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MefBverfahren zur Kristallstrukturanalyse.
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l. Struktur idealer Kristalle

1.1. Geometrie der Kristallgitter
E Einfiihrung
Kristallgitter

Der ideale Kristall besteht aus regelméBig im Raum verteilten Atomen oder Ionen.
Die Anordnung der Bausteine wiederholt sich periodisch. Diese rdumliche Periodi-
zitdt kann durch drei nichtkomplanare, d. h. nicht in einer Ebene liegende Vektoren
a,, a,, a; dargestellt werden. Bei jeder Verschiebung des unendlich ausgedehnten
Kristalls um einen dieser Vektoren bzw. einen daraus zusammengesetzten Vektor

3
R =ay0, — Y na;  (n; ganze Zahlen) (1)
=1

Bild 1.1.1. Dreidimensionales Kristallgitter mit den Basisvektoren a,, @,, a; und den
Winkeln oy, 0613, %95 zwischen den Basisvektoren

kommt der Kristall mit sich selbst zur Deckung (vgl. Bild 1.1.1). Punkte des Kristalls,
die sich voneinander durch einen Vektor R der Form (1) unterscheiden, heilen

dquivalente Punkte.
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Die verschiedenen Kristallsysteme sind durch Unterschiede in den Lingen ay, a,, a;
der Basisvektoren und den von ihnen eingeschlossenen Winkeln oy, o3, g5 gemafd
Bild 1.1.1 gekennzeichnet.

Von besonderem Interesse sind das kubische Gitter, das durch drei gleich lange,
zueinander orthogonale Basisvektoren dargestellt werden kann, das rhombische
oder orthogonale Gitter mit unterschiedlichen Léngen der Basisvektoren, aber
Winkeln o) = a3 = op3 = 90°, und das trigonale Gitter mit gleich langen Basis-
vektoren und gleich groBen Winkeln, die jedoch von 90° abweichen.

Im einzelnen benutzt man sieben Kristallsysteme:

kubisch a4y = Ay = a3, Kyp = 043 = Opg = 90°
tetragonal ay = ay =+ as, Oy = 043 = g3 = 90°
rhombisch a =+ a, =+ ag, Gp = 13 == Oe3 = 90°
trigonal a; = ay = as, Oe = (13 = Olgg == 90°
hexagonal a; =ay, F+a3=c, 019 = 120°, 055 = x93 = 90°
monoklin o, =+ ay =+ as, 0gs = 90°% 015 = g3 = 90°
triklin a; = @2 =+ ag, G1p = o3 = Opg.

Die Vektoren @,, a,, a; kénnen auf verschiedene Weise gewahlt werden ; sie sind durch
den Kristallaufbau nicht eindeutig festgelegt.

Im folgenden werden unter @,, a,, a; kiirzestmogliche Vektoren verstanden, wobei
eine Bewegungs- bzw. Translationsrichtung zu dquivalenten Punkten im Kristall
vorgegeben ist. Bei dieser Festlegung nennt man a,, a,, a; Basisvektoren des Kri-
stallgitters. Sie spannen eine Elementarzelle des Gitters auf, die aus einer Gesamtheit
nichtédquivalenter Punkte besteht.

Bilden a;, a,, a; ein Rechtssystem, so ist das Volumen der Elementarzelle

2y = a,0,0; = @, - (@ X @3) |- (2)

Die Kristallstruktur entsteht, indem der Elementarzelle eine bestimmte Anordnung
von r Kristallbausteinen zugeordnet wird. Sie heifit die Basis. Die Kristallbausteine
der Basis konnen verschieden sein. Durch Vorgabe der Elementarzelle mit ihrer
Basis ist der Kristallaufbau festgelegt. Er geht durch sukzessive Anwendung der
Translation (1) vor sich.

Bild 1.1.2 zeigt eine zweidimensionale Veranschaulichung der gegebenen Definitionen.
Das einfache Gitter besteht aus Elementarzellen, die genau einen Kristallbaustein
enthalten. Bei Elementarzellen mit mehreren Kristallbausteinen kann das Gitter
als Kombination mehrerer einfacher Gitter aufgefafit werden. Derartige aus mehreren
Untergittern aufgebaute Kristallgitter werden als zusammengesetzte Gitter be-
zeichnet.

Die Kristalleigenschaften werden im folgenden besonders an den kubisch aufge-
bauten Gittern dargestellt. Bei diesen tritt vielfach entweder das kubisch-flichen-
zentrierte oder das kubisch-raumzentrierte Gitter auf (vgl. Tab. 1.1.1). Zur Ver-
anschaulichung dieser Gitter betrachtet man kleinste Wiirfel oder Kuben (Elementar-
wiirfel bzw. Elementarkubus). Sie enthalten in der Regel mehrere Elementarzellen.
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Das kubisch-flichenzentrierte Gitter (kfz-Gitter) wird durch einen kleinsten Wiirfel
bzw. Elementarwiirfel veranschaulicht, der je einen Baustein in jeder Ecke und im
Zentrum jeder der sechs Wiirfelflichen enthdlt (vgl. Bild 1.1.3). Beim kubisch-

+ + + + +
+ + + + +
a)
MR 77/
a
+ 2 + o+
az
b) o ©
+ Bild 1.1.2. Zweidimensionale Veran-
schaulichung des Kristallaufbaus.
a) Zweidimensionales Kristallgitter.
Die Basisvektoren a,, a, definieren
o o o o o die ebene Elementarzelle. 4+ Gitter-
o""° o+°‘o+° °+o o+° punkt
ot ot ot ot ot b) Basis aus zwei verschiedenen Bau-
c) ° o o ‘o O  steinen o und O
ot > + + . . .
[ () o © o © o ¢) Kristallstruktur aus Kristallgitter
ot 6 ot ot und Basis
&

Bild 1.1.3. Kubisch-fldchen-
zentriertes Gitter (kfz-Gitter)

o
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raumzentrierten Gitter (krz-Gitter) befinden sich die Bausteine in den acht Ecken,
ein weiterer im Zentrum des Elementarwiirfels (vgl. Bild 1.1.4).
Die Kantenlinge o des Elementarwiirfels heifit die Gitterkonstante.

a,
— a
i N a,
N\ g5
\\
e
34‘ e \ Bild 1.1.4. Kubisch-raumzentriertes Gitter
2 \
(krz-Gitter)

Kristallstrukturen werden aus der Beugung von Roéntgenstrahlen bestimmt (vgl.
1.2.). Ist die Struktur eines Kristalls bekannt, so kann die Gré8e der Elementarzelle
durch Messung der Dichte des Stoffes ermittelt werden.

Beispiel 1.1.1. Das kubisch-flichenzentrierte Gitter (kfz-Gitter)

Es soll die Gitterkonstante ¢ des Kupferkristalls bestimmt werden. Kupfer hat ein kubisch-
flaichenzentriertes Gitter.

Jedes der acht Atome in einer der acht Ecken gehort gleichzeitig acht Wiirfeln an, da in jeder
Wiirfelecke acht Elementarwiirfel zusammenstofien. Die acht Eckatome sind daher beziiglich des
betrachteten Elementarwiirfels als

8. L1
8

Atom zu zdhlen. Dagegen gehort jede Wiirfelfliche gleichzeitig zu zwei Wiirfeln. Die sechs
Fldchenatome eines Wirfels sind daher als

Atome zu zéhlen. Insgesamt entfallen somit vier Atome auf einen Elementarwiirfel der Kanten-
linge a (Besetzungszahl 4).
Das Volumen des Elementarwiirfels mit vier Atomen ist gleich a®; das Volumen einer Elementar-
zelle mit einem Atom betrégt daher a?/4. Nich der Formel

Dichte des Wiirfels ist gleich Masse dividiert durch sein Volumen

kann man schreiben

d= = (3)
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wobei m die Masse eines Kristallbausteins, d. h. eines Kupferatoms, angibt. Durch Umformen
erhilt man
< [4m
a= |/—. 4
] 4)

Kupfer hat die Dichte d = 8,89 gem = 8,89 - 10 kg m—3. Seine relative Atommasse ist
A, = 63,55; die molare Masse betrigt also M = 63,55 - 10° kg kmol~!. Die Masse eines Atoms
ergibt sich aus

M
m=—,
Ny
wobei N, = 6,02 - 1026 kmol—! die Avocaprosche Konstante bezeichnet. Damit folgt fiir die
Gitterkonstante des Kupferkristalls

3/
a= 4 - 63,55 m = 0,362nm.
8,89 - 103 - 6,02 - 1026

Bei der Wahl der Basisvektoren eines einfachen Kristallgitters hat man darauf zu
achten, dafl sdmtliche nichtdquivalenten Punkte erfalt werden. Das wird gewahr-
leistet, wenn der Kristall bei fortgesetzter Anwendung der Transformation (1) immer
mit sich selbst zur Deckung kommt und die Elementarzelle des einfachen Gitters
genau einen Kristallbaustein enthalt.

Beispiel 1.1.2. Basisvektoren des kubisch-flichenzentrierten Gitters

Es seien ey, e,, e; die Einheitsvektoren in den drei aufeinander senkrecht stehenden Richtungen
der Wirfelkanten nach Bild 1.1.3. In einem Gitterpunkt P, stoBen drei Flichen P,P,P,’P,,
P,P,P,’P; und P,P,P; P, des betrachteten Elementarwiirfels zusammen. Als Basisvektoren der

Elementarzelle konnen die von Py nach den Zentren der drei Wiirfelflichen gerichteten Vektoren
gewdhlt werden:

a, = ’g‘ (ey + ey),
a, = % (e; +ey), (5)

a; = % (e, + ey).

Das Volumen der Elementarzelle ist nach (2)

3 3
Q) =aa,a; =a, - (@, X a;) = % (€ + €;) - (—e; + e, 4 €;5) = 14'- (5a)

Dem Elementarwiirfel mit der Kantenlidnge a sind nach Beispiel 1.1.1. beim kubisch-flichen-
zentrierten Gitter vier Gitterbausteine zuzuordnen. Die von den Basisvektoren @,, a,, a; auf-

gespannte Elementarzelle enthélt daher genau einen Gitterbaustein.

9 Schilling, Festkérperphysik
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Einfache Gitter konnen, wenn das fiir die Betrachtung zweckmiBig ist, auch aus
mehreren Untergittern zusammengesetzt gedacht werden.

Beispiel 1.1.3. Kubisch-flichenzentriertes Gitter als zusammengesetztes Gitter

Das einfache kubische Gitter wird durch einen kleinsten Wiirfel veranschaulicht, der in jeder
der acht Ecken einen Kristallbaustein enthilt. Aus vier solchen einfachen kubischen Gittern kann
das kubisch-flichenzentrierte Gitter zusammengesetzt gedacht werden (vgl. Bild 1.1.5).

&,

A

| i 1
= 2

L 1

|

1 .

' 3

' 4 4

I 3

|

|

| 'ez

I P | I = 1 Bild 1.1.5. kiz-Gitter als zusammen-
- T2 T s gesetztes Gitter

1 1

Zur Charakterisierung der Gitter wird ein Koordinatensystem angenommen, dessen Achsen die
Richtungen der Einheitsvektoren e,, e,, e; haben. Man kann das kubisch-flichenzentrierte
Gitter aus vier einfachen Gittern zusammensetzen, wobei das zweite, dritte und vierte Gitter
gegen das erste jeweils in Richtung einer der Flichendiagonalen um die Hilfte von dessen Lénge
verschoben ist. Sind also die Basisvektoren des ersten einfachen kubischen Gitters durch

a; = ae;, a, =ae,, az; = ae;

gegeben, so haben die Ursprungspunkte der vier Basissysteme die Koordinaten

0,00, a(+ +0). a(+0~), af0+ 1)
2" 2 2 2 2 2
Reziproke Gitter

Neben dem von den Basisvektoren a,, a,, a; aufgespannten direkten Gitter wird
fiir jeden Kristall das reziproke Gitter definiert. Seine Basisvektoren werden mit
b,, b,, bs bezeichnet.

Sie sind mit a,, a,, a; durch
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verkniipft, wobei 8;; das KroNECKER-Symbol bedeutet. Aus den Definitionsgleichun-
gen (6) folgt explizit :

21
b, = —-Q—o a, X as,
2

b2=—!—2;a3><a1; (7)

2m
b3 = ?o'alxaz-

Das reziproke Gitter eines Kristalls wird durch die Gitterpunkte

3

b, mym, = 2 m;b; (m; =0, 41, 42,...) (7a)

o
=1

aufgespannt.

Die Basisvektoren des reziproken Gitters haben die MaBeinheit m-t. Als Volumen
der Elementarzelle des reziproken Gitters, d. h. als Volumen einer Gesamtheit nicht-
dquivalenter Punkte im reziproken Raum, erhilt man

.Qo’ = b1b2b3 = bl . (ng b3)- (7b)
Mit Hilfe des Entwicklungssatzes der Vektorrechnung

AXx(BxC)=(A-C)B— (4-B)C
ergibt sich

472

ngb3: Qz
0

(as X @) X (a; X a,)

472
=0z [(as X @) - @, — (a3 X @;) - @,a,]
0

und daraus wegen
(a; X @) - @y = a,a,a;5, (@3 X @) - @ =0

fiir das Volumen der Elementarzelle des reziproken Gitters

8nd

2y =b; - (by X bg) = a,0,a, |
2

(7¢)

Die MafBeinheit der Elementarzelle des reziproken Gitters ist m=2.

2%
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Beispiel 1.1.4. Reziprokes Gitter des kubisch-flichenzentrierten Gitters

Die Elementarzelle des kubisch-flichenzentrierten Gitters wird nach (5) und (7) im reziproken
Raum durch die Basisvektoren

2 )
b, = g (—e,+e;, +e),

2
b, = > (e, — e, + €), (8)
2r
b; = ";(91‘}‘92—93)
aufgespannt.
Fir Silber mit ¢ = 0,408 nm erhilt man z. B. als Volumen der Elementarzelle des reziproken

. a?
Gitters wegen a,a,a; = =

. 83 3
o =482 32m m=® = 1,46 - 103 m™3,
a? (0,408 . 10~9)3
P Probleme
1.1.1. Steinsalzgitter

Die Alkalihalogenide, von denen das Steinsalz NaCl der bekannteste Vertreter ist, kristallisieren
in der Form des einfachen kubischen Gitters (vgl. Beispiel 1.1.3.). Seine Gitterpunkte sind ab-
wechselnd mit den zwei verschiedenen Ionenarten der Verbindung besetzt (vgl. Bild 1.1.6).
Diese bilden jede fiir sich ein kubisch-flichenzentriertes Gitter. Beide Gitter sind gegeneinander
in Richtung der Raumdiagonalen eines Elementarwiirfels um die Halfte ihrer Lange verschoben.
Geben Sie die Gitterkonstante des Steinsalzgitters an, fir das die folgenden Daten bekannt
sind:

dyac1 = 2,17 g em=3; Ay, = 22,99, 4¢; = 35,45
Losung:

Der Elementarwiirfel nach Bild 1.1.6 enthilt acht Chlorionen in den Ecken, sechs auf den Flachen.
Auf einen Wiirfel entfallen somit

8. = 1 Chlorion,

= 3 Chlorionen.

| = ®| =

Die zwélf Natriumionen auf den Kanten zghlen als

12 . = 3 Natriumionen;

|
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das Natriumion in der Mitte des Wiirfels gehért diesem vollstédndig an:
1.1 = 1 Natriumion.

Zu einem Wiirfel mit der Gitterkonstanten a als Kantenldnge gehoren somit vier Natrium- und
vier Chlorionen. Daraus folgt

3
Nac1 = l

4(mya + M)

3
ANaCl

4(mya + mc)

dNaCl = d
NaN1

Bild 1.1.6. Steinsalzgitter (einfach
kubisches Gitter). Die Basis besteht
aus einem Natriumion bei 0, 0, 0 und
einem Chlorion bei i, i, i (in
2 2 2
(Einheiten der Gitterkonstanten a).

Mit den vorgegebenen Werten erhélt man firr die Gitterkonstante des Steinsalzkristalls

3 -
ONac1 = V 422,99 + 3545) | _ 0,564 nm.

2,17 -10% - 6,02 - 10%
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1.1.2. Kubisch-raumzentriertes Gitter (krz-Gitter)

Wolfram hat ein kubisch-raumzentriertes Gitter nach Bild 1.1.4. Ein Elementarwiirfel mit einer
Kantenldnge, die gleich der Gitterkonstanten a ist, besitzt acht Atome in den Ecken, zu denen
‘eins im Zentrum des Wiirfels kommt.

Definieren Sie die Elementarzelle des kubisch-raumzentrierten Gitters und berechnen Sie fir
Wolfram die Gitterkonstante a, wenn folgende Daten bekannt sind:

Dichte dyw = 19,3 g cm3, relative Atommasse 4y = 183,85.

Stellen Sie die Basisvektoren fiir das reziproke Gitter auf und vergleichen Sie dieses mit dem
kubisch-flichenzentrierten Gitter. Zeigen Sie, daBl das kubisch-raumzentrierte Gitter aus
zwei einfachen kubischen Gittern zusammengesetzt werden kann.

Losung:

Acht Atome in den Ecken zihlen als 8 - —;— = 1 Atom. Dazu kommt ein Atom in der Mitte, das

nur einem Elementarwiirfel angehért und daher als ein Atom zu zéhlen ist. Demzufolge kommen
zwei Atome auf einen Elementarwiirfel.

Mit den Einheitsvektoren e,, e,, €; nach Bild 1.1.4 definieren wir die Bésisvéktoren

a, = %‘ (—e, + e, + e),

a, = ';“ (e, — e+ e;), 1)
a; = % (e, + e, —ey).

Sie sind jeweils vom Gitterpunkt in der Mitte zu einer der Ecken gerichtet. Als Volumen der
Elementarzelle folgt
@
Qy = a,a,0; = a, - (@ X a) = 5 @)

Da im Wiirfel mit der Kantenlidnge a zwei Atome enthalten sind, entfillt auf die.durch (1) defi-
nierte Elementarzelle, wie es sein muB, ein Atom.

Zur Berechnung der Gitterkonstanten des Wolframs gehen wir von der fiir das kubisch-raum-
zentrierte Gitter geltenden Formel

[

d=2 (3)
a

aus und erhalten

aﬂ?. (4)
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Mit den vorgegebenen Werten folgt

3
a= 2-183,9 m = 0,316 nm.
6,02 - 1026 .19,3 . 108

Fir die Basisvektoren des reziproken Gitters ergibt sich nach (1.1./7) aus (1)
by = 2 (e, + €0),
a
by = 2 (e, + e, )
b= (e, + €.

Aus dem Vergleich mit (1.1./5) folgt, da die kubisch-flichenzentrierten und die kubisch-raum-
zentrierten Gitter zueinander reziprok sind. Das gleiche zeigt der Vergleich von (1.1./8) und
(1.1.2./1).
Das kubisch-raumzentrierte Gitter kann aus zwei einfachen kubischen Gittern mit den Basis-
vektoren

a, =ae,, a,=ae,, a; = ae, 6
1 1 2 2 3 3

zusammengesetzt werden. Die Koordinaten der Ursprungspunkte lauten

1 1 1
(0, Os 0); a (_: ?, ?)- (7)

1.1.3. Diamantstruktur

Der Germanium- und der Siliziumkristall sind nach der Diamantstruktur aufgebaut. Jedes der
vierwertigen Atome im Inneren des Kristalls befindet sich im Zentrum eines gleichseitigen Tetra-
eders und ist von vier gleich weit entfernten Nachbarn umgeben, die in den Tetraederecken an-
geordnet sind (vgl. Bild 1.1.7).

Bild 1.1.7. Tetraedrische Struktur der Bindung bei
den Bausteinen des Diamantgitters

Diese Kristallstruktur kann aus zwei kubisch-flichenzentrierten Untergittern aufgebaut werden,
die gegeneinander in Richtung der Wiirfeldiagonalen um ein Viertel ihrer Linge verschoben sind
(vgl. Bild 1.1.8).
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Geben Sie die Basisvektoren der Elementarzelle an. Wieviel Atome enthilt diese beim Diamant-
gitter? Wie gro8 sind die Abstande zu den nédchsten Nachbarn? Die Gitterkonstante hat fiir Ger-
manjum den Wert age = 0,565 nm, fir Silizium ag; = 0,543 nm. Wie gro8 ist der Winkel zwi-
schen den Valenzkréiften auf Grund der Gitterstruktur?

>- 2 ‘e
! \
e
—
3 |
4 Bild 1.1.8. Aufbau des Diamantgitters
S aus zwei gegeneinander verschobenen
J kfz-Gittern. Vom zweiten Gitter sind nur
die Bausteine innerhalb eines Elementar-
wiirfels dargestellt.
& b,

Losung:
Die Basisvektoren entsprechen denen des kubisch-flichenzentrierten Gitters (1.1./6) nach Bei-
spiel 1.1.2. Sie haben die Linge
1 ,
ai=EV§a (i=1,2,3). (1)

Die Kristallstruktur ergibt sich aus Gitter und Basis. Zur Basis gehoren zwei Atome, da sich die
Kristallstruktur aus zwei einfachen Gittern aufbauen 1a8t. Eine Elementarzelle enthalt daher zwei
Atome.

Wihlt man die Koordinatenachsen in Richtung der Basisvektoren a,, @,, a; des kubisch-flichen-
zentrierten Gitters nach (1.1./6), so sind die Gitterpunkte des unverschobenen Gitters durch die
Ortsvektoren

R =R, ;; = na, + na, + n,a; =
= 2 (uley + €] + mles + €]+ nafes + €3]) @)
(m;=0,4+1,42,.--; ©=1,2,3)
bestimmt. Die Gitterpunkte des verschobenen Gitters werden durch

ae, + €, + &)

R =Ry gy = v

+ % (ny[e; + es] + ny[e; + e,] + nse; + €,])

= % (e[l + 2ny + 2n5'] + €51 + 2ny" + 2n4"] + e5[1 + 21" + 2n,"]) (3)

(n.-':O’_—_,:l,j:2,...; 1=1,2,3)
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definiert. Als ndchste Nachbarn des Gitterspunktes P, = P(0, 0, 0) erhilt man aus (3) die Punkte
mit den Parameterwerten

n' =0, ny’ =0, ng’ = 0;
n' =—1, n’ =0, =ny=0;

! (4)
n’ =0, ny = —1, ny =0;
n1’=0; ny’ =0, ng = —1.

Der Abstand zwischen nidchsten Nachbarn betrigt nach (1) und (4) fiir die
Bausteine der Diamantstruktur

a. (5)

T

a
Rioo = V(e + (L&) + (£e))* =
Wir setzen die Werte der Gitterkonstanten fiir Germanium und fiir Silizium ein und erhalten

(R3,0,0)ge = —? 0,565 nm = 0,245 nm,

(Bg,0,0)s1 = Vzg 0,543 nm = 0,235 nm.

Der Cosinus des Winkels zwischen zwei Valenzkréften ist gleich

’ 4 ’ ’
R—I,O.O .RO,—l.O R—l,o,o 3 RO.—I,O

O VR R, Ris
Damit folgt
cosp = (e, —e, —e;)-(—e +e, —e) _ 1
3 3
bzw.
@ = 109,47°.

Das ist der Winkel vom Zentrum eines Tetraeders nach zwei Tetraederecken.

1.1.4. Hexagonal dichteste Kugelpackung (hdp-Gitter)

Kobalt zeigt eine Kristallstruktur mit hexagonalem Gitter nach Bild 1.1.9. Jeder Kristallbaustein
A ist von sechs anderen umgeben, die an den Ecken eines regelmiBigen Sechsecks der Seiten-
linge o liegen. Im Abstand ¢ senkrecht dariiber wiederholt sich diese Anordnung. Drei weitere

Bausteine befinden sich in der Hoéhe % Sie sind so angeordnet, daf von den sechs Prismen mit
dreieckiger Grundfliche abwechselnd eins besetzt ist, wihrend das folgende keinen zwischen-
geordneten Baustein enthilt. Die Projektion eines in der Hohe % angeordneten Bausteins auf die

Grundfldche fillt auf den Schwerpunkt S des vom Baustein in der Mitte 4 und zwei benachbarten
Bausteinen gebildeten gleichseitigen Dreiecks (vgl. Bild 1.1.9).
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Fiir den Kobaltkristall ergeben réontgenografische Messungen a = 0,251 nm, ¢ = 0,407 nm. Die
relative Atommasse des Kobalts ist 4, = 58,93. Welche Dichte ergibt sich hieraus?

Bild 1.1.9. Hexagonal dichteste Kugelpackung
(hdp-Gitter) mit

L _1/L
a 3
Losung:
Als Basisvektoren werden die Vektoren
a, = ae,,
a 3
a, = —2—91—}- —2—aez, ()]
a; = ce,

gewshlt (vgl. Bild 1.1.9). Fiir das Volumen der Elementarzelle erhalten wir daraus
3 2,
2, = a,a,a; = 3 ° c. 2)

Jeder der zwolf Bausteine in einer Ecke gehort gleichzeitig sechs Zylindern an, jeder der zwei
Bausteine im Zentrum der oberen bzw. der unteren Fliche gleichzeitig zwei Zylindern. Die in der
Mitte angeordneten drei Bausteine sind dem betrachteten Zylinder vollstindig zuzuordnen.
Insgesamt gehoren also einem Zylinder sechs Bausteine an, die sich auf das Volumen

V=6w%c=—z-1/3_aﬁc ®

verteilen. Auf die Elementarzelle (2) entfillt somit eine Basis aus zwei Bausteinen. Der eine liegt
im Ursprung, der zweite ist durch den Ortsvektor

1 1 a a ]/§ c
?(a1+a’2)+3a3=5e1+_6-92+393_ 4)
gekennzeichnet.
Die Dichte des Kobaltkristalls ist nach (2)
_ 2m 44, 5)

2 ]/§ Nya?c E
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Mit den vorgegebenen Werten folgt

d— 4 .58,93 kgm3=88g cm-s_‘.

V3-6,02-10% . (0,251 - 10-9)2 - 0,407 - 10~°

Der Abstand des durch (4) gegebenen Bausteines von seinen nichsten Nachbarn in der Grund-
ebene betragt

e ®)

Von den Nachbarn in der gleichen Ebene, in dei' Hohe g iber der Grundebene gelegen, ist der

Abstand zu den nichsten Nachbarn gleich a. Die d1chteste Packung mit gleichen Kugeln wird
somit erreicht fir

2 2 ry
a = %—f—% bzw. c=l/%a=1,63a. (7)

Zwei Kugeln mit dem Radius %- filllen in diesem Falle das Volumen

Als Packungsdichte definiert man den Anteil dés ausgefiillten Raumes. Béi der hexagonal dichte-
sten Kugelpackung erhélt man hierfiir

2Vx  2n

2, V8-3

Fiir Kobalt ist

=0,74.

c 0,407 - 10—°
— = =1,62.
a 0,251 - 10—°

Gleichung (7) als Voraussetzung fiir das Vorhegen der hexagonal dichtesten Kugelpackung ist
daher gut erfiillt.
Fiir das reziproke Gitter ergeben sich nach (1.1./7) die Basisvektoren

27 1
b, = — —_— ,
1 p (el ﬁez)
4
b, = €, 8
2 T3 2 (8)
b, = Ees.
[

Wie man aus dem Vergleich von (1) und (8) erkennt, ist das reziproke Gitter des hexagonalen
Gitters wieder hexagonal.



28

1. Struktur idealer Kristalle

Anmerkung: Die Achse mit der groften Symmetrie heiBt c- Achse. Im vorliegenden Fall der Atom-
anordnung in Form regelmiBiger Sechsecke liegt eine sechszéhlige bzw. hexagonale ¢-Achse vor.
Das Gitter kommt bei einer vollstdndigen Drehung um die c-Achse sechsmal mit sich selbst zur

Deckung.

Alld.
Al.1.2.
A113.
Al114.

A1.1.5.

A11.6.
A11.7.
A1.18.
A1.1.9.

A 1.1.10.

At

A1.1.12,

A1.1.13.

A1.1.14.

Bild 1.1.10. CsCl-Struktur

N

Silber hat ein kubisch-flichenzentriertes Gitter. Seine Dichte betridgt 10,49 g cm—3,
seine relative Atommasse 4,, = 107,87. Bestimmen Sie die Gitterkonstante.
Berechnen Sie die Gitterkonstante a des «-Eisens, das ein kubisch-raumzentriertes
Gitter besitzt (dge = 7,86 g cm3, Ape = 55,85).

Welche Gitterkonstante hat der KCl-Kristall (Steinsalzgitter nach Bild 1.1.6)?
Daten: dgc; = 1,989 g cm=3, Ay = 39,10, A = 35,45.

Wie grof ist beim Steinsalz NaCl die Zahl der Ionen in einer Elementarzelle des
kubisch-flichenzentrierten Gitters?

Zinkblende ZnS setzt sich aus zwei flichenzentrierten Gittern zusammen, die in
Richtung der Raumdiagonalen eines Elementarwiirfels um ein Viertel ihrer Lénge
verschoben sind. Berechnen Sie die Gitterkonstante (4, = 65,37, 45 = 32,08,
dzns = 4,067 g cm—3).

Berechnen Sie das Volumen einer Elementarzelle des reziproken Gitters fiir Kupfer.
Wie groB ist bei Steinsalz die Linge der Basisvektoren (@ = 0,564 nm)?

Geben Sie fir Steinsalz die Koordinaten der Natrium- und der Chlorionen in
Einheiten der Gitterkonstanten « an.

Wie groB ist der Abstand zwischen nichsten Nachbarn beim Wolframkristall
(kubisch-raumzentriertes Gitter mit aw = 0,316 nm)?

Berechnen Sie den Anteil des verfiigbaren Volumens, das von gleich groBen starren
Kugeln ausgefilllt werden kann, fir das kubisch-flichenzentrierte und fiir das
kubisch-raumzentrierte Gitter.

Wie grof ist der maximale, mit gleich groBen starren Kugeln gefiillte Raumanteil
beim Diamantgitter?

Der Diamantkristall hat die Gitterkonstante ¢ = 0,356 nm. Berechnen Sie die
Dichte des Diamanten und den Abstand zwischen den néchsten Nachbarn
(4¢ = 12,0).

Geben Sie die Zahl der nidchsten Nachbarn (Koordinationszahl z) eines vorgege-
benen Bausteins im Kristall fiir das kubisch-flichenzentrierte, das kubisch-raum-
zentrierte und das hexagonal dichtest gepackte Gitter an.

Bestimmen Sie die Zahl z, der néchsten, z, der ibernichsten, z; der drittndchsten
bis 2z, der sechstnichsten Nachbarn eines Bausteins im Steinsalzkristall (einfaches
kubisches Gitter).

Aufgaben
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A1.1.15. Berechnen Sie den Abstand zweier nachster Nachbarn fiir das Gitter des Silber-
kristalls (kubisch-flichenzentriertes Gitter mit ¢ = 0,408 nm).

A1.1.16. Geben Sie den kiirzesten Abstand zwischen zwei Ionen im Kristallgitter mit Zink-
blendestruktur an, bezogen auf die Gitterkonstante a.

A1.1.17. Wie gro8 ist der Abstand zwischen nichsten Nachbarn in CuCl (Zinkblende-
struktur mit ¢ = 0,541 nm)?

A1.1.18. Stellen Sie einen beliebigen Vektor k¢ durch seine Komponenten im Basissystem des
Kristallgitters und im Basissystem des reziproken Gitters dar.

A1.1.19. Wie groB ist die Elementarzelle des reziproken Gitters fiir den Wolframkristall
(krz-Gitter, ¢ = 0,316 nm)?

1.2, Grundlagen der Kristallstrukturanalyse

E Einfiihrung

Gesetze der Beugung von Rontgen- und de-Broglieschen Wellen am Rawmgitter

Zur Untersuchung von Kristallstrukturen wird die Beugung von Wellen ausgenutzt,
die mit den Kristallbausteinen in Wechselwirkung treten. Die Wellenlinge muf
dabei in der GroBenordnung des Abstandes der Kristallbausteine liegen. Zu grofle
Wellenldngen vermégen Strukturen atomarer Gréfenordnung nicht aufzulésen, zu
kleine Wellenldngen' ergeben nur unter unpraktisch kleinen Beugungswinkeln aus-
wertbare Beugungsmaxima.

Bild 1.2.1. Einfallendes Strahlenbiindel 72, und
gebeugtes Strahlenbiindel 7 im Kristall

Eingestrahlt werden im allgemeinen Rontgenwellen. Es kénnen jedoch auch Strahlen
aus Elektronen oder Neutronen verwendet werden, wenn die Lénge ihrer DE-BROGLIE-
schen Welle in der GréBenordnung der Gitterkonstanten liegt.

Das auf die Kristalloberfliche auffallende Strahlenbiindel wird durch die Kristall-
bausteine in alle Richtungen gestreut. Es sei in Bild 1.2.1 das einfallende Strahlen-
biindel KL vor der Streuung an den Kristallbausteinen 4, O durch seine Richtung
n, gekennzeichnet. Betrachtet wird das in Richtung m gebeugte Strahlenbiindel
MN. Dieses weist dann maximale Intensitdt auf, wenn sich parallele Strahlen durch
Interferenz verstdrken. Das ist der Fall, wenn die Strahlen an den Begrenzungen des
Biindels eine Differenz BO + OC der geometrischen Weglingen haben, die einem ganz-
zahligen Vielfachen der Wellenldnge entspricht. Bezeichnet @, in Bild 1.2.1 den vom
Kristallbaustein O zum Kristallbaustein 4 gezogenen Basisvektor, so mufl die Be-
ziehung

BO +0C = —a,-ny,+ a, - n = g,A
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bzw.
a, - (n — ny) = g4 (1)
mit

(gl = 0: :':1) i2’ "')

erfiillt sein. Fiir das dreidimensionale Raumgitter mit den Basisvektoren a,, a,, a;
folgen analog die zusétzlichen Gleichungen

a, - (n —ny) =g, 2)
a - (n — n,) = gsl. (3)

Sie sind notwendige Bedingungen fiir das Auftreten eines Beugungsmaximums.
Daher enthalten sie keine Aussage tiber die Intensitédt der gebeugten Strahlen. Die
Gleichungen (1) bis (3) heiBlen die Laueschen Interferenzbedingungen.

Bezeichnen «,, f,, y, die Winkel des Einheitsvektors n, gegen die Basisvektoren
a,, a,, as, ferner «, B, v die entsprechenden Winkel des Einheitsvektors n, so erhilt
man aus (1), (2), (3) die Gleichungen

a;(cos o — cos ag) = ¢y,
as(cos f — cos fBy) = gol, (91,92,95 =0,41,42,...). (4)

a3(cos y — €08 yo) = gk

%os Bo> Vo stellen ebenso wie «, 8, ¥ Glanzwinkel dar, d. h., sie geben die Winkel der
Strahlen gegen die Gittergeraden an. a,, a,, a; als Betridge der Vektoren a,, a,, a3
bezeichnen Gitterkonstanten. Die Grofien gy, ¢o, gs sind nicht unabhéingig vonein-
ander. Betrachtet man ein rhombisches Gitter, d. h. ein Gitter mit drei zueinander
senkrecht stehenden Achsen, bei dem die Gitterkonstanten a,, a,, a3 jedoch nicht
gleich sein miissen, so bestehen zwischen den Richtungscosinus die Beziehungen

cos? oy 4 cos? By + cos?yy =1, } 5
®)

cos? x - cos? f 4 cos?y = 1.

Auf der Fotoplatte konnen nur Beugungspunkte auftreten, wenn sie den geometri-
schen Bedingungen (5) entsprechen.

Um fiir einen Kristall mit rhombischem Gitter die Wellenldngen 1 zu bestimmen, die
Interferenzmaxima, d. h. auswertbare Beugungspunkte, liefern kénnen, werden die
Gleichungen (4) nach den Richtungscosinus cos «, cos f, cos y aufgelost. Beachtet
man die Beziehung

cos?x + cos? f 4 cos?y =1,
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so folgt fiir die Wellenlingen mit Interferenzmaxima

Tzl—cosoco + %cosﬂo—{~ % cOS Yo
A= —2 2 2 2 . (6)

(2) + (&) + (&)

Fiir das kubische Gitter mit a; = a, = a3 = a ergeben sich die Wellenldngen

1= _9g J1905% —+ g2 cos By + g3 cos y,
9® + 9.* + ¢4

(4) und (6) bzw. (7) bilden die Grundlage fiir die Kristallstrukturanalyse durch Beu-
gung eines parallelen Strahlenbiindels (Verfahren von M. v. Laue).

(7

Reflexion an Netzebenen — Mullersche Indizes

Die Beugung von Strahlen an einem Gitter kann nach W. H. Bragg und W. L. Bragg
auch als Reflexion an Netzebenen aufgefat werden. Netzebenen sind Ebenen, die in
periodischer Folge Kristallbausteine des Gitters enthalten (vgl. Bild 1.2.2). Zur
Kennzeichnung der verschiedenen Netzebenenscharen verwendet man die MILLER-
schen Indizes.

Bild 1.2.2. Netzebenen eines Kristall-
gitters

& O O

Allgemein sind bei einem System beliebig gegeneinander geneigter Basisvektoren
a,, a,, az die MLERschen Indizes einer Schar paralleler Netzebenen wie folgt ver-
anschaulicht: Es wird der Schnitt einer Kristallebene mit den Achsen des Koordi-
natensystems betrachtet. Die Schnittpunkte seien

(xs:'o; O)> (0, Yss 0)’ (0; O; Zs) .
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In Einheiten der Gitterkonstanten a, bzw. a, bzw. a; gemessen, sind die Achsen-
abschnitte
2 s 2

8§ = — Sy = — 83 =
a’ ay’ as

Ihr reziprokes Verhiltnis wird durch die kleinsten teilerfremden ganzen Zahlen aus-
gedriickt:

1 1 1

— i — 1 — = hythyths.

§1 S S3

Diese sind die MuLERschen Indizes der Ebenenschar. Es gilt also

1 1 1
—:—:——:sl:sg:s3=&:£:—zs—.
hy " hy Ry ay Ay Q3

(8)

Eine Ebene mit dem Abstand p vom Ursprungspunkt des Basissystems wird durch
die Gleichung

xcoso' 4 ycosf 4 zcosy =p 9)
dargestellt. Dabei bedeuten &', f’, y’ die Winkel der Ebenennormalen n’ gegen die

Koordinatenachsen. Die Cosinus dieser Winkel koénnen als Verhéltnis des Ebenen-
abstandes p zur Linge des betreffenden Achsenabschnittes berechnet werden:

cosa’ = —, cosf = —p—, cos y’ = zﬁ (10)
S

S s

Definiert man daher die MrLLERschen Indizes geméB (8), so folgt aus (10)

by | hy Ry
— i —:— =cos«a': " " 11
ki cos «’:cos B’ :cos y (11)

Die MmLerschen Indizes, dividiert durch die Gitterkonstanten, sind proportional
den Richtungscosinus cos &', cos ', cos 9’ der Ebenennormalen n’. Durch ein Tripel
Mr.uerscher Indizes werden daher eine Schar paralleler Netzebenen und die Richtung
ihrer Flachennormalen festgelegt. Allgemein definiert man mittels

(hy hy kg) die Schar der Netzebenen,
mittels
[Ry hy k3] die Gerade n'. -

Ein Punkt mit den Koordinaten x, y, z wird durch [[yz]] dargestellt.
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Beispiel 1.2.1. Millersche Indizes einer Ebenenschar

a) Die durch die MmLERschen Indizes (2 3 4) charakterisierten parallelen Ebenen sind nach (8)
durch

d. h. durch das Verhiltnis der Achsenabschnitte

: :-z—s=i:i:i=6:4:3
a6y ag 2 3 4

Ty

Ys

gekennzeichnet. Beim Steinsalzgitter mit a; = @, = a3 = a gilt nach (11) fiar die Richtungs-
cosinus der Fldchennormalen

cos &’:cos f':cos y’ = 2:3:4,

d. h., diese sind gleich

Bild 1.2.3a) Netzebenen (1 1 1) und (2 2 2)

b) Das Indextripel (11 1) erfaBt alle zur zweiten Oktaederfliche- des ersten Raumoktanten
parallelen Ebenen, d. h. alle Netzebenen, die zur Netzebene durch die Punkte [[a; 0 07], [[0 a, 0]],

3 Schilling, Festkorperphysik
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[[0 0 a5]] parallel sind (vgl. Bild 2.1.3a). Das sind die Ebenen mit
Ty = 2a,, Ys= 20y, 23 = 2a4;
rg = 3a,, Ys=3ay, 25 = 3a3;

xy = 4a,, ys=4a,, z3 = 4as.

Beispiel 1.2.2. Netzebenen parallel zu einer Koordinatenachse
Die MmLERschen Indizes (0 1 1) kennzeichnen gem&f

1 1 1
—:-——:——=ﬁ:£:ﬁ=i:—:—=oo:1:1
hy hy by a;  ay ag 0 1

eine zur z-Achse parallele Netzebene.
Durch die MmLERschen Indizes (1 00) wird eine zur y- und zur z-Achse, d. h. zur y, z-Ebene,
parallele Netzebene charakterisiert (vgl. Bild 1.2.3b).

P4

A

-y Bild 1.2.3b) Netzebene (1 0 0)

X

Negative Vorzeichen der Indizes werden iiber diese gesetzt.

Beispiel 1.2.3. Negative Millersche Indizes
(111) charakterisiert die Netzebenen parallel zur Netzebene durch die Punkte [[—a, 0 0]],
[[0 @, 01], [[0 0 as]].

Zwischen dem reziproken Gitter und den Millerschen Indizes besteht eine enge
Verkniipfung. Es seien a;, @,, a3 die Basisvektoren eines Kristallgitters, b;, by, b,
die Basisvektoren seines reziproken Gitters. Die Netzebenen mit den MiLLERschen
Indizes (hihohs) sind nach (8) parallel der Netzebene N, mit den in Einheiten der
Gitterkonstanten gemessenen Achsenabschnitten

T Ys | % 1 1 1
a,  a,  ag hy " hy " hg

Daher liegen die Endpunkte der Vektoren

a; a ag
T I 0 7
k" hy hg
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d. h. die Punkte
[[ms 0 0]]: [[0 Ys 0]]; [[0 0 ZS]J
alle auf der Netzebene N,, wihrend die Vektoren

a, a, a;, a

a2 d =228

A P M N

in der Netzebene liegen.
Die Gitterpunkte des reziproken Gitters sind durch die Vektoren

b =0y, = 9101 + ¢2b: + gsbs (12)

festgelegt. Berechnet man die Skalarprodukte

a a.
bgugwa : (‘k_I' - h_z)

a as
bg;,gz.gg . (h—i - 773:) 4

-s0 findet man unter Heranziehung der Beziehung a; - b; = 2=d;; nach (1.1./6), daB
diese genau dann verschwinden, wenn die Beziehung

und

9129293 = hyihyihy (13a)

besteht. Der Vektor

bglnga:ﬂl = lbh);hznhs (13)
bg,g 9 Z
A
N, 2
>y
X

Bild 1.2.4. Netzebene (1 1 1) mit zugehorigem Vektor by ;
des reziproken Gitters

steht also auf den Netzebenen mit den MmLERschen Indizes (h;hsh3) senkrecht (vgl.
Bild 1.2.4). I ist der groBte gemeinsame Teiler der drei ganzen Zahlen g, gs, gs.

3*
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Nach (12) folgen unter Beriicksichtigung der Beziehung @; - b; = 2rd;; fiir den Vektor
by, ., die drei Gleichungen

a; - By, g,9, = 2wy, ,
ay - by, 4.0, = 27095, (14)

ay - by, 0,9, = 273

Die Lavsschen Interferenzbedingungen (1) bis (3) kénnen gemé

a-(n—mn)
;t '_g17
az_'("l—_"")zgz, (15)
a-(n—n
3 (/1 °)=g3

dargestellt werden. Aus dem Vergleich von (14) und (15) ergibt sich

n — n,
=b

2m ); 91.92.93° (16)

Fiihrt man die Wellenzahlvektoren

2 2
", ky—= T”no (17)

ein, so erhélt man anstelle von (16) die Laurschen Interferenzbedingungen in der
Form

[N \ TR 4‘» o
k—k, = ng,yz.gs . (f a~C g\l/}w (e (,[{[\..g we ity (18)

Ein Interferenzpunkt entsteht nur, wenn die Differenz zwischen dem Wellenzahl-
vektor des gebeugten und dem des einfallenden Strahles-auf einen Gitterpunkt des
reziproken Gitters fillt. Durch Multiplikation des Wellenzahlvektors mit dem durch

2w dividierten Pranckschen Wirkungsquantum % = 21- ergibf gich der Photonen-
impuls ™
p =hk bzw. p,=ik,.

(18) kann daher als Impulserhaltungssatz fiir die Photonen bei der Reflexion an den
Netzebenen gedeutet werden:

P — b= py. (18a)
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Die Lichtbeugung ist mit einer Impulsiibertragung auf den Kristall verbunden. Der
RiickstoB ist von der GroBe

— p = —#b. (18Db)

Nach (18) erhdlt man die Interferenzpunkte eines LauE-Bildes wie folgt (vgl. Bild

1.2.5): Vom Koordinatenanfangspunkt O (einem beliebigen Gitterpunkt des rezi-

proken Gitters) wird der Vektor —k, gezogen. Um den Endpunkt M legt man elne
> Gonls

Kugel mit dem Radius k& = (Fwaldsche Kugel). Ein Interferenzf)_unkt hegt vor

wenn (18) erfiillt ist, d. h., wenn die Kugel durch einen Gitterpunkt geht bzw. in
unmittelbarer Néhe eines Gitterpunktes des reziproken Gitters vorbeigeht.

Bild 1.2.5. Ewarpsche Kugel im reziproken Gitter mit geneigten Gitterachsen
und unterschiedlichen Gitterkonstanten

Ablettung der Braggschen Formel

Der Abstand 0y, zZwisehen zwei benachbarten parallelen Netzebenen 148t sich

aus den Achsenabschnitten nach (8) berechnen, wenn man die Komponente eines

der Vektoren % (¢ =1, 2, 3) in Richtung der Ebenennormalen n’ bestimmt. Es
i

folgt nach (1.1./6) und (1.1./7a)

a; bh1 hahs 27

(s == — . ’n, = - ke = . 19
hi,ha,hs hi hi bhl,hz,ha bhl,h,,hs ( )

Beispiel 1.2.4. Abstand benachbarter Netzebenen
Im rhombischen Gitter folgt aus

bil,hz.hs = (7 + hyby + h3bs)? = hy?b% 4 h,2D,2 + h32b32

und wegen

(S
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die Beziehung

1
Ohyhahy = —e———————. (19a)

Wk A

a* s ag?
Im kubischen Gitter ist der Abstand zwischen benachbarten Netzebenen mit den MILLERschen
Indizes (1 0 0) gleich 6, 4, = a.

Zwischen benachbarten Netzebenen mit den MizLERschen Indizes (1 1 1) betragt der Abstand im
kubischen Gitter

111 = — = 0,577a.
3

-

Speziell fiir Nickel mit ¢ = 0,352 nm folgt
611, = 0,203 nm.

Da man sich nach W. H. und W. L. Bragc die Interferenzpunkte eines Lavg-Bildes
auch durch Reflexion des einfallenden Strahles an den Netzebenen entstanden denken
kann, 148t sich jedem Interferenzpunkt ein Tripel MLLERscher Indizes zuordnen.
Es gibt die Netzebenenschar an, an der die Reflexion erfolgte.

Bild 1.2.6. Zur Ableitung der Bragaschen Formel

Sollen sich die von parallelen Netzebenen reflektierten Strahlen durch Interferenz
verstirken, so mul der Gangunterschied benachbarter Strahlen ein ganzzahliges
Vielfaches von A sein:

| 2000 sind =12 1=0,1,2,..) (20)

(vgl. Bild 1.2.6). (20) heiflt die Braggsche Formel. Darin gibt ¢ den Glanzwinkel an,
d. h. den Winkel zwischen Strahl und Netzebene. Fiir das rhombische Gitter kann man
nach (19a) die Bragasche Formel in der Form
. A y/m2  he2  hg? o
=5 | — — 21
sin 9 3 ai T + e (21)
schreiben.
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Die Bragasche Formel bildet die Grundlage fiir die Strukturanalyse durch Dreh-
kristallverfahren (s. 1.2.2.). Ebenso wie die Laugmsche Interferenzbedingung stellt
sie eine notwendige Bedingung fiir das Auftreten von Interferenzpunkten dar,
macht also keine Aussagen iiber die Intensitdt der Interferenzpunkte.

P Probleme

1.2.1. Auswertung eines Laue-Bildes (Laue-Verfahren)

CuF hat ein Gitter, das der Struktur des Diamanten entspricht. Die Kupferionen und die Fluor-
ionen bilden jede fiir sich ein kubisch-flichenzentriertes Gitter; diese sind gegeneinander in
Richtung der Wiirfeldiagonalen um ein Viertel ihrer Lénge verschoben. Fiir die Gitterkonstante
des Kupferfluoridgitters ergibt sich nach dem Verfahren des Beispiels 1.1.1 der Wert ¢ = 0,426 nm.

Unter dem Winkel oy = 90°, §, = 90°, y = 0° fillt ein schmales paralleles Biindel polychroma-
tischer Rontgenstrahlen auf den Kristall. Dabei befindet sich die Fctoplatte im Abstand

= 5,00 cm vom Kristall. :
Geben Sie die Wellenlingen der Strahlung an, die bei der Beugung durch den kubischen Kristall
Interterenzpunkte liefern, und untersuchen Sie die Verteilung der Interferenzpunkte auf der
Fotoplatte.

Losung:
Nach (1.2./7) sind fir
cos g =cos By =0, cosy,=1
die Wellenléingen, die Interferenzpunkte liefern, durch die Gleichung

—2ag;

= 2 2 2 (1)
91> + 92> + 93

bestimmt. Aus (1.2./4) folgt in Verbindung mit (1) fir die Richtung «, f, y, unter der ein Beu-
gungsmaximum beobachtet wird,

coso = — ———12 29133 =
91% + 92 + 93
29595
cosff = — ————ro 2
9. + 92 + 95° @)
2 2 __ g2
cos'y=1—|—gi}'=g1 + 9" — 95

a g+ gr+gd

Wie aus Gleichung (1) hervorgeht, mufl die Ordnungszahl g; negativ sein.
Die Bildmitte auf der Fotoplatte ist durch die bei allen Wellenléingen der Rontgenstrahlung
auftretende direkte Bestrahlung deutlich gekennzeichnet (Primérfleck). Fir die Koordinaten
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der Interferenzpunkte auf der Fotoplatte folgt (vgl. Bild 1.2.7)

c=ccosa —d 2% > _292193 >
cosy .+ 9 — 93

3)

y=ccosf=d cosf _ — 29295 d.

cosy 9% + 92* — g5°

7
/
/
/
// y
/7@
c /
/

y / —
8 o o
A d
a

Kristall X

Bild 1.2.7. Koordinaten eines Bildpunktes auf der Fotoplatte
beim LavE-Verfahren

Der Abstand g eines Interferenzpunktes P von der Bildmitte ist gleich

—2g5 Vg,°+9,° d. )

o=122 ¢t =
91* + 92* — g5°

Darin bedeutet ¢ die Entfernung des Bildpunktes‘P vom Ort der Beugung O.
Speziell fiir g, = —1 erhélt man aus (1)
Am— 2
9+ gt 41

Tabelle 1.2.1. g,% 4 g2

g 0 1 2 3 4

{

92

0 0 1 4 9 16
1 1 2 5 10 17
2 4 5 8 13 20
3 9 10 13 18 24
4 16 17 20 25 32

Mit gy, g5 = 0, 41, -2, 43, ... ergeben sich fiir g,2 4 g¢,% die Werte nach Tabelle 1.2.1.
9.2 + 9,2 kann somit die Werte 0, 1, 2, 4, 5, 8, 9, ... annehmen. g, 4+ g,2 = 0 ergibt die Bild-
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mitte, also keine Beugung. Fiir die iibrigen Zahlenwerte folgen nach (5) die Wellenldngen, die bei
der Beugung durch den Kristall Interferenzpunkte liefern:

A = a;0,666a; 0,4a; 0,333a; 0,222a; 0,20
Im Falle @ = 0,426 nm werden also die folgenden Wellenldngen gebeugt:
A = 0,426 nm; 0,284 nm; 0,170 nm; 0,142 nm; 0,0947 nm; 0,0852 nm.

Speziell fir g3 = —1 und g,% + ¢,% = 5 ergibt sich 4 = 0,333a, d. h. 2 = 0,142 nm.
Aus (4) erhalten wir

= 1,118.

2.115
4

e
tany = — =
7=

Der Beugungswinkel ist somit gleich
y = 48,19°;
der Radius des Beugungskreises betragt
o=dtany =5.1,118 cm = 5,59 cm.

Auf diesem befinden sich die durch g, + g¢,2 = 5 bestimmten Punkte. Sie ergeben sich mit den
folgenden Werten:

=42, 92=Il:1

sowie

= Zt]-’ s = j:2

Die hierdurch nach (3) festgelegten acht Interferenzpunkte mit den zugeordneten MELERSChen
Indizes sind in Bild 1.2.8 dargestellt.

727 o 121
.5 211

577 o . 21
Bild 1.2.8. Interferenzpunkte eines LAUE-
B . Bildes mit den zugeordneten MILL.ERSchen

21 121 Indizes

Wie aus der Ableitung der Gleichungen (2) und (3) hervorgeht, hingt die Verteilung der Bild-
punkte von der Kristallstruktur ab. Aus einer LaovE-Aufnahme kann daher auf die Symmetrie des
Kristallaufbaues geschlossen werden.
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1.2.2. Kristallpulververfahren von Debye-Scherrer

Zur Kristallstrukturanalyse preften P. DEBYE und P. ScHERRER Kristallpulver zu einem diinnen
zylindrischen Stab und durchstrahlten diesen mit monochromatischen Rontgenstrahlen (vgl.
Bild 1.2.9). Die Verwendung des Kristallpulvers gewéhrleistet, dag die reflektierenden Netzebenen
alle moglichen Lagen einnehmen kénnen. Nur diejenigen Netzebenen, die mit dem einfallenden
Strahl einen Winkel & bilden, der die Bracasche Formel (1.2./20) erfillt, liefern Bildpunkte.

) Stende Kristallpulver

Lichtquelle
(monochromatisch) -
¥ 2¢
N

Filmstreifen Bild 1.2.9. Kristallpulververfahren
von DEBYE und SCHERRER
Yotopla“e
Lichtquelle
i |
*
| I
Blende Blende ;e istqu-
pulver 41}02

Bild 1.2.10. Strahlungskegel
und DEBYE-SCHERRER-Ringe
beim Kristallpulververfahren

und beim Drehkristallverfahren

Die unter einem die Bragasche Formel erfilllenden Winkel ¢ = 9, reflektierten Strahlen liegen
auf einem Kreiskegel mit dem Offnungswinkel 48, (vgl. Bild 1.2.10). Als Schnitt der Strahlungs-
kegel mit einer zum einfallenden Strahl senkrechten Fotoplatte ergeben sich Kreise unterschied-
licher Schwirzung. Der Schnitt mit einem zylinderférmig ausgelegten Filmband liefert gekriimmte
Linien (vgl. Bild 1.2.11). Zur Verstdrkung der Intensitdt der aufgenommenen Linien kann das
gepreBte Pulver bei einem einachsigen Kristall zuséitzlich gedreht werden (Drehkristallver-
fahren).

Die Auswertung der DEBYE-SCHEERRER-Aufnahme zur Strukturanalyse von Nickel ergibt auf dem
Filmzylinder DEBYE-SCHERRER-Linien, die von der Bildmitte die folgenden.Abstéinde auf-
weisen:

d (in cm) 1,71; 2,45; 3,00; 3,48; 3,91; 4,31; 5,03; 5,36; 5,66; 6,01; 6,32; 6,61; 7,50.
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d 138t sich am einfachsten als halbe Entfernung zweier symmetrisch zueinander liegendér Schwér-
zungslinien messen.

Bestimmen Sie aus den Messungen die Gitterkonstante des Nickelkristalls und geben Sie die
Mrrrerschen Indizes fiir die einzelnen Linien an. Der Durchmesser des Zylinders, in dem das
Filmband wihrend der DEBYE-SCHERRER-Aufnahme angeordnet war, sei gleich 2R = 10 cm. Die
Wellenlange betrage 4 = 0,120 nm.

Lo

d 171 245 300 348 391 431 503 536 566 601
hf+h§+hj ! 2 3 456 8 9 101

{100} {10}{111}{200){210}{ 211} {220}}227%{3/0}{371}

Bild 1.2.11. Schwirzungskurven auf einem Filmstreifen beim DEBYE-SCHERRER-Verfahren
mit Werten nach Tab. 1.2.2

Losung:
Die Linienabstdnde d vom Mittelpunkt sind mit dem Reflexionswinkel durch die Beziehung
= 2R (1)

verkniipft. Als Reflexionswinkel, die durch Interferenz Bildpunkte erzeugen, kommen nach
(1.2./21) nur die durch

292 2 2 2
sin2 9 = i(h_l. + h_z_ + hi) 2)

2 2 2
4 \o @ ag

bestimmten Winkel ¢ in Frage. Wir berechnen demzufolge zu jedem MeBwert d die Grofle
sin?$ = sin? —d— 3)
2R
Die Ergebnisse sind in Tabelle 1.2.2 Spalte 2 eingetragen. Fur die erste Zeile erhédlt man z. B.

sin? § = sin? 2—
10 k13

. o
L _ sin? (M) = sin? 9,8° = 0,029.

Aus den Werten in Spalte 2 kann man einen gemeinsamen Faktor 0,029 abspalten. Samtliche
Werte in Spalte 2 ergeben sich durch Multiplikation von 0,029 mit einer ganzen Zahl. Hieraus ist
zu folgern, dafl der rechte Faktor in (2) in der Form

SIS TN SR REY LRSS

2 2 2 2
a, Qg as o

(4)
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Tabelle 1.2.2. Auswertung einer Debye-Scherrer-Aufnahme

1 2 3 4
dinem  sin?® B+ h? + kg by g, by
1,71 0,020 ~1 1,0,0
2,45 0,058  ~2 1,1,0
3,00 0,087 -3 1,1,1
3,48 0,116 -4 2,0,0
3,91 0,145 .5 2,1,0
4,31 0,174 .6 2,1,1
5,03 0232 .8 2,2,0
5,36 0,262 9 2,2,1
3,0,0
5,66 0291 10 3,1,0
6,01 0,320 11 3,1,1
6,32 0,349 12 2,2,2
6,61 0,378 13 3,2,0
6,92 0,407 14 3,2,1
7,50 0,465 .16 4,0,0

(<N

geschrieben werden kann. Die Gitterkonstanten miissen demnach gleich sein:

0 =ay, =03 =a. )

Fiir den gemeinsamen Faktor ergibt sich nach (2), wenn die groBeren Werte im unteren Teil der
Tabelle beriicksichtigt werden,

122
4a?

= 0,0291. (6)

Wir setzen hierin 7 = 1 und 4 == 0,120 - 10~—® m ein und erhalten, wenn wir nach der Gitterkon-
stanten a auflésen,

. . —9)2 .
a = M m = 0,352 nm.
4.0,0291

Dividiert man die Werte in Spalte 2 durch 0,0291, so folgen fiir 4, + hy? + k% durch Runden
die Werte in Spalte 3. In Spalte 4 sind die sich hieraus ergebenden MmL.LERschen Indizes einge-
tragen, wobei simtliche Permutationen zugelassen und nur die positiven Werte aufgefiithrt
sind.

In der obersten Zeile geht z. B. d = 1,71 cm aus den Netzebenen mit den Mimr.erschen Indizes
(100) (100) (010) (0io0) (001) (001

hervor. Diese Netzebenen werden durch das Symbol {1 0 0} gekennzeichnet.

1.2.3. Beugung von Elektronenstrahlen

Elektronenstrahlen werden beim Durchgang durch einen Kristall ebenso wie. Rontgenstrahlen
gebeugt (Versuche von DavissoN und GERMER 1927). Im Gegensatz zu den Rontgenstrahlen, bei
denen ‘die Brechzahl des Kristalls praktisch gleich der des Vakuums, d. h. gleich eins, gesetzt
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werden kann, ist bei Elektronenstrahlen mit einer im Kristall merklich von eins abweichenden
Brechzahl n zu rechnen. Die den Elektronenstrahlen zugeordneten Wellenldngen in Vakuum und
im Kristall weichen daher voneinander ab. Das findet nach der pE-BrogriEschen Theorie seine
Erklarung durch eine den Elektronen im Kristall zukommende potentielle Energie W,q. Sie
fithrt im Kristall zur Brechzahl

n= |/1— LVP"—t. (1)

Wldn

Zur Bestimmung der potentiellen EnerTg/ie von Elektronen im Nickelkristall beobachtet man die
Beugung der Elektronen an der (11 1)-Ebene. Die Elektronen werden durch ein elektrisches
Feld mit der Potentialdifferenz U = 50 V beschleunigt und fallen schrig unter dem Glanz-
winkel 9 auf die Netzebenenflache (vgl. Bild 1.2.12). Ein Bildpunkt wird fiir den Glanzwinkel
& = 43°30” beobachtet. Berechnen Sie daraus die potentielle Energie der Elektronen im Kristall.

Vakuum

Kristall AN

N
AN
\\j Netzebenen

Bild 1.2.12. Reflexion eines senkrecht einfallenden Elektronenstrahls
an der Netzebene und Brechung beim Austritt aus dem Kristall

Losung:

Bei Elektronenstrahlen tritt an die Stelle der Rontgenwellenlédnge die Lénge A der zugeordneten
pE-BroGLIEschen Welle. Diese folgt aus den pE-BroGLIEschen Grundgleichungen

W =iw, p=rik. 2)
Darin bedeuten W die Energie und p den Impuls eines Teilchens.

po2m
y)

gibt die Wellenzahl, o die Kreisfrequenz der pe-BrogrIEschen Welle an. Ferner ist

h= i, h =6,63-103¢Js.
27

Im Vakuum besitzen die Elektronen nur ihre kinetische Energie, die durch das Beschleunigungs-
feld mit der Potentialdifferenz U hervorgerufen wird:

2
Wyin =eU = 210 bzw. p = V2meeU. (3
m,

e
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Darin bedeutet m, = 9,11 - 10-31 kg die Elektronenruhmasse, e = 1,60 - 10-2° C die Elementar-
ladung. Relativistische Rechnung istnicht erforderlich. Die Elektronen werden als freie Teilchen
behandelt (vgl. effektive Masse 3.3. und 4.2.).

(3) in (2) eingesetzt und nach der Wellenlidnge 4 aufgeldst, ergibt fiir die Linge der DE-BROGLIE-
schen Welle in Vakuum

h

A= .
2meeU

(4)

d

Mit den vorgegebenen Werten folgt

. 10-34
4 6,63- 10

= m = 0,174 nm.
V2-9,11-10-31.1,6 - 10-29. 50

Im Kristall ist die Lénge der DE-BroGLIEschen Welle

Z=n/1=l/1—LVP°—t/1. (5)
kin
Vakuum
& B A D' %(
B D

Kristall A Bild 1.2.13. Reflexion und Brechung
4 von Strahlen an parallelen Netzebenen

c

Die unterschiedlichen Wellenldangen fiir das Vakuum und fiir den Kristall bedingen, daf die
Braaasche Gleichung fiir Elektronenstrahlen eine andere Form hat alsnach (1.2./20) bzw. (1.2./21)
fir Rontgenstrahlen.

Nach Bild 1.2.13 betragt der optische Gangunterschied As zwischen dem an der Kristallober-
fliche und dem an der ersten parallelen Netzebene reflektierten Strahl unter Beriicksichtigung der
Brechzahldnderung

As = 2(nBC — B'C) =2 ( né— —FZGOS#).
sin 9
Nach Bild 1.2.13 ergibt sich hieraus weiter
As = 22— (n — cos § cos 9). 6)
sin ¢

Zwischen dem Glanzwinkel & an der Kristalloberfliche und dem Glanzwinkel & an der ersten
parallelen Netzebene besteht nach dem Brechungsgesetz die Beziehung

cos & ) )

008’5 =
n
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Damit erhalten wir

— — 2
sin® = V1 —cos? P = Vl — coszﬁ. (8)
n

Wir setzen (7) und (8) in (6) ein, was auf

As = 26 Yn? — cos? 9 9)

fiithrt. Sollen sich die reflektierten Wellen durch Interferenz verstirken, so mufl der Gangunter-
schied benachbarter Strahlen ein ganzzahliges Vielfaches der Wellenlédnge A sein:

As=IA mit 1=0,1,2,.... (10)
Aus (9) und (10) folgt als Braggsche Gleichung fiir Elektronenstrahlen

|’ 200 — cos?d =104 (1=0,1,2,...) | (11)
Kennt man die Glanzwinkel ¢ des einfallenden Elektronenstrahls, fiir die ein Bildpunkt auftritt,

d. h. eine Verstirkung der gebeugten Strahlung durch Interferenz erfolgt, so kann man daraus
die Brechzahl n bestimmen:

2
n = VE + cos2 P, (12)

Mit den nach Beispiel 1.2.4 und auf Grund der Messung vorliegenden GroBen folgt, wenn man
den MeBwert ¢ = 43°30” der Ordnung ! = 1 zurechnet,

2
= .17t + 0,725% = 0,84.
4-0,203%

Hiernach wire n << 1 und damit Wy, positiv im Gegensatz zu anderen MeBergebnissen fiir

leitende Kristalle, bei denen stets 7 > 1 und Wy, < 0 ist. Rechnet man dagegen den MeBwert
der Ordnung ! = 2 zu, so ergibt sich

. 2
= % + 0,725%2 = 1,12.
4.0,2032

Durch Aufl6sen von (1) nach Wy erhilt man
Woot = Wyin(l — n?). (13)
Mit den vorliegenden Werten folgt

Woot = (1 — 1,122) 50 eV = —12,7 eV.

1.24. _ Streuung an zusammengesetzten Gittern

Die Interferenzbedingungen von v. LAUE und die ihnen dquivalenten Interferenzbedingungen
von BraGag gelten fiir die Streuung an den periodisch angeordneten identischen Kristallbau-
steinen eines einfachen Gitters. Diese Bedingungen enthalten keine Aussage iiber die Intensitit
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der gestreuten Strahlung. Um allgemein die Intensitidt fiir zusammengesetzte Gitter zu bestim-
men, hat man nicht nur die Streuung durch die einzelnen verschiedenen Kristallbausteine (Atome
oder Ionen) zu berechnen; es mufl auch die Elektronenverteilung bestimmt werden, um die von
den Elektronen verursachte Streuung beriicksichtigen zu konnen.

Besteht das zusammengesetzte Gitter aus gleichen Atomen, so kann man die Streuung durch die
Elektronen und die Streuung durch die periodisch angeordneten Atome oder Ionen unabhingig
voneinander berechnen und die Intensitidt der gestreuten Strahlung in zwei darauf zuriickgehende,
voneinander unabhéngige Funktionen zerlegen. Bestimmen Sie auf Grund dessen die Intensitat
der Interferenzmaxima (100), (111), (210), (3 0 0) eines kubisch-raumzentrierten Gitters, das
aus identischen Kristallbausteinen besteht.

Losung:

Die in der Elementarzelle enthaltenen r Bausteine seien beziiglich ihrer Lage durch die Vektoren
a, =ua; + 0,8 +wa;, (v=1,2,..,7) 1)

bestimmt. Die Interferenzmaxima der Untergitter, d. h. der von den einzelnen Bausteinen ge-

streuten Strahlung, folgen wie beim einfachen Gitter aus den Laugschen Interferenzbedingungen

(1.2./1) bis (1.2./3). Dabei ist die Phasenverschiebung Ag zwischen den Untergittern zu beriick-

sichtigen.
Es bezeichne

fw!= fv(hv hza ha)
die Amplitude der von den Netzebenen(%,hyhs) des v-ten Untergitters gestreuten Strahlung,

F = F(hy, by, h3)
die Amplitude der von den (hlh;h3)-Netzebenen samtlicher Untergitter des zusammengesetzten
Gitters gestreuten Strahlung. Ag, sei der Phasenunterschied, den Strahlen, die am »-ten Unter-

gitter gestreut werden, gegeniiber Strahlen aufweisen, deren Streuung an den Koordinaten-
ursprungspunkten der Elementarzellen erfolgt. Mit diesen Bezeichnungen folgt

F= F(kh he; h3) =2 freiAq)v' @)

F wird als Strukturamplitude bezeichnet.
Die Phasendifferenz folgt aus

2r

A‘P- = T 7("0 - n)' (3)
Hierin kénnen wir (1) einsetzen und erhalten

2
Ap, = 7” (0,8 + 2,85 + 0,45) - (0 — 7). (4)

Auf Grund der Laveschen Interferenzbedingungen (1.2./1) bis (1.2./3) ergibt sich weiter
Ap, = 2r(hyu, + by, + hgw,). ()
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Die Intensitit der gestreuten Strahlung wird durch den Strahlenfaktor
FF* = |F(hy, by, by)?

bestimmt. Wir setzen (5) in (2) ein und bilden den Ausdruck FF*, wobei F'* den konjugiert kom-
plexen Wert von F bezeichnet. Es folgt

2

+

2

T
Z fv sin 271-("’1“)' + thv + h3wv)

r=1

T
Y f, cos 2n(hyu, + hyv, + hyw,)
»=1

FF* =

(6)

Wird das zusammengesetzte Glied von gleichen Kristallbausteinen gebildet, so gilt

h=h=-=] @

Man kann daher im Falle gleicher Kristallbausteine
2]

(8)

2 3
+ Z sin 2n(h1uv + hz”v + hawv)

r=1

T
Z cos zn(hluv + h’Zvv + hawv)

FF* = fo
r=1

schreiben
Faf3t man das kubisch-raumzentrierte Gitter als aus zwei einfachen kubischen Gittern zusammen-
gesetzt auf (vgl. 1.1.2.), so ergeben sich fir «,, v,, w, die Werte
1 1 1
=0, v,=0, w=0; Uy=—, V,=—, W, =—.
1 1 1 PoUp=g p 3 LR
Damit folgt

[F(hy, by, hs)|? = FF* = |fI2[|1 + cos m(hy + hy + h5)[* + [sin 7 (By + hy + Bg)|%].
9
Fur die MiLERschen Indizes (10 0), (2 1 0), (3 0 0) ist &, + h, + hy ungerade. Daher folgt
cos w(hy + hy + hg) = —1, sin w(hy + hy + h3) =0
und somit
FF* =0. (10)
Im kubisch-flichenzentrierten Gitter, das aus identischen Kristallbausteinen besteht, sind die

Interferenzmaxima, fiir die die Summe der MILLERschen Indizes ungerade ist, also (1 0 0), (11 1),
(300), ..., nicht zu beobachten. Die Intensitdt dieser Beugungsmaxima ist Null.

