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Vorwort
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die hiermit verknüpften Eigenschaften, wie z. B. die Supraleitfähigkeit, bleiben
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Meßverfahren zur Kristallstrukturanalyse.
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Struktur idealer Kristalle

1.1. Geometrie der Kristallgitter

E Einführung

Kristallgitter
Der ideale Kristall bestellt aus regelmäßig im Raum verteilten Atomen oder Ionen.
Die Anordnung der Bausteine wiederholt sich periodisch. Diese räumliche Periodi-
zität kann durch drei nichtkomplanare, d. h. nicht in einer Ebene liegende Vektoren
a 1? a 2 , dargestellt werden. Bei jeder Verschiebung des unendlich ausgedehnten
Kristalls um einen dieser Vektoren bzw. einen daraus zusammengesetzten Vektor

(1)

Bild 1.1.1. Dreidimensionales Kristallgitter mit den Basisvektoren a 1? a 2 , a s and den
Winkeln a 12 , a 13 , a 23 zwischen den Basisvektoren

kommt der Kristall mit sich selbst zur Deckung (vgl. Bild 1.1.1). Punkte des Kristalls,
die sich voneinander durch einen Vektor R der Form (1) unterscheiden, heißen
äquivalente Punkte.
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Die verschiedenen Kristallsysteme sind durch Unterschiede in den Längen a2 , a3
der Basisvektoren und den von ihnen eingeschlossenen Winkeln a 12 , <%i 3 , <x 23 . gemäß
Bild 1.1.1 gekennzeichnet.
Von besonderem Interesse sind das kubische Gitter, das durch drei gleich lange,
zueinander orthogonale Basisvektoren dargestellt werden kann, das rhombische
oder orthogonale Gitter mit unterschiedlichen Längen der Basis Vektoren, aber
Winkeln <x 12 = <x 13 = <%23 = 90°, und das trigonale Gitter mit gleich langen Basis-
vektoren und gleich großen Winkeln, die jedoch von 90° ab weichen.
Im einzelnen benutzt man sieben Kristallsysteme :

kubisch — d2 — Cb3 , #12 — #i  3 = (X23 = 90°
tetragonal «1 = a 2 4= a 3 , #12 = (%i 3 — <%23 = 90
rhombisch 1 2 > #12  = (%1 3 — <%23 — 90°
trigonal — 2 — ’ 3 > #12 == #23  9
hexagonal 2 4 1 3 ~~ C ? a 12  = 120°, <x12  = oc23 = 90°
monoklin 1 4= 2 3 ? #12 4= 90°, a 13  = a 23  = 90°
triklin = |= < 2 =4 = 3 ? #12 4= #13 #23 ’

Die Vektoren a 13 a 2 , a 3 können auf verschiedene Weise gewählt werden ; sie sind durch
den Kristallaufbau nicht eindeutig festgelegt.
Im folgenden werden unter a 1? a 2 , a 3 kürzestmögliche Vektoren verstanden, wobei
eine Bewegungs- bzw. Translationsrichtung zu äquivalenten Punkten im Kristall
vorgegeben ist. Bei dieser Festlegung nennt man a 19 a 2 , a 3 Basisvektoren des Kri-
stallgitters. Sie spannen eine Elementarzelle des Gitters auf, die aus einer Gesamtheit
nichtäquivalenter Punkte besteht.
Bilden a 19 a 2 , a 3 ein Rechtssystem, so ist das Volumen der Elementarzelle

* (®2 X ® 3 ) (2)

Die Kristallstruktur entsteht, indem der Elementarzelle eine bestimmte Anordnung
von r Kristallbausteinen zugeordnet wird. Sie heißt die Basis. Die Kristallbausteine
der Basis können verschieden sein. Durch Vorgabe der Elementarzelle mit ihrer
Basis ist der Kristallaufbau festgelegt. Er geht durch sukzessive Anwendung der
Translation (1) vor sich.
Bild 1.1.2 zeigt eine zweidimensionale Veranschaulichung der gegebenen Definitionen.
Das einfache Gitter besteht aus Elementarzellen, die genau einen Kristallbaustein
enthalten. Bei Elementarzellen mit mehreren Kristallbausteinen kann das Gitter
als Kombination mehrerer einfacher Gitter aufgefaßt werden. Derartige aus mehreren
Untergittern aufgebaute Kristallgitter werden als zusammengesetzte Gitter be-
zeichnet.
Die Kristalleigenschaften werden im folgenden besonders an den kubisch aufge-
bauten Gittern dargestellt. Bei diesen tritt vielfach entweder das kubisch-flächen-
zentrierte oder das kubisch-raumzentrierte Gitter auf (vgl. Tab. 1.1.1). Zur Ver-
anschaulichung dieser Gitter betrachtet man kleinste Würfel oder Kuben (Elementar-
würfel bzw. Elementarkubus). Sie enthalten in der Regel mehrere Elementarzellen.
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Das kubisch-flächenzentrierte Gitter (kfz-Gitter) wird durch einen kleinsten Würfel
bzw. Elementarwürfel veranschaulicht, der je einen Baustein in jeder Ecke und im
Zentrum jeder der sechs Würfelflächen enthält (vgl. Bild 1.1.3). Beim kubisch-

b)  o °
+ Bild 1.1.2. Zweidimensionale Veran-

schaulichung des Kristallaufbaus.
a) Zweidimensionales Kristallgitter.
Die Basisvektoren a 1? a 2 definieren
die ebene Elementarzelle, -f- Gitter-
punkt
b) Basis aus zwei verschiedenen Bau-
steinen o und O
c) Kristallstruktur aus Kristallgitter
und Basis

c)

Bild 1.1.3. Kubisch-f lachen-
zentriertes Gitter (kfz-Gitter)
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raumzentrierten Gitter (krz-Gitter) befinden sich die Bausteine in den acht Ecken,
ein weiterer im Zentrum des Elementarwürfels (vgl. Bild 1.1.4).
Die Kantenlänge a des Elementarwürfels heißt die Gitterkonstante.

Bild 1.1.4. Kubisch-raumzentriertes Gitter
(krz-Gitter)

Kristallstrukturen werden aus der Beugung von Röntgenstrahlen bestimmt (vgl.
1.2.). Ist die Struktur eines Kristalls bekannt, so kann die Größe der Elementarzelle
durch Messung der Dichte des Stoffes ermittelt werden.

Beispiel 1.1.1. Das kubisch-flächenzentrierte Gitter (kfz-Gitter)

Es soll die Gitterkonstante a des Kupferkristalls bestimmt werden. Kupfer hat ein kubisch-
flächenzentriertes Gitter.
Jedes der acht Atome in einer der acht Ecken gehört gleichzeitig acht Würfeln an, da in jeder
Würfelecke acht Elementarwürfel Zusammenstößen. Die acht Eckatome sind daher bezüglich des
betrachteten Elementarwürfels als

8-1  = 1
8

Atom zu zählen. Dagegen gehört jede Würfelfläche gleichzeitig zu zwei Würfeln. Die sechs
Flächenatome eines Würfels sind daher als

ß 1 sb • — = ö
2

Atome zu zählen. Insgesamt entfallen somit vier Atome auf einen Elementarwürfel der Kanten-
länge a (Besetzungszahl 4).
Das Volumen des Elementarwürfels mit vier Atomen ist gleich«3 ; das Volumen einer Elementar-
zelle mit einem Atom beträgt daher «3/4. N ich der Formel

Dichte des Würfels ist gleich Masse dividiert durch sein Volumen

kann man schreiben

, 4md = — ,
«3 (3)
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wobei m die Masse eines Kristallbausteins, d. h. eines Kupferatoms, angibt. Durch Umformen
erhält man

’n 4ma = / —
1/ d H)

Kupfer hat die Dichte d — 8,89 g cm-3 = 8,89 • 103 kg m-3 . Seine relative Atommasse ist
A r = 63,55 ; die molare Masse beträgt also M = 63,55 • 103 kg kmol-1 . Die Masse eines Atoms
ergibt sich aus

Mm = ----- ,

wobei 7Va = 6,02 • 1026 kmol -1 die AvoGADROsche Konstante bezeichnet. Damit folgt für die
Gitterkonstante des Kupferkristalls

a = 1/ -------4 ' 63,55 -------- m = 0,362 nm.
V 8,89 • 103 • 6,02 • 1026

Bei der Wahl der Basisvektoren eines einfachen Kristallgitters hat man darauf zu
achten, daß sämtliche nichtäquivalenten Punkte erfaßt werden. Das wird gewähr-
leistet, wenn der Kristall bei fortgesetzter Anwendung der Transformation (1) immer
mit sich selbst zur Deckung kommt und die Elementarzelle des einfachen Gitters
genau einen Kristallbaustein enthält.

Beispiel 1.1.2. Basisvektoren des kubisch-flächenzentrierten Gitters

Es seien e x , e 2 , e 3 die Einheitsvektoren in den drei aufeinander senkrecht stehenden Richtungen
der Würfelkanten nach Bild 1.1.3. In einem Gitterpunkt PQ stoßen drei Flächen P 0P 1P 1

/P 2 ,
P 0P 2P 2

/P 3 und P P P 'P des betrachteten Elementarwürfels zusammen. Als Basisvektoren der
Elementarzelle können die von P o nach den Zentren der drei Würfelflächen gerichteten Vektoren
gewählt werden :

a /
a i = “ ( C 2 + e 3) »Zi

a ,
(«3 + ©1).

a ,
«3 = v (ei + e a ).2 J

(5)

Das Volumen der Elementarzelle ist nach (2)

£ 0 = a i a 3a 3 = a x • (a 2 x a 3 ) = -2 - (e 2 + e 3 ) • (— e x + e 2 + e a ) = A-
8 4
a3

8
(5 a)

Dem Elementarwürfel mit der Kantenlänge a sind nach Beispiel 1.1.1. beim kubisch-flächen-
zentrierten Gitter vier Gitterbausteine zuzuordnen. Die von den Basisvektoren a 19 a 2 , a 3 auf-
gespannte Elementarzelle enthält daher genau einen Gitterbaustein.

2 Schilling, Festkörperphysik
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Einfache Gitter können, wenn das für die Betrachtung zweckmäßig ist, auch aus
mehreren Untergittern zusammengesetzt gedacht werden.

Beispiel 1.1.3. Kubisch-flächenzentriertes Gitter als zusammengesetztes Gitter

Das einfache kubische Gitter wird durch einen kleinsten Würfel veranschaulicht, der in jeder
der acht Ecken einen Kristallbaustein enthält. Aus vier solchen einfachen kubischen Gittern kann
das kubisch-flächenzentrierte Gitter zusammengesetzt gedacht werden (vgl. Bild 1.1.5).

Bild 1.1.5. kfz-Gitter als zusammen-
gesetztes Gitter

Zur Charakterisierung der Gitter wird ein Koordinatensystem angenommen, dessen Achsen die
Richtungen der Einheitsvektoren e19 e 2 , e 3 haben. Man kann das kubisch-flächenzentrierte
Gitter aus vier einfachen Gittern zusammensetzen, wobei das zweite, dritte und vierte Gitter
gegen das erste jeweils in Richtung einer der Elächendiagonalen um die Hälfte von dessen Länge
verschoben ist. Sind also die Basisvektoren des ersten einfachen kubischen Gitters durch

ttj — (ZCj , tt2 — UO2 , ttg —
gegeben, so haben die Ursprungspunkte der vier Basissysteme die Koordinaten

<».».«). .444 .(4»4). «(»44)-
Reziproke Gitter
Neben dem von den Basisvektoren a 1? a 2 , a 3 aufgespannten direkten Gitter wird
für jeden Kristall das reziproke Gitter definiert. Seine Basisvektoren werden mit

&3 bezeichnet.
Sie sind mit a 1} a 2) a 3 durch

a i  • b j  = 2tc<5 ij (6)



191.1. Geometrie der Kristallgitter

verknüpft, wobei das KRONECKER-Symbol bedeutet. Aus den Definitionsgleichun-
gen (6) folgt explizit

2tt
©1 = €l>2 X ?

2k
O 2 

= ~ ®3 X di ,

O3 — _ di X •

(7)

Das reziproke Gitter eines Kristalls wird durch die Gitterpunkte

3

= L m jb i (m j = 0, ±1, ±2; ...) (7a)
;=i

aufgespannt.
Die Basisvektoren des reziproken Gitters haben die Maßeinheit m-1 . Als Volumen
der Elementarzelle des reziproken Gitters, d. h. als Volumen einer Gesamtheit nicht-
äquivalenter Punkte im reziproken Raum, erhält man

&0 = = ’ ( 2 X b 3 ) . (7b)

Mit Hilfe des Entwicklungssatzes der Vektorrechnung

A x (B x C) = (A • C) B - C4 • B) C

ergibt sich
4tc2

&2 x b 3 = -77-7 («3 x x («i X a 2 )
0

4tü2

= 77»- [(«3 X «i) • a 2«i — («3 X «i) • «ia 2 ]
““0

und daraus wegen

(a 3 x «i) • a 2 = ai«2«3, («3 X aj • a ± = 0

für das Volumen der Elementarzelle des reziproken Gitters

* 0 — bj • (& 2 X b 3 ) — (7c)

Die Maßeinheit der Elementarzelle des reziproken Gitters ist m-3 .

2*
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Beispiel 1.1.4. Reziprokes Gitter des kubisch-flächenzentrierten Gitters

Die Elementarzelle des kubisch-flächenzentrierten Gitters wird nach (5) und (7) im reziproken
Raum durch die Basisvektoren

&i = — (— + e 2 -|- e 3 ) ,

2kb 2 = — (ej - e 2 +e 3 ), > (8)

— (®1 ®2 ®s)

aufgespannt.
Für Silber mit a = 0,408 nm erhält man z. B. als Volumen der Elementarzelle des reziproken

p Probleme

1.1.1 Steinsalzgitter

Die Alkalihalogenide, von denen das Steinsalz NaCl der bekannteste Vertreter ist, kristallisieren
in der Form des einfachen kubischen Gitters (vgl. Beispiel 1.1.3.). Seine Gitterpunkte sind ab-
wechselnd mit den zwei verschiedenen lonenarten der Verbindung besetzt (vgl. Bild 1.1.6).
Diese bilden jede für sich ein kubisch-flächenzentriertes Gitter. Beide Gitter sind gegeneinander
in Richtung der Raumdiagonalen eines Elementarwürfels um die Hälfte ihrer Länge verschoben.
Geben Sie die Gitterkonstante des Steinsalzgitters an, für das die folgenden Daten bekannt
sind:

NaCl — 2,17 g cm 3 ; A Na — 22,99, A C1 — 35,45

Lösung:
Der Elementarwürfel nach Bild 1.1.6 enthält acht Chlorionen in den Ecken, sechs auf den Flächen.
Auf einen Würfel entfallen somit

8 • — = 1 Chlorion,
8

6 • — = 3 Chlorionen.
2

Die zwölf Natriumionen auf den Kanten zählen als

12 • — =3  Natriumionen;
4



211.1. Geometrie der Kristallgitter

das Natriumion in der Mitte des Würfels gehört diesem vollständig an :

1*1  = 1 Natriumion.

Zu einem Würfel mit der Gitterkonstanten a als Kantenlänge gehören somit vier Natrium- und
vier Chlor ionen. Daraus folgt

_ 4(mNa + m cl  ) i /4(w Na + m ci)
a NaCl — ----------3 ------------- > a NaCl — / -------’S ---------------

a NaCl I- NaNl

Bild 1.1.6. Steinsalzgitter (einfach
kubisches Gitter). Die Basis besteht
aus einem Natriumion bei 0, 0,  0 und

einem Chlorion bei — , — , ~ (in
2 2 2

(Einheiten der Gitterkonstanten a) .

Mit den vorgegebenen Werten erhält man für die Gitterkonstante des Steinsalzkristalls

y/ 4(22,99 + 35,45)
1/ 2,17 • 10 3 • 6,02 • 10 26 m = 0,564 nm .a NaCl —
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1.1.2. Kubisch -raumzentriertes Gitter (krz-Gitter)

Wolfram hat ein kubisch-raumzentriertes Gitter nach Bild 1.1.4. Ein Elementarwürfel mit einer
Kantenlänge, die gleich der Gitterkonstanten a ist, besitzt acht Atome in den Ecken, zu denen

'eins im Zentrum des Würfels kommt.
Definieren Sie die Elementarzelle des kubisch-raumzentrierten Gitters und berechnen Sie für
Wolfram die Gitterkonstante a, wenn folgende Daten bekannt sind:
Dichte d w = 19,3 g cm-3 , relative Atommasse A w = 183,85.
Stellen Sie die Basisvektoren für das reziproke Gitter auf und vergleichen Sie dieses mit dem
kubisch-flächenzentrierten Gitter. Zeigen Sie, daß das kubisch-raumzentrierte Gitter aus
zwei einfachen kubischen Gittern zusammengesetzt werden kann.

Lösung:

Acht Atome in den Ecken zählen als 8 • — = 1 Atom. Dazu kommt ein Atom in der Mitte, das
8

nur einem Elementarwürfel angehört und daher als ein Atom zu zahlen ist. Demzufolge kommen
zwei Atome auf einen Elementarwürfel.
Mit den Einheitsvektoren e1? e 2 , e 3 nach Bild 1.1.4 definieren wir die Basisvektoren

«1 = 4 ( -  e i + e 2 + C 3 ) ,

“ ( e i — e 2 + C s )  >Z

a ,a 3 — — (ex + e 2 — e 3) .

Sie sind jeweils vom Gitterpunkt in der Mitte zu einer der Ecken gerichtet. Als Volumen der
Elementarzelle folgt

(2).Qq — — u x • (u 2 X U3) —

Da im Würfel mit der Kantenlänge a zwei Atome enthalten sind, entfällt auf die durch (1) defi-
nierte Elementarzelle, wie es sein muß, ein Atom.
Zur Berechnung der Gitterkonstanten des Wolframs gehen wir von der für das kubisch-raum-
zentrierte Gitter geltenden Formel

7d = —
a 3 (3)

aus und erhalten
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Mit den vorgegebenen Werten folgt

1 / 2 • 183,9 . „a — / -------------------------- m = 0,316 nm.
1/ 6,02 • 1026 • 19,3 • 103

Für die Basisvektoren des reziproken Gitters ergibt sich nach (1.1./7) aus (1)

&i = — (e 2 + e 3 ) ,a

= — (e s + e j ,
a (5)

b s = — (ei + e 2 ) .a

Aus dem Vergleich mit (1.1. /5) folgt, daß die kubisch-flächenzentrierten und die kubisch-raum-
zentrierten Gitter zueinander reziprok sind. Das gleiche zeigt der Vergleich von (1.1. /8) und
(1.1.2./1).
Das kubisch-raumzentrierte Gitter kann aus zwei einfachen kubischen Gittern mit den Basis-
vektoren

— Ct/ßj. , 2 — U62 9 (6)

zusammengesetzt werden. Die Koordinaten der Ursprungspunkte lauten

<» .» .»>»  “ (144) -  (7  >

1.1.3. Diamantstruktur

Der Germanium- und der Siliziumkristall sind nach der Diamantstruktur aufgebaut. Jedes der
vierwertigen Atome im Inneren des Kristalls befindet sich im Zentrum eines gleichseitigen Tetra-
eders und ist von vier gleich weit entfernten Nachbarn umgeben, die in den Tetraederecken an-
geordnet sind (vgl. Bild 1.1.7).

Bild 1.1.7. Tetraedrische Struktur der Bindung bei
den Bausteinen des Diamantgitters

Diese Kristallstruktur kann aus zwei kubisch-flächenzentrierten Untergittern aufgebaut werden,
die gegeneinander in Richtung der Würfeldiagonalen um ein Viertel ihrer Länge verschoben sind
(vgl. Bild 1.1.8).
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Geben Sie die Basisvektoren der Elementarzelle an. Wieviel Atome enthält diese beim Diamant-
gitter? Wie groß sind die Abstände zu den nächsten Nachbarn? Die Gitterkonstante hat für Ger-
manium den Wert a Ge = 0,565 nm, für Silizium aSi — 0,543 nm. Wie groß ist der Winkel zwi-
schen den Valenzkräften auf Grund der Gitterstruktur?

Bild 1.1.8. Aufbau des Diamantgitters
aus zwei gegeneinander verschobenen
kfz-Gittern. Vom zweiten Gitter sind nur
die Bausteine innerhalb eines Elementar-
würfels dargestellt.

Lösung:

Die Basisvektoren entsprechen denen des kubisch-flächenzentrierten Gitters (1.1./6) nach Bei-
spiel 1.1.2. Sie haben die Länge

ai = ±-fia (i = l ,  2, 3). (1)

Die Kristallstruktur ergibt sich aus Gitter und Basis. Zur Basis gehören zwei Atome, da sich die
Kristallstruktur aus zwei einfachen Gittern aufbauen läßt. Eine Elementarzelle enthält daher zwei
Atome.
Wählt man die Koordinatenachsen in Richtung der Basisvektoren a x , a 2 > a 3 es kubisch-flächen-
zentrierten Gitters nach (1.1. /6), so sind die Gitterpunkte des unverschobenen Gitters durch die
Ortsvektoren

R = jR X> 2 ,  3 == tBiGi -f- H2U2 3®3 ~

— — + «3] + 2 3 + C l] + 3[ C 1 + e 21) ( )
Zt

(nf = 0, ±1 ,  ±2,  •••; i = 1, 2, 3)

bestimmt. Die Gitterpunkte des verschobenen Gitters werden durch

R' = Ri ' ,  2 ' ,  3' = — ( 1 : 2 — — + ■y ( n i [ e 2 + e 3 ] + nz'fßa + + n s ' [ e i + e 2])4 2

= — (ex [l + 2n 2' + 2n3
z] + e 2 [ l  + 2n/ + 2n 3 '] + e 3 [ l  + 2n/ + 2n2 ']) (3)4

«=0 ,  ±1 ,  ±2 ,  . . . ;  i = 1,2 ,3)
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definiert. Als nächste Nachbarn des Gitterspunktes P o = P(0, 0, 0) erhält man aus (3) die Punkte
mit den Parameterwerten

n/ = 0 ,  n 2 = 0 ,

n/ = — 1 , n 2 = 0 ,

n/ = 0 , n 2 = — 1 ,

n/ = 0 ,  n 2 = 0 ,

T—1
o 

o 
<o 

1
II 

II 
II 

II
s

(4)

Der Abstand zwischen nächsten Nachbarn beträgt nach (1) und (4) für die
Bausteine der Diamantstruktur

< o,o = T ± e i) 2 + <± e ä)2 + ( ±e 3) 2 = V “ •  &4 4

Wir setzen die Werte der Gitterkonstanten für Germanium und für Silizium ein und erhalten

V3
0 0) Ge = — 0,565 nm = 0,245 nm,

‘ ' 4

V3
«o,o)si = — 0,543 nm = 0,235 nm.

Der Cosinus des Winkels zwischen zwei Valenzkräften ist gleich

cos (p = = -i,o,o ' ,-1,0

Damit folgt

COS ® = (€1 ~ ~ Ca) • ( ~ €1 + ~ = _ 1

3 3
bzw.

<p = 109,47°.

Das ist der Winkel vom Zentrum eines Tetraeders nach zwei Tetraederecken.

1.1.4. Hexagonal dichteste Kugelpackung (hdp-Gitter)

Kobalt zeigt eine Kristallstruktur mit hexagonalem Gitter nach Bild 1.1.9. Jeder Kristallbaustein
A ist von sechs anderen umgeben, die an den Ecken eines regelmäßigen Sechsecks der Seiten-
länge a liegen. Im Abstand c senkrecht darüber wiederholt sich diese Anordnung. Drei weitere

Bausteine befinden sich in der Höhe . Sie sind so angeordnet, daß von den sechs Prismen mit

dreieckiger Grundfläche abwechselnd eins besetzt ist, während das folgende keinen zwischen-

geordneten Baustein enthält. Die Projektion eines in der Höhe — angeordneten Bausteins auf die
2

Grundfläche fällt auf den Schwerpunkt 5 des vom Baustein in der Mitte A und zwei benachbarten
Bausteinen gebildeten gleichseitigen Dreiecks (vgl. Bild 1.1.9).
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Für den Kobaltkristall ergeben röntgenografische Messungen a = 0,251 nm, c = 0,407 nm. Die
relative Atommasse des Kobalts ist A r = 58,93. Welche Dichte ergibt sich hieraus?

Bild 1.1.9. Hexagonal dichteste Kugelpackung
(hdp-Gitter) mit

— = 1
a ]/ 3

Lösung:

Als Basisvektoren werden die Vektoren

U 9

a , ]/3
a 2 — 4- —Z Z (1)

a 3 — ce3

gewählt (vgl. Bild 1.1.9). Für das Volumen der Elementarzelle erhalten wir daraus

1/3
=■ = (2)

Jeder der zwölf Bausteine in einer Ecke gehört gleichzeitig sechs Zylindern an, jeder der zwei
Bausteine im Zentrum der oberen bzw. der unteren Fläche gleichzeitig zwei Zylindern. Die in der
Mitte angeordneten drei Bausteine sind dem betrachteten Zylinder vollständig zuzuordnen.
Insgesamt gehören also einem Zylinder sechs Bausteine an, die sich auf das Volumen

F = 6a — c = — ]/3 a 2c
2 2

verteilen. Auf die Elementarzelle (2) entfällt somit eine Basis aus zwei Bausteinen. Der eine liegt
im Ursprung, der zweite ist durch den Ortsvektor

1 z . X . 1 a . , C . . .—- (tti + a 2 ) + — a 3 — “ e i H ----T“ C 2 + “ e 3 (4 )
o Z Zi O Z

gekennzeichnet.
Die Dichte des Kobaltkristalls ist nach (2)

d = — = —_-44r ----  . (5)
ßo ]/3 jVAa 2c
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Mit den vorgegebenen Werten folgt

, 4 • 5 8  ’ 93 i 3 o o -3d = ------------------------------------------------------ kg m~3 = 8,8 g cm 3 .
V3 • 6,02 • 1026 • (0,251 • 10- 9 ) 2 • 0,407 • 10~9

Der Abstand des durch (4) gegebenen Bausteines von seinen nächsten Nachbarn in der Grund-
ebene beträgt

Von den Nachbarn in der gleichen Ebene, in der Höhe — über der Grundebene gelegen, ist der
2

Abstand zu den nächsten Nachbarn gleich a. Die dichteste Packung mit gleichen Kugeln wird
somit erreicht für

a 2 , c2 _ i / 8 .------ ------ bzw. c = 1 /  — a = 1,63a. (7)
3 4 |/ 3

Zwei Kugeln mit dem Radius — füllen in diesem Falle das Volumen

Als Packungsdichte definiert man den Anteil des ausgefüllten Raumes. Bei der hexagonal dichte-
sten Kugelpackung erhält man hierfür

2_P£==  =0(74
ß o |/8 - 3

Für Kobalt ist

c_ = 0,407- io-» = t 62

a 0,251 • 10- 9

Gleichung (7) als Voraussetzung für das Vorliegen der hexagonal dichtesten Kugelpackung ist
daher gut erfüllt.
Für das reziproke Gitter ergeben sich nach (1.1. /7) die Basisvektoren

(8)

Wie man aus dem Vergleich von (1) und (8) erkennt, ist das reziproke Gitter des hexagonalen
Gitters wieder hexagonal.
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Anmerkung : Die Achse mit der größten Symmetrie heißt c- Achse. Im vorliegenden Fall der Atom-
anordnung in Form regelmäßiger Sechsecke liegt eine sechszählige bzw. hexagonale c-Achse vor.
Das Gitter kommt bei einer vollständigen Drehung um die c-Achse sechsmal mit sich selbst zur
Deckung.

Bild 1.1.10. CsCl-Struktur

ü. Aufgaben

A 1.1.1. Silber hat ein kubisch-flächenzentriertes Gitter. Seine Dichte beträgt 10,49 g cm-3 ,
seine relative Atommasse AÄg = 107,87. Bestimmen Sie die Gitterkonstante.

A 1.1.2. Berechnen Sie die Gitterkonstante a des a-Eisens, das ein kubisch-raumzentriertes
Gitter besitzt (dFe = 7,86 g cm-3 , A Fe = 55,85).

A 1.1.3. Welche Gitterkonstante hat der KCl-Kristall (Steinsalzgitter nach Bild 1.1.6)?
Daten: <ZKC1 = 1,989 g cm-3 , A K = 39,10, A C1 = 35,45.

A 1.1.4. Wie groß ist beim Steinsalz NaCl die Zahl der Ionen in einer Elementarzelle des
kubisch-flächenzentrierten Gitters?

A 1.1.5. Zinkblende ZnS setzt sich aus zwei flächenzentrierten Gittern zusammen, die in
Richtung der Raumdiagonalen eines Elementarwürfels um ein Viertel ihrer Länge
verschoben sind. Berechnen Sie die Gitterkonstante (A Zn = 65,37, A s = 32,06,
dZnS = 4 > 067 g cm " 3 )*

A 1.1.6. Berechnen Sie das Volumen einer Elementarzelle des reziproken Gitters für Kupfer.
A 1.1.7. Wie groß ist bei Steinsalz die Länge der Basisvektoren (a = 0,564 nm)?
A 1.1.8. Geben Sie für Steinsalz die Koordinaten der Natrium- und der Chlorionen in

Einheiten der Gitterkonstanten a an.
A 1.1.9. Wie groß ist der Abstand zwischen nächsten Nachbarn beim Wolframkristall

(kubisch-raumzentriertes Gitter mit a w = 0,316 nm)?
A 1.1.10. Berechnen Sie den Anteil des verfügbaren Volumens, das von gleich großen starren

Kugeln ausgefüllt werden kann, für das kubisch-flächenzentrierte und für das
kubisch-raumzentrierte Gitter.

A 1.1.11. Wie groß ist der maximale, mit gleich großen starren Kugeln gefüllte Raumanteil
beim Diamantgitter?

A 1.1.12. Der Diamantkristall hat die Gitterkonstante a = 0,356 nm. Berechnen Sie die
Dichte des Diamanten und den Abstand zwischen den nächsten Nachbarn
(A c = 12,0).

A 1.1.13. Geben Sie die Zahl der nächsten Nachbarn (Koordinationszahl z) eines vorgege-
benen Bausteins im Kristall für das kubisch-flächenzentrierte, das kubisch-raum-
zentrierte und das hexagonal dichtest gepackte Gitter an.

A 1.1.14. Bestimmen Sie die Zahl z± der nächsten, z2 der übernächsten, z3 der drittnächsten
bis z6 der sechstnächsten Nachbarn eines Bausteins im Steinsalzkristall (einfaches
kubisches Gitter).
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A 1.1.15. Berechnen Sie den Abstand zweier nächster Nachbarn für das Gitter des Silber-
kristalls (kubisch-flächenzentriertes Gitter mit a = 0,408 nm).

A 1.1.16. Geben Sie den kürzesten Abstand zwischen zwei Ionen im Kristallgitter mit Zink-
blendestruktur an, bezogen auf die Gitterkonstante a.

A 1.1.17. Wie groß ist der Abstand zwischen nächsten Nachbarn in CuCl (Zinkblende-
struktur mit a = 0,541 nm)?

A 1.1.18. Stellen Sie einen beliebigen Vektor k durch seine Komponenten im Basissystem des
Kristallgitters und im Basissystem des reziproken Gitters dar.

A 1.1.19. Wie groß ist die Elementarzelle des reziproken Gitters für den Wolframkristall
(krz-Gitter, a = 0,316 nm)?

1.2. Grundlagen der Kristallstrukturanalyse

Einführung

Gesetze der Beugung von Röntgen- und de-Broglieschen Wellen am Raumgitter

Zur Untersuchung von Kristallstrukturen wird die Beugung von Wellen ausgenutzt,
die mit den Kristallbausteinen in Wechselwirkung treten. Die Wellenlänge muß
dabei in der Größenordnung des Abstandes der Kristallbausteine liegen. Zu große
Wellenlängen vermögen Strukturen atomarer Größenordnung nicht aufzulösen, zu
kleine Wellenlängen ergeben nur unter unpraktisch kleinen Beugungswinkeln aus-
wertbare Beugungsmaxima.

Bild 1.2.1. Einfallendes Strahlenbündel n 0 und
gebeugtes Strahlenbündel n im Kristall

Eingestrahlt werden im allgemeinen Röntgenwellen. Es können jedoch auch Strahlen
aus Elektronen oder Neutronen verwendet werden, wenn die Länge ihrer de-Broglie-
schen Welle in der Größenordnung der Gitterkonstanten liegt.
Das auf die Kristalloberfläche auffallende Strahlenbündel wird durch die Kristall-
bausteine in alle Richtungen gestreut. Es sei in Bild 1.2.1 das einfallende Strahlen-
bündel KL vor der Streuung an den Kristallbausteinen A,  O durch seine Richtung
n 0 gekennzeichnet. Betrachtet wird das in Richtung n gebeugte Strahlenbündel
MN. Dieses weist dann maximale Intensität auf, wenn sich parallele Strahlen durch
Interferenz verstärken. Das ist der Fall, wenn die Strahlen an den Begrenzungen des
Bündels eine Differenz BO + OG der geometrischen Weglängen haben, die einem ganz-
zahligen Vielfachen der Wellenlänge entspricht. Bezeichnet in Bild 1.2.1 den vom
Kristallbaustein O zum Kristallbaustein A gezogenen Basisvektor, so muß die Be-
ziehung

BO + OC = — «! ♦ n 0 + aj • n = g
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bzw.

«i • (n - ™o) = 9'1 (1)
mit

((7i = 0, 4z 1, zfc2, . . .)

erfüllt sein. Für das dreidimensionale Raumgitter mit den Basisvektoren a 2 , a 3
folgen analog die zusätzlichen Gleichungen

a 2 • (n — n 0 ) = g2A, (2)

a 3 - (n  — n 0 )=g 3X. (3)

Sie sind notwendige Bedingungen für das Auftreten eines Beugungsmaximums.
Daher enthalten sie keine Aussage über die Intensität der gebeugten Strahlen. Die
Gleichungen (1) bis (3) heißen die Laueschen Interferenzbedingungen.
Bezeichnen ocQ , ßQ , yQ die Winkel des Einheitsvektors n 0 gegen die Basisvektoren
«i, a 2 , a 3 , ferner a ,  ß, y die entsprechenden Winkel des Einheitsvektors n, so erhält
man aus (1), (2), (3) die Gleichungen

a x (cos <x — cos oc Q ) = (ftA,

a 2 (cos ß — cos ß Q ) = g2X,

a 3 (cos y — cos y0 ) = g3 X
(<7i> 92) 9a — 0, 4z 1? 4z 2, . . .) .

<%0 , ßo, 7o stellen ebenso wie a ,  ß, y Glanzwinkel dar, d. h., sie geben die Winkel der
Strahlen gegen die Gittergeraden an. a 1? a 2 , a3 als Beträge der Vektoren a 2 , a 3
bezeichnen Gitterkonstanten. Die Größen g19 g2 , g3 sind nicht unabhängig vonein-
ander. Betrachtet man ein rhombisches Gitter, d. h. ein Gitter mit drei zueinander
senkrecht stehenden Achsen, bei dem die Gitterkonstanten a 1? a 2 , a3 jedoch nicht
gleich sein müssen, so bestehen zwischen den Richtungscosinus die Beziehungen

cos 2 
ocq + cos2 ß0 + cos2 y 0 = 1 ,

cos2 <x + cos2 ß + cos2 y = 1 .
(5)

Auf der Fotoplatte können nur Beugungspunkte auftreten, wenn sie den geometri-
schen Bedingungen (5) entsprechen.
Um für einen Kristall mit rhombischem Gitter die Wellenlängen 2 zu bestimmen, die
Interferenzmaxima, d. h. auswertbare Beugungspunkte, liefern können, werden die
Gleichungen (4) nach den Richtungscosinus cos a, cos -ß, cos y aufgelöst. Beachtet
man die Beziehung

cos2 cc 4“ cos2 ß + cos2 y — 1 )
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so folgt für die Wellenlängen mit Interferenzmaxima

(6)

Für das kubische Gitter mit = a 2 = «3 = a ergeben sich die Wellenlängen

jfj cos a 0 + cos + 93 008/0
9 l 9 I ' 9 * \ /9i 2 + 922 + 9s2

(4) und (6) bzw. (7) bilden die Grundlage für die Kristallstrukturanalyse durch Beu-
gung eines parallelen Strahlenbündels (Verfahren von M. v. Laue) .

Reflexion an Netzebenen — Millersehe Indizes
Die Beugung von Strahlen an einem Gitter kann nach W. EL Bragg und W. I. Bragg
auch als Reflexion an Netzebenen aufgefaßt werden. Netzebenen sind Ebenen, die in
periodischer Folge Kristallbausteine des Gitters enthalten (vgl. Bild 1.2.2). Zur
Kennzeichnung der verschiedenen Netzebenenscharen verwendet man die Miller-
schen Indizes.

Bild 1.2.2. Netzebenen eines Kristall-
gitters

Allgemein sind bei einem System beliebig gegeneinander geneigter Basisvektoren
«2? a 3 die MiLLERSchen Indizes einer Schar paralleler Netzebenen wie folgt ver-

anschaulicht: Es wird der Schnitt einer Kristallebene mit den Achsen des Koordi-
natensystems betrachtet. Die Schnittpunkte seien

(<rs , 0, 0), (0, i/ s , 0), (0, 0, zs ) .
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In Einheiten der Gitterkonstanten a x bzw. a2 bzw. a 3 gemessen, sind die Achsen-
abschnitte

Vs z s
«1 = ------- , S2 = ---- , 63  = ------- .

661 CL2 C63

Ihr reziprokes Verhältnis wird durch die kleinsten teilerfremden ganzen Zahlen aus-
gedrückt :

1 • 1 . 1
— . — . — — h . h2 . .
<$1 <§2 #3

Diese sind die MiLLERSchen Indizes der Ebenenschar. Es gilt also

T~ ’ ~b~ * T~ — • 5 2 *• 53 — : : —h,! h2 h3 a2 a3

Eine Ebene mit dem Abstand p vom Ursprungspunkt des Basissystems wird durch
die Gleichung

x cos a! + y cos ß' + z cos y' == p (9)

dargestellt. Dabei bedeuten a ' ,  ß' , y' die Winkel der Ebenennormalen ri gegen die
Koordinatenachsen. Die Cosinus dieser Winkel können als Verhältnis des Ebenen-
abstandes p zur Länge des betreffenden Achsenabschnittes berechnet werden :

pppcos a! = — , cos ß' = — , cos y' ■— —
y* z*

(10)

Definiert man daher die MiELERSchen Indizes gemäß (8), so folgt aus (10)

1 2 3 t Q f t---- : ---- : ---- = cos <x : cos ß : cos ya2 a3
(11)

Die MiLLERSchen Indizes, dividiert durch die Gitterkonstanten, sind proportional
den Richtungscosinus cos oc', cos ß', cos y' der Ebenennormalen n' .  Durch ein Tripel
MiLLERscher Indizes werden daher eine Schar paralleler Netzebenen und die Richtung
ihrer Flächennormalen festgelegt. Allgemein definiert man mittels

(7 h2 h3 ) die Schar der Netzebenen,
mittels

h2 h3 ] die Gerade n' .

Ein Punkt mit den Koordinaten x, y, z wird durch [[xyzj] dargestellt.
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Beispiel 1.2.1. Millersche Indizes einer Ebenenschar

a) Die durch die MiLLERschen Indizes (2 3 4) charakterisierten parallelen Ebenen sind nach (8)
durch

1 1 1 _ J_ _£ _1_
’ Ä3 2’34 ’

d. h.  durch das Verhältnis der Achsenabschnitte

. gs _ _ ß .4 .3
«1 «2 * a 3 2*34

gekennzeichnet. Beim Steinsalzgitter mit ar = a2 = az = a gilt nach (11) für die Richtungs-
cosinus der Flächennormalen

cos <x' : cos ß' : cos y ' — 2:3:4 ,

d. h., diese sind gleich

cos , cos ß' = ----  , cos y' = ----  .
]/29 V29 ]/29

Bild 1.2.3 a) Netzebenen (1 1 1) und (2 2 2)

b) Das Indextripel (1 1 1) erfaßt alle zur zweiten Oktaederfläche des ersten Raumoktanten
parallelen Ebenen, d. h. alle Netzebenen, die zur Netzebene durch die Punkte [[a x 0 0]], [[0 u2 0]],

3 Schilling, Festkörperphysik



34 1. Struktur idealer Kristalle

[[0 0 a 3]] parallel sind (vgl. Bild 2.1.3a). Das sind die Ebenen mit

= 2 , y3 = 2a,2 , zs = 2a3 ;
= ys — 3<z2 , zs = 3<z3 ;

x8 = 4a19 ys = 4a2 , zs = 4a3 .

Beispiel 1.2.2. Netzebenen parallel zu einer Koordinatenachse

Die MiLLERschen Indizes (011)  kennzeichnen gemäß

111  x8 ys z~ 111— : — = — : — : — = — : — = oo: 1 :1
h2 h3 ar a2 a3 Ol l

eine zur x-Achse parallele Netzebene.
Durch die MiLLERschen Indizes (1 0 0) wird eine zur y- und zur z-Achse, d. h. zur y, z-Ebene,
parallele Netzebene charakterisiert (vgl. Bild 1.2.3b).

Bild 1.2.3 b) Netzebene (1 0 0)

Negative Vorzeichen der Indizes werden über diese gesetzt.

Beispiel 1.2.3. Negative Millersche Indizes

( i  1 1) charakterisiert die Netzebenen parallel zur Netzebene durch die Punkte [[— ar 0 0]],
[R  0]], [[0 0a 3]].
Zwischen dem reziproken Gitter und den Millerschen Indizes besteht eine enge
Verknüpfung. Es seien a 1? a 2 , a 3 die Basisvektoren eines Kristallgitters, b 17 b 2 , ö 3
die Basisvektoren seines reziproken Gitters. Die Netzebenen mit den MrLLERschen
Indizes sind nach (8) parallel der Netzebene N Q mit den in Einheiten der
Gitterkonstanten gemessenen Achsenabschnitten

x s ys 1 1 1
' a 2 ' a 3 h1 ’ h 2 h 3

Daher liegen die Endpunkte der Vektoren

1 2 3



351.2. Grundlagen der Kristallstrukturanalyse

d. h. die Punkte

[[*, 0 0]], [[0 ys 0]], [[0 0zs ]]
alle auf der Netzebene N Q , während die Vektoren

7 — 7 und 7“ 7“Aj fl2

in der Netzebene liegen.
Die Gitterpunkte des reziproken Gitters sind durch die Vektoren

& — gi, 92,93 = Ml + 2 2 + 3 3 (12)

festgelegt. Berechnet man die Skalarprodukte

> Ml _ ®2
91 ’ 92 ’ 9* ’ h2

und
> Mi _ ®s\

91 ’92 ’ 9* ’ h3 ] ’

so findet man unter Heranziehung der Beziehung • bj = 2tt< nach (1.1./6), daß
diese genau dann verschwinden, wenn die Beziehung

9i'-gz'-g3 = h1 :h2 :h3 (13a)

besteht. Der Vektor

Bild 1.2.4. Netzebene (111 )  mit zugehörigem Vektor b1>:
des reziproken Gitters

steht also auf den Netzebenen mit den MiLLERschen Indizes senkrecht (vgl.
Bild 1.2.4). I ist der größte gemeinsame Teiler der drei ganzen Zahlen glf g2 , g3 .

3*
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Nach (12) folgen unter Berücksichtigung der Beziehung • bj = 2izdy für den Vektor
b gi>g2t g 3 die drei Gleichungen

«1 ■ bg .g, = 27 1> '
a 2 ’ bguMs ~ 2it<72 , •

«3 • &*.(,„* = 27%

Die LAUEschen Interferenzbedingungen (1) bis (3) können gemäß

«! • (»  — M0 ) _
Ä ~ g i>

a 2 - (n — n 0)
2 ~ g2 ’

a 3 - (n — n 0 )
--------5-------- — ?3

(14)

(15)

dargestellt werden. Aus dem Vergleich von (14) und (15) ergibt sich

n - n 0
2 01 .02 , 03*  (16 )

Führt man die Wellenzahlvektoren

2tu 2kk = —n ,  k Q = — n Q (17)

ein, so erhält man anstelle von (16) die LAUEschen Interferenzbedingungen in der
Form

(j... ■ .? i ( ;l A/ s r V't' Yk k Q — bgt ,g2,g3 (18)

Ein Interferenzpunkt entsteht nur, wenn die Differenz zwischen dem Wellenzahl-
vektor des gebeugten und dem des einfallenden Strahles auf einen Gitterpunkt des
reziproken Gitters fällt. Durch Multiplikation des Wellenzahlvektors mit dem durch
2k dividierten PuANCKSchen Wirkungsquantum h = -— ergibt sich der Photonen-
impuls K

p = hk bzw. Pq = hkQ .

(18) kann daher als Impulserhaltungssatz für die Photonen bei der Reflexion an den
Netzebenen gedeutet werden :

(18a)p — hb=p  G,
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Die Lichtbeugung ist mit einer Impulsübertragung auf den Kristall verbunden. Der
Rückstoß ist von der Größe

(18b)Po — p = —hb.

Nach (18) erhält man die Interferenzpunkte eines LAUE-Bildes wie folgt (vgl. Bild
1.2.5): Vom Koordinatenanfangspunkt 0 (einem beliebigen Gitterpunkt des rezi-
proken Gitters) wird der Vektor — k Q gezogen. Um den Endpunkt M legt man eine

2k r> '■ ' c : -r ;

Kugel mit dem Radius k = — (Ewaldsche Kugel). Ein Interferenzpunkt liegt vor,X
wenn (18) erfüllt ist, d. h., wenn die Kugel durch einen Gitterpunkt geht bzw. in
unmittelbarer Nähe eines Gitterpunktes des reziproken Gitters vorbeigeht.

Bild 1.2.5. EwALDsche Kugel im reziproken Gitter mit geneigten Gitterachsen
und unterschiedlichen Gitterkonstanten

Ableitung der Braggschen Formel

Der Abstand b hlthzih3 zwischen zwei benachbarten parallelen Netzebenen läßt sich
aus den Achsenabschnitten nach (8) berechnen, wenn man die Komponente eines
der Vektoren
folgt nach (1.1./6) und (1.1. /7 a)

(t = 1, 2, 3) in Richtung der Ebenennormalen n' bestimmt. Es

h l t  h 2 ,h 3
h l t  h 2 ,h 3 r * W 1 * “I “7 *

n i o h l t  h 2 ,h 3 °h 1 ,h 2 ,h 3

2k
(19)

Beispiel 1.2.4. Abstand benachbarter Netzebenen

Im rhombischen Gitter folgt aus

&hi,fi2,h3 — ( i&i + h2b 2 h3b 3 ) 2 = h b-j 2 + h2
2b 2

2 + h3
2b 3

2

und wegen
4k 2

& y2 = r (7 = 1. 2, 3)
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die Beziehung

öhl t  h 2 ,h3 = 1 :• (19a)
1 /  V . jV + v

«j2 a 2
2 ' a 3

2

Im kubischen Gitter ist der Abstand zwischen benachbarten Netzebenen mit den MiLLERschen
Indizes (10  0) gleich <510  0 = a.
Zwischen benachbarten Netzebenen mit den MiLLERschen Indizes (111)  beträgt der Abstand im
kubischen Gitter

<?! ! ! = 4: = 0,577a.

Speziell für Nickel mit a = 0,352 nm folgt

1.1,1 — 0,203 nm.

Da man sich nach W. H. und W. I. Bragg die Interferenzpunkte eines Laue -Bildes
auch durch Reflexion des einfallenden Strahles an den Netzebenen entstanden denken
kann, läßt sich jedem Interferenzpunkt ein Tripel MiLLERScher Indizes zuordnen.
Es gibt die Netzebenenschar an, an der die Reflexion erfolgte.

Bild 1.2.6. Zur Ableitung der BRAGGschen Formel

Sollen sich die von parallelen Netzebenen reflektierten Strahlen durch Interferenz
verstärken, so muß der Gangunterschied benachbarter Strahlen ein ganzzahliges
Vielfaches von 2 sein :

(20)2<3äi; ä 2,ä3 sin 0 = 12, (l = 0, 1, 2, . . .)

(vgl. Bild 1.2.6). (20) heißt die Braggsche Formel. Darin gibt # den Glanzwinkel an,
d. h. den Winkel zwischen Strahl und Netzebene. Für das rhombische Gitter kann man
nach (19 a) die BRAGGsche Formel in der Form

i/V , V . V
[/ a x 

2 «2 
2 a 32 (21)sin# = —

schreiben.
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Die BßAGGsche Formel bildet die Grundlage für die Strukturanalyse durch Dreh-
kristallverfahren (s. 1.2.2.). Ebenso wie die LAUEsche Interferenzbedingung stellt
sie eine notwendige Bedingung für das Auftreten von Interferenzpunkten dar,
macht also keine Aussagen über die Intensität der Interferenzpunkte.

p Probleme

1.2.1. Auswertung eines Laue-Bildes (Laue -Verfahren)

CuF hat ein Gitter, das der Struktur des Diamanten entspricht. Die Kupferionen und die Fluor-
ionen bilden jede für sich ein kubisch-flächenzentriertes Gitter; diese sind gegeneinander in
Richtung der Würfeldiagonalen um ein Viertel ihrer Länge verschoben. Für die Gitterkonstante
des Kupferfluoridgitters ergibt sich nach dem Verfahren des Beispiels 1.1.1 der Wert a = 0,426 nm.
Unter dem Winkel a 0 — 90°, ßQ = 90°, y = 0° fällt ein schmales paralleles Bündel polychroma-
tischer Röntgenstrahlen auf den Kristall. Dabei befindet sich die Fotoplatte im Abstand
d = 5,00 cm vom Kristall.
Geben Sie die Wellenlängen der Strahlung an, die bei der Beugung durch den kubischen Kristall
Interferenzpunkte liefern, und untersuchen Sie die Verteilung der Interferenzpunkte auf der
Fotoplatte.

Lösung:

Nach (1.2./7) sind für

cos <x0 = cos ß0 = 0 , cos y0 = 1

die Wellenlängen, die Interferenzpunkte liefern, durch die Gleichung

A = ----- 3 - --- ( 1 )

ffi2 + g 2 + 9z

bestimmt. Aus (1.2./4) folgt in Verbindung mit (1) für die Richtung a, ß, y, unter der ein Beu-
gungsmaximum beobachtet wird,

2 gi9i
9 2 + g 2 + g 2 ’

COS (X

2 9z9z
9 2 + 9 2 + 9 2 ’

COS ß = — (2)

COS y = 1 + + 3Z2 - 9Z2._
a 9i2 + 9z2 + 9 2 

J

Wie aus Gleichung (1) hervorgeht, muß die Ordnungszahl negativ sein.
Die Bildmitte auf der Fotoplatte ist durch die bei allen Wellenlängen der Röntgenstrahlung
auftretende direkte Bestrahlung deutlich gekennzeichnet (Primärfleck). Für die Koordinaten
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der Interferenzpunkte auf der Fotoplatte folgt (vgl. Bild 1.2.7)

7 cos a — 2at g,x = c cos oc = d ------- = --------- ----- d ,
COS y g* + g* — g

(3)
-2  3 d

91 + fl'22 - ?3 2
y = c cos ß = d -----—

cos y

Kristall

Bild 1.2.7. Koordinaten eines Bildpunktes auf der Fotoplatte
beim LAUE-Verfahren

Der Abstand q eines Interferenzpunktes P von der Bildmitte ist gleich

S'i2 + 9z2 - 9s2

Darin bedeutet c die Entfernung des Bildpunktes P vom Ort der Beugung 0.
Speziell für g3 = — 1 erhält man aus (1)

2 — 2a
~ <7i2 + <722 + 1*

(4)

(5)

Tabelle 1.2.1. g-f + g<f

1"*
92

9i 0 1 2 3 4

0 0 1 4 9 16
1 1 2 5 10 17
2 4 5 8 13 20
3 9 10 13 18 24
4 16 17 20 25 32

Mit g19 g2 = 0, ±1 ,  ±2 ,  ±3 ,  . . .  ergeben sich für g±
2 g2

2 die Werte nach Tabelle 1.2.1.
9i2 + 9z2 kann somit die Werte 0, 1, 2, 4, 5, 8, 9, . . .  annehmen, g-f + g<f = 0 ergibt die Bild-
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mitte, also keine Beugung. Für die übrigen Zahlenwerte folgen nach (5) die Wellenlängen, die bei
der Beugung durch den Kristall Interferenzpunkte liefern:

A = a ;  0,666a; 0,4a; 0,333a; 0,222a; 0,2a ,

Im Falle a = 0,426 nm werden also die folgenden Wellenlängen gebeugt:

2 = 0,426 nm; 0,284 nm; 0,170 nm; 0,142 nm; 0,0947 nm; 0,0852 nm.

Speziell für g3 = — 1 und g± + 02
2 = 5 ergibt sich A = 0,333a, d.  h. 2 = 0,142 nm.

Aus (4) erhalten wir

tany = -£- = 2 ' 1 = 1,118.r d 4

Der Beugungswinkel ist somit gleich

y = 48,19 o ;

der Radius des Beugungskreises beträgt

q = d tan y = 5 • 1,118 cm = 5,59 cm.

Auf diesem befinden sich die durch g-f + g% = 5 bestimmten Punkte. Sie ergeben sich mit den
folgenden Werten :

9i — ±2 ,  02 = ±1
sowie

01 = ± 1 ,  02 ~ ± 2 .

Die hierdurch nach (3) festgelegten acht Interferenzpunkte mit den zugeordneten MiLLERschen
Indizes sind in Bild 1.2.8 dargestellt.

121 , . 121

Bild 1.2.8. Interferenzpunkte eines Laue-
Bildes mit den zu geordneten Mir/LERRchen
Indizes

Wie aus der Ableitung der Gleichungen (2) und (3) hervorgeht, hängt die Verteilung der Bild-
punkte von der Kristallstruktur ab. Aus einer Laue- Aufnahme kann daher auf die Symmetrie des
Kristallaufbaues geschlossen werden.
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1.2.2. Kristallpulververfahren von Debye-Scherrer

Zur Kristallstrukturanalyse preßten P. Debye und P. Scherrer Kristallpulver zu einem dünnen
zylindrischen Stab und durchstrahlten diesen mit monochromatischen Röntgenstrahlen (vgl.
Bild 1.2.9). Die Verwendung des Kristallpulvers gewährleistet, daß die reflektierenden Netzebenen
alle möglichen Lagen einnehmen können. Nur diejenigen Netzebenen, die mit dem einfallenden
Strahl einen Winkel # bilden, der die BRAGGsche Formel (1.2./20) erfüllt, liefern Bildpunkte.

Bild 1.2.9. Kristallpulververfahren
von Debye und Scherrer

Bild 1.2.10. Strahlungskegel
und DEBYE-ScHERRER-Binge
beim Kristallpulververfahren
und beim Drehkristallverfahren

Die unter einem die BRAGGsche Formel erfüllenden Winkel # = $ 0 reflektierten Strahlen liegen
auf einem Kreiskegel mit dem Öffnungswinkel 4# 0 (vgl. Bild 1.2.10). Als Schnitt der Strahlungs-
kegel mit einer zum einfallenden Strahl senkrechten Fotoplatte ergeben sich Kreise unterschied-
licher Schwärzung. Der Schnitt mit einem zylinderförmig ausgelegten Filmband liefert gekrümmte
Linien (vgl. Bild 1.2.11). Zur Verstärkung der Intensität der aufgenommenen Linien kann das
gepreßte Pulver bei einem einachsigen Kristall zusätzlich gedreht werden (Drehkristallver-
fahren).
Die Auswertung der DEBYE-ScHERRER-Aufnahme zur Strukturanalyse von Nickel ergibt auf dem
Filmzylinder DEBYE-ScHERRER-Linien, die von der Bildmitte die folgenden Abstände auf-
weisen :

d (in cm) 1,71 ; 2,45 ; 3,00 ; 3,48 ; 3,91 ; 4,31 ; 5,03 ; 5,36 ; 5,66 ; 6,01 ; 6,32 ; 6,61 ; 7,50.
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d läßt sich am einfachsten als halbe Entfernung zweier symmetrisch zueinander liegender Schwär-
zungslinien messen.
Bestimmen Sie aus den Messungen die Gitterkonstante des Nickelkristalls und geben Sie die
MiLLERschen Indizes für die einzelnen Linien an. Der Durchmesser des Zylinders, in dem das
Filmband während der Deb ye-Scherrer- Aufnähme angeordnet war, sei gleich 2R = 10 cm. Die
Wellenlänge betrage A = 0,120 nm.

d 1.71 2.45 3,00 3.48 3.91 4,31 5.03 5.36 5,66 6.01

3 3 7 1 2 3 4 5 6 8 9 10 11
pOo} p2(?J{227

poo}

Bild 1.2.11. Schwärzungskurven auf einem Filmstreifen beim DEBYE-ScHERRER-Verfahren
mit Werten nach Tab. 1.2.2

Lösung:

Die Linienabstände d vom Mittelpunkt sind mit dem Reflexionswinkel durch die Beziehung

d = 2R (1)

verknüpft. Als Reflexionswinkel, die durch Interferenz Bildpunkte erzeugen, kommen nach
(1.2./21) nur die durch

Z2A2 / y
4 \ y + 4 + 4)a2 As /sin2 # = (2)

bestimmten Winkel # in Frage. Wir berechnen demzufolge zu jedem Meßwert d die Größe

(3)sin2# = sin2 ----  .
2R

Die Ergebnisse sind in Tabelle 1.2.2 Spalte 2 eingetragen. Für die erste Zeile erhält man z. B.

1 71 /0 1 71 . 1 80\ °
sin2 # = sin2 — = sin2 ( ’  - |  = sin2 9,8° = 0,029.

10 \ K /

Aus den Werten in Spalte 2 kann man einen gemeinsamen Faktor 0,029 abspalten. Sämtliche
Werte in Spalte 2 ergeben sich durch Multiplikation von 0,029 mit einer ganzen Zahl. Hieraus ist
zu folgern, daß der rechte Faktor in (2) in der Form

i2 | V j V __ i2 + y 4~ V
a x

2 a2
2 a3

2 a2
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Tabelle 1.2.2. Auswertung einer Debye-Sclierrer- Aufnahme

1
d in cm

2
sin 2 $

3
V + V + V tF

4

w

1,71 0,029 - 1 1 ,0 ,0
2,45 0,058 -2 1, 1 ,0
3,00 0,087 ~3 1, 1, 1
3,48 0,116 ~4 2, 0 ,0
3,91 0,145 5 2, 1 ,0
4,31 0,174 6 2, 1, 1
5,03 0,232 . 8 2, 2 ,0
5,36 0,262 9 2, 2 ,1

3, 0 ,0
5,66 0,291 - 10 3, 1 ,0
6,01 0,320 11 3, 1, 1
6,32 0,349 12 2, 2 ,2
6,61 0,378 13 3, 2 ,0
6,92 0,407 14 3, 2, 1
7,50 0,465 . 16 4, 0 ,0

geschrieben werden kann. Die Gitterkonstanten müssen demnach gleich sein :

— 0 2 — 0 3 — Cb • (5 )

Für den gemeinsamen Faktor ergibt sich nach (2), wenn die größeren Werte im unteren Teil der
Tabelle berücksichtigt werden,

Z222

— =0,0291.  (6)
4a2

Wir setzen hierin 1 = 1 und A = 0,120 • 10~9 m ein und erhalten, wenn wir nach der Gitterkon-
stanten a auflösen,

•j /1 • (0,120 • 10-9 ) 2 __  •a = / ---- ---------------— m = 0,352 nm.
r 4-0,0291

Dividiert man die Werte in Spalte 2 durch 0,0291, so folgen für hr
2 + Ä2

2 + A3
2 durch Runden

die Werte in Spalte 3. In Spalte 4 sind die sich hieraus ergebenden MiLLERschen Indizes einge-
tragen, wobei sämtliche Permutationen zugelassen und nur die positiven Werte aufgeführt
sind.
In der obersten Zeile geht z. B. d = 1,71 cm aus den Netzebenen mit den MiLLERschen Indizes

( i oo )  ( i oo )  (0 10) (o io )  (oo i )  ( oo i )

hervor. Diese Netzebenen werden durch das Symbol {10 0} gekennzeichnet.

1.2.3. Beugung von Elektronenstrahlen

Elektronenstrahlen werden beim Durchgang durch einen Kristall ebenso wie Röntgenstrahlen
gebeugt (Versuche von Davisson und Germer 1927). Im Gegensatz zu den Röntgenstrahlen, bei
denen die Brechzahl des Kristalls praktisch gleich der des Vakuums, d. h. gleich eins, gesetzt
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werden kann, ist bei Elektronenstrahlen mit einer im Kristall merklich von eins abweichenden
Brechzahl n zu rechnen. Die den Elektronenstrahlen zugeordneten Wellenlängen in Vakuum und
im Kristall weichen daher voneinander ab. Das findet nach der DE-BROGLiEschen Theorie seine
Erklärung durch eine den Elektronen im Kristall zukommende potentielle Energie T7pot . Sie
führt im Kristall zur Brechzahl

y kin
(1)

Zur Bestimmung der potentiellen Energie von Elektronen im Nickelkristall beobachtet man die
Beugung der Elektronen an der (1 1 1)-Ebene. Die Elektronen werden durch ein elektrisches
Feld mit der Potentialdifferenz U = 50 V beschleunigt und fallen schräg unter dem Glanz-
winkel & auf die Netzebenenfläche (vgl. Bild 1.2.12). Ein Bildpunkt wird für den Glanzwinkel
$ = 43°30' beobachtet. Berechnen Sie daraus die potentielle Energie der Elektronen im Kristall.

Bild 1.2.12. Reflexion eines senkrecht einfallenden Elektronenstrahls
an der Netzebene und Brechung beim Austritt aus dem Kristall

Lösung:
Bei Elektronenstrahlen tritt an die Stelle der Röntgenwellenlänge die Länge A. der zugeordneten
DE-BROGLiEschen Welle. Diese folgt aus den DE-BROGLisschen Grundgleichungen

W = Äco, p = hk .  (2)

Darin bedeuten W die Energie und p den Impuls eines Teilchens.

, 2kk = ----
A

gibt die Wellenzahl, co die Kreisfrequenz der DE-BROGLiEschen Welle an. Ferner ist

h=—,  7t = 6,63 • 10-34 J s .
2k

Im Vakuum besitzen die Elektronen nur ihre kinetische Energie, die durch das Beschleunigungs-
feld mit der Potentialdifferenz U hervorgerufen wird :

Wkin = eü  = bzw. p = 2meeU.  (3)2me
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Darin, bedeutet ?ne = 9,11 • 10~31 kg die Elektronenruhmasse, e = 1,60 • IO-19 C die Elementar-
ladung. Relativistische Rechnung ist nicht erforderlich. Die Elektronen werden als freie Teilchen
behandelt (vgl. effektive Masse 3.3. und 4.2.).
(3) in (2) eingesetzt und nach der Wellenlänge A aufgelöst, ergibt für die Länge der de-Broglie-
schen Welle in Vakuum

A = — (4)
]/2meeU

Mit den vorgegebenen Werten folgt

1/2 • 9,11 • 10~31 • 1,6 • IO-19 • 50

Im Kristall ist die Länge der DE-BROGLiEschen Welle

Bild 1.2.13. Reflexion und Brechung
von Strahlen an parallelen Netzebenen

Die unterschiedlichen Wellenlängen für das Vakuum und für den Kristall bedingen, daß die
BRAGGsche Gleichung für Elektronenstrahlen eine andere Form hat als nach (1.2./20) bzw. (1.2./21)
für Röntgenstrahlen.
Nach Bild 1.2.13 beträgt der optische Gangunterschied As zwischen dem an der Kristallober-
fläche und dem an der ersten parallelen Netzebene reflektierten Strahl unter Berücksichtigung der
Brechzahländerung

As = 2{nBC - BV) = 2 ( - BÄ cos ■&
\sin#

Nach Bild 1.2.13 ergibt sich hieraus weiter

2dAs = -----r (n — cos & cos . (6)
sin &

Zwischen dem Glanzwinkel & an der Kristalloberfläche und dem Glanzwinkel & an der ersten
parallelen Netzebene besteht nach dem Brechungsgesetz die Beziehung

n COS ftcos & = ------- . (7)
n
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Damit erhalten wir

sin ft = V1 — cosa ft = 1/1 — C° S (8)
|/ n 2

Wir setzen (7) und (8) in (6) ein, was auf

As = ]/n2 — cos2 ft (9)

führt. Sollen sich die reflektierten Wellen durch Interferenz verstärken, so muß der Gangunter-
schied benachbarter Strahlen ein ganzzahliges Vielfaches der Wellenlänge 2 sein:

As = U mit 1 = 0 ,1 ,2 , . . . .  (10)

Aus (9) und (10) folgt als Braggsche Gleichung für Elektronenstrahlen

2d n 2 - cos2 ft = IX {l = 0, 1 ,2 ,  . . .)  . (11)

Kennt man die Glanzwinkel ft des einfallenden Elektronenstrahls, für die ein Bildpunkt auftritt,
d. h. eine Verstärkung der gebeugten Strahlung durch Interferenz erfolgt, so kann man daraus
die Brechzahl n bestimmen :

/ 72 Q2
n = 1 /  ----- + cos2 ft. (12)

|/ 4<52

Mit den nach Beispiel 1.2.4 und auf Grund der Messung vorliegenden Größen folgt, wenn man
den Meßwert ft = 43°30' der Ordnung l = 1 zurechnet,

/ 0,1 742

n = 1/ — ---------F 0,7252 = 0,84.
|/ 4-0,203 2

Hiernach wäre n < 1 und damit T7pot positiv im Gegensatz zu anderen Meßergebnissen für
leitende Kristalle, bei denen stets n > 1 und J7pot < 0 ist. Rechnet man dagegen den Meßwert
der Ordnung 1 = 2 zu, so ergibt sich

n = , /4 • 0,1 742 
52 =|/ 4 • 0,2032

Durch Auflösen von (1) nach J7pot erhält man

7Fpot =lF ki n( l -n 2) .  (13)

Mit den vorliegenden Werten folgt

pot = (1 - M2 2 ) 50 eV = -12,7 eV.

1.2.4. Streuung an zusammengesetzten Gittern

Die Interferenzbedingungen von v. Latte und die ihnen äquivalenten Interferenzbedingungen
von Bragg gelten für die Streuung an den periodisch angeordneten identischen Kristallbau-
steinen eines einfachen Gitters. Diese Bedingungen enthalten keine Aussage über die Intensität
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der gestreuten Strahlung. Um allgemein die Intensität für zusammengesetzte Gitter zu bestim-
men, hat man nicht nur die Streuung durch die einzelnen verschiedenen Kristallbausteine (Atome
oder Ionen) zu berechnen; es muß auch die Elektronenverteilung bestimmt werden, um die von
den Elektronen verursachte Streuung berücksichtigen zu können.
Besteht das zusammengesetzte Gitter aus gleichen Atomen, so kann man die Streuung durch die
Elektronen und die Streuung durch die periodisch angeordneten Atome oder Ionen unabhängig
voneinander berechnen und die Intensität der gestreuten Strahlung in zwei darauf zurückgehende,
voneinander unabhängige Funktionen zerlegen. Bestimmen Sie auf Grund dessen die Intensität
der Interferenzmaxima (1 0 0), (1 1 1), (2 1 0), (3 0 0) eines kubisch-raumzentrierten Gitters, das
aus identischen Kristallbausteinen besteht.

Lösung:

Die in der Elementarzelle enthaltenen r Bausteine seien bezüglich ihrer Lage durch die Vektoren

a v = u va 1 + vva 2 + wva 3 (y = 4 ,  2, . . . ,  r) (1)

bestimmt. Die Interferenzmaxima der Untergitter, d. h. der von den einzelnen Bausteinen ge-
streuten Strahlung, folgen wie beim einfachen Gitter aus den LAUEschen Interferenzbedingungen
(1.2. /I) bis (1.2./3). Dabei ist die Phasenverschiebung Ag? zwischen den Untergittern zu berück-
sichtigen.
Es bezeichne

/4= /Ä> Ä2’ Äs)

die Amplitude der von den Netzebenen A Ag) des v-ten Untergitters gestreuten Strahlung,

F = F(hlf  h2 , A3 )

die Amplitude der von den (hjiji 3 ) -Netzebenen sämtlicher Untergitter des zusammengesetzten
Gitters gestreuten Strahlung. &<pv sei der Phasenunterschied, den Strahlen, die am v-ten Unter-
gitter gestreut werden, gegenüber Strahlen aufweisen, deren Streuung an den Koordinaten-
ursprungspunkten der Elementarzellen erfolgt. Mit diesen Bezeichnungen folgt

J’ = J(ä 1, ä 2J 3 ) = S /> a (2)V

F wird als Strukturamplitude bezeichnet.
Die Phasendifferenz folgt aus

Ay, = (3)

Hierin können wir (1) einsetzen und erhalten

2tt
A?>„ = — + v„a2 + w„a3 } • (n -n 0). (4)Z

Auf Grund der LAUEschen Interferenzbedingungen (1.2./1) bis (1.2./3) ergibt sich weiter

— 2k(A1wj, +.h2vv + h3wv ). (5)
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Die Intensität der gestreuten Strahlung wird durch den Strahlenfaktor

FF* = |F(Ä1? Ä2, ä3)P

bestimmt. Wir setzen (5) in (2) ein und bilden den Ausdruck FF*, wobei F* den konjugiert kom-
plexen Wert von F bezeichnet. Es folgt

2 r 2
S f v sin 2tu(ä124„ 4- h2vv 4- A3w„) .FF* = S f v cos 2k(A1u1, + h2vv 4- h3wv )

(6)
Wird das zusammengesetzte Glied von gleichen Kristallbausteinen gebildet, so gilt

/2 = ••• = / . (7)

Man kann daher im Falle gleicher Kristallbausteine

3 2'

S sin 2k(ä 1 + h2vv 4- h3wv )
v = l

(8)

r 2
X cos 2tv(ä1 wj, + h2vv 4- Agwjf 4-

schreiben
Faßt man das kubisch-raumzentrierte Gitter als aus zwei einfachen kubischen Gittern zusammen-
gesetzt auf (vgl. 1.1.2.), so ergeben sich für u v , vv , wv die Werte

= 0 ,  v± = 0 ,  = 0 ;  u 2 = — , v2 = — , w2 = — .
2 2 2

Damit folgt
|F(Ai, h2 , A3 )| 2 = FF* = |/ |  2 [|1 4" cos 4~ 2 4- 3)l 2 4~ |sin 77 ( 1 4~ 2 4~ 3) I 2] •

(9)
Für die MiLLERschen Indizes (10  0), (2 1 0), (3 0 0) ist + h2 4- Ä3 ungerade. Daher folgt

cos KfAi 4- 2 4- 3) = ~ 1 , sin t: 4- h2 4- h3 ) = 0
und somit

FF* = 0 .  (10)

Im kubisch-flächenzentrierten Gitter, das aus identischen Kristallbausteinen besteht, sind die
Interferenzmaxima, für die die Summe der MiLLERschen Indizes ungerade ist, also (1 0 0), (1 1 1),
(3 0 0), . . . ,  nicht zu beobachten. Die Intensität dieser Beugungsmaxima ist Null.

Aufgaben

A 1.2.1. Welche Röntgenwellen liefern bei der Beugung durch einen Silberkristall Beugungs-
maxima (a = 0,408 nm)? Geben Sie die fünf längsten Wellen für g3 = — 1 an. Der
einfallende Strahl habe die Richtung [10  0].

A 1.2.2. In einem kubischen Kristall schneidet eine Netzebene die Basisachsen so, daß die
Abschnitte x3 = a, = —a, = 2a entstehen. Bestimmen Sie die MiLLERschen
Indizes dieser Fläche.

A 1.2.3. Bestimmen Sie die Richtungscosinus der Flächennormalen auf der durch die
MiLLERschen Indizes (13  5) bestimmten Netzebene bei einem kubischen Gitter.

A 1.2.4. Welche Abstände haben die Netzebenen (1 3 5) in Silber (a = 0,408 nm)?
A 1.2.5. Wie lauten die MiLLERschen Indizes der 1/, z-Ebene?

4 Schilling, Festkörperphysik
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A 1.2.6.

A 1.2.7.

A 1.2.8.

A 1.2.9.

A 1.2.10.

A 1.2.11.

A 1.2.12.

Bestimmen Sie die Glanzwinkel, für die Licht der Wellenlänge A = 0,250 nm an
einem Silberkristall gebeugt wird.
Bestimmen Sie die Wellenlänge der DE-BROGLiEschen Welle eines Elektrons, das
durch ein elektrisches Feld der Spannung 100 V beschleunigt wird.
Ein Elektron wird durch ein elektrisches Feld mit der Spannung 100 V beschleunigt
und fällt danach auf Aluminium. Die Reflexion an der (1 1 0) -Ebene ergibt einen
Bildpunkt, den man unter dem Glanzwinkel # = 7,7° beobachtet. Berechnen Sie
daraus das Potential der Elektronen in Aluminium. Wie groß ist die Brechzahl?
Treffen a-Strahlen auf Berylliumkerne, so entstehen neben Kohlenstoffkernen
Neutronen, die eine Anfangsgeschwindigkeit von 4,7 • 106 m s-1 haben. Geben Sie
ihre DE-BROGLissche Wellenlänge an und vergleichen Sie diese mit den Abmessun-
gen in einem Kristallgitter. Die Neutronenmasse beträgt m n = 1,67 • 10-27 kg.
Welche kinetische Energie (in eV) und welche Geschwindigkeit dürfen Neutronen
nicht überschreiten, wenn ihre DE-BnoGLiEsche Wellenlänge nicht kleiner als
0,1 nm, d. h.  mindestens in der Größenordnung der Gitterkonstanten, sein soll?
Bestimmen Sie für Nickel den Glanzwinkel, für den die Reflexion von Neu-
tronenstrahlen an der (11  1) -Ebene einen Bildpunkt ergibt, wenn die de-Broglie-
sche Wellenlänge a) 0,1 nm, b) 0,0001 nm beträgt (lkpot = — 16 eV, Werte nach
Tab. 1.1.1).
Untersuchen Sie die Strukturamplitude für das kubisch-flächenzentrierte Gitter
und bestimmen Sie die Reflexionsebenen mit der Strukturamplitude Null. Wie
liegen die Verhältnisse für die Ebenen (110)  und (1 1 1)?



3. Mechanische und thermische Eigen-
schaften idealer Kristalle

2.1. Kräfte und Bindungsenergien

E Einführung

W echselwirkungskräfte und Gitterpotential
Die physikalischen Eigenschaften eines Kristalls hängen nicht mir von der geo-
metrischen Struktur des Kristallaufbaus, sondern im gleichen Maße von den zwischen
den Bausteinen auf tretenden Wechselwirkungskräften ab. Sie besitzen, wie sich all-
gemein beweisen läßt, ein Potential

U—U(r ) .  (1)

Es ist in der Regel auf ein Kilomol des Kristalls bezogen und kann als Funktion
des Abstandes r zwischen zwei benachbarten Kristallbausteinen dargestellt werden.
Für die Wechselwirkungsenergie eines herausgegriffenen Teilchens schreibt man

e = g(r). ( l a )

Sie hängt mit dem Gitter- bzw\ Kristallpotential gemäß

U = N os(r) ( lb)

zusammen, wobei Wo die Anzahl der Kristallbausteine je Kilomol angibt. Die im
Kristall wirkenden Kräfte lassen sich somit auf die Betrachtung zweier Bausteine
O und A zurückführen. Für die zwischen ihnen wirkenden Kräfte erhält man

dp t
F = — grad e(r) = - — - . (2)

Darin bedeutet r den Vektor vom Baustein 0 zum betrachteten Baustein A (vgl.
Bild 2.1.1).
Im Falle

> 0 bzw. -f- > 0 (3)dr dr

4*
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sind F und r einander entgegen gerichtet. Wachsendes Potential mit wachsendem
Abstand der Kristallbausteine kennzeichnet daher Anziehungskräfte innerhalb des
Kristalls. Dagegen werden Abstoßungskräfte durch ein mit wachsendem Abstand
fallendes Potential

dU . de n—■— < 0 bzw. —— < 0dr dr (4)

charakterisiert. Stabiles Gleichgewicht besteht, wenn das Kristallpotential ein
Minimum annimmt :

= 0, >0 . 5)

Sollen die Atome oder Ionen einen stabilen Kristall bilden, so muß ihr Wechsel-
wirkungspotential U (r) ein Minimum nach Kurve 3 in Bild 2.1.1 aufweisen: Eür
kleine Abstände r überwiegt die Abstoßung, für große die Anziehung; dazwischen
befindet sich der Gleichgewichtsabstand r = rQ mit dem Potentialminimum.

Bild 2.1.1. Potential der Wechselwirkungskräfte.
1 Abstoßungspotential, 2 Anziehungspotential, 3 LENNARD-JoNES-Potential
aus anziehendem und abstoßendem Term

Ein Potential der Form 3 nach Bild 2.1.1 kann durch einen anziehenden und einen
abstoßenden Term aufgebaut werden. Nach Lennard-Jones geht man zur Dar-
stellung des Gitterpotentials von dem Ansatz

I7(r) = - — + —v ' r m 1 
r n (6)

aus. A,  B, m, n sind darin positive Parameter. Der erste Summand charakterisiert
die Anziehung, der zweite die Abstoßung. Da für kleine Abstände r < r0 die Ab-
stoßung überwiegen muß, folgt

n > m . (7)
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Die Parameter A und B sind über den Gleichgewichtsabstand r = rQ miteinander
verknüpft. Nach. (5) muß die Beziehung

bestehen, woraus

B ■= — rQ
n~m (5b)n

folgt. Das Wechselwirkungspotential zwischen zwei Teilchen wird daher vielfach
in der Form

dargestellt. Der Kristallparameter o kann aus dem Gleichgewichtsabstand' r0 be-
stimmt werden, während der Kristallparameter e aus der Gitter- bzw. Bindungs-
energie UQ = U(rQ ) hervorgeht. UQ ist negativ.
Das Abstoßungspotential

Pab = (8a)

wird in erster Linie durch die wechselseitige Durchdringung der Elektronenhüllen
verursacht. Von den Atomkernen gehen Kräfte aus, die abstoßend oder, wie die
Quantentheorie für bestimmte Bindungszustände zeigt, als Folge von Austausch-
effekten anziehend wirken können. Beispiel für eine hierdurch bedingte starke gegen-
seitige Anziehung ist das Wasserstoffmolekül H2 , bei dem die Elektronen gleichzeitig
beiden Atomen angehören (vgl. Beispiel 2.1.3).
Das Potential der gegenseitigen Anziehung

n = -A  (8b)

wird verursacht durch 7

1. lonenbindung (heteropolare bzw. elektro valente Bindung),
2. kovalente Bindung (homöopolare Bindung bzw. Atombindung),
3. Metallbindung,
4. VAN-DEB-WAALSsche Bindung.
Die meisten in Kristallen bestehenden Bindungen sind Mischzustände zwischen
diesen vier Bindungstypen.

lonenbindung
lonenbindung M+X~ tritt vorwiegend bei Alkalihalogenid-Kristallen, insbesondere
NaCl, KCl, CsCl auf. Die Kristallbausteine werden von positiv geladenen Kationen
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M+ , z. B. Natriumiorien Na+, und negativ geladenen Anionen X“, z. B. Chlorionen
Cb, gebildet.
Bei der Beurteilung der Stabilität eines Kristalls kommt der Energiebilanz die
entscheidende Bedeutung zu. Die Entstehung von Ionen aus neutralen Atomen ist
mit einem Energieumsatz verknüpft, der in die Energiebilanz eingeht :
Bei der Bildung eines Kations M+ aus dem freien Atom M hat man die lonisierungs-
arbeit aufzuwenden (vgl. Tabelle 2.1.1). Die Bildung eines Anions X“ aus dem
freien Atom X setzt im allgemeinen Energie frei, die als Elektronenaffinität Ex
bezeichnet wird (vgl. Tabelle 2.1.1). Negative Elektronenaffinität, z. B. für Ne, be-
deutet, daß die Anionenbildung eine Energieaufwendung erfordert.
Bei der lonenbindung aus zwei elektrisch neutralen, freien Atomen wird in den
meisten Fällen die lonisierungsarbeit J M nicht durch die Elektronenaffinität Ex
gedeckt. Befinden sich die beiden Teilchen in einer derart großen Entfernung von-
einander, daß Wechselwirkungskräfte vernachlässigt werden können, so ist im
System aus Kation und Anion eine Energie gespeichert, die gleich der Differenz

— Ex zwischen der lonisierungsenergie und der Elektronenaffinität ist. Sie ist
aufzuwenden, wenn das System aus Kation und Anion wieder in zwei neutrale Atome
zurückverwandelt werden soll.

Beispiel 2.1.1. lonisierungsspannung und Elektronenaffinität

Für Natrium beträgt die lonisierungsenergie nach Tabelle 2.1.1 = 5,09 eV, für Chlor die
Elektronenaffinität E x = 3,70 eV. Das System aus den beiden Ionen Na+ und CI“ enthält daher,
wenn sich beide in einem großen Abstand voneinander befinden, so daß Wechselwirkungskräfte
vernachlässigt werden können, eine gespeicherte Energie von — E x = 1,39 eV.

Rücken die beiden Ionen zusammen, so treten Wechselwirkungskräfte zwischen
ihnen in Erscheinung. Die entgegengesetzten Ladungen führen bei Ionen mit Z
Elementarladungen zu der elektrostatischen Anziehungskraft

Z 2e 2 r
Ft? = ---------------------4ne 0r2 r

bzw. dem elektrostatischen Anziehungspotential

47ce0r

Ihm wirkt das im wesentlichen von den Elektronenhüllen verursachte Abstoßungs-
potential (8 a) entgegen. Im Gleichgewichtsabstand r0 heben sich die aus den Poten-
tialen abgeleiteten Anziehungs- und Abstoßungskräfte auf. Für r > r0 überwiegt
dagegen die Anziehung. Gegen sie ist eine Arbeit aufzuwenden, wenn man die Ionen
voneinander trennt, den Kristall also in seine lonenbestandteile zerlegt. Sie ist mit
der Gitterenergie UQ = U(rQ ) = — fJMX identisch (vgl. Tab. 2.1.2).

Born-Haberscher Kreisprozeß
Die Gitterenergie kann experimentell nicht unmittelbar gemessen werden. Ihre Be-
stimmung erfolgt über den Born-Haberschen Kreisprozeß (vgl. Bild 2.1.2).
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Kür den Zerfall des Kristalls MX in die Ionen M+ und X“ ist die Gitterenergie — U x
aufzuwenden. Bei der Umwandlung der Ionen M+ in neutrale Atome M wird die
lonisierungsenergie frei, während die Umwandlung der Ionen X - in die neutralen
Atome X im allgemeinen eine Energieaufwendung erfordert. Sie entspricht der
Elektronenaffinität Ex .

Bild 2.1.2. BoRN-HABERscher
Kreisprozeß

Die neutralen Metallatome bleiben bei Zimmertemperatur nicht als Metalldampf er-
halten, sondern schlagen sich als feste Substanz nieder. Dabei wird an die Umgebung
die Sublimationsenergie abgegeben. Der Prozeß der Bildung von Gasmolekülen
X 2 aus den Atomen X bewirkt, daß die Dissoziationsenergie Dx frei wird.
Durch Reaktion des Gases X 2 mit dem Metall M entsteht, den Kreisprozeß voll-
endend, wieder der Kristall MX. Dabei wird die Reaktionsenergie Qmx an die Um-
gebung abgeführt. Man erhält somit die Energiebilanzgleichung

— MX + — X + + £>X + OmX — 0. (10)

In das System einfließende Energien sind negativ, ausfließende Energien positiv
gerechnet.
lonisierungsspannung und -energie lassen sich aus elektrischen Messungen genau
bestimmen. Dagegen bestehen bei den Angaben über die Elektronenaffinität Ex
größere Differenzen. Die Sublimationsenergie &M und die Reaktionsenergie
können durch thermochemische Untersuchungen bestimmt werden, während die
Dissoziationsenergie Dx aus den Molekülspektren der Gase berechnet werden kann.
Bei Kenntnis dieser Größen läßt sich die Gitterenergie — UMX aus (10) berechnen.

Beispiel 2.1.2. Born-Haber scher Kreisprozeß für Steinsalz

Die lonisierungsenergie für Natrium beträgt nach Tab. 2.1.1 = 5,09 eV/Atom. Umgerechnet
erhält man 117,1 kcal mol-1 bzw. 490 kJ mol-1 . Für die Elektronenaffinität des Chlors folgen
85,1 kcal mol-1 = 356 kJ mol-1 . Als Sublimationsenergie des Natriums hat man 22,8 kcal mol-1

= 95 kJ mol-1 , als Dissoziationsenergie des Chlors 56,9 kcal mol-1 = 238 kJ mol-1 einzusetzen.
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Bei der Rechnung ist zu berücksichtigen, daß zur Bildung eines Mols NaCl nur ein halbes Mol Cl 2
erforderlich ist. Die Bildungsenergie des Natriumchlorids beträgt QMX = 99,4 kcal mol-1

= 416 kJ mol-1 . Daraus erhält man nach (10) für die Gitterenergie

MX = ( l i 7  , l  “ 85,1 + 22,8 + 28,4 + 99,4) kcal mol-1

= 182,6 kcal mol-1 = 764 kJ mol-1 bzw.
= (490 - 356 + 95 + 119 + 416) kJ mol" 1 = 764 kJ mol-1 ,

d.  h. Uq = —182,6 kcal mol-1 = 764 kJ mol-1 .

Soll der Kristall stabil sein, so muß die Reaktionsenergie QMX positive Werte an-
nehmen. Die Verbindung ist um so stabiler, je größer QMX ist. Nach (10) besteht die
Voraussetzung für große Werte der Reaktionsenergie

Cmx = mx — ( m — x) — &x ~ Dx (11)
darin, daß die Gitterenergie t/ MX den Energieaufwand für Ionisierung — Ex ,
Sublimation $ M und Dissoziation Dx wesentlich übersteigt. lonenkristalle besitzen
in der Regel eine Gitterenergie, die um so größer ist, je kleiner der Abstand zwischen
nächsten Nachbarn ist bzw. je größer die lonenladungen sind (vgl. Tabelle 2.1.2).
Auf Grund ihrer starken Bindungskräfte zeigen sie nur eine geringe Kompressibilität.

Kovalente Bindung
Bei der kovalenten Bindung gehören Elektronen gleichzeitig mehreren Atomen an.
Sie tritt zwischen Atomen auf, die ein Elektronenpaar mit zwei antiparallelen Spins
bilden können (vgl. Bild 2.1.3), z. B. zwischen zwei Wasserstoffatomen bei der

Bild 2.1.3. Elektronenbahnen bei Übergangszuständen zwischen lonenbindung
und kovalenter Bindung.
a) ideale lonenbindung
b) Übergangszustand mit überwiegender lonenbindung
c) Übergangszustand mit überwiegender Kovalenzbindung
d) ideale Kovalenzbindung
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Bildung des Wasserstoffmoleküls H2 . Eine quantitative Erklärung der kovalenten
Bindung ist nur durch quantentheoretische Überlegungen möglich. Die klassische
Physik versagt.
Für die kovalente Bindung zwischen zwei Atomen ist allein die Möglichkeit, ein
Elektronenpaar mit zwei antiparallelen Spins zu bilden, maßgeblich, nicht die tat-
sächliche Existenz der beiden Elektronen. Kovalente Bindung tritt daher auch bei
einfach ionisierten Molekülen mit nur einem umlaufenden Elektron auf, z. B. bei
einfach ionisierten Wasserstoffmolekülen.

Beispiel 2.1.3. Die kovalente Bindung des Wasserstoffs

Das einfach ionisierte Wasserstoffmolekül besteht aus zwei Protonen, die von einem Elektron
umkreist werden. Die Bindungsenergie des einzelnen Elektrons an die beiden Protonen ist größer
als die an eine positive Ladung beim H-Atom. Dagegen wirkt der Bindung an die beiden Protonen
deren elektrostatische Abstoßung entgegen. Insgesamt überwiegt jedoch die Anziehung zwischen
dem Elektron und den Protonen.
Beim einfach ionisierten Wasserstoffmolekül H 2+ beträgt die Bindungsenergie zwischen den
Kernen 2,65 eV. Wird sie aufgebracht, so zerfällt das ionisierte Molekül in ein elektrisch neutrales
Wasserstoff atom und ein Wasserstoffion.
Für das neutrale Wasserstoffmolekül ist die Bindungsenergie zwischen den Kernen gleich
4,48 eV. Dabei kommt die geringe Abstoßung zwischen den beiden umlaufenden Elektronen zur
Wirkung.

Bei einwertigen Elementen, z. B. Natrium oder Chlor, lassen sich durch Kovalenz-
bindung jeweils nur zwei Atome miteinander koppeln. Im Kristallgitter solcher
Substanzen stellen daher andere Kräfte die Verbindung untereinander her. Dagegen
treten keine Strukturen aus einwertigen Elementen mit einheitlichem Bindungs-
charakter auf.
Auch bei zweiwertigen Elementen, wie z. B. Sauerstoff, bauen die Atome zwar
geschlossene Ringe und Ketten auf. Strukturen mit einheitlicher Kovalenzbindung
sind jedoch nicht bekannt. Dagegen ergibt sich diese Möglichkeit aus der Elektronen-
konfiguration für die Elemente der vierten Gruppe (Kohlenstoff, Silizium, Ger-
manium) des Periodensystems der Elemente sowie für Verbindungen zwischen drei-
und fünfwertigen Elementen, z. B. für GaAs und InSb (vgl. A 2.1.4).

Beispiel 2.1.4. Kovalente Bindung des Kohlenstoffs

Das Kohlenstoffatom C tritt in chemischen Verbindungen im angeregten Zustand (ls) 2 (2s) 1 (2p) 3
auf, d. h., es befinden sich zwei Elektronen im Is-Zustand (Hauptquantenzahl n = 1, Neben-
quantenzahl l = 0), ein Elektron im 2s-Zustand (n = 2, 1 = 0), drei Elektronen im 2p-Zustand
(n = 2, l = 1). Der normale Zustand atomaren Kohlenstoffs ist dagegen nach Tab. 2.1.6 durch
(ls) 2 (2s) 2 (2p) 3 gekennzeichnet.
Die Spins der beiden Elektronen im ls-Zustand müssen auf Grund des Pauli-Prinzips anti-
parallel sein und kommen daher für eine Elektronenpaarbildung mit Elektronen anderer Atome
nicht in Frage. Dagegen sind die vier Elektronen im 2s-Zustand bzw. 2p-Zustand in ihren vier
Quantenzahlen n, l, m, s nicht abgesättigt: für das Elektron im 2s-Zustand ist m = 0, s kann

gleich + — oder ----— sein. Die Elektronen im 2p-Zustand können die magnetischen Quanten-
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zahlen m = +1, 0, —1 annehmen, für jeden dieser Zustände kommen die Spinquantenzahlen
, 1 , 1 .H----- oder ------ m Frage.

2 2
Im angeregten Zustand sind daher vier Elektronenpaarbildungen mit anderen Atomen möglich:
Kohlenstoff tritt in Verbindungen vierwertig in Erscheinung, und zwar im angeregten Zustand.
Der Diamantkristall besteht aus C-Atomen im Zentrum je eines Tetraeders, dessen Ecken eben-
falls mit C-Atomen besetzt sind (vgl. Bild 1.1.7).

Wie aus Beispiel 2.1.3 hervorgeht, liegt die Bindungsenergie bei der Kovalenz-
bindung in der gleichen Größenordnung wie bei der lonenbindung. Bezüglich der
mechanischen Eigenschaften, wie z. B. Härte, Festigkeit, Schmelztemperatur,
thermische Ausdehnung, treten zwischen lonengittern und Gittern mit kovalenter
Bindung daher keine wesentlichen Unterschiede auf. Sowohl bei homöopolaren als
auch bei heteropolaren Bindungen variieren die mechanischen Eigenschaften inner-
halb weiter Grenzen.

Metallbindung

Bei der metallischen Bindung gehören Valenzelektronen dem Kristall als Ganzes an,
in dem sie sich frei bewegen können. Sie sind nicht mehr, wie bei der Kovalenz-
bindung, speziellen Atomgruppen zugeordnet. Metallbindung tritt bei Elementen auf,
in deren äußerer Schale nur wenig Elektronen enthalten sind, z. B. bei Silber (1),
Kupfer (1), Natrium (1), Kalium (1), Eisen (2), Nickel (2) (vgl. Tabelle 2.1.6). Sie
besitzen auf Grund dessen charakteristische physikalische Eigenschaften: große
elektrische und Wärmeleitfähigkeit, große Absorption gegenüber elektromagneti-
schen Wellen, große Plastizität.
Nach dem Modell des Metalls von Drude besteht dieses aus einer regelmäßigen An-
ordnung positiv geladener Ionen, zwischen denen sich die Valenzelektronen als
Elektronengas ausbreiten und frei bewegen.
Das Elektronengas verhält sich nach den Gesetzen der FERMi-DiRAC-Statistik (vgl.
3.3.). Die Bindung wird somit durch die kollektive Anziehung zwischen den positiv
geladenen Metallionen des Gitters und dem elektrisch negativen Elektronengas be-
wirkt. Sie ist wie die lonenbindung kugelsymmetrisch und wirkt nach allen Richtun-
gen gleichmäßig. Bei metallischen Strukturen besteht daher, wie bei der lonen-
bindung, die Tendenz nach möglichst dichten Packungen.

Van-der-Waalssche Kräfte

In Atomen und Molekülen sind die elektrischen Ladungen nicht starr an einen be-
stimmten Platz gebunden, sondern bewegen sich periodisch. Das nach außen hin
elektrisch neutrale Atom oder Molekül stellt bei genauerer Betrachtung einen Dipol
mit veränderlichem elektrischem Moment, d. h. einen Oszillator, dar.
Sind zwei solche Oszillatoren nahe benachbart, so tritt zwischen ihren elektrischen
Ladungen eine Wechselwirkung auf. Als Folge davon werden Kräfte ausgelöst, die
man als van-der-Waalssche bzw. Dispersionskräfte bezeichnet. Sie können aus der
Änderung der Gesamtenergie gegenüber dem Zustand völliger Trennung abgeleitet
werden.
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Nach Untersuchungen von London ist das Wechselwirkungspotential van-der-
WAALSscher Kräfte der sechsten Potenz des Abstandes entgegengesetzt proportional :

const
t/ vdw = r6 (12)

VAN-DER-WAALSsche Kräfte sind in sämtlichen Kristallen vorhanden. Ihre Intensität
ist jedoch gering, so daß sie bei der Berechnung der Anziehungskräfte vielfach ver-
nachlässigt werden können. Ausschließlich auf VAN-DER-WAALSschen Kräften be-
ruhen die Bindungskräfte in kristallisierten Edelgasen. Die geringe Intensität
dieser Kräfte (vgl. Tabelle 2.1.2) wirkt sich hier in Eigenschaften wie geringer Härte,
niedrigem Schmelzpunkt und großer thermischer Ausdehnung aus.

p Probleme

2.1.1. Madelung-Konstante

Berechnen Sie die Bindungsenergie für ein Ion im Steinsalzkristall NaCl, wenn nur die elektro-
statischen Kräfte berücksichtigt werden. Der Abstand nächster Nachbarn im Steinsalzkristall ist
gleich der halben Gitterkonstanten.

Lösung:
Im kubischen Gitter des Steinsalzkristalls wechseln positive Natriumionen mit negativen Chlor ?
ionen. Hierdurch werden auf ein herausgegriffenes Ion abwechselnd Anziehungs- und Abstoßungs-
kräfte ausgeübt. Die Entfernungen zwischen den einzelnen lonenschwerpunkten sind durch
das Gleichgewicht dieser Kräfte bestimmt. Andere Kräfte, die bei der Bindung des lonengitters
mitwirken, können in erster Näherung unberücksichtigt bleiben.
Der elektrostatische Anteil der Gitterenergie des lonengitters wird in der Form

er = -L . 1 s ’iS. (i + j) (i)
47V£0 2 i t  j

geschrieben. Die Summierung erstreckt sich sowohl bezüglich i als auch bezüglich j über alle

Ionen des Gitters. Der Faktor — ist zu setzen, da bei der Summierung jedes Paar zweimal auf-
2

tritt, aber nur einmal gezählt werden darf.
Beim einfachen kubischen Gitter des Steinsalzkristalls beträgt der Abstand zwischen nächsten
Nachbarn

(vgl. Bild 1.1.6). Sie haben entgegengesetzte elektrische Ladungen. Die übernächsten Nachbarn,
die die gleiche Ladung wie das betrachtete Ion tragen, befinden sich im Abstand

= 4 1/2 = V2 r0 . - (3)
Za
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Bei den drittnächsten Nachbarn ist die Ladung wieder entgegengesetzt, ihr Abstand vom be-
trachteten Ion beträgt

r2 = y ]/3 = ]/3 r0 . (4)

Allgemein haben die w-ten Nachbarn des herausgegriffenen Ions mit der Ladung q den Abstand

rn -i = -y V» = V» »o (5)

und tragen die Ladung

= ( -1 )”? .  (6)

q ist hier gleich dem positiven oder negativen Wert der Elementarladung e.
Die Bestimmung der Zahl n-ter Nachbarn erfordert beim einfachen kubischen Gitter, die Zahl
möglicher Lösungen für die Gleichungen

2 + 2/2 + z2 = r2 (r2 = 1, 2, 3, . . .) (7)

mit ganzzahligen Werten x, y, z zu bestimmen. Man erhält z. B. für r = 1 die Lösungen

1 ,0 ,0 ;  0, 1 ,0 ;  0, 0, 1 ;  -1, 0, 0 ;  0, -1, 0 ;  0, 0, -1,

d.  h. sechs nächste Nachbarn:

z-l = 6 .  (8a)

Ebenso erhält man

z2 = 12, z 3 = 8 ,  z4 = 6 ,  z5 = 24, z6 = 24. (8)z2 = 12, z 3 = 8 ,  z4 = 6 ,  z5 = 24, z6 = 24. (8)

Enthält der Kristall N o Kationen und 2V0 Anionen, so ergibt sich nach (1) für die gesamte elektro-
statische Gitterenergie

u = - aV 0Z2e2

47ve0r0
0)

bezogen auf ein Ion

e = — ■

Darin heißt

ocZ2e2

87teo>-o
(10)

6
(X = — - +

8
V3

24
V5 V6

(11)

die MADELUNG-Konstante des Steinsalzgitters. Die Reihe (11) konvergiert, jedoch .sehr langsam.
Zur Vereinfachung der Berechnung werden die Ladungen geeignet zusammengefaßt, so daß fast
neutrale Ladungsgruppen entstehen (vgl. A 2.1.11). Für den Steinsalzkristall erhält man bei
Fortführung der Reihe schließlich die MADELUNG-Konstante

a = 1,7476.
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Mit den vorgegebenen Werten folgt aus (10) für die elektrostatische Bindung eines Ions

1,75 • (1,60 • 10~19 ) 2 eV=-  4,46 eV.
8 • 3,14 • 8,85 • 10- 12 • 2,82 • 10 -10 • 1,60 • IO"19e =

2.1.2. Gitterenergie und Kompressibilität des lonenkristalls

Die Wechselwirkung der Elektronenschalen benachbarter Ionen wird im Kristallpotential durch

einen Abstoßungsterm der Form — berücksichtigt, n liegt für die verschiedenen Kristalle

zwischen 5 und 15. Für den Steinsalzkristall ist n = 8,9. Die Wirkung des Zusatzterms klingt
daher mit zunehmender Entfernung rasch ab.
Bestimmen Sie die Gitterenergie des Steinsalzkristalls unter Berücksichtigung des Abstoßungs-
terms. Leiten Sie eine Formel für die Kompressibilität k des Kristalls ab und berechnen Sie
diese. Die MADELUNG-Konstante ist für NaCl mit a = 1,75 einzusetzen; die Gitterkonstante
beträgt a = 0,564 nm.

