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Vorwort zur vierten
Auflage

Nach vielen Jahren fafite ich den Entschlufl, mich wieder
dem nicht abgeschlossenen Buch ,,Physik fiir alle* zuzu-
wenden, das von ,Dau“ und mir verfat worden ist;
,2Dau* — so nannten seine Freunde den hervorragenden
Gelehrten, Akademiemitglied L. D. Landau, einen Men-
schen, von dem ein ungewdhnlicher Zauber ausging.

Das Buch war ein wirklich sehr ,gemeinsames” Werk.
Lange Zeit fiel es mir schwer, an seine Fortsetzung zu
denken. Viele Leser haben mir das in ihren Briefen zum
Vorwurf gemacht. Nun aber stelle ich mich ihrem Urteil
mit der Neuauflage der ,,Physik fiir alle”, die in vier nicht
allzu umfangreiche Bénde gegliedert ist. Ich nannte sie:
,Physikalische Korper*, ,Molekiile”, , Elektronen“ und
,Photonen und Kerne“. Diese Gliederung erfolgte sozu-
sagen nach MaBgabe des Vordringens in die Struktur des
Stoffs. Diese vier Binde umfassen alle Grundgesetze der
Physik. Vielleicht wire es sinnvoll, die ,Physik fiir
alle fortzusetzen und spétere Auflagen dem Fundament
der verschiedenen Bereiche von Naturwissenschaft und
Technik zu widmen.

Die ersten beiden Bénde stellen nichts anderes dar
als das nur unwesentlich iiberarbeitete, allerdings hier
und da betrdchtlich ergdnzte Buch in seiner friiheren
Fassung. Die letzten beiden Binde habe ich verfafit.
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Ich bin mir klar dariiber, daf§ dem aufmerksamen Leser
der Unterschied zwischen ihnen bewufit werden wird.
Die allgemeinen Prinzipien freilich, an die sich Dau und
ich bei der Darstellung des Materials hielten, wurden
beibehalten. Es handelt sich um die deduktive Darstel-
lung, um die Verfolgung der Logik des Gegenstandes,
nicht um seine Entwicklungsgeschichte. Wir haben es
fir zweckm#Big gehalten, mit unserem Leser in einfache
Alltagssprache zu reden und auch den Humor nicht zu
scheuen. Und noch eins: Wir haben den Leser nicht
geschont. Wer dieses Buch verstehen will, wird viele
Seiten nicht nur ein- oder zweimal, sondern noch ofter
lesen und das Gelesene dann griindlich durchdenken
miissen.

Was nun den Unterschied zwischen der neuen und
der alten Ausgabe betrifft, so besteht er in folgendem. Als
das vorangegangene Werk geschrieben wurde, behandel-
ten es seine Verfasser als ,erstes“ Buch iiber die Physik,
meinten sogar, es koénne mit einem Lehrbuch fiir die
Schule konkurrieren. Die MeinungsduBerungen der Leser
und die Erfahrung von Physiklehrern allerdings zeigten,
dafl es sich nicht so verhdlt. Die Leser des Buches waren
Lehrer, Ingenieure und Schiiler, die die Physik als Beruf
ergreifen wollten. Es zeigte sich, daf niemand die ,,Phy-
sik fiir alle als ein Lehrbuch ansah. Man betrachtete es
als eine populdrwissenschaftliche Schrift, die das Schul-
wissen erweitert und die Aufmerksamkeit nicht selten auf
Dinge lenkt, die, aus welchen Griinden auch immer, nicht
im Lehrplan stehen.

Von der Voraussetzung ausgehend, daB meine Leser
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die Physik bereits mehr oder weniger gut kennen, fiihlte
ich mich naturgemé&B freier in der Themenwahl und hielt
os fir moglich, dem Werk ausgeprigter als bisher die
I‘'orm einer Unterhaltung, eines Gesprichs, zu geben.

Der Text des ersten Bandes wurde nur geringfiigig
geindert. Es handelt sich dabei im wesentlichen um die
crste Halfte der ,Physik fiir alle“ von L. D. Landau und
A. 1. Kitaigorodski.

Da diese Unterhaltung tiber die Physik mit jenen
Erscheinungen beginnt, die keine Kenntnisse iiber die
Struktur des Stoffs erfordern, war es nur natiirlich, den
ersten Band , Physikalische Korper” zu nennen. Natiirlich
hitte man diesen Seiten, wie allgemein iiblich, den Titel
»Mechanik®, d. h. Bewegungslehre, verleihen koénnen.
Doch die Wiarmelehre, von der im folgenden Band die
Rede sein wird, ist ebenfalls eine Bewegungslehre, nur
daB sie die Bewegung von Korpern behandelt, die das
Auge nicht wahrzunehmen vermag: Es sind die Molekiile
und Atome. Darum halte ich die von mir gewéhlte Bezeich-
nung fiir gliicklicher.

Das erste Buch behandelt hauptsdchlich die Bewe-
gungsgesetze und die Gravitation, die fiir immer das
Fundament der Physik und damit der Naturwissenschaft
insgesamt bleiben werden.

September 1977
A. I. Kitaigorodski
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. Grundbegriffe

Von Zentimeter und Sekunde

Jeder von uns muB gelegentlich eine Linge oder einen
Zeitabschnitt messen bzw. die Masse von Korpern
bestimmen. Darum wissen wir alle auch recht gut, was
ein Zentimeter, eine Sekunde oder ein Gramm ist. Doch
fiir den Physiker sind diese Messungen besonders wichtig,
und zwar zur Beurteilung der meisten physikalischen
Erscheinungen. Wir sind bemiiht, Entfernungen, Zeit-
intervalle und Massen, die sogenannten Grundbegriffe
in der Physik, moéglichst genau zu messen.

Moderne physikalische Gerdte erlauben es, einen
Langenunterschied zweier 1-m-Stdbe selbst dann fest-
zustellen, wenn er kleiner ist als ein Milliardstel eines
Meters. Man kann Zeitabschnitte unterscheiden, wenn sie
um eine Millionstelsekunde voneinander verschieden sind.
Mit einer guten Waage kann man die Masse eines Mohn-
korns mit sehr grofler Genauigkeit bestimmen.

Die Entwicklung der MeBtechnik setzte vor nur eini-
gen hundert Jahren ein, und es ist noch gar nicht so
sehr lange her, da man sich dariiber einigte, welchen
Léngenabschnitt und die Masse welchen Korpers man als
Einheit wihlen wollte.

Warum eigentlich wurden das Zentimeter und die
Sekunde gerade so gewihlt, wie wir sie kennen? Klar
ist doch, daBl es keine besondere Bedeutung hitte, wenn
das Zentimeter oder die Sekunde langer waren.

Eine MaBeinheit muf bequem sein — andere Forde-
rungen stellen wir nicht. Sehr giinstig ist es auch, wenn
wir die MaBeinheit zur Hand haben. Und am einfachsten
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ist es, dic Hand selbst als MaBeinheit zu nehmen. Genau
so verfuhr man auch in alten Zeiten; dies zeigen uns die
Namen solcher Einheiten wie etwa die , Elle*, d. h. die
Entfernung vom Ellbogen bis zu den Fingerenden der
ausgestreckten Hand, oder das Zoll, womit die Daumen-
breite am Ansatz des Daumens gemeint war. Auch der
FuBl wurde zur Messung benutzt, und von hier riihrt die
Liangeneinheit ,foot* her.

Obwohl diese Mafleinheiten sehr bequem sind, weil
man sie stets mit sich fithrt, sind auch ihre Mingel offen-
kundig: Die Menschen unterscheiden sich gar zu sehr
voneinander, als dafl die Hand oder der Ful unbestritten
als MaBeinheit gelten konnten.

Mit der Entwicklung des I[Tandels entstand die Not-
wendigkeit, eine Vereinbarung iiber die Mafeinheiten zu
treffen. Anfangs wurden Liangen- und Massenetalons nur
fiir einen bestimmten Markt, spiter fiir eine Stadt, noch
spater fiir das ganze Land und schlie8lich fiir die ganze
Welt festgelegt. Ein Etalon war die Verkérperung einer
Einheit (ihr Prototyp): etwa ein Anlegemafstab oder
ein Wigestiick. Der Staat bewahrte die Etalons
sorgfiltig auf, und alle anderen MaBstibe und Wige-
stiicke miissen in genauer Ubereinstimmung mit den
Eichmaflen gefertigt werden.

Im zaristischen RuBland wurden UrmafBle fiir die
Masse und die Linge — Pfund und Arschin — erstmals
im Jahre 1747 angefertigt. Im 19. Jahrhundert hatten die
Forderungen an die MefBgenauigkeit zugenommen, und
diese Etalons erwiesen sich als ungeniigend. Eine sehr
komplizierte und verantwortungsvolle Arbeit zur Ent-
wicklung genauer MustermaBe wurde in den Jahren
1893 bis 1898 unter der Leitung von Dmitri Mendelejew
durchgefiihrt. Dieser bedeutende Chemiker legte groBes
Gewicht auf die Festlegung genauer MafBle. Auf seine
Initiative hin wurde Ende des 19. Jahrhunderts die GroBe
Kammer fiir Mafle und Gewichte geschaffen, in der die
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Iitalons aufbewahrt und Kopien von ihnen hergestellt
wurden.

Entfernungen werden einmal in gro8en und ein anderes
Mal in kleineren Einheiten ausgedriickt. SchlieBlich
werden wir die Entfernung von Moskau nach Leningrad
nicht in Zentimetern und die Masse eines Zuges nicht
in Gramm angeben. Darum einigte man sich auf ein
bestimmtes Verhédltnis zwischen grofen und kleinen
Einheiten. Wie jedermann weil, unterscheiden sich die
grolen Einheiten von den kleinen um den Faktor 10,
100, 1000 bzw. generell um Zehnerpotenzen. Diese Verein-
barung ist sehr bequem und vereinfacht alle erforderlichen
Berechnungen. Aber nicht alle Lander verfiigen iiber ein
so bequemes System. In England und den USA benutzt
man bis zum heutigen Tag das Meter, Zentimeter und
Kilometer sowie auch das Gramm und das Kilogramm#*
nur verhdltnisméaBig selten, ungeachtet der offenkundigen
Vorziige des metrischen Systems.

Im 17. Jahrhundert kam der Gedanke auf, ein Etalon
zu schaffen, das in der Natur existiert und sich in Jahren
und Jahrhunderten nicht verdndert. 1664 schlug Christian
Huygens vor, als Lingeneinheit die Linge eines Pendels
zu wihlen, das eine Schwingung je Sekunde ausfiihrt.
Rund hundert Jahre spiter, ndmlich 1771, wurde als
Léangenetalon der Weg vorgeschlagen, den ein frei fallen-
der Korper innerhalb einer Sekunde zuriicklegt. Es
bedurfte der Grofen Franzésischen Revolution, um die

* In England gelten offiziell folgende LingenmafBe: Die See-
meile (1852 m), die Landmeile (1609 m) und das foot (30,5 cm);
ein foot ist gleich 12 Zoll und ein Zoll gleich 2,54 cm; ein Yard
schlieBlich entspricht 0,91 m. Dies ist ein ,SchneidermaB“; es
ist iblich, die Ldnge der fiir einen Anzug erforderlichen Stoff-
bahn in Yards anzugeben.

Die Masse wird in den angelsdchsischen Léindern in Pfund (454 g)
gemessen. Bruchteile des Pfunds sind die Unze (1/16 Pfund)
und das Gran (1/7000 Pfund); diese MaSe verwenden die Apothe-
ker beim Auswiegen der Arzneien.
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heute iiblichen MaBe, das Kilogramm und das Meter,
hervorzubringen.

1790 berief die Gesetzgebende Versammlung eine
Sonderkommission ein, um einheitliche MaBe zu schaffen.
Ihre Mitglieder waren hervorragende Physiker und
Mathematiker. Unter sdmtlichen vorgeschlagenen Va-
rianten wéhlte die Kommission als Léangeneinheit den
zehnmillionsten Teil des Erdquadranten und gab dieser
Einheit die Bezeichnung ,Meter*. 1799 wurde das Meter-
Etalon* angefertigt und dem Conservatoire des arts et
métiers zur Aufbewahrung iibergeben.

Bald wurde jedoch klar, daf§ der im abstrakten Sinn
richtige Gedanke von der ZweckmaiaBigkeit, bei der Natur
entlehnte UrmaBe zu wihlen, nicht vollstindig realisier-
bar ist. Im 19. Jahrhundert durchgefiihrte genauere
Messungen zeigten, dafl das seinerzeit angefertigte Urme-
ter um etwa 0,08 mm kiirzer ist als der vierzigmillionste
Teil des Erdmeridians. Auch war ganz offensichtlich,
daB} sich mit der Weiterentwicklung der MeBtechnik immer
neue Korrekturen ergeben wiirden. Hétte man die Defi-
nition des Meters als eines bestimmten Teils des Erd-
meridians beibehalten wollen, so hitte man folgerichtig
auch nach jeder neuen Vermessung des Meridians neue
UrmaBe anfertigen und sdmtliche Lingen neu berechnen
miissen. Darum beschlo8 man nach internationalen
Konferenzen von 1870, 1872 und 1875, nicht den vier-
zigmillionsten Teil des Meridians als Lingeneinheit
anzusehen, sondern jenes 1799 angefertigte Urmeter, das
heute im Bureau International des Poids et Mesures in
Sévres aufbewahrt wird.

Gemeinsam mit dem Meter entstanden auch seine
Bruchteile; ein tausendstel Meter: das Millimeter und
ein hundertstel Meter: das Zentimeter.

* Dieses Meter-Etalon wurde spiter als ,métre des Archives'
bezeichnet.
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Nun einige Worte zur Sekunde. Sie ist ungleich viel
ilter als das Zentimeter. Bei Festlegung der MaBeinheit
fir die Zeitmessung hat es keinerlei Diskrepanzen gege-
ben, denn der Wechsel von Tag und Nacht, der ewige
Kreislauf der Sonne suggerieren uns den natiirlichen Weg
zur Wahl der Zeiteinheit. Jeder weil, was gemeint ist,
wenn man von der ,Zeitbestimmung nach dem Sonnen-
stand® spricht. Steht die Sonne hoch am Himmel, dann
haben wir Mittag, und wenn man die Schattenléinge eines
Stabes zu Hilfe nimmt, so kann man auch ganz leicht
den Augenblick ermitteln, in dem sich die Sonne im
hochsten Punkt befindet. Am néchsten Tag kann man nach
dem gleichen Verfahren eben diesen Augenblick fest-
stellen. Der abgelaufene Zeitabschnitt umfaBt somit
einen Tag und eine Nacht, und man braucht ihn nur
noch in Stunden, Minuten und {Sekunden zu untertei-
len.

Die groBen MaBeinheiten — das Jahr und den Tag —
gab uns die Natur selbst. Doch Stunde, Minute und
Sekunde wurden vom Menschen erdacht.

Die Einteilung des Tages in 24 Stunden, wie wir sie
heute kennen, reicht in das tiefe Altertum zuriick. In
Babylon war nicht das Dezimalsystem, sondern ein
Duodezimalsystem iiblich. Die Sechzig 148t sich durch
12 teilen, und daher riihrt die Teilung des Tages in
zwolf gleiche Teile bei den Babyloniern.

Im alten Agypten wurde dann die Tageseinteilung
in 24 Stunden eingefiihrt. Spiter kamen die Minuten
und Sekunden dazu. DaB die Stunde 60 Minuten und die
Minute 60 Sekunden umfaflit, ist ebenfalls ein Erbe des
Duodezimalsystems von Babylon.

Im Altertum und im Mittelalter wurde die Zeit mit-
tels Sonnenuhren, Wasseruhren (d. h. anhand des Aus-
laufens von Wasser aus grofen GefdBen) sowie mit Hilfe
anderer ausgekliigelter, aber hochst ungenauer Vorrich-
tungen gemessen.
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Anhand moderner Uhren kann man sich leicht davon
iberzeugen, da der Tag wihrend der verschiedenen
Zeiten des Jahres nicht immer gleich lang ist. Deshalb
kam man iiberein, als MaBleinheit der Zeit den mittleren
Sonnentag festzulegen. Ein Vierundzwanzigstel dieses
iiber das Jahr gemittelten Zeitabschnitts heit nun
Stunde.

Indem wir jedoch die Zeiteinheiten — Stunde, Minute
und Sekunde — durch Unterteilung des Tages in gleiche
Teile festlegen, setzen wir voraus, dafl die Erde gleich-
formig rotiert. Doch die Gezeiten des Ozeans, verursacht
von Sonne und Mond, hemmen die Erdrotation, wenn
auch nur in verschwindend geringem MaBe. Unsere
Zeiteinheit — der Sonnentag — wird also unaufhorlich
grofer.

Diese Verlangsamung der Lirdrotation ist so gering-
fiigig. daB sie erst vor verhdllnismiBig kurzer Zeit, nach
Erfindung der Atomuhren, unmittelbar gemessen werden
konnte, denn diese Uhren messen Zeitabschnitte mit der
ungeheuren Genauigkeit von einer millionstel Sekunde.
Die Anderung des Sonnentages erreicht ein bis zwei Mil-
lisekunden in 100 Jahren.

Ein Etalon freilich mu8, sofern dies méglich ist, auch
einen so geringfiigigen Fehler eliminieren. Wir berichten
auf S. 21, wie dies heute iiblicherweise geschieht.

Gewichiskraft und Masse

Die Gewichtskraft ist die Kraft, mit der ein Korper von der
Erde angezogen wird. Man kann sie mit einer Federwaage
messen. Je mehr ein Koérper wiegt, um so stirker wird
eine Feder gedehnt, an der dieser Korper befestigt ist.
Mit Hilfe eines Wigestiicks, das als Einheit dient,
kann man die Feder eichen, d. h. Strichmarken anbrin-
gen, die uns zeigen, wie weit sich die Feder unter dem
EinfluB eines Wigestiicks der Masse 1, 2, 3 usw.
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Kilogramm gedehnt hat. Befestigt man nun einen Korper
an dieser Federwaage, so gelingt es, anhand der Feder-
dehnung festzustellen, wie groff die Kraft ist, mit der der
Korper von der Erde angezogen wird (Bild 1.1a). Zur
Gewichtskraftmessung benutzt man nicht nur Zug-, sondern
auch Druckfedern (Bild 1.1b.). Benutzt man Federn
unterschiedlicher Dicke, so kann man Waagen sowohl zur
Messung sehr grofer als auch sehr kleiner Gewichtskrifte
herstellen. Auf diesem Prinzip beruht nicht nur der

2—01178
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Aufbau verhidltnismidBig grober Waagen, wie sie im
Handel iiblich sind, sondern auch die Konstruktion sehr
genauer, fiir physikalische Messungen verwendeter Ge-
rite.

Eine Feder mit Gradeinteilung dient nicht nur zur
Messung der Erdanziehungskraft, d. h. der Gewichtskraft,
sondern auch zur Messung anderer Kridfte. Man bezeich-
net ein derartiges Geridt als Dynamometer, was ,Kraft-
messer” bedeutet. Viele von uns haben schon gesehen,
wie ein Dynamometer zur Messung der Muskelkraft des
Menschen benutzt wird. Auch die Zugkraft eines Motors
laBt sich bequem mit Hilfe einer Zugfeder (Bild 1.2.)
messen.

Die Gewichtskraft eines Korpers ist eine seiner sehr
wichtigen Eigenschaften. Doch hidngt sie nicht allein
vom Korper selbst ab, denn der Koérper wird von der
Erde angezogen. Wenn wir uns nun aber auf dem Mond
befinden? Ganz offenbar wire auch die Gewichtskraft eine
andere und betriige nur etwa ein Sechstel der Gewichtskraft
auf der Erde, wie Berechnungen zeigen. Doch selbst auf
der Erde ist die Gewichtskraft auf verschiedenen Breiten
unterschiedlich. Am Pol wiegt ein Korper z. B. 0,5 %
mehr als am Aquator.

Bei all ihrer Veridnderlichkeit weist die Gewichtskraft
eine bemerkenswerte Eigentiimlichkeit auf: Das Verhaltnis
der Gewichtskriafte zweier Korper an ein und demselben
Punkt der Erde bleibt, wie die Erfahrung lehrt, unter
beliebigen Bedingungen unverandert. Wenn zwei verschie-
dene Lasten eine Feder am Pol um den gleichen Betrag
dehnen, dann bleibt diese Gleichheit ganz exakt auch am
Aquator erhalten.

Bei Messung der Gewichtskriifte durch Vergleich mit
der Gewichtskraft eines Etalons finden wir eine neue
Eigenschaft der Korper, die Masse heifit.

Der physikalische Sinn dieses neuen Begriffs Masse
ist aufs engste mit jener Gleichheit beim Vergleich der



{. Grundbegriffe 19

Bild 1.3.

Gewichtskrifte verkniipft, worauf wir eben hingewiesen
haben.

Anders als die Gewichtskraft ist die Masse eine
unverdnderliche Korpereigenschaft und unabhéngig von
allem, aufler dem Korper selbst.

Der Vergleich von Gewichtskriften, d. h. die Messung
der Masse, 148t sich am bequemsten mittels einer gew6hn-
lichen Balkenwaage (Bild 1.3.) ausfiihren. Wir sagen,
die Masse zweier Korper sei gleich, wenn sich eine Bal-
kenwaage, auf deren beiden Schalen diese Korper liegen,
genau im Gleichgewicht befindet. Wurde eine bestimmte
Last mit einer Balkenwaage am Aquator gewogen und
hat man die Last und die Wagestiicke danach zum
Pol gebracht, so dndert sich die Gewichtskraft der Last
und der Wigestiicke in genau der gleichen Weise. Darum
liefert die Waigung am Pol das gleiche Resultat: Die
Waage bleibt im Gleichgewicht.

Wir kénnten uns zur Uberpriifung dieser Feststellung
auch auf den Mond begeben. Da sich das Gewichtskraftver-
haltnis von Kérpern auch dort nicht dndert, wird eine
auf die Balkenwaage gelegte Last durch die gleichen
Wigestiicke ins Gleichgewicht gebracht. Die Masse
cines Korpers ist stets ein und dieselbe, wo immer sich
der Korper auch befindet.

Die Einheiten sowohl der Masse als auch der Gewichts-
kraft sind mit der Wahl des Etalon-Wigestiicks verkniipft.

¢
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Ebenso wie bei dem Meter und der Sekunde war man
bemiiht, ein natiirliches Masse-Etalon zu finden. Die
bereits erwdhnte Kommission fertigte aus einer bestimm-
ten Legierung ein Wigestiick an, das auf einer Bal-
kenwaage durch einen Kubikdezimeter Wasser bei vier
Grad Celsius* ins Gleichgewicht gebracht wurde. Dieser
Prototyp erhielt den Namen Kilogramm.

Spiter stellte sich allerdings heraus, dafl es gar nicht
so einfach ist, einen Kubikdezimeter Wasser ,,zu nehmen*.
Einmal veridnderte sich das Dezimeter als Teil des Meters
mit der Prizisierung des Meter-Etalons. Zum anderen
war die Frage zu beantworten, wie das Wasser beschaffen
sein sollte. Chemisch rein? Doppelt destilliert? Frei von
Luftspuren? Und was ist mit dem Gehalt an ,schwerem
Wasser“? Zu allem Uberflul ist die Genauigkeit der
Volumenmessung merklich geringer als die Genauigkeit
einer Wigung.

Wiederum mufite man auf eine ,naturgegebene”
Einheit verzichten und als Massemaf} die Masse eines
eigens angefertigten Wigestiicks akzeptieren. Dieses
Wigestiick wird gemeinsam mit dem Urmeter eben-
falls in Paris aufbewahrt.

Zur Messung der Masse verwendet man sehr héufig
ein tausendstel bzw. ein millionstel Kilogramm, also
das Gramm und das Milligramm. Die X. und XI. General-
konferenz fiir MaB und Gewicht entwickelten das Inter-
nationale Einheitensystem SI (Systéme International),
das dann spiter von den meisten Léndern als staatlicher
Standard bestédtigt wurde. Im neuen System blieb der

* Die Wahl dieser Temperatur war kein Zufall. Das Volumen
von Wasser dindert sich vielmehr beim Erwirmen sehr eigen-
tiimlich, ndmlich nicht so, wie es bei der Mehrzahl der Korper
der Fall ist. Gewohnlich dehnen sich Koérper beim Erwirmen
aus, wihrend Wasser bei Erhohung der Temperatur von 0 bis
4 °C sein Volumen verringert und sich crst jenseits von 4 °C aus-
zudehnen beginnt. 4 °C ist daher die Temperatur, bei der die
Kontraktion des Wassers aufhért und scine Ausdehnung beginnt.
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Name Kilogramm (kg) fiir die Masse erhalten. Jede
Kraft dagegen, d. h. natiirlich auch die Gewichtskraft, wird
im neuen System in Newton (N) gemessen. Warum diese
liinheit so genannt wurde und worauf sie zuriickzufiihren
ist, erfahren wir etwas spéter.

Ober das Sl und iiber Etalons

Sollte dieses Buch Ihr erstes Buch iiber Physik sein,
dann stellen Sie bitte die Lektiire dieses Abschnitts
vorerst zuriick. Wir haben nach Altviterweise mit dem
Einfachsten begonnen. In der Tat: Was kann wohl ein-
facher sein als die Messung von Entfernungen, Zeitinter-
vallen und Massen. Einfach? Friiher war es wahrlich
oinfach, doch heute nicht. In der Gegenwart erfordert
die Léngen-, Zeit- und Massen-MeBtechnik Kenntnisse
aus der gesamten Physik, und die Erscheinungen, von
denen wir gleich mehr oder weniger ausfiihrlich sprechen
woll2n, werden erst im vierten Band unseres Werkes be-
handelt.

Das SI wurde 1960 angenommen. Langsam, sehr lang-
sam findet es Anerkennung. Wahrscheinlich miissen erst
einige Generationen einander ablésen und alle Biicher
vom Markt verschwinden, deren Verfasser das SI nicht
anerkennen wollten, und erst dann wird dieses System
definitiv alle iibrigen Systeme verdridngen.

Das SI fuit auf sieben Einheiten: Meter, Kilogramm,
Sekunde, Mol, Ampere, Kelvin und Candela.

An dieser Stelle mochte ich iiber die ersten vier Ein-
heiten sprechen, nicht mit dem Ziel, Einzelheiten iiber
die Messung der entsprechenden physikalischen Grofien
mitzuteilen, sondern um auf eine allgemeine Tendenz
hinzuweisen. Sie besteht darin, auf materielle Prototypen
zu verzichten und an ihrer Statt Naturkonstanten ein-
zufiihren, deren Wert nicht von experimentellen Ein-
richtungen abhiingen soll und die sich (zumindest nach
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Auffassung der Physik von heute) in der Zeit nicht
dndern diirfen.

Beginnen wir mit der Definition des Meters. Im
Spektrum der Atome des Krypton-Isotops 86 findet
sich eine starke Spektrallinie. Durch Verfahren, von
denen spéter berichtet wird, 148t sich jede Spektrallinie
durch Anfangs- und Endenergieniveaus charakterisieren.
Hier handelt es sich um den Ubergang vom Niveau 5ds
zum Niveau 2p,,. Das Meter ist nun gleich 1 650 763,73
Wellenlédngen der Strahlung (im Vakuum), die dem
Ubergang zwischen den Niveaus 2p,, und 5d; des Kryp-
ton-86-Atoms entspricht. Diese Lichtwellenlinge 146t
sich mit einer Genauigkeit von hochstens +4-10-° m mes-
sen. Daher hat es keinen Sinn, der oben angegebenen
neunstelligen Zahl noch eine weitere Ziffer hinzuzufii-
gen.

Wir sehen, daB uns diese Definition in keiner Weise
mehr an einen materiellen Prototyp bindet. Es gibt auch
keinen Grund zu erwarten, daB8 sich die Wellenldnge der
charakteristischen Lichtstrahlung im Laufe der Jahr-
hunderte #nderte. Das Ziel ist also erreicht.

Das mag alles schén und gut sein, konnte der Leser
sagen, doch wie 148t sich mit Hilfe eines derartigen nicht-
materiellen Prototyps ein gewohnlicher stofflicher Lén-
genmafstab eichen? Die Physik ist dazu mit Hilfe der
InterferenzmeBtechnik imstande, von der im vierten
Band die Rede sein wird.

Wir haben jedoch allen Grund anzunehmen, daB
diese Definition in allernédchster Zeit eine Veridnderung
erfahren wird. Mit Hilfe eines Lasers (z. B. eines joddampf-
stabilisierten Helium-Neon-Lasers) kann man nidmlich
eine MeBgenauigkeit der Wellenldinge von 40-!! bis
10712 m erreichen. Es ist nicht ausgeschlossen, daf} es sich
als zweckmiBig erweisen kénnte, eine andere Spektrallinie
als nichtmateriellen Prototyp zu wéhlen.

Ganz analog wird die Sekunde definiert. Man benutzt
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den Ubergang zwischen zwei nahe beieinanderliegenden
linergieniveaus des Zisium-Atoms. Die der Frequenz
dieses Ubergangs reziproke GroBe liefert die zur Aus-
fiihrung einer Schwingung aufgewendete Zeit. Eine
Sekunde wird nun gleich 9 192 631 770 Perioden dieser
Schwingungen gesetzt. Da diese Schwingungen im Mikro-
wellenbereich liegen, kann man durch Frequenzteilung
mittels elektronischer Einrichtungen jede beliebige Uhr
eichen. Dieses MeBverfahren ergibt einen Fehler von
einer Sekunde in 300 000 Jahren.

Das Ziel, das sich die Mefitechniker gesetzt haben,
besteht nun darin, ein und denselben energetischen
Ubergang sowohl zur Definition der Langeneinheit (aus-
gedriickt durch die Zahl der Wellenlédngen) als auch der
Zeiteinheit (ausgedriickt durch die Zahl der Schwingungs-
perioden) zu benutzen.

1973 wurde gezeigt, daB dieses Problem lésbar ist.
Mit Hilfe eines methanstabilisierten Helium-Neon-Lasers
wurden genaue Messungen ausgefiihrt. Die Wellenldnge
betrug 3,39 Nanometer und die Frequenz 88-.10-12 s-1,
Die Messungen waren so genau, da man durch Multi-
plikation dieser beiden Zahlen den Wert fiir die Licht-
geschwindigkeit im Vakuum zu 299 792 458 Metern in
der Sekunde auf vier Milliardstel genau erhielt.

Vor dem Hintergrund dieser glinzenden Erfolge und
der noch erheblich weiterreichenden Perspektiven 1ld8t
die MeBgenauigkeit der Masse zu wiinschen iibrig. Der
materielle Kilogramm-Prototyp bleibt leider bestehen.
Die Waagen freilich werden verbessert, und doch gelingt
es nur in seltenen Fillen, eine Mefigenauigkeit von einem
Milliardstel zu erreichen, und auch dies nur beim Massen-
vergleich zweier Korper.

Die MeSBigenauigkeit einer Masse in Gramm und die
MeBgenauigkeit der Gravitationskonstanten im Schwer-
kraftgesetz geht nicht iiber 10-° hinaus.

1971 fithrte die XIV. Generalkonferenz fiir MaBe
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und Gewichte eine neue Einheit in das SI ein: die Einheit
der Stoffmenge, bezeichnet als Mol.

Die Einfiihrung des Mols als selbstindiger Einheit
der Stoffmenge ist mit der neuen Definition, der Avo-
gadro-Konstante, verkniipft.

Man kam iiberein, als Avogadro-Konstante nicht die
Anzahl von Atomen in einem Grammatom schlechthin zu
bezeichnen, sondern die Anzahl von Atomen des Kohlen-
stoffisotops mit der Massenzahl 12 in 12 Gramm dieses
Elements. Wir bezeichnen diese Zahl mit N, und verein-
baren, als Mol diejenige Stoffmenge eines Systems zu
bezeichnen, das aus N, Partikeln besteht. Dabei konnen
beliebige Partikeln — Ionen, Elektronen, Atome, Mole-
kiille oder andere Partikelgruppen — gemeint sein.

Die Notwendigkeit, nicht nur eine neue Einheit, son-
dern auch einen neuen physikalischen Begriff einzufiihren,
héngt damit zusammen, daf wir den Massebegriff zu
Unrecht auf Elementarteilchen anwenden: Denn die
Masse ist das, was mit Hilfe einer Balkenwaage gemessen
wird.

Gegenwirtig kann die Stoffmenge (die Avogadro-Kon-
stante und damit auch die Masse der Atome) nur mit einer
geringeren Genauigkeit gemessen werden als die Masse.
Doch verstindlicherweise kann die MeBgenauigkeit der
Stoffmenge nicht groBer sein als die MeBgenauigkeit fiir
die Masse.

Die Einfiihrung dieser neuen Einheit konnte als leere
Formalitdt erscheinen. Vorderhand besteht die Recht-
fertigung der Existenz zweier Begriffe in der unterschied-
lichen Mefigenauigkeit. Sollte es irgendwann einmal
gelingen, das Kilogramm als Vielfaches der Massen be-
stimmter Atome darzustellen, dann muf das Problem
revidiert werden, und dann wird das Kilogramm zu einer
Einheit des gleichen Typs, wie es die Sekunde und das
Meter sind.
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Dichte

Was ist gemeint, wenn man sagt ,schwer wie Blei“ oder
nederleicht“? Ein winziges Bleikornchen ist doch gewif§
leicht, wihrend ein grofer Haufen bester Daunenfedern
cine betrachtliche Masse besitzt. Wer sich solcher Ver-
gleiche bedient, meint nicht die Masse der Korper, son-
dern die Dichte des Stoffs, aus dem der betreffende
Korper besteht.

Als Dichte eines Kaorpers bezeichnet man den
Quotienten aus Masse und Volumen. Es leuchtet ein,
daB die Dichte von Blei sowohl in einem winzigen Bleikorn
als auch in einem massiven Block die gleiche ist.

Zur Bezeichnung der Dichte gibt man gewdhnlich an,
wieviel Kilogramm ein Kubikmeter des betreffenden
Korpers wiegt, und setzt hinter diese Zahl die MaBein-
heit kg/m3. Zur Bestimmung der Dichte mufl man die
Anzahl von Kilogramm durch die Anzahl von Kubikme-
tern dividieren; der Bruchstrich in der MaBeinheit erin-
nert uns daran. Eine weitere mogliche DichtemaBeinheit
ist g/em3. Zu den schwersten Stoffen gehoren Metalle wie
z. B. Osmium (22,5 g/cm3), Iridium (22,4 g/cm3), Platin
(21,5 g/cm3), Wolfram und Gold (19,3 g/cm3). Die Dichte
von Eisen ist gleich 7,88 g/cm® und die Dichte von Kup-
for 8,93 g/cm3.

Zu den leichtesten Metallen gehoren Lithium, dessen
Dichte unter 1 g/em?® liegt, Magnesium (1,74 g/cm3),
Beryllium (1,83 g/cm3) und Aluminium (2,70 g/cm3).
Noch leichtere Kérper mufl man unter den organischen
Stoffen suchen: Bestimmte Ho6lzer und Plaste kénnen
oine Dichte bis zu 0,4 g/cm® haben.

Hier muB einschrinkend gesagt werden, dafl massive
Korper gemeint sind. Enthilt ein Festkorper Poren, dann
ist er natiirlich leichter. Pordse Korper, wie etwa Kork
oder Schaumglas, werden in der Technik hiufig einge-
sotzt. Die Dichte von Schaumglas kann unter 0,5 g/cm?®
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liegen, obwohl der Feststoff, aus dem es hergestellt ist,
eine Dichte iiber 1 besitzt. Wie alle Kérper, deren Dichte
unter 1 liegt, schwimmt Schaumglas auf Wasser.

Die leichteste Fliissigkeit ist fliissiger Wasserstoff,
den man allerdings nur bei sehr tiefer Temperatur erhal-
ten kann. Ein Kubikzentimeter fliissigen Wasserstoffs
hat die Masse 0,07 g. Organische Fliissigkeiten wie Alko-
hol, Benzin oder Petroleum unterscheiden sich in ihrer
Dichte nur wenig vom Wasser. Sehr schwer ist Queck-
silber; seine Dichte betrigt 13,6 g/cm3.

Wie aber soll man die Dichte von Gasen kennzeichnen?
Bekanntlich fiillen Gase stets das gesamte Volumen aus,
das wir ihnen zur Verfiigung stellen. Lassen wir aus einer
Gasflasche ein und dieselbe Gasmasse in GefdBie unter-
schiedlichen Volumens stromen, dann werden sie am
Ende stets gleichmiBig mit Gas gefiillt sein. Was aber
soll man dann als Dichte bezeichnen?

Die Dichte von Gasen wird unter sogenannten Nor-
malbedingungen bestimmt, d. h. bei der Temperatur von
0 °C sowie dem Druck von 0,1 MPa (0,1 MPa = 10% Pa =
=1 bar = 0,1 N/mm2). Unter Normalbedingungen betrigt
die Dichte von Luft 0,00129 g/cm?3, die Dichte von Chlor
0,00322 g/cm®. Den Rekord hilt dagegen gasformiger
Wasserstoff, so wie es bereits beim fliissigen Wasserstoff
der Fall war: Die Dichte dieses leichtesten aller Gase ist
gleich 0,00009 g/cm3.

Das nichstleichte Gas ist Helium, doppelt so schwer
wie Wasserstoff. Kohlendioxid ist anderthalb Mal so
schwer wie Luft. In Italien gibt es in der Néhe von Neapel
die beriihmte ,Hundsgrotte“, in deren unteren Teil
laufend Kohlendioxid ausgeschieden wird; es breitet
sich am Boden aus und verlidfit dann langsam die Grotte.
Ein Mensch kann diese Grotte ungehindert betreten,
wihrend Hunden der Erstickungstod droht. Daher riihrt
auch die Bezeichnung der Grotte.

Die Gasdichte ist sehr stark von den &uBeren Bedin-
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gungen — Druck und Temperatur — abhéngig. Ohne An-
gabe dieser duBeren Bedingungen haben Gasdichte-Werte
keinen Sinn. Die Dichte fliissiger und fester Stoffe ist
ebenfalls temperatur- und druckabhingig, allerdings in
betrachtlich geringerem MaBe.

Das Gesetz von der Erhaltung der Masse

Lost man Zucker in Wasser auf, dann ist die Masse der
Lésung gleich der Massensumme von Zucker und Wasser.
Dieser wie unzihlige dhnliche Versuch zeigen, daB die
Masse eine unverénderliche Korpereigenschaft ist. Ob
man einen Korper beliebig fein zerkleinert oder ihn
auflést: Er behilt stets ein und dieselbe Masse.

Fiir beliebige chemische Umsetzungen gilt das gleiche.
Wenn wir Kohle verbrannt haben, so kénnen wir durch
sorgfiltige Wigungen feststellen, dafl die Masse der Kohle
sowie des fiir die Verbrennung verbrauchten Luftsauer-
stoffs exakt gleich der Masse der Verbrennungsprodukte
ist.

Zuletzt wurde das Gesetz von der Erhaltung der
Masse Ende des 19. Jahrhunderts nachgepriift, als die
Technik der genauen Wiégungen bereits sehr weit ent-
wickelt war. Man fand, da8 sich die Masse bei beliebigen
chemischen Umsetzungen auch nicht um den gering-
fiigigsten Bruchteil ihres Wertes #ndert.

Schon die Alten glaubten, daB die Masse unveridnder-
lich sei. Einer ersten experimentellen Uberpriifung im
eigentlichen Sinn wurde dieses Gesetz 1756 durch Michail
Lomonossow unterzogen. Er wies 1756 die Erhaltung
der Masse beim Rosten von Metall nach und demonstrierte
die wissenschaftliche Bedeutung dieses Gesetzes.

Die Masse ist der wichtigste unverdnderliche Kenn-
wert eines Korpers. Die meisten Eigenschaften von Kor-
pern stehen sozusagen ,in des Menschen Hand“. Durch
Hirten kann man weiches Eisen, das sich mit den Hén-



)

Michail Lomonossow  [1711—1765), hervorragender russischer
Gelehrter, Begriinder der Wissenschaft in Rufiland, bedcutender
Aufklirer. Im Bereich der Physik bekimpfte Lomonossow mit
Entschiedenheit die im 18. Jahrhundert verbreiteten Vorstel-
lungen von elektrischen ,Fliissigkeiten“ und ,Warmefliissigkei-
ten* und verteidigte die molekularkinetische Theorie der Ma-
terie. Lomonossow wies als erster das Gesetz von der Konstanz
der Massen aller an chemischen Umwandlungen beteiligten Stof-
fe experimentell nach. Er nahm umfangreiche Untersuchungen
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den verbiegen 1a8t, hart und spréde werden lassen. Durch
Ultraschallwellen wird eine triibe Losung klar durch-
sichtig. Mechanische, elektrische und thermische Eigen-
schaften koénnen durch #uflere Einwirkung verdndert
werden. Doch wenn man einem Korper weder Stoff hinzu-
fiigt noch kein einziges Partikelchen von diesem Korper
entfernt, dann kann man die Masse des Kérpers nicht
dndern*, zu welchen duferen Einwirkungen man auch
Zuflucht nimmt.

Wirkung und Gegenwirkung

Wir achten oftmals nicht darauf, daf jede Kraftwirkung
von einer Gegenwirkung begleitet ist. Legt man einen
Koffer auf ein Bett mit Federboden, dann biegt sich
der Federboden durch. Die Tatsache, dal die Gewichtskraft
des Koffers auf das Bett driickt, liegt fiir jedermann klar
auf der Hand. Gelegentlich vergift man jedoch, daB
auch der Koffer durch eine Kraft von seiten des Bettes
beeinfluBBt wird. Der auf dem Bett liegende Koffer fillt ja
nicht, und das heifit, dafl von seiten des Bettes eine Kraft
auf den Koffer wirkt, die gleich der Gewichtskraft des Kof-
fers und nach oben gerichtei ist. Der Schwerkraft entgegen-
gerichtete Kréafte bezeichnet man haufig als Reaktionen
der Unterlage. Das Wort ,Reaktion”“ bedeutet ,,Gegen-
wirkung“. Die Wirkung des Tisches auf ein darauf lie-
gendes Buch oder die Wirkung des Bettes auf den darauf
gelegten Koffer, sie sind beide Reaktionen der Unterlage.

auf den Gebieten der atmosphirischen Elektrizitdt und der Meteo-
rologie vor. Lomonossow konstruierte eine ganze Reihe optischer
Gerate und entdeckte die Venus-Atmosphire. Er schuf die Grund-
lagen der russischen Wissenschaftssprache; seine Ubersetzungen
der wichtigsten physikalischen und chemischen Termini aus dem
Laateinischen ins Russische waren aufergewohnlich geschickt.

* Uber einige Einschrinkungen dieser Feststellung wird spiter
berichtet.
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Wie gerade erliutert, ermittelt man die Gewichtskraft
eines Korpers mit Hilfe einer Federwaage. Der Druck des
Korpers auf eine unter dem Korper angeordnete Feder bzw.
die Kraft, die eine Feder mit einem daran angehingten
Wigestiick dehnt, ist gleich der Gewichtskraft des Korpers.
Dabei leuchtet ein, daff die Kontraktion bzw. Dehnung
einer Feder in gleichem MaBie auch den Wert der Reak-
tion der Unterlage anzeigen.

Wenn wir mit Hilfe einer Feder die Wirkung einer
Kraft messen, messen wir stets nicht nur den Wert einer
Kraft, sondern den zweier entgegengesetzt gerichteter
Krifte. Die Federwaage miflit sowohl den Druck der Last
auf die Waagschale als auch die Reaktion der Unterlage,
d. h. die Wirkung der Waagschale auf die Last. Befesti-
gen wir eine Feder an der Wand und dehnen sie mit der
Hand, so konnen wir die Kraft messen, mit der unsere
Hand an der Feder zieht, aber gleichzeitig auch die
Kraft, mit der die Feder an der Hand zieht.

Die Krifte zeigen somit eine bemerkenswerte Eigen-
schaft: Sie werden immer paarweise angetroffen, wobei
sie einander gleich, in ihrer Richtung jedoch entgegen-
gesetzt sind. Diese beiden Krifte bezeichnet man gewohn-
lich als Wirkung und Gegenwirkung. ,Einzelkrifte*
existieren nicht in der Natur; in der Realitit gibt es nur
Wechselwirkungen zwischen Korpern. Dabei sind Kraft
und Gegenkraft stets gleich und verhalten sich zueinan-
der wie das Objekt zu seinem Spiegelbild.

Man darf allerdings nicht Krifte, die miteinander im
Gleichgewicht stehen, mit den Krédften von Wirkung und
Gegenwirkung verwechseln.

Man sagt von Kriften dann, sie stehen miteinander
im. Gleichgewicht, wenn sie an einem Korper angreifen;
so wird die Gewichtskraft des auf dem Tisch liegenden
Buches (die Wirkung der Erde auf das Buch) durch die
Reaktion des Tisches (die Wirkung des Tisches auf das
Buch) ausgeglichen.
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Im Gegensatz zu den Kriften, die beim Ausgleich
zweier Wechselwirkungen entstehen, werden die Krifte
von Wirkung und Gegenwirkung durch eine Wechsel-
wirkung, beispielsweise der des Tisches mit dem Buch,
gekennzeichnet: die Wirkung ,Tisch — Buch®“ und die
Gegenwirkung ,Buch — Tisch“. Natiirlich greifen diese
Krifte an verschiedenen Koérpern an.

Nun wollen wir versuchen, ein althergebrachtes MiB-
verstindnis aufzukldren: ,Das Pferd zieht den Wagen,
doch zieht auch der Wagen das Pferd; warum bewegen
sie sich dann trotzdem?*“ Zuerst einmal muB daran erin-
nert werden, daB das Pferd den Wagen nicht fortziehen
kann, wenn der Weg schliipfrig ist. Zur Erkldrung der
Bewegung muB man demnach nicht nur eine, sondern zwei
Wechselwirkungen beriicksichtigen: nicht nur die Wech-
selwirkung ,Wagen — Pferd”, sondern auch die Wech-
selwirkung ,Pferd — Weg“. Die Bewegung setzt ein,
sobald die Wechselwirkungskraft zwischen Pferd und
Weg (die Kraft, mit der das Pferd sich vom Weg abst58t)
grofer als die Wechselwirkungskraft ,Pferd — Wagen*
(die Kraft, mit der das Pferd den Wagen zieht) wird. Was
hingegen die Krafte ,Wagen zieht Pferd“ und ,Pferd
zieht Wagen" betrifft, so kennzeichnen sie ein und dieselbe
Wechselwirkung, und diese Kréfte werden daher sowohl
in Ruhe als auch zu jedem beliebigen Zeitpunkt der Bewe-
gung gleich sein.

Wie man Geschwindigkeiten addiert

llabe ich eine halbe Stunde und dann noch eine ganze
Stunde gewartet, so habe ich insgesamt anderthalb Stun-
den verloren. Wenn ich erst eine Mark und spéiter noch
zwei Mark bekommen habe, habe ich insgesamt drei
Mark erhalten. Habe ich 200 g und dann noch einmal
400 g Wurst gekauft, so sind es insgesamt 600 g. Von
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der Zeit, der Masse und anderen #hnlichen GréBen sagt
man, daB sie sich arithmetisch addieren lassen.

Aber nicht alle Groflen kann man einfach addieren
und subtrahieren. Wenn ich sage, dal es von Moskau
nach Kolomna 100 km und von Kolomna nach Kaschira
40 km sind, so folgt daraus nicht, dafl man von Kaschira
nach Moskau — auf dem kiirzesten Wege — eine Strecke
zuriicklegen muf}, die gleich der arithmetischen Summe
von 100 km und 40 km ist. Ortsverinderungen lassen
sich nicht arithmetisch addieren.

Welche Moglichkeit zur Addition von GroéBen gibt
es dann noch? In unserem Beispiel finden wir die not-
wendige Vorschrift leicht. Wir tragen auf ein Blatt
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Papier drei Punkte ein, die die wechselseitige Anordnung
der uns interessierenden drei Orte angeben (Bild 1.4.).
Diese drei Punkte kann man zu einem Dreieck verbinden.
Sind zwei Seiten dieses Dreiecks bekannt, dann kann
man auch die dritte Seite ermitteln, wenn man nur den
Winkel kennt, der von den beiden gegebenen Seiten
eingeschlossen wird.

Wir konnen unsere Fahrt von Moskau nach Kolomna
durch einen Pfeil darstellen. Seine Richtung gibt an,
wohin wir uns bewegen. Solche Pfeile heiflen Vektoren.
Der Weg von Kolomna nach Kaschira wird durch einen
weiteren Vektor dargestellt.

Und wie wire der Weg von Moskau nach Kaschira
darzustellen? Natiirlich durch einen entsprechenden Vek-
tor. Wir konstruieren ihn, indem wir den Anfang der
ersten Strecke mit dem Ende der zweiten Strecke verbin-
den. Der gesuchte Weg wird dann durch diese Verbin-
dungsstrecke dargestellt.

Eine Addition in der hier beschriebenen Weise heifit
geometrische Addition, und GréBen, die so addiert wer-
den, heiBlen vektorielle GroBen.

Um Anfang und Ende eines Abschnitts zu unterschei-
den, versieht man den Abschnitt mit einem Pfeil. Der
Abschnitt wird dann als Vektor bezeichnet und gibt so-
wohl die Léinge als auch die Richtung an.

Diese Regel wird auch bei der Addition mehrerer
Vektoren angewendet. Beim Ubergang vom ersten Punkt
zum zweiten, vom zweiten zum dritten usw. legen wir
einen Weg zuriick, der sich als gebrochene Linie darstellen
1a8t. Allerdings kann man den gleichen Endpunkt auch
unmittelbar vom Ausgangspunkt her erreichen. Diese
Strecke, die das Vieleck schlie8t, bildet die vektorielle
Summe. Unser Vektorendreieck zeigt natiirlich auch, wie
man einen Vektor von einem anderen subtrahieren mu8. Zu
diesem Zweck 148t man die Vektoren von einem Punkt
ausgehen. Der Vektor, der dann vom Ende des einen

3-01178



Physikalische Kérper 34

Vektors zum Ende des anderen gefilhrt wird, bildet die
Differenz der Vektoren.

Neben der Dreiecksregel kann man auch die gleich-
wertige Parallelogrammregel (Bild 1.4., unten links)
benutzen. Diese Regel erfordert die Konstruktion eines
Parallelogramms anhand der zu addierenden Vektoren
sowie das Einzeichnen einer vom Schnittpunkt der Vek-
toren ausgehenden Diagonale. Aus der Zeichnung ist zu
erkennen, daB die Diagonale des Parallelogramms nichts
anderes ist als die urspriinglich fehlende Seite unseres
Dreiecks. Demnach sind beide Regeln gleichermaBen
brauchbar. Vektoren werden nicht nur zur Beschreibung
von Ortsverdnderungen benutzt, sondern sind auch in
der Physik héufig anzutreffen.

Betrachten wir beispielsweise die Geschwindigkeit.
Die Geschwindigkeit ist der Quotient aus dem zuriickge-
legten Weg und der dafiir benétigten Zeit. Wenn der Weg
ein Vektor ist, dann ist auch die Geschwindigkeit ein
Vektor, der in die gleiche Richtung zeigt. Bei Bewegung
lings einer gekrimmten Linie &ndert sich die Bewe-
gungsrichtung stiandig. Wie 1dft sich da die Frage nach
der Bewegungsrichtung beantworten? Ein kleiner Kurve-
uabschnitt hat die gleiche Richtung wie seine Tangente.
Darum verlaufen Bewegung und Geschwindigkeit eines
Korpers ru jedem betrachteten Zeitpunkt ldngs der
Tangente an der Bewegungslinie.

Geschwindigkeiten miissen in vielen Filten vektoriell
addiert bzw. subtrahiert werden. Geschwindigkeiten
miissen z. B. dann addiert werden, wenn ein Korper an
zwei Bewegungen gleichzeitig teilnimmt. Das kommt héu-
fig vor: Man geht durch einen Zug und bewegt sich aufer-
dem gleichzeitig mit dem Zug fort; ein Wassertropfen,
der am Zugfenster herunterlduft, bewegt sich seiner
Gewichtskraft folgend abwirts und macht gleichzeitig
die Fahrt des Zuges mit; der Erdball bewegt sich um die
Sonne und fiihrt gemeinsam mit dieser eine Relativbe-
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Bild 1.5.

wegung zu den anderen Sternen aus. In allen diesen und
in dhnlichen Fillen werden die Geschwindigkeiten vek-
toriell addiert.

Verlaufen beide Bewegungen ldngs einer Linie, so
verwandelt sich die vektorielle Addition in eine gewdohn-
liche Addition, wenn beide Bewegungen in derselben
Richtung verlaufen, und in eine gewdhnliche Subtrak-
tion, wenn die Bewegungen entgegengesetzt sind.

Und wenn beide Bewegungen einen Winkel miteinan-
der einschlieBen? Dann miissen wir zur geometrischen
Addition greifen.

Wenn man etwa einen rasch dahinflieBenden FluB
iiberqueren will und das Ruder quer zur Strémungsrich-
tung hélt, wird man stromabwirts versetzt. Das Boot
war an zwei Bewegungen beteiligt: quer und lédngs zum
FluBverlauf. Die Gesamtgeschwindigkeit des Bootes ist
in Bild 1.5. gezeigt.

Noch ein Beispiel. Welches Bild zeigt die Bewegung
der Regentropfen, wenn man sie aus dem Zugfenster
heraus betrachtet? Sie haben gewifl schon einmal aus dem
Zugabteil in den Regen gesehen. Selbst bei Windstille
fdllt der Regen schrig, so als wiirde er vom Fahrtwind
abgelenkt, der der Lokomotive entgegenblast (Bild 1.6.).
Bei Windstille fallt ein Regentropfen senkrecht nach
unten. Da der Zug, wihrend die Tropfen vor dem Fen-

3
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Bild 1.6.

ster herunterfallen, einen betrdchtlichen Weg zuriicklegt,
wird der Tropfen scheinbar aus der Senkrechten ausge-
lenkt, und darum scheint der Regen schridg zu fallen.

Ist die Geschwindigkeit des Zuges vz und die Fallge-
schwindigkeit des Tropfens vg, so erhidlt man die Fallge-
schwindigkeit des Tropfens relativ zu einem Fahrgast
im Zug durch vektorielle Subtraktion von vp minus vg*.
Das Geschwindigkeitsdreieck ist in Bild 1.6. dargestellt.
Die Richtung des schrig verlaufenden Vektors gibt die
Richtung des Regens an; nun ist auch klargeworden,
warum wir den Regen schrig fallen sehen. Die Linge
des schrig verlaufenden Pfeils gibt uns im gewéhlten
Mafistab den Betrag dieser Geschwindigkeit an. Je
schneller der Zug fihrt und je langsamer der Tropfen
fallt, um so schriger werden wir den Regen fallen sehen.

Die Kraft als Vektor

Ebenso wie die Geschwindigkeit ist auch die Kraft eine
vektorielle Grofle. Sie wirkt bekanntlich stets in einer
bestimmten Richtung. Also miissen auch Krifte nach
den gleichen Regeln, wie eben behandelt, addiert werden.

* Hier und im folgenden werden wir Vektoren, d.h. Para-
meter, fiir die nicht nur ihr Betrag, sondern auch ihre Richtung
wesentlich ist, durch fettgedruckte Buchstaben kennzeichnen.
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Bild 1.7.

Wir konnen im tédglichen Leben stindig Erscheinun-
gen beobachten, die die vektorielle Addition von Kréften
veranschaulichen. In Bild 1.7. ist ein Seil dargestellt,
an dem ein Ballen hingt. Mit Hilfe eines anderen Seils
zieht ein Arbeiter den Ballen zur Seite. So wird das Seil,
an dem der Ballen hiangt, durch die Wirkung zweier
Krifte gespannt: durch die Gewichtskraft des Ballens
und die Kraft des Arbeiters.

Durch vektorielle Addition der Krifte kann man die
Richtung des Seils bestimmen und die Kraft, mit der
das Seil gespannt wird, berechnen. Der Ballen befindet
sich in Ruhe; also muBl die Summe der auf den Ballen
wirkenden Kréfte gleich O sein. Man kann auch folgendes
sagen: Die auf das Seil wirkende Kraft muf§ gleich der
Summe der Gewichtskraft des Ballens und der seitlich
auslenkenden Zugkraft sein, die mit IHilfe des zweiten
Scils ausgelibt wird. Die Summe beider Krifte liefert die
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Resultierende der Zugkrdfte

Bild 1.8.

Diagonale im Parallelogramm, die in Seilrichtung verléuft
(denn anders konnte sie ja nicht durch die Zugkraft des
Seils ,,vernichtet* werden). Die Linge dieses Pfeils mu8
dann die Zugkraft des Seils darstellen. Durch diese Kraft
kénnten die beiden auf den Ballen wirkenden Krifte
ersetzt werden. Deshalb bezeichnet man die vektorielle
Summe von Kréften gelegentlich als Resultierende.

Sehr haufig taucht ein Problem auf, das der Kriftead-
dition gerade entgegengesetzt ist. Eine Lampe soll an
zwei Seilen hdngen. Um die auf beide Seile wirkende
Zugkraft zu bestimmen, muB die Gewichtskraft der
Lampe fiir die beiden Richtungen zerlegt werden.

Vom Ende des resultierenden Vektors aus (Bild 1.8.)
ziehen wir parallel zu den Seilen verlaufende Linien bis
zu ihrem Schnittpunkt mit den Seilen. Damit haben wir
das Krifteparallelogramm vor uns. Durch Ausmessen der
Seitenldnge des Parallelogramms finden wir (im gleichen
MaBstab, in dem die Gewichtskraft dargestellt ist) die
Zugkrifte, die auf die Seile wirken.

Diese Konstruktion wird als Kraftzerlegung bezeich-
net. Jede Zahl kann durch eine unendliche Menge von
Yerfahren als Summe zweier oder mehrerer Zahlen dar-
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Bild 1.9.

gestellt werden; das gleiche gilt auch fiir den Kraftvektor:
Jede Kraft 1a8t sich in zwei Krifte zerlegen, d.h. in
Seiten eines Parallelogramms, von denen eine stets frei
wiahlbar ist. Es leuchtet auch ein, da man an jedem
Vektor ein beliebiges Vieleck ansetzen kann.

Haufig ist es giinstig, eine Kraft in zwei zueinander
senkrecht stehende Krifte zu zerlegen, wobei eine in der
uns interessierenden Richtung verlduft und die andere
senkrecht zu dieser Richtung. Man bezeichnet sie als
Lings- und (senkrecht dazu verlaufende) Normalkompo-
nenten der Kraft.

Die Kraftkomponente in einer bestimmten Richtung,
die durch Zerlegen auf die Seiten eines Rechtecks erhalten
worden ist, bezeichnet man auch als Projektion der
Kraft auf diese Richtung.

Es leuchtet ein, daBl in Bild 1.9.

F?=Fi+4 Fi
gilt, wobei Fi, und Fy die Projektionen der Kraft auf die
gewahlte Richtung sowie die Normale dazu darstellen.

Wer sich in der Trigonometrie auskennt, kann nun
ohne Schwierigkeit feststellen, daf

Fy, = F-cos a
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ist, wobei o den Winkel angibt, den der Kraftvektor und
die Richtung, auf die die Kraft projiziert wird, einschlie-
Ben.

Ein interessantes Kraftzerlegungsbeispiel stellt die
Bewegung eines Segelschiffes dar. Wie ist es moglich,
gegen den Wind anzusegeln? Wenn Sie einmal Gelegen-
heit hatten, eine Segeljacht dabei zu beobachten, konnten
Sie feststellen, da die Bewegung zickzackférmig ver-
lauft. Die Seeleute bezeichnen diese Bewegung als Kreu-
zen.