A Aufgaben

Al1.21. Welche Rontgenwellen liefern bei der Beugung durch einen Silberkristall Beugungs-

maxima (¢ = 0,408 nm)? Geben Sie die finf lingsten Wellen fiir g; = —1 an. Der
einfallende Strahl habe die Richtung [1 0 0].

A1.2.2. In einem kubischen Kristall schneidet eine Netzebene die Basisachsen so, daB die
Abschnitte s = a, y; = —a, 23 = 20 entstehen. Bestimmen Sie die MiLLERschen
Indizes dieser Fliche. .

A123. Bestimmen Sie die Richtungscosinus der Flichennormalen auf der durch die
MrirreRschen Indizes (1 3 5) bestimmten Netzebene bei einem kubischen Gitter.

Al124. Welche Abstinde haben die Netzebenen (1 3 5) in Silber (& = 0,408 nm)?

A1.25. Wie lauten die MLLERschen Indizes der y,z-Ebene?

4 Schilling, Festkérperphysik
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A1.2.6.

A1.2.7.

A1.28.

A1.209.

A 1.2.10.

A1.2.11.

Al.2.12.

Bestimmen Sie die Glanzwinkel, firr die Licht der Wellenldnge 2 = 0,250 nm an
einem Silberkristall gebeugt wird.

Bestimmen Sie die Wellenlénge der pE-BrocLiEschen Welle eines Elektrons, das
durch ein elektrisches Feld der Spannung 100 V beschleunigt wird.

Ein Elektron wird durch ein elektrisches Feld mit der Spannung 100 V beschleunigt
und fallt danach auf Aluminium. Die Reflexion an der (1 1 0)-Ebene ergibt einen
Bildpunkt, den man unter dem Glanzwinkel 4 = 7,7° beobachtet. Berechnen Sie
daraus das Potential der Elektronen in Aluminium. Wie groB ist die Brechzahl?
Treffen «-Strahlen auf Berylliumkerne, so entstehen neben Kohlenstoffkernen
Neutronen, die eine Anfangsgeschwindigkeit von 4,7 - 10 m s~ haben. Geben Sie
ihre pE-BroGLIEsche Wellenldnge an und vergleichen Sie diese mit den Abmessun-
gen in einem Kristallgitter. Die Neutronenmasse betriagt m, = 1,67 - 10~2" kg.
Welche kinetische Energie (in eV) und welche Geschwindigkeit diirfen Neutronen
nicht iberschreiten, wenn ihre pE-BrogLiEsche Wellenldnge nicht kleiner als
0,1 nm, d. h. mindestens in der Gr6Benordnung der Gitterkonstanten, sein soll?
Bestimmen Sie fiir Nickel den Glanzwinkel, fiir den die Reflexion von Neu-
tronenstrahlen an der (1 1 1)-Ebene einen Bildpunkt ergibt, wenn die DE-BROGLIE-
sche Wellenlinge a) 0,1 nm, b) 0,0001 nm betrigt (W5, = —16 eV, Werte nach
Tab. 1.1.1).

Untersuchen Sie die Strukturamplitude fiir das kubisch-flichenzentrierte Gitter
und bestimmen Sie die Reflexionsebenen mit der Strukturamplitude Null. Wie
liegen die Verhéltnisse fiir die Ebenen (1 1 0) und (1 1 1)?



2. Mechanische und thermische Eigen-
schaften idealer Kristalle

2.1. Krifte und Bindungsenergien

E Einfiihrung

Wechselwirkungskrifte und Gitterpotential

Die physikalischen Eigenschaften eines Kristalls héngen nicht nur von der geo-
metrischen Struktur des Kristallaufbaus, sondern im gleichen MaBe von den zwischen
den Bausteinen auftretenden Wechselwirkungskriften ab. Sie besitzen, wie sich all-
gemein beweisen 148t, ein Potential

U=U(r). (1)

Es ist in der Regel auf ein Kilomol des Kristalls bezogen und kann als Funktion
des Abstandes r zwischen zwei benachbarten Kristallbausteinen dargestellt werden.
Fiir die Wechselwirkungsenergie eines herausgegriffenen Teilchens schreibt man

e =¢(r). (1a)
Sie hingt mit dem Gitter- bzw. Kristallpotential gemaf}
U = Nys(r) (1Db)

zusammen, wobei N, die Anzahl der Kristallbausteine je Kilomol angibt. Die im
Kristall wirkenden Krifte lassen sich somit auf die Betrachtung zweier Bausteine
O und A4 zuriickfithren. Fir die zwischen ihnen wirkenden Kréfte erhélt man

F = —grad ¢(r) = — Friet @)
Darin bedeutet r den Vektor vom Baustein O zum betrachteten Baustein 4 (vgl.
Bild 2.1.1).
Im Falle

aUu de

W>0 bzw. E>O 3)

4%



52 2. Mechanische und thermische Eigenschaften idealer Kristalle

sind F und 7 einander entgegen gerichtet. Wachsendes Potential mit wachsendem
Abstand der Kristallbausteine kennzeichnet daher Anziehungskrifte innerhalb des
Kristalls. Dagegen werden AbstoBungskriifte durch ein mit wachsendem Abstand
fallendes Potential

dUu de

W << O bZW. E
charakterisiert. Stabiles Gleichgewicht besteht, wenn das Kristallpotential ein
Minimum annimmt:

aw _, @
IR T

Sollen die Atome oder Ionen einen stabilen Kristall bilden, so muBB ihr Wechsel-
wirkungspotential U(r) ein Minimum nach Kurve 3 in Bild 2.1.1 aufweisen: Fir
kleine Abstinde r iiberwiegt die AbstoBung, fiir groBe die Anziehung; dazwischen
befindet sich der Gleichgewichtsabstand r = ry mit dem Potentialminimum.

<0 4)

> 0. (5)

-Ua

Bild 2.1.1. Potential der Wechselwirkungskrifte.

1 AbstoBungspotential, 2 Anziehungspotential, 3 LENNARD-JoNES-Potential
aus anziehendem und abstoendem Term

Ein Potential der Form 3 nach Bild 2.1.1 kann durch einen anziehenden und einen
abstoBenden Term aufgebaut werden. Nach LENNARD-JONES geht man zur Dar-
stellung des Gitterpotentials von dem Ansatz

A B
U(r):—'r_m-{_r_" (6)

aus. 4, B, m, n sind darin positive Parameter. Der erste Summand charakterisiert
die Anziehung, der zweite die AbstoBung. Da fiir kleine Absténde r < 7, die Ab-
stoBung itberwiegen mus, folgt

n>m | (7
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Die Parameter A und B sind iiber den Gleichgewichtsabstand r = r, miteinander
verkniipft. Nach (5) muf die Beziehung

dUu .
(E),z,o =0 (5a)
bestehen, woraus
m
B = 7 7o (5b)

folgt. Das Wechselwirkungspotential zwischen zwei Teilchen wird daher vielfach
in der Form

REREI

dargestellt. Der Kristallparameter ¢ kann aus dem Gleichgewichtsabstand: r, be-
stimmt werden, wiahrend der Kristallparameter ¢ aus der Gitter- bzw. Bindungs-
energie U, = U(r,) hervorgeht. U, ist negativ.

Das Absto8ungspotential

B

Uap = ) (8a)

wird in erster Linie durch die wechselseitige Durchdringung der Elektronenhiillen
verursacht. Von den Atomkernen gehen Krifte aus, die abstoBend oder, wie die
“Quantentheorie fiir bestimmte Bindungszustéinde zeigt, als Folge von Austausch-
effekten anziehend wirken konnen. Beispiel fiir eine hierdurch bedingte starke gegen-
seitige Anziehung ist das Wasserstoffmolekiil H,, bei dem die Elektronen gleichzeitig
beiden Atomen angehoren (vgl. Beispiel 2.1.3).

Das Potential der gegenseitigen Anziehung

A ,
Ui =— — (8b)

,,-m

wird verursacht durch /

1. Ionenbindung (heteropolare bzw. elektrovalente Bindung),

2. kovalente Bindung (homdéopolare Bindung bzw. Atombindung),
3. Metallbindung,

4. vAN-DER-WaALssche Bindung.

Die meisten in Kristallen bestehenden Bindungen sind Mischzustinde zwischen
diesen vier Bindungstypen.

Tonenbindung

Tonenbindung M+X- tritt vorwiegend bei Alkalihalogenid-Kristallen, insbesondere
NaCl, KCl, CsCl auf. Die Kristallbausteine werden von positiv geladenen Kationen
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M+, z. B. Natriumionen Nat*, und negativ geladenen Anionen X-, z. B. Chlorionen
Cl-, gebildet.

Bei der Beurteilung der Stabilitit eines Kristalls kommt der Energiebilanz die
entscheidende Bedeutung zu. Die Entstehung von Ionen aus neutralen Atomen ist
mit einem Energieumsatz verkniipft, der in die Energiebilanz eingeht:

Bei der Bildung eines Kations M+ aus dem freien Atom M hat man die Ionisierungs-
arbeit Jy aufzuwenden (vgl. Tabelle 2.1.1). Die Bildung eines Anions X~ aus dem
freien Atom X setzt im allgemeinen Energie frei, die als Elektronenaffinitit Fy
bezeichnet wird (vgl. Tabelle 2.1.1). Negative Elektronenaffinitat, z. B. fiir Ne, be-
deutet, dafB die Anionenbildung eine Energieaufwendung erfordert.

Bei der Ionenbindung aus zwei elektrisch neutralen, freien Atomen wird in den
meisten Fillen die Ionisierungsarbeit Jy nicht durch die Elektronenaffinitdt Eyx
gedeckt. Befinden sich die beiden Teilchen in einer derart grofen Entfernung von-
einander, daB Wechselwirkungskrifte vernachldssigt werden koénnen, so ist im
System aus Kation und Anion eine Energie gespeichert, die gleich der Differenz
Ju — Ex zwischen der Ionisierungsenergie und der Elektronenaffinitét ist. Sie ist
aufzuwenden, wenn das System aus Kation und Anion wieder in zwei neutrale Atome
zuriickverwandelt werden soll.

Beispiel 2.1.1. Ionisierungsspannung und Elektronenaffinitit

Fir Natrium betrigt die Ionisierungsenergie nach Tabelle 2.1.1 Jy = 5,09 eV, fiir Chlor die
Elektronenaffinitdt Ex = 3,70 eV. Das System aus den beiden Ionen Na* und Cl- enthilt daher,
wenn sich beide in einem groflen Abstand voneinander befinden, so da Wechselwirkungskréfte
vernachlédssigt werden kénnen, eine gespeicherte Energie von Jy — Ex = 1,39 eV.

Riicken die beiden Ionen zusammen, so treten Wechselwirkungskrifte zwischen
ihnen in Erscheinung. Die entgegengesetzten Ladungen fithren bei Ionen mit Z
Elementarladungen zu der elektrostatischen Anziehungskraft

VA
Fp=— dmegr® 1 (9a)
bzw. dem elektrostatischen Anziehungspotential
Z2e?
Ug = — T 9)

Ihm wirkt das im wesentlichen von den Elektronenhiillen verursachte AbstoBungs-
potential (8a) entgegen. Im Gleichgewichtsabstand r, heben sich die aus den Poten-
tialen abgeleiteten Anziehungs- und AbstoBungskrifte auf. Fir r > r, iiberwiegt
dagegen die Anziehung. Gegen sie ist eine Arbeit aufzuwenden, wenn man die Ionen
voneinander trennt, den Kristall also in seine Ionenbestandteile zerlegt. Sie ist mit
der Gitterenergie U, = U(ry) = — Uyx identisch (vgl. Tab. 2.1.2).

Born-Haberscher Kreisprozef3

Die Gitterenergie kann experimentell nicht unmittelbar gemessen werden. Thre Be-
stimmung erfolgt iiber den Born-Haberschen Kreisproze§ (vgl. Bild 2.1.2). '
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Fiir den Zerfall des Kristalls MX in die Ionen M+ und X~ ist die Gitterenergie — Uyx
aufzuwenden. Bei der Umwandlung der Ionen M+ in neutrale Atome M wird die
Tonisierungsenergie Jy frei, wihrend die Umwandlung der Ionen X- in die neutralen
Atome X im allgemeinen eine Energieaufwendung erfordert. Sie entspricht der
Elektronenaffinitit Ex.

(M X ')Krisfall

(M) fest

Bild 2.1.2. BorN-HaBERscher
Kreisprozef3

(M)

Dampf

Die neutralen Metallatome bleiben bei Zimmertemperatur nicht als Metalldampf er-
halten, sondern schlagen sich als feste Substanz nieder. Dabei wird an die Umgebung
die Sublimationsenergie Sy abgegeben. Der ProzeB der Bildung von Gasmolekiilen
X, aus den Atomen X bewirkt, daf die Dissoziationsenergie Dx frei wird.

Durch Reaktion des Gases X, mit dem Metall M entsteht, den Kreisproze voll-
endend, wieder der Kristall MX. Dabei wird die Reaktionsenergie Qyx an die Um-
gebung akgefithrt. Man erhélt somit die Energiebilanzgleichung

—Uux + Ju — Ex + Sy + Dx + Qux = 0. (10)

In das System einflieBende Energien sind negativ, ausflieBende Energien positiv
gerechnet.

Tonisierungsspannung und -energie lassen sich aus elektrischen Messungen genau
bestimmen. Dagegen bestehen bei den Angaben iiber die Elektronenaffinitit Ex
groBere Differenzen. Die Sublimationsenergie Sy und die Reaktionsenergie Qy
kénnen durch thermochemische Untersuchungen bestimmt werden, wéhrend die
Dissoziationsenergie Dx aus.den Molekiilspektren der Gase berechnet werden kann.
Bei Kenntnis dieser Gré8en 1a8t sich die Gitterenergie — Uyx aus (10) berechnen.

Beispiel 2.1.2. Born-Haberscher Kreisproze8 fiir Steinsalz

Die Ionisierungsenergie fiir Natrium betragt nach Tab. 2.1.1 Jy = 5,09 eV/Atom. Umgerechnet
erhédlt man 117,1 keal mol~ bzw. 490 kJ mol~'. Fir die Elektronenaffinitit des Chlors folgen
85,1 kecal mol~! = 356 kJ mol~L. Als Sublimationsenergie des Natriums hat man 22,8 kcal mol—?
= 95 kJ mol-?, als Dissoziationsenergie des Chlors 56,9 kcal mol-1 = 238 kJ mol—! einzusetzen.
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Bei der Rechnung ist zu beriicksichtigen, daf zur Bildung eines Mols NaCl nur ein halbes Mol Cl,
erforderlich ist. Die Bildungsenergie des Natriumchlorids betrigt Qyx = 99,4 kecal mol—t
= 416 kJ mol-1. Daraus erhilt man nach (10) fir die Gitterenergie

Uyx = (117,1 — 85,1 + 22,8 + 28,4 + 99,4) kcal mol—1
= 182,6 kcal mol—* = 764 kJ mol—? bzw.
= (490 — 356 + 95 +- 119 -+ 416) kJ mol~* = 764 kJ mol™?,
d. h. U, = —182,6kcal mol-! = 764 kJ mol-.

Soll der Kristall stabil sein, so muBl die Reaktionsenergie Qyx positive Werte an-
nehmen. Die Verbindung ist um so stabiler, je gréfer Qyx ist. Nach (10) besteht die
Voraussetzung fiir groe Werte der Reaktionsenergie

Qux = Uux — (Ju — Ex) — Sx — Dx (11)

darin, da8 die Gitterenergie Uyx den Energieaufwand fiir Ionisierung Jy — Ex,
Sublimation Sy und Dissoziation Dx wesentlich iibersteigt. Ionenkristalle besitzen
in der Regel eine Gitterenergie, die um so grofer ist, je kleiner der Abstand zwischen
nichsten Nachbarn ist bzw. je groBer die Ionenladungen sind (vgl. Tabelle 2.1.2).
Auf Grund ihrer starken Bindungskrifte zeigen sie nur eine geringe Kompressibilitat.

Kovalente Bindung

Bei der kovalenten Bindung gehéren Elektronen gleichzeitig mehreren Atomen an.
Sie tritt zwischen Atomen auf, die ein Elektronenpaar mit zwei antiparallelen Spins
bilden kénnen (vgl. Bild 2.1.3), z. B. zwischen zwei Wasserstoffatomen bei der

a) b)

+ - + -

/——\ TN VAl /‘\

/ ° \l/ ° \\ ( .( \) ° )

\___//\\__// \\//\/\\__/

c) d) |
‘s K
’-\y”\ A ~N— TN

/7 P NGy \\ / \ S %

( € ) J [ e o |

N =T \ /

N S~ ~ T T~

Bild 2.1.3. Elektronenbahnen bei Ubergangszustinden zwischen Tonenbindung
und kovalenter Bindung.

a) ideale Ionenbindung

b) Ubergangszustand mit iiberwiegender Ionenbindung

c¢) Ubergangszustand mit iiberwiegender Kovalenzbindung
d) ideale Kovalenzbindung
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Bildung des Wasserstoffmolekiils H,. Eine quantitative Erklirung der kovalenten
Bindung ist nur durch quantentheoretische Uberlegungen méglich. Die klassische
Physik versagt.

Fiir die kovalente Bindung zwischen zwei Atomen ist allein die Moglichkeit, ein
Elektronenpaar mit zwei antiparallelen Spins zu bilden, mafBgeblich, nicht die tat-
sachliche Existenz der beiden Elektronen. Kovalente Bindung tritt daher auch bei
einfach ionisierten Molekiillen mit nur einem umlaufenden Elektron auf, z. B. bei
einfach ionisierten Wasserstoffmolekiilen.

Beispiel 2.1.3. Die kovalente Bindung des Wasserstoffs

Das einfach ionisierte Wasserstoffmolekiil besteht aus zwei Protonen, die von einem Elektron
umkreist werden. Die Bindungsenergie des einzelnen Elektrons an die beiden Protonen ist gréofer
als die an eine positive Ladung beim H-Atom. Dagegen wirkt der Bindung an die beiden Protonen
deren elektrostatische AbstoBung entgegen. Insgesamt itberwiegt jedoch die Anziehung zwischen
dem Elektron und den Protonen.

Beim einfach ionisierten Wasserstoffmolekiil H,+ betragt die Bindungsenergie zwischen den
Kernen 2,65 eV. Wird sie aufgebracht, so zerfillt das ionisierte Molekiil in ein elektrisch neutrales
Wasserstoffatom und ein Wasserstoffion.

Fur das neutrale Wasserstoffmolekiil ist die Bindungsenergie zwischen den Kernen gleich
4,48 eV. Dabei kommt die geringe AbstoBung zwischen den beiden umlaufenden Elektronen zur
Wirkung.

Bei einwertigen Elementen, z. B. Natrium oder Chlor, lassen sich durch Kovalenz-
bindung jeweils nur zwei Atome miteinander koppeln. Im Kristallgitter solcher
Substanzen stellen daher andere Kréfte die Verbindung untereinander her. Dagegen
treten keine Strukturen aus einwertigen Elementen mit einheitlichem Bindungs-
charakter auf.

Auch bei zweiwertigen Elementen, wie z. B. Sauerstoff, bauen die Atome zwar
geschlossene Ringe und Ketten auf. Strukturen mit einheitlicher Kovalenzbindung
sind jedoch nicht bekannt. Dagegen ergibt sich diese Méglichkeit aus der Elektronen-
konfiguration fir die Elemente der vierten Gruppe (Kohlenstoff, Silizium, Ger-
manium) des Periodensystems der Elemente sowie fiir Verbindungen zwischen drei-
und fiinfwertigen Elementen, z. B. fiir GaAs und InSb (vgl. A 2.1.4).

Beispiel 2.1.4. Kovalente Bindung des Kohlenstoffs

Das Kohlenstoffatom C tritt in chemischen Verbindungen im angeregten Zustand (1s)2 (2s)! (2p)?
auf, d. h., es befinden sich zwei Elektronen im 1s-Zustand (Hauptquantenzahl » = 1, Neben-
quantenzahl I = 0), ein Elektron im 2s-Zustand (n = 2, I = 0), drei Elektronen im 2p-Zustand
(n = 2, 1 = 1). Der normale Zustand atomaren Kohlenstoffs ist dagegen nach Tab. 2.1.6 durch
(1s)? (2s)? (2p)® gekennzeichnet.

Die Spins der beiden Elektronen im 1s-Zustand miissen auf Grund des Pauli-Prinzips anti-
parallel sein und kommen daher fiir eine Elektronenpaarbildung mit Elektronen anderer Atome
nicht in Frage. Dagegen sind die vier Elektronen im 2s-Zustand bzw. 2p-Zustand in ihren vier
Quantenzahlen n, I, m, s nicht abges#ttigt: fir das Elektron im 2s-Zustand ist m = 0, s kann

gleich + % oder — % sein. Die Elektronen im 2p-Zustand kénnen die magnetischen Quanten-
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zahlen m = +1, 0, —1 annehmen, fiir jeden dieser Zustinde kommen die Spinquantenzahlen
—f—ioder—iinFra e

2 2 ge:
Im angeregten Zustand sind daher vier Elektronenpaarbildungen mit anderen Atomen moglich:
Kohlenstoff tritt in Verbindungen vierwertig in Erscheinung, und zwar im angeregten Zustand.

Der Diamantkristall besteht aus C-Atomen im Zentrum je eines Tetraeders, dessen Ecken eben-
falls mit C-Atomen besetzt sind (vgl. Bild 1.1.7).

Wie aus Beispiel 2.1.3 hervorgeht, liegt die Bindungsenergie bei der Kovalenz-
bindung in der gleichen Gré8enordnung wie bei der Ionenbindung. Beziiglich der
mechanischen Eigenschaften, wie z. B. Hérte, Festigkeit, Schmelztemperatur,
thermische Ausdehnung, treten zwischen Ionengittern und Gittern mit kovalenter
Bindung daher keine wesentlichen Unterschiede auf. Sowohl bei homdopolaren als
auch bei heteropolaren Bindungen variieren die mechanischen Eigenschaften inner-
halb weiter Grenzen.

Metallbindung

Bei der metallischen Bindung gehdren Valenzelektronen dem Kristall als Ganzes an,
in dem sie sich frei bewegen konnen. Sie sind nicht mehr, wie bei der Kovalenz-
bindung, speziellen Atomgruppen zugeordnet. Metallbindung tritt bei Elementen auf,
in deren dullerer Schale nur wenig Elektronen enthalten sind, z. B. bei Silber (1),
Kupfer (1), Natrium (1), Kalium (1), Eisen (2), Nickel (2) (vgl. Tabelle 2.1.6). Sie
besitzen auf Grund dessen charakteristische physikalische Eigenschaften: groBe
elektrische und Wirmeleitfahigkeit, groBe Absorption gegeniiber elektromagneti-
schen Wellen, groBe Plastizitét.

Nach dem Modell des Metalls von DRUDE besteht dieses aus einer regelméfigen An-
ordnung positiv geladener Ionen, zwischen denen sich die Valenzelektronen als
Elektronengas ausbreiten und frei bewegen.

Das Elektronengas verhélt sich nach den Gesetzen der FErMI-Dirac-Statistik (vgl.
3.3.). Die Bindung wird somit durch die kollektive Anziehung zwischen den positiv
geladenen Metallionen des Gitters und dem elektrisch negativen Elektronengas be-
wirkt. Sie ist wie die Ionenbindung kugelsymmetrisch und wirkt nach allen Richtun-
gen gleichméBig. Bei metallischen Strukturen besteht daher, wie bei der Ionen-
bindung, die Tendenz nach méoglichst dichten Packungen.

Van-der-Waalssche Kriifte

In Atomen und Molekiilen sind die elektrischen Ladungen nicht starr an einen be-
stimmten Platz gebunden, sondern bewegen sich periodisch. Das nach auBlen hin
elektrisch neutrale Atom oder Molekiil stellt bei genauerer Betrachtung einen Dipol
mit verdnderlichem elektrischem Moment, d. h. einen Oszillator, dar.

Sind zwei solche Oszillatoren nahe benachbart, so tritt zwischen ihren elektrischen
Ladungen eine Wechselwirkung auf. Als Folge davon werden Krifte ausgeldst, die
man als van-der-Waalssche bzw. Dispersionskrifte bezeichnet. Sie kénnen aus der
Anderung der Gesamtenergie gegeniiber dem Zustand vélliger Trennung abgeleitet
werden.
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Nach Untersuchungen von Lonpon ist das Wechselwirkungspotential VAN-DER-
Waazsscher Krifte der sechsten Potenz des Abstandes entgegengesetzt proportional:

const
. (12)

UvdW =

VaN-DER-WaaLssche Kréfte sind in sémtlichen Kristallen vorhanden. Thre Intensitit
ist jedoch gering, so daB sie bei der Berechnung der Anziehungskrifte vielfach ver-
nachlissigt werden kénnen. AusschlieBlich auf vAN-DER-WaaLsschen Kréften be-
ruhen die Bindungskrifte in kristallisierten Edelgasen. Die geringe Intensitdt
dieser Krifte (vgl. Tabelle 2.1.2) wirkt sich hier in Eigenschaften wie geringer Hérte,
niedrigem Schmelzpunkt und groBer thermischer Ausdehnung aus.

P Probleme

2.1.1. ‘Madelung-Konstante

Berechnen Sie die Bindungsenergie fiir ein Ion im Steinsalzkristall NaCl, wenn nur die elektro-
statischen Krifte beriicksichtigt werden. Der Abstand nichster Nachbarn im Steinsalzkristall ist
gleich der halben Gitterkonstanten.

Lisung:

Im kubischen Gitter des Steinsalzkristalls wechseln positive Natriumionen mit negativen Chlor-.
ionen. Hierdurch werden auf ein herausgegriffenes Ion abwechselnd Anziehungs- und Absto8ungs-
krifte ausgeiibt. Die Entfernungen zwischen den einzelnen Ionenschwerpunkten sind durch
das Gleichgewicht dieser Krafte bestimmt. Andere Krifte, die bei der Bindung des Ionengitters
mitwirken, kénnen in erster Naherung unberiicksichtigt bleiben.

Der elektrostatische Anteil der Gitterenergie des Ionengitters wird in der Form

1 1 i2; L
U= — -3 iy &)
drey, 2 i i
geschrieben. Die Summierung erstreckt sich sowohl beziiglich ¢ als auch beziiglich j iiber alle
Ionen des Gitters. Der Faktor L ist zu setzen, da bei der Summierung jedes Paar zweimal auf-

tritt, aber nur einmal gezéhlt werden darf.
Beim einfachen kubischen Gitter des Steinsalzkristalls betrigt der Abstand zwischen nichsten

Nachbarn

@)

7o =

IR

(vgl. Bild 1.1.6). Sie haben entgegengesetzte elektrische Ladungen. Die iibernichsten Nachbarn,
die die gleiche Ladung wie das betrachtete Ion tragen, befinden sich im Abstand

7‘1=%V§=V§7’0- . @)
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Bei den drittnédchsten Nachbarn ist die Ladung wieder entgegengesetzt, ihr Abstand vom be-
trachteten Ion betrigt

’2=%V§=V§"’o- (4)

Allgemein haben die n-ten Nachbarn des herausgegriffenen Ions mit der Ladung ¢ den Abstand

“ _
Fa =5 ¥ = Vn 7 (5)

und tragen die Ladung
nr = (—1)"g- 6)

g ist hier gleich dem positiven oder negativen Wert der Elementarladung e.
Die Bestimmung der Zahl n-ter Nachbarn erfordert beim einfachen kubischen Gitter, die Zahl
moglicher Losungen fiur die Gleichungen

22+ y? 22 =12 (?=1,2,3,..) (7
mit ganzzahligen Werten 2, y, z zu bestimmen. Man erhélt z. B. fur » = 1 die Losungen

1,0,0;0,1,0;0,0,1; —1,0,0;0, —1,0; 0,0, —1,
d. h. sechs nidchste Nachbarn:

2, = 6. (8a)
Ebenso erhédlt man

2, =12, 23=28, 2, =16, z3=24, z;=24. (8)

Enthalt der Kristall N, Kationen und Ny Anionen, so ergibt sich nach (1) fiir die gesamte elektro-
statische Gitterenergie

202
U= — OCNOZ (5 (9)
47teyry
bezogen auf ein Ion
202
= — _O‘_Z_e_. (10)
8megry
Darin heifit
o 6 12 8 6 24 24 (11)

iTRTBE ETE R

die MapELUNG-Konstante des Steinsalzgitters. Die Reihe (11) konvergiert, jedoch sehr langsam.
Zur Vereinfachung der Berechnung werden die Ladungen geeignet zusammengefaflt, so daB fast
neutrale Ladungsgruppen entstehen (vgl. A 2.1.11). Fir den Steinsalzkristall erhdlt man bei
Fortfithrung der Reihe schliellich die MADELUNG-Konstante

o =1,7476.
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Mit den vorgegebenen Werten folgt aus (10) fiir die elektrostatische Bindung eines Tons

_ 1,75 - (1,60 - 10-19)2
8-3,14-8,85.10-12 . 2,82 - 10-2°. 1,60 - 10-2°

e = eV = —4,46eV.

2.1.2. Gitterenergie und Kompressibilitit des Ionenkristalls

Die Wechselwirkung der Elektronenschalen benachbarter Ionen wird im Kristallpotential durch
einen AbstoBungsterm der Form —bT beriicksichtigt. n liegt fiir die verschiedenen Kristalle
7

zwischen 5 und 15. Fir den Steinsalzkristall ist » = 8,9. Die Wirkung des Zusatzterms klingt
daher mit zunehmender Entfernung rasch ab.

Bestimmen Sie die Gitterenergie des Steinsalzkristalls unter Beriicksichtigung des AbstoBungs-
terms. Leiten Sie eine Formel fir die Kompressibilitdt » des Kristalls ab und berechnen Sie
diese. Die MADELUNG-Konstante ist fiir NaCl mit &« = 1,75 einzusetzen; die Gitterkonstante
betrigt ¢ = 0,564 nm. '

Losung:

Das Potential eines Ions ist durch

1 Z2e? b
K%(i , +Tn)

gegeben. Das positive Vorzeichen gilt fir abstoBende Krafte, d. h. fiir gleiche Ladungen, das
negative fiir ungleiche elektrische Ladungen.

Durch Summierung iiber die Wechselwirkung sémtlicher Ionen folgt fiir das Gitterpotential des
aus 2N, Ionen bestehenden Kristalls

1 2N, (OLZ262 B ) )

r rh

Die GroBle B kann aus dem kleinsten Abstand zweier Ionen bestimmt werden, fiir den das Gitter-
potential ein Minimum annimmt:

dU
(&)= ‘2’

Es ergibt sich

2,2
(.‘ﬂ) _ N (“Z e _ lB_) =0, (3)
dr Jr, 4ne,

2 n4+1
7y r

woraus folgt

o @
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Wir setzen (4) in (1) ein und erhalten

22
Uo:__lyg"‘_z.‘i(I__l_) . (5)

4dmey 1o n

Zu einem Elementarwiirfel des Steinsalzkristalls gehoren nach 1.1.1. acht Ionen. Das von 2N,
eingenommene Volumen eines Kilomols ist daher

_ 2N a® _ Noaa. (6)

v,
o 8 4

Durch einen allseitig wirkenden Druck P wird das Volumen des Kristalls verringert, und man
erhilt

V= % Nyad(1 — 6)3, (7)
wobei 0 die relative Liangendnderung angibt. Der duBere Druck bewirkt somit eine Verdnderung

der Kantenlinge des Elementarwiirfels von a auf a(1 — d). Da d < 1 ist, kann an Stelle von (7)
auch :

V =

N

Nya3(1 — 36) (8)

gesetzt werden.
¢ ist eine vom #uBeren Druck abhéngige Gréfle. Nach (7) und (8) kann man unter der Voraus-
setzung ¢ <€ 1 schreiben:

AV = 71- NP A — 8P = — % Nyad AG. ©)

Die Kompressibilitit x eines Stoffes gibt die relative Volumeniénderung in Abhingigkeit von der
Druckénderung bei konstanter Temperatur an:

1 [(oV .

Bezeichnet AP = P den gesamten &duBeren Druck und gibt AV die hierdurch bewirkte Volumen-
dnderung an (vgl. Bild 2.1.4), so kann (10) durch

I 14 (11)
PV,
ersetzt werden.
Nach (8) und (6) ergibt sich
30
= — . 12
v= (12)
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Mit dem Zusammendriicken des Gitters ist eine Erhohung der Gitterenergie verbunden. Hierfiir
erhdlt man in Verbindung mit (9)

AU(P)= —PAV = % PNya? AS. (13)

Andererseits kann die Gitterenergie nach (1) berechnet werden. Setzt man in (1)
r = r(P) = ro(1 — 0) (14)

als Abstand zwischen nichsten Nachbarn bei der Einwirkung eines dufleren Druckes P ein, so

folgt
N, «Z?e? B
UP)= — —2 — . 15

)=~ e, (rou—a] 707[1—61") 12)

+
e i
el “1 1
e
P
J' Bild 2.1.4. Relative Langendnderung 6 durch duBeren
- Druck infolge der Kompressibilitdt » des Kristalls
)
a

Hieraus kann analog (4) B eliminiert werden, indem das Verschwinden der ersten Ableitung fiir
7 = 7ro(1 — ) beriicksichtigt wird. Damit erhédlt man

Ny aZ%? (1 1
UP)=— 2 — . 16
) dmey 7, (1 —0 n(l— 6)”) (16)

Durch Reihenentwicklung und Beriicksichtigung der Glieder bis zur zweiten Ordnung folgt

202 —
yp)= — NooZe 1 _n 162). (17a)
dmey, 1o n 2
Den Energieanteil
252, —_
Ug = NooZ?e*(n — 1) 5 17)
8meyry

definiert man als Elastizitiitsenergie. Sie ist auf ein Kilomol bezogen.
Eine Veranderung des Druckes wirkt sich auf die GréBe 6 und damit auf die Gitterenergie aus.
Hierfiir ergibt sich nach (17) bzw. (17a)

2,2, —
NeZe(n — 1) § AS. 18)

dregry
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Aus dem Vergleich von (13) und (18) folgt
3regPa’ry

= ——, 19
oZ?e?(n — 1) (19
In Verbindung mit (12) ergibt sich damit fiir die Kompressibilitdt
v — Irtegalry (20)
aZ?e(n — 1) |
Fir die Elastizitdtsenergie erhdlt man nach (17a) und (20)
352
Ug = 2 Nao® 1)
8 *
Bezieht man die Elastizitdtsenergie auf die Volumeneinheit, so ergibt sich
Tp— 2oL, (22)

2 %

Gleichung (20) kann nach » aufgelost und damit tber die Messung der Kompressibilitdt » das
AbstoBungspotential infolge der Wechselwirkung zwischen den Elektronenschalen bestimmt
werden.

Fiir den Steinsalzkristall ist ry = %, Z = 1. Mit den vorgegebenen Werten erhalten wir daher

97 -8,85-1012. (0,564 - 10-9)¢
2.1,75 - (1,60 - 10192 . 7,9

m?N-! = 3,6 - 10-1' m% N1,

Fir die Gitterenergie, bezogen auf ein Kilomol, folgt aus (5)

. . 1026 . . . 10-19)2
U=2 6,02 - 10%6 - 1,75 - (1,60 - 10-1) (I—L

43,14 -8,85.1071%. 0,564 - 10~° 8,9
= 17,63 - 108 J kmol—* = 182 kcal mol~2.

) J kmol—?

Der MeBwert itber den Born-HasEerschen Kreisproze8 fiir die Gitterenergie des Steinsalzes be-
tragt 182,6 keal mol-t. Aus dieser Ubereinstimmung kann entsprechend dem zugrunde ge-
legten Modell auf eine beim Steinsalz iiberwiegend vorhandene Ionenbindung geschlossen werden.

2.1.3. Gitterenergie des Van-der-Waals-Kristalls

Xenon hat kfz-Struktur (kubisch-flichenzentriertes Gitter). Seine Gitterenergie betrigt
3,83 kcal mol—* = 16,0 kJ mol—. Der Abstand zwischen néchsten Nachbarn ist gleich 0,435 nm.
Berechnen Sie daraus die Parameter in der Potentialdarstellung nach LENNARD-JONES.
Losung:

Wir schreiben das Wechselwirkungspotential zwischen zwei Atomen des VAN-DER-WAALS-
Kristalls nach (2.1.6a)

(5=
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Hierin kénnen wir n = 12, m = 6 einsetzen. Bezogen auf ein Kilomol mit N = N, Teilchen folgt
als potentielle Energie des VAN-DER-WaaLs-Kristalls

U= —2N,e [; (%)6— s (71)12] 1)
i,] ij i,] ij

Die Absténde 7;; zwischen einem herausgegriffenen Atom ¢ und seinem Nachbarn j kénnen in der

Form
rij = 1oPy; 2)

dargestellt werden. r, bedeutet den Abstand zweier nichster Nachbarn. Es ist fiir das kubisch-
flichenzentrierte Gitter mit der Gitterkonstanten durch

n,:%ﬁa 3)

verkniipft.

Durch die Laufzahl § werden nacheinander simtliche Atome durchlaufen, die das i-te Atom um-
geben. 7,P;; nimmt dabei nacheinander simtliche Absténde ein, die im Kristall zwischen zwei
Gltterbaustelnen auftreten, beginnend mit 7;; = 7y, d. h. P;; = 1.

Summiert iiber samtliche Kristallbausteine folgt fir den kfz-Kristall

1
pX (P ) 2 P”‘12 = 12,131, 4)
j if
1\m
pX (P_) =3 P;j % = 14,454. (5)
J 1] J ]
Beide Reihen konvergieren sehr schnell.
(4) und (5) werden in (1) eingesetzt, womit sich fiir das Potential
o2 P
U=2N,¢ (12,131 — — 14,454 —) (6)
12 7ot
ergibt. Der kiirzeste Abstand zweier Kristallbausteine ist durch das Minimum des Potentials
bestimmt:
dU
—) =0. T (7
( dr )Tu ( )
Im vorliegenden Fall ergibt sich, wenn gemeinsam auftretende Faktoren weggelassen werden,
13 7
12.12,131 -2 —6.14,45¢ -2 — 0. (8)
1-013 ro7
Daraus folgt
To _ 1,09 |. 9)
o

Wir setzen diese GroBe in (6) ein und erhalten fiir die Gitterenergie des VAN-DER-WaALs-Kristalls

IN,e (12,131

U, =
® ™ 1,008 \ 1,098

— 14,454)

5 Schilling, Festkoérperphysik
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bzw.

Up = —8,60N ¢

Setzt man fiir U, den vorgegebenen Wert ein, so folgt, wenn nach dem Parameter ¢ aufgeldst
wird,

_3,83-10%-4,187-10°
~ 8,60-6,02.10%

J=3,10-10"2J.

Fiir den Parameter ¢ ergibt sich aus (9)

0435

nm = 0,400 nm.
1,09

2.14. Metallbindung

Silber besitzt nach Tabelle 1.1.1 ein kubisch-flichenzentriertes Gitter mit der Gitterkonstanten
a = 0,408 nm. Bei der Metallbindung gehéren die Valenzelektronen dem Metall als Ganzes an.
Nach quantentheoretischen Untersuchungen liegt die gro8te Wahrscheinlichkeitsdichte fiir ihren
Aufenthalt in der Mitte zwischen den positiven Metallionen. Man kann daher die Metallbindung
gendhert durch ein Strukturmodell deuten, bei dem sich positiv geladene Metallionen mit fest-
stehenden Elektronen als den negativ geladenen Kristallbausteinen abwechseln. Berechnen Sie
nach diesem Modell die MaDELUNG-Konstante « des Silbers.

Losung: .

Am absoluten Nullpunkt 7' = 0 befinden sich die Elektronen im Zustand idealer Ordnung: Sie
besetzen, von unten beginnend, liickenlos die niedrigsten Energiezusténde. Dabei gilt ent-
sprechend der HeisENBERGschen Unbestimmtheitsrelation und dem Pavri-Prinzip: Jede Zelle
des Phasenraumes hat die GroBe

Az Ay Az Ap, Ap, Ap, = h® 1)

und ist von nicht mehr als zwei Elektronen besetzt. Ihre Spins sind einander entgegen gerichtet.
Jede Zelle reprisentiert also zwei Quantenzusténde.

Wir betrachten AN Elektronen in einem Volumen der Grofle AV = Az Ay Az. Bei idealer Ord-
nung sind sie im Impulsraum iiber eine Kugel mit dem Radius p, verteilt. Der mit Elektronen
besetzte sechsdimensionale Phasenraum hat die GréBe

¢=AV~%np03=é21Xh3. @)

Durch Auflésen nach dem Radius p, erhalten wir

2

3 AN
S /3 28 3
Po l’ 8t AV ®
Darin bedeutet

AN _ 5 @

14
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die Elektronenkonzentration, d. h. die auf 1 m? bezogene Anzahl der Elektronen.
Fir die groBte von den Elektronen angenommene kinetische Energie folgt aus (3)

S S 1/(§1)2. )

2m 2mg

me bezeichnet die Elektronenmasse.
Wir bestimmen die Zahl dN der Quantenzustdnde fur die im Volumen V, = 1 m? enthaltenen
Elektronen mit Impulsen, deren Betridge zwischen p und p + dp liegen. Hierfiir ergibt sich (vgl.
Bild 2.1.5)
= 4np? dp
dN =2 — (6)

4wp’dp

p+dp
A=4Tp’  Bild 2.1.5. Aufteilung des Impulsraumes in
Kugelschalen

Fiir die kinetische Energie der Elektronen im Volumen ¥, = 1 m3 erhdlt man damit

Po
Uiin = f P2 dV = 2 f Pt dp = 3513R2N5P, (7)
meh?
0

2me

Zur kinetischen Energie der Elektronen kommt die potentielle Energie der Wechselwirkung
zwischen den Elektronen und den Metallionen hinzu. Wir betrachten das aus N freien Elektronen
und N positiven Ionen bestehende Modell. Zwar sind die Elektronen iiber den gesamten Metall-
raum verteilt, die groBte Wahrscheinlichkeit fur ihren Aufenthalt liegt jedoch in der Mitte
zwischen den positiven Ionen. Wir betrachten daher das Metall in nullter Naherung als Ionen-
kristall, der aus 2V abwechselnd positiv und negativ geladenen Ionen besteht. Fiir die potentielle
Bindungsenergie eines solchen Kristalls folgt nach (2.1./9) und (2.1./11)
2 .

U= — “_N'f__ (8)
dreegry
Silber besitzt nach Tabelle 1.1.1 ein kubisch-flichenzentriertes Gitter mit der Gitterkonstanten
a = 0,408 nm. Die Elektronen als negative Ionen nehmen wir derart verteilt an, da8 ein Kristall
mit Steinsalzstruktur entsteht. Bezeichnet 7, den kiirzesten Abstand zweier entgegengesetzt ge-
ladener Teilchen, so hat man also im vorliegenden Fall in (8)

a
=y 9)
zu setzen.
Fiir die Energie eines Silberatoms bzw. eines Paars geladener Tonen ergibt sich aus (7) und (9)
. . 2 5/37,2 N'2/3
5=U+ Ukm=_ oe 35/3p2N ) (10)
N dmeyr 40n2/3m,

5%
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Das kfz-Gitter erhiilt nach Beispiel 1.1.1 in jedem Elementarwiirfel vier Silberatome. Es besteht
daher die Beziehung

=)
'S

= a—, 11
1 m3 a® (1)

Setzt man hierin 7, nach (9) ein, so folgt fiir den Zusammenhang zwischen der Ionenkonzentration
N und dem kleinsten Abstand r, zweier entgegengesetzt geladener Teilchen

¥ =22 (12)
7o3
Wir setzen diese Grofle in (10) ein und erhalten fiir die Energie eines Ionenpaares
2 5/3 . 392/3 2
e — oe 353 . 3223 hy (13)

4reyry 40n23mry2

Diese GroBle hat nur den Charakter einer nullten Naherung, da auBer den betrachteten Energien
noch andere auftreten und die Konzentrierung der Elektronen in die Mitte zwischen den Silber-
atomen nur eine Naherung darstellt. Auch die Zuordnung eines freien Atoms zu jedem Silber-
atom ist nur gendhert richtig.

Der Gleichgewichtsabstand r, ist durch

de
),

bestimmt. Wir 16sen die sich hieraus ergebende Gleichung nach der MapELUNG-Konstanten «
auf und erhalten, indem wir anstelle von 7, die Gitterkonstante @ nach (9) einsetzen,

35/3 . 322/3 . 2n1/3 . hzeo
*= 5meea ) (15)

Mit den vorgegebenen Werten folgt
_ 3%/3.3223.2x13. (6,63 - 10-34)2.8,85. 10712

* = 59,0105 (1,60 - 10-9)2. 0,408 - 10 150.
2.1.5. Verformung des Kristallgitters durch duBere Krifte

Auf Kupfer wirke a) ein allseitiger Druck von 9,81 bar (10 at), b) ein Zug von 9,81 bar auf die
(1 0 0)-Fldche in der Richtung [0 1 0]. Berechnen Sie die hierdurch bewirkten Anderlmgen am
Kristallgitter. Die Elastizitdtsmoduln des Kupfers sind Tabelle 2.1.5 zu entnehmen. Kupfer be-
sitzt nach Tab. 1.1.1 ein kfz-Gitter.

Losung:

Wir gehen von drei orthogonalen Einheitsvektoren #, j, f aus (vgl. Bild 2.1.6). Sie sind parallel
zu den Gitterachsen des kubischen Kristallgitters gerichtet und mit diesem fest verbunden.

Bei der Deformation des Festkorpers erleiden simtliche Punkte Verschiebungen aus der Gleich-
gewichtslage. Die Vektoren 4, j, f verindern dabei sowohl ihre Linge als auch ihre Richtung. Sie
gehen in ein Vektorsystem iiber, das mit ¢’,5§’, k’ bezeichnet wird. Es 148t sich durch das urspriing-
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liche Vektorsystem gema8
V= (14 30) 8 + o5, + ek,
=+ (L+e,) § + ¢k, (1)
E=c,i+e,j+0+e)k

darstellen.

Bild 2.1.6. Koordinatenvektoren %, j, e des
idealen Gitters, ¢/, §’, k&’ des verformten
Gitters

Bei den betrachteten Kristallen treten durch elastische Prozesse nur kleine Deformationen ein,
so daB allgemein

Gl (wf=uy2) @)
vorausgesetzt werden kann. Die Vektoren ¢’, j’, k” haben nicht mehr gleiche Lange.
Unter der Voraussetzung (2) ergibt sich

T2 =1+ 2e,,, j2=1+42¢,, K*=1+ 2¢,.

Durch die GréBen e, &, und &, werden die relativen Langenénderungen charakterisiert. Dagegen
erhilt man
vej = &gz T Exys VK =¢y 46y oK = Eyy + Eay-

Die Qréﬁen Exys Eya> Exzs Szg> Sy &y Charakterisieren daher Winkelénderungen.
Fiir einen Punkt, der vor der Deformation durch den Ortsvektor

r =2t + yj + 2k (3)
bestimmt war, ergibt sich nach der Deformation

=i + yj’ + . (4)
Die Differenz

Ar =1 —r =2 — i)+ y(j —§) + 20k — K (5)
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heifit Verriickung oder Verschiebung. IThr Vektor kann nach (1) gemif
Ar = ui + vj + whe (6)
dargestellt werden mit
U = TEpy + Yy + 26,55
v = ey, + Y&,y + 28y, (7)
W = T&y, + Yezy + ze,,.

Als Verzerrungskoeffizienten definiert man

ou
€1 = €y = P = Egg»
by = €y, = —ay = &yy» (8)
ow
€3 = €, = P = &5

1%} ow

e 2 il
ou ow

€5 = €y = &g + &4y = % o 9)
ou o

= = S o = g |

Von diesen bestimmen e,, e,, ¢; Lingeninderungen, e,, e;, ¢, Winkeldnderungen. Diese Definitionen
gelten unter der Voraussetzung, da§ Grofen zweiter Ordnung vernachléssigt werden konnen.
Nach dem HooxrEschen Gesetz hingt die Verzerrung linear von der Spannung ab. Im statischen
Gleichgewicht gelten die linearen Beziehungen

e; = 811611 + 812095 + S15035 + S14025 + 815051 + S160125
ey = 85,01, + 850050 + 23033 + S24003 + So503 + Sp60125
e3 = 831011 + S32022 + S33033 + S34025 + S35031 + S360125
€y = 811011 + Spa0s0 + Sua0s5 + S44023 + 815031 + Sae01as
€5 = 851011 + S5202 + 53035 + S54025 + Ss505 + Ss60125
5 = Se1011 + Sea025 + Ses033 + Sa023 + Ses051 + See01a-

(10)

Die Spannungskomponenten o;;, sind in Bild 2.1.7 dargestellt. Der Index 1, 2 oder 3 kennzeichnet
die Richtung parallel zur -, y- oder z-Achse. Mit dem ersten Index wird die Richtung der Kraft-
komponente, mit dem zweiten die Normalenrichtung der Fliche angegeben, die der Kraftwirkung
ausgesetzt ist. Es bedeutet also z. B. 0y, eine Kraft in Richtung der z-Achse, die auf eine Flache
wirkt, deren Normale in Richtung der y-Achse weist. Die Krifte werden auf Flachen der Grofie
1 m? bezogen. Als Einheit der Spannungskoeffizienten erhélt man also Nm—2 = J m—3.
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Im statischen Gleichgewicht gilt allgemein
Oik = Ok;- (11)

Ist diese Bedingung nicht erfiillt, so entsteht ein Drehmoment, das solange wirkt, bis statisches
Gleichgewicht hergestellt ist. Die GréBen S;;-sind nur vom Material abhéngig. Sie heiflen elastische
Konstanten. Ihre Einheit ist m? N~ bzw. m? J-1. Man kann die Gleichungen (10) nach dem Span-
nungskoeffizienten auflosen:

01, = Oy + Croes + Crses + Crey + Crses + Cigt,s
Ogs = Ug16) + Cyoy + Coges + Coyey + Coses + Cogess
033 = Cg16; + Csoes + Cszes + Capey + Csses + Cyegs
O3 = Cpiy + Cpos + Cyges + Cyeey + Cyses + Cyeess
051 = Og181 + Cypey + Cszes + Cspeq + Cuses + Csetss
015 = Cgr; + Cooey + Coges + Coueq + Cgses + Cogese

(12)

Die hierin auftretenden materialabhéngigen GroBen C;, heifen Elastizititskoeffizienten. Ihre
Einheit N m~2 stimmt mit der der Spannungskomponenten iiberein; sie haben technisch die Be-
deutung von Elastizitdtsmoduln.

Bild 2.1.7. Spannungskomponenten

a) Bedeutung
b) Darstellung des Drehmomentes um die

z-Achse fiir
3 c) Kraft F = (F,, F,, F;) auf ein Fliachen-
7 lU,, element f = (f1, fo, f5)- F; = Z o;jf;
j

Die Elastizitatsenergie ist eine quadratische Funktion der Verzerrungskoeffizienten. Ihre Dichte,
d. h. der auf 1 m® bezogene Wert, kann in der Form

ﬁE = % ngeiek (13)
2,

MI»——
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geschrieben werden, mit Koeffizienten C},, die sich auf die Elastizitdtsmoduln zuriickfithren

K2
lassen.
Hierzu geht man davon aus, daf die Elastizitdtsenergie eine potentielle Energie darstellt. Die
Komponenten o;;, (3, k = 1, 2, 3) der Spannung kénnen daher aus den Verzerrungskoeffizienten
e; (j = 1, ..., 6) durch partielle Ableitung bestimmt werden:

oUg oUg
on = - = ’
Oey 080
oy 0Ug
Ogp = ——— = —— »
- Oey Oeyy
Uy Ug
O38 = — = —— >
Oeg Oe,,
— — (14)
Uy oUg
<Oy = Ogp = —— = — >
ey ey,
— g, — s _9Us
013 = O = des Oty ’
Uy U
Ol =0y = — L= E.
Oeg Oegy
Andererseits gilt nach (13)
ou 18 ,
on = T: =Che + E ]E:Z(Ollj + C}'l) €j-
Aus dem Vergleich dieser Beziehung mit der ersten Gleichung (12) folgt
1
011 = O;l’ 01]' = E‘ (C{j + 0}1)- (15)
Allgemein ergibt sich aus dem Vergleich der Gleichungen (12) mit den Ableitungen (14)
1 ,
Cir = Cri = 5 (Ci + Chi)- (16)
Fiir die Dichte der Elastizitdtsenergie folgt damit aus (13) und (16)
— 1 s 6
U= 5 2 Ciig® + X 3 e (17)
i=1 i<k k=i

Die in (12) auftretenden 36 Elastizitdtsmoduln sind infolge der Beziehung (16) auf 21 reduziert.
Diese Zahl 148t sich weiter verkleinern, wenn im Kristallgitteraufbau Symmetrien vorhanden
sind. '

Kupfer besitzt ein kubisches Gitter. Wie aus der Geometrie des kubischen Gitters hervorgeht,
weist dieses vier dreizihlige Symmetrieachsen auf: [1 1 17, [111], [1 1 1], [1 1 1I]. Wird der Kri-

stall um eine dieser Achsen um —i— 7 gedreht, so kommt er mit sich selbst zur Deckung. Durch
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die genannten Drehungen werden die Koordinatenachsen wie folgt transformiert (vgl. Bild
2.1.8):

r—>Y, Yy—>z, 2—=>2;
rT—>—2, 2> —Y, Y—>;
(18)
x>z, Z2—>—Y, Y-—>—2;
zT—>—y, y—>2, z—> —x.
211
/// (
/ Bild 2.1.8. Rotation zwischen symmetrischen
Y Zustianden in kubischen Kristallen durch
-y o §4 Drehung um die [1 1 1]- bzw.um die [1 1 1]-
\ N Achse
\ N
N A
-2 [in]
Es ist zweckmiBig, die in (17) auftretenden 21 Summanden wie folgt zusammenzufassen:

1 2 2 2 1 2 2 2'

) (Cezs + Caneyy + Casezy) = ) (Craes® + Canes® + Cgge5?),

1 1 19a
5 (Cuaty, + Csse3, + Oese;y) = ) (Cuges® + Osses® + Cggeg?), ‘ (192)
Coseyys; + Cra€rnus + Croeraeyy = Cpseaes + Crseser + Crae1653
014exxeyz + Ozseyyexz + Casezzezy = Cueses + Oysezes + Oygeeq,

O158 52802 + Caslyyay + 034ezzeyz = Cse165 + Caeeats + Caslses, (19b)
Cl68azlay + Castyyy. + Cs58,85, = Creer6s + Caserey + Csseses,
0459yzezz + 04seyzexy + Ossezzezy = Oyse485 + Cygeas + COsqes€s-
Fir die Verzerrungskoeffizienten gelten Beziehungen der Form
oy = —Ca(—y) é(-a)(—y) = Czy USW. (20)

Die Summanden (19a) miissen bei kubischen Kristallen gegeniiber simtlichen Transformationen
(18) invariant sein. Das ist nur der Fall fiir

C’11 = sz = Cas, 044 = 055 = Css’
(21)

012 = 013 = Uaez.
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Bei den Summanden (19b) 148t sich dagegen keine Invarianz gegeniiber den Transformationen
(18) erzielen, es sei denn, samtliche Koeffizienten verschwinden:

Ciy=0Cy53=C15=Cyy = Cy5 = Oy = O3y = O35 = O3 = Cp5 = O

(22)
= Cy =0.

Die 21 Verzerrungskoeffizienten reduzieren sich somit bei Kristallen mit kubischem Kristall-

gitter auf nur drei Bestimmungsgrofien. Fur die Elastizititsenergie folgt damit nach (17)

— 1
Ug= Cha(e® + € + 5% + Cla(eses + eger + e185) + '2“ Cule® + es® + &7).

(17a)

L
2

Bei einem kubischen Gitter, auf das allseitig ein Druck wirkt, ist die Verzerrung in allen Richtun-
gen gleich, so dafl man

ey =6, =¢ =0 (23)
setzen kann, wiahrend Winkelénderungen nicht auftreten. Aus (17a) folgt damit fiir die Elasti-
zitdtsenergie, bezogen auf die Volumeneinheit,

= 3

Ug = ? (O + 20,) 6. (24)
Nach (2.1.2./22) hingt die Elastizitdtsenergie mit der Kompressibilitit geméf

Ug= o — (25)

zusammen. Aus dem Vergleich folgt fir die Verkniipfung zwischen der Kompressibilitit » und
den Elastizitdtskoeffizienten C,;, und Cy,

3
= ——oou- |. 26
Cn + 20y, (29)

Der nach Teil a) der gestellten Aufgabe wirkende allseitige Druck fithrt zu einer Verringerung
des Volumens. Nach (2.1.2./12) in Verbindung mit (26) ist die relative Langenabnahme gleich

P

. (27)
Oy + 20y,

6= X2
3

Mit den vorgegebenen Werten folgt

_ 10-9,81-10¢
T (1,68 + 2-1,21) 1011

= 2,39 -10°¢,

d. h., ein Kupferstab von 1 m Linge wird um 2,39 um verkiirzt. Fir die relative Reduzierung des
Volumens folgt :

V—v

=30=3-2,39-10%=7,2.10"5.
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Zur Losung des Teiles b) der gestellten Aufgabe schreiben wir nach (12), unter Beachtung von (21),
01 = Ciyts. (28)
Daraus erhdlt man mit den vorgegebenen Zahlen

. . 4
o Ow 10981108 .
Cas 0,75 - 101

27

€ =€y, =1

Die #'-Achse und die j’-Achse stehen hiernach unter dem EinfluB} der Zugspannung nicht mehr
genau senkrecht aufeinander, sondern bilden einen Winkel von

.10-5 .
(90_ 1,31-10-%- 180
b

o
) = 89,99925°.

2.1.6. Elastische Wellen im Kristall

In der [1 1 0]-Richtung eines Kupferkristalls breitet sich eine mechanische bzw. elastische Welle
aus. Stellen Sie die Differentialgleichung fiir diesen Vorgang auf. Bestimmen Sie aus den Elasti-
zitdtsmoduln nach Tabelle 2.1.5 fiir Kupfer die Phasengeschwindigkeiten bei der Ausbreitung
elastischer Wellen in der [1 1 0]-Richtung.

Losung:

Wir schneiden aus dem Kristall einen Quader Az Ay Az heraus (vgl. Bild 2.1.9). Die Begren-
zungsflichen haben die MmLERschen Indizes (1 00), (01 0), (00 1). Auf die Begrenzungsfliche
(100) durch den Koordinatenanfangspunkt wirke ein Zug entgegen der z-Achse, also in der

, [700]
lz (001) \y
- j/ N
<
(010)
(100) vl ¥
|
6,41 Bild 2.1.9. Krifte auf einen
X r Kristallquader
[100 oy

Richtung [1 0 0]. Er wird mit —oy,(0) bezeichnet. Die im Abstand Ax gegeniiberliegende parallele
Fldche sei dagegen einem Zug in der Richtung [1 0 0] ausgesetzt. Fiir den resultierenden Zug auf
den Quader folgt

%o pg. 1)
x

013(Ax) — 04,(0) =

Die resultierende Kraft ist

Sou Az Ay Az.
ox



76 2. Mechanische und thermische Eigenschaften idealer Kristalle

Bei der Berechnung der gesamten auf den Quader in einer Richtung wirkenden Kraft hat man die
von den anderen Fliachenpaaren ausgehenden Kréfte zu beriicksichtigen. Insgesamt erhilt man
fir die Kraft in Richtung der z-Achse

do: Jo, do:
11 + 12 + 13

Az Ay Az. 2
ox oy az)xyz @)

AF1=(

Bezeichnet » die Verriickung in Richtung der 2-Achse, so ist andererseits

Pu

o2’

@)

AF, = Am

wobei
Am = d Az Ay Az 4)

die Quadermasse und d die Kristalldichte angibt. Aus dem Vergleich von (2) und (3) erhélt man die
Bewegungsgleichung

Pu_ don | fon | fon

—_— . 5
o2 ox oy 0z ®)

Entsprechende Gleichungen ergeben sich aus den Kréften in Richtung der y- und der z-Achse.
Setzt man fiir die Spannungskomponenten die Bedeutung nach (2.1.5/12) ein und beriicksichtigt,
daB sich beim kubischen Kristall nach (2.1.5./21) und (2.1.5./22) die Zahl elastischer Koeffizienten
C; reduziert, so ergibt sich aus (5)

2u Oe e e e oe,
d—=0,, =+ 1+ (0, [—=& 1+ =3 0., [ 4 %) 6
% uax‘l' 12(6y+6x)+ 44(6y+8z) (6)

Hierin kann man die Dehnungskoeffizienten gemi8 (2.1.5./8) und (2.1.5./9) durch die partiellen:
Ableitungen der Verriickungen ausdriicken. Damit folgt

%u Pu 0%y 0%u 0% o*w

d——7-= — — C Cu) [—— +—). 7
P s 1 (8y2 + 3z2) + (Cia + Cya) (ax o o 6z) (M

Analog erhdlt man

% % 0% % *w %u

d— =03 — +Cy |— +— C Cu) [— . 8
o= On g+ Cu (azz + w) + (G + Cad) (ay Lo ax) ®)
0*w 0w *w  Pw %y %

d—=04— + Oy |—+— C Cu) |[/— +—). 9
o2 11 922 + Cu (8x2 + 3y2) + (G2 + 44) (32 o s o2 3y) 9)

Wir betrachten Wellen, die senkrecht zur z-Achse fortschreiten und bei denen sich die Gitter-
bausteine in der z,y-Ebene bewegen. Es liegen also Verriickungen u = u(t, z, y), v = (¢, 2, y)
vor, wihrend w gleich Null ist. Zur Losung der linearen Differentialgleichungen (7) und (8) gehen
wir daher von den Exponentialansitzen

u = uge—1@nft—K2—Ky), (10)
v = pye— l@nfi—K2—=Kyy) (11)

aus. f gibt die Frequenz der mechanischen Schwingung an, K, und K, sind Wellenzahlen. In (9)
sind sémtliche Summanden gleich Null.
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Durch Einsetzen von (10) und (11) in (7) und (8) ergibt sich das System linearer algebraischer
Gleichungen )

[(OuK? + CuK)?) — dn®fd]u + (Crp + Cy) KKy =0, } (12)

(Cr2 + Cu) K K,u + [(C'uKy2 + OuK?) — 4n*fd]v = 0.

Es ist losbar, wenn seine Koeffizientendeterminante verschwindet. Fiir Wellen, die sich in der
[1 1 0]-Richtung mit der Wellenzahl K ausbreiten, ist -

K,—K,=2BK. (13)
Damit folgt aus (12) als Bedingung fiir die Losbarkeit des Gleichungssystems

1 1
E (011 + 044) K2 — 4nfd ? (Crs + 044) K

=0. (14)
1 1
E (Cre + C) K, E (Cp + Cy) K? — 4r%fd
Fiir die Wurzeln dieser Gleichung folgt
242, 22,
K2 = __ 8nfd (15), K2 = _8rfd (16)
C'11 + 012 + 2044 Cll - 012
Wir setzen (15) in (12) ein und erhalten
% =9. (15a)

Die Teilchenbewegung erfolgt also in der [1 1 0]-Richtung. Da diese Richtung gleichzeitig Aus-
breitungsrichtung der Welle ist, liegt eine longitudinale Welle vor. Sie breitet sich mit der Phasen-
geschwindigkeit

2 Cu + Cp, + 20,
vy, = if — u + Cip + 20, 17
K, 2d
aus.
Setzt man (16) in (12) ein, so ergibt sich
U= —v. (16a)

Es liegt eine Schwingung in der [1 1 0]-Richtung vor, die zur Ausbreitungsrichtung senkrecht
steht. Fir diese Transversalschwingung erhélt man nach (16) die Phasengeschwindigkeit

2 0n =0
Vepy = Kif - I//W. (18)
2

Mit den vorgegebenen GréBen folgt aus (17)

. . 11
oy, = l/ (1762 + 1,249 +2-0818) - 104, o apngn

/ 2.9,02-10°
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aus (18)

Vg1 = M 10 ms?!=1,690kms?.
2-9,02-10°

Eine weitere transversale Welle, die sich in der [1 1 0]-Richtung fortpflanzt, schwingt in der
[0 0 1]-Richtung. Thre Phasengeschwindigkeit vy, stimmt nicht mit der Phasengeschwindigkeit
vgqy fiir die in der [1 1 0]-Richtung schwingenden Teilchen iiberein (vgl. A 2.1.21). Hierin kommt
die Anisotropie der Kristalle zum Ausdruck. Allgemein gilt, daf in einem anisotropen Medium
drei voneinander unabhéngige Phasengeschwindigkeiten existieren; die ihnen zugeordneten Ver-
schiebungsrichtungen bilden ein Orthogonalsystem.

A

A2.1.1.
A21.2.
A213.

A214.
A2.1.5.
A21.6.
A21.7.
A21.8.
A21.9.

A 2.1.10.

A2.1.11.

A21.12.

Aufgaben

Untersuchen Sie nach Tab. 2.1.6 die Wertigkeit des C-Atoms im Grundzustand fir
die kovalente Bindung.

Untersuchen Sie die Wertigkeit des Stickstoffatoms im Grundzustand (1s)? (2s)?
(2p)? bei kovalenter Bindung. ,

Bestimmen Sie nach Tabelle 2.1.6 die Elektronen, die bei Silizium, Germanium und
Zinn zur kovalenten Bindung beitragen.

Bestimmen Sie nach Tabelle 2.1.6 die Elektronen, die in Galliumarsenid und In-
diumantimonid zu Kristalleigenschaften fithren, die denen von Kristallen mit
Elementen der vierten Gruppe entsprechen.

Berechnen Sie die Bindungsenergie fiir ein Zinkion in Zinkblende (o = 1,64,
a = 0,565 nm).

Rechnen Sie die in kJ mol—* angegebene Gitterenergie um in eV/Molekiil.
Berechnen Sie aus den Angaben in Beispiel 2.1.3 die Bindungsenergie fiir das
neutrale und fiir das einfach ionisierte Wasserstoffmolekiil in keal mol-! und
kJ mol-2.

Berechnen Sie das Potential und die MapELUNG-Konstante fir eine Kette von N
alternierend geladenen, im Abstand r aufeinanderfolgenden Ionen (eindimensionales
Gitter, vgl. Bild 2.1.9).

Zinkblende hat die MaDELUNG-Konstante o« = 1,64, die Gitterkonstante a =
0,565 nm. Der Exponent des durch die Wechselwirkung der Elektronenwolken
verursachten AbstoBungspotentials ist » = 5. Berechnen Sie die Gitterenergie
(Z =2).

Berechnen Sie aus den Angaben in Aufgabe A 2.1.9 die Kompressibilitdt des Zink-
blendekristalls.

Um die Konvergenz bei der Berechnung der MADELUNG-Konstanten zu verbessern,
betrachtet man um das herausgegriffene Ion die elektrischen Ladungen innerhalb
von Wiirfeln. Dabei rechnet man mit Ladungsbruchteilen, indem z. B. ein Ion
in einer Wiirfelecke nur zu einem Achtel dem betrachteten Wiirfel angehért.
Bestimmen Sie nach diesem Verfahren die MopELUNG-Konstante fiir NaCl aus den
Ladungen innerhalb eines Wiirfels mit einer Kantenldnge a) gleich der Gitter-
konstanten a, b) gleich dem Dreifachen der Gitterkonstanten.

