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Vorwort

Betriebliche und iiberbetriebliche Entscheidungen miissen in der Regel
unter Einhalten bestimmter einschrinkender Bedingungen getroffen
werden. Sowohl ihr Umfang wie auch ihre Komplexitit erfordern ge-
eignete Hilfsmittel, die das Auffinden der Entscheidung ermdéglichen.
Solche Entscheidungen, deren Zielstellung wie auch deren einschrinkende
Bedingungen durch lineare Gleichungen und Ungleichungen formuliert
werden konnen, lassen sich durch die Anwendung der linearen Optimierung
in optimaler Weise treffen.

In diesem Buch soll eine leicht faBliche Einfithrung in die grundlegenden
Methoden der linearen Optimierung gegeben werden. Da der Bereich der
Anwendungsmoglichkeiten dieser Methoden sehr umfangreich ist, macht es
sich erforderlich, einen breiten Kreis von Menschen mit der linearen Opti-
mierung vertraut zu machen. In diesem Buch werden die Optimierungs-
methoden hinsichtlich ihrer Handhabung und der Verwendung der erziel-
ten Resultate gezeigt. Da sich die Aufgaben der linearen Optimierung
mathematisch durch Systeme linearer Gleichungen und Ungleichungen dar-
stellen lassen, bietet die Matrizenrechnung eine geeignete mathematische
Basis der Darstellung. Wenn trotzdem von den Hilfsmitteln der Matrizen-
rechnung in sehr sparsamer Weise Gebrauch genommen wird, dann in
erster Linie deshalb, weil der Leserkreis in keiner Weise eingeschrinkt
werden soll. Eine groBe Zahl von Praktikern 16st Aufgaben, die unmittelbar
der linearen Optimierung zugénglich sind; viele dieser Menschen verfiigen
jedoch nicht iiber anwendungsbereite Kenntnisse der Matrizenrechnung, die
erst in jingster Vergangenheit in die Ausbildungspline aufgenommen
wurde. Leser, denen diese Kenntnisse zur Verfiigung stehen, werden un-
schwer in der Lage sein, die angefithrten mathematischen Beziehungen mit
Hilfe des Matrizenkalkiils auszudriicken.

Neben der Beschrinkung hinsichtlich der verwendeten mathematischen
Hilfsmittel war eine weitere erforderlich, die sich auf die im Buch enthalte-
nen Methoden der linearen Optimierung bezieht. Wie bereits angedeutet,
werden nur die grundlegenden- Methoden behandelt, an denen jedoch das
Prinzip der linearen Optimierung sichtbar werden sollte. An der graphischen
Methode der linearen Optimierung ist das zugrunde liegende Prinzip, nach
dem alle Aufgaben der linearen Optimierung gelést werden kénnen, deutlich
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gemacht. Obwohl diese Methode infolge der Begrenztheit der Aufgaben, die
mit ihr gelost werden konnen, nur geringe praktische Bedeutung hat,
wurde sie wegen der klaren Darstellung des Losungsprinzips aufgenommen.
Im Anschluf daran wird die universell anwendbare Simplex-Methode von
Danrtziag angefithrt, nach der in der Praxis bereits viele Aufgaben gelost
worden sind. Auch die aus ihr abgeleitete modifizierte Distributionsmethode
(bzw. Methode der Potentiale) zur Losung der sehr hiufig auftretenden
Transportprobleme ist in die Arbeit aufgenommen. Die bereits frither ent-
wickelten Methoden von KANTOROWITSCH werden zugunsten einer breiteren
Behandlung der oben genannten Methoden nicht dargestellt. Auch die
groBe Zahl der noch entwickelten Losungsmethoden fiir lineare Optimie-
rungsaufgaben, wie etwa die Multiplex-Methode und die logarithmische
Potential-Methode von FriscH, die Frequenz-Methode von HaBR, die
VoeEersche Approximationsmethode (VAM) und die Ungarische Methode
sind nicht in die Arbeit aufgenommen worden. Sofern der Leser iiber
Grundkenntnisse der linearen Optimierung verfiigt, wird er iber diese
Methoden in der Spezialliteratur nachlesen kénnen.

Das Buch wendet sich sowohl von der Darstellungsweise als auch vom
Inhalt her vorwiegend an Kader der mittleren Ebene sowie an Studierende
und Absolventen der Ingenieur- und Fachschulen. Dariiber hinaus soll
durch dieses Buch jedem Zugang zur linearen Optimierung geschaffen
werden, der sich fiir neue Methoden der Entscheidungsfillung interessiert,
jedoch nicht die mathematischen Voraussetzungen besitzt, die erforderlich
sind, um theoretische Werke iiber dieses Gebiet durchzuarbeiten. Vom
Arbeitsgebiet her werden vor allem Aufgaben fiir Wirtschaftskader und
Technologen gestellt, die durch die lineare Optimierung gelost werden
konnen.

Da die erste Auflage von ,,Methoden der linearen Optimierung: in kurzer
Zeit vergriffen war, habe ich den Vorschlag des Verlags, so bald wie moglich
einen unverinderten Nachdruck herauszugeben, gern angenommen. Ich hoffe,
daB auch dieser Nachdruck dazu beitrigt, die Methoden der linearen Opti-
mierung mehr zum praktischen Entscheidungsinstrument zu gestalten.
Schon erhaltene Hinweise, fiir die ich herzlich danke, aber auch weitere
Anregungen, um die ich die Leser bitte, werden zu gegebener Zeit in einer
iiberarbeiteten Fassung ihren Niederschlag finden.

K. J. RIcHTER
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1. Einfiihrung

Leitungstétigkeit in der Wirtschaft ist im allgemeinen Sinne Entscheidungs-
titigkeit. Im Rahmen der gesamten Volkswirtschaft ist es erforderlich,
den vorgesehenen AusstoB an Produkten und Leistungen auf die einzelnen
okonomischen Einheiten wie Vereinigungen Volkseigener Betriebe (VVB),
Betriebe, Produktionsgenossenschaften usw. aufzugliedern. In jedem ein-
zelnen Betrieb miissen eine Reihe von Entscheidungen getroffen werden,
um zu gewihrleisten, dal mit den verfiigbaren Produktionsmitteln und
Arbeitskraften das Ausgangsmaterial zu den vorgesehenen Produkten ver-
arbeitet wird. Aber auch in den einzelnen Abteilungen ist z. B. zu ent-
scheiden, welche Arbeiten auf welchen Maschinen durchzufiihren sind.

Im allgemeinen ist die Zahl der fiir einen bestimmten Sachverhalt zu
treffenden moglichen Entscheidungen sehr grofi. KrEké6 [1] S. 3, nennt
ein Beispiel, nach dem auf zehn Eisenbahnstationen je ein Wagen steht.
Diese Wagen sind nach zehn anderen Stationen zu fahren, wobei jede dieser
Empfangsstationen einen Wagen erhalten soll. In diesem Falle gibt es
10! = 3628800 mogliche Zuordnungsvarianten. Wenn also die Aufgabe
gestellt wiirde, diejenige Zuordnung der Versandstationen zu den Emp-
fangsstationen zu bestimmen, bei der der Austausch der Wagen die geringste
Gesamtentfernung erfordert, so konnte diese Aufgabe auf keinen Fall da-
durch gelost werden, daB jede mogliche Zuordnung bestimmt und die damit
verbundene Gesamtentfernung berechnet wiirden.

Aus dem genannten Beispiel konnen folgende zwei Schlufifolgerungen ge-
zogen werden :

1. Die Komplexitdt und der Umfang der in der wirtschaftlichen Tétig-
keit zu treffenden Entscheidungen lassen es nicht zu, diese Entscheidun-
gen empirisch, durch ,,Probieren zu bestimmen. Ein derartiges Vor-
gehen ist viel zu aufwendig und mit der verfiigbaren Zeit, in der eine
Entscheidung zu treffen ist, nicht vereinbar.

2. Es kommt nicht darauf an, irgendeine Entscheidung zu treffen. Vielmehr
dient jede Entscheidung der Verwirklichung (Erreichen irgendeines
Maximums oder Minimums) eines bestimmten Zieles; sie kann diese
Verwirklichung beschleunigen oder verzogern. Es liegt auf der Hand,
daB diejenigen Entscheidungen die besten sind, die unter vorgegebenen
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Bedingungen die Verwirklichung des gesteckten Zieles am stirksten
fordern. Diese Entscheidungen nennen wir optimale Entscheidungen.

Allerdings muf3 man sich vor Augen halten, daB es unter bestimmten ge-
gebenen Bedingungen verschiedene optimale Entscheidungen gibt. Be-
trachten wir dazu als Beispiel die Aufstellung eines optimalen Produktions-
planes fir einen Industriebetrieb. Die verfiigharen Maschinenkapazitéten
und Arbeitskrifte und das Volumen des einzusetzenden Materials sind be-
kannt. Bekannt sind weiterhin die Gewinne, die die einzelnen vom Betrieb
herzustellenden Produkte erzielen. Es wire demzufolge moglich, einen ge-
winnoptimalen Produktionsplan aufzustellen. Ein solcher Produktionsplan
wiirde — natiirlich nur, wenn er die begrenzten Produktionsbedingungen
richtig beachtet — einen hohen Ausstol jener Produkte vorsehen, die die
hochste Gewinnquote besitzen. Es wire ein Plan, der vorsieht, das Gewinn-
maximum zu erzielen. Andererseits kann man sich vorstellen, da8 ein Pro-
duktionsplan ausgearbeitet werden soll, der garantiert, daB ein vorgegebenes
Mindestproduktionsprogramm mit geringsten Kosten erfiillt werden soll.
Jetzt ist es erforderlich, dal die mit der Herstellung der einzelnen Produkte
verbundenen Einheitskosten bekannt sind. Der so aufgestellte Produktions-
plan wire auch optimal, allerdings im Hinblick auf das mit seiner Ver-
wirklichung verbundene Kostenminimum. Im allgemeinen wird jedoch der
Anteil der einzelnen Produkte am gesamten Produktionsvolumen in beiden
optimalen Plinen nicht tbereinstimmen. Mit anderen Worten: Obwohl
zwei optimale Pline vorliegen, schreiben sie doch unterschiedliche Pro-
duktionsprogramme vor. Einen weiteren optimalen Plan kénnte man auf-
stellen mit dem Ziel, ein Produktionsprogramm zu bestimmen, das die best-
mogliche, d. h. die maximale Ausnutzung der betrieblichen Produktions-
kapazititen oder des verfiigbaren Materials garantiert.

Diese Uberlegungen haben gezeigt, daB bei der Bestimmung eines optimalen
Planes oder eines optimalen Programms stets festgelegt werden muf}, in
welcher Hinsicht der Plan optimal sein soll. Es ist erforderlich, das Optimal-
kriterium (auch: Optimalitatskriterium) festzulegen. Einige Optimal-
kriterien sind bereits genannt worden: Gewinn, Kosten, Kapazitats-
ausnutzung, Materialausnutzung (bzw. Materialabfall). Die universelle
Problematik der optimalen Entscheidungsfillung fithrt jedoch zu weiteren
Optimalkriterien. Im Zusammenhang mit der Transportplanung nennen
wir den Gesamttransportaufwand, der in einem optimalen Transportplan
zum Minimum werden soll. In der Landwirtschaft treten mit dem Ubergang
zur industriellen Produktionsweise die Fragen der wissenschaftlichen
Planung und Leitung immer mehr in den Vordergrund. So kommt es
darauf an, mit den verfiigharen Futtermitteln, die sich nach der verfiig-
baren Menge, dem Nahrwert und den Gewinnungskosten unterscheiden,
ein bestmogliches Fiitterungsergebnis zu erzielen. Als Optimalkriterium
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wire etwa der Fitterungserfolg zu nennen. Andererseits kann auch ein
bestimmtes Fiitterungsergebnis als Limit vorgegeben und gefordert werden,
dieses Ergebnis mit geringstmoglichen Futterkosten zu erzielen. Dabei
bilden die Futterkosten das Optimalkriterium.

Die hier fiir Betriebe genannten Beispiele von optimalen Entscheidungen
treten auch in groferen wirtschaftlichen Einheiten auf. So steht die Leitung
einer VVB vor der Aufgabe, das der VVB auferlegte Produktionsprogramm
nach einem bestimmten Optimalkriterium auf die verschiedenen Betriebe
der VVB zu verteilen. Oft bereits in den einzelnen Betrieben, in der Regel
jedoch auf der Ebene einer VVB geniigt es jedoch nicht mehr, eine optimale
Entscheidung nur nach einem Kriterium zu treffen. Zum Beispiel wird die
Leitung der VVB ein Produktionsprogramm anstreben, das gleichzeitig
einen moglichst hohen Gewinn und moglichst niedrige Kosten garantiert.
In diesem Programm werden beide Kriterien nicht voll erfiillt sein, und
trotzdem wird in der Regel ein solches KompromifB-Programm der Kom-
plexitit der wirtschaftlichen Entscheidungen eher entsprechen als jedes
der beiden moglichen (gewinnoptimalen bzw. kostenoptimalen) Programme.
Praktisch geht man dann so vor, daB zunichst die reinen, d. h. nur hin-
sichtlich eines Kriteriums optimalen Programme bestimmt werden und aus
diesen der endgiiltige Plan zusammengestellt wird.

Wenn, wie oben bemerkt, eine empirische Losung der genannten Ent-
scheidungsprobleme nicht in Frage kommt, und wenn man die Abweichun-
gen von der optimalen Losung, die dann unvermeidlich sind, sofern die
Entscheidungen lediglich auf der Grundlage gewisser Erfahrungen ge-
troffen werden, unterbinden will, missen spezielle Losungsverfahren ent-
wickelt werden. Sie gestatten es, die gewiinschte optimale Losung moglichst
schnell und sicher zu bestimmen. Die Mathematik stellt sie uns in Form der
Optimierungsverfahren zur Verfiigung. Unter Optimierung wollen wir dabei
die Festlegung bestimmter MaBnahmen bzw. eines Planes oder Programms
verstehen, die es gestatten, ein vorgegebenes Ziel unter bestehenden Be-
dingungen bestmoglich zu erfiillen (oder ein vorgegebenes Ziel unter ratio-
nellster Ausnutzung der bestehenden Bedingungen zu erfiillen).

Das vorliegende Buch behandelt nicht die Optimierung schlechthin, sondern
die lineare Optimierung. Diese Abgrenzung ist mathematischer Natur. Von
linearer Optimierung sprechen wir immer dann, wenn sowohl die Be-
dingungen, unter denen eine optimale Losung gefunden werden soll, als
auch das Optimalkriterium mathematisch in Form linearer Beziehungen
(d. h. Beziehungen, in denen die Unbekannten nur in der ersten Potenz
auftreten) dargestellt werden konnen. Das ist von der mathematischen
Seite her eine Einschrinkung. Threr ungeachtet besteht jedoch fiir die
lineare Optimierung eine auBerordentlich breite Skala von Anwendungs-
moglichkeiten. Eine sehr groBe Zahl 6konomischer Entscheidungsprobleme
kann mathematisch exakt oder zumindest anndherungsweise durch lineare
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Beziehungen dargestellt werden. Damit sind die Voraussetzungen der
linearen Optimierung erfiillt. Durch eine stdndige Weiterentwicklung der
linearen Optimierungsverfahren werden auch immer neue Moglichkeiten
erschlossen, ziemlich weitgehende Bedingungen, an die die zu fillende Ent-
scheidung gekniipft ist, zu beriicksichtigen. Andererseits entstehen auch
stindig neue Entscheidungsprobleme im Rahmen der o6konomischen
Tatigkeit. Insbesondere die Verwirklichung der Prinzipien des neuen
6konomischen Systems der Planung und Leitung der Volkswirtschaft stellt
die einzelnen Betriebe und die ihnen iibergeordneten Wirtschaftseinheiten
in zunehmenden MaBe vor neue Entscheidungssituationen, die daraus
resultieren, da die Betriebe in steigendem Mafle iiber ihre wirtschaftliche
Tatigkeit selbst entscheiden miissen. Insgesamt ergibt sich eine Art Ent-
scheidungspyramide: Auf volkswirtschaftlicher Ebene werden lediglich die-
jenigen Entscheidungen getroffen, die gewissermaflen die grofe Linie der -
Wirtschaftspolitik bestimmen. Je kleiner die wirtschaftliche Einheit wird,
fiir die bestimmte Festlegungen zu treffen sind, um so schirfer werden die
Bedingungen, die dabei einzuhalten sind.

Zusammenfassend sei festgehalten, dafl eine sehr groBe Zahl 6konomischer
Entscheidungssituationen mathematisch durch lineare Beziehungen aus-
gedriickt werden kann und damit einer mathematischen Losung mit Hilfe
der Verfahren der linearen Optimierung zugénglich ist. Daraus resultiert
die standig steigende Bedeutung, die der linearen Optimierung im System
der wissenschaftlichen Planungs- und Leitungstéatigkeit der Volkswirtschaft
zukommt.



2. Vorarbeiten zur Anwendung der linearen
Optimierung

2.1. Exakte Formulierung der Aufgabenstellung

Eine 6konomische Entscheidung muf in der Regel unter dem Wirken eines
ganzen Komplexes von Bedingungen getroffen werden. Das Gewicht der
einzelnen Bedingungen, ihr EinfluB} auf die angestrebte Losung des Problems,
ist jedoch sehr unterschiedlich. Soll ein optimaler Plan durch Anwenden
der linearen Optimierung bestimmt werden, so ist es meist nicht moglich,
alle die Losung beeinflussenden Bedingungen zu beriicksichtigen. Offenbar
ist das auch nicht notwendig, weil eine Reihe von Bedingungen nur einen
geringen Einfluf auf das Ergebnis nimmt. Aus der Notwendigkeit heraus,
diejenigen Bedingungen zu bestimmen, die in ihrer Wirkung auf das
Optimierungsergebnis unbedingt beachtet werden miissen, erwéachst eine
wichtige Aufgabe, die vor der eigentlichen Optimierungsrechnung gelost
werden muBl. Diese Aufgabe besteht in der exakten Formulierung der
Aufgabenstellung, fiir deren Losung die lineare Optimierung angewendet
werden soll.

Bei der Formulierung der Aufgabenstellung mufl man beachten, dal jede
Optimierungsaufgabe aus zwei Teilen besteht, namlich

1. aus dem Ziel, das durch die Optimierung erreicht werden soll, und
2. aus den Bedingungen, die die Losung zu 1. beeinflussen.

Bereits im einfithrenden Abschnitt wurde sichtbar, daBl eine optimale 6ko-
nomische Entscheidung nicht prinzipiell erreicht werden kann. Vielmehr
besteht die Optimalitdt einer Entscheidung bzw. Losung im Sinne der
linearen Optimierung immer nur im Hinblick auf ein zu wéahlendes Kri-
terium, das die Entscheidungsgrundlage bildet. So ist ein gewinnoptimaler
Produktionsplan in der Regel nicht gleichzeitig ein kostenoptimaler Plan.
Fiir das Rechenverfahren (den Algorithmus) der linearen Optimierung ist
es vollig gleichgiiltig, welches Ziel mit der Optimierung verfolgt wird und
welches Optimalkriterium demzufolge zu wéhlen ist. Die Anwendbarkeit des
errechneten Ergebnisses in der okonomischen Praxis héngt jedoch ent-
scheidend davon ab, ob ein Optimalkriterium gewéhlt wurde, das der ge-
gebenen 6konomischen Zielstellung entspricht. Die Festlegung des Optimal-
kriteriums, das der okonomischen Zielstellung bestmoglich entspricht, ist
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demnach die erste und sehr verantwortungsbewuBt zu losende Aufgabe.
Ein unscharf gewéhltes Optimalkriterium kann die Anwendbarkeit der er-
rechneten Ergebnisse in Frage stellen. Es ist unbegriindet, dann die Zweck-
méaBigkeit des Optimierungsverfahrens in Zweifel zu ziehen.

Von gleicher Tragweite fiir den Erfolg einer Optimierungsrechnung ist die
exakte Formulierung der einschrinkenden Bedingungen, unter denen die
optimale Losung gefunden werden soll. Zunéachst ist es erforderlich, unter
den bestehenden Bedingungen diejenigen auszuwéhlen, die der ¢konomi-
schen Fragestellung des Entscheidungsproblems am besten entsprechen.
Das konnen bei dem gleichen Entscheidungsproblem zu unterschiedlichen
Zeiten verschiedene Bedingungen sein. Ein gewinnoptimaler Produktions-
plan zum Beispiel wird dann unter besonderer Beachtung der durch die
Produktionskapazititen des Betriebes gesetzten Grenzen bestimmt werden,
wenn es sich herausstellt, dafl zu dem gegebenen Zeitpunkt zwar Arbeits-
krafte und Ausgangsmaterial in gentigendem Mafle verfiigbar sind, die
Kapazitdt der Produktionseinrichtungen jedoch begrenzt ist und somit
verhindert, bestimmte gewinngiinstige Erzeugnisse in dem angestrebten
Umfang zu produzieren. Zu einem anderen Zeitpunkt kann die Begrenztheit
der verfiigbaren Materialien dazu zwingen, gerade diese Bedingungen bei
der Bestimmung der optimalen Planvariante besonders zu beriicksichtigen.
Hierbei werden, wie auch bei unterschiedlichen Zielen der Optimierung,
voneinander abweichende optimale Pline berechnet. Insbesondere dann,
wenn der optimale Plan fiir einen lingeren Zeitraum giiltig sein soll, ist
besonders viel Sorgfalt darauf zu verwenden, die fiir diesen Zeitraum wir-
kenden einschrankenden Bedingungen richtig zu erkennen und bei der Be-
rechnung des Planes anzusetzen.

Die exakte und den 6konomischen Bedingungen bestmoglich entsprechende
Formulierung sowohl des Zieles der Optimierungsrechnung als auch der
dabei zu beriicksichtigenden Einschrankungen (Grenzen oder einschranken-
den Bedingungen) schafft die Voraussetzung dafiir, daBl das errechnete
Ergebnis praktisch anwendbar und fiir die betriebliche Téatigkeit von
Nutzen ist. .

2.2, Aufstellung des mathematischen Modells

Um ein lineares Optimierungsproblem rechnerisch 16sen zu koénnen, ist es
erforderlich, dieses Problem in Gestalt mathematischer Beziehungen nieder-
zuschreiben. Die Gesamtheit der mathematischen Beziehungen, die fiir ein
gegebenes Optimierungsproblem bendtigt werden, nennen wir das mathe-
matische Modell dieses Problems bzw. dieser Aufgabe. Wir betrachten zu-
nichst ein sehr einfaches, tibersichtliches Beispiel.

Fir die Herstellung von zwei Erzeugnissen E; und E, erweisen sich zwei
Maschinen, auf denen diese Erzeugnisse bearbeitet werden, und zwei
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Montagestrafen, auf denen die Erzeugnisse montiert werden, als ein-
schrinkende Bedingungen. Ihre Kapazitdt wird durch die folgenden Daten
gekennzeichnet:

Auf der ersten Maschine kénnen 20 Stiick des Erzeugnisses E,
oder 40 Stiick des Erzeugnisses E, oder eine entsprechende
Kombination beider Erzeugnisse bearbeitet werden;

auf der zweiten Maschine kénnen 30 Stiick des Erzeugnisses E,
oder 30 Stiick des Erzeugnisses E, oder eine entsprechende
Kombination beider Erzeugnisse bearbeitet werden;

auf der ersten Montagestrafe konnen maximal 15 Stiick des
Erzeugnisses E; montiert werden;

auf der zweiten Montagestrafle konnen maximal 25 Stiick des
Erzeugnisses E, montiert werden.

Die Aufgabe besteht darin, einen Produktionsplan zu bestimmen, der
einen maximalen Produktionswert zu erreichen gestattet. Dieser Produk-
tionswert soll auf der Grundlage der Industrieabgabepreise fiir beide Er-
zeugnisse berechnet werden. Diese Preise betragen je Erzeugniseinheit

5 Wihrungseinheiten (z. B. 1 WE = 1000 MDN) beim Er-
zeugnis E,,
10 Wihrungseinheiten bei Erzeugnis E,.

Diese Aufgabe ist, wie bereits gesagt, auBerordentlich einfach und nach
kurzer Uberlegung sofort losbar. Aber gerade diese Einfachheit und Uber-
sichtlichkeit gestattet es uns, die mathematischen Uberlegungen mit be-
sonderer Aufmerksamkeit zu verfolgen.
Wir stellen nunmehr das mathematische Modell der Aufgabe auf. Es wird
nur aus linearen Gleichungen und Ungleichungen bestehen, da es sich um
eine Aufgabe der linearen Optimierung handelt. Die lineare Funktion, die
das Ziel der Aufgabe darstellt, heiBt Zielfunktion (bzw. Zweckfunktion). Sie
ergibt sich durch folgende Uberlegung: Der Preis je Erzeugniseinheit des
Erzeugnisses E, betragt 5 Wahrungseinheiten. Fiir allgemein z; Stiick des
Erzeugnisses ergibt sich somit ein Preis von 52, Wiahrungseinheiten. Der
Preis fir z, Stiick des Erzeugnisses E, betrigt entsprechend 10z, Wih-
rungseinheiten. Der Gesamtpreis der produzierten Erzeugnisse E, und E,
ergibt sich zu 52, 4 102, Diesen Ausdruck nennen wir die Zielfunktion Z.
Nach der Aufgabenstellung soll der durch die Industrieabgabepreise aus-
gedriickte Produktionswert zum Maximum werden. Das bedeutet, dall die
den Produktionsumfang bestimmenden Variablen x; und z, so zu wihlen
sind, daB3 der Wert der Zielfunktion zum Maximum wird. Wir schreiben
dafir

Z =5z, + 10x, — max. (1)
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Die beziiglich der zwei Maschinen und zwei MontagestraBlen bestehenden
Beschrankungen werden wie folgt modelliert: Da auf der ersten Maschine
20 Stiick des Erzeugnisses E, bearbeitet werden kénnen, wird fiir ein Stiick
1/,o der Maschinenkapazitit und fir z; Stiick x,/20 dieser Kapazitit be-
notigt. Entsprechend benétigt man 1/,, der Kapazitdt der ersten Maschine,
um ein Stiick des Erzeugnisses E, herzustellen. Fur z, Stiick dieses Er-
zeugnisses benétigt man demnach z,/40 der Kapazitit der Maschine. Die
Gesamtkapazitdt dieser Maschine betriagt 1. Die Tatsache, daf diese
Gesamtkapazitit durch die Bearbeitung von x, Stiicken des Erzeugnisses
E; und von =z, Stiicken des Erzeugnisses E, nicht iiberschritten werden
darf, schreiben wir

D=t @)

In Worten: Die fiir das Bearbeiten der Erzeugnisse E, und E, benotigte
Kapazitat der ersten Maschine ist kleiner als die oder hochstens gleich der
Gesamtkapazitdt dieser Maschine. Fiir spatere Rechnungen formen wir
die Beziehung (2) um in

2z, + x, < 40. (2a)

Analoge Uberlegungen ergeben fiir die Kapazitit der zweiten Maschine zu-
néchst die Beziehung

N 3)
die in
T + 2, = 30 (3a)
umgeformt wird.

Fir die Kapazitdten der Monta,gestraﬁen ergeben sich die entsprechenden
Beziehungen sofort zu

x <15 4)
fir die erste Montagestrale und zu
z, <25 (5)

fir die zweite MontagestraBe.

Nunmehr sind alle durch die Aufgabenstellung gegebenen einschriankenden
Bedingungen modelliert. Bevor jedoch das gesamte mathematische Modell
niedergeschrieben werden kann, mufl noch eine weitere, von der jeweiligen
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Aufgabenstellung unabhéngige Bedingung angegeben werden. Sie besteht
darin, daB in der Losung keine negativen Werte der Variablen z; und z,
auftreten diirfen, denn natiirlich konnen negative Mengen der Erzeugnisse
E,; und E; nicht produziert werden. Wir schreiben deshalb die sog. Nicht-
negativitdtsbedingung als

2, =0; 2,=0. (6)

Fir die eingangs gestellte Aufgabe kann nunmehr das gesamte mathe-
matische Modell in folgender Zusammenstellung angegeben werden:

1. Zielfunktion
Z = 5%, + 10z, — max.
2. Einschrinkende Bedingungen

22, + 2, =40
2y + 25 = 30
x, <15

2y = 25

3. Nichtnegativitatsbedingung
2, =0; 2,=0.

Diese drei Bestandteile des mathematischen Modells kénnen stets unter-
schieden werden. Wihrend die unter 3. angegebene Nichtnegativitats-
bedingung immer gilt, werden sowohl Zielfunktion als auch einschréin-
kende Bedingungen fiir jeweils einen bestimmten Planungszeitraum, fir
den die zutreffende Entscheidung gefallt wird, festgelegt.

Den Gleichungen und Ungleichungen des fiir das Beispiel angegebenen
mathematischen Modells entspricht die folgende allgemeine Form des
mathematischen Modells der Maximum-Aufgabe der linearen Optimierung.
In der bereits eingefiihrten Dreiteilung lautet dieses Modell:

1. Zielfunktion

Z = cy + ¢1% + Coxy + +++ + Cu%, — max.
bzw.

n
Z = ¢y + Y ¢;x; > max. (7a)
=1

92 Richter, Optimierung
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2. Einschrinkende Bedingungen

@132y F @1a%y + o0+ Qe = by
Ao %y + BppZy + o+ + A%y = by
gy Xy + Ago%y + -+ - AgaTy = by

U1 Ty + Oy + o0+ Ay = by, (7b)
3. Nichtnegativitédtsbedingung
2, =0; 2,=0; -+ ; 2, =0. (7¢)

Durch einen Vergleich der allgemeinen Form des mathematischen Modells
mit dem Modell des bereits bekannten Beispiels wird ersichtlich, daBl durch
(7a) bis (7c¢) das Maximum-Problem modelliert wird. Ein Vergleich zwischen
der Zielfunktion Gl. (1) und der allgemeinen GI. (7a) ergibt:

=20

61 - 5

¢, =10 (n=2).
Das konstante Glied der Zielfunktion ist nicht immer gleich Null. So ist
es bei der Bestimmung eines kostenminimalen Programms etwa durch die
leistungsunabhingigen Kosten bestimmt. Fiir die Losung der Opti-
mierungsaufgabe ist ¢, jedoch ohne Bedeutung. Es kann auch in der Rech-
nung zunichst unbeachtet bleiben, wenn es nicht gleich Null ist. Lediglich

dann, wenn der Gesamtwert der Zielfunktion gesucht wird, muB ¢, beriick-
sichtigt werden.

Durch Vergleich der einschrénkenden Bedingungen nach (2a), (3a), (4)
und (5) mit (7b) ergibt sich:

ay, =2 a,=1 b =40

ay =1 ap=1 by,=230

;=1 a3p3=0 b;=15

=0 @ap,=1 b,=25.
Damit liegen alle Koeffizienten des fiir das mathematische Modell des

Beispiels aufgestellten Systems der einschrinkenden Bedingungen vor.
Da, wie bereits gesagt, » = 2 ist und weiterhin — wegen der Vorgabe von
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vier einschrinkenden Bedingungen — m = 4 gilt, sind keine weiteren Be-
dingungen gegeben.

Die Koeffizienten a;; des Systems der einschrinkenden Bedingungen nach
\7b) sind allgemein Aufwands- oder Einsatzkoeffizienten. Sie geben an,
welcher Aufwand der Art ¢ (Material, Kapazitdt, Arbeitskrifte, Energie
u. 4.) fiir eine Einheit der Art j erforderlich ist. Durch die absoluten Glieder
hi 1 =1,2,...,m) wird die obere Grenze der verfiigharen EinsatzgroBen
der Art ¢ angegeben. Im Falle der Maximumaufgabe muf das optimale
Planungsprogramm im allgemeinen so bestimmt werden, daf8 dadurch die
durch b; gegebenen Grenzen nicht iiberschritten werden. Das wird dadurch
ausgedriickt, dal der jeweilige Gesamteinsatz bzw. Gesamtverbrauch der
Art ¢ [linke Seite der Beziehungen nach (7b)] kleiner als die oder hochstens
gleich der oberen Grenze b; ist. Fiir jede der ¢ Einsatz- oder Verbrauchs-
arten wird eine Beziehung angegeben.

Hinsichtlich der Nichtnegativitdtsbedingung sind keine besonderen Er-
wagungen erforderlich.

Die charakteristischen Merkmale der Maximumaufgabe kehren sich bei der
Minimumaufgabe ins Gegenteil um. Ein entsprechendes Beispiel soll spater
durchgerechnet werden. Nehmen wir an, es sei eine optimale Futter-
mischung fiir einen landwirtschaftlichen Betrieb zu bestimmen. Optimal-
kriterium sind die Futterkosten, die zum Minimum werden sollen. Gleich-
zeitig gibt es bestimmte Mindestanforderungen an die Futtermischung, die
einzuhalten sind. Sie beziehen sich etwa auf einen Mindestndhrwert je
Mengeneinheit der Futtermischung und auf bestimmte Vitamine, die in
vorgegebenen Mindestmengen im Futter enthalten sein miissen.

Die bei der Maximumaufgabe eingefiihrten Symbole koénnen auch hier
verwendet werden. Es ergibt sich dann folgendes mathematische Modell der
Minimumaufgabe :

1. Zielfunktion

Z = ¢y + €1y + 3%y + -+ + Cyy —> min
bzw. n
ud 3
Z = ¢, +'L1 c;; — min. (8a)
7=

2. Einschrankende Bedingungen

1%y + @1p%p + ot - GpT, = by
Ao %y + Aoy + +++ -+ Aoy = by

A1 Ty + Aoy + =+ + Appy = by (8b)
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3. Nichtnegativitdtsbedingung
=0, 2,=0; -+ ; 2,=0. (8¢)

Der Unterschied der Minimumaufgabe zur Maximumaufgabe besteht in der
Zielfunktion und in den einschrinkenden Bedingungen. In der Zielfunktion
wird verlangt, dafl deren Wert in der optimalen Lésung zum Minimum
wird. Die einschrinkenden Bedingungen geben nunmehr in der Regel
einen Mindestwert an, der nicht unterschritten werden darf (wie etwa
einen Mindestnidhrwert bei der Futtermischung u. 4.). Im Gegensatz dazu
geben die einschrinkenden Bedingungen der Maximumaufgabe im all-
gemeinen einen Hochstwert an, der nicht iiberschritten werden darf. Der
Mindestwert wird durch b, angegeben?. Die Koeffizienten a;; werden analog
zur Maximumaufgabe interpretiert.

Sowohl bei der Maximum- als auch bei der Minimumaufgabe konnen die
einschrinkenden Bedingungen durch Ungleichungen (Kleiner-als- bzw.
GroBer-als-Beziehungen) und durch Gleichungen ausgedriickt werden.
Beide Moglichkeiten sind in der allgemeinen Schreibweise nach (7b) bzw.
(8b) Dberiicksichtigt.

2.3. Sammlung der Ausgangsdaten

Aus der Aufgabenstellung gehen alle Bedingungen hervor, die bei der
Losung einer Optimierungsaufgabe zu beachten sind. Sie ergeben eine
Maximum- oder eine Minimumaufgabe. Das mathematische Modell der
Aufgabe kann erst dann gelést werden, wenn die im mathematischen Modell
angegebenen allgemeinen GroBen c¢; (Koeffizienten der Zielfunktion, die die
Bedeutung der Variablen z; in der Zielfunktion bestimmen), a;; (Koeffi-
zienten der einschrinkenden Bedingungen) und b; (absolute Glieder der
einschrinkenden Bedingungen) durch Zahlen ersetzt sind. Diese Zahlen,
beispielsweise Gewinne je Mengeneinheit verschiedener Erzeugnisse,
Kosten je Mengeneinheit, Materialverbrauchsnormen, erforderliche Ma-
schinenkapazititen fiir die verschiedenen Erzeugniseinheiten, verfiigbare
Herstellungskapazititen und Materialien u. 4., ergeben sich aus der je-
weiligen 6konomischen Situation, fiir die eine optimale Entscheidung ge-
troffen werden muB. Thre exakte und auf einer zutreffenden Abgrenzung
beruhende Berechnung nimmt wesentlichen Einflul auf die Giite des
Optimierungsergebnisses. Nicht zuletzt liegt es an unexakten Ausgangs-
daten, wenn Optimierungsergebnisse die in sie gesetzten Erwartungen nicht
erfilllen und fiir eine praktische Anwendung in der Wirtschaftsleitung
nur bedingt geeignet sind. Es ist deshalb notwendig, auf die Bestimmung

1 Daneben gibt es auch Aufgaben, deren einschrinkende Bedingungen sowohl Héchst-
werte als auch Mindestwerte enthalten
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der AusgangsgroBen groBle Sorgfalt zu verwenden. Hierbei handelt es sich
um eine Aufgabe, die im Bereich derjenigen okonomischen Einheit zu
lésen ist, die eine optimale Entscheidung anstrebt. Wahrend namlich umfang-
reichere Optimierungsaufgaben in Rechenzentren sehr schnell geldst
werden konnen, ist es nicht moglich, dort auch die Ausgangsdaten zu-
sammenzustellen und auf ihre sachliche Richtigkeit zu priifen.

Es ist anzustreben, daf zukiinftig immer mehr Entscheidungen mit Hilfe
der linearen Optimierung vorgenommen werden. Dann werden stindig
Ausgangsdaten (Informationen) bendtigt, die fiir die 6konomische Leitung
erforderlich sind. Diese Ausgangsdaten werden aus dem jeweils bestehenden
Abrechnungssystem unmittelbar entnommen. Die hinsichtlich der Ge-
nauigkeit und sachlichen Richtigkeit der im Abrechnungssystem ge-
wonnenen Daten bestehenden Bestimmungen gelten dann auch fir die
Ausgangsdaten der linearen Optimierung. Vorldufig werden die Ausgangs-
daten nebenher und auBlerhalb des eigentlichen Abrechnungssystems er-
mittelt. Das bedeutet, daf Optimierungsrechnungen nur hin und wieder
durchgefiihrt werden, um 6konomische Entscheidungen zu treffen. Die an-
gestrebte RegelmiBigkeit dieses Zustands der Optimierungsrechnungen
wird sie in den Vordergrund des gesamten Abrechnungssystems riicken.
Sie wird schlieBlich dazu fithren, dafl zunehmend nur diejenigen Daten im
Abrechnungssystem erfaBt und verarbeitet werden, die tatséchlich er-
forderlich sind, um die anfallenden Entscheidungen zu treffen. Die exakte
Formulierung bestimmter Entscheidungen durch die lineare Optimierung
fordert und beschleunigt diesen Proze8.



3. Das graphische Verfahren zur Losung einfacher
Aufgaben der linearen Optimierung

Zur Losung von Aufgaben der linearen Optimierung steht eine ziemlich
groBe Anzahl von Losungsverfahren zur Verfiigung. Wir besprechen zu-
nichst ein Verfahren, dessen Anwendungsbereich zwar sehr eng begrenzt
ist, das jedoch das prinzipielle Vorgehen bei der Losung derartiger Auf-
gaben deutlich demonstriert. Es handelt sich um das graphische Verfahren
zur Losung von Aufgaben der linearen Optimierung. Das Verfahren wird
an Hand des bereits eingefiihrten Beispiels erldutert. In 2.2. wurde das
mathematische Modell zu diesem Beispiel wie folgt angegeben:

1. Zielfunktion
7 = 5%y + 102, — max.

2. Einschrinkende Bedingungen

2, + x, < 40 O
@, + 2, < 30 (IT)
x, <15 (IIT)

x, < 25 Iv)

3. Nichtnegativitatsbedingung
2z, =0; 2,=0.

Aus Griinden der Darstellung wurden die einschridnkenden Bedingungen
abweichend von der allgemeinen Benummerung durch romische Zahlen
unterschieden.

Das graphische Verfahren zur Losung von Aufgaben der linearen Opti-
mierung beruht darauf, daB ein Punkt in der Ebene, etwa im cartesischen
Koordinatensystem, durch zwei Koordinaten #, und x, dargestellt und be-
stimmt werden kann. So kann jedes Produktionsprogramm, das aus den
Mengen z, des Erzeugnisses E, und z, des Erzeugnisses E, besteht, durch
einen Punkt im cartesischen Koordinatensystem angegeben werden. So-
wohl die Zielfunktion als auch die einschrinkenden Bedingungen (I) bis
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(IV) konnen in diesem Koordinatensystem durch Geraden dargestellt wer-
den. Wir demonstrieren das zunéchst an den einschrankenden Bedingungen.
In Bild 1 ist der Verlauf der die einschrinkende Bedingung (I) darstellenden
Geraden, deren Gleichung

2z, + 2, =40

lautet, angegeben. Die Ubertragung der Gleichung in das Koordinaten-
system erfolgt am einfachsten mit Hilfe der Achsenabschnittsgleichung,
die mit den hier eingefiihrten Variablen #, und =,

Ly Ty
et B S
p q

lautet. Dabei sind p und ¢ die Abschnitte, die die Gerade auf der x,-Achse
und auf der z,-Achse abschneidet. Es miissen also lediglich diese Ab-
schnitte bestimmt werden, um die Gerade durch die somit gefundenen zwei
Punkte zeichnen zu kénnen.

2 A

#0

Bild 1. Durch die Gerade mit der Gleichung
2, + x, = 40 bestimmter Bereich der zu-
lassigen Losungen

20\ x;

Fir die oben angegebene Gleichung lautet die Achsenabschnittsgleichung,
die man erhilt, indem man die Gleichung durch 40 teilt,

2 T
20 T 40

Die Gerade schneidet somit die ,-Achse an der Stelle p = 20 und die ,-
Achse an der Stelle ¢ = 40.

