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IV. Weiterer Ausbau der Differentialrechnung

8 Ableitung weiterer transzendenter Funktionen
8.1 Definition der zyklometrischen Funktionen

Bei den trigonometrischen Funktionen sind trigonometrischer Funktionswert
und Winkel — gemessen durch den Bogen am Einheitskreis — einander zu-
geordnet. Der Bogen () wird als die unabhéingige, der trigonometrische Funktions-
wert (y) als die abhingige Verinderliche betrachtet:

(a) Der Sinus ist eine Funktion des Bogens.

Man schreibt
y =sin z,

wobei sin das Funktionssymbol ist.

Die voneinander abhiangigen GroBen lassen sich anschaulich am Einheitskreis
als Strecke und Kreisbogen (vgl. Bild 1) darstellen. Zu jedem Kreisbogen gehort
eine Strecke, die den Sinus des Bogens darstellt.

[

|

Bild 1 Bild 2

_
Die Betrachtungsweise 1d8t sich umkehren: Zu jedem Sinus gehort ein Bogen.
(Die Umkehrung ist nur eindeutig, wenn man im I. Quadranten bleibt.) In diesem
Falle wird der Sinus als unabhéngige Verdnderliche betrachtet (vgl. Bild 2):

(b) Der Bogen ist eine Funktion des Sinus.

Man schreibt fiir diese Funktion
y = aresin z
und liest: y gleich arcus sinus z. Hier ist arc sin das Funktionssymbol.
Die Bezeichnung arc sin z ist eine Abkiirzung von arcus cuius sinus est i, zu
deutsch: der Bogen, dessen Sinus (der Wert) z ist.

1 Mathematik 1V



Wir stellen noch einmal gegeniiber:

Funktionssymbol Funktionssymbol
y=sinz y=arcmw
I | I
Sinus  Bogen Bogen Sinus

Beachten Sie, daB in y = are sin  mit x der Sinuswert (und nicht der Bogen)
bezeichnet ist. Beide Funktionen stellen den gleichen Zusammenhang zwischen
Bogen am Einheitskreis und Sinuswert dar. Sie unterscheiden sich nur in der
Zuordnung der Verdnderlichen. Wie Satz (a) und Satz (b) zeigen, gehen die beiden
Funktionen durch Umkehrung der Zuordnung auseinander hervor. Die eine
heiBt daher Umkehrfunktion oder inverse! Funktion der anderen.

Machen Sie sich den Begriff der Umkehrfunktion noch an der, quadratischen
Funktion y = 22 und ihrer Umkehrung ¥ = 'z klar! Als geometrische Deutung
konnen Seite und Fliche eines Quadrates dienen. Hier tritt einmal die Seite, das
andere Mal die Fliche als unabhéingige Verdnderliche auf:

Funktionssymbol Funktionssymbol
I |
=7 =0
Flache Seite Seite Flache

Auch hier muBte fiir die Umkehrung ein neues Funktionssymbol (}/) eingefiihrt
werden. Formal erhalten Sie die Umkehrfunktion, indem Sie die Stammfunktion
nach z auflosen und die Bezeichnung der Verénderlichen vertausehen.

yj =sinz Stammfunktion
Nach z aufgelost: « =arcsiny }

2 . inverse Funktion
z und y vertauscht: y = arcsin z

Die beiden letzten Ausdriicke stellen bereits die Umkehrfunktion zur Sinusfunktion
dar. Bei z = arc sin y ist die unabhéngige Verdnderliche mit y,'bei ¥ = are sin z
dagegen wieder — wie iiblich — mit z bezeichnet.

Die Wertetabelle der Stammfunktion kann man sofort fiir die inverse Funktion
verwenden:

ol 2| 2| 2|z .

xz 6 4 3 ? Yy =arcsinzx
) . 1 1 1
y=smzx 0| Pl "2"‘@"2“%! 1 ' x

Es ist also z. B: aresin0,6 = =, arcsinl = = -

2

Wie bei y = sin z werden auch die Umkehrfunktionen der anderen trigonometri-
schen Funktionen gebildet:
1 lat. tnversus, umgekehrt.

2



Trigonometrische Funktion Zyklometrische Funktion

y=sinz x = arc sin y oder y = arc sin x
Yy =cos 2 = arc c¢os y oder y = arc cos
y=tanz x = arc tan y oder y = arc tan
y = cotx z = are cot y oder y = arc cot x

Da bei allen der (Kreis-) Bogen die Funktion ist (in Abhéngigkeit von Sinus,
Tangens, Kosinus oder Kotangens) heiBen sie Arkusfunktionen oder zyklo-
metrische Funktionen.

Die Kurven der Arkusfunktionen erhalten Sie — da sie invers zu den trigono-
metrischen Funktionen sind — durch Spiegelung der entsprechenden trigono-
metrischen Funktionen an der Geraden y = .

Aus Bild 3 erkennen Sie, daB die Funktion y = arcsin z nur im Bereich
— 1= z <1 definiert ist. Dasselbe gilt fiir die Funktion y = arc cos z, wie Sie aus

y
|
2
y=x
s
T ysaresing /
/
4 /
-~ 1 AT
\\.‘ \\\" -
-”r —l\\ 'g ° 1 'ai ”\\\ %! X
i -./ g i ~9-;0-&
/
7
./ -B
7
7/ 3K
2
Bild 3

Bild 4 erkennen. Dabei sind innerhalb dieses Bereiches jedem 2-Wert unendlich
viele y-Werte zugeordnet. Die Vieldeutigkeit der Funktionen y = are tan z
und y = are cot x ist ebenfalls aus den Bildern 5 und 6 zu erkeanen. Wegen der
Vieldeutigkeit der Arkusfunktionen beschrinkt man die Funktionswerte auf
bestimmte Bereiche. Sie sind so ausgewihlt, daB die Funktionen eindeutig sind.
Die in diesem Bereich liegenden Werte nennt man Hauptwerte der Arkusfunktio-
nen.

1* 3



}
) ysarceon ¥

Yacos x

Ya)x

y

Bild 4

Yax

b3

Bild 5



xY

Bild 6

Sie liegen

E]

fiir y = arc sin z im Bereich —%g y=3,

Q

fiir y = arc tan « im Bereich —g— <y<gy,
fiir y = are cos ¢ im Bereich 0 <y <=,
fiir y = arc cot z im Bereich 0 <y <=.
Die Hauptwerte sind in den Bildern 3 bis 6 stark hervorgehoben.
Aus der Trigonometrie sind’ Thnen die Umkehrungen der trigonometrischen
Funktionen ldngst bekannt. Das soll Thnen das folgende Lehrbeispiel deutlich
machen.
Lehrbeispiel 1
Berechnen Sie im rechtwinkligen Dreieck mit a =5 m, ¢ = 8 m den Winkel !
Lésung: ‘
Bisher beschritten Sie folgenden Weg:

sin ¢ = % = 0,625,
o = 38°41".

Die Auflésung von sino = Z nach o wurde hier stillschweigend iibergangen.

ot



Fiihren Sie mit y =% das BogenmaB! ein, so ist

. a
siny = -,
a . a. N -
Y = . = are sin — = are sin 0,625,
o= 38° 41’

Nachstehend noch einige besonders oft benotigte Werte der Arkusfunktionen:
arcsin0 =0,

re si 1 = . ( 1 ) - 7
arc sin T T g are sin —g) T %
are sin 1 = % , are sin (— 1) g
arc cos 0 = —2—, are cos (—1) ==, arccosl =0,
arctan 0 = 0, arctan 1 = 71 , arccotl = Z .
Zwischen den einzelnen Arkusfunktionen bestehen — dhnlich wie bei den trigono-
metrischen Funktionen — bestimmte Zusammenhinge, deren Ilenntnis fiir

spatere Untersuchungen, besonders bei der Integration, wichtig ist. Sie sollen
hier hergeleitet werden.

Ist = cosz, so gilt auch z = sin (%—— )

Sie losen beide Ausdriicke nach dem Argument auf und erhalten:
2z =arccos ¢ und 7—2”—2 = are sin z.
Die Addition beider Gleichungen liefert

o 4
arc sin £ -+ arc cos r = 5 (1)

In gleicher Weise kann die. Beziehung

arc tan z 4 arc cot z = ’2'— (2)

hergeleitet werden.
Oft treten auch Verbindungen von trigonometrischen und zyklometnschen
Funktionen auf, z. B.
arc sin (sin ) oder sin (arc sin )
(Die Klammern konnen auch fortgelassen werden).

1 Bekanntlich ist arca® = ¢ - I_Z—O ,
180
also 0= = 57,30.



Da arcsin und sin zueinander inverse Funktionssymbole sind, heben sie ein-
ander auf. '

Es ist also arc sin sinz =z und sinare sin 2 = z,

ebenso arctantan £ =z und tan arc tan z = 2.

Das gilt fiir alle Umkehrungen. Sie kennen bereits die Beispiele

n
Yar =, elns =g, 10® = g,
n, —
(Y z)r = z, Ine? = gz, lg 102 = z.
&,
Sie kénnen natiirlich die Richtigkeit auch durch Rechnung bestétigen:
I
Setzen Sie in y = arc sin sin
sin ¢ = 2, so ist y = arc sin 2.
Aus sing =z
folgt 2 = are sin 2,
also ist y = arc sin z = .

Dieser Weg ist vor allem zweckméBig bei Funktionen wie
y = sin arc cos .

Sie setzen are cos £ = z,
gleichbedeutend mit T = C0s 2.
Damit ist y =sinz
=71 —cos?e,
y=1—%

Lehrbeispiel 2
Vereinfachen Sie
a) y = cos are sin z,
b) y = tan arc cot 2/
Losung:
a) Sie setzen arcsin x = z gleichbedeutend mit z = sin z und erhalten
y = cos z =1 —sinZz.
Mit sin z = z ergibt sich

y=7Y1—2a%
b) arccot 2z =z bz&v. 2z = cot 2 liefert:
Yy = tan z
1
T cotz
= 1.
T2



8.2 Die Ableitung der zyklometrischen Funktionen

Zwischen der Ableitung einer Funktion y = f(z) und der Ableitung der zu il
inversen Funktion z = @(y) besteht ein Zusammenhang, der es gestattet, aus
der einen Ableitung die andere zu berechnen. Da trigonometrische und zyklo-
metrische Funktionen zueinander invers sind, untersuchen wir zunichst diesen
allgemeinen Zusammenhang.

Wie Sie wissen, ist der Differentialquotient der Funktion y = f(z) definiert durch

Y _f(2) = tana.

Hierbei ist « der Anstiegswinkel der Tangente gegen die positive Richtung der
Abszissenachse. Die Differentiale d z und d y konnen als Katheten des Tangenten-
dreiecks PQR gedeutet werden (vgl.
Bild 7). Zu der Stammfunktion y = f()
erhalten Sie die Umkehrfunktion, indem
Sie y = f(x) nach x auflosen. Es ergibt
sich

y/

z = 9(y)-
Werden fiir die Verdnderlichen keine
neuen Bezeichnungen eingefiihrt, so
heiBt jetzt die unabhingige Verander-
liche y, die abhéngige Verdnderliche z.
Entsprechend ist dann die y-Achse
Bild 7 Abszissenachse, die 2-Achse Ordinaten-

achse.

Bilden Sie den Differentialquotienten der Umkehrfunktion, so gibt dieser den
Anstieg der Tangente gegen die y-Achse — die ja jetzt Abszissenachse ist — an.

Bezeichnen Sie den zugehorigen Anstiegswinkel mit 8, so ist also

d ,
d: = ¢’(y) = tan B.

Nun ist aber, wie Sie aus Bild 7 erkennen, 8 = % —a, also
tan f = tan (%—— )
=cot a
=.1_,
~ tana
. . dz 1
Damit erhalten Sie dy = dy 3)
T
dy dz . . . . .
oder iz ay = 1: Die Ableitungen sind zueinander reziprok.

8



Beispiel:

Zur Funktion y = 2? soll die inverse Funktion und deren erste Ableitung ge-
bildet werden.

Es ist y = f(z) = a2
Die inverse Funktion lautet 2 = ¢(y) =Vy.
Sie bilden die Ableitung der Ausgangsfunktion:

dy _
. . dz 1 1
Damit wird Ty = _d_g =5
dz

Beachten Sie, daB hier die abhingige Verdnderliche mit z, die unabhdngige Ver-
dnderliche mit y bezeichnet ist!

Um die gewohnte Schreibweise zu erhalten, hat man statt « bzw. y nur y bzw. 2
zu schreiben. In der gewohnten Schreibweise sieht unsere Rechnung so aus:

Ausgangsfunktion Inverse Funktion
y=f(x)=w2, y=¢(x)=ﬁ,

dz 2y m

Bestiitigen Sie die Richtigkeit der Kechnung, in dem Sie y =}z in gewohnter
Weise differenzieren!

Es bereitet jetzt keine Schwierigkeit, die Ableitungen der zyklometrischen Funk-
tionen zu bilden, da Arkusfunktionen und trigonometrische Funktionen zu-
einander invers sind.

y = are sin x

Die inverse Funktion zu y = arcsin x

ist z =sin y.

Da hier y die unabhiingige Verinderliche ist, differenzieren Sie nach y:
dz
ﬂ =C08 Y.

Nach (3) ist dann L colTy :

Nun ist wieder die / urspriingliche unabhingige Verdnderliche z mit Hilfe der
obigen Beziehung z = sin y einzufiihren:
dy 1

dz Vl—sin’y ’

R 4)




y = are cos x
Die inverse Funktion heilt:

Z = €08 Y.
Sie bilden die Ableitung der inversen Funktion:
4z _ _ in
dy — y
Es ist also
dy 1
dz  siny
-1
yT— cos? y
Sie setzen cos y = = ein und erhalten
dy _ 1
dz 1= a2
y = arctan x
Aus z=tany
erhalten Sie
dz _ 1
dy  cos®y
Also wird
dy _ 2
iz = cos* Yy
-t .
T 1+ tan?y
Mit tan y = 2 erhalten Sie daraus
dy 1
dz ~ 1+ a?
y = are cot x
Die inverse Funktion
x =coty
liefert
ds ___ 1,
dy ~ ~ sin?y
Damit ist
dy _ in2
I, = —sin*y
-1
T 14 cot?y
Mit cot y =  erhalten Sie schlieflich
dy _ 1
dz =~ 1+

10

®)
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Lehrbeispiele
Die folgenden Funktionen sind abzuleiten!

3. y=arcsinaz

Losung:,
Es ist die Kettenregel anzuwenden. Sie setzen az = 2.

Aus ‘
Y = arcsinz und z=acz
erhalten Sie

dy _ 1 iz _,
dz = {2’ dz —
und damit
dy _dy dz 1
dz — dz de 1z
dy a___
d_a; T—a%z?
4. y = arc sin —-—
) N i
Losung:
Sie setzen ——— =
Va® + a?
Aus y =arcsinz und 2= ———
Vaz _|_ xﬁ
folgt
S 2z
/02 | 2 a:___
i?l=_;1: (_l_f_m-i-:c 2Va? + a2
dz 71—z’ dz — a? + a?
aﬂ
T (a® + 2?) JaR + a2
Also ist
dy _ 1 @ - a
de "1 @ @+)@ @ R+ E— o (@ + oY)
l a? 4 2
- _%
T at+ a2?

5. y = arcsin (m cos )

Losung:

Diese Funktion wollen wir nach der Kettenregel ohne Einfiihren der Hilfsverinder-
lichen differenzieren. Die innere Funktion ist z = m cos z. Also wird

ay’ 1 :
b —— - m (—sin )
dz — y1 — (m cos z)?

m sin z .

V1 — m?2 cos? z

11



6. y= 1 are tan e
a a

Losung:
Wir lassen auch hier die Einfithrung der Hilfsveréinderlichen weg.
dy 2t 2 1
dz ~ a 22 a  a® + a?
g rr e
Ubungen

1. Bestimmen Stie den Hauptwert!

a) arc sin % b) arc sin — 0,2079 ¢) arc cos ;— d) arc cos —0,73

e) arctany3  f) arc tan — 4,1 g) arccot2,5 k) arc cot——-;-ﬁ
2. Verewnfachen Sie folgende Ausdriicke:

) sin are cos &
cos are sin .’
¢) z - (tan arc cot © — cot arc tan 2zx) !

a) z-tanarccotz,

tan arc tan z

3. Differenzieren Sie:

a) y=arccos%—, b) y=arctani !
4. Differenzieren Sie:
a) y=arccotV2x = b) y = arcsin (mecos 2x)/
o —

8.3 Die Hyperbelfunktionen

8.31 Definition der Hyperbelfunktionen. In der Mathematik und Physik sowie
in den technischen Anwendungen treten einfache mittelbare Funktionen der
Exponentialfunktion % auf, denen man ihrer Bedeutung wegen besondere Namen
und Bezeichnungen gegeben hat. Diese Funktionen werden Hyperbelfunktionen
oder hyperbolische Funktionen genannt. Sie sind wie folgt definiert!:

. eT —e Z e% 4 e~ %
sinh 1 = — —— cosh z = + —
2 2 ,
sinhz e%—e™ % coshz e* e %
tanh z = coth z = L A

coshz &% fe %’ sinhz ez —e ¢
1 In vielen Lehrbiichern finden Sie noch die Bezeichnungen €in, €of, Tg, Ctg.
Nach den neuen Normen ,,DIN 1302 vom November 1954 iat fiir die hyperbolischen
Funktionen die hier verwendete Schreibweise verbindlich.
12



Die Bezeichnungen hat man denen der Kreisfynktionen entlehnt, da unter den
Hyperbelfunktionen &hnliche Beziehungen bestehen, wie bei den Kreisfunktionen.
Man nennt diese neuen Funktionen den hyperbolisehen Sinus (Sinus hyperbolicus),
den hyperbolischen Kosinus usw. und liest sinus hyperbolicus z, cosinus hyper-

bolicus z usw. Der Name ,,Hy-
perbelfunktionen* wird Thnen
nach den Ausfithrungen in Ab-
schnitt 8.35. verstandlich werden.

Die Kurven dieser Funktionen
konnen Sie (beisinh z und cosh
verhiltnismidBig leicht) aus den
Kurven der Exponentialfunktio-

nen y = ?ef‘lund Y= %e—x
erhalten (y = 5 e~% ist die an
der y-Achse gespiegelte Funktion
y=5e).

Bild 8 zeigt Thnen die Funktionen
Y= %ez und y = %e'xunddie

daraus durch Addition bzw. Sub-
traktion entstandenen Kurven
y = cosh  und y = sinh z. Der
Kurvenverlauf von y = tanhz
und y = coth # ist in Bild 9
dargestellt.

Die Eigensechaften der Hyperbel-
funktionen sind leicht aus denen
der Exponentialfunktion herzu-
leiten.

1. Es ist

cosh (—zx) = —;— (e=% 4 e?),
also ist
cosh (—z) = cosh z.
Indergleichen Weise ergibt sich
aussinh (—z) = % (e—2—e?),
daB

sinh (—2) = — sinh z.

|
yd
yesinh x
1 yscoshx
Y= -‘f—'
-3 4 Zl 3' x
+ -1
+-2
Bild 8
7
3 ) y=cothx

===== - --—-—7

e

-2

13



Das bedeutet:
y = cosh z ist eine gerade,
y = sinh  ist eine ungerade Funktion.

. Da stets e2> 0 und e—% > 0 ist, so gilt

fiir alle 2
cosh z > 0.
Es ist sogar stets
cosh = f’z—';Lz =1
Duich Umformung der Ungleichung
er 4 e~ %
T >
2 =1
erhalten Sie namlich
e +e % =2,
ez 4 1 = 2e7,
ez —2e%7 +1=0,
(ez —12 = 0.

Ein Quadrat ist stets = 0, daher ist die Ungleichung, von der ausgegangen wurde,
richtig.
Aus der Definition der Hyperbelfunktionen folgt fiir alle x

sinh 2 < cosh z.

S .1 . oy e -
Da lim e=# =lim = =0 ist, gilt fiir gro3e positive x

T—>oo T—>oo

.. 1
sinh z ~ cosh z 5 ez,

Die Kurven y = sinh z und y = cosh z schmiegen sich also asymptotisch an
die Kurve y = %ez an.

Wegen lim e# = 0 strebt cosh z = % (e® + e~%) fiir groBe negative x gegen

T—>—o0

Y= -;-e—z. Das war zu erwarten, da — wie Sie gesehen haben — y = cosh

eine gerade Funktion ist, das Kurvenbild also die y-Achse zur Symmetrie-
achse hat.

. Fiir £ =0 wird

sinh0 =0 und- cosh0 = 1.

Zusammen mit den bereits ermittelten Eigenschaften ergibt sich, da — von
der Symmetrie her betrachtet —

sinh 2 Ahnlichkeit mit der kubischen Parabel,
cosh 2 Ahnlichkeit mit der quadratischen Parabel hat.

Vergleichen Sie die Ergebnisse dieser Uberlegungen mit Bild 8!

14



Wir erwiihnen noch, daB eine an zwei Punkten befestigte schwere Kette die Form
der Kurve y = a 4 b cosh % annimmt. Deshalb wird die Kurve y = cosh z oft

Kettenlinie genannt.

Die Eigenschaften von tanh 2 und coth z folgen aus denen von sinh z und cosh z.
smh z

1. Da stets cosh z ==0, ist tanh z = —-—" iiberall stetig, hat also keine Unend-

lichkeitsstellen. Dagegen ist die Funktlon coth z = cos]lll % wegen sinh 0 =0

an der Stelle = 0 nicht erklirt. Sie macht dort einen Sprung. Die y-Achse
ist also Asymptote der Kurve.

2. Es ist tanh (—z) =§£%:——3 =_;———:;]'ith = —tanh z,

ebenso  coth (—z) = — coth z.

Die Funktionen y = tanh z und y = coth z sind ungerade und daher zentral-
symmetrisch.

3. Aus
et — e~ % 1 — e—zx
tanhz = 2 re R
folgt
limtanh z =1
ZT->+-o00

und, da tanh z eine ungerade Funktion ist

lim tanh 2 = —1.

Z—>—oc0
Da coth 2z = t—l— ist, ergibt sich weiter
anh z
limcothz =1
=+ oo

und lim coth z = —1.

E>—oo
Es gilt also

tanh £ ~ coth z ~ 1 fiir groBe positive z,

tanh  ~ coth x ~—1  fiir groBe negative z.
Die Geraden y =1 und y = —1 sind Asymptoten beider Kurven,. Wobel
tanh « zwischen diesen Geraden und coth z ober- und unterhalb dieser GeTaden
verlduft. Es ist also stets

[tanh z| <1

und [ecoth z] > 1
(vgl. Bild 9).



8.32 Beziehungen zwischen den Hyperbelfunktionen. Es ist

. et 4 e % eT —e— 2
cosh z 4 sinh z = —y T = ez (8a)
und
ez + e~z et — e 2 _
sy = &7 (8b)
Multiplizieren Sie beide Ausdriicke miteinander, so erhalten Sie
(cosh z + sinh ) - (cosh £ — sinh 2) =e%.e~7 =1,

cosh £ —sinh z =

cosh? z —sinh2z =1 9)

Aus
cosh? z = %(ez-" + 2 +e22%) und sinh?z = % (e2% — 2 4 e22)
ergibt sich

cosh? z 4 sinh?z = %(2 -e27 4 2. e722) = e’L—g_e‘j
= cosh 2.
Es ist also
cosh? z + sinh? x = cosh 2z (10)

Bei Betrachtung der Formeln (9) und (10) werden Sie an dhnliche Beziehungen
zwischen den Kreisfunktionen sin z und cos z erinnert. Diese Ahnlichkeit erklirt
Thnen die analoge Bezeichnungsweise der Hyperbelfunktionen. Auch bei den
weiteren Beziehungen sind Ahnlichkeiten zu erkennen.

Bilden Sie das Produkt
ez — e—zz 1 e!x — e 22 1

cosh z sinh 2 = 1 =3 5 = -2—smh2x,

so folgt die Beziehung

2 - sinh z - cosh £ = sinh 2z (11)

Lehrbeispiel 7
Bestimmen Sie « aus den folgenden Gteichungen!
a) V1 +sinh®z —sinhz =1
Lésung:
Nach (9) gilt: cosh z =1 + sinh® z, also folgt
cosh £ —sinh 2 = 1.
Die linke Seite der Gleichung kénnen Sie nach (8b) gleich e~ setzen:
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. 1 .
b) sinh z — ooihs = tanh z sinh  — cosh z

Losung:
Sie multiplizieren beide Seiten mit cosh z:.
.sinh z cosh £ — 1 = sinh? & — cosh?2 z,
sinh z cosh  — 1 = — (cosh? z — sinh? z),
sinh zcosh x —1 = —1.
sinh z cosh z = 0.
Da stets cosh x 3= 0, so folgt
sinh z = 0,
z=0.

Setzen Sie # = 0 in die Ausgangsgleichung ein, und priifen Sie die Richtigkeit des
Ergebnisses!
¢) cosh2z + 6sinh2z —2 =0
Losung:
Auch der Weg iiber die Exponentialfunktion ist moglich. Aus der Definition
von cosh z und sinh z folgt

%(ezz +e722) 4 6. %(ex_ e=2)2 —2 = 0.

Sie multiplizieren die Gleichung mit 2 und rechnen das auftretende Quadrat aus:
e 727 4 3 (2% —2 4 e72%)—4 =0.

Sie fassen zusammen:
4e2z {-4e—22 —10 = 0.

Dies ist eine Gleichung fiir < = e2%:
4z4+4-2—10=0.

Multiplizieren Sie mit 2z, so erhalten Sie eine quadratische Gleichung:
422102 4+4 =0,

3

Zi2 =g + 1
2, =2,
1
29 = —2-

Mit z = e?% ergibt sich
ele = 2, ezx, = % ,
22, =In2, 22, = Iny,
= 0,6931, =—1In2,
y = 0,3466, Zy = — 0,3466.
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8.33 Additionstheoreme der Hyperbeltunktionen. Wie bei den Kreisfunktionen,

gibt es auch fiir die Hyperbelfunktionen Additionstheoreme. Sie lauten

sinh (z 4 y) = sinh z cosh y 4- cosh z sinh y

cosh (z 4- y) = cosh x cosh y £ sinh x sinh y

(12)

(13)

Die Ahnlichkeit mit den entsprechenden Formeln fiir die Kreisfunktionen ist
wieder offensichtlich. Der Nachweis der Richtigkeit dieser Beziehungen 148t sich
leicht iiber die Exponentialfunktion fithren. Wir wollen das fiir (12) durchfiihren.

Es ist
sinh z cosh y + cosh z ginh y

= (7 —e=%) (¥ +e7¥) + 3 (6% + 07%) (e¥ — 09)

= % (e71Y - e?~¥ —e TtV — e~ T Y feTtY —er Y { e~ TTY —e"27Y)

=1 (2esty — 2e=(a+)
L —(z+
=--2—(e$ Y —e~(@ty)

= sinh (z + y).
Aus sinh (2 4 (—y)) ergibt sich mit
cosh (—y) = cosh y und sinh (—y) = —sinh y
sofort die zweite Formel.
Fithren Sie den Nachweis fiir (13) selbst durch!
Ause® = cosh x + sinh z (vgl. Formel (8a)) folgt

en% = (cosh « 4 sinh z)» = cosh nz + sinh nz

Lehrbeispiel 8

Berechnen Sie

a) z =1In (sinh 1,2 + cosh 1,2)3,

b) z = }'cosh 6 + sinh 6!

Losung:

a) Die Anwendung von Formel (14) liefert
z=In(e"?3%) =12-3-Ine = 3,6.

b) 2 = (cosh 6 + sinh 6)*
Nach Formel (14) folgt:
z=¢e"" =e2=7389.

18
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8.34 Die Ableitung der Hyperbelfunktionen

= ginh »
Es ist
er —e~2
= ——»2 ,
also wird
g—i = % (e® + e~%) = cosh .
(sinh z)’ = cosh (15)
y = cosh «
1 d 1
y=-5(?+e9), a;y, =5 (e?—e™?)
(coch z)’ = sinh (16)
y = tanh «
y=tanhz = ::11112. Nach der Quotienténregel wird unter Beriicksichtigung
von cosh? z —sinh?2z = 1:
", _cosh®z—sinh?z 1
y = cosh?z  ~ cosh®z
oder auch
1 2
y =1 ——%}}ll-z—z = 1—tanh? z.
(tanh z) = iz =1— tanh? 1w
y = coth »
cosh z
y =cothz ~ sinh z
Es wird
,.__sinh®z—cosh®z  cosh? x —sinh?
- sinh? - sinh? z
=_sm%; =1 — coth2 z.
(coth x)' = — S_i;::lz_;} =1—coth?z (18)

Lehrbeispiel 9
Differenzieren Sie y = 3 sinh J- !

19



Lésung:

Lehrbeispiel 10
Bilden Sie die Ableitung von 3 = In tanh . /
Lésung:

cosh £
dy 1 1 1 1 2 1 _ 1 1

sinh % cosh? % 2 sinh %cosh% sinh &

Lehrbeispiel 11

Welchen Winkel bilden die Tangenten an die Kurven y = cosh & und y = coth z
am Schmttpunkt der beiden Kurven miteinander?

Losung:

Im Schnittpunkt ist cosh z = coth z.

Daraus folgt: cosh & — B2 ,
sinh x

cosh z (sinh z — 1) = 0.
cosh z kann nicht Null sein, also gilt:

sinhz —1 =0,
sinh z =1,
zg = 0,881.1
Aus cosh? x —sinh2 2z =1
folgt cosh? g =2,
also ys = eosh x5 =2.

Koordinaten des Schnittpunktes: zg = 0,881; ys =1,414.

Den Anstieg der Tangenten im Schnittpunkt erhalten Sie aus den Ableitungen
an der Stelle z5. Es ist:

(cosh z)’ = sinh z,

(coth ) = — ———,
also .
m, = tano, =sinh rg =1,
1
My —tana2 =—SlTh2‘TS =—1
Da m, - my = —1 ist, stehen die Tangenten senkrecht aufeinander (vgl. Bild 10).

1 Die Berechnung der Funktionswerte fiir die hyperbolischen Funktionen erfolgt am zweck-
mifigsten an Hand von besonderen Tabellen (,,Fiinfstellige Logarithme}tv und andere
mathematische Tafeln* von Dr. Fritz MULLER) oder dadurch, daB man die hyperbolischen
Funktionen auf die e-Funktionen zuriickfiihrt.
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Lehrbeispiel 12
Bilden Sie die erste Ableitung der Funktion y = esinh=/
Losung:
Unter Anwendung der Kettenregel erhalten Sie
Y = cosh z . esvh e

yl

Yy =cosh x

°
bl |

Bild 10

Ubungen

Qr

. Losen Sie die Gleichung
cosh 22 = cosh2 2z +1 nach x auf!
6. Differenzieren Sie die folgenden Funktionen!
a) y =Insinh z
b) y =Intanh (az + b)
¢) y=Insinh (222 +4) an der Stelle x = 2

1
VY =T =

8.35 Zusammenhang zwischen Hyperbel und Hyperbelfunktionen. Bevor der
Zusammenhang zwischen Hyperbel und Hyperbelfunktionen erlautert\wird, sei
Thnen in Erinnerung gebracht, daB zwischen den Kreisfunktionen (trigono-
metrischen Funktionen) und dem Kreis ebenfalls ein direkter Zusammenhang
besteht. Sie lernten die geometrische Beziehung bereits in der Trigonometrie
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bei der Darstellung der trigonometrischen Funktionen am Einheitskreis kennen
(Bild 11). Den rechnerischen Zusammenhang erkennen Sie ebenfalls leicht aus
Bild 11. Betrachtet man den Punkt P(z;y) in

vl Bild 11, so 1Bt sich folgende Beziehung ablesen:
le— cot ¢t _j x i :08 tt, (a)
i~ y =sint,
I+ worin ¢ das Bogenmall des Winkels « bedeutet.
?:n; Durch Quadrieren und Addieren der Gleichungen
1 x (a) erhdlt man
2% = cos?1
y? =sin?¢
2?2 4 y? = cos?{ 4 sin? ¢
Bild 11 Mit cos® ¢ 4 sin? ¢ =1 folgt
22 + y2 — 1,

also die Gleichung des Einheitskreises.

Zwischen der Einheitshyperbel 22 — %2 = 1 und den Hyperbelfunktionen besteht
ein dhnlicher Zusammenhang. Setzt man

2 =cosh {
und y = sinh ¢ (b)
so ergibt sich durch Elimination von ¢ die Gleichung der Hyperbel. Der Rechen-
gang ist folgender:
Durch Quadrieren erhalten Sie
2% = cosh? ¢,
y? = sinh? ¢,
Die Subtraktion liefer:
22 — y? = cosh? { — sinh? .
Mit cosh?{ — sinh? ¢ = 1 [vgl. Abschnitt 8.32, Formel (9)] folgt
22—yt =1 (c)
Dies ist aber die Gleichung einer gleichseitigen Hyperbel mit den Halbachsen
a = b =1 (Einheitshyperbel). Aus den -Gleichungen (b) und (c) ergibt sich zine
Darstellung der Hyperbelfunktionen an der Einheitshyperbel (Bild 12), dhnlich
der Darstellung der trigonometrischen Funktionen am Einheitskreis. Der Wert ¢
wird aber bei der Einheitshyperbel nicht durch ein Bogenma8 veranschaulicht,

sondern —;— ist durch die GroBe der Sektorfliche (in Bild 12 schraﬁert) gegeben.

Der Beweis dafiir kann erst spiter in der Integralrechnung gefiithrt werden und
zwar durch Ausrechnung der Sektorfldche.
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Auch beim Einheitskreis 148t sich ¢ als doppelte Fliche des Sektors n it dem
Bogen ¢ deuten, was Sie leicht durch Ausrechnen nachpriifen konnen. Bekannt-

v

le——Coth ¢ P,

-
.—!lnht——l

o
x|

c—mht——l

Bild 12

lich ist der Flicheninhalt eines Kreissektors gleich % Bogen - Radius. Fiir die

Fliche des Sektors im Einheitskreis (Bild 11) erhilt man also F =t'~2—1 =%.

8.4 Die Areafunktionen

8.41 Detinition der Areafunktionen. Um zu der Hyperbelfunktion y = sinh
die Umkehrfunktion zu erhalten, haben Sie die Funktion nach z aufzulésen.
Man fithrt dazu — wie bei den Kreisfunktionen — ein neues Funktionssymbol
ein und schreibt!

x = ar sinh ¥,
gelesen: x gleich area? sinus hyperbolicus y.

Da iiblicherweise die unabhéngige Verdnderliche mit z bezeichnet wird, ver-
tauschen wir noch die Bezeichnungen der Verdnderlichen und erhalten

y = ar sinh 2.

1 Vielfach finden Sie fiir die Areafunktionen noch die alte Schreibweise At &in, UAr Gof,

Ar Tg, ArCtg.
2 area, lat.: die Fliche.
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Wie Sie wissen, kann man die Hyperbelfunktionen als Funktionen der doppelten
Sektorfliiche an der Einheitshyperbel (Bild 12) auffassen. Bei den Umkehrfunk-
tionen wird also die abhingige Verdnderliche durch die doppelte Sektorfliche
veranschaulicht. Dieser Sachverhalt ist der Grund, da man die Umkehrfunktionen
der Hyperbelfunktionen als Areafunktionen bezeichnet.
Die zyklometrische Funktion y =sin 2 lieB sich nur durch Einfiihrung des
Funktionssymbols are sin nach z auflosen. Bei den Hyperbelfunktionen lift
sich die Auflosung nach z auch ohne ein neues Funktionssymbol durchfithren,
da sie mittelbare Funktionen von e sind. Schreiben Sie also statt
y =sinh z

mit Hilfe der Exponentialfunktion

y=%(e“—e‘?),

8o konnen Sie die Hyperbelfunktion nach 2 auflosen. Nach Multiglikation mit

2e% erhalten Sie
2yezr =e¥—1,
2z —2yer—1=0.
Sie setzen e% =z
2—2yz—1=0

und erhalten so eine quadratische Gleichung fiir z, mit der Losung
e=y+7y¥+1

Da z = % nie negativ sein kann, gilt nur das positive Vorzeichen.der Wurzel,

denn es ist stets y < + V42 + 1. Damit wird

e =y + 1y +1
Um z zu erhalten, miissen Sie beide Seiten logarithmieren:

Fiir die Veréinderlicl:en haben Sie noch die iibliche Bezeichnungsweise einzufiihren:
y =1In(z + V22 +1).
Diese Funktion ist definiert fiir alle z, da stets z 4 Y22 + 1 > 0 ist.

Es ist also -
y=arsinhz =In(z +Y22 + 1) fir —oo <2 < + oo.
In gleicher Weise lassen sich die weiteren Areafunktionen herleiten. Sie erhalten

y = arcosh z = In (z + 22 —1) fir z =1,
y=artanhx—-2ln1+: fir |z| <1,
y=arcothx—%lnz+]i fir |z] > 1.




Sie sehen in obenstehender Aufstellung, daB die Areafunktionen logarithmische
Funktionen darstellen. Das war zu erwarten, da sie ja die Umkehrfunktionen
von Exponentialfunktionen sind. Hieraus ergibt sich aber als weitere Folge, da8
sie wie die anderen logarithmischen Funktionen nicht fiir jeden Bereich von z

-5 -4 -3 -2 -1

e ———

-

\
N\,

[ N el

]
1
1
[}
1

A S y=ar coth x

S ee—.—n

|

A 1 7 3x
=~ |
y=arcothx ! ) |
Nt 1 :
A |
A ,
! S
1 !
1
-3 :
1
|

Bild 13b

definiert zu sein brauchen. Es ist hier notwendig, den Definitionsbereich genau
anzugeben, so wie es obenstehend erfolgte. Die Bereiche, in denen die Areafunk-
tionen erklirt sind, kénnen Sie auch aus Bild 13a, b ablesen.

8.42 Die Ableitung der Areafunktionen. Ahnlich wie bei den zyklometrischen
Funktionen gehen wir von-den Hyperbelfunktionen aus, die ja invers zu den
Areafunktionen sind.
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y = ar sinh x
Aus der inversen Funktion (z ist dann die abhingige Veranderliche)

« = sinh y
erhalten Sie g—; = cosh y
— T sinke y
= V1 4 2
Also ist
(ar sinh z) = W—Tl-ﬁ (19)

Es gilt nur das positive Vorzeichen der Wurzel, da y = ar sinh z iiberall positiven
Anstieg hat (vgl. Bild 13a).

y = ar cosh x.

Fiir die inverse Funktion x = cosh y
. dz .
ist Frie sinh y

=Ycosh?y —1

=Vya2—1.
daraus folgt

, 1
(ar cosh z) = o1 (20)

y = ar cosh z ist — #hnlich wie y =}z — eine zweideutige Funktion. Deshalb
gilt in der Ableitung das positive oder negative Vorzeichen der Wurzel, je nachdem
der Anstieg des iiber oder unter der x-Achse liegenden Astes der Funktion gemeint
ist (vgl. Bild 13a).

y = ar tanh x

Aus z = tanh y
erhalten Sie nach (17) g% =1—tanh?y
=1—2a2
Damit ist
~ (ar tanh a:)’=1__—1mz, lz] <1 \(21)

Die Beschriankung auf den Bereich | z| < 1 folgt aus dem Definitionsbereich von
y = ar tanh 2, da diese Funktion nur fiir den Bereich |z| <1 definiert ist
(vgl. Bild 13D).
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y =ar coth x

Aus z = coth y
folgt nach (18) g—; =1—coth?y
=1—2z2%
Es ist also
(ar coth z)’ = I _1 #1z1>1 (22)

Sie erhalten als Ableitung die gleiche Funktion, wie bei y = ar tanh z. Jedoch
ist y = ar coth z nur fiir | z| > 1 definiert, also gilt auch die Ableitung nur im
Bereich |z| > 1.

Lehrbeispiel 13
Differenzieren Ste y = ar sinh (8z + 4)/

Losung:
Sie setzen 3z + 4 =2z und wenden die Kettenregel an:
y = ar sinh z, z =3z 44,
ay _ 1 as _ g
dz Vya+1 dz ’
dy _ 3 3

2~ Y@Bz1dr +1 Vo2 +odz + 17

Lehrbeispiel 14
Bilden Sie die Ableitung von y = yar tanh 22/

Losung:
Sie setzen ar tanh 22 = und 22 = v:
y = Vu, u = ar tanh o, v =2z
Damit wird
dy _ 1 dw_ 1 do _ g
du ™ gypy’  do 1 —o® dz =~ 7
iy _ 1 1 1
dz 2 jartanh 2z 1— 42° (1 — 4a?) Var tanh 2z
Ubungen
7. Bilden Sie mit Hilfe der Exponentialfunktion die Umkehrfunktion von y =tanhz!

Co

. Zeigen Sie, dafi 2 ar cosh z = ar cosh (222 — 1) st/
9. Wie lautet die® Umkehrfunktion von y = « cosh %?

Driicken Sie die Umkehrfunktion durch die Logarithmusfunktion aus!
10. Differenzieren Sie

a) y = ar sinh Jz, b) y=—;—arta,nh 22/
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Zusammenfassung zu den Abschnitten 8.1 bis 8.4

Neben den Ihnen schon bekannten transzendenten Funktionen (logarithmische,
Exponential- und trigonometrische Funktionen) lernten Sie jetzt die Arkus-,
Hyperbel- und Areafunktionen kennen. Die Arkusfunktionen sind die Umkehr-
funktionen der trigonometrischen Funktionen, z. B.
y = are sin .

Diese Funktionsschreibweise besagt: y ist der Bogen, dessen Sinus (der Wert)
zist. Da die zyklometrischen Funktionen unendlich vieldeutig sind, rechnet man
im allgemeinen nur mit den fiir ein bestimmtes Intervall festgelegten Haupt-
werten der Funktionen.
Zueinander inverse Funktionssymbole heben einander auf, z. B.:

.8in are sin z = z.
Die Hyperbelfunktionen sind mittelbare Funktionen der Exponentialfunktion
Y = ez,

Die Umkehrfunktionen der Hyperbelfunktionen sind die Areafunktionen. Sie
sind logarithmische Funktionen. Die Areafunktionen und ihre Ableitungen sind
nur in bestimmten Bereichen reell definiert.

Ubungen
zu den Kapiteln 8.1 bis 8.4

11. Bestimmen Sie y aus
a) y = arc tan 2, b) y2=arccosi!

2
12. Vereinfachen Sie
arc tan 2z +arc cot 2z |

. o T
Sin arc sin —-

. 2
13. Bilden Sie die erste Ablestung der folgenden Funktionen!
1 38— 3¢
a) y= T ato 57 b) z(t) = arc tan T3
¢) y=arctan bz + arccot bz
d) g(t) = — arc cot :—'_T_: - arc cos 21
T
e) z(u) = are tan (a cot u) f) y = are cos T
g) () =aare sin'% — Ya® — 2

k) y=2]/§arccotl_,i§+ln Va? +3
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14. Beweisen Sie:
a) cosh 2z 4 sinh 22 = €27,
t) Vsinh? z + e® (cosh z — sinh z) = cosh z/

15. Bestimmen Ste © aus:

a) 1+2sinhls 0,0863 - cosh 2z,
cosh z N
Anleitung: Aus Formet (9) und (10) folgt 1 4- 2 sinh? z = cosh 2.
b) sinh z — Fslﬁ = tanh z sinh z — cosh z/
16. Bilden Stie die erste Ableitung von:
a) y = ev-sinh b) (@) = s
¢) () = —mE d) 2(z) =In [z - (sinh & + cosh 2)]!
17. Wie lauten die Umkehrfunktionen von
a) y-= ar cosh (a — z), b) z = tanh J1 — 222
18. Differenzieren Ste
1 ar sinh ¢
=3 — B —— /
a) y = ar cosh ;—, b) z(1) Tk

8.5 Kreis- und Hyperbelfunktionen komplexer Argumente

In der Elektrotechnik haben die hyperbolischen Funktionen besondere Be-
deutung. Das folgende Kapitel ist deshalb auch ausschlieBlich fiir Studierende
der Fachrichtung Elektrotechnik gedacht. Besonders in der Ubertragungstechnik
fiilhrte die Einfilhrung der hyperbolischen Funktionen zu einer vorteilhaften
Weiterentwicklung. Aus diesem Grunde wollen wir uns in diesem Kapitel noch
etwas ausfiihrlicher mit den Hyperbelfunktionen befassen. Im folgenden ist
— wie allgemein in der Elektrotechnik iiblich — die imagindre Einheit mit §
statt ¢ bezeichnet.