Nach KarusTINSKY gilt fiir die Gitterenergie bindrer Verbindungen die Formel

U = 1202

1T 7y 1+ 7

nZyZy (1 _ 0346 ) kJ mol-1.
r
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A2.1.13.
A2.1.14.
A 2.1.15.

A 2.1.16.

A21.17.

A21.18.
A2.1.19.

A 2.1.20.

A2.1.21.

A 2.1.22.

Phononen

Z, und Z, geben die Zahl der Elementarladungen fiir Kationen und Anionen an,
r, und 7, bedeuten die Ionenradien in 10~°m (vgl. Tab. 2.1.6); n bezeichnet die
Gesamtzahl der Ionen je Formeleinheit. Berechnen Sie danach die Gitterenergie
fir Zinkblende und vergleichen Sie diesen Wert mit dem MefBwert. )
Welche relative Langendnderung bewirkt der Druck von 9,81 bar (10 at) bei Stein-
salz?

Wie groB ist die Elastizitétsenergie des Steinsalzes, wenn dieses einem Druck von
9,81 bar (10 at) ausgesetzt ist?

Geben Sie fir den kubischen Kristall die elastischen Konstanten in Abhéngigkeit
von den Elastizitdtsmoduln an.

Auf die (00 1)-Flache des Bleikristalls wirkt ein Zug von 98,1 bar (100 at) in der
Richtung [1 0 0]. Berechnen Sie den Winkel, um den die Kristallachsen verdreht
werden. Werte nach Tabelle 2.1.5, 7 = 300 K.

Stellen Sie eine allgemeine Formel zur Ableitung der Kompressibilitdt aus der
Gitterenergie auf und leiten Sie daraus die Kompressibilitatfur ein Gitterpotential
der Form

A B
Ulr) =— s sy
ab. Nehmen Sie dazu allgemein an, der Kristall enthalte je Elementarwiirfel s,
je Kilomol N Bausteine. Zwischen der Gitterkonstanten e und dem kiirzesten
Abstand 7y bestehe der Zusammenhang 7, = f(a).
Berechnen Sie nach Tabelle 2.1.5 die Kompressibilitdt des Diamanten bei 300 K.
Stellen Sie die Gleichung fiir die Ausbreitung einer Longitudinalwelle in der [1 0 0]-
Richtung auf. Bestimmen Sie die Phasengeschwindigkeit.
Wie lautet die Gleichung fiir die Ausbreitung einer Transversalwelle in der [1 0 0]-
Richtung? Welche Phasengeschwindigkeit erhidlt man?
Berechnen Sie die Phasengeschwindigkeiten bei der Ausbreitung mechanischer
Wellen in Kupfer, wenn diese in der [1 0 0]-Richtung fortschreiten. Die Temperatur
betrage 0°C (Cy; = 1,69 10N m=2, (;, =1,22-10'Nm=2, (, =0,76.10"
Nm=2,d=8,9gcm3).
Mit welcher Phasengeschwindigkeit breiten sich in Kupfer mechanische Wellen
in der [1 1 0]-Richtung aus, wenn diese mit einer Teilchenbewegung in der [0 0 1]-
Richtung verbunden sind? (Werte nach A 2.1.21).

Phononen und Gitterschwingungen — Thermische Eigenschaften

Einfiihrung

Ein kristalliner Festkérper bildet mit seinen Bausteinen ein System gekoppelter
Oszillatoren. Die mechanischen Schwingungen erfolgen nach den Gesetzen der
Quantentheorie. Experimentell bestétigt wird die Quantelung insbesondere durch
die folgenden Effekte:

Mit abnehmender Temperatur 7' — 0 sinkt auch die Wirmekapazitit des Kristall-
gitters gegen Null; die Oszillationen »frieren ein¢.
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Die unelastische Streuung von Rontgenstrahlen oder Neutronen am Kristallgitter
ist mit der Emission oder Absorption von Kristallschwingungen verbunden. Dabei
gelten fiir die Energie und den Impuls Erhaltungssétze, die denen der Emission und
Absorption des Lichtes entsprechen. Auf Grund dessen geht man davon aus, da8 fiir
die Emission und die Absorption mechanischer Schwingungen in einem Festkoérper
die gleichen GesetzméBigkeiten gelten wie fiir optische Schwingungen in einem
Hohlraum.

Die Strahlung in einem Hohlraum wird durch ein Photonengas représentiert. Impuls
und Energie der Photonen sind mit der Energie und der Frequenz des elektromagne-
tischen Strahlungsfeldes durch die DpE-BroGLiEschen Gleichungen verkniipft. In
Analogie dazu wird das Feld der mechanischen Schwingungen des kristallinen
Festkorpers durch ein Quantengas dargestellt. Das einzelne Quant des mechanischen
Schwingungsfeldes heiflt ein Phonon. Es verhilt sich wie ein Elementarteilchen und
wird daher als Quasiteilchen bezeichnet.

Die ebene mechanische Welle kann ebenso wie die ebene Lichtwelle durch ihre
Kreisfrequenz w = 2rf, ihre Wellenlinge 4 und ihre Phasengeschwindigkeit v, dar-
gestellt werden. Als Wellenzahlvektor der mechanischen Schwingung definiert man

K:2A—nns, (1)

wobei ng Einheitsvektor in Richtung der sich ausbreitenden Welle ist. Das Energie-
quant der mechanischen Schwingung ist durch die erste de-Brogliesche Gleichung
bestimmt:

e = hw = hf|. @)

Beispiel 2.2.1. Energiequant des Kammertons

Fiir den Kammerton f = 440 Hz betrigt die Energie eines Phonons
£=26,63-10"%.440J =2,9-1031J =1,8-10712eV.
Sie liegt um zwolf GréBenordnungen unter der eines Photons im sichtbaren Bereich.

Der Impuls eines Phonons zeigt Besonderheiten.

Das Phonon tritt mit anderen Elementarteilchen in Wechselwirkung, z. B. mit
Photonen, die dadurch gestreut werden. Bei derartigen Vorgéngen verhilt sich das
Phonon, als hétte es den Impuls

|q=hK . 3)

(3) entspricht der zweiten de-Broglieschen Gleichung (vgl. [2] 4.1.). Wie eine genaue
Untersuchung zeigt, kann ein Phononenimpuls, d. h. eine gleichférmige Verschiebung
des gesamten Kristalls, jedoch nur auftreten, wenn die Wellenzahl K gleich Null
ist. Die durch (3) definierte VektorgroBe wird daher genauer als Pseudoimpuls be-
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zeichnet. Thre Bedeutung liegt allein im Verhalten der Phononen bei Wechsel-
wirkungsprozessen mit anderen Elementarteilchen. '
Wellenzahl K und Kreisfrequenz w sind durch die Phasengeschwindigkeit vs mit-
einander verkniipft:

w
Vg = f. (4)
In Verbindung mit den pE-BrogLIEschen Gleichungen (2) und (3) ergibt sich daraus
die allgemeine Beziehung

&€= 04 (5)

zwischenPhononenenergie ¢, Pseudoimpuls ¢ und Phasengeschwindigkeitvs. Das Gesetz
von der Erhaltung des Impulses erfordert bei der Streuung des Lichtes an Gitter-
schwingungen eine Erweiterung der Gleichung (1.2./18).

Der Impuls eines Elementarteilchens ergibt sich nach der zweiten pE-BRoGLIEschen
Gleichung als Produkt der Konstanten # = 1,05 . 10-3¢ Js mit der Wellenzahl der

Bild 2.2.1. Impulserhaltungssatz bei der unelastischen
Streuung von Roéntgenstrahlen oder Neutronen an
Phononen.

#le, Impuls des einfallenden Photons bzw. Neutrons
#k’ Impuls des gestreuten Photons bzw. Neutrons

2K Impuls des Phonons

b —hb’ RiickstoBimpuls

A

zugeordneten DE-BrocLIEschen Welle. Bei der Licht- oder Neutronenstreuung ist
der Pseudoimpuls 4 %K des erzeugten oder vernichteten Phonons nach Bild 2.2.1
zu beriicksichtigen. Nach (1.2./18) bezeichnet #k, den Impuls des einfallenden,
ik’ den Impuls des gestreuten Photons, —4b den RiickstoBimpuls des Gitters. Aus
dem Satz von der Erhaltung des Impulses folgt daher nach Division durch #

ky— K —J+K—b | 6)

Das obere Vorzeichen gilt fiir Phononenemission, das untere fiir -absorption. Der
Vektor b des reziproken Gitters wird nach 1.2. durch die reflektierenden Netzebenen
bestimmt.

Phononen besitzen als Teilchen ohne Ruhmasse ebenso wie Photonen keinen Spin.
Thr Verhalten wird durch die Bose-EiNsTEIN-Statistik beschrieben (vgl. [3] 4.3.).

Bose-Einstein-Statisttk der Phononen

Nach der Bose-EiNsTEIN-Statistik ist im Gleichgewichtszustand die Anzahl der
Teilchen, die sich in einer Phasenzelle der GréBe h® befinden und dabei die Energie ¢;
besitzen, durch die Formel

N;= —eg— @
ot —=

e ¥ _1

6 Schilling, Festkorperphysik
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gegeben. Darin bedeutet g einen Gewichtsfaktor, der sich bei Phononen durch die
verschiedenen Schwingungsrichtungen der Gitterbausteine ergibt. Die mechanische
Schwingung kann in zwei zueinander senkrecht stehende Transversalkomponenten
und eine Longitudinalkomponente zerlegt werden. Fiir Phononen gilt daher

g=3, ®)

sofern nicht bestimmte Schwingungsrichtungen ausgeschlossen sind.

Der Parameter « ergibt sich als Lagrancescher Multiplikator aus den Bedingungen
iiber die Teilchenzahl. Fiir Phononen besteht jedoch ebenso wie fiir Photonen kein
Gesetz, das die Erhaltung der Teilchen vorschreibt. Die Konzentration der Phononen
hédngt ebenso wie die Konzentration der Photonen von der Temperatur ab. Bei der
Variation iiber alle moglichen Zustinde kann die Bedingung iiber die Teilchenzahl
gestrichen werden, was gleichbedeutend mit

a=20 9)

ist. Fiir Phononen erhilt man somit als Anzahl der Teilchen in einer Phasenzelle

Niy=——— (10)

Die Anzahl der Zellen mit Impulsbetridgen zwischen g und ¢ + dg ist in Analogie
zu 2.1.4. und Bild 2.1.5 gleich

_ V-4ng?dg

dz e

(11)

wobei V das Volumen des Kristalls angibt. Fiir die Anzahl der Phononen mit der
Energie ¢ und Pseudoimpulsen zwischen ¢ und ¢ 4 dq folgt weiter

4ng? dg

k3<eﬁ— 1)

Beriicksichtigt man die Beziehungen (4) und (5), so folgt aus (12) in Verbindung
mit (1) und (2) fiir die Anzahl der Phononen mit Kreisfrequenzen zwischen w und

w + dw

AN = N;dz = gV (12)

w? dw

2n?0 3 (ekT — 1)

(13)

Diese Formel entspricht bis auf den verdnderten Gewichtsfaktor ¢ der Formel fiir
die Verteilung der Photonen nach dem Planckschen Strahlungsgesetz.
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Beispiel 2.2.2. Zahl der Phononen

Ein Kristall, in dem die Schallgeschwindigkeit einheitlich »g = 6000 m s~ betrégt, hat das
Volumen ¥V = 1 cm?. Er enthilt bei Zimmertemperatur 7' = 300 K im Frequenzbereich zwischen
4,0 - 10% und 4,1 - 10° s~ im Mittel

(2r)3 (4 - 108)2. 0,1 - 108
1,05-10-3¢. 2 - 4 - 108
2n2(6 - 10%) 2 —1
2 ) (eXP 1,38 - 10-2 . 300 /

dN =3-10-% =4,4-108

Phononen. Bei gleichen Phasengeschwindigkeiten fir die transversalen und longitudinalen
Wellen entfillt davon ein Drittel auf longitudinale Schwingungsvorgéinge.

Abziihlung der Wellen in etnem Kristall

Stehende Wellen miissen je nach Art der Schwingung an den begrenzenden Winden
Wellenknoten oder -bduche aufweisen (z. B. Knoten bei Seilwellen oder beim E-Feld
im idealen Leiter, Bauche an der Oberfliche eines Schwingungsquarzes oder bei der
longitudinalen Komponente des H-Feldes im Hohlleiter). Die Anzahl moglicher
Wellen in einem Korper wird, wie allgemein bewiesen werden kann, nur durch das
Volumen bestimmt. Man kann daher als Festkorper einen Wiirfel mit der Kanten-

linge a = T/V betrachten. Seine Kanten werden als Achsenrichtungen des z,y,z-

Koordinatensystems gewéhlt.
Zwei benachbarte Knoten oder Biuche in einer stehenden Welle haben voneinander

den Abstand % Bei parallel zu einer Begrenzungsfliche laufenden Wellenfronten
gilt daher

a=m% m=0,1,2,...). (14)

Fiir eine in Richtung
u = cos ot + cos fj + cosy k (15)

schrig durch den Kristall laufende Welle erhélt man stattdessen als Bedingungs-
gleichungen fiir Knoten oder Bauche an den Begrenzungsflichen (vgl. Bild 2.2.2a)
@ CoS & = M,
acos f =m,

(nz Ny, Ny = O’ 1, 2: )' (16)

2
il
2’
4
a oSy = m; 5

Nur wenn diese Gleichungen erfiillt sind, bleibt die stehende Welle erhalten und
wird nicht durch Interferenz ausgeloscht.

[
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2
Werden die Gleichungen (16) quadriert und addiert, so folgt nach Division durch 4

4
4a? aPw?
7112 + nyz + nz2 = F = WT’()S{. (17)
Gleichung (17) stellt eine Kugel im n,,n,,n,-Raum mit dem Radius a:)v dar. Die
: p

Anzahl stehender Wellen mit Frequenzen zwischen 2ﬂ und 2i + —2ﬂ ist somit gleich
TC TC u3

der Anzahl ganzzahliger Werte n,, n,, n,, die Gleichung (17) mit Kreisfrequenzen
zwischen w und w + dw befriedigen. Ihre Anzahl ergibt sich als Zahl der Gitter-

punkte im Oktanten einer Kugelschale mit dem Kriimmungsradius 2% und der
o

2 ]
Dicke a-iw (vgl. Bild 2.2.2b). Fiir grofe Werte T ist diese Zahl gleich dem Volumen
*Ys
der Schale
1 a?w? adw TVw?dw/ 1 1 1
8 nP? dn o, | 2n° (E + Vi ™ ngz)' (18)
3|0
u B

@ coe0o0ocoe
0000000

® 90 ¢ o 0 & 0 o

6000000000

eeo0e0000 00

9 0 00 0 60 o

® e %20 060 00

ee0eos 00

1/cos a

Bild 2.2.2. Zur Ableitung der Anzahl stehender Wellen in einem Wiirfel.

a) Wellen in einem Wiirfel
b) Gitterpunkte im Oktanten einer Kugelschale

Bei unterschiedlichen Phasengeschwindigkeiten vg, fiir die Longitudinalwellen und
V1 SOWie vgr, fiir die Komponenten der Transversalwellen erhélt man als Anzahl der
Wellen in einem Kristall mit dem Volumen V

Vuw? (1 1 1
fw)dw = - (v_S; S e + vsst) dw. (19)

Vielfach rechnet man mit einer mittleren Phasengeschwindigkeit, die durch die
Gleichung

3 1 1 1
-t 5 (20)

3 3 T
Vs UsL Vst UsT2
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festgelegt ist. Mit dieser erhélt man fiir die Anzahl moglicher Wellen
3Vw?

22y 3

fw) dw = dw. (19a)
Beispiel 2.2.3. Anzahl stehender Wellen in einem Kristall

Ineinem Kristallmit dem Volumen V = 1 cm?, in dem die Phasengeschwindigkeitvg = 6000 m s

betriagt, kénnen sich im Frequenzbereich zwischen 4 - 10° und 4,1 - 106 Hz

3.10-%.47%4.108)2.0,1 - 10%- 2
2n2(6 - 10%)2

fw) dw = = 279

verschiedene Schwingungstypen ausbilden.

Debyesche Theorie

Jeder Baustein eines Kristalls kann nach drei Raumrichtungen Schwingungen aus-
fithren. In einem festen Korper aus N Kristallbausteinen sind daher 3NV Oszillationen
moglich. Bezogen auf ein Kilomol eines festen Korpers treten 3N, Schwingungen
auf.

Zur Ableitung der Warmeeigenschaften fester Korper wird von DEBYE angenommen,
daB in einem Kristall alle auf Grund der Randbedingungen mdéglichen Wellen bis zu

einer Grenzfrequenz f, = —;Di auftreten. Nach (19) folgt somit aus der DEBYEschen
Voraussetzung T
wg

3V fwz dw = 3N,. (21)

2o 3
0

Vi bedeutet das molare Volumen.
Aus (21) erhilt man durch Auswerten des bestimmten Integrals und Auflésen nach
der Grenzfrequenz '

o= 2 2T — I/—gN—A .e

= +
VUst1 VUsT1

3
Vse

Am absoluten Nullpunkt 7" = 0 sind nur die Nullpunktschwingungen angeregt.
Nach der Quantentheorie erhélt man hier fiir die Energie eines Oszillators

hf  hw

& = g(w) = o =9 (23)

Die Innere Energie eines Kristalls am absoluten Nullpunkt ist daher durch

U, = Of “e(w) f(w) dw (24)
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gegeben. Werden hierein die Gleichungen (19) und (23) eingesetzt, so folgt bei Be-
riicksichtigung von (22) als Nullpunktenergie des Kristalls

We
INE [ w? 9
UO == w—g‘;./‘? dw = —8— NAhU)g. (25)
0

Die Grofle

TD:%:%: 8U,

E~ k  9R (26)

heilt Debyesche bzw. charakteristische Temperatur des Festkorpers (vgl. Tab. 2.2.1).
R bedeutet die Gaskonstante.

Beispiel 2.2.4. Debyesche Temperatur, Grenzfrequenz, Nullpunktenergie des Bleis

Fir Blei betrigt die DEBYEsche Temperatur 7'y, = 90 K. Hieraus folgt nach (25) die Nullpunkt-
energie

U, = —g— 90 - 8,314 - 103 J kmol~! = 842 kJ kmol1.

Als Grenzfrequenz erhélt man

_ kTp _ 1,38-107% .90

_Mp 138107 -90 1 8. 1012 Ha.
o= 6,63-10% z

Akustische und optische Schwingungen

Nach der DeByEschen Theorie kann jeder Kristallbaustein drei voneinander unab-
hingige Schwingungen ausfithren. Jedem Kristallbaustein sind drei voneinander
unabhéngige Frequenzen zugeordnet. Sie heilen Normalfrequenzen.

Bei zusammengesetzten Gittern enthilt die Elementarzelle des Gitters nach 1.1.
mehr als einen Kristallbaustein. Auf diese s Bausteine der Elementarzelle entfallen
nach der DEByEschen Theorie 3s Schwingungen. Schwingungen, bei denen siamtliche
Teilchen der Elementarzelle sich gleichsinnig nach Bild 2.2.3a bewegen, heilen
akustische Schwingungen. Von den 3s Schwingungen einer Elementarzelle sind stets
drei akustisch, und zwar zwei transversal und eine longitudinal. Bei den iibrigen
3s — 3 Schwingungen bewegen sich die Teilchen der Elementarzelle auch gegen-
einander (vgl. Bild 2.2.3b).

In einem Ionenkristall fithren die gegeneinander gerichteten Schwingungen infolge
der Ionenladungen zu periodisch verdnderlichen elektromagnetischen Feldern, d. h.
zu elektromagnetischen bzw. optischen Wellen. Diese Schwingungen der Kristall-
bausteine heiflen daher allgemein optische Schwingungen. Auch wenn die Kristall-
bausteine elektrisch neutral sind, wie bei Germanium und Silizium, werden die
gegeneinandergerichteten Schwingungen der Kristallbausteine als optische Schwin-
gungen bezeichnet.



2.2. Phononen und Gitterschwingungen — Thermische Eigenschaften 87

Zu einem Gitter aus N Elementarzellen mit je s Kristallbausteinen gehdren somit 3Ns
Normalfrequenzen ; davon sind 3NV akustische, 3N (s — 1) optische Schwingungen.
Fir K — 0 geht die Kreisfrequenz w bei akustischen Schwingungen gegen Null,
dagegen bei optischen Schwingungen gegen einen von Null verschiedenen Grenzwert
(vgl. Bild 2.2.4).

Die Phasengeschwindigkeit mechanischer bzw. elastischer Wellen in Kristallen ist
sowohl von der Kreisfrequenz w der Schwingung als auch von der Ausbreitungs-
richtung der Wellen bzw. Phononen abhingig. Es tritt also Dispersion und An-

Bild 2.2.3b) Gegensinnige Schwingung zweier Teilchen einer Gitterzelle

transversal

9——&%0phsch
*] longitudinal optisch  Bild 2.2.4. Aus Neutronenstreuung

ermitteltes Phononenspektrum von

P Germanium fiir Wellenausbreitung
longitudinal

Frequenz f in 10”2 Hz
o

54 akustisch in der [1 1 1]-Richtung.

‘- Der unterste transversale akustische

3- Zweig und der oberste transversale
transversal optische Zweig sind beide zweifach

21 akustisch

entartet. Diebeiden mittleren Zweige
charakterisieren longitudinale
Schwingungen.

—— —_—r
0,05 010 615
K I 2T
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isotropie auf. Mit der Phasengeschwindigkeit sind auch die Wellenlinge und die
Wellenzahl frequenz- und richtungsabhingig.

Fiir die experimentelle Bestimmung der Dispersionskurven ist ein Effekt erforder-
lich, der tiber die Energie und den Impuls der Phononen Auskunft gibt. Das ist am
genauesten bei der Neutronenstreuung der Fall (vgl. 2.2.2).

Bild 2.2.4 zeigt die aus Neutronenstreuung nach [43] punktweise gemessenen Di-
spersionskurven fiir Germanium. Den zwei Atomen je Elementarzelle entsprechen
zweimal drei Schwingungszweige. Die untere Kurve stellt die beiden entarteten trans-
versalen Zweige der akustischen Phononen dar. In der oberen Kurve sind die beiden
entarteten Zweige der transversalen optischen Schwingungen enthalten. Die mittleren
Kurven charakterisieren longitudinale Schwingungen.

: P Probleme

2.2.1. Brillouin-Streuung

Ein Laserstrahl der Wellenlinge A = 694 nm durchléduft einen Quarzkristall. Durch mechanische
Schwingungen wird der Lichtstrahl gestreut. Dabei findet eine Wechselwirkung zwischen Pho-
tonen und Phononen statt, bei der kein RiickstoB an das Gitter abgegeben wird. Berechnen
Sie die maximale Frequenz der ausgel6sten mechanischen Schwingungen und: geben Sie die
relative Frequenzverschiebung des gestreuten Lichtes an. Fiir die Schallgeschwindigkeit ist
v = 6000 m s71, fir die Brechzahl » = 1,54 zu setzen.

Losung:

Fir Licht der Frequenz v, das einen Kristall mit der Brechzahl n durchlduft, haben die Photonen
nach den pE-BroGrIEschen Gleichungen den Impuls

p = ik, (1)
‘Darin gibt k, den Wellenzahlvektor des Lichtes mit dem Betrag

ky = _2_1::_ —n 27y w [ @)
A Co Co c

an. ¢, bedeutet die Lichtgeschwindigkeit in Vakuum, ¢ die im Medium. Es bezeichne o die Kreis-
frequenz des Lichtes vor, w” nach der Streuung. w gibt die Kreisfrequenz der mechanischen
Schwingungen an. Nach dem Energieerhaltungssatz besteht fiir die drei Gréfen die Gleichung

ko = ko’ + hw. 3)
Der Erhaltungssatz fiir den Impuls bedingt die Gleichung
iky = #k + iK, (4)

wobei k; den Wellenzahlvektor der Photonen vor, k’ den nach der Streuung angibt, wihrend K
den Wellenzahlvektor der Phononen bezeichnet (vgl. Bild 2.2.5). Wir gehen davon aus, daB bei
der Streuung des Lichtes in erster Naherung die Frequenzverschiebung vernachlissigt werden
kann und daher

kg =k 3)
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gilt. Unter dieser Voraussetzung kénnen wir nach Bild 2.2.4 fiir den Betrag des Wellenzahlvektors
der Phononen schreiben

K = 2k, sin %, (6)
ke’ kK
Bild 2.2.5. Impulserhaltungssatz bei der BRILLOUIN-Streuung
kﬂ

wobei g den Winkel zwischen dem einfallenden und dem gestreuten Strahl angibt. Nach (2) kann
man an Stelle von (6)

2wn

K= sin 2 (7)

Co 2

Schreiben. Zwischen Wellenzahl K und Kreisfrequenz w der Phononen gilt analog (2) die Be-
ziehung

K=, (8)
Vs

wobei v¢ die Schallgeschwindigkeit kennzeichnet. Man erhilt somit

o 2osen o @ Amvn o @ ©)
Co 2 A 2

Am groBten ist die Frequenz der mechanischen Schwingungen fiir den Grenzfall einer Streuung
von 180°, mit sin % = 1. Hierfiir erhilt man mit den vorgegebenen Werten aus (9) als groBte
Schwingungsfrequenz der mechanischen Wellen

3
W _2:6-10° 154 2,66 - 1010 Hz.
27 694 . 10-°
Die Frequenz des einfallenden Laserlichtes betrigt 4,32 - 104 Hz. Nach (3) ist die Frequenz des
gestreuten Laserlichtes um die Frequenz des ausgeldsten Photons kleiner als die Frequenz des
einfallenden Lichtes, im vorliegenden Fall also um 2,66 - 101° Hz. Diese Verringerung entspricht
einer relativen Frequenzabnahme um

—w ) . 10
@ “’ZEZM=6’2.10—5_
w w 4,32 . 1014
2.2.2. Messung der Phononen-Dispersionskurve durch Streuung von Neutronen

an Phononen

Ein Neutronenstrahl falle unter der Richtung oy = 90°; B, = 90°, ¥, = 0° auf einen Bleikristall.
Die Energie eines einfallenden Neutrons sei W, = 0,0540 eV. Beobachtet werde ein gestreuter
Strahl unter der Richtung o; = 0°, 8, = 90°, 9, = 90°, der durch die Reflexion an Netzebenen
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zustande kommt. Zur Ermittlung eines Punktes der Phononen-Dispersionskurven werde der
gestreute Neutronenstrahl unter der Richtung o” = 1,47°, " = 88,53°, " = 90° untersucht, fiir
den die Neutronenenergie W’ = 0,0535 eV gemessen wird.

Berechnen Sie den Wellenzahlvektor K und die Kreisfrequenz w der Phononen, die die zusédtzliche
Streuung hervorrufen. Blei besitzt kfz-Gitter mit der Gitterkonstanten @ = 0,494 nm.

Losung:

Die Streuung von Neutronen stellt einen ProzeB der Beugung pE-BrocLIEscher Wellen analog
1.2.3. dar, fiir den der Energie- und der Impulserhaltungssatz erfiillt sind. Der Energieerhaltungs-
satz erfordert wegen (2.2./2) -

Wo— W = fhw. (1)

Das obere Vorzeichen gilt fiir Phononenemission, das untere fiir Phononenabsorption. Nach
(2.2/6) besagt der Impulserhaltungssatz

ky— K =+K—b, @)

mit der gleichen Vorzeichenregelung wie bei der Energie. Der Vektor b des reziproken Gitters
wird durch die reflektierenden Netzebenen bestimmt. Die kinetische Energie der Neutronen ist
mit dem Impuls gemif

2 2 ’2 2
D 7 S N NN VA A ®)

2m,  2mgA? ’ 2m,  2my A

verkniipft, wobei m, = 1,6750 . 10-2? kg die Neutronenmasse bezeichnet.

Aus (1) 188t sich durch Messung von W, und W’ die Energie bzw. die Kreisfrequenz des emittierten
oder absorbierten Phonons berechnen, wihrend (3) die Bestimmung der Wellenldnge der ge-
streuten pE-BrRoGLIEschen Welle gestattet. Mit den vorgegebenen Grofen erhalten wir aus (1)
durch Auflésen nach w

Wo— W’ 0,0640 — 0,0535

z =105 .10 1,6 .10 51 =8.101s1,

w =

Wegen W, > W’ liegt eine Phononenemission vor. In (2) ist daher ebenso wie in (1) das obere
Vorzeichen zu wéihlen. Aus (3) folgt durch Auflésen nach A

b 6,63 - 1034
V2m, W, V2 -1,675-10-27-0,0540 - 1,6 - 10~1°

m = 0,123 nm — .
4

Ebenso folgt fiir die Wellenlinge der an den Gitterschwingungen gestreuten Strahlung A’
= 0,124 nm, also nur ein geringfiigig verdnderter Wert.

Die Basisvektoren des reziproken kfz-Gitters sind nach Beispiel 1.1.4 durch die Gleichungen
(1.1./8) gegeben. Fiir den Vektor by, ¢, o5 des reziproken Gitters ergibt sich

bg1,g2,g3 = ¢1b1 + 9:b, + 95b;

2
= ;Tc (=91 + 92+ 9:1€ + [0 — 92 + gsl € + [g1 + 92 — ga] €3). 4)
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Ubersichtlicher ist die Darstellung als einspaltige Matrix

—91+ 92+ g5
T
bg1,92.03 = > 91— 92+ 95 |- (8)
g1+ 92— 93

Werden auch die iibrigen Vektoren des Impulserhaltungssatzes als einspaltige Matrizen ge-
schrieben, so erhalten wir

. cos oy N cos o K, , —91+ 9+ g5

u T T

| cosho ) — Z—I, cos B’ | =%+ | K, |— Z | -t (6)
Cos ¥ cos ¥’ K, 91+ 92— 9s

Wird kein Phonon erzeugt oder vernichtet, so ist in (2) bzw. (6) K = 0 einzusetzen. Ferner haben
wir im vorliegenden Fall fiir den einfallenden Strahl cos og = cos B, = 0, cos y, = 1, fiir den
reflektierten Strahl cos oy = 1, cos f; = cosy; = 0 zu setzen. Die Wellenldnge bleibt unver-

andert: ;" = 1 = %. Damit folgt aus (6)

0 i —g1+ 92+ 95
8r 0 _S'n: 0 __271: q
p 2 o 91— 9+ 9s |- (7)
1 0 g1+ 9:—9s

Diese Gleichung zwischen Matrizen wird durch
g1=—2, g,=0, g3=+2 (8)

erfiillt. Bild 2.2.6 zeigt den Vorgang der Reflexion an den Netzebenen (2 0 2).

Bild 2.2.6. Reflexion an den Netzebenen (2 0 2)

Es verbleibt die Bestimmung des Impulses der streuenden Phononen. Mit den Werten (8) er-
halten wir aus der Impulserhaltungsgleichung (6)

0 cos &’ K, 4
8n 2r 27
dia = | = —— . 9
2 0 7 | cos B +1 K, a 0 9
i cos Y’ K, —4

Das positive Vorzeichen wurde bei der K-Matrix gewshlt, da Phononenemission vorliegt.
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Fiir den herausgegriffenen Strahlisty” = L und cos y” =0. Die letzte Zeile der Matrizengleichung
(9) wird daher fiir 2

K,=0
erfillt.
Setzen wir die MeBwerte fiir cos & und cos  zusammen mit A’ in (9) ein, so liefert die erste Zeile,
wenn diese nach K, aufgelost wird,

Kp= 8 20 osw. (10)
a

Aus der zweiten Zeile ergibt sich
2 ,
Ky=-T’feos,3. (11)

Bei der Darstellung der Dispersionskurven wird die Wellenzahl K, im allgemeinen auf die Gréfe

Ky = E (12)
a
bezogen. Aus (11) folgt daher mit den vorgegebenen Werten
. 16-?
K, =— 2 9 s — — 2m 0A 10T h956) — 0,10 K, (13)
a N a 0,124 -10°°

Zur Berechnung von K, schreiben wir nach (10) und (11)

K, —4K, cosa’ 09997
K, cos f’ —0,0256

= —39,0,

woraus wegen (13)

K, =0,10K,
folgt. ‘
Bei der Ausbreitung mechanischer Wellen mit der Kreisfrequenz w = 8 - 10 71 in der Richtung
[1 1 0] tritt eine Komponente mit dem Wellenzahlvektor

0,10 1 1
BE=2"{o10) =010 (1) =127 100m2 (1],
a
0 0 0
der Wellenlédnge
a4 = 2—” =2 =4,94nm
K 0,10

und der Phasengeschwindigkeit

101
Vg = w8107 ms?=630ms
K 1,27 - 10°

auf.
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2.2.3. ZustandsgroBe der Phononen bei tiefen Temperaturen

Stellen Sie die Formel fir die Zustandssumme der Phononen auf und leiten Sie daraus die Freie
Energie F, die Entropie S, die Innere Energie U und die molare Warmekapazitit C der Gitter-
schwingungen unter der Voraussetzung tiefer Temperaturen 7' << T'p, ab.

Berechnen Sie die molare Wiarmekapazitdt bei Zimmertemperatur 7' = 300 K fir Diamant,
dessen DeByEsche Temperatur 7' = 1320 K betrigt.

Losung:

Der feste Korper stellt ein System von Oszillatoren dar. Thre Energien addieren sich. Zustands-
groBen der Elektronen bleiben zunéchst unberiicksichtigt.
Die Freie Energie geht nach der allgemeinen Formel

F=—kT'InZ (1)

durch Logarithmieren aus der Zustandssumme hervor. Daher ergibt sich die Zustandssumme der
Phononen, indem man die Zustandssumme Z; der einzelnen Oszillatoren miteinander multi-
pliziert:
Z =]] z;. (2)
K

In einem Oszillator tritt die Energie ¢ gequantelt auf:
hwy
s=sn=7—|—nhwo rn=0,1,2,...). 3)
Der Fall n = 0 entspricht der Nullpunktenergie
g = —2. )

Die Zustandssumme ist allgemein durch die Formel

&n
Z=% e ¥ (®)
n
gogeben. Fir den i-ten Oszillator mit der Eigenfrequenz w; erhilt man daher die Zustands-
summe '
hw; 1
G-y T (), (©)

n

(6) stellt eine unendliche geometrische Reihe mit dem Anfangsglied

exp (_ﬁﬂ)
2

und dem Quotienten exp (—Aw;) dar. Fir die Summe der Reihe folgt

_ _hw

e ZkT

Zi - hws (7)
1—e T
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Als Zustandssumme der Phononen des gesamten Festkorpers ergibt sich

we

e 2T
Z=H-————h7; . (8)
1—e T

Hieraus erhalten wir die Freie Energie
hw; - Ao
F=ZT'+kTZln(1—e "T). 9)
) K}

Der erste Ausdruck gibt die Nullpunktenergie an.

Um in (9) den zweiten Summanden berechnen zu kénnen, ist die Summation durch eine Inte-
gration zu ersetzen. Die Verteilung der Schwingungen auf die Spektralbereiche wird durch das
Verteilungsgesetz (2.2./19a) geregelt:

3Vw?

2.3
2nvg

f(w) dw =

dw. (10)

Bezogen auf ein Kilomol kann nach (2.2./22) und (2.2/26) geschrieben werden
V  6n2N, 6r*iN,

— == . 11
vgd wg® kT3 ()
Wir erhalten daher aus (10)
2 3
fw) dw — Nawrdw  ONAR s (12)

wg BT

Die Freie Energie der Kristallschwingungen konnen wir schreiben

. wg Wg _hw
J It (h—fuﬁdw-i-kaﬁfwz In [1 —e "T] dW)- (13)

T BT\ 2
0 0

Im ersten Summanden kann das Integral sofort ausgewertet werden. Es folgt unter Verwendung
von (2.2/26)

We
ON, B [ ON Htwd 9 9
- dw = DaM0g” O g, = 2 N, 14
o= owrys ) T Tewsrys g AMET g TAED (14)
0

Diese Grofe stimmt mit der Inneren Energie U, fir den absoluten Nullpunkt 7' = 0 nach (2.2./25)
iiberein.
Im zweiten Summanden transformieren wir

= — (15)
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und integrieren partiell:

We

hw k"'T“ Ze
fwzln(l—e "T)dw=T 22In (1 — e%) da

(16)
Zg
kT3 a®
- ([ms In (1 — e~)Je — f T da:).
B .
Darin ist die obere Grenze des Integrals durch
hw
Ly = W (15&)
festgelegt.
Der Verlauf der Funktion
3
fla) = "=
ist in Bild 2.2.7 dargestellt.
Die Grofie
ZTg x3
3 do
D -2 17
@ = [ 525 (1)
0 -
1.6
x2
X
-1
1412 4
12 /

N

Wl N\
/

06 /
04
Bild 2.2.7. Verlauf der Funk-

| / \\
02 ~
tion (&) = — =

X
o 1 2 3 4 5 6 7 8 o — 1

b

heiBt Debye-Funktion. Wie man aus Bild 2.2.7 entnehmen kann, ist f(«) fiir £ > 1 nur sehr klein
und fallt mit wachsendem z gegen Null. Fiir  — oo geht die Exponentialfunktion stérker gegen
Unendlich als jede Potenz. Daher hat das Integral in (17) einen Grenzwert.
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Er kann gemiB

—1 o0
f :n : de — [xn—le—z S (—1)me—mz dx
et — =
3 § n=0 (18)
—Tm 3 () L = (1 — 2T § ——
m=1 mh m=1 M"

berechnet werden. Darin bedeutet I'(n) die Gamma-Funktion mit
I'(n) = (n — 1)! (19)
fir ganzzahlige Werte n. Ferner ist

x 1
tn) =3 — (20)
m=1 M
die Riemannsche Z-Funktion.
Im vorliegenden Fall mit n = 4 erhalten wir

T4) —31—6, (4)=-"
4)=3!=6, C()—%-
Somit folgt
o0
3 4 4
Pdz_ _ g _ (21)
et — 1 90 15

Da fiir groBe Werte z, der Betrag des Integrals von z, bis co wegen der kleinen Werte von f(z)
nur gering ist, kann man in erster Naherung in der oberen Grenze z, durch co ersetzen. Dabei
verschwindet der Summand

[2®In (1 — e®)]%.

Der entstehende Fehler

e—2xg
22 In (1 —e2) = —ua,® (e-’lu + 3 + )

kann fiir hinreichend groe Werte z; ebenfalls vernachlissigt werden.
Setzt man (21) in (16) ein, so erhédlt man fiir den zweiten Summanden in (13)

We fw
— 3 _— 4 3
F1=Mfwzln(1—e "T)dw=—%NAkT r 22)
0

PTp? T

Die Freie Energie des Festkorpers ist somit, abgesehen vom Beitrag der Elektronen, fiir niedrige
Temperaturen T' durch

NpkTp — % RT — (23)
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gegeben. In (23) wird Nk = R benutzt, wobei R die Gaskonstante bedeutet.
Aus (23) ergibt sich die Entropie

3
S=_(3F—) By 24)
1% 5

wahrend fiir die Innere Energie

U=F+ T8 = % RTp + n4RT* (25)

5Tp?

folgt. Hieraus erhdlt man die molare Warmekapazitdt der Phononen bei tiefen Temperaturen
TLTy

dUu  12r* _ T®
T ar - s Tp3

(26)

Fiir tiefe Temperaturen ist die molare Wirmekapazitit proportional der dritten Potenz der
absoluten Temperatur.
Mit den vorgegebenen Werten folgt fiir die molare Warmekapazitat des Diamanten bei 300 K

a 3
o 12n 1,086 300 keal kmol—! = 5,45 keal kmol—*
5 1320

= 22,8 kJ kmol—!.

2.2.4. ZustandsgroBen der Phononen bei hohen Temperaturen

Argon hat die DEBYE-Temperatur 7'p = 80 K. Berechnen Sie seine Innere Energie und seine
molare Wirmekapazitit bei Zimmertemperatur 7' = 300 K.

Losung:

Wir rechnen gendhert unter der Voraussetzung
Tp
—>1 1
7> 1)
und gehen dazu von der Formel (2.2.3/13) fiir die Freie Energie der Phononen aus:

on, [# [ | ho)
F = k3T;:3 (%fwf’ dw + Ir;Th"/.w2 In ll —e "T] dw) . (2)
0

0

Der erste Summand liefert die Nullpunktenergie gemifl (2.2.3./14) bzw. (2.2./25). Im zweiten
Summanden erhélt man durch die Transformation

hw hw T
v=r bzw. xgzﬁ—z—/l? (3)

7 Schilling, Festkorperphysik
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und durch partielle Integration analog (2.2.3./16)

ONJT ., [ LA
A h3fw21n[1—e "T]dw

5 . @
= NpkT [3111 (1 —e T) — D(—,_]?)]
Die Debye-Funktion nach (2.2.3./17) ‘
Tp
T
3 3
p (o) _ 3T LA, (5)
T TD3 e — 1
0
kann fir kleine Werte x durch Reihenentwicklung
z? x? ( x x?
_ (- e )
er —1 x 2 2 12
14+ =02 ...
+ 5 + 6 +
berechnet werden. Integration fiir kleine Werte der oberen Grenze Z,TE liefert
Tp 3Tp 1 Tp?
D[22} =1 22D, - 6
(T) 8 T + 20 17 + ©)
Fir die Freie Energie der Phononen folgt somit bei hohen Temperaturen
9 - T?D TD '
F=R|—Tp+3TIn\l —e —TD (=) ]. (7)
8 T
Hieraus ergibt sich fiir die Entropie
8= (25
oT |v
TD)
- 3 T T Tp\ T
= — _ T, -D -D) _ pr (£} 22
r|om T T () () T2]
el —1

Darin bedeutet D’ die Ableitung der DEBYE-Funktion nach dem Argument x,. Hierfir erhdlt man

auf Grund der Definition
X 2o

, _d _ 9 23 3
D(@g)— da, Diwg) = xgt f e — 1 dx+efe— 1
0
37T Ty 3
= —-—D|(= . 9
Tp (T)—*_.T_D @)

el —1
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Mit dieser Bedeutung fiir D’ folgt aus (8)

_I» r |
S:R[—3ln (l—e T)+4D (713)] (10)
Damit ergibt sich fiir die Innere Energie bei hohen Temperaturen
9 Tp 1 Tp?
U=R|-—-T 3D =2} =8R (T + — —=— F-.-}. 11
[5 7o vore ()] =sn (4 2575 %) h
Die molare Warmekapazitét bei hohen Temperaturen ist
auv 5\ Tp -, (Tp 1 Tp?
C=—=3R|D|=|—— D' |[—=)| =3R(|1 — — 12
ar 3 [ ( T) T (T 20 T2 + 12)

Durch das Hauptglied 3R wird das fiir hohe Temperaturen giiltige Dulong-Petitsche Gesetz
zum Ausdruck gebracht.

£

3R

) _
08 e ‘

’ v

a6}/ |

04 /

02 Bild 2.2.8. Molare Wirmekapazitét
» L  in Abhingigkeit von der Temperatur

0 02 04 06 08 10 12 14 T,

Bild 2.2.8 zeigt die molare Wirmekapazitidt der Phononen in Abhingigkeit von der Temperatur.
Mit den vorgegebenen Werten erhdlt man aus (11) fiir die gespeicherte Warmeenergie

1 802 -
U =3-1,986 - 300 (1 + 56 3008 — T ) keal kmol-1

= 1,749 . 10% kcal kmol-! = 7510 kJ kmol-1,
wihrend aus (12) fiir die molare Wirmekapazitét
180
20 3002
= 5,95 kcal kmol-1 K-1 = 24,86 kJ kmol-1 K1

C =3-1,986 <1 — + — ) kecal kmol-* K1

folgt.

2,2.5. Mittlere freie Weglinge der Phononen und Wirmeleitfihigkeit

Die Warmeleitung in einem Festkorper erfolgt im wesentlichen als Diffusionsproze8 durch
StoBe der Phononen. Diese kénnen wie Gasteilchen behandelt werden. Thre mittlere freie Weg-

7%



100 2. Mechanische und thermisc he Eigenschaften idealer Kristalle

linge A4 wird durch die Streuung an anderen Phononen und an Kristallfehlstellen verursacht
(vgl. 3.1.).

Leiten Sie nach diesem Modell eine Formel firr die Warmeleitfahigkeit des Festkorpers ab. Be-
stimmen Sie die mittlere freie Wegldnge der Phononen und die Zeit v zwischen zwei Sto8en bei
0°C. Dabei ist die Phasengeschwindigkeit gemifl (2.2./20) fir die Ausbreitung einer mechani-
schen Welle in der [1 0 0]-Richtung mit v3 = 3,2 km s! zugrunde zu legen. Die spezifische
Wirmekapazitit des Kupfers betrigt ¢ = 0,092 keal kg=* K- = 0,385 kJ kg~ K1, die Warme-
leitfahigkeit »” = 0,092 kcal m~! K-! s = 385 Wm= K-, die Dichte d = 8,9 g cm3.

Losung:

Wir betrachten einen langen Stab mit Temperaturgefille in der [1 0 0]-Richtung, d. h. in Rich-
tung der x-Achse. In einer Sekunde wird durch die Flacheneinheit die Warmemenge

47
Q= —x iz 1

transportiert.

Bezeichnet N die Anzahl der Kristallbausteine je Raumeinheit, so bewegen sich zu jedem Zeit-
punkt im Mittel % Teilchen mit einer Komponente in Richtung der positiven z-Achse. Sie be-
sitzen dabei im Mittel die Geschwindigkeitskomponente v, in Richtung der x-Achse. Der von

ihnen erzeugte Teilchenstrom in Richtung der z-Achse ist 227— v,. Br wird durch einen gleich

groBen Strom in der entgegengesetzten Richtung ausgeglichen.
Bei der Bewegung eines Phonons aus einem Gebiet mit der Temperatur 7' 4+ AT in ein Gebiet mit
der Temperatur 7' gibt dieses an die Umgebung die Wiarmeenergie

AQ = 1% AT (2)

ab. C bedeutet die molare Warmekapazitét, N, die Avocabprosche Konstante. Die Temperatur-
differenz AT zwischen dem Anfangs- und dem Endpunkt einer freien Weglénge betragt

AT = — a VapTo (3)

Durch die mit Komponenten in der positiven x-Achse bewegten Teilchen wird im Endeffekt in
Richtung des Temperaturgefilles die gleiche Warmemenge iibertragen wie durch die Teilchen
mit Komponenten in Richtung der negativen xz-Achse. Insgesamt ergibt sich der Energieflufl

¢ 4ar , ar
Q = vi AQ = —vizT N—A E = —’1)121'0 —@ ) (4)
wobei ¢’ die Warmekapazitit je Kubikmeter bedeutet.
Wir beriicksichtigen, dal bei Gleichwertigkeit aller Geschwindigkeitsrichtungen die Beziehung

.2

S
v2+ o2+ v2=0? dh o= 5

(5)
gilt. Ferner kénnen wir

VT = A (6)
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setzen. Damit folgt

Q=— — v —. @

¥ = % vghc’. (8)

Die Wiarmekapazitéit ¢’ je Kubikmeter hingt mit der Warmekapazitit ¢ je Kilogramm gemaf3-
¢ =dc 9)

zusammen. Wir 16sen (8) nach A auf und setzen die vorgegebenen Grofien ein. Damit folgt fiir die
mittlere freie Weglidnge der Phononen

3 30,092

_— m = 105 nm.
veed  3,2-10%-0,092 - 8,9 - 102

Fir die Zeit zwischen zwei Stofen ergibt sich

A 1,05 - 107

T=—=—"——"-—58=33 10115,
v 3,2 -10°
2.2.6. Wirmeausdehnung

Leiten Sie aus den Schwingungen des Kristallgitters den Warmeausdehnungskoeffizienten eines
festen Korpers ab und berechnen Sie diesen fiir Steinsalz NaCl. Der Exponent » des AbstoBungs-
potentials hat fiir NaCl den Wert 8,9.

Losung:

Die Warmeausdehnung 1a8t sich durch die anharmonischen Terme der Gitterenergie U = U(r)
erklaren. Nach (2.1.2./1) und (2.1.2./4) erhalten wir fir die Gitterenergie eines Ionenkristalles am
absoluten Nullpunkt, bezogen auf einen Schwingungsfreiheitsgrad eines der 2N, Ionen,

_L U sl wo "
3 2N, 24rey \ 7 ]
Wir entwickeln ¢ = ¢(r) in eine Reihe nach Potenzen der Auslenkung
B @

Nach Definition (2.1./5a) des Gleichgewichtsabstandes verschwindet fir » = r, die erste Ab-
leitung der Gitterenergie. Es ergibt sich somit die Reihe

2 — 2 3 — 3
) =etro + (5) TG+ (T) L ®)

die wir abgekiirzt

&(r) = &(ry) + &(x) (32)
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mib
e(x) = ax?® + ba® + --- (3b)

schreiben. Aus (1) erhalten wir

2 2,2
o= L(¥) _ o2 ), (4)
2 \dr?),,  48rgyryd
3 2,2
R () 7 A S S )
6 \dr3/,, 14dmeyryt

Der Kristall stellt ein System von Oszillatoren dar. Thre Auslenkungen z sind statistisch verteilt.
Fir die mittlere Auslenkung Z folgt nach der BorrzamaxN-Statistik

—+ o0
_@
fxe kT dg

T= - (6)

Wir kénnen mit kleinen Auslenkungen « rechnen, so dafl die Beitrage der Glieder von der dritten
Ordnung an klein gegen kT sind:

ba® L kT (M

Unter dieser Voraussetzung 148t sich die Berechnung der Integrale gendhert durch Reihenent-
wicklung vornehmen:

+00 +o0
b(z) az? (i
_8%) —_— b b T'\2
ze *T dp — e KT (x__k_T_ZAi...)dz=_-ﬁ——i—%. (8)
kT
—00 —00
“+ 00 +o00
_H@) _ .z V= Vil
fe kT dx:fe kT (1:|:...)dx=T» 9)
a
—00 —00

In (8) liefert der Summand mit dem Faktor = keinen Beitrag, da sich die Integrale von — oo bis 0
und von 0 bis 4+ oo gegenseitig auftheben. Die Gammafunktion hat den Wert

5 3 -
'=)=—1Vr. 10
(3)=%% (10)
Setzt man (8) und (9) zusammen mit (10) in (6) ein, so ergibt sich

- 3b
§=— kT (11)
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Unter Verwendung der Beziehungen (4) und (5) folgt fiir die relative Lingenausdehnung

% 2 —
z _ 12ngyrg(n® 4+ 3n — 4) BT (12)
7o oaZ%?(n — 1)2

Man erhilt somit den linearen Ausdehnungskoeffizienten

o — 1 Al d z _ 12rkeyry(n® + 3n —4) (13)
Trdar 4T r, aZ?e(n — 1)? ’

(12) und (13) gelten unter der Voraussetzung, daB die Freiheitsgrade der Oszillation vollstindig
eingeschwungen sind und daher die BoLtzmaNN-Statistik angewandt werden kann. Diese Voraus-
setzung ist fur Kristalle bei Zimmertemperatur im allgemeinen erfiillt, nicht jedoch in der Nahe
des absoluten Nullpunktes. (13) gibt daher den linearen Ausdehnungskoefflmenten nur bei hin-
reichend hohen Temperaturen richtig wieder.

Mit den vorgegebenen Werten nach Tab. 2.1.2 und Tab. 2.1.3 folgt

12 3,14.1,38-10-28.8,85- 10-12.2,82. 10-1(8,92 + 3.8,9 — 4) K1
1,75 - (1,60 - 10-2%)2 7,92

= 4,7 - 1075 K.

Der genaue MefSwert ist o’ = 4,0 - 10-5 KL

2.2.7. Griineisen-Beziehung

Untersuchen Sie die Abhingigkeit der DE#YE-Temperatur vom duBeren Druck fir Silber. Silber
hat die Dichte d = 10,5 g cm=3, die relative Atommasse 4, = 107,87, die spezifische Warme-
kapazitit ¢ = 0,0559 keal kg~ K1 = 0,234 kJ kg~ K-, den Lingenausdehnungskoeffizienten
o =1,9.10-3 K1 (vgl. Tab. 2.2.2).

Lisung:

Wir berechnen den Druck P gemif

oF
r=~(ar), @

Setzen wir F nach (2.2.4./7) ein und beriicksichtigen die Abhingigkeit der DEBYE-Temperatur
vom Molvolumen ¥, so folgt

p=—2p
8 " av  Tp

dTp _ 3RT , (Tp)\ dTp
T) av’

Dabei findet die Beziehung (2.2.4./9) Anwendung.
Der isobare Ausdehnungskoeffizient eines Stoffes ist durch

1 [y
— 3w =L (&V) | 3
v=3l= (aT)P @)

der isochore Druckkoeffizient § durch

1 (0P
=— (<) , (4
’ P(aT)V
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die isotherme Kompressibilitdt » durch

® = — L (o (5)
’ V \oP/r
definiert. Diese drei Grofen sind durch die thermodynamische Identitat
a_Pi _8_V g = —1 (6)
ovlr \oT)p \oPJy

miteinander verbunden, die aus der allgemeinen Verkniipfung
fP,V,T)=0

zwischen Druck, Volumen und Temperatur folgt. An Stelle von (6) kénnen wir auch schreiben

P\ _ _(oP\ (o7\ _ .
oTly avlr\eT)p  x°

Andererseits folgt aus (2) durch Differentiation
oP =__3_R_dTDD£IZ_D'b,‘ﬁZ' (8)
oT/y Tp dV T T) T

Aus dem Vergleich dieses Ausdrucks mit (2.2.4./12) erhélt man
opP = —C L 1@2, (9)

N aT |y Tp dV

wobei C die molare Warmekapazitdt angibt. Hieraus folgt durch Vergleich mit (7) die Griineisen-
Beziehung

4oy = L =21 (10)

Der Ausdruck

- %D _"*_.,, (10a)

wobei fiir V und C im allgemeinen die auf ein Kilomol bezogenen Grofen eingesetzt werden, ist
der Griineisen-Parameter (vgl. Tab. 2.2.4). Stellt man die DEBYE-Temperatur 7'y in Abhingig-
keit vom Druck P dar, so ergibt sich aus (10) unter Verwendung von (5) die GRUNEISEN-Beziehung
in der Form

(11)
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Das Molvolumen des Silbers errechnet sich aus seiner molaren Masse und aus seiner Dichte:

M 107,88
V== ’
d

= ——2—— m3 kmol! = 10,27 - 10~3 m3 kmol1.
10,5 - 103

Der Raumausdehnungskoeffizient « ist dreimal so grol wie der lineare «’. Die atomare Wirme-
kapazitdt folgt durch Multiplikation der spezifischen Warmekapazitat ¢ mit der molaren Masse.
Ferner ist die Umrechnung von keal in J zu beachten. Somit ergibt sich aus (11)

.103.3. . —5
A dTp 102710231, 1075 (0 ogo o nName
T, dP 107,88 - 0,234 - 10°

. 10-11
dTp _ 2,33-1077 239 K at~! = 0,543 - 10-3 K at~1
dpP 1,02 - 10-5

= 5,54 - 102 K bar1.

Ein duflerer Druck von 1 bar erhoht somit die DEByE-Temperatur 7'p um 0,554 - 10-2 K.

A

A22.1.

A22.2.

A223.

A224.

A225.

A22.6.

Aufgaben

Wie grof ist die Energie der Phononen im Frequenzbereich zwischen 4,0 MHz
und 4,1 MHz fiir einen Quarzkristall mit dem Volumen 1 em? (v3 = 6000 m s™) bei
300 K?

Auf Eis fallt Licht der Wellenlinge A = 455 nm. Unter dem Winkel 65° gegen den
einfallenden Strahl wird als Folge der BrILLOUIN-Streuung Licht beobachtet. Be-
rechnen Sie die Frequenz der hierdurch ausgeldsten mechanischen Schwingung.
Wie groB ist die relative Frequenzverschiebung der gestreuten Strahlung
(v = 3230 m s, n = 1,31)? ’
Berechnen Sie zur vorangegangenen Aufgabe den Pseudoimpuls des erzeugten
Phonons.

Die Messung des Streuspektrums bei der Streuung von Licht an Wasser ergibt
fir die Wellenldnge A = 632,8 nm zwei Nebenmaxima. Gegen das vom ungestreuten
Licht verursachte Hauptmaximum betrigt die Wellenzahlverschiebung in den
Nebenmaxima

=2 T igam
c

(oberes Vorzeichen fiir Phononenvernichtung, unteres fiir Phononenerzeugung).
Geben Sie die Frequenz der Phononen fir die Streumaxima an. Welcher Wert
ergibt sich fiir die Schallgeschwindigkeit, wenn die Streukurve fiir einen Ablenk-
winkel von 90° aufgenommen wurde? Die Brechzahl betragt » = 1,33.

Berechnen Sie aus den Schwingungen des Kristallgitters den thermischen Langen-
ausdehnungskoeffizienten der Zinkblende (Exponent n = 5,0, vgl. ferner Tab. 1.1.1
und Aufgabe A 1.1.16).

Bestimmen Sie fiir einen Ionenkristall die Unsicherheit bei der Bestimmung des
im AbstoBungspotential auftretenden Exponenten » aus dem Léngenausdehnungs-
koeffizienten «’.
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A227.

A 2.28.

A2.29.

A 2.2.10.
A 22.11.
A2212.

A22.13.
A22.14.
A22.15.
A2.2.16.
A 2.2.17.

A2.2.18.

A22.19.

A 2.2.20.

Berechnen "Sie die Zahl moglicher Longitudinalwellen des Frequenzbereiches
440..-445 Hz in einem Raum mit dem Volumen V = 10000 m? (¢ = 340 m s™1).
Bestimmen Sie fiir einen wiirfelformigen Hohlraum mit der Kantenlénge 3 - 10~ m
(Elementarlinge) bei einer Schwingung der Frequenz 3 - 10?2 Hz (oberste Grenze
zuldssiger Frequenz) die Ausdehnung des Frequenzintervalls mit genau einer
méglichen Schwingung (Phasengeschwindigkeit gleich Lichtgeschwindigkeit).

Wie gro8 ist die Nullpunktenergie des Kupfers (T, = 315 K)?

Welche Grenzfrequenz hat KBr (7', = 180 K)?

Welche molare Warmekapazitat hat KBr fur 77 = 900 K?

Wie gro8 sind die molare Wirmekapazitit und die spezifische Warmekapazitit
fir Aluminium bei 7' = 50 K (T'p = 400 K)? Die relative Atommasse des Alu-
minjums betrigt 4, = 26,98.

Berechnen Sie die Energie eines Schallquants der Frequenz 10 kHz.

Berechnen Sie die molare Wirmekapazitdit des Kupfers (T'p = 315 K) fir den
Siedepunkt des Heliums (7" = 4,2 K).

Untersuchen Sie die Abweichung der molaren Warmekapazitét des Bleis (7'p = 90K)
vom DuroNG-Prrrrschen Gesetz fiir den Schmelzpunkt 327°C.

Untersuchen Sie die Abhingigkeit der DEBYE-Temperatur vom Molvolumen fir
Wolfram (spezifische Warmekapazitit ¢ = 0,0338 kcal kg~ K1, relative Atom-
masse A, = 183,9, Lingenausdehnungskoeffizient «" = 0,45 -10-%, Elastizitdts-
koeffizient Cy; = 5,23 - 101* N m~2, O, = 2,045 - 10 N m~2, T, = 315 K).

Leiten Sie fiir hohe Temperaturen 7' > T'y, eine Formel fiir die Differenz C,, — C,
der molaren Warmekapazitat bei konstantem Druck und bei konstanter Temperatur
ab.

Berechnen Sie aus den Daten in Tab. 2,2.2 und 2.2.3 fiir Aluminium die mittlere
freie Weglinge der Phononen bei Zimmertemperatur (x” = 0,057 keal m~* K151,
vg = 5,1-103m s1).

Berechnen Sie den GRUNEISEN-Parameter y fir Aluminium aus den nach Tab. 2.2.2
und Tab. 2.2.3. gegebenen Materialgrofen (x = 9,64 - 10-12 m? N-1).

Geben Sie fiir Kupfer die Anderung seiner DEBYE-Temperatur an, wenn ein duBerer
Druck von 981 bar = 1000 at auf das Material wirkt (I'p = 315K, o’ = 16,7X
X108 K1, ¢ = 0,092 kcal kg~ K—* = 0,385 kJ kg1 K1, d = 8,9 g cm™3).



3 e Elektrische und optische Eigenschaften
idealer und realer Kristalle

3.1. Atomare Fehlstellen in realen Kristallen

E Einfiihrung

Fehlstellen in realen Kristallen

In den realen Kristallen treten stets Abweichungen von der idealen- periodischen
Gitterstruktur auf. Eigenschaften des Festkorpers, die auf Kristallfehler zuriick-
zufithren sind, heilen strukturunempfindlich. Sie werden quantitativ durch Zahl,
Anordnung und Art der Gitterfehlstellen bestimmt. Strukturempfindlich sind z. B.
die Tonen- und die Elektronenleitung in Isolatoren, Diffusion, Plastizitdt, Kristall-
festigkeit. v

Dagegen heiflen Eigenschaften, die.nur durch Gitterstruktur, nicht jedoch durch
die Gitterfehlstellen zu erkliren sind, strukturempfindlich. Zu diesen gehéren u. a.
die spezifische Warmekapazitit, die Elastizitdt und Kompressibilitdt, die Warme-
ausdehnung, die elektrische Leitung in Leitern durch Elektronen, Dia- und Para-
magnetismus, Dispersion. Die Unterscheidung der Festkorpereigenschaften in
strukturunempfindliche und strukturempfindliche geht auf SMERAL zuriick.

Lassen sich die Fehlstellen in einzelnen Punkten lokalisieren, so werden sie als ato-
mare Fehlstellen, Punktfehler bzw. Fehlstellen nullter Ordnung bezeichnet. Fehlord-
nungen, die iiber ganze Linien erstreckt auftreten, heilen lineare Fehlstellen bzw.
Fehlstellen erster Ordnung; flichenhaft vorhandene Fehlstellen sind Fehistellen
zweiter, rdumlich auftretende Kristallfehler Fehlstellen dritter Ordnung.

Atomare Fehlstellen konnen in Form von Fremdatomen, unbesetzten Plitzen oder
Zwischengitteranordnungen auftreten. Im folgenden werden zunéchst reine Kristalle
vorausgesetzt, so dal Fehlstellen als Folge von Verunreinigungen von der Betrach-
tung ausgeschlossen werden kdénnen.

Atomare Fehlstellen

Fir die elektrischen und optischen Eigenschaften realer Kristalle sowie fiir die
Diffusion sind besonders atomare Fehlstellen von Interesse. Auf diese werden die vor-
liegenden Betrachtungen beschrankt.
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Durch eine leere Gitterstelle und einen dafiir auf der Kristalloberfliche angeordneten
Kristallbaustein (vgl. Bild 3.1.1) wird das Kristallvolumen vergréBert und gleichzeitig
die Kristalldichte gegeniiber dem idealen Kristall verringert. Sie wird als Schottky-
Defekt bzw. ScHoTTRYsche Fehlordnung bezeichnet.

Zwischen den Gitterpunkten des Kristalls befinden sich in regelmiBiger Verteilung
Stellen, die als Fehlordnung ebenfalls besetzt werden kénnen. Sie werden als Zwi-
schengitterpliitze bezeichnet. Entsteht die atomare Fehlstelle durch das Auswandern

o /' o

o) O o O ®) O Bild 3.1.2. FrEnksL-Defekt

des Kristallbausteins auf einen Zwischengitterplatz, so heilt sie FRENKELsche
Fehlordnung oder Frenkel-Defekt (vgl. Bild 3.1.2). Durch FRENKEL-Defekte bleiben
das Volumen und damit die Dichte des Kristalls unverdndert. Die Zwischengitter-
bausteine bendtigen zwar im allgemeinen Platz; dafiir wird jedoch das Gitter um
einen kleinen Wert elastisch verformt, so daf die gesamte Volumenanderung ver-
nachlissigt werden kann.

Im realen Kristall treten beide Arten von Fehlstellen nebeneinander auf. Bei den
meisten Kristallen iiberwiegen ScHOTTKY-Defekte. Ein stéirkeres Auftreten von
FrENKEL-Defekten zeigen die Silberhalogenide AgCl und AgBr.

Die Fehlstellen eines Festkorpers haben infolge der Warmebewegung die Tendenz
zur gleichméBigen Verteilung iiber den gesamten Festkorper. Diese Eigenschaft gilt
sowohl fiir die Fehlstellen als auch fiir Fremdstoffe. Sie tritt mefBbar als Diffu-
sion in Erscheinung.
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Der durch Diffusion ausgeloste Teilchenstrom Jy ist dem Konzentrationsgefille
proportional. Er wird durch das I. Ficksche Gesetz

Jy = —Dgrad N (1)

bestimmt. N = N(z, y, z) bezeichnet die Konzentration der Teilchen, d. h. ihre An-
zahl, bezogen auf einen Kubikmeter. Die Gréfle D heifit der Diffusionskoeffizient
(vgl. [3] 3.4.5.).

Der Diffusionskoeffizient D wéchst mit zunehmender Temperatur nach einem Ex-

ponentialgesetz:
EA

D =Dye *T. (2)

es kennzeichnet die Aktivierungsenergie des Diffusionsprozesses. Sie geht auf die
Anziehungs- und AbstoBungskrafte durch benachbarte Teilchen zuriick. Beim Ver-
lassen eines Gitterplatzes mufl der Kristallbaustein gegen diese Krifte eine Energie-
schwelle iiberwinden. Das Wandern durch den Kristall ist ebenfalls mit einem
Energieaustausch verbunden. Daher konnen nur Teilchen, die eine ausreichende
Energie

> ¢ A

besitzen, diffundieren.
Nach dem GisBsschen Verteilungsgesetz (vgl. [3] 2.1.) ist der Anteil dieser Teilchen

% =e T, 3)

Die Kristallbausteine fithren im Gitter Schwingungen aus. Bei jeder Auslenkung
besteht entsprechend den statistischen GesetzméiBigkeiten eine bestimmte Wahr-
scheinlichkeit, daB das betrachtete Teilchen den Potentialwall iiberwindet und den
Gitterplatz verlat. Das 148t sich auch so auffassen, daB jedes Teilchen y-mal in einer
Sekunde gegen den Potentialwall st68t. Bei jedem StoB ist die Wahrscheinlichkeit,
daf die Potentialschwelle iiberwunden wird, durch (3) gegeben. Fiir die mittlere
Anzahl der Platzwechsel eines Teilchens in einer Sekunde folgt daraus

o =ve KT, (4)

v wird als Sprungfrequenz bezeichnet. Da nicht jede Auslenkung bis an die Potential-
schwelle fiihrt, ist die Sprungfrequenz » kleiner als die Schwingungsfrequenz der
Kristallbausteine. '

P Probleme

3.1.1. Schottky-Defekt

Berechnen Sie den Anteil ScHOTTKYscher Fehlstellen im Gleichgewicht bei 7' = 500 K fiir den
Kupferkristall und fiir den Steinsalzkristall. Die Aktivierungsenergie zur Bildung einer Gitter-
liicke im Kupferkristall betragt ¢, = 0,90 eV. Bei einem Ionenkristall treten wegen der elektri-
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schen Neutralitit im allgemeinen Fehlstellen paarweise auf. Fiir Steinsalz NaCl ist zur Erzeugung
eines Fehlstellenpaares die Energie ¢ = 2,06 eV aufzubringen.

Losung:

Wir bestimmen zun#chst fiir einen monoatomaren Kristall das statistische Gewicht W einer
ScrOTTEYSchen Fehlstellenverteilung. Die Anzahl der Moglichkeiten, von N Bausteinen des
Kristalls nacheinander » zu entnehmen, betrégt

NN —1)... (N —n -+ 1).

Dabei hat man jedoch zu beriicksichtigen, dafl die Bausteine nicht voneinander unterschieden
werden kénnen, d. h., es ist ohne Bedeutung, in welcher Reihenfolge die einzelnen Bausteine
entnommen werden. Hierdurch .verringert sich die Zahl der méglichen Anordnungen von Fehl-
stellen im Kristall. Man kann die » Entnahmevorgéinge

1,2,...,n

nach n! Méglichkeiten untereinander vertauschen, ohne dafl ein neuer Zustand entsteht. Die An-

zahl der Moglichkeiten, n Fehlstellen in einem Kristall mit IV gleichen Teilchen anzuordnen, ist

somit gleich - :
W_N(N—l)...(N—n—l-l)_ N!

- n! - (N — n)!n! :

1)

Fur die Entropiezunahme infolge der Schaffung von Fehlstellen folgt daraus

N!

S=klnW=Fkln ———.
(N — n)! n!

