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V1. Unendliche Reihen

16 Potenzreihen

16.1 Grundbegriffe

Im bisherigen Verlauf Ihres Studiums lernten Sie endliche arithmetische und
geometrische Reihen kennen. Diese Ihnen bekannten Reihen heiBlen endlich,
weil die Anzahl der Glieder begrenzt ist.

Wir betrachten nun die unendliche Zahlenfolge

0,3; 0,03; 0,003; 0,0003; ..
Durch Addieren ihrer einzelnen Glieder erhalten Sie eine unendliche Reihe.
Thre Summe ist Thnen bekannt, denn es ist
1

0,3+0,03+0,003 40,0003+ ---=0,3333 - - = 5.

% ist also die Summe dieser aus junendlich vielen Gliedern bestehenden Reihe.

Allgemein erkldren wir:
Eine Zahlenfolge u;; ue; ug;...; u,;... mit einer unbegrenzten Anzahl

von Gliedern w, heiBt eine unendliche Folge.
Die Summe der Glieder, also der Ausdruck

u1+ue+us+---+un+~-°=2'lu.,
wird unendliche Reihe genannt. -
u, heiBt das allzgemeine Glied der Folge bzw. der Reihe.

Von besonderem Interesse ist der im obenstehenden Beispiel vorliegende Fall,

daB die Summe einen endlichen Wert (dort %) besitzt. Wir wollen deshalb diesen
Fall néaher untersuchen.

Von den einzelnen Gliedern Uy; Ug; Ug; o o -y
in unserem Beispiel 0,3; 0,03; 0,003; . . .,
kann man zunichst die Teilsummen bilden:
8, =1uy, in unserem Beispiel s, =0,3,
8 =1u; + Uy, 8,=10,33,
8y =1y +uy + ug, 8= 0,333,
. n . N
8, = 2 wu, $,=0,33...3.
vml N e
» Liffern



Die Teilsummen s;,s,,...,8,,... bilden wieder eine Zahlenfolge.

Strebt die Folge der Teilsummen bei unbegrenzt wachsendem =, d. h. fiir
n — 00, einem bestimmten endlichen ‘Grenzwert

n
s= lims, =lim Ju,
n—>00 n—>00 v=1
zu, 80 heiBt die unendliche Reihe konvergent und der Grenzwert s die Summe
der unendlichen Reihe.

Dieses Verhalten muB keinesfalls immer bei einer unendlichen Reihe vorliegen.
Stellen Sie z.B. eine unendliche Reihe auf, deren Glieder die natiirlichen

Zahlen sind,
1424344+ fnto,
und bilden Sie deren Teilsummen
=1, $,=3, s§=6, §=10,...,

so erkennen Sie, daB diese mit unbegrenzt wachsendem » unendlich grol werden.
Es gilt nimlich nach der Summenformel fiir die arithmetische Reihe

n(n+1) n*4n

» 2 -2
und damit )  w4a
lim s, = lim 5 — = 0.
n—>00 n—>oc

Solche unendliche Reihen, die keine endliche Summe besitzen, heilen divergent.
Alle arithmetischen Reihen mit unendlich vielen Gliedern sind divergent.

Nimmt eine Reihe keinen bestimmten Wert an, sondern schwankt zwischen ver-
schiedenen Werten hin und her, so heillt sie ebenfalls divergent. Ein Beispiel ist

die Reihe 1—14+1—14—...
oder a—at+a—at—-.

Diese divergenten Reihen schwanken zwischen 0 und 1 bzw. 0 und @, je nach-
dem, an welcher Stelle man sie abbricht. Da oo keine bestimmte Zahl, also weder
gerade noch ungerade ist, kann solchen Reihen bei unendlicher Gliederzahl keine
bestimmte Summe zugeordnet werden.

Geometrische Reihen hingegen sind unter bestimmten Bedingungen konvergent.
Ein Beispiel dafiir ist die geometrische Reihe

0,3 4+ 0,03 + 0,003 +- - -,

die wir am Anfang betrachteten.

Unter welchen Voraussetzungen ist nun eine unendliche geometrische Reihe
konvergent, und wie wird ihre Summe berechnet ?

Fiir endliche geometrische Reihen gilt die Summenformel

1
2“—2“1 —ulTi::'

r=1



In unserem Beispiel ist u, = 0,3, q_ﬂ=ﬁ=..._ 1

Uy 10
Um die Summe der unendlichen geometnschen Reihe zu erhalten, haben wir
lims,
7n—>00

zu berechnen.
Ist zunéchst |g|<1, d.h. —1<g<1, so wird

lim ¢"=0
7n—>00
und damit
l1—g" Uy
i =1l =
o poee 117 T 1-¢q"

Jede unendliche geometrische Reihe konvergiert fiir |¢|<1 und hat' die

Summe
="
$=1_ q {1)
In unserem Zahlenbeispiel erhilt man, da mit |¢| =<1 die Konvergenz-
bedingung erfiillt ist, 3
_ 03 _T0_1
IS U T ]
10 10

Fiir ¢ > 1 wird lim ¢®* =co. Die Reihe divergiert.
7—>00

Fir ¢g< —1 wird lim ¢"=+4oco. Die Summe der Reihe schwankt zwischen
7—>00
+oound — oo und ist damit divergent.

Pir g =1 ist Z’u = Uy + %, + 4, + - - -; die Reihe divc;rgiert

Fiir ¢g= -1 mmmt die Reihe keinen bestimmten Wert an, denn es ist
1—¢ 0 fir n=2k,
NI Iulﬂh n—=2k+1.
Damit ist die' Reihe auch in diesem Falle divergent.

*k=1,23,..)

Ergebnis:
| Fiir [¢| =1 divergiert die unendliche geometiische Reihe.

Von besonderem Interesse fiir die praktischen Anwendungen sind unendliche
Reihen, deren einzelne Glieder u,, u,,...,u,,... Potenzen einer Verinder-
lichen darstellen, z. B.

U =0y, Up=0%, U3=0p2%,...
Die einzelnen Teilsummeén f,(z) =a,,
h(@) =a,+az,
fo (&) = ay + a,x + axa®, usw.



stellen dann ganze rationale Funktionen dar, die n-te Teilsumme
fa(@)=ay+ayz+ ag2:+ .-+ a,a™

ist eine ganze rationale Funktion n-i.a Grades.
Besitzt die Reihe eine unbegrenzte Gliederzahl:

f(@)=ay+a z+ayz® - -+ aga”+--o,

so nennt man sie eine Potenzreihe. Diese ist selbstverstindlich ebenfalls eine
Funktion von =.
Eine solche Reihe ist z. B.

f@)=1+z+a24  F2"4--.

Fiir diese Reihe kénnen wir, da sie eine unendliche geometrische Reihe. mxt
;=1 und ¢ = z ist, die Tellsumme s,,— fa(x) angeben:

fa(2) =

Sie konvergiert fiir [¢| =|%| <1 und besitzt dann die Summe
. 1

s=f(x)= hmf,,(x)= .

-

Fir |z|]<1 liBt sich also die Funktion f(x)=-—— durch die Potenz-
reihe f(x) =14 x4 22+ -- -+ 2" + - -+ darstellen. Ma,n sagt: Die Funktion
f(x)= liz 1aBt sich in eine Potenzreihe entwickeln. Fiir |x| =1 divergiert
diese Potenzreihe.

Man nennt den Wertebereich von z, fiir den eine Potenzreihe konvergiert, den
Konvergenzbereich der Potenzreihe.

Fiir unser Beispiel ist der Konvergenzbereich —1 < z<<1.
Da innerhalb des Konvergenzbereiches || <1 die Beziehung

e =14 a2ttt

gilt, kann man, statt die Division 1: (1 — x) auszufiihren, den Wert des Bruches
mit Hilfe der Potenzreihe ausrechnen. Ist némlich |z| geniigend klein gegen-
iiber 1 (man schreibt dafiir |#|<1; das Zeichen < wird gelesen ,,sehr klein
gegeniiber*‘ oder ,klein gegen‘), so geniigt es, die ersten zwei oder drei Glieder
unter Vernachlissigung aller iibrigen Glieder zu summieren.

Beispiel :
ei8pi ) 1

0,997 = T=0,003 — 1 1T 0,003+ (0,003)?+- .-

Schon das dritte Glied kann vernachléssigt werden, so daB Sie mit hinreichender
Genauigkeit erhalten

0;97 ~1,003.

In den folgenden Abschnitten wird gezeigt, daB sich viele Funktionen in Potenz-
reihen entwickeln lassen. Die Berechnung einer Potenzreihe gestaltet sich besonders

8



einfach, falls sie geniigend schnell konvergiert — d. h. also, falls man sie schon
nach den ersten Gliedern abbrechen kann. Die Potenzreihen sind daher fiir
die Praxis, z. B. fiir die niherungsweise Berechnung von Funktionswerten, von
besonderer Bedeutung.

16.2 Die Taylorschen Formeln

16.21 Darstellung einer ganzen rationalen Funktion durch ihre Ableitungen.
Jede ganze rationale Funktion liBt sich in der Form

f(x)=a,+ a;x+a,a? 4+ -+ a, 2"

schreiben, kann also als endliche Potenzreihe aufgefalt werden.

Zwischen den Koeffizienten a,, a,, . . ., a,, einerseits und dem Wert der Funktion
sowie den Werten ihrer Ableitungen an der Stelle x — 0 andererseits bestehen
bestimmte Beziehungen.

Es ist
f(@)=a,+a,z+ay2* +aga®  +---+ a,2"
f@= 1l-a,42a,2+43a;2> +---+na,a"?,
f!(x)= 1-2a,+2-3a32+-+-+ (n—1)na,2""%
7 (x) = 1.2-3a5+--+(n—2)(n—1)na,2*2,
() = 1.2.3.4...(1—2)(n—1)na, =nla,.
Fiir z = 0 ergibt sich
f(0)=a, und hieraus @, = f(0),
f(0)=1-a, und hieraus a, = f'(0),
77(0)=1-2a, und hieraus @,= L;Q)— ,
f©)=1-2-30, und hieraus ag="70,
f™(0)=mn!a, und hieraus a,= [(";_('O) .

Damit a8t sich die ganze rationale Funktion in der Form

1@ = 1O+ L o O o IO s L O )

schreiben. Diese Entwicklung der ganzen rationalen Funktion f(x) an der Stelle
z =0 heillt die Taylorsche! Formel in der MacLaurinschen Form. Sie gibt die
Moglichkeit, eine beliebige ganze rationale Funktion nach steigenden Potenzen
von x zu ordnen.

Lehrbeispiel 1

Die Funktion y = f(x) = (2 — z)3 ist nach steigenden Potenzen von x zu ordnen!

! Brock Taylor (sprich: bruk tehler), engl. Mathematiker, 1685 bis 1731.



Losung:

B ist fla) = 2 —a, 10)=8,
f@=—32—ap, IO __1a
1"(@) =62 —2), ro s,
1" (&) =—8, O _ .
Damit wird

J(2)=8—12x 4 622 —2a3,

Priifen Sie das Ergebnis, indem Sie (2 — )% mit Hilfe der binomischen Formel
ausrechnen!

16.22 Entwicklung einer beliebigen Funktion in eine Potenzreihe. Wie Sie gesehen
haben, ist fiir jede ganze rationale Funktion n-ten Grades die Entwicklung

f(@) = f(0) + =~ r (0) et+L f”(O) 22 peeet /(»)(0)

moglich. Die Entwicklung bricht belm Gliede ——— fr (0) z" ab, da bei einer ganzen
g g g

rationalen Funktion n-ten Grades sa.mthche Ableltungen von hoherer als n-ter
Ordnung identisch gleich Null sind (vgl. Math. IV, Bd. 1, Abschn. 3.7).

Hat eine beliebige — nicht ganze rationale — Funktion n an der Stelle x =10
existierende Ableitungen, so lifit sich auch fiir sie die obige Entwicklung an-
setzen. Nur ist auf der rechten Seite noch ein Korrekturglied hinzuzufiigen, da
sonst rechts eine ganze rationale Funktion steht, die natiirlich mit der Ausgangs-
funktion nicht identisch sein kann.

Das Korrekturglied héingt davon ab, bis zu welchem Gliede entwickelt wird und
fiir welchen Wert von « der Funktionswert zu berechnen ist. Man schreibt daher
fiir eine nicht ganze rationale Funktion

ty

fo) = HO + L 1 0 e 17O ay Ry,

Diese Formel gibt also die Entwicklung einer beliebigen Funktion in eine endliche
Potenzreihe an, der noch ein Korrekturglied R,(x) hinzugefiigt ist. Man nennt
R,(x) das Restglied dieser Entwicklung.
Von besonderem Interesse sind solche Funktionen, die sich an der Stelle x =0
beliebig oft differenzieren lassen, z. B. y = é®. Ist fiir eine solche Funktion

lim R, (x) =0

n—>00
wird also das Restglied mit wachsendem n immer kleiner, so 148t sich die Funktion
in eine konvergente unendliche Potenzreihe entwickeln. Man nennt die Ent-
wicklung

)= f«»+’ o +f O oy +f‘"’<0> e )

10



die MacLaurinsche Form der Taylorschen Reihe. Die Taylorsche Reihe konvergiert
mit wachsendem- n gegen f(x), wenn das Restglied R,(xr) mit wachsendem n
gegen Null geht. '

Im folgenden beschrinken wir uns auf solche Funktionen, bei denen R, (x)— 0
geht. Wir kénnen uns deshalb damit begniigen, das Konvergenzverhalten ihrer
Potenzreihen mit Hilfe bestimmter Kriterien zu untersuchen.

16.3 Die Reihen fiir e, sin « und cos x. Die Eulersche Gleichung

Wir wollen jetzt einige transzendente Funktionen in Taylor-Reihen entwickeln,
Die Voraussetzungen firr die Moglichkeit einer solchen Entwicklung sind:

1.. Die zu entwickelnde Funktion muB in dem Bereich, fiir den sie in eine Potenz-
reihe entwickelt werden soll, iiberall beliebig oft differenzierbar sein.

2. Bei unbegrenzt wachsender Gliederzahl der Reihe (n-—>o00) muB@ der V\
des Restgliedes gegen Null gehen.

Die erste Bedingung ist stets zu beachten. So kann z. B. die Funktion
5

= Va%= x% — sie verlauft dhnlich wie die Neilsche Parabel — nicht an der
Stelle x = 0 in eine Taylor-Reihe entwickelt werden. Es ist namlich

3 1 1 3
’ 5 3 ’ 16 17, ]5 ~ o 15 -
y=.2_x2’ y/=Tz2 y’=Tx 2’ y(4)=_ x 2’.'_
und damit
16 1 15 1
/(0 =0, (0 =0, "0 . (4)_:___._.___’
¥'(0) y"(0) y'(0)=-3 7o Y TRRT

d. h., die Ableitungen der Funktion an der Stelle x = 0 existieren nicht von der
dritten Ableitung an.

Der Fall, da8 die zweite Bedingung nicht erfiillt ist, tritt bei stetigen, differen-
zierbaren Funktionen, die die Praxis interessieren, nicht auf. Wie Sie aber am

Beispiel der Funktion —l—}; gesehen haben, stellt eine Taylor-Reihe die zugehérige

Funktion nur in dem Bereich dar, in dem sie konvergiert. Wir werden uns
daher darauf beschrinken, das Konvergenzverhalten der im folgenden betrach-
teten Taylor-Reihen zu untersuchen.

16.31 Die Exponentialreihe. Da alle Ableitungen der Funktion f(x) = e® unter-
einander gleich sind, ndmlich gleich der Ausgangsfunktion e, haben alle Ab-
leitungen fiir x = 0 den Wert = 1. Da,mlt wird nach Formel (3)
x a® < x
°’=1+-1T+§T+'37+"'— 25T

Beachten Sie bei der Auswertung des rechts stehenden Ausdrucks die Definition 0! =1.

Fiir = 1 erhilt man eine schnell konvergierende Reihe zur Berechnung von e
(vgl. auch Bd. 1, Abschn. 2.1):
1

1
e=l+qp+5r+gr+e

e~

11



Aus dieser kann e = 2,718281828 . .. bei Verwendung einer hinreichend groBen
Anzahl von Gliedern mit beliebiger Genauigkeit berechnet werden.

16.32 Die trigonometrischen Reihen. Wir wollen zunichst die Funktion
f(x) = sinz in eine Potenzreihe an der Stelle = 0 entwickeln. Es ist

f(#)= sinz unddamit  f(0)=0,
f(x) = cosz unddamit f(0)=1,
f’(z)=—sinz und damit f”(0)=0,
/" (x)=—cosz und damit f”(0)=-—1,
f®(x)= sinz unddamit K(0)=0

Setzen wir diese Werte in Formel (3) ein, so erhalten wir die Sinusreihe
2 & o
Sinw—w——+5!—-ﬁ+—...

Diese Reihe wird zur Berechnung der Funktionswerte von y=sinz benutzt.
Zu beachten ist dabei, daB das Argument x stets im BogenmaB einzusetzen ist.
Die Sinusreihe eignet sich besonders gut bei kleinen Winkeln, da dann die Reihe
schnell konvergiert und bei einer geforderten Genauigkeit von 5 Dezimalstellen
fiir Winkel bis zu 1° nur das erste Glied der Reihe beriicksichtigt zu werden
braucht, d. h., man setzt

gsinz~z fiir z<arcl®°=0,01745.

Fiir Winkel bis zu 8° geniigen fiir eine Genauigkeit von 5 Dezimalstellen die
ersten beiden Glieder, d. h., man setzt

sinz~z—a- fir o<arcs~0,13963.

Man arbeitet vbrteilhaft mit den Potenzen von arc 1°. Es ist z. B. fiir = arc 5°
= (arc 5°)*=(5-arc1°)® = 125(arc1°)%.
Die ersten vier Potenzen von arc1® sind:
arcl® =0,017453293,
(are1°)? =0,000304617,
(arc1°)® =0,000005317,

(arc1°)* = 0,000000093.
Lehrbeispiel 2
Berechnen Sie mit Hilfe der ersten zwei Glieder der Sinusreihe sin10° und vergleichen
Sie, den erhaltenen Wert mit dem einer Sstelligen Tafel!

Lésung:
Es ist ~z=arcl0°=10arc1° = 0,174533
und a3 = (arc 10°)3 = 1000 (arc 1°)3 = 0,005317.

12



Aus o B
Sinr~x 31
fol
gt sin10° ~ 0,174533 — .°£°_g_3ﬂ —=0,174533 — 0,000886,
sin10° ~ 0,17365.

Das ist der gleiche Wert, der auch in einer 5stelligen Tafel angegeben ist.
Die Entwicklung der Funktion f(z) = cosz in eine Potenzreihe erfolgt in der glei-
chen Weise wie bei der Funktion sinz.

Es ist f(x)= cosz, f0)=1,
f'(2) =—sinz, f)=o0,

1" (x) =—cosz, (0)=—1,
["(x)= sinz, 17(0)=0,

f®(x)= cosz, f90)=1,

Durch Einsetzen dieser Werte in Formel (3) erhilt man die Kosinusreihe

4 wﬁ

ax” x d
cosm—l—-ﬁ+7ﬁ-—.6?+_...

Eine Betrachtung der beiden Reihen fiir sinz und cosx zeigt, dal in der Reihe
fir sinx nur die ungeradzabligen Potenzen auftreten, in der Reihe fiir cosz
nur die geradzahligen. Daraus geht einerseits hervor, daf

sin(—z)=—sinz und cos(—x)=-coszx

sein muB. Andererseits haben Sie nunmehr die Erklirung dafiir, da8 die Bezeich-
nung gerade bzw. ungerade Funktion, die in Band 1, Abschnitt 1.4, fiir eine
axialsymmetrische bzw. zentralsymmetrische Funktion eingefiihrt wurde, auch
auf trigonometrische Funktionen angewendet wird.

Die Funktion y = In z 148t sich an der Stelle x = 0 nicht in eine Taylor-Reihe

entwickeln, da f'(x)= % fiir = 0 nicht existiert. Eine Reihe zur Berechnung
der Logarithmen werden wir spéiter auf andere Weise erhalten.

16.33 Die Eulersche Gleichung. Wird in der Reihe fiir e* der Exponent z durch
tz(i = imaginire Einheit), ersetzt, so erhilt man

122 323 izt

*=l+q+g+ g+ +o

Wegen

P=—1, #F=—i, *t=1,..

ird i t g8 | ot
i iz & i
ew—l+F_2_!—_3!_+4_!+—'“

Nach Trennen der reellen und imaginéren Glieder der Reihe wird

eiz__.(l_;..i_%__‘_...)+i(w———£—+%—+---) .
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Die in den Klammern stehenden Reihen stellen aber die in Potenzreihen ent-
wickelten Funktionen cos z und sin x dar, so dafl wir schreiben kénnen:

e =cosx | isinx I (4)

Dieser Zusammenhang zwischen der e-Funktion und den trigonometrischen
Funktionen heifit die Eulersche Gleichung. Sie gehért zu den wichtigsten Glei-
chungen der Mathematik, da sie es ermdoglicht, mit der wesentlich einfacher zu
handhabenden Exponentialfunktion an Stelle der trigonometrischen Funktionen
zu rechnen (z. B. fuBt die symbolische Methode in der Wechselstromtechnik
auf der Eulerschen Gleichung).

Wie Sie leicht selbst herleiten kénnen, gilt weiterhin die Beziehung

e = cosx—isinz.

Durch Addition bzw. Subtraktion der Formeln fiir ¢'* und e~ %% ergeben sich die
Gleichungen
eiz_'_e—iz . 0¢z_e—lz
=7 — bzw. sing=—pr—
24

&~ P

CosSx =

Diese Formeln decken einen Zusammenhang zwischen Kreis- und Hyperbel-
funktionen auf. Wie Sie wissen, ist
e*f e~ 2 o —e~2

3 und sinhz = 3

coshz =

Wird iz als Argument eingesetzt, so ergibt sich

ir —{x
et e . .
———— bzw. sinhixz=—Fn—.
2 2

. fz_e—lz.
coshix =

Es ist also . . L
cosx = coshix, isinz=sinhiz.

16.4 Schmiegungsparabeln

Wie die Anwendungen der Taylorschen Formeln auf die Entwicklung transzen-
denter Funktionen in Potenzreihen in 16.3 zeigten, arbeitet man im praktischen
Fall stets mit Naherungen, indem man die héheren Potenzen vernachlissigt.
Man verwendet also nicht die unendliche Reihe selbst, sondern eine aus ihr
durch Abbrechen nach einer bestimmten Gliederzahl entstehende ganze rationale
Furktion. Geometrisch bedeutet das Ersetzen einer beliebigen Funktion durch
eine ganze rationale Funktion das Ersetzen der Funktionskurve in der
Umgebung der Entwicklungsstelle x= 0 durch eine Parabel. Unter Parabeln
verstehen wir hierbei grundsitzlich alle Kurven von Potenzfunktionen
Yy=a,2"+a,_ 12" 1+ ...+ a,x+ a fiir n = 0.

Bild 1 zeigt die Annidherung der Funktion y=sinz durch ihre Potenzreihe,
und zwar sind neben y = f(x) = sinx noch die Naherungskurven y = f,(z) = =,
y=Ffy(x)=x— % und y=fy(x)=x — % -0—5—16! eingezeichnet. Wie Sie aus
Bild 1 erkennen, schmiegen sich die Niherungskurven um so enger und um so
weitgehender in der Umgebung der Entwicklungsstelle an die Funktionskurve
an, je héher der Grad der Parabel ist, d. h., je mehr Glieder der Reihe man ver-
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wendet. Diese Ersatzparabeln heilen daher auch die Schmiegungsparabeln
der Funktionskurve. An der Entwicklungsstelle z = 0 stimmen Funktionskurve
und Schmiegungsparabeln selbstverstindlich iiberein, wie auch aus Formel (3)
hervorgeht, wenn man z = 0 einsetzt. )

Bild 1

16.5 Konvergenz von Reihen

16.61 Konvergenzbedingungen fiir beliebige unendliche Reihen. Soll eine un-
endliche Reihe eine endliche Summe besitzen, so ist das offenbar nur méglich, wenn
die Glieder bestdandig abnehmen. DaBl diese Bedingung aber nicht geniigt, zeigt
das Beispiel der Reihe

1 2 3 4
Trstgta -
Die Glieder werden zwar stéindig kleiner. Wie Sie aber aus dem allgemeinen Glied
n 1

on—1 5L
n

erkennen, streben die Glieder fiir n—>oco gegen —;—- und sind fiir jeden endlichen
Wert von n stets groBer als % Da die Summe mit jedem Glied mindestens um

% wichst, kann diese Reihe keine endliche Summe besitzen, d. h., sie konver-
giert nicht.
Da man héufig nicht ohne weiteres erkennen kann, ob eine Reihe konvergiort,
sollen Sie nun zwei Konvergenzbedingungen fiir unendliche Reihen kennen-
lernen.
Wie Sie wissen, ist eine Reihe konvergent, wenn die Teilsummen einem Grenz-
wert zustreben, d. h., wenn die Bedingung gilt

lim s,=s.

n-—>00
Ist eine Reihe konvergent, ist also diese Bedingung erfiillt, dann gilt auch

lim s,_;=s.
n—>00



Da 8 =28,_11 U,

und damit Up==8y—Sp_1
ist, wird lim %, = lim [s,—s,_,] = lim s,— lim s,,_;.
n-—>00 n—>00 7 —>00 n—>oc

Beide Grenzwerte der rechten Seite besitzen den gleichen Wert 8. Ihré Differenz
ist somit gleich Null.
Daraus folgt lim %, =0 (5)

n—>0

Soll eine Reihe konvergieren, so miissen ihre Glieder mit unbegrenzt wach-
sender Gliederzahl gegen Null streben.

Dieser Satz enthilt nur eine notwendige Bedingung, keine hinreichende. Er darf
daher keinesfalls umgekehrt werden. Streben die Glieder einer Reihe gegen
Null, so folgt daraus noch nicht die Konvergenz der Reihe. Ein Beispiel da-
fiir ist die harmonische Reihe

I+g+g+g+tptetrtgte

Hier strebt u,— 0. Trotzdem ist die Reihe nicht konvergent. Zum Beweis
vergleichen wir diese Reihe mit der Reihe

1+g+3+s+gtstetst

‘Die zweite Reihe unterscheidet sich von der harmonischen Reihe in einem Teil
der Glieder, wobei die Glieder der harmonischen Reihe einen gréBeren, mindestens
aber den gleichen Wert wie die entsprechenden Glieder der zweiten Reihe he-
sitzen.

Die zweite Reihe ist aber divergent, denn Sie kénnen nach den ersten zwei Gliedern
die folgenden zwei, dann die folgenden vier, die folgeriden acht Glieder usw.

zusammenfassen zu 1 1 1
1+7+2°T+4"§+'"

=1+ g+gtgte

Die Summe dieser Reihe ist also unendlich groB. Da die Glieder der harmonischen
Reihe aber nie kleiner als die der Vergleichsreihe sind, ist auch ihre Summe
unendlich groB. Obwohl die Bedingung lim u, = 0 erfiillt ist, konvergiert die
harmonische Reihe nicht. n—>co

Die Bedingung lim u, = 0 ist fiir die Konvergenz notwendig, aber nicht
hinreichend. »—>®

Eine hinreichende Bedingung enthilt das Quotientenkriterium von d’Alembert:
Eine Reihe konvergicrt, wenn gilt

lim | Y2221 < (6)
n—oool Un
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Die Konvergenzbedingung der unendlichen geometrischen Reihe, |¢| <1, stellt
einen Sonderfall der Formel (6) dar, denn es ist %: a‘;?_' =q.
Lehrbeispiel 3
Untersuchen Sie die Reihe .

1 1 1 1

Tratata T

auf Konvergenz!

Lésung:
. 1 1
Es ist un—’:—n'!— und u”+1=m.“
Damit wird"
Upyy  m! 1
u, (n+1)! a4l
und nach Formel (6)
hm n+l I l (
n—soo| Un n—00 |

Die Reihe konvergiert also.

Die in Formel (6) enthaltene Bedingung ist hinreichend, d. h., eine Reihe, die
dieser Bedingung geniigt, konvergiert sicher. Sie erfaBt aber nicht alle kon-
vergenten Reihen. Es gibt also auch Reihen, die das Quotientenkriterium nicht
erfilllen und trotzdem konvergieren.

Wihrend also die Bedingung der Formel (5) neben allen konvergenten Reihen auch divergente
umfaBty d. h. zu weit gefaBt ist, enthilt die Bedingung der Formel (6) zwar nur konvergente
Reihen, diese aber nicht alle, d.h., sie ist zu eng gefafit.

Ein Beispiel ist die Reihe
1 1 1 1
B I B L S
Da wir oben nachgewiesen hatten, daB8 die harmonische Reihe
1 1 1 1
I+5+5+g+5+

divergent ist, kann auch fiir die erstgenannte Reihe Formel (6) — da in ibhr nur
der absolute Betrag verwendet wird — nichts anderes aussagen. Die vorliegende
Reihe besitzt aber die Eigentiimlichkeit, daB das Vorzeichen periodit sh wechselt.
Fiir derartige Reihen, die alternierende Reihen genannt werden, ist aber die
Konvergenzbedingung der Formel (6), lim u, = 0, hinreichend.

n—>00

Wenn in einer Reihe die Vorzeichen der Glieder periodisch wechseln und
die Zahlenwerte der Glieder stetig gegen Null abnehmen, dann ist die Reihe
konvergent.

Eine Veranschaulichung dieses Satzes gibt Bild 2, in welchem die Teilsummen
8, 83, 83,... auf einem Zahlenstrahl markiert sind. Das erste Glied u, liefert
den Punkt s,. Ist das 2. Glied kleiner und von anderem Vorzeichen, so ergibt sich
der Punkt fiir die Summe der ersten beiden Glieder zwischen 0 und s,. So fort-
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fahrend pendelt die Summe s, auf der Zahlgeraden hin und her, wobei die Schwin-
gungen aber immer kleiner und kleiner werden. Die Summe s, nihert sich einem

Grenzwert 8 (die Reihe konvergiert), wenn lim u, = 0 ist.
n-—->00

P Da die Reihe
1 1 1 1
i =3 +3—3+5—+
“‘\ eine alternierende Reihe ist und
S\ % S ) 5+ das n-te -Glied
«»/ \

= (11

“ fiir n— oo gegen Null strebt, ist

Bild 2 sie eine konvergente Reihe.

16.52 Konvergenzbedingungen fiir Potenzreihen. Da die Glieder einer Potenzreihe
Potenzen einer Verdnderlichen enthalten, mufl die Bedingung fiir das Vorliegen
von Konvergenz an den Wert der Verdnderlichen gekmiipft sein.

Fiir einc Potenzreihe von der Form '

f@)=a,+ a5+ ayd* + a2’ -
sind drei grundsitzliche Félle zu unterscheiden:
1. Die Reihe konvergiert fiir jeden Wert der Verinderlichen z,
2. die Reihe konvergiert nur fiir einen bestimmten Wertebereich von z,
3. die Reihe konvergiert nur fiir x = 0.
Eine Reihe, die nur fiir # =0 konvergiert, ist

f®)=1+1tz+ 2122+ 3143+ ...

Es soll nun ein allgemeiner Weg fiir die Bestimmung des Konvergenzbereiches
einer Potenzreihe gezeigt werden.