Direkt gegen den Wind zu segeln ist natiirlich un-
moglich. Aber wieso gelingt es, doch wenigstens unter
einem bestimmten Winkel gegen den Wind anzukommen?

Die Maéglichkeit, gegen den Wind zu kreuzen, beruht
auf zwei Umstinden. Zum ersten driickt der Wind stets
rechtwinklig gegen die Segelfliche. Schauen Sie sich
einmal Bild 1.10a. an: Die Windkraft ist in zwei Kom-
ponenten zerlegt; die eine davon, Fg, veranlaBt den
Wind, am Segel entlangzugleiten, und wirkt damit nicht
auf das Segel ein, die andere Komponente Fy, die soge-
nannte Normalkomponente, driickt auf das Segel.

Warum bewegt sich das Segelboot aber nicht dorthin,
wohin es von der Windkraft geschoben wird, sondern
etwa in die Richtung, in die der Bug des Bootes zeigt?
Dies erkldrt sich daraus, daB jede Bewegung des Bootes
quer zu seiner Kiellinie auf einen sehr starken Widerstand
des Wassers trifft. Damit sich das Boot mit dem Bug
voraus bewegt, muB die auf das Segel wirkende Druckkraft
demnach eine, Komponente im Verlauf der Kiellinie
haben, die vorauszeigt. Der zweite Umstand ist in Bild
1.10b. dargestellt.

Um die Kraft zu ermitteln, die das Boot vorwirts
treibt, muB die Windkraft ein weiteres Mal zerlegt werden.
Die Normalkomponente muf} lings und quer zur Kiellinie
aufgeteilt werden. Die Liingskomponente bringt das Boot
nnter einem bestimmten Winkel zum Wind voran, wih-
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rend die Querkomponente durch den Wasserdruck auf
den Bootskorper ausgeglichen wird. Meist wird das Segel
so eingestellt, daf seine Fliache den Winkel zwischen
der Fahrtrichtung des Bootes und der Windrichtung
halbiert.

Die schiefe Ebene

Ein steiler Anstieg ist schwerer zu iiberwinden als ein
weniger steiler. Es ist leichter, einen Korper iiber eine
schiefe Ebene auf eine bestimmte Hohe zu rollen, als den
gleichen Korper senkrecht zu heben. Warum? Durch
Addition der Kréfte konnen wir auch bei diesem Problem
Klarheit gewinnen.

In Bild 1.11. ist ein Wagen mit Rédern dargestellt, der
durch die Zugkraft eines Seils auf einer schiefen Ebene
gehalten wird. AuBler der Zugkraft wirken noch zwei
Krifte auf den Wagen ein: seine Gewichtskraft und die
Reaktionskraft der Unterlage, die stets in Normalrichtung
zur Fliache angreift, unabhingig davon, ob die Auflage-
flache waagerecht angeordnet ist oder eine Neigung be-
sitzt.

Wenn ein Korper auf seine Unterlage driickt, dann
wirkt die Unterlage diesem Druck entgegen bzw. erzeugt
eine Reaktionskraft.

Uns interessiert nun, in welchem Mafe es leichter ist,
den Wagen iiber eine schiefe Ebene aufwirts zu schleppen
als ihn senkrecht zu heben.

Wir zerlegen die Krifte so, daf eine von ihnen parallel
und eine senkrecht zu der Fldache verlduft, auf der sich
der Korper bewegt. Damit der Korper auf der schiefen
Ebene in Ruhe ist, muBl die Zugkraft des Seils nur diese
parallel verlaufende Komponente ausgleichen. Was die
zweite Komponente betrifft, so wird sie von der Reak-
tion der Unterlage ausgeglichen,
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Reaktionskraft

Bild 1.11.

Die uns interessierende Seilzugkraft Fp 1d8t sich ent-
weder durch geometrische Konstruktion oder mit Hilfe
der Trigonometrie ermitteln. Die geometrische Kon-
struktion besteht darin, daf man aus dem Ende des
Gewichtskraftvektors Fp eine Senkrechte auf die Ebene
fallt.

Nun lassen sich in der Zeichnung zwei &#hnliche
Dreiecke finden. Das Verhdltnis aus der Lédnge I der
schiefen Ebene und der Hohe % ist gleich dem Verhéltnis
der entsprechenden Seiten im Kraftdreieck. Also gilt:

Fp_h

Fp:l°

Je geringer die Neigung der schiefen Ebene ist (% ist

klein) , um so leichter 148t sich natiirlich der Kérper auf-

wirts schleppen.

Und nun das Ganze noch einmal fiir Trigonometrie-
kundige: Da der Winkel zwischen der Querkomponente
der Gewichtskraft und dem Gewichtsvektor gleich dem
Winkel o der schiefen Ebene ist (jeder Schenkel des
cinen Winkels steht jeweils senkrecht auf dem zugehé-
rigen Schenkel des anderen Winkels), gilt:

F . .
i,Izsmoc und Fp=Fp-sina,
P
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Fassen wir zusammen: Der Wagen 148t sich auf einer
schiefen Ebene mit dem Winkel oo um Eiﬁ leichter nach

oben beférdern als in senkrechter Richtung.

Es ist niitzlich, wenn man die Werte der trigonome-
trischen Funktionen fiir die Winkel 30, 45 und 60° im
Gedédchtnis behdlt. Kennt man diese Werte fiir den Sinus
(sin 30° = % ;  sin 45° = %VE; sin 60° = —;—Vg) , SO
erhilt man eine gute Vorstellung vom Kraftgewinn bei
Bewegung iiber eine schiefe Ebene.

Aus der Formel folgt, dal unsere Anstrengungen bei
einem Winkel der schiefen Ebene von 30° der Héilfte der

Gewichtskraft entsprechen: 7' = % . Bei Winkeln von 45°

bzw. 60° muB am Seil eine Kraft von etwa 0,7 bzw. 0,9
der Wagengewichtskraft aufgewendet werden. Wie wir
sehen, machen steile schiefe Ebenen die Arbeit nur
wenig leichter.



2. Die Bewegungsgesetze

Verschiedene Standpunkte zur Bewegung

Ein Koffer liegt im Gepéacknetz eines Eisenbahnwagens.
Gleichzeitig bewegt er sich mit dem Zug fort. Ein Haus
steht auf der Erde, bewegt sich jedoch gemeinsam mit
dieser. Man kann also von ein und demselben Korper
sagen: Er bewegt sich geradlinig fort, er befindet sich
in Ruhe, und er rotiert. Und alle Uberlegungen sind
richtig, nur jeweils von einem anderen Standpunkt aus.

Nicht nur das Bild einer Bewegung, sondern auch die
Eigenschaften einer Bewegung konnen ganz unterschied-
lich sein, wenn man sie von verschiedenen Standpunkten
aus betrachtet.

Denken Sie nur einmal daran, was mit den Gegen-
stinden auf einem schlingernden Schiff geschieht. Sie
benehmen sich denkbar ungehérig! Der auf dem Tisch
stehende Aschenbecher kippt um und fliegt unters Bett.
Das Wasser in der Karaffe droht iiberzuschwappen, und
die Lampe schwankt wie ein Pendel. Ohne jede ersichtliche
Ursache geraten die einen Gegenstinde in Bewegung,
wiahrend andere anhalten. Das wichtigste Bewegungsge-
setz — so konnte ein Beobachter, der sich auf diesem
Schiff befindet, sagen — besteht darin, daB ein unbefe-
stigter Gegenstand zu jedem beliebigen Zeitpunkt in
jeder beliebigen Richtung ,auf Reisen* gehen kann, und
zwar mit den unterschiedlichsten Geschwindigkeiten.

Dieses Beispiel zeigt, daB es unter den verschiedenen
Standpunkten, die man zur Bewegung haben kann, auch
sehr unbequeme gibt.
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Welcher Standpunkt wire dann der ,verninftigste“?

Sollte die Lampe auf dem Tisch unversehens ins
Kippen kommen oder das Schreibzeug hochhiipfen, dann
wiirden Sie zundchst einmal zu traumen glauben. Wiirden
sich diese Wunder aber wiederholen, dann wiirden Sie
hartnidckig nach der Ursache suchen, die diese Koérper
aus der Ruhe bringt.

Es ist daher nur ganz natiirlich, denjenigen Stand-
punkt beziiglich der Bewegung als rational anzusehen,
bei dem ruhende Korper ihre Lage nicht ohne Wirkung
einer Kraft verdndern. Dieser Standpunkt erscheint
héchst naturgemiB. Befindet sich ein Kérper in Rubhe,
dann ist die Summe aller auf ihn einwirkenden Krifte
gleich Null. Er bewegt sich nur unter Wirkung einer
Kraft.

Dieser Standpunkt setzt einen Beobachter voraus.
Uns interessiert allerdings nicht der Beobachter selbst,
sondern der Ort, an dem dieser sich befindet. Darum
werden wir statt ,Standpunkt beziiglich der Bewegung"
im weiteren sagen: ,Bezugssystem, in dem die Bewegung
betrachtet wird" oder einfach nur ,Bezugssystem®.

Fiir uns als Erdbewohner ist die Erde ein wichtiges
Bezugssystem. Héufig allerdings konnen auch Korper,
die sich auf der Erde bewegen, etwa ein Schiff oder ein
Zug, als Bezugssysteme dienen.

Kehren wir nun zu dem ,Standpunkt” beziiglich der
Bewegung zuriick, die wir als rationell bezeichnet haben.
Dieses Bezugssystem hat einen Namen: Es heifit Inertial-
system.

Woher dieser Terminus stammt, werden wir ein wenig
spéter erfahren.

Das Inertialbezugssystem hat folgende Eigenschaften:
Korper, die sich relativ zu diesem System im Zustand
der Ruhe befinden, sind keiner Wirkung von Kréften
ausgesetzt. Innerhalb dieses Systems setzt also keine
einzige Bewegung ohne die Wirkung einer Kraft ein.
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Man erkennt deutlich, wie einfach und bequem dieses
Bezugssystem ist. Es lohnt sich, dieses System zur Grund-
lage zu nehmen.

Wichtig ist, daB sich ein mit der Erde gekoppeltes
Bezugssystem von einem Inertialsystem nicht wesentlich
unterscheidet. Daher konnen wir mit dem Studium der
wichtigsten GesetzmaBigkeiten der Bewegung beginnen,
indem wir sie vom Standpunkt der Erde aus betrachten.
Allerdings miissen wir stets daran denken, daB alles, was
im folgenden Abschnitt gesagt ist, strenggenommen fiir
das Inertialbezugssystem gilt.

Das Tragheitsgesetz

Kein Zweifel: Das Inertialbezugssystem ist bequem und
weist unschétzbare Vorziige auf.

Ist es aber das einzige System, oder existieren mog-
licherweise viele Inertialsysteme? Die alten Griechen
beispielsweise vertraten den erstgenannten Standpunkt.
Wir finden in ihren Werken viele naive Uberlegungen
iiber die Ursache der Bewegung. IThre Vollendung finden
diese Vorstellungen bei Aristoteles.|Nach Meinung dieses
Philosophen ist die Kuhe — relativ zur Erde — die
natiirliche Situation der Korper. Denn jegliche Lagednde-
rung von Korpern relativ zur Erde muf eine Ursache in
Gestalt einer Kraft besitzen. Besteht keine Veranlassung
zur Bewegung, dann muf} ein Korper stillstehen und in
seinen natiirlichen Zustand iibergehen. Dieser aber ist die
Ruhelage relativ zur Erde. Von diesem Standpunkt aus
betrachtet ist die Erde das einzige Inertialsystem.

Die Entdeckung der Wahrheit und die Widerlegung
dieser falschen, der naiven Psychologie jedoch sehr nahe-
liegenden Auffassung verdanken wir dem grofen Ita-
liener Galileo Galilei (1564—1642).

Lassen Sie uns nun iiber die aristotelische Erkldrung
der Bewegung nachdenken und unter den uns bekannten



Galileo Galilei [1564—1642), bedeutender italienischer Phy-
siker und Astronom, der erstmals die experimentelle Forschung
in der Wissenschaft einsetzte. Galilei fiihrte den Begriff der Trig-
heit ein, wies die Relativitit der Bewegung nach, erforschte die
Fallgesetze und die Bewegung von Korpern auf der schiefen Ebene
ebenso wie die Bewegungsgesetze fiir den Fall, da8 ein Gegenstand
unter einem bestimmten Winkel zur Waagerechten emporgeworfen
wird, und er benutzte das Pendel zur Zeitmessung. Erstmals in
der Menschheitsgeschichte richtete er ein Fernrohr auf den Himmel,
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Erscheinungen nach Bestdtigung oder Widerlegung der
Idee von der natiirlichen Ruhe aller auf der Erde befind-
lichen Korper suchen.

Stellen wir uns vor, daB wir in einem Flugzeug sitzen,
das im Morgengrauen vom Flugplatz gestartet ist. Noch
hat die Sonne die Luft nicht erwdrmt, und noch gibt es
keine ,Luftlocher, die vielen Fluggdsten so unangenehm
sind. Die Bewegung des Flugzeugs ist gleichmiBig und
nicht wahrnehmbar. Wenn man nicht hinaussieht, be-
merkt man nicht einmal, da man fliegt. Auf dem freien
Sitzplatz neben uns liegt ein Buch und auf dem Tisch
ein Apfel. Alle Gegenstinde im Inneren des Flugzeugs
sind unbeweglich. MiiBte dies alles wirklich so sein, wenn
Aristoteles recht hatte? Natiirlich nicht. Denn die natiir-
liche Lage eines Korpers nach Aristoteles ist die Ruhelage
auf der Erde. Warum sind dann nicht simtliche Gegen-
stinde an der Heckwand des Flugzeugs versammelt, im
Bestreben, hinter der Bewegung des Flugzeugs zuriick-
zubleiben, im ,Wunsch”, den Zustand ,wahrer* Ruhe
zu erreichen? Was veranlafit den auf dem Tisch liegenden
Apfel, der die Tischoberfliche kaum beriihrt, sich mit
der ungeheuren Geschwindigkeit von einigen hundert
Kilometern in der Stunde fortzubewegen?

Wie lautet die richtige Antwort auf die Frage nach der
Bewegungsursache? Zunidchst einmal wollen wir fest-
stellen, warum in Bewegung befindliche Korper zum
Stillstand kommen. Warum kommt beispielsweise eine
auf der Erde rollende Kugel zur Ruhe? Um die richtige
Antwort zu finden, muBl man dariiber nachdenken, wann

entdeckte eine Vielzahl neuer Sterne und wies nach, da8 die Milch-
straBe aus einer ungeheuren Anzahl von Sternen besteht; er ent-
deckte die Jupitermonde, die Sonnenflecken, die Rotation der
Sonne und untersuchte die Struktur der Mondoberfliche. Galilei
war ein aktiver Fiirsprecher des zu jener Zeit von der katholischen
Kirche verbotenen heliozentrischen Systems. des Kopernikus,
Die Verfolgungen durch die Inquisition verdiisterten die letzten
zehn Lebensjahre dieses groBen Gelehrten.

4—-01178
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die Kugel rasch und wann sie langsam zum Stillstand
kommt. Dazu bedarf es keiner besonderen Experimente.
Aus der Praxis des Alltags wissen wir sehr wohl, daB
eine Kugel um so weiter rollt, je glatter die Oberflache
ist. Aus diesen und &hnlichen Versuchen erwichst die
natiirliche Vorstellung von der Reibungskraft als einem
Hindernis fiir die Bewegung, als der Ursache fiir die
Bremsung eines Gegenstandes, der auf der Erde dahinrollt
oder gleitet. Die Reibung 148t sich auf verschiedene Weise
vermindern. Glatte StraBen, gute Schmierung und ein-
wandfreie Lager lassen einen in Bewegung befindlichen
Korper ohne die Wirkung einer dufleren Kraft einen um
so lingeren Weg ungehindert zuriicklegen, je mehr Miihe
wir darauf verwendet haben, alle Widerstinde zu ver-
ringern, die sich der Bewegung entgegensetzen.

Nun erhebt sich folgende Frage: Was wére, wenn es
keinen Widerstand gébe, wenn die Reibungskrifte nicht
existierten? Es liegt auf der [Hand, daB die Bewegung sich
in diesem Fall bis ins Unendliche fortsetzen wiirde, und
zwar mit unveridnderter Geschwindigkeit und lidngs ein
und derselben Geraden.

Wir haben hier das Triagheitsgesetz etwa in der Form
formuliert, wie es erstmals von Galilei angegeben worden
ist. Die Tridgheit ist nur die Kurzbezeichnung fir diese
Fahigkeit eines Korpers, sich geradlinig und gleichformig
fortzubewegen, und zwar ohne jede Ursache, Aristoteles
zum Trotz. Die Trigheit ist eine untrennbare Eigenschaft
jedes einzelnen Teilchens im Weltall.

Wie konnte man die Richtigkeit dieses bemerkenswer-
ten Gesetzes nachpriifen? Es ist ja leider unmdéglich, Be-
dingungen herzustellen, unter denen ein bewegter Korper
von keinerlei Kréaften beeinfluBt wird. Doch dafiir 1a8t
sich das Gegenteil verfolgen. Immer, wenn ein Korper
seine Geschwindigkeit oder Bewegungsrichtung &ndert,
kann man eine Kraft als Ursache dieser Anderung ermitteln.
Ein Korper, der zur Erde fillt, erwirbt eine bestimmte
Geschwindigkeit; die Ursache liegt in der Erdanziehungs-
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kraft. Ein Stein, der an einem Seil befestigt ist, beschreibt
bei seiner Bewegung eine Kreisbahn; die Ursache, die
den Stein vom geraden Weg abbringt, ist die Zugkraft
des Seils. Reifit das Seil, dann fliegt der Stein in die
Richtung davon, in die er sich gerade bewegte, als das
Seil ri. Die Bewegung eines Autos, das mit ausgeschalte-
tem Motor weiterrollt, verlangsamt sich; die Ursache liegt
im Luftwiderstand, in der Reibung der Reifen auf der
StraBendecke und in der Unvollkommenheit der Lager.

Das Tragheitsgesetz ist jenes Fundament, auf dem die
gesamte Lehre von den Bewegungen der Korper beruht.

Die Bewegung ist relativ

Das Trigheitsgesetz fiilhrt uns zu dem SchluBl, daf es
eine Vielzahl von Inertialsystemen gibt.

Nicht nur ein einziges, sondern eine Vielzahl von
Bezugssystemen schlieBt ,grundlose“ Bewegungen aus.

Haben wir ein derartiges System erst einmal gefunden,
dann findet sich gleich auch ein weiteres, das sich (ohne
Rotation) gleichférmig und geradlinig relativ zum ersten
System fortbewegt. Dabei ist kein Inertialsystem auch
nur einen Deut besser als ein anderes; sie unterscheiden
sich nicht voneinander. Es ist ganz unmoglich, unter der
Vielzahl von Inertialsystemen ein bestes System heraus-
zufinden. Die Bewegungsgesetze der Korper sind fiir
samtliche Inertialsysteme gleich: Ein Koérper kommt nur
unter Krafteinwirkung in Bewegung, er wird von Kriften
gebremst, und wo eine Kraftwirkung fehlt, befindet sich
der Korper entweder in Ruhe oder bewegt sich gleich-
formig und geradlinig fort.

Die Unméglichkeit, ein bestimmtes Inertialsystem
durch Versuche, welcher Art auch immer, gegeniiber
anderen Inertialsystemen auszuzeichnen, bildet den We-
sensinhalt des sogenannten Relativitdtsprinzips von Gali-
lei, einem der wichtigsten Gesetze der Physik.

Doch obwohl die Standpunkte verschiedener Beobach-

4%



Physikalische Koérper 52

ter, die die Erscheinungen in zwei Inertialsystemen unter-
suchen, vollig gleichberechtigt sind, fallt ihr Urteil iiber
ein und dieselbe Tatsache v6llig unterschiedlich aus.
Ein Beobachter kénnte beispielsweise sagen, daB sich
sein Platz in einem fahrenden Zug die ganze Zeit iiber
an ein und demselben Ort im Raum befindet, wihrend
ein Beobachter, der drauBen auf dem Bahnsteig steht,
behaupten wird, der Sitzplatz bewege sich von einem Ort
zum anderen. Wieder ein anderer Beobachter konnte nach
Abfeuern eines Gewehrs sagen, da die Kugel den Lauf
mit einer Geschwindigkeit von 500 m/s verlassen hat,
wihrend ein anderer Beobachter — falls er sich in einem
System befindet, das sich mit der Geschwindigkeit
200 m/s in der gleichen Richtung fortbewegt — behaup-
ten wird, die Kugel floge betrachtlich langsamer, ndmlich
nur mit der Geschwindigkeit 300 m/s.

Wer von beiden hat recht? Beide! Das Relativitits-
prinzip der Bewegung verbietet es uns ja gerade, einem
Inertialsystem vor anderen den Vorzug zu geben.

Somit lassen sich iiber einen Ort im Raum und iiber
eine Geschwindigkeit keine allgemeinen, uneinge-
schrankt zutreffenden, sogenannten absoluten Urteile
fillen. Die Begriffe eines Orts im Raum und einer
Geschwindigkeit sind relativ. Immer wenn man derar-
tige relative Begriffe gebraucht, muf man dazu sagen,
welches Inertialsystem man meint.

So fithrt uns das Fehlen eines und nur eines ,,richtigen*
Standpunkts beziiglich der Bewegung auch zur Erkenntnis
der Relativitdt des Raumes. Man konnte den Raum nur
dann absolut nennen, wenn es gelidnge, einen darin ru-
henden Korper zu finden, einen Korper, der, vom Stand-
punkt aller Beobachter aus gesehen, ruht. Genau dies ist
unmoglich. Die Relativitit des Raumes bedeutet, daB
man sich den Raum nicht als etwas vorstellen kann,
worin die Koérper eingebettet sind.

Die Wissenschaft hat die Relativitdt des Raumes nicht
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sogleich anerkannt. Selbst ein so genialer Gelehrter wie
Newton hielt den Raum fiir absolut, obwohl er einsah,
daff dies nachzuweisen unmaéglich sei. Diese falsche Auf-
fassung war noch bis Ende des 19. Jahrhunderts unter
vielen Physikern verbreitet. Offenbar sind die Ursachen
dafiir psychologischen Charakters: Allzusehr haben wir
uns daran gewohnt, in unserer Umgebung ,stets ein und
dieselben Orte im Raum unerschiittert zu sehen. Nun
aber miissen wir Klarheit dariiber gewinnen, welche abso-
luten Urteile iiber den Charakter der Bewegung gefillt
werden koénnen.

Bewegen sich zwei Korper relativ zu einem Bezugssy-
stem mit den Geschwindigkeiten v, und v, fort, dann ist
ihre (natiirlich vektorielle) Differenz v, — v, fiir jeden
beliebigen Inertialbeobachter gleich, da sich beide Ge-
schwindigkeiten bei Anderung des Bezugssystems um
den gleichen Betrag #ndern.

Die vektorielle Geschwindigkeitsdifferenz zweier K 6r-
per ist demnach absolut. Dann ist aber auch der Vektor
des Geschwindigkeitszuwachses ein und desselben Kér-
pers innerhalb eines bestimmten Zeitabschnitts absolut,
d. h., sein Betrag ist fiir alle Inertialbeobachter gleich.

Der Standpunkt des Sternbeobachters

Wir wollten die Bewegung unter dem Aspekt von Iner-
tialsystemen untersuchen. Miiften wir dann nicht auf die
Dienste des irdischen Beobachters verzichten? Schlie8lich
dreht sich die Erde um ihre Achse und auBerdem um die
Sonne, wie schon Kopernikus bewiesen hat. Einem Leser
von heute diirfte es wohl schwerfallen, den revolutionidren
Charakter der Entdeckung des Kopernikus nachzuempfin-
den, schwer auch, sich vorzustellen, da8 in Verteidigung
ihrer Uberzeugungen Giordano Bruno den Scheiterhaufen
bestieg und Galilei Erniedrigung und Verbannung iiber
sich ergehen lie§,
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Worin liegt das Geniale im Fortschritt des Koperni-
kus? Warum darf man die Entdeckung der Erdrotation in
eine Reihe mit den Ideen menschlicher Gerechtigkeit
stellen, fiir deren Durchsetzung Menschen bereit waren,
ihr Leben hinzugeben?

Galilei gab in seinem ,Dialogo sopra i due massimi
sistema del mondo* — ein Werk, fiir das er den Verfol-
gungen der Kirche ausgesetzt war — dem Gegner des
Kopernikanischen Systems den Namen Simpliciso, was
soviel wie ,einfiltiger Mensch“ bedeutet.

In der Tat erscheint das Kopernikanische System vom
Standpunkt der einfachen unmittelbaren Wahrnehmung
der Welt, d. h. vom Standpunkt dessen, was man nicht
sehr gliicklich als ,,gesunden Menschenverstand* bezeichnet,
geradezu widersinnig. Wieso soll sich die Erde drehen?
Schliefilich sehe ich ja, daB sie unbeweglich ist, wahrend
die Sonne und die Sterne sich wirklich bewegen.

Das Verhiltnis der Geistlichen zur Entdeckung des
Kopernikus zeigt folgendes Verdikt einer Versammlung
von Theologen aus dem Jahre 1616:

»,Die Lehre, wonach die Sonne sich im Mittelpunkt
der Welt befindet und unbeweglich ist, ist falsch und
unsinnig, formal ketzerisch und der Heiligen Schrift
zuwider. Und die Lehre, wonach die Erde nicht im Mit-
telpunkt der Welt ruht, sondern sich bewegt und sich
tiberdies in 24 Stunden um ihre Achse dreht, ist falsch
und unsinnig vom philosophischen Standpunkt und vom
theologischen Standpunkt zumindest irrig.”

Dieses Gutachten, worin das Unverstindnis der Na-
turgesetze und der Glaube an die Unfehlbarkeit der Dog-
men der Religion mit falschem ,gesundem Menschenver-
stand“ vermischt sind, bezeugt wohl am besten die Kraft
des Geistes und des Verstandes bei Kopernikus und seinen
Nachfolgern, die so entschieden mit den ,Wahrheiten
des 17. Jahrhunderts gebrochen hatten. Doch kehren
wir zu der oben aufgeworfenen Frage zuriick,
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Andert sich die Geschwindigkeit des Beobachters oder
rotiert dieser, dann muf er aus der Zahl der ,richtigen
Beobachter ausgesondert werden. Genau in dieser Situa-
tion aber befindet sich ein Beobachter auf der Erde. Ist
jedoch die Geschwindigkeitsinderung oder die Drehung
eines Beobachters innerhalb der Zeit, wihrend der er eine
Bewegung untersucht, klein, dann kann man ihn bedingt
als ,richtigen” Beobachter einstufen. Gilt dies nun auch
fiir einen Beobachter auf dem Erdball?

Innerhalb einer Sekunde dreht sich die Erde um

%}Grad, d. h. um etwa 0,00007 Radian. Das ist nicht

sehr viel. Hinsichtlich vieler Erscheinungen ist die Erde
daher durchaus ein Inertialsystem.

Bei linger andauernden Erscheinungen dagegen darf
man die Erdrotation schon nicht mehr auBer acht lassen.

Unter der Kuppel der Isaakskathedrale in Leningrad
hing eine Zeitlang ein riesiges Pendel. Brachte man dieses
Pendel zum Schwingen, dann konnte man nach nicht
allzu langer Zeit bemerken, dafl sich seine Schwingungs-
ebene langsam dreht. In einigen Stunden macht diese
Drehung der Ebene bereits einen merklichen Winkel aus.
Einen Versuch mit einem derartigen Pendel unternahm
erstmals der franzdsische Wissenschaftler Jean Fou-
cault®*  und seither trigt der Pendelversuch seinen Namen.

Foucaults Experiment veranschaulicht die Erddrehung
(Bild 2.1.).

Dauert die beobachtete Erscheinung lange Zeit an,
dann sind wir gezwungen, auf die Dienste des irdischen
Beobachters zu verzichten und ein Bezugssystem zu
wiahlen, das an die Sonne und die Erde gekoppelt ist.
Ein System dieser Art verwendete Kopernikus, der die
Sonne und die uns umgebenden Sterne als unbeweglich
ansah.

* Jean Foucault (1819—1868) fiihrte 1851 im Pantheon in
Paris den beriihmten Pendelversuch zum Nachweis der Ach-
sendrehung der Erde aus. Anm. d. Red.
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Bild 2.1.

Freilich ist in Wirklichkeit auch das Kopernikanische
System nicht vollig inertial.

Das Weltall besteht aus einer Vielzahl von Stern-
haufen — Inseln im Weltall —, die als Galaxien bezeich-
net werden. Die Galaxis, zu der unser Sonnensystem
gehort, enthdlt etwa hundert Milliarden Sterne. Die
Sonne rotiert mit einer Umlaufzeit von etwa 180 Millio-
nen Jahren mit einer Geschwindigkeit von 250 km/s um
das Zentrum dieser Galaxis.

Wie gro8 ist dann der Fehler, den wir machen, wenn
wir einen Beobachter auf der Sonne als Inertialbeobachter
ansehen?
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Zum Vergleich der Vorziige eines irdischen und eines
solaren Beobachters wollen wir einmal ausrechnen, um
welchen Winkel sich das Sonnenbezugssystem wihrend
einer Sekunde weiterdreht. Wenn ein vollstindiger
Umlauf in 180-10® Jahren (6-10'® s) vollzogen wird, dann
bewegt sich das Sonnenbezugssystem in einer Sekunde um
6-10-1* Grad oder um einen Winkel von 10-'® Radian
weiter. Also kann man sagen, da der solare Beobachter
um 100 milliardenmal ,besser ist als der irdische.

Im Bestreben, ein noch besseres Inertialsystem zu errei-
chen, legen die Astronomen ein Bezugssystem zugrunde,
das an mehrere Galaxien gekoppelt ist. Dieses Bezugs-
system ist unter allen moglichen Systemen das beste
Inertialsystem. Ein noch besseres System 148t sich nicht
finden.

Man kénnte Astronomen im doppelten Sinn als Stern-
beobachter bezeichnen: Sie beobachten die Sterne und
beschreiben die Bewegung der Himmelskérper vom
Standpunkt der Sterne aus.

Beschleunigung und Kraft

Um die Verdnderlichkeit der Geschwindigkeit zu charak-
terisieren, benutzt die Physik den Begriff Beschleunigung.

Als Beschleunigung bezeichnet man den Quotienten
aus Geschwindigkeitsinderung und der dafiir benétigten
Zeit. Statt zu sagen: ,Die Geschwindigkeit des Korpers
hat sich innerhalb einer Sekunde um den Betrag a
gedindert”, sagen wir kiirzer: ,Die Beschleunigung des
Korpers ist gleich a“.

Bezeichnen wir die Geschwindigkeit einer geradlinigen
Bewegung zum Zeitpunkt 1 mit v; und die Geschwindig-
keit zu einem spiteren Zeitpunkt 2 mit v,, dann 148t
sich die Beschleunigung a durch folgende Formel berech-
nen: a =v,—v,/t.

Hierin ist ¢ die Zeit, in der die Geschwindigkeit zunahm,
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Die Geschwindigkeit wird in cm/s (oder m/s usw.)
gemessen, die Zeit in Sekunden. Die Anzahl von Zenti-
metern je Sekunde wird durch Sekunden geteilt. Damit
ergibt sich die Mafleinheit der Beschleunigung zu cm/s?
(oder m/s? usw.).

Natiirlich kann sich die Beschleunigung im Verlauf
der Bewegung dndern. Doch wir werden unsere Darstel-
lung damit nicht komplizieren. Wir wollen vielmehr
annehmen, daf die Geschwindigkeit gleichformig zu-
nimmt. Solche Bewegungen heiflen gleichférmig be-
schleunigte Bewegungen.

Was aber ist die Beschleunigung einer krummlinigen
Bewegung? )

Die Geschwindigkeit ist ein Vektor, die Anderung
(Differenz) von Geschwindigkeiten ebenfalls. Also muf
die Beschleunigung auch ein Vektor sein. Um den Be-
schleunigungsvektor zu ermitteln, mufl man die vektorielle
Geschwindigkeitsdifferenz durch die Zeit dividieren.
Wie ein Vektor fiir die Geschwindigkeitsinderung zu
ermitteln ist, haben wir bereits erlautert.

Die StraBle macht einen Bogen. Wir markieren zwei
nahe beieinander gelegene Punkte, die ein Auto passiert,
und stellen seine Geschwindigkeiten durch Vektoren dar
(Bild 2.2.). Durch Subtraktion der Vektoren erhalten
wir einen Wert, der keineswegs gleich Null ist; dividieren
wir diesen Wert durch den Zeitabschnitt, so erhalten wir
den Beschleunigungswert. Eine Beschleunigung hat auch
dann stattgefunden, wenn sich der Wert der Geschwindig-
keit beim Passieren der Kurve nicht gedndert hat. Eine
krummlinige Bewegung ist immer beschleunigt. Un-
beschleunigt sind nur gleichférmig geradlinige Bewegun-
gen.

Bei Betrachtung der Geschwindigkeit eines Korpers
haben wir stets den Standpunkt beziiglich der Bewe-
gung festgelegt. Die Geschwindigkeit eines Korpers
ist relativ. Vom Standpunkt des einen Inertialsystems
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Bild 2.2.

kann sie groB, vom Standpunkt eines anderen gering
sein. Miilte man nun nicht ebensolche Festlegungen tref-
fen, wenn man von der Beschleunigung spricht? Natiirlich
nicht. Im Gegensatz zur Geschwindigkeit ist die Be-
schleunigung absolut. Vom Standpunkt aller nur denkbaren
Inertialsysteme bleibt die Beschleunigung stets ein und
dieselbe. Das muf} auch so sein, denn die Beschleunigung
héngt von der Geschwindigkeitsdifferenz des Korpers zur
Zeit 1 und zur Zeit 2 ab; diese Differenz bleibt jedoch, wie
wir bereits wissen, von allen Standpunkten aus konstant,
d. h., sie ist absolut.

Ein Korper, auf den keine Krifte wirken, kann sich
nur unbeschleunigt bewegen. Die Wirkung einer Kraft
dagegen fiihrt zur Beschleunigung des Korpers, wobei diese
Beschleunigung um so grofler ist, je grofer die Kraft.
Je schneller wir einen beladenen Wagen in Bewegung



Isaac Newion (1643—1727), ein genialer englischer Physiker
und Mathematiker, einer der bedeutendsten Wissenschaftler der
Menschheitsgeschichte. Newton formulierte die wichtigsten Be-
griffe und Gesetze der Mechanik, entdeckte das Gravitations-
gesetz und schuf dadurch jenes physikalische Weltbild, das bis
zu Beginn des 20. Jahrhunderts unangetastet blieb. Er entwickelte
eine Theorie fiir die Bewegung der Himmelskérper, erklirte die
wichtigsten Besonderheiten der Mondbewegung und gab eine
Erklirung fiir Ebbe und Flut. In der Optik gehen auf Newton
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setzen wollen, uin so starker miissen wir unsere Muskeln
anstrengen. In der Regel wirken zwei Kréfte auf einen
bewegten Korper ein: eine Beschleunigungskraft, die
Schub- oder Zugkraft, und die Bremskraft, d.h. die
Reibungskraft bzw. der Luftwiderstand.

Die Differenz dieser beiden Krifte, die sogenannte re-
sultierende Kraft, kann entweder in Bewegungsrichtung
oder entgegengesetzt zu dieser orientiert sein. Im ersten
Fall beschleunigt der Korper seine Bewegung, im zweiten
verlangsamt er sie. Sind diese beiden gegensinnig wir-
kenden Krifte einander gleich (werden sie also ausgegli-
chen), dann bewegt sich der Korper gleichformig, so, als
wirkten iliberhaupt keine Krifte auf den Korper ein.

In welchem Zusammenhang stehen nun die Kraft und
die von ihr erzeugte Beschleunigung? Die Antwort ist
sehr einfach. Die Beschleunigung ist der Kraft propor-
tional:

a~F.

Freilich muf noch eine Frage beantwortet werden:
Wie beeinflussen die Eigenschaften des Koérpers seine
Fiahigkeit, die Bewegung unter dem Einflu8 einer bestimm-
ten Kraft zu beschleunigen? Es leuchtet ja ein, daB ein
und dieselbe Kraft, wenn sie an verschiedenen Korpern
angreift, diesen auch unterschiedliche Beschleunigungen
verleiht.

Die Antwort auf die Frage finden wir in dem bemer-
kenswerten Umstand, daf alle Korper mit der gleichen
Beschleunigung zur Erde fallen. Diese Beschleunigung

ebenfalls bedeutsame Entdeckungen zuriick, die zu einer stiirmi-
schen Entwicklung dieses Gebiets der Physik beitrugen. Newton
fithrte auBerordentlich leistungsfihige mathematische Methoden
in die Naturforschung ein; ihm gebiihrt die Ehre, die Differen-
tial- und Integralrechnung entwickelt zu haben. Dies war von
auferordentlichem Einfluf auf die gesamte spitere Entwicklung
der Physik und férderte die Einfiihrung mathematischer Unter-
suchungsmethoden in diese Wissenschaft.
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wird mit dem Buchstaben g bezeichnet. Im Gebiet von
Moskau betrigt die Beschleunigung g = 981 cm/s?.

Die unbefangene Beobachtung bestitigt die gleiche
Beschleunigung aller Kérper auf den ersten Blick nicht.
Das hat seinen Grund darin, daB Korper beim Fallen
unter gewohnlichen Bedingungen nicht nur von der
Schwerkraft, sondern auch von einer ,,Storkraft”, ndmlich
dem Luftwiderstand, beeinflult werden. Die Unterschiede
im Charakter des Fallvorgangs von leichten und schweren
Korpern haben die Philosophen des Altertums in grofite
Verwirrung versetzt. Ein Stiick Eisen féllt schnell,
wahrend eine Flaumfeder in der Luft schwebt. Langsam
sinkt ein nicht gefaltetes Blatt Papier zu Boden; kniillt
man es zusammen, dann ist seine Fallgeschwindigkeit
erheblich grofler. DaBl die Luft das ,wahre* Bild der
Korperbewegung unter dem Einflufl der Erde verfilscht,
verstanden bereits die alten Griechen. Demokrit freilich
meinte, dal schwere Korper, selbst wenn man die Luft
entfernt, stets schneller fallen wiirden als leichte. Dabei
kann der Luftwiderstand auch den gegenteiligen Effekt
verursachen: Ein ungefaltetes Blatt Aluminiumfolie bei-
spielweise wird langsamer fallen als ein Papierkiigelchen.

Man fertigt heutzutage so diinnen Metalldraht (einige
pm), daB dieser wie eine Flaumfeder in der Luft schwebt.

Aristoteles meinte, daf alle Korper im Vakuum gleich
schnell fallen miissen. Doch aus dieser spekulativen Annah-
me zog er den folgenden paradoxen Schluf: ,Das Fal-
len verschiedener Korper mit gleicher Geschwindigkeit
ist so absurd, daB daraus klar die Unmdéglichkeit der
Existenz des Vakuums folgt.”

Kein einziger Gelehrter des Altertums oder des Mit-
telalters kam auf den Einfall, doch einmal in der Pra-
xis nachzupriifen, ob die Korper mit verschiedenen oder
gleichen Beschleunigungen zur Erde fallen. Erst Gali-
lei zeigte durch seine bedeutsamen Versuche (er unter-
suchte die Bewegung von Kugeln auf einer schiefen Ebe-
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ne und den freien Fall von Koérpern, die er vom schiefen
Turm zu Pisa fallen lieB), daB alle Koérper — unabhén-
gig von ihrer Masse — an ein und derselben Stelle des
Erdballs mit gleicher Beschleunigung fallen. lleutzu-
tage lassen sich diese Versuche sehr einfach unter Zu-
hilfenahme eines langen Rohres, aus dem die Luft her-
ausgepumpt ist, durchfiihren. In einem derartigen
Rohr fallen eine Flaumfeder und ein Stein vollig gleich-
artig. Hier ist nur noch eine einzige Kraft wirksam: die
Gewichtskraft; der Luftwiderstand ist auf Null reduziert.
Wo der Luftwiderstand fehlt, ist der Fall beliebiger
Korper eine gleichférmig beschleunigte Bewegung.

Nun kehren wir zu der oben gestellten Frage zuriick:
Welche Fiahigkeit eines Korpers, seine Bewegung unter
dem EinfluB einer gegebenen Kraft zu beschleunigen,
héangt von seinen Eigenschaften ab?

Galileis Gesetz besagt, dafl alle Korper unabhingig
von ihrer Masse mit ein und derselben Beschleunigung
fallen; also bewegt sich die Masse m in Kilogramm unter
dem EinfluB der Kraft F in Newton mit der Beschleu-
nigung g.

Nehmen wir nun einmal an, es handele sich nicht um
den Fall von Korpern, sondern an einer Masse m kg
griffe die Kraft von etwa 10 N an. Da die Beschleunigung
der Kraft proportional ist, wire sie hier m-mal kleiner
als g.

So gelangen wir zu dem SchluB, daB die Beschleuni-
gung a eines Korpers bei gegebener Kraft (in unserem
Beispiel 10 N) der Masse umgekehrt proportional ist.

Verbinden wir beide Schliisse, so erhalten wir:

a~ =,

d.h., bei konstanter Masse ist die Beschleunigung der
Kraft direkt und bei konstanter Kraft der Masse umge-
kehrt proportional.



Physikalische Kdrper 64

Dieses Gesetz, das die Beschleunigung mit der Masse
eines Korpers und der auf den Korper einwirkenden Kraft
verkniipft, wurde von dem bedeutenden englischen Ge-
lehrten Tsaac Newton (1643—1727) entdeckt und trigt
seinen Namen.*

Die Beschleunigung ist der wirkenden Kraft direkt
und der Masse des Korpers umgekehrt proportional und
von keinen wie auch immer gearteten sonstigen Eigen-
schaften des Korpers ablhingig. Aus Newtons Gesetz
folgt, daB die Masse gerade das MaB fiir die ,Tragheit”
eines Korpers darstellt. Bei gleichen Kréften ist ein
Korper grofler Masse schwerer zu beschleunigen. So sehen
wir nun, dal der Massebegriff, den wir als eine, bescheide-
ne“ Grofle kennengelernt haben, die durch Wigung mit
der Balkenwaage bestimmt wird, einen neuen und tie-
fen Sinn gewinnt: Die Masse charakterisiert die dynami-
schen Eigenschaften des Korpers.

Newtons Gesetz konnen wir folgendermaBen formu-
lieren:

kF = ma.

Darin ist k£ eine Konstante. Sie hingt von den Einheiten
ab, die wir wahlen.

Wir haben bereits das vor einiger Zeit entwickelte
SI erwidhnt. Die Bezeichnung Newton (N) fiir die neue
Einheit der Kraft ist durchaus gerechtfertigt. Bei dieser
Auswahl der Einheiten erhidlt Newtons Gesetz die ein-
fachste Form, und man definiert diese Einheit wie folgt:

IN—1 kem
S

* Newton selbst gibt an, daB die Bewegung drei Gesetzen ge-
horcht. Jenes Gesetz, von dem hier die Rede ist, wird bei
Newton unter Nr. 2 gefiihrt. Das Trigheitsgesetz setzte Newton
an die erste Stelle, wihrend an 3. Stelle das Gesetz von Wirkung
und Gegenwirkung folgt.
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d.h., 1 Newton ist die Kraft, die einer Masse von 1 kg
die Beschleunigung 1 m/s2 vermittelt.

Die geradlinige Bewegung mit konstanter
Beschleunigung

Eine Bewegung dieser Art tritt nach Newtons Gesetz
dann auf, wenn am Korper eine in der Summe konstante
Kraft angreift, die den Korper beschleunigt oder bremst.

Wenn auch nicht in strengem Sinn, so entstehen derar-
tige Verhdltnisse recht héufig. Unter dem EinfluB einer
etwa konstanten Reibungskraft wird ein Kraftfahrzeug
abgebremst, das mit ausgeschaltetem Motor weiterfihrt;
ein schwergewichtiger Gegenstand fdllt unter dem FEin-
fluB der konstanten Schwerkraft aus der Hoéhe herab.

Kennen wir die resultierende Kraft sowie die Masse

des Korpers, dann erhalten wir aus der Formel a =%
die Beschleunigung. Da

v—U
t

ist (worin ¢ die Bewegungszeit und v bzw. v, die End-
bzw. Anfangsgeschwindigkeit darstellen), kann man mit
Hilfe dieser Formel eine Antwort auf Fragen folgenden
Charakters geben: Nach welcher Zeit kommt ein Zug zum
Stillstand, wenn die Bremskraft, die Masse des Zuges
und seine Anfangsgeschwindigkeit bekannt sind? Auf
welche Geschwindigkeit wird ein Kraftfahrzeug beschleu-
nigt, wenn man die Motorkraft, die Widerstandskraft,
die Masse des Fahrzeugs und die Beschleunigungszeit
kennt?

Hiaufig ist es von Interesse, die Linge eines Weges
in Erfahrung zu bringen, den ein Korper bei gleichfor-
mig beschleunigter Bewegung zuriicklegt. Ist die Bewe-
gung gleichférmig, dann finden wir den zuriickgelegten
Weg durch Multiplikation der Bewegungsgeschwindigkeit

5—-01178

a—
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mit der Bewegungszeit. Ist die Bewegung gleichférmig
beschleunigt, dann erfolgt die Berechnung des zuriick-
gelegten Weges so, als bewege sich der Korper wihrend
der Zeit t gleichformig mit einer Geschwindigkeit,
die gleich der halben Summe aus Anfangs-und Endge-
schwindigkeit ist:

= 7 ot )t

Fassen wir zusammen: Bei gleichférmig beschleunig-
ter (oder verlangsamter) Bewegung ist der von einem
Korper zuriickgelegte Weg gleich dem Produkt aus der
halben Summe von Anfangs- und Endgeschwindigkeit und
der Bewegungszeit. Der gleiche Weg wire innerhalb der
gleichen Zeit bei gleichformiger Bewegung mit der Ge-

schwindigkeit %(v0 + v) zuriickgelegt worden. In die-

sem Sinn 148t sich von %— (vo + v) sagen, daB es sich hier

um die mittlere Geschwindigkeit einer gleichférmig be-
schleunigten Bewegung handelt.

Niitzlich ist die Aufstellung einer Formel, die die
Abhidngigkeit des zuriickgelegten Weges von der Be-
schleunigung zeigt. Setzen wir in die zuletzt genannte For-
mel den Ausdruck v = v, + at ein, so erhalten wir:

s = vot"i__at?2 )
oder, wenn die Bewegung mit der Anfangsgeschwindig-
keit Null erfolgt,

s =2
==.
Hat ein Koérper binnen einer Sekunde 5 m zuriickgelegt,
so wird er in zwei Sekunden (4 X 5) m, in drei Sekunden
(9 X 5) m usw. zuriicklegen. Der zuriickgelegte Weg

nimmt proportional dem Quadrat der Zeit zu.
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Nach diesem Gesetz féllt ein schwerer Korper aus der
Hoéhe herab. Die Beschleunigung im freien Fall ist
gleich g, und die zugehorige Formel nimmt dann folgende
Gestalt an:

— 2

s=73 %
sofern man ¢ in Sekunden und g in Zentimetern je Sekun-
denquadrat einsetzt.

Konnte ein Korper ungehindert 100 s lang fallen,
dann wiirde er ab Beginn des Fallvorgangs einen Weg
von etwa 50 km zuriicklegen. Wihrend der ersten 10 s
hitte er dabei jedoch nur 0,5 km zuriickgelegt. So also
sieht eine beschleunigte Bewegung aus.

Welche Geschwindigkeit entwickelt ein Kérper beim
Fallen aus einer bestimmten Hohe? Zur Beantwortung
dieser Frage benétigen wir Formeln, die den zuriickgeleg-
ten Weg mit der Beschleunigung und der Geschwindig-

keit verkniipfen. Setzen wir in s =%(vo + v) ¢t den

Yo

Wert fiir die Bewegungszeit ¢ =U—T ein, so erhalten

wir:
$= g5 (02 —v})
oder, wenn die Anfangsgeschwindigkeit gleich Null ist,

V2 —
§=5-, V= V 2as .
10 m entsprechen der Hohe eines kleinen zwei- oder drei-
geschossigen Hauses. Warum ist es gefidhrlich, vom Dach
eines solchen Hauses auf die Erde zu springen? Eine ein-
fache Rechnung zeigt, da8 die Geschwindigkeit des frei-
en Falls einen Wert von v = }/ 2.9,8.10 m/s = 14 m/s &~
~ 50 km/h erreicht; dies aber ist die in der Stadt erlaub-
te Geschwindigkeit von Kraftfahrzeugen.

H*
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Der Luftwiderstand wird diese Geschwindigkeit nur
geringfiigig vermindern.

Die hier abgeleiteten Formeln werden fiir die unter-
schiedlichsten Berechnungen verwendet. Mit ihrer Hilfe
wollen wir uns iiberlegen, wie Bewegungen auf dem Mond
ablaufen.

In Wells’ Roman ,Die ersten Menschen im Mond*
wird von den unerwarteten Erlebnissen berichtet, die
den Reisenden bei ihren phantastischen Ausfliigen zu-
stieBen. Auf dem Mond betrigt die Gravitationsbeschleu-
nigung nur etwa ein Sechstel der Erdbeschleunigung.
Wihrend ein fallender Korper auf der Erde in der ersten
Sekunde 5 m zuriicklegt, ,,durchschwebt* er auf dem Mond
nur ganze 80 cm (die Beschleunigung ist ungefihr gleich
1,6 m/s?).

Die oben aufgeschriebenen Formeln erlauben uns ei-
ne schnelle Nachrechnung der ,Mondwunder“.

Ein Sprung aus der Héhe %~ beansprucht die Zeit
t =}/ 2n/g. Da die Mondbeschleunigung nur ein Sechs-
tel der Erdbeschleunigung betrdgt, nimmt der Sprung
auf dem Mond die |/ 6 ~ 2,45fache Zeit in Ansprach. Auf
welchen Bruchteil vermindert sich die Endgeschwindig-
keit des Sprunges (v = V' 2 gh)?

Auf dem Mond koénnte man unbesorgt vom Dach ei-
nes dreigeschossigen Hauses herunterspringen. Die Hohe
eines Sprunges, der mit der gleichen Anfangsgeschwindig-
keit begonnen wurde, steigt auf das Sechsfache (die For-
mel ist ~ = v?/2g). Jedes Kind konnte einen Sprung aus-
fiihren, der die Rekordmarke auf der Erde iibertrifft.

Der Weg der Kugel

Seit undenklichen Zeiten sieht sich der Mensch dem Pro-
blem gegeniiber, einen Gegenstand méglichst weit zu wer-
fen. Der von Hand oder mit einer Schleuder geworfene
Stein, der Pfeil, der von der Bogensehne schnellt, die



2. Die Bewegungsgesetze 69

(\:;O\ 7

Vit
v, ‘.""‘!ﬁ&
it
“‘\\1‘ l'l};lnll!l l‘!hn(’

oy

<
\ / Voob ) m” Y ! o \
Jﬂ”"" Ygﬁ 'ﬂ!ll;;l ,)”" *ﬂ;.i‘ My L )"'-"'illlm“’ .l‘sl:::}l.m,l\.

Bild 2.3.

Gewehrkugel, das Artilleriegescho8 und schlieBlich die
ballistische Rakete — dies ist nur eine kurze Aufzéhlung
der Erfolge auf diesem Gebiet.

Ein geworfener Gegenstand beschreibt eine Kurve,
die man als Parabel bezeichnet. Sie 148t sich ohne
Schwierigkeiten konstruieren, wenn man die Bewegung des
geworfenen Korpers als Summe zweier Bewegungen, in
horizontaler und in vertikaler Richtung, betrachtet, die
gleichzeitig und unabhiingig voneinander stattfinden. Die
Beschleunigung des freien Falls verldauft vertikal; des-
halb bewegt sich die fliegende Kugel, ihrer Trigheit ge-
horchend, mit konstanter Geschwindigkeit horizontal
und fillt gleichzeitig vertikal mit konstanter Beschleu-
nigung zur Erde. Wie konnen wir diese beiden Bewegun-
gen addieren?

Beginnen wir mit einem einfachen Fall: Die Anfangs-
geschwindigkeit verlduft horizontal (hier kdnnte es
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sich um einen Schuf aus einem Gewehr handeln, dessen
Lauf waagerecht gerichtet ist).

Wir nehmen ein Blatt Millimeterpapier und zeichnen
eine vertikale und eine horizontale Linie ein (Bild 2.3.).
Da beide Bewegungen unabhingig voneinander ablaufen,
wird sich der Koérper nach ¢ Sekunden um den Abschnitt
vot nach rechts und um den Abschnitt g¢%/2 nach unten
fortbewegt haben. Wir tragen auf der Horizontalen den
Abschnitt vyt und an seinem Ende den vertikalen Ab-
schnitt g2/2 ab. Das Ende des vertikalen Abschnitts gibt
uns den Punkt an, wo sich der Korper nach ¢ Sekunden
befinden wird.

Diese Konstruktion muf fiir mehrere Punkte, d. h.
mehrere Zeitpunkte, wiederholt werden. Durch die
Punkte wird dann eine gleichmiBig geschwungene Kurve
verlaufen: die Parabel, die die Flugbahn des Korpers
darstellt. Je mehr Punkte wir auftragen, um so genauer
ist die Flugbahn der Kugel.

In Bild 2.4. sehen wir eine Bahn fiir den Fall, daB
die Anfangsgeschwindigkeit v, einen bestimmten Anstell-
winkel Dbesitzt.

Der Vektor v, muBl zuerst einmal in seine vertikale
und seine horizontale Komponente zerlegt werden. Auf
der waagerechten Linie tragen Wir vnorizontait ab,
d. h. den Weg, den die Kugel wihrend ¢ Sekunden waa-
gerechter Richtung zuriicklegt.

Gleichzeitig aber vollzieht die Kugel auch eine Auf-
wartsbewegung. Nach ¢ Sekunden hat sie die Hohe 2 =
= Uyertikm? — £t%/2 erreicht. Nach dieser Formel
mufl man durch Einsetzen der wuns interessierenden
Zeiten die vertikale Lagednderung berechnen wund
sie auf der vertikalen Achse abtragen. Die Werte
von k werden zunidchst zu- (Aufstieg) und danach
abnehmen.

Nun miissen wir nur noch die Bahnpunkte in unsere
Zeichnung eintragen, so, wie wir es im vorhergehenden
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h2

Bild 2.4.

Beispiel gemacht haben, und sie durch eine gleichmifig
geschwungene Kurve verbinden.

Hilt man den Gewehrlauf waagerecht, dann wird die
Kugel schon bald im Erdreich steckenbleiben; bei verti-
kaler Stellung des Laufs fallt die Kugel zum AbschuBort
zuriick. Wenn man also moglichst weit schiefien will, muf§
man dem Lauf einen bestimmten Anstellwinkel relativ
zur Waagerechten geben. Aber welchen?

Wir wenden noch einmal das gleiche Verfahren an und
zerlegen den Vektor der Anfangsgeschwindigkeitin zwei
Komponenten: in die Vertikalgeschwindigkeit v, und
die Horizontalgeschwindigkeit v,. Die Zeit zwischen dem
Augenblick des Schusses und dem Awugenblick, wo die
Kugel ihren hochsten Bahnpunkt erreicht, ist gleich
v,/g. Hier ist darauf zu achten, dafl die Kugel genausolan-
ge nach unten fallen wird, d. h., die Gesamtflugdauer
bis zum Auftreffen der Kugel auf der Erde ist 2v,/g.
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Da die Bewegung in waagerechter Richtung gleich-
formig verlduft, ergibt sich die Flugweite zu:

s = 2v1v2/g

(dabei haben wir die Hohe vernachlassigt, in der sich das
Gewehr iiber dem Erdboden befindet).

Unsere Formel zeigt, daB die Flugweite dem Produkt
der Geschwindigkeitskomponenten proportional ist. Bei
welcher SchuBrichtung wird dieses Produkt sein Maximum
erreichen? Die Antwort auf diese Frage liefert uns wie-
derum die geometrische Vorschrift fiir die Addition von
Vektoren. Die Geschwindigkeiten v; und v, bilden ein
Geschwindigkeitsrechteck; die Diagonale darin ist die
Gesamtgeschwindigkeit v. Das Produkt v,v, ist gleich
der Fldache dieses Rechtecks.

Unsere Frage 148t sich nun wie folgt stellen: Wie sind
die Seiten eines Rechtecks bei gegebener Linge der
Diagonale zu wihlen, damit die Rechtecksfliche mog-
lichst groB ist? Die Geometrie liefert den Beweis, da8
diese Bedingung durch das Quadrat erfiillt wird. Die
Flugweite der Kugel wird daher am groften sein, wenn
v, =V, ist, d. h. dann, wenn sich das Geschwindigkeits-
rechteck in ein Quadrat verwandelt. Die Diagonale des
Geschwindigkeitsquadrats schlieft jedoch mit der Waa-
gerechten einen Winkel von 45° ein; genau das ist der
Anstellwinkel, den wir dem Gewehr geben miissen, damit
die Kugel moglichst weit fliegt.

Ist v die Gesamtgeschwindigkeit der Kugel, so erhal-

ten wir fiir den Fall des Quadrats v, = v, = v/)/ 2.
Die Formel der Flugweite sieht fiir diesen giinstigsten Fall
folgendermaBen aus: s = v?/g, d. h., die Flugweite ist
doppelt so groB wie die Steighohe, wenn man den Schu8
mit der gleichen Anfangsgeschwindigkeit senkrecht nach
oben ausfiihrt.

Bei einem Schuf mit dem Anstellwinkel 45° betriigt



2. Die Bewegungsgesetze 73

die Steighohe h = v?/2g = v¥/4g, d. h. nur ein Viertel
der Flugweite.

Wir miissen allerdings zugeben, daB die von uns be-
nutzten Formeln exakte Ergebnisse nur in einem einzi-
gen Fall liefern, ndmlich bei Abwesenheit von Luft.
Der Luftwiderstand spielt in vielen Fillen eine ent-
scl;eidende Rolle und andert das Gesamtbild von Grund
auf.

Bewegung auf einer Kreisbahn

Bewegt sich ein Punkt auf einer Kreisbahn, dann ist die
Bewegung zumindest schon deshalb beschleunigt, weil
die Geschwindigkeit zu jedem Zeitpunkt ihre Richtung
andert. Dabei kann die Geschwindigkeit nach ihrem
Zahlenwert unverdndert bleiben, und genau diesem Fall
wollen wir unsere Aufmerksamkeit zuwenden.