@)

Dabei wird n <€ N vorausgesetzt und daher die Entropie der » zur Kristalloberflache gebrachten
Bausteine vernachléssigt. Wir kénnen

N>1, »>1
annehmen und die STIRLINGsche Naherung

Inz! =2Inz— 2 3)
anwenden. Damit ergibt sich aus (2)

S=FkNInN — (N —n)In(N — n) — ninn]. (4)

Es sei ¢ die aufzuwendende Energie, um einen Gitterbaustein von seinem Platz im Kristallverband
zu entfernen und zur Kristalloberfldche zu bringen. Die Energie, um n Teilchen aus dem Kristall
zu entfernen, betrigt

U = ne. (5)

Sie ist im Kristall als Beitrag der Fehlstellen zur Inneren Energie gespeichert. ¢ bzw. U werden
als Aktivierungsenergie bezeichnet.
Fiir die Freie Energie der Fehlstellen erhélt man aus (4) und (5)

F=U—T8S=n—kI[NInN — (N —2)In(N —2) —nlnn]. (6)
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Der Kristall stellt ein thermodynamisches System mit konstantem Volumen dar. Auch die
Temperatur kann als konstant angesehen werden. Ein thermodynamisches System mit konstan-
tem Volumen und konstanter Temperatur veréndert sich solange, bis die Freie Energie ein Mini-
mum angenommen hat. Der Gleichgewichtszustand ist durch

(%)f 0 0
bestimmt. Wir setzen hierin den Ausdruck nach (6) ein und erhalten

e—kIMIn (N —n) —Inn] =0 (8)
bzw.

e=trm Y " ©)

Beriicksichtigt man hierin n <€ NV, so kann N — n durch IV ersetzt werden. Durch Auflésen nach n
folgt damit fiir die Zahl der ScroTTEY-Defekte eines Kristalls

. ‘ n=Ne T | (10)

Die Fehlstellen im Gitter eines reinen Metalls sind voneinander unabhéngig. Wir setzen fiir die
Fehlstellen des monoatomaren Kristalls

&= g&.
Damit erhalten wir fiir den Anteil der Fehlstellen
€s-

L 1
¥ =° . (11)

Wir betrachten den Ionenkristall. Es bezeichne » die Anzahl der Fehlstellenpaare, N die Anzahl
der Ionenpaare, &, die Energie zur Schaffung eines ScmorTEYschen Fehlstellenpaares. Das
statistische Gewicht einer Verteilung von 2n Fehlstellen auf den Kristall ist gleich

N
W= |—"—|. 12
[(N —n)! n!] (12)
Dementsprechend folgt an Stelle von (2)
N!
S=2kln ——, 13
nv(N —n)!n! (13)

wihrend (5) unveriandert bleibt. Fiir den Anteil der Fehlstellen erhilt man an Stelle von Gleichung
(11)

% —e T, (14)
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Mit den vorgegebenen Werten folgt fiir die relative Anzahl der ScEHOTTEYschen Defekte im
Kupferkristall nach (11)

n 0,90 - 1,60 - 10-1°

_ _ D00 10 ) o208 — g6 . 10710,
NP ( 1,38 - 10-3. 500) ¢
Der Anteil ScHoTTK Yscher Fehlstellen im Steinsalzgitter ist nach (14) gleich

2,06 - 1,60 - 10-1°
2-1,38-10-% . 500

2 —exp ( ) = e85 —(,42 . 10-19,
N

3.1.2. Frenkel-Defekt

Berechnen Sie den Anteil der FRENKEL-Defekte fiir die Silberionen des Silberchlorids bei Zimmer-
temperatur 7' = 300 K. Die Energie zur Bildung einer FrRENKELschen Fehlstelle betréagt fir die
Silberatome in AgCl ep = 1,1 V.

Losung:

Das Kristallgitter der Silberionen enthalte N Gitterpunkte als normale Plitze. Aulerdem seien
N’ Zwischengitterplidtze vorhanden. Die Anzahl N’ der Zwischengitterpldtze hingt von der
Kristallstruktur ab. AgCl hat Steinsalzstruktur (vgl. 1.1.1. und Bild 1.1.5). Die Gesamtheit der
positiven und negativen Ionen bilden ein einfaches kubisches Gitter, in dem sich Kationen und

® ®
® ®
® ®
® ®
® Kation
® Zwischengitterplatz Bild 3.1.3. Anordnung der Zwischen-
@® Anion gitterplitze im Silberchlorid-Kristall

Anionen abwechseln. Zerlegt man den Elementarwiirfel mit der Kantenlénge a (¢ Gitterkonstante)
in acht kleine Wiirfel, deren Ecken durch die Ionen bestimmt sind (vgl. Bild 3.1.3), so befinden
sich die Zwischengitterplatze in der Mitte der kleinen Wiirfel. Auf jeden Elementarwiirfel mit der
Kantenlinge a entfallen somit acht Zwischengitterpldtze, wihrend nach 1.1.1. fir jede Ionenart
je Elementarwiirfel nur vier Gitterpldtze vorhanden sind.

Die groflen Anionen (vgl. Tab. 3.1.5) nehmen an der Auswanderung auf Zwischengitterpldatze
nicht teil. Jeder der acht Zwischengitterplitze eines Elementarwiirfels kann daher von den
kleineren Kationen eingenommen werden. Bezeichnet somit N die Anzahl der Gitterplidtze, so
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ist die Anzahl der Zwischengitterpldtze
N’ =2N. )

Die statistischen Gewichte fiir die Verteilung von » Fehlstellen auf IV Gitterpunkte und von n fehl-
geordneten Bausteinen auf N’ Zwischengitterplitze sind durch (3.1.1./1) bestimmt. Das sta-
tistische Gewicht der Verteilung von »n Fehlstellen auf N Gitterplitze mit N’ Zwischengitter-
platzen folgt als Produkt aus beiden GroBen:

N N1
Wz(N—n)!'n,! (' —n)tn! @

Analog (3.1.1./4) bis (3.1.1./6) ergeben sich Entropie, Innere Energie und Freie Energie. Die
Gleichgewichtsbedingung (3.1.1./7) fithrt auf

e=¢ep =kT (InN_—n+lnN —n) =len(N_'n')(N —-n).
n n

3)

n2

Hierin kann man n <€ N, n <€ N’ beriicksichtigen und N — » durch N, N’ — n durch N’ er-
setzen. Damit ergibt sich aus (3) durch Auflésen nach »

&

F
n=)JNN e 2kT 4)

als Anzahl FRENEELscher Fehlordnungen der Metallionen.
Setzen wir hierin (1) ein, so erhalten wir als Anteil der unbesetzten Gitterstellen

eF

%:ﬁe—ﬁ?. ()

Mit den vorgegebenen Werten folgt

n ( 1,1-1,6-102°

— =14 exp =8.10710,
N 2.1,38-10-%.300

Bei den Silberhalogeniden tritt der FRENREL-Defekt in weit stirkerem MaBe als der ScHOTTKY-
Defekt auf, so daf hier experimentelle Messungen moglich sind.

3.1.3. Diffusion

Untersucht wird das Diffundieren von Kohlenstoff in «-Eisen bei verdnderlicher Temperatur.
Far 100°C wird D = 4,3 - 10~8 m? 51, fiar 500°C dagegen D = 3,6 - 10722 m2 s~! gemessen. Die
Gitterkonstante des «-Eisens betrigt o = 0,286 nm. Berechnen Sie aus diesen Angaben die
Sprungfrequenz » der Kohlenstoffteilchen in Eisen und geben Sie die Aktivierungsenergie 4 an.

Losung:

Wir gehen von einer Fremdstoffverteilung im Kristall aus, bei der die Ebenen gleicher Kon-
zentration der Fremdteilchen mit den Gitterebenen iibereinstimmen. Hierdurch erfolgt keine
Einschrankung der Allgemeinheit, da der Diffusionskoeffizient eine Stoffkonstante ist, die nicht

8 Schilling, Festkorperphysik
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von speziellen Konzentrationsverteilungen abhéngt. Der Abstand zweier Ebenen kann gleich der
Gitterkonstanten a gesetzt werden.

Es bezeichne N die Konzentration der Fremdteilchen, d. h. im vorliegenden Fall die Anzahl der
Kohlenstoffatome, bezogen auf einen Kubikmeter.

Wir betrachten zwei parallele Ebenen von Zwischengitterpldtzen. Die Richtung der Normalen auf
beiden Ebenen wihlen wir als 2-Achse. Beiz = z, befinde sich die erste Zwischengitterschicht,
bei x = x, 4+ a die zweite. Fir die mittlere Zahl der Fremdatome je m? auf der Zwischengitter-
schicht bei x = x, ergibt sich

S(xg) =8 =aN. 1

Die Konzentration der Fremdatome ist rdumlich verdnderlich. Fiir die Schicht in der Ebene
x = %, + a erhdlt man

S(xo+a)=S+a(-§) =aN+a2(—a£) . (2)
ox [z, ox [z,

Bezeichnet man mit » die mittlere Anzahl der Platzwechselvorgiange eines Teilchens je Sekunde,
so folgt fir den resultierenden Teilchenstrom von der Schicht héherer zur Schicht niedriger
Konzentration y

Iy = —o[8(x + a) — S(x)] = —ea? <3N) . 3)

oz
Jy wird positiv gezéhlt, wenn der Strom in Richtung der z-Achse flieit, negativ bei entgegen-
gesetzter Richtung. Die GroBe g ist durch (3.1./4) gegeben. Setzen wir diese in (3) ein, so ergibt
sich

€a

Jy= —vate FT (ﬂ) . (4)
ox | 4,

Verallgemeinert auf beliebige Verteilungen, gilt

ca

Jy = —vate *T grad N, (5)

wobei das negative Vorzeichen allgemein auf die Stromrichtung entgegen der Richtung des
Gradienten der Konzentration hinweist.
Durch Vergleich mit (3.1./1) erhédlt man das Diffusionsgesetz in der Form (3.1./2)

£a

D =Dye *T (6)
mit

D, = va?. (7

Zur Auswertung der vorgegebenen MeBwerte logarithmieren wir (6) und erhalten

lnD=lnDo—Z—2,. ®)
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Wird also In D in Abhéngigkeit von % aufgetragen, so erhilt man eine Gerade (vgl. Bild 3.1.4).

Wie man aus dieser entnimmt, ist fiir die betrachtete Diffusion

Dy =2,0-10°¢m2s1, g =0,87eV.

19"
0 102 %
~
€ ;5 //
S peu A
Q 105 /

10"
w22
10" Jd

10"

100 200 300 400 500 600
Temperatur in °C

Bild 3.1.4. Diffusionskoeffizient D fiir das Diffundieren von Kohlenstoff
in «-Eisen in Abhéngigkeit von der Temperatur

Mit ¢ = 0,286 nm folgt aus (7) fir die Sprungfrequenz

. 10-6
yo Do 2010 L
a* (0,286 - 10-9)z

“3.1.4. Einstein-Beziehung — Ionenleitfihigkeit des Silberbromids

Die Leitfiahigkeit o des Silberbromids AgBr beruht auf der Ionenleitung, d. h. der Ionendiffusion
unter dem EinfluB8 eines von auflen angelegten elektrischen Feldes. Bei der Messung zur Ab-
hangigkeit der Ionenleitung von der Temperatur 7' ergibt sich ein linearer Zusammenhang

zwischen In o und i Far 200°C wird ¢ = 6,2+ 10~2Q1m?, fiar 300°C ¢ = 2,1 Q1 m~? ge-
messen. T

Leiten Sie die Konstanten fiir die Temperaturabhingigkeit der Leitfahigkeit ab. Welche Energie
ist fir den Platzwechsel eines Tons erforderlich?

Losung:

Zur Leitfahigkeit eines Mediums tragen die beweglichen Ionen und Elektronen bei. Beim Silber-
bromid sind bewegliche Elektronen, die zur Leitfahigkeit einen mefbaren Wert beisteuern, nicht
vorhanden. Die Bromidionen nehmen wegen ihrer Grofle (vgl. Tab. 3.1.5) am Ladungstransport
nicht teil. Eine Stromleitung erfolgt daher nur durch die nach (3.1./3) beweglichen Silberionen.
Wir schreiben fir die Leitfahigkeit

o =bANg. : (1)

8%
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AN bezeichnet die Konzentration der wandernden Ladungstréager, d. h. der beweglichen Silber-
ionen, ¢ gibt ihre Ladung an. Im vorliegenden Fall ist ¢ = ¢, wobei e die Elementarladung be-
deutet. Der Proportionalitdtsfaktor b ist eine temperaturabhingige Materialgrofe und heifit
Beweglichkeit (vgl. 3.3.). Die Beweglichkeit b der Ladungstréger ist durch die Beziehung

v =0bE (2)
definiert, wobei v die Driftgeschwindigkeit der Ladungstriger unter dem EinfluB des duBeren
elektrischen Feldes E kennzeichnet.

In die Richtung des elektrischen Feldes E legen wir die x-Achse. Das a,ngeiegte elektrische Feld
E ruft einen Ionenstrom der Stromdichte

j=o0E =bANqE (3)

hervor. Hierdurch entsteht eine ungleichniéiﬁige Verteilung der elektrischen Ladungen. Sie fithrt
zu einem dem Strom (3) entgegengerichteten Diffusionsstrom der Dichte

) d AN
jp=—D 3 T (4)
x

Das statistische Gleichgewicht ist hergestellt, wenn kein Transport von Ladungstrigern mehr
festzustellen ist, also

j+ip=0 (5)

gilt. Setzt man (3) und (4) in (5) ein, so ergibt sich die Differentialgleichung

gbE AN(z) — Dg E% —o. 6)
x
Thre Losung lautet
2B
AN(z) =ANge D . ) -

Andererseits kann die sich herausbildende Verteilung N = N(x) aus den Gesetzen der Statisti-
schen Physik abgeleitet werden.

Befinden sich Ionen mit der elektrischen Ladung ¢ in einem konstanten elektrischen Feld £ = E,,
so'ist fiir eine Auslenkung um die Strecke « die Energie

&= —qEx (8)

aufzuwenden. Eine Verschiebung in Richtung der z-Achse ist mit einem Energiezuwachs, eine
Verschiebung in Richtung der negativen z-Achse, also dem elektrischen Feld entgegen, mit einer
Energieaufwendung verbunden. Nach dem GiBssschen Gesetz folgt fiir die Konzentration der
Ladungstriger im Gleichgewicht ein Verteilungsgesetz der Form

9Bz
AN(x) = ANye ®T | 9)

Der Vergleich der Formeln (7) und (9) erméglicht, die Leitfahigkeit infolge des Tonentransportes
auf die Gesetze der Diffusion zuriickzufithren bzw. die Beweglichkeit b der Ladungstriger durch
den Diffusionskoeffizienten D auszudriicken. .
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Aus dem Vergleich der Exponenten in (7) und in (9) folgt die

4D

EiINsTEIN-Bezieh b=
TE eziehung T

als Zusammenhang zwischen der Beweglichkeit der Ionen und dem Diffusionskoeffizienten.
Setzt man (10) in (1) ein, so ergibt sich fir die Leitfahigkeit

ANg2D
7

Der Diffusionskoeffizient héangt nach (3.1.3./6) von der Temperatur in der Form

€

A

D =Dye *T
ab.
Wir setzen (12) in (11) ein und erhalten damit fir die Ionenleitfdhigkeit

fa

Ng2D, e_ ﬁ'
kT

Hierin kann die Temperaturabhéngigkeit des Faktors

Ng*D
%=

gegen die der Exponentialfunktion vernachlassigt werden. Wir schreiben daher

fa

*T

o = 0oye

und behandeln ¢, wie eine Konstante.
Kennt man zwei Wertepaare o,, T'; und o,, T, so bestehen die Beziehungen

ta

o, =adpe FT1,

fa

0y =0, KT,

Hieraus folgt fiir die unbekannten GréBen ¢, und oy

&y = LAY In -2 y
T,— T, O
lgo, = Tulgoy —Thlgoy 5 0o in Q1m-1.

T, — T,

(10)

(11)

(12)

(13)

(14)

(15)

(16)

17

(18)

(19)
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Mit den vorliegenden Werten erhalten wir aus (18) und (19)

1,38 -10-2% . 473 - 573 1 1 2,1

— V — 0,826V,
A 1,6-10°-100 0,434 20,062 €
o, — STlE2L — 413 1g 0062
100
3.1.5. Farbzentren

Wird ein Alkalihalogenidkristall in der Dampfatmosphére seines eigenen Alkalis erhitzt, so
entsteht eine charakteristische Verfarbung. Sie ist im wesentlichen vom Kation abhéngig, gering-
fugig von der Temperatur. Das Absorptionsband, das der entstandenen Verfirbung im durch-
gehenden Licht entspricht, wird nach Porr F-Bande genannt. Die eine Farbung verursachenden
Storstellen im Kristall heilen F-Zentren. Das Verfahren wird als additive Verfarbung bezeichnet.
Bei der Bildung eines F-Zentrums setzt sich ein Kation in eine Kationenliicke, wéhrend die An-
ionenliicke von einem Elektron umkreist wird. Das Elektron ist nicht genau lokalisierbar. Seine
Aufenthaltswahrscheinlichkeit entfillt zum groften Teil auf die Anionen-Fehlstelle, zum ge-
ringeren Teil auf die ihr benachbarten sechs Kationen.

2
5

c & - @ e - © S| 222ev
5
s

{ i o i (] . 3 |KCl
&
g F

e & ++ o - o - O 2eV

Wellenlinge
[ ) e ® . [ ] . ® . Photonenenergie
T

a) b)
Bild 3.1.5. Struktur eines F-Zentrums in KCI.
a) Atomare Struktur, b) Absorptionsbande

Bild 3.1.5 zeigt die F-Bande in KCl und ihre Struktur. Zur Erzeugung von F-Zentren werde ein
KCl-Kristall auf 760°C A 1033 K erhitzt und dabei von Kaliumdampf unter Atmosphirendruck
umgeben. Die angegebene Temperatur liegt iiber dem Siedepunkt des Kaliums (753°C), jedoch
unter dem Schmelzpunkt des Kaliumchlorids (772°C). Berechnen Sie den Anteil der erzeugten
F-Zentren. Die Bildungsenergie bei der Erzeugung eines F-Zentrums betragt fiir KCleg = 0,10 eV.
Kalium hat die relative Atommasse 4, = 39,1.

Losung:
Zwischen den F-Zentren und dem Kaliumdampf bildet sich ein thermodynamisches Gleichgewicht
aus. Die Gleichgewichtskonstante kann aus den Chemischen Potentialen beider Komponenten
berechnet werden. Das Chemisehes Potential ist nach [3] 3.3. gema8
( oG ) G U+ PV —TS
Hc =

7 ek W

rp N N
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als Freie Enthalpie je Teilchen definiert. Darin bezeichnet U die Innere Energie, P den Druck,
S die Entropie des Metalldampfes. Bei Kenntnis der Freien Energie F erhilt man uc auch aus

oF
= (= . 2
e (aN ) TV @
Fur das einatomige Gas ist nach [3] 2.3.1.
. 3
F = —NkT + NkT lnl——k—, (3)

V (2nmkT)2

wobei b = 6,63 - 10~3* J s das PrancEsche Wirkungsquantum, m die Teilchenmasse und N die
Anzahl der Teilchen je Kubikmeter angeben. Im folgenden unterscheiden wir zwischen der
Konzentration N, der Elektronen und der Konzentration Ny der Metallatome.

Setzt man (3) in (2) ein, so ergibt sich als Chemisches Potential uy; des Metalldampfes

kT In N B2\ 4
iy = n M(m) : (4)

Die Berechnung des Chemischen Potentials der F-Zentren erfolgt nach den statistischen Ver-
teilungsgesetzen fiir Elektronen, d. h. nach der FErMI-DIrac-Statistik (vgl. 3.3 sowie [3] 4.1.2.).
Wir benutzen dabei die Beziehungen

F=U-—TS§ )
und
S=klnW, (6)

wobei W das statistische Gewicht der Elektronenverteilung auf die Fehlstellen angibt. Bei der
FrrMmi-Dirac-Verteilung ist jede Zelle (hier Fehlstelle) entweder mit einem Teilchen besetzt oder
leer. Verteilungen, die sich nur durch die Belegung mit zwei verschiedenen Elektronen I oder 2
unterscheiden, zihlen als ein Zustand, da gleichartige Elementarteilchen prinzipiell nicht unter-
scheidbar sind. Liegen n Fehlstellen vor, auf die N, Elektronen zu verteilen sind, so ist die Anzahl
moglicher Verteilungen, das statistische Gewicht der Verteilung (vgl. Bild 3.1.6),

n!

W= —"
No! (n — Ng)!

)

Unter Verwendung der STirLINGschen Niherung In N! = N In N — N folgt hieraus

aan:m n — N,

, 8
oN, N, 8)

wofiir man im Falle geringer Elektronenkonzentration N < n schreiben kann

(a In W) —ln )
aNe Nekn Ne 4

Wir beriicksichtigen in (5), daB sich die Innere Energie

U= NeeB (10)
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aus den mittleren Beitrigen ep der einzelnen F-Zentren summiert. Damit ergibt sich durch Ein-
setzen von (5), (6) und (9) in (3) fiir das Chemische Potential der F-Zentren

pp = o5 + BT'In e (11)
) n

Aus der Gleichgewichtsbedingung

10

UF = piy (12)

VOO0

> OO0

: O O&®O unbesetzte

‘ ® O O O ® O Zustinde

5 OO0 & née

s ORRO®O N,=2.n=5

F 0®008® .o,
OO ®® O 21(5-2)!
OCOR®OR
OO0

M T mrm ¥

Bild 3.1.6. Das statistische Gewicht W der Verteilung von N, = 2 Elektronen
auf n = 5 Gitterfehlstellen nach der FErmi-Dirac-Statistik

erhalten wir schlieBlich fir die Gleichgewichtskonzentration der Farbzentren

£B
3 —_——
N e _ N Mh e kT (13)
n (2remkT)3/2
Die Konzentration der Metallionen kann durch Druck und Temperatur ausgedriickt werden:
PV, °
Ny = kT°, Vo= 1m?3. (14)

Dabei hat man die Umrechnung 1 atm = 1,01 - 10° N m~2 zu beriicksichtigen.
Bei schwacher Konzentration der Elektronen N, << n ergibt die Berechnung des Chemischen
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Potentials der Elektronen nach der BoLtzMaNN-Statistik das gleiche Ergebnis wie nach der FERMI-
Drrac-Statistik.

Mit den vorgegebenen Werten folgt als Verhiltnis zwischen der Farbzentren- und der Fehl-
stellenkonzentration

Ne

_ 1,01 - 105 (6,63 - 10-34)2 . 6,02 - 10% " 0,10-1,6‘10—19‘)
n  1,38-10-23.1033

2.3,14-39,1-1,38-10-2 . 1033 N 1,38 -10-22-.1033

=1,5-10"°.

A

A3.1.1.
A3.1.2.

A3.1.3.

A3.1.4.

A3.1.5.

A3.1.6.

A3.1.7.

A3.18.

A 3.1.9.

A 3.1.10.

Aufgaben

Wie grof ist der Anteil ScEOTTKYscher Fehlstellen in Gold bei 300 K (eg = 0,67 eV)?
Auf welchen Wert steigt in der vorangegangenen Aufgabe der Anteil ScHOTTEY-
scher Fehlstellen, wenn die Temperatur auf 600 K erhoht wird?

Fur die Aufbereitung zur Informationsspeicherung werden in einem KCl-Kristall
bei-hoher Temperatur Fehlstellen erzeugt. Danach wird der Kristall auf eine sehr
tiefe Temperatur abgeschreckt. Dabei bleiben die-Fehlstellen erhalten; sie sind bei
sehr tiefen Temperaturen allgemein sehr lange bestdndig. Die Speicherzelle habe
das Volumen ¥ = 1 m®. Berechnen Sie die Zahl der darin enthaltenen Fehlstellen
fir T = 1000 K. Fur die Gitterkonstante ist ax, = 0,629 nm zu setzen. Die
Aktivierungsenergie betragt 2,01 eV.

Wie grof} ist in der vorangegangenen Aufgabe die Anzahl der Fehlstellen, wenn
man bis unmittelbar zur Grenze des Schmelzpunktes 7' = 1045 K erwiarmt?

In einem kubisch-flichenzentrierten Gitter befinden sich die Zwischengitterplatze
auf den Kantenmittelpunkten und in der Mitte des Elementarwiirfels. Wieviel
Zwischengitterplatze entfallen auf den Elementarwiirfel? Vergleichen Sie die Anzahl
N’ der Zwischengitterpldtze mit der Anzahl N der Gitterpunkte.

Beim kubisch-raumzentrierten Gitter sind die Zwischengitterplitze in der Mitte
der Flachen und Kanten angeordnet. Berechnen Sie die Anzahl der Zwischengitter-
plitze.

Bestimmen Sie den Anteil der FrRENKEL-Defekte in Silberbromid (g = 1,1 V) fiir
T =250 K.

Kaliumchlorid wird auf 1045 K, Silberbromid auf 600 K erwarmt. Nach Einstellung
des thermodynamischen Gleichgewichts werden beide Stoffe auf tiefe Temperaturen
abgeschreckt, so dafl die Kristallfehler iiber einen langen Zeitraum erhalten bleiben.
Geben Sie fiir beide Stoffe die relative Abweichung ihrer Dichte gegeniiber nor-
malen Stoffen gleicher Temperatur an, wenn jeweils nur der am stérksten auf-
tretende Defekt beriicksichtigt wird.

Der Koeffizient der Selbstdiffusion von Natriumionen in Natriumchlorid (Diffusion
von Gitterfehlstellen) ist oberhalb 500°C nahezu unabhingig von Verunreinigungen
des Kristalls. Man kann daher fir hohe Temperaturen das allein auf Sprung-
frequenz und Aktivierungsenergie begriindete Modell fiir die Diffusion anwenden.
Zur Messung des Koeffizienten der Selbstdiffusion werden radioaktive Natrium-
ionen in den Kristall eingebaut. Dabei ergibt sich fiir 600°C D = 1,7 - 10~ m2 572,
fiir 700°C D = 2,010 m?s~1. Stellen Sie das Gesetz iber die Temperatur-
abhéngigkeit der Selbstdiffusion auf und berechnen Sie die Konstanten.
Berechnen Sie die Sprungfrequenz fiir die Diffusion von Natriumionen in Natrium-
chlorid entsprechend den Ergebnissen der vorangegangenen Aufgabe. Die Gitter-
konstante des Natriumchlorids betragt « = 0,564 nm.
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A3.1.11.

A3.1.12.

A 3.1.13.

K

Fir den Koeffizienten der Selbstdiffusion von Natriumionen in Natriumchlorid
wird bei 400°C, also in einem Bereich, in dem Verunreinigungen die MeBwerte be-
einflussen, D = 3,2 - 1071 m? s~ gemessen. Vergleichen Sie diesen Wert mit dem,
der sich nach dem in Aufgabe A 3.1.9 aufgestellten Diffusionsgesetz ergibt, und
stellen Sie die Abweichung fest.

Geben Sie die Beweglichkeit der Natriumionen in Natriumchlorid fir 700°C an
(D =2,0-10"13m?s1).

Zur Messung der Bildungsenergie cg bei der additiven Verfirbung von Kalium-
jodid wird die Absorption in der F-Bande bei verschiedenen Temperaturen ge-
messen. Die Absorptionskonstante ist der Konzentration der Farbzentren gendhert
proportional. Bei der Erhéhung der Temperatur von 570°C auf 620°C wird eine
Vergroflerung der Absorptionskonstanten um 3,99, festgestellt. Die Anzahl der
ScroTTKY-Defekte kann fir beide Temperaturen wihrend der Untersuchung als
konstant angesehen werden, da sich das Gleichgewicht der F-Zentren schneller als
das Gleichgewicht der ScHOTTEY-Defekte einstellt. Berechnen Sie aus den gemesse-
nen Daten die Bildungsenergie eg.

Dielektrische und optische Eigenschaften

Finfiihrung

Polarisation der Materie

Die Polarisation P eines Stoffes wird durch die Verschiebung

Ar:ui—%—vj—}—wfc

seiner Bausteine aus ihrer Normallage verursacht. Sie setzt sich aus dem Beitrag
P, der Elektronen und dem Beitrag P,y der Ionen zusammen. Hierzu tritt bei ver-
schiedenen Stoffen ein Beitrag P, durch die Orientierung permanenter Dipole.
Bild 3.2.1 charakterisiert die verschiedenen Polarisationen.

E=0

m
u
o
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4
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Bild 3.2.1. Polarisation der Materie
a) Elektronische Polarisation

b) Ionische Polarisation

¢) Orientierungspolarisation
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Bei der Elektronenpolarisation werden die Elektronenumlaufbahnen relativ zum
Kern verschoben bzw. deformiert. Sie erfolgt periodisch mit Kreisfrequenzen in der
Grofenordnung 10%€ s~ (ultraviolett).

Die ionische Polarisation geht auf die Verschiebung der Ionen gegeniiber ihren Nach-
barn zuriick. Dabei treten Kreisfrequenzen in der Gr68enordnung 103 s-1 (infrarot)
auf.

Orientierungspolarisation wird bei Molekiilen mit permanentem elektrischem Dipol-
moment beobachtet, wenn sich die Einstellung im &duBleren elektrischen Feld ver-
dndern kann. Sie ist bei niedrigen Frequenzen bis zu einigen GHz wirksam. Bei
héheren Frequenzen wird die Orientierungspolarisation durch die Diampfung aus-
geschaltet.

Polarisation durch Schwingungen der Elektronen und Ionen

Durch die Schwingung der Kristallbausteine verdndert sich in einem Festkorper
periodisch die Lage seiner elektrischen Ladungen. Hierdurch erfolgt eine periodisch
schwankende Polarisation des Festkorpers. Sie ist mit einer Dispersion verbunden,
d. h., die Dielektrizitdtskonstante bzw. bei der Ausbreitung von Licht die Brechzahl
und die Absorption dndern sich in Abhéngigkeit von der Wellenléinge.

Die schwingenden Kristallbausteine konnen als Oszillatoren betrachtet werden.
Es bezeichne m die Masse eines Teilchens, 7 seine Auslenkung aus der Ruhelage,
w, die Eigenfrequenz (Kreisfrequenz) des Oszillators, ¢ den Reibungskoeffizienten.
Die Reibung wird durch ZusammenstoBe mit anderen Teilchen verursacht. Zunéchst-
wird nur eine Sorte von Oszillatoren betrachtet. Kennzeichnet

F = ﬁ‘oe—iw‘ (1)

die auf das Teilchen einwirkende periodisch verdnderliche Kraft, so ergibt sich nach
den Grundgesetzen der Mechanik die Bewegungsgleichung

mit + mot + mwytr = Fje—iet. (2)

Die Losung dieser Gleichung setzt sich additiv aus einer freien, geddmpften Schwin-
gung mit dem Zeitfaktor exp (—iwgt) und einer erzwungenen ungedédmpften Schwin-
gung mit dem Zeitfaktor exp (—iwt) zusammen. Der geddmpfte Anteil klingt inner-
halb weniger Schwingungsperioden ab und ist fiir die folgende Betrachtung iiber die
Dispersion des Lichtes ohne Interesse. Bei der Losung der Gleichung (2) ist daher
von dem Ansatz

r = rje—iot (3)

auszugehen. Setzt man (3) in (2) ein, so folgt als Beziehung zwischen 7, und ¥,

¥,
m(we? — w? — ipw)

4)

ry =

Sind die von auBen einwirkenden Krifte elektrischen Ursprungs, so fithren sie zur
Polarisation der Materie.
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Ein elektrisches Feld E, das auf ein. Molekiil wirkt, polarisiert dieses. Es entsteht
ein Dipol mit dem elektrischen Moment )

m, = Zer

(vgl. Bild 3.2.2). Darin bezeichnet Ze die Stirke der beiden getrennten Ladungen,
# ihren Abstandsvektor. Bei nicht zu groBer elektrischer Feldstirke E ist das elektri-
sche Moment dieser proportional:

m, = aegk l ()

B —

A

E——— (-4
B —

Bild 3.2.2. Polarisation eines Molekiils durch ein elektrisches Feld £

Die GroBe « ist eine charakteristische Konstante des Molekiils und heilt die Pelari-
sierbarkeit. Sie hat die Einheit m3.

Beispiel 3.2.1. Polarisierbarkeit des Argons

Fuar Argon betrdgt die Polarisierbarkeit oo = 1,62 - 10~30 m3. Ein lokales elektrisches Feld der
Stirke £ = 1000 V m~! erzeugt daher nach (5) das elektrische Moment

e = 1,62 - 10730 . 8,85 - 10722 - 10° Asm = 1,43 - 1038 C m.
Es entspricht dem Abstand zweier entgegengesetzter Elementarladungen von

. —38
me 43107 e 9. 10-20m.

r =
e 1,60 - 107°

Die Polarsation P eines Stoffes gibt das elektrische Moment, bezogen auf die Raum-
einheit 1 m3, an. Bezeichnet N die Anzahl der Dipole je Raumeinheit und ist 12, das
elektrische Moment eines Dipols, so definiert man

P = Nm, = NZer i (6)

bzw. nach (5)
P = ¢, NoE (6a)

als Polarisation des Stoffes. P hat wie D = ¢E die Einheit As m-2.
Schwingungen elektrisch geladener Teilchen werden im allgemeinen durch elektrische
Wellen der Form

E = Be-iot (7
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verursacht. Zwischen der elektrischen Feldstirke E und der von ihr auf ein Teilchen
ausgeiibten Kraft besteht die Beziehung

B = ZeE,. 8

(8) kann in (4) eingesetzt werden. Lost man (6) nach 7, auf und setzt dieses ebenfalls
in (4) ein, so ergibt sich fiir die Polarisation infolge des einwirkenden Feldes

P = Poe—iwt 9)
mit
2,2
Py, = Eo N7 (10)

m(wy?2 — w? — igwg)

Im allgemeinen oszillieren verschiedene Teilchensorten mit unterschiedlichen
Konzentrationen N;, Massen m;, elektrischen Momenten ,;, Eigenfrequenzen w;
und Reibungskoeffizienten g;. Die Polarisation P»;, die durch diese Teilchen erzeugt
wird, ist nach (6) bzw. (6a)

Pi = Nimei = NiZieri = EoNiOCiE‘. (Gb)
Fiir die Polarisation des Stoffes folgt
P=Y P, =3 NZer,=¢k Y N, (11)

2

Das von auBen angelegte periodische Feld erzeugt die periodisch schwankende
Polarisation '
P = Pje—iot (12a)
mit »
P = E NiZieroi = SOEAO Z Ni(xi. (12)
(2 K3

ry; bedeutet die maximale, r; die momentane Auslenkung-einés Teilchens. Anstelle
von (10) findet man '

P, = SOEO Z N, (13)
i

mit

1 Z 2e?

PN 2 2 :
g mi(w? — w? — ig;w;

K; =

(14)

Man kann die elektrische Erregung bzw. dielektrische Verschiebung I eines Mediums
aus zwei Anteilen zusammensetzen: einem ersten D, = ¢,E, der auch im Vakuum
bei Abwesenheit polarisierbarer Materie auftritt, und einem zweiten P, der durch
die Polarisation der vorhandenen Molekiile entsteht. Die elektrische Erregung kann
also sowohl in der Form

D=¢E+ P (15)



126 3. Elektrische und optische Eigenschaften idealer und realer Kristalle

als auch durch
D=¢E (16)

dargestellt werden. Aus dem Vergleich von (15) und (16) folgt fiir die Polarisation
eines Mediums

P=(—¢)E bzw. P,= (¢ — ¢) E,. (17)

& bedeutet dabei die Dielektrizitdtskonstante des Mediums, die im allgemeinen
komplex ist.

Effektives Feld

Das auf einen Kristallbaustein im gleichméaBig polarisierten Medium wirkende mi-
kroskopische bzw. effektive Feld E unterscheidet sich vom makroskopischen Feld
E, das durch die Messung bestimmt werden kann. Der Unterschied ist-dadurch zu
erkliren, da zum makroskopischen Feld E alle Ladungen beitragen, wihrend zu

Bild 3.2.3. Oberflichenladungen auf
einer Hohlkugel im homogenen Feld

dem auf einen herausgegriffenen Baustein wirkenden Feld E die elektrischen La-
dungen des Bausteins selbst keinen Beitrag liefern. Man denkt.sich den Kristallbau-
stein daher als punktformiges Gebilde innerhalb einer Hohlkugel vom Radius R
angeordnet (vgl. Bild 3.2.3). R ist klein gegen die Wellenlinge der betrachteten
elektromagnetischen Schwingung. In der Kugel befindet sich keine weitere Materie.
Die Diclektrizitdatskonstante in der Hohlkugel ist gleich der elektrischen Feld-
konstanten ¢, Das iibrige Dielektrikum nach AusschluB8 der Kugel wird als Konti-
nuum behandelt, d. h., die molekulare Struktur tritt bei der Berechnung des Feldes
nicht weiter in Erscheinung.

Wird eine Kugel in ein homogenes elektrisches Feld E, gebracht, so tritt in ihrem
Inneren ein homogenes elektrisches Feld E; auf. Seine Stirke weicht von E, ab.
AuBerhalb der Kugel wird das vorher homogene Feld gestort.

Es sei ¢ die Elektrizitdtskonstante des Kugelmediums, ¢, die des Mediums aufBer-
halb der Kugel. Zwischen den eingefiihrten Grofen besteht nach den Grundgesetzen
der Elektrostatik (vgl. [4] 2.1.5.) die Beziehung

_ 2e; + €,

B =—5 " F, (18)
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Setzt man hierin

& = &, &y = 8/; (183.)
E,=FE, E,=E (18b)

ein, so ergibt sich als Verkniipfung zwischen dem mikroskopischen und dem makro-
skopischen Feld

E— 2ot & E bzw. B, = 2o+ & E,. (19)
380 380
Dispersion und Absorption des Lichtes

Anstelle (19) kann auf Grund (17) das effektive Feld in der Form

E+—Pi— bzw. EO=E0+% (20)

380 €9

dargestellt werden. Damit folgt-aus (13) und (14) die Dru&lesche Formel
k

o ’ _ 7 202
nl 1 _ f (w) —& i Z N;Z 2e; . ) 1)
n'? 42  &(w) + 2 3ey T mi(w? — w? — ig;w;)
Nach (14) kann man hierfiir iibersichtlich auch
n?—1  dw)—& &lw-—1 1 .
w2+ 2 (o) -2 &'(w)+2 3 ; Nios (21a)

schreiben. Darin bedeutet

die relative Dielektrizitdtskonstante bzw. Dielektrizitdtszahl. Die DRuDEsche Formel
vermittelt einen Zusammenhang zwischen komplexen GroBen. Auf der rechten Seite
der Gleichung (21) wird das imagindre Glied durch den Reibungskoeffizienten p;
erzeugt. Auf der linken Seite sind in der Dielektrizitdtskonstanten ¢ sowohl die
dielektrischen Eigenschaften als auch die Absorption enthalten:

a'=e(1—ii). 22)

EW

¢ bedeutet die reelle Dielektrizitdtskonstante, o die elektrische Leitfahigkeit des
Mediums. Beide GréBen kénnen durch Trennung von Real- und Imaginédrteil aus
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(21) ermittelt werden. Die komplexe Brechzahl »" eines Mediums ist durch

n = n(l — ix) = 1/ :_ (23)
0

definiert. n gibt die reelle Brechzahl, » den Absorptionsindex an. Als Absorptions-
konstante bezeichnet man die Gréfe

27 wx
k= = — 4
o, (24)

worin ¢ die Lichtgeschwindigkeit und 1 die Wellenlinge im Medium angibt.
Der Reibungskoeffizient g; ist im allgemeinen klein gegen die Eigenfrequenz w;,
so daB die Absorption vielfach in erster Néherung vernachlissigt werden kann.

P Probleme

3.2.1. Clausius-Mosotﬁ- und Lorenz-Lorentzsche Formel

Berechnen Sie die Polarisierbarkeit des Kaliumbromids im elektrostatischen Falle und im Fre-
quenzbereich des sichtbaren Lichtes. Wie grof sind die Polarisation und das auf ein KBr-Molekiil
bezogene elektrische Moment m,, wenn ein elektrostatisches Feld der Stirke £ = 1 MV m—
bzw. das Strahlungsfeld eines gesteuerten Laserimpulses der effektiven elektrischen Feldstirke
E = 10° V m! angelegt werden? Welchen Abstand haben die getrennten Ladungen?
Kaliumbromid besitzt die statische Dielektrizititszahl ¢, = 5,99. Die Brechzahl firr sichtbares
Licht betrigt n» = 1,563. KBr hat die Dichted = 2,73 g em=3 und die molare Masse M =
119,01 kg kmol-2.

Losung:
Durch ein lokales elektrisches Feld E am Ort der Ladung entsteht das elektrische Moment
m, = gl 1)

Bezeichnet E das #uflere elektrische Feld, so ist nach (3.2./19) das auf einen Kristallbaustein
wirkende effektive Feld

E-g+ L. ®

3g,
Darin bedeutet nach (3.2./6)
P = NZer (3)

die Polarisation. Fir Elektronen und einwertige Ionen, wie im vorliegenden Fall, ist Z = 1.
Aus (1) und (2) folgt andererseits

P — Nm, — Newk — No (SOE + g) )
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wobei N die Anzahl der Molekiile je Raumeinheit (1 m3) angibt. Wir setzen verlustfreie Medien
voraus und kénnen daher in (3.2./14) die komplexe Dielektrizitdtszahl ¢ durch den reellen Wert &
ersetzen:

P=(s—&)E. ()

P in (4) durch (5) ausgedriickt, liefert nach Herauskiirzen des gemeinsamen Faktors E und
Dividieren durch ¢ - 2¢, die Clausius-Mosottische Formel

e—& Nao Nyda (6)
et+2, 3 M 3

Fithrt man die Brechzahl

n= V—i )
o
in (6) ein, so ergibt sich die Lorenz-Lorentzsche Formel

gw) —g  n*—1 N Npd o

ew) -2, mn*+2 3 M 3 ®)

Wir losen (6) bzw. (8) nach der Polarisierbarkeit « auf und setzen die vorgegebenen Werte ein.
Damit folgt fir den elektrostatischen Fall

=35,99— 1 119,01 — m?® — 136 + 1050 ms.
5,99 4 2 6,02 - 10%6 - 2,73 . 103

Fur den Bereich sichtbaren Lichtes ergibt sich die elektronische Polarisierbarkeit

W g L8321 119,01
el T %1532 4 2 6,02 10% - 2,73 - 10°

m? = 67,0 - 10-30 m3,

Fiir die Polarisation erhalten wir nach (5) im elektrostatischen Fall
P=(599 —1)-8,85-1071%. 10° Asm~2 = 4,42 . 10-5 Cm2.
Daraus ergibt sich wegen P = Nm, nach (4) das elektrische Moment

4,42 -10-5- 119,01

me = Asm = 3,2 -107% Cm
6,02 -10%.2,73 - 108

bzw. die Dipolldange

. 10-38
r= Mm=2,0-10—14m.
1,6 -10-1°
Fir die Stérung durch das Laserlicht erhdlt man
P =4,69-103 Cm‘z, me = 3,4-1031Cm, r=2,1-10"2m.

Der Abstand der Ladungen macht im Mittel also nur Bruchteile der Gitterkonstanten bzw. des
Atomdurchmessers aus. '

9 Schilling, Festkorperphysik
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3.2.2. Infrarote und ultraviolette Eigenfrequenzen

Natriumfluorid besitzt im Infraroten eine intensive Spektrallinie bei der Wellenlidnge
Ap = 40,6 um. Sie ist auf die gegeneinander schwingenden Ionen zuriickzufiihren. Im Ultra-
violetten tritt eine Spektrallinie bei der Wellenldnge Ayy = 117 nm auf, die von oszillierenden
Elektronen verursacht wird. Als Brechzahl des Natriumfluorids wird fiir sichtbares Licht bei
o = 3,510 571 (gelb) der Wert » = 1,3 gemessen. Die Absorption kann vernachlassigt werden.
Aus elektrostatischen Messungen ergibt sich die Dielektrizitdtszahl ¢, = 5,1. Es werde angenom-
men, die Dielektrizitdtskonstante des Stoffes sei allein auf die angegebenen beiden Schwingungen
zuriickzufithren. Bestimmen Sie unter dieser Voraussetzung, bezogen auf die Raumeinheit, die
Anzahl der oszillierenden Elektronen und die Anzahl der gegeneinander schwingenden Ionen.
Die Dichte des Natriumfluorids betrigt d = 2,7 g em=3.

Losung:
Nach (3.2./21a) gilt firr nichtabsorbierende Medien

n?— 1 & — g 1
== _— % Nu;. 1
n? 42 &4 2 3Z,- i &)
Darin bedeutet
2,2
;= i ___Zﬁ_ (2)

g mi(0f — )

die Polarisierbarkeit.
Fiir den von gegeneinander schwingenden Ionen gebildeten Oszillator setzen wir fir m; die
gemiB ‘
1 1
1,1 (3)

1 —_—
moomy o My

definierte reduzierte Masse u ein. Sie liegt um vier GroBenordnungen iiber der Elektronenmasse
bzw. der aus Elektronen und Ionen gebildeten reduzierten Masse.

Im elektrostatischen Fall w = 0 wird dieser GroBenunterschied teilweise ausgeglichen, da die
Eigenfrequenzen der Elektronen um zwei bis drei Groenordnungen héher liegen als die Elgen-
frequenzen der Ionen. Fiir den sichtbaren Bereich unterschéiden sich die Differenzen wiz— w?
und o}y — w?, abgesehen vom Vorzeichen, jedoch nur etwa um eine GréBenordnung. Die ionische
Polarisierbarkeit kann daher fiir sichtbares Licht gegeniiber der elektromschen Polarisierbarkeit
vernachlissigt werden:

|&ion(@)] & e1(@) (w sichtbarer Bereich). (4)

Im sichtbaren Bereich des Lichtes wird die Brechzahl » praktisch ausschlieBlich von den Schwin-
gungen der Elektronen verursacht. Nach (1) und (2) kénnen wir schreiben

m—1_ Ne e
W2 35 mewhy — o)

®)

In dieser Gleichung ist nur die Zahl der oszillierenden Elektronen unbekannt, die somit bestimmst
werden kann,
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Im elektrostatischen Fall w = 0 tragen sowohl die Ionen- als auch die Elektronenschwingungen
zur Polarisierbarkeit des Festkorpers bei. Nach (1) und (2) folgt fir einwertige Ionen

n20)—1  &0) —g Ny ¢ Ne?
n2(0) + 2 &(0) + 2  3g uoir = Segmewdv

(6)

Aus dieser Gleichung kann die Konzentration der oszillierenden Ionen bestimmt werden. Mit
den vorgegebenen Werten erhalten wir wig = 4,6 - 1013 571, wyy = 1,61 - 1016 571, Damit folgt
aus Gleichung (5), wenn diese nach N, aufgelost wird,

1,32 — 1 3.8,85-10712.9,11 - 10-31[(1,61 - 10%)2 — 3,52 . 1030] m

N, — -3 — 4,4 .10% m-3
1,3+ 2 (1,60 - 10-29)z

Im Vergleich dazu ist die Konzentration der Molekiile

N =42 _39.10% m-3, i
_M m

d. h., etwa jedes Ion liefert ein oszillierendes Elektron.

Fir die reduzierte Masse der beiden Ionen Nat und F- ergibt sich u; = 10,4 - 1,67 - 10-%7 kg.
Durch Einsetzen der vorliegenden Werte in (6) und Aufldsen nach Ny folgt fiir die Zahl der
schwingenden Ionenpaare

3-8,85-10712- 10,4 - 1,67 - 10-27(4,6 - 10192
(1,60 - 10-29)z
51— 1 6,0 - 1028(1,60 - 10-19)2
5142 3.885.10-12.9,11.10-3L. (1,61 - 10%)2

Ny =

] m-3=1,3-1028m-3,

Nur ein Drittel der Ionen ist hiernach an den Schwingungen beteiligt.

3.2.3. Dispersion des Kristalls

Untersuchen Sie die Dispersion des Natriumfluorids. Die dielektrischen Eigenschaften werden
auf Grund der folgenden Daten gendhert dargestellt: ultraviolette Spektrallinie fir wyy =
1,61 - 10'¢ 571, infrarote Spektrallinie fiir wyg = 4,6 - 10'% 571, Brechzahl fir sichtbares Licht (w; =
3,5+ 10 571, gelb) ng = 1,3, elektrostatische Dlelektrlzmatsza,hl &=>51.

Untersuchen Sie die Abhingigkeit der Brechzahl n von der Wellenldnge bzw. Kreisfrequenz w
des Lichtes. Bestimmen Sie den Frequenzbereich, firr den der Kristall optisch undurchléssig ist.
Wie dndert sich die Brechzahl zwischen den Grenzen des sichtbaren Bereiches?

Die Untersuchungen kénnen auf die Frequenzbereiche beschrinkt werden, in denen die Absorp-
tion zu vernachlissigen ist.

Losung :

Ein stirkerer EinfluB der Absorptlon auf die Brechzahl ist nach der Drubpzschen Formel (3.2./21)
fiir kleine Werte g; <€ w; nur in der Umgebung der Eigenfrequenzen @y und wyy zu erwarten.
Wir schliefen um diese einen hinreichend groBen Spektralbereich aus, so daB die imaginiren
.Anteile in (3.2./21) zu vernachléssigen sind. Die DrRuDEsche Formel lautet somit

nw)—1 0 + C,
n(0) + 2 by — o ofg —o?

@)

o*
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Wie wir in 3.2.2. sahen, kommt fiir den sichtbaren Bereich insbesondere den ultravioletten Eigen-
frequenzen der Elektronen Bedeutung zu. Fiir den sichtbaren Bereich

04pum <1< 0,8pum bzw. 2,3-10¥s1< < 4,7-10%5571 2)
konnen wir also

n? — 1 C,

= 3
2+ 2 ohy — o? ®)
schreiben. Aus (3) 148t sich C; bestimmen:
ngz — 1
G, = ;:2—_‘_2— (v — o). (3a)

ng bedeutet dabei den Mittelwert der Brechzahl, ws den der Kreisfrequenz im sichtbaren Bereich.
Mit den vorgegebenen Werten folgt

1,32 — 1 .
L = —— (1,612 — 0,35%) 102 52 = 4,6 - 1031 572,
1,32 4+ 2
Fiir 0 = 0 gilt
g —1 _ C, C, ) @
&+2  opy o
Damit ist auch C, bekannt:
e —1 n2—1 oly — o2
= (s 2 O ) ol (42)
a+2 n’+2 ogy
Im betrachteten Fall ergibt sich aus (4) mit dem berechneten Wert fiir C;
— . 108
= 51—t _46-10 (4,6 - 1013)2 572 = 8,5 . 1026 52,
51+ 2 1,612 . 1032
Setzt man C, aus (3a) und C, aus (4a) in (1) ein, so folgt
) —1 _ nd—1 ohy — ol g—1 n2—1 ofy —agd w’r
n(w) + 2 n2+2 oly — o &+2 nl2+2 oy wip — w?
(8)

Bei der Diskussion gehen wir von den Frequenzen des sichtbaren Lichtes aus. In der dafiir gelten-
den Gleichung (3) verkleinert sich auf der rechten Seite der Nenner, wenn die Frequenz zunimmt.
Mit ansteigender Frequenz wichst daher der Ausdruck (3), d.h., auch die Brechzahl n ver-
groBert sich. Bei festen Korpern ist im allgemeinen die Brechzahl » fiir blaues Licht grofer als fiir
rotes (vgl. Bild 3.2.4).

Aus (3) erhédlt man

6n An _ 20,0 Aw
W+ 2F @by — e

(6a)
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bzw. umgeformt und (3a) eingesetzt,

Am — (n2—|—2)(n2——1)wAw. ©)
3n(why — ?)

Mit den vorgegebenen Daten folgt fir Aw = 1,2 - 10 571

(1,3 42) (1,38 —1)3,5-10%-1,2. 10
3.1,3- (1,612 — 0,352) 10%

An = 0,011.

Zwischen den #uBeren Grenzen des sichtbaren Bereiches steigt hiernach die Brechzahl n um
0,022 an. Der MeBwert nach Tab. 3.2.2 betrigt nur 0,00944 (vgl. Bild 3.2.4).

1,36
135
1.3¢1
133
132

1.311

Brechzah! n

02 63 a4 05 05 07 08 09 10 11
Wellenldnge in pum
Bild 3.2.4. Brechzahl n des Natriumfluorids in Abhingigkeit von der Wellenlinge

Fir sichtbares Licht liegt die Kreisfrequenz w zwischen der infraroten Eigenfrequenz w;g und
der ultravioletten Eigenfrequenz wyy. Daher ist in (1) auf der rechten Seite der erste Summand
positiv, dagegen der zweite negativ. Mit abnehmender Frequenz o wichst der Nenner des ersten

Summanden gegen Tl , der Nenner des zweiten zunichst gegen Null. Dabei strebt der zweite
w

uv
Summand gegen —oo. (1) fallt daher zunéchst auf Null mit n = 1; danach werden sémtliche nega-
tiven Werte durchlaufen. Fiir —0,5 ergibt sich die Brechzahl » = 0. Werte fiir (1), die noch tiefer
als —0,5 liegen, lassen sich nur durch negative Werte fiir #2, d. h. imaginidre Werte fir =, er-
fallen.
Fillt die Frequenz w unter die infrarote Eigenfrequenz wrg, so springt (1) auf groBe positive
Werte, die mit weiter fallendem  rasch abnehmen. #? bleibt dabei zunédchst negativ, bis der
Ausdruck (1) den Wert eins erreicht, fir den »? auf 4 oo springt. Danach féllt » mit abnehmen-
den Werten w.
Fir den Bereich

1 n:— 1

—2-< n2+2<1 (7)

ist hiernach » imaginér. Imagindre Werte der Brechzahl » bedeuten, daf3 die elektromagnetische
Welle stark absorbiert wird und bereits ein Medium von wenigen Wellenlangen Dicke dieses nicht
mehr hindurchlaBt. ’

Nach (7) bestimmen sich die Grenzen des Sperrbereiches aus den Gleichungen

G Cy

oy — 0 ofg — 0

o C,
2

=1. 8
by — o | ofg — o? ®

-1 und
2
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Fir €, und C, kénnen die Werte nach (3a) und (4a) verwendet werden. Das fithrt auf

s M 42

& Mg+ 2
(Du2 = Wi ——— —_—
& + 2

< ? < ofg = . 9
WS ORL T T 9

Mit den vorgegebenen Werten folgt

1,18 - 107 51 < w? < 3,06 - 102" g1
bzw.
3,1 pum < A< 54,9 pm.

W W /W  sichtbarer
-1 u IR/ o  Bereich

Bild 3.2.5. Schematischer Verlauf der Dielektrizitétszahl & = n® eines Festkorpers

Als Verhiltnis der beiden Grenzen w, und w, desSperrbereiches folgt aus (10)

Lo oo B | (10)
o  Yel0)

Nach (1) bzw. (3) ergil;t sich .ebenso wie im Infraroteﬁ ein Sperrbereich fur ultraviolettes Licht
® > wg. Er beginnt nach (3) und (7) fiir den durch
2
n 1 _ . C __1 (11)
n? 4 2 ohy — wg? 2

bestimmten Grenzwert. Als Losung der Gleichung (11) erhdlt man
wg = V20, + o¥v. (12)

Mit den vorgegebenen Zahlen folgt

'

w0y =12 - 6,32 - 10° + 1,61 - 102 s~ = 1,96 - 10%6 51,
8
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Wellen mit der Wellenléinge
A< Ag = 96,1 nm

werden hiernach durch den Kristall nicht mehr hindurchgelassen. Die Ddmpfung ist so stark, daf3
bereits eine wenige Wellenlingen dicke Schicht zur vélligen Ausléschung fithrt.
Bild 3.2.5 zeigt schematisch den Verlauf von ¢.(w) = n?(w) fiir den gesamten Spektralbereich.

3.24. Transversale und longitudinale Eigenschwingungen

Aus spektroskopischen Messungen wird fiir LiBr die transversale Eigenschwingung wr =
3,0- 10 s~ ermittelt. Bestimmen Sie die Kreisfrequenz der zugeordneten longitudinalen Eigen-
schwingung.

LiBr hat im Sichtbaren die Brechzahl ng = 1,8. Die statische Dielektrizitatszahl ist &, = 13,2.

Losung:

Wir betrachten stehende mechanische Wellen. Bei transversalen Schwingungen bewegen sich die
Kristallbausteine senkrecht zur Ausbreitungsrichtung der Welle und ergeben daher eine periodisch
veranderliche Polarisation P senkrecht zum Wellenzahlvektor K der Phononen. Man erhilt
Knotenflichen der mechanischen Bewegung, die parallel zum Polarisationsvektor liegen (vgl.
Bild 3.2.6a). Dagegen ergeben longitudinale Wellen Knotenflichen orthogonal zum Polari-
sationsvektor P (vgl. Bild 3.2.6b).

—K & —K
1 | | | i |
: PPPP : . : | i |
e Pt I | ! | >E
| e o ! | ] | |
L ° ° 1 1 ° e e o l e o o ° 1
I : ® o o ° i ? > —>—3>>» ‘ <« «— = i
! Pyl gy v I P PPPIPPP P |
SR s SRR N
Knotenlinien Knotenlinien
a) b)

Bild 3.2.6. Lage der Knotenflichen und des Polarisationsvektors

a) bei transversalen mechanischen Wellen
b) bei longitudinalen mechanischen Wellen

Das Medium zwischen zwei Knotenflidchen stellt eine langgestreckte diinne Scheibe oder Platte
dar. Befindet sich eine diinne Scheibe im homogenen elektrischen Feld E, so unterscheidet sich
das in ihr hervorgerufene Feld E;, je nachdem, ob die Scheibenachse parallel oder senkrecht
zum #ulleren Feld E gerichtet ist (vgl. Bild 3.2.7). Fiir das Feld in der Scheibe erhilt man nach
den Grundgesetzen der Elektrostatik (vgl. [4])

Ei =E _ NP . ' (1)
L)

N heiflt der Entelektrisierungs- bzw. Entmagnetisierungsfaktor[Er ist nur von der Geometrie
abhéngig.
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Im vorliegenden Fall ist

N=N,=o, @)
wenn die Scheibenebene parallel zum &uBeren Feld E, liegt, dagegen

N=N,=1 ®3)
bei senkrecht zum duBeren Feld stehender Scheibe. Die Grofe

NP
E,=— (4)
&

hei3t Elektrisierungsfeldstirke.

[ Il
|, 1 |
Al A P PN 2P
ITLVE, =E+ ¢ I =F-%<L
K, ; /}( trans 3E, K { )/I( long 3 &
i Lol
11 [
[ (]
A .
a) E b)

Bild 3.2.7. Das elekt.ische Feld B in einer diinnen Scheibe

a) bei parallel, b) bei senkrecht zur Scheibenachse gerichtetem duflerem
elektrischem Feld E

Neben dem Elektrisierungsfeld E,; hat man das Lorentz-Feld

P
E, = — 5
L'—360 (5)

(vgl. 3.2./20) zu beriicksichtigen. Das gesamte auf ein Teilchen wirkende lokale Feld £ ist somit
durch

E=E +E;, —E, (6)
gegeben.
Bei transversalen Schwingungen sind das &uflere Feld E und damit die Polarisation P parallel
zu den Knotenflachen gerichtet. Nach (2) und (6) gilt daher fiir transversale Schwingungen

P
Eyps=E + — @)

3ey
Dagegen erhilt man bei longitudinalen Schwingungen nach (1), (3) und (6)

P P 2
B,,=E— —+-— =E— = P. 8
long & + 380 380 ( )
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Nach (3.2./6a) definiert man die Polarisierbarkeit «,; durch Elektronen- bzw. «;,, durch Ionen-
auslenkung auf Grund der Gleichungen

P, = SoNelo‘elE, 9)
Piop = eoNiono‘ionE . (10)

Darin gibt N;,, die Konzentration der Ionen, N, die der freien Elektronen an. Die Polarisation
der Tonen wird andererseits nach (3.2./6) durch die Auslenkung r gemi8

Py = NignZer (11)
bestimmdt.
Im elektrostatischen Grenzfall besteht zwischen dem lokalen elektrischen Feld E und der Aus-
lenkung 7 die lineare Beziehung

Or = ZeEB. (12)

Darin kennzeichnet C die riicktreibende Kraft, bezogen auf die Einheit der Auslenkung (1 m).
Setzt man E nach (12) in (10) ein und vergleicht den sich ergebenden linearen Zusammenhang
zwischen P;,, und r mit dem nach (11) bestehenden, so folgt
ZZeZ
Yion = (13)
als Beziehung zwischen der Kraftkonstanten und der ionischen Polarisierbarkeit.
Bei zeitlich verinderlichen Feldern wird die Auslenkung 7 der Teilchen durch die Differential-
gleichung
d2r
— 4+ Cr = ZeE 14
i (14)
bestimmt. u bedeutet die reduzierte Masse der oszillierenden Teilchen.
Setzt man voraus, daf das duBlere Feld E gegen das von der Polarisation P erzeugte elektrische
Feld vernachlissigt werden kann, so ergibt sich im Falle transversaler Schwingungen nach (7)

E = i — M (15)
3¢e, 3g,

Wir fithren hierin Py nach (9), P;,, nach (11) ein und erhalten damit als Beziehung zwischen E
und 7 bei transversal schwingenden Teilchen

Ny )
&(3 — Nejore)

Driickt man E in (14) durch (16) aus, so gelangt man fiir 7 zu einer linearen homogenen Differen-
tialgleichung zweiter Ordnung. Sie kann durch Exponentialansatz

r = reior (17)

gelost werden. Fiir die Eigenfrequenz ergibt sich, wenn man die ionische Polarisierbarkeit gemi
(13) einfiihrt,

wp = /—V 1 — Nion¥on (18)

Nejoxer
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In gleichér Weise verfihrt man bei longitudinalen Schwingungen. Nach (6), (9) und (11) erhalt
man als Beziehung zwischen E und 7 bei longitudinal schwingenden Teilchen

E= _ —2ZeNiow r. (19)
&(3 + 2Nioncke1)

Aus (14) folgt damit als Eigenfrequenz der longitudinalen Schwingungen

wp, = 1 4 ——ion¥ion 2N10n0‘10n (20)
3+ 2N elo‘el
Wie man erkennt, ist diese stets groBer als die zugeordnete transversale Schwingung. Das geht

auf die Wirkung des entelektrisierenden Feldes zuriick.
Fir das Verhaltnis zwischen den Eigenfrequenzen ergibt sich nach (18) und (20)

2 2 1
/ 1+ '?;‘ Nejore) + ? Nion¥ion 1 — ? Neyocer
i) PR _ (21)

1 1 2
1-— 3 Neyorey — 3 Nion®ion 1+ 3 Nejover

Durch das Auflésen der DruDEschen Formel (3.2./21a) nach & erhdlt man im vorliegenden
Fall

2 2
14 ? Nejovey + E’ Nion%ion
o — . (22)

1
1— ENel‘xel -

Nion®ion

L
3
Im sichtbaren Bereich kann o, gegen o vernachléssigt werden. Es ergibt sich daher fiir die
Brechzahl im sichtbaren Bereich

2 .
1+ 3 Neioel
nd = — Y (23)
1— 3 Nejorel

Werden diese GroBen in (21) eingefithrt, so folgt die Lyddane-Sachs-Teller-Beziehung

(24)

Oy _ M _ or 25)

Mit den vorgegebenen Werten erhalten wir nach (24)

B

13,2 ., 18 o1
wL=3,0'1013‘/I—STS1—6,05'1038 .
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3.2.5. Absorption durch F-Zentren in NaCl

Die Absorptionsbande der F-Zentren in Steinsalz NaCl liegt bei 4 = 465 nm. Durch Erzeugung
von Farbzentren in der Konzentration N, = 4,6 - 1022 m—2 wird die Absorptionskonstante des
Materials um Ak = 1 mm~ gegeniiber dem Wert bei nichtvorhandenen Farbzentren vergrofert.
Untersuchen Sie nach der Dispersions- und Absorptionstheorie des Lichtes die Abhéngigkeit der
Absorptionskonstanten von der Wellenldnge, bestimmen Sie die Halbwertsbreite der Absorptions-
kurve und berechnen Sie die Dampfung der oszillierenden Elektronen. Die Brechzahl des unver-
farbten Steinsalzes ist n; = 1,54.

Losung:

Nach 3.2. werden F-Zentren durch Elektronen in Anionenliicken verursacht. Wir trennen in der
Drupzeschen Formel (3.2./21) den von der Schwingung der Elektronen verursachten Summanden
von den iibrigen Summanden ab und schreiben

2g + & N,e?
35y me(w® — w? — igwy) ’

(1

g=¢g+ 2+

Darin steht 3 fiir die von den Schwingungen der iibrigen Kristallbausteine, Natrium- und
Chlorionen verursachten Glieder. m, bezeichnet die Elektronenmasse, o, den Reibungskoeffi-
zienten der Elektronen. Auf der rechten Seite fassen wir ¢, + J; zu einer einheitlichen Grofle &;
zusammen. Sie gibt die komplexe Dielektrizitidtskonstante des reinen Kristalls ohne Farbzentren
an. Im letzten Summanden, der auf die Elektronen in Anionenliicken zuriickgeht, ersetzen wir
im Zahler ndherungsweise ¢’ durch g, und erhalten damit

, , N,e?
& =g + L T . (2)
me(w,® — w? — igywy)

Ebenso wie die Dielektrizitdtskonstante zerlegen wir die komplexe Brechzahl in einen Anteil, der
vom reinen Kristall, und einen Anteil, der von den Farbzentren stammt:

n =mn{ + An' = l/i (3)
€
Wir setzen (2) in (3) ein und erhalten unter der Voraussetzung
[An] <1 (4)
fiar die Brechzahlanteile
o’ 2
ny = l/e—' ,  An'= Nye p— (5)
% 2me(w,? — w? — igywy) Vfi’so

Die im reinen Kristall auftretende Absorption kann in erster Naherung gegen die Absorption durch
Farbzentren vernachléssigt und daher

& =g, n'=mn
geschrieben werden. Ferner kann man nach (3.2./23)

n’ = n(l — ix) = (n; + An) (1 — ix) = n; + An — ixn, (6)
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setzen und dabei die Brechzahldnderung Az infolge der Farbzentren ebenso wie den von den Farb-
zentren verursachten Absorptionsindex # = Ax als klein gegen die Brechzahl »; des reinen Kristal-
les annehmen:

wlny, M. (7
Damit folgt aus der zweiten Gleichung (5)

. 20002 — @ - i
An' = An — ixn; = MieHeo® — o + ig,) (8)

2me[(wy® — @?)? + 0,%w,%] Vi
Fir die Berechnung der Absorptionseigenschaften sind nur die imagindren Anteile von Inter-

esse. Unter Beriicksichtigung der ersten Gleichung (5) erhalten wir aus (8) fiir die Absorptions-
konstante nach (3.2./24)

_ N,e20,0,0
2eoeonme[ (1% — w?)? + 0.2w;?]

k= P

9)

o e

Hierin bedeutet ¢, die Lichtgeschwindigkeit in Vakuum.
Wir kénnen in erster Naherung voraussetzen, dal im Nenner der EinfluB8 des Reibungskoeffi-
zienten gering ist und daher das Maximum der Absorptionskonstanten durch

w=w, (10)
bestimmt ist. Unter dieser Voraussetzung erhalten wir fur das Absorptionsmaximum

Niez

_— (11)
200EoMiMe0y

kmax =

Die Halbwertsbreite kann gendhert dadurch bestimmt werden, daf sich der Wert des Nenners
gegeniiber dem Maximum verdoppeln muf}:

(wy® — (‘)?/2)2 = o%w;®. (12)

Hieraus ergibt sich

Wy = oy £ G (13)

und damit die Halbwertsbreite
Awyjy =0 baw. Avyjy=-2L. (14)
P2 .

Mit den vorgegebenen Werten folgt aus (11), wenn diese Gleichung nach g, aufgelost wird,

B 4,6 - 1022 - (1,60 - 10-19)2
2.3.10°.8,85-1022. 1,54 - 9,11 - 1031 . 10

o Hz = 1,58 104 571,

0, ist klein gegen die Kreisfrequenz der Eigenschwingungen:

.3.108 g1
01 < vy = 2ney _ 2m-3-108s71 = 4,05.10% 51,
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Fir die Halbwertsbreite ergibt sich

1,58 - 1014 Hz

= 2,52 .10 Hz.
27

Avyjp =

Dem entspricht die Energie
6,63 - 10734 . 2,52 . 1013
1,60 - 10-1°

Infolge der vielfdltigen Néherungen ist dieser Wert ungenau und nur grofenordnungsmiBig
richtig.

Aeyjy = h Avyyp = eV = 0,104 6V.

3.2.6. Dispersion in der Umgebung einer F-Bande

In Steinsalz wird eine Konzentration von N, = 5 . 1022 m—? Farbzentren erzeugt'. Untersuchen
Sie die Veranderlichkeit der reellen Brechzahl in der Umgebung der Absorptionskante und be-
stimmen Sie die grote Abweichung von der Brechzahl des unverfirbten Kristalls (Werte nach
3.2.5.).

Losung:

Wir verwenden in Gleichung (3.2.5./8) die Realteile und erhalten firr die Brechzahlinderung
infolge der vorhandenen Farbzentren

Nie¥(w,® — o?)

2me[(w,? — w?)? + @12w12] Veieo

An = 1)

k “ 4an
k
/ An

> Jw=w- 0w,

Bild 3.2.8. Anderung der Brechzahln
und der Absorptionskonstanten & in
der Umgebung eines F-Zentrums

Hierin konhen wir die Brechzahl

m= |/ (@)

&

einfiihren.