Die hinreichende Konvergenzbedingung einer beliebigen Reihe war in Formel (6)
niedergelegt. Da bei Potenzreihen

— — — n-1 —_ "
UI=0qg, U= T,..,Up=0Qy 1 sy Upi1=ayx", ...

ist, muB die Konvergenzbedingung jetzt lauten

. u, . a, x" .
lim |21 =lim |—2——|=lim Ye|<1.
n—>00 n n—>oo| In-17" n—o0l “n-1
Hieraus folgt 1 .
] < —— = Tim | %21 ]
lim |-% | -l %
n>oc| Oy _y

Eine Potenzreihe konvergiert fiir alle Werte

|| < lim

n-—»00

@)

a,_, l
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Beachten Sie, daBl Konvergenz nur fir [z < lim Lot | verbiirgt ist. Fiir den
n—>00 n

Wert | 2| = lim -1 | konvergiert im allgemeinen die Relhe nicht mehr, wie
n—00 n
Sie sich am Beispiel der in 16.1 behandelten Reihe f(x) = =14+x+ 22+

+ 28 4 ... iiberzeugen konnen. Dort war (geometnsche .Relhe) q = x. Damit
konvergiert diese Reihe fiir |«| < 1, da die geometrische Reihe nur fiir |g| <1
konvergiert.

Beachten Sie weiterhin, daB in Formel (7) nur die Koeffizienten der Glieder der
Reihe stehen!

Lehrbeispiel 4
Untersuchen Sie die Reihe

auf Konvergenz!

Losung:
. 1 1
Es ist a,,=—ﬁ, d“_1='(7rm
Damit wird
]im'a”“ = lim _l.l.mn=oo.
n—>ool Gy n=—>oo (”_ 1)' I n-—»oc =

Die Exponentialreihe konvergiert fiir || < o0, d. h. fiir jeden Wert von z.

Lehrbeispiel 5
Ermitteln Sie den Konvergenzbereich der Reihe
2 zt 8
cosx=1 2,—[-4' 6!+—"",
Lésung:
Zwei aufeinanderfolgende Glieder haben die Gestalt
Z2—1) gen-2
luﬂl - T Cn—
[2(n—1)]! (2n—2)!
und Z2n
luru- 1| = (2_,67 .
Es ist also
_ 1 1
. lon-sl = a9l =y
und es wird 1| (@m)
e, | (2n—2)!
_1.2...2rn-2)(2n—=1)-2n
1.2...2n—3)2n—2)
=2n—1).2n.
Wegen |
lim |22=1| —lim (2n—1)-2n =00
n—>00 n n—-00

ist der Konvergenzbereich
|2] < oo.
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Ubungen
1. Berechnen Sie cos 4° auf 5 Dezimalstellen genau!

2. Stellen Sie mit Hilfe des Quotientenkriteriums von d’Alembert den Komvergenz-
bereich der Reihe fiir sinx fest!

3. Entwickeln Sie die Funktion f(x)= a® (a > 0) in eine Potenzreihe!
Fiir welche Werte von x konvergiert die Reihe?

4. Stellen Sie eine Reihe fir f(x)= e** auf!

16.6 Differentiation und Integration von Potenzreihen

Fiir das Rechnen mit Potenzreihen gelten folgendé wichtige Sétze, auf deren
Beweis wir verzichten wollen:

1. Konvergente Potenzreihen darf man innerbalb des Konvergenzbereiches
gliedweise addieren oder subtrahieren.

2. Eine Potenzreihe darf innerhalb ihres Konvergenzbereiches gliedweise differen-
ziert oder integriert werden.

Mit anderen Worten ausgedriickt: Eine durch Addieren oder Subtrahieren von
konvergenten Potenzreihen entstehende Potenzreihe hat als Konvergenzbereich
den Wertebereich von z, fiir den jede der beiden Ausgangsreihen konvergiert.
Eine durch Differenzieren oder Integrieren einer konvergenten Potenzreihe
entstehende Potenzreihe hat den gleichen Konvergenzbereich wie die Potenz-
reihe, von der ausgegangen wurde.

16.61 Differentiation von Potenzreihen. Wir wollen zunichst an den Reihen fiir
sin z und cos x die Richtigkeit des zweiten der obenstehenden Sitze nachpriifen.

Es ist PR
sino=o— g+ 5 —+-+ fir |x|<<oo.

Durch gliedweises Differenzieren erhalten wir die Kosinusreihe
z ot ..
cosz=1—or+ 7 —+-- fir |z|<oo.
Nochmaliges Differenzieren ergibt
. 3
_s].nx=—-x+.§§--—+._‘. .

woraus folgt
sing=xz—5; 4+ fir |z|<oo.

Benutzen wir den ersten der beiden obenstehenden Sitze und bilden = _—2°~z ,

go erhalten wir

1

(1+1.+2.+ J—(1- H+a—+)]
2 Z '+23' ']=ﬁ+§;+”'

—==]
=]
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-z

o

Wegen — "29 = sinh z ‘folgt
. x x? xb .
sinhe =3¢+ 57 + 57+ fir |x|<eoo.
Fiir den Hyperbelkosinus gilt
dsinh
coshzx = )
z
@ oz .
coshe=1+ v+ +- fir |x| <oo.
Wir hitten auch coshz aus der Beziehung coshx = & +26_z herleiten konnen.

16.62 Integration von Potenzreihen. In 16.1 hatten wir festgestellt, daB

oo =ldztattatte st fur |z|<l.
Ersetzen wir hierin iiberall  durch —, so folgt
1

—1W=l—x+z2—x3+—u- fir |z|<l1.

Die Integration dieser Gleichung liefert
1
f_l—_l_;dx=f(1—x+x2—x°+—...)dx.

Das Integral der linken Seite ist die Funktion In(1 4 %), so daB sich ergibt
v _ 2 A
In(1+2) —0+.$—§‘+§'—T+—"'
Um die Integrationskonstante C zu bestimmen, setzen wir x = 0:
Inl=C, C=0.

Damit haben wir eine Reihe zur Berechnung natiirlicher Logarithmen erhalten:
l xd s xt .

]n(l+W)=w—-§—+T—T+—'°' fiir |a>|<l.

Lehrbeispiel 6

Priifen Sie nach, ob die Reihe fir In(1 + x) auch noch fir x=1 und x=—1

konvergent ist!

Loésung:

Fiir =1 erhalten Sie

1 1 1
]n2=1—?+-§——z+_...

Diese Reihe wurde bereits in 16.51 als konvergent nachgewiesen. Wir wissen nun

auch ihre Summe.
Fiir = —1 erhalten Sie
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In der Klammer steht die als divergent bekannte harmonische Reihe. Sie be-
kommen das Ihnen bereits aus der Logaritmenrechnung bekannte Resultat

In0=—o0.

Als Konvergenzbereich der Reihe In(1 4 «) 1aBt sich also endgiiltig angeben

——1<,x§_l.

Versuchen Sie, mit Hilfe der hergeleiteten Reihe In 2 zu berechnen, so stellen Sie
fest, daB die Reihe sehr langsam konvergiert. AuBerdem lassen sich mit ihr nur
die Logarithmen der Zahlen zwischen 0 und 2 berechnen. Es soll deshalb unter
Verwendung der Reihe fiir In(1 4 x) eine besser konvergierende Reihe entwickelt
werden. .

Zu diesem Zweck ersetzen wir, immer unter der Voraussetzung [z -1, den
Wert 2 durch —x. Es wird

2% 3 xt
ln(l—x):—z—-2—~—:3——T -----

Da 1
In(l42)—In(l —z)= ln»-l~ ——

ist, folgt nach gliedweiser Subtraktion der Reihen fiirIn(1 + z) und In(1 -- x)

In

l+x x® b .
1—m=2(w+_§_+_5._+...) fir |x/<1.
R —

Wird noch %f_—:—_— 2z, also x= z—+—1 gesetzt, so nimmt die Reihe die fiir das

praktische Rechnen geeignetere Form an

1nz=2[-:-}%+%(§:—})3+%(:—j)5+~-] fir »>0.

Der angegebene Konvergenzbereich z> 0 ergibt sich aus der Substitution
;i : = 2z, wenn man dort den Konvergenzbereich || <1 einsetzt. Die Reihe
fiir In z ist sehr gut brauchbar, wenn z klein ist.

Lehrbeispiel 7
Berechnen Sie In 2 auf 4 Dezimalstellen genau!

Lésung:
Es ist —oll LT ST T
ln2’2[?+ sETEE e T ]
= 2[0,33333 + 0,012 35 4 0,00082 4 0,00007 4-- - -]
~2.0,34657,
In2 ~0,6931.
Wird in der Reihe )
-iTz=l—x-f—wz—x3+—---



x durch 2? ersetzt, so ergibt sich die Potenzreihe

l —
1+a%

l— o — b —...

Diese ist konvergent fiir |#?| <1, d. h. fir |z|<1.
Werden beide Seiten integriert, so wird

1
[ipmde=fQ—atd—att— ) ds
Auf der linken Seite steht ein Grundintegral, das die Funktion arc tan x liefert:

7
arctan:c:C’-I—x_—%—[—-%—%—_[-—

L]

Um die Integrationskonstante C zu bestimmen, wird wiederum x = 0 gesetzt:

arctan0=C, C=0.
Die Reihe fiir arc tan x lautet somit

x? xs x? "
aretanz=x— o+ — -+ —:- fir |x|<1.

Aus dieser Reihe kann man die neben der Zahl e wichtigste transzendente Zahl
der Mathematik berechnen: die Zahl 7.
Setzt man n#mlich =1, so bekommt man, wegen arc tan 1= z

41
P R

Diese Reihe heifit die Leibnizsche Reihe, weil sie von Leibniz aufgestellt wurde.
Da sie aber zu langsam konvergiert, hat man auf der Grundlage der Reihe fiir

arctanz besser konvergierende Reihen geschaffen.
Eine dieser Reihen ergibt sich, wenn = 1 =-%- V3 gesetzt wird.

. Vs
Da are tan% ]/§ =arc 30°= % ist, wird Vs

1

1 1
3 3.3)3 +5-32V§_1-3aV3_+_
1 1 1 1
ﬁ@ —atrETEt—)
rY 1 1 1
n=273 (1— - _|_5_32_7‘3s+_....)
w=3,14159...

arc tan — 1 =7 _
6

3

ol 8
Il

Um auf diese Weise  auf 5 Dezimalen genau berechnen zu kénnen, sind 10 Glieder der Reihe
zu summieren. Damit die Rundungsfehler vernachlissigt werden kénnen, ist 2)/3 auf 6 Dezi-
malen genau, jedes Glied der Reihe auf 7 Dezimalen genau zu nehmen. Fiir die genauere
Berechnung von # konvergiert die Reihe zu langsam. Durch Umformung lassen sich besser
konvergierende Reihen herstellen.
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Ubung
5. Berechnen Sie mit Hilfe der Reihe fiir Inz den Wert von In3 auf 4 Dezimal-
stellen genau!
16.7 Die binomische Reihe

Besonders wichtig wegen der vielseitigen Anwendbarkeit ist die Entwicklung
der Funktion f(z) = (1 4 )™ in eine Potenzreihe.

Es ist
f(x)=1+=2)" f0)y=1
f' (@) =m(1 )™ f'(0)=
7 (x)=m(m—1) (1 +z)™-2 F7(0)=m(m—1)

F7(@) = m(m—1) (m—2) (1 +2)  {(0) =m(m—1) (m—2)

Durch Einsetzen der Werte £(0), //(0), f/(0), . . . in Formel (3) erhilt man

(l+x)m_1+mx_|_m(m 1) wz-l—m(m.-?!(m_‘mxzi_‘_.“

Fiir die Koeffizienten der Potenzen von x verwendet man eine besondere Sym-

bolik und schreibt
), gelesen: m iiber 1,

), gelesen: m iiber 2,

m(m—l)(m 2)
1 2-3

ll

T=(1
mm_n (
(5

), gelesen: m iiber 3,

mm—1)(m—2). ..(m—[v—l])
»!

= (7:) , gelesen: m iiber v.

Sie kénnen sich merken: (': stellt einen Bruch dar, der in Ziahler und Nenner

je v Faktoren enthilt, vnd zwar im Zéhler von m beginnend jeweils um 1 kleiner

werdende Faktoren, im Nenner von 1 an aufsteigende Faktoren.

Man nennt (T), ';" , '_.;l' , ... die Binomialkoeffizienten. Die Potenzreihe

fiir (1 4+ x)™ heiBit die vinomische Reihe, fiir die wir nun schreiben kénnen

(1+¢)"'=1+( )a:—l—( )z"—[—( )x3+ . far |z|<1 ®)

Den angegebenen Konvergenzbereich ermittelt man mit Hilfe des Quotienten-
kriteriums. Es ist

_[(m _m(m—l)(m-—2)...(m—[n—l])
“""(n)" 1.2-3...
m ) m(m—1)y (m—2).. (m—[n—2])

und
“~-1=(n—1 = 1.2.3...(n—1)
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Damit wird

= lim ’——-—————-———-——(: lim |——
n—sool %n ool M—I0—1D| M—n-l-ll
1 1
= lim = _|=1.
o0 | M 1 -1
TRl T

Der Konvergenzbereich ist also —1 < z << 1.
Auch f(x) = (a+ z)™ kann in eine Potenzreihe entwickelt werden. Wird a
ausgeklammert, so li8t sich Formel (8) anwenden. Sie erhalten

@+ar=am(1+5)"

o+ ()34 63+ 53]

(a+a:)m=a"‘—l—(?)a’”‘lx—l—(;‘)a’”'zxz—]—(g')a"“sxa—l—--~ fir |z|<a.| (8a)

und schlieBlich

Wir hatten (1 -I—f—)m entwickelt. Der Konvergenzbereich ist also l-z—l <1 oder
z| <a.

|Inl den Formeln (8) und (8a) kann der Exponent m jede beliebige reelle Zahl sein.
1st er eine positive ganze Zahl n (n= 1,2, 3, . . .), so ist die n-te Ableitung von
(a 4+ x)* gleich n!, die (n+ 1)-te und ]ede folgende Ableitung ist gleich Null
(vgl. hierzu Band 1 Abschnitt 3.7). Die Entwicklung von (a + z)* ist dann ein
geschlossener endlicher Ausdruck, der Thnen bereits als binomischer Lehrsatz
bekannt ist:

S E N P Y
fir »n=1,2,3,...

Lehrbeispiel 8
Berechnen Sie mit Hilfe des binomischen Lehrsatzes (a -+ b)*, indem Sie
tn Formel (8b) x=1b setzen!
Lésung:
Es ist

4 4 4 4
(@+bp=at+ (1) a®b+ (2) a2b+ (3) abd+ (4),1;4

=gt44a3b 4 6a2b2 4 4a b3} bt.

Die binomische Reihe in der Form der Formel (8) wird héufig fiir die Berechnu.ng
von Wurzeln verwendet.

Fm!' die Funktion f(z)=V14+z=(1+ x)2 erhilt man
1
5 1 1 b
VIt =+af=1+5—go+ s — g +—
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Ist |z| <1, so setzt man

Vite~14+7.
}1,00384 ~ 1,00192
Lehrbeispiel 9

Y10 ist mit Hilfe der binomischen Reihe auf 4 Dezimalen genau zu berechnen.

Zum Beispiel ist.

Lésung:
Sie schreiben

T0 — __/ 2 g1z 2. LS.

JI0=7Y9+1 ]/9 1+ 3]/1-1- _3 T T N P )
~ 3(1 4 0,055556 — 0,001 543 + 0,000 086)

Y10 ~ 3,1623

Es wurde mit 6 Dezimalen gerechnet und auf 4 Dezimalen gerundet, damit die 4. Dezimale
im Ergebnis sicher ist. Bei Verwendung von 5 Dezimalen ergiibe sich ein maximaler Rundungs-
fehler von 3(3 -+ 5-107¢) = 4,5 - 1075, Da auBlerdem die restlichen Glieder der Reihe vernach-
lassigt wurden, konnte ein Fehler > 5-1075 entstehen. Die 4. Dezimale wire dann nicht
sicher.

Je bessere Konvergenz Sie durch geeignete Umformungen herbeifithren kénnen,
desto weniger Glieder der Reihe brauchen Sie zu beriicksichtigen. Es lohnt sich
deshalb, beim Aufspalten des Radikanden etwas linger zu suchen, um eine Potenz
(vom gleichen Grade wie der Wurzelexponent) zu finden, deren Wert dem Radi-
kanden recht nahe kommt.

Lehrbeispiel 10

Berechnen Sie 'i/6:000 41 auf 4 Dezimalen -genau!

Lésung:

Sie formen zunichst um:

o
70,00041 = |/ o 000 V41

In einer Tafel hoherer Potenzen (oder auch durch eine Uberschlagsrechnung)
finden Sie 2,15 = 40,84101, so daBl Sie jetzt schreiben kénnen

01¥41 = 01]/4084101—|-015899 011/21514.4]0582??)1)

_ 15809 \5
=021 (1 + Zosa101 )
Nach Formel (8) ist
1
15899 \5 15899 _
(1 +zo8e70r) ~ 14— 140,00078.

Das dritte Glied der Reihe braucht hier infolge der guten Konvergenz schon
nicht mehr beriicksichtigt zu werden und Sie erhalten

70,00041 = 0,21 -¥,00078 = 0,2102.
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Mit Hilfe von Formel (8) kann auch die Potenzreihe fiir f(x) = arcsinz her-

Zeleitet werden.

Es ist 1
(arcsinx)’=;__ﬁ.=(l—x2) 2,

y1-

Wird z in Formel (8) durch —x? ersetzt, so ergibt sich

_1 L L _1

1—2 2:1-— 2x2 2:1:4-— 2%‘ e

a=e i1 (e (F)a-(3)e+
_ 1 3 5 4
=1l+522+ g2+ g2+

Durch beiderseitige Integration erhilt man
1
-5 . 1 a8 3 b 5 7
f(l—zz)' Zdz=arcsinz=C-+2+ 55 +5 5 +15 2+

Aus arcsin0 = 0 folgt fiir die Integrationskonstante C =0, so daB die Reihe
endgiiltig die Form
. 1 = 1 38 = 1 8 5 . )

artsmw—m+?-—3—+72_---4- = +—°—°—°T see fiir |m|<l
erhdlt. Der angegebene Konvergenzbereich folgt aus dem der binomischen
Reihe.
Mit Hilfe der Reihen fiir arcsinz und arctanz konnen auch die Funktions-
werte fiir arccos x und arccot x berechnet werden, denn es gilt

. . 4 4
arc sinx -} arc cosx = 5 bzw. arctanz -} arccotx = 5

woraus

T . 14
arc cosx = 5 arcsinz bzw. arccotz= 5 arc tan x

folgt. Weitere Potenzreihen, auf deren Herleitung verzichtet werden soll,finden

sie im nichsten Abschnitt zusammengestellt.

Ubung
6. Berechnen Sie ]5/1000 auf 4 Dezimalstellen genau, indem Sie in J1024 — 24

zerlegen!
16.8 Zusammenstellung der wichtigsten Reihen

Es ist moglich, eine beliebige Funktion — sofern die am Anfang von 16.3 genann-
ten Voraussetzungen zutreffen — mittels der MacLaurinschen Form der Taylor-
schen Reihe

0
f@) =)+ Ozt LR gy ...
in eine unendliche Potenzreihe zu entwickeln.
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Reihe Konvergenzbereich

(1+x)'"=1+('{')w+(';)x“’+--' [ <1
(a_‘_x)m__ m+( ) m 1Z+( ) m'2x2+... |xl<a
1+x=1_x+x2___ms_|__... |z]<1
1
T =1+a ottt [ <1
(_1:1$_)2=1 1204322 4aB ... le| <1
1 1.3 1.3.5
Mte=14+5—55o+t3iso o680t |2l <1
1 . &, 1.3 , 1.3.6 . |
N+s =l—gt+37% 316"t lej<1
1 1.2 1.2.5 1.2.5.8
Vite=1tgo—g5o+t3asP—goonprt— lo<l
1 1 1.4 1.4.7 1.4-7.10 ,
+e =! 3”‘;3-6:_ 36.9% T3e oz s T [2l<1
ez=1+l—”,+2—!+m+--- |#| < o0
_l—l-xlna | zz(;;;a)z+zs(lna) +- |z|<o0; a>0
n(l4z)=z—5+5 .. —1<|z|=1
z—1 1 (xz—1\5
ln””—2[z+1+ s(530) + 55+ ] v>0
z?
sing = — 3,+5,—7,—|—— |2 < o0
cosa:=l——2—!—|-ﬁ—+°" || <eo
tanx=x+—;-xs+%x5+n- l“’l<“§ﬂ'
1 1 1 2
cotx=?—?x—4—5x3——g4—g-x5— |z|<m
1.3 5 1.3.5 4
a,rcsm:a:---:;r:-}-2 5 Cales 5 £5*+2~4-6'%+'" 2| <1
a.rctanz:x——:,‘—+—5,——={—--- lz| <1
. a3 x5
smhx=x—|——ﬁ+-5—!+--- |2| < o0
&t | at
coshx=1+2—!+4—!-|—--- |#| < oo



17 Anwendungen der unendlichen Reihen

17.1 Niéherungsformeln

Die binomische Reihe (8) eignet sich besonders gut zum Aufstellen von Néherungs-
formeln. Sie konvergiert — wie bewiesen wurde — fiir || < 1, und zwar kon-
vergiert sie um so besser, je kleiner | x| gegeniiber 1 ist. Unter der Voraus-
setzung | #| <1 kann man sich (mit einer Genauigkeit, die fiir die Bediirfnisse
der Praxis in den meisten Fillen ausreicht) auf die ersten beiden Glieder der
binomischen Reihe beschrinken.

Man erhilt so z. B.
A4+2)"~14me, fir |z|<1,

ﬁ=(l+x)'mzl—mx, fir |2|<l,
lJlrm=(1+x)-l ~l—z, fir |z|<l,
1
Vitae=(1+42)?% ~14+=, fir |o|<l,
1
1 > z "
Tertal SUUILES R LR

Ttz=01+273 z'1-|-%, fir |2|<1,
x

fir |z|<1 usw.

Aus den anderen in 16.8 zusammengestellten Potenzreihen lassen sich weitere
Niherungsformeln entwickeln, wie z. B.

sinz~z fir |z|<1 (zim Bogenmafl gemessen),
cosz~1—— fir |z|<1 (zim BogenmaB gemessen),
ef~1+z fir |z|<1,

ln(l—l—x),mx—ﬁ;— fir |z|<1 usw.

Die Anwendbarkeit der Naherungsformeln fiir die trigonometrischen Funktionen la8t sich
haufig erweitern.
Beispiele: gin 3,2 = —sin (3,2 — ) = —sin 0,0584 ~ —0,0584

7

cosl,5= sin( 3 1,5) =sin0,0708 ~ 0,0708

Niherungsformeln werden in der Technik sehr oft benutzt. Einige spezielle
Beispiele sollen Sie im folgenden noch kennenlernen.
Lehrbeispiel 11
Fiir die Lingenausdehnung eines Stabes infolge Erwirmung (Querschnittsabmessun-
gen << Linge) gilt

I=1(1+at) (o=1linearer Ausdehnungskoeffizient <1)



und entsprechend fiir die Volumenzunahme eines erwdirmten Kéirpers
V="Vo(1+at).

Entwickeln Sie eine Niherungsformel fir V!

Lésung:

Nach Formel (8) ist

V=Vo(+atP=Vy(1+3at+--)~ Vy(l+ 3az).

Man setzt 3« = f (3« = f = kubischer Ausdehnungskoeffizient). Damit wird
V~Vy(l+Bt).

Lehrbeispiel 12

Es ist eine Niherungsformel fiir die Fliche eines Kreissegmentes als Funktion des

Zentriwinkels aufzustellen.

Lésung:

Der Flicheninhalt des Kreissegmentes ergibt sich als Differenz von Kreissektor

minus Dreieck.
Der Flicheninhalt -des zugehérigen Kreissektors ist

F,= r22- * (r=Radius; o« =der Zentriwinkel im BogenmaB).
Der Flicheninhalt des Dreiecks ist
72.sina
F,= 3

Der Flacheninhalt des Kreissegmentes ist
F = F 1— F 9=

.o rl.gine 12 .

i e =-?[oc—smtx].
Ersetzen Sie jetzt sin o« durch eine Potenzreihe (die in der Potenzreihe auftreten-
den Potenzen von « sind im Bogenmall gemessen), so wird

r2 o8 ob o7 o 1 1
F=Gla—(a—grtgr—rt— )| = (- Hmmar—+- ).

r2 aE
P — 3————.
F~ 12(“ 20).

Lehrbeispiel 13
Der Kolbenweg x eines Kurbeltriebes (vom duferen Totpunkt ab gerechnet) ist

x=r(1—cosx)+ (1 —cosp)
( Bezeichnungen nach Bild 3).

’I“\\ Entwickeln Sie eine Niherungs-

|\ formel fir x in Abhdingigkeit

............ O o _7_ von o, und fiihren Sie das

|/ Schubstangenverhilinis %=l

l—x-ﬁ \‘I"/ ein. (Vorausgesetzt wird, dap A

sehr viel kleiner als 1 ist, z. B.

ild :
Bild 3 bei Dampflokomotiven 2 <0,2.)
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Loésung:
Es besteht die Beziehung
sinf = Tr sinx = Asinx  (Sinussatz).

Damit ist cosf=Y1—sin?f=}1 —A%sinx.
In der Gleichung fiir x ersetzen Sie das Glied cos fi:

z=1r(1—cosa)+I(1— V1 — A2sin2a).

1— A%sin%x entwickeln Sie in eine binomische Reihe:
V1 —A2sin?ax =1 ——;— l’sin”zx—%l‘sin‘a—- .

Fiir die Naherungsformel kénnen Sie sich auf die ersten zwei Glieder beschrinken
(wenn z. B. wie oben angegeben 1 < 0,2 ist, wird A* < 0,0016), und Sie erhalten

xzr(l—cosa)+l[1—(l—-;—1!281n2°€)] ,

xz-r(l—cosa—l——;-lsin’oc).

Lehrbeispiel 14
Fiir die Berechnung der Hdirte (in kp/mm?) durch den Kugeldruckversuch nach
Brinell (DIN.1605) wird die Formel

H

_ 2P
" wD(D-)Dr—d2)

angegeben. Hierin bedeuten P die Belastung (in kp), D den Kugeldurchmesser
(in mm) und d den Durchmesser der Eindruckfliche (in mm). Es soll weiterhin

02 % < 0,5 sein. Ersetzen Sie mit Hilfe von Potenzreihen die fiir die Rechnung
unbequeme Formel fiir die Brinellhdrte durch eine Niherungsformel!

Lésung:

Sie schreiben V-ﬁz—_dz _D ] /1 _ ( % )_2

und entwickeln den Wurzelausdruck nach Formel (8) in eine Potenzreihe:

DA (BT -0 (- 45~ - (3 )

Damit wird

2P
H= ~
1 /d\ 17d\¢ 1 (d\¢
w0 |o-0(1-5 (3 -5 (5)~% (5]~
_ 2P
= aD? (a2 1 a4 1 a8
T(F"‘ZFJ“Q'F""“)
_ 4P __ 4P 1
= 1 d 1 a = mdt’ 1 & 1 a8
“”(”Iﬁ +§'DT+"') it t
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1

‘Verwenden Sie fiir den Bruch —————; die Néherung ——~1—3,
Hrptgot
4P 1/d\ 1/[/d\
so erhalten Sie schliefllich H ~ [ - (—1—)—) _?(T) ]

Fiir den groBten zuléissigen Wert des Verhaltmsses = 0,5 nimmt das 2. Glied den
Wert —<007 und das 3. Glied den Wert <O 008 an. Wie Sie sehen,
wird man mit einem Fehler von kleiner als '7% emfach H= 5, setzen diirfen.
Die Verwendung des 2. Gliedes driickt den Fehler unter 1%, herab.

17.2 Integration durch Reihenentwicklung

Ist es Thnen nicht moglich, ein gegebenes Integral in geschlossener Form durch
Anwenden einer der in Band 2 behandelten Integrationsmethoden zu lésen, so
besteht neben den Ihnen bekannten numerischen und graphischen Verfahren
die Moglichkeit der Integration durch Reihenentwicklung.

Sie ersetzen die zu integrierende Funktion durch eine konvergente unendliche
Reihe (die Sie z. B. mittels Taylorentwicklung gewinnen kénnen) und integrieren
die Potenzreihe gliedweise. Beachten miissen Sie hierbei, daf8 die Integrations-
grenzen innerhalb des Konvergenzbereiches der Potenzreihe liegen miissen.

Lehrbeispiel 15 \

Berechnen Sie die Fliche unter der Kurve y = ﬂx-"{ in den Grenzen von z, = —m
bis xy = m!
Loésung: Da es sich um eine gerade Funktion handelt, ist

fsmx dz _2fsma:

-

dz kann nicht exakt geldst werden. Sie ersetzen deshalb sinz durch

sinz

die Sinusreihe (Konvergenzbereich || < o) und erhalten

f‘” x”+.1:5 x7+
sinz T T T T
[ da= P do=[(1—gr+5r—Fr+—)d=

Die gliedweise Integration liefert

ki

Y LRy PO S P
0

0
128  1a8 147 n
=2(z— ?ﬁ+Fﬁ—7ﬁT+—"')o
31,006 , 306,02  3020,3
(3 1416 — 18 + %00 352so+ )

2(3,14— 1,72+ 0,51 — 0,004 —-..),
3,7.

13

fSi:""‘ dx

-
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Lehrbeispiel 16
4

Berechnen Sie V-':'I’L-l-l!
3
Losung:
Sie verwenden die Potenzreihe
1 z 3
— =1 Ty 2
1+ 513 +

Da Sie nur innerhalb des Konvergenzbereiches |z| <1 integrieren diirfen, die
Integrationsgrenzen aber 2 und 4 sind, formen Sie vorher um. Es wird

—_— =

-3 1 1 3 1
=z 2{l—= .+ > ——+...

Die in der Klammer stehende Reihe ist fiir > 1 sicher konvergent. Sie erhalten

3 9 16
1 5 1 -5, 3 -5
= 2 — 2 1L " 2 ...
V41 2 *3s +

Durch gliedweises Integrieren ergibt sich

4 1 7 13
dz (o, 271 (_2\,3.,.3(_ 2\ % _ )
Vol ( 20 Teg(~a)e Ty () P -+
2 1 1 3 1 4
__( V—;;+738V;—5_2 #V;_‘._...)L
1 3
(_H‘ 7.128  52.8192 "'—'")
1 3
~V2 (-t )
~ —140,001 — 2 (— 1+ 0,009)
= —0,999 — 1 2 (—0,991)
— —0,999 41,401,

4

P
2

4

dz
5 Va3 +1
Lehrbeispiel 17

Von besonderer Bedeutung fiir die Wahrscheinlichkeitsrechnung (Statistik) und
Ausgleichsrechnung ist das auf elementare Weise nicht lisbare Gaufsche Fehler-
integral z

%tfe"'"'dx.

-7

=~ 0,40.
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: 1
Bestimmen Sie durch Reihenentwicklung % f e Mody,
n
-1

— d. i. die Fliche unter der Gaufschen Glockenkurve (Bild 4) in den Grenzen
von —1 bis 1 — fiir h=1!

Losung:
Fir h=1 wird das Fehlerintegral (wenn Sie beriicksichtigen, daB hier eine

symmetrische Funktion mit symmetrischen Grenzen vorliegt)
1

1

1 o 2 .
—= |ePdr=-—= e ?dx
Lo [,
Va 1 l/Tto

y

x
Bild 4
Ersetzen Sie iln der Reihe fiir e® das x durch — 22, so erhalten Sie (der Konvergenz-
bereich ist || < o0) \ 2 A 8
ek T TR ThU
Damit wird 1 1
2 . 2 x z* x
V—;fe “d’“—V:f(l st —)ds
0
2 (= 3 g a’ 1
=7—;(T_3.1s+5.2z 730 T )'o

Ubungen
7. Berechnen Sie durch Reihenemtwicklung auf 4 Dezimalstellen genau
1

B
SL !
V1— 22
0
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t

z
5. Berechnen Sie durch Reihenentwicklung f 0(;9 de!