Uns interessiert der Verlauf dieser Geraden nur im ersten Quadranten, weil
nur dort die Nichtnegativititsbedingung fiir beide Variablen z; (Abszisse)
und 2, (Ordinate) erfiillt ist. Durch die Gerade wird das Gebiet des ersten
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Quadranten in zwei Teilgebiete zerlegt. Punkte, die im Gebiet rechts ober-
halb der Geraden liegen, erfiillen die durch (I) gegebene einschrankende
Bedingung nicht. Sie besitzen Koordinaten x, und x,, fiir die der Ausdruck
2%, + , groBer als vierzig wird. Punkte dagegen, die im Gebiet links unter-
halb der Geraden oder auf der Geraden selbst liegen, besitzen Koordinaten
2, und z,, fiir die der genannte Ausdruck kleiner als oder gleich vierzig ist.
Sie erfiillen die durch die einschrinkende Bedingung (I) gestellte Forderung.
Losungen (x,,%,) also, die durch Punkte dargestellt werden kénnen, die im
Gebiet links unterhalb der Geraden oder auf der Geraden liegen, sind im Sinne
der einschrinkenden Bedingung (I) zuldssige Losungen. Dementsprechend
sagen wir, dafl durch die Gerade das Gebiet des ersten Quadranten unter-
teilt wird in

1. den Bereich der zuldssigen Losungen, der das Gebiet links unterhalb

der Geraden und die Gerade selbst umfaBt,

2. das Gebiet der nichtzulédssigen Losungen rechts oberhalb der Geraden.

Die optimale Losung muf} also, indem sie die einschrinkende Bedingung (I)
erfiillt, in dem durch die entsprechende Gerade abgegrenzten Bereich der
zuldssigen Losungen liegen.

In analoger Weise wird die zweite einschrankende Bedingung durch eine
Gerade dargestellt, die der Gleichung

2, + 2, = 30

entspricht. Diese Gerade ist in Bild 2 dargestellt. Auch sie teilt das Gebiet
des ersten Quadranten in einen Bereich der zuldssigen Losungen, der aus
dem Gebiet links unterhalb der Geraden und der Geraden selbst besteht,

xh
30
-~
& x
SN
&
Bild 2. Durch die Gerade mit der Glei-
chung z; + z, = 30 bestimmter Be-
reich der zuldssigen Losungen
0 30~ x

und in ein Gebiet der nichtzuldssigen Losungen. Die optimale Losung, die
auch die einschrinkende Bedingung (II) erfiillen muf3, mufl demnach durch
einen Punkt dargestellt werden konnen, der auch beziiglich der zweiten
Geraden im Bereich der zuldssigen Losungen liegt.
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Die einschrinkenden Bedingungen (III) und (IV) lassen sich graphisch be-
sonders einfach darstellen. Die Bedingung (III) ergibt eine parallel zur
Ordinate (z,-Achse) durch den Punkt

z, =15
verlaufende Gerade. Sie und das links von ihr liegende Gebiet bilden den
Bereich der zuldssigen Losungen, wie das auch in Bild 3 ersichtlich ist. Die
Bedingung (IV) ergibt eine parallel zur Abszisse (x,-Achse) durch den Punkt
xy = 25

verlaufende Gerade. Sie und das unter ihr liegende Gebiet bilden den Bereich
der zuldssigen Losungen (vgl. Bild 4).

xh
7 e
L[}
Py
X2 ]
. Xp=25
0 75 77 0 X1
Bild 3. Durch die Gerade mit der Bild 4. Durch die Gerade mit der
Gleichung z, = 15 bestimmter Be- Gleichung z, = 25 bestimmter Be-
reich der zuldssigen Losungen reich der zuldssigen Losungen

In allen vier Bildern sind die Bereiche der zulissigen Losungen durch
Schraffur hervorgehoben.

Von der optimalen Losung wird erwartet, daB sie alle vier einschrénkenden
Bedingungen erfiillt. Das bedeutet, daB sie im Bereich der zulissigen
Losungen liegen muB. Dieser Bereich der zuldssigen Losungen ist in Bild 5
durch doppelte Schraffur gekennzeichnet. Die optimale Losung ist also
in diesem Bereich zu suchen. Von der optimalen Losung wird jedoch nicht
nur verlangt, daB sie zuléssig ist, sondern daB sie gleichzeitig das Optimal-
kriterium bestmoglich befriedigt. Aus diesem Grunde ist es notwendig, auch
die Zielfunktion durch eine entsprechende Gerade in der graphischen
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X2
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0 5 0 5P 20 25 2 3 x

Bild 5. Bereich der zulédssigen Losungen

Darstellung des Problems anzugeben. Wir setzen dafiir zunéchst die all-
gemeine Funktion

6y + cxy = Z

an. Da Z, beliebig verdndert werden kann, gibt es unendlich viele Ziel-
funktionen, die wegen

7 C1
2= T 1
Ca Cay

jedoch alle den gleichen Anstieg — c,/c, besitzen und somit parallel ver-
laufen.
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Um die der Zielfunktion entsprechende Gerade zu zeichnen, verwenden wir
wiederum die Achsenabschnittsgleichung, die jetzt

Ty T2
7 Tz, !

€1 Ca

lautet. Fiir die vorliegende Aufgabe lautet die Zielfunktion
52, 4+ 102, = Z,.

Ihr entspricht die Achsenabschnittsgleichung

Ty Ty
ntza ="
5 10

Die Gerade schneidet somit die x;-Achse an der Stelle p = Z,/5 und die
Z,-Achse an der Stelle ¢ = Z,/10. Wahlt man zum Beispiel Z, = 300, so
ergibt sich fiir diese Zielfunktion eine in Bild 5 eingetragene Gerade, die die
Achsen in p = 60 und ¢ = 30 schneidet. Diese Gerade verlduft jedoch
oberhalb des Bereichs der zulissigen Losungen. Sie hat keinen gemeinsamen
Punkt mit diesem Bereich und wird somit durch keine zuldssige Losung
befriedigt. Fiir die weiteren Betrachtungen ist sie somit ohne Bedeutung.
Fir Z, = 200 erhalten wie eine Zielfunktion, deren ebenfalls in Bild 5
eingetragene Gerade die Achsen in p = 40 und ¢ = 20 schneidet. Diese
Gerade geht durch den Bereich der zuldssigen Losungen. Demnach gibt es
zuldssige Losungen, die die Zielfunktion 5, + 10z, = 200 befriedigen.
Allerdings erfiillen diese Losungen die gestellte Optimalitdtsforderung nicht.
Der Wert der Zielfunktion wird vergrofert, wenn die sie reprisentierende
Gerade vom Ursprung weg parallel nach rechts oben verschoben wird. Da
wir den maximalen Wert der Zielfunktion anstreben unter der Bedingung,
daB die die Zielfunktion befriedigende Losung noch zuléssig ist, verschieben
wir die Gerade der Zielfunktion so lange parallel nach rechts oben, wie das
moglich ist, ohne den Bereich der zuldssigen Losungen zu verlassen. Wir
finden schlieBlich, daB der duBlerste gemeinsame Punkt der Geraden der
Zielfunktion mit dem Bereich der zuldssigen Losungen der Punkt P, ist.
Das ist derjenige Punkt, in dem die Zielfunktion einerseits noch im Bereich
der zuldssigen Losungen liegt und andererseits den unter diesen Bedin-
gungen maximalen Abstand vom Ursprung des Koordinatenkreuzes hat.
Die Koordinaten dieses Punktes liefern somit die optimale Losung. Sie ge-
horen noch zum Bereich der zuldssigen Losungen und maximieren den
Wert der Zielfunktion.
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Die auf die geschilderte Weise gefundene optimale Losung, d. h. die Ko-
ordinaten des Punktes P,, lautet also

;=25
xy = 25.

Das bedeutet, dafl 5 Stiick bzw. Einheiten des Erzeugnisses E; und 25 Stiick
bzw. Einheiten des Erzeugnisses E, bearbeitet bzw. produziert werden
miissen, um unter Einhaltung der gegebenen einschrinkenden Bedingungen
einen maximalen Produktionswert (gemessen in Betriebsabgabepreisen) zu
erzielen. Der Wert der Zielfunktion betragt

Z=5-5+10-25=275

Wahrungseinheiten.

Die gefundene optimale Losung soll kurz untersucht werden, ehe noch einige
Bemerkungen zum graphischen Loésungsverfahren folgen. Die Beschrin-
kungen, die sich auf das Bestimmen der optimalen Loésung ausgewirkt
haben, bestanden in der verfiigharen Produktionskapazitit. Es ist deshalb
niitzlich, zu priifen, in welcher Weise durch das optimale Programm die vor-
gegebene Kapazitiat ausgelastet wird. Wir verwenden dazu die Beziehungen
(I) bis (IV) fiir die einschrinkenden Bedingungen, in die wir die optimale
Loésung einsetzen.

Fiir die beziiglich der ersten Maschine bestehende Kapazitdtsgrenze (I)
erhalten wir

2.5+ 25=35.

Das ergibt eine Kapazititsauslastung der ersten Maschine in Héhe von
35
o 100 = 87,5 Prozent.

12,5 Prozent der Kapazitéit der ersten Maschine werden durch das optimale
Programm nicht ausgeschopft.

Fiir die zweite Maschine ergibt sich wegen
5425 =30

eine Kapazititsauslastung von

30
30" 100 = 100 Prozent,

d. h., daB keine Kapazitdt dieser Maschine ungenutzt bleibt.
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Fiir die erste Montagestrale betrigt wegen z; = 5 die Kapazititsauslastung
lediglich 5
- 100 = 33,3 Prozent.

Sie ist — bei 67,7 Prozent nichtausgenutzter Kapazitit — auBerordentlich
niedrig.

Schliefllich betragt die Kapazititsauslastung der zweiten Montagestrafle
wegen x, = 25

25
55 100 = 100 Prozent.

An dieser MontagestraBe tritt keine nichtausgenutzte Kapazitat auf.

Das Gesamtergebnis der Optimierungsrechnung kann wie folgt zusammen-
gefaf3t werden:

Um bei den vorgegebenen Industrieabgabepreisen je Erzeugniseinheit ¢,
und ¢, einen — in Industrieabgabepreisen gemessenen — wertméaig maxi-
malen Produktionsplan zu erzielen, ist vorzusehen, x; = 5 Stiick bzw. Ein-
heiten des Erzeugnisses E; und z, = 25 Stiick bzw, Einheiten des Erzeug-
nisses E, in den Plan aufzunehmen. Dabei werden die durch (I) bis (IV)
gegebenen einschrinkenden Bedingungen eingehalten. Die Kapazitidten
der zweiten Maschine und der zweiten Montagestrale werden voll ausge-
nutzt. Bei der ersten Maschine werden 12,5 Prozent und bei der ersten
MontagestraBe 66,7 Prozent der verfiigbaren Kapazitit durch das optimale
Programm nicht ausgenutzt. Diese Kapazitdten konnen entweder ver-
ringert oder fiir andere Produktionsaufgaben eingesetzt werden.

Die teilweise freie Kapazitiat gibt Veranlassung zu folgender Bemerkung:
Das bestimmte Produktionsprogramm ist optimal im Hinblick auf den
Produktionswert. Es wiirde sicher ein anderes Produktionsprogramm er-
rechnet, wenn die Optimalitit des Planes an der Kapazitdtsausnutzung ge-
messen wiirde. So konnte etwa eine Minimumaufgabe formuliert werden,
von deren Losung zu fordern wire, daBl der Umfang der nichtgenutzten
Kapazitaten zum Minimum wird. Die Losung der ersten Aufgabe zeigt, daf
zum neuen Problem sicher eine betrachtlich abweichende Losung gefunden
wiirde. Das zeigt erneut, welchen EinfluBl das Ziel eines Entscheides auf
das Resultat nimmt.

In Bild 5 ist eine Maximumaufgabe graphisch dargestellt. In analoger Weise
kann jedoch auch eine Minimumaufgabe dargestellt werden. Auch dabei ist
freilich vorausgesetzt, daB sich die optimale Entscheidung lediglich auf zwei
variable GréBen x; und z, bezieht, weil eben durch einen Punkt in der
Ebene nur zwei Koordinaten bestimmt sind. Die graphische Darstellung
und Losung der Minimumaufgabe unterscheidet sich von der der Maximum-
aufgabe etwa in dem Sinne, wie sich die Gln. (7a) und (7b) von den Gln. (8a)
und (8b) unterscheiden.
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Ein Vergleich zwischen Bild 5 (Maximumaufgabe) und Bild 6 (Minimumauf-
gabe) zeigt folgende Unterschiede:

1. Bei der Maximumaufgabe ist der Bereich der zuldssigen Losungen in der
Regel nach rechts oben beschrinkt und nach links unten unbeschrinkt.
Bei der Minimumaufgabe liegen die einschrinkenden Bedingungen vor-
wiegend in Form von Beziehungen vor, bei denen das auf der rechten
Seite stehende absolute Glied nicht unter-, wohl aber iiberschritten werden
darf. Das fithrt dann zu einem Bereich der zulédssigen Losungen, der nach
rechts oben unbeschrénkt und nach links unten beschriankt ist.

x2h

Cawt

R \2

{ \\\ Bild 6. Bereich der zuldssigen Losungen

L — 3= bei einer Minimumaufgabe
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4

2. Bei der Maximumaufgabe wird im allgemeinen angestrebt, die Ziel-
funktionsgerade so weit wie moglich vom Koordinatenursprung entfernt
anzuordnen, weil dadurch der Wert der Zielfunktion erhoht wird. Bei
der Minimumaufgabe wird angestrebt, die Zielfunktionsgerade még-
lichst nahe an den Koordinatenursprung heranzufiihren, um einen mog-
lichst niedrigen Wert der Zielfunktion zu erhalten. Dabei muB natiirlich
gesichert sein, daB diese Gerade wenigstens einen gemeinsamen Punkt
mit dem Bereich der zuldssigen Losungen besitzt.

Bisher haben wir der Maximumaufgabe und der Minimumaufgabe eine be-
stimmte mathematische Form der einschrinkenden Bedingungen und eine
entsprechende Form des Bereichs der zuldssigen Losungen zugeordnet. Die
in der Praxis auftretenden Probleme, deren Losung mit Hilfe der linearen
Optimierung angestrebt wird, lassen sich allerdings nicht immer so einfach
klassifizieren. So ist es moglich, daf ein Produktionsprogramm zu bestimmen
ist unter einschrinkenden Bedingungen, die einerseits Beschrankungen nach
unten und andererseits Beschrdnkungen nach oben enthalten. Das wire
der Fall, wenn etwa bestimmte Kapazitidtsgrenzen nicht iiberschritten
werden diirfen (einschriankende Bedingungen nach oben) und gleichzeitig
die veranderlichen GroBen beschriankt sind derart, dafl bestimmte Mindest-
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mengen verschiedener Erzeugnisse hergestellt werden miissen (Beschrin-
kungen nach unten). Dabei ist es allerdings erforderlich, daB die einzelnen
einschrinkenden Bedingungen einander nicht widersprechen, d. h., wie man
sagt, miteinander vertréglich sind. In Bild 7 ist ein Bereich der zulédssigen
Losungen dargestellt, der sowohl einschrankende Bedingungen nach rechts
oben als auch nach links unten enthilt. Es entsteht dabei ein allseitig ge-
schlossener Bereich der zuldssigen Losungen, der sowohl einer Maximum-
als auch einer Minimumaufgabe zugrunde gelegt werden kann.

X2

A
P

|
|
/ |
!

77 Fo Py \ Zz X1
Bild 7. Allseitig abgeschlossener Bild 8. Bereich der zuldssigen
Bereich der zuldssigen Losungen Losungen, dessen eine Seite mit
der Geraden der Zielfunktion zu-
sammenfallt

Aus Bild 5 und aus Bild 6 ist ersichtlich, daf die optimale Losung einer aus
zwei verdnderlichen GroBen bestehenden linearen Optimierungsaufgabe
in der Regel als ein Punkt darstellbar ist, der eine Ecke des Bereichs der
zuléissigen Losungen bildet. Damit ist die Losung eindeutig. Es kommen
jedoch auch Fille vor, bei denen die Zielfunktionsgerade mit der Geraden
einer einschrinkenden Bedingung zusammenfillt. In solchen Féllen, von
denen einer in Bild 8 skizziert ist, gibt es zwischen der Zielfunktionsgeraden
und dem Bereich der zuldssigen Losungen nicht nur einen gemeinsamen
Punkt. In Bild 8 beispielsweise bilden alle Punkte von P, bis Py (P, und
P, eingeschlossen) optimale Losungen. In der Praxis mufl man sich in einer
derartigen Situation fiir eine bestimmte optimale Losung entscheiden.
Im allgemeinen wird es jedoch nicht als ungiinstig empfunden, wenn mehrere
optimale Losungen gefunden werden. Auf diese Weise ndmlich erhilt die
okonomische Leitung einen zusédtzlichen Entscheidungsraum, der den be-
sonderen Vorteil besitzt, da alle ihm angehérenden Entscheidungen opti-
mal sind. Dadurch kénnen weitere Bedingungen, die entweder bei Beginn
der Optimierung noch nicht in beachtenswertem Umfange bestanden oder
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die im allgemeinen von geringerem EinfluB auf das Optimierungsergebnis
sind, beriicksichtigt werden.
Das graphische Losungsverfahren in der von uns beschriebenen Form 146t
sich lediglich auf Optimierungsprobleme mit zwei verdnderlichen GréBen
z; und z, anwenden, weil diese beiden GroBen als Koordinaten eines Punktes
in der Ebene angesehen werden koénnen. Es versinnbildlicht jedoch den
prinzipiellen Losungsweg der linearen Optimierung. Werden statt zwei drei
Variable in die Aufgabe eingefiihrt (etwa dadurch, daB im Produktions-
programm insgesamt drei verschiedene Erzeugnisse enthalten sein sollen),
so wird die gesamte Aufgabe aus der Ebene in den Raum iibertragen. Der
Bereich der zuldssigen Losungen ist dann keine Fliche mehr, sondern wird
durch einen vieleckigen Kérper dargestellt. Die graphische Darstellung der
Zielfunktion, die nunmehr drei verdnderliche GroBen enthilt, also all-
gemein

Z = ¢y + 01%; + €%y + C3%5 9)

lautet, ergibt eine Ebene. Diese Ebene der Zielfunktion wird so lange
parallel verschoben, bis sie den Raum (das Polyeder, den Vielflichner) der
zuldssigen Losungen nur noch in einem Punkte (moglicherweise aber auch in
einer Kante oder in einer Flidche) beriihrt und gleichzeitig ihren maximalen
oder minimalen Abstand vom Ursprung besitzt.

Im Prinzip konnen alle Optimierungsaufgaben auf diese geometrische
Interpretation zuriickgefiihrt werden. Wenn jedoch mehr als drei verdnder-
liche GroBen auftreten (allgemein n GréBen), sind die entstehenden Gebilde
nicht mehr vorstellbar. Derartige Aufgabenstellungen wéren dann im 7-
dimensionalen Raum zu losen.



4. Die Simplexmethode als universelles Verfahren
der linearen Optimierung
(Maximum- und Minimumaufgabe)

4.1. Lésung der Maximumaufgabe nach der Simplexmethode

4.1.1. Uberfithrung des mathematischen Modells in die Normalform

Bei der von DaNTzIc entwickelten Simplexmethode, deren Namen aus der
Form des Bereichs der zuldssigen Losungen abgeleitet wurde (n-dimensio-
naler Simplex: n-dimensionales konvexes Polyeder mit » 4 1 Eckpunkten),
handelt es sich um eine universelle Verfahrensweise zur Losung von linearen
Optimierungsaufgaben. Wir betrachten diese Methode zunichst wieder an
Hand des Beispiels, das bereits im Abschnitt 2.2. eingefithrt und im Ab-
schnitt 3. graphisch gelost wurde.

In der im Abschnitt 3. gegebenen Form dieser Aufgabe sind die einschrén-
kenden Bedingungen mit (I) bis (IV) bezeichnet. Alle diese einschrinkenden
Bedingungen haben die Form von Ungleichungen, die allerdings den Fall
der Gleichheit als Sonderfall mit einschlieBen. Ein wesentlicher vorbereiten-
der Schritt zur Losung einer Aufgabe nach der Simplexmethode besteht
nun darin, daB die in Form von Ungleichungen gegebenen einschrankenden
Bedingungen in Gleichungen iiberfithrt werden. Im Falle der Maximumauf-
gabe, bei der die absoluten Glieder b, der einschrinkenden Bedingungen
obere Grenzen darstellen, geschieht das durch Einfithrung der sog. Schlupf-
variablen (fiktiven Variablen). Zum Beispiel lautet die erste einschrinkende
Bedingung

2z, + z, < 40. (1)
Wir fithren die Schlupfvariable z; ein und schreiben nunmehr
2z, + 7z, + x5 = 40.

Ein Vergleich beider Beziehungen gibt AufschluB iiber die Grofle der
Schlupfvariablen ;. Gilt in der Ungleichung (I) nur das Ungleichheits-
zeichen (<), so ist z, groBer als Null, d. h. eine positive GroBe (z; > 0).
Gilt dagegen in (I) das Gleichheitszeichen, so ist auch x; gleich Null (z; = 0).

3 Richter, Optimierung
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In entsprechender Weise werden in allen einschrinkenden Bedingungen
Schlupfvariable eingefiihrt. Die einschrénkenden Bedingungen lauten dann

2%, + 2y + 74 =40 (I
z + 2, + x4 =30 (1)
x, + x4 =15 (IIT)

Z, + zg = 25. (Iv)

Im Sinne der okonomischen Aufgabenstellung des Beispiels kénnen die
Schlupfvariablen als Herstellungsmengen der fiktiven Erzeugnisse E; bis
E; betrachtet werden. Diese Erzeugnisse — die eben nur gedacht sind — er-
zielen selbstverstdndlich keinen Industrieabgabepreis. Thre entsprechenden
Koeffizienten c¢; bis ¢ der Zielfunktion sind also gleich Null. Gleichzeitig
belasten diese Erzeugnisse jeweils nur eine Maschine oder MontagestraBe,
wie das aus der obigen Darstellung ersichtlich ist. IThre Koeffizienten a;
sind entweder 1, wenn sie in der betreffenden Gleichung auftreten, oder 0,
wenn sie in der betreffenden Gleichung nicht auftreten. Mit den Schlupf-
variablen erhélt die Zielfunktion die Form

Z = 5z, + 10z, 4+ Oz + Oz, + Oz + O2, — max.
Die Nichtnegativitatsbedingung gilt auch firr die Schlupfvariablen, so daf3
wir nunmehr schreiben

2 20,2, =023 =0;2,=0;25=0;24=0.
In der vorliegenden Form des mathematischen Modells ist die Normalform
der Maximumaufgabe gegeben. Diese Normalform .enthilt noch die Be-

dingung, daB die absoluten Glieder der Gleichungen der einschrinkenden
Bedingungen nicht negativ sein sollen, d. h.

b, =0;6,=0;6,=0;0,=0.

Diese Bedingung ist bereits erfiillt. Sie kann durch eine Multiplikation mit
(—1) erforderlichenfalls leicht erfiillt werden.
In Analogie zu (7a), (7b) und (7¢) ergibt sich die Normalform der Maxi-
mumaufgabe in allgemeiner Darstellung als
1. Zielfunktion

Z = ¢y + ¢y7; + 3%y + oA Crxy +

+ Crt1%nty + Cote%nte + o+ CoimPnim —> MAX.
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bzw.
n+m
Z = ¢y + Y cjx; —> max. (10a)
i=1

Dabei gilt
Cppo =0firc =1,2,...,m.

2. Einschrinkende Bedingungen

1%y + ey + o0+ Qay + Tnpy =b
@ %y + BTyt + Aany + Zuvp = by
Om1 %y + Qpa®y + oo+ Apa %y + Tnim = bn (10b)

3. Nichtnegativitatsbedingungen
T =Z0;...5%, =058y =05 .58, =0 (10¢)
b, =0;...;b, =0. (10d)

Ein Vergleich der Normalform der Beispielaufgabe mit der Normalform
der Maximumaufgabe in allgemeiner Darstellung ergibt, daB folgende
Beziehungen gelten:
n=2, a;,=2 a,=1 b =40
m=4, ay=1 ap=1 by,=30
=1 az,=0 by;=15
a3 =0 ap=1 b, =25.
Weiter ist

Zpyy = X3, Xpyg = Xy, Tpyg = L5, Tpyg = Xg-

4.1.2, Der Simplex- Algorithmus

Die eigentliche Losung der Aufgabe beginnt mit der Bestimmung der ersten
Basislosung. Eine Basislosung ist eine zuldssige Losung, in der hoéchstens
so viele Variable von Null verschiedene Werte besitzen, wie voneinander
unabhéngige einschrinkende Bedingungen gegeben sind. Mit m voneinander
unabhéngigen linearen Gleichungen kann man hochstens m Variable bestim-
men. Enthilt das System m Gleichungen, aber mehr als m Variable, so

3*
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miissen im Falle der linearen Optimierung die restlichen Variablen Null
gesetzt werden. Hier haben wir bei m Gleichungen infolge der Verwendung
von Schlupf- oder kiinstlichen Variablen mindestens m + n Variable, von
denen in einer nicht entarteten Losung » Variable Null gesetzt sein miissen.
Stimmen die Zahl der unabhingigen Gleichungen und die der Variablen
iiberein, so gibt es nur eine Losung. Liegen mehr Gleichungen als Variable
vor, so miissen die linear unabhingigen Gleichungen ausgewihlt und die
restlichen gestrichen werden. Vorausgesetzt wird, da keine Gleichungen
zueinander in Widerspruch stehen. Sobald iiberhaupt eine zuldssige Losung
existiert, gibt es auch eine optimale Losung (Simplex-Theorem).

Die Losung einer linearen Optimierungsaufgabe besteht somit darin, die-
jenigen Variablen zu bestimmen, die in der optimalen Losung nicht gleich
Null sind, und gleichzeitig den Wert dieser Variablen anzugeben. Aufler-
dem miissen sie zu einem Extremwert der Zielfunktion fiithren.

Die Simplexmethode 16st diese Aufgabe durch ein Iterationsverfahren. Aus-
gehend von einer ersten Basislosung, die auf moglichst einfache Weise be-
stimmt wird, wird diese meist nicht optimale erste Basislosung schrittweise
(iterativ) so lange weiter verbessert, bis die optimale Losung vorliegt.

Die erste Basislosung ergibt sich am einfachsten, indem man die eigent-
lichen (echten) Variablen eines Problems -gleich Null setzt und damit die
Schlupfvariablen groBer als Null sind. Da bei m unabhéngigen einschrénken-
den Bedingungen m linear unabhingige Gleichungen vorhanden sind und
weiterhin m Schlupfvariable eingefithrt wurden, kann auf diese Weise stets
eine erste Basislosung bestimmt werden. Fiir die erste Basislosung des Bei-
spiels gilt somit zunéchst

=0 230
2z, =0 z,+=0
25340
xg == 0.

Die GroBe der in der ersten Basis positiven Variablen 3 bis 2, (der Schlupf-
variablen) finden wir aus der Basisdarstellung der einschriankenden Be-
dingungen, wie sie in Gleichungsform durch (I) bis (IV) gegeben werden.
Unter Basisdarstellung versteht man eine Darstellung dieser Bedingungen,
bei denen diejenigen Variablen, die in der Basislosung nicht gleich Null sind,
in Abhéngigkeit der anderen Variablen dargestellt werden. Da in der ersten
Basislosung die Schlupfvariablen von Null verschieden sind, werden sie
in der Basisdarstellung der einschrinkenden Bedingungen in Abhéngigkeit
von den Variablen 2, und z, dargestellt.

Zur Vereinfachung der weiteren Uberlegungen fithren wir weitere Begriffe
ein. Diejenigen Variablen, die in einer Basislosung groBer als Null sind,
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bilden die Basis dieser Basislosung. Sie heiflen Basisvariable. Diejenigen
Variablen, die in der Basislosung gleich Null sind, gehoren nicht zur Basis.
Sie heiBen Nichtbasisvariable. Wir konnen dann einfach sagen, daB in der
Basisdarstellung der einschrinkenden Bedingungen die Basisvariablen
in Abhéngigkeit von den Nichtbasisvariablen niedergeschrieben werden.

Die Basisdarstellung der einschriankenden Bedingungen fiir das betrachtete
Beispiel lautet, da x;, 2,, x5 und x, Basisvariable und z; und x, Nichtbasis-
variable sind,

zg =40 — 2%, — x, I
2, =30 — x — (IT1")
xg =16 — x, (IIT")
xg = 25 — Z,. (IV")

Da wir festgelegt haben, daB #, und x, Nichtbasisvariable sind, setzen wir sie
gleich Null. Daraus finden wir fir die Basisvariablen sofort z; = 40,
z, = 30, x; = 15 und x4 = 25. Die Basislosung kénnen wir allgemein als

(215 234 25 4)
schreiben. Die erste Bastslosung lautet dann
(0 0 40 30 15 25).

Wie wir durch Einsetzen dieser Basislosung in die einschrinkenden Be-
dingungen (I) bis (IV) erfahren, erfiillt die erste Basislosung alle einschrén-
kenden Bedingungen. Das 148t sich iibrigens auch graphisch an Hand des
Bildes 5 beurteilen. Dort sind zwar nur die echten Variablen eingetragen,
doch geniigen sie zur Beurteilung der Zuldssigkeit einer Losung. Fir
2; = 0 und z, = O befinden wir uns im Ursprung des Koordinatensystems,
namlich im Punkt P,. Dieser Punkt stellt die linke untere Ecke des Bereichs
der zuldssigen Losungen dar.

Aus Bild 5 ersehen wir auch, daf die erste Basislosung wohl zuléssig,
keinesfalls jedoch optimal ist. Wiirde ndmlich die die Zielfunktion repréisen-
tierende Gerade durch den Punkt P, verlaufen, so besifle sie fir dessen
Koordinaten den Wert Null. Mit anderen Worten der Wert des durch die
erste Basislosung angegebenen Produktionsprogramms ist gleich Null. Das
ist auch 6konomisch verstandlich, weil es sich bei denjenigen Erzeugnissen,
die nach der ersten Basislosung hergestellt bzw. bearbeitet werden sollen,
um fiktive Erzeugnisse handelt, deren Wert Null betrigt. Die Tatsache,
daB die erste Basislosung den Wert der Zielfunktion zu 0 festlegt, wird auch
aus der Zielfunktion in der Normalform der Aufgabe deutlich. Dort besitzen
die Nichtbasisvariablen z; und z, die Koeffizienten 5 und 10, alle iibrigen
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Variablen jedoch die Koeffizienten 0. Setzen wir dort die Werte der ersten
Basislosung ein, so ergibt sich Z = 0.

Wie es eine Basisdarstellung der einschriankenden Bedingungen gibt, so auch
eine Basisdarstellung der Zielfunktion. Die Basisdarstellung der Zielfunk-
tion enthélt nur die Nichtbasisvariablen. Sie lautet deshalb fiir die. erste
Basislosung

Zy = 52 + 102, (= 0).

Der Index 1 zeigt an, daB es sich um die Basisdarstellung der zur ersten
Basislosung gehorenden Zielfunktion handelt. Ubrigens stimmen die Basis-
darstellung der Zielfunktion der ersten Basislosung und die urspriingliche
Zielfunktion nach Gl. (1) iberein. Beide enthalten nur die Variablen z; und
Z,, d. h. die echten Variablen.

Analog zu den am Beispiel vorgenommenen Verdnderungen kénnen wir auch
die Normalform der Maximumaufgabe nach (10a) bis (10d) in die Basis-
darstellung umformen. Wir gehen davon aus, daBl die Schlupfvariablen
Zpyy DIS X4, die erste Basis bilden sollen, und geben zuerst die Basisdar-
stellung der einschrinkenden Bedingungen allgemein an. Sie lautet:

Tty = by — @@y — A%y — o+ — A1y
Tnip = by — Gy — Aoy — +++ — Aoy y

.......

Tnam = by — Ay %) — Aa®y — +++ — App Ty (11a)

Durch Nullsetzen der Nichtbasisvariablen , bis x, ergeben sich fiir die
Basisvariablen die Werte

Tapi = b; fir i=1,2,..., m. (11b)

Die entsprechende Basisdarstellung der Zielfunktion, die nur die Nicht-
basisvariablen enthilt, lautet fiir die erste Basislosung nach (11a) und
(11b)

Zi = cg + €%y + oy + o+ + Can. (11c)

Nachdem wir die erste Basislosung der Aufgabe bestimmt haben, ist deren
Optimalitdt zu prifen. Aus dem Bild 5 und einigen Rechnungen haben wir
bereits erkannt, daB die erste Basisldsung nicht optimal ist. Es ist jedoch
notwendig, dafiir ein allgemeines Kriterium (S¢mplexkriterium) anzugeben,
an dem ersichtlich ist, ob eine vorliegende Basislosung bereits optimal ist.
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Wir verwenden dafiir die Basisdarstellung der Zielfunktion. Allgemein gilt
folgender Satz:

Eine Basislosung (der Maximumaufgabe) ist nicht optimal und
kann also weiter verbessert werden, wenn die zu ihr gehérige Ziel-
funktion in der Basisdarstellung positive Koeffizienten c; enthalt.

Die Basisdarstellung der Zielfunktion der ersten Basislosung ist
Z{ = b5zy + 10x,.

Sie enthélt zwei positive Koeffizienten c;. Damit ist bestétigt, daB die erste
Basislosung weiter verbessert werden kann.!

Nach der Simplexmethode erfolgt die Verbesserung einer gegebenen Basis-
l6sung, indem eine bisherige Basisvariable aus der Basis entfernt und dafiir
eine bisherige Nichtbasisvariable in die Basis iibernommen wird. Es sind
somit zwei Fragen zu beantworten:

1. Welche bisherige Nichtbasisvariable soll in die Basis aufgenommen
werden?

2. Welche bisherige Basisvariable muf} dafiir aus der Basis entfernt werden?

Fiir die Beantwortung der ersten Frage werden die Koeffizienten der Ziel-
funktion in der Basisdarstellung herangezogen. Offensichtlich wird der Wert
der Zielfunktion je Einheit der Variablen durch jene Variable am stirksten
erhoht, die den groBten positiven Koeffizienten in der Zielfunktion besitzt.
Es zeigt sich, daB in der obigen Zielfunktion

gilt. Folglich wird die Aufnahme der Nichtbasisvariablen x, in die Basis
den Wert der Zielfunktion — je Einheit der Variablen — am meisten er-
hohen. Die bisherige Nichtbasisvariable z, wird beim Ubergang zur neuen
Basislosung (der zweiten Basislosung) in die Basis aufgenommen und somit
zur Basisvariablen.

In der Basis kénnen nur m = 4 Variable enthalten sein, weil es ebenso viele
Bedingungsgleichungen gibt. Folglich mufl bestimmt werden, welche Varia-
ble aus der Basis entfernt wird. Dabei ist die Forderung (10d) zu beachten,
nach der die absoluten Glieder in der Normalform des mathematischen
Modells nicht negativ sein diirfen. Wenn also ein Variablenaustausch in der
Basis stattfindet, dann nur so, daf damit keine negativen absoluten Glieder

1 Zur Erkldrung: Fir x, = z, = 0 ist Z{ = 0. Gelangt @, oder x, in die Basis, so wird
es einen Wert annehmen, der grofer als Null ist. Damit wird aber auch Z; einen gréBeren
Wert (grofer als Null) als Z{ annehmen
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b; entstehen. Um diese Bedingungen einzuhalten, gehen wir von der Normal-
form der einschrinkenden Bedingungen nach (I) bis (IV) aus. Da die Varia-
ble z, in die Basis aufgenommen wird, bilden wir sémtliche Quotienten aus
den absoluten Gliedern b, und den positiven Koeffizienten a;, des Gleichungs-
systems der einschrinkenden Bedingungen. Wir erhalten

b, _ 40 _

=T 40 [aus Gl. (I)]
b _ 30 _ 30 [aus GL (11)]
5% 1

b 25 _ 95 [aus GL (IV)].
Qg 1

Fiir Gl. (ITI) wird der Quotient nicht gebildet, weil in dieser Gleichung die
Variable z, nicht auftritt, d. h., a3, = 0 ist. Um zu sichern, daB3 die absoluten
Glieder b; nicht negativ werden, suchen wir das Minimum der Quotienten,
d. h.
b
min —.
i 2

Dieses Minimum ergibt sich in Gl. (IV). Damit ist entschieden, dafl die-
jenige Basisvariable aus der Basis entfernt wird, die in der Gleichung der
vierten einschrinkenden Bedingung steht. Das ist die bisherige Basis-
variable xg.

Wir stellen zusammen: In die Basis wird diejenige bisherige Nichtbasis-
variable aufgenommen, zu der der grofite positive Koeffizient in der Basis-
darstellung der Zielfunktion gehort. Das ist die Nichtbasisvariable ,.

Aus der Basis entfernt wird jene Variable, die in der Gleichung mit dem
niedrigsten Quotienten aus den absoluten Gliedern b; und den positiven Ko-
effizienten a;, der aufzunehmenden Variablen steht. Das ist die Basis-
variable xg.

Damit wird durch diese Operation eine echte Variable in die Basis auf-
genommen und eine Schlupfvariable aus der Basis entfernt.

Der Variablenaustausch fithrt selbstverstindlich zu Verdnderungen des
Gleichungssystems. Aus der Basisdarstellung der Zielfunktion und der ein-
schrinkenden Bedingungen zur ersten Basislésung leiten wir nunmehr die
entsprechende Basisdarstellung der zweiten Basislosung ab. Die Umformun-
gen beginnen mit Gl. (IV’), in der die beiden auszutauschenden Variablen
enthalten sind. Auflésung nach x, liefert

Ty = 25 — ;. (IVa')
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Diese Beziehung setzen wir der Reihe nach in (I'), (II') und in die Basis-
darstellung der Zielfunktion Z{ ein. Ein Einsetzen in (III') eriibrigt sich,
weil in dieser Gleichung die Variable x, nicht enthalten ist.

Das Ergebnis der Umformungen ist die Basisdarstellung der einschrinken-
den Bedingungen fiir die zweite Basislosung.

Xy =15 — 22, + x4 (Ta")
Xy = 56— w4+ x4 (ITa’)
=15 — 2, (IITa")
z, =25 — . (IVa’)

Fiur die Basisdarstellung der Zielfunktion der zweiten Basislosung erhalten

wIr
7} = 5a, — 102, + 250 (= 250).

Die zweite Basislosung selbst'ergibt sich aus der Basisdarstellung der ein-
schrinkenden Bedingungen nach (Ia’) bis (IVa’), indem dort die Nicht-
basisvariablen gleich Null gesetzt werden. Fir ; = 0 und z; = 0 finden
wir

zy =15
;= 5
x5 =15
x, = 25.

Damit schreiben wir die zweite Basisldsung
0 25 15 5 15 0).

Diese zweite Basislosung ist auch in Bild 5 dargestellt. Dort finden wir fiir
die Koordinaten #; = 0 und x, = 25 den Punkt P,. Der Austausch der
Variablen z, und z, in der Basis entspricht also dem Ubergang vom Punkt
Py zum Punkt P, in der graphischen Darstellung des Problems. Damit ist
ein wesentlicher Zug des Simplex-Algorithmus gekennzeichnet. Der Uber-
gang von einer Basis zu einer neuen entspricht der Bewegung von einem
Eckpunkt des Vielecks, das den Bereich der zulédssigen Losungen darstellt,
zum nédchsten Eckpunkt, hier also der Bewegung vom Eckpunkt P,
zum Eckpunkt P,. Da wir diejenige Variable in die Basis aufnehmen, zu
der der grofite Koeffizient der Zielfunktion gehort, bewegen wir uns von
einer gegebenen Losungsecke aus in der Richtung des steilsten Anstiegs
zur nichsten Losungsecke weiter.
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Wir konnen feststellen, dafl die zweite Basislosung die einschrinkenden
Bedingungen nicht verletzt, also zuléssig ist. Das ist gleichbedeutend damit,
daB der zugehorige Losungseckpunkt zum Bereich der zuldssigen Losungen
gehort. Die Zielfunktion erhélt fir die zweite Basislosung den Wert Z; =
= 250. Das erhélt man sofort fir #; = 0 und x5 = 0.

Der Ubergang von der ersten zur zweiten Basislosung laBt sich auch all-
gemein darstellen. Dazu suchen wir in (11¢) den groften Koeffizienten, der
positiv ist, d. h.

max ¢;.
i

Wir nehmen an, daB der groBte positive Koeffizient ¢, (k < n) ist. Damit
wird die bisherige Nichtbasisvariable z; in die neue Basis aufgenommen. An-
schlieBend bilden wir aus den absoluten Gliedern b; und allen positiven Koef-
fizienten ay die Quotienten b;/a;,. Wir suchen

b;

i Gk

Nehmen wir an, das gesuchte Minimum stellt sich in der I-ten Zeile ein.
Damit muBl die in dieser Zeile stehende Basisvariable aus der Basis ent-
fernt werden. Es ist die Variable z,,,. Nunmehr wird diejenige Beziehung der
Basisdarstellung der einschridnkenden Bedingungen gesucht, in der =z
und ,; enthalten sind. Das ist die Beziehung

Ty = by — Ay — Ay — oo — AT — o0 — Ay

Wir finden daraus

1 .
Xy = a’; (by — apy — o — Qg Tpmy — Ty —

— Qg1 Tpry — 00— App * Tp).

Diese Beziehung setzen wir in alle Gleichungen der Basisdarstellung der
ersten Basislosung ein (d. h. in die der einschrinkenden Bedingungen und in
die Zielfunktion), in denen z; auftritt. SchlieBlich fassen wir die absoluten
Glieder und die Koeffizienten jeder Verdnderlichen zusammen und erhalten
so die Basisdarstellung der zweiten Basislosung. Thre Koeffizienten stimmen
freilich mit denen der ersten Basislosung nicht mehr iiberein.

Aus der Basisdarstellung der einschrinkenden Bedingungen zur zweiten
Basislosung, die durch (Ia’) bis (IVa') gegeben ist, erhalten wir durch
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Freistellen der absoluten Glieder

2%, + x4 —xg =15 (Ta)
x, + z, — %= b (ILa)
x; + =15 (IIIa)

Zy + 2 = 25. (IVa)

Diese Darstellung entspricht im Prinzip der Normalform nach (I) bis (IV).

In der Basisdarstellung der Zielfunktion Z; ist weiterhin der positive
Koeffizient ¢, = 5 enthalten. Damit kann das Programm weiter verbessert
werden, wenn. die Nichtbasisvariable z, in die Basis aufgenommen wird.
Um zu entscheiden, welche Variable dafiir aus der Basis verschwinden muB,
berechnen wir in (Ia) bis (IVa) die Quotienten

15 _ 7.5 [aus GL (Ia)]

o

% =5 [aus GL (ITa)]

ITS = 15 [aus GL (IIla)].