Die Funktion

_ wy? — w?
M) = or =P + et

verschwindet fiir = w,;. Auf der linken Seite der Absorptionsbande liegt ein Minimum, auf der

rechten Seite ein Maximum (vgl. Bild 3.2.8). Zur Bestimmung der Extrema differenzieren wir und

@)
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erhalten
df(w) 0’0 — (0% — 0?)?

= —92 .
dw “ Tl — o2 + ofaP @

Die Ableitung verschwindet fiir

©? = w® + i

bzw. bei kleinen Werten < <1 fiir

1. (5)

0=+ B

Im Rahmen der vorgenommenen Naherungen fallen also, wie ein Vergleich mit (3.2.5./13) zeigt,
die Extremwerte von An(w) mit den Halbwerten des Absorptlonsma,mmums zusammen.
Wir setzen (5) in (1) ein und erhalten -

N,e?

degn;me0 0,

(An)extr =4 (6)

Mit den vorgegebenen Werten und der Dampfung nach 3.2.5. folgt

5-10% . (1,60 - 1019)2

AR exiy =
(Aexts = & 4-.8,85.10-12.1,54.9,11. 1073 . 1,58 - 1014. 4,05 . 1015
= 40,004.
3.2.7. Orientierungspolarisation

Schwefelwasserstoff zeigt bei der Frequenz 5 kHz eine starke und stellenweise sprunghafte Ver-
anderlichkeit seiner Dielektrizitdtszahl ¢, von der Temperatur. Diese Eigenschaft ist auf die Di-
polorientierung im Festkorper zuriickzufithren. Die Warmebewegung wirkt der Dipolorientierung
entgegen, so daf} sich mit wachsender Temperatur ¢, verringert. Nach einem steilen Abfall bei
130 K auf &, = 14 verringert sich die Dielektrizitétszahl bis 7' = 190 K nahezu linear auf &, = 11
(vgl. Bild 3.2.9). Berechnen Sie daraus das Dipolmoment der Schwefelwasserstoffmolekiile.

15
14
13
W 12 . - R
i Bild 3.2.9. Abhingigkeit der Du‘alektrlzmatls-
o zahl ¢. von der Temperatur bei 5 kHz far

Schwefelwasserstoff

130 140 150 160 170 180 190
Temperatur in K
Schwefelwasserstoff kristallisiert in Form von ineinander verschobenen kubisch-flichenzentrier-

ten Gittern. Auf den Elementarwiirfel mit der Kantenldnge 0,578 nm entfallen vier Molekiile.:
Die relative Molekiilmasse ist M, = 34,10.
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Losung:

Das lokale elektrische Feld E sucht die Elementardipole auszurichten. Thm wirkt die Wérme-
bewegung entgegen. Ein Dipol besitzt im elektrischen Feld die potentielle Energie

epot = —MMe+ B = —m B cos 9. ®

Darin bezeichnet & den Winkel des elektrischen Momentes gegen das Feld (vgl. Bild 3.2.10).

e
A
£ .= Bild 3.2.10. Dipol im élektrischen Feld £

Es seien N Dipole je ‘Volumeneinheit in dem Stoff enthalten. Sie nehmen alle méglichen Rich-
tungen im Raum ein. Nach dem GiBBsschen Energieverteilungsgesetz erhilt man den Mittelwert

£pot 2 Ta 2)
fe_ kT 30

dQ = sin ¢ dd dg (3)

wobei

das Differential des Raumwinkels angibt. Das Integral ist iiber alle Richtungen des Raumes zu
erstrecken. Wir erhalten

on

" me B cos &
ffe‘ ET  cos & sin® d9 dg
ooy 0 0

cos % = P . (4)
me B cos # y
ffe T sing do dg
00

Die duBleren Integrationen koénnen unabhéngig von den inneren durchgefithrt werden und er-
geben im Zihler und im Nenner den Faktor 2, der sich herauskiirzt. Zur Auswertung des inneren
Integrals setzt man '

C = ’”’Z‘f, % = cos . (5)
Damit folgt aus (4)
[ eC%udu d 1
cos P = ——-11 =— Inf eC du. (6)
- dc
f e“% du —1
-1

Durch Ausfithrung der Integration ergibt sich

R C _ oC
cosﬂ:ilne—e=L(0)=L(meE . (7)
ac c , kT
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L(C) heiBlt die Langevin-Funktion. Ihr Verlauf ist in Bild 3.2.11 dargestellt. Reihenentwicklung
der LancEviN-Funktion liefert fir kleine Werte C

c C®

yoy=9-2 4. ®)

Fir £ = 106 Vm1, T = 300 K, elektrisches Moment me in der GroBenordnung 102 Asm
liegt C nach (5) in der GréBenordnung 0,01 ... 0,1. Wir rechnen daher in erster Naherung mit

o (M) _ mek ©)
kT 3kT
Lee) A
)
> C Bild 3.2.11. LanGEvIiN-Funktion

__________ - ’

Fiir die Orientierungspolarisation erhalten wir somit (vgl. Bild 3.2.10)
——  Nmg2k

P, = Nmgcos & = —ﬁ; (10)

die Orientierungspolarisierbarkeit wird gleich
2
POI‘_ — me (11)

Oop = = .
T Nel  3epkT

Bezeichnet «, die Summe aus elektronischer und ionischer Polarisierbarkeit, so konnen wir also

nach (3.2./11)

Zi2e2 me2

mi(w® — w? — igjw;)  3e kT

me?

1
x=o+ on . (12)

by
2
schreiben. Damit folgt nach (3.2./21a) bzw. nach der CLaustus-Mosorrischen Formel (3.2.1./6)

&g —1_ Noa Nmg?
&+2 3 9e,kT

(13)

wobei N die Konzentration der Molekiile, d. h. ihre Anzahl je Kubikmeter, angibt. Die Dielektri-
zitatszahl
Lo (14)
o

ist sowohl von der Frequenz als auch von der Temperatur abhéngig.
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Fir die Differenz zwischen zwei Temperaturen erhilt man nach (13) unter der Voraussetzung,
daB oy und my? unversindert bleiben und daB jedes Molekiil einen Dipol liefert,

(18)

e, Ty) — 1 _ g0 Ty) —1 _ Nme? (_l_ _ _1_)
er(w,Ts) + 2 ey Ty) + 2 ek \T; T, '
Die Anzahl der Molekiile je Volumeneinheit ergibt sich aus den Angaben iiber Elementarzelle und
Kristallaufbau:
i

N=—— .4m3=207-10%m>.
(0,578 - 10-%)3

Wir l6sen (15) nach m, auf, womit nach den vorgegebenen Werten folgt

V(13 10) 9.8,85-10-12.1,38 . 10-23. 130 - 190
Me = ——— Asm =

16 13 2,07 - 10% . 60
=9,72.10~% Cm.

A Aufgaben

A3.2.1. Berechnen Sie die Polarisation von KCl, wenn eine elektrische Feldstirke von
1000 V m~! angelegt wird (¢, = 4,68). Wie grof} ist das elektrische Moment, be-
zogen auf ein KCl-Molekiil, wie gro3 die Dipolldnge (d = 1,99 g cm~3, M, = 74,58)?

A3.2.2. Wie groB ist die Polarisierbarkeit von KCI fiir elektrostatische Felder und fiir Licht-
wellen im sichtbaren Bereich (n = 1,46)?
A3.23. Berechnen Sie das elektrische Moment, das ein Feld der Stirke 106 V m—1 bei der
Einwirkung auf ein Xenonmolekiil erzeugt (x = 3,99 - 10-3° m3).
A3.24. Welche Polarisation erzeugt ein elektrisches Feld der Stirke 10 Vm=! in festem
’ Xenon? Xenon hat kfz-Gitter mit der Gitterkonstanten ¢ = 0,624 nm.
A 3.2.5. Steinsalz zeigt eine ausgepriagte Spektrallinie im Ultravioletten bei der Wellen-

lange A = 105 nm. Die Konzentration der Oszillatoren betrigt N = 2,28 - 102 m—3.
Berechnen Sie die Brechzahl n fir 4 = 0,4 pm, 4 = 0,7 pm und 4 = 5,0 pm.

A 3.2.6. Berechnen Sie die Polarisierbarkeit des Steinsalzes im Bereich sichtbaren Lichtes
und im elektrostatischen Fall (A = 0,5 um; n = 1,55; ¢, = 5,9 im elektrostatischen
Falle). '

A 3.2.7. Welchen Sperrbereich besitzt Kaliumfluorid im Ultraroten (n = 1,2 fir o =
3,5 - 108 571, A1 = 52,4 um, &,(0) = 5,5)?

A3.28. Geben Sie nach Tabelle 3.2.1 die obere Grenze des Sperrbereiches im Infraroten
fiir NaBr und KCl an.

A 3.2.9. LiF hat fir A = 0,4 pm die Brechzahl » = 1,3988, fiir A = 0,8 um; n = 1,3889.

Berechnen Sie daraus gendhert die Lage der ultravioletten Eigénschwingung, wenn
der EinfluB infraroter Eigenschwingungen vernachlissigt und die Brechzahl nur
auf eine ultraviolette Eigenschwingung zuriickgefithrt wird.

A 3.2.10. Stellen Sie aus den Daten nach A 3.2.9. eine Dispersionsformel fiir LiF n? = n?(42)
auf und vergleichen Sie diese mit der von RADEARRISENAN

0,32052 A2 4,252 844>
—0,013056 = A2 — 2044,8

n? = 1,42664 1 7
(A in pm).

10 Schilling, Festkérperphysik
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A3.2.11. Bei PbTe wird die Messung der Dielektrizitatszahl fir den elektrostatischen Fall
durch die Leitfdhigkeit gestort. Als Verhaltnis zwischen den Eigenfrequenzen der
longitudinalen und der transversalen Phononen wird nach 2.2.2. fir K — 0 der
Wert

L _39
(24 >

gemessen. Die Brechzahl fur sichtbares Licht ist ng = 5,3. Bestimmen Sie die
Dielektrizitatszahl fiir den elektrostatischen Fall.

A 3.2.12. Die Halbwertsbreite in der Umgebung der F-Bande des Kaliumbromids betrégt
0,345 eV. Bestimmen Sie die Frequenzbreite.

A 3.2.13. Die Absorptionsbande des Kaliumchlorids liegt bei Ay, = 563 nm. Fir die Halb-
wertsbreite werden 0,35 eV gemessen. Geben Sie die Halbwertsbreite in Einheiten
der Wellenlidnge an.

A 3.2.14. Fur die F-Bande des Natriumfluorids wird die Halbwertsbreite 0,62 eV gemessen.
Berechnen Sie den Reibungskoeffizienten und geben Sie auf Grund dieser Rechnung
die Absorptionskonstante kp,y fiir das Bandenmaximum an, wenn die Konzentra-
tion der Farbzentren N; = 1023 m—3 betrigt (ny,p = 1,32).

A 3.2.15. Stellen Sie fiir ein kugelférmiges Molekiil mit dem Radius R die Formel fiir dessen
Polarisierbarkeit auf.

A 3.2.16. Schitzen Sie aus der Dielektrizitatszahl ¢, = 80,8 des Eises den Molekiildurch-
messer ab. Dabei kann angenommen werden, da8 sémtliche Molekiile im elektrischen
Feld gleich gerichtet sind. (dg;s = 0,918 g cm~—3, M, = 18).

A 3.2.17. Der groe Unterschied zwischen der relativ niedrigen Dielektrizitétszahl fiir Wasser
bzw. Eis im sichtbaren Bereich und dem groBen Wert im elektrostatischen Falle
wird im wesentlichen durch die Richtungspolarisierbarkeit begriindet. Zwischen
—30°C und —10°C steigt fir 1 kHz die Dielektrizitdtszahl des Eises von 14 auf 70.
Berechnen Sie das Dipolmoment. (Dichte d = 0,918 g cm—3).

3.3. Klassische Theorie der elektrischen Leitung

E Einfiihrung

Leitfiihigkeitsetgenschaften fester Korper

Die elektrische Leitfahigkeit o fester Korper liegt innerhalb sehr weiter Grenzen. Sie
erstreckt sich von Werten der GroBenordnung 10-17 Q- m-! fiir Isolatoren bis zu
67,1 - 108 Q- m-! fiir Silber. Dariiber hinaus zeigen Supraleiter nahe dem absoluten
Nullpunkt Leitfahigkeiten in der GroBenordnung 10% Q-! m-! und dariiber. Bild
3.3.1 stellt die Leitfahigkeit charakteristischer Stoffe grafisch dar. Tabelle 3.3.1 ent-
hilt die elektrische Leitfdhigkeit charakteristischer Metalle, Halbleiter und Iso-
latoren.

Tréger der elektrischen Leitung sind Elektronen und Ionen. Man unterscheidet daher
zwischen Elektronen- und Ionenleitung.
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Die Leitfihigkeitseigenschaften finden ihre Ursache in der Struktur der Festkérper.
Elektronenleitung wird durch Elektronen bewirkt, die sich frei durch den Fest-
korper bewegen konnen und nur an diesen gebunden sind. Sie werden als freie
Elektronen bzw. zum Unterschied gegen freie Elektronen in Gasen oder im Vakuum
als quasifreie Elektronen bezeichnet. Ionenleitung geht auf die Wanderung der
Ionen nach 3.1. zuriick.

0% po- Supraleiter
1075

Supraleiter

Metalle

- Silber
5[ Quecksilber

- Eigenleitung
10 4 Germanium

o

Halbleiter
- Eigenleitung
0 -5| Silizium

Spezifische elektrische Leitfihigkeit in 27" m"'

10

Isolatoren
.15

10"
- Polystyrol Bild 3.3.1. Leitfihigkeit
107 Bernstein fester Korper

Drude-Sommerfeldsche Elektronentheorie der Metalle

Bei den Metallen gehort im Mittel je Atom ein Elektron dem Kristall als Ganzes an.
Die Elektronen verhalten sich nach DRUDE wie ein Gas frei beweglicher Teilchen. Eine
von aullen angelegte elektrische Spannung bewirkt, daf die Ladungstréger bevorzugt
in die vom Feld bestimmte Richtung diffundieren. Hierdurch kommt eine Drift-
bewegung der Ladungstriger zustande, die sich der ungeordneten Teilchenbewegung
bei fehlendem Feld iiberlagert.

Das angelegte elektrische Feld Z fiihrt zu einer Beschleunigung der Elektronen ent-
gegen der Feldrichtung; die kinetische Energie der Elektronen nimmt zu. Bei den
Bewegungen im Kristallgitter stoBen die Elektronen mit den Gitterbausteinen zu=

10%*
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sammen und geben dabei ihre Beschleunigungsenergie an das Gitter ab. Die Be-
schleunigungsenergie wichst also zwischen zwei St6Ben von Null auf einen Maximal-
wert an. Im Mittel ergibt sich eine Driftgeschwindigkeit, die in Ubereinstimmung mit
dem OnwMschen Gesetz dem elektrischen Feld E proportional ist (vgl. 3.3.1).

Durch die Zusammenst68e der Elektronen mit dem Gitter wird dieses zu verstédrkten
Schwingungen angeregt. Die Stromleitung ist daher in Ubereinstimmung mit dem
JouLEschen Gesetz mit einer Erwdrmung des Festkorpers verbunden (vgl. A 3.3.1.).
Durch das DrubEsche Modell des Elektronengases werden die beiden grundlegenden
Effekte der Elektrizitétsleitung in Metallen richtig wiedergegeben. Dagegen ergeben
sich Schwierigkeiten, wenn der Temperaturkoeffizient des elektrischen Widerstandes
oder der Beitrag der Elektronen zur Wéirmekapazitit gedeutet werden sollen.
Hierzu hat man nach SoMMERFELD davon auszugehen, daf die Elektronen bei Zim-
mertemperatur ein entartetes Gas darstellen, das nicht der BorrzmMaNN-Statistik
geniigt. Elektronen sind Elementarteilchen mit halbzahligem Eigendrehimpuls
bzw. Spin. Fiir sie gilt daher die Fermi-Dirac-Statistik. Thre Grundlagen sind in [3]
Abschnitt 4. behandelt. Die Ergebnisse beziiglich der Elektronen werden im folgenden
beschrieben. :

Ferma-Dirac-Statistik der Elektronen

Nach der FErmi-Dirac-Statistik kann ein Quantenzustand entweder unbesetzt oder
von nicht mehr als einem Teilchen belegt sein. Die Anzahl der Quantenzustdnde in
einer Kugelschale des Impulsraumes ist, bezogen auf das Kristallvolumen ¥V, = 1 m3,

4rp2 Api
alis W

(vgl. 2.1.4. und Bild 2.1.5). D(jer Gewichtsfaktor ist fiir Elektronen auf Grund der
beiden entgegengesetzten Einstellmoglichkeiten des Spins
g =2, i (2)

d. h. auf jede Zelle des Pha.seinra,umes entfallen zwei Quantenzustdnde. z; hat die
Einheit m2. i '

O-O 0 O O

ONONONONG

O OO0OO0OO0 e

V1] |
©©0©6 ikt it
XA ® besetzter Zustand, O unbesetzter Zustand

Am absoluten Nullpunkt 7' = 0 besetzen die Elektronen samtliche Energiezustiande,
von unten an, liickerilos bis zur oberen Grenze ¢p (vgl. Bild 3.3.2). &p heiit Grenz-
energie bzw. Fermi-Kante. Sie trennt besetzte von unbesetzten Energiezustinden.
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Die Gesamtheit der Elektronenimpulse liegt fiir 77 = 0 in einer Kugel des Impuls-
raumes. Der Radius p, dieser Kugel ist durch die Beziehung

12
o = o ®)

festgelegt. Andererseits haben nach der HersEnBERGschen Unbestimmtheitsrelation
die Zellen des sechsdimensionalen Phasenraumes die Grofe

Ap Aq = k3. 4)
Die betrachteten Elektronenimpulse werden im Impulsraum durch eine Kugel mit
dem Volumen %n‘pos begrenzt. Beriicksichtigt man g = 2 nach (2), so folgt fiir die
Anzahl der Elektronen im Volumen 1 m3

47tpy®
N =gt (®)

N hat die Einheit m=3. Aus (5) ergibt sich als Grenzenergie der Elektronen

B2 ( 3N )2/3

= om 4ng

(6)

Bei Temperaturen 7' 4= 0 werden nicht nur die unteren Eﬁergiezusténde besetzt
(vgl. Bild 3.3.3). Nach der FErMI-Dirac-Statistik ist die Anzahl der Elektronen mit
Impulsen zwischen p; und p; + Ap; bzw. p und p + dp

2 2
Ny=—2 | baw. |dN = %

" N (M
e " 41 h4(e "T+1)

) E Bild 3.3.3. Quantenzustinde nach der FErmI-
® @ ® ® ® Dmao-Statistik firr 7' == 0

« ist ein Parameter, der aus der Teilchenzahl zu bestimmen ist und auch von der
Temperatur abhingt. Der Ausdruck

fo=—— (7a)
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heiBt Verteilungsfunktion bzw. Verteilungsdichte. Er gibt die Besetzungswahr-
scheinlichkeit einer Phasenzelle an.

Bei der Integration iiber die Besetzung sémtlicher Zustéinde muB sich die Gesamt-
zahl der Elektronen ergeben. Bezeichnet N die Elektronenkonzentration, d. h. die
Anzahl der im Metall frei beweglichen Ladungstréiger je Kubikmeter, so mufl

N=[dN (8)

bzw., wenn man (7) einsetzt,

drg ~  p*dp
V= | T — ©
Mg
0
erfiillt sein. Werden nur freie Elektronen innerhalb des Metalles betrachtet, so be-
steht die Elektronenenergie nur aus kinetischer Energie. Fiir diese ist
P
==, 1
o(p) = (10)

Zur Auswertung des Integrals (9) setzt man
pZ

V= kT (11)

Damit ergibt sich aus (9), wenn man fiir die Elektronenenergie den Ausdruck nach (10)
einsetzt,

4 Vé g 7J1\3/2 VE dt
N = —T- (mk.’) Wt}-—l (12)
0
Das rechts stehende Integral der Form
I, = e dt (13)
Sl ey
0

heift Entartungsintegral. Seine Auswertung erfolgt durch Reihenentwicklung. Fiir
—x=06>0 (13a)

zerlegt man

5 oo oo
tﬂ
In—l = t‘n—l dt + ft"_l dt - fm‘ dt. (14)
0 o 0
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Der erste Summand kann elementar ausgewertet werden. Den zweiten und dritten
faBt man zusammen und schreibt

671«
Iy =— —+ I (15)
mit

) tn—l 2 tn—l
— n—
é

Die Aufspaltung des dritten Summanden in ein Integral von Null bis 6 und ein
Integral von ¢ bis Unendlich ist zur Gewéhrleistung der Konvergenz erforderlich.
Durch Reihenentwicklung entsteht

oo [ oo
I, =— f -1 § (—1y+1 e—C+1)(E=0 df — f -1 3 (—1) eC+D(-0) dt.
8 »=0 0 »=0
(17
Im ersten Summanden kann z = (v + 1) (t — 0), im zweiten x = —(» + 1) (¢ — 9)

transformiert werden. Damit folgt

I, ~f[6_§_xn— — (6 — )] e= dxg - +1),)
+f( 2)+letdx s (ZDre o _6(,“). (18)
=0 (@+1)r
Auswertung der Integrale unter Verwendung der Gammafunktion
D = [ os g2y (19)
0

ergibt schlieBlich

o o]

T n—1\ 3l
Jera=sro () ()%

0
n—1 5105 {y e e
+( 5 ) —=+ ]+(—) (Fn)(—— I

e—3(5
+ o) (20)
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mit
. 1 1 1
Ci=1—?+§—?+"‘"" (20a)
Speziell ist
e 20D
. (20b)

Mit Hilfe von (20) kann das Integral in (9) berechnet und daraus der Parameter o
bestimmt werden. Seine Kenntnis ist erforderlich, wenn die physikalischen Zustands-
groBen der Elektronen im Festkorper, insbesondere die Innere Energie und die spezi-
fische Warmekapazitét, abgeleitet werden (vgl. 3.3.3.).

Fermi-Energie und Fermi-Kanite

Der Parameter « in (7) und (9) ist mit dem Chemischen Potential uc verkniipft,
das in der Statistischen Physik definiert wird (vgl. [3] 3.3./6). Es gibt die Freie
Enthalpie je Teilchen an. In der Festkorperphysik wird das Chemische Potential
als Fermi-Energie { bzw. Fermi-Potential bezeichnet. Zwischen uc bzw. { und o
besteht die Beziehung

e = ¢ = —okT|. (21)

Die ¥eErMI-Energie fiir 7 = 0 wird mit {, bezeichnet:

$o =2(0) (22a)
Sie heilt Fermi-Kante.
Am absoluten Nullpunkt 7' =0 hat die Verteilungsfunktion (7a) fiir Energien
e > £ den Wert Null. Diese Zustédnde sind also unbesetzt. Dagegen ergibt sich im
Falle ¢ < £, fiir den Wert der Verteilungsfunktion f, = 1. Diese Zustidnde sind alle
besetzt. Die FERMI-Kante trennt somit fiir 7 = 0 die besetzten von den unbesetzten
Zustinden. Sie ist identisch mit der Grenzenergie nach (6):

Lo =c¢r | (22)
Fiir die Anzahl der Elektronen ergibt sich nach (7) mit der FErmi-Energie nach (21)
) -
N; = E‘—_CZL——— bzw. dN = i;t]?dL . (23)
e 11 h3 (ek_T + 1)

Als Verteilungsfunktion folgt an Stelle von (7a)

1 ~
fo=———| (24)
*T

£ +1
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Effektive Masse

Fiir Elektronen, die sich frei durch den Kristall bewegen koénnen, wird eine effektive
Masse eingefiihrt. Sie charakterisiert die Trigheit der Elektronen im betreffenden
Material, die zwar einem periodischen Kristallfeld mit dem Potential U unterliegen,
dabei aber eine so .groBe Energie W besitzen, dafl sie sich wie freie Teilchen im
Vakuum bewegen. Auf Grund dessen 148t man das periodische Kristallpotential
vollig auBer acht, rechnet also mit U = 0, nimmt dafiir aber eine gegeniiber der
Elektronenmasse m, = 9,11 - 10-31 kg verdnderte Teilchenmasse m an.

Bezeichnet v die Elektronengeschwindigkeit, F die duflere Kraft, U das Potential,
so wird die Bewegung der Elektronen nach dem zweiten NEwToNschen Axiom durch

“do
de

Me

=F —grad U (25)

bestimmt. Nach dem Konzept der effektiven Masse m sieht man davon ab, das real
vorhandene Kristallpotential einzufiihren, und behandelt die Kristallelektronen w1e
freie Teilchen der Masse m. An Stelle von (22) schreibt man also

L 26
mg =T (26)
Der Wert m der effektiven Masse hiangt nicht nur vom Material, sondern auch von
der Bewegungsrichtung ab. Die effektive Masse ist daher in (26) als Tensor einzu-
fithren.

Werden die Beschleunigungen nach (25) und (26) gleichgesetzt, so erhdlt man in
erster Naherung den Mittelwert

m= + @7
1— —gradU
F & .
der durch Integration iiber sémtliche Richtungen abgeleitet werden kann. Das
Verhiltnis zwischen der Elektronenmasse m, und der effektiven Masse m heillt
Freiheitszahl f:

Me

f:_

m"

(28)

Tabelle 3.3.2 enthilt die Freiheitszahlen fiir einige Metalle. Werden die Elektronen
im Metall als freie Teilchen behandelt, so ist bei der Berechnung ihrer Zustands-
grofen, z. B. ihrer FErMI-Kante, mit der effektiven Masse m zu rechnen.

Beispiel 3.3.1. Fermi-Kante der Elektronen in Kupfer

Kupfer hat nach Tabelle 2.2.2 die Dichte d = 8,93 g cm=2. Seine relative Atommasse ist 4,
= 63,55. Fiir die Konzentration der Kupferatome ergibt sich Ng, = 8,5 - 102® m—3. Die Frei-
heitszahl fiir Kupfer ist nach Tabelle 3.3.2 f = 0,67. Nimmt man an, daB je Atom ein freies
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Elektron geliefert wird, so folgt fiir die FErMI-Kante in Kupfer nach (6)

eV =4,7 eV.

o _ (663107342 0,67 (3.8,5. 10%)203 1
F™ T2 9,11- 103 4.3,14.2 1,60 - 1019

Die effektive Masse ist einzusetzen, wenn die freien Elektronen im Metall als Elek-
tronengas behandelt werden und die molare Warmekapazitit dieses Gases bestimmt
wird. Aus der Messung des Anteils der freien Elektronen im Metall an der molaren
Warmekapazitdt des Festkorpers 1a6t sich daher die effektive Masse experimentell
bestimmen (vgl. 3.3.4. und 3.3.5.).

P Probleme

3.3.1. Konzentration und Beweglichkeit freier Elektronen im Metall —
Hall-Effekt und Ohmsches Gesetz

Durch eine Kupferplatte flieBt ein elektrischer Strom der Dichte j = 5 A mm~2. Um die Drift-
geschwindigkeit v der Elektronen sowie die Konzentration freier Ladungstriger zu messen, wird
senkrecht zur Stromrichtung und zur Kupferplatte ein magnetisches Feld mit der Flufidichte
B = 1,0 Vs m~2 angelegt (vgl. Bild 3.3.4). Zwischen den Endflichen der 50 mm breiten Platte
stellt man dabei eine HaLL-Spannung von Uy = 12,4 pV fest. Sie ist so orientiert, da B, j und
die HarL-Feldstérke Ey in dieser Reihenfolge ein Linkssystem bilden.

_HI_Il_lI__ : Bild 3.3.4. Harr-Effekt

Bestimmen Sie die Beweglichkeit u der freien Elektronen in Kupfer, ihre Konzentration N und
die Driftgeschwindigkeit » infolge des angelegten Feldes. Wie gro8 ist im Mittel die StoBzeit,
die Zeit 7 zwischen zwei Sto8en eines Elektrons? Der spezifischen Leitwert fiir Kupfer betrigt

o = 64,5 - 108 Q m~1. Die effektive Masse m ist gemia Be _ 0,67 gegeben.
m

Losung:

Die freien Elektronen verhalten sich innerhalb des Metalles als Elektronengas. Unter dem Ein-
fluB des duBeren Feldes E erhilt das einzelne Elektron mit der Ladung —e die Beschleunigung

’F:—ﬁ. (1)
m
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Auf Grund dessen driften die Elektronen entgegen der Feldrichtung, erzeugen also einen elektri-
schen Strom in Feldrichtung. Beim Zusammensto8 mit einem Gitterbaustein verliert das Elektron
die aufgenommene Driftenergie vollstindig an das Gitter. In der Zeit v zwischen zwei Zusammen-
stoBen wichst somit die Driftgeschwindigkeit von Null auf 2v, wenn v den Mittelwert der Drift-
geschwindigkeit angibt:

reE
m

@)

1
v=— —
2

Die driftenden Elektronen fithren zu einem elektrischen Strom der Dichte
J =je = —Nev. (3)
Wir setzen hierin » nach (2) ein und erhalten

i Ner
2 m

i= E (3a)

wobei NV die Anzahl der Elektronen je Kubikmeter angibt. N hat also die Einheit m=3. Der Ver-
gleich mit dem Ohmschen Gesetz

j=oE (4)
ergibt fiir die Leitfahigkeit

Ne?r
m

1
o= (5)

Das Verhidltnis zwischen der Driftgeschwindigkeit © der Elektronen und der elektrischen Feld-
stirke E ist eine Materialkonstante. Es definiert die Beweglichkeit der Elektronen im Metall:

v
=bE bzw. b= — 6
v ZW. z (6)
b hat die Einheit m/(s V m~1) bzw. m?s~1 V-1,
Wie aus dem Vergleich mit (2) folgt, ist die Beweglichkeit b der StoBzeit v proportional:
1 e
b= ——r+. 7
2 m v ™
An Stelle von (5) kann man daher auch
o = Neb (5a)

schreiben.

Die Kenntnis der Leitfahigkeit ¢ eines Stoffes liefert nur das Produkt aus der Elektronenkon-
zentration NV und der Beweglichkeit b, nicht jedoch die GroBen selbst. Um diese einzeln bestimmen
zu kénnen, nutzt man den Hall-Effekt aus.

Auf eine bewegte Ladung ¢ wirkt die Kraft

F =g(E +vxB). )

Im vorliegenden Fall ist ¢ = —e zu setzen.
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Durch das elektrische Feld werden die Teilchen in oder entgegen der Feldrichtung beschleunigt,
durch das magnetische Feld senkrecht zur Stromrichtung abgelenkt. Sie konzentrieren sich daher
auf einer Seite der Platte, wodurch ein Gegenfeld, das Harr-Feld Ey, erzeugt wird. Nach (8)
wird die LorENTz-Kraft durch das Harr-Feld

Eg =BXxv 9)
ausgeglichen. Lost man (3) nach © auf und setzt den erhaltenen Wert in (9) ein, so ergibt sich

Ey = RBXj. -(10)
Der Proportionalititsfaktor R heilt Hall-Konstante. Er ist fir reine Elektronenleitung gleich

1

R=— —.
Ne

(11)

Das negative Vorzeichen zeigt, dal bei Elektronenleitung B, j, Ey in der Reihenfolge ¢, j, —k
aufeinanderfolgen, also ein Linkssystem bilden. Stehen B und v senkrecht zueinander, so erhilt
man bei Verwendung von Gleichung (3)

By = b s (12)
o

Die Messung der HALL-Spannung liefert daher bei Kenntnis der GréBen B, j und ¢ die Elektronen-
beweglichkeit b, aus der gem#f (7) die StoBzeit v bestimmt werden kann.
Mit den vorgegebenen Werten folgt aus (12), wenn man nach b auflost:

_ 12,4-10°°.64,5-10°

b =
50.10-2-5-108.1,0

m2s1V-1=3,20.103m%s1 V-1,

Die Driftgeschwindigkeit betrégt nach (6)
v=>bE =01 =382.10%.5.10°.1,55- 10 m st = 0,248 mm 5.
¢ : ot

Aus (7) ergibt sich durch Auflésen nach =

. . 103 . .10-31
L 2:320:108. 941107 oo,
1,60 - 1039 . 0,67

Nur in der StoBzeit wirkt sich der Unterschied zwischen Elektronen- und effektiver Masse aus.
Aus (9) und (10) erhélt man

i Bj  1,0-5-10°-50-1073

A _ - 03 == 1,26 - 102 m-=.
eR  eBy  1,60-10-1°.12,4 105 :

N=—

Nach Tab. 2.2.2 ist Ngy = 8,46 - 1028 m—3, Die Abweichung ist einmal darauf zuriickzufiihren,
daB auBer den Elektronen noch andere Ladungstriger beteiligt sind. AuBlerdem stellt die An-
nahme, daB auf jedes Metallatom ein freies Elektron im Metall entfallt, nur eine Naherung dar.
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3.3.2. Positive und negative Ladungen bei der Stromleitung

Wismut besitzt als Folge seines Kristallaufbaus anisotrope Eigenschaften. Der elektrische Wider-
stand hingt von der Stromrichtung, der HarL-Effekt von der Richtung des Magnetfeldes ab.

Mit einem Strom der Dichte j = 1,0 A mm=2 und einem senkrecht dazu gerichteten Magnetfeld
der FluBdichte B = 1,0 Vs m~—2 wird, wenn B parallel, j orthogonal zur c-Achse gerichtet ist, die
Hacrv-Feldstirke By = 1,35 V. m~! gemessen. Sie ist derart orientiert, da B, j, Ey ein Links-

system bilden. Der spezifische elektrische Widerstand betrigt L 1,02 Qm. Wenn j parallel, B
4
orthogonal zur c-Achse gerichtet ist, wird dagegen By = 0,045V m—l,_—l- =1,30Qm gemessen.
I

Hierbei ist die Harr-Feldstarke Ey so gerichtet, daf B, j, Ey ein Rechtssystem bilden. Leiten
Sie die Verkniipfung der Harr-Konstanten mit der Konzentration der Ladungstriger her und
deuten Sie die MeBergebnisse. )

Losung:

Die unterschiedlichen Richtungen der Harv-Feldstirke weisen nach (3.3.1/11) darauf hin, da8
verschiedene Sorten von Ladungstragern am elektrischen Strom beteiligt sind. Wir gehen davon
aus, daBl neben dem Elektronenstrom j,. ein Strom j, positiver Ladungen flieBt. Beide Strome
summieren sich zum resultierenden Strom

J=Je+Jp 1)
mit

Je = —NeeVe,  jp = NpZev,. @)
N, und N, geben die Konzentration, v, und v, die Driftgeschwindigkeit der positiven und nega-

tiven Ladungstriger an (vgl. Bild 3.3.5). Ze kennzeichnet die positive Ladung eines 'Ladungs-
trigers. j, und j, sind gleich gerichtet.

- j.=Nev,
< jp=2Nyey,
- - : —J =),

Bild 3.3.5. Driftgeschwindigkeiten und elektrisbhér Strom
bei verschiedenen Ladungstrigern

Die Beweglichkeit definiert man gemif3

ve = b,E bzw. v, =0b,E. (3)
Wird (3) in (2), (2) in (1) eingesetzt, so ergibt sich

J = (Neebe + NpZeb) E. 4)

Der Vergleich mit dem Ommschen Gesetz liefert fiir die elektrische Leitfahigkeit im Falle zweier
verschiedener Sorten von Ladungstrigern. .

o = N,eb, + NpZeb,. t (5)
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Bezogen auf 1 m® Leitermaterial wird in einem elektrischen Feld E und einem gleichzeitig vor-
handenen magnetischen Feld mit der FluBdichte B die Kraft

F' = (—Ne + NyZe)E + (—Noev, + NyZev,) x B 6)

ausgeiibt. Damit der LoreNTz-Kraft das Gleichgewicht gehalten wird, mu8 also die Harr-Feld-
stirke
Ey— — (—=Neeve + NpZevy) X B @)
—Nee + NpZe

erzeugt werden.
Die Driftgeschwindigkeiten kénnen nach (3) durch die Beweglichkeiten der Ladungstriger aus-
gedriickt werden. Aus (7) folgt, wenn man (5) beriicksichtigt,

[ Bxj
Ek=—---ouo  ExXB= —— 8
H “Nee t NZe "Nt NyZe ®

Fiir die Harr-Konstante erhédlt man somit bei einem Ladungstransport durch Elektronen und
positiv geladene Teilchen

—Nee 4 NyZe
Im Falle R > 0 iiberwiegt die transportierte positive Ladung die in der entgegengesetzten Rich-
tung transportierte negative Ladung. Die Harr-Feldstdrke Ey ist in diesem Falle nach (8) so
orientiert, daBl B, j, Ey in der angegebenen Reihenfolge ein Linkssystem bilden.
Uberwiegt dagegen die transportierte negative Ladung, so ist nach (9) R < 0; B, j, Ey bilden in
dieser Reihenfolge ein Rechtssystem. Der letzte Fall liegt insbesondere bei reiner Elektronenleitung
vor. Fir B || ¢, j L ¢ erhilt man aus den MeBwerten nach (5)

1
= Neb, + NyZeb, = — Q1m1,
c ebe + NpZeb, 102 m
Nach (9) ergibt sich

! —En _ 1,36 s As1 — —1,35 - 108 m3 C-1,

R= - _
—Ne + NyZe  Bj 1,0 108

Eine Aussage, welche der transportierten Ladungen iiberwiegt, ist nach Gleichung (5) allein nicht
moglich. Dagegen besagt Gleichung (9), der der Harv-Effekt zugrunde liegt, da fiur B || e,
j L ¢ mehr negative als positive Ladung transportiert wird.

Im Falle B L ¢, j || ¢ erhdlt man aus den MeSwerten nach (5)

1
= Neeb N, Zeb, = — Q1m1,
c cebe + NpZeb, 1.30 m
nach (8) und (9)
1 —EBy 0,045

R= - -
—Nee + NyZe Bj 1,0 - 10

m? As! =4,5.10"8 m3 C1.

Wie aus der letzten Gleichung hervorgeht, iiberwiegen fur B|| ¢, j L ¢ die positiven Ladungen.
Der gegeniiber dem ersten Fall verdnderte Leitwert ist somit nicht nur auf die Abhéngigkeit der
Beweglichkeiten b, und b, von der Stromrichtung zuriickzufiihren. Beim Transport elektrischer
Ladungen durch anisotrope Kristalle hingt auch die Konzentration der beteiligten Ladungstriger
von der Stromrichtung ab.
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3.3.3. Innere Energie freier Elektronen in einem Metall

Stellen Sie die Formel fiir die innere Energie der freien Elektronen in einem Metall auf. Be-
rechnen Sie den Mittelwert der Nullpunktenergie fiir frele Elektronen in Kupfer am absoluten
Nullpunkt.

Losung:

Nach (3.3./7) ist die Zahl freier Elektronen mit Impulsen zwischen p und p 4+ dp durch die
Gleichung

2
aN — 4rgp® dp )

p*
h3 (ea+2ka + 1)

gegeben. Die innere Energie des Elektronengases, bezogen auf 1 m® Kristallvolumen, ergibt sich

durch Summierung itber siémtliche Energiezusténde:

fadN f p*dN )

Wir setzen (1) in (2) ein und multiplizieren mit ¥, = 1 m3. Es folgt

4ngV, o
1 2 ap. 3)
mhb ot P
e 2mkT + 1

Durch die Multiplikation mit V4 hat U die Mafeinheit J erhalten. Der Ausdruck (3) kann analog
(3.3./11) durch die Substitution

pZ
= 4
2mkT @

auf ein Integral der Form (3.3./13) zuriickgefithrt werden. Es entsteht damit die Gleichung
L=

U 472 ngVom3/2(kT)5/2f 32

de 5
h? extt 1 ®)

Hierin ist zunéchst der Parameter « zu bestimmen. Er geht nach (3.3./12) aus der Gleichung

(o]
2 3/2
Nyt V2 ng(mkT) Ve a ®)
B estt + 1
0
hervor. Setzen wir voraus, dal « = —& eine grofle negative Zahl ist, so daBl
] > 1 (7)

gilt, so sind in (3.3./16) nur die ersten beiden Summanden von Bedeutung, wihrend die Ex-
ponentialreihe véllig unberiicksichtigt bleiben kann. Aus (6) folgt damit

_ 4, Comkrye

T3 V= 78 (—x)?l? (1 + 8%:5 + ) (8)
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In erster Naherung vernachléssigen wir hierin auch den zweiten Summanden, schreiben also

3N \2/® “h?
gy = (X ©
4rng) 2mkT
In zweiter Naherung setzen wir
—o@) = —aq +4 (10)
n (8) ein und beriicksichtigen (7). Damit ergibt sich
23 p2 2 a/3
o= gy = 3N W 1 (emkT)?  (4mg’ ) (11)
4rg 2mkT 3ht 3N

Berechnet man nach (9) bzw. (11) die FerMI-Energie { = —akT gemif (3.3./21), so erkennt man,
daB diese fur 7' — 0 mit der Grenzenergie ¢x bzw. der FErMI-Kante {, uberemstlmmt Fir die
FerM1-Energie £ in Abhingigkeit von der Temperatur folgt aus (11)

(12)

or) = (1 L= "ZTZ)

12 2

Mit den vorgegebenen Werten erhalten wir

o (385 10myes (6,63 - 10-24)2 . 0,67
@ 4x -2 . 2.9,11-10-3L. 1,38 - 10-% - 300

= 183,

wihrend der zweite Summand in der eckigen Klammer nur einen Wert in der GréBenordnung
10~* hat. Wir kénnen also mit o« = o(;) rechnen. Die Auswertung des Integrals (5) zur Bestimmung
der inneren Energie erfolgt in gleicher Weise nach (3.3./16) wie die Auswertung des Integrals (6).
Mit dem Niherungswert (9) fiir den Parameter o folgt

3h2 [ 3N \23 52 ([ dmg \43 mAkET?
= —) N, |1+ (2L . 13
10m(4ﬂ:g) °[ T3 <3N) R ] 13)

Fir die Nullpunktenergie des Gases freier Elektronen im Metall ergibt sich somit

2/3
y = o0 (3NN vy, (14)
IOm 41rg

bezogen auf ein einzelnes Teilchen
2 2/3 2 \2/3
5 = 3n* (3N _ 3r%f (3N ) (15)
10m \ 4wg 10m, \ 4mg

Verglichen mit dem Maximalwert ¢x nach Beispiel 3.3.1 erhalten wir

_ 3
gy = ?eF . (16)

Im Mittel kommt also entsprechend der Rechnung in Beispiel 3.3.1 auf jedes Elektron in Kupfer
die Nullpunktenergie

3

e 4,7¢V. = 2,8¢V.

& =



3.3. Klassische Theorie der elektrischen Leitung 161

3.3.4. Spezifische Wirmekapazitit des Elekironengases

Berechnen Sie die Innere Energie U der Elektronen in Kupfer fir 77 = 300 K, bezogen auf das
einzelne Elektron. Vergleichen Sie den erhaltenen Wert mit der Nullpunktenergie. Wie grof ist
die spezifische Warmekapazitdt der Elektronen und welchen Beitrag leisten sie zur spezifischen
Wirmekapazitét des Festkérpers? Die relative Atommasse des Kupfers ist 63,55.

Losung:

Wir stittzen uns auf die Ableitung der Inneren Energie nach 3.3.3. und verwenden (3.3.3./13).
Fir die mittlere Energie des einzelnen Teilchens kénnen wir

3h2 (ﬂ)ﬂ:} [1 5_TC2 ( 47Tg )4/3 m2k2T2:|

o —
D) = Tom \2ng 3 \3y At

(1)
schreiben. Unter Beriicksichtigung der Ergebnisse in 3.3.3. erhalten wir

5_752 47tg \4/3 m2k2T
3 \3N |

() =5 |1 @)

Die spezifische Warmekapazitat fester Korper wird im allgemeinen auf ein Kilogramm Metall

bezogen und mit ¢ bezeichnet. Wir legen demzufolge unserer Rechnung 1 kg Trigersubstanz,

d. h. 1 kg Metall, zu Grunde. Dadurch wird die Konzentration N der Elektronen nicht geéndert.
£ ist mit

N, = 1NN

mye  Mye d

®3)

zu multiplizieren, wenn
Uy =Ny @

die Innere Energie, bezogen auf 1 kg Metall, angeben soll, Dabei bedeutet my, die Masse eines
Metallatoms, My, die Molmasse des Metalles in kg kmol—!, d die Dichte. U, hat die Einheit
J kgt

Fir die spezifische Warmekapazitdt der Elektronen, bezogen auf 1 kg Metall, folgt

2k?m [ 4mg \#® N, T
w2 \3N ) My,

SCe =

()

Bei der numerischen Rechnung verwenden wir die Ergebnisse nach 3.3.3. Aus (2) ergibt sich

2 - 4/3 .10-31. . 10-237")2
§T) =281+ 57 4w -2 (9,11 - 10 1,38 - 10-237))
3 \3.8,5.10% 0,672(6,63 - 10-34)4

— 2,8 (1 4+ 1,37 - 10-972) &V.
Fiur T = 300 K folgt
§(T) =2,8(1 4+ 1,24 -107%) eV.

Mit zunehmender Temperatur verdndert sich hiernach die Elektronenenergie bei Zimmer-
temperatur im Mittel nur um Bruchteile eines Elektronenvolts. Die Nullpunktenergie bestimmt
iiber einen sehr grofen Temperaturbereich die Innere Energie der Elektronen. Mit ansteigender
Temperatur wichst & nicht proportional k7. Vielmehr steigt die Elektronenenergie zunichst nur
sehr wenig an. Erst bei hohen Temperaturen wirkt sich der Anstieg proportional 7' aus. Infolge-

11 Schilling, Festkérperphysik
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dessen- ist der Beitrag der Elektronen zur spezifischen Warmekapazitit des Festkérpers nur
gering. Nach (5) erhalten wir fiir 7 = 300 K

o o TH1,38-10-)2.9,11. 105 4m -2 2/3 6,63 . 1026 . 300
e (6,63 - 10-34)2 . 0,67 3.8,85.1028 63,55
=8,4-10~*kecal kgt K1 = 3,52 - 10-3 kJ kg-1 K-1,

2,39 - 10~ keal kg1 K1

Nach Tabelle 2.2.2 hat Kupfer bei Zimmertemperatur die spezifische Wirmekapazitit ¢ =
0,092 keal kg—1 K1 = 0,385 J kg—* K~1. Man erhélt daher fiir den Beitrag der Elektronen nur den
Anteil
.10
Lo _ M = 0,0091,
c 0,092

d. h. weniger als ein Prozent.

3.3.5. Effektive Masse

Fiir die freien Elektronen in Natrium wird bei der Verfliissigungstemperatur des Heliums
T =4,2K als Anteil der Elektronenan der molaren Warmekapazitit ¢, = 6,73-10~% kcal kmol-1 K-
gemessen. Bestimmen Sie daraus die reduzierte Masse der Natriumelektronen und die Freiheits-
zahl )

f= D, )

m

das Verhiltnis aus Elektronenruhmasse und effektiver Masse.

Losung:

Nach 2.2.3. und 3.3.4. setzt sich die molare Wirmekapazitit der Metalle aus einem von den

Gitterschwingungen bzw. Phononen verursachten Anteil 7" und einem auf die freien Elektronen
im Metall zuriickzufiihrenden Anteil 7' zusammen : '

C=ol®+9T. 2)

Der durch Gitterschwingungen bewirkte Anteil wiachst mit zunehmender Temperatur stirker als
der von den Elektronen stammende. Daher ist es zweckmiBig, die molare Wirmekapazitdt der
Elektronen bei sehr tiefen Temperaturen zu messen.

Bei der Ableitung der molaren Wirmekapazitdt nach 3.3.4. werden die Elektronen als freie
Teilchen ohne Potential behandelt. Daher hat man an Stelle der Elektronenmasse die effektive
Masse zu setzen. Durch Auflésen der Gleichung (3.3.4./5) nach m ergibt sich

___kC, 3N \2/3
"= k2N, T (411:9) ’ @)

Beriicksichtigt man die Umrechnung von kecal in J, so folgt mit den vorgegebenen Zahlen
(vgl. Tab. 2.2.2) :

_ (6,63 -103%)2.6,73 - 10~* - 4,19 - 10° (3 - 2,64 . 10%8 )2/3
3,142 . (1,38 - 10-2)2. 6,02 - 10% . 4,2 4.3,14-2
= 5,46 - 10~31 kg.
Fiir die Freiheitszahl f erhalten wir
Mg 9,11.10-%
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A33.1.

A3.3.2.

A333.

A 334.

A 3.3.5.
A 3.3.6.
A 3.3.7.

A3.38.

A 3.3.9.

A 3.3.10.

A 33.11.
A38.12.

A 3.3.13.

A33.14.
A 3.3.15.
A 3.3.16.
A3.3.17.
A3.3.18.

A 3.3.19.

11%*

Aufgaben

Der elektrische Widerstand hat nach der DrRupE-SoMMERFELDschen Theorie seine
Ursache in Zusammenst68en der Elektronen mit dem Gitter. Leiten Sie nach diesem
Modell die Formel fiir die Stromwérme (JouLEsche Warme) ab. .

Berechnen Sie die StoBzeit der Elektronen in Silber (¢ = 67,1108 Q1 m1,
R = —0,864 - 1010 m? As™1).

Wie grof ist die maximale Geschwindigkeit, die auf Grund der Frrmi-Dirac-
Verteilung ein Elektron am absoluten Nullpunkt in Kupfer besitzen kann (N = 8,5
X 10 m=3, f = 0,67)?

Berechnen Sie die Grenzenergie der Elektronen in Silber, wenn angenommen wird,
daB jedes Silberatom ein freies Elektron liefert (Werte nach Tab. 2.2.2, f = 1,0).
Geben Sie die Anzahl der freien Elektronen in Silber an, wenn vorausgesetzt wird,
1) daB jedes Atom ein freies Elektron abgibt, 2) daBl nur Elektronen am Ladungs-
transport beteiligt sind (Werte nach Tab. 3.3.3 und Tab. 2.2.2).

Geben Sie auf Grund der Daten in der vorangegangenen Aufgabe die Beweglichkeit
der freien Elektronen in Silber an. Die elektrische Leitfahigkeit des Silbers ist
o =67,1-108Q1m1,

Wie grof ist die mittlere Energie der freien Elektronen in Silber am absoluten Null-
punkt?

Welche Havr-Feldstérke und welche HavL-Spannung werden in einem elektrischen
Leiter aus Aluminium erzeugt, wenn seine Breite 15 cm und seine Dicke 4 mm be-
tragt, ein Strom von 200 A flieBt und ein Magnetfeld der FluBdichte B = 1,5 Vs m™2
unter dem Winkel 45° gegen die Strombahn gerichtet ist? (Werte nach Tab. 3.3.3).
Berechnen Sie den Mittelwert der kinetischen Energie eines Elektrons in Silber
bei der Schmelztemperatur 7' = 960°C unter der Voraussetzung, dafl jedes Atom
ein freies Elektron liefert. )

Stellen Sie die Formel fir die Entropie und die Freie Energie der Elektronen in
einem Metall auf und leiten Sie daraus den Druck des Elektronengases her. Wie
groB ist dieser in Silber fiir den absoluten Nullpunkt und fiir den Schmelzpunkt?
Berechnen Sie den LagraNcEschen Multiplikator « und das Fermi-Potential {
fiir Elektronen in Silber bei der Schmelztemperatur 960°C.

Welchen Anteil haben die Elektronen an der spezifischen Wirmekapazitit in
Silber bei Zimmertemperatur 7' = 300 K? (Werte nach Tab. 2.2.2)

Fiir sehr hohe Temperaturen 7' > T, geht die FERMI-DIrAC-Statistik in die BorTz-

MANN-Statistik iber. Ty heift Entartungstemperatur. Stellen Sie auf Grund der
FerMI-Dirac-Statistik eine Formel fiir die Entartungstemperatur auf.

Bestimmen Sie die Entartungstemperatur fir Kupfer. Werte sind Tab. 3.3.2 und
Tab. 2.2.2 zu entnehmen.

Bestimmen Sie die mittlere Geschwindigkeit der Elektronen in Kupfer fiir den
absoluten Nullpunkt (ep = 4,7 eV, f = 0,67).

Welche mittlere freie Wegldnge haben die quasifreien Elektronen in Kupfer fir
T=0(=>54.10"45s)? '

Welche mittlere Energie nimmt im elektrischen Feld £ = 1 V m™ ein Kupfer-
elektron zwischen zwei St6Ben auf?

Wie groBl ist unter Beriicksichtigung der effektiven Masse die molare Wirme-
kapazitit der Elektronen in Kupfer bei 4,2 K? (Werte nach Tab. 2.2.1 und Tab. 2.2.2)
Fir Blei rechnet man mit vier freien Elektronen je Atom. Die molare Wirme-
kapazitit der Elektronen bei 4,2 K ist 4,58 - 10-3 kcal mol-1 K-1. Welche GroBe
ergibt sich daraus fiir die effektive Masse, wie groB ist die Freiheitszahl? (Werte nach
Tab. 2.2.2)



4. Grundlagen der Quantentheorie
fester Korper

4.1. Bindertheorie

E Einfiihrung

Einelekironenndherung

Die klassische Theorie fester Korper versagt bei der quantitativen Erkliarung grund-
legender elektrischer und optischer Eigenschaften. Das betrifft insbesondere die
elektrischen Leitfahigkeitseigenschaften von Metallen, Isolatoren und Halbleitern
sowie optische Effekte, denen Quantenprozesse zu Grunde liegen. Dazu gehéren der
dubere und der innere Photoeffekt sowie die Lumineszenz.

Die theoretische Behandlung kann im allgemeinen derart erfolgen, dal nur das Ver-
halten eines einzelnen Elektrons betrachtet wird. Diese Einelektronennidherung
bildet eine wesentliche Grundlage der Festkorperphysik. ‘
Durch die réumlich-periodische Anordnung der Kristallbausteine verandert sich das
Potential rdumlich periodisch. Es ist als dreidimensionale Funktion gegeben, die
durch eine Periodizitétseigenschaft der Form

| Ulr) = Ur + R) (1)

gekennzeichnet ist. Darin bezeichnet # den Ortsvektor, wahrend die Periode gemaf3

3
R =Y na; (n; ganze Zahlen) (1.1./1)
i=1

(2

festgelegt wird.
Schridinger-Gleichung, Bloch-Wellen

Die in der klassischen Physik eingefiihrten Zustandsgréfen eines Teilchens, z. B.
der Impuls p, die Geschwindigkeit v, die Beschleunigung @, ergeben sich quanten-
mechanisch als Mittelwerte aus Verteilungsgesetzen, die durch die Wellenfunktion
y bestimmt werden. Bei freien Teilchen, die keinen Kréaften unterliegen, wird ¢
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durch eine ebene Welle reprisentiert (DE-BrocLiEsche Welle, vgl. [2] 6.2.). Allge-
mein folgt y fiir gebundene Teilchen aus der Sehrodinger-Gleichung

'H’(/JZWI/J - (2)

Darin kennzeichnet H den HamruroN-Operator der Gesamtenergie, W die Gesamt-
energie.

2
Setzt sich die Gesamtenergie aus der kinetischen Energie Wy, = f—m und der

potentiellen Energie U = U(r) zusammen, so lautet der HammroN-Operator der
Gesamtenergie

w o VP

+U@) = —5— A + Ur) (2a)
Durch Einsetzen in (2) ergibt sich die ScHRODINGER-Gleichung in der Form
h2 ' 3
—5, Ay + U@y =Wy . (3)
Wegen
da d AR +7r) d @
dr  dR+7) dr AR+

und auf Grund der Eigenschaften der Potentialfunktion U(r) nach (1) ist der HaMIL-
ToN-Operator H bei Festkorperproblemen gegen eine Translation um den Vektor R
invariant.

Die Losung der SCHRODINGER-Gleichung wird in der Form

p(r) = AelkaTg(r) ()

geschrieben. Der Faktor ¢(r) ist durch die Periodizititsbedingung

@(r) = ¢(r +R) (5a)

gekennzeichnet. Eine Funktion e*a7p(r) mit der Eigenschaft (5a) fir ¢(r) heilit
eine Bloch-Welle. 4 bedeutet eine Normierungskonstante, iiber die zweckméaBig
verfiigt werden kann. Im folgenden wird zunéchst 4 = 1 angenommen.

k, wird als Ausbreitungsvektor der BLocu-Welle bezeichnet. Er ist vom Wellenzahl-
vektor k freier Teilchen zu unterscheiden. Der Ausbreitungsvektor muf reell sein,
da y(r) sonst in einer bestimmten Richtung iiber alle Grenzen wachsen wiirde.
Durch die Losung in Form der BrocH-Wellen (5) wird gewéhrleistet, dafi mit y(r)
auch p(r 4+ R) eine Losung der SCHRODINGER-Gleichung darstellt und zum gleichen
Eigenwert

W =W, (6)
gehort. p(r) und y(r + R) unterscheiden sich nach (5) und (5a) lediglich um einen



166 4. Grundlagen der Quantentheorie fester Kérper

konstanten Faktor:
P+ B) = elbar g 4 R) = ely(r). )

Da E, eine reelle GroBe darstellt, ist der absolute Betrag des Faktors, um den sich
p(r 4+ R) und y(r) unterscheiden, gleich eins:

|etkaR| = 1. (8)

Aquivalente Punkte eines Kristalls, die sich um einen Translationsvektor B geméafl
(1.1./1) unterscheiden, sind nach (5) durch gleiche Wahrscheinlichkeitsdichten

p(r) p*(@) = p(r + R) y*(r + R) )

gekennzeichnet. Das Elektron befindet sich daher nach dem zu Grunde gelegten
Modell in dquivalenten Punkten mit gleicher Wahrscheinlichkeit. Es 148t sich nicht
lokalisieren, sondern ist als Foige der Periodizitét des Potentials iiber den gesamten
Kristall verteilt.

Mehrdeutigheit des Ausbrettungsvektors k,
Der Ausbreitungsvektor k, einer BLocH-Welle ist nur bis auf den Vektor

b= brrmn,m3

eines reziproken Gitterpunktes bestimmt. Zwei Vektoren k, und k, + b des rezi-
proken Gitters heilen dquivalent, wenn b einen Gitterpunkt b, m,m, des reziproken
Gitters bezeichnet.

Wird in der Brocr-Welle (5) bzw. (7) k, durch k, 4 b ersetzt, so erhdlt man fiir

b= bm,m,m,

p(r + R) = elEatDBy(r), (Ta)

Das Skalarprodukt R - b ergibt auf Grund der Definition (1.1./1) des Translations-
vektors R und der Definition (1.1./6) bzw. (1.1./7) des reziproken Gitters

3 3
R.-b= Z n;a; - Z mlb] = (nlml + XU + 'n3m3) . 27:,
s i=1

=1

so daB aus (7) fir ks, — k, + b folgt
p(r + R) = el Fy(r).

Um den Ausbreitungsvektor k, eindeutig zu definieren, wird die Betrachtung auf
einen Bereich nichtdquivalenter Punkte des reziproken Gitters beschrinkt. Ein
derart festgelegter Vektor k, heiit reduzierter Ausbreitungsvektor, im Gegen-
satz zum freien Ausbreitungsvektor, der simtliche Punkte des reziproken Gitters
durchlauft.

Wigner-Sextz-Zelle, ‘Brillowin-Zone, reduzierter Bereich

Die Definition der Elementarzellen nach 1.1. ist weder fiir den direkten noch fiir den
reziproken Raum eindeutig. Durch die Festlegung, da8 die Elementarzelle eine Ge-
samtheit nichtiquivalenter Punkte enthilt, wird nur ihr Volumen 2, bzw. 2,
nicht jedoch ihre Begrenzung bestimmt.
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Zur einfachen Begrenzung des reduzierten Ausbreitungsvektors k, auf einen Bereich
nichtédquivalenter Punkte definiert man den reduzierten Bereich, Er wird im rezi-
proken Raum durch ein Parallelepiped reprisentiert, dessen Ecken durch 4-b;/2
gegeben sind. Die linke, die untere und die vordere Begrenzungsflidche sind ausge-
schlossen. Der reduzierte Bereich ist also durch

—nm<ki-a;<m (10)
festgelegt.
a » a
b,
2
//G / V a a
7/
4
Z
7/ ; ’
Ve
a a
o~ <
Bild4.1.1. Reduzierter Bereich eines zweidimensionalen Bild 4.1.2. Konstruktion der
Gitters. WieNER-SErTZ-Zelle fiir ein quadra-
o ausgeschlossener Punkt, ————— ausgeschlossene tisches Gitter

Strecke, @ zugehoriger Punkt, zugehorige Strecke

Bild 4.1.1 zeigt den reduzierten Bereich fiir ein zweidimensionales Gitter.

Der direkte Raum, d. h. der Kristall, wird in WieNER-SEITZ-Zellen (W-S-Zellen),
der reziproke Raum in BRILLOUIN-Zonen unterteilt.

Eine Wigner-Seitz-Zelle (vgl. Bild 4.1.2) enthilt alle Punkte, die einem betrachteten
Gitterpunkt des Kristallgitters néher sind als jedem anderen Gitterpunkt. Sie umfaft
damit eine Gesamtheit nichtdquivalenter Punkte; ihr Volumen ist gleich dem der
Elementarzelle 2,. Zur Abgrenzung einer W-S-Zelle zieht man von dem betrachteten
Gitterpunkt zu den benachbarten Gitterpunkten Verbindungsgeraden und errichtet
auf ihnen in der Mitte senkrechte Ebenen. Das kleinste von diesen eingeschlossene
Volumen um den Gitterpunkt kennzeichnet die W-S-Zelle.

Im reziproken Raum kénnen ebenso die Mittelsenkrechten auf den Verbindungs-
geraden zwischen den Gitterpunkten errichtet werden. Das kleinste um einen Gitter-
punkt des reziproken Gitters begrenzte Volumen heiflt erste Brillouin-Zone (vgl.

3
Bild 4.1.3). Seine GroBe ist gleich Z—n-, d. h. gleich dem der Elementarzelle 2," des
0
reziproken Gitters. Die erste BRILLoUIN-Zone kann als geometrischer Ort der Ge-

samtheit aller kleinsten nichtdquivalenten Vektoren k, im reziproken Raum defi-
niert werden. Fiir die Gleichung der Mittelsenkrechten erhédlt man

E,-b :%bz (11)
(vgl. Bild 4.1.4).
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Neben der ersten BrRILLoUIN-Zone liefert die Konstruktion der Mittelsenkrechten
auf den Verbindungsgeraden eines Gitterpunktes zu seinen Nachbarn weitere
BrorouiN-Zonen. Sie heiflen Brillouin-Zonen hoherer Ordnung. Als zweite BRIL-

ky
% 1. Zone A

!

|
e
- \, | 7
3 Zone A i 4
— N% 2 N

X \
Q, \\
h > —|- C > k
1
X k,
2’
N a
7/ 4 : \\\
7 | N \
Brillouinsche

] Ebene
Bild 4.1.3. Erste drei BRiLLoUIN-Zonen des quadra- Bild 4.1.4. Zur analytischen Dar-
tischen Gitters. stellung der Mittelsenkrechten bei

der Konstruktion der BRILLOUIN-
Zonen

LoUIN-Zone definiert man den geometrischen Ort der Gesamtheit aller nichtédqui-
valenten Vektoren kleinster Ladnge nach Auslassen der ersten BRILLOUIN-Zone.
Entsprechend sind die folgenden BRILLOUIN-Zonen héherer Ordnung definiert.
Die Punkte zweier BRILLOUIN-Zonen sind paarweise dquivalent. Daher lassen sich
die BRiLrovIN-Zonen hoherer Ordnung durchreziproke Gittertranslationen & = by, m,m,
aus denen der ersten BRILLOUIN-Zone paarweise konstruieren. Jede BRILLOUIN-
Zone kann mit jeder anderen zur Deckung gebracht werden. Die Volumina der
einzelnen BRILLOUIN-Zonen sind daher sémtlich gleich dem der Elementarzelle des
reziproken Gitters.

Energiebdnder und -liicken

Um die Differentialgleichung fiir die periodische Funktion ¢(r) in der Brocu-Welle
(5) zu bestimmen, setzt man diese in die SCHRODINGER-Gleichung (3) ein. Dabei hat
man

Ay = Aesrpr) = div [elh grad p(r) 4 ilkyelrrp()]
= elba™ N\ o(r) + 2ik,elka” grad o(r) — ky2elkary(r)
zu beriicksichtigen. Es folgt
. 2m
A + 2ik, - grad p(r) + [ﬁ— W — U — kf] plr) = 0. (12

In dieser Eigenwertgleichung fiir ¢(r) tritt der Ausbreitungsvektor k, als Parameter
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auf, so dafl man
@ =o@(r, ky) (13)

schreibt.

Die Periodizitdtsbedingung (5a) fiir ¢ fithrt dazu, daB zu einem vorgegebenen
Vektor k, nur gewisse Eigenwerte W, moglich sind (vgl. 4.1.1. und 4.1.2.). Durch-
lduft k, die zuldssigen Werte nichtdquivalenter Punkte, so erhdlt man aus Stetig-
keitsgriinden Wertebereiche W,, mit denen die Losung der Eigenwertgleichung (12)
moglich ist. Sofern sich diese Energiezonen nicht iiberlappen, treten zwischen ihnen
Energieliicken auf. Sie kennzeichnen Energiewerte, die das Elektron innerhalb des
Festkorpers nicht annehmen kann (vgl. Bild 4.1.5).

w
A
Ws
W,
XL »
w;
W,
> W, .
W %E Bild 4.1.5. Energiebéinder, die oberen
Energiezona  beiden einander iiberlappend
» 7

Die verschiedenen Energiezonen werden durch eine Zonennummer n gekennzeich-
net. Der in der Energiezone eingenommene Energiewert hingt vom Ausbreitungs-
vektor k, ab. Daher schreibt man

W = W,(k,). (14)

n und k, haben den Charakter von Quantenzahlen.
Mit der Energie W hingt auch die Wellenfunktion y von der Zonennummer n und
vom Ausbreitungsvektor k, ab:

v =ya(r, Ky). (15)

Wird in (5) bzw.- (12) der Ausbreitungsvektor k, durch den negativen Wert —k,
ersetzt, so geht man damit zur konjugiert komplexen Gleichung iiber. Daher gilt fiir
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die Losungen

p(r, —ky) = ¢*(r, ky). (16a)
Die Eigenwerte der Energie miissen reelle GroBen sein, so dal weiter folgt
W(—ky) = W*(ky) = W(ka). (16b)

o(r, k,) und @(v, —k,) gehoren daher zum gleichen Eigenwert. Fiir die Losung der
ScERODINGER-Gleichung in Form der BrocH-Wellen erhilt man, wenn im k,-Raum
die Vorzeichen umgekehrt werden,

"/’n('r: _kA) = "pne_ikkr‘pn(ry _kA) = wn*(r, kA) . (17)

Eindimensionales und dreidvmensionales Modell

Die Berechnung der Energiebdnder eines rdumlichen Kristalls erfordert im allge-
meinen einen grofien Rechenaufwand. Zur qualitativen Veranschaulichung wird
daher am einfachsten das eindimensionale Modell benutzt. Bei diesem betrachtet
man an Stelle des dreidimensionalen Kristallgitters ein eindimensionales, d. h. eine
lineare Kette von Kristallbausteinen. Seine Gitterkonstante stimmt mit der des
Kristalls iiberein. An die Stelle der Potentialfunktion U(r) tritt beim eindimen-
sionalen Modell eine Potentialfunktion U(z) mit der Periodizitdtseigenschaft

Uz) = Uz + R), (18)

wobei
R =na =0, 4+1,...) (19)

die Periode kennzeichnet. Die Randbedingungen sind durch eine unabhéngige réum-
liche Variable z gekennzeichnet. Als SCHRODINGER-Gleichung erhélt man an Stelle
der partiellen Differentialgleichung (3)
k% dPy(z

2 | 106 — Wee) =0 (20)
-Diese gewohnliche lineare Differentialgleichung ist exakt losbar und liefert ver-
héltnismaBig einfache Losungen. Das eindimensionale Modell stellt jedoch bereits
eine derart weitgehende Idealisierung dar, daf seine Aussagen nicht vollsténdig auf
das dreidimensionale Gitter verallgemeinert werden konnen. Hier treten in der Regel
wesentlich kompliziertere Bandstrukturen auf.
Bei der Berechnung der Energiebénder des dreidimensionalen Kristalls sind nicht
nur zur Losung der ScHRODINGER-Gleichung Néherungsverfahren anzuwenden.
Auch das in der Differentialgleichung auftretende Potential ist nicht genau bekannt,
zumal das betrachtete Elektron bei der Einelektronennéherung iiber den gesamten
Kristall verteilt ist und dabei mit allen Kristallbausteinen in Wechselwirkung tritt.
Ansétze zur Festlegung des Potentials sind wegen der Vielfalt der in Festkérpern
auftretenden Krafte neben Symmetrieeigenschaften und Analogieschliissen im
wesentlichen auf experimentelle Daten angewiesen.
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P Probleme

4.1.1. Eindimensionales Modell mit d-Potential

Die Gitterbausteine sind in Form einer unendlich langen linearen Kette mit der Gitterkonstan-
ten o angeordnet. Das Potential ist in der Form

o0
Uiz) =Uy 3, 0(z—ma) (n=0,+1,...) 1)
n=-—00
gegeben. Dabei bedeutet d; (z) eine modifizierte §-Funktion, die wie folgt definiert ist:

84(2) ={° fir 2+ 0, @)

oo fur z=0
nebst

+00
[ 6e(z) dz =c. (3)

Die Modifizierung der §-Funktion ist erforderlich, da z die MaBeinheit m hat und daher das
Integral (3) ebenfalls mit dieser MaBeinheit behaftet ist. Bild 4.1.6 zeigt die Kristallbausteine
und das Potential.

w
A O Kristallbausteine

s ‘
g SO R

Bild 4.1.6. Eindimensionales §-Modell mit Energiebandern

Fir die vorzunehmende Betrachtung sei

¢=05nm, U,= —20eV, ¢=0,25nm,
d. h.
al2
JUR) dz= Uy = —5-109eVm.
—al2
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Bestimmen Sie die Breite des untersten sowie die Lage des folgenden Energiebandes. Untersuchen
Sie den Zusammenhang zwischen Energie, Wellenzahl und Ausbreitungszahl.