1

1

2
%. Berechnen Sie durch Reihenentwicklung f et dt/!
0

Zusammenfassung

Als wichtigste Anwendungen der unendlichen Reihen lernten Sie kennen:

das Aufstellen von Ndherungsformeln: Hier wird die Funktion in eine konver-
gente Potenzreihe entwickelt, deren erste Glieder meist fiir die Praxis hin-
reichend genaue Ergebnisse liefern;

die Integration durch Reihenentwicklung: Man berechnet Integrale, die auf kein
Grundintegral zuriickgefiihrt werden konnen, indem man den Integranden in
eine konvergente Potenzreihe entwickelt und gliedweise integriert.

Niherungsformeln!

Zulissiges Intervall fiir « bei einem Fehler von etwa

Niherungsformel 0,19% 19, 109,
von bis von bis von bis
| singez — 0,077]+ 0,077 | — 0,245| + 0,245| — 0,749 | + 0,749
= — 44° |+ 44° | —14,0° | +140° | —42,9° | +42.9°
L 4 — 0,582 |+ 0582 — 1,008 | + 1,008 | — 1664+ 1,664
- SnIF=I— o —333° | +333 | —57,8° |+57,8 | —953° |+953°
3 cosz—1 — 0,045| + 0,045| — 0,141 |+ 0,141 | — 0,430 | + 0,430
: = — 26° |+ 26° | — 81° |+ 81° | —24.6° |+24,6°
+ cosze1 % — 0,384 | + 0384 — 0,662 |+ 0,662 | — 1,034+ 1,034
= 2 —922,0° | +220° | —37,9° | +37,9° | —592° |+59,2°
5 Vl+z=l+% — 0,09 |+ 009 | — 024 |+ 032 |— 0,59 |+ 1,43
T 1 T )
3 VT—+-—;= -3 — 005 |+ 006 | — 016 |4+ 0,17 |— 046 |+ 0,56
: i%—:l—z — 0,03 |+ 003 | — 010 |+ 010 |— 031 |+ 031
—— 2
3 ln(l+m)=z—% — 0,054 |+ 0,055 — 0,17 |+ 0118 |— 0,50 |+ 0,58
9 er=1l+4x — 0,044 |+ 0045 — 0,13 |+ 015 | — 0,39 | + 0,53

- Diese Tabélle ist auszugsweise v. Sanden: Praktische Mathematik, B. G. Teubner Verlags-
zesellschaft, Leipzig 1953, entnommen.
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18 Fourier-Reihen

18.1 Die Entwicklung einer Funktion mit der Periode 2

18.11. Die Fourier-Reihe als harmonische Schwingungsreihe. Neben den im
16. Kapitel behandelten Potenzreihen gibt es auch unendliche Reihen, deren
Glieder trigonometrische Funktionen sind. Man nennt Reihen von der Form

Yy =a,+ a, cosx + a; cos2x -+ a;cos3xr+ .- -
+ b, sinz + by sin2x + bysin3x +---

unendliche trigonometrische Reihen.
Die Funktionen sinz und cos z besitzen die Periode 27, sin2x und cos 2z die

Periode 7z, sin 3 und cos 3 x die Periode 27” , usw. Demnach muB auch eine durch

Addition dieser Funktionen gebildete Reihe mindestens die Periode 27 auf-
weisen. (Eine durch Addition von trigonometrischen Funktionen entstandene
Funktion wurde in Band 1, Abschnitt 4.3, Bild 44, dargestellt.)

Wesentliche Erkenntnisse iiber die Untersuchung und Anwendung von trigono-
metrischen Reihen verdankt die Mathematik dem Schweizer Leonhard Euler
(1707 bis 1783) und vor allem dem Franzosen Jean Baptiste Fourier (1768 bis
1830). Aus diesem Grunde nennt man diese Reihen Fourier-Reihen.
Wihrend man durch Potenzreihen eine gegebene Funktion nur in der Umgebung
eines Punktes ersetzen kann (sofern die Funktion in der Umgebung nicht un-
stetig ist), kann mittels Fourier-Reihen eine periodische Funktion im gesamten
Bereich mit guter Annidherung dargestellt werden. Von dieser Moglichkeit macht
man bei Vorgidngen mit zeitlicher Periodizitét Gebrauch, z. B. bei mechanischen
Schwingungen, akustischen Erscheinungen, vor allem aber bei elektrischen
Schwingungen. Mit Hilfe der Fourier-Reihen werden wir Aufgaben lésen, wie
beispielsweise die Darstellung der Kurve des gleichgerichteten Wechselstroms
durch eine Funktion. Der Gedanke, die Funktionen sin z und cos x sowie die Funk-
tionen .der Winkelvielfachen sin2z, cos2z, sin3z, cos3z,... sinnz, cosnz, ...
zur Darstellung periodischer Vorgiinge zu wihlen, liegt deshalb nahe, weil, wie schon
erwihnt, alle diese Funktionen die Periode 2 gemeinsam haben. Das Hinzu-
fiigen eines Gliedes a, hat sich als zweckmiBig erwiesen (denken Sie nur an einen
sinusformigen Strom mit einem Gleichstromanteil, den Sie durch a, darstellen
koénnen).

Es ist zweckmiBig, die einzelnen Summanden der Reihe anders zu gruppieren:

Yy =ay+ (@, cosx -+ b, sinz) 4 (@, cos2x + by sin2x) 4. -

Das Glied a, 148t sich auch in der Form a,cos(0- x) + b, sin(0 - z) darstellen.
Das allgemeine Glied ¢, der Reihe lautet deshalb

cp,=a,cosnx+b,sinnx n=0,1,2,3,...).
Fiir die Reihe 1iBt sich also schreiben
9y = f(x) =a,+ (@, cosz + b, sinz) ++ (@, cos2x -+ b, sin2x) 4 - - -

(=]
= 3 (@, cosnz + b, sinnz).
n=0
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Allgemein gilt:
Eine beliebige Funktion f(x) mit der Periode 2xv, d.h., eine Funktion,
fiir die f(x + 2) = f(x) gilt, kann durch eine unendliche trigonometrische
Reihe (eine Fourier-Reihe) dargestellt werden:

f(@) = f; (Gn 0051 + b, sinna). )

Auf den Beweis fiir die Moglichkeit dieser Darstellung einer Funktion f(x) mufl
nier verzichtet werden. Bemerkt sei aber noch, da8 die Reihe fiir alle Werte von 2
zilt, sobald sie fiir irgendein Intervall der Liinge 27 gilt, z. B. fiir die Intervalle
—aszx<a, 0S2x<2n oder x < x =< x4+ 2nw. Innerhalb dieses Bereiches
kann die Funktion f(x) jeden willkiirlichen Verlauf annehmen, so daB fiir die
angegebenen Intervalle (meist werden wir es nur mit den beiden erstgenannten
zu tun haben) jede Funktion nach Formel (9) entwickelt werden kann.

Da jedes Glied c,= a, cosnx -+ b, sin nx eine harmonische Schwingung darstellt,
wollen wir es in den fiir eine harmonische Schwingung iiblichen Ausdruck um-
wandeln. Wir setzen zu diesem Zwecke ‘

a,= A,sing, und b,=A,cosq,.

Quadrieren und Addieren der beiden Gleichungen liefert

ap’ + b2 = Ag? (10a)

und Dividieren der ersten Gleichung durch- die zweite

2

N

= tang,. (10b)

Aus den Formeln (10a) und (10b) erkennen Sie, dal die Darstellung von a,, und b,
durch A, sing,, bzw. 4, cos@, immer moglich ist, denn die Formeln (10a) und
10b) gelten fiir jeden Wert von a, und b,.

Werden die erhaltenen Werte in

¢, = a, cosnx + b, sinnzx
eingesetzt, so wird ¢, =4, (sing, - cosnz 1 cosgp, - sinnz),
¢y = Aysin(nz 4 Pn) -

Die Werte fiir 4, und ¢, werden gemi Formel (10a) und (10b) aus @, und b,

oerechnet : a
A,=Vaz2+b.2; q),,=arctan-51-.

Das Ergebnis ¢y = Ay sin(nz + @,)

sntspricht dem iiblichen Ausdruck einer harmonischen Schwingung

y=Asin(t+g0) = Asin (221 + ).
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Esist ¢, =y = Elongation,
A, = A = Amplitude,
@y = @o = Anfangsphase der Schwingung,
n=w=2nf= ZT” = Kreisfrequenz,

worin 7' die Schwingungsdauer, f die Frequenz bedeutet.
In der neuen Form heiBt jetzt die Reihe

y= @) =§; Apsin(nat gy). (9a)

Wird in der Beziehung nz =2n TL der Reihe nach n=1, 2, 3, ... gesetzt, 80 er-
gibt sich "

x=2n2‘,—1; 2x=2n-1t,—2; 3x=27t7t,;;.. .
Hieraus folgt, daf3 T, = 2T, — 3T, = ..
sein muB.
Die Glieder der Reihe (9a) und damit auch die der Reihe (9) stellen eine Grund-
schwingung und ihre harmonischen?! Oberschwingungen dar (bis auf das absolute
Glied a,, dessen Bedeutung als Gleichanteil einer elektrischen Schwingung schon
weiter vorn erwihnt wurde), die Fourier-Reihe ist eine harmonische
Schwingungsreihe. Man nennt deshalb die Entwicklung einer Funktion in
eine Fourier-Reihe auch harmonische Analyse.
Wenn nun die Aufgabe vorliegt, fiir eine beliebige Funktion die Fourier-Reihe
aufzustellen, so sind die Koeffizienten a, und b, der Reihe zu ermitteln.

18.12 Bestimmung der Fourier-Koeffizienten. Die Entwicklung einer Funktion
soll in eine unendliche trigonometrische Reihe von der Form

f(x) =ay+a, cosz 4 a,cos2x+ -+ a, cosnz -+ .-

+ by sinz -+ bysin2x +-+-.+ b, sinnx +---
erfolgen.
Das Glied @, wollen wir im folgenden als absolutes Glied bezeichnen; a, cosnx
bzw. b, sinnx (mit n =1,2,3,...) soll ein beliebiges Kosinus- bzw. Sinusglied
der Reihe sein. Die Fourier-Reihe ist bekannt, wenn die Fourier-Koeffizienten
a,, @, und b, ermittelt sind.

Bestimmung von a,

‘Wir integrieren die Reihe fiir f(x) gliedweise. Dies ist — wie bei den Potenzreihen
(Abschn. 16.6) — innerhalb des Konvergenzbereiches erlaubt. Der Nachweis muf
hier unterbleiben. Ebenso muB hier auf den Beweis, daB die Fourier-Reihe
konvergiert, verzichtet werdeun. (Sie finden diese Beweise in der einschligigen
Fachliteratur.) Wir integrieren iiber die festgestellte Periode dieser Reihe von
der Linge 27 und wihlen als Integrationsgrenzen 0 und 2x. Wir diirften aber

1 Harmonisch bedeutet, daB die Frequenzen der Oberschwingung ganzzahlige Vielfache der
Frequenz der Grundschwingung sind.
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auch von —m bis = integrieren. Erforderlich ist nur, daB eine Periode von der
Linge 27 erfafit wird.
Es wird

2n 2n 2n 2n 2n
ff(x)dx=aofdz+a1fcosxdx+a2fcos2xdx+---+a,,fcosnxdz+--~
0 0 0 0 0

2n 2x 2n
+b, [sinzdz+b, [ sin2zda+---+ b, [sinnzdz .
0 0 0
Es ist 2 2n
fsi.nnzda: =0 und fcosnxda: =0.
-0

Das ist leicht einzusehen, denn bei der Integration von Kosinus- oder Sinus-
funktionen ergeben sich Sinus- oder Kosinusfunktionen. Der Wert einer tri-
gonometrischen Funktion, deren Argument x oder ein ganzzahliges Vielfaches
von z ist, besitzt aber an der Stelle 0 den gleichen Wert wie an der Stelle 2z, so daB
sich bei der Berechnung des bestimmten Integrals infolge der Differenzbildung
(Funktionswert fiir 27 minus Funktionswert fiir 0) immer Null ergeben mu8.
Damit wird

2% 2x
ff(w)dm=aofdx=aox |§"=27m0.
0 0

Es folgt fiir das absolute Glied a,

2n
Da 27-ay= [ f(a)da y
p !

ist, hat das Rechteck mit den Seiten 27
und q, den gleichen Flicheninhalt wie
die Fliche unter der Funktion y = f(x)
im Intervall 0... 2z (Bild 5). Das be-
deutet ayistdiemittlere Hoheder Fliche

f f(x) d z, bzw. die mittlere Ordinate der

Fu.nktlon y = f(x) im Intervall 0. .

Diese mittlere Ordinate kann auch den
Wert Null besitzen, niamlich dann, wenn
beiderseits der x-Achse gleiche Flichen Bild 5
liegen.

Bestimmung von a,
Auch die Berechnung von a,, kann durch Integration der Reihe

f(x) = ay+ a,cosz + ayco822+-- -+ a,cosnz - -
+ b, sinz 4 bysin2x ...+ b,sinnx4---
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erfolgen. Allerdings muB hier noch ein Kunstgriff angewendet werden, denn wie
Sie bei der Berechnung von a, sahen, werden bei Berechnung von

2n
[t@)dz
(1}

alle Glieder auBler dem Glied, das a, enthilt, zu Null. Der Kunstgriff besteht
darin, daB vor der Integration die Reihe mit cosnx multipliziert wird. Das
ergibt

f(a;) < COBNT = ayCOSNZ -} @, COBL COBNZL + A3C082% COSNT + ++ -+ d, cOPNL + - - -
~+ b,sinx cosnz + b,sin2zcosnx + -+ + b,sinnz cosnz -+ -- -
Die Integration liefert

2n 2z
ff(z)cosnxdx:faocosnxdw
0 0

2n 2n
+falcosa: cosnxdz—l—fazcos2xcosn:cda:+ cee
0 0

2n
+fa,,cos’nxdx+~-
0
2n 2n
+fblsinxcosna:dx+fbzsin2xcosn'xdx+~~-
0 0

2n
+fb,,sinnxcosna:dw+ <o
0

Die hierin auftretenden Integrale wurden bereits in Mathematik 1V, Band 2,
Abschnitt 13.11 berechnet. Die Ergebnisse konnen daher von dort iibernommen
werden. Es ist

25

gy . 2
1. faocosnxdx=7°5mna:
0

n=0’

2n

2z
2, fa,,,cosmxcosn:vdx: :
0

. =0, firm=+$n,

e, (sin(m+n)z  sin(m—n)x
T( m+tn Lairy— )

2n
a . 2n
3. fa,coﬁnxdx:ﬁ(nx%—smna:cosnx)‘o =a,mn,
0 -

2n

. . by (cos(m+m)z | cos(m— m)z\[27 "
4. meslnmxcosnxdx——?( mn +— )0 —2, fir m==n,
2n b on
5. fb"sinnxcosnxda:=——1cos2nx =0.
3 4n 0 =
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Damit werden auf der rechten Seite alle Integrale bis auf eines, welches a,, enthalt,

gleieh Null. Aus
2n 2n

ff(z)cosnxdx = fa,,cos’nmdx =a,n
0 0
ergibt sich fiir die Fourier-Koeffizienten a, der Reihe

2n
a,= —:‘-ff(x)cosnxdz.
0

Bestimmung von b,

Die Berechnung der Koeffizienten b, erfolgt analog der fiir a,, nur daB diesmal
die Reihe f(x) vor der Integration mit sinnx zu multiplizieren ist.
Multiplikation und Integration in den Grenzen von 0-:--2 s liefert

2n 2n
ff(z)sinnxdx:faosinnxdx
0 0

2n 25
+falcosa:sinnzdx+fa,cos2xsinn:cdx-|—m
0 0

2n
+ fa,,cosnxsinnwdz—l— e
0

2 2=
+fblsinxsinnzdx—i-fb,sinzwsinnxdz-{---n
0 0

2n
-{-fb,,sin’nxdx 4
0

Die hier auftretenden Integrale wurden ebenfalls bereits in Mathematik IV,
Band 2, Abschnitt 13.11 berechnet. Es ist

2n

. a, 2n

1. faosmnxdx=—7°cosnx . =0,

3 =

4 a, (cos(m—mn)z cos(m4 n)z\|2=
2. f innrdr=—" — 7 =0, fi

] apcosmesinnrdr = — pra— prr o 2, ir m==n,

2=

. a, 2z

3. fa,,cosnxsmna:dx:—-‘i—”coﬂnx 0 =0,

° -

2n
0

sin(m —n)z sin(m -+ n)z
m—n  mtn )

2x
4. fb,,,sinmxsinnxdz:%"‘( =0, firm+n,
(1]

2n
2
5. z)["b,,sin’n:c dz= g—’; (nx —sinnz cosna:)'on= by7.
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Mit diesen Werten wird
2n 2n
f f(x)sinnzdz = f bysin?nzdz =b,x,

da alle anderen Glieder den Wert Null besitzen.
Hieraus folgt fiir die Fourier-Koeffizienten b, der Smusgheder

b,,=—,1;-f/(x) sinnzdz,
0

Die Gleichungen zur Bestimmung der Fourier-Koeffizienten nennt man
Eulersche Formeln:

2n
1
a,= 2—;-t]f(x)d:v,
0

2n
1
ay=— f(z)cosnade, (11)
/

25
b,,=-,l7ff(x)sinn:cdx.
0

Da f(x) (nach Voraussetzung), cosnz und sinnz periodische Funktionen von x
mit der Periode 27 sind, lassen sich diese Formeln auch ersetzen durch

ao=2—l;sz(z)dx,
a,,=%ff(x)cosnxdx, (11a)

b,,=%ff(x)sinnzdx.

Wie die Berechnung der Fourier-Koeffizienten durchgefiithrt wird, soll an einem
Beispiel gezeigt werden.

Lehrbeispiel 18

In der Technik treten oft Vorginge auf, bei denen eine Grofe linear bis zu einem
Héchstwert ansteigt und dann plitzlich auf Null oder einen megativen Wert sinkt.
Denken Sie z. B. an den Auf- und Entladevorgang eines Kondensators (Kipp-
schwingung).

Es soll jetzt eine Fourier-Reihe fiir derartige Vorginge entwickelt werden, allerdings
an einem stark vereinfachten Beispiel, der sogenannten ,,Sdgezahnkurve’ (Bild 6a).
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Lo6sung:
Die Funktion hat die Periode 2z. Fiir das in Bild 6b dargestellte Kurvenstiick
0 € z < 27 heiBt die Funktionsgleichung y = —2% z. Die Fourier-Koeffizienten

konnen mit Hilfe der Eulerschen Formeln (11) bestimmt werden. Sie erhalten
zunichst

2n 2n 21
1 [’ 1 A Az?|2n
A= o5— xr d$= _— — L= —
o 27z~ Ha) 2nf2nxd 8n2 |0 °’
[]
A

Q=3
foy
A

y a %
2 =
‘\:\ - ,//
R ».,\ “~ 7 /,/ L \\\
' N '\ ;v— . // P _\\
' ' - Sl g
1 : \}/h L
iy 0 27 aw o 7 SN i om x
Ay T ey
\\\\~ ’//«y'
Bild 6a Bild 6b

Das Ergebnis entspricht unseren ErW&rtungen, denn a, ist die mittlere Ordinate

und die ist nach Bild 6b glelch >
Fiir die a, erhalten Sie

——f}‘(x cosnxdx-———f—xcosnxdx

f 2z cosnx dx konnen Sle durch partielle Integra,tlon lésen. Sie setzen

f'=cosnz, g ==,
1 .
f=;smnz, '=1.
Es wird
1 . 1 .
wcosnzdw:x-;smnx— Tsmnzda:
z . 1
=-'Tsmnx-|—?ccsnx+0.
Es ist also 2n

A d A [z . 1 2z
a,,=-272- zeosnzdr =5 TSmnx-i-;;cosnx 0

mael(0 )= (0 )] -o
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Die Koeffizienten b, errechnen sich aus

n

2x 2
b,,=%—ff(x)shnxdx:—i—f%xsinnzdx-
0 0

Das Integral wird wiederum durch partielle Integration gelost. Sie setzen

[ =sinnz, g ==z,
f =—-'chosnx, g=1.
Damit wird
fa:sinnzdx=—x-%cosnx—}-f%cosnxdx:—%cosnx-{——i;sinnx-{—c.

Sie erhalten R
k3

b, ——A-fxsin dx——-A— isinna:——-z—cosnx 2

" 22 nTCL=gm\ w2 n 0

0

- 4[fo-2)-0-o).

n

=_4.
LA 7"
Wenn Sie in den fiir b, erhaltenen Wert der Reihe nach n =1, 2, 3, . . . einsetzen,
erhalten Sie die Koeffizienten
A A A A
bi=—Z bh=—grs b=—gri b=—g

Da fiir a,, und damit also fiir a,, a,, a4, . . . der Wert Null errechnet wurde, lautet
die Fourier-Reihe fiir die gegebene Funktion

A

Hoy=5—24

. 1 . 1 . 1 .
po (sm:v+?sm2m—|—§sm3x+zsm4a:+--~),

A 2 (. 1 . 1 . 1 .
=T[1—;(smx—l—?sm2x+?sm3x+—zsm4x+---)].

Schreiben Sie die in runden Klammern stehende Reihe mittels des Summen-

zeichens, so erhalten Sie

f(x) =% [1—%”5;1—’1‘—sinnx] .

In Bild 6b sind auBer der Funktion y = %x noch die Funktionen

yo=a0=—"‘21—, y1=b1sinw=—%sinx, y2=bzsin2a:=—2—‘:—z—sin2x
sowie die Funktionen ¢, (x) = y,+ y;, und @,(2) = yo+ ¥+ ¥
eingezeichnet.
Die Funktion

¢2(@)=-‘-;;[1—%sinx—%sin2x]



ist eine Néherungsfunktion fiir die von uns in eine Fourier-Reihe entwickelte
Funktion f(x). Sie sehen, wie mit wachsender Gliederzahl sich der Verlauf der
Niherungsfunktion dem der Funktion f(x) immer mehr annihert. So ist z. B.
@ (%) eine bessere Anniherung als ¢, ().

18.2 Fourieranalysen einiger besonderer Kurvenformen

Im Lehrbeispiel 18 stellte es sich heraus, daB bei der Entwicklung der Funktion
y= 2—‘;— z in eine Fourier-Reihe die Kosinusglieder entfallen, da alle a, = 0 sind.

Es erhebt sich die Frage, ob ein Wegfallen irgendwelcher Glieder (g, oder a,
oder b, gleich Null) schon an der Funktionsgleichung erkannt werden und man
sich somit die Rechnung von
Anfang an vereinfachen kann.
Die Ursache fiir das Wegfallen

bestimmter Glieder sind Sym- !
metrieeigenschaften der ineine
Fourier-Reihe zu entwickeln- . .

den Funktion f(x). Drei grund- x/ 0
sitzliche Fille von Symmetrie
sind moglich.

1. Die Kurve der Funktion Bild 7a
liegt symmetrisch zur y-
Achse, d. h., die Funktion vy |
ist eine gerade Funktion
(Bild 7a).
In diesem Falle entfallen
alle Sinusglieder: b, =0.

. Die Kurve der Funktion 0 T
liegt  zentralsymmetrisch
zum Nullpunkt, d.h., die
Funktion ist eine ungerade
Funktion (Bild 7b).

In diesem Falle entfallen .
alle Kosinusglieder: a,, = 0. Bild 7b

3. Die Kurve umschliet bei- v |
derseits der z-Achse inner-
halb einer Periode gleich
groBe Flichen (Bild 7c).
In diesem Falle ist a, = 0.

Der Inhalt der drei Sitze ist . 0 x 2w X
leicht einzusehen: Eine Funk-
tion, die aus einer Summe von
geraden und ungeraden Funk-
tionen besteht, ist weder gerade
noch ungerade. Bild 7¢c

(]
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Beispiele:
Die Summe der ungeraden Funktionen

= 3, Yp=—2
und der geraden Funktionen
ys=—32% y,=3
ergibt die Funktion
y=23—3a*—z+3.

Diese Funktion ist weder gerade noch ungerade (vgl. Math. IV, Bd. 1, Bild 40).
Ebenso ist die Funktion

Yy = cosx + % sin2x

weder gerade noch ungerade, da

Yy = COSx eine gerade,

vo| =

Yo =—5-8in2x eine ungerade

Funktion ist (vgl. Math. IV, Bd. 1, Bild 44).

Dagegen ist eine Funktion, die aus einer Summe von geraden (ungeraden) Funk-
tionen besteht, gerade (ungerade).
Beispiel:

1

y=?x3—x

ist eine ungerade Funktion (vgl. Math. IV, Bd. 1, Bild 38).

Die Fourier-Entwicklung einer geraden Funktion kann also keine Sinusglieder
enthalten, da y=sinnz eine ungerade Funktion ist. Ebenso konnen in der
Fourier-Reihe einer ungeraden Funktion keine Kosinusglieder auftreten, da
y = cosnz eine gerade Funktion ist. SchlieBlich ergibt sich der dritte Satz aus dem
Umstand, daB a, gemiB 18.12 das arithmetische Mittel der Funktionswerte iiber
einer Periode darstellt. Deshalb muB a, bei Kurven, die beiderseits der z-Achse
gleiche Flichen einschlieBen, gleich Null sein.

Liegt eine gerade Funktion f(x) vor, und ist iiber das Intervall -z < 2 < m zu
integrieren, so 1iBt sich

a,= %ff(x) cosnzdx

umformen in

a,,=%ff(x) cosnzdez.
0
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Es wird also im Falle f(x) = f(—z), d. h. fiir gerade Funktionen

ay= -,l;f/(x) dz,
0

x (11b
a,,=£—ff(x)cosnxdx, )
0

b,=0.

Fiir eine ungerade Funktion sind alle a, gleich Null, auch a,.
Es ist, sofern f(x) = —f(—z), d. h. fiir ungerade Funktionen

a0=0,

an.:O’
(11¢)

b, =—n2—ff(x) sinnxdzx.
0

Lehrbeispiel 19
Die in Bild 8 dargestellte. Funktion ist in eine Fourier-Reihe zu entwickeln.

Losung:
Die analytische Darstellung der Funktion lautet

1

=
S
AN
®

f@={—1 fir F<eo<

1 fﬁr—néw§2n
oder auch

I‘(ﬂv)=l 1

—1 fir

Die zweite Form ist zweckmaéBiger. fony .
Wie Sie aus Bild 8 erkennen, ist die 1 S
zu entwickelnde Funktioneine gerade
Funktion, d.h., alle Koeffizienten b,,
sind Null. AuBlerdem schlieit sie
beiderseits der x-Achse gleich groBe
Flichen ein, d.h., das absolute Bild 8

Glied @, entfillt.

Zur Berechnung von a, verwenden Sie das speziell fiir gerade Funktionen auf-
gestellte Integral

f o 7 x ¥ x

@m— -7

a,= %—f}‘(w) cosnzdz.
0
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Dieses Integral miissen Sie in zwei Integrale zerlegen (fiir jeden der beiden
Definitionsbereiche ist die Rechnung getrennt durchzufiihren), und Sie erhalten

3
a =—72? fl cosnxdx—l—f(—- cosnxdzx

2

2 [(sinnz) ‘0% —(Sinn'x)#:]
2

n-w

2 . ] S . . E ]
= [mnn?—smO—smnn—i-smn?] ,

4 . .1
G=0 g

Setzen Sie in dem fiir a, berechneten Ausdruck der Reihe nach
n=1,2,3,... ein, so bekommen Sie

4

o J— 0- 4 .
Qp=ay=@qg=-++=0; a1=;, Ag=—— 05—5

£l
Damit lautet die Fourier-Reihe der gegebenen Funktion f(x)

cos3z , cosb5x cosTz ]

f(x)=%[cosx— 3 + ———7 +—...

Bild 9 zeigt Thnen wiederum die schrittweise Darstellung der Funktion. Da die
Fourier-Reihe eine unendliche Reihe ist, wird f(x) erst vollkommen und eindeutig

fooy \é< ﬁm‘ - ~

Bild 9

(wie sich beweisen lif8t) durch ,,unendlich® viele Glieder der Reihe dargestellt.
Die Anniherung an die gegebene Kurve wird mit wachsender Gliederzahl schritt-
weise verbessert. Beim Beriicksichtigen der 1., 3., 5., 7. Oberwelle ergeben sich
die entsprechenden Kurven.

AuBerdem muB bemerkt werden, daBl die Reihe das Verhalten an der Sprung-
stelle nie richtig angeben wird. An der Sprungstelle liefert die Reihe immer das
arithmetische Mittel der beiden Funktionswerte. Auf den Beweis dieser duBerst
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wichtigen Tatsache muB hier verzichtet werden. In dem eben gerechneten Beispiel
ergibt sich.an der Sprungstelle das Mittel zwischen 41 und —1, d. h Null.

Bei der Sigezahnkurve (Bild 6a, b) im Lehrbeispiel 18 war der Wert 4 5
In Bild 9 sind aufler der Funktion y = f(#) die Funktionen

4
y1=a1 COS.’I:= ; 00321,

4
y3=ascos3z=——§; cos3z,

. 4
ys—a5cos5a:—%-cos5:t

sowie die Funktionen
P@)=9, @ =y+ys uwnd @ @)=y+ys+Yy;

eingezeichnet.

Lehrbeispiel 20

Die Funktion y = x? soll fir —a < x < min

eine Fourier-Reihe entwickelt werden ( Bild 10). o

Lésung:

Wie aus Bild 10 ersichtlich, ist y = 22 eine ge-

rade Funktion. Also sind alle b, = 0. Die mitt-

lere Ordinate ist

c—

B

k- E
1 1 1 a2ln a2
= =— | ?dr=—="| =%
ao_.2nfx2dx nfxdx 3 3°
0

[
4
e
5
=

Fir die Koeffizienten a, ergibt sich
£
a,,=%fw2cosnxdx.
0
Durch partielle Integration erhalten Sie

” .
Ay = 2 [(wz L in nx)‘”—gfxsinnzdwj.
44 n 0 n
0

Es ist ] N
(xz—sinnx)' =0.
n 0

Das rechts stehende Integral 16sen Sie durch nochmaliges Anwenden der partiellen
Integration n
a,= % (—— -;‘2—) [(—x . % cosnx)l:—l— % /-cosnx da,].
0

n
Dafcosnxdx=0 und cosnz = (—1)" ist, wird

4
tp=(—1)"—.
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Die gesuchte Reihe lautet

n? 4 4 4 v 4
f(z)=T-——i?cosx+§z-cos2x——3?cos3w+——---+(——l)"ﬁcosnx—l-—u .

f@) »——+42(— ==

Beachten Sie bei der in Lehrbeispiel 20 behandelten Funktion, dali y = x? keine
von vornherein periodische Funktion ist. Im Bereich # < x < 3 lautet bei-
spielsweise die Darstellung y = (x — 2 7). Mit dieser Funktion miiiten Sie auch
im Bereich von 7-.--27% rechnen, wenn Sie etwa die Periode von 0---2x statt
wie im Lehrbeispiel 20 die Pericde von —z---m zur Berechnung verwenden
wollten.

Lehrbeispiel 21

Es soll die Kurve der Einweggleichrichtung in eine Fourier-Reihe entwickelt werden
(Bild 11).

fon

Bild 11
Losung:
Wie IThnen bekannt ist, entsteht die Kurve dadurch, daBl eine Halbwelle der
Sinuslinie ,,weggeschnitten* wird (der StromfluB in dieser Richtung wird durch
Gleichrichter gesperrt).
Die Funktion lautet .also
fo=|

sinz fir 0sz<m,
0 fir a2,

Die Funktion ist weder gerade noch ungerade. Felglich mufl die Gesamtreihe
angesetzt werden.