Allgemein lauten diese Quotienten bj/a;,. Der hochgesetzte Strich soll be-
deuten, daB die absoluten Glieder und die Koeffizienten gegeniiber ihren
Werten in (10) und (11) verdndert worden sind. Sie beziehen sich auf das-
jenige Gleichungssystem, das nach dem Ubergang von der ersten zur zweiten
Basislosung entstanden ist.

Der kleinste Quotient wird fiir die zweite Gleichung (ITa) gefunden. Nach
(ITa’) enthélt diese Gleichung die Basisvariable x,. Indem also x; in die
Basis aufgenommen wird, wird z, aus der Basis entfernt. Der Austausch
ruft folgende Veranderungen im Gleichungssystem hervor: Aus (ITa) oder
aus (ITa’) erhalten wir

2, =5 — 1z, + . (ITa™)

Das ist die erste Gleichung der Basisdarstellung der einschrinkenden Be-
dingungen fiir die dritte Basislosung. Diese Beziehung wird in (Ia’) und
(IITa’) eingesetzt. Das Einsetzen in (IVa') entfillt, weil in dieser Gleichung
die Variable x, nicht enthalten ist.
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Die Umformungen, die nach dem Einsetzen durchgefiihrt werden, fiihren
schlieBlich zur Basisdarstellung der dritten Basislosung. Sie lautet fiir die
einschrinkenden Bedingungen

3= 54 2x, — x4 (Ia')
= b— x4+ x4 (ITa")
x5 =10 + x, — x4 (IITa")
z, =25 — Z. (Iva")

Indem (ITa") auch in Zj eingesetzt wird, lautet die Basisdarstellung der
Zielfunktion fiir die dritte Basislosung

Zy = — bz, — bxg + 275.

Die dritte Basislosung ergibt sich nunmehr, indem die Nichtbasisvariablen
z, und zg in (Ia”) bis (IVa'') gleich Null gesetzt werden. Die dritte Basis-
losung lautet

5 25 5 0 10 0).

Die Zielfunktion erhilt fiir diese Basislosung den Wert 275. Da in Zj
-keine positiven Koeffizienten mehr enthalten sind, ist eine weitere Ver-
besserung der Basislosung, in deren Basis nun alle echten Variablen ent-
halten sind, nicht mehr moglich. Die dritte Basislésung ist die optimale
Losung. Wir haben sie gefunden, indem die zunéchst nicht zur Basis ge-
horigen echten Variablen schrittweise in die Basis aufgenommen worden
sind.

Eine Diskussion der optimalen Losung #, = 5 und x, = 25 wurde bereits
in Abschnitt 3. vorgenommen. Es sei hier lediglich nachgetragen, dafl durch
die Schlupfvariablen z; = 5 und x; = 10 die nichtausgenutzten Kapazi-
téten der ersten Maschine und der ersten Montagestrafle angegeben werden.
Der Ubergang von der zweiten zur dritten Basislésung entspricht in Bild 5
der Bewegung vom Punkt P; zum Punkt P,. Dieser Punkt mit den Koordi-
naten (5; 25) wurde bereits frither als der Eckpunkt mit der optimalen
Losung erkannt. Es ist derjenige Punkt, bei dem die Gerade der Ziel-
funktion den Bereich der zuldssigen Losungen wohl noch beriihrt, vom Ur-
sprung des Koordinatensystems jedoch den groBten Abstand besitzt.

Es konnte gezeigt werden, dafl die Losung einer linearen Optimierungsauf-
gabe grundsatzlich ohne Kenntnis der Matrizenrechnung und lediglich durch
das Umformen von Gleichungssystemen maglich ist. Dabei diirfte klar ge-
worden sein, daBl der damit verbundene Rechenaufwand bei Aufgaben
groBeren Umfangs, wie sie in der 6konomischen Praxis zu lésen sind, ziem-
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lich groB3 wird. Insbesondere werden die numerischen Rechnungen schnell
uniibersichtlich. Diesem Ubelstand hilft die Simplextabelle ab, in der die
durchzufithrenden Rechenoperationen in iiberschaubarer Weise abgewickelt
werden. Fir die allgemeine Darstellung des Rechenganges, die hier aller-
dings nicht beabsichtigt ist, leistet die Matrizenrechnung entsprechend
gute Dienste.

Bevor Aufstellung und Handhabung der Simplextabelle dargestellt werden,
seien die Ergebnisse der bisher durchgefiihrten Berechnungen iibersichtlich
zusammengestellt. Dazu dient die nachfolgende Ubersicht.

Basislosung | Basis | Aufgenommene | Abgegebene | Wert der
Variable Variable Zielfunktion

1. Basis- (0 040 X3 Xy | z 0

losung | 30 15 25) | =, x4 6
2. Basis- (0 25 15 Zy, T3,

lsung | 515 0) | zya, | 2 % 250
3. Basis- 525 5 Zq, Ty, .

losung 010 0) | 5 a5 % 275

(Optim.

Losung)

4.1.3. Die Simplextabelle

Durch die Simplextabelle wird eine wesentliche Vereinfachung der durch-
zufiihrenden Rechenarbeiten erreicht. Ausgangsbasis der Simplextabelle
ist die Normalform der Aufgabe, wie sie fiir das Beispiel durch die ein-
schrankenden Bedingungen (I) bis (IV) und die Zielfunktion auf S. 34
angegeben ist. Der erste Teil der dazugehorigen Simplextabelle ist durch
Tabelle 1 angegeben.

Tabelle 1. Simplextabelle, Teil 1

Ty Lo T3 Ty s Zg

BV 0 5 10 0 0 0 0
@y 40 2 1 1 0 0 0 40
z, 30 1 1 0 1 0 0 30
. 15 1 0 0 0 1 0 -
< 25 0 [1] 0 0 0 1 25
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Diese Tabelle enthalt:

in der ersten Spalte die Basisvariablen der ersten Basislosung, d. h. d1e
Schlupfvariablen z; bis 7g;

in der zweiten Spalte die Werte der Basisvariablen der ersten Basislbsung;
d. s. gleichzeitig die absoluten Glieder b; der Gleichungen (I) bis (IV); ’

in der dritten bis achten Spalte die Koeffizienten ¢; und a;j, mit denen die
Variablen z,, ,, ..., Zg in der Zielfunktion und in den Gleichungen (I) bis
(IV) auftreten (die entsprechenden Variablen sind in der ersten Zeile an-
gegeben);

in der neunten Spalte die Quotienten b,/a;s, gebildet fiir die positiven Werte
QA .

Das System der Gleichungen (I) bis (IV) und die Zielfunktion finden wir
demnach in der dritten bis achten Spalte (Koeffizienten) und in der zweiten
Spalte (absolute Glieder). In der zweiten Zeile, die die Koeffizienten der
Zielfunktion enthédlt, stehen in den Spalten der Basisvariablen immer
Nullen. Das bedeutet, daf3 die Basisvariablen in der Zielfunktion nicht ent-
halten sind.

Wir versuchen nun, die durch Tabelle 1 gegebene erste Basislosung auf ihre
Optimalitdt zu prifen und notigenfalls zu verbessern. Die vorliegende
Losung ist so lange nicht optimal, wie in der Koeffizientenzeile der Ziel-
funktion (zweite Zeile) positive Werte enthalten sind. Das ist fir die Nicht-
basisvariablen z; und z, der Fall. Da ¢, < ¢, ist, ergibt die Aufnahme von
z, in die Basis den gréBeren Zuwachs des Zielfunktionswertes je Einheit
der Variablen. Aus den absoluten Gliedern des Gleichungssystems (b;) und
den positiven Koeffizienten der aufzunehmenden Variablen z, in diesem
System, den Elementen des zu z, gehorenden Spaltenvektors, werden
Quotienten b;/a;, gebildet. Der niedrigste Quotient bestimmt die Variable;
die aus der bisherigen Basis ausscheidet. Es ist die Basisvariable g in der
letzten Zeile des ersten Tabellenteils. Das im Schnittpunkt der x,-Spalte
und der wzg-Zeile stehende Feld wird durch Umrandung hervorgehoben.
Sein Element wird oft auch als Hauptelement bezeichnet.

Mitunter tritt es ein, daB der kleinste Quotient mehrmals auftritt. Dann
kann die auszuschlieBende Variable aus der bisherigen Basis nicht eindeutig
bestimmt werden. Man spricht von Entartung oder Degeneration des
Problems. Die unter 6.2. behandelte Aufgabe enthilt eine entartete Losung.
Thre Behandlung ist dort dargestellt. ,
Der Austausch der Variablen entspricht dem Ubergang vom ersten zum;
zweiten Tabellenteil. Beide Tabellenteile sind in Tabelle 2 angegeben.’
In der ersten Spalte beider Tabellenteile ist der Austausch der Variablen!
in der Basis (z; wurde gegen x, ausgetauscht) ersichtlich. Die jeweils aus-.
scheidende und die aufgenommene Variable werden in der ersten Spalte’
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durch einen entsprechenden Pfeil gekennzeichnet. Vollig unverdndert. wird
die erste Zeile (;...xg) iitbernommen. Sie wird der Einfachheit halber nicht
mehr mitgeschrieben, so dafl der zweite Tabellenteil mit der zweiten Zeile
beginnt.

Die zweite bis sechste Zeile des zweiten Tabellenteils entstehen wie folgt:

Die Elemente der sechsten Zeile (Zeile der neuen Variablen #,) ergeben sich, indem
die Elemente der sechsten Zeile des ersten Tabellenteils durch den Wert des um-
randeten Feldes, d. h. des Hauptelements (1) dividiert werden;

die neue sechste Zeile wird der Reihe nach mit 10, 1, 1 und 0 multipliziert und das
Ergebnis von der zweiten, dritten, vierten und fiinften Zeile des ersten Tabellenteils
subtrahiert. Dadurch entstehen die zweite, dritte, vierte und fiinfte Zeile des zweiten
Tabellenteils. Die genannten Faktoren sind die Koeffizienten der zweiten, dritten,
vierten und fiinften Zeile in der Spalte der neuaufzunehmenden Variablen z, im
ersten Tabellenteil.

Tabelle 2. Simplextabelle, Teile 1 und 2

Zy Zy Z3 Zy Z5 Zg
BV 0 5 10 0 0 0 0
7y 40 2 1 1 0 0 0 40
2, 30 1 1 0 1 0 0 30
2 15 1 0 0 0 1 0 —
2 25 0 [1] 0 0 0 1 25
—250 | 5 0 0 0 0 —10
e 15 2 0 1 0 0o -1 7,5
«, 5 [1] 0 0 1 0o -1 5
o 15 1 0 0 0 1 0 15
>, 25 0 1 0 0 0 1 -

Der Ubergang sei fiir die zweite Zeile (Zielfunktion) und fiir die vierte Zeile
besonders demonstriert.
1. Zweite Zeile:

1. Tabellenteil 05 10 0 0 0 O
minus 10mal sechste Zeile des zweiten Tabellenteils —(250 0 10 0 O 0 10)

ergibt zweite Zeile (Zielfunktion) im zweiten Tabellenteil —250 5 0 0 0 0—10

In entsprechender Weise wird die vierte Zeile iibertragen.
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2. Vierte Zeile:

1. Tabellenteil 3011010 0
minus 1mal sechste Zeile des zweiten Tabellenteils —(25 01 0 0 0 1)
ergibt vierte Zeile im zweiten Tabellenteil 51001 0-—-1

Auf diese Weise werden alle Zeilen (auBler der nicht mehr mitgeschriebenen
ersten Zeile) iibertragen. Die Umrechnung hat zur Folge, daf in der Spalte
der neuaufgenommenen Variablen z, im zweiten Tabellenteil auBer im
Schnittpunkt der z,-Spalte mit der x,-Zeile nur Nullen stehen. Im ge-
nannten Schnittpunkt steht eine 1. Eine derartige Spalte nennt man einen
Einheitsvektor. Alle Basisvariablen besitzen Einheitsvektoren. Das kann
sowohl am ersten als auch am zweiten Tabellenteil nachgepriift werden.
Im zweiten Tabellenteil ist die neue Basis in der ersten Tabellenspalte an-
gegeben. Die Werte der Basisvariablen stehen wieder in der zweiten Tabel-
lenspalte. Die Nichtbasisvariablen #;, und zg sind gleich Null gesetzt. Der
zur zweiten Basislosung gehorende Wert der Zielfunktion steht — allerdings
mit negativem Vorzeichen — in der zweiten Spalte an erster Stelle. Er be-
tragt 250.

Die im zweiten Tabellenteil stehende Basislosung ist noch keine optimale
Losung. Man erkennt das daran, daf die Zielfunktion dieser Losung noch
den positiven Koeffizienten ¢; =5 Dbesitzt. Folglich kann eine weitere
Verbesserung des Programms erzielt werden, wenn die Nichtbasisvariable z,
in die Basis aufgenommen wird. Zur Bestimmung der ausscheidenden
Variablen werden die Quotienten aus der zweiten Spalte (absolute Glieder)
und den positiven Elementen der dritten Spalte (Koeffizienten der aufzu-
nehmenden Variablen ;) gebildet und in der neunten Spalte des zweiten
Tabellenteils niedergeschrieben. Der niedrigste Quotient steht in der
vierten Zeile. Demnach wird die bisherige Basisvariable dieser Zeile, x,,
aus der Bais entfernt, wenn die neue Basisvariable x, aufgenommen wird.
Das im Schnittpunkt der Spalte der aufzunehmenden und der Zeile der
auszuschlieBenden Variablen stehende Feld enthélt das Hauptelement und
wird umrandet.

Der Austausch der beiden Variablen fiihrt zum dritten Tabellenteil, der
zusammen mit dem ersten und zweiten Teil in Tabelle 3 enthalten ist. Der
Ubergang erfolgt in prinzipiell gleicher Weise wie der vom ersten zum
zweiten Tabellenteil. Die unverdnderte erste Zeile wird wiederum nicht
mitgeschrieben, so da auch der dritte Tabellenteil mit der zweiten Zeile
beginnt. In der ersten Spalte wird gegeniiber dem zweiten Tabellenteil
die Variable z, entfernt und dafiir die Variable z, aufgenommen. Pfeile
kennzeichnen diesen Vorgang. Aus der vierten Zeile des zweiten Tabellen-
teils, der Zeile mit dem umrandeten Feld, ergibt sich zuerst die vierte Zeile
des dritten Tabellenteils. Sie entsteht, indem die Elemente der vierten
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Tabelle 3. Simplextabelle, Teile 1, 2 und 3 (Gesamitabelle)

, z, 3 z, g Zg
BV 0 5 10 0 0 0 0
R 40 2 1 1 0 0 0 40
A 30 1 1 0 1 0 0 30
e 15 1 0 0 0 1 0 -
4 25 0 11 0 0 0 1 25
— 250 5 0 0 0 0 —10
s 15 2 0 1 0 0o —t 7,5
<z 5 1] 0 0 1 0o —t 5
5 15 1 0 0 0 1 0 15
>, 25 0 1 0 0 0 1 —
—2175 0 0 0 -5 0 -5
X 5 0 0 =2 0 1
-z, 5 1 0 0 1 0 —1
5 10 0 0 0o -1 1 1
2 25 0 1 0 0 0

Zeile im zweiten Teil durch den Wert des umrandeten Feldes (1) dividiert
werden. Die zweite, dritte, fiinfte und sechste Zeile des dritten Tabellen-
teils ergeben sich, indem die neue vierte Zeile nacheinander mit 5, 2, 1 und 0
(den Koeffizienten dieser Zeilen in der Spalte der aufzunehmenden Variablen
x, im zweiten Tabellenteil) multipliziert und von der zweiten, dritten,
finften und sechsten Zeile des zweiten Tabellenteils subtrahiert wird.

Die Basislosung der dritten Stufe, die im dritten Tabellenteil steht, ist
optimal, weil die zugehoérige Zielfunktion (zweite Zeile des dritten Tabellen-
teils) keine positiven Koeffizienten mehr enthilt. Wie bereits mehrfach
festgestellt, lautet die optimale Losung =, =5, 2, =25, ;=5 und
x5 = 10. Die Variablen z, und x4 sind gleich Null. Zu dieser Losung nimmt
die Zielfunktion ihren Maximalwert von 275 Wahrungseinheiten an.

Es wurde bereits darauf hingewiesen, daf im ersten Teil der Simplextabelle
die Normalform der Zielfunktion und der einschrinkenden Bedingungen
der vorliegenden Aufgabenstellung enthalten ist. Im Abschnitt 4.1.2. wurde
gezeigt, wie der Ubergang von einer Basislésung zu einer neuen und besseren
Basislosung einer bestimmten Verdnderung des Gleichungssystems und der

4 Richter, Optimierung
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Zielfunktion entspricht. So finden wir auch im zweiten und im dritten
Tabellenteil die Koeffizienten der Gleichungssysteme, die sich durch die im
Zusammenhang mit dem Ubergang zu neuen Basislésungen auftretenden
Veranderungen des urspriinglichen Gleichungssystems ergeben. Das Koef-
fizientenschema der im Zusammenhang mit der zweiten Basislosung ge-
fundenen Gleichungen (Ia) bis (IVa) steht im zweiten Tabellenteil. Weiter
erhilt man aus (Ia’) bis (IVa') durch Freistellen der absoluten Glieder
ein Gleichungssystem, dessen Koeffizientenschema im dritten Tabellenteil
steht. Daraus wird ersichtlich, daf} die in der Simplextabelle vorgenommenen
Rechenoperationen letztlich eben die Umformungen des Ausgangsgleichungs-
systems sind, die im Abschnitt 4.1.2. vorgenommen wurden. Da die Rechen-
arbeit durch die Verwendung der Simplextabelle wesentlich iibersichtlicher
gestaltet wird, werden praktische Aufgaben mit einem Umfang, der eine
numerische Losung ohne Zuhilfenahme von Rechenanlagen gestattet, mit
Hilfe der Simplextabelle gelost.

In allgemeiner Darstellung geschieht der Ubergang von der ersten zur
zweiten Basislosung und analog zu jeder weiteren Basislosung wie folgt:
Die erste Basislosung ist durch die nachstehende Koeffizientenmatrix ge-
geben.

o Ty e T onn Ty Tpi1 o+ Lpim
Cp oo Cpove Cp Cpt1 -+ Coim
Tp by By1 vee Qg --- Oy Amtr oo C1ntm
Tt by ap Ek_l An Antr - Uptm
Tntm Om Ay ~e O+« « T Ut c -+ Cmontm

Darin sind, da von der Maximumaufgabe ausgegangen wird, die Ziel-
funktionskoeffizienten c,.; der Schlupfvariablen x,; sémtlich gleich Null.
Die Koeffizienten a; 44, der Schlupfvariablen sind in der Hauptdiagonale
gleich Eins (@ n+1, @a.nt25 > Um.nin), a0 allen anderen Stellen gleich Null.
Die so gegebene Ausgangslosung gehort zur Maximumaufgabe der linearen
Optimierung in der Form
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Darin bedeutet U die Matrix der Koeffizienten in den einschriankenden Be-
dingungen

@y Bypeee Qpp

gy Qg - .- G2

Gt O+ - - Oy
¢ den Spaltvektor der echten Variablen

Zy

T

T

b den Spaltenvektor der absoluten Glieder der einschrinkenden Bedingungen

bm

¢’ den Zeilenvektor der Zielfunktionskoeffizienten
¢ =[cy ... Cpn)

und o den Nullvektor
0
0
0
Durch Uberfithrung der gestellten Aufgabe in die Normalform treten die
Schlupfvariablen, ihre Zielfunktionskoeffizienten (0) und ihre Koeffizienten
im System der einschrinkenden Bedingungen hinzu.
Zur Uberfiihrung der ersten Basislosung in die nachfolgende bestimmen
wir zunéchst den groBten positiven Koeffizienten der Zielfunktion. Es sei

¢;- Damit steht fest, daB in der nachfolgenden Basis die Variable z;, ent-

4%
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halten sein wird. AnschlieBend werden die Quotienten b;/a; gebildet. Ihr
kleinster Wert ergebe sich fiir b,/ay,, womit feststeht, daB die Variable x,,
aus der bisherigen Basis ausscheidet. Die genannten Quotienten werden
nur fiir a; > 0 gebildet. Nun erfolgt die Berechnung der neuen Koeffizienten-
matrix und somit der zweiten Basislésung.

Die einzelnen Schritte verlaufen dabei in folgender Reihe:

1. ¢, =maxg; (%, geht in Basis)
i
b, . b . .
2. — = min - (%41 scheidet aus Basis aus)
77 i Qi
3. Tp = Tpyy und
Lpty = Tp (Variablenaustausch)
4. 'ﬂ- = bl und
A
/A = ay; (Umformung der Zeile in der Ausgangslosung,
p j g gang g
tk die das Hauptelement ay, enthilt)

5. bi_a'ik'blébi (Z=|=l) und

@ij — Qg - oy = a; (L)
(Berechnung der iibrigen Koeffizienten der ein-
schrankenden Bedingungen)

6. ¢c; —cp-a=>¢ (Berechnung der Zielfunktionskoeffizienten)

.2 —¢c -by=>7 (Berechnung des Wertes der Zielfunktion).

Die Reihenfolge ist einzuhalten, weil jeweils die rechts stehenden Ergebnis-
werte in den nachfolgenden Schritten weiterverwendet werden. Wenn also
im fiinften Schritt b, gebraucht wird, so ist das der Wert, der im Ergebnis
des ersten Teils des vierten Schritts gewonnen wurde.

Mitunter verzichtet man darauf, in den Simplextabellen die Spalten der
Basisvariablen immer mitzuschreiben. Dadurch wird die Tabelle etwas ein-
facher, wohingegen die Rechenoperationen an Ubersichtlichkeit verlieren.

4.1.4. Ablaufschema der Simplexmethode

Die im Zusammenhang mit der maschinellen Rechentechnik im breiten
Umfang verwendeten Ablaufdiagramme eignen sich sehr gut fiir die Dar-
stellung von Abliufen jeder Art. Das dargelegte Rechenverfahren fir die
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Ausgangswerte a;;, b;, ¢;

'

1. Basislésung (Schlupfvariable)

2!

Enthilt die Zielfunktion positive Koeffizienten? =~ |————— Nein
| '
A .
Ja Optimale Losung
l liegt vor

Bestimme groBten positiven Koeffizienten
(zugehorige Nichtbasisvariable kommt in Basis)

|
v
Bestimme Quotienten aus absoluten Gliedern und
Koeffizienten der aufzunehmenden Variablen (zu
Glied mit niedrigstem Quotienten gehoérige Variable
scheidet aus Basis aus)

|
v

Forme Gleichungssystem um (Variablenaustausch)

|
v

— Neue Basislosung

Bild 9. Ablaufschema der Simplexmethode (Maximumaufgabe)

Maximumaufgabe der Simplexmethode ist im obigen Bild 9 in Form

eines solchen Ablaufschemas dargestellt. Die wesentlichsten Schritte sind

demnach :

1. Sammlung der Ausgangsdaten a;;, b; und c;.

2. Aufstellung der ersten Basislosung, deren Basis von den Schlupfvariablen
gebildet wird.

3. Priifung, ob die Zielfunktion positive Koeffizienten enthélt; hierbei sind
zwei Ergebnisse moglich:
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a) Die Zielfunktion enthélt keine positiven Koeffizienten mehr, dann
ist die optimale Losung gefunden,

b) die Zielfunktion enthélt noch positive Koeffizienten, dann wird das
Verfahren mit dem vierten Schritt fortgesetzt.

4. Bestimmung des groBten positiven Koeffizienten der Zielfunktion. Die
dazugehorige Nichtbasisvariable wird in die Basis aufgenommen.

5. Bestimmung der Quotienten aus den absoluten Gliedern der einschrin-
kenden Bedingungen und den Koeffizienten der aufzunehmenden Varia-
blen in den einschrinkenden Bedingungen. Die zum niedrigsten dieser
Quotienten gehdrende Basisvariable scheidet aus der Basis aus.

6. Der Variablenaustausch wird vorgenommen und das Gleichungssystem
entsprechend umgeformt. Damit ergibt sich

7. die neue Basislosung.

Vom siebenten Schritt geht das Programm zuriick zum dritten Schritt, wo-
durch erneut gepriift wird, ob die nunmehr vorliegende Basislosung bereits
optimal ist.

In Bild 9 sind nicht alle Einzelschritte des Algorithmus enthalten. So wurde
zum Beispiel die Bildung der Normalform durch Aufnahme der Schlupf-
variablen nicht besonders erwihnt. Ebenso sind die Einzelheiten des
Variablenaustauschs nicht angefiihrt.

4.2 Lésung der Minimumaufgabe (Duale Aufgabe)

Optimale Entscheidungen werden nicht nur hinsichtlich der Maximierung,
sondern auch hinsichtlich der Minimierung bestimmter das Optimal-
kriterium reprasentierender Werte getroffen. Die durch GI. (8) gegebene
Form einer Minimumaufgabe sei zur Erinnerung noch einmal wiederholt:

1. Zielfunktion (8a)
Z = ¢y + c12y + coxy + o+ 4 ¢;x; 4 ++- 4 cpx, — min.

2. Einschrankende Bedingungen (8b)

Ay %y + BaZy + vt Q1% Ao @2, 2 by
Aoy %y + AgpZy +- oo Agi%j + o0+ AopZy = b,y

Op1 Ty - Aoy = ooo - Wi Ty + oo+ App Ty = b
3. Nichtnegativitdtsbedingung (8¢)

2, =0; 2,=20;...; 2, =0



4.2. Losung der Minimumaufgabe (Duale Aufgabe) 55

Zum besseren Verstandnis sei ein Beispiel angefiihrt. Aus drei verschiedenen
Futtermitteln F;, F, und F; ist eine Futtermischung herzustellen. In einer
Einheit dieser Futtermischung sollen die Wirkstoffe W;, W, und W, in
den Mindestmengen von 10, 15 und 5 Wirkstoffeinheiten vorhanden sein.
Die Kosten der drei Futtermittel betragen je Futtermitteleinheit 20, 6 und 10
Wihrungseinheiten. Es wird verlangt, daB die Futtermischung mit den
niedrigsten Futterkosten hergestellt wird, die gleichzeitig die hinsichtlich
des Gehalts an Wirkstoffen gestellten Forderungen erfiillt. In den einzelnen
Futtermitteln sind die Wirkstoffe wie folgt enthalten (Wirkstoffeinheiten
je Futtermitteleinheit):

W,in¥,: a; =05
W,in Fy: a;, =0,2
W,in Fy: a;3=1,0

Wyin F,: a5 = 1,0
Wyin Fy: a, =0
W,in Fy: a,, = 0,4

W,in F,: ag = 0,2
W,in Fy: ag = 0,5
W,in F3: a3 =10
Mit den Kosten ¢; = 20, ¢, = 6 und ¢; = 10 ergibt sich folgendes mathe.
matische Modell der Aufgabe:
1. Zielfunktion
Z = 20x; + 6z, + 1025 — min.
2. Einschrinkende Bedingungen
0,52, + 0,2z, + 1,023 = 10
1,0, + 0,42z, = 15
0,2z, + 0,5z, 5

v I

3. Nichtnegativitdtsbedingung
2, =0; 2, =0; 23 =0.

Die Minimierung der oben angegebenen Zielfunktion fithrt auf die gleiche
Losung wie die Maximierung der Zielfunktion

7* = —20x; — 6z, — 1025,

wie man sich leicht iiberlegt.
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Die Ungleichungen der einschrinkenden Bedingungen, durch die hier
untere Grenzen vorgegeben werden, miissen durch Einfithrung der Schlupf-
variablen %,, 4, und u, in Gleichungen iiberfiithrt werden. Die in Gleichungen
ausgedriickten einschrinkenden Bedingungen lauten dann

0,5z, + 0,22, 4 1,023 — u, =10
1,0, + 0,4x, — Uy =15
0,22, + 0,52, —ug = b.

Die Schlupfvariablen besitzen jetzt den Koeffizienten — 1, da auch fiir sie
die Nichtnegativitatsbedingung gilt.

Unter Einhaltung der in der obigen Form gegebenen einschrankenden Be-
dingungen konnte die Zielfunktion Z’ nach der Simplexmethode maximiert
werden. Beginnen wir damit jedoch in der iiblichen Form, d. h., indem wir
die erste Basislosung dadurch bilden, dal die echten Variablen Null gesetzt
(und damit Nichtbasisvariablen) und die Schlupfvariablen zu Basis-
variablen werden, so erhalten wir eine nichtzuldssige Ausgangslosung.
Diese Ausgangslosung wiirde sein (0 0 0 — 10 — 15 —5) und somit nega-
tive Variable enthalten. Diese Erkenntnis erhalten wir auch, wenn wir auf
Bild 6 zuriickkommen. Dort wird deutlich, da} eine Losung, in der x; = 0
und xz, = 0 gelten, die also im Ursprung des Koordinatensystems liegt,
sich auBerhalb des Bereichs der zuldssigen Losungen befindet. Man kann
versuchen, mit einer solchen nichtzuldssigen Ausgangslosung zu beginnen
und zunichst danach zu trachten, die negativen Variablen aus der Basis
zu beseitigen. Andererseits kann man jedoch weitere kiinstliche Variable
einfithren und zu folgendem Gleichungssystem gelangen:

0,52, + 0,22, + 1,023 — u, + &k, = 10
1,0z, + 04z, —uy, + k=15
0,2z, + 0,5z, — Ug + k3 = 5.

Werden die echten und die Schlupfvariablen gleich Null gesetzt, so bilden
die kiinstlichen Variablen k,, k, und %, eine geeignete Basis. Allerdings muf3
gesichert werden, dafl diese kiinstlichen Variablen nicht in der optimalen
Losung auftreten, weil sie die einschrinkenden Bedingungen verletzen
wiirden. Um das zu erreichen, ist es lediglich erforderlich, ihnen einen sehr
hohen Kostensatz M zuzuordnen. Da das billigste Programm angestrebt
wird, wird es sich auch in erster Linie aus den billigen Futtermitteln zu-
sammensetzen. In der Zielfunktion

Z = 20%, + 6z, + 105 + 0%y + Ouy 4 Oug +
+ Mk, + Mk, + ME; — min
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wird ersichtlich, daBl zuerst die kiinstlichen Variablen aus der Basis ent-
fernt werden miissen, weil sie gegeniiber allen anderen Variablen die weitaus
héchsten Koeffizienten in dieser Funktion besitzen. Auch in der Form

Z = —20x;, — 6xy — 1023 — Ou; — Ouy — OQuy —
— Mk, — Mk, — Mk; — max

wird das deutlich, weil nunmehr in Analogie zur bereits besprochenen
Maximumaufgabe natiirlich jene Variablen in die optimale Basis gehéren,
die die groSten Koeffizienten besitzen und gleichzeitig die Bedingungen
hingichtlich der verschiedenen Wirkstoffe zu erfiillen gestatten. Damit
konnen die kiinstlichen Variablen nicht in der Basis bleiben, weil sie die
niedrigsten Koeffizienten aufweisen. Das ergibt sich daraus, dafl M dem
Betrage nach viel grofer als alle iibrigen Koeffizienten sein soll. Damit ist
— M der kleinste Koeffizient in der obigen Zielfunktion. Er triagt am
wenigsten zur Maximierung der Zielfunktion bei.

Durch die Einfithrung der kiinstlichen Variablen wird die Zahl der zu-
satzlich einzufithrenden Variablen sehr groB. Die Losung wird mit einem
relativ hohen Rechenaufwand verbunden sein, worauf KREkS [2] hinweist.
Er lost die Aufgabe durch die Einfiihrung einer sekundéren Zielfunktion,
die aus den Koeffizienten derjenigen einschréinkenden Bedingungen ge-
bildet wird, die der Normalform nicht entsprechen. Auf diese Problematik
wird unter 4.6. noch eingegangen. Im Gegensatz dazu verwendet SADOWSKI
[3] kiinstliche Variable, um die Minimumaufgabe zu 16sen.

Im allgemeinen findet man die einfachste Losung der Minimumaufgabe,
indem man die duale Maximumaufgabe 16st. Zu jeder Aufgabe der linearen
Optimierung gibt es eine duale Aufgabe. Eine gegebene und ihre duale Auf-
gabe fithren zur gleichen Losung. So kann man statt einer Maximumaufgabe
die dazu duale Minimumaufgabe und statt einer Minimumaufgabe die dazu
duale Maximumaufgabe losen. Der letztere Fall ist praktisch bedeutungs-
voller. Wir betrachten die Bildung der dualen Aufgabe an dem gegebenen
Beispiel. Das Koeffizientenschema der Minimumaufgabe lautet, wenn man
die Zielfunktion unter die einschrinkenden Bedingungen setzt,

0,5 02 1,0 10 0,5 1,0 0,2 20

1,0 0 04 15 Das Koeffizientenschema g9 o o5 6

02 05 0 5 der dualen Maximumauf- 10 04 0 10
T gabe lautet o

20 6 10 min. 10 15 5 max.

Das Koeffizientenschema der dualen Maximumaufgabe ergibt sich, indem
die Zeilen und Spalten des Koeffizientenschemas der urspriinglichen
Minimumaufgabe vertauscht werden. Dabei miissen die Zielfunktions-
koeffizienten in der urspriinglichen Aufgabe groBer als Null sein.
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Mit dem Ubergang zur dualen Aufgabe kehrt sich die ,,Richtung® der
Zielfunktion um. Gleichzeitig dndert sich das Ungleichheitszeichen in den
einschrinkenden Bedingungen. Aus der zu minimierenden Zielfunktion der
Minimumaufgabe mit den ,,Grofer-gleich-Beziehungen‘‘ der einschrénken-
den Bedingungen werden die zu maximierende Zielfunktion und die
,,JKleiner-gleich-Beziehungen* der einschrinkenden Bedingungen in der
dualen Maximumaufgabe. Die Nichtnegativitatsbedingung wird in der dualen
Aufgabe nicht gestellt.

Fiir die numerische Losung der dualen Maximumaufgabe, die ja eigentlich
zur Losung der urspriinglichen (primalen) Minimumaufgabe vorgenommen
wird, ist es wesentlich zu wissen, dal die Schlupfvariablen der dualen Auf-
gabe die echten Variablen der urspriinglichen Aufgabe sind. Wenn wir also
im mathematischen Modell der urspriinglichen Minimumaufgabe mit z; die
echten Variablen bezeichnet haben, so sollen das die Schlupfvariablen der
dualen Aufgabe sein. Andererseits werden die Schlupfvariablen u; der ur-
springlichen Aufgabe in der dualen Aufgabe zu echten Variablen. Aus
diesem Grunde kann man, anstatt von echten und Schlupfvariablen oder
fiktiven Variablen zu sprechen, auch grundsédtzlich von primalen und
dualen Variablen sprechen.

Nunmehr konnen wir das mathematische Modell der dualen Maximum-
aufgabe als Normalform niederschreiben:

1. Zielfunktion
Z = 10u; + 154, + 5uz 4+ 02y + Oz, 4 023 — max

2. Einschriankende Bedingungen

0,5u; + 1,0uy 4 0,2u; + 2, = 20
0,2u, + 0,5ug + z, = 6
1,0u, + 0,4u, + x; = 10.

Die Aufgabe wird in der iiblichen Weise, in der die Losung einer Maximum-
aufgabe bestimmt wird, gel6st. Die erste Basis ergibt sich aus den dualen
Schlupfvariablen z, bis ;. Die Losung wurde in Tabelle 4 bestimmt. In
dieser Tabelle sind in der Zielfunktion des letzten Tabellenteils die Koeffi-
zienten der dualen Schlupfvariablen eingerahmt, um sie besser hervor-
zuheben. Wihrend die Losung der dualen Maximumaufgabe an der iiblichen
Stelle steht, bilden die eingerahmten Koeffizienten die Lésung der urspriing-
lichen Minimumaufgabe. Diese Losung lautet somit

z, = 14,18 Einheiten des Futtermittels F,
z, = 4,32 Einheiten des Futtermittels F,
%3 = 2,04 Einheiten des Futtermittels F;.



4.2, Losung der Minimumaufgabe (Duale Aufgabe) 59

Tabelle 4. Simplextabelle der dualen Aufgabe

) Uy Ug Ug £51 Ly L3
BV 0 10 15 5 0 0 0
<~ 20 05 [t 02 1 0 0 20
y 6 02 0 05 1 0 -
x4 10 1 04 0 0 0 1 25
—300 25 0 2 |—15 0 0
-y 20 05 1 02 1 0 0 40
@y 6 02 0 05 0 1 0 30
<« 2 o8 o —o008| —04 0 1 2,5
—30625 | 0 0 22 (—1375 0  —3,12
Uy 1875 | 0 1 025 1,25 0 —0,62 75
<~ 5,5 0 0 Jos2]| 01 1 —025 10,6
>, 2,5 1 0 —01 | —05 0 1,25 -
—330 0 0 0 |[—1418 —432 —2,04 |
Uy 16100 | 0 1 0 1,20 —0,48 —0,50
>ty 10,6 0o o0 1 0,19 1,92 —048
% 356 | 1 0 0 —048 0,19 1,20

Wir iberpriifen, ob diese Losung die einschrinkenden Bedingungen der
primalen Minimumaufgabe erfiillt.

1. Bedingung

0,5-14,18 4 0,2.4,32 4+ 1,0- 2,04 = 10
2. Bedingung

1,0. 14,18 +04-2,04 =15
3. Bedingung

0,2.14,18 4 0,5 - 4,32 = 5.

Damit sind alle drei einschrinkenden Bedingungen der Minimumaufgabe
erfilllt. Der Wert der Zielfunktion betragt unter diesen Bedingungen

Z=20-14,18 4+ 6-4,32 4 10 - 2,06 = 330.
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Die Dualitdt zweier Optimierungsaufgaben ist symmetrisch. Es gibt somit
zur primalen Minimumaufgabe eine duale Maximumaufgabe und zur
primalen Maximumaufgabe eine duale Minimumaufgabe. Bildet man zu
einer gegebenen Aufgabe die duale Aufgabe und formuliert man von
dieser wiederum das duale Problem, so erhélt man wieder die urspriingliche
(primale) Aufgabe. Entscheidend ist die Tatsache, dafl wenn eine optimale
Losung einer Optimierungsaufgabe existiert, auch die dazu duale Aufgabe
eine optimale Losung besitzt. Wie bereits gesagt, besitzen die beiden
Zielfunktionen fiir die Optimallésungen den gleichen Wert. Wie man an den
Tabellen 4 und 10a nachpriifen kann, gilt fiir die optimale Losung der Satz

Z Ci%; = 2 biu,-.
j <

Darin bedeuten ¢; die Zielfunktionskoeffizienten und z; die echten Va-
riablen der primalen Minimumaufgabe und u; die echten Variablen der
dualen Maximumaufgabe sowie b; die absoluten Glieder der einschrinkenden
Bedingungen in der primalen Minimumaufgabe, die in der dualen Maximum-
aufgabe als Zielfunktionskoeffizienten auftreten. Das gilt auch, wenn die
Maximumaufgabe gegeben und die duale Minimumaufgabe gebildet wird.
Es sei noch vermerkt, daBl eine lineare Optimierungsaufgabe nur dann
mehrere optimale Losungen haben kann, wenn die optimale Loésung der
dualen Aufgabe entartet (degeneriert) ist.

Da die Rickfithrung einer primalen Minimumaufgabe auf die duale Maxi-
mumaufgabe ohne Schwierigkeiten moglich ist, geniigt es letztlich, die
Maximumaufgabe der linearen Optimierung (beziiglich der hier behandelten
Simplexmethode) losen zu kénnen. Wenn man weiter in der Lage ist, aus
der Minimumaufgabe die duale Maximumaufgabe herzuleiten, kann man
die Grundaufgaben der linearen Optimierung l6sen.

4.3. Parametrische Optimierung

Bekanntlich werden fiir die erforderlichen Koeffizienten der Zielfunktion,
aber auch fiir die einschrankenden Bedingungen feste Werte vorgegeben.
Das gefundene optimale Programm ist zunédchst nur fiir diese festen Werte
optimal. Es ist jedoch leicht moglich, daf3 die genannten Koeffizienten ge-
wissen Schwankungen unterliegen. So kann es eintreten, daf der beim Ver-
kauf bestimmter Erzeugnisse erzielbare Gewinn Schwankungen unterliegt,
die im einzelnen nicht vorausgesagt werden konnen. In diesem Falle wire
es wichtig, sich eine Vorstellung davon zu erarbeiten, in welchem Intervall
die Koeffizienten der Zielfunktion schwanken koénnen, ohne dadurch die
Optimalitdt der Losung zu gefihrden. Wir betrachten dazu das bereits
mehrfach angefiihrte Beispiel, nach dem unter Einhaltung der einschranken-
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den Bedingungen

22, + xy + 24 =40
y + %, + =30
2y + x5 =15
Zy + xg = 25
die Zielfunktion

Z = 5%, + 102y + 03 + Oxy + Ox; 4 Oxg

zu maximieren ist. Um festzustellen, in welchem Bereich die dabei ge-
fundene Losung optimal bleibt, wenn sich die Koeffizienten der Ziel-
funktion 4ndern, machen wir diese Koeffizienten von einem Parameter ¢
abhingig und schreiben fiir ¢, anstelle von 5

a=hLE)=5+1
sowie fiir ¢, anstelle von 10

¢y = fy(t) = 10 + £.
Die neue Zielfunktion lautet dann

Z=0bB+t)z, + (10 + t) zy + 025 + Oy + Ox; 4 O —

—> max.