Lösung:

Das Potential eines Ions ist durch

_L(  ± + ±)
4 \ r rn /

gegeben. Das positive Vorzeichen gilt für abstoßende Kräfte, d. h .  für gleiche Ladungen, das
negative für ungleiche elektrische Ladungen.
Durch Summierung über die Wechselwirkung sämtlicher Ionen folgt für das Gitterpotential des
aus 2N 0 Ionen bestehenden Kristalls

r = (1)
2 4k£0 \ r rn /

Die Größe B kann aus dem kleinsten Abstand zweier Ionen bestimmt werden, für den das Gitter-
potential ein Minimum annimmt :

Es ergibt sich

/d !7 \  _ N q /<xZW _ nB \ _ f)

\ dr / r .  \ r o2 r’ I+1 /

woraus folgt
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Wir setzen (4) in (1) ein und erhalten

(5)

Zu einem Elementarwürfel des Steinsalzkristalls gehören nach 1.1.1. acht Ionen. Das von 2NQ
eingenommene Volumen eines Kilomols ist daher

2N0a 3 _ NQa*
8 ” 4 (6)

Durch einen allseitig wirkenden Druck P wird das Volumen des Kristalls verringert, und man
erhält

V = — 7Voa 3 (l - <5) 3 ,
4

wobei (5 die relative Längenänderung angibt. Der äußere Druck bewirkt somit eine Veränderung
der Kantenlänge des Elementarwürfels von a auf a(l  — <5). Da ö < _ 1 ist, kann an Stelle von (7)
auch

7 = 4- o«3 (l - 3<5) (8)4

gesetzt werden.
<5 ist eine vorn äußeren Druck abhängige Größe. Nach (7) und (8) kann man unter der Voraus-
setzung <5 1 schreiben :

1
AF = — N 0a 3 A(1 - <3) 3 = - — N 0a 3 A<5. (9)

4 4

Die Kompressibilität h eines Stoffes gibt die relative Volumenänderung in Abhängigkeit von der
Druckänderung bei konstanter Temperatur an:

Bezeichnet AP = P den gesamten äußeren Druck und gibt AF  die hierdurch bewirkte Volumen-
änderung an (vgl. Bild 2.1.4), so kann (10) durch

AF
PV, (11)

ersetzt werden.
Nach (8) und (6) ergibt sich

3<3
(12)P
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Mit dem Zusammendrücken des Gitters ist eine Erhöhung der Gitterenergie verbunden. Hierfür
erhält man in Verbindung mit (9)

Atf(P) = -P 47  = — PN Qa? bö. (13)

Andererseits kann die Gitterenergie nach (1) berechnet werden. Setzt man in (1)

r = r(P) = r0 ( l  - <5) (14)

als Abstand zwischen nächsten Nachbarn bei der Einwirkung eines äußeren Druckes P ein, so
folgt

--------------5__\
4 \r 0[l - <5] / • / [ ! -

Bild 2.1.4. Relative Längenänderung ö durch äußeren
Druck infolge der Kompressibilität m des Kristalls

Hieraus kann analog (4) B eliminiert werden, indem das Verschwinden der ersten Ableitung für
r = r0 ( l  — ö) berücksichtigt wird. Damit erhält man

Z7(P) = - - 2- (—- ---------------------V (16)
4tt£0 r0 \1 — ö n(l — ö) n /

Durch Reihenentwicklung und Berücksichtigung der Glieder bis zur zweiten Ordnung folgt

U(P) = - (1 - — - 1 <32 . (17a)
47t60 r0 \ n 2 /

Den Energieanteil

87T€0r0

definiert man als Elastizitätsenergie. Sie ist auf ein Kilomol bezogen.
Eine Veränderung des Druckes wirkt sich auf die Größe ö und damit auf die Gitterenergie aus.
Hierfür ergibt sich nach (17) bzw. (17 a)

= (18)
47T£0r0
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Aus dem Vergleich von (13) und (18) folgt

__ 3tV6qPcI?Tq

~ aZ 2e2 (n - 1) ’

In Verbindung mit (12) ergibt sich damit für die Kompressibilität

9n:Eoa3ra% — _____v v

aZ 2e2 (n - 1)

Für die Elastizitätsenergie erhält man nach (17 a) und (20)

9 N A aW

Bezieht man die Elastizitätsenergie auf die Volumeneinheit, so ergibt sich

(19)

(20)

(21)

(22)

Gleichung (20) kann nach n aufgelöst und damit über die Messung der Kompressibilität n das
Abstoßungspotential infolge der Wechselwirkung zwischen den Elektronenschalen bestimmt
werden. a
Für den Steinsalzkristall ist r0 = — , Z = 1. Mit den vorgegebenen Werten erhalten wir daher

9tv • 8,85 • IO"12 • (0,564 • IO-9 ) 4

2 • 1,75 • (1,60 • 10- 19 ) 2 • 7,9
m2N-1 = 3,6 • 10“11 m2 N-1 .

Für die Gitterenergie, bezogen auf ein Kilomol, folgt aus (5)

rT 2 • 6,02 • 1026 • 1,75 • (1,60 • IO"19 ) 2 l .  1 \ .U = -------------------------- ---------------— 1 1 ------- J kmor
4 • 3,14 • 8,85 • IO-12 • 0,564 • IO"9 \ 8,9/

= 7,63 • 108 J kmol-1 = 182 kcal mol-1 .

Der Meßwert über den BoRN-ÜABERschen Kreisprozeß für die Gitterenergie des Steinsalzes be-
trägt 182,6 kcal mol-1 . Aus dieser Übereinstimmung kann entsprechend dem zugrunde ge-
legten Modell auf eine beim Steinsalz überwiegend vorhandene lonenbindung geschlossen werden.

2.1.3. Gitterenergie des Van-der-Waals-Kristalls

Xenon hat kfz-Struktur (kubisch-flächenzentriertes Gitter). Seine Gitterenergie beträgt
3,83 kcal mol-1 = 16,0 kJ mol-1 . Der Abstand zwischen nächsten Nachbarn ist gleich 0,435 nm.
Berechnen Sie daraus die Parameter in der Potentialdarstellung nach Lennard -Jones.

Lösung:
Wir schreiben das Wechselwirkungspotential zwischen zwei Atomen des Van-der-Waals-
Kristalls nach (2.1.6a)
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Hierin können wir n = 12, m = 6 einsetzen. Bezogen auf ein Kilomol mit N = Teilchen folgt
als potentielle Energie des VAN-DER-WAALS-Kristalls

ü = —2N A e [s (—V- S (—) 12] ’
Lm Vifl i.j Vijf J (1)

Die Abstände zwischen einem herausgegriffenen Atom i und seinem Nachbarn j können in der
Form

r ij = r op ij (2 )

dargestellt werden. r0 bedeutet den Abstand zweier nächster Nachbarn. Es ist für das kubisch-
flächenzentrierte Gitter mit der Gitterkonstanten durch

»o = ± 2 a (3)

verknüpft.
Durch die Laufzahl j werden nacheinander sämtliche Atome durchlaufen, die das $-te Atom um-
geben. nimmt dabei nacheinander sämtliche Abstände ein, die im Kristall zwischen zwei
Gitterbausteinen auftreten, beginnend mit = r0 , d.  h.  P i?- = 1.
Summiert über sämtliche Kristallbausteine folgt für den kfz-Kristall

S G-V= S P 0 - 12 = 12,131, (4)

i l \  m

S — = £P- 6 = 14,454. (5)
i V t j /  3 f

Beide Reihen konvergieren sehr schnell.
(4) und (5) werden in (1) eingesetzt, womit sich für das Potential

/ CT12 <J6 \U = 2NA e 12,131 - 14,454 (6)
\ r12 r0

6 /

ergibt. Der kürzeste Abstand zweier Kristallbausteine ist durch das Minimum des Potentials
bestimmt:

~ (7)

Im vorliegenden Fall ergibt sich, wenn gemeinsam auftretende Faktoren weggelassen werden,

g.13 0?

12 • 12,131 — ------ 6 • 14,454 — = 0 .
13 a* 7r o r o

Daraus folgt

(8)

O)= 1,09
u

Wir setzen diese Größe in (6) ein und erhalten für die Gitterenergie des VAN-DER-WAALS-Kristalls

B 2AAe Z12,131
l,09 6 \ l,09 6

5 Schilling, Festkörperphysik
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bzw.

UQ = -8,60A a s

Setzt man für UQ den vorgegebenen Wert ein, so folgt, wenn nach dem Parameter e aufgelöst
wird,

6 = 3,83 -IO». 4,187 -103 j ==  0 _21J |

8,60 • 6,02 • 1026

Für den Parameter er ergibt sich aus (9)

er = nm 0 400 nm.
1,09

2.1.4. Metallbindung

Silber besitzt nach Tabelle 1.1.1 ein kubisch-flächenzentriertes Gitter mit der Gitterkonstanten
a = 0,408 nm. Bei der Metallbindung gehören die Valenzelektronen dem Metall als Ganzes an.
Nach quantentheoretischen Untersuchungen liegt die größte Wahrscheinlichkeitsdichte für ihren
Aufenthalt in der Mitte zwischen den positiven Metallionen. Man kann daher die Metallbindung
genähert durch ein Strukturmodell deuten, bei dem sich positiv geladene Metallionen mit fest-
stehenden Elektronen als den negativ geladenen Kristallbausteinen abwechseln. Berechnen Sie
nach diesem Modell die MADELUNG-Konstante a des Silbers.

Lösung: •
Am absoluten Nullpunkt T = 0 befinden sich die Elektronen im Zustand idealer Ordnung: Sie
besetzen, von unten beginnend, lückenlos die niedrigsten Energiezustände. Dabei gilt ent-
sprechend der HEiSENBERGschen Unbestimmtheitsrelation und dem PAUEi-Prinzip : Jede Zelle
des Phasenraumes hat die Größe

A# A?/ Az &px Ap y &pz = Ä3
(1)

und ist von nicht mehr als zwei Elektronen besetzt. Ihre Spins sind einander entgegen gerichtet.
Jede Zelle repräsentiert also zwei Quantenzustände.
Wir betrachten AV Elektronen in einem Volumen der Größe A V = Ax A?/ Az. Bei idealer Ord-
nung sind sie im Impulsraum über eine Kugel mit dem Radius pQ verteilt. Der mit Elektronen
besetzte sechsdimensionale Phasenraum hat die Größe

ATT 4 _ AATy = 47  • — = — Ä3 .
o Zi

(2)

Durch Auflösen nach dem Radius pQ erhalten wir

, l /  3
Pa = h / -----  •k 8tc AP (3)

Darin bedeutet

A7V -— = N
AP (4)
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die Elektronenkonzentration, d. h. die auf 1 m3 bezogene Anzahl der Elektronen.
Für die größte von den Elektronen angenommene kinetische Energie folgt aus (3)

_ Ä2 *
2m e 2me [/ (5)

m e bezeichnet die Elektronenmasse.
Wir bestimmen die Zahl dN der Quantenzustände für die im Volumen F o = Im 3 enthaltenen
Elektronen mit Impulsen, deren Beträge zwischen p und p + dp liegen. Hierfür ergibt sich (vgl.
Bild 2.1.5)

(6)

Bild 2.1.5. Aufteilung des Impulsraumes in
Kugelschalen

Für die kinetische Energie der Elektronen im Volumen F o = 1 m3 erhält man damit

Po

t kin = f P2 dN = fp*dp = mW.
0

(7)

Zur kinetischen Energie der Elektronen kommt die potentielle Energie der Wechselwirkung
zwischen den Elektronen und den Metallionen hinzu. Wir betrachten das aus N freien Elektronen
und N positiven Ionen bestehende Modell. Zwar sind die Elektronen über den gesamten Metall-
raum verteilt, die größte Wahrscheinlichkeit für ihren Aufenthalt liegt jedoch in der Mitte
zwischen den positiven Ionen. Wir betrachten daher das Metall in nullter Näherung als lonen-
kristall, der aus 2 N abwechselnd positiv und negativ geladenen Ionen besteht. Für die potentielle
Bindungsenergie eines solchen Kristalls folgt nach (2.1./9) und (2.1. / I I)

— _ ocNe2

4 0
(8)

Silber besitzt nach Tabelle 1.1.1 ein kubisch-flächenzentriertes Gitter mit der Gitterkonstanten
a = 0,408 nm. Die Elektronen als negative Ionen nehmen wir derart verteilt an, daß ein Kristall
mit Steinsalzstruktur entsteht. Bezeichnet r0 den kürzesten Abstand zweier entgegengesetzt ge-
ladener Teilchen, so hat man also im vorliegenden Fall in (8)

a
~2

(9)

zu setzen.
Für die Energie eines Silberatoms bzw. eines Paars geladener Ionen ergibt sich aus (7) und (9)

_ ffkin _ _ , 3WÄ 2 /3
N 47t£0r 40n 2 /3me

(10)

5*
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Das kfz-Gitter erhält nach Beispiel 1.1.1 in jedem Elementarwürfel vier Silberatome. Es besteht
daher die Beziehung

N 4
-3 = — '1 m3 a 3

Setzt man hierin r0 nach (9) ein, so folgt für den Zusammenhang zwischen der lonenkonzentration
N und dem kleinsten Abstand r0 zweier entgegengesetzt geladener Teilchen

N = - 3 . (12)
V

Wir setzen diese Größe in (10) ein und erhalten für die Energie eines lonenpaares

_ _ _i_ 35/3 ’ 322/3 Ä2 MQ)
4K£0r0 4OK2/37fte ro

2

Diese Größe hat nur den Charakter einer nullten Näherung, da außer den betrachteten Energien
noch andere auftreten und die Konzentrierung der Elektronen in die Mitte zwischen den Silber-
atomen nur eine Näherung darstellt. Auch die Zuordnung eines freien Atoms zu jedem Silber-
atom ist nur genähert richtig.
Der Gleichgewichtsabstand r0 ist durch

bestimmt. Wir lösen die sich hieraus ergebende Gleichung nach der MADELUNG-Konstanten a
auf und erhalten, indem wir anstelle von r0 die Gitterkonstante a nach (9) einsetzen,

35/3.322/3.2 /3. A2£
(X — . (15)

5mee2a

Mit den vorgegebenen Werten folgt
35/3 . 322/3 . 2 1/3 . (6,63 • IO“34 )2 • 8,85 • IO“12 , „ „

OC — — lö  9 ü •
5 • 9,1 • IO“31 • (1,60 • IO“19 ) 2 • 0,408 • 10~9

2.1.5. Verformung des Kristallgitters durch äußere Kräfte

Auf Kupfer wirke a) ein allseitiger Druck von 9,81 bar (10 at), b) ein Zug von 9,81 bar auf die
(1 0 O)-Fläche in der Richtung [0 1 0]. Berechnen Sie die hierdurch bewirkten Änderungen am
Kristallgitter. Die Elastizitätsmoduln des Kupfers sind Tabelle 2.1.5 zu entnehmen. Kupfer be-
sitzt nach Tab. 1.1.1 ein kfz-Gitter.

Lösung:
Wir gehen von drei orthogonalen Einheitsvektoren t ,  j, k aus (vgl. Bild 2.1.6). Sie sind parallel
zu den Gitterachsen des kubischen Kristallgitters gerichtet und mit diesem fest verbunden.
Bei der Deformation des Festkörpers erleiden sämtliche Punkte Verschiebungen aus der Gleich-
gewichtslage. Die Vektoren i ,  j, k verändern dabei sowohl ihre Länge als auch ihre Richtung. Sie
gehen in ein Vektorsystem über, das mit k' bezeichnet wird. Es läßt sich durch das ursprüng-
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liehe Vektorsystem gemäß

i' — (1 + i + e xy j 4~ Exz h ,

3 = £ yx 4" (1 4" Syy) 3 4“ 8yz >

= £ zxi + ezy j + (1 + «») k

(1)

darstellen.

Bild 2.1.6. Koordinatenvektoren t,  j ,  k des
idealen Gitters, i', j',  k' des verformten
Gitters

Bei den betrachteten Kristallen treten durch elastische Prozesse nur kleine Deformationen ein,
so daß allgemein

s«,ß <1  («. ß = y> (2)
vorausgesetzt werden kann. Die Vektoren k' haben nicht mehr gleiche Länge.
Unter der Voraussetzung (2) ergibt sich

i' 2 = 1 + 2e xx , j' 2 = 1 + 2Eyy9  k' 2 = i + 2e zz ,1 JuJj 7 • y y 7 • £6

Durch die Größen e XX9 s yy  und ezz werden die relativen Längenänderungen charakterisiert. Dagegen
erhält man

t . J  = e yx  4- s xy i  i . k = exz + £ zx> 3 ' — e yz 4- e zy

Die Größen s xy9  s yx  , e XZ9 eZX9 Eyz  , szy charakterisieren daher Winkeländerungen.
Für einen Punkt, der vor der Deformation durch den Ortsvektor

r = xt + yj + zk (3>

bestimmt war, ergibt sich nach der Deformation

r = xi' + yj' 4- zk f .' (4)

Die Differenz

Ar = r' — r = x(t — i') 4- y(j — j') 4- z(k — k') (5)
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heißt Verrückung oder Verschiebung. Ihr Vektor kann nach (1) gemäß

Jr = ui + vj + (6)

dargestellt werden mit

xx 4“ y£yx 4" %£ zx>

v = xe xy  + ye yy  4- ze zy  , .

w = x& xz  + ye zy  + ze zz .

Als Verzerrungskoeffizienten definiert man

due i £ xx “7 = £ xx>
öx

dv
e * = eyy  = ~fy = £yy>  >

dw
e 3 = e zz — ”7“ — £ ZZf

(8)

dv dw '
e i = e vz  = eiv +e !/z = — + —,

du dw
«5 = «» = + = - + -  , ■

i du dve 6 = e xy  = £ yx  + 8 xy  ~ ~ ~ •

Von diesen bestimmen e 19 e2 , e s Längenänderungen, e4 , e 5 , e6 Winkeländerungen. Diese Definitionen
gelten unter der Voraussetzung, daß Größen zweiter Ordnung vernachlässigt werden können.
Nach dem HoOKEschen Gesetz hängt die Verzerrung linear von der Spannung ab. Im statischen
Gleichgewicht gelten die linearen Beziehungen

e i — $110*11 4“ $120*22 4" $130*33

e 2 = 21 11 4~ 22 22 4“ $23°*33

e 3 = $310*11 4“ $320*22 4“ 33 33

e 4 = $410*11 4- $42°*22 4” $43°33

e 5 = $510*11 4“ $520*22 4“ $530*33

e 6 — $61°11 4~ $620*22 4~ $630*33

4~ $140*23 4- $150*31 4- $160*12?

4- $240*23 4" $250*31 4“ $260*12?

4“ $340*23 4“ $350*31 4~ $360*12?

4" $440*23 4~ $450*31 4~ $460*12?

4" $540*23 4~ $550*31 4" $56 12?

4" $64:0*23 4" $650*31 4“ $660*12’

(10)

Die Spannungskomponenten cr sind in Bild 2.1.7 dargestellt. Der Index 1, 2 oder 3 kennzeichnet
die Richtung parallel zur x - ,  y-  oder z- Achse. Mit dem ersten Index wird die Richtung der Kraft-
komponente, mit dem zweiten die Normalenrichtung der Fläche angegeben, die der Kraftwirkung
ausgesetzt ist. Es bedeutet also z. B. (712 eine Kraft in Richtung der x- Achse, die auf eine Fläche
wirkt, deren Normale in Richtung der y- Achse weist. Die Kräfte werden auf Flächen der Größe
1 m2 bezogen. Als Einheit der Spannungskoeffizienten erhält man also N m-2 = J m-3 .
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Im statischen Gleichgewicht gilt allgemein

Oik = Oki- (U)

Ist diese Bedingung nicht erfüllt, so entsteht ein Drehmoment, das so lange wirkt, bis statisches
Gleichgewicht hergestellt ist. Die Größen fc-sind nur vom Material abhängig. Sie heißen elastische
Konstanten. Ihre Einheit ist m2 N-1 bzw. m3 J -1 . Man kann die Gleichungen (10) nach dem Span-
nungskoeffizienten auflösen :

(Tn = + 12 e 2 + Ql3 6 3

cr 22 = 21 e l 4~ 22e 2 4~ 23  e 3

°33  = 31 e l + 32e 2 4“ 33 6 3

°23  = 41 e l 4“ 42 e 2 4“ 43 e 3

= {-'51 e l 4" 52e 2 + 53 e 3

°12 = 6i e i 4" 62ß 2 + 63C 3

+ G 14 e 4 + C 15 e 5 + C 16 e 6

4~ G 24 e 4 + G 2 5 e 5 + 26 e 6

+ G a4 e 4 + C 35  e 5 + C 36  e 6

+ G 44 e 4 4- C 45  e 5 4~ 46 e 6

4“ 54e 4 4“ 55 e 5 4" 56 e 6

4" 64e 4 4“ 65e 5 4“ 66e 6

(12)

Die hierin auftretenden materialabhängigen Größen Cik  heißen Elastizitätskoeffizienten. Ihre
Einheit N m-2 stimmt mit der der Spannungskomponenten überein; sie haben technisch die Be-
deutung von Elastizitätsmoduln.

Bild 2.1.7. Spannungskomponenten
a) Bedeutung
b) Darstellung des Drehmomentes um die

z-Achse für
c) Kraft F = (F 1? # 2 , F3 ) auf ein Flächen-

element/ = (/v /2 , /3).
3

Die Elastizitätsenergie ist eine quadratische Funktion der Verzerrungskoeffizienten. Ihre Dichte,
d. h. der auf 1 m3 bezogene Wert, kann in der Form

= — S ik ei e k (13)2 i,k
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geschrieben werden, mit Koeffizienten C'ik , die sich auf die Elastizitätsmoduln zurückführen
lassen.
Hierzu geht man davon aus, daß die Elastizitätsenergie eine potentielle Energie darstellt. Die
Komponenten aik  (i, k = 1, 2, 3) der Spannung können daher aus den Verzerrungskoeffizienten

(j = 1, . . ., 6) durch partielle Ableitung bestimmt werden:

öC/'e öU-e(7i 1 — ■ - — ,
de xx

°22 — "7 — "7 >
2 Vöyy

_ düy dü B

0,33 de 3 de zz ’

dÜ
°23 — °32 — o — o >

de e yz

G 13 — — "7 — P »

°12 — &21 — ~ ~
<7e6

Andererseits gilt nach (13)

1 6

<711 = v 3 =Cii«i + v S (C'n + Gp)de z j — 2

(14)

Aus dem Vergleich dieser Beziehung mit der ersten Gleichung (12) folgt

(7ii = (7ii. <?!/ = +
£

(15)

Allgemein ergibt sich aus dem Vergleich der Gleichungen (12) mit den Ableitungen (14)

Qk = Cki — (@ik + ki)  • (16)

Für die Dichte der Elastizitätsenergie folgt damit aus (13) und (16)

“ S i i  e i 2 + S S e i e k -
z=l i<k  k= i

(17)

Die in (12) auftretenden 36 Elastizitätsmoduln sind infolge der Beziehung (16) auf 21 reduziert.
Diese Zahl läßt sich weiter verkleinern, wenn im Kristallgitteraufbau Symmetrien vorhanden
sind.
Kupfer besitzt ein kubisches Gitter. Wie aus der Geometrie des kubischen Gitters hervorgeht,
weist dieses vier dreizählige Symmetrieachsen auf: [1 1 1], [1 1 1], [1 i 1], [1 1 i]. Wird der Kri-

2stall um eine dieser Achsen um — k gedreht, so kommt er mit sich selbst zur Deckung. Durch
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die genannten Drehungen werden die Koordinatenachsen wie folgt transformiert (vgl. Bild
2.1.8):

(18)

Bild 2.1.8. Rotation zwischen symmetrischen
Zuständen in kubischen Kristallen durch
Drehung um die [1 1 1]- bzw. um die [1 1 1]-
Achse

Es ist zweckmäßig, die in (17) auftretenden 21 Summanden wie folgt zusammenzufassen:

“ + @22e yy + @33 e zz) ~ ~ ( l l e l 2 + @22 e 22 + C 33 e 3
2 ) ,

V (C u e vz  + C 55 el x + c v ) = 1 + W),  (19a )

@23 e yy ß ZZ + @13 e zzC XX + @12 ß xx e yy = @23e 2e 3 4“ 13 e 3 e l + 12 ß l ß 2 9 .

@U e xx e yz “I" @25 e yy e xz 4" @36 e zze xy = 14 e l e 4 4" 25e 2e 5 4- 36e 3e 6>

@15 e xx & XZ 4“ @26& yy e xy 4" @31 ZZe yZ ~ 015 e i e 5 4" 26e 2e 6 4- 34e 3e 4’
(19b)

@16 e xx e xy 4- @2 yy  e yz 4“ @35 e zz xz ~ @16e l e 6 4“ ( 24e 2ß 4 4- 35e 3e 5»

@&5e yz e xz 4“ @4£ e yz e xy 4“ @56 e xz e xy = 45 e 4 e 5 46e 4 6 6 4" 56e 5ß 6 * ,

Für die Verzerrungskoeffizienten gelten Beziehungen der Form

e xy = e x(-y)> e (-x)(r-y) = e xy usw « (20)

Die Summanden (19 a) müssen bei kubischen Kristallen gegenüber sämtlichen Transformationen
(18) invariant sein. Das ist nur der Fall für

@11 — @22 = @33 9 @ i = @55 — @66 9

@12 = @13 = @23*
(21)
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Bei den Summanden (19b) läßt sich dagegen keine Invarianz gegenüber den Transformationen
(18) erzielen, es sei denn, sämtliche Koeffizienten verschwinden:

14 — 01.5 = 16 = 24 — 25 = 26 
= @31 ~ 35 = 36 “ 45 = 46 1

} (22)
= 56 = 0 .  J

Die 21 Verzerrungskoeffizienten reduzieren sich somit bei Kristallen mit kubischem Kristall-
gitter auf nur drei Bestimmungsgrößen. Für die Elastizitätsenergie folgt damit nach (17)

E = ~ ll( e l2 
+ ß 22 + e 3 2 ) + 12( e 2 e 3 + ß 3 e l + e l e 2)  + “ (7 44 (e 4

2 + H“ e ß 2 ) *

(17a)

Bei einem kubischen Gitter, auf das allseitig ein Druck wirkt, ist die Verzerrung in allen Richtun-
gen gleich, so daß man

ßi = ß 2 = 63 = <3 (23)

setzen kann, während Winkeländerungen nicht auftreten. Aus (17 a) folgt damit für die Elasti-
zitätsenergie, bezogen auf die Volumeneinheit,

_ Q
Uv= - ( (  + 2( )0 .  (24)£1

Nach (2.1.2./22) hängt die Elastizitätsenergie mit der Kompressibilität gemäß

2 Kt E — (25)

zusammen. Aus dem Vergleich folgt für die Verknüpfung zwischen der Kompressibilität x und
den Elastizitätskoeffizienten Ci! und C12

3
Cn + 2(7i2

(26)

Der nach Teil a) der gestellten Aufgabe wirkende allseitige Druck führt zu einer Verringerung
des Volumens. Nach (2.1.2./12) in Verbindung mit (26) ist die relative Längenabnahme gleich

hP P
3 (7n 2(712

(27)

Mit den vorgegebenen Werten folgt

10 • 9,81 - IQ4

(1,68 + 2 • 1,21) 1011 = 2,39 • IO"6 ,

d.  h., ein Kupferstab von 1 m Länge wird um 2,39 p,m verkürzt. Für die relative Reduzierung des
Volumens folgt

V — V'- ------— = 3d = 3- 2,39 • 10- 6 = 7,2 • IO"6 .
V
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Zur Lösung des Teiles b) der gestellten Aufgabe schreiben wir nach (12), unter Beachtung von (21),

#21 — (28)

Daraus erhält man mit den vorgegebenen Zahlen

<r21 10 • 9,81 • 104 . 5e = e = t' . / = = ----------------- = 1,31 • IO-5 .6 xy  J Cu 0,75 • 1011

Die i'-Achse und die j'- Achse stehen hiernach unter dem Einfluß der Zugspannung nicht mehr
genau senkrecht aufeinander, sondern bilden einen Winkel von

i ,8 i .  1 o-» . i  8 oy_  M _9t|[)!!5 .

2.1.6. Elastische Wellen im Kristall

In der [1 1 O]-Richtung eines Kupferkristalls breitet sich eine mechanische bzw. elastische Welle
aus. Stellen Sie die Differentialgleichung für diesen Vorgang auf. Bestimmen Sie aus den Elasti-
zitätsmoduln nach Tabelle 2.1.5 für Kupfer die Phasengeschwindigkeiten bei der Ausbreitung
elastischer Wellen in der [1 1 O]-Richtung.

Lösung:
Wir schneiden aus dem Kristall einen Quader AjtAt/Az heraus (vgl. Bild 2.1.9). Die Begren-
zungsflächen haben die MiLLERschen Indizes (10  0), (010),  (0 01).  Auf die Begrenzungsfläche
(10  0) durch den Koordinatenanfangspunkt wirke ein Zug entgegen der x-Achse, also in der

Bild 2.1.9. Kräfte auf einen
Kristallquader

Richtung [ i  0 0]. Er wird mit — o'n(O) bezeichnet. Die im Abstand &x gegenüberliegende parallele
Fläche sei dagegen einem Zug in der Richtung [1 0 0] ausgesetzt. Für den resultierenden Zug auf
den Quader folgt

a u (A») — <7u (0) = A®. (1)
dx

Die resultierende Kraft ist

AzAyAz.
8x v
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Bei der Berechnung der gesamten auf den Quader in einer Richtung wirkenden Kraft hat man die
von den anderen Flächenpaaren ausgehenden Kräfte zu berücksichtigen. Insgesamt erhält man
für die Kraft in Richtung der x-Achse

AJ \=  + + A AyAz. (2)
\ dx dy dz /

Bezeichnet u die Verrückung in Richtung der x-Achse, so ist andererseits

AJ’1 =Am— , (3)1 342 ' ’
wobei

Am = d Aß /Sy Az (4)

die Quadermasse und d die Kristalldichte angibt. Aus dem Vergleich von (2) und (3) erhält man die
Bewegungsgleichung

a2 _ a<Tu 8<t12 8a13

dt2 dx dy dz (5)

Entsprechende Gleichungen ergeben sich aus den Kräften in Richtung der y- und der z-Achse.
Setzt man für die Spannungskomponenten die Bedeutung nach (2.1.5/12) ein und berücksichtigt,
daß sich beim kubischen Kristall nach (2.1.5./21) und (2.1.5./22) die Zahl elastischer Koeffizienten
Ci k  reduziert, so ergibt sich aus (5)

a2» _
d 'm ~ 011 17 + C12 (6)

Hierin kann man die Dehnungskoeffizienten gemäß (2.1.5./8) und (2.1.5./9) durch die partiellen
Ableitungen der Verrückungen ausdrücken. Damit folgt

7 d2u ~ d2u , / d2u d2u \ , . ~ ~ . / d2v , d2w \d TT = + C44 (vT + w)  + ( 12 + 44) (2  p + 7—7“) • ( 7 )dt2 dx2 \ dy2 dz2 / \dx dy dx dz]

Analog erhält man

d = o L + c + +(O12  + (7m) + -V (8)
dt2 11 dy2 44 \ dz2 dx2 / k 12 44 \dy dz dy dx)

d2w d2w / d2w d2w\  „ . / d2u , d2v \
TT = TT + 44 TT + TT/  + 12 + p ’p “t" 7 a” • ( 9 )dt2 dz2 \ dx2 dy2 ] \dz dx dz dy]

Wir betrachten Wellen, die senkrecht zur z-Achse fortschreiten und bei denen sich die Gitter-
bausteine in der #,i/-Ebene bewegen. Es liegen also Verrückungen u = u(t, x, y), v = v(t, x, y)
vor, während w gleich Null ist. Zur Lösung der linearen Differentialgleichungen (7) und (8) gehen
wir daher von den Exponentialansätzen

u = f (10)

V = VQ Q-i(2nf t -K x x-Kyy)  (H)

aus. f gibt die Frequenz der mechanischen Schwingung an, K x und K y sind Wellenzahlen. In (9)
sind sämtliche Summanden gleich Null.
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Durch Einsetzen von (10) und (11) in (7) und (8) ergibt sich das System linearer algebraischer
Gleichungen

[((7 / + Cti K - 4 /M] u + (C12 + (J14 ) K x K yv = 0 ,  ]
I (12)

((712 + <7«) X x K yu + [{CU K/ + C44X/) - 4ti 2/2<7] v = 0 .  J

Es ist lösbar, wenn seine Koeffizientendeterminante verschwindet. Für Wellen, die sich in der
[1 1 O]-Richtung mit der Wellenzahl K ausbreiten, ist

K X = K V = K . (13)

Damit folgt aus (12) als Bedingung für die Lösbarkeit des Gleichungssystems

y (Cu + C44) - 47tW

V (<712 + <744) K 2

± «7la + C44) K 2

4- ( G n + <7«) X 2 ~

(14)= 0 .

Für die Wurzeln dieser Gleichung folgt

8k 2/M _8 Zt7M_
2 <7U - C12

(15), (16)Gn + G12 + 2(744

Wir setzen (15) in (12) ein und erhalten

(15a)u = -y.

Die Teilchenbewegung erfolgt also in der [1 1 O]-Richtung. Da diese Richtung gleichzeitig Aus-
breitungsrichtung der Welle ist, liegt eine longitudinale Welle vor. Sie breitet sich mit der Phasen-
geschwindigkeit

_ 2k/ __ 1 /C'u + C12 + 2C44
sL “ K, ~ |/ 2d

aus.
Setzt man (16) in (12) ein, so ergibt sich

(17)

u = —v. (16a)

Es liegt eine Schwingung in der [ 11  0] -Richtung vor, die zur Ausbreitungsrichtung senkrecht
steht. Für diese Transversalschwingung erhält man nach (16) die Phasengeschwindigkeit

, = 27t/ -|/<7u -O 12
ST1 X 2 |/

(18)

Mit den vorgegebenen Größen folgt aus (17)

/ (1,762 + 1,249 + 2 • 0,818) • Ion —i k aq i i! ------------------------------------------- m s i = 5,08 km s-1 ,
2 • 9,02 • 103
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aus (18)
-i / l ,  762 — 1,249 n . ,

= / ----------------- IO11 ms -1 = 1,69 kms-1 .S11 V 2 • 9,02 • 103

Eine weitere transversale Welle, die sich in der [1 1 O]-Richtung fortpflanzt, schwingt in der
[0 0 1]-Richtung. Ihre Phasengeschwindigkeit vsT2 stimmt nicht mit der Phasengeschwindigkeit
vsT1 für die in der [1 I O]-Richtung schwingenden Teilchen überein (vgl. A 2.1.21). Hierin kommt
die Anisotropie der Kristalle zum Ausdruck. Allgemein gilt, daß in einem anisotropen Medium
drei voneinander unabhängige Phasengeschwindigkeiten existieren; die ihnen zugeordneten Ver-
schiebungsrichtungen bilden ein Orthogonalsystem.

A Aufgaben

A 2.1.1. Untersuchen Sie nach Tab. 2.1.6 die Wertigkeit des C-Atoms im Grundzustand für
die kovalente Bindung.

A 2.1.2. Untersuchen Sie die Wertigkeit des Stickstoffatoms im Grundzustand (1s) 2 (2s) 2
(2p) 3 bei kovalenter Bindung.

A 2.1.3. Bestimmen Sie nach Tabelle 2.1.6 die Elektronen, die bei Silizium, Germanium und
Zinn zur kovalenten Bindung beitragen.

A 2.1.4. Bestimmen Sie nach Tabelle 2.1.6 die Elektronen, die in Galliumarsenid und In-
diumantimonid zu Kristalleigenschaften führen, die denen von Kristallen mit
Elementen der vierten Gruppe entsprechen.

A 2.1.5. Berechnen Sie die Bindungsenergie für ein Zinkion in Zinkblende (a = 1,64,
a = 0,565 nm).

A 2.1.6. Rechnen Sie die in kJ mol-1 angegebene Gitterenergie um in eV/Molekül.
A 2.1.7. Berechnen Sie aus den Angaben in Beispiel 2.1.3 die Bindungsenergie für das

neutrale und für das einfach ionisierte Wasserstoffmolekül in kcal mol-1 und
kJ mol-1 .

A 2.1.8. Berechnen Sie das Potential und die MADELUNG-Konstante für eine Kette von N
alternierend geladenen, im Abstand r aufeinanderfolgenden Ionen (eindimensionales
Gitter, vgl. Bild 2.1.9).

A 2.1.9. Zinkblende hat die MADELUNG-Konstante oc = 1,64, die Gitterkonstante a =
0,565 nm. Der Exponent des durch die Wechselwirkung der Elektronenwolken
verursachten Abstoßungspotentials ist n = 5. Berechnen Sie die Gitterenergie
(Z = 2).

A 2.1.10. Berechnen Sie aus den Angaben in Aufgabe A 2.1.9 die Kompressibilität des Zink-
blendekristalls.

A 2.1.11. Um die Konvergenz bei der Berechnung der MADELUNG-Konstanten zu verbessern,
betrachtet man um das herausgegriffene Ion die elektrischen Ladungen innerhalb
von Würfeln. Dabei rechnet man mit Ladungsbruchteilen, indem z. B. ein Ion
in einer Würfelecke nur zu einem Achtel dem betrachteten Würfel angehört.
Bestimmen Sie nach diesem Verfahren die MADELUNG-Konstante für NaCl aus den
Ladungen innerhalb eines Würfels mit einer Kantenlänge a) gleich der Gitter-
konstanten a, b) gleich dem Dreifachen der Gitterkonstanten.

A 2.1.12. Nach Kapustinsky gilt für die Gitterenergie binärer Verbindungen die Formel

U = 1202 nZxZi (1 -
»1 + »2 \

0,345 '
r i + r2l

kJ mol-1 .
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Z-l und Z 2 geben die Zahl der Elementarladungen für Kationen und Anionen an,
und r2 bedeuten die lonenradien in 10-10 m (vgl. Tab. 2.1.6); n bezeichnet die

Gesamtzahl der Ionen je Formeleinheit. Berechnen Sie danach die Gitterenergie
für Zinkblende und vergleichen Sie diesen Wert mit dem Meßwert.

A 2.1.13. Welche relative Längenänderung bewirkt der Druck von 9,81 bar (10 at) bei Stein-
salz?

A 2.1.14. Wie groß ist die Elastizitätsenergie des Steinsalzes, wenn dieses einem Druck von
9,81 bar (10 at) ausgesetzt ist?

A 2.1.15. Geben Sie für den kubischen Kristall die elastischen Konstanten in Abhängigkeit
von den Elastizitätsmoduln an.

A 2.1.16. Auf die (0 0 1)-Fläche des Bleikristalls wirkt ein Zug von 98,1 bar (100 at) in der
Richtung [1 0 0]. Berechnen Sie den Winkel, um den die Kristallachsen verdreht
werden. Werte nach Tabelle 2.1.5, T = 300 K.

A 2.1.17. Stellen Sie eine allgemeine Formel zur Ableitung der Kompressibilität aus der
Gitterenergie auf und leiten Sie daraus die Kompressibilität für ein Gitterpotential
der Form

Z7(r) = - A + _®_' 1 rffl

ab. Nehmen Sie dazu allgemein an, der Kristall enthalte je Elementarwürfel s,
je Kilomol TV Bausteine. Zwischen der Gitterkonstanten a und dem kürzesten
Abstand r0 bestehe der Zusammenhang r0 = /(a).

A 2.1.18. Berechnen Sie nach Tabelle 2.1.5 die Kompressibilität des Diamanten bei 300 K.
A 2.1.19. Stellen Sie die Gleichung für die Ausbreitung einer Longitudinalwelle in der [1 0 0]-

Richtung auf. Bestimmen Sie die Phasengeschwindigkeit.
A 2.1.20. Wie lautet die Gleichung für die Ausbreitung einer Transversalwelle in der [1 0 0]-

Richtung? Welche Phasengeschwindigkeit erhält man?
A 2.1.21. Berechnen Sie die Phasengeschwindigkeiten bei der Ausbreitung mechanischer

Wellen in Kupfer, wenn diese in der [1 0 0]-Richtung fortschreiten. Die Temperatur
betrage 0°C (<7U = 1,69 • 1011 N m-2 , C12 = 1,22 • 1011 N m-2 , C44 = 0,76 • 1011

N m-2 , d = 8,9 g cm-3 ).
A 2.1.22. Mit welcher Phasengeschwindigkeit breiten sich in Kupfer mechanische Wellen

in der [1 1 O]-Richtung aus, wenn diese mit einer Teilchenbewegung in der [0 0 1]-
Richtung verbunden sind? (Werte nach A 2.1.21).

2.2. Phononen und Gitterschwingungen — Thermische Eigenschaften

£ Einführung

Phononen
Ein kristalliner Festkörper bildet mit seinen Bausteinen ein System gekoppelter
Oszillatoren. Die mechanischen Schwingungen erfolgen nach den Gesetzen der
Quantentheorie. Experimentell bestätigt wird die Quantelung insbesondere durch
die folgenden Effekte :
Mit abnehmender Temperatur T 0 sinkt auch die Wärmekapazität des Kristall-
gitters gegen Null ; die Oszillationen »frieren ein«.
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Die unelastische Streuung von Röntgenstrahlen oder Neutronen am Kristallgitter
ist mit der Emission oder Absorption von Kristallschwingungen verbunden. Dabei
gelten für die Energie und den Impuls Erhaltungssätze, die denen der Emission und
Absorption des Lichtes entsprechen. Auf Grund dessen geht man davon aus, daß für
die Emission und die Absorption mechanischer Schwingungen in einem Festkörper
die gleichen Gesetzmäßigkeiten gelten wie für optische Schwingungen in einem
Hohlraum.
Die Strahlung in einem Hohlraum wird durch ein Pho tonengas repräsentiert. Impuls
und Energie der Photonen sind mit der Energie und der Frequenz des elektromagne-
tischen Strahlungsfeldes durch die DE-BnoGLiEschen Gleichungen verknüpft. In
Analogie dazu wird das Feld der mechanischen Schwingungen des kristallinen
Festkörpers durch ein Quantengas dargestellt. Das einzelne Quant des mechanischen
Schwingungsfeldes heißt ein Phonon. Es verhält sich wie ein Elementarteilchen und
wird daher als Quasiteilchen bezeichnet.
Die ebene mechanische Welle kann ebenso wie die ebene Licht welle durch ihre
Kreisfrequenz w = 2k/, ihre Wellenlänge A und ihre Phasengeschwindigkeit vs dar-
gestellt werden. Als Wellenzahlvektor der mechanischen Schwingung definiert man

K = ns , (1)

wobei n s Einheitsvektor in Richtung der sich ausbreitenden Welle ist. Das Energie-
quant der mechanischen Schwingung ist durch die erste de-Brogliesche Gleichung
bestimmt :

£ = hw = hf . (2)

Beispiel 2.2.1. Energiequant des Kammertons

Für den Kammerton / = 440 Hz beträgt die Energie eines Phonons

e = 6,63 • 10- 34 • 440 J = 2,9 • IO"31 J = 1,8 • IO-12 eV.

Sie liegt um zwölf Größenordnungen unter der eines Photons im sichtbaren Bereich.

Der Impuls eines Phonons zeigt Besonderheiten.
Das Phonon tritt mit anderen Elementarteilchen in Wechselwirkung, z. B. mit
Photonen, die dadurch gestreut werden. Bei derartigen Vorgängen verhält sich das
Phonon, als hätte es den Impuls

q = hK . (3)

(3) entspricht der zweiten de-Broglieschen Gleichung (vgl. [2] 4.1.). Wie eine genaue
Untersuchung zeigt, kann ein Phononenimpuls, d. h. eine gleichförmige Verschiebung
des gesamten Kristalls, jedoch nur auftreten, wenn die Wellenzahl K gleich Null
ist. Die durch (3) definierte Vektorgröße wird daher genauer als Pseudoimpuls be-
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zeichnet. Ihre Bedeutung liegt allein im Verhalten der Phononen bei Wechsel-
wirkungsprozessen mit anderen Elementarteilchen.
Wellenzahl K und Kreisfrequenz w sind durch die Phasengeschwindigkeit vs mit-
einander verknüpft :

In Verbindung mit den DE-BßOGLiEschen Gleichungen (2) und (3) ergibt sich daraus
die allgemeine Beziehung

e = vsq (5)
zwischen Phononenenergie e, Pseudoimpuls q und Phasengeschwindigkeit s . Das Gesetz
von der Erhaltung des Impulses erfordert bei der Streuung des Lichtes an Gitter-
schwingungen eine Erweiterung der Gleichung (1.2./ 18).
Der Impuls eines Elementarteilchens ergibt sich nach der zweiten DE-BROGLiEschen
Gleichung als Produkt der Konstanten h = 1,05 • 10~34 Js mit der Wellenzahl der

Bild 2.2.1. Impulserhaltungssatz bei der unelastischen
Streuung von Röntgenstrahlen oder Neutronen an
Phononen.
hk0 Impuls des einfallenden Photons bzw. Neutrons
hk' Impuls des gestreuten Photons bzw. Neutrons
hK Impuls des Phonons
-hb' Rückstoßimpuls

zugeordneten DE-BROGLiEschen Welle. Bei der Licht- oder Neutronenstreuung ist
der Pseudoimpuls des erzeugten oder vernichteten Phonons nach Bild 2.2.1
zu berücksichtigen. Nach (1.2./18) bezeichnet den Impuls des einfallenden,
hk' den Impuls des gestreuten Photons, — hb den Rückstoßimpuls des Gitters. Aus
dem Satz von der Erhaltung des Impulses folgt daher nach Division durch h

(6)k Q — k f = ±K — b

Das obere Vorzeichen gilt für Phononenemission, das untere für -absorption. Der
Vektor b des reziproken Gitters wird nach 1.2. durch die reflektierenden Netzebenen
bestimmt.
Phononen besitzen als Teilchen ohne Ruhmasse ebenso wie Photonen keinen Spin.
Ihr Verhalten wird durch die Bose-Einstein- Statistik beschrieben (vgl. [3] 4.3.).
Bose-Einstein-Statistik der Phononen
Nach der BosE-EiNSTEiN-Statistik ist im Gleichgewichtszustand die Anzahl der
Teilchen, die sich in einer Phasenzelle der Größe h3 befinden und dabei die Energie
besitzen, durch die Formel

(?), £i

- 1
6 Schilling, Festkörperphysik
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gegeben. Darin bedeutet g einen Gewichtsfaktor, der sich bei Phononen durch die
verschiedenen Schwingungsrichtungen der Gitterbausteine ergibt. Die mechanische
Schwingung kann in zwei zueinander senkrecht stehende Transversalkomponenten
und eine Longitudinalkomponente zerlegt werden. Für Phononen gilt daher

<7 = 3 ,  (8)

sofern nicht bestimmte Schwingungsrichtungen ausgeschlossen sind.
Der Parameter oc ergibt sich als LAGRANGEscher Multiplikator aus den Bedingungen
über die Teilchenzahl. Für Phononen besteht jedoch ebenso wie für Photonen kein
Gesetz, das die Erhaltung der Teilchen vorschreibt. Die Konzentration der Phononen
hängt ebenso wie die Konzentration der Photonen von der Temperatur ab. Bei der
Variation über alle möglichen Zustände kann die Bedingung über die Teilchenzahl
gestrichen werden, was gleichbedeutend mit

<x = 0 (9)

ist. Für Phononen erhält man somit als Anzahl der Teilchen in einer Phasenzelle

Xi=— — (10)
e* T — 1

Die Anzahl der Zellen mit Impulsbeträgen zwischen q und q + d# ist in Analogie
zu 2.1.4. und Bild 2.1.5 gleich

F-4  2 ddz = ----- , (11)

wobei V das Volumen des Kristalls angibt. Für die Anzahl der Phononen mit der
Energie e und Pseudoimpulsen zwischen q und q + &q folgt weiter

(12)

Berücksichtigt man die Beziehungen (4) und (5), so folgt aus (12) in Verbindung
mit (1) und (2) für die Anzahl der Phononen mit Kreisfrequenzen zwischen w und
w + dw

(13)

Diese Formel entspricht bis auf den veränderten Gewichtsfaktor g der Formel für
die Verteilung der Photonen nach dem Planckschen Strahlungsgesetz.
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Beispiel 2.2.2. Zahl der Phononen

Ein Kristall, in dem die Schallgeschwindigkeit einheitlich vs = 6000 m s-1 beträgt, hat das
Volumen V = 1 cm3 . Er enthält bei Zimmertemperatur T = 300 K im Frequenzbereich zwischen
4,0 • 106 und 4,1 • 106 s-1 im Mittel

(2tt) 3 (4 • 106 ) 2 - 0,1 • 106

= 4,4 • 10 8dV = 3 • IO"6

1,05 • 10~34 • 2n • 4 • 106

1,38 • 10- 23 • 300 /
2k 2 (6 • 103 ) 3 exp

Phononen. Bei gleichen Phasengeschwindigkeiten für die transversalen und longitudinalen
Wellen entfällt davon ein Drittel auf longitudinale Schwingungsvorgänge.

Abzahlung der Wellen in einem Kristall
Stehende Wellen müssen je nach Art der Schwingung an den begrenzenden Wänden
Wellenknoten oder -bäuche aufweisen (z. B. Knoten bei Seilwellen oder beim 12-Feld
im idealen Leiter, Bäuche an der Oberfläche eines Schwingungsquarzes oder bei der
longitudinalen Komponente des H-Feldes im Hohlleiter). Die Anzahl möglicher
Wellen in einem Körper wird, wie allgemein bewiesen werden kann, nur durch das
Volumen bestimmt. Man kann daher als Festkörper einen Würfel mit der Kanten-

3länge a = y y betrachten. Seine Kanten werden als Achsenrichtungen des x } y} z-
Koordinatensystems gewählt.
Zwei benachbarte Knoten oder Bäuche in einer stehenden Welle haben voneinander
den Abstand Bei parallel zu einer Begrenzungsfläche laufenden Wellenfronten
gilt daher

a = m (m = 0, 1, 2, . . .) . (14)

Für eine in Richtung

u = cos oci + cos ßj + cos y k (15)

schräg durch den Kristall laufende Welle erhält man stattdessen als Bedingungs-
gleichungen für Knoten oder Bäuche an den Begrenzungsflächen (vgl. Bild 2.2.2a)

Aa cos oc = n x — ,x 2

a Aa cos ß = n y (nX} n y , n z = 0, 1, 2, . . . ) . (16)

Aa cos y = n~ —— ./ Z 2

Nur wenn diese Gleichungen erfüllt sind, bleibt die stehende Welle erhalten und
wird nicht durch Interferenz ausgelöscht.

6*
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Werden die Gleichungen (16) quadriert und addiert, so folgt nach Division durch —

4a 2 u2w2

+ Mg,2 + (17)

Gleichung (17) stellt eine Kugel im n z Wj-Raum mit dem Radius ----- dar. Die
w w dwAnzahl stehender Wellen mit Frequenzen zwischen — und — ----1- ist somit gleich
2tc 2tc

der Anzahl ganzzahliger Werte n x , n y , n z , die Gleichung (17) mit Kreisfrequenzen
zwischen w und w + dw befriedigen. Ihre Anzahl ergibt sich als Zahl der Gitter-

punkte im Oktanten einer Kugelschale mit dem Krümmungsradius und der
a dw 2 7T S

Dicke - ---- (vgl. Bild 2.2.2b). Für große Werte — ist diese Zahl gleich dem Volumen

der Schale
1 a 2w2 adw Vw 2 dw / 1 1 ( 1 \
8 7C2 £>2 7Ws 2k 2 

\ f g L VsT2 /O \ uIj d_L1 oXa  /

Bild 2.2.2. Zur Ableitung der Anzahl stehender Wellen in einem Würfel.
a) Wellen in einem Würfel
b) Gitterpunkte im Oktanten einer Kugelschale

Bei unterschiedlichen Phasengeschwindigkeiten vsL  für die Longitudinalwellen und
t>STi sowie vsT2 für die Komponenten der Transversalwellen erhält man als Anzahl der
Wellen in einem Kristall mit dem Volumen V

Fw2 / 1 , 1
/(w) dw = -5- H— ö—

2tc2 v®T1
(19)

Vielfach rechnet man mit einer mittleren Phasengesehwindigkeit, die durch die
Gleichung

= 3“ + “ + 3~ ( 20 )
v s *'sL sTl 312



852.2. Phononen und Gitterschwingungen — Thermische Eigenschaften

festgelegt ist. Mit dieser erhält man für die Anzahl möglicher Wellen

.. \A 3Vw2
/ (w )dW= l T dW - (19a)

Beispiel 2.2.3. Anzahl stehender Wellen in einem Kristall

In einem Kristall mit dem Volumen V = 1 cm3 , in dem die Phasengeschwindigkeit vs = 6000 ms-1

beträgt, können sich im Frequenzbereich zwischen 4 • 106 und 4,1 • 106 Hz

3 • IO-6 • 4k 2 (4 - 106 ) 2 . 0,1 ■ 106 • 2tc _ 279

2ti 2 (6 • 103 ) 3 ”

verschiedene Schwingungstypen ausbilden.

f(w) dw =

Debyesche Theorie
Jeder Baustein eines Kristalls kann nach drei Raumrichtungen Schwingungen aus-
führen. In einem festen Körper aus N Kristallbausteinen sind daher 3A Oszillationen
möglich. Bezogen auf ein Kilomol eines festen Körpers treten 3N A Schwingungen
auf.
Zur Ableitung der Wärmeeigenschaften fester Körper wird von Debye angenommen,
daß in einem Kristall alle auf Grund der Randbedingungen möglichen Wellen bis zu

weiner Grenzfrequenz /g = —- auftreten. Nach (19) folgt somit aus der DEBYEschen
Voraussetzung ™

Wgq v r
w *dw = 3N A . (21)

0

FM bedeutet das molare Volumen.
Aus (21) erhält man durch Aus werten des bestimmten Integrals und Auflösen nach
der Grenzfrequenz

(22)

Am absoluten Nullpunkt T = 0 sind nur die Nullpunktschwingungen angeregt.
Nach der Quantentheorie erhält man hier für die Energie eines Oszillators

e0 = e0 (w) = -y = . (23)

Die Innere Energie eines Kristalls am absoluten Nullpunkt ist daher durch
Wg

UQ = f e(w) f(w) dw (24)
o
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gegeben. Werden hierein die Gleichungen (19) und (23) eingesetzt, so folgt bei Be-
rücksichtigung von (22) als Nullpunktenergie des Kristalls

Wg

__ 9jVa ä C w 3 _ 9 __ ,
ü o = —r J ~2~ dw = 's N Wg. (25)

S ö
Die Größe

hfg hwg SUQ

k k 9R (26)

heißt Debyesche bzw. charakteristische Temperatur des Festkörpers (vgl. Tab. 2.2.1).
R bedeutet die Gaskonstante.

Beispiel 2.2.4. Debyesche Temperatur, Grenzfrequenz, Nullpunktenergie des Bleis

Für Blei beträgt die DEBYEsche Temperatur T D = 90 K. Hieraus folgt nach (25) die Nullpunkt-
energie

n
27 = - 90 . 8,314 • 103 J kmol-1 = 842 kJ kmol-1 .0 8

Als Grenzfrequenz erhält man

= 1,38-10- . 90  Hz = . 1()12 Hz
, g  h 6,63- 10- 34

Akustische und optische Schwingungen

Nach der DEBYEschen Theorie kann jeder Kristallbaustein drei voneinander unab-
hängige Schwingungen ausführen. Jedem Kristallbaustein sind drei voneinander
unabhängige Frequenzen zugeordnet. Sie heißen Normalfrequenzen.
Bei zusammengesetzten Gittern enthält die Elementarzelle des Gitters nach 1.1.
mehr als einen Kristallbaustein. Auf diese s Bausteine der Elementarzelle entfallen
nach der DEBYEschen Theorie 3s Schwingungen. Schwingungen, bei denen sämtliche
Teilchen der Elementarzelle sich gleichsinnig nach Bild 2.2.3 a bewegen, heißen
akustische Schwingungen. Von den 3s Schwingungen einer Elementarzelle sind stets
drei akustisch, und zwar zwei transversal und eine longitudinal. Bei den übrigen
3s — 3 Schwingungen bewegen sich die Teilchen der Elementarzelle auch gegen-
einander (vgl. Bild 2.2.3b).
In einem lonenkristall führen die gegeneinander gerichteten Schwingungen infolge
der lonenladungen zu periodisch veränderlichen elektromagnetischen Feldern, d. h.
zu elektromagnetischen bzw. optischen Wellen. Diese Schwingungen der Kristall-
bausteine heißen daher allgemein optische Schwingungen. Auch wenn die Kristall-
bausteine elektrisch neutral sind, wie bei Germanium und Silizium, werden die
gegeneinandergerichteten Schwingungen der Kristallbausteine als optische Schwin-
gungen bezeichnet.
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Zu einem Gitter aus N Elementarzellen mit je s Kristallbausteinen gehören somit 32vs
Normalfrequenzen; davon sind 32V akustische, 32V (5 — 1) optische Schwingungen.
Für K -> 0 geht die Kreisfrequenz co bei akustischen Schwingungen gegen Null,
dagegen bei optischen Schwingungen gegen einen von Null verschiedenen Grenzwert
(vgl. Bild 2.2.4).
Die Phasengeschwindigkeit mechanischer bzw. elastischer Wellen in Kristallen ist
sowohl von der Kreisfrequenz w der Schwingung als auch von der Ausbreitungs-
richtung der Wellen bzw. Phononen abhängig. Es tritt also Dispersion und An-

Bild 2.2.3 a) Gleichsinnige Schwingung zweier Teilchen einer Gitterzelle

Bild 2.2.3b) Gegensinnige Schwingung zweier Teilchen einer Gitterzelle
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Bild 2.2.4. Aus Neutronenstreuung
ermitteltes Phononenspektrum von
Germanium für Wellenausbreitung
in der [1 1 1]-Richtung.
Der unterste transversale akustische
Zweig und der oberste transversale
optische Zweig sind beide zweifach
entartet. Die beiden mittleren Zweige
charakterisieren longitudinale
Schwingungen.
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isotropie auf. Mit der Phasengeschwindigkeit sind auch die Wellenlänge und die
Wellenzahl frequenz- und richtungsabhängig.
Für die experimentelle Bestimmung der Dispersionskurven ist ein Effekt erforder-
lich, der über die Energie und den Impuls der Phononen Auskunft gibt. Das ist am
genauesten bei der Neutronenstreuung der Fall (vgl. 2.2.2).
Bild 2.2.4 zeigt die aus Neutronenstreuung nach [43] punktweise gemessenen Di-
spersionskurven für Germanium. Den zwei Atomen je Elementarzelle entsprechen
zweimal drei Schwingungszweige. Die untere Kurve stellt die beiden entarteten trans-
versalen Zweige der akustischen Phononen dar. In der oberen Kurve sind die beiden
entarteten Zweige der transversalen optischen Schwingungen enthalten. Die mittleren
Kurven charakterisieren longitudinale Schwingungen.

Jr Probleme

2.2.1. Brilloum-Streuung

Ein Laserstrahl der Wellenlänge 2 = 694 nm durchläuft einen Quarzkristall. Durch mechanische
Schwingungen wird der Lichtstrahl gestreut. Dabei findet eine Wechselwirkung zwischen Pho-
tonen und Phononen statt, bei der kein Rückstoß an das Gitter abgegeben wird. Berechnen
Sie die maximale Frequenz der ausgelösten mechanischen Schwingungen und geben Sie die
relative FrequenzVerschiebung des gestreuten Lichtes an. Für die Schallgeschwindigkeit ist
vs = 6000 m s-1 , für die Brechzahl n = 1,54 zu setzen.

Lösung:
Für Licht der Frequenz v, das einen Kristall mit der Brechzahl n durchläuft, haben die Photonen
nach den DE-BfiOGLiEschen Gleichungen den Impuls

p = fiko- (1)

Darin gibt fc0 den Wellenzahlvektor des Lichtes mit dem Betrag

, 2k 2ttp co co
h = — = n ------ =n  — = — (2)Z Cq Cq c

an. c0 bedeutet die Lichtgeschwindigkeit in Vakuum, c die im Medium. Es bezeichne co die Kreis-
frequenz des Lichtes vor, co' nach der Streuung, w gibt die Kreisfrequenz der mechanischen
Schwingungen an. Nach dem Energieerhaltungssatz besteht für die drei Größen die Gleichung

Äco = Äco' + hw. (3)

Der Erhaltungssatz für den Impuls bedingt die Gleichung

hk 0 = hk' + hK 9 (4)

wobei fc0 den Wellenzahlvektor der Photonen vor, k' den nach der Streuung angibt, während K
den Wellenzahl vektor der Phononen bezeichnet (vgl. Bild 2.2.5). Wir gehen davon aus, daß bei
der Streuung des Lichtes in erster Näherung die Frequenzverschiebung vernachlässigt werden
kann und daher

= V (5)
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gilt. Unter dieser Voraussetzung können wir nach Bild 2.2.4 für den Betrag des Wellenzahlvektors
der Phononen schreiben

K — 2kQ sin — ,
2 (6)

Bild 2.2.5. Impulserhaltungssatz bei der BniLLOuiN-Streuung

wobei cp den Winkel zwischen dem einfallenden und dem gestreuten Strahl angibt. Nach (2) kann
man an Stelle von (6)

T_ 2con . cp /r_.K = ------ sm — (7)
c0 2

Schreiben. Zwischen Wellenzahl K und Kreisfrequenz w der Phononen gilt analog (2) die Be-
ziehung

#=— , (8)
«’s

wobei vs die Schallgeschwindigkeit kennzeichnet. Man erhält somit

2v(,con . © 47Wqn . ®w = — - ---- sm — = -----— sm —
c0 2 Z 2Z (9)

Am größten ist die Frequenz der mechanischen Schwingungen für den Grenzfall einer Streuung

von 180°, mit sin — =1 .  Hierfür erhält man mit den vorgegebenen Werten aus (9) als größte
2

Schwingungsfrequenz der mechanischen Wellen

2 • 6 • 103 • 1,54
694 • IO"9

w
2tc

Hz = 2,66- 1010 Hz.

Die Frequenz des einfallenden Laserlichtes beträgt 4,32 • 1014 Hz. Nach (3) ist die Frequenz des
gestreuten Laserlichtes um die Frequenz des ausgelösten Photons kleiner als die Frequenz des
einfallenden Lichtes, im vorliegenden Fall also um 2,66 • 1010 Hz. Diese Verringerung entspricht
einer relativen Frequenzabnahme um

= _ = 2,66 • IQ10 
= 6 2 10 _5

cd cd 4,32 • 1014

2.2.2. Messung der Phononen-Dispersionskurve durch Streuung von Neutronen
an Phononen

Ein Neutronenstrahl falle unter der Richtung oco = 90° ; ß0 = 90°, y0 = 0° auf einen Bleikristall.
Die Energie eines einfallenden Neutrons sei W o = 0,0540 eV. Beobachtet werde ein gestreuter
Strahl unter der Richtung = 0°, ß± = 90°, = 90°, der durch die Reflexion an Netzebenen
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zustande kommt. Zur Ermittlung eines Punktes der Phononen-Dispersionskurven werde der
gestreute Neutronenstrahl unter der Richtung a' = 1,47°, ß' = 88,53°, y' = 90° untersucht, für
den die Neutronenenergie W' = 0,053 5 eV gemessen wird.
Berechnen Sie den Wellenzahlvektor K und die Kreisfrequenz w der Phononen, die die zusätzliche
Streuung hervorrufen. Blei besitzt kfz-Gitter mit der Gitterkonstanten a = 0,494 nm.

Lösung:
Die Streuung von Neutronen stellt einen Prozeß der Beugung DE-BßOGLiEscher Wellen analog
1.2.3. dar, für den der Energie- und der Impulserhaltungssatz erfüllt sind. Der Energieerhaltungs-
satz erfordert wegen (2.2./2)

W Q -W '  = ±hw.  (1)

Das obere Vorzeichen gilt für Phononenemission, das untere für Phononenabsorption. Nach
(2.2/6) besagt der Impulserhaltungssatz

fc0 -fe' = ±K-b ,  (2)

mit der gleichen Vorzeichenregelung wie bei der Energie. Der Vektor b des reziproken Gitters
wird durch die reflektierenden Netzebenen bestimmt. Die kinetische Energie der Neutronen ist
mit dem Impuls gemäß

JT0 = bzw. W = = —— (3)
2mn 2mn A2 2?nn 2winA'2

verknüpft, wobei mn = 1,6750 • 10~27 kg die Neutronenmasse bezeichnet.
Aus (1) läßt sich durch Messung von W o und W' die Energie bzw. die Kreisfrequenz des emittierten
oder absorbierten Phonons berechnen, während (3) die Bestimmung der Wellenlänge der ge-
streuten DE-BßOGLiEschen Welle gestattet. Mit den vorgegebenen Größen erhalten wir aus (1)
durch Auflösen nach w

- W' 0,0540 - 0,0535 . . , nll -w = — - -------- — ---------------------- 1,6 • 10-19 s-1 = 8 • 10n s-1

1,05 • IO"34h

Wegen T70 > W' liegt eine Phononenemission vor. In (2) ist daher ebenso wie in (1) das obere
Vorzeichen zu wählen. Aus (3) folgt durch Auflösen nach A

o Ä 6,63 • 10 -34 aA = =2 = ■— ■ — ■ ■ — m = 0,123 nm = —
y2mn V70 V2 • 1,675 • IO"27 • 0,0540 • 1,6 • IO"19 4

Ebenso folgt für die Wellenlänge der an den Gitterschwingungen gestreuten Strahlung A'
= 0,124 nm, also nur ein geringfügig veränderter Wert.
Die Basisvektoren des reziproken kfz-Gitters sind nach Beispiel 1.1.4 durch die Gleichungen
(1.1. /8) gegeben. Für den Vektor &gi, g2,g3 des reziproken Gitters ergibt sich

01,02,03 — £7i&i + £72 2 + 3 3

2tt
= — ( [“  £7i + 02 + 3] 

e i + [£7i ~ £2 + £7s] e 2 + [£7i + £72 — 3] e a) • Wa
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Übersichtlicher ist die Darstellung als einspaltige Matrix

(
“0i + 02 + 0 3\

01 ~ 02 + 03 I *

01 + 02 - 03/

Werden auch die übrigen Vektoren des Impulserhaltungssatzes als einspaltige Matrizen ge-
schrieben, so erhalten wir

cos a 0 \ /cos oA /K x\ l—gx + 02 + 03\
i 2k i i / i 2k / i

COS ß„ I — — I COS ß' | = ± I K y 1 ----— I 01 — 02 + 03 I • ( 6 )

cosy0 / \ cos / /  \kJ \ 01 + 02 — 03/

Wird kein Phonon erzeugt oder vernichtet, so ist in (2) bzw. (6)K = 0 einzusetzen. Ferner haben
wir im vorliegenden Fall für den einfallenden Strahl cos oc = cos ßQ = 0, cos y0 = 1, für den
reflektierten Strahl cos = 1, cos ßT = cosy1 = 0 zu setzen. Die Wellenlänge bleibt unver-

ändert: 2/ = 2 = Damit folgt aus (6)

1\ /-01 + 02 + 0 8\
i 2k / \

0 1 =  ----— I 01 - 02 + 03 I • (7)

0/ \ 01 + 02 - 03/

Diese Gleichung zwischen Matrizen wird durch

0 i =  -2 ,  02 = 0 ,  03 =+2  (8)

erfüllt. Bild 2.2.6 zeigt den Vorgang der Reflexion an den Netzebenen (2 0 2).

(
0\
\ 8k

0 -------
/ a

1/

Es verbleibt die Bestimmung des Impulses der streuenden Phononen. Mit den Werten (8) er-
halten wir aus der Impulserhaltungsgleichung (6)

(
cos oA / K x

cos ß' I = + j Ky
cos y'J \K Zt

2k
a

2k
T (9)

Das positive Vorzeichen wurde bei der X-Matrix gewählt, da Phononenemission vorliegt.
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Für den herausgegriffenen Strahl ist y' = — und cos y' = 0. Die letzte Zeile der Matrizengleichung
(9) wird daher für

K, = 0
erfüllt.
Setzen wir die Meßwerte für cos und cos ß' zusammen mit in (9) ein, so liefert die erste Zeile,
wenn diese nach K x aufgelöst wird,

Aus der zweiten Zeile ergibt sich

(11)

Bei der Darstellung der Dispersionskurven wird die Wellenzahl K y im allgemeinen auf die Größe

Ko = — ' (12)a

bezogen. Aus (11) folgt daher mit den vorgegebenen Werten

K v = — cos ß' = - — 0,494 ' 10 9 (-0,0256) = 0,10 K o . (13)v a Ä' 1 a 0,124 -IO-9 0

Zur Berechnung von K x schreiben wir nach (10) und (11)

K x — 4Kq = cos g' = 0,9997 = _ 3g 0

Ky cos ß' -0,0256

woraus wegen (13)

K x = 0,10X o
folgt.
Bei der Ausbreitung mechanischer Wellen mit der Kreisfrequenz w = 8 • IO1* s-1 in der Richtung
[1 1 0] tritt eine Komponente mit dem Wellenzahlvektor

(
0,10\ Zl \  /V

0,10 = 0,10 — 1 1 = 1,27 . 109 m-1 1I a \ I I
0 / \o/ \o,

der Wellenlänge

A — — - = ----- = 4,94 nm
K 0,10

und der Phasengeschwindigkeit

w 8 • 10 u

Vs ~ K ~ 1,27 • 109 m s“1 = 630 m s-1

auf.
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2.2.3. Zustandsgröße der Phononen bei tiefen Temperaturen

Stellen Sie die Formel für die Zustandssumme der Phononen auf und leiten Sie daraus die Freie
Energie F, die Entropie S, die Innere Energie U und die molare Wärmekapazität C der Gitter-
schwingungen unter der Voraussetzung tiefer Temperaturen T ab.
Berechnen Sie die molare Wärmekapazität bei Zimmertemperatur T = 300 K für Diamant,
dessen DEBYEsche Temperatur T D = 1 320 K beträgt.

Lösung:
Der feste Körper stellt ein System von Oszillatoren dar. Ihre Energien addieren sich. Zustands-
größen der Elektronen bleiben zunächst unberücksichtigt.
Die Freie Energie geht nach der allgemeinen Formel

F = -kT In Z (1)

durch Logarithmieren aus der Zustandssumme hervor. Daher ergibt sich die Zustandssumme der
Phononen, indem man die Zustandssumme Zj der einzelnen Oszillatoren miteinander multi-
pliziert :

z = (2)
i

In einem Oszillator tritt die Energie e gequantelt auf:

£ = £n = + nhwQ (n = 0, 1, 2, . . .) . (3)
2

Der Fall n = 0 entspricht der Nullpunktenergie

Die Zustandssumme ist allgemein durch die Formel
€ n

z = S e kT
n

gegeben. Für den i-ten Oszillator mit der Eigenfrequenz erhält man daher die Zustands-
summe

hwt / 1\

V£e  kT \  n+ 2) ,  (6)
n

(6) stellt eine unendliche geometrische Reihe mit dem Anfangsglied

exp

und dem Quotienten exp (— hw dar. Für die Summe der Reihe folgt
hWj

e 2kT

1 - e kT

(7)
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Als Zustandssumme der Phononen des gesamten Festkörpers ergibt sich

e 2k T

1 - e kT
(8)

Hieraus erhalten wir die Freie Energie

F = S + kT 2 In (1 - e - *F ) .
i 2 i

(9)

Der erste Ausdruck gibt die Nullpunktenergie an.
Um in (9) den zweiten Summanden berechnen zu können, ist die Summation durch eine Inte-
gration zu ersetzen. Die Verteilung der Schwingungen auf die Spektralbereiche wird durch das
Verteilungsgesetz (2.2./19a) geregelt:

37w2 
zf(w) dw = dw. (10)

2tt2vs
3

Bezogen auf ein Kilomol kann nach (2.2./22) und (2.2/26) geschrieben werden

V _ 6rc 2V A _ WM,
vs

3 wg
3 fc3T D

3 ’ V '

Wir erhalten daher aus (10)

ir x j 97VAw2 dw 9Va ä3 
9 ,f(w) dw = ---- w2 dw. (12)

wg k3 T D 
3

Die Freie Energie der Kristallschwingungen können wir schreiben

(
w« w s r hw_ i \

— f w3 dw + m 3 [ w2 In |_1 - e dw ] .  (13)
2 J J I

oo  /

Im ersten Summanden kann das Integral sofort ausgewertet werden. Es folgt unter Verwendung
von (2.2/26)

9NAA4wg
4

8FT d 
3

9 9— NJiWg = — NJcTj).
o o

9 4 f
Z&Trf J

0

w3 dw =F a = (14)

Diese Größe stimmt mit der Inneren Energie Uo für den absoluten Nullpunkt T = 0 nach (2.2./2Ö)
überein.
Im zweiten Summanden transformieren wir

hw (15)
kT
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und integrieren partiell:

------ I x2 In (1 — e~x ) dx
p J

0

_ h w \
— e kT  ) dw =

(16)
' xe

[x3 In (1 — e-a; )]Js —
o

FT 3

3Ä3

Darin ist die obere Grenze des Integrals durch

hw
Xg ~ kT

(15a)

festgelegt.
Der Verlauf der Funktion

iE3

e* — 1/(») =

ist in Bild 2.2.7 dargestellt.
Die Größe

(17)

Bild 2.2.7. Verlauf der Funk-
#3

tion f(x) = — ----- -
ex — 1

heißt Debye-Funktion. Wie man aus Bild 2.2.7 entnehmen kann, ist f(x) für x > 1 nur sehr klein
und fällt mit wachsendem x gegen Null. Für x -> oo geht die Exponentialfunktion stärker gegen
Unendlich als jede Potenz. Daher hat das Integral in (17) einen Grenzwert.
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Er kann gemäß

oo

f oo
S (— dx

J m=0
0 (18)

OO 1 OO 1

= I>) S (-1)™* 1 — = (1 - 21- ”) I>) S —m- l  m-l m

berechnet werden. Darin bedeutet F(«.) die Gamma-Funktion mit

r(n) = (n — 1)! (19)

für ganzzahlige Werte n. Ferner ist

«») = s A <2 °)
m = l

die Riemannsche J-Funktion.
Im vorliegenden Fall mit n = 4 erhalten wir

r(4) = 3! = 6 ,  fW = — •

Somit folgt

= = ( 2i)
e — 1 90 15

o
Da für große Werte xg der Betrag des Integrals von xg bis oo wegen der kleinen Werte von f(x)
nur gering ist, kann man in erster Näherung in der oberen Grenze xg durch oo ersetzen. Dabei
verschwindet der Summand

Qc3 In (1 — e“ )] .

Der entstehende Fehler

xg
3 In (1 — e~x ) = —xg

3 le~z s ----------f- •••)

kann für hinreichend große Werte xg ebenfalls vernachlässigt werden.
Setzt man (21) in (16) ein, so erhält man für den zweiten Summanden in (13)

w s / Äw \
— QNjJcTh3 f I ~ Ty ) 7T4 T 3

F-, = ------- - ------ / w2 In \ 1  — e lcl / dw = ------- N JcT ------ . (22)1 k3Trf J X 1 5 k Td 
3 V 7

o
Die Freie Energie des Festkörpers ist somit, abgesehen vom Beitrag der Elektronen, für niedrige
Temperaturen T durch

9 7T4 T 3
F=~ NJcTv - — RT (23)

8 A D 5 T d 
3
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gegeben. In (23) wird N k k = R benutzt, wobei R die Gaskonstante bedeutet.
Aus (23) ergibt sich die Entropie

\ 3T )v  5 T d 3
S = (24)

während für die Innere Energie

Q 3
U = F + TS = — RT d H ------— r RT*

8 5T D 
3 (25)

folgt. Hieraus erhält man die molare Wärmekapazität der Phononen bei tiefen Temperaturen
T T»

dU 12k 4 
d T 3

dT 5 T d 
3 (26)

Für tiefe Temperaturen ist die molare Wärmekapazität proportional der dritten Potenz der
absoluten Temperatur.
Mit den vorgegebenen Werten folgt für die molare Wärmekapazität des Diamanten bei 300 K

C _ i \ k ca j kmo i-i = 5 45 kcal kmol-1

5 \ 1 320 /

= 22,8 kJ kmol-1 .

2.2.4. Zustandsgrößen der Phononen bei hohen Temperaturen

Argon hat die DEBYE-Temperatur = 80 K. Berechnen Sie seine Innere Energie und seine
molare Wärmekapazität bei Zimmertemperatur T = 300 K.

Lösung:
Wir rechnen genähert unter der Voraussetzung

(1)

und gehen dazu von der Formel (2.2.3/13) für die Freie Energie der Phononen aus:

F = j C u? dw kTh* f w2 In 1 1 — e dw
FT d 

3 \ 2  J J l j

\ o o
(2)

Der erste Summand liefert die Nullpunktenergie gemäß (2.2.3./14) bzw. (2.2./2Ö). Im zweiten
Summanden erhält man durch die Transformation

= hwg= T»
g kT T

x = ---- bzw.
kT (3)

7 Schilling, Festkörperphysik
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und durch partielle Integration analog (2.2.3./16)
Wg r hw i9Nk kT „ C I— - — Ä3 / w2 In 1 — e kt  I dw

D 3 J L J

0

= N k kT 3 In (1 -e '  )

Die Debye-Funktion nach (2.2.3./17)
Td

(4)

(5)

kann für kleine Werte x durch Reihenentwicklung

e* - 1 . , x x2 , \ 2 12
1 -4- -----1 ------ 4- • • •

2 6
Tberechnet werden. Integration für kleine Werte der oberen Grenze —— liefert

\T ]  8 T 20 T 2

Für die Freie Energie der Phononen folgt somit bei hohen Temperaturen

(6)

T d + 3T In (1 - eF = R (7)

Hieraus ergibt sich für die Entropie

Darin bedeutet D' die Ableitung der DsBYE-Funktion nach dem Argument xg . Hierfür erhält man
auf Grund der Definition

vlvCg vVg C ± C o A
0

T» \ tP  T.
e r — 1

(9)
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Mit dieser Bedeutung für D' folgt aus (8)

(10)

(11)

S = R — 31n \ l— e

Damit ergibt sich für die Innere Energie bei hohen Temperaturen

Ü = R T— T D + 3TD = 32? (t + — zjz . . .
[ 8 D \ T / J  \ 20 T ,

Die molare Wärmekapazität bei hohen Temperaturen ist

i y D 
2

20 T 2
dü
dT

c = = 3R (12)

Durch das Hauptglied 3R wird das für hohe Temperaturen gültige Dulong-Petitsehe Gesetz
zum Ausdruck gebracht.

Bild 2.2.8 zeigt die molare Wärmekapazität der Phononen in Abhängigkeit von der Temperatur.
Mit den vorgegebenen Werten erhält man aus (11) für die gespeicherte Wärmeenergie

U = 3 • 1,986 ■ 300 (1  4- — • — -------(-•••) kcal kmol’ 1

\ 20 3002 /

= 1,749 • 103 kcal kmol“ 1 = 7510 kJ kmol' 1 ,

während aus (12) für die molare Wärmekapazität

C = 3 -  1,986 (1  - — + - . .A  kcal kmol“ 1 K- 1

\ 20 3002 /

= 5,95 kcal kmol“ 1 K“1 = 24,86 kJ kmol- 1 K“ 1

folgt.

2.2.5. Mittlere freie Weglänge der Phononen und Wärmeleitfähigkeit

Die Wärmeleitung in einem Festkörper erfolgt im wesentlichen als Diffusionsprozeß durch
Stöße der Phononen. Diese können wie Gasteilchen behandelt werden. Ihre mittlere freie Weg-

7*
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länge 2 wird durch die Streuung an anderen Phononen und an Kristallfehlstellen verursacht
(vgl. 3.1.).
Leiten Sie nach diesem Modell eine Formel für die Wärmeleitfähigkeit des Festkörpers ab. Be-
stimmen Sie die mittlere freie Weglänge der Phononen und die Zeit t zwischen zwei Stößen bei
0°C. Dabei ist die Phasengeschwindigkeit gemäß (2.2./20) für die Ausbreitung einer mechani-
schen Welle in der [1 0 O]-Richtung mit v3 = 3,2 km s-1 zugrunde zu legen. Die spezifische
Wärmekapazität des Kupfers beträgt c = 0,092 kcal kg-1 K -1 = 0,3.85 kJ kg-1 K -1 , die Wärme-
leitfähigkeit n' = 0,092 kcal m-1 K -1 s-1 = 385 Wnr 1 K -1 , die Dichte d = 8,9 g cm-3 .

Lösung :
Wir betrachten einen langen Stab mit Temperaturgefälle in der [1 0 0]-Richtung, d.  h.  in Rich-
tung der x-Achse. In einer Sekunde wird durch die Flächeneinheit die Wärmemenge

<2 = (1)ax
transportiert.
Bezeichnet N die Anzahl der Kristallbausteine je Raumeinheit, so bewegen sich zu jedem Zeit-

Npunkt im Mittel — Teilchen mit einer Komponente in Richtung der positiven x-Achse. Sie be-
2

sitzen dabei im Mittel die Geschwindigkeitskomponente v x in Richtung der aj-Achse. Der von
Nihnen erzeugte Teilchenstrom in Richtung der x-Achse ist — v x . Er wird durch einen gleich
2

großen Strom in der entgegengesetzten Richtung ausgeglichen.
Bei der Bewegung eines Phonons aus einem Gebiet mit der Temperatur T -}- ATin ein Gebiet mit
der Temperatur T gibt dieses an die Umgebung die Wärmeenergie

rt
AÖ = — AT (2)

ab. C bedeutet die molare Wärmekapazität, die AvoGADROsche Konstante. Die Temperatur-
differenz AT zwischen dem Anfangs- und dem Endpunkt einer freien Weglänge beträgt

dT
AT = - — (3)

ax

Durch die mit Komponenten in der positiven x- Achse bewegten Teilchen wird im Endeffekt in
Richtung des Temperaturgefälles die gleiche Wärmemenge übertragen wie durch die Teilchen
mit Komponenten in Richtung der negativen x- Achse. Insgesamt ergibt sich der Energiefluß

rt dT  dT
Q = Nv x AQ = - Nv x 2r — — = -v xW — , (4)

N ax ax

wobei c' die Wärmekapazität je Kubikmeter bedeutet.
Wir berücksichtigen, daß bei Gleichwertigkeit aller Geschwindigkeitsrichtungen die Beziehung

■y 2 + v 2 + v 2 = vs
2 , d.  h. v x 2 = (5)

gilt. Ferner können wir

= 2 (6)
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setzen. Damit folgt

1 dT . (7).
3 dx

Aus dem Vergleich dieser Formel mit (1) erhält man

x' = - t v sAc'. (8)
o

Die Wärmekapazität c' je Kubikmeter hängt mit der Wärmekapazität c je Kilogramm gemäß

c' = dc (9)

zusammen. Wir lösen (8) nach A auf und setzen die vorgegebenen Größen ein. Damit folgt für die
mittlere freie Weglänge der Phononen

- 3 ”' 3-0,092A = ------ = ------------------------------- m = 105 nm.
vscd 3,2 - 103 • 0,092 • 8,9 • 103

Für die Zeit zwischen zwei Stößen ergibt sich

2.2.6. Wärmeausdehnung

Leiten Sie aus den Schwingungen des Kristallgitters den Wärmeausdehnungskoeffizienten eines
festen Körpers ab und berechnen Sie diesen für Steinsalz NaCl. Der Exponent n des Abstoßungs-
potentials hat für NaCl den Wert 8,9.

Lösung:
Die Wärmeausdehnung läßt sich durch die anharmonischen Terme der Gitterenergie TJ = U(r)
erklären. Nach (2.1.2./1) und (2.1.2./4) erhalten wir für die Gitterenergie eines lonenkristalles am
absoluten Nullpunkt, bezogen auf einen Schwingungsfreiheitsgrad eines der 2jVa Ionen,

e = J_ U _ _ (xZ2e2

3 2tVa 24- e0 \ r nrn /

Wir entwickeln e = e(r) in eine Reihe nach Potenzen der Auslenkung

x = r - r Q . (2)

Nach Definition (2.1. /5 a) des Gleichgewichtsabstandes verschwindet für r = r0 die erste Ab-
leitung der Gitterenergie. Es ergibt sich somit die Reihe

die wir abgekürzt

£ (r) = e (r0) + e(x) (3 a)
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mit
e(x) = ax2 + bx3 4- • • • (3b)

schreiben. Aus (1) erhalten wir

2
aZ 2e2

= , Q 3 (» 1),  (4)48ra oro
3

6 Wr.

2
= ------ (n 2 + 3n _ 4 ) .  (5)

144wo 4

Der Kristall stellt ein System von Oszillatoren dar. Ihre Auslenkungen x sind statistisch verteilt.
Für die mittlere Auslenkung x folgt nach der BoLTZMANN-Statistik

+ oo

J xe kT  dx
— oo __________
4-oo
f e(s)

Je  kT  dx
— oo

(6)

Wir können mit kleinen Auslenkungen x rechnen, so daß die Beiträge der Glieder von der dritten
Ordnung an klein gegen kT sind:

bx3 < kT.  (7)

Unter dieser Voraussetzung läßt sich die Berechnung der Integrale genähert durch Reihenent-
wicklung vornehmen :

In (8) liefert der Summand mit dem Faktor x keinen Beitrag, da sich die Integrale von — oo bis 0
und von 0 bis + oo gegenseitig aufheben. Die Gammafunktion hat den Wert

r (t) - t  15 ■ <■«'
Setzt man (8) und (9) zusammen mit (10) in (6) ein, so ergibt sich

X = - kT. (11)
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Unter Verwendung der Beziehungen (4) und (5) folgt für die relative Längenausdehnung

£ = 127ry Q(n2 + 3n - 4)
r0 aZ 2e2 (n — l )  2

Man erhält somit den linearen Ausdehnungskoeffizienten

, 1 dl d x 12KÄ;£0r0 (?i2 4- — 4)
<X — ---  = - --  - -  — ------------------- . ( 1 o )

l dT dT r0 <xZ2e2 (n - l )  2

(12) und (13) gelten unter der Voraussetzung, daß die Freiheitsgrade der Oszillation vollständig
eingeschwungen sind und daher die BoLTZMANN-Statistik angewandt werden kann. Diese Voraus-
setzung ist für Kristalle bei Zimmertemperatur im allgemeinen erfüllt, nicht jedoch in der Nähe
des absoluten Nullpunktes. (13) gibt daher den linearen Ausdehnungskoeffizienten nur bei hin-
reichend hohen Temperaturen richtig wieder.
Mit den vorgegebenen Werten nach Tab. 2.1.2 und Tab. 2.1.3 folgt

, 12 • 3,14 • 1,38 • 10 -23 • 8,85 • 10-12 • 2,82 • 10-10 (8,9 2 -j- 3 • 8,9 — 4) Tr . A „ .a = ------ ------ -------------- --------------— ---------— ----•------- -------- K 1 = 4,7 • 10-5 K -1 .
1,75 • (1,60 • IO"19 ) 2 7,92

Der genaue Meßwert ist oC = 4,0 • 10-5 K -1 .

2.2.7. Grüneisen-Beziehung

Untersuchen Sie die Abhängigkeit der DEBYE-Temperatur vom äußeren Druck für Silber. Silber
hat die Dichte d = 10,5 g cm-3 , die relative Atommasse Ä T = 107,87, die spezifische Wärme-
kapazität c = 0,0559 kcal kg -1 K -1 = 0,234 kJ kg-1 K -1 , den Längenausdehriungskoeffizienten
oc' = 1,9 • 10-5  K- 1 (vgl. Tab. 2.2.2).

Lösung:
Wir berechnen den Druck P gemäß

Setzen wir F nach (2.2.4./7) ein und berücksichtigen die Abhängigkeit der Debye -Temperatur
vom Molvolumen 7, so folgt

p = __9. p _ %RT n Z d\  dTp z 9 x
8 dV Td \ T / dF  ’ "

Dabei findet die Beziehung (2.2.4./9) Anwendung.
Der isobare Ausdehnungskoeffizient eines Stoffes ist durch

der isochore Druckkoeffizient ß durch
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die isotherme Kompressibilität n durch

(5)

definiert. Diese drei Größen sind durch die thermodynamische Identität

m = _ t
\ öP / r  \8T/ P \dPj v

(6)

miteinander verbunden, die aus der allgemeinen Verknüpfung

/(P, V, T) = 0

zwischen Druck, Volumen und Temperatur folgt. An Stelle von (6) können wir auch schreiben

\dT/ v ~ \dT/ P ~ x ’

Andererseits folgt aus (2) durch Differentiation

/ÖP\ = _ 3P df D /T \ _ /Tp\ Tpl
\8Tj v Td dP  |_ \t) \ 7 /  ? J

Aus dem Vergleich dieses Ausdrucks mit (2.2.4./12) erhält man

m = _ o j_d£o (\ST/ V T» dP

(7)

(8)

0)

wobei C die molare Wärmekapazität angibt. Hieraus folgt durch Vergleich mit (7) die Grüneisen-
Beziehung

— In Tp = — = -----—
dP 

u Td dP  xC
(10)

Der Ausdruck

V dP D _ Va'
3T D dF  ” Ch (10a)

wobei für V und C im allgemeinen die auf ein Kilomol bezogenen Größen eingesetzt werden, ist
der Grüneisen-Parameter (vgl. Tab. 2.2.4). Stellt man die DEBYE-Temperatur in Abhängig-
keit vom Druck P dar, so ergibt sich aus (10) unter Verwendung von (5) die GßÜNEiSEN-Beziehung
in der Form

— In T D = —
dP D Tp

dPp = v

dP C (H)
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Das Molvolumen des Silbers errechnet sich aus seiner molaren Masse und aus seiner Dichte :

V - — = — — m3 kmol-1 = 10,27 • 10-3 m3 kmol-1 .
d. 10,5 • 10 3

Der Raumausdehnungskoeffizient <x ist dreimal so groß wie der lineare a .  Die atomare Wärme-
kapazität folgt durch Multiplikation der spezifischen Wärmekapazität c mit der molaren Masse.
Ferner ist die Umrechnung von kcal in J zu beachten. Somit ergibt sich aus (11)

J_ dTo = 10,27 . 10 -3 .3 -  1,9- IO-3 . = . 10-11 N-1 m3

P D dP — ""107,88 • 0,234 • 103

bzw.
dTo = 2,33 • 10 11 

239  K at-1 = 0 10 _3 K at-1
dP 1,02 • IO"5

= 5,54- IO"4 K bar- 1 .

Ein äußerer Druck von 1 bar erhöht somit die DEBYE-Temperatur T D um 0,554 • IO-3 K.

Aufgaben

A 2.2.1. Wie groß ist die Energie der Phononen im Frequenzbereich zwischen 4,0 MHz
und 4,1 MHz für einen Quarzkristall mit dem Volumen 1 cm3 (vs = 6000 m s-1 ) bei
300 K?

A 2.2.2. Auf Eis fällt Licht der Wellenlänge A = 455 nm. Unter dem Winkel 65° gegen den
einfallenden Strahl wird als Folge der BRiLLOuiN-Streuung Licht beobachtet. Be-
rechnen Sie die Frequenz der hierdurch ausgelösten mechanischen Schwingung.
Wie groß ist die relative Frequenzverschiebung der gestreuten Strahlung
(vs = 3230 m s" 1 , n = 1,31)?

A 2.2.3. Berechnen Sie zur vorangegangenen Aufgabe den Pseudoimpuls des erzeugten
Phonons.

A 2.2.4. Die Messung des Streuspektrums bei der Streuung von Licht an Wasser ergibt
für die Wellenlänge A = 632,8 nm zwei Nebenmaxima. Gegen das vom ungestreuten
Licht verursachte Hauptmaximum beträgt die Wellenzahlverschiebung in den
Nebenmaxima

Av
Ar = ---- = =F 14,4 m-1

c

(oberes Vorzeichen für Phononen Vernichtung, unteres für Phononenerzeugung).
Geben Sie die’ Frequenz der Phononen für die Streumaxima an. Welcher Wert
ergibt sich für die Schallgeschwindigkeit, wenn die Streukurve für einen Ablenk-
winkel von 90° aufgenommen wurde? Die Brechzahl beträgt n = 1,33.

A 2.2.5. Berechnen Sie aus den Schwingungen des Kristallgitters den thermischen Längen-
ausdehnungskoeffizienten der Zinkblende (Exponent n = 5,0, vgl. ferner Tab. 1.1.1
und Aufgabe A 1.1.16).

A 2.2.6. Bestimmen Sie für einen lonenkristall die Unsicherheit bei der Bestimmung des
im Abstoßungspotential auftretenden Exponenten n aus dem Längenausdehnungs-
koeffizienten <x'.
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A 2.2.7. Berechnen Sie die Zahl möglicher Longitudinalwellen des Frequenzbereiches
440...  445 Hz in einem Raum mit dem Volumen V = 10000 m3 (c = 340 m s-1 ).

A 2.2.8. Bestimmen Sie für einen würfelförmigen Hohlraum mit der Kantenlänge 3 • IO-15 m
(Elementarlänge) bei einer Schwingung der Frequenz 3 • 1022 Hz (oberste Grenze
zulässiger Frequenz) die Ausdehnung des Frequenzintervalls mit genau einer
möglichen Schwingung (Phasengeschwindigkeit gleich Lichtgeschwindigkeit).

A 2.2.9. Wie groß ist die Nullpunktenergie des Kupfers = 315 K)?
A 2.2.10. Welche Grenzfrequenz hat KBr (TD = 180 K)?
Ä 2.2.11. Welche molare Wärmekapazität hat KBr für T = 900 K?
A 2.2.12. Wie groß sind die molare Wärmekapazität und die spezifische Wärmekapazität

für Aluminium bei T = 50 K = 400 K)? Die relative Atommasse des Alu-
-J miniums beträgt Ä T = 26,98.

A 2.2.13. Berechnen Sie die Energie eines Schallquants der Frequenz 10 kHz.
A 2.2.14. Berechnen Sie die molare Wärmekapazität des Kupfers (T D — 315 K) für den

Siedepunkt des Heliums (T = 4,2 K).
A 2.2.15. Untersuchen Sie die Abweichung der molaren Wärmekapazität des Bleis = 90 K)

vom DuLONG-PETirschen Gesetz für den Schmelzpunkt 327 °C.
A 2.2.16. Untersuchen Sie die Abhängigkeit der DEBYE-Temperatur vom Molvolumen für

Wolfram (spezifische Wärmekapazität c = 0,033 8 kcal kg-1 K -1 , relative Atom-
masse A r = 183,9, Längenausdehnungskoeffizient a' = 0,45 • IO-5 , Elastizitäts-
koeffizient Cn = 5,23 • 1011 N m- 2, O12 = 2,045 • 1011 N m~2 , T D = 315 K).

A 2.2.17. Leiten Sie für hohe Temperaturen T > T D eine Formel für die Differenz C p — Cv
der molaren Wärmekapazität bei konstantem Druck und bei konstanter Temperatur
ab.

A 2.2.18. Berechnen Sie aus den Daten in Tab. 2,2.2 und 2.2.3 für Aluminium die mittlere
freie Weglänge der Phononen bei Zimmertemperatur = 0,057 kcal m-1 K -1 s-1 ,
vs = 5,1 . 103 m s-1 ).

A 2.2.19. Berechnen Sie den GnÜNEiSEN-Parametery für Aluminium aus den nach Tab. 2.2.2
und Tab. 2.2.3. gegebenen Materialgrößen ( = 9,64 • 10“12 m2 N-1 ).

A 2.2.20. Geben Sie für Kupfer die Änderung seiner DEBYE-Temperatur an, wenn ein äußerer
Druck von 981 bar = 1000 at auf das Material wirkt (TD = 315 K, a' = 16,7 x
X 10- 6 K“ 1 , c = 0,092 kcal kg" 1 K -1 = 0,385 kJ kg" 1 K“ 1 , d = 8,9 g cm" 3 ).



3. Elektrische und optische Eigenschaften
idealer und realer Kristalle

3.1. Atomare Fehlstellen in realen Kristallen

E Einführung

Fehlstellen in realen Kristallen
In den realen Kristallen treten stets Abweichungen von der idealen periodischen
Gitterstruktur auf. Eigenschaften des Festkörpers, die auf Kristallfehler zurück-
zuführen sind, heißen strukturunempfindlich. Sie werden quantitativ durch Zahl,
Anordnung und Art der Gitterfehlstellen bestimmt. Strukturempfindlich sind z. B.
die Ionen- und die Elektronenleitung in Isolatoren, Diffusion, Plastizität, Kristall-
festigkeit.
Dagegen heißen Eigenschaften, die. nur durch Gitterstruktur, nicht jedoch durch
die Gitterfehlstellen zu erklären sind, strukturempfindlich. Zu diesen gehören u. a.
die spezifische Wärmekapazität, die Elastizität und Kompressibilität, die Wärme-
ausdehnung, die elektrische Leitung in Leitern durch Elektronen, Dia- und Para-
magnetismus, Dispersion. Die Unterscheidung der Festkörpereigenschaften in
strukturunempfindliche und strukturempfindliche geht auf Smekal zurück.
Lassen sich die Fehlstellen in einzelnen Punkten lokalisieren, so werden sie als ato-
mare Fehlstellen, Punktfehler bzw. Fehlstellen nullter Ordnung bezeichnet. Fehlord-
nungen, die über ganze Linien erstreckt auftreten, heißen lineare Fehlstellen bzw.
Fehlstellen erster Ordnung; flächenhaft vorhandene Fehlstellen sind Fehlstellen
zweiter, räumlich auftretende Kristallfehler Fehlstellen dritter Ordnung.
Atomare Fehlstellen können in Form von Fremdatomen, unbesetzten Plätzen oder
Zwischengitteranordnungen auftreten. Im folgenden werden zunächst reine Kristalle
vorausgesetzt, so daß Fehlstellen als Folge von Verunreinigungen von der Betrach-
tung ausgeschlossen werden können.

Atomare Fehlstellen
Für die elektrischen und optischen Eigenschaften realer Kristalle sowie für die
Diffusion sind besonders atomare Fehlstellen von Interesse. Auf diese werden die vor-
liegenden Betrachtungen beschränkt.
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Durch eine leere Gitterstelle und einen dafür auf der Kristalloberfläche angeordneten
Kristallbaustein (vgl. Bild 3.1.1) wird das Kristallvolumen vergrößert und gleichzeitig
die Kristalldichte gegenüber dem idealen Kristall verringert. Sie wird als Schottky-
Defekt bzw. ScsoTTKYsche Fehlordnung bezeichnet.
Zwischen den Gitterpunkten des Kristalls befinden sich in regelmäßiger Verteilung
Stellen, die als Fehlordnung ebenfalls besetzt werden können. Sie werden als Zwi-
schengitterplätze bezeichnet. Entsteht die atomare Fehlstelle durch das Auswandern

Bild 3.1.1. ScHOTTKY-Defekt

O O o O o O
o O O ° O
O o O ° O o
O O (2) O Bild 3.1.2. FRENKEL-Defekt

des Kristallbausteins auf einen Zwischengitterplatz, so heißt sie FRENKELsche
Fehlordnung oder Frenkel-Defekt (vgl. Bild 3.1.2). Durch FnENKEL-Defekte bleiben
das Volumen und damit die Dichte des Kristalls unverändert. Die Zwischengitter-
bausteine benötigen zwar im allgemeinen Platz; dafür wird jedoch das Gitter um
einen kleinen Wert elastisch verformt, so daß die gesamte Volumenänderung ver-
nachlässigt werden kann. '
Im realen Kristall treten beide Arten von Fehlstellen nebeneinander auf. Bei den
meisten Kristallen über wiegen ScHOTTKY-Defekte. Ein stärkeres Auftreten von
FRENKEL-Defekten zeigen die Silberhalogenide AgCl und AgBr.
Die Fehlstellen eines Festkörpers haben infolge der Wärmebewegung die Tendenz
zur gleichmäßigen Verteilung über den gesamten Festkörper. Diese Eigenschaft gilt
sowohl für die Fehlstellen als auch für Fremdstoffe. Sie tritt meßbar als Diffu-
sion in Erscheinung.
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Der durch Diffusion ausgelöste Teilchenstrom J N ist dem Konzentrationsgefälle
proportional. Er wird durch das I. Ficksche Gesetz

J N = -DgwäN (1)
bestimmt. N = N(x, y, z) bezeichnet die Konzentration der Teilchen, d. h. ihre An-
zahl, bezogen auf einen Kubikmeter. Die Größe D heißt der Diffusionskoeffizient
(vgl. [3] 3.4.5.).
Der Diffusionskoeffizient D wächst mit zunehmender Temperatur nach einem Ex-
ponentialgesetz :

£A

D=D Q e~ kT  . (2)
e A kennzeichnet die Aktivierungsenergie des Diffusionsprozesses. Sie geht auf die
Anziehungs- und Abstoßungskräfte durch benachbarte Teilchen zurück. Beim Ver-
lassen eines Gitterplatzes muß der Kristallbaustein gegen diese Kräfte eine Energie-
schwelle überwinden. Das Wandern durch den Kristall ist ebenfalls mit einem
Energieaustausch verbunden. Daher können nur Teilchen, die eine ausreichende
Energie

e >
besitzen, diffundieren.
Nach dem GiBBSschen Verteilungsgesetz (vgl. [3] 2.1.) ist der Anteil dieser Teilchen

Die Kristallbausteine führen im Gitter Schwingungen aus. Bei jeder Auslenkung
besteht entsprechend den statistischen Gesetzmäßigkeiten eine bestimmte Wahr-
scheinlichkeit, daß das betrachtete Teilchen den Potentialwall überwindet und den
Gitterplatz verläßt. Das läßt sich auch so auffassen, daß jedes Teilchen v-mal in einer
Sekunde gegen den Potentialwall stößt. Bei jedem Stoß ist die Wahrscheinlichkeit,
daß die Po tentialsch welle überwunden wird, durch (3) gegeben. Für die mittlere
Anzahl der Platzwechsel eines Teilchens in einer Sekunde folgt daraus

£A

o ■— ve kr . (4)
v wird als Sprungfrequenz bezeichnet. Da nicht jede Auslenkung bis an die Potential-
schwelle führt, ist die Sprungfrequenz v kleiner als die Schwingungsfrequenz der
Kristallbausteine .

p Probleme

3.1.1. Schottky- Defekt

Berechnen Sie den Anteil ScuoTTKYscher Fehlstellen im Gleichgewicht bei T = 500 K für den
Kupferkristall und für den Steinsalzkristall. Die Aktivierungsenergie zur Bildung einer Gitter-
lücke im Kupferkristall beträgt es = 0,90 eV. Bei einem lonenkristall treten wegen der elektri-
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sehen Neutralität im allgemeinen Fehlstellen paarweise auf. Für Steinsalz NaCl ist zur Erzeugung
eines Fehlstellenpaares die Energie e = 2,06 eV aufzubringen.