Berechnung von a,:

Es sind zwei Integrale fiir die Intervalle 0---% und %---27 aufzustellen:

ao——ff(x)dx————[smxdx—-l— fO dz.
0

Das letzte Integral besitzt den Wert Null. Also ist

1 n 1 1
ao=g(—cosx)!o=%-2=;.

Berechnung der a,:
Es wird

n 2n
ay=- 'sinxcosnxdz—l—l 0-cosnzdz.
" n 7
0 n
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Auch hier ist das letzte Integral wieder gleich Null, so dafl nur bleibt

4
1 :
a,,=——~fs1nx cosnzdx.
T
0

Sie verwenden wiederum das Ergebnis aus Mathematik 1V, Band 2, Ab-
schnitt 13.11 und erhalten

0

1 [cos(l+n)z cos(l—-n)z

Un=""34 1+n + 1—n ] (n1}.

Da cos(l — n) x = cos(n — 1) = ist, kénnen Sie den zweiten in-der Klammer
stehenden Bruch umformen und fiir a, schreiben

. 1 [eos(n-+t1)z  cos(n—1)z]|® _
a“——-ﬂ[ a1 n—1 ]|0 (n-—2,3,4,...)
_ l (_ 1)n+1 _ (_1)n+1 _-, 1 1
T T 2x | e+l T a—1 n+1+n—1]‘
Setzen Sie hier n =2, 3,4, ... ein, so bekommen Sie
2 2
CG=—3.3 B=0; a@=—gz—; a;=0;
Das Ergebnis galt nur fir » 4 1.
n
Fiir n =1 wird aus a,,=%fsina: cosnx dx
0

n
1. 11,1
al—;é/.slnw cosxdx—-;(—z—sln x)‘o——2—n'(0—0),

ay = O.

Sie kénnen demnach zusammenfassen

w(n—1)

2 _ fiir geradzahliges n,
A=
0 fiir ungeradzahliges ».

Es fallen somit alle ungeraden Kosinusglieder der Reihe weg, und Sie erhalten
als Zwischenergebnis, zu dem noch Sinusglieder treten kénnen, die sich aus der
Berechnung von b, ergeben,

1 2c082% 2cos4x 2cos 62

% #-1-3 735 w67

Berechnung der b,,:

Ed 2x
b,,:-—%f_sina:sinnxdx-{—‘% [O-sinnxdx
]

E4

i
1 . .
=_— | sinzsinnz dzx
]
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Nach der in Mathematik IV, Band 2, Abschnitt 13.11 hergeleiteten Formel fiir

fsinmmsinna:dx

(m = n)

ergibt sich, wenn wir m =1 setzen und n =2, 3,4, . . .- annehmen,

n

1 7. .
b,,=;] smxsmna:da:—-:—z?
0

= 2x n—1

1 [sin(n—l)x_ sin(n+ 1)z

n+1 ]

7
0.

1 [sin(l —_ﬂﬁ_ sin (1 + n) x
1—n

‘n
1+n ]jo

Setzen Sie jetzt fiir « die Grenzen 7 und 0 ein, so wird

Fiir » = 1 bekommen Sie

bn= 0

fir n=2,3,4,...

E4
1 . 1 .
b1=;'fsm2x dz = -2-7-’-(x—smx cosx) :,
p !

1
b1= —2— .

Es ergibt sich b, = —;— und damit als einziges Sinusglied der Reihe 5

suchte Reihe lautet

f@) =5+ sinz—

cos4dz

sinz

. Die ge-

2 (cos2x
n

cosbz )

1.3 T 3.5 tg7 T

Lehrbeispiel 22

Es ist die bei der Doppelweg-
oder Zweiweggleichrichtung ent-
stehende Kurve durch eine
Fourier-Reihe  auszudriicken
(Bild 12). (Die Kurve kinnen
Sie sich dadurch entstanden
denken, daf der in Lehrbei-
spiel 21 weggeschnittene Teil

der Sinuslinie jetzt nach oben -geklappt ist.)

Loésung:
Die Funktion lautet

oder

f(x) = |sinz|

sinx

Ha)=

—sinz

Bild 12

fir 0<2<2n

0z m,
nlr<2n.

fiir
fir

Da f(x) = |sin x| eine gerade Funktion ist, miissen alle b, = 0 sein.

52



Sie berechnen unter Anwendung von Formel (11b)
1 1 [ u
ao=;f|sinx|dx=—;fsinzdx=7lz-(—cosx)|:,
0 0

a__2
0"—n’

n n
2 . 2 (.
a,=— [ |sinz|cosnzdr=— | sinz cosnzdzx.
" n 7
0 . 0

Dieses Integral haben Sie im Lehrbeispiel 21 sowohl fiir n = 2, 3, 4, . . . als auch
fiir » = 1 berechnet, so daB wir es von dort iibernehmen kénnen (wobei zu beriick-
sichtigen ist, daB hier vor dem Integral noch zusitzlich der Faktor 2 steht):

. 4 - 4 . 4 .
M=G=as==0; G=—gi Q=" 6T g
Allgemein ist

PR iy 1y fur geradzahliges »,
n

0 fiir ungeradzahliges ».

Die Fourier-Reihe lautet

2 4 (cos2zx | cos4x | cos6x
f(“)=?z‘_?( T3 3.5 T 5.7 +)
Lehrbeispiel 23 fix
Entwickeln Sie die Funktion der in
Bild 13 dargestellten Trapezkurve in r
eine Fourier-Reihe! Die Trapezkurve \ by /

v -
kennzeichnet die meist anzutreffende N ale n o x
Feldverteilung in elekirischen Ma- \———71 \—/
2chinen (Polschuhkurve)

Lésung: Bild 13

Die Funktion lautet

2e fir —a<z<a,
b fiir ez (m—a),

f@) =

—%(x-—-:r) fir (n—a)<zx<(nta),

— b fir (#+a)sz2<(2nn—a)

Da die zu entwickelnde Funktion ungerade ist, gilt
a,=0, a,=0.
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Es ist nur noch b, zu bestimmen (Formel (11c)):

- a n—a
b,,=% f% sinnzdz + [ b.sinnxdx -—f —(x—m) smnxdx]
7!—(5
2 z n—a
=; - (—— w° cosnx-l———smnx ‘ ——cosnx
b T—7
——7(— " cosnx-l——smnx)l _a]
=% —a)—i—% cosna
+%cosn(n (n—a)]
= a—ig? [sinna -+ sinn (x —a)].
Aus sinne= sin(nw — na) fiir ungeradzahliges n
und sinna = —sin(nw — na) fir geradzahliges n
ergibt sich
0 fiir geradzahliges n,
bp=1 20 . . 40 . " .
T [sinna 4 sinna] = i Sinna fir ungeradzahliges n .

Die Reihe der 'I‘rapezkurve lautet damit
flx)= e (sllr;a—sinx-}— ? sin3z + sin5x 4 - )
Da sowohl das Dreieck als auch das Rechteck als Sonderfille des Trapezes auf-

gefaBt werden konnen, sind in Lehrbeispiel 23 sowohl der Fall der Dreieck-
kurve als auch der Rechteckkurve mit enthalten.

Fiir die Dreieckkurve wird a = —725 .

sm 5

Mit sinZ—1, sin3*—_1, sin

erhalten Sie als Fourier-Reihe der Dreieckkurve

=1, ...

f@) =25 (sino— S2E 4 2L ).
Das allgemeine Glied der Fourier-Reihe fir die Trapezkurve lautet
4_:. Sin(2';_ be Si'zéi’i_i)lz)x. Iin Falle der Rechteckkurve ist a=0. Damit
.ergeben sich unbestimmte Ausdriicke von der Form s’go

wertbestimmung notwendig ist. Diese ergibt (Regel von de I’'Hospital)

0 .. .. .
=3 fiir die eine Grenz-

sina cos a

lim —-=lim —— =1

a—0 @ a—0

. 3cos 3

lim ﬂi}i—lm co; a =3,
a—0 a—>0

. i . 5a

lim sin5a = lim 50018 =5, usw.
a—0 a—>0



Damit lautet die Fourier-Reihe der Rechteckkurve
4b [ . sin3z |, sindz
fla) =2 (sina+ T2 4 L 4L,

5

Lehrbeispiel 24

Fiir den gleichgerichteten Dreiphasenstrom ist eine Fourier-Reihe aufzustellen
‘Bild 14).

y
T
~\ Jr ~2 pd “,(_' l‘)-’\ ) -(\
-w 0 2 3w x
Bild 14
Lo6sung:
sinx fiir 0z
1. Phase fi(@)= .
{gestrichelte Linie 0 fir =#n<2x<2a
in Bild 14) 9 2 5
sm(a:—?zt) fir gnga:g—jﬂ
2, Phase fy(x)=f, (x—%n)= 0 fiir ngg—g—az
(punktierte Linie 5
in Bild 14) und TA=T<27
sin(x—%n) fiir %n§x§2n
3. Phase f3(z)=f, (x-—%n): und ogzgi;-
(strich-punktierte Linie
in Bild 14 0 fir Z<az<an
3="=3

Sie berechnen zunidchst die 1. Phase. Diese Aufgabe deckt sich mit der Auf-
gabenstellung von Lehrbeispiel 21, so daB Sie das Ergebnis unmittelbar von
dort iibernehmen kénnen:

1 1 . 2 (cos2x |, cosdzx cos 6z
fl(x)=;+§sm@—;( 1.3 T3.58 T 5.7 +)

Hieraus erhalten Sie die Funktionen fiir die 2. bzw. 3. Phase, indem Sie x durch

(:c— % 7%) bzw. (x— % n) ersetzen.

2. Phase:
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3. Phase:
=24 on o4

(bt i) b))

f(x) erhalten Sie durch Zusammenfassen aller 3 Phasen. Es wird

f@) = fl(x) +fo (@) +f3(2),

f@) =2
+% [sinx-l-—sin (m—%ﬂ) ~+ sin (x—%—n)]
ST ES e s P

2 4
cosdz | %% (‘” _‘3‘7‘) cos 4 (:c—- 3 n)
T3 T 35 + 5 4.

2n |z 2
cos —==n
cos2nx - 3

+ 4n2—1 + 4n2—1 + 4n2—1

(Hierin ist 4n% — 1 aus (2n — 1) (2n + 1) entstanden.)
Nun ist

sinx-l—sin(x—%n)—l—sin(x—%ﬂ) =0.

Dieser Ausdruck ist gleichwertig dem in der Trigonometrie als Anwendung der
Summen und Differenzen zweier gleicher Funktionen behandelten Ausdruck

si.ncp -+ sin (¢ + 120°) 4 sin (¢ + 240°) = 0.

Damit fillt die erste eckige Klammer der Reihe fiir f(z) weg. In der zweiten
eckigen Klammer stehen (abgesehen vom konstanten Nenner) Ausdriicke von
der Form

cos2nxz -+ cos2n (x—- %n) +cos2n (w—%n) =cos2nx
~+ cos2n [(:‘v—n)—]—-g—]

+cos2n[(x—ﬂ)——%].
Die letzten beiden Glieder konnen Sie nach der Formel

cosx -+ cos f = 2cos —o%:-ﬁ cos “_gﬁ

zusammenfassen zu

2cos2n(x—m) cos2n%.
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Sie erhalten damit fiir unseren gesamten Ausdruck

cos2nx - cos 2n (x——?}—n) + cos2n (z—%n) =cos2nx

+ 2cos2n (x — m) cos‘2n%.

Fiir den Faktor 2cos 2n(x — zr) kénnen Sie auch schreiben

2cos 2nx— 2nm) = 2cos2nx n=12,3,...).
Es ist also '
cos2nx + cos2n (x—- -g—:n) +cos2n (x-—% n) =cos2nx

+2cos2nx- cos2n—;1 .
Setzen Sie auf der rechten Seite fiir #» eine durch 3 teilbare Zahl ein (n=3.g;
¢g=1,2,3,...), so wird

% =cos2nx+ 2cos2nx=3cos2nzx

n=3-9;¢=1,2,3,...).

cos2nx -+ Scos2nx-cos2n

Fiir jede nicht durch 3 teilbare Zahl nimmt der Faktor cos2n % den Wert (— %—)
an, so daB aus dem vorstehenden Ausdruck

cos2nx —cos2nxr=0
wird.
Bei der Addition bleiben also nur die Glieder stehen, bei denen n den Faktor 3
enthilt.
Das Ergebnis lautet somit

2 [ 3cos Bz 3cos 12z 3cos 18z

3
f(””)‘_‘?’"?_ 57 T3 T 11 +“']' i

3 cos 6z cos12z cos 18z

f(x)=“;[1-2( 5.7 T 1.3 T 1719 +)}

Ubung
10. Entwickeln Sie folgende Funktionen mit der Periode 27 in ihre Fourier-Reihen :
-} Sir 0sz<m,
W f@=1 _
-7 fiir < 2n,
b) flx)=|z| fir —n<z<m,
c) flx)==-cosx fir —nZax<m.

Skizzieren Sie in allen drei Fillen den Kurvenverlauf!
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18.3 Zusammenstellung der wichtigsten Fourier-Reihen

Rechteckkurven?)
e
oomr
] < []
' ‘ ) [}
X CHET ¢
] 1 '
] [} L}
| - —J
£
m T
: [ : <
] I
=% ) ¥ ) 3% 4
RN
PR I
Dreieckkurven

£,

44 & gin(2 It
f(t)=72msmé“n++l L

44 & n €08(2n 4+ 1)t
[ == 2 0 —5

_ 84 &F L asin@n+l)t
fity= nzné:( 1)"W‘

__ 84 °°_cos(2n+1)t
0= 2 anrr

_ Al 8 Jeos@n41)t

4 8 & cos(2n+1)!
0= [+ 5

1 Da, Fourier-Entwicklungen vor allem bei der rechnerischen Erfassung von Schwingungs-
vorgingen angewendet werden, schreiben wir hier anstelle von z die unabhéngige

Verinderliche ¢ (Zeit).
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Sagezahnkurven
[4{7]

fy

)‘/}
: A 2 = sinnt]

2x I em ¢ f(t)=7 1_';2

n=1 ®

Trapezkurve
]

44 Zsin@2n+1)a .
f@)= %Wsm@n—l—l)t

Parabelbogen

4 44 F n COSTE
f(t)=T+n_2,é;(_l) e

Halbwellen- (Einweg-) Gleichrichter

/\i]ﬁl/
4 T . cos2nt
i f(‘)—?[”?sm‘ 22(27m(2T+1—)

#l:m:

Vollwellen- (Zweiweg-) Gleichrichter
ree)

24 X cos2nt
16 == .[1 —22 Gasn@Ea D

Gleichigerichteter Dreiphasenstrom

fre)
S 3A cos6nt
*7'*““,.\ 56 fity=— 22«5,,—_1)«57:1>
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18.4 Entwicklung einer Funktion mit beliebiger Periode

Die Fourier-Entwicklung einer Funktion f() ist auch dann méglich, wenn die
gegebene Funktion nicht die Periode 27, sondern eine beliebige Periode T' hat.

Es gilt also e+ T) = f().

Wenn nun f(t) eine Funktion mit der Periode 7 ist, so muBl man auch im Ansatz
unserer Fourier-Reihe solche Funktionen einsetzen. Eine Funktion, die die
Periode T besitzt, ist z. B.

cos—27,n—t,
denn es ist 9 5
T 44
cos [T(t+ T)] = COS (Tt+2ﬂ),
d. h. 008[2—;,‘- (t+T)]=cos-2Tlt;
Damit ist gezeigt, dal 0
cos—Tit

die Periode T besitzt. Aber auch alle Oberschwingungen dieser Funktion und die
analog gebildeten Sinusglieder haben die Periode 7', wovon Sie sich leicht iiber-
zeugen konnen.
Wir kénnen demnach fiir g__ing Funktion mit der Periode 7' folgende Fourier-Reihe
ansetzen:

f()-—ao—l—alcos t+azcos2 t—|—a3cos3 Tt

+blsinT"H-bzsinz%urbssms——}w-.-

. . . . 2n
Hierin kénnen Sie noch T =0 setzen.

Die Koeffizienten werden aus den der neuen Periodenlénge angepaBten Euler-
schen Formeln bestimmt.

T
a0 = [ H
0

7 T
—%ff(t) cosn2Tntdt=%f/(t) cos g wtdt (12)
n=1,23,...)

f]‘(t) smn T tdt=— T ff t) sinn wt dt

Die speziellen Bedingungen fiir die Werte a,, a,, und b, bei Funktionen, die gleiche
Flichen beiderseits der Abszissenachse besitzen sowie bei geraden oder ungeraden
Funktionen gelten hier gleichermafien wie bei Funktionen mit der Periode 2.

Wichtig ist, daB Sie iiber eine volle Periode von O - - - T integrieren, wobei Ihnen:
die Wahl der Integrationsgrenzen freigestellt ist, da Sie ja bei einer Verschiebung
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der Grenzen auf der einen Seite das Stiick ansetzen, das Sie auf der anderen
Seite abschneiden.

Lehrbeispiel 25

Die durch Bild 15 dargestellte gerade Funktion mit der Periode T = 2 ist in eine
Fourier-Reihe zu entwickeln.

Loésung: o
Die Funktion ist 1

1 1 m n
f(t) 1 fir A—?gté'?,

—1 fir L+<t<s. EE I

2 2 ;

Die mittlere Ordinate ist Null, d. h. d
ao = 0 .
Da eine gerade Funktion vorliegt, ist Bild 15
b,=0.
Weiterhin kénnen Sie sich die Berechnung von g, vereinfachen, denn es ist
T

T 2
%ff(t)cosn?z,ltdt=%ff(t) cos'n2Tntdt, wenn f(t) = f(—1).
0 0

Sie berechnen

x 1
> 1

2 1
. = f (t)cosn%‘tdt:% chosnntdt—}—if(——l)cosnntdt

2

=2[n1
2 [. n=m . . nm
—H[S]DT—SIDO smnn-—}—smT],_
2 . ME
a“-——a2sm—2".
Hieraus folgt
. 4 4 4
a2=a4=a0="'=0s a1=;, %=—3_:t—’ a5=5.

Die Fourier-Reihe lautet

cos3mt + cos5nt — . )

(@)= 4 (cosnt— 3

Ein Vergleich mit Lehrbeispiel 19 zeigt, da8l das Lehrbelsplel 25 aus dem Lehr-
beispiel 19 durch Verkiirzen der Abszissen auf das —-fache hervorgeht (wie auch
ein Vergleich der Bilder 8 und 15 lehrt). Sie erhlelten deshalb auch fiir beide
Funktionen die gleichen Fourier-Koeffizienten.
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18.5 Analyse empirischer Funktionen. Rechenschema fiir 12 Ordinaten?

Der in 18.1 gezeigte Weg zur Berechnung von a,, @, und b, kann in der Praxis
oft nicht eingeschlagen werden, weil entweder die Integrale nicht geschlossen
ausgewertet werden konnen, oder weil die Funktion nur empirisch durch ihre
Kurve (Oszillogramm) oder durch eine Wertetabelle gegeben ist. Man ist dann
gezwungen, die Integrale der Fourier-Koeffizienten numerisch auszuwerten. Die
Zerlegung (Analyse) einer solchen empirischen Funktion nennt man auch arithme-
tische Analyse.
Das Verfahren der Analyse empirischer Funktionen besteht darin, dal die Funk-
tion f(z) statt in eine (unendliche) Fourier-Reihe in ein Niherungspolynom ¢ (x)
(endliche Reihe) entwickelt wird, das die ersten Glieder der Fourier- Reihe umfafit.
Fiir die praktische Rechnung ist es von Vorteil, eine gerade Anzahl (moglichst
durch 4 teilbar) von Gliedern zu nehmen. Da das erste Glied der Fourier-Reihe
das Absolutglied ist, muBl bei einer geraden Gesamtzahl von Gliedern die Zahl
der im Niherungspolynom auftretenden Sinusglieder von der Zahl der Kosinus-
glieder verschieden - sein. Gewohnlich wird ein Sinusglied weniger genommen.
Ein Naherungspolynom mit 12 Gliedern sihe dann wie folgt aus:
f(x) =~ @(x) = ay+a,cosx + a,cos2x+a;cos3x
+ a, cos4x + a5 cosb5x 4 ag cosbx
+b,sinz  + bysin2z + bysin3x
+b,8in4x + by sinbx.

In diesem Polynom sind 12 unbekannte Koeffizienten enthalten:

3)

Qs Gys @y, @3, Gy, s, Tg, by, by, b3, by, bs.

Fiir deren Bestimmung braucht man ein Gleichungssystem mit 12 Gleichungen.

Diese 12 Gleichungen erhilt man z. B. bei einer durch ihre Kurve gegebenen

Funktion dadurch, dal man fiir 12 Abszissen x innerhalb einer Periode 27 der

Funktion f(z) die Ordinaten y ermittelt.

Bei Beachtung nachstehender Punkte bereitet die Berechnung der 12 Koeffi-

zienten keine besonderen Schwierigkeiten.

1. Man zerlegt die Periode 27 der gegebenen Funktion f(x) je nach gewiinschter
Anzahl der Glieder des Polynoms in gleiche Abschnitte, bei uns also in 12 Ab-
schnitte (man nimmt grundsitzlich eine gerade Anzahl von Abschnitten),
und ermittelt die y-Werte fiir jeden Teilpunkt. Dies kann bei gegebener
Kurve einfach durch Ausmessen der Ordinaten erfolgen.

2. Hat die gegebene Kurve an einer Stelle xy eine Unstetigkeit, z. B. eine Sprung-
stelle, so wird in diese Abszisse zy ein Teilpunkt gelegt und als Ordinate der
Mittelwert der beiden Funktionswerte genommen (vgl. die Bemerkungen vor
Lehrbeispiel 20).

Wird — wie eben erldutert — die Periode 25 einer Funktion f(x) in 12 Abschnitte

geteilt, so betrigt der Abszissenabstand jeweils 30°. ‘

1 Neben dem in diesem Abschnitt gezeigten Schema gibt es noch andere Schemata. Wir
verwenden das von Prof. K. P. Jakowlew in seinem Buch ,,Mathematische Auswertung von
MeBergebnissen*, Deutsche Ubersetzung: Verlag Technik, Berlin 1952, benutzte Schema
Aus diesem Buch stammt auch die Aufgabe des Lehrbeispiels 26.
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Man erhilt die Wertepaare
| 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330° 860°
Y % %1 Y2 Y5 Y1 Y5 Y Y2 Y5 Y Yo Yu %

(Infolge der Periodizitit der gegebenen Funktion mufl der letzte Ordinatenwert
gleich dem ersten sein.)

Die erhaltenen 12 Wertepaare (#; y =f(x)) werden jetzt der Reihe nach in
Formel (13) eingesetzt (unter Vernachlissigung des Zeichens =~, das durch das
Gleichheitszeichen ersetzt wird). Es ergeben sich 12 Gleichungen fiir die unbekann-
ten Fourier-Koeffizienten. Die trlgonometrlschen Funktionen werden sehr einfache

Zahlenwerte, nimlich 0, + 1, j: 5 und + + 3 ]/—
Die Gleichungen lauten:

Yo=0p+ @+ as+as+as+a;+ as,
y1=ao+"‘i2—§‘al+';_“z—‘la4—‘vf —ag+ 2b +V3bz+b3+v 54+2b5,
y2=%+’%‘ —';—az a4—|- a5-|-a6—|-V_b1—|— rb —E gba,

y3=ao—az+a4—“e+b1—bs+b5,
1 1 1 1 3
!/4=ao—‘2‘al—7%+%—7"4-§"as+“e+v7_bl V-bz'l' V—b‘s V—bs»

3 1 1 3 1 3
y5=a0——l/2—_a1+§a2—?a4 +§%—%+7bl—y2:bz+bs—'l/?{’ri-?bs:

Yo = — 1+ ay— @3+ @y — a5 + as,
Yr=ay— V—al+2a2 —a4+V— —ae—lb1+-v—§b2—b3+1-§b4—%b5,
y3=a0——;-a1—%a2+a3—%a4—%a5+a., V_bl—i-V_bz V3b4+12§-b5,
Yo =ay— ay+ ag— ag— by + by — b;,
Vo Yoy 15y W3y

1 1 1 1
Yo==ay+ Th—g “2—%'—7%4’?“&4‘%_

3 1 1 3 1 3
yu=ao+—V2—al—|—?a2—-2—a4.—-v2—a5——a6——2—b1—§b2 V—b-;——bs-

Aus diesem Glelchungssystem konnen die Werte der Koeffizienten berechnet
werden. Da dies mit einem erheblichen Rechenaufwand verbunden ist, wollen
wir es nur fiir @, und @, durchfiithren.

Berechnung von a,

Es werden alle 12 Gleichungen addiert. Dadurch heben sich auf der rechten Seite
alle Glieder auller a, gegenseitig auf, und es wird

Ray=yo+9+%+yty+ys+ys+y+yst+ Y+ y0+yu-
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Berechnung von a,

Wir multiplizieren jede Gleichung mit dem jeweiligen Koeffizienten von a, und
addieren dann alle 12 Gleichungen. Das ergibt

e

3 1 1 3 3 1 1 3
6a,= ?/o+-2—?/1+ SY2— g Y g\ys‘—_%—%‘%— '2—?/s+ 71’/10'}' Tv—yn-

In gleicher Weise wie bei der Berechnung von a, kann fiir die iibrigen Koeffi-
zienten verfahren werden.

Wir wollen hier auf eine Aufstellung der weiteren Gleichungen verzichten.
Da es nun sehr zeitraubend wiire, aus den Gleichungen fiir y,, ¥;, ..., ¥, die
Koeffizienten des Polynoms (13) zu berechnen, wird ein Kunstgriff angewandt.
Bei allen Gleichungen treten namlich immer wieder die gleichen Summen oder
Differenzen ganz bestimmter y-Werte auf.

So z. B. in den Ausdriicken fiir ¢, und a,:

12ay= (Yo + ¥6) + (%1 + y11) + (Y2 + Y10) + (Y5 + ¥Yo) + (¥ + ¥s) + (¥5+ ¥2),

83 = (ty— 90) -+ L2 (-t )+ W+ 910 — > Wt ) — L2 (05 9)

usw.
Fiir die immer wieder vorkommenden Summen und Differenzen fithrt man neue
Bezeichnungen ein:

Mit diesen Bezeichnungen wird z. B.
12ay = uo + 1y + 2y + ug 4 Uy + U5 = (g + Us) + (%3 + ;) + (up 1+ u,),

usw. ;

Fiir die eingeklammerten Summen bzw. Differenzen werden nochmals neue
Bezeichnungen eingefiihrt, und zwar

Yo+ Ys =% Yo—Ys =
Ntyu=u Y1—Yu=MnU
Yo+ Yro="2% Ya—Y10="1
Yst+ Yo =u Ys—Yp =103
Ys+Ys =% Ys—Ys =Y
Yst+ Y = Ys— Y =75

3 1
6a, =1+ gul T U — G U — 5 Us

1,13

2 2

=17 +§(“1—“5) +%—(u2—u‘4)

U+ Us="7o Ug— U3 = 8
U+ us;=mn Uy — U=
Uyt U =T, Uy — Uy =8y
nt+vs=p N—V%=q
v+ v, =D, Vo— Vs =¢,



Mit diesen Bezeichnungen werden die Ausdriicke fiir a,, a,, ..., ag, by, bg, .. ., bs
weiter vereinfacht. Zum Beispiel wird

120y =1+ 1+ ra =194 (r1+ 1),
3 1
Usw. 6“1= vo+§sl+~2—82

In den jetzt entstandenen Ausdriicken treten wiederum einige Summen und
Differenzen mehrfach auf, fiir die nochmals neue Bezeichnungen gewiihlt werden.

r+ra=1 htg=d
ri—ry=m Ghi—q=h »

Die endgiiltigen Gleichungen fiir a,, ‘al, dg, ..., Gg, by, by, ..., by lauten dann

do= o+ 1)

ay= -é—(vo-l-v +—;-s,)
a=5(ntzm)
aa=%(vo—8z)
a4=—(13—(ro——%l)
a5=-(li—(vo-@sl+—;—sg)
ae 11_2 (s0-) (14)
b=y (mt r ot )
by="1gd

b= 5 (P1—s)

ot
bs=%(vs+%p1—*—-2l/§p’a)

Fiir das praktische Rechnen benutzt man ein Rechenschema, dessen Aufbau sich
aus dem eben Dargelegten ergibt.

YoYU Ys Ys Ya Ys
Ye Y1 Y10 Ys Ys Y1
Summen (u) Uy Uy Uy Uy Ug Ug

Differenzen (v) Ty ¥y V3 Vg U g
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Up Uy Uy v U

Uy U Uy V5 Uy
Summen To T1 T2 P, P
Differenzen Sy 8; 8, 9 9
4
T
Summen 1 d
Differenzen m h

Zur Bestimmung der Koeffizienten mittels der Gleichungen (14) werden nur die
stark hervorgehobenen Werte des Schemas benétigt. Achten Sie immer darauf,
daB die richtigen Indizes untereinander stehen!

Bei der groflen Anzahl von Rechenoperationen kénnen natiirlich leicht Rechen-
oder Schreibfehler auftreten. Es ist deshalb eine Kontrolle der berechneten
Koeffizienten erforderlich, die mit zwei Kontrollgleichungen ausgefiihrt wird.
Die erste Kontrollgleichung ist die Grundgleichung fiir y,, die zweite erhdlt man
durch Subtraktion der Grundgleichung fiir y,;, von der fiir y,:

Yo=0ap+ 01+ a;+ as+a,+ a5+ as,
Y1—Yn="0v1=">b+ b5+ 2b;+ V3 (bz+ by).

Mit diesen beiden Gleickungen sind in zwei einfach zu berechnenden Ausdriicken
alle 12 Koeffizienten erfafit.
Lehrbeispiel 26
Berechnen Sie die in Bild 16 dargestellte periodische Funktion mittels der aus dem
Bild entnommenen y-Werte:

z| 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°

v|9,315,0 17,4 23,0 37,0 31,0 153 40 —8,0—13,2 —14,2 —6,0

-~30 Bild 16
Loésung:
Das Rechenschema fiir 12 Ordinaten liefert
93 150 174 230 37,0 31,0
15,3 —6,0 —14,2 —13,2 —8,0 4,0

(u) 24,6 9,0 3,2 98 29,0 35,0
(v) —6,0 210 316 36,2 450 27,0
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24,6 9,0 3,2 21,0 31,6

98 350 29,0 27,0 450
(r) 344 440 322 48,0 76,6 (p)
(s) 14,8 —26,0 —25,8 —6,0 —134 (g
440 —6,0
32,2 —13,4
@) 76,2 —194 (d)
(m) 11,8 74 (b

Durch Einseizen der GréBen in die Gleichungen (14) erhalten Sie die Koeffizienten
Gy =15 (34,4 1+ 76,2) = 9,22,
=g (—6,0—26,0 @ — 12,9) ——6,90,
ay=-3 (14,8 5,9) = 3,45,
Gy =5 (—6,0+25,8) = 3,30,

o= ¢ (34,4—38,1) = —0,62,

a5=¢ (—6,0+ 26,0[23— 12,9) —0,60,

as= 15 (14,8 —11,8) = 0,25,

b= % (36,2 4 24,0 1 66,3) = 21,08,
by— —‘g (—19,4) — —2,80,

by= 5 (48,0 —36,2) = 1,97,
_V3.,_
bh="274=1,07,

by =+ (36,2 -+ 24,0 — 66,3) — —1,02.