Wir gehen von der Eulerschen Formel aus (vgl. Lehrbrief ,,Komplexe Zahlen‘):

1
el = jx =cosxz+j-sinz
or=1z T (23)
eJ% =|—gx=cosx—j-sinz

Beispiele:

1. ef+30° =/30°

2. c0s 60° + j - sin 60° = ei* ° = /60°
| ¢ wird gelesen: Versor ¢.

1 Nach Kennelly schreibt man fiir ¢’® auch das allgemeine Versorsymbol /¢ und bezeichnet
derartige Symbole als Kennellysche Formen.
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Wir bilden e/z 4 e—Jz bzw. eiz —e—Jz;

eiT 4 7% = 2 cos 7, ejz —e—J% = 24 - sin x,
% e L
3 =108 Z, 5 =4 - sin 2.

Die linken Seiten dieser beiden Gleichungen entsprechen cosh jz bzw. sinh jz,
wir konnen also schreiben:

‘cosh jz = cos (24a) sinhjz =7-sinz (24b)

Aus (24a) und (24b) folgt weiter:

tanh jz =j-tan z | (24¢) cothjz =—j-cotz| (24d)

Welche Beziehungen ergeben sich, wenn die Argumente der Kreisfunktionen
imagindr sind?
Wir setzen jx =ze.
Dann ist 2z =gz, —x =14z, bzw. z=—jz.
Wir setzen dies in 24a, b, ¢, d ein. Dann folgt:
cosh z = cos (—j2)

— | cosjz =cosh z (25a)

= 008 §2,
sinh z = § - sin (—j2)

=—j.sinjz, ——> | sinjz=j-sinhz (25b)
tanh z = j - tan (—j2) _

=—j-tanjz, ——> |tanjz=7j-tanhz ' (25¢)
cuthz = —j - cot (—¢2) v

=4 - cot jz, — | cotjz =—7-cothz (25d)

Die Formeln (25¢) und (25d) erhdlt man auch ohne Schwierigkeiten aus (25a)
und (25b).

Lehrbeispiel 15

Berechnen Ste

a) cos jm, b) sinj - cosj/

Losung:

a) Nach Formel (25a) folgt
cos j = cosh » = 11,592.
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b) Wir wenden (25a) und (25b) an:
sinj-cosj=4-sinh1.coshl
-j-2sinh1-coshl =%-7'~sinh2

o) = 0|+

-§-8,62686 = j - 1,81343.

Lehrbeispiel 16
Folgende Funktionen sind durch hyperbolische Funktionen auszudriicken:

a) cos 2z b) ta,ng—

Losung:
a) Nach Formel (24a) folgt:
cos 2z = cosh j - 2.
b) Aus (24c) folgt:
x

z 1 . . . X
tan?=7-tanh7-?=—7-tanhy-?.

Bisher hatten wir nur Kreis- bzw. Hyperbelfunktionen mit Argumenten der
Form j z behandelt. Hiufig tritt es in der Praxis auf, da8 die Argumente komplexe
Ausdriicke der Form @ + jb darstellen.
Betrachten wir cos (¢ + b§). Nach den Additionstheoremen gilt:

cos (@ + jb) = cos a - cos jb — sin a - sin §b.

Unter Verwendung der Formeln (25a, b) erhalten Sie daraus:

cos (@ + jb) =cos a - cosh b — 7 -sina - sinh b (26%

Analog ergibt sich:
cos (@ —jb) = cos & - cos jb + sin a - sin b,
=08 a-coshd + §-sina-sinh b.
Diese Formel erhalten Sie auch, wenn in (26a) b durch —b ersetzt wird. Es
sollen deshalb im folgenden nur die Beziehungen fiir das Argument a + b5 ab-
geleitet werden, da man durch Einsetzen von —b fiir b jederzeit die entsprechenden
Formeln mit dem Argument a — ;b erhilt.

Weiter gilt:

sin (@ -+ jb) =sina - coshd + j - cos a - sinh b (26b)
+3y __ tana 4 j-tanhd
tan (¢ + ) " 1—j-tana-tanhbd (26¢)
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1+ j-cot a-cothd (26d)

cot (¢ +7b) =— cota — ;. cothd

Die Herleitung der Formeln (26b, ¢, d) konnen Sie mit Hilfe der entspreehenden
Additionstheoreme und der Formeln (25b, ¢, d) selbst vornehmen. Fiihren Sie
diese Ableitung als Ubung durch!
Unter Verwendung der Formeln (12), (13) und (24a, b, ¢) ergibt sich fiir ,die
hyperbolischen Funktionen:

cosh (@ + jb) = cosh a - cosh jb + sinh a - sinh 5

cosh (@ + jb) =cosha-cosb +j-sinha-sinb (27a)

sinh (& + jb) = sinh a - cosh §b + cosh a - sinh 3b

sinh (@ 4 jb) = sinh a - cos b + j - cosh a - sin b (27b)

Beispiel :
Fiir die Beziehung tanh (a + jb) ist ein Ausdruck der Form tanh (a 4 jb)
= Realteil + Imaginirteil zu bilden.

Es ist
sinh (¢ + jb) _ sinh g-cosb 4 j-cosha-sind

cosh (@ + jb) © cosha-cosd + j-sinha-sind’
Um auf die Form tanh (a + §b) = Realteil 4+ Imaginéirteil zu kommen, mufl
zundchst der Nenner reell gemacht und Real- und Imaginérteil getrennt werden.

(sinh @« cos b + j- cosh asmn b) - (cosh a cos b — j - sinh a - sin b)
(cosh a cos b + j- sinh asin b) - (coshacosb —j-sinha- sin})

tanh (a + jb) =

tanh (@ + jb) =

__ sinh a cosh a (cos® b + sin? b) + j-sin b cos b (cosh® g — sinh? a)

- cosh? a - cos® b + sinh? a . sin? b

_ sinh 2a + sin 2b

" 2(cosh? a - cos? b + sinh? @ - sin2 b) 72(cosh’ a - cos?b + sinh? g - sin?b)

(Es gur: sin 2b = 2sin b cos b
bzw. sinh 24 = 2 sinh @ cosh a)
Der Nenner kann noch vereinfacht werden.

Mit sin2b =1-—cos?b
und sinh?2 ¢ = cosh2a — 1
folgt

sinh 2q 4 sin 25
2 cosh?a + 2 cos2b — 2 ! 2cosh?a + 2cos2b —2°

tanh (@ + jb) =

Nun gilt:
2 cosh?a — 1. = cosh 2a,
2 cos2b—1 = cos2b.



Setzen Sie diese Ausdriicke im Nenner ein, dann ergibt sich:

sinh 2a sin 2b

tanh (- jb) = cosh 2a + cos 2b 7 cosh2a + cos 2b

(27¢)

Lehrbeispiel 17

Berechnen Sie
a) sinh (1 + §), b) cosh [x(1 — 3 j)]!

Lésung:
a) Nach Formel (27b) folgt:
sinh (1 4 4) =sinh1cos1 4 j-cosh1sin1l
= 1,1752 - 0,5403 + j - 1,543 - 0,8415
= 0,635 + 1,298;.

b) Unter Verwendung von Formel (27a) folgt:
cosh [n (1 — % 7)] = cosh = cos (— %) + 4 - sinh & sin (— %)

=—j - sinh 7 sin 5

= —j - 11,54874.

=—j-sinhz

Lehrbeispiel 18
In der Leitungstheorie der Ubertragungstechnik berechnet sich der Eingangswider-
stand B nach der Beziehung:

® = Ra - coshg + 8-sinh g

, wobeig=a+7j-b.

coshg + % -sinh g

Dabei bedeuten:
g = Ubertragungsmap,
B = Wellenwiderstand der Leitung,
R, = Widerstand eines Empfangers, der die Leitung abschlieft.

Gegeben sei: a = 0,980,
b =099,
Ra = 600 Q,

B =1894.ei-441° Q.
Berechnen Sie den Eingangswiderstand nach den gegebenen Grifen!

Losung:

Es ist
,g=a,+j-b=0,980+j-0,995.
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Damit ergibt sich nach (27a, b):
ginh g = sinh (0,98 + 5 - 0,995)
= sinh 0,98 - cos 0,995 + j - cosh 0,98 - sin 0,995
= 1,14457 - 0,54450 + j - 1,51988 - 0,83876,
sinh g = 0,6232 4 § - 1,2748;
cosh g = cosh (0,98 + 5 - 0,995)
= cosh 0,98 - cos 0,995 4 4 - sinh 0,98 - sin 0,995
=1,51988 - 0,564450 + j - 1,14457 - 0,83876,
cosh g =0,8276 4 4 - 0,9600;
o — 600 (08276 +5 - 0,96) + 894 - i+ 441°. (0,6232 4 - 1,2748) ()
(0,8276 + j- 0,96) + 89—4 L6441 (0,6282 + j. 1,2748)

Fiir die weitere Berechnung ist es zweckmiBig 0,6232 + j- 1,2748 durch die
Exponentialform auszudriicken.
Zunéchst muB der Betrag von 0,6232 4 4 - 1,2748 bestimmt werden:

10,623%8 + 1,2748 = 10,3884 + 1,6251 = 1,42.

Weiter ist
tan ¢ = é:g—;;g y = 63,9°.
Somit folgt
0,6232 + 5 - 1,2748 = 1,42 . e/ - 63.9°,
Also wird
__ 600(0,8276 + ;- 0,96) + 894 - e T 441°, 1 40, 671 83,9°
0,8276 + j- 0,96 + 0,671 - of* 441°. 1,42 ¢7+639°
__ 496,66 +j - 576 + 1269,48 . ¢! 195"
0,8276 + j - 0,964 0,963 - ¢1* 106°
Nun ist

1269,48 - ef - 198° = 1269,48 (cos 19,8° + 5 - sin 19,8°) = 1194 + j - 430,
und
0,953 - ei*108° — (0,953 (cos 108° + 7 - sin 108°) = — 0,2945 - 5.0,9064.

Sie erhalten
% 496,66 +--7- 576 + 1194 + j- 430 — 1691 + - 1006 Ql
0,8276 + j- 0,96 — 0,29456 + g - 0,9064 . 0,6331 + 5. 1,8664-

Zihler und Nenner werden wieder in die Exponentlalform umgewandelt:
Y16912 4 10062 = V3871517 = 1968

1006
tan q’Z:m, ¢Z=3077 >
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Y0,53312 + 1,86642 = } 3,7676 = 1,941,

1,8664
tan ¢N = 5531
Daraus folgt
. od+30,7°
g3 — 1968-¢

T 1,941 . ¢ 741°

Q = 1013 - e~i-84°Q.

on = T4,1°.

Ubungen

Berechnen Sie
19. a) sin j7, b) sinh jnm,
Berechnen Sie:

20. @) sinh (0,32 +j - 0,1),

¢) sinh jz - cosh jz/

b) cosh (—1—7j-0,6)!

21. Bestimmen Sie Uy = U, -coshg — 3, - 8 -sinhg wenn gegeben ist:
8 ="186- e—i:283° Q,
g =a + fsb = 0,0475 45 - 0,179,

u1=lv’

3, =620 e—i-4I°A

Das Ergebnis ist in Exponentialform anzugeben.

Zusammenfassung

Besondere Bedeutung haben die Kreis- und Hyperbelfunktionen komplexer
Argumente fiir den Elektrotechniker. Im folgenden seien die wichtigsten Formeln

zusammengefaBt:
cos jx = cosh z
sinjz =j-sinh z
tan jo =4 - tanh
cotjz =—j-cothz
cos (@ + jb) =
cosa-coshb—j-sina-sinhd
sin (a + §b) =
sina-coshd + j-cosa-sinhd
tan (a +§b) =
tana + j- tanh d
1—j.tana- tanhb

coshjz = cos z
sinhjz =4 .sinz
tanh jz =4j-tanx
cothjoz =—j-cotz
cosh (a + jb) =
cosha-tosh 4 j-sitha-sind
sinh (@ + jb) = ‘
sinha-cosb +j-cosha-sinb
tanh (a + jb) =

sinh 2a +4 sin 20
cosh 2a + cos 2b ! cosh 2a 4 cos 2b

Weitere Formeln finden Sie im ,,Handbuch fiir Hochfrequenz- und Elektrotechniker'* von

C. Rint, I. Band.

3.
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9 Funktionen in Parameterdarstellung
und Polarkoordinaten und ihre Ableitungen

9.1 Funktionen in Parameterdarstellung

9.11 Parameterdarstellung. Die funktionale Abhiingigkeit zweier verinder-
licher GroBen haben wir bisher in der Form y = f(z) oder F(z, y) =0 dar-
gestellt. Dies ist aber nicht die einzig mogliche Darstellungsform einer Funktion.
Die Abhingigkeit zweier verdnderlicher Griofen z und y kann auch dadurch
gegeben sein, dal jede Verdnderliche fiir sich von einer dritten Veriinderlichen
abhéngig ist.
Sind
=9 und y=yp() (a)
zwei Funktionen von ¢, so ist fiir jedes ¢ sowohl ein Wert fiir 2 als auch fiir y
bestimmt. Sie erhalten also fiir jedes ¢ ein Wertepaar (z; y). Je einem Wert fiir z
ist anf diese Weise ein Wert von y zugeordnet.
y Die Gleichungen (a) stellen somit eine Funktion
_ Vet - dar.
g Man nennt die dritte Verdnderliche ¢ den
P Parameter und die Gleichungen (a) die Para-
meterdarstellung der Funktion.

h

°
xY

1. Beispiel:

Bild 14 Es soll die Bahnkurve ermittelt werden, die ein

Korper bei horizontalem Wurf aus der Hohe

h im luftleeren Raum beschreibt. Die Anfangsgeschwindigkeit sei v,.
Ohne EinfluB der Schwerkraft wiirde der Korper nach der Zeit ¢ in der Wurf-
richtung die Strecke
T =yt (b)
zuriickgelegt haben (vgl. Bild 14).
In der gleichen Zeit fillt er aber um die Strecke % t2. Nach der Zeit ¢ hat er dem-

nach noch die Héhe
y=h— % . ()

Sein Ort zur Zeit ¢ wird also durch die Formeln (b) und (c) angegeben, d. h.,
seine Bahnkurve in Abhingigkeit von ¢ wird durch die Gleichungen (b) und (c)
dargestellt. Die Einfithrung der Zeit als Parameter erweist sich in vielen prak-
tischen Anwendungen als giinstig.

Die Variablen z und y sind in Abhéngigkeit von der Verinderlichen ¢ gegeben.
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Damit sind 2 und y auch untereinander abhingig. In unserem Beispiel 148t sich ¢

eliminieren. Mit ¢ = vﬁ erhalten Sie
0
y =12y =h— g5 2~

Die Bahnkurve ist eine nach unten geidffnete Parabel mit dem Scheitel in (0; &).

2. Beispiel
Die Gleichungen
z=g() =a+bi y=vy()=c+di
gind die Parameterdarstellung einer Geraden. Sie bestitigen das durch Elimination
des Parameters .

Sie erhalten
d chb—ad
y _ 7 T + __b_... .

Fir ¢ =0 ist 2 = a, y =c¢. Die Gerade geht also durch den Punkt (a;¢) und
hat den Anstieg m = %. Die Gerade ist in Bild 15 fiir ¢ — 6, b = —3, ¢ =3,
d = —2 dargestellt.

Durch den Parameter ¢ ist der Geraden ein bestimmter Durchlaufsinn gegeben.
Der Durchlaufsinn einer Funktion wird durch die Richtung bestimmt, in der ein
Punkt P die Funktion mit wachsen-

den Werten der unabhéngigen Ver- y
dnderlichen durchlauft. Diese Rich-

tung ist in Bild 15 durch einen

Pfeil angegeben. Durch Einfithrung ¢
neuer Verdnderlicher kann dor
Durchlaufsinn einer Funktion geén-
dert werden. Das sehen Sie am Bei-
spiel der eben behandelten Geraden,
die in der Darstellung

d ¢b—ad Bild 15
y=32+3

xY

fiir wachsende z in umgekehrter Richtung durchlaufen wird.

3. Beuspiel

Bei dem Kreis
22 4 g =2

148t sich als Parameter der Winkel ¢ einfiihren, den der zum Punkte P(z;y)
gehorige Radius mit der z-Achse einschlieBt.
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Aus Bild 16 entnehmen Sie die Beziehungen

r=7r-0c081%

y=r-sint (28)

Hier kommt also-dem Parameter ¢ eine bestimmte geometrische Bedeutung zu.

4. Beispiel
Auch

ist eine Parameterdarstellung des Kreises. Durch
Elimination des Parameters » 148t sich das
% leicht bestétigen.

Es ist

2 Ay . "
22 =4y A+

und
Bild 16 2
! y2=(1-—-2u2+u4)~(—1_:—u,),.

Die Addition beider Gleichungen ergibt
r2
x2+yz=m(1 +2u2+u4)

2
= a _: w?)E (1 + uz)z»
o4yt =r,

Mit wachsendem % wird der Kreis in mathematisch
negativem Sinne durchlaufen (vgl. Bild 17).

Sie haben soeben zwei verschiedene Parameter-
darstellungen ein und desselben Kreises kennen-
gelernt. Allgemein lassen sich fiir jede Funktion
y = {(x) beliebig viele Parameterdarstellungen an-
geben. Wihlt man ndmlich irgendeine beliebige
Funktion z = ¢(t), so hat man nur in y = f(2)
Bild 17 die Verdnderliche xz durch ¢(f) zu ersetzen und
erhilt y = flp(f)] = (). Damit ist schon eine

Parameterdarstellung der Funktion gefunden.

5. Beispiel

Eine hiufig angewandte Konstruktion einer Ellipse ist die aus Haupt- und
Nebenkreis mit den Radien a und 5. Aus dieser Konstruktion liBt sich eine
Parameterdarstellung der Ellipse herleiten.
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Aus Bild 18 lesen Sie ab:
T =@ COoS i,
y="bsint
Beachten Sie, daB hier ¢ nichi — wie beim
__)
Kreis — der Winkel des Strahls OP mit

vl
a
%
der positiven z-Achse ist. Fiir ¢ = b geht & '

die Ellipse in den Kreis iiber.

Wie Sie gesehen haben, kann dem Para-
meter eine geometrische oder physikalische
Bedeutung zukommen. Das ist im 1., 3.
und 5. Beispiel der Fall. Hiufig lassen
sich bei giinstiger Wahl des Parameters
Rechnungen, Umformungen, Differentia-
tionen usw. schneller und einfacher durchfiihren als bei Verwendung karte-
sischer Koordinaten, Mitunter 148t sich sogar eine Funktion gar nicht explizit
oder implizit in kartesischen Koordinaten angeben.

Bild 18

Lehrbeispiel 19
Welche Kurve wird durch die Gleichungen
T =acosht, y = bsinh ¢
dargestellt?
Losung:
Um den Parameter ¢{ zu eliminieren, beniitzen wir die Beziehung
cosh? { — sinh? § = 1.

Es ist
cosh?f = ﬁ; ,
a
sinh? { = ?;—:.
Also wird
3 T
#—m=1

Die Gleichungen sind die Parameterdarstellung einer Hyperbel.

Lehrbeispiel 20

Eine Strecke AB von der Limge a ist mit shren Enden A und B gleitend auf den
Achsen eines Koordinatensystems befestigt. Vom Koordinatenursprung O wird das
Lot auf die Strecke gefillt. Bewegt sich die Strecke, so wandert der Fufpunkt P des
Lotes auf der Strecke AB. Welche Kurve beschreibt der Fufipunkt des Lotes, wenn
sich die Strecke im Achsenkreuz bewegt?
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Losung:
Es soll ¢ als Parameter eingefithrt werden (vgl. Bild 19). Aus A OCP folgt
z=dcosp und ¥y = dsin ¢.

i Sie haben nun d zu ersetzen und nach Mogtichkeit
] durch @ und ¢ auszudriicken. Aus A OP B erhalten
4 Sie
u d = (u + y)sin @,
aus A OAB folgt
—— P (» 4+ y) = a cos ¢.
| Damit ist
ly d = a cos @ sin @.

o,

le— <

|
) z . ‘lc A x Setzen Sie das in die Gleichungen fiir 2 und y
ein, so ergibt sich

Bild 19 2 -
z = a cos? g sin g, Y = a cos ¢ sin® .

Das ist die Parameterdarstellung der gesuchten Kurve.

Die Kurve ist in Bild 20 fiir 0 < ¢ < % gezeichnet. Lost man sich von der Auf-
gabenstellung und 148t als Definitionsbereich
0<¢ <2 zu, so ergibt sich die gleiche
Schleife auch im 2., 3. und 4. Quadranten. Es

entsteht eine Figur, die Ahnlichkeit mit einem
Kleeblatt hat.

X=acesly siny
y=acosy siny
9.12 Rollkurven und Kreisevolvente. Rollt
eine beliebige Kurve (die sogenannte erzeugende
Kurve) auf einer festen Kurve ab, so wird ein
bestimmter Punkt der erzeugenden Kurve als
Bahn wiederum irgendeine Kurve durchlaufen,
die man Rollkurve nennt. Zur Gruppe der Roll- Bild 20
kurven gehéren u. a. die Zykloiden.

An diesen soll Thnen der Begriff der Rollkurve veranschaulicht werden. Stellen
Sie sich eine Kreisscheibe vor, die auf einer festen Bahn, einer Geraden, abrollt,
ohne zu gleiten. Jeder Punkt der Kreisscheibe beschreibt hierbei eine bestimmte
Kurve. Im einfachsten Falle, ndmlich fiir den Mittelpunkt der Kreisscheibe,
ist diese Bahn eine Gerade. Wie sieht die Kurve aber z. B. fiir einen festen
Punkt P auf der Peripherie aus (zu vergleichen mit dem Weg des Ventils eines
in Bewegung befindlichen Fahrrades)? Die Kurve, die der Punkt beschreibt,
wenn der Kreis auf der Geraden abrollt, ist eine Zykloide.

In diesem Falle ist es eine gewohnliche oder gespitzte Zykloide. Es sind aber noch
zwei weitere grundsitzliche Fille moglich, ndmlich, daB der betrachtete Punkt P
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irgendwo auf der Kreisscheibe (Mittelpunkt M und Peripherie ausgenommen),
oder daB er auBerhalb der abrollenden Kreisscheibe liegt.

Um die Kurvengleichung fiir eine beliebige Lage des Punktes P aufzustellen,
betrachten Sie Bild 21.

Es seien: r der Radius des rollenden Kreises, y ‘
a der Abstand des Punktes P(x; y)
vom Mittelpunkt M,
@ der Beriihrungspunkt des Kreises
mit der Geraden, auf der ‘der
Kreis abrollt (in unserem Falle
die z-Achse),
t der Wilzungswinkel des Kreises,
gemessen im Bogenma8.
Wenn ¢ = 0 ist, soll sich der Punkt ¢ mit dem (o 2 .
Ursprung decken. Ist der Kreis nun um einen __,,__,.t__J
bestimmten Winkel ¢ auf der Geraden abgerollt Bild 21
worden, so hat sich der Punkt @ um die Strecke
r¢ vom Ursprung entfernt. Aus Bild 21 konnen Sie dann fiir die Koordinaten
des Punktes P ablesen:
z =7rt—asinf, Yy =1r—acost
Das ist die Gleichung der Zykloide in Parameterform. Da nach jeweils einem
vollen Kreisumlauf wieder die gleiche Lage wie zu Beginn der Bewegung erreicht
wird, erhalten Sie periodische Kurven mit der Periode 2z7. Man spricht dann
fiir 0 < ¢ < 2z von einem Zykloidenbogen. Die drei Arten von Zykloiden kinnen
nun nach dem Verhiltnis von r und a unterschieden werden. Es ergibt sich bei
1. a <r eine gestreckte Zykloide,
2. @ =r eine gewohnliche oder gespitzte Zykloide,
3. a > r eine verschlungene Zykloide.

7k

_{\;I

Ja>r
2 a=r
d
o
0] x
arIr Bild 22

Bild 22 zeigt alle drei Arten.
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Zykloiden (a £r) kommen in der Hydrodynamik als Oberflichenwellen einer
sehr tiefen Fliissigkeit vor. Dabei sind die Wellen mit Schaumkronen gespitzte
Zykloiden und die Wellenbrecher verschlungene Zykloiden. Endlich sei noch an
die bekannte Zykloidenverzahnung bei Zahnridern, an das Zykloidenpendel
in der Physik und an die Planetengetriebe (Umwandlung einer drehenden Be-
wegung in eine elliptische oder geradlinige) erinnert. In Physik und Technik
finden Sie die Zykloide z. B. als Brachistochrone, d. h. als die Kurve kiirzester
Fallzeit. Die Brachistochrone entsteht durch Abrollen eines Kreises an der
Unterseite der z-Achse. Wenn z. B. eine Punktmasse ohne Reibung unter dem
EinfluB der Sehwerkraft vom Anfangspunkt A mit der Anfangsgeschwindigkeit 0
zu fallen beginnt und sich nach einem Punkt B bewegen soll, der nicht lotrecht
unter Punkt A4 liegt, so ist die Fallzeit ein Minimum, wenn AB ein Zykloiden-
bogen ist.

Technisch noch wichtiger als die oben besprochenen Zykloiden sind jene Roll-
kurven, die dann entstehen, wenn ein Kreis an einem feststehenden Kreis aulen
oder innen abrollt.

Die Rollkurve ist eine Epizykloide, wenn der bewegte Kreis auBen abrolit.

Da die beiden Kreisbogen beim Abrollen gleich sein miissen, kénnen Sie aus Bild 23
ablesen, daf3
Q- yp=r-9
sein muB, denn dieses sind die beiden Bogen.
Weiter folgt aus Bild 23

z=(0+7) coszp—asinl%——(wp+<p)]
= (o +7)cos p—acos(yp + @)
=(g+r)cos%<p—a c0s <r—%g<p>.

q

A\

Bild 23 Bild 24
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In dhnlicher Weise kann hergeleitet werden
y = (o + ) sin % @ —asin <¢+Te (p) .

Auch hier konnen Sie wie friiher ¢ anstatt ¢ einsetzen und ebenfalls die Fille
a é r unterscheiden.
Rollt der bewegte Kreis innen auf dem feststehenden ab, so heiBt die Rollkurve
eine Hypozykloide.

Die beiden Gleichungen der Parameterdarstellung lauten dann (Bild 24)
z =ig——r)cos£ ®+a cos(gg—r (p)
o=t y= o]

y=(@—7r) sin—Z-qy—asin(‘%’qp)

Auch hier sind wiederum drei grundsitzliche Fille a —<5 r zu unterscheiden.

Yy

Astroide

Kardioide

Bild 25 Bild 26

Von den gewohnlichen Epizykloiden ist die bekannteste die Kardioide oder Herz-
linie fiir r = ¢ = a (Bild 25). Ihre Gleichung in kartesischen Koordinaten ist
(& + 1 — a2 = 42w — ) + 1)

Von den gewdhnlichen Hypozykloiden ist die bekannteste die Astroide oder
Sternlinde fiir r = a = - o (Bild 26). Ihre Gleichung in kartesischen Koordinaten

ist 2% + yg' =4t (mit A = 4a). Die Umrechnung aus der Parameterdarstellung
in kartesische Koordinaten erfolgt durch Elimination des Parameters {. Wegen
des groBen Umfanges der Rechnung soll darauf verzichtet werden, den Weg der
Elimination zu zeigen.

Eine weitere wichtige Kurve ist die Kreisevolvente. Sie bildet den Gegensatz
zur gewohnlichen Zykloide. Hier rollt ndmlich nicht ein Kreis auf einer Geraden
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ab, sondern eine Gerade bewegt sich ohne zu gleiten an einem Kreis entlang und
bleiot immer in Berithrung mit ihm. Auf diese Weise beschreibt ein auf der
Geraden markierter Punkt eine Kreisevolvente.

Sie konnen sich eine Kreisevolvente wie
Y\ folgt entstanden denken und auch kon-
e struieren:
\ Kreisevoivente  Wickeln Sie von einer Kreisscheibe,-die
auf einem Stiick Papier liegt, einen Faden
derart ab, daB der abgewickelte Faden
durch einen an seinem Ende befestigten
Bleistift immer gespannt bleibt, so zeich-
net bei festgehaltener Kreisscheibe der
Bleistift eine Kreisevolvente (Bild 27).
Wegen dieser Erzeugung der Kurve hat
diese den Namen ,,Evolvente‘‘ oder ,,Ab-
wickelnde*“.
Aus Bild 27 konnen Sie ablesen:
Mit ¢ als Wilzungswinkel, 7 als Be-
Bild 27 riihrungspunkt von Gerade und Kreis

und ¢ als Kreisradius ist

o TP=Td=a- A
2=0Q + TS =acost+ atsint=a(cost - ¢sinfi),
y=TQ—SP =asint—atcost=a(sint—tcos?).
Fiir die Anwendung in der Technik sei auf die wichtige Evolventenverzahnung
hingewiesen.

9.13 Die Ableitung einer Funktion in Parameterdarstellung. Ist IThnen eine
Funktion in der Parameterdarstellung z = ¢@(f), ¥y = y(f) gegeben, so konnten
Sie, um die Ableitung nach z zu bilden, aus beiden Gleichungen den Parameter ¢
eliminieren, dafurch eine Beziehung zwischen z und y in der Form y = f(%)
herstellen und diese dann ableiten. Das ist aber oft nicht moglich. Vielfach ist
es auch zweckmaBiger und einfacher, ¢ nicht zu eliminieren und den Differential-
quotienten gleichfalls als Funktion von ¢ anzugeben.

Beispiel

Von der in Parameterdarstellung gegebenen Funktion
z=gp() =18,
y=vy@O) =12

soll die Ableitung y’ = g—z gebildet werden. Zunéchst sind z und y Funktionen
des Parameters #. Sie konnen also sowohl z als auch y nach ¢ differenzieren.
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Es ist! dz _ . __ o) = 38,

dt

d . .

=9 =9 =2t

Sie konnen aber auch y als Funktion von z darstellen, indem Sie # = ¢(f) nach ¢
auflosen und ¢ = (x) — in unserem Falle also #(z) = J 2— in y = u({) einsetzen.
Dann ist y = y[{(x)] eine mittelbare Funktion von z, die Sie unter Beachtung
der Kettenregel nach z differenzieren konnen.

Aus
y = y[i(2)]

,_dy _ dy d¢
Y =31 dz-

bilden Sie also

Da nach Formel (3)

¢t _ 1 _ 1
dz  dz 2
dt
ist, erhalten Sie schlieBlich
4 cy
dy _ 4t _9() _ 9
dz = dz = @) 2 (29)
t
Fiir unser Beispiel ergibt sich
, _dy y' et 2
y = de = % 3@ 3}
Sie haben y' = als Funktion des Parameters ¢ erhalten. Wollen Sie die zweite

Ableitung bllden so haben Sie wiederum zu beachten, daB y wegen ¢ = t(x)

mittelbare Funktion von z ist.

Nach der Kettenregel wird also, mit g—tz = i
"o dy’ _dy dt dy 1

Y =4 " @ dza@t z

b

% . —%bedeutct: Sie haben y’ nach ¢ zu differenzieren und das Ergebnis durch
= %zu dividieren.
In unserem Beispiel folgt aus
r_2
¥ =35
dy’ 2
di ~ 38

1 Die Ableitungen nach dem Parameter (vor allem, wenn der Parameter die Zeit bedeutet)
werden meist nach Newton mit Punkten bezeichnet.
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Mit 2 = 3 wird

po_ 2.1
Y =33
” 2
Yy =—gu
Wir leiten noch die zweite Ableitung y’ = g—zﬁ allgemein her.
Aus ]
y=%
erhalten Sie (Quotientenregel)
dy’ _ yz—ay
at a2
., dt 1 . o1
Mit =7 wird schlieBlich
x z
dy _dy &
dz = df d=
—yz—ay 1
a2 z’
By _ g
d_zz = £ . (30)
Lehrbeispiele

21. Ein Kreis sei in Parameterdarstellung gegeben:
Z =a.cos i, y =asint.
Gesucht sind y' und y” als Funktion von .

Losung:
Es ist 9 = a cos i, & =—asinf,
j =—asint, i = —acost.
Nach Formel (29) wird
acos i
Yy =% = asint —cott
Formel (30) liefert
" a?sin? { + a®cos? ¢
Y =" —@samt
_ 1
- a sind ¢

Sie konnen aber auch sofort von y’ ausgehend die zweite Ableitung bilden:
y =—coti,

P 1t
Y =swt dz

(Kettenregel!)



11
"~ sin? t" (— a sint)
_ 1
T asindt’
22. Die Gleichung einer Ellipse- sev in Parameterform durch
Z = acos {, y=>bsint
gegeben.

Bestimmen Ste
a) die erste Ableitung als Funktion des Paramelers und hieraus die erste

Ableitung als Funktion von z,
b) die zweite Ableitung als Funktion des Parameters!

Losung:
a) y =becost, % = —asin t,
§j =—bsint, % =—acost
% = __le = ——lcot't
x asin ¢ a
Es ist cost = %.
Mit sint=171—ecos?t
folgt sint = |[/1—%
a2
Ja* — 2?
=
. o ‘ . dy  Dbecost . .
Diese Werte fiir sin¢ und cos? in 3 = — s Cingesetzt, ergibt
z
dy b & . _ bz
dz ¢ Yar =22 a]/a’-; -
a

Zur Kontrolle konnen Sie die Ellipsengleichung in-der Form :—:- + %—: =1
schreiben, nach y auflésen und dan- differenzieren.

,» __absin®{ + ab cos??
b) y = —adsind ¢

Auch hier konnen Sie von y’ ausgehen:
Yy = —% cotl,
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23.

24.

oo b 1 dt
y a sin?t dz
5.t 1
a sin“‘t( asint)
- b
- a?sind ¢’

Die in Parameterform gegebene Funktion

x=a—[—bt, y=c+dt
1st zu differenzieren.
Losung:
z=0>0, y=d
dy g d
dz ~ b

Dies ist der Anstieg der in Abschnitt 9.11 behanEelten Geraden (vgl. Bild 15).

Die in Paramelerform durch die Gleichungen
z =-cos?f{ und y = cos 2t
gegebene Funktion ist abzuletten und die Kurve der Funktion zu besttmmen.

Losung:
% =2cost(—sinf) =—2sintcos{ = —sin 21
Yy =(—sin2¢) -2 =—2sin 2¢
H=_g__:2sin2_t_2
dz = & —sin2¢t ~ =7

Die Kurve hat den konstanten Anstieg m = 2. Sie kann aber keine Gerade
sein, da weder z = cos?{ noch y = cos 2f den Wert 1 iibersteigen kénnen.

Sie stellen fiir die weitere Untersuchung eine Wertetabelle auf.

tl oae | Fase | Tase | Faee | 5 oA
T 1 % % %— 0

y 1 % 0 —-’:;- —1

t % @ A 120° % n A 135° % n A 150° n g_lsoo
IR
Yy —-% 0 % 1




Wandert ¢ von 0 bis %, so durchliuft P die Strecke 4 (1;1) bis B (0; —1).

Wandert ¢ weiter von % bis 7, so kehrt der Punkt P um und wandert zuriick

von B bis A. Wichst ¢ weiter, so beginnt das Spiel von neuem. Die Funktions-
gleichungen z = cos? #; y = cos 21 stellen daher keine Gerade, sondern eine
Strecke mit den Endpunkten 4 (1;1) und B (0; —1) dar.

25. Es ist die Ableitung der in Paramelerform gegebenen Zykloide

2 = a ({ —sin {), y=a(l—cost)
zu, bilden.
Losung:
& =a(l—cost), y=asint
9 sin t t
d_!l _ _y_ — asin ¢ _ sin ¢ — st ? gos —2_ — cos —2
dz ) a(l—cosf) 1—cost 9 sin? _;_ sin _‘g
% = cot —;—
bungen
Ubung
Bilden Stie bei den folgenden Funktionen gz und gz—ﬁ als Funktionen von t!
a—1
22. a) x =acost b)x=a—+t
i — 1n2 — t )
=asin?{ =i
¢) z=alnt d) x =acos3t
y=g~<t+‘1—> y =asindt
(Kettenlinie) (Astroide)
Zusammenfassung

Eine Funktion y = f(x) kann durch z = ¢(¥), y = v(f) in Parameterform
dargestellt werden.

Jede Funktion 148t sich in beliebig vielen Parameterformen darstellen. Bei
giinstiger Wahl des Parameters konnen hidufig Umformungen, Differentiationen
usw. leichter durchgefiihrt werden als bei Verwendung kartesischer Koordinaten.
Rollt eine Kurve auf einer festen Kurve ab, so durchlduft ein Punkt der er-
zeugenden Kurve als Bahn eine Rollkurve.

[st die feste Kurve eine Gerade, die erzeugende Kurve ein Kreis, so entsteht als
Rollkurve eine Zykloide.
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Ist die feste Kurve ebenfalls ein Kreis, auf dem der andere Kreis auBen abrollt,
so entsteht als Rollkurve eine Epizykloide, rollt der Kreis innen ab, so entsteht
eine Hypozykloide.

Bewegt sich eine Gerade ohne zu gleiten an einem Kreis entlang, so beschreisbt
ein beliebiger Punkt auf der Geraden als Bahnkurve eine Kreisevolvente.

Die Gleichungen der Rollkurven werden giinstiger als in kartesischen Koordinaten
in Parameterform dargestellt und differenziert. Ist ¢ der Parameter (die Hilfs-
verianderliche), so lautet der Differentialquotient einer in Parameterdarstellung
vorliegenden Funktion

worin y =) und V=37
d

bzw. z = (1) und =5 =g ist.

9.2 Funktionen in Polarkoordinaten

Von der analytischen Geometrie her ist Thnen bekannt, da8 ein Punkt oder eine
Funktion auBer in kartesischen Koordinaten auch in Polarkoordinaten gegeben
sein kann. Die wichtigsten Beziehungen zwischen kartesischen und Polarkoordi-
naten seien nochmals wiederholt.

y Aus Bild 28 folgt:
P
| Z="1-C08Qp
| y=r-sing (31)
r l'y —
Il =224y (32)
¢ A
0
A g tanp =¥ (33)
Bild 28

Auch in Polarkoordinaten kann eine Funktion explizit: r = r(p) oder implizit:
F(r, ) = 0, gegeben sein.

Bei Formel (31) ist zu beachten, daB sie nicht identisch ist mit (28), denn in (31)
ist » keine Konstante, sondern stellt eine Variable dar. Ebenso stellt (32) nicht
die Gleichung eines Kreises dar, da r = r(gp) ist

Lehrbeispiel 26

Die Gleichung 2® — y® = c® (gleichseitige Hyperbel) ist in Polarkoordinaten dar-
zustellen.
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Lésung:
Sie setzen x =17 - cos ¢ und y = 7 - sin ¢ in die Ausgangsgleichung ein.
7% . cos? @ — 72 - gin? @ = ¢?
7%(cos? ¢ — sin? p) = ¢?

2. cos 2¢ = ¢?
[

Yeos 2¢

r =

Die Funktion ist nur fiir —-1;— <@ <% definiert. Nimmt man die Wurzel mit

positivem Vorzeichen, so erhilt man den rechten Ast der Hyperbel. Bei negativer
Wurzel wird r negativ. Man hat fiir negatives r den Betrag von r in der Richtung
@ + = abzutragen und erhdlt so den linken Ast der Hyperbel.

Lehrbeispiel 27

Die Gleichung der Archimedischen Spirale, r = a - ¢ (a = konstant), ist in karte-
sischen Koordinaten darzustellen.

Loésung:

Aus (31) folgt @ = are cos f—, oder ¢ = are sin <

To
Weiter gilt nach (32) r = }2® + y%. Setzen Sie dies in die Ausgangsgleichung ein,
dann erhalten Sie

S x
Va? + y? = a - arc cos -

2 2 = @ - arc cos T _
V2t +y T
P
oder cos V= :' y ~ _23’_2~
Vet + .

Sie erkennen, daB in diesem Fall die Darstellung in Polarkoordinaten wesentlich
einfacher.ist und beim Rechnen Vorteile gegeniiber der Darstellung in karte-
sischen Koordinaten bietet.

Ersetzen Sie in einer Funktion, die in Polarkoordinaten gegeben ist, die Ab-
weichung @ durch § — e, so erhilt jeder Punkt die neue Abweichung @, die mit
der:alten in der Beziehung -

l ~ »P(rjf)
p=@p—ca oder p=¢ +c h
\

steht. Das bedeutet, da8 jeder Punkt und damit
die ganze Kurve um den Winkel ¢ um den Ur-

sprung gedreht wurde (vgl. Bild 29).

Prr;p)

Es sei erwdhnt, dal sich eine Spiegelung der o P:0
Kurve am Einheitskreis ergibt, wenn man 7 Bild 29
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1 . . . .
durch 3 ersetzt. Man spricht dann auch von einer ,,Transformation durch rezi-
proke Radien.

Beispiel:
Der¥ Punkt P1<2; %) geht iiber in Pl*(%; %),
der Punkt Pz(%; %) geht iiber in Pz*(4; %).

Liegt also ein Punkt auBerhalb des Einheitskreises um O, so wird er in das Innere
des Einheitskreises transformiert und umgekehrt. Punkte auf dem Einheitskreis
bleiben in ihrer Lage unveridndert.

Auch Kurven konnen am Einheitskreis gespiegelt werden. Ist zum Beispiel die
Gerade ¢ = g- gegeben — eine Gerade durch O, die mit der Achse ¢ =0 den
Winkel 60° bildet — so geht jeder Punkt der Geraden durch die Transformation

wieder in einen Punkt der Geraden iiber. Man sagt, die Gerade durch O geht in
sich selbst iiber.

Lehrbeispiel 28 _
Wie lautet die Gleichung der am Einheitskreis gespiegelten ‘gleichseitigen Hyperbel
2 — y? = c2?
Lésung:
Aus Lehrbeispiel 26 ist Ihnen die Gleichung der gegebenen Hyperbel bekannt:
=
Veos 2¢

Bild 30
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Sie ersetzen r durch  und erhalten:
g = -- Vct) 2<p.
Die Kurve ist eine Lemniskate. B11d 30 zelgt Hyperbel und Lemniskate fiir ¢ = 1.

Ubungen
23. Die Kreisgleichung
a) 2 + 4y =1,
b) (x —a)® + (y — b)? = ¢? ist in Polarkoordinaten darzustellen.

24. Die Gleichung der Lemniskate 12 = a? - cos 2¢ soll in kartesischen Koordinaten
dargestellt werden.

9.3 Die Ableitung einer Funktion in Polarkoordinaten

Ist eine Funktion in Polarkoordinaten » und ¢ durch die Gleichung r =r(p)
gegeben, so konnen Sie in gewohnter Weise die Ableitung von r nach der unab-

i " . , __dr ..
hangigen Veridnderlichen ¢, also v = g’ bilden.

Betspiele:
a) Die Ableitung der archimedischen Spirale
r=a-g
dr
lautet g =
14

b) Fiir die Lemniskate
r =a}cos 2¢

erhalten Sie als Differentialquotienten

dr sin 2¢
— =0
de Veos 2¢
= —a tan 2¢ Jcos 2¢.

Es erhebt sich nun die Frage, ob dieser Ableitung » = g—;, dhnlich wie bei kar-
tesischen Koordinaten, eine einfache geometrische Bedeutung beigelegt werden
kann.

Dazu untersuchen vur zunachst welcher Zusammenhang zwischen den Diffe-
rentlalquotlenten und y besteht.