Lösung:

Wir bestimmen zunächst für einen monoatomaren Kristall das statistische Gewicht W einer
ScHOTTKYschen Fehlstellenverteilung. Die Anzahl der Möglichkeiten, von N Bausteinen des
Kristalls nacheinander n zu entnehmen, beträgt

N(N - l ) . . . (A-n  + 1).

Dabei hat man jedoch zu berücksichtigen, daß die Bausteine nicht voneinander unterschieden
werden können, d. h., es ist ohne Bedeutung, in welcher Reihenfolge die einzelnen Bausteine
entnommen werden. Hierdurch verringert sich die Zahl der möglichen Anordnungen von Fehl-
stellen im Kristall. Man kann die n Entnahmevorgänge

1, 2, . . . ,  n

nach n ! Möglichkeiten untereinander vertauschen, ohne daß ein neuer Zustand entsteht. Die An-
zahl der Möglichkeiten, n Fehlstellen in einem Kristall mit N gleichen Teilchen anzuordnen, ist
somit gleich '

w = N(N - l ) . . .  ( g -n  + 1) = -V! .
n! (N — n)l n \

Für die Entropiezunahme infolge der Schaffung von Fehlstellen folgt daraus

NIS = k In W = k In ------— -----  . (2)
(N — n)l n !

Dabei wird n N vorausgesetzt und daher die Entropie der n zur Kristalloberfläche gebrachten
Bausteine vernachlässigt. Wir können

A>1 ,  n> l

annehmen und die STiRLiNGsche Näherung

In z\ = z In z — z (3)

anwenden. Damit ergibt sich aus (2)

S = k\N\nN - (A-n ) ln (A-n )  -n lnn ] .  (4)

Es sei e die aufzuwendende Energie, um einen Gitterbaustein von seinem Platz im Kristallverband
zu entfernen und zur Kristalloberfläche zu bringen. Die Energie, um n Teilchen aus dem Kristall
zu entfernen, beträgt

U = ne. (5)

Sie ist im Kristall als Beitrag der Fehlstellen zur Inneren Energie gespeichert, e bzw. U werden
als Aktivierungsenergie bezeichnet.
Für die Freie Energie der Fehlstellen erhält man aus (4) und (5)

F = U - TS = ne — kT[N\n.N - (N — n ) ln (N  — n) -n lnn ] .  (6)
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Der Kristall stellt ein thermodynamisches System mit konstantem Volumen dar. Auch die
Temperatur kann als konstant angesehen werden. Ein thermodynamisches System mit konstan-
tem Volumen und konstanter Temperatur verändert sich so lange, bis die Freie Energie ein Mini-
mum angenommen hat. Der Gleichgewichtszustand ist durch

bestimmt. Wir setzen hierin den Ausdruck nach (6) ein und erhalten

s — Ä?T[ln (W — n) — In n] = 0 (8)
bzw.

s = kT In —------ . (9)
n

Berücksichtigt man hierin n N, so kann N — n durch N ersetzt werden. Durch Auflösen nach n
folgt damit für die Zahl der ScHOTTKY-Defekte eines Kristalls

£

n = (10)

Die Fehlstellen im Gitter eines reinen Metalls sind voneinander unabhängig. Wir setzen für die
Fehlstellen des monoatomaren Kristalls

e = es .

Damit erhalten wir für den Anteil der Fehlstellen

Cs-

— = e kT  .
N (H)

Wir betrachten den lonenkristall. Es bezeichne n die Anzahl der Fehlstellenpaare, N die Anzahl
der lonenpaare, ep die Energie zur Schaffung eines ScnoTTKYschen Fehlstellenpaares. Das
statistische Gewicht einer Verteilung von 2n Fehlstellen auf den Kristall ist gleich

Nl
(N — n ) \n \

(12)

Dementsprechend folgt an Stelle von (2)

5 = 2k In (13)(N — n)! n\ 9

während (5) unverändert bleibt. Für den Anteil der Fehlstellen erhält man an Stelle von Gleichung
(11)

ep
2L = e 2&T
N

(14)



112 3. Elektrische und optische Eigenschaften idealer und realer Kristalle

Mit den vorgegebenen Werten folgt für die relative Anzahl der ScHOTTKYschen Defekte im
Kupferkristall nach (11)

0,90 -1,60.  10- =e _20 8g=10 _10

1,38 • IO-23 • 500 /

Der Anteil ScsoTTKYscher Fehlstellen im Steinsalzgitter ist nach (14) gleich

2,06 • 1,60 • IO"19 \
2 • 1,38 • IO“23 • 500 /

n
~N

e-23,88 =o,42 • 10~10 .

3.1.2. Frenkel-Defekt

Berechnen Sie den Anteil der FRENKEL-Defekte für die Silberionen des Silberchlorids bei Zimmer-
temperatur T = 300 K. Die Energie zur Bildung einer FRENKELschen Fehlstelle beträgt für die
Silberatome in AgCl eF = 1,1 eV.

Lösung:

Das Kristallgitter der Silberionen enthalte N Gitterpunkte als normale Plätze. Außerdem seien
N' Zwischengitterplätze vorhanden. Die Anzahl N' der Zwischengitterplätze hängt von der
Kristallstruktur ab. AgCl hat Steinsalzstruktur (vgl. 1.1.1. und Bild 1.1.5). Die Gesamtheit der
positiven und negativen Ionen bilden ein einfaches kubisches Gitter, in dem sich Kationen und

® Kation
0 Zwischengitterplatz
• Anion

Bild 3.1.3. Anordnung der Zwischen-
gitterplätze im Silberchlorid-Kristall

Anionen abwechseln. Zerlegt man den Elementarwürfel mit der Kantenlänge a (a Gitterkonstante)
in acht kleine Würfel, deren Ecken durch die Ionen bestimmt sind (vgl. Bild 3.1.3), so befinden
sich die Zwischengitterplätze in der Mitte der kleinen Würfel. Auf jeden Elementarwürfel mit der
Kantenlänge a entfallen somit acht Zwischengitterplätze, während nach 1.1.1. für jede lonenart
je Elementarwürfel nur vier Gitterplätze vorhanden sind.
Die großen Anionen (vgl. Tab. 3.1.5) nehmen an der Auswanderung auf Zwischengitterplätze
nicht teil. Jeder der acht Zwischengitterplätze eines Elementarwürfels kann daher von den
kleineren Kationen eingenommen werden. Bezeichnet somit N die Anzahl der Gitterplätze, so
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ist die Anzahl der Zwischengitterplätze

N' = 2N, (1)

Die statistischen Gewichte für die Verteilung von n Fehlstellen auf N Gitterpunkte und von n fehl-
geordneten Bausteinen auf N' Zwischengitterplätze sind durch (3.1.1./1) bestimmt. Das sta-
tistische Gewicht der Verteilung von n Fehlstellen auf N Gitterplätze mit N' Zwischengitter-
plätzen folgt als Produkt aus beiden Größen :

(N — ri)\n\ (N' — n ) \n \

Analog (3.1.1./4) bis (3.1.1./6) ergeben sich Entropie, Innere Energie und Freie Energie. Die
Gleichgewichtsbedingung (3.1.1./7) führt auf

s _ ep _ kT / ln + l n  = kT ln (3)\ n n / n 2

Hierin kann man n N, n< N' berücksichtigen und N — n durch N, N' — n durch N' er-
setzen. Damit ergibt sich aus (3) durch Auflösen nach n

(4)

als Anzahl FRENKELscher Fehlordnungen der Metallionen.
Setzen wir hierin (1) ein, so erhalten wir als Anteil der unbesetzten Gitterstellen

gF
— = l/2e~ 2* T .
N (5)

Mit den vorgegebenen Werten folgt

-19

• 300

Bei den Silberhalogeniden tritt der FRENKEL-Defekt in weit stärkerem Maße als der Schottky-
Defekt auf, so daß hier experimentelle Messungen möglich sind.

n < A / 1,1 • 1,6 • 10— =1 ,4  exp I ----------------------
N r \ 2 • 1,38 • IO-23 = 8 • 10-10 .

3.1.3. Diffusion

Untersucht wird das Diffundieren von Kohlenstoff in «-Eisen bei veränderlicher Temperatur.
Für 100 °C wird D = 4,3 • 10~18 m2 s-1 , für 500 °C dagegen D = 3,6 • 10~12 m2 s-1 gemessen. Die
Gitterkonstante des «-Eisens beträgt a = 0,286 nm. Berechnen Sie aus diesen Angaben die
Sprungfrequenz v der Kohlenstoffteilchen in Eisen und geben Sie die Aktivierungsenergie sA an.

Lösung:
Wir gehen von einer Fremdstoffverteilung im Kristall aus, bei der die Ebenen gleicher Kon-
zentration der Fremdteilchen mit den Gitterebenen übereinstimmen. Hierdurch erfolgt keine
Einschränkung der Allgemeinheit, da der Diffusionskoeffizient eine Stoffkonstante ist, die nicht

8 Schilling, Festkörperphysik
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von speziellen Konzentrationsverteilungen abhängt. Der Abstand zweier Ebenen kann gleich der
Gitterkonstanten a gesetzt werden.
Es bezeichne N die Konzentration der Fremdteilchen, d. h.  im vorliegenden Fall die Anzahl der
Kohlenstoffatome, bezogen auf einen Kubikmeter.
Wir betrachten zwei parallele Ebenen von Zwischengitterplätzen. Die Richtung der Normalen auf
beiden Ebenen wählen wir als x-Achse. Beirr = x0 befinde sich die erste Zwischengitterschicht,
bei x = x0 + a die zweite. Für die mittlere Zahl der Fremdatome je m3 auf der Zwischengitter-
schicht bei x = x0 ergibt sich

S(xQ ) = S = aN . (1)

Die Konzentration der Fremdatome ist räumlich veränderlich. Für die Schicht in der Ebene
x = x0 a erhält man

<S(ar0 + a) = S + a ( = aN + a2 . (2)
\ ö® /«. \ <>x ] x .

Bezeichnet man mit v die mittlere Anzahl der Platzwechselvorgänge eines Teilchens je Sekunde,
so folgt für den resultierenden Teilchenstrom von der Schicht höherer zur Schicht niedriger
Konzentration

Jn = -elSfx» + a) - S(xo y] = • (3)
\ dx

J N wird positiv gezählt, wenn der Strom in Richtung der x-Achse fließt, negativ bei entgegen-
gesetzter Richtung. Die Größe q ist durch (3.1./4) gegeben. Setzen wir diese in (3) ein, so ergibt
sich

£ A

J v =~va 2 e kT  . (4)
\ / X 0

Verallgemeinert auf beliebige Verteilungen, gilt

eA

J N = — va2 e kT  gradTV, (5)

wobei das negative Vorzeichen allgemein auf die Stromrichtung entgegen der Richtung des
Gradienten der Konzentration hinweist.
Durch Vergleich mit (3.1./1) erhält man das Diffusionsgesetz in der Form (3.1./2)

£ a

D=D o e kT  (6)

mit

D 0 = m 2 . (7)

Zur Auswertung der vorgegebenen Meßwerte logarithmieren wir (6) und erhalten

In D = In Do - . (8)
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Wird also In D in Abhängigkeit von — aufgetragen, so erhält man eine Gerade (vgl. Bild 3.1.4).

Wie man aus dieser entnimmt, ist für die betrachtete Diffusion

Do = 2,0 • IO“6 m2 s"1 , eA = 0,87 eV.

10 ' "

IO' 12

10' 13

10~ u

10- 15

10- 16

10- 17

10-’ B

10- 19

100 200 300 400 500 600

Temperatur in °C

Bild 3.1.4. Diffusionskoeffizient D für das Diffundieren von Kohlenstoff
in a-Eisen in Abhängigkeit von der Temperatur

D
 in

 m
 2 s-

'

Mit a = 0,286 nm folgt aus (7) für die Sprungfrequenz

2,0 • IO"6

(0,286 • 10- 9 ) 2a?
Hz = 2,4 - 1013 Hz.v =

3.1.4. Einstein-Beziehung — lonenleitfähigkeit des Silberbromids

Die Leitfähigkeit a des Silberbromids AgBr beruht auf der lonenleitung, d.  h. der lonendiffusion
unter dem Einfluß eines von außen angelegten elektrischen Feldes. Bei der Messung zur Ab-
hängigkeit der lonenleitung von der Temperatur T ergibt sich ein linearer Zusammenhang

zwischen In a und — . Für 200 °C wird er = 6,2 • 10-2 Q-1 m-1 , für 300 °C o = 2,1 Q-1 m-1 ge-
messen.
Leiten Sie die Konstanten für die Temperaturabhängigkeit der Leitfähigkeit ab. Welche Energie
ist für den Platzwechsel eines Ions erforderlich?

Lösung:

Zur Leitfähigkeit eines Mediums tragen die beweglichen Ionen und Elektronen bei. Beim Silber-
bromid sind bewegliche Elektronen, die zur Leitfähigkeit einen meßbaren Wert beisteuern, nicht
vorhanden. Die Bromidionen nehmen wegen ihrer Größe (vgl. Tab. 3.1.5) am Ladungstransport
nicht teil. Eine Stromleitung erfolgt daher nur durch die nach (3.1./3) beweglichen Silberionen.
Wir schreiben für die Leitfähigkeit

a = b&Nq. * (1)

8*
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AAr bezeichnet die Konzentration der wandernden Ladungsträger, d. h.  der beweglichen Silber-
ionen, q gibt ihre Ladung an. Im vorliegenden Fall ist q = e, wobei e die Elementarladung be-
deutet. Der Proportionalitätsfaktor b ist eine temperaturabhängige Materialgröße und heißt
Beweglichkeit (vgl. 3.3.). Die Beweglichkeit b der Ladungsträger ist durch die Beziehung

v=bE‘  (2)

definiert, wobei v die Driftgeschwindigkeit der Ladungsträger unter dem Einfluß des äußeren
elektrischen Feldes E kennzeichnet.
In die Richtung des elektrischen Feldes E legen wir die x- Achse. Das angelegte elektrische Feld
E ruft einen lonenstrom der Stromdichte

j = aE = b ANqE (3)

hervor. Hierdurch entsteht eine ungleichmäßige Verteilung der elektrischen Ladungen. Sie führt
zu einem dem Strom (3) entgegengerichteten Diffusionsstrom der Dichte

Das statistische Gleichgewicht ist hergestellt, wenn kein Transport von Ladungsträgern mehr
festzustellen ist, also

i + ?D = 0 (5)

gilt. Setzt man (3) und (4) in (5) ein, so ergibt sich die Differentialgleichung

qbE &N(x) - Dq d =0 .  (6)
da;

Ihre Lösung lautet
bEx

AI A eX (7).

Andererseits kann die sich herausbildende Verteilung N = N(x) aus den Gesetzen der Statisti-
schen Physik abgeleitet werden.
Befinden sich Ionen mit der elektrischen Ladung q in einem konstanten elektrischen Feld E = Eo ,
so' ist für eine Auslenkung um die Strecke x die Energie

e = —qEx (8)

aufzuwenden. Eine Verschiebung in Richtung der o>Achse ist mit einem Energiezuwachs, eine
Verschiebung in Richtung der negativen x-Achse, also dem elektrischen Feld entgegen, mit einer
Energieaufwendung verbunden. Nach dem GiBBSschen Gesetz folgt für die Konzentration der
Ladungsträger im Gleichgewicht ein Verteilungsgesetz der Form

gEx

&N(x) = ANo e kT  . (9)

Der Vergleich der Formeln (7) und (9) ermöglicht, die Leitfähigkeit infolge des lonentransportes
auf die Gesetze der Diffusion zurückzuführen bzw. die Beweglichkeit b der Ladungsträger durch
den Diffusionskoeffizienten D auszudrücken.
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Aus dem Vergleich der Exponenten in (7) und in (9) folgt die

EiNSTEiN-Beziehung b = (10)

als Zusammenhang zwischen der Beweglichkeit der Ionen und dem Diffusionskoeffizienten.
Setzt man (10) in (1) ein, so ergibt sich für die Leitfähigkeit

(H)

Der Diffusionskoeffizient hängt nach (3.1.3./6) von der Temperatur in der Form

D = Do e kT  (12)
ab.
Wir setzen (12) in (11) ein und erhalten damit für die lonenleitfähigkeit

(13)
kT v '

Hierin kann die Temperaturabhängigkeit des Faktors

NqW 0
0 kT

(14)

gegen die der Exponentialfunktion vernachlässigt werden. Wir schreiben daher

_2a_
<7 = cro e kT  (15)

und behandeln <r0 wie eine Konstante.
Kennt man zwei Wertepaare T r und cr2 , T 2 , so bestehen die Beziehungen

Ea

<Ti =aoe  * ri  , (16)
£ a

<T2 =(T0 e kT *. (17)

Hieraus folgt für die unbekannten Größen ea und cr0

kT 1 T 2eA = ----- In ,
— T 2 <t2

(18)

. T. 1g o*, — T 2 1g Co ~ ,lg <r0 = — ---- 2 s mit <r0 m Q“1 m" 1 .
•I 1 1 2

(19)
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Mit den vorliegenden Werten erhalten wir aus (18) und (19)

1,38 • 10-23 • 473 -573 1 , 2,1 _ TTeA = ---------------- - -------------------- 1g ------ eV = 0,82 eV
1,6 • 10-19 • 100 0,434 ö 0,062

, 573 1g 2,1 - 473 1g 0,062Iff = -------— ------------- ----- = 7.56.

3.1.5. Farbzentren

Wird ein Alkalihalogenidkristall in der Dampfatmosphäre seines eigenen Alkalis erhitzt, so
entsteht eine charakteristische Verfärbung. Sie ist im wesentlichen vom Kation abhängig, gering-
fügig von der Temperatur. Das Absorptionsband, das der entstandenen Verfärbung im durch-
gehenden Licht entspricht, wird nach Pohl F-Bande genannt. Die eine Färbung verursachenden
Störstellen im Kristall heißen F-Zentren. Das Verfahren wird als additive Verfärbung bezeichnet.
Bei der Bildung eines F-Zentrums setzt sich ein Kation in eine Kationenlücke, während die An-
ionenlücke von einem Elektron umkreist wird. Das Elektron ist nicht genau lokalisierbar. Seine
Aufenthaltswahrscheinlichkeit entfällt zum größten Teil auf die Anionen-Fehlstelle, zum ge-
ringeren Teil auf die ihr benachbarten sechs Kationen.

Bild 3.1.5. Struktur eines F-Zentrums in KCl.
a) Atomare Struktur, b) Absorptionsbande

Bild 3.1.5 zeigt die F-Bande in KCl und ihre Struktur. Zur Erzeugung von F-Zentren werde ein
KCl-Kristall auf 760 °CA 1033 K erhitzt und dabei von Kaliumdampf unter Atmosphärendruck
umgeben. Die angegebene Temperatur liegt über dem Siedepunkt des Kaliums (753 °C), jedoch
unter dem Schmelzpunkt des Kaliumchlorids (772 °C). Berechnen Sie den Anteil der erzeugten
F-Zentren. Die Bildungsenergie bei der Erzeugung eines F-Zentrums beträgt für KCl = 0,10 eV.
Kalium hat die relative Atommasse A r = 39,1.

Lösung:
Zwischen den F-Zentren und dem Kaliumdampf bildet sich ein thermodynamisches Gleichgewicht
aus. Die Gleichgewichtskonstante kann aus den Chemischen Potentialen beider Komponenten
berechnet werden. Das Chemisches Potential ist nach [3] 3.3. gemäß

dG \ G U + PV — TS
dN/  Tt  p~  N ~ N (1)
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als Freie Enthalpie je Teilchen definiert. Darin bezeichnet U die Innere Energie, P den Druck,
£ die Entropie des Metalldampfes. Bei Kenntnis der Freien Energie F erhält man /zc auch aus

(2)

Für das einatomige Gas ist nach [3] 2.3.1.

(2nmkT) 3i 2
' NF = -NkT 4- NkT In —

V (3)

wobei h = 6,63 • 10-34 J s das PLANCKsche Wirkungsquantum, m die Teilchenmasse und N die
Anzahl der Teilchen je Kubikmeter angeben. Im folgenden unterscheiden wir zwischen der
Konzentration N e der Elektronen und der Konzentration A M der Metallatome.
Setzt man (3) in (2) ein, so ergibt sich als Chemisches Potential des Metalldampfes

(
ä 2 \ 3 / 2

ö- -Uü) *2izmkT)

Die Berechnung des Chemischen Potentials der F-Zentren erfolgt nach den statistischen Ver-
teilungsgesetzen für Elektronen, d.  h. nach der FERMi-DiRAC-Statistik (vgl. 3.3 sowie [3] 4.1.2.).
Wir benutzen dabei die Beziehungen

F = U - TS (5)
und

S = fclnP7, (6)

wobei W das statistische Gewicht der Elektronenverteilung auf die Fehlstellen angibt. Bei der
Fermi-Dirac- Verteilung ist jede Zelle (hier Fehlstelle) entweder mit einem Teilchen besetzt oder
leer. Verteilungen, die sich nur durch die Belegung mit zwei verschiedenen Elektronen 1 oder 2
unterscheiden, zählen als ein Zustand, da gleichartige Elementarteilchen prinzipiell nicht unter-
scheidbar sind. Liegen n Fehlstellen vor, auf die 7Ve Elektronen zu verteilen sind, so ist die Anzahl
möglicher Verteilungen, das statistische Gewicht der Verteilung (vgl. Bild 3.1.6),

W= --------—--------- . (7)
N e \ ( n -  We )!

Unter Verwendung der STiRLiNGschen Näherung In N ! = N In N — N folgt hieraus

wofür man im Falle geringer Elektronenkonzentration N e n schreiben kann

/d ln  JF\ _ . n
\ ~ n N e ’ «

Wir berücksichtigen in (5), daß sich die Innere Energie

U = WeeB (10)
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aus den mittleren Beiträgen eB der einzelnen F-Zentren summiert. Damit ergibt sich durch Ein-
setzen von (5), (6) und (9) in (3) für das Chemische Potential der F-Zentren

Ätp = 8B + *7In  — • (H)n

Aus der Gleichgewichtsbedingung

(12)

i 00OOO
; 0O0OO
3 00000
4 0 O O O 0
5 O 0 0 o o
6 O 0 O 0 o
7 0 8 0 0®
e O O 0 0 o
9 O O 0 O 0
10 O O O 0 0

O unbesetzte
Zustände

besetzte
Zustände

Ne *2 .  n=5

I H > 27 Y

Bild 3.1.6. Das statistische Gewicht W der Verteilung von N e = 2 Elektronen
auf n = 5 Gitterfehlstellen nach der FERMi-DiRAC-Statistik

erhalten wir schließlich für die Gleichgewichtskonzentration der Farbzentren

N e = 
N Hh3 / 13 x

n (2nmkT) 3 / 2

Die Konzentration der Metallionen kann durch Druck und Temperatur ausgedrückt werden :

= F 0 = lm 3 . • (14)

Dabei hat man die Umrechnung 1 atm = 1,01 • 105 N m-2 zu berücksichtigen.
Bei schwacher Konzentration der Elektronen N e < tn  ergibt die Berechnung des Chemischen
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Potentials der Elektronen nach der BoLTZMANN-Statistik das gleiche Ergebnis wie nach der Fermi-
DiRAC-Statistik.
Mit den vorgegebenen Werten folgt als Verhältnis zwischen der Farbzentren- und der Fehl-
stel lenkonzentr ation

0,10 • 1 ,6 ♦ 10~ 19 \
1,38 • 10~ 23 • 1033 /

(6,63 • 10~ 34 ) 2 • 6,02 - 10 26N e 1,01 • 10 5

n ~ 1,38 • 10- 23 • 1033 [ 2 • 3,14 • 39,1 • 1,38 • IO"23 • 1 033

= 1 ,5  • IO-9 .

Aufgaben

A 3.1.1.
A 3.1.2.

Wie groß ist der Anteil ScnoTTKYscher Fehlstellen in Gold bei 300 K (es = 0,67 eV)?
Auf welchen Wert steigt in der vorangegangenen Aufgabe der Anteil Schottky-
scher Fehlstellen, wenn die Temperatur auf 600 K erhöht wird?
Für die Aufbereitung zur Informationsspeicherung werden in einem KCl-Kristall
bei hoher Temperatur Fehlstellen erzeugt. Danach wird der Kristall auf eine sehr
tiefe Temperatur abgeschreckt. Dabei bleiben die Fehlstellen erhalten; sie sind bei
sehr tiefen Temperaturen allgemein sehr lange beständig. Die Speicherzelle habe
das Volumen V = Im 3 . Berechnen Sie die Zahl der darin enthaltenen Fehlstellen
für T = 1000K.  Für die Gitterkonstante ist a Kci  = 0,629 nm zu setzen. Die
Aktivierungsenergie beträgt 2,01 eV.
Wie groß ist in der vorangegangenen Aufgabe die Anzahl der Fehlstellen, wenn
man bis unmittelbar zur Grenze des Schmelzpunktes T — 1 045 K erwärmt?
In einem kubisch-flächenzentrierten Gitter befinden sich die Zwischengitterplätze
auf den Kantenmittelpunkten und in der Mitte des Elementar Würfels. Wieviel
Zwischengitterplätze entfallen auf den Elementarwürfel? Vergleichen Sie die Anzahl
TV' der Zwischengitterplätze mit der Anzahl N der Gitterpunkte.
Beim kubisch-raumzentrierten Gitter sind die Zwischengitterplätze in der Mitte
der Flächen und Kanten ängeordnet. Berechnen Sie die Anzahl der Zwischengitter-
plätze.
Bestimmen Sie den Anteil der FRENKEL-Defekte in Silberbromid (ey = 1,1 eV) für
T = 250 K.
Kaliumchlorid wird auf 1 045 K, Silberbromid auf 600 K erwärmt. Nach Einstellung
des thermodynamischen Gleichgewichts werden beide Stoffe auf tiefe Temperaturen
abgeschreckt, so daß die Kristallfehler über einen langen Zeitraum erhalten bleiben.
Geben Sie für beide Stoffe die relative Abweichung ihrer Dichte gegenüber nor-
malen Stoffen gleicher Temperatur an, wenn jeweils nur der am stärksten auf-
tretende Defekt berücksichtigt wird.
Der Koeffizient der Selbstdiffusion von Natriumionen in Natriumchlorid (Diffusion
von Gitierfehlstellen) ist oberhalb 500 °C nahezu unabhängig von Verunreinigungen
des Kristalls. Man kann daher für hohe Temperaturen das allein auf Sprung-
frequenz und Aktivierungsenergie begründete Modell für die Diffusion anwenden.
Zur Messung des Koeffizienten der Selbstdiffusion werden radioaktive Natrium-
ionen in den Kristall eingebaut. Dabei ergibt sich für 600 °C D = 1,7 • 10 -14 m 2 s -1 ,
für 700 °C D = 2,0 • IO-13 m 2 s -1 . Stellen Sie das Gesetz über die Temperatur-
abhängigkeit der Selbstdiffusion auf und berechnen Sie die Konstanten.
Berechnen Sie die Sprungfrequenz für die Diffusion von Natriumionen in Natrium-
chlorid entsprechend den Ergebnissen der vorangegangenen Aufgabe. Die Gitter-
konstante des Natriumchlorids beträgt a = 0,564 nm.

A 3.1.3.

A 3.1.4.

A 3.1.5.

A 3.1.6.

A 3.1.7.

A 3.1.8.

A 3.1.9.

A 3.1.10.



122 3. Elektrische und optische Eigenschaften idealer und realer Kristalle

A 3.1.11. Für den Koeffizienten der Selbstdiffusion von Natriumionen in Natriumchlorid
wird bei 400 °C, also in einem Bereich, in dem Verunreinigungen die Meßwerte be-
einflussen, D = 3,2 • 10-16 m2 s-1 gemessen. Vergleichen Sie diesen Wert mit dem,
der sich nach dem in Aufgabe A 3.1.9 aufgestellten Diffusionsgesetz ergibt, und
stellen Sie die Abweichung fest.

A 3.1.12. Geben Sie die Beweglichkeit der Natriumionen in Natriumchlorid für 700°C an
(D = 2,0 • IO-13 m2 s- 1 ).

A 3.1.13. Zur Messung der Bildungsenergie eB bei der additiven Verfärbung von Kalium-
jodid wird die Absorption in der F-Bande bei verschiedenen Temperaturen ge-
messen. Die Absorptionskonstante ist der Konzentration der Farbzentren genähert
proportional. Bei der Erhöhung der Temperatur von 570 °C auf 620 °C wird eine
Vergrößerung der Absorptionskonstanten um 3,9% festgestellt. Die Anzahl der
Schottky -Defekte kann für beide Temperaturen während der Untersuchung als
konstant angesehen werden, da sich das Gleichgewicht der F-Zentren schneller als
das Gleichgewicht der ScHOTTKY-Defekte einstellt. Berechnen Sie aus den gemesse-
nen Daten die Bildungsenergie £B .

3.2. Dielektrische und optische Eigenschaften

Einführung

Polarisation der Materie
Die Polarisation P eines Stoffes wird durch die Verschiebung

Ar = ui + vj + wk

seiner Bausteine aus ihrer Normallage verursacht. Sie setzt sich aus dem Beitrag
P el der Elektronen und dem Beitrag P ion der Ionen zusammen. Hierzu tritt bei ver-
schiedenen Stoffen ein Beitrag P or durch die Orientierung permanenter Dipole.
Bild 3.2.1 charakterisiert die verschiedenen Polarisationen.

Bild 3.2.1. Polarisation der Materie
a) Elektronische Polarisation
b) Ionische Polarisation
c) Orientierungspolarisation
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Bei der Elektronenpolarisation werden die Elektronenumlaufbahnen relativ zum
Kern verschoben bzw. deformiert. Sie erfolgt periodisch mit Kreisfrequenzen in der
Größenordnung 1016 s-1 (ultraviolett).
Die ionische Polarisation geht auf die Verschiebung der Ionen gegenüber ihren Nach-
barn zurück. Dabei treten Kreisfrequenzen in der Größenordnung 10 13 s-1 (infrarot)
auf.
Orientierungspolarisation wird bei Molekülen mit permanentem elektrischem Dipol-
moment beobachtet, wenn sich die Einstellung im äußeren elektrischen Eeld ver-
ändern kann. Sie ist bei niedrigen Frequenzen bis zu einigen GHz wirksam. Bei
höheren Frequenzen wird die Orientierungspolarisation durch die Dämpfung aus-
geschaltet.

Polarisation durch Schwingungen der Elektronen und Ionen
Durch die Schwingung der Kristallbausteine verändert sich in einem Festkörper
periodisch die Lage seiner elektrischen Ladungen. Hierdurch erfolgt eine periodisch
schwankende Polarisation des Festkörpers. Sie ist mit einer Dispersion verbunden,
d. h., die Dielektrizitätskonstante bzw. bei der Ausbreitung von Licht die Brechzahl
und die Absorption ändern sich in Abhängigkeit von der Wellenlänge.
Die schwingenden Kristallbausteine können als Oszillatoren betrachtet werden.
Es bezeichne m die Masse eines Teilchens, r seine Auslenkung aus der Ruhelage,
co 0 die Eigenfrequenz (Kreisfrequenz) des Oszillators, p den Reibungskoeffizienten.
Die Reibung wird durch Zusammenstöße mit anderen Teilchen verursacht. Zunächst
wird nur eine Sorte von Oszillatoren betrachtet. Kennzeichnet

F = F o e-  i£üi (1)

die auf das Teilchen einwirkende periodisch veränderliche Kraft, so ergibt sich nach
den Grundgesetzen der Mechanik die Bewegungsgleichung

mir + mor + mco 0 
2r = F Q e~ ia)t . (2)

Die Lösung dieser Gleichung setzt sich additiv aus einer freien, gedämpften Schwin-
gung mit dem Zeitfaktor exp (— ico 0£) und einer erzwungenen ungedämpften Schwin-
gung mit dem Zeitfaktor exp (— icot) zusammen. Der gedämpfte Anteil klingt inner-
halb weniger Schwingungsperioden ab und ist für die folgende Betrachtung über die
Dispersion des Lichtes ohne Interesse. Bei der Lösung der Gleichung (2) ist daher
von dem Ansatz

r = r Q e~ i(üt (3)

auszugehen. Setzt man (3) in (2) ein, so folgt als Beziehung zwischen r 0 und F Q

0 m(co 02 — cd 2 — ipco)

Sind die von außen einwirkenden Kräfte elektrischen Ursprungs, so führen sie zur
Polarisation der Materie.
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Ein elektrisches Feld E, das auf ein Molekül wirkt, polarisiert dieses. Es entsteht
ein Dipol mit dem elektrischen Moment

m e = Zer

(vgl. Bild 3.2.2). Darin bezeichnet Ze die Stärke der beiden getrennten Ladungen,
r ihren Abstandsvektor. Bei nicht zu großer elektrischer Feldstärke E ist das elektri-
sche Moment dieser proportional :

m e = oc£ q E (5)

Bild 3.2.2. Polarisation eines Moleküls durch ein elektrisches Feld £

Die Größe ist eine charakteristische Konstante des Moleküls und heißt die Polari-
sierbarkeit. Sie hat die Einheit m 3 .

Beispiel 3.2.1. Polarisierbarkeit des Argons

Für Argon beträgt die Polarisierbarkeit oc = 1,62 • 10-30 m3 . Ein lokales elektrisches Feld der
Stärke E = 1 000 V m-1 erzeugt daher nach (5) das elektrische Moment

= 1,62 • 10- 30 • 8,85 • IO“12 • 103 Asm = 1,43 • IO-38 C m.

Es entspricht dem Abstand zweier entgegengesetzter Elementarladungen von

Die Polarsation P eines Stoffes gibt das elektrische Moment, bezogen auf die Raum-
einheit 1 m3 , an. Bezeichnet N die Anzahl der Dipole je Raumeinheit und ist m e das
elektrische Moment eines Dipols, so definiert man

P = Nm = NZer | (6)

bzw. nach (5)

P = £ q NocE (6a)

als Polarisation des Stoffes. P hat wie D = £E die Einheit As nr 2 .
Schwingungen elektrisch geladener Teilchen werden im allgemeinen durch elektrische
Wellen der Form

E = Ee-™* (7)
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verursacht. Zwischen der elektrischen Feldstärke E und der von ihr auf ein Teilchen
ausgeübten Kraft besteht die Beziehung

t=Ze t l 0 . (8)

(8) kann in (4) eingesetzt werden. Löst man (6) nach r 0 auf und setzt dieses ebenfalls
in (4) ein, so ergibt sich für die Polarisation infolge des einwirkenden Feldes

P = P oe~ w (9)
mit

NZ
P ü = — — ------- - - - -: - - - -  . (10)m(co 02 — co 2 — i£co 0 )

Im allgemeinen oszillieren verschiedene Teilchensorten mit unterschiedlichen
Konzentrationen N b Massen m b elektrischen Momenten m e i  , Eigenfrequenzen co 2-
und Reibungskoeffizienten Die Polarisation P b die durch diese Teilchen erzeugt
wird, ist nach (6) bzw. (6a)

Pi = Nim e i  = NiZieTi = eQNiociE. (6b)

Für die Polarisation des Stoffes folgt

P = 2 P . = 2 NiZiCTi = 8Q E S NiOCi. (11)
i i i

Das von außen angelegte periodische Feld erzeugt die periodisch schwankende
Polarisation

P = P Q e~ ia}t (12a)
mit

P = S NfZier = «0 0 £ (12)
i i

r Qi bedeutet die maximale, die momentane Auslenkung eines Teilchens. Anstelle
von (10) findet man

Po — £qPq S
i

mit
1 Z,  2 e2

— / ö ö :
8q — (o — iQiCüi

Man kann die elektrische Erregung bzw. dielektrische Verschiebung D eines Mediums
aus zwei Anteilen zusammensetzen: einem ersten D Q = eQE, der auch im Vakuum
bei Abwesenheit polarisierbarer Materie auf tritt, und einem zweiten P, der durch
die Polarisation der vorhandenen Moleküle entsteht. Die elektrische Erregung kann
also sowohl in der Form

(13)

(14)

D — £qE “I- P (15)
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als auch durch

D = e'E (16)

dargestellt werden. Aus dem Vergleich von (15) und (16) folgt für die Polarisation
eines Mediums

P = (e — e 0 ) E bzw. P Q = (e — Eq) E o . (17)

e' bedeutet dabei die Dielektrizitätskonstante des Mediums, die im allgemeinen
komplex ist.

Effektives Feld
Das auf einen Kristallbaustein im gleichmäßig polarisierten Medium wirkende mi-
kroskopische bzw. effektive Feld E unterscheidet sich vom makroskopischen Feld
E, das durch die Messung bestimmt werden kann. Der Unterschied ist -dadurch zu
erklären, daß zum makroskopischen Feld E alle Ladungen beitragen, während zu

Bild 3.2.3. Oberflächenladungen auf
einer Hohlkugel im homogenen Feld

dem auf einen herausgegriffenen Baustein wirkenden Feld E die elektrischen La-
dungen des Bausteins selbst keinen Beitrag liefern. Man denkt, sich den Kristallbau-
stein daher als punktförmiges Gebilde innerhalb einer Hohlkugel vom Radius R
angeordnet (vgl. Bild 3.2.3). R ist klein gegen die Wellenlänge der betrachteten
elektromagnetischen Schwingung. In der Kugel befindet sich keine weitere Materie.
Die Dielektrizitätskonstante in der Hohlkugel ist gleich der elektrischen Feld-
konstanten e 0 . Das übrige Dielektrikum nach Ausschluß der Kugel wird als Konti-
nuum behandelt, d. h., die molekulare Struktur tritt bei der Berechnung des Feldes
nicht weiter in Erscheinung.
Wird eine Kugel in ein homogenes elektrisches Feld E& gebracht, so tritt in ihrem
Inneren ein homogenes elektrisches Feld auf. Seine Stärke weicht von _Ea ab.
Außerhalb der Kugel wird das vorher homogene Feld gestört.
Es sei die Elektrizitätskonstante des Kugelmediums, sa die des Mediums außer-
halb der Kugel. Zwischen den eingeführten Größen besteht nach den Grundgesetzen
der Elektrostatik (vgl. [4] 2.1.5.) die Beziehung

= 2£i + 6a E a . (18)
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Setzt man hierin

£i = € 0 > £a = £'; (18a)

'E ,=E ,  E& = E (18b)

ein, so ergibt sich als Verknüpfung zwischen dem mikroskopischen und dem makro-
skopischen Feld

E = E bzw . e o = +Le o . (19)

Dispersion und Absorption des Lichtes

Anstelle (19) kann auf Grund (17) das effektive Feld in der Form

E = E + —— bzw. Eq = Eq + —— (20)

dargestellt werden. Damit folgt aus (13) und (14) die Drudesche Formel
$

n' 2 ~ 1 = g 'M ~ £ o = J_ v NjZfe?

n'  2 + 2 e'(cü) + 2s 0 3s0 V i{ 2 — co 2 — ip )

Nach (14) kann man hierfür übersichtlich auch

n' 2 — 1 _ e ' ( co )  — £ 0 _ g /M — 1 _ 1 v at oa

n' 2 + 2 e» + 2e0 er » + 2 3 ? i<%i ( ’

schreiben. Darin bedeutet

e r

gp

die relative Dielektrizitätskonstante bzw. Dielektrizitätszahl. Die DRUDEsche Formel
vermittelt einen Zusammenhang zwischen komplexen Größen. Auf der rechten Seite
der Gleichung (21) wird das imaginäre Glied durch den Reibungskoeffizienten p
erzeugt. Auf der linken Seite sind in der Dielektrizitätskonstanten e' sowohl die
dielektrischen Eigenschaften als auch die Absorption enthalten :

(22)

8 bedeutet die reelle Dielektrizitätskonstante, <r die elektrische Leitfähigkeit des
Mediums. Beide Größen können durch Trennung von Real- und Imaginärteil aus
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(21) ermittelt werden. Die komplexe Brechzahl ri eines Mediums ist durch

ri = n( l  ix) = j/— (23)

definiert, n gibt die reelle Brechzahl, % den Absorptionsindex an. Als Absorptions-
konstante bezeichnet man die Größe

worin c die Lichtgeschwindigkeit und 2 die Wellenlänge im Medium angibt.
Der Reibungskoeffizient ist im allgemeinen klein gegen die Eigenfrequenz
so daß die Absorption vielfach in erster Näherung vernachlässigt werden kann.

Probleme

3.2.1. Clausius-Mosottj- und Lorenz-Lorentzsehe Formel

Berechnen Sie die Polarisierbarkeit des Kaliumbromids im elektrostatischen Falle und im Fre-
quenzbereich des sichtbaren Lichtes. Wie groß sind die Polarisation und das auf ein KBr-Molekül
bezogene elektrische Moment m e , wenn ein elektrostatisches Feld der Stärke E = 1 MV m-1

bzw. das Strahlungsfeld eines gesteuerten Laserimpulses der effektiven elektrischen Feldstärke
E = 109 V m-1 angelegt werden? Welchen Abstand haben die getrennten Ladungen?
Kaliumbromid besitzt die statische Dielektrizitätszahl er = 5,99. Die Brechzahl für sichtbares
Licht beträgt n= l , 53 .KBr  hat die Dichte d = 2,73 g cm-3 und die molare Masse M =
119,01 kg kmol-1 .

Lösung:
Durch ein lokales elektrisches Feld ß am Ort der Ladung entsteht das elektrische Moment

m e = s0(xß. (1)

Bezeichnete das äußere elektrische Feld, so ist nach (3.2./19) das auf einen Kristallbaustein
wirkende effektive Feld

ß = E + — .  (2)
3e0

Darin bedeutet nach (3.2./6)

P = NZer (3)

die Polarisation. Für Elektronen und einwertige Ionen, wie im vorliegenden Fall, ist Z = 1.
Aus (1) und (2) folgt andererseits

P = 2Vme = NeQaß = N<x (e0E + , (4)
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wobei TV die Anzahl der Moleküle je Raumeinheit (1 m 3 ) angibt. Wir setzen verlustfreie Medien
voraus und können daher in (3.2./14) die komplexe Dielektrizitätszahl e' durch den reellen Wert e
ersetzen :

P = (s - e0 )E .  (5)

P in (4) durch (5) ausgedrückt, liefert nach Herauskürzen des gemeinsamen Faktors E und
Dividieren durch e + 2e0 die Clausius-Mosottische Formel

g — £0 = N(x N A d <x
e 4- 2e0 3 M 3 ’

Führt man die Brechzahl

= 1/“ (7)

in (6) ein, so ergibt sich die Lorenz-Lorentzsche Formel

e(co) — e0 n 2 — 1 N<x N d a / ox

e(co) + 2e0 ” n 2 + 2 “ “T “ TäF T*

Wir lösen (6) bzw. (8) nach der Polarisierbarkeit a auf und setzen die vorgegebenen Werte ein.
Damit folgt für den elektrostatischen Fall

5 ,99 -1  119,01 3 30 3<x = 3 ---------------------------------------- m 3 = 136 • IO-30 m 3 .
5,99 + 2 6,02 • 10 26 • 2,73 • 10 3

Für den Bereich sichtbaren Lichtes ergibt sich die elektronische Polarisierbarkeit

1,53 2 - 1 119,01
1,53 2 + 2 6,02 • 10 26 • 2,73 • 10 3 67,0 • 10- 30 m 3 .«el = 3

Für die Polarisation erhalten wir nach (5) im elektrostatischen Fall

P = (5,99 - 1) • 8,85 • IO-12 • 10 6 Asm" 2 = 4,42 • IO"5 Cm" 2 .

Daraus ergibt sich wegen P = Nm e nach (4) das elektrische Moment

4,42 • 10“ 5 • 119,01 . 00me = ------------ Asm = 3,2 • IO-33 Cme 6,02 • 10 26 • 2,73 • 10 3

bzw. die Dipollänge

Q 9 . lß-33
r = 9 — m = 2,0 • IO"14 m.

1,6 • IO-19

Für die Störung durch das Laserlicht erhält man

P = 4,69 • IO“3 Cm- 2 , m e = 3,4 • 10~ 31 Cm , r = 2,1 • IO"12 m .

Der Abstand der Ladungen macht im Mittel also nur Bruchteile der Gitterkonstanten bzw. des
Atomdurchmessers aus.

9 Schilling, Festkörperphysik
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Infrarote und ultraviolette Eigenfrequenzen3.2.2.

Natriumfluorid besitzt im Infraroten eine intensive Spektrallinie bei der Wellenlänge
Air = 40,6 [im. Sie ist auf die gegeneinander schwingenden Ionen zurückzuführen. Im Ultra-
violetten tritt eine Spektrallinie bei der Wellenlänge Au v = 117 nm auf, die von oszillierenden
Elektronen verursacht wird. Als Brechzahl des Natriumfluorids wird für sichtbares Licht bei
co = 3,5 • 10 15 s-1 (gelb) der Wert n = 1,3 gemessen. Die Absorption kann vernachlässigt werden.
Aus elektrostatischen Messungen ergibt sich die Dielektrizitätszahl er = 5,1. Es werde angenom-
men, die Dielektrizitätskonstante des Stoffes sei allein auf die angegebenen beiden Schwingungen
zurückzuführen. Bestimmen Sie unter dieser Voraussetzung, bezogen auf die Raumeinheit, die
Anzahl der oszillierenden Elektronen und die Anzahl der gegeneinander schwingenden Ionen.
Die Dichte des Natriumfluorids beträgt d = 2,7 g cm-3 .

Lösung:
Nach (3.2. /21a) gilt für nichtabsorbierende Medien

Darin bedeutet

Zfe 2

(2)
«0 — w2)

die Polarisierbarkeit.
Eür den von gegeneinander schwingenden Ionen gebildeten' Oszillator setzen wir für die
gemäß

definierte reduzierte Masse p, ein. Sie liegt um vier Größenordnungen über der Elektronenmasse
bzw. der aus Elektronen und Ionen gebildeten reduzierten Masse.
Im elektrostatischen Fall co = 0 wird dieser Größenunterschied teilweise ausgeglichen, da die
Eigenfrequenzen der Elektronen um zwei bis drei Größenordnungen höher liegen als die Eigen-
frequenzen der Ionen. Für den sichtbaren Bereich unterscheiden sich die Differenzen co2

und o>uv — ft>2 ? abgesehen vom Vorzeichen, jedoch nur etwa um eine Größenordnung. Die ionische
Polarisierbarkeit kann daher für sichtbares Licht gegenüber der elektronischen Polarisierbarkeit
vernachlässigt werden:

l a ion(ö>)l a ei(°0 (w sichtbarer Bereich). W

Im sichtbaren Bereich des Lichtes wird die Brechzahl n praktisch ausschließlich von den Schwin-
gungen der Elektronen verursacht. Nach (1) und (2) können wir schreiben

2 - l  N e

n 2 + 2 3e0 w e (w uv — <a2) (5)

In dieser Gleichung ist nur die Zahl der oszillierenden Elektronen unbekannt, die somit bestimmt
werden kann.



1313.2; Dielektrische und optische Eigenschaften

Im elektrostatischen Fall co = 0 tragen sowohl die Ionen- als auch die Elektronenschwingungen
zur Polarisierbarkeit des Festkörpers bei. Nach (1) und (2) folgt für einwertige Ionen

n2 (0) - 1 _ e(0) - e0 _ Wj e2 N ee2

n 2 (0) + 2 e(0) 4- 2e0 3c0 iCOjr, 3eomecüuv

Aus dieser Gleichung kann die Konzentration der oszillierenden Ionen bestimmt werden. Mit
den vorgegebenen Werten erhalten wir coJR  = 4,6 • 1013 s-1 , couv = 1,61 • IO16 s-1 . Damit folgt
aus Gleichung (5), wenn diese nach We aufgelöst wird,

N 1,3 2 -13»  8,85 • IQ-12 • 9,11 - 10~31 [(l,61 • 1016 ) 2 - 3,52 • 1030]
e - 1,32 + 2 (1,60 • IO“19 ) 2

Im Vergleich dazu ist die Konzentration der Moleküle

N - = 3,9 • 1028 nr 3 ,
3f

m-3 = 4,4 • IO28 m-3 .

d. h., etwa jedes Ion liefert ein oszillierendes Elektron.
Für die reduzierte Masse der beiden Ionen Na+ und F - ergibt sich = 10,4 • 1,67 • 10-27 kg.
Durch Einsetzen der vorliegenden Werte in (6) und Auflösen nach Wj folgt für die Zahl der
schwingenden lonenpaare

N 3 • 8,85 • 10~12 • 10,4 - 1,67 - 10~27 (4,6 • 1013 ) 2
1 ~ (1,60 • IO“19 ) 2 X

r 5,1 - 1 6,0 • 102S (l,60 • 10~19 )2

X [ 5,1 + 2 3 • 8,85 • IO“12 • 9,11 • IO“31 • (1,61 •

Nur ein Drittel der Ionen ist hiernach an den Schwingungen beteiligt.

m- 3 = 1,3 • 1028 m- 3 .

3.2.3. Dispersion des Kristalls

Untersuchen Sie die Dispersion des Natriumfluorids. Die dielektrischen Eigenschaften werden
auf Grund der folgenden Daten genähert dargestellt: ultraviolette Spektrallinie für co uv =
1,61 • 1016 s-1 , infrarote Spektrallinie fürco IR  = 4,6 • 1013 s-1 , Brechzahl für sichtbares Licht (co s ==
3,5 • 1015 s-1 , gelb) n s = 1,3, elektrostatische Dielektrizitätszahl er = 5, i .
Untersuchen Sie die Abhängigkeit der Brechzahl n von der Wellenlänge bzw. Kreisfrequenz co
des Lichtes. Bestimmen Sie den Frequenzbereich, für den der Kristall optisch undurchlässig ist.
Wie ändert sich die Brechzahl zwischen den Grenzen des sichtbaren Bereiches?
Die Untersuchungen können auf die Frequenzbereiche beschränkt werden, in denen die Absorp-
tion zu vernachlässigen ist.

Lösung:
Ein stärkerer Einfluß der Absorption auf die Brechzahl ist nach der DRUDEschen Formel (3.2./21)
für kleine Werte Qi nur in der Umgebung der Eigenfrequenzen cbIR  und couv zu erwarten.
Wir schließen um diese einen hinreichend großen Spektralbereich aus, so daß die imaginären
Anteile in (3.2./21) zu vernachlässigen sind. Die DRUDEsche Formel lautet somit

- 1 = C2 .
n 2 (co) 4“ 2 co uV — co2 co|R — co2

9*
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Wie wir in 3.2.2. sahen, kommt für den sichtbaren Bereich insbesondere den ultravioletten Eigen-
frequenzen der Elektronen Bedeutung zu. Für den sichtbaren Bereich

0,4 ptm < 2 < 0,8 p,m bzw. 2,3 • 1015 s-1 < co < 4,7 • 1015 s-1 (2)

können wir also

(3)
n2 + 2 co?jV — co s 2

schreiben. Aus (3) läßt sich C± bestimmen:

2 1
<A = s * (<4v~<»s2)- (3a)n s

2 + 2

n s bedeutet dabei den Mittelwert der Brechzahl, <us den der Kreisfrequenz im sichtbaren Bereich.
Mit den vorgegebenen Werten folgt

1 92 _ 1
C, = — ------- (1,61 2 - 0,352 ) 1032 s- 2 = 4,6 • 1031 s~2 .1 1,3 2 + 2 v '

Für co = 0 gilt

€ r 1 _ Ql | 2
e r 4" 2 ft)uv IR

Damit ist auch C2 bekannt :

z, /er — 1 n/ — 1 cutv — o>s2 \ .,2'-'2 ~ I — ------2 1 o -----:— 2 ------- 1 “nt-\s r + 2 n s
2 4- 2 cuuv /

(4)

(4 a)

Im betrachteten Fall ergibt sich aus (4) mit dem berechneten Wert für CT

C2 = (— ------- -----4,6  ' 1031 ) (4,6 • 1013 ) 2 S-2 = 8,5 • 1026 s- 2 .2 \ 5,1 + 2 1,61 2 • 1032 /

Setzt man C± aus (3 a) und C2 aus (4 a) in (1) ein, so folgt

n 2 (co) — 1 = n s
2 — 1 co jv ~ a>s2 , / ~ 1 _ s

2 ~ 1 ijv ~ s2 \
n 2 (co) + 2 n 2 4- 2 a> 2ÜV — cd2 \er 4-2  n 2 + 2 co?jV / cofR — co2

(5)

Bei der Diskussion gehen wir von den Frequenzen des sichtbaren Lichtes aus. In der dafür gelten-
den Gleichung (3) verkleinert sich auf der rechten Seite der Nenner, wenn die Frequenz zunimmt.
Mit ansteigender Frequenz wächst daher der Ausdruck (3), d. h., auch die Brechzahl n ver-
größert sich. Bei festen Körpern ist im allgemeinen die Brechzahl n für blaues Licht größer als für
rotes (vgl. Bild 3.2.4).
Aus (3) erhält man

6n An 2<7jco Aco
(n2 + 2) 2 (co v — co2) 2 ’

(6a)
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bzw. umgeformt und (3 a) eingesetzt,

+ Äco (6)
3n(couV — co2 )

Mit den vorgegebenen Daten folgt für Aco = 1,2 • 1015 s-1

. (1,3 2 4- 2) (1,32 - 1) 3,5 • 1015 • 1,2 • 1015 
n ,

3 • 1,3 • (1,61 2 - 0,352) 1032

Zwischen den äußeren Grenzen des sichtbaren Bereiches steigt hiernach die Brechzahl n um
0,022 an. Der Meßwert nach Tab. 3.2.2 beträgt nur 0,00944 (vgl. Bild 3.2.4).

Br
ec

hz
ah

l 
n

Wellenlänge in pm

Bild 3.2.4. Brechzahl n des Natriumfluorids in Abhängigkeit von der Wellenlänge

Eür sichtbares Licht liegt die Kreisfrequenz co zwischen der infraroten Eigenfrequenz co IR  und
der ultravioletten Eigenfrequenz couv Daher ist in (1) auf der rechten Seite der erste Summand
positiv, dagegen der zweite negativ. Mit abnehmender Frequenz co wächst der Nenner des ersten

Q
Summanden gegen —— , der Nenner des zweiten zunächst gegen Null. Dabei strebt der zweite

COuv
Summand gegen — oo. (1) fällt daher zunächst auf Null mit n = 1 ; danach werden sämtliche nega-
tiven Werte durchlaufen. Für —0,5 ergibt sich die Brechzahl n = 0. Werte für (1), die noch tiefer
als —0,5 liegen, lassen sich nur durch negative Werte für n2 , d. h. imaginäre Werte für n 9 er-
füllen.
Fällt die Frequenz co unter die infrarote Eigenfrequenz co IR , so springt (1) auf große positive
Werte, die mit weiter fallendem co rasch abnehmen, n 2 bleibt dabei zunächst negativ, bis der
Ausdruck (1) den Wert eins erreicht, für den n 2 auf springt. Danach fällt n mit abnehmen-
den Werten co.
Für den Bereich

1 n2 - 1
2 < n2 + 2 (7)

ist hiernach n imaginär. Imaginäre Werte der Brechzahl n bedeuten, daß die elektromagnetische
Welle stark absorbiert wird und bereits ein Medium von wenigen Wellenlängen Dicke dieses nicht
mehr hindurchläßt.
Nach (7) bestimmen sich die Grenzen des Sperrbereiches aus den Gleichungen

Ci Cz 1 C'i C 2—— -------1- —-— ----- = ----— und — ----- -------1 - - - --— ----- = 1 . (8)
COqv — Ö> 2 IR — CO2 2 COqv — W2 COj R — co2
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Für (7 und C2 können die Werte nach (3 a) und (4 a) verwendet werden. Das führt auf

S2 + 2
er + 2

2 2 «r + 2

•2 < Wir — 7 -----— T-
£ r + 2

w u 2 = "IR (9)

Mit den vorgegebenen Werten folgt

1,18 • 10 27 s- 1 < co2 < 3,06 • 10 27 s- 1

bzw.
34,1 [im < 2 < 54,9 p.m.

Bild 3.2.5. Schematischer Verlauf der Dielektrizitätszahl er = n 2 eines Festkörpers

Als Verhältnis der beiden Grenzen co u und coo des Sperrbereiches folgt aus (10)

w u = n 3

c°o }7(Öj
(10)

Nach (1) bzw. (3) ergibt sich ebenso wie im Infraroten ein .Sperrbereich für ultraviolettes Licht
co > cog . Er beginnt nach (3) und (7) für den durch

n 2 — 1 = = _ _1
n 2 + 2 couv — w g 2 2 (H)

bestimmten Grenzwert. Als Lösung der Gleichung (11) erhält man

cog = V201! + o) u V . (12)

Mit den vorgegebenen Zahlen folgt

cog = ]/2 • 6,32 • 10 31 + 1,61 2 • 10 32 s" 1 = 1,96 • 10 16 s“1 .
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Wellen mit der Wellenlänge

A < Ag = 96,1 nm

werden hiernach durch den Kristall nicht mehr hindurchgelassen. Die Dämpfung ist so stark, daß
bereits eine wenige Wellenlängen dicke Schicht zur völligen Auslöschung führt.
Bild 3.2.5 zeigt schematisch den Verlauf von sr (co) = n2 (co) für den gesamten Spektralbereich.

3.2.4. Transversale und longitudinale Eigenschwingungen

Aus spektroskopischen Messungen wird für LiBr die transversale Eigenschwingung coT =
3,0 • 1013 s-1 ermittelt. Bestimmen Sie die Kreisfrequenz der zugeordneten longitudinalen Eigen-
schwingung.
LiBr hat im Sichtbaren die Brechzahl n& = 1,8. Die statische Dielektrizitätszahl ist er = 13,2.

Lösung:
Wir betrachten stehende mechanische Wellen. Bei transversalen Schwingungen bewegen sich die
Kristallbausteine senkrecht zur Ausbreitungsrichtung der Welle und ergeben daher eine periodisch
veränderliche Polarisation P senkrecht zum Wellenzahlvektor K der Phononen. Man erhält
Knotenflächen der mechanischen Bewegung, die parallel zum Polarisationsvektor liegen (vgl.
Bild 3.2.6a). Dagegen ergeben longitudinale Wellen Knotenflächen orthogonal zum Polari-
sationsvektor P (vgl. Bild 3.2.6b).

Bild 3.2.6. Lage der Knotenflächen und des Polarisationsvektors
a) bei transversalen mechanischen Wellen
b) bei longitudinalen mechanischen Wellen

Das Medium zwischen zwei Knotenflächen stellt eine langgestreckte dünne Scheibe oder Platte
dar. Befindet sich eine dünne Scheibe im homogenen elektrischen Feld E, so unterscheidet sich
das in ihr hervorgerufene Feld E i9 je nachdem, ob die Scheibenachse parallel oder senkrecht
zum äußeren Feld E gerichtet ist (vgl. Bild 3.2.7). Für das Feld in der Scheibe erhält man nach
den Grundgesetzen der Elektrostatik (vgl. [4])

NPEi =E  - —
«o

(1)

N heißt der Entelektrisierungs- bzw. Entmagnetisierungsfaktor. Er ist nur von der Geometrie
abhängig.
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Im vorliegenden Fall ist

N = p = 0 , (2)

wenn die Scheibenebene parallel zum äußeren Feld jEa liegt, dagegen

N = N s = 1 (3)

bei senkrecht zum äußeren Feld stehender Scheibe. Die Größe

F NP
Ai = ----

heißt Elektrisierungsfeldstärke.

Bild 3.2.7. Das elektrische Feld £ in einer dünnen Scheibe
a) bei parallel, b) bei senkrecht zur Scheibenachse gerichtetem äußerem
elektrischem Feld E

Neben dem Elektrisierungsfeld JSe l  hat man das Lorentz-Feld

P
3cq

E

(vgl. 3.2./20) zu berücksichtigen. Das gesamte auf ein Teilchen wirkende lokale Feld £ ist somit
durch

£ =E  +E L -E e i  (6)
gegeben.
Bei transversalen Schwingungen sind das äußere Feld E und damit die Polarisation P parallel
zu den Knotenflächen gerichtet. Nach (2) und (6) gilt daher für transversale Schwingungen

Arans = E • ( 7 )
O£0

Dagegen erhält man bei longitudinalen Schwingungen nach (1), (3) und (6)

2
3s0

Aong — (8)
e0 3e0
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Nach (3.2./6a) definiert man die Polarisierbarkeit a e l  durch Elektronen- bzw. a i on  durch Ionen -
auslenkung auf Grund der Gleichungen

P e l  =t QNe i  oce iE,  (9)

Pion. = £ 0- ion a ion-®' • (10)

Darin gibt N i on  die Konzentration der Ionen, N e l  die der freien Elektronen an. Die Polarisation
der Ionen wird andererseits nach (3.2./6) durch die Auslenkung r gemäß

•Pion = (H)
bestimmt.
Im elektrostatischen Grenzfall besteht zwischen dem lokalen elektrischen Feld jß und der Aus-
lenkung r die lineare Beziehung

Cr = Zeß. (12)

Darin kennzeichnet C die rücktreibende Kraft, bezogen auf die Einheit der Auslenkung (1 m).
Setzt man £ nach (12) in (10) ein und vergleicht den sich ergebenden linearen Zusammenhang
zwischen P i on  undr mit dem nach (11) bestehenden, so folgt

Z2e 2
«ion  = "TT ( 13  >

als Beziehung zwischen der Kraftkonstanten und der ionischen Polarisierbarkeit.
Bei zeitlich veränderlichen Feldern wird die Auslenkung r der Teilchen durch die Differential-
gleichung

d 2r
I* + Cr = Zeß < 14 >dr

bestimmt, p, bedeutet die reduzierte Masse der oszillierenden Teilchen.
Setzt man voraus, daß das äußere Feld E gegen das von der Polarisation P erzeugte elektrische
Feld vernachlässigt werden kann, so ergibt sich im Falle transversaler Schwingungen nach (7)

£ = — = f>el + Jf>lon . (15)
3c0 3e0

Wir führen hierin P e l  nach (9), P i on  nach (11) ein und erhalten damit als Beziehung zwischen £
und r bei transversal schwingenden Teilchen

jg = ----N ionZe ---- ( 16)

e0 (3 — 2Ve l  <xe l  )

Drückt maniß in (14) durch (16) aus, so gelangt man für r zu einer linearen homogenen Differen-
tialgleichung zweiter Ordnung. Sie kann durch Exponentialansatz

r = r oeiüJ Ti (17)

gelöst werden. Für die Eigenfrequenz ergibt sich, wenn man die ionische Polarisierbarkeit gemäß
(13) einführt,

CUT = ]/- 1/1 - / i on* ion • (18)
|' A6 1 3 - el  a el
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In gleicher Weise verfährt man bei longitudinalen Schwingungen. Nach (6), (9) und (11) erhält
man als Beziehung zwischen £ und r bei longitudinal schwingenden Teilchen

(19)E = - - - -  ■— iU11 _ _  r.
e o(3 4“ 2Wi O n#el )

Aus (14) folgt damit als Eigenfrequenz der longitudinalen Schwingungen

@ 1 A i Ajonftion
|/ 3 + 2A e i<xe i

(20)

Wie man erkennt, ist diese stets größer als die zugeordnete transversale Schwingung. Das geht
auf die Wirkung des entelektrisierenden Feldes zurück.
Für das Verhältnis zwischen den Eigenfrequenzen ergibt sich nach (18) und (20)

/ 2 2 1
1 4 “ - el a el 4 Z“ - iona ion 1 “ "T* - el el

----------i---------------l------- l21)
/ 1 “Z" - el a el “Z- - ion ion 1 4“ ~ - el  a el
/ o o o

Durch das Auflösen der DRUDEschen Formel (3.2. /21a) nach er erhält man im vorliegenden
Fall

2 2
1 4 ~ A e i<%e i 4 “ - ion ion

£ r = --------1 • (22)
1 “ el  a el Z“ - ion ion

o o

Im sichtbaren Bereich kann a ion  gegen a e l  vernachlässigt werden. Es ergibt sich daher für die
Brechzahl im sichtbaren Bereich

2
1 4" V - el el

n s
2 = -------------------------

1
1 Z“ - el a el

0

(23)

Werden diese Größen in (21) eingeführt, so folgt die Lyddane-Sachs-Teller-Beziehung

«>L = VZ(Öj
COf 72>s

(24)

Für das Verhältnis der Grenzen des Sperrbereiches im Infraroten ergibt sich somit nach (3.2.3./11)

co u = =

ö>0 VMÖ) "L ’
(25)

Mit den vorgegebenen Werten erhalten wir nach (24)

y
l 9 9

-A±± s -i = 6,05 • 1013 s-1 .
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3.2.5. Absorption durch E-Zentren in NaCl

Die Absorptionsbande der F-Zentren in Steinsalz NaCl liegt bei A = 465 nm. Durch Erzeugung
von Farbzentren in der Konzentration = 4,6 • 10 22 m-3 wird die Absorptionskonstante des
Materials um Afc = 1 mm-1 gegenüber dem Wert bei nichtvorhandenen Farbzentren vergrößert.
Untersuchen Sie nach der Dispersions- und Absorptionstheorie des Lichtes die Abhängigkeit der
Absorptionskonstanten von der Wellenlänge, bestimmen Sie die Halbwertsbreite der Absorptions-
kurve und berechnen Sie die Dämpfung der oszillierenden Elektronen. Die Brechzahl des unver-
färbten Steinsalzes ist n-x = 1,54.

Lösung:
Nach 3.2. werden F-Zentren durch Elektronen in Anionenlücken verursacht. Wir trennen in der
DRTOEschen Formel (3.2./21) den von der Schwingung der Elektronen verursachten Summanden
von den übrigen Summanden ab und schreiben

i ------- ---------- —- -3s0 7ne (cox
2 — co2 — i@xcox )

Darin steht 27 für die von den Schwingungen der übrigen Kristallbausteine, Natrium- und
Chlorionen verursachten Glieder. m e bezeichnet die Elektronenmasse, den Reibungskoeffi-
zienten der Elektronen. Auf der rechten Seite fassen wTir £0 + 27 zu einer einheitlichen Größe cf
zusammen. Sie gibt die komplexe Dielektrizitätskonstante des reinen Kristalls ohne Farbzentren
an. Im letzten Summanden, der auf die Elektronen in Anionenlücken zurückgeht, ersetzen wir
im Zähler näherungsweise s' durch e0 und erhalten damit

7ne (a>i2 — co2 — i i i)

Ebenso wie die Dielektrizitätskonstante zerlegen wir die komplexe Brechzahl in einen Anteil, der
vom reinen Kristall, und einen Anteil, der von den Farbzentren stammt:

T /
n' = + An' = / — . (3)

F £o
Wir setzen (2) in (3) ein und erhalten unter der Voraussetzung

|An ' |< l  (4)

für die Brechzahlanteile

= / —— , An ------------------- ----------------- . (5)
F £o 2me (co1

2 — co 2 — i xcox )

Die im reinen Kristall auftretende Absorption kann in erster Näherung gegen die Absorption durch
Farbzentren vernachlässigt und daher

e/ = Cj, n/ = nj

geschrieben werden. Ferner kann man nach (3.2./23)

n' = n(l  — ix) = (n + An) (1 — ix) = n-x + An — ixn &)
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setzen und dabei die Brechzahländerung An infolge der Farbzentren ebenso wie den von den Farb-
zentren verursachten Absorptionsindex k = Ax als klein gegen die Brechzahl nj des reinen Kristal-
les annehmen :

% w i ’ *

Damit folgt aus der zweiten Gleichung (5)

a / a • — co2 + i iCOj) . xkn = An — = ---------1 ■ 1------------! . (8)
2m e [(coi2 — CO2 ) 2 + P12CO!2]

Für die Berechnung der Absorptionseigenschaften sind nur die imaginären Anteile von Inter-
esse. Unter Berücksichtigung der ersten Gleichung (5) erhalten wir aus (8) für die Absorptions-
konstante nach (3.2./24)

k = " n = ----------------- . (9 )
c 2c0£0 n i ?ne [(co1

2 — co2 ) 2 4- Pi 2coi2]

Hierin bedeutet c0 die Lichtgeschwindigkeit in Vakuum.
Wir können in erster Näherung voraussetzen, daß im Nenner der Einfluß des Reibungskoeffi-
zienten gering ist und daher das Maximum der Absorptionskonstanten durch

CO = C0 ;

bestimmt ist. Unter dieser Voraussetzung erhalten wir für das Absorptionsmaximum

7.max — “ •
2coeon i?ne 91

(11)

Die Halbwertsbreite kann genähert dadurch bestimmt werden, daß sich der Wert des Nenners
gegenüber dem Maximum verdoppeln muß :

(co1
2 - co  2 / 2 ) 2 = ei 2 2 . (12)

Hieraus ergibt sich

<»112 = «! ± V (13)Zi

und damit die Halbwertsbreite

Acoi/2 = Ö! bzw. Av1/2 =
Z7V

(14)

Mit den vorgegebenen Werten folgt aus (11), wenn diese Gleichung nach aufgelöst wird,

4,6 • 10 22 - (1,60 • 10~ 19 ) 2
Hz = 1,58 • 10 14 s -1 .Öi = 2 • 3 • 10 8 • 8,85 • IO" 12 • 1,54 • 9,11 • 10~ 31 • 10 3

Pi ist klein gegen die Kreisfrequenz der Eigenschwingungen :

27V ♦ 3 • 10 8 s- 1

465 • IO" 9
2kcq

2
ÖiOx = 4,05 • 10 15 s- 1 .
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Für die Halbwertsbreite ergibt sich

A 1,58 • 1014 Hz
A i/ 2 = ----:--------- = 2,52 • 1013 Hz .

2tv

Dem entspricht die Energie

A 7. A 6,63 • 10~34 • 2,52 • 1013

— h A /2 — | ßo 10 -19 — 0404 eV.

Infolge der vielfältigen Näherungen ist dieser Wert ungenau und nur größenordnungsmäßig
richtig.

3.2.6. Dispersion in der Umgebung einer F-Bande

In Steinsalz wird eine Konzentration von = 5 • 1024 m-3 Farbzentren erzeugt. Untersuchen
Sie die Veränderlichkeit der reellen Brechzahl in der Umgebung der Absorptionskante und be-
stimmen Sie die größte Abweichung von der Brechzahl des unverfärbten Kristalls (Werte nach
3.2.5.).

Lösung:
Wir verwenden in Gleichung (3.2.5./8) die Realteile und erhalten für die Brechzahländerung
infolge der vorhandenen Farbzentren

A. = ---------- . (1)
2me [(ö>i2 — co2) 2 + ei 2«»i2] /ei«ö

Bild 3.2.8. Änderung der Brechzahl n
und der Absorptionskonstanten k in
der Umgebung eines F-Zentrums

Hierin können wir die Brechzahl

(2)

(3)

einführen.
Die Funktion

(cü!2 - co 2 ) 2 + eM 2

verschwindet für co = Auf der linken Seite der Absorptionsbande liegt ein Minimum, auf der
rechten Seite ein Maximum (vgl. Bild 3.2.8). Zur Bestimmung der Extrema differenzieren wir und
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erhalten
<W) = _ 2ß) gi2<»i2 ~ («>i2 ~ o>2) 2 ,4)

d<u [(a)x
2 - o)2) 2 + PiX 2] 2 ’

Die Ableitung verschwindet für

CO2 = CO] 2 ± CÜ!

bzw. bei kleinen Werten 1 für
COi

*> = ± 4"

Im Rahmen der vorgenommenen Näherungen fallen also, wie ein Vergleich mit (3.2.5./13) zeigt,
die Extremwerte von An(co) mit den Halbwerten des Absorptionsmaximums zusammen.
Wir setzen (5) in (1) ein und erhalten

TV z>2
(A ) ex t r=±- ------1-------- • (6)

Mit den vorgegebenen Werten und der Dämpfung nach 3.2.5. folgt

/A x , 5 • 10 24 • (1,60 • 10-19 ) 2
( A??/) pxtr — ~~k~ .V /extr -12 4 . 8 85  . 10 _ 12 i 54 9 11 10 _ 31 . t 58  1014 . 4 05  1015

= ±0,004.

3.2.7. Orientierungspolarisation

Schwefelwasserstoff zeigt bei der Frequenz 5 kHz eine starke und stellenweise sprunghafte Ver-
änderlichkeit seiner Dielektrizitätszahl er von der Temperatur. Diese Eigenschaft ist auf die Di-
polorientierung im Festkörper zurückzuführen. Die Wärmebewegung wirkt der Dipolorientierung
entgegen, so daß sich mit wachsender Temperatur s r verringert. Nach einem steilen Abfall bei
130 K auf £r = 14 verringert sich die Dielektrizitätszahl bis T = 190 K nahezu linear auf e T = 11
(vgl. Bild 3.2.9). Berechnen Sie daraus das Dipolmoment der Schwefelwasserstoffmoleküle.

15-

14-

13-

(o 12-

11 -

10-

130 140 150 160 170 160 190

Temperatur in K

Bild 3.2.9. Abhängigkeit der Dielektrizitäts-
zahl er von der Temperatur bei 5 kHz für
Schwefelwasserstoff

Schwefelwasserstoff kristallisiert in Form von ineinander verschobenen kubisch-flächenzentrier-
ten Gittern. Auf den Elementarwürfel mit der Kantenlänge 0,578 nm entfallen vier Moleküle.
Die relative Molekülmasse ist M v = 34,10.
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Lösung:

Das lokale elektrische Feld ß sucht die Elementardipole auszurichten. Ihm wirkt die Wärme-
bewegung entgegen. Ein Dipol besitzt im elektrischen Feld die potentielle Energie

Spot = ~ m e • = —mj) cos &. (1 )

Darin bezeichnet # den Winkel des elektrischen Momentes gegen das Feld (vgl. Bild 3.2.10).

Bild 3.2.10. Dipol im elektrischen Feld ß

Es seien N Dipole je Volumeneinheit in dem Stoff enthalten. Sie nehmen alle möglichen Rich-
tungen im Raum ein. Nach dem GiBBSschen Energieverteilungsgesetz erhält man den Mittelwert

£pot

e * T dß
wobei

dß = sin # d& dtp (3)

das Differential des Raumwinkels angibt. Das Integral ist über alle Richtungen des Raumes zu
erstrecken. Wir erhalten

2k k
r r cos &

J J e kT  cos sin # d# dg?
cos $ = — - ------------------------------------ . (4)

2k K ' ’
r f* me ß cos &

J J e kT  sin & d# dg?
0 ö

Die äußeren Integrationen können unabhängig von den inneren durchgeführt werden und er-
geben im Zähler und im Nenner den Faktor 2 k, der sich herauskürzt. Zur Auswertung des inneren
Integrals setzt man

C = — -— , u = cos#.  (5)
kT

Damit folgt aus (4)
i

/ eCu u du 1

cos# = ---------- = — In / ec “ du. (6)
/ . »d«  dc 1

-.1

Durch Ausführung der Integration ergibt sich

-----r- d ec — e~c /ra e$ \cos # = ---- In = L(C) = L I — -— ) .
dC C v \ kT ) (7)
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L(C) heißt die Langevin-Funktion. Ihr Verlauf ist in Bild 3.2.11 dargestellt. Reihenentwicklung
der Lange viN-Funktion liefert für kleine Werte C

P p3
= + <8)

Für E = 106 V m-1 , T = 300 K, elektrisches Moment me in der Größenordnung 10 -28 As m
liegt C nach (5) in der Größenordnung 0,01 . . .  0,1. Wir rechnen daher in erster Näherung mit

Bild 3.2.11. Lange viN-Funktion

Für die Orientierungspolarisation erhalten wir somit (vgl. Bild 3.2.10)

P m = Nm e ; (10)or e 3kT

die Orientierungspolarisierbarkeit wird gleich

a = (11)or Ne o fi 3eakT ' ' '

Bezeichnet <xQ die Summe aus elektronischer und ionischer Polarisierbarkeit, so können wir also
nach (3.2./11)

a = a e2 
= J_ y _____Z i2e2 ________i_ m e2 z 12 x

0 3kT e0 i — cd 2 — iQiOJi) 3e0 kT

schreiben. Damit folgt nach (3.2./21a) bzw. nach der CLAUSius-MosoTTischen Formel (3.2.1./6)

gr ~ 1 
= , Nm e2 

(13 )

wobei N die Konzentration der Moleküle, d. h. ihre Anzahl je Kubikmeter, angibt. Die Dielektri-
zitätszahl

— = nz (14)

ist sowohl von der Frequenz als auch von der Temperatur abhängig.
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Für die Differenz zwischen zwei Temperaturen erhält man nach (13) unter der Voraussetzung,
daß a0 und me

2 unverändert bleiben und daß jedes Molekül einen Dipol liefert,

Sr(a>i y 2) — 1 _ 8r(a>iy i) — 1 
= /_! ____1_\ , 15 >

er (co1 T 2 ) + 2 + 2 9sofc \T 2 Tj '

Die Anzahl der Moleküle je Volumeneinheit ergibt sich aus den Angaben über Elementarzelle und
Kristallaufbau :

N = --------- -----— • 4 m- s = 2,07 • 10 28 m“3 .
(0,578 • IO-9 ) 3

Wir lösen (15) nach m e auf, womit nach den vorgegebenen Werten folgt

13 10\ 9 • 8,85 • IO-12 • 1,38 • IO"23 • 130 • 190 .---------- ] ----------------------------------------------- As m
16 13/ 2,07- IO28 - 60

= 9,72 • IO"31 Cm.

Aufgaben

A 3.2.1. Berechnen Sie die Polarisation von KCl, wenn eine elektrische Feldstärke von
1000 V m“1 angelegt wird (e r = 4,68). Wie groß ist das' elektrische Moment, be-
zogen auf ein KCl-Molekül, wie groß die Dipollänge (d — 1,99 g cm-3 , = 74,58)?

A 3.2.2. Wie groß ist die Polarisierbarkeit von KCl für elektrostatische Felder und für Licht-
wellen im sichtbaren Bereich (n — 1,46)?

A 3.2.3. Berechnen Sie das elektrische Moment, das ein Feld der Stärke 106 V m-1 bei der
Einwirkung auf ein Xenonmolekül erzeugt (<x = 3,99 • IO-30 m3 ).

A 3.2.4. Welche Polarisation erzeugt ein elektrisches Feld der Stärke 10 V m-1 in festem
Xenon? Xenon hat kfz-Gitter mit der Gitterkonstanten a = 0,624 nm.

A 3.2.5. Steinsalz zeigt eine ausgeprägte Spektrallinie im Ultravioletten bei der Wellen-
länge 2 = 105 nm. Die Konzentration der Oszillatoren beträgt N = 2,28 • 1028 m-3 .
Berechnen Sie die Brechzahl n für 2 = 0,4 ptm, 2 = 0,7 pm und 2 = 5,0 p.m.

A 3.2.6. Berechnen Sie die Polarisierbarkeit des Steinsalzes im Bereich sichtbaren Lichtes
und im elektrostatischen Fall (2 = 0,5 p.m; n = 1,55; £r = 5,9 im elektrostatischen
Falle).

A 3.2.7. Welchen Sperrbereich besitzt Kaliumfluorid im Ultraroten (n = 1,2 für co =
3,5 • 1015 s- 1 , ZIR = 52,4 p.m, er (0) = 5,5)?

A 3.2.8. Geben Sie nach Tabelle 3.2.1 die obere Grenze des Sperrbereiches im Infraroten
für NaBr und KCl an.

A 3.2.9. LiF hat für 2 = 0,4 pm die Brechzahl n = 1,3988, für 2 = 0,8 p.m; n = 1,3889.
Berechnen Sie daraus genähert die Lage der ultravioletten Eigenschwingung, wenn
der Einfluß infraroter Eigenschwingungen vernachlässigt und die Brechzahl nur
auf eine ultraviolette Eigenschwingung zurückgeführt wird.

A 3.2.10. Stellen Sie aus den Daten nach A 3.2.9. eine Dispersionsformel für LiF n 2 = n2 (22 )
auf und vergleichen Sie diese mit der von Radhakrishnan

n* = i ,42664 + ■ ° 052Z2_ 25284
22 — 0,013056 22 — 2044,8

(2 in |xm).

1 0 Schilling, Festkörperphysik
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A 3.2.11. Bei PbTe wird die Messung der Dielektrizitätszahl für den elektrostatischen Fall
durch die Leitfähigkeit gestört. Als Verhältnis zwischen den Eigenfrequenzen der
longitudinalen und der transversalen Phononen wird nach 2.2.2. für K -> 0 der
Wert

3,2
COji

gemessen. Die Brechzahl für sichtbares Licht ist n 3 = 5,3. Bestimmen Sie die
Dielektrizitätszahl für den elektrostatischen Fall.

A 3.2.12. Die Halbwertsbreite in der Umgebung der F-Bande des Kaliumbromids beträgt
0,345 eV. Bestimmen Sie die Frequenzbreite.

A 3.2.13. Die Absorptionsbande des Kaliumchlorids liegt bei = 563 nm. Für die Halb-
wertsbreite werden 0,35 eV gemessen. Geben Sie die Halbwertsbreite in Einheiten
der Wellenlänge an.

A 3.2.14. Für die F-Bande des Natriumfluorids wird die Halbwertsbreite 0,62 eV gemessen.
Berechnen Sie den Reibungskoeffizienten und geben Sie auf Grund dieser Rechnung
die Absorptioriskonstante &max für das Bandenmaximum an, wenn die Konzentra-
tion der Farbzentren = 10 23 m-3 beträgt (nNaF = 1,32).

A 3.2.15. Stellen Sie für ein kugelförmiges Molekül mit dem Radius JR die Formel für dessen
Polarisierbarkeit auf.

A 3.2.16. Schätzen Sie aus der Dielektrizitätszahl e r = 80,8 des Eises den Moleküldurch-
messer ab. Dabei kann angenommen werden, daß sämtliche Moleküle im elektrischen
Feld gleich gerichtet sind. (dEis = 0,918 g cm-3 , Jf r = 18).

A 3.2.17. Der große Unterschied zwischen der relativ niedrigen Dielektrizitätszahl für Wasser
bzw. Eis im sichtbaren Bereich und dem großen Wert im elektrostatischen Falle
wird im wesentlichen durch die Richtungspolarisierbarkeit begründet. Zwischen
— 30 °C und — 10 °C steigt für 1 kHz die Dielektrizitätszahl des Eises von 14 auf 70.
Berechnen Sie das Dipolmoment. (Dichte d = 0,918 g cm-3 ).

3.3. Klassische Theorie der elektrischen Leitung

E Einführung

Leitfähiglceitseigenschaften fester Körper

Die elektrische Leitfähigkeit er fester Körper liegt innerhalb sehr weiter Grenzen. Sie
erstreckt sich von Werten der Größenordnung 10-17 Q’ 1 m-1 für Isolatoren bis zu
67.1 • 106 Q-1 m-1 für Silber. Darüber hinaus zeigen Supraleiter nahe dem absoluten
Nullpunkt Leitfähigkeiten in der Größenordnung 1023 Q-1 m-1 und darüber. Bild
3.3.1 stellt die Leitfähigkeit charakteristischer Stoffe grafisch dar. Tabelle 3.3.1 ent-
hält die elektrische Leitfähigkeit charakteristischer Metalle, Halbleiter und Iso-
latoren.
Träger der elektrischen Leitung sind Elektronen und Ionen. Man unterscheidet daher
zwischen Elektronen- und lonenleitung.
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Die Leitfähigkeitseigenschaften finden ihre Ursache in der Struktur der Festkörper.
Elektronenleitung wird durch Elektronen bewirkt, die sich frei durch den Fest-
körper bewegen können und nur an diesen gebunden sind. Sie werden als freie
Elektronen bzw. zum Unterschied gegen freie Elektronen in Gasen oder im Vakuum
als quasifreie Elektronen bezeichnet. lonenleitung geht auf die Wanderung der
Ionen nach 3.1. zurück.
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Silizium

Isolatoren

• Polystyrol

Bernstein
Bild 3.3.1. Leitfähigkeit
fester Körper

Drude-Sommer feldsche Elektronentheorie der Metalle
Bei den Metallen gehört im Mittel je Atom ein Elektron dem Kristall als Ganzes an.
Die Elektronen verhalten sich nach Drude wie ein Gas frei beweglicher Teilchen. Eine
von außen angelegte elektrische Spannung bewirkt, daß die Ladungsträger bevorzugt
in die vom Feld bestimmte Richtung diffundieren. Hierdurch kommt eine Drift-
bewegung der Ladungsträger zustande, die sich der ungeordneten Teilchenbewegung
bei fehlendem Feld überlagert.
Das angelegte elektrische Feld E führt zu einer Beschleunigung der Elektronen ent-
gegen der Feldrichtung; die kinetische Energie der Elektronen nimmt zu. Bei den
Bewegungen im Kristallgitter stoßen die Elektronen mit den Gitterbausteinen zu-

10*
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sammen und geben dabei ihre Beschleunigungsenergie an das Gitter ab. Die Be-
schleunigungsenergie wächst also zwischen zwei Stößen von Null auf einen Maximal-
wert an. Im Mittel ergibt sich eine Driftgeschwindigkeit, die in Übereinstimmung mit
dem OHMschen Gesetz dem elektrischen Feld E proportional ist (vgl. 3.3.1).
Durch die Zusammenstöße der Elektronen mit dem Gitter wird dieses zu verstärkten
Schwingungen angeregt. Die Stromleitung ist daher in Übereinstimmung mit dem
JouLEschen Gesetz mit einer Erwärmung des Festkörpers verbunden (vgl. A 3.3.1.).
Durch das DRUDESche Modell des Elektronengases werden die beiden grundlegenden
Effekte der Elektrizitätsleitung in Metallen richtig wiedergegeben. Dagegen ergeben
sich Schwierigkeiten, wenn der Temperaturkoeffizient des elektrischen Widerstandes
oder der Beitrag der Elektronen zur Wärmekapazität gedeutet werden sollen.
Hierzu hat man nach Sommerfeld davon auszugehen, daß die Elektronen bei Zim-
mertemperatur ein entartetes Gas darstellen, das nicht der BoLTZMANN-Statistik
genügt. Elektronen sind Elementarteilchen mit halbzahligem Eigendrehimpuls
bzw. Spin. Für sie gilt daher die FERMi-DiRAC-Statistik. Ihre Grundlagen sind in [3]
Abschnitt 4. behandelt. Die Ergebnisse bezüglich der Elektronen werden im folgenden
beschrieben.

Fermi-Dirac-Statistik der Elektronen
Nach der FERMi-DiRAC-Statistik kann ein Quantenzustand entweder unbesetzt oder
von nicht mehr als einem Teilchen belegt sein. Die Anzahl der Quantenzustände in
einer Kugelschale des Impulsraumes ist, bezogen auf das Kristallvolumen F o = 1 m3 ,

4np?
Zi  ~ g h* (1)

(vgl. 2.1.4. und Bild 2.1.5). Der Gewichtsfaktor ist für Elektronen auf Grund der
beiden entgegengesetzten Einstellmöglichkeiten des Spins

<7 = 2, : (2)
d. h. auf jede Zelle des Phasenraumes entfallen zwei Quantenzustände, z-% hat die
Einheit m-3 . i

b o o  o
o o o o o
o o o o o
’ -------------------- - £•® ® ® ®
0 ® ® ® ® Bild 3.3.2. Quantenzustände nach der Fermi-

DiRAC-Statistik für T = 0. - - - FERMi-Kante.
® ® ® ® ® (x) besetzter Zustand, O unbesetzter Zustand

Am absoluten Nullpunkt T = 0 besetzen die Elektronen sämtliche Energiezustände,
von unten an, lückenlos bis zur oberen Grenze eF (vgl. Bild 3.3.2). eF heißt Grenz -
energie bzw. Fermi- Kante. Sie trennt besetzte von unbesetzten Energiezuständen.
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Die Gesamtheit der Elektronenimpulse liegt für T = 0 in einer Kugel des Impuls-
raumes. Der Radius p 0 dieser Kugel ist durch die Beziehung

Po2

(3)

festgelegt. Andererseits haben nach der ÜEiSENBERGschen Unbestimmtheitsrelation
die Zellen des sechsdimensionalen Phasenraumes die Größe

ApA# = A3 . (4)
Die betrachteten Elektronenimpulse werden im Impulsraum durch eine Kugel mit

4dem Volumen — vcpo3 begrenzt. Berücksichtigt man g = 2 nach (2), so folgt für dieö
Anzahl der Elektronen im Volumen 1 m3

4kPo3

3ä3 ’ (5)

N hat die Einheit m-3 . Aus (5) ergibt sich als Grenzenergie der Elektronen

(6)

Bei Temperaturen T 4= 0 werden nicht nur die unteren Energiezustände besetzt
(vgl. Bild 3.3.3). Nach der Fermi-Dirac -Statistik ist die Anzahl der Elektronen mit
Impulsen zwischen und p + Ap$ bzw. p und p + dp

Ä*(e“ + kT  4
bzw. (7)

o o O O O
o 8 O O 0
o 8 8 O o
o 8 8 8 o
8 8 O 8 8

Bild 3.3.3. Quantenzustände nach der Fermi-
8 8 8 8 ® DiRAC-Statistik für T =|= 0

« ist ein Parameter, der aus der Teilchenzahl zu bestimmen ist und auch von der
Temperatur abhängt. Der Ausdruck

/o = -
“ + 7te

(7a)
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heißt Verteilungsfunktion bzw. Verteilungsdichte. Er gibt die Besetzungswahr-
scheinlichkeit einer Phasenzelle an.
Bei der Integration über die Besetzung sämtlicher Zustände muß sich die Gesamt-
zahl der Elektronen ergeben. Bezeichnet N die Elektronenkonzentration, d. h. die
Anzahl der im Metall frei beweglichen Ladungsträger je Kubikmeter, so muß

N = J dN (8)

bzw., wenn man (7) einsetzt,

A3

o

erfüllt sein. Werden nur freie Elektronen innerhalb des Metalles betrachtet, so be-
steht die Elektronenenergie nur aus kinetischer Energie. Für diese ist

'W =ir- < 10>
Zur Auswertung des Integrals (9) setzt man

Damit ergibt sich aus (9), wenn man für die Elektronenenergie den Ausdruck nach (10)
einsetzt,

0

Das rechts stehende Integral der Form

oo

0

heißt Entartungsintegral. Seine Auswertung erfolgt durch Reihenentwicklung. Für

— oc == d > 0 (13a)

zerlegt man
<5 oo oo

= f dt + f i”-1 d t - f  di .
0 <5 0 '

(14)
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Der erste Summand kann elementar ausgewertet werden. Den zweiten und dritten
faßt man zusammen und schreibt

ö n

In-, = — + 1 Z (15)n
mit

oo <5 oo

/
r fn-l r fn-l

dt ~J  i + e-«-» d( - J  T+e--  ) dt '
<5 0 <5

Die Aufspaltung des dritten Summanden in ein Integral von Null bis <5 und ein
Integral von d bis Unendlich ist zur Gewährleistung der Konvergenz erforderlich.
Durch Reihenentwicklung entsteht

oo oo Ö OO

Zz = - f t”-1 S (-1)’ +1 e-t’+W-» di - f t”-1 S (-1)’ e(’+D( ( -« di .
ö v = Q 0 v=  0

(17)

Im ersten Summanden kann x = (y + 1) (t — d), im zweiten x =. — (y + 1) (t — ö)
transformiert werden. Damit folgt

oo

4 = f [(<5 + «)’1“ 1 — (<3 — aj)”“ 1 ] e~x dx £J ,=o (y + ir
0

oo

(-»).-> e- S 1 
(; +1  ). . (18)

0

Auswertung der Integrale unter Verwendung der Gammafunktion
oo

T(n) — f e~y y71- 1 dy (19)
o

ergibt schließlich

(20)
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mit
c i = 1— 27” “3 ? — 4r ”1 -------- ‘ ( 20a  )

Speziell ist
TT 2

C2 = -73-. (20b)

Mit Hilfe von (20) kann das Integral in (9) berechnet und daraus der Parameter
bestimmt werden. Seine Kenntnis ist erforderlich, wenn die physikalischen Zustands-
größen der Elektronen im Festkörper, insbesondere die Innere Energie und die spezi-
fische Wärmekapazität, abgeleitet werden (vgl. 3.3.3.).

Fermi-Energie und Fermi-Kante
Der Parameter a in (7) und (9) ist mit dem Chemischen Potential /z c verknüpft,
das in der Statistischen Physik definiert wird (vgl. [3] 3.3./6). Es gibt die Freie
Enthalpie je Teilchen an. In der Festkörperphysik wird das Chemische Potential
als Fermi-Energie C bzw. Fermi-Potential bezeichnet. Zwischen /z c bzw. f und a
besteht die Beziehung

(jlq = C = — cdcT . (21)

Die FEBMi-Energie für T = 0 wird mit Co bezeichnet :

Co = C(0) (22a)

Sie heißt Fermi-Kante.
Am absoluten Nullpunkt T = 0 hat die Verteilungsfunktion (7 a) für Energien
e > Co den Wert Null. Diese Zustände sind also unbesetzt. Dagegen ergibt sich im
Falle £ < Co für den Wert der Verteilungsfunktion /0 = 1. Diese Zustände sind alle
besetzt. Die FERMi-Kante trennt somit für T = 0 die besetzten von den unbesetzten
Zuständen. Sie ist identisch mit der Grenzenergie nach (6):

Co — £f • (22)

Für die Anzahl der Elektronen ergibt sich nach (7) mit der FERMi-Energie nach (21)

dN = kWP* dp

Als Verteilungsfunktion folgt an Stelle von (7 a)

(24)
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Effektive Masse
Für Elektronen, die sich frei durch den Kristall bewegen können, wird eine effektive
Masse eingeführt. Sie charakterisiert die Trägheit der Elektronen im betreffenden
Material, die zwar einem periodischen Kristallfeld mit dem Potential U unterliegen,
dabei aber eine so große Energie W besitzen, daß sie sich wie freie Teilchen im
Vakuum bewegen. Auf Grund dessen läßt man das periodische Kristallpotential
völlig außer acht, rechnet also mit U = 0, nimmt dafür aber eine gegenüber der
Elektronenmasse m Q — 9,11 • 10~31 kg veränderte Teilchenmasse m an.
Bezeichnet v die Elektronengeschwindigkeit, F die äußere Kraft, ü das Potential,
so wird die Bewegung der Elektronen nach dem zweiten NEWTONschen Axiom durch

' dum e -jj- = F — grad U (25)

bestimmt. Nach dem Konzept der effektiven Masse m sieht man davon ab, das real
vorhandene Kristallpotential einzuführen, und behandelt die Kristallelektronen wie
freie Teilchen der Masse m. An Stelle von (22) schreibt man also

du'm -=F.  (26)
at

Der Wert m der effektiven Masse hängt nicht nur vom Material, sondern auch von
der Bewegungsrichtung ab. Die effektive Masse ist daher in (26) als Tensor einzu-
führen.
Werden die Beschleunigungen nach (25) und (26) gleichgesetzt, so erhält man in
erster Näherung den Mittelwert

1 — grad Ü

der durch Integration über sämtliche Richtungen abgeleitet werden kann. Das
Verhältnis zwischen der Elektronenmasse m Q und der effektiven Masse m heißt
Freiheitszahl / :

/ = (28)

Tabelle 3.3.2 enthält die Freiheitszahlen für einige Metalle. Werden die Elektronen
im Metall als freie Teilchen behandelt, so ist bei der Berechnung ihrer Zustands-
größen, z. B. ihrer FERMI-Kante, mit der effektiven Masse m zu rechnen.

Beispiel 3.3.1. Fermi-Kante der Elektronen in Kupfer

Kupfer hat nach Tabelle 2.2.2 die Dichte d = 8,93 g cm-3 . Seine relative Atommasse ist Ä v
= 63,55. Für die Konzentration der Kupferatome ergibt sich NCn = 8,5 • 1028 m -3 . Die Frei-
heitszahl für Kupfer ist nach Tabelle 3.3.2 / = 0,67. Nimmt man an, daß je Atom ein freies
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Elektron geliefert wird, so folgt für die FBRMI-Kante in Kupfer nach (6)

(6,63 • 10~34)2 • 0,67 /3 • 8,5 • 1028\ 2/3 1 Tr . „ TT—■ | --------------- ) --------------- eV — 4 ,7 eV •F 2 ♦ 9,11 • IO"31 \ 4 • 3,14 • 2 / 1,60 • IO-19

Die effektive Masse ist einzusetzen. wenn die freien Elektronen im Metall als Elek-
tronengas behandelt werden und die molare Wärmekapazität dieses Gases bestimmt
wird. Aus der Messung des Anteils der freien Elektronen im Metall an der molaren
Wärmekapazität des Festkörpers läßt sich daher die effektive Masse experimentell
bestimmen (vgl. 3.3.4. und 3.3.5.).

Probleme

3.3.1. Konzentration und Beweglichkeit freier Elektronen im Metall —
Hall-Effekt und Ohmsches Gesetz

Durch eine Kupferplatte fließt ein elektrischer Strom der Dichte j = 5 A mm-2  . Um die Drift-
geschwindigkeit v der Elektronen sowie die Konzentration freier Ladungsträger zu messen, wird
senkrecht zur Stromrichtung und zur Kupferplatte ein magnetisches Feld mit der Flußdichte
B = 1,0 Vs m-2 angelegt (vgl. Bild 3.3.4). Zwischen den Endflächen der 50 mm breiten Platte
stellt man dabei eine HALL-Spannung von UH = 12,4 p,V fest. Sie ist so orientiert, daß B, j  und
die Hall -Feldstärke in dieser Reihenfolge ein Linkssystem bilden.

Bild 3.3.4. HALL-Effekt

Bestimmen Sie die Beweglichkeit p der freien Elektronen in Kupfer, ihre Konzentration N und
die Driftgeschwindigkeit v infolge des angelegten Feldes. Wie groß ist im Mittel die Stoßzeit,
die Zeit t zwischen zwei Stößen eines Elektrons? Der spezifischen Leitwert für Kupfer beträgt

er = 64,5 • 106 m-1 . Die effektive Masse m ist gemäß = 0,67 gegeben.
m

Lösung:
Die freien Elektronen verhalten sich innerhalb des Metalles als Elektronengas. Unter dem Ein-
fluß des äußeren Feldes E erhält das einzelne Elektron mit der Ladung — e die Beschleunigung
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Auf Grund dessen driften die Elektronen entgegen der Feldrichtung, erzeugen also einen elektri-
schen Strom in Feldrichtung. Beim Zusammenstoß mit einem Gitterbaustein verliert das Elektron
die aufgenommene Driftenergie vollständig an das Gitter. In der Zeit t zwischen zwei Zusammen-
stößen wächst somit die Driftgeschwindigkeit von Null auf 2v, wenn v den Mittelwert der Drift-
geschwindigkeit angibt:

1 reE ...v = . (2)
2 m

Die driftenden Elektronen führen zu einem elektrischen Strom der Dichte

j = je = —Nev.

Wir setzen hierin v nach (2) ein und erhalten

.1 = — ------ E

(3)

(3a)

wobei N die Anzahl der Elektronen je Kubikmeter angibt. N hat also die Einheit m~3 . Der Ver-
gleich mit dem Ohmschen Gesetz

j = oE (4)

ergibt für die Leitfähigkeit

Das Verhältnis zwischen der Driftgeschwindigkeit v der Elektronen und der elektrischen Feld-
stärke E ist eine Materialkonstante. Es definiert die Beweglichkeit der Elektronen im Metall :

vv = bE bzw. b = —
E (6)

b hat die Einheit m/(s V m-1 ) bzw. m2 s-1 V-1 .
Wie aus dem Vergleich mit (2) folgt, ist die Beweglichkeit b der Stoßzeit t proportional:

b = 4 — T - (7 )2 m

An Stelle von (5) kann man daher auch

o = Neb (5 a)
schreiben.
Die Kenntnis der Leitfähigkeit er eines Stoffes liefert nur das Produkt aus der Elektronenkon-
zentration N und der Beweglichkeit b, nicht jedoch die Größen selbst. Um diese einzeln bestimmen
zu können, nutzt man den Hall-Effekt aus.
Auf eine bewegte Ladung q wirkt die Kraft

F = q(E +vxB) .  (8)

Im vorliegenden Fall ist q = — e zu setzen.
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Durch das elektrische Feld werden die Teilchen in oder entgegen der Feldrichtung beschleunigt,
durch das magnetische Feld senkrecht zur Stromrichtung abgelenkt. Sie konzentrieren sich daher
auf einer Seite der Platte, wodurch ein Gegenfeld, das HALL-Feld jEh , erzeugt wird. Nach (8)
wird die LoRENTZ-Kraft durch das Hall -Feld

E r =B xv (9)

ausgeglichen. Löst man (3) nach v auf und setzt den erhaltenen Wert in (9) ein, so ergibt sich

E r = HB xj  . (10)

Der Proportionalitätsfaktor R heißt Hall-Konstante. Er ist für reine Elektronenleitung gleich

R — ------—
Ne (11)

Das negative Vorzeichen zeigt, daß bei Elektronenleitung B, j, jEh in der Reihenfolge i, j, —k
aufeinanderfolgen, also ein Linkssystem bilden. Stehen B und v senkrecht zueinander, so erhält
man bei Verwendung von Gleichung (3)

£?h = — jß-G
(12)

Die Messung der ÜALL-Spannung liefert daher bei Kenntnis der Größen B, j und a die Elektronen-
beweglichkeit b, aus der gemäß (7) die Stoßzeit r bestimmt werden kann.
Mit den vorgegebenen Werten folgt aus (12), wenn man nach b auf löst:

. 12,4 • 10-« • 64,5 • 10«
b — -----------------------------

50 • IO-3 • 5 • 10 6 • 1,0
m 2 s- 1 V- 1 = 3,20 • 10~ 3 m 2 s- 1 V" 1 .

