuitdtsgleichung.

§ 93. Das magnetische Moment des Elektrons?)

In § 43 wurde fiir die Beweg/ung eines Teilchens mit Spin im duleren Magnetfeld
die Gestalt des nichtrelativistischen HamiLToN-Operators abgeleitet. In
diesen Ausdruck ging jedoch das magnetische Moment des Teilchens als empi-
rischer Parameter ein, dessen Wert durch die Theorie nicht berechnet werden
konnte. Fiir ein Teilchen, dessen Verhalten im elektromagnetischen Feld der
Dirac-Gleichung (92,3) unterliegt (wir werden im weiteren von einem Elektron
sprechen), ist die GroBe des magnetischen Moments automatisch durch die
Gleichung selbst festgelegt.

Unter diesem Aspekt zeigen wir jetzt, wie die Dirac-Gleichung in eine
gendherte Form gebracht werden kann, die dem nichtrelativistischen Hamir.ToN-
Operator (43,4) entspricht. Da es sich um die Bewegung eines Teilchens mit
Geschwindigkeiten » < ¢ handelt, geht man zweckmaéBigerweise von der Stan-
darddarstellung der Bispinor-Funktion ¥ aus, bei der ein Komponentenpaar
klein im Vergleich zum anderen ist: y < ¢ (s. das Ende von § 83).

In § 83 ist die Dirac-Gleichung in Komponentenform in der Standazddar-
stellung der Wellenfunktion fiir den Fall eines freien Teilchens aufgeschrieben
(83,11). Die Einfithrung des dulleren elektromagnetischen Feldes erfolgt durch
Ersetzen der Operatoren gemaB (92,2) mit dem Ergebnis

(?0—e¢)¢—o(P—%A)x=m0qy, —
—(f’o—€¢)x+b(f’—%-A)<p=mcx.

1) In diesem und im néchsten Paragraphen verwenden wir gewohnliche MaBeinheiten.
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Hierbei ist
o~ ih 0 N .
Po="7 3> p=—1hV.

Um zur nichtrelativistischen Ndherung iiberzugehen, mufl man jedoch noch
eine bestimmte Verdnderung der Wellenfunktion vornehmen. Das Problem
besteht darin, daB der relativistische Ausdruck fiir die Teilchenenergie (und
mit ihm auch der relativistische HamiLTroN-Operator) das (im Vergleich zum
nichtrelativistischen Ausdruck) ,,iberflissige’ Glied der Ruhenergie mc? ent-
halt. Das fiihrt in der Zeitabhingigkeit der Wellenfunktion zum Auftauchen
des iiberfliissigen Faktors exp (— ¢ m ¢? ¢/k). Um diesen Faktor auszuschlieBen,
fithren wir anstelle von ¥ die neue Wellenfunktion ¥’ ein:

P — P e-imein (93,2)

Nach Einsetzen von (93,2) in (93,1) erhidlt man folgende Gleichungen fiir die
zweikomponentigen ‘GroBen ¢’ und y’, die die vierkomponentige Wellenfunk-
tion ¥’ bilden:

iy @ , e ;

('Lha—t—em)(p =00'<p——c—A)x, (93,3)
= ; - , '
(zha—t-—e¢+2mcz)x =ca(p—%—A)¢p (93,4)

(im weiteren werden wir die Striche bei ¢’ und ' weglassen; das fiihrt zu
keinen Mifverstdndnissen, da wir in diesem Paragraphen nur die transfor-
mierte Wellenfunktion ¥’ benutzen).

In erster Naherung belassen wir in der Klammer der linken Seite der Glei-
chung (93,4) nur das groBite Glied 2 m c2 Dann erlaubt diese Gleichung sofort, y
durch ¢ auszudriicken:

1 P e

Der Faktor 1/c auf der rechten Seite der Gleichung driickt gerade die Kleinheit
von y gegeniiber ¢ aus. Wenn wir jetzt (93,5) in (93,3) einsetzen, ergibt sich
eine Gleichung, die nur noch ¢ enthilt:

i @ 1 ~ e 2
(zha—t' —e @)(p = 2—7;(0(1) — ;—A)) ®.
Der Ausdruck auf der rechten Seite dieser Gleichung 148t sich umschreiben.

Dazu verwenden wir folgende Eigenschaften der PauLi-Matritzen, die sich
unmittelbar aus ihrer Definition (82,5) ergeben:

ol=o0=o0.=1,
0y0; = — 0,0y =10;, 0,0, = — 00, =10y, (93,6)

0,0, = —0y0y;=10;.
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Mit der zeitweiligen Bezeichnung f =p— %A ergibt sich

@fE=(o:f: + O'yfy +o:f) (02 fz + Oy fy +0:1,)
=ia2:+f;+ﬁ+iaz(/z/1/_fyiz)+"'
Wiren /;, f,;, /: vertauschbar, wiirde man einfach fz erhalten. Im vorliegenden
Falle gilt aber

[

£f 77 .. @ ., 0 e

., 0 e ., 0 e
—(—lh@—c—Ay)(_zht%_c_Az)

ieh (04 04 ieh
=—(—”— z)= ==l usw.
c ox dy c

mit H = rot A — dem Magnetfeld. Auf diese Weise erhalten wir
: 2
(o(p —%A)) =(p —%A) —e—EoH,

und im Ergebnis dessen kommen wir zu folgender Gleichung fiir die zwei-
komponentige Wellenfunktion ¢:

1 2 3 A~
in® [ (p—e—A) —"’—oH+e¢]<pEH<p. (93,7)

T 2m c 2mc

Dasist die sogenannte PauLI-Gleichung. Der Vergleich des darin enthaltenen
Hamriron-Operators mit (43,4) zeigt, dall das Elektron ein magnetisches
Moment besitzt, dem der Operator

~ eh eh .
":2m00:ms (93,8)
mit $ = 1/2 ¢ als Spinoperator des Elektrons entspricht. Der Wert dieses Mo-
mentes, der iiber (43,1) definiert ist, lautet

eh

P=ome: (93.9)

Wie schon in § 43 erwdhnt wurde, ist das gyromagnetische Verhiltnis fiir das
magnetische Eigenmoment des Elektrons (e/m ¢) zweimal grofer als fiur den
Fall, wenn das magnetische Moment mit einer Bahnbewegung gekoppelt ist.)

Die Formel (93,9) gilt auch fiir das magnetische Moment des u-Mesons (mit
dessen Masse fiir m im Nenner der Formel). Sie ist aber fiir Protonen und
Neutronen véllig unbrauchbar, obgleich diese Teilchen ebenfalls den Spin 1/2

1) Dieses Resultat wurde von P. A. M. Dirac (1928) erhalten. Die zweikomponentige
Wellenfunktion, die der Gleichung (93,7) geniigt, wurde von W. Paur1 (1927) eingefiihrt,
noch bevor Dirac seine Gleichung gefunden hatte.
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haben. Besonders gravierend ist die Abweichung im Falle des Neutrons: Da
es elektrisch neutral ist, diirfte es gemaB (93,9) iiberhaupt kein magnetisches
Moment besitzen. An dieser Stelle zeigt sich mit groBer Anschaulichkeit die
Nichtanwendbarkeit der existierenden Quantenelektrodynamik auf Teilchen,
die fahig sind, starke Wechselwirkungen einzugehen.

§ 94. Die Spin-Bahn-Wechselwirkung

Die im vorigen Paragraphen durchgefiihrten Rechnungen stellen im Grunde ge-
nommen den Beginn einer Entwicklung der exakten Losung der Dirac-Gleichung
nach Potenzen des kleinen Verhiltnisses v/c dar. Die Gleichung (93,7) beriick-
sichtigt bei solch einer Entwicklung nur Glieder der ersten Ordnung (worauf
der Faktor 1l/¢ im zusdtzlich entstehenden Glied des HamirTonN-Operators
— ¢ H hinweist).

In der néchsten, der zweiten, Ndherung kommen zum HamirToN-Operator
noch neue Glieder hinzu. Die entsprechenden Rechnungen werden jedoch um-
fangreicher, und wir fiithren sie nicht an. Wir geben nur das Endresultat fiir
den HamiLToN-Operator eines Elektrons im dufleren elektrischen Feld mit einer
Genauigkeit bis zu Gliedern der Ordnung 1/c? an: "

~ f,z i‘,d
H = 2m+e(1) Pees o 47n%2c{E1z)] —dlvE (94,1)
dabei ist @ das Potential und E = — grad @ die Feldstdrke. Wie in (93,7)

ist dieser HamiLToN-Operator auf eine zweikomponentige Wellenfunktion anzu-
wenden.

Die letzten drei Glieder in (94,1) sind die uns interessierenden Korrekturen
der Ordnung 1/c®. Das erste entspricht einer relativistischenn Korrektur zum
klassischen Ausdruck fiir die kinetische Energie des Teilchens:

= - pz pd
Vez p2 + m2 ct —mczwz—m—m-k-

Das zweite Korrekturglied in (94,1), das als Energie der Spin- Bahn-W echsel-
wirkung bezeichnet werden kann, beschreibt die Wechselwirkungsenergie
eines bewegten magnetischen Moments mit dem elektrischen Feld. Ist das
elektrische Feld zentralsymmetrisch,

r do
E=-+%
so nimmt der Operator der Spin-Bahn-Wechselwirkung folgende Gestalt an:
eh h? dU ~.
V“ dmicir o[r p] dr =omictr dr ls (94,2)

Hierbei sind # I = [r P] der Operator des Bahndrehimpulses des Elektrons,
8 = 1/2 o der Operator seines Spins und U = e ¢ die potentielle Energie des
Elektrons im Feld. Eine Wechselwirkung dieses Typs wurde schon in § 51

19 Kurzfassung II
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alseine der Ursachen fiir die Feinstruktur der Energieniveaus der Atome betrach-
tet.l)

- Das letzte Korrekturglied in (94,1) ist nur in den Punkten von Null verschie-
den, in denen sich die das Feld erzeugenden Ladungen befinden; nur in diesen
Punkten verschwindet div E nicht.

Den HamiLtoN-Operator (94,1) kann man zur Berechnung relativistischer
Korrekturen fiir die Energieniveaus des Wasserstoffatoms verwenden, d. h.
fiir den Fall eines Elektrons im CouromMmB-Feld des unbeweglichen Atomkerns
(eines Protons mit der Ladung + le|).

Das Potential des Feldes der Ladung + |e| ist @ = |e|/r und dessen Diver-
genz divE = — AD =4z |e| 6(r) (vgl. I (59,10). Damit nehmen die Korrek-
turglieder im HaMILTON-Operator des Wasserstoffatoms, die wir zusammen-
gefaBt durch 7@ bezeichnen, die Form

hte? ~.  meth?

~ B2
I](2)=8m*’c242_+_ 2m2c?pd ls+2m’cza(‘r)

(94,3)
an,

Hier sei an den nichtrelativistischen Ausdruck fiir die Energieniveaus des
Wasserstoffatoms erinnert (§ 31):

m et

By =— 2mnt "
Dieser Ausdruck hidngt nur von der Hauptquantenzahl » und nicht vom
Bahndrehimpuls I ab, der (bei vorgegebenem n) die Werte I =0,1,...,n — 1
durchlduft. Die nichtrelativistischen Energieniveaus (94,4) hiangen auch nicht
von der Orientierung des Elektronenspins beziiglich des Bahndrehimpulses
des Elektrons ab, d. h. vom Gesamtdrehimpuls §, der (bei vorgegebenem I 7% 0)
die zwei Werte j = I £ 1/2 annehmen kann.

Die gesuchten Energiekorrekturen AE kénnen nach den allgemeinen Regeln
der Storungstheorie (§ 32) gefunden werden, indem man (94,3) als Operator
einer kleinen Stérung betrachtet, und seinen Mittelwert (das Diagonalmatrix-
element) beziiglich der ungestorten Wellenfunktionen, d. h. der iiblichen nicht-
relativistischen Wellenfunktionen des Wasserstoffatoms, bestimmt. Die Rech-
nung liefert folgendes Resultat:

(94,4)

1 3 \meta?
A (j +1/2 —H)z 2 nd (94,5)
mit
e? 1
Y= ke 137,04 (94,6)

(die GroBe « heiBt Feinstruktfrkonstante).?) Die Kleinheit der Korrektur (94,5)
im Verhdltnis zu (94,4) wird durch den Faktor a® ausgedriickt.

1) Ein anderer Typ relativistischer Wechselwirkungen, die Spin—-Spin-Wechselwirkung,
entsteht natirlich nur in einem System avs mehreren Teilchen und fehlt im Falle eines
Elektrons im duBeren Feld. ‘

3) Diese Formel wurde zuerst von A. SOMMERFELD, ausgehend von der alten BoERschen
Theorie, noch vor der Schaffung der Quantenmechanik abgeleitet.
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Die Verschiebung des Niveaus (94,5) hingt nun schon nicht mehr nur von =
ab, sondern auch von j. Diese Abhingigkeit bedeutet gerade die Aufspaltung
der Niveaus (94,4) in Feinstrukturkomponenten; es erfolgt, wie man sagt, ein
Aufheben der Entartung, die in der nichtrelativistischen Néherung vorlag.
Die Entartung wird jedoch nicht vollstdndig aufgehoben; es verbleiben zwei-
fach entartete Niveaus mit gleichen n und j aber verschiedenen I =j 4 1/2
(hier zeigt sich wiederum im Vergleich zu komplizierteren Atomen die Spezifik
des Wasserstoffatoms mit seinem reinen CouromMB-Feld des Kerns). Auf diese
Weise ergibt sich unter Beriicksichtigung der Feinstruktur folgende Reihenfolge
der Wasserstoffniveaus:

18y

28y 2Pye,  2D3p
3816, 3pyp, 33z, 3dye, 3dspe
—— N—

..........................

Durch geschweifte Klammern sind die zu einem Energiewert gehérigen (ent-
arteten) Zusténde erfafit. Nicht entartet sind nur Niveaus mit maximal még-
lichem § (bei gegebenem n).

Wir werden spiter noch sehen, dafl die hier verbleibende Entartung durch
die sogenannten Strahlungskorrekturen aufgehoben wird (LAMB-Verschiebung
oder Lams-shift), die in der Dirac-Gleichung fiir das Einelektronenproblem
nicht beriicksichtigt werden; diese Korrekturen werden in § 106 behandelt.

19*






Strahlung XV

§ 95. Der Operator fiir die elektromagnetische Wechselwirkung

Nach der Behandlung von Fragestellungen, bei denen das elektromagnetische
Feld in der passiven Rolle von dufleren Bedingungen fiir die Teilchen auftrat,
wenden wir uns jetzt einer etwas breiteren Kategorie von elektrodynamischen
Erscheinungen zu, die von der Verdnderung des Zustands des Feldes selbst
begleitet sind. Es handelt sich dabei um Prozesse der Emission, Absorption und
Streuung von Photonen durch Systeme geladener Teilchen.