Zwischen kartesmchen und Polarkoordinaten bestehen die Beziehungen
x =7 ¢cos @, (a)
y = rsin ¢. (b)
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Da r = r(¢) eine Funktion von g ist, sind z und y Funktionen von ¢. Sie konnen
also (a) und (b) nach ¢ differenzieren. Sie erhalten unter Anwendung der Pro-
duktregel

dz , .

d_<p=7 €os @ — 7 sin g,

dy Lo

@=7 sin @ -+ ¥ cos-@.
Fiird—r

g wurde abkiirzend 7’ geschrieben

Aus 32 vnd &Y 148t sich &Y berechnen. Es ist
de de dz

dy
dp _dy dop _ dy
de  dp dz dz’
de

Also wird
dy r'sing freosg
dz ~ rcosg—rsing’

Sie kénnen noch mit cos ¢ kiirzen und erhalten
2=y ©
Mit Hilfe dieser Formel 148t sich also der Anstieg der Tangente gegen die Achse
@ = 0 bzw. gegen die z-Achse fiir jedes ¢ berechnen.
Bedenken Sie, daf % = tan o ist, so 16t sich (c) weiter umformen. Sie kiirzen
die rechte Seite der Gleichung (¢) mit #:
'r_,: +- tan ¢

tan o = . .
1—7t8n¢

Diese Gleichung hat Ahnlichkeit mit einer Additionsformel fiir den Tangeus. Es
ist namlich

_ _tanz ftany
' parip) ta'n(w-i_y)_l—tana»tany'

Sie setzen deshalb f— = tan 9 und kénnen

weiter umformen:

_ tand t+tang
tan o ={_tndtanp = tan (& + ¢).

ﬂ Damit ergibt sich « =& + ¢ oder
- / P =0a— ®.

\

0=\ :A Aus Bild 31 erkennen Sie, daB ¢ der
720 Winkel ist, den der Radiusvektor mit der
Bild 31 Tangente in P bildet. Also gibt

54



S =tand (34)

den Tangens des Winkels an, den die Tangente mit dem Radiusvektor bildet.

Lehrbeispiel 29
Bestimmen Sie den Anstieg der Tangente an der Stelle p = g— gegeniiber der Achse

=0, wenn r =2— gegeben 1ist!

cos p
Lésung:
Es ist
, sin @
¥ =""cos?qp’
Also folgt mit Formel (34)
1
tan ¥ = — <——————2 _ qu) il [
sin ¢
= — (2 cos ¢ — 1) cot @. \
Fir g = Tist tand =0, 9=0, y ¥
also a =0+ ¢,
T
o=@ = g.
Vgl. dazu Bild 32. Bild 32

Lehrbeispiel 30
Unter welchem Winkel schneidet die Kurve r =1 + cos ¢ die Achse ¢ = 02

Léosung:

Es ist r =1 + cos ¢, g—;=—sinq).
Damit wird tand = —_Ltcose
r sin @

Fiir ¢ — 0 geht tan ¥ — — oo,
also ist d=a= %

Lehrbeispiel 81

Unter welchem Winkel schneidet die Funktion r = 2sin ¢ den Radiusvektor im
Punkie P(r; ¢)?

Losung:
Es ist — =17 =2¢08 @
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r 2 sin
=t =_""F

und damit 5 R
cos @

tan ¢ = tan ¢.
Fiir alle Punkte der Kurve gilt also ¢ = ¢.

Diese Eigenschaft der Kurve 148t sich leicht erkldaren. Fiihren Sie in » = 2 sin ¢
kartesische Koordinaten ein, so erhalten Sie fiir die Funktion die Darstellung
a2+ gt =2y

oder 2+ (y—12 =1
Das ist ein Kreis mit dem Radius ¢ =1, der die Achse ¢ =0 in O beriihrt.

Fertigen Sie eine Skizze an! Sie erkennen, daB ¢ und & Sehnentangentenwinkel
an ein und derselben Sehne — dem Radiusvektor — sind.

, Ubungen
25. Welchen Winkel bildet die Tangente im Punkt P(r; @) an die Kurve r = a
(a = konstant) mit der Achse ¢ = 02

26. Auf der Archimedischen Spirale wird vm Punkt P mit ¢ = 20° die Normale
(steht senkrecht auf der Tangente) errichiet. Welchen Winkel bildet die Normale

mit der Geraden ¢ = %?

[Gleichung der Archimedischen Spirale: r = a - ¢ (a = konstant).]

Zusammenfassung

Jede in kartesischen Koordinaten gegebene Funktion 148t sich mittels der Be-
ziehungen
x =17 Cos @, y = rsin @, 72 = 22 4 y?
in Polarkoordinaten darstellen.
Der Tangens des Winkels zwischen Radiusvektor und Tangente ist durch
tan ¢ = TL

gegeben.

10 Kriimmung von Kurven

In Band 1, Abschnitt 4.1, haben Sie erfahren, wie man die Kriimmungsart einer
Kurve ermittelt. Oft ist es jedoch wichtig zu wissen, wie stark die Kriimmung
einer Kurve ist.

In den Bildern 33a und 33b sind zwei verschieden stark gekriimmte Kurven
gezeichnet. Das Kurvenstiick 4s soll in beiden Fillen gleich lang sein. Verschiebt
man P, um ein Stiick 4s auf der Kurve nach P,, so dreht sich die Tangente und
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Yl

y=fion

x ¢ /
Bild 33a und b
dndert ihren Anstiegswinkel um Ao = &y — ;. Sie sehen, daB die Anderung A«

des Anstiegswinkels bei f,(x) (Bild 33b) groBer ist als bei f,(z) (Bild 33a). Das

liegt offenbar an der stirkeren Kriimmung von y = fy(x). Je groBer 4o im Ver-
gleich zu 4 ist, um so stérker ist die Kriimmung der Kurve. Das Verhiltnis éA":
gibt also Auskunft iiber die Stirke der Kriimmung einer Kurve. Da die Kriim-

mung einer Kurve im allgemeinen in jedem Punkte verschieden ist, stellt j—f’-; die
nuttlere Kriimmung des Kurvenstiickes As dar.

Ebenso, wie Sie den Anstieg g-z der Kurventangente in einem Punkte aus dem
Sekantenanstieg jz erhalten, wenn 4x— 0 geht, erhalten Sie die Kriimmung %
in einem Punkte der Kurve, wenn Sie in j—': das Kurvenstiick 4s— 0 gehen

lassen. Die Kriimmung % einer Kurve in einem Punkte P(z;y) ist also

belim 5=
Wir wollen jetzt k = ?1% berechnen.
Wie Sie wissen, ist
tano =y,
also o = are tan y'.

y’ ist eine Funktion von z, « = arc tan y’ somit eine mittelbare Funktion von z.
Sie konnen also o = f(y’) mit Hilfe der Kettenregel nach z differenzieren. Sie

erhalten:
de _ de dy" 1
dz ~ dy dz 1+ y? y-

Fiir die geforderte Ableitung ((11‘: wird noch g; benitigt, denn es ist

de de dz
ds ~ dz ds -
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Fiir die Berechnung Von = betrachten Sie Bild 34.
Sie finden dort ds als Hypotenuse des Tangentendreiecks P,QR angegeben.
Man nennt ds das Bogenelement der Kurve. Da sich die Kurve in P, an die

Tangente anschmiegt, nimmt das Verhaltms ? fiir As— 0 den Wert is % an.
(Den Beweis wollen wir hier nicht fithren.)

Sie kénnen damlt % aus dem Tangentendreieck P;QR berechnen. Es ist

ds® = dz? + dyz,
v} ds? 1
dz? dza’
also
dz 1
ds — d
Y
Vl +(dz)
-] 1
__de ===
! | i+y
L ] - 2= Yy dz 1
5 x Mit g T W= e
Bild 34 erhalten Sie
de dz
k=35
yli 1

ST

(35)

Ist die Kurve in der Parameterdarstellung z = @(#), y = y(f) gegeben, so ist

_di—gé

Y == und y”’ =

Setzen Sie das in (35) ein, dann ergibt sich

iy — g5
k= . y,8= ly Y _’a’
~ 3. . |12 y
l 1+(£> SN
T
~ JEE 9
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Da ds gleichzeitig mit dz wichst, ist 42 _ 1 das Verhiiltnis zweier
ds J1+y2
Zahlen gleichen Vorzeichens, die Wurzel in (35) und (36) also stets positiv zu
nehmen. Damit hingt das Vorzeichen der Kriimmung einzig vom Vorzeichen
des Zihlers in (35) und (36) ab. Die Kriimmung ist also positiv oder negativ, je
nachdem ¥y’ positiv oder negativ ist. Dieser Zusammenhang macht die Bedeutung
des Vorzeichens der zweiten Ableitung fiir die Ar¢ der Kriimmung deutlich. Aus
Bild 35 erkennen Sie, daB die Tangente bei einer Bewegung des Punktes P,

nach -P, eine Rechtsdrehung erfahrt. In diesem Falle ist ay — a; = da <0,
As> 0 und die mittlere Kriimmung %, = L negativ.

Ads
y yl
ysfox)
e w k<O
’S kO
1 L -
3 (2 -
of /' x O X
Bild 35 Bild 36

Mit der mittleren Kriimmung ist natiirlich auch die Kriimmung k = g—': negativ.
Sie erkennen (vgl. Bild 36):
Ist die Kurve y = f(z) von unten konvex, so ist £ > 0,

I ist die Kurve y = f(z) von unten konkav, so ist ¥ <O0.
In Bild 36 muB an einer Stelle der Kurve die Kriimmung ¥ — und damit y” —
das Vorzeichen wechseln. Wie Sie wissen, ist das im Wendepunkt der Fall. Im
Wendepunkt ist also k = 0. -

| Im Wendepunkt einer Kurve ist die Kriimmung Null.
Anders ausgedriickt: Eine Kurve hat im Wendepunkt keine Kriimmung.
Beisprel:
Die Kriimmung des Kreises z2 + y2 = 72 im Punkte P(x;y) ist zu berechnen.
Sie differenzieren die Funktion in ihrer impliziten Form:

1. Ableitung: 22 4+ 2yy’ =0
z+ yy =0

. ,_

Y¥==5
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2. Ableitung 1+y2+yy’ =0
2
L+ 5 +yy" =0
¥ +a2+ gy =0
24+ Py’ =0
’r —_— r_z
YT
Das Vorzeichen der Kriimmung héngt vom Vorzeichen der zweiten Ableitung ab.
Fiir den oberen Halbkreis ist y > 0, also y”” < 0 und damit ¥ < 0. Sie erhalten
r2
P

_T:_.T—i

]1+—-

F=—1

Fiir den unteren Halbkreis gilt nach unseren Uberlegungen k = + —:— Das Er-
gebnis zeigt:

Die Kriimmung eines Kreises ist konstant und ihrem Betrage nach gleich dem
reziproken Wert seines Radius.

Fiir den Kreis gilt also:

|kl =+

Das entspricht unserer Anschauung: der Kreis ist um so stéirker gekriimmt, je
kleiner sein Radius ist.
Hat eine Kurve im Punkte P die Kriimmung %, so hat der Kreis mit dem Radius

o= I%I die gleiche Kriimmung. Man nennt deshalb den Kreis mit dem Radius

0= I% den Kriimmungskreis der Kurve im Punkte P. Er ist der Kreis, der
sich am besten an die Kurve anschmiegt. Nach Formel (35) ist der

793
Kriimmungsradius: 0= Vl—:ﬂ (87

bzw., falls die Kurve in Para,meterdarstellung gegeben ist

!
- |57

|v-'

(38)

Q

.._.yx
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Um den Kriimmungskreis einer Kurve zu zeichnen, trigt man den Kriimmungs-
radius auf der Kurvennormalen ab und findet so den Mittelpunkt des Kriim-
mungskreises.

Lehrbeispiel 32
Berechnen Sie die Kriimmung der Parabel x? = 2py- fiir x = 0!

Lésung:
Sie bestimmen zunéchst die benétigten Ableitungen, um Formel (35) anwenden
zu konnen:

Nach (35) erhalten Sie

e
r
@ + o)l
An der Stelle £ =0 wird die Kriimmung der Parabel 2? = 2py
k(0) = %-

Lehrbeispiel 33

Bestimmen Ste die Kriimmung der Ellipse mit den Halbachsen a und b in den
Punkten P,(a;0) und P,(0;b) und zeichnen Sie die Ellipse einschlieflich der
beiden Kriimmungskreise fiir a =1 und b = 2/

Lésung:

Sehreingfach gestaltet sich die Rechnung, wenn man von der Parameterdarstellung
T = a cos t, =bsint

ausgeht. ’

Es ist & =—asint, 9 = b cos ¢,
& =—acost, ij =—bsint.

Dies in Formel (36) eingesetzt, ergibt
__ absin®¢ 4 abcos® ¢
" (a?sin®t + b2 cos? )}
ab

(a? sin®¢ 4 b2 cos® £)}
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Fiir P, ist = @, also { =0 und damit

ab
k1=‘7,? =

Isis

Fiir P, ist £ =0, also t = %, und damit
]C2 = F = dT.
Die Kriimmungsradien sind
b2

01 = = und Qg = 3
Fiir ¢ =1 und b = 2 ergeben sich die Werte

k, = 0,25, o1 =4,

ky =2, g, = 0,5.
Da P, und P, Scheitel der Ellipse sind, liegen die Mittelpunkte der Kriimmungs-
kreise auf den Achsen der Ellipse. Sie finden leicht:

M,(—3;0) M, (0;1,5).
Die Mittelpunkte der Kriimmungskreise in den Scheitelpunkten der Ellipse
lassen sich auch durch eine einfache Konstruktion finden.

Man zeichnet in den Scheitelpunkten die Tangenten der Ellipse und fillt von
ihrem Schnittpunkt 4 das Lot auf die Strecke P,P, (vgl. Bild 37). Die Ver-

Yy
A
n
1
MEY0) A
] 7 x

Bild 37

langerung des Lotes iiber seinen FuBpunkt hinaus schneidet die Achsen der
Ellipse in den Kriimmungsmittelpunkten M, und M,.

Der Beweis folgt leicht aus der Ahnlichkeit der Dreiecke P PIA AM,P, und
M,AP,, die in den Winkeln iibereinstimmen.
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So folgt aus
A P,PiA ~ NAM P,

. . b
die Proportion 3 =
P TN
— b2
und daraus M\P, =—.

Das ist aber der schon berechnete Kriimmungsradius im Punkte P,. Ebenso
ergibt sich aus A P,PyA ~ A M,AP,

a M,P,
b a ’
[ — a2
also M, P, = .

Lehrbeispiel 34
Gegeben st die Gleichung der Astroide vn Parameterform:
z =>5-cost{, y=>-sindt
Bestimmen Sie die Kriimmung der Astroide und die Mittelpunkts-Koordinaten des

Krimmungskreises fiir t = %!

Losung:
Zur Bestimmung von % benétigen Sie #, &, y und .
& =—23bcos?t-sint
# =—3b[cos®t{—2cos ¢ sin?f] = —3bcost(cos?{— 2sin¢)

& =—23bocost(l—3sin%{)

y =3b-sin%f-cost

4 =3b(2sint- cos? t —sin®¢) = 3b sin ¢ (2 cos? ¢ — sin? ¢)
§j=—3bsint(l — 3 cos?{)

An der Stelle ¢ = % ist also

. 3b | 3b
E=—7V2 i=72
.. 3b .5 .. 3b
&E=7V2, i=5V2

Diese Werte sind in (36) einzusetzen. Dabei miissen Sie beachten, daB fiir
0 =t < 7 mit wachsendem ¢ die 2-Werte abnehmen ; die Kurve wird also mit wach-
sendem ¢ entgegen der positiven z-Richtung durchlaufen. Mit dem Durchlaufsinn
dndert sich aber auch das Vorzeichen der Kriimmung, d. h., Sie miissen bei An-
wendung der Formel (36) das Vorzeichen wechseln.
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Es ist also
_ 9y 9w 9o?

NN

8 8
2 3b
F=g e="5-

Der Kriimmungsmittelpunkt liegt auf der Kurvennormalen. Aus Symmetrie-
griinden ist das fiir { = % die Gerade y = 2. Die Mittelpunktskoordinaten des
Kriimmungskreises lassen sich also leicht berechnen. Fiir { = % ist 2 =9y =
2 ¥/3. Damit ist (vgl. Bild 38)

0P = V& + ¢ =+,

v4

und mit PM =p = 3;
wird OM = OP + PM = 2b.
Weiterhin ist
OM* =& 4 2.
und, wegen & = 7,
28% = 412,
Bild 38 g:bfg, n=_b1/_§.

Der Kriimmungsmittelpunkt fiir ¢ = % ist M(bY2; bY2).

Ubungen
27. a) Bestimmen Sie den Kriimmungsradius der Kreisevolvente
x =r(cos ¢ + tsin ?), y =r(sint—tecost)/

b) Bestimmen Sie den Krimmungsradius der Kurve y = 28 —22% 4 3z
wm Punkt x =1/

¢) Bestimmen Sie den Kriimmungsradius der gewdhnlichen Zyklcide
z=a(t—sint); y =a(l—cost) fir a =1 an der Stelle t = n!

d) Welches Vorzeichen hat die Kriimmung bei der kubischen Parabel fiir
<0, =0 und x> 02
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11 Berechnung unbestimmter Ausdriicke

11.1 Unbestimmte Ausdriicke von der Form 9

0
Wie Sie wissen, kann es bei gebrochenen Funktionen eintreten, da8 an einer Stelle
z# = @ Zéhler und Nenner zugleich Null werden (vgl. Bd. 1, Abschnitt 2.2).

Ist z. B. F(z) = f (z) und f(a) = g(a) =0, so erhalten Sie fiir = a als Funk-

tionswert F'(a) = ;E—Z; =4 - Der Ausdruck 2 T hat keinen Sinn. Die Funktion F(z)

ist an der Stelle £ = a nicht definiert, sie hat dort eine Liicke.
Hiufig strebt aber F(x) fiir £ — a einem Grenzwert zu. Man kann in diesem Falle
der Funktion F(z) an der Stelle z = a den Grenzwert lim F(z) zuordnen und so

T—>a

die Liicke der Funktion beheben. Sie lernen in diesem Abschnitt ein Verfahren
kennen, das es in vielen Fillen ermoglicht, diesen Grenzwert auf einfache Weise
zu berechnen.

Es sei bei einer gebrochenen Funktion F(z) = '; E ; gleichzeitig f(a) =0 und

g(a) =0. Da 1@ _ 9 nbestimmt ist, muB untersucht werden, ob der Grenz-

g@ 0

wert lim ’% existiert. Dazu untersuchen wir die Funktion in der Nihe von
z»a

z =.a und bilden

P+ an - 16443

Da f(a) = g(a) = 0 ist, konnen wir anch schreiben:
fa+ 4z) — {(a)
P +49 = e a—g@-
Wir formen weiter um und dividieren Zéhler und Nenner durch 4z:
fla+ 4z) — (@)
Ax
g(a + 42) —g(a) *
Az
In Zihler und Nenner stehen jetzt die Differenzenquotienten von f(z) und g(z)
an der Stelle z = a. Sind f(z) und g(z) an der Stelle = a differenzierbar, so
existieren die Grenzwerte

F(a + 42) =

g(@a + 4z) — g(a)

o Az) — , . ,
A:}l-{% f—(a—t—g——“‘lf(a) =f(«) und Alleo B PR (@
Es ist dann also .
lim f(a'l"Az)"f(a)
_ 450 Az _ @
I Plo) = mFa+42) == Terdn—@ ~ 7@’
Az —> 0 Az
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Sie erhalten also lim F(z), indem Sie Zahler und Nenner fiir sich differenzieren
und in den erhal?:;;en Ausdruck z = a setzen.
Es gilt die Regel von De L’Hospital':

Ist fiir eine Funktion F(z) = ; E ; gleichzeitig f(a) = g(a) =0 und sind

f(z) und g(z) an der Stelle x = 0 differenzierbar, so ist

1@ f@
lim 0 = 7@

sofern lim == f(z) existiert.

z2va 9(2)

Beachten Sie, dal Zahler und Nenner gefrennt differenziert werden, also nicht
F’(x) gebildet wird!

Beispiel:

Die Funktion F(z) = ; g; _EE% hat an der Stelle x = 2 eine
f(z)

Liicke. Existiert lim so kann man die Liicke beheben, indem man

z-»2 ( )’

F(2) = lim £(®) setat. Sie wenden die Regel von De L’Hospital an.

2-52 ()

Sie finden:
f(z) =22—5 und ¢'(2) =32*—4z—1.

Damit wird
. o —bx+6 . 2z—5 _4-—5b . 1
I s e e~ M 1~ m—s—1—- 3

Sind auBer f(a) und g(a) auch noch f'(a) und ¢’ (a) gleich Null, so wenden Sie das
Verfahren nochmals an. Sie erhalten dann
1 (=) 1" (=) 1" (z)
lim ) = M e ~ My
Das Verfahren 14Bt sich also — wenn notig — fortsetzen.
Es gilt der Satz:

Werden Zahler und Nenner der Funktion F(z) = ; g ; mit ihren (n — 1)ten

Ableitungen an der Stelle # = a gleichzeitig Null, wihrend die n-ten Ab-
leitungen f® (z) und ¢ (z) fiir z = a nicht beide zugleich verschwinden,
dann ist
mi@ _ M@
z—>a g(z) g(n (a)

1 Die Regel wurde von dem schweizerischen Mathematiker Johann Bernoulli (1667 bis

1748) aufgestellt, von ihm dem franzosischen Marquis De L’Hospital (1661 bis 1704) mit-
geteilt und von diesem verdffentlicht.
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Betspiel:

1—cosz — cos x

Fiir die Funktion F(z) = — ist der Grenzwert lim T zu er-
z->0
mitteln. Sie erhalten zunichst:
F(0) = 1—cosO =_g_.
Nach De L'Hospital wird
. _ jiy —cosz) .. sinz 0
lm P(e) = lim =gy — = Im5 =3

Sie miissen die Regel von De L’Hospital ein zweites Mal anwenden. Sie diffe-
renzieren also Zahler und Nenner des Ausdr'lmks , der ja fir z— 0 zu %
wurde. Es wird also

lim F(z) = lim ¢

1 —cos z)’ — lim a:
>0 z—>0 (ws)’ T -

cos T cos 0

=] —_— = — =

i
2 2~ 2

=0

Lehrbeispiel 85
F(e) = 5=1; lim F(a) ist gesucht.
- z->1

Lésung: e
1 —
PO =51 =%
. g (@ 4 41 4
ImF@) =lm =gy = lmp = 5R =3

Lehrbeispiel 36

Die Liicke der Funktion F (z) = ° — %" un der Stelle z = 0 ist zu beheben.
Losung:
(2 —e2y . eF4e s e+ 141
lim F(z) = lim =g — = lim == 1 =2

Lehrbeispiel 37

Bilden Sie  lim 22 _;
z>00082 —1°

Losung:
. (z2ecosz) . 2zcosz—a’sinz [0
lim F(s) = lim G222 900 = lim 2202 222 — [

(2 cos x — z2 sin z)’

= lim (— sin z)’

z—>0

67

3%



2cos x — 2z sin ¢ — (2 sin 2 4- 2? cos 2)

= lim

20 —ces z
13 2co8x—4xsin z — 2? cos z 2—0—0
- ll_l},l) — cos z - =1 __=2
Ubungen
Bilden Sie die Grenzwerte
. x4+ 22—1b .. sin 32
g _red—Y /
. a) ll_,ms 24+ z—12° b) }I_I,I}Jsinh;'

11.2 Unbestimnite Ausdriicke der Form z

Es kann eintreten, daB eine gebrochene Funktion an der Stelle z = a den un-

bestimmten Ausdruck
f@ _ >
9(a)
annimmt. Existiert der Grenzwert lim 1(®) o 148t sich auch hier die Regel

esa 9(2)

von De L'Hospital anwenden. Auf den Beweis wollen wir verzichten.

Beisptel:

Fiir F(z) = L& — B2 jst der Grenzwert lim F(z) zu bilden.

g(z)  Insinz >0

Setzen Sie den Wert 0 in die gegebene Funktion ein, so ergibt sich

Ino — o0 oo
F(0) = Insin0 = —oo oo
Sie differenzieren Ziahler und Nenner einzeln und erhalten
1
. _ (Inz) ST tanz_ng
xlllf)l F(x) zh_fno (In sin z)” 1_1,1}) cosz ll_!,n(', 1o
sin ¢

Da ta: % fiir # = 0 den unbestimmten Ausdruck -g— ergibt, wird nochmals diffe-

renziert:

(tan z)’ 1 1

:}l»o (zy l_{l})COS’z 1~ cos? 0 L

Lehrbeispiel 38
Berechnen Sie den Grenzwert lim bz,
Losung:

lim 2% — 1im 82 _jim 1 — 0o

T—>oo x> oo T o0 =
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Ubungen
29. Berechnen Sie

. In 2 . 8%
—— iy}
@) }E%ln tan z b) zEE 2%’

11.3 Unbestimmte Ausdriicke der Form 0 - oo, oo — o0, 0°, 1%, co®

Funktionen, die fiir £ — a einen der unbestimmten Ausdriicke

0- o0, ©0— 090, 00’ 1”’ oo?
liefern, lassen sich so umformen, daf man fiir z— a die Form T oder — erhélt.

Nach der Umformung 148t sich die De L’Hospitalsche Regel anwenden.

1. Die Form 0 - oo
Ist lim f(z) = 0, lim g(x) = oo und lim f(z) - g(x) zu berechnen, so schreibt man

sist9 = [o]

lim f(z) - g(x) = lim o

oder
lim f(2) - g(2) = 13(7()@ B [35]

Lehrbeispiel 39

Es ist zu untersuchen, welchem Grenzwert die Funkiion F(z) =sinz-1lnz fiir
xz— 0 zustrebt.

Loésung:-
Fiir z— 0 nimmt F(z) die Form 0. (—oo) an.
Sie formen um:

o . In
limsin z - In ¢ = lim ———.
o 1l:sin z

-0
. , 1 1 €0S T .
Esist (Inz) = = und (=) =— =5—, also wird
z sin z sin? z
1
. In z . T . sin? z 0
hml,—.=hm—=hm— =[—3].
g0 lisinz = L, cosaz 20 z cos
sin? o

Die nochmalige Anwendung der Regel von De L’Hospital liefert

lim __sin’z — lim (— 2singcosz \ 0 0
£ 0 zeosz| L, coszr—asing)  1—0 ==
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2. Die Form oo — oo
Ist F(z) ={(z) — g(z) und f(a) = oo, g(a) = oo, so fithrt die Umformung

11
f(a) — g(z) = 2B 1
f(2) - g(2)

auf die Form %

Lehrbeispiel 40
. .1 1
Bilden Sis  lim =L

Losung:
Fiir # — 0 erhalten Sie den unbestimmten Ausdruck oo — oo. Sie addieren beide
Briiche; das ist gleichbedeutend mit der obengenannten Umformung:

. 1 1 . e?—1—2z 0
lim (_—;_e’—l)= hm( ze?r — 1 >=[3

z=>0 x>0 \
e
T saop®tzer—1" [0
e 1 1

= 11310ez+ex+a:ez=1+1+0=z'

3. Die Formen 0° 1°, oo
Diese Formen kénnen auftreten, wenn eine Funktion F(z) = f(z)9® vorliegt.
Durch Logarithmieren erhalten Sie
In F(z) = g(x) - In f(2)
und damit die Form 0 - co, die schon behandelt wurde.

Lehrbeispiel 41

Der Grenzwert lim z° " ist zu bestimmen.

z=>1
Losung:
1

Fiir z— 1 geht 2°~
1
Aus F(z) = 2° " erhalten Sie durch Logarithmieren

In F(z) = zl?lln z.

1
— 1,

Damit wird

lim In F(z) = lim 2% =5l

z->1 z—»lx—l

1
. F-7

= lim — = 1.
z-+1 1



Es ist also limIn F(x) = 1.

z—>1
1
Aus In F(1) =1 erhalten Sie F(1) =lim z° ' =e.
z->1 =
Ubungen
30. Ermitteln Ste
. . 1 1)
a) 31_{1; zln z, b) }tlflo(sinz _?E)’
. 1 1
) Iim (=5~ ma=y)’
31. Bestimmen Ste die folgenden Grenzwerte!
a) lim (z — a)*—* b) lim (sin z)°
z—>a z—0
¢) lim (1— 3 @) lim (142"
1 1
e) lim z* f) lim (z—a)"~ "¢
Zusammenfassung
Erscheint F(z) = ';,E—:; an der Stelle z = a entweder in der unbestimmten Form
% oder z , 50 findet man lim F(z), indem man Zihler und Nenner einzeln diffe-

T—>a
renziert und nachtraglich z = a setzt. Wenn notig, wird dieses Verfahren solange
fortgesetzt, bis zum ersten Male die Ableitungen an der betreffenden Stelle z = a

nicht beide zugleich Null oder unendlich werden.

Die Fille 0 - oo, 00 — o0, 09, 1=, oc® lassen sich auf die Form % oder z zuriick-

fiihren.

12 Funktionen von zwei Verinderlichen

12.1 Partielle Ableitungen

In den vorangehenden Kapiteln lernten Sie die Regeln fiir die Differentiation
und die Integration von Funktionen einer unabhéngigen Versnderlichen kennen,
d. h. fiir Funktionen y = f(z).

In der Technik oder Physik erscheint aber haufig eine Gro8e in Abhéngigkeit von
mehreren anderen GroSen.
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1. Beisptel
Die Stromstirke ist nach dem Ohmschen Gesetz
=T
R

von der Spannung U und dem Widerstand R abhéngig. Dabei sind U und R
zwei voneinander unabhingige Grofen, denn man kann Spannung und Wider-
stand beliebig und unabhéngig voneinander veréindern. Fiir jedes Wertepaar (U, R)
ergibt sich eine bestimmte Stromstéirke I. Wir bezeichnen I als eine Funktion
der zwei voneinander unabhéngigen Verdnderlichen U und R und schreiben

I ={U, R).

2. Beisprel
Das Volumen eines Gases ist nach dem Boyle-Gay-Lussacschen Gesetz

v =1, ?pl (1 + at)
eine Funktion

V= f (P, t)
des Druckes p und der Temperatur . Die GroBen vy, p, und e« sind Konstante.
Die Verdnderlichen p und ¢ sind wieder unabhéngig voneinander. Zu jedem Werte-
paar (p, t) gehort ein bestimmtes Volumen v (soweit der Gaszustand erhalten
bleibt).
Allgemein bezeichnen z = f(z, y) eine Funktion von zwei und u = f(z, y, 2)
eine Funktion von drei unabhéngigen Variablen. Dabei wird stets angenommen,
daB diese Variablen selbst unabhingig voneinander sind. Wiirde ndmlich in
u = f(, ¥, 2) z. B. zwischen y und z eine Beziehung bestehen, so daf etwa
y = g(2) ist, dann konnte man diesen Wert in u einsetzen und erhielte mit
u = f[, g(2), z] nur noch eine Funktionvon zwei unabhéingigen Variablen 2 und z.
Hingt eine Funktion von n voneinander unabhingigen Verdnderlichen ab, so
schreibt man

Y =f(xq, gy . .., Tn).

Hier dienen die Indizes nicht zur Kennzeichnung fester Werte von z, sondern
werden zur Unterscheidung der Variablen beniitzt.

Die Einteilung dieser Funktionen erfolgt nach denselben Gesichtspunkten wie
in Band 1, Abschnitt 1.3, bei den Funktionen einer Verdnderlichen. So stellt z. B.

z2=232246zy—8y2+4x—Hy—8
eine ganze rationale Funktion 2. Grades von zwei unabhingigen Verdnderlichen

dar.
% = efir (#+Y) _In 2

ist eine transzendente Funktion der drei Verdnderlichen z, y und 2.
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Im Folgenden wollen wir auch fiir diese Funlktionen die Begriffe Ableitung, Diffe-
rential und Extremwert erkliren. Um dabei moglichst anschaulich vorgehen zu
konnen, fragen wir zunichst nach dem Schaubild einer Funktion von zwer unab-
hingigen Verdnderlichen.

Wir wihlen dazu ein riumliches Koordinatensystem mit dre: senkrecht auf-
einanderstehenden; Achsen z, y und z (Bild 39). Speziell verwendet man ein
,,rechtshindiges** System, bei dem sich z-, y-
und z-Achse wie die rechtwinklig zueinander
gespreizten Zeigefinger, Mittelfinger und
Daumen der rechten Hand verhalten. Jé zwei
Achsen spannen eine Ebene auf: die zy-, die
zz- und die yz-Ebene. Diese drei Ebenen
stehen senkrecht aufeinander. Ist eine Funk-
tion z == f(=, y) gegeben, so gehort zu jedem
Wertepaar (z,y) ein Funktionswert z. Jedem
Wertepaar (z, y) konnen Sie einen Punkt P’ in
der z y-Ebene zuordnen. Der zugehorige Funk-
tionswert z 148t sich dann als die Hohe eines
senkrecht iiber P’ gelegenen Raumpunktes P deuten (Bild 39). Jedem Wertetripel
entspricht also ein Punkt im Raum. Umgekehrt entspricht jedem Punktim Raum
ein Wertetripel (z, y, 2), wobei z, y und z die Koordinaten dieses Punktes sind.

Die Menge aller Wertepaare (z, y), fiir welche die Funktion z = f(z, y) definiert
ist, bezeichnet man als den Definitionsbereich der Funktion. Er enthilt alle in
der zy-Ebene liegenden Punkte P’. Die ihnen entsprechenden Raumpunkte P
bilden eine Fliche, das Schaubild der Funktion z = f(z, y). Je nach der Art der
Funktion kann es eine Ebene, eine
Kugelfldche oder eine beliebige andere
Fléche sein.

Setzen Sie in z = f(x, y) fiir y den
Wert Null ein und lassen z variabel,
dann erhalten Sie alle Punkte der
Fliche, die in der zz-Ebene liegen, denn
dort ist iiberall y = 0. Die sich aus
y = 0 ergebende Funktion z = f(x)
stellt demnach die Gleichung der
Sehnittkurve zwischen der vorge-
gebenen Fldache und der zz-Ebene dar (Bild 40). Entsprechend erhilt man fiir
z =0 mit z = f(y) die Gleichung der Schnittkurve zwischen der Fliche und
der yz-Ebene. SchlieBlich folgt fiir z =0 die implizite Funktion f(z, y) =0,
welche die Schnittkurve der Flidche mit der zy-Ebene darstellt.

P4

x B
Bild 39

x

Bild 40
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Alle Punkte, welche ven der yz Ebene den Abstand z, besitzen, stellen in ihrer
Gesamtheit eine zur yz-Ebene parallele Ebene dar, deren Gleichung z = z, lautet
(Bild 41). Setzen Sie in z = f(x, y) fiir z den Wert z, ein, d. h. anschaulich,

y

Bild 41

bringen Sie die Fliche mit der Ebene
z = z, zum Schnitt, dann erhalten Sie
die Schnittkurve z = f(z,, y), welche
ebénfalls parallel zur yz-Ebene verlduft.
Desgleichen stellt z = f(z, y,) mit kon-
stantem y, eine in der Ebene y = y,
gelegene Kurve dar, die also parallel zur
xz-Ebene liegt und von dieser den Ab-
stand y, hat.

Endlich kénnen Sie noch alle Flichen-
punkte betrachten, die denselben Abstand

von der zy-Ebene, d. h. die gleiche Hohe z = z, besitzen. Sie liegen auf einer
Héhenlinie 2, = f(z, y) oder f(z, y) — 2, = 0 und stellen also die Schnittkurve
zwischen der Fliche und der waagerechten Ebene z = z, dar (Bild 40). Mit Hilfe
mehrerer in den Grundrif projizierter Hohenlinien kann man in der zy-Ebene
ein Bild der Fliche entwerfen (Entspricht der Darstellung eines Gelédndes

in der Karte durch Héhenlinien).

Wir wollen die allgemeinen Betrachtungen an einigen Beispielen niher erlautern.

Die lineare Funktion

z=az+by+c
stellt eine Ebene im Raume dar. Fiir die Schnittkurven mit den Koordinaten-

ebenen folgt wegen

y =0 als Schnitt mit der zz-Ebene: 2z =ax + ¢,
z =0 als Schnitt mit der yz-Ebene: z=1by + ¢,
z =0 als Schnitt mit der zy-Ebene: axz + by 4+ ¢ =0.

Alle drei Schnittkurven sind also Gerade (Bild 42).

Die niichste zu betrachtende Funktion sei

e=Yr— 22—y oder 224y 422 =12
Hier erhilt man durch Nullsetzen der einzelnen

Variablen folgende Schnittkurven mit den Ko-
ordinatenebenen:

Fiir y = 0 folgt 2% 4 22 =12,
fiir # =0 folgt 2 4+ 2% =12,
fir z = 0 folgt % 4 % =12



Samtliche Schnittkurven sind Kreise mit dem Radius r und dem Ursprung O
als Mittelpunkt. Die Funktion 2% + y? + 22 = 72 stellt eine Kugelfldche  dar,
denn jeder Punkt P(z, y, 2), dessen Koordinaten die Funktionsgleichung erfiillen,
hat vom Ursprung den Abstand OP = r (Bild 43). Die Wertepaare (z, y) konnen

Bild 43

nicht vollkommen beliebig gewihlt werden, sondern miissen der Bedingung
z% + y® < 72 geniigen, da sonst z imaginir wird. Der Definitionsbereich ist alse
eine Kreisfliche mit dem Radius 7.

Wihrend sich bei dem vorigen Beispiel zu jedem Wertepaar (z, y) durch das
doppelte Vorzeichen der Wurzel zwei Werte z ergeben, liefert die Funktion

g =ua%4 92
eindeutig nur positive z-Werte. Als Schnitt-
kurven mit der zz-Ebene bzw. yz-Ebene
ergeben sich die Parabeln z = 22 bzw. z = y?
(Bild 44).
Setzen Sie fiir z einen beliebigen konstanten
Wert 2, ein, dann erhalten Sie mit z? + y?
=zyals Hohenlinie einen Kreismit dem Radius
12, Die Funktion stellt eine Fliche dar, welche
durch Rotation einer Parabel, z. B. z = 22, um
die z-Achse entsteht und deshalb Rotations-
paraboloid genannt wird. Bild 45 zeigt Ihnen
die Hohenliniendarstellung- dieser Fliche fiir
verschiedene Werte z = z,,.
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AbschlieBend soll noch die durch die Funktion y
2=a2— 2
dargestellte Fldche betrachtet werden. Mit y =0

ergibt sich als Schnittkurve mit der zz-Ebene
die Parabel z = 2? und mit z =0 die Parabel

2z = — y? als Schnittkurve mit der yz-Ebene. Fiir
z = 0 folgt
0 =2a%—y?
oder
Y2 =a* bzw. y=+4z, Bild 45

d. h., die Fliche schneidet die zy-Ebene in zwei durch den Ursprung gehenden
Geraden. Fiir eine Hohenlinie der Hohe 2, erhélt man die gleichseitige Hyperbel
22 — y* = 2,. Die Fliche heiit Sattelfliche oder ,,Hyperbolisches Paraboloid‘.
Bild 46 zeigt Thnen die Fliche und Bild 47 ihre Hohenliniendarstellung. Es ist
noch zu bemerken, dag sich fiir alle z, > 0 Hyperbeln ergeben, deren Brennpunkte
auf der z-Achse liegen, wihrend fiir z, < 0, also negative Hohen, eine Hyperbel-
schar entsteht, deren Brennpunkte auf der y-Achse liegen.

Bild 46

Fiir Funktionen von mehr als zwei unabhéngigen Verinderlichen ist eine derartige
geometrische Veranschaulichung nicht méglich, da sie mehr als drei Dimensionen
erfordern wiirde.
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Nach diesen Vorbereitungen wollen wir nun auch Differentialquotienten fiir
Funktionen von mehreren Variablen definieren. Dabei beschrinken wir uns
zundchst auf zwei Variable, um die erforderlichen Beziehungen anschaulich aus

u (Xoj yotk; 0)
" (Xorh; ye;0)
Bild 48

dem Bild ablesen zu konnen und iibertragen dann sinngemi das Ergebnis auf
Funktionen mit mehr als zwei Verédnderlichen.

In Bild 48 wurde die Fliche z = f(z, ) mit den zwei Ebenen z = 2, und y = y,
zum Schnitt gebracht. Es ergeben sich die Schnittkurven z = f(z,, y) und
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z = [(, y,), welche parallel zur yz-Ebene bzw. zz-Ebene verlaufen. Der Schnitt-
punkt der beiden Kurven sei P,.

Entsprechend der Definition des Differentialquotienten fiir eine Variable sollen
nun die Anstiege der in P, an die beiden Kurven angelegten Tangenten berechnet
werden.

Das Sekantendreieck der in der Ebene y = y, liegenden Schnittkurve hat die
Katheten 2 und f(zy + &, yo) — f(%g, Yo). Der Anstieg der Sekante wird also
durch den Differenzenquotienten

h9 _ v J0.
f(zo + yo})L 1(Zos Yo) (I)

angegeben. Fiir h— 0 geht die Sekante in die Tangente iiber. Der Grenzwert

llm f(zo + h1 ?lo) - f(xo’ yo)
h—0 h

= tan o4

gibt also fiir P, den Anstieg der Tangente an, die in der Ebene y = y, liegt.
Entsprechend ergibt sich fiir den Anstieg der Tangente, die in der Ebene z = z,
liegt, der Grenzwert

’}i—{%f(zov Yo + 7‘2 4 G2V ) tan o, (11
Bei den Betrachtungen wurde stillschweigend vorausgesetzt, daB die eben her-
geleiteten Grenzwerte existieren. Man nennt die Grenzwerte (I) und (II) die
ersten partiellen Differentialquotienten oder die ersten partiellen Ableitungen

der Funktion z = f(z, y) nach z bzw. nach y und schreibt fiir (I) auch

8)‘(%@)_ ! oder fz(2o, Yo)
und fiir (IT)

3f (24 -

L‘;Oyy_*’) oder  fy(Zo, Yo)-

Betrachten Sie nun die partiellen Ableitungen nicht an einer bestimmten Stelle
Py(zg, Yo), sondern in einem beliebigen Punkte P(z, y) dann erhalten Sie mit
den verschiedenen Bezeichnungen

i (@) —f@y) _ 22 _of@y) _ of _
Jim, 2 =9z os gz I (39)
oo (@Y + R —fay) _ 0z _ oy _ of _
T Tay T oy ey %0

1 Zum Unterschied gegen den gewdhnlichen Differentialquotienten verwendet man beim
partiellen Differentialquotienten das geschwungene @.
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Die partielle Ableitung f; stellt den Anstieg einer Tangente dar, die in einem be-
liebigen Punkte P(z, y) an die Fliche angelegt und parallel zur zz-Ebene ist.
Entsprechend gibt f, den Anstieg einer zur yz-Ebene parallelen und ebenfalls
in einem beliebigen Punkt an die Fldche angelegten Tangente an. Will man die
Tangentenanstieg fiir einen bestimmten Punkt berechnen, dann setzt man in
die partiellen Ableitungen, welche ja wieder Funktionen von z und y sind, die
Koordinaten dieses Punktes ein.

Fiir die praktische Berechnung der partiellen Differentialquotienten ergibt sich
aus unserer obigen Herleitung folgende einfache Regel:

Um die partielle Ableitung der Funktion z = f(z, y) nach z zu bilden, betrachtet
man voriibergehend y als konstante Grofe und differenziert nach den bekannten
Regeln die Funktion nach z. Entsprechend ist bei der partiellen Ableitung nach y
die Variable x vorldufig als konstant anzusehen und nach y zu differenzieren.

Wir wollen uns dies zunédchst am Beispiel der Funktion
=P
klarmachen, welche unter Beschrinkung auf das positive Vorzeichen der Wurzel
eine Halbkugel mit dem Radius 3 darstellt.
Fiir die partielle Ableitung nach y erhilt man

Bild 49

Sie bedeutet also zundchst den Anstieg einer Tangente, welche in einem beliebigen
Punkte P(z, y) an die Halbkugel gelegt ist und parallel zur yz-Ebene verlduft.
Setzen Sie nun z. B. z =2, dann muB der Berithrungspunkt auf der Kurve
z=79—4—y® = yb— y? liegen (Bild 49). SchlieBlich erhalten Sie nach Wahl

22z

auch eines festen Wertes fiir y, z. B. y =1, aus

2y
0z —1 1
(Foleny = 21 = 5= =— 5 = tana

y=1
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Fiir den Neigungswinkel der Tangente ergibt sich o = 153°26'.