Wir zeichnen die Geschwindigkeitsvektoren fiir aufein-
anderfolgende Zeitintervalle und legen den Vektorur-
sprung in ein und denselben Punkt (dazu sind wir be-
rechtigt). Hat der Geschwindigkeitsvektor eine Schwen-
kung um einen kleinen Winkel vollzogen, so wird die Ge-
schwindigkeitsinderung, wie wir wissen, durch die Basis
des gleichschenkligen Dreiecks dargestellt. Wir wollen
die Geschwindigkeitsinderungen fiir die Zeit eines voll-
stindigen Umlaufs des betrachteten Korpers ermitteln
(Bild 2.5.). Die Summe aller Geschwindigkeitsinderungen
withrend eines vollstindigen Umlaufs ist dann gleich der
Summe aller Seiten des gezeigten Vielecks. Beim Auf-
zeichnen jedes einzelnen Dreiecks haben wir stillschwei-
gend vorausgesetzt, der Geschwindigkeitsvektor habe
sich sprungartig gedndert; in Wahrheit &ndert sich die
Richtung des Geschwindigkeitsvektors kontinuierlich.
Keine Frage, daB der Fehler um so kleiner ausfillt, je
kleiner wir den Winkel an der Spitze des Dreiecks wihlen.
Jeo kleiner die Seiten des Vielecks ausfallen, um so enger
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Bild 2.5.

schmiegt sich dieses an den Kreisumfang mit dem Ra-
dius v an. Darum ist der exakte Wert fiir die Summe der
absoluten Geschwindigkeitsinderungsbetrdge wihrend
eines Umlaufs des betrachteten Punkts gleich dem Kreis-
umfang 2szv. Die Beschleunigung ergibt sich aus der
Division dieser Lénge durch die Dauer eines vollstindi-
gen Umlaufs T : a = 2av/T.

Die Dauer eines vollstindigen Umlaufs bei Bewegung
auf einer Kreisbahn mit dem Radius R kann aber auch
in der Form T = 2aR/v angegeben werden. Setzen wir
diesen Ausdruck in die vorhergehende Formel ein, so
erhalten wir fiir die Beschleunigung: a = v*R.

Bei konstantem Umlaufradius ist die Beschleunigung
dem Geschwindigkeitsquadrat proportional. Bei gege-
bener Geschwindigkeit ist die Beschleunigung dem Ra-
dius umgekehrt proportional.
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Bild 2.6.

Diese Uberlegung zeigt uns, welche Richtung die
Beschleunigung einer kreisformigen Bewegung zu jedem
betrachteten Zeitpunkt besitzt. Je kleiner der Winkel
an der Spitze der gleichschenkligen Dreiecke ist, die wir
fiir unseren Beweis benutzt haben, um so nidher riickt der
Winkel zwischen dem Geschwindigkeitszuwachs und der
Geschwindigkeit an 90° heran.

Demnach ist die Beschleunigung einer gleichférmigen
Kreishewegung senkrecht zur Geschwindigkeit ausge-
richtet; welche Richtung haben Geschwindigkeit und
Beschleunigung aber beziiglich der Bahn? Da die Ge-
schwindigkeit in Richtung der DBahntangente verlduft,
entspricht die Beschleunigungsrichtung dem Radius und
zeigt auf den Kreismittelpunkt. Diese Verhéltnisse sind
in Bild 2.6. gut zu erkennen.

Versuchen Sie einmal, einen Stein an einem Strick
im Kreis zu schleudern. Sie werden ganz deutlich wahr-
nehmen, daB dazu Muskelkraft erforderlich ist. Wofiir
wird diese Kraft eigentlich gebraucht? Bewegt sich der
Korper etwa nicht gleichférmig? Eben nicht, und da
liegt der Hase im Pfeffer. Der Koérper bewegt sich zwar
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mit einer dem Betrag nach konstanten Geschwindigkeit,
doch die stindige Anderung der Geschwindigkeitsrichtung
laBt diese Bewegung zu einer beschleunigten Bewegung
werden. Die Kraft wird gebraucht, um den Kérper aus
der geradlinigen Inertialbahn auszulenken. Wir benéti-
gen die Kraft, um jene Beschleunigung v* R zu erzeugen,
die wir gerade berechnet haben.

Nach Newtons Gesetz zeigen Beschleunigung und
Kraft stets in die gleiche Richtung. Deshalb muB ein
mit konstanter Geschwindigkeit auf einer Kreisbahn
umlaufender Korper der Wirkung einer Kraft ausgesetzt
sein, die radial zum Mittelpunkt der Umlaufbahn ge-
richtet ist. Die'durch den Strick am Stein angreifende
Kraft heiBt Zentripetalkraft; sie ist es auch, die die Be-
schleunigung 1v?/R gewihrleistet. Also ist diese Kraft
gleich mv?/R.

Der Strick zieht am Stein, und der Stein zieht am
Strick. Wir erkennen in diesen beiden Kréften ,den Ge-
genstand und sein Spiegelbild* — die Krifte von Aktion
und Reaktion — wieder. Héaufig bezeichnet man die
Kraft, mit der der Stein am Strick angreift, als Zentri-
fugalkraft. Die Zentrifugalkraft ist natiirlich auch gleich
mv*/R und radial vom Mittelpunkt der Umlaufbahn weg
gerichtet. Eine Zentrifugalkraft greift an einem Kérper
an, der dem Trigheitsstreben des umlaufenden Kdorpers
nach geradliniger Bewegung widersteht.

Dies gilt auch dann, wenn die Schwerkraft an die
Stelle des ,Stricks” tritt. Der Mond umkreist die Erde.
Was hilt unseren Begleiter fest? Warum macht er sich,
dem Trigheitsgesetz folgend, nicht auf eine interplaneta-
re Reise? Die Erde hilt den Mond mit Hilfe eines ,un-
sichtbaren Stricks“ — der Anziehungskraft — fest.

Diese Kraft ist gleich mv*/R, worin v die Geschwin -
digkeit auf der Mondbahn und R der Abstand zwischen
Erde und Mond ist. Die Zentrifugalkraft greift in diesem
Fall an der Erde an, doch beeinfluit sie den Bewegungs-
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charakter unseres Planeten nur unbedeutend, weil un-
sere Erde eine so grofle Masse hat.

Angenommen, ein kiinstlicher Erdsatellit soll anf
eine kreisformige Umlaufbahn in 300 km Abstand von
der Erdoberfliache gebrazht werden. Welche Geschwindig-
keit muB dieser Satellit haben?

Im Abstand 300 km von der Erdoberfliche ist die
Beschleunigung des freien Falls nur wenig geringer als
an der Erdoberfliache und betragt 8,9 m/s?. Die Beschleu-
nigung des auf einer Kreisbahn umlaufenden Satelli-
ten ist gleich v* R, worin R die Entfernung vom Mittel-
punkt der Umlaufbahn (d. h. vom Erdmittelpunkt)
darstellt und ungeféhr gleich 6600 km = 6,6-10° m ist.
Andererseits ist diese Beschleunigung gleich der Beschleu-
nigung des freien Falls g. Demnach gilt g = v¥*/R,
woraus wir die Bewegungsgeschwindigkeit des Satelli-
ten auf seiner Bahn wie folgt ermitteln konnen:

v=)gR=)896,6-10°=7700 m/s = 7,7 km/s.

Die Mindestgeschwindigkeit, die notwendig ist, da-
mit ein waagerecht geworfener K érper zu einem Erdsatel-
liten wird, heit Minimalkreisbahn-Geschwindigkeit. Aus
dem hier vorgestellten Beispiel ist ersichtlich, daB diese
Geschwindigkeit bei 8 km/s licgt.

Leben in Schwerelosigkeit

Weiter oben haben wir nach einem ,verniinftigen Stand-
punkt® in bezug auf die Bewegung gesucht. Freilich
stellte sich dabei heraus, dafl es eine unendliche Vielzahl
wverniinftiger Standpunkte gibt, die wir als Inertialsy-
steme bezeichnet haben.

Geriistet mit der Kenntnis der Bewegungsgesetze,
kénnen wir uns nun dafiir interessieren, welches Bild
die Bewegung von ,unverniinftigen“ Standpunkten aus
bietet. Zu fragen, wie es den Bewohnern nicht inertialer
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Systeme geht, ist keineswegs miifig, schon deshalb nicht,
weil wir selbst ein derartiges System bewohnen.

Stellen wir uns vor, wir hitten unter Mitnahme von
MeBgeriten ein interplanetares Raumschiff bestiegen und
wiren zu einer Reise in die Welt der Sterne aufgebrochen.

Rasch lauft die Zeit dahin. Schon bietet die Sonne
das Bild eines winzigen Sterns. Das Triebwerk ist aus-
geschaltet, und das Raumschiff ist von Kdorpern, die
eine Anziehungskraft erzeugen, weit entfernt.

Nun wollen wir einmal zusehen, was sich in unserem
fliegenden Laboratorium abspielt. Warum hingt das
Thermometer, das sich aus seiner Halterung gelést hat,
in der Luft und fallt nicht zu Boden? Wie seltsam mutet
die Stellung an, in der ein an der Wand héngendes und
aus der ,Senkrechten ausgelenktes Pendel zur Ruhe
gekommen ist. Die Erkldrung ist einfach: Das Raum-
schiff befindet sich nicht auf der Erde, sondern im inter-
planetaren Raum. Die Gegenstinde sind schwere-
los geworden.

Nachdem wir uns an dem ungewohnten Bild satt
gesehen haben, beschliefflen wir, den Kurs zu &ndern.
Durch Knopfdruck schalten wir das Triebwerk ein, und
plotzlich kommt Leben in die Gegenstinde unserer
Umgebung. Alles, was nicht niet- und nagelfest ist,
kommt in Bewegung. Das Thermometer fillt zu Boden,
das Pendel beginnt zu schwingen, beruhigt sich allméh-
lich und nimmt eine senkrechte Lage ein; gehorsam gibt
das Kissen unter dem darauf liegenden Koffer nach.
Wir werfen einen Blick auf die Gerite, die uns anzeigen,
in welche Richtung unser Raumschiff seine beschleunig-
te Bewegung begonnen hat. Natiirlich, es geht aufwirts.
Unsere Geriate zeigen, da wir eine Bewegung mit der
fir die Moglichkeiten des Raumschiffs geringfiigigen
Beschleunigung von 9,8 m/s? gewdhlt haben. Unsere
Empfindungen sind durchaus normal; wir fiilhlen uns
wie auf der Erde. Aber warum ist das so? Unvorstellbar
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weit ist das Raumschiff von allen Massen entfernt, die
eine Anziehungskraft erzeugen; es gibt keine Anzie-
hungskrafte, und doch haben die Gegenstinde ihre
Schwere zuriickerlangt.

Wir lassen eine Kugel fallen und messen die Beschleu-
nigung, mit der sie auf den Boden des Raumschiffs
fallt. Die Beschleunigung betrigt 9,8 m/s?. Die gleiche
Ziffer haben wir eben an den Gerédten abgelesen, die die
Beschleunigung unserer Rakete messen. Das Raumschiff
bewegt sich mit der gleichen Beschleunigung nach oben,
mit der die Korper in unserem fliegenden Laboratorium
nach unten fallen.

Was ist eigentlich unter ,oben* und ,unten“ im flie-
genden Raumschiff zu verstehen? Wie einfach lagen die
Dinge, als wir noch auf der Erde lebten. Dort war der
Himmel oben und die Erde unten. Iier aber? Unser
,»Oben" besitzt ein unbestreitbares Merkmal: die Beschleu-
nigungsrichtung der Rakete.

Die Bedeutung unserer Beobachtungen ist leicht zu
verstehen: Auf die Kugel, die wir gerade losgelassen haben,
wirken iiberhaupt keine Kréfte ein. Die Kugelbewegung
folgt der Tréagheit. Die Rakete ist es vielmehr, die sich
beschleunigt relativ zur Kugel fortbewegt, uns dagegen,
die wir uns in der Rakete befinden, scheint es, als ,fiele“
die Kugel in die Richtung, die der Beschleunigungsrich-
tung der Rakete entgegengesetzt ist. NaturgemiB ist
die Beschleunigung dieses ,Fallens* gleich der wahren
Beschleunigung der Rakete. Klar ist auch, daB alle
Korper in der Rakete mit der gleichen Geschwindigkeit
»fallen“ werden.

Aus dem bisher Gesagten kénnen wir einen interessan-
ten SchluB ziehen. In einer beschleunigt bewegten Rakete
erwerben die Korper ,Schwere“. Dabei ist die ,,Anzie-
hungskraft® in die zur DBeschleunigungsrichtung der
Rakete entgegengesetzte Richtung gewandt, und die
Beschleunigung des freien ,Falls* ist gleich der Beschleu-
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nigung unserer Rakete mit ihrem RiickstoBantrieb. Am
interessantesten aber ist die Tatsache, daB wir praktisch
nicht imstande sind, die beschleunigte Bewegung des
Systems von der entsprechenden Schwerkraft zu unter-
scheiden.* Befinden wir uns in einem Raumschiff mit
geschlossenen Sichtfenstern, dann kénnten wir nicht er-
fahren, ob es auf der Erde steht oder sich mit der Be-
schleunigung 9,8 m/s? bewegt. Die Gleichwertigkeit von
Beschleunigung und Schwerkraftwirkung wird in der
Physik als Aquivalenzprinzip bezeichnet.

Dieses Prinzip erlaubt, wie wir sogleich an vielen
Beispielen sehen werden, die rasche Lésung vieler Pro-
bleme, indem man den realen Kréiften eine fiktive Schwer-
kraft hinzufiigt, wie sie in beschleunigt bewegten Syste-
men existiert.

Als erstes Beispiel kann ein Aufzug dienen. Wir neh-
men eine Federwaage sowie einige Wigestiicke mit und
fahren mit dem Aufzug nach oben. Dabei verfolgen wir
das Verhalten des Zeigers der Waage, auf die wir ein
Wiigestiick mit einer Masse von 1 kg gelegt haben (Bild
2.7.). Der Aufzug setzt sich in Bewegung; wir sehen, da8
die Waage eine groflere Gewichtskraft anzeigt, ganz so,
als hitte das Waigestiick eine grofere Masse als 1 kg.

Diese Tatsache 148t sich mit dem Aguivalenzprinzip
leicht erkldren. Wihrend sich der Aufzug mit der Be-
schleunigung a nach oben bewegte, entstand eine zusidtz-
liche, nach unten gerichtete Schwerkraft. Da die Beschleu-
nigung dieser Kraft gleich a ist, entspricht die zusitz-

* Das gilt aber nur fiir den ,praktischen“ Fall. Im Prinzip
gibt es einen Unterschied. Auf der Erde zeigen die Schwerkrifte
radial zum Erdmittelpunkt. Das heifit, da8 die Beschleunigungs-
richtungen an zwei verschiedenen Punkten miteinander einen
Winkel einschliefen. In der beschleunigt bewegten Rakete dage-
gen sind die Schwerkrifte an allen Punkten streng parallel
ausgerichtet. Auf der Erde &ndert sich die Beschleunigung
iiberdies mit der Hohe, wihrend dieser Effekt in der beschleunigt
bewegten Rakete fehlt.
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Bild 2.7.

liche Gewichtskraft ma. Die Waage muB8 also mg + ma
anzeigen. Hort die Beschleunigung auf und bewegt
sich der Aufzug gleichformig weiter, so kehrt die
Feder in ihre Ausgangslage zuriick, und die Waage zeigt
rund 10 N an. Nun nihern wir uns dem obersten Gescho8,
und die Aufzugsbewegung verlangsamt sich. Was ge-
schieht jetzt mit unserer Federwaage? GewiB doch: Die
Last wiegt jetzt weniger als 10 N. Bei verzogerter Auf-
zugsbewegung zeigt der Beschleunigungsvektor nach un-
ten. Also ist die zusétzliche fiktive Schwerkraft nach oben
gerichtet, d.h. entgegengesetzt zur Richtung der Erd-
schwerkraft, ¢ ist nun negativ, und die Waage zeigt
einen kleineren Wert als mg an. Nach erfolgtem Still-
stand des Aufzugs kehrt die Feder in ihre Ausgangslage
zuriick. Die Aufzugsbewegung wird beschleunigt; der
Beschleunigungsvektor zeigt nach unten, also ist die
zusitzliche Schwerkraft nach oben gerichtet. Die Last
wiegt jetzt weniger als 10 N. Sobald die Bewegung gleich-
formig wird, verschwindet die zusédtzliche Schwere,
und kurz vor dem Ende unserer Reise im Aufzug — d.h.
bei verzogerter Abwirtsbewegung — wird die Last dann
wieder mehr als 10 N wiegen.

6—-01178
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Die unangenehmen Empfindungen bei rascher Be-
schleunigung bzw. Verzogerung der Aufzugsbewegung hin-
gen mit der hier betrachteten Gewichtskraftinderung
zusammen.

Sinkt der Aufzug beschleunigt, dann werden die darin
befindlichen K 6rper gewissermaBen leichter. Je grofer die
Beschleunigung, um so grofer der Gewichtskraftverlust.
Was aber geschieht bei freiem Fall des Systems? Die
Antwort liegt auf der Hand: Alle Korper werden in die-
sem Fall aufhéren, einen Druck auf ihre Unterlage aus-
zuliben — sie wiegen nichts mehr: Die Anziehungskraft
der Erde wird durch die zusditzliche Schwerkraft ausge-
glichen, die in einem derartigen frei fallenden System
existiert. Wenn man sich in einem derartigen , Aufzug"
befindet, kann man sich seelenruhig eine ganze Tonne
auf die Schultern laden.

Zu Beginn dieses Abschnitts haben wir das Leben ohne
Schwere in einem interplanetaren Raumschiff beschrie-
ben, das Anziehungsbereich der lirde verlassen hat. Bei
gleichformig geradliniger Bewegung existiert in diesem
Raumschiff keine Schwere, doch tritt die gleiche Situation
auch beim freien Fall eines Systems ein. Wir brauchen
den Anziehungsbereich also gar nicht zu verlassen: Die
Schwere verschwindet auch in jedem interplanetaren
Raumschiff, das sich mit abgeschaltetem Triebwerk
fortbewegt. Der freie Fall filhrt zur Schwerelosigkeit
in den entsprechenden Systemen. So hat uns das Aqui-
valenzprinzip zu dem SchluB} gefiihrt, da ein Bezugs-
system mit geradlinig gleichférmiger Bewegung in grofer
Entfernung von Anziehungskriften und ein Bezugssy-
stem, das unter Schwerkraftwirkung frei fillt, nahezu
(vergleiche unsere Anmerkung auf Seite 80) gleich-
wertig sind. Im erstgenannten System gibt es keine
Gewichtskraft, und im zweiten Fall ist die nach unten
wirkende Gewichtskraft durch die nach oben wirkende
Gewichtskraft ausgeglichen.
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In einem kiinstlichen Erdsatelliten beginnt das Leben
ohne Gewicht mit dem Augenblick, in dem das Raum-
schiff auf die Umlaufbahn gebracht worden ist und sei-
nen Weg antriebslos fortsetzt.

Der erste interplanetare Passagier war die Hiindin
Laika. und bald darauf lernte auch der Mensch das ,Le-
ben ohne Schwere” in der Raumschiffkabine kennen. Der
erste Mensch im All war der sowjetische Fliegerkosmonaut
Juri Gagarin.

Das Leben in der Raumschiffkabine ist in der Tat
auBergewohnlich. Viel Erfindungskraft und Scharfsinn
muflten aufgewendet werden, um all die Dinge ,zur
Vernunft“ zu bringen, die so leicht der Schwerkraft
gehorchen. Kann man beispielsweise Wasser aus einer
Flasche in ein Glas giefen? Immerhin fliet das Wasser
unter dem Einfluf der Schwerkraft ,nach unten“. Kann
man Essen zubereiten, wenn man kein Wasser auf der
Kochplatte heil machen kann? (Das warme Wasser wird
sich ndmlich nicht mit dem kalten vermischen.) Wie soll
man mit Papier und Bleistift schreiben, wenn ein leichtes
Anstoflen mit dem Bleistift am Tisch geniigt, um den
Schreiber zur Seite zu stoflen? Kein Streichholz, keine
Kerze und kein Gasbrenner funktionieren, da die Ver-
brennungsgase nicht nach oben steigen (es gibt ja kein
,»,Oben“!) und so dem Sauerstoff keinen Zutritt gewdhren.
Selbst tber die Gewiahrleistung des normalen Ablaufs
der natiirlichen Prozesse, die im menschlichen Organis-
mus stattfinden, muBte man sich Gedanken machen,
denn auch sie haben sich an die Schwerkraft der Erde
»gewohnt".
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Bewegung, von einem ,,unverniinftigen’
Standpunkt aus betrachtet

Nun wollen wir uns physikalischen Beobachtungen in
einem beschleunigt bewegten Omnibus bzw. einer Stra-
fBenbahn zuwenden. Die Besonderheit, die diese Situation
von der vorhergehenden unterscheidet, besteht in folgen-
dem: Im Beispiel mit dem Aufzug lagen die Richtung der
zusitzlichen Schwere und der Anziehungskraft der Erde
in einer Linie. In einer bremsenden oder beschleunigenden
StraBenbahn steht die zusdtzliche Schwerkraft senkrecht
zur Richtung der Erdanziehung. Dies bewirkt eigenartige,
wenn auch gewohnte Empfindungen beim Fahrgast.
Wenn die Straenbahn beschleunigt, entsteht eine zusitz-
liche Kraft, die der Fahrtrichtung entgegengesetzt ist.
Lassen Sie uns diese Kraft mit der Erdanziehungskraft
addieren. Im Ergebnis wird an einem im Straenbahnwa-
gen befindlichen Menschen eine Kraft angreifen, die un-
ter einem stumpfen Winkel in Fahrtrichtung zeigt.
Wenn wir wie gew6hnlich mit dem Gesicht in Fahrtrich-
tung im StraBenbahnwagen stehen, fiihlen wir, daf
sich unser ,JOben“ verlagert hat. Um nicht hinzufallen,
werden wir versuchen, uns ,vertikal“ hinzustellen, so
wie dies in Bild 2.8a. gezeigt ist. Unsere ,Senkrechte*
steht schrig. Sie ist unter einem spitzen Winkel zur
Fahrtrichtung geneigt. Wiirde ein Fahrgast dagegen
rechtwinklig zur Fahrtrichtung stehen, ohne sich fest-
zuhalten, dann miifite er unbedingt nach hinten fallen.

Nun ist die Straenbahn endlich zur gleichformigen
Bewegung iibergegangen, und wir kénnen ruhig stehen.
Da aber kommt die nidchste Haltestelle. Der Strafen-
bahnfahrer bremst, und unsere ,Senkrechte” wird ausge-
lenkt. Nun schlieft sie, wie aus Bild 2.8b. hervorgeht,
mit der Fahrtrichtung einen stumpfen Winkel ein. Um
nicht hinzufallen, neigt sich der Fahrgast zuriick. Aller-
dings verweilt er nicht lange in dieser Lage. Die Strafen-
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Bild 2.8.

bahn hilt an, die Verzogerung verschwindet, und die
»oenkrechte verlauft wieder senkrecht zur Erdoberfli-
che. Wiederum miissen wir unsere Korperlage wechseln.
Kontrollieren Sie einmal Ihre Empfindungen. Haben
Sie nicht auch bei Beginn des Bremsens den Eindruck,
es habe Sie jemand in den Riicken gesto8en? Und wenn
der Wagen zum Stillstand gekommen ist, glauben Sie,
einen StoB in die Brust erhalten zu haben.

Ahnliche Erscheinungen finden auch dann statt, wenn
die Straflenbahn eine Schleife durchfihrt. Wir wissen,
daB die Bewegung auf einer Kreisbahn selbst bei konstan-
ter Geschwindigkeit beschleunigt ist. Die Beschleunigung
v?/R ist um so groBer, je schneller die Straenbahn fihrt
und je kleiner der Schleifenradius R ist. Die Beschleu-
nigung dieser Bewegung ist radial zum Mittelpunkt hin
gerichtet. Dies freilich ist der Entstehung einer zusitz-
lichen Schwere &dquivalent, die gerade die umgekehrte
Richtung hat. Also wird ein Fahrgast wihrend der
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Schleifenfahrt der zusadtzlichen Kraft mwv?)/R ausgesetzt
sein, die ihn — vom Schleifenmittelpunkt aus gesehen —
nach auflen driickt. Die Radialkraft mv?/R heifit Zentri-
fugalkraft. Der gleichen, freilich von einem etwas ande-
ren Standpunkt aus betrachteten Kraft sind wir bereits
weiter oben begegnet.

Die Wirkung der Zentrifugalkraft in einer wendenden
StraBenbahn oder einem Omnibus kann nur geringfiigige
Unannehmlichkeiten verursachen. Die Kraft muv* R ist
hier gering. Beim raschen Durchfahren einer Schleife
konnen die Zentrifugalkrifte dagegen groBe Werte errei-
chen und lebensgefdhrlich werden. Grofen Werten von
mv*/R begegnen Flieger, wenn das Flugzeug einen soge-
nannten Looping ausfiihrt. Wenn das Flugzeug eine
Kreishahn beschreibt, ist der Flieger einer Zentrifugal-
kraft ausgesetzt, die ihn an den Sitz preft. Je kleiner der
Umfang des Loopings nun ist, um so grofer ist auch die
zusitzliche Schwere, die den Flieger in seinen Sitz driickt.
Ist diese Schwerkraft groB, dann kann der Mensch ,zer-
reilen“, denn die Gewebe eines lebenden Organismus ha-
ben nur eine begrenzte Festigkeit und sind nicht imstan-
de, jeder beliebigen Schwerkraft standzuhalten.

Um wieviel kann ein Mensch ohne wesentliche Ge-
fahrdung ,schwerer werden? Dies héngt von der Bela-
stungsdauer ab. Hilt die Belastung nur Sekundenbruch-
teile an, dann vermag der Mensch, die acht- bis zehn-
fache Gewichtskraft, d.h. Uberlastung von 7 bis 9 g
auszuhalten. Fiir die Dauer einiger Dutzend Sekunden
vertrigt ein Flieger 3 bis H g. Bei Kosmonauten ist die
Frage interessant, welche Uberlastung ein Mensch wiih-
rend einiger Dutzend Minuten, vielleicht aber auch Stun-
den, vertragen kann. In solchen Fillen muBl die Uber-
lastung wahrscheinlich erheblich geringer sein.

Wir wollen nun die Radien von Schleifen berechnen,
die ein Flugzeug ohne Gefahr fiir den Flieger bei verschie-
denen Geschwindigkeiten beschreibt. Dazu beginnen wir



2. Die Bewegungsgesetze 87

Bild 2.9.

mit der Beschleunigung v*/R = 4g und R = v?/4 g.
Bei einer Geschwindigkeit von 360 km/h = 100 m/s be-
tragt der Schleifenradius 250 m; ist die Geschwindigkeit
dagegen viermal so groB, d.h., betrdgt sie 1440 km/h
(und diese Geschwindigkeit wurde von modernen Diisen-
flugzeugen bereits iibertroffen), dann mufl der Schleifen-
radius auf das 16fache vergroBert werden. Damit betrigt
der Mindestradius der Schleife 4 km.

Wir wollen aber auch ein bescheideneres Verkehrsmit-
tel, namlich das Fahrrad, nicht auBer acht lassen. Wir
haben alle schon einmal gesehen, wie sich ein Radfahrer
»in die Kurve legt“. Ein Radfahrer soll aufgefordert wer-
den, einen Kreis des Radius R mit der Geschwindigkeit v
zu fahren; er wird dabei der zum Mittelpunkt gerichteten
Beschleunigung v*/R ausgesetzt sein. Abgesehen von der
Erdanziehungskraft, wird hier am Radfahrer eine zusitz-
liche Zentrifugalkraft angreifen, die in der Waagerechien
vom Mittelpunkt weg weist. In Bild 2.9, sind diese Krifte



Physikalische Kérper 88

Bild 2.10.

und ihre Summe dargestellt. Natiirlich mu8 sich der Rad-
fahrer ,senkrecht* halten, sonst kippt er um. Doch seine
»Senkrechte” stimmt nicht mit der irdischen ,,Senkrechten*
iiberein. Aus dem Bild geht hervor, daf die Vektoren
mv?/R und mg die Katheten eines rechtwinkligen Dreiecks
bilden. Das Verhiltnis von Gegenkathete zu Ankathete
ist der Tangens des betreffenden Winkels. In unserem
Fall ist tg @ = v*/Rg; die Masse hat in voller Ubereinstim-
mung mit dem Aquivalenzprinzip abgenommen. Also
hingt der Neigungswinkel des Radfahrers nicht von sei-
ner Masse ab: Der Dicke wie der Diinne miissen sich
gleichermaflen in die Kurve legen. Die Formel und das im
Bild dargestellte Dreieck zeigen die Abhangigkeit der
Neigung von der Geschwindigkeit (diese Neigung nimmt
mit steigender Geschwindigkeit zu) und vom Radius des
Kreises (hier wird die Neigung mit abnehmendem Radius
groBer). Wir haben festgestellt, daB die Senkrechte des
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Radfahrers nicht mit der irdischen Senkrechten iiberein-
stimmt. Was wird der Radfahrer nun empfinden? Dazu
miissen wir das Bild 2.9. drehen. Die Fahrbahn sieht
jetzt wie ein Berghang aus (Bild 2.10a.), und nun wird uns
klar, daB bei ungeniigender Reibungskraft zwischen den
Reifen und dem Strafenbelag (nasser Asphalt) der Rad-
fahrer ,,abrutschen“ kann, so daB die scharfe Kurve mit
dem Sturz in den Strafengraben endet.

Damit dies nicht geschieht, werden scharfe Kurven
von Fahrbahnen ,ausgebaut®, wie es Bild 2.10b. zeigt,
d.h., sie werden fiir den Radfahrer waagerecht gestaltet.
Man kann damit die Rutschgefahr stark vermindern bzw.
beseitigen. Besondere Beriicksichtigung findet dies bei
Kurven von Radrennbahnen und Autobahnen.

Zentrifugalkrifte

Nun wollen wir uns rotierenden Systemen zuwenden. Die
Bewegung derartiger Systeme wird durch die Anzahl von
Umdrehungen je Sekunde bestimmt, die die Systeme um
ihre eigene Achse ausfiihren. Natiirlich muf man auch
die Richtung der Drehachse kennen.

Um die Besonderheiten des Lebens in rotierenden Sy-
stemen besser verstehen zu lernen, wollen wir uns ein-
mal das , Teufelsrad“, eine bekannte Rummelplatzattrak-
tion, ansehen. Sein Aufbau ist sehr einfach. Eine glatte
Scheibe von einigen Metern Durchmesser wird in rasche
Drehung versetzt. Das Publikum wird aufgefordert, sich
auf die Scheibe zu setzen und sich mdoglichst lange auf
der Scheibe zu halten. Selbst, wer in Physik keine Ahnung
hat, kommt rasch hinter das Geheimnis des Erfolges: Man
muf die Mitte der Scheibe aufsuchen, denn je weiter man
vom Mittelpunkt entfernt ist, um so schwerer fillt es,
seinen Platz beizubehalten.

Die Scheibe als Ganzes stellt ein Nichtinertialsystem
mit einigen besonderen Eigenschaften dar, Jeder mit der
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Scheibe fest verbundene Gegenstand bewegt sich auf
einer Kreisbahn des Radius R mit der Geschwindigkeit
v, d. h. mit der Beschleunigung v*/R. Wie wir bereits
wissen, bedeutet dies, vom Standpunkt eines nichtiner-
tialen Beobachters, das Auftreten einer zusitzlichen Schwe-
re mv*/R, die radial vom Mittelpunkt wegfiihrt. Diese
Radialschwerkraft tritt mit Ausnahme des Mittelpunktes
an jedem Punkt des ,Teufelsrades” auf und erzeugt dabei
die Radialbeschleunigung »*/R. Fiir Punkte, die auf dem
gleichen Kreisumfang liegen, ist auch die Beschleunigung
gleich. Wie aber sieht es auf verschiedenen Kreisumfin-
gen aus? Nicht so hastig! Sagen Sie bloB nicht, die Be-
schleunigung miite gem#B der Formel »*/R um so gréBer
sein, je geringer die Entfernung vom Mittelpunkt ist.
Das ist falsch; die Geschwindigkeit der weiter vom Mit-
telpunkt entfernten Punkte ist ja grofler. Bezeichnet
man die Anzahl der Umdrehungen, die das Rad je Se-
kunde ausfiihrt, mit », dann 148t sich der Weg, den ein
Punkt auf dem Rad in der Entfernung R vom Zentrum je
Sekunde zuriicklegt, d. h. also die Geschwindigkeit dieses
Punktes, wie folgt angeben: 2zRn.

Die Geschwindigkeit jedes Punktes ist seiner Entfer-
nung vom Mittelpunkt direkt proportional. Nun l&8t
sich diese Beschleunigungsformel angeben:

a = 47*n®R.

Da nun die Anzahl der je Sckunde ausgefiihrten Um-
drehungen fiir alle Punkte des Rades gleich ist, gelangen
wir zu dem Schlufl, daB die Radialbeschleunigung, die
aufl einem umlaufenden Rad wirkt, proportional mit der
Entfernung des Punktes vom Radmittelpunkt zunimmt.

Die Schwerkraft in diesem interessanten Nichtinertial-
system ist auf verschiedenen Kreisumfingen unterschied-
lich. Also miissen auch die Richtungen der ,Senkrechten®
fiir Korper, die sich in unterschiedlichen Entfernungen
vom Mittelpunkt befinden, verschieden sein. Die Erdan-



2. Die Bewegungsgesetze M

Bild 2.11.

ziehungskraft ist natiirlich an allen Punkten des Rades
ein und dieselbe. Der Vektor hingegen, der die zusatz-
liche ,Radialschwere” charakterisiert, wird um so lan-
ger, je weiter man sich vom Mittelpunkt entfernt. Somit
werden die Diagonalen der Rechtecke im Vergleich zur
irdischen Senkrechten immer stirker ausgelenkt.

Will man sich vorstellen, was ein Mensch, der vom
Teufelsrad herunterrutscht, von seinem Standpunkt aus
wahrnimmt, dann kann man sagen, daf} sich die Scheibe,
je groBer die Entfernung von ihrem Mittelpunkt wird, im-
mer stirker ,neigt*, so daB es unmoglich wird, sich auf
der Scheibe zu halten. Will man auf ihr stehenbleiben,
dann mufl man sich bemiihen, den eigenen Schwerpunkt
auf der ,Senkrechten® zu halten, die immer stirker gegen
die Drehachse geneigt ist, je weiter die Mannchen in
Bild 2.11. vom Mittelpunkt entfernt sind.

Konnte man fiir ein derartiges Inertialsystem nicht
eine Vorrichtung ausdenken, die einer ausgebauten Stra-
Benkurve dlhnelt? Gewi, das ist moglich, man muB nur
die Scheibe durch eine Oberfliche ersetzen, bei der an
jedem Punkt die Gesamtschwerkraft senkrecht angeordnet
ist. Die Form einer derartigen Oberfliche 1dfit sich be-
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Bild 2.12.

rechnen. Sie heift Paraboloid. Diese Bezeichnung wurde
nicht zufédllig gewihlt: In jedem Vertikalschnitt liefert
das Paraboloid eine Parabel, d. h. die Kurve, die Kérper
beim Fallen beschreiben. Das Paraboloid entsteht durch
Drehung einer Parabel um ihre Achse.

Besonders leicht kann man diese Oberflache erzeugen,
wenn man ein mit Wasser gefiilltes Gefd in rasche Dre-
hung versetzt. Die Oberfldche der rotierenden Fliissigkeit
bildet ein Paraboloid. Die Wasserpartikeln werden genau
dann aufhoren, ihre Lage zu dndern, wenn die Kraft,
die jedes Partikel an die Oberfldche prefit, senkrecht zu
dieser steht. Jeder Drehgeschwindigkeit entspricht ein
anderes Paraboloid (Bild 2.12.).

Fertigt man ein Paraboloid aus einem Feststoff an,
dann 148t sich seine Eigenschaft anschaulich demonstrie-
ren. Eine kleine Kugel, an eine beliebige Stelle des mit
einer bestimmten Geschwindigkeit rotierenden Parabo-
loids gelegt, bleibt in Ruhe. Das bedeutet, da die auf
die Kugel einwirkende Kraft senkrecht zur Oberfliche
steht. Anders ausgedriickt: Die Oberfliche eines rotie-
renden Paraboloids hat gewissermaBien die Eigenschaften



2, Die Bewegungsgesetze 93

einer waagerechten Oberfliche. Man kann darauf herum-
laufen wie auf der Erde und sich durchaus sicher auf den
Beinen fiihlen. Allerdings wird sich die Richtung
unserer ,Senkrechten® &ndern, wenn wir im Paraboloid
auf und ab laufen.

Zentrifugalerscheinungen werden in der Technik hiu-
fig genutzt. Auf der Nutzung solcher Erscheinungen be-
ruht beispielsweise die Zentrifuge.

Die Zentrifuge ist eine rasch um ihre Achse rotierende
Trommel. Was wird geschehen, wenn wir verschiedene
Gegenstinde in die bis zum Rand mit Wasser gefiillte
Trommel werfen?

Beginnen wir mit einer kleinen Metallkugel: Sie wird
zu Boden sinken, aber nicht im Verlauf unserer ,,Senkrech-
ten“; vielmehr wird sie sich die ganze Zeit iiber von der
Drehachse entfernen und schlieflich an der Trommelwand
anhalten. Nun werfen wir eine Korkkugel in die Trom-
mel, die — gerade umgekehrt — sich sogleich in Richtung
der Drehachse zu bewegen beginnt, um dann dort zu
verharren.

Hat die Trommel unseres Zentrifugenmodells einen
groen Durchmesser, dann kénnen wir bemerken, wie
die Beschleunigung in dem MaBe steil ansteigt, wie sich
die Gegenstinde vom Mittelpunkt entfernen.

Die hier ablaufenden Erscheinungen sind durchaus
verstindlich. Im Zentrifugeninneren existiert eine zusitz-
liche Radialschwere. Rotiert die Zentrifuge geniigend
schnell, dann bildet die Trommelwandung das ,,Unten*
der Trommel. Die Metallkugel ,taucht” im Wasser ,unter*,
wiahrend die Korkkugel ,aufschwimmt”. Je weiter sich
ein in das Wasser ,fallender” Koérper von der Drehachse
entfernt, um so ,schwerer wird er.

Bei hinreichend gut konstruierten Zentrifugen erreicht
man Geschwindigkeiten von 60 000 Umdrehungen in der
Minute, d. h. 103 Umdrehungen je Sekunde. In 10 cm
Entfernung von der Drehachse ist die Beschleunigung der
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Radialschwerkraft ungefiahr gleich:
40-108.0,1 = 4-10% m/s?,

d. h. 400 000mal so grof wie die Erdbeschleunigung.

Es leuchtet ein, daffl man bei solchen Maschinen die
Erdschwere nicht zu beriicksichtigen braucht, und wir
diirfen wirklich sagen, daBl das ,,Unten" in der Zentrifuge
die Trommelwand ist.

Aus dem bisher Gesagten ergibt sich das Anwendungs-
gebiet von Zentrifugen. Wollen wir in einem Gemisch
schwere von leichten Partikeln trennen, dann ist stets der
Einsatz ciner Zentrifuge angezeigt. Wir kennen alle die
Formulierung: ,Eine triibe Fliissigkeit hat sich abgesetzt“.
Wenn man verschmutztes Wasser nur lange genug ste-
hen laBt, dann setzt sich die Triibe (die gewohnlich
schwerer als das Wasser ist) am Boden ab. Allerdings kann
dieser Vorgang monatelang dauern, wihrend sich das
Wasser mit Ililfe einer guten Zentrifuge in Sekunden-
schnelle reinigen lagt.

Zentrifugen, die mit einer Geschwindigkeit von einigen
10 000 Umdrehungen in der Minute rotieren, vermogen
feinste Triibstoffe nicht nur aus Wasser, sondern auch aus
viskosen Fliissigkeiten abzutrennen.

In der chemischen Industrie werden Zentrifugen zur
Trennung von Kristallen aus den Losungen verwendet,
in denen die Kristalle geziichtet wurden; sie dienen zur
Entwisserung von Salzen und zur Reinigung von Lacken;
in der Lebensmittelindustrie verwendet man sie zur Ab-
trennung der Melasse vom WeiBlzucker.

Einen Sonderfall des Zentrifugeneinsatzes zur Ab-
trennung fester oder fliissiger Bestandteile von grofien
Fliissigkeitsmengen stellen die Milchzentrifugen dar.
Milchzentrifugen rotieren mit einer Geschwindigkeit von
2000 bis 6000 Umdrehungen in der Minute, und ihr
Trommeldurchmesser reicht bis zu 5 m.
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Bild 2.13.

Der Schleudergu ist ein in der Metallurgie hiufig
verwendetes Verfahren. Bereits bei Geschwindigkeiten
von 300 bis 500 Umdrehungen in der Minute wird das in
die rotierende Form eintretende fliissige Metall mit er-
heblicher Kraft an die Aulenwénde der Form gedriickt.
So giefit man Metallrohre und erhilt dabei dichtere, ho-
mogenere, lunker- und riBfreie Erzeugnisse.

Und nun noch eine andere Anwendung der Zentrifu-
galkraft. In Bild 2.13. ist eine einfache Vorrichtung dar-
gestellt, die zur Regelung der Drehzahl rotierender Maschi-
nenteile dient. Diese Vorrichtung heifit Fliehkraftregler.
Bei zunehmender Drchgeschwindigkeit wichst die Zen-
trifugalkraft, und der Abstand der Kugeln des Reglers von
der Achse wird grofer. Die an den Kugeln befestigten
Zugstangen werden ausgelenkt und konnen bei einer be-
stimmten, vom Konstrukteur berechneten Auslenkung
bestimmte elektrische Kontakte oder beispielsweise imn
Fall der Dampfmaschine auch Ventile 6ffnen, die hier
den Dampfiiberschu8 austreten lassen. Dadurch nimmt
die Drehgeschwindigkeit ab, und die Zugstangen kehren
in die Normalstellung zuriick.

Interessant ist folgender Demonstrationsversuch. Auf
die Achse eines Elektromotors wird eine Pappscheibe
gesteckt. Wir schalten nun den Strom ein und bringen
einen Holzklotz an dierotierende Pappscheibe. Ein Kant-
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holz von betrdchtlicher Dicke wird ebenso leicht durch-
gesigt wie von einer Stahlsdge.

Der Versuch, Holz mit einem Pappstreifen zu zer-
sidgen, indem man diesen wie eine Handsiige benutzt,
konnte uns nur ein Lécheln abnétigen. Warum schneidet
dann aber eine rotierende Pappscheibe Holz? Auf die
am Umfang der Scheibe liegenden Pappteilchen wirkt
eine ungeheuer grofie Zentrifugalkraft. Seitlich angrei-
fende Krifte, die die Ebene der Pappscheibe deformie-
ren konnten, sind verschwindend gering im Vergleich zur
Zentrifugalkraft. Da die Pappscheibe unverdndert in ei-
ner Ebene verbleibt, vermag sie sich in das Holz ,hin-
einzufressen”.

Die infolge der Erdrotation entstehende Zentrifugal-
kraft fiihrt zu Gewichtskraftunterschieden von Kérpern
auf verschiedenen Breiten.

Ein Korper wiegt am Aquator weniger als am Pol,
und zwar aus zwei Griinden. An der Erdoberfliche lie-
gende Korper haben je nach der geographischen Breite
des Ortes unterschiedliche Abstinde von der Erdachse.
Beim Ubergang vom Pol zum Aquator nimmt dieser
Abstand natiirlich zu. Uberdies befindet sich ein Korper
am Pol auf der Drehachse, und die Zentrifugalbeschleu-
nigung ist

a = 4n’n*R =0

(denn die Entfernung von der Drehachse ist R = 0).
Im Gegensatz dazu erreicht die Beschleunigung am
Aquator ihren grofiten Wert. Die Zentrifugalkraft ver-
ringert die Anziehungskraft. Darum ist der Druck, den
die Korper auf ihre Unterlage ausiiben, hier am klein-
sten.

Wire die Erde genau kugelformig, dann wiirde ein
1-N-Wigestiick, das man vom Pol zum Aquator be-
fordert, 3,5 mN seiner Gewichtskraft. Diese Zahl 148t
sich nach folgender Formel leicht berechnen:
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4n®n2Rm,

indem man fir » = 1 Umdrehung/24 h, R = 6300 km
und m = 1000 mN einsetzt. Allerdings mufl man die
MaBeinheiten in Sekunden und Zentimeter umrechnen.

In Wirklichkeit verliert das 1-N-Wigestliick nicht
3,5, sondern 5,3 mN seiner Gewichtskraft. Das hat seinen
Grund darin, daBl die Erde eine abgeflachte Kugel dar-
stellt, die man in der Geometrie als Ellipsoid bezeichnet.
Die Entfernung vom Pol zum Erdmittelpunkt ist um etwa
33—mkl'e>inc>r als der Erdradius am Aquator.

Diese Abflachung des Erdballs hat ihre Ursache eben-
falls in der Zentrifugalkraft. Diese wirkt ndmlich auf alle
Partikeln der Erde ein. Wéhrend eines sehr langen Zeit-
raums hat die Zentrifugalkraft unseren Planeten ,ge-
formt“ und ihm seine ahgeflachte Form verliehen.

Corioliskréfte

Die Eigenart der Welt rotierender Systeme erschopft
sich nicht in der Existenz radialer Schwerkrifte. Wir wol-
len uns einem weiteren interessanten Effekt widmen, den
der Franzose Gustave Coriolis 1835 theoretisch unter-
suchte.

Stellen wir uns einmal folgende Frage: Welches Bild
bietet eine geradlinige Bewegung vom Standpunkt eines
rotierenden Laboratoriums aus? Der Grundrif eines der-
artigen Laboratoriums ist in Bild 2.14. dargestellt.
Der durch den Mittelpunkt verlaufende Strich zeigt die
geradlinige Bahn eines Korpers. Wir betrachten den Fall,
wenn die Bahn des Kérpers durch den Drehpunkt unse-
res Laboratoriums verlduft. Die Scheibe, auf der sich
das Laboratorium befindet, rotiert gleichférmig; im
Bild sind fiinf Stellungen des Laboratoriums im Verhalt-
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Bild 2.14.

nis zu der geradlinigen Bahn dargestellt. So sieht die
wechselseitige Anordnung des Laboratoriums und der
Bahn des Kérpers nach ein, zwei, drei usw. Sekunden aus.
Das Laboratorium rotiert in der Draufsicht, wie Sie
sehen, entgegen dem Uhrzeigersinn. Auf der Bahnlinie
sind Pfeile aufgetragen, die den Wegen entsprechen, die
der Korper in ein, zwei, drei usw. Sekunden durchliauft.
Wiéhrend jeder Sekunde legt der Korper die gleiche Weg-
strecke zuriick, da es sich hier (vom Standpunkt eines
ruhenden Beobachters aus) um eine gleichformige und
geradlinige Bewegung handelt.

Stellen Sie sich nun einmal vor, der in Bewegung be-
findliche Korper sei eine iiber die Scheibe rollende frisch
gestrichene Kugel. Welche Spur wird auf der Scheibe
zuriickbleiben? Unsere Konstruktion liefert die Antwort
auf diese Frage. Die durch die Pfeilenden markierten
Punkte wurden aus den fiinf Einzelzeichnungen auf
eine iibertragen. Nun brauchen wir diese Punkte nurnoch
durch eine gleichformige Kurve zu verbinden. Das Ergeb-
nis darf uns nicht verwundern: Vom Standpunkt eines
rotierenden Beobachters aus betrachtet, erscheint die
geradlinige und gleichférmige Bewegung gekriimmt. Be-
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sondere Aufmerksamkeit verdient dabei folgende Regel:
Iiin bewegter Korper wird auf seinem gesamten Weg im
Bewegungssinn nach rechts abgelenkt. Nun versuchen Sie
oinmal, unter der Annahme, die Scheibe rotiere im
Uhrzeigersinn, die geschilderte Konstruktion zu wieder-
holen. Dabei wird sich zeigen, dafl der bewegte Korper
vom Standpunkt des rotierenden Beobachters aus im
Bewegungssinn nach links abgelenkt wird.

Wir wissen, dafl in rotierenden Systemen eine Zentri-
fugalkraft auftritt. Thre Wirkung kann freilich nicht als
Ursache der Bahnkrimmung herhalten, weil sie in
Richtung des Radius zeigt. Also entsteht in rotierenden
Systemen neben der Zentrifugalkraft eine weitere zusétz-
liche Kraft. Sie heifit Corioliskraft.

Warum sind wir dann in den vorangegangenen Ver-
suchen nicht bereits auf die Corioliskraft gestofien und
mit der Zentrifugalkraft allein ganz vorziiglich ausge-
kommen? Die Ursache ist, daf wir die Bewegung von
Koérpern bislang nicht vom Standpunkt des rotierenden
Beobachters aus betrachtet haben. Die Corioliskraft aber
tritt nur in diesem Fall in Erscheinung. An Kérpern, die
in einem rotierenden System ruhen, greift nur die Zentri-
fugalkraft an. Auf den am FuBboden angeschraubten
Tisch eines rotierenden Laboratoriums wirkt nur die
Zentrifugalkraft ein. Ein kleiner Ball aber, der vom Tisch
herunterfillt und auf dem Boden des rotierenden Labora-
toriums entlangrollt, wird sowohl von der Zentrifugal-
kraft als auch von der Corioliskraft beeinfluft.

Von welchen Groflen ist der Wert der Corioliskraft
abhingig? Man kann diesen Wert berechnen, doch sind
die entsprechenden Berechnungen zu kompliziert, als
daB wir sie hier anfiihren wollen. Lassen Sie uns daher nur
die Berechnungsergebnisse beschreiben.

Abweichend von der Zentrifugalkraft, deren Wert von
der Entfernung zur Drehachse abhéngt, ist die Coriolis-

,kraft von der Lage des Korpers unabhéngig. Diese Kraft
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wird durch die Geschwindigkeit des K 6rpers bestimmt und
hiangt dabei nicht nur vom Wert der Geschwindigkeit,
sondern auch von ihrer Richtung relativ zur Drehachse ab.
Bewegt sich ein Korper die Drehachse entlang, dann ist
die Corioliskraft gleich Null. Je grofler dagegen der
Winkel zwischen dem Geschwindigkeitsvektor und der
Drehachse ist, um so grofler ist auch die Corioliskraft,
ihren groften Wert nimmt sie bei rechtwinkliger Bewegung
des Korpers zur Drehachse an.

Wie wir wissen, kann man den Geschwindigkeitsvek-
tor stets in bestimmte Komponenten zerlegen und so zwei
Bewegungen, an denen ein Koérper gleichzeitig teilnimmt,
getrennt betrachten.

Zerlegt man die Geschwindigkeit des Korpers in die
parallel und senkrecht zur Drehachse verlaufenden Kom-
ponenten v, und v,, dann ist die erstgenannte Bewegung
der Corioliskraft nicht unterworfen. Der Wert fiir die
Corioliskraft Fy ergibt sich aus der Geschwindigkeits-
komponente v, . Die Berechnungen filhren zu der Formel:

Fx = 4nnv, m.

Hierin ist m die Masse des Korpers und n die Anzahl der
Umdrehungen, die das rotierende System je Zeiteinheit
vollzieht. Wie aus der Formel ersichtlich, ist die Corio-
liskraft um so groBer, je rascher das System rotiert und
jo schneller sich der Korper bewegt.

Die Berechnungen definieren auch die Richtung der
Corioliskraft. Diese Kraft steht stets senkrecht auf der
Drehachse und der Bewegungsrichtung. Dabei ist die
Kraft, wie bereits weiter oben festgestellt worden ist,
bei einem im Gegenuhrzeigersinn rotierenden System im
Bewegungssinn nach rechts gerichtet. Aus der Coriolis-
kraft erkldren sich viele auf der Erde stattfindende inter-
essante Erscheinungen. Die Erde ist eine Kugel, keine
Scheibe. Darum sind die Erscheinungsformen der Corio-
liskréfte komplizierter. Sie miissen sich sowohl bei Be-
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wegungen an der Erdoberflidche als auch beim Failen von
Koérpern zur Erde bemerkbar machen.

Fillt ein Korper genau senkrecht? Nicht ganz. Nur
am Pol fallen Bewegungsrichtung und Drehachse der Er-
de zusammen, so daB keine Corioliskraft auftritt und ein
Kérper im strengen Sinn senkrecht fallt. Anders liegen
die Dinge am Aquator; hier steht die Bewegungsrichtung
senkrecht auf der Erdachse. Blickt man vom Nordpol aus
auf den Aquator, so stellt sich die Drehrichtung der Erde
im Gegenuhrzeigersinn dar. Ein frei fallender Korper
also muB im Bewegungssinn nach rechts, d.h. nach
Osten, abgelenkt werden. Der Betrag dieser osthchen Ab-
lenkung ist am Aquator am gréBten und vermindert sich
mit Anndherung an die Pole auf Null.

Lassen Sie uns den Ablenkungsbetrag am Agquator
ausrechnen. Da sich ein frei fallender K 6rper gleichférmig-
beschleunigt bewegt, wichst die Corioliskraft mit zu-
nehmender Anndherung an die Erde. Wir beschrinken uns
daher auf eine Uberschlagsrechnung. Fillt ein Korper
beispielsweise aus 80 m Héhe, dann dauert sein Fall
etwa 4 s (nach der Formel ¢t = )/ 2k/g). Die mittlere Fall-
geschwindigkeit wire gleich 20 m/s.

Diesen Geschwindigkeitswert setzen wir in die Formel
der Coriolisbeschleunigung 4mnv ein. Den Wert n = 1
Umdrehung in 24 Stunden rechnen wir in die Anzahl der.
Umdrehungen je Sekunde um. In 24 Stunden sind 24 X

X 3600 Sekunden enthalten, also ist n = 8614003_
und die von der Corioliskraft erzeugte Beschleunigung

demzufolge gleich m/s%. Der bei dieser Beschleuni-

108()
gung binnen 4 s zuriickgelegte Weg ist gleich é % 4% =

= 2,3 cm. Genau dies ist der Betrag der ostlichen Auslen-
kung in unserem Beispiel. Eine genaue Berechnung, bei
der die UngleichmaBigkeit des Fallvorgangs beriicksich-
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tigt wird, liefert eine diesem Wert recht nahekommende,
aber doch etwas andere Zahl.

Wihrend die Auslenkung eines Kérpers beim freien
Fall am Aquator ihr Maximum erreicht und an den Polen
gleich Null ist, beobachten wir hinsichtlich der durch
die Corioliskraft verursachten Auslenkung eines in
waagerechter Ebene bewegten Korpers gerade das umge-
kehrte Bild.

Eine waagerechte Fldche am Nord- oder Siidpol unter-
scheidet sich in keiner Weise von der rotierenden Scheibe,
mit der wir die Untersuchung der Corioliskraft begonnen
haben. Ein auf dieser Ebene bewegter Kérper wird durch
die Corioliskraft am Nordpol nach rechts im Bewegungs-
sinn und am Siidpol nach links im Bewegungssinn ausge-
lenkt. Man kann mit Hilfe der Formel fiir die Coriolisbe-
schleunigung ohne Schwierigkeiten ausrechnen, daf eine
Kugel, die mit der Anfangsgeschwindigkeit 500 m/s den
Lauf verldfit, wiahrend einer Sekunde (d. h. auf einem
Weg von 500 m) um 3,5 cm von ihrem Ziel in der waa-
gerechten Ebene abgelenkt wird.

Warum aber soll die Auslenkung in der waagerechten
Ebene am Aquator glelch Null sein? Hier leuchtet ohne
strenge Bewelsfuhrung ein, daB es so sein mufl. Am Nord-
pol wird ein Korper nach rechts im Bewegungssinn und
am Siidpol nach links im Bewegungssinn ausgelenkt; in
der’ Mitte zwischen den Polen, d.h. am Aquator, mufl
die Ablenkung daher gleich Null sein.

Erinnern wir uns an den Versuch mit dem Foucault-
schen Pendel. Ein Pendel, das am Pol schwingt, behilt
seine Schwingungsebene bei. Die rotierende Erde lduft
unter dem Pendel durch. Das ist die Erkldrung eines
stellaren Beobachters fiir den Foucaultschen Versuch.
Ein Beobachter dagegen, der gemeinsam mit dem Erdball
rotiert, erkldart ihn mit der Corioliskraft. In der Tat ver-
lduft die Corioliskraft senkrecht zur Erdachse und senk-
recht zur Bewegungsrichtung des Pendels; anders aus-
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Bild 2.15.

gedriickt: Die Kraft greift senkrecht an der Schwingungs-
ebene des Pendels an und bewirkt eine kontinuierliche
Drehung dieser Ebene. Man kann nun die Versuchsanord-
nung so wihlen, da das Pendelende die Bewegungsbahn
aufzeichnet. Dabei entstcht die in Bild 2.15. gezeigte
»Rosette”. Auf dieser Zeichnung dreht sich die , Erde” im
Verlauf von anderthalb Schwingungsperioden des Pen-
dels um eine Viertelumdrehung weiter. Das Foucault-
sche Pendel dreht sich sehr viel langsamer. Am Pol
schwenkt die Schwingungsebene des Pendels wihrend

einer Minute um 2-Grad. Am Nordpol wird sich die

Ebene im Schwingungssinn des Pendels nach rechts, am
Siidpol nach links drehen.

Im geographischen Breitenbereich von Mitteleuropa ist
der Corioliseffekt etwas geringer als am Aquator. Die
Kugel aus dem soeben angefiihrten Beispiel wird nicht
um 3,5 cm, sondern nur um 2,5 cm ausgelenkt. Das Fou-
caultsche Pendel dreht sich wihrend einer Minute um

etwa % Grad weiter. Miissen also auch Artilleristen die
Corioliskraft beriicksichtigen? Die ,dicke Berta“, mit
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der die Deutschen wéhrend des ersten Weltkrieges Paris
unter Feuer nahmen, war 110 km vom Ziel entfernt. In
diesem Fall erreicht die Coriolisauslenkung 16 m, also
keine Kleinigkeit.

Wird ein Geschof iiber eine weite Entfernung ohne
Beriicksichtigung der Corioliskraft abgefeuert, dann
kommt es ganz erheblich von der beabsichtigten Bahn
ab. Dabei ist der Effekt nicht deshalb so groB, weil die
Kraft grof wire (fiir ein Geschof von 10 t mit einer Ge-
schwindigkeit von 1000 km/h miifite die Corioliskraft
etwa 250 N betragen), sondern deshalb, weil diese Kraft
kontinuierlich iiber lange Zeit angreift.

Natiirlich kann der Einfluf} des Windes auf ein nicht
lenkbares Geschof ebenso betréchtlich sein. Die Kurskor-
rektur, die ein Pilot vornimmt, hat ihre Ursache in der
Wirkung des Windes, im Corioliseffekt sowie in Unvoll-
kommenheiten des Flugzeugs. Wer, auller den Fliegern
und Artilleristen, mufl den Corioliseffekt noch beriick-
sichtigen? Wie seltsam es auch klingen mag: die Eisen-
bahner! Unter dem EinfluB der Corioliskraft unterliegt
jeweils eine Schiene an der Innenseite einem merklich
stirkeren Abrieb als die andere. Keine Frage, welche von
beiden es ist: Auf der nordlichen Halbkugel ist es (im
Bewegungssinn) stets die rechte und auf der siidlichen
ITalbkugel stets die linke Schiene. Lediglich in den dqua-
tornahen Lindern gibt es keine diesbeziiglichen Probleme.

Die Unterspiillung des jeweils rechten Ufers auf der
noérdlichen Halbkugel hat die gleiche Erkldrung wie der
Schienenabrieb. Richtungsinderungen des FluBbettes sind
vielfaltig mit dem EinfluB der Corioliskraft verkniipft.
So fand man, daBl die Fliisse auf der nordlichen Halbku-
gel Hindernisse stets auf der rechten Seite umfliefen.

Bekanntlich stréomt die Luft stets in ein Gebiet ver-
minderten Drucks hinein. Warum aber werden solche
Windstréme als Zyklone bezeichnet? Der Wortstamm deu-
tet doch auf eine kreisformige (zyklische) Bewegung hin,
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Bild 2.16.

Bild 2.17.