Die Wechselwirkung von Elektronen mit dem Feld der elektromagnetischen
Strahlung kann in der Regel mit Hilfe der Stérungstheorie behandelt werden.
Dieser Umstand resultiert aus der relativ geringen Stirke der elektromagne-
tischen Wechselwirkungen. Die Wechselwirkung des Elektrons mit dem Feld
wird durch seine Ladung e bestimmt. Dabei spielt die aus e, ¢ und % gebildete
dimensionslose Grofle « = €%/ i ¢, die schon in § 94 als Feinstrukturkonstante ein-
gefithrt wurde, die Rolle der ,,Kopplungskonstanten, die die Starke der Wechsel-
wirkung angibt. Die geringe Stédrke der elektromagnetischen Wechselwirkungen
driickt sich in dem kleinen Zahlenwert dieser Konstanten « = 1/137 aus. Dieser
kleine Wert spielt eine fundamentale Rolle in der Quantenelektrodynamik.

Wir leiten zundchst den Ausdruck fiir den Wechselwirkungsoperator des
Elektrons mit dem Strahlungsfeld ab, der die Rolle des Stéroperators spielt.
Wir vereinbaren (wie im Kap. XI) die Eichung des Feldes in der Weise, da}
das skalare Potential @ = 0 ist, so dal das Feld nur durch das Vektorpotential A
allein beschrieben wird. Geméf8 (92,1) wird die Wechselwirkung des Elektrons
mit einem gegebenen elektromagnetischen Feld durch das Glied V=—caa
in seinem HaMiLroN-Operator erfaBt. Um zum allgemeineren Fall von Prozessen
iibergehen zu konnen, die mit Verdnderungen des Feldzustandes gekoppelt
sind, muf} das Potential A durch einen Operatorz’l\ der zweiten Quantisierung
ersetzt werden; dann ist der Wechselwirkungsoperator durch

V=—ecad (95,1)
gegeben.l)
Der Operator A ist eine Summe
A(t, ) = X {Cn Ault, 7) + 6 AX (7)) (95,2)
n

1) Die Operation der Ladungskonjugation — das Ersetzen von Teilchen durchihre Anti-
teilchen — darfnicht die Gestalt des Wechselwirkungsoperators andern. Werden positiv ge-
ladene Teilchen durchnegativ geladene ersetzt, so bedeutet diese Transformation insbeson-

dere den Austausch ¢ — — e. Die Invarianz von 7 fordert ein gleichzeitiges Ersetzen von
A durch —A. Das bedeutet, daB Photonen Teilchen mit ungerader Ladungsparitét sind.
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aus Erzeugungs- und Vernichtungsoperatoren von Photonen der verschiedenen
Zustinde (die durch den Index » numeriert sind); die Koeffizienten Au(¢, r)
spielen die Rolle der Wellenfunktionen dieser Zustdnde. Der Feldzustand ist
durch die Gesamtheit der Besetzungszahlen N, fiir alle Photonenzustinde ge-
geben. Die Photonenzustidnde selbst kénnen in Abhéngigkeit von der Frage-
stellung der einen oder anderen konkreten Aufgabe auf verschiedene Weise
angegeben werden. Interessiert uns z. B. die Emission bzw. Absorption von
Photonen mit bestimmten Wellenzahlvektoren &k und der Polarisation e, so
sind die Wellenfunktionen Au(t, ) ebene Wellen (76,16). Untersuchen wir
hingegen die Emission von Photonen mit bestimmten Werten des Drehim-
pulses j, so sind die A, Kugelwellen, die in § 78 besprochen wurden.

In der ersten Ndaherung der Stérungsrechnung wird die Wahrscheinlichkeit
des einen oder anderen Prozesses durch das Quadrat |Vy;|?> des Matrixele-
mentes des Stéroperators fiir den Ubergang zwischen Anfangs- (Index i) und
Endzustand (Index f) des Ladungssystems und Feldes bestimmt. Jeder der
Operatoren ¢q, ¢; hat nichtverschwindende Matrixelemente nur bei Vergro-
Berung oder Verkleinerung der entsprechenden Besetzungszahl N, um 1 (alle
anderen Besetzungszahlen bleiben unverdndert). Daher hat auch der Opera-

tor A von Null verschiedene Matrixelemente nur fiir Uberginge, bei denen
sich die Photonenzahl um 1 #@ndert. In der ersten Néherung der Stérungs-
theorie treten, mit anderen Worten, nur Einphotonenemissions- bzw. Ein-
photonenabsorptionsprozesse auf.

Nach (76,12) sind das die Matrixelemente

(Np— 1l ¢ N2y = VN, (95,3)
(N,.+1|cj{|N,.>=lN,.+1. (95,4)

Das erste beschreibt die Absorption eines Photons (der Sorte n) — die Be-
setzungszahl verringert sich um 1; das zweite entspricht der Emission eines
Photons — die Besetzungszahl wichst um 1. Fehlen im Anfangszustand des
Feldes Photonen (der Sorte n), so ist (1| c; |0> = 1; das Matrixelement des

OperatorsAA enthilt jedoch auBerdem noch den Faktor A, der in der Summe
(95,2) als Koeffizient bei ¢, steht. Somit erhilt man fiir das volle Matrix-
element des Operators (95,1) im Falle der Photonenemission

Velt) = — e f (PF « P) A} AV (95,5)

mit den Wellenfunktionen !;{/{ und ¥; des Anfangs- und Endzustandes des
strahlenden Systems (des Elektrons).l) Analog ergibt sich das Matrixelement

1) Um MiBverstindnisse zu vermeiden, betonen wir, daB ein einzelnes Elektron nur
bei einer Bewegung in einem #@uBeren Feld strahlen kann. DaB insbesondere ein freies
Elektron (welches sich mit konstanter Geschwindigkeit bewegt) unméglich Photonen emit-
tieren kann, wird offensichtlich, wenn wir es in dem Bezugssystem betrachten, in dem es
ruht: In diesem System ist die Elektronenenergie gleich m und kann sich nicht verkleinern,
wie das bei einer Photonenemission der Fall sein miiBte.
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fiir die Absorption eines Photons
Vyit) = —ef (PFa?)AadV . ‘ (95,6)

Es unterscheidet sich von (95,5) nur dadurch, daB statt A} jetzt A, steht.
Durch die Angabe des Argumentes ¢{ bei Vy; heben wir hervor, daBl es sich
um ein zeitabhdngiges Matrixelement handelt. Man kann in der iiblichen Weise
(in Ubereinstimmung mit der Regel (11,4)) zu zeitunabhéingigen Matrixelemen-
ten iibergehen, indem man die Zeitfaktoren in der Wellenfunktion abspaltet:

Vet = Vy; e~ i - ErF o)t (95,7)

(Es und Ej sind die Energien von Anfangs- bzw. Endzustand des strahlenden’
Systems, ,,F“ entspricht der Emission bzw. Absorption eines Photons der
Energie w).

Das in den Integralen (95,5) oder (95,6) auftretende Produkt

Jri=¥Fa ¥ (95,8)

besitzt eine analoge Struktur wie der Ausdruck j = ¥P* & ¥ (84,9) fiir den
Strom in der Dirac-Gleichung; anstelle der zwei gleichen Wellenfunktionen
stehen jetzt verschiedene Wellenfunktionen (fiir den Anfangs- bzw. Endzu-
stand). Die GroBe (95,8) wird Ubergangsstrom genannt.

Betrachten wir die Emission (oder Absorption) eines Photons mit einer be-
stimmten Richtung des Wellenzahlvektors k und einer fixierten Polarisation e,
so sind fiir 4,(r) die Funktionen

Aqr) =e a% elkr (95,9)
zu nehmen (die ebene Welle (76,16) ohne den Faktor e~**!). Fiir das Uber-
gangsmatrixelement der Emission eines solchen Photons erhalten wir

Vyi=—e i—’!‘? e*j (k) (95,10)
mit .
Jrik) = [jps(r) emFrdV . (95,11)

Das Integral (95,11) stellt die FouriEr-Komponente der Funktion j;,(r) dar,
es wird als Ubergangsstrom in der Impulsdarstellung bezeichnet.

Die Emissionswahrscheinlichkeit eines Photons findet man iiber das Matrix-
element (95,10) unmittelbar mit Hilfe der allgemeinen Formel der Stérungs-
theorie, die in § 35 abgeleitet wurde. Wir betrachten im weiteren den Fall,
dafl Anfangs- und Endzustand des strahlenden Systems zum diskreten Spek-
trum seiner Energieniveaus gehéren. Der Endzustand des Gesamtsystems
Elektron + Feld gehort jedoch auf Grund des emittierten Photons zum
kontinuierlichen Spektrum, da das Spektrum der moglichen Energiezusténde

+ des Photons kontinuierlich ist. Somit liegt hier gerade die Fragestellung vor,
die in § 35 behandelt wurde. GemaB (35,6) ist die Ubergangswahrscheinlichkeit
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(pro Sekunde) fiir den Ubergang © — f unter Emission eines Photons gleich
dw =27 |V, P 0(E: — E; — w) dv, (95,12)

wobei v vereinbarungsgemifl die Gesamtheit der GroBen beschreiben soll, die
den Zustand des Photons charakterisieren und einen stetigen Wertebereich
durchlaufen. Fiir Photonen mit festem Wert des Wellenzahlvektors sind die
Grofen » die Komponenten von k, so dall dy = dk, dk, dk, = w? dw do ist
(do ist das Raumwinkelelement in k-Richtung). Bei einer solchen Wahl der
GroBen » wird in der Formel (95,12) vorausgesetzt, dal die Wellenfunktion
des Photons auf d(k) normiert ist. Die Funktion (95,9) ist aber auf ,,1 Photon
pro Volumeneinheit normiert; bei dieser Normierung hat die Wellenfunktion
den Faktor 1/V§ anstelle des Faktors (2 ) ~%2, der im Falle der Normierung
auf die Deltafunktion d(k) (vgl. (27,9) und (27,10)) auftritt. Wir miissen des-
halb die Formel (95,12) in der Form
2

dw =27 | V2 8(B: — B, — o) Q—“éft;‘;;“ (95,13)
schreiben.

Die in diese Formel eingehende Deltafunktion driickt den Energieerhaltungs-
satz aus: Die Energie des emittierten Photons ist gleich dem Energieverlust
des strahlenden Systems: w = E; — E,. Die Integration der Formel (95,13)
itber dw bringt diese Deltafunktion zum Verschwinden und fiihrt zu folgendem
Endergebnis fiir die Emissionswahrscheinlichkeit eines Photons der Energie

o = E; — E; in den Raumwinkel do:
0
dow = i [Vsil? w? do . (95,14)

In diese Formel mufl das Matrixelement aus (95,10) eingesetzt werden.

§ 96. Spontane und induzierte Emission?)

In den folgenden Paragraphen werden wir die eben erhaltenen Formeln zur
Berechnung der Ubergangswahrscheinlichkeit auf eine Reihe konkreter Fille
anwenden. Hier befassen wir uns zunéchst mit einigen allgemeinen Beziehungen
zwischen den verschiedenartigen Strahlungsprozessen.

Das Matrixelement (95,5) gehort zu einem Photonenemissionsprozefl, wenn
im Anfangszustand das Feld keine Photonen der betrachteten Sorte enthalt.
Wenn im Anfangszustand bereits eine von Null verschiedene Zahl N, solcher
Photonen vorhanden ist, so ist das Ubergangsmatrixelement (gemiB (95,4))
noch mit VN, + 1 zu multiplizieren. Die Ubergangswahrscheinlichkeit ver-
groflert sich entsprechend um den Faktor N, 4+ 1. Die 1 in diesem Faktor ent-
spricht der spontanen Emission, die auch bei N, = 0 vorkommt. Das Glied
N, bedingt eine erzwungene (oder induzierte) Emission. Wir sehen, dal die

1) In diesem Paragraphen verwenden wir gewohnliche MaBeinheiten.
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Existenz von Photonen im Anfangszustand des Feldes eine zusdtzliche Emis-
sion dieser Photonen stimuliert.

Wenn der Ubergang i —f die Emission eines Photons durch das System
darstellt, welches dabei von einem Niveau E; in ein tieferliegendes Niveau E,
iibergeht, so bedeutet der umgekehrte Ubergang f —% die Absorption eiges
solchen Photons durch das System, wobei letzteres vom Niveau E; in das
Niveau E; iibergeht. Das Matrixelement dieses inversen Ubergangs unter-
scheidet sich vom Matrixelement des direkten Prozesses durch den Austausch
des Faktors (95,4) mit (95,3), d. h., VN,, + 1 wird durch Vﬁ: ersetzt. Daraus
folgt, daBl zwischen den Emissions- und Absorptionswahrscheinlichkeiten eines
Photons (bei Ubergingen zwischen einem vorgegebenen Niveaupaar des strah-
lenden Systems) folgende Beziehung gilt:

Wem N,+1
way N,

(96,1)

(sie wurde erstmalig 1916 von A. EINSTEIN angegeben, der damit die Erschei-
nung der induzierten Emission voraussagte).

Wir wollen die Zahl der Photonen mit der Intensitdt der von aullen auf
das System einfallenden Strahlung in Verbindung bringen. Es sei

I, dw do (96,2)

die Strahlungsenergie, die in 1 s auf die Fliche 1 cm? auftrifft und die Polarisa-
tion e, die Frequenz im Intervall dw und die Richtung des Wellenzahlvektors im
Raumwinkel do hat. Den angegebenen Intervallen entsprechen Q2 k2 dk do/(2 &)3
Feldoszillatoren (im Volumen £). Auf jeden Oszillator entfallen Ny, Photonen
mit einer bestimmten Polarisation. Wir erhalten daher dieselbe Energie wie in
(96,2), wenn wir das Produkt

¢ QFkdkdo how®
?2— WN,,G cho = 8 70 ¢ Nke dw do
bilden. Hieraus finden wir die gesuchte Beziehung
8 73 ¢?
Nlee = Thd ke (96’3)

dw§® sei die Wahrscheinlichkeit fiir die spontane Emission eines Photons
mit der Polarisation e in den Raumwinkel do; die Indizes (in) und (ab) werden
den entsprechenden Wahrscheinlichkeiten fiir induzierte Emission und Ab-
sorption angehdngt. Nach (96,1) und (96,3) sind diese Wahrscheinlichkeiten
durch die folgenden Beziehungen miteinander verkniipft:
8 7 ¢?
hw?

dw = dwf® = dw{P I, . (96,4)

Wenn die einfallende Strahlung isotrop und unpolarisiert ist (I, hidngt
nicht von den Richtungen von & und e ab), dann ergeben die Integration von
(96,4) iiber do und die Summation iiber e analoge Beziehungen zwischen den
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Gesamtwahrscheinlichkeiten fiir die Strahlungsiibergéinge (zwischen gegebenen
Zustdnden 7 und f des Systems)

’ 72 c3
w@?) = D) — 4P B’ I, (96,5)

wenn I = 2. 4xn I, die gesamte spektrale Intensitdt der einfallenden Strah-
lung ist.