Die Driftgeschwindigkeit beträgt nach (6)

V = bE = b L = 3,2 • 10- 3 • 5 •
(7

10 6 • 1,55 • 10 -s m s -1 = 0,248 mm s~ x .

Aus (7) ergibt sich durch Auflösen nach t

2 • 3,20 • 10~ 3 - 9,11 • 10~ 31

s = 5,43 • 10~ 14 s .
1,60 • 10- 19 • 0,67

Nur in der Stoßzeit wirkt sich der Unterschied zwischen Elektronen- und effektiver Masse aus.
Aus (9) und (10) erhält man

1 Bj 1,0 • 5 • 10 6 • 50 • 10- 3 ' , n29 _3N = --------- - -  — — = — ------------------------------- m -3 = 1,26 • 10 29 m 3 .
eR eE R 1,60 • IO-19 • 12,4 -T0~6

Nach Tab. 2.2.2 ist Neu = 8,46 • 10 28 m -3 . Die Abweichung ist einmal darauf zurückzuführen,
daß außer den Elektronen noch andere Ladungsträger beteiligt sind. Außerdem stellt die An-
nahme, daß auf jedes Metallatom ein freies Elektron im Metall entfällt, nur eine Näherung. dar.
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3.3o2. Positive und negative Ladungen bei der Stromleitung

Wismut besitzt als Folge seines Kristallaufbaus anisotrope Eigenschaften. Der elektrische Wider-
stand hängt von der Stromrichtung, der HALL-Effekt von der Richtung des Magnetfeldes ab.
Mit einem Strom der Dichte j = 1,0 A mm-2 und einem senkrecht dazu gerichteten Magnetfeld
der Flußdichte B = 1,0 Vs m-2 wird, wenn B parallel, j orthogonal zur c-Achse gerichtet ist, die
HALL-Feldstärke E# = 1,35 V m-1 gemessen. Sie ist derart orientiert, daß B, j, jEJh ein Links-

system bilden. Der spezifische elektrische Widerstand beträgt — = 1,02 Qm. Wennj parallel,!?
G 1orthogonal zur c-Achse gerichtet ist, wird dagegen E = 0,045 V m-1 , — = 1,3011m gemessen.

(7
Hierbei ist die HALL-Feldstärke so gerichtet, daß B, j, jEh ein Rechtssystem bilden. Leiten
Sie die Verknüpfung der HALL-Konstanten mit der Konzentration der Ladungsträger her und
deuten Sie die Meßergebnisse.

Lösung:
Die unterschiedlichen Richtungen der HALL-Feldstärke weisen nach (3.3.1/11) darauf hin, daß
verschiedene Sorten von Ladungsträgern am elektrischen Strom beteiligt sind. Wir gehen davon
aus, daß neben dem Elektronenstrom j e ein Strom j p positiver Ladungen fließt. Beide Ströme
summieren sich zum resultierenden Strom

i = j e +j  P (i)
mit

Je : Jp (2)

N e und A p geben die Konzentration, v e und v p die Driftgeschwindigkeit der positiven und nega-
tiven Ladungsträger an (vgl. Bild 3.3.5). Ze kennzeichnet die positive Ladung eines Ladungs-
trägers. j e undj p sind gleich gerichtet.

•7 ------►K»

-* ----------: ----------- Je =
-* --------- jp° ZN p evp

; -------- ---------- - -  J = Je+ J p

Bild 3.3.5. Driftgeschwindigkeiten und elektrischer Strom
bei verschiedenen Ladungsträgern

Die Beweglichkeit definiert man gemäß

ve = b e E bzw. vp = b pE.  ■ (3)

Wird (3) in (2), (2) in (1) eingesetzt, so ergibt sich

j = (A ec6 e + A pZeö p )jE. (4)

Der Vergleich mit dem OHMschen Gesetz liefert für die elektrische Leitfähigkeit im Falle zweier
verschiedener Sorten von Ladungsträgern.

a = N e ebe -f- WpZeö p . ' (5)
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Bezogen auf 1 m3 Leitermaterial wird in einem elektrischen Feld E und einem gleichzeitig vor-
handenen magnetischen Feld mit der Flußdichte B die Kraft

F' = ( — N e e 4~ N Ze)E 4- ( — 4~ N Zev ) xB  (6)

ausgeübt. Damit der LoRENTZ-Kraft das Gleichgewicht gehalten wird, muß also die ÜALL-Feld-
stärke

E (~  N *ev * + N 9Zev P> xB  z7)H -N e e + N pZe
erzeugt werden.
Die Driftgeschwindigkeiten können nach (3) durch die Beweglichkeiten der Ladungsträger aus-
gedrückt werden. Aus (7) folgt, wenn man (5) berücksichtigt,

= ------------- - ---------- ExB  = -------52S2 ------- . (8)
-N ee + N pZe -N ee + N pZe

Für die ÜALL-Konstante erhält man somit bei einem Ladungstransport durch Elektronen und
positiv geladene Teilchen

Im Falle R > 0 überwiegt die transportierte positive Ladung die in der entgegengesetzten Dich-
tung transportierte negative Ladung. Die ÜALL-Feldstärke E R ist in diesem Falle nach (8) so
orientiert, daß B, j, jEJh in der angegebenen Reihenfolge ein Linkssystem bilden.
Überwiegt dagegen die transportierte negative Ladung, so ist nach (9) R < 0 ;  B,j,E-ft bilden in
dieser Reihenfolge ein Rechtssystem. Der letzte Fall liegt insbesondere bei reiner Elektronenleitung
vor. Für B || c , j  _L c erhält man aus den Meßwerten nach (5)

er = N e eb e + N„Zeb„ = — Q-1 m-1 .e e p p 1,02
Nach (9) ergibt sich

JOn = ------ m 3 Ag _1 = _ t 35 . 10 _6 m 3 Q-l.
Bj 1,0 • 10«

1R =
—N e e 4- N pZe

Eine Aussage, welche der transportierten Ladungen überwiegt, ist nach Gleichung (5) allein nicht
möglich. Dagegen besagt Gleichung (9), der der ÜALL-Effekt zugrunde liegt, daß für B || c,
j _L c mehr negative als positive Ladung transportiert wird.
Im Falle Bl  c, j 1 1 c erhält man aus den Meßwerten nach (5)

or = N Q eb 4- N Zebn = — Q-1 m-1 ,e e p p 1,30
nach (8) und (9)

-Er 0,045
Bj ~ 1,0 • 106

Wie aus der letzten Gleichung hervorgeht, überwiegen für ß | |  c, j _L c die positiven Ladungen.
Der gegenüber dem ersten Fall veränderte Leitwert ist somit nicht nur auf die Abhängigkeit der
Beweglichkeiten be und & p von der Stromrichtung zurückzuführen. Beim Transport elektrischer
Ladungen durch anisotrope Kristalle hängt auch die Konzentration der beteiligten Ladungsträger
von der Stromrichtung ab.

1 m3 As-1 = 4,5 • IO-8 m3 C-1 .R =
—N Q e 4- N Ze
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3.3.3. Innere Energie freier Elektronen in einem Metall

Stellen Sie die Formel für die innere Energie der freien Elektronen in einem Metall auf. Be-
rechnen Sie den Mittelwert der Nullpunktenergie für freie Elektronen in Kupfer am absoluten
Nullpunkt.

Lösung:
Nach (3.3./7) ist die Zahl freier Elektronen mit Impulsen zwischen p und p + dp durch die
Gleichung

dtf = ------- ------- (1 )

Ä3 ( e “ + ä™*5: 
+

gegeben. Die innere Energie des Elektronengases, bezogen auf 1 m3 Kristallvolumen, ergibt sich
durch Summierung über sämtliche Energiezustände :

(2 )

Wir setzen (1) in (2) ein und multiplizieren mit V o = 1 m3 . Es folgt

= 4 7, /* -------£ --------
mW a+ J?_

J e 
+ 2mk T + r

(3)

Durch die Multiplikation mit V o hat U die Maßeinheit J erhalten. Der Ausdruck (3) kann analog
(3.3./11) durch die Substitution

2mkT (4)

auf ein Integral der Form (3.3./13) zurückgeführt werden. Es entsteht damit die Gleichung
CO

u _ 4 V2 ngV0m 2l2 (kT) 5l2 f t3!2

h3 J ea +* + 1
o

Hierin ist zunächst der Parameter oc zu bestimmen. Er geht nach (3.3./12) aus der Gleichung
oo

N = 4 V2 ngjmkT)3 /2 f l[t dt
h3 J ea t + 1

o
hervor. Setzen wir voraus, daß <x = — <3 eine große negative Zahl ist, so daß

w>i (7)

gilt, so sind in (3.3./16) nur die ersten beiden Summanden von Bedeutung, während die Ex-
ponentialreihe völlig unberücksichtigt bleiben kann. Aus (6) folgt damit

N = -±- g ( _ a ) 3/ 2 A + + . .  A
3 i/k 'M  a* 2 /

(8)
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In erster Näherung vernachlässigen wir hierin auch den zweiten Summanden, schreiben also

' 3N_ \ 2 /3

4z7ig) 2mkT

In zweiter Näherung setzen wir

— «(2) = -«(1) +

in (8) ein und berücksichtigen (7). Damit ergibt sich

_ _ _ / 32V \ 2/3 a 2 r _ (TCwfeT) 2 /47rg y/ 3 i
“ “ “ (2) “ \ 4r.g / 2mkT [/ 3Ä4 \ 32V / ] ’

(10)

(H)

Berechnet man nach (9) bzw. (11) die FERMi-Energie f = —odcT gemäß (3.3./21), so erkennt man,
daß diese für T -> 0 mit der Grenzenergie eF bzw. der FERMi-Kante übereinstimmt. Für die
FERMi-Energie £ in Abhängigkeit von der Temperatur folgt aus (11)

TC2 FT 2 \
12 Co2 )

(12)C( ) = Co

Mit den vorgegebenen Werten erhalten wir

/3 • 8,5 • 1028\ 2/3 (6,63 • 10~3a ) 2 • 0,67
“ (1) \ 4k • 2 / • 2 ■ 9,11 • IO"31 ■ 1,38 • IO-23 • 300

= 183,

während der zweite Summand in der eckigen Klammer nur einen Wert in der Größenordnung
10 -4 hat. Wir können also mit oc = rechnen. Die Auswertung des Integrals (5) zur Bestimmung
der inneren Energie erfolgt in gleicher Weise nach (3.3./16) wie die Auswertung des Integrals (6).
Mit dem Näherungswert (9) für den Parameter a folgt

3A2 / 32V \ 2 /3 T 57t 2 / 4 t  \ 4 / 3 m2W 2 l
10m \ 4ti# / 0 [ + 3 \ 3N / A4 J (13)

Für die Nullpunktenergie des Gases freier Elektronen im Metall ergibt sich somit

10m \ 4k /
(14)ff.

bezogen auf ein einzelnes Teilchen

- _ / 3N \ 2/3 _ 37 / / 32V \ 2 /3
0 10m \ 47# / 10me \ 4t# /

Verglichen mit dem Maximalwert eF nach Beispiel 3.3.1 erhalten wir

(15)

3
£0 — —5

(16)

Im Mittel kommt also entsprechend der Rechnung in Beispiel 3.3.1 auf jedes Elektron in Kupfer
die Nullpunktenergie

Q
£0 = — • 4,7 eV = 2,8 eV.0 5
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3.3.4. Spezifische Wärmekapazität des Elektronengases

Berechnen Sie die Innere Energie U der Elektronen in Kupfer für T = 300 K, bezogen auf das
einzelne Elektron. Vergleichen Sie den erhaltenen Wert mit der Nullpunktenergie. Wie groß ist
die spezifische Wärmekapazität der Elektronen und welchen Beitrag leisten sie zur spezifischen
Wärmekapazität des Festkörpers? Die relative Atommasse des Kupfers ist 63,55.

Lösung:
Wir stützen uns auf die Ableitung der Inneren Energie nach 3.3.3. und verwenden (3.3.3./13).
Für die mittlere Energie des einzelnen Teilchens können wir

3A2 / 3N\  2/3 I“ 5k 2 M X 4/ 3 2 2 !
io™ U’w L + 3 \ 3 / J

schreiben. Unter Berücksichtigung der Ergebnisse in 3.3.3. erhalten wir

, z i

Die spezifische Wärmekapazität fester Körper wird im allgemeinen auf ein Kilogramm Metall
bezogen und mit c bezeichnet. Wir legen demzufolge unserer Rechnung 1 kg Trägersubstanz,
d. h. 1 kg Metall, zu Grunde. Dadurch wird die Konzentration N der Elektronen nicht geändert*.
8 ist mit

N1 = — = = — (3)
™Me Me

zu multiplizieren, wenn

Ui = N.e / (4)

die Innere Energie, bezogen auf 1 kg Metall, angeben soll. Dabei bedeutet die Masse eines
Metallatoms, die Molmasse des Metalles in kgkmol-1 , d die Dichte. U1 hat die Einheit
Jkg-L
Für die spezifische Wärmekapazität der Elektronen, bezogen auf 1 kg Metall, folgt

Mm / 4-xg \ 2/3 Na
— (5)

Bei der numerischen Rechnung verwenden wir die Ergebnisse nach 3.3.3. Aus (2) ergibt sich

-plT . - ? r h + ' 2 V/3 (VI  • 70~31 • 1,38 • 1Q-23T) 2 ]
[ 3 \ 3  • 8,5 • 10 22 / 0,67 2 (6,63 • IO"34 ) 4 J

= 2,8 (1 + 1,37 • 10- 9 T 2 ) eV.

Für T = 300 K folgt

e(T) = 2,8(1 + 1,24 • 10" 4 ) eV.

Mit zunehmender Temperatur verändert sich hiernach die Elektronenenergie bei Zimmer-
temperatur im Mittel nur um Bruchteile eines Elektronenvolts. Die Nullpunktenergie bestimmt
über einen sehr großen Temperaturbereich die Innere Energie der Elektronen. Mit ansteigender
Temperatur wächst s nicht proportional kT. Vielmehr steigt die Elektronenenergie zunächst nur
sehr wenig an. Erst bei hohen Temperaturen wirkt sich der Anstieg proportional T 2 aus. Infolge-

1 1 Schilling, Festkörperphysik



162 3. Elektrische und optische Eigenschaften idealer und realer Kristalle

dessen ist der Beitrag der Elektronen zur spezifischen Wärmekapazität des Festkörpers nur
gering. Nach (5) erhalten wir für T = 300 K

7t2 (1,38 • IO"23 ) 2 • 9,11 • 10- 31 / 4n • 2 \ 2/3 6,63 • 10 26 • 300 n 4 , __ .- -  ----------------------------------- I ----------------- 1 ------------------- 2,39 • IO-4 kcal kg-1 K -1

(6,63 • IO-34 ) 2 • 0,67 \ 3 • 8,85 • 1028 / 63,55 8

= 8,4 • IO-4 kcal kg- 1 K- 1 = 3,52 • IO-3 kJ kg- 1 K -1 .

Nach Tabelle 2.2.2 hat Kupfer bei Zimmertemperatur die spezifische Wärmekapazität c =
0,092 kcal kg-1 K -1 = 0,385 J kg-1 K -1 . Man erhält daher für den Beitrag der Elektronen nur den
Anteil

63,55

- = 1 = 0,0091,
c 0,092

d. h. weniger als ein Prozent.

Effektive Masse3.3.5.

Für die freien Elektronen in Natrium wird bei der Verflüssigungstemperatur des Heliums
T = 4,2 K als Anteil der Elektronen an der molaren Wärmekapazität ce = 6,73 • 10-4 kcal kmol K“ 1

gemessen. Bestimmen Sie daraus die reduzierte Masse der Natriumelektronen und die Freiheits-
zahl

m (1)

das Verhältnis aus Elektronenruhmasse und effektiver Masse.

Lösung:
Nach 2.2.3. und 3.3.4. setzt sich die molare Wärmekapazität der Metalle aus einem von den
Gitterschwingungen bzw. Phononen verursachten Anteil aT 3 und einem auf die freien Elektronen
im Metall zurückzuführenden Anteil yT zusammen :

G = aT 3 + yT.  (2)

Der durch Gitterschwingungen bewirkte Anteil wächst mit zunehmender Temperatur stärker als
der von den Elektronen stammende. Daher ist es zweckmäßig, die molare Wärmekapazität der
Elektronen bei sehr tiefen Temperaturen zu messen.
Bei der Ableitung der molaren Wärmekapazität nach 3.3.4. werden die Elektronen als freie
Teilchen ohne Potential behandelt. Daher hat man an Stelle der Elektronenmasse die effektive
Masse zu setzen. Durch Auflösen der Gleichung (3.3.4./5) nach m ergibt sich

Ä2Cem — ---------—

Berücksichtigt man die Umrechnung von kcal in J, so folgt mit den vorgegebenen Zahlen
(vgl. Tab. 2.2.2)

(6,63 • IO“34) 2 • 6,73 • IO-4 • 4,19 - IO3 / 3 • 2,54 • 1028 \ 2 / 3 
n771 = —-------------- ------------------------------- I ----------------- I kg

3,142 • (1,38 • 10 -23 ) 2 • 6,02 • 1026 • 4,2 \ 4 • 3,14 • 2 / ö

= 5,46 • IO' 31 kg.
Für die Freiheitszahl / erhalten wir

9,11 -IO-31

’ m 5,46 -IO-31

(3)
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Aufgaben

Der elektrische Widerstand hat nach der DRUDE-SoMMERFELDschen Theorie seine
Ursache in Zusammenstößen der Elektronen mit dem Gitter. Leiten Sie nach diesem
Modell die Formel für die Stromwärme (JouLEsche Wärme) ab. .
Berechnen Sie die Stoßzeit der Elektronen in Silber (cf = 67,1 • 106 m-1 ,
R = -0,864 • 10“10 m3 As"1 ).
Wie groß ist die maximale Geschwindigkeit, die auf Grund der Fermi-Dirac-
Verteilung ein Elektron am absoluten Nullpunkt in Kupfer besitzen kann (N = 8,5
X 1028 m" 3, f = 0,67)?
Berechnen Sie die Grenzenergie der Elektronen in Silber, wenn angenommen wird,
daß jedes Silberatom ein freies Elektron liefert (Werte nach Tab. 2.2.2, f = 1,0).
Geben Sie die Anzahl der freien Elektronen in Silber an, wenn vorausgesetzt wird,
1) daß jedes Atom ein freies Elektron abgibt, 2) daß nur Elektronen am Ladungs-
transport beteiligt sind (Werte nach Tab. 3.3.3 und Tab. 2.2.2).
Geben Sie auf Grund der Daten in der vorangegangenen Aufgabe die Beweglichkeit
der freien Elektronen in Silber an. Die elektrische Leitfähigkeit des Silbers ist
a = 67,1 • 106 Q“1 m- 1 . •
Wie groß ist die mittlere Energie der freien Elektronen in Silber am absoluten Null-
punkt?
Welche ÜAEL-Feldstärke und welche ÜAEL-Spannung werden in einem elektrischen
Leiter aus Aluminium erzeugt, wenn seine Breite 15 cm und seine Dicke 4 mm be-
trägt, ein Strom von 200 A fließt und ein Magnetfeld der Flußdichte B = 1,5 Vs m-2

unter dem Winkel 45° gegen die Strombahn gerichtet ist? (Werte nach Tab. 3.3.3).
Berechnen Sie den Mittelwert der kinetischen Energie eines Elektrons in Silber
bei der Schmelztemperatur T = 960 °C unter der Voraussetzung, daß jedes Atom
ein freies Elektron liefert.
Stellen Sie die Formel für die Entropie und die Freie Energie der Elektronen in
einem Metall auf und leiten Sie daraus den Druck des Elektronengases her. Wie
groß ist dieser in Silber für den absoluten Nullpunkt und für den Schmelzpunkt?
Berechnen Sie den LAGRANGEschen Multiplikator a und das FERMi-Potential £
für Elektronen in Silber bei der Schmelztemperatur 960°C.
Welchen Anteil haben die Elektronen an der spezifischen Wärmekapazität in
Silber bei Zimmertemperatur T = 300 K? (Werte nach Tab. 2.2.2)
Für sehr hohe Temperaturen T > geht die FERMi-DiRAC-Statistik in die Boltz-
MANN-Statistik über. T o heißt Entartungstemperatur. Stellen Sie auf Grund der
FERMi-DiRAC-Statistik eine Formel für die Entartungstemperatur auf.
Bestimmen Sie die Entartungstemperatur für Kupfer. Werte sind Tab. 3.3.2 und
Tab. 2.2.2 zu entnehmen.
Bestimmen Sie die mittlere Geschwindigkeit der Elektronen in Kupfer für den
absoluten Nullpunkt (cp = 4,7 eV, / = 0,67).
Welche mittlere freie Weglänge haben die quasifreien Elektronen in Kupfer für
T = 0 (t = 5,4 • 10~14 s)?
Welche mittlere Energie nimmt im elektrischen Feld E = 1 V m -1 ein Kupfer-
elektron zwischen zwei Stößen auf?
Wie groß ist unter Berücksichtigung der effektiven Masse die molare Wärme-
kapazität der Elektronen in Kupfer bei 4,2 K? (Werte nach Tab. 2.2.1 und Tab. 2.2.2)
Für Blei rechnet man mit vier freien Elektronen je Atom. Die molare Wärme-
kapazität der Elektronen bei 4,2 K ist 4,58 • 10~3 kcal mol-1 K“ 1 . Welche Größe
ergibt sich daraus für die effektive Masse, wie groß ist die Freiheitszahl? (Werte nach
Tab. 2.2.2)

A 3.3.1.

A 3.3.2.

A 3.3.3.

A 3.3.4.

A 3.3.5.

A 3.3.6.

A 3.3.7.

A 3.3.8.

A 3.3.9.

A 3.3.10.

A 3.3.11.

A 3.3.12.

A 3.3.13.

A 3.3.14.

A 3.3.15.

A 3.3.16.

A 3.3.17.

A 3.3.18.

A 3.3.19.

11*



Grundlagen der Quantentheorie
fester Körper

4.1.  Bändertheorie

E Einführung

Einelektronennäherung
Die klassische Theorie fester Körper versagt bei der quantitativen Erklärung grund-
legender elektrischer und optischer Eigenschaften. Das betrifft insbesondere die
elektrischen Leitfähigkeitseigenschaften von Metallen, Isolatoren und Halbleitern
sowie optische Effekte, denen Quantenprozesse zu Grunde liegen. Dazu gehören der
äußere und der innere Photoeffekt sowie die Lumineszenz.
Die theoretische Behandlung kann im allgemeinen derart erfolgen, daß nur das Ver-
halten eines einzelnen Elektrons betrachtet wird. Diese Einelektronennäherung
bildet eine wesentliche Grundlage der Festkörperphysik.
Durch die räumlich-periodische Anordnung der Kristallbausteine verändert sich das
Potential räumlich periodisch. Es ist als dreidimensionale Funktion gegeben, die
durch eine Periodizitätseigenschaft der Form

U(r) = U(r + R) (1)

gekennzeichnet ist. Darin bezeichnet r den Ortsvektor, während die Periode gemäß
3

n ia i (n i ganze Zahlen) (1.1. /I)
i=l

festgelegt wird.

Schrödinger-Gleichung, Bloch- Weilen
Die in der klassischen Physik eingeführten Zustandsgrößen eines Teilchens, z. B.
der Impuls p, die Geschwindigkeit v, die Beschleunigung a, ergeben sich quanten-
mechanisch als Mittelwerte aus Verteilungsgesetzen, die durch die Wellenfunktion
y bestimmt werden. Bei freien Teilchen, die keinen Kräften unterliegen, wird y>
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durch eine ebene Welle repräsentiert (DE-BROGLiEsche Welle, vgl. [2] 6.2.). Allge-
mein folgt y> für gebundene Teilchen aus der Schrödinger-Gleichung

(2)Ety = Wy)

Darin kennzeichnet H den HAMiLTON-Operator der Gesamtenergie, W die Gesamt-
energie. 2
Setzt sich die Gesamtenergie aus der kinetischen Energie TFkin = - — und derZflYl
potentiellen Energie U = U (r) zusammen, so lautet der Hamilton- Operator der
Gesamtenergie

Durch Einsetzen in (2) ergibt sich die ScHRÖDiNGER-Gleichung in der Form

(2a)

h 2—5— A + = Wy> . (3)

Wegen
d d d(R + ) d
dr — d(R + r) dr d(R + r)

und auf Grund der Eigenschaften der Potentialfunktion U (r) nach (1) ist der Hamil-
ton- Operator H bei Festkörperproblemen gegen eine Translation um den Vektor R
invariant.
Die Lösung der ScHRÖDiNGER-Gleichung wird in der Form

(4)

>(r) = 21elfcA * r 99(r) (5)

geschrieben. Der Faktor 92 (r) ist durch die Periodizitätsbedingung

9?(r) = 9?(r + Ä) (5a)

gekennzeichnet. Eine Funktion eifeA ‘ r 9?(r) mit der Eigenschaft (5a) für (p(r) heißt
eine Bloch-Welle. A bedeutet eine Normierungskonstante, über die zweckmäßig
verfügt werden kann. Im folgenden wird zunächst A = 1 angenommen.
k A wird als Ausbreitungsvektor der BLOCH-Welle bezeichnet. Er ist vom Wellenzahl-
vektor k freier Teilchen zu unterscheiden. Der Ausbreitungsvektor muß reell sein,
da yj(r) sonst in einer bestimmten Richtung über alle Grenzen wachsen würde.
Durch die Lösung in Form der BLOCH-Wellen (5) wird gewährleistet, daß mit y>(r)
auch y)(r + R) eine Lösung der ScHRÖDiNGER-Gleichung darstellt und zum gleichen
Eigenwert

(6)
gehört. y>(r) und yj(r + R) unterscheiden sich nach (5) und (5a) lediglich um einen

W= W.
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konstanten Faktor:
y>(r + R) = e A-O’+Ä) + R) = eifcA- Ä y>(r) • (7)

Da fc A eine reelle Größe darstellt, ist der absolute Betrag des Faktors, um den sich
tp(r + R) und tp(r) unterscheiden, gleich eins:

| e ifcA.Ä| = i .  (8)

Äquivalente Punkte eines Kristalls, die sich um einen Translations vektor R gemäß
(1.1. /I) unterscheiden, sind nach (5) durch gleiche Wahrscheinlichkeitsdichten

y)(r) y*(r) = y(r + JR) + R) (9)
gekennzeichnet. Das Elektron befindet sich daher nach dem zu Grunde gelegten
Modell in äquivalenten Punkten mit gleicher Wahrscheinlichkeit. Es läßt sich nicht
lokalisieren, sondern ist als Folge der Periodizität des Potentials über den gesamten
Kristall verteilt.
Mehrdeutigkeit des Ausbreitungsvektors
Der Ausbreitungsvektor fc A einer BLOCH-Welle ist nur bis auf den Vektor

~ nhmzms

eines reziproken Gitterpunktes bestimmt. Zwei Vektoren fc A und k k + b des rezi-
proken Gitters heißen äquivalent, wenn b einen Gitterpunkt & mi7K2W3 des reziproken
Gitters bezeichnet.
Wird in der BrocH-Welle (5) bzw. (7) k k durch fc A + & ersetzt, so erhält man für

(r + R) = ei(feA + b) ,B (r). (7a)

Das Skalarprodukt R • b ergibt auf Grund der Definition (1.1. /I) des Translations-
vektors R und der Definition (1.1. /6) bzw. (1.1. /7) des reziproken Gitters

3 3

R • b = 22 n ia i • E nijbj = + n 2m 2 + • 2tu,
«= i  j= i

so daß aus (7) für fc A fc A + 6 folgt

+ R) = eifeA’ Ä (r) .
Um den Ausbreitungsvektor k k eindeutig zu definieren, wird die Betrachtung auf
einen Bereich nichtäquivalenter Punkte des reziproken Gitters beschränkt. Ein
derart festgelegter Vektor fc A heißt reduzierter Ausbreitungsvektor, im Gegen-
satz zum freien Ausbreitungsvektor, der sämtliche Punkte des reziproken Gitters
durchläuft.
Wigner-Seitz-Zelle, Brillouin-Zone, reduzierter Bereich
Die Definition der Elementarzellen nach 1.1. ist weder für den direkten noch für den
reziproken Raum eindeutig. Durch die Festlegung, daß die Elementarzelle eine Ge-
samtheit nichtäquivalenter Punkte enthält, wird nur ihr Volumen bzw. £?0' ,
nicht jedoch ihre Begrenzung bestimmt.
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Zur einfachen Begrenzung des reduzierten Ausbreitungsvektors fc A auf einen Bereich
nichtäquivalenter Punkte definiert man den reduzierten Bereich, Er wird im rezi-
proken Raum durch ein Parallelepiped repräsentiert, dessen Ecken durch
gegeben sind. Die linke, die untere und die vordere Begrenzungsfläche sind ausge-
schlossen. Der reduzierte Bereich ist also durch

Bild 4. 1.1. Reduzierter Bereich eines zweidimensionalen
Gitters.
O ausgeschlossener Punkt, --------- ausgeschlossene
Strecke, ® zugehöriger Punkt, ------ zugehörige Strecke

Bild 4.1.2. Konstruktion der
WiGNER-SEiTZ-Zelle für ein quadra-
tisches Gitter

Bild 4.1.1 zeigt den reduzierten Bereich für ein zweidimensionales Gitter.
Der direkte Raum, d. h. der Kristall, wird in WiGNER-SEiTZ-Zellen (W-S-Zellen),
der reziproke Raum in BRiLLOUiN-Zonen unterteilt.
Eine Wigner-Seitz- Zelle (vgl. Bild 4.1.2) enthält alle Punkte, die einem betrachteten
Gitterpunkt des Kristallgitters näher sind als jedem anderen Gitterpunkt. Sie umfaßt
damit eine Gesamtheit nichtäquivalenter Punkte; ihr Volumen ist gleich dem der
Elementarzelle Qo . Zur Abgrenzung einer W-S-Zelle zieht man von dem betrachteten
Gitterpunkt zu den benachbarten Gitterpunkten Verbindungsgeraden und errichtet
auf ihnen in der Mitte senkrechte Ebenen. Das kleinste von diesen eingeschlossene
Volumen um den Gitterpunkt kennzeichnet die W-S-Zelle.
Im reziproken Raum können ebenso die Mittelsenkrechten auf den Verbindungs-
geraden zwischen den Gitterpunkten errichtet werden. Das kleinste um einen Gitter-
punkt des reziproken Gitters begrenzte Volumen heißt erste Brillouin-Zone (vgl.

8k 3

Bild 4.1.3). Seine Größe ist gleich d. h. gleich dem der Elementarzelle Qq' des
L?o

reziproken Gitters. Die erste BRLLLOUIN-Zone kann als geometrischer Ort der Ge-
samtheit aller kleinsten nichtäquivalenten Vektoren im reziproken Raum defi-
niert werden. Für die Gleichung der Mittelsenkrechten erhält man

fcA ö = - |  ö 2

(vgl. Bild 4.1.4).
(11)
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Neben der ersten BuiLLOUiN-Zone liefert die Konstruktion der Mittelsenkrechten
auf den Verbindungsgeraden eines Gitterpunktes zu seinen Nachbarn weitere
BsiLLOUiN-Zonen. Sie heißen Brillouin-Zonen höherer Ordnung. Als zweite Bril-

Bild 4.1.3. Erste drei BßiLLOUiN-Zonen des quadra-
tischen Gitters.

Bild 4.1.4. Zur analytischen Dar-
stellung der Mittelsenkrechten bei
der Konstruktion der Brlllouin-
Zonen

LOUiN-Zone definiert man den geometrischen Ort der Gesamtheit aller nichtäqui-
valenten Vektoren kleinster Länge nach Auslassen der ersten BRiLLOUiN-Zone.
Entsprechend sind die folgenden BmxLOUiN-Zonen höherer Ordnung definiert.
Die Punkte zweier BßiLLOUiN-Zonen sind paarweise äquivalent. Daher lassen sich
die BßrLLOuiN-Zonen höherer Ordnung durch reziproke Gittertranslationen b =
aus denen der ersten BßiLLOUiN-Zone paarweise konstruieren. Jede Brlllouin-
Zone kann mit jeder anderen zur Deckung gebracht werden. Die Volumina der
einzelnen Brillouin -Zonen sind daher sämtlich gleich dem der Elementarzelle des
reziproken Gitters.

Energiebänder und -Lücken
Um die Differentialgleichung für die periodische Funktion 99 (r.) in der Bloch- Welle
(5) zu bestimmen, setzt man diese in die ScHRÖDiNGER-Gleichung (3) ein. Dabei hat
man

— /\e ikA ' r(p(r) = div [e ifeA ‘ r grad <p(r) + ik k eikA' r(p(r)]
= eikA 'r £\(p(r) + 2ifc A e ifeA ’ r grad 99 (r) — k k

2 eikA’r(p(r)

zu berücksichtigen. Es folgt

A99 + 2ifcA • grad 99(1’) +

In dieser Eigenwertgleichung für (p(r) tritt der Ausbreitungsvektor k A als Parameter

Qm (W-ü) -  <p(r) = 0 .
n (12)
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auf, so daß man
<?=<?(?, k k ) (13)

schreibt.
Die Periodizitätsbedingung (5 a) für cp führt dazu, daß zu einem vorgegebenen
Vektor fcA nur gewisse Eigenwerte W n möglich sind (vgl. 4.1.1. und 4.1.2.). Durch-
läuft fcA die zulässigen Werte nichtäquivalenter Punkte, so erhält man aus Stetig-
keitsgründen Wertebereiche W n , mit denen die Lösung der Eigenwertgleichung (12)
möglich ist. Sofern sich diese Energiezonen nicht überlappen, treten zwischen ihnen
Energielücken auf. Sie kennzeichnen Energiewerte, die das Elektron innerhalb des
Festkörpers nicht annehmen kann (vgl. Bild 4.1.5).

Bild 4.1.5. Energiebänder, die oberen
beiden einander überlappend

Die verschiedenen Energiezonen werden durch eine Zonennummer n gekennzeich-
net. Der in der Energiezone eingenommene Energiewert hängt vom Ausbreitungs-
vektor fc A ab. Daher schreibt man

Ww (fc A ).  (14)
n und fc A haben den Charakter von Quantenzahlen.
Mit der Energie W hängt auch die Wellenfunktion y) von der Zonennummer n und
vom Ausbreitungsvektor fc A ab :

= Vn(r, . (15)
Wird in (5) bzw. (12) der Ausbreitungsvektor fc A durch den negativen Wert — fc A
ersetzt, so geht man damit zur konjugiert komplexen Gleichung über. Daher gilt für
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die Lösungen

9>(r, — fc A ) = <p*(r, fcA ) . (16a)

Die Eigenwerte der Energie müssen reelle Größen sein, so daß weiter folgt

J7(-fc A ) = *(&a) = W (16b)
9?(r, fc A ) und cp(v, gehören daher zum gleichen Eigenwert. Für die Lösung der
ScHRÖDiNGER-Gleichung in Form der BwcH-Wellen erhält man, wenn im fc A -Raum
die Vorzeichen umgekehrt werden,

Vn(T, —k k ) = v’M e- ifeA-r <p>! (r, — fcA ) = &a) • (17)

Eindimensionales und dreidimensionales Modell
Die Berechnung der Energiebänder eines räumlichen Kristalls erfordert im allge-
meinen einen großen Rechenaufwand. Zur qualitativen Veranschaulichung wird
daher am einfachsten das eindimensionale Modell benutzt. Bei diesem betrachtet
man an Stelle des dreidimensionalen Kristallgitters ein eindimensionales, d. h.  eine
lineare Kette von Kristallbausteinen. Seine Gitterkonstante stimmt mit der des
Kristalls überein. An die Stelle der Potentialfunktion (7(r) tritt beim eindimen-
sionalen Modell eine Potentialfunktion U (z) mit der Periodizitätseigenschaft

ü(z) = Ü(z + R), (18)
wobei

R =na (n = 0, ±1, . . . )  (19)

die Periode kennzeichnet. Die Randbedingungen sind durch eine unabhängige räum-
liche Variable z gekennzeichnet. Als ScHRÖDiNGER-Gleichung erhält man an Stelle
der partiellen Differentialgleichung (3)

+ [C7(Z) “ 171 v{z} = °- (20)

Diese gewöhnliche lineare Differentialgleichung ist exakt lösbar und liefert ver-
hältnismäßig einfache Lösungen. Das eindimensionale Modell stellt jedoch bereits
eine derart weitgehende Idealisierung dar, daß seine Aussagen nicht vollständig auf
das dreidimensionale Gitter verallgemeinert werden können. Hier treten in der Regel
wesentlich kompliziertere Bandstrukturen auf.
Bei der Berechnung der Energiebänder des dreidimensionalen Kristalls sind nicht
nur zur Lösung der ScHRÖDiNGER-Gleichung Näherungsverfahren anzuwenden.
Auch das in der Differentialgleichung auftretende Potential ist nicht genau bekannt,
zumal das betrachtete Elektron bei der Einelektronennäherung über den gesamten
Kristall verteilt ist und dabei mit allen Kristallbausteinen in Wechselwirkung tritt.
Ansätze zur Festlegung des Potentials sind wegen der Vielfalt der in Festkörpern
auftretenden Kräfte neben Symmetrieeigenschaften und Analogieschlüssen im
wesentlichen auf experimentelle Daten angewiesen.
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Probleme

4.1.1. Eindimensionales Modell mit d-Potential

Die Gitterbausteine sind in Form einer unendlich langen linearen Kette mit der Gitterkonstan-
ten a angeordnet. Das Potential ist in der Form

+ oo

*7(z) = UQ 2 c( 2 — M (n = 0, ± 1, . . .) • (1)
n =  — oo

gegeben. Dabei bedeutet öc (z) eine modifizierte d-Funktion, die wie folgt definiert ist:

p [0 für z 4= 0 ,
öc (z) = 1

[oo für z = 0 (2)

(3)

nebst
4-oo

J öc (z) dz = c .
— oo

Die Modifizierung der d-Funktion ist erforderlich, da z die Maßeinheit m hat und daher das
Integral (3) ebenfalls mit dieser Maßeinheit behaftet ist. Bild 4.1.6 zeigt die Kristallbausteine
und das Potential.

Bild 4.1.6. Eindimensionales d-Modell mit Energiebändern

Für die vorzunehmende Betrachtung sei
a = 0,5 nm, Uo = —20 eV, c = 0,25 nm,

d. h.
a/2

j U(z) dz = U„c = — 5 • 10- 9 eV m.
— a/2
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Bestimmen Sie die Breite des untersten sowie die Lage des folgenden Energiebandes. Untersuchen
Sie den Zusammenhang zwischen Energie, Wellenzahl und Ausbreitungszahl.

Lösung:
Schrödinger-Gleichung
Die Schrödinger-Gleichung (4.1./3) vereinfacht sich bei einem eindimensionalen Gitter zu der
gewöhnlichen Differentialgleichung

_li + P(2)¥, = lFv)- (4)
liYH dz

Umgeformt erhält man

+ (W-U)  V = 0 .  (5)
dz 2 h2

(5) ist invariant gegen eine Substitution z z + na. Hat man daher zwei Lösungen (z) und
y>2 (z) der Differentialgleichung (4) gefunden, so können mit yj z •+ na) und y>2 (z 4- na) weitere
Lösungen angegeben werden.
Sind y> = (z) und ip = y)2 (z) linear unabhängige Lösungsfunktionen, so können aus den Funda-
mentallösungen yj- z) und y>2 (z) sämtliche Lösungen y) = y)(z) der Differentialgleichung (3) zu-
sammengesetzt werden :

v(«) = + Av2( 2 )- ( 6 )
A ± und A 2 sind Konstanten. Sie können willkürlich gewählt werden. Wegen der Periodizität der
Potentialfunktion U(z + na) = U(z) muß in äquivalenten Punkten z und z + na die Wahr-
scheinlichkeitsdichte übereinstimmen :

yj(z) y) {z) = y)(z na) y) (z na) (n = 0, ±1 ,  •••)• (7)

Das bedeutet, daß die Beziehung

y)(z a) = e ifcA-a (z ) (8)

erfüllt sein muß. y>(z + a) und y>(z) unterscheiden sich somit nur bezüglich ihrer Phase

oc, = kk a .  (8a)
Wir untersuchen die Lösung der ScHRÖDiNGER-Gleichung (5) im Bereich

0 < z '<  a , (9a)

schließen also Punkte, in denen sich Kristallbausteine befinden, zunächst von der Betrachtung
aus. Innerhalb dieses offenen Bereiches kann die Differentialgleichung (5) durch Exponential-
ansatz

Vh(z) = g Z 9 VhL(.z ) — Q~lkz (9)
gelöst werden. Durch Einsetzen der Fundamentallösungen (9) in (5) erhält man

t . i " .  do,
h

Treten im Bereich der Energiewerte Lücken auf, so müssen diese auch im Bereich der Wellen-
zahlen k vorhanden sein, im Gegensatz zu den Ausbreitungsvektoren bzw. Ausbreitungs-
zahlen kk .
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Als allgemeine Lösung der ScHRÖDiNGER-Gleichung (5) findet man

y(z) = Aei*z + Be~ z . (11)

Für den Bereich

— a < z < 0 (12a)

können wir nach (8) und (8a) schreiben

ip(z) = ip(z + a) e-i  « = (4e u ( ?+fl ) + 7?e-i  +ö )] e- ia  . (12)

Um die physikalisch sinnvollen Werte für k und W zu erhalten, untersuchen wir die Eigenschaften
der Lösungsfunktion. Sie muß für z = 0 stetig sein. Das bedeutet nach (11) und (12)

A 4- B = (Ae  + Be~ ) e -i«. (13)

Integrieren wir die Schrödinger -Gleichung über einen Bereich von — x0 bis und unter-
suchen das Ergebnis der Integration für den Grenzfall —> 0, so ergibt sich aus (5)

f TT dz + U(z)ö(z)] V dz = 0 ,
J dz2 J Ä2

-0  -0

d. h. wegen (1), (2) und (3)

dv _ dvj(-O) =

dz dz h 2

Setzt man in diese Gleichung (H-O) aus der Lösung für den Bereich 0 < z < a nach (11),
d ( (B dz

dagegen — - ------ aus der Lösung für den Bereich — a < z < 0 nach (12) ein, so ergibt sich
dz

A ik - + -B = 0 .  ( 14  )

Energiebänder und verbotene Bereiche
Gleichung (14) bildet zusammen mit Gleichung (13) ein System von zwei Gleichungen zur Be-
rechnung der Koeffizienten A und B. Damit dieses lösbar ist, muß seine Koeffizientendeterminante
verschwinden :

. ,  . 2cU(}m . 2cUnmik — ik& ka ~l a  --------— — ik 4- ike~lka ~la  --------—
h 2 h 2

Q\ka—ia __ | Q-ika-ia __ |

Durch Umformung erhält man, wenn (8 a) beachtet wird,

7 cUom . 7cos oc = cos ki  a = cos ka 4------— sm ka .A h2k

(15a)

(15)

Durch (15) ist eine Verknüpfung zwischen der Ausbreitungszahl kk und der Wellenzahl k fest-
gelegt. Da k nach (10) als Funktion der Elektronenenergie W aufgefaßt werden kann, ist mit (15)
auch der Zusammenhang kA = ä;a (J7) bzw. W = W(kA ) definiert.
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cos kk a muß im Wertebereich

— 1 cos kk a 4-1
liegen. Für k kommen daher nur solche reellen Werte in Frage, für die

cos ka 4- sin ka < 1 (16)

ist. Werte der Wellenzahl k9 für die (16) nicht erfüllt ist, sind durchs = 0 gekennzeichnet, d.  h.,
sie weisen für die Elektronenverteilung die Wahrscheinlichkeitsdichte qnp* = 0 auf. Es treten
somit nach dem vorliegenden Modell im Kristall zulässige Energiebereiche bzw. Energiebänder

Bild 4.1.7. Energiefunktionen W = W(k )

auf, die von Energielücken bzw. verbotenen Energiebereichen unterbrochen werden. Bild 4.1.7
zeigt die Verknüpfung zwischen W und k& mit den dazwischenliegenden verbotenen Zonen.
Für ka = nn e (n = 0, 1, 2, . . .)  gilt im Falle kleiner positiver oder negativer Werte £ ge-
nähert

cos (nji 4- g) = (— l )  n , sin (wk 4- s) = (— l )  w £.
Damit folgt aus (16)

cos to + gin — cü QmE
Wk

(16a)

(16b)
(16c).

Wegen UQ < 0 gilt
|cos a |  > 1 für
Icos tx| < 1 für

s = ka — 7i7r < 0 ,
e = ka — niz > 0 .
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Nach (16a) und (16b) sind somit die unteren Grenzen k = kun der Energiebänder durch

= — (n = l , 2 , . . . )  (17)a
bestimmt.
Um die oberen Bandgrenzen k = kon zu bestimmen, schreibt man nach (16 a) und (16 c) für die
Größe (15) im Falle s > 0

i i cUQm n x|cos a = ------— (ka — mt).
h 2k

Daraus erhält man

k < kon = mz ---------- ------- = --------------- ,
“ 2h2 + acU0m 2Ä2 ’

a TTcU ma

(18)

sofern die Bedingung
s 1

auch noch für k = kon  erfüllt ist. .
Die Bänder werden durch die Energieniveaus ausgedrückt. Nach (10) und (17) folgt für die
unteren Bandgrenzen

w _ _ n 2iz2 h2

™ 2m 2ma 2 (19)

nach (10) und (18) für die oberen Bandgrenzen

(20)

Mit den vorgegebenen Werten folgt

£U1 = ----- ------ m- 1 = 2tc • 109 m“1 ,U1 0,5 • 10~9

Jc01 = ------------------------- - ------------------------- m" 1 = 2k • 109 (l + 0,064) m“1 .
05  10 - 9 2.(1,05.10-»«)*

’ 5 • 10-’ • l,60" 19 • 9,11 • 10-»1

Die untere Grenze des ersten Energiebandes wird als Bezugsniveau gewählt. Für die obere Grenze
des ersten Energiebandes erhält man mit den vorliegenden Werten

h 2
W'ol = W 01 -W ul = - (k2

01 - k2
ul )2m

(1,05 • 10-34 ) 2 • 4n2 • 1018 • 2 • 0,064 n= -------------------------------------------- eV = 0,19 eV.
2 • 9,11 • 10- 31 • 1,60 • IO’19

Das zweite Energieband ist durch die Wellenzahlen

Ä?u2 = — — — m-1 = 4tü • 10 9 m-1 ,u2 0,5 • IO"9

Ä;o2 = 4rc • 109 ( l  + 0,064) m" 1



176  4. Grundlagen der Quantentheorie fester Körper

gekennzeichnet. Dementsprechend ergibt sich für die untere Grenze des zweiten Bandes

(4 -1 )  rc2 (l,05 • 10~34 ) 2TF' 2 = U2 - Wui = ----------- ----- / ----------- eV = 4,48 eV,u2  u2 U1 2 • 9,11 • 10~31 • (0,5 • 10~9 ) 2 • 1,60 • 10“19

für die Bandbreite

A W 2 = W o2 - W u2 = 4(W 01 - W ul ) = 4 • 0,19 eV = 0,76 eV.
Die obere Grenze des zweiten Energiebandes liegt somit bei 5,24 eV. In gleicher Weise kann die
Bestimmung der Energiebänder fortgesetzt werden, solange die Näherung (16 c) erfüllt ist.

4.1.2. Eindimensionales Modell mit Rechteckpotential (Kronig-Modell)

Das Potential eines Kristalls wird durch ein eindimensionales Potentialtopf-Modell nach Bild
4.1.8 genähert. Die Kristallbausteine sitzen in der Mitte des Potentialtopfes. Der Minimalwert Uo
des Potentials wird gleich dem negativen Wert der lonisierungsarbeit

Z70 = “
W

die Breite des Potentialminimums gleich dem Durchmesser b = 2r0 eines Kristallbausteins ge-
setzt.
Für Kupfer ist nach Tab. 1.1.1 die Gitterkonstante a = 0,361 nm, nach Tab. 3.1.5 b = 2r0
= 0,192 nm, nach Tab. 2.1.1 Uo = — = —7,67 eV einzusetzen.
Stellen Sie für die ersten beiden Energiebänder den Zusammenhang zwischen W und kk dar
und berechnen Sie die Breite der ersten drei Bänder sowie die Breite der zwischen ihnen befind-
lichen Bandlücken.

Lösung:
Die ScHRÖDiNGEß-Gleichung für das eindimensionale räumliche Modell

+ )]r = o (i)dz2 Ä 2
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ist eine gewöhnliche Differentialgleichung zweiter Ordnung. Entsprechend den periodischen
Eigenschaften des Gitterpotentials und der Darstellung der Lösungen als BLOCH-Wellen fordern
wir von jeder speziellen Lösung

V>j(z + a) = ei*A0 (2). (i = 1, 2) (2)

Andererseits lassen sich yj z + «) und y>2 (z + a) aus y z) und y>2 (z) linear aufbauen:

¥>1(2 + a) = Cu z )  + c 12 y>2 ( z ) ,  (3 )

y 2 (z + «) = c 2 i¥>i(z) + c 22 y 2 ( z ) .  (4)

Faßt man (2), (3) und (4) zusammen, so ergibt sich

V>( z + a) = Atf z + a) + A 2yj2 (z + «) 1 ...
> (»)

— ( C ll l C 21 2 )  { Z ) 4" (C12 1 + C 22 2 )  W 2 ) ’  J

Die konstanten Koeffizienten sind durch die Auswahl der speziellen Lösungsfunktionen
y\(z) und yr2 (z) festgelegt, können also nicht willkürlich gewählt werden.
Wegen (2) können wir

1(2  + a )  = Ay z),  y>2(z + a) = fap2(z)

schreiben mit A = exp Wir erhalten also

C l l  l + c 21 2 = 1

12 1 “I“ 22 2 ~ ÄÄ 2 . j

Dieses System homogener Gleichungen ist nur lösbar, wenn die Koeffizientendeterminante ver-
schwindet :

c n ~ C 21 __  q
C 12 22

A genügt der quadratischen Gleichung

A 2 (Cn + C22  ) A + C 11 C 22 — C 12 C 21 ~ 0 •

Aus (2), (3) und (4) und den Ableitungen erhalten wir für die WRONSKi-Determinante

Vi( z + a) y)2 (z + a) yj- z) yj2(z)
---- ( 11 22 21 12 /  •

Vi(z + a) + a) Vi'fz)

(7)

(7 a)

(8)

Für ihre Ableitung nach der Variablen z folgt

d I V'2 I d . . .. ,,
3“ / / = 3“ — Wi ) = ftVs — Wi •dz | y>2 | dz (9)

Da y\(z) und y z) die ScHKÖDiNGER-Gleichung (1) erfüllen, ist dieser Ausdruck gleich Null. Wenn
(z) und y>2 (z ) linear unabhängig sind und somit ein Hauptsystem zur Lösung der Schrödinger-

Gleichung bilden, ist nach (9) die WRONSKi-Determinante eine Konstante ungleich Null. Aus
dem Vergleich mit (8) ist daher auf

C 11 C 22 C 21 C 12 = 1 (10 )

zu schließen.

12 Schilling, Festkörperphysik
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Wir setzen (10) in (7 a) ein und erhalten

e ifcAa _|_ e~ iÄ:Aa = 2 cos k a = cu + c22* (H)

Die ScHRÖBiNGER-Gleichung (1) ist eine reelle Gleichung. Ihre Lösungen können daher in reeller
Form gewählt werden. Für das vorgelegte Problem betrachten wir im Gitter den Bereich 0 < z < a
und unterteilen diesen in die zwei Unterbereiche

I 0 < z < b mit U(z) = Uo , (12)
II b < z < a mit U(z) = 0 .  (13)

Im Bereich I verwenden wir die beiden Hauptlösungen

- i / 2w .  t _ rT . hc . 3 /2  . TT . . . . .
Vi = cos ]/ — (W - U„) z ,  = sin 1 /— (W — Ua ) z .  (14)

F \2m(W - 17O) F h

c stellt einen Faktor mit der Maßeinheit m-1 dar.
Als Lösung im Bereich II schreiben wir

. -,12mW . . -ilZmW . z . . z . e .
= Ai cos / (z - 6) + Ai sm 1/ — — (z - b) (i = 1, 2). (15)|/ ft2 |/ Ä2

Die beiden Lösungen müssen für z = b übereinstimmen. Das gleiche gilt für die beiden Lösungen
yj2 . Hieraus folgt

. i ,/2m(W - ü 0 ) , . hc 1 / 2m(W-U 0 ) .An = cos / — ----------— b ,  A 21 = ~7— ■■ — — 
1 sm / — ----------— b .

|/ Ä2 21 12m(W - Uo ) |/ Ä2

(16)
Bei der Integration der ScHRÖDiNQER-Gleichung zwischen b — 0 und b + 0 ergibt sich im Gegen-
satz zu 4.1.1., wo die d-Funktion verwendet wurde, wegen der Endlichkeit der Potentialfunktion

(?) - (? )  -»■ ‘ 17 >\ dz / ö -o  \ dz / ö+  o

Diese Gleichung liefert

. n /W - Uo . i /2m(W - Z70 ) , , Äc n /2m(W - U0 ) ,
Aa = - 1/ - - - -  sin 1/ ----- b ,  A 12 = —= cos ] / . .  - - - -  b .

F w F Ä 2mW Ä2

(16a)
Im Bereich II erhalten wir somit die Lösungen

. .  - Uo ) , ,12mW .V>!(z) = cos U --------— - - - -— b • cos L/ —— (z — b)

- , /W-Ua  . JimtW-U,),  . - . / 2mW,— / ----------y sm / — ----------— b • sm / ------ (z — b),
]/ W I h |/ Ä2 k 7

, X -1  /2m(TF - Uo ) , -J /2mW t' — sm / — 1— -----2- b ■ cos / — - (z - b)
2m(W - U9 ) F h F h

Äc ■. /2m(W — Uo ) , . -> /2mW .
+ cos / — b ■ sm / — — (z - b).

]/2mW F Ä F k (18)
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Sie werden stetig differenzierbar durch die Funktionen (14) in den Bereich I fortgesetzt. Wird z
in Metern angegeben, so kann man in (14) c = 1 m-1 setzen. Die Lösungsfunktionen (14) der
ScHRÖDiNGER-Gleichung (1) sind damit durch die Anfangswerte

% (0 )= l ,  v>a(O)=O,'l

v /(0) = 0 ,  y 2'(0) = 1 J
0

gekennzeichnet. Für diese folgt aus (4) für 2 = 0

Vh(a ) = c11? y>2 (a ) = c 2i (29)
und durch Differenzieren

= C12> 2(a ) — C22* (21)
Nach (11) muß daher

2 cos kk a = i(a ) + 2Z (a ) (22)
erfüllt sein. Setzen wir für und die Lösungsfunktionen (18) ein, so ergibt sich aus (22) mit
c = 1 m-1

, , 2mW.  2m{W - Uo ) ( Mcos kk a = cos 1/ —2 6 • cos 1/ ------- —— (a — ö)

2W - Uo . t /2mW . t l2m(W - UJ (----- - — sm / ------ b • sin / — * ----------— (a — &). (23)
1/2 W(W - Uo ) \ &------------|/ ä2

Da cos kk a durch die Bedingung

- 1 cos kk a + 1 (24)

eingeschränkt ist, sind durch (23) Energiebereiche festgelegt, in denen eine Lösung der Schbö-
DiNGER-Gleichung mit reellen Werten des Ausbreitungskoeffizienten kk möglich ist. Nur für diese
Energiebereiche ist die Wahrscheinlichkeitsdichte qnp* von Null verschieden.
Wir setzen in (23) die vorgegebenen Werte a = 0,361 nm, b = 0,192 nm, Uo = —7,67 eV,
Ä = 1,05 • 10-34 Js zusammen mit dem Faktor 1,60 • 10~19 zur Umrechnung von Elektronenvolt
in Joule ein und erhalten

cos kk a = cos 0,987 cos 0,869 + 7,67
2W 4- 7,67 i— i-------------------- ’ - sin 0,987 fff sin 0,869 1/W + 7,67 ( W in eV) .

2 1W(W + 7,67)

In Tab. 4.1.1. sind im Ergebnis der numerischen Rechnung die Werte von JF, cos kk a und
für die ersten drei Bänder aufgeführt. Bild 4.1.9 stellt diese funktionelle Abhängigkeit zwischen
W und kA grafisch dar. Für die Breite der Bänder erhält man aus Tab. 4.1.1

1. Band 6,36 eV,
2. Band 13,0 eV,
3. Band 19,1 eV.

Als Breite der Energielücken folgt
Lücke zwischen 1. und 2. Band 0,73 eV,
Lücke zwischen 2?tpd 3. Band 1,60 eV,
Lücke zwischen 3. und 4. Band 0,30 eV.

12*
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Bild 4.1.9. Energiebänder nach dem
KRONIG-Modell

4.1.3. Fourier-Entwicklung des Elektronenpotentials

Das Potential der Elektronen im Kristall wird wegen der periodischen Anordnung der Kristall-
bausteine als Fourier -Reihe

U = U b e[br  (1)
b

dargestellt. Die Kräfte zwischen den Elektronen lassen sich durch ein Wechselwirkungspotential
Z7 W nähern, das für alle im Kristall frei beweglichen Elektronen gleich ist, unabhängig von ihrer
Lage. C7 W kann zum konstanten Glied der FouRiER-Reihe einfach addiert werden.
Es ist zweckmäßig, die FouRiER-Entwicklung (1) im reziproken Raum vorzunehmen. Der Vektor

b = = Ml bi 4- 3 3
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durchläuft sämtliche Punkte des reziproken Gitters, während r den Ortsvektor im direkten Gitter
angibt.
Stellen Sie die Formel für die FouRiER-Koeffizienten U b auf und berechnen Sie für Kupfer den
FouRiER-Koeffizienten U111  .

Lösung:

Die elektrischen Ladungen der Kristallbausteine erzeugen ein räumlich veränderliches elektri-
sches Feld E. Es kann durch ein elektrisches Potential P gemäß

E = -grad P (2)

dargestellt werden. P hat die Dimension der elektrischen Spannung, wird also in Volt gemessen.
Das elektrische Potential ist mit der räumlich veränderlichen Ladungsdichte q durch die Poisson-
sche Gleichung

A '? = — (3)

verknüpft. Zwischen der potentiellen Energie U einer durch den Kristall bewegten elektrischen
Ladung q und dem elektrischen Potential P besteht die Beziehung

U = qP. (4)

Für Elektronen ist q = — e.
Das Potential (1) muß eine reelle Funktion sein. Da mit b auch — b ein Punkt des reziproken
Gitters ist, bedeutet das, daß zwischen den Fourier -Koeffizienten des variablen Anteils die Be-
ziehung

U_b = U b * (5)

erfüllt sein muß.
Wir führen ein Cartesisches Koordinatensystem ein, das durch drei zueinander senkrecht stehende
Einheitsvektoren e X9 e y9 e z gekennzeichnet ist. Die Zerlegung des Vektors b in die Cartesischen
Komponenten ergibt

& = x e x + ye y + ze z> (6)
für das Skalarprodukt mit dem Ortsvektor

r = xe x + yey + zez (7)
erhält man

b r = bx x + by y + bzz .  (8)

Wir schreiben die PoissoNsche Gleichung in Cartesischen Koordinaten und berücksichtigen
dabei (4):

dx2 dy2 dz2 e0

Setzen wir für U den FouRiER-Ansatz (1) ein und beachten bei der Ableitung Gleichung (8), so
ergibt sich

s b i Ub& br  = (10)
b £o

Dabei ist wegen der Verwendung Cartesischer Koordinaten

b 2 = b/ + b/ + b?. (11)
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Wenn man mit
e - i&'r

multipliziert und über die Elementarzelle ß 0 integriert, folgt

s b 2 U b C dF  = — f e erU>'-rdV. (12)
b J «o J

ß 0 @0

b' kennzeichnet einen speziellen Gitterpunkt des reziproken Gitters. Bei der Auswertung des
Integrals zerlegen wir den Vektor r in die Komponenten der Basisvektoren a 19 a 2 , a 3 des Kristall-
gitters, den Vektor b gemäß (l.l./7a) in die Komponenten der Basisvektoren b 19 b 2 , b 3 des rezi-
proken Gitters

r = + £2a 2 + %3a 3 , (13)

b = m 1b 1 4- m 2b 2 4- m 3b 3 . (14)

Während r jeden beliebigen Kristallpunkt durchläuft, charakterisiert b nur die Gitterpunkte im
reziproken Raum. £2 , £3 sind daher beliebige reelle Zahlen, dagegen nehmen m 19 m 2 , m 3 nur
ganzzahlige positive oder negative Werte an. Für das Volumendifferential in (12) ist

dF  = ß 0 d d d

zu setzen.
Auf Grund der Definitionsgleichung (1.1./6)

a i • b ) = 2to5 s?
erhält man

b- r  = 27c(m1£1 4- m<£2 4- m3£3 ) . (15)

Damit folgt für das Integral in (12)
1 1 1

Je i (b -b ' )  r y = J J J e i27r[(m 1 -m/ ) f i+ (m 2 -m 2
/ )f 2 +(m3-m 3

/ ) 3] d£j d£ 2 d£ 3

Qq 0 0 0

— = Qßbb' • (16)

Auf Grund dessen kann man in (12) die FouRiER-Koeffizienten eliminieren und erhält

Ub = fee-i dF .  (17)

Das Integral ist aus der Röntgenstrukturanalyse bekannt. Es kann in der Form

f e e~‘ b r dV = Z*e (18)
ßo

mit der effektiven Kernladungszahl

Z* = Z - F (19)

geschrieben werden. Die Größe F heißt Atomformfaktor. Sie ist in Tabelle 4.1.2 für einige Materialien
tabelliert.
F hängt von der Strahlrichtung 0, in der der Kristall durchlaufen wird, ab. Als Parameter ver-
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wendet man bei der Tabellierung die Größe

i n  sin0IO“10 ----- TH,
2

wofür man bei Kristallen mit kubischem Gitter

10 - 10 m = 10-1» m i2 ± 22 .+
2 2u

schreiben kann, a bedeutet die Gitterkonstante, 2 die Wellenlänge. Im vorliegenden Fall erhält
man nach Tab. 4.1.2

10- 1« m + + OT»2 = 10- 1» ------ ------ = 0,24, F = 22, Z* = 7 .
2a 2 • 0,361 • 10-9

Das Volumen der Elementarzelle beträgt nach Beispiel 1.1.1 für das kfz-Gitter

Wo-  4 >
ferner ist

&?n = 3— •111 a 2

Damit folgt aus (17) und (18)

111 ~ 0 9 ’

mit den vorgegebenen Werten:

(71U = --------------------7 • (l>60 • 10~19 ) 2 ------------ eV = _ t l  8 eV-111 3 • 7t2 • 8,85 • 10- 12 • 0,361 • IO-9 • 1,60 • IO-19

Der konstante Anteil des Potentials wird in A 4.1.6 abgeleitet.

4.1.4. Zellenmethode nach Wigner-Seitz

Untersucht werden die Energiezustände der Elektronen in Alkalimetallen und die Aufenthalts-
wahrscheinlichkeit eines Elektrons für die Punkte der Elementarzelle £?0 . Zu diesem Zweck ist
die ScHRÖDiNGER-Gleichung für das Gitterpotential der Alkalimetalle zu lösen und die Wellen-
funktion zusammen mit den Eigenwerten W der Energie für Natrium anzugeben.

Lösung:
Die ScHRÖDiNGER-Gleichung wird zunächst für die Punkte einer WiGNER-SEirz-Zelle gelöst.
Nach (4.1. /5) läßt sich die Lösung als Überlagerung von BLOCH-Wellen

y(r) = eifeA-r (r) (1)
schreiben. Durch die Periodizitätseigenschaft

<p(r + Ä) = <p(r) (2)

ergibt sich die Möglichkeit zur Fortsetzung der Lösung auf andere W-S -Zellen.
Alkalimetalle besitzen kubisch-raumzentrierte Gitter (vgl. Tab. 1.1.1). Ihr lonenradius ist nur
etwa halb so groß wie der halbe Abstand eines Ions zu seinem nächsten Nachbarn (vgl. Tab. 3.1.5).
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Da das Volumen proportional der dritten Potenz des lonenradius ist, nimmt das Alkali-Ion nur
einen kleinen Teil der W-S -Zelle ein.
Im Innern eines Alkali-Ions bauen der Atomkern und die umlaufenden Elektronen ein starkes
kugelsymmetrisches Potential auf. Störungen von benachbarten Ionen und quasifreien Elek-
tronen werden durch die Elektronenhülle abgeschirmt. Nach dem lonenrand fällt das Potential
steil ab. Außerhalb deslonenrumpfes, im übrigen Gebiet der W-S -Zelle, ist nur noch ein schwaches
Potential vorhanden. Es wird in erster Näherung ebenfalls als kugelsymmetrisch angesehen, so
daß für das Potential der W-S -Zelle

U(r) = U(r) (3)

geschrieben werden kann.
Die Schrödinger- Gleichung lautet nach (4.1./3), wenn man (3) berücksichtigt,

Ä2

+ [U(r) - W] y> = 0 .  (4)2m

In Kugelkoordinaten r, <p erhält man für den LAPLACE-Operator

a a2 . 2 a . i a2 i a2 i _ a/\ — —I— — — —1— ■ —— —I— — —— —I— — cot v • (5)
dr2 r dr r2 sin 2 $ d(p2 r2 dfi2 r2 &&

Wird dieser in (4) eingesetzt, so ergibt sich eine Differentialgleichung, die durch den Separations-
ansatz

tp(r, &,(?) = '£ 0(99) (6)

sukzessive auf drei gewöhnliche Differentialgleichungen zurückgeführt werden kann. Das Lösungs-
verfahren entspricht dem für das Elektron im Wasserstoffatom (vgl. [2] 6.3.).
Die Lösungsfunktionen der Schrödinger -Gleichung und ihre ersten Ableitungen müssen stetig
sein. Daraus folgen die Randbedingungen

y(r 0) = y a (r 0) ,  ( 7 )

ZM = _ /  a \  (8 )

\an/ ro \ n &)r0

Hierin bezeichnet (r0 ) die Lösung der ScHRÖDiNGER-Gleichung für den noch zur W-S -Zelle
gehörenden Randpunkt r 0 , y>a (r 0) die Lösung außerhalb der betrachteten W-S-Zelle für den

gleichen Punkt r 0 . — bedeutet die Ableitung normal zur Begrenzungsfläche. Die Normale weist
Sn

aus dem betrachteten Gebiet heraus, so daß n und n a einander entgegengerichtet sind (vgl.
Bild 4.1.10).
Der Funktionswert y;a (r0 ) für einen Randpunkt r 0 außerhalb der betrachteten W-S-Zelle läßt
sich auf Grund der Periodizitätseigenschaften (1) und (2) durch den Funktionswert im zugeord-
neten Punkt r 0 4- Rq der W-S-Zelle ausdrücken. Dabei ist allgemein

R 0 = ±®i (i = l , 2 ,3 ) ,  (9)
wobei einen Basisvektor darstellt (vgl. Bild 4.1.10). Das führt nach (7) und (8) auf die Rand-
bedingungen

(r o + -Ro ) = eifeA-Äo (To ),  (10)

= _ e i*A.B.ßü\ . (U)
\8n) r+Ra  \8n/ r<,
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Da n aus der W-S-Zelle herausweist, sind die Normal vektor en n in zwei äquivalenten Punkten
t und r 4- R einander entgegen gerichtet.
Wir beschränken uns auf den Fall JeA = 0. Nach (10) bedeutet = 0, daß die Wellenfunktion y>
an zwei äquivalenten Punkten der Begrenzungsfläche einer W-S-Zelle den gleichen Wert haben
muß. (11) fordert, daß auch die Ableitungen in parallelen Richtungen an den zwei äquivalenten
Punkten übereinstimmen müssen (vgl. Bild 4.1.10).

Bild 4.1.10. Ortsvektoren und Normalenvektoren für Punkte auf der Begrenzung
innerhalb und außerhalb der W-S-Zelle

Bild 4.1.11. WiGNER-SEiTZ-Zelle.
a) des krz Gitters der Alkalimetalle, b) des kfz Gitters

Die W-S -Zellen der Alkalimetalle weichen nach Bild 4.1.11 nur wenig von der Kugelsymmetrie
ab. Nach Wigner-Seitz nähert man daher die W-S-Zellen durch Kugeln, deren Volumen mit
dem einer W-S-Zelle bzw. einer Elementarzelle identisch ist. Der Kugelradius ist nach (1.1.2./2)
durch

4 u3 j / 3
V - — bzw. r& = /— a (12)
O 2 1/ Ö7T

gegeben. Außer dem Potential besitzt damit auch der Rand einer Zelle Kugelsymmetrie.
Die genaue Theorie erfordert eine Vielzahl von Gliedern der Entwicklung (6). Rechnet man bei
der Wellenfunktion jedoch mit einer kugelsymmetrischen Abhängigkeit y(r), so treten wesent-
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liehe Vereinfachungen auf. Im Laplace-Operator (5) verschwinden die Ableitungen nach q> und ft:

Nach (4) ergibt sich damit die ScHRÖDiNGER-Gleichung

~ ~ t -) + [ t7W - ’n = ° .  (ü)2m \ dr2 r ar /

Randbedingung (10) ist bei kugelsymmetrischer Abhängigkeit identisch erfüllt, während (11) nur
für

zu befriedigen ist. r 0 kennzeichnet dabei einen beliebigen Punkt auf der Kugeloberfläche.
Randbedingung (15) besteht für die Begrenzung der W-S -Zelle auch, wenn keine kugelsymmetri-
sche Abhängigkeit vorhanden ist. Sie läßt sich allgemein aus den für eine W-S -Zelle bestehenden
Symmetrie-Eigenschaften ableiten.

Bild 4.1.12. Wellenfunktion tp = tp(r) für den Grundzustand
des Leitungselektrons in Natrium

Bei der Lösung der Differentialgleichung (14) mit der Randbedingung (15) wendet man das
Hartree-Fock-Verfahren des Self-consistent-field-Potentials an. Dabei läßt sich die Analogie zum
Wasserstoffproblem (vgl. [2] 4.3.) und zum Problem der Elektronenhülle großer Atome mit den
entsprechenden Lösungsreihen nutzen.
Als nullte Näherung kann ein Kristallpotential U = U(r) zugrunde gelegt werden, das sich
z. B. durch FouRiER-Entwicklung nach 4.1.3. ergibt. Die Näherung für U wird in die Schrödin-
GER-Gleichung (14) eingesetzt. Ihre Lösungen erfüllen die Randbedingung (15) nur für diskrete
Eigenwerte W, die durch Inter vallschachtelung gefunden werden müssen.
Aus der Lösung ip = 0 (r) läßt sich unter Berücksichtigung der Normierungsbedingung die Ver-
teilungsdichte der Elektronen bestimmen und daraus eine verbesserte Potentialfunktion U = U(r)
ableiten. Sie kann als erste Näherung in die ScHRÖDiNGER-Gleichung (14) eingesetzt und danach
das Verfahren wiederholt werden. Es wird solange fortgesetzt, bis die (n + l)-te Näherung mit
der n-ten Näherung in ausreichendem Maßß übereinstimmt, das gesuchte Feld also sich selbst
reproduziert.
Bild 4.1.12 zeigt die auf diese Weise von Wigner und Seitz ermittelte Wellenfunktion tp = ip(r)
für den tiefsten Valenzzustand eines Elektrons in Natrium, wenn r0 = rK gesetzt ist. Aus Bild
4.1.12 ist zu entnehmen, daß außerhalb des Na+-Ionenrumpfes für r > 0,097 nm (vgl. Tab. 3.1.5)
die Elektronenkonzentration nahezu konstant ist. Eine starke Ortsabhängigkeit der Aufenthalts-
wahrscheinlichkeit tritt nur in der Nähe des Kernes auf.
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In Bild 4.1.13 ist die als Eigenwert der ScHRÖDiNGER-Gleichung für JßA = 0 sich ergebende
Bindungsenergie W = TF(r0 ) dargestellt, wenn für den Radius r0 in (10) bzw. (11) verschiedene
Werte eingesetzt werden.

Bild 4.1.13. Energiefunktionen W = W L und + e für Natrium
(s mittlere Bewegungsenergie nach 3.3.3./15)

Wie in den folgenden Abschnitten 4.2 und 4.3 gezeigt wird, entspricht JßA = 0 dem unteren Rand
eines Energiebandes. Für den unteren Rand des Bandes freibeweglicher Elektronen schreiben wir
im folgenden W = JFL . Addiert man zu W = W L die mittlere Energie £ der Elektronen nach
(3.3.3./15) und (3.3./6), so ergibt sich in Bild 4.1.13 die Kurve W = W- + e. Ihr Minimum wird
bei Natrium für r0 = 0,22 nm angenommen. Das ist genau der Wert, den man erhält, wenn die
W-S-Zelle durch eine Kugel gleichen Volumens genähert wird:

t /~3rg = 1 /  — 0,452 nm — 0,22 nm.
|/ 8tt

Bei der Berechnung von £ ist zu berücksichtigen, daß mit r0 auch N veränderlich ist.
Bestimmt man tp und W aus der ScHRÖDiNGER-Gleichung für kk 4= 0, so ergibt sich für die Energie
der Elektronen bei kleinen Werten kk ein Ausdruck der Form

l r=n rL + A2 . (16)
2m

Die als Proportionalitätsfaktor auftretende Größe m kennzeichnet die effektive Elektronenmasse.
Sie weicht im allgemeinen von m Q ab.

Aufgaben

A 4.1.1. Bestimmen Sie nach dem eindimensionalen Potentialmodell
+ oo

U = Z70 S 6(z-na) ,  U0 <0 (1)
n=—  oo

die Grenzen des ersten und des zweiten Energiebandes in Kupfer (Gitterkonstante
a = 0,361 nm).
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Die Stärke des d-Potentials ist durch
+ a/2

j U dz = — 1,5 • 10~9 eV m (2)
- a /2

gegeben.
A 4.1.2. Berechnen Sie nach dem eindimensionalen Potentialmodell die ersten beiden

Energiebänder, wenn man a = 0,5 nm,
a/2
f U dz = —50 • IO-9 eV m (1)

— a/2

annimmt. Vergleichen Sie die Ergebnisse mit denen zu A4 .  1.1.
A 4.1.3. Wie wirkt sich in A 4.1.1 die Vorzeichenumkehr von Uo in bezug auf die Energie-

bänder aus?
A 4.1.4. Berechnen Sie den Fourier -Koeffizienten {71U für Silber und geben Sie den hierbei

zu verwendenden Atomformfaktor an (Werte nach Tab. 1.1.1 und Tab. 4.1.2).
A 4.1.5. Berechnen Sie den Atomformfaktor F zur Bestimmung des FouRiER-Koeffizien-

ten U122 für Wolfram.
A 4.1.6. Zur Abschätzung des konstanten Summanden UQ in der FouRiER-Entwicklung

des Elektronenpotentials benutzt man die aus der Theorie magnetischer Eigen-
schaften fester Körper sich ergebende Formel für die auf die Volumeneinheit be-
zogene diamagnetische Suszeptibilität

0Ze
2r2

247rß0wie
(1)

Darin gibt r den Ortsvektor des Elektrons im direkten Raum an, jll0 die magnetische
Feldkonstante. Bei der Aufstellung der Gleichung für das Elektronenpotential
kann in erster Näherung angenommen werden, daß sich sämtliche Z Elektronen
des Atoms im Abstand r0 vom Atomkern befinden. Uo folgt, indem über die Energie-
dichteverteilung einer Elementarzelle integriert wird. Die quantenmechanische
Verteilung der Elektronen läßt sich erfassen, indem r0 als Mittelwert betrachtet
wird, der mit dem Volumen ß 0 einer Elementarzelle des Kristalls zusammen-
hängt.
Leiten Sie auf Grund dieser Überlegungen die Verknüpfung des konstanten Poten-
tialanteils UQ mit der magnetischen Suszeptibilität ab.

A 4.1.7. Bestimmen Sie aus der diamagnetischen Suszeptibilität % = 10“6 den konstanten
Anteil in der FouRiER-Entwicklung des Potentials. x

A 4.1.8. Geben Sie den Radius der Elementarzelle bei der Anwendung deä Wigner-Seitz-
Verfährens auf Kalium an (vgl. Tab. 1.1.1).

A 4.1.9. Nach der WiGNER-SEiTZ-Methode besteht für die Oberfläche der durch eine Kugel
genäherten W-S -Zelle die Randbedingung

(1)

Im Gegensatz dazu lautet die Randbedingung für das Elektron des Wasserstoff-
atoms

cfyA
ör /r->oo (2)= 0 .
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Zeigen Sie an Hand der Wellengleichung des harmonischen Oszillators

Ä2 d2 wico0
2

~T~ 7a  + o r V = (3)2m dr2 2

daß durch die Randbedingung (1) der Eigenwert W abgesenkt wird. Betrachten Sie
speziell

= 1/— . (4)

Die Potenzreihe zur Lösung der Randbedingung (1) ist bis zur vierten Potenz zu
entwickeln. Bei der Randbedingung (2) kann die Lösung

j-2
y = e 2m  “° (5)

zugrunde gelegt werden.
A 4.1.10. Geben Sie die Bedingungsgleichung dafür an, daß der Bildpunkt eines Vektors

fcA innerhalb der ersten BßiLLOUiN-Zone, also auf keiner ihrer Begrenzungen liegt.

4.2. Festkörpereigenschaften auf Grund der periodischen Grenzbedingungen
und des Bloch-Theorems

Einführung

Besetzung der Energiebänder — Valenzband, Leitungsband, Energielücke
Die Elektronen im Feld des Kristallgitters repräsentieren ein Quantensystem. Das
aus nur einem Elektron bestehende Quantensystem, z. B. das den Atomkern um-
kreisende Elektron des Wasserstoffatoms, weist ein Spektrum diskreter Energie-

Niveau - oder
Energie lücke

Bild 4.2.1. a) Energieniveaulinien bei einem Quantensystem aus einem Elektron,
b) Aufspaltung der Energieniveaus bei einem Quantensystem aus zwei Elektronen,
c) Energiebänder bei einem Vielteilchen-System

zustände auf (vgl. Bild 4.2.1a). Bei einem aus zwei Elektronen bestehenden Quanten-
system, z. B. bei den beiden Elektronen des Heliumatoms, sind die diskreten Energie-
zustände in je zwei dicht beieinanderliegende Niveaulinien aufgespalten (vgl.
Bild 4.2.1b). Das von den Elektronen der N Atome des Kristalls gebildete Quanten-
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System spaltet nach Bild 4.2.10 in N nahe benachbarte Energieniveaus auf. Ein
derartiges System von Energieniveaus wird als Energieband bezeichnet.
Jeder Quantenzustand kann nach der Fermi-Dirac -Statistik oder dem Pauli-
Prinzip nur von einem Elektron besetzt sein. Da zu jedem Energieniveau zwei Spin-
zustände gehören, ist somit jede Energieniveaulinie von zwei, jedes Energieband
von 2N Elektronen zu besetzen. Die Anzahl der Elektronenplätze in einem Energie-
band ist somit begrenzt.

ooooooo
®® O® ®O®)

® ® ® ® ® ® ®'
® ® ® ® ® ® ®l

Leitungsband

Energielücke

Bild 4.2.1. d) Valenzband, Energie-
lücke, Leitungsband.

Valenzband (x) besetzter, O unbesetzter Elek-
tronenzustand

Am absoluten Nullpunkt T = 0 werden die Energiezustände von unten beginnend
lückenlos nach oben besetzt. Das höchste für T = 0 vollständig mit Elektronen be-
setzte Energieband heißt das Valenzband. Über dem Valenzband befindet sich das
Leitungsband, kurz auch als Leitband bezeichnet. Es kann teilweise mit Elektronen
besetzt oder leer sein. Valenzband und Leitungsband sind voneinander durch eine
Energieliicke getrennt (vgl. Bild 4.2.1 d). Ihre Breite AF  ist von maßgeblicher Be-
deutung für die elektrischen und optischen Eigenschaften des Festkörpers. In spe-
ziellen Fällen können das Valenz- und das Leitungsband überlappen.

Defektelektronen

Ein Quantenzustand kann nach der Fermi-Dirac -Statistik entweder einfach besetzt
oder unbesetzt sein. Das Energieband läßt sich daher durch Angabe der besetzten
oder der unbesetzten Zustände beschreiben. Sind in einem Band nur wenige Plätze
unbesetzt, z. B. im Valenzband für T > 0, so ist es zweckmäßig, die unbesetzten
Zustände als Quasiteilchen einzuführen. Unbesetzte Quantenzustände der Elektronen
heißen Defektelektronen. Ebenso wie den Elektronen ist ihnen eine effektive Masse
zuzuordnen.
Werden in einem Festkörper Elektronen und Defektelektronen unabhängig von-
einander betrachtet, so gehören sie verschiedenen Energiebändern an. Ihre effektiven
Massen weichen daher in der Regel voneinander ab.
Bild 4.2.2 zeigt Elektronen im Leitungsband, Defektelektronen im Valenzband.
Im folgenden wird die Theorie über die Eigenschaften der Elektronen in den Energie-
bändern und über ihre Besetzung näher ausgeführt.
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Energie, der Elektronen im Leitungsband nach dem Bloch-Theorem
Das Verhalten freier Elektronen, die keinen äußeren Kräften unterliegen, wird durch
die ScHRÖDiNGER-Gleichung

2 Av + W = 0 (la)

00000.000
oooooooo
oooooooo
oooooooo

® ® ® o ® ® o ®
®®®0®®0®
0®®®®®®®
® ® ® ® ® ® ® ®

Leitungsband

Energielücke

Valenzband
Bild 4.2.2. Elektronen im
Leitungsband, Defektelektro-
nen im Valenzband

bestimmt. Ihre Lösung kann zeitlich als Überlagerung ebener Wellen
y = J.eilfeT-con (2a)

geschrieben werden. Sie heißen de-Brogliesche Wellen, k gibt ihren Wellenzahlvektor,
co ihre Kreisfrequenz an. Zwischen diesen Größen und der Energie W sowie dem
Impuls p des Elektrons bestehen die de-Broglieschen Gleichungen

W = ha), p = hk. (3a)
Für das periodische Feld mit dem Potential U(r) = U(r + ß) gilt nach (4.1. /3) die
ScHRÖDiNGER-Gleichung

Ä 2
Av» + [W — v = o. ( i )

AlTl

Ihre Lösung setzt sich aus der Überlagerung von Bloch- Wellen zusammen. Berück-
sichtigt man die Zeitabhängigkeit in der Form e“ia) *, so erhält man nach (4.1./5) für
die BhoCH-Wellen

yj — Ä kA ' r ~ 0)t (r). (2)
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Aus dem Vergleich der Lösungsfunktionen (2) und (2 a) folgt, daß der periodisch
veränderliche Faktor <p(r) den konstanten Wert eins annimmt, wenn (1) in (la)
übergeht bzw. das periodisch veränderliche Potential U(r) verschwindend klein
wird:

(p(r) -> 1 für U(r) 0 .  (4)
Elektronen im Festkörper, die eine im Vergleich zum periodischen Potential große
Energie W besitzen, verhalten sich daher im Kristall genähert wie freie Elektronen.
Sie werden als quasifrei bezeichnet.
Aus dem Vergleich von (2) und (2a) folgt, daß bei quasifreien Elektronen im Kristall
der Ausbreitungsvektor fc A an die Stelle des Wellenzahlvektors k freier Teilchen tritt.
Energie W und Impuls p quasifreier Teilchen sind daher, wie aus dem Vergleich mit
(3 a) hervorgeht, mit der Frequenz co und dem Ausbreitungsvektor fc A der Bloch-
Wellen durch

W=W Q + ha), p = hk A (3)

verknüpft (Bloch-Theorem).
Aus (3) folgt als Beziehung zwischen W und fcA

w o + - = W 0 + ~ .  (5)2m 2m

Nach dem BLOCH-Theorem sind die Flächen gleicher Energie im fc A-Raum Kugeln.
Sie heißen Fermi-Kugeln.
Der vom Ausbreitungsvektor fc A abhängige Anteil der Energie W wird im folgenden
mit e bezeichnet. Nach dem BLOCH-Theorem ist also

Die Masse m der quasifreien Teilchen weicht von der Elektronenmasse me ab. Sie
ist im allgemeinen nicht nur von der Gitterstruktur, sondern auch von der Be-
wegungsrichtung und von der Stellung des Elektrons im Bändermodell der Energie
abhängig (vgl. 4.2.5. und 4.2.6.). Im Gültigkeitsbereich des BLOCH-Theorems kann
mit einer nur von der Gitterstruktur abhängigen effektiven Masse m gerechnet
werden, für die Werte in Tabelle 3.3.2 zusammengestellt sind.
Nach dem BnocH-Theorem ergibt sich aus (6)

dW = de = Äfc A
dfc A dfc A m

Wird hierin der Impuls nach der zweiten Gleichung (3) eingesetzt und nach diesem
aufgelöst, so folgt

, dW mp = hk k = mh —— = — gradfeA W (8)
cl»£ a ti
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bzw. nach Division durch die effektive Masse

1 . TJ7 
1 de

(9)

Gleichung (9) hat allgemeine Gültigkeit für beliebige Energiefunktionen W = W (fcA )
bzw. 8 = e(fc A ). Sie ist nicht nur auf kugelförmige Energieflächen beschränkt (vgl.
A 4.2.14).
Die maximale Elektronenenergie für T = 0 ist nach (3.3/6) und (3.3. /22) durch die
FERMi-Kante Co — £f bestimmt. Für den größtmöglichen Wert des Ausbreitungs-
vektors am absoluten Nullpunkt erhält man daraus nach dem BLOCH-Theorem

-i/2?n£F (10)

(11)

Die zugeordnete Grenze der Elektronengeschwindigkeit ist nach (9)
hkF

m=

Ferner definiert man

F k ’ (12)

wobei k die BoLTZMANN-Konstante angibt. T F kennzeichnet die Temperatur, von
der an nach der BoLTZMANN-Statistik gerechnet werden kann.

Beispiel 4.2.1. k F , v F , T F für Kupfer

Für Kupfer erhält man mit eF = Co — eV nach Beispiel 3.3.1 aus (10) bis (12)

n /2 • 9,11 • 10~31 - 4,7 - 1,60 • 10~19

|/ 0,67 • (1,05 • IO"34 ) 2 mkF — 1,36 • 10 10 m -1 ,

1,05 • IO-34 • 1,36 • 10 10 - 0,67 m s-1 = 1,05 • 10 6 m s-1 ,Vp —
9,11 • 10- 31

4,7 • 1,6 • IO"19

1,38 • IO-23Tf — K = 54500 K .

Das BLOCH-Theorem ist besonders bei Metallen im unteren Teil des Leitbandes gut
erfüllt. Die konstante Energie W o nach (5) kann hier mit der unteren Kante
des Leitbandes identifiziert werden, so daß 8 die Energie oberhalb W L kennzeichnet.
Nach oben hin verschlechtert sich die Übereinstimmung auf Grund des Verhaltens
der Energiefunktion W = TF(fcA ). Nach dem eindimensionalen Modell des Fest-
körpers müßte sich an der oberen Bandkante ergeben :

1 / dT7 \
k \d/c A / obere Bandkante

(13)obere Bandkante —

1 3 Schilling, Festkörperphysik
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(vgl. 4.2.5.), während nach dem BnocH-Theorem die Elektronengeschwindigkeit mit
zunehmender Höhe im Band ständig ansteigt. Da jedoch die oberen Bereiche des
Leitbandes unbesetzt oder nur wenig besetzt sind, fällt diese Abweichung physika-
lisch kaum ins Gewicht.
Das FERMi-Potential £ (identisch mit dem Chemischen Potential bzw. mit der Freien
Enthalpie je Teilchen) wird bei den Metallelektronen auf die untere Kante W L
bzw. I7 0 des Leitbandes bezogen. Die FERMi-Kante £0 , die nach 3.3. mit der Grenz-
energie sF identisch ist, kennzeichnet also für den absoluten Nullpunkt T = 0 das
Niveau des FERMi-Potentials oberhalb der unteren Leitbandkante.

Periodische Grenzbedingungen
Ein Festkörper besitzt endliche Abmessungen. Die BLOCH-Wellen (4.1./5) als Lösung
der ScHRÖDiNGER-Gleichung (4.1./3) mit periodischem Potential Ü(r) können daher
nicht über den unendlichen Raum erstreckt werden. Um das theoretische Modell an

Bild 4.2.3. Periodizitätsbedingung
nach Born und v. Karman

die physikalische Realität anzupassen, denkt man sich nach Born und v. Karman
den vorgegebenen Kristall mit seinen Abmessungen periodisch wiederholt. An die
Stelle des einzelnen Kristalls wird eine lückenlose Folge gleicher Kristalle gesetzt.
Die Randbedingungen bei der Lösung der ScHRÖDiNGER-Gleichung wiederholen sich
daher periodisch im unendlich ausgedehnten Raum (vgl. Bild 4.2.3).
Diese periodische Fortsetzung der Randbedingungen in den unendlich ausgedehnten
Raum ist nicht zu verwechseln mit dem periodischen Potential U(r) = U(r + ß),
das unabhängig von den periodischen Randbedingungen besteht. Die periodischen
Randbedingungen stellen eine zusätzliche Annahme zum periodischen Potential,
dar. Sie werden eingeführt, um leicht überschaubare Lösungen für die Schrödinger-
Gleichung zu erhalten.
Voraussetzung für die Einführung periodischer Randbedingungen ist, daß bereits
in der Periodizität des Ausgangskristalls keine Störungen auftreten und daß von
Oberflächeneffekten abgesehen werden kann. Unter diesen Bedingungen ist die
Form des Ausgangskristalls unwesentlich.
Am zweckmäßigsten definiert man den Ausgangskristall bzw. das Grundgebiet Q
durch gleichmäßige Vergrößerung einer Elementarzelle um den Faktor G. Be-
zeichnen also a 1? a 2 , di e Basisvektoren des Kristallgitters, so wird das Grundgebiet
Q durch die Vektoren Ga l y  Ga 2 , festgelegt:

Q = Gza x . a 2 x a 3 = G zQq = A720 (14)

N gibt die Anzahl der Elementarzellen des Grundgebietes an.
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Mit der periodischen Fortsetzung des Kristalls muß auch die Lösungsfunktion der
ScHRÖDiNGER-Qleichung einschließlich ihrer Phase periodisch sein :

+ n Ga + n 2 Ga 2 + n 3 Ga 3 ) = ip(r), (15)
( 1? 2? = 0, zt 1? zE2, . . .) .

p Probleme

4.2.1. Periodizitätsbedingung nach Born und v. Karman

Nach Born und v. Karman wird für jede vom Ortsvektor r abhängige Wellenfunktion
yj == ip n (r, fcA ) die Periodizitätsbedingung

yj(r + GR) = ip(r) (1)

gestellt. Untersuchen Sie die Bedeutung der Periodizitätsbedingung (1) speziell für die Funktion

y>(r) = eife A-r (2)

und bestimmen Sie die Ausbreitungsvektoren k A , die die Periodizitätsbedingung (1) befriedigen.
Welche Bildpunkte des Ausbreitungsvektors erhält man für den reduzierten Bereich bei einem
Kristallwürfel aus Wolfram mit 1 mm Kantenlänge? Die Gitterkonstante des Wolframs (krz-
Gitter) hat die Größe a = 0,316 nm.

Lösung:

Soll die Beziehung

e ikA-(r+GÄ) = e ifcA’T (3)

erfüllt sein, so muß

GkA • R — 2mn (m = 0, ± 1, . . .) (4)

sein. Wir setzen den Periodenvektor R nach (l . l . / l)
3

R = 2 n ai (?zz ganze Zahlen)
i = l

in (4) ein und erhalten für die Ausbreitungsvektoren fcA die Bedingungsgleichung

3
Cr s n ia i * A — 2™*» (5)
2 = 1

Aus der Definitionsgleichung der Bäsisvektoren des reziproken Gitters

1 J •’J
nach (1.1./7) folgt, daß für Gk A sämtliche Punkte b des reziproken Gitters

3
Gk A = b = S ( = 0, 1 , . . . )  (6)

7 = 1

13*
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eingesetzt werden können. Man erhält somit als Lösung der Gleichung (5) für die möglichen Aus-
breitungsvektoren die Darstellung

fc. - - - yA ~ G G
(7)

Da G zwar eine sehr große, aber endliche Zahl ist, kann fcA nicht stetig verändert werden, sondern
ist durch einen diskreten Wertebereich gekennzeichnet. Ausgedrückt durch die Komponenten
in Richtung der Basisvektoren b 19 b 2, b 3 , erhält man für den Ausbreitungsvektor fcA die Dar-
stellung

— 1®A * » A * » Jäa * ■fcA = — — 1 b, + ? b» + — 2 b 3 .A 2k 1 2k 2 2k 2 (8)

Sie geht in (7) über, wenn man fcA = — einsetzt und (1.1./6) berücksichtigt. Die Punkte des

reduzierten Bereiches sind entsprechend der Definition in Abschnitt 4.1. durch

l<  a 2 + l ( /=  1 ,2 ,3 )  (9)

festgelegt. Setzt man hierin fcA gemäß (7) ein, so ergibt sich für die Komponenten des Ausbrei-
tungsvektors ZßA die folgende Intervallabgrenzung :

(? = 1 ,2 ,3 ) .  (10)
Z tr Z

In die erste BßiLLOUiN-Zone bzw. in den reduzierten Bereich entfallen daher genau G verschiedene
Werte 7nx, G verschiedene Werte wi2 , G verschiedene Werte In Richtung bj (j = 1, 2, 3) fort-
schreitend, erhält man für den Abstand zweier benachbarter Punkte

bj _ 2tt _ 2tu
G ~~ ä G = ~Lj (11)

Dabei bedeutet Lj die Länge des Grundgebietes Q in Richtung des Basisvektors a ?- (j = 1, 2, 3).
Im Falle G = 1 liegt nur der durch = m 2 = = 0 bestimmte Punkt innerhalb des redu-
zierten Bereiches, und man hat fcA = 0 zu setzen. Für G = 2 wird (10) durch mj = 0 und = 1
(j = 1, 2, 3) erfüllt. Man erhält also acht Ausbreitungsvektoren fcA mit Bildpunkten im reduzierten
Bereich.
Werden Kristallwürfel mit dem Volumen V aneinandergereiht, so ist der Periodenfaktor durch

i/FG = ]

bestimmt. Der Elementarwürfel des krz-Gitters enthält, vgl. 1.1.2., zwei Kristallbausteine, so
daß 2£?0 = a 3 gilt. Wir erhalten daher

mit den vorgegebenen Werten

2 • IO“9

= 3,99 • 106 .G =
(0,316 • 10" 9 ) :
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In einen reduzierten Bereich nichtäquivalenter Punkte fallen somit

N = G* = (3,99 • 106 ) = 6,34 • 10 19

Bildpunkte des Ausbreitungsvektors k A . Sie erzeugen eine Feingitterstruktur nach Bild 4.2.4.

b./G

b2 /G Bild 4.2.4. Feinstruktur der Ausbreitungsvektoren 7«A
im reziproken Raum

4.2.2.* Normierung und Orthogonalität der Bloch-Wellen

Die BLOCH-Wellen nach (4.1./5) sind mit einer Konstanten behaftet, die durch Normierung fest-
zulegen ist:

V = Vn(r> fe A) = k r<Pn(T, fcA ) • (!)
In der Quantentheorie der Festkörper wird y> über das Grundgebiet Q, (p dagegen über die Ele-
mentarzelle normiert. Berechnen Sie die Normierungskonstante und weisen Sie die Orthogonali-
tät der BLOCH-Wellen nach.

Lösung:
Nach Festlegung muß

f rp*(r, k A ) <p(r, feA ) d 7 = 1 , (2)
ßo

dagegen
Jy>*(r,fc A )v>(r,fcA )d7=  1 (3)
Q

gelten. Hieraus folgt für die Konstanten A = A n

Die normierte BLOCH-Welle (1) lautet somit

= y„(r, fcA ) = -k &k* r <f>n (r, feA ) . (5)

Unterscheiden sich zwei BLOCH-Wellen

V = Vnfo fc A> (6 )
in wenigstens einem der beiden Quantenparameter n und 7cA , so sind sie orthogonal. Der Beweis
für die Orthogonalität wird mit Hilfe der periodischen Grenzbedingungen geführt.
Multipliziert man die ScHRÖDiNGER-Gleichung (4.1./3) für tp = q>n (r, k k ) von links mit fcA' )
so entsteht

Ä 2-f- k A') A%(r, fcA ) + U(r) k A') W (r, feA ) = F„(fc A ) k A ') Vn (r, k Ä ) . (7)
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In gleicher Weise kann die konjugiert komplexe ScHRÖDiNGER-Gleichung für
ipn (r, fcA ) multipliziert werden. Subtrahiert man die entstehende Gleichung von (7) und integriert
über das Grundgebiet, so entsteht

-7- f IVS'Cn *a )  AFnfc k A ) - y n (r, k A ) Ay*'(r , &/)] d l7
2m J

Q

= lW n {k x ) - TFB'(fcA ')J J k A') Vn (r, fcA) dF.  (8)
Q

Nach dem GßEENschen Satz gilt für zwei Funktionen und

f(Vi AVa — % AVi) dl7 = $ (Vigrad V2 — grad i) • dA,  (9)
Q 0{Q)

wobei O(Q) die Oberfläche des Volumens V kennzeichnet und dA aus Q herausweist. Das erste
Integral in (8) kann daher in ein Oberflächenintegral umgeformt werden:

A = f lv>S'(r, fcA ) grad Vn (feA ) - y>n (r, fcA ) grad feA')] • d4 . (10)2m /
O(ß)

Die periodischen Grenzbedingungen bewirken, daß sowohl ip als auch gradyj in zwei einander
entsprechenden Punkten der Oberfläche die gleichen Werte annehmen, während die Oberflächen-
vektoren in den beiden einander entsprechenden Punkten entgegengerichtet sind. Daher ver-
schwindet das Oberflächenintegral. IFn (fcA ) und W n '(k/) sind nach Voraussetzung wegen der
verschiedenen Quantenparameter voneinander verschieden. Es folgt daher im Zusammenhang
mit der Normierungsgleichung (3)

J dV = ä n', kA'-  n , kA , (11)
Q

wobei ö n r 
t kA' ; n ,kA. das KRONECKER-Symbol bedeutet. Damit ist die Orthogonalität der Bloch-

Wellen y)n (r 9 fcA ) mit verschiedenen Quantenparametern n oder fcA nachgewiesen.
Für die Funktionen y>n (r, fcA ) ergibt sich bei gleichen Werten JeA auf Grund der aus (2) und (4)
hervorgehenden Beziehung

?>*'(»■, ki) <pn (r, fcA ) = Ntpn'(r, k A ) y>„(r, fcA ) . (12)
Es gilt daher

f <p*,(r, fcA ) ?„(r,k A ) dV = 8n -- n . (13)
ßo

4.2.3. Eindimensionales Modell für die Anzahl der Quantenzustände
in einem Energieband

Das eindimensionale Modell des Kristalls baut diesen aus Gitterpunkten auf, die im Abstand a
aufeinander folgen.
Die endliche Ausdehnung des Kristalls wird wie beim dreidimensionalen Modell berücksichtigt,
indem sich die Randbedingungen nach Durchlaufen der Strecke L periodisch wiederholen.
Leiten Sie im Zusammenhang mit dem PAULi-Prinzip die Anzahl der Quantenzustände in einem
Energieband ab, und untersuchen Sie die Besetzung der Leitungsbänder nach Tabelle 2.1.6 von
Silber, Diamant, Magnesium und Neon für den absoluten Nullpunkt der Temperatur.
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Lösung:
Die Länge L des Kristalls ist ein Vielfaches der Länge a einer Gitterzelle :

L = Na. (1)

Dabei gilt L a bzw. N 1.
Nach (4.2.1./7) sind die zulässigen Werte des eindimensionalen Ausbreitungsvektors feA daher
durch

Q_ n
kA = n -  =n— (ra = 0, ±1 ,  . . . )  (2)

L Na

gegeben. Eine Gesamtheit nichtäquivalenter Punkte wird nach (4.1./10) durch den reduzierten
Bereich

7T

a
1

a (3)

erfaßt. In den Bereich (3) fallen sämtliche Wellenzahlen nach (2), deren Laufzahlen n im
Intervall

liegen. Das sind genau N Wellenzahlen. Jede Elementarzelle trägt somit zu einem Energieband
genau einen Wert der Wellenzahl kA bei.
Berücksichtigt man, daß jeder durch eine Quantenzahl n gekennzeichnete Zustand infolge der

beiden möglichen Spinstellungen 5 = , s = — — in zwei Quantenzustände aufspaltet, so ent-
2 2

fallen also 2N unabhängige Quantenzustände auf jedes Energieband.
Ein Silberatom enthält nach Tab. 2.1.6. in der äußersten Schale ein Elektron. Die N Bausteine
eines Kristallgitters aus Silberatomen liefern N Elektronen für das höchste Energieband. Da in
diesem 2N Quantenzustände besetzt werden können, ist es somit am absoluten Nullpunkt der
Temperatur nur halb besetzt.
Magnesium und Diamant enthalten dagegen je Atom zwei Elektronen in der äußersten Bahn.
Ihre höchsten Energiebänder sind daher für T = 0 voll besetzt, sofern sie sich nicht überlappen.
Neon mit sechs Elektronen in der äußersten Schale füllt drei Energiebänder vollständig aus.