Nun priifen Sie die erhaltenen Werte durch Einsetzen in die Kontrollgleichungen:
Yo=9,22 — 6,90 + 3,45+ 3,30 — 0,62 4 0,60 4 0,25 = 9,30,
Y1—yn=21,08—1,024 21,97+ V3(—2,80 +1,07) = 21,01.
Die Koeffizienten sind fehlerfrei, also kénnen Sie als Ergebnis schreiben:
f(x) =~ p(x)=9,22— 6,90cosz -+ 3,45co82x + 3,30cos 3z
— 0,62cos4x -+ 0,60cos5x + 0,25cos6x
+21,09sinz —2,808in2x -+ 1,97sin 3z
+ 1,07sin4x—1,02sin5z.



Damit ist die Aufgabe gelost. In der Praxis interessieren oft auch die harmo-
nischen Komponenten, die fiir dieses Beispiel noch berechnet werden sollen.
Setzen Sie die entsprechenden Zahlenwerte in die Formeln (10a) und (10b) ein,

so erhalten Sie
A,=22,19, tan¢,=-—0,3272, ¢,=161°53,.

A,= 4,44, tang,——1,2321, @,=129° 5,

A;= 3,84, tangs= 1,6751, @;= 59°10/,.

A,= 1,24, tang,=-—0,5794, ¢@,=149°55,

Ag= 1,18, tang;=—0,5882, ¢z=149°32"

und damit als Niherung fiir die periodische Funktion
f(z) =~ 9,22 + 22,19sin (z 4 161°53’) 4 4,44sin (224 129° 5)

+ 3,86sin (3z+ 59°10°) - 1,23sin (4x - 149°55')
+ 1,18sin (5 4 149°32") 4- 0,25sin (62 4 90°).

Ubung

11. Stellen Sie das Niherungspolynom fiir folgende tabellarisch gegebene periodische
Funktion auf:

x| 0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
yl 38,2 12,0 42 144 4,1-—18,6-—23,3—27,1—-242 8,1 323 384

Zusammenfassung
Eine Funktion mit der Periode 27

f@)=f(x+k-27)

kann in eine Fourier-Reihe von der Form

flx)= Zo’: (azcosnz 4+ b,sinnz)

o
=ay+ 2 (a,cosnz + b,sinnz)
n=1

entwickelt werden.
Die Fourier-Koeffizienten ay, a, und b, werden nach den Eulerschen Formeln

berechnet:

2n
1 : .
ty=5 f f(z)da (@, = mittlere Ordinate)
0

27
a,= %ff(x)cosnzd:c
0

m=1,2,3,...

2n
b,,=%ff(w)sinna:dz
0
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Weist die Funktion Symmetrieeigenschaften auf, so vereinfacht sich die Berech-
nung. \
Bei einer Funktion, deren Kurve beiderseits der Abszissenachse gleiche Flichen
einschlieft, ist

a,=0.
Bei einer geraden Funktion ist

a= [ f@)dz,
0

a,,=%off(x)cosna:da:, fiir f(z) =f(—=),
b,=0.
Fiir eine ungerade Funktion ist
a,=0,
an=0, fiir f(z) =—f(—2),

b,,=%ff(z)sinnwdx.
0

Bei der Analyse empirischer Funktionen liegt die Aufgabe vor, fiir eine tabella-
risch oder in Kurvenform gegebene periodische Funktion die Gleichung aufzu-
stellen. Die gesuchte Gleichung ist natiirlich nur eine Niherung fiir die Funktion,
ein Niaherungspolynom, dessen Glieder trigonometrische Funktionen sind. Haupt-
aufgabe ist dabei die Berechnung der Koeffizienten a,, a, und b,, die einen
groBen Rechenaufwand erfordert und daher schematisiert (Rechenschema) wird.
Um Fehler zu erkennen, werden Kontrollen (Kontrollgleichungen) einbezogen.
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VII. Differentialgleichungen

19 Allgemeines iiber Differentialgleichungen

19.1 Definition der Differentialgleichungen

In den letzten Kapiteln von Band 1 sind Sie schon mehrmals auf das Wort
Differentialgleichung gestoBen. Im folgenden soll das wichtige Gebiet der
Differentialgleichungen niher behandelt werden. Sie werden im Verlauf der Aus-
filhrungen erkennen, daB die Differentialgleichungen eine Schliisselstellung bei
der Losung vieler technischer Aufgaben einnehmen.

In der Elementarmathematik nimmt die Algebra eine analoge Stellung ein. Das
Losen von Bestimmungsgleichungen, also die Ermittlung unbekannter Werte,
gibt erstmalig die Moglichkeit, Anwendungsaufgaben im gesteckten Rahmen
erschopfend zu losen. Eine Differentialgleichung stellt auch eine Bestimmungs-
gleichung dar, fiir die nun aber eine Funktion als Losung gesucht wird, die die
Gleichung erfiillt.

Als Beispiel sei die Differentialgleichung

, 1
y-{—;y:x

herangezogen, in der y die gesuchte Funktion und y’ ihre Ableitung nach z dar-
stellen. Im Lehrbeispiel 40 finden Sie als Losungsfunktion

z? c
Y=+

C kennzeichnet hierin eine beliebige Konstante (Integrationskonstante). Ist die
Losung richtig, so muBl diese Funktion die Differentialgleichung erfiillen. Wir
machen die Probe:

Es ist 2z C

’

3 2
Werden y und y’ in die linke Seite der Differentialgleichung eingesetzt, so ergibt
sich

UL B AT )

y+?y_—5- z’+z 3+:v
2z C z C
T
=,

wie es auch von der rechten Seite gefordert wird. Die. Differentialgleichung wird
also von der angegebenen Losungsfunktion erfiillt.
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Eine andere Differentialgleichung ist beispielsweise

d2s

aw =9
Sie erkennen darin sofort dle Differentialgleichung des freien Falls, wenn s als
Weg, t als Zeit und damit 22 ar
(9,81 m/sec?) gedeutet werden.

2 als Beschleunigung sowie g als Erdbeschleunigung

Das Galileische Fallgesetz s = % gt? ist eine Losung dieser Differentialgleichung.

Fiihren Sie selbst die Probe durch, indem Sie zunéchst die zweite Ableitung von
s nach ¢ bilden und dann deren Wert in die Differentialgleichung einsetzen.
In Band 1, Abschnitt 7.53, trat bei der Behandlung des Trigers gleicher Festig-
keit die Differentialgleichung

cdF = F'y dz
auf, die sich auch auf die Form
aF _ v p
dz 4

bringen 14a8t.
Hier liegt also eine Beziehung vor, in der die gesuchte Funktion F = F(x) und

ihr Diﬁerentialquotient%erscheinen. Die damals gefundene Losung

»
F=Pogs"
¢
soll zur Probe in diese Differentialgleichung eingesetzt werden. Sie bilden dazu
zuniichst den Differentialquotienten

dF P oy -—Z

dz :

Ersetzen Sie in der Dlﬁerentla,lglelchung—p- und F durch die vorst-henden
Ausdriicke, so erhalten -Sie

Poy 0% _ ¥ P g®

a? ¢ o )
Sie sehen, daB die angegebene Losung die Differentialgleichung erfiillt.
In Verallgemeinerung der soeben aufgestellten Betrachtungen gilt folgende
Definition des Begriffes Differentialgleichung:

Eine Differentialgleichung ist eine Beziehung zwischen einer oder mehreren
unabhiingigen Veriinderlichen, einer noch unbekannten Funktion dieser
Veriinderlichen und den Ableitungen dieser Funktion.

Lisung ist jede Funktion, die mit ihren Ableitungen die Differentialgleichung
erfiillt.

Die Differentialgleichung mufl dabei mindestens einen Differentialquotienten
enthalten, wihrend z und y selbst nicht aufzutreten brauchen. So ist im vor-
letzten Beispiel nur die 2. Ableitung zu finden, wihrend im letzten Beispiel die
unabhéngige Verinderliche z fehlt.
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Als weitere Beispiele seien die Differentialgleichungen -
’_] i —_
a) ¥+ v 0,
b) y—ay=0,
¢) ay”"—by +cy=0,
d) .’/" + b.’/’= 1,

. e) ay”’—by +cy=sinz
angefiihrt.

19.2 Einteilung der Differentialgleichungen

Fiir die Unterteilung der Differentialgleichungen gelten verschiedene Gesichts-
punkte:

In einer gewthnlichen Differentialgleichung treten nur gewohnliche Ableitungen
auf. Die Losungsfunktion hingt in diesem Fall nur von einer unabhiéngigen Ver-
dnderlichen ab. Alle bisher angefithrten Beispiele gehoren in diese Gruppe.
Treten hingegen partielle Ableitungen auf, und weist demnach die Iﬁsungsfunktlon
mehrere unabhingige Veriinderliche auf, so spricht man von einer partiellen
Differentialgleichung.

Ein Beispiel einer partiellen Diﬁerentia,lgleichung ist

Oz+a_y 0.

Sie wird von der Funktion z = f(z, y)= arctan erfullt Priifen Sie die Rlchtlg-
keit dJeser Losung durch Bildung der partlellen Diﬁerentla,lquotlenten =
und 2 i Z und Einsetzen in die Differentialgleichung nach!

Im folgenden sollen nur gewohnliche Differentialgleichungen behandelt werden.
Weiter werden die Differentialgleichungen nach der Ordnung der héchsten in
ibr auftretenden Ableitung eingeteilt. Da in den Beispielen a), b) und d) nur die
1. Ableitung von y vorkommt, sprechen wir hier von Differentialgleichungen
I. Ordnung. Dagegen stellen die Beispiele ¢) und e) Differentialgleichungen
II. Ordnung dar, da in ihnen Ableitungen 2. Ordnung auftreten.

Ein weiteres Unterscheidungsmerkmal, auf das aber hier nicht. weiter eingegangen werden
soll, stellt der Grad einer Diﬁerentia,lgleichung dar. Unter bestimmten Voraussetzungen ve-
stimmt der’ groBte Exponent von y und seinen auftretenden Ableitungen den Grad der
betreffenden Differentialgleichung. Im Beispiel d) firden Sie eine Differentialgleichung
I. Ordnung 2. Grades, wihrend Beispiel b), ¢) und e) Differentialgleichungen 1. Grades oder
lineare Differentialgleichungen darstellen.

19.3 Geometrische Deutung einer Differentialgleichung I. Ordnung
Eine Differentialgleichung I. Ordnung sei in der Form
y=1f(=,9)
gegeben. Dann ergibt sich fiir jedes Wertepaar (z, y) ein bestimmter Wert y’.
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Beispielsweise wird durch die Differentialgleichung y’ = — ! dem Wertepur (15 1) der Wert
¥y = —1 zugeordnet.
Bei der Darstellung einer Funktion in der zy-Ebene gibt 3’ = 7 den Anstieg
der Kurventangente an. Die Differentialgleichung I. Ordnung 148t sich also geome-
trisch so deuten, da8 jedem Punkt P(z; y) der x y-Ebene eine bestimmte Richtung
zugeordnet wird.

Mit anderen Worten:

Eine Difterentialgleichung I. Ordnung bestimmt ein Riehtungsteld.
In Bild 17 ist fiir einige Punkte des I. Quadranten das Richtungsfeld der Diffe-
rentialgleichung 3’ = — —"a—:- dargestellt.

Losungen der Differentialgleichung sind nun nach der Definition die Funktionen
y = y(z), die die Differentialgleichung erfiillen. Das bedeutet geometrisch,
daB y = y(x) die Gesamtheit der Kurven darstellen muB, die das Richtungsfeld
erfiillen, die also in den einzelnen Punkten der Ebene die dort vorgeschriebene
Richtung haben. In Bild 18 sind einige Losungskurven gemif dem in Bild 17
dargestellten Richtungsfeld eingezeichnet.

.V v % % % y
LN W N NN
YN N NN
AT N N e
AU G S
-0
| x | x
Bild 17 Bild 18

Wie Sie spiter sehen werden, lit sich die Losung einer Differentialgleichung
I. Ordnung auf eine einfache, unbestimmte Integration zuriickfiithren. Dann
aber muB in der Lésung y = y(x) immer noch eine willkiirliche Integrations-
konstante C auftreten. Die allgemeine Lisung der Differentialgleichung heifSit
damit y = y(=, C). Ihr entsprechen unendlich viele Losungskurven, von denen
in Bild 18 einige dargestellt sind. Fiir jedes fest gewihlte C ergibt sich eine
bestimmte Kurve, die man partikulire Lisung nennt.

Die Losung einer Differentialgleichung wird auch Intogral der Differential-
gleichung (allgemeines Integral, partikulires Integral) genannt.

19.4 Anfangsbedingung

In den Anwendungsbeispielen wird meist nur eine ganz bestimmte partikulire
Lésung interessieren. Dann muB also aus der Schar der allgemeinen Lésungs-
kurven eine spezielle Kurve herausgegriffen und der dazugehérige Wert von C
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bestimmt werden. Dazu geniigt bei den Differentialgleichungen I. Ordnung die
einfache Angabe, daB zu einem bestimmten x = %, die Ordinate y den Wert y,
annehmen soll, d. h. also, daB diejenige Kurve auszuwihlen ist, die durch einen
gegebenen Punkt (z,; y,) lduft. Dies nennt man eine Anfangsbedingung. Um die
Konstante C zu ermitteln, brauchen Sie nur in der allgemeinen Losung fiir
und y die gegebenen Werte z, und y, einsetzen und erhalten so eine Bestimmungs-
gleichung fiir C.

Lehrbeispiel 27

Die allgemeine Lisung der Differentialgleichung y' = 4x lautet y= 222+ C.
Welche Form hat die partikuldre Lisung mit der Anfangsbedingung o= 1, y, = 3?
Losung:

Da in der partikuliren Losung y den Wert y,= 3 annehmen soll, wenn fiir z
der Wert x,=1 eingesetzt wird, mufl

3=2.1+40C,
also
c=1
sein.
Damit lautet die geforderte partikulire Losung
y=22"41.

Priifen Sie die Richtigkeit der partikuliren Losung durch Einsetzen in die Diffe-
rentialgleichung nach!

Zusammenfassung

Eine gewohnliche Differentialgleichung stellt eine Beziehung zwischen einer
unabhéngigen Verinderlichen z, einer unbekannten Funktion y(x) und deren
Ableitungen dar. Losung ist jede Funktion y(x), die die Differentialgleichung
erfillt.

Die Ordnung des hochsten auftretenden Differentialquotienten bestimmt die
Ordnung der Differentialgleichung.

Eine Differentialgleichung I. Ordnung legt fiir jeden Punkt der xy-Ebene eine
bestimmte Richtung fest. Die allgemeine Losung y = y(zx, C) stellt die Gesamt-
heit der Kurven dar, die dieses Richtungsfeld erfiillen. Eine vorgegebene Anfangs-
bedingung greift aus dieser Gesamtheit eine einzelne Kurve heraus, indem
durch sie fiir die allgemeine Integrationskonstante C ein ganz bestimmter Wert
festgelegt wird. Die diese Kurve kennzeichnende Funktion wird als partikulire
Lésung bezeichnet.

20 Differentialgleichungen I. Ordnung

20.1 Losung durch Trennen der Verinderlichen
Die Differentialgleichungen vom Typ

y=fx)-9®)

lassen sich einfach durch Trennen der Verinderlichen 16sen.
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Dazu ist y’ durch % zu ersetzen und die nur y als Verdnderliche enthaltende

Funktion ¢g(y) und das Differential d y auf die eine Seite, die nur « als Verdnder-
liche enthaltende Funktion f(z) und dz auf die andere Seite der Glelchung
zu bringen:

m = f(z)dx.
Jetzt kann man die linke Seite nach y und die rechte nach x integrieren:
q(y) = [1@)ds.

Die Losung besitzt die Form
@ly)=F(2)+0C,

wobei G(y) und F(x) die Stammfunktionen von f % und f f(z) dx sind.

Eigentlich tritt auf jeder Seite eine Integrationskonstante auf. Es ist aber iiblich, beide
Konstanten auf einer Seite zusammenzufassen.

Hiiufig kann man nach y auflésen, so daB sich dann die aligemeine Losung in der
Form y= y(z, C) ergibt.

Lehrbeispiel 28

Losen Sie die Differentialgleichung

, r=po
Lésung:
In diesemn Beispiel ist g(y) =1 und f(z) = % 22 Es ist
dy 1 22
dz 3%
1
dy=?x2dx,
fdy:%fxzdx,
1

Das Richtungsfeld weist in diesem Fall eine besonders einfache Form auf. Da y
nur von z abhingig ist, erhalten alle Punkte der Ebene, die auf einer Parallelen
zur y-Achse liegen, dieselbe Richtung zugeordnet. Wie aus Bild 19 zu ersehen
ist, sind die Losungskurven parallel zueinander verschoben. Diese einfachste Art
der Differentialgleichungen haben Sie bereits als unbestimmtes Integral in Band 1
kennengelernt.

Lehrbeispiel 29
Losen Sie die Differentialgleichung

’

y=—7!

Loésung:

wis «|s

n.lm
8w
i
|
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Trennung der Veriinderlichen:

ydy=—zdx
fydy=—fa:dz
2
Y-—21c
2+ yt=0C (Es wurde C'=2C, gesetzt)
v
} V4 - + s / 4
AT N T o A
(R T A, 4 y
; 4 o T Y4 / { ,—0' ~. -
PPt =gt A I
/ ’—_—’ V4 o | w AY
7 s b4 7 P ~ X
A R A A EN A N T
V4 o L, 1 4 4 ) & ¢
7 o F— Y x. ,
/ /7 Pk ol 4 # #
AR G A
Bild 19 Bild 20

Die Losungskurven sind nichts anderes als die Schar der konzentrischen Kreise

mit dem Radius ]/_C_' um den Mittelpunkt (0; 0).
Im Bild 20 ist das Richtungsfeld dieser Differentialgleichung dargestellt. Da der

zum Punkt P, (w;;y,) gehorige Ursprungsstrahl den Richtungsfaktor ml_-"’—
hat, wihrend die demselben Punkt durch die Differentialgleichung zugeordnete
Richtung m,= — 7 ist, stehen Ursprungsstrahl und zugeordnete Richtung

wegen mym,= —1 aufeinander senkrecht. Das ist aber die Thnen bekannte
Eigenschaft, daBl beim Kreis Tangente und Berithrungsradius aufeinander senk-
recht stehen.

Lehrbeispiel 30
Losen Sie die Differentialgleichung
y'=ysina!
Losung:
dy .
4z = ysinz
dy _ sinzdz

Iny=—cosz4C,
y=e—uosz+0,

y= e—C08z eC,



Fiir den konstanten Faktor e®: kann man einfach C schreiben, kommt es dech
nur darauf an, einen willkiirlichen Faktor zu kennzeichnen. Die Lésung lautet
dann

y= C e—co8z,

Tritt, wie im Lehrbeispiel 30, nach der Integration y in der Form Iny auf, so
wird die Integrationskonstante zweekmiBig gleich in der Form In C angesetzt.
Der Losungsgang der vorstehenden Differentialgleichung vereinfacht sich dann:

Iny=—cosz+InC,
Iny —InC=—cosz,

In==—cosz,

= (' e—°08%

Lehrbeispiel 31
Lisen Stie die Differentialgleichung y' = ay!
Lésung:

dy

F 4
Trennung der Verénderlichen:

dy

—~ =gdz

y
Iny=az+InC
y=C¢e".

Die eben behandelte Differentialgleichung ist von auBerordentlicher Bedeutung.
Wenn Sie bedenken, da8 der Differentialquotient 3’ ein MaB fiir das Anwachsen
der GroBe y darstellt, kénnen Sie die vorliegende Differentialgleichung in der
Form deuten: Der Zuwachs ist dem augenblicklichen Wert von y proportional.
Diese Differentialgleichung liegt den verschiedensten physikalischen, chemischen
und technischen Vorgéingen zugrunde. Einen Fall haben Sie bereits bei der
Behandlung des Trigers gleicher Festigkeit in Band 1, Absthnitt 7.53 kennen-
gelernt.

Im Fall a > 0 spricht man von der Differentialgleichung des organischen Wachs-
tums, wihrend man bei @ <<0 von der des organischen Abklingens spricht.

Lehrbeispiel 32
In vielen Anwendungen liegt eine Differentialgleichung der Form

d

arHay=>b
oder

dy___

T =b—ay

vor (@ > 0), wobei t die Zeit darstellt. Lisen Sie diese Differentialgleichung!
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Lésung:
dy

b—ay
-—%ln(b—ay)=t—l—01

=d¢

Inb—ay)=—at—aC,
b—ay=0Ce* (mit C =e~2%)

y=%(b—06‘“)

Wir wollen hier noch die partikulire Losung aufstellen, die durch die Anfangs-
bedingung ¢t = 0, y = 0 gekennzeichnet wird. Wir suchen also die Losungskurve,
die durch den Ursprung des ¢y-Systems lauft. Setzen Sie zur Bestlmmung von
C wieder die gegebenen Werte in die gefundene allgemeine Liosung ein. Es ergibt
sich
0=1(—ce oter c=b
und damit 5
y=-(1—e").

Diese partikulidre Losung soll ndher untersucht werden. Durchliuft ¢ das Intervall
0=t = oo, s0 fillt e % von 1 bis 0, wihrend (1 — e~%) von 0 bis 1 steigt und y

sich asymptotisch dem Wert g nihert. Wird dieser ,,Endwert‘ g mit y; bezeich-

net, so laflt sich die Losung in der Form
y=ye(l— e-at)
schreiben.
Von Bedeutung ist hier der Wert ¢{= —- =7, die sogenannte Zeitkonstante.
Fiir dieses ¢ wird ndmlich

y(t)=yE(l—%)

1
~Ye (1 - 2,713)
~0,632y.

Nach Verstreichen dieser Zeit 7 hat also y rund 63 % des Endwertes erreicht.
Wir bilden noch den Differentialquotienten der Lﬁsungsfunktion:

dy

=y =ypae™®
gt
T
Fiir t =0 ist
¥ (0)= ——tanoc

Mit Hilfe der analytischen Geometrie konnen Sie nachweisen, daB die Linge der
Projektion der Tangente zwischen Beriihrungspunkt und Parallele zur ¢-Achse
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im Abstand y; den konstanten Wert 7 hat (Bild 21). Diese Eigenschaft der Kurve
kann vorteilhaft bei ihrer Konstruktion verwendet werden.

Mit Hilfe der Zeitkonstanten ©
konnen wir noch die Halbwert-

zeit tz ermitteln, die verstreichen  y

muB, damit y = %— Yz ist.
Aus der Losung finden Sie

13:4
1 - 3
gyg=zuz(l—e >
) i
?=1—e T, o632
g
e+ T =2,

tg=1In2~0,77.

Den soeben durchgesprochenen Bild 21
Typ einer Differentialgleichung )
sollen Sie noch in einem Anwendungsbeispiel kennenlernen.

Lehrbeispiel 33

Einem Heizkdrper werde in der Zeiteinheit eine konstante Wirmemenge zugefiihrt.
Wie erwirmt sich der Heizkorper unter Beriicksichtigung des Wirmeiiberganges
in den Aufenraum?

Es set T = Heizkorpertemperatur,
T, = Auflentemperatur,
T — T, = Ubertemperatur,
dT = Temperaturinderung des Heizkirpers in der Zeit dt,

m = Masse des Heizkorpers,

¢ = spezifische Wirme des Heizkorpers,

o« = Wirmeiibergangszahl von der Korperoberfliche zur Luft des
Aufenraumes (Wirmemenge pro Oberflicheneinheit, 1° Tempe-
raturunterschied und Zeiteinheit), )

@ = zugefiihrte Wirmemenge pro Zeiteinheit,

F = Oberfliche des Heizkorpers.

Losung:
Wihrend der Zeit d¢ wird
1. dem Heizkérper die Warmemenge Qd¢ zugefiihrt,

2. im Heizkérper die Wirmemenge mcdT gespeichert und zur Erwirmung
des Korpers benutzt und

3. an den AuBenraum die Wérmemenge F (T — T) xdt abgefiihrt.

Auf Grund des Erhaltungssatzes mu3 dann die Summe der Warmemengen 2 und
3 gleich der zugefiihrten Wirmemenge 1 sein:

medT + F(T—Ty)adt = Qd¢
oder aT Q Fo
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Zur Abkiirzung fithren wir noch a = F und b= T”Q— ein:

e —b—a(T 7).

Nach Trennen der Verdnderlichen erhilt man
ar

m:dt.

Die Integration liefert
—%ln[b—-a(T—Tl)]=t+ol,
In[b—a(T'— Ty)] =—at—aC,,
b—a(T—1T,) = Cye % (mit C,= e-5C1),
T— Tl——'—'C'e'“‘, wobei C._.— ist.

Aus der Anfangsbedingung ¢t =0, T = T, (Anfangstemperatur des Heizkorpers
= AuBentemperatur) ergibt sich C = ;b und damit als partikulire Losung

T—T=2 1—e

= .I%— (1 _ e-%t),

oder, mit Einfiihrung der Temperaturdifferenz im Endzustand (¢ — o) Tz = TQ{ s

T=7,4+ TE(I —e—%').

Weisen Sie nach, daB der Exponent von e dimensionslos ist, d.h., daB L;ﬁ
. . . . . o
die Dimension einer Zeit hat!

Lehrbeispiel 34
Es soll untersucht werden, wie die Bewegung eines mit der Anfangsgeschwindigkeit

v, senkrecht nach oben geworfenen Korpers unter Beriicksichtigung der Luftreibung
verlduft.

Losung:

Experimentell wurde ermittelt, da die Luftreibung bei langsamen Bewegungen
der Geschwindigkeit und bei mittleren Geschwindigkeiten dem Quadrat der
Geschwindigkeit proportional ist. Der Proportionalititsfaktor % ist u.a. von
der Form und Querschnittsfliche des Korpers, seiner Oberflichenbeschaffenheit
und von der Wichte der Luft abhingig.

Nach dem grundlegenden Gesetz von Newton ist die Summe der auf den Korper
wirkenden Krifte gleich dem Produkt aus seiner Masse und seiner Beschleunigung.
Welche Krifte wirken nun auf den Koérper ?

Da ist einmal die entgegen der Bewegung wirkende Luftreibung

W =—k.
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Das Minuszeichen soll dabei ausdriicken, da8 W der Richtung von v entgegen-
gesetzt ist. Weiterhin wirkt infolge der Erdanziehung das Gewicht des Korpers

= —mg
der Bewegung entgegen.
Nach dem erwihnten Newtonschen Grundgesetz ist dann

mb=Q+ W,
mb=—mg—ko®
-_—__k(ﬂk’—--l-v’).

Wenn Sie noch zur Abkiirzung ik”. = a? setzen, erhalten Sie mit b= _';_:L die
Differentialgleichung der Bewegung.in der Form

I mSY — k(a4 o).
Mit I
wird o do
d=—7 o

a v
=—7arctan7+0.

Zur Bestimmung der Konstanten C muBl eine zutreffende Anfangsbedingung
aufgestellt werden. In der Voraussetzung war festgelegt, dal die Abwurfgeschwin-
digkeit den Wert v, haben soll. Wird die Zeit vom Moment des Abwurfes an
gezihlt, so ist die gesuchte Bedingung

t= 0 ) v= vo .
Eingesetzt, ergibt sich damit fiir C
=2 an 2%
0= 7 arc tan 2 +C

oder
=2 arctan 2
g a

und fiir die partikulire Losung der Differentialgleichung

t= el (a,rc tanv—"-— arc tan—v—) .
g a a

Dieser Losung haftet noch der Mangel an, da8 die Zeit ¢ als Funktion der Ge-
schwindigkeit » und nicht umgekehrt v als Funktion von ¢ dargestellt ist. Wir
wollen deshalb nach » auflésen. Arbeiten Sie die folgenden Zeilen griindlich durch!
Sie lernen hier éinmal eine etwas schwierigere Umformung kennen.

Nach der gefundeénen Gleichung ist

t [’ [}
9 _ arctan 22 — arctan—.
a a a
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Um v aus seiner Umklammerung als Argument der arctan-Funktion zu befreien,
bilden Sie von beiden Seiten den Tangens:

tan 2 — tan (arc tan— _ arc tan 1) .
a a a
Die rechte Seite miissen Sie nun mit Hilfe des Additionstheorems der Tangens-

funktion umformen. Sie setzen dazu

0, v

& = arc tan —~ f = arc tan —

d a’ a
oder

(]

ta.n«x=%, tanf =—.

a
Damit erhalten Sie aus obenstehender Gleichung
tan%t =tan(x— B)

__ tana—tanf
" 1+4tanatanp

v, v

a a

to?¥
1-|-{1L2

I

avy—av
T att

tag—t
a

Jetzt kann nach v aufgelost werden. Nach kurzer Rechnung folgt

vo—atan-g—t-
a . mg
V=0 ———r (mlta=|/T).
a+v,,tan%

Nun soll uns die Linge des in der Zeit ¢ zuriickgelegten Weges s interessieren,
Setzen Sie dazu

sin gt

fv=—di und tan 2t — 2 ,
de a gt
cos =~

dann ergibt sich aus der fiir die Geschwindigkeit v gefundenen Formel nach
Trennen der Variablen und Integration

vocos%f——-asin%t—
fda=s=a, d¢.

gt . gt
@ co8 — + v, S
a + vy 8In a

Es wird Thnen sicher auffallen, daB bis auf die konstanten Faktoren die Ab-
leitung des Nenners im Zihler steht. Daher liegt die Substitution

gt

gt .
U= C —_— mn —
acos— +vosna
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nahe. Zur Umrechnung von d¢ in du bilden Sie den Differentialquotienten:

du gt v t
=9 sm% 4+ 28 cos%.
Der Zihler des Integranden vereinfacht sich damit zu
('vo cos L g sin?—t) dt =2 du,
a a g

withrend das Integral die einfache Form

__a*(du

T g) w
und die allgemeine Losung damit die Gestalt
8= %2 Inu+C

annimmt. Nach Ersetzen von u ist
_a gt . gt
8= Tln(a cos—a-—}— vosmT) +C.

Legt man als Anfangsbedingung zweckmaéBigerweise ¢t = 0, s = 0 fest, und setzt
dies ein, dann ergibt sich fiir C

O=0721n(a cos 0+ v,8in0) 4+ C

oder a?
=— Ina.

Die partikulire Losung unserer Wurfbewegung ist dann

— a? gt . gt a?
s —-Tln (a cosT-l—vosmT)—Tlna,,

2 )
I 8=a7]n(cosgt+ising—t).

@ " a T a

Interessant ist in diesem Beispiel noch die erreichte Steighohe H und die dazu
erforderliche Steigzeit 7.
Im Gipfelpunkt der Bewegung ist v = 0. Sie erhalten mit ¢t =T, v =0

Vo— at,anﬂ
a
a+ vota.ngT
oder
t,a,n~.g_T_= &7.’
a a

a v,
T = — arc tan—.
g a

Zur Ermittlung der Steigh6he ist die gefundene Steigzeit in die fiir den Weg 8
gefundene Formel einzusetzen. Es wird

2
=L]n(cosg_T_+ﬂ.sfn ﬂ).
g a a a
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Um die ermittelte Steigzeit 7' mit Hilfe der Beziehung tan % = % einsetzen

zu kénnen, miissen noch die auftretenden Sinus- und Kosinusfunktionen durch die
Tangensfunktion mit gleichem Argument ausgedriickt werden. Mit Hilfe der
Thnen aus der Trigonometrie bekannten Umrechnungsformeln

1 . tan o

co8 = ——————  und sinax= S

V1 4 tan%a V1 + tan%a«

gT

tan —

. T 1 . gT
Vl + tan? g Vl -+ tan2? A
a a
— a )
Vorto2’ Var+ v

Damit erhalten Sie fiir die Steighﬁhe

=% l a v}
#=7 (Va’+v’ Va’+v.’.)

a®  Ja*+0}

=2 In
a

-1 (2],

3

Die gefundenen Ergebnisse enthalten die Grée a =Al/ﬁk‘-’—, die nicht nur von

dem Faktor %, sondern auch vom Gewicht des geworfenen Korpers abhingig ist.
In der Physik haben Sie im Gegensatz dazu bei der Behandlung der reibungs-
freien Bewegung die Unabhingigkeit von der Masse bzw. vom Gewicht des
bewegten Gegenstandes kennengelernt.