Losung:
Schrodinger-Gleichung

Die Schrodinger-Gleichung (4.1./3) vereinfacht sich bei einem eindimensionalen Gitter zu der
gewohnlichen Differentialgleichung
k% d*y

“om 4t + UR)y = Wy. (4)

Umgeformt erhilt man

d*  2m
d;-l—F(W—U)‘P:(L (5)
(5) ist invariant gegen eine Substitution z — z + na. Hat man daher zwei Lésungen w,(z) und
y,(2) der Differentialgleichung (4) gefunden, so kénnen mit y,(z 4 na) und y,(z + na) weitere
Losungen angegeben werden.

Sind ¢ = y,(2) und p = y,(z) linear unabhingige Losungsfunktionen, so kénnen aus den Funda-
mentallésungen w,(z) und y,(z) simtliche Losungen y = y(z) der Differentialgleichung (3) zu-
sammengesetzt werden:

P(2) = Ayp(2) + Aswe(2). (6)

A, und 4, sind Konstanten. Sie konnen willkiirlich gewdhlt werden. Wegen der Periodizitdt der
Potentialfunktion U(z + na) = U(z) muB in dquivalenten Punkten z und z + na die Wahr-
scheinlichkeitsdichte iibereinstimmen:

w(z) p*(z) = p(z + na) p*(z + na) (n=0,+41,...). (7)
Das bedeutet, dal die Beziehung
Y(z + a) = elkaay(z) (8)

erfiillt sein muB. y(z + a) und y(z) unterscheiden sich somit nur beziiglich jhrer Phase
o = kya. (8a)
Wir untersuchen die Lsung der SCHRODINGER-Gleichung (5) im Bereich
0<z<al (92)

schlieBen also Punkte, in denen sich Kristallbausteine befinden, zunichst von der Betrachtung
aus. Innerhalb dieses offenen Bereiches kann die Differentialgleichung (5) durch Exponential-
ansatz )

Y1 (2) = elkz, Py(e) = e7ikz 9
gelost werden. Durch Einsetzen der Fundamentallosungen (9) in (5) erhilt man
k= ]/2%”’ . (10)

Treten im Bereich der Energiewerte Liicken auf, so miissen diese auch im Bereich der Wellen-
zahlen k& vorhanden sein, im Gegensatz zu den Ausbreitungsvektoren Ik, bzw. Ausbreitungs-
zahlen k,. )
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Als allgemeine Losung der SCERODINGER-Gleichung (5) findet man
y(z) = Aelkz  Be-ikz, (11)

Fiir den Bereich

—a<z<0| (128)

kénnen wir nach (8) und (8a) schreiben
p(2) = y(z + a) e7le = [Aelk(+a) 4 Be-iketa)] e~ia, (12)

Um die physikalisch sinnvollen Werte fiir £ und W zu erhalten, untersuchen wir die Eigenschaften
der Losungsfunktion. Sie muB fiir z = 0 stetig sein. Das bedeutet nach (11) und (12)

A 4+ B = (Aeika 4- Be-ika) g-ia, (13)

Integrieren wir die SCERODINGER-Gleichung iiber einen Bereich von —z, bis +z, und unter-
suchen das Ergebnis der Integration fiir den Grenzfall z, — 0, so ergibt sich aus (5)

+0d2 +0

2m
de’fder fﬁ W — Uz) 8(z)]y dz = 0,
) )

d. h. wegen (1), (2) und (3)

dp(4+0)  dp(—0) 2
w(dt ) w(dz ) _ ;LL: U(0) c.

Setzt man in diese Gleichung gy’(;_—o) aus der Losung fiic den Bereich 0 < z < @ nach (11),
z
dzp(d—O) aus der Losung fiir den Bereich —a < z << 0 nach (12) ein, so ergibt sich
z

,
/

dagegen

2¢Ugm

A(ik — ikeiba—ia —
hZ

hZ

) +B (—ik + ikeikaia _ M) —o0. (14)

Energiebinder und verbotene Bereiche

Gleichung (14) bildet zusammen mit Gleichung (13) ein System von zwei Gleichungen zur Be-
rechnung der Koeffizienten 4 und B. Damit dieses losbar ist, muf seine Koeffizientendeterminante
verschwinden:

ik — ikeiko—ia _ 2”#’ —ik + ike—iko—ia — %’L
=0. (15a)
eika—ia 1 e—ika—ia _ 1
Durch Umformung erhilt man, wenn (8a) beachtet wird,
cos « = cos kya = cos ka + cUzokm sin ka . (15)

Durch (15) ist eine Verkniipfung zwischen der Ausbreitungszahl k, und der Wellenzahl & fest-
gelegt. Da k nach (10) als Funktion der Elektronenenergie W aufgefa3t werden kann, ist mit (15)
auch der Zusammenhang ky = ky (W) bzw. W = W(k,) definiert.
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cos kyo muB im Wertebereich

—1=coskya = +1

liegen. Fiir k¥ kommen daher nur solche reellen Werte in Frage, fir die

cU,

h;km <1 (16)

sin ka

cos ka +

ist. Werte der Wellenzahl £, fiir die (16) nicht erfiillt ist, sind durch y = 0 gekennzeichnet, d. h.,
sie weisen fiir die Elektronenverteilung die Wahrscheinlichkeitsdichte yy* = 0 auf. Es treten
somit nach dem vorliegenden Modell im Kristall zuldssige Energiebereiche bzw. Energiebander

bf
_I Tk
a a
W,
W,
WI
|
I

Bild 4.1.7. Energiefunktionen W = W(lk,)

auf, die von Energieliicken bzw. verbotenen Energiebereichen unterbrochen werden. Bild 4.1.7
zeigt die Verkniipfung zwischen W und k, mit den dazwischenliegenden verbotenen Zonen.
Fiir ka =nrw + ¢ (n =0,1,2,...) gilt im Falle kleiner positiver oder negativer Werte ¢ ge-

nihert
cos (nm + &) = (—1)7, sin (v + &) = (—1)"e.
Damit folgt aus (16)
cUgme
1%k

cUym
#2k

(16a)

sin ka

cos ka 4

Wegen U, < 0 gilt

lcosax| >1 fir e=ka —nr <O, (16b)
lecosax| <1 fir e¢=ka —nr> 0. (16¢c)
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Nach (16a) und (16b) sind somit die unteren Grenzen k = ky, der Energiebénder durch

ban= — (n=1,2,..) (17)
a

bestimmt.
Um die oberen Bandgrenzen k = ko, zu bestimmen, schreibt man nach (16a) und (16¢) fiir die
GroBe (15) im Falle ¢ > 0

|cos &| = —GZZ"ZL (ke — nm).
Daraus erhilt man
b < fop = e —200" il (18)
252 + acUym “ 252

cUgma
sofern die Bedingung
el

auch noch fiir k = k,, erfillt ist.
Die Binder werden durch die Energieniveaus a.usgedruckt Nach (10) und (17) folgt fur die
unteren Bandgrenzen
72k n2n2h?
Wop = —22 — s 19
u 2m 2ma? (19)

nach (10) und (18) fiir die oberen Bandgrenzen

h2k2 n2rh?
Won = =228 = o 2F —. (20)
( "Uom)

Mit den vorgegebenen Werten folgt
ki -1 —
b = oo T = 2R 100w,
™
2. (1,05 - 10-34)2
5.107°-1,60-1.9,11 . 10-3

ko = m-1 = 27 - 10%(1 + 0,064) m~1.

0,510~ —

Die untere Grenze des ersten Energiebandes wird als Bezugsniveau gewihlt. Fiir die obere Grenze
des ersten Energiebandes erhilt man mit den vorliegenden Werten
’ hz 2 2
Woa=Wu— Wy= ‘271’ (koy — ki)

_ (1,05-10-%4)2 . 4n2 . 108 . 2 . 0,064

5 911,101, 1,60 10 ° — 196V

Das zweite Energieband ist durch die Wellenzahlen

27
kuz == 05—10_9 m!=4r.10°m™?

Fogg = 47 - 10°(1 + 0,064) m—1
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gekennzeichnet. Dementsprechend ergibt sich fiir die untere Grenze des zweiten Bandes

(4 — 1) 72(1,05 - 10-34)2
2.9,11-10-51. (0,5 - 10-9)2 . 1,60 - 101

Wll.l2= Wuz —Wu=
fiir die Bandbreite
AWo=Weoy — Wy =4(Wy; — W) =4-0,19eV =10,76 V.

Die obere Grenze des zweiten Energiebandes liegt somit bei 5,24 eV. In gleicher Weise kann die
Bestimmung der Energiebinder fortgesetzt werden, solange die Naherung (16¢) erfillt ist.

eV =448¢V,

4.1.2. Eindimensionales Modell mit Rechteckpotential (Kronig-Modell)

Das Potential eines Kristalls wird durch ein eindimensionales Potentialtopf-Modell nach Bild
4.1.8 gendhert. Die Kristallbausteine sitzen in der Mitte des Potentialtopfes. Der Minimalwert U,
des Potentials wird gleich dem negativen Wert der Ionisierungsarbeit

Uy = —Ju;

L
A

Bild 4.1.8. KroNig-Modell

die Breite des Potentialminimums gleich dem Durchmesser b = 2r, eines Kristallbausteins ge-
setzt.

Fur Kupfer ist nach Tab. 1.1.1 die Gitterkonstante ¢ = 0,361 nm, nach Tab. 3.1.5 b = 27,
= 0,192 nm, nach Tab. 2.1.1 Uy = —Jy = —17,67 eV einzusetzen.

Stellen Sie fir die ersten beiden Energiebidnder den Zusammenhang zwischen W und k, dar
und berechnen Sie die Breite der ersten drei Binder sowie die Breite der zwischen ihnen befind-
lichen Bandliicken.

Losung:
Die ScERODINGER-Gleichung fiir das eindimensionale raumliche Modell
d¥y  2m

et W= U@y =0 (1)
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ist eine gewohnliche Differentialgleichung zweiter Ordnung. Entsprechend den periodischen
Eigenschaften des Gitterpotentials und der Darstellung der Losungen als BLocre-Wellen fordern
wir von jeder speziellen Losung

;(z + a) = elkaay;(2). (1=1,2) 2)

Andererseits lassen sich y,(z + a) und p,(z + a) aus y,(z) und y,(z) linear aufbauen:

Y1z + a) = cuyi(2) + craya(z), 3)
Yoz + @) = Corpa(2) + Contpa(?). (4)
FaBt man (2), (3) und (4) zusammen, so ergibt sich
Yz -+ a) = Az + a) + Aaye(z + a) } (5)
= (cud; + cnds) vi(2) + (c104s + €22dy) ¥a(2)-

Die konstanten Koeffizienten c;; sind durch die Auswahl der speziellen Losungsfunktionen
¥,1(z) und y,(2) festgelegt, konnen also nicht willkiirlich gew#hlt werden.
Wegen (2) kénnen wir -

Yi(z + a) = Mp(2),  ya(z + a) = Ayy(2)
schreiben mit 4 = exp (ikya). Wir erhalten also

end; + cnd, = 24,, }

(6)
C10dy + Cpedy = A4,.

Dieses System homogener Gleichungen ist nur 16sbhar, wenn die Koeffizientendeterminante ver-

schwindet:

— A
‘i Ca1 —o. )

C12 Cop — 4

A geniigt der quadratischen Gleichung
22 — (eg1 + €22) & + €11Can — €125, = 0. (7a)
Aus (2), (3) und (4) und den Ableitungen erhalten wir fiir die WroNsKI-Determinante

iz + a) oz +a) v1(2) a(?)
, ., = (11095 — C€21012) , , . (8)
¥z + a) v'(z + a) vi'(2) ve'(2)
Fir ihre Ableitung nach der Variablen z folgt
d ! d 7 7 ’r ’7
&z #’1’ 1#2, = — (yy2’ — vay1) = vy — vy’ (9)
2|yl e dz

Da () und y,(z) die SCHRODINGER-Gleichung (1) erfiillen, ist dieser Ausdruck gleich Null. Wenn
,(2) und yp,(2) linear unabhingig sind und somit ein Hauptsystem zur Losung der SCHERODINGER-
Gleichung bilden, ist nach (9) die WrRonskI-Determinante eine Konstante ungleich Null. Aus
dem Vergleich mit (8) ist daher auf

11033 — Ca101 = 1 (10)

zu schlieen.

12 Schilling, Festkorperphysik
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Wir setzen (10) in (7a) ein und erhalten
eikac | g-ikae = 2 cos kpya = cyy + Coy- (11)

Die ScERODINGER-Gleichung (1) ist eine reelle Gleichung. Ihre Losungen kénnen daher in reeller
Form gewihlt werden. Fiir das vorgelegte Problem betrachten wir im Gitter den Bereich0 < z < a
und unterteilen diesen in die zwei Unterbereiche

1 0<z<b mit U()=U,, (12)
II b<z<a mit Uiz)=0. (13)

Im Bereich I verwenden wir die beiden Hauptlésungen

@, = COS l/gL:'(W— Uy 2, p,= —-———hc—sin g?(W — Uy z. (14)
k 2m(W — U,) k

¢ stellt einen Faktor mit der MaBeinheit m—* dar.
Als Lésung im Bereich IT schreiben wir

p; = Ajy cos V/m:_zw (z — b) + Ay sin ]/2”‘W —0b) (i=1,2). (15)

Die beiden Losungen i, miissen fiir z = b iibereinstimmen. Das gleiche gilt fiir die beiden Losungen
y,. Hieraus folgt

12m(W — U,) he .1 /2m(W = U,)
An = °°S1/To b Au= 2m(W — U,) sml/ A2 b
(16)

Bei der Integration der SCHRODINGER-Gleichung zwischen b — 0 und b + 0 ergibt sich im Gegen-
satz zu 4.1.1., wo die §-Funktion verwendet wurde, wegen der Endlichkeit der Potentialfunktion

U(z)
(m) _ (d_'/’—) —o. (17)
dz Jp—o dz /p+0

Diese Gleichung liefert

/W — — om(W — U.)
A= — W — U, sin 2m(W — U,) b, A= ke cos 2m(W — U,) b
w A2 ]/2mW 72
(16a)
Im Bereich II erhalten wir somit die Losungen
9y1(2) = cos l/w b . cos V2mW (z—10)
/=10, sin 2m(W — U,) b.sin 2mW = — b,
w % 2
pa(2) = ko sin /22 — o) 3. cos V2’”W (z — b)
V2m(W — Uy) h
2m(W— 00 4. in 1/27 (, _ 3. (18)
I/ hZ
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Sie werden stetig differenzierbar durch die Funktionen (14) in den Bereich I fortgesetzt. Wird 2
in Metern angegeben, so kann man in (14) ¢ = 1 m~! setzen. Die Losungsfunktionen (14) der
ScERODINGER-Gleichung (1) sind damit durch die Anfangswerte

0)=1, 0) =0,
¥:(0) ¥3(0) } (19)
/(0)=0, %/(0)=1
gekenn;eichnet. Fur diese folgt aus (4) fiir z = 0
(@) = ¢, yu(@) =cn (20)
und durch Differenzieren
(@) = ¢z Y2/ (@) = Cos. (21)
Nach (11) muB daher
2 cos kpa = y,(a) + ,/(a) (22)
erfullt sein. Setzen wir fiir y, und y, die Losungsfunktionen (18) ein, so ergibt sich aus (22) mit
c=1m"
cos kya = cos ]/mh—ZW b - cos V%MhT_yL)- (@ — b)
2= sin l/zsz b -sin l/w (@ — ). (23)
V2 W(W — U,) R R
Da cos kya durch die Bedingung
—1=Zcoskpa < +1 (24)

eingeschrankt ist, sind durch (23) Energiebereiche festgelegt, in denen eine Losung der SCHRG-
DINGER-Gleichung mit reellen. Werten des Ausbreitungskoeffizienten ky méglich ist. Nur fiir diese
Energiebereiche ist die Wahrscheinlichkeitsdichte ypyp* von Null verschieden.

Wir setzen in (23) die vorgegebenen Werte a = 0,361 nm, b = 0,192 nm, U, = —7,67 €V,
k= 1,05.107% Js zusammen mit dem Faktor 1,60 - 10~° zur Umrechnung von Elektronenvolt
in Joule ein und erhalten

cos kpa = cos 0,987 ]/W cos 0,869 VW + 7,67

2V A TOT in0,987 V77 sin 0,869 YW F 7,67 (W in eV).
2 YW + 7,67) ’

In Tab. 4.1.1. sind im Ergebnis der numerischen Rechnung die Werte von W, cos ke und -k,
fur die ersten drei Bénder aufgefithrt. Bild 4.1.9 stellt diese funktionelle Abhingigkeit zwischen
W und k, grafisch dar. Fir die Breite der Bénder erhilt man aus Tab. 4.1.1

1. Band 6,36 ¢V,

2. Band 13,0 eV,

3. Band 19,1 eV.
Als Breite der Energieliicken folgt

Liicke zwischen 1. und 2. Band 0,73 eV,
Liicke zwischen 2/ynd 3. Band 1,60 eV,
Liicke zwischen 3. und 4. Band 0,30 eV.

12%
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-
.

Bild 4.1.9. Energiebdnder nach dem
z Kronie-Modell

4.1.3. Fourier-Entwicklung des Elektronenpotentials
Das Potential der Elektronen im Kristall wird wegen der periodischen Anordnung der Kristall-
bausteine als FOURIER-Reihe
U =73 Upeldr (1)
b
dargestellt. Die Krifte zwischen den Elektronen lassen sich durch ein Wechselwirkungspotential
U+ néhern, das fir alle im Kristall frei beweglichen Elektronen gleich ist, unabhingig von ihrer

Lage. Uw kann zum konstanten Glied der FourIer-Reihe einfach addiert werden.
Es ist zweckmiBig, die Fourier-Entwicklung (1) im reziproken Raum vorzunehmen. Der Vektor

b = bu,mem, = Mb; + myby + Mmyby
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durchlduft simtliche Punkte des reziproken Gitters, Wahrend 7 den Ortsvektor im direkten Gitter

angibt.
Stellen Sie die Formel fiir die Fourier-Koeffizienten Up auf und berechnen Sie fir Kupfer den

Fourrier-Koeffizienten U, ;.

Losung:

Die elektrischen Ladungen der Kristallbausteine erzeugen ein rdumlich veridnderliches elektri-
sches Feld E. Es kann durch ein elektrisches Potential ¥ gemif

E= —grad ¥ (2)

dargestellt werden. ¥ hat die Dimension der elektrischen Spannung, wird also in Volt gemessen.
Das elektrische Potential ist mit der rdumlich verdnderlichen Ladungsdichte ¢ durch die Porssox-
sche Gleichung

AY = 2 3)

o
verkniipft. Zwischen der potentiellen Energie U einer durch den Kristall bewegten elektrischen
Ladung g und dem elektrischen Potential ¥ besteht die Beziehung
U=gq¥%. 4)

Fir Elektronen ist ¢ = —
Das Potential (1) muB eine reelle Funktion sein. Da mit b auch —b ein Punkt des reziproken
Gitters ist, bedeutet das, dal zwischen den Fourier-Koeffizienten des variablen Anteils die Be-

ziehung
U_p = Up* )

erfiillt sein muB.

Wir fithren ein Cartesisches Koordinatensystem ein, das durch drei zueinander senkrecht stehende
Einheitsvektoren e,, e,, e, gekennzeichnet ist. Die Zerlegung des Vektors b in die Cartesischen
Komponenten ergibt :

b=0be, 4+ be, +be,; (6)
fiir das Skalarprodukt mit dem Ortsvektor

r = ze, + ye, + ze, (7
erhilt man

b.r=>bx+4 by + be. (8)

Wir schreiben die Porssonsche Gleichung in Cartesischen Koordinaten und beriicksichtigen
dabei (4):

U 2U 20U _ « 9)
Ox? oy? 022 &

Setzen wir fir U den FoUuRrIER-Ansatz (1) ein und beachten bei der Ableitung Gleichung (8), so
ergibt sich

S b2Upeidr = & (10)
b &

Dabei ist wegen der Verwendung Cartesischer Koordinaten

b>=0b,%4b,% 4 b2 (11)
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Wenn man mit
e—ib’r

multipliziert und iiber die Elementarzelle £, integriert, folgt

Zb szbf elb-b)r q7 = si f e~ i3y, (12)
o
2, 20

b’ kennzeichnet einen speziellen Gitterpunkt des reziproken Gitters. Bei der Auswertung des
Integrals zerlegen wir den Vektor 7 in die Komponenten der Basisvektoren @, a,, a; des Kristall-
gitters, den Vektor b gemiB (1.1./7a) in die Komponenten der Basisvektoren b,, b,, b, des rezi-
proken Gitters

r = §ia, + £,a, + &0, (13)
b = m;b, + myb, + mgbs. (14)

Wihrend » jeden beliebigen Kristallpunkt durchlauft, charakterisiert b nur die Gitterpunkte im
reziproken Raum. &, &, &; sind daher beliebige reelle Zahlen, .dagegen nehmen m,, m,, m,; nur
ganzzahlige positive oder negative Werte an. Fiir das Volumendifferential in (12) ist

av = Q, dg, d&, dz,

zu setzen.
Auf Grund der Definitionsgleichung (1.1./6)

a;- b]- = 211:6,7
erhilt man

b - r = 2n(my&; + myks + meks). (15)
Damit folgt fiir das Integral in (12)

111
fei(b—b’)~rdV =9, f j f el2ml(my —my Vet (ma—m Vot (ma—ma Vel dE, dE, A&,
Qo 0 0 0

= ‘Qoémlmllamnmz'amams' = -Qoébb" (16)
Auf Grund dessen kann man in (12) die Fourier-Koeffizienten eliminieren und erhélt
q ib
Up = —— ~ivr 4y, 17
b Q,b3¢, f ee an
20
Das Integral ist aus der Réntgenstrukturanalyse bekannt. Es kann in der Form

f peibTqY = Z¥e (18)
-Qn

mit der effektiven Kernladungszahl
Z*=72—F (19)

geschrieben werden. Die Grofe F heillt Atomformfaktor. Sieistin Tabelle4.1.2fiir einige Materialien
tabelliert.
F hingt von der Strahlrichtung 0, in der der Kristall durchlaufen wird, ab. Als Parameter ver-
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wendet man bei der Tabellierung die GréBe

10‘1"&;0 m,

wofiir man bei Kristallen mit kubischem Gitter
sin 0 Ym? + my? + mg?

1010 m #2Y _ 4p10
) m 2

schreiben kann. ¢ bedeutet die Gitterkonstante, 2 die Wellenlinge. Im vorliegenden Fall erhalt
man nach Tab. 4.1.2

2 2 2
10-10 m Mi_ml — 10-10 __.1/.3—__ —0,24, F—=1292, Z*—1.
2a 2.0,361-10°

Das Volumen der Elementarzelle betragt nach Beispiel 1.1.1 fur das kfz-Gitter

a®
2y=—,
g
ferner ist
4n?
bl =3 —-
Damit folgt aus (17) und (18)
Z*e?
Uy, = —,
m 3n2eya

mit den vorgegebenen Werten:

7 - (1,60 - 10719)2

eV = —11,8eV.
3.n%.8,85-10712.0,361 - 10-°- 1,60 - 107°

U =

Der konstante Anteil des Potentials wird in A 4.1.6 abgeleitet.

4.1.4. Zellenmethode nach Wigner-Seitz

Untersucht werden die Energiezustinde der Elektronen in Alkalimetallen und die Aufenthalts-
wahrscheinlichkeit eines Elektrons fiir die Punkte der Elementarzelle ,. Zu diesem Zweck ist
die SCERODINGER-Gleichung fir das Gitterpotential der Alkalimetalle zu 16sen und die Wellen-
funktion y zusammen mit den Eigenwerten W der Energie fiir Natrium anzugeben.

Losung:

Die ScHRODINGER-Gleichung wird zunichst fiir die Punkte einer WieNER-SErTz-Zelle geldst.
Nach (4.1./5) 148t sich die Lésung als Uberlagerung von Broca-Wellen

p(r) = elkarg(r) ¢y
schreiben. Durch die Periodizitdtseigenschaft
p(r + R) = o(r) &)

ergibt sich die Moglichkeit zur Fortsetzung der Losung auf andere W-S-Zellen.
Alkalimetalle besitzen kubisch-raumzentrierte Gitter (vgl. Tab. 1.1.1). Ihr Ionenradius ist nur
etwa halb so gro3 wie der halbe Abstand eines Ions zu seinem néchsten Nachbarn (vgl. Tab. 3.1.5).



184 4. Grundlagen der Quantentheorie fester Kérper

Da das Volumen proportional der dritten Potenz des Ionenradius ist, nimmt das Alkali-Ion nur
einen kleinen Teil der W-S-Zelle ein.

Im Innern eines Alkali-Ions bauen der Atomkern und die umlaufenden Elektronen ein starkes
kugelsymmetrisches Potential auf. Stérungen von benachbarten Ionen und quasifreien Elek-
tronen werden durch die Elektronenhiille abgeschirmt. Nach dem Ionenrand fillt das Potential
steil ab. AuBerhalb desIonenrumpfes, im iibrigen Gebiet der W-S-Zelle, ist nur noch ein schwaches
Potential vorhanden. Es wird in erster Naherung ebenfalls als kugelsymmetrisch angesehen, so
daB fir das Potential der W-S-Zelle

U(r) = U(r) ®3)

geschrieben werden kann.
Die ScERODINGER-Gleichung lautet nach (4.1./3), wenn man (3) beriicksichtigt,

hz
—5— Ay +[U() — Wiy =0. @)
2m
In Kugelkoordinaten 7, &, ¢ erhdlt man fiir den LaPLACE-Operator
2 0 1 0% 1 o 1
== 4 == 121 el 5
A 67'2+ r@r+rzsin2196q9+r2302+ o a9 ®

Wird dieser in (4) eingesetzt, so ergibt sich eine Differentialgleichung, die durch den Separations-
ansatz

y(r, 9, ¢) = X w(r) 0(8) P(g) (6)

sukzessive auf drei gewohnliche Differentialgleichungen zuriickgefithrt werden kann. Das Losungs-
verfahren entspricht dem fir das Elektron im Wasserstoffatom (vgl. [2] 6.3.).

Die Losungsfunktionen der SCERODINGER-Gleichung und ihre ersten Ableitungen miissen stetig
sein. Daraus folgen die Randbedingungen

P(1g) = pa(1o), (7)

2,3,
) v, ong [,

Hierin bezeichnet y(r,) die Losung der ScERODINGER-Gleichung fir den noch zur W-S-Zelle
gehorenden Randpunkt 7, w,(r,) die Losung auBerhalb der betrachteten W-S-Zelle fiir den

gleichen Punkt 7. ai bedeutet die Ableitung normal zur Begrenzungstliche. Die Normale weist
n

aus dem betrachteten Gebiet heraus, so daBl » und n, einander entgegengerichtet sind (vgl.
Bild 4.1.10).

Der Funktionswert y,(7,) fur einen Randpunkt 7, auBerhalb der betrachteten W-S-Zelle 1a8t
sich auf Grund der Periodizitdtseigenschaften (1) und (2) durch den Funktionswert im zugeord-
neten Punkt r, + R, der W-S-Zelle ausdriicken. Dabei ist allgemein

R,=+a; (i=1,2,3), (9)

wobei a; einen Basisvektor darstellt (vgl. Bild 4.1.10). Das fithrt nach (7) und (8) auf die Rand-
bedingungen

p(ro + Ry) = elkaRuy(ry), (10)

(3_1/1) — _eikaR, (a.l’) . (11)
on r+R, on Ty
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Da n aus der W-S-Zelle herausweist, sind die Normalvektoren n in zwei dquivalenten Punkten
r und r 4+ R einander entgegen gerichtet.

Wir beschrinken uns auf den Fall i, = 0. Nach (10) bedeutet k, = 0, daBl die Wellenfunktion y
an zwei adquivalenten Punkten der Begrenzungsfliche einer W-S-Zelle den gleichen Wert haben
muB. (11) fordert, daf auch die Ableitungen in parallelen Richtungen an den zwei dquivalenten
Punkten iibereinstimmen miissen (vgl. Bild 4.1.10).

Bild 4.1.10. Ortsvektoren und Normalenvektoren fiir Punkte auf der Begrenzung
innerhalb und auBerhalb der W-S-Zelle

Bild 4.1.11. WieNER-SEITZ-Zelle.
a) des krz Gitters der Alkalimetalle, b) des kfz Gitters

Die W-S-Zellen der Alkalimetalle weichen nach Bild 4.1.11 nur wenig von der Kugelsymmetrie
ab. Nach WIeNER-SEITZ nihert man daher die W-S-Zellen durch Kugeln, deren Volumen mit
dem einer W-S-Zelle bzw. einer Elementarzelle identisch ist. Der Kugelradius ist nach (1.1.2./2)
durch
3 i ry
% g = % bzw. rg = e a (12)

gegeben. Aufler dem Potential besitzt damit auch der Rand einer Zelle Kugelsymmetrie.
Die genaue Theorie erfordert eine Vielzahl von Gliedern der Entwicklung (6). Rechnet man bei
der Wellenfunktion jedoch mit einer kugelsymmetrischen Abhéngigkeit y(r), so-treten wesent-
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liche Vereinfachungen auf. Im Laplace-Operator (5) verschwinden die Ableitungen nach ¢ und 9:

0 0
— =0, —=0. 13
op o9 (13)
Nach (4) ergibt sich damit die ScCHRODINGER-Gleichung
B (dzy 2 dy
Ly s R 4 U@r) — Wiy = 0. 14
o (G oG] 100 =Wy (14
Randbedingung (10) ist bei kugelsymmetrischer Abhéngigkeit identisch erfiillt, wihrend (11) nur
fiir
(M) =0 (15)
or [r,

zu befriedigen ist. r, kennzeichnet dabei einen beliebigen Punkt auf der Kugeloberfliche.
Randbedingung (15) besteht fiir die Begrenzung der W-S-Zelle auch, wenn keine kugelsymmetri-
sche Abhingigkeit vorhanden ist. Sie 168t sich allgemein aus den fiir eine W-S-Zelle bestehenden
Symmetrie-Eigenschaften ableiten.

va

vy . Lo
0 \/ 0,1 02 nm

Bild 4.1.12. Wellenfunktion ¢ = y(r) fiir den Grundzustand
des Leitungselektrons in Natrium

Bei der Losung der Differentialgleichung (14) mit der Randbedingung (15) wendet man das
Hartree-Fock-Verfahren des Self-consistent-field-Potentials an. Dabei 148t sich die Analogie zum
Wasserstoffproblem (vgl. [2] 4.3.) und zum Problem der Elektronenhiille grofier Atome mit den
entsprechenden Losungsreihen nutzen.
Als nullte Ndaherung kann ein Kristallpotential U = U(r) zugrunde gelegt werden, das sich
z. B. durch Fourier-Entwicklung nach 4.1.3. ergibt. Die Naherung fir U wird in die SCHERODIN-
GER-Gleichung (14) eingesetzt. Thre Losungen erfiillen die Randbedingung (15) nur fiir diskrete
Eigenwerte W, die durch Intervallschachtelung gefunden werden miissen.
Aus der Losung yp = yo(r) 1aBt sich unter Beriicksichtigung der Normierungsbedingung die Ver-
teilungsdichte der Elektronen bestimmen und daraus eine verbesserte Potentialfunktion U = U(r)
ableiten. Sie kann als erste Ndherung in die ScHRODINGER-Gleichung (14) eingesetzt und danach
das Verfahren wiederholt werden. Es wird solange fortgesetzt, bis die (» + 1)-te Néherung mit
der n-ten Naherung in ausreichendem Mafle iibereinstimmt, das gesuchte Feld also sich selbst
reproduziert. ) : ‘
Bild 4.1.12 zeigt die auf diese Weise von WIGNER und SEITZ ermittelte Wellenfunktion y = y(r)
fir den tiefsten Valenzzustand eines Elektrons in Natrium, wenn ry = rg gesetzt ist. Aus Bild
"4.1.12 ist zu entnehmen, daf auBlerhalb des Na*-Tonenrumpfes fiir » > 0,097 nm (vgl. Tab. 3.1.5)
die Elektronenkonzentration nahezu konstant ist. Eine starke Ortsabhingigkeit der Aufenthalts-
wahrseheinlichkeit tritt nur in der Nihe des Kernes auf.
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In Bild 4.1.13 ist die als Eigenwert der ScHRODINGER-Gleichung fiir k¢, = 0 sich ergebende

Bindungsenergie W = W(r,) dargestellt, wenn fiir den Radius 7, in (10) bzw. (11) verschiedene
Werte eingesetzt werden.

T A
<
3
e o1 02 03 04 nm
c 0 1 AN Il 1 1 S
W
\/(M+§ r
w=W,
-5t
-10F

Bild 4.1.13. Energiefunktionen W = Wy und Wy, 4 & fiir Natrium
(¢ mittlere Bewegungsenergie nach 3.3.3./15)

Wie in den folgenden Abschnitten 4.2 und 4.3 gezeigt wird, entspricht J¢y = 0 dem unteren Rand
eines Energiebandes. Fiir den unteren Rand des Bandes freibeweglicher Elektronen schreiben wir
im folgenden W = Wy. Addiert man zu W = Wy, die mittlere Energie ¢ der Elektronen nach
(3.3.3./15) und (3.3./6), so ergibt sich in Bild 4.1.13 die Kurve W = Wy, + &. Ihr Minimum wird
bei Natrium fiir 7y = 0,22 nm angenommen. Das ist genau der Wert, den man erhilt, wenn die
W-S-Zelle durch eine Kugel gleichen Volumens genihert wird:

PR
R = 1/2- 0,452 nm = 0,22 nm.
8w

Bei der Berechnung von £ ist zu beriicksichtigen, da mit 7, auch N veréinderlich ist.
Bestimmt man ¢ und W aus der SCHRODINGER-Gleichung fiir k5 == 0, so ergibt sich fiir die Energie
der Elektronen bei kleinen Werten k, ein Ausdruck der Form

72k

W=Wy+ .. (16)
2m

Die als Proportionalititsfaktor auftretende GroBe m kennzeichnet die effektive Elektronenmasse.
Sie weicht im allgemeinen von me ab.

A Aufgaben

Ad.1.1. Bestimmen Sie nach dem eindimensionalen Potentialmodell
+o0
U=U,3 6(z—na), Uy<O 1)
n=—00

die Grenzen des ersten und des zweiten Energiebandes in Kupfer (Gitterkonstante
a = 0,361 nm).
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Die Stirke des J-Potentials ist durch

+al2
[Udz=—15-10"€eVm @)
—al2
gegeben.
A4.1.2. Berechnen Sie nach dem eindimensionalen Potentialmodell die ersten beiden

Energiebdnder, wenn man ¢ = 0,5 nm,

a2
[ Udz=—50-102eVm (1)
—al2

annimmt. Vergleichen Sie die Ergebnisse mit denen zu A 4.1.1.

A4.13. Wie wirkt sich in A 4.1.1 die Vorzeichenumkehr von U, in bezug auf die Energie-
bénder aus?

A4.14. Berechnen Sie den Fourier-Koeffizienten U;y, fiir Silber und geben Sie den hierbei
zu verwendenden Atomformfaktor an (Werte nach Tab. 1.1.1 und Tab. 4.1.2).

A4.1.5. Berechnen Sie den Atomformfaktor F zur Bestimmung des Fourier-Koeffizien-
ten Uy, fir Wolfram.

A4.1.6. Zur Abschitzung des konstanten Summanden U, in der FouriEr-Entwicklung

des Elektronenpotentials benutzt man die aus der Theorie magnetischer Eigen-
schaften fester Korper sich ergebende Formel fiir die auf die Volumeneinheit be-
zogene diamagnetische Suszeptibilitit

2902
_ 2/20Ze e )
T2 Me

Darin gibt  den Ortsvektor des Elektrons im direkten Raum an, u, die magnetische
Feldkonstante. Bei der Aufstellung der Gleichung fiir das Elektronenpotential
kann in erster Niherung angenommen werden, daB. sich simtliche Z Elektronen
des Atoms im Abstand r, vom Atomkern befinden. U, folgt, indem iiber die Energie-
dichteverteilung einer Elementarzelle integriert wird. Die quantenmechanische
Verteilung der Elektronen 148t sich erfassen, indem 7, als Mittelwert betrachtet
wird, der mit dem Volumen £, einer Elementarzelle des Kristalls zusammen-
hingt.

Leiten Sie auf Grund dieser Uberlegungen die Verkniipfung des konstanten Poten-
tialanteils U, mit der magnetischen Suszeptibilitdt ab.

A4.1.7. Bestimmen Sie aus der diamagnetischen Suszeptibilitdt x = 10~¢ den konstanten
Anteil in der Fourier-Entwicklung des Potentials.

A4.18. Geben Sie den Radius der Elementarzelle bei der Anwendung des WiGNER-SEITZ-
Verfahrens auf Kalium an (vgl. Tab. 1.1.1).

A4.1.9. Nach der WicNER-SErTZ-Methode besteht fiir die Oberfliche der durch eine Kugel
gendherten W-S-Zelle die Randbedingung
(a_w) —o. (1)

or ="y

Im Gegensatz dazu lautet die Randbedingung fir das Elektron des Wasserstofi-
atoms

@\ _
(37' )r—>oo =0 @
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Zeigen Sie an Hand der Wellengleichung des harmonischen Oszillators

B2 d¥%  mowy®

LAk AT . PR 3
mar T g Wy, @)
daB durch die Randbedingung (1) der Eigenwert W abgesenkt wird. Betrachten Sie
speziell
B
rg = l/ _ )
mw,

Die Potenzreihe zur Losung der Randbedingung (1) ist bis zur vierten Potenz zu
entwickeln. Bei der Randbedingung (2) kann die Losung
k

2mw 72
p=o i (5)
zugrunde gelegt werden.
A 4.1.10. Geben Sie die Bedingungsgleichung dafiir an, da8 der Bildpunkt eines Vektors
k, innerhalb der ersten BRILLOUIN-Zone, also auf keiner ihrer Begrenzungen liegt.

4.2, Festkorpereigenschaften aut Grund der periodischen Grenzbedingungen
und des Bloch-Theorems

E Einfiihrung

Besetzung der Energiebdnder — Valenzband, Leitungsband, Energueliicke

Die Elektronen im Feld des Kristallgitters reprisentieren ein Quantensystem. Das
aus nur einem Elektron bestehende Quantensystem, z. B. das den Atomkern um-
kreisende Elektron des Wasserstoffatoms, weist ein Spektrum diskreter Energie-

Niveau - oder
Energielicke

a) b)

Bild 4.2.1. a) Energieniveaulinien bei einem Quantensystem aus einem Elektron,
b) Aufspaltung der Energieniveaus bei einem Quantensystem aus zwei Elektronen,
c) Energiebénder bei einem Vielteilchen-System

zustdnde auf (vgl. Bild 4.2.1a). Bei einem aus zwei Elektronen bestehenden Quanten-
system, z. B. bei den beiden Elektronen des Heliumatoms, sind die diskreten Energie-
zustinde in je zwei dicht beieinanderliegende Niveaulinien aufgespalten (vgl.
Bild 4.2.1b). Das von den Elektronen der N Atome des Kristalls gebildete Quanten-
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system spaltet nach Bild 4.2.10 in N nahe benachbarte Energieniveaus auf. Ein
derartiges System von Energieniveaus wird als Energieband bezeichnet.

Jeder Quantenzustand kann nach der FErMI-Dirac-Statistik oder dem Pauri-
Prinzip nur von einem Elektron besetzt sein. Da zu jedem Energieniveau zwei Spin-
zustdinde gehoren, ist somit jede Energieniveaulinie von zwei, jedes Energieband
von 2N Elektronen zu besetzen. Die Anzahl der Elektronenplitze in einem Energie-
band ist somit begrenzt.

( |

‘Bild 4.2.1.d) Valenzband, Energie-
licke, Leitungsband.

{@ g g g g g g} Valenzband ® besetzter, O unbesetzter Elek-

tronenzustand

Am absoluten Nullpunkt 7' = 0 werden die Energiezustdnde von unten beginnend
liickenlos nach oben besetzt. Das hochste fiir 7' = 0 vollstindig mit Elektronen be-
setzte Energieband heifit das Valenzband. Uber.dem Valenzband befindet sich das
Leitungsband, kurz auch als Leitband bezeichnet. Es kann teilweise mit Elektronen
besetzt oder leer sein. Valenzband und Leitungsband sind voneinander durch eine
Energieliicke getrennt (vgl. Bild 4.2.1d). Ihre Breite AW ist von mafgeblicher Be-
deutung fiir die elektrischen und optischen Eigenschaften des Festkérpers. In spe-
ziellen Féllen kénnen das Valenz- und das Leitungsband iiberlappen.

Defektelektronen

Ein Quantenzustand kann nach der FErmI-DirAc-Statistik entweder einfach besetzt
oder unbesetzt sein. Das Energieband 148t sich daher durch Angabe der besetzten
oder der unbesetzten Zustdnde beschreiben. Sind in einem Band nur wenige Plitze
unbesetzt, z. B. im Valenzband fir 7' > 0, so ist es zweckmifBig, die unbesetzten
Zustiande als Quasiteilchen einzufiihren. Unbesetzte Quantenzustinde der Elektronen
heiBlen Defektelektronen. Ebenso wie den Elektronen ist ihnen eine effektive Masse
zuzuordnen.

Werden in einem Festkérper Elektronen und Defektelektronen unabhingig von-
einander betrachtet, so gehéren sie verschiedenen Energiebiandern an. Ihre effektiven
Massen weichen daher in der Regel voneinander ab.

Bild 4.2.2 zeigt Elektronen im Leitungsband, Defektelektronen im Valenzband.

Im folgenden wird die Theorie iiber die Eigenschaften der Elektronen in den Energie-
béndern und iiber ihre Besetzung ndher ausgefiihrt.
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Energie der Elektronen vm Levtungsband nach dem Bloch-Theorem
Das Verhalten freier Elektronen, die keinen duBeren Kriften unterliegen, wird durch
die ScHRODINGER-Gleichung

2

S Ay + Wy = (1a)

Leitungsband

Energieliicke

Valenzband X X
Bild 4.2.2. Elektronen im

Leitungsband, Defektelektro-
nen im Valenzband

bestimmt. Thre Lésung kann zeitlich als Uberlagerung ebener Wellen
p = Aeiter—ot) (2a)

geschrieben werden. Sie heiflen de-Brogliesche Wellen. k gibt ihren Wellenzahlvektor,
o ihre Kreisfrequenz an. Zwischen diesen GroBen und der Energie W sowie dem
Impuls p des Elektrons bestehen die de-Broglieschen Gleichungen

W =to, p=rk. (3a)

Fiir das periodische Feld mit dem Potential U(r) = U(r 4+ R) gilt nach (4.1./3) die
SCHRODINGER-Gleichung

%2
5 Ay + W = U]y =0. (1)

Thre Lésung setzt sich aus der Uberlagerung von Bloch-Wellen zusammen. Beriick-
sichtigt man die Zeitabhéngigkeit in der Form e, so erhilt man nach (4.1./5) fiir
die Brocu-Wellen '

p = Aelkear—otg(r), (2)
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Aus dem Vergleich der Losungsfunktionen (2) und (2a) folgt, daf der periodisch
verinderliche Faktor o(r) den konstanten Wert eins annimmt, wenn (1) in (la)
iilbergeht bzw. das periodisch verdnderliche Potential U(r) verschwindend klein
wird :

e(r)—1 fir U(r)—0. 4)

Elektronen im Festkorper, die eine im Vergleich zum periodischen Potential grofie
Energie W besitzen, verhalten sich daher im Kristall gendhert wie freie Elektronen.
Sie werden als quasifrei bezeichnet.

Aus dem Vergleich von (2) und (2a) folgt, daB bei quasifreien Elektronen im Kristall
der Ausbreitungsvektor k, an die Stelle des Wellenzahlvektors k freier Teilchen tritt.
Energie W und Impuls p quasifreier Teilchen sind daher, wie aus dem Vergleich mit

(3a) hervorgeht, mit der Frequenz o und dem Ausbreitungsvektor k, der BrocH-
Wellen durch

W=W,+ho, p=rik, (3)

verkniipft (Bloch-Theorem).
Aus (3) folgt als Beziehung zwischen W und kj

72k 2
2m

pz
W:Wo"*‘%:Wo‘*' (5)

Nach dem Brocu-Theorem sind die Flachen gleicher Energie im k,-Raum Kugeln.
Sie heiBlen Fermi-Kugeln.

Der vom Ausbreitungsvektor k, abhingige Anteil der Energie W wird im folgenden
mit ¢ bezeichnet. Nach dem Brocu-Theorem ist also

72k ,2
2m

£ =

. (6)

Die Masse m der quasifreien Teilchen weicht von der Elektronenmasse m, ab. Sie
ist im allgemeinen nicht nur von der Gitterstruktur, sondern auch von der Be-
wegungsrichtung und von der Stellung des Elektrons im Béndermodell der Energie
abhingig (vgl. 4.2.5. und 4.2.6.). Im Giiltigkeitsbereich des BLocr-Theorems kann
mit einer nur von der Gitterstruktur abhingigen effektiven Masse m gerechnet
werden, fiir die Werte in Tabelle 3.3.2 zusammengestellt sind.

Nach dem Brocu-Theorem ergibt sich aus (6)

AW de ik,

&, ak - m ™

Wird hierin der Tmpuls nach der zweiten Gleichung (3) eingesetzt und nach diesem
aufgelost, so folgt

dWw  m
p=hky =mhk T gradg, W (8)
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bzw. nach Division durch die effektive Masse

1 de

1
v=— gradg, W

Gleichung (9) hat allgemeine Giiltigkeit fiir beliebige Energiefunktionen W = W (k,)
bzw. ¢ = ¢(k,). Sie ist nicht nur auf kugelférmige Energieflichen beschrinkt (vgl.
A 4.2.14). '

Die maximale Elektronenenergie fiir 7' = 0 ist nach (3.3/6) und (3.3./22) durch die
Ferm1-Kante [, = ¢p bestimmt. Fiir den groftmoglichen Wert des Ausbreitungs-
vektors am absoluten Nullpunkt erhélt man daraus nach dem BrocH-Theorem

2me
ko= /=5 (10)
Die zugeordnete Grenze der Elektronengeschwindigkeit ist nach (9)
kg
— — 11
(% poy ( )
Ferner definiert man
Ty =L (12)

k >
wobei k die Borrzman~-Konstante angibt. T'r kennzeichnet die Temperatur, von
der an nach der BoLTzMANN-Statistik gerechnet werden kann.

Beispiel 4.2.1. kg, vy, Ty tiir Kupfer
Fiir Kupfer erhdlt man mit ep = {, = 4,7 eV nach Beispiel 3.3.1 aus (10) bis (12)

m!=1,36-10"m™1,

b — /2901107 471,60 107
re 0,67 - (1,05 - 10-34)2

_1,05-10-34.1,36 -10%°. 0,67 m

vp o.11. 10 s1=1,05-10ms1,
. a8 . —19
pp— ET 1810 o ps00k.
1,38 - 10~

Das BrocH-Theorem ist besonders bei Metallen im unteren Teil des Leitbandes gut
erfiillt. Die konstante Energie W, nach (5) kann hier mit der unteren Kante Wy,
des Leitbandes identifiziert werden, so daf ¢ die Energie oberhalb Wy, kennzeichnet.
Nach oben hin verschlechtert sich. die Ubereinstimmung auf Grund des Verhaltens
der Energiefunktion W = W(k,). Nach dem eindimensionalen Modell des Fest-
korpers miiflte sich an der oberen Bandkante ergeben:

! (dW -0 (13)

Vobere Bandkante — %

dkA)obere Bandkante

13 Schilling, Festkorperphysik
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(vgl. 4.2.5.), wihrend nach dem BrocE-Theorem die Elektronengeschwindigkeit mit
zunehmender Hohe im Band stidndig ansteigt. Da jedoch die oberen Bereiche des
Leitbandes unbesetzt oder nur wenig besetzt sind, fallt diese Abweichung physika-
lisch kaum ins Gewicht.

Das FermI-Potential { (identisch mit dem Chemlschen Potential bzw. mit der Freien
Enthalpie je Teilchen) wird bei den Metallelektronen auf die untere Kante Wy
bzw. W, des Leitbandes bezogen. Die FermI-Kante £,, die nach 3.3. mit der Grenz-
energie ¢p identisch ist, kennzeichnet also fiir den absoluten Nullpunkt 7' = 0 das
Niveau des FermMI-Potentials oberhalb der unteren Leitbandkante.

Periodische Grenzbedingungen

Ein Festkorper besitzt endliche Abmessungen. Die BLocr-Wellen (4.1./5) als Losung
der ScHRODINGER-Gleichung (4.1./3) mit periodischem Potential U(r) kénnen daher
nicht iiber den unendlichen Raum erstreckt werden. Um das theoretische Modell an

) av.ava —
. [ 4
& A 7
s —
o -
'?—7 = 7 Bild 4.2.3. Periodizititshedingung

nach BorN und v. KARMAN

die physikalische Realitdt anzupassen, denkt man sich nach BorN und v. KARMAN
den vorgegebenen Kristall mit seinen Abmessungen periodisch wiederholt. An die
Stelle des einzelnen Kristalls wird eine liickenlose Folge gleicher Kristalle gesetzt.
Die Randbedingungen bei der Losung der SCHRODINGER-Gleichung wiederholen sich
daher periodisch im unendlich ausgedehnten Raum (vgl. Bild 4.2.3).

Diese periodische Fortsetzung der Randbedingungen in den unendlich ausgedehnten
Raum ist nicht zu verwechseln mit dem periodischen Potential U(r) = U(r + R),
das unabhéngig von den periodischen Randbedingungen besteht. Die periodischen
Randbedingungen stellen eine zusétzliche Annahme zum periodischen Potential.
dar. Sie werden eingefiihrt, um leicht tiberschaubare Losungen fiir die SCHRODINGER-
Gleichung zu erhalten.

Voraussetzung fiir die Einfithrung periodischer Randbedingungen ist, dafl bereits
in der Periodizitdt des Ausgangskristalls keine Stérungen auftreten und daB von
Oberflicheneffekten abgesehen werden kann. Unter diesen Bedingungen ist die
Form des Ausgangskristalls unwesentlich.

Am zweckmiBigsten definiert man den Ausgangskristall bzw. das Grundgebiet
durch gleichmiBige VergréBerung einer Elementarzelle 2, um den Faktor G. Be-
zeichnen also a,, @,, @; die Basisvektoren des Kristallgitters, so wird das Grundgebiet
£2 durch die Vektoren Ga,, Ga,, Ga, festgelegt:

0 =GBa, - @y X az — G3Q, — N&, (14)

N gibt die Anzahl der Elementarzellen des Grundgebietes an.



4.2. Festkorpereigenschaften 195

Mit der periodischen Fortsetzung des Kristalls mul auch die Losungsfunktion der
ScHRODINGER-Gleichung einschlieflich ihrer Phase periodisch sein:

p(r + mGa; + n.Ga, + ngGag) = p(r), (13)
(1, Mg, Mg = 0, 1, 42, ...).

P Probleme

4.2.1. Periodizititsbedingung nach Born und v. Karman

Nach BorN und v. KarmanN wird fir jede vom Ortsvektor 7 abhingige Wellenfunktion
P = pu(r, k) die Periodizitdtsbedingung

y(r + GR) = y(r) (1)
gestellt. Untersuchen Sie die Bedeutung der Periodizitédtshedingung (1) spezigll fir die Funktion

p(r) = elkn @)
und bestimmen Sie die Ausbreitungsvektoren k,, die die Periodizitédtsbedingung (1) befriedigen.
Welche Bildpunkte des Ausbreitungsvektors erhilt man fiir den reduzierten Bereich bei einem
Kristallwiirfel aus Wolfram mit 1 mm Kantenlinge? Die Gitterkonstante des Wolframs (krz-
Gitter) hat die Grée ¢ = 0,316 nm.
Losung:
Soll die Beziehung

eika:(r+GR) — gikar (3)
erfiillt sein, so mufl

GRky - R = 2mm (m=0,+1,...) (4)
sein. Wir setzen den Periodenvektor R nach (1.1./1)

R =.§1 n;a; (n; ganze Zahlen)

iz
in (4) ein und erhalten fiir die Ausbreitungsvektoren k, die Bedingungsgleichung
3

G’_Zln,-a,- cky = 2m1T:. (5)

i=
Aus der Definitionsgleichung der Basisvektoren des reziproken Gitters
a; - bi = 271.’(5,:]'

nach (1.1./7) folgt, daB fir Gk, simtliche Punkte b des reziproken Gitters -
3
Ghy =b =3 mb; (m;=0,+1,..) (6)
j=1

13%*
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eingesetzt werden konnen. Man erhélt somit als Losung der Gleichung (5) fiir die moglichen Aus-
breitungsvektoren die Darstellung

mb; | W)

1

Iy —

Qe

1M e

]

Da G zwar eine sehr grofe, aber endliche Zahl ist, kann k, nicht stetig verdndert werden, sondern
ist durch einen diskreten Wertebereich gekennzeichnet. Ausgedriickt durch die Komponenten
in Richtung der Basisvektoren b,, b,, b;, erhilt man fir den Ausbreitungsvektor k¢, die Dar-
stellung

ky=taty | Bathy | Bade, ®)
2 27 2 '

Sie geht in (7) iiber, wenn man k, = —lé- einsetzt und (1.1./6) berﬁcksichtigt. Die Punkte des
reduzierten Bereiches sind entsprechend der Definition in Abschnitt 4.1. durch

1 kA . j X 1 .
—_— <=L =4 = =1,2,3 9
s < e =T3 (7 ) 9)
festgelegt. Setzt man hierin k, gemi8 (7) ein, so ergibt sich fir die Komponenten des Ausbrei-
tungsvektors ke, die folgende Intervallabgrenzung:

1 m; 1

— <A< 4+ = j=1,2,3). 10
s <Gg="t73 @ ) (10)
In die erste BRILLOUIN-Zone bzw. in den reduzierten Bereich entfallen daher genau G verschiedene
Werte m;, G verschiedene Werte m,, @ verschiedene Werte my. In Richtung b; (j = 1, 2, 3) fort-
schreitend, erhilt man fiir den Abstand zweier benachbarter Punkte

[\

b _ 2m _ 2m (11)
G a,-G i

Dabei bedeutet L; die Lange des Grundgebietes (2 in Richtung des Basisvektors @; (j = 1, 2, 3).
Im Falle G = 1 liegt nur der durch m, = my, = my = 0 bestimmte Punkt innerhalb des redu-
zierten Bereiches, und man hat ke, = 0 zu setzen. Fiir @ = 2 wird (10) durch m; = 0 und m; = 1
(7 = 1, 2, 3) erfiillt. Man erhalt also acht Ausbreitungsvektoren k, mit Bildpunkten im reduzierten
Bereich.
Werden Kristallwiirfel mit dem Volumen ¥V aneinandergereiht, so ist der Periodenfaktor durch
3 —
vV
G=|/=
2
bestimmt. Der Elementarwiirfel des krz-Gitters enthilt, vgl. 1.1.2., zwei Kristallbausteine, so
daB 202, = a3 gilt. Wir erhalten daher

mit den vorgegebenen Werten

3 ) - _ry
A TS U
(0,316 - 10-2)3
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In einen reduzierten Bereich nichtéiquiva-.lenter Punkte fallen somit
N =@6®= (3,99 - 10%) = 6,34 - 109
Bildpunkte des Ausbreitungsvektors k,. Sie erzeugen eine Feingitterstruktur nach Bild 4.2.4.

b,/G

b,/G Bild 4.2.4. Feinstruktur der Ausbreitungsvektoren Iey

5 im reziproken Raum
1

4.2.2.* Normierung und Orthogonalitiit der Bloch-Wellen

Die BrocH-Wellen nach (4.1./5) sind mit einer Konstanten behaftet, die durch Normierung fest-
zulegen ist:
Y = (1, ky) = 4, elkarg, (1, ky). (1)

In der Quantentheorie der Festkérper wird y iiber das Grundgebiet 2, ¢ dagegen iiber die Ele-
mentarzelle 2, normiert. Berechnen Sie die Normierungskonstante und weisen Sie die Orthogonali-
tit der BLocH-Wellen nach.

Losung:
Nach Festlegung muf3
[ o*r. k) plr, ky) aV = 1, @)
20
dagegen
f’P*(r’ Ey)pr,ky)dV =1 @)
2
gelten. Hieraus folgt fiir die Konstanten 4 = 4,
) 1
4, =—=. (4)
105

Die normierte BLocE-Welle (1) lautet somit
1 .
P = yy(r, ky) = —— elkarp (v, ky). (®)
15

Unterscheiden sich zwei BLocH-Wellen

Y = pu(1, ) (6)

in wenigstens einem der beiden Quantenparameter » und k,, so sind sie orthogonal. Der Beweis
fiir die Orthogonalitdt wird mit Hilfe der periodischen Grenzbedingungen gefiihrt.

Multipliziert man die SCHRODINGER-Gleichung (4.1./3) fiir y = y, (7, k) von links mit y3.(r, k")
so entsteht

2

_2%n, Y, Ey) Apa(r, ky) 4 U@) w (1, ey") 9o (v, ky) = Wllen) win (v, Ey') 9n (7, B ) - (7)
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In gleicher Weise kann die konjugiert komplexe SCHRODINGER-Gleichung fiir y} (v, ¥,") mit
w,(7, k) multipliziert werden. Subtrahiert man die entstehende Gleichung von (7) und integriert
tiber das Grundgebiet, so entsteht

h? ,
g [ ) Al ) — e o) At ey ]V
Q

= [Wy(ley) — Warke)] [ wh(r, bea’) wa(r, bey) AV ®)
2
Nach dem GrEeENschen Satz gilt fiir zwei Funktionen v, und yp,
f(’h Aye — yy Ayy) AV = ¢ (y, grad y, — yy grad yy) - d4, 9
Q 0(Q)

wobei O(RQ) die Oberfliche des Volumens V kennzeichnet und d4. aus 2 herausweist. Das erste
Integral in (8) kann daher in ein Oberflachenintegral umgeformt werden:

hz 7 ’
Ty= =g [ W ) s ) — o ) ey k)] A4 (1)
0(Q)

Die periodischen Grenzbedingungen bewirken, daBl sowohl y als auch grady in zwei einander
entsprechenden Punkten der Oberfliche die gleichen Werte annehmen, wihrend die Oberflédchen-
vektoren in den beiden einander entsprechenden Punkten entgegengerichtet sind. Daher ver-
schwindet das Oberflichenintegral.. W,(ley) und W, (k,’) sind nach Voraussetzung wegen der
‘verschiedenen Quantenparameter voneinander verschieden. Es folgt daher im Zusammenhang
mit der Normierungsgleichung (3)

[ v s a0, Tey) AV = Sy ks, ken s (11)
y :

wobei 6y Kk, :n,ka das KRONECKER-Symbol bedeutet. Damit ist die Orthogonalitit der Broca-
Wellen v, (7, ks ) mit verschiedenen Quantenparametern n oder k, nachgewiesen.

Fir die Funktionen y,(r, k¢, ) ergibt sich bei gleichen Werten k, auf Grund der aus (2) und (4)
hervorgehenden Beziehung

@5 (r, key) @y (v, kp) = Ny (r, Kp) (v, Koy) - (12)
Es gilt daher
[ @, bey) @u(r, Bey) AV = 8y, (13)
2o
4.2.3. Eindimensionales Modell fiir die Anzahl der Quantenzustinde

in einem Energieband

Das eindimensionale Modell des Kristalls baut diesen aus Gitterpunkten auf, die im Abstand a
aufeinander folgen. -

Die endliche Ausdehnung des Kristalls wird wie beim dreidimensionalen Modell beriicksichtigt,
indem sich die Randbedingungen nach Durchlaufen der Strecke L periodisch wiederholen.
Leiten Sie im Zusammenhang mit dem PAvuLi-Prinzip die Anzahl der Quantenzustidnde in einem
Energieband ab, und untersuchen Sie die Besetzung der Leitungsbédnder nach Tabelle 2.1.6 von
Silber, Diamant, Magnesium und Neon fiir den absoluten Nullpunkt der Temperatur.
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Losung:
Die Lénge L des Kristalls ist ein Vielfaches der Linge a einer Gitterzelle:
L = Na. )

Dabei gilt L> a bzw. N > 1.

Nach (4.2.1./7) sind die zuldssigen Werte des eindimensionalen Ausbreitungsvektors k¢, daher
durch

27 2r
kpy=n— =n— =0, +1,...
A=nT =n (n=0,+ ) 2)

gegeben. Eine Gesamtheit nichtdquivalenter Punkte wird nach (4.1./10) durch den reduzierten
Bereich

Lkl @)
a a

erfafit. In den Bereich (3) fallen simtliche Wellenzahlen &, nach (2), deren Laufzahlen n im
Intervall

.N N
—_ < —
<n=+4 (4)

liegen. Das sind genau N Wellenzahlen. Jede Elementarzelle trigt somit zu einem Energieband
genau einen Wert der Wellenzahl &, bei.
Beriicksichtigt man, dafl jeder durch eine Quantenzahl n gekennzeichnete Zustand infolge der

beiden moglichen Spinstellungen s = +-;—-, s = ——% in zwei Quantenzusténde aufspaltet, so ent-

fallen also 2V unabhingige Quantenzustéinde auf jedes Energieband.

Ein Silberatom enthilt nach Tab. 2.1.6. in der duBlersten Schale ein Elektron. Die N Bausteine
eines Kristallgitters aus Silberatomen liefern N Elektronen fir das hochste Energieband. Da in
diesem 2N Quantenzustdnde besetzt werden kénnen, ist es somit am absoluten Nullpunkt der
Temperatur nur halb besetzt.

Magnesium und Diamant enthalten dagegen je Atom zwei Elektronen in der duBersten Bahn.
Ihre hochsten Energiebénder sind daher fiir 7' = 0 voll besetzt, sofern sie sich nicht itberlappen.
Neon mit sechs Elektronen in der duBlersten Schale fiillt drei Energiebénder vollstindig aus.

4.2.4. Leiter und Isolatoren

Bestimmen Sie den Beitrag der einzelnen voll- oder teilbesetzten Bénder zur meBbaren Drift-
bewegung der Elektronen nach 3.3. beim Anlegen eines duBeren Feldes. Untersuchen Sie auf
Grund der Angaben nach Tab. 2.1.6 iber die Besetzung der Energiebénder die elektrischen Leit-
fahigkeitseigenschaften von Silber, Aluminium, Kupfer, Diamant, Germanium, Silizium, Beryl-
lium, Magnesium.

Losung:
Fir die Geschwindigkeit der Elektronen im Energieband gilt allgemein Gleichung (4.2./9):

1 1 dw
v=—grad W = — —. 1
B ST =T ok, o
Durch die Gestalt der Energiefliche W = W,(k,) wird die Geschwindigkeit der Elektronen
fir eine bestimmte Stelle des Bandes vollstandig bestimmt. Nur wenn die Energieflichen im rezi-
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proken Raum Kugeln sind, wenn also eine Darstellung nach (4.2./6) gilt, ist die Geschwindigkeit
nach allen Raumrichtungen gleich. ,

Nach (4.1./16b) ist die Elektronenenergie W = W(lk,) eine gerade Funktion. Ihre FOURIER-
Entwicklung ergibt nur Cosinusglieder. Die Energiezustdnde sind im reziproken Raum sym-
metrisch zu k, = 0 verteilt und gleichméig dicht. Zu jeder Elektronengeschwindigkeit v exi-
stiert daher gemal

ow ow

O(—Fka;) - N ®

im betrachteten Energieband eine Elektronengeschwindigkeit —w. Integriert man iiber sémtliche
Geschwindigkeitszustidnde eines vollbesetzten Energiebandes, so heben sich die positiven gegen
die negativen Geschwindigkeitskomponenten heraus. Es ergibt sich der Wert Null. Damit folgt
auch als Mittelwert der Geschwindigkeit aller Elektronen eines vollbesetzten Energiebandes der
Wert Null:

(¥)volibesetztes Band = 0 |+ 3)

Die Symmetrie der Energiefunktion W = W(le,) beziiglich des Zustandes k, = 0 fithrt dazu,
daf} zu einem vorgegebenem Wert W die Ausbreitungsvektoren k, und —k, gleichwahrscheinlich
sind. Auch ein nur teilweise besetztes Energieband weist eine zu © = 0 symmetrische Besetzung
mit Elektronen auf, sofern keine duleren Storungen erfolgen. Bei der Integration iber sémtliche
Elektronengeschwindigkeiten in einem teilweise besetzten, von auflen nicht gestérten Energie-
band muB sich daher ebenfalls der Wert Null ergeben.

Beim Anlegen einer dufleren Spannung werden die Elektronen durch das Einwirken des elek-
trischen Feldes E beschleunigt und verandern ihre Energie. Die auf ein Elektron ausgeiibte Kraft
ist F = —e E, so dafl man firr die Energieénderung

dW =F.vdt = —eE -v dt
und nach (1)

AW = ——E . — dt 4)
i dke,
Ao o oy
50 +—30 e300, Bild 4.2.5. Verschiebung der Ausbreitungs-
/‘/o / vektoren im reduzierten Bereich durch ein
LT T o gk GuBeres Feld

erhilt. Hieraus folgt als Anderung des Ausbreitungsvektors

dkey = —%E at |. ®)

Die Einwirkung des duBleren Feldes E fiihrt zu einer gleichméBigen Verschiebung dW fiir alle
Energiezustinde bzw. dk, fir alle Ausbreitungsvektoren k, (vgl. Bild 4.2.5). Infolge der be-
grenzten Stofzeit ist df begrenzt.

Durch das angelegte Feld E wird bei vollstindiger Besetzung eines Energiebandes ein Teil der
Ausbreitungsvektoren k, iiber die Begrenzung der Elementarzelle im reziproken Raum, z. B.
iiber die Begrenzung des reduzierten Bereiches, hinaus verschoben. Die links hinausgeschobenen
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Vektoren k, sind jedoch in den reduzierten Bereich rechts wieder einzufiigen. Insgesamt dndert
sich dadurch nichts an der liickenlosen und symmetrischen Verteilung.

Bei einem vollbesetzten Energieband liefert auf Grund dessen auch im Falle eines anliegenden
Feldes E die Integration iiber simtliche Zustinde den Wert Null. Das vollbesetzte Energieband
leistet beim Anlegen einer dufleren Spannung keinen Beitrag zum elektrischen Strom. Es ist am
Ladungstransport nicht beteiligt:

(j)vollbesetztes Band =0 |. (6)

Dagegen entsteht bei unvollstiindig besetzten Biindern durch die Verschiebung eine Verteilung,
die beziiglich ¢, = 0 bzw. v = 0 nicht mehr symmetrisch ist. Die Integration iiber alle Elektro-
nenzustinde des teilweise besetzten Bandes ergibt daher nicht mehr den Wert Null, sondern
einen endlichen Wert: es fliet ein elektrischer Strom;

Dteilbesetztes Band = 0,  (J)teilbesetztes Band F O (7
E+0 E+0

Die Leitung des elektrischen Stromes kann nur durch unvollstdndig besetzte Bénder erfolgen.
Silber und ebenso Kupfer und Aluminium weisen nach Tab. 2.1.6 in ihren dufleren Béndern je
Atom nur ein Elektron auf. Nach 4.2.3. ist diese Elektronenschale daher nur halb besetzt und kann
somit den elektrischen Strom leiten. Silber, Kupfer und Aluminium gehéren daher zu den elek-
trischen Leitern (vgl. Bild 4.2.6a).

Diamant, Germanium und Silizium weisen nach Tab. 2.1.6  und nach 4.2.3. fir 7 = 0 nur
vollbesetzte Energiebéinder auf. Sie sind fiir 7' = 0 Isolatoren in Ubereinstimmung mit dem
Experiment (vgl. Bild 4.2.6b).