Als zweites Beispiel betrachten wir noch einmal das Paraboloid z = a? + 42
(Bild 50). Die partielle Ableitung nach z lautet

0z
a—a—;—2m.

Firz =1, y =1 folgt
[Z_ﬂz_l =fo(L,1) = 2 = tan e

=1

Bild 50

Der Neigungswinkel der in P(1; 1; 2) angelegten Tangente parallel zur zz-Ebene
betrigt o« = 63°26'.

Lehrbeispiel 42

Bilden Sie die partiellen Ablestungen der Funktion
z2=212—3xy—2y>+6x—2y +1

und ermitleln Ste ihre Werte an der Stelle x =1, y = 2!'

Losung:
Sie betrachten zunichst y als Konstante und differenzieren die Funktion nach x:
o =4z—3y +6.

Dann 1st z als konstant aufzufassen und nach y zu differenzieren:
oz

oy =—3z—4y—2.
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Fiir die- Stelle z = 1, y = 2 folgt durch Einsetzen der speziellen Werte

gz

ﬂ]z=1= ox =i’
=2

oz _8f(1,2)__

a";}L L= ey — 18

Lehrbeispiel 43
Bilden Stie die ersten partiellen Ableitungen der Funktionen

_ ¥ —In%t¥
a) z = arc tan o b) z—lnw_y.

Loésung
a) Unter Beachtung der Kettenregel erhalten Sie:
2Ly =
bz g/_: T &ty
x
o0z 1 1 x

= 2 T T R A
R R E

b)z=In(z+y)—In(x—y)

S S S
*Taty 3y YT ety Ta—y
2y 2z

=_E=Tyz =xT:gF

Der Begriff des partiellen Differentialquotienten soll nun auch auf Funktionen
von mehr als zwei Verdnderlichen iibertragen werden, wobei natiirlich die Mog-
lichkeit der rdumlichen Veranschaulichung fehlt.

Ist die Funktion
2 =1f(@y Tgy ..., Tn)
gegeben, so unterscheidet man die Differentialquotienten

0 o: s
oz’ 0z, """’ ox,’

. .0 D . . . .
Um zum Beispiel % zu berechnen, sind bei der Differentiation z,, z,, ..., z,

2
als konstant, z, als variabel zu betrachten.

Lehrbeispiel 44
Berechnen Sie die ersten partiellen Ablestungen der Funktion
u =-e%lny 4 22cos y = f(z, y, 2)/
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Losung:
0U _ ezln B Du
ow ? 2y

Da die ersten partiellen Ableitungen im allgemeinen wieder Funktionen sind,

kann man sie nochmals partiell differenzieren und gelangt so zu dem Begriff der

hoheren partiellen Ableitungen.

Zum Beispiel kann man jede der beiden ersten partiellen Ableitungen der Funk-

tion z = f(x, y) partiell nach x bzw. nach y differenzieren. Fiir die zweiten

partiellen Ableitungen ergeben sich dann vier Moglichkeiten mit folgender

—‘f—z2sin ; é—"—2zcos
Ty Y5 az  ° Y-

Schreibweise:
02 9z
2 (a w) 63z ? (a_z> 0%z
%2 = m e Sy = awey I
0z 02
4 <a y) 222 / 9 (éz/) 222 .
oz~ ayez v Toy oy =t

Ferner bedeutet z. B.
2%z
oztoy = fazys
da8 die Funktion z = f(x, y) erst zweimal partiell nach z und anschlieBend
einmal partiell nach y zu differenzieren ist.

Lehrbeispiel 45
Berechnen Sie die 1. und 2. partiellen Ableitungen der folgenden Funkiionen:
a) z=42% 4+ 6zy —y* 4 22— 4y + 15,

b) z =7Vx® + ¥/

Losung:
oz oz
-a) —=8w+6y+2. -a—y=6x——2y—4
9%z P?z ?z 2z
5ot = O Gezy — 5yos = O o = — 2
@ y
z = —— ey — ——=—
b) 2 ! Ve E i
v — e
. . Vza + ya yz
xz T sz + yz ]z’ + yz
1 3— Ty
oy = — 5 -2y (2 + ¥y T =— ey
1 2 Ty
Zp=—%"Y" 2z - (x2+y) T



yﬁ
Fig_ o
EErs VT

T —

Zyy =

In diesen beiden Beispielen stimmen die ,,gemischten* Ableitungen zzy und 2y,
jedesmal iiberein. Das ist kein Zufall, sondern wird bis auf einige Ausnahmefille
immer zutreffen.

Es gilt ndmlich der Satz von Sehwarz:
I Unter der Voraussetzung, daB die Funktion und ihre partielle Ableitungen
stetig sind, ist die Reihenfolge der partiellen Differentiationen gleichgiiltig.
Lehrbeispiel 46
Zeigen Ste fiir die Funktion
u =f(x, y,2) = 2*Insin (y — 2)
die (leichheit der folgenden partiellen Ableitungen 3. Ordnung:

foe = Fye O0A fyye = foyy!

Losung:
f- =2zlInsin(y —2) = — 2:;’:8:3:—953001:(3/—2)
R 2
fay =2$:i0:8—3=2x00t(y =) fw = sin® (y — 2)
e = Gty =) = Sty =)
f:vyz = fzya:
fy = a?cot (y —2) f. = —a%cot(y—2)
._.zz za
fw = G =9 o = =9
f =-—-—2z’cos(y—-z) f __-—2x’cos(y—_z)
e sin’ (y — 2) WU sin® (y —2)
fyyz = fzw

Lehrbeispiel 47
Zeigen Sie, daf fir die Funktion

z = eY arc sin (z — y)
die Beziehung

]
7z + 7y £
qult!
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Lésung:
Sie berechnen zunichst 2% und 22 :
oz 2y

9z _ _ ev
9 I—(z—yp
oz 3 ey——-
5y = o arosin (z —y) — gy
Damit folgt
oz 9z ey =
.- — I y T
7s T oy TG O sin (2 —) — T=G&—yp

= eY are sin (z — y) = 2.

Ubungen
32. Bilden Ste die 1. partiellen Ablestungen folgender Funktionen:
a) u=a%+ 623y — 22%yz 4 3y23,

b) z= ¢) z=71r2—at— 2,

zy
2% +
d) z=e7siny, e) z =esinzy | goos (z+4)f

33. Bilden Sie die 1. und 2. partiellen Ableitungen der folgenden Funktionen:

a) z=2a% + 23y 4 243, ) [ (z, y) = are tan x+zyy
b)u-—-a:y-]—yz—{-zw, e))‘(x,y)=n:$—1!

o) (@ 9) =y,
34. Berechnen Sie fiir die Fumktion u = e*v* die partielle Ableitung é%;az’,
35. Bestimmen Sie xfs + yfy fiir die Funktion f(z, y) =

36. Bestimmen Ste fz + fy + f. fiir die Funklion
f(z,y,2) =In (23 + 4* + 22 —3zyz)!
¥

zy
Yy

37. Zeigen Sie, daff die Funktion f(z, y) = ve® die Gleichung
afe +yly =1
erfiillt!
12.2 Das totale Differential

In Abschnitt 3.5 haben Sie die Bedeutung der Differentiale kennengelernt und
in Abschnitt 5.4 das Differential fiir die Fehlerrechnung verwandt. Wir wollen
noch einmal kurz wiederholen:
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Wird in y = f(z) die Veréinderliche # um den Betrag Az = dz verindert, so
andert sich der Funktionswert um

Ay =[(z + 42) — f(2).
Wird in P(z; y) die Tangente angelegt, so nennt man den Zuwachs des Funktions-
wertes bis zur Tangente das Differential der Funktion. Es ist

dy =f(z)dz.

In #hnlicher Weise erkldrt man fiir eine Funktion 2z = f(z, y) den Funktions-
zuwachs A4z und das Differential dz.
Der Funktionszuwachs Az einer Funktion z = f(z, y) ist die Anderung der Funk-

tion, die sie erfihrt, wenn die beiden unabhingigen Verdnderlichen z und y um
Az =dz und Ay = dy gedindert werden. Es ist also

dz =f(z + Az, y + 4y) — [(z, y).
Beuspiel:
Die Funktion z =2z 4 %? hat an der Stelle (3;5) den Wert
z2=f(z,y) =6+ 25 =3l
Wird z um Az = 0,3 und y um Ay = 0,2 vermehrt, so ist
2, =f(x + Az, y 4+ Ay) = 6,6 4 27,04 = 33,64.
Damit wird
Az =z, —2z = 2,64.
Das Differential dz ist der Zuwachs des Funktionswertes bis zur Tangentialebene,
die in P, (, y, 2) an die Fliche z = f(z, y) gelegt ist (vgl. Bild 51). Dieser Zuwachs
soll nun berechnet werden.

\/

(x+olxiysdly;0)
Bild 51
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Legt man durch P,(z, y, z) zwei Ebenen parallel zur zz- bzw. zur yz-Ebene, so
schneiden diese die Fliache z = f(z, y) in zwei Kurven. An diese Kurven sind in P,
die Tangenten gelegt. Thre Anstiegswinkel sind «; und e,. Die Ankatheten der
beiden entstandenen rechtwinkligen Dreiecke sind dz und dy. Da tane, =/,
und tan e, = fy ist, ist die GroBe der Gegenkatheten f; - dz und fy - dy.

Die beiden Tangenten spannen eine Ebene auf, die die Fliche z = (=, y) in P,
beriihrt. Aus Bild 51 erkennen Sie, daB sich der Funktionszuwachs bis zu dieser
Tangentialebene aus den Gegenkatheten fydz und fydy der Tangentendreiecke

zusammensetzt. Es ist also dz = f;dz 4 fydy oder, in anderer Schreibweise,

0z 0z
dz =3 dz +5§dy, Man nennt

. 0z 9z

das vollstéindige oder totale Differential der Funktion z = f(z, y).
Fiir kleine Werte dz und dy ist Az ~dz, d. h., die Anderung dz der Funktion
bis zur Tangentialebene ist annihernd gleich der Anderung A4z der Funktion.
Beispiel:
Fiir die oben genannte Funktion z =2 4 92 ist fz =2, fy = 2y. Also wird
dz =2dz 4 2ydy.
Mit den Werten 2 =3, y =5, dz =0,3, dy = 0,2 ergibt sich
dz =0,6 + 2 = 2,6.
Es war 4z = 2,64. Sie finden in diesem Beispiel bestétigt, daB fiir kleine Ande-
rungen dz und dy 4z ~ dz gesetzt werden kann.
Von dieser Naherung machen wir im néchsten Abschnitt Gebrauch.
Die fiir z = f(x, y) angestellten Betrachtungen und Ergebnisse lassen sich auf
Funktionen mit beliebig vielen Variablen erweitern.
Es sei eine Funktion
Y =1(xy, To, ..., Tn)
gegeben und es werden die unabhéngigen Variablen um die kleinen Werte dz,,
dz,, ..., dx, verindert. Dann ergibt sich daraus ein Zuwachs A4 y der Funktion.

Es gilt also
y+ Ay =z, +day, 25 +da,, ..., 2 + day)

Ay =f(z; + dxy, 23 +day, ..., Ty + dw) — (2, gy - - -, Zn)-
Das totale Differential ist mit

g

) 2 2
dy=a——;dx1+a—:£—zdx2+...+a—mf;dwn (42)

oder
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gegeben. Auch hier gilt fiir kleine Anderungen d =y, dz,, . .., dz, die Naherung
Ay =~ dy.

Lehrbeispiel 48
Berechnen Sie das totale Differential der Funktion z = x - y!

Losung: i N
Es ist 3 y-alx -
o0z 0z
=—d — dy.
de = 2 dz + > 7 l ‘y .

Fiir die partiellen Ableitungen erhilt man J ?

0z 0z

5, =Yy und Gy =& S0 daB folgt y d,|__

Bild 52

dz =ydz 4 zdy. (a)

Dieses Ergebnis 1a8t sich auf einfache Weise geometrisch deuten. Man kann
z = z - y als Flache eines Rechtecks mit den Seiten z und y auffassen (Bild 52).
Werden die Seitéen 2 um den Betrag dz und y um den Betrag dy vergroBert,
dann ergibt sich aus dem Bild der Zuwachs 4z der Fliche mit

Az = ydz + zdy + dz dy. (b)
Ein Vergleich mit (a) zeigt anschaulich den Fehler, der bei der Niherung 4z ~ dz
gemacht wird. Er ist gleich dem Produkt dz - dy. Fiir kleine Verdnderungen d «

und dy kann dieses Rechteck aber tatsdchlich gegen die beiden anderen hinzu-
kommenden Rechtecke vernachldssigt werden.

Lehrbeispiel 49
Berechnen Sie das totale Differential der Funktion

z =arctan zy/

Losung:
Fiir die partiellen Ableitungen folgt

oz Y und 0z z

dx 1+ 22y° . by 1+ ar2"
Damit erhélt man

- _ Y z
RS E T E
Ubungen

38. Berechnen Stie die totalen Differentiale der folgenden Funktionen:
a) z=4x"—622y% 4 4483,
b) z=e%siny,
¢) w=1Inyet % 2% =f(z,u,2)!
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12.3 Anwendung der partiellen Differentiation

12.31 Fehlerrechnung. Bei der Ableitung des totalen Differentials im vorigen
Abschnitt ergab sich aus dem Bild die unterschiedliche Bedeutung der GriBen
Azund dz. Sie sahen jedoch, daB bei kleinen Anderungen Az = dzund 4y = dy
der Variablen z und y die Naherung Az =~ dzgilt, d. h., daB man den Zuwachs 42z

der Funktion z = f(z, y) naherungsweise unter Verwendung des totalen Diffe-
rentials nach der Formel

Ao~ 02 An + 22 Ay (43)

‘berechnen kann. Diese Formel, die eine Erweiterung der Formel 4y ~ f'(z)- 4z
darstellt, kann natiirlich auch auf beliebig viele Variable ausgedehnt werden.

Hiufig 148t sich eine GroBe nur mittelbar messen, d. h. sie muB aus anderen,
durch Messung erhaltenen GroBen rechnerisch abgeleitet werden. Es ist dann
wichtig, festzustellen, wie sich die MeBfehler auf das Ergebnis der Rechnung aus-
wirken. Hierzu gibt die Fehlerformel (43) die Moglichkeit.

Lehrbeispiel 50

In einem Dreieck wurden die Seiten ¢ = 140 m, b = 170 m und der Winkel y = 95°
gemessen. Die Meffehler der Seiten und des Winkels wurden mit Aa = Ab = 4 0,2m
und Ay =+ 1 geschitet. Wie wirken sich diese Meffehler auf die zu berechnende
Seite ¢ aus?

Losung:

b a Sie stellen bei derartigen Aufgaben zunéchst stets die GroBe,
deren Fehler gesucht wird, als Funktion von den GréSen
dar, deren Fehler gegeben sind. Hier ergibt sich unmittel-

c > o
Bild 53 bar nach dem Kosinussatz

¢ =Ya? + b2—2abcos y = f(a, b, ). (a)
Fiir den gesuchten Fehler A¢ folgt dann
A~ fda + hAb + f,.%”.

Dabei muB Ay durch o geteilt werden, um den Winkelfehler im Bogenmaf zu
erhalten. Nach Berechnung der partiellen Ableitungen erhalten Sie:

Ae ~ a—Dbcos y a b—acosy
" Ya? + b* — 2abcos y Va* + 52 —2ab cos p
+ ab sin y Ay

Va* + 5 —2abcosy @
und unter Beriicksichtigung von (a)
38



— — b si
Ac%a bccosyAa_l__b accos;zAb_l_a ;cuny__Ae_y,

Ade %(1,— {(a—bcos y)4a + (b—acos y) 4b + absin y-%’}.
Da die Fehler sowohl positiv als auch negativ sein konnen, berechnen Sie den

groBtmoglichen Fehler, betrachten also nur die absoluten Betrige der einzelnen
Fehleranteile. Sie erhalten damit den sogenannten maximalen Fehler '

ACmax = % []a——bcos yl-14al +1b—acos y|-|4b| + |absin y —éz—yll.
Mit den gegebenen Zahlenwerten folgt
¢ = 1402 4 1702 — 2 - 140 - 170 - cos 95° m = 229,45 m.
Zur Berechnung von Acma.x geniigt die Niherung ¢ =2 230 m:
Abmx = g5 [(140 — 170 cos 95°) - 0,2 + (170 — 140 cos 95°) - 0,2
+ 140 - 170 - sin 95° - J ,

Acmax = O32m

Da man mcht weiB, in welcher Richtung die Einzelfehler wirken, wird die Linge
der Dreieckseite mit ¢ = (229,45 £ 0,32) m angegeben.

Lehrbeispiel 51
Die Spannung U an den Enden eines elekirischen Widerstandes R hingt mit der
Stromstirke I eines thn durchfliefenden Gleichstromes durch das Ohmsche Gesetz

zusammen.
RoU
s

Gesucht wird der relative Fehler von R, wenn U = 110 V mit etnem Fehler von
AU =42V und I = 20 A mit esnem Fehler von AI = 4 0,5 A behaflet ist.

Losung:
Nach Formel (43) erhdlt man zunédchst fiir den maximalen Fehler
AR = |52 40| + |52 41|
und daraus
BB = |22 4

U
a1l
Da der relative Fehler gesucht wird, muB noch durch R dividiert werden:

ARy | AU
R “" I’RAII

Unter Verwendung des Ohmschen Gesetzes erhalten Sie
ABpyy _ ’g‘ 4 lﬂl'
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Die Zahlenwerte ergeben

ARy 2 05
B~ 110

Lehrbeispiel 52

In einem rechtwinkligen Koordinatensystem sind zwer Punkte P und P, gegeben
(Bild 54), deren Verbindungsstrecke mit der x-Achse den Winkel ¢ einschliefst.
Um welchen Betrag wird dieser Winkel

yl

oy |
1 Losung:

B, (%o, Yo)

—
X

Bild 54 folgt

verdndert, wenn der Punkt P in Rich-
‘tung der x-Achse um den Betrag Az
—— und {in Richtung der y-Achse um den
A Betrag Ay verschoben wird?

Pixy) Zunéichst wird ¢ als Funktion der ver-
dnderlichen Koordinaten z und y des
—_— Punktes P dargestellt. Aus

tan g = LYo

— Y—Y% __
@ = a,ret::\,nm_avo = f(z, y).

Fiir die Winkeldnderung 4¢ erhalten Sie
do~fzdz+fydy
und fiir die partiellen Ableitungen

fo = 1 2.<_ (y—yo)>=( “)(?/_(?Io) )
‘ y—y @ — %) T — 2)* + (y — yo)*’
1+(r_—x§) ° 0
1 1 T—2
f, = . = o .
Y— Yo\ z—2 (z— Z)* + (y — Yo
1+<z—z:> (] 0 0.

Setzt man fiir den Nenner
(—zo)2 +(y—90)* = P—o?2 =5,

T— &y
s

und beachtet, dag "%’ = sin (p,'

fo = _Y—Y,__ _ sing
z s? - s ?

_T—xy __ cosp
f”—_—_T
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und schlieBlich

12.32 Die Ableitung unentwickelter Funktionen. Bisher setzten wir bei der
Bildung der Ableitung y’ einer Funktion mit den Variablen z und y stets voraus,
daB die Funktion in der entwickelten oder expliziten Form y = f(z) gegeben ist.
Nun gibt es aber auch Verkniipfungen zwischen x und y, die sich nicht nach y
auflosen lassen. Wir betrachten z. B. den Ausdruck

axd +bay? +ca?yP +dys + e =0. (a)
Setzen Sie fiir z einen bestimmten Wert cin, so erhalten Sie eine Bestimmungs-
gleichung fiir y, aus der Sie y (oft nur niherungsweise) bestimmen kénnen, so
daB die Gleichung (a) erfiillt ist. Diese bestimmt also y als Funktion von z.
Nach den Ausfithrungen in Abschnitt 1.2 spricht man von einer unentwickelten
oder impliziten Funktion und schreibt allgemein

F(z,y) =0.

Um die vorgegebene implizite Funktion (a) nach y aufzulosen, also in die explizite
Form zu bringen, miite eine Gleichung 5. Grades geldst werden. Das ist jedoch
im allgemeinen nicht moglich. Ebenso 148t sich die implizite Funktion

F(z,y) =3y*—xcosy=0
nicht in eine explizite verwandeln, da sie mit y als Unbekannte eine transzendente
Gleichung darstellt.

Auch implizite Funktionen f(x, y) = 0 lassen sich durch ebene Kurven bildlich
darstellen, fiir die ebenfalls der Tangentenanstieg, d. h. der Differentialquotient,
berechnet werden kann. Wir wollen deshalb im folgenden untersuchen, wie eine
Funktion in impliziter Form differenziert wird.

Wir betrachten hierzu F(z, y) = 0 als Sonderfall der Funktion
z=F(z,y) fir z=0.
Dem Bild 40 entsprechend stellt #(z, y) =0 die Schnittkurve zwischen der
Fliche z = F(x, y) und der zy-Ebene dar. Andert sich z um dz, dann #ndert
sich' die von z abhingige Variable ¥ um dy und Sie erhalten fiir das totale
Differential
oF oF

Da wir uns dabei in der zy-Ebene auf der Kurve F(z, y) = 0 bewegt haben, ist
die Hohendnderung dz = 0:

oF oF
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Die Division durch dz ergibt

oF  oF dy _
5o Tay a0
é!‘
dy oz . . .
und daraus folgt = —aF anderer Schreibweise
2y
=L m
y 7, (44)

Ohne Herleitung geben wir noch die Formel zur Berechnung der 2. Ableitung an:

o _Fzz + 2Fzy y’ +Fyy y"‘
Y F,

(45)

Lehrbeispiel 53

Berechnen Sie die ersten Ablettungen der Funktionen

a) 62° 4+ 223y2 —32%y3 + ¢ — 7 =0,

b) a%siny—e*cosy =0/

Lésung:

a) Sie bilden die partiellen Ableitungen
Fy=302*+ 622y — 693,
Fy= 423y —922y% + 5y*

und erhalten nach (44)

¥ = __Fz _ 30zt 4 62yt — 6y’
T TR, T T iy 92y T byt

b) Sie erhalten
Fy =2z sin y — e% cos y,
Fy = a2 cos y + e#sin y,
v __Fz __ 2zsiny—ercosy
Fy z?cos y + eTsiny

Lehrbeispiel 54

Berechnen Sie die Tangentengleichung der Ellipse
b2a2% 4 a?y? — a2b? =0

fitr den Beriihrungspunkt Py(zq; yo)!

Lésung:

Als Geradengleichung durch P, erhélt man fiir die Tangente
Y=Y _ p,
T-—,
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Der Richtungsfaktor m ist aber gleich der Ableitung y’ der Ellipsengleichung
an der Stelle z,. Nach (44) erhalten Sie

N 2b 2 bz
i A T
und fiir z = z, folgt, als Richtungsfaktor der Ellipsentangente in Py,
m=y = — Bz
a*y,

Dieser Wert in die Geradengleichung eingesetzt, ergibt
' Y=Y% _ _ P2
T — aty,”
Durch Umformung erhalten Sie
| By — Py = — Bag, + Bag?
oder
rxy + a?yy, = b2x2 + a?y 2
Da P, als Punkt der Ellipse mit seinen Koordinaten z, und y, die Ellipsen-
gleichung erfiillt, ist A2z, + a%y,® = a2b?, also
brxy + ayy, = a®b%

Die Division durch a2b? ergibt schlieBlich die bekannte Gleichung der Ellipsen-

tangente:

@ T =1L

Ubungen

39. Von einem geraden Kreiszylinder wurden der Radius r = 2,0 dm mit dem
Fehler Ar =2 mm und die Hohe h = 5,6 dm mit dem Fehler Ah = 3 mm
gemessen. Berechnen Sie das Volumen V und seinen maximalen Fehler AV max!

40. Die Widerstinde R, = 200 2 und R, =500 2 sind parallel geschaltet. Be-
rechnen Sie den mazimalen Fehler des Ersatzwiderstandes R, wenn die Fehler
der Einzelwiderstinde AR, =1 Q und AR, = 3 Q betragen!

41. Im rechtwinkligen Dreieck wurden die Kathete a = 70 m und die Hypotenuse
¢ = 250 m mit den Fehlern Aa =3 cm und Ac = Tcm gemessen. Wie groff
st der maximale Fehler des Winkels o?

42. Um den Radius eines tm Kreisbogen verlegten Gleises zu bestimmen, wurden
eine Sehne s = 30 m und die zugehirige Pfeilhohe p = 0,15 m mat den Fehlern
As =1cm und Ap = 1 mm gemessen. Berechnen Sie den Radius und dessen
relativen maximalen Fehler (Bild 55)!

43. Zur ,,optischen Messung** der Strecke s wurden unter Verwendung einer Hilfs-
basis s, die Winkel y; = 3°26'00” und y, = 5°43'10"” mit den Fehlern
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Ay, =Ay, =10" gemessen (Bild 56). Die als fehlerfrei anzunehmende
Basis b betrdgt 2 m. Berechnen Sie den prozentualen Fehler der Strecke s!

44. Welchen Anstieg besitet die vm Punkt P(O; g) an die Kurve

cosy—ysinz =0
angelegte Tangente?

s
e b
)
¢
[
s
Bild 55 Bild 56

45. Berechnen Sie die 1. Ableitungen der impliziten Funktionen

a) ;I;V1+y+y]/1+x+c=0,

b) zY = y<,

¢) arcsin (zy?) + Y1 —a2y* + ¢ =0,

d) (2 + y?) (x — 2a) + a®x =0 (Strophoide),

e) ot + y“} —at=0 (Astroide)!

12.4 Maxima und Minima von Funktionen mehrerer unabhéingiger
Verinderlicher

Die Thnen aus Kapitel 4 bekannte Bestimmung von Extremwerten wollen wir
nun auf Funktionen von mehreren Verdnderlichen iibertragen. Auch hierzu gibt
es viele Anwendungen. Zum Beispiel fiihren die meisten Aufgaben der Ausglei-
chungsrechnung nach der Methode der kleinsten Quadrate auf die Bestimmung
des Minimums einer Funktion von mehreren Verdnderlichen.

Zunichst beschrianken wir uns wieder auf zwei Verdnderliche, um die erforder-
lichen Formeln anschaulich aus dem Bild zu entwickeln.

Wir betrachten in Bild 57 eine annihernd halbkugelférmige Fldche, die durch
die Funktion z = f(z, y) dargestellt wird. Auf ihr gibt es einen Punkt E, der
hoher liegt als jeder Punkt seiner Umgebung. Die Funktion z = f(z, y) nimmt
also in diesem Punkt den maximalen Wert zg an. Man sagt, sie besitzt fiir x = zg
und y = yg ein (relatives) Maximum. Entsprechend besitzt eine Funktion in einem
Punkte E ein (relatives) Minimum, wenn dieser Punkt tiefer liegt als jeder Punkt
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seiner Umgebung (Bild 58). Maximum und Minimum entsprechen dem Gipfel-
bzw. Muldenpunkt einer Geldndefldche.

Aus den Bildern 57 und 58 ersehen Sie sofort, daB eine Fliche im Maximum bzw.
Minimum eine waagerechte Tangentialebene besitzt. Jede in der Fliche liegende
und durch E gehende Kurve hat ebenfalls in diesem Punkte ein Maximum bzw.

zaftxy)

-

Ve -~
7 e ¥e;0)

X b txe; Ye; 0
Bild 57 Bild 58

Minimum und somit eine waagerechte Tangente. Legt man durch E zwei Ebenen
parallel zur zz- bzw. yz-Ebene, so entstehen zwei Schnittkurven K; und K,,
deren Tangenten in E waagerecht verlaufen. Die partiellen Ableitungen sind also
im Punkt E gleich Null. Sie erhalten deshalb als notwendige Bedingung fiir das
Vorhandensein eines Maximums oder Minimums:

f(z,9) _ . of (z ) __
e 0 Ty =0
in kiirzerer Schreibweise
fz =0; y = 0.

Diese beiden Formeln liefern zwei Gleichungen zur Berechnung der unbekannten
Koordinaten zg und yg der Extremstelle. Thre Bestimmung ist eindeutig, da
stets die Zahl der Gleichungen gleich der Zahl der Unbekannten ist.

Lehrbeispiel 55
Berechnen Ste die Extremwerte der Funktion
e=fz,y)=2>+2y+y>+3x+2y+4/
Losung:
Sie bilden die partiellen Ableitungen und setzen diese gleich Null:
fa=2z+y+3=0,
fv=2+2y+4+2=0.



Aus diesen beiden Gleichungen ergeben sich die Koordinaten det Extremstelle zu
4
= — 5 und yE=—%-

und damit der extremale Funktionswert zu

Vorldufig wissen Sie nur, da die untersuchte Fldche im Punkte £ ((— % ;— ;}- ; %)
einc waagerechte Tangentialebene besitzt. \

z

z2=ftx,y

Bild 59

Sie konnen aber noch nicht entscheiden, ¢b ein Maximum oder ein Minimum
vorliegt. Es kann sogar der Fall eintreten, daB trotz waagerechter Tangentialebene
der Flichenpunkt weder ein Maximum noch ein Minimum darstellt. So ist der
in Bild 59 gezeigte Punkt J einer Sattelfliche zwar das Maximum der Kurve K,,
aber zugleich auch das Minimum der Kurve K,. Obwohl also die Tangenten an
beiden Kurven waagerecht und damit die partiellen Ableitungen gleich Null sind,
ist kein Extremwert der Fldche vorhanden. Man nennt einen solchen Punkt einen
Sattel- oder Jochpunkt.

Hieraus folgt:

‘Fiir jeden Extremwert miissen die partiellen Ableitungen Null sein. Jedoch kann
man nicht aus dem Verschwinden der partiellen Ableitungen auf die Existenz
eines Extremwertes schlieBen. Die Bedingungen f; = 0, fy = 0 sind zwar not-
wendig, aber nicht hinreichend.

Wie bei den Funktionen von einer Variablen muf man also noch zusétzliche Be-
dingungen aufstellen. Dabei verwendet man wieder die zweiten Ableitungen.
Ohne Beweis geben wir die folgenden notwendigen und hinreichenden Bedingun-
gen fiir.das Vorhandensein eines Extremwertes und fiir die Unlerscheidung in
Mazimum und Minimum an:
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Fiir Maximum fz =0; fy =0
und Minimum: fox fyy — T2 > 0. (46)
Fiir Maximum:  fz; < 0, fyy < 0
Fiir Minimum: fzz > 0, fyy > 0

Fiir unser Lehrbeispiel erhalten Sie:

f:vx =2, fyy =2, fxy =1,
fex fyy— 1y =2-2—1=3> 0.
Es ist also ein Extremwert vorhanden.
Wegen
foz=2>0 und fyy =2>0
besitzt die Funktion im Punkte E ein Minimum.

Lehrbeispiel 56
In einem rechtwinkligen ebenen Koordinalensystem sind die drev Punkte A(Za, Ya),
B(s, y») und C(., y.) durch ihre Koordinaten gegeben. Ein Punkt M (z, y) vst
80 zu bestimmen, daf3 die Summe der Quadrate seiner Abstinde von den drei Punkten
ein Minimum wird!
Losung:
Diese Aufgabe stellt praktisch eine Ausgleichung nach der Methode der kleinsten
Quadrate dar. Sind ndmlich zur Bestimmung der Koordinaten eines Punktes
z. B. drei Messungen durchgefiihrt worden,
dann werden die aus der Messungsauswertung y
sich ergebenden Punkte nicht zusammen-
fallen, sondern infolge der unvermeidlichen
MeBfehler ein ,,fehlerzeigendes Dreieck‘ bil-
den. Der durch die obige Forderung definierte
Punkt M ist dann der Punkt, der sich wahr-
scheinlich allen Messungen am besten anpaBt. \ A
Mit den Bezeichnungen des Bildes 60 lautet _J[
die gestellte Bedingung: Bild 60
f=u?+0®
soll den kleinstmoglichen Wert annehmen.
Fiir die Abstinde u, v und w ergibt sich aus den Koordinaten
WP = (2 — a)® + (Y — ¥a)"
= (2 — o) + (y— )
= (z— 2 + (Y — ¥
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Diese Werte setzen Sie ein und erhalten eine Funktion von z und y:

12, 9) = (2 — 2)* + (Y —¥o)* +(2—20)* + (Y — 9)* + (¢ — @)* + (y— o)™
Zur Bestimmung des Minimums bilden Sie die partiellen Ableitungen und setzen
sie gleich Null:

o =2(x — z2) + 2(z — x) + 2(z — ;) = 0,
fo=2(y—ya) +2(y—m) +2(y—y) =0.
Aus den Gleichungen folgt
x_—_x.—a-i_aa:b—l-—mc’ y=y0+gb+._y_¢.

Der gesuchte Punkt M ist also der Schwerpunkt des Dreiecks A BC. Nun bilden
Sie noch die Ausdriicke

fir=2+2+2=6>0, fy =2+2+2=6>0,

fxy =0, fm‘fyy—‘ﬁy =36> 0.
Nach den in (46) gegebenen Bedingungen ist also tatsdchlich ein Minimum vor-
handen.

Lehrbeispiel 57
Es sind die Extremwerte der Funktion
%y 1 _ 1
f (xi ?I) - ~7 + z y
zu bestimmen.
Losung:
Man erhalt
Y 1 _ =z 1
fe=gi—a W=zt
Aus fz = 0 und fy = 0 ergibt sich
g = — 3, YE = 3.
Fiir die hoheren ‘Ableitungen folgt

foo = %’ foy = — ;& foy = %
Hier setzen Sie die errechneten Werte von zz und yg ein und erhalten
fu=—%< 0, fy,,=—237< 0.
AuBerdem gilt _ ‘
faz + toy — iy = (— 227)(— 527) — 2—% = —2%-2 > 0.
Die Funktion besitzt also fiir 2g = — 3 und yg = 3 ein Maximum.
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Die Bestimmung der Extremwerte 148t sich auch auf Funktionen von beliebig
vielen Variablen iibertragen. Ist z. B. die Funktion

y=f(x1, Ly« o sxn)

von 7 unabhingigen Verdnderlichen gegeben, dann bildet man die n partiellen
Differentialquotienten und setzt sie einzeln gleich Null:

of _o. 2f _ . .ot _

571-—0, a—w;—-o,-..,azn—o.
Aus den n Gleichungen lassen sich dann die Koordinaten z,, z,, ..., @, der
Extremstelle berechnen. Auf die entsprechenden hinreichenden Bedingungen
kann hier nicht eingegangen werden.

Lehrbeispiel 58

Die Orte A und B sollen durch eine Telegraphenleitung derart verbunden werden,
daf die Leitung uber zwet Erdkabelkisten C und D gefiihrt wird, die an den beiden
Hauptleitungen x und y liegen. Die Leitungen z und y verlaufen rechtwinklig
zueinander (Bild 61). Wie sind die beiden Punkte C und D zu wihlen, damit die
Linge der Leitung L = BC 4 CD + DA ein Minimum wird?

E3
Bild 61
Losung:

L=BC+CD+DA=Y(@—axP+ 92 + V2> + 9 + V(¥ — 9)* + 2

__—(@m—2) g _ (—w)la® + ¢ + zV(m—2)® + ys?
R R N Viwo — o + yot V2 + o

Y Y=y _yVga— 9P+ e+ (y—ya) Vo + 9
YRy VWa— R + 2 V(Yo — 9 + @122 + 4

Die notwendige Bedingung fiir das Vorhandensein von Extremwerten lautet:
L,=0 und Ly =0,



d. h. (es werden nur die Zahler der beiden Ausdriicke gleich Null gesetat):

(@— ) Va2 + 42 + 2 J (1 — 2)2 + 2 = 0, (a)
YVYa— 9® + 22 + (y— ya) V22 + 12 = 0. (b)
Aus (a) folgt 2[(20 — 2 + 9°] = (1 — 2)*(a® + 9?).
‘v2 yb2 — y? (xb_ x)z
_ aryy?
Y= (zp — 2)2°
.. . . . . ybz_
Fiir y ergibt sich somit y = T
In gleicher Weise erhalten Sie aus Gleichung (b) z = fyz"Tyy-
Diesen Ausdruck setzen Sie in y ein und erhalten
_ TbYa— Talp
BT wmtam
Fiir z folgt -
— ToYa— ZaYp
ff _Z’. _‘_?ég':‘-":.-;y:b.z—_—..
Fiir die 2. partiellen Ableitungen erhalten Sie
Lzz = o= L ¥ = y_bs lz ’
V(e — 2 + yo* + V@ + ¢ M + N ©
g2 x2 - 42 22
A R e A A A @

L —
Lzy - l’;?'_-l:_?)zs - N,’
wobei zur Abkiirzung die stets positiven Nenner mit N,, N, bzw. N, bezeichnet
wurden. Damit bilden Sie nach- (46)
oy
¥)

bt 1= 4 )+ 5)-

. ybz waZ ybﬁ z? xaz y2
= NN, " NN, T NN,

Ohne hier erst die speziellen Werte fiir g und yg einzusetzen. sehen Sie bereits,
daB dieser Ausdruck stets positiv sein muB, d. h., die hinreichende Bedingung
fiir das Vorhandensein eines Extremwertes ist erfiillt. Da auch

sz > 0, Lyy > 0
fiir jedes z und y ist, liegt ein Minimum vor.
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Ubungen

46. Berechnen Sie die Exiremwerte der Funktionen
a) f(z,9) =a* + ¥ —4z—6y +7,
b) f(z,y) =5(z + 2y — 1) — (2* + zy — ¥/
47. Fiir {(z, y) =sinz +sin y + sin (z + y) sind die im Bereich 0 < 2 < »721,

0sy= -’23 liegenden Extremwerte zu berechnen!

48. Das Volumen eines Quaders sev V. Wie grof miissen die Kanten sein, damit
die Oberfliche ein Minimum wird?

12.5 Maxima und Minima mit Nebenbedingungen

Bei einigen Aufgaben der Extremwertbestimmung ergibt sich der Sonderfall,
daB die Variablen nicht unabhiingig voneinander sind, sondern durch eine oder
mehrere Nebenbedingungen miteinander verkniipft werden.

Fiir eine Funktion von drei Variablen z. B. konnten wir die Aufgabe in folgende
allgemeine Form bringen:

Es sind die Extremwerte der Funktion u = f(z, y, 2) zu bestimmen, wobei die
Variablen z, y und z die Nebenbedingung ¢(z, y, 2) = 0 erfiillen miissen.
Diese Aufgabe 148t sich nun auf zwei verschiedene Arten losen. Man kann sie
sofort auf die im vorigen Abschnitt beschriebene Extremwertbestimmung zuriick-
tithren, indem man aus der Bedingungsgleichung ¢(z, ¥, 2) = 0 eine Variable
ausrechnet und in die Funktion u = f(z, y, 2) einsetzt. Man erhilt dann eine
Funktion von zwei Variablen und bestimmt nach (46) ihre Extremwerte.

Lehrbeispiel 59
In einem Dreieck wurden die drei Winkel o, p° und y’ gemessen. Infolge der un-
vermetdlichen Meffehler betrigt die Winkelsumme nicht genau 180°, sondern es
ergibt sich eine Abweichung 6. Es ist also

o + B 4y —180° = 4.
Die gemessenen Winkel ', f', v’ sollen nun um die Werte x, y, 2 so verbessert werden,
daf3 die Summe der ausgeglichenen Winkel

a=a + z, B=8+y, y=7+z

genaw 180° betrigt und zugleich die Summe der Quadrate der Verbesserungen ein
Minimum wird.
Losung:
Fiir diec Funktion finden Sie

F(z,y,2) =a?+ y? + 22 (a)
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Um den Fehler zu beseitigen, muB die Summe der Verbesserungen gleich dem im
Vorzeichen entgegengesetzten Wert von 6 werden, also

r+y+z=—3¢
d. h., es besteht die Nebenbedingung
oz, y,2)=x+y+2+06=0. (b)

Aus (b) errechnen Sie eine Unbekannte, z. B. z, mit
2=—z—y—90
und setzen den Wert in (a) ein. Sie erhalten eine Funktion zweier Verdnderlicher:
Fla,y) =2+ ¢ +(—2—y—9)>
Fp=20—2(—2—y—0),
Fy=2y—2(—z—y—9J).
Aus Fy =0, Fy = 0 ergibt sich:

Es ist

2¢ + y=—39,
z+2y=—9
und schlieBlich
8 8 8
t=—z, Y=—z, 2=—3.

Der Winkeliiberschuf} § ist also unabhiingig von der GroBe der einzelnen Winkel
gleichmiBig zu verteilen.
Nach (46) bilden Sie noch
Fee =4> 0, Fyy =4> 0, Fgy =2,

Fog - Fyy—F;y=16—4=12> 0
und haben damit die Existenz eines Minimums bewiesen.
Es kann eintreten, daB sich die Nebenbedingung ¢(z, y) =0 nicht nach x
oder y auflosen 14B8t, oder daB die Auflssung besonders umsténdlich ist. Wir be-
sprechen deshalb im folgenden noch ein weiteres Verfahren der Extremwert-
bestimmung bei Vorhandensein von Nebenbedingungen.
Wir werden das Verfahren nur anschaulich aus dem geometrischen Bild der
Funktion entwickeln und uns deshalb zundchst auf zwei unabhédngige Variable
beschrianken. Es sollen also die Extremwerte der Funktion

z=[(z,9)
unter Beachtung der Nebenbedingung
p(z,y) =0

bestimmt werden.

Die Funktion z = f(z, y) stellt bekanntlich eine Fldche im Raum dar (Bild 62),
wihrend Sie die Nebenbedingung ¢(z, y) = 0 als die unentwickelte (implizite)
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Form einer Funktion von einer Veranderlichen auffassen kénnen. Diese besitzt
aber als Schaubild eine Kurve K’ in der zy-Ebene.

Betrachten Sie einen Flichenpunkt P(z, y,2), dessen GrundriBprojektion P’
auf der Kurve K’ liegt, dann erfiillen dessen Koordinaten z und y die Neben-
bedingung ¢(z, y) = 0. Umgekehrt liegen alle Punkte der Fliche, deren Ko-

Bild 62

ordinaten die Nebenbedingung ¢(z, y) = 0 befriedigen, auf einer in der Fliche
gelegenen Raumkurve K, die die Kurve K’ als Grundrifprojektion besitzt. Die
Aufgabe, das Maximum oder Minimum der Funktion z = f(z, y) unter Beachtung
der Nebenbedingung zu berechnen, bedeutet also geometrisch, das Maximum bzw.
Minimum der Raumkurve zu ermitteln.

Setzt man in z = f(z, y) fiir 2z einen konstanten Wert ¢ ein, so wihlt man damit
aus der Fliche alle diejenigen Punkte heraus, die die Hohe ¢ iiber dem Grundrifl
besitzen. Die Gleichung ¢ = f(z, y) bzw. f(z, y) — ¢ = 0 stellt also die Gleichung
einer Hohenlinie von der Hohe ¢ dar. (In Bild 62 wurden einige Hohenlinien mit
ihren GrundriBprojektionen eingezeichnet.) Wie Sie aus Bild 62 erkennen, gibt es
eine Hohenlinie, die von der Raumkurve K nicht geschnitten, sondern beriihrt
wird. Der Beriihrungspunkt E ist aber zugleich der gesuchte Extremwert der
Raumkurve (fiir unser Bild das Maximum). Die GrundriBprojektion E’ ist der
Beriihrungspunkt zwischen der Kurve K’ und der Projektion der Hohenlinie
f(z, y)y — ¢ = 0. Wegen der Beriihrung haben beide Kurven in E’ dieselbe Tan-
gente und damit auch die gleichen Ableitungen. Nach Formel (44) erhalten Sie
fiir den Differentialquotienten der in impliziter Form gegebenen Funktion

@(z, y) = 0:
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’ (73

y =—
Py
und fiir die Funktion f(z, y) —c =0
R
y - fy’

da ¢ als Konstante beim Differenzieren wegfallt.
Beide Differentialquotienten miissen gleich sein, also:

B
Py fy*
Aus — %’: = —;—: folgt, daB die Zahler bzw. die Nenner jeweils proportional
sein miissen:
fz ~ @z, fy ~ @y.
Wird der gemeinsame Proportionalitdtsfaktor mit — 24 bezeichnet, so ist
fo = — Ags, fy =— gy
oder fz + Agz =0, fy + Agy =0.