4.2.4. Leiter und Isolatoren

Bestimmen Sie den Beitrag der einzelnen voll- oder teilbesetzten Bänder zur meßbaren Drift-
bewegung der Elektronen nach 3.3. beim Anlegen eines äußeren Feldes. Untersuchen Sie auf
Grund der Angaben nach Tab. 2.1.6 über die Besetzung der Energiebänder die elektrischen Leit-
fähigkeitseigenschaften von Silber, Aluminium, Kupfer, Diamant, Germanium, Silizium, Beryl-
lium, Magnesium.

Lösung:

Für die Geschwindigkeit der Elektronen im Energieband gilt allgemein Gleichung (4.2./Ö) :

1 1 dJF z
» = — grad kA W = — — . (1)h Ä d/eA

Durch die Gestalt der Energiefläche W == W k ) wird die Geschwindigkeit der Elektronen
für eine bestimmte Stelle des Bandes vollständig bestimmt. Nur wenn die Energieflächen im rezi-
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proken Kaum Kugeln sind, wenn also eine Darstellung nach (4.2. /6) gilt, ist die Geschwindigkeit
nach allen Raumrichtungen gleich.
Nach (4.1. /16b) ist die Elektronenenergie W = W(k ) eine gerade Funktion. Ihre Fourier-
Entwicklung ergibt nur Cosinusglieder. Die Energiezustände sind im reziproken Raum sym-
metrisch zu fcA = 0 verteilt und gleichmäßig dicht. Zu jeder Elektronengeschwindigkeit v exi-
stiert daher gemäß

(2)
ö(-*Ai)

im betrachteten Energieband eine Elektronengeschwindigkeit —v. Integriert man über sämtliche
Geschwindigkeitszustände eines vollbesetzten Energiebandes, so heben sich die positiven gegen
die negativen Geschwindigkeitskomponenten heraus. Es ergibt sich der Wert Null. Damit folgt
auch als Mittelwert der Geschwindigkeit aller Elektronen eines vollbesetzten Energiebandes der
Wert Null:

(v)  vollbesetztes Band = 0 . (3)

Die Symmetrie der Energiefunktion W = IP(/«A ) bezüglich des Zustandes k A = 0 führt dazu,
daß zu einem vorgegebenem Wert W die Ausbreitungsvektoren k A und — gleichwahrscheinlich
sind. Auch ein nur teilweise besetztes Energieband weist eine zu v = 0 symmetrische Besetzung
mit Elektronen auf, sofern keine äußeren Störungen erfolgen. Bei der Integration über sämtliche
Elektronengeschwindigkeiten in einem teilweise besetzten, von außen nicht gestörten Energie-
band muß sich daher ebenfalls der Wert Null ergeben.
Beim Anlegen einer äußeren Spannung werden die Elektronen durch das Einwirken des elek-
trischen Feldes E beschleunigt und verändern ihre Energie. Die auf ein Elektron ausgeübte Kraft
is tF = -eE, so daß man für die Energieänderung

dlF = F • v d£ = — eE • v d£

und nach (1)
dIF=  _±£ .

Ä d/cA
(4)

Bild 4.2.5. Verschiebung der Ausbreitungs-
vektoren im reduzierten Bereich durch ein
äußeres Feld

erhält. Hieraus folgt als Änderung des Ausbreitungsvektors

dfcA = EdiA h (5)

Die Einwirkung des äußeren Feldes E führt zu einer gleichmäßigen Verschiebung dJF für alle
Energiezustände bzw. dfcA für alle Ausbreitungsvektoren JfeA (vgl. Bild 4.2.5). Infolge der be-
grenzten Stoßzeit ist d£ begrenzt.
Durch das angelegte Feld E wird bei vollständiger Besetzung eines Energiebandes ein Teil der
Ausbreitungsvektoren JcA über die Begrenzung der Elementarzelle im reziproken Raum, z. B.
über die Begrenzung des reduzierten Bereiches, hinaus verschoben. Die links hinausgeschobenen
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Vektoren JßA sind jedoch in den reduzierten Bereich rechts wieder einzufügen. Insgesamt ändert
sich dadurch nichts an der lückenlosen und symmetrischen Verteilung.
Bei einem vollbesetzten Energieband liefert auf Grund dessen auch im Falle eines anliegenden
Feldes E die Integration über sämtliche Zustände den Wert Null. Das vollbesetzte Energieband
leistet beim Anlegen einer äußeren Spannung keinen Beitrag zum elektrischen Strom. Es ist am
Ladungstransport nicht beteiligt:

(j) vollbesetztes Band — 0 . (6)

Dagegen entsteht bei unvollständig besetzten Bändern durch die Verschiebung eine Verteilung,
die bezüglich JeA = 0 bzw. v = 0 nicht mehr symmetrisch ist. Die Integration über alle Elektro-
nenzustände des teilweise besetzten Bandes ergibt daher nicht mehr den Wert Null, sondern
einen endlichen Wert: es fließt ein elektrischer Strom;

(7)teilbesetztes Band =1= 0 ,  (j) teilbesetztes Band 4= 0
jE=|=O jE=I=0

Die Leitung des elektrischen Stromes kann nur durch unvollständig besetzte Bänder erfolgen.
Silber und ebenso Kupfer und Aluminium weisen nach Tab. 2.1.6 in ihren äußeren Bändern je
Atom nur ein Elektron auf. Nach 4.2.3. ist diese Elektronenschale daher nur halb besetzt und kann
somit den elektrischen Strom leiten. Silber, Kupfer und Aluminium gehören daher zu den elek-
trischen Leitern (vgl. Bild 4.2.6a).
Diamant, Germanium und Silizium weisen nach Tab. 2.1.6 und nach 4.2.3. für T = 0 nur
vollbesetzte Energiebänder auf. Sie sind für T = 0 Isolatoren in Übereinstimmung mit dem
Experiment (vgl. Bild 4.2.6b).
Beryllium und Magnesium besitzen nach Tab. 2.1.6 und nach 4.2.3. ebenfalls nur vollbesetzte
Energieschalen. Im Gegensatz zu Diamant, Germanium und Silizium zeigen sie experimentell
elektrische Leitfähigkeitseigenschaften, die jedoch hinter denen von Silber, Kupfer und Alu-
minium Zurückbleiben. Dieses Verhalten wird erst durch die genaue Berechnung der Lage ihrer
höchsten Energiebänder geklärt, die sich teilweise überlappen.

4.2.5. Extremwerte der Energiefunktion

Bestimmen Sie die Maxima und Minima der Funktion W = JF(ä;a ) nach dem eindimensionalen
Modell.

Lösung:

Nach (4.1.1./15) und (4.1.1 ./10) sowie (4.1.2./23) schreiben wir

cos kk a = f(W).

Die Bandkanten sind durch

(cosÄ>A a)Kante = ±1  bzw. (£A )£ante = — (”■ = 0, ±1, ±2 ,  . . . )a
bestimmt.
Zur Ermittlung der Extremwerte differenzieren wir :

dTF dJF d/(TF) dTF . 7-— = -------------—— - = ------------- a sin k a .
dkk d cos k a dkk d cos k a

(1)

(2)

(3)
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Diese Funktion hat ihre Extremwerte für

(sin fcAa)Extr. = 0 bzw. (fcÄ)Extr. = — (» = 0, ±1, ±2, . . .)• (4 )a

Wie aus dem Vergleich mit (2) hervorgeht, geben die Bandkanten nicht nur den größten oder
kleinsten Wert der Energie innerhalb eines zulässigen Bereiches an. Sie sind gleichzeitig die
Extremwerte der Funktion W = J7(ßA ). Innerhalb eines reduzierten Bereiches

liegt ein Extremwert der Funktion W = I7(ßA ) für

(5)*a = 0

vor. Das steht in Übereinstimmung mit (4.1./16b), wonach W = 1V(ä;a ) eine zu &A = 0 sym-
metrische Funktion ist. Ein weiterer Extremwert ergibt sich innerhalb des reduzierten Bereiches
für

&A =- ,  (6)
a

Dagegen ist kA = — — nach Definition der Ausbreitungszahl &A = 4 ---- zugeordnet.
0/ 0/

Um Aufschluß über die Maxima und Minima zu erhalten, bilden wir die zweite Ableitung. Bei

der Differentiation der Gleichung (3) für die Stellen kA = — können wir sin kAa = 0 benutzen.
Es folgt a

d2 JF\ = _ 2 dTF
d A2//cA=— a d cos &Aaa

(7)

Bild 4.2.7 a) W = TF(&A ) mit einem Mini-
mum im Inneren des reduzierten Bereiches

Bild 4.2.7b) W = JF(£ A ) mit Minima an den
Rändern des reduzierten Bereiches

&A = 0 bedeutet cos kAa = 4-1. Ist die untere Kante eines Energiebandes durch cos kA a =4-1
gekennzeichnet, so wächst die Energie W, wenn man sich vom Rande nach dem Inneren des
Bandes bewegt, während gleichzeitig cos kAa auf Werte kleiner eins abfällt. Daher folgt aus (7)

d2 m
d&A 2 /untere Bandkante

1 7 *A =0

> 0 . (7a)

Es liegt ein Energieminimum nach Bild 4.2.7 a vor.
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Hat dagegen cos kk a für die obere Bandkante den Wert +1? so ist die Ableitung der Energie W
nach cos k a positiv, da beide nach dem Bandinneren hin abnehmen. Man erhält nach (7)

d2 P7\
— | <0  (7b)d&A 2 /obere Bandkante

A/  /ca=0

und somit für kA = 0 ein Energiemaximum nach Bild 4.2.7b.
Für cos kk a = — 1 erhalten wir, wenn dieser Wert an der unteren Bandkante angenommen
wird,

d 2 l7
d*A2

ArA=7t/a

I > 0untere Bandkante
(7 c)

d. h., an den Rändern des reduzierten Bereiches liegen Minima nach Bild 4.2.7b. Liegt
cos k a = — 1 an der oberen Bandkante, so folgt

d 2/ obere Bandkante
kA=nla

(7d)0 .

An den Rändern des reduzierten Bereiches liegen Energiemaxima nach Bild 4.2.7 a.
Der untere Rand eines Energiebandes ist somit durch

(8)

der obere Rand durch

d 2 IF

gekennzeichnet.
Wird vorausgesetzt, daß W = TF(£A ) eine Funktion darstellt, deren zweite Ableitung im ge-
samten Energieband stetig ist, so muß sich im Inneren des Bandes ein Wendepunkt mit

(9)I <0
obere Bandkante

d 2 lF
d A2

befinden.

4.2.6. Effektive Masse der Elektronen in den verschiedenen Bandbereichen
Untersuchen Sie die Geschwindigkeit der Elektronen in den verschiedenen Bereichen eines
Energiebandes unter dem Einfluß eines elektrischen Feldes E. Bestimmen Sie das Vorzeichen
der effektiven Masse für den unteren und für den oberen Rand des Bandes. Dabei ist das ein-
dimensionale Modell zugrunde zu legen.

Lösung:
Wir gehen von der allgemeinen Formel (4.2. /9) für die mittlere Geschwindigkeit der Elektronen
aus. Im eindimensionalen Fall lautet diese
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Die Beschleunigung der Elektronen kann auf Grund der Kettenregel

dv dv dßAa = — = --------- (2)
d£ d&A dtf

berechnet werden. Der erste Faktor folgt aus (1)

dv_ = 1_ d2 W
dfcA ~ h dfcA

2 ’

Den zweiten Faktor bestimmen wir mittels (4.2.4./Ö). Für die Verschiebung d&A der Ausbrei-
tungsvektoren erhalten wir damit

d&A 
e

— = ----- E .  (4)
dt h

Wir setzen (3) und (4) in (2) ein, und es ergibt sich

eE d2 IFa = ------------ .
Ä 2 d&A

2

Nach dem zweiten NEWTONschen Axiom ist die Beschleunigung durch die Gleichung

eEa = -----
m (6)

festgelegt. Aus dem Vergleich zwischen (5) und (6) folgt für die effektive Masse eines Elektrons die
Gleichung

Ä2

d 2 TF
d* A

2

(?)

Nach (4.2.5./7a) und (4.2.5./7c) ist die zweite Ableitung der Energie nach der Ausbreitungszahl
&A an der unteren Bandgrenze positiv. Die Elektronen werden hier durch die äußere Kraft —eE
beschleunigt. Dagegen ist nach (4.2. 5. /7b) und (4.2.Ö./7 d) an der oberen Bandgrenze die zweite
Ableitung negativ, da hier ein Minimum der Energie vorliegt. Daher kommt den Elektronen in
diesem Bandbereich eine negative effektive Masse m zu. In Richtung der äußeren Kraft bewegte
Elektronen werden durch diese verzögert. Für den Wendepunkt nach (4.2. 5. /10) hat die äußere
Kraft überhaupt keinen Einfluß auf die Bewegung. Die Elektronen verhalten sich an dieser
Stelle des Bandes wie Teilchen mit unendlich großer Masse.
Wie hieraus hervorgeht, läßt sich das BwcH-Theorem für den oberen Teil eines Energiebandes
nicht anwenden.

4.2.7. Defektelektronen

Untersuchen Sie die Auswirkung auf die physikalischen Zustandsgrößen, wenn an Stelle der
besetzten Elektronenplätze die unbesetzten, d. h. an Stelle der Elektronen die Defektelektronen
betrachtet werden. Welche Auswirkung hat der Übergang von Elektronen zu Defektelektronen
auf die Zustandsdichte *? Welche Energie, welche Ladung, welche Masse hat man für die
Defektelektronen einzusetzen, wenn die entsprechenden Größen für die Elektronen bekannt
sind?
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Lösung:
Nach der klassischen Theorie wird die Kraft bei der Bewegung elektrisch geladener Teilchen in
elektrischen oder magnetischen Feldern durch die LoRENTZ-Gleichung

F = mr = q(E + v X B) (1)

beschrieben. Eine Lücke in einer Kette gleicher elektrisch positiv oder negativ geladener Teilchen
läuft mit diesen mit. Sie verhält sich wie ein Teilchen mit negativer Masse und entgegengesetzter
Ladung. Kehren Masse und Ladung in (1) gleichzeitig ihr Vorzeichen um, so bleibt der Be-
wegungsablauf unverändert. Es kehren sich jedoch auch die Richtung der Kraft und damit
gemäß

= F • ör

das Vorzeichen der Energie um. Ordnet man daher nach dem Potential topfmodell den Elektronen
im Festkörper negative Werte der Energie zu, so ist diese für die Elektronenlücken positiv.
Nach der Quantentheorie wird die Bewegung und Verteilung der Elektronen durch die Schrö-
DiNGER-Gleichung

Hy = Wy> (2)

bestimmt.
Im Hamilton- Operator H der Gesamtenergie sind neben dem Impulsoperator —ih\? das elek-
trische Potential V (Einheit Volt) und das Vektorpotential A des magnetischen Feldes zu be-
rücksichtigen. Das elektrische Potential V ist mit der potentiellen Energie U des elektrischen
Feldes gemäß

U = qV (Sä)

verknüpft. Zwischen dem Vektorpotential A und der magnetischen Flußdichte B besteht die
Beziehung

B = rot Al. (3b)

A und V werden als zeitlich konstant vorausgesetzt.
Für den Hamilton- Operator H erhält man nach der Quantentheorie

H = i iÄV + qA)* + qV.  > (3)2m

Wir setzen (3) in (2) ein und multiplizieren mit — . Als ScHRÖDiNGER-Gleichung folgt damit
Ä2

f / _  i# - \  2 
o qV 2mlFl

[ (  V “T  4 ) - 2w -f + ] = o .  (4)

Vertauscht man in (4) sowohl bei q als auch bei m das Vorzeichen, betrachtet also an Stelle negativ
geladener Elektronen mit der effektiven Masse m positiv geladene Teilchen mit der effektiven
Masse — m, so ändert der imaginäre Summand in der ScHRÖDiNGER-Gleichung das Vorzeichen.
Außerdem tritt im letzten Summanden, der die Elektronenenergie W enthält, ein Vorzeichen-
wechsel ein. Die Energie der Defektelektronen kann daher gemäß

W p = -W e = -W (5)

auf die Energie TF = W e der Elektronen zurückgeführt werden.
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Der Übergang in der Betrachtung von Elektronen zu Defektelektronen ist durch die folgenden
Vertauschungsregeln bestimmt:

W-> -W,
m —m,

q = —e —q = +e .
(6)

Man erhält dabei an Stelle der ScHRÖDiNGER-Gleichung die konjugiert komplexe Schrödinger-
Gleichung.
Gibt die Wellenfunktion der Elektronen, y>p die Wellenfunktion der Defektelektronen an, so
gilt hiernach

Vp = Ve*-  ( 7 )

Für die Aufenthaltswahrscheinlichkeit ergibt sich daraus

Wp*=Me*-  ( 8 )

Die physikalischen Gesetze bleiben bei gleichzeitiger Umkehr der Vorzeichen von Masse, Ladung
und Energie ungeändert.

4.2.8. Zustandsdichte und Dichte der Energieniveaus

Geben Sie für eine Kupferleitung von 10 m Länge mit dem Querschnitt 1 mm2 die Zustands-
dichte, d. h. die Dichte der Ausbreitungsvektoren im reduzierten Bereich, sowie die Dichte der
Energiezustände für die Elektronenenergie e = 1 eV an. W = W o + £0 liegt also 1 eV über der
unteren Bandkante.

Lösung:

Der reduzierte Bereich im reziproken Raum hat das Volumen (in m-3 )

In diesem Raum befinden sich nach (4.2.1./7) N = G3 Ausbreitungsvektoren k k . Sie liegen überall
gleich dicht verteilt.
Der Kristall setzt sich aus N Elementarzellen zusammen. Sein Volumen beträgt

Q = 2Vß0 , (2)

wobei ß 0 das Volumen einer Elementarzelle bedeutet.
Dividiert man die Anzahl der AusbreitungsVektoren fcA durch das Volumen des reduzierten
Bereiches, so erhält man

N _ NQ q _
Qo ' 8k3 8 k3

als Anzahl der Ausbreitungsvektoren, bezogen auf die Volumeneinheit (in m-3 ) des reziproken
Raumes. Diese Größe heißt Zustandsdichte des reziproken Raumes. Sie hat die Maßeinheit m3 .
Den N JfeA - Vektoren entsprechen wegen der zwei Einstellmöglichkeiten des Spins 2N Energie-
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werte. Bezogen auf die Einheit des reziproken Raumes ergeben sich somit

2N_
Qq 4k3

Energiezustände. Auf den reziproken Raum der Größe d3#A entfallen

£ 7,7
4tü3 A

Ausbreitungsvektoren mit verschiedenen Energien oder Spinzuständen. Die Dichte y der Energie-
niveaus gibt die Anzahl der Energiezustände, bezogen auf das Energieintervall von einem Joule
oder auch einem Elektronenvolt an. Wir berechnen zunächst die Zahl dr der Energielinien im
Intervall W ••• W + dJF. Hierfür erhalten wir nach (4)

dv = ydW= — (5)
4k3

Dabei ist der Bereich d3£A des reziproken Raumes zu erfassen, dem der Energiebereich
W • • • W + dW zugeordnet ist.

Man kann allgemein den reziproken Raum nach Bild 4.2.8 in Volumenelemente

d3&A = du dko

zerlegen, wobei du das Oberflächenelement der Fläche W = const im reziproken Raum bedeutet,
d&a senkrecht zu do steht und durch die Länge des Energiedifferentials dJF bestimmt wird (vgl.
Bild 4.2.8):

dfco = |  A
° | dlF

dJF = dlK
dlF
dfcA

dJF
|gradfcA W\

Sind die Flächen konstanter Energie im fcA-Raum Kugeln, gilt also nach (4.2./6)

2m
&2 fcA

2

2m
d. h. (8)
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BO folgt
ITTT 1 TTT n Ä 2 d A 2 -iw Ä2AßA • d/«AdJF = gradfeA W • dfcA. = — — . dfcA = ----*---- (9)

2m dfcA m

Den Energiewerten zwischen W und W + dPK entspricht daher im reziproken Raum eine Kugel -
schale mit Beträgen der Ausbreitungsvektoren zwischen

, ]2m(W — W o ) ]/2me
A h ä

und
7 f 

1 hfo ------ I l /  m J+ dfcA = — I \2ms 4- / — deh \ |/ 2s

Das Volumen dieser Kugelschale ist

, 37  4 7, 2 /17  8ttw 3/2 
yä”d 3ÄA = 4käa 

2 d&A = ----—------ de. (10)
]/2 h3

Für die Anzahl der Energieniveaus, bezogen auf die Einheit des Energieintervalles, folgt daher
nach (5)

(H )
Z 7T2 Ä3 k 7

Mit den vorgegebenen Größen ergibt sich aus (3) als Dichte der Ausbreitungsvektoren je Raum-
einheit (m-3 ) des reziproken Raumes

N _ Q 10-10-» , . .  .. . ,
= --- = ------- m 3 = 4,0 • IO-8 m 3 .

8k 3 8k 3

Aus (11) erhalten wir für die Dichte der Energiezustände bei s = 1 eV

= V2 -10-° (9,11 -10-31)3/2 Vl,60. 10-1»
7 (0,67)3/2 . 3,143 . ( 1)05 . 10 -34)3

Aufgaben

A 4.2.1. Berechnen Sie für ein einfaches kubisches Gitter nach dem BLOCH-Theorem die
Energie eines Elektrons in einer Ecke der ersten Br [LLOUiN-Zone. Wie groß ist
diese Energie im Verhältnis zur Energie eines Elektrons im Mittelpunkt einer
Seitenfläche der ersten BRILLOUIN-Zone?

A 4.2.2. Berechnen Sie aus der FERMi-Energie ep = 1,0 eV nach dem BLOCH-Theorem den
Radius der größten FERMi-Kugel, wenn die effektive Masse gleich der Elektronen-
masse m e ist. Wie groß sind die Grenzgeschwindigkeit vp und die FERMi-Tempera-
tur T p ?

A 4.2.3. Geben Sie nach der Periodizitätsbedingung von Born und v. Karman die Aus-
breitungsvektoren fcA für einen Würfel aus Steinsalz von 1 cm Kantenlänge an
(Werte nach Tab. 1.1.1).

A 4.2.4. Schätzen Sie die Größenordnung der Elektronengeschwindigkeit in einem Fest-
körper ab, wenn für die Breite des Energiebandes ein Wert in der Größenordnung

1 4 Schilling, Festkörperphysik
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1 eV, für den Abstand zweier Potentialmaxima ein Wert in der Größenordnung
0,4 nm angenommen wird.

A 4.2.5.* Unter der näherungsweise zulässigen Annahme, daß (4.2./9)

v = 4" grad fcA W(k A ) (1)h

auch für äußere Kräfte gilt, ist die Formel für die effektive Masse aufzustellen.
A 4.2.6. Bestimmen Sie die mittlere Geschwindigkeit der Elektronen an den Rändern eines
* Energiebandes nach dem eindimensionalen Modell.

A 4.2.7. Untersuchen Sie nach Tab. 2.1.6 die Besetzung der höchsten Energiebänder für
Kupfer, Aluminium, Natrium, Silizium, Germanium, Argon. Welche dieser Mate-
rialien sind für T = 0 elektrische Leiter, welche Nichtleiter?

A 4.2.8. Die Energielücke zwischen Valenz- und Leitungsband liegt in der Größenordnung
1 eV. Wie stark muß ein von außen angelegtes elektrisches Feld sein, um einen
Elektronenübergang vom Valenz- zum Leitband zu erzeugen? Für die mittlere
Geschwindigkeit der Elektronen kann nach Tab. 4.2.1 ein Wert in der Größen-
ordnung 106 m s-1 , für die Reläxationszeit ein Wert in der Größenordnung 10-14 s
angesetzt werden.

A 4.2.9. Welche Wirkung hat der Übergang von Elektronen zu Defektelektronen auf den
Ausbreitungs vektor fcA der Bloch- Welle?

A 4.2.10. Leiten Sie aus der Verteilungsdichte der Elektronen die Verteilungsdichte der
Defektelektronen ab.

A 4.2.11. Wie groß ist in Silber (f = 5,5 eV) bei T = 300 K die Verteilungsdichte der Elek-
tronen mit der Energie e = 6,0eV? Welche Verteilungsdichte ergibt sich bei
Defektelektronen?

A 4.2.12. Berechnen Sie für einen Würfel der Kantenlänge 1 cm die Zustandsdichte.
A 4.2.13. Wie groß ist in einem Silberwürfel der Kantenlänge 1 cm die Dichte der Energie-

niveaus an der FERMi-Kante (vgl. Tab. 4.2.1)?
A 4.2.14.* Die in (4.2./9) aus dem BLOCH-Theorem abgeleitete Formel für die Elektronenge-

schwindigkeit ist für beliebige Energiefunktionen W = JV(JeA ) zu verallgemeinern.
Bestimmen Sie hierzu die Ableitung der Elektronenenergie W nach einer Kom-
ponente ki des Ausbreitungsvektors fcA , indem Sie die ScHRÖDiNGER-Gleichung
nach ki differenzieren und dabei die Bloch- Welle einsetzen.
Hinweis: Das Ergebnis der Differentiation läßt sich vereinfachen, indem die
Normierung und Orthogonalität der BLOCH-Wellen nach 4.2.2. sowie die periodischen
Randbedingungen benutzt werden.

4.3. Leitfähigkeitseigenschaften fester Körper nach der Boltzmann-Gleichung

Einführung

Verteilungsfunktionen
Durch das Ein wirken eines äußeren Kraftfeldes F = F(r) wird der Gleichgewichts-
zustand in der Lage- und Impuls Verteilung der Elektronen gestört. Als Folge davon
können stationäre Ströme der Masse, Energie oder elektrischen Ladung ausgelöst
werden.
Bei ihren Bewegungen stoßen die Elektronen mit den Kristallbausteinen zusammen.
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Daher werden die Leitfähigkeitseigenschaften durch die Zahl und die Art der Stöße
bestimmt.
Die Verteilung der Teilchen nach Lage und Impuls ist für jedes Energieband durch
die Besetzungs- bzw. Verteilungsdichte oder Zustandsfunktion

/ = /«(»% p) (1)
gegeben. Der Index n kennzeichnet das n-te Energieband. Eür die Wahrscheinlich-
keit, daß der Phasenbereich d0 von einem Elektron besetzt ist, erhält man

fn(T, p)  d0 .
Die Abgrenzung von d0 hängt vom physikalischen Problem ab. Bei gleichmäßiger
Verteilung der Elektronen im Lageraum F, wenn nur die Verteilung auf die Beträge
des Impulses p interessiert, kann man z. B. beim Einelektronensystem

d0 = V • 4kp 2 dp
setzen (vgl. 2. 1.4/6 sowie 3.3./7).
Im Gleichgewichtszustand, wenn keine äußeren Felder ein wirken, ist / mit der
FERMi-DiRAC-Verteilungsdichte nach (3.3./24) identisch. Dieser Zustand wird im
folgenden als Normalzustand bezeichnet.
Durch das Ein wirken äußerer Felder und infolge der Wechselwirkungsprozesse
bzw. Stöße ändert sich die Verteilung der Teilchen. Im stationären Zustand hebt
sich die von äußeren Feldern hervorgerufene Änderung der Verteilungsfunktion
gegen die auf Stoßprozesse zurückgehende Änderung auf. Nach Einstellen des statio-
nären Gleichgewichtes gilt daher

(2)

— ) die Änderung der Verteilungsdichte als Folge von Stößen, ( —- ) als
c£/s \ /f

Folge äußerer Felder an. (2) ist die Boltzmann-Gleichung in ihrer Ausgangsform.

Das Feldglied der Boltzmann-Gleichung
Es wird zunächst die Änderung durch äußere Felder betrachtet. Diese führen zur
Beschleunigung eines Teilchens. Hat es zur Zeit t den Lage vektor r und den Impuls-
vektor p, so ist es ohne Wechselwirkungsprozesse zur Zeit t + dt durch die Vektoren
r + r dt, p + p dt charakterisiert. Die Änderung der Besetzungsdichte während
der Zeit dt stimmt daher mit der Differenz der Besetzungsdichten in den Zellen bei
r, p und r + dr, p + dp zur Zeit t überein, wobei dr = r dt, dp = p dt zu setzen ist :

d0 = lim f - f  + P+P  d0 .
di->0 (3)

Hieraus folgt durch TAYLORsche Entwicklung

14*
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Beachtet man

s -  grad’- /=  Ä i+  l J + I ' [ - (5)

=gr»a p / = i ,+  i + -S ,„  (6)

wobei i P)  jp , k p Einheitsvektoren des Impulsraumes bedeuten, nebst

r = v ,  p = F ,  (7)

so läßt sich die Änderung der Verteilungsfunktion durch das äußere Feld mit Hilfe
der Gleichung

— ) = ® • grad r / + F • gradp f (8)
ct /F

ausdrücken.
An Stelle des Impulses p kann man in die Verteilungsfunktion auch den Ausbrei-
tungsvektor fc A einführen. Wegen (4.2./8) ergibt sich aus (4)

(9)

Das Stoßglied der Boltzmann-Gleichung
Durch Stöße kann ein Teilchen sowohl den Impuls bzw. den Ausbreitung svektor als
auch das Energieband wechseln. Ein derartiger Wechsel wird durch

(n, fcA ) -> « fcA ' ) ,

die Wahrscheinlichkeit für einen solchen Übergang innerhalb einer Sekunde durch

Pn'.mfäk f a)
gekennzeichnet .
Die Zahl der Übergänge (n, fc A ) -> (n', k k ' )  ist proportional der Wahrscheinlichkeit

&a)- Sie wächst ferner proportional mit der Verteilungsdichte f(r, k k ).
Ein weiterer Faktor ergibt sich durch das PAULi-Prinzip. Da jeder Quantenzustand
nur einmal besetzt werden darf, ist der Übergang in einen bereits besetzten Zustand
(n, fc A ')  unmöglich. Ist ein Zustand (n', fcA')  durch eine große Verteilungsdichte
/ n (r, fcA ')  gekennzeichnet, so wird beim Vielteüchensystem ein Elektron daher häufiger
eine Zelle als bereits belegt antreffen und daher kein Übergang stattfinden, als wenn
f n '(r, k ' )  nur klein ist. Im Grenzfall f n\r 9 k k ' )  = 1 ist ein Übergang unmöglich, im
Grenzfall k k ' )  = 0 tritt keine Beeinflussung durch das Verbot mehrfacher Be-
setzung auf. Um das PAULI-Prinzip zu berücksichtigen, fügt man dem Produkt aus
den beiden Faktoren P n ', n (fc A' ,  fc A ) und f n (r, k A ) einen weiteren Faktor 1 —
zu. Durch Summierung über sämtliche Übergänge (n, fcA ) -> (n f , k ), die zu einer
Verkleinerung der Anzahl der Teilchen im Zustand (n, fcA ) führen, und über sämtliche
Übergänge (n f , k k ' )  -> (n> fcA ), durch die sich die Teilchenzahl in diesem Zustand ver-
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größert, erhält man

= S {Pn.A*M W [1 - /„(fcA )]n'.k'j,
-P n'.n(k A’ ,  k A ) /„(fcA) [1 - /n-(fcA')]) • (10a)

Darin wurde die Abhängigkeit vom Orts vektor r als unwesentlich weggelassen.
Wird die Summe durch ein Integral ersetzt, so hat man die Dichte der Energie-
niveaus nach 4.2.8. zu berücksichtigen und erhält

= A f fcA')  AW) [1 - /„(fcA )]\ ot Js
- P n >, n (k a) /n(fe A ) [1 - /«'(&/)]} . (10)

Beim Einsetzen von (10) und (9) in (2) ergibt sich eine Integrodifferentialgleichung.
Ihre Lösung ist in der Regel nur genähert möglich und erfordert einen hohen Rechen-
aufwand.
Im Normalzustand, im Falle der Gleichgewichtsverteilung / 0 bei Abwesenheit äußerer(o  /P/\

—- ) als auch das Stoßglied ( ) , un-
/F / S

abhängig vom Integrationsgebiet. Daraus folgt die Gleichheit der Übergangshäufig-
keiten für die Übergänge (n', k A' )  -> (n, k k ) und (n, k k ) -> (n', k k ). Es besteht somit
die Gleichung

Pn.n'&A, k k ' )  / 0 (fc A ') [1 - / 0 (fcA )] = P n (fc A ' ,  fcA ) / 0 (fcA ) [1 - / 0 (fcA ')] . (11)
Im folgenden wird der Index n bei der Verteilungsfunktion / weggelassen.

Das Stoßglied kann in der Form

W\ / d ( / - / o ) \  / - / o
dt / s  \ / s  T (12)

geschrieben werden, wobei berücksichtigt wird, daß / 0 von der Zeit t unabhängig ist.
Die Größe t hat die Dimension Zeit und heißt Relaxationszeit. Sie gibt die mittlere
Lebensdauer eines Zustandes (n, k k ) an. Ihre genaue Ermittlung erfordert die
Lösung der BoLTZMANN-Gleichung in ihrer vollständigen Gestalt als Integrodifferen-
tialgleichung.
Wird das äußere Feld ausgeschaltet, so bewirken die Stöße eine Rückkehr in den
Normalzustand nach der FERMi-DiBAC-Statistik. Die hierfür gültige Relaxationszeit
weicht von der Relaxationszeit bei Anwesenheit des äußeren Feldes ab.
Im folgenden bezeichne

<P = Vn( r > fe
A ) = fn  — fo (13)

die Abweichung vom Normalzustand, der FERMi-DiRAC-Verteilung. Unter dem Ein-
fluß des äußeren Feldes habe sich der Zustand / = / 0 + (pQ eingestellt. Danach werde



4. Grundlagen der Quantentheorie fester Körper214

das äußere Feld ausgeschaltet. Für die Rückkehr in den Normalzustand folgt nach
(12)

d(p (p
dt t

(14)

Die Lösung dieser Gleichung lautet

(p(t) =(pQ e T . (14a)

r bedeutet hiernach die Zeit, die nach Abschalten des Störeinflusses vergeht, bis die
Abweichung von der Normal Verteilung auf den Bruchteil 1/e abgesunken ist.

Linearisierung der Boltzmann-Gleichung

Bei nicht zu starken äußeren Feldern ist die Abweichung (p der Verteilungsfunktion
von der Fermi-Dirac- Verteilung / 0 gering. Die Störfunktion (p kann als klein gegen
/ 0 behandelt und nur in der ersten Ordnung berücksichtigt werden. Der Einfluß des
äußeren Feldes, das selber nur eine kleine Störung darstellt, wird lediglich auf die
ungestörte Verteilungsfunktion / 0 erstreckt. An Stelle von (9) folgt damit

d/\ F
— = v ■ grad r /0 + — • gradfcA/0 ,ut ]■£ n (15)

wobei
|» • grad r 9>|<< |® • gradr / 0 | , |E • grad feA <p\< \E  • grad fei / 0 | (16)

vorausgesetzt wird.
Bei der Bestimmung kleiner Abweichungen von der FERMi-DiRAC-Verteilung / 0 geht
man vielfach von einem Ansatz der Form

<p = -2hw bzw. 9, = - - ! ?
dW de (17)

aus. Dabei bedeutet eine noch zu bestimmende Funktion, W = JF0 + e die Teil-
chenenergie. Nach (3.3. /24) besteht die Beziehung

a/o _ /o( i  - /o)
de kT

(18)

die man in (17) einsetzen kann. Hierin gibt k die BoLTZMANN-Konstante, T die
absolute Temperatur an.
Im Stoßglied schreibt man

/ = /o + 9’ = / o ( l+  )> l - /= ( l - / o ) ( l -  T - T ) (19)
\ / 0 / \ 1 — / 0/

und linearisiert gemäß

/(fcA ) [1 - /(fcA')] = / 0 (fcA) [1 - /o(fcA')] [ 1 + ’’ (fcA - )
ZOv AZ' l-/o(fc A' )J’  (20)
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Damit ergibt sich, aus (10), wenn man (11) berücksichtigt,

) = Ä f p *' k *-'> k /»(l - /o') L/  7 - f tT 'm I  d3fcA ' • (21 )
\ d t / s Ö7C3 J L/o (1 —- /o ) /o(l — /o)J

Hierin bedeutet

/«=/o(fcA)> <P = <P(k A.')>
dagegen

/o' = /o a')  , = ?(*/) •
Wird der Ansatz (17) in (21) eingesetzt, so erhält man

O = riU f fcA ) /o(l - /.') [ (fc/) - (fcA)] d A . (22)\(7C ys ÖTC tCJ. J

p Probleme

4.3.1. Abweichung vom Normalzustand der Verteilung durch ein äußeres
elektrisches Feld

An einen Festkörper wird ein homogenes elektrisches Feld gelegt. Die Temperatur sei im ge-
samten Festkörper konstant. Bestimmen Sie durch Linearisierung der BoLTZMANN-Gleichung die
Abweichung vom Normalzustand der Geschwindigkeitsverteilung nach der Fermi-Dirac-
Statistik. Untersuchen Sie den Zusammenhang zwischen der Stoßzeit nach (3.3.1./7) und der
Relaxationszeit.
Die Rechnung ist speziell für ein Elektron in Silber bei T = 300 K durchzuführen, das sich in
Feldrichtung E mit der Geschwindigkeit 105 m s-1 bewegt. Das elektrische Feld habe die Stärke
E = 1 Vm-1 .

Lösung:
Da im gesamten Kristall eine konstante Temperatur vorausgesetzt wird, ist

grad r /o = O. (1)
Das linearisierte Feldglied (4.3./15) in der BoLTZMANN-Gleichung (4.3./2) wird daher

(!«■) = ~ 7 -gradfcA/o, (2)yör / p  h
wobei

F = —eE (3)
zu setzen ist.
Das Stoßglied kann nach (4.3./12) in der Form

(I) = V\ /S T
geschrieben werden. Wir erhalten als linearisierte BoLTZMANN-Gleichung des elektrischen Lei-
tungsprozesses nach (4.3./2)

• grad fci /0 = . (5)n t
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Wählt man das Koordinatensystem so, daß die z-Achse in Richtung des elektrischen Feldes weist,
folgt

8 /o = f - /o. (6)

* T

Die Lösung dieser Gleichung erfolgt durch den Ansatz

/ = /0 -AäA (7)

wobei &kz die Änderung der z-Komponente des Ausbreitungsvektors kennzeichnet. Mittels (7)
folgt aus (6)

so daß man / in der Form

/ = fo (9)

darstellen kann.
Wir setzen r als konstant und unabhängig von voraus. Die Flächen gleicher Energie im rezi-
proken Raum seien Kugeln, d. h., die Energie sei durch

£2L» 2 1 £2

J7 = J7o+  ±«A_ = IFo+  (V + V + V) = o+e  (10)V/m V/vm v

gegeben. Aus der Lösung der BoLTZMANN-Gleichung (5) in der Form (9) ist zu entnehmen, daß
unter dem Einfluß des elektrischen Feldes E eine Verschiebung der FERMi-Kugeln entgegen E
eintritt (vgl. Bild 4.3.1). Der Mittelpunkt verlagert sich auf der kz -Achse um A#z . Das entspricht
einer Geschwindigkeitsänderung

a „ = . = ä_ = (n)
mm m
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Jedes Elektron ist danach xnit einer zusätzlichen Geschwindigkeitskomponente Atl versehen
worden.
Enthält der Festkörper, bezogen auf die Volumeneinheit, im Leitband N Elektronen, so ist die
elektrische Stromdichte durch

Ne2E zx= — Ne Nvz = -------- , (12a)
m

die elektrische Leitfähigkeit durch

h =
E z m

(12b)

gegeben. Wie aus dem Vergleich mit (3.3.1./5) hervorgeht, ist somit die Relaxationszeit r = TRe i
mit der Stoßzeit t = TStoß für elektrische Leitungsprozesse gemäß

1T Rel — — TStoß

verknüpft.
Für die Abweichung vom Normalzustand folgt nach (7) und (8)

, , 5/0 eEz9’ = / - / o  = Z7-- -T  (t = TRel)-
az h

Als Ableitung der Verteilungsfunktion ergibt sich nach (4.3./18) und (10)

e/o 0 /o 0£ /o(i - /o) ...
8kz de dkz kT z

und somit nach (14) für die Abweichung von der Fermi-Dirac- Verteilung

/o(l - /o) E
r kT 4

(13)

(14)

(15)

(16)

Zur numerischen Rechnung gehen wir von der Formel für die Verteilungsdichte nach (3.3./24) aus,
die wir in der Form

'm[vx2 4- vy
2 + vz

2 ] — 2?
2kT

schreiben. Für das FERMi-Potential £ wird der Wert am absoluten Nullpunkt £0 = 5,5 eV ein-
gesetzt (vgl. Beispiel 3.3.1, Problem 3.3.3 sowie Tabelle 4.2.1). Es folgt mit den vorgegebenen
Größen

f = _____________________i _____________ = ___L_
/ 0  /9,11 • 10-31 • 1010 — 2 • 5,5 • 1,60 • 10 -19 \ , 4 e- u +l ’

eiP ( 2 . 1 ,38 .10 -3 .300  ) +1

dagegen
p- 211

1 - /o = — ------- = 10- 91> 8 .1 + e- 11

Für die Relaxationszeit erhalten wir nach (13) und (3.3.1./5) mit den Werten nach Tab. 2.2.2
und Tab. 3.3.1

1 ma 9,11 • IO"31 • 67,1 - IO6 . .T = --- TctoR = ---- = ------------------------------ S = 4,1 • 10-14 S.2 stoß Ne 2 5,86 • 1028 • (1,60 • 10 -19 ) 2
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Damit ergibt sich aus (16) für die gesuchte Abweichung der Verteilungsfunktion / vom Normal-
zustand, der Fermi-Dirac- Verteilung,

— 1 • IO-91 * 8 • 105 • 1,60 • 10-19 • 1 • 4,1 • 10-14 
o . qq

1,38 • IO-23 • 300

Die Abweichung ist so gering, daß man für die betrachteten Geschwindigkeiten eine Verteilung
nach der FERMi-DiRAC-Statistik ansetzen kann. Größere Abweichungen vom Normalzustand
sind nach (15) nur zu erwarten, wenn fQ weder nahe bei null noch nahe bei eins liegt. Nach (17)
sind diese beiden Bedingungen erfüllt, wenn die kinetische Energie des betrachteten Phasen-
zustandes und das FERMi-Potential etwa gleich sind :

v (»/ + V + « cz

(vgl. A 4.3.3).

4.3.2. Elektrische Leitung unter dem Einfluß eines elektrischen
und eines Temperaturfeldes

Leiten Sie nach der BoLTZMANN-Gleichung die Formel für die Stromdichte in einem Metall ab,
wenn an dieses ein elektrisches Feld und gleichzeitig ein Temperaturfeld angelegt wird. Dabei
kann in erster Näherung vorausgesetzt werden, daß die Relaxationszeiten für die elektrischen
und für die thermischen Stoßprozesse gleich sind.
Bestimmen Sie für Kupfer bei der Temperatur T = 10 K größenordnungsmäßig das Verhältnis
des vom elektrischen Feld ausgelösten Elektronenstromes zu dem vom Temperaturfeld bewirkten.
Die elektrische Feldstärke sei E = 0,1 V m-1 , der Temperaturgradient habe den Betrag |grad T\
= 104 K m-1 . Das elektrische Feld und der Temperaturgradient seien gleichgerichtet.

Lösung:

Wir gehen von der BoLTZMANN-Gleichung (4.3./2) aus, in der wir das Stoßglied nach (4.3. /12)
unter Verwendung der Relaxationszeit t darstellen und das Feldglied in der linearisierten Form
(4.3./15) anwenden. Die äußere Kraft schreiben wir F — qE, wobei q die elektrische Ladung be-
deutet. Es folgt

---------- = V • grad,. /o + • gradfcA /<,. (1)r ---------------------------n

Den Gradienten nach dem Ausbreitungsvektor können wir gemäß (4.2. /9)

grad fcA /0 = “■ gradfcA s + tx> (2)
oe oe

darstellen. Die Veränderlichkeit der Verteilungsfunktion ist durch das Temperaturfeld bestimmt.
Daher ergibt sich

grad r /o = - grad r T . (3)

Als Ableitung der Verteilungsfunktion /0 erhält man nach (3.3./S)

% = (1 — /o)/o W (4)
dT kT \dT T / ’

= f - /o =
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Da andererseits nach (4.3./18)

9/o _ /o(l - A) z«
” kT~  (5)

gilt, können wir

8/o = _£A IdC , e -C \  ,6)
8T 8s \ 8T  T ) ' ’

schreiben. Wir setzen (6) in (3) ein und erhalten

gradr fo = + 8- ) grad ” T - (7 )

Damit folgt aus (1) für das Abweichen vom Normalzustand der Verteilung

- (M + H) gradr T

Sind elektrisches Feld und Temperaturgradient gleichgerichtet, so kann "(diese Richtung als
z- Achse gewählt werden. Wir erhalten in diesem Falle an Stelle der Gleichung (8)

Bild 4.3.2. Geschwindigkeitsraum d 3v

Die Stromdichte j ergibt sich gemäß

j = q j vN(v) d3v, (9)

wobei N(v) d3v die Zahl der Ladungsträger angibt, die Geschwindigkeitsvektoren innerhalb des
Geschwindigkeitsraumes d3v besitzen (vgl. Bild 4.3.2). Diese Zahl können wir durch die Ver-
teilungsfunktion und die Dichte der Ausbreitungsvektoren ZßA nach (4.2.8./15) aus-
drücken :

N&v = f—d?k k . (10)
4?T3
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Wir erhalten damit

(11a)

Im folgenden wird ß = 1 m 3 angenommen.
Da im Normalzustand jede Richtung gleichberechtigt ist, kommt für den elektrischen Strom
nur die Abweichung vom Normalzustand zur Wirkung. In (11a) ist daher / durch <p = / — /0

nach (8a) zu ersetzen:

3 = I d 3&A (11)

Weisen E und grad r T in die «-Richtung, so ergibt sich aus (11) und (8 a)

7 = 7 ,=  -----— | w 2 —-\qE  — I ---------- ------ — d 3 Ä?A .J 47? J 2 5.S P \ T ÖT) dz J A (12)

Die Ausbreitung» Vektoren sind nach dem Bändermodell mit der Energie verknüpft. Wir führen
die Integration daher über Flächen konstanter Energie im reziproken Raum durch. Der rezi-
proke Raum zwischen zwei Niveauflächen e und e + de ist nach Bild 4.2.8

d 3 &A = d(7dfc a , (13)

wobei dß a den Abstand der beiden Energieflächen im &A -Raum kennzeichnet. Für das Energie-
differential schreiben wir

ds = gradfc A e • d/ßA = |grad* A e|  dk a

und erhalten damit

(14)

(15)

(16a)

da de
|gradj feA e |  *

d 3 Z?A = da d&CT =

Allgemein definiert man die Energiedichte -Funktion

x 1 C 9 d0,
G(e) = ----- / tv 2 ---------------

4tc3 j |gradfc A e |  -
e = const

und mit ihrer Hilfe die Koeffizienten

Unter Verwendung dieser läßt sich nach (12) die Stromdichte in der Form

1 = iz = Ko - q
K r q dT

T dz
(17)

darstellen. Der elektrische Strom wird hiernach nicht nur durch ein elektrisches Feld E aus-
gelöst, sondern kann seine Ursache auch in einem Temperaturfeld haben.



4.3. Leitfähigkeitseigenschaften fester Körper nach der BoLTZMANN-Gleichung 221

Die genaue Abhängigkeit ergibt sich aus den Koeffizienten K v . Um diese zu berechnen, führen wir
in der Verteilungsfunktion fQ die Größe

V = — - (18)' kT ’
ein, womit folgt

/o = fort = — (19)en + 1

Das Integral für K v nach (16) können wir in der Form
oo oo

= - f ? TT <20 >J J dtj
o __?_

kT
schreiben. Es ergibt sich kein wesentlicher Fehler, wenn die untere Grenze durch — oo ersetzt
wird: Mit zunehmender Temperatur weicht £(T) nur wenig von Co ab (vgl. 3.3.4.). Zur Abschätzung
gehen wir daher von f 0 = 1 eV, T = 1 000 K aus und erhalten

Co 1 • 1,6 • IO-19
= ----— = ------------------------ = —11,6/0 kT 1,38 «IO-23 * 1000

d/, e o
(1 + e o) 2

e o 1 .

Die Ausweitung der unteren Integrationsgrenze auf — oo ist nur mit einem kleinen Fehler ver-
bunden.
Die Funktion ß = ß(ij) kann in eine TAYLOR-Beihe

ßW = ßW +’? (? )  + ? (tt) + • • • (21)Wo 2 W/  o

entwickelt werden. Da (— | durch Erweiterung mit e-2 ’) in
W/+ ,

/dM = -------e2 = -------5ZL__ = /dM
W /+ ,  (1 + e’) 2 (e-’ + l )  2 \ d )? /_ ,

übergeht, erkennt man, daß

d/o
d?;

für ungerade Werte n in eine ungerade, für geradzahlige Werte n in eine gerade Funktion über-
geht. Bei der Integration von — oo bis 4-oo liefern daher die mit ungeradzahligen Exponenten
versehenen Summanden keinen Beitrag, während die Summanden mit geradzahligem Expo-
nenten verdoppelt werden können, wenn die Integration von 0 bis + oo erstreckt wird. Es ergibt
sich mit ß(0) = ßQ :

K .„  Si + . . . l d , .  (23)
J L d »7 2 \d-rflo dy J
0

Für den ersten Summanden in (23) folgt

-2ß 0 [ dV = -2ß 0 [f 0 = ß0 .
J d»;
o

(24)
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Der zweite wird gleich
4-00 oo

J 2 \dz) 2 /odi) W 2 / oJ  (1 + e-1 )) 2
— oo 0

' f + 3e - T ■■■> - 7
0

(25)

Nach Definition (18) ist in (16) bzw. in (20) y] = 0 identisch mit e = £. Das bedeutet

(ß)r] = Q ~ ( a )e = £*

Ferner gilt
d = da de = da, d 2/? d 2a ,
d de dy de d 2 de2

d. h.

Damit erhalten wir aus (20)

a(e) de = (a) t=£  + fc2T 2 M (27)
de 6 \de2 / £ = £

o
bzw. nach Definition (16) und (16a)

r. - i W (Ä C . (28)

Bei der Auswertung des Integrals (16 a) legen wir das BLOCH-Theorem nach (4.2./3) zugrunde.
In Kugelkoordinaten ist

der = kA sin # d# dg? .

Die Komponente kz des Ausbreitungsvektors 7cA ergibt sich gemäß kz = kk cos #. Daher folgt nach
(4.2./9)

2 2 QV 2 = — — COS 2 Vz m 2

und nach (16 a) für die Energiedichte-Funktion
2n 2tc

\ T A 3 o Q • A J n J 2 27V xk£G(e) = ---- cos2 # sm # d# dtp = ------------—
4tv3 m 3 4tv3 m

o o

1 /2me\ 3 / 2 r
37 2 \ 'Är / m’

(29)

bzw.

= /2
V J 37V2 Ä3

(30)
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In erster Näherung wird mit T = 0 gerechnet. Damit ergibt sich aus (28)

(31)2 -

Nach (17) und (3.3./6) erhält man

3tc2ä3 m

und damit, wenn q = — e gesetzt wird, für die elektrische Leitfähigkeit

(32)

(33)

In zweiter Näherung wird die Temperaturabhängigkeit berücksichtigt. Nach (3.3./12) ist die Ab-
leitung des FERMi-Potentials nach T

dg 7T2 FT 2

dT ~ 6 Co *
(34)

Für Kupfer ergibt sich nach Tab. 4.2.1 und Tab. 3.3.2 bei T = 10 K

— ---38 ' -10 23)2 •■■ 10 J. K- 1 = 1,15 • 10- 26 J K- 1 .
6 1,7 • 1,60 • IO- 19

d£
dT

Das ist klein gegen

4
T

1,7 • 1,60 • 10~19

10 J K -1 = 2,7 • 10 -20 J K -1 .

Werden K o und K r nach der ersten Näherung berechnet, so ergibt sich

#o (1) Co“  X 1 d) = 0 .  (35)
Es verbleibt daher in (17) außer dem von bewirkten Summanden KJM&E nur der vernach-
lässigbar kleine Summand

In zweiter Näherung folgt aus (28) und (29)

KJ» = — (— V /2 _L J3/2 (1  + A . _L \ (37)0 3k 2 \ h 2 / m \ 2 2 6 £2 } ' 1

KJ» = J_ /2m\ 8/2 _L js/2 A _|_ Ä . Ä A *2712 J_\ . ( 38)1 3tv2 U 2 / m \ 2 2 6 C2 / ’

Das Fermi-Po tential f liegt in der Größenordnung 1 eV. Für T = 10 K erreichen daher die
beiden Korrekturglieder in (37) und (38) die Größenordnung

k2T 2 (1,38 • 10- 23 * 10) 2 IO" 44

----- ------- = 10 -6 .
C2 (1 • 1,60 • IO"19 ) 2 10- 38

Sie haben etwa die gleiche Größe wie der Summand (36). Für das Verhältnis des vom elektri-
schen Feld ausgelösten Stromes zu dem auf das Temperaturfeld zurückzuführenden Stom er-
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halten wir daher nach (17) für T = 10 K einen Wert in der Größenordnung

(j)E ~ K E = eE = 1,60 • 10~19 • 0,1
0')gradT rr df dT “d f  dT ~ 1,15 • 10-26 • 104

0 dT dz dT dz

Genauere Aussagen lassen sich aus der Berechnung der Korrekturglieder ableiten. Sie erfordern
jedoch bei höheren Temperaturen einen wesentlich größeren Rechenaufwand. Weitere Unter-
suchungen hierüber werden im übernächsten Problem 4.3.4 durchgeführt.

4.3.3. Wärmestrom und elektrischer Strom

Leiten Sie nach der BoLTZMANN-Glei chung in zweiter Näherung die Verknüpfung zwischen dem
elektrischen Strom und dem Wärmestrom in einem Festkörper her. Dabei ist vorauszusetzen,
daß die Relaxationszeit t für elektrische und für thermische Stoßprozesse gleichgesetzt werden
kann. Welche Beziehung besteht zwischen der elektrischen und der Wärmeleitfähigkeit?
Bestimmen Sie aus der spezifischen elektrischen Leitfähigkeit nach Tabelle 3.3.1. für Kupfer bei
0°C die Wärmeleitfähigkeit.

Lösung:
Wärmeausgleich und elektrischer Strom sind mit einer Änderung der Entropie des Festkörpers
verbunden. Jeder Wärme- und jeder elektrische Strom sind daher von einem Entropiestrom be-
gleitet.
Die Entropieänderung läßt sich nach [3] (3.3./1) gemäß

d8= (dü -ZdN)  (1)

durch die Änderung der Inneren Energie U und die Änderung der Teilchenzahl N ausdrücken.
(Das Chemische Potential /z c eines Elektronengases ist mit dem FERMi-Potential £ identisch.
Bei Transportprozessen bleibt das Volumen des Festkörpers unverändert.) Für die Änderung
der Inneren Energie des Elektronengases infolge des Transportprozesses können wir

dU = 8 dN (2)
setzen, wobei e die kinetische Energie eines Teilchens angibt. Damit folgt

dS = 1 (E - 0 dtf . (3)

Die Änderung der Teilchenzahl ergibt sich durch Abzählung der Zustände entsprechend (4.3.2./10) :

dN = N d3t> = — fd?kk (4)
4k 3

mit Q = Im3 . Durch Integration über alle Zustände erhalten wir als Entropiestromdichte

h = f (£ ~ d3fc A (5 )4k 3 T J
(vgl. 4.3.2./11). Wegen der Verknüpfung (1) zwischen Wärmeausgleich und Entropiezunahme
erhalten wir daraus die Wärmestromdichie

Jth = Tj s = ~ f (e - d?kk . (6)
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Damit erhalten wir aus (14)

x' = — _L £3/2 2_ (16)
37t2 \ h 2 ) m 3

Können die Relaxationszeiten für den elektrischen und für den thermischen Stoßprozeß gleich-
gesetzt werden, so folgt in Verbindung mit (13) als Verhältnis der elektrischen zur Wärmeleit-
fähigkeit das Wiedemann-Franzsche Gesetz

a 3 \ e  /

Die Größe
TT2 / le \2

L = — = — I— = 2,44 • IO-8 V2 K- 2

oT 3 \ e /

ist in zweiter Näherung eine Konstante für alle Stoffe. Sie heißt Lorenz-Zahl.
Als Wärmeleitfähigkeit des Kupfers bei 0°C ergibt sich

k' = LaT = 2,44 • IO"8 • 64,5 • 10d • 273 J s“1 m" 1 K -1 = 430 Wm“1 K“ 1

= 0,103 kcal s-1 m-1 K -1 .
Der Meßwert beträgt nach Tab. 2.2.2 0,091 5 kcal s-1 m-1 K -1 = 383 Wm-1 K“ 1 .

(17)

4.3.4. Seebeck- und Peltier-Effekt

In einem Festkörper, in dem kein elektrischer Strom fließt, jedoch ein Temperaturgefälle vor-
handen ist, tritt eine elektrische Feldstärke und als Folge davon eine Thermospannung auf. Diese
Erscheinung wird als Seebeck-Effekt bezeichnet.
Der Peltier-Effekt kennzeichnet einen neben der JouLEschen Strom wärme als Folge des elek-
trischen Stromes unabhängig vom elektrischen Widerstand auftretenden Wärmestrom. Er tritt
auch bei fehlendem Temperaturgefälle in Erscheinung.
Zum Nachweis des Seebeck-Effektes verwendet man einen Stromkreis aus zwei verschiedenen
Metallen nach Bild 4.3.3 und bringt die Kontaktstellen auf unterschiedliche Temperaturen T r
und T 2 . Berechnen Sie die erzeugte Spannung für ein Thermoelement aus Kupfer und Silber,
wenn die eine Kontaktstelle auf Zimmertemperatur T = 300 K gehalten, die zweite demgegenüber
um 0,1 K erwärmt wird.
Der Peltier-Effekt wird aus dem Wärmestrom an der Kontaktstelle zweier Metalle nach-
gewiesen. Berechnen Sie die erzeugte Wärmestromdichte an der Kontaktstelle zwischen Kupfer
und Silber bei Zimmertemperatur, wenn ein elektrischer Strom der Dichte 1 A mm-2 fließt.

Lösung:
Die nach dem SEEBECK-Effekt infolge des Temperaturgefälles auftretende elektrische Feldstärke
folgt aus (4.3.3./11), wenn die elektrische Stromdichte j gleich Null gesetzt wird:

Z + — = Ä — +
q dTJ dz dz q dz'

( la)

Der SEEBECK-Koeffizient 27 ist durch

K ± - CKq

qKaT
(1)
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gegeben. Die Aufspaltung von E in zwei Summanden nach ( la)  ist wegen des experimentellen
Nachweises zweckmäßig.
Ebenso ergibt sich der nach dem PELTiER-Effekt infolge des elektrischen Feldes auftretende

dT
Wärmestrom aus (4.3.3./12), wenn — = 0 angenommen wird:

dz

jth = nj (2 a)
mit

H = K± - t;Kn = ZT . -

Wegen (4.3.2./35) ist K ± — in erster Näherung gleich Null. In zweiter Näherung ergibt sich
im Zusammenhang mit (4.3.2./37) und (4.3.2./38)

n = (3)
2 Ä

Bild 4.3.3. Thermospannung ?7AB
SEEBECK-Effekt

nach dem

und damit aus (2)

1 7« 2T
2

Die Feldstärke auf Grund des SEEBECK-Effektes macht sich in Form der Thermospannung
bemerkbar. In einem offenen Stromkreis aus zwei verschiedenen Metallen nach Bild 4.3.3, deren
Kontaktstellen auf unterschiedlichen Temperaturen gehalten werden, erhält man für die Span-
nung zwischen den beiden Endstellen A und B

B B B

U AB = -J 'Edz=- j ' 2JdT-  - J ' dC .  (5)
A A A

Im folgenden wird q = — e gesetzt.
Die Punkte A und B befinden sich beim experimentellen Nachweis des SEEBECK-Effektes nach
Bild 4.3.3 auf gleicher Temperatur T Ä = T B im Material I. Das FERMi-Potential ist eine Zu-
standsfunktion. Es gilt = Cb- Daher verschwindet das zweite Integral in (5), und es verbleibt
nur der Summand mit dem SEEBECK-Koeffizienten27. Dieses Integral läßt sich wie folgt aufspalten:

K x k 2 b
U AB = - f  S idT-  f X n dT-  f dT.

A Kj. K 2

Die Integration erfolgt über die Temperatur. In den benachbarten Punkten A und B stimmt diese
überein: T A = T B = T o . Für die Kontaktstellen gilt Tj = Tk 2 = T 2 . Wir können daher

15*
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schreiben
t 0 t 2 r 2

U AB = f dT + f S  T -  J X n dT.
Tx To Tx

Definiert man
T

U i (T) = f S i dT (i = I , I I ) ,  (6)
0

so folgt

U ÄB = jfci - 27n ) dT = [U ) - U )] - [U it (T2 ) - CZjKTJ] . (7)
Ti

Mit dem SEEBECK-Koeffizienten nach (4) ergibt sich aus (7)

Soll hiernach eine Thermospannung auftreten, so müssen nicht nur die FERMi-Kanten Co bzw.
die aus ihnen abzuleitenden SEEBECK-Koeffizienten 27 der zwei Metalle voneinander abweichen,
auch die beiden Kontaktstellen des Stromkreises müssen sich auf verschiedenen Temperaturen
befinden.
Für T ± = T, T 2 = T + AT folgt aus (8)

uAB = - —  M _LU Ar .
\Coi feil/

(9)

Der PELTiER-Effekt läßt sich experimentell aus der Wärmestauung an der Kontaktstelle zweier
verschiedener Metalle nachweisen. Im Metall I tritt infolge des PELTiER-Effektes der Wärme-
strom Iljj, im Metall II der Wärmestrom auf. An der Kontaktstelle wird daher die Wärme-
stromdichte

in = (n, - iz 2 ) j (io)
bzw. mit dem PELTiER-Koeffizienten nach (3)

n 2k2T 2 / 1 1 \ .
2e

beobachtet.
Für die infolge des SEEBECK-Effektes erzeugte Spannung ergibt sich mit den vorliegenden Größen
und den Werten nach Tab. 4.2.1 aus (9)

= _ 3,1 .(1,38 . 10 -  /_!_ _ J_\ 300 . 04 v = 0;45
AB 2 • (1,60 • IO-19 ) 2 \5,5 1,7/

Der Wärmestrom an einer Kontaktstelle wird nach (11) gleich

3,142 • (1,38 • 10- 23 ) 2 • 3002 / 1 1 \ . n6 _ 27/7 = ----------- -------------- --------- i ----------- 106 J m-2 s-1
Jn  2 • (1,60 • 10-19 ) 2 \5,5 1,7/

= 1,35 kW m~2 = 0,32 kcal m-2 s-1 .

(ii)

4.3.5.* Temperaturabhängigkeit der elektrischen Leitfähigkeit für T ;> T&

Wird an das Kristallgitter ein äußeres Feld gelegt, so bildet sich in Wechselwirkung mit den
mechanischen Schwingungen der Kristallbausteine ein stationäres Gleichgewicht in der Ver-
teilung der Festkörperelektronen auf die Phasenzellen aus. Die Bestimmung der Verteilungs-
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funktion / = /(r, fcA ) erfordert die Lösung der BoLTZMANN-Gleichung. Aus / = /(r, Z«A ) lassen
sich die Leitfähigkeitseigenschaften ableiten.
Bei der Wechselwirkung zwischen dem Gitter und den Elektronen werden Gitterschwingungen
bzw. Phononen emittiert oder absorbiert, wobei das stoßende Elektron von einem durch &A
gekennzeichneten Zustand in einen Zustand /eA' übergeht. Die mittlere Lebensdauer r = t(Zca )
eines Elektronenzustandes k& im Festkörper ist daher begrenzt.
Das mechanische Schwingungsfeld kann als System harmonischer Oszillatoren aufgefaßt werden;
es ist gequantelt. Der Zusammenhang zwischen den Gitterschwingungen und den Elektronen-
übergängen unter Phononenemission oder -absorption wird quantenmechanisch aus dem Hamil-
ton- Operator des harmonischen Oszillators abgeleitet [26]. Die Übergangs Wahrscheinlichkeit
Pn'nfök* a) folgt mit Hilfe der quantenmechanischen Störungsrechnung [26]. Als Wahr-
scheinlichkeit, daß im mechanischen Schwingungsfeld ein Elektron mit der Energie W und dem
Ausbreitungsvektor fcA in einen Zustand W', k A' übergeht, erhält man

Pn'.n(k k ', fcA ) = - 2- - W - hwK ) + (N k + 1) 8(W' - W + ÄwÄ )] . (1)
MwkQ

Darin bedeutet ö die DniACsche Deltafunktion (vgl. 4. 1.1/2 und 4.1.1./3 mit c = 1). Nr gibt als
Eigenwert der ScHRÖDiNGER-Gleichung die Zahl der longitudinalen Gitterschwingungen bzw.
Phononen im quantisierten Schwingungsfeld mit dem Wellenzahlvektor K an. wr bedeutet die
Kreisfrequenz der mechanischen Schwingung. Der Faktor C ist eine materialabhängige Kon-
stante, deren Wert sich aus der Normierungsbedingung ergibt. Er heißt Kopplungsfaktor. M be-
deutet die reduzierte Masse der oszillierenden Kristallbausteine.

Wegen
W' - W = hwK (2)

für Absorptionsprozesse und

W / — W = — Kwr (3)

für Emissionsprozesse wird infolge der Eigenschaften der (5-Funktion immer nur einer der beiden
Summanden in (1) wirksam, so daß Absorptions- und Emissionsprozesse gemeinsam erfaßt werden
können.
Bestimmen Sie durch Lösung der linearisierten BoLTZMANN-Gleichung die Relaxationszeit der
Elektronenzustände unter dem Einfluß eines angelegten elektrischen Feldes E, Entwickeln Sie
daraus die Formel für die spezifische elektrische Leitfähigkeit bei hohen Temperaturen. Bestim-
men Sie die Abnahme der elektrischen Leitfähigkeit eines Metalles, wenn die Temperatur von
400 °C auf 500 °C erhöht wird. Vergleichen Sie das Ergebnis der Rechnung mit den Daten für
Kupfer nach Tab. 4.3.2.

Lösung:

Die Elektronen geben bei Stößen mit den oszillierenden Kristallbausteinen einen Teil ihrer
Energie an das Gitter ab, das sich dabei erwärmt. Das Stoßglied wird nach (4.3./10) in der Form

~ /o) ) = Ä f {Pn.»’(kA , k k ')f(k A' ) [ l  - f(kk nX 8t / s \ 8 t / s J
- Pn'.n&A.', fcA) /(*a) [1 - W )]) (4)

geschrieben. Können wir grad r / = 0 annehmen, so folgt nach (4.3./9) für das Feldglied

-’f ™\ ™ /F \ /F «
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Wir berücksichtigen

gradfeA /0 = gradfcÄ W = - /o(1 ,Z /o) hv (5b)
dW KT

nach (4.2./9) und (4.3./18). Aus (5a) erhalten wir

= qE-v  qE-v .  (5)
\ d t )p  * 8W kT “

Nach (4.3./12) läßt sich das Stoßglied durch die Relaxationszeit t ausdrücken. Aus der nach
(4.3./15) und (4.3./22) linearisierten Boltzmann-Gleichung (4.3./2) ergibt sich mittels (4) und (5)

— = -£. f fp , „(fcA; * A ) /0 ( i  - /0) T— --------------2 — 11 d3v

= (6)
Mit dem Ansatz

* = M P = WM (7)

folgt hieraus, wenn man berücksichtigt, daß nur über die Zustände nach dem Stoß integriert
und q = — e gesetzt wird,

-- = ä 3I~? f P n' ,n(MM (1 - //) (W - V) d’V = eE v .  (8)T 8713(1 - /0) J

Wir lösen diese Integralgleichung, indem wir nach (8)

P = T(k k ) = - eE-vr ,  V' = Vz(JeA ' )  = -eE-W (9)

in den Integranden einsetzen. Dabei sind

T = r(fcA ),  T'=T(fc A
z)

die von fcA bzw. k k abhängigen Relaxationszeiten, v und v' bedeuten die Geschwindigkeiten vor
und nach dem Stoß. Aus (8) folgt mittels (9)

Q 3 ,f , ■ f Pn'.nM, fcA ) (1 - /»') E • (vr - v'P) d»V = E . r . (10)8tc3 (1 - / o ) J

Die von einem stoßenden Elektron an das Gitter abgegebene Energie ist von der Größenordnung
Äwk- Sie ist für T > T D (DEBYE-Temperatur nach Gl. 2.2./26) klein gegen kT, so daß in der
Eermi-Derac- Verteilung keine wesentliche Änderung eintritt. Wir können daher // = /0 setzen
und erhalten aus (10) die Integralgleichung

Q C— - / P n' >n (k , k  E • (vt —v' t ' )  d3&A ' *=E -v  . (10a)

Da nach Tab. 2.2.1 für die meisten Metalle die DEBYE-Temperatur sehr niedrig ist, kami (10a)
im allgemeinen bereits für Zimmertemperatur verwendet werden.
Als ersten Näherungsansatz nehmen wir an, daß t für alle Ausbreitungsvektoren k k gleich ist,
so daß wir (10 a) mittels t = t' lösen können. Die Größe

— f P n - ,„M,M E- (v -v ' )  d?k\= — (11)87ü3jE • v J t
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gibt in diesem Falle die relative Änderung der Geschwindigkeitskomponente in Richtung E durch
Stöße an. Für ein vor dem Stoß in Richtung E bewegtes Teilchen erhalten wir nach Bild 4.3.4,
wenn wir berücksichtigen, daß im Mittel die Beträge der Ausbreitungsvektoren fcA und fcA ' gleich
sind,

E-(v  - v') = v -v B' .  = = K 2

E-v  v kk 2k;*’ 1 ’

Bild 4.3.4. Zur Ableitung der Be-
ziehung (4.3.5./12). Genähert gilt

' A&a K
ws(p = — = —

Dementsprechend ergibt sich für t = t' an Stelle der Gleichung (11)

Das Differential d3 ÄJA ' folgt mittels

d3Ä/ = do dfc/.
Darin ist

dÄ, , = dTT
|gradfcA' W'\ *

Durch die Bedingung

fcA- A = ±K
ist die Auswahlmöglichkeit der Ausbreitungsvektoren fcA ' bei vorgegebenem JeA eingeschränkt.
b ist in (2.2./6) gleich Null, da JcA ' aus dem reduzierten Bereich zu entnehmen ist.
Die Anzahl der longitudinalen Wellen eines Kristalls mit dem Volumen V = Q im Bereich der
Kreisfrequenzen w . . .  w -|- dw bzw. der Wellenzählen K. . .  K d/< ist nach (2.2./18) gleich

Q w*dw = 4 2 dK (13)2tt2 7 2 
l 8tt3

Darin bezeichnet der erste Faktor nach (4.2.8./3) die Anzahl der Ausbreitungsvektoren,

bezogen auf die Volumeneinheit des reziproken Raumes. Der zweite Faktor 4ttK 2 dÄ" gibt den
Bereich zulässiger Wellenzahl vektoren K an. Sie enden in einer Kugelschale mit dem Radius K
und der Dicke dK.

(11a)

(4.2.8./Ö)

(4.2. 8. /7)

(2.2./6)
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Legt man das BwcH-Theorem (4.2./6) zugrunde, so wird durch die Energie W der Betrag kk '
für die Ausbreitungsvektoren festgelegt. Bei vorgegebenem Ausbreitungsvektor fcA und fest-
gelegtem Betrag K liegen die Ausbreitungsvektoren k k ' = k k ' (W),  die (2.2./6) erfüllen, auf einem
Kreiskegel. Sein Grundkreis hat den Umfang 2n:K. Ist ein Bereich von Wellenzahlen K . . .  K + dK
vorgegeben, so enden die zulässigen Ausbreitungsvektoren 7«A ' auf einem Kreisring der Fläche

du = 2nK dK. (14)

Nach (4.2.8./6) folgt somit
, 3 , , , , ,  , 27vXdA:dJFd3ßA = der dk '  - -  ----------------

|grad fcA W'\

Wir setzen (15) zusammen mit (1) in (11a) ein und führen die Integration über die d-Funktion
aus. Es verbleibt, wenn |gradfcA W'\ = hv' sowie h2k = m 2v2 und genähert v' = v gesetzt wird,
nur noch das Integral über den verfügbaren Wellenzahlbereich

C2£ 0 Ä r (2A +1)  A 5 dg = 1
87üJf?n2v3 J wk t

Die Größe der Wellenzahlen K ist nach oben hin durch die Festlegung (2.2./21) der Debyeschen
Grenzfrequenz

g 27t

(15)

(16)

beschränkt, wobei die Phasengeschwindigkeit der mechanischen Welle bedeutet.
K

Aus (2.2./21) bzw. (2.2./22) ergibt sich für die obere Grenze der Wellenzahlen

<->

Die untere Grenze ist Null. Das Integral (16) läuft somit von Null bis K g . Drückt man (16) durch
ein Integral über die Kreisfrequenzen wk aus, so ergibt sich

(■ &N K + l )w K i&wK 1
Ci Tt/T 9 I R *87rJfmM J vs

6 t
o

Als Anzahl der longitudinalen Gitterschwingungen erhält man nach (2.2./10) für kT > hwx

, T kT „ , ,N k = ~---- , N k + 1 = -— . (19)

Berücksichtigen wir = v&K und führen die Integration in (16) aus, so folgt

J_ _ 9tc3 h2C2T
t ~ 4 £ 0äW d 

2 '
(20)

Als spezifische elektrische Leitfähigkeit bei hohen Temperaturen ergibt sich damit nach (3.3./5),
wenn die Relaxationszeit gleich der halben Stoßzeit gesetzt wird und wenn man die auftretenden
Zahlen zu einem gemeinsamen Faktor 1/70 zusammenfaßt,

Ne Q Mmv kTjy Tjy
° = ° t>Td = 70Ä2C2 T~ (21)
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Wichtig an dieser Formel ist die Proportionalität der elektrischen Leitfähigkeit mit — die
experimentell für hohe Temperaturen gut bestätigt wird. 1

Mit den vorgegebenen Temperaturwerten folgt unabhängig vom Material

= 673 2 =0 ,871

°673,2 773,2

Nach den experimentellen Werten in Tab. 4.3.2. erhält man für Kupfer

= 0,3101 = 0j856

673.2 0,3623

4.3.6.* Temperaturabhängigkeit der elektrischen Leitfähigkeit für T T D

Bei tiefen Temperaturen führt der Ansatz konstanter Relaxationszeit zur Lösung der Integral-
gleichung (4.3.5./10) nicht mehr zum Ziel.
Wegen des Energieaustausches zwischen den Elektronen und den oszillierenden Kristallbau-
steinen muß zwischen f0 = ffäx) und /0 ' = f0 (kx) unterschieden werden. // ist davon abhängig,
ob ein Emissions- oder ein Absorptionsprozeß vorliegt.
Stellen Sie die Formel für die spezifische elektrische Leitfähigkeit für tiefe Temperaturen T
auf. Berechnen Sie diese für Blei bei 15 K.

Lösung:

Zur Lösung der Integralgleichung (4.3.5./10) setzen wir in erster Näherung r = t (W) an und
führen die Rechnung mit einem Mittelwert f durch. Für diesen ergibt sich mittels- (4.3. 5./12)

1 q r k 2

7 = 4) J (1  - • (1)
An Stelle der für hohe Temperaturen gültigen Beziehung (4.3.5./18) erhalten wir

(°Kg
= a} on r [NK (i - /o')  abs + (n k + 1) (i -

r — f0 ) J vs
6

o

In der Formel (3.3./7 a) für die Zustandsfunktion /0 ' der gestoßenen Elektronen setzen wir

£Z = £ ± flCOx
(oberes Vorzeichen für Absorption, unteres für Emission) und nehmen die Energie vor dem Stoß
gleich dem FERMi-Potential f an. Ferner setzen wir

Damit ergibt sich

/oabs — . > /oem ~ ~ J 7 •e x +1  ex + 1



234 4. Grundlagen der Quantentheorie fester Körper

Für die Anzahl der Phononen nach (2.2./10) erhalten wir bei rein longitudinalen Schwingungen

Nk = , Nk + 1 = — (4)ex — 1 1 — e x

Setzt man (3) und (4) in (2) ein, folgt
Td/T

1 _ 9Tc3 A2C2y 5 C x da;
f “ MmWkTrf J (1 + e~x ) (e* - 1)‘ ( '

o

Der Ausdruck ex im Nenner ist für die obere Grenze bereits so groß, daß anstatt bis bis oo

integriert werden kann. Den Summanden e~x im Nenner kann man bei der Integration in erster
Näherung ebenfalls vernachlässigen. Für das verbleibende Integral folgt nach [3] (4.1.3./8)

j — - - - -  - = T(5) C(5) = 4! • 1,0369 = 24,89 25.
o

Hieraus ergibt sich mit 9k34! 1,0369 7000

1 7000 A2C2 (T_\ 5

t &QMm 2v2kTv \Td )
und für die elektrische Leitfähigkeit nach (3.3./5)

Ne 2Q Mmv 2kT /T D \ 5

7000 W 2

(6)

(7)

Bei tiefen Temperaturen wächst er proportional wie experimentell gut bestätigt wird. Dabei

ist zu berücksichtigen, daß (7) ebenso wie (4.3.5./21) für reine Elektronenleitfähigkeit im idealen
Gitter gilt. Der Einfluß von Gitterstörungen, der als Restwiderstand besonders bei tiefen Tempe-
raturen hervortritt, wird in der abgeleiteten Theorie nicht erfaßt.
Aus dem Vergleich der Formeln (4.3.5./21) und (7) erhält man als Verhältnis der Leitfähigkeiten
bei hohen und bei tiefen Temperaturen

p 4 (8)
100 TS

Für die spezifische Leitfähigkeit des Bleis bei 15 K folgt aus (7) mit der DEBYE-Temperatur nach
Tab. 2.2.1 und der Leitfähigkeit bei 0°C nach Tab. 3.3.1

5 9 . 106. QA4. 070
= IV w m -i = . 236 . 5 2 . 1 0 6 Q-1 m -i = i 23 . lO 9 - 1 m- 1 .

15 100 • 155

Wie aus dem Vergleich mit Tab. 4.3.2 hervorgeht, ist dieser Wert infolge der genannten Stör-
einflüsse sowie infolge der Ungenauigkeiten bei den Näherungen um einen Faktor 4 zu groß.
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Aufgaben

A 4.3.1. Für elastische Stöße, bei denen sich nur die Ausbreitungsrichtung, nicht jedoch die
Energie ändert, sind die Übergangswahrscheinlichkeiten P njW '(ZeA , ZeA ' )  und
P n',n A.'> a)  gleich. Wie lautet auf Grund dessen das Stoßglied in der Boltzmann-
Gleichung?

A 4.3.2. An Silber wird ein homogenes elektrisches Feld der Stärke E — 1 V m -1 gelegt.
Die Temperatur sei konstant und betrage 0°C. Bestimmen Sie für ein mit der
Grenzgeschwindigkeit

Vp = = 1,38 -10« ms- 1

V m

senkrecht zum elektrischen Feld bewegtes Elektron die Abweichung <p vom Normal-
zustand /0 nach der FERMi-DiRAC-Statistik.

A 4.3.3. Bestimmen Sie zur vorangegangenen Aufgabe (p für v = vz = 0,99 vF und v = vz
— 1,01 Vp.

dTA 4.3.4. In Silber bestehe ein Temperaturgefälle — = 100 K cm-1 . Bestimmen Sie für
de

einen Punkt mit der Temperatur 0°C die Dichtefunktion der in Richtung des
Temperaturgefälles mit der Geschwindigkeit v = 10 5 m s-1 bewegten Elektronen.
Wie groß ist die Abweichung cp vom Normalzustand nach der Fermi-Dirac-
Statistik?

A 4.3.5. Untersuchen Sie zur vorangegangenen Aufgabe die Verteilungsdichte und die Ab-
weichung vom Normalzustand, wenn die Bewegung senkrecht zum Temperatur-
gradienten erfolgt.

A 4.3.6. Die Wärmeleitfähigkeit des Aluminiums beträgt bei 0°C nach Tabelle 2.2.2
57,8 • 10 -3 kcal m _1 K -1 s-1 = 242 Wm -1 K -1 . Berechnen Sie daraus auf Grund der Ver-
knüpfung zwischen dem Wärmestrom und dem elektrischen Strom die elektrische
Leitfähigkeit des Aluminiums bei 0°C.

Bild 4.3.5. Abstandsänderung, a) bei longitudinalen, b) bei transversalen
Schwingungen

A 4.3.7. Zwischen der oberen und der unteren Seite einer 0,2 mm dicken Silberfolie wird
einmal ein Temperaturunterschied von 10 K, das andere Mal eine Potentialdifferenz
von 0,001 V gelegt. Bestimmen Sie größenordnungsmäßig das Verhältnis der aus-
gelösten elektrischen Ströme bei Zimmertemperatur T = 300 K.

A 4.3.8. Welche Stärke hat das in Silber durch einen Temperaturgradienten 10 5 K m -1 bei
0°C erzeugte elektrische Feld?

A 4.3.9. Berechnen Sie die Wärmestromdichte, die von einem elektrischen Strom mit der
Stromdichte 1 A mm-2 bei 0 °C ausgelöst wird.
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A 4.3.10. In Kupfer wird durch Elektronentransport eine elektrische Stromdichte von
2 A mm-2 und durch ein Temperaturgefälle eine gleichgerichtete Wärmestromdichte
von 1 cal mm~2 s-1 erzeugt. Berechnen Sie die resultierende Energiestromdichte
bei 0°C. •

A 4.3.11. Berechnen Sie die elektrische Leitfähigkeit des Silbers bei 500 °C im Vergleich zur
elektrischen Leitfähigkeit bei 0°C. Vergleichen Sie das Ergebnis der Rechnung mit
dem Wert nach Tab. 4.3.2 und deuten Sie die Abweichung.

A 4.3.12. Berechnen Sie für Kupfer aus der spezifischen elektrischen Leitfähigkeit o = 64
X 106 m-1 bei 0°C die Elektronenleitfähigkeit bei T = 4,2 K. Vergleichen Sie
das Ergebnis mit der elektrischen Leitfähigkeit nach Tab. 4.3.2.

A 4.3.13. Wie groß ist mit dem WiderStandswert nach Tab. 4.3.2 die Relaxationszeit t der
Elektronen in Kupfer bei T = 4,2 K (zusätzliche Werte nach Tab. 3.3.1 bis Tab.
3.3.3)?

A 4.3.14. Geben Sie den Temperaturkoeffizienten a des elektrischen Widerstandes nach
(4.3.5./21) für T > und nach (4.3.6./7) für an, wenn or = ot 0 (1 +
&\T — T o]) gesetzt wird. x

A 4.3.15. Untersuchen Sie unter der Voraussetzung kleiner Auslenkungen den Beitrag der
transversalen Schwingungen des Gitters auf die elektrische Leitfähigkeit im Ver-
gleich zum Beitrag der longitudinalen Schwingungen (vgl. Bild 4.3.5).

Meßverfahren zur Bestimmung der Fermi-Flächen und der mittleren
freien Weglänge in Festkörpern

Einführung

Fermi-Flächen

4.4.

E

Die Flächen konstanter Energie fcA = fcA (JF0 ) im reziproken Raum heißen Fermi-
Flächen. Sie sind im allgemeinen keine Kugeln, wie sich nach dem Brocn-Theorem
gemäß (4.2. /6) ergibt, sondern haben eine wesentlich kompliziertere Gestalt. Ihre
experimentelle Ermittlung erfolgt nach verschiedenen Meßverfahren. Diese lassen
sich theoretisch aus der Verknüpfung zwischen den FERMi-Flächen und den Bahn-
kurven der Elektronen im direkten Raum bei Anwesenheit eines Magnetfeldes ab-
leiten.
Die Kenntnis der FERMi-Flächen ermöglicht es, die funktionelle Abhängigkeit

W = lF(fcA )
zu berechnen.
Bewegung quasifreier Elektronen im Magnetfeld
Die Geschwindigkeit eines Elektrons im Festkörper ist unabhängig von der speziellen
Form der Funktion W = W (fcA ) allgemein durch die Formel

1 , TJ7 
1 dW

" , .  IJ; (1)

bestimmt (vgl. 4.2./9 bzw. 4.2.4./1).



2374.4, Meßverfahren zur Bestimmung der FERMi-Flächen

Für die Änderung dJF der Elektronenenergie unter dem Einfluß einer äußeren Kraft
F gilt allgemein

dW = F-vd t .  (2)
Setzt man (1) in (2) ein, so ergibt sich für die Änderung der Elektronenenergie im
Festkörper unter der Einwirkung einer äußeren Kraft

1 1 dJFdW = — F • gradfcA W dt = — F • -7- dL (3)h h dfc A
Für die Änderung des Ausbreitungsvektors eines Festkörperelektrons im äußeren
Kraftfeld F folgt daraus

Bei magnetischen Kräften gilt nach der LoRENTZ-Gleichung F = — ev X B, so daß
sich für die zeitliche Änderung des Ausbreitungsvektors unter dem Einfluß eines
Magnetfeldes

E = = -ev X B (5)
ClC

ergibt.
Hat das magnetische Feld die Richtung der z-Achse, so erhält man aus (5) in Ver-
bindung mit (1)

, dkx eB dW
dt y h dky (6 a)

, dky eB dW
‘ d/ ' eBVx - A ’ (6b)

A !_0 (6 c)

Die Elektronenenergie ist im Magnetfeld konstant :

dfcA
d£ dk k d£

eB
h = 0 .= h(v x > Vy, v z ) (7)

Das gleiche gilt nach (6 c) für die Komponente k z des Ausbreitungsvektors fc A .
Wird daher die Bewegung des Elektrons im homogenen Magnetfeld auf den rezi-
proken Raum abgebildet, so ergeben sich die Bewegungskurven als Schnitt der
Flächen konstanter Energie W mit den Ebenen konstanter Komponente k z .
Anstelle vx und vy kann man in (6 a) und (6 b) x und y einsetzen. Werden diese beiden
Gleichungen dann integriert, so folgt

a; = — k y + Ä o , (8a)en

(8b)

Jl 0 und y 0 sind Konstanten.
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Auf Grund der Gleichungen (8 a) und (8 b) kann die Elektronenbewegung im direkten
Raum auf den reziproken Raum abgebildet werden. Hierzu hat man das a -System
in den Punkt (Xo , F o ) zu verschieben, um — zu drehen und um den Faktor — zu
strecken . (vgl. Bild 4.4.1). ,

Bild 4.4.1. Abbildung der Elektronenbahnen im direkten Raum auf die Flächen
konstanter Energie im reziproken Raum (FERMi-Flächen)

Die Bewegung der Elektronen erfolgt im reziproken Raum längs einer Energiefläche.
Aus der Beobachtung der Elektronenbahnen im Magnetfeld kann daher die Energie-
fläche im reziproken Raum bestimmt werden.
In Richtung des angelegten Magnetfeldes H ist die Elektronengeschwindigkeit

_ 1 dW
Vz ~

im allgemeinen von Null verschieden. Während im reziproken Raum nach (6 c) die
Elektronenbewegung in der Ebene k z =■ const erfolgt, liegt im direkten Raum eine
Spiralbewegung vor.
Die Bahnkurve im reziproken Raum kann geschlossen in der ersten Brillouin-
Zone verlaufen oder sich über mehrere BRILLOUIN-Zonen erstrecken. Im letzteren
Falle setzt sich die Elektronenbahn in der ersten BRiLLOUiN-Zone aus mehreren
getrennten Teilstücken zusammen.

Zyklotronfrequenz und Zyklotronmasse
Werden im direkten Raum gekrümmte Bahnkurven durchlaufen, so ist die zum
Krümmungsmittelpunkt gerichtete Zentralkraft in jedem Augenblick gleich der die
Bahnkrümmung verursachenden magnetischen Kraft :

— — evB. (9)r
Durch Stöße mit den Gitterbausteinen werden die Elektronen in ihren Umlauf-
bahnen gestört. Die Kreisfrequenz der im Mittel sich ergebenden Umlaufbewegung
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ist der Messung zugänglich (vgl. 4.4.3.). Hierfür erhält man nach (9)

(10)

heißt Zyklotronfrequenz. Ihre Messung ergibt die Zyklotronmasse mc , unter der
man die effektive Masse des umlaufenden Elektrons versteht, vc und rc geben die
Mittelwerte der Geschwindigkeit und des Krümmungsradius bei der Zyklotron-
bewegung an. Die Zyklotronmasse m c ist von der Bahnkurve, d. h. vom Magnetfeld
B und von der Energie W, abhängig. Kennt man die Zyklotronmasse für verschiedene
zueinander senkrechte Richtungen des Magnetfeldes und für verschiedene Energien,
so können daraus im Zusammenhang mit dem Massentensor nach 4.2. (vgl. Aufgabe
A 4.2.5) die FERMi-Flächen mathematisch abgeleitet werden (vgl. A 4.4.16 und
A 4.4.17).
Für die Zeit einer Periode ergibt sich

(11)

Nach (6) kann man

schreiben, wobei

(12)

(13)

die Länge des in der lcx , Ä;y-Ebene gebildeten Gradienten angibt. Definiert man als
benachbarte Kurven die Kurven, bei denen die Energiedifferenz ATF konstant ist,
so kann man für diese

dfc A
dTF

dfcA .i.

& AA t
A eß A X AJFT c eB&W

(14)

setzen. AA k gibt die von benachbarten Energiekurven eingeschlossene Fläche in der
k x , A -Ebene an (vgl. Bild 4.4.2). Für die Periode T c folgt als Grenzwert

2tt _ Ä 2 dA k
o) c eß dW (15)

Setzt man (15) in (10) ein und löst nach der Zyklotronmasse m e auf, ergibt sich

Ä 2 dA k
me ~ 2- dJF (16)
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Die Umlaufzeit T Q bzw. die Zyklotronfrequenz co c und die Zyklotronmasse mc können
nach verschiedenen Verfahren gemessen werden (vgl. 4.4.2. bis 4.4.5.). Sie sind in der
Regel von der Richtung des Magnetfeldes abhängig.

Bild 4.4.2. Bahnkurven im reziproken
Raum für konstante Werte k z

(15) und (16) verknüpfen die FERMi-Flächen eines Kristalls mit der Zyklotron-
frequenz co c und der Zyklotronmasse mc . Aus den Meßwerten für co c und mQ bei ver-
schiedenen Richtungen B lassen sich daher die FERMi-Flächen konstruieren. Im all-
gemeinen geht man dabei vom Blo CH-Theorem (4.2./6) aus und schließt aus der Ab-
hängigkeit der Größen co c und mc von B über (15) und (16) auf die Abweichung der
FERMi-Flächen von der idealen Kugelgestalt.

Beispiel 4.4.1. Fermi-Flächen und Umlaufflächen im direkten Baum
nach dem Bloch-Theorem

Nach dem Bloch- Theorem sind die FERMi-Flächen Kugeln, die Umlaufbahnen im direkten
Raum Kreise. Für T = 0 wird der Radius der größten umfahrenen Fläche im reziproken Raum
des Kupferkristalls nach Tab. 4.2.1 durch

jfcj, = 1/ 2 = i ; 36 . i O io m -i
y Ä2

bestimmt. Die größte umfahrene Fläche hat daher im reziproken Raum den Inhalt

Afc = A;f 27t = (1,36 • 1010 ) 2 n m~2 = 5,8 • 10 20 m~2 .

Das angelegte Magnetfeld habe die Stärke B = 2,0 Vsm~2 . Um die Abmessungen der Umlauf-
bahnen im direkten Raum zu bestimmen, hat man nach (8) sämtliche Längen im reziproken
Raum mit dem Faktor

1,05 • 10~34

1,60 • IO"19 • 2,0eB
m 2 = 3,28 • IO"16 m 2

zu versehen. Für den Radius des größten Kreises erhält man somit

r = k F — = 1,36 • 10i° • 3,28 • 10 -16 m = 4,5 • 10~6 m.
* eB
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Setzt man für die Zyklotronmasse die effektive Masse des Kupfers nach Tab. 3.3.2 ein, so erhält
man nach (10) die Zyklotronfrequenz

1,60 • 10- 19 • 2,0 • 0,67 s- 1 = 2,35 • 10 11 s- 1 .co c = 9,11 • IO“31

Aus der Analogie der Zyklotronbewegung mit dem harmonischen Oszillator nach dem Bloch-
Theorem folgt für die Energieänderung (vgl. 4.4.4.)

kW = h Aco c
und daraus

AJF = — AB.m
Die Änderung der Flußdichte um

AB = 0,1 Vs m- 2

führt daher zur Energieänderung

1,05 • 10~34 • 1,60 • 10~19 • 0,67 = 1O _23

,11 • io- 31

Nach (16) ist der Energiezuwachs mit einem Zuwachs der umfahrenen Fläche im reziproken Raum
um

, , 2tt • 9,11’ • IO- 31 - 1,24- IO- 23

AJLj. = ------- ---------------- ------------ m- 2 = 9,6 • 10 15 m~2

* 0,67 • (1.05 • 10~34 ) 2
verknüpft.

Die Messung von co c und mc zur Bestimmung der FERMi-Flächen eines Kristalls
erfolgt am zweckmäßigsten nahe dem absoluten Nullpunkt. Hier nehmen die elektri-
sche Leitfähigkeit und damit die Relaxationszeit ihre größten Werte an. Das Pro-
dukt co ct aus Zyklotronfrequenz co c und Relaxationszeit t ,  das bei Zimmertempera-
tur nur Werte 10-2 - • • 10-3 erreicht, kann bei tiefen Temperaturen unter dem Einfluß
starker Magnetfelder bis in die Größenordnung 102 ---103 anwachsen.
Bei hohen Temperaturen wird selbst unter der Einwirkung stärkster Magnetfelder
infolge der hohen Stoßzahl kein geschlossener Kreis durchlaufen. co c hat hier nur die
Bedeutung eines statistischen Mittelwertes.

Probleme

4.4.1. Elektrischer Widerstand im Magnetfeld B I E

Stellen Sie die Gleichungen für die Bewegung der Elektronen in einem isotropen Kristall auf,
wenn auf diesen gleichzeitig ein elektrisches Feld E und senkrecht dazu ein magnetisches Feld
B gerichtet wird. Leiten Sie aus der durch Stöße bedingten Reibung die Relaxationszeit t
ab und bestimmen Sie diese für die Elektronen in Natrium auf Grund des ÜALL-Effektes. Die
Masse der Elektronen ist gleich der effektiven Masse zu setzen (Werte nach Tab. 3.3.1 bis 3.3.3).

Lösung:
Die Relaxationszeit t bedingt eine Verzögerung bei der Einstellung des Gleichgewichtes. Sie kann
als Folge eines Reibungsgliedes in der Kraftgleichung aufgefaßt werden. Wir schreiben daher für

1 6 Schilling, Festkörperphysik
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den Bewegungsablauf unter dem Einfluß einer konstanten äußeren Kraft F

F = mr + er .  (1)

Darin kennzeichnet c den Reibungskoeffizienten, m die reduzierte Masse. Eine partikuläre Lösung
der inhomogenen Gleichung lautet

F Fr = — bzw. r = — t .  (2)
c c

Die Lösung der homogenen Gleichung ergibt sich durch Exponentialansatz r = Ae a t  mit oc = -----
bzw. oc = 0. Als allgemeine Lösung der inhomogenen Gleichung erhält man daher m

——t
r = r„+  - t+A & 

m . (3)
c

Der Reibungskoeffizient c ist hiernach mit der Relaxationszeit gemäß

verknüpft.
Bei der Einwirkung eines konstanten elektrischen Feldes E und eines konstanten magnetischen
Feldes B auf den Festkörper ist in (1)

F = — e(E + v xB) (5>

zu setzen. Wir schreiben!? für f, r> für r und erhalten damit aus (1)

—e(E + 1? X B) = m (t? + — !?j .

Die Richtung des elektrischen Feldes kann als x-Achse, die des magnetischen Feldes als y-Achse
gewählt werden. An Stelle der Gleichung (6) ergibt sich

(7>

Aus der mittleren Zeile folgt
__

= vo e r > (8)
d. h., die Elektronenbewegung in Richtung des magnetischen Feldes klingt ab. Die erste und die
dritte Zeile ergeben das Gleichungssystem

(9)
t m m

pB 1
+ + — = 0 .  (10)m r
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Eine partikuläre Lösung erhält man, wenn vx = 0, vz = 0 gesetzt wird und die Wurzeln des ver-
bleibenden algebraischen Gleichungssystems bestimmt werden:

Ti e™' rrn 62 T2 /<<\v r = —E --------------- , v~ = EB --------------- . (11)
m2 + e2B 2r 2 m 2 + e2B 2z2

Die Lösung des homogenen Gleichungssystems zu den Gleichungen (9) und (10) erfolgt durch den
Exponentialansatz

vx = Vox , vz = vOz ev*. (12)

Er führt auf das Gleichungssystem

+ -) = 0 ,  (13)\ t / m

--- V0x + H -----  ) V02 — 0 ,  (14)m \ t /

das nur lösbar ist, wenn die Koeffizientendeterminante verschwindet. Hieraus folgt

y 4 ----- 4------ - = 0 bzw. y = -----  ± icoc\ t / m 2 t
(15)

mit der Zyklotronfrequenz

eB
(16)a> c = — .

m

Aus (13) und (14) erhält man im Zusammenhang mit (15)

... 1 , .
= W ox fur y = --------F 1Ö> C ,T

(17a)

v oz = — für y = — - - - - -  ico e .T
(17b)

Die allgemeine Lösung des Gleichungssystems (9) und (10) kann daher in der Form
__t_

V X = ~ E ~2 . 2 2 
+ 6 ' ( i eW + V2 e- cf) ?m 2 + e2B 2z2 _ v(18)

e2r 2 —-= EB --------------- — ie T (v1 ei<üc< 4- v9 e-iü,c 02 m? + e2BV v 1 2 ' .

dargestellt werden. v± und v2 sind Konstanten.
Dem aus der partikulären Lösung sich ergebenden Gleichstrom ist nach (18) eine Rotation in der
Ebene senkrecht zum Magnetfeld überlagert. Wir legen die Zeit derart fest, daß für t = 0 das
betrachtete Elektron eine Rotationsgeschwindigkeit in Richtung des äußeren elektrischen Feldes
aufweist. Es folgt

*1 = * 2 = V ‘  ( 1 C )

16*
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Bei Beschränkung auf die Realteile erhält man aus (18) und (19)

t 1exmV x = —E ' " n + vo e T cos
x w 2 + &BW 0 c

(20)
e2?2v7 = EB ------------------- vn e T sin co P t .2 nfi + 0 c

Im stationären Zustand sind nur die ersten Summanden in (20) wirksam. Als Verhältnis zwischen
den beiden Geschwindigkeitskomponenten des stationären Zustandes folgt

__  = __1
\ v z /stationär co c

Es ist gleich dem Verhältnis der Stromkomponenten und bei isotropen Medien gleich dem
Verhältnis der Spannungskomponenten. Aus dem HAJLL-Effekt ergibt sich nach (3.3.1./3) und
(3.3.1./10) bzw. (3.3.1./3) und (3.3.1./12) in Verbindung mit (3.3.1./7)

2t = 2s. _ £ _ 1 .
®z Jz -®H RBa

Der Vergleich beider Ausdrücke liefert, wenn nach der Relaxationszeit r aufgelöst wird,

(21)

(22)

t = ------- Ra.
e

(23)

Für die HALL-Konstante kann der Ausdruck nach (3.3.1./ 11) eingesetzt werden:

_ ma
T ~Ne 2

Vergleicht man die hiernach berechnete Relaxationszeit t = TRelax mit der aus (3.3.1./5) folgenden
Stoßzeit rstoß» so ergibt sich rgtoß = 2TRe lax-
Für die Relaxationszeit der Elektronen in Natrium folgt aus (23) mit den vorgegebenen Werten

9,11 • 10- 31 • 2,1 • 10" 10 • 23,4 • 106

T “ 1,67 • 1,60 • 10- 19

(24)

1,7 • 10- 14 s .

4.4.2. Elektrische Leitfähigkeit im Magnetfeld

Auf einen Festkörper wird ein Magnetfeld mit der Flußdichte B gerichtet. Die Richtung gegen
das äußere elektrische Feld E sei beliebig. Leiten Sie auf Grund der LoRENTZ-Gleichung die
Formel für den elektrischen Widerstand ab.
Welche Widerstandsänderung wird bei Kupfer für den in Richtung des elektrischen Feldes
fließenden elektrischen Strom nach dem BLOCH-Modell bewirkt, wenn auf den Festkörper ein
Magnetfeld mit der Flußdichte B = 2,0 Vsm-2 senkrecht zum elektrischen Feld gerichtet wird?