Falls die Zustdnde 7 und f des emittierenden (oder absorbierenden) Systems
entartet sind?!), ergibt sich die gesamte Emissions- (oder Absorptions-) Wahr-
scheinlichkeit fiir die gegebenen Photonen durch Summation iiber-alle entarteten
Endzusténde und durch Mittelung iiber alle méglichen Anfangszusténde. Wir
bezeichnen die Entartungsgrade (die statistischen Gewichte) der Zusténde?
und f mit g; bzw. g;. Fiir die spontane und die induzierte Emission sind die
Zustinde ¢ die Anfangszustinde, fiir die Absorption die Zustdnde f. Unter der
Voraussetzung, daB in jedem Fall alle g; oder g; Anfangszustdnde gleichwahr-
scheinlich sind, erhalten wir statt (96,5) offensichtlich die folgenden Beziehungen:

2 »2
gy W = gy wl® — g, w(‘*P)-;%I . (96,6)

§ 97. Die Dipolstrahlung

Ein sehr wichtiger Fall liegt dann vor, wenn die Wellenlinge des Photonsj
groB im Vergleich zu den Abmessungen a des strahlenden Systems ist. Dieser
Fall tritt gewShnlich dann auf, wenn die Geschwindigkeiten der Teilchen klein
im Verhdltnis zur Lichtgeschwindigkeit sind (vgl. I § 80).

In erster Naherung beziiglich des kleinen Verhéltnisses a¢/A kann man im
Integral (95,11) den Faktor e~**" durch 1 ersetzen, denn dieser &ndert sich in
dem Gebiet, in dem y; und y; merklich von Null verschieden sind, nur wenig.
Mit anderen Worten bedeutet eine solche Naherung die Vernachldssigung des
Photonenimpulses gegeniiber den Impulsen der Teilchen im System (in gewéhn-
lichen MafBeinheiten ist der erstere gleich # k und besitzen die letzteren die
GroBenordnung ifa). Diese Néherung entspricht der Dipolstrahlung der klas-
sischen Strahlungstheorie.

In derselben Néherung kann das Integral

37i0) = Syff ayp dV

durch den entsprechenden nichtrelativistischen Ausdruck ersetzt werden, d. h.
einfach durch das Matrixelement der’ Elektronengeschwindigkeit v, das mit
den ScHRODINGERschen (nichtrelativistischen) Wellenfunktionen gebildet wird.
Dieses Matrixelement v, kann seinerseits durch ein ebensolches Matrixelement
des Radiusvektors des Elektrons ausgedriickt werden: Da © = # ist, haben
wir nach (11,8) vy; =1 (E; — By) vy;; die Differenz E; — E, fdllt mit der

1) Daskann z. B. eine Entartung nach den Richtungen des Drehimpulses des strahlenden
Atoms sein.
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Kreisfrequenz w des emittierten Photons zusammen, so daf
. . o
]fi = 'Uf‘- = —10 'rfi = — Td‘ﬁ (97,1)

ist (d = e r ist das Dipolmoment des Elektrons infolge seiner Bahnbewegung).
Nach Einsetzen von (97,1) in (95,10) finden wir?)

-,./2nw

Gi=zv o) e*%@ (97,2)

und im Anschlufl daran entsteht iiber (95,14) folgende Formel fiir die Wahr-
scheinlichkeit der Dipolstrahlung:

w3
dw = 27 Ie* dfi|2 do (9773)

(die Richtung des Wellenzahlvektors k des Photons tritt hierbei implizit auf:
Der Polarisationsvektor € mufl senkrecht auf k stehen).

Die Gesamtemissionswahrscheinlichkeit erhdlt man aus (97,3) nach der Inte-
gration iiber alle Photonenrichtungen und der Summation iiber die beiden
unabhéngigen Polarisationen. e soll einer linearen Polarisation entsprechen;
dann ist e ein reeller Einheitsvektor und das Produkt e* dy; stellt eine der
kartesischen Vektorkomponenten d;; dar. Beim Ersetzen des Quadrats | (d;;).|?
durch seinen Mittelwert, der gleich 1/3 |dy,|? ist, wird die weitere Integration
iiber do auf eine einfache Multiplikation mit 4 7 zuriickgefiihrt, und die Sum-
mation iiber die Polarisationen ersetzt eine Multiplikation mit dem Faktor 2.
Die Gesamtemissionswahrscheinlichkeit eines Photons ist somit

403
w = —|dg;|?
oder in gew6hnlichen MaBeinheiten
40

w = mldf.lz . (97,4)

Die Intensitdt I der Strahlung ergibt sich durch Multiplikation der Wahr-
scheinlichkeit mit % w:

4 4
1=£g%p. (97,5)

Wir méchten darauf hinweisen, dafl der gendherte Ausdruck fiir das Matrix-
element (97,2) das Matrixelement des Operators

V=—Ed (97,6)

1) Der analoge Ausdruck fiir das Ubergangsmatrixelement im Falle der Absorption
eines Photons ist

2
V= —iV ’;;’ edy;. (97,2a)

Er ergibt sich aus (95,6) auf die gleiche Weise, wie (97,2) aus (95,5) erhalten wird.
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ist, wobei E=- aﬁ/at der Operator der elektrischen Feldstirke und d der
Operator des Dipolmomentes des Elektrons sind; (97,2) erhdlt man aus (97,6)
auf genau die gleiche Art wie (95,5) aus (95,1). Der gendherte Wechselwirkungs-
operator (97,6) entspricht gerade dem klassischen nichtrelativistischen Aus-
druck fiir die potentielle Energie eines Systems von Ladungen in einem quasi-
homogenen elektrischen Feld (vgl. I § 64). Dieser Umstand ist in der Be-
ziehung bedeutungsvoll, daf er erlaubt, den Anwendungsbereich der in diesem
Paragraphen erhaltenen Formeln betréchtlich zu erweitern: Die Formeln gelten
nicht nur fiir einen ,,Einelektronenstrahler*, sondern auch fiir die Strahlung
eines beliebigen nichtrelativistischen Teilchensystems.

Die Formel (97,5) zeigt eine direkte Analogie zur klassischen Formel (vgl. I
(80,12)) fiir die Intensitat der Dipolstrahlung eines Systems periodisch bewegter
Teilchen : Die Strahlungsintensitét zur Frequenz w = n w, (w, ist die Frequenz
der Teilchenbewegung, = eine ganze Zahl) ist '

4 ot
I, = £V |dal? , (97,7)
wobei d, die FouriEr-Komponenten des Dipolmoments sind, d. h. die Ent-
wicklungskoeffizienten in

dit) = X dye el (97,8)
Die quantentheoretische Formel (97,5) ergibt sich aus (97,7), indem man
diese FouriER-Komponenten durch die Matrixelemente fiir die betreffenden
Uberginge ersetzt. Diese Regel (die ein Ausdruck fiir das BoHRrsche Korre-
spondenzprinzip ist) ist ein Spezialfall der allgemeinen Korrespondenz zwischen
den Fourier-Komponenten der klassischen Gréflen und den quantentheore-
tischen Matrixelementen im quasiklassischen Fall (§ 27). Die Strahlung ist
quasiklassisch fiir Uberginge zwischen Zustdnden mit groBen Quantenzahlen;
dabei ist die Frequenz des Uberganges & w = E; — E; klein gegeniiber den
Energien E; und E; des strahlenden Systems. Die genaue (nicht an die Be-
dingung fiir das Vorliegen des quasiklassischen Falls gebundene) Formel (95,7)
hat jedoch sowohl fiir kleine als auch fiir beliebige w dasselbe Aussehen. Da-
durch wird die (bekanntlich zuféllige) Tatsache erklirt, daBl das Korrespondenz-
prinzip fiir die Strahlungsintensitét nicht nur im quasiklassischen, sondern auch
.im allgemeinen quantenmechanischen Fall gilt.

§ 98. Multipolstrahlung /

Anstelle der Emission von Photonen mit vorgegebenem Impuls (d. h. in eine
gegebene Richtung) behandeln wir jetzt die Emission von Photonen mit einem
bestimmten Drehimpuls j. Dabei wird auch der tiefere quantenmechanische
Sinn der Dipolndherung geklart.
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Fiir die Emission solcher Photonen existieren strenge Auswakhlregeln, die
Folgen des Drehimpulserhaltungssatzes sind: Der Drehimpuls des Anfangs-
zustandes des strahlenden Systems mul} iibereinstimmen mit der Summe der
Drehimpulse des Endzustandes des Systems und des Photons. Nach der
quantenmechanischen Regel iiber die Addition von Drehimpulsen heit dies,
daBl das System im Endzustand nur die Werte des Drehimpulses

Jy=did g, Jiti—1,0e0|di— il (98,1)

annehmen kann, wenn es im Anfangszustand den Drehimpuls J; besafl und
ein Photon mit dem Drehimpuls j emittiert wurde.

Auch die Paritdten P; und P; des Anfangs- und Endzustandes des Systems
unterliegen einer bestimmten Bedingung: Die Paritdt des Anfangszustandes
mufBl mit der Gesamtparitdt des Endzustandes des Systems und des Photons
iibereinstimmen, d. h., es mul P; = P; Pp, gelten mit Pp, als Paritat des
Photons. Da alle Parititen nur die Werte 41 annehmen kénnen, kann man
diese Bedingung auch in folgender Form schreiben?):

P; Py= Pp,. (98,2)

Der Drehimpuls des Photons durchlduft, von 1 beginnend, ganzzahlige Werte
(der Wert j = O ist nicht erlaubt). Fiir beliebige dieser Werte des Drehimpulses
verbietet die Regel (98,1) beim Ubergang des Systems zwischen zwei Zustinden
mit J = 0 (0 —0-Ubergiéinge) die Emission eines einzelnen Photons. Ein
Strahlungsiibergang zwischen zwei solchen Zustdnden ist nur fiir eine gleich-
zeitige Emission zweier Photonen mit antiparallelen Drehimpulsen méglich
(dieser Prozef tritt aber erst in héherer Naherung der Stérungstheorie auf und
ist deshalb von relativ geringer Wahrscheinlichkeit).

Fiir die Emission eines Photons der Art 1~ (ein E1-Photon nach der in § 78
eingefithrten Bezeichnungsweise) erlauben die Auswahlregeln (98,1—2) nur
Uberginge zwischen Zustinden entgegengesetzter Paritit bei folgenden zu-
lissigen Anderungen des Drehimpulses J des strahlenden Systems:

J>J+1,J,Jd—1 (fir J = 1);
1/2 = 3/2, 1/2; 0—>1.

Diese Regeln stimmen mit den Auswahlregeln der Matrixelemente eines po-
laren Vektors (§§ 18, 19) iiberein. Das elektrische Dipolmoment d des Systems,
dessen Matrixelemente die Ubergangswahrscheinlichkeit (97,4) bestimmen, ist
gerade ein solcher Vektor. Daraus wird ersichtlich, daB8 die Dipolndherung die
Emission eines 1--Photons beschreibt.

Die Auswahlregeln fiir die Emission eines 1*-Photons (M 1-Photons) unter-
scheiden sich von denen fiir die Emission eines F1-Photons nur beziiglich der
Paritdt : Anfangs- und Endzustand des strahlenden Systems miissen die gleiche
Paritdat besitzen. Das entspricht den Auswahlregeln fiir die Matrixelemente

(98,3)

1) Die Auswahlregel beziiglich der Paritdt wurde erstmalig von O. LaporT (1924) auf-
gestellt.
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eines axialen Vektors. Der Vektor des magnetischen Dipolmoments eines Sy-
stems ist ein Vektor dieser Art. Seine Matrixelemente bestimmen fiir diesen
Fall die Photonenemissionswahrscheinlichkeit. Hieraus leitet sich auch die Be-
zeichnung magnetische Dipolstrahlung ab.

Vollig analog bestimmt sich die Emission eines beliebigen Ej-Photons durch
die Matrixelemente des elektrischen 2/-Polmoments des Systems und die Emis-
sion eines Mj-Photons durch die Matrixelemente des magnetischen 2-Pol-
moments.

§ 99. Die Strahlung von Atomen?)

Die Energien der duBeren Elektronen eines Atoms (die an optischen Uber-
gingen beteiligt sind) sind nach einer groben Abschdtzung von der Grofen-
ordnung E ~ m et[h?, so daB die emittierten Wellenlingenl ~ i ¢/E ~ h2[a m e?
sind. Die Atomdurchmesser sind a ~ #%2/m e2. Deshalb ist fiir optische Atom-
spektren die Ungleichung a/A ~ « < 1 in der Regel erfiillt. Dieselbe Groflen-
ordnung hat das Verhéltnis v/c ~ «, wobeiw die Geschwindigkeit der optischen
Elektronen ist. _

Fiir optische Atomspektren ist also die Bedingung erfiillt, unter der die
Wahrscheinlichkeit fiir die elektrische Dipolstrahlung (wenn sie nicht durch
Auswahlregeln verboten wird) viel grofler ist als die Wahrscheinlichkeit fiir
Multipoliiberginge. Auf Grund dessen spielen gerade die elektrischen Dipol-
iiberginge die wichtigste Rolle in der Atomspektroskopie.?)

Die im vorigen Paragraphen angefithrten Auswahlregeln beziiglich des Ge-
samtdrehimpulses und der Paritét der Elektronenhiille des Atoms sind véllig
streng.?) Neben diesen Regeln kann es auch andere, genidherte Auswahlregeln
geben, deren Giiltigkeit mit bestimmten Eigenschaften verbunden ist, die einige
Gruppen von Atomzustéinden gendhert charakterisieren.

Zustdnde, die nach dem Typ der LS-Kopplung (§ 51) aufgebaut sind, gehoren
z. B. zu dieser Art. Neben dem Gesamtdrehimpuls werden diese Zusténde
noch durch bestimmte Werte des in diesem Fall erhalten bleibenden Bahn-
drehimpulses L und des Atomspins S charakterisiert. Da das elektrische Dipol-
moment eine reine BahngrofBe ist, ist sein Operator mit dem Spinoperator

1) In diesem Paragraphen verwenden wir gewShnliche MaBeinheiten.

2) Typische Werte fiir die Ubergangswahrscheinlichkeit von Dipoliibergingen im op-
tischen Bereich der Atomspektren haben die GréBenordnung von 108 s72,

3) Um MiBverstéindnisse zu vermeiden, weisen wir der Exaktheit wegen darauf hin,
daB sich der Gesamtdrehimpuls des Atoms aus dem Drehimpuls seiner Elektronenhiille
und dem Kernspin zusammensetzt (in § 51 wurde dieser Gesamtdrehimpuls mit F be-
zeichnet). Die absolut strengen Auswahlregeln beziehen sich auf diesen Gesamtdreh-
impuls. Wegen der duBerst geringen Wechselwirkung der Elektronen mit dem Kernspin
kann man aber seinen EinfluB auf die Wahrscheinlichkeit von Elektroneniibergéingen
vollig vernachldssigen, und demnach beziehen sich die Auswahlregeln nur noch auf die
Charakteristika des Elektronenzustands des Atoms.
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X

vertauschbar, d. h., seine Matrix ist beziiglich S diagonal. Fiir die Matrix-
elemente des Dipolmoments mit den Wellenfunktionen der Bahnbewegung der
Elektronen gelten somit die gleichen Auswahlregeln beziiglich L wie fiir jeden
beliebigen Bahnvektor (§ 18). Uberginge zwischen den nach der Art der LS-
Kopplung aufgebauten Zustdnden sind also noch den zusidtzlichen Auswahl-
regeln

S; =458,

Lp—thetn1, Lo, B — 1 (99,1)

unterworfen. Wir betonen noch einmal, da} diese Regeln nur gendherten Cha-
rakter haben und nur bei Vernachlissigung der Spin-Bahn-Wechselwirkung,
die die separate Erhaltung von Bahndrehimpuls und Spin verletzt, giiltig sind.