Beryllium und Magnesium besitzen nach Tab. 2.1.6 und nach 4.2.3. ebenfalls nur vollbesetzte
Energieschalen. Im Gegensatz zu Diamant, Germanium und Silizium zeigen sie experimentell
elektrische Leitfahigkeitseigenschaften, die jedoch hinter denen von Silber, Kupfer und Alu-
minium zuriickbleiben. Dieses Verhalten wird erst durch die genaue Berechnung der Lage ihrer
héchsten Energiebander geklirt, die sich teilweise tiberlappen. -~

4.2.5. Extremwerte der Energiefunktion

Bestimmen Sie die Maxima und Minima der Funktion W = W(k,) nach dem eindimensionalen
Modell.

Losung:
Nach (4.1.1./15) und (4.1.1./10) sowie (4.1.2./23) schreiben wir

cos kya = f(W). (1)
Die Bandkanten sind durch

(cos kpa)kante = 1  bzw. (kx)Rante = % (n=0,£1, +£2,...) (2)
bestimmt.
Zur Ermittlung der Extremwerte differenzieren wir:

dw _ AW df(W) = — aw asin kya. (3)

d—ch " dcoskya dk, d coskpa
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Diese Funktion hat ihre Extremwerte fir
(sin kp@)Extr. = 0 bzw. (ka)Extr. = 7%‘ (n=0,+1,42,...). 4)

Wie aus dem Vergleich mit (2) hervorgeht, geben die Bandkanten nicht nur den gréBten oder
kleinsten Wert der Energie innerhalb eines zuldssigen Bereiches an. Sie sind gleichzeitig die
Extremwerte der Funktion W = W(k,). Innerhalb eines reduzierten Bereiches

—T T
L
a a

liegt ein Extremwert der Funktion W = W(k,) fur
ky =0 (®)

vor. Das steht in Ubereinstimmung mit (4.1./16b), wonach W = W(k,) eine zu k, = 0 sym-
metrische Funktion ist. Ein weiterer Extremwert ergibt sich innerhalb des reduzierten Bereiches
fur

(6)

kA=

Sk

Dagegen ist ky = —Z nach Definition der Ausbreitungszahl k, = —{—l zugeordnet.
a a
Um Aufschluf iiber die Maxima und Minima zu erhalten, bilden wir die zweite Ableitung. Bei

der Differentiation der Gleichung (3) fiir die Stellen by = T konnen wir sin kya = 0 benutzen.
Es folgt @

dzw aw
=7 = —aq2 ————— cos kxa. 7
(dkAz)kA= T d cos kxa A @
w w
A \
obere Bandkante ———— obere Bandkante
-+ untere Bandkante untere Bandkante
I £= kA ¥ ”; ky
a a a
Bild 4.2.7a) W = W(k,) mit einem Mini- Bild 4.2.7b) W = W(k,) mit Minima an den
mum im Inneren des reduzierten Bereiches Réndern des reduzierten Bereiches

ks = 0 bedeutet cos kya = +-1. Ist die untere Kante eines Energiebandes durch cos kya = 41
gekennzeichnet, so wichst die Energie W, wenn man sich vom Rande nach dem Inneren des
Bandes bewegt, wihrend gleichzeitig cos kya auf Werte kleiner eins abféllt. Daher folgt aus (7)

(d2 w

— 0
dkAz)IImtere Bandkante > (7a)
ka =0

Es liegt ein Energieminimum nach Bild 4.2.7a vor.
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Hat dagegen cos kya fiir die obere Bandkante den Wert +1, so ist die Ableitung der Energie W
nach cos kya positiv, da beide nach dem Bandinneren hin abnehmen. Man erhélt nach (7)

d2w
7b
(dk Az)obere Bandkante <0 ( )
Ika=0 :
und somit fiir £y = 0 ein Energiemaximum nach Bild 4.2.7b.
Far cos kya = —1 erhalten wir, wenn dieser Wert an der unteren Bandkante angenommen
wird,
dzw
— 7
(dkf)untere Bandkante >0, (7e)
ka=mn/a

d.h., an den Réndern des reduzierten Bereiches liegen Minima nach Bild 4.2.7b. Liegt
cos kya = —1 an der oberen Bandkante, so folgt

ew <0
dk,2/obere Bandkante

ka=m/a

(7d)

An den Riindern des reduzierten Bereiches liegen Energiemaxima nach Bild 4.2.7a.
Der untere Rand eines Energiebandes ist somit durch

>0 (8)

0

(dZW)
dkAz untere Bandkante

der obere Rand durch

<0 9)

(@)
dkA2 obere Bandkante

gekennzeichnet.
Wird vorausgesetzt, daB W = W(k,) eine Funktion darstellt, deren zweite Ableitung im ge-
samten Energieband stetig ist, so muB} sich im Inneren des Bandes ein Wendepunkt mit

aew
dky2
befinden.
4.2.6. Effektive Masse der Elektronen in den verschiedenen Bandbereichen

Untersuchen Sie die Geschwindigkeit der Elektronen in den verschiedenen Bereichen eines
Energiebandes unter dem EinfluB8 eines elektrischen Feldes E. Bestimmen Sie das Vorzeichen
der effektiven Masse fur den unteren und fiir den oberen Rand des Bandes. Dabei ist das ein-
dimensionale Modell zugrunde zu legen.

Losung:

Wir gehen von der allgemeinen Formel (4.2./9) fiir die mittlere Geschwindigkeit der Elektronen
aus. Im eindimensionalen Fall lautet diese
1 dw

_1dw 1
T % ak, ()
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Die Beschleunigung der Elektronen kann auf Grund der Kettenregel
a="= 20 0 (@)

berechnet werden. Der erste Faktor folgt aus (1)

& 1 W
B _ 1 &EW 3
dky & dky? @)

Den zweiten Faktor bestimmen wir mittels (4.2.4./5). Fir die Verschiebung dk, der Ausbrei-
tungsvektoren erhalten wir damit

2= _—B&. 4)

Wir setzen (3) und (4) in (2) ein, und es ergibt sich

2
a = _e£ w_ (5)
Nach dem zweiten NEwTONschen Axiom ist die Beschleunigung durch die Gleichung
o (6)
m

festgelegt. Aus dem Vergleich zwischen (5) und (6) folgt fiir die effektive Masse eines Elektrons die
Gleichung

hZ
m =
aw
dy?

()

Nach (4.2.5./7a) und (4.2.5./7c) ist die zweite Ableitung der Energie nach der Ausbreitungszahl
ky an der unteren Bandgrenze positiv. Die Elektronen werden hier durch die dullere Kraft —eE
beschleunigt. Dagegen ist nach (4.2.5./7b) und (4.2.5./7d) an der oberen Bandgrenze die zweite
Ableitung negativ, da hier ein Minimum der Energie vorliegt. Daher kommt den Elektronen in
diesem Bandbereich eine negative effektive Masse m zu. In Richtung der duBeren Kraft bewegte
Elektronen werden durch diese verzogert. Fiir den Wendepunkt nach (4.2.5./10) hat die duBlere
Kraft iiberhaupt keinen EinfluB auf die Bewegung. Die Elektronen verhalten sich an dieser
Stelle des Bandes wie Teilchen mit unendlich grofer Masse.

Wie hieraus hervorgeht, 148t sich das Brocr-Theorem fiir den oberen Teil eines Energiebandes
nicht anwenden.

4.2.7. Defektelektronen

Untersuchen Sie die Auswirkung auf die physikalischen ZustandsgroBen, wenn an Stelle der
besetzten Elektronenplitze die unbesetzten, d. h. an Stelle der Elektronen die Defektelektronen
betrachtet werden. Welche Auswirkung hat der Ubergang von Elektronen zu Defektelektronen
auf die Zustandsdichte yy*? Welche Energie, welche Ladung, welche Masse hat man fir die
Defektelektronen einzusetzen, wenn die entsprechenden GréBen fur die Elektronen bekannt
sind?
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Losung:

Nach der klassischen Theorie wird die Kraft bei der Bewegung elektrisch geladener Teilchen in
elektrischen oder magnetischen Feldern durch die LorENTZ-Gleichung

F = my = ¢(E +v X B) (1)

beschrieben. Eine Liicke in einer Kette gleicher elektrisch positiv oder negativ geladener Teilchen
lduft mit diesen mit. Sie verhilt sich wie ein Teilchen mit negativer Masse und entgegengesetzter
Ladung. Kehren Masse und Ladung in (1) gleichzeitig ihr Vorzeichen um, so bleibt der Be-
wegungsablauf unverandert. Es kehren sich jedoch auch die Richtung der Kraft und damit
gemal

0W =F.or
das Vorzeichen der Energie um. Ordnet man daher nach dem Potentialtopfmodell den Elektronen
im Festkorper negative Werte der Energie zu, so ist diese fiir die Elektronenliicken positiv.

Nach der Quantentheorie wird die Bewegung und Verteilung der Elektronen durch die ScEHRG-
DINGER-Gleichung

Hy = Wy (2)

bestimmt.

Im HamrroN-Operator H der Gesamtenergie sind neben dem Impulsoperator —ii\/ das elek-
trische Potential V' (Einheit Volt) und das Vektorpotential A des magnetischen Feldes zu be-
riicksichtigen. Das elektrische Potential V ist mit der potentlellen Energie U des elektrischen
Feldes gemaf

U=gqV (3a)

verkniipft. Zwischen dem Vektorpotential A und der magnetischen FluBdichte B besteht die
Beziehung

B =rotA. (3b)

A und V werden als zeitlich konstant vorausgesetzt.
Fir den HamrwroN-Operator H erhilt man nach der Quantentheorie

.
= — ik + gl +qV. ! ®3)
2m

Wir setzen (3) in (2) ein und multiplizieren mit %ﬂ Als ScHRODINGER-Gleichung folgt damit

[(v_i_gA)2_2mﬂ+2mW}w=0. (4)

3 72 2

Vertauscht man in (4) sowohl bei g als auch bei m das Vorzeichen, betrachtet also an Stelle negativ
geladener Elektronen mit der effektiven Masse m positiv geladene Teilchen mit der effektiven
Masse —m, so dndert der imagindre Summand in der SCHRODINGER-Gleichung das Vorzeichen.
AuBerdem tritt im letzten Summanden, der die Elektronenenergie W enthilt, ein Vorzeichen-
wechsel ein. Die Energie der Defektelektronen kann daher geméf

Wy=—We=—W )

auf die Energie W = W, der Elektronen zuriickgefithrt werden.
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Der Ubergang in der Betrachtung von Elektronen zu Defektelektronen ist durch die folgenden
Vertauschungsregeln bestimmt:

W—-—-Ww,
m—> —m, (6)
qg= —e—> —q= -e.

Man erhilt dabei an Stelle der SCHRODINGER-Gleichung die konjugiert komplexe SCHRODINGER-
Gleichung.

Gibt y, die Wellenfunktion der Elektronen, y, die Wellenfunktion der Defektelektronen an, so
gilt hiernach

¥p = ye*- (M
Fiir die Aufenthaltswahrscheinlichkeit ergibt sich daraus
z/’p"l’p* = PePe*. ®

Die physikalischen Gesetze bleiben bei gleichzeitiger Umkehr der Vorzeichen von Masse, Ladung
und Energie ungeéindert.

4.2.8. Zustandsdichte und Dichte der Energieniveaus

Geben Sie fir eine Kupferleitung von 10 m Linge mit dem Querschnitt 1 mm? die Zustands-
dichte, d. h. die Dichte der Ausbreitungsvektoren im reduzierten Bereich, sowie die Dichte der
Energiezusténde fir die Elektronenenergie ¢ = 1 eV an. W = W, + ¢, liegt also 1 eV iiber der
unteren Bandkante.

Losung:

Der reduzierte Bereich im reziproken Raum hat das Volumen (in m—3)
o= ()

In diesem Raum befinden sich nach (4.2.1./7) N = G® Ausbreitungsvektoren k,. Sie liegen iiberall
gleich dicht verteilt.
Der Kristall setzt sich aus N Elementarzellen zusammen. Sein Volumen betrigt

Q= NQ, @)

wobei 2, das Volumen einer Elementarzelle bedeutet.
Dividiert man die Anzahl der Ausbreitungsvektoren k, durch das Volumen 2,” des reduzierten
Bereiches, so erhilt man

N _NQ_ 2

3)

als Anzahl der Ausbfeitungsvektoren, bezogen auf die Volumeneinheit (in m=2) des reziproken
Raumes. Diese Groeheit Zustandsdichte des reziproken Raumes. Sie hat die MaBeinheit m3.
Den N k,-Vektoren entsprechen wegen der zwei Einstellméglichkeiten des Spins 2N Energie-
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werte. Bezogen auf die Einheit des reziproken Raumes ergeben sich somit

2N Q2

kA 4

2y 4= @
Energiezustdnde. Auf den reziprcken Raum der Grofe d®k, entfallen

Q
22 @3k
4ms A

Ausbreitungsvektoren mit verschiedenen Energien oder Spinzusténden. Die Dichte y der Energie-
niveaus gibt die Anzahl der Energiezustinde, bezogen auf das Energieintervall von einem Joule
oder auch einem Elektronenvolt an. Wir berechnen zunichst die Zahl dy der Energielinien im
Intervall W ... W 4 dW. Hierfur erhalten wir nach (4)

dv =y dW = 2 A3k, . (5)
478

Dabei ist der Bereich d®k, des reziproken Raumes zu erfassen, dem der Energiebereich
W ... W 4 dW zugeordnet ist.

W4 dw

Bild 4.2.8. Zerlegung
des reziproken Raumes

w

Man kann allgemein den reziproken Raum nach Bild 4.2.8 in Volumenelemente

&k, = do dk, (6)

zerlegen, wobei do das Oberfldchenelement der Fliche W = const im reziproken Raum bedeutet,
dk, senkrecht zu do steht und durch die Lénge des Energiedifferentials dW bestimmt wird (vgl.
Bild 4.2.8): )

dk aw aw
dky = |=2|dW = — = —————|. 7
? }dW dW|  |gradg, W| @)
dke, | -

Sind die Flichen konstanter Energie im k,-Raum Kugeln, gilt also nach (4.2./6)

2 2 2 2
W=, + R gy o= BRa
2m 2m

, (8)
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o folgt
2 2 Y 7
AW = gradg, W - dk, = A2 dky® -dkA=M. (9)
2m dky m
Den Energiewerten zwischen W und W +4- dW entspricht daher im reziproken Raum eine Kugel-

schale mit Betrégen der Ausbreitungsvektoren zwischen

_ V2m(W = W) _ V2me

K
A ) A

und

by + dhey = %(% + V’E de).

2e

Das Volumen dieser Kugelschale ist

8rm3l2 Ve
—de
V2w

Fiir die Anzahl der- Energieniveaué, bezogen auf die Einheit des Energieintervalles, folgt daher
nach (5) K
V2 oms2 e

y= BEmR T (1)

Ay = 4roky? dky = (10)

Mit den vorgegebenen GroBen ergibt sich aus (3) als Dichte der Ausbreitungsvektoren je Raum-
einheit (m—3) des reziproken Raumes

y s U s . 108 m3
o P P m 4,0 -10-8 m3,

Aus (11) erhalten wir fir die Dichte der Energiezustinde bei ¢ = 1 eV

V2 -10-5 (9,11 - 10-21)%/2 /1,60 1019
T (0,67)32. 3,142 - (1,05 - 10-34)3

A. Aufgaben

A42.1. Berechnen Sie fiir ein einfaches kubisches Gitter nach dem BrocH-Theorem die
Energie eines Elektrons in einer Ecke der ersten BriLLoOUIN-Zone. Wie grofl ist
diese Energie im Verhiltnis zur Energie eines Elektrons im Mittelpunkt einer
Seitenfliche der ersten BRILLOUIN-Zone? )

A 4.2.2. Berechnen Sie aus der FErMI-Energie ep = 1,0 eV nach dem BrocH-Theorem den
Radius der groiten FErRMI-Kugel, wenn die effektive Masse gleich der Elektronen-
masse m, ist. Wie groB3 sind die Grenzgeschwindigkeit vr und die FErMI-Tempera-
tur TF?

A4.23. Geben Sie nach der Periodizitétsbedingung von BorRN und v. KARMAN die Aus-
breitungsvektoren k, fiir einen Wiirfel aus Steinsalz von 1 cm Kantenldnge an
(Werte nach Tab. 1.1.1). '

A424. Schétzen Sie die Groflenordnung der Elektronengeschwindigkeit in einem Fest-
korper ab, wenn fir die Breite des Energiebandes ein Wert in der GroSenordnung

J1=1,25.108eV-1.

14 Schilling, Festkérperphysik
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Ad425.*

A4.2.6.

Ad27.

A4.28.

A4.209.

A 4.2.10.
A4.2.11.
A4.212.
A 4.213.

A4.2.14.%

4.3.

E

1 eV, fir den Abstand zweier Potentialmaxima ein Wert in der GroéBenordnung
0,4 nm angenommen wird.
Unter der naherungsweise zuldssigen Annahme, da8 (4.2./9)

v = —:L— gradp, W(lk,) (1)

auch fiir duBere Krifte gilt, ist die Formel fir die effektive Masse aufzustellen.
Bestimmen Sie die mittlere Geschwindigkeit der Elektronen an den Réndern eines
Energiebandes nach dem eindimensionalen Modell.

Untersuchen Sie nach Tab. 2.1.6 die Besetzung der hochsten Energiebénder fiir
Kupfer, Aluminium, Natrium, Silizium, Germanium, Argon. Welche dieser Mate-
rialien sind fiir 7' = 0 elektrische Leiter, welche Nichtleiter?

Die Energieliicke zwischen Valenz- und Leitungsband liegt in der GroBenordnung
1 eV. Wie stark muBl ein von aulen angelegtes elektrisches Feld sein, um einen
Elektroneniibergang vom Valenz- zum Leitband zu erzeugen? Fiir die mittlere
Geschwindigkeit der Elektronen kann nach Tab. 4.2.1 ein Wert in der Groflen-
ordnung 10® m s, fiir die Relaxationszeit ein Wert in der GréBenordnung 10~ s
angesetzt werden.

Welche Wirkung hat der Ubergang von Elektronen zu Defektelektronen auf den
Ausbreitungsvektor k, der BLocr-Welle?

Leiten Sie aus der Verteilungsdichte der Elektronen die Verteilungsdichte der
Defektelektronen ab.

Wie groB ist in Silber ({ = 5,5 V) bei T = 300 K die Verteilungsdichte der Elek-
tronen mit der Energie ¢ = 6,0 eV? Welche Verteilungsdichte ergibt sich bei
Defektelektronen?

Berechnen Sie fiir einen Wiirfel der Kantenlédnge 1 cm die Zustandsdichte.

Wie groB ist in einem Silberwiirfel der Kantenlinge 1 cm die Dichte der Energie-
niveaus an der Fermi-Kante (vgl. Tab. 4.2.1)?

Die in (4.2./9) aus dem Broc¢E-Theorem abgeleitete Formel fiir die Elektronenge-
schwindigkeit ist fiir beliebige Energiefunktionen W = W (le,) zu verallgemeinern.
Bestimmen Sie hierzu die Ableitung der Elektronenenergie W nach einer Kom-
ponente k; des Ausbreitungsvektors k,, indem Sie die SCERODINGER-Gleichung
nach k; differenzieren und dabei die BLocE-Welle einsetzen.

Hinweis: Das Ergebnis der Differentiation 148t sich vereinfachen, indem die
Normierung und Orthogonalitét der BLocE-Wellen nach 4.2.2. sowie die periodischen
Randbedingungen benutzt werden. '

Leitfihigkeitseigenschaften fester Korper nach der Boltzmann-Gleichung

Einfiihrung

Verteilungsfunktionen

Durch das Einwirken eines dulleren Kraftfeldes F = F(r) wird der Gleichgewichts-
zustand in der Lage- und Impulsverteilung der Elektronen gestért. Als Folge davon
kénnen stationdre Strome der Masse, Energie oder elektrischen Ladung ausgeldst

werden.

Bei ihren Bewegungen stoBen die Elektronen mit den Kristallbausteinen zusammen.
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Daher werden die Leitfahigkeitseigenschaften durch die Zahl und die Art der StoBe
bestimmt. '
Die Verteilung der Teilchen nach Lage und Impuls ist fiir jedes Energieband durch
die Besetzungs- bzw. Verteilungsdichte oder Zustandsfunktion

f = fulr, p) 1)

gegeben. Der Index n kennzeichnet das n-te Energieband. Fiir die Wahrscheinlich-
keit, daBl der Phasenbereich d® von einem Elektron besetzt ist, erhdlt man

fa(r, p) dD.

Die Abgrenzung von d® héngt vom physikalischen Problem ab. Bei gleichméBiger
Verteilung der Elektronen im Lageraum V, wenn nur die Verteilung auf die Betrége
des Impulses p interessiert, kann man z. B. beim Einelektronensystem

d® =V - 4np2dp

setzen (vgl. 2.1.4/6 sowie 3.3./7).

Im Gleichgewichtszustand, wenn keine duBleren Felder einwirken, ist f mit der
FErMI-Dirac-Verteilungsdichte nach (3.3./24) identisch. Dieser Zustand wird im
folgenden als Normalzustand bezeichnet.

Durch das Einwirken #duBlerer Felder und infolge der Wechselwirkungsprozesse
bzw. StoBe #ndert sich die Verteilung der Teilchen. Im stationiiren Zustand hebt
sich die von &uBeren Feldern hervorgerufene Anderung der Verteilungsfunktion
gegen die auf StoBprozesse zuriickgehende Anderung auf. Nach Einstellen des statio-
néren Gleichgewichtes gilt daher

Dabei gibt g{ die Anderung der Verteilungsdichte als Folge von StoBen, (-a—f) als
s F

ot
Folge duBerer Felder an. (2) ist die Boltzmann-Gleichung in ihrer Ausgangsform.

Das Feldglied der Bolizmann-Gleichung

Es wird zuniichst die Anderung durch #uBere Felder betrachtet. Diese fithren zur
Beschleunigung eines Teilchens. Hat es zur Zeit ¢ den Lagevektor » und den Impuls-
vektor p, so ist es ohne Wechselwirkungsprozesse zur Zeit ¢ + d¢ durch die Vektoren
r + 7 dt, p + p dt charakterisiert. Die Anderung der Besetzungsdichte wihrend
der Zeit d¢ stimmt daher mit der Differenz der Besetzungsdichten in den Zellen bei
r,pund r 4 dr, p + dp zur Zeit ¢ iiberein, wobei dr = # di, dp = P di zu setzen ist:

(3_f) 40 — lim [P) — for +#dtp 4 pdh) o ®)
ot [g dt—0 d¢
Hieraus folgt durch TavyrLorsche Entwicklung

of\ _ _(of ., of .

(gt')F-— —(5 T+ o P)- (4)

14*
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Beachtet man

of + 9,

of of .

—a;—gl‘adrf—%i'i-a—y]-l——ag 2 (5)

of of . of . of

— =grad, f=— 1 — —k,, 6

ap g Pf apx P + ap”]p + apz 4 ( )
wobei iy, jp, kp Einheitsvektoren des Impulsraumes bedeuten, nebst

r=v, p=2F, )

so 148t sich die Anderung der Verteilungsfunktion durch das duBere Feld mit Hilfe
der Gleichung

of

—|{=) =v-grad, f + F-grad, f 8)

ot g
ausdriicken.
An Stelle des Impulses p kann man in die Verteilungsfunktion auch den Ausbrei-
tungsvektor k&, einfithren. Wegen (4.2./8) ergibt sich aus (4)

of F
—(a—t)Fv grad,f + - grady, f |. )

Das Stofglied der Boltzmann-Gleichung

Durch St68e kann ein Teilchen sowohl den Impuls bzw. den Ausbreitungsvektor als
auch das Energieband wechseln. Ein derartiger Wechsel wird durch

(n: kA) g (n,) kA/))
die Wahrscheinlichkeit fiir einen solchen Ubergang innerhalb einer Sekunde durch
Pn',n(kAl, kA)

gekennzeichnet.

Die Zahl der Uberginge (n, k,) — (', k,’) ist proportional der Wahrscheinlichkeit
P, o(ky’, ky). Sie wichst ferner proportional mit der Verteilungsdichte f(r, ky).
Ein weiterer Faktor ergibt sich durch das PAuLI-Prinzip. Da jeder Quantenzustand
nur einmal besetzt werden darf, ist der Ubergang in einen bereits besetzten Zustand
(m, ky') unmoglich. Ist ein Zustand (n', k,’) durch eine groBe Verteilungsdichte
fo(7, k) gekennzeichnet, so wird beim Vielteilchensystem ein Elektron daher héufiger
eine Zelle als bereits belegt antreffen und daher kein Ubergang stattfinden, als wenn
fu(r, Ey') nur klein ist. Im Grenzfall f,.(, k') = 1 ist ein Ubergang unméglich, im
Grenzfall f,/(r, k,') = O tritt keine Beeinflussung durch das Verbot mehrfacher Be-
setzung auf. Um das PAuLI-Prinzip zu berticksichtigen, fiigt man dem Produkt aus
den beiden Faktoren P, ,(k,’, k,) und f,(r, k,) einen weiteren Faktor 1 — f,/(r, k,")
zu. Durch Summierung iiber simtliche Uberginge (n, ks) — (n', k,’), die zu einer
Verkleinerung der Anzahl der Teilchen im Zustand (n, k,) fithren, und iiber simtliche
Ubergiinge (n', k') — (n, k4), durch die sich die Teilchenzahl in diesem Zustand ver-



4.3. Leitfihigkeitseigenschaften fester Korper nach der BourzmMaNN-Gleichung 213

groBert, erhdlt man

3fnékA %: o (B, Ba") Fur(Fen)) [1 — fu(len)]

—Puaky’s Ey) fullea) [T — frr (s (102)

Darin wurde die Abhéngigkeit vom Ortsvektor # als unwesentlich weggelassen.
Wird die Summe durch ein Integral ersetzt, so hat man die Dichte der Energie-
niveaus nach 4.2.8. zu beriicksichtigen und erhilt

Ofn(ks) Q ’ ’
( 3tA )S = S_ﬁf{Pn.n'(kA’ kA ) fn'(kA ) [1 - f"(kA)]

— Ppa(ley’, k) fo(ls) [1 — fur(Fen')]) %, (10)

Beim Einsetzen von (10) und (9) in (2) ergibt sich eine Integrodifferentialgleichung.
Thre Losung ist in der Regel nur gendhert moglich und erfordert einen hohen Rechen-
aufwand.

Im Normalzustand, im Falle der Gleichgewichtsverteilung f, bei Abwesenheit dulerer

Felder, verschwinden. sowohl der Feldanteil Z—{ als auch das Stothed( f) un-
s

abhingig vom Integratlonsgeble’o Daraus folgt d1e Gleichheit der Ubergangshéufig-
keiten fiir die Ubergéinge (n', k,') — (n, k) und (n, k) — (', k). Es besteht somit
die Gleichung

P (ks ky') fo(len') [1 — foka)] = Pua(Ea’, Ea) fo(les) [1 — fo(Fen")]- (11)

Im folgenden wird der Index n bei der Verteilungsfunktion f weggelassen.

Das Stoiglied kann in der Form

(Z_{)S _ (3(/‘ ; fo))s _ f: fo (12)

\

geschrieben werden, wobei beriicksichtigt wird, daB f, von der Zeit ¢ unabhéngig ist.
Die Grofle v hat die Dimension Zeit und heift Relaxationszeit. Sie gibt die mittlere
Lebensdauer eines Zustandes (n, k) an. Thre genaue Ermittlung erfordert die
Losung der BorTzMaNN-Gleichung in ihrer vollstédndigen Gestalt als Integrodli'feren—
tialgleichung.

Wird das duBlere Feld ausgeschaltet, so bewirken die StéBe eine Riickkehr in den
Normalzustand nach der FErmI-Dirac-Statistik. Die hierfiir giiltige Relaxationszeit
weicht von der Relaxationszeit bei Anwesenheit des dufleren Feldes ab.

Im folgenden bezeichne

@ = @u(1r, ky) = fn— o (13)

die Abweichung vom Normalzustand, der FErMi-Dirac-Verteilung. Unter dem Ein-
fluB des duleren Feldes habe sich der Zustand f = f, + ¢, eingestellt. Danach werde
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das duBere Feld ausgeschaltet. Fiir die Riickkehr in den Normalzustand folgt nach
12

o 4

%= T (14)
Die Losung dieser Gleichung lautet

t
() =@oe . (14a)

7 bedeutet hiernach die Zeit, die nach Abschalten des Stéreinflusses vergeht, bis die
Abweichung von der Normalverteilung auf den Bruchteil 1/e abgesunken ist.

Linearisierung der Boltzmann-Gleichung

Bei nicht zu starken duBeren Feldern ist die Abweichung ¢ der Verteilungsfunktion
von der FERMI-DIrAc-Verteilung f, gering. Die Storfunktion ¢ kann als klein gegen
fo behandelt und nur in der ersten Ordnung beriicksichtigt werden. Der Einflufl des
duBeren Feldes, das selber nur eine kleine Storung darstellt, wird lediglich auf die
-ungestorte Verteilungsfunktion f, erstreckt. An Stelle von (9) folgt damit

0 F
'—('3%) =v - grad,f, + 7 gradg,f,, (15)
F
wobei
[v - grad, ¢| < |v - grady fo|, |E - grade, ¢| < |E - grady, fol (16)

vorausgesetzt wird.
Bei der Bestimmung kleiner Abweichungen von der FErRMI-Dirac-Verteilung f, geht
man vielfach von einem Ansatz der Form

_ 3fo
Q= aW‘P bzw. ¢ = —Y¥ (17)

aus. Dabei bedeutet ¥ eine noch zu bestimmende Funktion, W = W, + ¢ die Teil-
chenenergie. Nach (3.3./24) besteht die Beziehung

o __folt — o
%= H 1s)

die man in (17) einsetzen kann. Hierin gibt £ die BorrzMannN-Konstante, 7' die
absolute Temperatur an.
Im StoBglied schreibt man

f=h+ro=h(t+ ),1—f=(1—f0>(1—T) 19)
fo 1—1

und linearisiert gemaf

o) glka’)

follea) 11— fo(kea")

Hlea) [1 — fa')] = follen) [1 — follea)] [1 + ] 20)
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Damit ergibt sich aus (10), wenn man (11) beriicksichtigt,

af Q ’ 4 <p, (p } ’ y
=) =— | Py, (kA k 1— — dsk,’. 21
(at)s 2 f wales B22) foll — 1) [fo’(l e — | @ 1)
Hierin bedeutet
f() = fo(kA)’ Y = (P(kA),

fo = foka"), ¢ =oky’).
Wird der Ansatz (17) in (21) eingesetzt, so erhilt man

0 Q2 ’
(5), = o [ Pl o) ol = 1) [90') — W] s 22)

dagegen

P Probleme

4.3.1. Abweichung vom Normalzustand der Verteilung durch ein duBeres
elektrisches Feld

An einen Festkorper wird ein homogenes elektrisches Feld gelegt. Die Temperatur sei im ge-
samten Festkorper konstant. Bestimmen Sie durch Linearisierung der BoLTzMANN-Gleichung die
Abweichung vom Normalzustand der Geschwindigkeitsverteilung nach der FrrMI-DIirac-
Statistik. Untersuchen Sie den Zusammenhang zwischen der StoBzeit nach (3.3.1./7) und der
Relaxationszeit.

Die Rechnung ist speziell fiir ein Elektron in Silber bei 7' = 300 K durchzufiihren, das sich in
Feldrichtung E mit der Geschwindigkeit 105 m s~! bewegt. Das elektrische Feld habe die Stirke
E=1Vm?

Losung:
Da im gesamten Kristall eine konstante Temperatur vorausgesetzt wird, ist

grady fo = 0. (1)
Das linearisierte Feldglied (4.3./15) in der BorTzMANN-Gleichung (4.3./2) wird daher
9) F
(é)F =7 gradg, fo, 2)
wobei
F = —eE (3)

zu setzen ist.
Das StoBglied kann nach (4.3./12) in der Form

geschrieben werden. Wir erhalten als linearisierte BoLTzMANN-Gleichung des elektrischen Lei-
tungsprozesses nach (4.3./2)

L gradn, fy = =L, (5)
I3 T
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Wahlt man das Koordinatensystem so, daf die 2-Achse in Richtung des elektrischen Feldes weist,

folgt
eE_ﬂ % — f___“ f o, (6)
B ook, g, T
Die Losung dieser Gleichung erfolgt durch den Ansatz
0,
f=tfo— ot 20 ™

Z 3](:2’

wobei Ak, die Anderung der z-Komponente des Ausbreituhgsvek‘wrs E, kennzeichnet. Mittels (7)
folgt aus (6) .
ek,

A’Gz = —-T Ty (8)
so da3 man f in der Form
E,
1= (ko By e+ 2B )

darstellen kann.
Wir setzen 7 als konstant und unabhingig von k, voraus. Die Fliachen gleicher Energie im rezi-
proken Raum seien Kugeln, d. h., die Energie sei durch

iy’

W=W;+

h2
= Wot o (b2 + B2+ B3 = Wot e (10)

2m

eE,T
h
Bild 4.3.1. Verschiebung der FERMI-
Kugel um Ak, = ——eliﬂ

gegeben. Aus der Losung der BorrzMaNN-Gleichung (5) in der Form (9) ist zu entnehmen, dafl
unter dem EinfluB des elektrischen Feldes E eine Verschiebung der FErRMI-Kugeln entgegen E
eintritt (vgl. Bild 4.3.1). Der Mittelpunkt verlagert sich auf der k,-Achse um Ak,. Das entspricht
einer Geschwindigkeitsinderung

Ap,= =Pe - 220 (11)
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Jedes Elektron ist danach mit einer zusitzlichen Geschwindigkeitskomponente Av, versehen
worden.

Enthilt der Festkorper, bezogen auf die Volumeneinheit, im Leitband N Elektronen, so ist die
elektrische Stromdichte durch

2
j, = —Ne Av, = YEBT (12a)
m
die elektrische Leitfahigkeit durch
y 2.
o= % _ N; T (12b)
2

gegeben. Wie aus dem Vergleich mit (3.3.1./5) hervorgeht, ist somit die Relaxationszeit 7 = tRel
mit der StoBzeit T = 7g4p fiir elektrische Leitungsprozesse gems

1
TRel = ) Tstos (13)
verkniipft.
Fir die Abweichung vom Normalzustand folgt nach (7) und (8)
ofy ek,
p=i—f= e EET = Tma). (14)

Als Ableitung der Verteilungsfunktion ergibt sich nach (4.3./18) und (10)
%o ofy e foll — fo)

2o o = _Toi” " Jol 4 15
ok,  oc ok, W (15)
und somit nach (14) fiir die Abweichung von der FErMI-DirAcC-Verteilung
p= —-% velT. (16)

Zur numerischen Rechnung gehen wir von der Formel fiir die Verteilungsdichte nach (3.3./24) aus,
die wir in der Form '

1
= 17
fo exp (m[vxz + ””2 + Uzz] — 2C) + 1 ( )

2kT

schreiben. Fiir das FErMI-Potential ¢ wird der Wert am absoluten Nullpunkt ¢, = 5,5 eV ein-
gesetzt (vgl. Beispiel 3.3.1, Problem 3.3.3 sowie Tabelle 4.2.1). Es folgt mit den vorgegebenen
GroBen

1 1
fo = 9,11 -10-% .10 — 2.5,5 - 1,60 - 10-1° ey’
exp +1
2.1,38 - 10723 . 300
dagegen
8_211 —91,8
1—fo= 1—_'?0_—2;1 = 10918,

Fir die Relaxationszeit erhalten wir nach (13) und (3.3.1./5) mit den Werten nach Tab. 2.2.2
und Tab. 3.3.1

1 mo  9,11.10-%1.67,1 - 10°
1, _me_ 9 : —4,1.10 15,
TS g TS0BT N T 586105 (1,60 - 1092




218 4. Grundlagen der Quantentheorie fester Korper

Damit ergibt sich aus (16) fiir die gesuchte Abweichung der Verteilungsfunktion f vom Normal-

zustand, der FERMI-DIrAc-Verteilung,

—1-10°18.105-1,60-101°.1.4,1.10-14
1,38 - 1028 . 300

= —3.10-.

p=f—fo=

Die Abweichung ist so gering, daB man fiir die betrachteten Geschwindigkeiten eine Verteilung
nach der FErMI-Dirac-Statistik ansetzen kann. GroBere Abweichungen vom Normalzustand
sind nach (15) nur zu erwarten, wenn f, weder nahe bei null noch nahe bei eins liegt. Nach (17)
sind diese beiden Bedingungen erfillt, wenn die kinetische Energie des betrachteten Phasen-
zustandes und das FErmI-Potential etwa gleich sind:

(vel. A 4.3.3).

4.3.2. Elektrische Leitung unter dem Einfluf} eines elektrischen
und eines Temperaturfeldes

Leiten Sie nach der BoLrzMANN-Gleichung die Formel fiir die Stromdichte in einem Metall ab,
wenn an dieses ein elektrisches Feld und gleichzejtig ein Temperaturfeld angelegt wird. Dabei
kann in erster Naherung vorausgesetzt werden, daf§ die Relaxationszeiten fir die elektrischen
und fiir die thermischen StoBprozesse gleich sind.

Bestimmen Sie fiir Kupfer bei der Temperatur 7 = 10 K gréenordnungsméBig das Verhiltnis
des vom elektrischen Feld ausgelosten Elektronenstromes zu dem vom Temperaturfeld bewirkten.
Die elektrische Feldstirke sei £ = 0,1 V m~1, der Temperaturgradient habe den Betrag |grad T'|
= 10* K m~1. Das elektrische Feld und der Temperaturgradient seien gleichgerichtet.

Losung:

Wir gehen von der BoLTzMANN-Gleichung (4.3./2) aus, in der wir das Stofglied nach (4.3./12)
unter Verwendung der Relaxationszeit © darstellen und das Feldglied in der linearisierten Form
(4.3./15) anwenden. Die dullere Kraft schreiben wir F' = gFE, wobei ¢ die elektrische Ladung be-
deutet. Es folgt

— E
_ - fo = . grady fo + q? - gradg, fo. (1)
Den Gradienten nach dem Ausbreitungsvektor kénnen wir gemaf (4.2./9)
gradg, fo = ars gradp, ¢ + o Ao (2)
Oe Oe

darstellen. Die Verénderlichkeit der Verteilungsfunktion ist durch das Temperaturfeld bestimmyt.
Daher ergibt sich
%

grady fo = T grad, 7. (3)

Als Ableitung der Verteilungsfunktion f, erhélt man nach (3.3./8)

%_(l—fo)fo % e—¢
or ~— kT (dT+ T)' )
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Da andererseits nach (4.3./18)

oo o1 — fo)

Jo _ _ 5

O kT ®
gilt, kénnen wir

ofo ofy (O e—¢

do e (25 4 T > 6

or os \oT + T ©)
schreiben. Wir setzen (6) in (3) ein und erhalten

ofg (00  e—C

grady fo = ——é]i:— (ﬁ 4+ —T—) grad, 7. (7)

Damit folgt aus (1) fiir das Abweichen vom Normalzustand der Verteilung
%%, e—¢ (49
=f—fo=—1—v:|qE — - dr T| |
p=f—h=—t50-[B - (T + T2 grdr 7] ®

Sind elektrisches Feld und Temperaturgradient gleichgerichtet, so kann'diese Richtung als
2-Achse gewahlt werden. Wir erhalten in diesem Falle an Stelle der Gleichung (8)

. of, e—¢ . ac\dr
—f—f=—c0 g — (== L &) 22,
v=f—h=""7% ”[q ( 7 +6T) dz} (82)
_h
Y m k,
3
3,_H 43
d’v mad Ky A
dy
af
dy
Aquatorebene Bild 4.3.2. Geschwindigkeitsraum d3v

T

Die Stromdichte j ergibt sich gemif3
i=gq[oN@) o, ©)

wobei N(v) d3» die Zahl der Ladungstriger angibt, die Geschwindigkeitsvektoren innerhalb des
Geschwindigkeitsraumes d®v besitzen (vgl. Bild 4.3.2). Diese Zahl kénnen wir durch die Ver-
teilungsfunktion f(r, k,) und die Dichte der Ausbreitungsvektoren k, nach (4.2.8./15) aus-
driicken:

Q
N dv = f— d3k,. 1
=[5 dhy (10)



220 4. Grundlagen der Quantentheorie fester Kérper

Wir erhalten damit

. qQ

)= 4‘;’{ 'Df dskA. (11&)
Im folgenden wird 2 = 1 m? angenommen.
Da im Normalzustand jede Richtung gleichberechtigt ist, kommt fiir den elektrischen Strom
nur die Abweichung vom Normalzustand zur Wirkung. In (11a) ist daher f durch ¢ =f — f,
nach (8a) zu ersetzen: :

j=41n3fv¢d3kA . (11)

Weisen E und grad, 7' in die 2z-Richtung, so ergibt sich aus (11) und (8a)

i %) d—T] &y . (12)

478

R & 2o [, p
)=1 TV, 25 q I

Die Ausbreitungsvektoren sind nach dem Bindermodell mit der Energie verkniipft. Wir fithren
die Integration daher iiber Flachen konstanter Energie im reziproken Raum durch. Der rezi-
proke Raum zwischen zwei Niveauflichen ¢ und ¢ + de ist nach Bild 4.2.8

d&*ky = do dk,, (13)

wobei dk, den Abstand der beiden Energieflichen im k,-Raum kennzeichnet. Fir das Energie-
differential schreiben wir

de = gradp, ¢ - dk, = |gradg, ¢| dk, (14)
und erhalten damit
&k, = do db, — —399 (15)
lgradi, ¢l
Allgemein definiert man die Energiedichte-Funktion
G(e) = L 0% — do (16a)
4n3 |grads, & -
e=const
und mit ihrer Hilfe die Koeffizienten
K, = ——f—af—oG(e) erde |. (16)
O
Unter Verwendung dieser 148t sich nach (12) die Stromdichte in der Form
. o ¢lorT K,q dT
=§=Ky(®E —¢| = — =|—)——— 17
=1 o(q q[aT T]az) T @ (17

darstellen. Der elektrische Strom wird hiernach nicht nur durch ein elektrisches Feld E aus-
geldst, sondern kann seine Ursache auch in einem Temperaturfeld haben.
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Die genaue Abhingigkeit ergibt sich aus den Koeffizienten K,. Um diese zu berechnen, fithren wir
in der Verteilungsfunktion f, die GréBe

—¢

n=""0 (18)
ein, womit folgt
fo=rloln) = o1 + 1° (19)
Das Integral fiir K, nach (16) konnen wir in der Form
o
K, = f° ° a(0) de = — [ T o) o (20)
0 ¢

kT

schreiben. Es ergibt sich kein wesentlicher Fehler, wenn die untere Grenze durch —oo ersetzt
wird : Mit zunehmender Temperatur weicht {(7') nur wenig von {, ab (vgl. 3.3.4.). Zur Abschétzung
gehen wir daher von {; = 1 eV, 7' = 1000 K aus und erhalten

L 1-1,6-1070 dfy
KT T 1,38-10°%.1000 dn

_em
w<ro (L em)

Die Ausweitung der unteren Integrationsgrenze auf —oo ist nur mit einem kleinen Fehler ver-
bunden.
Die Funktion 8 = f(n) kann in eine TaYLOR-Reihe

—11,6,

Mo = <enLl.

2 d2
Bln) = B(O) + 1 ( ‘3) +Z (—”) oo (21)
dn/o = 2 \dn?/,
entwickelt werden. Da (dfo) durch Erweiterung mit =27 in
N/ +n
(%) ___ e _ e _ (%) @2)
dn /44 (1 + en)® (e 4 1)? dn/—q
iibergeht, erkennt man, daf
dfo
Nl =
n dn

fir ungerade Werte = in eine ungerade; fiir geradzahlige Werte # in eine gerade Funktion iiber-
geht. Bei der Integration von —oo bis +oo liefern daher die mit ungeradzahligen Exponenten
versehenen Summanden keinen Beitrag, wihrend die Summanden mit geradzahligem Expo-
nenten verdoppelt werden kénnen, wenn die Integration von 0 bis +oco erstreckt wird. Es ergibt
sich mit B(0) = f,:

- dfo  m* (B dfo
o= f [ﬁo (dnz)o an © ]dn' @)
0

Fiir den ersten Summanden in (23) folgt

Fafy oo
—26, f e dn = 2Rl = o 4)

0
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Der zweite wird gleich

+ o0 o]

_ [ (LB Yoy, _ (VB e
5 (@) = (el | T
—00 0
dZ‘B > _ B . 2 d2‘3
= ((-117—2)0 f 71 — 2721 4 36731 F ...) dy = % (@)0. (25)
0

Nach Definition (18) ist in (16) bzw. in (20) # = 0 identisch mit ¢ = {. Das bedeutet

(/3)77=0 = (®)e=¢-
Ferner gilt
dg _ do de A doe  d%8 i 2o

Ao , == — e 22
dn de dy de 7> de?
d. h.
2 2
dpg? — e (£ . (26)
a2 J,=o0 de? J.—¢
Damit erhalten wir aus (20)
——f — ofe) de = (x)e=¢ + — IczT2 (—) (27)
de?
bzw. nach Definition (16) und (16a)
2 a2
K, =0C—; + = T (— Go) . 28
'a, ¢+ 6 (d82 8)e=c (28)

Bei der Auswertung des Integrals (16a) legen wir das BLocE-Theorem nach (4.2./3) zugrunde.
In Kugelkoordinaten ist

do = ky sin 9 dd de.

Die Komponente k, des Ausbreitungsvektors k, ergibt sich gemiB k, = k, cos 9. Daher folgt nach
(4.2./9)

2 = cos? &

vy

A2
2

und nach (16a) fiir die Energiedichte-Funktion

21 211:
3/2
G(e) = — A coszz?smﬁ déd de = -2— gi T—ICA— = L (2ms l, (29)
T h? m
0
bzw.

Vam«

¥ = o

g, (30)
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In erster Niherung wird mit 7' = 0 gerechnet. Damit ergibt sich aus (28)

fgmz vy 31
¢ (31)
3n2hd

Nach (17) und (3.3./6) erhélt man

ED = 1,'6() =

2
= iy = KB = 1T pangap  TNCE (32)
3n2g3 m
und damit, wenn ¢ = —e gesetzt wird, fiir die elektrische Leitfahigkeit
2.
o= Kye? = e c. (33)
m

In zweiter Ndherung wird die Temperaturabhingigkeit beriicksichtigt. Nach (3.3./12) ist die Ab-
leitung des FErMI-Potentials nach 7'

2 22
a_ = Ii (34)
Fir Kupfer ergibt sich nach Tab. 4.2.1 und Tab. 3.3.2 bei 77 = 10K

2 . 10-23)2.

ac _ n* (1,38-107%)2- 10 JK1=1,15.10-26J K-1.
ar 6 1,7-1,60.10°19

Das ist klein gegen

& _ 1,7-160-10% 96 T et
T = o JK1=2,7.10-20J K1,
Werden K, und K, nach der ersten Naherung berechnet, so ergibt sich
KWy — K, = 0. (35)

Es verbleibt daher in (17) auBler dem von E bewirkten Summanden K 1e2E nur der vernach-
lassigbar kleine Summand

K,we .97 (36)
ar a

In zweiter Naherung folgt aus (28) und (29)

1 [(2m\32 ¢ 3 1 n? 1
K@ =— (=) —&2(14+=.-—r—|, 37
0 3n2(h2) s ( T2 e 52) @7
1 [2m\32 ¢ 5 3 n? 1
K@ = — [— — 82 1 — e ). 38
! 3n2 (hz) s ( T2 26 52) (38)

Das Frrmi-Potential { liegt in der GroBenordnung 1eV. Fiur T = 10 K erreichen daher die
beiden Korrekturglieder in (37) und (38) die GréBenordnung

BT (1,38-107% .10 104
& (1-1,60-10%°)2 1038

Sie haben etwa die gleiche GroBe wie der Summand (36). Fiir das Verhéltnis des vom elekbri-
schen Feld ausgelsten Stromes zu dem auf das Temperaturfeld zuriickzufiithrenden Stom er-

~
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halten wir daher nach (17) fiir 77 = 10 K einen Wert in der GréBenordnung
(e KB ___eB _ 1,60-101.01
(i)gradT - K ég g o dg d_T_ - 1,15 1026. 104 - :

“ar dz 4T de

Genauere Aussagen lassen sich aus der Berechnung der Korrekturglieder ableiten. Sie erfordern
jedoch bei hoheren Temperaturen einen wesentlich groBeren Rechenaufwand. Weitere Unter-
suchungen hieriiber werden im iberndchsten Problem 4.3.4 durchgefiihrt.

4.3.3. ‘Wirmestrom und elektrisecher Strom

Leiten Sie nach der BoLTzMANN-Gleichung in zweiter Naherung die Verkniipfung zwischen dem
elektrischen Strom und dem Wirmestrom in einem Festkorper her. Dabei ist vorauszusetzen,
dafl die Relaxationszeit 7 fur elektrische und fiir thermische Sto8prozesse gleichgesetzt werden
kann. Welche Beziehung besteht zwischen der elektrischen und der Warmeleitfahigkeit?
Bestimmen Sie aus der spezifischen elektrischen Leitfdhigkeit nach Tabelle 3.3.1. fir Kupfer bei
0°C die Wirmeleitfahigkeit.

Losung:

Wirmeausgleich und elektrischer Strom sind mit einer Anderung der Entropie des Festkorpers
verbunden. Jeder Warme- und jeder elektrische Strom sind daher von einem Entropiestrom be-
gleitet.

Die Entropieéinderung laft sich nach [3] (3.3./1) gem&f

= 2 @U —zan) (1)

durch die Anderung der Inneren Energie U und die Anderung der Teilchenzahl N ausdriicken.
(Das Chemische Potential u. eines Elektronengases ist mit dem Frrmi-Potential { identisch.
Bei Transportprozessen bleibt das Volumen des Festkorpers unverindert.) Fiir die Anderung
der Inneren Energie des Elektronengases infolge des Transportprozesses konnen wir

dU = ¢dN (2)
setzen, wobei ¢ die kinetische Energie eines Teilchens angibt. Damit folgt
1
dS = — (¢ — {)dN. 3
T (e—10) 3)
Die Anderung der Teilchenzahl ergibt sich durch Abzihlung der Zustinde entsprechend (4.3.2./10):
AN — N & — - fdo%, @)
4 .
mit 2 = 1m3. Durch Integration iiber alle Zusténde erhalten wir als Entropiestromdichte

R 1
s = gag [ €= ver ok, )

(vgl. 4.3.2./11). Wegen der Verkniipfung (1) zwischen Warmeausgleich und Entropiezunahme
erhalten wir daraus die Wiirmestromdichte

. . 1
in="Tjs= — f (e — Q) vp a%k,. (6)
4
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Als Dichte des Energiestromes definiert man
Je= | scvdN = i svp A3k, . (7)
4nd
Aus dem Vergleich mit der elektrischen Stromdichte j nach (4.3.2./11) folgt
1 ¢ .
—— vp dky = —— 3. 8
5 [ ook = —2 ®)

Die Dichte des Wérmestromes jtn ist daher mit der elektrischen Stromdichte j und der Energie-
stromdichte j, gemaf

jn=je— = 3j ©
q

verkniipft, wobei ¢ die transportierte Ladung kennzeichnet.

Sind E und grad, T' gleichgerichtet, so kann man sich auf eine Komponente beschrinken und
in (6) die Abweichung ¢ vom Normalzustand der Verteilung durch (4.3.2./8a) ausdriicken. Auf
Grund der Definition der Koeffizienten K, nach (4.3.2./6) folgt aus (9) und (7) sowie (4.3.2./17)

ar

% (10

. 1 d

o = (K, = £8) o8 — ([Ky — 208y + PG - + (6 — 0K )
Diese Gleichung kann zusammen mit der Gleichung (4.3.2./17) fiir die elektrische Stromdichte
als lineares Gleichungssystem zur Bestimmung der elektrischen Feldstiarke und der Warmestrom-
dichte in Abhéngigkeit vom elektrischen Strom und der Temperaturdnderung aufgefallt werden.
Durch Auflésen erhalten wir

=L o (Ki—CK, , 1 d0)dT (11)
¢?K, qK,T g dT) dz’
) K, —tK, . K?— K,K,dT
= —_ 12
Jth = JK, i+ KT - (12)

Bei konstanter Temperatur (?i_T = 0 folgt mit ¢ = —e aus (11) das Ohmsche Gesetz
z

j =0k (13a)
mit
o = e*K,. (13)
Analog dazu ergibt sich aus (12) fiir den Warmestrom bei fehlendem elektrischen Strom § = 0
. ,ar
Jth = —% — (14a)
dz
mit
_ K2
o Koy — Ky (14)
K,T
Wegen (4.3.2./31) ist in erster Ndherung »’ = 0. Die zweite Ndherung fithrt nach (4.3.2./28) auf
1 [2m\37 < 7 5 w2 1
K@ =_——(—) —2(14—.—.—= kT2 —). 15
2 3n2(h2) m© (+2 2 6 52) (15)

15 Schilling, Festkorperphysik
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Damit erhalten wir aus (14)

1 (2m\3f2 = .1
=—— =] — 2= n%T. 16
% 31r2(ﬁ2) m g (16)
Konnen die Relaxationszeiten fiir den elektrischen und fiir den thermischen StoBprozeB gleich-
gesetzt werden, so folgt in Verbindung mit (13) als Verhéltnis der elektrischen zur Warmeleit-
fahigkeit das Wiedemann-Franzsche Gesetz

4 2 2
Z_m(EVp | (17)
o 3 \e

I

Die GroSe
/ 2 2
¥ _m(k = 2,44 .10-8 V2 K2
ol 3 \e

ist in zweiter Naherung eine Konstante fiir alle Stoffe. Sie heiBt Lorenz-Zahl.
Als Warmeleitfihigkeit des Kupfers bei 0°C ergibt sich

% = LoT = 2,44 - 10-8 . 64,5 - 10° . 273 J s~1 m~? K-1 = 430 Wm-1 K-1
= 0,103 kcal s 1 m—1 K1,
Der Mefiwert betrigt nach Tab. 2.2.2 0,0915 keal s? m—! K- = 383 Wm~! K1,

4.3.4. Seebeck- und Peltier-Effekt

In einem Festkorper, in dem kein elektrischer Strom flieSt, jedoch ein Temperaturgefille vor-
handen ist, tritt eine elektrische Feldstirke und als Folge davon eine Thermospannung auf. Diese
Erscheinung wird als Seebeck-Effekt bezeichnet. .

Der Peltier-Effekt kennzeichnet einen neben der JouLEschen Stromwérme als Folge des elek-
trischen Stromes unabhingig vom elektrischen Widerstand auftretenden Wérmestrom. Er tritt
auch bei fehlendem Temperaturgefille in Erscheinung.

Zum Nachweis des Seebeck-Effektes verwendet man einen Stromkreis aus zwei verschiedenen
Metallen nach Bild 4.3.3 und bringt die Kontaktstellen auf unterschiedliche Temperaturen 7',
und 7',. Berechnen Sie die erzeugte Spannung fir ein Thermoelement aus Kupfer und Silber,
wenn die eine Kontaktstelle auf Zimmertemperatur 7' = .300 K gehalten, die zweite demgegeniiber
um 0,1 K erwiarmt wird.

Der Peltier-Effekt wird aus dem Wéirmestrom an der Kontaktstelle zweier Metalle nach-
gewiesen. Berechnen Sie die erzeugte Warmestromdichte an der Kontaktstelle zwischen Kupfer
und Silber bei Zimmertemperatur, wenn ein elektrischer Strom der Dichte 1 A mm~2 fliet.

Losung:

Die nach dem SEEBECK-Effekt infolge des Temperaturgefilles auftretende elektrische Feldstiarke
folgt aus (4.3.3./11), wenn die elektrische Stromdichte § gleich Null gesetzt wird:

1.d¢\ar ar 1 4
E=|24+——=)|—=8—+——=. 1
( +37 dT) a &g & (ta)
Der SEEBECK-Koeffizient X' ist durch
2= K, — LK,y (1)

qK,T
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gegeben. Die Aufspaltung von E in zwei Summanden nach (1a) ist wegen des experimentellen
Nachweises zweckmiBig.
Ebenso ergibt sich der nach dem PrrtIER-Effekt infolge des elektrischen Feldes auftretende

Wirmestrom aus (4.3.3./12), wenn % = 0 angenommen wird:

jtn = IIj (2a)
mit
K =K _ p, ) @)
9K,

Wegen (4.3.2./35) ist K; — (K, in erster Naherung gleich Null. In zweiter Naherung ergibt sich
im Zusammenhang mit (4.3.2./37) und (4.3.2./38)

II =

222
= 1 n%*T 3)
2 g8
M
v4 :
/ /
K, My K, .
m W Bild 4.3.3. Thermospannung U,p nach dem
SeEBECK-Effekt
I A B T
=Tp
und damit aus (2)
_ 1 =%*T @
2 g6 )

Die Feldstirke auf Grund des SEEBECK-Effektes macht sich in Form der Thermospannung
bemerkbar. In einem offenen Stromkreis aus zwei verschiedenen Metallen nach Bild 4.3.3, deren
Kontaktstellen auf unterschiedlichen Temperaturen gehalten werden, erhilt man fir die Span-
nung zwischen den beiden Endstellen 4 und B

B B B
UAB=~fEdz=— sz—if’dc_. ®)
A A qA

Im folgenden wird ¢ = —e gesetzt.

Die Punkte 4 und B befinden sich beim experimentellen Nachweis des SEEBECK-Effektes nach
Bild 4.3.3 auf gleicher Temperatur 7'y = T'p im Material I. Das FerMI-Potential ist eine Zu-
standsfunktion. Es gilt {4, = (. Daher verschwindet das zweite Integral in (5), und es verbleibt
nur der Summand mit dem SEEBECK-Koeffizienten . Dieses Integral 158t sich wie folgt aufspalten:

K, K, B
Uyp = —[ ZydT — [ ZpdT — [ Z;dT.
4 “ Ky K,

Die Integration erfolgt iiber die Temperatur. In den benachbarten Punkten 4 und B stimmt diese
iberein: 7'y = Tz = T,. Fur die Kontaktstellen gilt Ty, = T, T, = T,. Wir konnen daher

15%
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schreiben
T, Tz T,
Uup= [ 21dT + [ 24T — [ Zp dT.
T, T, T,

Definiert man

T
UT) = [Z;aT  (i=1L1I), (6)
0
so folgt
T
Usp = [(Z1 — Zy) AT = [U(T,) — U(Ty)] — [Un(T) — Une(T)]- (7
T,
Mit dem SeEBECK-Koeffizienten nach (4) ergibt sich aus (7)
t2k% (1 1
U =—L<———)T2—T2. 8
4B 2\t Tom (T, 1% ()]

Soll hiernach eine Thermospannung auftreten, so miissen nicht nur die FErMI-Kanten {, bzw.
die aus ihnen abzuleitenden SEEBECK-Koeffizienten X der zwei Metalle voneinander abweichen,
auch die beiden Kontaktstellen des Stromkreises miissen sich auf verschiedenen Temperaturen
befinden. )
Fir T, =7T,T, =T + AT folgt aus (8)
2],2
Ugp = o (i - L) T AT. ©)
2e \lor  Com

Der PeLTIER-Effekt 148t sich experimentell aus der Warmestauung an der Kontaktstelle zweier
verschiedener Metalle nachweisen. Im Metall I tritt infolge des PrrLTIER-Effektes der Wirme-
strom ITyj, im Metall IT der Warmestrom I73;j auf. An der Kontaktstelle wird daher die Warme- -

stromdichte
7'11 = (Hl - Hz)? (10)

bzw. mit dem PerTIER-Koeffizienten nach (3)
kR ( 1 1 ) .

2¢ \Ca  Com

for  Cour

in (11)

beobachtet.
Fiir die infolge des SEEBECK-Effektes erzeugte Spannung ergibt sich mit den vorliegenden Groéfien
und den Werten nach Tab. 4.2.1 aus (9)

3,142 (1,38 -10-2)2 (1 1
2-(1,60-102)2 \5,5 17

Uup= ) 300-0,1 V=045 puV.

Der Warmestrom an einer Kontaktstelle wird nach (11) gleich

2, . 10-23)\2 . 2
3142 (1,38 1028005 (1 1)\ oo,
2+ (1,60 - 10-19)2 55 1,7

= 1,35 kW m—2 = 0,32 kcal m—2 51,

n=

4.3.5.% Temperaturabhiingigkeit der elektrischen Leitfahigkeit fiir 77> 7'p

‘Wird an das Kristallgitter ein duBeres Feld gelegt, so bildet sich in Wechselwirkung mit den
mechanischen Schwingungen der Kristallbausteine ein stationires Gleichgewicht in der Ver-
teilung -der Festkorperelektronen auf die Phasenzellen aus. Die Bestimmung der Verteilungs-
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funktion f = f(r, k,) erfordert die Lésung der BorTzMaNN-Gleichung. Aus f = f(r, Ie,) lassen
sich die Leitfadhigkeitseigenschaften ableiten.

Bei der Wechselwirkung zwischen dem Gitter und den Elektronen werden Gitterschwingungen
bzw. Phononen emittiert oder absorbiert, wobei das stoBende Elektron von einem durch k,
gekennzeichneten Zustand in einen Zustand k,’ iibergeht. Die mittlere Lebensdauer v = 7(le,)
eines Elektronenzustandes kj im Festkorper ist daher begrenzt.

Das mechanische Schwingungsfeld kann als System harmonischer Oszillatoren aufgefalit werden;
es ist gequantelt. Der Zusammenhang zwischen den Gitterschwingungen und den Elektronen-
iibergiingen unter Phononenemission oder -absorption wird quantenmechanisch aus dem HamIL-
TON-Operator des harmonischen Oszillators abgeleitet [26]. Die Ubergangswahrscheinlichkeit
Pya(ley’, ky) folgt mit Hilfe der quantenmechanischen Stérungsrechnung [26]. Als Wahr-
scheinlichkeit, da im mechanischen Schwingungsfeld ein Elektron mit der Energie W und dem
Ausbreitungsvektor k, in einen Zustand W', k,’ iibergeht, erhilt man

782,

Poyra(ley’, By) =
nn( A A) MwKQ

CHN (W’ — W — hwg) + (Ng + 1) (W’ — W + hwx)]- (1)

Darin bedeutet § die Diracsche Deltafunktion (vgl. 4.1.1/2 und 4.1.1./3 mit ¢ = 1). N gibt als
Eigenwert der ScHRODINGER-Gleichung die Zahl der longitudinalen Gitterschwingungen bzw.
Phononen im quantisierten Schwingungsfeld mit dem Wellenzahlvektor K an. wg bedeutet die
Kreisfrequenz der mechanischen Schwingung. Der Faktor C ist eine materialabhingige Kon-
stante, deren Wert sich aus der Normierungsbedingung ergibt. Er heiit Kopplungsfaktor. M be-
deutet die reduzierte Masse der oszillierenden Kristallbausteine.
Wegen

W — W = hwg 2)

fiir Absorptionsprozesse und
W — W = —hwg (3)

fur Emissionsprozesse wird infolge der Eigenschaften der §-Funktion immer nur einer der beiden
Summanden in (1) wirksam, so da3 Absorptions- und Emissionsprozesse gemeinsam erfa3t werden
kénnen.

Bestimmen Sie durch Lésung der linearisierten BorTzMANN-Gleichung die Relaxationszeit der
Elektronenzustinde unter dem Einflufl eines angelegten elektrischen Feldes E. Entwickeln Sie
daraus die Formel fiir die spezifische elektrische Leitfdhigkeit bei hohen Temperaturen. Bestim-
men Sie die Abnahme der elektrischen. Leitfdhigkeit eines Metalles, wenn die Temperatur von
400°C auf 500°C erhéht wird. Vergleichen Sie das Ergebnis der Rechnung mit den Daten fir
Kupfer nach Tab. 4.3.2.

Losung:

Die Elektronen geben bei Stofen mit den oszillierenden Kristallbausteinen einen Teil ihrer
Energie an das Gitter ab, das sich dabei erwidrmt. Das StoBglied wird nach (4.3./10) in der Form

A =10\ _ (%) _ @ [1p e e iy [t —
(52). = (%), = 2 [ Prrtienstod 1060y 11 — s
— Purlley’s Fo) f0ea) [t — 1)) ¥y’ @

geschrieben. Kénnen wir grad, f = 0 annehmen, so folgt nach (4.3./9) fiir das Feldglied
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Wir berticksichtigen

_ 9 _ _f—=1)
gradg, fo = oW gradkAlW = T Ao (5b)
nach (4.2./9) und (4.3./18). Aus (5a) erhalten wir
op %o 7‘0(1 fo)
=L =9E .- v - = qE - 5
(at )r =0 Tw W e ©)

Nach (4.3./12) 148t sich das StoBglied durch die Relaxationszeit v ausdriicken. Aus der nach
(4.3./15) und (4.3./22) linearisierten Boltzmann-Gleichung (4.3./2) ergibt sich mittels (4) und (5)

_2 _ 2 (Ip. sy (1 — [ Y ___9 ]}‘d%’
T 8 {"'”(’" ROl Py s A | R

= —ﬁ’-(——lk; h) g 0. (6)

Mit dem Ansatz

_ _ _Of JoL —fo)
=olky) = —op ¥="7

folgt hieraus, wenn man berﬁcksichtigt, daB nur iber die Zustinde nach dem Sto8 integriert
und g = —e gesetzt wird,

¥
T

fo) Yik,) (7)

= ga | Ptk RO (= 1) (= 0) Rk = eBov. @
(1}

Wir l6sen diese Integralgleichung, indem wir nach (8)

¥ = Y(k,) - —eE v, V' =V¥k,')= —eE-v'7 9)
in den Integranden einsetzen. Dabei sind

T=1k,), T =1(ky)

die von k¢, bzw. k,’ abhéngigen Relaxationszeiten. ¥ und " bedeuten die Geschwindigkeiten vor
und nach dem Sto8. Aus (8) folgt mittels (9)

m[m»,n(m,m) (U — f)E - (or —v'%) Pky =B -v. (10)

Die von einem stoBenden Elektron an das Gitter abgegebene Energie ist von der GroSenordnung
twg. Sie ist fir 7> Tp (DEBYE-Temperatur nach Gl. 2.2./26) klein gegen k7T, so daB in der
Frrui-Dirac-Verteilung keine wesentliche Anderung eintritt. Wir kénnen daher f,” = f, setzen
und erhalten aus (10) die Integralgleichung

Q2

o | Pralls k) B (o7 —v'7) &y =E-v. (10a)

Da nach Tab. 2.2.1 fir die meisten Metalle die DEBYE-Temperatur sehr niedrig ist, kann (10a)
im allgemeinen bereits fiir Zimmertemperatur verwendet werden.

Als ersten Naherungsansatz nehmen wir an, dafl = fiir alle Ausbreitungsvektoren ke, gleich ist,
so daB wir (10a) mittels = = 7’ 16sen konnen. Die Grofle

o) 1
m f P"'.n(kA/’ kA)E : (’U —v') d?’kA = T (11)
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gibt in diesem Falle die relative Anderung der Geschwindigkeitskomponente in Richtung E durch
StoBe an. Fur ein vor dem StoB in Richtung E bewegtes Teilchen erhalten wir nach Bild 4.3.4,
wenn wir beriicksichtigen, dafl im Mittel die Betridge der Ausbreitungsvektoren k, und k,’ gleich
sind,

— — .. 2
E.(v—v) _v vg’ _%:K ) (12)

E-v v by 2ky?

Bild 4.3.4. Zur Ableitung der Be-
ziehung (4.3.5./12). Genahert gilt

Dementsprechend ergibt sich fiir T = t” an Stelle der Gleichung (11)

Q 1
= [ py n<k,\,kA) - Aoy = —. (11a)
8 T

Das Differential d*k,” folgt mittels

a3k = do dk;’. (4.2.8./6)
Darin ist
dk,” = _dI’K_, (4.2.8./7)
lgrads, W’|

Durch die Bedingung

ist die Auswahlmoglichkeit der Ausbreitungsvektoren ke, bei vorgegebenem k, eingeschréinkt.
b ist in (2.2./6) gleich Null, da k,’ aus dem reduzierten Bereich zu entnehmen ist.