Lösung:
Wir gehen von der Bewegungsgleichung (4.4.1./6) aus, lassen jedoch beliebige Winkel zwischen
dem zeitlich konstanten elektrischen FeldE und dem magnetischen Feld B zu. Die allgemeine
Lösung setzt sich wie in 4.4.1. aus einer partikulären Lösung des inhomogenen Gleichungssystems
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und aus der allgemeinen Lösung des homogenen Gleichungssystems zusammen. In der Lösung
_t_

des homogenen Gleichungssystems tritt der Faktor e T auf (vgl. 4.4.1./20). Die entsprechenden
Summanden klingen wegen der kleinen Relaxationszeit sehr schnell ab und sind für den stationären
Zustand ohne Interesse. Die partikuläre Lösung ergibt sich, wenn in (4.4.1./6) die Ableitung v der
Geschwindigkeit gleich Null gesetzt wird, so daß man

- e (E+vxB)  = — v (1)
T

erhält. Wir wählen die Richtung des konstanten magnetischen Feldes als y-Achse, während die
x- und die z-Achse des Cartesischen Koordinatensystems beliebig gewählt werden können. Auflösen
nach den Komponenten ergibt aus (1)

Die Lösung dieses inhomogenen Gleichungssystems läßt sich in der Form

eBxm
m 2 4- x2e2B 2

0 y

m 2

m 2 4- t 2c2B 2 i

/ ---- - - -  0
' m2 4- T2e2_B2

0 1

—eBxm
\m 2 4- x2e2B 2

schreiben. Wir führen die Zyklotronfrequenz eo c nach (4.4.1./16) ein und definieren die Strom-
dichte

j = —Nev — <sE, (4)

wobei N die Konzentration der Elektronen im Leitband, g den Widerstandstensor bezeichnet.
Für diesen erhalten wir aus (3)

Z(1 4- coqM)-1 0 co c t (1 4- a) c 2T2 )~r

a = o"o ( 0 1 0
\ -co c t(14-co  c 2t 2)-i 0 (1 4- coA 2)"1 >

mit
Ne2x(To — —

m
Für ein parallel zur rr-Achse gerichtetes elektrisches Feld

(5)

(6)

(7)

(8)

folgt aus (4) und (5)

/ (14- COc2?2 )- 1 \
J=<70 | 0 I X.

\—  coc t (1 + cu0
2t 2)-1 /

Als Verhältnis der Ströme jx und jy erhält man hieraus den gleichen Wert wie nach (4.4.1./21) bzw.
(4.4.1./22).
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Der Widerstand des in Richtung des elektrischen Feldes E fließenden Stromes wird durch das
magnetische Feld verändert. Setzt man für die Relaxationszeit nach (4.4.1./25) und (3.3.1./5)

T — TRelax — ~ T Stoß — 2,7 *10 14 S

und berechnet die Zyklotronfrequenz gemäß (4.4.1./16) mit der effektiven Masse nach Tab. 3.3.2,
so ergibt sich

eB 1,60 • 10~19 • 2,0 - 0,67

Das Produkt aus Zyklotronfrequenz co c und Relaxationszeit r hat nur den Wert

coc t = 2,3 • 10 11 • 2,7 • 10~14 = 0,0062.

Für die elektrische Leitfähigkeit in Richtung!? folgt

mit den vorgegebenen Zahlen

Durch die Einwirkung des relativ starken Magnetfeldes wird die Leitfähigkeit des Kupfers bei
Zimmertemperatur nur wenig, und zwar um

geändert.
Bei tiefen Temperaturen nahe dem absoluten Nullpunkt vergrößert sich die Leitfähigkeit gegen-
über Zimmertemperatur um einen Faktor 10 2 ---103 (vgl. Tab. 4.3.2). Damit vergrößert sich nach
(6) die Relaxationszeit, so daß (9) eine deutliche Veränderung der elektrischen Leitfähigkeit
unter dem Einfluß eines Magnetfeldes bei tiefen Temperaturen ergibt. Hieraus kann coc bestimmt
werden, wenn t bekannt ist. Bei starken Magnetfeldern ist jedoch auch die Relaxationszeit
r = t(T, B) eine Funktion nicht nur der Temperatur, sondern ebenfalls der magnetischen Fluß-
dichte. Kennt man daher co c aus Messungen nach anderen Verfahren (s. 4.4.3. und 4.4.4.), so kann
nach (9) die Relaxationszeit t bestimmt werden.

4.4.3. Zyklotron- Resonanzmessuiig im hochfrequenten Wechselfeld

Zur Messung von co c bzw. T o überlagert man auf das konstante Magnetfeld B ein hochfrequentes
elektrisches Wechselfeld E = E Q eiüjt und untersucht die Eigenschaften der Ladungsträger in
ihrer Gesamtheit. Es seien E und B zueinander senkrecht und parallel zur Festkörperoberfläche
gerichtet (vgl. Bild 4.4.3). Untersuchen Sie die Bewegung der Elektronen, bestimmen Sie die

'J Bild 4.4.3. AzBEL-KANER-Anordnung.
Elektronenbahn E und B liegen parallel zur Festkörperoberfläche
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elektrische Leitfähigkeit in Richtung des elektrischen Feldes und leiten Sie das Maximum der
Energieabsorption durch die Elektronen ab.
Für Germanium lassen sich bei T = 4 K in einem starken Magnetfeld Werte co c t > 100 erreichen.
Mit der Frequenz / = 24 GHz werden u. a. bei der magnetischen Flußdichte B = 0,19 Vs m-2

ein durch Elektronen, bei der magnetischen Flußdichte B = 0,31 Vs m-2 ein durch Defekt-
elektronen verursachtes Maximum der Energieabsorption gemessen. Bestimmen Sie daraus die
Zyklotronmasse der Elektronen und der Defektelektronen.

Lösung:

Für die Ortsänderung der quasifreien Teilchen folgt nach (4.4.1./6)

— e(E + v X B) = m (1)

Das Magnetfeld ist konstant, während es sich bei dem elektrischen Feld um eine hochfrequente
Schwingung der Form

jE= jEo eiü (2)

handelt. Zur Lösung der Gleichung (1) gehen wir daher von dem Ansatz

v = (3)

aus. Damit ergibt sich

—e(EQ + v Q xB)  = m (ico + ~ j . (4)

Der Faktor eia) * kürzt sich heraus.
Wir wählen die Richtung des elektrischen Feldes als x- 9 die des magnetischen Feldes als y- Achse.
Auflösen nach den Komponenten ergibt

(5)

Hieraus folgt neben vOy = 0 das lineare Gleichungssystem

(6)

(7)

(8)

Seine Lösung lautet

e2BE
Vqz ~ / 1 \2

m 2 I ico + — j + e2B 2
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Für die Leitfähigkeit in Richtung des angelegten Feldes erhält man

NevQT 1 + icorG = -------— = Uo -------------------------------- ,
Eq 1 + (co c 2 — co2 ) t 2 + 2icor

wenn nach (4.3.1./7)
eB

co c = —

sowie

(9)

(10)

Ae2r
0*0 = ------

gesetzt wird. Der spezifische Leitwert nach (9) stimmt für co = 0, cdc = 0 mit dem nach der
DRUDE-SoMMERFELDschen Theorie berechneten Leitwert (3.3.1./5) überein, wenn man

1
2 TStoß — T Relax

annimmt.
Aus der Messung des Stromes ergibt sich der Realteil des Leitwertes

1 + T2 (C0 c 2 + co 2 )

(H)

(12)

Re er = crß ------------------------------------ .
[1 + (co c 2 - co2 ) t 2] 2 + 4co2t 2

Sein Maximum in Abhängigkeit von der Frequenz liegt bei

(13)

C0max — 1/(1 + <Wc2t2 ) / 1 “F 2-— iT |/ \ 1/1 + COc
2T2

Es ist nur für hinreichend große Werte co c t > 1 deutlich ausgeprägt. Für kleine Werte co c t tritt
kein Maximum auf (vgl. A 4.4.7). Im Falle großer Werte co c t > 1 kann man in (14)

w max ~ "c
setzen und erhält damit nach (10)

eBm c = ------ .w max
Mit den vorgegebenen Werten folgt für die Zyklotronmasse der Elektronen

1,60 • 10-19 • 0,19 ._ 311  m e™<*- = — 5— 04  '<09  
k « = 2 ’° • 10 k « = 77’2k • 24 • 109 4,5

während sich für die Defektelektronen
1,60 • 10 -19 • 0,31 oo  < n311m ee+ = ---------------------- kg = 3,3 • IO“31 kg = —ce+ 2k .24 .10 9 6 6 2,8

(14)

(15)

(16)

ergibt.

4.4.4. De-Haas-van-Alphen-Effekt

Die Magnetisierung eines Festkörpers zeigt bei tiefen Temperaturen Schwankungen in Abhängig-
keit von der magnetischen Flußdichte B. Trägt man die Magnetisierung bei tiefen Temperaturen

auf der ---- Skale auf (vgl. Bild 4.4.4), so treten die Schwankungen mit einer Periode auf, die von
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der Richtung des angelegten Feldes abhängt. Dieser Effekt wird als de-Haas-van-Alphen-
Effekt bezeichnet.

Für Gold wird bei Magnetisierung in der [1 0 0] -Richtung die Periode A — = 1,95 • IO-5 V-1 s-1 m2

B
gemessen. Berechnen Sie daraus die Größe der umfahrenen Fläche im reziproken Raum und die
Zyklotronmasse.. Vergleichen Sie die nach dem DE-HAAS-VAN-ÄLPHEN-Effekt berechnete Fläche

Bild 4.4.4. DE-HAAs-VAN-ALPHEN-Effekt: Magnetisierung bei Temperaturen nahe
dem absoluten Nullpunkt in Abhängigkeit von der reziproken magnetischen Fluß-
dichte. Die vorliegende Magnetisierungskurve ergibt sich für Gold, wenn B parallel
[1 1 1] gerichtet ist. Sie entsteht aus der Überlagerung des Effektes für die Um-
laufbahnen 1 und 2 in Bild 4.4.5

mit der Umlauffläche, die man erhält, wenn für &A der Grenzwert ky auf Grund der Fermi-
Kante nach Tab. 4.2.1 eingesetzt wird und Kreisbahnen angenommen werden.
Vergleichen Sie die Abmessungen der ermittelten Fläche mit den Abmessungen der ersten Bril-
LOUiN-Zone.

Lösung:
Wir führen zur Darstellung des Magnetfeldes in der ScHRÖDiNGER-Gleichung das Vektorpotential
A ein und schreiben

B = rot L. (1)
A setzen wir

A = -Byi. (2)
Damit ergibt sich

B = Bk, (3)

d. h. ein Magnetfeld in Richtung der z-Achse. Die ScHRÖDiNGER-Gleichung (4.1./2) lautet daher
(vgl. 4.2.7./3)

[— /_ i j  £ _ eBy \ 2 - — /— + — - JfI y> = 0 .  (4)
[2mc \ 8x 2mc \8y 2 8z2/ J r ' 7

Ihre Lösung kann in der Form

y) = e i(k + k2z) (5)

geschrieben werden. k x und k. sind Komponenten des Ausbreitungsvektors fcA . Durch Einsetzen
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von (5) in (4) erhält man die gewöhnliche Differentialgleichung

Ä2 d2 , e2jß2 . , Ä2V
------------- ------- (y — H------—2mc dy* 2m c ™------0 2mc

- W h> = 0 (6)

(6a)

mit

Sie entspricht der ScHRÖDiNGER-Gleichung des um y0 schwingenden harmonischen Oszillators
und hat die Eigenfrequenzen

und die Eigenwerte der Energie

W=W c =(n+±- ' \ k 0>c + (» = 0 ,1 ,2 , . . . ) .  (8)
\ 2 / 2me

Das Magnetfeld führt zur Entartung der Energiezustände (8). Um die zu jedem Wert n gehörige
Anzahl von Zuständen zu bestimmen, nehmen wir an, das nach (4.2./1) definierte Grundgebiet Q
habe in Richtung der y-Achse die Länge L y , Die Ruhelage y$ des oszillierenden Elektrons wird
nach (6 a) durch die Quantenzahl k x bestimmt. Da y$ zwischen 0 und L y liegen muß, ergibt sich
nach (6 a)

pH0<k x ~ Ly • (9)

Die Bildpunkte des Ausbreitungsvektors sind nach 4.2.1. im reziproken Raum gleichmäßig dicht
verteilt und haben nach (4.2.1./11) auf der kx -Achse bzw. in Richtung voneinander den Ab-

stand — . Auf die Längeneinheit des reziproken Raumes (gemessen in m-1 ) entfallen daher —
L x 2k

Bildpunkte. Da k x zwischen den Grenzen nach (9) variiert, erhält man somit zu jedem Wert der
Quantenzahlen n und kz

L x L yeB
2nh

Entartungszustände. Im Intervall kz . . . kz + dß2 treten zu jeder Quantenzahl, wenn die Ent-
artung durch den Elektronenspin mit berücksichtigt wird,

iZVB = 2 -A~- dk z = —eB dkz (10)
2tvÄ 2tt z 2tc2Ä z

Elektronenzustände auf. Zu jeder Quantenzahl n erhält man daher für T = 0
+ frz max

, T QeB C . . . .2V» = ------ | dk, (11)
2k 2 ä J z ' ’

Elektronen. Der Maximalwert &,max wird durch die FERMi-Kante nach (3.3./6) bestimmt, die für
T = 0 die obere Grenze der besetzten Zustände angibt. Auf Grund der Gleichung (8) folgt

e F = Co — ( n + H----- 'zmax . (12)
\ 2 / 2mc
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Aus (11) ergibt sich damit, wenn man co c nach (7) durch B ausdrückt,

N _ k _ QeB r Ü / l \ eÄBl
” “ rfh ~ nW / 2m c Co - « + W — • (13)

Diese Zahl ist eine Funktion der magnetischen Flußdichte B. Sie verschwindet für

B = B n = — — —.
eh , 1

W + -
(14)

dNGleichzeitig wächst hier die erste Ableitung — über alle Grenzen.
dB

Die kritischen Flußdichten B n nach (14) sind durch ein Minimum an besetzbaren Elektronen-
zuständen gekennzeichnet. Bei Einstellung des magnetischen Feldes auf einen der kritischen
Werte (14) wird dadurch eine große Zahl von Elektronen aus ihren Energiezuständen verdrängt.
Die hierdurch bedingte Umordnung in den Quantenzuständen ist mit Energieschwankungen
verbunden. Sie sind aus den Schwankungen des magnetischen Momentes bzw. der Magnetisierung
des Festkörpers nachzuweisen. I
Nach (14) folgen die Schwankungen auf der — Skale mit der Periode

B
A 1A — = ------

B (15)

aufeinander. Aus ihrer Messung kann daher bei bekannter FERMi-Kante Co die Zyklotronmasse m e
bestimmt werden.
Der DE-HAAS-VAN-ALPHEN-Effekt gestattet auch Aussagen über die Fermi-F lachen. Nach
(4.4./ 14) ändert sich die im reziproken Raum umfahrene Fläche Ak mit der Energie gemäß

q . 27veR , ,
dA k = ------ dJF.

Ä2 coc

Da W, bedingt durch die Quantenzahl n, sich in Schritten ha> c ändert, kann man hierfür auch

n . 2r:eBdA k = ——
n

schreiben. Das Magnetfeld erzeugt einen ständigen Zirkulationsstrom. Dagegen erfolgt kein
Elektronenstrom in Richtung senkrecht dazu, so daß wir im Mittel mit kz = 0 rechnen können.
(16) bzw. (17) steht daher mit (8) in Übereinstimmung für

(16)

(17)

A k = (n = 0,1,2, (18)

Bei konstanten Werten B erhält man somit diskrete FERMI-Flächen. A k ist ebenso wie die Energie
W gequantelt.
Die Perioden der Magnetisierung bei Veränderung der Elußdichte B lassen sich, wie die Über-
legungen auf Grund der Gleichungen (13) und (14) zeigen, als Folge von Umverteilungen in den

Quantenzahlen deuten. Aus den Perioden auf der --Skale und der ganzzahligen Veränderlich-
/ 1 \ B

keit A f n -|----- 1 = 0, 1, 2, . . . der Quantenzahlen ergibt sich daher nach (18)

. 1 2716A — = ---- ,
B tiAk

(19)
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wobei A k die Fläche der Bahnkurve in der k x , Ä -Ebene, d. h. im reziproken Raum normal zur
Feldrichtung, angibt.
Wir lösen (19) nach der umfahrenen Fläche im reziproken Raum auf und setzen für A — den
Meßwert ein. Es folgt

2k - 1,60 ♦ 10~19

1,05 • 10 -34 • 1,95 • IO-5A k = m -2 = 4,9 • 10 20 m~2 .

Für die Zyklotronmasse erhält man nach (15) mit der FERMi-Kante nach Tab. 4.2.1

1,60 • 10~19 • 1,05 • 10~34

5,5 • 1,60 • IO-19 • 1,95 • IO-5 kg = 9 ,8-10-31 kg = — .6 6 0,93

Nach Tab. 4.2.1 entspricht der FERMi-Kante Co bei Gold ein Ausbreitungsvektor mit dem Betrag
k F = 1,2 • 10 10 m -2 . Nähert man die FERMi-Flächen entsprechend dem BLOCH-Theorem durch
Kugeln, so folgt für die Querschnittsfläche der Schnittkurve mit k z = const

A kF = k F
2n = (1,2 • 10 10 ) 2 k m- 2 = 4,5 • 10 20 m~2 .

Es besteht somit eine gute Übereinstimmung mit den Folgerungen aus dem de-Haas-van-
ALPHEN-Effekt.

Bild 4.4.5. FERMi-Fläche für Gold mit Umlaufbahnen

Durch Messung des DE-HAAS-VAN-ALPHEN-Effektes für verschiedene Richtungen des Magnet-
feldes lassen sich die FERMi-Flächen konstruieren. Das Ergebnis für Gold zeigt Bild 4.4.5.
Gold hat nach Tab. 1.1.1 kfz-Gitter mit der Gitterkonstanten a = 0,407 nm. Im reziproken
Gitter nach 1.1. ist der kürzeste Abstand quer durch eine BRiLLOüiN-Zone gleich

2ir V3~
0,407 • IO“9?=y3

a
m -1 = 2,7 • 10 10 m- 1 .

Ein Kreis mit dem Ursprungspunkt als Mittelpunkt, der die erste BRiLLOUiN-Zone berührt, hat
daher die Fläche

3k 3

a 2 ’
Ak

im betrachteten Fall

A 2A k = ------------------ m -2

(0,407 • IO"9 ) 2
= 5,61 • 10 20 m- 2 .

Seine Fläche ist größer als die nach (19) und als die nach dem BLOCH-Theorem sich ergebende
Fläche im reziproken Raum. Die FERMi-Kugeln berühren demzufolge die Begrenzungs-
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fläche der ersten BRELLOUiN-Zone nicht, kommen ihr jedoch nahe. Dagegen treten, wie Bild
4.4.5 zeigt, bei den FERMi-Flächen Verformungen in Form von Aushalsungen auf (vgl. A 4.4.11 bis
A 4.4.13).

4.4.5. Anomaler Skineffekt

Im elektromagnetischen Feld eines UV-Strahles der Kreisfrequenz cd = 5 • 1015 s-1 wird nahe
dem absoluten Nullpunkt an der Oberfläche von Aluminium auf Grund von Absorptionsmessun-
gen die elektrische Leitfähigkeit <reff = 1,55 • 105 £1 m-1 festgestellt. Die elektrische Leitfähigkeit
für Gleichstrom beträgt cr0 = 5,00 • 109 Q-1 m-1 . Berechnen Sie daraus für Aluminium die Anzahl
freier Elektronen je Atom sowie die mittlere freie Weglänge der Elektronen.

Lösung:

Skineffekt
Wird an einen elektrischen Leiter ein hochfrequentes Wechselfeld angelegt, so nimmt die Strom-
dichte vom Rande her nach einem Exponentialgesetz ab (vgl. [4] 5.3.1). Bei der Berechnung des
elektrischen Widerstandes kann man so vorgehen, als nutze der Strom nur eine dünne Außen-
schicht der Dicke <3. Sie wird als Eindringtiefe definiert und hängt gemäß

<5 = 1/— (1)
|/ [MIqCD

von der spezifischen Leitfähigkeit <r0 bei Gleichstrom, von der magnetischen Permeabilität /z
und von der Kreisfrequenz cd des Wechselstroms ab. Bei den üblichen Stromleitern kann im
allgemeinen jtz = /z0 gesetzt werden.
Die Ableitung des normalen Skineffektes beruht auf der Grundlage, daß die mittlere freie Weg-
länge 2 der Elektronen des Leitbandes klein gegen die Eindringtiefe <3 ist.
Wenn diese Voraussetzung nicht mehr erfüllt ist, d. h. für

2 <3, (2)

wird der anomale Skineffekt wirksam.

Anomaler Skineffekt
Wir bezeichnen den Winkel des bewegten Elektrons gegen die Oberflächennormale des Leiters
mit & (vgl. Bild 4.4.6). Von den zu einem bestimmten Zeitpunkt nach allen möglichen Richtungen

Bild 4.4.6. Zur Ableitung des
anomalen Skineffektes

fliegenden N Elektronen leisten durch Stöße mit dem Gitter nur diejenigen einen Beitrag zur
elektrischen Leitung, deren mittlere freie Weglänge innerhalb der leitenden Schicht liegt. Das
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sind die N etf Elektronen mit einem Winkel # innerhalb der Grenzen

(3>

wobei &
cos # 0 = — (4)

a

ist. Durch Integration über sämtliche Raumwinkel folgt
27t 7t — #0

sin & d& dtp = cos #0 = — • (5}
A

0 & 0

Für die spezifische Leitfähigkeit des Festkörpers erhalten wir daher bei hohen Frequenzen
&

ffeff = — o .  (6)
A

a kann durch den Gleichstromwert

Nett 1 r
N 4k /

•Ne 2 r S toß
— Z2m

nach (3.3.1./5) ersetzt werden, wenn bei der Berechnung des elektrischen Widerstandes im Strom-
kreis der normale Skineffekt durch Einführung der Eindringtiefe berücksichtigt wird. Führt man

k = VTstoß (8)

in (7) ein, so folgt aus (6)

We 2 d
°eff = ~—2mv

(7)

(9)

Die mittlere Geschwindigkeit der Elektronen läßt sich mittels (3.3.3./15) und (3.3./6) ausdrücken:

m 3 3 A2 /3A\ 2 /3
£ = - -  V2 = --  Co = ------- I ----

2 5 0 10 2™, \8 t J
(10)

Zwischen v und V’v2 besteht nach [3] (2.1.5./13) und [3] (2.1.5./14) die Beziehung

v -■ / 8
1/5 k 377

(11)

Wir setzen (10) und (11) in (9) ein und erhalten

Vötü /SttX 1 /3 A 2 /3 e 2 d
o'eff = ----- — -----------h (12)

Aus der effektiven Leitfähigkeit bei hohen Frequenzen kann somit die Anzahl freier Elektronen
im Metall bestimmt werden. Nach (1) ergibt die Eindringtiefe

2ö = m = 2,52 • 10-10 m.
4tü • 10- 7 • 5 • 109 • 5 • 1015
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Wir setzen die vorgegebenen Größen ein und lösen (12) nach N auf:

6,63 • IO“ 34 • 1,55 • 10 5 1 3/2' 4 /_3_y/ä
Vök \8tt/

N = m -3 = 2,22 • 10 28 m -3 .
(1,60 • IO“19 ) 2 • 2,52 • IO“10

Für die Anzahl der Atome je Kubikmeter erhalten wir nach Tab. 2.2.2 N o = 6,02 • 10 ?8 m -3 . Die
Anzahl freier Elektronen je Atom beträgt somit

N 2,22 - 10 28

2V0 “ 6,02 • 10 28 = 0,37.

Als mittlere freie Weglänge ergibt sich

2,52 • IO" 10 • 5,00 • 10 9 
Q ._

m = 8,13 • IO“ 6 m.
1,55 • 10 5

- der
A = ------

Gelt

Aufgaben

A 4.4.1. Bestimmen Sie für ein Magnetfeld der Flußdichte B = 1 Vs m -2 den größten
Radius der Umlaufbahn eines Elektrons in Silber, wenn das Modell freier Elektronen
zugrunde gelegt wird. Werte sind nach Tab. 4.2.1 einzusetzen.

A 4.4.2. Berechnen Sie, welche relative Wider Standsänderung ein senkrecht zum elektri-
schen Feld E gerichtetes Magnetfeld der Flußdichte B = 1 Vs m -2 in Natrium für
den in Richtung JE fließenden Strom bei 0°C bewirkt. Die Masse ist genähert gleich
der effektiven Masse nach Tab. 3.3.2 zu setzen.

A 4.4.3. Wie verändert sich die elektrische Leitfähigkeit parallel zum elektrischen Feld E
in Kupfer bei 4,2 K, wenn ein senkrecht zum elektrischen Feld E gerichtetes
Magnetfeld der Flußdichte B = 0,1 Vs m -2 auf den Festkörper wirkt? (Werte nach
Tab. 3.3.1 bis 3.3.3, 4.3.2 und 2.2.2)

A 4.4.4. Bestimmen Sie die mittlere Zahl der Umläufe eines Elektrons zwischen zwei Stößen
in Silber unter dem Einfluß eines konstanten magnetischen Feldes der Flußdichte
B = 1 Vs m -2 bei 0°C (Werte nach Tab. 3.3.1 bis 3.3.3 sowie 4.3.2). Die Masse ist
genähert gleich der effektiven Masse zu setzen.

A 4.4.5. Unter dem Einfluß eines Magnetfeldes der Flußdichte B = 0,1 Vs m -2 verringert
sich der elektrische Leitwert eines Festkörpers in Richtung des angelegten elek-
trischen Feldes um 6,5%.  Die Relaxationszeit beträgt r = 2,5 • 10 -11 s. Bestimmen
Sie die Zyklotronfrequenz und die Zyklotronmasse.

A 4.4.6. Wie groß ist in der vorangegangenen Aufgabe der HALL-Strom im Vergleich zum
Strom in Richtung des angelegten elektrischen Feldes?

A 4.4.7. Bestimmen Sie, für welche Werte coc r die Funktion

Re 1 + t 2 (co c 2 + co 2 )
a 0 t 1 + H 2 - 2 ) * 2] 2 + 4co2 t 2

ein Maximum besitzt.
A 4.4.8. Wird ein Festkörper einem konstanten magnetischen Feld und einem Ultraschall-

feld ausgesetzt, so ergeben sich für die Energieabsorption die gleichen Gesetzmäßig-
keiten wie bei der Überlagerung eines konstanten magnetischen Feldes und eines
hochfrequenten elektrischen Feldes nach 4.4.3.
In einem Halbleiter wird bei senkrecht zueinander stehendem magnetischem und
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Ultraschallfeld ein Maximum der Energieabsorption für
AR = 2 • IO"7 Vs m" 1

(A Wellenlänge der akustischen Schwingung) gemessen. Die Phasengeschwindigkeit
der Schallwelle beträgt 3,5 • 10 3 m s-1 . Berechnen Sie daraus die Zyklotronmasse
für den Umlauf der Elektronen in der zu B senkrechten Ebene.

A 4.4.9. Der Bahnradius eines Elektrons im direkten Raum erreicht in einem Magnetfeld
der Flußdichte B = 1 Vs m -2 Werte der Größenordnung 10 uim und ist damit
wesentlich größer als die Eindringtiefe nach dem Skineffekt bei Frequenzen im
Mikrowellenbereich. Ein Elektron, das in der AzBEL-KANER-Anordnung auf einer
geschlossenen Bahn nahe der Oberfläche umläuft (vgl. Bild 4.4.3), wird infolge-
dessen nur durch ein von außen angelegtes elektrisches Wechselfeld beschleunigt,
wenn es die Zone der Eindringtiefe durchläuft. Soll diese Beschleunigung über eine
Vielzahl von Umläufen gleichmäßig erfolgen, so muß das Elektron stets in derselben
Phase des elektrischen Feldes die äußere Randschicht durchlaufen. Formulieren Sie
auf Grund dessen die Resonanzbedingung für das umlaufende Elektron und deuten
Sie die Meßergebnisse nach Bild 4.4.7.

---------1---------1 _________i_________i _________i_________i
0,2 ---------0,3 ---------0,4 ---------0,5 _____0.6 ______0,7 ______0,8

B in Vsm" 2

Bild 4.4.7. Ableitung des Oberflächenwiderstandes nach der magnetischen Fluß -
d.R

dichte — für Kalium. B liegt in der (1 1 0) -Ebene.

A 4.4.10. Bestimmen Sie die Zyklotronmasse für das in der (1 1 0) -Ebene des Kaliums
liegende Magnetfeld auf Grund der Meßergebnisse des Bildes 4.4.7. Die Frequenz
des angelegten elektrischen Feldes beträgt 68 GHz.

A 4.4.11. In Gold ergibt bei Magnetisierung in der [1 1 1] -Richtung der de-Haas-van-

ALPHEN-Effekt die Perioden A — = 2,05 • 10 -5 V“ 1 s-1 m 2 und A — =
B B

6 • 10 -4 V-1 s-1 m 2 . Sie sind durch die beiden Umlaufbahnen nach Bild 4.4.5 zu deuten.
Berechnen Sie die Größe der Umlaufflächen im reziproken Raum.

A 4.4.12. Berechnen Sie zur vorangegangenen Aufgabe die Zyklotronmassen.

A 4.4.13. In Gold wird aus dem DE-HAAS-VAN-ALPHEN-Effekt A— = 5 • 10 -5 V-1 s-1 m 3

B
auf eine „Hundeknochen-Bahn“ des umlaufenden Elektrons geschlossen (vgl.
Bild 4.4.8). Berechnen Sie die Größe Ak der umfahrenen Fläche. Wie groß ist die
Zyklotronmasse?
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Berechnen Sie nach dem Modell freier Elektronen den de-Haas-van-Alphen-
Effekt in Natrium. (Werte nach Tab. 3.3.2 und Tab. 4.2.1)
Aus der Messung des anomalen Skineffektes in Silber ergibt sich als Anzahl freier
Elektronen je Atom

— = 0,68.
No
Berechnen Sie aus der elektrischen Leitfähigkeit bei 4,2 K nach Tab. 4.3.2 und
Tab. 3.3.1 die elektrische Leitfähigkeit des Materials für die Frequenz 1015 Hz sowie
die mittlere freie Weglänge der Elektronen.

A 4.4.14.

A 4.4.15.

Bild 4.4.8. Hundeknochen-Bahn in Gold

Die Zyklotronbewegung des Elektrons im Magnetfeld kann im direkten wie im rezi-
proken Raum durch Polarkoordinaten beschrieben werden. Es seien r, <p Polar-
koordinaten im reziproken Raum. Leiten Sie auf Grund der Verknüpfung zwischen
den FERMi-Flächen und der Zyklotronfrequenz co c eine Formel über den Zusam-
menhang zwischen co c und der Energie als Funktion des Bahnhalbmessers r ab.
Die FERMi-Flächen eines Festkörpers seien Rotationsellipsoide. Leiten Sie für ein
Magnetfeld, das unter dem Winkel # gegen die Rotationsachse (fc3 - Achse) geneigt
ist, die Formeln für die Zyklotronfrequenz co c und die Zyklotronmasse mc ab.

A 4.4.16.

A 4.4.17.

1 7 Schilling, Festkörperphysik



5 . Bändertheorie realer Kristalle

5.1. Statistik der Ladungsträger in den Energiebändern

E Einführung

Halbleiter

Elektrische Leiter und Isolatoren unterscheiden sich nach 4.2.4. durch die Besetzung
des Leitungsbandes mit Elektronen für T = 0. Das Valenzband ist nach Definition
am absoluten Nullpunkt voll besetzt, das Leitungsband bei Leitern teilweise besetzt,
bei Isolatoren leer. Die folgenden Betrachtungen setzen Materialien voraus, die am
absoluten Nullpunkt ein leeres Leitungsband aufweisen, für T = 0 also Isolatoren
darstellen.
Für T =b 0 gehen durch thermische Prozesse Elektronen aus tieferhegenden Bändern
in das Leitungsband über und erzeugen damit Leitfähigkeitseigenschaften. Die Be-
setzung des Leitbandes erfolgt dabei nach statistischen Gesetzmäßigkeiten. Es liegt
somit für T 4= 0 im Leitungsband immer eine bestimmte Elektronenkonzentration
vor. Sie ist außer von der Temperatur T im entscheidenden Maße von der Fest-
körperstruktur abhängig.
Stoffe, die für T = 0 Isolatoren sind, für T 4 0 jedoch eine meßbare Leitfähigkeit
zeigen, heißen Halbleiter. Sie unterscheiden sich damit von den Leitern durch
ihr Verhalten am absoluten Nullpunkt. Während Leiter mit abnehmender Tempera-
tur ihre Leitfähigkeit behalten und diese im allgemeinen sogar ansteigt (vgl. 4.3.5.
und 4.3.6.), fällt sie bei Halbleitern und wird am absoluten Nullpunkt gleich Null.
Bei einem reinen Kristall ohne Fehlstellen und Beimengungen kann durch thermische
Prozesse das Leitungsband praktisch nur von Elektronen aus dem Valenzband er-
reicht werden. Übergänge vom Valenzband in das Leitungsband und umgekehrt
heißen Band-Band -Übergänge.
Durch einen Elektronensprung vom Valenz- in das Leitungsband wird im Leitband
ein Elektronenplatz besetzt, im Valenzband ein Platz frei. Es entsteht damit im
Valenzband ein Defektelektron (vgl. Bild 5.1.1). Auch Bezeichnungen wie Elektronen-
lücke oder Loch sind gebräuchlich.
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Sowohl das Elektron im Leitungsband als auch die Elektronenlücke im Valenzband
können unter dem Einfluß eines äußeren Feldes ihren Platz verändern und damit
zur Elektronenleitung beitragen. Kommt ein Ladung strägertransport durch Elek-
tronen oder Defektelektronen zustande, die aus Band-Band-Übergängen entstanden
sind, so bezeichnet man ihn als Eigenleitung. Halbleiter, deren Leitfähigkeit auf
Eigenleitung beruht, heißen Eigenleiter bzw. Eigenhalbleiter. Bei Zimmertemperatur

Bild 5.1.1. Ebene Veranschaulichung der Struktur des Siliziumkristalls
mit einem Donator

Bild 5.1.2. Ebene Veranschaulichung der Struktur des Siliziumkristalls
mit einem Akzeptor

ist bei allen Halbleitern die Leitfähigkeit aus Eigenleitung gering, da — verglichen
mit der Gesamtzahl der Valenzelektronen — nur eine geringe Zahl freier Ladungs-
träger erzeugt wird.
Die Bedeutung der Halbleiter geht auf Fremdsubstanzen zurück. Schon geringe Bei-
mengungen fremder Stoffe in einem Kristall (relative Konzentrationen 10-9 * • -IO-4 )
können die elektrische Leitfähigkeit stark beeinflussen. Halbleiter, deren Eigen-
schaften auf Fremdsubstanzen beruhen, heißen Fremdhalbleiter.
Die wichtigsten Eigenhalbleiter sind Silizium und Germanium. Sie haben Diamant-
struktur. Jeder Gitterbaustein ist symmetrisch von vier anderen umgeben (vgl.
Bild 5.1.2). Neben den chemischen Elementen der vierten Spalte haben chemische
Verbindungen von Elementen der dritten und fünften Spalte des Periodensystems
Bedeutung. Dazu gehören z. B. Galliumarsenid GaAs, Indiumantimonid InSb,
Galliumantimonid GaSb usw. Ihre Kristallstruktur entspricht der des Zinkblende-
gitters (vgl. 1.1.). Es unterscheidet sich vom Diamantgitter nur dadurch, daß die

17*
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Elementarzelle je ein Atom der dritten und der fünften Spalte enthält. Die Anzahl
der Außenelektronen ist damit die gleiche wie beim Diamantgitter.
Tab. 5.1.1 und Tab. 5.1.2 enthalten die wichtigsten Eigenschaften der Halbleiter.

Störstellenniveaus — Donatoren und Akzeptoren
Die in einem Kristall auftretenden Gitterfehlstellen sind mit einer Störung des
periodischen Potentials verknüpft. Hierdurch wird das Energiespektrum der Ladungs-
träger geändert. Zu den Energiebändern des reinen Kristalls kommen Störstellen-
niveaus hinzu.
Von Interesse sind Fremdatome, die entweder mehr oder weniger Außenelektronen
als die Atome des Wirtsgitters besitzen. Im ersten Fall spricht man von überschüs-

Donatorterm

Energietücke

Bild 5.1.4. Bandstruktur des Kristalls
mit eingebauten Akzeptoren

Bild 5.1.3. Bandstruktur des Kristalls
mit eingebauten Donatoren

sigen Elektronen. Sie werden von den Fremdatomen leicht an das Leitungsband des
Gitters abgegeben. Fehlstellen mit einer verminderten Anzahl von Außenelektronen
haben dagegen die Tendenz, Elektronen aus dem Valenzband des Gitters aufzu-
nehmen.
Die Eigenschaft der Fremdatome mit leicht abtrennbaren, überschüssigen Elektronen
ist wie folgt zu deuten: Der Einbau dieser Fremdatome erzeugt einen Energieterm,
der dicht unter der unteren Kante Wl des Leitungsbandes liegt (vgl. 5.1.7.). Schon
Energien in der Größenordnung hundertstel Elektronenvolt reichen aus, daß ein
Elektron aus diesem Störterm in das Leitungsband springt (vgl. Tab. 5.1.2).
Fremdatome mit einer verminderten Anzahl Elektronen erzeugen dagegen einen Stör-
term dicht oberhalb der oberen Bandkante des Valenzbandes. Er ist für T = 0
unbesetzt. Geringe Energiezuführungen bewirken die Besetzung dieser Störterme
mit Elektronen aus dem Valenzband und damit die Erzeugung von Defektelektronen.
Die Fehlstelle mit überschüssigen Elektronen bezeichnet man als Donator, den gegen-
über dem reinen Kristall zusätzlich erzeugten Term als Donatorterm (vgl. Bild 5.1.3).
Dagegen heißt eine Fehlstelle, die Elektronen aus dem Gitter aufnimmt, Akzeptor,
der erzeugte Energieterm Akzeptorterm. Er ist in Bild 5.1.4 dargestellt.
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Störterme sind ebenso wie Störstellen lokalisiert und können daher an der Elektronen-
leitung nicht teilnehmen.

Beispiel 5.1.1. Donatoren und Akzeptoren in Silizium und Germanium

Silizium und Germanium haben als Elemente der vierten Spalte des Periodensystems nach Tab.
2.1.6 vier Elektronen in ihrer Außenschale (M-Schale bei Silizium, N-Schale bei Germanium).
Baut man in ihr Kristallgitter als Störstellen Atome der fünften Spalte ein, z. B. Phosphor,
Arsen oder Antimon, so besitzen diese in ihrer äußeren Schale fünf Elektronen und damit ein
Elektron mehr als die Wirtsatome. Der Einbau dieser Elemente in Silizium oder Germanium
erzeugt Donatoren gemäß Bild 5.1.3.
Werden Atome der dritten Spalte des Periodensystems eingebaut, z. B. Aluminium, Gallium oder
Indium, die in ihrer Außenschale drei Elektronen aufweisen, so wirken diese als Akzeptoren. Sie
nehmen Elektronen von den Wirtsgitteratomen auf (vgl. Bild 5.1.4).

Fremdhalbleiter, die durch den Einbau von Donatoren entstehen, heißen Über-
schuß- bzw. n-Halbleiter. Dagegen werden Fremdhalbleiter, die durch den Einbau
von Akzeptoren entstehen, als Mangel- oder Defekt- bzw. p-Halbleiter bezeichnet.
Die physikalischen Eigenschaften des realen Kristalls hängen von der Besetzung
der Energieniveaus mit Elektronen bzw. Defektelektronen ab. Es bezeichnet im
folgenden :

n Konzentration der Elektronen im Leitungsband (Zahl je m3 )
p Konzentration der Defektelektronen im Valenzband
nD Konzentration der mit einem Elektron besetzten Donatoren (besetzte bzw.

neutrale Donatoren)
p D Konzentration der unbesetzten Donatorplätze (positiv geladene Donatoren)
V D Konzentration der Donatoren,
n A Konzentration der mit einem Elektron besetzten Akzeptorplätze (negativ ge-

ladene Akzeptoren)
p A Konzentration der unbesetzten Akzeptorplätze (neutrale Akzeptoren)

Konzentration der Akzeptoren.

nD und p A charakterisieren elektrisch neutrale Störstellen, pD positiv geladene,
tza negativ geladene. Es bestehen die Beziehungen

n r> + Pv = Nd , n k + p A = •

Statistik der Störstellen-Elektronen

Elektronenzustände können einfach besetzt oder leer sein. Sie verhalten sich nach der
Fermi-Dirac-Statistik. Für das statistische Gewicht der Verteilung von n Elektronen
auf N Niveaulinien erhält man danach auf Grund der Gleichung (3.1.1./1)

V!
W = (2V — n)!n!’
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Hieraus ergibt sich durch Variation über sämtliche Besetzungsmöglichkeiten als
Gleichgewichtsverteilung die Fermi-Dirac- Verteilung mit der Zustandsdichte

/o = UW - f) = ----
e kT  + 1

(2)

(vgl. [3] 4.1.).
Die Besetzbarkeit eines Störstellenplatzes hängt von den Eigenschaften der Störstelle
und ihrer Stellung im Bändersystem des Kristalls ab. Hierdurch ergeben sich in den
Gleichungen (1) und (2) Modifikationen. Vielfach können diese auf den Spin der
Elektronen zurückgeführt werden. Für Donatoren und Akzeptoren treten dabei
unterschiedliche Abweichungen auf.
In einem Donator der fünften Gruppe des Periodensystems, der also fünf Außen-
elektronen besitzt, kann die Spinquantenzahl des Elektrons im Donatorterm zwei
Werte haben. Bei nD besetzten Donatoren in einem Niveau mit V D Plätzen

2
tritt dadurch ein zusätzlicher Faktor 2Wd auf :

W D = 2Md ------- 22------- .
(AD — d) • n D •

Für einen Akzeptor der dritten Gruppe des Periodensystems ist der Spin des vom
Valenzband auf das Störstellenniveau übergehenden Elektrons vorgegeben. Von den
drei Außenelektronen des Akzeptors bilden stets zwei ein Elektronenpaar mit ent-
gegengesetzten Spins. Das auf den Akzeptorterm übergehende Elektron muß einen
Spin besitzen, der dem des unpaarigen Elektrons entgegengerichtet ist, so daß im
Akzeptor zwei Elektronenpaare entstehen. Für das statistische Gewicht und die
Zustandsdichte der Verteilung gelten daher die Formeln (1) und (2). Dagegen ergeben
sich für die Entstehung unbesetzter Elektronenzustände im Akzeptorniveau wieder
zwei Möglichkeiten. Vom Akzeptorterm kann sowohl ein Elektron mit der Spin-
quantenzahl + ~ als auch ein Elektron mit der Spinquantenzahl — 3L auf das

2 2
Valenzband überwechseln. Als statistisches Gewicht der Verteilung von p A
= jVA — nA unbesetzten Zuständen im Akzeptorniveau erhält man daher

p A ! wA !
Die aus (3) bzw. (4) folgenden Gesetze für die Dichte der Elektronenverteilung in
den Störstellenniveaus können in der Formel

1

(3)

(4)

(5)Ws-t

ys e kT  +1
zusammengefaßt werden mit S = D für Donatoren, S = A für Akzeptoren. Für die
Zustandsdichte /D der Elektronen in einem Donatorterm ergibt sich

1
7D = -2 (6)
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dagegen für die Zustandsdichte / A der Elektronen in einem Akzeptorterm

n = 2 1. (7)

y A und yD heißen Entartungsfaktoren der Störstellenniveaus. Hängt die Ent-
artung nicht nur mit dem Elektronenspin zusammen, sondern ist strukturbedingt,
so ergeben sich von (6) und (7) abweichende Werte. Sie lassen sich im allgemeinen nur
experimentell bestimmen.
An Stelle von (5) kann man für die Dichtefunktionen auch

______1
fs = /o(TFs - c + kT In 7S ) = ' (8)

schreiben. Die Abweichung von der Zustandsdichte freier Elektronen läßt sich somit
durch Einführung effektiver Störstellenniveaus

IFgeff = M s + kT In ys (8 a)
umgehen.

Konzentration der Ladungsträger in den Energiebändern
Um zunächst die Konzentration der Elektronen im Leitungsband zu bestimmen,
wird ein differentieller Abschnitt der Breite dJF betrachtet. Seine Besetzung mit
Elektronen ergibt sich als Produkt aus der Verteilungsdichte /0 und der Zahl dr der
Energiezustände im Energieintervall dJ7 nach (4.2.8./Ö), wenn £ = 1 m3 gesetzt
wird:

dn = /0 dr = ± f0 (W - f ) d A . (9)

Hieraus erhält man durch Integration für die Elektronenkonzentration im Leitband

n = L f MW-C)d  kA . (10)
Leitband

Das Differential d3£ A des reziproken Raumes geht aus (4.2.8./10) hervor. Setzt man
dieses in (10) ein, folgt für kugelförmige Energieflächen

m A 2
Tr=T7 L + £ = TFL +—2m

als Konzentration der Elektronen
oo oo

n = f /o(TF - 0 TFl dW = f /0 (S - C + W L ) ]/7de. (11)7T n J tz n J
Wl 0
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Das Integral

i r tdt
ry  + 1 )  J i + e'-»

0

Fjtf) = (12)

heißt Fermi -Integral. Darin bedeutet T die Gammafunktion. Im Falle j = ~

. Mit dem FERMi-Integral ergibt sich für die Konzentration
der Elektronen im Leitungsband
erhält man T

(13)

mit der Entartungskonzentration

(m n kT)  3/2

y2K 3/2Ä 3
(13a)

Bei nicht zu hohen Dotierungen mit Fremdatomen und bei nicht zu niedrigen Tempe-
raturen kann das Elektronengas als nichtentartet angesehen werden. Für das nicht-
entartete Elektronengas kann man von der FERMi-DiRAC-Statistik zur Boltz-
mann-Statistik übergehen und den Summanden 1 im Nenner der Verteilungsdichte
vernachlässigen :

Wl-C

/o(IFL -C) ->e  , (14)
oo

A/a -*y=f  ■ (15)
0

Damit folgt nach (13) und (13 a)

n = ne kT (16)

Diese Gleichung für die Elektronenkonzentration im Leitungsband gilt auch bei
Anwesenheit von Störstellen, jedoch ist zu berücksichtigen, daß diese den Parameter
C verändern (vgl. 5.1.2.).
Betrachtet man an Stelle besetzter Elektronenzustände die Löcher bzw. Defekt-
elektronen, so sind die Übertragungsgesetze (4.2.7./6) zu berücksichtigen. An die
Stelle der Verteilungsfunktion /n = f 0 (W — für die Elektronen nach (2) bzw.
(3.3./23) tritt bei Defektelektronen die Verteilungsdichte
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d.  h.

/p = -r ------ (17)
e kT +1

W kennzeichnet die Energie der Elektronen auf den unbesetzten Plätzen. Die Anzahl
der Defektelektronen im Valenzband erhält man durch Integration

f (18)
Valenzband

woraus analog (13) und (13 a)

p = ( 1 ) (19 )

folgt. Im Gegensatz zu den Elektronen, die im Leitungsband bevorzugt die unteren
Plätze besetzen, treten im Valenzband unbesetzte Plätze insbesondere im oberen
Bandbereich auf. fflv kennzeichnet dementsprechend die obere Kante des Valenz-
bandes.
Im Grenzfall der BoLTZMANN-Statistik ergibt sich

p = pe kT (20)

Die Entartungskonzentration der Defektelektronen ist durch

(mpÄjT) 3/ 2
p ~ y w

definiert.
Für die Anzahl der Elektronen im Donatorterm folgt aus (9)

- NMW, - i + ------
e kT +1

für die Anzahl der Elektronen im Akzeptorterm
Nan k = NMW k — Q' + kT\xi yA ) = .

e kT +1
Der Grenzfall der BoLTZMANN-Statistik liegt für

JFD - C + fe77 l nyt) > kT bzw. W A - £ + kT In y A > 1
vor. Für die Anzahl der Elektronen im Donatorterm, d. h. für die Anzahl neutraler
Donatoren, ergibt sich damit im Grenzfall der BoLTZMANN-Statistik

iVp-C+trinpD
nD = e kT

(20 a)

(21a)

(21b)



266 5. Bändertheorie realer Kristalle

Die Anzahl unbesetzter Elektronenplätze im Donator beträgt

Pd = -2Vd(1 — /o) ™

Als Verhältnis zwischen den besetzten und den unbesetzten Elektronenzuständen
im Donator ergibt sich daher

Wd— C+ArTlnyD
— = e kT  . (22a)
Pd

Ebenso folgt aus (21b) für die Anzahl der negativ geladenen zur Anzahl neutraler
Akzeptoren

WA-C+mnyA
— = e kT . (22b)
Pa

Durch die Störstellen ist auch der Parameter £ gegenüber dem Wert für den idealen
Kristall verändert. Um £ in den Formeln (17) und (21) zu bestimmen, benutzt man
die Neutralitätsbedingung. Da für T = 0 im Leitungsband und im Akzeptorterm
keine Elektronen, im Valenzband und im Donatorterm keine Defektelektronen vor-
handen sind, fordert die Neutralitätsbedingung

n + n A = p + p D • (23)

Konzentration der Elektronen und Defektelektronen
Eigenleitung wird durch Band-Band-Übergänge hervorgerufen. Bei Eigenleitern
ist die Konzentration n E der Elektronen im Leitungsband gleich der Konzentration
p E der Defektelektronen im Valenzband :

e=Pe-  (24)

Bei fehlender Entartung folgt hieraus nach (20) und (13)

: = Ce = t | kT ln  (25)

speziell am absoluten Nullpunkt und für hinreichend niedrige Temperaturen
W L + W v

2 (25 a)Coe =

Dieser Wert kann im allgemeinen auch noch bei Zimmertemperatur benutzt werden.
Für das Verhältnis der effektiven Massen von Elektronen und Defektelektronen er-
hält man aus (25)

_ 4CE-2(jyL -Wv)
22 _ p 3kT
r.' n

(26)
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Für die Konzentration von Elektronen und Defektelektronen ergibt sich

AJV

nE = Pe = e 2kT • (27)

Darin kennzeichnet

aw = w l - TFv (27 a)
die Energielücke.
An Stelle von (27) kann man

n E = ne kT  , (28a)
PPv-fE

2>e = pe kT (28 b)
schreiben.

Beispiel 5.1.2. Eigenleitendes Silizium

Für den reinen Siliziumkristall mit AJ7 = 1,14 eV bei Zimmertemperatur, m n = 1,08 me ,
m p = 0,59 m e nach Tab. 5.1.4 folgt nach (13a) und (20a) für T = 300 K

(?nn ??Zp)3/4 (Ä?T)3/2 (1,08 • 0,59)3/4 . (9,11 . 10-31)3/2 . (1,38 . 10-23 , 300)3/2 _3

]/27t3 /2 (l,05 • IO“34) 3

= 1,81 • 10 25 m~3 .

Daraus ergibt sich nach (27)

1Q1 1A25 3 / 1,14 • 1,60 • 10-19 \ K , A15 3n E = p E =1,81 • 1025 m-3 exp ( ----------------------------- ] = 5 • 1015 m-3 .E E \ 2 • 1,38 • IO"23 • 300 /

Sind im Kristall Störstellen vorhanden, so kann man in (16) und (20) W L und W v
gemäß (28 a) und (28b) durch C E ausdrücken. Damit folgt für die Konzentrationen

t~ £e
n =*= e kT , (29)

£e-£

p = p E e kT . (30)
Daraus ergibt sich als Zusammenhang zwischen den Konzentrationen für beliebige
Störstellen und den Konzentrationen für den Eigenleiter

np =- n E p E = n v * . (31)

Fermi-Niveau £
Der Parameter f wird als Fermi-Niveau bezeichnet. Das FERMi-Niveau ist, wenn
keine Raumladungen vorliegen (vgl. 5.3.), bis auf eine Konstante mit dem in 3.3.
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eingeführten Fermi-Potential f und damit mit dem in der Statistischen Physik
definierten Chemischen Potential /z c identisch (vgl. [3] (3.3./6)). In den Untersuchun-
gen der Abschnitte 3. und 4. wird das FERMi-Potential f (auch als FERMi-Energie
bezeichnet) ebenso wie die Energie 8 von der unteren Kante W L des Leitungsbandes
an gerechnet. Dagegen bezieht sich das FERMi-Niveau £ in Abschnitt 5. ebenso wie
die Energie W auf Vakuum-Potential. Man erhält also das FERMi-Niveau, wenn das
FERMi-Potential zur unteren Kante des Leitungsbandes addiert wird.

Beweglichkeit der Ladungsträger
Zwischen Stromdichte j und spezifischer Leitfähigkeit a besteht bei Halbleitern
ebenso wie bei Metallen für Elektronen und Defektelektronen das OnMsche Gesetz

jn — jp — ö'p.E (32)
mit der resultierenden Stromdichte

j — jn + jp — (tfn + Op) (33)
Die Leitfähigkeit hängt von den Konzentrationen n und p der Ladungsträger und
von ihren Beweglichkeiten bn und 6P ab :

trn = enbn , o"p = epbp . (34)
bn und bp ergeben sich aus den Stößen der Elektronen mit den oszillierenden Gitter-
bausteinen und aus der Streuung arrGit terfehlsteilen. Bei Zimmertemperatur wird
die Beweglichkeit der Ladungsträger ebenso wie bei Metallen maßgeblich durch
die Stöße mit den Gitterbausteinen bestimmt. Für die Abhängigkeit der Beweglich-
keit von der Temperatur ergeben sich für nicht zu tiefe Temperaturen Gesetze der Form

t _ a n 7 _ a p /o£\
n ~ (kTyl* 9 p “ ( }

Die Stoßfrequenz der Leitbandelektronen mit dem Gitter weicht von der der Valenz-
bandelektronen ab. <x n und <xp sind daher voneinander verschieden.

Beispiel 5.1.3. Beweglichkeit der Defektelektronen in Germanium als Funktion der
Temperatur

Nach Tab. 5.1.4 beträgt die Beweglichkeit der Defektelektronen in Germanium bei 300 K
= 0,180 m2 V-1 s-1 . Für die Beweglichkeit bei 400 K folgt nach (35)

(Mr =(Mr.]/(  j 3 = 0,180 j/Q' = 0,117

Mit abnehmender Temperatur wird die Oszillation der Gitterbausteine immer
weniger angeregt. Bei tiefen Temperaturen überwiegt daher die Streuung an Stör-
stellen, und Gleichung (35) über die Temperaturabhängigkeit der Beweglichkeit ver-
liert ihre Gültigkeit.
Konzentration und Beweglichkeit der Quasiteilchen in Halbleitern werden ebenso
wie in Metallen aus der elektrischen Leitfähigkeit und aus dem HALL-Effekt bestimmt
(vgl. 3.3.).
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E le k fronen fallen
Neben den Störstellen mit Energieniveaus in der Nähe des Leitungs- oder des Valenz-
bandes treten in realen Kristallen auch Störstellen auf, die Energieniveaus weitab
vom Bandrand erzeugen, z. B. in der Mitte der Energielücke. Allgemein werden diese
Stör stellen als Elektronenfallen (traps) bezeichnet. Sie fangen vornehmlich aus ande-
ren Störstellen Elektronen ein und geben diese in einem Sekundärprozeß wieder an
ein Band ab. Die Elektronenf allen können dabei als Rekombinationszentren wirken,
in denen sich die Elektronen vor dem Bandübergang anhäufen können (vgl. 5.2.
und 5.4.). Vielfach wird auch von einer Elektronenfalle gesprochen, wenn die Existenz
einer Störstelle auf Grund experimenteller Ergebnisse vermutet wird, ohne daß ihr
Charakter oder die genaue Ursache der Störung bekannt sind.

Probleme

5.1.1. Eigenleitung

Bei Halbleitern tritt die Eigenleitung insbesondere bei hohen Temperaturen gegenüber der
Fremdleitung vielfach als unerwünschter Störeffekt in Erscheinung. Bestimmen Sie für einen
Germanium-Halbleiter die Änderung der spezifischen Leitfähigkeit auf Grund von Band- Band-
Übergängen, wenn die Temperatur von T Q = 300 K auf T = 450 K erhöht wird.

Lösung:
Für die Untersuchung wird ein Eigenhalbleiter ohne Störstellen vorausgesetz b. Die Rechnung
erfolgt nach der Boltzmann- Statistik, da bei hohen Temperaturen die Entartung des Elektronen-
gases aufgehoben ist. Nach (5.1./27) folgt in Verbindung mit (5.1./27a) für die Konzentration
der Elektronen im Leitungsband und der Defektelektronen im Valenzband

AW(7nn 7np )3/4 (Ä;T)3/2 - —
=Pe = - - - --— — e 2kT  . (1)

1/2 7t3/2 3

Für das Verhältnis der Konzentrationen ergibt sich daraus

»Er = / r_\  3/2  
e - - ( r - - f ; )_

n ETo

Mit den vorgegebenen Werten und nach Tab. 5.1.1 erhalten wir

E45o /450\3/2 / 0,67 • 1,60 • 10 f 1 1 1 \
n E300 \300/ \ 2 • 1,38 • IO"23 L 300 450 ] /

Für die Änderung der Beweglichkeiten folgt nach (5.1./35)

HT'
mit den vorgegebenen Werten

300 \450/
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Bei einem Eigenhalbleiter mit gleichen Konzentrationen n E = der Ladungsträger ergibt sich

+ frpr)

a To ETo nTo ~ pTo)

Im betrachteten Fall ist also

(4)

= 1,37 . 102 . 0,544 = 74,7.
a 300

5.1.2. n-Leitung

Ein Fremdhalbleiter mit Silizium als Wirtskristall enthalte als Störstellen nur Donatoren. Eigen-
leitung werde vernachlässigt. Es erfolge nur n-Leitung. Der Abstand

AJFd = TFl - W D (1)

zwischen dem unteren Rand des Leitungsbandes und dem Donatorterm betrage APKD == 0,044 eV.
Die effektive Masse der Elektronen kann durch den Mittelwert m = 1,08 nach Tab. 5.1.4 ge-
nähert werden. Berechnen Sie die Konzentration der Elektronen im Leitungsband und der
Defektelektronen im Donatorterm bei T = 100 K. Wie vergrößert sich dieser Wert bei T = 800 K?
Der relative Anteil der Fremdatome betrage 10-6 .

Lösung :
Da Band-Band-Übergänge vernachlässigt werden können, kommt auch Übergängen vom Valenz-
band in den dicht unter dem Leitungsband befindlichen Donatorterm keine Bedeutung zu. Die
Elektronen stammen daher aus Übergängen vom Donatorterm. Nach der Neutralitätsbedingung
(5.1./23) folgt

n = • (2)
Die Elektronenkonzentration im Leitungsband ist durch (5.1./16) gegeben. Um die Konzentration
der Defektelektronen im Donatorterm aus (5.1./21a) zu bestimmen, schreiben wir

7>d = - /.(JF D - H + fcTln rD )] = . (3a)
e kT  +1

Damit folgt aus (2)

kT  + 1

In dieser Gleichung ist nur das FERMi-Niveau f unbekannt, nach dem wir auflösen können:

C = W D + kT In

mit
atf d = — wd
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Bei tiefen Temperaturen ist AJFD groß gegen die thermische Energie. Daher kann in (4)

kW >lcT (5a)

und im Zusammenhang damit

(5b)

angesetzt, d. h. der Summand 1 vernachlässigt werden. Wir erhalten

c = 4- — kT \n Nl>Vx> . (6)
2 2 n

Am absoluten Nullpunkt T == 0 liegt somit das FERMi-Niveau Co = £(0) in der Mitte zwischen
dem Donatorterm und der unteren Kante des Leitungsbandes, d. h. in der Mitte zwischen den
besetzten und den unbesetzten Zuständen. Bild 5.1.5 zeigt die FERMi-Kante Co hei Überschuß-

Bild 5.1.5. Besetzung des n-Halbleiters für
T = 0

Bild 5.1.6. Besetzung des p-Halbleiters für
T = 0

leitung: Der Einbau der Donatoren hat Co von er Mitte zwischen der Valenzbandkante Wy und
der Leitungsbandkante W L in die Mitte zwischen dem Donatorterm TFD und der Leitungsband-
kante W L verschoben.
In der gleichen Weise kann das FERMi-Niveau bei Mangelhalbleitung berechnet werden. Bild
5.1.6 zeigt die FERMi-Kante Co hei einem mit Akzeptoren dotierten Halbleiter. Der Einbau der
Akzeptoren verschiebt die FERMi-Kante in die Mitte zwischen der Valenzbandkante Wy und dem
Akzeptorterm W v .
Wir setzen das FERMi-Niveau (6) in (5.1./16) ein und erhalten die Konzentration der Elektronen
im Leitungsband

AFVd
* kT  7Dn = ne  L -LL

2 (?)
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d. h. bei tiefen Temperaturen unter der Voraussetzung (5)
AWp

n = e kT  .

Bei hohen Temperaturen kann

kW kT
nebst

4 d e kT 1

angesetzt werden. Durch Reihenentwicklung

APKd AJVd
e kT —1i  e kT D 2------ t5 — 1 -j— —— — ------

nyD -------------------™yi) ü2y D 
2

erhält man aus (7)

n = V D 1 - e kT  ) V D .
\ /

(8)

(9a)

(9b)

(10)

(10a)

Der zweite Summand liefert die Konzentration der neutralen Donatoren
AVKp

»D = N o Ao e kT

Während bei tiefen Temperaturen die Elektronenkonzentration im Leitband mit der Tempera-
tur zunächst nach einem Exponentialgesetz ansteigt, tritt bei höheren Temperaturen Sättigung
ein, und jeder Donator liefert ein Elektron in das Leitungsband.
Bei T = 800 K folgt für die Störstellen in Silizium (vgl. Tab. 2.2.2 nebst (5.1. /13 a))

= 0,044 - 1,60 • IO"19 _ 0 64

kT ~ 1,38 • IO“23 • 800 “ ’ ’

. (1,08 • 9,11 • IO-31 • 1,38 • IO-23 • 800) 3 /2 , < n2ß ,n = — -------:----------------- ------------------ — m-3 = 1,2 • 1026 m-3 ,
yF re3/2 • (1,05 • 10 34) 3

AJVd

= 4 • 10~6 • 4,5 • 10 28 • 2 =ny D 1,2 • 1026

Voraussetzung (9 b) ist erfüllt. Wir können daher nach (10) mit

8oo = JPD800 = 
nd = 4,5 • 1022 m“3

rechnen.
Dagegen ist bei T = 100 K unter den Voraussetzungen (5 a) und (5b) zu rechnen. Es ergibt sich
nach (5.1./13a)

n = 5,6 • 1024 m-3

und aus (8) mit yb = — nach (5.1./6)
2

»100 = Pdioo = Vs,6 • 1024 • 4,5 • 1022 • 0,5 e“5 1 m“3 = 2,2 • 1021 m“ 3 .
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Bei Zimmertemperatur T = 300 K kann man im vorliegenden Fall n300 in der Größenordnung
1022 - • - IO23 m-3 ansetzen.
Die Eigenleitung kann, wie durch Rechnung nach Beispiel 5.1.2 nachzuweisen ist, auch bei
T = 800 K hier noch vernachlässigt werden.

5.1.3. Massenwirkungsgesetz der Quasiteilchen des Halbleiters

Die Elektronen und Defektelektronen in den Energiebändern und Störtermen können als ver-
schiedenartige Teilchen eines idealen Gases behandelt werden, die miteinander reagieren und sich
dabei umwandeln.
a) Leiten Sie aus den Formeln über die Besetzung der Energiebänder und Störterme eine all-
gemeingültige Gleichung für die gegenseitige Verknüpfung zwischen den Konzentrationen in den
Bändern und Störtermen ab.
b) Stellen Sie die Formel für die Konzentration der Quasiteilchen in einem p-Halbleiter ent-
sprechend dem zugrunde liegenden Modell als ideales Gas auf.
c) Berechnen Sie die Konzentrationen für die folgenden Daten:

T = 300 K, n = 1,5 • 1022 m~3 , p = 2,5 • 1022 m~3, ATT = W L - W v = 1,00 eV,
AWa = W A - W v = 0,01 eV, Na = 5 • 1022 m~3 .

Lösung:
a) Ableitung des Massenwirkungsgesetzes für die Quasiteilchen des Halbleiters
Als Quasiteilchen werden eingeführt : die Elektronen des Leitungsbandes, die Defektelektronen
des Valenzbandes; die neutralen bzw. besetzten Donatoren, die negativ geladenen bzw. besetzten
Akzeptoren. Für ihre Konzentrationen n, p, n D , n A werden im folgenden auch die Bezeichnungen

(i = 1, 2, 3, 4) verwendet.
Die Reaktionen zwischen diesen Teilchen vollziehen sich so lange, bis sich der Gleichgewichts-
zustand einstellt. Er hängt von der Temperatur und von der Konzentration bzw. nach dem Modell
des idealen Gases vom Druck der Quasiteilchen ab. Dieser wird im Halbleiter durch die Elektronen
des Wirtskristalles und durch die Dotierung mit Fremdatomen bestimmt.
Ein System verschiedenartiger Teilchen befindet sich bei konstanter Temperatur und konstantem
Druck im Gleichgewicht, wenn seine Freie Enthalpie G ein Minimum annimmt (vgl. [3] 5.1.):

SG(P, T) 0 ,  3P = 0 ,  8T = 0 .  (1)

Die Freie Enthalpie ergibt sich als Summe der FERMi-Niveaus aller Masseteilchen

G = S n£ k . (2)
k

Nach (1) ist der Gleichgewichtszustand durch '

8 S n k k ~ 0 bzw. 2 %k n k = 0
k k

bestimmt. Darin kennzeichnet <5nk die Abweichung vom Gleichgewichtszustand. Gleichung (3)
kann man durch kT dividieren und den sich ergebenden Ausdruck in die Potenz zur Basis e
erheben. Die Gleichgewichtsbedingung lautet somit

(3a)

18 Schilling, Festkörperphysik
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Das Fermi-Niveau der Elektronen entnehmen wir der nach der BoLTZMANN-Statistik gültigen
Gleichung (5.1./16). Wenn wir diese nach £ auflösen, folgt

Cn = C = W L + kT ln  - .n

Bei der Festlegung des Fermi-Niveaus der Defektelektronen ist die Vorzeichenumkehr nach
(4.2.7./6) zu berücksichtigen. Nach (5.1./20) ergibt sich

Cp = - :=  + (5)
P

Für die Elektronen des Donatorniveaus erhält man aus (5.1. /22 a)

CnD =C= JFD + Ä;T lnkD— k (6)
\ Pp /

für die Elektronen des Akzeptorniveaus aus (5.1. /22 b)

CnA = C=  lFA + *Tln  A . (7)

Wir setzen die FERMi-Niveaus nach (4) bis (7) in die Gleichgewichtsbedingung (3 a) ein und be-
rücksichtigen 8n2 = 8p, 8n3 = 8n D , = 3nA . Damit erhalten wir

(8)

In Form des Massenwirkungsgesetzes geschrieben, folgt
_ jv

n 8n p8p n 8nA = Ke kT  , (9)

mit der Massenwirkungskonstanten

K = n™ 2.j 8KD j 8 ”* (9a)

und der Energiekonstanten

W = 3nTFL - 8pW v + D 17D + 8nA JFA . (9b)

b) Konzentration bei einem p-Halbleiter
Wir betrachten den Elektronenübergang vom Leitungsband in den Akzeptorterm. Er verringert
die Konzentration der Leitungsbandelektronen und die Konzentration der unbesetzten Akzeptor-
plätze. Im gleichen Maße wird die Konzentration negativ geladener Akzeptoren erhöht. Es gilt
daher

— 8n = — 8pA = 3nA . (10)

Nach (8) ergibt sich
Wl-W a

— kT  =y A»i-
»A
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nA und pk sind mit der Konzentration 'Nk der Akzeptoren gemäß

+ Pa = n a (12)
verknüpft, woraus

Pa = Na 2”1 < l l a >n + y
folgt.
In gleicher Weise kann der Prozeß der Rekombination eines Defektelektrons im Valenzband
durch einen Elektronenübergang aus dem Akzeptorterm behandelt werden. Hierfür gilt

—&P = —8nA = $pk , (13)

Daraus folgt nach dem Massenwirkungsgesetz (8)

_ Wa-Wv

= = (14 )
Pk 7a 7a *

und in Verbindung mit (12)

Pi
n A = N A 

?A . . .  (14a)
„ ,P1

7a

n r und 7 stellen temperaturabhängige Hilfsgrößen dar, die durch (11) bzw. (14) definiert sind.
Aus (11) und (14) erhalten wir in Verbindung mit (5.1./27)

IVl-Wv
n iPi ~ P e kT  = n E2 = n P- (15)

Zur Lösung des vorgelegten Problems über die Konzentration der Elektronen im Leitband und
im Akzeptorterm sind zwei voneinander unabhängige Gleichungen erforderlich. Da (11) und (14)
miteinander über (12) verknüpft sind, genügt es, aus dem Massenwirkungsgesetz eine Gleichung,
z. B. (14), herauszuziehen. Ersetzt man hierin pA gemäß (12), ergibt sich

P k = Pi
Na~  »a 7a’

(16)

Die zweite Gleichung folgt aus der Neutralitätsbedingung (5.1./23), wenn man pjy = 0 berück-
sichtigt :

n + n A = p .  (17)

Durch (17) wird n als zusätzliche Variable eingeführt. Sie kann mittels (5.1./31) bzw. mittels
(15) wieder eliminiert werden. Aus (17) und (16) in Verbindung mit (15) erhalten wir für p die
algebraische Gleichung

2>3 + — P2 — (— + »E2) P — — n E2 = 0 .
7a \7a / 7a

(18)

Kennt man 79 aus (19), so läßt sich n mittels (15), nA mittels (17) berechnen.

18*
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c) Numerische Rechnung
Mit den vorgegebenen Größen folgt nach (11)

1,00 - 1,60 • 10- 19 \ _3

1,38 • IO-23 • 300 / m7a i = 2 • 1,5 • 1022 exp = 4,9- 105 m~3 ,

L pi = 10
22 exp m _3 = .

y 1 2 \ 1,38 • 10- 23 • 300 /

Für die Konzentration n E der Elektronen des Eigenhalbleiters ergibt sich nach (15)

n E = V4,9 • 105 • 8,44 • 1021 m~3 = 6,4 • 1013 m~3.

Wegen der kleinen Energiedifferenz AJ7a = 0,01 eV und der relativ hohen Temperatur kann man
annehmen, daß p die Größenordnung der Akzeptordichte A a erreicht. Wir vernachlässigen daher

in (18) den Summanden — n E
2 . Für p ergibt sich damit eine quadratische Gleichung. Ihre

' 7a
Lösung für N A p± n E

2 lautet

j APi Pi_
' 7a 4 7a 2 ’

mit den vorgegebenen Werten

p = 1,58- 1022 m- 3 .

Für die Konzentration der Elektronen im Leitungsband ergibt sich nach (17) ein Wert in der
Größenordnung 105 m-3 , so daß mit p — nk gerechnet werden kann.

(19)7’ =

5.1.4. Gemischte Fremdleitung

Silizium sei mit Donatoren in der Konzentration jVp = 4 • 1023 m-3 und mit Akzeptoren in der
Konzentration N k = 8 • 1022 m-3 dotiert. Berechnen Sie die elektrische Leitfähigkeit bei
T = 300 K.

Lösung:

Um das umfangreiche Gleichungssystem zu vereinfachen, führen wir folgende Betrachtung durch:
Am absoluten Nullpunkt T = 0 werden sämtliche Energiezustände bis zum FEBMi-Niveau Co
lückenlos besetzt. Aus den Donatoren fallen für T -> 0 solange Elektronen in den tieferliegenden
.Akzeptorterm, bis dieser vollständig besetzt ist. Der Donatorterm kennzeichnet daher für
N E > N k das FERMi-Niveau Co (vgl. Bild 5.1.7). Wir nehmen an, daß C(T) nicht stark von Co
abweicht.
Nach der Neutralitätsbedingung (5.1./23) besteht zwischen den Konzentrationen der Ladungs-
träger die Beziehung

n + n A = P +i>D- (1)
Für die Konzentration der Elektronen im Akzeptorterm erhält man nach (5.1./21b)

» A =  -------

1 + Va e kT

(2)
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Wegen
TFa-C ~ = _AF

kT ~ kT kT [ '

kann an Stelle von (1)

»A « (4)
geschrieben werden. Aus dem gleichen Grund ist p zu vernachlässigen, während für nach"
(5.1./21a) bzw. (5.1.2./3a)

1 + — e kT

7d
folgt.

Bild 5.1.7. Besetzung eines gemischten Halbleiters
mit Donatorenüberschuß für T = 0

Die Elektronehkonzentration im Leitungsband ist nach (5.1./16) genähert durch

n = ne  kT

gegeben mit n nach (5.1./13a). Anstelle (5) kann daher für p auch

Wl-Wd
1 hm1 -| --------- e K1

7d n

(6)

(?)

geschrieben werden.
Wir setzen (4) und (7) zusammen mitp = 0 in die Neutralitätsbedingung (1) ein und erhalten

1 4- an
N k + * = (8)
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mit

a=— e . (9)
n»

Nach (5.1. /13 a) folgt mit den vorgegebenen Werten (vgl. 5.1.2.)

n = 2,85 • 1025 m- 3

und damit
0,044-1, 60-iQ-19

a = ------------- e i,38-io-2’-3OO m 3 = 3 85  . |Q-25 m 3 .
2,85 • 1025

Die weitere Rechnung erfolgt unter der Voraussetzung

(JVAa + 1) 2 > 4(2VD — 2 ) a (10)
und ergibt

n = (U)N Aa + 1
bzw.

4 • 1023 — 8 • 1022 . , n23 3n = —---------------------------- m-3 = 3,1 • 1023 m-3 .
8 - 1022 • 3,85 - IO-25 + 1

Die Leitfähigkeit kommt im betrachteten Fall allein durch Elektronenleitung zustande. Der
Beitrag der Defektelektronen ist zu vernachlässigen. Für die elektrische Leitfähigkeit folgt daher
nach (3. 3.1. /5a)

a = nebn . (12)

Mit den Zahlen nach Tab. 5.1.4. erhält man

a = 3,1 • 1023 • 1,6 • IO“19 • 0,145 Q" 1 m“1 = 7,2 - 103 Q-1 m" 1 .

5.1 .5. Effektive Masse der Zustandsdichte

Das Leitungsband der Standard-Halbleiter Silizium und Germanium ist entartet. Es setzt sich
aus mehreren Energiezonen zusammen, die einander überlappen. Ihre Anzahl beträgt bei Silizium
Q = 6, bei Germanium Q = 8. Die Energiefunktion W = TF(ä;a ) hat für jede Energiezone die
Gestalt

A ) = r L + Ä
2 ( + ) .  ( i>

\ 2m nt 2m nl /
mnl heißt longitudinale, mnt transversale Masse. Sie sind in Tab. 5.1.2 für Silizium und für Ger-
manium tabelliert.
Leiten Sie die Formel für die Konzentration der Elektronen im Leitband eines Halbleiters ab,
wenn dieses aus mehreren Energiezonen besteht und die Energieflächen Rotationsellipsoide
entsprechend (1) sind. Vergleichen Sie das Ergebnis mit der Konzentration nach (5.1./13) für
einen Halbleiter mit nur einer Energiezone. Untersuchen Sie die effektive Masse der Leitungs-
bandelektronen.
Der numerischen Rechnung sind die Daten nach Tab. 5.1.2 für Silizium zugrunde zu legen.
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Lösung:

Die Elektronen verhalten sich in jeder der Q Energiezonen des Leitungsbandes nach der Fermi-
DiRAC-Statistik. Für die Konzentration der Elektronen ergibt sich daher

d3 Ä;A __________

:+ä 2 ( +A2

\ 2mnt

Die Integration wird wie in 4.2.8. über die FERMi-Flächen als den Flächen konstanter Energie im
reziproken Raum durchgeführt. Es ist also

J (, 7 dcTy dJFd3Ä;A = ----- -------- ,
gradfcA W

wobei d<r w das Differential einer FERMi-Fläche bedeutet. Da nach der FERMi-DiRAC-Statistik
die oberen Energiezustände des Leitbandes nur schwach besetzt sind, kann die Integration bis
unendlich erstreckt werden, ohne daß ein wesentlicher Fehler eintritt.
Wir führen im reziproken Raum Polarkoordinaten ein und schreiben

k1 = a sin # cos <p ,

k2 = a sin # sin 99 ,
k3 = b cos # .

Die Halbachsen a und b der Rotationsellipsoide sind nach (2)

(2)n = —
47t3

Wl-

(3)

(4)

a = i / 2  ntg
V Ä2 ’

(5)

b = - l / g  nlS
1/ Ä2 (6)

wobei
e = W - W L

den Abstand von der unteren Kante des Leitungsbandes bezeichnet. Damit folgt

(
Äz-i Azo kn \ I , n / _ I /sin2 'd'

— , — , — = Ä V2e 1/ -------
nt ™nt ™nl / |  ]/ ™nt

da w = a sin # Va2 cos2 $ + b2 sin2 & d# d(p

cos2 #
™nl

(7)

(8)

y8£mnl m2, t . -./sin2 # , cos2 # JQ  _= - ----- sin # | /  ---------1 --------- d#dp .
™nt m nlÄ2 (9)

Berücksichtigt man
27T tu
J J* sin # d# d<£> = 4tt ,
0 0

so ergibt sich damit aus (2)

(10)

(11)
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Definiert man daher die effektive Masse der Zustandsdichte im Leitungsband

'»J,; = VC2 mnt»»ni (12)

so ergibt sich für die Konzentration der Elektronen Übereinstimmung mit (5.1./13).
Mit den Zahlen nach Tab. 5.1.2 folgt

7/idn = V36 • 0,192 • 0,98 = 1,08 wie .

5.1.6. Leichte und schwere Löcher

Für die Energiefunktion der Eigenhalbleiter Germanium und Silizium erhält man durch quanten-
mechanische Rechnung nach der Störungstheorie am oberen Rand des Valenzbandes zwei Energie-
zonen

TFi,2 (V = Uv  =f 2V + + W + (1)2m e

nebst einer weiteren, im Inneren des Bandes befindlichen dritten Zone

W 3 =W V — (2)
2me

A, B und C sind hierin konstante Faktoren, JFS ist eine konstante Energiegröße.
Berechnen Sie die effektive Masse der Zustandsdichte im Sinne der Definition nach 5.1.5. sowie
den Anteil der beiden verschiedenartigen Löcher an der Gesamtkonzentration der Defekt-
elektronen.
In nullter Näherung kann über sämtliche Richtungen im reziproken Raum gemittelt werden und
für den Koeffizienten C in (1) ein konstanter Zahlenwert eingesetzt werden. Berechnen Sie diesen
und bestimmen Sie danach die effektiven Massen der Defektelektronen im Valenzband des
Germaniums. Für dieses haben die Konstanten in (1) und (2) die Werte A = 13,1, B = 8,3,
0 = 12,5.

Lösung:
Wir führen im reziproken Raum Kugelkoordinaten ein:

= ]ck sin & cos 99 ,

k y = &a s in # sin 99,

&Z = &A 
COS $-

Damit folgt aus (1)
£2 ___________' ________________________________

Wi 2 (&a) = -------- [Aä;a 2 "F &a2 V-ß2 + C2 sin2 #(sin 2 & sin2 99 cos2 99 + cos2 #)] .’ 2m e

(4)
Bei der Mittelung über den richtungsabhängigen Summanden transformieren wir

t = cos# (5)
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und erhalten
sin2 #(sin 2 # sin2 <p cos2 cp + cos2 #) sin

27V TV

= — / / sin2 #(sin 2 # sin2 (p cos2 (p + cos2 &•) sin d# dtp
J

0 0

27V +1

= -1- j* [sin2 cos2 <p(l — t 2 ) 2 4- (1 — t 2 ) t 2] dt dg?
o - i
2tv

1 C Z 16  • 2 2 l \ z4 1 /16 7V 4 .27
= T / — sm2 ip cos + — 1 d gi> = — — — + —— (6)

o
Dieser Mittelwert wird in (3) eingesetzt. Es folgt

(?)J71>2 = W v -

Hierfür kann man

i , 2  = TTV -
2 1,2

schreiben mit den effektiven Massen

(8)

?ne

’ 5

0)»»1,2 =

Aus (2) ergibt sich

ffl, = —3 A
(10)

Mit den vorgegebenen Zahlen erhalten wir

d. h.
= 0,323 me = 2,94 • 10-31 kg, m 2 = 0,043 m Q = 0,39 • 10-31 kg.

Defektelektronen mit der Masse heißen schwere, mit der Masse m 2 leichte Löcher.
Für die effektive Masse der Defektelektronen in der dritten Zone folgt

= 0,076?ne = 0,695 • 10-31 kg.

Sie sind wegen der tiefen Lage dieser Energiezone nur in verschwindend kleiner Konzentration
vorhanden.
Die Konzentrationen pr und p2 der schweren bzw. leichten Löcher folgt nach (5.1./20) und
(5.1./21)

= ( . = 12 )

\ kT /
( i i )
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Schreibt man zusammenfassend
r /W v - g\

\ kT /
(12)P = Pi + Pz =

so folgt für die effektive Masse der Zustandsdichte im Valenzband

wdp = (m-fl2 + m2
3 /2) 2/3 , (13)

mit den vorgegebenen Zahlen

™<ip = (0,3233/2 + 0,0433/2) 2/3 m e = 0,334 m e .
Der genaue Wert nach Tab. 5.1.4 liegt etwas höher.
Für das Verhältnis der leichten Löcher an der Gesamtkonzentration folgt aus (11)

p2 _ m 2
3 l2

P1 + Pz Wp3/2 ■ (14)

Zahlen eingesetzt, ergibt

-JL.W'.,«.
Pi + Pz \0,334/

Der Anteil leichter Löcher im Valenzband macht nur reichlich 4% aus.

5.1.7. Energieniveaus Wasserstoffähnlicher Störstellen

In das Kristallgitter des Germaniums seien als Donatoren fünfwertige Fremdatome eingebaut.
Leiten Sie aus der ScHRÖDiNGER-Gleichung eine Formel für den Abstand des Störterms von der
unteren Kante des Leitungsbandes ab. Schätzen Sie diesen mit den Werten nach Tab. 5.1.1 und
Tab. 5.1.4 ab.

Lösung:
Die ScHRÖDiNGER-Gleichung in der Einelektronennäherung lautet

Hyi = Wip (1)
mit

L2
H = A + JF0 + W'. (2)

W' gibt das Störpotential infolge des eingebauten Fremdatoms an. Die Überschußladung erzeugt
ein kugelsymmetrisches elektrisches Feld mit dem CovLOMBschen Potential

(3)

(4)

(5)

Bei fehlender Störung können wir

W Q = W L
setzen.
Die nach (3) und (4) sich ergebende ScHRÖDiNGER-Gleichung

*2 e2

Av> — - ------ y = (W-  W L ) y2m 47T£0£rr
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ist mit der Gleichung des umlaufenden Elektrons im Wasserstoffatom identisch. Ihre Lösung
liefert als Eigenwerte die diskreten Energieniveaus

W n = W L --------— ----- — (n = 1, 2, 3, .. .)
327t2Ä2e0

2er
2 n2 (6)

(vgl. [2] 4.3./214). Im Grundzustand hat daher das Überschußelektron von der unteren Bandkante
den Abstand

m • 13,6 eV.
er

2me
AJFd = W L -W!  = (7)cr

2wie 32k2 Ä2e0
2

Mit den Werten nach Tab. 5.1.1 und Tab. 5.1.4 ergibt sich

AJFd = 13 6 eV = 0,031 eV.D (15,6) 2

Dieser Wert hat nur die Bedeutung einer nullten Näherung. Genauere Näherungen erfordern,
den Tensorcharakter der Masse zu berücksichtigen.

Aufgaben

A 5.1.1. Welche Wirkung ist von Zwischengitteratomen bezüglich des Verhaltens ihrer
äußeren Elektronen zu erwarten? Betrachten Sie bei der Beantwortung dieser Frage
Zwischengitteratome als Störstellen.

A 5.1.2. Wie wirken Lücken im Kristallgitter, wenn diese als Störstellen betrachtet werden?
A 5.1.3. Die Temperatur eigenleitenden Siliziums ohne Störstellen werde von — 50 °C auf

200 °C erhöht. Wie ändert sich die Elektronenkonzentration? Berechnen Sie den
Quotienten beider Konzentrationen!

A 5.1.4. In einem Eigenhalbleiter werde durch Messung des HALL-Effektes bei 100 °C die
Elektronenkonzentration n = 7,8 • 1021 m-3 , bei 150 °C die Elektronenkonzentra-
tion n — 2,4 • 1022 m-3 festgestellt. Berechnen Sie die Breite der Energielücke.

A 5.1.5. Leiten Sie die Formel für die FERMi-Kante bei reiner p-Leitung ab. Welches
FERMi-Niveau ergibt sich in Abhängigkeit von der Temperatur?

A 5.1.6. Silizium enthalte Donatoren in der Konzentration = 5 - 1023 m-3 . Wie ver-
schiebt sich das FERMi-Niveau, wenn die Temperatur vom absoluten Nullpunkt
auf T = 100 K erhöht wird? Für die effektive Masse der Zustandsdichte ist der
Wert nach Tab. 5.1.4 einzusetzen.

A 5.1.7. Diskutieren Sie die Abhängigkeit des FERMi-Niveaus von der Temperatur bei
Eigen- und bei Störstellenleitung.

A 5.1.8. Stellen Sie die Formel für die Konzentration der Defektelektronen im Valenzband
bei reiner p-Leitung auf.

A 5.1.9. Wie groß ist die Konzentration der Defektelektronen in Germanium bei einer
Dotierung mit Akzeptoren in der Konzentration V A = 2,5 • 1023 m-3 , wenn die
Temperatur 300 K beträgt? Welche spezifische elektrische Leitfähigkeit besitzt
der p-Halbleiter? Die Rechnung ist nach der BoLTZMANN-Statistik durchzu-
führen.

A 5.1.10. In Silizium werde bei Zimmertemperatur T = 300 K als Folge der Dotierung mit
Fremdatomen im Leitungsband die Elektronenkonzentration n = 2,5 • 1022 m-3

festgestellt. Wie groß ist die Konzentration der Defektelektronen im Valenzband?
(Werte nach Tab. 5.1.1 und Tab. 5.1.4)
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A 5.1.11. Bestimmen Sie die Konzentration der Elektronen im Leitungsband von Silizium,
wenn der relative Anteil der Donatoren IO-6 beträgt. Dabei kann = n angenom-
men werden. (Werte nach Tab. 5.1.2)

A 5.1.12. Das Massenwirkungsgesetz in der Form (5.1. 3./8) mit den Elektronen im Leitungs-
band und in den Störtermen sowie den Defektelektronen im Valenzband als Quasi-
teilchen ist zu erweitern, indem auch die Defektelektronen in den Störtermen als
Quasiteilchen behandelt werden. Vergleichen Sie die sich ergebende Formel mit dem
Massenwirkungsgesetz nach (5.1.3./8).

A 5.1.13. Stellen Sie die Formel für die Konzentration der Leitungsbandelektronen in einem
gemischten Fremdhalbleiter bei mittleren Temperaturen und mittleren Konzen-
trationen der Fremdatome auf. (BoLTZMANN-Statistik kann angewandt werden.)

A 5.1.14. Germanium sei mit Donatoren in der Konzentration N D = 8 • 1024 m-3 und mit
Akzeptoren in der Konzentration V A = 7,5 • 1024 m-3 dotiert. Wie groß sind die
Konzentration der Elektronen im Leitungsband und die elektrische Leitfähigkeit
bei T = 300 K? (Werte nach Tab. 5.1.2 und 5.1.4)

A 5.1.15. Wo liegt das FERMi-Niveau in einem gemischten Fremdhalbleiter, bei dem die
Konzentration der Akzeptoren größer als die der Donatoren ist?

A 5.1.16. Stellen Sie die Formeln für die Konzentrationen der Elektronen im Leitungsband
und der Defektelektronen im Valenzband in einem gemischten Fremdhalbleiter auf.

A 5.1.17. Berechnen Sie die effektive Masse der Zustandsdichte für das Leitungsband in
Germanium (Q = 8, mnl = l,58m e , wn t  = 0,08me ).

A 5.1.18. Untersuchen Sie für einen mit Donatoren dotierten Halbleiter, für welche Kon-
zentration 7Vd die BoLTZMANN-Statistik an Stelle der FERMi-DiRAC-Statistik an-
gewandt werden kann. Hierbei sei eins als vernachlässigbar klein gegen zehn an-
gesehen. Führen Sie die Rechnung speziell für Silizium bei T = 300 K durch.

5.2. Rekombination, Diffusion und Drift der Ladungsträger

Einführung

Generation und Rekombination quasifreier Ladungsträger
Die in 5.1. abgeleiteten Gleichungen für die Konzentration der Elektronen und
Defektelektronen kennzeichnen den thermischen Gleichgewichtszustand, d. h. die
Verteilung im Gleichgewicht bei fehlender Einwirkung von außen. Quasifreie La-
dungsträger werden dabei nur thermisch erzeugt. Ihre Konzentration hängt bei
vorgegebenem Material allein von der Temperatur T ab. Im folgenden wird das
thermische Gleichgewicht zum Unterschied gegen zeitlich veränderliche Zustände
durch den Index Null gekennzeichnet. Es bedeutet also z. B. n0 die Elektronen-
konzentration, p0 die Löcherkonzentration im thermischen Gleichgewicht nach 5.1.
n(t) und p(t} geben momentane Konzentrationen an, die sich mit der Zeit t ver-
ändern können. Die Abweichungen vom thermischen Gleichgewichtszustand sind
durch

An = Kn(t) = n(t) — n Q , Ap = Ap(£) == p(t) — pQ (1)
definiert.
Äußere Felder stören das thermische Gleichgewicht. Temperatur- und statische
elektrische Felder bewirken im wesentlichen nur eine Umverteilung der Ladungs-
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träger auf andere Niveaulinien innerhalb eines Energiebandes. Dagegen injizieren
elektromagnetische Strahlungsfelder mit Frequenzen etwa vom Bereich des sicht-
baren Lichtes an bis hin zu den Röntgen- und y-Strahlen sowie Korpuskularstrahlen
zusätzliche quasifreie Ladungsträger. Diese Injektion der Ladungsträger erfolgt
durch Übergänge in das Leitungsband, im wesentlichen aus dem Valenzband, weniger
aus tieferliegenden Bändern. Bei Übergängen aus dem Valenz- in das Leitungsband,
die im folgenden nur berücksichtigt werden, bildet sich mit dem Elektron im Lei-
tungsband gleichzeitig ein Defektelektron im Valenzband.
Die Anzahl quasifreier Teilchenpaare, die durch äußere Einwirkung entstehen, wird
auf die Raum- und Zeiteinheit bezogen und als äußere Erzeuger- bzw. äußere Gene-
rationsquote G bezeichnet. Sie ist von der Art der Einwirkung und von den Struktur-
eigenschaften des Halbleiters abhängig, jedoch unabhängig von der Temperatur T
und von den Konzentrationen n und p.
Durch thermische Prozesse entstehende quasifreie Teilchen werden durch die ther-
mischen Generationsquoten gn und angegeben. Da Übergänge in das Leitungsband
oder aus dem Valenzband bei thermischen Prozessen auch über Störterme erfolgen,
sind die Quoten der Elektronen und der Defektelektronen im allgemeinen vonein-
ander verschieden. Nur bei Eigenhalbleitern stimmen gn und gp überein.
Der Generation wirkt die Rekombination entgegen. Sie findet ihre Ursache in den
Stößen der Elektronen mit oszillierenden Gitterbausteinen und in der Streuung an
Gitterfehlstellen. Die Rekombination wird durch die Rekombinationsraten R n für
Elektronen bzw. 7?p für Defektelektronen gekennzeichnet.
Bei Eigenhalbleitern stimmen R p und R n überein, da nur Band-Band-Übergänge,
d. h. Übergänge zwischen dem Valenz- und dem Leitungsband, erfolgen. In Fremd-
halbleitern kann dagegen ein Elektron, das aus dem Leitungsband in einen tiefer-
liegenden Energiezustand fällt, sich für kürzere oder längere Zeit in einem Störterm
aufhalten. Derartige Energieterme werden dann als Rekombiriationszentren be-
zeichnet. Sie bewirken, daß Rp und R n in Fremdhalbleitern im allgemeinen vonein-
ander verschieden sind.
Im thermischen Gleichgewicht stimmen thermische Generation und Rekombination
überein. Für die Quoten der thermischen Generation folgt daraus

= -Rno(y) , gv = -Rpo(T) . (2)

Die Differenz zwischen Rekombinationsquote und thermischer Generationsquote
heißt Rekombinationsüberschuß :

= Rn gn , Up = Rp — gp . (3)

Im thermischen Gleichgewicht sind Un und Up gleich Null.
Als schwache äußere Störung definiert man ein Einwirken von außen, bei dem die
Abweichung An bzw. Ap klein gegen die Konzentration n0 bzw. pQ im thermischen
Gleichgewicht ist :

An< n0 , Ap< p 0 .

Dabei kann man Un bzw. Up genähert proportional An bzw. Ap und entgegengesetzt
proportional der Lebensdauer oder Relaxationszeit r n bzw. t p des injizierten Elek-
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tronenzustandes voraussetzen :

U P ““ T 'T P

Die als Proportionalitätsfaktoren eingeführten Größen Tn jjnd t p haben die Maß-
einheit Sekunde und kennzeichnen Relaxationszeiten. Sie sind nicht nur vom Mate-
rial, sondern auch von der Art der Störung abhängig.
Bei einer länger andauernden äußeren Störung bildet sich ein stationärer Gleich-
gewichtszustand aus. Zeitliche Änderungen finden nicht mehr statt:

Die Rekombinationsüberschüsse U n und U p stellen sich im stationären Gleich-
gewichtszustand auf die äußere Erzeugerquote G ein. Bei fehlendem Stromfluß gilt

Un = U p = U = G .  (5)

u - —u n — (4)

Diffusion und Drift
Unterschiedliche Konzentrationen innerhalb eines Festkörpers

n = n(r) , p = p(r) (6)

führen zu Diffusionsströmen. Die Dichte des von diffundierenden Elektronen und
Defektelektronen erzeugten elektrischen Stromes setzt sich additiv zusammen :

jDif f  == JnDiff  + JpDi f f -  (7)
Elektronen- und Defektelektronenstrom sind der transportierten Ladung pro-
portional und fließen von Orten höherer zu Orten niedrigerer Konzentration. Daher
gilt

JnDiff = eDn grad n ,  j pDi f f  = — eDp grad p .  (8)

D n und D p sind die Diffusionskoeffizienten. Sie können bei einem nichtentarteten
Halbleiter nach der BoLTZMANN-Statistik berechnet und aus der EiNSTEiN-Beziehung
nach (3.1.4./10) entnommen werden:

d
e e

(8 a)

Beispiel 5.2.1. Diffusionskoeffizienten in Silizium

In Silizium folgt bei Zimmertemperatur aus den Werten nach Tab. 5.1.4

=
0,145 • 1,38 • 10 -23 • 300 2 . Q _ , n , 2 ,= ------------ -------------------- m 2 s-1 = 3,75 • 10“ 3 m 2 s-1 ,

1,60 • IO“19

2>p =
0,050 • 1,38 • 10- 23 -300 . , . . .  . .  3 2 ,= -------------------------------- m 2 s-1 = 1,29 • IO-3 m 2 s-1 .

1,60 • IO“19
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Ein von außen angelegtes elektrisches Feld

E = — grad 0
löst den elektrischen Strom der Dichte

/Drift  — JnDrift + JpDrift  (9)

aus, wobei
JnDrift — enbn E , JpDrift ~ cpb E (10)

ist. Er heißt Driftstrom.
Der Diffusions- und der Driftstrom überlagern sich gemäß

j = 7*Diff +j*Driff ' (H)

Für die einzelnen Ladungsträger gilt
jn ~ JnDiff + JnDri f t ;  Jp =JpDi f f  + JpDr i f t -  (12)

Bilanzgleichung der Elektronen und Defektelektronen
Unterliegt der Festkörper keinen äußeren Störungen oder befindet er sich im statio-
nären Gleichgewicht, so kann sich eine Änderung der Konzentration seiner Ladungs-
träger nur als Folge von Strömen ergeben. Dafür gilt nach der Kontinuitätsgleichung

3p 3 Ap 1 . 3n 3 An 1 .
— (13  >

Wenn die äußere Generationsquote G größer als der Rekombinationsüberschuß
Z7P bzw. Un ist, wird das stationäre Gleichgewicht gestört. Es entstehen zusätzliche
Ladungsträger. Im entgegengesetzten Falle verringert sich die Konzentration der
Ladungsträger. Allgemein erhält man für die Änderung der Konzentrationen die
Bilanzgleichungen

3p 3 Ap 1 .= U p-- divj p ,3t 3t e
(14)

3n 3 An 1 .

Beispiel 5.2.2. Generationsprozeß

In einem Fremdhalbleiter wird durch Strahlung mit der äußeren Generationsquote G = 1020 m-3 s-1

ein räumlich konstanter, stationärer Gleichgewichtszustand mit einer Abweichung vom ther-
mischen Gleichgewicht An = 1015 m-3 erzeugt. An ist klein gegen die Elektronenkonzentration n0
im thermischen Gleichgewicht. Es liege kein äußeres Feld an, so daß kein Driftstrom und wegen
der gleichmäßigen Strahlung auch kein Diffusionsstrom vorhanden ist. Der stationäre Gleich-

gewichtszustand ist durch —— = 0 gekennzeichnet. Daher folgt aus der Bilanzgleichung (14)

G - Un = 0 (15)
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bzw. auf Grund der Gleichung (4)

e -p . - - . T n
Für die Relaxationszeit ergibt sich hieraus

An 1015 .
T n = --- = ---- S = 10 -5 S.n ö 1020

(16)

Beispiel 5.2.3. Zeitlicher Ausgleich nach Störung

Nach Ausschalten der Strahlungsquelle stellt sich der thermische Gleichgewichtszustand wieder
ein. Die hierfür gültige Relaxationszeit wird als Abklingzeit bezeichnet. Sie weicht in der Regel
von der Relaxationszeit im stationären Gleichgewichtszustand ab. Es seien auch im vorliegenden
Fall keine elektrischen Ströme vorhanden. Die äußere Erzeuger quote ist gleich Null. Dagegen

ß
treten zeitliche Veränderungen auf, so daß mit — =|= 0 zu rechnen ist. Für das Abklingen der

dt
schwachen Störung erhält man daher aus den Bilanzgleichungen (14) in Verbindung mit (4)

dA# _ Ajp d An _ An
dt t p ’ dt r n

Diese Gleichungen stimmen mit (4.3./12) überein. Als Lösung folgt

= Ayo e % (18)

wobei A o und An0 die Abweichungen vom thermischen Gleichgewicht im stationären Gleich-
gewichtszustand angeben.

Beispiel 5.2.4. Dielektrische Relaxationszeit der Elektronen

Ein Kristall trage über sein gesamtes Volumen gleichmäßig verteilt Raumladungen. Sie erzeugen
starke elektrische Kräfte. Gegen die von ihnen in der Bilanzgleichung verursachten Glieder kann
der Rekombinationsüberschuß vernachlässigt werden. Es finde keine Erzeugung von Ladungs-
trägern durch äußere Einwirkung statt, so daß mit G = 0 zu rechnen ist. Dagegen treten zeit-
liche Änderungen auf. Nach dem Ohmschen Gesetz ist

in = (19)
Damit ergibt sich nach (13)

— = — div£ = 0 .  (20a)
dt &

Nach Multiplikation mit der Elementarladung folgt wegen e An = —q

J+<r n div£ = 0 .  (20)
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Die Raumladungsdichte q ist mit der elektrischen Erregung D bzw. mit dem elektrischen Feld
E durch die MAXWELLsche Gleichung

divD = s divl? — q (21)

verknüpft (vgl. [4] (1.4./3)). Damit erhält man aus (20) die Differentialgleichung

§ + (> = 0 .  (22)
dt e

Ihre Lösung lautet
_2_

= (23)
mit der Relaxationszeit

Sie heißt dielektrische Relaxationszeit.
Für n-leitendes Silizium mit n = 1020 m~3 folgt nach Tab. 5.1.1 und Tab. 5.1.4

11,8 • 8,85 • IO-12 . K nr n — ------------------------------ s = 4,5 • 10-11 s .n 1,60 • IO“19 • 102® • 0,145

Die dielektrische Relaxationszeit f ist um mehrere Größenordnungen kleiner als die mit dem
Rekombinationsüberschuß nach (4) verknüpften Relaxationszeiten t :

t< t .  (25)

■ Probleme

5.2.1. Diffusionslänge

Durch Dauerstrahlung wird in der dünnen Oberflächenschicht eines Fremdhalbleiters auf Sili-
ziumbasis ein zeitlich konstanter Überschuß an Ladungsträgerpaaren erzeugt. Die Absorption
der Strahlung sei so groß, daß im Kristallinneren keine Trägerpaare durch äußere Einwirkung
entstehen. Es bildet sich eine inhomogene Dichteverteilung aus (vgl. Bild 5.2.1).
Untersuchen Sie die räumliche Verteilung der Trägerpaare, wenn die Relaxationszeit im statio-
nären Gleichgewicht für Elektronen und Defektelektronen gleich 20 p,s ist. Die Temperatur be-
trage T = 300 K.