In der klassischen Theorie ist die Gr68enordnung des magnetischen Moments
eines Systems (s. seine Definition I (66,2)) mit der GréBenordnung seines elek-
trischen Dipolmoments iiber 4 ~ (v/c) d gekoppelt. Dieselbe Beziehung bleibt
auch bei der quantentheoretischen Beschreibung eines Atoms erhalten. Die
GroBenordnung des magnetischen Moments eines Atoms ist durch das BoHRrsche
Magneton gegeben: u ~ e fi/m c; dieser abgeschidtzte Wert unterscheidet sich
von der GréBenordnung des Dipolmoments d ~ e a ~ i2/m e um den Faktor «.
Da aber vfc ~ « gilt, erhdlt man hieraus die angefiihrte Beziehung zwischen g
und d.

Die Wahrscheinlichkeit fiir die magnetische (1) Dipolstrahlung ist dem
Quadrat des magnetischen (Dipol-) Moments proportional und ist folglich im Ver-
gleich zur Wahrscheinlichkeit der elektrischen Dipolstrahlung (derselben Fre-
quenz) ungefihr a2-mal kleiner. Aus diesem Grunde spielt die magnetische
Strahlung praktisch nur fiir die Uberginge eine Rolle, fiir die der entspre-
chende elektrische Strahlungstyp nach den Auswahlregeln verboten ist.

Dasselbe gilt auch beziiglich der elektrischen Quadrupolstrahlung (E2-Strah-
lung). Die GréBenordnung des elektrischen Quadrupolmoments eines Atoms
betragt e a®. Dieser Wert enthdlt im Vergleich zum Dipolmoment d ~ e a den
zusitzlichen Faktor a. Dementsprechend bekommt das Ubergangsmatrix-
element fiir die Quadrupolstrahlung im Vergleich zum Matrixelement der Dipol-
strahlung den zuséitzlichen Faktor k a ~ a/l; mit den oben angegebenen Ab-
schitzungen beziiglich der Gr6Benordnungen von a und 4 erhalten wir wiederum
den kleinen Faktor ~a.

Der Umstand, daB dieser Faktor fiir die beiden Strahlungstypen (M1- bzw.
E2-Strahlung) auf unterschiedliche Weise zustandekommt (aus dem Verhéltnis
vfc im ersten und aus a/d im zweiten Fall), kann jedoch dazu fiithren, daf
unter bestimmten Bedingungen die M1-Strahlung gegeniiber der E2-Strahlung
(vorausgesetzt, dall beide die Auswahlregeln erfiilleny eine groflere Wahr-
scheinlichkeit besitzt. Das Verhiltnis beider Wahrscheinlichkeiten ist von der
Ordnung

wE?2 (e [aw\: [AE\2
mM 1)~ ey~ (T) ~ (7)
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mit E ~ v #/a, der Atomenergie, und AE = w, der Anderung der Energie
des Atoms auf Grund des Strahlungsiibergangs. Wir erkennen, dafl dieses Ver-
hiltnis fiir AE ~ E gendhert 1 ist, fir 4E <€ E jedoch klein sein kann.

Der letztere Fall tritt z. B. bei Ubergingen zwischen den Komponenten der
Hyperfeinstruktur ein und desselben Niveaus auf (die Ubergangsfrequenzen
liegen dabei im Radiowellenbereich). Diese Uberginge kénnen prinzipiell nicht
iiber eine elektrische Dipolstrahlung erfolgen, da alle Komponenten der Hyper-
feinstruktur, die sich nur durch den summaren Drehimpuls aus Kern- und
Elektronendrehimpuls unterscheiden, die gleiche Paritdt besitzen. E2- und
M1-Ubergiinge gehen ohne Parititsinderung vor sich. Da jedoch der Energie-
abstand zwischen den Komponenten der Hyperfeinstruktur relativ klein ist,
hat die E2-Strahlung im Verhéltnis zur M1-Strahlung eine bedeutend geringere
Wahrscheinlichkeit, so daB diese Uberginge iiber die magnetische Dipol-
strahlung erfolgen.

§ 100. Die Infrarotkatastrophe

Der StoBl zweier geladener Teilchen ist im allgemeinen mit Photonenemission
(der sogenannten Bremsstrahlung) verbunden. Die moglichen Frequenzwerte
des Photons durchlaufen kontinuierlich den Bereich von Null bis zur GroBe
der kinetischen Energie der Relativbewegung der stoBenden Teilchen. Wir
wollen im folgenden einige Eigenschaften dieser Strahlung im Grenzfall
kleiner Frequenzen betrachten.

Wenn die Photonenenergie % w gegen Null strebt, miissen die quanten-
mechanischen Formeln in die klassischen iibergehen. Dabei kénnen wir na-
tiirlich nur die Berechnung solcher Charakteristika des Strahlungsprozesses
diskutieren, die sich unabhdngig vom Begriff des Photons formulieren lassen.
Eine solche charakteristische GrofBe ist die Gesamtstrahlungsintensitit — die
Gesamtenergie, die die stoBenden Teilchen durch die Strahlung verlieren.

Nach der klassischen Theorie strebt die spektrale Energieverteilung der
Bremsstrahlung fiir w — 0 zu einem Ausdruck der Form

dé = const - dw , (100,1)

const ist hier eine GroBe, die nicht von @ abhidngt (s. Aufgabe 4 in I § 80,
wo der nichtrelativistische StoB zweier Teilchen untersucht wird, die unter-
schiedliche Verhéltnisse von Ladung und Masse besitzen).

Obgleich dieses Gesetz fiir den Grenzfall, in Ubereinstimmung mit dem oben
Gesagten, auch in der Quantentheorie giiltig bleibt, gibt es hierbei jedoch noch
einen anderen Aspekt. Die Strahlung wird nédmlich nicht nur durch ihre Ge-
samtenergie, sondern auch durch die Zahl der emittierten Photonen charak-
terisiert. Die Zahl der Photonen im Intervall dw erhélt man iiber Division von
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d& durch & w. Wir finden dafiir im selben Grenzfall den Ausdruck
dN = const d?w . (100,2)

Die Gesamtzahl der emittierten Photonen ergibt sich nach Integration von
dN/dw iiber dw. Wir sehen, daBl das Integral (logarithmisch) an der unteren
Integrationsgrenze (w = 0) divergiert. Das heilt mit anderen Worten, dafl
unendlich viele Photonen mit unendlich kleinen Energienemittiert werden. Man
bezeichnet diese Situation als Infrarotkatastrophe.

Wir mochten unterstreichen, daf diese Divergenz die reale physikalische
Situation widerspiegelt und nichts gemein hat mit den fiktiven Divergenzen,
die als Folge der Unzuldnglichkeit der existierenden Theorie entstehen. Das
Auftreten der infraroten Divergenz hiangt damit zusammen, daf die Masse des
Photons gleich Null ist, so dafl seine Energie beliebig klein sein kann.

Obwohl Photonen beliebig kleiner Frequenzen faktisch nicht beobachtbar
sind, ist jedoch die infrarote Divergenz von prinzipieller Bedeutung. Streng-
genommen wird jeder Stofl geladener Teilchen von der Emission einer unend-
lichen Zahl weicher Quanten begleitet; die Wahrscheinlichkeit fiir einen Sto8
ohne jegliche Photonenemission, bzw. unter Emission einer endlichen Zahl von
Photonen ist Null. In diesem Sinne kann man sagen, dafl ein Sto8 geladener
Teilchen nie streng elastisch sein kann. Bei der genauen Berechnung der Ge-
samtwahrscheinlichkeit solcher St6Be ist es notwendig, das Spektrum der
emittierten Photonen ,,abzuschneiden‘: Man muf} vereinbaren, alle die Fille
als ,,elastische® zu betrachten, in denen Photonen mit Frequenzen emittiert
werden, die einen bestimmten, kleinen, aber endlichen Grenzwert nicht iiber-
schreiten.

Aufgabel)

Man bestimme den Wirkungsquerschnitt der Bremsstrahlung beim Vorbeifliegen eines
Elektrons an einem unbeweglichen Atomkern mit der Ladung + Ze. Es wird voraus-
gesetzt, daB v < c ist, aber gleichzeitig Z e?2/hiv < 1, Z e?[h v" <L 1 gilt, mit » und v — der
Anfangs- und Endgeschwindigkeit des Elektrons (die letzten Ungleichungen sind die Be-
dingungen fiir die Anwendbarkeit der BorNschen Niaherung, bei der der EinfluB8 des
elektrischen Kernfeldes auf die Wellenfunktionen des Elektrons vor und nach dem StoB
vernachlassigt wird).

Lésung. Entsprechend (97,4) ist der Wirkungsquerschnitt firr StoBe, bei denen ein
Photon der Energie & w emittiert wird und in deren Ergebnis das Elektron den Impuls
p’ = m v besitzt, der im Raumwinkelelement do” liegt, durch folgende Formel gegeben:

4 0® 12 .72 , ,
do = gy Idyif? pdp’ do’. 1)
Der Zusatzfaktor d3p’ = p"? dp” do” ruhrt daher, daB der Endzustand (ein freies Elektron
mit dem Impuls p’) zum kontinuierlichen Spektrum gehort. Der Ubergang von der Wahr-
scheinlichkeit (in (97,4)) zum Wirkungsquerschnitt erfolgt durch die entsprechende Nor-

1) Wir verwenden gewohnliche MaBeinheiten.

20 Xurzfassung II
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mierung der Wellenfunktion des Anfangszustands des Elektrons auf die Einheitsstrom-
dichte: I
12
1 opr

— 2
Vi Vo (2)
mit p = mwv (vgl (21,6)). Die Wellenfunktion des Endzustandes des Elektrons wird durch
eine ebene Welle beschrieben, die im Impulsraum auf eine é-Funktion normiert ist:
()
1 7P
pr = -(—2—;5)—9—/2— e . (3)
Die Frequenz des emittierten Photons hingt mit p und p’ iber den Energieerhaltungssatz
zusammen:

1
ho =5 (p* — p7). (4)

Die Berechnung des Matrixelements fiir das Elektronendipolmoment d = e» (bei Be-
wegung des Elektrons beziiglich des Feldzentrums) darf man jedoch nicht unmittelbar
mit den Funktionen (2) und (3) ausfithren, sondern erst nach Beriicksichtigung der Be-
wegungsgleichung des Elektrons im Kernfeld:

mr=y-—.
4 r

In der Quantenmechanik muB man diese Gleichung als Beziehung zwischen den ent-
sprechenden Operatoren verstehen (vgl. (21,2)). Fur die Matrixelemente dieser Operatoren
erhilt man:

.. 1
m(r)ﬁ=—mwzrﬁ=2e2([7——) .
r)ri

1
Das Matrixelement VT) _ beziiglich der Funktionen (2), (3) fihrt (unter Benutzung
1

von (68,6)) auf die FourIER-Transformierte

1 1\ .. . (1\ 4sziq
(7= (73 )emsorar =ia(3), =25,

hierbei ist # ¢ = p” — p. Im Ergebnis dessen erhilt man fiir (1)

do = 8 P ez \? v c2do” dw
=377 \ne) vo—-vE o

Um die Integration iiber die Richtungen von »” durchzufiihren, schreiben wir
(v —v)2 =0+ 02 —-20v0 cosf, do” = 2 sin 6 d6

und finden nach der Integration iber df endgiiltig

16 e \2¢2 v4 v do
do =4 2Z%a —In - —,
3 v? v—v o

m c?

Der Infrarotkatastrophe entspricht die Divergenz dieses Ausdruckes bei w — 0.

§ 101. Lichtstrenung

Die Streuung eines Photons an einem Atom stellt eine Absorption des anfing-
lich vorhandenen Photons (mit dem Impuls k) und die gleichzeitige Emission
eines anderen Photons mit k' dar. Dabei kann das Atom entweder im An-
fangszustand verbleiben bzw. in irgendein anderes Energieniveau iibergehen.



§ 101. Lichtstreuung 293

Im ersten Fall bleibt die Frequenz des Photons unverdndert (RAYLEIGH-
Streuung), im zweiten Fall éndert sie sich um die Grofe

o —w=E; —E, (101,1)

mit E; und E, als den Anfangs- und Endenergien des Atoms (Kombinations-
streuung). Befindet sich das Atom anfidnglich im Grundzustand, so kann die
Frequenz nur kleiner werden. Bei der Streuung an einem angeregten Atom
kann der Endzustand sowohl héher als auch tiefer in bezug auf den Anfangs-
zustand liegen, so daBl die Kombinationsstreuung sowohl zu einer Verringerung
als auch zu einem Anwachsen der Frequenz fithren kann.

Da der Operator fiir die elektromagnetische Wechselwirkung keine von Null
verschiedenen Matrixelemente fiir Uberginge besitzt, bei denen gleichzeitig
zwei Photonenbesetzungszahlen verdndert werden, tritt ein Streueffekt erst in
zweiter Ordnung der Stérungsrechnung auf. Man mufB ihn sich als einen Pro-
zel} vorstellen, der iiber bestimmte Zwischenzustdnde verlduft, fiir die zwei
verschiedene Arten moglich sind:

I. Das Photon k wird absorbiert und das Atom geht vom Anfangszustand E,
in einen seiner méglichen Zustinde E, iiber; beim anschlieBenden Uber-
gang des Atoms in den Endzustand E; wird das Photon k' emittiert.

II. Es wird das Photon k’ emittiert und das Atom geht von E; in den Zu-
stand E, iiber; beim Ubergang in den Endzustand wird das Photon k ab-
sorbiert.

GemiB (36,2) spielt die Summe

. V}" ij an V;M' )
Vien = ( + 101,2)
o % Ei—8n  &i— 8 (

die Rolle des Matrixelementes fiir den betrachteten ProzeB. Hierbei sind
& = E; + o die Anfangsenergie des Systems ,,Atom + Photonen‘ und
&I und &1 die Energien der beschriebenen zwei Arten von Zwischenzustinden:

(‘g{:En: ££I=En+w+wl§

Vai und V;, sind die Matrixelemente fiir die Uberginge mittels Photonen-
absorption, Vy, und V,; — Ubergangsmatrixelemente bei Photonenemission;
der Anfangszustand des Atoms wird bei der Summation iiber » ausgelassen
(Strich am Summenzeichen).

Unsere Aufgabe besteht in der Berechnung des Wirkungsquerschnitts des
Streuprozesses. Das kann mit Hilfe von Formel (95,14) erfolgen, die schon
frither zur Berechnung der Wahrscheinlichkeit der spontanen Emission benutzt
wurde. Der Unterschied besteht nur darin, daBl die ,,Strahlungsquelle* fiir
die Emission eines Photons o’ jetzt kein isoliertes Atom, sondern ein System
aus Atom plus einfallendes Photon w ist. Der Streuquerschnitt ergibt sich aus
der Ubergangswahrscheinlichkeit (pro Zeiteinheit), indem man diese einfach
durch die Stromdichte der auf das Atom einfallenden Photonen dividiert. Der
Wellenfunktion des Photons, die auf ,,1 Photon im Volumen Q2 normiert

20+
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ist, entspricht die Stromdichte ¢/£2, die das Produkt aus der Geschwindig-
keit ¢ und der Photonenzahldichte 1/£2 ist. In relativistischen Einheiten ist
¢ = 1, und der Streuquerschnitt berechnet sich somit nach der Formel

92 4 ’
do = ;o5 | Vyil2 @ do (101,3)

mit do’ als dem Raumwinkelelement in Richtung des gestreuten Photons.