Hier soll noch kurz der fiir s gefundene Wert HI mit Hilfe der ersten Glieder
der Taylorschen Reihe entwickelt werden.

Die Taylorsche Reihe nimmt mit den im Beispiel auftretenden GroBen ¢ und
s = 8(t) die Form & (0) "

8(t)=s8(0)+8(0) - t+—5——+---
an.
Auf Grund der Anfangsbedingung ist
8(0)=
Da o () =32 — o ist, wird
dt , §'(0) = v,.
Die 2. Ableitung des Weges s nach der Zeit ¢ ist die Beschleunigung
b— d2s  de
B Vo T
Aus Gleichung I folgt dafiir
”(t)='—'=— (a2+,02)’

also
#(0) = — % @+ ).



Diese Werte in die Taylorsche Reihe eingesetzt, ergibt
s(t)=0+vo-t—-2—",;(a2+vz> Bt

Aus Gleichung IT folgt =1,

aB
Somit wird g
s(t) = vyt — Bt (a®+vd) 24

s(t) =vgt— 5 g2 —IBC ..

In den folgenden Gliedern treten im Nenner immer héhere Potenzen von a?,
bzw. bei Ersatz des a* durch L,f im Zahler Potenzen von k auf. Da in den ersten

Gliedern der Entwiclﬂung die fiir die Luftfeibung maBgebliche Konstante &
fehlt, sind sie von der Luftreibung unabhiingig. Sie stellen nichts anderes als.
das Bewegungsgesetz fiir den reibungsfreien Wwif dar (k = 0):

s=vot—%gt2.

Ubungen
Lisen Sie die folgenden Differentialgleichungen!

12. y = % Diskutieren Sie das Richtungsfeld und die Losungskurven!
13. ax — byy =0, 4. y — ysin2z=0,

15. Tx — 3yy =2, 16. yy’ — x*=3,

17. sin z 4 y' sin y = 0.

20.2 Losung durch Substitution

‘So, wie Sie verschiedene Integrale dadurch losen konnten, daB Sie eine, neue
Integrationsverdnderliche einfiithrten, so lassen sich auch manche Differential-
gleichungen durch Substitution lésen. Auch hier kénnen keine bestimmten
Regeln fiir die Wahl der neuen Verinderlichen aufgestellt werden. Sie sollen des-
halb im folgenden nur an wenigen Beispielen dieses Verfahren kennenlernen.

Lehrbeispiel 35
Losen Sie die Differentialgleichung y' = (4 + 9y)*!
Loésung:
Sie setzen hier u=4z+9y.
Bei der Differentiation beider Seiten nach z ist zu beachten, daB y von x ab-
hingig ist: d
S8 4 9 ay
dz
oder

dy 1 du 4

dz 9 dz 9 °
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Die Differentialgleichung nimmt damit die Form

an. Diese neue Differentialgleichung fiir eine Funktion » = u(z) kann wieder
durch Trennung der Verdnderlichen gelést werden.

du

u2+i =9dzx
9
3 3
?arctanTu=9:r:—|—01
2 : 2
u=—3-tan(6x+0) (C=§C’1)

Fithren Sie nun wieder y ein, so ist die allgemeine Losung

2 4
y =5 tan (6:1:+C’)——9—x.

Von groBerer Bedeutung ist die Differentialgleichung vom Typ
v=1(%),
in der die Verinderlichen nur in der Verbindung % vorkommen.

In diese Differentialgleichung fithrt man mit Hilfe der Substitution

%=u oder y=ux

eine neue Verdnderliche » = u(x) ein. Die Differentiation ergibt hierbei
d du
e e TR
und damit die Differentialgleichung
 dm
qz e tu= f(u).

Diese Differentialgleichung 148t sich ohne weiteres durch Trennung der Verinder-
lichen l6sen. Es ist ndmlich

de  dz
fuy—uw &
und
du
Fu)—:—u—-—lnw—l—a.

Nach Auswertung des links stehenden Integrals kann dann wieder y eingefiibrt
werden.

Meist liegt jedoch eine derartige Differentialgleichung noch nicht gleich in der
erwihnten Form vor. In vielen Fillen kommen Sie zum Ziel, indem Sie die
Differentialgleichung zunéchst nach y’ auflésen und den auf der rechten Seite
stehenden Bruch mit der hochsten auftretenden Potenz von x kiirzen.
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Lehrbeispiel 36

Losen Sie die Differentialgleichung a? — y* + 2zyy’ = 0!
Loésung:

Zuriickfithrung auf die Form y’ = f(x, y):

Die Umstellung ergibt

Kiirzen mit der hochsten Potenz von z und dadurch Zuriickfiihren auf die

Form ¥y =f (%)

0 ¥
T
Die Substitution
¥ dy du
U=y T a ot
fithrt auf die Differentialgleichung
du ui—1
T rre=—g
de = u*41
=TT T2
Trennung der Verinderlichen:
2u du = dz
w1 =T
In(u?+4+1)=—Inz+InC
—m&
x
w4 1= g— .
Wiedereinfiihrung von y:
s 1=
2 ra
yi4a2=Cx
22— Cx+y*=0

Die Losungskurven sind die Kreise (x —g)z—i- y? =%s mit dem Mittelpunkt
(Q ‘O) und dem Radius &

2’ 2
Lehrbeispiel 37

Welche Kurven schneiden alle Radiusvektoren unter dem gleichen Winkel y (yp sei
dabei verschieden von 90°)?
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Losung:
Nach Bild 22 ist '
¢o+y=« oder py=a—¢g.
Ist P(z; y) ein Punkt der gesuchten Kurve, so ist ¥’ =tan« und tan ¢ = %

Das Avftreten der Tangensfunktion legt es nahe, die Beziehung der Winkel ¢,
und &« durch eine Beziehung zwischen

Y den Tangenswerten zu ersetzen. Es
ergibt sich
tan o — tan.
tan Y= tan (oc —_— (p) = m-a—an% .

Nach Voraussetzung soll y und damit
auch tan y konstant sein. Wir setzen

deshalb tan ¢ = ;. Mit

1
tany = —,
Bild 27 tanx =g’ und tan¢p=%
stellt dann

Y
,—.—
1_ YT
a 'Y
1+y pe

die Differentialgleichung der gesuchten Kurve dar. Die Umwandlung auf die
Form y = f(L ergibt
& y

yo—
Y e
T
Substitution:
du au+1
_d?x-‘—u—_ u—a
2
du w4
dz u—a
Trennung der Verdndertichen:
=0 du—— [3%
fu2+l u= z
u du
f—;zﬁdu—af?ﬁ =—Inz+InC

—;—ln (u2+1) —a arctanu =ln%

ln-gl/'t:z—l—lzaarctanu
% 4 a1 ] . poarctanu
C ]/u +1=¢
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Wiedereinfithrung von y:

- s ¥y

.V(l)2+l=eaarctan z
z
w - Cenatc tan %
Das Auftreten von Y22+ y® und arctan % legt hier noch die Einfiilhrung von

Polarkoordinaten nahe.
Mit

Qs

Y
z

r=Ya*+¢?, @=arctan

erhalten Sie als Losungskurven die logarithmischen, Spiralen,
r=_Ce"?,

wobei C der Wert von r fiir ¢ = 0 ist. Sie werden sich jetzt sicher an das Lehr-
beispiel 117 in Band 2, Abschnitt 14.13 erinnern. Dort hatten wir schon nach-
gewiesen, daBl die logarithmischen Spiralen alle Radiusvektoren unter dem
gleichen Winkel schneiden.

Ubungen
Lisen Sie die Differentialgleichungen
18. y'= (xz+ v)?, 19. xy'—y=xtan%,
20. 2y—52)y'=2z+ 5y, 21. x4+ yy' =2y!

Zusammenfassung

In 20.1 lernten Sie ein Verfahren zur Lésung einiger Differentialgleichungen
I. Ordnung kennen. Die Trennung der beiden auftretenden Verdnderlichen z
und y und nachfolgende Integration fiihrt bei all den Differentialgleichungen
zum Ziel, die sich in der Form y’ = f(z) g(y) darstellen lassen.

Zuweilen lassen sich auch andere Differentialgleichungen I.Ordnung durch
Einfithrung einer neuen Verdnds:lichen auf diesen Typ zuriickfithren. Sie haben
dabei die gegebene Differentialgleichung zwischen z, y und y’ mit Hilfe der Sub-
stitution % = u(x, y) in eine entsprechende Gleichung zwischen z, 4 und o’

umzuformen. LBt sich eine Differentialgleichung auf die Form y’ = f (%—) bringen,
so ist nach der Substitution » = % die Trennung der Verénderlichen méglich.

20.3 Homogene, lineare Differentialgleichung I. Ordnung
Jede Differentialgleichung I. Ordnung, die auf die Form
¥+ 9@ y="h)

gebracht werden kann, heiBt lineare Differentialgleichung I. Ordnung. Die
rechts stehende Funktion A (x) heiBt Storungsfunkiion. Ist h(x) = 0, so wird die
Differentialgleichung

yY+g@y=0
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als homogene, lineare Differentialgleichung I. Ordnung bezeichnet. Im
Fall h(z) =+ 0 liegt eine inhomogene, lineare Differentialgleichung I. Ordnung
vor.

Den homogenen Fall konnen Sie sofort nach Trennen der Verinderlichen 15sen.
Es ist

dy _
qa = 9@y,
L —y@dz,

lny=—fg(x) dz+InC,
y = Ce-J1@0s,

Lehrbeispiel 38
Losen Sie die Differentialgleichung

x
b i
Lésung: d
%y __ = sdz
Y 142

lny=%ln(l+x2)—|—ln0

Iny=In(C ]/itl—_?”)

y=CV1+22.
Lehrbeispiel 39 -
Lisen Sie die Differentialgleichung
y'—ycosx =0/
Lésung: d
ZY — coszda
Iny=sinz+InC

y=Cesinz

20.4 Inhomogene, lineare Differentialgleichung I. Ordnung

Fiir die Differentialgleichung
‘ ¥Y+9@y=h

wollen wir zwei Losungsverfahren durchsprechen. Wenn auch das erste Verfahren

eleganter ist, sollen Sie doch auch das zweite Verfahren kennenlernen, denn Sie

miissen beim Losen einiger Differentialgleichungen II. Ordnung einen #hnlichen
Weg beschreiten.

20.41 Liosung durch Substitution. Ehe wir diese Methode an der allgemeinen
Differentialgleichung durchfiihren, sollen Sie sie erst an einem Lehrbeispiel kennen-
lernen.
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Lehrbeispiel 40
Zu losen ist die Differentialgleichung

IR
y+5y==.
Loésung:
Sie fijhren eine neue Funktion » = u(x) mit Hilfe der Differentialgleichung
v 1 , _du
vz (" T dw )

ein, wobei die rechte Seite der Faktor des y-Gliedes der gegebenen Differential-
gleichung ist. Die Trennung der Verinderlichen ergibt hier

du _ 1 dz,
u xr
Inu=Inz,
u=z.

Sie werden in der Losung die Integrationskonstante vermissen. Es kommt in dieser
Teilaufgabe aber nur auf die Herstellung einer partikuliren Losung an, und die’
haben wir mit C =0 erhalten. Die eigentliche Differentialgleichung hat nun
die Form

4 u'
Y+ y==
angenommen. Multiplizieren Sie beide Seiten mit u:
yutu'y=uz,

dann erkennen Sie auf der linken Seite den Differentialquotienten des Produktes
u - y. Nachdem Sie noch auf der rechten Seite v = x setzen (gemiB der parti-
kulidren Losung der durch die Substitution erhaltenen Differentialgleichung mit
u = u(x)), konnen Sie jetzt die Differentialgleichung in der Form

d —_ 2
= %y =z
schreiben. Durch Integration auf beiden Seiten ergibt sich
3
1 (a8
:C
y= %‘ —+ z°

Der Lisungsgang soll jetzt noch einmal an der allgemeinen Form der linearen
Differentialgleichung I. Ordnung demonstriert werden.
In der Differentialgleichung

¥Y+g@y=nh()
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ist der Fakter g(x) durch 7’:: zu ersetzen und ein partikulires Integral (C = 0) der
so entstehenden Differentialgleichung

zu bilden. Nach Trennen der Verinderlichen

g da

folgt
Inu = f gx)dez.
Es ist also

u=e/t@®dz,

Die Differentialgleichung, die jetzt die Form
y+—y=h)

hat, ist nun mit » zu multiplizieren, so dal auf der linken Seite die Ableitung
des Produktes -y steht.
Das ergibt

y'u+uw'y=uh(x)
oder, mit dem partikuldren Integral u = efr@az

25 (wy) =h()el 122,

Nach Integration folgt
uy =fh(:::)ef"(’°)dz dz+C.

Die allgemeine Losung der inhomogenen, linearen Differentialgleichung I. Ord-
nung ist dann

y=e fa(x)dz[fh(x)efv(z)dz dx+0].

Es wire unzweckmiBig, wollten Sie eine vorliegende Differentialgleichung
nach dieser Formel 16sen. An dieser allgemeinen Rechnung sollten Sie nur noch
einmal den formalen Losungsgang kennenlernen, den Sie sich einpréigen miissen.

‘Lehrbeispiel 41

Lisen Sie die Differentialgleichung y’ + y sin x = sin «!
Loésung:

Sie setzen _“ui =sinz

und erhalten nach Trennen der Variablen
du _ sinzdz,
u

Iny = —cosz,

,u=e-cosa:.



Damit erhélt die Differentialgleichung die Gestalt
) u’ .
y + - Y =sinz,
y'utu'y=e""%ging,

uy = f e~ %ginzdx Substitution:

V=-—COSZ
dv=sinzdz

_e—cosﬁ_l_o

@—cosz C e—cosz C
Y= u +7=e—mz+e—cuz’
y=1-4Ce™**

20.42 Lisung durch Variation der Konstanten. Sie sollen nun das andere, von
Lagrange stammende Verfahren zur Losung der inhomogenen Differential-
gleichung kennenlernen.

Es soll dazu die Differentialgleichung benutzt werden, die schon im letzten
Lehrbeispiel gelost wurde.

Lehrbeispiel 42

Gesucht ist das allgemeine Integral der Differentialgleichung

¥+ ysinz =sinz.

Losung:
1. Losung der zugehorigen homogenen Differentialgleichung:
Yy} ysinz=0
g% =—ysinx
Y_ _ sinzde
y

Iny=cosz+1InC

Losung der homogenen Differentialgleichung:
yp=C e,

Probe: —C e %ging 4 Ce®*®%singy =0

Der Index % soll andeuten, daB es sich bei y, um die allgemeine Losung der homo-
genen Gleichung handelt.

2. Losung der inhomogenen Differentialgleichung:

Um nun zur Losung der inhomogenen Gleichung zu kommen, mu} y, so um-
gestaltet werden, daB sich beim Einsetzen in die linke Seite nicht der Wert 0,
sondern sin x ergibt, so wie es die rechte Seite der inhomogenen Differential-
gleichung verlangt. Man ersetzt dazu die Konstante C in y, durch eine (noch
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unbekannte) Funktion z(x). Diese Abdnderung bezeichnet man allgemein als
Variation der Konstanten. Der so erhaltene Ansatz fiir die inhomogene Gleichung

y =2(xz)e™”

ist in die inhomogene Gleichung einzusetzen. Sie bilden dazu mit Hilfe der
Produktregel der Differentialrechnung

y' =2’ (x)e°*% — z(x)e*®*sin z.
Damit wird die inhomogene Differentialgleichung zu
2’ (x) €% — z(x) e*®**sin x 4 z(x) e**®*sinx = sinz.

Sie erkennen, daB sich das 2.und 3. Glied der linken Seite gegenseitig aufheben. Das ist kein
Zufall, denn y = z(z) e*** ist mit konstantem z(z) = C Losung der homogenen Differential-
gleichung (vgl. Probe fiir y,).

Es besteht danach fiir die Funktion z(x) die Differentialgleichung
2’ (x)e"®? =ginz,

die nach Multiplikation mit e °®* sofort durch Integration gelost werden

kann: zs
2’ (x) = e %sinz,

z(x),=fe‘°°"sin zdzx
=e %®2 1 (C,
Die allgemeine Losung der inhomogenen Differentialgleichung ist damit
y= z(x) ecosz — (e—cosz + C) eCOsz
y J— l + C eOOB:B,’
in Ubereinstimmung mit der Lésung aus Lehrbeispiel 41.

Lehrbeispiel 43
Lésen Sie die Differentialgleichung

y’—}y—_:xcosx!

Loésung:
1. Homogene Differentialgleichung
y—L=0
Trennen der Verdnderlichen:
dy ds
v =z
Iny=Inz+4+InC
u=Cx

2. Inhomogene Diﬁerentia,lgleichung ‘
Statt z(x) soll der Einfachheit halber nur z geschrieben werden.

Ansatz: y=zx y=z2'x+z2
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Einsetzen in die Differentialgleichung:
2Zx-+z—z=2xcosx
2’z =1xcosx
2’=cosx
z2(x) =sinz+C
Damit lautet die allgemeine Losung der inhomogenen Gleichung
y=z-x
y=uxsinz+ Cx
Lehrbeispiel 44
Zur Zeit t = 0 werde an einem stromlosen Stromkreis mit dem Ohmschen Wider-
stand R und der Selbstinduktion L eine Spannungsquelle mit der Spannung u = u(t)
angeschlossen. Wie ist der zeitliche Verlauf der Stromstirke
a) bet Gleichspannung,
b) bei Wechselspannung (v = U, sinwt)?
Losung:
Die Selbstinduktion erzeugt eine Gegenspannung, die proportlonal der zeit-
lichen Anderung des Stromes ist. Die Spannung u erfihrt also eine Schwichung
um ~—L . Durch den Ohmschen Widerstand wird ein Spannungsabfall . R

hervorgerufen Nach dem zweiten Kirchhoffschen Gesetz erhilt man

u— Lg—t— - R.
Es liegt damit eine inhomogene, lineare Differentialgleichung I. Ordnung vor,

die in der Normalform .
di , R. u

GTL'TT
lautet.
Die Differentialgleichung soll durch Substitution gelést werden. Sie setzen

l’_l?_ ,_dv')
= (”‘F

<

Trennung der Verdnderlichen:

dv R
=T d¢
Die Integration liefert 2
ln'v=—Et,
R
=t
v=el
Damit ist
di v, w
LT T
U
dtv+” 1,=Tv,
R
d . w 3t
a(m)_——ze
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1 [
und vi=ffue—" d¢,

2,
. e-‘ L £¢
also i=— ue L dt.

Es sind jetzt zwei Fille zu unterscheiden:

a) Gleichspannung
‘In diesem Falle ist u = const und es wird

v Ku -5t
=gtge’-

Die Integrationskonstante ist mit K bezeichnet, da C in der Elektrotechnik die Kapazitat
kennzeichnet.

Zur Bestimmung der Integrationskonstanten K verwenden wir die Anfangs-
bedingung ¢t =0, i = 0. Es ist also

u  Ku L
O“T'I_T’ K——f
e o -2
i =Y _ Y.L
und damit t=p— R ,

_R
Mit wachsendem ¢ geht e z' gegen Null, 7 nihert sich also asymptotisch dem
Werte —;’—. Vergleichen Sie dazu auch Lehrbeispiel 32!

b) Wechselspannung
Hier ist v = U, sinwt; u ist also eine Funktion von ¢. Damit wird
R
-=t [ R

L —t
i= U"'"L—— el sinwtdt.

Die Losung des Integrals erfolgt durch zweimalige partielle Integration:

R R R
=t =t =t
feL si.nwtdt=—%ef' smwt—%feL coswtd?
R R
L St . ol -t
P 7 _ L —
=xe sin wi 7 © coswi

272 ._R;g
wa feL sinwtdt.




Das ganz rechts stehende Integral stimmt bis auf den konstanten Faktor wieder
mit dem Ausgangsintegral iiberein. Sie bringen es auf die linke Seite:

R R
DL\ T sinwidi— " oL (s oL
(1+T)fe mnwt.dt—--ﬁe. (sm wt-——-F coswt) .

Um zu einer Vereinfachung zu konmmen, setzen wir

‘%_tanq)=_su;l_q_’_
Damit wird
R
272 [ =- R, .
Btw?l? eL ‘sinwtdt =L o (sinwt—ﬂcos‘wt
R R cosg
L %tsmwtcosq) cos wising
==e
R cos @
R .
=L ptsin(et—g)
4 =r° cosg
un
R R
A RL <! sin (wt — @)
I = oL
fe sinwtdt= Pl © et
Da nun aber tan zp=a;TL ist, konnen Sie
coBQp = k

Vi+ tan2 Vl sz* VR’+ w?L?

setzen, so daB endgiiltig (es ist noch die Integrationskonstante zu setzen)

f E, L E,
. _ T _
el sma)tdt—VRL| 2Lﬂe sin (wt— @)+ K,
ist. ‘
Wird dieses Ergebnis nun wieder in die Losung der Differentialgleichung ein-
gesetzt, so ist

R
U, -5t U,
VR’ — sin (0t — @) +Ke L (K =7 Kl) .
Zur Bestimmung von K ist die Anfangsbedingung heranzuziehen. Es wird
U,
—_—t K
= VE o sin (—¢) +
also, mit sin(—¢) = —sing,

~TEren "
Auch sing liBt sich wieder durch w, L und R ausdriicken:
tang oL
NM+tean®y JEEF oL

sing =
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Damit ist K Ul
- R2+ w2L‘l
und

ol -2t

2L2

sin(w? —

VRz 2L2

Man bezeichnet die GroBe YR24 w?L? als Scheinwiderstand, wL als Blind-
widerstand des Stromkreises.

Der erste Summand stellt den rein periodischen Teil dar. Danach wird die Strom-
stirke durch eine um den Winkel ¢ gegeniiber der Wechselspannung phasen-
verschobene Sinusschwingung dargestellt. Der Verschiebungswinkel 148t sich

dabei aus
wL
tangp = =

entweder rechnerisch oder graphisch nach Bild 23 bestimmen.
Der zweite Summand, der abklingende Teil, verliert im Verlauf

der Zeit (wachsendes ) an Wirksamkeit, da e L' mit ¢ — oo dem
Wert O zustrebt. Damit néhert sich die Stromstérke immer mehr
der schon beschriebenen Sinusschwingung mit der konstanten
Amplit-ade
Bild 23 U,
J m = ==,
V R4+ L2

Zusammenfassung

Bei der linearen Differentialgleichung I. Ordnung haben Sie zwischen

a) der homogenen Gleichung y" + g(x)y=0

und

b) der inhomogenen Gleichung ¥’ + g(x) y = h(x)

zu unterscheiden.

Die homogene Gleichung kann nach Trennen der Veranderlichen integriert werden.
Bei der inhomogenen Gleichung konnen Sle zwei Wege zur Losung beschreiten.
Im ersten Fall fithrt die. Substltutlon — = g(x) und nachfolgende Multiplikation

mit » auf eine Differentialgleichung, dJe durch gewohnliche Integration l6sbar ist.
Im zweiten Fall haben Sie zunéchst die zugehorige homogene Gleichung zu Iésen.
Mit Hilfe der -Variation der Konstanten wird dann anschlieBend die Losung der
inhomogenen Gleichung ermittelt.

Ubungen

22. Losen Sie die Differentialgleichung aus Lehrbeispiel 40 mit Hilfe der Variation
der Konstanten!

23. y'+y=2° 24. xy'+ 2y =3

Anleitung zu Ubung 24: Bringen S8ie die Differentialgleichung zundchst auf die Form
y'+g@)y=h)!

25. 4 2y =¢e* 2. y {-——smx
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21 Differentialgleichungen II. Ordnung

21.1 Einfache Typen der Differentialgleichung II. Ordnung

Nach der Definition der Ordnung einer Differentialgleichung mufl als héchste
Ableitung hier y”” vorkommen. Demnach 1Bt sich allgemein eine Differential-
gleichung II. Ordnung durch

F(z,y,y,y")=0 oler y'=flx,y,y)

kennzeichnen. Entsprechend dem Aufireten von y”” kénnen Sie sich die Losung
iiber zwei aufeinanderfolgende Integrationen hergestellt denken. Wir werden
auch so zum Teil in diesem Abschnitt verfahren. Da bei jeder Integration eine
Integrationskonstante auftritt, miissen in der allgemeinen Losung der Differential-
gleichung II. Ordnung zwei willkiirliche Konstanten zu finden sein.

21.11 y” = a (a = const). In dieser besonders einfachen Differentialgleichung
tritt neben y’’ lediglich eine Konstante auf. Die Losungsfunktion kann leicht
durch zweimalige Integration gefunden werden.

Sie sollen diese Differentialgleichung gleich in einer wichtigen Anwendung
kennenlernen. Ist y'/ die zweite Ableitung des Weges nach der Zeit, also die
Beschleunigung, und wird @ = g = 9,81 m/s? gesetzt, so ist

d2s

b=gz=9-

Dies besagt dann, daf bei der vorliegenden Bewegung die Beschleunigung kon-
stant ist. (Bei welcher Bewegung liegt dieser Fall vor?)

Wird
dzs dv

de T de
gesetzt, so folgt aus der Differentialgleichung II. Ordnung fiir s eine von I. Ord-
nung fiir ». Die Trennung der Verdnderlichen ergibt dann
dv=gdt,
v=gt+C,.
Nun ist aber v = ds und damit

dt
ds=(gt+ C,)dt,

s= 5 gf*+Cyi+C,.

Wir wollen jetzt noch Klarheit iiber die Bedeutung der Integrationskonstanten
gewinnen.

Wird in v = gt + C, fiir ¢ der Wert 0 eingesetzt, so ist
v(0) =y,=0C,.
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Demnach ist C; mit der zur Zeit ¢ = 0 vorhandenen Anfangsgeschwindigkeit v,
identisch. Zur Bestimmung von C, ist in s der Wert ¢t ='0 einzusetzen, dann
ist

8(0)=sg,=0C,.

C, = s, stellt also die Lage des Korpers zur Zeit ¢t = O dar. Mit diesen anderen
Bezeichnungen fiir die Integrationskonstanten nimmt die Losung die Form

s =—;-gt2+zvot+so

an. Mit v, = 0 und s, = 0 ergibt sich das bekannte Fallgesetz von Galilei:
1
§= -2— g t2 .
21.12 y”” = f (). Auch in diesem Fall kommt man durch zweimalige Integration

direkt zur Loésung. Es ist L ay
y'=—4,=I®),

dy'={(»)d=,
y'=[f(x)dz+C,
y=f[f/(x) dx] dz+ Ciz + C,.
Dieser Typ tritt beispielsweise bei Aufgaben der Festigkeitslehre auf. Sie werden dort

w__ M(2)
Y'="Z%7

und entsprechend

als (verkiirzte) Differentialgleichung der elastischen Linie kennenlernen. Fiir
M (x) ist das Biegemoment des betreffenden Balkens an einer Stelle x einzusetzen,
withrend die Konstanten E und J den Elastizititsmodul bzw. das Fliachentrig-
heitsmoment des Balkenquerschnitts darstellen.

Wir wollen hier auf die Durchrechnung eines entsprechenden Beispiels
verzichten.

Sie werden nun sicher noch eine Differentialgleichung der Form y” = g(y)
erwarten. Die Behandlung dieses Falles soll aber auf Kapitel 22 verschoben
werden. Sie finden ihn dort, wenn auch mit etwas anderer Bezeichnung, unter
Fall 6 wieder.

21.2 Die homeogene, lineare Differentialgleichung II. Ordnung
mit konstanten Koeffizienten

LiBt sich eine Differentialgleichung auf die Form
y1r+ayr+ by= 0
bringen und sind @ und b Konstante, so liegt eine homogene, lineare Differential-

gleichung II. Ordnung mit konstanten Koeffizienten vor. Fiir die Anwendung
erlangt diese Differentialgleichung auBerordentliche Bedeutung. So lassen sich
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mit ihr beispielsweise Schwingungsvorginge behandeln. Diese Differential-
gleichung heilt aus diesem Grunde auch Schwingungsgleichung.

21.21 Liésung mittels der charakteristischen Gleichung. Die Differentialgleichung
¥'+ay +by=0
148t sich durch den Ansatz y—Cel®

16sen, wobei C eine willkiirliche Integrationskonstante und A ein noch zu bestim-
mender Wert ist.

Mit y=_Ce*
wird y=01e"*, y'=01e**
und damit

y'+ay +by=C(2+al+b)e**=0.

Daraus laBt sich folgern: Soll der Losungsansatz die Differentialgleichung er-
fiillen, soll also die linke Seite den Wert 0 annehmen, so muB} der Ausdruck in der
Klammer verschwinden, denn der Faktor C muB (willkiirliche Integrations-
konstante!) von Null verschieden angenommen werden, wihrend der Faktor e*#
grundsitzlich fiir endliche Werte von x von Null verschieden ist. Es mufl demnach

A2+al+b=0
sein. Dieser Ausdruck ist aber nichts anderes als eine quadratische Gleichung
fiir A, die zur Differentialgleichung y” + ay’ + by = 0 gehérende charakteristische
Gleichung. Sie erhalten die charakteristische Gleichung aus der Differential-

gleichung, indem Sie jede Ableitung von y durch die entsprechende Potenz
von A ersetzen. Thre Auflosung liefert die Werte

2
11;2=—‘%:|:V%—b~
Wie Sie wissen, sind bei der L8sung einer quadratischen Gleichung drei ver-
schiedene Fille zu unterscheiden:

Fall)) 5 —5>0, A4+4 undreell,
Fall B) _a;_ —b<0, A, und A, konjugiert-komplex,
Fall y) aT? —b=0, A,=4,, reelle Doppelwurzel.

Sie sollen nun. jeweils an einem Beispiel die Art der Behandlung dieser drei
Fille kennenlernen.
Lehrbeispiel 45
Zu losen sei die Differentialgleichung y'’ + 2y" — 8y =0.
Lésung:
Die Wurzeln der charakteristischen Gleichung
A2421—8=0
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ind
sin A=2 und A,=—4.

Es liegt der Fall «) vor. Sie erhalten damit zwei verschiedene Losungen der
Differentialgleichung, und zwar

y=0.6** und y,= Che 2.

Y=y1+ 9= C16*"+ Cpe*®
befriedigt die Differentialgleichung.

Das 188t sich leicht bestétigen:
Sind y, (#) und y,(¥) zwei verschiedene Losungen der Differentialgleichung

y'+ay’+by=0,
y'+ay{+by;=0 und yY+ay;+by,=0.
Setzt man y =y, (z) + y;(#) in die Differeutialgleichung ein, so wird
U1+ 92)" + a1+ 92 + D1+ 9o) =91+ ¥ +ay{ +ay; + by, + by,
=@'+taeyi+by)+ (v +ayi+by),

W1+ 92)" +a(y+ 92 + b(H+9:) =0.
y =y, () + ¥, () ist also ebenfalls eine Losung der Differentialgleichung.

Aber auch

so gilt

und damit

Es ergibt sich also als Losung
y=C,6**+ Cye1".