Lösung:

Zur Behandlung des Problems gehen wir von der Bilanzgleichung nach (5.2. /14) aus. Wir setzen
schwache Abweichungen vom thermischen Gleichgewicht voraus, so daß nach (5.2./4) für den
Rekombinationsüberschuß

(1)
r n T p

1 9 Schilling, Festkörperphysik
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geschrieben werden kann. Durch Einsetzen von (1) in die Bilanzgleichungen (5.2./14) ergibt
sich

= ö _ _A divJ -
St ** 6 (2)

d An An 1 .— - =G ------- + — divj n .ot Tn 
6

Im Inneren des Kristalls gilt für die äußere Erzeugerquote G = 0. Nach (5.2./8) folgt bei fehlen-
dem elektrischem Feld E

in = e-Dn grad Are, j p = —eDp grad Ajj. (3)
Wir sehen von Randstörungen ab und wählen die Richtung senkrecht zur Kristalloberfläche

d 2
als z-Achse. Der LAPLACE-Operator kann unter diesen Bedingungen durch — ersetzt werden.

f + -  + - + - + -4- -+1
/ + ~ + ± “ + + )- + + + +/

+ + , )
Kristall + |

V
z

Bild 5.2.1. Verteilung der Ladungen in einem Kristall bei der
Ladungsträger in jektion an der Oberfläche

Die Ladungsverteilung ändert sich räumlich, ist jedoch zeitlich konstant. Daher folgt aus (2) für
das Innere des Kristalls

_ + J > 2 =0  , — — + Z>n = 0 .  (4)
Tp 

p dz2 Tn 
n dz2 '

Als Lösung erhält man durch Exponentialansatz
z z

Ajp = Ajpoe ip , An = Ano e in , (5)
wobei

L n = yr nD n , Lp = ]/t pD p (6)
ist.
Mit der vorgegebenen Relaxationszeit t = r n = r p = 20 • 10-6 s und den Werten nach Beispiel
5.2.1 folgt

L n = j/20 • IO“6 • 3,75 • 10- s m = 0,27 mm, L p = 1/20 • IO"6 • 1,29 ■ 10~2 m = 0,51 mm.
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Die räumlichen Störungen klingen über sehr kurze Entfernungen ab. Z n bzw. L p heißen Diffu-
sionslänge der Elektronen bzw. der Defektelektronen.

5.2.2. Debye-Länge

In der dünnen Oberflächenschicht eines n-leitenden Siliziumkristalls wird ein zeitlich konstantes
Raumladungsfeld erzeugt. Bestimmen Sie das räumliche Abklingen der inhomogenen Verteilung
im stationären Zustand, wenn die Gleichgewichtskonzentration n = 1019 m-3 beträgt. Die Tempe-
ratur sei T = 300 K.
Wie klingt die inhomogene Verteilung räumlich ab? Untersuchen Sie das Abklingen bei eigen-
leitendem Silizium. Die Werte sind Tab. 5.1.4 zu entnehmen.

Lösung:
Q

Der stationäre Zustand ist durch — =0  gekennzeichnet. Die äußere Erzeugerquote G und der
dt

Rekombinationsüberschuß U werden gleich Null gesetzt. Aus den Bilanzgleichungen (5.2./14)
ergibt sich damit

div Jn = 0 .  (1)
Das bedeutet, die mit den Raumladungen auftretenden elektrischen Feldern erzeugen einen
Driftstrom, der im stationären Gleichgewicht durch einen entgegengerichteten Diffusionsstrom
ausgeglichen wird. Nach (5.2./8) und (5.2./10) führt das auf

eDn div grad An + <rn divl? = 0.

Wir berücksichtigen

divD = e divE = Q, (3)

wobei D die elektrische Verschiebungsdichte (Erregung) kennzeichnet. Wählt man die Richtung
senkrecht zur Kristalloberfläche als z-Achse, so folgt aus (2) und (3) die Differentialgleichung

_ jDn + = 0 .
dz2 e

(2)

(4)

Ihre Lösung lautet

e = e«> e iDn - (5)
Die Größe L Dn gibt die DEBYE-Länge der Elektronen im Medium an. Sie ist nach (4) und (5)

(6)

(7)

19*
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Bei eigenleitendem Material erhält man für das räumliche Abklingen der Ladungsdichte ebenso

(5 a)

(7a)

jedoch mit

Für den Fremdhalbleiter folgt nach (7)

L -i /11,8 • 8,85 • 10- 12 • 1,38 • IO“23 • 300
Dn-  |/ (1,6 • 10~19 )2 • 1019

für den Eigenhalbleiter nach (7 a) und Beispiel 5.1.2

L i /11,8 ■ 8,85 • 10~12 • 1,38 • 10~23 • 300
D ~ |/ 2(1,6 • IO“19 ) 2 • 5,0 • 1015

5.2.3. Photoleitfähigkeit

In einem n-Halbleiter betrage die Konzentration der Elektronen des Leitungsbandes im ther-
mischen Gleichgewicht nQ = 5,0 • 1020 m-3 . Wird auf den Halbleiter Licht der Frequenz v =
3 • 1014 Hz mit der Bestrahlungsstärke 7?e = 60 W m-2 gerichtet (vgl. Bild 5.2.2), so erhöht sich die
spezifische elektrische Leitfähigkeit des Mediums um 22%. Die Halbleiterprobe sei so dünn, daß
überall mit der gleichen Strahlungsintensität gerechnet werden kann. Es werde angenommen,
daß jedes absorbierte Quant ein Ladungsträgerpaar injiziert.

Ee = 60 Wm' 2

Bild 5.2.2. Schaltung zur Messung der Photoleitfähigkeit

Berechnen Sie die mittlere Lebensdauer der Ladungsträger im stationären Gleichgewicht sowie
die äußere Erzeugerquote G. Der Absorptionskoeffizient des Materials für die betrachtete Wellen-
länge sei ß = 2,5 • 103 m-1 . Das Verhältnis der Beweglichkeiten von Defektelektronen und

Elektronen betrage — =0 ,19 .  Bei der Untersuchung kann vorausgesetzt werden, daß der

Störterm keinen Einfluß auf die Rekombination der Ladungsträger hat.

Lösung:
Im stationären Gleichgewicht bei fehlenden Strömen besteht zwischen der äußeren Erzeuger-
quote G und der mittleren Lebensdauer r n der Elektronen im Leitungsband nach (5.2./5) die B e-
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ziehung

Eine gleichwertige Beziehung gilt für die Defektelektronen mit An = r n = r p , wenn sich die
Existenz der Störterme nicht auf die Relaxationszeiten auswirkt.
Die Anzahl N der je Raum- und Zeiteinheit absorbierten Quanten folgt aus der Bestrahlungs-
stärke E e , dem Absorptionskoeffizienten ß und der Frequenz v:

N = (2a)
hv

Jedes absorbierte Quant erzeugt im Mittel y Ladungsträgerpaare, y heißt die Quantenausbeute.
Zwischen der Zahl N absorbierter Quanten und der äußeren Erzeugerquote G besteht die Be-
ziehung

G = yN,
woraus

G y =yßI
hv

folgt. Die Größe

(2b)

(2)

(2 c)

(3)

gibt die Quantenflußdichte an.
Wir können (1) und (2) gleichsetzen und nach An auflösen:

hv

Die gegenüber dem thermischen Gleichgewicht zusätzlich vorhandenen Ladungsträger ver-
größern die spezifische elektrische Leitfähigkeit. Hierfür erhalten wir nach (3.3.1./5a)

Ao = e(An&n + A öp ) = e An(6n + &P ) . (4)

Dagegen ist die spezifische Leitfähigkeit im thermischen Gleichgewicht durch

a == en0&n (5)

gegeben, wenn man die geringe Eigenleitung vernachlässigt. Für die relative Änderung folgt

&n + &p _An/  t ! 6P \ (ß)

n0 &n n„ \ bn / '

Aus ihrer Messung läßt sich, wenn die Beweglichkeiten der Ladungsträger bekannt sind, An
bestimmen. Wie aus (6) hervorgeht, hängt die relative Änderung der Leitfähigkeit nur vom Ver-
hältnis der Beweglichkeiten für Elektronen und Defektelektronen ab.
Mittels (1) und (2) kann bei bekanntem An die mittlere Lebensdauer r n berechnet werden.
Mit den vorgegebenen Werten erhalten wir für An nach (6)

An = n0 — -----i----- = 5,0 • 1020 • 0,22 — m“3 = 9,2 • 1019 m“3 .
° t + &p 149
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Für die äußere Generationsquote folgt aus (2)

N = G = - -° ' 1 -' 2 ’ 5 ' 103 ■ m~3 s- 1 = 7,5 • 1023 m“3 s“1 .
6,63 • IO“34 • 3 • 1014

Damit ergibt sich nach (1) für die mittlere Lebensdauer

-°- S = l , 2 .10 -4 s .
7,5 • 1023

5.2.4. Abklingen einer starken Störung

Die Konzentration der Elektronen im Leitungsband betrage für einen reinen Kristall
n E = 1012 m-3 . Nach Dotierung mit Fremdatomen werde n0 = 1019 m-3 gemessen. Eine inten-
sive Strahlung erzeuge G = 1026 m-3 s-1 Trägerpaare. Im stationären Gleichgewicht seien
An0 = kp Q = 1021 m-3 Trägerpaare mehr als im thermischen Gleichgewicht vorhanden.
Untersuchen Sie den Rekombinationsprozeß nach Ausschalten der Lichteinwirkung. Nach
welcher Zeit ist der Ladungsträgerüberschuß auf den Anteil 1/e abgesunken? Die Rekombination
erfolge durch Band-Band-Übergänge.

Lösung:
Durch die Abweichungen An0 , Ap0 Vom thermischen Gleichgewicht tritt ein Rekombinations-
überschuß

U = R-g  (1)

auf. Wird die äußere Einwirkung ausgeschaltet, so klingt dieser ebenso wie der Ladungsträger-
überschuß ab.
Die Rekombinationsrate ist sowohl der Elektronenkonzentration n als auch der Löcherkonzen-
tration p proportional :

_B(0 = Ron(t) p(t) . (2)

Für die Rate der thermischen Generation können wir nach (5.2./2)

9 = R 0
n oPo = S 0n E2 (3)

schreiben. Damit ergibt sich für den Rekombinationsüberschuß eine Darstellung der Form

U = U0[n(t) p(t) - no pB], (4)

U mit der Maßeinheit m-3 s-1 kann als Reaktionsgeschwindigkeit gedeutet werden. UQ mit
der Einheit m3 s-1 wird daher als Geschwindigkeitskoeffizient bezeichnet.
Nach Ausschalten der äußeren Störung erhält man auf Grund der Bilanzgleichung (5.2. /14)

- “V" = U = - ’M’ol • Wot

Dieselbe Gleichung besteht für &p(t).
Im Produkt der zeitlich abhängigen Größen berücksichtigen wir A?i = Aj) und schreiben

nfOj’W = (n0 + An) (— + An . (6)
\ n 9 /
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Die Elektronenkonzentration n E im Eigenhalbleiter ist bei Zimmertemperatur nur sehr klein
(vgl. Beispiel 5.1.2). Für starke Störungen

Au>  — = j>0 (7)

folgt damit aus (1)

- = U,Jn0 + An(«)] An(«) . (8)

Diese Differentialgleichung für &n(t) läßt sich durch Trennung der Variablen lösen:

= + (9)0 n0 An(t)

Die Festlegung von C erfolgt durch die Anfangsbedingung

An(0) = An0 . (10)

Damit ergibt sich

An(£) = n0 ------------- ------------ (11a)
(Atz0 -|- n 0 ) eno u ot _

und nach Umformung
A HqU O t

An(t) = An0 --------------------------- . (11)
1 + (1 _ e -n o Uot)

n0

Zur Zeit t = 0, wenn die äußere Einwirkung ausgeschaltet wird, ist

ö=W0)  (0 ) -  ] ,  (12)

wofür wir wegen An0 n0 , AnQ = Aj)0 auch

G=Z7 0 An0 Ay0 bzw. Z70 = - - (13)
An0

2

schreiben können.
Mit den vorgegebenen Werten erhalten wir

1026

Uo = — m3 s- 1 = IO"16 m3 s- 1 .0 1042

Damit ergibt sich aus (11)

An(0 _ e-1 °3 *
An0 “ 1 + 100 (1 - e- 103*) ’

Für 1 ms setzen wir

t' = 103£,

t' gibt also die Zeit in ms an. Durch Reihenentwicklung folgt
An(f) 1 — r H-----

An0 1 + 100 1 — • • •
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Dieser Wert ist auf 1/e für

(e — 1) e= ----------- ms = 45 ms1 /e  e + 100
abgesunken.

5.2.5. Rekombination über Zwischenbandterme

In Halbleitern erfolgt die Rekombination vorwiegend über Störterme. Band-Band-Übergänge
bei der Rekombination können vernachlässigt werden (vgl. Bild 5.2.3).
Ein Halbleiter sei mit Akzeptoren dotiert, a) Untersuchen Sie allgemein den Aufbau und den
Abbau des stationären Gleichgewichtes beim Einschalten und beim Ausschalten des Strahlungs-
feldes. b) Wie erfolgt die Rekombination der Ladungsträger, wenn die Konzentration N k der

Leitungsband

0 Ö Ö Ö Q Z 0
0 O 'Q  0 0 O O

1 2
' ' Akzeptorterm

n ä _®. .0. o____  I ______________D
0 O Ö Ö 0 0 0

0 O 0 O Q Q O
Valenzband

Bild 5.2.3. Rekombination über einen Akzeptorterm
1 Injektion eines Ladungsträger paares
2 Rekombination eines Elektrons
3 Rekombination eines Defektelektrons

Rekombinationszentren gering ist? Stellen Sie unter dieser Voraussetzung die Bedingung für eine
vollständige Kopplung zwischen der Rekombination der Defektelektronen und der Rekombina-
tion der Elektronen auf. Dabei ist ein p-Halbleiter mit yAnx = 4,0 • 1017 m-3 , — = 9,0 . 1019 m~3

7a
(vgl. 5.1.3.) zugrunde zu legen. Welche Konzentration der Akzeptoren ist bei dem vorliegenden
Halbleiter zulässig, wenn eine vollständige Kopplung der Rekombinationen gefordert wird?

Lösung:

Es ist mit unterschiedlichen Relaxationszeiten r n bzw. r p und mit voneinander abweichenden
Rekombinationsüberschüssen Un bzw. Up zu rechnen. Für y n = / p = 0 erhalten wir nach den
Bilanzgleichungen (5.2./14)

= = ö _ Pn , = W = ö _ r (1)
st st n st st p
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Beim Übergang vom thermischen in den stationären Gleichgewichtszustand verändert sich die
Elektronenkonzentration im Akzeptorterm. Hierfür erhalten wir

AnA = nk — raA0 . (2)
Die Veränderung Aj) der Löcherkonzentration ergibt sich als Summe der Änderungen An im
Leitungsband und AnA im Akzeptorterm :

A p = An + AnÄ . (3)

Die Rekombinationsquote ist nach dem Massenwirkungsgesetz (5.1.3./8) proportional der
Elektronenkonzentration n im Leitungsband und der Löcherkonzentration p im Akzeptor-
term:

J?n = R M np k . (4)

Bei der Quote gn der thermischen Generation aus dem Akzeptorterm ist eine Proportionalität mit
nA anzusetzen:

9n = 9nonA- (5)
Da andererseits nach (5.1.3./11) im thermischen Gleichgewicht die Beziehung

«oPao = »Aon«! (6 )

besteht, ergibt sich für den Rekombinationsüberschuß der Elektronen

u n = Un0(np k — yk nynk ) . (7)

Ebenso folgt für den Rekombinationsüberschuß der Defektelektronen mittels (5.1.3./14)

U v = U vo (p n A — P1Pa • (8 )

Wie aus (7) und (8) hervorgeht, verschwinden Un und Up im thermischen Gleichgewicht.
Wir setzen n = n0 kn, p = p0 + &p, p = Paq — n A. = n A.o + &n A. ’ n (ü bzw. (8) ein und
erhalten

u n = u ao (pko \n — [n 0 + yk nj An k — Ara AraA) , (9)

= U no Ao &P + + ~ i’i] Aw a + &P ■ (10)

Die Abweichungen vom thermischen Gleichgewicht seien nur klein:

An << n0 + y bzw. AnA << p Ao ,
a , 1 (11)Ajp p0 H ----- pT bzw. AnA <gC nAo .

7a

Unter diesen Voraussetzungen können in (9) und (10) die Glieder zweiter Ordnung in den Ab-
weichungen vernachlässigt werden. Wir setzen (9) und (10) in die Bilanzgleichungen (1) ein,
berücksichtigen (11) und drücken A?za gemäß (3) aus. Es folgt

=0-  110 [(Pao + “o + 7a»»i) Ara(t) — (ra 0 + 7 A rax ) A/>(f)],ot

= Cf - Ppo [ -  (po + — P1) + (raAo + p0 + — Ay(«)
0« L \ 7a / \ Pa /
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Für den Aufbau des stationären Zustandes gelten die Anfangsbedingungen

An(0) = 0 ,  A (0) = 0 ;
za  A \ „ z a  . \ (13)I— An = G > ( — A 1 = G.  v 7

\dt / 1—0 \dt / t=o

Der Abbau ist durch die Anfangsbedingungen

An(0) = An0 , A (0) = A o ;

(±An) = -G, g-zU = -G  (14)
A = o \dt Jt = O

bestimmt.
Die Werte für An0 und A o im stationären Gleichgewichtszustand ergeben sich, wenn in (12) die
zeitlichen Ableitungen verschwinden. Man erhält ein System zweier inhomogener linearer alge-
braischer Gleichungen. Ihre Wurzeln stellen partikuläre Lösungen des inhomogenen Gleichungs-
systems (12) dar:

A?z0 — (An) stat — Po — (A.p) s tat — Gr p .
Für zn und r p folgt

no(»o + ?A»1) + po (po + Pi + »Ao

(15)

(16)

(17)

(18)

no po |_(™0 + ?A»1) »AO + + — Pi + »Ao) i’AO

no Pao + »0 + ~ 
n lj + PO (po +

nO pO |_(»O + 7a»1) »AO + (ä + — Pi + »Ao) T’aoj

Der Nenner läßt sich mittels (5.1.3./12) und (5.L3/11) bzw. (5.1.3./14) vereinfachen:

(»0 + 7a»i) »ao + (Po H ------- Pi + »Aol  Pao = Pa«ao + (Po + »o) Na-

Die Lösung des homogenen Gleichungssystems erfolgt durch Exponentialansatz

An = A n e at  , — A p ea t

und ergibt als allgemeine Lösung
__L  ___L

(An omogen = e T1  4“ • ■n2 e T2 ’
__L __L

(Ap)homogen ~ - pi © T1 + A p2  e T2

mit

(19)

(20)

(20 a)

(20b)

(20 c)

= no(n O + + Ao) + 7 po 0 + ~ Pl + ’

B = CTno poLPAo Ao + (Pq + nQ ) N ],

. n2 T n T 1 - n l  7 n T 2

P2 T P T 1 pl 7 P T 2
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Für den Aufbau des stationären Gleichgewichtssystems erhält man auf Grund der Anfangs-
bedingungen (13)

\n(t) = G r n + T1(Tn ~ Ta) e“ - T2<Tn ~ T1)

T2 Tj t 2
t

= G r p + T1(Tp ~ Ta) e~ - Tg(Tp ~ T1)

r 2 t 2

Der Abbau des stationären Gleichgewichtssystems ist durch die Anfangsbedingungen (14)
bestimmt und wird durch

An«) = G e “ - + e 41 ,
L T 2 T1 , t 2 t 1 , , (22)

Ay«) = G _ T1(t p ~ Tg) e~~  + Ta(Tp ~ T1) e~~
T2 Tx r 2 Tx J

wiedergegeben.
Bei schwacher Konzentration A a der Rekombinationszentren kann

’»ao<2’oH----- <»0 + yA
rai (23)

7a
angenommen werden. Nach (20a) und (20b) folgt

A 2 >B (23 a)
und damit

*2 > Tl = ----------------------- -----J J - - --\ • (23 b)
no(n o + XAn i )  + po Po H ------- TM

\ 7a /
Für t 2 ergibt sich aus (20) der gleiche Wert wie für r n und r p aus (16) und (17)

. Po + — Pr
0 + 7a i , n

- tfpo no
(24)

" Tp T2 N A (no+  o )
Damit folgt aus (21) für den Aufbau des stationären Gleichgewichtes

An( ) = p(t) = Gt q (1  — e r °), (25)
für den Abbau

An(t) = &p(t) = Gt 0 e T «. (26)

Bei schwacher Dichte der Störstellen ist die Rekombination der Elektronen mit der Rekombi-
nation der Defektelektronen vollständig gekoppelt; es gilt für den Aufbau wie für den Abbau

&n(t) = Ap(t). (27)
Die Bedingungen (23) für vollständige Kopplung bedeuten nach (5.1.3./11 a) und (5.1. 3. /14a)

Nk < \ -----Za/_ , N& < <w» + 7a ) 2 . (28)
Pi_ VaPi
Ta
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Wir setzen wegen der geringen Dichte der Störstellen genähert

n0 Pq n E — n iPi — • 1017 • 9 • 1019 m-3 = 6 • 1018 m-3

und erhalten mit den vorgegebenen Werten aus der ersten Bedingung (28)

(».».W + O.».!»..). __ _ ,
A 9,0 • 1019

Die gleiche obere Schranke ergibt sich aus der zweiten Bedingung (28). WA darf hiernach höchstens
die Größenordnung 1018 - • -IO19 m~3 erreichen, wenn die Rekombination der Ladungsträger ge-
koppelt sein soll.

5.2.6. Entkopplung der Rekombination von Elektronen und Defektelektronen

Untersuchen Sie den Auf- und Abbau des stationären Gleichgewichtes für sehr tiefe Tempera-
turen nahe dem absoluten Nullpunkt. Die Konzentration der Rekombinationszentren sei so
groß, daß die Voraussetzungen (5.2.5./23) nicht erfüllt sind.
Bestimmen Sie die Koeffizienten Un0 und Z7p0 der Rekombinationsüberschüsse U n und Up für
einen Halbleiter mit der Störstellendichte WA = 5 • 1018 m-3 , wenn die Relaxationszeiten
r n = 0,5 ms, r p = 2 ms betragen, während das Verhältnis der unbesetzten zu den besetzten Stör-
stellenplätzen — = 0,01 ist.

Pk

Lösung:
Bei Temperaturen nahe dem absoluten Nullpunkt sind auch die Zwischenbandterme nur wenig
besetzt, so daß mit

»Ao '  A ,  ?>A0 = A (1 )

gerechnet werden kann. Die Konzentration der Elektronen im Leitungsband ist klein gegen die
Konzentration der Defektelektronen :

«o<2’o -  (2)

Ebenso gilt
(3)

Nach (5.1.3./14) folgt aus (1)

(4)
7a T’ao

Die Konzentration der Defektelektronen kann gleich der Konzentration der Elektronen im
Akzeptorterm gesetzt werden:

»Ao = Po-  ( 5 )

Damit ergibt sich auf Grund der allgemeinen Lösungen in 5.2.5. nach (5.2.5./16) bis (5.2.5./18)
bei nicht zu großen Differenzen in den Größenordnungen der Geschwindigkeitskoeffizienten U nQ

und Up0

1
2?7po»A ’



3015.2. Rekombination, Diffusion und Drift der Ladungsträger

Aus (5.2.5./20) erhält man

Ti = r n , 
T 2 = T p • ( 8 )

Wir setzen diese Beziehungen in (5.2.5./21) und (5.2.5./22) ein. Es folgt für den Aufbau des
stationären Gleichgewichtes

An(£) = Gt x (1  — e r i  ) ,  (9)

&p(t) = Grjl - e“) .  (10)

Für den Abbau erhält man

An(£) = 6rT1 e T1 , (11)

__t_
Ap(t) = Gr.2 e T2 . (12)

Elektronen- und Defektelektronenkonzentration fallen mit getrennten Relaxationszeiten ab.
Ihre Rekombination ist völlig entkoppelt. Mit den vorgegebenen Werten ergibt sich aus (6)

------------------------ m 3 s —1 — 4 • 40“ 16 m 3 s-1 ,
5 • IO“ 4 • 5 • 10 18

P 0 =  ---------
2t p Na

Pk

1
2 • 2 • 10~ 3 • IO" 2 • 5 • 10 18 m 3 s -1 = 5 • 10 —15 m 3 s -1 .

Aufgaben

A 5.2.1. Die Elektronenstreuung an Gitterfehlstellen zeigt in bezug auf die Beweglichkeit
der Ladungsträger unterschiedliche Auswirkungen, je nachdem, ob die Streuung
an neutralen oder geladenen Fehlstellen erfolgt. Überlegen Sie, welche Art von
Fehlstellen nahe dem absoluten Nullpunkt für die elektrische Leitfähigkeit maß-
geblich ist.

A 5.2.2. Bestimmen Sie für den Siliziumkristall die Vakuumwellenlänge des Lichtes, das
einen Elektronenübergang vom Donatorterm in das Leitungsband hervorruft
(ATFd = 0,045 eV).

A 5.2.3. Untersucht wird die Abnahme der Elektronenkonzentration nach Aufhebung einer
äußeren Störung. Die Kurzzeitmessungen ergeben eine Abnahme der Elektronen-
konzentration auf 2,5% in der Zeit zwischen 0,1 ms und 0,5 ms nach Ausschalten
der Störung. Bestimmen Sie die Relaxationszeit unter der Voraussetzung einer
schwachen Störung.

A 5.2.4. Wie groß ist die äußere Erzeuger quote in einem Halbleiter mit der Absorptions-
konstanten ß = 4,5 mm -1 für die Frequenz v = 2,5 • 10 14 Hz bei einer Bestrah-
lungsstärke von 0,02 W cm -2 (y = 1)?

A 5.2.5. Berechnen Sie die DEBYE-Länge der Elektronen in n-leitendem Silizium bei Zim-
mertemperatur 300 K, wenn die Elektronenkonzentration n = 10 21 m -3 beträgt.
(Werte nach Tab. 5.1.4).
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In einem Halbleiter beträgt die äußere Erzeugerquote G = 1024 m-3 s-1 , die Relaxa-
tionszeit für die Trägerpaare r = 5 • 10“6 s. Wie groß ist die Überschußkonzen-
tration im stationären Gleichgewicht?
Durch Lichteinwirkung werden in einem Halbleiter G = 5 • 1025 m-3 s-1 Träger-
paare injiziert. Die Halbwertzeit für das Abklingen beträgt 250 pts. Rekombina-
tionszentren seien nicht vorhanden. Berechnen Sie die Abweichung vom thermi-
schen Gleichgewicht unter der Einwirkung der Strahlung.
Vergleichen Sie auf Grund der Relaxationszeiten die Diffusionslänge und die Debye-
Länge miteinander.
Wie groß ist die dielektrische Relaxationszeit der Defektelektronen in p-leitendem
Silizium für p = 1020 m-3 ?
Durch Lichteinwirkung werden in einem p-Halbleiter 6,5 • 1022 m-3 s-1 Trägerpaare
erzeugt. Die Relaxationszeit ist für Elektronen und Defektelektronen gleich
t = 0,2 ms, das Verhältnis der Beweglichkeiten b p/b n = 0,15. Wie groß ist die
Änderung der spezifischen elektrischen Leitfähigkeit, wenn im thermischen Gleich-
gewicht die Konzentration der Defektelektronen p0 = 2,5 • 1020 m-3 beträgt?
Berechnen Sie nach der EiNSTEiN-Beziehung den Diffusionskoeffizienten für die
Elektronen und für die Defektelektronen in Germanium bei 300 K (Werte nach
Tab. 5.1.4).
Bestimmen Sie die dielektrische Relaxationszeit der Elektronen bei Zimmer-
temperatur in einem n-Halbleiter auf Siliziumbasis mit der Elektronenkonzen-
tration n = 1021 m-3 (vgl. Tab. 5.1.4 und Tab. 5.1.1).
Wie groß ist bei 300 K die Diffusionslänge der Elektronen in einem n-Halbleiter
auf Siliziumbasis, wenn die Relaxationszeit t = 5 • 10-6 s beträgt?
An der Oberfläche eines Halbleiters nach Bild 5.2.1 werden durch Strahlung
Ladungsträgerpaare injiziert. Untersucht wird die Verteilung der Defektelektronen.
Ihre Diffusionslänge sei L p = 2,5 mm, ihr Diffusionskoeffizient Dp = 40 cm2 s-1 .
An der Halbleiteroberfläche sei im stationären Gleichgewicht die Dichte des
elektrischen Stromes der Defektelektronen ; p = 1,6 mA cm~2 . Bestimmen Sie die
Dichte der injizierten Defektelektronen im stationären Gleichgewicht an der Ober-
fläche des Halbleiters, wemi angenommen wird, daß kein äußeres Feld anliegt.
Wie groß ist in der vorangegangenen Aufgabe dielektrische Feldstärke an der
Oberfläche des Kristalls, wenn die spezifische elektrische Leitfähigkeit der Probe
cr0 = 5,0 Q-1 m-1 , das Verhältnis der Beweglichkeiten b n /bp = 3,5 beträgt. Die
Stromdichte sei j = jn + y p = 3,2 mA cm-2 . Der Driftstrom der Defektelektronen
kann vernachlässigt werden, ebenso die Konzentration der Defektelektronen. Es
seien keine Rekombinationszentren vorhanden.

In einem p-Halbleiter wird = 0,2 beobachtet. Ferner sei yA n 1 = 8,0 • 10 19 m-3 ,
1 po

— Pi = 2,0 • 1023 m-3 , die Akzeptordichte V A = 1017 m-3 . Für die Relaxations-
7a
zeit wird t = 0,5 ms gemessen. Berechnen Sie daraus die Geschwindigkeitskoeffi-
zienten UnQ und Up0 .
Geben Sie zur vorangegangenen Aufgabe die Störstellendichte an, bis zu der mit
einer vollständigen Kopplung der Rekombinationsprozesse gerechnet werden
kann.
Untersuchen Sie die Rekombination der Ladungsträger in einem p-Halbleiter bei
sehr hohen Temperaturen und sehr großen Konzentrationen der Rekombinations-
zentren unter der Voraussetzung nk >p .
Wie sind die Formeln nach 5.2.5. abzuändern, wenn die Rekombination über
Donatoren erfolgt?

A 5.2.6.

A 5.2.7.

A 5.2.8.

A 5.2.9.

A 5.2.10.

A 5.2.11.

A 5.2.12.

A 5.2.13.

A 5.2.14.

A 5.2.15.

A 5.2.16.

A 5.2.17.

A 5.2.18.

A 5.2.19.
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Kontakt- und Oberflächeneffekte5.3.

E Einführung

Diffusionspotential
Beim Kontakt zwischen zwei verschiedenen Festkörpern I und II fließen Elektronen
wechselseitig von einem Medium in das andere. Sie haben dabei unterschiedliche
Anziehungskräfte zu überwinden. Diese werden durch die Austrittspotentiale TFAI
bzw. IFAn charakterisiert. Infolge der voneinander verschiedenen Austrittspotentiale
kommt es auf der einen Seite zur Elektronenanreicherung, auf der anderen zur
Elektronen Verarmung. Es bildet sich eine elektrische Dipolschicht nach Bild 5.3.1

+
+
++

Bild 5.3.1. Dipolschicht an der Kontaktstelle
zweier Festkörper

aus. Sie erzeugt ein elektrisches Feld E, das die weitere Anreicherung elektrischer
Ladung unterbindet. Die Dipolschicht wird als Schotte Ysche Sperrschicht be-
zeichnet.
Das von der Dipolschicht erzeugte elektrische Potential ist an der Kontaktstelle
gleich der Differenz zwischen den beiden Austrittsarbeiten, dividiert durch die
Elementarladung :

Uy heißt Volta-Spannung. Sie ist der direkten Messung zugänglich.
Auch im Gleichgewicht, nach Aufbau der Schotte Yschen Sperrschicht, fließt ein
schwacher Elektronenstrom von I nach II. Er wird durch einen gleich starken Strom
von II nach I ausgeglichen.
Das elektrische Feld E der Dipolschicht kann durch ein elektrostatisches Potential
dargestellt werden :

E = — grad (1)
0 D heißt Diffusionspotential. Seine Größe wird nicht nur durch die unterschied-
lichen Austrittsarbeiten bestimmt; auch Fremdsubstanzen und die Beschaffenheit
der Oberfläche sind für seine funktionelle Abhängigkeit 0 D = 0 D (r) von Bedeu-
tung.
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Die potentielle Energie — der Elektronen im Baumladungsfeld addiert sich
zur Energie W(r) der Elektronen im Kristallgitter. Wegen der Ortsabhängigkeit des
Dsffusionspotentials ist auch die Energie W (r) im Raumladungsfeld ortsabhängig:

W(r) = W — e@D (r) . (2)

Wie aus (2) hervorgeht, werden im Raumladungsfeld die Energiebänder als Be-
reiche zulässiger Energie um — e0 D (r) verschoben. Das gleiche gilt für die Stör-
terme :

W L -> W L - c0 D , W v W v - e0 D ,
W D -> W D - e$ D , WA -> WA - e0 D .

Die Konzentration der Elektronen und Defektelektronen im Raumladungsfeld ist
ortsabhängig. Nach (5.1. /16) bzw. (5.1. /20) folgt

PFl— 60d—  C e0p
n(r) = n e kT =ne  kT , (3 a)

£ — IVv+c0d e<Pü
p(r) = pe  kT = p e kT . (3b)

Darin bedeuten n bzw. p die Konzentrationen im thermischen Gleichgewicht nach
der BoLTZMANN-Statistik ohne Diffusionspotential. Der Parameter f ist wie bei
nichtvorhandenem Diffusionspotential aus den Gleichgewichtsbedingungen zu er-
mitteln. Er ist für alle Teilchen gleich.
Wie aus (3 a) und (3b) hervorgeht, ist auch bei vorhandenen Raumladungen Glei-
chung (5.1./31) erfüllt:

n(r) p(r) = np = nE 
2 .

Die Verarmung an der einen Trägersorte ist mit der gleichzeitigen Anreicherung der
anderen verbunden.
Für die Konzentration negativ geladener Akzeptoren ergibt sich nach (5.1. /21b)

Na
“ jyA-e0D-£  + A:TlnyA ’ c )

e kT + 1

für die Dichte geladener Donatoren

Pü (r ) — iy D - e0  D -C+/rTlnyD ’ d)

e” kT  + 1

Das Diffusionspotential 0 D (r) wird aus der Poissonschen Gleichung bestimmt.
Nach den MAxwELLschen Gleichungen besteht die Beziehung

div D = e div E = q > (4a)
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wobei o die Raumladungsdichte kennzeichnet. Hieraus folgt nach (2) die Poissoxsche
Gleichung

T -i Qdiv grad 0 = — — A0 D = - f

Die elektrische Ladungsdichte im Raumladungsgebiet ergibt sich aus

Q = e[p(r) + pD (r) — n(r) — n A(r)]. (5)
Bei verschwindendem Diffusionspotential 0 D geht auch die Raumladungsdichte auf
Grund der Neutralitätsbedingung (5.1./23) gegen Null. Dagegen ist (5.1./23) im
Raumladungsfeld nicht erfüllt.

Kontakt zweier Festkörper
Beim Kontakt zweier Festkörper ohne Raumladungen gleichen sich nach einem
Grundgesetz der Statistischen Physik ihre Chemischen Potentiale CI und /zCII aus

Bild 5.3.2. Elektrochemisches Potential und GALVANi-Spannung
beim Kontakt zweier Metalle

(vgl. [3] 3.3.). Raumladungen erzeugen ein zusätzliches elektrostatisches Potential
— e0 D . Wird es zum Chemischen Potential addiert, so ergibt sich das elektro-
chemische Potential

c e = P'C — e0 D . (6)
Der Parameter f in (3a) bis (3d) ist mit dem elektrochemischen Potential identisch.
Bezeichnet £L das nach (5.1./32) auf die untere Kante des Leitungsbandes bezogene
PERMi-Potential, so gilt unter Berücksichtigung der Bandverschiebung

C = Pc e = W L + = Wl — e0 D + f L . (7)
Zwei Festkörper, an deren Begrenzung sich ein Raumladungsfeld bildet, besitzen

20 Schilling, Festkörperphysik
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im Gleichgewicht für sämtliche Teilchen dasselbe elektrochemische Potential

+ g = wL11 + Chbzw. (8)Z ci — Z cn

Die Differenz der FERMi-Potentiale Ci und Cii beim Kontakt zweier Festkörper
stimmt daher , abgesehen vom Vorzeichen, mit dem Abstand der Leitungsbandkanten
W L überein:

CiL — Cn = JFlii — TFli = eu G (Sa)
(vgl. Bild 5.3.2.). uG heißt Galvani-Spannung. Sie ist der direkten Messung nicht
zugänglich. Der Nachweis der GALVANi-Spannung erfolgt mit Hilfe unterschiedlicher
Temperaturen nach 4.3.4.
Das Metall als idealer Leiter besitzt in seinem Leitungsband einen praktisch un-
erschöpflichen Vorrat an Elektronen. Im Innern des idealen . Leiters sind makro-
skopisch keine Ladungs- und Potentialunterschiede möglich. Baumladungen treten
daher beim Metall nur an der Oberfläche auf. CL ist für das gesamte Metall vom
Inneren bis zur Oberfläche konstant. Die Baumladungen bewirken, daß der Über-
gang zwischen zwei Metallen durch einen Sprung des elektrostatischen Potentials
von der Größe euv = PT AI — IPAII gekennzeichnet ist (vgl. Bild 5.3.3).

Bild 5.3.3. Austrittsarbeiten
und VoLTA-Spannung beim Kontakt
zweier Metalle

Dagegen liegt bei Halbleitern nur ein begrenzter Vorrat an Ladungsträgern vor.
Die Baumladungen an der Oberfläche können nicht vollständig ausgeglichen werden
und pflanzen sich mit dem zugehörigen Potential in das Innere fort. Die Tiefe dieser
Ausdehnung der Störung hängt von der DEBYE-Länge des Materials ab (vgl. 5.2.2.).
Metall- Halbleiter- und Halbleiter-Halbleiter-Kontakte sind daher durch eine Band-
schicht in den Halbleitern gekennzeichnet, in denen ein Diffusionspotential auf-
tritt.
Das Diffusionspotential 0 D verändert nach (3) die Konzentration der Ladungsträger,
verbiegt die Bänder und verändert £L = CL (r).

Beispiel 5.3.1. Kontakt n-Halbleiter-Metall

Befinden sich in einer Randschicht an der Kontaktstelle zwischen einem Metall und einem Halb-
leiter Donatoren, von denen stets einige positiv geladen sind, so ist die Randschicht im Halb-
leiter nach (1) durch ein negatives Potential 0 D < 0 gekennzeichnet (vgl. Bild 5.3.4). Positive
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Raumladungen und Donatoren an einer Kontaktstelle führen daher nach (2) zu einer Verbiegung
der Energiebänder nach oben und nach (3) zur Elektronenverarmung bei gleichzeitiger Anreiche-
rung mit Defektelektronen.

Bild 5.3.4. Diffusionspotential, Verbiegung der Energieniveaus und
Ladungsverteilung beim Kontakt Metall - n-Halbleiter

Beispiel 5.3.2. Kontakt p-Halbleiter -Metall

Negative Raumladungen und Akzeptoren in der Randschicht des Halbleiters bewirken beim
Kontakt p-Halbleiter - Metall eine Verbiegung der Energiebänder nach unten, die Anreicherung
mit Elektronen und die Verarmung an Defektelektronen (vgl. Bild 5.3.5).

Bild 5.3.5. Energiebänder und Ladungen beim Kontakt Metall-p - Halbleiter

20*
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Beispiel 5.3.3. Größe der Bandverschiebung, des elektrischen Feldes und der Elektronen-
anreicherung bzw. -Verarmung

Für einen n-Halbleiter mit der Elektronenkonzentration n = 1019 m~3 betrage bei Zimmer-
temperatur die DEBYE-Länge = 1,3 [xm. Das Diffusionspotential an den Kontaktstellen
habe die Größe = —0,33 V (vgl. 5.3.2.). Rechnet man zur Abschätzung mit einem linearen
Anstieg des Potentials, so ergibt sich die elektrische Feldstärke

E = - -  ------ V m“1 = -2,5 • 105 V m“ 1 .dz 1,3 • IO-8

Das negative Vorzeichen kennzeichnet die Orientierung entgegen der z-Achse, aus dem n-Halb-
leiter heraus.
Als Bandverschiebung nach oben folgt für die Kontaktstelle

AW = e0 D (O) = 0,33 eV.

Sie ist mit einer Verringerung der Elektronenkonzentration um den Faktor
e0p 1,6O-1Q-19 -O,33

e kT _ e l,38-10- 23 -300 = 2 9 . 10-6
d. h. auf

n(0) = 1019 • 2,9 • IO"6 m- 3 = 2,9 • 1013 m~3

verbunden.

Oberflächeneffekte an Halbleitern
Elektrische Ladungen an der Oberfläche eines Halbleiters gegen Vakuum oder ein.
anderes isolierendes Medium führen ebenso wie beim Kontakt zwischen leitenden
Medien zur Verbiegung der Energiebänder.
Ist das angrenzende Medium ladungsfrei und der Halbleiter elektrisch neutral, so
verlaufen die elektrischen Feldlinien des von den Raumladungen an der Oberfläche

W

Bild 5.3.6. Potential und Feld in einem
Eigenhalbleiter mit Donatoren an der
Oberfläche gegen Vakuum

erzeugten Feldes im Halbleiter von den Orten positiver zu den Orten negativer
Ladung (vgl. Bild 5.3.6). Bei positiven Ladungen bzw. einem Überschuß an Donatoren
auf der Kristalloberfläche hat das elektrische Feld die Richtung der z- Achse, ins
Kristallinnere weisend. Da E dem Gradienten des Diffusionspotentials entgegen-
gerichtet ist, fällt 0 D daher mit wachsenden Werten z ab. Für z -> oo geht 0 D gegen
Null. An der Kristalloberfläche gegen einen Isolator ist 0 D daher im Falle positiver
Oberflächenladungen, d. h.  für Donatorzustände, positiv und das Energieband damit
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nach unten verschoben. Dagegen führen Akzeptoren an der Oberfläche gegen Va-
kuum zur Bandverschiebung nach oben.
Ein elektrisches Feld, das im isolierenden Medium senkrecht auf die Oberfläche des
Halbleiters gerichtet ist, hat bezüglich der Energiebänder dieselbe Wirkung wie
elektrische Ladungen auf der Oberfläche.

Beispiel 5.3.4. Verbiegung der Energiebänder durch ein auf geprägtes Feld

An reinem Silizium liege senkrecht zur Oberfläche ein konstantes elektrisches Feld der Stärke
= 250 V m-1 (vgl. Bild 5.3.7). Nach der Poissox-Gleichung (4) mit der Ladungsdichte nach (5)

folgt
d _L ( e 

kT — (9)

0

HalbleiterVakuum

Bild 5.3.7. Verbiegung der
Energiebänder an der Oberfläche
gegen Vakuum durch ein äußeres
elektrisches Feld

Unter der Voraussetzung

I dI
kann hierfür

(10)

d 20 p 2e2nE

dz2 ekT D (U)

geschrieben werden. Durch Einsetzen der DEBYE-Länge nach (5.2.2./7a) ergibt sich

d20p _ 0p
dz 2 ~~ZD 

2

mit der Lösung
z

D = C1 e Ll >,

da 0p im Kristall nicht über alle Grenzen wachsen kann.

(12)

(13)
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Die beiden Normalkomponenten der elektrischen Verschiebung sind gleich :

eo o = • (H)
Darin bedeutet E das elektrische Feld im Halbleiter. Es hat an der Oberfläche des Kristalls die
Größe

Aufgelöst nach C± folgt mit den vorgegebenen Daten (vgl. 5.2.2.)

c £ 250 =
1 s D 11,8

Als Lösung der PoissoNschen Gleichung ergibt sich das Potential

0 D = » i D e - . (16)
E

Es nimmt seinen größten Wert an der Kristalloberfläche an:

0 D (O) = (\ = 0,85 mV.

Die Bandverbiegung an der Oberfläche beträgt

(17 )
E

mit den vorgegebenen Werten

AJ7L = -0,85 • IO“3 eV.

Das negative Vorzeichen kennzeichnet die Bandverbiegung nach unten.

* Probleme

5.3.1. Oberflächendonatoren in einem Eigenhalbleiter

Die Oberfläche eigenleitenden Siliziums sei mit Donatoren dotiert. Im thermischen Gleichgewicht
betrage die Anzahl der positiv geladenen Donatoren bei Zimmertemperatur N = 4 • 1016 m-2 .
Der Kristall grenze an Vakuum, das feldfrei sei.
Untersuchen Sie die Verbiegung der Energiebänder infolge der Oberflächenladungen und be-
stimmen Sie die Änderung der Austrittsarbeit (vgl. Bild 5.3.8).

Lösung:
Die positiven Ladungen in der Randschicht des Halbleiters sind Ausgangspunkt elektrischer
Feldlinien (vgl. [4] 1.4./15). Sie enden in den negativen Ladungen des Kristalls, die durch die
positive Aufladung der Donatoren gebildet werden.
An der Übergangsstelle zwischen Halbleiter und Vakuum tritt in den Normalkomponenten der
elektrischen Verschiebungsdichte D ein Sprung von der Größe der Oberflächenladungsdichte
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auf. Daraus folgt für die elektrische Feldstärke an der Oberfläche

£ = (®)2=  o = (-) =— • (1)
\e/z=0 £

Damit ist der Randwert für z = 0 bestimmt.
Wir setzen die vorgegebenen Größen und für e den Wert nach Tab. 5.1.1 ein:

4 • 1016 • 1.60 • IO“19

E = (E) z=q  = — v m- 1 = 6,13 • 107 V rnn1 .
11,8 • 8,85 • IO"12

Dieser Wert ist so groß, daß eine Erfüllung der Voraussetzung (5.3./10) nicht erwartet werden
kann. Als PoissONSche Gleichung wird daher nicht die vereinfachte Form nach (5.3./11) ange-
setzt, sondern die kompliziertere Gleichung (5.3./9) verwendet.

Vakuum Halbleiter

Bild 5.3.8. Verbiegung der Energie-
bänder durch Oberflächendonatoren
an der Oberfläche gegen Vakuum

Zwischen ihrer Lösung <2>D = 0 D (z) un( dem elektrischen Feld des Kristalls besteht nach (5.3./1)
die Beziehung

2? (z )= -  . (2)
dz

Wir nähern das Potential, indem wir für eine Randschicht

0 < z < z0 = (3a)
Jli

des Kristalls den linearen Ansatz E

0 D (*) = 0 o - (3)
machen, in der Randschicht also mit einem konstanten elektrischen Feld E rechnen. Für z z0
sei das Potential konstant, E(z) also gleich Null.
Die Gleichgewichtskonzentrationen sind auf Grund der Bandverschiebung

e0p(:) e<i>D(z)

n(z) = nE e kT , p(z) = n E e kT  . (4)

Nach der Neutralitätsbedingung muß
oo

N = J [n(z) — p(z)] dz (5)
o
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sein. Wir setzen (4) zusammen mit (3) in (5) ein und berücksichtigen, daß die Feldlinien bei z0
enden. Damit folgt

<P 0 /E  4>oIE

N = 2n B f sinh e D z )  dz = 2nE f sinh e ° ~ Ez dz. (6)
j kT J kT

o o
Die Auswertung des Integrals kami elementar erfolgen und ergibt

eE \ kT / 7

In dieser Gleichung ist nur <2>0 unbestimmt, das somit berechnet werden kann. Unter der Voraus-
setzung

können wir in (7) die Exponentialfunktion einführen und den Summanden —1 vernachlässigen
Durch Auflösen nach 0 O erhalten wir mittels (1)

Mit den vorgegebenen Werten und nach Beispiel 5.1.2 folgt

1,38 • IO"23 • 300 , (1,60 ♦ 10- 19 ) 2 (4 • 1016 ) 2
0 1,60 • IO"19 11,8 • 8,85 • IO"12 • 1,38 • IO"23 • 300 • 5,2 • 1015

Die Energieflächen werden an der Kristalloberfläche um

AJF = -e<P0 = -0,611 eV,

d. h. um knapp zwei Drittel Elektronenvolt, nach unten verschoben. Um diese Größe verringert
sich die Elektronenaustrittsarbeit.
Für die Breite der Randschicht, innerhalb der eine lineare Veränderung erfolgt, ergibt sich nach
(3a)

. 0,611 . . , A 8Az = z0 = — = ---------- m — 1,0 • IO“8 m.0 E 6,13 • 10’

5.3.2. Bandverbiegung an der Oberfläche eines n-Halbleiters

Die Oberfläche eines an Vakuum grenzenden n-Halbleiters enthalte Donatoren in der Dichte
N = 1016 m-2 . Sie seien alle ionisiert. Bestimmen Sie die Bandverbiegung an der Oberfläche des
Kristalls bei Zimmertemperatur. Die Konzentration der Elektronen im Leitungsband betrage
n = 10 19 m“3 . Der Kristall habe die relative Dielektrizitätszahl er = 8. Die Eigenleitung sei zu
vernachlässigen.

Lösung:
Nach der PoissoNschen Gleichung (5.3./4) schreiben wir



3135.3. Kontakt- und Oberflächeneffekte

mit der Ladungsdichte nach (5.3./5)

e(«) = e[p D (z) + p(z) — »(«)].

Die Konzentration der Defektelektronen im Donatorterm setzen wir genähert gleich der Kon-
zentration TVp der Donatoren. Nach (5.3./3) sind die Konzentrationen der Elektronen und Defekt-
elektronen durch

(2)

e<pD

n(z) = n e kT , p(z) = p e kT

gegeben mit

(3)

(4)n — P = p D &

nach der Neutralitätsbedingung. Wir berücksichtigen

n_ _ ng
P

nach (5.1./31) und setzen (4) in (3), (3) in (2) ein. Damit folgt

(5)

(6)e(z) = e»E —
,n E n

Wir substituieren

V{Z ) = 17 kT

und setzen (6) in die PoissoNsche Gleichung (1) ein. Es folgt

dz2 ekT \n  n J

Für (8) kann man als erstes Integral

(
d®\ 2 2e2nE f n . . n B . J ~
V = ----- ~ - e*) - — (e- ’’ - f) + cdz / EkT [n E n J

(8)

(9)

schreiben, wie sich durch Differentiation nachweisen läßt. Das Potential und die elektrische

Feldstärke verschwinden für z -> oo. Damit verschwinden auch o? und — . Die Konstante C
wird gleich

G = 2e2nE ln_
ekT \n  E

Somit folgt nach (9)

(10)

In ,  . . , n E ._ i )  + _e (e-<p
EkT [n E n (11)

Aus (11) wird die Wurzel gezogen, und die Substitution (7) wird wieder rückgängig gemacht. Es
ergibt sich

e0D
~kT _ | (12)

»e/dz ~
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Die Vorzeichenfestsetzung gewährleistet, daß 0 D mit zunehmender Eindringtiefe z abnimmt.
Als Randbedingung erhalten wir

(2>k=o = = -e  (13)
\ dz / z = 0

Einsetzen von (12) in (13) liefert

— 1) + — (e
n

.Ve = (14)

Darin ist 0 O = 0 D (O) das Potential an der Kristalloberfläche, nach dem (14) aufgelöst werden
kann. Mit 0 O ist auch die Bandverschiebung an der Kristalloberfläche bekannt.
Da im vorgegebenen Fall Eigenleitung gegen Fremdleitung vernachlässigt werden kann, rechnen
wir mit n n E . Ferner können wir wegen der hohen Störstellenkonzentration an der Kristall-
oberfläche

e o
kT (15)

annehmen. Unter diesen Voraussetzungen schreiben wir an Stelle von (14)
e0 o

Ne = \2enkT e2kT
(16)

und erhalten durch Auflösen nach e0 o

Np
e<Z>0 = 2kT In ■ .

}'2enkT
(17)

Mit den vorgegebenen Werten folgt als Bandverschiebung an der Oberfläche

2 • 1,38 • IO“23 • 300 , 1016 • 1,60 • IO"19
------------------------ In -----------------------------------------------------

1,60 • 10 -19 ]/2 • 8 • 8,85 • 10~12 • 1019 • 1,38 • 10-23 • 300
= —0,336 eV.

Aiy = -e0. eV

Mit diesem Wert ist (15) erfüllt.

5.3.3. Oberflächenleitfähigkeit

Bei großer Dichte der Oberflächenladungen liefern diese einen meßbaren Beitrag zur elektrischen
Leitfähigkeit des Kristalls. Man definiert als spezifische Oberflächenleitfähigkeit

y = e(&n A» + (1)
wobei

oo oo

An = f [n(z) — n] dz, Ap = J [jp(z) — p~\ dz (2)
o o

die Überschußkonzentrationen in der Randschicht kennzeichnen. An und Ap haben die Maß-
einheit m-2 .
Berechnen Sie die Oberflächenleitfähigkeit in einem p-Halbleiter mit der Störstellendichte
WA = 1021 m-3 , wenn durch Adsorption von Akzeptoren die Energiebänder an der Oberfläche
um 0,35 eV nach oben verschoben sind. Ferner sei &p = 0,80 m2 V-1 s-1 , er = 8,0, T = 300 K.
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Die Beiträge der Elektronen im Leitungsband seien zu vernachlässigen. Sämtliche Akzeptoren
können als ionisiert angenommen werden.

Lösung:
Die Akzeptoren sind negativ geladen. Daher ist die Ladungsdichte in der Oberflächenschicht
— Ne. Das Diffusionspotential wird negativ: 0 D < 0. Die Bänder verschieben sich nach oben:

ATF = -e0 D >0 .  (3)

Es liegt nur bei den Defektelektronen eine Überschußkonzentration vor. Für diese können wir
nach (5.3./3) schreiben:

oo oo

Ap = f [p(z) —p]<i z=p f ( e  kT — 1) dz. (4)
o o

Nach der Neutralitätsbedingung erhalten wir genähert

N k =p.  (5)

Wir setzen (4) in (1) ein und beachten die Randbedingungen

0 D (O) = 0 O , 0 D (z) -> 0 für z -> oo . (6)

Damit folgt für die Oberflächenleitfähigkeit
oo 0 O

0 0

Die PoissoNsche Gleichung (5.3./4) nimmt die Form

d 2 _ eNA ( c - ° )
dz2 e ' 1

an. Als erstes Integral dieser Differentialgleichung folgt

Wie man sieht, kann die Integration über 0 D erstreckt werden. Als unbestimmtes Integral ergibt
sich

/ e0D \/d0 £ V2 / e - TF _ 0D + o \ (W)

\ dz / e \ e /

Die Forderungen

£ 0 für z -> oo (11)
dz

führen auf
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und damit auf

dffip __

dz ~
_ 1 j

kT / ’
(13)

Wir setzen (13) in (7) ein und erhalten

o

0o

Mit den vorgegebenen Werten ergibt sich an der Kristalloberfläche

— 1 /  d<PD

e$D _
kT _ ■£

kT

7 = —eb p N A (14)

e0 o 1,60 • 10- 19 • 0,35
kT 1,38 • IO" 23 • 300

Die maßgeblichen Beiträge für das Integral (14) stammen aus dem Bereich der Kristalloberfläche,
wo wir allgemein mit

e0p
kT (15)

rechnen können. Damit folgt
o
* e0p
e ~ kT _ <

---------7— d0 D80D

e “ T r

y = —ebpN A (16)

und durch Auswerten des Integrals

_ e<p °
y - Lpßb e 2kT (17)

mit der Debye -Länge

-i / ekT
D = k Ä

(18)

Mit den vorgegebenen Größen folgt nach (18)

8,0 • 8,85 • 10~ 12 • 1,38 • 10~ 23 • 300
m = 0,107 ptm

(1,60 • 10~ 19 ) 2 • 10 21=

und damit nach (17) für die gesuchte Oberflächenleitfähigkeit

/ 1 ßO . 10-19 . 0 35 \
= 1,41 • 1,07 • IO-7 • 1,60 • 10- 19 • 0,80 • 10 21 • exp ’ ------- - 1  Q“ 1 = 0,017 Q" 1 .r \2 • 1,38 • 10- 23 • 300/
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5.3.4. Metall-Halbleiter-Kontakt nach der Diffusionstheorie

Ein Metall wird mit einem n-Halbleiter zum Kontakt gebracht und die Kontaktstelle an eine
elektrische Spannung gelegt (vgl. Bild 5.3.9 a). In der Randschicht des n-Halbleiters falle das
elektrische Potential von der Kontaktstelle in Richtung des Halbleiters umA$ = uab .  Unter-
suchen Sie den elektrischen Widerstand des Kontaktes aus Metall und n-Halbleiter. Dabei ist
vorauszusetzen, daß der Potentialabfall im Metall und im Halbleiter gegen den Potentialabfall
in der Raumladungsschicht vernachlässigt werden kann. Die Dicke d der Randschicht an der
Kontaktstelle sei groß gegen die mittlere freie Weglänge A der Elektronen nach 3.3.1.:

d>A. (1)

Bestimmen Sie auf Grund der entwickelten Theorie die maximale Stromdichte (den Sperrstrom),
wenn die Spannung vom n-Halbleiter zum Metall gerichtet wird.

Daten nach Beispiel 5.3.3 : n = 1019 m-3 , ?z(0) = 2,9 • 1013 m-3 ,
Ld = 1,3 p.m, E = —2,5 • 105 Vnr 1 , bn = 0,29 m2 W 1 s’ 1 .

Bild 5.3.9. a) Kontakt Metall— n-Halbleiter mit dem Spannungsabfall u in der
Raumladungsschicht

Bild 5.3.9. b) Strom-Spannungs-Kennlinie
beim Kontakt Metall— n-Halbleiter. Der
Spannungsabfall im Metall und im n-Halb-
leiter außerhalb der Raumladungsschicht sei
zu vernachlässigen.

Lösung:
Die Elektronen können wegen (1) die Randschicht nicht frei durchfliegen. Infolge der inhomo-
genen Elektronendichte n = n(r) bildet sich ein Diffusionsstrom aus, der sich auf den durch das
angelegte elektrische FeldjE verursachten Driftstrom überlagert. Nach (5.2./12) erhalten wir für
die Dichte des von den Elektronen verursachten elektrischen Stromes

h = JnDift + JnDritt = grad n + nbnE) . (2)
Der Strom fließt senkrecht zur Kontaktfläche. Bei ebenen Kontaktflächen können wir n = n(z)
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ansetzen. Das elektrische Feld E läßt sich als Gradient eines Potentials

<P(z) = 0 D (z) + w(z) (3)
darstellen mit

w(0) = u .  (3 a)

Im Unendlichen sei 0 gleich Null. Es gilt also

E = . (4)
dz

Wird die EiNSTEiN-Beziehung nach (5.2./8a) berücksichtigt, so folgt aus (2) als Differential-
gleichung der Elektronenkonzentration

d2_±  .B _X =0  , (5)
dz kT dz bn kT v 7

Die Koeffizienten dieser linearen Differentialgleichung erster Ordnung sind Funktion der Orts-
koordinate z.
Als allgemeine Lösung folgt, wie man sich durch Differenzieren überzeugt,

oo
e0(2) . /* e0(z)

n(z) = e 
kT  C + I e””* 7 " dz

bJcT J
0

(6)

Für z = 0, die Kontaktstelle, ergibt sich aus (6)

60(0)

n(0)  = Ce~ ~ . (7)

Damit ist die Integrationskonstante C festgelegt.
Im Halbleiterinnern, für z -> oo, muß n(z) in den Gleichgewichtswert n übergehen. Das be-
deutet nach (6) und (7)

oo
60(0) t /* 60(2)

n = n(0)e~ r + I dz
M? 1 J

0

bzw. wenn nach jn aufgelöst wird,

60(0)

n - n(0) e kT

Jn — o n Kl (9)

/ _ 60(2)

e kT  dz
0

Durch das angelegte Feld werde die Elektronenverteilung nach (5.3./3) nicht gestört. Es gilt also
unverändert

60d(O)
kTn----- = e

n(0)
(10)
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Ersetzt man in (9) n gemäß (10) und berücksichtigt die Beziehung (3), so folgt für z = 0
eu

e kT _ i
in = ba kTn(0) — -------------------- . (11)

J dz
o

Die Funktion 0(z) ist nur am Rande und im Halbleiterinneren, d. h. für z = 0 und für z oo,
bekannt. Das Integral im Nenner der Gleichung (11) kann daher nur abgeschätzt werden.
Am Rande verschwindet der Exponent im Nenner der Gleichung (1). Im Halbleiterinnern ver-
schwindet das Potential 0(z). Das nach oben verbogene Leitungsband werde durch das aufge-
prägte Feld nur so wenig verändert, daß 0(0) sein Vorzeichen beibehält. In diesem Falle wird das
Integral in (11) maßgeblich durch das Verhalten der Funktion 0(z) in der Umgebung der Kontakt-
stelle z = 0 bestimmt. Zur genäherten Berechnung des Integrals kann 0(z) daher in die Reihe

<?(«) = <P(0) + « (  ) + . . .  = 0 (O)-  + . . .  (12)
\dz /  0

entwickelt werden. E gibt die elektrische Feldstärke an der Kontaktstelle an. Das elektrische
Feld ist der z-Achse entgegen gerichtet (vgl. Bild 5.3.9 a). Bild 5.3.4 zeigt die Potentialverhält-
nisse.
Nach (12) ergibt sich mit E < 0

oo oo

/
e C eEz
— [0(O)-4>(z)l / 77? kT

ekT  dz=  I e kT  dz=  (13)
0 0

Wir setzen (13) in (11) ein und erhalten

fn = -eEn(0)b n (e W -1 ) .  (14)

Die in Richtung der 2-Achse, vom Metall zum Halbleiter, gerichtete äußere Spannung u führt
zu einem mit großen Werten u exponentiell ansteigenden Strom. Dagegen liefert eine äußere
Spannung in der Gegenrichtung, d. h. u < 0, maximal nur den Sperrstrom mit der Stromdichte

Gn)sperr= «En(0) ba < 0. (15)

E hängt nur wenig von u ab. Genähert gilt

E = - (- 2.) • (16)
\ dz /o

Mit den Daten nach Beispiel 5.3.3. und der vorgegebenen Beweglichkeit folgt aus (15)

0n)sperr = - W • IO"19 • 2,5 • 105 • 2,9 • 1013 • 0,290 Am-2 = 0,34 Am" 2 .

Der Metall - n-Halbleiter-Kontakt wirkt als Gleichrichter. Elektrische Ströme von Metall zum
n-Halbleiter werden durchgelassen, elektrische Ströme in der Gegenrichtung gesperrt. Die Rich-
tung vom Metall zum n-Halbleiter heißt Durchlaßrichtung, die Gegenrichtung vom n-Halbleiter
zum Metall Sperrichtung. Bild 5.3.96 zeigt die Kennlinie der Anordnung.
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5.3.5. Metall-Halbleiter-Kontakt nach der Diodentheorie
Beim Kontakt eines Metalles mit n-Silizium oder n-Germanium ist die mittlere freie Weglänge
der Elektronen groß gegen die Dicke der Randschicht. Die Voraussetzung (5.3.4./1) ist daher
nicht erfüllt. In der Randschicht kann sich kein Diffusionsstrom ausbilden, da sie von den Elek-
tronen in der Regel frei durchflogen wird.
Beim Wechsel vom n-Halbleiter in das Metall ist eine Potentialschwelle zu überwinden. Die
Verhältnisse entsprechen denen in einer Diode (vgl. 5.3.6.); daher wird die zugrunde liegende
Theorie als Diodentheorie bezeichnet.
Leiten Sie danach die Strom-Spannungs-Kennlinie ab, und berechnen Sie den Sperrstrom für
den Kontakt von n-Silizium mit einem idealen Leiter. Die Konzentration der Elektronen an der
Kontaktstelle betrage wie in 5.3.4. n(0) = 2,9 • 1013 m-3 .
Lösung:
Die vom Halbleiter auf das Metall zuströmenden Elektronen müssen bei fehlender äußerer
Spannung, wenn sie die Kontaktstelle erreichen sollen, das Diffusionspotential — e0 D > 0 über-
winden. Durch die an die Randschicht angelegte Spannung in Richtung zum Halbleiter erniedrigt
sich die Potentialschwelle auf

ATF = -e(0 D +14). (1)
Die erforderliche Energie

W=W L - e(0D + u) (2)

wird nur von einem kleinen Teil der Elektronen aufgebracht. Die übrigen können den Kontakt
zum Metall nicht passieren. Der auf Grund dessen sich ergebende Strom folgt nach den Gesetzen
der Statistik. Das Problem der Überwindung von Potentialschwellen ist in [2] behandelt. Nach
der von Richabdson abgeleiteten Formel (vgl. [3] (4.3.3./16)) erhält man für die Dichte des
Stromes expandierender Elektronen

J7a-C
/=-  w e &2T 2 e kT  . (3)Ä3

Darin bedeutet W A die äußere, C = die innere Austrittsarbeit bzw. das Fermi-NI veau. W A ist
ebenso wie f auf Vakuum bezogen.
Beim Übergang der Elektronen vom Halbleiter zum Metall tritt an die Stelle der äußeren Aus-
trittsarbeit W A die erforderliche Energie nach (2) :

W A -»W L -e(<I)D + U ). (4)

An Stelle der Elektronenmasse ist bei Kontaktproblemen die effektive Masse m einzusetzen. Für
die Stromdichte der vom Halbleiter zum Metall übergehenden Elektronen folgt damit

O 7 2/772 L- (e0D + e«+C)235 e S . (S)
Ä3

Der Elektronenstrom vom Metall zum Halbleiter ist dagegen von der angelegten Spannung u
unabhängig, da das Metall als idealer Leiter vorausgesetzt wird. Im elektrostatischen Fall wird
der Elektronenstrom vom Halbleiter zum Metall durch einen gleich großen entgegengerichteten
Strom ausgeglichen. Für die Dichte des elektrischen Stromes der vom Metall zum Halbleiter
fließenden Elektronen folgt damit unabhängig von u

O ' 7 2/772 += 2ngmk e -------- .
Ä3
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Die Stromdichte

) = i+ + i- (7)
des resultierenden Stromes läßt sich mittels (5.3./3a), (5.1./16) sowie (5.1./13a) in der Form

i = en(0) 1 / — (e* ? - 1) (8)
|/ 2nm ' '

darstellen, wobei n(0) die Elektronenkonzentration an der Kontaktstelle angibt.
Für die Stromdichte erhält man somit einen Ausdruck, der dem nach der Diffusionstheorie ab-
geleiteten entspricht. Als Sperrstrom folgt

, / isp
/sperr =-e»(0)  /— • (9)

Mit den vorgegebenen Werten und nach Tab. 5.1.4 folgt

/ 1 Qfi . 10-23 • 00
/snerr = -1,60 • IO-19 • 2,9 • 1013 1 /  ------- ------— ------- Am" 2 = -0,12 Am-2 .p V 2 • 3,14 • 1,08 • 9,11 • IO-31

5.3.6. Stromlose pn- Diode

In einem Halbleiter überwiege für ein bestimmtes Gebiet die Donatorenkonzentration A D ,
für das benachbarte die Akzeptorenkonzentration Aa . Ein derartiger Halbleiter heißt pn-Diode.
Zur Untersuchung der elektrischen Eigenschaften einer pn-Diode wird folgendes Modell betrachtet :
Ein kurzer dünner Stab bestehe zur einen Hälfte (z > 0) nur aus n-leitendem, zur anderen nur aus
p-leitendem Material. Die Störstellen seien alle ionisiert, und es sei Aa = N .
Der abrupt wechselnden Störstellenverteilung können die freibeweglichen Ladungen nicht
folgen. Es bildet sich daher beiderseits z = 0 ein Übergangsgebiet mit großem Dichtegradienten
der freien Ladungsträger und dementsprechend starken Diffusionsströmen aus. Für das Über-
gangsgebiet

— z0 < z < Zo

sind die Konzentrationen
n = n(z) , p — p(z)

sowie das Diffusionspotential

0D = &d(z)
veränderlich (vgl. Bild 5.3.10). Dagegen können die Halbleiterbereiche links und rechts des Über-
gangsgebietes als elektrisch neutral mit konstanten Konzentrationen der Ladungsträger und
mit konstantem Diffusionspotential behandelt werden:

n = n p , p = jpp , 0 D = 0 p für z < — z0 ,
n = $D = $n für z>z 0 .

Berechnen Sie die zwischen den beiden neutralen Halbleiterbereichen auftretende Diffusions-
spannung, wenn folgende Daten bekannt sind: n E = 1015 m-3 , p = n n = 1023 m-3 , T — 300 K.

Lösung:
Wegen (5.1./31) besteht die Beziehung

»pPp = »(«) p(z) = n nPn = n E
2 . (1)

21 Schilling, Festkörperphysik



322 5. Bändertheorie realer Kristalle

Das FERMi-Niveau f ist in der gesamten pn-Diode konstant. Nach (5.3. /3 a) folgt für die Kon-
zentration der Elektronen

Bild 5.3.10. Konzentrationen n, p und Diffusionspotential in einer pn-Diode

speziell für die neutralen Bereiche
WL-e<P p -C

n p = ne kT  , (3)
jy L — e0n  — :

n n = ne kT  . (4)

Aus diesen Gleichungen kann £ zusammen mit JFL eliminiert werden. Man erhält z. B. aus den
letzten beiden Gleichungen

-W L + : = -e0p + kT In — == -e<Z>n + kT (5)
n n

Für die Diffusionsspannung zwischen den beiden Bereichen ergibt sich daraus
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Wegen (1) folgt weiter

_ _ IcT - ?z n IcT , p p kT . 77p7in0 n — 0 P = ---- In —- = ---- In — = ---- In -2- . (7)
ß n p e pn e nrf

Mit den vorgegebenen Werten erhalten wir

1,38 • 10- 23 • 300 . 1023 • 1023 
w0 n — 0 D = - ------------------- In ------------- V = 0,95 V.p 1,60 • 10~ 19 1030

Um den genauen Verlauf der Trägerdichte in der Raumladungsschicht und die Dicke der Schicht
zu bestimmen, ist die Lösung der PoissoN-Gleichung erforderlich. Genähert kann mit einer
linearen Veränderlichkeit des Potentials und daraus folgend einer exponentiellen Veränderlichkeit
der Trägerdichte gerechnet werden.

5.3.7. pn-Gleichrichter

Leiten Sie für eine pn-Diode die Strom-Spannungs-Kennlinie ab. Wie groß ist die Sperrspannung
(vgl. 5.3.4.) für eine pn-Diode, für die folgende Daten bekannt sind:
Auf beiden Seiten ist die Konzentration der Minoritätsträger, der Elektronen im Leitungsband
der p-Schicht und der Defektelektronen im Valenzband der n-Schicht gleich: n p = pn = 1010 m-3 .
Desgleichen sind die Diffusionslängen und die Diffusionskoeffizienten für die Minoritätsträger
gleich :

L n = L p = 0,1 mm, D n = Z)p = 10~2 m2 s-1 .

Berechnen Sie auf Grund dieser Angaben den Sperrstrom.

Lösung:
Bei der elektrischen Leitung über die pn-Diode sind im Gegensatz zur Leitung über den Kontakt
zwischen Metall und n-Halbleiter auch die Defektelektronen zu berücksichtigen:

7 = 7n 7p* (1)
Ist die angelegte elektrische Spannung von der p- zur n-Schicht gerichtet, so fließen Elektronen
aus der n-Schicht, Defektelektronen aus der p-Schicht auf die Kontaktstelle zu. In ihrer Um-
gebung bildet sich ein Überschuß von Ladungsträgern beider Sorten. Hierdurch treten im ver-
stärkten Maße Rekombinationsprozesse auf. Sie erfolgen paarweise; für die Rekombinations-
überschüsse gilt Un = U p = U.

Da nur die stationären Verhältnisse interessieren, können wir — = 0 ansetzen. Im eindimeh-
dsionalen Falle sind der Gradient und die Divergenz durch — zu ersetzen. Damit ergibt sich aus

den Bilanzgleichungen (5.2./14)

An = - = —eU. (2)
dz dz [ J

Die Dichte des Gesamtstromes j ist daher konstant.
Nach (5.2./12) folgt in Verbindung mit (5.2./ 10) und (5.2./8)

dn . d0Jn = eDn - ------ eba n—,  (3)
dz dz

dn , d0
7p = -el> p - eb p — . (4)dz dz

21*
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Bei der Bestimmung der fünf unbekannten Funktionen n(z), p(z), jn (z), jp (z), <P(z) ist ferner die
Poissoxsche Gleichung (5.3./4) zusammen mit (5.3./5) zu berücksichtigen.
Wir führen die Rechnung für den Grenzfall schwacher Rekombination durch. Dabei ist der
Rekombinationsüberschuß noch so gering, daß in den dünnen Raumladungsschichten die Re-
kombinationen vernachlässigt werden können, diese also nur in den Zonen links und rechts davon
zu berücksichtigen sind. Nach (2) ergeben sich in diesem Falle in der Raumladungsschicht
zp z zn für Elektronen und Defektelektronen konstante Ströme

7p(«) = ?p(«p) = )p( z n) ,  ?n(«) = fn(«p) = /n(«n) • ( 5 )

Infolge der Rekombinationen wird auch in den bei fehlender äußerer Spannung homogenen
Zonen z < zp und z > zn die Konzentration der Ladungsträger ortsabhängig. Bei den Majori-
tätsträgern, den Defektelektronen im p-Bereich und den Elektronen im n-Bereich, sind die rela-
tiven Abweichungen nur klein. Dagegen tritt bei den Minoritätsträgern ein sehr großer Gradient
auf. Bei ihnen wird daher der Driftstrom vernachlässigt, dagegen bei den Majoritätsträgern der
Diffusionsstrom. Für die Stromdichten der Minoritätsträger, / p < n ) der Defektelektronen in
der n-Schicht bzw. der Elektronen in der p-Schicht, können wir nach (2) und (4) bzw. (3)
schreiben

- — = —eU, j fW = _ eD (6)dz dz

-=eü ,  ) a<*> = eDn ' . (7)
dz dz

Der Strom der Majoritätsträger im Gebiet außerhalb der Raumladungsschicht ist nach (3) und (4)
durch

/ (n> = -eb Dn jjp> = —ebpp (8)
dz dz

gegeben. Da die Spannung in der Raumladungsschicht abfällt, setzen wir außerhalb dieser in
erster Näherung

Der Driftstrom der Majoritätsträger bleibt daher im folgenden unberücksichtigt, gibt somit
für z > zn genähert die Stromdichte in der n-Schicht, / n’(P) für z < zp die Stromdichte in der
p-Schicht an. Die Stromdichte wird also durch die Minoritätsträger bestimmt. Den Rekombi-
nationsüberschuß schreiben wir nach (5. 2./2)

n — n pU = -------- für z < zp ,
T n

U = zn .tp

Damit folgt aus (6) bzw. (7)

d 2j? _ 1 d/ p(n > _ U _ p — pn

dz2 eDp dz D p r pD p

d 2n 1 d/n U n — n p

<k2 eZ>n dz D n r nö n

(10)

(11)

(12 a)

(12b)
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An Stelle des Diffusionskoeffizienten und der Relaxationszeit kann nach (Ö.2.2./6) die Diffusions-
länge eingeführt werden:

= P-Pn  , 13a )  d 2» = w — ?tp
dz2 i p

2 ' ’ ’  dz2 Z n 
2

Als allgemeine Lösung der Gleichungen (12 a) bzw. (13 a) erhalten wir

z z

p = pn + A l e L“ + A 2 e L» ,

(13b)

(14a) '

(14b)n = »p + Bie  1™ + _B2 e L° .

Wegen p pn für z -> oo bzw. n n p für z -> — oo müssen und ,B2 verschwinden.
Das anliegende Feld und der mit ihm verbundene Potentialabfall in der Raumladungsschicht
bedingen eine Veränderung der Ladungsträgerkonzentrationen. Ist die Temperatur nicht zu
niedrig und sind die Konzentrationen der Ladungsträger nicht zu hoch, so kann die Boltzmann-
Statistik angewandt werden. Man erhält nach (5.3./3a) und (5.3./3b) bei einem Potentialabfall
u für die Löcherkonzentration

eu

PM =Pn T (15a)

und für die Elektronenkonzentration

eu

n(z = n . (15b)

Diese Randbedingungen sind auf die PoissONsche Gleichung begründet. Um sie zu erfüllen, setzen
wir

(
eu \ Zn

- 1/ , (16a)

(
eu \ zp

e« 7 - 1 /  e” (16b)

Damit folgt aus (14 a) bzw. (14 b)
Zn — Z

p(z) = Pn + [2>(«n) - 2»n] e , (17a)

Z~Zp
ra(z) = + [n(zp — Mp] e . (17 b)

Für die Ströme ergibt sich nach (6) bzw. (7)

Zn — Z

1,®$ = e — [j>(zn ) - p n] e £ » , (18a)
Ap

D —/ n(P)(2 ) = e —A [»( 2p ) - Mp] e £ " . (18b)
Ai
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Als konstanten Gesamtstrom j erhalten wir wegen (5) aus (18a) und (18b) in Verbindung mit
(15a) und (15b) o

/ eu \

i = ?p<n) (*n) + 7n< p) (*p) = e n p ) \e 
fcr - 1 ) .  (19)

\ p Ai /

Wie aus (19) hervorgeht, zeigt die Strpm-Spannungs-Kennlinie der pn-Diode den gleichen Ver-
lauf wie die Kennlinie beim Kontakt zwischen n-Halbleiter und Metall. Durchlaßrichtung für
den elektrischen Strom ist die Richtung von der p- zur n-Schicht (u > 0). In diesem Richtung
steigt der Strom für große Werte u exponentiell an. In der Sperrichtung (u < 0), von der n- zur
p-Schicht weisend, erreicht der Strom bereits für sehr kleine Werte |w| einen Grenzwert. Er wird
als Sperrstrom bezeichnet (vgl. Bild 5.3.11).

Durchlaßrichtung

Bild 5.3.11. Schaltung einer pn-Diode in Durchlaßrichtung
mit der Strom-Spannungs-Kennlinie

Nach (11) kann man bei Spannungen u < 0 für j den Sperrstrom einsetzen, wenn |w| Werte
oberhalb

erreicht, mit den vorgegebenen Größen für

1,38 . 10~23 • 300
1,60 • IO"19 V = 0,026 V.

Als Sperrstrom erhält man aus (19)

Pn + y 2- »p (20)?Sperr — e
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Die vorgegebenen Werte eingesetzt, folgt

IO“2

/sperr = -1,60 • 10~19 • 2 • — • 1010 A = -0,32 p.A m~2 .

5.3.8. pnp -Transistor in Basisschaltung

Der Transistor enthält als wesentliche Bestandteile seiner Verstärkerfunktion zwei pn-Übergänge.
Er kann als pnp-Transistor nach Bild 5.3.12 mit einem n-Bereich in der Mitte und je einem
p-Bereich an den beiden Enden oder als npn-Transistor nach Bild 5.3.13 aufgebaut sein.

E U E B > °  U C B < °  C

— !■ ----------------*— ---------
+ — + —

Blid 5.3.12. pnp-Transistor in Basis-
schaltung.
E Emitterelektrode, B Basiselektrode,
C Kollektorelektrode

Von den beiden pn-Übergängen des Transistors ist stets einer in Durchlaßrichtung, der andere
in Sperrichtung gepolt. Auf der in Durchlaßrichtung gepolten Seite wird die äußere Schicht als
Emitter (E) definiert. Die äußere Schicht auf der in Sperrichtung gepolten Seite heißt Kollektor
(C). Beide äußere Schichten haben eine Dicke, die groß gegen die Diffusionslänge der Minoritäts-
träger ist. Dagegen besitzt die mittlere Schicht, die Basis (B), nur eine geringe Dicke, die klein
gegen die Diffusionslänge ist. Infolgedessen beeinflussen sich die beiden pn-Übergänge.
Der Stromkreis über Emitter und Basis mit dem Spannungsabfall u EB am pn-Übergang heißt
Emitterkreis, der Stromkreis über Basis und Kollektor mit dem Spannungsabfall wCB Kollektor-
kreis. |%CB | wird in der Regel bedeutend größer gewählt als |wEB | .
Stellen Sie die Gleichungen für die Ströme und Spannungen in einem pnp-Transistor auf. Be-
rechnen Sie den Strom und die Spannung auf der Kollektorseite infolge eines auf die Emitterseite
übertragenen Wechselspannungssignals. Berechnen Sie die Wechselstromübersetzung bei kollek-
torseitigem Kurzschluß sowie die Spannungsverstärkung bei kollektorseitigem Leerlauf.
Den Rechnungen ist ein pnp-Transistor in Basisschaltung nach Bild 5.3.12 zugrunde zu legen,
für den folgende Daten vorgegeben sind: Die Dicke der Basisschicht beträgt d = 0,1 mm, die
Diffusionslänge der Minoritätsträger in der Basis ist — 0,5 mm. Für die Minoritätsträger
seien die Diffusionslängen Z nE  = L nC = 1 mm. Die Konzentrationen der Minoritätsträger im
Emitter bzw. im Kollektor seien n E = ?zc = 1012 m~3 . Das Verhältnis der Beweglichkeiten be-
trage &n /& p = 10.
Berechnen Sie die Wechselstromübersetzung bei kollektorseitigem Kurzschluß. Welche Potential-
differenz Z7EC wird zwischen Emitter und Kollektor wirksam, wenn bei kollektorseitigem Leerlauf
zwischen dem Ausgangs- und dem Eingangssignal die Spannungsübersetzung 90 gemessen wird?
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Lösung:
Der Stromfluß durch einen pn-Übergang wird nach 5.3.7. in erster Näherung aus dem Verhalten
der Minoritätsträger berechnet. Auch die Ströme beim Transistor ergeben sich aus der Injektion
der Minoritätsträger. Nach (5.3.7./18b) bzw. (5.3. 7. /19) folgt für die von Elektronen im Emitter
des pnp-Transistors verursachte elektrische Stromdichte

/ 6Ueb \

/nE = n s \e kT  - 1 / .  (1)
AiE

Für die von Elektronen im Kollektor verursachte Stromdichte folgt
/ e«cB \

/nc = -p-»c U (2)
Aic

In der Basis ist der Strom der Defektelektronen als den Minoritätsträgern von Interesse. Das
Raumladungsgebiet erstreckt sich über die gesamte Basis. Die Ergebnisse nach 5.3.7., wo aus-
gedehnte Bereiche vorausgesetzt werden, können daher nicht unmittelbar übernommen werden.
Wir gehen von (5.3.7./13) aus, wo wir pn durch p-% ersetzen. Als allgemeine Lösung folgt für die
Löcher in der Basis

z z

2>(z) = Pb + L “ + -Be Xp • (3)

An der Kontaktstelle z = zc zum Kollektor muß
bucb

P c ) = p ß e kT ,

an der Kontaktstelle z = zE zum Emitter
(4)

eUEB

33(zb ) =p B e kT (5)

erfüllt sein. Damit sind zwei Gleichungen zur Bestimmung der Koeffizienten A und B gegeben.
Werden die Wurzeln in (3) eingesetzt, ergibt sich

eucB

kT (
e EB \

e~ - 1) sinh
_________- p __________________________________

• K d
sinn ----

p(z) = Pb

Darin gibt d = zc — zE die Dicke der Basis an. Durch Differenzieren erhalten wir gemäß (5.2./8)
den Basistrom für z = zE

eucB

e” 7" - 1  ( J d
------------------ \e — 1/ coth ----

sinh
7>p

2p (ze) = - ~ Pb (7)

Für z = zc ergibt sich aus (6)
eUEB

J X1 d— 1/  coth ----------------------
sinh

L P

. ( \ eD v
7p(z c) = ------ Pb (8)
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Die Diffusionskoeffizienten lassen sich mittels der EiNSTEiN-Relation (5.2./8a) ausdrücken. Der
gesamte Emitter- bzw. Kollektorstrom folgt als Summe des Stromes der Elektronen und der
Löcher :

Strom und Spannung in einem Transistor können in den Betriebsanteil J E , J c bzw. Z7EB , cb
und den Signalanteil J oE  ei<ü *, J o c eiü bzw. ?7O EB ei<o A oCB eiw< zerlegt werden:

?E = /e + 'AjE elü4 > /c = + 0C e lWi  > 1

W EB = EB + oEB 610 W CB = CB + ()CB elü4 - J

Die Betriebsspannungen und -ströme sind für den Betrieb des Transistors erforderlich. Dagegen
geben (70 EB eia,i bzw. £70 CB eiü4 und J oE  eia* bzw. J oC eiü,f Spannungs- und Stromabweichungen
von den Betriebswerten an. Die Signale treten in der Regel als WechselVorgänge auf, worauf der
Faktor eiü,i hinweist.
Zur Berechnung der Signalgrößen entwickeln wir

e T = e kT { + u ° = e ÄT eUo eiu)t ,
kT ‘T (12)

Damit folgt aus (9) und (10) für die Amplituden

(
, , , \ ß EB , eUc *

-2- pB coth — + nE ) e kT  UoES  --------6 pPB - e kT  U,lCB ,
L * L * LaS ' Z-sinh— -P £p (13)

Jac = e6pB:P - e~ r oEB - e ( -  coth- - + - ) e~  CB . (14)
Z p sinhA \ £ p h L nc )

Lrs

Die Kurzschlußstromübersetzung gibt das Verhältnis der Stromamplituden bei ausgangsseitigem
Kurzschluß Z70cb = 9 an. Hierfür erhalten wir

Moc \  - -  ----------------------1---------------------- (15 )

\ Joe Mcb-0 cosh + nv &n sinh
■Lp AiE Pb - p

Für die Leerlaufspannungsverstärkung, die Spannungsverstärkung bei ausgangsseitigem Leer-
lauf JQC = 0, ergibt sich aus (13) und (14)

e(UEB— J7cb)
/iJoCB \ = _________e kT _________ (16)
\ d 0EB A, c =o cogh J_ + Lp nc 2a. sinh ±_

- p nc Pb p p
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Wegen

ist der Nenner sowohl in (15) als auch in (16) größer als eins. Die Kurzschlußstromübersetzung
bleibt daher in der Basisschaltung nach den Bildern 5.3.12 und 5.3.13 stets unter eins. Dagegen
kann wegen

ce < 0

die Exponentialfunktion in (16) auf sehr große Werte ansteigen und eine große Spannungs-
übersetzung erfolgen.
Aus (16) folgt durch Auflösen nach £7EB — UCB = U BC

tt  kT . r /  ncu\ / , d , Lt. n c b n . . d \"1 xU- q = ------ In ( — jcosh -------1------------— — sinh ----  ) . (16a)
e L\ oEbMc=o \ Lp L nC pB &p L p / J

Mit den vorgegebenen Daten erhalten wir aus (15)

— ) = ----------------------------------- = 0,97,
J oE /tr.cB=o 1,02 < 0,5 • 0,01 • 10 • 0,.20

aus (16a)
1 38 . 1O-23 . 300

ec = "lo-lo ln [90(1 ’°2 + °’ 5 * °’ 01 ’ 10 ‘ °’ 20)] V = 120 mV *
Anmerkung: Der Transistor als aktiver Vierpol, die Grundlagen der Verstärkung für die ver-
schiedenen Schaltungen eines Transistors, sind in [4] 4.5. dargestellt.

Aufgaben

A 5.3.1. An n-leitendes Silizium mit der Elektronenkonzentration n=10 19 m-3 wird
senkrecht zur Oberfläche ein elektrisches Feld der Stärke E = 2,5 • 104 V m-1

gelegt. Wie groß ist die Bandverbiegung an der Oberfläche des Kristalls?
A 5.3.2. Durch den Einbau von Akzeptoren an der Oberfläche von Silizium gegen Vakuum

erfolgt eine Verschiebung der Energiebänder um 0,1 eV. Ein auf den Kristall ge-
richtetes elektrisches Feld soll diese Bandverschiebung an der Oberfläche aufheben.
Welche Größe und welche Richtung muß dieses haben, wenn die DEBYE-Länge
1 [im beträgt?

A 5.3.3. Eigenleitendes Silizium enthalte an seiner Oberfläche Akzeptoren, von denen bei
T = 300 K N = 1015 m-2 negativ geladen seien. Stellen Sie die Formel für die
Bandverbiegung auf und bestimmen Sie diese für die Oberfläche des Kristalls
gegen Vakuum.

A 5.3.4. Welche Oberflächenkonzentration geladener Donatoren ist in eigenleitendem
Silizium bei 300 K erforderlich, um an der Oberfläche gegen Vakuum eine Band-
verschiebung von 0,5 eV zu bewirken?

A 5.3.5. Die Oberfläche eines Halbleiters gegen Vakuum sei mit Molekülen dotiert, die das
Dipolmoment = 1,0 • IO-30 Asm besitzen. Bestimmen Sie die Bandverbiegung,
wenn die Fremdmoleküle in der Konzentration N — 1015 m-2 auftreten.
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Ein n-Halbleiter mit der Elektrönenkonzeritration n = 10 18 m-3 enthält auf seiner
Oberfläche geladene Donatoren in der Dichte N — 1017 m-2 . Die Dielektrizitätszahl
des Halbleiters ist eT = 12. Berechnen Sie die Bandverbiegung an der Oberfläche
gegen Vakuum bei 300 K.
Stellen Sie die Neutralitätsbedingung für einen Halbleiter mit der Oberflächen-
ladungsdichte —Ne auf.
Die Oberflächenleitfähigkeit in einem Eigenhalbleiter sei y = 2,0 • IO-7 Q. Be-
rechnen Sie das Oberflächenpotential, wenn folgende Daten bekannt sind:
b n = 0,12 m2 V- 1 s- 1 , 6p = 0,06 m2 V"1 s"1, er = 12, n E = 2,5 • 1017 m~3 , T = 300 K.
An einen n-Halbleiter mit der Oberflächenleitfähigkeit y wird ein elektrisches Feld

= 2 • 106 V m-1 in Richtung der Oberflächennormalen angelegt und dabei
y — 2 • 10-6 Q-1 gemessen. Ferner sei n = 2 • 1018 m-3 , sr = 8,0, 6 n = 0,40 m2 V“1 s-1 ,
T = 300 K. Bestimmen Sie die Ladungsdichte und das Diffusionspotential an der
Oberfläche des Halbleiters.
Die Bandverbiegung in einem n-Halbleiter betrage bei 300 K an der Kontakt-
stelle gegen die p-Schicht 0,4 eV. Berechnen Sie den Faktor der Elektronenver-
armung.
In einer pn-Diode sei an der Kontaktstelle bei T = 300 K die Elektronenkonzen-
tration um den Faktor 10~6 gegenüber dem Inneren der n-Schicht verringert. Be-
rechnen Sie das Diffusionspoteritial und die Bandverschiebung.
In einem n-Halbleiter trete an der Kontaktstelle gegen Metall eine Bandverschie-
bung von 0,25 eV auf. Die DEBYE-Länge sei 2,5 p.m, die Elektronenkonzentration
im Innern des Halbleiters 5 • 1018 m-3 . Schätzen Sie die Dichte des Sperrstromes
ab, wenn die Elektronenbeweglichkeit &n = 0,7 m2 V-1 s-1 beträgt (T = 300 K).
Berechnen Sie die Diffusionsspannung zwischen der p- und der n-Schicht in einer
pn-Diode aus Silizium, wenn die Elektronenkonzentration der p-Schicht
2,4 • 108 m~3 , die der n-Schicht 6,5 • 1022 m-3 beträgt.
Berechnen Sie zur vorangegangenen Aufgabe die Elektronenkonzentration in der
Mitte der Diode am Übergang zwischen p- und n-Schicht. f

Berechnen Sie den Sperrstrom einer pn-Diode, wenn die Konzentration der Ak-
zeptoren in der p-Schicht = 1024 m-3 , die Konzentration der Donatoren in der
n-Schicht V D = 2 • 1024 m-3 beträgt. Sämtliche Fremdatome seien ionisiert. Für
den Eigenhalbleiter sei n E = 1017 m-3 ; ferner sei D n = 2 • 10-3 m2 s-1 , Z>p =
4 • 10~3 m2 s-1 , L n = 0,8 mm, L p = 0,5 mm.
In einer pn-Diode wird der Sperrstrom 0,01 pA.ro-2 gemessep. Die Konzentration
der Minoritätsträger beträgt 10 i0 m-3 ; die Diffusionskoeffizienten sind Dn ■ = D p
= 5 • 10-4 m2 s-1 . Berechnen Sie die Diffusionslänge unter der Voraussetzung,
daß diese für die beiden Sorten der Minoritätsträger übereinstimmt.
Die Relaxationszeit der Minoritätsträger betrage auf beiden Seiten einer pn-Diode
0,1 ms. Die Konzentrationen seien n p = p n = 109 m-3 . Dagegen seien die Beweg-
lichkeiten verschieden: b n = 0,1 m2 V-1 s-1 , bp = 0,5 m2 V-1 s-1 . Berechnen "Sie
den Sperrstrom.
Berechnen Sib nach der Diodentheorie den Sperrstrom beim Kontakt n-leitenden
Germaniums mit einem ideal leitenden Metall. Die Elektronenkonzentration an
der Kontaktstelle sei n • = 1012 m-3 (vgL Tab. 5.1.4).
Stellen Sie die Formeln für die Signalspannurig und für den Signalström bei einem
npn-Transistor in Basisschaltung auf.
Stellen Sie die Formeln für die Kurzschlußstromübersetzung und für die Leerlauf-
spannungsverstärkung bei einem npn-Transistor auf.
Leiten Sie die Formel für die Spannungsübersetzung eines kollektorseitigen Signals
bei emitterseitigem Leerlauf in einem basisgeschalteten pnp-Transistor ab.

A 5.3.6.

A 5.3.7.

A 5.3.8.

A 5.3.9.

A 5.3.10.

A 5.3.11.

A 5.3.12.

A 5.3.13.

A 5.3.14.

A 5.3.15.

A 5.3.16.

A 5.3.17.

A 5.3.18.

A 5.3.19.

A 5.3.20.

A 5.3.21.
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A 5.3.22. Wie groß ist die Stromübersetzung in einem basisgeschalteten Transistor bei
emitterseitigem Kurzschluß C7oEB == ü?

A 5.3.23. Stellen Sie die Formel für den kollektorseitigen Eingangswiderstand bei ermitter-
seitigem Kurzschluß Oqeb = 0 auf, wenn ein pnp-Transistor in Basisschaltung
vorliegt.

5.4. Strahlungseffekte in idealen und realen Kristallen

Einführung

Lumineszenz
Durch Anregung in Form von Licht- oder Korpuskularstrahlen werden Elektronen
auf ein höheres Energieniveau gehoben. Ihre Rückkehr zu tieferen Energiezuständen
erfolgt entweder strahlungslos, z. B. wenn die überschüssige Energie in Form von
Wärme an das Kristallgitter abgegeben wird, oder ist mit der Emission von Licht-
wellen verbunden. Die Ausstrahlung von Licht durch einen Kristall nach vorher-
gehender Anregung von außen heißt Lumineszenz.
Man unterscheidet zwischen zwei Erscheinungsformen der Lumineszenz. Setzt die
Emission bereits während der Anregung ein, wobei Verzögerungen bis zur Größen-
ordnung von 10 ns zugelassen werden, so wird sie als Fluoreszenz bezeichnet. Die
Zeit 10 ns entspricht etwa der Lebensdauer eines atomaren Zustandes bei Ladungs-
übergängen mit Ausstrahlung im sichtbaren bzw. nahe benachbarten infraroten oder
ultravioletten Bereich.
Die Emission mit größeren Verzögerungszeiten (bis zu mehreren Stunden), praktisch
die Emission nach Ausschalten der äußeren Anregung, heißt Phosphoreszenz bzw.
Nachleuchten.
Lumineszenz tritt in einer großen Zahl von Kristallen auf.
Der Wirkungsgrad, das Verhältnis zwischen der aufgewandten Strahlungsenergie
und der nutzbaren Emissionsstrahlung, ist jedoch meist nur klein. Besonders für
die Phosphoreszenz von großer Bedeutung sind Verbindungen zwischen Elementen
der zweiten und der sechsten Spalte des Periodensystems. Dazu gehören insbesondere
Zinksulfid ZnS und Kadmiumsulfid CdS. Die Struktur dieser beiden Stoffe entspricht
der der III-V-Halbleiter.
Der Wirkungsgrad hängt im starken Maße von Fremdsubstanzen ab. Werden z. B. in
den reinen II-VI-Kristall als Fremdsubstanzen in geringem Maße einwertige Kupfer-,
Silber- oder Goldatome anstelle der zweiwertigen Zink- oder Kadmiumatome ein-
gebaut, so bleibt im Gitter ein Elektronenzustand unbesetzt. Infolgedessen entsteht
wie bei den Akzeptoren des Germanium- oder Siliziumkristalls ein Störterm nahe
der oberen Kante des Valenzbandes. Durch ihn wird die Lumineszenz aktiviert.
Die Fremdatome, deren Einbau das Auftreten von Leuchteffekten sichtlich fördert
bzw. aktiviert, heißen daher Aktivatoren, die erzeugten Störterme Aktivatorniveaus.
Sie werden mit W A gekennzeichnet. Der gleiche Effekt läßt sich mit Elementen der
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fünften Spalte erzielen, wenn diese an Stelle eines sechswertigen Schwefelatoms in das
Gitter eingebaut werden.
Beim Einbau eines Elementes der dritten Spalte an Stelle eines zweiwertigen Zink-
atoms oder eines Elementes der siebenten Spalte an Stelle eines sechswertigen
Schwefelatoms tritt wie bei Donatoren ein Überschußelektron auf. Der erzeugte Stör-
term liegt nahe der Leitungsbandkante PFl- Für die Lumineszenz haben diese

Leitungsband

Aktivatorterm

Valenzband

Bild 5.4.1. Elektronenübergänge bei der Fluoreszenz.
a) Grundgitterabsorption
b) Übergang in den Aktivatorterm unter Strahlungsaussendung
(Fluoreszenzstrahlung )
c) strahlungsloser Übergang in das Valenzband

Störterme die Eigenschaft von Haftstellen. Sie fangen Elektronen aus dem Leitungs-
band ein, verzögern ihre Rückkehr in den Aktivatorterm bzw. in das Valenzband und
speichern damit Energie.
Bild 5.4.1 und Bild 5.4.2 zeigen das Energieschema zur Erklärung der Lumineszenz.
Vielfach werden verschiedene Fremdstoffe verwandt, so daß mehrere Aktivator-
und Haftstellenniveaus auftreten.
Fluoreszenz
Bei den Strahlungsprozessen sind eine Vielzahl von Varianten möglich. Die Fluores-
zenz vollzieht sich in der Regel in folgenden Schritten nach Bild 5.4.1:
a) Durch Aufnahme von Anregungsenergie gelangen Elektronen vom Valenz- in das
Leitungsband (Grundgitterabsorption). Die eingestrahlte Quantenenergie muß so
groß sein, daß die Energielücke überwunden wird und freie Plätze im Leitungsband
besetzt werden können. Durch die Anregung werden Elektronenplätze im Valenz-
band frei. Daher gehen im verstärkten Maße Elektronen aus dem Aktivatorniveau
in das Valenzband über und füllen dieses wieder auf.
b) Nach kurzer Verweilzeit im Leitungsband fallen die Elektronen in einen Aktivator-
term, wobei Strahlung emittiert wird (Fluoreszenz). Da in den meisten Fällen das
Valenzband nach der Anregung kurzzeitig wieder mit Elektronen aus dem Aktivator-
term aufgefüllt wird, stehen hier nur im beschränktem Umfang Elektronenplätze
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zur Verfügung. Aktivatorterme sind daher bei den Elektronenübergängen unter
Aussendung von Strahlung gegenüber dem Valenzband bevorzugt. Infolgedessen
weist die emittierte gegenüber der anregenden Strahlung eine kleinere Quanten-
energie, d. h. eine Rotverschiebung auf. Sie wird als Stokessche Verschiebung be-
zeichnet.
c) Vom Aktivatorniveau kehren die Elektronen in das Valenzband zurück, solange
hier durch äußere Anregung freie Plätze erzeugt werden. Der Übergang vom Akti-
vatorniveau in das Valenzband erfolgt strahlungslos.