Genau so verhidlt es sich auch: In einem Gebiet mit
vermindertem Druck entsteht eine kreisformige Bewegung
der Luftmassen (Bild 2.16.). Auch hier liegt die Ursache
in der Wirkung der Corioliskraft. Auf der nérdlichen Halb-
kugel werden alle dem Gebiet verminderten Drucks
zuwehenden Luftstréme in ihrer Bewegung nach rechts
abgelenkt. In Bild 2.17. sehen Sie, dafl dies eine Auslen-
kung der auf beiden Halbkugeln von den Tropen zum
Aquator wehenden Winde (der Passatwinde) nach Westen
zur Folge hat.
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Warum spielt diese geringe Kraft eine so grofle Rolle
in der Bewegung der Luftmassen?

Dies erklart sich aus der Geringfiigigkeit der Reibungs-
krafte. Die Luft ist leicht beweglich, und eine kleine,
aber stindig wirkende Kraft fiihrt zu bedeutsamen Fol-
gen.



3. Die Erhaltungssatze

Der RiickstoB8

Wohl jeder weif, da der Lauf eines Geschiitzes beim Ab-
feuern eine ruckartige Bewegung nach hinten ausfiihrt.
Schiefit man ein Gewehr ab, dann spiirt man den Riicksto8
in der Schulter. Man kann den RiickstoB aber auch ken-
nenlernen, ohne unbedingt Feuerwaffen zu Hilfe zu neh-
men. Gieflen Sie etwas Wasser in ein Reagenzglas, ver-
schliefen Sie dieses mit einem Stopfen und hiingen Sie
das Reagenzglas dann an zwei Fidden waagerecht auf
(Bild 3.1.). Nun halten Sie einen Brenner an das Re-
agenzglas: Das Wasser beginnt zu sieden, und nach etwa
zwei Minuten fliegt der Stopfen ,,mit Geschrei“ nach der
einen Seite fort, wihrend das Reagenzglas in die entge-
gengesetzte Richtung bewegt wird.

Die Kraft, die den Stopfen aus dem Reagenzglas ge-
trieben hat, war der Dampfdruck. Und die Kraft, die das
Reagenzglas aus seiner Ruhelage brachte, war ebenfalls
der Dampfdruck. Beide Bewegungen entstanden unter
dem Einflu$ ein und derselben Kraft. Das gleiche fin-
det auch beim Auslésen eines Schusses statt, nur daB
dort kein Dampf, sondern die Pulvergase am Werk sind.

Der Riicksto ergibt sich zwangsldufig aus der Regel,
wonach Wirkung und Gegenwirkung gleich sind. Wenn
der Dampf auf den Stopfen einwirkt, so wirkt auch der
Stopfen auf den Dampf in umgekehrter Richtung, und
der Dampf iibertrdgt diese Gegenwirkung auf das Re-
agenzglas.

Aber vielleicht moéchten Sie hier einwenden, wieso
denn ein und dieselbe Kraft so verschiedene Folgen haben



Physikalische Kdrper 108

Bild 3.1.

kann? Das Gewehr bewegt sich nur ein kurzes Stiick zu-
riick, die Kugel aber fliegt weit. Nun, wollen wir hoffen,
daf niemandem dieser Einwand in den Sinn gekommen
ist. Natlirlich konnen gleiche Krifte zu unterschiedli-
chen Folgen fithren: Denn die Beschleunigung, die einem
Koérper mitgeteilt wird (und dies ist ja genau die Folge
der Kraftwirkung), ist der Masse dieses Korpers umgekehrt
proportional. Die Beschleunigung des einen von beiden
Korpern (des Geschosses, der Kugel oder des Stopfens)
miissen wir in der Form a, = F/m, aufschreiben, die
Beschleunigung des Korpers, der dem Riickstofl ausgesetzt
ist (des Geschiitzes, des Gewehrs bzw. des Reagenzglases),
dagegen als a, = F/m,.

Da die Kraft ein und dieselbe ist, gelangen wir zu
einem wichtigen Schluff: Die bei der Wechselwirkung
zweier an einem ,Stoff“ beteiligten Ko6rper erhaltenen
Beschleunigungen sind deren Massen umgekehrt propor-
tional:

ay __ Iy

@ my
Demnach ist die Beschleunigung, die eine Kanone beim
Riicklauf erhdlt, im Vergleich zur Beschleunigung des
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Geschosses sovielmal geringer, wie die Kanone im Ver-
gleich zum Gescho8 mehr wiegt. Die Beschleunigung der
Kugel ebenso wie die des Gewehrs beim Riicksto dauert
genau so lange, wie sich die Kugel im Gewehrlauf be-
wegt. Wir wollen diese Zeit mit dem Buchstaben ¢ be-
zeichnen. Im Verlauf dieses Zeitraums wird die beschleu-
nigte Bewegung durch eine gleichférmige Bewegung
abgelost. Der Einfachheit halber wollen wir die Beschleu-
nigung als unverdnderlich ansehen. Dann ist die Ge-
schwindigkeit, mit der die Kugel den Gewehrlauf ver-
1laBt, v, = a; ¢ und die RiickstoBgeschwindigkeit v, =
= a, t. Da die Wirkungsdauer der Beschleunigung ein

und dieselbe ist, gilt T':l = %— und demnach
2 2
by _Ma
vy my "

Die Geschwindigkeiten, mit denen die Ko6rper nach ihrer
Wechselwirkung auseinanderfliegen, werden den Massen
der Korper umgekehrt proportional sein.

Beriicksichtigt man den vektoriellen Charakter der
Geschwindigkeit, dann kann man die letzte Beziehung
auch folgendermafen sehen: m,», = — m,v,; das Minus-
zeichen gibt an, dal die Geschwindigkeiten v, und v,
entgegengesetzte Richtungen haben.

Zum Schluff stellen wir die Gleichung noch einmal
um und bringen die Produkte aus Masse und Geschwindig-
keit auf die linke Seite der Gleichung:

myvy + myp, =0.

Der Impulserhaltungssaiz

Das Produkt aus der Masse eines Korpers und ihrer Ge-
schwindigkeit heiflit der Impuls des Korpers. Da die Ge-
schwindigkeit ein Vektor ist, stellt auch der Impuls eine
vektorielle Gro8e dar. Natiirlich stimmt die Impulsrich-
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tung mit der Bewegungsrichtung des Korpers iiberein.

Unter Verwendung dieses neuen Begriffs kann Newtons
Gesetz F = ma auch anders ausgedriickt werden. Da
a= ﬁ—Tv—l— ist, gilt F = m—vz;——mﬂ oder Ft = mv, — mv,.
Das Produkt aus der Kraft und ihrer Wirkungsdauer ist
gleich der Impulsinderung des Korpers.

Wenden wir uns wieder dem Riickstof zu.

Das Ergebnis unserer Betrachtungen zum Riicksto8 ei-
nes Geschiitzes 148t sich nun kiirzer ausdriicken: Die
Summe der Impulse von Geschiitz und Geschof bleibt
nach dem Abschuf} gleich Null. Sie war offenbar auch vor
dem Abschuf8 genausogro8, als sich das Geschiitz und
das GeschoB noch im Ruhezustand befanden.

Die Geschwindigkeiten, die in die Gleichung m,v; 4
+ myv, = 0 eingehen, sind die Geschwindigkeiten unmit-
telbar nach dem AbschuB. Im Verlauf der weiteren Be-
wegung von Geschiitz und Geschof setzt bei beiden die
Wirkung der Schwerkraft und des Luftwiderstandes ein,
wiahrend bei der Kanone dariiber hinaus auch noch die
Reibungskraft an der Erde hinzukommt. Ja, wenn der
AbschuBl im luftleeren Raum aus einem in der Leere héin-
genden Geschiitz erfolgt wire, wiirde die Bewegung mit
den Geschwindigkeiten v, und v, beliebig lange anhalten.
Das Geschiitz wiirde sich in die eine Richtung und das
Geschof§ in die Gegenrichtung bewegen.

In der Artillerie von heute werden sehr hidufig auf
Selbstfahrlafetten montierte Geschiitze verwendet, die
wihrend der Fahrt feuern. Wie mufl die abgeleitete Glei-
chung verdndert werden, damit sie auch fiir den Fall an-
gowendet werden kann, wenn ein Geschiitz wihrend der
Fahrt schieft? Zunichst gilt:

mya, + myu, = 0,

worin =, und u, die Geschwindigkeiten des Geschosses
und Geschiitzes relativ zu der in Bewegung befindlichen;
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Selbstfahrlafette sind. Ist die Geschwindigkeit der Selbst-
fahrlafette V, so betragen die Geschwindigkeiten von
Geschiitz und Geschof8 relativ zu einem ruhenden Beob-
achter v; = u; + V und v, = w, + V. Wir setzen die
Werte von u, und u, in die letztgenannte Gleichung ein
und erhalten:

(my + my) V= mv; + myv,.

Im rechten Teil der Gleichung haben wir die Summe der
Impulse von Geschiitz und Gescho8 nach dem AbschuS.
Und auf der linken Seite? Vor dem AbschuBl sind Ge-
schiitz und Geschof mit der Gesamtmasse m, + m,
gemeinsam mit der Geschwindigkeit ¥V in Bewegung. Al-
so steht auch im linken Teil der Gleichung der Gesamt-
impuls von Geschof§ und Geschiitz, jedoch vor dem Ab-
schuf.

So haben wir ein sehr wichtiges Naturgesetz bewiesen,
das als Impulserhaltungssatz bezeichnet wird. Bewiesen
haben wir es hier fiir zwei Ko6rper, doch das gleiche Ergeb-
nis trifft fiir jede beliebige Anzahl Koérper zu. Was bein-
haltet dieses Gesetz? Der Impulserhaltungssatz besagt,
daB sich die Impulssumme mehrerer in Wechselwirkung
stehender Koérper im Ergebnis dieser Wechselwirkung
nicht #ndert.

Der Impulserhaltungssatz trifft aber nur dann zu,
wenn auf die Gruppe von Koérpern keine anderweitigen
Krifte einwirken. Eine derartige Gruppe von Koérpern
wird in der Physik als geschlossenes System bezeichnet.

Gewehr und Kugel verhalten sich beim Abschuf} wie
ein geschlossenes System zweier Korper, ungeachtet der
Tatsache, dal beide dem Einfluf der Erdanziehungskraft
ausgesetzt sind. Im Vergleich zur Kraft der Pulvergase
ist das Gewicht der Kugel gering, und der Riicksto8 lauft
nach ein und denselben Gesetzen ab, unabhingig davon,
wo der Schuf ausgefiihrt wird, auf der Erde oder in einer
Rakete, die im interplanetaren Raum dahinfliegt.
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Bild 3.2.

Der Impulserhaltungssatz erlaubt die einfache Lisung
verschiedener Probleme, die mit dem Zusammensto von
Koérpern zu tun haben. Wenn wir versuchen, mit einem
Lehmkiigelchen ein anderes zu treffen, so werden beide
zusammenkleben und die Bewegung gemeinsam fort-
setzen; schieft man aus dem Gewehr auf eine Holzkugel,
dann rollt diese gemeinsam mit der darin steckenden
Gewehrkugel weiter; eine stillstehende Lore kommt ins
Rollen, wenn man aus vollem Lauf hineinspringt. Vom
Standpunkt des Physikers aus betrachtet, dhneln alle
hier angefiihrten Beispiele einander sehr. Die Regel,
die die Geschwindigkeiten der Koérper bei Zusammen-
stoen des beschriebenen Typs miteinander verkniipft,
148t sich unmittelbar aus dem Energieerhaltungssatz
herleiten.

Die Impulse der Korper vor dem Zusammentreffen
waren m,v; und m,v,; nach dem Zusammentreffen
haben sich die Korper vereinigt, und ihre Gesamtmasse
ist gleich m; + m,. Bezeichnen wir die Geschwindig-
keit der vereinigten Korper mit V, so erhalten wir:

myv; + myv, = (my + my) V
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oder

— M1 mals
my-}-mqy

Wir erinnern an den vektoriellen Charakter des Im-
pulserhaltungssatzes. Die Impulse mv, die im Ziahler
der Formel stehen, miissen als Vektoren addiert werden.

Der ,VereinigungsstoB“ beim Aufeinandertreffen von
Korpern, deren Bewegungsbahnen einen bestimmten
Winkel miteinander einschliefien, ist in Bild 3.2. darge-
stellt. Um die Geschwindigkeit zu ermitteln, muf die
Linge der Diagonale des Parallelogramms, das aus den
Impulsvektoren der aufeinandertreffenden Koérper kon-
struiert worden ist, durch die Summe ihrer Massen di-
vidiert werden.

Die RiickstoBbewegung

Der Mensch bewegt sich fort, indem er sich von der
Erde abstoBt; ein Ruderboot kommt voran, weil der
Ruderer sich mit Rudern vom Wasser abstoft; auch
ein Motorschiff st68t sich vom Wasser ab, jedoch nicht
mit Rudern, sondern durch die Schiffsschrauben. Auch
der Zug, der auf den Eisenbahnschienen dahinrollt,
ebenso wie das Kraftfahrzeug, stofien sich von der Erde
ab — denken Sie nur einmal daran, wie schwierig das
Anfahren mit einem Auto bei Glatteis istl

Das Abstofien von einer Unterlage ist somit dem
Anschein nach die notwendige Voraussetzung fiir jede
Bewegung; selbst das Flugzeug bewegt sich vorwirts,
indem es sich mit der Luftschraube von der Luft ab-
stoBt.

Ist es aber immer so? Gibt es nicht vielleicht doch
ein Bewegungsverfahren ohne vorherigen Abstof? Wenn
Sie Schlittschuh laufen, kénnen Sie sich leicht iiber-
zeugen, daB eine Bewegung dieser Art durchaus im

8—01178
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Bild 3.3.

Bereich des Moglichen ist. Nehmen Sie einen schweren
Stock in die Hand und stellen Sie sich auf die Eisbahn.
Nun werfen Sie den Stock nach vorn: Was geschieht?
Sie werden zurlickgleiten, ohne sich auch nur im gering-
sten mit dem Fuf vom Eis abgestoBen zu haben.

Der eben betrachtete Riickstof) liefert uns den Schliissel
zur Bewegung ohne Unterlage, zur Bewegung ohne
AbstoBien. Der RiickstoB ermoglicht die Beschleunigung
einer Bewegung auch im luftleeren Raum. Der Riick-
stoff, den ein aus einem Gefdfl austretender Dampf-
strahl erzeugt, d.h. der Strahlriicksto, wurde noch
im Altertum zur Anfertigung interessanter Spielereien
ausgenutzt. In Bild 3.3. ist eine frithe Dampfturbine
dargestellt, die im 2. Jh. v.u.Z. erfunden wurde. Ein
Dampfkessel ruhte auf einer senkrechten Achse. Der
iiber Kniestiicke aus dem Kessel ausstromende Dampf
stie diese Kniestlicke in umgekehrter Richtung vor-
wiarts, und die Kugel rotierte.

In unseren Tagen hat die Nutzung der RiickstoB-
bewegung liangst die Grenzen der Herstellung von Spiel-
zeug und der Sammlung interessanter Beobachtungen
iberschritten. Das 20. Jahrhundert wird oft als Jahr-
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hundert der Kernenergie bezeichnet, doch wére genauso
gerechtfertigt, vom Jahrhundert der RiickstoBbewegung
zu sprechen, da man jene weitreichenden Folgen gar
nicht hoch genug einschédtzen kann, zu denen die Nut-
zung hochleistungsfdhiger Riickstoftriebwerke fiihren
wird. Sie bedeutet nicht nur eine Revolutionierung des
Flugzeugbaus, sondern zugleich den Beginn der un-
mittelbaren Kontaktaufnahme des Menschen mit dem
Weltall.

Das Prinzip der RiickstoBbewegung erlaubte die Ent-
wicklung von Flugzeugen mit Geschwindigkeiten von
einigen tausend Kilometern in der Stunde, von fliegen-
den Geschossen, die sich bis in eine Hdohe von einigen
hundert Kilometern iiber den Erdboden erheben, und
von kiinstlichen Erdsatelliten sowie Kosmosraketen,
die interplanetare Reisen vollfiihren.

Das RiickstoBtriebwerk ist eine Maschine, aus der
mit grofer Kraft die bei der Verbrennung des Kraft-
stoffs entstehenden Gase herausgeschleudert werden.
Dafiir bewegt sich die Rakete in entgegengesetzter
Richtung zum Gasstrom.

Wie grof§ ist die Schubkraft, die die Rakete in den
Raum trigt? Wir wissen, daBl diese Kraft gleich der
Impulsdnderung je Zeiteinheit ist. Nach dem Erhaltungs-
satz dndert sich der Raketenimpuls um den Betrag des
Impulses mv, den das austretende Gas besitzt.

Mit Hilfe dieses Naturgesetzes konnen wir beispiels-
weise die Beziehung zwischen der Kraft des reaktiven
Schubes und des dafiir erforderlichen Brennstoffver-
brauchs berechnen. Zu diesem Zweck mufl man von einer
bestimmten Ausstromungsgeschwindigkeit der Verbren-
nungsprodukte ausgehen. Nehmen wir beispielsweise
folgende Zahlen an: Die Gase sollen mit einer Ge-
schwindigkeit von 2000 m/s bei einem Durchsatz von
10 t/s ausstromen; dann wird die Schubkraft ungefdahr
2 « 107 N betragen.
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Bestimmen wir nun die Geschwindigkeitsdnderung
einer Rakete, die sich durch den interplanetaren Raum
bewegt.

Der Impuls einer Gasmasse AM, die mit der Ge-
schwindigkeit u austritt, ist gleich w.-AM. Der Impuls
einer Rakete mit der Masse M wichst hierbei um den
Betrag M - AV. Nach dem Erhaltungssatz sind diese
beiden Werte einander gleich:

u-AM =M - AV,
d. h.
AM

AV=UT.
Wollen wir allerdings die Geschwindigkeit einer Rakete
berechnen, wenn die ausstromenden Massen in der gleichen
GroBenordnung wie die Raketenmasse liegen, dann ist
die hier abgeleitete Formel nicht geeignet. Sie setzt
eine Lkonstante Raketenmasse voraus. Richtig aber
bleibt folgendes wichtiges Ergebnis: Bei gleichen rela-
tiven Massendnderungen nimmt die Geschwindigkeit
um ein und denselben Betrag zu.

Wer die Grundlagen der Integralrechnung beherrscht,
kann sogleich auch die exakte Formel ermitteln. Sie
lautet:

M ani M ant
V=u ln —AME _ 9 3y |og —ANANE

Hat man einen Rechenschieber zur Hand, kann man
feststellen, daB die Raketengeschwindigkeit bei Vermin-
derung der Raketenmasse um die Hilfte 0,7u erreicht.

Um die Geschwindigkeit der Rakete auf 3u zu bringen,

mull eine Treibstoffmasse von m = ;_?) M verbrannt

werden. Das heifit, dal nur ein Zwanzigstel der Raketen-
masse beibehalten werden kann, wenn wir die Geschwin-
digkeit auf 3w, d. h. 6 bis 8 km/s, bringen wollen.
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Soll eine Geschwindigkeit von 7u erreicht werden, dann
mufl die Raketenmasse im Beschleunigungsverlauf auf
ein Tausendstel abnehmen.

Diese Berechnungen beinhalten eine deutliche War-
nung vor allem unbedachten Bestreben nach VergroBerung
der mitgefiihrten Treibstoffmasse. Je mehr Treibstoff
wir an Bord der Rakete nehmen, um so mehr mufl auch
verbrannt werden. Bei feststehender Ausstrémungsge-
schwindigkeit der Gase 148t sich eine Steigerung der Rake-
tengeschwindigkeit nur sehr schwer erreichen.

Das Wichtigste bei der Erzielung grofer Raketen-
geschwindigkeiten ist die Steigerung der Gasausstromungs-
geschwindigkeit. Diesbeziiglich spielt der Einsatz von
Raketentriebwerken, die mit Kernbrennstoff arbeiten,
eine wichtige Rolle.

Bei unverdnderter Ausstromungsgeschwindigkeit der
Gase wird ein Geschwindigkeitsgewinn bei ein und
derselben Treibstoffmasse durch den Einsatz mehrstufiger
Raketen erreicht. Bei einer einstufigen Rakete nimmt
die Treibstoffmasse ab, wihrend die leeren Tanks ihre
Bewegung gemeinsam mit der Rakete fortsetzen. Zur
Beschleunigung der Masse der unnétigen Treibstofftanks
ist zusétzlich Energie erforderlich. Zweckmifig ist es,
nach Verbrauch des Treibstoffs auch die Treibstofftanks
abzuwerfen. Mit den mehrstufigen Raketen von heute
werden nicht nur die Treibstofftanks einschliefilich der
Rohrleitungen abgeworfen, sondern auch die Triebwerke
der ausgebrannten Stufen.

Am giinstigsten wire es natiirlich, die unnétig gewor-
dene Raketenmasse kontinuierlich abzuwerfen. Vorldufig
existiert keine derartige Konstruktion. Die Startmasse
einer dreistufigen Rakete mit der gleichen Gipfelhdhe
wie eine entsprechende einstufige Rakete kann auf ein
Sechstel verringert werden. Die ,kontinuierliche* Rakete
ist in diesem Sinn um weitere 15 % vorteilhafter als
die dreistufige Rakete.



Physikalische Kdrper 118

Bewegung unter dem EinfluB der Schwerkraft

Wir wollen einen kleinen Schlitten zwei sehr glatte
schiefe Ebenen hinunterrollen lassen. Wir nehmen zwei
Bretter, von denen das eine deutlich kiirzer als das
andere ist, und legen sie mit einer Seite auf ein und
dieselbe Unterlage auf. Die eine schiefe Ebene ist dann
sehr steil, die andere dagegen weniger. Die Oberkanten
beider Bretter — der Startplatz des Schlittens — befinden
sich auf gleicher Héhe. Was glauben Sie wohl, wann der
Schlitten die gréfere Geschwindigkeit hat, wenn wir
ihn nacheinander die beiden Bretter hinunterrollen
lassen? Viele meinen sicher, bei der steileren schiefen
Ebene.

Der Versuch zeigt, daB diese Uberlegung falsch ist:
Der Schlitten erhilt in beiden Fillen die gleiche Ge-
schwindigkeit. Solange sich ein Korper auf einer schiefen
Ebene bewegt, steht er unter dem Einfluf} einer konstanten
Kraft, die in Bewegungsrichtung zeigt und zwar unter
dem EinfluB der Schwerkraftkomponente (Bild 3.4.).
Die Geschwindigkeit v, die der Kérper erwirbt, wenn er
mit der Beschleunigung a den Weg s zuriicklegt, ist,
wie wir wissen, gleich v = 1/ 2as.

Woraus geht aber hervor, dafi diese Grofle nicht vom
Neigungswinkel der Ebene abhingt? In Bild 3.4. sehen
wir zwei Dreiecke. Eines von ihnen stellt eine schiefe
Ebene dar. Die kleine Kathete des Dreiecks, bezeichnet
mit dem Buchstaben %, ist die H6éhe, von der aus die
Bewegung beginnt;. die Hypotenuse s ist der Weg, den
der Korper in beschleunigter Bewegung zuriicklegt. Das
kleine Kriftedreieck mit der Kathete ma und der Hypo-
tenuse mg ist dem groflen Dreieck &#hnlich, da beide
rechtwinklig sind und ihre Winkel als Wechselwinkel
gleich sind. Demnach muBl das Kathetenverhdltnis
gleich dem Hypotenusenverhiltnis sein, d. h., h/ma =
= s/mg oder as = gh. ' ‘
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Bild 3.4,

Wir haben bewiesen, da das Produkt as, und damit
also auch die Endgeschwindigkeit des Kérpers, nach
dem Hinunterrollen von der schiefen Ebene unabhingig
vom Neigungswinkel und ausschlieBlich von der Hohe
abhingig ist, bei der die Abwirtshewegung begann.

Die Geschwindigkeit v = }/2gh ist fiir alle schiefen
Ebenen gleich unter der einzigen Bedingung, daf die
Bewegung von ein und derselben Hohe % aus begonnen
wird, Die Geschwindigkeit ist dann gleich der Geschwin-
digkeit des freien Falls aus der Hohe k. Die Geschwindig-
keit des Wagens am Durchgang durch den ersten Punkt
bezeichnen wir mit v, und die Geschwindigkeit beim
Durchgang durch den zweiten Punkt mit v,.

Nun messen wir die Geschwindigkeit des Wagens
an zwei Stellen der schiefen Ebene, ndmlich an den
.Hohen %, und h,.
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Betrug die anféngliche Hoéhe, bei der die Bewegung
begann, &, so ist das Geschwindigkeitsquadrat des Wagens
am ersten Punkt gleich v} = 2g (2 — &,) und am zweiten
Punkt v} = 2g ( — hy).

Subtrahieren wir den ersten Ausdruck durch den
zweiten, so finden wir, wie die Geschwindigkeiten des
Wagens zu Beginn und am Ende jedes beliebigen Ab-
schnitts einer schiefen Ebene mit den Hoéhen der jewei-
ligen Punkte verkniipft sind:

U; _— U: = 2g (h’l —_ hz).

Die Differenz der Geschwindigkeitsquadrate hdngt nur
von der Hohendifferenz ab. Wir bemerken an dieser
Stelle, daf} die erhaltene Gleichung sowohl fiir Auf-
als auch fiir Abwartsbewegungen gleichermaflen geeignet
ist. Ist die erste Hohe kleiner als die zweite (Aufwirts-
bewegung), dann ist die zweite Geschwindigkeit kleiner
als die erste.

Man kann diese Formel nun wie folgt umstellen:

M gh = gh
9 gi_z gy,

Wir wollen mit dieser Schreibweise unterstreichen, daf
die Summe aus dem halben Geschwindigkeitsquadrat
und der mit g multiplizierten Hohe fiir jeden beliebigen
Punkt der schiefen Ebene gleich ist. Man kann sagen,

daB 322- + gh wihrend der Bewegung erhalten bleibt.
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Das Bemerkenswerteste an diesem Gesetz ist die
‘T'atsache, daB sie fiir reibungsfreie Bewegungen an jedem
Berg bzw. iiberhaupt auf jedem beliebigen Weg zutrifft,
der aus aufeinanderfolgenden Steig- und Fallstrecken
unterschiedlicher .Steilheit besteht. Dies folgt daraus,
dall man jeden Weg in geradlinige Abschnitte gliedern
kann. Je kleiner man die Abschnitte wahlt, um so mehr
ndhert sich die gebrochene Linie der durchgehenden
Kurve. Man kann jeden geraden Abschnitt bei Auf-
gliederung eines nichtgeradlinigen Weges als Teil einer
schiefen Ebene ansehen und die gefundene Regel darauf
anwenden.

Fir jeden beliebigen Bahnpunkt ist die Summe

——I— gh konstant. Die Anderung des Geschwindigkeits-

quadrats hidngt daher weder von der Form noch von
der Linge des Weges ab; in dessen Verlauf die Bewegung
erfolgte; vielmehr ergibt sie sich ausschlieBlich aus der
Hohendifferenz der Anfangs- und Endpunkte der Bewe-
gung.

Hier konnte nun der Eindruck erweckt werden,
unser SchluB stimme nicht mit der Alltagserfahrung
iberein. Auf einem langen Weg mit geringer Neigung
gewinnt ein Wagen nicht an Geschwindigkeit und bleibt
am Ende sogar stehen. Das ist tatsdchlich so, doch
haben wir bei unseren Uberlegungen die Reibungskraft
nicht beriicksichtigt. Die oben erwidhnte Formel trifft
fiir Bewegungen im Schwerefeld der Erde unter aus-
schlieBlicher Wirkung der Schwerkraft zu. Sind die
Reibungskréfte gering, dann wird das abgeleitete Gesetz
erfiillt. Auf glatten, .vereisten Abhdngen gleitet ein
Schlitten mit Metallkufen unter sehr geringer Reibung
dahin. Man kann lange Eisbahnen anlegen, die mit einem
steilen Abfahrtshang beginnen und sich dann kurven-
reich in buntem Auf und Ab fortsetzen. Das Ende einer
RodeMahrt auf' einer solehén :Eisbahn ‘(wo.der: Schlitten
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von selbst zum Stillstand kidme) wiirde bei vollstindig
fehlender Reibung auf der gleichen Héhe wie zu Be-
ginn erfolgen. Da sich die Reibung jedoch nicht ganz
vermeiden 1d8t, liegt der Punkt, an dem die Schlitten-
fahrt begann, stets héher als der Ort, wo der Schlitten
zum Stillstand kommt.

Das Gesetz, wonach die Endgeschwindigkeit nicht
von der Form des Weges bei einer Bewegung unter dem
EinfluB der Schwerkraft abhidngt, kann zur Losung ver-
schiedener interessanter Aufgaben benutzt werden.

Schon oft ist im Zirkus die atemberaubende Attraktion
der vertikalen ,Todesschleife“ vorgefiihrt worden. Auf
einem hohen Geriist nimmt ein Radfahrer Aufstellung;
es kann aber auch ein Wagen sein, in dem ein Akrobat
sitzt. Zuerst geht es mit wachsender Beschleunigung
hinunter, dann wieder hinauf. Schon hat der Akrobat
die Stellung erreicht, wo er mit dem Kopf nach unten
héangt, und wieder geht es abwirts: Die Todesschleife
ist durchfahren. Welches technische Problem muBte
hierbei gelost werden? Wie hoch muBl das Geriist sein,
auf dem die Abfahrt beginnt, damit der Akrobat nicht
auf dem héchsten Punkt der Todesschleife abstiirzt?
Die Bedingung kennen wir: Die Zentrifugalkraft, die
den Akrobaten an das Geriist preft, muB die Schwer-
kraft ausgleichen, die in die entgegengesetzte Richtung

2
zeigt. Also muB mgg-"% sein, wobei r der Radius

der Todesschleife und v die Bewegungsgeschwindigkeit
im hochsten Punkt der Schleife ist. Damit diese Ge-
schwindigkeit erreicht wird, mufl die Bewegung von
einer Stelle aus begonnen werden, die um einen gewissen
Betrag # oberhalb des hochsten Punkts der Schleife liegt.
Die Anfangsgeschwindigkeit des Akrobaten ist gleich
Null; daher gilt im hochsten Punkt der Schleife v* = 2gh.
Andererseits ist .jedoch v*> gr. Zwischen der Hoéhe 4
und dem Radius der Schlsife besteht somit die Berichung
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h>=r/2. Das Geriist muf} sich mindestens um den halben
Schleifenradius iiber dem héchsten Punkt der Schleife
befinden. Zur Beriicksichtigung der unvermeidlichen
Reibungskraft muB8 zu dieser Hohe natiirlich noch eine
gewisse Reserve addiert werden.

Und hier ein weiteres Problem. Wir haben eine
runde Kuppel vor uns, sehr glatt, so daf§ die Reibung
minimal ist. Auf den hochsten Punkt der Kuppel legen
wir einen kleinen Gegenstand und stoflen ihn ganzleicht an,
so daB er ins Rutschen kommt. Friither oder spiter wird
sich der Koérper beim Abrutschen von der Kuppel losen
und zu fallen beginnen. Wir koénnen ganz leicht eine
Antwort auf die Frage finden, zu welchem Zeitpunkt
der Korper sich von der Kuppeloberfliche losen
wird, denn in diesem Augenblick muB die Zentrifugal-
kraft gleich der Gewichtskraftkomponente in Richtung
des Radius sein (in diesem Augenblick wird der Korper
aufhéren, auf die Kuppel zu driicken, und genau das
ist der Zeitpunkt der Ablgsung). In Bild 3.5. sehen wir
zwei #dhnliche Dreiecke; hier wird der Augenblick der
Ablosung dargestellt. Wir bilden das Verhdltnis der
Kathete zur Hypotenuse fiir das Kréftedreieck und setzen
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dieses dem Verhédltnis der Seiten des anderen Dreiecks
gleich:

mv?

r r—nh

mg r

Hierin ist r der Radius der sphérischen Kuppel und % die
Hoéhendifferenz von Beginn bis Ende des Gleitvorgangs.
Nun benutzen wir das Gesetz von der Unabhéngigkeit
der Endgeschwindigkeit von der Form des Weges. Da
die Anfangsgeschwindigkeit des Korpers gleich Null
gesetzt wird, gilt v? = 2gh. Setzen wir diesen Wert in
die oben aufgeschriebene Proportion ein und nehmen
die entsprechenden arithmetischen Umformungen vor,
so finden wir: 2 =r/3. Somit 16st sich der Korper in
einer Hohe von der Kuppel ab, die um ein Drittel des
Radius unter dem hochsten Punkt der Kuppel liegt.

Der Erhaltungssatz der mechanischen Energie

Wir haben uns anhand der soeben betrachteten Beispiele
davon {iiberzeugt, wie niitzlich es ist, eine Grofe zu
kennen, die ihren Zahlenwert im Bewegungsverlauf
nicht dndert. Vorldufig kennen wir eine derartige Grofle
nur fir einen Koérper. Wenn sich jedoch mehrere mitein-
ander gekoppelte Koérper im Schwerefeld Lefinden? Es
darf ganz offenbar nicht angenommen werden, dafi der

Ausdruck 7—; + gh fiir jeden einzelnen Korper zutrifft,

da sich jeder der Korper nicht allein unter dem Einflu$
der Schwerkraft, sondern auch unter dem EinfluBf der
benachbarten Korper befindet. Aber vielleicht bleibt
die Summe der entsprechenden Ausdriicke fiir die Gruppe
der betrachteten Korper insgesamt unverdndert?

Wir werden sogleich zeigen, daB diese Annahme
falsch ist. Eine bei der Bewegung vieler K6rper konstant
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bleibende Griofle existiert, doch ist sie nicht gleich der
Summe
v2 v?,
(5+en) + (5t en) e

Korper 1 Korper 2

sondern gleich der Summe analoger Ausdriicke, multi-
pliziert mit der Masse der zugehérigen Ko6rper; unverin-
dert bleibt die Summe

! (221'+gh)1+m2(v72+gh)2+ T

Zum Beweis dieses sehr wichtigen Gesetzes der Mechanik
betrachten wir folgendes Beispiel.

Uber eine Rolle lduft ein Seil, an dem zwei Massen
hingen: Eine groBe Masse M und eine kleine Masse m.
Die groBe Masse zieht die kleine Masse aufwérts und
sinkt dabei selbst nach unten; diese aus zwei Korpern
bestehende Gruppe bewegt sich mit wachsender Ge-
schwindigkeit.

Die Triebkraft ist die Gewichtskraftdifferenz beider
Koérper Mg — mg. Da die Masse beider Koérper an der
beschleunigten Bewegung teilnimmt, nimmt Newtons
Gesetz fiir diesen Fall folgende Form an:

M —m)g =M+ m)a.

Wir wollen nun die beiden Bewegungsmomente
betrachten und zeigen, daf die Summe der Ausdriicke
2
"7—|— gh, multipliziert mit den entsprechenden Massen,

tatsidchlich unverdndert bleibt. Bewiesen werden mul}
also die Gleichung

m (Bt ghy )+ M (Lt gH,) =

=m (DT%+gh1) +M(12%-—1—gH,).
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Die Gro#lbuchstaben stehen fiir jene physikalischen
Groflen, die die grofe Masse kennzeichnen. Die Indizes
1 und 2 ordnen die Grofen den beiden betrachteten
Bewegungsmomenten zu. .

Da die Massen durch das Seil miteinander verbunden
sind, ist v, = V; und v, = V,. Unter Benutzung dieser
Vereinfachung bringen wir alle Glieder, die Hohen
enthalten, nach rechts und alle Glieder mit Geschwindig-
keiten nach links. Wir erhalten:

nAM (02— v2) = mghy+ MgH,— mgh,— MgH,—

=mg (hy—hy) - Mg (H,— H,).

Die Hoéhendifferenzen der Massen sind natur-
gemdB gleich (haben jedoch jeweils das umgekehrte
Vorzeichen, da die eine Masse steigt, wiahrend die
andere sinkt). Somit gilt:

m-+M
2

wobei s der zuriickgelegte Weg ist.

Auf Seite 67 haben wir erfahren, dafl die Differenz
der Geschwindigkeitsquadrate v — v3 zu Beginn und
am Ende des Wegabschnittes s, der mit der Beschleuni-
gung a durchlaufen wird, gleich

(v:_vi);_g (M—m)s7

v: — v; = 2as
ist. Setzen wir diesen Ausdruck in die letzte Formel
ein, so erhalten wir:

(m-+ M)a= (M —m)g.
Dies aber ist Newtons Gesetz, wie wir es oben fiir unser

Beispiel aufgeschrieben haben. Damit ist der gewiinschte
Beweis geliefert: Fiir zwei Korper bleibt die Summe der

Ausdriicke _”21 + gh, multipliziert mit den entsprechenden



3. Die Erhaltungssitze 127

Massen*, im Bewegungsverlauf unverdndert; sie bleibt,
wie man auch sagt, erhalten, d. h.,

( mzvz -i-mgh) + (MTVz—-i-MgH) = const,

Fiir den Fall eines einzigen K 6rpers geht diese Formel
in dio bereits frilher bewiesene iiber:

v2
-+ gh=const.

Das halbe Produkt aus Masse und Geschwindigkeits-
quadrat heift kinetische Energie W,:

mu?
W, = 5 -
Das Produkt aus dem Gewicht eines Korpers und der
Hohe heifit potentielle Energie des Korpers gegen die
Schwerkraft der Erde W,:

W, = mgh.

Wir haben nachgewiesen, daB wihrend der Bewegung
eines Systems aus zwei Koérpern (und das gleiche 1idfit
sich auch fiir Systeme nachweisen, die aus vielen Kor-
pern bestehen) die Summe der kinetischen und der po-
tentiellen Energie der Korper unveriandert bleibt.

Mit anderen Worten: Eine Zunahme der kinetischen
Energie eines Systems von Korpern kann nur durch
Abnahme der potentiellen Energie dieses Systems erfolgen
(und natiirlich auch umgekehrt).

2
* Natiirlich kann man den Ausdruck % -+ gk mit dem gleichen

Erfolg auch mit 2m oder-% bzw. iiberhaupt mit jedem beliebigen

zusidtzlichen Koeffizienten multiplizieren. Wir einigen uns
darauf, moglichst einfach zu verfahren, d. h. einfach nur mit
m zu multiplizieren.
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Das hier bewiesene Gesetz heifft Erhaltungssatz der
mechanischen Energie.

Der Erhaltungssatz der mechanischen Energie ist
ein sehr wichtiges Naturgesetz. Wir haben seine Bedeutung
noch nicht in vollem MaBe dargestellt. Im Kapitel
der Molekiilbewegung wird seine Universalitdt und
seine Anwendbarkeit auf siamtliche Naturerscheinungen
sichtbar.

Die Arbeit

StoBt oder zieht man einen Koérper, ohne auf Hindernisse
zu treffen, so wird der Korper beschleunigt. Der hierbei
auftretende Zuwachs an kinetischer Energie heifit die
durch die Kraft verrichtete Arbeit W:

mv} muv}
W==-—=".
Nach Newtons Gesetz ergibt sich die Beschleunigung
eines Korpers und somit auch sein Zuwachs an kineti-
scher Energie aus der vektoriellen Summe aller am
Korper angreifenden Kridfte. Fir den Fall vieler Krifte
2
bedeutet die Formel W = m;z — m;% die Arbeit der
resultierenden Kraft. Wir wollen die Arbeit W nun
durch die Kraft ausdriicken.

Der Einfachheit halber beschrinken wir uns auf
den Fall, wo eine Bewegung nur in einer Richtung méglich
ist: Wir wollen einen auf Schienen laufenden Wagen
stofen (oder ziehen) (Bild 3.6.).

GemaB der allgemeinen Formel fiir die gleichférmig
beschleunigte Bewegung gilt v3 — vf = 2as. Darum ist
die Arbeit sdmtlicher Krifte auf dem Weg s:

mv3 mv?
W= —22 ——2‘—= mas.
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Bild 3.6.

Das Produkt ma ist gleich der Komponente der Gesamt-
kraft in Bewegungsrichtung. Somit ist W = Fapgs- .

Die Arbeit einer Kraft wird als Produkt des Weges
und der Kraftkomponenten lings der Wegrichtung
gemessen.

Diese Formel der Arbeit trifft fiir Kriafte beliebigen
Ursprungs und Bewegungen auf beliebigen Bahnen zu.

Wir bemerken, daf die Arbeit auch dann gleich
Null sein kann, wenn auf einen bewegten Korper Krifte
einwirken.

Die Arbeit der Corioliskraft beispielsweise ist gleich
Null. Denn diese Kraft steht senkrecht auf der Bewegungs-
richtung. Sie besitzt keine Lidngskomponente, und gleich
Null ist daher auch die Arbeit.

Jede Bahnkriimmung, die nicht von einer Geschwindig-
keitsinderung begleitet wird, erfordert keine Arbeit,
denn die kinetische Energie &dndert sich dabei nicht.

Kann die Arbeit auch negativ sein? Natiirlich, ndm-
lich dann, wenn die Kraft unter einem stumpfen Winkel
an der Bewegung angreift, denn nun unterstiitzt sie
die Bewegung nicht, sondern behindert sie. Die Léangs-
komponente der Kraft wird, bezogen auf die Richtung,

9—-01178
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negativ sein. In diesem Fall sagen wir, daB die Kraft
eine negative Arbeit verrichtet. Die Reibungskraft
bewirkt stets eine Verlangsamung der Bewegung, d. h.,
sie verrichtet negative Arbeit.

Anhand des Zuwachses an kinetischer Energie konnen
wir nur iiber die Arbeit der resultierenden Kraft urteilen.

Was die Arbeiten einzelner Krifte betrifft, so miissen
wir sie in Form des Produkts Fiinge - s berechnen.
Ein Auto fahrt gleichférmig die LandstraBe entlang.
Ein Zuwachs an kinetischer Energie tritt nicht auf,
also ist die Arbeit der resultierenden Kraft gleich Null.
Aber nicht gleich Null ist natiirlich die Arbeit des Motors:
Sie ist gleich dem Produkt aus der Zugkraft, multi-
pliziert mit dem durchfahrenen Weg, und sie wird voll-
stindig kompensiert durch die negative Arbeit der
Widerstands- und Reibungskréfte.

Unter Verwendung des Begriffs ,,Arbeit* konnen wir
jene interessanten Besonderheiten der Schwerkraft kon-
kreter und klarer beschreiben, die wir soeben kennen-
gelernt haben. Wenn sich ein Korper unter dem EinfluB
der Schwerkraft von einem Ort zu einem anderen bewegt,
so dndert sich seine kinetische Energie. Diese Anderung
der kinetischen Energie ist gleich der Arbeit W. Aus
dem Energieerhaltungssatz ist uns jedoch bekannt, daB
ein Zuwachs an kinetischer Energie stets auf Kosten
der potentiellen Energie erfolgt.

Somit ist die Arbeit der Schwerkraft gleich der Ab-
nahme an potentieller Energie:

W = Wp]_ _ sz

Nun leuchtet ein, daB die Abnahme (oder der Zuwachs)
von potentieller Energle und damit auch der Zuwachs
(oder die Abnahme) von kinetischer Energie stets ein
und dieselben sind, unabhidngig davon, auf welchem
Weg die Bewegung des Korpers erfolgte. Das heift,
daB die Arbeit der Schwerkraft nicht von der Form
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des Weges abhingt. Ist ein Korper unter VergréBerung
der kinetischen Energie von einem ersten Punkt zu
einem zweiten Punkt gelangt, dann wird sein Ubergang
von diesem zweiten Punkt zuriick zum ersten unter
Verminderung der kinetischen Energie um genau den
gleichen Betrag erfolgen. Dabei ist es gleichgiiltig, ob
die Form des Hinweges mit der Form des Riickweges
iibereinstimmt. Demnach ist auch die Arbeit ,hin“
und ,zuriick” ein und dieselbe. Und wenn ein Korper
einen sehr langen Weg zuriicklegt, das Ende des Weges
jedoch mit seinem Anfang zusammenfillt, so wird die
Arbeit gleich Null sein.

Stellen Sie sich einen Kanal vor, in dem — reibungs-
frei — ein Korper gleitet. Wir schicken ihn vom hdch-
sten Punkt aus auf die Reise. Der Korper saust mit
zunehmender Geschwindigkeit nach unten. Dank der
dabei gewonnenen kinetischen Energie iliberwindet der
Korper den Anstieg und kehrt schlieBlich zum Aus-
gangspunkt zuriick. Mit welcher Geschwindigkeit? Na-
tiirlich mit der gleichen, mit der er den Ausgangspunkt
verlassen hat. Die potentielle Energie erreicht wieder
den fritheren Wert. Die kinetische Energie hat weder
ab- noch zunehmen kénnen. Also ist die Arbeit gleich
Null.

Die Arbeit im Verlauf eines ringférmigen (die Physiker
sagen: eines geschlossenen) Weges ist nicht fiir simtliche
Krifte gleich Null. Wir brauchen wohl nicht nachzuwei-
sen, daB die Arbeit etwa der Reibungskrifte um so
grofer ist, je lidnger der Weg ist.

Die Einheit der Arbeit und Energie

Da die Arbeit gleich der Energieinderung ist, werden
Arbeit und Energie — die potentielle ebenso wie die
kinetische — in ein und derselben MaBeinheit gemessen.
Arbeit ist gleich dem Produkt aus Kraft und Weg. Die
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Arbeit einer Kraft von 1 N iiber einen Weg von 1 m
ist 1 Joule:

17=1N-4m—1kgZs .

Das SI veranlaBt uns, das Joule zu verwenden. 1 J ist
gleich der Arbeit, die von der Kraft 1 N iiber einen Weg
von 1 m verrichtet wird. Beriicksichtigt man, wie ein-
fach sich in diesem Fall die Kraft bestimmen 1a8t, sind
die Vorziige des SI offenkundig.

Leistung und Wirkungsgrad von Maschinen

Zur Beurteilung der Fihigkeit einer Maschine, Arbeit
zu verrichten, aber auch zur Angabe des Verbrauchs
von Arbeit benutzen wir den Begriff Leistung. Leistung
ist die verrichtete Arbeit je Zeiteinheit.

Von unseren Vorviatern haben wir die Leistungseinheit
Pferdestirke geerbt. Als die Technik noch ganz am
Anfang ihrer Entwicklung stand, hatte diese Bezeich-
nung einen tiefen Sinn. Eine Maschine mit der Leistung
von zehn Pferdestdrken ersetzte zehn Pferde. So jeden-
falls dachte der Kéaufer, selbst wenn er keinerlei Vorstel-
lung von Leistungseinheiten hatte.

Nun sind natiirlich nicht alle Pferde gleich. Der
Urheber der ersten Leistungseinheit ging offenbar von
der Annahme aus, ein ,mittleres“ Pferd sei imstande,
in einer Sekunde 75 kp - m Arbeit zu verrichten, und so
kam diese Einheit in Gebrauch: 1 PS =75 kp - m/s
(SI: 1 kp = 9,81 N).

Lastpferde kénnen eine sehr grofle Arbeit leisten,
besonders beim Anziehen aus dem Stand. Die Leistung
eines mittleren Pferds dagegen liegt eher bei einer halben
Pferdekraft.

Rechnen wir Pferdestdrken in Kilowatt um, so erhalten
wir: 1 PS = 0,735 kW.
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Im téglichen Leben und in der Technik haben wir
mit Motoren der unterschiedlichsten Leistungen zu
tun. Die Leistung des Motors in einem Plattenspieler
betrigt 10 W, die Leistung eines Wolga-Motors 100 PS =
=73 kW, und schlieflich belduft sich die Leistung
der Triebwerke des Passagierflugzeugs IL 18 auf 16 000 PS.
Ein nicht so grofles Notstromaggregat, etwa einer LPG,
besitzt eine Leistung von 100 kW. Das Wasserkraftwerk
von Krasnojarsk — ein Rekordhalter in dieser Bezie-
hung — verfiigt iiber eine Leistung von 5 Millionen kW.

Die bisher erwidhnten Leistungseinheiten fiihren uns
zu einer weiteren Energieeinheit, der Kilowattstunde
(kW - h). Eine Kilowattstunde ist die Arbeit, die im
Verlauf einer Stunde mit der Leistung 1 Kilowatt verrich-
tet wird. Diese neue Einheit in die anderen bereits
bekannten umzurechnen ist nicht schwer: 1 kW - h =
= 3,6 - 108 ] = 861 kecal = 3 600 270 N - m. Man konn-
te nun fragen: Ist denn wirklich noch eine weitere
Energieeinheit erforderlich? Ihre Zahl wire ja auch
ohnehin nicht gering! Doch der Energiebegriff durch-
dringt verschiedene Bereiche der Physik, und jeweils
mit dem Blick auf die bequeme Anwendbarkeit in dem
betreffenden Gebiet haben die Physiker neue und im-
mer neue Energieeinheiten eingefiihrt. Das gleiche geschah
auch bei anderen physikalischen Gréflen. Zu guter Letzt
hat dies den Entschluff zwingend gemacht, das fiir alle
Gebiete der Physik einheitliche SI einzufiihren. Es
wird allerdings noch viel Zeit vergehen, ehe die alten
Einheiten ihren Platz zugunsten der neuen rdumen werden,
und darum auch ist die Kilowattstunde nicht die letzte
Energieeinheit, deren Bekanntschaft uns im Verlauf
der Beschiftigung mit der Physik bevorsteht.

Man kann Energiequellen mit Hilfe verschiedener
Maschinen zwingen, alle méglichen Arbeiten zu verrich-
ten: Lasten zu heben, Bearbeitungsmaschinen anzutrei-
ben, Giiter und Personen zu befordern usw,
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Wir konnen die Energiemenge berechnen, die in
eine Maschine eingefiihrt wird, sowie den Wert fiir die
von der Maschine geleistete Arbeit. In allen Fillen
erhalten wir zum SchluB eine kleinere Zahl als zu Beginn:
Ein Teil der Energie geht in der Maschine verloren.

Der Energieanteil, der in der Maschine vollstindig
zu dem von uns gewiinschten Zweck verbraucht wird,
heiffit Wirkungsgrad der betreffenden Maschine. Gewohn-
lich gibt man diesen Wirkungsgrad in Prozent an. Ist
der Wirkungsgrad gleich 90 %, so heifit dies, daf die
Maschine nur 10 % der Energie verliert. Ein Wirkungs-
grad von 10 % dagegen bedeutet, daB die Maschine nur
10 % der in die Maschine eingefiihrten Energie nutzt.

Verwandelt eine Maschine mechanische Energie in
Arbeit, dann kann ihr Wirkungsgrad im Prinzip sehr
hoch sein. Die Steigerung des Wirkungsgrades wird in
diesem Fall durch Bekdmpfung der unvermeidlichen
Reibung erreicht. Die Verbesserung der Schmierung,
die Verwendung besserer Lager, die Verminderung des
Widerstands der Umgebung, in der die Bewegung ab-
lauft — dies alles sind Mittel, den Wirkungsgrad in
die Nihe von 100 % zu bringen.

Bei der Umwandlung mechanischer Energie in Arbeit
wird als Zwischenstufe (wie in den Wasserkraftwerken)
die elektrische Kraftiibertragung verwendet. Natiirlich
ist dies mit zusétzlichen Verlusten verkniipft. Aller-
dings sind sie nicht sehr grof, und die Verluste bei der
Umwandlung von mechanischer Energie in Arbeit sowie
bei Verwendung der elektrischen Kraftiibertragung koén-
nen auf einige wenige Prozent herabgesetzt werden.

Verminderung der Energie

Es ist Thnen wahrscheinlich schon aufgefallen, daB wir
bei der Veranschaulichung des Satzes von der Erhaltung
der mechanischen Energie immer wieder betonten: ,Bei
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fehlender Reibung, wenn es keine Reibung gidbe ...*
Freilich begleitet die Reibung unvermeidlich jede Art
von Bewegung. Welche Bedeutung hat aber ein Gesetz,
das diesen so wichtigen praktischen Umstand nicht
beriicksichtigt? Die Beantwortung dieser Frage stellen
wir erst einmal zuriick und schauen uns jetzt an, welche
Folgen die Reibung hat.

Reibungskrédfte behindern die Bewegung und verur-
sachen demzufolge negative Arbeit. Dies bewirkt den
unausbleiblichen Verlust mechanischer Energie.

Kann dieser unvermeidliche Verlust an mechanischer
Energie zum Aufhéren der Bewegung fithren? Man kann
sich leicht davon iiberzeugen, daf die Reibung nicht
jede Art von Bewegung zum Stillstand bringen kann.

Stellen wir uns ein geschlossenes System vor, das
aus mehreren miteinander in Wechselwirkung stehenden
Korpern besteht. Fiir ein System dieser Art gilt, wie wir
wissen, der Impulserhaltungssatz. Ein geschlossenes
System vermag seinen Impuls nicht zu &dndern und
bewegt sich darum geradlinig und gleichférmig fort.
Die Reibung im Inneren eines derartigen Systems vermag
die Relativbewegungen der Bestandteile des Systems
zu vernichten, wird jedoch Geschwindigkeit und Richtung
der Bewegung des Systems insgesamt nicht beeinflussen.

Es gibt noch ein weiteres Naturgesetz, den sogenannten
Drehimpulserhaltungssatz (den wir etwas spéter ken-
nenlernen werden), der die Vernichtung einer gleich-
formigen Rotation des gesamten geschlossenen Systems
durch die Reibung ausschlieft.

Somit filhrt das Auftreten von Reibung zum Auf-
hoéren jeglicher Bewegung in einem geschlossenen System
von Korpern, ohne dafl jedoch die gleichférmig geradlinige
und die gleichférmig rotierende Bewegung dieses Systems
insgesamt behindert wird.

Wenn der Erdball seine Drehgeschwindigkeit gering-
fiigig dndert, so hat dies seine Ursache nicht in der



Physikalische Kérper 136
Reibung irdischer Koérper aneinander, sondern ist eine
Folge der Tatsache, daB die Erde kein isoliertes System
darstellt.

Was die Bewegung von Kérpern auf der Erde betrifft,
so unterliegen sie alle der Reibung und verlieren ihre
mechanische Energie. Deshalb kommt Bewegung stets
zum Stillstand, sofern sie nicht von auBlen unterhalten
wird.

Dies ist ein Naturgesetz. Wenn es nun aber geldnge,
die Natur zu betriigen? Dann... konnte man das Perpetuum
mobile realisieren.

Das Perpetuum mobile

Von der Realisierung des Perpetuum mobile triumt
Bertold, eine Gestalt aus ,Szenen aus der Ritterzeit”
von Puschkin. ,Was ist ein Perpetuum mobile?* fragt
ihn sein Gesprichspartner. ,Es ist die ewige Bewegung®,
antwortet Bertold. ,Wenn ich die ewige Bewegung finde,
dann ist keine Grenze des menschlichen Schépfertums
zu erkennen. Gold zu machen ist eine verlockende Auf-
gabe; diese Entdeckung kénnte interessant und vorteil-
haft sein, aber die Losung des Perpetuum mobile zu
finden ...*

Das Perpetuum mobile oder der ewige Motor ist
eine Maschine, die nicht nur dem Gesetz von der Vermin-
derung der mechanischen Energie zuwiderlduft, sondern
auch den Satz von der Erhaltung der mechanischen
Energio verletzt, der, wie wir jetzt wissen, nur unter
idealen und unerreichbaren Bedingungen, ndmlich bei
fehlender Reibung, erfiillt wird. Ein ewiger Motor miifte,
sobald er erst einmal konstruiert wire, beginnen, ,aus
sich selbst heraus” zu arbeiten, also beispielsweise ein
Rad zu drehen oder Lasten von unten nach oben zu
beférdern. Diese Arbeit miiite ewig und unaufhérlich
stattfinden, und der Motor diirfte weder Kraftstoff noch
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Bild 3.7.

menschliche Arbeitskraft noch die Energie des herab-
stiirzenden Wassers verbrauchen; mit einem Wort,
nichts, was von auflen stammt.

Das erste bis heute bekannte authentische Dokument
iiber die ,,Realisierung* der Idee eines ewigen Motors
stammt aus dem 13. Jahrhundert. Sechs Jahrhunderte
spiater, im Jahre 1910, wurde bemerkenswerterweise
buchstéblich genau dasselbe ,Projekt* bei einer wissen-
schaftlichen Einrichtung in Moskau ,zur Priifung” ein-
gereicht.

Die Darstellung dieses ewigen Motors zeigt Bild
3.7. Wenn sich das Rad dreht, werden die Kugeln
weggeschwenkt und unterhalten nach den Vorstellungen
ihres Erfinders die Bewegung, da die nach auBen gekippten
Kugeln einen wesentlich gréferen Druck erzeugen;
denn sie greifen in einer wesentlich weiteren Entfernung
von der Achse an. Hat der Erfinder diese wirklich nicht
komplizierte ,Maschine“ gebaut, muf8 er sich davon
iiberzeugen, daB das Rad stehenbleibt, nachdem es —
der Tragheit folgend — ein oder zwei Umdrehungen
ausgefiihrt hat. Doch das 148t ihn nicht verzagen. Da
ist ein Fehler unterlaufen: Die Hebelarme miissen ldnger
gemacht, die Zacken in ihrer Form verdndert werden.
Und die fruchtlose Arbeit, der viele Mochte-gern-Erfinder
ihr ganzes Leben gewidmet haben, wird fortgesetzt,
freilich mit immer dem gleichen Erfolg.
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Insgesamt hat es nicht viele Varianten von Vorschligen
fiir ewige Motoren gegeben: verschiedenartige, von selbst
in Bewegung gehaltene Réder, die sich nicht grund-
sdatzlich vom oben erwidhnten Beispiel unterscheiden,
hydraulische Motoren, z. B. in der Art wie der Motor
in Bild 3.8., der 1634 ,erfunden“ wurde, Antriebe, die
Siphons oder Kapillarrohre (Bild 3.9.) verwenden,
andere, die die Gewichtsverminderung im Wasser aus-
nutzen wollen (Bild 3.10.), oder auch die Anziehung
eiserner Korper durch Magnete. Léngst nicht immer
kommt man iiberhaupt darauf, wodurch denn eigent-
lich nach der Idee des Erfinders die ewige Bewegung
stattfinden sollte.

Noch vor der Formulierung des Energieerhaltungs-
satzes finden wir in einer offiziellen Erkldrung der
Franzosischen Akademie aus dem Jahre 1775 die Fest-
stellung, daB ein Perpetuum mobile unmoglich ist;
damals beschlo die Akademie, keinerlei weitere Pro-
jekte ewiger Motoren zur Beratung und Priifung ent-
gegenzunehmen.

Viele auf dem Gebiet der Mechanik tdtigen Wissen-
schaftler des 17. und 18. Jahrhunderts legten ihren
Beweisen bereits das Axiom von der Unmdglichkeit des
Perpetuum mobile zugrunde, ungeachtet der Tatsache,
daB der Energiebegriff und der Energieerhaltungssatz
erst sehr viel spdter Eingang in die Wissenschaft
fanden.

Heute wissen wir, dal Erfinder beim Versuch, einen
ewigen Motor zu schaffen, nicht nur in Widerspruch
zum Experiment geraten, sondern auch einen Versto8
gegen die elementare Logik begehen. Denn die Unmog-
lichkeit eines Perpetuum mobile ist die direkte Folge
aus den Gesetzen der Mechanik, von denen sie ihrerseits
von selbst ausgehen, wenn sie ihre ,Erfindung” begriinden.

Ungeachtet ihrer volligen Fruchtlosigkeit haben die
Versuche zur Entwicklung eines ewigen Motors wahr-
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Bild 3.8.