Da diese Losung zwei willkiirliche Konstante aufweist, ist sie die allgemeine
Losung unserer Differentialgleichung.

Lehrbeispiel 46
Lisen Sie die Differentialgleichung y'”’ — 4y’ + 13y = 0!
Loésung:
Die charakteristische Gleichung

A22—41+4+13=0
MA=2+3i, A,=2—31i.
Auch in diesem Fall B) 148t sich als allgemeine Losung

y = C 1?4 Cypeh®

hat die Losungen

ansetzen, die im vorliegenden Beispiel zu

y= 01 e(2+81')z+ Cze(2—3i)w
wird. Diesem Ergebnis kann aber noch eine andere, iibersichtlichere Form ge-
geben werden. Wenn Sie bedenken, daB e?*? = e®. e’ ist, ergibt sich

Y= ezz(ol eaiz+ 02 e—s'iz)
und mit Hilfe des Satzes von Euler (e£¢?=cosg +ising)

y = e**[C;(cos 3z + i sin 3x) + Cy(cos 3z — i 8in37)]
= e?%[(C, + O) cos 3z + i (C; —.C,) sin 3].
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Wird noch C; + C,= 4 und ¢ (C,— C,) = B gesetzt, so ist schlieBlich
y=e**(4 cos3z+ Bsin3x).

Die Losungskurve setzt sich demnach aus einer Sinus- und Kosinuskurve, also
aus zwei phasenverschobenen Sinuskurven mit verdnderlicher Amplitude zu-
sammen. Wie Sie schon wissen, ergibt die Uberlagerung zweier phasenverschobener
Sinuskurven wieder eine Sinuskurve. Rechnerisch kénnen Sie das bestitigen,

indem Sie
A=Csing und B=Ccosgp.

. C
setzen. Die GroBen C und ¢ lassen sich mittels
- 4
A?+4 B*=C? und %:tanq) 3
Bild 24

aus A und B bestimmen (Bild 24).
Mit diesen beiden Konstanten nimmt die Losung die Form

y = Ce**(sin ¢ cos 3 + cos ¢ sin 3x)
y=Ce?*sin(3z+ ¢)

an.
Wir fassen diesen Fall ) zusammen: Infolge des Auftretens konjugiert-komplexer
Waurzeln 4) = &« + i und 1, = & — i der charakteristischen Gleichung nimmt die
allgemeine Losung der Differentialgleichung die Formen

y=¢e*%(4 cosfz -+ Bsinfx)

y=Ce"sn(fz+¢)
mit C*=A42+5% und g@=arctan —g— an.
Lehrbeispiel 47
Lisen Sie die Differentialgleichung y”— 6y -+ 9y = 0/
Losung:
Charakteristische Gleichung: 22— 61 4+9=0
M=23=3

oder

Wiihrend bei den Fillen «) und f) in gleicher Weise die Losung angesetzt werden
konnte, kénnen Sie im vorliegenden Fall y) nicht so vorgehen. Es ist wohl

y=C,eh%=(C,
y = C,eh% 4 C,eh
=01334’+ 0263:= OeSz (Cl+ 02= C)

eine Teillssung, aber

kann nicht die allgemeine Losung sein, da ja als Folge von 4, = 4, nur eine Inte-
grationskonstante C' vorhanden ist. Die allgemeine Losung lautet in diesem

Fall
had I’/=(-j1‘~"a't"{‘O'z“""":F (A=12y=1)
= M(C1+021’)
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und speziell fiir die vorliegende Aufgabe
y = (0, + Cy).

Diese Losung liBt sich durch Variation der Konstanten finden. Das Auftreten der
Doppelwurzel A, = A, =A der charakteristischen Gleichung A%+ al+4b=0

wird durch d1e Beziehung —3- —b=20 bedingt. In der partikuliren Lésung

=Ce**=e E wird zur Va.rmtlon die Konstante C; durch die (noch un-
beka,nnte) Funktion z ersetzt.

Der Ansatz .
y=ze 2°

ist in die Differentialgleichung einzusetzen.
Mit .

y==2e * a2z e 27,

2 -

y'=2"e 2 —aze 2 +ﬂe 2”

ergibt sich

v'+ay+ by=e—iz(z"—az'-i—%—l-az"—%—}—bz) =

Wegen -i—’ —b=0, also b= %s, fallen alle Glieder der Klammer bis auf z”’ fort.
Zur Erfiilllung der Diﬁerentialéleichung muB demnach

S
e 2 2"'=0

a
sein. Da e 2 = 0, ist das nur mit

2’=0,
also Z=0C,
z= 01x+ 02

moglich. Damit heit die Losung

Yy= lz(olx+ 02)»
wie oben behauptet wurde.

Wir fassen zusammen:
Die homogene lineare Differentialgleichung

y'+ay +by=0
wird mit Hilfe der charakteristischen Gleichung
2+al+b=0

gelost. Je nach der Beschaffenheit der Lésungen der charakteristischen Gleichung
sind drei Fille zu unterscheiden:
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Fall &) Aok, reoll

Allgemeine Losung der Differentialgleichung:
y = Olel"z—l'" 02 el‘z
Fall §) .
Ay, A, konjugiert-komplex, 4;;s=a+14f
Allgemeine Lésung der Differentialgleichung:
y=0y0he+ Cyohs
y =e**(A cos fz+ Bsinfz)
oder y=Ce*%sin(fz+ ¢)

umformbar in

Fall y) PR
1= A=

Allgemeine Losung der Differentialgleichung:
y=¢'%(C;+ Cyz)

Soll nun aus der Schar der Losungen wiederum nur eine partikulire angegeben
werden, so sind fiir die beiden Integrationskonstanten die entsprechenden Werte
zu ermitteln. Das laBt sich aber nur durchfiihren, wenn zwei Bedingungen bekannt
sind. Als solche zéhlen beispielsweise die Angabe eines Punktes, durch den die
Kurve laufen soll in Verbindung mit der Forderung, da8 sie in diesem Punkt eine
bestimmte Richtung hat. Eine andere Moglichkeit besteht in der Angabe zweier
Punkte, durch die die Kurve laufen soll (Randbedingung).

Mit diesen beiden Bedingungen lassen sich dann zwei Gleichungen mit den beiden
Unbekannten C; und C, bzw. A und B aufstellen, deren Losungen die gesuchten
Werte fiir die Integrationskonstanten geben.

Lehrbeispiel 48
Liosen Sie die Differentialgleichung y”’ + 8y’ + 2y = 0! Die Lésungskurve soll
durch den Punkt mit den Koordinaten x,= 0 und y, = 1 gehen und dort die Rich-
tung y, =1 haben.
Losung:
Charakteristische Gleichung:
24+314+2=0
}»1 = l > lz= '—2 .

A'lgemeine Losung:
y=Ce 7} Che2%,

Damit die Kurve durch den vorgeschriebenen Punkt liuft, muf
go=Cyo5+ Cyor2m,

1=0,+0C,
y¥=—Ce®—2C,e7%*

also

sein. Sie bilden nun
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und entsprechend

Yo=—C e %—20; 0 2%,
1 = _Cl—‘ 202.
Aus den beiden Gletchungen
Cl+02= 1,
'_01_202:1

ergibt sich
C;=3 und OC,=-2.

Die gesuchte partikuldre Losung ist

y=238e*—2e %%,

Fehlt das Glied mit y’, so nehmen die Losungen eine besonders einfache Form an.
In dem folgenden Lehrbeispiel sollen Sie den einen der beiden moglichen Fille
kennenlernen.

Lehrbeispiel 49
Lésen Sie die Differentialgleichung y” + a?y = 0/
Losung:

Charakteristische Gleichung:
A24+a2=0

M=ai, ly=—ai.
Die Losung liBt sich in den drei Formen
y= Cl eaix+ Cze-ai».c ,

y=A cosax+ Bsinaz,

y= Csin(az+ @)

angeben.
Diese Differentialgleichung kommt bei der Untersuchung der reibungsfreien
(ungeddmpften) Schwingung zur Anwendung.

Ubungen
27 o' —yf — By =0 28. 29’ — 8y’ + 6y =0
29. 34+ 65/ +3y =0 30. y'— 8y’ +16y =0
3Ly’ 4y+18y=0 32, ' —2y/+ 2y =0
33. y'—y2y=0

21.22 Anwendung auf Schwingungsvorginge.

21.221 Freie, ungedimpfte Schwingung. Denken Sie sich einen um eine Ruhe-
lage beweglichen Massenpunkt. Auf ihn wirke eine Kraft, die stets zur Ruhelage
hin gerichtet und deren GréBe der momentanen Entfernung des Massenpunktes
von der Ruhelage proportional ist. (Derartige Krifte treten beispielsweise bei
allen Forménderungen elastischer Korper auf, die nach dem Hookeschen Gesetz
vor sich gehen.)
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Einen solchen Mechanismus konnen Sie sich etwa in der im Bild 25 gezeigten
Form darstellen. Wie Sie (vgl. Physik, Lbf. 3) wissen, wird ein solcher Massen-
punkt eine schwingende Bewegung, eine harmonische Schwingung ausfiihren.

In diesem ersten Beispiel soll von einer Dampfung infolge Reibung abgesehen
werden.

Im Ansatz ist der obenstehende Sachverhalt zum Ausdruck zu bringen. Da die
Kraft stets der Auslenkung entgegenwirkt, ist P mit

P=—cx

anzusetzen. Hierbei ist der Proportionalititsfaktor ¢ eine Konstante, die vom
Material (z. B. der Stirke der Feder) bestimmt wird. Nach dem Newtonschen
Grundgesetz ist

Pe=mb=m &2 _

=mb=m = =

Bei Ableitungen nach der Zeit werden die
Differentialquotienten in der Newtonschen
Schreibweise (wie bei der Parameterdar-
stellung) durch aufgesetzte Punkte gekenn- :
zeichnet. Bild 25
Mit P = m ergibt sich die Differential-
gleichung der freien ungedémpften Schwingung:

mi=—czx,
mi+ecx=0
R
&+ p z=0

Nach Einfithrung der Abkurzung — = wy? erhdlt die Differentialgleichung die
endgiiltige Form
&+ wle=0

mit der charakteristischen Gleichung A2 + wy? = 0.
Die Differentialgleichung weist die Form der im Lehrbeispiel 49 behandelten
Differentialgleichung auf. Die Losung heiit demnach

x=Csn(wyt+ ¢).

Es kommt jetzt darauf an, eine zweckmiBige Anfangsbedingung aufzustellen,
Der Massenpunkt soll zur Zeit ¢t =0 mit der Anfangsgeschwindigkeit v = v,
durch die Ruhelage (x = 0) schwingen. Die Anfangsbedingungen sind dann

x=0,

t=0 dz
1)=Tt-==’l.70.

Die Differentiation der Losung liefert

v=%=0wocos(wot+¢p).

Fiir ¢ = 0 ergibt sich
vo=Cwycosp.
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Aus der allgemeinen Losung selbst folgt fiir t=0, =10

0=Csing
und daraus
¢=0.
Damit wird
o= Cwycos0=Cw,
und
="
= a0

Die gesuchte partikulire Losung ist schlieBlich
z=-2gin wyt.
L N——

Dieses Endergebnis stellt eine reine Sinusschwingung mit der Amplitude ?Z"-
I 0

dar. Welche Bedeutung hat nun w, = %’l

Zur Zeit t = 0 schwingt der Massenpunkt-durch die Ruhelage. Nach Verlauf der

Zeit T soll ein Hin- und Hergang vollzogen sein, so daB sich der Massenpunkt

nach dieser Zeit wieder in der gleichen Richtung durch die Ruhelage wie bei

t = 0 bewegt. Es ist demnach

v . %
0=-—"s8n0=-—"sinw,T.
Wo W

Da die Sinusfunktion die Periode 27 hat, muB zur Erfiillung dieser Bedingung

0)0 T = 27! >
2%
Wo
=2/
c
sein. Der Ausdruck w, = 3;— wird Kreisfrequenz genannt.
Die Frequenz der Schwingung ist
11 1/c
I=7=%= V*m— :

Die Ergebnisse lassen sich auch auf andere freie, ungedimpfte Schwingungen
iibertragen. Bei Vorgéngen in der Elektrotechnik entsprechen einander die

Groflen: .
z2t (Stromstirke),

1

¢ N

m=C.L"
Eine freie, ungeddmpfte Schwingung liegt auch angenihert beim mathematischen
Pendel (Bild 26) vor. An einem (gewichtslosen) Faden der Linge ! befinde sich
ein Magsenpunkt m. Die auf diese Masse wirkende Erdanziehung G = mg 1aB¢
sich in zwei aufeinander senkrechtstehende Komponenten zerlegen. Dabei

108



wirkt mg cos y fadenspannend, wihrend mgsiny versucht, die Pendelmasse
zur Ruhelage zuriickzutreiben. Damit gilt

P=—mgsiny.

Die Losung der hieraus entstehenden Differentialgleichung st6Bt auf groBe
Schwierigkeiten. Aus diesem Grunde soll die Schwingung auf
Kkleine Schwingungsweiten, also auf kleine Winkel y be-
schrinkt werden. Unter dieser Voraussetzung kann siny
durch ¢ (im BogenmaB!) ersetzt werden, so daf3

P=—mgy
ist. Die damit aufstellbare Differentialgleichung
mE=-—mgy,
E=—gy

hat aber den Mangel, daB in ihr die zwei von der Zeit ¢ ab-
hingigen Verdnderlichen # und g vorkommen. Da z den
lings der Bahn gemessenen Abstand des Massenpunktes m
von der Ruhelage darstellt, gilt die Beziehung

z=1l-p,
bzw.
F=1-9.
Die Differentialgleichung nimmt damit die Form
p=—7v
oder
P+ wl2py=0 mit wo’==%
an.

Thre Losung lautet .
g y = Csin (w,t + ).

Mit den Anfangsbedingungen t =0, z =0, v =1, ergibt sich daraus fiir v =1. 7

v, .
x=—2sin wyt
Wo

und —

T= 27;]/—— bzw. f-——-— —g—
Das sind aber die Thnen aus der Physik bekannten Gesetze fiir das mathematische
Pendel.

21.222 Freje, gedimpite Schwingung. In der Praxis lassen sich freie, ungedimpfte
Schwingungen kaum verwirklichen. Durch Luft- und Lagerreibung bei mecha-
nischen Bewegungen und durch Ohmschen Widerstand bei elektrischen Vorgingen
treten stets Verluste ein, die zu einer Dimpfung, d.h. zu einer fortlaufenden
Verkleinerung der Amplituden fiihren. Die Démpfung kann sogar so gro8 werden,
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dafB es iiberhaupt nicht zur Ausbildung einer Schwingung kommt. Ein aus seiner
Ruhelage abgelenkter Korper kriecht dann mehr oder weniger schnell in die
Ruhelage zuriick.

Wir wollen uns zunéicnst wieder rein mechanischen Vorgéingen zuwenden. Die
Bewiiltigung der elektrischen Probleme bringt dann vom mathematischen Stand-
punkt nichts wesentlich Neues, gehen doch lediglich andere Bezeichnungen in
die Differentialgleichung ein, ohne dabei ihren Charakter zu dndern. Es sind eben
beide Male Schwingungen, die nach Abstraktion mit den gleichen mathematischen
Hilfsmitteln gelést werden kénnen.

Wieder unterliege ein Massenpunkt der Einwirkung einer dem Ausschlag pro-
portionalen, zur Ruhelage hin gerichteten Kraft. Die auftretende Reibung soll der
augenblicklichen Geschwindigkeit proportional sein. Diese Annahme geniigt
den meisten mechanischen Bewegungen. Es sind '

riicktreibende Kraft: Pp=—cx
Widerstandskraft: Py——kz (x - %’f—)
Da P=Prt+ Py

ist, ergibt sich fiir die Differentialgleichung

mi=—kx—cx
oder

. k¢
&+ TEitrr= 0
Als Abkiirzung seien hier zweckmiBigerweise

k=2p und 7?;:0)02

eingefiihrt, so daB die Differentialgleichung die Gestalt
&4 2pi+ w2z =0
annimmt. Die zugehorige charakteristische Gleichung ist
A2+ 2pl+w2=
Me=—p+ VP — .

Wie Sie schon erfahren haben, sind jetzt drei Fille zu unterscheiden:

mit

a) pPP— w2 >0 (reelle Wurzeln),

B) »»—w2=0 (reelle Doppelwurzel),

y) P*— w2 <0 (konjugiert-komplexe Wurzeln).
Fall x) p* — w2 >0

Dieser Fall wird bei groBem p, also bei groBer Da,mpfung vorliegen. Wird

Vo2 — we? =  gesetzt, so ist
Mpep=—ptow
und

2= Cle(-pw)t + Cze('p'"’)t ,

x = e P! (0 e 4 Cpre~®).
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Als Anfangsbedingung sei wieder t =0, =0 und v :%: v, gewihlt. Die
Differentiation nach ¢ ergibt

dw -p-w
v_—_-(%=C‘l(——p—i—w)e(—p+“)’+02(—;p—w)e( oot

und nach Einsetzen der Anfangsbedingung

v=Ci(—p+ )+ Co(—p—w),
wihrend aus x selbst

0=-0C,+0C,
folgt. Die beiden Bestimmungsgleichungen fiir C; und C,:
w=Ci(—p+o)—Colp+o),
0=0C,+0,,
ergeben als Losung
Cl=% und 02—_——-2”—;-.

Die partikulire Lﬁsung lautet damit

_i ~Dt (ol __ ,~of
T=g-e (e e™ Y

oder tmar t
x= %e"’tsinhwt. Bild 27

Damit ist erwiesen, daBl der Bewegungsvorgang durch eine unperiodische Funktion
dargestellt wird. Eine Schwmgung kann also nicht auftreten.

Es soll hier noch kurz die in Bild 27 dargestellte Losungskurve diskutiert werden.
Zur Feststellung des Maximalausschlages bilden wir den Differentialquotienten
(hier identisch mit der Geschwindigkeit!) und fragen nach der Stelle, an der er
den Wert Null annimmt. Es ist

%‘:i- = —ZT" e P! (— psinhwt 4 w coshwt) =
Fiir endliche Werte von ¢ kann nur der Klammerausdruck verschwinden, es
muB also '
— psinhwt 4 w coshwt =0

sein.
Es wird
tanhwt:—%,
wt=artanh%=%ln ziz ,
also
_ 1 P+o
tmu—%ln — .
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Unter Benutzung der Beziehung

sinhg = _ tenhd
] 1 — tanh%a
ergibt sich fiir diesen Wert von ¢
tanh wt () @

sinhwt= = =—
V1—tanhtwt }p2—w® @0

und fiir den maximalen Ausschlag

Yo -ptg; Y%
xmu=;-e 4 Smhwt=w—o(

P
p—w)zmv
pte

Fiir wachsendes # nimmt dann x immer mehr ab und nihert sich asymptotisch
dem Wert Null. Das geschieht um so langsamer, je groBer die Dimpfung wird.

X

|
[
'
I
|
|
1
'

Der Massenpunkt kriecht ganz langsam in
die Ruhelage zuriick (vgl. Bild 27). Fall &)
heilt deshalb auch der Kriechfall.

Fall B) p* — we?=0 ‘
Wird pP®P—w?=0, soist A,=2,=—p

und z=e"PHC,+ C,f).
{ Fiir die Anfangsbedingung
A tmar = 0’
Bild 28 t=0
| v=1,

ergibt sich C;, =0, C, = v, und damit
xr=uv,te P,

Die Funktion ist in Bild 28 dargestellt.

Im Vergleich zu Fall «) geht x verhiltnismiBig schnell gegen 0. Fall B). heiBt
der aperiodische Grenzfall. Er stellt den Ubergang zwischen Fall «) und Fall y)

dar.
Fall y) p* — we? <0

Hierbet ist die Démpfung klein. Wie Sie sehen werden, kommt es zur Ausbildung

einer geddmpften Schwingung.

Wir setzen _
Vp”—wo’=i]/wo’-—p2='iw (72 =—1; w reell),
also -
= ]/woz —7.
Dann ist Ma=—ptio
und

z=2e"?'(4 coswt+ Bsinwt)
= Ce P'sin(wt+¢).
Mit den gleichen Anfangsbedingungen ¢ =0, =0 und v = v, ergibt sich
vy=C(—psing + w cosg),
0=Csing.
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In dem Produkt C sin ¢ kann nur sin ¢ = 0 und damit ¢ == 0 sein. C = 0 wiirde
im Widerspruch zur vorhergehenden Bestimmungsgleichung stehen, da doch
die rechte Seite gleich v, &= 0 sein soll. Mit ¢ = 0 wird dann

vy=Cw baw. O’-‘:%.
Als Losung ergibt sich
=2 ¢~ Ptgin .
w

Hier wird der Bewegungsablauf durch die periodische Sinusfunktion beschrieben,
es liegt also wirklich eine Schwingung vor. Die Amplitude dieser Schwingung

X

Bild 29

ist aber zeitlich vertinderlich, und zwar nimmt sie mit zunehmender Zeit ab. Die
Schwingung kommt zum Erliegen. Im Bild 29 ist eine derartige Schwingung
dargestellt.

Fiir die Schwingungsdauer findet man

wT=2n,

2n 27 . 2n
T = ——— = = == -
(] Vwoz-—pz V_c__ k®
m  4m?

Wie Sie durch Vergleich mit der ungeddmpften Schwingung erkennen konnen,
ist die Dauer einer Vollschwingung im gedémpften System gréBer als im un-
geddmpften. Das gedimpfte System schwingt langsamer. Die Schwingungsdauer
T bleibt aber auch hier wihrend des Vorganges konstant.

Von Interesse ist noch die Veréinderung der Amplituden. Zu den Zeiten ¢, und
tpe1=1t,+ T mogen zwei aufeinanderfolgende Maximalausschlige stattfinden,
so daB

sinwt, =sinwt, ,,
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ist. Die zugehérigen Maximalaus-~hlige sind dann
vo —p[ .
Tp=-"0 "sinwt,,
Vg . -pt. 1] —-p{t, +T .
Tpy1 =0 Phrtiginwty,, = —e ?4+D sinwt,

vy -pt, —-pT .
=—_re Pl =P . ginwt,

= x,,e"’T.

Der Quotient dieser beiden Amplituden, das Dampfungsverhiltnis, ergibt sich zu
kT

Tn — epT —e2m,

Tns1

In der Praxis wird nun noch ein weiterer Begriff, das logarithmische Dekrement,
als MaB fiir die Démpfung eingefithrt. Man versteht darunter den natiirlichen
Logarithmus des Dampfungsverhéltnisses

ET 2kn

6=lnq=ﬂ_m.

Wird bei kleiner Dampfung die Schwingungsdauer des ungedimpften Systems
eingefiihrt, so ergibt sich in Annéherung

5= kTﬁ kn

2m " Vme'
Zusammenfassung

Von wesentlicher technischer Bedeutung sind -die homogenen, linearen Differen-
tialgleichungen II. Ordnung mit konstatiten Koeffizienten. Sie finden bei allen
freien Schwingungen Verwendung.

Zur Losung dieser Art Differentialgleichungen sind lediglich die Wurzeln einer
quadratischen Gleichung, der c¢harakteristischen Gleichung, festzustellen. Den
dabei auftretenden drei Fillen entsprechend ergeben sich drei Formen der Losung,
die alle durch das Auftreten von zwei willkiirkichen Integrationskonstanten
gekennzeichnet sind.

Bei den Anwendungsbeispielen haben Sie gesehen, daB sich lediglich beim Auf-
treten eines Paares konjugiert-komplexer Wurzeln in der charakteristischen
Gleichung eine harmonische Schwingung ausbildet. In den beiden anderen Fillen
entsteht infolge grofer Dampfung nur eihe aperiodische Bewegung.

21.3 Die inhomogene, lineare Differentialgleiechung II. Ordnung
mit kenstanten Koeffizienten

Wie bei den linearen Differentialgleichungen I. Ordnung liegt dann der inhomo-
gene Fall vor, wenn auf der rechten Seite der Gleichung eine Funktion &(z),
die Storungsfunktion, auftritt:

¥’ +ay’ +by=h).
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Wir iibernehmen hier einen Satz aus der Theorie der linearen Differential-
gleichungen:

Die allgemeine Losung der inhomogenen Differentialgleichung ist gleich
der Summe aus der allgemeinen Lésung der homogenen und einer partikuldren
Losung der inhomogenen Differentialgleichung. .
Die Losung erfolgt demnach in drei Schritten:
1. Lésung der homogenen Differentialgleichung, die sich durch Streichung des
Storungsgliedes ergibt;
. Bestimmen einer partikuliren Losung der inhomogenen Differentialgleichung;

o

3. Zusammenfassung der unter 1. und 2. gefundenen Lésung zur allgemeinen
Losung der inhomogenen Differentialgleichung.

Zum Beweis des Satzes sei angenommen, daB y,= y,(x) eine partikulire Losung der inhomo-
genen Gleichung ist. Diesé Losung muBl demnach die Differentialgleichung

Y’ +ay +by="h(z)
yi’ +ayl4-dbys=h(z).

erfiillen:

Durch Subtraktion ergibt sich
Yy —g'+aly —y)+by—y)=0

oder — da nach den Grundregeln der Differentiation f’ + ¢’ = (f + g)’ ist —
Y-y +a(y—y)y +by—y)=0

als homogene Differentialgleichung. Ist y, = y, (%) ihre allgemeine Losung, ist also

Y+ ayi+bdy=0,
50 muf}
Yy—Y=y, oder y=y,+y

sein. y ist dann die allgemeine Losung der inhomogenen Differentialgleichung, da g, und
damit y = y, + y, die erforderlichen zwei Integrationskonstanten enthalt.

Wir wollen uns hier auf einige Formen der Stérungsfunktion beschrdnken, und
zwar auf

1. h(x) = xe™?,

2. h(x) = x cosnz + Bsinnz,

3. h(x) =0y + oy + o 2% + + + - + &, 2%

In vielen Fillen kommt man durch einen entsprechenden Lésungsansatz zum
Ziel, und zwar ist als partikuldre Losung anzusetzen:

im Fall 1.: y = Ae"®

Der Exponent ist der gleiche wie in der Stérungsfunktion.

im Fall 2.: y= Acosnz + Bsinnzx

Das Argument nx der trigonometrischen Funktionen ist gleich dem
der Storungsfunktion. Fehlt in der Stérungsfunktion eine der beiden
trigonometrischen Funktionen (x =0 oder B = 0), so ist trotzdem
der angegebene Ansatz vollstindig erforderlich.
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im Fall 3.: y=ay+ ayx+ 0,2+ --- 4+ a, 2"
n ist der hochste in der Storungsfunktion auftretende Exponent.
Fehlt in der Differentialgleichung das y-Glied (b = 0), so heifit der
Ansatz ¥y =ay+ a, 2+ - -4 a,z". Fehlen in der Stoérfunktion
einige Glieder (z. B. bei h(x) = a,2"), so ist trotzdem der vollsténdige
Ansatz mit a0, ..., a,_, & 0 erforderlich.

Die noch unbekannten Koeffizienten miissen nach Einsetzen des Losungs-
ansatzes in die betreffende Differentialgleichung durch Koeffizientenvergleich
bestimmt werden.

Lehrbeispiel 50
Lisen Sie die Differentialgleichung y” + 2y’ — 3y = 2%/

Losung:
Homogene Gleichung: Y+ 2y —3y=0
Charakteristische Gleichung : 2421—-3=0

M=1,0=—3
yp= 016"+ Cpe™®"

Inhomogene Gleichung:
Die Storungsfunktion hat die Form von Fall 1, also setzen Sie die Losung in
der Form
y=2Ae*
an. Daraus folgt y' =24e¥", y’'=4A4e*"

und .
Y+ 2y —3y=44e*|-44e**—3 A" =e”

54 % = e?”,

54=1,
1
A =—5'.
Damit ist
.%=%92”

und
y=yp+y=0,6"+Cre 3%+ %_ 22,

Lehrbeispiel 51

Losen Sie die Differentialgleichung y'* + 2y’ — 3y = 65 sin 2x!

Losung:

Homogene Gleichung: 3’ 4+ 2y’ — 3y = 0 (wie im Lehrbeispiel 50)
yp=0,e" 4 Cye737
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Inhomogene Gleichung:
Obwohl im Stérungsglied nur die Sinusfunktion auftritt, miissen Sie doch den
vollstindigen Ansatz nach Fall 2 durchfiihren. Im vorliegenden Fall ist n = 2.

y = A cos2x+ Bsin2z
y' =—2Asin2x 4 2B cos2x

9"’ =—44 cos2x —4Bsin2x
 Damit ist
Yy’ 42y’ —3y=—4Acos2x—4Bsin2x —4 A sin2x - 4 B cos2x
— 34 cos2x—3Bsin2z

=(—T7A+4B)cos2z+ (—4A—"TB)sin2x = 65sin2x.

Die Koeffizienten der Sinusfunktion bzw. Kosinusfunktion miissen auf beiden
Seiten gleich sein:

—7A+4B=0,

—4A4A—7B=65,

A=—4,B=—1.

Mit diesen gefundenen Werten 4 und B ist
yy=—4cos2x —Tsin2x

eine partikulire Losung der inhomogenen Gleichung und damit
Y=y, +y; =06+ Che 3% —4 cos22— Tsin2x

die allgemeine Losung der inhomogenen Differentialgleichung.
Lehrbeispiel 52:
Lisen Sie die Differentialgleichung y"” — 2y’ — 3y = 11 — 922/
Losung:
Homogene Gleichung:

yll__.2yl__3y=0

Charakteristische Gleichung:
2—21—-3=0
=3, Z=-—1
Yp="C,6%"+ Cpe””

Inhomogene Gleichung:

Wenn auch in der Stérungsfunktion das lineare Glied fehlt, so-haben Sie doch
stets den Ansatz gemiB Fall 3 vollstiindig auszufiihren (n = 2).

y=ayt+az+a2% y' =0a,+2ar, y’'=2a
y'—2y' —3y=2a,—2a,—4a,x—3a,—3a,x — 3a,22 =11 — 9a?
(—“3a0—'2al+2a2)+(—301—4a2)x—3a2x2=11‘—9$2
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Koeffizientenvergleich :
—3ay—2a,+20,=11

—3a1_402=0
—3a,=—9
a0=1, a1=-—4, 0,2=3

Damit ist
y;=1—4z} 322

und
y=0,e3+4Che *+1—4z+ 322

Lehrbeispiel 53

Lisen Sie die Differentialgleichung y” — 2y’ = 3!
Losung:

Homogene Gleichung:

» yn -9 yl =0
Charakteristische Gleichung:
A2—22=0
}'1 = O ) 12 = 2

Inhomogene Gleichung:

In der Differentialgleichung fehlt das y-Glied. Gemi8 der Bemerkungen zu Fall 3
gilt als Ansatz y’ = aq,. Es ist damit

yu___2yf___0___2ao=3

3
b=—7
also
3 3
y’= -5 bzw. Yy=1; =—Ea:

Auf eine Integrationskonstante wird hier verzichtet, da y; nur als eine beliebige
partikulire Losung zu finden ist.
Die allgemeine Losung lautet

y=01+023”-——%x.

Tritt der Fall ein, daB die Stérungsfunktion eine Kombination der Typen 1 bis 3
darstellt, so kann der Ansaiz aus den entsprechenden Teilen zusammengesetzt
werden.