Wenn wir annehmen, daBl die Wellenldngen der Photonen im Anfangs- und
Endzustand grof gegeniiber den Abmessungen des streuenden Atoms sind,
dann kénnen wir fiir die Matrixelemente aller Uberginge die Dipolniéherung
verwenden. Nach (97,2) und (97,2a) ergeben sich

Ve = —z]/—’}_,—“’ (eda) , an=z]/ o e*dp)

und analoge Ausdriicke fiir V,; und V;, (e und €' sind die Polarisations-

vektoren der Photonen w und w’).
Setzt man alle diese Ausdriicke in (101,2) und danach in (101,3) ein, so

erhdlt man fiir den Streuquerschnitt?)

.3
do = |4 25 do’ (101,4)

h? c?

mit der Streuamplitude

(drn €*) (dyni €) (dfn €) (dni €™)
{ Wni — @ wony + @ }

Afi':Z

n

(101,5)
hw,,,-:E,,—Ei', hw,,,:E,.—Ef;

diese Formel wurde (1925) von H. A. KramERs und W. HEISENBERG abgeleitet.
Es wird iiber alle moglichen Atomzustdnde » einschlieflich der Zustdnde des
kontinuierlichen Spektrums summiert (dabei fallen die Zustdnde ¢ und f auto-
matisch aus der Summe heraus, weil die Diagonalelemente d:; = d;; = 0 sind
— 8. § 54).2)

Es ist leicht zu erkennen, daB die Streuamplitude nur fiir Uberginge zwi-
schen Zustdnden gleicher Paritdt (darunter auch fiir den Fall, daBl ¢ und f
zusammenfallen) von Null verschieden ist. Das folgt daraus, daBl die Matrix-
elemente des Vektorsd nur fiir Uberginge zwischen Zustinden unterschied-

1) Hier und im weiteren verwenden wir gewohnliche MaBeinheiten.

2) Die Formeln (101,4—5) sind im Resonanzfall, fiir den die Frequenz w in der Ndhe
einer der Frequenzen wp: oder wyy liegt, nicht anwendbar. In diesem Fall (der sogenannten
Resonanzfluoreszenz) muB man die natiirliche Breite der Spektrallinen (§102) beriick-
sichtigen.
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licher Paritiit ungleich Null sind; deshalb miissen sich die Parititen der Zu-
stinde ¢ und f jeweils von der Paritit des Zustandesn (in jedem Glied der
Summe (101,5)) unterscheiden und sind deshalb gleich. Diese Regel ist der
Auswahlregel beziiglich der Paritdt im Falle der Strahlung (elektrische Dipol-
strahlung) entgegengesetzt, so dall ein sogenanntes Alternativverbot vorliegt:
Strahlungsiibergéinge, die in (direkter) Emission oder Absorption erlaubt sind,
kénnen nicht durch die oben besprochenen Streuprozesse realisiert werden und
umgekehrt.

Fir o — 0 strebt die Streuamplitude gegen einen endlichen Grenzwert. Der
Streuquerschnitt der RaYLEIGH-Streuung (v’ = w) wird deshalb bei kleinen w
proportional zu w?.

Im entgegengesetzten Fall, wenn die Frequenz w groB gegeniiber allen in
der Summe (101,5) wesentlichen Frequenzen w,;, ,; ist (die Wellenlinge aber
natiirlich nach wie vor gro gegeniiber den Atomabmessungen ist), miissen
sich die Formeln der klassischen Theorie ergeben.

Die Berechnung des ersten von Null verschiedenen Gliedes in der Entwicklung
der Amplitude (101,5) nach Potenzen von l/w (auf die wir hier verzichten)
liefert den Streuquerschnitt

2 \2
do = 272 (7:7) le'* e|zdo’ | (101,6)

mit Z als der Zahl der Elektronen imi Atom. Nach der Summation von (101,6)
iiber alle Polarisationen des gestreuten Photons €’ kommt man zur klassischen
TroMsoNschen Formel I (84,10).

Wir wollen nun die Streuung von Licht an N gleichartigen Atomen in einem
Volumen behandeln, dessen Abmessungen klein gegeniiber der Wellenlidnge sind.
Die Streuamplitude fiir das System aus N Atomen ist die Summe der Streu-
amplituden dér einzelnen Atome. Dabei hat man jedoch zu beachten, dall
die Wellenfunktionen (mit denen die Matrixelemente fiir das Dipolmoment
berechnet werden) fiir mehrere gleichartige und gemeinsam betrachtete Atome
nicht einfach als gleich angenommen werden diirfen. Die Wellenfunktionen
sind an sich nur bis auf einen beliebigen Phasenfaktor bestimmt und diese
Faktoren koénnen fiir die einzelnen Atome verschieden sein. Der Streuquer-
schnitt mufl daher iiber die Phasenfaktoren der einzelnen Atome unabhingig
voneinander gemittelt werden.

Die Streuamplitude A;; jedes einzelnen Atoms enthilt den Faktor exp
{7 (pt — @)}, wenn @; und ¢ die Phasen der Wellenfunktionen fiir Anfangs-
und Endzustand sind. Fiir die Kombinationsstreuung ist dieser Faktor von 1
verschieden, da sich die Zustinde ¢ und f unterscheiden. Im Betragsquadrat
|2 Ay;|? (die Summe lduft iiber alle N Atome) werden die Produkte von Sum-
manden zu verschiedenen Atomen Phasenfaktoren enthalten, die bei unab-
héngiger Mittelung iiber die Phasen der Atome verschwinden; es bleiben nur
die Betragsquadrate der einzelnen Glieder stehen. Das bedeutet, dall sich
der totale Streuquerschnitt fiir N Atome durch Multiplikation des Streu-
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querschnitts fiir ein Atom mit N ergibt — es addieren sich die Streuquer-
schnitte und nicht die Streuamplituden. Man spricht in diesem Fall von der
inkohdrenten Streuung.

Wenn Anfangs- und Endzustand des Atoms gleich sind, dann sind die Fak-
toren exp {7 (1 — ¢r)} = L. In diesem Fall ist die Streuamplitude fiir N Atome
das Nfache der Streuamplitude fiir ein Atom; der Streuquerschnitt wird dem-
entsprechend mit dem Faktor N2 multipliziert. In diesem Fall spricht man
von der kohdrenten Streuung.

Die kohédrente Streuung ist in jedem Falle eine RaYLEIGH-Streuung; die
umgekehrte Behauptung ist jedoch nicht unbedingt zutreffend. Eine Ray-
LEIGH-Streuung ist nur dann vollstdndig kohédrent, wenn sich das streuende
Atom in einem nichtentarteten Energiezustand befindet. Fiir ein entartetes
Energieniveau wird es auch eine nichtkohdrente RAYLEIGH-Streuung geben,
die von den Ubergingen zwischen den verschiedenen Komponenten des ent-
arteten Niveaus herriihrt. Wir méchten unterstreichen, dafl die Nichtkohédrenz
bei RAYLEIGH-Streuung ein reiner Quanteneffekt ist. In der klassischen Theorie
ist eine Streuung ohne Anderung der Frequenz somit kohdrent (so wurde
gerade der Begriff der kohidrenten Streuung in I § 84 definiert).

§ 102. Die natiirliche Breite von Spektrallinien

Bisher haben wir beim Studium der Emission und Streuung von Licht alle
Niveaus des Systems (sagen wir, des Atoms) als streng diskrete Niveaus an-
gesehen. Angeregte Niveaus haben aber eine Wahrscheinlichkeit zu strahlen
und besitzen somit eine endliche Lebensdauer. Dies fiihrt dazu, daBl die Ni-
veaus quasidiskret werden und eine kleine, aber endliche Breite bekommen;
die Niveauenergien schreibt man in der Form E — ¢ I'[2, mit I" (I'/& in ge-
wohnlichen MaBeinheiten) als der Wahrscheinlichkeit (pro Sekunde) fiir alle
moglichen ,,Zerfalls*-Prozesse des betreffenden Zustands.!)

Wir wollen jetzt das Problem untersuchen, wie sich dieser Sachverhalt auf den
StrahlungsprozeB auswirkt. Es ist von vornherein klar, daB das emittierte
Licht wegen der endlichen Breite des Niveaus nicht streng monochromatisch
ist; die Frequenzen werden in einem Intervall Aw ~ I' liegen. Um aber die
Verteilung der Photonen iiber die Frequenzen mit einer derartigen Genauigkeit
messen zu konnen, wird eine Zeit T > 1/4w ~ 1/I" benétigt. In dieser Zeit
wird das Niveau jedoch mit sehr groler Wahrscheinlichkeit ein Photon emit-
tiert haben. Deshalb kann hier nur die Rede sein von der Bestimmung der
Wahrscheinlichkeit fiir die Emission eines Photons bestimmter Frequenz und
nicht von seiner Emissionswahrscheinlichkeit pro Zeiteinheit. Wir berechnen
erstere fiir den Ubergang eines Atoms aus einem angeregten Niveau E; — ¢ ['¢/2
in den Grundzustand (Ey), der eine unendliche Lebensdauer besitzt und folg-

1) Die natiirliche Linienbreite ist praktisch sehr klein. So entspricht z. B. einer Zerfalls-
wahrscheinlichkeit w ~ 108 — 10° 8~ die Breite I' ~ 107 — 10~7 eV.
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lich diskret ist. Zur Vereinfachung der Uberlegungen setzen wir dabei vor-
aus, daB dieser Ubergang die einzige Moglichkeit .einer Ausstrahlung von
diesem angeregten Niveau ist.

Wir kehren zu der in § 35 erfolgten Ableitung der Formel fiir die Ubergangs-
wahrscheinlichkeit (35,6) zuriick (mit deren Hilfe in § 95 die Emissionswahr-
scheinlichkeit berechnet wurde) und erinnern daran, daBl wir die Funktion
ay(t) fir groBe Zeiten ¢ betrachteten. Das Verhiltnis |ay;|%/t ergab die gesuchte
Ubergangswahrscheinlichkeit pro Zeiteinheit. Wir kénnen jetzt den Sinn dieser
Prozedur etwas genauer kldren: Sie bezieht sich auf Zeiten, die klein gegeniiber
der Lebensdauer des angeregten Zustandes sind; grofie ¢ bedeuten dabei
Zeiten, die groB gegeniiber der Periode 1/(E; — Ey), jedoch noch klein gegeniiber
1/T" sind. Eben aus diesem Grunde konnte man die Existenz einer endlichen
Breite des Niveaus vernachldssigen. Da wir jetzt Zeiten betrachten miissen,
die mit 1/I" vergleichbar sind, darf man die Breite des angeregten Niveaus
schon nicht mehr vernachldssigen.

Bei dem betrachteten Strahlungsproblem haben wir es mit einem System Atom
+ Photonen zu tun; dementsprechend spielt jetzt die Differenz E; + o — E;
im Ausdruck (35,2) die Rolle der Ubergangsfrequenz @;;. Wenn wir die Energie
des Anfangsniveaus mit E; — ¢ I's/2 angeben, erhalten wir

—exp {i (B + w — Eg) ¢t — (I'i/2) t}

1
api(t) = Vi Ef—Ei+ o+ 1132

(102,1)

Die gesuchte Gesamtiibergangswahrscheinlichkeit (fiir die gesamte Zeit) be-
stimmt sich aus dem Grenzwert des Betragsquadrates |a;(¢)|? fiir ¢ — oo.
Fir die Emission eines Photons mit Frequenzen im Intervall dw und im
Raumwinkelbereich do ergibt sich

Q w?dwdo

AW = Jagi(c0)|2 =55

(102,2)

(hier ist 2 wie in (95,13) das Normierungsvolumen der Photonenwellenfunk-
tion). Nach Einsetzen von (102,1) folgt

2 w?do dw
W =G Vil @ @m —gr + 178

Da wir uns nur fiir die Spektralverteilung der Emissionswahrscheinlichkeit
interessieren, integrieren wir diesen Ausdruck iiber alle Ausbreitungsrichtungen
des Photons. Nach (95,14) ist das Integral

2 w? w
——— 12 = e
@ap | Vsil*do =5,
mit w als der gewdhnlichen (auf die Zeiteinheit bezogenen) Gesamtemissions-
wahrscheinlichkeit, die nach ihrer Definition mit I'; zusammenfillt. Im End-
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ergebnis finden wir somit

I’,‘ dw

W =2z (o — (Bi — Ep)P* + I3/4 (102,3)

Wenn wir diesen Ausdruck iiber alle Frequenzen von —oo bis co integrieren,
erhalten wir in Ubereinstimmung damit, da das Atom in einem unendlichen
Zeitraum mit Sicherheit ein Photon der einen oder anderen Frequenz emittiert,
den Wert 1.

Die Formel (102,3) bestimmt das sogenannte Profil der Spektrallinie, d. h.
die Verteilung der Intensitéit iiber ihre Breite. Die Linienform, die durch
(102,3) beschrieben wird, ist fiir ein isoliertes Atom charakteristisch und heit
natiirliche Linienform.t) d

1) Sie heiBt natirlich im Unterschied zur Linienverbreiterung, die mit der Wechsel-
wirkung des strahlenden Atoms mit anderen Atomen (Verbreitung durch StoB) im Zu-
sammenhang steht, bzw. die auf das Vorhandensein von Atomen in der Lichtquelle zuriick-
zufiithren ist, die sich mit unterschiedlichen Geschwindigkeiten bewegen (DOPPLER-Ver-
breitung).
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§ 103. Die Streumatrix

Bereits in § 75 wurde davon gesprochen, dafl die typische Aufgabenstellung
der relativistischen Quantentheorie darin besteht, die Wahrscheinlichkeits-
amplituden der verschiedensten Streuprozesse, d. h. von Ubergéngen zwischen
unterschiedlichen Zustdnden eines Systems freier Teilchen, zu bestimmen. Im
Rahmen der Quantenelektrodynamik, die Prozesse untersucht, die durch die
- elektromagnetische Wechselwirkung bedingt sind, kann man diese Aufgabe
zum gegenwirtigen Zeitpunkt als im Prinzip gel6st betrachten. Die geringe
Stiarke dieser Wechselwirkung (die sich in dem kleinen Zahlenwert der Fein-
strukturkonstante « ausdriickt) erlaubt es, solche Prozesse mit Hilfe der Sto-
rungstheorie zu untersuchen. In seiner gewohnlichen Form (fiir die nichtrela-
tivistische Quantenmechanik) hat der Apparat dieser Theorie die Unzulédnglich-
keit, daB in ihm die Forderung nach relativistischer Invarianz nicht in expli-
ziter Form in Erscheinung tritt. Dieser Nachteil wurde in der konsequent
relativistischen Stérungstheorie iiberwunden, die von R. P. FEyNMaN (1948) ent-
wickelt wurde. Der Apparat dieser Theorié vereinfacht in auBerordentlichem
MafBe die Rechnungen, die sich in der gew6hnlichen Form der Stérungsrechnung
sogar als praktisch undurchfiihrbar erweisen konnten. Aullerdem erlaubt er, in
eindeutiger Weise die im Verlaufe der Rechnungen auftretenden Divergenzen
von Integralen zu beseitigen, die schon in § 75 erwdhnt wurden.l)

Wir zeigen zunédchst, in welcher Weise der allgemeinste Ausdruck fiir die
Streuamplitude beliebiger Prozesse aufgebaut wird.