Leitungsband
(Anregungsniveau)

Haftstellenterm
(metastabiles Zwischenniveau )

Aktivatorterm

Valenzband
(Ausgangsniveau )

Bild 5.4.2. Elektronenübergänge bei der Phosphoreszenz und bei der Laser-
strahlung.
a) Grundgitterabsorption (Pumpen)
b) strahlungsloser Übergang vom Leitungsband (Anregungsniveau 3) in Haftstellen
(metastabiles Zwischenniveau 2)
c) Übergang vom Haftstellenniveau (2) in das Aktivatorniveau (1). Beim Laser
lawinenartiger Prozeß. Emission von Strahlung
d) strahlungsloser Übergang auf das Ausgangsniveau (0)

Phosphoreszenz
Die Phosphoreszenz vollzieht sich in der Regel
a) in der Anregung durch die Grundgitterabsorption wie die Fluoreszenz. Im Gegen-
satz dazu gehen die Elektronen danach jedoch
b) in eine Haftstelle über. Hier können sie für längere Zeit verweilen. In den aktiven
Medien der Laser (vgl. 5.4.2.) werden dabei für die Elektronenkonzentration der
Haftstellenniyeaus so große Werte erreicht, daß damit die Besetzung der Aktivator-
niveaus übertroffen wird. Der hiermit erzeugte metastabile Zustand wird als Be-
setzungsumkehr bezeichnet. Aus den Haftstellenniveaus gehen die Elektronen
c) in einen Aktivatorterm über, wobei Strahlung emittiert wird. Bei den Lasern voll-
zieht sich dieser Prozeß infolge der erzeugten Besetzungsumkehr lawinenartig. Aus
den Aktivatorniveaus kehren die Elektronen
d) strahlungslos in das Valenzband zurück.
Bild 5.4.2 zeigt den Prozeß der Phosphoreszenz graphisch.
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Farbe der Kristalle
Non. der Lumineszenz ist die Farbe der Kristalle zu unterscheiden. Lumineszenz
wird durch Strahlungsübergänge der Ladungsträger nach äußerer Anregung ver-
ursacht. Im Gegensatz dazu entsteht die Farbe eines Kristalls als Folge der Ab-
sorption im Auf- oder Durchlicht. Die Spektralbereiche der absorbierten Strahlung
werden durch die Energiebänder und Störstellenniveaus sowie durch die Wahr-

Wellentänge A

Bild 5.4.3. a) Elektronenübergänge b) Absorptionskante Au im durchgehenden Licht

scheinlichkeiten für Übergänge bestimmt. Bezeichnet AJF die Energiedifferenz
zwischen einem Störterm und einem breiten Energieband bzw. zwei Energiebändern,
so werden alle Frequenzen

AJFv > v* = — (1)

bzw. alle Wellenlängen unterhalb der Absorptionskante Au absorbiert :

. 0 hc

(vgl. Bild 5.4.3). Die nichtabsorbierten Wellen des sichtbaren Bereiches bestimmen
die Farbe des Kristalls.
Bei farblosen bzw. durchsichtigen Kristallen dürfen keine Elektronen- oder Schwin-
gungsübergänge stattfinden, die Licht der Wellenlänge A > Au = 360 nm absorbieren.
Der Wellenlänge Au entspricht eine Breite der Energielücke

ATT
Au

in Zahlen

( la)

(1b)

6,63 • IO-34 • 3 • 108

ATF 360 • 10- 9 • 1,60 • 10- 19 eV 3 ’ eV ’

Soll sichtbares Licht nicht absorbiert werden, so muß der Abstand der Energiebänder
größer als 3,45 eV sein. Die große Differenz zwischen dem Valenz- und dem Leitungs-
band bei farblosen Kristallen bedingt, daß diese in bezug auf ihre elektrische Leit-
fähigkeit Isolatoren sind.
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Beispiel 5.4.1. Diamant

Für Diamant beträgt die Energielücke nach Tab. 5.1.1 SW = 5,3 eV, überschreitet also die
Schranke nach (1). Diamant ohne Zusätze ist daher farblos und ein Isolator.

Soll in einem Halbleiter der gesamte sichtbare Bereich Elektronenübergänge hervor-
rufen können, so muß für die Energielücke die Ungleichung

(2)
%

bestehen. Darin gibt Ao = 740 nm die obere Grenze des sichtbaren Bereiches an.
Mit den vorgegebenen Werten folgt AJF< 1,84 eV.

Beispiel 5.4.2. Silizium und Germanium, metallisch glänzende Kristalle

Für Silizium beträgt die Bandlücke nach Tab. 5.1.1 A W = 1,14 eV, für Germanium ATF = 0,67 eV.
Beide Stoffe sind im sichtbaren Bereich lichtundurchlässig. Ihre Farbe entspricht der der Metalle.
In Metallen können alle Wellenlängen des sichtbaren Bereiches zu Elektronenübergängen führen.
Sie sind daher bereits in dünnen Schichten lichtundurchlässig. Bei ihrem metallisch glänzenden
Aussehen kommt das gute Reflexionsvermögen infolge der Gitterstruktur zur Wirkung.

Farbige Kristalle sind entweder durch die Breite der Energielücke oder durch Zu-
sätze von Fremdstoffen zu begründen.

Beispiel 5.4.3. Kadmiumsulfid

Die Energielücke bei CdS beträgt SW = 2,42 eV. Das entspricht der Wellenlänge

hc , , 6,63 • 10-34 • 3 • 108
4 = bzw. Ao = -------------------------- m = 513 nm.0 2,42 • 1,60 • IO-19

Reines CdS ist daher gelb. Licht der Wellenlänge 2 < 562 nm wird absorbiert; die nichtabsor-
bierten Wellen ergeben die gelbe Färbung.

Beispiel 5.4.4. Rubin und Saphir

In reinem Zustand ist A1 2O3 farblos. Das Gitter des Rubins enthält mit einem Anteil von 0,5%
an Stelle von Al3+ -Ionen Cr3+ -Ionen. Dadurch tritt ein Störterm auf, der eine im Roten liegende
Absorptionsbande und damit die Rotfärbung des Kristalls hervorruft.
Die Blaufärbung des Saphirs entsteht durch einen Störterm infolge von Ti3+ -Zusätzen.

Bilanzgleichungen der Strahlungsprozesse
Im folgenden werden für die Wahrscheinlichkeiten von Übergängen eines Elektrons
während einer Sekunde folgende Größen eingeführt :

a n Leitungsband Haftstelle,
ßn Leitungsband -> Aktivator,
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Haftstelle —> Leitungsband,
Aktivator -> Valenzband,

ßp Haftstelle -> Valenzband,
yp Valenzband -> Aktivator.
jVh bezeichnet im folgenden die Konzentration der Haftstellen, N A die der Akti-
vatoren. Ferner gibt die Konzentration der Elektronen in Haftstellen, p A die der
Defektelektronen in Aktivatoren an. Die Wahrscheinlichkeit für andere Übergänge
sei Null.
Mit der äußeren Erzeugerquote bzw. Anregungsintensität G nach 5.2. ergibt sich
unter Berücksichtigung des PAULi-Prinzips analog den Bilanzgleichungen (5.2./14)
für die Änderung der Konzentration in den Bändern und Störstellenniveaus ,

— = G — a n n(_ZVH — ™h) + 7A — ßnnp A ,

dp— = (7 - * pp(VA - p A ) + yppA - ßppnv,
(3)

— nH ) — — ß pn ,

/ AT X z?-jp = ocpp(N A — pA ) — ypp A — ßunp A .

Dabei ist vorausgesetzt, daß die äußere Anregung nur in Form der Grundgitter-
absorption vor sich geht.
In der Regel ist nur der Übergang vom Leitungsband zu einem Aktivatorniveau
mit einer Strahlungsemission verbunden. Die anderen Übergänge erfolgen strahlungs-
los.
(3) kann als System von vier Gleichungen zur Bestimmung der vier Unbekannten
n, p, p A aufgefaßt werden. Lösungen existieren für Spezialfälle.
Im stationären Fall

erhält man durch Addition der vier Gleichungen (3) und Auflösen nach der An-
regungsintensität

G = ßnnp A + ßppnn . (5)
Die Anregung wird danach einmal für Übergänge vom Leitungsband zum Aktivator-
niveau verwandt, die im allgemeinen unter Strahlungsemission verlaufen, das andere
Mal dient sie strahlungslosen Übergängen der Defektelektronen vom Valenzband zur
Haftstelle.
Für die Leuchtintensität erhält man

L = ßunp A . (6)

22 Schilling, Festkörperphysik
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Bezeichnet man das Verhältnis der Strahlungsenergie zur Energie der strahlungslosen
Prozesse mit e, so gilt

. - m
ßpPUH

Nach (4) und (6) kann man für die Leuchtintensität

L - — ? G (8)
e + 1

schreiben. Als Wirkungsfaktor bzw. Wirkungsgrad folgt daraus

e + 1 ß npA + ßp pn s

Probleme

5.4.1. Wirkungsgrad und Übergangswahrscheinlichkeit
Für den Wirkungsgrad einer stationären Fluoreszenzstrahlung ergibt sich durch Messung der
Intensität des anregenden und der des emittierten Lichtes q = 0,2. Das Medium sei mit Akti-
vatoren in der Konzentration N A = 5 • 1022 m-3 , mit Haftstellen in der Konzentration =
2 • 1022 m-3 dotiert. Die Abstände der Störterme von den Energiebandkanten betragen W A — W v
= 0,02 eV, = 0,01 eV. Es werde bei Zimmertemperatur T = 300 K gemessen. Zu
berechnen ist das Verhältnis der Übergangswahrscheinlichkeiten zwischen den Elektronen-
übergängen vom Leitungsband zum Aktivator und den Übergängen der Defektelektronen vom
Valenzband in eine Haftstelle.

Lösung:
Nach der dritten und vierten Gleichung (5.4./3) bestehen im stationären Falle die Beziehungen

«n( H - n H> n - ßpn H p = yn n H , (1)

~ßnPA.n + «p( A - Pa) P = 7p a • (2)
Hieraus folgt für das Verhältnis zwischen den Konzentrationen der Elektronen und der Defekt-
elektronen

n = « Pyn ro H ( A — Pa) + ßPyBn K pA .
P «n/pC H — m h)  + /?n7nm H?’A

Weichen von W L und W A von W v nur wenig ab, so sind bei Zimmertemperatur die Haft-
stellen nur schwach mit Elektronen, die Aktivatoren nur schwach mit Defektelektronen besetzt.
Daran ändert sich auch bei schwacher Einwirkung einer äußeren Strahlungsquelle nichts. Wir
setzen dementsprechend voraus, daß durch die Einwirkung von außen die im thermischen Gleich-
gewicht, stehenden Beziehungen

2>a< a (4)
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nicht verändert werden. Damit erhält man für das Verhältnis der Elektronen- zur Löcherkon-
zentration

n = « P y n 
ra H y A + Aov*h?a

P + n7n«H7’A ’

Wir nehmen an, daß a pyn etwa die gleiche Größenordnung wie ßpyp , a nyP etwa die gleiche Größen-
ordnung wie ßn yn hat. Damit ergibt sich durch Einsetzen von (5) in (5.4./7) für das Verhältnis
zwischen den Energien bei emittierenden und bei nichtemittierenden Prozessen

£ ___ a p n7n A . (gj
a nßp7p H

Da bei schwacher Anregung nur geringfügige Abweichungen vom thermischen Gleichgewicht
auftreten, kann man davon ausgehen, daß im stationären Gleichgewicht genähert auch die Anzahl
der Elektronenübergänge zwischen dem Leitungsband und dem Haftstellenniveau in beiden
Richtungen gleich ist. Das bedeutet

7n«H = «n«( H — »h) t> zw - — = - - -
7n nN n

(7)

Für n kann der Gleichgewichtswert nach (5.1./ 16), für der Gleichgewichtswert nach (5.1./
21a) mit jV h == N D eingesetzt werden. Es folgt

Wl- JVh- ArTlnyH
a n _ J_ e kT

7n ™
(8)

mit JF h = Wjy, 7h = 7d = “ sowie n nach
2

Als Verhältnis der Übergangswahrscheinlichkeiten bei den Defektelektronen ergibt sich in gleicher
Weise :

(5.1./13a).

JVA-lTv+ÄrTlnyA
a P = e

7p n
(9)

Wir setzen (8) und (9) in (6) ein und erhalten

n v _______________7A

£ = - LA e 
kT  . (10)

Diese Gleichung kann nach dem Verhältnis der gesuchten Übergangswahrscheinlichkeiten auf-
gelöst werden. In Verbindung mit (5.4./9) folgt

(JVA-JVv)-(B'L-JVH)+A:Tln —

Al = n e vT~- ~ . (U)

ßB

Das Verhältnis der Übergangswahrscheinlichkeiten zwischen emittierenden und strahlungslosen
Übergängen hängt nicht nur vom gemessenen Wirkungsgrad tj, sondern auch von den Kon-
zentrationen der Haftstellen und der Aktivatoren sowie von den Energieabständen — Wy
und W L — JFh ab. Mit den vorgegebenen Zahlen folgt

ßn 2 • 1022 0,2 F(0,02 - 0,01) - 1,60 ♦ 10~19 - 1,38 • 10~23 - 300 In 4'
ßp “ 5 • 1022 0,8 eX P [ 1,38 • IO’23 • 300

22*
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5.4.2. Prinzip des Lasers

Strahlungsquellen, die durch induzierte Emission einen intensiven, scharf gebündelten, ko-
härenten Lichtstrahl erzeugen, heißen Laser. Der Frequenzbereich, für den Laser angeboten
werden, erstreckt sich vom Infraroten über das Sichtbare bis zum Ultravioletten. Nach dem
gleichen Prinzip können elektromagnetische Wellen bis zum Meterbereich verstärkt werden. Die
hierzu entwickelten Geräte heißen Maser.

Spiegel Resonator Spiegel
(undurchlässig) (teiidurchlässig)

Bild 5.4.4. Prinzipieller Aufbau des Lasers

Laser bzw. Maser bestehen nach Bild 5.4.4 aus dem Resonatorraum mit dem aktiven Medium und
der äußeren Energiequelle. Das aktive Medium befindet sich im elektromagnetischen Feld des
Resonators, der z. B. von zwei Spiegeln gebildet wird. Er ist so auf die von der Energiequelle
eingestrahlte Welle abgestimmt, daß die Phase der im aktiven Medium induzierten Strahlung
mit der Phase der auslösenden Welle übereinstimmt und das emittierte Licht wieder in das aktive
Medium zurückgekoppelt wird. Damit läßt sich erreichen, daß die Ausstrahlung der Lichtquanten
durch das aktive Medium in Form kurzzeitiger, verstärkter Impulse erfolgt.
Bei der induzierten Emission finden im aktiven Medium Elektronenübergänge zwischen vier
Energieniveaus statt (vgl. Bild 5.4.2). Durch die einfallende Energie werden die Elektronen vom
Grundzustand 0 auf das Anregungsniveau 3 gepumpt (a). Auf dem Anregungsniveau verweilen
die Elektronen nur kurze Zeit (Größenordnung 10-7 s). Sie werden durch Haftstellen eingefangen
und fallen dabei auf das metastabile Zwischenniveau 2 herab (b). Der Zustand 2 kann bis zu
mehreren Millisekunden aufrechterhalten werden. Bei starker Pumpleistung vom Niveau 0 in
das Niveau 3 läßt sich dadurch eine Überbesetzung des metastabilen Niveaus 2 erreichen. In
diesem Zustand reichen bereits wenige von außen zugeführte Photonen zur Induzierung des
lawinenartig ablaufenden Strahlungsprozesses (c). Dabei gehen die Elektronen in das Aktivator-
niveau 1 über. Von hier kehren sie strahlungslos auf das Ausgangsniveau 0 zurück (d).
Die Wahrscheinlichkeit für einen Elektronenübergang zwischen zwei Energiezuständen 1 und 2
unter dem Einfluß eines elektromagnetischen Strahlungsfeldes mit der magnetischen Fluß-
dichte B ist nach der quantenmechanischen Störungsrechnung im stationären Gleichgewicht,
bezogen auf die Zeiteinheit und je Elektron,

ö = 1 (1 )n AW\ + AJF2 ’
Darin geben

ATFi = h AcOi, AJF2 = Ä Aco2 (2)
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die Breite der Energieniveaus an, bedeutet das magnetische Moment des Elektrons im
Energiezustand 1, kennzeichnet die magnetische Feldkonstante. Bestimmen Sie den Beset-
zungsüberschuß für einen Laser mit den folgenden Daten :

Aco x = Aco 2 = 2 • 1011 s-1 , m m = 1,5 • 10~29 V s m .

Der Gütefaktor des Hohlraumresonators (vgl. [4] 5.3.6.) sei

W WQ = 2n — f = ü j— = 1022 .
Pv Pv

Darin gibt W die Energie im Resonatorraum V, Py die Verlustleistung, somit Pyff (f Licht-
frequenz) die verlorene Energie während einer Periode an. Das Resonatorvolumen sei V = 10-5 m3 .
Berechnen Sie den für den Betrieb des Lasers erforderlichen Besetzungsüberschuß.

Lösung:
Wir betrachten die Energieniveaus 1 und 2 nach Bild 5.4.2 mit W 2 > Wj.  n 2 gebe die Anzahl
besetzter Plätze im oberen, n x im unteren Niveau an. Das einzelne Photon hat die Energie hco.
Die von den Atomen des aktiven Mediums nach außen abgegebene Energie ist proportional der

Bild 5.4.5. Zur Breite AJVX und APF2 der Energieniveaus 1 und 2

Differenz n 2 — zwischen den Atomen, die ein Photon Äco emittieren, und denen, die ein Photon
absorbieren können. Nach (1) erhält man somit für die je Sekunde vom aktiven Medium

abgegebene Energie
R2

P = (n n,) h<o ---------------------- . (3)v 2 v Ä(ATFX + AH',) v '
Darin ergibt sich

aus der Differenz der Energieniveaus 1 und 2 nach Bild 5.4.5. An der Begrenzung des Resona-
tors geht Energie verloren. Die Größe dieser Verlustleistung läßt sich aus dem Gütefaktor Q des
Resonators berechnen. Nach [4] 5.3.6. und nach der Gleichung für die Energie des elektromagne-
tischen Feldes (vgl. [4] (1.4. /21a)) erhält man

Die ausgestrahlte Energie muß die Energieverluste übertreffen:

P > P v . (6)
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Wir formen diese Forderung in eine Bedingungsgleichung für die Besetzungszahlen n r und n2 um.
Es folgt

n 2 - n x > AEdtAük v = V . (7)
2/z0mm

2Q fyom mQ

Für den Betrieb des Lasers ist somit erforderlich, daß das höher gelegene Niveau gegenüber dem
tiefer liegenden einen hinreichend großen Besetzungsüberschuß aufweist.
Unter den vorgegebenen Bedingungen folgt

1,05 • 10~34 • 4 • 1011
--------- ----------- 10-5 = 7 5 . 1013.
2 • 1,257 • IO"6 • (1,5 • 10- 29 ) 2 • 1022

5.4.3. Mottsches Exziton

Die bei der Grundgitterabsorption gebildeten Quasiteilchen Elektron und Defektelektron ziehen
sich infolge ihrer entgegengesetzten Ladungen an. Hierdurch kann ein gebundenes Paar aus
Elektron und Defektelektron entstehen, das als Exziton bezeichnet wird. Es bewegt sich als
elektrisches neutrales Quasiteilchen durch den Kristall und transportiert dabei Energie. Sie
wird bei der Rekombination, wenn das Elektron in die Elektronenlücke des Valenzbandes zurück-
kehrt, wieder abgegeben. Die Anregungsenergie für die Bildung eines Exzitons ist kleiner als die
Energielücke zwischen Valenz- und Leitungsband.
Im Grenzfall des MoTTschen bzw. schwach gebundenen Exzitons ist die Anziehungsenergie

ß2

~ 47V£0er r0

so klein, daß der mittlere Abstand 2r0 zwischen Elektron und Defektelektron groß gegen die
Gitterkonstante ist.
Messungen (vgl. [39] bis [42]) des Exzitonenspektrums von GaAs bei T = 21 K zeigen eine Serie,
die durch die Formel

v=-=v„-  (n=  1 ,2 ,3 , . . . )  (2)c n2

mit
v0 = 1,225- 106 m-1 , ih = 2,74 - 103 m- 1 (2a)

wiedergegeben wird.
Bestimmen Sie daraus die Breite AW der Energielücke und den Exzitonenradius r0 .

Lösung:
Die Energieniveaus des Exzitons befinden sich zwischen dem Valenz- und dem Leitungsband.
Bei Zuführung ausreichender Energie an das Exziton können sich beide Teilchen unabhängig
voneinander durch den Kristall bewegen, und das Exziton zerfällt in ein Elektron und ein Defekt-
elektron.
Verglichen mit dem Wasserstoffatom, entspricht das Niveau der lonisierungsenergie der Kante T7L
des Leitungsbandes. An die Stelle des Wasser stoffkernes tritt beim Exziton die effektive Masse
m p , an die Stelle der Elektronenmasse die effektive Masse m n . Für die Energieniveaus des Ex-
zitons erhält man damit (vgl. [2] (4.3./214) bzw. (5.1.7./6))

ue4

W n = W L - (n = l t 2, 3, . . . ) . (3)327r2fc2e 2o€r 2n 2
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Darin bedeutet

die reduzierte Masse des Exzitons. Der Grundzustand ist durch n = 1 gegeben. Bild 5.4.6 zeigt
die Energieniveaus des Exzitons.

Bild 5.4.6. Energieniveaus des MoTTschen Exzitons

In der Regel werden Übergänge zwischen der oberen Valenzbandkante W v und einem Exzitonen-
niveau beobachtet. Die aufzuwendende Energie beträgt dabei, wie aus dem Vergleich mit (5.1.7./7)
bzw. dem Wasserstoffatom folgt,

AlFn = A1F ----------—-------- = AJF ------ — • 13,6 eV.
32TC2 Ä 2£0

2£r
2n2 £r

2m e n 2

Darin bedeutet AW = JVL — Wy die Breite der Energielücke.
Wegen

ne-
(5)

13,6 • 1,60 • 10- 19 
n , AA n— ---------------------- m-1 = 1,09 • 107 m-1

6,626 * IO“34 • 3 • 108

erhält man als Wellenzahl der Absorptionslinien

_ = SW_ ------ 1O0  10 , J_
hc eT

2m Q n 2

Durch Vergleich mit (2) folgt für die Breite der Energielücke

AJF = hcv0 ,

mit den vorgegebenen Werten

(6)

(7)

. Tjr 6,626 • 10-34 • 3 • 108 • 1,225 • 106 
wAJF = —------------— ----------- eV = 1,52 eV

1,60 • IO“19

(vgl. Tab. 5.1.1).
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Die Bindungsenergie des Exzitons ergibt sich aus dem zweiten Summanden in (5) mit n = 1.
Sie setzt sich nach der allgemeinen Theorie der Kreisbewegung aus der negativ zu zählenden
potentiellen Energie und der positiven kinetischen Energie zusammen. Im Gleichgewicht ist die
potentielle Energie dem Betrage nach doppelt so groß wie die Gesamt- bzw. Bindungsenergie.
Aus (1) und (5) folgt daher

z,2
= “ 7 --------47VE0Er r0 167r2Ä2E0

2£r
2 (8)

bzw.
— e2

Z7(r0 ) = -2 = - -------- .
47T£0Er r0

Durch Auflösen nach r0 ergibt sich der Radius des Exzitons

_ 47tÄ2E0Eir o = öe2
'p/

Aus der Messung der Wellenzahlen nach (2) folgt für den Radius des Exzitons

e2

0 87ze0£rhcv1

Mit den vorgegebenen Größen erhalten wir

(1,60 • IO"19 ) 2rn = - ------------------------- ---------------------------- m = 20,6 nm .0 8tu • 10,24 • 8,85 • 10~12 • 6,626 • 10~34 • 3 • 108 • 2,74 • 103

(9)

(10)

(11)

5.4.4. Photospannung im Halbleiter

Durch Bestrahlung eines Halbleiters wird in diesem eine Photospannung erzeugt. Es werde eine
Probe untersucht, in der durch Bestrahlung nach Bild 5.4.7 die Photospannung U = 8,5 mV

Bild 5.4.7. Photospannung U bei der
Bestrahlung eines Halbleiters

hervorgerufen wird. Die Änderung der spezifischen elektrischen Leitfähigkeit in der bestrahlten
Zone betrage Zier = 25 • 103 Q-1 m“1. Im thermischen Gleichgewicht sei die spezifische elektrische
Leitfähigkeit an der Stelle A ooA = 5,0 • 103 O-1 m-1 . Das Verhältnis der Beweglichkeiten von
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Elektronen und Defektelektronen sei = 2,4- Welcher Wert ergibt sich auf Grund der ge-
öp

messenen Photospannung für die spezifische elektrische Leitfähigkeit an der Stelle Bl

Lösung:
Nach der Gleichung (3.3.1./5) für die elektrische Leitfähigkeit und der Gleichung (5.2./7) für die
Dichte des Diffusionsstromes erhalten wir auf Grund des Onivischen Gesetzes für die elektrische
Feldstärke

E Z>p gradff - -Dn gradw
M + b pP

Wir beschränken uns auf den eindimensionalen Fall nach Bild 5.4.7. Werden die Diffusions-
koeffizienten nach der EiNSTEiN-Beziehung eingesetzt, so folgt durch Integration für die erzeugte
Photospannung

? dp dn

8 .r ba n + bp p

Das Integral ist über den gesamten geschlossenen Stromkreis zu erstrecken. Beachtet man in (2)

p = p0 ~r &p , n = nQ +
nebst

An = A p , p ono = n E
2

und daraus folgend

d 0 = — — d» 0 ,n0
so ergibt sich

fj = _ r bB p0 + Mo dn 0 d _ , fcT P bp - &n dAn
e « 0(6n» + bv p) dz ' e y bRn + bpp dz

Wegen
(£ dz = 0

kann man
_ J! bpp» + Mo d „ = (&n + &P) Sn

y) n0 (bRn + bB p) d 0 y) n0 (V + bpp) d 0

schreiben und erhält damit aus (2)

(3)

(4)

(5)

(6)

(6 a)

(6 b)

U = U± + U2
mit

kT r bR + bp Sn
e y> bRn + bpP n0

—— ----— dAn .
ba n + bpp

Der erste Summand verschwindet, wenn im Stromkreis keine Inhomogenitäten und im Zusam-
menhang damit keine Schwankungen der Elektronenkonzentration n0 = n0 (z) auftreten. Mit
dem zweiten Summanden werden die Schwankungen in der Elektronenkonzentration infolge
unterschiedlicher Intensität bei der Bestrahlung bzw. unterschiedlicher Lumineszenzeigenschaften
des Materials erfaßt.
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Wir erstrecken die Integration über den bestrahlten Anteil des Stromkreises. Die Gleichgewichts-
konzentration Pq kann an den bestrahlten Stellen gegen die Abweichung A > = An vernachlässigt
werden. Damit folgt aus (6 a)

B B
u = — f 6 n + 6 P dw = 

6 n + 6 P f _______dw ö ________
e J b + th + b n n 0 

0 e 6n J n n<)+ ±b p

A A n (7)
Beachtet man die Verknüpfung zwischen der Konzentrationsänderung und der Leitfähigkeits-
änderung nach (3.3.2./5)

Ao = e(bn + 6p ) An, (8)
so erhält man durch Auswertung des Integrals

1 + —
= — In ------ . (9)

e 1 + A1
°0B

U1 ist nur dann von Null verschieden, wenn die elektrischen Leitfähigkeiten im thermischen
Gleichgewicht an den beiden Grenzen der Bestrahlung voneinander abweichen.
Das Integral (6 b) liefert wesentliche Beiträge an den Stellen stärkster Änderung der Elektronen-
konzentration, d. h. an den Bestrahlungsgrenzen. Demzufolge wird (6b) in zwei Teilintegrale
von A — Az bis A + Az und B — Az bis B + Az zerlegt. Die übrigen Beiträge werden vernach-
lässigt. Es folgt

kT 6p — 6nu 2 — 7 7~e 6p “ 6n

4+Az
d An

B+Az
d An (10)+

6n + 6p 6n + 6pA — Az B-Az

Im Grenzfall Az -> 0 ergibt sich durch Auswertung der Integrale

V 
kT &P - &n hl 

+ &n + &p noB
6p + 6 p An +

b n + 6 P
Durch Umformung erhält man hieraus, wenn die Verknüpfung (8) berücksichtigt wird,

1 + —
U.2 = — b »~  b" In ------- (11)e 6p 4- b n i [ _A _

a oB
Damit ergibt sich aus (6) für die gesamte Photospannung

1 + —
U = — — — In ------- . (12)

bp + &n « x +

°0B
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Durch Auflösen nach croB folgt

(13)a oB —

Wir setzen die vorgegebenen Werte ein und erhalten

1,60 • 10~19
exp ( 3,4 • 8,5 • IO-3 • .r \ ________2 • 1,38 • 10- 23 • 300 )

25 ’ 103 Zq. Q* 1A3 1,60- 10- 19
-------------- exp I 3,4 • 8,5 • 10“3 --------------------------
5 • 103 \ 2 • 1,38 • IO"23 • 300

(70B = 25 . 103 □ -1 m-1

= lO lO’ nr 1 .

2B. Aufgaben

A 5.4.1. In einem Kristall beträgt der Abstand zwischen Valenz- und Leitungsband
AW = 2,85 eV. Bei welcher Wellenlänge liegt die Absorptionskante?

A 5.4.2. Die Intensität des durchgehenden Lichtes zeigt bei Ao = 0,469 p,m eine Absorp-
tionskante. Außerdem tritt bei A = 0,863 p.m ein Intensitätsminimum auf. Deuten
Sie dieses Meßergebnis.

A 5.4.3. In einem Kristall liegt das Haftstellenniveau 0,035 eV unterhalb der Leitungs-
bandkante, das Aktivatorniveau 0,025 eV oberhalb der Valenzbandkante. Die
Absorptionskante liegt bei Ao — 0,645 p,m. Berechnen Sie die Frequenzen der durch
strahlungslose Übergänge erzeugten Phononenschwingungen, die Größe der
STOKESschen Verschiebung sowie die Wellenlänge der fluoreszierenden Strahlung.

A 5.4.4. Der Wirkungsgrad einer stationären Fluoreszenzstrahlung beträgt t] = 0,65, die
Konzentration der Haftstellen = 8 • 1021 m-3 , die der Aktivatoren =
5 • 1022 m-3 . Zu berechnen ist das Verhältnis der Übergangswahrscheinlichkeiten
zwischen emittierenden und strahlungslosen Prozessen, wenn der Abstand des
Haftstellenniveaus von der Leitungsbandkante gleich dem Abstand des Aktivator-
niveaus von der Valenzbandkante ist.

A 5.4.5. Welchen Gütefaktor muß der Resonator in einem Laser mindest erreichen, wenn
für den Betrieb ein Besetzungsüberschuß n2 — = IO14 erforderlich ist. Das
magnetische Moment eines Elektrons im Festkörper beträgt m m = 5 • 10-29 Vsm,
die Frequenzbreite der beiden Energieniveaus übereinstimmend Aa> = 4 • 1011 s-1 .
Der Resonatorraum hat das Volumen V = 20 cm3 .

A 5.4.6. Stellen Sie aus den Werten nach Tab. 5.1.1 und Tab. 5.1.4 die quantitative Formel
für die Wellenzahlen des Spektrums der MoTTschen Exzitonen in GaAs am abso-
luten Nullpunkt auf. Vergleichen Sie das Ergebnis mit den Meßwerten

ü = v0 = 1,22- 106 m-1 ,' 5»! = 2,74 • 103 m- 1

n 2

und begründen Sie die Abweichung.
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A 5.4.7. In Kupfer(I)-oxid wird für die Wellenzahlen des Exzitonenspektrums die Serie

V = (1,7508 • 106 - m-J

gemessen. Berechnen Sie die Breite der Bandlücke und die Bindungsenergie des
Exzitons.
Berechnen Sie zur vorangegangenen Aufgabe den Exzitonenradius. Die Dielektri-
zitätszahl beträgt et = 10.
Berechnen Sie die erzeugte Photospannung zwischen den Punkten A und B eines
Halbleiters bei Zimmertemperatur T = 300 K, wenn im bestrahlten Teil der Probe
die Änderung der spezifischen elektrischen Leitfähigkeit Acr = 0,15 H-1 m-1 ge-
messen wird. Ohne Bestrahlung sei die elektrische Leitfähigkeit im Punkte A
croA 0,75 Q-1 m-1 , im Punkte B croB = 0,90 O-1 m-1 .

Das Verhältnis der Elektronenbeweglichkeiten beträgt — = 1,5.
&p

Entwickeln Sie die Formeln für die Photospannung unter den Voraussetzungen
.Au  Aua) ---- 1 und b) ---- 1.

°o °o
In n-Germanium werde bei T = 300 K der mittlere Teil der Probe derart bestrahlt,
daß die Leitfähigkeitsänderung Au = 500 Q“1 m-1 beobachtet wird. Die spezifische
elektrische Leitfähigkeit beträgt ohne Bestrahlung am Querschnitt AcroA
= 2 Q-1 m-1 , am Querschnitt B aoB = 0,2 Q-1 m-1 . Wie groß ist die erzeugte
Photospannung zwischen den Punkten A und B (Werte nach Tab. 5.1.4)?
Wie groß ist in n-Germanium bei T = 300 K die Photospannung zwischen zwei
Punkten A und B für croA -= 200 H-1 m-1 , aoB = 250 Q-1 m-1 , Au = 0,5 Q-1 m-1 ?

A 5.4.8.

A 5.4.9.

A 5.4.10.

A 5.4.11.

A 5.4.12.



Losung der Aufgaben

A 1.1.1. a = 0,408 nm.
A 1.1.2. a — 0,287 nm.
A 1.1.3. a = 0,629 nm. >
A 1.1.4. Infolge der Verschachtelung zweier Gitter sind in einer Elementarzelle zwei Gitter-

bausteine, ein Natrium- und ein Chlorion, enthalten.

A 1.1.5. a = 1 / + m s) ? a _ 0,542 nm.
F ZnS

A 1.1.6. £20' = 2,11 ■ 1031 m-ä.

A 1.1.7. = — 2a = 0,399 nm (i = 1, 2, 3).
2

A 1.1.8. Natrium: 0, 0, 0 ;  — , — , 0 ;  — , 0, — ; 0, — , — ;
2 2 2 2 2 2

Chlor: — , — , — ; 0, 0, — ; 0,—, 0 ;  — , 0, 0.
2 2 2 2 2 2

A 1.1.9.
A 1.1. 10.
A 1.1.11.
A 1.1.12.

0,273 nm.
kubisch-raumzentriert 0,68, kubisch-flächenzentriert0,74 (dichteste Kugelpackung).
0,34.
d = 3,51 g cm-3 , Abstand nächster Nachbarn 0,154 nm.

A 1.1.13. kubisch-flächenzentriert z = 12, kubisch-raumzentriert z = 8, hexagonal dichteste
Kugelpackung z = 12.

A 1.1.14. Es sind die Lösungen der Gleichung x2 + y2 + z2 = r2 mit ganzzahligen Werten
zu bestimmen: zr = 6, z2 = 12, z3 = 8, z4 = 6, z5 = 24, z6 = 24.

A 1.1.15. -i- ]/2 a = 0,288 nm.

A 1.1.16. V3r0 = ---- a = 0,433 a.0 4
A 1.1.17. r0 = 0,234 nm.
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A 1.1.18. k = (k • bj)  a x 4- (fc • b 2 ) a 2 + (fc • b 3 ) a s ,

k = (fc • «i)  b ;  + (fe • g 2 ) b 2 + (fc • « 3 ) b 3

27V

A 1.1.19.
A 1.2.1.
A 1.2.2.

£?0' = 1,57 • 1031 m-3 .
Ä = 0,408 nm, 0,273 nm, 0,163 nm, 0,131 nm, 0,091 nm.
(Ax h2 h3 ) = (2 2 1).

A 1.2.3. , 1 3 , 5cos a = —=■, cos p = ------=■, cos y = _ .
V35 V35 35

A 1.2.4. = <5135 = 4=" = 0,069 nm.
35

A 1.2.5.
A 1.2.6.
A 1.2.7.
A 1.2.8.
A 1.2.9.
A 1.2.10.
A 1.2.11.

(1 0 0).
& = 17,84°; 25,67°; 32,04°; 37,78°; 43,24°; 48,61°; 60,04°; 66,78°; 75,63°.
A = 0,1225 nm.
n = 1,08, J7pot = -17 eV.
A = 8,4 • IO“11 m < a.
(Fkin = 0,08 eV, v < 3,9 • 103 m s“1 .
a) l = 2 :  22,2°, l = 3:  42,4°, l = 4 :  70,5°.
b) l = 1 :  14,4°, l = 2 :  29,9°, Z = 3 :  48,4°, Z = 4 :  83,8°.

A 1.2.12. | # | 2  = / 2 [ |  1 4- COS + Ä 2 ) + COS 7t (J + A 3 ) + COS 7t(Ä 2 4~ Ä 3 ) |  2

4- |sin 7v(Ax 4- 2) + sin ( 1 + 3) + sin ( 2 ~ 3 )l 2]-
Sind hx , h2 , h3 teilweise gerade und teilweise ungerade, so ist F = 0. Sind
Äx, h2 , h3 entweder alle gerade oder alle ungerade, so ist F 4= 0 ;  F(i  10)  = 0,
F(1 1 1) # 0.

A 2.1.1. s-Zustände mit antiparallelen Spins, abgesättigt; die zwei p-Zustände mit n = 2,

Z = 1, m = 1, 0, — 1, s = • sind nicht abgesättigt und können jeder an einer
2

Elektronenpaarbildung teilnehmen. Im Grundzustand wäre C daher zweiwertig.
A 2.1.2. s-Zustände abgesättigt; die drei 2p-Zustände können mit parallelen Spins auf-

treten und daher jeder an einer Elektronenpaarbildung teilnehmen. Stickstoff ist
daher dreiwertig.

A 2.1.3. Silizium: (3s) 2, (3p) 2, vierwertig; Germanium: (4s) 2, (4p) 2 , vierwertig; Zinn: (5s) 2,
(5p) 2 vierwertig.

A 2.1.4. Gallium: (4s) 2 , (4p) 1, Arsen: (4s) 2, (4p) 3 , insgesamt vier Elektronen im s-Zustand,
vier Elektronen im p-Zustand, die kovalente Bindungen eingehen können.
Indium: (5s) 2 , (5p) 1 , Antimon: (5s) 2, (5p) 3 , vier kovalente Bindungen wie beim GaAs.

A 2.1.5.
A 2.1.6.

e = -4,2 eV.
1 eV/Molekül = 23,0 kcal mol“1 = 96,3 kJ mol" 1 ,
1 kcal mol"1 = 4,19 kJ mol" 1 = 0,0434 eV/Molekül,
1 kJ mol"1 = 0,0104 eV/Molekül.

A 2.1.7. 61,0 kcal mol-1 = 255 kJ mol-1 bzw.
103,0 kcal mol-1 = 431 kJ mol-1 .

A 2.1.8.
4ke0 r \ 2 3 / 4k£0 r

<x = 2 In 2 = 1,386.
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A 2.1.9.
A 2.1.10.
A 2.1.11
A 2.1.12.
A 2.1.13

r0 = 0,433a, — U o = 711 kcal mol -1 = 2977 kJ mol“ 1 .
h = 1,64 • IO“11 m 2 N -1 .
a) a = 1,46, b) a = 1,75. :

U = 769 kcal mol -1 = 3 220 kJ mol -1 , Meßwert 852 kcal mol -1 = 3 570 kJ mol -1 .
ö = 1,18 • 10 -5 , k nach 2.1.2.

A 2.1.14. rr 1U E = — N atxP 2, U s = 0,47 J kmol -1 .
8

A 2.1.15. « _ J_  a 2 1 ,1  1
44 c« 11 3 _ C12 3 + 2C12 ’

12 = —( 1 — — 1 y

A 2.1.16. Die x-Achse wird gegen die z-Achse um 0,038° verschert.

A 2.1.17. 1 dP  ATT „ JT7  £ , x 1 T7 d 2 E7
h = --------------- . Wegen dU = —P dP  folgt — = P ------ .

P dP k dP 2

d 2 f7 ?? 2 / dTT \
x = da rr = 0 ist - Es fo1

dr 2 97W \ dr /

x = r - ro(ro + A + 5] n«)
L »o®+2 r 0 ”+ 2 J 9- v2 « 4

A 2.1.18. % = 2,26 • IO-11 m 2 N -1 .

A 2.1.19.
In

U = vsL = 1/ .

A 2.1.20. v = voe -1 ( Cü _ - a;) ? t?sT = ~\ *
|/ d

A 2.1.21. Vsl = } — = *4 km s" 1 , t>sT = 1/ i = 2,9 km.s- 1 .|/ d |/ d

A 2.1.22. v sT2 — = km s -1 .

A 2.2.1. £ = 1,16 • 10 -18 J.

A 2.2.2. — = 1,00 • IO10 Hz, — = 1,52 • 10 -5 .
2tc cd

A 2.2.3.
wp = hK ,K=—;p  = 2,05 • 10 -27 kg m s-1 .
vs

A 2.2.4. — = f = 4,32 • IO9 Hz, vs = 1450 m «-1 .
2rr ' ’ s

A 2.2.5. a' = 6,0 • 10 -5 .

A 2.2.6.
a'Z 2e2

dn = ----------------- (n — l )  2 .
18O7v&Eoro

A 2.2.7. f(v ) dv - 3100.

A 2.2.8. dv = 10 22 -”1023 Hz (gesamter Frequenzbereich).
A 2.2.9. Uo = 354P = 704 kcal kmol-1 =- 2945 kJ kmol -1 .
A 2.2.10. ve = 3,75 • 10 12 Hz.& 7
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A 2.2.11.
A 2.2.12.

C — 5,943 kcal kmol -1 K -1 = 24,88 kJ kmol-1 K“ 1 .
C = 0,456 R = 0,906 kcal kmol” 1 K~x = 3,79 kJ kmol"1 K' 1 ,
c = 0,0336 kcal kg- 1 K“ 1 = 0,141 kJ kg- 1 K" 1 .

A 2.2.13.
A 2.2.14.

e =• 6,62 • 10“ 30 J.
C = 1,1 • IO-3 kcal kmol-1 = 4,6 • IO-3 kJ kmol-1 .

A 2.2.15. = 0,0038.
c

A 2.2.16. — d o = 161  dTp = 104 K m _3 .T]> dF  dF
pF \  2

A 2.2.17. C p - = —T = — VT.
x

\ 8P / t
A 2.2.18.
A 2.2.19.
A 2.2.20.

A = 54,5 nm.
y = 1,03.

= 0,45 K.

A 3.1.1. — = 5,7 • 10“ 12 .
A

A.3.1.2. — =- 2,4 • IO-6 .
N

A 3.1.3. — = 8,8 • IO-6 , 2n = 2,8 • 10 5 .
N

A 3.1.4. — = 1,44 • 10~6, 2n = 4,6 • 10 5 .
N

A 3.1.5.
A 3.1.6.

4 Zwischengitterplätze je Elementarwürfel, A7' = N.
6 Zwischengitterplätze je Elementarwürfel, N' = 1,5 A.

A 3.1.7. — = 4,8 • IO-5 .
N

A 3.1.8. KCl: = -1,44 • 10- 5, AgCl: = 0.
e 8

A 3.1.9.
A 3.1.10.
A 3.1.11.
A 3.1.12.
A 3.1.13.

£A = 1,8 eV, Dq = 4,1 • 10~4 m 2 s" 1 .
v = 1,4 • 10 15 Hz.
D = 1,5 • IO-17 m 2 s" 1 .
b = 2,4 • IO-12 m 2 s- 1 V- 1 .
eB = 0,10 eV.

A 3.2.1.
A 3.2.2.
A 3.2.3.
A 3.2.4.
A 3.2.5.

P = 3,26 • 10~8 Asm- 2, m e = 2,03 • IO-36 Asm, r = 1,27 • IO-17 m.
a = 9,35 • IO-21 m 3, <xm = 4,64 • IO-29 m 3.
»ne — 3,53 • IO-35 Asm.
P = 5,82 • IO“12 Asm- 2.
0,4 (xm: n — 1,567, 0,7 jxm: n = 1,535, 5 jxm: n = 1,521;
Meßwerte: 1,568, 1,539, 1,519.

A 3.2.6.
A 3.2.7.
A 3.2.8.

<x = 8,36 • 10- 29 m 3, a e i = 4,23 ■ 10- 29 m 3 .
cou = 2,42 • IO13 s- 1 , <oo = 9,30 • 10 13 s" 1 .
NaBr: coo = 2,51 • 10 13 s“1 , KCl: cö0 = 5,70 • 1013 tr 1 .
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A 3.2.9. couv = 2,73 • IO16 s- 1 .

A 3.2.10. , . , 5,07A2 , .n 2 = 1 4---------------------, Z m um.
5,76A2 - 3,55

A 3.2.11.
A 3.2.12.

£r = 288.
Ap1 /2  = 8,34 • 10 13 s- 1 .

A 3.2.13.
2

AZj/2 — ■ max - Amj/2 = 89,4 nm.
c

A 3.2.14.
A 3.2.15.
A 3.2.16.
A 3.2.17.

o = 9,5 • 10 15 s- 1 , Ä' max = 42,2 m“ 1 .
oc = 4kP 3 .
2E = 0,4 nm.

1,8 • 10~29 Asm.

A 3.3.1. Bei jedem Stoß wird die Energie — (2vDrift ) 2 übertragen. Die Gesamtzahl der Stöße
N 2

in der Volumeneinheit ist — :
T

NQ = 2 — mv Dri{t = f 2 a .
T

A 3.3.2. r = 6,6 • IO-14 s.

A 3.3.3. «Max = ] /— , l’Max = 1,05 • 10 3 Hl ST1 .
1 m e

A 3.3.4.
A 3.3.5.
A 3.3.6.
A 3.3.7.
A 3.3.8.
A 3.3.9.

:=z; 0,5 eV.
1) N =■- 5,86 • 10 28 m~3 , 2) N = 7,35 • 10 28 m~3.
1) b = 7,16 • IO"3 m 2 s- 1 V" 1 , 2) b = 5,71 . 10~3 m 2 s" 1 V" 1 .
s = 3,3 eV.
E r = 1,2 • 10~5 V m- 1 , Z7H = 1 ,8 (iV.
e = 1,0021 • 3,3 eV.

A 3.3.10. <9 = y 0 f In (1  4- e “ kr) ds + akNV 0 + -V 0

0
oo

mit U — s dV, V o = Im 3 ;

0

f r, f~ a3h? “ J e»+( + 1
0

_ 3;*2 y / 3A \ 2 /3 , N_ r _ 57t2 / 47ty y/ 3 m2fe2T 2~[
~ 10 \47t<J 'm  [ 3 \ 3N  ) h? J ’

p _ _ / 8F \ _ h? (3N\* I 3 N_ r 57t2 MtryV/ 3 mWT* 1
“ \ dV / T ~ 5 \ 47 ry /  + 3 \ 37V / 7t4 J ’

P — 2,206 • IO-10 N m -2 . Am Schmelzpunkt erhöht sichP gegenüber dem absoluten
Nullpunkt um 0,15%.

23  Schilling, Festkörperphysik
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A 3.3.11. = -53, C = 5,5 (1 4- 0,0075) eV.

A 3.3.12. ce = 4,3 • IO-4 kcal kg- 1 K -1 = 1,8 • IO-3 kJ kg- 1 K" 1 , = 0,0077.
c

A 3.3.13.
£

Nach (3.3./7) bedeutet. e > 1 :

k 2mk \ 4ra/ /
A 3.3.14.
A 3.3.15.

T o = 54600 K.
v = 8,15 • 105 m s-1 .

A 3.3.16.
A 3.3.17.
A 3.3.18.
A 3.3.19.
A 4.1.1.
A 4.1.2.

2. = 4,4 • IO-8 m.
«Drift = 3,2 mm s- 1 , ATK = 7,8 • IO-17 eV.
C'e = 8,3 • IO“3 kcal kmob1 K“ 1 = 34,8 J kmob1 K -1 .
m — 1,90 • IO-30 kg, / = 0,48.
AW\ = FÖi' = 2,64 eV, IFU2' = 8,59 eV, AIF2 = 10,6 eV.
ATKj = W 01' = 0,05 eV, TFU2' = 8,59 eV, &W 2 = 0,20 eV.

A 4.1.3. Die Breite der Energiebänder bleibt unverändert. Anstelle der durch kun —
a

für UQ < 0 festgelegten unteren Bandgrenzen erhält man für diese Werte die oberen
Bandgrenzen

kM =— für J70 > 0 .
a

A 4.1.4.
A 4.1.5.

F = 37, C7X11 = -15,0 eV.
F = 44,2.

A 4.1.6. / 1 1 \Die potentielle Energie für r > r0 ist Null, für r r0 U = ------ I — -------- ] .
4to 0 \ r ra f

Durch Mittelwertbildung folgt

f -Wdr ,47T£0ß () J \ r  rQ J
0

daraus bei Berücksichtigung’der Quantenverteilung r0
2 —> r0

2 nebst Ve0// 0 = —
c o

Ze2r0
2 

9= = 4K»ie c0-x.
bi2o

eo
A 4.1.7.
A 4.1.8.

Uo = 8,4 eV.
rK — 0,262 nm.

A 4.1.9. Die Transformation = 1/ —- — führt auf
y ma)0

d2w 2W- + (A- r - )y  = O mit
Qg äCOq

Randbedingung (1):
2

■ (< ) = c o ~ c i ~ c 3 c'2 - -  ----T*.
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(1) bedeutet = o für
\ Ao

i / Ä 2W
rx = 1/ ----- ist identisch £0 = 1 mit dem Eigenwert Z = ----  — 0,353. Dagegen1/ Hcoq

führt Randbedingung (2) auf u($) = e 2 mit dem Eigenwert Z — 1,000.
b 2

A 4.1.10. k A b<  — .A 2
A . o . Ä27«a2 

-4. 12  3tü2 o 7C2 e FA 4.2.1. 8 = — ----  mit k 2 = — , fcAM =- -j! “ = 3.
2m a? . a 2

A 4.2.2. kF = 5,14 • 109 m" 1 , T F = 11600 K, = 5,93 • 105 m s“1 .

n rv t /jp”A 4.2.3. G = 1/ ----  = 1/ ---- , G = 2,81 • 107 ; mit b1? b 2 , b 3 nach (1.1./8) folgt
y &0 |/ « 3

3 777 ,7> .
&A = y - J —L , ™ 7- = o, i ,  . . . ,  g — i .

A G 1

1 dJF
h dfcA

A 4.2.4.

d _ _d r_l_ 8W(k19 k 2 , k 3 ) 1 _ J_ g2jy dI .y __ * a2 TF
d£ d£ [ Ä J Ä „=i  dk} dkv d£ Ä2 

v =i  dkv

Nach dem zweiten NEWTONschen Axiom gilt für die Kraft F

Daraus folgt für den Massentensor

' d2 lF 82 W 82 W
dk 2 dkr dk2 8k± dk3

(m)-i = A
Ä 2

d2 w d2 w ■ 82 W
8k} dk2 ök2

2 dk2 dk3

d2 w 82 W 82 W
8kr dk3 dk2 dk3 sv

A 4.2.6. v = 0 wegen ------ = 0.
d&A

A 4.2. 7i Cu, Al, Na je halbbesetzte Leitungsbänder, Leiter; Si, Ge, Ar vollbesetzte oberste
Bänder, Isolatoren.

A 4.2.8. i? = 108 ---109 V m-1 .

i dirA 4.2.9. Aus v = ----------- folgt wegen W —> — W:  k±->  —kA .h d/eA
Wertevorrat k A ist für Elektronen und Defektelektronen gleich.
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A 4.2.10, Nach der FERMi-DiRAC-Statistik gilt für die Verteilungsdichte der Elektronen

/n = fn(s - 0 = -----
1 + e* F

Für die Verteilungsdichte der Defektelektronen folgt

/p = i - /n = i ---------- _ = /n(: _ £) .

1 + e kT  1 + e JcT

Mit der Energie kehrt auch das FERMi-Potential C — C beim Übergang von Elek-
tronen zu Defektelektronen sein Vorzeichen um.

A 4.2.11. /n = 1,6 • 10-9 , / p = 1 - 1,6 • 10- 9 .

A 4.2.12. = 4,03 • IO"9 m3 .
8k3

A 4.2.13. y = 1,6 • 1022 eV“1 .

A 4.2.14. Mittels AfevO = x i Av* + 2 —
dx;

folgt durch Ableitung der ScHRÖDiNGER-Gleichung

dk; dk; m dx;
Auflösen nach dem ersten Summanden, Multiplikation mit ip* und Integration
über das Grundgebiet Q ergibt

-£-= f V *(H - W) e A-r dV - i - f - - dVdk; / dk; m J dx;b b «/ <
Q Q

Aus den Eigenschaften der Lösungsfunktion folgt, daß sich das erste Integral in

feikA-r (H - W) y>* dF
J SkiS2

umformen läßt. Dieses Integral kann nach dem GREENschen Satz in ein Ober-
flächenintegral umgeformt werden, das auf Grund der periodischen Randbedin-
gungen verschwindet. Es verbleibt
aiv . ä2 r „ d r ! . ä 2 a \  _ T7—— = -1— I q>* — wdV= -1— — hdF .
dk; 171 J OX; J \ m V x i !

Q Q

Darin gibt
. h d- 1 --------- = N;

m dx;
den quantenmechanischen Operator der Geschwindigkeitskomponente V; an, so daß
man

1 dW
h dk;

. Ä f dipi — / w* dF
m J dx;

Q
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bzw.

v = — gradfcA Wh
erhält.

A 4.3.1. ® = f <»(fcA,fcA)(/'-/o)d 3feA.\ 8t / s 8tc3 J
A 4.3.2. (p -- 0.
A 4.3.3. <p = -2,4 • 10- 9, tp = -2,6 . 10- 9 .
A 4.3.4. cp = 10- 112 A
A 4.3.5. cp = 0.
A 4.3.6. a = 36 • 106 Q- 1 m- 1.

A 4.3.7. 4 = 0,5.
Ah

A 4.3.8. E 0,24 V m-1 .
A 4.3.9. Ah = 5,0 • 102 J m-2  s-1 .
A 4.3.10. je = 0,8 J mm-2 s-1 in Richtung des Temperaturgefälles.

A 4.3.11. ?‘773,2 = 0,354, T schlecht erfüllt.
7 273,  2

A 4.3.12. 0- = 7,4 . 1016 Q- 1 m- 1 .
A 4.3.13. t = 2,3 • IO-11 s.

A 4.3.14. 1 5
7 ’>2 ,

d : « = — , T< T»: <x=-—.
2 0 2 0

A 4.3.15. Bei longitudinalen Schwingungen ist die Abstandsänderung proportional der Aus-
11  , A A 1 • J . . (Av2 — A7/1) 2lenkung r — r = Aar2 — Arrx , bei transversalen r — r = — =—- — —— nur pro-

portional dem Quadrat der Auslenkung. Transversale Schwingungen können daher
bei kleiner Amplitude in erster Näherung gegen die longitudinalen vernachlässigt
werden.

A 4.4.1. r = — = 7,8 • IO“6 m.
eB

A 4.4.2. — = -2,5 • 10-».
u

A 4.4.3. — = 0,884, — = -0,116.
<70 <7

A 4.4.4. c stoß _ 2 3 .
2k

A 4.4.5. co c = 1,05 • 1010 s-1 , — 1,52 • IO-30 kg.

A 4.4.6. A = coor = 0,26.
/e

24 Schilling, Festkörperphysik
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A 4.4.7. coc t = — = 0,577.
f3

A 4.4.8. m c -- 1,45 • 10-30 kg.
A 4.4.9. Die Periode T Q des Elektronenumlaufs muß ein ganzzahliges Vielfaches n der

2kPeriode ----  des elektrischen Feldes sein :
CO

— 2k 2k
T c = ----  = n —CÜC <0
bzw.

x-j COTTig . 4 r* »> xB = ----5 (n = 1, 2, 3, . . . ) .
ne

Die Maxima der Funktion folgen daher auf der —-Skale \ wie
1 \ e /

die Folge — (n — 1, 2, 3, . . .).
n

A 4.4.10. n = 4t entspricht 0,75 Vsm~2 ; B Q = 3 Vsm~2, m c = l,13me .
A 4.4.11. A k = 4,6 • 1020 m- 2, A k = 1,6 • 10 i9 mr 2.
A 4.4.12. m c = 9,3 • IO“31 kg, m c = 3,2 • 10~32 kg.
A 4.4.13. A k = 1,9 • IO20 m- 2, m c = 3,8 • IO-31 kg.

A 4.4.14. A — = 3,7 • IO“5 V“1 s- 1 m2 .
B

A 4.4.15. aeit = 9,0 • 10‘ Q- 1 m- 1, A = 2,8 • 10~5 m.

A 4.4.16. Aus d&A = Vdr2 -j- r2 dg?2 und T c nach (4.4./12) folgt wegen

dW ' dW
d Bahnkurve = ~~7 H 7 d — 0er dg?

die allgemeine Beziehung
2k

1 h2 r rdr
coc “ 2xeB / \dW 1 ’

A 4.4.17.

J | 1
0

Es wird ein k x , k y , -Koordinatensystem eingeführt, bei dem die kz -Achse die Rich-
tung des Magnetfeldes, die kx -Achse die Richtung k± hat:

/ kr \ / I  0 0 \ / k x \

1 2 1 ” I 0 cos# — s in#  | |  k y j .
\ k3 / \ 0 sin & cos & / \ kz /

Drückt man W = I7(ä;a ) mit Hilfe der Größen
k x = r cos (f,ky = r sin kz
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aus, folgt

J7 = W L 4 -----— r2 cos2 99 + ( —- — cos2 # 4------ — sin2 r2 sin2 99
2mnt \ 2mnt 2m nl )

4- 2r cos 99 sin 99 cos sin f— ----------—\2 \ w nl w nt /

4- k 2 ( —- — sin 2 & 4 ----- — cos2 .
" \ 2m nt 2mn l  }

Wird W in die Lösung zu A 4.4.16 eingesetzt, folgt nach elementaren Integrationen

I cos2 &
I ™nt

sin 2 #
w 2 i

oj c = eB sin 2 #
M ni

Darin sind 77znfc bzw. wzn l  die Zyklotronmassen für # = 0 bzw. # = — (vgl. 5.1.5.).
, 2

A 5.1.1. Abgabe überschüssiger Elektronen und damit Wirkung als Donatoren.
A 5.1.2. Wegen der Aufnahme von Elektronen als Akzeptoren.

A 5.1.3. = 2,0 . 10’.
W 223,2

A 5.1.4. AW = 0,51 eV.

W v + W A
Co ----------gA 5.1.5.

A 5.1.6. c - = — kT In = —0,0134 eV.
2 2n

A 5.1.7. f steigt bei Eigenleitung nach (5.1./25) für m p > m n mit der Temperatur linear an.
Bei Fremdleitung wächst £ nach (S.2.2./4) bzw. A 5.1.5 zunächst ebenfalls. Mit
weiter zunehmender Temperatur geht (5.2.2./4) in (5.2.2. /6) über. Solange hierin

> n > wächst f mit T. Da n nach (5.1./13) jedoch proportional T 3 / 2 wächst,
überwiegt schließlich n gegenüber 7d d ,  und C fällt mit zunehmender Temperatur.

A 5.1.8. p = pe kT  1 1 / 1 | . a e kT _ 1 j
2 \ | /  PTk /

bzw. für AT7a > kT

p = ]/pN A yA e kT  .
A 5.1.9. p = 2,2 • 1023 m- 3, a = 6,3 • 103 fl- 1 m" 1 .
A 5.1.10. p = 1,1 • 109 m- 3 .
A 5.1.11. n = 4,42 • 1022 m-3 .

A 1 1 2 (2L\ Sa  (P-\ Sp ( roD V”D / Pd \ Sf, ° / mA V KA / Pa \ Spi

\ n )  D/  Ud /  Ga a /  I a /
_ 8nWL-8pWv+8nDWD+8nAWA

_ P kT

24*
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übereinstimmend mit (5.1.3./8).

/ 2(FrL -IviT ~ PTl-IVd ’
A 5.1.13. n = - - l / n 2 e kT  -j- — (2AD - N k )n z  kT  — A a

2
2 |/ Vd 7d 2

Wl-Wd
_ kT __

2 2

A 5.1.14. n = 5,7 • 10 22 m -3 .

A 5.1.15. Auf dem Akzeptorniveau.

/ 2(JVa -WVT JVa-IVv'
A 5.1.16. 7’ = - l / p 2 e kT  + — ( 2A7a — A D ) pe  kT  

+ -±- Nrf
2 y 7a 7a 2

Wa-Wv
-iJLfe kT

2 r 2
A 5.1.17. mdn = 0,86m e , der genaue Wert liegt tiefer.

AlVp
A 5.1.18. A D — e kT  , N o < 1,8 • 10 23 m~3 .

20
A 5.2.1 . Neutrale Fehlstellen, da geladene Fehlstellen erst bei genügend hohen Temperaturen

auftreten.
A 5.2.2. A = 27,6 p,m, infrarot.

A 5.2.3. t = 0,11 ms.
A 5.2.4. G = 5,4 • 10 24 m~3 s”1 .

A 5.2.5. Z Dn = 0,133 {zm.

A 5.2.6. An = 5 • 10 18 m -3 .

A 5.2.7. An = 1,8 • 10 22 m~3 .

A 5.2.8. — = 1/— , Z> i D .
x D |/

A 5.2.9. T p = 0 ,13ns .

A 5.2.10. = ü + M = o,4O .
ff» epobp p0 \ bp )

A 5.2.11. D n = 0,983 • 10~3 m 2 V“1 s“1 , D p = 0,466 • 10 -3 m 2 V- 1 s- 1 .
A 5.2.12. t = 4,5 • IO“12 s.

A 5.2.13. L n = 137 (xm.
v — z— d A/>

A 5.2.14. = Ai>(0) e £ » , jp = -eD p >

yp (0) = eD » Ay(0)  , Ay(0) = 6.25 • 10 19 m- 3 .
L p

A5.2.15. 7p=  -eD e - - , j n = an E + eDn - = aa E-
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mit cr0 = enoba . An der Oberfläche des Kristalls ist

i = - (A- - 1) E = i- + 4- E = v m-1 -
\ &p / tfo °o  \ Ö P /

A 5.2.16. {7n0 = 5,61 • IO“13 m3 fr 1 , J7p0 = 1,12 • IO-13 m3 sn1.
A 5.2.17. A a < 2,1 • 1023 m- 3 .

A 5.2.18. Aufbau: 8n = €?rn (1 — e '° ),

8 = G4rp ( l  — e““);

t - - + n a

Abbau: = Grn e Tn , r n = r 2 = -----—— 3> t x ,
no A

__t_
Sp = (7tp e Tn ; r D — ----—---- .

P P UnoPo N A

A 5.2.19. Pko »ao "■*“ »Do? Za 7d*
A 5.3.1. Z D = 1,3 [im, A1FL = 2,75 • IO-3 eV.
A 5.3.2. E = 1,18 • 106 V m-1 , zum Kristallinneren gerichtet.

_£
A 5.3.3. W(z) = W + 0,42 e Zd eV, —- 40,3 jzm.
A 5.3.4. N = 4,65 ‘ 1015 m- 2 .

A 5.3.5.
Nmi

Die Doppelschicht bewirkt einen Sprung des elektrischen Potentials A<Z> — -----
damit folgt die Verschiebung der Bänder £°

ATF = - eNm - , AT7 = -0,103 • 10~3 eV.
£0

A 5.3.6. AT7 = -0,522 eV.
A 5.3.7. d7 - .W re = 0 .

A 5.3.8.
y = iABf + b »> 0 o> = °> 12 v -V ZiKJL

A 5.3.9. Die Poissoxsche Gleichung ist mit der Bandbedingung c0 jE70 = sE = eN zu lösen.
Damit folgt

0 = - - ] /—’  eN=r.80 E0 - - = 80 E0 - - ;eb n |/ ne o n
0 O = 0,17 V, N = 7,9 • 1013 m“2 .

e<Pn
A 5.3.10. e, kT  = 1,93 • 10-’.

A.5.3.11. 0 D = -0,358 V, AJF = 0,358 eV.

A 5.3.12. jn = 3,6 p,A mm~2 .
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A 5.3.13. 0 p - 0 n = 0,86 V.

A 5.3.14. n(0) = 4,0 • 10 15 m" 3 .

A 5.3.15. /sperr = -1,04 • 10~8 Am“ 2 .

A 5.3.16. L n = = 0,16 mm.

A 5.3.17. /sperr = -2,6 • IO-9 Am- 2 .

A 5.3.18. /sperr = —5,75 mA m -2 .

A 5.3.19. Gegenüber (5.3.8/13) und (5.3.8/14) ist zu ersetzen e -> — e, n —> p,  p -> n.  Diese
, Übergänge gelten für Größen und Indizes.

A 5.3.20. / /c \ = ______________- ______________ ?
\ a/e /aucb=o cogh J_ + AlL. Pe_ A sinh A’

- pE n B

e (C/EB— ce)
/ Ai4CB \ ___________e _____kT  ____________
\&U BB ) A j =0 cogh _d_ + Ln Pc &p ginb _d_

Ai -kpc n B (1 Ai

eC EB— ü~ec)
TT & kT

A 5.3.2 1 . (7(>eb = --------------------------------------------- .
ocb cosh A + A_ h. sinh A

Aie Pb & p £p

A 5.3.22. /Ae \  = ----------------------1----------------------
\ Joc / ü aEB =<> cogh A + A. A S inh —

l p Aic Pb & p

eUcB
TT a, kT

A • _______ _______: ______
e /VB C0th A + A_ Wc y

\ - p - p I-'nC /

A 5.4.1. Ao = 0,436 [im.

A 5.4.2. Energielücke AJF f 2,65 eV zwischen Valenz- und Leitungsband, Elektronenfalle
W — W v = 1,44 eV oberhalb der Valenzbandkante.

A 5.4.3. v. = 8,45 • 10 12 Hz, v2 = 6,04 • 10 12 Hz, 2 = 0,666 pn, A2 = 0,021 jim.

A 5.4.4. A = 0,0743.
ßp

A 5.4.5. Q > 2,7 • 10 21 .

A 5.4.6. v0 = 1,22 • 10 6 m“\ = 6,25 • 10 3 m" 1 .

A 5.4.7. ATF = 2,17 eV, Bindungsenergie 0,99 - IO-3 eV.

A 5.4.8. r 0 = 7,2 • IO-8 m.

A 5.4.9. U = 0,58 mV.
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A 5.4.10.
. rr  2W &p A / 1 i \a) U - -  ------------- ----  Acr I ----------------- ,

“F \ &oA 6qB /

b) u= — — % ----
e &p ~F 6n gä ■

A 5.4.11. U = -0,038 V.

A 5.4.12. U = 0,83 (iV.
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Tabelle 1.1.1. Gitterkonstante wichtiger Kristalle bei Zimmertemperatur

Stoff Gitterkonstante a in nm

a) kubisch-flächenzentriertes Gitter (kfz-Gitter)

Ag 0,408
Al 0,404
Au 0,407
Ca 0,556
Cu 0,361
y-Fe 0,363
Ni 0,352
Pb 0,494
Pt 0,391

b) Steinsalz-Struktur
AgBr 0,577
KCl 0,629
LiH 0,408
MgO 0,420
MnO 0,443
NaCl 0,564
PbS 0,592

c) kubisch-raumzentriertes Gitter (krz-Gitter)
Cr 0,288
Cs 0,605
a-Fe 0,286
K 0,533
Li 0,350
Mo 0,341
Na 0,452
Ta 0,332
W 0,316
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Tabelh5 1.1.1. (Fortsetzung)

Stoff Gitterkonstante a in nm

d) Dia

0
Ge
Si
Sn (gra

mantstruktur

0,356
0,565
0,543

iu) 0,646

e) Zm]kblende-Struktur

Zwei h
viertel

Koordi

4z -Gitter, gegeneinander wie beim Diamantgitter um eine
Raumdiagonale verschoben, mit verschiedenen Ionen besetzt.

na tenl :  0, 0, 0 ;  0, — , — ; — , 0, — ; — , — 0 ;
2 2 2 2 2 2

n - JL  _£ J_ ._£  _1 2LJL  J_ JL .  JL ä J_
■4’4’4’44’4’4’4’4’4’4’4’

AgJ
AIP
CuCl
CuF
SiC
ZnS

0,647
0,542
0,541
0,426
0,435
0,565

f) CsCl-Struktur

Zwei v<
in den

erschobene krz-Gitter, ein Ion I im Zentrum, acht Ionen II
Ecken, vgl. Bild. 1.1.10, S. 28

AgMg
AINi
BeCu
CsCl
CuZn
LiHg
NH 4C1
RbCl

0,325
0,288
0,270
0,411
0,294
0,329
0,387
0,374

g) CaF2-Struktur

kfz-Git 111  3 3 3ter mit Ca in 0, 0, 0 und F in — , — , — sowie in — , — , —
4 4 4 4 4 4

BaF 2
CaF 2
k 2 o
PbMg 2
PtGa,

0,619
0,545
0,644
0,684
0,591
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Tabelle 1.1.1. (Fortsetzung)

Stoff Gitterkonstante a in nm Gitterkonstante c in nm

h) Hexagonal dichteste Kugelpackung (hdp-Gitter)
Be 0,228 0,361
Cd 0,297 0,561
Co 0,251 0,407
Gd 0,362 0,575
He (bei 2 K) 0,357 0,583
Mg 0,320 0,520
Os 0,271 0,431
Ti 0,295 0,473
Zn 0,266 0,494

Tabelle 2.1.1. lonisierungsenergie J M und Elektronenaffinitäten E x in eV

Stoff Ex Ai Stoff Ex Ai
H 0,76 13,54 Ti 6,81
He 24,48 .V 6,74
Li 5,37 Cr 6,7
Be 9,30 Mn 7,41
B 8,28 Fe 7,83
C 11,24 Co 7,8
N - 0,04 14,51 Ni 7,6
0 2,73 13,57 Cu 0,99 7,67
F 3,94 17,46 Zn 9,37
Ne -1 ,20 21,47 Ga 5,97
Na 0,08 5,09 Ge 8,10
Mg -0,9 7,63 As 10,05
Al 0,09 5,94 Se 9,75
Si 0,60 8,14 Br 3,64 11,82
P 0,9 10,43 Ag 1,1 7,58
s 2,06 10,42 J 3,30 10,43
CI 3,70 13,01 Cs 3,86
Ar -1,0 15,68 Au 2,4 9,20
K 4,32
Ca 6,25

Tabelle 2.1.3. Madelung-Konstante

Stoff oc Stoff a

Zinkblende 1,64 CaF 2 2,52
NaCl 1,75 CuO 4,12
CsCl 1,76 A12O3 4,17
TiO 2 2,40
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Tabelle 2.1.2. Kürzester Abstand, Gitterenergie, Kompressibilität, Schmelzpunkt
für Festkörper der verschiedenen Bindungszustände

Stoff Kürzester
Abstand r0
in nm

Meßwert der Gitter-
energie — U o bei 0 K in

Kompressibilität
in N -1 m 2

Schmelzpunkt
in °C

kcal/mol kJ /mol

lonenkristalle
LiF 0,2014. 242,3 1014 0,15 848
LiCl 0,2570 198,9 833 0,32 614
LiBr 0,2751 189,8 795 0,41 550
LiJ 0,3006 177,7 744 0,64 449
NaF 0,2317 214,4 898 0,21 1012
NaCl 0,2820 182,6 765 0,41 800
NaBr 0,2989 173,6 727 0,49 741
NaJ 0,3237 163,2 683 0,68 662
KF 0,2674 189,8 795 0,32 1502
KCl 0,3147 165,8 694 0,54 772
KBr 0,2989 158,5 664 0,65 732
KJ 0,3533 149,9 628 0,82 685
AgF 0,246 209,4 877 435
AgCl 0,277 235,7 987 0,24 455
AgBr 0,288 201,2 842 0,27 430

Kristalle mit überwiegend kovalenter Bindung (3. bis 5. Gruppe)
B 134 561 0,54 2030
C 0,154 170 712 0,16 3800
Si 0,235 107 448 0,10 1423
Ga 0,355 64,2 269 0,19 30
Ge 0,244 89,3 374 0,14 937
As 69 289 0,64 815

Metalle
Cr 0,249 94,3 395 0,08 1903
Ni 0,249 102,3 428 0,051 1455
Cu 0,255 80,8 338 0,070 1083
Mo 0,272 157,1 658 0,033 2620
Ag 0,288 68,3 286 0,095 961
Sn 0,279 71,9 301 0,18 < 232
Ta 0,285 186,6 781 0,046 2996
Pt 0,277 135,0 565 0,050 1769
Au 0,288 87,3 366 0,065 1064
Pb 0,349 47,0 . 197 0,041 327
U 0,276 124,7 522 0,079 1130

Alkalimetalle

Li 0,303 38,0 159 0,42 180
Na 26,0 109 1,34 98
K 21,7 91 2,35 63
Rb 0,487 19,8 83 0,034 39
Cs 0,524 19,1 80 0,75 29
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Tabelle 2.1.2. (Fortsetzung)

Stoff Kürzester
Abstand r 0
in nm

Meßwert der Gitter-
energie — U o bei 0 K in

Kompressibilität
x in N -1 m 2

Schmelzpunkt
in °C

kcal/mol kJ/mol

Erdalkalimetalle

Be 0,222 76,9 322 0,076 1283
Mg 0,319 35,3 148 0,29 649
Ca 0,393 42,1 176 0,57 850

Edelgaskristalle
Ne 0,320 0,45 1,9 -249
Ar 0,383 1,85 7,8 -189
Kr 2,67 11,2 -156
Xe 0,441 3,83 16 -112

Tabelle .1.5. Elastizitätskoeffizienten und Dichte kubischer Kristalle

Stoff Cu __________ (7x2 d

in g cm-3

T

i nKin 1011 N m- 2

W 5,326 2,049 1,631 19,3 0
5,233 2,045 1,067 19,3 300

Cu 1,762 1,249 0,818 9,02 o 0
1,684 1,214 0,754 8,9 300

Ag 1,315 0,973 0,511 10,63 0
1,240 0,937 0,461 10,5 300

Al 1,143 0,619 0,316 2,73 0
1,068 0,607 0,282 2,70 300

Pb 0,555 0,454 0,194 11,60 0
0,495 0,423 0,149 11,30 300

KCl 0,483 0,054 0,066 2,04 4
0,403 0,066 0,063 1,98 300

NaCl 0,487 0,124 0,126 2,16 300

Si 1,66 0,639 0,796 2,3 300

Ge 1,285 0,483 0,680 300

Diamant 10,76 1,25 5,76 3,5 300
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Tabelle 2.1.6. Elektronenanordnungen im Grundzustand

Element K

1s

L M N 0

2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

1 H 1
2 He 2

3 Li 2 1
4 Be 2 2
5 B 2 2 1
6 C 2 2 2
7 N 2 2 3
8 0 2 2 4
9 F 2 2 5

10 Ne 2 2 6

11 Na 2 2 6 1
12 Mg 2 2 6 2
13 Al 2 2 6 2 1
14 Si 2 2 6 2 2
15 P 2 2 6 2 3
16 S 2 2 6 2 4
17 CI 2 2 6 2 5
18 Ar 2 2 6 2 6

19 K 2 2 6 2 6 1
20 Ca 2 2 6 2 6 2
21 Sc 2 2 6 2 6 1 2
22 Ti 2 2 6 2 6 2 2
23 V 2 2 6 2 6 3 2
24 Cr 2 " 2 6 2 6 5 1
25 Mn 2 2 6 2 6 5 2
26 Fe 2 2 6 2 6 6 2
27 Co 2 2 6 2 6 7 2
28 Ni 2 2 6 2 6 8 2
29 Cu 2 2 6 2 6 10 1
30 Zn 2 2 6 2 6 10 2
31 Ga 2 2 6 2 6 10 2 1
32 Ge 2 2 6 2 6 10 2 2
33 As 2 2 6 2 6 10 2 3
34 Se 2 2 6 2 6 10 2 4
35 Br 2 2 6 2 6 10 2 5
36 Kr 2 2 6 2 6 10 2 6

37 Rb 2 2 6 2 6 10 2 6 1
38 Sr 2 2 6 2 6 10 2 6 2
39 ¥ 2 2 6 2 6 10 2 6 1 2
40 Zr 2 2 6 2 6 10 2 6 2 2
41 Nb 2 2 6 2 6 10 2 6 4 1
42 Mo 2 2 6 2 6 10 2 6 5 1
43 Tc 2 2 6 2 6 10 2 6 6 1
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Tabelle 2.1.6« (Fortsetzung)

Element K

1s

L M N 0

2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

44 Ru 2 2 6 2 6 10 2 6 7 1
45 Rh 2 2 6 2 6 10 2 6 8 1
46 Pd 2 2 6 2 6 10 2 6 10
47 Ag 2 2 6 2 6 10 2 6 10 1
48 Cd 2 2 6 2 6 10 2 6 10 2
49 In 2 2 6 2 6 10 2 6 10 2 1
50 Sn 2 2 6 2 6 10 2 6 10 2 2

Tabelle 2.1.4. Parameter von Edelgaskristallen

Stoff Gitterenergie e a Kürzester Abstand r 0

kcal mol -1 kJ mol -1 10~21 J nm nm

Ne 0,45 1,9 0,50 0,274 0,313
Ar 1,85 7,8 1,67 0,340 0,376
Kr 2,67 11,2 2,25 0,365 0,401
Xe 3,83 16,0 3,20 0,398 0,415

Tab. 2.2.1. Debye-Temperatur T D und obere Grenze der Schwingungs-
frequenzen

Stoff Td in K wg in 10 14 s-1 / g in 10 12 Hz

Ag 239 0,313 4,98
Al 430 0,563 8,96
C 1320 1,73 27,5
CC14 76 0,099 1,58
ch 4 78 0,102 1,63
co2 140 0,183 2,92
cs2 90 0,118 1,88
ci2 115 0,151 2,40
Cu 315 0,412 6,56
KBr 180 0,236 3,75
KCl 233 0,305 4,85
NaCl 322 0,422 6,71
Ne 64 0,084 1,33
nh 3 210 0,275 4,38
O2 90,9 0,119 1,89
Pb 90 0,118 1,88
s 165 0,216 3,44
Xe 55 0,072 1,15
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Tab. 2.2.2. Atomare und thermische Eigenschaften der Metalle bei Zimmertemperatur

Metall Relative
Atommasse

A

Dichte
d in

g cm-3

Spezifische Wärmekapazität
c in

Längenaus-
dehnungs-
koeffizient

<x' in IO-6 K" 1

W ärmeleitf ähigkeit
n' in

Konzentration
Ain

10 28 m- 3kcal kg- 1 K" 1 kJ kg" 1 K- 1 cal m -1 K -1 s-1 W m- 1 K- 1

Ag 107,87 10,5 0,056 0,234 19 98,9 414 5,86
Al 26,98 2,7 0,217 0,909 25 57,8 242 6,02
Au 196,97 19,29 0,031 0,128 14 71,6 300 5,90
Be 9,01 1,84 0,425 1,780 12 47,8 200 12,37
Co 58,93 8,7 0,104 0,435 12 22,2 93 8,99
Cr 52,00 7,1 0,110 0,460 7,4 20,8 87 7,38
Cu 63,55 8,89 0,092 0,385 16,7 91,5 383 8,46
Ga 62,72 5,93 0,090 0,377 19,2 8,1 34 5,67
Hg 200,59 13,55 0,033 0,139 18,1 2,1 9 4,07
K 39,10 0,86 0,189 0,790 80 23,1 97 1,32
Li 6,94 0,534 1,092 4,573 60,0 17 71 4,63
Na 22,99 0,97 0,283 1,184 70 32,1 134 2,54
Ni 58,71 8,8 0,109 0,456 13 14,2 59 9,13
Os 190,2 22,5 0,031 0,130 7 20,8 87 7,12
Pb 207,2 11,34 0,030 0,127 29 8,6 36 3,30
Pt 195,09 21,45 0,032 0,135 9,0 17,0 71 6,62
Si 28,09 2,33 0,169 0,706 2,5 41,8 175 4,50
Sn 118,69 7,3 0,054 0,225 23 15 63 3,69
Ta 180,95 16,6 0,036 0,151 6,5 13,4 56 5,53
W 183,85 19,3 0,034 0,142 4,3 44,2 185 6,32
Zn 65,37 7,1 0,092 0,387 29 26,5 111 6,57

co
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Tab. 2.2.3. Mittlere Schallgeschwindigkeit bei Zimmertemperatur

Stoff v$ in km s-1 Stoff v$ in km s-1

Ag 2,7 Sn 2,6
Al 5,1 Zn 3,7
Pb 1,3 Messing 3,4
Pt 2,8 Stahl 5,1

Tab. 2.2.4. Grüneisen-Parameter y

Stoff y Stoff 7

Ag 2,2 KCl 1,66
Al 0,94 KP 1,93
Co 1,8 Na 1,50
Cu 1,63 NaCl 3,0
K 2,32 Ni 1,9
KBr 1,29

Tabelle 3.1.1. Aktivierungsenergie es
zur Bildung von Schottky- Defekten

Metall £g in eV

Cu 0,90
Ag 0,8
Au 0,67

Tabelle 3.1.2. Aktivierungsenergie eP zur Bildung von Leerstellenpaaren
(Schottky- Defekten) in lonenkristallen

Kristall eP in eV Kristall £P in eV

LiF 2,68 NaCl 2,06
LiCl 2,12 NaBr 1,66
LiBr 1,80 KCl 2,01
LiJ 1,34

Tabelle 3.1.3. Bildungsenergie e F für
Metallionen auf Zwischengitterplätzen

Kristall ef in eV

AgCl
AgBr

1,4
1,1
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Tabelle 3.1.5. lonenradien

Ion r in nm Ion r in nm

Ag+ 0,126 K+ 0,133
Ag++ 0,089 Li+ 0,068
A1+++ 0,058 Mg++ 0,066
Au+ 0,137 Mn++ 0,080
B+++ 0,023 Mn+++ 0,066
Be++ 0,035 N+++ 0,016
Bi+++ 0,096 N 5+ 0,013
Br- 0,195 Na+ 0,097
C++++ 0,016 Ni++ 0,069
Ca++ 0,099 o-- 0,014
Cd++ 0,097 o 6+ 0,010
ci- 0,181 Pb++ 0,120
Cl5+ 0,034 Pb++++ 0,084
Cl7+ 0,027 Ra++ 0,143
Co++ 0,072 s— 0,185
Co+++ 0,063 S++++ 0,037
Cs+ 0,161 S6+ 0,030
Cu+ 0,096 Sb+++ 0,076
Cu++ 0,072 Sb5+ 0,062
F- 0,133 Se — 0,196
F7+ 0,008 Se+++ 0,078
Fe++ 0,074 Si++++ 0,042
Fe+++ 0,064 Sn+++ 0,100
Ga+++ 0,062 Sn++++ 0,071
Ge++ 0,073 Ti++ 0,080
Ge++++ 0,053 U++++ 0,097
H- 0,136 U 6+ 0,080
Hg++ 0,110 W++++ 0,070
J- 0,219 W 6+ 0,062
J 7+ 0,050 Zn++ 0,074

Tabelle 3.1.6. Bildungsenergie
für die Erzeugung von F-Zentren

Kristall eB in eV

KCl
KBr
KJ

0,10
0,25
0,11

25  Schilling, Festkörperphysik
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Tab. 3.1.4. Leitfähigkeitskonstante für lonenleitung & =Ae T

Material Bedingungen A
in Q -1 m -1

B
in K

NaCl Eigenleitung unterhalb
Schmelzpunkt 800 °C 1 • 10 8 2,2 • 10 4

550— 700 °C
Einkristall

4,1 • 10 7 2,16 • 104

550— 800 °C
Preßzylinder

4,3 • 10 6 2,05 • 10 4

KCl Eigenleitung unterhalb
Schmelzpunkt 768 °C 2 • 10 8 2,37 • 10 4

500- •• 725 °C
Einkristall

1,1 • 10 8 2,35 • 10 4

500— 725 °C
Preßzylinder 1,5 • 10 8 2,35 • IO4

Tab. 3.2.1. Statische Dielektrizitätszahl, optische Brech-
zahl im Sichtbaren, charakteristische Eigenfrequenz
im Infraroten für Alkali- und Silberhalogenide

Stoff er (0) n 0J IR
in 1013 s-1

LiF 8,9 1,4 5,8
LiCl 12,0 1,6 3,6
LiBr 13,2 1,8 3,0
NaF 5,1 1,3 4,6
NaCl 5,9 1,5 3,1
NaBr 6,4 1,6 2,5
KF 5,5 1,2 3,6
KCl 4,85 1,45 2,7
KJ 5,1 1,6 1,9
RbF 6,5 1,4 2,9
RbJ 5,5 1,6 1,4
CsCl 7,2 1,6 1,9
AgCl 12,3 2,0 1,9
AgBr 13,1 2,15 1,5
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Tab. 3.2.2. Brechzahlen für NaF bei 20 °C

2 in pn n 2 in ptni n

0,240 1,35792 0,700 1,32379
0,300 1,34272 0,800 1,32280
0,400 1,33224 0,900 1,32210
0,500 1,32772 1,000 1,32158
0,600 1,32528 1,100 1,32118

Tabelle 3.2.3. Eigenfrequenzen einiger Alkalihalogenide
im Infraroten und Ultravioletten

Wellenzahl
v • i— m cm“1

c

Wellenlänge

2 in pm

Intensität

NaF
246 40,6 stark
294 34 mittel
345 29 schwach
556 18 schwach

0,117 stark

NaBr
134 74,6 mittel
152 66 schwach

0,125 stark
0,145 stark
0,175 stark
0,189 stark

KCl
58 172 schwach
88 114 schwach

100- -430 100 .  -77 stark, breit
154 65 mittel
179--216 56-  -46 mittel, breit
280 35,7 mittel
141,5 70,7 mittel
167 60 schwach
213 47 sehr schwach
235 42,5 schwach
244 41 schwach
303 33 sehr schwach

0,131 stark
0,162 stark

25*
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Tab. 3.2.4. Meßwerte über die Absorption von F- Zentren in Alkalihalogenid-Kristallen bei 20 °C

Stoff Lage des
Maximums

Äuax in nm

Halbwerts-
breite

H in  eV

Konzentration
der Alkali-
moleküle

N in 1028 m-3

Konzentration der Farbzentren
für & max = 1 mm-1 = 103 m-1

absolut
Ai  in 1022 m-3

relativ
N-JN in 10- 6

LiF 250 0,82 6,14 9,0 1,5
LiCl 385 0,62 2,94 5,6 1,9
NaF 340 0,62 4,00 7,2 1,8
NaCl 465 0,47 2,24 4,6 2,1
NaBr 549 0,52 1,87 4,7 2,5
KF 455 0,41 2,57 4,7 1,8
KCl 563 0,35 1,61 3,6 2,3
KBr 630 0,345 1,39 3,4 2,4
RbCl 624 0,31 1,39 3,2 2,3
RbBr 720 0,28 1,22 2,8 2,3
RbJ 775 0,35 1,01 3,2 3,2

Tab. 3.3.1. Spezifische elektrische Leitfähigkeit fester Körper
bei Zimmertemperatur
Leiter

Bezeich-
nung

a in
106 Q“1 m- 1

Bezeich-
nung

g in
106 Q“1 m- 1

Bezeich-
nung

er in
106 Q-1 m-1

Ag 67,1 Co 17,9 Os 10,5
Al 40 Cr 7,09 Pb 5,2
As | |  c 2,81 Cs 5,52 Pt 10,2

1 c 3,92 Cu 64,5 Sb | |  c 3,14
Au 48,5 Graphit 0,20 i c 2,59
Be | |  c 27,9 Hg 1,06 Sn | |  c 9,09

1 c 32,0 K 16,4 1 c 10,78
Bi | |  c 0,769 Li 11,7 U 3,45

i c 0,980 Mg | |  c 28,7 W 20,4
Cd | |  c 12,0 i c 23,9 Zn | |  c 17,9

1 c 14,6 Na 23,4 1 c 18,6

Halbleiter

Bezeichnung g in Q-1 m-1 Bezeichnung g in Q-1 m-1

Ge 2,2 • IO"8 Se 4,0 • IO-14

Si 4,3 • IO"12 InSb 5 • IO"5

Te | |  c 1,8 • 10~5 CuO 5 • IO"5

i c 6,7 • IO-5 FeO 1 • io- 2



377Tabellen

Tabelle 3.3.1. (Fortsetzung)
Isolatoren

Bezeichnung c in m“1 Bezeichnung a in Q-1 m-1

Diamant 10 -u Polystyrol 10-17 --40~15

Glimmer 10- 15 Polytetra-
Quarz 10~17 ---10~15 fluoräthylen io- 17

Paraffin io- 14

Tab. 3.3.2. Freiheitszahl /
(Verhältnis von Elektronenruhmasse
und effektiver Masse)

Bezeichnung /

Ag
Cu
Mg
Na
Pb

1,0
0,67
0,75
1,67
0,48

Tab. 3.3.3. Hall-Konstante bei Zimmertemperatur

Material R
in 10-10 m3 As-1

Material R
in 10-10 m3 As-1

Ag -0,846 Cu (technisch) -0,533

Al -0,34 (gewalzt) -0,49

Au -0,697 (rein) -0,496

Ca -1,78 As 45,2

Cs -7 ,8 Be 7,7

Gd -4,48 Cd 0,6

K -4,2 Ce 1,81

Li -1,70 Cr 3,63

Mg -0,84 Ir 0,318

Na -2 ,1 Sb 213

Rb -5,92 Ta 0,971
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Tabelle 3.3.3. (Fortsetzung)

Bi (Einkristall) im Grenzfall B —> 0

T R R
in 10 -10 m 3 As -1 in 10~10 m 3 As-1

in K (-B | |  c) (B±  c)

65 -103000 4-6000
125 -57000 4-2000
230 -22000 ca. 0
290 -15000 0
300 -13500 +450

Tab. 4.1.1. Funktionelle Abhängigkeit W = FF(Jca) nach dem Kronig-Modell
für Kupfer

W in eV cos kk a k in 10 9 m -1 W in eV cos kA a k A in 10 9 m -1

0,50 -1,449
1,00 -1,214
1,20 -1,116
1,40 -1,016

11,0 0,733
12,0 0,543
13,0 0,330
14,0 0,106
14,47 0,000
15,0 -0,007
16,0 -0,329
17,0 -0,520
18,0 -0,685
19,0 -0,818
20,0 -0,917
21,0 -0,981
21,52 -1,000

1,432 -1,000 8,70
1,50 -0,966 7,98
2,00 -0,713 6,55
2,50 -0,464 5,69
3,00 -0,225 4,98
3,502 0,000 4,35
4,00 0,205 3,78
4,50 0,389 3,25
5,00 0,550 2,74
6,00 0,799 1,79
7,00 0,948 0,89
7,50 0,987 0,44
7,79 1,000 0,00 O 

4 
0
0

O 
W 

<
1

O 
Ü
i
 o

3.
 B

an
d23,12 - 1,000

31,63 0,000
42,2 1,000

8,52 1,000 0,00
9,00 0,978 0,58 §
9,50 0,938 0,98 M

10,00 0,888 1,32
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Tab. 4.1.2. Atomformfaktor F

Element Z sin 6

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,80 1,00

Na 11 11,00 9,76 8,34 6,89 5,47 4,29 3,40 2,31 1,78
Al 13 13,00 11,23 9,16 7,88 6,77 5,69 4,71 3,21 2,32
Cu 29 29,00 27,19 23,63 19,90 16,48 13,65 11,44 8,61 7,13
Ag 47 47,00 43,88 37,68 31,78 27,17 23,81 21,37 17,96 15,16
w 74 74,00 69,07 61,58 54,59 48,27 42,83 38,12 30,46 24,68

Tab. 4.2.1. Charakteristische Größen nach dem Bloch-Theorem

Metall £p

in eV

Zzp

in 10 10 m -1 in 10 4 K in 10 6 m s-1

Li 4,7 1,1 5,5 1,3
Na 5,2 0,90 6,2 1,8
K 2,1 0,73 2,4 0,85
Rb 1,8 0,68 2,1 0,79
Cs 1,5 0,63 1,8 0,73
Cu 4,7 1,36 5,4 1,05
Ag 5,5 1,19 6,4 1,38
Au 5,5 1,20 6,4 1,39

Tab. 4.3.1. Temperaturkoeffizient a des elektrischen Widerstandes

cryj-AT' = ö'/p (1 — aAT)

Material Spez. Leitwert cr273 2 bei
0°C in 10 6

Temperaturkoeffizient a
bei 0°C in IO"3 K“ 1

Al 40,0 4,60
Au 48,5 4,02
Cs 5,52 5,03
Cu 64,5 4,30
K 16,4 6,73
Na 23,4 5,46
Pb 5,21 4,28
W 20,4 5,10
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Tab. 4.3.2. Elektrische Leitfähigkeit in Abhängigkeit von der Temperatur

Material T ———
a 273,2

Material T — öt_
°273,2

Na 273,2 1,00
polykristallin 87,8 4,34
Verunreinigung 77,6 5,33
< 0,1% 20,4 149

4.2 312
1.3 285
1,2 270

Cu 20,5 568
polykristallin 14,26 781
getempert 4,23 840
sehr kleine 1,55 565
Verunreinigung6 8 373,2 0,6987

473.2 0,5360
573.2 0,4334
673.2 0,3623
773.2 0,3101

K 87,8 3,80
polykristallin 77,6 4,41
sehr kleine 20,4 37,0
Verunreinigung 4,2 143

1,2 145
Ag 195 1,462
polykristallin 81 4,828
getempert 20 1 85

10,8 347
6,0 373
4,2 376

373.2 0,7093
473.2 0,5467
573.2 0,4420
673.2 0,3690
773.2 0,3156

Pb 88,6 3,45
polykristallin 73,1 4,31
getempert 20,5 33,2
sehr kleine 14,3 88,5
Verunreinigung 7,26 103

7,25
supraleitend

Tab. 4.4.1. Freie Elektronen je Atom

Cu Ag Au Sn Hg Al

N 1,00 0,68 0,60 1,10 0,13 0,37

Tab. 5.1.1. Energielücken und Dielektrizitätszahlen

Stoff AJ7 in eV £ r

OK 300 K

Diamant 5,4 5,3 5,67
Si 1,17 1,14 11,8
Ge 0,74 0,67 15,6
AlSb 1,65 1 /2 9,03
GaP 3,32 2,26 ‘ 8,41
GaAs 1,52 1,43 10,24
GaSb 0,81 0,78 13,69
InP 1,29 1,35 9,00
InAs 0,36 0,35 10,56
InSb 0,23 0,18 16,15
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Tab. 5.1.2. Mittelwerte der Energiedifferenzen zu Störstellenniveaus bei Zim-
mertemperatur 300 K sowie transversale und longitudinale Massen

Bezeichnung Stoff : Si Ge InAs InSb

A»F0 = W L - r D
in eV 0,044 0,011 0,005

AWa =W a -W v 0,055
in eV

0,011 0,004 0,007

AW = W L - W v
in eV 1,14 0,67 0,35 0,18

“nl/®e 0,98 1,58 0,024 0,015

0,19 0,08 0,024 0,015

0,50 0,32 0,41 0,18

OTpaM 0,15 0,04 0,025 0,015

Tab. 5.1.3. Einfluß der Fremdsubstanzen auf die Lage
der Störstellenterme in Silizium und Germanium

APTD i neV Phosphor Arsen Antimon

Silizium 0,045 0,049 0,039
Germanium 0,012 0,0127 0,0096

4J7 a in eV Bor Aluminium Gallium Indium

Silizium 0,045 0,057 0,065 0,16
Germanium 0,0104 0,0102 0,0108 0,0112

Tab. 5.1.4. Effektive Masse der Zustandsdichte und Beweglichkeit

™dnMe WpMe bn
in m 2 V-1 s-1 bei 300 K

Ge 0,56 0,37 0,380 0,180
Si 1,08 0,59 0,145 0,050
InSb 0,013 0,4 7,8 0,075
InAs 0,023 0,41 3,3 0,046
GaSb 0,047 0,23 0,40 0,14
GaAs 0,068 0,50 0,88 0,040
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Tabelle 6. Physikalische Konstanten

Elektrische Feldkonstante £o 8,8542 • 10- 12 A s V" 1 m“1

Magnetische Feldkonstante 0 1,257 • IO-6 V s A" 1 m- 1

BoLTZMANN-Konstante k 1,3807 • IO"23 J K- 1

Elektrisches Elementarquantum e 1,602- 10 -19 C
Lichtgeschwindigkeit im Vakuum c o 2,99792 - 10 8 m s" 1

AvoGADROsche Konstante #A 6,0220 • 10 26 kmol-1

Ruhmasse des Elektrons 9,109 • 10- 31 kg
Ruhmasse des Protons 1,6726 • IO"27 kg
Ruhmasse des Neutrons 1,6749 - 10- 27

Allgemeine Gaskonstante R 8,3144 • 10 3 J kmol" 1 K -1

PLANCKsches Wirkungsquantum h 6,6262 • IO-34 J s

Tabelle 7. Bezeichnung der wichtigsten Größen

A Fläche
A r relative Atommasse
a Gitterkonstante
Ui Basisvektor im direkten Gitter
B magnetische Flußdichte (Induktion)
b Beweglichkeit
b i  Basisvektor im reziproken Gitter
C molare Wärmekapazität
Ci Elastizitätskoeffizient
D Diffusionskoeffizient
Z)x Dissoziationsenergie
D(x) Debye -Funktion
D dielektrische Verschiebung
d Dichte

Abstand, Dicke
E x Elektronenaffinität
E elektrische Feldstärke
&i Verzerrungskoeffizient
e t- Einheitsvektor
F Freie Energie

Kraft
Strukturamplitude

/ Verteilungsfunktion
Zustandsfunktion

; /0 Zustandsfunktion nach der Fermi-
DiBAC-Statistik

G Generationsquote (äußere Erzeuger-
quote)

g Quote der thermischen Generation
H magnetische Feldstärke
H Hamilton- Operator
hi MiLLERscher Index
i imaginäre Einheit
i Laufzahl
i Einheitsvektor in x-Richtung

lonisierungsenergie

j Laufzahl
j Einheitsvektor in -Richtung

Stromdichte
jth Wärmestromdichte
K Wellenzahl vektor der Phononen
k Einheitsvektor in -Richtung

Wellenzahlvektor
k A Ausbreitungsvektor
L Diffusionslänge

Lorentz -Zahl
DEBYE-Länge

m Masse
effektive Masse
Exponent

m c Zyklotronmasse
m e elektrisches Moment
m m magnetisches Moment
N Teilchenzahl
_V0 Konzentration
V A Konzentration der Akzeptoren
Nf) Konzentration der Donatoren
n Brechzahl

Anzahl der Fehlordnungen
Konzentration der Leitungsbandelek-
tronen Exponent

n Entartungskonzentration der Elek-
tronen im Leitungsband

n Q Einheitsvektor in Normalenrichtung
P Druck
P n ' jn  (ZßA ', &a) Übergangswahrscheinlichkeit

(ra, fcA) ->(» ' ,  fcA ' )
P Polarisation
p Konzentration der Defektelektronen im

Valenzband
p Entartungskonzentration

der Defektelektronen
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p Impuls
Q Reaktionsenergie

Wärmeenergie
Gütefaktor

q Ladung
q Pseudoimpuls
R räumliche Periode

Radius
ÜALL-Konstante
Rekombinationsquote

r Abstandskoordinate
S Entropie

Sublimationsenergie
S ik elastische Konstante
s Achsenabschnitt
T thermodynamische Temperatur
Td DEBYE-Temperatur
t Zeit
U Potential

Gitterenergie
Innere Energie
Rekombinationsüberschuß

u Geschwindigkeit
V Volumen
Fm molares Volumen

Schallgeschwindigkeit
v Geschwindigkeit

Driftgeschwindigkeit
W Energie

statistisches Gewicht (Wahrschein-
lichkeit)

Wl Leitungsbandkante
Wy Valenzbandkante
A W Energielücke
w Kreisfrequenz der Phononen
x Ortskoordinate
y Ortskoordinate
Z Kernladungszahl

Zustandssumme
z Ortskoordinate
(X Winkel

MADELUNG-Konstante
Übergangswahrscheinlichkeit
Raumausdehnungskoeffizient
Temperaturkoeffizient des
Widerstandes
Polarisierbarkeit
Längenausdehnungskoeffizient

ß Winkel
isochorer Druckkoeffizient
Übergangswahrscheinlichkeit

r(rr) Gammafunktion
y Winkel

GRÜNEiSEN-Parameter
Übergangswahrscheinlichkeit

ö relative Längenänderung
öhl jÄ2 ,ä3 Abstand zwischen benachbarten Netz-

ebenen
e Energiegröße

Dielektrizitätskonstante
Parameter

; Fermi-Po tential, FERMi-Niveau
; 0 FERMi-Kante
$ Glanzwinkel
% elektrische Leitfähigkeit

isotherme Kompressibilität
A Wärmeleitfähigkeit

z Wellenlänge
p Permeabilität
/z c Chemisches Potential
v Frequenz
vs Grenzfrequenz
n Peltier-Koeffizient
q Radius

Reibungskoeffizient
Ladungsdichte

27 Seebeck-Koeffizient
o spezifische elektrische Leitfähigkeit

Parameter
a ik Spannungskomponente
t Stoßzeit

Relaxationszeit
Periode

0 Potential
0 D Diffusionspotential
<p Winkel

Abweichung der Verteilungsfunktion
von der Fermi-Dirac- Verteilung

ip Wellenfunktion
BnocH-Welle

ß Grundgebiet
Qo Volumen der Elementarzelle
Qq reduzierter Bereich des reziproken

Raumes
cd Kreisfrequenz der Photonen
coc Zyklotronfrequenz (Kreisfrequenz)
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