Bild 3.9, Bild 3,10,
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scheinlich doch insofern einen gewissen Nutzen gehabt,
als sie im Endeffekt zur Entdeckung des Energieerhal-
tungssatzes fiihrten.

ZusammenstoBe

Bei jedem Zusammensto zweier Koérper bleibt der
Impuls stets erhalten. Was hingegen die Energie betrifft,
so muf} sie zwangsldufig aufgrund von Reibung abneh-
men.

Sollten die zusammenstoflenden Korper aus einem
elastischen Werkstoff, beispielsweise aus Elfenbein oder
Stahl, sein, dann ist der Energieverlust unbedeutend.
Stofivorginge, bei denen die Summe aller kinetischen
Energien vor und nach dem Zusammenstof gleich ist,
heiflen ideal elastische Zusammenstéfe.

Ein geringfiigiger Verlust an kinetischer Energie
findet allerdings auch beim Zusammenstof iiberaus
elastischer Werkstoffe statt; bei Billardbillen aus Elfen-
bein erreicht der Verlust beispielsweise 3 bis 4 %.

Die Erhaltung der kinetischen Energie beim elastischen
StoB erlaubt die Loésung einer ganzen Reihe von Proble-
men.

Betrachten wir beispielsweise den Frontalzusammen-
stol von Kugeln unterschiedlicher Masse. Die Impuls-
gleichung (wir nehmen an, dafl die Kugel Nummer 2 vor
dem Zusammensto in Ruhe gewesen ist) hat die Form

mw = my; -+ myv,

und die Energiegleichung:

Hierin ist v die Geschwindigkeit der ersten Kugel vor
dem Zusammenstof, wihrend v, und v, die Geschwindig-
keiten der Kugeln nach dem Zusammenstof sind.
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Da die Bewegung im Verlauf einer Geraden erfolgt
(die durch die Kugelmitten verlauft, und genau das
bedeutet es, wenn wir von einem Frontalzusammenstof
sprechen), miissen wir hier nicht unbedingt vektorielle
Bezeichnungen verwenden.

Aus der ersten Gleichung erhalten wir:

m
Uz=7: (v—wvy).

Setzt man diesen Ausdruck fir v, in die Energiegleichung
ein, so erhidlt man:

m m m 2
-5 Wr—v) == [m—:(v—v,)] .

Eine der Losungen in dieser Gleichung ist v, = v
und v, = 0. Diese Antwort interessiert uns allerdings
nicht, da die Gleichung v; = v und v, = 0 zeigt, dal
die Kugeln iiberhaupt nicht zusammengestoBen sind.
Deshalb suchen wir die andere Losung der Gleichung.
Wir dividieren durch m; (v — v;) und erhalten:

5 O+v) =5 L v —v)),
das heifit,
myv + myv; = mv — myv,
oder
(my — my) v = (my + my) vy,
woraus wir fiir die Geschwindigkeit der ersten Kugel
nach dem Zusammenstof folgenden Ausdruck erhalten:
mq—nmgy
my~+my
Beim frontalen Zusammensto mit einer in Ruhe

befindlichen Kugel prallt die auftreffende Kugel zuriick
(v, ist negativ), sofern ihre Masse geringer ist. Ist dage-

v1=
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Bild 3.11.

gen m, groBer als m,, so setzen beide Kugeln die Bewe-
gung in der StoBrichtung fort.

Beim DBillardspiel kann man im Fall eines genau
frontalen Stofes héufig folgendes Bild beobachten: Die
auftreffende Kugel bleibt ruckartig stehen, wéihrend
die getroffene ins Loclh rollt. Dies erkldrt sich aus der
soeben gefundenen Gleichung. Die Massen der Kugeln
sind gleich; unsere Gleichung ergibt v, = 0 und dem-
zufolge v, = v. Die auftreffende Kugel hidlt an, und
die andere Kugel beginnt, sich mit der Geschwindigkeit
zu bewegen, mit der sie von der ersten getroffen worden
ist. Die Kugeln tauschen gewissermaBen ihre Geschwindig-
keit aus.

Wir wollen nun ein weiteres Beispiel fiir den elasti-
schen ZusammenstoB von Korpern betrachten, und zwar
den schrigen Zusammensto von Koérpern gleicher Masse
(Bild 3.11.). Da der zweite Korper sich vor dem Zusam-
menstoB in Ruhe befand, haben der Impulserhaltungssatz
und der Energieerhaltungssatz folgende Form:

v3 mvd

m mu
mv=muv,-+mv, und 5= = 21+ 3.

Kiirzen wir die Masse heraus, so erhalten wir:

v =1, + v, und v = v{ + vi.
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Der Vektor v ist die vektorielle Summe aus », und
v,. Das heilit aber, daf die Lidngen der Geschwindig-
keitsvektoren ein Dreieck bilden.

Was ist das fiir ein Dreieck? Erinnern wir uns an
den Satz des Pythagoras. Unsere zweite Gleichung
bringt ihn zum Ausdruck. Also mufl das Geschwindig-
keitsdreieck ein rechtwinkliges Dreieck mit der Hypo-
tenuse v und den Katheten v, und v, sein. Demnach
schliefen v, und v, miteinander einen rechten Winkel
ein. Dieses interessante Ergebnis zeigt, daf Korper
gleicher Masse bei jedem schrigen elastischen Zusammen-
stoB} unter einem rechten Winkel auseinanderfliegen.
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Das Gleichgewicht

Manchmal fallt es schwer, das Gleichgewicht zu halten:
Versuchen Sie nur einmal, auf einem gespannten Seil
zu balancieren! Andererseits ist es kein Kunststiick,
ruhig in einem Schaukelstuhl zu sitzen. Und doch wird
auch in diesem Fall das Gleichgewicht gehalten.

Worin besteht der Unterschied zwischen beiden
Beispielen? In welchem Fall stellt sich das Gleichgewicht
,von selbst ein?

Die Voraussetzung fiir den Gleichgewichtszustand
scheint auf der IHand zu liegen. Damit ein Koérper nicht
aus seiner Lage bewegt wird, miissen sich die am Korper
angreifenden Kriafte gegenseitig aufheben; mit anderen
Worten, die Summe dieser Krifte mufl gleich Null
sein. Diese Bedingung ist in der Tat notwendig fiir das
Gleichgewicht eines Korpers. Ist sie aber auch hin-
reichend?

In Bild 4.1. ist das Profil einer ,Berg-und-Tal-Bahn"
dargestellt, das man leicht selbst aus Pappe anfertigen
kann. Je nachdem, wo man die Kugel hinlegt, wird
ihr Verhalten unterschiedlich sein. An jedem Punkt
des ,,Abhangs” wird an der Kugel eine Kraft angreifen,
die die Kugel herunterrollen 1d8t. Es ist die Schwer-
kraft, bzw. genauer gesagt, ihre Projektion auf die
Richtung der Tangente am Profil des Abhangs im betrach-
teten Punkt. Daraus wird ersichtlich, daf die an der
Kugel angreifende Kraft um so kleiner wird, je geringer
die Neigung des Abhangs ist.
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Bild 4.1.

Vor allem interessieren uns die Punkte, an denen
die Schwerkraft vollstindig durch die Gegenkraft der
Auflage ausgeglichen wird und demnach die an der
Kugel angreifende resultierende Kraft gleich Null ist.
Diese Bedingung ist an den jeweils hochsten und tiefsten
Stellen unserer ,,Berg-und-Tal-Bahn“, also auf den ,Ber-
gen“ und in den ,Talern* erfilllt. Die Tangenten an
diesen Punkten verlaufen waagerecht, und die auf die
Kugel wirkenden resultierenden Krafte sind gleich
Null.

Doch obwohl die resultierende Kraft auf den ,Berg-
gipfeln“ gleich Null ist, gelingt es kaum, die Kugel
so hinzulegen, daf sie auch liegenbleibt, und wenn es
wirklich einmal klappt, dann bemerken wir, daf dieser
Erfolg seine Nebenursache hat: die Reibung. Der leiseste
AnstoB oder Lufthauch iiberwindet die Reibungskrifte,
die Kugel kommt in Bewegung und rollt nach unten.

Auf einer glatten Berg-und-Tal-Bahn und fiir eine
glatte Kugel bilden nur die tiefsten Stellen der ,Tdler*
solche Orte, an denen sich die Kugel im Gleichgewicht
befinden kann. Bringt man die Kugel hier durch einen
leichten Stof oder einen Luftstrahl aus der Gleichgewichts-
lage, dann rollt die Kugel von selbst zuriick.

In einem Tal, einer Mulde oder einer Vertiefung
befindet sich ein Korper zweifellos im Gleichgewicht.
Wird er aus dieser Lage herausgefiihrt, dann gelangt

10—-01178
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der Korper unter den EinfluB einer Kraft, die ihn wieder
zuriickbringt. Auf den héchsten Punkten unserer ,Berg-
und-Tal-Bahn“ bietet sich ein anderes Bild: Verlafit der
Korper hier seinen Ort, dann gelangt er nicht unter den
Einflul einer zuriickfiihrenden, sondern einer ,weg-
fiihrenden“ Kraft. Somit ist die Bedingung, daf die
resultierende Kraft gleich Null sei, wohl eine notwendige,
nicht aber eine hinreichende Bedingung fiir ein stabiles
Gleichgewicht.

Man kann das Gleichgewichtsproblem der Kugel
auf einer , Berg-und-Tal-Bahn“ auch unter einem anderen
Aspekt betrachten. Die Gleichgewichtslagen in den
»lalern* entsprechen Minima, die Gleichgewichislagen
auf den ,Gipfeln“ dagegen Maxima der potentiellen
Energie. Einer Lageénderung aus einer Stellung heraus,
wo die potentielle Energie ihr Minimum hat, steht der
Energieerhaltungssatz im Wege. Hier wiirde die Lage-
dnderung die kinetische Energie negativ werden lassen,
was jedoch unmoglich ist. Ganz anders liegen die Dinge
an den Gipfelpunkten. Das Verlassen dieser Punkte
filhrt zur Verringerung der potentiellen Energie, und
damit nicht zur Verringerung, sondern zur Vergréferung
der kinetischen Energie.

Fassen wir zusammen: In Gleichgewichtslagen muf
die potentielle Energie im Verhdltnis zur potentiellen
Energie an benachbarten Punkten ihren kleinsten Wert
haben.

Je tiefer eine Mulde ist, um so gréfler ist die Stabilitit.
Da uns der Energieerhaltungssatz bekannt ist, konnen
wir auch sofort sagen, unter welchen Bedingungen ein
Korper aus seiner Vertiefung herausrollen wird. Zu
diesem Zweck mufi dem Korper eine kinetische Energie
mitgeteilt werden, die ausreicht, um den Kaorper bis
an den Rand der Mulde zu heben. Je tiefer die Mulde
ist, um so mehr kinetischer Energie bedarf es zur Stérung
der stabilen Gleichgewichtslage.
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Einfache Schwingung

St6#t man eine Kugel an, die in einer Vertiefung liegt,
dann bewegt sie sich aufwérts und verliert dabei all-
maihlich an kinetischer Energie. Sobald diese vollstindig
aufgezehrt ist, kommt die Kugel fiir einen winzigen
Augenblick zum Stillstand, um sich dann wieder ab-
warts zu bewegen. Nunmehr verwandelt sich potentielle
Energie in kinetische. Die Kugel wird immer schneller,
durchlduft — der Trégheit gehorchend — die Gleich-
gewichtslage und bewegt sich wieder ,bergauf, aller-
dings in entgegengesetzter Richtung. Bei nur geringer
Reibung kann diese , Auf-und-Ab-Bewegung* sehr lange
und im (reibungsfreien) Idealfall ewig dauern.

Bewegungen um eine stabile Gleichgewichtslage haben
daher stets Schwingungscharakter.

Zum Studium von Schwingungen ist ein Pendel
allerdings besser geeignet als eine Kugel, die in einer
Mulde umherrollt, schon deshalb, weil sich die Reibung
beim Pendel leichter auf ein Minimum reduzieren 148t.

Wenn die Masse am Pendel in die Grenzlage aus-
gelenkt ist, sind ihre Geschwindigkeit und ihre kineti-
sche Energie gleich Null. In diesem Augenblick ist die
potentielle Energie am grofiten. Wiahrend die Masse
nach unten geht, sinkt die potentielle Energie und wandelt
sich in kinetische um. Also steigt auch die Geschwin-
digkeit. In dem Awugenblick, wo die Masse den
tiefsten Punkt durchlduft, ist ihre potentielle Energie
am kleinsten, wihrend die kinetische Energie und die
Geschwindigkeit ihr Maximum haben. Im weiteren
Bewegungsverlauf geht die Masse wieder nach oben.
Nun nimmt die Geschwindigkeit ab; die potentielle
Energie wichst.

Wenn man einmal von den Reibungsverlusten ab-
sieht, wird die Masse genau so weit nach rechts aus-
schwingen, wie es zuvor nach links ausgelenkt gewesen

10*
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ist. Die potentielle Energie hat sich in kinetische ver-
wandelt, und danach wurde in genau der gleichen Menge
»,neue” potentielle Energie erzeugt. Bisher haben wir
die erste Hilfte einer Schwingung beschrieben. Die
zweite Hélfte lduft ebenso ab, nur dafl die Bewegung
der Masse gegensinnig ist.

Die Schwingungsbewegung ist eine Bewegung, die
sich immer wiederholt oder die — wie man auch sagt —
periodisch ablauft. Nach Riickkehr in den Ausgangs-
punkt wiederholt die Masse ihre Bewegung jedesmal
(sofern man die durch Reibung verursachten Verénde-
rungen auBer acht 1d8t) sowohl in bezug auf den Weg als
auch in bezug auf Geschwindigkeit und Beschleunigung.
Die fiir eine Schwingung, d. h. bis zur Riickkehr in
die Ausgangslage, aufgewendete Zeit ist fiir den ersten,
den zweiten und fiir alle folgenden Schwingungsvorginge
immer gleich. Diese Zeit — sie stellt einen der wichtigsten
Kennwerte der Schwingung dar — heiffit Periode, und
wir werden sie mit dem Buchstaben I' bezeichnen. Die
Schwingung wiederholt sich in der Zeit T, d. h., nach
Ablauf von T werden wir den schwingenden Korper stets
an der gleichen Stelle im Raum und auch stets in der
gleichen Bewegungsrichtung antreffen. Nach jeweils
einer halben Periode wechseln die Verschiebung des
Korpers sowie die Bewegungsrichtung das Vorzeichen.
Da die Periode T' die Zeitdauer einer Schwingung dar-
stellt, muf} die Anzahl von Schwingungen je Zeiteinheit
n gleich %sein.

Wovon ist die Schwingungsperiode eines Korpers,
der um die stabile Ruhelage schwingt, abhéngig? Wovon
héngt die Schwingungsperiode eines Pendels ab? Galilei
war der erste, der diese Frage stellte und beantwortete.
Wir werden die Formel fiir die Schwingungsperiode
eines Pendels sogleich ableiten.

Da es auf elementarem Wege schwierig ist, die Gesetze
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Bild 4.2.

der Mechanik auf eine ungleichférmig beschleunigte
Bewegung anzuwenden, wollen wir — um diese Schwierig-
keit zu umgehen — die Masse unseres Pendels veran-
lassen, nicht in der vertikalen Ebene zu schwingen,
sondern auf gleichbleibender Héhe einen Kreis zu be-
schreiben. Diese Bewegung hervorzurufen ist nicht schwie-
rig, man mufl dem aus der Ruhelage ausgelenkten Pendel
zu Beginn nur einen kleinen Stof senkrecht zum Aus-
lenkungsradius geben und die Stirke dieses StoBes rich-
tig wihlen.

In Bild 4.2. ist ein solches ,Kreispendel“ dargestellt.

Der Korper mit der Masse m beschreibt also einen
Kreis. Demnach greift an diesem Gewicht neben der
Schwerkraft mg die Zentrifugalkraft muv?/r an, die wir
auch in der Form 4n2rn’rm darstellen konnen. Hierin
ist n die Anzahl von Umdrehungen je Sekunde. Daher
konnen wir den Ausdruck fiir die Zentrifugalkraft auch
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in der Form mén?r/T? aufschreiben. Die Resultierende
aus diesen beiden Kriften spannt den Pendelfaden.
Im Bild sind zwei dhnliche Dreiecke schraffiert: das
Kréftedreieck und das Dreieck der Entfernungen.
Die entsprechenden Kathetenverhiltnisse sind gleich;
also gilt:

mgT? h

ma&ntr 1

Wovon ist die Schwingungsperiode eines Pendels
abhéingig? Wenn wir unsere Versuche stets an ein und
derselben Stelle des Erdballs vornehmen (wo sich g
nicht #ndert), dann hingt die Schwingungsperiode nur
von der Hohendifferenz zwischen dem Aufhingungspunkt
und dem Punkt ab, wo sich das Gewicht befindet. Die
Masse des Gewichts hat, wie stets bei Bewegungen im
Schwerefeld, keinen Einflufl auf die Schwingungsperiode.

Interessant ist folgender Umstand. Wir wollen die
Bewegung in der Néhe der stabilen Ruhelage untersuchen.
Bei geringen Auslenkungen kénnen wir die Héhendif-
ferenz 2 durch die Pendelléinge [ ersetzen. Das ist leicht
nachpriifbar. Ist die Pendellinge 1 m und der Auslen-
kungsradius 1 c¢m, dann gilt

=1/ T0000—1=99,995 cm.

Erst bei einer Auslenkung von 14 cm erreicht der
Unterschied zwischen % und ! 1 %. Demnach ist die
Periode der freien Schwingungen eines Pendels fiir
nicht allzu groBe Auslenkungen aus der Gleichgewichts-
lage gleich

T—2n ]/g
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d. h., sie hingt nur von der Pendellinge und dem Wert
fiir die Beschleunigung des freien Falls an dem Ort ab,
wo der Versuch durchgefiithrt wird; sie ist dagegen unab-
hingig davon, wie weit das Pendel aus der Gleichgewichts-
lage ausgelenkt wird.

Fiir das Kreispendel ist die Formel T =2}/ %

bewiesen; welches Aussehen hat sie fiir ein gew6hnliches
»ebenes* Pendel? Es zeigt sich, daB die Formel ihr Aus-
sehen beibehdlt. Wir wollen es hier nicht beweisen, aber
darauf aufmerksam machen, daf der Schatten, den der
Korper eines Kreispendels auf eine Wand wirft, fast
ebenso. schwingt wie ein ebenes Pendel: Der Schatten
fiilhrt genau wihrend der gleichen Zeit eine Schwingung
aus, wihrenddessen die Kugel ihren Kreis beschreibt.

Die Verwendung kleiner Schwingungen in der Nihe
der Gleichgewichtslage erlaubt die Ausfiihrung von
Zeitmessungen mit sehr hoher Genauigkeit.

Der Uberlieferung zufolge soll Galilei die Unabhéngig-
keit der Schwingungsperiode eines Pendels von Amplitude
und Masse erkannt haben, als er wihrend des Gottes-
dienstes in der Kathedrale beobachtete, wie zwei grofle
Liister hin- und herschwangen.

Fassen wir zusammen: Die Schwingungsperiode eines
Pendels ist der Quadratwurzel aus seiner Lénge pro-
portional. Somit ist die Schwingungsperiode eines 1-m-
Pendels doppelt so grof wie die Schwingungsperiode
eines Pendels von 25 ¢m Linge. Aus der Formel fiir
die Schwingungsperiode eines Pendels folgt weiter, daf
ein und dasselbe Pendel an verschiedenen geographischen
Breiten nicht gleich schnell schwingen wird. In dem
MaBe, wie wir uns dem Aquator niihern, vermindert
sich die Beschleunigung des freien Falls, und die Schwin-
gungsperiode nimmt zu. '

Die Schwingungsperiode 148t sich mit sehr groBer
Genauigkeit messen. Darum kann man durch Pendel-
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versuche auch die Beschleunigung des freien Falls sehr
genau ermitteln.

Abwicklung von Schwingungen

Wir befestigen am unteren Teil des Pendelkérpers
einen weichen Schreibstift und hingen das Pendel so
iiber einem Blatt Papier auf, daf der Schreibstift das
Papier beriihrt (Bild 4.3.). Nun lenken wir das Pendel
ein wenig aus. Der pendelnde Stift zeichnet auf dem
Papier einen kurzen Geradenabschnitt. In der Mitte
der Schwingungsbewegung, dort also, wo das Pendel
seine Ruhelage durchlduft, wird der Bleistiftstrich
etwas dicker ausfallen, da der Stift hier stdrker auf
das Papier driickt. Zieht man das Papierblatt senkrecht
zur Schwingungsebene unter dem Pendel durch, dann
zeichnet das Pendel die in Bild 4.3. dargestellte Kurve.
Die entstehenden Wellen liegen dicht beieinander, wenn
man das Papier langsam bewegt; die Abstinde werden
dagegen grofler, wenn sich das Papier mit erheblicher
Geschwindigkeit bewegt. Damit eine ,ordentliche* Kurve
entsteht, mufl die Bewegung des Papierblatts streng
gleichformig sein.

So haben wir die Schwingungen gewissermafien ,ab-
gewickelt®.

Wir brauchen die Abwicklung, um sagen zu koénnen,
wo sich der Pendelkérper zu einem bestimmten Zeit-
punkt befand und in welche Richtung es sich dabei
bewegte. Stellen Sie sich vor, die Geschwindigkeit
des Papiers betriige 1 cm/s von dem Augenblick an,
wo sich das Pendel in seiner Grenzlage beispielsweise
links von der Mittellage befand. In unserer Darstellung
entspricht diese Anfangslage dem mit 7 gekennzeich-

neten Punkt. Nach %Periode durchliuft das Pendel
die Mittellage. Wihrend dieser Zeit bewegt sich das
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Papier um %T Zentimeter zum Punkt 2 im Bild fort.

Das Pendel bewegt sich nach rechts, und gleichzeitig
dauert auch die Papierbewegung an. Sobald das Pendel
die rechte Grenzlage erreicht, hat sich das Papier um

—;—T Zentimeter zum Punkt 3 im Bild fortbewegt. Nun
kehrt das Pendel zur Mittellage zuriick und erreicht
nach —Z’—T seine Ruhelage, dem Punkt 4 im Bild. Am

Punkt 5 ist dann eine vollstindige Schwingung abge-
schlossen, und der ganze Vorgang wiederholt sich alle T
Sekunden bzw. alle T Zentimeter im Bild.

Somit stellt die vertikale Linie im Bild die Skala
fir die Auslenkung des Pendels aus der Ruhelage dar
und die waagerechte Mittellinie die Zeitskala.

Aus einer Darstellung in der hier vorliegenden Art
lassen sich leicht die beiden Grofen bestimmen, die
die Schwingung erschopfend charakterisieren. Die Periode
ergibt sich als Abstand zwischen zwei gleichwertigen
Punkten, beispielsweise zwei nebeneinanderliegenden
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Spitzen. Ebenfalls unmittelbar 148t sich die grofBite
Auslenkung des Pendels aus der Ruhelage messen. Diese
Auslenkung heiit Schwingungsamplitude.

Die Schwingungsabwicklung gibt uns auBerdem die
Maoglichkeit, eine Antwort auf die weiter oben gestellte
Frage zu geben: Wo befindet sich ein schwingender
Punkt zu einem bestimmten Zeitpunkt? Wo also befindet
sich beispielsweise ein schwingender Punkt nach 11 s,
wenn die Schwingungsperiode gleich 3 s ist und die
Schwingung in der linken Grenzlage begann? Alle 3 s
beginnt die Schwingung stets im gleichen Punkt. Nach
9 s wird sich das Pendel wieder in der linken Grenzlage
befinden.

Wir brauchen also gar keine Darstellung, in der sich
die Kurve iiber mehrere Perioden erstreckt, vielmehr
geniigt uns eine Zeichnung mit der Darstellung der Kurve
im Verlauf nur einer einzigen Schwingung. Der Zustand
des schwingenden Punktes wird nach 11 s bei einer Periode
von 3 s die gleiche sein wie nach 2 s. Tragen wir auf
der Zeichnung 2 ¢m ab (wir hatten ja vereinbart, daf
die Transportgeschwindigkeit des Papiers gleich 1 cm
ist, oder mit anderen Worten, dafl im Mafstab der Zeich-
nung 1 cm stets 1 s entspricht), so sehen wir, daf sich
der schwingende Punkt nach 11 s auf dem Weg aus der
rechten Grenzlage in die Gleichgewichtslage befindet.
Die Auslenkung zu diesem Zeitpunkt koénnen wir aus
der Zeichnung ermitteln.

Um die Auslenkung eines Punktes festzustellen, der
kleine Schwingungen um seine Gleichgewichtslage aus-
fithrt, brauchen wir nicht unbedingt eine Zeichnung zu
Hilfe zu nehmen. Die Theorie zeigt, dal die Kurve
fir die Abhéngigkeit der Auslenkung von der Zeit in
diesem Fall sinusformig ist. Bezeichnen wir die Aus-
lenkung des Punktes mit y, die Amplitude mit @ und die
Schwingungsperiode mit 7', so erhalten wir den Aus-
lenkungswert zur Zeit ¢ nach Schwingungsbeginn aus
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Bild 4.4.
der Formel

y=a sin 2n —;.— .
Schwingungen, die dieser Beziehung folgen, heiflen
harmonische Schwingungen. Das Argument der Sinus-

funktion ist gleich dem Produkt von 2n7t,-. Die Grofle

2u7t,— heifit Phase.

Hat man trigonometrische Tafeln zur Hand und
kennt man die Periode und die Amplitude, so kann man
die Auslenkung des Punkts leicht berechnen und aus
dem Phasenwert darauf schliefen, in welche Richtung
sich der Punkt bewegt.

Die Formel fiir eine Schwingungsbewegung, wie man
sie bei Betrachtung des Schattens sieht, den ein auf
einer Kreishahn umlaufendes Gewicht an eine Wand
wirft, 148t sich leicht ableiten (aus Bild 4.4.).

Wir tragen die Auslenkung des Schattens von der
Mittellage aus nach beiden Seiten ab. In den Grenzlagen
ist die Auslenkung y gleich dem Radius a des Kreises.
Dies ist die Schwingungsamplitude des Schattens.

Ist das Pendel von seiner Mittellage aus um den
Winkel ¢ auf der Kreisbahn weitergewandert, dann ent-
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fernt sich sein Schatten um den Betrag a sin ¢ von der
Mittellage.

Die Periode der Bewegung des Pendels (die natiir-
lich auch die Schwingungsperiode des Schattens ist)
sei gleich T'; dies bedeutet, daB das Pendel 2« Radian
in der Zeit T durchlduft. Nun kann man die Proportion
—?=—2%t aufstellen, worin ¢ die Laufzeit fiir den Winkel
¢ darstellt.

7L 2t

Somit ist ¢ =3F und y = a sin 5. Genau dies

wollten wir auch beweisen.

Die Geschwindigkeitsinderung eines schwingenden
Punktes gehorcht ebenfalls der Sinusfunktion. Zu diesem
Schlu$ fiihrt uns die gleiche Uberlegung iiber die Bewe-
gung des Schattens, den ein auf einer Kreisbahn umlau-
fender Korper wirft. Die Geschwindigkeit dieses
Korpers ist ein Vektor konstanter Léinge v,. Der Ge-
schwindigkeitsvektor lduft gemeinsam mit dem Korper
um. Stellen wir uns einmal vor, der Geschwindigkeits-
vektor sei ein materieller Pfeil, der ebenfalls einen Schat-
ten werfen konnte. In den Grenzlagen des Korpers liegt
der Vektor in der Richtung des Lichtstrahls und wirft
keinen Schatten. Sobald der Korper aus seiner Grenz-
lage auf der Kreisbahn um den Winkel T weitergewandert
ist, hat sich der Geschwindigkeitsvektor um den gleichen
Winkel gedreht, und seine Projektion ist gleich v, sin T'.
Doch mit der bereits vorher gegebenen Begriindung gilt
T 27

T=T d. h., der Momentanwert fiir die Geschwindig-

keit eines schwingenden Korpers ist:
v =0, sin 2% ¢
=, .

Beachten Sie bitte, daB in der Formel zur Bestimmung
der Auslenkung als Zeitursprung die Mittellage und in der
Geschwindigkeitsformel die Grenzlage benutzt wird. Die
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Auslenkung des Pendels ist in der Mittellage gleich
Null, die Schwingungsgeschwindigkeit dagegen in der
Grenzlage. Zwischen der Geschwindigkeitsamplitude
der Schwingung v, (gelegentlich spricht man auch vom
Amplitudenwert der Geschwindigkeit) und der Amplitude
der Auslenkung besteht eine einfache Beziehung: Der
Korper durchlduft einen Kreisumfang der Linge 2na
innerhalb eines Zeitraums, der gleich der Schwingungs-
periode T ist. Somit gilt:

2na nd :2na

7 updv=-—p

. 2m
Vy= Sin —— t.

Kraft und potentielle Energie bei
Schwingungsvorgingen

‘Bei allen Schwingungen um die Gleichgewichtslage greift
am Korper eine Kraft an, die ,bestrebt* ist, den Korper
in die Gleichgewichtslage zuriickzufithren. Wenn sich der
Korper aus der Gleichgewichtslage entfernt, bremst diese
Kraft seine Bewegung; nihert sich der Koérper dagegen
der Gleichgewichtslage, so bewirkt sie eine Beschleuni-
gung.

Verfolgen wir die Kraft am Beispiel des Pendels (Bild
4.5.). Der am Pendel héngende Korper steht unter dem
Einfluf der Schwerkraft und der Kraft, die den Pendel-
faden spannt. Wir zerlegen die Schwerkraft in zwei Kom-
ponenten, von denen eine in der Richtung des Pendel-
fadens verlauft, wiahrend die andere senkrecht dazu, d. h.
tangential, zur Bahn des Pendelkdrpers gerichtet ist.
Fiir die Bewegung hat nur die Tangentialkomponente
der Schwerkraft Bedeutung. Sie stellt in unserem Fall
zugleich die riicktreibende Kraft dar. Was die in Faden-
richtung verlaufende Kraft betrifft, so wird sie durch die
Gegenwirkung der Hand kompensiert, die das Pendel
hilt, und wir brauchen sie nur dann in unsere Berechnun-
gen einzubeziehen, wenn wir wissen wollen, ob der Faden
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Bild 4.5.

nicht unter der Last des schwingenden Korpersreiflen wird.

Wir wollen nun die Auslenkung des Pendels mit
z bezeichnen. Die Bewegung hat zwar einen bogen-
formigen Verlauf, doch hatten wir uns geeinigt, die
Schwingungen in der Nihe der Gleichgewichtslage zu
untersuchen. Deshalb machen wir hier keinen Unterschied
zwischen der bogenformigen Auslenkung und der Aus-
lenkung der Last aus der Senkrechten. Sehen wir uns
einmal die beiden dhnlichen Dreiecke an. Das Verhdltnis
der entsprechenden Katheten ist gleich dem Hypote-
nusenverhdltnis, d. h.,

£ _mg

z 1
oder

P—(2t)s

Die GroSe Llniéindert sich im Schwingungsablauf nicht.
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Wir bezeichnen diese konstante Grofle mit dem Buchsta-
ben %k und erhalten die riicktreibende Kraft dann in der
Form F = kx. So gelangen wir zu folgendem wichtigem
Schlufl: Die riicktreibende Kraft ist der Auslenkung des
schwingenden Korpers aus der Gleichgewichtslage direkt
proportional. In den Grenzlagen des schwingenden Kor-
pers erreicht die riicktreibende Kraft ihr Maximum. Wenn
der Korper die Mittellage passiert, geht die Kraft gegen
Null und é&ndert ihr Vorzeichen oder — anders ausge-
driickt — ihre Richtung. Solange der Korper nach rechts
ausgelenkt ist, ist die Kraft nach links gerichtet und
umgekehrt.

Das Pendel dient uns als einfachstes Beispiel fiir
einen schwingenden Korper. Allerdings hitten wir es
gern, daB man die gefundenen Formeln und Gesetzmi-
Bigkeiten auch auf beliebige andere Schwingungen aus-
dehnen kann.

Die Schwingungsperiode eines Pendels ist durch seine
Linge ausgedriickt worden. Diese Formel ist nur fiir ein
Pendel geeignet. Wir konnen die Periode ungedidmpfter
Schwingungen aber auch durch die konstante riicktreiben-

de Kraft & ausdriicken. Da &k = ng ist, gilt -:7= Lk" , und
demzufolge auch:

T=2n ]/f%.

Diese Formel gilt fiir alle Arten von Schwingungen,
da jede ungeddmpfte Schwingung unter dem Einfluf der
riicktreibenden Kraft erfolgt. Nun driicken wir die poten-
tielle Energie eines Pendels durch seine Auslenkung aus
der Gleichgewichtslage x aus. Fiir den Augenblick, wo
der Korper den tiefsten Punkt passiert, kann die poten-
tielle Energie gleich Null gesetzt werden; diesen tief-
sten Punkt wihlen wir auch als Ausgangspunkt fiir die
Messung der Steighéhe. Nachdem wir die Hohendifferenz
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zwischen dem Aufhiingungspunkt und der Lage des aus-
gelenkten Korpers mit % bezeichnet haben, erhalten wir
fiir die potentielle Energie: W = mg (Il — k) oder unter
Verwendung der Formel des Pythagoras (12 — k% = x?)

12—p2
W=mg

Wie allerdings aus der Zeichnung zu ersehen ist, un-
terscheiden sich ! und % nur sehr wenig voneinander;
deshalb kann man statt I -+ 2 auch 2/ in die Formel

einsetzen. Dann gilt W = %5:::2 oder
kz?
W=—.

Die potentielle Energie eines schwingenden Korpers
ist dem Quadrat der Auslenkung dieses Korpers aus der
Gleichgewichtslage proportional.

Die Richtigkeit der hier abgeleiteten Formel wollen
wir nachpriifen. Der Verlust von potentieller Energie
muf gleich der Arbeit sein, die die riicktreibende Kraft
leistet. Wir betrachten zwei Lagen des Korpers, némlich
xz, und z;. Die Differenz der potentiellen Energien ist

kx} kx} k
L R )

Die Differenz zweier Quadrate kann man aber auch
als Produkt der Summe und der Differenz schreiben. Dem-
nach gilt:

Wo— W= o (234 ) (g —29) = 2B (5, 5)

Hierin ist z, — z; der Weg, den der Korper zuriick-
gelegt hat; kx, und kz, sind die Werte der riicktreibenden

Kraft zu Beginn und am Ende der Bewegung, und ﬁ%——’w—’
ist gleich der mittleren Kraft.
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Bild 4.6.

Unsere Formel hat uns zuin richtigen Ergebnis gefiihrt:
Der Verlust an potentieller Energie ist gleich der ge-
leisteten Arbeit.

Federschwingungen

Man kann eine Kugel leicht zum Schwingen bringen, wenn
man sie an einer Feder aufhingt. Wir befestigen die
Feder an einem Ende und ziehen dann an der Kugel
(Bild 4.6.). Die Feder befindet sich solange im gedehnten
Zustand, wie wir die Kugel mit der Hand nach unten
ziehen. Sobald wir loslassen, beginnt sich die Feder wieder
zusammenzuziehen, und die Kugel setzt sich in Rich-
tung ihrer Gleichgewichtslage in Bewegung. Ebenso wie
ein Pendel gelangt auch die Feder nicht sogleich in den
Ruhezustand. Der Tridgheit folgend, wird die Gleichge-
wichtslage passiert, und die Feder beginnt zu kontrahie-
ren. Nun wird die Kugelbewegung langsamer, um lang-
sam zum Stillstand zu kommen, wonach zugleich eine
Bewegung in umgekehrter Richtung einsetzt. So ent-
steht eine Schwingung mit den gleichen typischen Merk-
malen, die wir bei der Untersuchung des Pendels kennen-
gelernt haben.

Gibe es keine Reibung, wiirden die Schwingungsbe-
wegungen ohne Ende fortdauern. Wenn jedoch Reibung

11-01178
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auftritt, klingen die Schwingungen ab, und zwar um
so rascher, je stiarker die Reibung ist.

Haufig spielen Feder und Pendel eine analoge Rolle.
Beide dienen dazu, die Periode in Uhren konstant zu
halten. Die Ganggenauigkeit moderner Federuhren wird
durch die Schwingungshewegung eines kleinen Schwung-
rades, der sogenannten Unruhe, gewahrleistet. Sie wird
durch eine Feder in Schwingung versetzt, die sich tdglich
einige 10 000mal spannt und wieder entspannt.

Bei der an einem Faden befestigten Kugel hat die
Tangentialkomponente der Schwerkraft die Rolle der
riicktreibenden Kraft gespielt. Mit der Kugel an der Fe-
der wird die riicktreibende Kraft durch die Elastizitdt der
kontrahierten hzw. gedehnten Feder erzeugt. Somit ist
die Elastizitdtskraft der Auslenkung direkt proportional:
F = kx.

Der Faktor % hat im hier betrachteten Fall einen an-
deren Inhalt. Es ist jetzt die Steifheit der Feder. Eine
steife — oder wie man gelegentlich nicht ganz korrekt
sagt, harte — Feder ist eine Feder, die sich schwer aus-
einanderziehen bzw. zusammendriicken 148t. Genau die-
sen Sinn besitzt der Faktor k. Aus der Formel wird deut-
lich: % ist gleich der zum Auseinanderziehen bzw. Zu-
sammenpressen der Feder je Léngeneinheit erforderlichen
Kraft.

In Kenntnis der Federsteifheit und der Masse des an
der Feder aufgehdngten Korpers finden wir mit Hilfe

der Formel T = 2n 'i/-k"-ldie Periode der ungeddmpften

Schwingung. Ein Kérper mit der Masse 10 g wird an
einer Feder mit der Steifheit 1 N/cm (das ist eine
ziemlich steife Feder — sie wird durch ein 100-g-
Waigestiick um 1 cm gedehnt) Schwingungen mit der
Periode T = 6,28-10-% s vollfilhren. In jeder Sekunde
finden also 16 Schwingungen statt.
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Je weicher eine Feder ist, um so langsamer laufen die
Schwingungen ab. Den gleichen EinfluBl zeigt auch eine
Vergroflerung der Masse des Korpers.

Nun wollen wir den Energieerhaltungssatz auf die
an einer Feder hingende Kugel anwenden.

Wir wissen, daB sich die Summe der kinetischen und
potentiellen Energie eines Pendels Wy 4 W, nicht dndert.

Die Werte von Wy und W, fiir ein Pendel kennen wir.
Der Energieerhaltungssatz besagt, dafl

muv? ka?

2T
orhalten bleiben.

Das gleiche gilt freilich auch fiir die Kugel an der
IFeder.

Der sich hieraus unvermeidlich ergebende Schluf ist
iluflerst interessant.

Neben der potentiellen Energie, die wir bereits ken-
nengelernt haben, existiert somit auch eine potentielle
Fnergie anderer Art. Die erstere heiflit potentielle Ener-
gie der Gravitation. Wéare die Feder waagerecht an-
geordnet, dann wiirde sich die potentielle Energie der
Gravitation im Schwingungsverlauf natiirlich nicht &n-
dern. Die neue potentielle Energie, auf die wir hier ge-
stofilen sind, heiffit potentielle Energie der Elastizitét.

2
Sje ist in unserem Fall gleich ’%, d. h., sie hingt von

der Federsteifheit ab und ist dem Quadrat der Kontrak-
tion bzw. Dehnung direkt proportional.
Die unveridndert bleibende vollsténdige Schwingungs-

. ka? mv3
onergie kann als W = Toder W = —2—angegeben wer-

den.

Die in der letztgenannten Formel enthaltenen Gré-
flen @ und v, sind die Maximalwerte, die Auslenkung und
Geschwindigkeit im Schwingungsverlauf annehmen: Es
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sind die Amplitudenwerte von Auslenkung und Ge-
schwindigkeit. Der Ursprung beider Formeln ist durchaus
einleuchtend. In der Grenzlage, wenn z = q ist, ist die ki-
netische Energie der Schwingung gleich Null und die
volle Energie gleich dem Wert der potentiellen Energie.
In der Mittellage sind die Auslenkung aus der Gleich-
gewichtslage und demzufolge auch die potentielle Ener-
gie gleich Null; die Geschwindigkeit erreicht in diesem
Moment ihr Maximum v = v,, und die volle Energie ist
gleich der kinetischen Energie.

Die Schwingungslehre ist ein recht umfangreiches
Gebiet der Physik. Wir haben recht hiufig mit Pendeln
und Federn zu tun. Doch erschopft sich die Liste der
Korper, deren Schwingungen untersucht werden miissen,
damit keineswegs. Fundamente, auf denen Maschinen
aufgestellt sind, schwingen, und Briicken, Gebaudeteile,
Balken oder Hochspannungsleitungen kénnen in Schwin-
gung geraten. Der Schall stellt Schwingungen der Luft
dar.
Bisher haben wir einige Beispiele fiir mechanische
Schwingungen  aufgezahlt. Der Schwingungsbegriff
braucht jedoch nicht ausschliefilich auf mechanische
Auslenkungen von Korpern oder Partikeln aus der Gleich-
gewichtslage bezogen zu werden. Bei vielen elektrischen
Erscheinungen stoflen wir ebenfalls auf Schwingungen,
wobei diese Schwingungen Gesetzen gehorchen, die den
weiter oben betrachteten Gesetzen sehr #dhnlich sehen.
Die Schwingungslehre durchdringt alle Teilgebiete der
Physik.

Kompliziertere Schwingungen

Was bisher gesagt worden ist, gilt fiir Schwingungen in
der Nihe der Gleichgewichtslage, die unter dem Einflu
einer riicktreibenden Kraft stattfinden, deren Betrag
der Auslenkung eines Punktes aus seiner Gleichgewichts-
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Bild 4.7.

lage direkt proportional ist. Solche Schwingungen
sind sinusférmig. Sie heiflen harmonische Schwingungen.
Die Periode harmonischer Schwingungen ist unabhéingig
von der Amplitude.

Betrachtlich komplizierter sind Schwingungen mit
grofer Auslenkung. Derartige Schwingungen verlaufen
nicht mehr sinusformig, und ihre Abwicklung liefert
kompliziertere Kurven, die fiir unterschiedliche schwin-
gende Systeme verschieden sind. Die Periode ist hier
nicht ldnger die charakteristische FEigenschaft der
Schwingung, sondern beginnt, von der Amplitude ab-
héngig zu werden.

Alle Schwingungen werden durch Reibung wesentlich
verandert. Wo Reibung auftritt, klingen Schwingungen
allmihlich ab. Je stiirker die Reibung ist, um so stédrker
ist auch die Didmpfung. Versuchen Sie nur, ein Pendel
schwingen zu lassen, das in Wasser eintaucht. Es dirfte
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kaum gelingen, daB dieses Pendel mehr als ein oder zwei
Schwingungen ausfiihrt. Léft man das Pendel gar in
ein sehr viskoses Medium eintauchen, dann tritt moéglicher-
weise iiberhaupt keine Schwingung auf. Das ausgelenkte
Pendel kehrt nur in seine Gleichgewichtslage zuriick.
In Bild 4.7. ist die typische Kurve einer gedampften
Schwingung dargestellt. Auf der Vertikalen sind die Aus-
lenkungen aus der Gleichgewichtslage und auf der Ho-
rizontalen ist die Zeit abgetragen. Mit jeder Schwingung
nimmt die Amplitude (die maximale Auslenkung) einer
gedimpften Schwingung ab.

Resonanz

Ein Kind sitzt auf der Schaukel. Es kann den Erdboden
nicht mit seinen Fiiflen erreichen. Natiirlich kann man
die Schaukel in Schwingung versetzen, wenn man sie
recht weit auslenkt und dann losldft. Das ist aber recht
mithsam und im ibrigen ganz unnétig. Es geniigt viel-
mehr, die Schaukel nur ganz leicht im Takt der Schwin-
gungen anzustoBen, und schon nach kurzer Zeit wird sich
die Schaukel ganz erheblich ,aufgeschaukelt* haben.
Einen Korper kann man nur im Takt der Schwingun-
gen aufschaukeln. Anders ausgedriickt, mull man es so
einrichten, daB die Stéfle mit der gleichen Periode erfol-
gen wie die Eigenschwingungen des Korpers. Man spricht
dann von Resonanz. Resonanzerscheinungen sind in
Natur und Technik weit verbreitet und verdienen daher
angemessene Aufmerksamkeit bei unseren Betrachtungen.
Eine sehr interessante und eigentiimliche Resonanz-
erscheinung 146t sich beobachten, wenn man folgende
Vorrichtung aufbaut: Héngen Sie an einem waagerecht
gespannten Faden drei Pendel (Bild 4.8.) auf, und zwar
zwei kurze Pendel gleicher Léinge und ein ldngeres Pen-
del. Nun lenken Sie eines der kurzen Pendel aus und
lassen es anschlieflend los, Wenige Sekunden spiter wer-
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Bild 4.8.

den Sie sehen, wie das andere, gleich lange Pendel all-
mihlich ebenfalls zu schwingen beginnt. Noch einige
Sekunden spiter, und das zweite Pendel hat sich so auf-
geschaukelt, daB man nicht mehr unterscheiden kann,
mit welchem von beiden die Bewegung begonnen hat.

Was ist geschehen? Pendel gleicher Lange haben gleiche
Eigenschwingungsperioden. Das erste schaukelt das
zweite Pendel auf. Die Schwingungen werden durch den
Faden, der beide miteinander verbindet, von dem einen
zum anderen Pendel iibertragen. Gut und schon, aber an
dem Faden hingt doch ein weiteres Pendel, nur, daB es
eine andere Linge hat. Was wird mit ihm geschehen?
Nichts! Dieses Pendel hat eine andere Periode, und so
kann es dem kurzen Pendel nicht gelingen, das lange
Pendel aufzuschaukeln. Das dritte Pendel wird bei der
interessanten Erscheinung des ,Uberfliefens* der Energie
aus einem Pendel zum anderen gegenwirtig sein, ohne
daran auch nur den geringsten Anteil zu nehmen.

Jeder von uns hat hdufig mit mechanischen Resonanz-
erscheinungen zu tun. Vielleicht haben Sie nur nicht
darauf geachtet, obwohl Resonanzerscheinungen gele-
gentlich sehr lastig sein kénnen. Da fahrt eine Strafen-
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bahn vor dem Fenster voriiber, und im Biifett klirren die
Gldser. Was ist geschehen? Die Schwingungen des Erd-
bodens haben sich auf das Gebédude iibertragen und somit
auch auf den FuBlboden des Zimmers mit dem Biifett; die-
ses sowie die darin stehenden Gliser kamen ins Schwingen.
So weit und iiber so viele Gegensténde hat sich die Schwin-
gung ausgebreitet. Die Ursache dafiir liegt in der Reso-
nanz. AuBlere Schwingungen sind mit den Eigenschwin-
gungen der Korper in Resonanz getreten. Fast jedes Klir-
ren oder Klappern, das wir zu Hause, im Betrieb oder im
Auto horen, wird durch Resonanz bewirkt.

Resonanzerscheinungen koénnen, wie iibrigens viele
andere Erscheinungen, sowohl niitzlich als auch schéid-
lich sein.

Da steht eine Maschine auf ihrem Fundament. Ge-
michlich bewegen sich ihre Teile mit einer bestimmten
Periode hin und her. Stellen Sie sich nun einmal vor,
dafl diese Periode mit der Eigenschwingungsperiode des
Fundaments zusammenfillt. Was wird geschehen? Das
Fundament wird sich im Handumdrehen aufschaukeln,
und das kann sehr bose ausgehen.

Verbiirgt ist folgende Tatsache. Als in Petersburg eine
Kompanie Soldaten im Gleichschritt iiber eine Briicke
marschierte, stiirzte diese ein. Es wurde ein Ermittlungs-
verfahren eingeleitet. Die Ursache war unklar, denn wie
oft waren Menschen in Scharen auf der Briicke zusammen-
gestromt und schwere Fuhrwerke langsam iiber die Briik-
ke gefahren, deren Masse ein Mehrfaches jener Kompanie
Soldaten betrug.

Doch unter dem EinfluB einer Last biegt sich die
Briicke nur um einen unbedeutenden Betrag durch. Eine
unvergleichlich gréBere Durchbiegung 148t sich erzielen,
wenn man die Briicke aufschaukelt. Die Amplitude einer
Resonanzschwingung kann das Mehrtausendfache der
Auslenkung unter dem Einfluf§ einer gleich grofien, aber
ruhenden Last betragen. Genau zu diesem Ergebnis fithrten
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auch die Ermittlungen. Die Periode der Eigenschwingung
der Briicke stimmte mit der Periode des iiblichen Gleich-
schritts iiberein.

Darum wird, wenn Truppenteile eine Briicke passieren,
der Befehl ,,Ohne Tritt, Marsch” gegeben. Wenn nicht im
Gleichschritt marschiert wird, kann keine Resonanz
eintreten, und die Briicke kann sich nicht aufschaukeln.
Ubrigens haben sich die Ingenieure diesen Ungliicksfall
zu Herzen genommen. Bei der Projektierung von Briik-
ken sind sie bemiiht, alles so auszulegen, dafl die Pe-
riode der ungeddmpften Schwingungen der Briicke mog-
lichst weit von der ,Gleichschrittperiode“ entfernt ist.

Ganz genau so verfahren auch die Konstrukteure von
Maschinenfundamenten. Sie legen das Fundament so aus,
daB seine Schwingungsperiode moglichst weitab von der
Schwingungsperiode der bewegten Maschinenteile liegt.
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Das Kraftmoment

Versuchen Sie bitte, ein schweres Schwungrad von Hand
in Drehung zu versetzen. Ziehen Sie an einer Speiche!
Das wird Ihnen schwerfallen, wenn Sie zu nahe an der
Achse anfassen. Wenn Sie die Speiche dagegen weiter
auflen ergreifen, dann geht es schon leichter.

Was hat sich eigentlich gedndert? Die Kraft ist doch
in beiden Fillen ein und dieselbe. Gedndert hat sich der
Angriffspunkt der Kraft!

Wihrend unserer gesamten bisherigen Darstellung
ist das Problem des Angriffsorts der Kraft nicht aufge-
taucht, da Form und Grofle der Korper hier keine Rolle
spielten. Wir haben im Grunde genommen die Koérper
gedanklich durch Punkte ersetzt.

Das Beispiel mit dem Schwungrad zeigt, daB die
Frage nach dem Angriffspunkt einer Kraft keineswegs
miiflig ist, wenn es sich um das Drehen oder Kippen
eines Korpers handelt.

Um die Rolle zu verstehen, die der Angriffspunkt einer
Kraft spielt, wollen wir die Arbeit berechnen, die zur
Drehung eines Korpers um einen bestimmten Winkel er-
forderlich ist. Mit dieser Berechnung wird natiirlich
vorausgesetzt, daBl sdmtliche Teilchen eines Festkorpers
starr miteinander verbunden sind (wir lassen also zu-
nichst die Féhigkeit des Korpers, sich durchzubiegen
oder zusammendriicken zu lassen, aufler acht, d. h.
seine Fahigkeit zur Forminderung schlechthin). Darum
vermittelt die an einen Punkt des Koérpers angelegte
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Bild 5.1.

Kraft simtlichen Teilen dieses Korpers kinetische Ener-
gie.

Bei der Berechnung dieser Arbeit nun ist die Rolle des
Angriffspunktes der Kraft deutlich zu erkennen.

In Bild 5.1. ist ein auf einer Achse befestigter Korper
dargestellt. Schwenkt man den Koérper um den kleinen
Winkel ¢, so verlagert sich der Angriffspunkt der Kraft
bogenférmig und legt den Weg s zuriick.

Wir projizieren die Kraft auf die Bewegungsrichtung,
d. h. auf die Tangente an den Kreis, auf dem sich der
Angriffspunkt bewegt, und schreiben den bekannten
Ausdruck fiir die Arbeit W auf:

W = FL'S.
Der Bogenabschnitt s kann aber auch durch
s =rQ

ausgedriickt werden, worin r die Entfernung zwischen
Drehachse und Kraftangriffspunkt ist. Somit gilt

W = F]{,' re,
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Bild 5.2.

Schwenken wir den Kérper nun auf unterschiedliche
Weise um ein und denselben Winkel, so werden wir
dafiir immer eine andere Arbeit verrichten miissen, je
nachdem, wo die Kraft angreift.

Ist der Winkel gegeben, dann ergibt sich die Arbeit
aus dem Produkt Fp-r. Dieses Produkt heifit Kraftmo-
ment:

M = FL'T.

Man kann die Formel des Kraftmoments auch in an-
derer Form darstellen. Es sei O die Drehachse und B der
Kraftangriffspunkt (Bild 5.2.). Mit dem Buchstaben d
ist die Lédnge des Lots bezeichnet, das aus O auf die
Kraftrichtung gefillt wird. Die beiden im Bild einge-
zeichneten Dreiecke sind &hnlich. Darum gilt:

F r v
=T oder F,r=Fd.

Die GroBe d heifit Kraftarm
Die neue Formel M = Fd muf} so gelesen werden: Das
Kraftmoment ist gleich dem Produkt aus Kraft mal

Kraftarm,
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Verschiebt man den Kraftangriffspunkt im Verlauf
der Kraftrichtung, dann &ndert sich der Kraftarm d und
damit auch das Kraftmoment d nicht. Es ist also gleich-
giiltig, wo genau auf der Kraftlinie der Angriffspunkt
liegt.

Unter Verwendung des neuen Begriffs 1a6t sich die
Formel fiir die Arbeit kiirzer fassen:

W = Mo,

d. h., die Arbeit ist gleich dem Produkt aus Kraftmoment
und Drehwinkel.

Auf einen Korper sollen zwei Krifte mit den Mo-
menten M, und M, einwirken. Bei einer Schwenkung des
Koérpers um den Winkel ¢ wird die Arbeit M o + M,p =
= (M, + M,) @ verrichtet. Diese verkiirzte Schreibweise
zeigt, daB zwei Krafte mit den Momenten M, und M,
einen Korper ebenso in Drehung versetzen, wie dies durch
eine einzige Kraft mit dem Moment M geschéhe, das gleich
der Summe von M; + M, wire. Kraftmomente kiénnen
sich sowohl gegenseitig unterstiitzen als auch behindern.
Sind die Momente M; und M, bestrebt, den Korper in
ein und dieselbe Richtung zu drehen, dann miissen wir
sie als GroBlen auffassen, die das gleiche Vorzeichen
besitzen. Im Gegensatz dazu haben Kraftmomente, die
einen Korper in verschiedene Richtungen zu drehen be-
strebt sind, auch verschiedene Vorzeichen.

Wie wir wissen, wird die Arbeit samtlicher auf einen
Kérper wirkender Krifte zur Anderung seiner kineti-
schen Energie verwendet.

Ist die Drehung eines Korpers langsamer oder schneller
geworden, so heifit dies, daf} sich seine kinetische Energie
gedndert hat. Das kann aber nur dann geschehen, wenn
das Gesamtmoment aller Kridfte nicht gleich Null ist.

Wenn aber das Gesamtmoment gleich Null wire?
Die Antwort ist klar: Es erfolgt keine Anderung der
kinetischen Energie, und deshalb wird der Korper ent-
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weder — der Tragheit gehorchend — gleichférmig rotie-
ren oder sich in Ruhe befinden.

Fassen wir zusammen: Damit sich ein zur Drehung
befihigter Korper im Gleichgewicht befindet, miissen
alle an ihm angreifenden Kraftmomente ausgeglichen
sein. Bei gleichzeitiger Wirkung zweier Krifte muf fir
den Gleichgewichtsfall die Gleichung

M1+M2=0

erfiillt sein.

Solange wir uns nur fiir Probleme interessiert haben,
bei denen die Korper als Punkte aufgefalit werden konn-
ten, waren die Gleichgewichtsbedingungen einfacher:
Damit ein Korper in Ruhe war oder sich gleichférmig be-
wegte, mulite — so sagte es Newtons Gesetz — die re-
sultierende Kraft gleich Null sein; nach oben gerichtete
Krifte mufiten durch Krifte kompensiert werden, die
nach unten gerichtet waren; eine nach rechts wirkende
Kraft bedurfte des Ausgleichs durch eine Kraft von links.

Dieses Gesetz ist auch fiir unseren Fall giiltig. Be-
findet sich das Schwungrad in Ruhe, dann werden die
darauf wirkenden Krafte durch die Reaktionskraft der
Achse ausgeglichen, auf der das Schwungrad sitzt.

Doch diese notwendigen Bedingungen allein reichen
nicht mehr aus. Neben dem Ausgleich der Krifte ist auch
ein Ausgleich der Kraftmomente erforderlich. Der Aus-
gleich aller Kraftmomente ist die zweite notwendige
Bedingung fiir den Ruhezustand oder die gleichférmige
Rotation eines Festkorpers.

Alle Kraftmomente — auch wenn sie zahlreich sind —
lassen sich in unserem Fall ohne Schwierigkeiten in zwei
Gruppen gliedern: Die einen sind bestrebt, den Korper
rechtsherum zu drehen, die anderen linksherum. Genau
diese beiden Gruppen von Kraftmomenten lassen sich
gegenseitiz kompensieren.
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Der Hebel

Ist der Mensch in der Lage, 100 Tonnen im Gleichgewicht
zu halten oder mit der Hand Eisen zu zerquetschen, kann
schlieBlich ein Kind einem Kraftprotz Widerstand lei-
sten? Ja, das alles ist moglich.

Angenommen, ein starker Mann versucht, unser
Schwungrad nach links zu drehen, fat die Speiche dabei
aber in unmittelbarer Ndhe der Achse an. Das Kraft-
moment wird in diesem Fall nicht sehr groB ausfallen.
Die Kraft ist grof, aber der Kraftarm klein. Zieht ein
Kind nun das Rad in der entgegengesetzten Richtung
und halt die Speiche unmittelbar am Radkranz umklam-
mert, dann kann das Kraftmoment sehr wohl grofier
sein: Die Kraft ist klein, dafiir aber der Kraftarm gro8.
Die Gleichgewichtsbedingung ist:

Ml = M2 OdeI' Fldl = dez.

Durch Anwendung des Momentensatzes kénnen jeder-
mann Bérenkrifte verliehen werden.

Das wohl bekannteste Beispiel ist der Hebel. Ange-
nommen, Sie wollen einen groBen Felsbrocken mit Hilfe
einer Brechstange von der Stelle bewegen. Das steht
durchaus in Ihren Kriften, obwohl die Masse des Steins
mehrere Tonnen betragt. Die Brechstange liegt auf einer
Unterlage auf und bildet damit den Festkorper unseres
Problems. Der Auflagepunkt bildet den Drehpunkt. Am
Kérper greifen zwei Kraftmomente an: Das eine riihrt
von Gewichtskraft des Steins her und wirkt hemmend,
das andere wirkt von unserer Hand und iiberwindet das
Hemmnis. Benutzt man den Index 7 fiir die Muskel-
kraft und den Index 2 fiir die Gewichtskraft des Steins,
so kann man die Bedingung fiir das Anheben des Steins
ganz kurz ausdriicken: M, muf} gréfer als M, sein. Im
Gleichgewicht halten 148t sich der Stein bei Erfiillung
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folgender Bedingung:
Ml = ]‘/[2, d. h. F](ll == F2d2-

Entspricht der kurze Hebelarm — von der Auflage
bis zum Stein — nur einem Fiinfzehntel des langen Ar-
mes — von der Auflage bis zur Hand —, dann kann ein
Stein von 1 t Masse von einem Menschen, der mit
seiner ganzen Masse gegen das lange Ende des Hebels
driickt, im angehobenen Zustand gehalten werden.