Die letzten beiden Gleichungen sind aber nichts anderes als die notwendigen
Bedingungen fiir das Eintreten eines Maximums oder Minimums der Funktion

F(z,y) =f(z,9) + 1- 9(z, ).
Man nennt 1 einen Lagrangeschen! Multiplikator.
Durch Zusammenfassung dieser Ergebnisse erhalten wir folgende Lagrangesche
Multiplikatorenregel fiir zwei Variable:
Um die Extremwerte der Funktion z = f(x, y) bei Beriicksichtigung der
Nebenbedingung ¢(z, y) = 0 zu bestimmen, setzt man unter Verwendung
eines unbekannten Multiplikators 4 die Funktion
Fz,y) =1z, 9) + 2- (2, y)
an. Bildet man ihre partiellen Ableitungen und setzt diese gleich Null,
dann kann man aus den beiden Gleichungen
Fy=fzs+ Apz =0,
Fy=fy+ipy =0
in Verbindung mit der Nebenbedingung
p(z,y) =0
die Koordinaten zz und yg des Extremwertes und den Multiplikator 2
berechnen.
Allgemeine Formeln fiir die Untersuchung, ob ein Maximum oder ein Minimum
vorliegt, konnenr hier nicht angegeben werden. Es muB8 fiir jede Aufgabe gesondert
entschieden werden.

1 Lagrange, 1736 bis 1813, frz. Mathematiker.
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Lehrbeispiel 60

Gesucht werden die Extremwerte der Funktion f(x, y) = x* + y?, wober zwischen
den Variablen die Nebenbedingung @(z,y) = x + y— 1 = 0 besteht.

Losung:
Man bildet die Funktion
Fla,y) =2+ 9"+ Uz +y—1)
und erhilt fiir ihre partiellen Ableitungen
=2+ 1 =0,

Fy=2y+1=0.
Daraus folgt
r=y

und damit aus der Nebenbedingung

. 1
LE =YE = 5 -

Bild 63

Fiir den Funktionswert an dieser Stelle ergibt sich

11 1
(5 2) =+
Bild 63 veranschaulicht das Ergebnis. Die Funktion z = 22 4 y? stellt ein Para-
boloid dar. Die Nebenbedingung z + y — 1 = 0 ergibt als Kurve K’ eine Gerade

in der zy-Ebene. Alle Punkte des Paraboloids, deren  y-Koordinaten die Neben-
bedingung erfiillen, liegen auf der Parabel K, die als Schnittkurve zwischen dem
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Paraboloid und der durch K’ gehenden Vertikalebene entsteht. Der von uns
berechnete Punkt £ (—i—; %; %), also der Extremwert von f(z, y) unter Beachtung
der Nebenbedingung ¢(z, y) = 0, stellt dann das Minimum der Kurve dar.
Lehrbeispiel 61
Fiir die Funktion f(z, y) = zy sind die Extremwerte unler Beachtung der Neben-
bedingung (z, y) = 2® + y2—1 =0 zu berechnen!
Losung:
Man bildet die Funktion

F(z,y) =2y + 2(a* + y>—1)

und erhilt
Feo=y+ 21z, Fy=uz+21y.
Zusammen mit der Nebenbedingung ergeben sich die drei Gleichungen
2iz+ y=0,
z 424y =0,
2+ =1

Aus der 1. Gleichung 7 ausgerechnet und in die 2. Gleichung eingesetzt ergibt
22 = y2 Damit folgt aus der 3. Gleichung

1 . 1 5
xE=:|:§V-§ yE=:l:§l/2'
Die Funktion besitzt also die vier Extremstellen
1 5. 1 5. 15, 1.5, R
1. _1yg
(7 V2 —5 ¥ 2)-
Setzt man die Werte in die Funktion f(x, y) = xzy ein, dann ergibt sich fiir die

ersten beiden Extremstellen mit f(zg,, yg,) = % ein Maximum und fiir die

letzten beiden mit f(zgq, Yrs) = — < ein Minimum.

Lehrbeispiel 62

Aus vier gegebenen Strecken der Ldnge a, b,
¢, d soll ein Viereck mit maximaler Fliche J
gebildet werden. Wie sind die Winkel des
Vierecks zu wihlen?

Losung:

Bezeichnet man den Winkel zwischen a und
d mit z und den Gegenwinkel mit y (Bild 64),
dann ergibt sich fiir die Fldche

1 . 1 .
Bild 64 J=~—2—adsmx+?bcsmy
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oder, da mit J auch 2J zu einem Maximum wird
flz,y) =2J =adsin z 4 besin y.
Die Nebenbedingung ergibt sich aus der Tatsache, da man die Diagonale BD
aus den beiden Dreiecken DBC und ABD berechnen kann:
BD? = a® + d®—2ad cos x = b% + ¢ — 2bc cos
oder oz, y) = a® + d*—2ad cos x — b2 — ¢ 4 2bccos y = 0.
Daraus ergibt sich die Funktion '
F(z,y) =adsinz 4 besiny + A(a® + d*> — 2ad cos x — b2 —¢2 + 2bc cos y).
Thre partiellen Ableitungen werden Null gesetzt:
z = adcos z + 24adsin z =0,
Fy=bccosy—22ibec siny =0.
Daraus folgt cos £ = — 21 sin z,
. cosy = 24siny.
Durch Division beider Gleichungen wird der Multiplikator 1 eliminiert:

cos T sin

cos y siny*

Sie erhalten dann

sin y cos ¢ + cos ysinz =0
oder sin (y + z) = 0.
Von den beiden Losungen y + 2 =0 und y 4+ 2 =& hat nur die zweite geo-
metrisch einen Sinn. Da auch die Suinme der beiden iibrigen Viereckswinkel z
und w gleich & sein muB, handelt es sich um ein Sehnenviereck, d. h., die Eck-
punkte des Vierecks mit maximalem Flicheninhalt liegen auf einem Kreis.
Die Lagrangesche Multiplikatorenregel 1d8t sich auch auf Funktionen von
mehreren Variablen und ebenso auf das Vorhandensein von mehreren Neben-
bedingungen iibertragen. Man erhdlt dann die verallgemeinerte Lagrange-
sche Multiplikatorenregel:

Gegeben ist die Funktion
Y =1(2y Ty - . ., Tn)
von n Verdnderlichen, die durch m Nebenbedingungen
Q1(Zqs Tgs o o -y Zn) =0,
(,‘02.(1}1, Loy o ooy Tp) = Q,

Om(Lyy Tgy o o -, Tn) =0,

miteinander verbunden sind. Um die Extremwerte der Funktion zu be-
stimmen, bildet man unter Einfithrung von m Multiplikatoren 1,, 4,, . . .,
An die Funktion

F=f+2og + 2+ + Inon
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Die partiellen Ableitungen dieser Funktion setzt man gleich Null und kann
aus den so sich ergebenden n Gleichungen
oF . oF .. A E _
E1=0’ %; N ceey azn—O
in Verbindung mit den m - Bedingungsgleichungen die Koordinaten i,
Zgy ..., &y, der Extremstelle und die Multiplikatoren 4, 45, ..., in

berechnen.

Lehrbeispiel 63
In dem Nivellementsnelz des Bildes 65 wurden die Hohen der einzelnen Zige 1, 2
und 3 in Pfeilrichtung gemessen und ergaben die Werlte hy, hy und hg. Die Wider-
spriiche in den Schleifen I und II seien w, und w,, d.h.
1 hy +hy =w;, und —hy+ hy = w,.
Die Hohen hy, hy, hy sollen mit Verbesserungen x,, x,, &4
versehen werden und es seien
Hy=h+a, Hy=hy+a, Hy=h3+u
die verbesserten Hohen. Die Verbesserungen sollen nun so ge-

o

3 wdhlt werden, daf die Summe der ausgeglichenen Hohen in
Bild 65 jeder Schleife gleich Null wird, also !
H, +H, =0; —H, + H; =0,
und daff zugleich die Summe der Quadrate der Verbesserungen ein Mintmum wird.

Losung:
Sie erhalten mit obigen Bezeichnungen
[(@y gy T3) = 3% + 75% 4 252,
91Ty gy Tg) = 27 + 2, + wy; =0,
®a(Zq, Ly, Ty) = — Ty + 3 + w, = 0.
Sie bilden
F=x24 2 + 2 + (2 + 2 + w0y) 4 Ag(— 2 + 753 + wy)

und erhalten
oF

6';; =2x1+11=0,

oF

b, =27+ h— L =0,
oF

5;;:2:1"34-12:0

Aus diesen drei Gleichungen und den zwei Nebenbedingungen ¢, und ¢, ergeben
sich nach Elimination von 4, und 1, fiir die Verbesserungen die Werte

— 2w, —w, w? — wy — 2w, — w,
g = g TE= g WET T

’

Zur Kontrolle setzt man diese Werte in die Nebenbedingungen ein.
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Lehrbeispiel 641

Der Spannungsverlust am Ende einer unverzweigien elektrischen Leitung, die aus
dret Teilstrecken von den Ldngen 1y, I, und b, besteht, betrdgt U,. Die Stromstirken
der einzelnen Teilstrecken sind 1y, 1, und i5, der spezifische Leitungswiderstand ist o.
Wie grof3 sind die Querschnitle der einzelnen Leitungen zu wihlen, wenn die ver-
wendete Materialmenge e?ln‘ Minimum werden soll? )

Losung:
Wenn die zu verwendende Materialmenge ein Minimum werden soll, mu das
Volumen des Leitungsmaterials ein Minimum werden. Das Volumen betriagt

V= f(Qn Qza Qa) = llQl + lez + lsQa,
wobei @ der Querschnitt ist.

Fiir den Spannungsverlust gilt

R )

Die Nebenbedingung lautet also:

Iy,

ll ‘1
(p(Ql’ QZ’ Qs) ( v + Q + léia) ) =
Nach der Lagrangeschen Multiplikatorenregel (fiir drei Variable) folgt
F(Qu€2Q) =V + 19 = 116 + 120y + 1365 + 7 [9 (lé_h + 5 l”* + Z;a) UvJ.
1 3

Sie erhalten

OF . _delhis  OF _, deliy  OF _; _ Johi

I .’ AN Q:* Q, [
Diese drei Gleichungen setzen Sie gleich Null. Es folgt

zl—’l"Q—’ll-“ =0, 12—%’2&2 — 0, zs—"—@Qi!@ =0
und damit
Q. = 101y, Q. = Aoty Qs = ot

Aus diesen letzten drei Gleichungen und der Nebenbedingung kinnen Sie die
GroBen 4, @, @, und @, bestimmen.
Sie eliminieren zundchst A:

Ql — ’Z Ql — ]?_1

Multiplizieren Sié U, auf beiden Seiten mit @, und setzen die eben bestimmten
Quotienten ein, dann erhalten :Sie

1 Nur fiir Studierende der Fachrichtung Elektrotechnik.
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U.Q, = 9(117;1 + lyty 1/:—: + 135 .l/ :_:) = 0 Vi, (1, Viy + L Vis + 13 Vis),
Ql = U% 1/7:(11 }/7;_1-4‘ lz ]/;;"‘ la V"_a_)

Ebenso folgt fiir die GroSen @, und Q;:

Q, = U%, Vig Gy Viy + Iy Vig + 15 Vi),

Q=g Vis (b Vi + 1o Via + s Vi),

Fir Vi ergibt sich

49.

50.

Vmin = %ﬂ (ll ]/7: + 12 ‘/7; + la 1/12)2'

Ubungen
Berechnen Sie die Extremwerte der folgenden Funktionen mit Nebenbedingungen !
a) f(z,y) =y p@y) =22+ y2—a2 =0

b) f(z,y,2) = 2% + 24% 4 322 oz, y,2)=2+2y+32—1=0
‘Pz(x, ?/,Z)=$+?/+3=0
Die Qleichung einer Ellipse, deren Mittelpunkt mit dem Koordinatenursprung
zusammenyfallt, lautet
1322 —10xy 4 13y> — 72 = 0.
Bestimmen Stie ihre Halbachsen a und b/
Anleitung : Ermitteln Sie die Extremwerte der Halbmesser der Ellipse!

51. Zur Berechnung der Hohe H des Punkies P wurden die Hiohenunterschiede
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hay, hy, h; gegen die bekannien Hohen H,y = 126,258 m, Hp = 144,051 m,
He = 160,790 m, der Punkie A, B, C gemessen. Man erhielt h, = 10,216 m,
hy = — 7,068 m, h, = — 24,323 m. Diese Hdihenunierschiede sind mit Ver-
besserungen x,, zp bew. x, so zu versehen, dafs
1. die Widerspriiche Wy =ho—hy— (Hg— Hy)

und W2 =ha—hc_(HC_HA)

verschwinden und
2. die Summe der Quadrate der Verbesserungen ein Mimimum wird.
Berechnen Sie mit den ausgeglichenen Hohenunterschieden die Hohe H!



V. Integrationsmethoden.
Weiterer Ausbau der Integralrechnung

In Kapitel 8 haben Sie weitere Funktionen und die dazugehorigen Differential-
quotienten kennengelernt. Denken Sie nun wieder an die anfiangliche Definition.
der Integralrechnung als Umkehrung der Differentialrechnung, so kénnen Sie
die Zusammenstellung der Grundintegrale! (Band 1, Abschnitt 6.2) jetzt erweitern:

/‘_da: ={arcsinx+01 lz|<1 (47)

T— —are cos z + C,
(_dz _ [arctanz 4 C, (48
v/l"“'”z | — are cot z + O, )
[ sinh z dz = cosh z + C (49)
[cosh zdz = sinh z + C (50)
dz
- d
/ - =tanhz + C (52)
f o dz 15T _ . _ -
‘/]Izz+1-ln(x—|—yw +1) 4+ C =arsinhz + C (53)
dz

1 =In(z+7Y22—1)+C=arcoshz +C z>1 (54)
J rat—
Bei den Grundintegralen (47) und (48) hat es den Anschein, als wiirden sich zwei
voneinander verschiedene Loésungen ergeben. Wie Sie aber aus Abschnitt 8.1
wissen, besteht die Beziehung

. T
arc sin & -+ arc ¢os r =

2
oder
. T
arc sin r = — arc ¢os r -+ 5 -
Es ist also
. T
arcsin z + C; = —arccos z +§ + C;.

1 Eine Zusammenstellung simtlicher Grundintegrale finden Sie in der dem Band 1 beigelegten
Formelsammlung.
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Das bedeutet, die beiden Ergebnisse unterscheiden sich nur um eine Konstante,

namlich um % es ist also O, = % + C,.

Analog ist bei Formel (48) zu verfahren, denn hier gilt

arc tan x -+ arc cot x = %
In (53) und (54) ist die Losung in der Form In [(f(x)] zu bevorzugen, da die Aus-
wertung bei bestimmten Integralen dann leicht mit der Logarithmentafel vor-
genommen werden kann.

13 Integrationsmethoden

Bisher haben Sie sich bei der Integration nur auf die Grundintegrale beschrinkt.
Da sich in der Praxis aber meist kompliziertere Integranden ergeben, sollen Sie in
diesem Kapitel lernen, wie diese schwierigeren Integrale auf die Grundintegrale
zuriickgefiihrt werden konnen. Immer gelingt das leider nicht, da bleibt dann
nichts anderes iibrig, als durch Nadherungsmethoden zur Losung zu kommen.

Lernen Sie keinesfalls die vielen Formen auswendig, sondern versuchen Sié, zu
einem tieferen Verstindnis der Methoden zu kommen. Legen Sie sich stets
Rechenschaft iiber den eingeschlagenen Weg ab und versuchen Sie nicht, durch
,,sinnloses Probieren‘ zum Ziel zu kommen. Beachten Sie das oberste Gebot fiir
die Beherrschung der Integralrechnung: Uben und nochmals iiben!

13.1 Einfiihrung einer neuen Veriinderlichen (Substitution)

Die Methode der Einfithrung einer neuen Ver#nderlichen entspricht der Ketten-
regel der Differentialrechnung. Die neue Verdnderliche ist dabei so zu wihlen,
daB das vorliegende Integral auf ein. einfacheres, wenn moglich auf ein Grund-
integral zuriickgefiihrt wird. Der hierbei zu beschreitende Weg richtet sich nach
der Form des Integranden.

13.11 Der Integrand ist die Funktion einer linearen Funktion. An einem
einfachen Beispiel soll dieses Verfahren besprochen werden. Zu losen sei das
Integral

/ cos 2z dz.

Stinde nicht der Faktor 2 im Argument der Kosinusfunktion, so wiirde das
Grundintegral (26) aus Band 1 vorliegen. Sie fithren deshalb wie bei der An-
wendung der Kettenregel der Differentialrechnung fiir 2 2 eine neue Veréinderliche u
ein:
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Damit nimmt der Integrand die Form cos % an. Die neue Integrationsveranderliche
heiBt jetzt u; es ist deshalb auch noch dz umzuwandeln. Durch Differentiation
von u = 2z erhalten Sie

du . 1
i = 2, du = 2dz, dx=--2— du.

Sie setzen u = 2z und % du = dz in das Integral ein:

/‘cos 2xdz = [cos u - —; du

1
——2—/cosudu

=%sinu+0.

Nach beendeter Integration fiihren Sie wieder die urspriingliche Verdnderliche x
ein.

[eos2xdx=—;—sin2x+0
Probe: =%sin2x+0
dy 1
iz 2.cos 22
=cos 2

Lehrbeispiel 65
Berechnen Sie das unbestimmie Integral / ;d_i !
Losung:

Vermutlich 148t sich dieses Integral auf Grundintegral (24) aus Band 1 zuriick-
fithren (allerdings mit der neuen Verdinderlichen ).

Sie setzen dazu

U =z —3.
. . du
Damit wird iz = 1, du =duz.
x
Mit der neuen Verinderlichen % bekommen Sie
dz_ fdu
Jams=]"
=1In|u| +C
=ln|e—3| +C.

Fiihren Sie die Probe selbst durch!
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Lehrbeispiel 66

Berechnen Sie '
[62 + 5) da!

Lésung:
Der Integrand ist hier die Potenz eines linearen Ausdrucks. Sie fiithren das Integral
auf Grundintegral [ ztdx zuriick, indem Sie den linearen Ausdruck gleich

setzen.
du 1

Mit 1 =6x -+ H, E:G, dx=?du,
wird /'(6x+5)sdx=%/u5du
S
— 55 (60 + 50 +C.

Gewohnen Sie sich daran, konstante Faktoren <w1e hler— sofort vor das Integralzeichen
zu setzen.

Lehrbeispiel 67 '
Berechnen Sie j Y2z + 3d=!

Lésung:
Sie versuchen auch hier, auf das Grundintegral f 2" dz zuriickzukommen. Sie
fiihren wieder fiir den linearen Ausdruck 2z 4 3 die neue Verédnderliche u ein:

du 1
ﬂ=2’ dx=§du.

/nyﬂdu = %[u’}du

=% +O=31w+C
7

=2z 4+ 3,
Damit wird

[12+3ds =

0| =

fuy

? -

- %. 1@z + 3)° +C

Die beiden letzten Lehrbeispiele konnen Sie in einer Formel verallgemeinern.
Der Integrand soll die n-te Potenz eines in 2 linearen Ausdrucks und » eine von —1
verschiedene reelle Zahl sein.
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f(az-}-b)"dw:%fu”du w=az+b

un+1
n+1

1
T a

+C z=20a dx =

1
=amen @@ OO

Im Fall n = — 1 haben Sie mit derselben Substitution
dez 1 (du
Jaz+d r3 f u
= --i— Inju| +C

=%ln|aw+b| + C.

Ist der Integrand eine trigonometrische oder hyperbolische Funktion eines linearen
Ausdrueks:
f(z) =sin (azx + b), f(x) =cos (az+b),...
f(z) = sinh (az + b), f(x) = cosh (az + b),. ..
so fithren Sie ebenfalls % in der Form 4 = ax + b ein.
Wie sieht die Substitutionsmethode nun formelmiBig aus?

Das Integral f f[¢(x)] dz soll berechnet werden, indem eine neue Verdnderliche
u = @(z) eingefiihrt wird.

Die Funktion 4 = ¢(x) muB dabei eindeutig in die Funktion = y(«) umkehrbar
und differenzierbar sein. Durch Differentiation erhalten Sie

d , ’
a.% = ' (u), dz =y’ (u) du.
Setzen Sie dies in das zu losende Integral ein, dann bekommen Sie als Formel

fiir die Substitutionsmethode:

[flp(@] da = [f(u) v (u) du (85)

Nachdem Sie die Integration des rechts stehenden Integrals durchgefiihrt haben,
fithren Sie durch u = @(xz) wieder die urspriingliche Verdnderliche z ein.

Oft muB der Integrand vor der Substitution umgeformt werden, wie die folgenden
Beispiele zeigen.

1. Beisprel:
Das Integral

#zxz stellt eine Verallgemeinerung des Grundintegrals (48)
dar. Wie Sie erkennen, unterscheiden sich beide Integrale nur in der im Nenner
auftretenden Konstanten. Sie haben nun einen Weg zu suchen, der das zu lgsende
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Integral auf das Grundintegral zuriickfiihrt. Dazu miissen Sie zunichst darauf
bedacht sein, die schon erwihnte Konstante auf den Wert 1 zuriickzufuhren
Sie erreichen das leicht, indem Sie a2 im Nenner ausklammern und den Faktor =
vor das Integralzeichen setzen:

dz__lf dz
| a®+ a2 a? z\2°
1+(7)

Fiihren Sie nun noch die Substitution u = —‘:— ein, so erhalten Sie

dz _lf dz u_a:
a® + 22 a? z\2 T e’
: 1+ (3)

g—:-—-%, dz = a-du
a du
a? / 14+ u?
1 1
= _arctanu + C; (= — arccot u + 02)
dz 1 1
Foia g e tan-—+ C1 (= - are cot—-l- Cz)
2. Beispuel:
Vollkommen analog kénnen Sie bei der Losung des Integrals '—?d_f—_a vor-
: J a2 — 2

gehen. Es ist

/_d_"f'=l dz u=3, dz=a-du
e+ e a

V-

— 8 [_du
@) Vl—u
=arcsinu + O (= —arccos u + Cy),
" dzx .z T
/Vm—-@rcsmg-i-ﬁ <—_M009§ziff)'

Zur Losung bestimmier Integrale konnen zwei Wege beschritten werden, die sich
jedoch in ihrem Kern nicht voneinander unterscheiden.

1. Weg:

Sie lasen das vorliegende bestimmte Integral zunéchst als unbestimmtes Integral,
lassen also vorerst die Integrationsgrenzen auBer Betracht. Erst nachdem Sie
wieder die urspriingliche Verdnderliche eingesetzt haben, filhren Sie die Grenzen
ein.
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Lehrbeispiel 68
Berechnen Sie

z
6

fcos 3z dz!
0

Lésung:
Berechnen des unbestimmten Integrals: Substitution:
/cos3mdw—%[eosudu u=3x
1 du _ 1
Fsmu d_:i'_g dx—3du
= l sin 3z

Die Integrationskonstante wurde fortgelassen, da sie bei der Berechnung des bestimmten
Integrals ohnehin fortfillt. Auch spaterhin wird in dhnlichen Fillen hiufig ebenso verfahren.

Ubergang zum bestimmten Integral:

T

o |
/cos?wdx —3— ‘

0 0

1
=3 (sm = — sin 0)

T

6
/ cos 3z dr =
0
Veranschaulichen Sie sich. das Ergebnis, indem Sie die Kurven y = cos 2 und
y = cos 3z zeichnen und die Flicheninhalte unter den Kurven vergleichen.

2. Weg:
Die urspriinglichen Grenzen geben an, zwischen welchen Werten sich die ur-
spriingliche Integrationsverénderliche bewegen soll. Fiihren Sie nun eine neue

Verinderliche ein, so miissen Sie entsprechend der Substitution die Grenzen
umrechnen.

Betrachten Sie dazu das vorhergehende Lehrbeispiel 68! Die Grenzen besagten

hier, daB x von O bis % laufen soll. Setzen Sie nun % = 3z, so muB die neue Ver-

o3|

!
li

dnderliche % von 0 bis % laufen. Diese Werte erhalten Sie, wenn Sie in die Sub-

. . . 4 .
stitutionsformel nacheinander z =0 und z = T einsetzen.

117



cos 3z dx

oe
\a’lﬂ

1
3‘ cos % du

(=1
Ty

k]

sy

sin %

3
0

[y

=3 (sm ~ —sin 0)

6
[cos 3z dz = %
‘0-' L

s

Substitution:

% =3z
.du 1
H=3 dz=§du

Umrechnung der Grenzen:
untere Grenze z =0 ergibt

u=3.-0=0

obere Grenze =z = ﬁ ergibt
TT 44
=3 %=3

Sie sehen, daB beim zweiten Weg das Zuriickgehen auf die urspriingliche Ver-
dnderliche fortfillt. Das getrennte Umrechnen der Grenzen ist lediglich eine Vor-
wegnahme der reinen Rechenoperationen, die Sie beim ersten Weg bei der Ein-
tithrung der alten Grenzen, d.h. bei der Berechnung von F(b) und F(a) auch

durchfithren muBten.

Lehrbeispiel 69

Lisen Sie das Integral f @Qz 4+ 1p3da!
Lésung: 1

3
[@e +1)® da
i

untere Grenze z =1
obere Grenze

§fu3du
3

oo|g
E.-.
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Substitution:

u=2x+1
du 1
== 2 dz = 5 du

Umrechnung der Grenzen:
u=2-141=3

x=3 u=2-34+1=7

2320



Oft kann der Integrand mit Hilfe goniometrischer Beziehungen so umgeformt
werden, daB sich die Substitutionsmethode anwenden 148t. Das ist z. B. bei den

sehr wichtigen Integralen f cos? z dz und /rsin2 z dz moglich.

[ cos? xdx

Aus der Goniometrie kennen Sie die Umrechnungsformel
cos z = % (1 4 cos 2z).

Damit wird

[cosz zdz = % [(1 + cos 2z) dz
= ; ( / dz + [ cos 2 acdx> Im 2. Integral substituieren Sie:
=;([da:+ [cosudu) w =2z,
=;_(x+_smu)+o J—2  de=]du
= ; (x +—sm2x)+0

/cos2 zdx = ? (xz + sin z cos z) + C.

/'sin2 xdx

Hier kionnen Sie analog verfahren. Bedenken Sie aber, da8 sin? x = 1 — cos?
ist, so konnen Sie die Losung auf das vorhergehende Integral zuriickfiihren.

‘/-sinz zdz =f(1 —cos?x)dx
=fdx—./ﬂ_coszxd:c

=x—-§«(z+sinxcosx)+€

[sin%dac:izl (x —sin z cos z) + C

[sin mxsinnxdx
Sie sollen jeizt uwch das Integral
jsin mx sin nx dz

kennenlernen. Hierin seien m und n ganzzahlige, positive Werte. Auch hier nehmen
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Sie zunéchst eine goniometrische Umformung vor. Ersetzen Sie in der bekannten

Formel
¢ +'3 sin «—PB
9

a

c0s @ — ¢0s f = — 2 sin ——~

et+f e—B _
B Sln-—2 =

‘oder sin ? (cos f — cos )

die Argumente % +ﬁ durch mz und % ﬁ durch nz. Zur Bestimmung von «

und B erhalten Sle dann die beiden Glelchungen

o+ p=2mz,

a—f =2nz.
Aus diesem Gleichungssystem finden Sie leicht
ca=m+n)r und f=(m—n)z
und damit '

sinmzsinnz = % [eos (m — n) x — cos (m + n) z].

Das Integral selbst gestaltet sich so einfacher zu

/sinmxsinnxdz=—;—U.cos(m——n)xdw——/cos(m+n)xdx].

Sie substituieren:
u=(m—mn)z bzw. v=(m 4+ n)uz,

du dv

="M E=rtn

dz = 1 du dz = dv
m—mn m+n

(Beachten Sie dabei, daB m J=n sein muB!)

/‘sin mzesinnzdzr = L1 /cos udu———%— cos v dv
L m—n | m 4 n

2
% (—-~—— smu———J— s1nv)+C

n + n
[sinmxsinnwdx— -(smi:tn:”")m Smg"::)z)+(7
Ubungen
52.0) [(4z — TP da b /(i + %)2 dz
93. a) / R b [ —
54. o) [YBz —1 dz ) f y,(.2,:_“: 5

120



" dz
95. @) / cos? (2 — 1) b [ sin? (3—:::)
3
56.0) [(2o—3)ds ) [3”1
i

7. [sin(@z +3)ds 58 [ocost (-g —~ 3) dz

Anleitung zu Ubung 57 und 58:
Fiihren Sie diese Integrale durch Einfiihrung einer neuen Verdnderlichen u auf die

Integrale f sin?2 z dz bzw. / cos? z dx zurick.

61. Berechnen Ste f sinmasin ne dz fir den Fall m = n!

62. Berechnen Sie fir m==n und m =n die Integrale:
a) fsin mx cos n dz, b) fcos mz cos nx dz!

63. f sinh2 z dz 64. /~(=,osh2 zdz

Anleitung zu Ubung 63 und 64:
Verfahren Sie analog wie bet den entsprechenden trigonometrischen Funkiionen.

65. [ 66. /
J 2t —a? Va* + at
13.12 Der Integrand besitzt die Form ? g”‘; Hat der Integrand die Form 2 E";
so fithren Sie die neue Verdnderliche in der Form u = () ein.
d ’
u = g(2), G=0¢@, du=g¢'(z)da
Dann wird
' (2) "1
5@ e =3¢ @de= [ dw
[Vdu=lnlu[ +C
=In|g(2)| + C.
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Lehrbeispiel 70

Berechnen Stie f cot zdax/
Losung:
/cot zdz = [ 224g

sin »

In diesem Beispiel ist der Nenner ¢(x) = sin 2. Setzen Sie also

% = sin z,
. du
so wird iz =008 2, du = cos x dz.
cos du
—dz=[—
s x u
=Inlu|+C

/cotwdw—ln|sma;. +C

Zuweilen konnen Sie erst nach Umformung des Integranden auf die Form
f ?(®) 44 kommen.

Lehrbeispiel 71

Berechnen Sie | 52—

Losung:
1z Substitution:
dz 7
/— = — uw=Inz
z-Inz Inz

du 1

dz =z
du = 1 dx
z 3

Lehrbeispiel 72

z dx
Losen Sie / Ty !

Losung:

Wenn auch in diesem Beispiel zur Anwendung des Substitutionsverfahrens der
Faktor 2 im Zahler fehlt, konnen Sie dieses Integral doch auf die behandelte
Weise losen.
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2? + a?

f rdx Substitution: u = 22 4 a2
Aus dem Differentialquotienten g—: =2z

berechnen Sie 2 dz = —;— du.

1 [fdu

2 u
=Ll +e
= 5 In|uf +

=%ln(a2+w2)+0

Fehlende konstante Faktoren storen also die Anwendbarkeit des eingangs dar-
gestellten Losungsverfahrens nicht.

Lehrbeispiel 73

. dz
Berechnen Ste - !
sin2z
Losung:
sm% /2smzcosz sin 2z = 2sin z cos x

s1n il?
COS $

2 tan @ cos2 F

1 4z Substitution:
1 | cos?z
=% S w=tanz
du _ 1
dz = cos?z
1 /du 1
__2’/ u du_coszaz
1
=§1nlu+0
dz _1 1

Das Integral / Sgl—z—z 1iBt sich auf das vorherige Beispiel zuriickfiihren, wenn

Sie z = 2u setzen:
dz

z = 2u, T =2, dz = 2dwu.
u
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Damit erhalten Sie

fdz _ 2du _ / du
sin z /sin2u - Isin2u’

Analog der Losung des Lehrbeispiels 73 erhalten Sie
2 [.du =2-—i—ln ‘tanu 4- C,

sin2u

/ﬁ ln tan—l —l— C.

| sin

Ersetzen Sie jetzt x durch z + —2— und bedenken Sie, da8 sin (x + %) = oS

. . . dz
ist, so konnen Sie f Py berechnen.

/” de _ f dz Substitution:
cos Y 7
. sin (2 4+ - — r
du
= 1
dy = dz

= In; tan _l +C

/‘ LN W tan( )]+G

| cos z

Lehrbeispiel 74

i
2
Berechnen Sie [ toszds
¢ + bsinz
0
Lésung:
kg
2
[ cosz dz_ Substitution:
b si .
6“‘*’ sz w=a -+ bsin r
du
iz = beosz

1

A du =coszxdr

Umrechnung der Grenzen:
untere Grenze z =0 =aqa

obere Grenze i« = % w=a-+>b
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— > (n|a+b|—In|a)

1 a+b
= Tln A l
Ubungen
er 4+ 1 ~ 42% — 182z
67-[ex+xdw 68. /mdx
2z —=—b
69. fz’—~5a:+2dx 70. [(l+z’)axctanz
71. /(ta,nx + cot z) dx
dz
72. a)v sinh 2z b) [smhz
73. / (tanh z 4 coth z) dx
zda;
" [ s &
7. [ 222

13.13 Der Integrand hesitzt die Form [¢ (x)]" ¢’ () (n £=—1).

Finden Sie im Integranden die Potenz einer Funktion ¢(x) und als Faktor deren
Ableitung vor, so fithren Sie die neue Verdnderliche in der Form u = ¢(x) ein:

d , ,
% = ¢(z), & =9 (@), du = ¢ (2) da.
Damit erhalten Sie
f[<p @ ¢ (o) d =fun du

[lo @15 @ do = ;,—i—l [ @+ +C.

Hier muB wieder der Fall » = — 1 ausgeschlossen werden, da sonst der Nenner
den Wert Null annimmt.
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Vergleichen Sie einmal den Integranden, den Sie fiir n = — 1 erhalten, mit
dem im Abschnitt i3.12 behandelten!

Lehrbeispiel 75
Losen Ste [(x2 + 3B zdz!
Losung:

Wie auch in einigen Lehrbeispielen des Abschnitts 13.12 behindert der fehlende
Faktor 2 nicht die Anwendbarkeit der Losungsmethode.

/.(wg + 3P gdr = % / ud du Substitution:
J v u=12%4+3
1
=§u4+C g—:=2x, xdx:%du

— 1@ +3 40

Lehrbeispiel 76

Es st 2dz_ losen!
U p—
I.osung:
/‘ zdz / (a® — x’)_% zdz Substitution:
Jyar—af ] U = a2 — z?
du 1
iz = 2% zdzr =— 5 du
17, —%
= — ?./ 13 du
——uwt it C=—yYa =2 + ¢
Lehrbeispiel 77
Berechnen Sie [ sin z cos z dz/
Losung:
Setzen Sie % = sin z,
dann wird g—: = C0S Z, du = cos z dz.
Das Integral lautet dann
. : 2

/sinxceswdw =~/ wduw =% + (4,

. i

/.sin zeoszdz = ; sin? z + C,.
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Hitten Sie u = cos « gesetzt, dann wire der Rechengang der folgende gewesen:

du .
% = COS Z, i = — sin z, du = —sin x dz,
/cos xsinzdx:/—udu=——— + C,,
N 1
cosxsmxdx=—§cos z + C,.

Lehrbeispiel 78

Ldsen Sie f sin® z cos z dz/

Lésung:
Substitution:
% = s§in z
g: = 0S8 Z, coszdx =du
/sin5 zeoszdzr = / us du
=%u‘+0=%sm‘x+€
Lehrbeispiel 79
Berechnen Sie /% Inzdx!
Losung:
u=Inz %3 1 du=1dx
x T
1 u?
[zhedo=[udu=TF 40
/ Inzdz = 71) (In z)? + c
Lehrbeispiel 80
Berechnen Sie [ @i‘ dz!
S —a?
Losung:
% = arc sin « 3“— E__ du = ! dz
r 11— a2 11— 22
arc sin z u?
/l“lri:'?z-d ‘/ud'll'=§'+0
/:UTﬁg de = % (are sin z)? 4+ C
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Ubungen

77. Untersuchen Sie den Zusammenhang der beiden verschiedenen Lb'sungsforrlnen
des Lehrbeisprels 77!

78. a) /m}/ditl—w;édx b) fw}/az——wzdz

79. / tan 2z dz Anleitung: Fiihren Sie zuerst eine neue Verdnderliche
cos? 2z durch 4 = 2 z ein.
arc tan a:
80. ] T
arc cos— 5
81. —]/4—_——;2-— dz Anleitung: Verfahren Sie analog wie bei Ubung 79.

13.14 Der Integrand ist eine irrationale Funktion eines quadratischen Aus-
drucks. Es sind hier die folgenden drei Fille zu unterscheiden:

Falle) Der Integrand enthilt }a? — 22
Fall) Der Integrand enthilt 722 + a2
Fall y) Der Integrand enthilt }a% — a2

Der Fall y— 22 — a? scheidet aus unseren Betrachtungen aus, da fiir jeden
reellen Wert von z die Wurzel imaginér ist.

Einige besondere Integrale mit irrationalem Integranden haben Sie bereits im
Abschnitt 13.13 kennengelernt. Weiterhin wurden irrationale Integranden, in
denen die Integrationsverdanderliche z nur in der ersten Potenz auftritt, im Ab-
schnitt 13.11 behandelt.

@) Der Infegrand enthilt ya* — 22

In diesem Fall fiihrt die Substitution # =asinu oder (vollig gleichwertig)
z = a cos u unter Anwendung der Beziehung sin* » + cos? u = 1 zur Beseitigung
der Wurzel.

Sie setzen T = a sin u, bzw. T = @ COS U.

Dann ist dz = a cos u du, dz = —asinu du,

und Ya? — a? = Ya? —a?sin2u Ya? — 22 = Ya2 — a2 cos? u
= @ COS U, = a §in .

Zur Zuriickfilhrung auf die urspriingliche Veranderliche z brauchen Sie die
Werte

. x
sinw = —, cos U = —,
1 ———
€08 U =7}/a,2——-x2,
. x
% = are sin —,
a

T
% = arc cos '
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Lehrbeispiel 81

. dz
Berechnen Sie | ———="
J Va2 — a2
Losung:
/ _ [ acosudu Substitution:
2_ 2 2__ 2 cin2 .
a2 — & Vo —a*sin? u z=uasinu, dr =acosudu
acosudu z
= | Tacosu % = are sin —.
= [du =u+C

. X
= are sin +C

[
J Vo —a?
Priifen Sie selbst nach, daf sich mit Hilfe der Substitution z = a cos « die
gleichwertige Losung — are cos % + C ergibt.
Lehrbeispiel 82
Berechnen Sie [ Yo — 2% da!
Losung: .
[{o# =2t dz = ‘/ﬂa cos u - @ cos u du Substitution:
= a? /coszu du r=asinu, dr=acosudu

| 1 = are sin Z
Das Integral f cos?u du ist Thnmen in Abschnitt 13.11 begegnet. Unter Ver-
wendung der dort gefundenen Losung erhalten Sie

2
azfcoszudu=az(u+sinucosu)+C
_a% . T 1 r5— 3
—g(\arcsm—a——i—;-aya —a')-f—C

P E— a? .
[}'az—w2 d:c=-9»-arcs1n— K . Yar — 2 a*2+C

B) Der Integrand enthilt Va® + a2

Die Irrationalitit konnen Sie in diesem Fall durch die Substitution # = a sinh »
und unter Benutzung der Beziehung cosh?u — sinh?u =1 beseitigen. Multi-
plizieren Sie die letzte Gleichung mit a2, so erhalten Sie

a? cosh? u — a? sinh? u = a?
oder a® sinh? 4 4 a2 = a2 cosh? u
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Setzen Sie deshalb in Y22 + a? die Substitution z = a sinh w ein, so kommt
die Wurzel in Fortfall.

Fiir die Substitution x = a sinh u

ergibt sich dz =acoshudu

und V22 + a® = Ya?sinh® u + a2
= a cosh u.

Umgekehrt ergibt sich
sinh u = '%,

1 — -
coshu = — V2® + a2,
1 T
u=arsinh%=ln;($+l’$2 + @?).
Fiir das praktische Rechnen ist die logarithmische Form von » zu bevorzugen.

Lehrbeispiel 83

Berechnen Sie / —
y:c’ + a?
Losung:
dz _a / coshu o Substitution:
Jz#+a o] coshu t=asinhu, dz =acoshudu
= du =y +

u=ln71l—(a:+]/x2+a2)
n—(ar:+1/a:2 a?) +
=In(z + y2* + a®) —Ina +C

Fassen Sie die Konstanten — In @ und C’ zu einer neuen Konstanten C zusammen,
so lautet das Ergebnis

f _ 9% —In(zs + 72 + @) +C.
+af

Das vorstehend behandelte Integral 148t sich mit Hilfe der linearen Substitution
U= % auf Grundintegral (63) zuriickfithren. Priifen Sie diesen Losungsweg

nach!

Lehrbeispiel 84
Berechnen Sie f V2 + a® dx!
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Losung:
f V2 + a2dz =a? [ cosh? u du Substitution:
v z=asinhu, dz=acoshudu

u=ln%(a:+]/a:2+a3)

Die Losung des rechts stehenden Integrals kennen Sie aus der Ubung 64. Ersetzen
Sie darin z durch %, dann bekommen Sie

~ a?

a® [ cosh? u du = =5 (4 4 sinh u cosh ) 4 C’
=%2[ln%(‘a: + Va2 +a3>+%-%]/m2 +a2} +C,

[V=* +a® dw=%]/x2+a2+ag—21n(x+]/xz+a2)+C.

.

\ .
Auch hier wurde — % In @ mit der Integrationskonstanten C’ zu einer neuen

Konstanten C zusammengezogen.

¥) Der Integrand enthilt }a? —a?
Hier fiihrt die Einfithrung der cosh-Funktion zur Aufhebung des Wurzelzeichens.

Mit z = a coshu
wird dz = a sinh » du,
Y2? — a® = Va2 cosh? u — a2
‘= g sinh w.
. . . z
Weiterhin ist cosh u = o
sinh oy = - V22 — a2
a 9

% = ar cosh —z~ = ln%(x + Ya? — a?).
Lehrbeispiel 85

Berechnen Ste [ dz !
J Yzt —a?
Losung:
/‘ dz _ [asinhudu Substitution:
J V&t —a? ./ a ginh u z=acoshu, dz =asinhu du

=[au=u+c w=In>(z + V& —a)
=ln (@ +VE—ad) +C
=In(z + Y22 —a? —Ina + C
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Fassen Sie wiederum — In a und C’ zu einer neuen Konstanten C zusammen,
so wird
dz

|-

Lehrbeispiel 86

Berechnen Ste / Va2 —a2da!

Lésung:

j V2 —@dz = a? / sinh? w du Substitution:

z =acoshu, dz =asinhudu

=1In(z + J2* — a?) + C.

u =1n7‘1'—(a: + Va2 — a?)

In Ubung 68 berechneten Sie [ sinh?zdz = % (sinh 2 cosh z — ) + C. Ersetzen
Sie hierin z durch %, so er};alten Sie
f]/azz—-;azdx = fg(sinhucoshu—u) +C

=%2[% %]/xz— ln—(w—l—}/x2 az)]-l—C'
[sz—azdx=%]/x2—a,2—%ln(x+V:c2——a2)+0.

Auch hier wurde wiederum % In a mit €’ zu einer neuen Integrationskonstanten C
zusammengezogen. '

Oft ist der Radikand nicht in der reinquadratischen Form gegeben. Sie kénnen
ihn aber leicht durch Einfithrung der quadratischen Ergénzung auf die Form der
behandelten Integrale zuriickfiihren.