Das Teilchensystem wird mit Hilfe des Apparates der zweiten Quantisierung
beschrieben. Die Wellenfunktion dieses Systems, deren unabhéngige Verdnder-
" lichen die Besetzungszahlen der Zustinde der freien Teilchen sind, wird durch
das Symbol @ beschrieben (das erfolgt mit dem Ziel, ihren Unterschied zu
den gewdhnlichen, von den Koordinaten der Teilchen abhidngigen Wellen-
funktlonen zu_ unterstrelchen) Der HamiLToN-Operator des Systems hat die

Gestalt H H + V mit H0 als dem HamiLToN-Operator der freien Teilchen
und ¥ als dem Operator der elektromagnetischen Wechselwirkung. Die Funk-

1) In diesem Kapitel verfolgen wir nur das Ziel, eine Vorstellung von den Grundideen
der Theorie, vom Entstehen und dem Sinn der in ihr enthaltenen Begriffe und GroBen
zu geben. Deshalb sind die notwendigen Ableitungen nicht vollstindig wiedergegeben;
ihr Ablauf ist nur skizziert, um damit die ihnen zugrunde liegenden Ideen klar aufzu-
zeigen.
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tion @ bestimmt sich aus der Wellengleichung

22—+ o. (103,1)
Hierbei wurde das gewdhnliche SCHRODINGER-Bild zur Beschreibung der Ope-
ratoren und Wellenfunktionen verwendet: Die Operatoren hingen nicht von
der Zeit ab; die zeitliche Entwicklung desSystems wird durch die Zeitabhingig-
keit der Wellenfunktionen beschrieben.

Schon in § 76 wurde erwidhnt, dall auch eine andere Formulierung des Appa-
rates der Quantenmechanik méglich ist, bei der die Zeitabhingigkeit von
den Wellenfunktionen auf die Operatoren iibertragen wird; in diesem Bild,
dem HEISENBERG-Bild, hingen die Wellenfunktionen iiberhaupt nicht von der
Zeit ab. Fiir die jetzt vor uns stehende Aufgabe erscheint jedoch ein bestimmtes
,»Zwischen‘‘-Bild natiirlicher, in dem nicht die gesamte Zeitabhidngigkeit, son-
dern nur die, die dem Zustand eines Systems freier Teilchen entspricht, auf die
Operatoren iibertragen wird. Mit anderen Worten heifit das, daBl in diesem
Bild (dem Wechselwirkungsbild oder Dirac-Bild) die Wellenfunktion von der
Zeit abhingt, diese Zeitabhingigkeit jedoch nur mit dem Wirken der Stérung
im Zusammenhang steht. Sie erfallt gerade die uns interessierenden Streu-
prozesse, die auf Grund der gegenseitigen Wechselwirkung der Teilchen vor
sich gehen.

In Ubereinstimmung mit dem eber Gesagten hu. die Wellengleichung fiir
die Funktion @ im Wechselwirkungsbild die Form

i@ =Tt D, (103,2)

die sich von (103,1) durch das Fehlen von Ho auf der rechten Seite unter-
scheidet. Der Operator V(t) enthédlt das Argument{, um zu unterstreichen,
daBl er 1mA betrachteten Bild von der Zeit abhingt — im Unterschied zum
Operator ¥V im ScHRODINGER-BIld in (103,1), der nicht von der Zeit abhingt.

D(t) und D (¢t + Ot) seien die Werte von @ in zwei infinitesimal benach-
barten Zeitpunkten. Wegen (103,2) sind sie dann folgendermaflen miteinander
verkniipft :

O (14 6t) =[1 —idt- V()] D),

bzw. mit derselben Genauigkeit durch @ (¢ + 6t) = e—iot- 7 @D(t). Wenn
wir diese Formel auf alle von ¢t = — oo bis ¢{ = + oo aufeinanderfolgende
Zeitintervalle 8¢, anwenden, konnen wir den Wert des Endzustands @(+oo)
durch den des Anfangszustandes @ (—oo) ausdriicken. Der Operator, der beide
Werte miteinander verkniipft, wird mit 8 bezeichnet. Wir haben somit
& (+00) = 8 B(—o0) mit

§ = MMe-itm Pt (103,3)

Das Symbol IT bedeutet hierin den Grenzwert des Produktes iiber alle Inter-
valle 6t,. Wire V(t) eine gewShnliche Funktion, so wiirde sich dieser Grenz-
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wert einfach auf
exp(— 13 Oty V(t,,)) = exp (— T f V(@) dt)

zuriickfithren. Diese Vereinfachung beruht aber auf der Vertauschbarkeit der
Faktoren zu verschiedenen Zeitpunkten, die beim Ubergang vom Produkt in

(103,3) zur Summe im Exponenten vorauszusetzen ist. Fiir den Operator ﬁ(t)
ist diese Vertauschbarkeit im allgemeinen nicht gewéhrleistet, und das Produk-
kann nicht auf ein gewo6hnliches Integral zuriickgefiihrt werden.

Wir schreiben jetzt (103,3) in der symbolischen Form

8 = Texp {— i f f/(t)} . (103,4)

mit dem Zeitordnungsoperator T, der eine bestimmte Zeitordnung in der Reihen-
folge der Faktoren des Produktes (103,3) herstellt. Diese Schreibweise besitzt
zundchst nur formalen Charakter. - Sie liefert jedoch die Moglichkeit, diejenige

Reihe leicht aufzuschreiben, die die Entwicklung von S nach Potenzen der
Storung darstellt :

N o ¢k 3 N 1 D v
§= 5 =0 fdtl fdtz : fdt,,T{V(tl) Vit - - - Vite)} -
k=0 — 00 (103,5)

Hier ist in jedem Glied die k-te Potenz des Integrals als k-faches Integral
geschrieben, und der Operator 7' verlangt, daB in jedem Wertebereich der

Verdnderlichen ¢, ¢, . . ., ty die zugehorigen Operatoren I'}(t,), ﬁ(tz), ce e, I;(tk)
in chronologischer Reihenfolge anzuordnen sind: Die {-Werte diirfen von rechts
nach links nicht abnehmen. Da sich die Zeitordnung jetzt auf ein Produkt
(und nicht auf einen Exponentialausdruck wie in (103,4)) bezieht, hat der
Ausdruck fiir jedes Glied der Summe (103,5) schon einen realen und nicht nur
symbolischen Charakter.

Aus der Definition des Operators S ist folgendes offensichtlich: Wenn sich
ein System vor der Wechselwirkung im Zustand @; befand (ein bestimmtes
Ensemble freier Teilchen), dann ist die Wahrscheinlichkeitsamplitude fiir den
Ubergang in den Zustand @, (ein anderes Ensembel freier Teilchen) das Matrix-
element S;;. Das folgt daraus, daB nach der Definition der Matrixelemente

eines Operators die Funktion @(oc0) = S @, in der Form einer Entwicklung
D(o0) = fZ S;i Dy

dargestellt werden kann (vgl. (11,11)); das Betragsquadrat |Sy;|2liefert folglich
die Wahrscheinlichkeit dafiir, daB sich das System bei ¢ — co (d. h. nach Ab-
lauf des Wechselwirkungsprozesses) im Endzustand dif befindet. Der Operator S
wird Streuoperator genannt, und die Gesamtheit seiner Matrixelemente wird
als Streumatriz oder S-Mairiz bezeichnet (dieser Begriff wurde schon in § 75



302 Kapitel XVI. FEyNMaN-Diagramme

erwihnt). Die nichtdiagonalen (7 = f) Elemente dieser Matrix sind die Am-
plituden der Streuprozesse ¢ — f.1)

Um der Formel (103,5) einen konkreten Sinn zu geben, muf} noch die allge-
meine Form des Wechselwirkungsoperators %(t) abgeleitet werden, der in sich
alle moglichen elektrodynamischen Prozesse vereint. Das ldft sich leicht iiber
eine direkte Verallgemeinerung der Formeln erreichen, die schon in § 95 auf-
geschrieben wurden. Dort wurde nur das elektromagnetische Feld, das in (95,1)
durch den Opera.tor/i dargestellt ist, der zweiten Quantisierung unterzogen.
Jetzt miissen wir auch bei der Beschreibung des Elektron-Positron-Feldes zur
zweiten Quantisierung iibergehen. Dieser Ubergang erfolgt einfach dadurch,
dafl wir die Wellenfunktionen des Elektrons in den Matrixelementen (95,5—6)
durch die entsprechenden ¥-Operatoren ersetzen. Wir kommen somit zum
Ausdruck A

Vit) =—efjAd, (103,6)
in dem _; — P* o ¥ der Operator der Teilchenstromdichte in der Sprache der
zweiten Quantisierung ist (d%xz = dx dy dz — das Volumenelement)

In (103,6) kommen die dreidimensionalen Vektoren j und A vor, was mit
der speziellen Wahl der Eichung der Feldpotentiale, die wir bisher benutzt
haben, im Zusammenhang steht (wir hatten die Eichung so vollzogen, da} das
skalare Potential gleich Null wurde). Um relativistisch invariante Beziehungen
zu erhalten, miissen wir zur vierdimensionalen Schreibweise iibergehen:

Vity =efi* A, d%. (103,7)

In dieser Formel ist ;’" = !?fy” ¥ der Operator des 4-Vektors der Stromdichte,
2“ ist der Operaﬁor des 4;Potentials, bei dem die Frage der Eichung offen
gflassen ist (bei 4# = (0, 4) geht (103,7) in (103,6) iiber). Der Ausdruck fiir
A* unterscheidet sich von (76,15) nur durch das Ersetzen des Polarisations-
vektors der Photonen e durch den Einheits-4-Vektor e (der sich auf e# = (0, e)
nur bei einer speziellen Wahl der Eichung zuriickfiihrt)?):

~ 2 o . ~ .
A= ¥ ‘/Q—” (Cr € e kD | ot en® gilk 2)) (103,8)
& w

1) Die Herleitung der relativistischen Storungstheorie mit Hilfe der Entwicklung (103,5)
erfolgte durch P. Dayson.

3) Der Kiirze halber werden iiberall die Polarisationsindizes der Teilchen weggelassen.
In diesem Kapitel werden wir oft die speziell vereinbarte Schweibweise fir die 4-Vektoren
verwenden, bei der diese als einfache (nicht fett gedruckte) Buchstaben geschrieben
werden und die Komponentenindizes g, », . . . fehlen. Die Buchstaben x und p beschreiben
z. B. die 4-Vektoren z# = (t, ) bzw. p# = (¢, p). Skalarprodukte von 4-Vektoren werden
ebenfalls ohne Indizes geschrieben. So bedeutet z. B. (pz) =puzr =¢t —pr; die

- Gleichung p, p# = m? fir den 4-Impuls eines Teilchens mit der Masse m schreibt sich
jetzt in der Form p? = m?; die Gleichung k, &# = 0 fiir den 4-Impuls eines Photons hat
die Gestalt k2 = 0 usw. Diese Schreibweise ist in der modernen Literatur weit verbreitet.
Dieser Kompromif zwischen dem begrenzten Umfang des Alphabets und den ,,Anfor-
derungen der Physik* erfordert natiirlich vom Leser eine erhohte Aufmerksamkeit.
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Die Ausdriicke fiir die ¥-Operatoren in der Schreibweise mit Erzeugungs- .
und Vernichtungsoperatoren von Elektronen und Positronen finden wir mit
Hilfe der Formeln (85,3). Wir geben sie in der Form

V=3 @yt ¥,), P=3GiP +bP_,) (1039
P P
an; die Funktionen ¥, beschreiben ebene Wellen mit dem 4-Impuls p:

¥, = (1VQ) u(p) e~ 1®2 (103,10)

Es sei darauf hingewiesen, da8 die Zeitabhangigkeit der Operatoren (103,8—9)
und damit auch die Zeitabhdngigkeit des Wechselwirkungsoperators (103,7)
von den Wellenfunktionen der freien Teilchenbewegung, d. h. von ebenen
Wellen, auf sie iibertragen wurde. Das bedeutet mit anderen Worten, daf} diese
Operatoren gerade im geforderten Bild, dem Wechselwirkungsbild, aufgeschrie-
ben sind.

§ 104. Feynman-Diagramme

Den Gang der Berechnung von Elementen der Streumatrix illustrieren wir an
konkreten Beispielen.

Wir wollen Prozesse untersuchen, die in zweiter Ordnung der Storungstheorie
entstehen. Thnen entspricht das Glied zweiter Ordnung in der Entwicklung
(103,5) (k = 2); nach Einsetzen von (103,7) kann man dieses Glied in der Form

§o= -5 [[awaw T () 4@ i) 4 (104,1)

schreiben mit d4xz = dt d3z als dem 4-Volumenelement. Es ist wesentlich, da$}

diese Formel relativistisch invariant ist: Das Produkt (}A\) ist ein 4-Skalar;
die Integration iiber das 4-Volumen ist ebenfalls eine skalare Operation.?)
Als erstes Beispiel behandeln wir die elastische Streuung zweier Elektronen:
Im Anfangszustand sind zwei Elektronen mit den 4-Impulsen p, und p, vor-
handen, im Endzustand zwei Elektronen mit anderen 4-Impulsen py und p,.
Da die Photonen- und Elektronenoperatoren auf unterschiedliche Verdnderliche
(Photonen- und Elektronenbesetzungszahlen) wirken, berechnen sich ihre Ma-
trixelemente unabhidngig voneinander. Im gegebenen Fall sind im Anfangs-
und Endzustand iiberhaupt keine Photonen vorhanden. Wir benétigen des-
halb beziiglich der Photonenoperatoren 4 (x) A ,(z") das Diagonalmatrixelement
<0] ---|0); das Symbol |0) bedeutet den Zustand des elektromagnetischen
Feldes ohne Photonen oder, wie man sagt, den Vakuumzustand der Photonen.
Dieses Matrixelement ist eine bestimmte Funktion der 4-Koordinaten z und
z'. Wegen der Homogenitdt des Raumes und der Zeit kann diese Funktion

1) Wir halten uns hier nicht bei Uberlegungen auf, die beweisen, daB die Operation
der Zeitordnung ebenfalls zu keiner Verletzung der relativistischen Invarianz fiihrt.