Diese Aufgabe kann wie jede andere lineare Optimierungsaufgabe gelost
werden. Die optimale Losung, die in Tabelle 5 gefunden wird, ist mit
%, = 5 und z, = 25 die bereits bekannte Losung. Fir die Zielfunktion er-
gibt sich unter den genannten Bedingungen der maximale Wert von Zp,y =
= 275 + 30¢.
In der Zielfunktion der optimalen Losung besitzt die Nichtbasisvariable
z, den Koeffizienten —5 — . Solange dieser Koeffizient kleiner als Null
ist oder hochstens gleich Null wird, bleibt nach dem Simplexkriterium die
gefundene Losung optimal. Die Bedingung einer optimalen Losung lautet
demnach

—5—t =0
oder

—5=t

Solange der Parameter ¢ groBer als — 5 ist oder — in der Grenze — gerade
— 5 betragt, bleibt die Optimalitdt der Losung erhalten, obwohl sich der
Wert der Zielfunktion natiirlich verdndert. Die Struktur der Aufgabe dndert
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Tabelle 5. Simplextabelle der parametrischen Optimierung

z, z, 3 z, 5 g
BV 0 |5+t 104+t| O 0 0 0
4 40 1 1 0 0 0 40
x 30 1 1 0 1 0 0 30
s 15 1 0 0 0 1 0 —
g 25 0 11] 0 0 0 1 25
—250
e R 0 0 0 0 —10—¢
A 15 2 0 1 0 (S 7,5
<~ 5 [1] 0 0 1 0 -1 5
s 15 1 0 0 0 1 0 15
—> X, 25 0 1 0 0 0 1 —
—275
301 0 0 0 —5—t 0 —5
zy 5 0 0 1 —2 0 1
- 5 1 0 0 1 0 —1
g 10 0 0 0 —1 1 1
, 25 0 1 0 0 0 1

sich, sobald der Parameter ¢ Werte unter — 5 annimmt. Dann ist auch die
gefundene Losung nicht mehr optimal, weil der Koeffizient der Nichtbasis-
variablen z, in der Zielfunktion der optimalen Loésung positiv wird. Der
EinfluB des Parameters ¢ auf die Hohe des Wertes der Zielfunktion und
auf die Koeffizienten dieser Funktion sowie auf die Optimalitdt der Losung
ist in Tabelle 6 dargestellt. Die dort enthaltene gestrichelte Trennungslinie
trennt den Wertebereich von ¢, fir den die Losung optimal bleibt, von
jenem, fiir den die Losung nicht mehr optimal ist.

Ansétze der geschilderten Art erlauben es, allgemeine Bedingungen fiir
Parameter zu bestimmen, unter denen gefundene optimale Losungen auch
optimal bleiben. Es ist sicher, daf eine breite Anwendung der parametri-
schen Optimierung in der Tendenz zu einer Verringerung der Optimierungs-
rechnungen fiihrt. Verinderungen der Koeffizienten der Zielfunktion miissen
nicht in jedem Falle eine erneute Optimierungsrechnung hervorrufen, wenn
sie sich in dem Intervall bewegen, in dem nach der parametrischen Opti-
mierung die Optimalitit der Losung erhalten bleibt. Durch die para-
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metrische Optimierung wird der Wirtschaftsleitung nicht nur ein optimaler
Verhaltenspunkt, sondern eine optimale Verhaltungsstrecke angeboten.
Jeder Punkt dieser Verhaltensstrecke stellt eine optimale Entscheidung
dar, die die Wirtschaftsleitung treffen kann. Mit anderen Worten gesagt:
Die Optimalitat einer Entscheidung gilt unter Bedingungen, die in einem
gewissen Intervall variabel sind. Das Intervall wird durch den Parameter ¢
bestimmt.

Tabelle 6. Auswirkung der Grife des Parameters t auf die optimale Losung
nach Tabelle &

¢ Z =275+ 30¢ Cy Cg
...... e -5
3 365 —8 —5
2 335 —17 —5
1 305 —6 -5
0 275 —5 —5
—1 245 —4 —5
—2 215 -3 —5
—3 185 -9 —5
—4 155 —1 -5
—5 125 0 —5
—6 95 1 -5
—17 65 2 —5
...... —5

Anmerkung: ¢, und cg sind die Koeffizienten der Nichtbasisvariablen in
der Zielfunktion der optimalen Losung.

44. Optimierungsaufgaben mit begrenzten Variablen

In der Normalform der linearen Optimierung ist eine Begrenzung der Varia-

blen insofern vorhanden, als die Nichtnegativitdtsbedingung besteht. Sie

schreibt vor, daBl die Variablen keine negativen Werte annehmen diirfen.

Gegeniiber diesem normalen Fall kénnen zwei Abweichungen auftreten,

und zwar

1. eine iiber die Nichtnegativitdtsbedingung hinausgehende (zusitzliche)
Begrenzung der Variablen, und

2. die Aufhebung der Nichtnegativititsbedingung.

Der erste Fall, die zusdtzliche Begrenzung der Variablen, ist von groBer
praktischer Bedeutung. Er wird nachstehend an einem Beispiel behandelt.
Auf die Aufhebung der Nichtnegativitatsbedingung, die zum Gegenteil von
Optimierungsaufgaben mit begrenzten Variablen fiihrt, wird am Ende
dieses Abschnittes kurz hingewiesen.
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In der ersten in diesem Buch behandelten Aufgabe haben wir bereits den
Fall der begrenzten Variablen kennengelernt. Dort nimlich durften sowohl
x, als auch z, infolge der begrenzten Kapazitdten der entsprechenden
MontagestraBlen bestimmte Werte nicht iibersteigen. Es handelte sich um
Begrenzungen nach oben, die mit der allgemeinen Form der einschrinken-
den Bedingungen bei der Maximumaufgabe iibereinstimmen.

Auch im Zusammenhang mit der Losung von Maximumaufgaben konnen
jedoch Begrenzungen der Variablen nach unten auftreten, etwa so, daBl in
einer bestimmten Brennstoffmischung, deren Heizwert maximiert werden
soll, ein bestimmter Brennstoff in einer vorgeschriebenen Mindestmenge in
der Mischung enthalten sein muBl. Die Griinde dafiir konnen sehr ver-
schiedener Natur sein. Sie sollen hier nicht erortert werden.

Die Behandlung von Aufgaben der geschilderten Art wird am folgenden
Beispiel demonstriert. Zur Herstellung einer Brennstoffmischung stehen
vier verschiedene Brennstoffe zur Verfiigung. Bekannt sind der Heizwert
und die Kosten dieser Brennstoffe. Es ist gefordert, eine Brennstoffmischung
zu berechnen, die

1. einen maximalen Heizwert hat,

2. ein vorgegebenes Kostenlimit nicht iiberschreitet,

3. ein vorgeschriebenes Mengenlimit einhélt und

4. einen Brennstoff in einer bestimmten Mindestmenge enthilt.

Die Charakteristika der vier verschiedenen Brennstoffe sind in der folgenden
Ubersicht zusammengestellt:

Heizstoffsorte Heizwert Kosten je
(kcal) Mengeneinheit

H, 7000 2

H, 4000 1

H, 5000 1,2

H, 6000 1,6

Die Kosten sind relativ zu denen der Heizstoffsorte H,, die gleich Eins ge-
setzt wurden, ausgedriickt. Die Heizstoffmischung soll folgende Forderung
erfilllen und Bedingungen einhalten:

. Der Heizwert soll ein Maximum sein,

. die Gesamtkosten diirfen 4000 nicht iibersteigen,

. die Gesamtmenge darf 3000 nicht iibersteigen,

. von der Heizstoffsorte H; sind hochstens 500 Einheiten verfiigbar,

. von der Heizstoffsorte H, sollen wenigstens 500 Einheiten in der Mischung
enthalten sein.

O = W N =
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Demnach ergibt sich folgendes mathematische Modell der Aufgabe:

1. Zielfunktion (Heizwert in Tsd. eingesetzt)
7 = Txy + 42, + 6523 + 62, — max
2. Einschrinkende Bedingungen

2z, + 1z, + 1,22, + 1,62, < 4000

x, + x,+ z3 + z, = 3000
500
500

T3

IV IA

Ty
3. Nichtnegativitatsbedingung
2, =052 =0;23 =0; 2, =0.

Das System der einschrinkenden Bedingungen weicht insofern von dem
iblichen System bei einer Maximumaufgabe ab, als durch die vierte ein-
schrankende Bedingung eine Begrenzung nach unten gesetzt wird. Durch
die Einfiihrung von Schlupfvariablen wiirde sich folgendes System der
einschrinkenden Bedingungen ergeben:

22, + 12y + 1,225 4 1,6, 4 25 = 4000
2+ 2+ 23+ oz, + x4 = 3000
25 + , = 500

Ty — xg = 500.

Hier tritt der gleiche Fall ein, den wir bereits bei der Minimumaufgabe
beobachtet haben. Eine Basislosung aus den Schlupfvariablen als Basis und
den echten Variablen als Nichtbasisvariablen ist nicht zuldssig, weil sie eine
negative Variable (3 = — 500) enthalten wiirde. Hatten wir mit einer der-
artigen nichtzuléssigen Ausgangslosung begonnen zu rechnen, so wire der
Rechengang nach Tabelle 7 abgelaufen. Wir hétten im ersten Schritt die
Schlupfvariable 3 aus der Basis entfernt und dagegen die echte Variable
z, in die Basis gebracht. Nach dem zweiten Schritt besitzt jedoch die
Schlupfvariable x4 in der Zielfunktion wieder einen positiven Koeffizienten.
Wir beriicksichtigen diese Variable vorlaufig nicht. Nach insgesamt vier
Verbesserungen finden wir die Losung

x; = 500 z, = 1333 x5 = 500 x, = 667.

5 Richter, Optimierung



66 4. Die Simplexmethode

Samtliche Schlupfvariablen sind gleich Null. Der Koeffizient der negativen
Schlupfvariablen z; in der Zielfunktion der optimalen Losung ist zwar
positiv, doch wire eine Einbeziehung dieser Schlupfvariablen in die Basis

Tabelle 7. Losung einer Aufgabe mit eingeschriinktén Variablen, die von einer nicht-
zuldssigen Ausgangslosung ausgeht

y £2) 3 Ty 5 g X, X
BV 0 7 4 5 6 0 0 0 0
x, 4000 | 2 1 1,2 16| 1 0 0 0 2000
g 3000 | 1 1 1 1 0 1 0 0 3000
x, 50| 0 0 1 0 0 0 1 0 —
DA 500 | [1] o 0 0 0 0 0 1 500
—3500| 0 4 5 6 0 0 0 —7
<z 3000 0 1 12 [Le]| 1 0 0 -2 1875
4 2500 | 0 1 1 1 0 1 0 —1 2500
, 50| 0 0 1 0 0 0 1 0 —
—>x; 500 1 0 0 0 0 0 0 1 —
—14750| 0 025 050 0 | —3,75 0 0 0,50
-2, 1875 | 0 0,625 0,75 1 0,625 0 0 —1,25 | 2500
g 625 | 0 0375 025 0 | —0,625 1 0 0,25 | 2500
<, 500 | 0 o [1 o 0 0 1 0 500
xl 500 | 1 0 0 0 0 0 0 1 —
—15000| 0 025 0 0 |—375 0 —0,550 0,50
x4 1500 | 0 0,625 0 1 0625 0 —0,75 —1,25 | 2400
g 500 o [o375/0 0 | —0625 1 —025 0251333
2y 500 | 0 0 1 0 0 0 1 0 -
x, 500 | 1 0o 0 o 0 0 0 1 —
—15333| o0 0 0 0 |—333—067 —0,3 033
x, 667 0 0 0 1 1,67 —1,67 —0,33 —1,67 | —
2, 1333 0 1 0 0 | —1,67 267 —0,67 0,67 |>500
s 500 | 0 0 1 0 0 0 1 0 —
xl 500 | 1 0 o0 o 0 0 0 1 500
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nur im Austausch mit der echten Variablen z; moglich, deren Wert in der
optimalen Loésung nach den einschrinkenden Bedingungen jedoch min-
destens 500 betragen muB.

Die gestellte Aufgabe kann noch in anderer Weise gelost werden. Durch
die Aufnahme einer kiinstlichen Variablen k, wird das mathematische
Modell in folgender Weise erweitert:

1. Zielfunktion
Z =Tz, + 42, + bxg + 62, + 025, 4 O 4 O, 4
+ 0xg + 0ky — max

2. Einschrinkende Bedingungen

22, + 2z, + 1,225 + 1,62, + 25 = 4000
x+x+ 23+ oz, +xg = 3000
%5 + = 500

z, — x5 + ky = 500

3. AuBerdem gilt fiir alle Variablen die Nichtnegativitdtsbedingung.

Das mathematische Modell ist bereits in der Normalform gegeben. Durch
die Aufnahme der kiinstlichen Variablen kg wird es moglich, eine erste zu-
lassige Ausgangslosung der Aufgabe zu bilden, deren Basis aus den Vari-
ablen x, 24, 2, und ky besteht. In der Zielfunktion erhalt die kiinstliche Variable
den Koeffizienten 0, um zu sichern, dafl in der optimalen Losung &y = 0 ist.
Die Losung der Aufgabe mit Hilfe der Simplexmethode ist in Tabelle 7a
angedeutet. Die Tabelle erhilt lediglich die Ausgangs- und die optimale
Losung. Letztere stimmt natiirlich mit der bereits gefundenen optimalen
Losung nach Tabelle 7 iiberein.

Man kann fiir die vorliegende Aufgabe die optimale Losung auch dadurch
bestimmen, dall man die beziiglich H; bestehende einschrinkende Be-
dingung nicht mit angibt, sondern sie in den iibrigen Bedingungen beriick-
sichtigt. Offensichtlich bedeutet die Forderung

@, = 500

doch, daBl wenigstens 500 Mengeneinheiten der Heizstoffsorte H, in die
Mischung einzubeziehen sind. Wir konnen diese 500 Einheiten unmittelbar
beriicksichtigen, indem wir eine neue Variable

xf = 2, — 500

einfithren .Gleichzeitig missen jedoch die Verdnderungen der einschrénken-
den Bedingungen beachtet werden, die dadurch eintreten, daB 500 Einheiten

5*
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Tabelle 7a. Losung einer Aufgabe mit eingeschrinkter Variablen (mit Hilfe einer kiinst-
lichen Variablen) — Auszug

Xy Xy Ty Xy T Zg Z, g ko
BV 0 |7 4 5 6 0 0 0 0 0
x5 4000 |2 1 1,2 1,6 1 0 0 0 0 2000
g 3000 |1 1 1 1 0 1 0 0 0 3000
x, 500 [0 0 1 0 0 0 1 0 0 —
k, 500 [[1f o o o o0 0 0o -1 1 500
—15333 | 0 0 O O —3,33 —0,67 —0,33 —0,33 —0,67
z, 667 | 0 0 0 1 1,67 —1,67 —0,33 1,67 —1,67
Zp 1333 [0 1 0 0 —1,67 2,67 —0,20 —0,67 0,67
x|, 500 [0 0 1 0 0 0 1 0 0
z 500 [ 1 0 0 0 0 0 0 —1 1

der Heizstoffsorte H, bereits zum Programm gerechnet werden. Diese
Menge beansprucht vom Kostenlimit in Héhe von4000 bereits 2 . 500 = 1000,
so daB das Kostenlimit unter AusschluB der genannten 500 Mengeneinheiten
auf 3000 absinkt. Desgleichen wird das Mengenlimit um 500 Einheiten auf
2500 Einheiten gesenkt. Auf die dritte einschrinkende Bedingung ergeben
sich keine Auswirkungen, weil dort die Variable x, nicht auftritt. Damit
ergibt sich das mathematische Modell der umgeformten Aufgabe als?:

1. Zielfunktion
Z = Tz} + 425 + 523 4 62, — max

2. Einschrinkende Bedingungen

2xF 4+ x, + 1,225 + 1,6, < 3000
4z + x4+ oz, < 2500
Zy =< 500

1 Aus 2} = x; — 500 ergibt sich weiter z; = af + 500.Setzt man diese Beziehung iiber-
all dort ein, wo z, steht, so entsteht das mathematische Modell der umgeformten Auf-
gabe ebenfalls
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3. Nichtnegativitatsbedingungen

2*¥=0,2,=20,23 =0, 2, = 0.

Nachdem dieses Modell durch die Schlupfvariablen z;, x; und 2, in die
Normalform gebracht wurde, kann es als Maximalaufgabe gelost werden.

Die Losung befindet sich in Tabelle 8.

Durch die unmittelbare Beriicksichtigung der beziiglich der Variablen x,
bestehenden einschrinkenden Bedingung reduziert sich die Zahl der ein-
schrinkenden Bedingungen auf drei. Das vereinfacht natiirlich gleich-

Tabelle 8. Stmplextabelle einer Aufgabe mit eingeschrankten Variablen

2 T2 Z3 Ty Zs Zs Zq
BV 0 7 4 5 6 0 0 0
<5 3000 | 2] 1 12 16 1 0 0 1500
g 2500 1 t 11 0 1 0 2500
e 500 0 o 1 0 0 0 1 -
—10500 0 05 08 04| —35 0 0
—a} 1500 1 05 06 08 05 0 0 2500
X 1000 0 05 04 02| —05 1 0 2500
<z, 500 0 o [ o 0 0 1 500
—10900 0 05 0 04| —35 0 —08
¥ 1200 1 05 0 08 05 0 —06 | 2400
< 800 0 05 0 02| —05 1 —04 | 1600
—> 500 0 o 1 0 0 0 1 —
— 11700 0 0 0 02| —3 —1 —04
«af 400 1 0 o Jos]f 1 —1 —o02 667
>, 1600 0 10 04| —t 2 —08 | 4000
@y 500 0 o 1 0 0 0 1 —
—11833 | —033 0 0 0 | —333 —067 —033
>, 667 1,67 0 0 1 1,67 —1,67 —0,33
y 1333 | —067 1 0 0 | —167 267 —067
e 500 0 o 1 0 0 0 1
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zeitig den Rechengang. Die in Tabelle 8 erzielte optimale Losung lautet:
(0 1333 500 667 O O 0).

Lediglich das Ergebnis z,;* =0 mull entsprechend der weiter oben ge-
troffenen Festsetzung um 500 zu z, erginzt werden. Die tatsichliche opti-
male Losung lautet demnach

(600 1333 500 667 O O 0).

Sie stimmt mit der Losung nach Tabelle 7 vollig iiberein. Gleichzeitig be-
friedigt sie die einschriankenden Bedingungen, wie leicht gezeigt werden
kann.

1. Bedingung: 2 - 500 4 1333 + 1,2.500 + 1,6 - 667 = 4000

2. Bedingung: 500 + 1333 + 500 + 667 = 3000
3. Bedingung: zg = 500
4. Bedingung: z; = 500

Der durch die errechnete optimale Heizstoffmischung erzielbare Heizwert
betragt 15333 keal (in 1000). Er ergibt sich fir beide Losungswege, und
zwar aus Tabelle 7 direkt und aus Tabelle 8 durch Hinzufiigen des durch
2, = 500 gegebenen Heizwerts zum Optimalwert der Zielfunktion.

Das im Zusammenhang mit Tabelle 8 angefiihrte Verfahren 148t sich stets
dann anwenden, wenn fiir einzelne Variable Beschrankungen nach unten
vorliegen, und zwar sowohl bei der Maximum- als auch bei der Minimum-
aufgabe. Bei Begrenzungen einzelner Variablen nach oben sind derartige
Vereinfachungen im allgemeinen nicht moglich. Selbst dann, wenn derartige
Begrenzungen fiir mehrere Variablen auftreten, diirfte es einfacher sein, zu-
nichst durch Uberlegungen wie den im Zusammenhang mit Tabelle 8
durchgefiihrten eine Reduzierung der Zahl der einschrinkenden Be-
dingungen vorzunehmen und damit die Aufgabe auf die Normalform der
Maximumaufgabe zuriickzufithren.

SchlieBlich sei noch eine Bemerkung zur Aufhebung der Nichtnegativi-
titsbedingung gemacht. Sie tritt ein, wenn bei einer Aufgabe fiir eine oder
mehrere bzw. alle Variablen auch negative Werte zugelassen werden. So
konnte es etwa sein, daB die Variable z; in der Losung negative Werte an-
nehmen darf. Da die Normalform der linearen Optimierung die Forderung
enthélt, daB die Variablen keine negativen Werte annehmen, muBl der ge-
schilderte Fall mathematisch so dargestellt werden, daB8 die Nichtnegativi-
titsbedingung nicht verletzt wird. Die Losung besteht darin, daB fiir die
Variable x, der Ansatz

Ty =Y — Y2
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gewdhlt wird. Im mathematischen Modell wird x; durch diese Differenz
ersetzt. Fiir y, und y, gilt wieder die Nichtnegativititsbedingung. In der
Losung sind dann drei Falle moglich:

Ly <9
In diesem Falle ist die Differenz negativ, d. h., die Variable #, nimmt einen
negativen Wert an.

2.91= 1
In diesem Falle besitzt die Variable in der Losung den Wert Null.

3. 91 <
In diesem Falle besitzt die Variable x, in der Losung einen positiven Wert.

Der angegebene Ansatz kann generell verwendet werden, wenn Variable
auch negative Werte annehmen diirfen. Er gestattet es, den Wertebereich
dieser Variablen auszudehnen, ohne die Nichtnegativitatsbedingung zu
verletzen.

4.5. Aufgaben mit mehreren optimalen Lésungen

Wir haben festgestellt, daB eine lineare Optimierungsaufgabe (Maximum-
aufgabe) optimal geldst ist, wenn die Zielfunktion keine positiven Koeffi-
zienten mehr enthélt. Mit anderen Worten: Die Nichtbasisvariablen in der
optimalen Losung miissen negative Koeffizienten in der Zielfunktion auf-
weisen. Daraus wird deutlich, daBl eine Einbeziehung dieser Variablen in
die Basis und die Bestimmung der damit zusammenhingenden Basis-
losung zu einer Verringerung des Wertes der Zielfunktion und somit zu
einer Verschlechterung des Programms fithren wiirde. Der Zielfunktions-
koeffizient der Basisvariablen batragt Null.

Nun kann es eintreten, daf eine optimale Losung errechnet wird, bei der
es Nichtbasisvariablen gibt, deren Koeffizient in der Zielfunktion gleich
Null ist. Im Gegensatz zu den Nichtbasisvariablen mit negativen Koeffi-
zienten, deren Einbeziehung in die Basis eine Verschlechterung des Pro-
gramms nach sich ziehen wiirde, kénnen Nichtbasisvariable, deren Koeffi-
zient in der Zielfunktion Null betrigt, in die Basis aufgenommen werden,
ohne daB dadurch der Wert der Zielfunktion verdndert wird. Die Losung
bleibt also optimal. Aufgaben dieser Art besitzen mehrere optimale Losun-
gen. Sie gestatten, wie auch diejenigen optimalen Loésungen, die innerhalb
des Intervalls eines bestimmten Parameters optimal sind, einen gewissen
Spielraum im Rahmen der Optimalitéat.

In Tabelle 9 ist eine optimale Losung angegeben, die aus angenommenen
Daten zusammengestellt wurde. Thre Basis enthélt die zwei echten Variablen
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Tabelle 9. Beispiel fiir eine lineare Optimierungsaufgabe mit zwet optimalen Losungen

%1 T2 Z3 T4 Zs

BV 1000 0 0 0 0 -2
@, 100 1 0 0 —2 -1 —
xy 20 0 1 0 1 0 20

«x 35 0 0 1 El -2 17,5

1000 0 0 0 0 -2

2, 135 1 0 1 0 -3

2, 2,5 0 1 —05 0 1

2 15| 0 0 0,5 1 —1

z, und z, mit den Werten

z; = 100 und
%, = 20 und die Schlupfvariable z; mit dem Wert
xg = 35.

Der Koeffizient der Nichtbasisvariablen x, in der Zielfunktion betrigt Null.
Wiirde diese Nichtbasisvariable in die Basis aufgenommen, so wiirde sich
dadurch der Wert der Zielfunktion nicht verdandern. Dieser Schritt ist im
zweiten Teil der Tabelle 9 durchgefiihrt. Er ergibt eine weitere optimale
Losung, die aus den beiden echten Variablen z; und #, mit den Werten

z; =135 und
z, = 2,5 und der Schlupfvariablen x, mit dem Wert
z, = 17,5 besteht.

Offenbar unterscheiden sich diese beiden Programme wesentlich vonein-
ander. Wenn etwa die echten Variablen den Produktionsumfang zweier
verschiedener Erzeugnisse angeben und die Schlupfvariablen auf nicht-
ausgenutzte Kapazitdten hinweisen, so stehen uns nunmehr zwei Programme
zur Verfiigung, die hinsichtlich des Optimalkriteriums die gleiche Giite
besitzen, in ihren technologischen und 6konomischen Forderungen aber
wesentlich voneinander abweichen. Abgesehen davon, dal man eine Kombi-
nation der beiden optimalen Losungen verwirklichen konnte, wire es auch
moglich, die Entscheidung fiir eine der beiden Moglichkeiten etwa von der
vorliegenden Auftragslage, von den leichter verfiigharen Materialien u. &.
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abhéngig zu machen. Da in beiden Programmen unterschiedliche Kapazi-
tdten nicht ausgenutzt werden, kann man sich auch fiir diejenige Losung
entscheiden, bei der die auftretende Kapazititsminderausnutzung den
geringeren okonomischen Verlust nach sich zieht oder bei der die ver-
bleibenden Kapazititen mit groBerem Erfolg fiir die Herstellung oder Be-
arbeitung anderer Erzeugnisse genutzt werden konnen. So erdffnet die
Existenz zweier oder mehrerer optimaler Losungen die Méglichkeit, weitere
und im Modell nicht erfalte Kriterien zu beachten.

Natiirlich bezieht sich der genannte Fall nicht nur auf Beispiele der Art
von Tabelle 9, in der sich die Basen der beiden optimalen Losungen dadurch
unterscheiden, daf die darin enthaltenen Schlupfvariablen ausgetauscht
werden. Wenn beispielsweise mehrere echte Variable zur Verfiigung stehen,
die jedoch nicht alle in die optimale Losung eingehen, weil die Zahl der ein-
schrinkenden Bedingungen geringer ist als die Zahl der echten Variablen,
so konnen sich zwei optimale Lésungen auch hinsichtlich der echten Varia-
blen unterscheiden, die in den Basen der optimalen Losungen enthalten
sind.

In Tabelle 9 haben wir zwei verschiedene optimale Losungen gefunden.
Genauer sollten wir sagen, dafl zwei optimale Tabellen vorliegen. Aus den
in ihnen enthaltenen beiden optimalen Losungen lassen sich ndmlich, wie
KREKS [4, S. 53] zeigt, weitere optimale Losungen herstellen. Dazu ist es
erforderlich, die vorhandenen optimalen Losungen in geeigneter Weise zu
kombinieren. So konnen wir durch die Einfilhrung sog. Verteilungskoef-
fizienten aus urspriinglichen optimalen Losungen nunmehr zusammen-
gesetzte optimale Losungen herstellen. Von den Verteilungskoeffizienten
wird lediglich gefordert, dal ihre Summe 1 oder 100 Prozent betrigt. Nach-
folgend stellen wir aus den beiden optimalen Losungen der Tabelle 9 eine
weitere optimale Losung zusammen. Die beiden Programme bzw. Losungen
sollen je zur Hélfte an dem zusammengesetzten Programm beteiligt sein.
Damit betragen beide Verteilungskoeffizienten 0,5 oder 50 Prozent. Die
beiden optimalen Ausgangslosungen sind

I)(100 20 35 0 0)

II) (135 2,5 0 17,5 0).
Die Werte der Variablen in dem zusammengesetzten optimalen Programm
ergeben sich zu:

2, =0,5-100 4 0,5 135 = 117,5

2, =05 204+05-25= 1125

23=05- 35+4+05.- 0= 175

z,=05- 0405.175= 8,75

25=05- 04+05.- 0= 0.
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Bei der Wahl der Verteilungskoeffizienten konnen weitere okonomische
Gesichtspunkte beriicksichtigt werden, auf die hier im einzelnen nicht ein-
gegangen werden soll. Es soll lediglich ein weiteres Beispiel angefiihrt
werden, bei dem die Verteilungskoeffizienten wesentlich von den oben an-
gewendeten abweichen. Sie sollen so festgelegt werden, daf3 die erste opti-
male Losung zu 90 Prozent und die zweite optimale Losung zu 10 Prozent
‘an der zusammengesetzten optimalen Losung beteiligt ist. Die Verteilungs-
koeffizienten sind somit 0,9 und 0,1. Die zusammengesetzte Losung lautet
dann:
%, =10,9-100 4 0,1.135 = 103,5

2, =09. 20+0,1- 25= 1825

;=09 35+0,1- 0 = 31,5
2, =09 0+01- 175= 1,75
2 =09- 0+01.- 0 = 0

In beiden Fillen belduft sich der Wert der Zielfunktion nach wie vor auf
1000, niamlich im ersten Falle auf 0,5 1000 + 0,5 - 1000 = 1000 und im
zweiten Falle auf 0,9 - 1000 + 0,1 - 1000 = 1000. Da praktisch beliebig
viele Verteilungskoeffizienten festgelegt werden koénnen, gibt es, sofern
wenigstens zwei optimale Tabellen vorliegen, auch beliebig viele optimale
Losungen. Fiir die praktische Anwendung werden sicher nur einige dieser
optimalen Loésungen von Bedeutung sein.

Um eine zweite optimale Losung zu bestimmen, geniigt es allerdings nicht,
daB die optimale Tabelle eine Nichtbasisvariable enthalt, deren Koeffizient
in der Zielfunktion gleich Null ist. Es ist aulerdem erforderlich, da auch
unter den Koeffizienten dieser Nichtbasisvariablen in den einschrédnkenden
Bedingungen wenigstens einer mit positivem Wert vorhanden ist. Wenn
diese Koeffizienten alle negative Werte besitzen oder gleich Null sind, kann
die zweite optimale Losung nicht bestimmt werden.

4.6. Einschriinkende Bedingungen in Form von Gleichungen

Mitunter treten in den einschrinkenden Bedingungen linearer Optimierungs-
aufgaben anstelle der iiblicherweise anzutreffenden Ungleichungen Gleichun-
gen auf. Es handelt sich dann um die modifizierte Normalaufgabe der
linearen Optimierung. Ihre Losung erfordert besondere Mafnahmen, um
zu sichern, dal die Gleichungen durch die optimale Loésung befriedigt
werden. Dafiir bieten sich verschiedene Moglichkeiten an.

Erstens besteht die Moglichkeit, die Gleichung einer einschrinkenden
Bedingung durch eine kiinstliche Variable zu erginzen. So wire etwa die
Gleichung

2%, + x5 + 0,5 23 = 150
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durch die kiinstliche Variable k&, zu
2%, + xy + 0,525 + &k, = 150

zu erginzen. Die kiinstlichen Variablen der als Gleichungen gegebenen
einschrinkenden Bedingungen werden wie die Schlupfvariablen der als
Ungleichungen vorliegenden einschrinkenden Bedingungen in die Basis
der ersten Basislosung aufgenommen. Damit kann wieder eine erste Basis-
16sung bestimmt werden, deren Basis keine echten Variablen, sondern nur
Schlupf- und kiinstliche Variable enthilt. In der optimalen Losung miissen
die kiinstlichen Variablen den Wert Null annehmen, weil sonst die Gleichun-
gen der einschrinkenden Bedingungen verletzt werden. Im Falle der
Maximumaufgabe erhalten deshalb die kiinstlichen Variablen in der Ziel-
funktion die Bewertung (den Koeffizienten) Null. Nach diesem Vorgehen
wurde zum Beispiel eine Aufgabe im Abschnitt 4.4 gelost. Im Falle der
Minimumaufgabe erhalten die kiinstlichen Variablen sehr groBe Werte M
als Koeffizienten der Zielfunktion. Damit wird wieder erreicht, daB diese
kiinstlichen Variablen in der optimalen Losung den Wert Null haben.

Ein Spezialfall der modifizierten Normalaufgabe legt beim sog. Transport-
problem vor (vgl. Abschnitt 5.3.). Hier besitzen im Normalfall alle ein-
schrinkenden Bedingungen die Form von Gleichungen. Trotzdem ist die
Aufgabe relativ leicht losbar, weil das Minimum der Zielfunktion ange-
strebt werden mufl. Indem man den kiinstlichen Variablen in der Ziel-
funktion Koeffizienten mit sehr groBen Werten M zuweist, wird gesichert,
daB diese Variablen in der Basis der optimalen Losung nicht enthalten
sind.

Die Einfithrung kiinstlicher Variablen stellt nur eine von mehreren Mog-
lichkeiten dar, um lineare Optimierungsaufgaben zu losen, die einschrén-
kende Bedingungen in Form von Gleichungen enthalten. Eine zweite
Moglichkeit besteht darin, jede auftretende Gleichung durch zwei Un-
gleichungen zu ersetzen. Die weiter oben angegebene Gleichung wire
dann durch

22, + 2, + 0,5 23 < 150

und 2z, + x, + 0,5 3 = 150

zu ersetzen. Dadurch konnen alle Gleichungen aus dem System der ein-
schrinkenden Bedingungen beseitigt werden.

Eine dritte Losungsmoglichkeit fiir die genannte Aufgabe besteht darin,
daB jede als Gleichung vorliegende einschrénkende Bedingung nach einer
Variablen aufgelost wird und der dabei entstehende Ausdruck in allen
Ungleichungen fiir diese Variable eingesetzt wird. Wir betrachten als Bei-
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spiel das System einschrankender Bedingungen

2z, + 3z, =< 10
v+ 4, < 5
2+ = 4
mit der Zielfunktion

Z = 5z, + 152z, - max

Aus der als Gleichung vorliegenden dritten einschrinkenden Bedingung
gewinnen wir
r,=4—2x,

und setzen dieses Ergebnis sowohl in die Zielfunktion als auch in die beiden
iibrigen einschriankenden Bedingungen ein. Dadurch ergibt sich

Z = 20 + 10z, — max

mit den einschriankenden Bedingungen
z, =2
3z, =< 1.

Man sieht, daB von den beiden einschrinkenden Bedingungen die zweite
die erste Bedingung einschlieBt, so daB schlieflich nur die zweite Bedin-
gung maBgebend ist. Dabei wird vorausgesetzt, daB die Nichtnegativitits-
bedingung fiir die Variablen gilt. 1

Die Losung dieser Aufgabe ergibt sich sofort zu z, = 3 woraus weiter

= % folgt.

KREKG [5, S. 54ff.] 1ost die modifizierte Normalaufgabe durch die Ein-
filhrung einer sekundiren Zielfunktion. Die Koeffizienten der sekundiren
Zielfunktion sind jeweils die Summe der Koeffizienten der entsprechenden
Variablen in denjenigen einschrinkenden Bedingungen, die als Gleichungen
vorliegen. Die Maximierung dieser sekundiren Zielfunktion mufl gerade
jenen Wert ergeben, der die Summe der absoluten Glieder der als Gleichun-
gen vorliegenden einschriankenden Bedingungen ist. Wenn dieser Wert bei
der Maximierung der sekundiren Zielfunktion nicht erreicht wird, existiert
kein zuldssiges Programm. Erreicht jedoch das Maximum der sekundiren
Zielfunktion gerade diesen Wert, so existiert wenigstens eine Lésung, die
alle einschrinkenden Bedingungen erfiilllt. Nach der Feststellung dieser
Tatsache kann das Maximum der urspriinglichen Zielfunktion bestimmt
und somit die Aufgabe gelost werden.



5. Das Transportproblem der linearen Optimierung

5.1. Allgemeine Kennzeichnung des Transportproblems

In der arbeitsteiligen Volkswirtschaft aller entwickelten Industrielinder
liegen Entstehungsort und Verbrauchsort fir die tberwiegende Zahl der
Giiter rdumlich auseinander. Es miissen Transporte durchgefiihrt werden,
um die Giiter zum Verbraucher zu bringen. Im Laufe der Entwicklung
haben sich dabei Transportbeziehungen herausgebildet, die nicht in jedem
Falle die giinstigsten sind. Wahrend in der kapitalistischen Wirtschaft die
Bestrebungen der Transportbetriebe, durch umfangreiche Auftrige und
hohe Transportleistungen auch hohe Profite zu erzielen, einer generellen
Vereinfachung und Optimierung der Transportbeziehungen im Wege
stehen, stellen die Transportleistungen in der einheitlich geplanten und
gelenkten Volkswirtschaft der sozialistischen Lénder einen Aufwands-
faktor dar, der im Interesse der gesamten Volkswirtschaft so niedrig wie
moglich gesetzt werden mull. Die sozialistische Wirtschaft schafft nicht
nur die besten Voraussetzungen der Transportoptimierung, sondern sie
schlieBt diese als notwendigen Bestandteil ein.

Das Ziel der Transportoptimierung besteht darin, solche Transport-
beziehungen zu schaffen, die den erforderlichen Austausch der Giiter mit
einem Minimum an Transportleistung gestatten. Werden bestehende
Transportbeziehungen hinsichtlich ihrer Optimalitit untersucht und er-
forderlichenfalls verbessert, so bedeutet das in der Regel eine Veranderung
der zwischen Versendern und Empfingern bestehenden Zuordnung. Man
kann auch sagen, daB die Verteilung der produzierten oder aufkommenden
Giiter neu festgelegt wird. Das setzt natiirlich voraus, dafl das Gut, dessen
Verteilung optimiert werden soll, fir alle in Frage kommenden Empfinger
in gleichem MaBe verwendbar ist. Man sagt, dal nur die Transporte fir
austauschbare oder ersetzbare Giiter optimiert werden konnen. Dieses
Problem duBert sich im Grunde vor der eigentlichen Optimierungsrechnung,
ndmlich dadurch, daB nur diejenigen Versender und Empfinger sorg-
faltig ausgewahlt werden miissen, die innerhalb eines optimalen Transport-
planes erfaflt werden konnen. Dabei wirken sich oft Qualitdtsmerkmale der
Giiter aus, die bei oberflichlicher Betrachtung nicht beachtet werden. So ist
es zum Beispiel bei der Optimierung von Kohletransporten durchaus nicht
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gleichgiiltig fiir die Empfinger, aus welchen Gruben die von ihnen be-
zogenen Kohlenmengen stammen. Sehr oft sind die technischen Einrich-
tungen etwa von Kraftwerken auf bestimmte Kohlequalitdten eingerichtet,
die eben nicht von jeder Grube erreicht werden. Solche Spezialverbraucher
sind von der eigentlichen Optimierung auszuschlieBen. Gleichzeitig muBl
man jedoch beachten, da der Nutzen einer Transportoptimierung um so
groBer ist, je groBere Mengen Transportgut, je mehr Versender und je
mehr Empfinger in die Optimierung einbezogen werden. Deshalb ist
es notwendig, bei der Festlegung von Spezialverbrauchern duBerste Sorg-
falt walten zu lassen.

Es diirfte damit ersichtlich geworden sein, da die Transportoptimierung
zur Bestimmung von optimalen Transportbeziehungen fir Massengiiter
eingesetzt wird. Obwohl es sich hierbei um eine relativ geringe Anzahl
verschiedener Giiter handelt, nehmen diese jedoch den iiberwiegenden Anteil
des Transportraumes in Anspruch. Thre Optimierung verspricht groSen
volkswirtschaftlichen Nutzen.

Zu den optimierungswiirdigen Massengiitern sind zum Beispiel zu rechnen:
Kohle verschiedener Sorten, Kalisalze, Baustoffe (Zement, Ziegelsteine,
Kies), Nutzholz, landwirtschaftliche Produkte (Getreide, Kartoffeln,
Zuckerriiben), in groBeren Mengen transportierte Lebensmittel (Mehl,
Zucker) u. 4. In dieser Hinsicht sind bereits praktische Erfolge erzielt
worden, die einen erheblichen Riickgang der erforderlichen Transport-
leistungen nachzuweisen vermochten (vgl. z. B. HOFMANN/SCHREITER/
VoeeL [6], FinDEISEN/RIcHTER [7]). Die Herstellung optimaler Liefer-
beziehungen mit Hilfe der Transportoptimierung ist in erster Linie eine
Aufgabe der verladenden Wirtschaft. Transportoptimierungen fiihren zu
verringerten Transportleistungen und somit auch zu verringerten Transport-
kosten fiir die Versender. Der Name ,,Transportoptimierung*“ darf also
nicht so verstanden werden, als ob es sich hierbei um ein Problem des
Transportwesens als Wirtschaftszweig handeln wiirde. Er besagt lediglich,
dafl es sich um die Optimierung von Transportverbindungen handelt.
GroBle Aufgaben im Rahmen der Transportoptimierung erwachsen den
zentralen Wirtschaftsleitungen, die die Verteilung von an verschiedenen
Orten aufkommenden Giitern gleicher Art zu regeln haben. Das betrifft
sowohl Ministerien als auch Vereinigungen Volkseigener Betriebe. Selbst dann,
wenn ein Betrieb aus mehreren 6rtlich getrennten Betriebsteilen besteht,
die ein austauschbares Gut herstellen, ist die optimale Verteilung dieser
Giiter auf die Gesamtheit der Empféanger von Nutzen.

Natiirlich fihrt die Transportoptimierung unter sozialistischen Wirt-
schaftsverhdltnissen auch zu Vorteilen fiir die Transportbetriebe selbst. Da
in der Regel durch die Transportoptimierung die Zersplitterung der Trans-
portbeziehungen beseitigt und eine Konzentration auf wenige und stirker
belastete Transportbeziehungen erzielt wird, konnen die Transportbetriebe
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die Effektivitit ihrer Arbeit erhohen. Auch die Leitung des Transport-
prozesses wird konzentriert und dadurch verbessert. Die Auslastung der
Transportmittel kann erhoht werden. Dariiber hinaus gibt es auch inner-
halb der Transportbetriebe Aufgaben betrieblicher Art, die mit Hilfe der
Transportoptimierung besseren Losungen zugefiithrt werden konnen. Dazu
gehort beispielsweise der Austausch der Leerwagen bei der Eisenbahn
(Leerwagenregulierung). Auch die Einsatzplanung der Kraftfahrzeuge eines
Betriebes, die von verschiedenen Garagen aus zu verschiedenen Belade-
stellen fahren sollen, wird durch die Transportoptimierung verbessert. Zu
nennen wéren weiter der optimale Einsatz unterschiedlicher Flugzeuge auf
verschiedenen Linien eines Netzes, die optimale Befrachtung von See-
schiffen usf. Da iiber diese Fragen Spezialliteratur wie z. B. von KADLEC/
VopAGSEK [8] vorliegt, sollen nachfolgend vorwiegend die allgemeine volks-
wirtschaftliche Fragen berithrenden Seiten des Transportproblems behan-
delt werden.