Lehrbeispiel 87

Berechnen Sie / E—

l’a:’—4a: + i3
Losung:
[ — j Substitution
J Vo —4z + 13 1/(5?2)2_19 we—1—9

= d
1/u2+9 /lu’+3* d—z=1, du =dz

=ln(u+yu2+32)+0

[;F——_d{_ﬂ—l_a=ln(x—-2 +VE—dz +18) + C
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Lehrbeispiel 88

Berechnen Sie / V___dx__,

b+ dz —a*
Losung:
/" dz =/ dz
JVs+dz—az ) )9—(z—2)p
=/" du
JyE—w
. u
= arc sin & +C
dz .
Vb + 4z — 2® are sm 3 +£

Lehrbeispiel 89

5
Berechnen Sie / Yt — 4z + 20dx!
Losung:

f]/xz—ti:c +20dz = ]]/(Z:_?r)?-l——Tfidx
2 2

3

= [Yur ¥ 16du

untere Grenze:

Substitution:
U=x—2
du
iz = 1, du =dz
Substitution:
% =x—2
d

u
E'_'l’ du =dz

Umrechnung der Grenzen:
2=2 u=2—2=0

g obere Grenze: z =5 wu=5—2=3
=%}/.u2+16+%;ln(u+]/u2+16) ?
0
=2 . 54+8m8—0—8In4
15

8 15

~ 175 4 80,6931 ~ 13,045

[1F—4z+20dz ~ 13,045

2
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Lehrbeispiel 90

Berechnen Sie x—L!
Va* + 6z + 13
Lésung:
[ zdz - zdz Substitution:
%2 =1, du=dz
Im Zghler ergibt sich
z=u—3.
(u—3)du
f Vu2 + 4
Sie zerlegen das Integral in zwei Teilintegrale.
) udu du
Ve + 4 Vu? +

Das links stehende Integral 1d8t sich entweder nach Unterabschnltt f) oder
(einfacher) nach Abschnitt 13.13 l6sen.

=Yut+4—3In(u+ Yu2+4) +C
[t =1F et B3I +3+ V@ {62 £ 18) + C
‘ Ubungen
82. a) mﬁ b f w_ﬁ_d:“—ﬁ o) [6—2c—2 ds
83. o) fﬁf—z“{ﬁ B m o [V 6c+1bds
o) [ )f,4x=+4z_3 i i
%9 == Ve s

6./:
Va2 — 6z + 18
3

Zusammenfassung

6
87. /‘V24 +2z—22dz
1

88. [“ij LLa Y

Ya? — a?

Durch die Einfithrung einer neuen Verdnderlichen lassen sich schwierigere
Integrale auf die Grundintegrale zuriickfiihren. Bei der Substitution ist nicht
nur z, sondern auch dz umzurechnen.

Auf folgende Formen des Integranden konnen Sie die Substitutionsmethode

anwenden:
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Der Integrand ist die Fumktion einer
Uinearen Funktion der Verdinderlichen:

H(@) =f(az +b)

Der Integrand enthilt neben der Funk-
tion auch moch die Ableitung dieser
Funktion:

L f@)=22

fz'((:)) dz=Inlp(z)| + C
2. @) =[e@)] ¢ (2)
(n—1)

[lo@P ¢ @ do =gy p@@r+i+0

Der Integrand ist eine trrationale
Funktion:
1. Der Integrand enthilt ya? — a?

2. Der Integrand enthilt }a2? + a2

3. Der Integrand enthilt ya? — a2

Substitution:

u=azx+b

Substitution:

u = ¢(2)

Substitution
u = g(z)

Substitution:
Tz =asinu
bzw.

T = 0008 %
Substitution:
z = asinhu
Substitution:
z = a cosh u

Zum Losen von bestimmten Integralen mit Hilfe der

konnen zwei Wege beschritten werden:

dz = L du

a
du =¢'(z)dz
du = ¢'(z)dx

dr =acosudu

dr=—oasinudu

dz =acoshudu

dz = asinh v du
Substitutionsmethode

1. Es wird zunéchst das unbestimmte Integral gelost. Die Grenzen werden erst
wieder nach Einfiihren der urspriinglichen Verinderlichen beriicksichtigt.
2. Die Grenzen werden mit Hilfe der Substitution umgerechnet und das be-

stimmte Integral fiir die neme Verdnderliche und fiir die neuen Grenzen

berechnet.

13.2 Partielle Integration

Aus der Differentialrechnung kennen Sie den Differentialquotienten eines

Produktes:

[H(2) - g(@)) =['(2) - 9(2) + [(2) - ¢’ ().

Integrieren Sie beide Seiten, so erhalten Sie

[li@ - 9@ do = [1(2) - 9(2) dz + [(2) - g’ () d=.



Das Integral auf der linken Seite konnen Sie sofort auswerten, denn der Inte-
grand ist ein Differentialquotient. Sie wissen aber, daB sich Integrieren und
Differenzieren gegenseitig aufheben. Damit wird

f(2)-9(2) = [ (2) - g(w) da + [{(2) - g’ () d=.

Durch Umformung bekommen Sie

[t@)-9@) dz =1(2)  9(2)— [1(2) - ¢ (2) da (56)

oder kurz

[fgdz=fg—[fg =
Das ist die Formel fiir die partielle Integration (Teil- oder Produktintegra-
tion).

Wie Sie in den folgenden Lehrbeispielen erkennen werden, wird die Integration
durch diese Formel auf zwei Teilintegrationen zuriickgefiihrt. Daher riihrt auch
der Name fiir dieses Verfahren.

Fiir das bestimmte Integral lautet die Formel entsprechend:
b b

[1(@)- g(a) do = (@) - g(a) | —[1(2) (@) do

v
a a

b
= /() - 9(8) —1(a) - g(a) — [{(2) - g’ () da.
Lehrbeispiel 91

Berechnen Sie jx erdzx!

Losung:

Setzen Sie in diesem Beispiel [ =e=

dann ist f= f % dz = e (1. Teilintegration).
Weiter setzen Sie g =z

Durch Differenzieren erhalten Sie g =1

Nach Formel (56) wird
fxexdw = xez—fef'»' dz.

Die Integrationskonstante setzen Sie erst nach der Beendigung der letzten Inte-
gration ein. Die zweite Teilintegration liefert

~

/ zetdx = ze* —e? 4 C = 9_‘f_(w—1_)j—=0 .

136



Lehrbeispiel 92
Berechnen Sie f z-sinzxdax/!

Losung:
Ansatz: f =sinz g==x
f=/sinwdx g =1
= —CO0S &
/’xsinxda:=—xcosx+fcos zdz
/‘xsina;dx=——x cosz 4sinz + C

In diesen beiden JBeispielen muBten Sie jeweils ¢ = = setzen, um mit ¢ =1
das Integral f fg’ dz auf eine leicht Iosbare Form zu bringen.

Wiirden Sie umgekehrt verfahren, also f = = setzen, dann wire mit f = %azz
das auf der rechten Seite stehende Integral ff g’ dz komplizierter als das urspriing-
liche geworden.

Lehrbeispiel 93

Berechnen Ste f inzxdz (n£—1)/
Losung:
Ansatz: f=a g=Ihz
zn+1- ;o 1
Th+1 9=

Hier wihlen Sie f/ = 2" und g = In z, weil die Ableitung ¢’ der logarithmischen
Funktion wie auch f rationale Funktionen sind. Das Produkt f¢’ im Integrand
des rechts stehenden Integrals kann somit zu einer rationalen Funktion zusammen-
gefaBt werden, die leicht integrierbar ist.

/a:”lnxdac— znﬂlnx 11‘/»3_,:2
=:n—_:lnw—nilv[w”dx
=:':111nw—(n%71), +C

fw”lnxdx— (”H), [(n+1)Inz—1] +C

Fiir n = 0 erhalten Sie:

flnwdw =z(lnz—1) 4+ C.
Der Ausnahmefall n = — 1 wurde bereits im Lehrbeispiel 79 des Abschnitts 13.13
durch Einfiihrung -einer neuen Verdnderlichen gelost. Dieses Integral 148t sich
aber auch mit Hilfe der partiellen Integration behandeln, wie Thnen nachstehend
gezeigt wird.
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Lehrbeispiel 94

Berechnen Ste [ % Inzdz!

Losung:
Ansatz: f= —i— g =Inz
f=Ihz g = %

fllnxdac=(lnx)2—filnxdx
x z

Auf der rechten Seite steht wieder das Ausgangsintegral. Sie bringen es auf die
linke Seite:

2/%Inxdz=(lnx)2.
Sie dividieren durch 2, und fiigen die Integrationskonstante hinzu:
/%lnxd:v =-;— (In 2)2 4 C.
Vergleichen Sie das Ergebnis mit dem von Lehrbeispiel 79!

Fehlt ein zweiter Faktor im Integranden, so kénnen Sie oft zum Ziel kommen,
wenn Sie f =1 setzen, wie z. B. in Lehrbeispiel 95 und 96.

Lehrbeispiel 95
Berechnen Ste f arcsin x dz/

Losung:
Ansatz: f =1 g =arcsin z
f=c R
V1= a2
[arcsinxdz = warcsinx—/i_(y—v_—.
J Vi— 2

Das rechts stehende Integral haben Sie bereits gelost (vgl. 13.13 Lehrbeispiel 76).

farcsinxdx=xarcsinw+1/1_——?+C

Lehrbeispiel 96
1

Berechnen Sie / arc tan z dz/
0

Losung:
Ansatz: f =1 g = arc tan x
— 4 1
f==2 I =i7a
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1 1

i 1 zdz

/arctan rdr=zarctanz| — | ——
0 v.1+z

0 0

Beachten Sie bei der Lisung des rechts stehenden Integrals Lehrbeispiel 72

[arctanzdw=w=arcta,nx'1——;—ln(1 + 22) '
, 0 0

§

—(L-aretan1—0) —+ (In2 —In1)
1
E4 1

fa.rc tanzdz = T 5 In,2 = 0,4388

§ -
Bei verschiedenen anderen Integralen miissen Sie die partielle Integration
mehrmals hintereinander durchfiihren, so z. B. im folgenden Lehrbeispiel 97.
Dabei ist zu beachten, daB immer in gleicher Weise f* und g gewahlt wird, da sonst der bereits
beschrittene Weg wieder riicklédufig durchlaufen wird.
Lehrbeispiel 97
Berechnen Sie f ez g3 dx/

Il

Losung:
1. Durchgang: [ =e® g =a?
f=e% g =3a?
/-ezx”dw =e$.x3—3/exx2dx
2. Durchgang: f =e® g = a?
f=e® g =2z

/e“’w"dx=ezx3—3 (exxz——2fex:vdw)

Fiir das ganz rechts stehende Integral kennen Sie bereits die Losung aus Lehr-
beispiel 91.
[exx?'dx =er g3 —3erg? { 6er(x—1)+C

fezﬁdx=ex(x3—3w2—|—6x-—6)+0

Lehrbeispiel 98

Berechnen Ste / ezsin z dx/

Losung:

1. Durchgang: f =e® g =sinz
f=e® g =cosz

/ezsinxdx=exsinx——/excosxdx
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2. Durchgang: [ =e® g =008 %
f=e® g =—sinz
[ezsinmdx =eZsinr — (excosx +fexsinxdx)

—essinz— e¥cos z— [ e?sinz dz

v

Wie Sie sehen, kommen Sie nach dem 2. Durchgang auf das Ausgangsintegral
zuriick. Die Losung erhalten Sie, indem Sie die beiden Integrale auf der linken
Seite vereinigen und durch den links auftretenden Zahlenfaktor dividieren.

2{exsinwdw=exsinx—excosx

/[exsinxdx =—;—ex(sinx;cos zy+C

Rekursionsformeln

Mitunter kénnen Sie Integrale, deren Integrand durch die n-te Potenz einer
Funktion gebildet wird, dadurch lésen, daB Sie durch mehrfache Anwendung
der partiellen Integration den Grad » schrittweise vermindern. Dieses Verfahren
wird Rekursion genannt. Sie haben dieses Verfahren bereits in Lehrbeispiel 97
fiir den Integranden e® z® kennengelernt. Vorausgesetzt wird, daB = eine ganze
Zah] ist.

/‘eos"xdx

Spalten Sie einen Faktor cos 2 ab, so erhalten Sie

fcos" zdzx =fcos zeostlzxdzx.
Sie setzen
f =cos 2, g = cos" 1 z,
f = sin z, g = —(n—1)cos"~2 g sin z.
Damit ergibt sich
fcos" zdz =sinzcos" 1 x 4+ (n— 1)] sin? z cos" 2z dx.
Mit sin?2 z = 1 — cos? z wird

fcos" zdz =sinzcos* 1z + (n— l)f(l —cos?x) cos" 2z dx.

Sie multiplizieren den Integranden aus, und zerlegen das Integral in 2 Teil-
integrale:

fcos" zdz =sinzecos"lz + (n— l)fcos"—2 zde—(n— l)fcos" zdzx.
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Das ganz rechts stehende Integral ist wieder gleich dem Ausgangsintegral auf
der linken Seite. Bringen Sie es auf die linke Seite, so erhalten Sie, da

(n—1) +1=n ist,
n [cos® z dz = sin  cos" L& + (n—1) [cos" 2z dz

1 . )
oder / costzdzx = - Sin z co cos" 2z dx

(67)

Das rechts verbleibende Integral hat im Integrand einen um 2 verminderten

Exponenten. Wenden Sie die Rekursionsformel mehrfach hintereinander
80 konnen Sie den Exponenten immer auf 1 oder O reduzieren.

an,

In &hnlicher Weise kann hergeleitet werden (auf den Beweis wird hier verzichtet):

. 1 . n—1 .
[sm“wdx =—7 sin”*~1 z cos z + — [sm”—%:dw
o o

Lehrbeispiel 99
[ cos® z dx vst zu berechnen.

(58)

Losung:
Die 1. Anwendung der Rekursionsformel (57) fiihrt auf cos® z dz:
n = b, n—1=4, n—2 =3,
/cos%:dac = Lsinzeosts + 4 [cos?'xdx.
5 5
Nochmaliges Anwenden von Formel (57) auf das rechts stehende Integral:
n =3, n—1=2 n—2=1,
1 1 . 2
[cos%cdx =+ sin z cost z 4+ — (3 sin x cos? z +§fcos a:dx)
%smwcos‘lx +—smxcos2m +%sinx+0

_-1—5s1nx(3cos4x+4cos2w'+8)+C.

Sie konnen den gesamten Ausdruck auf eine trigonometrische Funktion,
Sinusfunktion, zuriickfiihren, wenn Sie
cost z = (cos? )% = (1 —sin? z)2 =1 —2sin? z 4 sin z
und cos? x =1 —sin? 2
einsetzen.

[cos%cdx=-l—sina:(3—6sin2w+3sin4x+4——4sin2x+8)+C

15
= 2 sin (16— 10sin® ¢ + 3sint ) + C

[cosf'xdw=%sin5w—%sin3a:+sinx+0

die
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Kommen im Integranden die Potenzen sin™ z und cos" x gleichzeitig vor, so
haben Sie zwei Fille zu unterscheiden:

a) mindestens ein Exponent ist ungerade, und

b) beide Exponenten sind gerade.

Die Behandlung dieser beiden Moglichkeiten lernen Sie in den folgenden Lehr-
beispielen kennen.

Lehrbeispiel 100

Berechnen Sie [ sin® z cost x dz/

Losung:
Der Exponent von sin z ist ungerade. Sie spalten von sin3 z einen Faktor sin z
ab, so da3 Sie erhalten
sin3 £ = sin? z sin
= (1 — cos? z) sin z.
Damit wird
/sin3 zeostzdzr = /”(1 —cos2 z) cost zsin zdx

= [ (cos* £ —cos® z)sin zdz.

Substitution: % = COS Z, g—z =—sinz, —du=sinzdz.
/‘sin3 zeostzdz = ——“j (ut — ub) du
ud u’
=—7%F + T +C
[ 3 4 p— 1 53 1 7
jsm zeostzda=— eosz + —cos’z + C

Es kommt hier also darauf an, den Integranden so umzuformen, daf neben den
Potenzen einer der beiden trigonometrischen Funktionen (hier der Kosinus-
funktion), die andere (hier die Sinusfunktion) nur in der ersten Potenz als Faktor
anftritt.

Dieses Abspalten konnen Sie auch bei den schon behandelten Integralen f cos” xdz
und [sin® z dz anwenden, wenn n eine ungerade Zahl ist. Auf diese Weise soll
noch einmal das schon im Lehrbeispiel 99 behandelte Integral gelost werden.

Lehrbeispiel 101

Losen Sie f cos zdz/
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Losung:
/ cosszdz = fcos4 zcos zdz

= [ (1 —sin®z)?cos zdzx Substitution:
=y(1—u2)2du u=sinz duy=coszdz
= [(1 —2u? 4 ud) du

=u——%u3 +%u5+0

=sina:—%sin3w+%sin5x +C

Lehrbeispiel 102

Berechnen Sie f sin? z cost z d 2/

Losung:

In diesem Beispiel liegt der Fall b) vor, beide Exponenten sind gerade. Sie driicken
hier die eine der beiden trigonometrischen Funktionen restlos durch die andere
aus. Selbstverstindlich werden Sie die Funktion umwandeln, die den kleinsten
Exponenten hat.

fsin2 zeostzda =f(1 —cos? z) cost x dz
=fcos4 a:vdav—[cos6 zdzx
Diese beiden Integrale konnen Sie nun aber unter Verwendung der Formel (57)
losen. Sie reduzieren zunéchst das rechts stehende Integral:
1 . b
/cos‘xdx = 4 sin Z cos®  + Kfcos‘*xdx.

Damit erhalten Sie

. 1 . b
[s1n2a:cos4xdx=[cos‘xdz—-gsmxco@x——g’[cos“xdx
5 v

. 1
sin z cos® z - T costzdzx

I

ok ok

I

sin z cos® z 4 % (% sin z cos® z -+ %fcoszxdw).

Aus 13.11 wissen Sie, daB f cos2zdzr = % (z + sin z cos x) + C ist. Dies ein~
gesetzt, ergibt
/‘ssin2 zeostzdx =—%sin z cos® z -+ 71). [% sin z cos® z

o

-|-%(a;+sinwcosa:)]+0

G s eos e L sin zoos® 1 4 s 3
=— 5 sin 2 cos az+ﬁsmwcos :c+48smxcosx+48'x+0,.

[sinza;cos‘lzdx=;—Bsinm(-f—80035z+2cos3w+3cosz)+%z+0.

Hitte im Integranden sin® z gestanden, so miiiten Sie dafiir (1 — cos® z)? setzen.
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Versuchen Sie mit Hilfe der Formel (57) das Integr,_al

cos‘ (n =—>5) zu

berechnen, so erkennen Sie, daf das auf der rechten Seite stehende Integral die
Form d a,nmmmt Dieses Integral ist aber schwieriger als das Ausgangs-

integral, denn der Exponent hat sich vergroBert. Durchlaufen Sie jetzt die Formel
riickwiirts und setzen Sie rechts fiir n —2 den Wert —5 ein, so kommen Sie
links auf den giinstigeren Exponenten —3. Dieser Weg muf zur Losung fiihren.
Losen Sie dazu Formel (57) nach dem rechts stehenden Integral auf!

n—1

1 .
/‘cos"‘2 zdzx = — - sinz cost1l g +/cos”:c dz
v

1 . n
cos"2rdr =— sinxzcos" 1y 4+ —— [cos"zdx
n— n—1

1
Jetzt soll der Exponent » — 2 aber eine negative Zahl sein. Sie setzen darum
7 — 2 = — m (m positiv) und dementsprechend
n=—m-+2
und
n—1=—m-41.
Sie erhalten dann

1 _ —m 42 _
—-m —_— — m+1 - m+2
/cos zdz = +151nxcos T 4 — +1fcos zdex.
" dz 1 sin m—2 dz
B — 57 a
fcos’”z m—1 cos’"lz+m’—1fcos’” g _ (57a)
Aus (58) erhalten Sie durch entsprechende Umformung:
dz 1 cos m—2 [ dz
/ sin"g @ m—1lgn™ 'y T = 1/ sinm 2y (68a)

Lehrbeispiel 103
Berechnen Stie / de !

cost z

Losung:
Sie wenden Formel (57a) an. Hier ist m = 4.

de 1 sin:v
cost z 3 cos® z 3 cos2

Sie finden aber unter Grundintegral (28) in Band 1 bereits die Losung tan x.
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dz 1 sinz 2
J cos‘x.-gcos’z+§ta’nx+0
1 tan z 2
—?cos’z-l-?ta'nx_'—o

Beachten Sie, daB —1;— =1 4 tan2 z ist, so wird
Ccos*

cosbz

/ dz %ta.nx(1+ta,n2$)+%tanw+0,

/ dz =ta.n:c+—;—tan3a:+0.

cost z
Ubungen
89. fa,rc coszdzx 90.fw4 Inzdz
1
91.fa;4 erdx 92.fsin5xdx
0
3
93. [cos“a:dw
0
94. a) fsin5xcos5xdx b) fsin‘iwcosf’xda:
d ?;Z d
x &
9. a) [ sin® z b) f cos’
0

Zusammenfassung

Die Methode der pértiellen Integration ist auf der Umkehrung der Produktregel
der Differentialrechnung aufgebaut. Wie der Name sagt, wird die Integration
eines Produktes auf zwei Teilintegrationen zuriickgefiihrt.

Fehlt ein zweiter Faktor, so kann man sich an seiner Stelle 1 = z° als Faktor
denken.

Weist der Integrand Potenzen von Funktionen auf, so konnen durch mehrfache
Anwendung der partiellen Integration bzw. durch Aufstellung von Rekursions-
formeln die Exponenten schrittweise vermindert werden.

13.3 Integration gebrochener rationaler Funktionen (Partialbruchzerlegung)
Ist der Integrand eine gebrochene rationale Funktion, hat er also die Form
f(x)= 9(=) — ay + a, ¢+ a2 + - - - +ama:m,
h(z) by + bz + bya® 4 .-+ + bpa® )
so muB auch hier der Integrand zunichst so umgeformt werden, daB sich die
Grundintegrale anwenden lassen.
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Es geniigt, den Fall zu untersuchen, daB der Integrand eine echt gebrochene
rationale Funktion, also m <m, ist. Ist ndmlich m = n, so kann der Quotient

T . . s . . .
g—sw; durch eine einfache Division als Summe einer ganzen und einer echt ge-
N\

brochenen rationalen Funktion dargestellt werden (vgl. Band 1, Abschnitt 4.3).
Eine ganze rationale Funktion konnen Sie aber ohne Schwierigkeiten integrieren.
Es bleibt also die Aufgabe, eine echt gebrochene rationale Funktion zu integrieren.
Um die Integration einer echt gebrochenen rationalen Funktion vornehmen zu
konnen, wird der Integrand in eine Summe einzelner, einfacherér Briiche (Teil-
oder Partialbriiche) zerlegt, die sich einzeln unter Anwendung der Grundintegrale
integrieren lassen. Fiir diese Zerlegung wird der Satz aus der Algebra beniitzt, da8
sich jede ganze rationale Funktion in Linearfaktoren zerlegen 1dBt. Wie Sie
wissen, besteht die Identitit
by + b2 + bpa® 4« - - b2 =bp(x— 2,) (T — Zp) . . . (T — T),
wobei 2, Z,, . . ., ¥, die Wurzeln (Losungen) der Gleichung
by + by + bya® + - -+ + bpar =0,
in unserem Fall die Nullstellen des Nenners sind. Wie Sie dann weiter bei der
Zerlegung in Partialbriiche vorzugehen haben, richtet sich danach, wie die
Nullstellen 2y, ,, . .., &, des Nenners im Integranden beschaffen sind. Die zu
unterscheidenden Fille und die Durchfithrung der Partialbruchzerlegung sollen
Sie in einigen Beispié-len kennenlernen.
a) Die Nullstellen xq, o, ..., x, des Nenners sind alle reell und voneinander
verschieden
Beispiel:
. 322 — 34 —1
Es m/ & — 84 — 13z + 16
Der Integrand ist eine echt gebrochene rationale Funktion.
1. Sie stellen die Nullstellen des Nenners fest.
Aus 23 — 322 — 13z + 15 = 0 finden Sie durch Probieren z, =1 als Wurzel.
Die Division durch (z — 2,) = (x — 1) fiihrt auf eine quadratische Gleichung,
deren Wurzeln z, und z, sind.

(*—822— 182z + 15): (z—1) = 22— 22— 15

dz zu berechnen.

— 222 —132
—l=2e+ 22
|—wx+m
—|—15z+15
0
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Die -quadratische Gleichung 2> — 22— 15 =0
ergibt die Wurzeln Ty =D,

Mit diesen Werten erhalten Sie die Produktdarstellung
2 —322— 132z + 156 = (¢ — 1) (2 — 5) (z + 3).
2. Sie zerlegen den Integranden in einfache Teilbriiche.

Den Bruch
3u?—34z—1
(2—1)(z—5)(z + 3)
kann man sich aus der Addition dreier Briiche mit den Nennern (z — 1), (z — 5)
und (z + 3) entstanden denken. Addiert man nédmlich die Briiche

4 B nd &
z—1’ z—5H z+3’°

so ergibt sich als Hauptnenner das Produkt (x — 1) (x — 5) (z + 3). Sie konnen
also ansetzen
8 —8s—1 _ 4 B C

(x—1)(z—5)(z+38) «—1 ' z—>b ' x+3°
Sind die Zédhler A, B und C richtig gewahlt, so stellt diese Gleichung eine Identitét
dar, da die linke Seite nur eine andere Form der rechten Seite ist.
Zur Bestimmung der Zahler A, B und C multiplizieren Sie die Gleichung mit
dem Hauptnenner. Sie erhalten

322 —34r—1=A(z—5)(x 4+ 3) + B(z—1)(z 4+ 3) + C(z — 1) (x —5).

Da diese Form der Ausgangsgleichung fiir jedes x gilt, konnen Sie fiir  irgend
drei bestimmte Werte einsetzen und erhalten so drei Bestimmungsgleichungen
fiir 4, B und C. Es.ist zweckmiBig, fiir # der Reihe nach die Werte z; =1,

zy =D, 23 = — 3 einzusetzen, da dann jeweils zwei Summanden der rechten
Seite verschwinden. Sie erhalten
fir ;=1 3— 34 —1=4(1—5)(1 + 3),
fir 2,=35 D —1710—1=Bb—1)(b +3),
fir z,=—3 274102 —1 = C(—3—1)(—3—5H).
Hieraus lassen sich leicht und schnell 4, B und C berechnen. Aus
— 32=-—-164,
— 96 = 32B,
128 = 32C,
folgt
4=2 B=—3 c=4
Es ist also

322 —84z—1 2 3 n 4
—D(@x—5@E+38 =z—1 =z—5b "' z+3"
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Priifen Sie die Richtigkeit, indem Sie die Briiche auf der rechten Seite der Glei-
chung addieren!
Die Integration 148t sich nun leicht ausfiihren:

822 —34x—1 dz dz
fﬁ—ﬁﬁ—dh+&6 w—zfz— 3[ 5+4[z+3

=2n|z—1]—3In|z—5| +4In|z 4 3|.

Lehrbeispiel 104
Cales i dz!/

Berechnen Ste f -

Losung:
Zerlegung des Nenners:

B—zr=uz(2*—1)

=z(z+1)(z—1)

Partialbruchzeriegung:

2+ 1 A, B C

s+ DE—1 = Ta+i a1
Multiplikation mit dem Hauptnenner:
?+1=4(z+1)(z—1)+ Bz(z—1) + Cz(z + 1)

Bestimmung von 4, B und C:

z, =0 1=40+1)(0—1)
z=—1 2 =B(—1)(—1—1)
Damit wird
f+1 1 1 1
53——_:3_—?—'— z+1 +9:—1’
241 _
z‘—-zdx—— /z+1+ a:—-l

ln|x| +Injz+1|+n|ze—1|+C
[ €= g

241

P o d:c—ln z

1\+o.

b) Die Nullstellen des Nenners sind alle reell, aber nicht voneinander verschieden
Beispiel:
Es ist / '—MT—-E- i dz zu berechnen!

Zerlegung des Nenners: ?—4r4+4=0
1:2 =
2?—dzr +4=(x—2)?
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Es liegt eine Doppelwurzel vor. Wie Thnen e¢ine Probe beweist, fithrt die Partial-
bruchzerlegung in der Art, wie Sie sie im Fall a) vorgenommen haben, nicht zum
Ziel.
In diesem Fall gilt der Ansatz:

4z —5 A B

G—2F " @—2 Tz—3"

Sie miissen hier neben der hochsten auftretenden Potenz des Faktors (z — 2)
auch noch alle ganzzahligen niedrigeren Potenzen ansetzen, denn (z — 2)? ist
ja der Hauptnenner von (z — 2)2 und von (z— 2).

In unserer Aufgabe stimmt also der Hauptnenner der Teilbriiche der rechten
Seite wieder mit dem Nenner der linken Seite iiberein.
Zur Bestimmung von A und B verfahren Sie zunéchst wieder wie bei a), indem Sie
mit dem Hauptnenner multiplizieren:
42—5=A4+ B(x—2).
Fiir = sind zwei Werte einzusetzen, um zwei Bestimmungsgleichungen fiir A
und B zu erhalten. AuBer z, = 2 setzen Sie noch einen beliebigen zweiten Wert
— etwa z, =1 — fiir z ein. Das liefert die Gleichungen
3 =4,
—1=A4—B,
mit den Lisungen

Sie erhalten also die Zerlegung
4x —b 3 4

2 —4dx+ 4 (z—2)° =%

Damit wird

4 —b - dz
yx’—4a:+4dx 3[(3 2)’+4[z—2

Substitution:
U=x—2
du =dz
4z —
e ds —3/ 4 4In|z—2|

=—2 pamjz—240

4z—5 3
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Lehrbeispiel 105
Berechnen Sie [ &'};—1&—@ dz!
Losung: ’
Der Nenner liegt hier bereits in der Faktorenform vor.
Partialbruchzerlegung:
22 + 11z + 19 A B c
@+3 @+ T @+ Tz43
;9,5 = — 3 ist hier dreifache Nullstelle des Nenners, demnach miissen drei
Teilbriiche (entsprechend der Vielfachheit) angesetzt werden. Dabei werden die
Exponenten im Nenner jeweils um 1 vermindert.
222 + 11z +19=A4 + B(z + 3) + C(z + 3)?

Sie setzen z; = — 3 und zwei weitere, moglichst bequeme Werte fiir z — etwa
Z, =0 und z; =—2 — ein und erhalten
4=A,
199 =4+ 3B+ 9C,
b0=A+4+ B+0C.
Das ergibt A =4, B=—1, C=2
Also ist 0wt o 11 T; -
X x
[Farm T de=4 s —[aFm 2[5
Substitution:
' u=z+3
du =d=z

2% + 11z 4 19 2
_/——(H;)s dz = — (z+3)2+w+3+21n|x-}3|+0
Lehrbeispiel 106

3a® + 3z + 82
J Bz +4)(z—2)

Berechnen Sie dx!

Losung:
In diesem Lehrbeispiel sind der Fall a) und Fall b) vereinigt.
Partialbruchzerlegung:
322 + 3z + 32 A B c
BoiH@—0oF Ba+d (w—oF Tz—2
322 +32+32=A4(x—22+ BBz +4) +CBzx+4(xz—2)
Bestimmung von 4, B und C:

z, =2 50 = 10 B

4 100 _ 100
Ta=—"3g" 379
7y =00 . 32 =44 +4B—8C

A=3 B=5 c

I
o

|



32 4+ 32 + 32 3dz dz
|BetnE— oy d [3m+4+5 (:c—2)’

Merken Sie sich: Tritt eine Wurzel z, in der Vielfachheit « auf, so miissen Sie «
Teilbriiche ansetzen, deren Nenner durch die einzelnen Potenzen von (z — z;)
gebildet werden. Dabei hat der erste Teilbruch den hochsten Exponenten e,
wihrend die folgenden einen jeweils um 1 verminderten Exponenten aufweisen.

Es ist also anzusetzen:

9(z) _ Aq_y o 4,

(@ — )" (. — ) B (@ —z,)* + (z—=2)°" + + (z— =)
Bﬂ Bﬂ—l B,

+ (& — ;) + (& — ;)P Tt (z— =z,)

Fall a) 148t sich dieser Verallgemeinerung von b) als Spezialfall unterordnen.
Hierbei ist die auftretende Vielfachheit ¢ = 1 zu setzen, so daB nur ein ent-
sprechender Partialbruch erscheint. Grundsatzlich konnen Sie bisher festhalten:

Hat der Nenner den Grad 7, so miissen in den Fillen a) und b) immer n Teil-
briiche angesetzt werden.
¢} Die Nullstellen des Nenners sind komplex
Aus der Algebra wissen Sie, daB zu jeder komplexen Wurzel einer Gleichung auch
die konjugiert-komplexe Zahl Wurzel ist.
Ist also #; = a + b Wurzel, so ist es auch z, = @ — bi. Beide Wurzeln erfiillen
eine quadratische Gleichung mit reellen Koeffizienten. Um das Rechnen mit
komplexen Zahlen zu vermeiden, trennen Sie in diesem Fall einen quadratischen
Faktor
Z24pr+g=(—z)(r—1z,) =(—a—0bi)(z—a + bi)

nicht weiter auf.

.o 5z + 4
Beispiel: / z,—:sl;—_i_—lg dax
Untersuchung des Nenners:

2—6zx+13=0
Ty, =34+79—13
Typ =34 21
Der Nenner ist hier nicht in lineare Faktoren zu zerlegen! Es mufl nun Thre
Aufgabe sein, das Integral auf andere Weise zu zerlegen. Wiirde im Zéhler 22 — 6
stehen (Ableitung des Nenners), so kénnte das Integral sofort durch Substitution
gelost werden. Das aber 148t sich durch folgende Zerlegung erreichen:
, bxr+ 4 5 2z —6 19

F 613 2@ _6z+13 F_6zi13
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Den Faktor vor dem ersten Bruch miissen Sie so wihlen, daB das z-Glied des
Zihlers mit dem des Zahlers der linken Seite iibereinstimmt, ohne daf Sie dabei
zunichst Riicksicht auf das absolute Glied nehmen.

Mit dem Faktor % hat der Zihler des 1. Bruches auf der rechten Seite den Wert
S @s—6)=bz—15.

Die linke Seite schreibt aber den Zihler 5z 4 4 vor. Aus diesem Grund miissen
Sie noch mit einem Teilbruch ausgleichen, dessen Zihler den Wert 19 hat. Fassen
Sie zur Probe die beiden Teilbriiche wieder zusammen, so erhalten Sie im Zihler

2 (@e—6) +19 =5z +4.

Wenn Sie noch fiir den quadratischen Nenner des ganz rechts stehenden Teil-
bruches die quadratische Erginzung bilden:

2 —6x + 13 = (2 — 3)% + 4,
erhalten Sie

bz 44 2z —6
fa:’—63;+13 [:c’ 6z+13d”’+19/4+(z —

Nachdem Sie im Nenner des rechten Integrals den Faktor 4 ausgeklammert
und die Substitution u = “’—2_;3, dz = 2du, durchgefiihrt haben, kénnen Sie
Grundintegral (48)  anwenden.

b + 4 5 2z —6 dz + 2du

/w’—6z+13 2|2 —6z+13 14+ u?

du

2 __ iy B
ln|w 63;-[—13[4—2 1+u,+C
rz—3

w|c1 m}

/”zs br + 4 dz—

6113 In | 2% — 6w+13|+1§?arcta

Lehrbeispiel 107

. T
R, o A— !
Berechnen S’Le/ 2 1 9z + 10 dz!

Lésung:

Auch in diesem Fall ergibt die quadratische Gleichung 2% + 2z + 10 = 0 zwei
konjugiert-komplexe Wurzeln. Sie verfahren wie im vorigen Beispiel, indem Sie
den Integranden so in zwei Teilbriiche zerlegen, da der erste im Zzhler die Ab-
leitung des Nenners aufweist, wihrend im zweiten der beziiglich des absoluten
Gliedes gemachte Fehler wieder ausgeglichen wird. Dazu fithren Sie noch im
zweiten Bruch die quadratische Erginzung ein.
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x

1 2z+2 1

2+ 2z +10
_zdeg 1
‘/x’+2z+10— 2

___1_' 2z + 2 d 1 dz
=3 |z@r2z+10%% "9 1+(z+1)

2 F+2z+10
1 2z 42 de— 1. dz .
2+ 2z + 10 9+ (z+ 1)

S+ (@@ +1p

3
Substitution:
u=z—'3"—, dz=3du
d
] ;.'—_l_—zﬁa 111’23‘-!—2.’12-{'—101 arctan —I—C
Ubungen
2z —61 32?2 4+ 102 — 17
9. fz=+5z—24 I | sp—taz—129°
4z —17
2z + 10 3245
100. [zulo“%dx 101.[zz+2m+—2da:
4z—1 z+1
102. [a:’ 1077597 103. /z’ ek
Zusammenfassung

Ist der Integrand eine gebrochene rationale Funktion, so wird er vor dem Inte-
grieren in einfachere Teilbriiche zerlegt. Dabei sind drei Fille zy unterscheiden,
je nachdem der Nenner

a) voneinander verschiedene, reelle Nullstellen,

b) reelle, aber nicht voneinander verschiedene Nullstellen oder

¢) komplexe Nullstellen hat.

Im Fall ¢) findet, zur Vermeidung komplexer Werte, keine Zerlegung der qua-
dratischen Form statt. Diese Teilbriiche mit quadratischem Nenner werden dann
g0 in zwei Teile zerlegt, daB das erste Teilintegral im Zihler die Ableitung des
Nenners aufweist, wobei durch Einschalten eines Zahlenfaktors dafiir gesorgt
werden muB, daB das lineare Glied den gleichen Koeffizienten hat wie im un-
zerlegten Integral. Im 2. Teilintegral findet dann die Korrektur des absoluten
Gliedes statt.

13.4 Numerische Integration. Die Simpsonsche Regel
Unter der numerischen Integration versteht man die angeniherte zahlenméBige
Berechnung des bestimimten Integrals

J=[1(@) da,
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wenn die Werte y, =f(z,), ¥, =7(2y), ..., Yo = f(z») des Integranden nur
zahlenméBig gegeben sind (empirieche Funktion) oder eine formelmifBige Inte-
gration nicht méglich bzw. die graphische Integration zu ungenau ist.

Aus der Vielzahl der Formeln zur numerischen Integration sollen Sie nur die
Simpsonsche Regel kennenlernen, die 1743 von dem Englinder Th. Simpson
aufgestellt wurde. Sie zeichnet sich durch Einfachheit und groBe Genauigkeit aus.
Der Simpsonschen Regel liegt folgender Gedankengang zugrunde:

Das Integrationsintervall z, < < z, wird in eine gerade Anzahl (n) Streifen

der gleichen Breite h = 2° '; %o zerlegt. Nachdem je zwei benachbarte Streifen
zu einem Doppelstreifen zusammengefaBt sind, wird der Kurvenbogen eines jeden
Doppelstreifens durch eine Parabel zweiten Grades

Y =a,+ a, T + a, 2>
ersetzt und der Inhalt der Doppelstreifen durch Integration ermittelt.

Um die Fldche F, des ersten Doppelstreifens zu berechnen (Bild 66), denken Sie
sich jetzt einmal den Nullpunkt auf der z-Achse an die Stelle z; = 2z, + h ver-

. Py [
A ] y-ftx)

,,,,/

y

F / b
% / A 9, y,
y n h// n h 7
x, X, % % X,
Bild 66

schoben. Die Parabel soll durch die Punkte Py, P, und P, hindurchgehen; das
wiren im gedachten Koordinatensystem die Punkte (— %; y,), (0; ;) und (%; y,).
Setzen Sie die Koordinaten dieser Punkte in y = ay, + a,2 4 a,22 ein, so er-
halten Sie

Yo = (g — 1k + ayh?,

Y1 = Qo

Yo = Go + a1h + ash®
und hieraus

o = Y1

1
ay = 573, (Y2 — Yo);
1
g = 55 (Yo — 241 + ¥a)-.
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Die Fliche des Doppelstreifens unter der Parabel y = a, + ;2 + a,2?* ist

" a? @ )+h Bt
[(ao+a1w+a2x2)dx=(aox+a1§-l-azg)' =9a0h-|-2a2?.
Zh —h

Fiir a, und a, setzen Sie die oben berechneten Werte ein und erhalten damit
in guter Anndherung den Flicheninhalt des ersten Doppelstreifens

h
Fy=2 (o + 491 + ) (69)

Wenden Sie nun Formel (59) auf den zweiten Doppelstreifen an, so haben Sie y,
durch y,, y, durch y, und y, durch y, zu ersetzen. Es wird dann

h
Fy =5 (42 +4Ys + ¥a)
Zn
Der Inhalt der gesamten Flidche F' und damit das bestimmte Integral J = [ f(x)ydx

ergibt sich als Summe der (insgesa,mt %) Doppelstreifen zu

§ h
F =/f(x) dz =§(?/o+4yl+2?/2 +4Ys+ 2y, + 4 2Yn_p +4Yn1 + Yn)-

Zur besseren zahlenméBigen Anwendung schreiben Sie diese Gleichung, die als
die allgemeine Simpsonsche Regel bezeichnet wird, in der Form

g B
F=({(0)de =3[90+ %+ 202+ tat+ to+ + s | (60)

. + 40+ Ys + Y5 o+ Y]

Weist der Kurvenverlauf von f(z) Ecken oder gar Spriinge auf, so diirfen Sie
keinesfalls iiber diese hinweg integrieren, sondern Sie miissen die Teilung dann
so wahlen, daB diese Stellen mit Anfang oder Ende eines Doppelstreifens zu-
sammenfallen.

Zur Erlduterung soll die Simpsonsche Regel an einem Integral demonstriert
werden, das auch elementar losbar ist. Beachten Sie dabei das aufgestellte
Rechenschema!
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Lehrbeispiel 108
2

Berechnen Sie das Integral J = f % mat Hilfe der Simpsonschen Regel!
1

Losung:

Sie haben das Intervall 1 < z < 21in eine gerade Anzahl von Streifen einzuteilen.
“Sie wéhlen hierzu n = 10 und damit 2 = 0,1. Die Berechnung kann dann nach
dem folgenden Schema erfolgen:

Yo flo 1,000000
Y10 2%0 0,500000
1 0,833333 L 0,909091
ya 1’2 3 yl 1’1 s
1 1
Ya i1 0,714286 Ys i3 0,769231
1 } 1
Ys i6 0,625000 Ys - i5 0,666667
1 1
>, 2,728175 Yo 11_9 0,526316
>, 3,459540
Yo + Y10 1,500000
23, - 5,456350
43, | 13838160
> 20,794510

J = % . 3 = 0,693150

Das Ergebnis konnen Sie mit der exakten Losung vergleichen. Es ist
2

3% —In2 = 0,693147.
1
Sie sehen, daB die Simpsonsche Regel einen sehr guten Niherungswert liefert.
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Ubungen
104. Berechnen Sie das Integral des Lehrbeispiels 108 mit Hilfe der einfacheren
Form (59) der Stmpsonschen Regel! Welchen relativen Fehler (in Prozent)
erhalten Sie? Vergleichen Sie diesen Fehler mit dem des Ergebnisses von Lehr-
beispiel 108 (der relative Fehler des Ergebnisses von Lehrbeispiel 108 ist vorher
zu berechnen)!
105. Berechnen Sie mit Hilfe der Simpsonschen Regel das Integral

2
J=]Vw3+:v+1.dx
0

auf dres Dezimalen. Wahlen Sie b = 0,2 als Schrittweite, und stellen Sie ein
Rechenschema auf!

13.5 Mechanische Integration. Das Polarplanimeter

Hinweis: Es ist als Erginzung und zum besseren Verstdndnis dieses Abschnittes erforder-
lich, daB den Fernschiilern (soweit fiir ihre Fachrichtung das Studium dieses Abschnittes
vorgesehen ist) in der Konsultation am Konsultationspunkt oder im Lehrgang an der Fach-
schule ein Polarplanimeter vorgefithrt wird.

Neben den Thnen bekannten Methoden der numerischen und graphischen Inte-
gration wurden (den Bediirfnissen der Praxis entsprechend) Methoden entwickelt,
um den Integrationsvorgang zu mechanisieren. Diese haben den Vorteil, bei
groBBtmoglicher Genauigkeit zeitsparend zu arbeiten. Diese Art der Integration
wird als mechanische oder instrumentelle Integration bezeichnet. Einen Uber-
blick iiber die einzelnen Integrationsgerite gibt IThnen folgende Ubersicht:

Integratoren (Gerédte zur Integration)

|
| | !