Die Brechstange mit Auflage ist ein sehr héaufig
anzutreffendes und auch das einfachste Beispiel des
Hebels. Mit Hilfe einer Brechstange erreicht man ge-
wohnlich den zehn- bis zwanzigfachen Kraftgewinn. Die
Linge der Brechstange betridgt etwa 1,5 m, und die Auf-
lage mehr als auf eine Entfernung von 10 cm an das an-
dere Ende der Brechstange heranzuschieben ist meist
nicht moéglich. Darum wird der eine Hebelarm gewohn-
lich 15- bis 20mal so groB sein wie der andere, und ebenso
grof} fallt somit auch der Kraftgewinn aus.

Ein LKW von mehreren Tonnen kann leicht mit Hilfe
des Wagenhebers angehoben werden. Der Wagenheber
ist ein Hebel des gleichen Typs wie die Brechstange auf
ihrer Auflage. Die Kraftangriffspunkte (also die mensch-
liche Hand und das Kraftfahrzeug) sind auf der jeweils
entgegengesetzten Seite der Auflage des Hebels am Wa-
genheber angeordnet. Hier betrdgt der Kraftgewinn un-
gefdhr das 40- bis 50fache, so daf} auch sehr dicke Brocken
leicht angehoben werden konnen.

Scheren, NuBknacker, Zangen aller Art, Seitenschnei-
der und viele andere Werkzeuge sind samt und sonders
Hebel. In Bild 5.3. werden Sie leicht den Drehpunkt des
Festkorpers (den Auflagepunkt) sowie die Angriffspunkte
der beiden Krifte, der wirkenden und der Widerstand
leistenden Kraft, finden.

Wenn man Blech mit einer Schere schneidet, 6ffnet
man diese moglichst weit. Was wird damit erreicht? Es
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Bild 5.4.

gelingt so, das Metall ndher an den Drehpunkt heranzu-
schieben. Damit wird der Hebelarm des zu iiberwinden-
den Kraftmoments kleiner und der Kraftgewinn dem-
zufolge grofler. Beim Zusammendriicken der Scheren-
oder Zangengriffe wendet ein Erwachsener gewdohnlich
eine Kraft von 400 bis 500 N auf. Dabei kann der eine
Arm etwa 20mal so lang sein wie der andere. Also kénnen
wir uns mit einer Kraft von 10 000 N in das Metall
»hineinfressen“. Und dies mit Hilfe einfachster Werkzeuge.
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Eine Abart des Hebels ist die Winde. Mit einer Winde
(Bild 5.4.) wurden friither vielerorts die Wassereimer aus
den Brunnen heraufgezogen.

Der lingere Weg

Die Werkzeuge machen den Menschen stark. Doch folgt
daraus keineswegs, man koénne unter Zuhilfenahme von
Werkzeugen wenig Arbeit aufwenden, um viel Arbeit zu
erhalten. Der Energieerhaltungssatz fordert unerbittlich,
daB es einen Gewinn, d. h. die Schaffung von Arbeit aus
dem ,Nichts“, nicht geben kann.

Die erhaltene Arbeit kann nicht grofer als die aufgewen-
dete sein. Im Gegenteil: Unvermeidliche Energieverluste
durch Reibung fithren dazu, daf§ die mit Hilfe von Werk-
zeugen erzielte Arbeit stets kleiner ist als die dabei auf-
gewendete. Nur im Idealfall sind beide Arbeiten dem Be-
trag nach gleich.

Diese Weisheit ist offenkundig: Denn der Momen-
tensatz kann aus der Bedingung abgeleitet werden, dafl
die Arbeit der wirkenden und der iiberwindenden Kraft
gleich sei. Haben die Kraftangriffspunkte die Wege s,
und s, zuriickgelegt, dann nimmt die Bedingung fiir
die Gleichheit beider Arbeiten folgende Form an:

FL1'31 = FL2‘32~

Uberwinden wir mit Hilfe eines hebelartigen Werk-
zeugs eine Kraft F, auf dem Wege s,, so konnen wir dies
auch mit der Kraft /, tun, die sehr viel kleiner als F,
ist. Doch die Lagednderung der Hand F; muf} so vielfach
groBer als F, sein, wie die Muskelkraft F; kleiner als F,
ist.

Das Hebelgesetz wurde von Archimedes, einem der
bedeutendsten Gelehrten des Altertums, entdeckt. Hin-
gerissen von der Kraft der Beweise, schrieb dieser her-
vorragende Wissenschaftler des Altertums an den Konig
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von Syrakus Hieron: ,Gib mir einen Punkt auBerhalb
der Erde, und ich setze den Erdball in Bewegung.“

Ein sehr langer Hebel, dessen Auflage sich nahe am
Erdball befinde, gidbe allem Anschein nach die Moglich-
keit zur Losung einer derartigen Aufgabe.

Wir wollen nicht mit Archimedes dariiber klagen,
dafl uns kein ,fester Punkt“ zur Verfiigung steht, der,
wie Archimedes meinte, ihm einzig und allein fehlte, um
die Erde von der Stelle zu riicken.

Lassen wir einmal unserer Phantasie freien Lauf:
Wir nehmen einen sehr festen Iebel, legen ihn auf eine
Auflage und ,héngen” an das kurze Ende eine , kleine Ku-
gel“ mit einem Gewicht von 6.10% N. Diese bescheidene
Zahl gibt an, wieviel der ,zu einer kleinen Kugel zusam-
mengeprefite“ Erdball wiegt. Nun lassen wir am langen
Ende des Hebels die Kraft unserer Muskel angreifen.

Wenn man annimmt, Archimedes habe mit seiner
Hand eine Kraft von 600 N aufbringen kénnen, dann
miiite Archimedes’ Hand, um unsere ,,Erdnufl“ um einen
6-1025

600
= 102 fachen Weg zuriicklegen. 10?® cm sind 10'® km,
d. h. das Dreimilliardenfache des Erdbahndurchmessers!

Dieses anekdotische Beispiel macht den Mafistab
des ,ldngeren Weges* bei der Arbeit mit dem Hebel sehr
deutlich.

Jedes der oben betrachteten Beispiele 148t sich auch
als Veranschaulichung nicht nur des Kraftgewinns, son-
dern auch der Wegverldngerung verwenden. Die Hand
des Autofahrers, der den Wagenheber betétigt, legt einen
Weg zuriick, der genau so vielfach grofer ist als die
Strecke, um die das Kraftfahrzeug angehoben wird, wie
die Muskelkraft geringer als die Gewichtskraft des Fahr-
zeuges ist. Wenn wir die Scherengriffe zusammendriicken,
um ein Blech zu zerschneiden, so verrichten wir Arbeit
auf einem Weg, der um den gleichen Faktor ldnger als

12%

Zentimeter von der Stelle zu riicken, den



Archimedes [efwa 287—212 v. u. Z.) der bedeutendste Mathe-
matiker, Physiker und Ingenieur des Altertums. Archimedes
berechnete das Volumen und die Oberfliche der Kugel und ihrer
Teile, des Zylinders sowie der Korper, die durch Rotation einer
Ellipse, einer Hyperbel und einer Parabel entstehen. Als erster
berechnete er mit erheblicher Genauigkeit das Verhiltnis von
Kreisumfang zu Durchmesser und wies nach, daf es in den Gren-

zen 3%) << 3% eingeschlossen ist. In der Mechanik stellte
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die Einschnittlinge ist, wie der Widerstand des Blechs
die Muskelkraft iibertrifft. Der mit einer Brechstange
angehobene Stein erreicht im Verhdltnis zur Abwirts-
bewegung der Hand eine um denselben Faktor geringere
Hohe, wie die Muskelkraft kleiner als die Gewichtskraft
des Steins ist. Diese Regel 146t das Funktionsprinzip
der Schraube verstandlich werden. Stellen wir uns vor,
eine Schraube mit der Gewindesteigung 1 mm wird mit
Hilfe eines Schraubenschliissels von 30 cm Léidnge ange-
zogen. Wihrend sich die Schraube bei einer Umdrehung
in Richtung ihrer Achse um 1 mm weiterbewegt, legt
unsere Hand zur gleichen Zeit 2 m zuriick. So gewinnen
wir das Zweitausendfache an Kraft und kénnen Einzel-
teile zuverldssig miteinander verbinden oder grofe La-
sten mit geringer Kraftanstrengung verschisben,

Andere einfachste Maschinen

Der lingere Weg als Preis fiir den Kraftgewinn tritt
nicht nur bei Hebelwerkzeugen, sondern auch bei ande-
ren beliebigen Werkzeugen und Mechanismen in Erschei-
nung, die von Menschen benutzt werden.

Zum Heben von Lasten verwendet man héufig Fla-
schenziige. So bezeichnet man Systeme aus mehreren
losen Rollen, die mit einer oder einigen feststehenden
Rollen verbunden sind. In Bild 5.5. hdngt die Last an
sechs Seilen. Es leuchtet ein, daBl sich die Gewichtskraft
verteilt und die Seilspannung nur ein Sechstel der Gesamt-
gewichtskraft betrdgt. Zum Heben einer Last mit der

er die Hebelgesetze auf, das Gesetz des hydrostatischen Auftriebs
(wArchimedisches Prinzip*) und die Gesetze fiir die Addition
paralleler Krifte. Archimedes erfand die sogenannte Archimedische
Wasserschraube (die auch heutzutage zur Foérderung schiittfihiger
Viskosegiiter verwendet wird), Systeme von Hebeln und Flaschen-
ziigen zum Heben grofer Lasten sowie Wurfmaschinen, die wih-
rend der Belagerung seiner Heimatstadt Syrakus durch die Rémer
mit groBem Erfolg eingesetzt wurden.
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Bild 5.5.

Masse 1 t wird eine Kraft von 106(;)00 = 1670 N benotigt.
Doch beim Heben der Last um 1 m miissen 6 m Seil ein-
geholt werden. Zum Heben der Last um 1 m werden
10 000 N-m benétigt. Diese Arbeit miissen wir ,in be-

liebiger Form“ aufbringen: Eine Kraft von 10200 N

mufB auf einem Weg von 6 m wirksam werden, die Kraft
10 000 N auf einem Weg von 100 m und die Kraft von
10 N schlieBlich auf einem Weg von 1 km.

Die weiter obenerwidhnte schiefe Ebene stellt gleich-
falls eine Vorrichtung dar, bei der man durch Uberwin-
dung eines lingeren Weges Kraft gewinnen kann.

Ein Sonderfall der Kraftvervielfachung ist der
Schlag. Ein Schlag mit einem Hammer bzw. einer Axt
oder der Stol mit einem Rammbock, ja selbst der blofe
Faustschlag vermag eine ungeheure Kraft zu erzeugen.
Das Geheimnis des kraftigen Schlages ist ganz einfach.
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Wenn wir einen Nagel mit einem Hammer in eine feste
Wand schlagen wollen, miissen wir nur richtig ausholen.
Die grofie Schwungweite, d. h. der grofle Weg, in dessen
Verlauf die Kraft wirksam wird, erzeugt im Hammer eine
betrachtliche kinetische Energie. Abgegeben wird diese
Energie aber iiber einen kurzen Weg. Haben wir einen
halben Meter Schwung geholt und den Nagel dabei um
einen halben Zentimeter in die Wand getrieben, so hat
sich die Kraft verhundertfacht. War die Wand aber hér-
ter und ist der Nagel, obwohl wir genausoweit ausgeholt
haben, nur einen halben Millimeter tief in die Wand
eingedrungen, dann war der Schlag noch 10mal stirker
als im erstgenannten Fall. In eine harte Wand kann der
Nagel jeweils nicht so tief eindringen, und die gleiche
Arbeit wird auf einem kiirzeren Weg verbraucht. Der
Hammer wirkt somit in gewissem Sinn wie ein Automat.
Er schldgt dort stidrker zu, wo der Widerstand gréfer ist.

»Beschleunigt man einen Hammer mit der Masse 1 kg,
dann trifft er den Nagel mit einer Kraft von 1000 N.
Wenn wir Holz mit einer schweren Axt spalten, dann
zerbrechen wir es mit einer Kraft von einigen 10 000 N.
Schwere Schmiedehdmmer haben nur eine geringe Fall-
hohe in der GréBenordnung von 1 m. Wird ein Schmiede-
stiick dabei um 1 bis 2 mm gestaucht, dann entwickelt
ein Hammer mit 1000 kg Masse dabei die ungeheure Kraft
von 107 N.

Wie man parallele Krifte addiert,
die an einem Festkérper angreifen

Solange wir auf den vorangegangenen Seiten Probleme
der Mechanik gelost haben, worin der Kérper gedanklich
durch einen Punkt ersetzt wurde, war die Frage nach der
Addition der Krifte einfach zu beantworten. Das Krif-
teparallelogramm ldste unser Problem, und wenn die
Krifte einmal parallel verliefen, dann haben wir sie
als Zahlen addiert,
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Bild 5.6,

Nun liegen die Dinge komplizierter. Die Wirkung einer

Kraft auf einen Gegenstand wird ja nun nicht nur durch
jhren Betrag und ihre Richtung gekennzeichnet, sondern
auch durch thren Angriffspunkt oder durch die Wirkungs»
linie der Kraft, was ein und dasselbe ist.
*  Kriifte addieren bedeéutet, mehrere Krifte durch eine
einzige Kraft zu ersetzen. Das ist lingst nicht immer mog-
lich. Der Ersatz paralleler Kriifte durch eine resultierende
Kraft ist eine Aufgabe, die sich stets (mit Ausnahme eines
Sonderfalls, von dem am Ende dieses Abschnitts die
Rede sein wird) bewiltigen ld8t. Betrachten wir die
Addition paralleler Krifte. Natiirlich ist die Summe der
Krifte 3 N und 5 N gleich 8 N, wenn beide Krifte in die
gleiche Richtung zeigen. Das Problem besteht darin, den
Angriffspunkt (die Wirkungslinie) der resultierenden
Kraft zu ermitteln.

In Bild 5.6. sind zwei auf einen Korper wirkende
Krifte dargestellt. Die Gesamtkraft F ersetzt die Krifte
F, und F,, doch heiBit dies nicht nur, da8 F = F, + F,
ist; die Wirkung der Kraft F wird der Wirkung von F,
und F; nur dann gleichwertig sein, wenn auch das Mo-
ment der Kraft F gleich der Summe der Momente von F,
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und F, ist. Wir suchen die Wirkungslinie der Gesamt-
kraft . Natiirlich verlduft sie parallel zu den Kréaften F,
und F,; aber welche Entfernung hat diese Linie von den
Kréften F; und F,?

Im Bild ist als Angriffspunkt der Kraft F ein Punkt
auf der Strecke dargestellt, die die Angriffspunkte der
Krifte F; und F, miteinander verbindet. In bezug auf
den gewdhlten Punkt ist das Moment von F natiirlich
gleich Null. Dann allerdings muf die Summe der Momente
von F, und F, in bezug auf diesen Punkt ebenfalls gleich
Null sein, d. h., die Momente der Krifte F;, und F, haben
bei unterschiedlichem Vorzeichen den gleichen Betrag,

Bezeichnet man die Arme der Krifte 7, und F, mit 4,
und d,, dann folgt

Fd, oder — = :i
i ﬂAus der Ahnlwhke1t der schraffierten Dreiecke folgt,
a
de b
a4

d. h., der Angriffspunkt der Gesamtkraft teilt die Ver-
bindungsstrecke zwischen den zu addierenden Kriften
in die Teile I; und 1,, die den Kréften umgekehrt propor-
tional sind.

Wir wollen den Abstand zwischen den Angriffspunkten
der Kréfte F; und ¥, mit dem Buchstaben [ bezeichnen.
Offenbar ist I =1, + I,.

Nun 16sen wir folgendes System aus zwei Gleichungen
mit zwei Unbekannten;

Flll — F2l2 = 0
ll ‘I" lg = [
Wir erhalten:
_Fyl Ry
h=F+F W h=71F-
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Bild 5.7.

Mit Hilfe dieser Formeln konnen wir den Angrifts-
punkt der resultierenden Kraft nicht nur dann finden,
wenn die Krifte in die gleiche Richtung zeigen, sondern
auch dann, wenn sie entgegengesetzt (oder, wie man auch
sagt, antiparallel) gerichtet sind. Bei entgegengesetzter
Richtung haben die Kridfte auch entgegengesetzte Vor-
zeichen, und die resultierende Kraft ist gleich der Kraft-
differenz F; — F,, nicht jedoch der Kraftsumme. Ist die
kleinere von beiden Kriften F, negativ, so geht aus un-
seren Formeln hervor, daB [, negativ wird. Demnach liegt
der Angriffspunkt der Kraft F, nicht (wie bisher) links
vom Angriffspunkt der resultierenden Kraft, sondern
rechts davon (Bild 5.7.), doch gilt nach wie vor

F, L

Fy L

Ein interessantes Resultat erhalten wir bei gleichen
antiparallelen Kréften. Dann ist F, + F, = 0. Die
Formeln zeigen, daf I, und [, hierbei unendlich groB wer-
den. Was ist der physikalische Sinn dieser Feststellung?
Da es keinen Sinn hat, die resultierende Kraft ins Unend-
liche zu verschieben, lassen sich gleiche antiparallele
Krifte demnach nicht durch eine einzige Kraft ersetzen.
Eine Kraftekombination dieser Art heifit Kriftepaar.

Die Wirkung eines Kriftepaars 1dft sich nicht auf
die Wirkung einer Kraft zuriickfiihren. Zwei beliebige
parallele oder antiparallele Kridfte konnen stets durch
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Bild 5.8.

eine Kraft ersetzt werden, nur ein Kriftepaar nicht.
Natiirlich wire falsch zu sagen, daB die Krifte in einem
Kriftepaar sich gegenseitig ,vernichten“, Vielmehr hat
das Kréftepaar eine wesentliche Wirkung: Es versetzt
einen Korper in Drehung, Die Besonderheit der Wirkung
eines Kriftepaars besteht darin, daB es keine fortschrei-
tende Bewegung liefert.

Manchmal kommt es vor, daf§ nicht parallele Krifte
zu addieren sind, sondern eine gegebene Kraft in zwei
parallele Kréfte zu zerlegen ist.

In Bild 5.8. tragen zwei Menschen an einem Stock ge-
meinsam einen schweren Korb. Gewichtskraft des Korbes
verteilt sich auf beide. Driickt die Last auf die Mitte
des Stocks, dann empfinden beide Trdger die gleiche
Gewichtskraft. Sind die Entfernungen zwischen dem
Angriffspunkt der Last und den Hénden, die die Last

tragen, jedoch d;, und d,, dann wird die Kraft F in die
Krifte F, und F, zerlegt, und zwar im Verhaltnis

FL_dy

F,  dy

Wer stéirker ist, mufi den Stock also moglichst nahe an
der Last anfassen.
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Der Schwerpunkt

Alle Partikeln eines Korpers haben ihre Gewichtskraft.
Darum steht der Koérper unter dem EinfluB unzdhliger
Schwerkrifte. Und alle diese Krifte verlaufen parallel.
Wenn dem so ist, konnen sie nach den Vorschriften addiert
werden, die wir eben behandelten, und durch eine einzige
Kraft ersetzt werden. Der Angriffspunkt dieser Gesamt-
kraft heift Schwerpunkt. In diesem Punkt ist die
Gewichtskraft des Korpers gewissermaflen konzentriert.

Nun wollen wir einen Koérper an einem seiner Punkte
aufh#ingen. Welche Lage wird er dabei einnehmen? Da
wir den Korper gedanklich durch eine .im Schwerpunkt
konzentrierte Last ersetzen konnen, ist klar, daf diese
Last im Gleichgewicht auf einer Senkrechten liegen wird,
die durch den Auflagepunkt verlduft. Mit anderen Wor-~
ten: Im Gleichgewicht liegt der Schwerpunkt auf einer
Senkrechten, die durch den Auflagepunkt verlduft, und
befindet sich dabei in der tiefsten Lage.

Man kann den Schwerpunkt auch oberhalb des Auf-
lagepunkts auf der Senkrechten anordnen, die durch die
Achse geht. Dies gelingt nur mit grofler Miithe und auch
nur deshalb, weil es Reibungen gibt. Diese Gleichgewichts-
lage ist instabil.

Wir haben bereits iiber die Voraussetzung fiir das
stabile Gleichgewicht gesprochen: Die potentielle Ener-
gie muB minimal sein. Genau das ist auch der Fall, wenn
der Schwerpunkt unterhalb des Auflagepunkts liegt.
Jede Auslenkung fiihrt dazu, daf der Schwerpunkt eine
héhere Lage. einnimmt und demnach -die potentielle
Energie vergriBiert. Befindet sich der Schwerpunkt dage-
gen oberhalb des Auflagepunkts, dann fiihrt ‘der leiseste
Lufthauch, der den Koérper aus dieser Lage bringt, zur
Verringerung der potentiellen Energie. Darum ist diese
Lage instabil.
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Nun schneiden wir aus Pappe eine Figur aus. Um
ihren Schwerpunkt zu ermitteln, hingen wir sie zweimal
auf, indem wir zuerst an einer und spater an einer anderen
Stelle einen Faden befestigen. Danach stecken wir die
Figur auf eine Achse, die durch ihren Schwerpunkt ver-
lauft. Nun drehen wir die Figur so, da} sie die eine, eine
andere und schliefllich eine dritte Lage einnimmt. Dabei
zeigt sich die ,voéllige Gleichgiiltigkeit® des Korpers in
bezug auf unsere Handlungen. In jeder beliebigen Lage
ist ein besonderer Gleichgewichtsfall gegeben. Die Ursa-
che dafiir ist klar: Bei jeder Lage der Figur befindet sich
der materielle Punkt, durch den sie ersetzt werden kann,
an ein und derselben Stelle.

In einigen Fillen 188t sich der Schwerpunkt auch ohne
Versuche und Berechnungen ermitteln. So leuchtet bei-
spielsweise ein, daB sich die Schwerpunkte einer Kugel,
eines Kreises, eines Quadrats oder eines Rechtecks jeweils
im Mittelpunkt befinden, da es sich um symmetrische
Gebilde handelt. Zerlegt man einen symmetrischen
Korper gedanklich in Teile, so entspricht jedem dieser
Teile ein anderes symmetrisch zu diesem angeordnetes
Teil jenseits des Mittelpunkts. Fiir jedes Paar solcher
Teile ist der Mittelpunkt des Korpers zugleich der
Schwerpunkt.

Beim Dreieck liegt der Schwerpunkt im Schnittpunkt
der Seitenhalbierenden. Wenn wir ein Dreieck in ganz
schmale und zu einer der Dreiecksseiten parallel verlau-
fende Streifen teilen, dann halbiert die Seitenhalbierende
jeden dieser Streifen. Der Schwerpunkt jedes Streifens
wiederum liegt naturgemaB in der Mitte jedes Streifens,
d. h. auf der Seitenhalbierenden. Die Schwerpunkte aller
Streifen liegen also auf der Seitenhalbierenden, und wenn
wir ihre Schwerkrifte addieren, gelangen wir zu dem
SchluB}, daB sich der Schwerpunkt eines Dreiecks irgendwo
auf der Seitenhalbierenden befinden muf. Da diese Uber-
legung jedoch fiir jede Seitenhalbierende zutrifft, mufl
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sich der Schwerpunkt in ihrem Schnittpunkt befinden.

Vielleicht sind Sie nicht ganz sicher, daf sich die
drei Seitenhalbierenden eines Dreiecks in einem Punkt
schneiden. Den Beweis dafiir liefert die Geometrie;
unsere Uberlegung indessen beweist diesen interessanten
Satz ebenfalls. Ein K6rper kann ja nicht mehrere Schwer-
punkte besitzen; wenn es aber nur einen Schwerpunkt
gibt und dieser auf der Seitenhalbierenden liegt —
gleichgiiltig, von welchem Dreieckswinkel aus wir die
Seitenhalbierende gezogen haben —, so miissen sich alle
drei Seitenhalbierenden in einem Punkt schneiden. So
148t sich eine physikalische Fragestellung zum Beweis
eines geometrischen Satzes heranziehen.

Schwieriger ist es, den Schwerpunkt eines homogenen
Kegels zu ermitteln. Aus Symmetriegriinden ergibt sich
nur, daB der Schwerpunkt auf der Achslinie liegt. Die
Berechnung zeigt, daf} seine Entfernung von der Grund-
fliche des Kegels einem Viertel der Hohe entspricht.
Der Schwerpunkt muf sich nicht unkedingt im Inneren
eines Korpers befinden. Bei einem Ring etwa liegt der
Schwerpunkt im Mittelpunkt des Rings, d. h. nicht im
Ring selbst.

L&Bt sich eine Stecknadel senkrecht und dabei stabil
auf eine Glasplatte stellen?

In Bild 5.9. sehen wir, wie man verfahren muBl. Zwei
aus Draht gefertigte Tragarme mit vier kleinen Wige-
stiicken daran miissen starr mit der Stecknadel verbunden
werden. Da die Wigestiicke unterhalb der -Auflage-
fliche befestigt sind und die Masse der Stecknadel klein
ist, liegt der Schwerpunkt unter dem Auflagepunkt. Die
Lage ist stabil.

Bisher war von Korpern die Rede, die einen Auf-
lagepunkt besitzen. Was aber ist, wenn der Koérper auf
einer Flache aufliegt?

In diesem Fall besagt die Lage des Schwerpunkts
oberhalb der Auflage natiirlich keineswegs, daf} die Gleich-
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Bild 5.10.

gewichtslage instabil ist. Wie sollten sonst Glaser auf
einem Tisch stehen? Damit Standlestigkeit gegeben ist,
mufl die aus dem Schwerpunkt gezogene Wirkungslinie
der Schwerkraft innerhallb der Auflagefliche liegen.
Verlauft die Wirkungslinie dagegen auflerhalb der Auf-
lageflache, kippt der Korper um.

Das MaB der Standfestigkeit kann sehr unterschied-
lich sein, je nachdem wie hoch der Schwerpunkt iiber der
Auflage angeordnet ist. Ein gefiilltes Teeglas wird nur
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Bild 5.11.

ein ausgesprochener Tolpatsch umwerfen, dagegen kann
eine Blumenvase mit kleiner Standfliche schon bei un-
vorsichtiger Beriihrung umkippen. Was ist die Ursache?
Sehen Sie sich Bild 5.10. an. An den Schwerpunkten bei-
der Vasen greifen gleiche waagerechte Krafte an. Die
rechts dargestellte Vase mufl umkippen, weil die Gesamt-
kraft nicht nur durch die Standfliche der Vase verlauft,
sondern seitlich davon.

Wir haben gesagt, dafl die an einem Korper angreifen-
de Kraft durch seine Stand- oder Auflagefldche verlaufen
muf}, wenn er standfest sein soll. Allerdings entspricht die
zum Gleichgewicht erforderliche Standfldche nicht immer
der tatsdchlichen Standfliche. In Bild 5.11. ist ein Kor-
per dargestellt, dessen Standfliche sichelférmig ist. Die
Standfestigkeit dieses Korpers wird sich nicht &dndern,
wenn man die Sichel zu einem durchgehenden Halbkreis
ergdnzt. Somit kann die Standfldche, die die Gleichge-
wichtsbedingung bestimmt, grofer als die tatséchliche
Standfldache sein.

Um die Standflidche fiir den in Bild 5.12. dargestell-
ten Dreiful zu ermitteln, muBl man seine Enden durch
Geradenabschnitte miteinander verbinden.

Warum ist es so schwierig, auf einem Seil zu laufen?
Weil die Standfldche duBerst klein ist. Der Applaus, den
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Bild 5.12.

ein kunstfertiger Seiltdnzer erhalt, ist wohlverdient.
Manchmal fallen die Zuschauer aber auch auf listige
Tricks herein, die die Aufgabe des Artisten erleichtern,
dabei aber wie Spitzenleistungen aussehen. Da nimmt ein
Artist beispielsweise ein stark gebogenes Tragjoch mit
zwei Wassereimern, die etwa in Hohe des Seils hidngen.
Wiahrend das Orchester aussetzt, lauft der Artist mit
todernstem Gesicht iiber das Seil. Der unerfahrene Zu-
schauer glaubt, eine besonders schwierige Darbietung
gesehen zu haben. In Wirklichkeit war sie gar nicht so
schwer, weil der Schwerpunkt tiefer liegt.

Der ,,Tragheitspunkt”

Wo befindet sich der Schwerpunkt einer Gruppe von
Korpern? Das ist eine durchaus gerechtfertigte Frage,
denn wenn sich auf einem FloB viele Leute befinden, dann
wird seine Stabilitdt davon abhingen, wo sich der ge-
meinsame Schwerpunkt aller Personen (und der des
FloBes selbst) befindet.

Der Sinn des Begriffs bleibt unverdndert. Der Schwer-
punkt ist der Angriffspunkt der Schwerkraftsumme sdmt-
licher Korper der betrachteten Gruppe.

13—-01178
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Fiir zwei Korper ist uns das Ergebnis der Berechnung
bekannt. Bezeichnen wir mit z die Entfernung zweier
Korper mit der Gewichtskraft F, und F,, so hat der
Schwerpunkt den Abstand z; vom ersten bzw. z, vom
zweiten Korper, wobei

. g F1_w

T+ Ty=1x undT.z——:’:—1
gilt.

Da die Gewichtskraft durch das Produkt mg dargestellt
werden kann, geniligt der Schwerpunkt eines Korper-
paars der Bedingung

myx; = MyZy,

d. h., er liegt an dem Punkt, der den Abstand beider
Massen in zwei Strecken teilt, deren Lidnge den Massen
umgekehrt proportional ist.

Erinnern wir uns nun an das Schieflen mit einem
Geschiitz auf Selbstfahrlafette. Die Impulse von Ge-
schiitz und Geschof} sind gleich im Betrag, aler verschie-
den in der Richtung. Hier gelten die Gleichungen:

_ Vg __ My

mv, = myU, oder o g
wobei das Geschwindigkeitsverhédltnis diesen Wert wih-
rend der gesamten Wechselwirkungszeit aufrechterhélt.
Im Verlauf der Bewegung, die durch den Riicksto8 ent-
stand, bewegen sich Geschiitz und Geschof§ relativ zu
ihrer Ausgangslage um die Strecken z; und z, in ver-
schiedene Richtungen fort. Die Entfernungen z; und z,,
d. h. die von beiden Kérpern zuriickgelegten Wege, wach-
sen, doch bei konstantem Geschwindigkeitsverhdltnis ver-
bleiben auch z; und z, die ganze Zeit liber im gleichen
Verhiéltnis zueinander:

22 =t gder L ==2

Iy mq my mq "
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Hierin sind z; und r, die Entfernungen von Geschiitz und
Geschof8 beziiglich ihrer Ausgangslage. Vergleichen wir
diese Formel mit der Formel zur Bestimmung der Schwer-
punktslage, so erkennen wir ihre vollstdndige Identitét.
Daraus folgt unmittelbar, da der Schwerpunkt von
Geschiitz und Geschof8 wihrend der ganzen Zeit nach
erfolgtem Abschufl in der urspriinglichen Lage verbleibt.

So sind wir zu einem sehr interessanten Schlufl gelangt.
Der Schwerpunkt von Geschiitz und Geschol verharrt
nach dem AbschuB in Ruhe.

Dieses Ergebnis trifft stets zu: Befand sich der Schwer-
punkt zweier Korper urspriinglich in Ruhe, so vermag
ihre Wechselwirkung, welcher Art sie auch immer wére,
die Schwerpunktslage nicht zu verdndern. Genau darum
kann man sich weder selbst an den Haaren aus dem Sumpf
ziehen oder den Mond nach Art des franzésischen Schrift-
stellers Cyrano de Bergerac erreichen, der zu diesem
Zweck empfahl, ein Stiick Eisen in die Hand zu nehmen
und dann einen Magneten hochzuwerfen, der das Eisen
anziehen sollte.

Ein ruhender Schwerpunkt fiihrt, vom Standpunkt
eines anderen Inertialsystems aus betrachtet, eine gleich-
formige Bewegung aus. Also kann ein Schwerpunkt ent-
weder ruhen oder sich gleichférmig und geradlinig fort-
bewegen.

Was wir liber den Schwerpunkt zweier Korper gesagt
haben, trifft auch fiir ein System aus vielen Korpern zu.
Natiirlich fiir ein isoliertes System von Korpern; diese
Einschrinkung miissen wir immer machen, wenn der
Impulserhaltungssatz Anwendung findet.

Jedes System miteinander in Wechselwirkung stehen-
der Korper besitzt demnach einen Punkt, der entweder
ruht oder sich gleichformig fortbewegt, und dieser Punkt
ist sein Schwerpunkt.

Um die neue Eigenschaft dieses Punkts zu unter-
streichen, bezeichnet man ihn auch als ,Tragheitspunkt®.
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Denn etwa von einer Schwere des Sonnensystems (und
also auch von seinem Schwerpunkt) kann nur im iber-
tragenen Sinn gesprochen werden.

Welche Bewegung die Korper eines geschlossenen
Systems auch immer ausfilhren — ihr Schwerpunkt
(,Trégheitspunkt®) wird ruhen oder sich — in einem an-
deren Bezugssystem — der Tragheit folgend forthewegen.

Das Drehmoment

Wir wollen jetzt einen weiteren mechanischen Begriff
kennenlernen, der uns die Formulierung eines neuen, wich-
tigen Bewegungsgesetzes erlaubt.

Der Begriff heiffit Drehimpuls oder Impulsmoment.
Die letztgenannte Bezeichnung deutet bereits darauf hin,
daB hier von einer Grofle die Rede ist, die dem Kraft-
moment auf die eine oder andere Weise dhnlich sein
diirfte.

Ebenso wie das Kraftmoment macht auch der Drehim-
puls die Angabe eines Punkts erforderlich, relativ zu
dem er bestimmt wird. Um den Drehimpuls relativ zu
einem willkiirlichen, aber festen Bezugspunkt zu bestim-
men, miissen wir den Impulsvektor zeichnen und aus dem
Bezugspunkt ein Lot auf die Richtung des Vektors fillen.
Das Produkt aus dem Impuls mv und dem Arm d ergibt
den gesuchten Drehimpuls, den wir mit dem Buchstaben
L bezeichnen wollen:

L = muvd.

Bei ungehinderter Bewegung des Korpers dndert sich
seine Geschwindigkeit nicht; unverdndert bleibt auch
der Arm relativ zu einem willkiirlichen Bezugspunkt, da
die Bewegung auf einer Geraden verlduft. Also bleibt auch
der Drehimpuls bei dieser Bewegungsart konstant.

Ebenso wie fiir das Kraftmoment kann man auch fiir
den Drehimpuls eine andere Formel aufschreiben. Ver-
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Bild 5.13.

binden wir den Ort des Korpers durch einen Radius mit
unserem Bezugspunkt (Bild 5.13.). Wir zeichnen auch.
die Projektion der Geschwindigkeit auf die Richtung
senkrecht zum Radius. Aus den dhnlichen Dreiecken, die
in der Zeichnung entwickelt worden sind, folgt: Tv- = % .
L
Demnach ist vd = v, r, und die Formel fiir den Drehim-
puls kann auch in der folgenden Form aufgeschrieben
werden:

L =mv;r.

Wie wir eben gesagt haben, bleibt der Drehimpuls bei
ungehlnderter Bewegung konstant. Was ist aber, wenn
eine Kraft am Korper angreift? Aus der Rechnung folgt,
daf die Anderung des Drehimpulses je Sekunde gleich dem
Kraftmoment ist.

Das so erhaltene Gesetz kann ohne Schwierigkeiten
auch auf ein System von Kérpern ausgedehnt werden.
Addiert man die Anderungen der Drehimpulse aller
Korper im System je Zeiteinheit, so ist ihre Summe gleich
der Summe der Kraftmomente, die an den Korpern an-
greifen. Fiir ein System von Korpern gilt demnach der
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Satz: Die Anderung des Gesamtdrehimpulses je Zeitein-
heit ist gleich der Summe der Momente aller
Krifte.

Der Drehimpulserhaltungssatz

Bindet man zwei Steine mit einem Strick zusammen und
wirft den einen davon mit groBer Kraft weg, dann fliegt
der zweite Stein dem ersten am straff gespannten Strick
hinterher. Dabei wird der eine Stein den anderen iiber-
holen, und die Vorwértsbewegung wird von einer Drehbe-
wegung begleitet. Das Schwerefeld wollen wir aufler
acht lassen; der Wurf soll im interstellaren Raum erfolgt
sein.

Die auf die Steine wirkenden Krifte sind einander
gleich und ldngs des Stricks aufeinandergerichtet (es han-
delt sich ja um Kraft und Gegenkraft). Dann allerdings
miissen auch die Arme beider Krifte relativ zu einem
willkiirlichen Punkt gleich sein. Gleiche Arme und
gleiche, nur in ihrer Richtung entgegengesetzte Krifte
liefern gleiche Kraftmomente. Diese unterscheiden sich
allerdings in ihrem Vorzeichen.

Das Gesamtkraftmoment ist gleich Null. Hieraus
folgt, daB auch die Anderung des Drehimpulses gleich
Null ist, d. h., da der Drehimpuls eines derartigen Sy-
stems konstant bleibt.

Der Strick, der beide Steine miteinander verbindet,
war nur zur Veranschaulichung nétig. Der Drehimpulser-
haltungssatz gilt fiir jedes Paar miteinander in Wechsel-
wirkung stehender Korper, welcher Art diese Wechsel-
wirkung auch immer sei.

Der Satz ist aber nicht allein auf Koérperpaare be-
schrinkt. Untersucht man ein geschlossenes System von
Korpern, dann lassen sich die zwischen den Korpern
wirkenden Krifte stets in die gleiche Anzahl von Kriften
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und Gegenkriften zerlegen, deren Momente sich paar-
weise ,vernichten®.

Der Erhaltungssatz fiir den Gesamtdrehimpuls ist
universell und gilt fiir jedes beliebige geschlossene Sy-
stem von Koérpern.

Rotiert ein Korper um eine Achse, so ist der Drehim-
puls gleich

L = mur,

worin m die Masse des Korpers, v die Geschwindigkeit
und r den Abstand des Korpers von der Achse darstellt.
Bei Angabe der Geschwindigkeit durch die Anzahl von
Umdrehungen je Sekunde r erhalten wir:

v = 2nnr und L = 2nmnr?,

d. h., der Drehimpuls des Korpers ist dem Quadrat sei-
ner Entfernung von der Achse proportional.

Setzen Sie sich einmal auf einen Drehschemel, nehmen
Sie in jede Hand ein schweres Wigestiick, breiten Sie die
Arme aus und bitten Sie jemanden, Sie in langsame Dre-
hung zu versetzen. Pressen Sie nun die Arme mit einer ra-
schen Bewegung an die Brust: Thre Drehgeschwindigkeit
wird unerwartet zunehmen. Arme wieder ausstrecken, und
die Bewegung wird langsamer, Arme an die Brust, und
die Bewegung wird schneller. Bis der Drehschemel infolge
der Reibung zur Ruhe kommt, konnen Sie Ihre Drehge-
schwindigkeit mehrmals #dndern.

Worin liegt die Ursache?

Bei konstanter Drehzahl wiirde der Drehimpuis ab-
nehmen, wenn sich die Wigestiicke der Achse ndhern. Um
diese Verminderung ,auszugleichen“, vergréflert sich die
Drehgeschwindigkeit.

Akrobaten machen sich den Drehimpulserhaltungs-
satz mit Erfolg zunutze. Wie fiihrt ein Akrobat einen
»Salto”, also eine Umdrehung in der Luft, aus? Zunichst
einmal mufl er sich von einer federnden Unterlage oder
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von den Hinden des Partners abstoBen. Bei dem Sto8 ist
der Kérper vorwirts geneigt, und die Gewichtskraft gemein-
sam mit der Stofkraft erzeugen ein kurzzeitiges Kraft-
moment. Die StoBkraft bewirkt die Vorwirtshewegung,
und das Kraftmoment bedingt die Drehung. Freilich
verlduft diese Drehung langsam und iibt nicht den ge-
wiinschten Eindruck auf den Zuschauer aus. Nun zieht
der Akrobat die Knie an. Indem er den Koérper ndher an
die Drehachse heranbringt, erhéht der Akrobat seine
Drehgeschwindigkeit betrdchtlich und dreht sich rasch
um seine Achse. Das ist die Mechanik des ,,Saltos".

Auf dem gleichen Prinzip beruhen die Bewegungen
einer Ballerina bei der Pirouette. Den Anfangsdrehimpuls
erhdlt sie gewdhnlich von ihrem Partner. Der Korper
der Ténzerin ist in diesem Augenblick geneigt; nun
beginnt eine langsame Drehung, dann folgt eine rasche
elegante Bewegung, und die Ballerina richtet sich auf.
Nun liegen alle Korperpunkte nidher an der Drehachse,
und die Erhaltung des Drehimpulses bewirkt eine sprung-
hafte Steigerung der Geschwindigkeit.

Der Drehimpuls als Vektor

Bisher war nur vom Betrag des Drehimpulses die Rede.
Doch der Drehimpuls ist ein Vektor.

Betrachten wir die Drehung eines Punkts relativ zu
einem willkiirlichen ,Zentrum®. In Bild 5.14. sind zwei
nahe beieinandergelegene Punkte dargestellt. Die uns
interessierende Bewegung ist durch den Drehimpuls und
die Ebene gekennzeichnet, in der sie stattfindet. Die im
Bild schraffierte Bewegungsebene ist die vom Radius,
der das ,Zentrum“ mit dem bewegten Punkt verbindet,
iiberstrichene Fléche.

Die Angaben iiber die Richtung der Béwegungsebene
und den Drehimpuls lassen sich zusammenfassen. Dazu
dient der Drehimpulsvektor, dessen Richtung der Norma-



5. Dia Bewegung fester Korper 201

Bild 5.14.

len an der Bewegungsebene entspricht und der im Betrag
gleich dem Absolutwert des Drehimpulses ist. Doch
damit nicht genug: Wir miissen die Bewegungsrichtung
in der Ebene beriicksichtigen; der Kérper kann sich
ja sowohl im Uhrzeigersinn als auch im Gegenuhrzeiger-
sinn um das Zentrum bewegen.

Ublicherweise zeichnet man den Drehimpulsvektor so,
dafl man den Umlauf des Punkts im Gegenuhrzeigersinn-
sieht, wenn die Blickrichtung dem Vektor entgegenge-
richtet ist. Das kann auch anders gesagt werden: Die’
Richtung des Impulsmomentvektors ist mit der Umlauf-
richtung so verkniipft wie die Richtung eines Korken-
ziehers (beim Hineindrehen in den Korken) mit der
Richtung der Hand, die ihn in Bewegung versetzt.

Kennen wir also den Drehimpulsvektor, dann kennen
wir auch den Betrag des Drehimpulses, die Lage der
Bewegungsebene im Raum und die Umlaufrichtung
relativ zum ,Zentrum®,

Erfolgt die Bewegung in ein und derselben Ebene,
jedoch unter Anderung des Arms und der Geschwmdlgkelt
dann behdlt der Drehimpulsvektor seine Richtung im
Raum, &dndert jedoch seine Linge. Bei willkiirlicher
Bewegung hingegen dndern sich sowohl Betrag als auch
Richtung des Impulsvektors.

Es konnte den Anschein haben, als diene die Vereini-
gung der Richtung der Bewegungsebene und des Drehim-
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pulsbetrags in einem Begriff nur zur Einsparung von
Worten. In Wirklichkeit jedoch kénnen wir den Drehim-
pulserhaltungssatz fiir ein System von Korpern, die
sich nicht in einer Ebene bewegen, nur dann formulieren,
wenn wir die Drehimpulse als Vektoren addieren.

Dies zeigt auch, daf§ die Auffassung vom Drehimpuls
als Vektor einen tiefen Sinn hat.

Der Drehimpuls wird stets relativ zu einem willkiir-
lichen, aber festen ,Zentrum* bestimmt. Natiirlich hdngt
sein Betrag ganz allgemein von der Auswahl des Bezugs-
punkts ab. Man kann allerdings zeigen, dafl der Drehim-
pulsvektor unabhingig von der Wahl des ,Zentrums" ist,
wenn das betrachtete System von Korpern als Ganzes
ruht (wenn sein Gesamtimpuls gleich Null ist). Diesen
Drehimpuls kann man als Eigendrehimpuls eines Systems
von Korpern bezeichnen.

Der Erhaltungssatz fiir den Drehimpulsvektor ist der
dritte und letzte Erhaltungssatz in der Mechanik. Es ist
allerdings nicht ganz exakt, wenn wir von drei Erhal-
tungssdtzen sprechen. Der Impuls und der Drehimpuls
sind ja vektorielle Groflen, und der Erhaltungssatz fiir
eine vektorielle GroBe bedeutet, daB nicht nur der Zah-
lenwert dieser Gréfle, sondern auch ihre Richtung unver-
dndert bleiben. Anders ausgedriickt: Die drei Kompo-
nenten des Vektors in den drei aufeinander senkrecht
stehenden Richtungen im Raum bleiben unveridndert.
Die Energie ist eine skalare Grofe, der Impuls ist vekto-
riell und der Drehimpuls ebenfalls. Es wiire daher genauer,
wenn man sagt, daB es in der Mechanik sieben Erhaltungs-
sdtze gibt.

Kreisel

Versuchen Sie einmal, einen Teller auf einen diinnen
Stab zu stellen und im Gleichgewicht zu halten. Es ist
unmoglich. Andererseits ist gerade dies eine beliebte
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Nummer chinesischer Jongleure. Sie bringen dies sogar
mit mehreren Stiben gleichzeitig fertig. Dabei versuchen
die Jongleure nicht einmal, ihre Stdbe senkrecht zu
halten. Es sieht wie ein Wunder aus, daBl die Teller,
nur leicht auf die Enden waagerecht geneigter Stébe
gestiitzt, nicht herunterfallen, sondern fast in der Luft
zu schweben scheinen.

Wenn Sie wieder mal einen Jongleur bei seiner Arbeit
beobachten koénnen, dann achten Sie bitte auf einen
wichtigen Umstand: Der Jongleur versetzt die Teller in
Drehbewegung, so daB sie rasch in ihrer Ebene rotieren.

Ob* der Artist nun mit Keulen, Ringen oder Hiiten
jongliert, stets 148t er sie dabei rotieren. Nur dann ndm-
lich kehren die Gegenstinde in der gleichen Lage in
seine Hénde zuriick, die sie anfangs hatten.

Warum ist die Rotation so bestdndig? Das hingt mit
dem Drehimpulserhaltungssatz zusammen. Bei Richtungs-
dnderung der Drehachse dndert sich auch die Richtung
des Drehmomentvektors. So, wie zur Anderung der
Bewegungsrichtung eine Kraft erforderlich  ist,
wird zur Anderung der Rotationsrichtung ein Kraft-
moment bendtigt, das um so grofer ist, je schneller der
Korper rotiert. Das Bestreben rasch rotierender Korper,
ihre Drehachse unverédndert beizubehalten, ist auch in
vielen #hnlichen Fédllen zu erkennen. Ein rotierender
Kreisel beispielsweise kippt auch dann nicht um, wenn
seine Achse geneigt ist.

Wenn Sie versuchen, einen rotierenden Kreisel mit
der Hand umzustoBen, so werden Sie feststellen, dal
das gar nicht so leicht ist.

Die Stabilitdt eines rotierenden Korpers macht man
sich bei der Artillerie zunutze. Sie haben sicher schon
gehort, daB man im Lauf von Geschiitzen schraubenartig
gewundene Lidngsrinnen, die sogenannten Ziige, anbringt.
Dadurch wird das Geschofl wihrend seiner Bewegung
durch den Lauf mit einem Drehimpuls um seine Lings-
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Bild 5.15.

achse (dem sogenannten Drall) versehen und behélt in
der Luft seine Lage bei, ohne sich zu {iberschlagen. Ein
Geschiitz mit ,gezogenem* Lauf hat daher eine sehr viel
groflere Zielgenauigkeit und SchuBweite als ein Geschiitz,
dessen Lauf keine ,Ziige" enthilt.

Der Navigator — gleichgiiltig, ob in der Luft oder
auf See — muf} stets wissen, wo sich die wahre Erdver-
tikale im Verhdltnis zur Lage des Flugzeugs oder Schiffs
im Augenblick befindet. Ein Lot kann man dafiir nicht
benutzen, weil es bei beschleunigter Bewegung ausge-
lenkt wird. Darum verwendet man einen rasch rotierenden
Kreisel besonderer Konstruktion, den sogenannten kiinst-
lichen Horizont. Ist die Rotationsachse dieses Kreisels
erst einmal auf die Erdvertikale eingestellt, dann bleibt
sie in dieser Lage, unabhingig davon, wie das Flugzeug
seine Lage im Raum veridndert.

Aber worauf steht der Kreisel? Wenn er sich auf
einer Unterlage befdnde, die die Bewegungen des Flug-
zeugs mitmacht, wie sollte dann die Rotationsachse ihre
Richtung beibehalten kdonnen?

Als Unterlage dient eine sogenannte kardanische
Aufhéngung (Bild 5.15.). Hier kann sich der Kreisel bei
minimaler Lagerreibung so verhalten, als wire er in
Luft aufgehéngt.

Mittels rotierender Kreisel kann der Kurs eines
Torpedos oder eines Flugzeugs automatisch gesteuert
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werden. Dies geschieht mittels Mechanismen, die Abwei-
chungen der Langsachse des Torpedos von der Richtung
der Kreiselachse ,,verfolgen"“.

Auf der Verwendung eines rotierenden Kreisels be-
ruht auch die Konstruktion eines so wichtigen Gerits
wie des Kreiselkompasses. Es 148t sich nachweisen, da
sich die Kreiselachse unter dem EinfluB der Corioliskraft
und der Reibungskrifte zu guter Letzt parallel zur Erdach-
se einstellt und daher nach Norden zeigt.

Der Kreiselkompal wird in der Seeschiffahrt fast
ausschlieflich verwendet. Sein Hauptbestandteil ist ein
Motor mit einem schweren Schwungrad, das bis 25 000
Umdrehungen in der Minute ausfiihrt.

Ungeachtet einer ganzen Reihe von Schwierigkeiten
bei der Ausschaltung verschiedener Storquellen, die
insbesondere durch das Schlingern und Stampfen des
Schiffs verursacht werden, ist der Kreiselkompa8 vorteil-
hafter als der magnetische Kompaf. Ein magnetischer
Kompall hat den Nachteil, daB seine Anzeige durch all
eiserne Gegenstinde und elektrische Anlagen an Bord
des Schiffs verfalscht wird.

Die biegsame Welle

Wellen von Dampfturbinen, wie wir sie heute kennen,
sind wichtige Bauteile dieser eindrucksvollen Maschinen.
Da ihre Linge 10 m und ihr Durchmesser 0,5 m erreichen
kann, ist ihre Fertigung ein kompliziertes technologisches
Problem. Die Welle einer Hochleistungsturbine kann mit
etwa 200 t belastet sein und dabei 3000 Umdrehungen
in der Minute ausfiihren.

Zunichst konnte man denken, diese Welle miifite
extrem hart und fest sein. So ist es aber nicht. Bei einigen
zehntausend Umdrehungen in der Minute muf eine starr
befestigte nichtbiegsame Welle unvermeidlich brechen,
wie fest sie auch sein mag.
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Nun ist klar, warum starre Wellen ungeeignet sind.
Die Maschinenbauer kénnen so genau arbeiten, wie sie
wollen — eine, wenn auch nur geringfiigige, Asymmeltrie
des Laufrades der Turbine bleibt unvermeidlich. Wéhrend
der Rotation des Laufrades entstehen ungeheure Zentrifu-
galkrifte; ihre Werte sind bekanntlich dem Quadrat der
Rotationsgeschwindigkeit proportional. Werden sie nicht
ganz exakt ausgeglichen, dann beginnt die Welle in den
Lagern zu ,schlagen“ (denn die nichtausgeglichenen
Zentrifugalkrédfte ,rotieren” ja mit), 148t die Lager zu
Bruch gehen und macht schlieflich ,,Kleinholz* aus der
Turbine.

Dies alles war seinerzeit ein uniiberwindliches Ilin-
dernis auf dem Weg zur Erhéhung der Rotationsgeschwin-
digkeit von Turbinen. Der Ausweg wurde um die Jahr-
hundertwende gefunden. Im Turbinenbau fanden bieg-
same Wellen Eingang.

Um zu begreifen, worin der Grundgedanke dieser
bemerkenswerten Erfindung bestand, miissen wir die
Gesamtwirkung der Zentrifugalkréfte berechnen. Wie
konnen diese Krifte addiert werden? Wie sich zeigt,
greift die Resultierende aller Zentrifugalkrafte am
Schwerpunkt der Welle an, und ihr Betrag ist dabei
ebensogrof}, als wire die Gesamtmasse des Turbinenlauf-
rades im Schwerpunkt konzentriert.

Wir wollen den Abstand des Laufradschwerpunkts von
der Achse mit a bezeichnen; wegen der geringfiigigen
Asymmetrie des Laufrades ist @ von Null verschieden.
Bei Rotation greifen Zentrifugalkrifte an der Welle an,
und die Welle verbiegt sich. Wir bezeichnen die Lagedn-
derung der Welle mit / und berechnen sie. Die Formel
fir die Zentrifugalkraft ist uns bekannt (s. Abschnitt
wLentrifugalkrifte”); diese Kraft ist dem Abstand zwischen
Schwerpunkt und Achse (der jetzt a + I betrdgt) propor-
tional und gleich 4n®n*M (a + l); darin ist n die Anzahl
von Umdrehungen je Minute und M die Masse der rotie-
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renden Teile. Die Zentrifugalkraft wird durch die Elasti-
zitdtskraft ausgeglichen; diese wiederum ist der Lagedn-
derung der Welle proportional und betrdgt kI, worin der
Faktor k die Steifigkeit der Welle kennzeichnet. Also
gilt:

kl = 4n’n’M (a + 1)

oder
a
= k
4ni2n2M —1

Dieser Formel zufolge braucht eine biegsame Welle
keine grofen Drehzahlen zu fiirchten. Auch bei sehr
groflen Werten von n wichst die Durchbiegung der Welle ]

nicht unbegrenzt. Der Wert von in der zuletzt

4ri2n2M
aufgeschriebenen Formel geht gegen Null, und die Durch-
biegung der Welle [ wird gleich dem Wert fiir die Asym-
metrie, nur mit umgekehrtem Vorzeichen.

Dieses Ergebnis bedeutet, dal ein asymmetrisches
Laufrad bei hohen Drehzahlen die Welle nicht zerreift,
sondern sie so verbiegt, da der Einflu8 der Asymmetrie
aufgehoben wird. Die biegsame Welle bewirkt eine
Zentrierung der rotierenden Teile, verlagert den Schwer-
punkt durch ihre Verbiegung auf die Rotationsachse und
1aBt die Wirkung der Zentrifugalkraft dadurch gegen
Null gehen.

Die Biegsamkeit der Welle ist kein Nachteil, sie
stellt vielmehr die notwendige Stabilitdtsbedingung dar.
Denn die Welle mufl sich, um Stabilitdt zu erreichen,
um den Betrag a durchbiegen, ohne dabei zu brechen.

Bei einiger Aufmerksamkeit kann man hier einen
Fehler finden. Wenn man die bei grofien Drehzahlen
.zentrierende” Welle aus der von uns gefundenen Gleich-
gewichtslage bringt und nur die Zentrifugalkraft sowie
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die Elastizitatskraft betrachtet, erkennt man, daf dieses
Gleichgewicht labil ist. Man fand allerdings, daf die
Corioliskrafte als ,rettende Engel das Gleichgewicht doch
durchaus stabil werden lassen.

Die Turbine beginnt langsam zu rotieren. Solange n

sehr klein ist, wird der Bruch einen grofen Wert

k
4nPniM
haben. Solange dieser Bruch bei Erhohung der Drehzahl
grofler als Eins bleibt, wird die Durchbiegung der Welle
das gleiche Vorzeichen haben wie die wurspriingliche
Verschiebung des Laufradschwerpunkts. In dieser An-
fangsphase der Bewegung bewirkt die biegsame Welle
keine Zentrierung des Laufrades, sondern vergroflert
durch ihre eigene Durchbiegung die Gesamtverschiebung
des Schwerpunkts und damit auch die Zentrifugalkraft.

Mit zunehmender Drehzahl n (aber nach wie vor bei

52%2—1‘7> :1) wichst die Verschiebung, und schlieBlich

Ik
4nZniM 1
geht der Nenner in der Formel fiir die Verschiebung 1
gegen Null, die Durchbiegung der Welle ist also formal
unendlich groB. Bei dieser Rotationsgeschwindigkeit
bricht die Welle. Dieser Moment muf beim Anfahren
der Turbine sehr schnell passiert werden; man muf} die
kritische Drehzahl iiberspringen und eine erheblich
hohere Laufgeschwindigkeit der Turbine erreichen, bei
der die oben beschriebene Selbstzentrierung beginnt.

Doch was ist das fiir ein kritisches Moment? Seine
Bedingung kann in folgender Form dargelegt werden:

dn*M 1

k n? °

wird ein kritischer Moment erreicht. Bei

Substituieren wir hier die Drehzahl mit Hilfe der
Beziehung n =% durch die Umlaufperiode und ziehen
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daraus die Wurzel, dann erhalten wir:
r—2)/ L,

Kommt uns die Formel nicht recht bekannt vor? Ein
Blick auf Seite 158 zeigt, dal im rechten Teil der Glei-
chung die Periode der Eigenschwingung des Laufrades

auf der Welle auftritt. Die Periode 2n]/ﬁ—]:[ ist die Perio-

de, mit der ein Turbinenrad der Masse M auf einer Welle
der Steifigkeit & schwingen wiirde, wenn wir das Laufrad
seitlich auslenken, damit es von selbst in Schwingung
gerat.

Der kritische Augenblick ist also dann gegeben, wenn
die Rotationsperiode des Turbinenlaufrades mit der
Periode der Eigenschwingungen des Systems aus Laufrad
und Welle zusammenfillt. Die Resonanz ist schuld
daran, dall es eine kritische Drehzahl gibt.

14—-01178



6. Gravitation

Worauf ruht die Erde!

Ehemals war die Antwort auf diese Frage einfach: auf
drei Sdulen. Unklar blieb freilich, worauf die Siulen
ruhten. Doch unsere Vorviter kiimmerte das nicht.

Die richtigen Vorstellungen vom Charakter der Erd-
bewegung, der Erdform und von vielen Gesetzmifig-
keiten der Planetenbewegung um die Sonne entstanden
lange, ehe eine Antwort auf die Frage nach den Ursachen
der Planetenbewegung gegeben wurde.

Aber worauf ,ruhen” nun die Erde und die Planeten?
Warum bewegen sie sich auf bestimmten Bahnen um
die Sonne und fliegen nicht davon?

Lange Zeit wullite man keine Antwort auf derartige
Fragen, und die Kirche machte sich diese Unwissenheit
in ihrem Kampf gegen das Kopernikanische Weltsystem
zunutze, indem sie die Erdbewegung iiberhaupt leugnete.

Die Entdeckung der Wahrheit verdanken wir dem
groBen englischen Gelehrten Isaac Newton (1643—1727).

Einer Legende zufolge soll Newton im Garten unter
einem Apfelbaum gesessen und nachdenklich zugesehen
haben, wie der Wind die Apfel vom Baum auf die Erde
fallen ldft. Da kam ihm der Gedanke, dafl es zwischen
allen Korpern des Weltalls Gravitationskriafte geben
miisse.