5.2 Mathematisches Modell des Transportproblems

Unter Transportproblem fassen wir eine bestimmte Klasse von Aufgaben

der linearen Optimierung zusammen, die wie folgt charakterisiert werden

koénnen:
In m verschiedenen Orten 4; (¢ = 1, 2, ..., m) kommt irgendein
austauschbares Gut, Transportmittel u. 4. in den Mengen a,
(t=1,2,...,m) auf, das in den n Orten B; (j =1,2,...,n)
in den Mengen b; (j = 1, 2, ..., n) benétigt wird. Der Transport-
aufwand. je Mengeneinheit des Transportgutes zwischen A4,
und B; ist durch die Aufwands- oder Bewertungszahlen c;; ge-
geben. Die Transportmengen w;; sind so zu bestimmen, daf der
mit der Verwirklichung des optimalen Transportplanes ver-
bundene Gesamttransportaufwand zum Minimum wird. Ge-
samtaufkommen und Gesamtbedarf stimmen iiberein. Durch den
Transportplan soll das Gesamtaufkommen ausgeschopft werden.
Der Gesamtbedarf ist zu befriedigen.

Wir betrachten zunéichst ein sehr einfaches Beispiel. Es besteht aus ledig-
lich zwei Aufkommens- und drei Bedarfsorten. Das Aufkommen betrigt

im Aufkommensort 4,: a; = 120 Mengeneinheiten
im Aufkommensort 4,: a, = 80 Mengeneinheiten

Gesamtaufkommen 200 Mengeneinheiten.
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Der bei den drei Bedarfsorten zu befriedigende Bedarf belduft sich auf

im Bedarfsort By: b, = 10 Mengeneinheiten
im Bedarfsort B,: b, = 120 Mengeneinheiten
im Bedarfsort B;: b; = 70 Mengeneinheiten

Gesamtbedarf 200 Mengeneinheiten.

Gesamtaufkommen und Gesamtbedarf stimmen demnach voraussetzungs-
gemdB tberein. Die mit dem Transport einer Mengeneinheit verbundenen
Transportaufwendungen werden durch die Aufwands- oder Bewertungs-
zahlen ¢;; ausgedriickt, die in diesem Falle als Entfernungen (in Kilometern)
vorliegen. Sie lauten

Ci= 5 ¢Cp=12 ¢3= T

€y =18 cCoo = T o093 = 14.

Bild 10. Prinzipskizze
eines Transportproblems

Das mathematische Modell der Aufgabe kann nunmehr an Hand folgender
Festlegungen getroffen werden:

1. Der Gesamttransportaufwand ist zu minimieren,
2. das Aufkommen simtlicher Aufkommensorte ist auszuschépfen,
3. der Bedarf simtlicher Bedarfsorte ist zu befriedigen;

4. es diirfen keine negativen Transportmengen auftreten (diese wiirden
einen gegengerichteten Transport anzeigen).

Aus diesen Festlegungen ergibt sich folgendes mathematische Modell:
1. Zielfunktion
Z =5z + 1225 + T3 + 18y + Ty + 14255 — min.

2. Einschrinkende Bedingungen
7 a) beziiglich des Aufkommens
%y + Ty + 5 = 120 (Gesamtaufkommen von 4,)
Ty + Ty + oy = 80 (Gesamtaufkommen von A4,)
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b) beziiglich des Bedarfs

%y + 2y, = 10 (Gesamtbedarf von B,)
Zy5 + %y = 120 (Gesamtbedarf von B,)
Z1g + X9 = 70 (Gesamtbedarf von Bj)

3. Nichtnegativitdtsbedingung
Ty =0, 25 =0, 293 =0; 25y = 0; 259 = 0; 295 =0.

Wegen der Ubereinstimmung von Gesamtaufkommen und Gesamtbedarf
muB schlieflich

| a, + ay=b; + by + by
gelten.

Wir kénnen bereits feststellen, dal es sich beim Transportproblem grund-
sitzlich um eine Minimumaufgabe der linearen Optimierung handelt.
Weiterhin wird ersichtlich, daB im einfachsten Fall des Transportproblems
alle einschrinkenden Bedingungen in Form von Gleichungen vorliegen.
Nachdem das mathematische Modell fiir das eingefiihrte Beispiel aufgestellt
wurde, soll nun das allgemeine mathematische Modell des Transport-
problems niedergeschrieben werden. Es lautet

1. Zielfunktion

Z = ¢y + C19%15 + o+ + Cunmn — Min (12a)
2. Einschrinkende Bedingungen

Ty X + Xy A 2 =

Toy + Tog + Fog + o+ Xop = @y

Xy + Tzp + Tg3 + oo T3y =05

.......

Zmy + Tmz + Zms3 T+t Tn = Uy (12b)

Ty + Xy + Ty ot T = by
Tyg + Top + Xgp oot Tpe = by
%1y + Tog + Xaz o+ Tmz = by

Zin + Ton + 23+t T = bn (12(3)

6 Richter, Optimierung
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3. Nichtnegativitatsbedingung
23 =Z0(=1,2,...,m;7=1,2,...,n). (12d)

Eine iibersichtlichere Darstellung ergibt sich durch Verwendung des
Summenzeichens. Damit wird die Zielfunktion nach (12a) zu

Z = C4j%,; — min.

M=
it

=17

Die einschrankenden Bedingungen nach (12b) lauten

™=

zg=a;(t=12,...,m),
1

~,
I

und diejenigen nach (12¢)

Ms

ST =0b;i(j=1,2,...,2).

-
[
R

Fiir die Forderung der Ubereinstimmung von Aufkommen und Bedarf
schreiben wir dann

Es ist bemerkenswert, dafl die Koeffizienten a;; in den einschrankenden
Bedingungen beim Transportproblem nur die Werte 0 oder 1 annehmen
konnen. Lauten sie 0, dann ist die zugehorige Variable x;; in der betreffen-
den Gleichung nicht enthalten; lauten sie 1, so tritt die zugehorige Variable
in der betreffenden Gleichung auf. Durch diesen Umstand tritt eine wesent-
liche Vereinfachung im mathematischen Modell des Transportproblems
gegeniiber dem allgemeinen mathematischen Modell der linearen Opti-
mierung ein. Weiterhin treten die Variablen 2;; in den einschrinkenden
Bedingungen zweimal auf.

Fiir die Losung des Transportproblems kann die Simplexmethode eingesetzt
werden. Daneben gibt es Spezialverfahren der linearen Optimierung, die
speziell fiir die Losung des Transportproblems geeignet sind. Diese Ver-
fahren gestatten es, die Aufgaben der Transportoptimierung schneller als
durch die Simplexmethode zu l6sen. Andererseits gibt es Abweichungen
vom normalen Transportproblem, die durch die Simplexmethode behandelt
werden. Wir werden deshalb sowohl die Simplexmethode als auch Spezial-
methoden besprechen.
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5.3. Lésung des Transportproblems durch die Simplexmethode

Die Losung des Transportproblems durch die Simplexmethode wird an
Hand des im Abschnitt 5.2. eingefiihrten Beispiels demonstriert. Um eine
geeignete Ausgangslosung zu finden, ist es zunichst erforderlich, die
Gleichungen der einschrinkenden Bedingungen durch die Einfiihrung von
kiinstlichen Variablen zu ergdnzen. Die einschrinkenden Bedingungen
lauten dann:

.’1211 + x12 + xla + kl = 120
Loy + Tpp + Tgg + kp = 80

Xyg + Ty + k3= 10
219 + Xpp + kg = 120
X3 + o3 + k5 = 70.

Es lagen jedoch die einschrinkenden Bedingungen bereits vor der Ein-
fihrung der kiinstlichen Variablen als Gleichungen vor. Schlupfvariable
werden deshalb nicht benotigt. Gleichzeitig ist unbedingt zu sichern, dal die
kiinstlichen Variablen in der Losung nicht mehr auftreten. Wiirde ndmlich
die optimale Losung kiinstliche Variable in der Basis aufweisen, dann
wiren diese grofer als Null. In diesem Falle wire jedoch die Einhaltung der
einschrinkenden Bedingungen durch die echten Variablen nicht méglich
und somit die Losung nicht im vorgegebenen Rahmen erfolgt.

Das Nichtauftreten der kiinstlichen Variablen in der Basis der optimalen
Losung wird dadurch gesichert, daf} diesen Variablen sehr hohe Aufwands-
oder Bewertungszahlen M (Prohibitivwerte oder Prohibitivsitze, vgl. z. B.
KaDpLEC/VoDAGEK [9, S. 97]) zugeordnet werden. Diese Prohibitivwerte
sind hoher als alle tatsidchlichen Aufwandszahlen. Da jedoch das Minimum
des Transportaufwands angestrebt wird, werden Variable mit derartig hohen
Séitzen aus der Basis der optimalen Losung ausscheiden.

Die durch (13) geforderte Gleichheit zwischen Gesamtaufkommen und
Gesamtbedarf ist zwar nicht unmittelbar Bestandteil der einschrinkenden
Bedingungen, wirkt sich auf diese aber aus. Sofern diese Forderung erfiillt
ist, sind von den allgemein m + n Gleichungen, aus denen die einschran-
kenden Bedingungen bestehen, nur (m + n — 1) linear unabhéngig von-
einander. Eine dieser Gleichungen ergibt sich aus den (m + n — 1) vonein-
ander unabhingigen Gleichungen und der Tatsache, daBl Gesamtaufkommen
und Gesamtbedarf iibereinstimmen. Betrachten wir dahingehend unser Bei-

6*
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spiel. Die ersten beiden Gleichungen lauten

Ty + @1p + ¥y = 120
Zgy + Top + o3 = 80

%yy + Ty + T3 +
+ Ty + @yy + Xp3 = 200 = a, + a,.

Die Summe dieser beiden Gleichungen ist unter dem Strich angegeben.
Diese Summe muf} gleich sein der Summe der drei folgenden Gleichungen,
die sich auf die Bedarfsorte beziehen. Von diesen beiden Gleichungen
mogen nur die erste und die letzte bekannt sein, also

T3y + @5 = 10
%13 + Xy = 70
Ty + Ty +

+ @15 + o3 = 80 = b, + bs.

Ein Vergleich der beiden linksstehenden Summen ergibt, da8 in der unteren
Summe die Glieder z,, und z,, fehlen. Rechts stellen wir fest, daBl zwischen
beiden Summen eine Differenz von 120 besteht. Daraus ergibt sich die noch
fehlende Gleichung der beziiglich der Bedarfsorte einschridnkenden Be-
dingungen, ndmlich

X1y + %59 = 120.

Allgemein sagen wir, daf bei einem Transportproblem mit m Aufkommens-
und » Bedarfsorten (m + n) einschrinkende Bedingungsgleichungen vor-
handen sind, von denen (m 4 n» — 1) linear unabhéngig voneinander sind.
Da aber mit einem System aus (m + n — 1) voneinander unabhingigen
Gleichungen gerade (m + n» — 1) Variable bestimmt werden konnen (die
iibrigen miissen gleich Null gesetzt werden), besteht eine Losung des
Transportproblems, die zuldssig ist, aus (m 4 » — 1) Variablen mit
Werten iiber Null. Da insgesamt m - n Variable im System der einschréin-
kenden Bedingungen vorhanden sind, gibt es. weitere (m - n — m — n 4 1)
Variable in der Losung, die gleich Null sind.

Im gegebenen Beispiel sind zwei Aufkommensorte und drei Bedarfsorte
gegeben. Demzufolge gibt es fiinf Gleichungen in den einschrdnkenden Be-
dingungen, von denen vier linear voneinander unabhéngig sind.

In einer zuldssigen Losung, zu der auch die optimale Losung zidhlt, gibt
es somit vier Variable, deren Werte grofler als Null sind, und weitere zwei
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Variable mit dem Wert Null. Bei Aufgaben mit mehr Aufkommens- und
Bedarfsorten wéchst die Zahl der Variablen mit dem Wert Null sehr schnell
an. SchlieBlich gibt es noch Fille, bei denen weniger als (m + n — 1)
Variable mit Werten tber Null in der Losung enthalten sind. Solche
Losungen heilen entartet oder degeneriert.

Von den gegebenen fiinf Gleichungen benétigen wir fir die Losung der als
Beispiel gegebenen Aufgabe also lediglich vier. Da es gleichgiiltig ist, welche
Gleichung wir weglassen, soll der Einfachheit halber die letzte entfallen.
Mit der Zielfunktion, die neben den sechs echten weitere vier kiinstliche
Variable (vier Gleichungen werden fiir die Losung bendtigt) enthilt, und
den vier Gleichungen der einschriankenden Bedingungen wird nunmehr der
erste Teil der Simplextabelle entsprechend Tabelle 10 aufgestellt.

Im Prinzip unterscheidet sich die Simplextabelle 10 nicht von den bisher
behandelten Tabellen. Sie enthilt lediglich im ersten Tabellenteil eine
zusédtzliche Zeile. Der Inhalt dieser Zeile ergibt sich wie folgt:

Bereits im Abschnitt 4.2. wurde darauf hingewiesen, dafl die Minimierung
der Zielfunktion

Z = ¢y + €12 + coxy + -+ €z, —> min
zum gleichen Ergebnis fithrt wie die Maximierung der Zielfunktion
Z = — Cyp— €y — CoZy — +++ — Cpl, —> INAX.

Von dieser Tatsache gehen wir bei der Losung der gestellten Aufgabe mit
Hilfe der Simplexmethode aus. Die Zielfunktion dieser Aufgabe lautet
unter EinschluB der kiinstlichen Variablen k, ---k,

Z = 5xy + 12215 + Txy5 + 18%y; + Ty + 14255 +
+ Mk, + Mky + Mk; + Mk, — min.

Wir verwenden zur Losung die Zielfunktion

Z = —bwy — 122, — Ty — 182y — Tagy — 142, —
— Mk, — Mk, — Mky; — Mk, > max,

die maximiert werden soll. Die Koeffizienten dieser Zielfunktion stehen in
der zweiten Zeile des ersten Tabellenteils der Tabelle 10, und zwar unter den
echten und kiinstlichen Variablen. Das Gleichungssystem der einschranken-
den Bedingungen wird nicht verdndert.

Bekanntlich besitzen die jeweiligen Basisvariablen einer Losung in der zu-
gehorigen Zielfunktion die Koeffizienten Null. Wenn wir von der angegebe-
nen Zielfunktion ausgehen und die erste Basis aus den kiinstlichen Variablen
ky---k, bilden, erhalten diese ersten vier Basisvariablen die Zielfunktions-
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Tabelle 10. Losung eines einfachen Transportproblems mit Hilfe der Simplexmethode
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koeffizienten — M. Um zu erreichen, daB diese Basisvariablen die Ziel-
koeffizienten Null erhalten, berechnen wir die Zielfunktionskoeffizienten
zur ersten Losung in Tabelle 10, die in der dritten Zeile dieser Tabelle
stehen, nach folgendem Verfahren:

Fiir jede Variable werden die Koeffizienten dieser Variablen im System der
einschrinkenden Bedingungen mit den urspriinglichen Zielfunktions-
koeffizienten der zu den einzelnen Zeilen gehorenden Basisvariablen multi-
pliziert und die Produkte je Variable addiert. Dieser Schritt ist relativ
einfach, weil in der Basis der ersten bzw. Ausgangslésung die kiinstlichen
Variablen stehen, die in der urspriinglichen Zielfunktion (zweite Zeile) alle
den Koeffizienten — M besitzen. Fir die Variable z,, gestaltet sich die
Berechnung demnach wie folgt:

Basis- Koeff. d. Koeff. i. d. Produkt
variable Basisvar. einschr. Bed. | Sp.2 X Sp. 3
1 @ ®3) (4)

k, —M 1 —M
k, —-M 0 0
Iy —-M 1 —-M
ky —M 0 0
Summe —2M

In entsprechender Weise werden fiir alle Variablen die genannten Summen
berechnet. Diese Summen werden schlieSlich von den Koeffizienten der ur-
spriinglichen Zielfunktion (zweite Zeile) subtrahiert und liefern dann die
Zielfunktionskoeffizienten der ersten Losung (dritte Zeile). Wiederum fiir
die Variable z,; ergibt sich —5 — (—2M)=—5+2M=2M —5
(vgl. dritte Zeile in Tabelle 10). Durch diese Berechnungsweise erhalten
die Basisvariablen k,---k, der ersten Losung die Zielfunktionskoeffizienten
Null, die in der dritten Zeile in den Spalten der kiinstlichen Variablen ein-
getragen sind. Die Aufgabe wird nunmehr ausgehend von der in der dritten
Zeile stehenden Zielfunktion wie jede andere Maximumaufgabe gelost. Zu
beachten ist dabei, daBl die Zielfunktion der ersten Losung den Wert
330 M hat. Indem durch die schrittweise Verbesserung der Losung die
kiinstlichen Variablen in der Basis durch echte Variable ausgetauscht
werden, wird dieser Wert schlieBlich bis auf Null reduziert, wihrend der
durch die echten Variablen bestimmte Wert der Zielfunktion auf 1580
(optimale Losung) anwéchst.

Am Rande sei darauf hingewiesen, daBl die Berechnung, die notwendig
wurde, um zu erreichen, dall die Basisvariablen der ersten Losung die
Zielfunktionskoeffizienten Null erhalten, implizit auch angewendet wird,
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wenn die Schlupf- oder kiinstlichen Variablen der ersten Basis von Anfang
an die Bewertung Null besitzen. Dann ist jedoch das Produkt aus den
Koeffizienten der Basisvariablen und den Koeffizienten in den Spalten der
Variablen stets gleich Null, wodurch auch die Summe der zu einer Variablen
gehorenden Produkte Null ergibt. Wird diese Summe von den urspriing-
lichen Zielfunktionskoeffizienten subtrahiert, so dndern sich diese nicht.
Besitzen also Schlupf- und kiinstliche Variable von Anfang an die Ziel-
funktionskoeffizienten Null, so konnen sie direkt in die erste Lésung iiber-
nommen werden.
Im fiinften Teil der Tabelle 10 ergibt sich die optimale Losung der gestellten
Aufgabe zu

%y =10 2y = 0

21y = 40 Zy9 = 80

213 =70 Zog = 0.

Liegen etwa die Transportmengen in Tonnen und die Koeffizienten der
Zielfunktion als Entfernungen in Kilometer vor, so erfordert die Verwirk-
lichung des optimalen Transportplanes eine Gesamttransportleistung von
1580 Tonnenkilometer (tkm).

Da die geloste Aufgabe als Minimumaufgabe gestellt ist, besteht auch die
Méoglichkeit, sie als duale Maximumaufgabe zu losen. Obwohl man im
allgemeinen wegen der Moglichkeit, das Transportproblem mit einfachen
Methoden zu losen, diesen Weg nicht gehen wird, sei er zur Ubung des
Dualprinzips hier angefiihrt.

Die Koeffizientenmatrix der primalen Minimumaufgabe lautet

1 1 1 0 0 0 120
o 0 o0 1 1 1 80
i 0 0 1t 0 O 10
o 1 0 0 1 0 120
o 0 1 0 0 1 70
5 12 7 18 7 14 min

Daraus ergibt sich die Koeffizientenmatrix der dualen Maximumaufgabe zu

SO OO ==
_-—---e oo
C OO MR OO -

80 1
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Die einschriankenden Bedingungen der dualen Aufgabe werden durch
Schlupfvariable zu Gleichungen ergénzt. Bei der Aufstellung des mathe-
" matischen Modells beachten wir, daB die echten Variablen der primalen
Minimumaufgabe zu dualen Variablen der dualen Maximumaufgabe werden.
Die Losung der dualen Maximumaufgabe erfolgt in Tabelle 10a. Die
optimale Losung steht im letzten Tabellenteil, und zwar fir die duale
Aufgabe in den beiden linken Spalten und fiir die primale Aufgabe in der
Zeile der Zielfunktion (Koeffizienten der dualen Variablen). Wir finden in

Tabelle 10a. Losung der Aufgabe nach Tabelle 10 mit Hilfe der dualen Mazximumaufgabe
(Ausschnitt)

Uy Uy U Uy Us Tin Xy Tyg Ty Tap o3

BV 0 |120 80 10 120 70 o 0 o0 O 0 0
Ty 5 i o0 1 0 0 i1 0 0 0 0 0 —
Zqs 12 i o0 o 1 0 o 1 0 0 0 0 12
213 7 tr 0 0 o0 1 0o 0 1 0 0 0 —
Zyy 18 0o 1 1 0 o 0o 0 o0 1 0 0 —
<2y 7] 0 1 0 [if o 0 0 0 0. 1 0 7
Zog 14 o 1 0 o0 1 0O 0 o0 O 0o 1 —

—840 | 120—40 10 0 70 0 0 0 0—120 O
25, 5 i 0 1 0 0 i1 0 0 0 0 0 5
D 5| -1 0o o o 0 1 0 0 —1 0 5
Xy 7 1 0 o0 0 1 0O o0 1 0 0 0 7
Zoy 18 0o 1 1 0 O 0O 0 o0 1 0 0 —
—> U, 7 o 1 o0 1 0 o 0 o0 0 1 0 —
Zgs 14 o 1 0 0 1 0O 0 o0 o 0 1 —

— 1580 o 0 0 O O (—10—40—70 O —80 O

Uy 0 0o 1 1 0 o 1i—-1 0 O 1 0

U, 5 i 0 1 0 O 1 0 0 o0 0 0

Uy 2 0O 0 —1 o0 1 -1t 0 1 0 (U]

Xy 18 o o0 O o0 o0 -1 1 0 1 —1 0

%, 7 0o 0 —1 1 0 -1 1 0 O 0 0

Zog 12 o 0 0 o0 o 0o 1 -1 0 —1 1
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der Reihenfolge der urspriinglichen echten Variablen ,,..-x,, die Werte
10, 40, 70, 0, 80 und 0.

Sowohl Tabelle 10 als auch Tabelle 10a machen deutlich, daf3 die Bestim-
mung der optimalen Losung mit Hilfe der Simplexmethode relativ auf-
wendig ist. Wir werden deshalb im folgenden Abschnitt eine sehr oft an-
gewendete einfachere Verteilungs- bzw. Distributionsmethode besprechen,
die auf der Simplexmethode beruht und als deren Spezialfall ebenfalls zur
exakten optimalen Losung des Transportproblems fiihrt. Neben dieser
Methode der Potentiale (KREKO [11]) bzw. modifizierten Distributions-
methode (KapLEC/VODAOEK [12]) — die Bezeichnungen sind unterschied-
lich — gibt es eine Anzahl weiterer Verfahren, die zur Losung des Transport-
problems entwickelt worden sind. Diese Spezialmethoden des Transport-
problems sind in der Fachliteratur beschrieben (KApLEC/VODASEK [13]).

5.4. Die modifizierte Distributionsmethode (MODI)

Bei dieser Methode ist es nicht erforderlich, eine zulédssige erste Basis-
losung aus kiinstlichen Variablen zu bilden. Von den einschrinkenden
Bedingungen gehen nur die absoluten Glieder (die Aufkommens- und die
Bedarfswerte) in das Rechenverfahren ein. Das Verfahren sei an einem Bei-
spiel demonstriert, fiir das folgende Ausgangsdaten gegeben sind.

1. Drei Aufkommensorte mit den Aufkommensmengen
a, =90; ay = 75; a; = 35.
2. Vier Bedarfsorte mit den Bedarfsmengen
by, = 50; by, = 50; b; = 85; b, = 15.
Gesamtaufkommen und Gesamtbedarf betragen iibereinstimmend je
200 Mengeneinheiten. Die Aufwands- oder Bewertungszahlen, die wieder

als Entfernungen in Kilometer angesetzt werden sollen, sind in der Ent-
fernungsmatrix nach Tabelle 11 zusammengefaf3t.

Tabelle 11. Matrix der Entfernungen
(Entfernungsmatriz) c;; (in km)

| B, B, B, B,
4, 3% 15 60 40
4, 120 8 10 5

A, 4 320 60 10



5.4.1. Bestimmung der Ausgangslosung 91

5.4.1. Bestimmung der Ausgangslésung

Wenngleich bei der Distributionsmethode keine erste Basislosung aus
kiinstlichen Variablen gebildet werden muB, so ist es doch erforderlich, eine
zuldssige Ausgangslésung zu bilden. Zuléssig ist diese Ausgangslosung, wenn
sie (m -+ n — 1) Variable aufweist, deren Werte groBer als Null sind,wéhrend
alle iibrigen Variablen den Wert Null besitzen. Zur Bestimmung der Aus-
gangslosung stehen wiederum verschiedene Verfahren zur Verfiigung. Ge-
nannt seien die Nordwest-Ecken-Regel, die Methode des doppelten Vorzugs
und die Vogelsche Approximationsmethode (VAM). Hier werden die beiden
zuerst genannten Verfahren behandelt. Die VAM stellt zwar nur ein Néhe-
rungsverfahren dar, fiihrt jedoch in einer groen Zahl von Fillen zumindest
in unmittelbare Ndhe des Optimums. Sie ist in der Spezialliteratur be-
schrieben (vgl. KADLEC/VODAGEK [14]).

Tabelle 12. Ausgangslosung nach der Nordwest- Ecken-Regel

B, B, B, B, a;
4, 50 40 — — 90
A, — 10 65 — 75
Ag — — 20 15 35
b; 50 50 85 15 200

Nach der Nordwest-Ecken-Regel wird zunichst eine Tabelle angelegt, die
Tabelle 12 entspricht. In dieser Tabelle tragt man zuerst nur die Zeilen- und
Spaltensummen, d.h. die Aufkommenswerte und die Bedarfswerte ein.
AnschlieBend werden die Felder im inneren Tabellenfeld, die die Verbin-
dungen zwischen den Aufkommens- und Bedarfsorten reprisentieren, be-
legt. Die Belegung beginnt im linken oberen Tabellenfeld (Nordwest-
Ecke) und schreitet unter Einhaltung der durch die Randzahlen gegebenen
einschriankenden Bedingungen entlang der Hauptdiagonale der Tabelle zum
rechten unteren Tabellenfeld fort. Im linken oberen Feld, dem Feld 4,B,
oder kurz 1.1, kénnen maximal 50 Mengeneinheiten untergebracht werden,
da der Gesamtbedarf von B, (1. Spalte) gerade 50 Mengeneinheiten betragt.
Die verbleibenden 40 Mengeneinheiten aus dem Aufkommen in 4, werden
im Feld 1.2 untergebracht. Damit ist die Zeile 4, ausgeschopft. Da zur
Deckung des Bedarfs in B, noch 10 Mengeneinheiten fehlen, wird das Feld
2.2 mit diesen 10 Einheiten belegt. Die restlichen 65 Mengeneinheiten des
Aufkommens in 4, werden dem Feld 2.3 zugeordnet. 4, ist damit hinsicht-
lich seines Aufkommens ebenfalls ausgeschépft. Um den Bedarf in B,
zu decken, mufl weiterhin das Feld 3.3 mit 20 Einheiten belegt werden. Das
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restliche Aufkommen aus 4; im Umfang von 15 Mengeneinheiten deckt
den Bedarf von B, und wird dem Feld 3.4 zugeordnet. Damit ist das Gesamt-
aufkommen ausgeschopft, wihrend der Gesamtbedarf befriedigt wurde. Die
Losung enthélt sechs belegte Felder, d. h. sechs Variableff, deren Werte
groBer als Null sind. Sie ist somit zulédssig.

Die auf diese Weise gefundene Ausgangslésung wird nur in seltenen Fallen
giinstig im Hinblick auf eine optimale Losung sein. Die Belegung der Felder
nimmt keinerlei Riicksicht auf die Bewertungszahlen c;;, die den Aufwand
angeben, der mit der Belegung eines Feldes durch eine Mengeneinheit ent-
steht. Damit steht dem auBerordentlich einfachen Verfahren, nach dem die
Ausgangslosung gefunden wird, der Nachteil entgegen, dafi diese Losung
meist weit entfernt ist von der optimalen Losung. Das hat zur Folge, daf3
noch eine grofle Zahl von Verbesserungsschritten erforderlich ist, ehe die
optimale Losung vorliegt.

Bei der Bestimmung einer Ausgangslosung nach der Methode des doppelten
Vorzugs wird gerade der umgekehrte Weg gegangen. Hier entscheidet die
Grofle der Bewertungszahlen dariiber, welche Felder in der Ausgangslosung
belegt werden sollen. Dazu ist es erforderlich, zunéchst die vorteilbaften
Felder zu kennzeichnen. Das ist in Tabelle 11 geschehen. Dort sind in
jeder Zeile und in jeder Spalte die Felder mit der jeweils niedrigsten Be-
wertungszahl bestimmt worden. Die in den Zeilen niedrigsten Bewertungs-
zahlen wurden durch ein hochgesetztes ,,z* gekennzeichnet, wihrend die
in den Spalten niedrigsten Bewertungszahlen durch ein hochgesetztes ,,0*
hervorgehoben wurden. Damit entstehen drei Kategorien von Feldern:

1. Felder, die sowohl in der Zeile als auch in der Spalte, der sie angehéren,
die niedrigste Bewertungszahl besitzen: das sind die Felder mit dem
doppelten Vorzug;

2. Felder, die in der Zeile, in der sie stehen, die niedrigste Bewertungszahl
besitzen (Felder mit einfachem Vorzug);

3. Felder, die in der Spalte, in der sie stehen, die niedrigste Bewertungszahl
besitzen (Felder mit einfachem Vorzug).

Zunichst werden die Felder mit doppeltem Vorzug unter Einhaltung der
einschrinkenden Bedingungen maximal belegt. Entsprechend der Grofe
der Bewertungszahlen der doppelt bevorzugten Felder wird zunédchst das
Feld 2.1 und anschlieBend das Feld 3.2 belegt. Anschlielend werden Felder
einfachen Vorzugs und — sofern das zur Einhaltung der einschrinkenden
Bedingungen noch erforderlich ist — sonstige Felder belegt. In der Regel
konnen nicht alle bevorzugten Felder belegt werden, weil die Belegung des
einen Feldes die eines anderen Feldes in der gleichen Zeile oder Spalte aus-
schlieBt. Das Ergebnis dieser Belegung ist die Ausgangslosung nach Tabelle 13.
Man kann bereits an Hand des Vorgehens feststellen, dafl die nach der
Methode des doppelten Vorzugs gefundene Ausgangslosung wesentlich
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besser ist als die nach der Nordwest- Ecken- Regel. Trotzdem hat die
Nordwest-Ecken-Regel Vorteile, die insbesondere in der auBerordentlich
einfachen Verfahrensweise liegen. Wenn in einer Transportoptimierungsauf-
gabe eine Tabelle der Bewertungszahlen vorliegt, bei der in der Nahe der
Hauptdiagonale vorwiegend vorteilhafte Felder liegen, kann die Nordwest-
Ecken-Regel vorgezogen werden.

Tabelle 13. Ausgangslosung nach der Methode des doppelten Vorzugs

| B, B, B, B, I L0
A, — — 85 5 90
A, 50 15 — 10 75
A, — 35 — — 35
b; | 50 50 85 15 | 200

Wir vergleichen die beiden Ausgangslosungen an Hand des Wertes der
zugehorigen Zielfunktionen. Der jeweilige Zielfunktionswert ist die Summe
der Produkte, die aus den Belegungswerten x;; der besetzten Felder und
den zugehorigen Bewertungszahlen c;; gebildet werden. Wir erhalten

1. Z = 1750 Einheiten (z. B. Tonnenkilometer) fiir die Ausgangslésung
nach der Nordwest-Ecken-Regel, und

2. Z = 855 Einheiten fiir die Ausgangslosung nach der Methode des
doppelten Vorzugs.

Damit zeigt sich deutlich, in welchem Umfang die Ausgangslésung nach der
Methode des doppelten Vorzugs besser ist als die nach der Nordwest-
Ecken-Regel. Wenn wir trotzdem die weiteren Berechnungen auf der Aus-
gangslosung nach der Nordwest-Ecken-Regel aufbauen, dann deshalb, weil
die Losung nach der Methode des doppelten Vorzugs bereits die optimale
Losung ist. Das ist nicht immer so, sondern tritt nur hin und wieder ein.
In diesem Falle jedoch ist eine weitere Verbesserung der Loésung nicht
moglich. Um also das modifizierte Distributionsverfahren demonstrieren
zu koénnen, missen wir von einer nichtoptimalen Ausgangslésung aus-
gehen. Eine solche Loésung ist durch die Nordwest-Ecken-Regel gefunden
worden.

5.4.2. Priifung der Optimalitiit der Ausgangslésung (sowie jeder
weiteren Losung) und Ubergang zu einer verbesserten Losung

Nachdem die Ausgangslosung vorliegt, ist es erforderlich zu priifen, ob
diese Ausgangslosung bereits optimal ist. Ist sie noch nicht optimal, so ist
eine neue Losung zu bilden, die besser als die Ausgangslosung ist. Die
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gleichen Operationen werden bei jeder Losung vorgenommen, um deren
Optimalitdt zu priifen.

Die Priifung der Ausgangsléosung nach der N ordwest-Ecken-Regel erfolgt
in Tabelle 14. Diese Tabelle stellt eine erweiterte Tabelle der Ausgangs-
16sung (Tabelle 12) dar. In Tabelle 12 sind zusétzlich die Werte der Tabelle 11
eingetragen worden. Damit enthdlt Tabelle 14 sowohl die Besetzungs-
zahlen z;; als auch — in der rechten oberen Ecke jedes Feldes — die Be-
wertungszahlen c;;. Weiterhin sind in Tabelle 14 die Randzahlen oder
Potentiale u; fir die Zeilen und v; fiir die Spalten eingetragen. Diese Poten-
tiale werden bendtigt, um zu priifen, ob eine vorliegende Losung noch ver-
bessert werden kann. Zu jedem Feld der Tabelle 14 gehoren zwei Potentiale,
namlich dasjenige der Zeile, in der das Feld steht, und dasjenige der Spalte,
zu der das Feld gehort. Zum Beispiel gehoren

zum Feld 1.1 die Potentiale %, und v,,
zum Feld 1.2 die Potentiale %, und v,,

.......

zum Feld 2.3 die Potentiale u, und v, usf.

Aus den Potentialen werden die fiktiven Bewertungszahlen nach der Bezie-
hung
¢ = U + v; (14)

gebildet. So gilt beispielsweise fiir

das Feld 1.1 ¢f; = u, + v,
das Feld 1.2 ¢f, = u, + v,

.......

das Feld 2.3 ¢}; = u, + v, usf.

Die Potentiale werden so festgelegt, dal fiir die besetzten Felder fiktive
Bewertungszahl ¢; und tatsichliche Bewertungszahl c;; tibereinstimmen,
d. h.

¢j; = ¢;; (fiir besetzte Felder) (15)

gilt. Um also das Potential einer Zeile oder Spalte bestimmen zu koénnen,
mub bereits ein Potential einer Spalte oder Zeile bekannt sein und im
Schnittpunkt derjenigen Zeile (Spalte), fiir die das Potential bestimmt werden
soll, und derjenigen Spalte (Zeile), deren Potential bereits bekannt ist, ein
besetztes Feld stehen. Demnach muB das erste Potential in irgendeiner
Weise festgelegt werden. Da diese Festlegung freiziigig erfolgen kann, wird
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im allgemeinen das erste Potential zu Null festgelegt, um die anschlieBenden
Berechnungen zu vereinfachen. Weiterhin ist es zweckmiBig, das erste
Potential fiir eine Zeile oder Spalte festzulegen, die moglichst viele besetzte
Felder bat. '

Tabelle 14. Priifung der nach der Nordwest-Ecken-Regel gefundenen Ausgangslosung

B, B, B, B,
N o a
AN 3 15 17 21
N
EB |15 ] K K
" . 5 w0 | ™
[ I o |5
4, | —1 10 : + 65 —| ! 75
|4 EIR KR 10
A, | -1 20 +| 15 —| 35
b 50 50 85 15 200

In der Tabelle 14 sind mehrere Zeilen und Spalten vorhanden, in denen zwei
besetzte Felder stehen. Wir geben deshalb dem Potential der ersten Zeile
den Wert Null und setzen

U, = 0.

Da in der ersten Zeile zwei besetzte Felder vorhanden sind, die zur ersten
und zweiten Spalte gehoren, konnen nunmehr die Potentiale dieser beiden
Spalten bestimmt werden. Fiir die erste Spalte gehen wir von der Beziehung
(15) aus und setzen bei gleichzeitiger Verwendung von (14)

¢j; = %, + v,, woraus sofort

v; =¢;; — 4, folgt. Sowohl ¢;; = 3 als auch %, = 0 sind be-
kannt. Damit ist das Potential der ersten Spalte

’Ul = 3 - 0 = 3 .
Entsprechend ergibt sich das Potential der zweiten Spalte, ausgehend von
€15 = Uy + 0,, liber

Vo =C13 — U
zu v, =15 — 0 = 15.
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Vom Potential der zweiten Spalte aus bestimmen wir iiber das besetzte
Feld 2.2 das Potential der zweiten Zeile. Hier folgt aus

Cyp = Uy + v, zunidchst

Uy = Cop — Vg
und somit %, = 8 —15=—1T.
Nunmehr besteht die Moglichkeit, von der zweiten Zeile ausgehend, iber
das besetzte Feld 2.3 das Potential der dritten Spalte zu bestimmen. Es

wird
Cy3 = Uy + v5  gesetzt, woraus

V3 = Cy3 — Uy, also
v =10 — (—7) =17

folgt. Weiterhin bestimmen wir das Potential der dritten Zeile aus

€33 = U3 + v3. Esist

U3 = C33 — v3 und somit

u3 = 6 - 17 = — 11.
Schlieflich mufB nur noch das Potential der vierten Spalte bestimmt
werden. Dafiir gehen wir von der dritten Zeile und dem besetzten Feld 3.4

aus. Es gilt
Cyy = Uz + v,, d. h.

vy = Cgq — Us.
Damit wird v, zu

v, =10 — (— 11) =21
bestimmt.
Um die Potentiale zu bestimmen, wird praktisch ein Gleichungssystem
gelost. Wegen (14) und (15) gilt fiir die besetzten Felder

U; + Vj = Cyj.
Demnach ergibt sich fiir die besetzten Felder der Tabelle 12 das folgende
Gleichungssystem :
1.y +v,=1¢,= 3 4. uy + vg = Ccy3 = 10
2. Uy + vy = €y = 15 5. U3+ v3=1Cy35= 6
3. Uy + vy =1cCoo= 8 6. ug + v, = c3y = 10.
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Das System besteht aus (m 4 n — 1) = 6 Gleichungen und sieben Unbe-
kannten w,, %y, Uz, ¥y, ¥y, v3 und v, Um die Unbekannten zu bestimmen,
legen wir zunéachst

u1=0

fest und erhalten fiir die itbrigen Unbekannten folgende Werte:

l.Loyy=3—-—0 =+3 4. v, =10 —(=1T) = +17
2 v,=15— 0 =415 5. ug= 6—17 = —11
3. uy= 8—-15 =-—17 6. v, =10 —(—11) = +21.

Damit sind eben die Potentiale gefunden.

Alle auf diese Weise bestimmten Potentiale sind in Tabelle 14 eingetragen.
Voraussetzung dafiir, daf die Potentiale auf diese Weise bestimmt werden
koénnen, ist das Vorliegen einer zulédssigen Losung, in der (m + n — 1)
Felder besetzt sind. In diesem Falle ist es moglich, vom Potential einer Zeile
oder Spalte aus iiber die besetzten Felder die Potentiale aller weiteren
Zeilen und Spalten zu bestimmen. Wie im Falle einer degenerierten Losung
zu verfahren ist, in der weniger als (m + n — 1) Felder besetzt sind, wird
spater noch erldutert. Wenn das Verfahren zuerst moglicherweise um-
stindlich anmutet, so kann doch gesagt sein, dal man bereits nach der
Losung weniger Aufgaben hinreichende Fertigkeiten besitzt, um die Be-
rechnungen bei weniger umfangreichen Transportproblemen ohne weitere
Hilfsmittel vorzunehmen. Bei grofzahligen Bewertungszahlen empfiehlt sich
der Gebrauch einer Tischrechenmaschine. Umfangreiche Aufgaben dagegen
wird man zweckméBigerweise auf einem elektronischen Digitalrechengerit
16sen.

Nachdem die Potentiale simtlicher Zeilen und Spalten der Tabelle 14 be-
stimmt sind, ist es moglich, fiir simtliche Felder dieser Tabelle und somit
der nach der Nordwest-Ecken-Regel bestimmten Ausgangslésung die fiktiven
Bewertungszahlen cj; zu berechnen. Diese Berechnung wird im einzelnen
vorgefiihrt:

Feldi1: ¢y =4, +v,= 0+ 3= 3
Feld 1.2: ¢jy =u, + v, = 0+15= 15
Feld 1.3: ¢j3 = u, + v3= 04+ 17= 17
Feld 14: ¢}, =u, + v, = 04+21= 21
Feld2.1: ¢y =uy+v,= —7+4+ 3=—4
Feld2.2: c¢jpp=uy+v,= —74+15= 8

Feld23: c¢jg=uy+v3= —74+17= 10
Feld24: ¢fy=uy+v,= —7+21= 14
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Feld3.1: ¢y =u3+v;=—11+ 3= —8
Feld3.2: ¢y =u3+v,=—11 4 15 = 4
Feld3.3: c¢jg=us+v,=—11 4 17 = 6

Feld3.4: ¢jy=us+v,=—114+21 = 10.

Wenn die fiktiven Bewertungszahlen in der Ordnung zusammengestellt wer-
den, in der die Felder, zu denen sie gehoren, stehen, ergibt sich die Matrix der
fiktiven Bewertungszahlen

3 15 17 21
@) =|—4¢ 8 10 14
—8 4 6 10

Nunmehr besteht die Moglichkeit, die einzelnen Felder der Ausgangslésung
dahingehend zu priifen, ob ihre Belegung eine Verbesserung der bestehenden
Losung verspricht. Diese Priffung bezieht sich natiirlich nur auf die freien
(bzw. leeren bzw. unbesetzten) Felder. Fiir die Priifung der Besetzungs-
wiirdigkeit der Felder gelten folgende Beziehungen:

1. Die Besetzung eines Feldes verspricht eine Verbesserung der Lésung,
wenn die fiktive Bewertungszahl groBer ist als die tatséchliche Bewertungs-
zahl, d. h., wenn gilt

C;-j > €y
bzw.
AC,'I' = Cj — Cgi < 0. (16b)

(Die Differenz zwischen der tatsédchlichen und der fiktiven Bewertungszahl
ist negativ.)

2. Die Besetzung eines Feldes verdndert die Losung nicht, d. h., sie laBt
den Wert der Zielfunktion unverindert, wenn die tatsichliche und die
fiktive Bewertungszahl tibereinstimmen. Es gilt dann

& =y (172)

bzw.
deij = ¢ — ¢ = 0. (17b)

(Die Differenz zwischen der tatsdchlichen und der fiktiven Bewertungs-

zahl ist gleich Null.)