Lehrbeispiel 54
Lisen Sie die Differentialgleichung y” + 4y = 2® + 267/
Losung:
Homogene Gleichung:
Yy’ +4y=0
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Charakteristische Gleichung:
A244=0

M=2i, A;=—2i (vgl. Lehrbeispiel 49)

yp=Csin (224 ¢)

Inhomogene Gleichung:
y=aytax+a,2*+Ae®
y =a,+2a,z+ Ae°
Y’ =20+ 4t

y'+4y=2a,+ Ae*+ da,+4a,2+ 4a,2%> 4 A6 =22 2¢€°
(4ap+2a,) +4a,x +4a,x2+ bAe® =224 2¢6®

Koeffizientenvergleich:

da; =0 5A=2

4a2=1
1 1 2
a0=—§9 a'l=0’ a2’=z$ A=g

Partikulidre Losung: 11 9
y,=——8—+74—x2—|—3e”

Allgemeine Losung: .
. 1 .2
y=081n(2x—|—<p)-—-§+zx2+_5_ez

Wenn Sie die Differentialgleichung y”” — 4y = €*® in der bisher behandelten
Art 16sen wollen, werden Sie auf Schwierigkeiten stoBen. Das liegt daran, daf3
die Stérungsfunktion h(x) = e?” schon eine partikulire Losung der homogenen
Differentialgleichung ist. Die allgemeine Losung der homogenen Gleichung ist

namlich
Yp= 0,674 Cye %"

Mit C; =1 und C, = O erhalten Sie daraus & (x). Man sagt, daB sich in diesem

Fall die Storungsfunktion in Resonanz mit der Eigenfunktion befindet.

Der Resonanzfall soll ndher untersucht werden, da ér in der Technik besondere

Bedeutung hat. Wir betrachten die Differentialgleichung
Y’ +ay +-by=nh(z).
Die Losung der homogenen Differentialgleichung sei
yp=Ce*,
wobei A die Losung der charakteristischen Gleichung

Atal+b=0
ist.
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Zwischen der Storfunktion und der Eigenfunktion (Losungsfunktion der homo-
genen Differentialgleichung) liege Resonanz vor, d. h. es sei

ae*®=h(z).

Mit Hilfe der Variation der Konstanten soll eine partikulire Losung der oben
gegebenen Differentialgleichung gesucht werden. In
y"+ay'+by =h(z)
y =262,
v =12 e,
Y = (2" + 242 + A2z) &**

wird der Ansatz

eingesetzt. Das ergibt
(2" 4242+ A2zt a2z’ +-alz -+ b2)e**=h(x),
2”42 (24 +a) +2(A2+ad + b)) e** = e,

0
Wird auf beiden Seiten durch e*? dividiert, so erhélt man die inhomogene Diffe-
rentialgleichung 2 @A ta)=a,

die sich nach Fall 3 durch den Ansatz 2’ = a,, 2 = a,x 16sen 1aBt. Fiir den Reso-
nanzfall ist somit als partikulire Losung

12
=@y
anzusetzen. Y=t
Es wurden keinerlei Voraussetzungen fiir A gemacht, der Ansatz kann also in

jedem Falle angewandt werden..

Fiir den Fall der Resonanz lauten also die Ansitze:
1. Fall: y = ayxe™®,

2. Fall: y=Axcosnx+ Bxsinnz.
Lehrbeispiel 55

Lésen Sie die Differentialgleichung y”’ — 4y = e**!
Losung:

Homogene Gleichung: g —dy=0 24 —0

=42
Yp=C10°"+ Cye ™

Inhomogene Gleichung:
Ansatz: Y = agre’®
Y =ay(1+422) 6*%;
Y’ =ay(4+4x)e®®
Y’ — 4y =004 + 4x— 4z) 2% = €%
4ay==

1
ao=z
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Partikuléire Losung: 1
=77 e??

Allgemeine Losung: 1

y= (Cl +7 x) e?2 | Cqe 2

Lehrbeispiel 56

Losen Sie die Differentialgleichung y” + y = oos z!
Lésung:

Homogene Gleichung:

y'+y=0
Charakteristische Gleichung:
A2+1=0
}‘1 = i, = ‘i

yp=Cpcosz + Cy8inz
yp=_Csin(z+ ¢)

.Inhomogene Gleichung:
Auch hier ist wieder die Stérungsfunktion in Resonanz, denn cos x ist schon

Losung der homogenen Gleichung.

Es ist also der Ansatz
y=Axcosz -+ Brsinx

anzuwenden. Setzen Sie diesen zusammen mit
y’'= (A + Bx) coszx +(— Az -+ B)sinx
und
y'=(—Ax+ 2B)cosx+(—24 — Bx)sinx

in die Differentialgleichung ein, so erhalten Sie
2Bcosxz—2A sinx = cosx.
Durch Koeffizientenvergleich folgt
1
A. = 0 ) B = "2— D
Die partikulire Losung hei8t also

y,=—;—xsi.nx.

In Verbindung mit der allgemeinen Losung der homogenen Gleichung erhalten Sie
als allgemeine Losung der urspriinglichen Differentialgleichung

y=05in(x+<p)+%sinx.

21.31 Gedimpfte, erzwungene Schwingung (allgemeines Ohmsches Gesetz fiir
Wechselstrom). An einen elektrischen Schwingkreis, der in Reihenschaltung einen
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Ohmschen Widerstand R, eine Spule mit der Selbstinduktion L und einen Konden-
sator mit der Kapazitit C enthilt, soll eine Wechselspannung
u= U, sinwt
angeschlossen werden (Bild 30).
Wie ist der zeitliche Verlauf des im Schwingkreis flieBenden Stromes?

R Die auftretenden Spannungen sind:
1. Spannungsabfall am Widerstand: wug=R3
2. Gegenelektromotorische Kraft der ~, _ _ , di
c== Tu Selbstinduktion: L dt
¢
L 3. Spannungsabfall am Kondensator: wu¢= -(1;-, f ide
¢
Bild 30 4. Angelegte Wechselspannung: u=U,sinwt

Zu 3.: Zur Zeit {, sei der Kondensator ohne Ladung, wihrend er zur Zeit ¢ die Ladung @
haben moge. Zwischen dem Spannungsunterschied u, an den beiden Kondensatorplatten,
der Kapazitdt C und der Ladung @ besteht die Beziehung

Q=Cuq.
i@

Da nun andererseits der Ladestrom i= Th ist und dementsprechend

]
Q=[idt,
8
ergibt sich fiir u, )

¢
1&02‘% [idt.
t

Fiir den gesamten Schwingkreis besteht nun nach Kirchhoff die Gleichung
% -+er="ug-+uc

oder, nach Einsetzen von 1. bis 4. und Umordnung,
di 1 '
i . R T
LW-I—R'L—I—ﬁfzdt— U,sinwt.
to

Durch Differentiation nach ¢ ergibt sich daraus die Differentialgleichung in der
Form a5 a1
t ? .
LF+R?;+?z=wUmcoswt
oder

d® | R di 1 . oU,
wtTatTei= 1" et

Feblt das Glied mit % so liegt eine ungedampfte, erzwungene Schwingung vor.
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Losung der zugehorigen homogenen Differentialgleichung:

Die homogene Differentialgleichung ist Thnen bereits als die einer freien, gedampf-
ten Schwingung bekannt (vgl Abschnitt 21.222):

R di

t2+L dt+LC =0.

Es entsprechen einander folgende GréfSen:

[

1>

1>

£
2

I»

3o §|aa?

1
LC
Charakteristische Gleichung:
R 1
2 a4 1
Btphtge=0

f2=—3p iV4L2 - L

Es sind wieder die Thnen bekannten 3 Fille zu unterscheiden. Es ergeben sich
als Losungen entsprechende Ausdriicke wie bei der Behandlung der freien, ge-
dampften Schwingung. Fiir die weitere Behandlung des vorliégenden Problems
konnen die Losungen der homogenen Gleichung unberiicksichtigt bleiben, da
alle Erscheinungen, die diesen Losungen entsprechen, infolge der Diémpfung
abklingen. Das heiBit, daB alle die Glieder in der allgemeinen Losung der in-
homogenen Differentialgleichung mit zunehmender Zeit an EinfluB verlieren, die
aus der allgemeinen Losung der homogenen Gleichung resultieren.

Wir bestimmen lediglich die Frequenz des freien Schwingkreises unter der Vor-
aussetzung, daB die Dampfuag geniigend klein ist, um eine Schwingung zu-
zulassen. Die Schwingungsdauer ist nach den gewonnenen Erkenntnissen

2n
_ _ 2__ 9
T oi—p (o —p*>0)
wobei hier
of=—r und p=-
o= TC =131
ist. Damit ist
2x 1 1 1 R2
T‘*ﬁ wd f=7=5.|Tc1r
LC ~ 4L?
R:C "
Ist I <1, so kann fir ‘
1 _ ch
LC 4:L2 - 1

nach dem binomischen Lehrsatz nﬁ,herungsweise

VLC l/l ﬂ"vw( ”I;ZTC)
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gesetzt werden, so dafl mit guter Naherung

1 EC
7o 2LE g fa 8L
1— 2x p LC
8L
ist.
Mitunter geniigt sogar, unter Vernachlissigung von 1; 7> die Néherung

1

2nm )

T~2rVLC bzw. f=~

Inhomogene Differentialgleichung:

Wird der Ansatz
t = A cos wi -+ B sin wt

mit

%=—wA sin wt -+ w B cos wt,
a2 2 2
GE="® Acoswt—w?Bsinwt

in die inhomogene Differentialgleichung eingesetzt, so ergibt sich

( oRB oRA

ot L I¢ L coswi.

—w3A>coswt—|—( —-sz)sinwt=wU"

L

Damit der Ansatz die Differentialgleichung erfiillt, muf8 also

(-oias -2

—-%I—E-A-I—(%—w’)B:O

und

sein. Die Auflésung dieses Gleichungssystems liefert

Y U,,,(-l——-coL)

U.R
3 s B=—'l—-2—.
R”(W“”L)

Zur Umformung soll diesmal statt
1

——oL
= tan 4 —aretan 22—
@, =arc B y’
1
— gy = @ = arc tan =2 = arc tan vt ee
== B R
gesetzt werden (vgl. Bild 31).
1
ol-3o
Mit ¢ =arctan——p—— und C=YA*+ B
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folgt als partikulire Losung der inhomogenen Gleichung

jmeIn ___sin(wi—g),

-]

das ,,Ohmsche Gesetz fiir Wechselstrom**. 1
Der Nenner ist der Scheinwiderstand des Schwingkreises, (w L — EF) sein Blind-
widerstand.

Die Losung kennzeichnet den stationidren Zustand, der )
sich nach Abklingen des Einschaltvorganges (beriick-
sichtigt in der Losung der homogenen Gleichung) einstellt.
Die angelegte Wechselspannung zwingt also den Kreis,
in ihrer Frequenz bzw. XKreisfrequenz o = 2xf zu
schwingen. Allerdings besteht zwischen Strom und
Spannung eine Phasenverschiebung um den Winkel ¢.
Die Amplitude des Stromes ist hier

v,
T = —.
V””(“’L“z‘a)

Ubungen
34. y”+ 3y’ —10y =102* 35. y'+ 4y — 2y =’
36. y'+ 4y — 21y =7 37. y'+9y'=sin3x

38. y'—4dy' L4y =e*

Anleitung zu Ubung 38: Die partikulire Liosung ist mit Hilfe der Variation der Konstanten
herbeizufiihren (y = ze2%).

39. y"+ 9y =sin3x

Zusammenfassung
Bei der inhomogenen, linearen Differentialgleichung II. Ordnung mit konstanten

Koeffizienten
Yy’ +ay +by="h(z)

haben Sie zunichst drei besondere Formen der Stérungsfunktion 4(x) kennen-
gelernt. Steht A (x) nicht in Resonanz mit der Eigenfunktion, ist also % (x) nicht
schon eine (partikulire) Losung der zugehérigen homogenen Differential-
gleichung, so kann die Losung mit Hilfe der entsprechenden Ansiitze hergestellt
werden. Die unbestimmten Koeffizienten im Ansatz lassen sich nach Einsetzen
in die Differentialgleichung durch Koeffizientenvergleich bestimmen.

Steht dagegen k() in Resonanz, so 148t sich eine partikulire Lésung der in-
homogenen Gleichung in vielen Fillen durch einen verdnderten Ansatz oder grund-
sitzlich mit Hilfe der Methode der Variation der Konstanten finden.

Die allgemeine Losung der inhomogenen Differentialgleichung ist gleich der
Summe der allgemeinen Lésung der homogenen und der gefundenen partikuliren
Losung der inhomogenen Differentialgleichung.
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21.4 Lineare Differentialgleichungen hoherer Ordnung
mit konstanten Koeffizienten

Die bei den linearen Differentialgleichungen I. und II. Ordnung mit konstanten
Koeffizienten angewandten Losungsmethoden lassen sich auch auf Differential-
gleichungen hoherer Ordnung anwenden. Es ist sinngeméf wie bei den linearen
Differentialgleichungen II. Ordnung zu verfahren.

Lehrbeispiel 57

Lésen Sie die Differentialgleichung

yrn__5yn_|_ 9y1_5y____68z!

Losung:
Homogene Gleichung: y"'—5y"+ 9y —by=0
Charakteristische Gleichung: B—5i24+91—5=0

M=1, 2y=2+414, l3=2—1
Die Losung der homogenen Gleichung heifit also
yn=Ae*+ e**(Bcosx-+Csinx).

Inhomogene Gleichung:
Entsprechend der Stérungsfunktion f(x)= e3* machen Sie den Ansatz

y=Ae’*.
Esist
Z/,= 3Ae8:v,
y"=9Ae3”,

Y’ =274,

Dies in die inhomogene Gleichung eingesetzt ergibt
2 (214 —45A44 274 —54) =2,

Der Koeffizientenvergleich liefert
A=

lF-|v-c

Es ist also

1
y¢=zesz

Damit heiBt die allgemeine Losung

y=ypt+y,=Ade+ e“(Bcosx—l—Csinx)—{——}es’.

Lehrbeispiel 58
Die Differentialgleichung

y"'—6y"+12y' —8y =0
ist zu losen!
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Losung:
Charakteristische Gleichung:
B—62+121—8=0

;~1= 12= 13’———2

Es liegt eine dreifache Wurzel vor. Bei einer Differentialgleichung I1. Ordnung,
deren charakteristische Gleichung eine Doppelwurzel 4, =4, =a aufweist,
heiBlt die Losung y = (A4 + Bx) e*®. Ganz entsprechend lautet hier die Losung
(es miissen 3 Integrationskonstante auftreten!):

y=(A4+ Bx+} Cux?) e2*.

Machen Sie die Probe!

21.5 Ubungen zu den Kapiteln 20 und 21

Um lhnen die Moglichkeit zu geben, Ihre erworbenen Kenntnisse weiter zu
festigen und zu vertiefen, folgt nun noch eine Anzahl von Differentialgleichungen,
die Sie mit Hilfe der in diesem Lehrbrief behandelten Losungsverfahren 16sen
konnen.
40. Zeigen Sie, daf3 die angegebenen Funktionen Lisungen der danebenstehenden
Differentialgleichungen sind!
@) y=a'+222+4 fir z-y'—y =32
b) y=Inz | «? fiir 2?y”"—axy’+2=0

¢) y=sinz fir y2+42—1=0
d) y=¢e"sinz fir y"—2y’+2y=0
Bestimmen Sie die Lisungen der folgenden Differentialgleichungen!
41. y?+ =1 42. ay’'—by =0
43. y’sinh y — 2tanhy =0 44. yy'+2=0
45. y'+ 22y =y 46. 2y’ +y=12+38x+ 2
47. 4’ +ycosx = ¢8I0 48. y —2y=¢®
49. y' —ytanz 4 sinz =0 50. y' + ysinh x = sinh z cosh
51. y'+ ay=bcoswzx 52. zy'+y=Inz
53. y'cosx —yPcotPx =0 54. y'—y=0
85. y'— Ty + 12y =0 6. y'—10y’+ 34y =20
57. "'+ 2¢y"+5y'=0 58. "'+ 12y’ + 36y =0
89. y"'+3y"+3y'+y=0  60.y""—2y"+2y"—2y'+y=0
61. y'+y=2a* 62. y'+y=¢*

63. y'+y=a"+e*4cos2z 64. y'+y=e"+e**
65. y"+y=o—=x
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22 Die geradlinige Bewegung

In den folgenden Betrachtungen sollen Sie die 7 Fundamentalfdlle der gerad.-
linigen Bewegung kennenlernen.

1.8 =s(t)

Gegeben ist die Funktion s = s(t), die die Lage eines geradlinig bewegten Punktes
in Abhéngigkeit von der Zeit ¢ angibt.

Es lassen sich daraus sofort durch Differentiation berechnen:

Geschwindigkest v= %%— als Funktion der Zeit v = v(?),
. dv  d2s . .
Beschleunigung b= T T als Funktion der Zeit b = b(¢).

2. t=1(s)

In diesem seltener vorkommenden Fall ist die Umkehrfunktion zu der Funktion
im Fall 1 gegeben.

Dieser Erkenntnis entsprechend folgt

Geschwindigkeit v= —dl? als Funktion der Lage v = v(s),

ds

dov dv ds dy

Beschleunigung b= ¥ Tianir TR TRy R4 als b=b(s).

.o=0(P)

Im Hinblick auf Fall 1 ergibt sich hier, wenn s, die Lage des Punktes zur Zeit %,
angibt:

¢
Lage s=so-|—fv(t)dt als s=2s(?),
Beschleunigung b= %:1 als b=>(t).
4. v=12v(s)

Die Beschleunigung kann nach den Uberlegungen im Fall 2 behandelt werden.
Es ist ‘
dv

Beschleunigung b= s Y als b=>5(s).
Zur Berechnung von Lage bzw. Zeit ist zu bedenken, daB v=v(s) = %—':— ist.
Durch Trennung der Verinderlichen wird d¢ = %.
8
. ‘ds
Zeit t=ty+ | —=+ als £ =#(s),
s.f v(s)

und daraus durch Bilden der Umkehrfunktion die Lage s als Funktion der Zeit ¢.
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5. b=10b(t)
Dieser Fall stellt lediglich die Umkehrung des Falles 1 dar. Hier ergeben sich
durch Integration

t
Qeschwindigkeit v=uv,+ f b(¢yds als v=v(t),
¢
t
Lage s=a,,+fv(t)dt als s=s(1),
ty

i t
= 8+ v (E—ty) -l-f[fb(t)dt]dt.
ty Li,

6. b=Db(s)
In diesem iiberaus wichtigen Fall ist fiir jeden Ort der Bewegung die dort auf-
tretende Beschleunigung bekannt.

Nun ist
SR LTS
In b(s)= 'v konnen die Verénderlichen getrennt werden:
vdv=>5(s)ds.
v 8
Es folgt fvd'v=fb(s)ds,
A 8

s
2 . 2
%-—%—=fb(s)ds
8

und schlieBlich

— e
Qeschwindigkeit v= l/voz—}- 2 f b(s)ds als v=w(s).
8o
Da nun andererseits v = -3—: ist, ergibt sich daraus nach Fall 4

Zeit =ty f o

8

=t,+ —ds—s—— als t =1t(s).
l/v02+2fb(s) ds
So

8o

7.6=0b(v)
Hierbei folgt aus
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durch Trennung der Verinderlichen

v do
ds = W d’D, dt = 'Hv—)'
und nach Integration
v
Lage a=8o-|—fb—fv)—dv als s =s(v).
To
’ d
Zeit t=to+f—5% als t = t(v).
Vo

Aus t = t(v) 148t sich die Umkehrfunktion v = v (f) bilden. Wird diese in s = s(v)
eingesetzt, so erhilt man s = s(t).

Zusammenfassung:
Ist gegeben, dann ist
ds dv  d2s
1. 8=8(t) ’U=Tt- b=ﬁ=mz
2. t=1t(s) v=ar b=%%,,
ds
3. v=u(t) §=8,+ |vdt b—.:.—%;
e
.d d
8 v
4. v=10(8) t=t0-|—fT b=-d—s-'u
ot t
5. b=b(t) v=1,+ [bdt §=s,4 [vdt
t, ty
8-__ 8d
6. b=b(s) v=l/vo‘2+2fbds t=1t,+ _vi
8 2
] vd
7. b=b(v) s=s+ [ Zdv t=tat [ S
g b b
! !

Einige Beispiele zu diesen Grundaufgaben haben Sie bereits kennengelernt. So
kennen Sie aus der Differentialrechnung die Behandlung des freien Falles nach
Fall 1. Weiterhin haben Sie die Umkehrung dazu, also Fall 5, im Abschnitt 21.11
dieses Lehrbriefes durchgerechnet. Fall 7 finden Sie im Lehrbeispiel 34.

Lehrbeispiel 59

Aus der Physik ist Thnen die Formel v =Y2gs fiir die Geschwindigkeit eines frei
fallenden Korpers bekannt. Es sind durchfallene Hihe s als Funktion der Zeit t
und die Beschleunigung zu berechnen, wenn ty= 0 und s, = 0 sind.
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Loésung:
Es liegt Fall 4 vor. Danach ist
8 8 1
t= i:éfs 2d‘s=g—1/—-?.

) V2es 12 s V29

8=0

Losen Sie nach s auf, dann erhalten Sie das bekannte Fallgesetz

8=—12—gt2.
Fiir die Beschleunigung folgt
b=%v—v, 0= 2¢s, ’%:%ga-
b— g
V2gs
b=g.

Lehrbeispiel 60
Am Ende einer (gewichislosen) Schraubenfeder befinde sich ein Korper mit der
Masse m. Eine Kraft P,y driicke die Feder um s, ,, zusammen. In welcher Zeit

A\A\\ \ \ \ \A\\A\‘h\h\é\l\’hﬂﬂ

&7
i \'\ \'\ \"l o\
Z
b? ;} o—Prmax
Z lp
c il
1 ;
Smox [
Bild 32

entspannt sich die Feder bis zu einer beliebigen Zusammendriickung 8 < Spay, i1
der sie durch eine Kraft P << Py, fesigehalten wird? Von Reibungsverlusten ist
abzusehen.

AiULwaig.

In Bild 32a ist die Feder in entspanntem Zustand gezeichnet, wihrend Bild 32b
die maximal zusammengedriickte Feder darstellt. Im Diagramm 32e¢ ist zu
jeder Stellung der Feder die zum Festhalten notige Kraft angegeben.
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Die Feder entspannt sich mit der Kraft P = —cs. Dabei soll das Minuszeichen
andeuten, daB die Kraft in Richtung abnehmender Werte s wirkt. Die Feder-
konstante ¢ errechnet sich aus

Bex der Entspannung der Feder erfihrt die Masse m die Beschleunigung . Nach
Newton besteht zwischen diesen beiden GréBien und der beschleunigenden Kraft
der Feder der Zusammenhang:

mb=P
oder
b= P__ e s.
m m

Setzen Sie noch zur Abkiirzung

L _ »?,

m
so erhalten Sie in

= —aw?s,

ein Beispiel fiic den Fall 6.

Ermittlung der Geschwindigkeit:
Die Anfangsgeschwindigkeit ist im vorliegenden Fall v, = 0.

Damit ist
8 8
v= l/2fbds= ]/—2w2f8ds
Smax 3max

und, da 8., > s, nach Umkehrung der Grenzen

V=0 V2T:d8—-wl/2( m;~)=w]/m (w=‘/§)

Ermittlung der Zeit:

Die Zeit soll vom Beginn der Bewegung an gezihlt werden, es ist also {, = 0. Da
mit zunehmender Zeit ¢ die Zusammendriickung abnimmt, ist zu setzen

t=—f%,- f[/.s?_:-.sﬂ

Smax
1 s s
= —arc cos — ,
@ 'max |8max
1 s
t=—{arccos — —arccosl), (arccos1 = 0)
w 8max

1
t=-— arc co8

max
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Hier ist die Wahl der Stammfunktion in der Form arc cos —— giinstiger als in
der Form arc sm ——, da sich damit an der unteren Grenze der Wert arc cos1 =0
ergibt. Fiir den Fa,ll der vélligen Entspannung der Feder ergibt sich mit s =0

V= WSpax> t=-¢1;arccosO=2’:D.
Wie Sie aus der Erfahrung wissen, beendet die Feder nicht mit Erreichen der
entspannten Lage ihre Bewegung, sondern fiihrt eine (mehr oder weniger ge-
dimpfte) Schwingung um diese Lage aus. Diese Schwingung soll noch kurz unter-
sucht werden.
Aus 1 Tg
t=—arccos —

w S,

folgt

s%n =Cco8Swl, &=8p,zCo8wWt.

Aus dieser Formel erkennen Sie, dafl die Feder im reibungsfreien Fall eine har-
monische Schwingung ausfiihrt. Die Kreisfrequenz dieser Schwingung ist

]/ c

o=\,

m

wiihrend die Amplitude mit der urspriinglichen Zusammendriickung 8,, iden-

tisch ist. Vergleichen Sie hierzu das Beispiel der freien, ungeddmpiten Schwin-
gung in 21.221.

Zusammenfassung

Im Kapitel 22 wurden die 7 Fundamentalfille der geradlinigen Bewegung be-
handelt. In der Zusammenstellung finden Sie, wie in den einzelnen Fillen durch
Differentiation bzw. Integration die fehlenden GréBen aus der gegebenen Ab-
hiingigkeit zu berechnen sind. Beim Ansatz haben Sie stets eine Uberlegung iiber
die Wahl der Integrationsgrenzen, Integrationskonstanten und evtl. Vorzeichen
anzustellen. '

ANTWORTEN UND LOSUNGEN

16-0,0003046 |, 64-0,0000001
2 + s T

~1—0,002437 = 0,99756

1. cos4°=1—

9 1 1
' ¢ T T TR V1)
Gy | 1:2..... @n—1;.20-@n+1)
o, | = @n—1)! =2n(2n+1)
lim [22=1| = lim 22(2n+1) =0
n—>00 n n—o0

Konvergenzbereich: |z| < oo
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3. af= 1420y e My fir [2]< oo
4 =14 gzt ‘””) +“”)'
5. In3=1,0986
1 3 1 4/(/3\
6. ‘VlOOO=4[ _F'm_f’fd(m)“"'1=3’98“
1 1
z : H 1428 3528
Y P
7[_1 w—f(l—xﬁ) dx—f1+ o+t et ) de
1
225 247 | 352 B
[”“‘ THtE '|‘2187+°“]o
= 0,5 0,01589 4 0,001 39 4 0,00019 4 0,00003
=0,5155
Feost -1
st
Tdt:ln:v 3 2!-|-4 el +...
1
1
H PR 7 0 2
2etds— (L _ t _ [4 . 2
of *(3 5.11+7-2z T )o
1/(1 1 1
=% ( e 2= ntrei e 20.31“'_"')“0’0360
;3 fir0<z<n
10. a) f(z) =
% firn<e<2n
Ungerade Funktion (Bild 33)
, fo
b4 RN
) v |
- 0” b4 F4 X
Bild 33
a,=0; a,=0; = f—smnxdw

daraus b,=0 fir geradzahhges n

= % fiir ungeradzahliges n
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f(¢)=sinw+—:§—sin3x+%sm5x+...

_ Ssin@r—1)z

sy 2n—1

b) Gerade Funktion (Bild 34)
n E g
1 1
-n 1]

b,=0 Bild 34

£

0

k4
2 2 ( sinnz | cosnx
= — d = — —_—
a, nfxcosna: T=_|r— + 2
0

fiir geradzahliges n

0
- ;4;2- fiir ungeradzahliges »

f(w)=%~——;4—z-[cosx+%cos3x+-;—gcos5x+---]

_=n 4 Scos2n—1)z
“?_?,é; @n—1)

c) Ungerade Funktion (Bild 35)
Foof

=3 \/’z?}

N
=
8
Y
S

Bild 35

I
<

Oy a,=0;

b,,_=£—fzcosa: sinn:vdx=-;1;fx[sin(n+l)x—]—sin(n—l,)x]dx
0 0

S o L 1
T a4l n—l_(_l) n2—1

-_

firn=2,3,--
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11.

12.

13.
15.
17.
19.
21.

23.

25.

21.
29.
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Fiir n.=1 ergibt sich b,=— 3

f(x)—xcosa:—-—lsmx—l—ZZ’( i nsmna:

Aus dem Rechenschema entnehmen Sie die Werte

r,= 61,5 v,= 6,3
o= 374 p=—1179 = 0,2
8g=— 1.6 5= 96,1 8, = 56,6
1 = 21,1 d=—91,3
m=—11,7 h= 215
mit denen Sie die Koeffizienten berechnen zu

Tap= 4,88 a,= 4,48 b,=—13,18
a;= 28,84 a;= 110 by;=— 4,03
ay=— 2,24 ag= 0,34 b= 3,10
a;= 0,82 b, =—0,41 by=— 047

Die gesuchte Gleichung lautet dann
y~ 4,884 28,84cosx —2,24cos2x+ 0,82cos3x+ 4,48cosdx
+ 1,10cos5 x -} 0,34 cos6x — 0,41sinx — 13,18sin 2z
— 4,03sin 3z 3,10sin £ — 0,478in 52
y=Cx
Jedem Punkt der Ebene ist die Richtung des zu diesem Punkt gehérigen

Radiusvektors zugeordnet.
Losungskurven sind alle Geraden durch den Ursprung des Koordinatensystems.

ax®—by®=C (Hyperbelschar) 14. y = Ce 30822
TaP—4x—38y* =C 16. 3y*— 243 — 182 =C
cosz+cosy=C0 (|C|<2) 18. y=tan(z 4 C)—=
y = zarcsin Cx 20. ¥+ 5zy—y2="C

z
y—x=_Cel-* 22. siehe Losung Lehrbeispiel 40.
y=23—3a?+ 6o — 6+ (o~ 2 y=2 4o
y=Ce'2’+%e‘“’ 26. y—g—cosx-{-w
y = C,e’* 4 (e 2% 28. y = (,6**} Cpe*
y=(C,+ Cyz)e™® 30. y = (C,+ Cyz)e*®



31.
32.

33.

36.

37.

38.
40.

41.
43.
45.
47,
49.

51.

53.

55.
57.
59.
60.

61.

63.

€4.

65.

y=-e"2%(Acos 3z} Bsin3z) = Ce **sin (32 -+ ¢)
y =e“(Acosz+ Bsinx) = Ce®sin (x4 @)
y=06"*+ Cye?* 34. y=0Ce**+ Oge‘sz—xz—%x—g

y = C,e**+ C,e"‘—%e“ 36. y= (Cl—l-ll—ox) e37 - Cpe~"®

y=0,+ 029‘9“—3—10 cos3x-—-9—10- sin 3z
y=(g o+ Ciot ) et 39. y = Csin (32 + ¢) — ¢ zcos 32
Die angegebenen Funktionen erfiillen alle die zugehérigen Differentialglei-

chungen.
b

y=sin(z+ C) 42, y=007w

y = arsinh (22 + C) 44. y=7YC—2* oder 2+ 2=C
—z 1 3 C

y=0e“ z 46. y=—§x2+-§x+2+;-

y = (x -+ C)esiv® 48. y=Ce?*—e”

y=lcosx+i 50. y = coshz — 1 | Ce~%osh=

2 CO8 %
y=a—2_:——;2(wsinwx+acoswx)—}—0e‘” 52. y=—i~—1+lnx

sinz

y=m 54. y=Ae’+Be"
y = Ae** | Be'” 56. y = e°*(A cos 3z | Bsin 3 x)
y=A -+ e *(Bcos2z+ Csin 2x) 58. y= (4 4 Bx)e %%

y=(A+ Bx-+ Ca?e*
y=(4+ Br)e*+ Ccosz+ Dsinz
y=22—2-+ Acosz+ Bsinz 62. y=2l6e5“+Acosx+Bsinx

1 1 .
x2—4—2-|—-2§e5’—Tcos2x+Acosx—l—Bs:na:

I

y

y=.;_e‘°+%e2”—l—Acosx+Bsinx

I

z — —
y=st— 25z + At (Beos Lo 4 0sin L2 o)

137