Im Ergebnis dieser Newtonschen Entdeckung stellte
sich heraus, daB eine Vielzahl anscheinend grundver-
schiedener Erscheinungen — das Zur-Erde-Fallen nicht
unterstiitzter Korper, die sichtbaren Bewegungen von
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Mond und Sonne, die Gezeiten usw.— Erscheinungsfor-
men ein und desselben Naturgesetzes sind: des Gravita-
tionsgesetzes.

Zwischen allen Korpern des Weltalls, so sagt dieses
Gesetz, seien es nun Sandkérner, Erbsen, Steine oder
Planeten, wirken gegenseitige Anziehungskrifte.

Auf den ersten Blick erscheint dieses Gesetz unzutref-
fend: Dalf sich die Gegenstinde in unserer Umgebung
anziehen sollen, haben wir doch bisher nicht bemerkt.
Daf} die Erde alle Korper anzieht, ist unumstritten. Aber
vielleicht ist die Anziehung nur eine besondere Eigen-
schaft der Erde? Nein, aber zwischen den Gegenstidnden
ist sie so gering, daB sie unbemerkt bleibt. Natiirlich ist
sie aber durch Versuche nachweisbar. Doch davon spiter.

Die Gravitation, und nur sie allein, erklart die
Stabilitdt des Sonnensystems ebenso wie die Bewegung
der Planeten und der anderen Himmelskorper.

Der Mond wird durch die Erdanziehungskraft auf
sciner Bahn gechalten, die Erde wiederum durch die
Anziehungskraft der Sonne.

Die kreisformige Bewegung von Himmelskérpern
verlduft ebenso wie die kreisformige Bewegung eines
Steins, den man an einem Strick im Kreis schleudert.
Die Gravitationskrédfte sind unsichtbare ,Seile®, die die
Himmelskérper zur Bewegung auf bestimmten Bahnen
veranlassen.

Die Feststellung von der Existenz der Gravitations-
krifte bedeutete noch nicht allzuviel. Newton aber fand
das Gravitationsgesetz und wies nach, wovon die Gravi-
tationskréfte abhidngen.

Das Gravitationsgesetz

Die erste Frage, die sich Newton stellte, war: Wodurch
unterscheidet sich die Beschleunigung des Mondes von
der Beschleunigung eines Apfels? Mit anderen Worten:

14*
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Welcher Unterschied ist zwischen der Beschleunigung g,
die der Erdball an seiner Oberfliclie erzeugt, d. h. in der
Entfernung r vom Erdmittelpunkt, und der Beschleuni-
gung, die die Erde in der Entfernung R, d. h. in der
Entfernung des Mondes von der Erde, erzeugt?

. . v2
Um diese Beschleunigung 7 berechnen, muf man

die Geschwindigkeit des Mondes und seine Entfernung
von der Erde kennen. Diese beiden Zahlen waren
Newton bekannt. Die Beschleunigung des Mondes ergab

sich zu etwa 0,27 cm/s?. Das ist ungefiahr 1 des Wertes

3600
g = 980 cm/s?.

Also nimmt die von der Erde verursachte Beschleuni-
gung mit zunehmender Entfernung vom Erdmittelpunkt
ab. Doch so rasch? Die Entfernung zwischen Erde und
Mond entspricht 60 Erdradien. 3600 ist aber das Qua-
drat von 60. Durch Vergroflerung der Entfernung auf das
Sechzigfache haben wir die Beschleunigung auf 6—(172
verringert.

Newton gelangte zu dem Schluf, daf sich die Be-
schleunigung und damit auch die Schwerkraft umgekehrt
proportional zum Abstandsquadrat adndern. Weiterhin
ist die Kraft, die im Schwerefeld auf einen Korper wirkt,
wie wir bereits wissen, der Masse des Ko6rpers proportio-
nal. Darum zieht der erste Koérper den zweiten mit einer
Kraft an, die der Masse des zweiten Korpers proportional
ist; der zweite Korper dagegen zieht den ersten mit einer
Kraft an, die der Masse des ersten Korpers proportional
ist.

Hier ist von identisch gleichen Kraften die Rede:
von Kraft und Gegenkraft. Demnach muBl die wechsel-
seitige Anziehungskraft sowohl der Masse des ersten als
auch des zweiten Korpers proportional sein, oder mit
anderen Worten, dem Masseprodukt.
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Wir erhalten:

E=y M

m
re

Dies ist das Gravitationsgesetz. Newton nahm an,
daf} es fiir jedes beliebige Korperpaar zutrifft.

Inzwischen ist diese kiihne Hypothese vollstindig
bewiesen worden. Die Anziehungskraft zweier Korper ist
dem Produkt ihrer Massen direkt und dem Quadrat des
Abstandes zwischen den Koérpern indirekt proportional.

Was aber bedeutet das p in der Formel? Es ist ein
Proportionalitidtskoeffizient. Konnen wir ihn nicht gleich
Eins setzen, wie wir es bereits wiederholt getan haben?
Nein, das ist nicht méglich. Der Wert von p ist gleich
der Anziehungskraft in N, mit der eine Masse von 1 kg
eine zweite Masse von 1 kg anzieht, die sich in einem
Abstand von 1 m befindet. Die Kraft aber kénnen wir
nicht einfach gleich einem bestimmten Wert, etwa einem
N, setzen: Der Koeffizient » muB gemessen werden.

Um % zu ermitteln, brauchen wir natiirlich nicht
unbedingt die Anziehungskraft zwischen zwei Wige-
stiicken von je einem Gramm zu messen. Wir wollen
unsere Messung vielmehr an massereichen Korpern aus-
fiihren, weil die Kraft dann grofer ist.

Ermittelt man die Masse zweier Korper, kennt ihren
Abstand voneinander und mifit die Anziehungskraft,
dann erhédlt man p durch eine einfache Berechnung.

Entsprechende Versuche wurden vielfach angestellt.
Sie zeigten, dall der Wert von y stets gleich ist, unabhén-
gig davon, woraus die einander anziehenden Koérper
bestehen, und unabhingig auch von den Eigenschaften
des Mediums, worin sie sich befinden. Der Faktor p
heilt Gravitationskonstante. Sie betrigt p = 6,670 X
X 10" Nm2 kg-2. Die Prinzipdarstellung eines der
Versuche zur Messung von y zeigt Bild 6.1. An den Enden
gines Waagebalkens sind zwei Kugeln gleicher Masse
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Bild 6.1.

aufgehidngt. Eine der beiden Kugeln befindet sich ober-
halb einer Bleiplatte, die andere darunter. Das Blei
(fiir den Versuch wurden 100 t Blei verwendet) vergrofiert
durch seine Anziehung die Gewichtskraft der rechten
und vermindert die' Gewichtskraft der linken Kugel. Der
Waagebalken neigt sich nach rechts. Aus der Neigung
des Waagebalkens wird der Wert von y berechnet.

Die Schwierigkeiten beim Nachweis der Gravitations-
kraft zwischen zwei Gegenstinden erkldren sich aus der
Geringfiigigkeit von ».

Zwei schwere Gegenstinde mit einer Masse von je
1000 kg und im Abstand 1 m ziehen sich gegenseitig mit
der verschwindend geringen Kraft von nur 6,67-10-% N an.

Doch wie ungeheuer grof sind die Anziehungskrifte
zwischen den Himmelskérpern! Zwischen Mond und Erde
betrdagt die Anziehungskraft

- _g 6-1027.0,74-1026
F:6,67°1O 5'10 8 .—(3—8_’T6§)2—=2.1020N

und zwischen Erde und Sonne

F=6,67.10"5.10- %i}ffl —3,6-102N,
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Die Erde wird gewogen

Bevor wir uns des Gravitationsgesetzes bedienen, miissen
wir einen wichtigen Umstand beachten.

Wir haben gerade die Anziehungskraft zwischen zwei
Gegenstinden im Abstand von 1 m berechnet. Was wiire
nun, wenn der Abstand beider Korper 1 cm betriige?
Was miissen wir in die Formel einsetzen: den Abstand
zwischen den Oberflichen der Korper, den Abstand der
Schwerpunkte, oder was sonst?

mymy

Das Gravitationsgesetz F =y 2 laft sich mit

ganzer Strenge nur dann anwenden, wenn keine derarti-
gen Zweifel entstehen. Der Abstand zwischen den Kor-
pern muf} viel gréBer sein als die Abmessungen der Korper
selbst; wir miissen das Recht haben, die Korper als
Massenpunkte anzusehen. Wie wire das Gesetz aber auf
zwei nahe beieinandergelegene Korper anzuwenden? Im
Prinzip cinfach: Beide Korper sind gedanklich in kleine
Stiicke zu zerlegen, und fiir jedes Korperpaar ist die
Kraft F zu berechnen; anschlieBend sind alle Krifte
(vektoriell) zu addieren.

Im Prinzip ist dies einfach, praktisch aber recht
kompliziert.

Aber die Natur erweist uns ihre Hilfe. Man kann auf
rechnerischem Weg zeigen, da bei Wechselwirkung der

Partikeln eines Korpers mit einer -3 proportionalen

Kraft kugelférmice Koérper die Eigenschaft besitzen, sich
wie Punkte anzuziehen, die im Mittelpunkt der Kugeln
angeordnet sind. Fiir zwei nahe beieinanderliegende
Kugeln ist die Formel F = ym;;n ? ebenso giiltig wie fiir
weit voneinander entfernte Kugeln, sofern r der Abstand
zwischen den Mittelpunkten der Kugeln ist. Wir haben
diese Regeln bereits frither bei der Berechnung der Be-
schleunigung an der Erdoberfliche benutzt.
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Nun diirfen wir die Gravitationsformel zur Berechnung
der Kraft benutzen, mit der die Erde einen Korper
anzieht. Unter r ist dabei der Abstand zwischen dem
Erdmittelpunkt und dem Korper zu verstehen.

M sei die Erdmasse und R der Erdradius. Dann
betrigt die Anziehungskraft fiir einen Korper mit der
Masse m an der Erdoberfliche

M
vF=YF°m.

Genau das ist aber die Gewichtskraft des Korpers,
die wir stets durch mg ausdriicken. Also betrdgt die
Beschleunigung im freien Fall

M
E=YFr-

Nun wissen wir auch, wie die Erde ,gewogen® wurde.
Man kann aus dieser Formel die Erdmasse berechnen,
da g, » und R bekannte Gréflen sind. Nach dem gleichen
Verfahren ldBt sich auch die Sonne ,wiegen“.

Wenden wir uns einer anderen interessanten Aufgabe
zu. Zur Einfilhrung des Weltfernsehens ist die Schaffung
eines ,hidngenden“ Satelliten von entscheidender Bedeu-
tung, d. h. eines Satelliten, der sich stdndig an ein und
demselben Punkt der Aquatorialebene iiber der Erdober-
flache befindet. Wiirde dieser Satellit durch Reibung
beeinfluBt werden? Das hidngt davon ab, in welcher Ent-
fernung von der Erde dieser Satellit umlauft.

Ein ,héngender” Satellit muB mit der Periode 7' =
= 24 h umlaufen. Ist r die Entfernung des Satelliten

vom Erdmittelpunkt, dann betrdgt seine Geschwindig-
. 2nr . . v? 4n?
keit v = = und seine Beschleunigung — =7

Andererseits ist diese Beschleunigung, die ihre Ursache
2
jin der Erdanziehung hat, gleich Zg =-gr—lf-. Durch
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Gleichsetzen der Beschleunigungen erhalten wir:

R? 4n?r gR2T?
8§— —TE d.h., r3=-z:?a.—

r2
Durch Einsetzen der gerundeten Werte g = 10 m/s?,
R =6-10° m und 7 = 9.10* s erhalten wir: r® =
=T7.102 m? d. h.,, r=4-107 m = 40000 km. In
dieser Hohe tritt keine atmosphérische Reibung auf,
und ein ,hingender” Satellit wird seinen ,junbeweglichen
Lauf* hier nicht verlangsamen.

Die Messung von g im Dienst der Erkundung

Wenn wir Erkundung sagen, meinen wir nicht etwa die
militdrische Aufkldrung. Dafiir hat die Kenntnis der
Beschleunigung im freien Fall keine Bedeutung. Wir
meinen vielmehr die geologische Erkundung, deren
Ziel darin besteht, Lagerstdtten unter der Erdoberfliche
zu erkunden, ohne Gruben zu graben oder Schichte
abzuteufen.

Es gibt einige Verfahren zur sehr genauen Bestim-
mung der Fallbeschleunigung. So kann man g durch
einfaches Wigen eines standardisierten Wigestiicks an
einer Federwaage (Gravimeter) ermitteln. Gravimeter
miissen duBerst empfindlich sein; die Dehnung der Feder
andert sich bereits bei Erh6hung der Belastung um weniger
als ein Millionstel Gramm. Ausgezeichnete Ergebnisse lie-
fern Quarzdrehwaagen. Ihr Aufbau ist im Grunde ein-
fach. An einem waagerecht gespannten Quarzfaden ist
ein Hebel angeschweifit, dessen Masse eine leichte
Verdrillung des Fadens bewirkt (Bild 6.2.).

Auch Pendel werden fiir den gleichen Zweck benutzt.
Vor noch gar nicht allzulanger Zeit waren Pendelverfah-
ren zur Messung von g die einzigen Verfahren iiberhaupt,
und erst in den letzten zehn bis zwanzig Jahren begann
ihre Verdrangung durch die bequemeren und genaueren
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Skala.”
lwhtquelte

Bild 6.2.

Wigungsverfahren. Durch Messung der Schwingungs-
periode eines Pendels kann man den Wert von g anhand

der Formel 7 = Qn]/:—’jedcn[alls hinreichend genau

ermitteln.

Miit man den Wert von g mit ein und demselben
Gerdt an verschiedenen Orten, dann kann man relative
Anderungen der Fallbeschleunigung mit einer Genauig-
keit von einigen Millionsteln des Wertes nachweisen.
Durch Messung des Wertes von g an einem bestimmten
Ort der Erdoberflache 14t sich feststellen, ob der Wert
normal oder anormal ist und um einen bestimmten Betrag
nach oben oder nach unten von der ,Norm“ abweicht.

Was ist die ,Norm* fiir den Wert von g?

Die Fallbeschleunlgung an der Erdoberfliche unter-
liegt zwei gesetzmiiffigen Anderungen, die man bereits
seit langem verfolgt hat und die daher auch gut bekannt
sind.

Zuniachst nimmt g beim Ubergang vom Pol zum
Aquator gesetzmiiBig ab. Davon war bereits weiter oben
die Rede. Nur zur Erinnerung sei gesagt, daB diese
Anderung zwei Ursachen hat: Erstens ist die Erde keine
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Kugel, und ein Korper, der sich am Pol befindet, liegt
auch niher am Erdmittelpunkt; zweitens wird die Grav1-
tationskraft auf dem Weg zum Aquator immer mehr
durch die Zentrifugalkraft geschwicht.

Die zweite gesetzmifiige Anderung von g betrifft ihre
Verminderung mit zunehmender Héhe. Je weiter wir
vom Erdmittelpunkt entfernt sind, um so kleiner ist g

entsprechend der Formel g = y(l{%h)”’ worin R der

Erdradius und % die Hohe iiber dem Meeresspiegel ist.

Somit muf die Fallbeschleunigung auf der gleichen
geographischen Breite und in ein und derselben Hohe
iiber dem Meeresspiegel stets gleich sein.

Genaue Messungen zeigen, daf man sehr héufig
Abweichungen von dieser Norm, sogenannte Schwerkraft-
anomalien, antrifft. Die Ursache dieser Anomalien
besteht in der Inhomogenitdt der Massenverteilung in
der Nidhe des MeBortes.

Wie wir bereits erkldrt haben, kann man sich die
von einem groflen Koérper ausgehende Gravitationskraft
als Summe aller Krifte vorstellen, die von den einzelnen
Partikeln des groflen Kérpers ausgehen. Die Anziehung
eines Pendels durch die Erde ist die Folge der Wirkung
samtlicher Erdpartikeln. Naturgemif liefern die nahe
liegenden Partikeln jedoch den gréften Anteil zur Gesamt-
kraft, denn die Anziehung ist dem Abstandsquadrat
umgekehrt proportional.

Sind in der Nihe des Meforts schwere Massen konzen-
triert, dann ist g gréfer als der Normwert, im umgekehrten
Fall dagegen kleiner.

Mifit man g beispielsweise auf einem Berg bzw. in
einem Flugzeug, das in der Héhe des Berges iiber dem
Meer dahmfhegt dann erhilt man im erstgenannten
Fall einen groBeren Wert. Auf dem Vulkan Atna in
Italien liegt der Wert von g um 0,292 cm/s? iiber dem
Normwert. Auch auf einsamen Inseln im Ozean ist g
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Bild 6.3.

groBer als normal. In beiden Féllen erkldart sich die
Zunahme von g einleuchtenderweise mit der Konzentra-
tion zusdtzlicher Massen am MeBort.

Nicht nur der Wert von g, sondern auch die Schwer-
kraftrichtung konnen von der Norm abweichen. Hingt
man eine Kugel an einem Faden auf, so zeigt der ge-
spannte Faden die Vertikale fiir den MeBort an. Auch
diese Vertikale kann vom Normwert abweichen. Die
,normale Vertikale wird aus dem Stand der Sterne
bestimmt, da durch Berechnung fiir jeden geographischen
Punkt bekannt ist, auf welchen Ort eine Vertikale der
midealen* Erdfigur zur betreffenden Tages- und Jahreszeit
Htriffte.

Wenn am Fuf} eines grofien Berges Versuche mit einem
Lot unternommen werden, wird das Massestick des
Lots sowohl von der Erde in Richtung ihres Mittelpunkts
als auch von dem Berg, also in seitlicher Richtung,
angezogen. Unter diesen Umstéinden mufl das Lot relativ
zur normalen Vertikalen ausgelenkt werden (Bild 6.3.).
Da die Erdmasse sehr viel grifler als die Masse des Berges
ist, betragen Auslenkungen dieser Art hochstens einige
Winkelsekunden.
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Manchmal fithrt die Auslenkung des Lots zu seltsamen
Ergebnissen. In Florenz bewirkt der Einfluff des Apennin-
Gebirges keine Anziehung, sondern die AbstoBung des
Lots. Die Erklirung konnte darin bestehen, dafi die
Berge riesige Hohlrdume enthalten.

Ein bemerkenswertes Ergebnis liefern Messungen der
Fallbeschleunigung fiir die Kontinente und Ozeane insge-
samt. Da die Kontinente erheblich schwerer als die
Ozeane sind, miifite der Wert g iiber den Kontinenten
grofler als iiber den Ozeanen sein. In Wirklichkeit jedoch
sind die auf ein und derselben Breite iiber Ozeanen und
Kontinenten gemessenen Werte von g im Mittel gleich.

Wiederum kann es nur eine Erklarung geben: Die
Kontinente ruhen auf leichten, die Ozeane dagegen auf
schwereren Gesteinen. Dort, wo unmittelbare Unter-
suchungen moglich waren, haben die Geologen tatsich-
lich festgestellt, dafl sich unter den Ozeanen schwere
Basaltgesteine, unter den Kontinenten dagegen leichte
Granite befinden.

Daraus folgt sogleich die néchste Frage: Warum
gleichen die schweren bzw. leichten Gesteine den Gewichts-
unterschied zwischen Kontinenten und Ozeanen so genau
aus? Es kann sich hier nicht um einen Zufall handeln,
vielmehr miissen die Ursachen im Aufbau des Erdmantels
wurzeln.

Die Geologen vermuten, daB die oberen Teile der
Erdrinde gewissermafen auf einer plastischen (d. h. wie
nasser Ton leicht verformbaren) Masse schwimmen.
In etwa hundert Kilometer Tiefe mufl der Druck iiberall
gleich sein, so wie am Boden eines Gefidfles mit Wasser,
auf dem Holzstiicke unterschiedlichen Gewichts schwim-
men. Darum muf eine Sdule mit 1 m? Querschnitt von
der Erdoberfliche bis zu einer Tiefe von 100 km sowohl
unter den Ozeanen als auch unter den Kontinenten die
gleiche Masse haben.

Dieser als Isostasie bezeichnete Druckausgleich fithrt
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dazu, daB sich die Werte fiir die Fallbeschleunigung iiber
den Ozeanen und den Kontinenten im Verlauf einer
Breitenlinie nicht wesentlich voneinander unterscheiden.

Lokale Schwerkraftanomalien dagegen leisten uns den
gleichen Dienst wie dem Kleinen Muck der Zauberstab,
der iiberall dort auf die Erde schlug, wo Gold oder Silber
zu finden war.

Wo g am grofiten ist, muf man nach schwerem Erz
suchen. Lagerstidtten von leichtem Salz dagegen findet
man anhand lokaler Verringerungen von g. Messen lafit
sich g auf einige Hunderttausendstel von 1 cm/s? genau.

Erkundungsverfahren, die mit Pendeln und extrem
genauen Waagen arbeiten, werden als gravimetrische
Verfahren bezeichnet. Sie haben insbesondere bei der
Suche nach Erdol grofle praktische Bedeutung. Mittels
gravimetrischer Erkundungsverfahren kann man ndmlich
leicht unterirdische Salzdome feststellen, und sehr hiufig
findet man dort, wo Salz ist, auch Erdél. Dabei liegt
das Erdol in der Tiefe, das Salz dagegen nidher an der
Erdoberfliche. Durch gravimetrische Erkundungen wur-
den die Erdollagerstdtten in Kasachstan und anderswo
entdeckt.

Die Schwerkraft unter der Erde

Es gilt noch eine interessante Frage zu beantworfen.
Wie wird sich die Schwerkraft &ndern, wenn man unter
die Erde vordringt?

Die Gewichtskraft eines Korpers ist das Ergebnis der
Zugkraft unsichtbarer Faden, die zwischen ihm und
jedem Stiickchen Erdmaterial aufgespannt sind. Die
Gewichtskraft ist eine Gesamtkraft, das Ergebnis der
Addition elementarer Krifte, die von seiten der Erdpar-
tikeln auf den Gegenstand einwirken. Alle diese Krifte
ziehen den Gegenstand ,nach unten“, also zum Erdmittel-
punkt hin, wenn auch unter verschiedenen Winkeln
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Bild 6.4.

Wie schwer wird nun ein Gegenstand sein, der sich
in einem unterirdischen Labor befindet? Er wird unter
dem Einfluf der Anziehungskraft innerer und &uBlerer
Erdschichten stehen.

Sehen wir uns einmal die Gravitationskrifte an, die
auf einen im Inneren des Erdballs liegenden Punkt von
der &duBeren Schicht her wirken. Unterteilt man die
auBlere Schicht in dinne Schichten, schneidet in eine
dieser Schichten ein kleines Quadrat mit der Seitenlénge
a; aus und zieht gerade Linien von den Ecken des Qua-
drats durch den Punkt O, dessen Schwere uns interessiert,
dann entsteht an der entgegengesetzten Seite der Schicht
ein anderes Quadrat mit der Seitenldnge a, (Bild 6.4.).
Die im Punkt O von seiten der beiden Quadrate wirken-
den Anziehungskrifte sind einander enlgegengerichtet

. . . . m
und verhalten sich nach dem Gravitationsgesetz wie —

1t

zu';—'} . Die Massen m, und m, der Quadrate sind jedoch

den “Flichen der Quadrate proportional. Deshalb sind
2 2

die Gravitationskrifte den Ausdriicken % und % pro-

1 2

portional.
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Wir iiberlassen es dem Leser zu beweisen, daBi die
beiden Ausdricke gleich sind, so daff die im Punkt O
von seiten der beiden Quadrate wirksamen Anziehungs-
kriafte im Gleichgewicht stehen.

Durch Aufgliederung einer diinnen Schicht in derarti-
ge ,,Gegenquadrate* erkennen wir, daf} eine diinne homo-
gene Kugelschale keine Wirkung auf einen in ihrem
Inneren gelegenen Punkt zeigt. Dies gilt fiir sdmtliche
diinne Schichten, in die wir die oberhalb des uns interes-
sierenden unterirdischen Punkts liegende Kugelzone
gegliedert haben.

Es ist also so, als ob die oberhalb des Gegenstandes
befindliche Erdschicht iiberhaupt nicht existiert. Die
Wirkung ihrer einzelnen Teile auf den Gegenstand wird
ausgeglichen, und die Gesamtanziehungskraft von seiten
der &uBeren Schicht ist gleich Null.

Natiirlich haben wir bei allen unseren Uberlegungen
vorausgesetzt, daBl die Dichte der Erde innerhalb jeder
Schicht konstant ist.

Nun koénnen wir ohne Schwierigkeiten die Formel fiir
die in der Tiefe H unter der Erdoberfliche wirksame
Schwerkraft ermitteln. Ein in der Tiefe H gelegener
Punkt wird nur durch die inneren Erdschichten angezo-
gen. Die Formel fiir die Gravitationsbeschleunigung

=% ist auch fir diesen Fall anwendbar, nur, da} M
und r nicht Masse und Radius der ganzen Erde darstellen,
sondern nur ihren (relativ zum betrachteten Punkt)
m,inneren* Teil.

Hitte die Erde in sidmtlichen Schichten die gleiche
Dichte, dann wiirde die Formel fiir g folgende Gestalt
annehmen

o+ (Re—HP
§=v (Rp—H)® =73 J-‘:VP(RE_‘}I)'
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Darin ist p die Dichte und Ry der Erdradius.

g miifite sich demnach direkt proportional zu (Rg —
— H) dndern: Je grofer die Tiefe H ist, um so kleiner
ware g.

In Wirklichkeit gehorcht das Verhalten von g in der
Nahe der Erdoberfliche — und wir konnen dies bis zu
Tiefen von 5 km (unter Meereshohe) verfolgen — diesem
Gesetz ganz und gar nicht. Die Erfahrung lehrt, dafl g
in diesen Schichten mit wachsender Tiefe zunimmt. Die
Diskrepanz zwischen Formel und Versuch erklirt sich
daraus, dafl wir den Dichteunterschied in den verschiede-
nen Tiefen nicht beriicksichtigt haben.

Die mittlere Dichte der Erde 1iafit sich leicht ermit-
teln, indem man ihre Masse durch das Volumen divi-
diert. Wir erhalten dabei den Wert 5,52 g/cm®. Die
Dichte der Oberflichengesteine ist jedoch sehr viel
geringer und betrigt 2,75 g/cm®. Die Dichte der Erd-
schichten nimmt mit der Tiefe zu. In den oberflichenna-
hen Erdschichten iiberlagert dieser Effekt den Idealfall
der Verminderung von g, der sich aus unserer Formel
ergibt, und g wichst.

Gravitationsenergie

Die Gravitationsenergie haben wir bereits an einem ein-
fachen Beispiel kennengelernt. Ein Kérper in der Hohe £~
iiber der Erdoberfldche besitzt die potentielle Energie
mgh.

Freilich darf man diese Formel nur dann benutzen,
wenn die Hohe A sehr viel kleiner als der Erdradius ist.

Da die Gravitationsenergie eine wichtige GroBe ist,
wire es interessant, eine Formel dafiir zu erhalten, die
fiir Korper in beliebiger Hohe iiber der Erdoberflidche
bzw. generell fiir zwei Massen gilt, die sich nach dem
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universellen Gesetz

F=pli
anziehen.

Nehmen wir einmal an, zwei Korper hitten sich
infolge gegenseitiger Anziehung einander angenihert. Ihr
Abstand betrug urspriinglich r, und betrdgt jetzt r,.
Dabei wird die Arbeit W = F (r; — r,) verrichtet. Als

Kraft mufl ihr Wert fiir einen Punkt in Mittellage ange-
setzt werden. Dann erhalten wir

W=x ml,mz (ry—r3).

Unterscheiden sich r; und r, nur wenig voneinander,
dann kann man rg;. durch das Produkt ryr, ersetzen.
Wir erhalten:

_ minme _ mimgy

W=y —=—=—v——.

Diese Arbeit wurde durch die Gravitationsenergie
verrichtet:

W = Wp — Wp,

worin W, der Anfangswert und sz der Endwert der
potentiellen Gravitationsenergie ist.

Durch Vergleich dieser beiden Formeln erhalten wir
fir die potentielle Energie den Ausdruck

Wp = —y a2 m1m2 .

Dieser Ausdruck &hnelt der Formel fiir die Gravita-
tionskraft, nur steht » im Nenner in der ersten Potenz.

Dieser Formel zufolge geht die potentielle Energie W,
fiir sehr groBie r gegen Null. Das ist verniinftig, da die
Anziehung bei so groBien Entfernungen bereits unmerklich
sein wird. Bei Annidherung der Korper jedoch mufl die
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potentielle Energie abnehmen. SchlieBlich wird die
Arbeit auf Kosten der potentiellen Energie verrichtet.

Was eine Abnahme, beginnend bei Null, bedeutet?
Die potentielle Energie muB negative Werte annehmen.
Darum steht auch das Minuszeichen in der Formel. —9 ist
kleiner als Null, und —10 ist wiederum kleiner als —5.

Handelt es sich dagegen um eine Bewegung in der
Nihe der Erdoberfliche, dann kann der allgemeine
Ausdruck fiir die Schwerkraft durch das Produkt mg
ersetzt werden, und es gilt mit grofer Genauigkeit
W — Wy, = mgh.

An der Erdoberﬂache besitzt ein Korper die poten-
tielle Energie —y—R— , worin R der Erdradius ist. In der

Hohe % iiber der Erdoberfliche gilt also:

M
Wp=—vy Tm +mgh.

Als wir die Formel fiir die potentielle Energie W, =
= mgh einfithrten, haben wir vereinbart, Héhe und
Energie ab der Erdoberfliche zu rechnen. Bei Benutzung
der Formel W = mgh vernachléssigen wir das konstante

Glied — 7 R ; wir nehmen an, es sei gleich Null. Da uns

nur Energiedifferenzen interessieren — gewohnlich wird
ja Arbeit gemessen, die eine Energiedifferenz darstellt —

spielt das konstante Glied —y ﬂ—%m in der Formel fiir die

potentielle Energie keine Rolle.

Die Gravitationsenergie bestimmt die Festigkeit der
Ketten, mit denen ein Korper an die Erde ,gefesselt” ist.
Was miissen wir tun, um diese Ketten zu zerreifien, um
zu erreichen, daf ein von der Erde weggeschleuderter
Korper nicht wieder zu ihr zuriickkehrt? Wie grof muf
die Mindestanfangsgeschwindigkeit des Korpers sein?

Mit zunehmender Entfernung von der Erde wird die
potentielle Energie des weggeschleuderten Korpers (eines

15+%
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Geschosses oder einer Rakete) wachsen (wihrend der
Absolutwert von W, sinkt); die kinetische Energie wird
abnehmen. Wird (fie kinetische Energie des Korpers
vorzeitig gleich Null, d. h., bevor wir die Gravitations-
fesseln des Erdballs] gesprengt haben, fillt das Geschof§
zuriick auf die Erde.

Der Kérper muB solange kinetische Energie behalten,
bis seine potentielle Energie praktisch auf Null sinkt.
Bevor das Geschof§ auf die Reise geschickt wurde, besaf§

es die potentielle Energie —yﬂ-g—m(M und R sind die

Masse bzw. der Radius der Erde). Daher miissen wir dem
GeschoB eine Geschwindigkeit vermitteln, bei der die
Gesamtenergie des Geschosses positiv wird. Ein Korper
mit negativer Gesamtenergie (wo der Absolutwert fiir
die potentielle Energie grofler als der Wert fiir die kine-
tische Energie ist) kann die Anziehungskraft der Erde
nicht iberwinden.

So erhalten wir eine einfache Bedingung. Um einen
Korper der Masse m von der Erde loszureiffen, muf§ die

potentielle Gravitationsenergie y A%n iiberwunden werden.

Das Gescho8 muf hierbei die sogenannte irdische
Fluchtgeschwindigkeit v, erreichen, die wir durch Gleich-
setzung der kinetischen und der potentiellen  Energie
leicht berechnen konnen:

V3 M M
m? ='V’Fm‘. d.h., v3=2y—,

oder, da g = v% ist:
V2 = 2gR.

Der nach dieser Formel berechnete Wert fiir v, betréigt
11 km/s (natiirlich ohne Beriicksichtigung des Widerstands
der Atmosphire). Diese Geschwindigkeit ist um den

Faktor /2 = 1,41 groBer als die Kreisbahngeschwindig-
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keit v; = }/gR, eines in der Nahe der Erdoberfliche
umlaufenden kiinstlichen Satelliten, d. h., es gilt v, =

= V§v1 .

Die Mondmasse betréigt nur '81—1 der Erdmasse und der
Mondradius nur % des Erdradius. Darum entspricht die

1 .
% ihres
Wertes auf der Erde, und zur Ablésung vom Mond ge-
niigt eine Geschwindigkeit von 2,5 km/s.

Die kinetische Energie iné—-vg wird zur Uberwindung der
Schwerkraft des Planeten verbraucht, von dem aus der
Start erfolgt. Wenn wir wollen, daf sich die Rakete
nach Uberwindung der Gravitation mit der Geschwindig-
keit v forthewegen soll, so ist dafiir die zusédtzliche Ener-

Gravitationsenergie auf dem Mond auch nur

gie ,,5_,,2 erforderlich. In diesem Fall miissen wir der
Rakete bei ,Fahrtantritt® die Geschwindigkeit

mvj _ mv} mv?
2 T2 +
vermitteln. Die drei Geschwindigkeiten, von denen hier

die Rede ist, sind also durch folgende einfache Beziehung
miteinander verbunden:

v =v; 4 v

Wie grof muB die Geschwindigkeit v, sein, die zur
Uberwindung der Gravitation von Erde und Sonne
gebraucht .-wird, die Mindestgeschwindigkeit eines Ge-
schosses also, das zu den fernen Sternen gesandt wird?
Wir haben diese Geschwindigkeit mit v, bezeichnet, weil
man sie als solare Fluchtgeschwindigkeit bezeichnet.

Bestimmen wir zuerst einmal die Geschwindigkeit,
die zur Uberwindung der Sonnenanziehung notwendig ist.




Physikalische K&rper 230

Wie wir soeben gezeigt haben, muBl ein GeschoB, das
den Bereich der Erdanziehung verlassen soll, beim Start
eine um den Faktor |/ 2 gréBere Geschwindigkeit als die
Kreisbahngeschwindigkeit eines Erdsatelliten haben. Die-
se Uberlegungen gelten gleichermaBien auch fiir die
Sonne, d. h., die Geschwindigkeit zum Entweichen aus
dem Bereich der Sonne ist um den Faktor )2 grofer
als die Geschwindigkeit des Sonnensatelliten (d. h. unse-
rer Erde). Da die Bahngeschwindigkeit der Erde um die
Sonne etwa 30 km/s betrdgt, entspricht die zum Verlassen
des Anziehungsbereichs der Sonne erforderliche Geschwin-
digkeit 42 km/s. Das ist ein sehr grofler Wert; doch wenn
man eine Rakete zu den Sternen schicken will, mufl man
natiirlich die Bewegung des Erdballs ausnutzen und den
Korper in die gleiche Richtung starten, in die sich auch
die Erde bewegt. Dann brauchen wir nur (42 — 30) km/s=
= 12 km/s zu ergiinzen.

Dies erlaub. uns die endgiiltige Berechnung der sola-
ren Fluchtgeschwindigkeit. Es ist die Geschwindigkeit,
mit der eine Rakete gestartet werden mulf}, damit sie
nach Verlassen des Bereichs der Erdanziehung noch eine
Geschwindigkeit von 12 km/s besitzt. Durch Einsetzen
in die gerade angegebene Formel erhalten wir:

v2 = (11 km/s)? 4 (12 km/s)?
und hieraus
vy = 16 km/s.

Fassen wir zusammen: Mit einer Geschwindigkeit von
etwa 11 km/s wird ein Korper zwar die Erde verlassen,
doch kommt er nicht ,weit*; die Erde 146t ihn entkom-
men, die Sonne aber nicht. Er verwandelt sich in einen
Sonnensatelliten.

Die fiir interstellare Reisen erforderliche Geschwindig-
keit betrigt also nur das Anderthalbfache der Geschwin-
digkeit, die man fiir Reisen im Sonnensystem,und zwar
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innerhalb der Erdbahn, braucht. Allerdings ist, wie
bereits gesagt wurde, jede merkliche Vergroflerung der
Anfangsgeschwindigkeit eines Geschosses mit groflen
technischen Schwierigkeiten verkniipft (siehe Abschnitt
»Reaktive Bewegung").

Wie sich die Planeten bewegen

Auf die Frage, wie sich die Planeten bewegen, gibt es
eine kurze Antwort: Sie gehorchen dem Gravitations-
gesetz. Denn an den Planeten greifen nur Gravitations-
kréafte an.

Da die Masse der Planeten sehr viel geringer als die
Sonnenmasse ist, spielen die Wechselwirkungskrifte
zwischen den Planeten keine grofie Rolle. Jeder Planet
bewegt sich nahezu so, wie es ihm einzig die Anziehungs-
kraft der Sonne vorschreibt, so, als existierten die ande-
ren Planeten iiberhaupt nicht.

Die Gesetze der Planetenbewegung um die Sonne
folgen aus dem Gravitationsgesetz.

Historisch gesehen, lagen die Dinge iibrigens anders.
Die Bewegungsgesetze der Planeten wurden vor Newton
und ohne Hilfe des Gravitationsgesetzes von Johannes
Kepler auf der Grundlage einer fast zwanzigjihrigen
Bearbeitung astronomischer Beobachtungen gefunden.

Die Bahnen, die die Planeten um die Sonne beschrei-
ben, sind nahezu kreisférmig.

Wie ist die Umlaufperiode eines Planeten mit seinem
Bahnradius verkniipft?

Die von seiten der Sonne auf einen Planeten wirkende
Schwerkraft ist

mM
=]

F=vy

Darin ist M die Sonnenmasse, m die Planetenmasse
und r der Abstand des Planeten zur Sonne.
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EF ist aber nach dem Grundgesetz der Mechanik nichts
anderes als eine Beschleunigung, und zwar die Zentri-

petalbeschleunigung:
Fo_ v
m T

Man kann die Planetengeschwindigkeit als den Kreis-

umfang 2ar, dividiert durch die Umlaufperiode T,
darstellen. Setzen wir v =—%?,—r und den Wert fiir die
Kraft F in die Beschleunigungsformel ein, so erhalten
wir:

4n2r WM

4n?!
FE T d.h., TZ—WT'3.

Der Proportionalitatsfaktor vor r® ist eine nur von
der Sonnenmasse abhingige Grofe und daher fiir alle
Planeten gleich. Fiir zwei Planeten gilt daher die Bezie-
hung

T3 _

P

Die Quadrate der Planetenumlaufzeiten verhalten
sich wie die dritten Potenzen ihrer Bahnradien. Dieses
interessante Gesetz hat Kepler aus Beobachtungen abge-
leitet. Das Gravitationsgesetz erklidrte dann Keplers
Beobachtungen.

Ein Kérper kann sich auf Grund von Gravitations-
kriaften auf den unterschiedlichsten Bahnen um einen
anderen bewegen. Allerdings gehéren sie, wie die Berech-
nung zeigt und wie Kepler fand, noch ehe man es berech-
nen konnte, samt und sonders zur Klasse der Ellipsen.

Bindet man einen Faden an zwei Stecknadeln, die in
einem Blatt Zeichenkarton stecken, spannt den Faden
mit der Bleistiftspitze und bewegt den Bleistift so, da8
der_Faden stets gespannt bleibt, dann entsteht auf dem
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Bild 6.5.

Papier schliefllich eine geschlossene Kurve, die Ellipse
(Bild 6.5). Dort, wo die Nadeln stecken, befinden sich
die Brennpunkte der Ellipse.

Ellipsen konnen verschiedene Formen haben. Wihlt
man den Faden sehr viel ldnger als den Abstand zwischen
den Stecknadeln, dann wird die Ellipse fast kreisférmig.
Ist die Fadenlinge dagegen nur etwas griofler als die
Entfernung zwischen den Stecknadeln, dann erhalten wir
eine langgestreckte, fast stabférmige Ellipse.

Die Planeten beschreiben Ellipsen, in deren einem
Brennpunkt sich die Sonne befindet.

Welche Art von Ellipsen beschreiben die Planeten?
Sie sind nahezu kreisférmig. .

Am stirksten weicht die Bahnform des sonnennéchsten
Planeten Merkur von der Kreisform ab. Aber auch hier
ist der groBte Ellipsendurchmesser nur um 2 % lénger
als der kleinste. Anders ist es bei den Bahnen kiinstlicher
Planeten. Sehen Sie sich Bild 6.6. an. Die Marsbahn ist
von einem Kreis nicht zu unterscheiden.

Die Sonne befindet sich allerdings in einem der
Brennpunkte der Ellipse, nicht in ihrem Mittelpunkt,
und darum &#ndern sich die Entfernungen der Planeten
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Marséahn
+ \ Bahn des kinstlichen
kS

*® Planeten

Bild 6.6.

von der Sonne stirker. Wenn wir durch die beiden Brenn-
punkte der Ellipse eine Gerade ziehen, dann schneidet
sie die Ellipse an zwei Stellen. Der sonnennichste Punkt
heifit Perihel, der sonnenfernste Aphel. Wenn der Merkur
im Perihel steht, befindet er sich anderthalbmal néher
an der Sonne als im Aphel.

Die wichtigsten Planeten beschreiben nahezu kreis-
formige Bahnen um die Sonne. Es gibt aber auch Him-
melskorper, die sich auf langgestreckten Ellipsen um die
Sonne bewegen. Die Kometen gehéren dazu. Thre Bahnen
lassen sich in bezug auf ihre Exzentrizitdt iiberhaupt
nicht mit den Planetenbahnen vergleichen. Von allen
Himmelskorpern, die sich auf elliptischen Bahnen bewe-
gen, kann man sagen, daf sie der Sonnenfamilie ange-
horen. Gelegentlich verirren sich aber auch ,Fremdlinge*
in unser System.

Man hat Kometen beobachtet, deren Bahnform den
SchluB zulieB, daf der Komet nicht wiederkehren wiirde
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Bild 6.7.

und daf er nicht zur Familie des Sonnensystems gehort.
Von solchen Kometen beschriebene ,offene* Kurven
heilen Hyperbeln.

Besonders rasch bewegen sich solche Kometen dann,
wenn sie an der Sonne voriiberfliegen. Das ist verstdnd-
lich: Die Gesamtenergie eines Kometen ist konstant, und
wenn er den geringsten Abstand von der Sonne hat,
besitzt er auch die geringste potentielle Energie. Also
muB seine kinetische Energie in diesem Fall am groften
sein. Natiirlich zeigt sich dieser Effekt bei allen Planeten,
auch bei unserer Erde. Freilich ist dieser Effekt gering-
fiigig, da die Differenz der potentiellen Energien im
Aphel und im Perihel klein ist.

Ein weiteres interessantes Gesetz der Planetenbewe-
gung ergibt sich aus dem Drehimpulserhaltungssatz.

In Bild 6.7. sind zwei Planetenpositionen eingezeich-
net. Von der Sonne, d. h. von einem Brennpunkt der
Ellipse aus, sind zwei Radien zu den Planetenpositionen
gezogen, und der so gebildete Sektor wurde schraffiert.
Nun wollen wir die Fliche ermitteln, die der Radius
in der Zeiteinheit iiberstreicht. Bei einem kleinen Winkel
kann der vom Radius in der Sekunde iiberstrichene Sek-
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tor durch ein Dreieck ersetzt werden. Die Grundlinie
des Dreiecks bildet die Geschwindigkeit v (d. h. der
Weg, der in einer Sekunde zuriickgelegt wird), und die
Hohe des Dreiecks ist gleich dem Geschwindigkeitsarm d.

Daher betrdgt die Dreiecksfldche 324.

Aus dem Drehimpulserhaltungssatz folgt die Konstanz
der Grofie mvd im Bewegungsverlauf. Bleibt jedoch mvd
unveridndert, dann #ndert sich auch die Dreiecksfliche
vd/2 nicht. Wir kénnen Sektoren fiir willkiirliche Zeit-
punkte zeichnen — sie werden stets flichengleich sein.
Die Planetengeschwindigkeit dndert sich, doch das, was
man als Flichengeschwindigkeit bezeichnen konnte,
bleibt konstant.

Nicht alle Sterne sind von Planeten umgeben. Dage-
gen findet man am Himmel verhdltnismifig viele Dop-
pelsterne. Hier rotieren zwei riesige Himmelskorper
umeinander.

Ihre ungeheure Masse 148t die Sonne zum Mittelpunkt
unseres Systems werden. Bei Doppelsternen dagegen
haben beide Himmelskorper nur geringfiigig voneinander
differierende Massen. Daher darf man in diesem Fall
nicht annehmen, daB sich der eine von beiden Sternen
in Ruhe befindet. Welchen Bewegungsverlauf hatten wir
jetzt? Wir wissen, dafl jedes geschlossene System einen
ruhenden (oder gleichférmig bewegten) Punkt, den
Trégheitspunkt, besitzt. Um diesen Punkt rotieren nun
beide Sterne. Dabei beschreiben sie #hnliche Ellipsen,

ml rl’" folgt (vgl. Abschnitt

Hoer Tragheitspunkt‘“). D1e Groflen der von beiden
Sternen beschriebenen Ellipsen verhalten sich gerade
umgekehrt wie ihre Massen (Bild 6.8.). Bei gleichen
Massen werden beide Sterne gleiche Bahnen um den
Trigheitspunkt beschreiben.

was aus der Bedingung
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Bild 6.8.

Fiir die Planeten des Sonnensystems bestehen ideale
Bedingungen: Sie sind keiner Reibung ausgesetzt.

Das gilt nicht fiir die von Menschenhand geschaffenen
kleinen kiinstlichen Himmelskérper, die Sputniks, denn
hier greifen Reibungskrifte, auch wenn sie anfangs sehr
geringfiigig, aber doch merklich sind, nachdriicklich in
ihre Bewegung ein.

Die Gesamtenergie eines Planeten bleibt konstant.
Die Gesamtenergie eines Sputniks dagegen nimmt bei
jedem Umlauf geringfiigig ab. Auf den ersten Blick
konnte es scheinen, als wiirde die Bewegung eines Sput-
niks durch Reibung verzégert. In Wirklichkeit ist gerade
das Gegenteil der Fall.

Erinnern wir uns vor allem daran, daff die Geschwin-

digkeit eines Sputniks }/' gR oder]/%l betrigt, worin R

den Abstand vom Erdmittelpunkt und M die Erdmasse
bedeutet.
Die Gesamtenergie eines Sputniks ist:

mv?

M
W=—v +5



Physikalische Kérper 238

Setzen wir den Geschwindigkeitswert des Sputniks
ein, so erhalten wir fiir die kinetische Energie den Aus-

druck ymz—f— . Wir sehen, daB die kinetische Energie nach

ihrem Absolutbetrag nur halb so grof ist wie die poten-
tielle; die Gesamtenergie betrdagt

Wenn Reibung auftritt, muf} die Gesamtenergie ab-
nehmen, d.h. (da sie ja negativ ist), ihr Absolutbetrag
muf} zunehmen; der Abstand R beginnt sich zu vermin-
dern: Der Sputnik sinkt. Was geschieht hierbei mit den
Energiekomponenten? Die potentielle Energie nimmt ab
(ihr Absolutbetrag wéchst), und die kinetische Energie
nimmt zu.

Trotzdem bleibt die Gesamtbilanz negativ, weil die
potentielle Energie doppelt so schnell abnimmt, wie die
kinetische zunimmt.

So verursacht die Reibung eine Beschleunigung und
keine Verzégerung des Sputniks.

Nun wird auch verstindlich, warum eine groBe Tri-
gerrakete den kleinen Sputnik iiberholt, den sie auf die
Bahn gebracht hat. Fiir die grofe, jedoch leere Rakete ist
die Reibung grofier.

Inferplanetare Reisen

Wir alle waren bereits Zeugen vieler Mondfliige. Auto-
matische und bemannte Raketen waren auf dem Mond
und sind wieder zuriickgekehrt.

Unbemannte Raketen waren auch schon auf dem Mars.
Der Besuch anderer Planeten, ihre Erforschung und die
Riickkehr bemannter oder automatischer Raketen zur
Erde stehen fiir die nichste Zukunft auf der Tagesordnung.

Die wichtigsten Gesetzméafigkeiten interplanetarer
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Reisen, und zwar insbhesondere das Funktionsprinzip der
Rakete und die Berechnung der Bahngeschwindigkeiten,
die zur Einrichtung von Satelliten an Himmelskérpern
oder zum Verlassen eines Planeten ,fiir immer* erforder-
lich sind, haben wir bereits geklart.

Als Beispiel fiir eine interplanetare Reise wollen wir
den Flug zum Mond betrachten. Um auf den Mond zu
gelangen, mu man die Rakete auf einen Punkt der
Mondbahn richten. Diesen Punkt muf8 der Mond gleich-
zeitig mit der Rakete erreichen. Man kann die Rakete auf
eine geradlinige Bahn schicken, der Bahn aber auch
einen beliebigen Anstellwinkel geben. Natiirlich ist
auch der waagerechte Flug nicht verboten. Damit das
GeschoB den Mond erreicht, mufl es die irdische Flucht-
geschwindigkeit erhalten.

Die verschiedenen Flugbahnen erfordern unterschied-
liche Treibstoffmengen, da sie sich durch die zur Be-
schleunigung notwendigen Verluste voneinander unter-
scheiden. Die Flugdauer héngt sehr stark von der Anfangs-
geschwindigkeit ab. Ist diese Geschwindigkeit minimal,
dann betrdgt die Flugdauer etwa fiinf Tage (120 h). Er-
héht man die Anfangsgeschwindigkeit um 0,5 km/s,
dann wird nur noch ein Tag bendétigt.

Auf den ersten Blick konnte es scheinen, dafl es zur
Landung auf dem Mond geniigt, den Anziehungsbereich
des Mondes mit der Erdgeschwindigkeit Null zu errei-
chen. Man glaubt, da8 der Apparat dann einfach auf den
Mond ,fillt“. Der Fehler dieser Uberlegung besteht in
folgendem. Wenn die Rakete relativ zur Erde die Ge-
schwindigkeit Null besitzt, dann hat sie relativ zum
Mond die Geschwindigkeit des Mondes, nur in umgekehr-
ter Richtung.

In Bild 6.9. ist die Bahn einer vom Punkt A gestarte-
ten Rakete dargestellt. Auch die Mondbahn ist einge-
zeichnet. Man konnte sich vorstellen, dal die ,,Wirkungs-
sphire“ des Mondes (innerhalb dieser Sphire steht die
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L

Bild 6.9.

Rakete praktisch nur unter dem Einfluff der ,Mondan-
ziehung*) sich auf dieser Bahn fortbewegt. Wenn die
Rakete im Punkt B in die Wirkungssphéare des Mondes
eingetreten ist, befindet sich der Mond selbst im Punkt
C und hat die Geschwindigkeit vpmona = 1,02 km/s.
Betriige die Geschwindigkeit der Rakete am Punkt B
relativ zur Erde Null, dann wire sie relativ zum Mond
jedoch gleich wvyna. Wir wiirden also ,,vorbeischieBen®.

Betrachten wir die Rakete vom Mond aus, dann kén-
pen wir sicher sein, da die Rakete rechtwinklig an der
Mondoberfliche auftrifft, wenn ihre Geschwindigkeit
gleich v ist. Wie muBl nun ein Mathematiker vorgehen,
der die optimale Raketenbahn und -geschwindigkeit be-
rechnet? Er muB} offenbar erreichen, dafl die Rakete am
Punkt B nicht mit der Geschwindigkeit Null, sondern
mit der Geschwindigkeit V (die in Bild 6.9. ebenfalls
dargestellt ist) eintrifft. Die Berechnung dieser Ge-
schwindigkeit wiederum macht keine Schwierigkeiten,
wenn man das im gleichen Bild dargestellte Geschwindig-
keitsparallelogramm benutzt.

Trotzdem haben wir einen gewissen Spielraum. Der
Vektor der Geschwindigkeit v mufl nicht unbedingt auf
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den Mondmittelpunkt zeigen. AuBerdem liBt auch die
Anziehungskraft des Mondes selbst die zuliissigen Fehler
etwas grofer werden.

Doch alle diese Toleranzen sind, wie Berechnungen
zeigen, aullerordentlich gering, und die Genauigkeit
der Werte fiir die Anfangsgeschwindigkeit muB in der
GroBlenordnung einiger Meter in der Sekunde liegen.
Der Winkel, unter dem die Rakete gestartet wird, muB
auf ein Zehntel Grad genau eingestellt werden, und die
Startzeit darf sich von der berechneten Zeit um héchstens
einige Sekunden unterscheiden.

Jetzt trifft die Rakete mit einer von Null verschiede-
nen Geschwindigkeit in den Wirkungsbereich des Mondes
ein. Die Berechnung ergibt, dafl diese Geschwindigkeit
V gleich 0,8 km/s sein muff. Durch die Anziehungskraft
des Mondes wird die Geschwindigkeit erhoht; die Beriih-
rung der Mondoberfliche erfolgt bei der Geschwindigkeit
2,5 km/s. Das geht natiirlich nicht, denn der Apparat
wirde durch diesen Aufprall zerstort werden. Es gibt
keinen anderen Ausweg, als die Geschwindigkeit durch
ein Bremstriebwerk herabzusetzen. Um eine sogenannte
weiche Landung durchzufilhren, mufl eine ganze Menge
Treibstoff ,verpulvert“ werden. Die Formel von Seite
Mﬁﬁzeigt, dafl die Rakete auf den 2,7ten Teil ,,abmagern*
muf.

Wenn wir zuriickkehren wollen, mufl die Rakete nach
erfolgter Landung auf dem Mond noch einen Treibstoff-
vorrat besitzen. Der Mond ist ein ,kleiner Kérper. Sein
Radius betrdgt 1737 km und seine Masse 7,35-10%2 kg.
Man kann leicht ausrechnen, daB die fiir den Start eines
kiinstlichen Mondsatelliten bendtigte Kreisbahngeschwin-
digkeit 1680 m/s erfordert, wihrend die lunare Flucht-
geschwindigkeit 2375 m/s betrigt. Um also den Mond
verlassen zu konnen, miissen wir der Rakete eine Ge-
schwindigkeit von etwa 2,5 km/s verleihen. Bei dieser
kleinsten Anfangsgeschwindigkeit kehren wir nach fiin{

16—-01178
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Tagen mit der bekannten Geschwindigkeit von etwa
11 km/s zur Erde zuriick.

Der Eintritt in die Erdatmosphire muf} mit einer
bestimmten Neigung erfolgen, um Uberlastungen im
Fall eines bemannten Raumschiffs zu vermeiden. Aber
selbst wenn es sich um die Landung eines Automaten
handelt, muBl man diesen erst einige Zeit unter stdndiger
Verringerung des Ellipsendurchmessers um die Erde
kreisen lassen, damit die Raketenhiille nicht iiberhitzt

wird.

Wenn es den Mond nicht gibe

Als wir uns friher iiberlegten, welche Krifte auf ein
Buch wirken, das auf einem Tisch liegt, haben wir, ohne
zu zdgern, festgestellt: die Erdanziehung und die Reak-
tionskraft. Strenggenommen, wird das Buch freilich
auch vom Mond, von der Sonne, ja sogar von den Sternen
angezogen.

Der Mond ist unser ndchster Nachbar. Vergessen wir
einmal die Sonne und die Sterne und iiberlegen uns,
wie sich die Gewichtskraft eines Korpers auf der Erde
unter dem EinfluB des Mondes veridndert.

Erde und Mond bewegen sich relativ zueinander.
Relativ zum Mond bewegt sich die Erde als Ganzes
(d. h. alle Punkte der Erde) mit der Beschleunigung

7-;%; m ist die Mondmasse und r der Abstand vom Mittel-

punkt des Mondes zum Mittelpunkt der Erde.
Betrachten wir nun einen Gegenstand, der auf der
Erdoberfliche liegt. Wir wollen wissen, wie sich ihre
Gewichtskraft unter dem EinfluB des Mondes &n-
dert. Die irdische Gewichtskraft ergibt sich aus der
Beschleunigung in bezug auf die Erde: Uns interes-
siert also, um wieviel sich die Beschleunigung eines
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Bild 6.10. Bild 6.11.

auf der Erdoberfliche liegenden Gegenstandes beziiglich
der Erde unter dem EinfluB des Mondes dndert.

Die Beschleunigung der Erde relativ zum Mond ist
ym/r?, die Beschleunigung eines auf der Erdoberfliche
liegenden Gegenstandes relativ zum Mond dagegen
ym/r}; ry ist der Abstand des Korpers vom Mondmittel-
punkt (Bild 6.10.).

Wir miissen die zusdtzliche Beschleunigung des Kor-
pers relativ zur Erde ermitteln: Sie ist gleich der geome-
trischen Differenz der entsprechenden Beschleunigungen.

Die GroSBe ?;Z—’ ist fiir die Erde eine konstante Zahl;

16*
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im Gegensatz dazu 1st— fir verschiedene Punkte an

der Erdoberfliche untelschledllch Also wird auch die
uns interessierende geometrische Differenz fiir verschiede-
ne Orte auf dem Erdball unterschiedlich sein.

Wie gro8 ist die Erdschwere am mondnéchsten, mond-
fernsten und einem relativ dazu mittleren Punkt?

Zur Ermittlung der vom Mond verursachten Beschleu-
nigung des Korpers relativ zum Erdmittelpunkt, d. h.
der Korrektur des Wertes g, mufl man von der Grofle
ym

“ an den genannten Stellen des Erdballs (die hellen
1

Pfeile in Bild 6.11.) die konstante Grofe %subtrahieren.
Dabei mufl man beriicksichtigen, dafl die Beschleunigung
yrm der Erde relativ zum Mond — parallel zur Verbin-

dungshme zwischen dem Erd- und Mondmittelpunkt ge-
richtet ist. Die Subtraktion eines Vektors ist gleichbe-
deutend mit der Addition des umgekehrten Vektors.

Die Vektoren _yr_:z sind im Bild durch fettgedruckte

Pfeile dargestellt.

Durch Addition der im Bild dargestellten Vektoren
erhalten wir das, was uns interessiert: die infolge des
Mondeinflusses elntretende Anderung der Fallbeschleu-
nigung an der Erdoberfldche.

" Am mondnéchsten Punkt ist die resultierende zusétz-
liche Beschleunigung gleich:

m m
Ly - R
sie ist auf den Mond gerichtet. Die Erdschwere nimmt
ab, ein Koérper am Punkt 4 wird somit leichter, als er
es bei Abwesenheit des Mondes wire.
Beriicksichtigt man, da R sehr viel kleiner als r
ist, so kann man die oben angegebene Formel vereinfa-
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chen. Bringt man sie auf einen gemeinsamen Nenner,
dann erhdlt man:

ymR (2r—R)
r*(r—R)Z2 °
Vernachlédssigt man in den Klammern die verhéltnis-
miBig kleine Grofe R, die von den bedeutend groferen
Grofen r bzw. 2r subtrahiert wird, so ergibt sich
2ymR
r3 .

Nun begeben wir uns zu den Antipoden. Im Punkt
B ist die vom Mond verursachte Beschleunigung nicht
grofler, sondern kleiner als die Gesamtbeschleunigung der
Erde. Allerdings befinden wir uns jetzt auf der mondfer-
nen Seite des Erdballs. Die Verminderung der Anziehungs-
kraft durch den Mond fiihrt auf dieser Seite des Erdballs
zum gleichen Ergebnis wie die VergréBerung der Anzie-
hung im Punkt 4, ndmlich zur Verminderung der Fall-
beschleunigung. Das Ergebnis ist unerwartet: Der Korper
wird auch hier unter dem Einfluff des Mondes leichter.