3. Die Bewertung eines Feldes fiihrt zu einer Verschlechterung der Losung
bzw. zu einer Erhohung des Wertes der Zielfunktion, wenn die fiktive
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Bewertungszahl kleiner ist als die tatsichliche Bewertungszahl. Wir
schreiben

o < i (18a)
bzw.

Adeij = ¢ — ¢jj > 0. (18D)

(Die Differenz zwischen der tatsichlichen und der fiktiven Bewertungs-

zahl ist positiv.)
Die Beziehungen (17a) bzw. (17b) gelten vereinbarungsgemés fiir die in einer
Losung besetzten Felder. Sie bilden die Grundlage fir die Bestimmung
der Potentiale u; und v;.
Durch die Differenzen A4c¢;; beurteilt man nicht nur, in welcher Weise eine
bestimmte Besetzung die vorliegende Losung verindern wiirde (Verbesse-
rung, Konstanz oder Verschlechterung der Losung), sondern man bestimmt
gleichzeitig das Ausmaf} der Verdnderung der Zielfunktion. Um den Betrag
von Ac;; verdndert sich-der Wert der Zielfunktion, wenn das Feld ¢ - j mit
einer Mengeneinheit belegt wird. Betrigt die Belegung x;; Mengeneinheiten,
so verdndert sich der Zielfunktionswert um -den Betrag von Ac;;x;;.
Bei der Belegung eines Feldes mit negativer Differenz nimmt der Wert der
Zielfunktion um den genannten Betrag ab, wihrend er bei der Belegung
eines Feldes mit positiver Differenz um diesen Betrag anwéchst. Es ist ver-
sténdlich, da wir die optimale Losung eines Transportproblems nur dann
erreichen, wenn wir Felder mit negativer Differenz belegen.
Die Differenz Ac;; wird also nunmehr fiir jedes Feld der Tabelle 14 berechnet.
Man kann dazu so vorgehen, dafl man von der tatsdchlichen Bewertungs-
zahl des Feldes das Potential sowohl der zugehoérigen Zeile als auch der zu-
gehorigen Spalte subtrahiert. So miiften wir im Feld 1.4 etwa rechnen

Cla— Uy — v, =4 —0— 21 = —17.

Dabei miissen nur diejenigen Felder gekennzeichnet werden, bei denen auf
die geschilderte Weise eine Differenz zustande kommt, die negativ ist. Dort
lohnt es sich, eine Belegung des Feldes vorzunehmen. Gleichzeitig wire die
GroBe der negativen Differenz, etwa in der linken unteren Ecke des Feldes,
anzuschreiben. )

Durch das genannte Vorgehen wird méglicherweise die Ubersichtlichkeit der
Rechentabelle wesentlich gemindert. Deshalb ist es zweckméaBiger — und
filhrt zu einem iibersichtlicheren Ergebnis —, wenn in der folgenden Weise
vorgegangen wird. Wir benutzen die Matrix der tatsdchlichen Bewertungs-
zahlen nach Tabelle 11, die

3 15 6 4
4 3 6 10
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lautet, und subtrahieren davon die bereits bestimmte Matrix der fiktiven
Bewertungszahlen, d. h., wir bilden

(dey) = (c5) — (¢i)* (19)
Fiir die Ausgangslosung nach Tabelle 14 erhalten wir
315 6 4 315 17 21 0 0 —11 —17
(dej)=(1 810 5)—|—4 81014)]=( 5 0 O —9
4 3 610 —8 4 6 10 12 —1 0 0

In der Ergebnismatrix stehen die Differenzen fiir alle Felder. Wir kénnen
somit erkennen, ob die einzelnen Felder fiir eine Belegung geeignet sind
oder nicht. Zunichst bemerken wir, dafl die belegten Felder 1.1, 1.2, 2.2,
2.3, 3.3 und 3.4 alle die Differenz Null aufweisen, wie das nach Voraus-
setzung zu erwarten war. Die Felder 2.1 und 3.1 kommen fiir eine Belegung
nicht in Frage, weil dadurch der Wert der Zielfunktion ansteigen und somit
der Transportaufwand steigen wiirde. Giinstige Belegungsméglichkeiten
bieten die Felder 1.3, 1.4, 2.4 und 3.2, die alle negative Differenzen be-
sitzen. Bei einer Verbesserung kann jedoch nur ein leeres Feld belegt werden.
Wir suchen deshalb dasjenige Feld, dessen Belegung die grofSte Verringerung
des Wertes der Zielfunktion je Transportmengeneinheit verspricht. Das
ist das Feld 1.4 mit der bereits unterstrichenen Differenz — 17.

Damit steht fest, da

1. die Ausgangslosung noch nicht optimal ist, da die Differenzenmatrix
noch negative Werte bzw. Elemente enthalt,

2. die Verbesserung der Losung dadurch erfolgt, daB das bisher leere Feld
1.4 belegt wird.

Nunmehr muBl bestimmt werden, mit welcher Maximalmenge das Feld 1.4
belegt werden kann. Je mehr Mengeneinheiten wir auf diesem Feld unter-
bringen, um so stdrker wird die gegenwirtige Losung verbessert. Betrachten
wir zundchst die Verdnderungen in der Losung, die eintreten, wenn das
Feld 1.4 nur mit einer Mengeneinheit belegt wird.

Durch die Randsummen a; und b; sind die einschrinkenden Bedingungen
vorgegeben, die auch in der neuen Losung eingehalten werden miissen. Be-
lasten wir demnach das Feld 1.4 mit einer Einheit, so miissen wir ein anderes
Feld der ersten Zeile und der vierten Spalte um eben diese Einheit ent-
lasten, um die Einhaltung der Randsummen zu sichern. Betrachten wir

1 Die Differenz der beiden Matrizen wird errechnet, indem die an gleicher Stelle in
beiden Matrizen stehenden Elemente voneinander subtrahiert werden, z. B. ¢;; — ¢},
€15 — €], usf.
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zunichst die Zeile 1. Die Entlastung um eine Einheit kann nicht im Feld 1.1
erfolgen, weil dieses das einzige besetzte Feld der ersten Spalte ist und so-
mit ein Ausgleich der in 1.1 eintretenden Verminderung in der ersten
Spalte nicht mehr erfolgen kann. Somit bietet sich in der ersten Zeile nur
das Feld 1.2 an, das um eine Einheit weniger besetzt werden kann. Die
Einhaltung der Spaltensumme in der zweiten Spalte wird dadurch gewéhr-
leistet, daBl die Besetzung des Feldes 2.2 um eine Einheit erhoht wird.
Allerdings mufl dann die Besetzung in 2.3 wiederum um eine Einheit ver-
ringert werden, um die Randsumme der zweiten Zeile einzuhalten. Gleich-
zeitig hat das eine Erh6hung der Besetzung in 3.3 zur Folge, um die Rand-
summe by der dritten Spalte einzuhalten. SchlieBlich hat das zur Folge, dal
in der dritten Zeile das Feld 3.4 um eine Einheit weniger besetzt wird. Da-
durch wird gleichzeitig die Randsumme der vierten Spalte ausgeglichen.
Diese Operationen stellen wir in einer Ubersicht zusammen.

Feld Zunahme l Abnahme
der Belegung

14 +1

1.2 —1

2.2 +1

2.3 —1

3.3 +1

3.4 —1

+3 -3
— —
+0

Wie man sieht, dndert sich der Gesamtumfang der Mengeneinheiten nicht.
AuBerdem haben wir festgestellt, dal die Randsummen der einzelnen be-
troffenen Zeilen und Spalten eingehalten werden.

Wenn wir den Weg von Feld 1.4 aus iiber die in der Ubersicht angegebenen
Felder bis zum Feld 1.4 zuriick verfolgen und in der Tabelle 14 durch eine
gestrichelte Linie sichtbar machen, so stellen wir fest, daB wir eine Be-
wegung vorgenommen haben, die einem geschlossenen Turmzug beim
Schachspiel entspricht. Man nennt diese Bewegung deshalb Turmzug oder
Zyklus. Weiterhin ist wichtig, daB die Ecken des Turmzugs mit Ausnahme
des Ausgangsfeldes stets besetzte Felder sind und sein miissen, in denen
Besetzungsveranderungen vorgenommen werden. Zu jedem leeren Feld
einer zuldssigen Losung kann ein Turmzug oder Zyklus konstruiert werden.
Seine Ecken sind stets diejenigen Felder, in denen eine Besetzungsver-
dnderung erfolgen muBl, wenn in der Ausgangsecke des Turmzugs, dem
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leeren Feld, eine Besetzung erfolgen soll. Ein Blick auf die Ubersicht zeigt
weiter, dal im Turmzug abwechselnd Felder die Ecken bilden, in denen die
Besetzung erhoht bzw. in denen die Besetzung verringert wird. Kenn-
zeichnen wir die Erhéhung durch ,,4‘ und die Verringerung durch ,,—*, so

bilden die Ecken des Turmzugs die Aufeinanderfolge + — + — + — ...,
wobei das erste Pluszeichen stets zum leeren Ausgangsfeld des Turmzugs
gehort.

Jetzt kann die Frage beantwortet werden, mit wieviel Einheiten das Feld 1.4
maximal belegt werden kann. Ausschlaggebend dafiir ist die Nichtnegativi-
tatsbedingung in der mathematischen Formulierung der Aufgabe. Demnach
diirfen die Variablen keine negativen Werte annehmen. Da jedoch die Ein-
heiten, mit denen ein leeres Feld belegt wird, bei anderen besetzten Feldern
subtrahiert werden, konnen auf ein leeres Feld immer héchstens so viele
Einheiten gegeben werden, wie auf dem am geringsten besetzten negativen
Feld vorhanden sind. Negative Felder sind dabei alle die Felder, deren Be-
setzung verringert wird, wenn ein leeres Feld belegt wird. In Tabelle 14
sind 1.2, 2.3 und 3.4 solche negativen Felder. Dasjenige unter ihnen mit der
geringsten Besetzung ist Feld 3.4 mit der Besetzung von 15 Einheiten.
Wenn diese Menge von der Besetzung aller negativen Felder subtrahiert
wird, wird keine Variable einen negativen Wert annehmen. Demnach
subtrahieren wir 15 Mengeneinheiten von der Besetzung aller negativen
Felder des Turmzuges in Tabelle 14, wiahrend wir die gleiche Menge bei
allen positiven Feldern (Feldern mit ,,+*, deren Besetzung erhoht wird)
der Besetzung zuschlagen. Damit wird auch das bisher leere Feld 1.4 be-
legt. Durch diese MaBnahme tritt bei den einzelnen Eckfeldern folgende
Besetzungsverinderung auf:

Feld Besetzungsverinderung
14 04+ 15=15
1.2 40 — 15 =25
2.2 10415 =25
2.3 65 — 15 = 50
3.3 20 4+ 15 =35
3.4 15—-15= 0

Ein bisher leeres Feld ist besetzt, ein bisher besetztes Feld geleert worden.
Die Gesamtbesetzung der betroffenen Felder hat sich nicht gedndert.

Durch die Verdnderung der Besetzung im Turmzug ist eine neue Loésung,
die erste verbesserte Losung entsprechend Tabelle 15 entstanden. Bevor
ihre Optimalitit gepriift wird, sei noch eine Bemerkung zu den Differenzen
Ac;; eingefiigt. Weiter oben wurde gesagt, daB diese Differenzen angeben,
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in welcher Weise sich der Wert der Zielfunktion verdndert, wenn das (leere)
Feld ¢ -4 mit einer Mengeneinheit belegt wird. Mit Hilfe des Turmzugs
konnen wir diese Tatsache nunmehr am Beispiel eines leeren Feldes de-
monstrieren. Wir gehen vom leeren Feld 3.1 der Tabelle 14 aus. Fiir dieses
Feld gilt

degy = ¢5 — 05
bzw.

Acgyy = Cgq — Ug — ;.

Zur weiteren Darstellung greifen wir auf das weiter oben angegebene Glei-
chungssystem aus den Grofen w;, v; und ¢;; (fiir die besetzten Felder) zu-
riick, das fiir Tabelle 12 und damit auch fir Tabelle 14 aufgestellt wurde.
Es ergibt sich aus GL (1)

V=01 — YU
und aus Gl. (5)

Uy = Cgq — V3.
Damit wird

Acy = €31 — (C33 — v3) — (g — %y)
bzw.

Acyy = €3 — C33 + v3 — €4y + Uy

Die Randwerte u, und v; gehdren zum leeren Feld 1.3. Da fiir dieses Feld
die Gleichheit zwischen Randwertsumme und Aufwandssatz ¢;; nicht ge-
geben ist, miissen 4, und v, (wie vorher bereits u; und v,) durch die Potentiale
und Aufwandswerte anderer besetzter Felder ausgedriickt werden. Wir er-
halten aus Gl. (2)

Uy = C1pg — Uy
und aus Gl. (4)

Vg = Co3 — Us.

Damit ergibt sich
Ay = €y — Cgg + Co3 — Uy — €13 + C1p — V5.
Fir —u, — v, setzen wir entsprechend Gl. (3) — ¢y, und erhalten somit
schlieBlich
Acgy = €31 — €13 + €15 — g5 + Co3 — Ca3.
In der angegebenen Reihenfolge der Glieder auf der rechten Seite erkennt

man den Verlauf des Turmzugs, der zu durchlaufen wire, wenn das Feld 3.1
besetzt werden sollte. Die Vorzeichen der c;; zeigen an, ob die an diesem
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Turmzug beteiligten Felder zu einer Erhohung (+4) oder zu einer Verrin-
gerung (—) des Wertes der Zielfunktion fithren. Entsprechend Tabelle 14
liefert die gefundene Beziehung schlieBlich

Aegy = 4 (Besetzung von 3.1 mit einer Einheit)
—3 (Entlastung von 1.1 um eine Einheit)
415 (Belastung von 1.2 mit einer Einheit)
— 8 (Entlastung von 2.2 um eine Einheit)
+10 (Besetzung von 2.3 mit einer Einheit)
— 6 (Entlastung von 3.3 um eine Einheit)
= 412 (Erhohung des Wertes der Zielfunktion, wenn

das leere Feld 3.1 in Tabelle 14 mit einer Ein-
heit belegt wird.)

Bei der Anwendung der Randwerte und der Berechnung der A4c;;-Matrix
fir Tabelle 14 ergab sich fiir das leere Feld 3.1 ebenfalls + 12. Dieses Er-
gebnis wie auch die beziiglich 3.1 angestellten allgemeinen Uberlegungen
zeigen, daB die durch die Anwendung der Randwerte gefundenen Werte der
Differenzenmatrix (c;; — u; — v;) die Verdnderung des Wertes der Ziel-
funktion angeben, die bei Belegung des Feldes ¢ - § mit einer Einheit eintritt.

Tabelle 15. Erste verbesserte Losung

B, B, B, B,
v; %
AN 3 15 17 4
|3 15 6 | 4
A, 0 50 25 — + 15 90
|t 8] 10 |5
A, —7 25 LT 50 — 75
|4 |3 L6 10
A, —11 35 35
b; 50 50 85 15 200

Der Wert der Zielfunktion fiir die Ausgangslosung nach Tabelle 14 betragt
1750. Durch die Besetzungsverinderung (Besetzung von Feld 1.4) hat
sich der Wert der Zielfunktion um 17 . 15 = 255 auf 1495 verringert.
Diesen Wert nimmt die Zielfunktion der ersten verbesserten Losung an.
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Er kann auch errechnet werden, indem fiir alle Felder die Besetzungs-
werte mit den Bewertungszahlen multipliziert und die Produkte addiert
werden.

Wie die Berechnung der Potentiale zu Tabelle 15 nach dem w. o. beschrie-
benen Verfahren zeigt, ist die erste verbesserte Losung noch nicht optimal.
Die Matrix der Differenz fiir die Tabelle 15 lautet.

0O 0-—11 O
12 —1 0 17

Demnach wird die groBte Verringerung des Gesamttransportaufwandes
erzielt, wenn das Feld 1.3 belegt wird. Die Verdnderung der Besetzung ent-
sprechend dem in Tabelle 15 eingezeichneten Turmzug fithrt zur zweiten
verbesserten Losung in Tabelle 16. Fiir diese Tabelle lautet die Matrix der
Differenzen

o0 11 0 0
(Acij) = :_6 0 0 —3
1 -1 0 6

Tabelle 16. Zweite verbesserte Losung

B, B, B, B,
v %
ug N\ 3 4 6 4
EX 15 |6 4
4, 0 50 S 2+ 15 %
1 | 8] |10 |5
4y | 4 R 75
|4 |3 | 6 10|
Aq 0 35 35
b; 50 50 85 15 200

Sie zeigt an, daB die groBte weitere Verbesserung der Losung durch die
Belegung des Feldes 2.1 eintritt. Der entsprechende Turmzug ist in Tabelle 16
eingezeichnet. Die Verdnderung der Besetzung nach diesem Turmzug ergibt
die dritte verbesserte Losung nach Tabelle 17. Auch diese Losung ist noch
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nicht optimal, wie die Matrix der Differenzen

0 5 0 0
de)=[0 o0 6 3
1t -7 0 6

anzeigt. Eine weitere Verbesserung wird durch die Besetzung des Feldes
3.2 erzielt. Sie fithrt zur vierten verbesserten Losung nach Tabelle 18. Fiir
diese Losung lautet die Matrix der Differenzen

7 12 0o 0

8 O 0 6
Die Besetzung des Feldes 2.4 zieht Verdnderungen der Besetzung anderer
Felder nach sich, die entsprechend dem in Tabelle 18 eingezeichneten

Turmzug ablaufen. Damit entsteht die fiinfte verbesserte Losung nach
Tabelle 19. Thre Differenzen-Matrix

3 8 0 0
8 0 4 10

zeigt an, dall eine weitere Verbesserung der fiinften verbesserten Losung
nicht moglich ist, da es kein Feld mehr gibt, dessen Differenz zwischen der

Tabelle 17. Dritte verbesserte Losung

B, B, B, B,
. ai
AN 3 10 6 4
EX |15 K | ¢
Al 0 25 A 50 + 15 90
T (s 10 (5
4, -2 25 + 50— 75
|4]! | 3] | 6 10
4 0 o + % - 35
b,- 50 50 85 15 200



5.4.2. Priifung der Optimalitdt der Ausgangslosung 107

tatsichlichen und der fiktiven Bewertungszahl negativ ist. Durch Tabelle 19
ist damit die optimale Losung gegeben. Nach dieser optimalen Losung sind

2,3 = 85 Mengeneinheiten von 4, nach B; zu transportieren,
2,4 = 5 Mengeneinheiten von 4, nach B, zu transportieren,
%y, = 50 Mengeneinheiten von 4, nach B, zu transportieren,
%95 = 15 Mengeneinheiten von 4, nach B, zu transportieren,
%5, = 10 Mengeneinheiten von A, nach B, zu transportieren,
und x5, = 35 Mengeneinheiten von 4, nach B, zu transportieren.

Tabelle 18. Vierte verbesserte Losung

B 1 B 2 B3 B4
v; %
u | —4 3 6 4
E 15 | 6 [«
4, 0 B+ A5 —| 90
S L8] 10 5
A, 5 50 25 — +| 75
[+ EIIK] 10
A, 0 L2 | 10 — 35
b; 50 50 85 15 200
Tabelle 19. Fiinfte verbesserte Lésung (Optimale Losung)
B, B, B, B,
a;
N\ 1 8 7 5
(3 \
EX 15 K [+
4, -1 85 5 20
L1 K] 10 s
4, 0 50 15 10 75
4 El L6 10
A, —5 35 35
b; 50 50 85 15 200
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Auf allen iibrigen Beziehungen zwischen den Aufkommens- und den Be-
darfsorten erfolgt kein Transport, weil die entsprechenden Variablen in der
optimalen Losung den Wert Null besitzen.

Fiir die optimale Losung besitzt die Zielfunktion den Wert 855. Sie stimmt
mit der Ausgangslosung nach der Methode des doppelten Vorzugs iiberein.
In der Regel wird man diese Methode der Nordwest-Ecken-Regel vorziehen.
Hier wurde die ungiinstigere Ausgangslosung verwendet, um durch die
verschiedenen Verbesserungsschritte das angewendete Distributionsverfah-
ren besonders deutlich hervorzuheben.

Ausgangswerte a;, b;, ¢;;

|
v

Ausgangslosung (z)

y |
>

v

Bestimmung der Potentiale «; und v; und
der fiktiven AufwandsgroBen cj;

v

Berechnung von Ac¢;; = c¢;; — ¢

'

Gibt es 4¢ < 0? —— > Nein
|
l v
Ja Optimale Losung
| liegt vor
+

Bestimmung des Feldes mit dem groBten
negativen Wert von Ac;;

'

Bestimmung des Turmzugs (Zyklus) dieses Feldes

'

| Anderung der Besetzung ergibt dieneue Losung (z;;) | Bild 11. Ablaufschema
der Distributionsmethode
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AuBer der in Tabelle 19 angegebenen optimalen Losung gibt es keine weitere
optimale Losung. Das wire nur dann der Fall, wenn die letzte Matrix der
Differenzen auch fir unbesetzte Felder den Wert Null enthielte. Dann
nédmlich koénnten diese Felder ohne Verinderung des Wertes der Ziel-
funktion besetzt und somit weitere optimale Losungen bestimmt werden.
Tabelle 19 enthilt jedoch nur unbesetzte Felder, deren Differenz Ac,;
positiv ist.

Wie die Simplexmethode 148t sich auch die Methode der Potentiale in be-
stimmte Schritte zerlegen. Dadurch entsteht ein Ablaufschema der Methode
der Potentiale bzw. der modifizierten Distributionsmethode. Dieses Ablauf-
schema ist in Bild 11 angegeben.

Durch die bisher behandelten Fille und Beispiele des Transportproblems
sind wir in der Lage, Transportprobleme zu losen, die dem w. o. angegebenen
mathematischen Modell entsprechen. Bei der Losung praktischer Aufgaben
tritt es jedoch nicht selten ein, da Abweichungen vom Normalfall oder zu-
sitzliche Bedingungen auftreten, die bei der Losung beachtet werden
miissen. So wire etwa der Fall zu betrachten, dal die angenommene Uber-
einstimmung zwischen Gesamtaufkommen und Gesamtbedarf nicht eintritt.
Auch ist es moglich, dafl fir bestimmte Beziehungen zwischen den Auf-
kommens- und Bedarfsorten einschrankende Bedingungen der Art bestehen,
daB die Transportmenge einen bestimmten Hochstwert nicht iibersteigen
darf. Das sind nur einfache Abweichungen vom Normalfall, diejedoch
relativ oft auftreten konnen. Bevor sie jedoch behandelt werden, seien
einige Bemerkungen zur Bearbeitung solcher Losungen gemacht, die degene-
riert sind.

5.4.3. Degenerierte Losungen

Im Zusammenhang mit dem Transportproblem heit eine Losung degeneriert
oder entartet, wenn sie weniger als (m 4+ n — 1) Variable enthalt, die groBer
als Null sind. Degenerierte Losungen besitzen also weniger als (m 4 » — 1)
besetzte Felder. Eine solche Losung ist in Tabelle 20 gegeben. Dort ist eine
Aufgabe gestellt, die drei Aufkommensorte und vier Bedarfsorte enthalt.
Eine nichtdegenerierte Losung miilte demnach sechs besetzte Felder be-
sitzen. Dagegen besitzt die Losung in Tabelle 20 nur finf besetzte Felder.
Man kann leicht priifen, daB die Potentiale der ersten und zweiten Zeile
und der ersten und zweiten Spalte sofort bestimmt werden koénnen. Von
diesen Zeilen und Spalten gibt es jedoch keine Verbindung zu den iibrigen
Reihen der Tabelle. Es existiert kein besetztes Feld, das es erlaubt, auch die
weiteren Potentiale zu berechnen. Deshalb sind anstelle der Potentiale der
dritten und vierten Spalte und der dritten Zeile zunédchst Fragezeichen ge-
setzt.

Um die fehlenden Potentiale berechnen zu kénnen, muf ein weiteres Feld
belegt werden. Hierbei darf jedoch die fiir die einzelnen Zeilen und Spalten
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Tabelle 20. Degenerierte Losung

B, B, B, B,
. ai
AN 7\ 3 5 ? ?

|3 |5 10 | 8
A, 0 20 80 — — 100

|4 L6 | 8 12
A, 1 — 100 — — 100

10 |10 |3 K
A, ? - — 100 100 200
bj 20 180 100 100 400

vorgeschriebene Summe nicht iiberschritten werden. Diese Situation
zwingt dazu, ein bisher freies Feld mit der Menge Null zu besetzen. Dabei
werden die einschrinkenden Bedingungen nicht verletzt, und dennoch
kann die erforderliche Zahl der besetzten Felder erreicht werden.

Es bleibt die Frage zu beantworten, welches leere Feld mit Null besetzt
werden soll. Offensichtlich kann das nur ein Feld, fiir das bereits ein Poten-
tial bestimmt ist, sein. Dadurch wird die fehlende Moglichkeit geschaffen,
die restlichen Potentiale zu berechnen.

Tabelle 21. Erginzte Tabelle (Optimale Losuny)

B, B, B, B,
2 i
uﬁ_x 3 5 —2 1
| 3 | s 10 | 8
A, 0 20 80 — — 100
| ¢ | 6 | 8 12|
R 1 — 100 — — 100
10 10 |3 |6
A, 5 — 0 100 100 200
b,- 20 180 100 100 400
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Wir besetzen in Tabelle 20 dasleere Feld 3.2 mit dem Wert Null und erhalten
dadurch Tabelle 21, in der sidmtliche Potentiale bestimmt werden kénnen.
Demnach ist es auch moglich, zu priifen, ob die degenerierte Losung noch
verbessert werden kann. Es stellt sich heraus, dal die Losung nach Tabelle 20
bzw. Tabelle 21 bereits optimal ist.

3.5. Unausgeglichenheit zwischen Aufkommen und Bedarf

Die Forderung
Zai = Zb?
B i

ist in der Praxis nicht immer erfillt. Insbesondere wird es bei Optimierun-
gen, die fir relativ kurze Zeitriume vorgenommen werden, oft eintreten,
daf das Aufkommen iiber oder unter dem Bedarf liegt. Beide Fille muf}
man bei der Optimierung unterscheiden.

5.5.1. Das Aufkommen iibersteigt den Bedarf
In diesem Fall, bei dem

Ya > b (19)
K3 7

gilt, muB ein Teil des Aufkommens im Optimierungszeitraum gelagert
werden. ZweckmaBigerweise wird man das jeweils am Aufkommensort tun,
um zusétzliche Transportkosten zu vermeiden. Allerdings setzt das voraus,
daf an den Aufkommensorten Lagermoglichkeiten bestehen. Diese Voraus-
setzung soll zunéchst als erfiillt angesehen werden. Fiir die optimale Losung
ist es nicht gleichgiiltig, an welchem Aufkommensort das Lager eingerichtet
wird. Bei ungeniigender Kenntnis der Transportaufwendungen kann es
eintreten, dal an Aufkommensorten, die giinstige Verbindungen zu den
Bedarfsorten besitzen, Lager eingerichtet werden, wihrend das Aufkommen
transportungiinstiger Standorte vollstindig ausgeschopft wird. Die Auf-
kommensorte, an denen Lager eingerichtet werden sollen, miisen im Verlaufe
der Transportoptimierung bestimmt werden.

Ausgangsbasis sei die in Tabelle 22 gestellte Aufgabe, bei der das Gesamt-
aufkommen 400 und der Gesamtbedarf 340 Mengeneinheiten betragen. Da-
mit ibersteigt das Aufkommen den Bedarf um 60 Mengeneinheiten, die an
einem der Aufkommensorte gelagert werden miissen.

Um die Aufgabe mit Hilfe der Distributionsmethode losen zu konnen, ist
zundchst die Gleichheit zwischen Aufkommen und Bedarf herzustellen.
Zu diesem Zweck wird eine weitere Spalte eingerichtet, die einen fiktiven
Bedarfsort reprisentiert. Diese Spalte wird mit R (Reserve) bezeichnet.
Lieferungen von den Aufkommensorten an den fiktiven Ort R bedeuten,
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daf die betreffenden Mengen an den Aufkommensorten gelagert werden.
Damit entstehen jedoch keine Transportaufwendungen. Deshalb erhalten
die Felder 4,R, A,R und 4;R die Bewertungszahlen Null. Nach dieser
Erweiterung der Tabelle und der Matrix der Bewertungszahlen ist es mog-
lich, die Aufgaben zu l6sen. Zunédchst wird die Ausgangslosung nach der

Tabelle 22. Ausgangsgrofen eines Transportproblems, dessen Gesami-
aufkommen iiber dem Gesamtbedarf liegt

B, B, B B, a;
4, 6 3 5 1 200
A, 3 7 4 4 80
Ay 5 2 3 1 120
b; 30 170 60 80 @
340

Methode des doppelten Vorzugs ermittelt. Sie ist in Tabelle 23 angegeben.
In der dargelegten Weise bestimmt man schlieBlich die optimale Losung, die
Tabelle 24 enthalt. Nach dieser optimalen Loésung ist es am besten, im
Aufkommensort A4, die iiberschiissigen 60 Mengeneinheiten zu lagern.
Wiirde die Lagerung bei den Aufkommensorten 4, oder 4, vorgenommen,
so wiirden sich weniger giinstige Losungen als in Tabelle 24 ergeben, d. h.,
die Transportaufwendungen ligen hoher.

Auch der Fall, dal nicht bei allen Aufkommensorten Lagermoglichkeiten
bestehen, kann beriicksichtigt werden. Er beinhaltet eine zusétzliche Ein-
schriankung, die unter Umstdnden zu einer neuen und weniger vorteilhaften
Losung fiihrt. Natiirlich wiirden Lagerbeschriankungen in den Orten 4,

Tabelle 23. Ausgangslosung nach der Methode des doppelten Vorzugs

Bl Bz Ba B4 R a;
le| 3] [s] [1] [0

A, — 50 10 80 60 200
3] 7| e ¢ [o

4, 30 — 50 — — 80
ls| 2| 3] [t [0

A4, — 120 — — — 120

b,- 30 170 60 80 60 400
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und A4, sowie A4; zu unterschiedlichen Folgen fithren. Triten sie in 4, und
Aj auf, so bliebe die optimale Losung nach Tabelle 24 erhalten. Dagegen
fihrt eine Lagerbeschriankung bei 4; zu einem neuen Ergebnis. Nehmen
wir deshalb an, dal die Bedingungen am Aufkommensort 4, die Einrichtung
eines Lagers nicht zulassen. Das kann in der Matrix der Bewertungszahlen

Tabelle 24. Optimale Lisung

B, B B B | R| g
4, —~ 60 — 8 | 60 | 200
4, 3 - 50 - @ — 80
. —~ 10 10— - | 12
b; 30 170 60 80 | 60 | 400

dadurch ausgedriickt werden, dafl das Feld 4,R mit einer sehr groBen Zahl
M bewertet wird, die groBer als alle anderen c;;-Werte ist. Damit ist eine
Belegung dieses Feldes ausgeschlossen, d. h., 4, wird fiir Lagerungen nicht
vorgesehen.

Tabelle 25. Matriz der Bewertungszahlen (Aufwandszahlen)
B, B, B, B, R

A, 6 3 5 120 M
4, 30 7 4 4 0o
4, 5 20 30 10 020

Tabelle 25 enthilt die Bewertungszahlen zu diesem Problem, wobei bereits
die doppelt und einfach bevorzugten Felder gekennzeichnet sind. Damit ist
es moglich, sofort die Ausgangslosung nach der Methode des doppelten Vor-
zugs zu berechnen. Sie liefert Tabelle 26. Diese Ausgangslosung ist jedoch
noch nicht optimal. Sie wird noch in zwei Schritten, die im einzelnen hier

Tabelle 26. Ausgangslosung nach der Methode des doppelten Vorzugs

B, B, B, B, R a;

A, 10 50 60 80  — 200
4, 20 - - — 60 80
Ay - 120 - - - 120
b; 30 170 60 80 60 400
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nicht angegeben werden, verbessert und liefert dann die optimale Losung
nach Tabelle 27. Die Optimalitat dieser Losung ergibt sich aus den Poten-
tialen u; und v;, die gemeinsam mit den tatsichlichen Bewertungszahlen
schlieBlich die Matrix der Differenzen

2 0 1 0M—1
(dey)=[0 5 1 4 0
2001 0

ergeben. In dieser Matrix treten keine negativen Elemente auf, so daf eine
weitere Verbesserung der Losung nicht mehr moglich ist.

Tabelle 27. Optimale Losung

B, B, B, B, R
v; %
u < 3 2 3 0 0
le| [3] [s] [ [
4, 1 — 120 — 80 — 200
13| [7] 4 ¢ Lo
A, 0 30 — — - 50 80
ls) 2| [ |t [o
As 0 — 50 60 — 10 120
b,- 30 170 60 80 60 400

Ein Vergleich der Losungen in den Tabellen 24 und 27 zeigt, daf sich die
Verinderung in den Lagermoglichkeiten entscheidend auf die Gesamt-
16sung ausgewirkt hat. Das wirkt sich bei dem vorliegenden Problem
allerdings nur geringfiigig auf den Wert der Zielfunktion aus, der 800 fiir
Tabelle 24 und 810 fiir Tabelle 27 betragt. Die auftretenden Unterschiede
zwischen beiden Tabellen sind vorwiegend organisatorischer Natur beziiglich
der Belastung der einzelnen Beziehungen.

Mit der Unterscheidung der Aufkommensorte in solche, die eine Lagerung
zulassen, und solche, bei denen keine Lagerung moglich ist, wird ein sehr
grober MaBstab angelegt. In vielen Fillen wird die Lagerung iiberschiissiger
Mengen bestimmte Vorbereitungen erfordern, die je nach den ortlichen Be-
dingungen unterschiedliche Aufwendungen nach sich ziehen. In diesem
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Falle ist es besser, die bei den verschiedenen Aufkommensorten anfallenden
Lagerkosten abzuschétzen und als Bewertungen in der E-Spalte einzusetzen.
Das setzt allerdings voraus, daB auch die tibrigen Bewertungen als Kosten
ausgedriickt werden. Auf diese Weise ist es moglich, das Modell des Trans-
portproblems den tatséchlichen Bedingungen noch besser anzupassen.

5.5.2. Der Bedarf iibersteigt das Aufkommen
Nunmehr gilt
@ i

Jetzt ist es ebenso moglich, durch Aufnahme eines fiktiven Ortes eine
transportoptimale Losung zu suchen. Dieser fiktive Ort miiite ein Auf-
kommensort sein. Der fehlende AusstoB an Aufkommen wird diesem Auf-
kommensort zugeordnet. Seine Entfernungen von den Bedarfsorten sind
gleichfalls gleich Null, weil die Mengen, die von diesem Aufkommensort
bezogen werden, nicht existieren und somit nicht transportiert werden. Sie
rufen keinen Transportaufwand hervor. Erhilt also ein Bedarfsort Liefe-
rungen des fiktiven Aufkommensortes, so bedeutet das, dafl sein Bedarf
um diesen Betrag nicht gedeckt wird.

Eine derartige Losung ist optimal im Hinblick auf den Transportaufwand.
Im allgemeinen liegt jedoch eine schwerer wiegende Entscheidung vor, wenn
Fehlaufkommen besteht, als wenn iiberschiissiges Aufkommen gelagert
werden soll. Es wird bei fehlendem Aufkommen deshalb 6konomisch besser
sein, eine formale transportoptimale Losung zu vermeiden und dafiir durch
Uberlegungen, die auBerhalb der eigentlichen Optimierungsrechnung stehen,
zundchst einen Ausgleich zwischen Aufkommen und Bedarf insgesamt
dadurch herzustellen, daB der Bedarf einiger Bedarfsorte vor der eigent-
lichen Optimierung gekiirzt wird. Dabei werden Gesichtspunkte wie etwa
der der vordringlichen Belieferung bestimmter Bedarfsorte usf. beriick-
sichtigt. Erst dann, wenn auf diese Weise eine Ubereinstimmung zwischen
Gesamtbedarf und Gesamtaufkommen erzielt wurde, wird nach dem norma-
len Transportproblem optimiert.

Gerade das Problem der Unausgeglichenheit zwischen Aufkommen und
Bedarf macht deutlich, in welch starkem Mafle das Transportproblem zur
Losung von Aufgaben angewendet wird, die nicht zum Bereich des Trans-
portwesens selbst gehoren. Verteilungsaufgaben aller Art, die sich auf aus-
tauschbare Massengiiter beziehen und bei denen sehr oft zeitlich begrenzte
Abweichungen zwischen Aufkommen und Bedarf vorliegen, fiihren letztlich
zum Transportproblem. Thre ¢konomisch zweckméiBige Losung ist zuerst
eine Aufgabe der Produktions- und Verteilungsorgane. Der Nutzen solcher
optimal entschiedener Verteilungsaufgaben erstreckt sich dariiber hinaus

8*



116 5. Das Transportproblem der linearen Optimierung

auch auf das Transportwesen. Sein Hauptteil liegt jedoch im Bereich der Pro-
duktion und Verteilung. Das zeigt sich auch daran, dal das Transport-
problem nicht nur zur transportoptimalen Verteilung von Aufkommen und
Bedarf eingesetzt werden kann, sondern gleichzeitig dabei die Verbrauchs-
oder Einsatzkosten bei den Bedarfsorten beachtet werden kénnen und somit
die Moglichkeit entsteht, eine produktions- und transportoptimale Ver-
teilung des Aufkommens auf die verschiedenen Bedarfsorte vorzunehmen.
In einem solche Falle, der mathematisch nach dem Transportproblem in
der beschriebenen Form behandelt werden kann, stellen die Bewer-
tungszahlen c¢;; Summen aus wenigstens zwei Bestandteilen dar. Man kann
schreiben

Cij = bij + e, (21)

wobei die einzelnen Symbole bedeuten :

¢;;  Gesamtkosten, die entstehen beim Transport einer
Mengeneinheit von A4; nach B; und beim Verbrauch
dieser Einheit in B;

t;;  Transportkosten je Mengeneinheit von 4; nach B;

e;; Kosten fiir den Verbrauch einer aus 4; stammenden
Mengeneinheit in B; (Einsatzkosten).

Alle Bewertungszahlen wie auch ihre Bestandteile wiren dann in Kosten
(MDN) auszudriicken. Die eben beschriebene Situation kann zum Beispiel
eintreten, wenn n Kraftwerke aus m Kohlegruben beliefert werden sollen
und nicht nur die Transportkosten verschieden sind, sondern gleichzeitig
unterschiedliche Kosten beim Einsatz der verschiedenen Kohlesorten in
den Kraftwerken entstehen. Dieses reine Verteilungsproblem fithrt zwar
auf das Transportproblem, hat zu diesem aber nur indirekte Beziehun-
gen.

Bei der Ungleichheit zwischen Aufkommen und Bedarf gestattet es die
Losung des Transportproblems, zugleich Standortfragen zu entscheiden.
So findet man bei iiberschiissigem Aufkommen heraus, wo am zweckmaBig-
sten ein Lagerplatz einzurichten wiére.

5.6. Transportprobleme mit zusitzlichen Einschrinkungen

Im allgemeinen hingt die Besetzung der Felder bei einem Transportproblem
allein von den Bewertungszahlen dieser Felder und somit von dem Trans-
portaufwand ab, der mit ihrer Belegung entsteht. Hier kénnen jedoch Ein-
schrankungen auftreten, die durch die Bedingungen der Transportwege
ebenso wie durch jene bestimmt sein konnen, die bei den Bedarfsorten
hinsichtlich des Einsatzes der aus den Aufkommensorten gelieferten Mengen
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bestehen. Wir betrachten dazu ein sehr einfaches Beispiel, das auf den Wer-
ten der Tabelle 10 aufbaut. Dort ist ein Transportproblem.

Z = 51y + 12215 + Txyg + 1824y + Ty + 14253 —min
unter den einschrinkenden Bedingungen

T3y + @y + 2y = 120
Tgy + Top + X3 = 80

%31 + %y = 10
Zyp + Top =120
T3 + Zog = 70

gel6st worden. Diesen einschrankenden Bedingungen soll eine weitere hinzu-
gefiigt werden, die darin besteht, da der Bedarfsort B; vom Aufkommens-
ort A, héchstens 50 Mengeneinheiten erhalten darf. Wir wollen annehmen,
daB diese Bedingung durch die Verbrauchstechnologie bei B; gegeben ist.
Sie lautet

233 = 50.

Wir losen diese Aufgabe nach der Simplexmethode, wobei, wie bereits im
Zusammenhang mit Tabelle 10 ausgefiihrt, eine der obigen fiinf einschrén-
kenden Bedingungen entfallen kann. Durch Einfiihrung von vier kiinstlichen
Variablen und einer Schlupfvariablen lautet das mathematische Modell
schlieflich

Tp + @ + 215 + Ky =120
Toy + Xap 1 Xy + k, = 80
%y, + 2o + kg = 10
g + Loy + k, = 120
Z13 + w, = 50.

Wihrend wie bisher die kiinstlichen Variablen die Bewertungszahl M er-
halten, lautet diese fiir die Schlupfvariable Null.
In der iiblichen Weise liefert die Tabelle 28 die optimale Losung in Form von

2y, = 10 Ty = 0
245 = 60 Zg0 = 60
213 = b0 Za3 = 20.
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Tabelle 28. Simplextabelle einer Transportaufgabe mit einer zusdtzlichen Beschrinkung

Ty g T3 By Tay Ty ky ky ky k, Wy

—5—-12 —7—-18 —7—-14|—-M —M —M —M O

2M 2M M 2M 2M M

BV [380M % "o v T Ta_qal © 0 0 0o o

ke | 1200 1 1 1 0 o o 1t 0o o o0 0]120

k, | 8| 0 0 o 1 1 1| 0 1t 0 0 0f-—
<k | 10| tf] 0 0o 1 0o o] 0o o0 1 o0 o0f 10

k, [ 1200 0 1 0 o 1 0 0 0 0 1 0|-—

w | 5[ 0 0o 1 0 o0 0| 0 o0 0 o0 1]|-—

—-M —M —-M —M

1820/ 0 0 0—18 0 0|l jgiyy Ty n—12
s | 20/ 0 0 o0 0o 1 1 1 —1 =1 —1
e | 60| O 0 0 1 o)l —-1 o 1 1
ap | 10| 1 0 o0 0 0 0 0 1 0
zs | 60| 0 1 0 —1 o0 0 1 0 —1 0 —1
s | 50| 0 o0 1 0 0 o 0o o0 o0 1

In der optimalen Losung nach Tabelle 10 besitzt die Zielfunktion den Wert
1580. Der Wert der Zielfunktion in der optimalen Losung nach Tabelle 28
betrigt dagegen 1820. Damit erhoht sich der Aufwand allein dadurch, daf3
fur das giinstigste Feld 1.3 eine begrenzte Belegung vorgeschrieben wird,
um 240 Einheiten des Transportaufwands. Bei langfristigen Optimierungen
kann man auf dieser Differenz Uberlegungen aufbauen, die sich mit der
ZweckmiBigkeit der Begrenzung auseinandersetzen. Sofern es namlich,
auf die Dauer gesehen, billiger ist, MaBnahmen zur Aufhebung der Begrenzung
vorzunehmen, miifte man sich in dieser Richtung entscheiden. Dazu muf}
jedoch bekannt sein, wieviel mehr Aufwand die zusétzlich begrenzte Losung
gegeniiber der urspriinglichen Losung erfordert.