21 Kurzfassung I
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nur von den Raum- (r — ') und Zeitintervallen (¢ — ¢') abhingen, d. h. nur
von der Differenz (x — 2') und nicht von den einzelnen Werten # und z’. Auf
diese Weise entsteht einer der neuen Grundbegriffe der zu beschreibenden
Theorie — der Begriff der sogenannten Photonenausbreitungsfunktion oder
des Photonenpropagators'), der folgendermafen definiert ist:

7<0] A, (x) 4,(2") 10> fir ¢ <t¢,
D,(x—2x')=1. , . '
“ 740 4 (z') 4,(x) 10> fiir ¢<t¢

(die unterschiedliche Reihenfolge der Faktoren bei ¢' < ¢ und ¢ < ¢’ hingt mit

dem Wirken des T-Operators in (104,1) zusammen). ‘
Wir betrachten nun die Elektronenoperatoren in (104,1). Jeder der zwei dort

(104,2)

auftretenden Stromoperatoren ist ein Produkt 7/\ = !—I—/y Y/}, und jeder der
Y-Operatoren ist durch eine Summe (103,9) gegeben. Daraus folgt, daB das
Produkt ﬁ‘(x) ;’(x’) eine Summe verschiedener Glieder darstellt, von denen
jedes Glied ein Produkt aus vier Operatoren des Typs ay, ag, l;,,, ?);',' enthilt.
Einen von Null verschiedenen Beitrag zu dem von uns benétigten Matrix-
element liefern nur die Glieder, in denen die Operatoren die Vernichtung der
Elektronen des Anfangszustandes p, und p, und die Erzeugung der Elektronen
des Endzustandes p; und p, gewéhrleisten. Mit anderen Worten heiflt das,
daB dies die Glieder sind, die das Produkt der Operatoren a,,, ap,, 45, und ag,
enthalten. Die unter diesen Gesichtspunkten durchgefiihrte Rechnung fiihrt
zu folgendem Resultat:

Sy =ietffdizd%’ D, (& — z) {(Ty* Po) Ty v W)
— (W ) Py Wa)y (1043)

~

mit V) = ¥, (z), ¥; = ¥, (2) usw.

Die Elektronenwellenfunktionen sind die ebenen Wellen (103,10). Deshalb
enthélt z. B. das erste Glied in der geschweiften Klammer von (104,3) den
Exponentialfaktor

e= i (P1—2)2) — i ((03~ps)2’)
Auf Grund des Erhaltungssatzes des 4-Impulses beim StoB folgt p, + p,
= p3 + p, bzw. p, — p, = p3 — p;. Der angegebene Faktor geht damit in
el (P—2,) (z—2))
iiber, und die Integration iiber d*(z — z’) in (104,3) bedeutet das Auffinden
derjenigen Komponente in der Entwicklung der Funktion D,,(¢ — ') in ein

vierdimensionales FouriEr-Integral, die dem 4-Impuls k¥ = p, — p, entspricht.
Die iiber diese Entwicklung definierte Funktion

D, (k) = f D,(& — &) &' €=~ di(z — o) (104,4)
heillt Photonenpropagator tn der Impulsdarstellung.

1) Dieser Begriff leitet sich vom englischen Wort propagation — Ausbreitung ab.
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Auf analoge Weise wird das zweite Glied in (104,3) umgewandelt, und wir
erhalten im Endergebnis

Sp; ~ €2(uy y* ug) D, (k) (Ugp” w)) — e2(uy Y wy) D, (k') (U3 p” us)
(104,5)

mit k = p, — py, k' = py — p;t) Das erste und das zweite Glied dieser Streu-
amplitude konnen symbolisch durch sogenannte FEYNMAN-Diagramme oder
FEYNMAN-Graphen dargestellt werden (Abb. 14). Zu jedem Schnittpunkt von

%% \//’7

\ L&
i

% \/’;
\L
Abb. 14 /\ ‘/‘\
P P2 P 22

Linien (Eckpunkt oder Vertex des Graphen) gehort ein Faktor e y*. ,,Ein-
laufende‘“ ausgezogene Linien mit dem Pfeil zum Eckteil hin entsprechen den
Elektronen im Anfangszustand; ihnen werden Faktoren » — die Bispinor-
amplituden der betreffenden Elektronenzustdnde — zugeordnet. ,,Auslaufende‘
ausgezogene Linien mit Pfeilen vom Eckpunkt weg bedeuten die Elektronen
im Endzustand; zu diesen Linien gehoren Faktoren u. Beim ,Lesen
eines Diagramms werden die angegebenen Faktoren von links nach rechts
in derjenigen Reihenfolge aufgeschrieben, die dem Durchlaufen der ausgezoge-
nen Linien gegen die Pfeilrichtung entspricht. Die beiden Eckpunkte werden
durch eine gestrichelte Linie miteinander verbunden, die einem wvirtuellen
(Zwischen-)Photon entspricht, das in einem Eckpunkt ,,emittiert und im
anderen ,absorbiert wird. Dieser Linie entspricht der Faktor D, (k). Der
4-ITmpuls des virtuellen Photons (k oder k') wird durch die ,,Erhaltung des
4-Impulses im Eckteil*“ bestimmt: Dieresultierenden Impulse der einlaufenden
und der auslaufenden Linien miissen gleich sein. Die Linien fiir die Teilchen
im Anfangs- und Endzustand werden als duflere Linien -oder als freie Enden
eines Diagramms bezeichnet. Die beiden Graphen auf Abb. 14 unterscheiden
sich voneinander nur durch den Austausch der beiden freien Elektronenenden.

Wir méchten unterstreichen, daB das Quadrat des 4-Impulses des virtuellen
Photons k% = k, k* keineswegs gleich Null ist, wie das fiir ein reales Photon
der Fall sein miiite. In diesem Zusammenhang heben wir ebenfalls hervor,
daB die Beschreibung des Prozesses (in Ubereinstimmung mit dem Diagramm-

1) Wirinteressieren uns nur fir die mathematische Struktur der Elemente der S-Matrix.
Aus diesem Grunde lassen wir alle allgemeinen Faktoren wegfallen, die auf diese Struktur
keinen EinfluB haben. Wir werden uns ebenfalls nicht damit aufhalten, den Weg der
Umwandlung des Quadrats |Sy;|? in eine beobachtbare Gré8e — den Streuquerschnitt —
zu beschreiben.

21*
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bild) als Emission eines virtuellen Photons mit seiner anschlieBenden Ab-
sorption natiirlich nicht im buchstéblichen Sinne zu verstehen ist, sondern nur
ein praktisches Mittel der anschaulichen Beschreibung der Struktur der Aus-
driicke ist, die in die Streuamplitude eingehen.

Jetzt wollen wir uns mit der Elektron-Positron-Streuung befassen. Die ent-
sprechenden Anfangsimpulse der Teilchen bezeichnen wir mit p._ und p,, die
Endimpulse mit p_ und p,,. Wie wir in diesem Fall die Dlagramme verdndern

miissen, geht schon klar aus dem Charakter der Struktur der W—Operatoren
(103,9) hervor: In diese Ausdriicke gehen die Erzeugungs- und Vernichtungs-
operatoren der Positronen zusammen mit den entsprechenden Vernichtungs-
und Erzeugungsoperatoren der Elektronen ein, wobei anstelle von u(p) und
u(p) die Faktoren u(—p) und u(—p) stehen. Daraus folgt, daB wir fiir den
Elektron—-Positron-Streuprozefl statt der in Abb. 14 dargestellten Diagramme,
die in Abb. 15 angefiihrten Graphen erhalten. Die Regeln fiir das Zusammen-
stellen der Diagramme @ndern sich nur in den Teilen, die die Positronen be-
treffen. Nach wie vor entspricht einer einlaufenden ausgezogenen Linie ein
Faktor # und einer auslaufenden Linie ein Faktor #. Einlaufende Linien ent-
sprechen aber jetzt Positronen im Endzustand, auslaufende Linien — Posi-
tronen im Anfangszustand; die Impulse der beiden Positronen sind mit dem
entgegengesetzten Vorzeichen zu nehmen. Wir lenken die Aufmerksamkeit auf
den verschiedenartigen Charakter der beiden Diagramme in Abb. 15. Das
erste tragt den Charakter der Diagramme aus Abb. 14: In einem Eckpunkt
schneiden sich die beiden Elektronenlinien des Anfangs- und Endzustands und
in dem anderen die entsprechenden Positronenlinien (,,Streu‘‘-Diagramm). Im
zweiten Diagramm stoflen in jedem Eckpunkt Elektronen- und Positronen-
linien zusammen, einmal die der Anfangsteilchen und einmal die der End-
teilchen. Im oberen Eckpunkt wird gewissermaflen ein Elektron-Positron-
Paar vernichtet und ein Photon emittiert, und im unteren wird ein Paar aus
einem Photon erzeugt (,,Vernichtungs‘-Diagramm).

- Yﬂ— R P8
2-p
™

Yoo,

s /\%

Wir kommen nun zu einem anderen Effekt zweiter Ordnung, zur Streuung
eines Photons an einem Elektron (ComproN-Effekt). Photon und Elektron
sollen im Anfangszustand die 4-Impulse k£, und p, und im Endzustand &, und
P, haben. .

Im entsprechenden S-Matrixelement gewéahrleisten die Operatoren A (%) A,(2)

n (104,1) (mittels der in ihnen enthaltenen Operatoren c,, und c,,) die Ver-
mchtung des Photons &, und die Erzeugung des Photons k,. Die Vernichtung
des Elektrons p, und die Erzeugung des Elektrons p, erfolgt durch eines der

Abb. 15
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beiden Operatorpaare Y baw. ¥ (auf Grund der darin enthaltenen @, und
a;). Beziiglich des zweiten Paares der in (104,1) enthaltenen ¥-Operatoren
verbleibt danach nur das Diagonalmatrixelement 0| - - - |0), wobei das Sym-
bol |0) jetzt den Zustand des Elektron-Positron-Vakuums, des Feldes ohne
Teilchen, bedeutet. Auf diese Weise taucht der zweite Grundbegriff dieser
Theorie, die sogenannte Elektronenausbreitungsfunktion oder der Elektronen-
propagator auf, der wie folgt definiert ist: -

] — 50| ulw) Bl |05 fiir £ < ¢,
Gulr — 2') = ' (104,6)

l i 0| Tue') i) 105 fiir £ 1.

Gix ist ein Bispinor zweiter Stufe, 7 und & sind dabei die Spinoi‘indizes.
Fiir die Streuamplitude ergibt sich im Ergebnis folgender Ausdruck:

Spi ~ 2 Uy(e] y) G(D) (1) wy + €2 Uyley ) G(@') (eX p)wy  (104,7)

mit p = p; + ky, p' = p; — k,; e, und e, sind die 4-Polarisationsvektoren der
Photonen im Anfangs- und Endzustand.!) G(p) und G(p’) sind die Elektronen-
propagatoren in der Impulsdarstellung.

"'Z\ //"'1 LN ,:"g
N / \ /

N N /
/ P :\ ) PR
Abb. 16 p..’ 123 pz

Das erste und das zweite Glied dieses Ausdruckes werden durch die ent-
sprechenden Diagramme in Abb. 16 dargestellt. Die gestrichelten freien Enden
der Diagramme beschreiben reale Photonen. Einer einlaufenden Linie (Photon
im Anfangszustand) wird der Faktor e, (4-Vektor) und einer auslaufenden
Liniec (Photon im Endzustand) der Faktor e} zugeordnet. Die ausgezogene
innere Linie, die die beiden Eckpunkte miteinander verbindet, entspricht
einem virtuellen Elektron; zu dieser Linie gehort der Faktor G(p). Der 4-Im-
puls des virtuellen Elektrons (p oder p’) bestimmt sich aus der Erhaltung des
4-Impulses in den Eckpunkten. Es sei besonders betont, dafl sein Quadrat
keinesfalls gleich m? ist, wie es fiir ein reales Elektron der Fall sein miiGte.

In dhnlicher Weise, wie sich aus den Diagrammen der Abb. 14 durch die
Anderung des Sinnes der freien Elektronenenden Diagramme ergaben, die die
Elektron-Positron—Streuung beschreiben, bekommt man aus den Diagrammen
der Abb. 16 Graphen, die einem anderen Proze8 entsprechen, ndmlich der
gegenseitigen Vernichtung (Annihilation) eines Elektrons p_ und Positrons p,
unter Erzeugung zweier Photonen k, und k, (Abb. 17).

Py

1) Die Bezeichnung der 4-Vektoren der Polarisation nicht mit der Elektronenladung e
verwechseln! Das Quadrat der letzteren geht in (104,7) als gemeinsamer Faktor ein.
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Die hier an konkreten Beispielen beschriebenen Regeln bilden die Grundlage
der sogenannten Diagrammtechnik, die es erlaubt, die Amplituden der ver-
schiedenen elektrodynamischen Prozesse aufzuschreiben. Die Amplitude eines
Streuprozesses, der in der n-ten Ordnung der Stérungstheorie auftritt, wird
durch die Gesamtheit aller Diagramme beschrieben, die n Eckpunkte und

4 £
7\\ //2 kz ‘\ I’(”
\ / \ /

Abb. 17 2, ¥ \ 5. 2.7 \,

*
soviel freie Enden enthalten, wie Anfangs- und Endteilchen insgesamt am
Proze teilnehmen. In jedem Eckpunkt laufen drei Linien zusammen: eine
« Photonenlinie und zwei Elektronenlinien (eine einlaufende und eine aus-
laufende).

In diesem Sinne ist das Diagramm mit drei Eckpunkten (Abb. 18) eines der
acht Diagramme, die (in dritter Ordnung der Stérungstheorie) die Emission
eines Photons & beim Stof zweier Elektronen mit den 4-Impulsen p, und p,
(ps und p, sind die 4-Impulse der Elektronen nach dem Stof) beschreiben. In
diesem Diagramm wird das Photon k von einem der Elektronen im Endzustand
emittiert; in den restlichen Diagrammen wird das Photon von den anderen
Elektronen emittiert (und auBerdem konnen noch p; und p, vertauscht sein).

4
* &
. 4
,I’ Y 2 7
-
R? ) l: 4 p"',(’a w P'ka
Abb. 18 Py ——l—— Abb. 19 -
03 Py /’,o-k, - ‘"
4” N

Das Diagramm vierter Ordnung in Abb. 19 ist eines von sechs, die die
Photon-Photon-Streuung beschreiben ; die restlichen Diagramme unterscheiden
sich von dem abgebildeten durch Vertauschung der Photonenenden.!) Gegen-
iiber den frither besprochenen unterscheidet sich das Diagramm in Abb. 19
dadurch, daB die Erhaltung des 4-Impulses in seinen Eckpunkten (bei vorge-
gebenen Anfangs- k;, k, und Endwerten k3, k,) die 4-Impulse der virtuellen
Elektronen (diese entsprechen den inneren ausgezogenen Diagrammlinien)
nicht eindeutig bestimmt; einem von ihnen kann man den beliebigen Wert p
zuordnen. In solch einem Falle mufl der nach einem Diagramm zusammen-

1) Die Photon—-Photon-Streuung ist ein spezifisch quantenelektrodynamischer ProzeB;
in der klassischen Elektrodynamik fehlt diese Streuung wegen der Linearitit der MAXWELL-
Gleichungen. Die Existenz dieses Prozesses bedeutet, daB dieser Quanteneffekt zum Ent-
stehen kleiner niehtlinearer Zusatzglieder in den MaxwELL-Gleichungen fiihrt.
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gestellte Ausdruck noch iiber alle Werte der Komponenten des 4-Impulses p
integriert werden.