Die Differenz

m m __, _ 2ymR
VR TN T

ist nach dem Absolutbetrag ebensogroff wie im Punkt 4.

Anders liegen die Dinge auf der Mittellinie. Hier
schliefen die Beschleunigungen einen Winkel miteinan-
der ein, und die Subtraktion der Gesamtheschleunigung

der Erde durch den Mond 7-:Tm und die Beschleunigung
eines auf der Erde liegenden Gegenstandes durch den
Mond 1’7? mufl geometrisch erfolgen (Bild 6.12.). Wir

1
entfernen uns nur ganz geringfiigig von der Mittellinie,
wenn wir den Kérper auf der Erde so anordnen, daB r,
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Bild 6.12.

und r den gleichen Betrag haben. Die vektorielle Diffe-
renz der Beschleunigungen bildet die Grundlinie eines
gleichschenkligen Dreiecks. Aus der Ahnlichkeit der in
Bild 6.12. dargestellten Dreiecke ist zu erkennen, daB
die gesuchte Beschleunigung im gleichen Verhdltnis

kleiner als 7;—': ist wie R kleiner als r ist. Demzufolge

ist die gesuchte Ergénzung zu g auf der Mittellinie der
Erdoberfliache gleich

ymR

3
ZahlenméaBig ist dies die Hélfte der Schwachung der
Erdanziehungskraft an den Grenzpunkten. Was nun
die Richtung dieser Zusatzbeschleunigung betrifft, so
fallt sie, wie aus der Zeichnung ersichtlich, hier praktisch
mit der Vertikalen am betreffenden Punkt der Erdober-
fliche zusammen. Die Beschleunigung ist nach unten
gerichtet und fiihrt zur Vergroferung der Gewichtskraft.
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Der Einflul des Mondes auf die irdische Mechanik
besteht also in einer Anderung der Gewichtskraft der auf
der Erdoberfldche befindlichen Korper. Dabei nimmt die
Gewichtskraft am mondnédchsten und am mondfernsten
Punkt ab, wihrend sie auf der Mittellinie zunimmt,
und im letztgenannten Fall ist die Gewichtsidnderung
nur halb so grof§ wie im erstgenannten.

Natiirlich sind die hier angestellten Uberlegungen
fiir jeden Planeten, fiir die Sonne und fiir die Sterne
zutreffend.

Wie man leicht nachrechnen kann, liefern sowohl
die Planeten als auch die Sterne nur einen verschwin-
denden Bruchteil der lunaren Beschleunigung.

Die Wirkung eines beliebigen Himmelskorpers mit
der des Mondes zu vergleichen ist ganz einfach: Man muf
die Zusatzbeschleunigungen dieses Korpers durch die
»Mondzugabe* dividieren:

3
ymR  VMond R~ m . TMond

: 3
s Mond MMond 8

Dieses Verhiltnis ist nur fiir die Sonne nicht viel
kleiner als Eins. Die Sonne ist zwar viel weiter von uns
entfernt als der Mond, doch dafiir ist die Sonnenmasse
auch einige Dutzend Millionen Mal griofler als die Mond-
masse.

Durch Einsetzen der Zahlenwerte finden wir, daB
die Anderung der Erdschwere unter dem EinfluB des
Mondes das 2,17fache dieser Anderung durch den Einflu
der Sonne betrigt.

Nun schédtzen wir ab, um wieviel sich die Gewichts-
kraft von Korpern auf der Erde édndert, wenn der
Mond seine Bahn um die Erde verliee. Durch Einsetzen

der Zahlenwerte in den Ausdruck 2’;':1? finden wir,

daB die lunare Beschleunigung der Grofenordnung
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0,0001 cm/s? liegt, d. h., einem Zehnmillionstel Gramm
entspricht.

So gut wie nichts, konnte man denken. Hat es sich
denn eines so verschwindend geringen Effekts wegen
gelohnt, die Losung einer recht komplizierten Aufgabe
der Mechanik mit Anstrengung zu verfolgen? Bitte ziehen
Sie keinen voreiligen Schlufl. Dieser ,verschwindend
geringe” Effekt ist die Ursache von Ebbe und Flut. Er
erzeugt alle 24 Stunden 10 J kinetische Energie durch
Bewegung riesiger Wassermassen. Dieser Energiebetrag
entspricht der Energie aller Fliisse des Erdballs.

GewiB, prozentual ist die berechnete Anderung sehr
klein. Ein Koérper, der um einen ebenso ,verschwindend
geringen“ Betrag leichter wird, entfernt sich vom
Erdmittelpunkt. Der FErdradius betrdgt allerdings
6 000 000 m, und die verschwindend geringe Abweichung
macht dann bereits einige Dutzend Zentimeter aus.

Angenommen, der Mond wiirde seine Bewegung rela-
tiv zur Erde unterbrechen und irgendwo iiber dem Ozean
scheinen. Die Berechnung zeigt, dal der Wasserspiegel
an dieser Stelle um 54 cm steigen miiite. Der gleiche
Anstieg wire an den Antipoden festzustellen. Auf der
Mittellinie zwischen diesen beiden Grenzpunkten miiB-
te der Meeresspiegel um 27 cm sinken.

Weil sich die Erde um ihre eigene Achse dreht, verla-
gern sich die Hebungen und Senkungen des Ozeans stidn-
dig. So kommen die Gezeiten zustande. Im Verlauf von
etwa sechs Stunden steigt der Wasserspiegel, und es
kommt zur Flut. Danach beginnt die Ebbe, die ebenfalls
sechs Stunden dauert. Im Verlauf eines jeden Mondta-
ges tritt zweimal eine Flut und zweimal eine Ebbe ein.
Das Bild der Gezeiten gestaltet sich infolge der Reibung
zwischen den Wasserpartikeln sowie wegen der Gestalt
des Meeresbodens und der Kiistenlinie sehr kompli-
ziert.

Im Kaspisee sind Ebbe und Flut einfach deshalb
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unmaoglich, weil sich die Gesamtoberfliche dieses Sees
stets gleichzeitig unter gleichen Bedingungen befindet.

Auch in Binnenmeeren, die nur durch lange, schma-
le Meerengen mit dem Ozean verbunden sind, lassen
sich keine Gezeiten beobachten (dies gilt z. B. fiir das
Schwarze Meer und die Ostsee).

Besonders starke Fluten treten in schmalen Buchten
auf, wo die aus dem Ozean kommende Flutwelle eine
grofle Hohe erreicht. In der Gishiga-Miindung am Ochots-
kischen Meer erreicht die Fluthohe beispielsweise einige
Meter.

Ist das Kiistengebiet dagegen hinreichend flach (bei-
spielsweise in Frankreich), so kann der Anstieg des Wassers
wiéhrend der Flut die Lage der Grenze zwischen Land
und Meer um viele Kilometer verschieben.

Die Gezeitenerscheinungen behindern die Erde bei
ihrer Drehung. Die Bewegung der Gezeitenwellen ist ja
mit Reibung verbunden. Zur Uberwindung dieser Rei-
bung — sie wird als Gezeitenreibung bezeichnet —
mull Arbeit aufgewendet werden. Daher nimmt die
Rotationsenergie ab und mit ihr die Drehgeschwindigkeit
der Erde um ihre Achse.

Diese Erscheinung fiihrt auch zur Verldngerung des
Tages, wovon auf Seite 15 die Rede war.

Die Gezeitenreibung macht auch verstindlich, warum
der Mond unserer Erde immer dieselbe Seite zeigt.

Irgendwann einmal war der Mond wahrscheinlich
fliissig. Die Drehung dieser fliissigen Kugel um die Erde
hatte eine sehr starke Gezeitenreibung zur Folge, die die
Drehbewegung des Mondes um seine Achse allméhlich
verlangsamte. Schlieflich hérte die FEigendrehung des
Mondes relativ zur Erde auf, es gab auf dem Mond keine
Gezeiten mehr, und zugleich entzog der Mond die eine
Halfte seiner Oberfliche unserem Blick.
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Die hydraulische Presse

Die hydraulische Presse ist eine sehr alte Maschine, die
ihre Bedeutung jedoch bis in unsere Tage bewahrt hat.

Sehen Sie sich einmal di¢ in Bild 7.1. dargestellte
hydraulische Presse an. In einem offenen wassergefiillten
Gefall befinden sich zwei bewegliche Kolben: ein kleiner
und ein grofer. Driickt man den einen Kolben mit der
Hand nieder, dann wird der Druck auf den anderen
Kolben iibertragen, und dieser steigt nach oben. Soviel
Wasser der eine Kolben ins Innere des Gefafles driickt, so-
viel Wasser steigt auch iiber die urspriingliche Marke des
zweiten Kolbens.

Bezeichnet man die Kolbenflichen mit A, bzw. A4,
und die Verschiebungen der Kolben mit I, bzw. l,, dann
liefert die Volumengleichung: A1, = A4,l, oder

h_ 4
I, 4,

Wir miissen nun die Gleichgewichtsbedingungen fiir
die Kolben in Erfahrung bringen.

Das ist nicht schwer, wenn man daran denkt, daf
die Arbeit der im Gleichgewicht stehenden Krafte gleich
Null sein muB. Also miissen die Arbeiten der an den
Kolben angreifenden Krifte der Lagednderung der Kol-
ben gleich sein (aber unterschiedliche Vorzeichen haben).

Demnach gilt

F, l
Fl, = F,l, oder 7,%=-i .
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Bild 7.1.

Aus dem Vergleich mit der vorangehenden Gleichung
erkennen wir, daf

Fy 4y

F, 4
ist.

Diese unscheinbare Gleichung ertffnet die Moglich-
keit einer ungeheuren Kriftevervielfachung. Der Kolben,
der den Druck iibertrdgt, kann eine 100- oder 1000fach
kleinere Fldche besitzen. Die auf den groBen Kolben
wirkende Kraft wird sich dabei um den gleichen Faktor
von der Muskelkraft unterscheiden.

Mittels hydraulischer Pressen kann man Metalle
schmieden und pressen, Weintrauben keltern und Lasten
heben.

Natiirlich mufl man fiir den Kraftgewinn einen linge-
ren Weg in Kauf nehmen. Um einen Korper unter der
Presse um 1 cm zusammenzudriicken, mufl die Hand
einen Weg zuriicklegen, der soviel grofer ist, wie sich
die Krifte F, und F, voneinander unterscheiden.

Das Verhidltnis TI;- bezeichnen die Physiker als Druck

(und verwenden dafiir den Buchstaben p). Statt zu sagen:
Die Kraft 1 N wirkt auf die Fliche 1 m?, werden wir
einfach vom Druck p = 1 Pa sprechen.
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Statt des Verhiltnisses ? = %’l kénnen wir jetzt
1 1
schreiben:
Fy _ Py

22—= 4, d.h., py= p..

Der Druck an beiden Kolben ist gleich.

Unsere Uberlegung ist unabhingig davon, wo die
Kolben angeordnet sind und ob ihre Oberflichen waage-
recht, senkrecht oder geneigt sind. Es geht ja auch gar
nicht um die Kolben. Wir kénnen in Gedanken zwei
beliebige Abschnitte einer Fliche wihlen, die eine Fliis-
sigkeit umschliet, und sagen, daf der Druck an dieser
Fldche iiberall gleich ist.

So stellt sich heraus, daBl der Druck im Inneren einer
Fliissigkeit an allen Punkten und in allen Richtungen
gleich ist. Anders ausgedriickt: Auf eine Flidche bestimm-
ter GroBe wirkt stets die gleiche Kraft, wo und wie diese
Fliche auch immer angeordnet ist. Diese Feststellung
wird als Pascalsches Gesetz bezeichnet.

Hydrostatischer Druck

Das Pascalsche Gesetz gilt fiir Fliissigkeiten und Gase.
Einen wichtigen Umstand berilicksichtigt es allerdings
nicht: die Existenz der Gewichtskraft.

Unter irdischen Bedingungen darf man das nicht ver-
gessen. Auch Wasser erzeugt, Gewichtskraft! Darum wer-
den zwei in unterschiedlicher Tiefe im Wasser befindliche
Fliachen unterschiedlichen Driicken ausgesetzt sein. Wie
groB ist der Unterschied? Stellen wir uns einen geraden
Zylinder mit waagerechten Deckflachen in einer Fliissig-
keit vor, die im Zylinderinneren befindliche Fliissigkeit
driickt auf die Fliissigkeit der Umgebung. Die Gesamt-
kraft dieses Drucks ist gleich dem Wert mg der Fliis-
sigkeit im Zylinder (Bild 7.2.). Diese Gesamtkraft setzt
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Bild 7.2

sich aus den Kréften zusammen, die auf den Boden des
Zylinders und auf seine Seitenfldche driicken. Die Kréfte
jedoch, die auf die gegeniiberliegenden Seiten der Man-
telfliche wirken, sind sich im Betrag gleich und in der
Richtung entgegengesetzt. Darum ist die Summe aller
auf den Mantel wirkenden Krifte gleich Null. Die Ge-
wichtskraft mg ist gleich der Kraftdifferenz F, — F,.
Ist die Hohe des Zylinders gleich 4, die Bodenfliche
gleich A und die Dichte der Fliissigkeit gleich p, dann
kann man statt mg auch pghA schreiben. Diese Grifle
ist gleich der Kraftdifferenz. Um die Druckdifferenz zu
erhalten, muf} die Gewichtskraft durch die Fliche A4 di-
vidiert werden. Die Druckdifferenz ist gleich pgh.
Nach dem Pascalschen Gesetz ist der Druck an ver-
schieden ausgerichteten, aber in der gleichen Tiefe befind-
lichen Fldchen gleich. Die Druckdifferenz zwischen
zwei Punkten in einer Fliissigkeit, von denen sich der
eine in der Hohe % oberhalb des anderen Punkts befindet,
ist demnach gleich der Gewichtskraft der Fliissigkeits-
sdule mit dem Querschnitt Eins und der Hoéhe A:

ps — P1 = pgh.

Der durch die Schwere des Wassers verursachte Druck
heiffit hydrostatischer Druck.

Auf der freien Oberfléche einer Fliissigkeit lastet un-
ter irdischen Bedingungen meist die Luft. Der Luftdruck
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<4

Bild 7.3.

heiflt atmosphérischer Druck. Der unter Wasser herr-
schende Druck setzt sich aus dem atmosphéirischen
Druck und dem hydrostatischen Druck zusammen.

Um die Druckkraft von Wasser zu berechnen, mufl
man die GroBe der Fldche kennen, an der die Druckkraft
angreift, sowie die Hohe der Fliissigkeitssdule iiber
dieser Flidche. Alles andere spielt auf Grund des Pascal-
schen Gesetzes keine Rolle.

Das konnte seltsam anmuten. Ist die Kraft, die auf
die gleich groBen Bodenflichen der beiden in Bild 7.3.
dargestellten Gefifle wirkt, wirklich gleich? Im linken
GefaB ist doch viel mehr Wasser. Dessenungeachtet sind
die auf den Boden wirkenden Krifte in beiden Fillen
gleich pghA. Das ist mehr als die Gewichtskraft
des Wassers im rechten Gefidff und weniger als im linken
GefdB. Im linken GefdB iibernehmen die Wandungen der
Gewichtskraft des ,liberfliissigen® Wassers, wihrend
sie rechts gerade umgekehrt Reaktionskridfte zur Ge-
wichtskraft des Wassers ergénzen. Dieser Vorgang wird
gelegentlich als hydrostatisches Paradoxon bezeichnet.

Steht Wasser in zwei Gefdlen unterschiedlicher Form
gleich hoch und verbindet man beide durch ein Rohr,
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dann fliefit kein Wasser aus dem einen Gefafl ins andere.
Das konnte nur dann geschehen, wenn der Druck in den
Gefdflen unterschiedlich wire. Da dies aber nicht der
Fall ist, steht die Fliissigkeit in kommunizierenden
GefdBen unabhingig von deren Form stets in ein und
derselben Hohe.

Sind die Wasserstiinde in kommunizierenden Gefidfen
dagegen verschieden, dann fliefit das Wasser so lange aus
einem Gefdl in das andere, bis der Unterschied ausgegli-
chen ist. Der Wasserdruck ist viel grof3er als der Luftdruck.
In 10 m Tiefe ist der Wasserdruck doppelt so grof} wie
der Atmosphirendruck, und in 1 km Tiefe betrdgt er
10 MPa).

Der Ozean ist an einigen Stellen iiber 10 km tief.
Die Druckkrifte des Wassers sind in solchen Tiefen au-
Berordentlich groB. Holzstiicke, die auf 5 km Tiefe hinun-
tergelassen werden, verdichten sich so sehr, daf} sie nach
dieser ,Taufe* in einem Wasserfa untergehen wie Ziegel-
steine.

Dieser ungeheure Druck ist bei der Erforschung des
Lebens im Meer sehr hinderlich. Beim Tieftauchen erfolgt
der Abstieg in Stahlkugeln, sogenannten Bathysphiren
oder Bathyskaphen, die einem Druck von iiber 100 MPa
standhalten miissen.

Der Atmosphérendruck

Wir leben am Boden des Luftozeans, der Atmosphire.
Jeder Korper, jedes Sandkorn, iiberhaupt jeder Gegen-
stand, der sich auf der Erde befindet, ist dem
Luftdruck ausgesetzt.

Der Atmosphirendruck ist gar nicht so gering. Auf
jeden Quadratzentimeter Korperoberfliche wirkt eine
Kraft von etwa 10 N.

Die Ursache des Atmosphirendrucks ist offenkundig.
Wie das Wasser hat auch die Luft eine Gewichtskraft
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Bild 7.4.

und verursacht daher einen Druck, der gleich der
Gewichtskraft der Luftsdule ist, die sich iiber dem
Korper befindet. Je hoher wir ins Gebirge hinaufsteigen,
um so weniger Luft haben wir dann noch iiber uns, und
um so kleiner wird auch der Atmosphirendruck.

Fiir wissenschaftliche und praktische Zwecke muf}
man diesen Druck messen kénnen. Dafiir gibt es spezielle
Gerite, die Barometer.

Die Herstellung eines Barometers ist simpel. Man
fiillt ein einseitig geschlossenes Rohr mit Quecksilber,
verschlieft das offene Ende mit dem Finger, dreht das
Rohr um und taucht es nun mit dem offenen Ende in
eine Schale mit Quecksilber. Dabei senkt sich das Queck-
silber im Rohr, lduft aber nicht aus. Der im Rohr iiber
dem Quecksilber entstehende Raum ist ohne Zweifel
luftleer. Das Quecksilber wird durch den &ufleren Luft-
druck auf seinem Stand im Rohr gehalten (Bild 7.4.).

Gleichgiiltig, wie grof wir das Schilchen mit dem
Quecksilber wihlen oder welchen Durchmesser das Rohr
hat, die Héhe der Quecksilbersidule betrigt stets etwa
76 cm.

Ist das Rohr dagegen kiirzer als 76 cm, dann bleibt es
vollstandig mit Quecksilber gefiillt; es bildet sich kein
leerer Raum iiber dem Quecksilber aus. Eine Quecksil-
bersdule von 76 cm Héhe driickt mit der gleichen Kraft
auf ihre Unterlage wie die Atmosphére. Bei einer Grund-
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fliche von 1 cm? betrdgt diese Kraft 10,33 N. Diese Zahl
ergibt sich aus dem Quecksilbervolumen 1 X 76 cm?®
multipliziert mit der Dichte des Quecksilbers und der
Fallbeschleunigung.

Wie Sie sehen, entspricht der mittlere, oder wie man
auch sagt, normale Atmosphirendruck, dem jeder Erd-
bewohner ausgesetzt ist, ungefihr dem Druck, der ent-
steht, wenn man auf 1 cm? Fldche ein Wigestiick der
Masse 1 kg stellt.

Bei der Druckmessung bedient man sich verschiedener
Einheiten. Oft wird einfach nur die Hohe der Quecksil-
bersdule in Millimetern angegeben. So sagt man, daf
der Druck heute z. B. iiber normal liegt und 760 mm
Hg-Saule betrégt.

Gelegentlich bezeichnet man einen Druck von 760
mm Hg-Sdule als physikalische Atmosphéare (atm). Da
sich die physikalische und die technische Atmosphire
nur wenig voneinander unterscheiden, wollen wir im
folgenden nicht besonders erwdhnen, von welcher Atmo-
sphire die Rede ist. Physiker benutzen oft auch die Druck-
einheit bar (1 bar = 1-10% Pa). Der normale Atmosphi-
rendruck betrdgt ungefdhr 1013 Millibar.

Im SI gilt die Druckeinheit Pascal (Pa); sie ist defi-
niert als die Wirkung der Kraft 1 N auf die Flidche 1 m?2.
Das ist ein sehr geringer Druck, was man schon daran
erkennt, dal 1 Pa =1 N/m? = 10-® bar.

Berechnen wir die Erdoberfliche nach der Formel
4nR?%, so finden wir, daB die Gewichtskraft der Atmo-
sphére insgesamt durch die ungeheuer grofie Zahl 5-10° N
angegeben werden muS8.

Man kann dem Barometerrohr die unterschiedlichsten
Formen geben, wichtig ist nur eins: Ein Ende des Rohres
muB so verschlossen sein, daf sich iiber der Quecksilber-
oberfliche keine Luft befindet. Der andere Quecksilber-
spiegel  dagegen mul unter  Atmosphédrendruck
stehen.

1/ 17-01178
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Mit dem Quecksilberbarometer kann der Atmosphéaren-
druck sehr genau gemessen werden. Natiirlich braucht
man nicht unbedingt Quecksilber zu nehmen; auch jede
andere Flissigkeit ist geeignet. Allerdings ist Quecksil-
ber die schwerste Fliissigkeit, so daBl eine Quecksilbersidu-
le bei Normaldruck im Verhidltnis die geringste Hohe
hat.

Ein sehr bequemes Geridt ist das Quecksilberbarome-
ter nicht. Da Quecksilberddmpfe giftig sind, sollte man
die Quecksilberoberfliche nicht unbedeckt lassen, und
auflerdem 148t sich das Gerdt schlecht transpor-
tieren.

Metallbarometer, sogenannte Aneroidbarometer (d.h.
luftleere Barometer) haben diese Mingel nicht. Ein
Barometer dieser Art haben Sie alle schon gesehen. Es
ist eine kleine runde Metalldose mit einer Skala und
einem Zeiger. Auf der Skala sind die Druckwerte aufge-
tragen.

Die Metalldose wurde luftleer gepumpt. Der Dosen-
deckel wird durch eine starke Feder unterstiitzt, da er
sonst vom Luftdruck eingedriickt wiirde. Bei Druckén-
derungen wolbt sich der Deckel nach innen oder nach
auflen. Der Zeiger ist so mit dem Deckel verbunden, daf3
die Wolbung des Deckels nach innen den Zeiger nach
rechts auslenkt.

Die Eichung dieses Barometers erfolgt durch Ver-
gleich mit der Anzeige eines Quecksilberbarometers. Ver-
gessen Sie vor dem Druckablesen nicht, mit dem Finger
an das Barometer zu klopfen. Der Zeiger ist starker Rei-
bung ausgesetzt und bleibt gewdhnlich beim ,Wetter von
gestern hingen.

Auf dem Atmosphirendruck beruht eine einfache
Vorrichtung, der Saugheber.

Sie mochten jemandem helfen, der kein Benzin mehr
hat, und stehen vor der Frage, wie Sie Benzin aus dem
Tank des eigenen Fahrzeugs entnehmen sollen. Schlie8-
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Bild 7.5.

lich kann man ein Auto nicht wie einen Wasserkessel
ankippen.

Hier hilft ein Schlauch. Man steckt ein Ende des
Schlauches in den Tank und saugt am anderen Ende mit
dem Mund die Luft heraus. Dann driickt man das offene
Ende schnell mit den Fingern zusammen und bringt es
in eine Hohe unterhalb des Tanks. Jetzt kann man wieder
loslassen, und das Benzin fliefit von selbst aus dem
Schlauch (siehe Bild 7.5.).

Der gebogene Schlauch ist nichts anderes als ein
Saugheber. Die Fliissigkeit bowegt sich darin wie in ei-
nem geraden geneigten Rohr. In beiden Fillen flieft
die Fliissigkeit im Endeffekt nach unten.

Damit ein Saugheber funktioniert, mull der Atmosphé-
rendruck vorhanden sein: Er ,stiitzt“ die Fliissigkeit
und 148t die Flissigkeitssdule im Rohr nicht abreifen.
Wire kein Atmosphérendruck vorhanden, dann wiirde
die Sdule am hochsten Punkt des Schlauches auseinan-
derreiflen, und die Fliissigkeit wiirde in beide Gefifle
ablaufen.

Der Saugheber beginnt seine Arbeit, sobald die Fliissig-
keit an der Auslaufseite des Schlauches unter den Spiegel
der zu fordernden Fliissigkeit gelangt, in der das andere
Ende des Schlauches steckt. Im gegenteiligen Fall lauft
die Fliissigkeit zuriick.

17*



Physikalische Kdrper 260

Wie man vom Atmosphéarendruck erfuhr

Bereits die alten Zivilisationen kannten Saugpumpen.
Mit ihrer Hilfe konnte Wasser auf eine betrdchtliche
Hohe gefordert werden. Das Wasser zeigte einen erstaun-
lichen Gehorsam und folgte den Kolben solcher
Pumpen.

Die Philosophen des Altertums dachten iiber die
Ursache dieser Erscheinung nach und kamen zu diesem
tiefsinnigen Schluf: Das Wasser folgt dem Kolben, weil
die Natur den leeren Raum fiirchtet, und deshalb bleibt
zwischen dem Kolben und dem Wasser kein freier Raum
bestehen.

Es heiBt, ein Meister habe fiir die Géarten des Herzogs
von Toscana in Florenz eine Saugpumpe gebaut, deren
Kolben das Wasser mehr als 10 m hoch ziehen sollte.
Doch, wie man sich auch abmiihte, mit dieser Pumpe
Wasser anzusaugen, alles war vergebens. Bis zur Hohe
von 10 m folgte das Wasser dem Kolben, doch dann laste
sich der Kolben vom Wasser, und es entstand genau jene
Leere, die die Natur fiirchtet.

Als man Galilei nach einer Erklirung fiir den Mifjer-
folg fragte, antwortete dieser, daB die Natur wirklich kei-
ne Sympathie fiir die Leere empfindet, jedoch nur bis
zu einer bestimmten Grenze. Galileis Schiiler Evangeli-
sta Torricelli nahm diesen Vorfall offenbar zum Anla8,
1643 seinen beriihmten Versuch mit dem quecksilberge-
fiilllten Rohr zu unternehmen. Diesen Versuch haben wir
vorhin beschrieben, denn in der Herstellung eines Queck-
silberbarometers bestand ja gerade Torricellis Ver-
such.

Unter Verwendung eines Rohres iiber 76 cm Hohe
erzeugte Torricelli Leere iiber dem Quecksilber (die zu
seiner Ehre oft als Torricellische Leere bezeichnet wird)
und bewies so die Existenz des Atmosphédren-
drucks.
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Torricelli erklarte damit auch das, was jener Meister
des Herzogs von Toscana nicht verstehen konnte. Nun
war ja klar, wie viele Meter das Wasser dem Kolben
der Saugpumpe gehorsam folgen wiirde.

Seine Bewegung muBte genau so lange anhalten, bis
eine Wassersdule von 1 cm? Querschnitt die Gewichtskraft
10 N erzeugt. Diese Wassersdule ist 10 m hoch. Darum
also fiirchtete die Natur die Leere ... Aber doch nicht
weiter als bis zu einer Hoéhe von 10 m.

1654, elf Jahre nach Torricellis Entdeckung, wurde
die Wirkung des Atmosphéirendrucks durch den Biirger-
meister von Magdeburg, Otto von Guericke, anschaulich
vorgefiihrt. Bekannt wurde der Versuch vor allem durch
die effektvolle Vorfilhrung.

Zwei kupferne Halbkugeln, verbunden durch eine
ringféormige Dichtung, bildeten eine Kugel. Durch einen
Hahn, der sich in einer der Halbkugeln befand, wurde die
Luft aus der Kugel herausgepumpt. Danach konnten die
Halbkugeln nicht mehr voneinander getrennt werden.
Da eine ausfiihrliche Beschreibung des Guerickeschen
Versuchs erhalten geblieben ist, kénnen wir den Druck,
den die Atmosphdre auf die Halbkugeln ausiibte, heute
berechnen: Bei einem Kugeldurchmesser von 37 cm ent-
sprach diese Kraft etwa 10 000 N. Um die lalbkugeln
zu trennen, befahl Guericke, zweimal acht Pferde einzu-
spannen. Zu diesem Zweck hatte man durch die an den
Halbkugeln befestigten Ringc Seile gefiihrt und mit dem
Geschirr der Pferde verbunden. Die Pferde konnten die
Halbkugeln nicht auseinanderreifen.

Die Kraft von acht Pferden (in der Tat acht und nicht
sechzehn, denn die anderen acht Pferde, die man zur
Erhéhung des Effekts eingespannt hatte, hitten auch
durch einen in einer Wand befestigten Haken ersetzt wer-
den konnen, wobei die an den Halbkugeln angreifende
Kraft unverdndert geblieben wire), reichte zum Auseinan-
derreien der Magdeburger Halbkugeln nicht aus.
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Besteht zwischen zwei einander beriihrenden Koérpern
ein leerer Hohlraum, dann fallen diese beiden Korper we-
gen des Luftdrucks nicht auseinander.

Der Luftdruck und das Wetter

Wetterbedingte Luftdruckschwankungen zeigen einen
sehr unregelméfBigen Charakter. Frither glaubte man sogar,
daB nur der Druck das Wetter bestimmt. Deshalb ver-
sieht man Barometer auch heute noch mit Aufschriften
wie: ,Schon, trocken, Regen, Sturm“. Selbst die Auf-
schrift ,Erdbeben” kommt vor.

Die Anderung des Drucks spielt tatsidchlich eine grofie
Rolle bei Wetterinderungen. Sie ist jedoch nicht ent-
scheidend. Der mittlere oder auch normale Druck in Mee-
reshéhe betragt 1013 Millibar. Die Druckschwankungen
sind relativ klein. Der Druck sinkt selten unter 935
bis 940 Millibar und steigt auf etwa 1055 bis 1060 Milli-
bar.

Der niedrigste Druck wurde am 18. August 1927 im
Chinesischen Meer mit 885 Millibar beobachtet, der
héchste mit etwa 1080 Millibar am 23. Januar 1900 in
Sibirien auf der Station Barnaul (alle Zahlen sind auf
Meereshdhe bezogen).

In Bild 7.6. ist eine Karte dargestellt, wie sie Meteo-
rologen zur Analyse von Wetterdnderungen benutzen.
Die auf der Karte eingezeichneten Linien heiffien Isoba-
ren. Im Verlauf jeder derartigen Linie ist der Druck
konstant (sein Wert wird durch eine Zahl angegeben).
Beachten Sie bitte die Gebiete mit besonders niedrigem
und besonders hohem Druck, gewissermafien , Druckgip-
fel“ und ,Drucklécher”.

Mit der Luftdruckverteilung stehen Windrichtung
und -stirke in Zusammenhang.

Der Druck ist an den verschiedenen Orten der Erd-
oberflache unterschiedlich, und stidrkerer Druck ,prefit“
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die Luft in Gegenden mit geringerem Druck. Man kénnte
daher denken, der Wind miisse stets senkrecht zum Iso-
barenverlauf, d. h. dorthin wehen, wo der Druck am
raschesten fallt. Die Windkarten zeigen freilich ein ande-
res Bild. Hier mischt sich nadmlich die Corioliskraft in
die ,,Angelegenheiten* des Luftdrucks ein und verursacht
eine sehr bedeutende Korrektur.

Wie wir wissen, greift die Corioliskraft an jedem auf
der nordlichen Halbkugel in Bewegung befindlichen
Korper so an, dal die Bewegung nach rechts ausgelenkt
wird. Dies gilt auch fiir die Luftpartikeln. Luft, die von
Orten mit hohem Druck zu Orten geringeren Drucks
gepreft wird, miiite sich quer zum Isobarenverlauf
bewegen, doch wird sie von der Corioliskraft nach rechts
abgelenkt, und so schlieft die Windrichtung einen
Winkel von ungefdhr 45° mit der Isobarenrichtung ein.

Fiir eine derart kleine Kraft ein verbliiffend grofer
Effekt. Er erklart sich daraus, daB auch die Reibung der
Luftschichten, die die Wirkung der Corioliskraft beein-
trachtigt, ganz geringfiigig ist.

Noch groferes Interesse verdient der Einfluf der Corio-
liskraft auf die Windrichtung in den ,,Druckspitzen“ und
oDrucklochern“. Die Luft flieft wegen der Corioliskraft
nicht radial nach allen Richtungen von den ,Druckspit-
zen“ ab, sondern bewegt sich spiralformig. Diese spiral-
formigen Luftstrome haben stets ein und dieselbe Dreh-
richtung und erzeugen im Hochdruckbereich einen kreis-
formigen Wirbel, der die Luftmassen im Uhrzeigersinn
transportiert. Das Bild 2.16. zeigt deutlich, wie sich eine
Radialbewegung unter dem EinfluB einer konstanten
Ablenkungskraft in eine spiralformige Bewegung verwan-
delt.

Das gleiche geschieht auch in Tiefdruckgebieten. Gébe
es die Corioliskraft nicht, dann miifite die Luft radial
und gleichférmig in diesen Gebieten zusammenstrémen.
Auch diese Luftmassen werden unterwegs nach rechts ab-
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gelenkt. Wie aus der Zeichnung ersichtlich ist, entsteht
dabei ein kreisformiger Wirbel, der die Luft im Gegen-
uhrzeigersinn bewegt.

Die Winde in einem Tiefdruckgebiet heilen Zyklone,
in einem Hochdruckgebiet dagegen Antizyklone.

Freilich bedeutet nicht jeder Zyklon einen Sturm oder
gar Orkan. Daf} die Stadt, in der wir wohnen, von Zyklo-
nen oder Antizyklonen passiert wird, ist eine gewdhn-
liche, wenn auch meist mit wechselhaftom Woetter in
Zusammenhang stehende LErscheinung. [n vielen Féllen
bedeutet die Anndherung eines Zyklons schlechtes, dio
Anndherung eines Antizyklons dagegon gutes Woetter.

Damit soll es genug sein; wir wollen den ,Welterpro-
pheten” nicht ins Ilandwerk pfuschen.

Die Anderung des Luftdrucks mit der Hhe

Mit zunehmender Ilohe sinkt der Luftdruck. Erstmals
wurde dies 1648 durch den Franzosen Périer im Auftrag
Pascals festgestellt.

Périer lebte in der Nidhe des 975 m hohen Berges Puy-
de-Déme. Die Messungen orgaben, dafl das Quecksilber
im Torricelli-Barometer wihrend des Aufstiegs zum
Gipfel um 8 mm sank.

Die Abnahme des Luftdrucks mit zunehmender Hohe
ist ganz natiirlich, denn in der Hohe lastet eine kiirzere
Luftsdule auf dem Barometer.

Der Druck fallt also mit wachsender Héhe; wir wollen
die Formel fiir diese Beziehung ermitteln. Zu diesem
Zweck stellen wir uns eine Luftschicht mit der Grund-
flache 1 cm? vor, die zwischen den Héhen %, und &, liegt.
In einer nicht sehr dicken Schicht ist die Anderung der
Dichte mit zunehmender Hohe kaum merklich. Deshalb
erhalten wir die Gewichtskraft der Luft (also in einem
kleinen Zylinder der Hohe 2, — 2, mit der Grundfldche

18—-01178
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1 cm?) aus folgender Formel:
mg =p (hy —hy) g

Diese Gewichtskraft ist es, die den Druckabfall beim
Aufstieg von der Hohe %, auf die Hohe A, ausmacht.
Das heifit

PSP =g (ha—hy).

Doch nach dem Boyle-Mariotteschen Gesetz (von dem
im Band 2 die Rede sein wird) ist die Dichte eines Gases
dem Druck proportional.

Deshalb gilt

P1— Dy
=22~ (he—h
) (hy 1) .

Links steht der Anteil, um den der Druck beim Ab-
stieg von h, nach A, gestiegen ist. Gleichen Abstiegen
hy — hy wird demzufolge stets ein Druckanstieg in dem
gleichen prozentualen Anteil entsprechen.

Messungen und Berechnungen ergeben in volliger
Ubereinstimmung, daf der Druck beim Aufstieg fiir jeden
Kilometer iiber Meereshohe um jeweils 10 % sinkt. Das
gleiche gilt auch fiir den Abstieg in tiefe Schéchte: Der
Abstieg um jeweils einen Kilometer unter Meereshohe
fiihrt zu einem Druckanstieg um 10 % des Wertes.

Diese 10 % beziehen sich jeweils auf den Druckwert
beim vorangegangenen Ilohenwert. Steigt man einen
Kilometer iiber Meereshohe auf, dann verringert sich der
Druck auf 90 % seines Wertes in Meereshéhe; beim
Aufstieg um einen weiteren Kilometer erhalten wir dann
90 % von 90% des Drucks in Meereshéhe; in 3 km Hohe
schlieflich wird der Druck 90 % von 90 % von 90 % des
Drucks in Meereshéhe betragen. Diese Uberlegung 18t
sich ohne Schwierigkeiten fortsetzen.

Bezeichnen wir den Druck in Meereshhe mit p,,
dann konnen wir die Formel fiir den Druck in der Hohe 2
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(angegeben in Kilometern) wie folgt aufschreiben:
p = po (0,87)* = p,y-10-0,06h,

In der Klammer steht ein genauerer Wert: 90 %
(bzw. 0,9) sind gerundet. Die Formel setzt gleiche T'empe-
ratur auf allen Hohen voraus. In Wirklichkeit dndert
sich die Temperatur mit der Héhe, und zwar recht kompli-
ziert. Trotzdem liefert die obenstehende Formel ganz
gute Ergebnisse, und in Héhen bis 100 km kann man sie
benutzen.

Mit Hilfe dieser Formel 1at sich leicht ermitteln,
daB der Druck am Gipfel des Elbrus (d. h. in etwa 5,6 km
Hohe) etwa auf die Iélfte sinkt, wihrend er in 22 kin
Héhe (die Rekordmarke fiir den Aufstieg eines bemannten
Luftballons) nur noch 66,6 Millibar betrégt.

Wenn wir 1013 Millibar als Normaldruck bezeich-
nen, diirfen wir den Zusatz ,jin Meereshéhe* nicht ver-
gessen. In 5,6 km Hohe betrdgt der Normaldruck nicht
1013, sondern 506,5 Millibar.

Mit dem Druck sinkt bei wachsender Hoéhe nach der
gleichen Deziehung auch die Dichte der Luft. In 160 km
Héhe ist die Luft schon ziemlich knapp geworden, denn
hier gilt

(0,87)160 = 10-1o,

An der Erdoberfliche betragt die Dichte der Luft
etwa 1000 g/m3; in 160 km Hohe miiBten unserer For-
mel zufolge auf 1 m3 nur 10-7 g Luft entfallen. Wie jedoch
Messungen mittels Hohenraketen zeigen, ist die Luftdichte
in dieser Hohe tatsdchlich rund zehnmal so groB8.

Eine noch stidrkere Verminderung im Vergleich zur

ahrheit liefert unsere Formel fiir Héhen von einigen
hundert Kilometern. Daran, dafl die Formel fiir grofe
Héhen unbrauchbar wird, ist die Anderung der Tempera-
tur mit der Hohe schuld sowie eine besondere Erschei-
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nung, ndmlich der Zerfall der Luftmolekiile unter dem
EinfluB der Sonnenstrahlung. Wir wollen dies aber hier
nicht behandeln.

Das Archimedische Prinzip

Wir héngen ein Wigestiick an eine Federwaage. Die
Feder dehnt!sich und zeigt die Gewichtskraft des Wige-
stiicks an. Ohne das Wigestiick von der Federwaage zu
nehmen, lassen wir es in Wasser eintauchen. Andert sich
die Anzeige der Waage? Ja, die Korpergewichtskraft
nimmt gewissermaflen ab. Macht man den Versuch mit
einem eisernen 1-kg-Wigestiick, dann betrdgt die ,Ver-
minderung” der Gewichtskraft ungefahr 1,4 N.

Was ist denn da passiert? Weder die Masse des Wige-
stlicks noch seine Anziehung durch die Erde koénnen
sich gedndert haben. Es gibt nur eine Ursache fiir den
Gewichtskraftverlust: An dem in Wasser eingetauchten
Wigestiick greift eine nach oben gerichtete Kraft von
1,4 N an. Woher stammt diese Auftriebskraft, die bereits
der grofe Gelehrte der Antike, Archimedes, entdeckte?
Ehe wir einen Festkorper im Wasser betrachten wollen,
sehen wir uns einmal ,Wasser in Wasser” an. Zu diesem
Zweck betrachten wir ein willkiirlich gewdhltes Wasservo-
lumen. Dieses Wasservolumen besitzt eine Gewichtskraft,
sinkt aber nicht auf den Boden des Gefdfes. Warum?
Keine Frage: Dies wird durch den hydrostatischen Druck
des Umgebungswassers verhindert. Die resultierende
Kraft dieses Drucks ist im betrachteten Volumen dem-
nach gleich der Gewichtskraft des Wassers und senkrecht
nach oben gerichtet.

Beansprucht man das gleiche Volumen durch einen
Festkorper, dann leuchtet ein, da der hydrostatische
Druck unverdndert bleibt. Wegen des hydrostatischen
Drucks greift deshalb an einem in Fliissigkeit eintau-
chenden Korper eine Kraft an, die senkrecht nach oben
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zeigt und zahlenm#Big gleich dem Gewicht des vom Koér-
per verdrangten Wassers ist. Genau dies besagt das Ar-
chimedische Prinzip.

Es wird berichtet, Archimedes habe im Bade dariiber
nachgedacht, ob dem Gold einer Krone méglicherweise
Silber beigemischt war. Wer im Bade liegt, empfindet
die Auftriebskraft des Wassers ganz deutlich. Und plétz-
lich erkannte Archimedes das Auftriebsprinzip und sah,
wie verbliiffend einfach es war. Mit dem Ausruf ,Heure-
kal“ (was soviel bedeutet wie ,Ich hab’s") sprang Archi-
medes aus dem Bad und lief nach der kostbaren Krone, um
ihren Gewichtskraftverlust in Wasser zu bestimmen.

Der Gewichtskraftverlust in Wasser ist gleich der
Gewichtskraft des vom Korper verdriangten Wassers.
Kennt man die Gewichtskraft des Wassers, dann kann
man auch sofort sein Volumen bestimmen, die hier
gleich dem Volumen der Krone ist. Kennt man die
Gewichtskraft der Krone, so kann man auch die Dichte
des Stoffs bestimmen, aus dem sie hergestellt ist, und
kennt man schlieflich die Dichten von Gold und Silber,
kann man den Silberanteil ermitteln.

Das Archimedische Prinzip gilt naturgemif fiir alle
Fliissigkeiten. Taucht in eine Fliissigkeit die Dichte g ein
Korper des Volumens V ein, dann ist die Gewichtskraft
der verdriangten Fliissigkeit — und genau dieses bildet
die Auftriebskraft — gleich ogV.

Auf dem Archimedischen Prinzip beruht die Wirkung
einfacher Geréte zur Kontrolle der Eigenschaften fliissiger
Lebensmittel. Verdiinnt man Alkohol oder Milch mit
Wasser, dann dndert sich ihre Dichte, so dal man anhand
der Dichte auf ihre Zusammensetzung schliefen kann.
Eine entsprechende Messung 148t sich einfach und
schnell mit Hilfe des Ardometers (Bild 7.7.) durchfiihren.
Ein Ardometer taucht, wenn man es in der Flissigkeit
schwimmen 148t, abhéngig von deren Dichte, mehr oder
weniger tief ein.
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Bild 7.7.

Es erreicht seine Gleichgewichtslage, sobald die
Auftriebskraft gleich der Gewichtskraft des Ardometers
ist.

Am Ardometer sind Strichmarkierungen angebracht,
und die Dichte der untersuchten Fliissigkeit wird an der
Marke ahgelesen, die sich in 116he des Fliissigkeitsspie-
gels befindet. Zur Alkoholpriifung verwendete Ardometer
heiBen Alkoholometer, wihrend man fir die Milchprii-
fung Laktometer verwendet.

Die mittlere Dichte des menschlichen Korpers ist
geringfiigig grofer als Eins. Wer nicht schwimmen kann,
geht in SiiBwasser unter. Die Dichte von Salzwasser ist
groBler als Eins. In den meisten Meeren ist der Salzgehalt
unbedeutend und die Dichte des Wassers zwar grofler
als Eins, aber immer noch kleiner als die mittlere Dichte
des menschlichen Korpers. In der Bucht Kara-Bogas-Gol
im Kaspisee betrigt die Dichte des Wassers 1,18 g/cm3.
Dieser Wert liegt iiber der mittleren Dichte des menschli-
chen Korpers. Man kann im Kara-Bogas-Gol nicht un-
tergehen. Vielmehr kann man sich einfach aufs Wasser
legen und ein Buch dabei lesen.

Eis schwimmt auf Wasser. Der Gebrauch von ,auf”
ist in diesem Fall iibrigens nicht ganz angebracht. Da
die Dichte von Eis um etwa 10 % geringer als die Dich-
te von Wasser ist, folgt aus dem Archimedischen Prin-
zip, dafl ein Eisbrocken zu etwa 90 % seines Volumens
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in Wasser eintaucht. Gerade dieser Umstand macht
Eisberge so gefidhrlich fiir die Schiffahrt.

Wenn eine Balkenwaage in Luft genau im Gleichge-
wicht ist, heift das nicht, daff dies auch im Vakuum der
Fall sein muBl. Das Archimedische Prinzip gilt fiir Luft
ebenso wie fiir Wasser. Auf einen in Luft befindlichen
Koérper wirkt eine Auftriebskraft, die gleich der Gewichts-
kraft des verdriangten Luftvolumens ist. In Luft ,wiegt“
ein Korper weniger als im Vakuum. Der Gewichts-
kraftverlust wird um so gréfler sein, je grofier das Volumen
ist. Eine Tonne llolz erleidet einen groBeron Gewichts-
kraftverlust als eine Tonne Blei. Auf die Scherzfrage, was
von beiden leichter sei, kann man antworten: IKine Ton-
ne Blei ist schweror als eino Tonne llolz, wenn die Wi-
gung in Luft erfolgt.

Solange es sich um kleine Korper handelt, ist der
Gewichtsverlust in Luft gering. Beim Wiagen eines zim-
mergroBen Brockens wiirde man jedoch einige Hundert
Newton ,verlieren“. Bei genauen Wigungen mufl der
Gewichtskraftverlust grofler Korper in Luft beriicksichtigt
werden.

Wegen des Auftriebs dor Luft kann man Luftballons
oder Luftschiffe bauen. Man braucht dazu ein Gas, das
leichter als Luft ist.

Fiillt man eine Kugel vom Volumen 1 m? mit
Wasserstoff (die Gewichtskraft von 1 m3 Wasserstoff ist
gleich 0,9 N), dann betrigt die Tragfahigkeit als Diffe-
renz von Auftrieb und Gasgewicht:

12,9 N—09 N =12,0 N.

Die Dichte von Luft betragt 1,29 kg/mS.

Also kann man eine Last mit der Masse von etwa 1 kg
an die Kugel héngen, und sie wird doch zu den Wolken
emporsteigen.

Wasserstoffgefiillte Ballons konnen bereits bei ver-
héltnisméBig geringen Volumina in der GroSenordnung
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einiger hundert Kubikmeter betrdchtliche Lasten heben.

Ein ganz wesentlicher Nachteil wasserstoffgefiillter
Ballons besteht in der Brennbarkeit des Wasserstoffs.
Wasserstoff bildet mit Luft ein explosibles Gemisch.
Die Geschichte des Luftballonbaus berichtet von tragi-
schen Ungliicksfillen.

Nach der Entdeckung des Heliums begann man daher,
Luftballons mit Helium zu fiillen. Helium ist doppelt so
schwer wie Wasserstoff, und heliumgefiillte Ballons
besitzen eine geringere Tragkraft. Ergibt sich daraus ein
wesentlicher Unterschied? Die Tragkraft eines helium-
gefiillten Ballons von 1 m?® ergibt sich aus der Differenz
129 N — 1,8 N = 11,4 N. Die Tragkraft hat sich also
um nur 8 % vermindert. Andererseits sind die Vorziige
von Helium offenkundig.

Der Luftballon war der erste Apparat, mit dessen Hil-
fe Menschen in die Luft aufstiegen. Zur Erfoschung der
oberen Atmosphérenschichten werden Luftballons mit
Inftdicht geschlossener Gondel auch heute noch verwen-
det. Man bezeichnet sie als Stratostaten. Stratostaten
steigen bis in Hohen iiber 20 km auf. Mit verschiedenen
MeBgerdten ausgestattete Luftballons, die ihre MefBer-
gebnisse iiber Funk zur Erde senden, werden in grofem
Umfang eingesetzt (Bild 7.8.). Derartige Ballonsonden
enthalten einen batteriegespeisten Kleinstsender, der
Angaben iiber die Feuchtigkeit, die” Temperatur und
den Druck der Atmosphére in verschiedenen Héhen iiber-
mittelt.

Man kann einen nicht lenkbaren Ballon auf eine weite
Reise schickenr und doch ziemlich genau ermitteln, wo er
landen wird. Dazu muf} der Ballon in 20 bis 30 km Héhe
aufsteigen. In diesen Ho6hen sind die Luftstromungen
sehr bestindig, und man kann den Weg, den der Bal-
lon nehmen wird, recht gut vorausberechnen. Notfalls
kann die Tragkraft des Ballons durch Ablassen von Gas
oder Abwerfen von Ballast automatisch verdndert werden.
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Bild 7.8.

Frither verwendete man auch Luftballons, die mit
Motor und Luftschraube ausgestattet waren. Solche
Luftballons erhielten Stromlinienform, man bezeichnet
sie als Luftschiffe. Im Konkurrenzkainpf mit den Flug-
zeugen unterlagen die Luftschiffe; selbst im Vergleich zu
den Flugzeugen vor dreiBlig oder vierzig Jahren sind
Luftschiffe plump, lassen sich schlecht steuern, sind
langsam und haben eine geringe ,Gipfelhéhe”. Ubrigens
gibt es die Auffassung, daBl Luftschiffe fiir Frachttrans-
porte auch heute noch bestimmte Vorteile haben konn-
ten.

Extrem kleine Driicke. Yakuum

Ein im technischen Sinn leeres Gefdll enthélt noch immer
eine riesengrofe Anzahl von Molekiilen.

In vielen physikalischen Geridten sind Gasmolekiile
ein wesentlicher Storfaktor. Ob Rontgenréhren oder
Teilchenbeschleuniger — Geréte dieser Art brauchen das
Vakuum, d. h. einen von Gasmolekiilen freien Raum.
Auch eine gewohnliche Gliihlampe mu8 Vakuum enthal-
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ten. Gelangt Luft in eine Glithlampe, dann wird ihr
Gliihfaden oxydiert und brennt augenblicklich durch.

Die besten Vakuum-Bauelemente besitzen ein Va-
kuum in der Groéfenordnung 1,3.10-¢ Pa. Ein ganz ver-
schwindend geringer Druck, kénnte man denken: Der
Quecksilberspiegel im Manometer wiirde sich bei Ande-
rung des Drucks um diesen Betrag nur um den hundert-
millionsten Teil eines Millimeters verschieben.

Doch selbst bei diesem ,schibigen” Restdruck befin-
den sich in 1 cm?® noch immer einige 100 Millionen Mole-
kiile. ’

Recht interessant ist ein Vergleich dieses Vakuums mit
der Leere im interstellaren Raum: Dort entfdllt auf
einige Kubikzentimeter im Mittel ein Elementarteil-
chen.

Zur Vakuumerzeugung werden Spezialpumpen ver-
wendet. Eine gewdhnliche Pumpe, die das Gas durch
Kolbenbewegung absaugt, kann ein Vakuum von hoch-
stens 1,3 Pa erzeugen. Ein gutes oder, wie man auch
sagt, hohes Vakuum, lift sich mit Hilfe sogenannter
Diffusionspumpen, und zwar Quecksilber- oder Olpum-
pen, erzielen, worin die Gasmolekiile durch einen Strahl
von Quecksilber- oder Oldampf mitgerissen werden.

Quecksilbervakuumpumpen koénnen nur gegen ein
sogenanntes Vorvakuum arbeiten, d. h., der Druck muf
zunichst mittels anderer Verfahren auf etwa 13,3 Pa
vermindert werden.

Ihr Funktionsprinzip besteht in folgendem. Ein klei-
nes Glasgefdfl ist mit einem quecksilbergefiillten Ge-
faBl, dem zu evakuierenden Raum und der Vorvakuum-
pumpe verbunden. Das Quecksilber wird erwidrmt, und
die Vorvakuumpumpe saugt den Quecksilberdampf ab.
Auf seinem Weg reift der Quecksilberdampf die Gasmole-
kiile aus dem zu evakuierenden Raum mit und transpor-
tiert sie in die Vorvakuumpumpe. Der Quecksilberdampf
wird danach (mittels Kiihlung durch flieBendes Wasser)
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kondensiert, und das fliissige Quecksilber fliet dann
wieder in das Gefdl zuriick, wo es seinen Weg begon-
nen hat.

Das im Labor erreichbare Vakuum ist, wie wir gerade
gesagt haben, ldangst nicht leerer Raum im absoluten
Sinn des Wortes. Beim Vakuum handelt es sich nur um
ein stark verdiinntes Gas. Die Eigenschaften dieses Gases
konnen sich wesentlich von den Eigenschaften oines ge-
wohnlichen Gases unterscheiden.

Die Bewegung der Molekiile, die ,,das Vakuum bilden*
verdandert ihren Charakter, sobald die freiec Weglinge der
Molekiile groBer wird als die Malle des Gefdles, worin
sich das Gas befindet. Die Molekiile stoBien jetzt nur
selten zusammon und beschreiben dabei ans geraden
Strecken zusammengesetzlo Zickzacklinien, wobei sie
mal an die eine und mal an die andere Wand des Geféfles
stoBen. Ausfiihrlich wird im zweiten Band von der Mole-
kiilbewegung die Rede sein. Wir wollen an dieser Stelle
ein wenig vorgreifen und ausrechnen, bei welchem Druck
die obengenannte Frscheinung ecintritt. Wir wissen, daf3
die Wegliange in Luft bei Atmosphiirendruck 5-10-6 cm
betrdgt. Multipliziert man sie mit dem Faktor 107, dann
betragt sie 50 em und ist damit merklich groBer als ein
Gefal mittlerer Grofie. Da die Weglingo der Dichte und
folglich auch dem Druck umgekehrt proportional ist, muBl
der erforderliche Druck 10-7 Atmosphirendruck oder
ungefdhr 1,3-10% Pa betragen.

Selbst der interplanetare Raum ist nicht vollig leer.
Allerdings betrdgt die Stoffdichte hier etwa 5-10-2* g/em3.
Den Hauptanteil am interplanetaren Stoff bean-
sprucht atomarer Wasserstoff. Man ist heute der Auffas-
sung, daB im Weltraum einige Wasserstoffatome auf
1 cm3? entfallen. Wiirde man ein Wasserstoffmolekiil auf
Erbsengrofie vergrofiern und dieses ,Molekiil“ dann in
Moskau anordnen, dann befénde sich sein nichster ,,Nachbar
im Weltraum“ in Tula.
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Hunderttausend Megapascal

Grofle Driicke auf kleinen Fldchen sind eine alltdgliche
Erscheinung. Lassen Sie uns einmal abschédtzen, welcher
Druck an einer Nadelspitze auftritt. Angenommen, die
Spitze einer Nadel oder auch eines Nagels habe einen
Durchmesser von etwa 0,1 mm. Die Fliche der Spitze
muf} dann 0,0001 cm? betragen. L8t man an diesem Nagel
nun die gar nicht so grofe Kraft von 100 N angreifen,
dann iibt die Nagelspitze einen Druck von 10000 Mega-
pascal aus. So ist es kein Wunder, wenn spitze Gegen-
stinde so leicht in dichte Korper eindringen.

Aus unserem Beispiel geht hervor, daB die Erzielung
grofler Driicke auf kleinen Flidchen eine ganz gewohnliche
Sache ist. V¢llig anders liegen die Dinge, wenn hohe
Driicke an groBen Fldchen erzeugt werden sollen.

Im Labor werden hohe Driicke mittels starker Pres-
sen, also z. B. durch hydraulische Pressen, erzeugt (Bild
7.9.). Die Pressenkraft wird auf einen Kolben mit kleinem
Querschnitt iibertragen, der in das GefdB hineinge-
driickt wird, in dem ein hoher Druck erzeugt werden
soll.

So lafit sich ohne besondere Schwierigkeiten ein
Druck von einigen Hundert Megapascal herstellen. Zur
Erzielung ultrahoher Driicke mufl eine kompliziertere
Versuchsanordnung gew#hlt werden, da der GefdBwerk-
stoff solchen Driicken nicht standhalt.

Hier ist uns die Natur einen Schritt entgegengekom-
men. Bei Driicken in der Gréfenordnung von 2000
Megapascal erfolgt eine wesentliche Verfestigung der
Metalle. Darum crdnet man einen Apparat zur Erzeugung
ultrahoher Driicke in einer Fliissigkeit an, die ihrerseits
unter einem Druck in der Groéflenordnung von 3000
Megapascal steht. Nun gelingt es im inneren Gefif§
(wiederum durch einen Kolben), Driicke von einigen
10000 Megapascal aufzubauen. Den hochsten Druck,
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Bild 7.9.

namlich 40000 Megapascal, hat der amerikanische
Physiker Brigdman erzielt.

Das Interesse an der Erreichung ultrahoher Driicke
ist alles andere als miiBig. Bei derartigen Driicken kénnen
Erscheinungen auftreten, die sich durch andere Verfahren
nicht bewirken lassen. 1955 wurden kiinstliche Diaman-
ten hergestellt. Dazu war ein Druck von 10000 Mega-
pascal erforderlich, und das bei einer Temperatur iber
2000 K.

Ultrahohe Driicke in der Groéflenordnung von
30000 Megapascal entstehen auf grofen Fldchen bei
der Detonation fester oder fliissiger Sprengstoffe, wie
Nitroglyzerin, Tarotyl usw. )

Sehr viel hohere Driicke entstehen im Inneren einer
Atombombe bei deren Explosion; sie erreichen 102
Megapascal.

Explosionsdriicke existieren nur wahrend einer sehr
kurzen Zeit. Stindige hohe Driicke bestehen im Inneren
von Himmelskorpern, darunter natiirlich auch im Inneren
der Erde. Der Druck im Erdmittelpunkt betrdgt unge-
fahr Dreihunderttausend Megapascal.



l.ow Landau — Nobelpreistriager und Akademiemitglied, Alex-
ander Kitaigorodski — Professor fiir Physik und Mathematik
und Begriinder einer Schule zur Erforschung organischer Kri-
stallstrukturen.

Den Autoren ist es mit diesem Buch gelungen, in zusammen-
fassender und allgemeinverstindlicher Form die Grundideen
und neuesten Errungenschaften der modernen Physik einem
breiten Leserkreis nahezubringen.

Der erste Band ist den Bewegungen der Korper gewidmet. Es
werden eingehend das Gravitationsgesetz mit seinen Anwen-
dungen auf die Berechnung kosmischer Geschwindigkeiten,
die Interpretation der Mondgezeiten, geophysikalische Erschei-
nungen usw. dargestellt.