Eine Moglichkeit, die geschilderte Aufgabe durch die Distributionsmethode
zu l6sen, zeigen die Tabellen 29 und 30. In der Tabelle 29 sind die Be-
wertungszahlen zusammengestellt. Dabei erhielt das Feld 1.3 keine Be-
wertungszahl. Dieses Feld ist sofort mit 50 Einheiten belegt worden, womit
die zusétzliche einschrinkende Bedingung befriedigt wurde. Das Feld wird
damit entsprechend der einschrinkenden Bedingung maximal besetzt. Das
ist gerechtfertigt, weil es sich um ein sehr giinstiges Feld handelt, das in der
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urspriinglichen Losung nach Tabelle 10 hoher als mit 50 Einheiten belegt
ist. Die Vorteilhaftigkeit der einzelnen Felder (Kleinstwerte der Bewertungs-
zahlen in den Zeilen und Spalten) wird nun fiir alle iibrigen Felder bestimmt,
wobei das Feld 1.3 ausgenommen ist. Damit koénnen die giinstigsten unter

Tabelle 29. Aufwandszahlen c;;

mit gesperrtem Feld 1.3

| B, B, By
A, 570 12 /
A, 18 7o 140

den verbliebenen Feldern bestimmt und unter Beachtung der einschranken-
den Bedingungen maximal belegt werden. Praktisch handelt es sich um die
Anwendung der Methode des doppelten Vorzugs. Das Ergebnis dieses Vor-
gehens ist die Awusgangslosung nach Tabelle 30, die jedoch zugleich die
optimale Losung ist, wie ein Vergleich mit Tabelle 28 zeigt. Doch sei betont,
daB diese Ubereinstimmung zwischen Ausgangslésung und optimaler Losung
bei der Methode des doppelten Vorzugs nicht generell besteht.

Tabelle 30. Ausgangslosung nach der Methode des doppelten
Vorzugs (zugleich optimale Losung)

B, B, B, a;
4, 10 60 50 120
4, - 60 20 80
b; 10 120 70 200

Wenn mehr als eine zusétzliche einschrinkende Bedingung gegeben ist,
kann man das geschilderte Verfahren in prinzipiell gleicher Weise an-
wenden.

5.7. Mehrstufiges (mehrdimensionales) Transportproblem

Die meisten Transporte sind Bestandteil einer lingeren Transportkette.
Auch Verteilungsaufgaben, die durch Produktions- und Verteilungsorgane
gelost werden, konnen als Glied eines ganzen Verteilungssystems betrachtet
werden. Denken wir etwa an den Transport des Obstes von den Plantagen
in die Konservenfabriken und der Konserven von den Fabriken in die Ge-
schifte oder GroBhandelslager. Auch die Verteilung des Getreides auf die
Sammelstellen, von da auf die Miihlen und schlieflich des Mehls auf die
weiteren Verbraucher ergibt ein mehrstufiges Transport- bzw. Verteilungs-
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problem. Andere Waren wiederum, die in gréBeren Mengen transportiert
werden und die gegenseitig austauschbar sind, werden iiber Zwischenlager
an die Verbraucher geliefert. In all diesen Féllen liegt der Wunsch nahe, das
mehrstufige Transportproblem in seiner Gesamtheit auf einmal zu l6sen,
statt die einzelnen Transportstufen getrennt zu optimieren.

Bild 12. Prinzipskizze eines
Standortproblems in Form
des zweistufigen Transport-
problems

In Bild 12 ist der einfachste Fall eines mehrstufigen Transportproblems,
das zweistufige Transportproblem, dargestellt. Wir kénnen uns vorstellen,
daf die Aufkommensorte 4; zum Beispiel Versandorte oder -schwerpunkte
fiir Getreide, die B; Bedarfsorte fiir Getreide (zum Beispiel Miihlen) und die
C, Zwischenlager oder Sammelstellen sind. Entsprechend der in ,,Die
Mathematik in der Okonomie* [15] verwendeten Symbolik ergibt sich dann :

A;: Aufkommensorte (2 = 1,2, ..., m)
Cy: Zwischenlager k=m4+1,m+2,...,m-+s)
B,: Bedarfsorte =m+s+1,m4+s-+42, ...,
m+ s+ n)
cix: Entfernung zwischen dem Aufkommensort 4; und dem
Zwischenort C),
¢xj: Entfernung zwischen den Zwischenort Cp und dem Be-

darfsort B;
¢;;: Entfernung zwischen dem Aufkommensort 4; und dem
Bedarfsort B;.
Generell gilt
Cij = Ci 1 Cj (22)

Um zu zeigen, iiber welchen Zwischenort C;, die Entfernung
¢;) bestimmt wurde, wird allgemein c¥ geschrieben.
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Sind die Aufkommensmengen a;, die Kapazititen der Zwischenorte ¢; und
die Bedarfsmengen b; vorgegeben, so kann die Losung mit der entsprechend
modifizierten Distributionsmethode gefunden werden. Dariiber hat KorpA
[16] geschrieben. Das Schema einer derartigen Aufgabe mit nur zwei Auf-
kommensorten, zwei Zwischenorten und zwei Bedarfsorten lautet:

B; B, Cr (]
C, c
4, 2 2 ay
C, Cs
C. [
A, : 2 a,
C, Cy
b; b be —

Die Entfernungen bzw. Aufwandssitze werden hierbei als c¢{f’ geschrieben.
Eine zulissige Losung umfaBt (m + s 4+ n — 2) besetzte Felder. Bei der
Festlegung der Randzahlen werden die ersten beiden Randzahlen frei ge-
wihlt. Wie beim einfachen Transportproblem mufl die Summe der Rand-
zahlen fiir besetzte Felder gleich dem Aufwandssatz dieser Felder sein. Es
gilt

ug + wy + v; = .
Die Besetzung leerer Felder verbessert die Losung dann, wenn

o — o <0,
wobei

¢ = u; + wy 4 v
ist.
Die skizzierte Aufgabe kann mit der Simplexmethode ebenfalls geldst
werden. Die Anwendung dieser Methode empfiehlt sich insbesondere dann,
wenn zusitzliche Beschrinkungen fiir die zu bestimmenden Variablen be-
stehen.
Die einfachste Form des zweistufigen Transportproblems liegt vor, wenn
lediglich die Aufkommenswerte a; und die Bedarfswerte b; vorgegeben
sind. Die KapazititsgroBen ¢, der Zwischenorte werden dann erst im Ver-
laufe der Berechnungen bestimmt, und zwar so, wie das fiir die optimale
Losung erforderlich ist. Bei der Losung dieser Aufgabe werden die Bedarfs-
orte den Aufkommensorten direkt zugeordnet. Die Grundlage dieser Zu-
ordnung sind die Bewertungszahlen (Entfernungen) ¢{. Da es stets mehrere
solche Entfernungen zwischen einem Bedarfsort und einem Aufkommensort
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gibt, ndmlich so viele, wie es Lager gibt, iiber die der Transport geleitet
werden kann, wird in die Matrix der Bewertungszahlen jeweils die kiirzeste
Entfernung zwischen zwei Orten A; und B; aufgesucht und eingesetzt.
Nehmen wir an, daB sich die kiirzeste Entfernung zwischen 4; und B;
iiber den Zwischenort C; ergibt, so ist

¢ = mkin (i + xj) = ca + ¢y5. (23)

Zur Demonstration dient die Berechnung der kiirzesten Entfernung zwi-
schen 4, und Bg an Hand der Werte aus Tabelle 31. Zwischen 4, und B,
sind Verbindungen iiber Cy, C, und C; moglich. Wir erhalten folgende Werte :
1. iiber C3: ¢ = ¢33+ €36 = 5+ 12 =17
2.iber Cp: ¢ =cyt+eg= 34+ 1= 4
3. itber C5: ¢ = ¢;5 + ¢56 = 10 + 6 = 16.

Tabelle 31. Ausgangsgrifen eines zweistufigen Transportproblems (nach Bild 12)

G, C, Cy By B, By a;
A, 5 3 10 0 120
A, 8 5 2 : 80
C, 12 8 20
C, 1 11 6
Cy 6 13 8
b; 70 110 20 200

Die kiirzeste Entfernung ergibt sich iiber die Zwischenstation C,. Es ist
demnach.
cig = mkin (cur + Crg) = C1q + €46 = 4.

Auf diese Weise werden alle Bewertungszahlen ¢}’ und daraus weiter c{? be-
rechnet. Das Ergebnis ist in Tabelle 32 zusammengestellt. Diese Tabelle

(1]

Tabelle 32. Bewertungszahlen c;; zwischen den Aufkommensorten 4;

und den Bedarfsorten B; (iiber die Zwischenorte bzw. Lager 1)

By B, By a;
A, 4@ 13® 94 120
A, 6® 150) 106 80
b; 70 110 20 200
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enthélt die AusgangsgroBen fir die direkte optimale Zuordnung der Auf-
kommens- zu den Bedarfsorten. Die optimale Losung wird mit Hilfe der
Methode der Potentiale bestimmt. Sie lautet

) 4)
R =170 x5 = 0

3) (5) __
¥ = 50 ) = 60

(4) (5)
= 0 x5 = 20

(vgl. Tabelle 33). Nachdem auch bekannt ist, iiber welche Zwischenorte die
Verteilung des Autkommens erfolgt, kann die dadurch erfolgende Belastung
der Zwischenorte abgeleitet werden. Gleichzeitig werden auch die Mengen
bestimmt, die in den einzelnen Stufen des mehrstufigen Transportproblems
ausgetauscht werden.

Tabelle 33. Optimale Losung I

B, B, B, a;
4, 70 50 - 120
4, - 60 20 80
b; 70 110 20 200

Fiir die in den einzelnen Stufen verteilten Mengen bzw. fiir die Besetzung
der Felder in den beiden Teilproblemen des gesamten Transportproblems
erhalten wir
Ty = L (24a)
7

in der ersten Stufe und

e (24b)

(2

in der zweiten Stufe. Die Belastung der Zwischenorte ist
= ink (25a)
?
bzw. Cp = Zxk,-. (25b)
i

In der Tabelle 34 sind die Werte nach (24a) und (24b) sowie die nach
(25b) eingetragen. In dieser ausfithrlichen Losung sind sowohl die zwischen
den Aufkommens- und Bedarfsorten ausgetauschten Mengen (Gesamt-
transportproblem) als auch die auf den beiden Stufen des Transportproblems
ausgetauschten Mengen enthalten.
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Tabelle 34. Vollstindige optimale Lisung I

C, C, Cs B B, By ;
4, 50 70 — 70 50 — 120
A, — — 80 — 60 20 80
C, — 50 — 50
C, 70 — — 70
C, — 60 20 80
b; 70 110 20 200

In der Tabelle 33 (und auch in Tabelle 34) liegt nur eine der beiden mog-
lichen optimalen Losungstabellen vor. Die Matrix der Differenzen nach der
Methode der Potentiale ergibt fiir die optimale Losung nach Tabelle 33

0 0 1
(Ac”")=(6 0 0)’

Die Nullelemente der besetzten Felder sind unterstrichen. Es bleibt dem-
nach noch ein Nullelement, das zu dem unbesetzten Feld 2.6 gehort. Eine
Besetzung dieses Feldes ergibt zwar eine andere, doch keine bessere oder
schlechtere Losung, weil die dadurch eintretende Verénderung des Wertes
der Zielfunktion gleich Null ist. Die Belastung des Feldes 2.6, die hier nicht
im einzelnen vorgefiithrt werden soll, ergibt eine zweite optimale Losungs-
tabelle entsprechend Tabelle 35. Zu ihr gehért die Matrix der Differenzen

0 0
a5 3 o)

Sie zeigt an, daB es zu dieser Losung eine zweite optimale Losung gibt, die
durch Belegung von 2.7 entsteht. Das ist jedoch die urspriingliche optimale
Losung entsprechend Tabelle 33. Die vollstdndige optimale Losung II ist
in Tabelle 36 gegeben.

Das Modell des mehrstufigen Transportproblems kann auch zur Bestimmung
transportoptimaler Standorte eingesetzt werden. In diesem Zusammenhang

Tabelle 35. Optimale Losung 11

By B, By ;
A, 10 110 — 120
A, 60 — 20 80
b; 70 110 20 200
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Tabelle 36. Vollstindige optimale Losung 11

Cy c, 0y B, B, B, a;

4, 110 10 — 10 110 - 120
4, - 60 20 60 — 20 80
Cy - 110 - 110
c, 70 - - 70
0y - - 20 20
b; 70 110 20 200

ist es in ,,Die Mathematik in der Okonomie‘‘ [17] angefiihrt. Voraussetzung
dazu ist, daB mogliche Standorte vorliegen, fiir die lediglich zu entscheiden
ist, ob sie eingerichtet werden und welche Kapazitat sie aufweisen miissen.
Auf diese Weise kann auch das in den Tabellen 31 bis 36 behandelte Beispiel
interpretiert werden. Die drei Zwischenorte U5, C, und Cj sind dann mog-
liche Standorte, die fiir ein Lager oder eine andere Einrichtung, iiber die die
Verteilung erfolgen muB, in Frage kommen. Durch die Optimierung hat sich
herausgestellt, dafl in beiden optimalen Losungen alle drei Zwischenorte
benotigt werden, um eine transportminimale Verteilung zu sichern. Aller-
dings ist die Kapazitdt der Zwischenorte in den verschiedenen Ldsungen
unterschiedlich.

Auch hierbei mu8 man beachten, dafl zundchst nur eine transportoptimale
Losung gefunden wurde. Bekanntlich sind jedoch die Lagerkosten je Ein-
heit der Lagermenge von der GroBe des Lagers abhingig (diese Feststellung
gilt im Prinzip auch fir andere Zwischeneinrichtungen), wobei sie mit
steigender Kapazitdt sinken. AuBerdem sind diese Kosten auch standort-
abhingig und somit nicht notwendigerweise in allen drei Zwischenorten
gleich. Sollte also eine Bestimmung der Kapazitdt hinsichtlich eines all-
gemeineren 6konomischen Kriteriums optimal sein, so miiften diese Kosten
oder allgemein Aufwendungen in die Bewertungszahlen und damit in die
Zielfunktion eingehen. Untersuchungen in dieser Hinsicht hat HoLpHAUS
[18] angestellt.

5.8. Verschiedene Optimalkriterien beim Transportproblem

Obwohl die Bewertungszahlen allgemein als AufwandsgroBen eingefiihrt
sind, wurden sie doch in allen Beispielen bisher als Entfernungen aufgefaf3t.
Diese Interpretation liegt bei Transportproblemen sehr nahe. Werden
nidmlich die Bewertungszahlen in Kilometern angegeben, so ergibt sich
unbedingt eine lineare Zielfunktion, die ja zu den Voraussetzungen zur An-
wendung der linearen Optimierung gehért. Gibt man gleichzeitig die Trans-
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portmengen, die auf die einzelnen Verbindungen oder Felder der Tabelle
verteilt werden, in Tonnen an, so liefert die Zielfunktion den entstehenden
Gesamttransportaufwand in Tonnenkilometer. Das ist eine Einheit, die fiir
die Planung und Abrechnung von Transportleistungen von groBer Bedeutung
ist. Gleichzeitig kann man iiber einen mittleren Kostensatz je Tonnenkilo-
meter bzw. — seitens der verladenden Wirtschaft — iiber entsprechende
Tarifgroen, den Aufwand in Mark der Deutschen Notenbank (MDN)
umrechnen. Fir die verladende Wirtschaft wird dieses Vorgehen im all-
gemeinen das iibliche sein.

Fiir innerbetriebliche Optimierung in den Transportbetrieben, etwa bei der
Zufilhrung von Lastkraftwagen zu Beladepldtzen, bei der Optimierung
des Leerwagenausgleichs der Eisenbahn und dhnlichen Aufgaben kann das
Entfernungskriterium natiirlich auch angewendet werden. Dessenungeachtet
spielen natiirlich hier auch die tatsichlich fiir den Betrieb anfallenden Kosten
eine entscheidende Rolle. Es wire also denkbar, sie den Bewertungszahlen
zugrunde zu legen. Dagegen sprechen vor allem zwei Griinde. Zum einen
hingen die Kosten von der zu optimierenden Leistung im allgemeinen
weder streng noch approximativ linear ab, so da es notwendig wird, ent-
weder nichtlinear zu optimieren oder aber zu versuchen, die nichtlineare
Zielfunktion stiickweise in lineare Teilfunktionen zu zerlegen. Das ent-
spriche etwa einem Vorgehen, bei dem ein Gesamtleistungsbereich in
Teilbereiche zerlegt wird. Fiir jeden Teilbereich wird dann mit festen Ein-
heitskosten gerechnet, womit stiickweise lineare Zielfunktionen angesetzt
werden konnen. Zum anderen jedoch bereitet es insbesondere bei komplexen
Verkehrsprozessen groBe Schwierigkeiten, die fiir bestimmte und zu opti-
mierende Teiloperationen anfallenden Kosten exakt zu erfassen. Das ist
zumindest mit einem erheblichen Erfassungsaufwand verbunden. Solange
nicht das gesamte Erfassungs- und Abrechnungswesen der Volkswirtschaft
auf diejenigen Kennziffern eingerichtet worden ist, die fiir Optimierungs-
rechnungen vordringlich benotigt werden und somit echte Planungsunter-
lagen zu liefern vermogen, wird die Erfassung von spezifischen Kosten-
unterlagen als Grundgrofen der Optimierung so aufwendig sein, daf man
in vielen Fillen davon absieht.

Bewertungszahlen im MDN-Ausdruck werden schlieflich auch benétigt,
wenn zusammengesetzte Bewertungszahlen verwendet werden. Das tritt
zum Beispiel ein, wenn bei einem mehrstufigen Transportproblem sowohl die
Transportaufwendungen als auch die betrieblichen Aufwendungen in den
Zwischenorten in den Bewertungszahlen beriicksichtigt werden sollen.
Hierbei konnen die Transportaufwendungen auch durch die Tarifdaten
ausgedriickt werden.

Fiir einige sehr hochwertige oder verderbliche Transportgiiter ist der weg-
oder kostenoptimale Transportplan nicht immer der beste. Der optimale
Transportplan ist dann derjenige, dessen lingste Transportzeit ein Mini-
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mumn ist. Uber die Losung des zeitoptimalen Transportplanes hat Barsow
[19] berichtet.

Die eingchrinkenden Bedingungen eines Transportproblems, das zeitoptimal
gelost werden soll, sind die gleichen wie beim iiblichen Transportproblem.
Sie lauten beziiglich der Aufkommensmengen

n
2 = @
i=1
und beziiglich der Bedarfsmengen
m
inj = bj.
i=1
AuBerdem gilt

m n
2= 2b;.
i=1 i=1

Die Bewertungsmatrix besteht aus den Elementen ¢;;, die die Zeit (in Stun-
den, Tagen oder anderen Einheiten) angeben, die erforderlich ist, um das
Transportgut aus dem Aufkommensort 4; in den Bedarfsort B; zu trans-
portieren.
Zu jeder nichtnegativen Losung (x;;) des gestellten Problems gibt es eine
Zeitmatrix. Die Elemente dieser Matrix sind gleich ¢; fiir diejenigen z;,
die groBer als Null sind, und gleich Null fiir die 2;;-Werte, die gleich Null sind,
d.h. fir die unbesetzten Felder. Das grofSte Element der Zeitmatrix der k-ten
nichtnegativen Losung (z;;) sei &), . Unter allen méglichen nichtnegativen
Losungen ist diejenige die optimale, fiir die das maximale Zeitelement den
kleinsten Wert aller maximalen Zeitelemente besitzt, d. h., fir die optimale
Losung gilt
fogy = min £, (26)
x
Optimal ist somit jene Losung, deren lingste Transportzeit kleiner ist als
die lingste Transportzeit aller iibrigen Losungen.
In der bereits zitierten Quelle wird ein Verfahren angegeben, nach dem die
optimale Losung bestimmt wird. Es weicht verstindlicherweise vom all-
gemeinen Transportalgorithmus ab.
In der skizzierten Form wird vorausgesetzt, daf die Transportzeit ¢;
zwischen dem Aufkommensort 4; und dem Bedarfsort B; konstant und
somit unabhingig von der Transportmenge x;; ist. Das bedeutet, dal immer
diejenige Transportkapazitdt vorgehalten wird, die zur Erfillung der
optimalen Losung notwendig ist. Da diese Forderung praktisch kaum erfiill-
bar ist, miissen im Modell noch diejenigen Hochstwerte fiir ;; angegeben
werden, die nicht iiberschritten werden diirfen, wenn die Transportzeiten
t;; eingehalten werden sollen.



6. Einige Anwendungsfille der linearen
Optimierung

Im Zusammenhang mit der Darstellung der verschiedenen Optimierungs-
methoden wurden bereits Beispiele fiir die Anwendung dieser Methoden
dargelegt. Um die unterschiedlichen Moglichkeiten des Aufstellens und
der Losung von Aufgaben der linearen Optimierung noch mehr zu verdeut-
lichen, werden in diesem Abschnitt weitere Beispiele behandelt. Im einzel-
nen handelt es sich um

1. die Bestimmung einer kostenminimalen Brennstoffmischung,
2. die Losung eines einfachen Zuschnittproblems und
3. die Verteilung von Arbeiten (Verrichtungen) auf verschiedene Maschinen.

Gleichzeitig sollen weitere Hinweise zur Optimierung von Lieferbeziehungen
in der Volkswirtschaft und zur transportoptimalen Standortwahl gegeben
werden.

6.1. Kostenminimale Brennstoffmischung

Im Abschnitt 4.4. wurde eine optimale Brennstoffmischung gesucht, die
bei vorgegebenen Gesamtkosten und Einschrinkungen hinsichtlich der
Menge einen maximalen Heizwert besitzen sollte. Natiirlich kann auch eine
entsprechend umgekehrte Fragestellung beantwortet werden. In der Regel
wird seitens der Technologie der Heiz- und Kraftanlagen eine Brennstoff-
mischung gefordert, die einen minimalen Heizwert nicht unterschreitet.
Gleichzeitig sollen die Kosten dieser Mischung so gering wie moglich sein.
Eine derartige Aufgabe wird nunmehr gestellt und gelost.

Zur Bildung einer Brennstoffmischung mit minimalen Kosten stehen
wiederum vier Brennstoffe zu Verfiigung. Thre Kosten betragen, umgerech-
net auf die Einheit, in der Reihenfolge der Sorten 2; 1; 1,2 und 1,6. Die
Brennstoffmischung muB demnach so zusammengestellt werden, daB der
Ausdruck

22, + 12y + 1,22, + 1,62,

seinen Kleinstwert annimmt. In ihm sind #, bis x, die Mengen, mit denen
die einzelnen Heiz- oder Brennstoffsorten in der Mischung enthalten sind.
Die Heizwerte der vier Brennstoffsorten betragen, in Tausend kecal aus-
gedriickt, in der gleichen Reihenfolge wie die Kosten 7, 4, 5 und 6. Der
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minimale Heizwert der Mischung soll — in der gleichen Einheit — 14000
nicht unterschreiten. Daraus ergibt sich als eine einschrinkende Bedingung:

Tz, + 4z + 52y -+ 62, = 14000,

Weitere einschrinkende Bedingungen, die durch die Verfigbarkeit der
Brennstoffsorten und durch andere technologische Bestimmungen gegeben
sind, lauten

2z, + x5 = 2000
Z, 500.

Das gesamte mathematische Modell der Aufgabe 148t sich somit wie folgt
zusammenstellen :
1. Zielfunktion

2z, + 1z, + 1,225 + 1,62, > min

v 1

2. Einschrinkende Bedingungen

Tz, + 42, + 525 + 62, = 14000
2z, + x4 = 2000
2z, = 500
3. Nichtnegativitdtsbedingung

#,=0,...,2, = 0.

Es liegt eine Minimumaufgabe vor. Entsprechend friiheren Uberlegungen
l6sen wir nicht diese Minimumaufgabe, sondern die entsprechende Maxi-
mumaufgabe. Wir erhalten ihr Koeffizientenschema aus dem Koeffizienten-
schema der urspriinglichen (primalen) Minimumaufgabe, das wie folgt
lautet:

7 4 5 6 14000

2 0 1 0 2000

0o 0 0 1 500

2 1 1,2 1,6 min.

Indem dieses Koeffizientenschema der primalen Minimumaufgabe spalten-
weise gelesen wird, erhalten wir das Koeffizientenschema der dualen Maxi-
mumaufgabe als

7 2 0 2
4 0 01
5 1 0 1,2

6 0 1 1,6
14000 2000 500 max.
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Nunmehr sind die einschrinkenden Bedingungen durch obere Begren-
zungen gegeben. Um diese Ungleichungen zu Gleichungen umzuformen,
werden sie durch Schlupfvariable erginzt. Die Schlupfvariablen der dualen
Aufgabe sind jedoch die echten Variablen der primalen Aufgabe. Wir
bezeichnen sie deshalb, um sofort die fiir die urspriingliche Aufgabe zu-
treffende Bezeichnung zu gebrauchen, mit x. Die echten Variablen der
dualen Aufgabe sind u.

Das mathematische Modell der dualen Aufgabe lautet nunmehr

Tuy + 2u, + 2, =2
4u, + z, =1
Su; + uy + 24 =12
6u, + ug +x,=16

14000 u, + 2000 uy + 500 ug + Oz, 4 Oz, 4 Oz + Oxy — max.

Die Nichtnegativitatsbedingung ist nicht besonders angegeben, da sie im
Dualproblem nicht erfiillt sein muB8.

Die Losung der geschilderten Aufgabe — duales Maximumproblem — er-
folgt in der Tabelle 37. Nach zwei Verbesserungsschritten findet man die
optimale Losung fiir die primale Minimumaufgabe in der Zielfunktion des
letzten Schrittes. Sie lautet

z, =0 z3 = 2200
2, =0 zy, = 500.

Die Zielfunktion besitzt dabei den Wert 3440 (Wahrungseinheiten), der
die Kosten der optimalen Losung angibt. Zunéachst sei gepriift, ob die opti-
male Losung die einschriankenden Bedingungen der primalen Minimumauf-
gabe erfillt.

7-0+4-04 5-2200 4 6 - 500 = 14000
2.040-0+1.2200 4 0-500 = 2200
0-040-0+0-2200+41-500= 500.

Lediglich die untere Grenze der zweiten einschrénkenden Bedingung wird
um 200 iberschritten. Das entspricht dem Wert v, = 200 der Schlupfvaria-
blen u, in der Minimumaufgabe, die in der dualen Maximumaufgabe als
echte Variable auftritt. Damit zeigt sich, daB alle einschrinkenden Be-
dingungen der urspriinglichen Minimumaufgabe erfiillt werden.

Zugleich gibt es eine Losung der dualen Maximumaufgabe, die uns hier
jedoch nicht interessiert. Sie steht an der iiblichen Stelle, d. h. in den ersten
beiden Spalten des letzten Schrittes. Allgemein kann man sagen, dafl, wenn
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Tabelle 37. Berechnung einer kostenminimalen Brennstoffmischung nach der Simplexmethode

%, Uy Uy x Z, x4 xy
BV | o 14000 2000 500 o 0 0 o0
2
o | 2 7 2 0 10 0 o | =
1
5 | 1 4 0o o A
= 1,2
< 1,2 5] 1 0 0 0 1 0 =
o | 1,6 6 0 1 o o0 o 1 %‘f
—3360 | 0 —800 500 0 0 —280 0
£51 16 0 3 0 1 0o — L8 0 —
5 5 5
0,2 4 4
%2 o —= o o 1 -2 0 | —
“ 5 5 5
| 12 1 L o o L o | -
5 5 5
5 5 o 5 5
—3440 0 —200 0 || 0 0 —2200 —500]
o | L8 o 2 0 1t o -1 o
5 5 5
5 | 22 o - o 1 %
5 5 5
w | 12 1 Lo o o L o
5 5 5
sy | 2B o 5% 4 o 0 —2 4
5 5 5
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die urspriingliche Minimumaufgabe die Bestimmung einer kostenminimalen
Brennstoffmischung bei einem bestimmten Mindestheizwert fordert, in der
dualen Maximumaufgabe eine Brennstoffmischung bestimmt werden soll,
deren Heizwert maximal ist und die gleichzeitig bestimmte Kostengrenzen
einhélt. Diese Kostengrenzen sind als Einheitskosten in den einschrankenden
Bedingungen der dualen Maximumaufgabe vorgegeben.

6.2 Losung eines Zuschnittproblems

Die Abmessungen der zu verarbeitenden Materialien entsprechen in der
Regel nicht den Abmessungen, nach denen die Materialien in der Produk-
tion eingesetzt werden sollen. Es ist deshalb erforderlich, entsprechende
Teile oder Stiicke herzustellen. Sehr deutlich wird diese Aufgabe zum Bei-
spiel bei der Verarbeitung von Blechtafeln vorgegebener Abmessung, aus
denen Tafeln kleinerer Abmessungen geschnitten werden sollen. Dabei wird
angestrebt, die anfallenden Abfallstreifen insgesamt so gering wie moglich
zu halten. Formulieren wir dazu eine Aufgabe:

Zur Verfiigung stehen Tafeln der Abmessung 2 m - 1 m, aus denen

100 Tafeln der Abmessung 0,5 m - 0,6 m
50 Tafeln der Abmessung 0,8 m - 0,4 m
100 Tafeln der Abmessung 0,3 m+1,0m

geschnitten werden sollen. Die drei verschiedenen Tafelarten bezeichnen wir
in der Reihenfolge der Aufzihlung mit I, IT und III. Es soll nun bestimmt
werden, wieviel urspriingliche Tafeln (2 X 1) benétigt werden, wobei ge-
fordert wird, daB der Verschnitt (Abfall beim Zuschneiden der Stiicke)
moglichst gering bleibt. Diese Forderung ist gleichbedeutend damit, daf
verlangt wird, die erforderlichen Stiickzahlen der zuzuschneidenden Tafeln
aus einer moglichst geringen Stiickzahl der urspriinglichen Tafeln her-
zustellen.

Zur Loésung der Aufgabe miissen zunéchst die moglichen Zuschnittvarianten
bestimmt werden. Im. Falle des gegebenen Beispiels sollen aus hier nicht
niher zu erlduternden Griinden folgende sechs Zuschnittvarianten zur Aus-
wahl stehen (Bild 13):

1) 6 Tafeln I

2) 2 Tafeln IT und 4 Tafeln ITI

3) 2 Tafeln I, 2 Tafeln IT und 2 Tafeln IIT

4) 5 Tafeln II

5) 4 Tafeln I und 2 Tafeln IT

6) 6 Tafeln IIIT.
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Der bei den einzelnen Zuschnittvarianten anfallende Verschnitt V; (j = 1,
2, ..., 6) betragt
vV, =020, V,=0,16, V3 = 0,16, V, = 0,40, V5 = 0,16

und Vg = 0,20 m? je urspriingliche Tafel.

1 2
I I I
m|\lm\m|lm| I
I I I I
3 4
I
r|r|Z|E r|\r ||| @
I
5 6
I I
T r\rm|\m\rm|\om|zx
I I o

Bild 13. Mogliche Zuschnittvarianten

Die AusgangsgroBen der Berechnung sind in Tabelle 38 zusammengestellt.
Dabei werden die geforderten Stiickzahlen der Tafel I bis IIT durch
b; (1 =1,2,3) und der anfallende Verschnitt durch ¥V; angegeben. Die
Koeffizienten a;; geben an, wieviel Tafeln der Sorte ¢ (I oder II oder IIT)
bei der Zuschnittvariante § gewonnen werden kénnen. Zu bestimmen sind
die Werte x;, die angeben, wieviel urspriingliche Tafeln nach der Variante j
zugeschnitten werden sollen.

Bei der Aufstellung des mathematischen Modells werden wir die einschrén-
kende Bedingung hinsichtlich der geforderten Stiickzahlen dadurch etwas
unschérfer fassen, dal wir fordern, mindestens die angegebenen Stiick-
zahlen zuzuschneiden. Damit stellen die Werte b; untere Grenzen dar, die
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Tabelle 38. Zusammenstellung der Zuschnittvarianten

\ N

Variante
1 2 3 4 5 6 b;

Teil
I 6 0 2 0 4 0 100
II 0 2 2 5 2 0 50
II1 0 4 2 0 0 6 100
V; 0,2 0,16 0,16 0,4 0,16 0,2

nicht unterschritten werden diirfen. Das mathematische Modell lautet
dann:

1. Zielfunktion
zy + x5 + %3 + 2, + 75 + 2 — min
2. Einschrinkende Bedingungen
6z, + 0z, + 223 + 0, + 425 4+ O0xg = 100
0z, + 2%, + 224 + 52, + 225 + Oxg = 50
O0x, + 4z, + 225 + Oz, + Ox; + 624, = 100
3. Nichtnegativititsbedingung
2, =20,...,06 = 0.

Es liegt somit wiederum eine Minimumaufgabe vor. Aus dem oben an-
gegebenen Koeffizientenschema, bei dem wir uns die Zielfunktion unter die
einschrinkenden Bedingungen gesetzt denken, ergibt sich das folgende
Koeffizientenschema der dualen Maximumaufgabe wie folgt:

6 0 0

S B O N O
[ UG 3 Ol )
DO O N
o e s e

100 50 100 max.
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Nachdem die Schlupfvariablen eingefiihrt sind, die wiederum die echten
Variablen der urspriinglichen Minimumaufgabe darstellen, ergibt sich das
mathematische Modell der dualen Maximumaufgabe zu

1. Zielfunktion
100%, 4 50u, + 100u; + Oz, + Oxy + Oxg -+ Oxy + Oy -
+ 0zg — max

2. Einschrinkende Bedingungen

6u, + 2 =

2uy + 4ug + 2, =

2uy + 2uy + 2u,4 + x4 =

5u, T % =

du; + 2u, + 5 =
6ug + xg = 1.

Die so formulierte Aufgabe wird mit Hilfe des Simplexverfahrens gelost.
In Tabelle 39 ergibt sich folgende optimale Losung:

x, = 16,67 (entspr. 17)

zy =25
zg= 0
xzg = 0.

Demnach werden 16,67 (praktisch 17) Tafeln nach der Variante 1 und
25 Tafeln nach der Variante 2 zugeschnitten. Dadurch werden alle einschrén-
kenden Bedingungen der urspriinglichen Minimumaufgabe erfiillt. Der an-
fallende Verschnitt betrdgt 17-0,2 + 25.0,16 = 7,4 m2. Die Spalte der
Quotienten (letzte Spalte) im vorletzten Tabellenteil von Tabelle 39 enthilt
den kleinsten Quotienten !/, insgesamt dreimal. Damit liegt Entartung vor.
Es kommen zunichst drei Basisvariable fiir das Ausscheiden aus der Basis
in Frage, ndmlich z,, #; und «;. Da die Entartung in der dualen Aufgabe
auftritt, besteht die Moglichkeit, daf die zugehorige primale Aufgabe meh-
rere optimale Losungen besitzt.

Nachdem die optimale Losung entsprechend Tabelle 39 gefunden wurde,
indem z, aus der Basis ausschied, sollen weitere Losungen dadurch bestimmt
werden, daB auch x; und x; aus der Basis entfernt werden. Wird z; aus der
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Tabelle 39. Losung eines Zuschunittproblems mit der Simplexmethode

Uy Uy Ug ; o g z, 5 g
BV 0 100 50 100 0 0 0 0 0 0
= 1
<« 1 6] o 0 1 0 0 0 0 0 a
x, 1 0 2 4 0 1 0 0 0 0 —
1
3 1 2 2 2 0 0 1 0 0 o |5
x, 1 0 5 0 0 0 0 1 0 0 -
1
g 1 4 2 0 0 0 0 0 1 0 s
g 1 0 0 6 0 0 0 0 0 1 -
100 0 50 100 |12 0 0 0 0
6 6

>y % 1 0 0 % 0 0 0 0 0 —
1
z, 1 0 2 4 0 1 0 0 0 0 <

1
Zy 4 0 2 2 =2 1 0 0 0 | =

6 6 3

z, 1 ] 5 0 0 0 0 1 0 0 —
zg % 0 2 0 |- -;i 0 0 0 1 0 -
= 1
<~ 1 0 o |6 0 0 0 0 0 1 3
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Tabelle 39. (Fortsetzung)

uy Uy Uy x, Zy %y Z, x5 Zg
_200 o 50 o |20 5 o o o 1%
6 6 6
1 1
L t o ol X o o o o o |-
2% 6 6
2 = 4 |1
Z 1o J2] o o 1 o o o —= |1
<« 5 u 5 -
2 2 2 |1
Z 1o 2 o|=2 o 1 o o 2|21
il B 6 6 |6
1
@ | 1 0 5 0 o 0 0 1 0 o |
x| 2 o 2 o |=% o o o 1 o |L
6 6 6
>ty % 0o o 1 o 0 0o 0 0 % -
B0 0 o |21 s 0 0 0 o
6 6
- _;_ 1 o o % 0o 0 o 0 0
Sul g |0t oo 2 0 0 o -
@ | 0 o o0 o —% -1 1 0 o %
2, % o 0o o 0 ~§ o 1 o %
| 0 o o0 0 —-‘;— -1 o o0 1 %
1 1
— ]l o o 1 o o o o o L
Ug 6 %
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Tabelle 40. Losung eines Zuschnittproblems mit der Simplexmethode (zweite optimale Losung)

Uy Uy U £ Zy x3 Zy 5 g
BV | =221 0o 50 o122 o o o o 10
6 6 6
1 1
11 0o ol L 0o o o oo 0 —
“ 6 6
2 4 1
2 1o 2 o o 1 o o o —= 1
T 6 6 6
<, 2 o [2] o |- 2 1 0 0o —2 1
6 il 6 6 6
1
2, 1 0 5 0 0o 0 0 1 o0 0 =
2 4 1
Z 1o 2 ol=%2 0o o o 1 0 1
i 6 6 6
1 1
~ 1o o 1 o o o o o X -
s 6 6
200 0 o0 |22 0 —25 0 o %0
6 6 6
1 1
— 11 o ol X o o o o 0
“ 6 6
2 2
@ 0 o 0o o| 2 1 -1 o o 2=
2 6 6
uy | L 0o 1 0oL o L o o -1
6 6 2 6
1 5 5 5
T lo o o 2 o -2 1 o S
a 6 6 2 6
% 0 0o 0 0 |— —i— 0 —1 o 1 %
1 1
1o o 1 o o o o o X
Y 6 6
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Basis entfernt, so entsteht die optimale Losung nach Tabelle 40. Sie lautet

z; = 8,33 (entspr. 9)

z,= 0
rg =25
z,= 0
zs= 0

zg = 8,33 (entspr. 9).

Diese optimale Losung erfiillt ebenso wie die in Tabelle 39 enthaltene die
einschrinkenden Bedingungen. Der anfallende Gesamtverschnitt betrigt
7,6 m2. Der geringe Unterschied zur ersten optimalen Losung erklirt sich
daraus, daB zunéchst gebrochene Werte fiir die Variablen gefunden werden,
die aufzurunden sind. Die Aufrundungsverluste sind in der zweiten opti-
malen Losung etwas groBer als in der ersten.

Werden z, und , in der Basis belassen und scheidet dafiir #; aus der Basis
aus, so ergibt sich eine weitere optimale Losung nach Tabelle 41. Diese
Losung erfillt ebenfalls die einschrinkenden Bedingungen. Der durch sie
verursachte Gesamtverschnitt betragt 7,4 m2. Die dritte optimale Losung
lautet

z= 0
x4= 0
x5 = 25

g = 16,67 (entspr. 17).

Wir stellen die gefundenen optimalen Lésungen in der folgenden Ubersicht
zusammen :

Optimale Losung Verschnitt
nach Tabelle ! T2 Ty Ty T % (m?)

39 1667 25 0 0 0 O 7,4

40 833 0 25 0 0 833 7,6

41 0 0 0 0 25 16,67 7.4

Die errechneten Variablen sind in der Mehrzahl gebrochene Werte. Prak-
tisch kann man natiirlich keine Teiltafeln bestellen. Deshalb sind die gefun-
denen gebrochenen Werte auf ganze Werte aufgerundet worden. Diese
einfache Methode 148t sich im allgemeinen stets anwenden. Dariiber hinaus
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Tabelle41. Losung eines Zuschnittproblems mit der Simplexmethode (dritte optimale Lisung)

Uy Uy Ug z, z, Zg x, s Zg
By | ~20 | 6 5 o |10 0 0 o 100
6 6 6
” 1 1 0 0 LR 0 0 0 0 —
6 6
2 4 1
= 2 0 1 0 0 0 —= =
Z, 5 0 0 6 8
2 2 2 1
= 2 —Z 0 1 0 0o —= =
% 6 0 0 6 6 6
1
z, 1 0 5 0 0 0 0 1 0 0 =
2 4 1
= 2 —-= 0 0 0 1 0 =
% 6 o o] o 6 6
1 1
— 0o o0 1 0 0 0 0 0 = —
s 6 6
L 0 0 0 0o —g5 1%
6 6
1 1
u - = 0 0 0 0 0
. 5 1 0 o 5
4 4
x 0 Z 0 0 —1 —=
, 0 0 o 5 .
2 2
. 0 2 0 1 0 —1 —-=
3 0 0 0 8 6
1 10 5
i = 0 0 R 0
x, 5 0 0 o0 5 5
1 2 1
Sl 1 —-= 0 0 0o - 0
— Uy 6 0 0 6 2
uy 1 0 0 1 0 0 0 0 0 L
6 6
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ist es auch moglich, das Optimierungsverfahren so aufzubauen, daB die
Variablen in der optimalen Losung ganzzahlige Werte annehmen (ganzzahlige
Optimierung). Dariiber sind in der im Literaturverzeichnis angefithrten
Literatur Ausfithrungen gemacht.