Planimeter Integrimeter Integraphen
(fiir die Berechnung be- (zum zahlenméaBigen Ab- (zum Zeichnen der Inte-
stimmter Integrale durch lesen eines unbestimmten gralkurve einer zeichne-
Bestimmung des Fléchen- Integrals) risch gegebenen Kurve)
inhalts einer geschlosse-

nen Kurve)
Fiir Sie als Techniker ist das wichtigste von all den heutzutage existierenden
Gerdten das Polarplanimeter, das erstmalig im Jahre 1854 von dem Mechaniker
Jacob Amsler (Schaffhausen) gebaut wurde. Dieses allein soll deshalb im fol-
genden besprochen werden!.
1 Weitere Gerdte zur Integration finden Sie in den Biichern: Fr. A. Willers, Methoden

der praktischen Analysis, Berlin 1950; Fr. A. Willers, Mathematische Instrumente,
Berlin 1951; W. Meyer zur Capellen, Mathematische Instrumente, Leipzig 1949.
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Aufbau und Gebrauch des Polarplanimeters sind aus den Bildern 67 und 68 zu
erkennen.

In Bild 67 sind die wichtigsten Bestandteile des Polarplanimeters schematisch
dargestellt.

Der Fahrarm AB von der Lénge ! ist in B gelenkig mit-dem ruhenden Pol P
durch den Polarm BP verbunden . Damit der Fahrstift 4 knapp iiber der

Fahrstift A

Bild 67

Kurve der zu integrierenden Funktion gefiihrt werden kann, befindet sich dicht
neben ihm (auf dem Bilde links vom Fahrstift) ein Stift mit einem Fiihrungs-
ridchen.
Am Fahrarm ist eine MeBrolle C befestigt, deren Achse parallel zum Fahrarm
liegt. Diese ist mit einem Nonius versehen. Die Anzahl der Umdrehungen der
MeBrolle zeigt das auf dem Bilde
rechts von der MeBrolle befindliche
/ Zahlwerk auf einer Zahlscheibe an.
»  Das gesamte MeBwerk (MeBrolle mit
Nonius, Zghlwerk mit Zihlscheibe)
kann auf dem Fahrarm verschoben
werden. Durch Klemmschrauben
(in Bild 67 ebenfalls angedeutet)

// wird das MeBwerk in der jeweils
| gewiinschten Stellung auf dem Fahr-
\ arm festgehalten. Die Linge I des
\ Fahrarms kann also (der jeweiligen

Me Aufgabe entsprechend) eingestellt

Bild 68 werden.



Die Bestimmung des Flidcheninhaltes F' (= Berechnung des bestimmten Integrals)
geschieht folgendermaBen (vgl. Bild 68):

Der Fahrstift 4 wird auf dem Umfang der Fliche gefiihrt (durchlauft hierbei die
Stellungen A4, A4,, A4,, ... in Bild 68). Der Gelenkpunkt B bewegt sich dadurch
zwangsldufig auf einem Kreis (Leitkreis) um den Pol P (daher der Name Polar-
planimeter). Nach vollstindigem Umfahren von F, wenn Sie also wieder im Aus-
gangspunkt A4 angelangt sind, kénnen Sie von Zéhlscheibe und MeBrolle den
Fldcheninhalt ablesen.

Die MeBrolle, der Hauptbestandteil, hat auf ihrem wulstartigen Rand eine feine
Riffelung, so daB sie bei jeder Bewegung des Fahrstiftes (und damit des Fahr-
armes) kleine Umdrehungen ausfiihrt, die proportional der Bewegungsrichtung
sind. Bei einer Bewegung senkrecht zum Fahrarm dreht sich die Rolle vollstindig

Bild 69a

(reines Rollen), bei Bewegung in Richtung des Fahrarmes gleitet die Rolle. Auf
der Zihlscheibe kann die Anzahl der Umdrehungen der MeBrolle abgelesen werden.
Die Ablesung kann mit Hilfe des Nonius auf Tausendstel einer Umdrehung genau
erfolgen. Bild 69a und Bild 69b zeigen Ihnen die praktische Ausfithrung eines
Polarplanimeters und getrennt fiir sich die PlanimetermeBrolle mit Nonius und
Zihlscheibe.

Wie Sie in Bild 69b weiterhin erkennen, erfolgt auch die Einstellung der Fahr-
armlinge mittels eines Nonius.

T'm nicht nur das Polarplanimeter gebrauchen zu kénnen, sondern um auch die
Wirkungsweise zu verstehen, sollen Thnen jetzt die Gedankengéinge vermittelt
werden, auf denen diese Vorrichtung beruht.
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Bild 69b

Sie betrachten hierzu die Elementarbewegungen, aus denen sich jede Bewegung
des Polarplanimeters zusammensetzt (Bild 70a).
Bewegen Sie eine Stange der Lange ! zwischen zwei Begrenzungskurven A4,
und BB, von einer Anfangslage AB in eine beliebige Endlage 4,B,, so kinnen
Sie die von der Stange iiberstrichene Flidche F folgendermaBen berechnen:
Sic denken sich die Bewegung in Teil- (Elemen-
tar-) Bewegungen zerlegt. Um z. B. von der An-
tangslage AB in eine benachbarte Lage 4, B, zu
kommen, verschieben Sie zuerst die Stange par-
allel zu sich und die kleine Hohe Ak aus der
Lage AB in die Lage 4,’B;. Dann drehen Sie
die Stange um B, in die gewiinschte Lage 4,B,,
wobei der kleine Winkel A ¢ iiberstrichen wird.
Wenn Sie diese Teilbewegungen — wie in Bild
70a angedeutet — bis zur gewiinschten End-
Bild 70a stellung 4,B, fortsetzen, so unterscheidet sich
die bei diesen Elementarbewegungen iiber-
strichene Fldche von der wahren Fliche nur durch die kleinen Segmente und
Dre‘ecke. Diese Abweichungen werden aber um so kleiner, je mehr Zwischen-
lagen eingeschaltet werden. Im Grenzfall (Zahl der Zwischenlagen strebt gegen
Unendlich) erhalten Sie aus

Flache jedes Teilparallelogramms =1-4h und

Flache jedes Teilsektors = % 2 Ap (4¢ im BogenmaB ge-
messen)

fiir die iiberstrichene Gesamtfliche
F= limZ'(l-Ah +3 lquo) =1 /”dh +3 0 do.
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Der Richtungssinn der Bewegung wird durch die Vorzeichen von di und dg
angegeben; und zwar sind alle Drehungen gegen den Uhrzeigersinn und alle
Verschiebungen d7% in Richtung des wachsenden d ¢ positiv zu zéhlen. entgegen-
gesetzte negativ.

Fallen Endlage und Anfangslage zusammen, z. B. wenn Sie eine geschlossene
Kurve umfahren, und fiihrt dabei die Stange keine volle Umdrehung um 360°
aus, so ist die Summe aller Drehungen Null, also ‘ / de =0.

Wie Sie aus Bild 70b ersehen konnen, iiberstreicht der Fahrarm [ bei einem vollen
Umfahren des Kurvenzuges 4, 4,, 4,, . .. 4 die vom Kurvenzug eingeschlossene
Fliche F nur einmal, wahrend die zwischen der zu messenden Fliche F und der

Bild 70b

Leitkurve B, B;, B,, ... B liegende Fliche vom Fahrarm zweimal, einmal im
positiven und einmal im negativen Sinne, iiberstrichen wird. Sie liefert deshalb
keinen Beitrag. Als Summe aller iiberfahrenen Flichen bleibt also nur die vom
Kurvenzug 4, 4,, 4,,... A eingeschlossene Fliche F erhalten:
F—=1{dh.

Sie erkennen in dem eben Dargelegten die Grundlagen der Konstruktion von
Amsler. Die Fliche F wird vom Fahrstift 4 umfahren. Dabei bewegt sich zwangs-
ldgufig der Fahrarm AB = I, mit dem im Gelenk B der Polarm.BP verbunden ist.
Das Gelenk B beschreibt als Leitkurve einen Kreis um den festliegenden Pol P.
Legen Sie den Pol P auflerhalb der Flidche F, so kann der Fahrarm AB keine
volle Umdrehung um 360° ausfiihren. Bei Erreichen der Endlage, die der Aus-
gangslage entspricht, ist dann f dep =0.

d? wird mittels der MeBrolle gemessen. Bezeichnen Sie den Umfang der MeB3-
rolle mit U, so entspricht jedem abgewickelten Stiick d% dieses Umfanges die
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Umdrehungszahl dn = —+. Hieraus folgt dA = U dn. Setzen Sie diesen Wert
fiir d% in den obenstehenden Ausdruck F =1 / dh ein, so erhalten Sie fiir die

zu messende Fliche
F=1[U-dn = Uz[dn.

Hierin ist f dn die gesamte Umdrehungszahl N, die am MeBwerk abgelesen
werden kann. Da U und ! Konstanten da2s Geridtes sind, konnen Sie noch Ul
gleich k setzen. Dann lautet die Formel fiir den Flicheninhalt der mittels Polar-
planimeter berechneten Fliche

F—=kN (61)

Noch einige Hinweise zur praktischen Verwendung des Polarplanimeters:

Es wire zeitraubend, wollten Sie vor jeder Messung das MeBwerk immer erst
auf die Nullstellung drehen (was bei der Ablesegenauigkeit von Tausendstel einer
Umdrehung nicht einfach wiire). Sie lesen deshalb N als Differenz der Endstellung
N, (2. Ablesung) und der Anfangsstellung N, (1. Ablesung) ab. Formel (61) be-
kommt dann die Gestalt

F =k(N;—N,) (62)

(F in mm? wenn U und ! in mm gemessen wurden).

Die Konstante U wird bei Fertigung des Planimeters angegeben, meist liegt dem
Planimeter eine Wertetabelle k¥ = f(I) = Ul bei. Sie konnen aber auch % durch
Umfahren einer bekannten Fliche (z. B. Kreisfliche) ermitteln. Nach (62) ist

p— T

N,—N,

Voraussetzung fiir die Anwendung von Formel (61) bzw. (62) ist, daB der Fahr-
arm keine volle Umdrehung macht, d. h., der Pol mu8 auBerhalb der zu messenden
Fliiche liegen. Ist die Fliche zu groB (auch bei maximal genommener Fahrarm-
linge [), so zerlegen Sie diese derart in Teilflichen, daB jetzt der Pol auBerhalb
der Teilflichen zu liegen kommt.
Um MeBfehler zu kompensieren, die dadurch auftreten konnen, daB die Achse
der MeBrolle nicht genau parallel zum Fahrarm steht, fiilhrt man eine zweite
Messung durch, nachdem man vorher Polarm und Fahrarm um das Gelenk B
nach der entgegengesetzten Seite durchgeschlagen hat (aus dem spitzen Winkel
ABP in Bild 67 wiirde z. B. ein iiberstumpfer Winkel werden).
Soll eine moglichst groBe Genauigkeit erzielt werden, so fithrt man die Messung
nochmals (eventuell auch im ‘entgegengerichteten Umfahrungssinn) durch und
bildet den (arithmetischen oder gewogenen) Mittelwert.
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Das Umfahren einer Fliche diirfen Sie nicht allzu langsam durchfiihren; denn
bei schwungvollem, ziigigem Durchfahren kompensieren sich erfahrungsgemi
Abweichungen von der Kurve besser.

Spezielle Anwendungen des Polarplanimeters mit Hilfe der verstellbaren Fahr-
armlinge ! sind ebenfalls moglich. Stellen Sie z. B. bei einem Diagramm [ auf
die Breite des Diagramms ein, so ist die vom MeBrollenumfang aufgenommene
Strecke UN die mittlere Hohe des flichengleichen Rechtecks mit der Grund-
linie [ (auf diese Weise kann z. B. der mittlere Dampfdruck aus einem vorgelegten
Indikatordiagramm schnell ermittelt werden). Auch andere Werte, wie statische
Momente, Trigheitsmomente usw., kinnen mit Hilfe von Planimetern berechnet
werden.

Zusammenfassung

Ist die Berechnung eines Integrals auf analytischem Wege nicht maglich und der
Integrand nur zahlenmiBig (als empirische Funktion) gegeben, so kann die
Simpsonsche Regel angewendet werden.

Als Instrument zur mechanischen Integration lernten Sie das Polarplanimeter
kennen. Es dient zur Bestimmung des Flacheninhalts einer geschlossenen Kurve.

13.6 Anwendungen zu den Integrationsmethoden

In diesem Abschnitt sollen Sie die erarbeiteten Integrationsmethoden bei der
Losung verschiedener Aufgaben verwerten. Da die Beispiele von der Art der in
Band 1, Kapitel 7, behandelten Aufgaben sind, bietet sich Thnen die Gelegenheit
zur Wiederholung. Vergegenwirtigen Sie sich, bevor Sie die einzelnen Beispiele
durchrechnen, noch einmal die grundsétzlichen Gedanken dieses Kapitels.

Lehrbeispiel 109
Berechnen Sie das Volumen eines abgestumpften Kreiskegels mit der Hohe b und
den Radien r und R als Rotattonskirper (vgl. Band 1, Ubung 96)!

Losung:
Wie in der angefithrten Ubung 96 erhalten Sie mit der begrenzenden Geraden
R—r
y=-——2z +r
4 2
fiir das Volumen V== / (E}}r z + r) dz.
0

Sie substituieren den linearen Ausdruck durch

R— d R —

woBtagy, S_Eor
h
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Umrechnung der Grenzen:

untere Grenze: 2z =0, u=r,
obere Grenze: <z =%, u = R.
R
ibt sich: L O Y PO Ll
Es ergibt sich: V=g |wdu=5"=3 o
r
wh B —1
V="g F=r

Sie werden feststellen, daB dieses Ergebnis anders als das der Ubung 96 aus-
sieht. Die Ubereinstimmung zeigt sich nach Durchfilhrung der Division
(R®*—1r%): (R—r7). Fithren Sie diese Rechnung selbst durch!

y Lehrbeispiel 110

Es sind die Schwerpunkiskoordinaten des in Bild 71
dargestellten Kreissektors mit dem Offnungswinkel 2o
und dem Radius r 2u berechnen (Winkel o im Bogen-
maf gemessen,).

o|
x4

Losung:

z-Achse: Da die Flache durch die z-Achse in zwei
symmetrische Teile zerlegt wird, muB8 der Schwer-
punkt auf der x-Achse selbst liegen. Es haben also
T, und damit ys den Wert 0.

y-Achse: Infolge der oben erwdhnten Symmetrie ist das statische Moment der
Gesamtfliche doppelt so groB wie das Moment des iiber der 2-Achse gelegenen
Teiles. Diese Halbfliche wird nun durch zwei Kurven nach oben begrenzt:
1. zwischen z = 0 und z = 7 cos « durch die Gerade y, = z tan c.

(Der Index 1 bei y soll hier die Begrenzungsfunktion des 1. Teiles kennzeichnen.)
9. zwischen £ =rcosa und z = r durch den Kreisbogen y, = Jr2 — 2.
Das statische Moment der Halbfldche ist dann gleich der Summe der statischen
Momente der beiden Teilfléchen:

rcosa

% Ty =facy_1dx +/wy2dx

Bild 71

0 TCOS @
reosa

= tan a/wzdx +fo72—w2dx.
Substitution fiir das Integral f z Yr2— z?da:
% =12 — 2%
du = —2zduz, xdx=—%du.
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Umrechnung der Grenzen:

obere Grenze: z=r, U =1r2—1r2 =0,
untere Grenze: 1 = cos ¢, U =12 —1r2cos?a = r2sina.
3 1 ’
1 238 |rcosa
-2—T,,—tana-§0 —'? Wdu

risin? a

Sie vertauschen im rechten Integral die Grenzen (Vorzeichenwechsell):

1 1r3sin'a
;l _ . 3 reosa 1 %
5 Ty=3gtane- 2 ) +2[u du
0
_ 1 g |roosa l 3 r*sin’a
= §tana T . + 3 Yu .
= % [tan e 13 cos? & + }/(r2 sin® &)?]
1 og . -
= 3 1°(sin & cos® & +- sin® )
3 3 3 3
= 13— sin & (cos? & + sin? @), cos? e 4 sin2 ¢ =1,
1

o T y = g sin c.
Das statische Moment fiir die Gesamtfliche hat danach den Wert
2r .
Ty = - sine.
Der Inhalt des gesamten Kreissektors mit dem Bogen b ergibt sich aus

=%br und b=r2c

zu
F=v¢
Damit erhalten Sie
gy _ 2, sine
o8 e’
Ys

Wollen Sie daraus den Schwerpunkt eines Halbkreises bestimmen, so miissen

. T .
Sie 2 =7z oder @ = 5 einsetzen.
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Lehrbeispiel 111
Wie grof} ist das Trigheitsmoment fiir den in Bild 71 dargestellten Kreissektor be
ziiglich der y-Achse?

Losung:
In Lehrbeispiel 110 haben Sie fiir diese Fliche bereits das statische Moment be-
ziiglich der y-Achse berechnet. Fiir die Aufteilung der Flidche und die Wahl der

dazugehorigen Grenzen gelten selbstverstindlich wieder die gleichen Uber-
legungen. Danach ist

% Jy fxzyl dz +fx2y2 dz

0 rco8 a

recosa

rcosa
——tana/aﬁdw +f:1:2]/r2——ac2dw
0 reosa
Das rechte Integral haben Sie nach den Gesichtspunkten zu losen, die in Ab-
schnitt 13.14 behandelt wurden. Es liegt hier der Typ « vor, also miissen Sie eine
neue Verdnderliche mit Hilfe der Sinus- oder Kosinusfunktion einfiihren. Da die
untere Grenze cos o enthdlt, wihlen Sie zweckmiBig = = 7 cos u.

Substitution: = 7COSU
dz = —rsinu du
obere Grenze: T=r, r =7 COS U, u =10
untere Grenze: T =7 608 ¢, 7 C0S &0 = T COS U, U =c
rcosa 0
% Jy =tana/w3 dz —rt [coszu sin® u du
0 a

Da im rechten Integral die obere Grenze kleiner als die untere ist, vertauschen
Sie die Grenzen unter Anderung des Vorzeichens des Integrals:

T OPS a a
—;— Jy =tane / »dx + 7'4/0032 u sin? % du.
0 0
Das rechte Integral 1iBt sich mit Hilfe der Beziehung sin?u — 1 — cos? w um-
formen und in zwei Teilintegrale zerlegen:

r COS a / a

Jy = tan « / Bdx + r4( [coszu du—/ cost u du)
0 o

Mit Hilfe der Formel (57) bekommen Sie dann

1
2

4

0

reosa a a \
1 . 3
Jy, = ana/ac‘*dx+'r4 </cos2udu———smucos3u 7y coszudu),
0 b
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rcosa " a
‘ ) o
%J,,= ta.na/ dz +% (/coszudu—smucos?'u’ )
. o
0

24 jreosa rd 1 . . e
= tan o — —i——[—(u+smucosu)——smucos3u!|
4 |, 4|2 Il
=T g + 1 (e + sin e cos cx) —sinacosaa}
T 4 [cose 2 ’

1 ré .
5 Jy =5 (@ + sinzcosa).
Fiir den gesamten Kreissektor erhalten Sie als- Triagheitsmoment

4 . . . .
Jy = % (2¢ + 2 sin « cos &) oder mit 2 sin« cos o = sin 2«

Jy =" (20 + sin 20).

Um hieraus das dquatoriale Trigheitsmoment des Vollkreises zu erhalten, haben
Sie @ =7 zu setzen:

rd . 1 4
Jy =§(2n+sm 2m) = art.

(Vergleichen Sie hierzu auch das. Ergebnis von Lehrbeispiel 109 aus Band 1.)

Lehrbeispiel 112

Welche Arbeit verrichiet ewn Wechselstrom wéihrend einer Pertode?

Loésung:

Der durch eine Leitung flieBende Wechselstrom 148t sich durch die Funktionen
u% = U sin ot und 1 = I sin (wt + @)

darstellen. Dabei ist » die. Momentan- und U die Maximalspannung, ¢ die Mo-

mentan- und I die Maximalstromstirke; ¢ stellt den Phasenwinkel zwischen

Spannung und Stromstérke dar. Das Produkt w¢ gibt die Leistung N des Wechsel-
stromes zur Zeit ¢ an:

N =ut = Ul sin wtsin (wt + ¢).
Die Arbeit d 4, die dieser Strom wihrend der kurzen Zeit d¢ verrichtet, ist gleich
dem Produkt aus N und di:
d4 = N di = Ul sin ot sin (ot + @) di.
Es ist nun unsere Aufgabe, die Arbeit zu ermitteln, die der Strom wihrend

einer Periode verrichtet. Die Dauer einer Periode sei 7T'. Die Zeit T konnen Sie
aus der Beziehung

berechnen.
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T
A =UI [sin wtsin (0t + ¢) dt
0

Zur Losung dieses Integrals verfahren Sie wie bei dem im Abschnitt 13.11 be-
handelten Integral [ sinmzsin nz dz.

Sie setzen

+
wl = 3 und wt+<;o=“2ﬁ,

also e=2wt+¢ und f=9¢.
Es ist dann
sin wit sin (0t + @) = —;— [cos ¢ — cos (2wt + ¢)]

und
T

T
A= -1;1 [cos (p/dt—-fcos QCwt + ¢) dtJ.
(1}

0
Das 2. Integral 148t sich mit Hilfe der Substitution u = 2wt + ¢ lésen:
Ul T
uI 0 ]

T 1 .
A= [tcos¢|0—2—wsm(2mt+<p)
Ul 1 . 1 .
=-—2—[Tcos¢p—%sm(2wT+<p)+2z;sm<p].

Aus 20T = 47 folgt sin (4w + @) = sin . Damit heben sich das 2. und das
3. Glied der eckigen Klammer gegenseitig. auf. Das Endergebnis ist damit

=U?ITcos<p.

Die durchschnittliche Leistung des Wechselstromes wihrend dieser Zeit ist

v _ 4 U1
N=T=—2—cos¢,
g

. I
oder mit Uit = und Iyt = ‘7—5

N = U.y - Lt - cos .

Ubungen
106. Wo liegt der Schwerpunkt eines Kreisabschnittes? Benulzen Sie dazu Bild 71!
107. Welche Koordinaten hat der Schwerpunkt des in Bild 72 dargestellien Kres-

ringstiickes?

Anleitung: Die Fliche des Kreisringstiickes entsteht als Differenz zweier Kreissektoren
mit den Radien R und r. Das statische Moment des Ringstiickes ist gleich der Differenz
der statischen Momente der beiden Sektoren.
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108. Wo liegt der Schwerpunkt der Fléche, die durch die erste Halbperiode der Stnus-
linie und die z-Achse begrenzt wird?

109. Berechnen Sie nochmals die Trighettsmomente J, und Jy des Trapezes aus
Ubung 105, Band 1! Verwenden Sie dabei die Integrationsmethoden.

110. Berechnen Sie das Flichentragheitsmoment des in Bild 72 dargestellten Kreis-
ringstiickes vn bezug auf die zur y-Achse parallele Schwerpunktachse! Vergegen-
wartigen Sie sich dazu noch einmal Lehrbeispiel 111 und Ubung 107!

7

@D

&

//(// 1___
|

Bild 72 Bild 73

111. Berechnen Sie die Trigheitsmomente der Fliche, die durch die erste Halb-
periode der Kurve y = sin 2z und die x-Achse begrenzt wird!

112. Lésen Sie mochmals Ubung 1S aus Band 1!

113. Eine Seilrolle soll durch Rotation eines Halbkreises mit dem Radius r um
etne Achse enistehen, die vom Kreismitlelpunkt den Abstand a > r hat. Wie
grof} ist das Volumen dieses Korpers (Bild 73)?2

14 Weitere Anwendungen der Integralrechnung

14.1 Bogenlinge von Kurven

14.11 Die Kurve ist durch eine Funktion in expliziter Darstellung ge-
geben. Die Linge eines Bogenstiickes kann durch die Sehne mit der Linge

V@eP +@oP = )1+ (44 4¢

angendhert werden (Bild 74). Dabei ist die Anndherung um so besser, je kleiner
Az gewidhlt ist.
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Setzen Sie nun diese Sehnen zu einem Streckenzug (Bild ,75) zusammen, so ist
dessen Linge

Sy s

wobei die Summe iiber den gesamten Streckenzug zu erstrecken ist, also iiber alle
Az, in die das Intervall @ < « < b eingeteilt ist. Strebt jetzt die Breite 4z aller
Elemente gegen Null, so erhalten Sie, auf Grund der Definition des Integrals als

" )

y P

ds, -!'Ly-f(x)

ay
o =T~y
IY]
ﬁL - —{ I P
x x
Bild 74 Bild 7

Grenzwert einer Summe, fiir die Linge der durch die Funktion y = f(z) ge-
gebenen Kurve zwischen z =a und z = b:

N b
o Yo+ (] a0 [+ (0

Sie sehen, daB bei dieser Grenzwertbildung gleichzeitig aus dem Differenzen-

quotlenten der leferentlalquotlent =y’ hervorgegangen ist.

Der urspriingliche Ausdruck Vl + A x hat dabei die Form Vl + dy dz
angenommen. Wir nennen diesen Ausdruck ds und wollen uns nun uber seine
Bedeutung als Bogendifferential Klarheit verschaffen (vgl. auch Kapitel 10).
Zundchst aber wollen wir ihm eine andere Form geben:

ds = yda2® + dy2
Sie erkennen sofort, daB sich ds als Hypotenuse eines rechtwinkligen Dreiecks
mit den Katheten dz und dy darstellen 1a8t. Betrachten Sie dazu noch einmal
Bild 74. Das Bogendifferential ist nichts anderes als das Tangentenstiick iiber
dem Bogenstiick 4s..

Von dieser Tatsache ausgehend, konnte _man den Ansatz der obenstehenden
Formel folgendermafBen gestalten: Wir nahern die Linge des Bogenstiickes 4s
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besser, je kleiner dabei 4z = dx gewdhlt wird. Die gesamte Linge erhalten Sie
dann als Integral iiber das Bogendifferential

fofige] e

In der letztgenannten Form des Ansatzes finden Sie die Grundgedanken aus der
Zusammenfassung zu den Abschnitten 7.1 bis 7.4 (Band 1) wieder.

Lehrbeispiel 113
Wie grof3 ust die Linge eines Viertelkreises mit dem Radius r?

Logung:

Der Kregis ist durch die Thnen aus der analytischen Geometrie bekannte Funktion
y==+y2—a*

gegeben. Benutzen Sie den im I. Quadranten liegenden Viertelkreis, so haben Sie

das positive Vorzeichen der Wurzel zu nehmen.

Sie berechnen zunichst

r__ T
N

r
yr—a

T+ =
Also wird

V2 — a2

b=r r
s= [VTHyrdo=r [ 22,
a=0 0

.oz |r
s = r are sin —
L

= r (arc sin 1 — are sin 0),

s=1r2
=r3.

14.12 Die Kurve ist durch eine Funktion in Parameterdarstellung gegeben.
Uber die beiden Differentialquotienten

dz . dy .

=2 und =Y
erhalten Sie die Differentiale

dz = zdf, dy = ydt.
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Damit wird das Bogendifferential ds zu
ds = Y32 de2 + 2 de?
=V + 2 dt.

ty
Die Integration ergibt | s = / Vi £ g dt (64)
4

Lehrbeispiel 114

Es ist die Linge eines vollen Zykloidenbogens zu bestimmen. Der Zykloident ogen
wird durch

z =r(t—sint), y =r(l—cost)
beschrieben, wenn t das Intervall von O bis 27 durchliuft.
Lésung:

Es ist & =r(1l—cost), ) = 7 8in ¢,

% 4 y2 =1%(1 — 2 cos ¢ + cos? { + sin?{)
= 27%(1 —cos t).
Gehen Sie jetzt schon zur Integration iiber, so bekommen Sie ein Integral mit
einem irrationalen Integranden

2n
$ =r]/§f]/1—costdt.
0
Zur Losung dieses Integrals mu zuerst die Irrationalitit beseitigt werden. Mit
Hilfe der aus der Trigonometrie bekannten Formel

1—cose = 2sin2%
wird 82 4 g = 4P sin® .
s
Damit ist ds = y4% + g2 dt = 2rsin % dt.

Dabei ist die Wurzel mit positivem Vorzeichen zu ziehen, weil mit wachsendem ¢,
also d¢> 0, auch ds positiv sein soll.
Damit die Zykloide einmal beschrieben wird, mufl ¢{ die Werte von 0 bis 2z

durchlaufen.
2n

S TP ot
s = 21'”/ sin dt  Substitution: U=
0 di =2du
obere Grenze: t=2m wu=n
untere Grenze: =0, u=20
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E 4
s=4rfsinudu
(1]

=—4rcosu ’"=—4r(cosn——cos0) =—4r(—1-—1)

s=8r °
Die Linge des Zykloidenbogens ist demnach gleich dem vierfachen Durchmesser
des abrollenden Kreises
Lehrbeispiel 115
Welchen Weg hat ein mit der Anfangsgeschwindigkeit v, waagerecht geworfener
Kirper in der Zeit T zuriickgelegt?
Lésung: _‘J _
Die Bewegung des Korpers 148t sich in zwei Teil- -
bewegungen zerlegen (Bild 76):
a) waageorecht: gleichformige Bewegung mit der

Geschwindigkeit v,, %Yo
b) lotrecht: freie, d. h. gleichmaBig beschleunigte
Fallbewegung. vyeat\Y
Nach der Zeit ¢ hat der Korper zuriickgelegt: dl
a) waagerecht: z = v,t, Bild 76

b) lotrecht: Yy = —;— gt2.

Damit haben Sie die' Parameterdarstellung des waagerechten Wurfes.
Zur Berechnung des Weges miissen Sie nun die beiden Ableitungen & und g
bilden. Da der Parameter ¢ hier gleich der verstrichenen Zeit ist, stellen % und y
nichts anderes als die beiden Geschwindigkeitskomponenten v, und v, dar,
wihrend

ds = Va2 + 92 dt = Vo2 +n2dt =vdt
ist, wobei v die GroBe der augenblicklichen Geschwindigkeit wiedergibt.

Mit & = vy, y =gt
wird
Va2 + 52 = Yve® + 28,
T
s = [ Voo + 22 dt Substitution: w =gt
0 dt = % du

obere Grenze: (=T, u=¢gT

untere Grenze: (=0, u =
9T

= —gl]— /']/1_)_05_4— u? du.
0
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Dieses Integral haben Sie im Abschnitt 13.14, Fall ) berechnet. Sie miissen
lediglich z durch u und a durch v, ersetzen.

uz 4 - ° In (u + Jv2 + uz)}

Uy, C|
2 1n gT+]1,0 —|—gT J
_.. %

1 e
Ty \gT Vog2 + g2 T2 + v,

14.13 Die Kurve ist durch eine Funktion in Polarkoordinaten gegeben.
Sie konnen diesen Fall sofort auf den in 14.12 behandelten Fall zuriickfiihren,
wenn Sie bedenken, daB zwischen den kartesischen Koordinaten z, y und den
Polarkoordinaten , ¢ der Zusammenhang ’

T =170C0SQ y =rsin @
besteht. Sie bilden daraus die Differentiale von z = z(r, ¢) [vgl. Abschnitt 12.2
Formel (41)]:

oz oz

=cospdr—rsinpde
und von y = y(r, ¢):

dy aydr-{—ayd(p

=sin ¢ dr + 7 cos ¢ dg.
Mit diesen Differentialen wird
ds = yda? + dy?
— V@ T
(Y e
ds = ]/(dw +rde.

Durch Integrieren erhalten Sie hieraus

® O
s = f /2 (4 dg (65)
. l (dw

Lehrbeispiel 116
Berechnen Sie die Bogenlinge einer Archimedischen Spirale!

Losung:
Eine Archimedische Spirale (Bild 77) erhalten Sie beispielsweise als Bewegungs-
kurve der Laufkatze eines Drehkranes.
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Die Bewegung der Laufkatze kann man sich aus zwei Teilbewegungen zusammen-
gesetzt denken:

a) Drehbewegung des Kranes
Dreht sich der Arm des Kranes mit der Winkelgeschwindigkeit ¢, so hat er

nach ¢ Sekunden den Winkel ¢ = ot iiberstrichen (w = const.).

yi

Bild 77

b) Geradlinige Bewegung der Laufkatze
Beziiglich des Dreharmes bewegt sich die Laufkatze geradlinig mit der Ge-
schwindigkeit ¢ und legt so innerhalb von ¢ Sekunden den Weg r =c¢-¢
Meter zuriick (¢ = const.)

Aus den Teilbewegungen
@ = wt und r=c-t
eliminieren Sie ¢ und erhalten
[
r= ; ®.
Dies ist die Gleichung der Archimedischen Spirale.

Sie lautet allgemein
' r=ko (k = const.).

Damit ist

also
ds= l/ 4 (g_;)z dop = l/ ({;)2902 + (%)2 do = % V¢ + 1de.

Fiir eine Drehung von ¢, bis ¢, ergibt sich
17



-g/vaqua

In(p+ 19 + 1)+ £ 1g? +1]

%

T
MR E W (S Ry s P Sy g |
o 2,q,_|_}/_—+1 2 2 2 1

Bei einer vollen Umdrehung ist mit ¢; =0 und @, =2z
g=2 ln(27t +1/4n2 +1) +nV4n2+1]

w

Lehrbeispiel 117
Eine logarithmische Spirale wird durch die Funktion r = rye®?® gegeben. Wie grof
18t die Linge der Spirale zwischen @, und @,?

Lésung:
T =1r,e%?
%—é = r,ae’”
Y+ (30 = nee Vit e
Nach Formel (65) ist
Pa
s=1,71+ azj e dg Substitution: u=ag
o de = 47‘1‘— du

obere Grenze: P=@, U=0ag,
untere Grenze: =@, U=ae,

a@,
=%—}/1+a2fe“du

agy
= % ¥ 14 a2 (e3P — e2®),

Dem Ergebnis kinnen Sie noch eine andere Form geben, wenn Sie beachten, daB
r, = 1,6*" und dementsprechend r, = r,e%?: ist:

11+a2

§ = (re—m)-

Die Bogenlinge der logarithmischen Spirale ist demnach der Differenz der
Radiusvektoren proportional.

Die Eigenart dieser Kurve besteht darin, daB sie alle Radiusvektoren unter dem
gleichen Winkel y schneidet. Wir wollen diese Tatsache beweisen (Bild 78).
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Mit

T =17,e%9,
wird nach Formel (34)
r 1
tan p = P
bzw.
cot p = a.

Da a eine die Form der Spirale bestimmende Konstante ist, ist auch der Winkel v
konstant, wie oben behauptet wurde. Wenn Sie nun noch beachten, daB

V1+a2=]/1+cot21p==.—1——

sin y

7}

Bild 78 Bild 79

ist, kénnen Sie das Ergebnis fiir die Bogenlinge der logarithmischen Spirale

umformen zu

Ta—"

cosyp

Ist speziell ¢, =0, also r; =7, und ¢, = ¢ (dementsprechend 7, =r), dann
nimmt s die einfache Form

2

r—"7,
S =
005y

an. Mit Hilfe dieser Beziehung konnen Sie leicht die Linge einer logarithmischen
Spirale zeichnerisch bestimmen.

Betrachten Sie dazu in Bild 79 das Dreieck PQR. Der Punkt ¢ entsteht als
Schnittpunkt des Kreisbogens vom Radius 7, (Mittelpunkt im Ursprung) mit
dem Radiusvektor OP = r. Der Punkt R ist der Schnittpunkt der Senkrechten
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zu OP im Punkt @ mit der in P angelegten Tangente. Im Dreieck PQR gilt

cosy =28 =TT,
PR PR
ﬁz = 'f_":__fg = 8
cos ’

Die Strecke PR hat also die gleiche Linge wie der Kurvenbogen P,P.

In der Technik findet die Tatsache, daB der Schnittwinkel der logarithmischen
Spirale mit allen Radiusvektoren konstant ist, vielfache Anwendung (z. B. bei
der Blechschere, beim Friser usw.).

Ubungen
114. Wie lang vst der Bogen der Kettenlinie y = m cosh % von threm tiefsten Punkt
bis zum Punkt (z,; y,)?

115. Bestimmen Ste die Bogenlinge der Kreisevolvente, die bei der Abwicklung eines
Halbkreises (Radius r) entsteht!
(Kreisevolvente: € =r (cost +isint), y=r(sin{—tcost)).

116. Welche Linge hat der volle Bogen der Kardioide r = 2a(1 — cos ¢)?

14.2 Schwerpunkt von Kurvenstiicken

Nach der Einfiihrung des Bogenelementes gelingt es nun, auch den Schwerpunkt
eines Kurvenstiickes zu berechnen. Arbeiten Sie zuvor noch einmal die grund-
sitzlichen Ausfithrungen des Abschnittes 7.2 (Band 1) durch!
Sind z und y die Abstinde eines Bogenelementes ds von der y- bzw. z-Achse,
so stellen

A7, = y ds, dTy =z ds
die statischen Momente des Bogenelementes ds beziiglich der beiden Achsen dar.

Als statische Momente des gesamten Kurvenstiickes s folgen daraus
T,,=fyds, Ty=[xds.

Ist der Kurvenbogen durch die Funktion y = f(x) gegeben, so setzen Sie wieder
ds =1 4 y’2 dz. Es ist dann

H b
Tz=fy]/1+y"2dz und Ty=f$]/1+y’2dx.

Die Schwerpunktskoordinaten berechnen sich damit zu
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b
/ml/ 14 y?de
I = a——s— (66a)
b
fy V14 y'2dz
wobei
b
S =f}'| “+ ylz dz
ist. ‘

Als besonders einfaches Beispiel soll zundchst der Schwerpunkt einer Strecke
berechnet werden, der sich natiirlich auch mit den Mitteln der Elementarmathe-
matik ermitteln 148t. Sie kénnen also das Ergebnis auf einfache Weise bestatigen.
Lehrbeispiel 118

Wo liegt der Schwerpunkt der Strecke P,P,, wenn Py(2; 3) und P,(6; 11) gegeben
sind?

Lésung:

Zunichst stellen Sie die Funktionsgleichung der durch diese beiden Punkte ge-
henden Geraden nach der Zweipunktegleichung auf:

y—3__1—38
z—2 6—2°
y=2z—1.
Daraus ergibt sich
y =2

V1+y2=75
und damit die statischen Momente

6 6
T, =15 [ @z—1)ds, Ty =75 [z da,
2 2
6 6
T, =V5 (3, 7, =Y,
T, = 2875, Ty =16 V5.

Die Lénge der Strecke betragt

6
=475.
2

Die Formel fiir die Streckenlinge der analytischen Geometrie fiihrt zum gleichen Ergebnis.

6
s=}/3fdx=]/‘5w
2
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Aus den statischen Momenten und der Streckenlinge ergeben sich dann die
Schwerpunktskoordinaten zu

[
[o2]
P

=4 =—= =1,
=’ ys 4 S

v

Der Schwerpunkt liegt in der Mitte der Strecke.

Fiir das folgende Beispiel ist die Verwendung der Integralrechnung unbedingt
erforderlich, denn es handelt sich dabei um eine gekriimmte Linie.

Lehrbeispiel 119

Es ist der Schwerpunkt eines Kreisbogens mit dem Offnungswinkel 2¢ und dem
Radius r zu ermitteln (Bild 80).

Losung:

Sie wihlen das Koordinatensystem wie in Bild 80. Da der Mittelpunkt des Kreises
im Ursprung liegt, wird der Kreis durch die Funktion y = 7% — x? dargestellt.
Achten Sie dabei darauf, dal die Wurzel positiv
vh und negativ zu ziehen ist, und zwar gilt fiir die
A obere Hilfte des Kreises das positive, fiir die
e untere das negative Vorzeichen. Da die z-Achse
e fiir den Kreishbogen Symmetrieachse ist, entfillt
die Berechnung von ygs, denn der Schwerpunkt
muB immer auf einer Symmetrielinie liegen:
N Ys = 0.
AN Verfahren Sie nach Moglichkeit immer so, daf Sie
als die eine Koordinatenachse eine erkennbare
Bild 80 Symmetrielinie wihlen, entfdllt doch dadurch
die Berechnung einer Schwerpunktskoordinate.

xy

Jetzt miissen Sie sich noch Klarheit iiber die Wahl der Integrationsgrenzen ver-
schaffen. Aus Bild 80 lesen Sie ab:

untere Grenze: z; =rcosc«, obere Grenze: z, =17.

Anstatt nun T', fiir den Kreisbogen mit dem Offnungswinkel 2 zu berechnen,
nehmen Sie das Zweifache des statischen Momentes der oberen Hilfte (Offnungs-
winkel c).
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r

T
Ty=27f}7[t—_a;§d$

reosa

= —2r Jr2 — a? '

rcosa

= — 27 (0—}r*—r2cos?a)
Ty =27%sinc
Die Bogenlidnge betrdgt, wenn « im Bogenmal angegeben wird,
s =712

Damit erhalten Sie fiir den Schwerpunkt:

rsine
Ts = —5 > Ys =

e

Ist speziell der Schwerpunkt des Halbkreisbogens zu ermitteln, so setzen Sie
2¢ =7 bzw. o = % in die gefundene Formel ein:

. T
r sin —

zs = —=2 = 27 0,63667, ys=0.

Ubungen

117. Weie lauten die Formeln zur Ermittlung etnes Kurvenschwerpunkies, wenn die

Kurve in der Parameterdarstellung
' @ = (1) y=y@®

gegeben ist?

118. Bestimmen Sie den Schwerpunkt etnes vollen Zykloidenbogens! (Zykloide:
z =r(t—sinf); y =r(I—cost).)

119. Stellen Sie die Formeln zur Ermiltlung des Trigheitsmomentes einer Kurve
auf, die in der expliziten Form gegeben 1st!

120. Wie grof st das Trigheitsmoment des in Bild 80 dargestellten” Kreisbogens
in bezug auf die y-Achse?

14.3 Mantelfliche von Rotationskorpern

Auch die Mantelflichen von Rotationskérpern lassen sich leicht mit éinfachen
Integralen berechnen. Die Kurve y = f(x) liefert bei Rotation um die z-Achse
(Bild 81) die Mantelfliché eines Rotationskorpers. Das Kurvenstiick 4's erzeugt
bei der Rotation einen ,,Reifen*, dessen Fliche

AFy =~ 2ry As
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y betriagt. Ersetzen Sie 4s ndherungsweise durch
ds, so erhalten Sie als Flachenelement der
Mantelflédche

32 y=ft) dFpy = 2nyds.

Damit hat die gesamte Mantelfliche die GroBe

Fa =2z [yds (67)

L45)
>¥

7 & 5
Bild 81 Das Integral ist iiber das Kurvenstiick s zu
erstrecken, das die Mantelfldche erzeugt.

Ist die Kurve in der expliziten Form y =f(x) gegeben, so wird mit
ds=V11+y2dz

b
Fy = 27:/3/]/1 + y?dx (67a)

Die Formel (67) bzw. (67a) enthilt die Ihnen aus der Stereometrie bekannte
1. Guldinsche Regel.

Losen Sie namlich die fiir die Berechnung der Schwerpunktsordinate eines
Kurvenbogens aufgestellten Formel (66b)

b
ny1+y"da;
a

s

Ys =
nach dem Integral auf, so ergibt sich
b
fy 1+ y2de=yss.

Nach Multiplikation der Gleichung mit 2z folgt damit aus (67a) die 1. Guldin-
sche Regel:

Fy=2nyss (68)

Achten Sie darauf, daB ygs die Ordinate des Schwerpunktes der erzeugenden
Kurve ist!
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Lehrbeispiel 120

Es ist die Mantelfliche des in Band 1, Abschnitt 7.1 behandelten Kegels zu berechnen
(vgl. Band 1, Bild 91).

Losung:

Erzeugende Kurve: Y= %

z Yy =
T+ yt= B+ R =4

h
Fy= 2n»1;;/xdw
0
= 11;: h?
Fy =nRs

Lehrbeispiel 121
Wie grofs ist die Mantelfliche der in Band 1, Lehrbeispiel 100 behandelten Kugel-
schicht (Kugelzone)?

Losung:
M = 2 __ 2 ’ —_ x
Erzeugende Kurve: y=+yrt—z Y g
T+9y?2 =
. V y Vrt — a2
at
Fy= 2::7/ [re — 2 W ==
a+h
Fy= 2m’fdx
FM = 2%1'}1

Im Endwert ist weder a noch r, L baw. 74 zu finden. Die Mantelfliche ist also nur
von der Dicke h der Schicht abhiingig, ganz gleich, an welcher Stelle sie heraus-
geschnitten ist.