Die Propogatoren spielen eine grundlegende Rolle im Apparat der Quanten-
elektrodynamik. Um die konkreten Formeln fiir die verschiedenen Streu-
amplituden zu bestimmen, ist es notig, ein fiir allemal diese Propogatoren zu
berechnen. Den Ausgangspunkt einer solchen Berechnung bildet eine wichtige
mathematische Eigenschaft dieser Propogatoren, die in Folgendem besteht.

Der Operator P(z) erfilllt die Drrac-Gleichung [(py) — m] P(z) = 0, da
jede der in der Entwicklung (103,9) auftretenden Wellenfunktionen ¥, dieser
Gleichung geniigt. Daraus folgt, daB auch die Anwendung des Operators
(y p) — m auf die Funktion Gz — z') (in der nach ihrer Definition (104,6)
der Operator lj’(:zc) vorkommt) fiir alle Punkte 2 den Wert Null liefert, mit
Ausnahme der Punkte, fiir die ¢ = ¢’ ist. Letzteres hdngt damit zusammen,
daBl die Funktion G(z — z’), geméB ihrer Definition (104,6) in Abhingigkeit
von der Art der Anndherung von ¢ an t' (¢ >t + O oder ¢t ¢ — 0) zu ver-
schiedenen Grenzwerten strebt. Die Berechniung der Differenz dieser Grenz-
werte filhrt zu dem einfachen Resultat: Die Funktion G erfihrt bei ¢t = ¢’
einen Sprung der Grofle

4@ = Gy 10 — Gliser—o) = — 19 0(r — ') .

Wenn aber die Funktion G(¢t — ¢/, »r — ') bei ¢ — ¢’ = 0 einen Sprung macht,
bedeutet dies, daf in ihrer Ableitung ein Glied mit einer J-Funktion auftaucht:
AG -8(t —t').Y) In den Operator (y p) —m geht die Ableitung nach der
Zeit in der Form 7 9° 9/¢t ein. Wir finden somit im Endergebnis

[(yp) —m] Gz — z') = 6W(z — z'),

wobei das Symbol 6 das Produkt von vier §-Funktionen beziiglich der vier
Komponenten des im Argument stehenden 4-Vektors bedeutet: 6z — z')
=0 —t)o(r — ).

Die Funktion G(x — z’) geniigt einer inhomogenen Differentialgleichung,
der Dirac-Gleichung, der auf der rechten Seite eine d-Funktion hinzugefiigt
wurde. Eine Funktion dieser Art nennt man in der mathematischen Physik
GrEENsche Funktion der entsprechenden homogenen Gleichung — im vor-
liegenden Falle der Dirac-Gleichung. Im Zusammenhang damit spricht man
oft auch von der GREENschen Funktion der Elektronen.

Auf analoge Weise ergibt sich, da der Photonenpropogator die GREENsche
Funktion der Wellengleichung ist, der die Potentiale des elektromagnetischen
Feldes geniigen (daher auch die fiir ihn geldufige Bezeichnung GREENsche
Funktion der Photonen).

1) In der Tat, nach Integration der Ableitung 6@/t iiber das kleine Zeitintervall ¢
um den Punkt ¢’ miissen wir die Differenz der Werte fiir G an den beiden Enden des Zeit-
intervalls um den Zeitpunkt ¢ = ¢’ erhalten; da die Integration iiber die d-Funktion den
Wert 1 liefert, bekommen wir folglich das geforderte AG.
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§ 105. Strahlungskorrekturen

Die Diagrammtechnik liefert im Prinzip die Méglichkeit, die Streuamplituden
nicht nur in der ersten von Null verschiedenen Ordnung der Stérungsrechnung
zu berechnen, sondern auch die Korrekturen zu bestimmen, die von den néchst-
hoheren Ordnungen der Stérungsrechnung herrithren. Diese Beitrige werden
Strahlungskorrekturen genannt.

Bei der Berechnung der Strahlungskorrekturen treten in der Regel Kom-
plikationen auf, die mit dem Auftauchen divergierender Integrale zusammen-
hangen. Darin driickt sich die logische Ungeschlossenheit der existierenden
Quantenelektrodynamik aus. In dieser Theorie gelingt es jedoch, bestimmte
Vorschriften aufzustellen, mit deren Hilfe es moglich ist, auf eindeutige Weise
die ,,Differenzbildung unendlich grofer GréBen‘ durchzufithren, so daf im
Endergebnis endliche Werte fiir alle Gréen erhalten werden, die einen beob-
achtbaren physikalischen Sinn besitzen. Die Basis dieser Vorschriften bilden
augenscheinliche physikalische Forderungen, die sich darauf zuriickfithren
lassen, daBl die Masse des Photons gleich Null sein muf}, und Masse und La-
dung des Elektrons ihren experimentell gemessenen Werten gleich sein miissen.
Die Prozedur, die darin besteht, bestimmten divergierenden Ausdriicken von
vornherein gegebene Werte zuzuordnen, die aus physikalischen Forderungen
erwachsen, nennt man Renormierung der entsprechenden GréBen.

Die Diagramme, die Strahlungskorrekturen zu den Streuamplituden dar-
stellen, erhdlt man aus den Grunddiagrammen, indem man sie in der Weise
verkompliziert, dal neue Eckpunkte bei festgehaltener Zahl der freien Enden
hinzugefiigt werden. So kann man z. B. eine Linie, die ein virtuelles Photon
beschreibt, dahingehend erweitern, da man in sie eine ,,Elektronenschleife‘
mit zwei neuen Eckpunkten einbaut (Abb. 20a). Dabei bleibt der Wert des
4-Impulses p unbestimmt und iiber ihn muB integriert werden; dieses Integral
divergiert und erfordert eine Renormierung. Anschaulich kann man dieses
Diagramm interpretieren als die durch das virtuelle Photon k4 aus dem Vakuum
erfolgende Erzeugung eines virtuellen Elektron—Positron-Paares (mit den 4-Im-
pulsen p und £ — p) und der anschlieBenden Vernichtung dieses Paares, bei
der das urspriingliche Photon wiederentsteht. In Verbindung damit spricht.
man von Strahlungskorrekturen, die mit Diagrammen des in Abb. 20a ange-
fiihrten Typs in Zusammenhang stehen, als von einem Effekt der Polarisation
des Vakuums. Dieser Effekt filhrt z. B. zu einer gewissen Verzerrung des
CouromB-Feldes in der Nihe eines geladenen Teilchens.!)

P ok

‘-'0'"-— 4——/‘\—

Abb. 20 # # p. Sacame? P
’ ~(k-p) #

1) Diese Deformationen erstrecken sich iiber den Abstand ~ fi/m ¢ mit m als der Elek-
tronenmasse. '
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Auf dhnliche Weise kann man durch das Hinzufiigen zweier zusétzlicher Eck-
punkte die Linie eines virtuellen Elektrons komplizierter gestalten (Abb. 20b).
Das virtuelle Elektron p emittiert scheinbar ein virtuelles Photon und ab-
sorbiert dieses wieder zu einem spéteren Zeitpunkt.

k1
K '
A A
Abb. 21 P
A P2 Pr

a) b)

Die Wechselwirkung eines Elektrons mit einem Photon wird in der Sprache
der FEYNMAN-Diagramme mit Hilfe eines Eckpunktes dargestellt, in dem eine
Photonenlinie ¥ die Elektronenlinien p, und p, kreuzt (Abb. 21a). Der kom-
pliziertere ,,Diagrammblock* (Abb. 21, b) stellt die Strahlungskorrektur zum
einfachen Eckpunkt dar. Diese Korrektur fiihrt u.a. zu einem wichtigen
Resultat : Das magnetische Moment des Elektrons g ist nicht mehr streng dem
Wert (93,9) gleich, der aus der Dirac-Gleichung folgt. Unter Beriicksichtigung
der Strahlungskorrektur ergibt sich fiir g (in gew6hnlichen MaBeinheiten)

eh o
®= ome (1 + 27 )
mit « als der Feinstrukturkonstanten (diese Formel wurde erstmals von J.
ScHWINGER 1949 abgeleitet).

§ 106. Strahlungskorrekturen atomarer Energieniveaus

Einer der interessantesten Effekte, der auf Strahlungskorrekturen zuriickgeht,
besteht in der Verschiebung der Energiewerte der Atomniveaus (sogenannte
LaMs-Verschiebung oder LamB-shift). Diese Verschiebung fiihrt insbesondere
zur Aufhebung der letzten Entartung der Wasserstoffatomniveaus, die noch
nach der Dirac-Gleichung verblieb (§ 94). Da wir hier keine Moglichkeit haben,
die volle Berechnung dieser Korrektur durchzufiihren, geben wir nur eine ein-
fache Ableitung im Rahmen der nichtrelativistischen Theorie an. Obgleich
diese Ableitung keinesfalls in jedem Schritt folgerichtig ist, zeigt sie doch in
anschaulicher Weise das Entstehen der Strahlungskorrekturen.!)

Der Wechselwirkungsoperator eines Elektronensystems (wir werden von
einem Wasserstoffatom sprechen) mit dem Photonenfeld hat keine von Null
verschiedenen Diagonalelemente (§ 95). Aus diesem Grunde liefert diese
Wechselwirkung in erster Ordnung der Storungsrechnung keine Korrekturen

1) Diese Able.’ung erfolgte erstmalig durch H. BETHE (1947) und gab den Ansto8 fiir
die gesamte weitere Entwicklung der Quantenelektrodynamik.
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zu den Energieniveaus des Atoms. Eine solche Korrektur entsteht jedoch in
der zweiten Ordnung. Nach der allgemeinen Formel (32,10) bestimmt sich
die Korrektur zu den Energieniveaus in zweiter Ordnung iiber die nichtdiago-
nalen Matrixelemente der Storung, die Ubergingen aus dem vorgegebenen
Zustand in Zwischenzusténde entsprechen. Im vorliegenden Falle bezieht sich
das auf Zustdnde eines Systems, das aus dem Atom und dem Feld der Photonen
besteht. Im Anfangszustand befindet sich das Atom in einem (dem n-ten)
seiner Niveaus, und es sind keinerlei Photonen vorhanden. In den Zwischen-
zustdnden kann sich das Atom in jedem seiner Niveaus aufhalten, und das
Feld enthilt ein Photon. Anschaulich gesprochen kann man sagen, dall die
Energiekorrektur im Zusammenhang damit steht, dal das Atom virtuelle
Photonen emittiert und sie danach wieder absorbiert.!)

Die Matrixelemente des Operators der elektromagnetischen Wechselwirkung,
die der Emission eines Photons entsprechen, sind im nichtrelativistischen Fall
nach (97,2) und (97,1) gleich

2n
2T e*
cl/w_Q (e* vpm) .

Die Summation iiber die Zwischenzustinde beinhaltet sowohl die Summe iiber
die Atomzusténde (die mit dem Index m versehen sind) als auch die Integra-
tion iiber die Impulse des Photons (d. h. iiber &2 dk, dk, dk./(2 =)?) und die
Summe iiber seine Polarisationszusténde. Die Integration iiber die Richtungen
von k und die Summation iiber die Polarisationen erfolgt genau so wie bei
der Ableitung von (97,4); im Ergebnis folgt fiir die Energiekorrektur

o f (El”"j"wj’ e (106,1)

mit E,, E, als den ungestorten Energieniveaus des Atoms. Dieses Integral
divergiert jedoch an seiner oberen Grenze.

Fiir ein freies Elektron wiirde der Ausdruck (106,1) eine Korrektur zur Masse
liefern, und die Operation der Renormierung bestdnde darin, den gesamten
Ausdruck zu vernachldssigen, da schon die ,,nichtgestorte’ Masse des .Elek-
trons gleich seinem experimentell beobachtbaren Wert ist. Andererseits be-
sitzt der Geschwindigkeitsoperator ® = p/m des freien Elektrons nur Diagonal-
elemente ©n,, die mit bestimmten Werten » (fiir das freie Teilchen) iiberein-
stimmen. Die Summe iibermin (106,1) reduziert sich dabeiauf ein Glied (m = »):

2 e?
——f’v*dw.
In

1) In der nichtrelativistischen Theorie zeigt sich die Virtualitit des Photons an der
Nichterfillung des Energieerhaltungssatzes bei der Emission oder Absorption des Pho-
tons. Beziiglich des Entstehens von Elektron-Positron-Paaren ist zu sagen, daB sie in
der nichtrelativistischen Naherung nicht auftreten.
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Wir erhalten die Renormierungskonstante fiir ein (im Atom) gebundenes
Elektron, indem wir das Geschwindigkeitsquadrat ©2 durch seinen Mittelwert
im vorgegebenen Atomzustand, d. h. durch das Matrixelement (v2),, ersetzen.
Nach der Multiplikationsregel fiir Matrizen gilt

(V¥)pn = 2 VnmVnp = 2 |Vnml?.
m m
Wir erhalten somit den Ausdruck
2 e?
P = 2
22 [ 1onaldo,

den wir von (106,1) abziehen miissen, um dem beobachtbaren Korrekturwert
fiir die Niveauenergie zu bestimmen:

2 ¢? [Onml* (Em — Ey)

Dieses Integral divergiert immer noch an der oberen Grenze, jedoch nur noch
logarithmisch; in einer konsequent relativistischen Theorie verschwindet diese
Divergenz von selbst. Im Rahmen einer nichtrelativistischen Theorie erhilt
man eine gute Abschidtzung fir dE,, wenn man die Integration in (106,2) nur
von Null bis zum Wert der Elektronenmasse m durchfiihrt. Dabei gehen wir
davon aus, dall eine nichtrelativistische Betrachtungsweise nur fiir Frequenz-
bereiche der Photonen w < m zulissig ist, und daB der Wert eines logarith-
mischen Integrals ziemlich unempfindlich beziiglich der genauen Wahl seiner
oberen Grenze ist (deren Wert grofl gegeniiber allen Differenzen zwischen den
Energien der Atomniveaus E,, — E, ist).

Wenn wir schlieBlich die Matrixelemente der Elektronengeschwindigkeit
durch die Matrixelemente des Dipolmoments nach (97,1) ersetzen, erhalten wir
endgiiltig (in gewdohnlichen MafBeinheiten)

me?

2
0By =3 355 {_1.' (daml? (Bn — En)®In En— B (106,3)

Diese Energieverschiebung hidngt von allen Quantenzahlen eines Elektrons im
Atom — von der Hauptquantenzahl », dem Gesamtdrehimpulsj und vom
Bahndrehimpuls ! — ab. Daher unterscheiden sich nach Einfithrung der Kor-
rektur (106,3) auch die friither entarteten Niveaus mit gleichen %, § und ver-
schiedenen ! = j + 1/2 voneinander.?)

1) Fir die Frequenz, die der Energiedifferenz E(2 sy2) — E(2 py)2) entspricht, fiihrt
die Berechnung nach Formel (106,3) zum Wert ~1000 MHz (die genaue relativistische
Rechnung liefert den Wert 1050 MHz).
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