Die Zielfunktionskoeffizienten der optimalen Losungen nach Tabelle 39
und Tabelle 41 zeigen an, daB es zu den dort angegebenen optimalen
Losungen weitere gibt. Sie enthalten jeweils eine Schlupfvariable, deren
Zielfunktionskoeffizient in der optimalen Losung Null betrigt.

In der geschilderten Aufgabe sind alle drei moglichen Variablenaustausche
durchgefilhrt worden. Sie haben zu drei verschiedenen optimalen Losungen
gefiibrt. Allerdings kann man diese Tatsache nicht verallgemeinern. In ent-
arteten Fillen fithrt oft nur einer von zwei moglichen Variablenaustauschen
zur optimalen Losung, wahrend der andere in einen Zyklus hineinfithrt,
der schlieflich bei der Ausgangslésung endet und somit keine optimale
Losung ergibt. In Féllen der Degeneration ist es deshalb notwendig, ein
weiteres Kriterium anzuwenden, das eindeutig diejenige Basisvariable an-
gibt, die aus der Basis ausscheiden muB, damit die optimale Losung be-
stimmt werden kann.

Im dritten Teil der Tabelle 39 kann der Variablenaustausch in der zweiten,
dritten und finften Zeile erfolgen. Wir schreiben das Koeffizientenschema
dieser drei Zeilen noch einmal auf, jedoch nur fiir die Schlupfvariablen.

0 1 0o o o — % (2. Zeile)

2 2 .
-2 0 1 0 0 —2 3 zeie

4 .
-2 o 0o o0 1 0 (5. Zeile).

Danach dividieren wir die Koeffizienten der ersten Spalte durch die Werte
der in Frage kommenden Hauptelemente 2 (2. Zeile), 2 (3. Zeile) und 2
(5. Zeile). Wir erhalten die Quotienten

0:2= 0 (2. Zeile)
2 1 .
—6- 2 = - '8‘ (3. Zel].e)
4 2 .

—_ -—6— 12 = — E‘ (5. Zelle)-

Diejenige Variable scheidet aus der Basis aus, in deren Zeile sich nach der
angegebenen Berechnung der kleinste Quotient ergibt. Das ist demnach die
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in der fiinften Zeile stehende Variable x;. Ihr Austausch fithrt zu der in
Tabelle 41 angegebenen optimalen Losung. Sollte die Quotientenbildung
wiederum zu mehreren niedrigsten Werten fithren, so ist die beschriebene
Berechnung von Spalte zu Spalte des Koeffizientenschemas fortzusetzen,
bis unterschiedliche Quotienten und darunter nur ein Minimalwert auf-
treten.

6.3. Verteilung von Arbeiten (Verrichtungen)
auf verschiedene Maschinen

Weiter vorn ist dargelegt worden, wie die lineare Optimierung eingesetzt
werden kann, um unter bestimmten dem Betrieb gegebenen Bedingungen
optimale Pline aufzustellen. Zur Verwirklichung dieser Pline stehen den
Betrieben und der Volkswirtschaft im allgemeinen verschiedene Maschinen
oder allgemein Produktionsmittel zur Verfiigung. Sehr oft verrichten diese
Maschinen verschiedene Arbeitsginge, jedoch mit einem unterschiedlichen
zeitlichen oder finanziellen Aufwand. Die Aufgabe besteht nun darin, ein
gegebenes Produktions- oder Arbeitsprogramm so auf die verfiigbaren
Maschinen aufzuteilen, daBl insgesamt eine minimale Auslastung des be-
stehenden Zeitfonds eintritt. Die Arbeiten sollen also auf denjenigen
Masgchinen verrichtet werden, auf denen sie den geringsten Zeitaufwand
erfordern.

In Anlehnung an eine Aufgabe, die von KapLEC/VODASEK [20, S. 78ff.]
behandelt wird, betrachten wir folgendes sehr einfache Beispiel:

In einem Planungszeitraum sind drei Werkstiicke 1, 2 und 3
in den Stiickzahlen 200, 50 und 100 zu bearbeiten. Dazu stehen
zwei Maschinen I und II zur Verfiigung. Der Zeitfonds der
Maschinen betrdgt 11000 Minuten fir die Maschine I und
6000 Minuten fiir die Maschine II. Die Werkstiicke werden auf
den Maschinen mit unterschiedlichem Zeitaufwand bearbeitet.
Die Bearbeitung eines Werkstiicks 1 dauert auf der Maschine I
50 Minuten und auf der Maschine IT 100 Minuten. Die ent-
sprechenden Werte fiir ein Werkstiick 2 sind 40 und 25 Minuten.
Werkstiick 3 kann nur auf der Maschine II bearbeitet werden.
Es erfordert 50 Minuten Bearbeitungsdauer je Werkstiick.

Die fiir die Losung der Aufgabe erforderlichen Ausgangsgrofien sind in
Tabelle 42 zusammengestellt. Die Lésung der Aufgabe besteht in einer Ver-
teilung der Bearbeitung der drei verschiedenen Werkstiickarten auf die
beiden Maschinen, durch die die entstehende Gesamtbearbeitungszeit ein
Minimum wird.
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Tabelle 42. Matriz der Aufwands- bzw. Bewertungszahlen und weiterer

Ausgangsgrofen

Maschinen
Werk- I II Stiickzahl
stiicke

N

1 50 100 200
2 40 25 50
3 — 50 100
Maschinenzeit-
fonds 11000 6000

Bei der vorliegenden Aufgabe handelt es sich um ein Zuordnungsproblem.
Hierbei wird eine nach einem vorgegebenem Kriterium optimale Zuordnung
der Arbeiten (Bearbeitung der drei verschiedenen Werkstiicke) zu den ein-
setzbaren Maschinen angestrebt. Sowohl hinsichtlich der zu verteilenden
Arbeiten als auch hinsichtlich der einsetzbaren Maschinen sind gegebene
Grenzen einzuhalten. Damit erhalten wir zwei Gruppen von einschrinken-
den Bedingungen. Die einschrinkenden Bedingungen hinsichtlich der zu
bearbeitenden Werkstiicke lauten, wenn durch die Variable x;; die Stiick-
zahl der Werkstiicksorte ¢ bezeichnet wird, die auf der Maschine § bearbeitet
werden,
%31 + 235 = 200 (Werkstiicksorte 1)

g1 + %oy = 50 (Werkstiicksorte 2)
%3, = 100 (Werkstiicksorte 3).

Fir den Einsatz der Maschinen bestehen folgende einschrinkende Be-

dingungen :
502, + 40z, = 11000

1002, + 25255 -+ 50755 < 6000.

Die Analogie zum System der einschrinkenden Bedingungen beim Trans-
portproblem ist offenkundig. Auch dort gibt es zwei Gruppen einschrin-
kender Bedingungen, die die gleichen Variablen enthalten. Allerdings ist
fir dieses Zuordnungsproblem die firr das Transportproblem typische Be-
dingung nicht erfiillt, nach der die Koeffizienten a;; nur die Werte 1 oder 0
annehmen konnen. Es zeigt sich, daB das Transportproblem ein Spezialfall
des allgemeinen Zuordnungsproblems ist. Die Zuordnung wird dort zwischen
riumlich getrennten Aufkommens- und Bedarfsorten vorgenommen.
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Aus der  Aufgabenstellung ergibt sich, daf in der optimalen Losung der
Ausdruck
502y; + 1002y, + 407y, + 25%,, + 502,

der den erforderlichen Gesamtzeitfonds angibt, ein Minimum sein soll.
Das gesamte mathematische Modell der Aufgabe lautet also:

1. Zielfunktion
50xy; 4 100z, 4 402y, + 2525 + 5025, — min

2. Einschrinkende Bedingungen

T+ 2y =200
Ty + = 50
235 = 100
50z, + 40, = 11000
100x,, 4 2524, 4 5025, = 6000

3. Nichtnegativitdtsbedingung
Zij g 0.

Die durch dieses Modell gegebene Aufgabe wird in Tabelle 43 gelost. Die
Losung erfolgt nach dem Simplexalgorithmus, der bereits bei der Losung des
Transportproblems angewendet wurde. Wie KapLEC/VODAJEK [21, S. 781f.]
zeigen, kann die Aufgabe auch nach der modifizierten Distributionsmethode
gelost werden. Dabei entstehen aber Schwierigkeiten dadurch, daf3 die ein-
schrankenden Bedingungen der beiden Gruppen nicht die gleiche Dimension
besitzen. In unserem Beispiel werden die einschriankenden Bedingungen
der ersten Gruppe durch Stiickzahlen und die der zweiten Gruppen durch
Minuten gegeben. Bei der Anwendung der modifizierten Distributions-
methode miissen diese unterschiedlichen Dimensionen beachtet werden.

In Tabelle 43 sind sémtliche einschriankende Bedingungen in die Rechen-
operationen einbezogen. Dadurch entsteht eine relativ umfangreiche Tabelle,
deren schrittweises Studium zur Festigung der Optimierungsregeln bei-
tragt. Eine Verkiirzung der Rechenarbeiten tritt ein, wenn die einschrén-
kende Bedingung xj, = 100 bereits in den iibrigen einschrinkenden Be-
dingungen beriicksichtigt wird und dadurch explizit im Gleichungssystem
nicht mehr auftritt. In der ersten Gruppe der einschrankenden Bedingungen
verbleiben dann nur die beiden ersten Gleichungen. Die erste Ungleichung
der zweiten Gruppe bleibt unverindert, wihrend die zweite Ungleichung nach
Abzug der 100 Einheiten des Werkstiicks 3 bzw. der zu ihrer Bearbeitung
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erforderlichen Gesamtzeit

100z, + 2524, < 1000
lautet.

In der ausfiihrlichen Schreibweise der einschrankenden Bedingungen werden
in den Gleichungen der ersten Gruppe der einschrankenden Bedingungen die
kiinstlichen Variablen %, k, und k; eingefithrt. Da sie in der optimalen
Losung nicht auftreten diirfen, erhalten sie in der Zielfunktion den Wert M.
Die Ungleichungen der zweiten Gruppe der einschrdnkenden Bedingungen
werden durch die Schlupfvariablen w; und w, in Gleichungen iiberfiihrt. Ihr
Koeffizient in der Zielfunktion ist Null.

Die optimale Losung dieses Problems lautet

y;, = 200 Zgp = 40
= 0 g = 100
Ty = 10 w; = 600.

Damit werden alle 200 Werkstiicke des Typs 1 auf der Maschine I be-
arbeitet. Von den erforderlichen 50 Werkstiicken des Typs 2 werden 10 auf
der Maschine I und 40 auf der Maschine IT bearbeitet. Schlieflich werden
auf der Maschine II die 100 Werkstiicke des Typs 3 bearbeitet. Die GroBe
w; = 600 verstehen wir als auf der Maschine I bearbeitete fiktive Werkstiicke,
deren Bearbeitung je Stiick eine Minute dauert. Damit stellt w, die Zeit-
reserve der Maschine I bei der gegebenen Losung dar. Durch die angegebenen
Werte der Variablen werden alle einschrinkenden Bedingungen befriedigt,
wie aus folgender Ubersicht deutlich wird.

200 + 0 =200
104 40 = 50
100 = 100
50 - 200 4 40 - 10 4~ 600 = 11000
100 0 -+ 25.40 + 50 - 100 = 6000.

Der Wert der Zielfunktion betragt im Minimalfall 16400 Minuten. Vor-
gegeben waren 17000 Minuten Gesamtzeitfonds, so dafl die verbleibende
Restzeit nur einen relativ kleinen Anteil am Gesamtzeitfonds ausmacht.
Die angefithrten drei Beispiele sollen stellvertretend fiir viele weitere An-
wendungsfille stehen, die ebenfalls linear entschieden werden konnen. So
kann man allgemein von einem Mischungsproblem sprechen und damit
Aufgaben meinen, bei denen eine bestimmten Bedingungen geniigende
Mischung hergestellt werden soll, die in der Regel ein Aufwandsminimum
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Tabelle 43. Aufteilung von Arbeiten auf verschiedene Maschinen

Ty Ty Ty Xyp Ty ky ky ks w w,
—50 —100 —40 —25 —50 | —M —M —M 0 O
By |asoar | M MM MM\
k, 200 1 1 0 0 0 1 0 0 0 0 -
<k, 50 o 1 Ji o 01 0 0 0 50
ks 100 o o0 o0 o0 1 0 0 1 0 0 —
w, 11000 | 50 0 40 0 0 0 0 0 1 0 —
wy 6000 [ O 100 0 25 50 0 0 0 0 1 240
30 | M M M —-M
+1250 | —50 —100 ~ 18 O _50 0 495 0 0
<k 200 J[tff] 1 0o o0 o 1 0 0 0 0 200
>y 50 0 0 1 1 0 0 1L 0 0 0 —
ks 100 0o o o0 o0 1 0 0 1 0 0 —
w, 11000 | 50 0 40 0 0O 0 0 0 1 0 220
w, | 4750 | 0 100 —25 0 50 0—-20 0 1 —
1004 M —-M —M
t1z50| 0 —50 —18 0 5 | 4504250 0 O
>z, 200 1 1 0 0 0 1 0 0 0 0 -
e 50| 0 0 1 0 01 0 0 0 —
ky 100l 0 o o0 o0 1 0 0 1 0 0 100
w, 1000 [ 0 —50 40 0 0 —50 0 0 1 0 —
<w, | 4750 | 0 100 —25 0 |50] 0—-250 0 1 95
5M 0o "2M 05M, —M-05M -002M
+16000 +50 —40 +50 +1
e 200 1 t 0 0 O 1 0 0 0 o —
Ty 50 0 0 1 1 0 01 0 0 0 50
<k 5| 0 —2 Jo5] 0 o0 0 051 0-—002 | 10
w, 1000 0—50 40 0 O -5 0 0 1 0 25
gy %5 0 2 —05 0 1 0—-050 0 002 | —
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Tabelle 43. (Fortsetzung)

T Ty Ty Xyp g ky ks ks w w,
16400 | 0 —110 0 0 O ;%;%;g‘go—o,a

T4 200/ 1 1 0 0 0 1 0 0 0 0
o 40| 0 4 o0 1 0 0 0—2 0 004

>y 0] 0 —4 1 0 o 0 1 2 0—004
w, 600 0 110 0 0 0 —50—40—80 1 1,6
s 100 0 o o o 1 0 0 1 0 0

erfordert. Fiir Futter- und Brennstoffmischungen haben wir diesen Fall
besprochen. Aber ebenso wire es moglich, in der beschriecbenen Weise
optimale Betonmischungen oder optimale Kunstdiingermischungen zu be-
rechnen, die es gestatten, die verfiigharen Einzelbestandteile der Mischung
bestmoglich auszunutzen. Ahnliche Betrachtungen wiren zum Zuschnitt-
problem anzufithren. In der Blechverarbeitungsindustrie, in der Holz-
industrie, aber vor allem auch in der Lederindustrie bzw. der lederver-
arbeitenden Industrie tritt dieses Problem standig auf. Seine mathematische
Losung ist im Prinzip moglich. Schwierigkeiten bereitet jedoch moglicher-
weise die Ermittlung der in Frage kommenden Zuschnittvarianten. Ins-
besondere dann, wenn keine einfachen Figuren zugeschnitten werden
sollen, erfordert die Ermittlung dieser Varianten viel Aufwand. Er kann ver-
mindert werden, wenn durch die Herstellung von Typenprogrammen
prinzipielle Verinderungen der zuzuschneidenden Teile nur noch selten
vorkommen.

Von sehr grofler allgemeiner Bedeutung ist die Zuordnung bestimmter
Arbeiten auf einsetzbare Maschinen. Dieses sehr einfache und leicht iiber-
schaubare Problem kompliziert sich mit der Zunahme der Arbeiten und der
Zunahme der einsetzbaren Maschinen sehr schnell, so daB sich der Ein-
satz der linearen Optimierung lohnt. Aber dieses Problem hat eine grofle
iiberbetriebliche Bedeutung. Im Grunde kann jegliche Arbeitsteilung
zwischen den produzierenden Einheiten auf diese Weise gefunden und be-
stimmt werden. Anstelle der drei Werkstiicke im Beispiel konnen wir die
Produktion von drei Erzeugnissen annehmen, die in verschiedenen Betrieben
einer VVB hergestellt werden koénnen. Es ist, da die einzelnen Betriebe diese
Erzeugnisse mit unterschiedlichem Aufwand oder mit unterschiedlichem
Gewinn herstellen, die optimale Zuordnung zwischen den Erzeugnissen und
den Betrieben zu suchen. Der Rechengang ist im Prinzip unverdndert
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gegeniiber dem, der bei der Zuordnung zwischen Werkstiicken und Maschi-
nen angewendet wurde. Dagegen bereitet die Bestimmung der Modellpara-
meter jetzt etwas mehr Aufwand als in dem genannten Beispiel. Grofen, die
die Beanspruchung der Produktionskapazitdt durch die verschiedenen Er-
zeugnisse in den einzelnen Betrieben anzeigen, und solche, an denen die
Optimalitdt der Losung bestimmt werden kann, sind auf der betrieblichen
Ebene bereits komplex und umschlieBen meist eine groBere Anzahl Einzel-
angaben. Das Problem besteht weniger darin, diese Einzelangaben zu finden,
als darin, daB sie in der richtigen Gewichtung in die komplexen GroBen
(z. B. a;; und ¢;) eingehen. Diese Gewichtung muf fiir die Betriebe, die in
das Optimierungsprogramm einbezogen werden, gleich sein. Es zeigt sich
dabei wieder, welch groBe Bedeutung einer exakt betriebenen statistischen
und finanziellen Abrechnung zukommt, wenn AusgangsgroBen fir Opti-
mierungsrechnungen gesucht werden.

6.4. Optimierung der Lieferbeziehungen in der Volkswirtschaft

Auf die groBe Bedeutung der Optimierung von Lieferbeziehungen und Aus-
tauschrelationen in den verschiedenen Ebenen der Volkswirtschaft wurde
bereits im Abschnitt 5.1. hingewiesen. Da weiterhin die Algorithmen zur
Loésung des Transportproblems besprochen wurden, sollen nunmehr noch
einige Fragen erortert werden, die mit der Durchfithrung der Transport-
optimierung zusammenhingen. Uber die Auswahl der optimierungsfihigen
und optimierungswiirdigen Arten von Giitern wurde bereits gesprochen. Diese
Auswahl ist mit groBter Sorgfalt vorzunehmen, um nachtrégliche Korrek-
turen des optimalen Programms zu vermeiden. Sofern es seitens der Ver-
kehrstrager erforderlich ist, miissen weiterhin deren technologischen Forde-
rungen beriicksichtigt werden. Im Zusammenhang mit der Optimierung der
Lieferbeziehungen fiir Massengiiter spielt insbesondere die Ganzzugbildung
eine entscheidende Rolle. Da die Eisenbahn im Interesse einer einfachen und
damit fliissigen Betriebsabwicklung daran interessiert ist, moglichst viele
QGanzziige zu bilden und dadurch die mit der Bildung und Auflésung von
Ziigen verbundenen Arbeiten auf ein Mindestmall zu verringern, tritt hier
praktisch ein weiteres Optimierungskriterium auf. Das urspriingliche Krite-
rium besteht im Transportaufwand. In der Regel wird die Ganzzugbildung
einen Teil der Vorteile, die die beziiglich des Transportaufwands optimale
Losung bietet, wieder aufheben. Dafiir bietet sie der Eisenbahn die Moglich-
keit einer besseren Betriebsabwicklung, die sich als allgemeine Beschleuni-
gung des Transportprozesses fir die gesamte Volkswirtschaft positiv auswirkt.
Im Zusammenhang mit der Betriebsabwicklung bei den Verkehrstriagern er-
gibt sich aus der Optimierungder Lieferbeziehungen die Moglichkeit,daran an-
schliefend eine Optimierung des Fahrzeugeinsatzes vorzunehmen und somit
dem volkswirtschaftlichen Vorteil einen betrieblichen Vorteil zur Seite zu
stellen.
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Ein generell bindender Zeitraum fiir die Optimierung von Lieferbeziehungen
kann nicht angegeben werden. HoFMANN/SCHREITER/VOGEL [22, S.39]
weisen auf die Notwendigkeit hin, verschiedene Optimierungszeitrdume
zu verwenden. Dabei werden kurzfristige, operative Optimierungen mit
einer sehr weitgehenden rdumlichen Gliederung der Empfangs- und Versand-
orte verbunden sein, wihrend bei langfristigen Optimierungen in dieser
Hinsicht eine Konzentration auf wenige Gebiete erforderlich und unum-
géanglich ist.

Auf spezifische Untersuchungen im Zusammenhang mit der Optimierung
der Lieferbeziehungen fiir bestimmte Massengiiter soll hier nicht eingegangen
werden. HOFMANN/SCHREITER/VOGEL [23, S. 57ff.] geben eine ausfiihrliche
Darstellung aller Uberlegungen, die zum Beispiel mit der Optimierung der
Lieferbeziehungen fiir Kohle aufgetreten sind. Insbesondere wird dabei
deutlich, daB die gesamte erzielbare Einsparung an Aufwand nicht allein
diejenige ist, die durch die Zielfunktion erfat wird. Obwohl es sich dabei
um die fiir die Volkswirtschaft entscheidende Einsparung an Transport-
leistung und somit an Frachtgebiithren handelt, treten ihr doch weitere
nennenswerte Einsparungen zur Seite. Es ist fiir die Eisenbahn entscheidend,
daB gleichzeitig die mittlere Umlaufzeit der Giiterwagen verringert und der
Eingatz von Triebfahrzeugen vermindert werden kénnen.

Die Untersuchungen und Berechnungen, die in der bereits genannten
Broschiire von HOoFMANN/SCHREITER/VOGEL [24] angestellt worden sind,
haben ein weiteres typisches Ergebnis der Optimierung der Lieferbeziehun-
gen deutlich gemacht. Dieses Ergebnis besteht in einer wesentlichen Ver-
einfachung der Transportbeziehungen, d. h. auch in deren Verringerung.
Untersuchungen nichtoptimaler Lieferbeziehungen ergeben sehr oft ein
Bild, das nahe an den Zustand ,,Jeder liefert an jeden‘ heranreicht. Da-
gegen ist bekannt, daBl eine optimale Transportgestaltung bzw. Festlegung
der Lieferbeziehungen stets nicht mehr als (m + n — 1) Transportbeziehun-
gen enthalten kann. Nehmen wir also an, dafl ein Massengut an 30 Orten auf-
kommt und nach 50 Orten beférdert werden soll. Die Orte kénnen hier als
Transportschwerpunkte oder Zentren zugehoriger Ortemengen aufgefaft
werden. Dann wird im optimalen Transportplan die Zahl der benétigten
Transportbeziehungen nicht groBer als 79 sein. Moglich sind jedoch 30 x 50
= 1500 Lieferbeziehungen. Die Zahl der vor der Optimierung bestehenden
Beziehungen geht im allgemeinen weit iiber die Zahl der erforderlichen
Beziehungen hinaus. Thre Verringerung fithrt zu einer wesentlichen organi-
satorischen Vereinfachung des gesamten Transportprozesses. Vereinfachung
der Organisationsbeziehungen bedeutet jedoch gleichzeitig, dafl die Leitungs-
tatigkeit mehr als bisher auf wenige und entscheidende Punkte konzen-
triert werden und somit rationeller gestaltet werden kann. Der durch die
organisatorische Vereinfachung des Systems der Lieferbeziehungen ein-
tretende Nutzen sowohl bei den Versendern und Empféngern der Massen-
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giiter als auch bei den Verkehrstragern wird sehr oft nicht gebiihrend be-

achtet. Da kaum Anhaltspunkte iiber den Aufwand von Organisations-

arbeiten vorliegen, ist es schwierig, den Nutzen, der durch die Vereinfachung

der Transportbeziehungen fiir den Leitungsproze8 entsteht, zahlenmaBig

auszudriicken. Eben deshalb soll an dieser Stelle besonders darauf hin-

gewiesen werden.

Neben der Optimierung der Lieferbeziehungen fiir Kohle verspricht ins-

besondere die von Baumaterialien nennenswerte Okonomische Erfolge.

Solche Optimierungen sind bereits fiir verschiedene Baumaterialien durch-

gefithrt worden. Die dabei nachgewiesenen Einsparungsmoglichkeiten sind

beachtlich. In einer Zusammenstellung bei HOFMANN/SCHREITER/VOGEL

[25, S. 87] ist ersichtlich, dal beispielsweise folgende Einsparungsméglich-

keiten auftreten:

1. Optimierung des Schottertransports fiir die DDR, Einsparung an Trans-
portleistung 2,6 Prozent,

2. Optimierung des Transports von Hochofenzement in der DDR, Ein-
sparung an Transportleistung 4 Prozent,

3. Optimierung von Mauerziegeltransporten im Bezirk Dresden, Einsparung
an Transportleistung 20,6 Prozent,

4. Optimierung von Kiestransporten im Raum Dresden, Einsparung an
Transportleistung 17 Prozent.

Zu den genannten Einsparungen sind nun noch diejenigen hinzuzuzihlen,
die bei den Transportbetrieben selbst auftreten und die auf die Verein-
fachung der Lieferbeziehungen zuriickzufiihren sind.

Diese kurzen Ausfithrungen sollen die weiter vorn aufgestellte Behauptung
unterstiitzen, daB die Herstellung von optimalen Lieferbeziehungen durch
die Anwendung des Transportproblems nicht zuerst eine Aufgabe der
Transportbetriebe ist. Der entscheidende Nutzen dieser Optimierungen ist
volkswirtschaftlicher Art. Deshalb obliegt den Versendern von Massengiitern
die Aufgabe, die Beziehungen zu den Empfiangern zu optimieren und auf
diese Weise sowohl den Aufwand der Giitertransporte zu verringern wie
auch den gesamten AustauschprozeB zu vereinfachen.

6.5. Transportoptimale Standortwahl

Insbesondere im Zusammenhang mit der Optimierung perspektivischer Giiter-
strome spielt die Festlegung geeigneter Standorte fiir neue Versender und
Empfinger von Massengiitern eine groe Rolle. Da meist noch keine Kosten-
parameter vorliegen, kommt hier vorwiegend die Bestimmung transport-
optimaler Standorte in Frage. Als Optimalkriterium kommt dabei die Ent-
fernung in Ansatz.

Bei der transportoptimalen Standortbestimmung gelten die gleichen Grund-
sitze, die auch fiir die eigentliche Transportoptimierung giiltig sind. Seitens
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des Transportproblems stehen vornehmlich zwei Verfahren zur Verfiigung,
die zur Losung von Standortaufgaben geeignet sind. In beiden Fillen wird
jedoch vorausgesetzt, daB bestimmte Standortvarianten bereits bekannt
sind und die Aufgabe darin besteht, die unter dem Gesichtswinkel des
Transportaufwandes giinstigsten Kapazitdten dieser Standorte zu berech-
nen. Ergeben sich dabei fiir einzelne Orte die Kapazitdten Null, so werden
die zugehorigen Standorte nicht genutzt, weil sie dem Minimum des Trans-
portaufwands widersprechen.

Eine einfache Moglichkeit zur Bestimmung derartiger Kapazitiaten liefert
das sogenannte offene Transportproblem. Bei ihm sind neben den Aufwands-
zahlen ¢;; lediglich die Bedarfsmengen b; der Empfingerorte gegeben. Die
Aufkommensmengen a; sind nicht vorgegeben. Sie sind so zu bestimmen,
daB der Transportaufwand zur Verwirklichung der entstehenden Austausch-
beziehungen ein Minimum wird. Somit wird die optimale Belegung jedem
Bedarfsort nur einen Aufkommensort zuordnen, und zwar denjenigen, der
von dem betreffenden Bedarfsort die kiirzeste Entfernung aufweist. Be-
trachten wir dazu folgendes einfache Beispiel:

Der Bedarf an vier Bedarfsorten B, bis B, betrigt
by = 200, by = 50, by = 650 und b, = 150

Mengeneinheiten. Zur Deckung dieses Bedarfs kommen drei Aufkommens-
standorte 4, bis 4, in Frage, deren Aufkommen a, bis a; jeden der Bedarfs-
werte zu erreichen gestattet. Mit anderen Worten: Hinsichtlich des Auf-
kommens bestehen im Rahmen der vorliegenden Bedarfswerte keine ein-
schrankenden Bedingungen. Die Matrix der Aufwandszahlen lautet
3 7 1 12
(e;j) =115 8 10 6
7 4 2 7
Die Losung wird hier gefunden, indem in jeder Spalte die niedrigste Auf-
wandszahl gesucht wird. Sie bestimmt den Aufkommensort, der zu dieser
Spalte am giinstigsten liegt. In der Matrix handelt es sich
in der ersten Spalte um den Wert c,,,
in der zweiten Spalte um den Wert c;,,
in der dritten Spalte um den Wert ¢,,,
in der vierten Spalte um den Wert c,,.
Damit entstehen sofort folgende giinstigste Lieferverbindungen:
A, liefert an B; 200 und an B, 650, zusammen also 850 Einheiten,
A, liefert an B, 150 Einheiten,
A, liefert an B, 50 Einheiten.



152 6. Einige Anwendungsfille der linearen Optimierung

Anschliefend wire zu priifen, ob es insgesamt sinnvoll ist, die Aufkommens-
orte A, und 4, mit der relativ niedrigen Kapazitit von 150 bzw. 50 Ein-
heiten bestehen zu lassen. Die Erhohung des Transportaufwandes bei einer
Konzentration des Aufkommens auf 4, muB dabei geringer sein als die
Verringerung der Aufkommenskosten, die durch die Konzentration erzielt
wird.

In der beschriebenen Form tritt das offene Transportmodell allerdings
selten auf. Dagegen werden sowohl natiirliche wie auch technische und
6konomische Griinde dazu fithren, fiir das Aufkommen in den mdéglichen
Aufkommensorten bestimmte Hochstgrenzen vorzusehen. Wir erhalten
dabei ein Transportproblem, bei dem die einschriankenden Bedingungen
seitens der Bedarfsorte als Gleichungen und seitens der Aufkommensorte
als Ungleichungen (Begrenzungen nach oben) vorliegen. Die Losung dieses
Problems ergibt zugleich die Losung des Standortproblems in der w. o.
angedeuteten Weise. Weiterhin besteht die Moglichkeit, dal zu einer ge-
gebenen Menge von Aufkommensorten lediglich ein weiterer hinzukommen
soll, um ein Aufkommensdefizit auszugleichen. Stehen dabei mehrere Stand-
ortvarianten zur Wahl und soll gesichert sein, dafl die fehlende Aufkommens-
menge nur von einem der moglichen neuen Aufkommensorte geliefert wird,
so ist eine entsprechende Begrenzung der Variablen, die sich auf die neuen
Aufkommensorte beziehen, vorzunehmen.

Im Zusammenhang mit der Behandlung des mehrstufigen Transportpro-
blems wurde bereits darauf hingewiesen, dafl auch dieses mathematische
Modell der Transportoptimierung geeignet ist, transportoptimale Standorte
zu bestimmen. In diesem Sinne wird dieses Modell auch in ,,Anwendung
der Mathematik in der Okonomie‘‘ [26] angewendet. Die Problematik deckt
sich im Prinzip mit der bereits geschilderten: Aus einer auf Grund sachlicher
Uberlegungen gewonnenen Menge moglicher Standorte sind diejenigen aus-
zuwihlen, die hinsichtlich des mit ihrer Nutzung verbundenen Transport-
aufwandes die giinstigsten sind. IThre Kapazitit ist zu berechnen. Beim
mehrstufigen Transportproblem und seiner Anwendung fiir Standort-
bestimmungen kann es eintreten, dafl sich die Mengen des Transportgutes
in den Zwischenorten verdndern. So wird zum Beispiel die Menge des auf die
Konservenfabriken zu verteilenden Obstes nicht mit der Menge der Kon-
serven libereinstimmen, die aus den Konservenfabriken geliefert werden
und zu verteilen sind. In diesem Falle ist es zweckméBig, durch ent-
sprechende Koeffizienten zunichst eine Umrechnung auf eine einheitliche
Basis vorzunehmen und die durch die Optimierung gewonnenen Liefer-
mengen nachtriglich wieder auf die urspriingliche Basis umzurechnen.
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fiir die Losung von Optimierungsaufgaben

Die in diesem Buch behandelten Beispiele dienen in erster Linie der Demon-
stration und ZErlduterung der verwendeten Optimierungsalgorithmen.
Sie sind in der Regel so einfach gewdhlt, daB in einigen Féillen
auch ohne Kenntnis spezieller Optimierungsverfahren, lediglich durch
griindliches Probieren, eine optimale Losung gefunden werden konnte.
Diese einfachen Beispiele wurden gewihlt, um den Leser die Moglichkeit
zu geben, die Richtigkeit der Ergebnisse auch noch auf anderem Wege
zu priifen.

Zweifellos ist das eine sehr weitgehende Vereinfachung der Wirklichkeit.
Die in der Praxis auftretenden Optimierungsprobleme iibertreffen nach
Umfang und Struktur die hier dargestellten Aufgaben um ein Vielfaches.
Sie werden deshalb nur zu einem Teil im Betrieb selbst gelost werden kénnen,
dann nimlich, wenn das Umfang und Struktur der Aufgabe zulassen.
Optimierungen jedoch, die beispielsweise beim Transportproblem die Liefer-
beziehungen im Territorium der gesamten DDR betreffen, sind manuell mit
einem vertretbaren Aufwand nicht mehr 16sbar. Sie erfordern den Einsatz
von geeigneten Rechenhilfsmitteln, in der Regel von elektronischen Rechen-
automaten.

In der DDR steht fiir die Losung umfangreicher Optimierungsaufgaben
vorwiegend der Rechenautomat ZRA 1 zur Verfiigung. Seine Leistungs-
fahigkeit ist bestimmt durch die Speicherkapazitdt von 4096 Plitzen und
durch die Operationsgeschwindigkeit von etwa 130 Operationen je Sekunde.
Den Rechenzentren miissen folgende Ausgangsdaten geliefert werden, wenn
ein Optimierungsproblem auf dem Rechenautomaten gelost werden soll:

1. die Koeffizienten der Zielfunktion,
2. die Koeffizienten der Ungleichungen bzw. Gleichungen der einschrinken-
den Bedingungen,

3. die absoluten Glieder der Ungleichungen bzw. Gleichungen der ein-
schrinkenden Bedingungen.

Eine Vorstellung von der GroBenordnung der losbaren Aufgaben, bezogen
auf den ZRA 1, geben folgende Beziehungen:
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Bei allgemeinen Optimierungsaufgaben miissen die Zahl m der einschréin-
kenden Bedingungen und die Zahl » der Variablen der Ungleichung

(m + 2) (n + 3) < 3755

geniigen. So konnte etwa eine Aufgabe mit 33 einschrinkenden Bedingungen
und 104 Variablen gelost werden. Fiir die Lésung von Transportproblemen
sind nach HoFMANN/ScHREITER/VOGEL [27, S.28ff.] mehrere Verfahren
fir den Automaten ZRA 1 programmiert, die sich vornehmlich aus der
modifizierten Distributionsmethode (Methode der Potentiale) und ver-
schiedenen Moglichkeiten der Bestimmung der Ausgangslosung zusammen-
setzen. Fiir die Anwendung der MODI und die Bestimmung der Ausgangs-
16sung nach der Hiufigkeitsmethode betrigt die Kapazitdt des Rechen-
automaten ZRA 1

(m + 4) (n + 6) < 3735.

Dabei ist m die Zahl der Aufkommens- und » die Zahl der Bedarfsorte.

Fir die Losung von Transportproblemen benétigen die Rechenzentren die
Koeffizienten der Zielfunktion, die Aufkommenswerte und die Bedarfs-
werte. Des Uberblicks wegen sei angefithrt, daB der Automat ZRA 1 ein
Transportproblem mit 13 Aufkommens- und 55 Bedarfsorten in ca. 1 Stunde
und eine Simplexaufgabe mit 9 Gleichungen und insgesamt 118 Variablen
in ca. 2 Stunden lost. Ein- und Ausgabezeit sind einbegriffen.

Obwohl bereits nennenswerte Optimierungsaufgaben in der Wirtschafts-
praxis gelost worden sind, sind fiir die Zukunft derartige Aufgaben in
groBerer Zahl und in groBerem Umfang zu erwarten. Von einer durch-
gingigen Anwendung der linearen Entscheidungsmodelle fiir die Planung
und Leitung der Volkswirtschaft auf allen ihren Ebenen kann zur Zeit noch
nicht gesprochen werden. Die Losung der stdndig komplizierter werdenden
Entscheidungsprobleme unter Beriicksichtigung der zunehmenden Zahl
von Bedingungen wird in kurzer Zeit dazu fithren, daBl die Anforderungen
an die Rechenzentren iiber das heutige Ma hinausgehen. Auch die Kapa-
zitdt der heute verfiigbaren Rechenautomaten wird dann nicht mehr aus-
reichen. Insbesondere fir volkswirtschaftliche Optimierungen werden
Rechenautomaten mit einer Kapazitét eingesetzt werden, die ein Vielfaches
der Kapazitit der zur Zeit eingesetzten Automaten betriagt. Als Beispiel sei
die im Institut fir Datenverarbeitung in Dresden installierte Maschine
National Elliot 503 genannt, die Simplexprogramme in der Groenordnung
m + n < 900 (bei Verwendung des Hauptspeichers) und m (n 4 1) < 49000
(bei Verwendung des Zusatzspeichers) zu bearbeiten gestattet. Transport-
programme unterliegen den Grenzen m + 2n < 4100 bei Verwendung des
Hauptspeichers und m-n < 49000 bei Verwendung des Zusatzspeichers.
Die Symbole m und n entsprechen den weiter oben angegebenen Zeichen.
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Die zunehmende Anwendung linearer Entscheidungsmodelle stellt jedoch
auch an die Leitungskrifte der Wirtschaft steigende Anforderungen.
Diese konnen nur erfiillt werden, wenn die Leitungskréfte sich rechtzeitig
mit den grundlegenden Verfahren der linearen Optimierung vertraut ma-
chen. Sie miissen in die Lage versetzt werden, die Optimierungswiirdigkeit
eines Problems sachkundig zu beurteilen und alle Vorbereitungsarbeiten
vornehmen zu kénnen. Erst dadurch werden die Voraussetzungen fiir einen
effektiven Einsatz groBerer und leistungsfihigerer Rechenautomaten ge-
schaffen.
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Entscheidung, 6konomische 13

—, optimale 10, 11, 29

Entscheidungen, mogliche 9
Entscheidungs-probleme, 6konomische 11
—-pyramide 12

—-situationen 12

—-tiitigkeit 9

Gebiet der nichtzuldssigen Losungen 24
Gesamtaufkommen 80

Gesamtbedarf 80

Giiter, austauschbare oder ersetzbare 77

Hauptelement 46

Koeffizientenmatrix 50, 51, 89

Losung, degenerierte 97

—, optimale 27, 31, 36, 88

—, zuldssige 24, 27, 35, 36, 97

Losungen, degenerierte, beim Transport-
problem 109

—, mehrere optimale 71, 72

Matrix der fiktiven Bewertungszahlen 98

— — tatséchlichen Bewertungszahlen 99

Maximumaufgabe der linearen Optimie-
rung 17, 19, 30, 50

— — Simplexmethode 53

—, duale 57, 89, 129

Maximum-Problem 18

Methode des doppelten Vorzugs 91ff., 119

Minimumaufgabe 19, 29ff., 54ff., 75, 81

—, primale 129

Modell, mathematisches 14, 65, 79

—, mathematisches, des Transportpro-
blems 79, 80, 81
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Nichtbasisvariable 37 ff.

Nichtnegativitdtsbedingung 17, 20, 35,
54, 81, 82

Nordwest-Ecken-Regel 91, 93

Normalaufgabe, modifizierte 76

Normalform 33, 45, 51, 58, 63

Normalform der einschrinkenden Bedin-
gungen 40

— — Maximumaufgabe 34, 38

Optimalitdtskriterium (Optimalkriterium)
10, 11, 13, 14, 1251

Optimierung der Lieferbeziehungen 1481f.

—, lineare 11, 12

—, parametrische 60

Optimierungsverfahren 11

Plan, optimaler 10, 13
Potentiale 94 ff.
Produktionsplan, optimaler 10
Programm, optimales 10
Prohibitivsitze 83

Randwerte, s. Potentiale
Rechentechnik 153 ff.

Schlupfvariable 33ff., 83ff.

Simplex 33

Simplex-Algorithmus 35, 41
Simplexkriterium 38

Simplexmethode 331., 821f.
Simplextabelle 45ff., 83 ff.
Simplex-Theorem 36

Standorte, transportoptimale 124, 150ff.

Transportbeziehungen, optimale 78

Transportoptimierung 77, 78, 79

Transportplan, optimaler 10

—, zeitoptimaler 127

Transportproblem der linearen Optimie-
rung 77, 791, 154

—, mehrstufiges (mehrdimensionales)
1191, 152

—, offenes 151

—, zweistufiges 121, 122

Transportprobleme mit zusétzlichen Ein-
schrinkungen 1161f.

Turmzug 101, 102, 103

Unausgeglichenheit zwischen Aufkommen
und Bedarf 111ff.

Variable, begrenzte 63, 64

—, kiinstliche 36, 56, 57, 67, 75, 83, 87

Variablenaustausch 39, 52, 54

Verfahren, graphisches 22ff.

Verteilungskoeffizient 73, 74

Vogelsche Approximationsmethode
(VAM) 91

Zielfunktion 15, 17, 19, 25, 34, 46, 54, 61,
80, 81, 85, 153, 154

Zuordnung 9

Zuordnungsproblem 143

Zuordnungsvarianten 9

Zuschnittproblem 132ff.

Zweckfunktion, s. Zielfunktion

Zyklus 101