Setzen Sie h = 2r, so erhalten Sie die Oberfliche der Vollkugel: F, = 4xr2,

Lehrbeispiel 122
Wie grof vst die Oberfliche eines gestreckten Rotationsellipsoids? (Das gestreckle

Rotationsellipsoid entsteht durch Rotation der durch die Funktion y = + Tl;- Va2 — a2
gegebenen Halbellipse um die z-Achse.)

Losung:
. _ b o ’ _bit_
Erzeugende Kurve: y=+4 ya? — 2 y=— aVa? — a?
, — (a® — B?) 22
1492 =% aa(gza__zz))z
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Aus der analytischen Geometric wissen Sie, daB bei der Ellipse a2 — b2 = e?
ist. Lesen Sie noch einmal iiber die geometrische Bedeutung von e nach!

, a‘_ezz
1+y2=m_%2)

Fo = ?fTb/Vaz_xz fal—eat 4,

]/a,’ —

Priifen Sie nach, ob der Integrand wirklich eine symmetrische Funktion ist und
die Grenzen geindert werden diirfen. Das Integral losen Sie durch Einfithrung
einer neuen Verédnderlichen.

Substitution: % =ex, dz = - du
untere Grenze: z=0, U =
obere Grenze: z =a, U = ea

= 4”1’ [Va“ —utdu

Sie kénnen die in Abschnitt 13,14 hergeleitete Losung
f yaF —Edr =" arcsin & + £ yaf — a2 4 C

verwenden.
Sie miissen fiir unsere Aufgabe ¢? durch a* und z durch u ersetzen. Dann wird
4nb ( U 3 | ¢4
= ATy N
Fo =5 5 arc sin 5 + 5 a u)io
2nba? . e 2nb 9
= ""—arcsin _ 4+, Ya* — e2a2.

Nun ist aber Ya*— ¢2a® = a ya® — ¢ = ab und damit
Fo = 213_“_ arc sin — + 27h2.

Lehrbeispiel 123

Es ist die Oberfliche einer rotierenden Fliissigkeit zu berechnen.

Lésung:

Bild 82 zeigt Ihnen den Schnitt durch ein um die Mittelachse rotierendes, gefiilltes
GefiB. ZweckmiiBigerweise legen wir den Ursprung des Koordinatensystems in
den Scheitel der Kurve.
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o) Aufstellung der Kurvengleichung
An dem Fliissigkeitsteilchen mit der Masse m im Punkt P greifen folgende
Krifte an:

1. das durch die Erdanziehung hervorgeru- J %
fene Gewicht mg,

2. die infolge der Rotation auftretende Zentri-
fugalkraft m w?z (0 =Winkelgeschwindig-
keit).

Beide Krifte werden zur Resultierenden R

vereinigt. Aus der Physik wissen Sie, daB

sich die Oberfliche einer Fliissigkeit stets

-
-

-

)
I’i @
| | NNNNNN\N

[/

]

senkrecht zu der auf sie einwirkenden Kraft
einstellt. Das heifit in diesem Fall, daB die
Tangente an die zu bestimmende Kurve im
Punkt P senkrecht auf R stehen muB.
Der Winkel zwischen der Tangente und der
Horizontalen sei . Dieser Winkel tritt noch Bild 82

einmal zwischen der Kraft mg und der Re-

sultierenden R auf. Fiihren Sie selbst den Beweis iiber die Gleichheit dieser
beiden Winkel!

Aus Bild 82 liest man unmittelbar ab:

AAAANANANANNNNNNNNANNNANNN
P ~
o ——f

N

N\

YL LLidd s ddr i /2,

mols _ oz
mg [

tan ¢ =

Nun ist aber andererseits

tan e = dy also - =%
dz»

oder dy= %2 zdz.
Durch Integration finden Sie schlieBlich
w?
fdy = ?‘/xdx,
w2
Yy = ‘;—g 2% + C.

Da die Kurve durch den Ursprung des gew%ihli:en Koordinatensystems geht, muf
die Integrationskonstante C = 0 sein. Damit ist endgiiltig

w® o
= - X°.
) 2g

Die Fliissigkeitsoberfliche nimmt also die Form eines Paraboloids an.
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B) Ermittlung der Oberfliche

Sie konnen auf dieses Brispiel nicht unmittelbar die Formel (67a) anwenden.
Wihrend bei der Aufstellung der Formel die z-Achse als Drehachse festgelegt
wurde, ist hier die y-Achse Drehachse. Die Umstellung der Formel ist nicht weiter
schwierig. Sie brauchen nur die Buchstaben x und y gegenseitig zu vertauschen,
so da jetzt y die Integrationsveranderliche ist. Selbstverstindlich miissen dann
die Grenzen des Integrals ebenfalls y-Werte sein:

h
Fy =2nfo1 Totdy.

Hierin ist z’ der leferentlalquotlent der Umkehrfunktion, der sich aus
der oben aufgestellten Bezwhung d 2% ergibt. Es ist
dz _ _1_ _ .9
dy dy oz’
dz
. 73 1 2
und damit Y1+ o2 l/xz + (90_‘,

2V +a?=a® +

Nun hatten wir aber festgestellt, dal elgentheh y die Integrationsverdnderliche
ist, also muB entweder x durch y oder dy durch dz ausgedriickt werden. Der
zweite Weg ist hier einfacher. Denken Sie daran, daB dies der Einfiihrung einer
neuen Integrationsverdnderlichen gleichkommt. Man darf also nicht vergessen,
die Integrationsgrenzen auf die Verdnderliche z umzustellen.

Die erforderliche Beziehung zwischen den Differentialen war weiter vorn durch
dy = a—;—’ zdz

gegeben.

Aus Bild 82 148t sich ablesen, daB die neue Integrationsverdnderliche z von 0

bis r laufen muB.
Es ist also

Fo=27zagﬁ[w zz-i-g%dm
0

= 2_; / zYotz® T ¢ da.
0
Das vorliegende Integral 148t sich nach den im Abschnitt 13.13 aufgestellten
Grundsédtzen losen.
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Substitution: Umrechnung der Grenzen:

u=owt2® +¢ z=r, U = wir? 4 ¢
gg=2w4a: z =0, u = g*
1

w'r® 4 gt

2 ‘w‘ri 2
Fo=£)—4/u%du= nugi i

3gw* fgr

g

Fo = gom: [0 + ¢ — ¢l

Ubungen

121. Berechnen Sie die Mantelfliche und das Volumen des Kirpers, der durch

Rotation der Kettenlinie aus Ubung 114 wm die x-Achse entsteht!

122. Wie lauten die Formeln fiir die Ermittlung der Mantelfliche und des Volumens

fiir Rotationskorper, bei welchen die y-Achse Drehachse sein soll?
123. Wie grof ist die Oberfliche der in Ubung 113 behandelien Seslrolle?

124. Berechnen Sie die Oberfliche des Korpers, der bet der Rotation der ersten Halb-

periode der Sinuskurve um die x-Achse entsteht.

15 Weiterer Ausbau der Integralrechnung

15.1 Flichen, deren Begrenzungskurve in Polarkoordinaten gegében ist

In den Lehrbriefen iiber analytische Geometrie und Differentialrechnung haben
Sie golernt, daB eine Kurve auch durch eine Funktion r = 7(p) zwischen den

Polarkoordinaten ¢ und r gegeben werden kann.
Sie sollen nun den Inhalt der vom Radiusvektor »
zwischen den Winkeln ¢; und ¢, (im BogenmaB
gemessen) iiberstrichenen Fliche F -ermitteln.

Sie teilen dazu die Flache in keilformige Streifen
mit dem Offnungswinkel 49 = de (Bild 83).

Bild 84 stellt die VergroBerung eines solchen Keiles
dar. Wihlen Sie dp geniigend klein, so kionnen Sie
den Inhalt AF des Flichenelementes durch den
Inhalt dF des Kreissektors mit dem Radius 7 und
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dem Bogen b =r d¢ ersetzen.

rertg) F=1 f rde (59)

% Lehrbeispiel 124
Berechnen Sie den Inhalt des Krerses mit
Bild 84 dem Radius r = a!

Lésung:

Die Polargleichung des Kreises lautet: r = const. = a.

Lehrbeispiel 125

Berechnen Sie fir den Kreis mit dem Maittelpunkt (a;0) und dem Radius a die
vom Radiusvektor diberstrichene Fliche, wenn ¢ von ¢, bis @, lduft (Bild 85).

Bild 85

Lésung:

Im rechtwinkligen Dreieck OAP gilt: cos ¢ = 2% - Damit erhalten Sie die Glei-
chung des Kreises in Polarkoordinaten:

7 = 2a cos ¢.
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Fliicheninhalt: F=1 f rde

= 2a*f'=os’ pdy
?1

=a®(p + sin:pcosq:)i"
[

= a? [, + sin @, cos ¢, — (¢; + sin @, cos )]
Fiir ¢, = — @, folgt daraus speziell
F = 2a® (@4 + sin @, cos g,).

Besonders wichtig ist diese Art der Flichenberechnung fiir Kurven, deren Glei-
chung sich in Polarkoordinaten sehr einfach darstellen 138t.

Lehrbeispiel 126

Wie grof st die von der Archimedischen Spirale (siehe Lehrbeispiel 116) ein-
geschlossene Fliiche, wenn der Kranarm die Anfangsstellung @, und die Endstellung @q
hat?

{

Lésung:
Archimedische Spirale: r = % @
Ps
1
[}
1agpda o
= ?E%‘ :‘=m(%3—‘?’13)

Bei einer vollen Umdrehung (¢, = 0, ¢, = 2z) wird von dem Kranarm die Fléiche
F =20 (828 —0)

4cn®
F= 3w?

iiberstrichen.

Lemmniskale

Definition der Lemniskate: Die Lemniskate (Bild 86) ist der geometrische Ort
aller Punkte, fiir die das Produkt der Abstinde r, und r, von den beiden festen
Punkten F,(— a;0) und Fy(4 a;0) den konstanten Wert a® besitzt.
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Wenden Sie auf die Dreiecke F,0P und OF,P (Bild 86) den Kosinussatz an, so
erhalten Sie

AF,0P: 7% = a® + 12— 2ar cos (r — ¢).

Bild 86
Da cos (m — ¢) = — ¢cos ¢ ist, wird
72 =a%+ 12+ 2drcos g
AOF,P: 7,2 = a? + 12— 2arcos ¢

Die Definition der Lemniskate besagt: r,r, = a® oder 7,%r,2 = a%. Es ist also
7,27, = (a® + 12 + 2ar cos @) (a® + 12— 2a7 cos p) = al.

Daraus ergibt sich:
(a® + 72> — 4a21% cos? ¢ = at,
at 4 20%7r% 4 r* — 4a?r? cos? ¢ = a4,
C 74 —2a%72 (2c0s2p — 1) = 0.

Mit 2 cos2 ¢ — 1 = cos 2¢ wird daraus
74— 24272 cos 29 = 0.
Dividieren Sie noch durch 72, so erhalten Sie als Gleichung der Lemniskate
r? = 2a%cos 2 p.
Fir ¢ =—7Z—ist r =0,
fir p= 0 ist r=a}?,
fiir ¢=+Zist r=0.

Wenn also ¢ den Winkelraum zwischen — —Z— und + -'Z durchlduft, iiberstreicht

demnach der Radiusvektor die rechte Lemniskatenschleife. Die linke Schleife
wird fiir ?% IS %ﬂ iiberstrichen. Fiir alle anderen Werte von ¢ erhalten Sie

keine reellen Werte fiir 7, denn’ dafiir ist cos 2¢ negativ.
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Der Flicheninhalt einer Lemniskatenschleife 148t sich nun bestimmen.
+
F =a? / cos 29 de

t
4

cos ?(p do

Il

DO

gN
ey

Substitution: w=2¢
du 1

Umrechnung der Grenzen:

untere Grenze: ¢ =0, u=0
oberec Grenze: ¢ = %, U = %
F'=a*[cosudu=a*sinu
) 0
F = q?
Ubungen
125. Berechnen Sie fiir den Kreis mit dem Mittelpunkt (6; 0) und dem Radius
r = 6 die vom Radiusvekior iiberstrichene Fliche, wenn @ von ¢; = — % bis

@y = 5 lauft!

126. Berechnen Sie den Inhalt der Kardiovde (Herzkurve) (vgl. Abschnitt 9.12).
r =2a (1 —cos ¢)/

15.2 Flichen, deren Begrenzungskurve in Parameterdarstellung gegeben ist

Bei den technisch wichtigen Kurven (Zykloide, Evolventen usw.) ist die Parameter-
darstellung wesentlich einfacher als die explizite Darstellung. Insbesondere
vereinfacht sich dabei erheblich die Differentiation und Intcgration.

Wie ist nun der von einer Kurve eingeschlossene Flicheninhalt zu berechnen,
die in der Parameterdarstellung « = z(f) und y = y(f) grgeben ist? (Statt der
Funktionssymbole ¢(¢) und y(f) schreiben wir in iiblicher Weise z(f) und y().)

Fiir den Flicheninhalt der vom Radiusvektor iiberstrichenen Fliche gilt nach (69)
1
F = ? f 72 d¢.
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Zwischen den kartesischen Koordinaten z, y und den Polarkoordinaten besteht
die Beziehung

Z =1Co8 @, y =rsin @, ta.n<p=%.

Sind nun z und y als Funktionen von ¢ gegeben, so hingt infolge der Beziehung
tan ¢ = —g- auch ¢ bzw. tan ¢ von ¢ ab. Demnach konnen Sie beide Seiten von

tan ¢ = % nach ¢ differenzieren und erhalten, wenn Sie fiir :—i’ und ?1—‘: kurz y

bzw. & schreiben:

1 do__ gx—yd

Setzen Sie in den Nenner z = r cos ¢ ein, 8o wird
1 do_ gz—y2

costg di  +costg -

Nach Multiplikation mit 7% cns? ¢ bekommen Sie
d , .
. d—'f =yr—ys

oder 2. de =(yz—yi)dt

Setzen Sie diesen Wert in (69) fiir 72 d ¢ ein, so ergibt sich als Flicheninhalt einer
vom Radiusvektor iiberstrichenen Fldiche, deren Begrenzungskurve in der
Parameterdarstellung gegeben ist:

1y
F= %f(yx— y3)dt (70)

Stellt « = z(t), ¥y = y(t) eine geschlossene

Kurve dar, ist also z(ly) = z(f,) und

y(ty) = y(t,), so gibt (70) den Flichenin-
¥=x(t) halt innerhalb der Kurve. Durchlduft nam-
lich ¢ den Bereich von ?; bis #,, so wird die
im Bild 87 doppelt schraffierte Fliche vom
Radiusvektor zweifach, und zwar jeweils in
verschiedener Richtung, iiberstrichen. Der
! _ Flicheninhalt erscheint dabei einmal posi-
xty)x(ty) x tiv und einmal negativ, hebt sich also auf.

Diese Darlegung iiber geschlossene Kurven gilt
Bild 87 auch entsprechend fir Formel (69).

yltgloylty)
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Wollen Sie die Flédche unter einer Kurve berechnen, so kann dies sowobl fiir die
zwischen Kurve und z-Achse als auch fiir die zwischen Kurve und y-Achse
liegende Fliche erfolgen.

Zy Ya
Die Integrale F,= [y(x) dz F, =fz(y) dy
a‘:; %
mit y=1y() z = z(Yy)
als Funktion der Begrenzungskurve, stellen die Fliche zwischen der Kurve, der
. z-Achse y-Achse
und den Parallelen zur
y-Achse z-Achse
in den Abstinden
z; und z, ¥, und ¥,
dar (Bild 88a und b).
vl
y 3
Ypoy(ty)
xex(t)
yey(®) ypeyity) xexit)
) 77/ —0
—T xp=x(ty) xpex(ty) x | x
Bild 88a Bild 88b

Lasseu Sie die jeweilige Integrationsveranderliche das zugehorige Integrations-
intervall iiberstreichen, so erkennen Sie, da die Begrenzungskurve und damit
die Fldche in verschiedener Richtung durchlaufen wird. Trotzdem aber ergeben
die Losungen der beiden Integrale das gleiche Vorzeichen. Die Ursache fiir dieses
Verhalten ist in der Tatsache zu suchen, daf fiir ; ein mathematisch positives
und fiir F, ein negatives Koordinatensystem zu Grunde gelegt ist.

Im Bild 88a geht die Achse der abhingigen Verinderlichen y aus der der unabhingigen
‘Verinderlichen z durch eine mathematisch positive Drehung um 90° hervor. Im Bild 88b
sind dagegen die Rollen der beiden Verinderlichen vertauscht (unabhingige Verinderliche
ist y, abhingige Verinderliche ist z).

Um zu erreichen, daB beide Integrale bei einem mathematisch positiven Um-
laufen der Fldche auch einen positiven Flidcheninhalt ergeben, versieht man das
zu F; gehorende Integral mit einem Minuszeichen. Damit errechnen sich die so

,orientierten Flidchen* aus
Ya

£
F, =_/y(z) dz bzw. F, = [x(?/\"d?/-

v

%
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Fiihren Sie, wenn die Kurve in der Parameterdarstellung x = z(f) y = y(f)
gegeben ist, in die obenstehenden Integrale

z = z({) y =y
im Sinne einer Substitution ein, so formen sie sich mit
dzr=gdi dy =ydt¢
und
z; = 2(ty), Y = y(ty)s
. zy = 2(ty) Yo = y(ty)
um in
1 ty
Fy=—[yadt Fo=[zydt (71a, b)
A [
‘wobei
y=1y() z = z(1)

der Parameterdarstellung zu entnehmen sind.

Ist die Begrenzungskurve z = z(f), ¥ = y(f) wiederum eine geschlossene Kurve,
dann ergeben (71a) und (71b) ein und denselben von der Kurve eingeschlossenen

Flacheninhalt (vgl. Bild 89a und 89b).

Bild 89a

Addieren Sie beide Formeln, so erhalten Sie

b

ty

oF = [agdt— [yidl

A

Y

]
oder F=%f(y:c——y.i)dt.
A

i

Bild 89b’

Das aber ist die Thnen schon bekannte Formel (70) fiir die von einer geschlossenen
Kurve begrenzten Fliche, bzw. fiir die vom Radiusvektor iiberstrichene Fliche.
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Lehrbeispiel 127
Berechnen Sie den Sekior OSP, der gleichseitigen Hyperbel, die in der Parameter-

darstellung
xz=acosht, y= asinht¢
gegeben ist (Bild 90)!

Losung:
z = acosht y =asinh ¢
& =asinh{ y =acosht
yx — yi& = a? (cosh? ¢ — sinh? §) (cosh? { — sinh? ¢ = 1)
=a2
ty
1 (. y
F =§/(yx—ux)dt
0
bo
= G a[dt LT
0 1Yo
2 L
F = %_ t, 0 S\ x, ¥

Fir a =1 wird F = —;— t, oder ¢, = 2F.

Damit ist ¢, gleich dem doppelten Flachen-
inhalt des Hyperbelsektors OSP,. (Das wurde
bereits in Abschnitt 8.35 behauptet, konnte Bild 90

aber seinerzeit noch nicht bewiesen werden.)

Wollen Sie also den Flicheninhalt bestimmen, so brauchen Sie bei gegebenem
Punkt Py(z,; y,) nur aus & = a cosh ¢ oder y = a sinh ¢ den Wert {, zu berechnen:

& .
o = ar cosh 7° oder 1, = ar sinh %_

Wollen Sie dieselbe Aufgabe mit Polarkoordinaten losen, so miissen Sie zunéchst
die Hyperbelgleichung 2?2 — y? = a? in Polarkoordinaten umschreiben.

Mit z =17rcos @ y=rsing
folgt r? cos? o —r?sin? ¢ = a?,
7% (cos? ¢ —ssin ) = a? cos? ¢ —sin? ¢ = cos 2¢
2 _ 2
 cos 2¢

Anwendung der Formel (69):
Py
_1 — @ [ _dg
F= ?‘/‘Tzd‘p - 2fcos2¢p
0 0
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Dieses Integral konnen Sie auf das in Lehrbeispiel 73 berechnete Integral

f E% =In l tan (% + %) ‘ + C zuriickfithren, indem Sie u =2¢ setzen.
du 1
ip = dp = - du
untere Grenze: ¢ =0, u=2-0=0
obere Grenze: @ =g, % =2¢,
2@
a® [ du
F== / g
0
2 29,
a 1 u
=] (5 3)]

2
-_—_%—(ln’ta,n(%+<p0)i—l~n‘tan%—

) In tan ‘I =0

n (3 + 09)
Der zum Punkt P,(z,; y,) gehorige Winkel ¢, 1dBt sich aus der Beziehung
tan ¢ = % berechnen:

@o = arc tan ¥
~0

Lehrbeispiel 128
Bestimmen Sie den Flicheninhalt der Astroide, wenn die Gleichung der Astroide

tn Parameterform

z = p cosd ¢, Yy = psindi
lautet!
Losung:
Sie bilden & =—3pcos?tsin ¢,
y= 3psinicost
und damit

yr—yi = 30?(sin®¢cos? ! -+ sint ¢ cos? {)

302 sin? ¢ cos? ¢ (cos? ¢t + sin® )

302 sin? { cos? {.

Nun ist aber 2 sin f cos { = sin 2¢ oder sin { cos { = ; sin 2¢ und demnach

I

jyr—yi = % % sin? 24.

Jetzt ist der Integrand soweit umgeformt, daf Sie ihn integrieren ktnnen. Eine
volle Astroide wird beschrieben, wenn der Winkel ¢ die Werte von 0 bis 2z durch-

lauft:
fiir t =0 st z=p und y =0,

fiir t = 2z ist ebenfalls z =9 und y=0.
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Damit ist aber die Bedingung z(f;) = z(f,) und y({;) = y(fy), d. h. hier,
2(0) = z(2#) und y(0) = y(2x) erfiillt.

3 Substitution:
F=—8—gzjsin22tdt w — 9t
o
n 2 dt=Ldu
— 3 o2 [sintudu
—169/s1n untere Grenze: { =0 % =2-0=0
0

obere Grenze: t =27 u =2-2n = 4n
—E(u—sinucosu))“
_ 3¢
=35 47

302z
= 8

Zusammenfassung

Die Flidchenberechnung durch Integration kann auch erfolgen, wenn die Be-
grenzungskurve in Polarkoordinaten oder in Parameterform gegeben ist.

Fiir Polarkoordinaten gilt
Ps
1
=3 f 72 dg.
(21

Fiir die Darstellung in Parameterform gilt:
a) Fiir die Fliche zwischen der Kurve und der z-Achse:

b
F=—|yzdi
/
b) Fiir die Flidche zwischen der Kurve und der y-Achse:
ty
F=/zydt
/
¢) Fiir die von einer geschlossenen Kurve begrenzten Fliche:

4
F = ;[(yx— y &) dt.
i
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. a) ztanarccot z =1

ANTWORTEN UND LOSUNGEN

. a) 0,3398 b) — 0% d) 2,3890

9 3 ) —13315 g 03806 b 22

) sin arc cos  __ 1
cos arc sin z

¢) z (tanarc cot * — cot arc tan 2z) _ a?

tanamt;anl2 2
z
'_.__._1__<__“)__“_
A Y = — == T s
s
T
,_ 1 y_ 1
by = 1(—F)__1+z2
1+;§
22
Va’<—az‘+—-—_—
a) y = — 1 . VaT-—-z’____ 1
. Yy = 1+_f?__. @ — ot = Vo —2
a? — x?
2msin 2z

b =
)Y Y1 —m® cos® 22
cosh 2z =cosh2z + 1

cosh? z 4 sinh®2 x = cosh?z 4 1
ex — e

s— =+ 1  (Substitution:ez =)
z; =In 2; =1n(2,4142) = 0,881; 7, =In 2z, =1n (0,4142) = — 0,881

, __coshz
a) ¥ = g5, = oothz
, a o a
b) ¥ = tamn (az + b) cosh? (az + b) ~ sinh (az + b) cosh (az + b)

_ 2a
" “sinh2(az + b)

h (222 + 4 .
c) ¥ =§ii’$ﬁ(i2%4—))-4x=4xcoth(2x2+4)

¥ (2) = 8 coth 12.

— —2 —24
Dacothac:'ax-"e x=1+e—zist, so wird: 800th12=8~1+e

e —e 2% 1 —_e 2z 1 1 —e2"
Im Vergleich zur Zahl 1 ist der Wert — verschwindend klein. Des-

halb kann im Zihler und im Nenner der Wert e——i‘ unbericksichtigt
bleiben, und Sie erhalten: y'(2) ~8-1 =8.



7.

8.

10.

11.

12.
13.

cosh (1 — z?)

d _ sinh (1 — 2?) = __ 2z coth (1 —a?)
)y =— {Insinh (1 — z“)]’ =~ Mnsnh (I — )P
Y
e3(y—1) = e=a(—1—3)
e?(l—y) =e~%(1 + y)
s 1ty
02 = ]'.—_:g
er = Vl—+ y
_ 1+y __ 1+y
z=In}— —y = I ny_",
y =artanh z = 3 lnl-"-z
Setzen Sie z = ar cosh z, z = cosh 2.
Dann gilt 2z = ar cosh (2 cosh? z — 1),
2z = ar cosh (cosh 22),
2z = 2z.
Y = cosh =
a a

. z 4
Inverse Funktion: — = ar cosh —é—
T
oder Y = a-ar cosh =

~om(z 2 BT

wim’—a’

=ga-In

a) /= 1 .i.____

Y V1+a: 2z 2Va:(1+:c)
b) y = 2
)y_‘z"'l—w 1--4:02
a) y = 1,107
b) yuie = /5 = + 1,023

1
a) y' —1

y= 2 Y1 — a? (arc sin 2)?

b) 2 ()= ——o A+ —3

A+ +EB—8ep  1+901—1p

c):‘/:%’ y=0
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d) g (t)———,+t,arccos2t+V__§___a.rccota+:

—a
e) &' (u) = sin® u + a2 - cos? u

DY =aia
gf@®= V“ a +1

t
—6

14. a) Es gilt: cosh z + sinh z = ¢?, also ist cosh 2z 4 sinh 22 = e?%,
b) cosh? z = sinh? z + eZ (cosh x — sinh z)
Durch Umformung erhalten Sie
cosh® £ — sinh? z = 1.

1
15. a) cosh z = 0,0863 ° z =+ 314
b) sinh z cosh + — 1 = sinh®z — cosh®z
=—1
sinh z cosh z =0
z2=0
16. a) y = % (e?z —1), y =e2
Dy—g@+eta,  y——2ess
¢) g'(t) =0 (Die Variable ¢ tritt in g(f) nicht auf, also ist g(f) = const.)
d) 2(x) =Inz + =z, z’(m)=%+1

17. a) y =a—cosh z

b) z = ¥1— (ar tanh z)?

; ! m— S—— ____1 —_
2) y = l—z)Vz@—2)
arsinht _ In@¢+ye+1) 2(0) =0

b)a(t) = In(t+VP+1) WE+VB+1) L (@)
19. a) sinjn =jsinhaw =4 11,65

b) sinh jm =g -sinmw =0

c) sinh;iwcoshja:=%-josin 2z
20. a) 0,324 + 5. 0,106

b) 1,274 + 5 - 0,664
21. U, =—89900-¢/-%° V
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22.

23.

24,

25.

26.

21.

28.

a) y’=——'2s;l;itn°;)it=—2cost, y"=—-—%

b) y,za(;-if;);t:—(a—(l;tl—t—)z(a—t)=_%’ y =0
gv=Hi=B =k}

d) ¥ = — tant, Yy’ = m

a) rP=1
b) (- cos ¢ — a)? + (r - sin ¢ — b)% = ¢?

72 —27r(a-cos +b-sing) +a%2 + b —c2=0

_ zﬁ y2

7 + yz_az(zz+yz—m2+yz)
(@ + ¥ = a*(2®* — ?)
dr 1
do " tang’
stehen senkrecht aufeinander. Es ist also ¢ = ¢ + g—

=0, tane =

Das bedeutet, Radiusvektor und Tangente

tan 9 =22 = 7, 9 =19°15, o =39°15
Winkel der Normalen mit der Achse ¢ = 0: 90° + 39°15" = 129°15’.
Die Gerade ¢ = % bildet somit mit der Normalen einen Winkel von

ﬁ = 1290 15, — 450 = 840 15'-,

a) & =rtcost, y=ritsint
& = r(cos t — ¢ sin ?), §j =r(sint + tcos?)
0 =71

b) 0 = 2,565 =~ 5,59
¢) c=t—sint z(r)=an y=1—cost y(n)=2

t=1—cost &(n)=2 y=sint Y(=) =0
E=sint B(m) =0 §j =cost jlm) =—1
43
6z

d) Es ist k(z)_l’lT_B:c*a'
Fir 2 <0 ist k& <O,
fir z=0 ist k=0,
fir z>0 ist k> 0.
8

a) b) >
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29, a) F(0) = 1 b) F(oo) = oo

30. a) F(0) =0 b) F(0) =0 ¢) F(2) = —
31. a) F(a) =1 b) F(0) =1
I ( _l)
¢) Zunichst ist In F(z) = z In (1 —_ %) = 1*‘” = ;—3 = [_,

Hieraus erhalten Sie

B[ () - G

1
z z

Aus In F(oo) = —1 ergibt sich F(co) = —
d) F(co) =e* e) F(oo) =1 f) F(eo) =1
32. a) uy =Hat + 182%y —4zyz
Uy = 62% — 222z + 322
u, = — 2%y + 9y2?

g =2 2 D=9
b) 2z, = y(xz T o) &y = (za @+ )t
—2 _y
Q) 2y = —— 2, =
) &= ey ey
d) z; =e%siny 2y = e%cos Y

e) 2z = yesinTvcos xy — e &+ Y gin (x + y)
2y = zes TV eos xy — e =+ ¥ sin (x + y)!

33. a) 2z = bzt + 622y? 2y =42y + 6y? -
222 = 202® + 12242 2yy =42 4 12y
2oy = 2yz = 122%y
b) uz =y + 2 Uy =2+ 2 =Y+ 2
Ugg = Uyy = Us; =0
Uge = Uz =1 Ugy = Uyz =1 Uye = Uy = 1
2y —2z
i iR
4 2(z — 4z
2rr= —ﬁ = z*f“‘:(i + ;jl KU P
Q) fo = gt st -
I+d@+yp+ay QA+P+a0+y)
f, = 14 a? 1+ 22 1
1422+ 92+ a®y? (1+a;2)+y3(1+x3) 14 42
2z 2
fe=— G5 fy=1e=0 fw=_(1+_yya)n
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34.

35.

36.

37.

38.

39.

40.

41.

Die Rechnung vereinfacht sich unter Verwendung der Beziehung

arc tan 1‘” TY —arctanz + arc tan y
Y

e) fr =—cotz fy =coty
1 1
for = S foy =Tz =0 fw = — sin? y

Sie erhalten der Reihe nach die Ergebnisse:
Uz = Yzev?,

Ugy = 267 (1 4 zy2),

Uzy, = ¥ (1 4+ Bz yz + 229y22?).

1 T

fz='!7 fv_—y_z
z z
z ==—=—=0
fe+ Yl m m
fo = 322 —3yz f, = 3y* —3zx2
T+ ¢+ P — Bayz VT g3 4y + 28— Bay:z
[ = 322 —3zxy
T B 4P+ P8 — Bay:z
_ 3@+t —yr—axz—ay) 3

fet by + 1= 2+ ¢y + 2 —3zyz Tzt y+z

¥ ¥
fz=ezz—y fy=e‘°

z
y y

v y v

ofe+yly=e(z—y) +ye* =ze’
a) dz =12z (z — y*) dz + 12y (y — 2%y dy
b) dz =-e® (sin y dz + cos y dy)
zdz + ydy + zdz

$’+y’+2‘

-V =rzxh =70,4 dm?
AVpax =rx(8h Ar + rA4h) = 1,8 dm3

¢) dw =

R,-R
E= R11+ Rl
1
A R = gy [Re? Ay + B AR)] ~ 080

« = are sin —;'— = 16°15"37"

Aa

"o ) ade
Aeagy = ( ]v_'c”———? e

¢ l/c’ Iy

)QI} —_ 4311
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43.

44,

45.

204

_$
Armax=4—sz-)Asl+‘(—8%+ Apl 05 +5)m=>55m
Armax_‘ri’é___A
= g = 0,007

Die Fehlerformel 148t klar erkennen, dafl der Fehler der Pfeilhohe einen
groBeren EinfluB auf den Fehler des Radius ausiibt als der Fehler der Sehne.
Die Pfeilhohe muB also mit besonderer Sorgfalt gemessen werden.

=%cot%coty2=333,15m
—beot 2t
Asgay = | =072 A | |~ 2 An
U gsmn @ Zein'ys
2

Nach Division durch s folgt unter Verwendung der Beziehung
sin y, = 2sin 2! cos 2 bzw. sin 2 y, = 2 sin y, cos y,

2

und wegen Ay, = A Vs
‘_'_fflz"_":( 1 2 )44:0,0013,

s sin .y, sin 2y, 0
Fiir den prozentualen Fehler ergibt sich dann

4

p="T.100% = 0,13%

_ ___y Ccos 37_
Y= " simoysmy
Fiir den Punkt P(O; ) folgt

, T
y=—%
a) o = _ @Y+l +yt+yil+y
CHl¥zVi+y+a)V1+z
b) zy —y*=0
- _Yy—y*Iny

L

) ¥ =—g
; 2z (x—2a) 4+ 2 + y* + a?

d y=— 2y (z —2a)



46. a') Zmin = 2’ Ymin = 3
b) Fiir die Stelle z = 4, y = — 3 folgt
fzz'fw—fazw =—5 <0.
Die Funktion besitzt keinen Extremwert.

417. f$=cosa;+co?;+y), fy =cos y 4 cos (z + ¥)
)

(I cosz +cos(z +y) =0
(T cosy +cos(z+y) =0
COS T — COS Y =0
r=y
(Ta) cos = + cos 2% =0
cosx=—l;|;—3—
4 4
$E=yE=g‘

n oz LA T LA A 1
fzz('g, §)=fyy(§,§>=—y3\ 0, f:w(g, ?)__?}/3_
. 3
fz:'fyy_'fzy=3—‘z> 0
Bei 2g = yg = % liegt ein Maximum vor.

48. Sind K,, K, und K, die Kanten, dann erhalten Sie
K,=K,=K;= V—V,
d. h., der Quader ist ein Wiirfel.

49. a) Maximum bei =z, = -g- 12, Yy = .g. V2

Bm=—512, p=—1412
Minimum bei ;= — % 12, ys= _g_ 12
a:4=%]/§, y4=—%}/2_ ,
b) Tmin = — 112, Ymin = %, Zmin = 15_2

50. Ist P(x; y) ein beliebiger Punkt der Ellipse, dann gilt fiir seinen Abstand d

vom Ursprung

d=7y2% + 42
Es ist dmax = @ und duin = b. Da z und y auBerdem die Ellipsengleichung -
erfiillen miissen, hat man also die Extremwerte der Funktion

f(z, y) =Va* + 92
mit der Nebenbedingung

o(z, y) =132* — 10y + 13y2—T72 =0
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zu bestimmen. Sie finden
a =3, b=2.
b1. Es ist (s, by T,) = 22 + 22 + 23,
<P1(fl7a, T, wc) = x,— a3 — 0,009 =0,
Qo (Zay X, X,) = T, — x, 4 0,007 =0,
F (x4, @, @) = [ + 2191 + 4205
Sie erhalten x, = 0,001, zy =~ — 0,008, z. =~ 0,008,
H = 136,475 m.

Beim unbestimmten Integral wurde zur Abkiirzung die Integrationskonstante im
allgemeinen fortgelassen. Sie gehort natiirlich zur vollstindigen Losung.

52 8) J = o (A7 — Tyt by J=2(%+5f

1
i@z + 3p

bb. a) J =5 2 Yz — 1P = 2 bz —1)2Y5z—1
b)J=?]/2a;+1

53. a) J = — b) J=—~In|5—3z|

55. a) J = - tan 2z —1) b) J = cot (3 — )
56. a) J = 28 b) J = 3 In 10 = 0,76753
57. J=T[2x+3—sin(2x+3)cos(2z+3)]

58. J=3 —34sin (g—g) cos (3—3)

9. J=m—5—7%

60. J=%_1

61 J = /sm2ma:da:_2 (max — sin mx cos mx)

62. a) J =V— % (cos fnm ++n") ? 428 ;m__'n”) z) fir m=n
J=—&1cos2ma¢ ’ fir m =n

PN LN UELE) fir o n

J=2%n(mx+sm M CoS My firm =n

63. J = % (sinh z cosh z — x)



64.
65.

66.

67.
68.
69.
70.
71.

72.
78.

4.
75.

76.
1.

78.

J = —;—(sinhxuoshx + 2)
J=In(z+y*?—a>)—Ina+

=In(zx + Y22 —a?) + C

J=In(z+V2® +a®)—Ina+C
=In(z +V2* +a® + C

J =In|e* + x|

J=In|zt—92% + 1]

J=In|22—bzx + 2|

J =In |arc tan x|

J =—In|ecos | 4+ In|sin z| = In | tan 2|

a) J = 5 In|tanh | b) J=ln.tanh%}

J =1n cosh 2 + In |sinh z| = In |sinh z cosh z|
=In%lsinh 2z|

=In|sinh 22| —In2 + C
J =In|[sinh 2z| + C
J = In |arc sin-z|

J=—%ln|a2—a;2|

1
J=~8-'ln|4a;2——9|

Die beiden Ergebnisse unterscheiden sich nur durch eine additive Kon-

stante, denn es ist

1., 1 .. 1 1., 1 1
5 Sin?z + 5 c0s? £ = oder g SNtz =—cosfz + .
Die additive Konstante ist also %

Beide Ergebnisse konnen Sie auch in ein Ergebnis zusammenfassen:

. 1.
fs1nzcoswdz=?sm2z+01

[sinxcoswdx=——;—coszx+02| -+
. 1. .
2 [sm zeoszdz = o (sin? z — cos? z) + (C; + Cy)
oder [sin zcoszdr = % (sin? z — cos? z) + C.

8) J =3 (@ + o) o + 2* b) J = — 3 (2 — a?) J&F — a?
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79.

80.

81.

82.

83.

84.

85.

86.

87.
88.

89.

90.

91.

92.

J = % tan? 2z
J = % (arc tan z)?
J=— % (arc cos -;i)z
a) J = arcsin —1—3 b) J = - arc sin 2z 3_—1

+ x—+—1 Y6 —2z — a?

7 .
¢) J =5 arc sin =

a) J=In(z—1 +Vx2—2x+2)
b) J = 3 In(3z +1 + /922 + 62 + b)

0 J =232y 60+ 15 +3In(s +3+77 + 6 + 15)
a) J =In(z—3 + Y2 — 6z)

b)J =L In @241+ iz + dz—3)

¢) J =+ In|2z—3|

a) J = —)6—2z— 22— arcsin —V';—

b) J=Vx2+8w+?§—4ln(x+4+]/wz+8a:+372)
c) J—-Vaﬁ 4z 4 21n (z —2 + Yo — 42)

_f/ 3 2 32 Substitution: r—3 =u
Yz —3F + oo

=In9—In3 =In3

25 25m
J =5 aresinl ==
Substitution: z =asinu dz = acosudu

J =zV)a?—2a?
J = zarc cos x — Y1 — a2

mb
J=50Bhnz—1)
J =% (gt — 4% + 1222 — 24z 4 24)|" = 9e — 24
0

J=%co’sz(—Ssin‘x—4sin2w-—8)



93. J—— sxnx(800s5w+1000s3x+15cosa;)+ =%_n
94 a)J———l—cos"x(l—-—l—coszw+—cos4x)
' - 2 3 2 b
. 1 2 . 1 . \
— s (T 2 sin2 1
b)J—smav;(5 7 sin? z 4 3 sin x)
1 cosz 3 cos x 3 z
95. a)J=—-—‘—i-sin—‘———8—sinaz\+§ln’ta.n~2—
1 sinz 3 sinz 3 T z\||=
b)J_Tcos4z+8cos’z+§ln|tan(?+z) ¢ = 36+16
0

9. J=7n|z+8 —%ln|z—3|

97. Zerlegung des Nenmers: 223 — 142 —12 =2 (2 + 1) (x 4 2) (x — 3)
322 + 102 —17 1 ( 6 5 2
2z +N(z+2)(z—3) 2 ._z+1_:c+2+m—3)

3 5 1
=¥l @+9 TE—9

Integral J = 8In |z +1|— 1|z + 2] +In|z—3]|
1 zT—a

ln 77

1
9. J=g5In|z— a]——ln[x+a|

b

100. J =2In|z + 5|
Der Integrand kann durch (z + b) gekiirzt werden!

101. =%ln|x2+2m+2! + 2arc tan (z + 1)
102.J—21n]w2—10:v+30l+ ng’
103.J=-;-11a|acz--4ac+20|+4 2:=%1n2+3Tg
.104. Relativer Fehler des Ergebnisses von Lehrbeispiel 108: '—A-J—I = 0,0000043.
Nach Formel (59) wird F = §§ = 0,694444.
Relativer Fekler 1471 ~ 0,00187 4 0,19%.

Er betrigt das 43bfache des relativen Fehlers in Lehrbeispiel 108.
209
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105. ?/o }/1— i 1’000
Yo | V11 | 38,317
Ya V1,464 1,210 Y 71,208 1,099
Y 72,312 1,521 Ya 71,816 1,348
Ye 73,928 1082 Ys 3 1,732
Ys 16,696 2,588 Y V5,144 2.268
5, 7 301 Ys 18,632 2,938
%, 9,385
Yo + Y10 4,317
22, 14,602
4z, 37,540
z 56,459
2 ;
jwa Tz 4 1de —3764
0
_ drsinfe |
/]/.06. xs = mnz—a) M yS = 0
| 2 B—r dne_ 2 B4Rt osing, —
W= o =% —F+r &’ W0
108. 25 = 7 ; ys = &
109. Siehe Band 1, Lésung 105
110. J, = 3 (2 + sin 2a) (B* — r4)
4 (B*— B3 sin®
Js=Jy—g e
5
111. J, = %/sin3 2z dz Substitution: % =2z
0
= % f sind u du
0
2
=5 [I]
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112.

113.

114.
115.

116.

117.

118.

119.

120.

121.

14

: 17, 1
) 2?sin 2z dx =3 u2s1nudu=§(n2—4) [14]
0 0

Siehe Losung 108, Band 1.

Ty

Jy=

V=2azf(a—— yrr =222 da
0

=2x ra? -l-%nrs—n“za

—msinh & = 2 2% 2 1y 2 ] = ot
s—msmhﬁ—‘/m cosh? . —m? = Jy,* —m? da Y, = mcosh —.

T
§ =5

2
s = 16a

iy [A
To = [y V& + i T, = f () YFF 3 dt
4 [

&y .
s=/]/a:'2+y'2dt; zs;—i-‘!; ys=%
4

4
Ts = 7T, ys=§r
b
Jz=fy2ds=fy2]/1 +y?dz
b
Jy=[w2ds=fx2}/1+y’2dx

Jy =% (2 + sin 20)

V= %nm"(% +cosh%smh%>

— z s L1 ] z
da y, = m cosh —": und  sinh %1 = l/ coshzﬁ1 —1
folgt

1 R
V=?nm(mx1+y1 V.2 — m?)
Fy = nm? (%—(—cosh%sinh%)

=n(mzy + Yy, VY2 —m?)
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Ys Ys
122 V=n[atdy= 7 [[p(y)P dy
Y1 %

Ys
T T7deg
Fy= 2atfx ds =2nyf¢p(y)V1 + (HZ) dy
Dabei ist z = p(y) die Umkehrfunktion von y — f(z).
123. Fy = 2n2ra — 4nr?;

124. Fo = 2= f sinzyl +cos2zdx Substitution: % = cos z
0

=2z[f2+In(1+7Y2)]
125. Bild 91.
F=64xn+373)

2z

126. F = 8a2/s‘in4 2 dg w=2
0
=16a2(—%sin3ucosu
3 . 8 n
— = sinucosu + —u
g sinucosu+ g )o Bild 91
3
— 2,
=16 & g7
F=6an
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