Die Anzahl der longitudinalen Wellen eines Kristalls mit dem Volumen V = 2 im Bereich der
Kreisfrequenzen w ... w 4 dw bzw. der Wellenzahlen K... K 4 dK ist nach (2.2./18) gleich

2
wdw 2 o gedk. (13)
2m2V3y, 8n3

Darin bezeichnet der erste Faktor —'% nach (4.2.8./3) dle Anzahl der Ausbreltungsvektoren,

bezogen auf die Volumeneinheit des reziproken Raumes. Der zweite Faktor dnk? dK gibt den
Bereich zulissiger Wellenzahlvektoren K an. Sie enden in éiner Kugelschale mit dem Radius K
und der Dicke dK.
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Legt man das BrocH-Theorem (4.2./6) zugrunde, so wird durch die Energie W der Betrag k,”
fir die Ausbreitungsvektoren festgelegt. Bei vorgegebenem Ausbreitungsvektor k, und fest-
gelegtem Betrag K liegen die Ausbreitungsvektorenke,” = k' (W), die (2.2./6) erfillen, auf einem
Kreiskegel. Sein Grundkreis hat den Umfang 2rK. Ist ein Bereich von Wellenzahlen K ... K 4 dK
vorgegeben, so enden die zuldssigen Ausbreitungsvektoren Ik, auf einem Kreisring der Flache

do =2rK dK. (14)
Nach (4.2.8./6) folgt somit

&y — do dk,’ = 2rK dK AW

—_—— (15)
|grady, W’|

Wir setzen (15) zusammen mit (1) in (11a) ein und fithren die Integration iiber die §-Funktion
aus. Es verbleibt, wenn |grady, W’| = #v" sowie #2kp* = m?? und gendhert v" = v gesetzt wird,
nur noch das Integral iiber den verfiigharen Wellenzahlbereich

C2Qh [(@Ng+1)K5dK 1
8 Mmo® -

Die GréBe der Wellenzahlen K ist nach oben hin durch die Festlegung (2.2./21) der Debyeschen
Grenzfrequenz

(16)

wg T

_ Kgvs
e = 2
beschriankt, wobei vs = u% die Phasengeschwindigkeit der mechanischen Welle bedeutet.
Aus (2.2./21) bzw. (2.2./22) ergibt sich fiir die obere Grenze der Wellenzahlen
3 J6n?
K, = ]/ sy 7
e

Die untere Grenze ist Null. Das Integral (16) lauft somit von Null bis K. Driickt man (16) durch
ein Integral iiber die Kreisfrequenzen wy aus, so ergibt sich

*To
I3
C2Q0h (2Ng + 1)wgdwg 1 @18)
8 Mm2v? g8 T
0
Als Anzahl der longitudinalen Gitterschwingungen erhilt man nach (2.2./10) fiir 7 > fwx
Ne=2E, Ne+1=2L, (19)
hwg hwg
Beriicksichtigen wir wg = 93K und fithren die Integration in (16) aus, so folgt
3 202
1 _ 9 #202T (20)

T 4 QMmrkTp?
Als spezifische elektrische Leitfahigkeit bei hohen Temperaturen ergibt sich damit nach (3.3./5),
wenn die Relaxationszeit gleich der halben StoBzeit gesetzt wird und wenn man die auftretenden
Zahlen zu einem gemeinsamen Faktor 1/70 zusammenfaft,

Ne2QyMmv*kTp Tp

21
70%#2C? T @1)

0=0r>Tp =
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R T
Wichtig an dieser Formel ist die Proportionalitit der elektrischen Leitfahigkeit mit —, die
experimentell fir hohe Temperaturen gut bestatigt wird. T
Mit den vorgegebenen Temperaturwerten folgt unabhingig vom Material

Oprae _ 673,2

= = 0,871.
Ogra,e  113,2

Nach den experimentellen Werten in Tab. 4.3.2. erhilt man fir Kupfer

Gz _ 0,3101

= = 0,856.
Ogrzz  0,3623

4.3.6.* Temperaturabhingigkeit der elektrischen Leitfahigkeit tiir 7' << T'p

Bei tiefen Temperaturen fiithrt der Ansatz konstanter Relaxationszeit zur Losung der Integral-
gleichung (4.3.5./10) nicht mehr zum Ziel.

Wegen des Energieaustausches zwischen den Elektronen und den oszillierenden Kristallbau-
steinen muf zwischen f, = f(k,) und f," = fo(k,’) unterschieden werden. f,” ist davon abhingig,
ob ein Emissions- oder ein Absorptionsprozel3 vorliegt.

Stellen Sie die Formel fiir die spezifische elektrische Leitizhigkeit fiir tiefe Temperaturen T' << T'p,
auf. Berechnen Sie diese fiir Blei bei 15 K. )

Losung:

Zur Losung der Integralgleichung (4.3.5./10) setzen wir in erster Niherung v = 7(W) an und
fithren die Rechnung mit einem Mittelwert T durch. Fiir diesen ergibt sich mittels-(4.3.5./12)

1 Q K3
- (P, ’ = (1 — ) A3k’
= STy Ptk g (= ) )

An Stelle der fiir hohe Temperaturen giiltigen Beziehung (4.3.5./18) erhalten wir

1_
z

02t [kl — f)aps + Wi + 1) (L = f)en] o dooe o)
SrMm3(1 — fy) 6 ’
0

Vs

In der Formel (3.3./7a) fiir die Zustandsfunktion f,” der gestoBenen Elektronen setzen wir
& =¢4 hog

(oberes Vorzeichen fiir Absorption, unteres fiir Emission) und nehmen die Energie vor dem Sto
gleich dem Frrmi-Potential { an. Ferner setzen wir

_fsz
x = kT'

Damit ergibt sich

1

ﬂ)abs = fOem = 'ez__*_'_1° (3)

1
et 41’



234 4. Grundlagen der Quantentheorie fester Korper

Fur die Anzahl der Phononen nach (2.2./10) erhalten wir bei rein longitudinalen Schwingungen

1

1—e=

Ng =

1 .
pramwy Ng+1= (4)

ex

Setzt man (3) und (4) in (2) ein, folgt

®)

To/T
1 9nR*CRT% xt dx
T QuMm2Tpt | (1+ e®) (e® — 1)
0
Der Ausdruck e® im Nenner ist fiir die obere Grenze bereits so grol, dal anstatt bis T_; bis oo

integriert werden kann. Den Summanden e~% im Nenner kann man bei der Integration in erster
Néherung ebenfalls vernachlissigen. Fiir das verbleibende Integral folgt nach [3] (4.1.3./8)

oo

4
f E _T(5)C(5) =4!-1,0369 = 24,89 ~ 25.

et — 1
0

Hieraus ergibt sich mit 9r4! 1,0369 ~ 7000

1 7000#%C%* (T \5 ©6)
T ’ QoMm2’1)3kTD TD
und fir die elektrische Leitfahigkeit nach (3.3./5)
Ne2Qy- MmvkTy (Tp\®
= =22 "2 (2}, 7
7= 0T<Ts 7000 #2C* ( T @

Bei tiefen Temperaturen wichst ¢ proportional %, wie experimentell gut bestétigt wird. Dabei

ist zu beriicksichtigen, daB (7) ebenso wie (4.3.5./21) fir reine Elektronenleitfdhigkeit im idealen
Gitter gilt. Der Einflul von Gitterstorungen, der als Restwiderstand besonders bei tiefen Tempe-
raturen hervortritt, wird in der abgeleiteten Theorie nicht erfaf3t.

Aus dem Vergleich der Formeln (4.3.5./21) und (7) erhilt man als Verhiltnis der Leitfihigkeiten
bei hohen und bei tiefen Temperaturen

or<rp _ Tp? 7o )
oT,>Tp 100 T,

Fir die spezifische Leitfahigkeit-des Bleis bei 15 K folgt aus (7) mit der DEBYE-Temperatur nach
Tab. 2.2.1 und der Leitfdhigkeit bei 0°C nach Tab. 3.3.1
5,2 -108. 904. 273

Q1m1=236-52-108Q1m*=1,23-10°Q1m1,
100 - 155

015 =

Wie aus dem Vergleich mit Tab. 4.3.2 hervorgeht, ist dieser Wert iﬁfolge der genannten Stor-
einfliisse sowie infolge der Ungenauigkeiten bei den Naherungen um einen Faktor 4 zu groB.
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A43.1.

A43.2.

A433.

A4.3.4.

A43.5.

A 43.6.

A 43.7.

A438.

A 4.3.9.

Aufgaben

Fiir elastische Stofe, bei denen sich nur die Ausbreitungsrichtung, nicht jedoch die
Energie #ndert, sind die Ubergangswahrscheinlichkeiten P, . (fs,fs’) und
Py n(ley’, k) gleich. Wie lautet auf Grund dessen das Stof3glied in der BoLTzMANN-
Gleichung?

An Silber wird ein homogenes elektrisches Feld der Stirke £ = 1 V m~ gelegt.
Die Temperatur sei konstant und betrage 0°C. Bestimmen Sie fir ein mit der
Grenzgeschwindigkeit

vp = l/2¢° 1,38.105ms-t
m

senkrecht zum elektrischen Feld bewegtes Elektron die Abweichung ¢ vom Normal-
zustand f, nach der FErRMI-Dirac-Statistik.

Bestimmen Sie zur vorangegangenen Aufgabe ¢ fir v = v, = 0,99 vy und v = v,
= 1,01 vp.

In Silber bestehe ein Temperaturgefille %2—1 =100 K cm~!. Bestimmen Sie fir
e

einen Punkt mit der Temperatur 0°C die Dichtefunktion der in Richtung des
Temperaturgefilles mit der Geschwindigkeit v = 10° m s~ bewegten Elektronen.
Wie grof} ist die Abweichung ¢ vom Normalzustand nach der FErmI-DIRAC-
Statistik?

Untersuchen Sie zur vorangegangenen Aufgabe d1e Verteilungsdichte und die Ab-

weichung vom Normalzustand, wenn die Bewegung senkrecht zum Temperatur-
gradienten erfolgt.

Die Wirmeleitfahigkeit des Aluminiums betragt bei 0°C nach Tabelle 2.2.2
57,8-10-%kcal m—1K-! sl = 242 Wm—1K-1, Berechnen Sie daraus auf Grund der Ver-
kniipfung zwischen dem Warmestrom und dem elektrischen Strom die elektrische
Leitfdhigkeit des Aluminiums bei 0°C.

4% 4dx,

a)

Bild 4.3.5. Abstandsinderung. a) bei longitudinalen, b) bei transversalen
Schwingungen

Zwischen der oberen und der unteren Seite einer 0,2 mm dicken Silberfolie wird
einmal ein Temperaturunterschied von 10 K, das andere Mal eine Potentialdifferenz
von 0,001 V gelegt. Bestimmen Sie gréBenordnungsmiBig das Verhéltnis der aus-
gelsten elektrischen Stréme bei Zimmertemperatur 7' = 300 K.

Welche Stirke hat das in Silber durch einen Temperaturgradienten 105 K m~! bei

0°C erzeugte elektrische Feld?

Berechnen Sie die Warmestromdichte, die von emem elektrischen Strom mit der
Stromdichte 1 A mm~=2 bei 0°C ausgeldst wird.
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A 4.3.10. In Kupfer wird durch Elektronentransport eine elektrische Stromdichte von
2 A mm~2 und durch ein Temperaturgefille eine gleichgerichtete Warmestromdichte
von 1 cal mm—2s! erzeugt. Berechnen Sie die resultierende Energiestromdichte
bei 0°C. -

A4.3.11. Berechnen Sie die elektrische Leitfihigkeit des Silbers bei 500°C im Vergleich zur
elektrischen Leitfdhigkeit bei 0°C. Vergleichen Sie das Ergebnis der Rechnung mit
dem Wert nach Tab. 4.3.2 und deuten Sie die Abweichung.

A 4.3.12. Berechnen Sie fiir Kupfer aus der spezifischen elektrischen Leitfihigkeit ¢ = 64
X108 Q-2 m-* bei 0°C die Elektronenleitfahigkeit bei 7' = 4,2 K. Vergleichen Sie
das Ergebnis mit der elektrischen Leitfahigkeit nach Tab. 4.3.2.

A 4.3.13. Wie grof} ist mit dem Widerstandswert nach Tab. 4.3.2 die Relaxationszeit = der
Elektronen in Kupfer bei 7' = 4,2 K (zusitzliche Werte nach Tab. 3.3.1 bis Tab.

3.3.3)?

A 4.3.14. Geben Sie den Temperaturkoeffizienten o« des elektrischen Widerstandes nach
(4.3.5./21) fir > Tp und nach (4.3.6./7) fir T <€ Tp an, wenn o7 = or,(1 +
[T — T,]) gesetzt wird. \

A 43.15. Untersuchen Sie unter der Voraussetzung kleiner Auslenkungen den Beitrag der

transversalen Schwingungen des Gitters auf die elektrische Leitfdhigkeit im Ver-
gleich zum Beitrag der longitudinalen Schwingungen (vgl. Bild 4.3.5).

4.4. MeBverfahren zur Bestimmung der Fermi-Flichen und der mittleren
freien Weglinge in Festkirpern

E Einfiihrung

Ferm'i-Fldchen

Die Flachen konstanter Energie k, = k,(W,) im reziproken Raum heilen FErMI-
Flidchen. Sie sind im allgemeinen keine Kugeln, wie sich nach dem Brocu-Theorem
gemifl (4.2./6) ergibt, sondern haben eine wesentlich kompliziertere Gestalt. Ihre
experimentelle Ermittlung erfolgt nach verschiedenen MeBverfahren. Diese lassen
sich theoretisch aus der Verkniipfung zwischen den FermI-Flichen und den Bahn-
kurven der Elektronen im direkten Raum bei Anwesenheit eines Magnetfeldes ab-
leiten.

Die Kenntnis der FErMI-Fldchen ermdéglicht es, die funktionelle Abhéngigkeit

W = W(k,)
~zu berechnen.

Bewegung quasifreier Elektronen vm Magnetfeld
Die Geschwindigkeit eines Elektrons im Festkdrper ist unabhéngig von der speziellen
Form der Funktion W = W (k,) allgemein durch die Formel

1 1 dw
= 7 gradh W = -z- d—kA' (1)

bestimmt (vgl. 4.2./9 bzw. 4.2.4./1).
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Fiir die Anderung AW der Elektronenenergie unter dem EinfluB einer duBeren Kraft
F gilt allgemein
dW =F -vdt. 2)

Setzt man (1) in (2) ein, so ergibt sich fiir die Anderung der Elektronenenergie im
Festkorper unter der Einwirkung einer duBleren Kraft

1 1 dw
dW:—ﬁ-F-gI'adkAWdt’:;'F'ak—Adt- (3)
Fiir die Anderung des Ausbreitungsvektors k, eines Festkorperelektrons im &uBeren

Kraftfeld F folgt daraus

dk,
3 - = F. (4)
Bei magnetischen Kréften gilt nach der LorENTz-Gleichung F = —ev X B, so dal

sich fiir die zeitliche Anderung des Ausbreitungsvektors unter dem EinfluB eines
Magnetfeldes
dk
F=hd—tA=—eva (5)
ergibt.
Hat das magnetische Feld die Richtung der z-Achse, so erhdlt man aus (5) in Ver-
bindung mit (1)

dk, eB oW

3 Fri —eBy, = y %, (6a)

ﬁd—d’%”zerx:%%, (6b)

h % =0 (6¢)
Die Elektronenenergie ist im Magnetfeld konstant:

W _ WD 0,0 ;(‘0) ~o. o

Das gleiche gilt nach (6¢) fiir die Komponente k, des Ausbreitungsvektors k,.
Wird daher die Bewegung des Elektrons im homogenen Magnetfeld auf den rezi-
proken Raum abgebildet, so ergeben sich die Bewegungskurven als Schnitt der
Flichen konstanter Energie W mit den Ebenen konstanter Komponente k,.
Anstelle v, und v, kann man in (6a) und (6b) & und ¢ einsetzen. Werden diese beiden
Gleichungen dann integriert, so folgt

f
x:e—éky+X0, (83’)

I3
y=——k + ¥ (8b)

X, und Y, sind Konstanten.
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Auf Grund der Gleichungen (8a) und (8b) kann die Elektronenbewegung im direkten
Raum auf den reziproken Raum abgebildet werden. Hierzu hat man das z,y-System

in den Punkt (X,, ¥Y,) zu verschieben, um —TZE- zu drehen und um den Faktor B

strecken (vgl. Bild 4.4.1). e
Bahnkurve bzw.
. Fermi - Fldgche
r=(xy) k(kyk,)
y1y, N L 2N
i % |
— . , X ,

X

Bild 4.4.1. Abbildung der Elektronenbahnen im direkten Raum auf die Flichen
konstanter Energie im reziproken Raum (Fermr-Fliachen)

Die Bewegung der Elektronen erfolgt im reziproken Raum langs einer Energiefliche.
Aus der Beobachtung der Elektronenbahnen im Magnetfeld kann daher die Energie-
fliche im reziproken Raum bestimmt werden.

In Richtung des angelegten Magnetfeldes H ist die Elektronengeschwindigkeit

1w
%= A,

im allgemeinen von Null verschieden. Wahrend im reziproken Raum nach (6¢) die
Elektronenbewegung in der Ebene k, = const erfolgt, liegt im direkten Raum eine
Spiralbewegung vor.

Die Bahnkurve im reziproken Raum kann geschlossen in der ersten BRILLOUIN-
Zone verlaufen oder sich iiber mehrere BRILLOUIN-Zonen erstrecken. Im. letzteren
Falle setzt sich die Elektronenbahn in der ersten BRILLOUIN- Zone aus mehreren
getrennten Teilstiicken zusammen.

Zyklotronfrequenz und Zyklotronmasse

Werden im direkten Raum gekriimmte Bahnkurven durchlaufen, so ist die zum
Kriimmungsmittelpunkt gerichtete Zentralkraft in jedem Augenblick gleich der die
Bahnkriimmung verursachenden magnetischen Kraft:

“mo?

- = evB. 9)

Durch StéBe mit den Gitterbausteinen werden die Elektronen in ihren Umlauf-
bahnen gestért. Die Kreisfrequenz der im Mittel sich ergebenden Umlaufbewegung
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ist der Messung zugénglich (vgl. 4.4.3.). Hierfiir erhélt man nach (9)

wo = =B (10)

Te Me

w. heiBt Zyklotronfrequenz. Ihre Messung ergibt die Zyklotronmasse m,, unter der
man die effektive Masse des umlaufenden Elektrons versteht, v, und r, geben die
Mittelwerte der Geschwindigkeit und des Kriimmungsradius bei der Zyklotron-
bewegung an. Die Zyklotronmasse m, ist von der Bahnkurve, d. h. vom Magnetfeld
B und von der Energie W, abhingig. Kennt man die Zyklotronmasse fiir verschiedene
. zueinander senkrechte Richtungen des Magnetfeldes und fiir verschiedene Energien,
so kénnen daraus im Zusammenhang mit dem Massentensor nach 4.2. (vgl. Aufgabe
A 4.2.5) die Fermi-Flichen mathematisch abgeleitet werden (vgl. A 4.4.16 und
A 4.4.17).

Fiir die Zeit einer Periode ergibt sich

T_—_ at = gjdk" 95 Ak 11
e dk,\2  [dk,\?
_— _I.. -2

Nach (6) kann man

¢ l/ 2 2 eB ¢ l/ 2 )2 (12)
schreiben, wobei
ow\2 ow\2 daw
V(a—;%-) H (m) = [@s 13

die Lénge des in der k,, k,-Ebene gebildeten Gradienten angibt. Definiert man als
benachbarte Kurven die Kurven, bei denen die Energiedifferenz AW konstant ist,
so kann man fiir diese

N U LI LV
T =3B 95 | " em B AW SﬁAk‘“ dkn =5 hm T (14
ks

setzen. A4, gibt die von benachbarten Energiekurven eingeschlossene Fliche in der
kg, k,-Ebene an (vgl. Bild 4.4.2). Fiir die Periode 7, folgt als Grenzwert

ZTE _ ﬁz dAk

= on =B AW (15)

Setzt man (15) in (10) ein und 16st nach der Zyklotronmasse m, auf, ergibt sich

k% dA4,

Me ='2§ aw (16_)
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Die Umlaufzeit 7', bzw. die Zyklotronfrequenz w, und die Zyklotronmasse m, kénnen
nach verschiedenen Verfahren gemessen werden (vgl. 4.4.2. bis 4.4.5.). Sie sind in der
Regel von der Richtung des Magnetfeldes abhéingig.

Bild 4.4.2. Bahnkurven im reziproken
Raum fiir konstante Werte k,

(15) und (16) verkniipfen die Frrmi-Flichen eines Kristalls mit der Zyklotron-
frequenz w, und der Zyklotronmasse m.. Aus den MeBwerten fiir w, und m, bei ver-
schiedenen Richtungen B lassen sich daher die FErMI-Flichen konstruieren. Im all-
gemeinen geht man dabei vom Brocu-Theorem (4.2./6) aus und schliet aus der Ab-
héngigkeit der Grofen w, und m, von B iiber (15) und (16) auf die Abweichung der
FEerMI-Flichen von der idealen Kugelgestalt.

Beispiel 4.4.1. Fermi-Flichen und Umlaufflichen im direkten Raum
nach dem Bloch-Theorem

Nach dem Brocu-Theorem sind die Fermi-Flichen Kugeln, die Umlaufbahnen im direkten
Raum Kreise. Fir 7' = 0 wird der Radius der gréfiten umfahrenen Fliche im reziproken Raum
des Kupferkristalls nach Tab. 4.2.1 durch

kg = V bo _ 1,36 - 1010 m—1
hz

bestimmt. Die groite umfahrene Flédche hat daher im reziproken Raum den Inhalt
Ay = kg*n = (1,36 - 10192t m—2 = 5,8 - 1020 m~2,

Das angelegte Magnetfeld habe die Stirke B = 2,0 Vsm~2. Um die Abmessungen der Umlauf-
bahnen im direkten Raum zu bestimmen, hat man nach (8) sdmtliche Léngen im reziproken
Raum mit dem Faktor

13 1,05 . 1034

L P T 2 —3,28.10-18 m?
eB 1,60-1010.2,0

zu versehen. Fiir den Radius des grofiten Kreises erhdlt man somit

r = kg % =1,36-10°.3,28.10%m =4,5-10° m.
e
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Setzt man fiir die Zyklotronmasse die effektive Masse des Kupfers nach Tab. 3.3.2 ein, so erhilt
man nach (10) die Zyklotronfrequenz
1,60 - 10— .2,0- 0,67
W =
9,11.10~%

s1=235.101s1,

Aus der Analogie der Zyklotronbewegung mit dem harmonischen Oszillator nach dem BrLocH-
Theorem folgt fiir die Energieéinderung (vgl. 4.4.4.)

AW =k Aw,
und daraus '
he
AW = — AB.
m

Die Anderung der FluBdichte um
AB = 0,1 Vs m—2
fuhrt daher zur Energieinderung

1,05 -10-34. 1,60 - 10-°. 0,67

AW =
9,11 .10~

J=1,24.10"2J.

Nach (16) ist der Energiezuwachs mit einem Zuwachs der umfahrenen Flache im reziproken Raum
um
. ", 10-31. .10-28
Ad,— 27 -9,11°. 10 1,24 - 10
0,67 - (1,05 - 10-34)2

m2 = 9,6 - 10 m—2
verkniipft.

Die Messung von w, und m, zur Bestimmung der FErMI-Flichen eines Kristalls
erfolgt am zweckmaBigsten nahe dem absoluten Nullpunkt. Hier nehmen die elektri-
sche Leitfahigkeit und damit die Relaxationszeit ihre groften Werte an. Das Pro-
dukt w,r aus Zyklotronfrequenz w, und Relaxationszeit 7, das bei Zimmertempera-
tur nur Werte 10-2...10-3 erreicht, kann bei tiefen Temperaturen unter dem Einflu}
starker Magnetfelder bis in die Gr6Benordnung 102 ..10% anwachsen.

Bei hohen Temperaturen wird selbst unter der Einwirkung stédrkster Magnetfelder
infolge der hohen Stofzahl kein geschlossener Kreis durchlaufen. w, hat hier nur die
Bedeutung eines statistischen Mittelwertes.

P Probleme
4.4.1. Elektrischer Widerstand im Magnetfeld B | E

Stellen Sie die Gleichungen fiir die Bewegung der Elektronen in einem isotropen Kristall auf,
wenn auf diesen gleichzeitig ein elektrisches Feld E und senkrecht dazu ein magnetisches Feld
B gerichtet wird. Leiten Sie aus der durch Sto8e bedingten Reibung die Relaxationszeit v
ab und bestimmen Sie diese fiir die Elektronen in Natrium auf Grund des Havr-Effektes. Die
Masse der Elektronen ist gleich der effektiven Masse zu setzen (Werte nach Tab. 3.3.1 bis 3.3.3).

Losung:
Die Relaxationszeit 7 bedingt eine Verzogerung bei der Einstellung des Gleichgewichtes. Sie kann
als Folge eines Reibungsgliedes in der Kraftgleichung aufgefaft werden. Wir schreiben daher fir

16 Schilling, Festkérperphysik
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den Bewegungsablauf unter dem Einflufl einer konstanten duBleren Kraft I
F = m# + cr. (1)

Darin kennzeichnet ¢ den Reibungskoeffizienten, m die reduzierte Masse. Eine partikuldre Losung
der inhomogenen Gleichung lautet

1"=£ bzw. 1‘=£t. (2)
c c

Die Losung der homogenen Gleichung ergibt sich durch Exponentialansatzr = Aext mitox = -2
bzw. o = 0. Als allgemeine Losung der inhomogenen Gleichung erhélt man daher m

Ly

r=r0+£ct+Ae . @)
Der Reibungskoeffizient ¢ ist hiernach mit der Relaxationszeit gemaf

T= (4)
verkniipft.

Bei der Einwirkung eines konstanten elektrischen Feldes E und eines konstanten magnetischen
Feldes B auf den Festkorper ist in (1)

F = —eE+vXxB) (5)
zu setzen. Wir schreiben v fiir 7, ® fiir # und erhalten damit aus (1)
—e(E—|—'v><B)=m(i7+—1—'v). (6)
T

Die Richtung des elektrischen Feldes kann als z-Achse, die des magnetischen Feldes als y-Achse
gewshlt werden. An Stelle der Gleichung (6) ergibt sich

. 1
Vy + — Uy
E — v,B ;
—e 1] =m l}y -+ — ’l)y . (7)
v,B 1‘:
VU, +— v,
T
Aus der mittleren Zeile folgt
-t
vy =1ve *, (8)

d. h., die Elektronenbewegung in Richtung des magnetischen Feldes klingt ab. Die erste und die
dritte Zeile ergeben das Gleichungssystem

bt Lo, By _%p, (9)
T m m

O+ — v+ —0u,=0. (10)
m T
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Eine partikulire Losung erhilt man, wenn 9, = 0, 9, = 0 gesetzt wird und die Wurzeln des ver-
bleibenden algebraischen Gleichungssystems bestimmt werden:

2,2
) L vz=EBL. (11)
m? + e2B%*? m? + e2B?

V= —
Die Lésung des homogenen Gleichungssystems zu den Gleichungen (9) und (10) erfolgt durch den

. Exponentialansatz
v, = vy e, v, = vgert. (12)

Er fithrt auf das Gleichungssystem

B
(w+l)%x—iwm=o, (13)
T m
B s + (;; + i) v = 0, (14)
m T

das nur losbar ist, wenn die Koeffizientendeterminante verschwindet. Hieraus folgt
2 2 B2
(y—f—i)—{-i:O baw. = —L 4 iw, (15)
T m? T

mit der Zyklotronfrequenz

eB
we = ot (16)

Aus (13) und (14) erhélt man im Zusammenhang mit (15)
. . 1 .
Yoy = iy, fir y = —— + iw,, (17a)
T
. . 1 ;
Uy, = —ivy, fir y = —— —iw,. (17b)
T

Die allgemeine Lésung des Gleichungssystems (9) und (10) kann daher in der Form

t

etm . Lo
Vy=—HB——n— t e 7 (veloct 4 p,e-ioct)
z m? + e2B%r? t ’
(18)
t
€272 . . .
v, = EB —————— —ie 7 (vjeloct 4 p,e-ioct)

m? + e2B2g?

dargestellt werden. »; und v, sind Konstanten.

Dem aus der partikuléiren Losung sich ergebenden Gleichstrom ist nach (18) eine Rotation in der
Ebene senkrecht zum Magnetfeld iiberlagert. Wir legen die Zeit derart fest, daB fiir ¢ = 0 das
betrachtete Elektron eine Rotationsgeschwindigkeit in Richtung des dufleren elektrischen Feldes
aufweist. Es folgt

==, (1)

2

16*
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Bei Beschrinkung auf die Realteile erhilt man aus (18) und (19)

¢ ]
eTm B
—_ _p "7 T
v, = —F R o +ve T coswet, 0
(
t
e2r? T ¢
v, = m——%e SN wet .

Im stationdren Zustand sind nur die ersten Summanden in (20) wirksam. Als Verhaltnis zwischen
den beiden Geschwindigkeitskomponenten des stationdren Zustandes folgt

(”—) -2 = @1)
v, /stationar etB WeT

Es ist gleich dem Verhiltnis der Stromkomponenten und bei isotropen Medien gleich dem
Verhiltnis der Spannungskomponenten. Aus dem Haur-Effekt ergibt sich nach (3.3.1./3) und
(3.3.1./10) bzw. (3.3.1./3) und (3.3.1./12) in Verbindung mit (3.3.1./7)

Vg _Je B _ 1 (22)
v, 7. FEm RBo
Der Vergleich beider Ausdriicke liefert, wenn nach der Relaxationszeit v aufgelost wird,
7= —"Ro. (23)
e
Fiir die Harr-Konstante kann der Ausdruck nach (3.3.1./11) eingesetzt werden:
mo
= —, 24
T= 4 (24)

Vergleicht man die hiernach berechnete Relaxationszeit 7 = 7Relax mit der aus (3.3.1. /5) folgenden
StoBzeit Tstop, 50 ergibt sich Tgyop = 27Relax-
Fiir die Relaxationszeit der Elektronen in Natrium folgt aus (23) mit den vorgegebenen Werten

7= 9,11-10-%1.2,1.10-10. 234 . 108
1,67 - 1,60 - 10—1°

s1=1,7.10""s.

4.4.2. Elektrische Leitfdhigkeit im Magnetfeld

Auf einen Festkérper wird ein Magnetfeld mit der Flu8dichte B gerichtet. Die Richtung gegen
das duBere elektrische Feld E sei beliebig. Leiten Sie auf Grund der LorENTz-Gleichung die
Formel fiir den elektrischen Widerstand ab.

Welche Widerstandsinderung wird bei Kupfer fiir den in Richtung des elektrischen Feldes
flieBenden elektrischen Strom nach dem Brocu-Modell bewirkt, wenn auf den Festkorper ein
Magnetfeld mit der FluBdichte B = 2,0 Vsm~2 senkrecht zum elektrischen Feld gerichtet wird?

Losung:

Wir gehen von der Bewegungsgleichung (4.4.1./6) aus, lassen jedoch beliebige Winkel zwischen
dem zeitlich konstanten elektrischen Feld E und dem magnetischen Feld B zu. Die allgemeine
Losung setzt sich wie in 4.4.1. aus einer partikuliren Losung des inhomogenen Gleichungssystems
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und aus der allgemeinen Losung des homogenen Gleichungssystems zusammen. In der Losung
¢

des homogenen Gleichungssystems tritt der Faktor e * auf (vgl. 4.4.1./20). Die entsprechenden
Summanden klingen wegen der kleinen Relaxationszeit sehr schnellab und sind fiir den stationéren
Zustand ohne Interesse. Die partikulidre Losung ergibt sich, wenn in (4.4.1./6) die Ableitung ¢ der
Geschwindigkeit gleich Null gesetzt wird, so dafl man

—¢(E +vxB)= —v (1)
T
erhilt. Wir wihlen die Richtung des konstanten magnetischen Feldes als y-Achse, wihrend die

z- und die z-Achse des Cartesischen Koordinatensystems beliebig gewahlt werden kénnen. Auflésen
nach den Komponenten ergibt aus (1)

E, —v,B v,
—elE, ) —el O _r v, | =0. @)
E, v, B T v,

Die Losung dieses inhomogenen Gleichungssystems 148t sich in der Form

m2 eBtm
- m? 4 722 B2 m? 4 t%%B? B
z z
0 | =-Z 0 1 o " |l|&, ®3)
v, m E,
2 —eBtm m2

m2 - 722B2 m2 4 12282

schreiben. Wir fithren die Zyklotronfrequenz w, nach (4.4.1./16) ein und definieren die Strom-
dichte :
j= —Nev =cE, 4

wobei N die Konzentration der Elektronen im Leitband, ¢ den Widerstandstensor bezeichnet.
Fiir diesen erhalten wir aus (3)

(1 + w2r?)1 0 wez(l + w2t
6 =0, < 0 1 0 ) ®)
—wet(l + w2t 0 (1 4 w2t
mit
2
00 = =222, 6)
m

Fiir ein parallel zur z-Achse gerichtetes elektrisches Feld

E
E=(O> (7)
0

folgt aus (4) und (5)

(1 + o)
ji= 60< 0 ) E. (8)
=

—weT(1 + we?r?)t

Als Verhiltnis der Stréme j, und j, erhélt man hieraus den gleichen Wert wie nach (4.4.1./21) bzw.
(4.4.1./22).
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Der Widerstand des in Richtung des elektrischen Feldes E flieenden Stromes wird durch das
magnetische Feld verdndert. Setzt man fir die Relaxationszeit nach (4.4.1./25) und (3.3.1./5)

T = TRelax = % Tstog = 2,7 - 107 s
und berechnet die Zyklotronfrequenz gems8 (4.4.1./16) mit der effektiven Masse nach Tab. 3.3.2,
so ergibt sich

.10-19 . .
eB _ 160-101-2,0-0,67 , 2,3- 1011 g1,
m 9,11 .10-%

We =

Das Produkt aus Zyklotronfrequenz w, und Relaxationszeit = hat nur den Wert
weT = 2,3 -1011. 2,7 .10~ = 0,0062.
Fir die elektrische Leitféhigkeit in Richtung E folgt

9)

mit den vorgegebenen Zahlen

(o]

— % ___ _ 5 (1—38-107).
% = T 00060 %! )

Durch die Einwirkung des relativ starken Magnetfeldes wird die Leitfdhigkeit des Kupfers bei
Zimmertemperatur nur wenig, und zwar um

As _ _38.10-,

Oo
gedndert.
Bei tiefen Temperaturen nahe dem absoluten Nullpunkt vergréBert sich die Leitfahigkeit gegen-
itber Zimmertemperatur um einen Faktor 102...10® (vgl. Tab. 4.3.2). Damit vergrofert sich nach
(6) die Relaxationszeit, so daB (9) eine deutliche Veridnderung der elektrischen Leitfahigkeit
unter dem Einflul eines Magnetfeldes bei tiefen Temperaturen ergibt. Hieraus kann w, bestimmt
werden, wenn 7 bekannt ist. Bei starken Magnetfeldern ist jedoch auch die Relaxationszeit
t© = 7(T, B) eine Funktion nicht nur der Temperatur, sondern ebenfalls der magnetischen Flu8-
dichte. Kennt man daher w, aus Messungen nach anderen Verfahren (s. 4.4.3. und 4.4.4.), so kann
nach (9) die Relaxationszeit v bestimmt werden.

4.4.3. Zyklotron-Resonanzmessung im hochfrequenten Wechselfeld

Zur Messung von w, bzw. T, iiberlagert man auf das konstante Magnetfeld B ein hochfrequentes
elektrisches Wechselfeld £ = E,eivt und untersucht die Eigenschaften der Ladungstriger in
ihrer Gesamtheit. Es seien E und B zueinander senkrecht und parallel zur Festkorperoberfliche
gerichtet (vgl. Bild 4.4.3). Untersuchen Sie die Bewegung der Elektronen, bestimmen Sie die

-2
E
Bild 4.4.3. AzBEL-KANER-Anordnung.
Elektronenbahn E und Bliegen parallel zur Festkorperoberfliche



4.4. MeBverfahren zur Bestimmung der Fermi-Flichen 247

elektrische Leitfahigkeit in Richtung des elektrischen Feldes und leiten Sie das Maximum der
Energieabsorption durch die Elektronen ab.

Fir Germanium lassen sich bei 77 = 4 K in einem starken Magnetfeld Werte w,z > 100 erreichen.
Mit der Frequenz f = 24 GHz werden u. a. bei der magnetischen FluBdichte B = 0,19 Vs m—2
ein durch Elektronen, bei der magnetischen Flufidichte B = 0,31 Vs m~2 ein durch Defekt-
elektronen verursachtes Maximum der Energieabsorption gemessen. Bestimmen Sie daraus die
Zyklotronmasse der Elektronen und der Defektelektronen.

Losung:
Fiir die Ortsianderung der quasifreien Teilchen folgt nach (4.4.1./6)
—e(E—l—va):m(i)—}——l—v). (1)
T
Das Magnetfeld ist konstant, wihrend es sich bei dem elektrischen Feld um eine hochfrequente
Schwingung der Form
E =E,elot (2)
handelt. Zur Losung der Gleichung (1) gehen wir daher von dem Ansatz
v = v, elet 3)
aus. Damit ergibt sich
—e(Ey+ vy XB)=m (iw + i) (9 (4)
T
Der Faktor elet kiirzt sich heraus.

Wir wihlen die Richtung des elektrischen Feldes als 2-, die des magnetischen Feldes als y-Achse.
Auflsen nach den Komponenten ergibt

Ey —v,B 1\ [Yoz
—e 0 =m (iw + —) Yoy |- (5)
v,B v

Yoz
Hieraus folgt neben v,, = 0 das lineare Gleichungssystem
m (iw + i) Voy — eBvy, = —eE,,
T
" (6)
—eBvgy — m (iw + —) Vo, = 0.
T

Seine Losung lautet

- _ (7)

oy = _ ®)
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Fur die Leitfahigkeit in Richtung des angelegten Feldes erhilt man

Nevy, 1+ iwt
3 == ’ 9
¢ B, T (0f —of) 2 + Zier @)
wenn nach (4.3.1./7)
we =2 (10)
My
sowie
2 .
gy = Ne?r (11)
me

gesetzt wird. Der spezifische Leitwert nach (9) stimmt fir w = 0, @, = 0 mit dem nach der
DruDE-SoMMERFELDschen Theorie berechneten Leitwert (3.3.1./5) tiberein, wenn man

1
2 Tstos  "Relax (12)

annimmt.
Aus der Messung des Stromes ergibt sich der Realteil des Leitwertes

1+ % (w2 4 w?)
[+ (02 — w?) 722 + 4w

Sein Maximum in Abhéngigkeit von der Frequenz liegt bei

-Reo =0, (13)

_i 2.2y [ __ O 14
omax = = V(1+wcr>( 1+2m). (14)

Es ist nur fiir hinreichend grofle Werte wer > 1 deutlich ausgeprigt. Fiir kleine Werte w 7 tritt
kein Maximum auf (vgl. A 4.4.7). Im Falle groSer Werte w,7r>> 1 kann man in (14)

Omax = O (15)
setzen und erhilt damit nach (10)

eB (16)

me =

Wmax

Mit den vorgegebenen Werten folgt fiir die Zyklotronmasse der Elektronen
__1,60-10-1%.0,19

Mee— =

m,
kg = 2,0 - 1031 kg — e
om-24-10° © 8= 15

wiahrend sich fiir die Defektelektronen

1,60 - 10-1*. 0,31 ' m
=t kg =3,3.1081kg = —2
Moot om-24-100 & €= %8
ergibt. )
4.44. De-Haas-van-Alphen-Effekt

Die Magnetisierung eines Festkorpers zeigt bei tiefen Temperaturen Schwankungen in Abhéngig-
keit von der magnetischen FluBdichte B. Trigt man die Magnetisierung bei tiefen Temperaturen

auf der —;—-Skale auf (vgl. Bild 4.4.4), so treten die Schwankungen mit einer Periode auf, die von



4.4. MeBverfahren zur Bestimmung der Fermi-Flichen 249

der Richtung des angelegten Feldes abhingt. Dieser Effekt wird als pE-HaAS-VAN-ALPHEN-
Effekt bezeichnet.

Fiir Gold wird bei Magnetisierung in der [1 0 0]-Richtung die Periode A % =1,95.10"°V-1s1m?

gemessen. Berechnen Sie daraus die Gré8e der umfahrenen Fliche im reziproken Raum und die
Zyklotronmasse. Vergleichen Sie die nach dem DpE-Haas-vaN-ALPHEN-Effekt berechnete Fliche

(4%),

P

(4%), 1

B

Bild 4.4.4. DE-Ha4s-vaN-ALpPHEN-Effekt: Magnetisierung bei Temperaturen nahe
dem absoluten Nullpunkt in Abhéngigkeit von der reziproken magnetischen FluB-
dichte. Die vorliegende Magnetisierungskurve ergibt sich fiir Gold, wenn B parallel
[1 1 1] gerichtet ist. Sie entsteht aus der Uberlagerung des Effektes fiir die Um-
laufbahnen 7 und 2 in Bild 4.4.5

P

magnet. Moment bzw. Magnetisierung

mit der Umlauffliche, die man erhilt, wenn far k., der Grenzwert kr auf Grund der FErMI-
Kante nach Tab. 4.2.1 eingesetzt wird und Kreisbahnen angenommen werden.

Vergleichen Sie die Abmessungen der ermittelten Fliche mit den Abmessungen der ersten BRIL-
LOUIN-Zone.

Losung:

Wir fithren zur Darstellung des Magnetfeldes in der SCHRODINGER-Gleichung das Vektorpotential
A ein und schreiben

B =rotA. 1
A setzen wir

A = —Byt. (2)
Damit ergibt sich

B = BE, 3)

d. h. ein Magnetfeld in Richtung der z-Achse. Die SCERODINGER-Gleichung (4.1./2) lautet daher
(vgl. 4.2.7./3)

1 a 2 2 [ o 0%
—ih— —eBy) — — =+ —) — W|y=0. 4
(oo (45 =) s (o 3a) =] g
Thre Losung kann in der Form
p = ellkT+k:2) (5)

geschrieben werden. &, und &, sind Komponenten des Ausbreitungsvektors k,. Durch Einsetzen
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von (5) in (4) erhdlt man die gewShnliche Differentialgleichung

R d? e2B? o, W2
2 T2 - —Wlyp=0
[ 2m, At + 2, (v — %) + 2m,g ]w (6)
mit
ik,
=2z, 6
Yo °B (6a)

Sie entspricht der ScERODINGER-Gleichung des um y, schwingenden harmonischen Oszillators
und hat die Eigenfrequenzen

eB
We = — (7)
Me
und die Eigenwerte der Energie
h2k,?
2m

W= Wc=(n+ %) koo + (n=0,1,2,...). (8)
Das Magnetfeld fithrt zur Entartung der Energiezustéinde (8). Um die zu jedem Wert n gehorige
Anzahl von Zusténden zu bestimmen, nehmen wir an, das nach (4.2./1) definierte Grundgebiet 2
habe in Richtung der y-Achse die Linge L,. Die Ruhelage y, des oszillierenden Elektrons wird
nach (6a) durch die Quantenzahl k, bestimmt. Da y, zwischen 0 und L, liegen mu8, ergibt sich
nach (6a)

eB
0<k_,§71},,. 9)

Die Bildpunkte des Ausbreitungsvektors sind nach 4.2.1. im reziproken Raum gleichmiBig dicht
verteilt und haben nach (4.2.1./11) auf der k,-Achse bzw. in Richtung b; voneinander den Ab-

stand 2 . Auf die Lingeneinheit des reziproken Raumes (gemessen in m~!) entfallen daher L,
o

T
Bildpunkte. Da k, zwischen den Grenzen nach (9) variiert, erhilt man somit zu jedem Wert der
Quantenzahlen n und k,

L,L,eB
2nh

Entartungszustinde. Im Intervall k, ...k, 4 dk, treten zu jeder Quantenzahl, wenn die Ent-
artung durch den Elektronenspin mit beriicksichtigt wird,

LolyeB L g 2 ,par (10)

dN, =2 '
2rh 2w 2n2h

Elektronenzustinde auf. Zu jeder Quantenzahl n erhélt man daher fiir 7 = 0

+kzmax
_ LeB

2n2h #

— Kzmax

(11)

n

Elektronen. Der Maximalwert &,;,,, wird durch die FErMI-Kante nach (3.3./6) bestimmt, die fur
T = 0 die obere Grenze der besetzten Zusténde angibt. Auf Grund der Gleichung (8) folgt

1 2f2
er=Cp = (n+ ;) o -+ L imes, (12)
Mg
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Aus (11) ergibt sich damit, wenn man w, nach (7) durch B ausdriickt,

QeB __ QeB 1\ e B]
(4
Diese Zahl ist eine Funktion der magnetischen FluB3dichte B. Sie verschwindet fir
BB, =T S0 (14)
eh "t 1
2

Gleichzeitig wichst hier die erste Ableitung % iiber alle Grenzen.

Die kritischen FluBdichten B, nach (14) sind durch ein Minimum an besetzbaren Elektronen-
zustinden gekennzeichnet. Bei Einstellung des magnetischen Feldes auf einen der kritischen
Werte (14) wird dadurch eine grofle Zahl von Elektronen aus ihren Energiezustéinden verdrangt.
Die hierdurch bedingte Umordnung in den Quantenzustinden ist mit Energieschwankungen
verbunden. Sie sind aus den Schwankungen des magnetischen Momentes bzw. der Magnetisierung
des Festkorpers nachzuweisen.

Nach (14) folgen die Schwankungen auf der E -Skale mit der Periode

A1 eh

B meCo (15)

aufeinander. Aus ihrer Messung kann daher bei bekannter FErmI-Kante {, die Zyklotronmasse m,
bestimmt werden.

Der pE-Haas-vanN-AvpHEN-Effekt gestattet auch Aussagen iber die FrermI-Flachen. Nach
(4.4./14) dndert sich die im reziproken Raum umfahrene Fliche A mit der Energie gemif

ady = 28 qw. (16)
k2w,
Da W, bedingt durch die Quantenzahl n, sich in Schritten 4w, dndert, kann man hierfiir auch
dd, = 2";B 17

schreiben. Das Magnetfeld erzeugt einen sténdigen Zirkulationsstrom. Dagegen erfolgt kein
Elektronenstrom in Richtung senkrecht dazu, so daf wir im Mittel mit 4, = 0 rechnen kénnen.
(16) bzw. (17) steht daher mit (8) in Ubereinstimmung fiir

ZreB (n + i) (n=0,1,2,..). (18)
k 2

Bei konstanten Werten B erhélt man somit diskrete FErmI-Flidchen. Ay ist ebenso wie die Energie

W gequantelt.

Die Perioden der Magnetisierung bei Verinderung der FluBdichte B lassen sich, wie die Uber-

legungen auf Grund der Gleichungen (13) und (14) zeigen, als Folge von Umverteilungen in den

A =

Quantenzahlen deuten. Aus den Perioden auf der i-Ska,le und der ganzzahligen Veradnderlich-
keit A (n + %) =0,1,2,... der Quantenzahlen ergibt sich daher nach (18)
2me

=i | (19)

A

| =
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wobei Ay die Fliche der Bahnkurve in der k,, k,-Ebene, d. h. im reziproken Raum normal zur
Feldrichtung, angibt.

Wir 16sen (19) nach der umfahrenen Fliche im reziproken Raum auf und setzen fiir A — den
MeBwert ein. Es folgt

. . 101¢
4, = 2r1,60-10 mh e 49 10
1,05 107 . 1,95 - 10~

Fiir die Zyklotronmasse erhilt man nach (15) mit der FErMI-Kante nach Tab. 4.2.1

. —19 . —34 .
py L0107 L0510 oy e
5,5-1,60-107.1,95 - 10~ 0,93

Nach Tab. 4.2.1 entspricht der Ferm1-Kante {, bei Gold ein Ausbreitungsvektor mit dem Betrag
kp = 1,210 m~2, Néhert man die FErMI-Flichen entsprechend dem Brocr-Theorem durch
Kugeln, so folgt fiir die Querschnittsfliche der Schnittkurve mit k, = const

App = kP = (1,2 - 1002 tm2 = 4,5 - 100 m2.

Es besteht somit eine gute Ubereinstimmung mit den Folgerungen aus dem DE-HAAS-VAN-
ArrrEN-Effekt.

Bild 4.4.5. FErmI-Fliche fiir Gold mit Umlaufbahnen

Durch Messung des DE-Haas-vaN-ALPHEN-Effektes fiir verschiedene Richtungen des Magnet-
feldes lassen sich die FErmI-Flichen konstruieren. Das Ergebnis fir Gold zeigt Bild 4.4.5.

Gold hat nach Tab. 1.1.1 kfz-Gitter mit der Gitterkonstanten ¢ = 0,407 nm. Im reziproken
Gitter nach 1.1. ist der kiirzeste Abstand quer durch eine BRILLOUIN-Zone gleich

2 V? 1
=2 a_9q.q00m,
2B = 0407 10-9 m

Ein Kreis mit dem Ursprungspunkt als Mittelpunkt, der die erste BRILLOUIN-Zone beriihrt, hat
daher die Fliche

Ak:;’"_
a?

im betrachteten Fall

A= — 2561 100 m-
(0,407 - 10-%)2

Seine Fliche ist grofler als die nach (19) und als die nach dem BrocH-Theorem sich ergebende
Flache A,y im reziproken Raum. Die FErMI-Kugeln berithren demzufolge die Begrenzungs-
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fliche der ersten BRILLOUIN-Zone nicht, kommen ihr jedoch nahe. Dagegen treten, wie Bild
4.4.5 zeigt, bei den FERMI-Flidchen Verformungen in Form von Aushalsungen auf (vgl. A 4.4.11 bis
A 4.4.13).

4.4.5. Anomaler Skineffekt

Im elektromagnetischen Feld eines UV-Strahles der Kreisfrequenz w ='5.10% s~! wird nahe
dem absoluten Nullpunkt an der Oberfliche von Aluminium auf Grund von Absorptionsmessun-
gen die elektrische Leitfahigkeit oesr = 1,55 - 10% Q m~1 festgestellt. Die elektrische Leitfdhigkeit
fiir Gleichstrom betriagt o, = 5,00 - 10° Q1 m~1, Berechnen Sie daraus fiir Aluminium die Anzahl
freier Elektronen je Atom sowie die mittlere freie Weglinge der Elektronen.

Losung:

Skineffekt

Wird an einen elektrischen Leiter ein hochfrequentes Wechselfeld angelegt, so- nimmt die Strom-
dichte vom Rande her nach einem Exponentialgesetz ab (vgl. [4] 5.3.1). Bei der Berechnung des
elektrischen Widerstandes kann man so vorgehen, als nutze der Strom nur eine diinne AuBen-
schicht der Dicke d. Sie wird als Eindringtiefe definiert und héngt gemi

5 =V 2 (1)
HOow

von der spezifischen Leitfahigkeit o, bei Gleichstrom, von der magnetischen Permeabilitit w
und von der Kreisfrequenz w des Wechselstroms ab. Bei den iiblichen Stromleitern kann im
allgemeinen u = u, gesetzt werden.

Die Ableitung des normalen Skineffektes beruht auf der Grundlage, daf die mittlere freie Weg-
lange A der Elektronen des Leitbandes klein gegen die Eindringtiefe ¢ ist.

Wenn diese Voraussetzung nicht mehr erfillt ist, d. h. fir

Az 0, 2)

wird der anomale Skineffekt wirksam.

Anomaler Skineffekt

Wir bezeichnen den Winkel des bewegten Elektrons gegen die Oberflichennormale des Leiters
mit & (vgl. Bild 4.4.6). Von den zu einem bestimmten Zeitpunkt nach allen moglichen Richtungen

Bild 4.4.6. Zur Ableitung des
anomalen Skineffektes

fliegenden N Elektronen leisten durch St68e mit dem Gitter nur diejenigen einen Beitrag zur
elektrischen Leitung, deren mittlere freie Weglinge innerhalb der leitenden Schicht liegt. Das
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sind die Neis Elektronen mit einem Winkel & innerhalb der Grenzen

Do

IA
IA

9 % — By, 3)

wobei

cos By = % (4)

ist. Durch Integration iiber simtliche Raumwinkel folgt

2T m—13,
%’T—“=4inf fsinﬂdﬁdq;:cosﬁo:% (5)
0 &

Fiir die spezifische Leitfahigkeit des Festkorpers erhalten wir daher bei hohen Frequenzen
0
Oeff = 7 o. (6)

o kann durch den Gleichstromwert

2.
_ Netrsion (7)

% 2m

nach (3.3.1./5) ersetzt werden, wenn bei der Berechnung des elektrischen Widerstandes im Strom-
kreis der normale Skineffekt durch Einfithrung der Eindringtiefe beriicksichtigt wird. Fithrt man

A = BTst08 8)
in (7) ein, so folgt aus (6)
Ne%o

Gt = ——. )
2mv

Die mittlere Geschvﬁndigkeit der Elektronen la8t sich mittels (3.3.3./15) und (3.3./6) ausdriicken:

s_mm_ 3, _3 1 BNV 10
P T T 0am ) 0
Zwischen 7 und V'ﬁ besteht nach [3] (2.1.5./13) und [3] (2.1.5./14) die Beziehung
2 /8. (11)
-l/ﬁ 3r
Wir setzen (10) und (11) in (9) ein und erhalten
o — @ 8n 1/3 N2/3625 .
= \3 h 12)

Aus der effektiven Leitfahigkeit bei hohen Frequenzen kann somit die Anzahl freier Elektronen
im Metall bestimmt werden. Nach (1) ergibt die Eindringtiefe

6= 2 m=2,52.10"1m.
47 -10-7.5.10°-5. 1015




4.4. MeBverfahren zur Bestimmung der Ferm1-Flichen 255

Wir setzen die vorgegebenen GréfBen ein und l6sen (12) nach N auf:

N— | L (3\¥ 663-103.1,55.10°
V5 \8x) (1,60 - 10-19)2. 2,52 . 10-10
Fir die Anzahl der Atome je Kubikmeter erhalten wir nach Tab. 2.2.2 N, = 6,02 - 1028 m—3. Die
Anzahl freier Elektronen je Atom betrigt somit
N 222.10%
N, 6,02.10%8

3/2
] m-3 = 2,22 - 102 m—3.

=0,37.

Als mittlere freie Weglange ergibt sich
_ 60 _ 2,52-.1071°.5,00 - 10°

A = m=8,13-10"%m.
Oeff 1,55 . 10°
A. Aufgaben
A44.1. Bestimmen Sie fiir ein Magnetfeld der FluBdichte B =1 Vsm2 den groBten

Radius der Umlaufbahn eines Elektrons in Silber, wenn das Modell freier Elektronen
zugrunde gelegt wird. Werte sind nach Tab. 4.2.1 einzusetzen.

A44.2. Berechnen Sie, welche relative Widerstandsdnderung ein senkrecht zum elektri-
schen Feld E gerichtetes Magnetfeld der FluBdichte B = 1 Vs m—2 in Natrium fir
den in Richtung E flieBenden Strom bei 0°C bewirkt. Die Masse ist gendhert gleich
der effektiven Masse nach Tab. 3.3.2 zu setzen.

A443. Wie veréndert sich die elektrische Leitfahigkeit parallel zum elektrischen Feld E
in Kupfer bei 4,2 K, wenn ein senkrecht zum elektrischen Feld E gerichtetes
Magnetfeld der Fluldichte B = 0,1 Vs m~2 auf den Festkorper wirkt? (Werte nach
Tab. 3.3.1 bis 3.3.3, 4.3.2 und 2.2.2)

Ad44. Bestimmen Sie die mittlere Zahl der Umldufe eines Elektrons zwischen zwei St6Ben
in Silber unter dem EinfluBl eines konstanten magnetischen Feldes der FluBdichte
B =1Vsm2 bei 0°C (Werte nach Tab. 3.3.1 bis 3.3.3 sowie 4.3.2). Die Masse ist
genidhert gleich der effektiven Masse zu setzen.

A4.4.5. Unter dem EinfluB eines Magnetfeldes der FluBdichte B = 0,1 Vs m—2 verringert
sich der elektrische Leitwert eines Festkérpers in Richtung des angelegten elek-
trischen Feldes um 6,59%,. Die Relaxationszeit betrigt T = 2,5 - 10~11 5. Bestimmen
Sie die Zyklotronfrequenz und die Zyklotronmasse.

A44.6. Wie groB ist in der vorangegangenen Aufgabe der HaLL-Strom im Vergleich zum
Strom in Richtung des angelegten elektrischen Feldes?

A447. Bestimmen Sie, fiir welche Werte w.r die Funktion
Re % — 1+ (o + o?)

Oy [1 4+ (we? — w?) T2 + 4ws?

ein Maximum besitzt.

A4.48. Wird ein Festkérper einem konstanten magnetischen Feld und einem Ultraschall-
feld ausgesetzt, so ergeben sich fiir die Energieabsorption die gleichen GesetzmiBig-
keiten wie bei der Uberlagerung eines konstanten magnetischen Feldes und eines
hochfrequenten elektrischen Feldes nach 4.4.3.

In einem Halbleiter wird bei senkrecht zueinander stehendem magnetischem und
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A449.

A 4.4.10.

Ad44.11.

A44.12.
A4.4.13.

Ultraschallfeld ein Maximum der Energieabsorption fir

AB=2-10"7Vsm

(A Wellenlénge der akustischen Schwingung) gemessen. Die Phasengeschwindigkeit
der Schallwelle betrdgt 3,5 - 10° m s~!. Berechnen Sie daraus die Zyklotronmasse
far den Umlauf der Elektronen in der zu B senkrechten Ebene.

Der Bahnradius eines Elektrons im direkten Raum erreicht in einem Magnetfeld
der FluBdichte B =1 Vsm—2 Werte der GroBlenordnung 10 um und ist damit
wesentlich groBer als die Eindringtiefe nach dem Skineffekt bei Frequenzen im
Mikrowellenbereich. Ein Elektron, das in der AzBEL-KANER-Anordnung auf einer
geschlossenen Bahn nahe der Oberfliche umlduft (vgl. Bild 4.4.3), wird infolge-
dessen nur durch ein von auBlen angelegtes elektrisches Wechselfeld beschleunigt,
wenn es die Zone der Eindringtiefe durchlduft. Soll diese Beschleunigung tiber eine
Vielzahl von Umlédufen gleichméBig erfolgen, so mufl das Elektron stets in derselben
Phase des elektrischen Feldes die dulere Randschicht durchlaufen. Formulieren Sie
auf Grund dessen die Resonanzbedingung fiir das umlaufende Elektron und deuten
Sie die MeBergebnisse nach Bild 4.4.7.

T

dR
aB

1 1 1 1 1 ]

02 03 04 05 06 07 08

B in Vsm™
Bild 4.4.7. Ableitung des Oberflichenwiderstandes nach der magnetischen Fluf3-
dichte % fiir Kalium. B liegt in der (1 1 0)-Ebene.

Bestimmen Sie die Zyklotronmasse fir das in der (11 0)-Ebene des Kaliums
liegende Magnetfeld auf Grund der MefBergebnisse des Bildes 4.4.7. Die Frequenz
des angelegten elektrischen Feldes betrigt 68 GHz.

In Gold ergibt bei Magnetisierung in der [11 1]-Richtung der pE-HaAS-VAN-
ArpaEN-Effekt die Perioden A % =2,05-10V-1s1Im?2 und A % =
6104 V-1 s~ m? Sie sind durch die beiden Umlaufbahnen nach Bild 4.4.5 zu deuten.
Berechnen Sie die Grofle der Umlaufflichen im reziproken Raum.

Berechnen Sie zur vorangegangenen Aufgabe die Zyklotronmassen.

In Gold wird aus dem DE-HaAS-vAN-ALPHEN-Effekt A % =5.10"5V-1g1m?

auf eine ,,Hundeknochen-Bahn* des umlaufenden Elektrons geschlossen (vgl.
Bild 4.4.8). Berechnen Sie die'GréBe A4 der umfahrenen Fliche. Wie gro8 ist die
Zyklotronmasse?
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A 4.4.14.

A 4.4.15.

A44.16.

A4.4.17.

Berechnen Sie nach dem Modell freier Elektronen den DE-HAAS-VAN-ALPHEN-
Effekt in Natrium. (Werte nach Tab. 3.3.2 und Tab. 4.2.1)

Aus der Messung des anomalen Skineffektes in Silber ergibt sich als Anzahl freier
Elektronen je Atom

Ny _ 0,68.

Ny

Berechnen Sie aus der elektrischen Leitfahigkeit bei 4,2 K nach Tab. 4.3.2 und
Tab. 3.3.1 die elektrische Leitfahigkeit des Materials fiir die Frequenz 105 Hz sowie
die mittlere freie Weglinge der Elektronen.

Bild 4.4.8. Hundeknochen-Bahn in Gold

Die Zyklotronbewegung des Elektrons im Magnetfeld kann im direkten wie im rezi-
proken Raum durch Polarkoordinaten beschrieben werden. Es seien r, ¢ Polar-
koordinaten im reziproken Raum. Leiten Sie auf Grund der Verkniipfung zwischen
den Fermi-Flichen und der Zyklotronfrequenz w. eine Formel iiber den Zusam-
menhang zwischen w, und der Energie als Funktion des Bahnhalbmessers 7 ab.

Die FermI-Flichen eines Festkorpers seien Rotationsellipsoide. Leiten Sie fir ein
Magnetfeld, das unter dem Winkel ¢ gegen die Rotationsachse (k;-Achse) geneigt
ist, die Formeln fiir die Zyklotronfrequenz w, und die Zyklotronmasse m, ab.

17 Schilling, Festkorperphysik



5 ° Bindertheeorie realer Kristalle

5.1. Statistik der Ladungstriger in den Energiebéindern
E Einfiihrung
Halbleiter

Elektrische Leiter und Isolatoren unterscheiden sich nach 4.2.4. durch die Besetzung
des Leitungsbandes mit Elektronen fiir 7' = 0. Das Valenzband ist nach Definition
am absoluten Nullpunkt voll besetzt, das Leitungsband bei Leitern teilweise besetzt,
bei Isolatoren leer. Die folgenden Betrachtungen setzen Materialien voraus, die am
absoluten Nullpunkt ein leeres Leitungsband aufweisen, fiir 7' = 0 also Isolatoren
darstellen.

Fiir T' = 0 gehen durch thermische Prozesse Elektronen aus tieferliegenden Béndern
in das Leitungsband iiber und erzeugen damit Leitfahigkeitseigenschaften. Die Be-
setzung des Leitbandes erfolgt dabei nach statistischen GesetzmiBigkeiten. Es liegt
somit fiir 7 == 0 im Leitungsband immer eine bestimmte Elektronenkonzentration
vor. Sie ist auBler von der Temperatur 7' im entscheidenden MafBle von der Fest-
korperstruktur abhingig.

Stoffe, die fiir 7' = 0 Isolatoren sind, fiir 7' &= 0 jedoch eine meBbare Leitfahigkeit
zeigen, heiflen Halbleiter. Sie unterscheiden sich damit von den Leitern durch
ihr Verhalten am absoluten Nullpunkt. Wahrend Leiter mit abnehmender Tempera-
tur ihre Leitfahigkeit behalten und diese im allgemeinen sogar ansteigt (vgl. 4.3.5.
und 4.3.6.), fallt sie bei Halbleitern und wird am absoluten Nullpunkt gleich Null.
Bei einem reinen Kristall ohne Fehlstellen und Beimengungen kann durch thermische
Prozesse das Leitungsband praktisch nur von Elektronen aus dem Valenzband er-
reicht werden. Uberginge vom Valenzband in das Leitungsband und umgekehrt
heiBen Band-Band -Uberginge.

Durch einen Elektronensprung vom Valenz- in das Leitungsband wird im Leitband
ein Elektronenplatz besetzt, im Valenzband ein Platz frei. Es entsteht damit im
Valenzband ein Defektelektron (vgl. Bild 5.1.1). Auch Bezeichnungen wie Elektronen-
liicke oder Loch sind gebrduchlich.
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Sowohl das Elektron im Leitungsband als auch die Elektronenliicke im Valenzband
kénnen unter dem Einfluf} eines duBleren Feldes ihren Platz verdndern und damit
zur Elektronenleitung beitragen. Kommt ein Ladungstragertransport durch Elek-
tronen oder Defektelektronen zustande, die aus Band—Band-Ubergé)ngen entstanden
sind, so bezeichnet man ihn als Eigenleitung. Halbleiter, deren Leitféhigkeit auf
Eigenleitung beruht, heiflen Eigenleiter bzw. Eigenhalbleiter. Bei Zimmertemperatur

g B g =
By B B e
i A EH

Bild 5.1.1. Ebene Veranschaulichung der Struktur des Siliziumkristalls
mit einem Donator

JORSONISOREol
JoRNo NGO
JORNNORENORYON

quasifreies Defektelektron

Bild 5.1.2. Ebene Veranschaulichung der Struktur des Siliziumkristalls
mit einem Akzeptor

ist bei allen Halbleitern die Leitfdhigkeit aus Eigenleitung gering, da — verglichen
mit der Gesamtzahl der Valenzelektronen — nur eine geringe Zahl freier Ladungs-
triger erzeugt wird.

Die Bedeutung der Halbleiter geht auf Fremdsubstanzen zuriick. Schon geringe Bei-
mengungen fremder Stoffe in einem Kristall (relative Konzentrationen 10-°..10-4)
kénnen die elektrische Leitfihigkeit stark beeinflussen. Halbleiter, deren Eigen-
schaften auf Fremdsubstanzen beruhen, heiBen Fremdhalbleiter.

Die wichtigsten Eigenhalbleiter sind Silizium und Germanium. Sie haben Diamant-
struktur. Jeder Gitterbaustein ist symmetrisch von vier anderen umgeben (vgl.
Bild 5.1.2). Neben den chemischen Elementen der vierten Spalte haben chemische
Verbindungen von Elementen der dritten und fiinften Spalte des Periodensystems
Bedeutung. Dazu gehéren .z. B. Galliumarsenid GaAs, Indiumantimonid InSb,
Galliumantimonid GaSb usw. Thre Kristallstruktur entspricht der des Zinkblende-
gitters (vgl. 1.1.). Es unterscheidet sich vom Diamantgitter nur dadurch, daB die

17*
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Elementarzelle je ein Atom der dritten und der fiinften Spalte enthilt. Die Anzahl
der AufBlenelektronen ist damit die gleiche wie beim Diamantgitter.
Tab. 5.1.1 und Tab. 5.1.2 enthalten die wichtigsten Eigenschaften der Halbleiter.

Storstellenniveaus — Donatoren und Akzeptoren

Die in einem Kristall auftretenden Gitterfehlstellen sind mit einer Stérung des
periodischen Potentials verkniipft. Hierdurch wird das Energiespektrum der Ladungs-
triger gedndert. Zu den Energiebindern des reinen Kristalls kommen Stérstellen-
niveaus hinzu.

Von Interesse sind Fremdatome, die entweder mehr oder weniger Aufenelektronen
als die Atome des Wirtsgitters besitzen. Im ersten Fall spricht man von iiberschiis-

WAVAVAVAVAVAND . B's

Leitungsband
s
AT
QKKK
LCOOOCKHKAKK]
RN
Valenzband Valenzband ?

NMNAARARAARANNM NN
Bild 5.1.3. Bandstruktur des Kristalls Bild 5.1.4. Bandstruktur des Kristalls
mit eingebauten Donatoren mit eingebauten Akzeptoren

Donatorterm

Energielicke

Energielicke

Akzeptorterm

sigen Elektronen. Sie werden von den Fremdatomen leicht an das Leitungsband des
Gitters abgegeben. Fehlstellen mit einer verminderten Anzahl von AuBenelektronen
haben dagegen die Tendenz, Elektronen aus dem Valenzband des Gitters aufzu-
nehmen. :

Die Eigenschaft der Fremdatome mit leicht abtrennbaren, iiberschiissigen Elektronen
ist wie folgt zu deuten: Der Einbau dieser Fremdatome erzeugt einen Energieterm,
der dicht unter der unteren Kante Wi, des Leitungsbandes liegt (vgl. 5.1.7.). Schon
Energien in der GréBenordnung hundertstel Elektronenvolt reichen aus, daf ein
Elektron aus diesem Stérterm in das Leitungsband springt (vgl. Tab. 5.1.2).
Fremdatome mit einer verminderten Anzahl Elektronen erzeugen dagegen einen Stor-
term dicht oberhalb der oberen Bandkante des Valenzbandes. Er ist fiir 77 =0
unbesetzt. Geringe Energiezufithrungen bewirken die Besetzung dieser Stérterme
mit Elektronen aus dem Valenzband und damit die Erzeugung von Defektelektronen.
Die Fehlstelle mit iiberschiissigen Elektronen bezeichnet man als Donator, den gegen-
iiber dem reinen Kristall zusétzlich erzengten Term als Donatorterm (vgl. Bild 5.1.3).
Dagegen heiit eine Fehlstelle, die Elektronen aus dem Gitter aufnimmt, Akzeptor,
der erzeugte Energieterm Akzeptorterm. Er ist in Bild 5.1.4 dargestellt.
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Storterme sind ebenso wie Storstellen lokalisiert und kénnen daher an der Elektronen-
leitung nicht teilnehmen.

Beispiel 5.1.1. Donatoren und Akzeptoren in Silizium und Germanium

Silizium und Germanium haben als Elemente der vierten Spalte des Periodensystems nach Tab.
2.1.6 vier Elektronen in ihrer Auflenschale (M-Schale bei Silizium, N-Schale bei Germanium).
Baut man in ihr Kristallgitter als Storstellen Atome der funften Spalte ein, z. B. Phosphor,
Arsen oder Antimon, so besitzen diese in ihrer #uBeren Schale fiinf Elektronen und damit ein
Elektron mehr als die Wirtsatome. Der Einbau dieser Elemente in Silizium oder Germanium
erzeugt Donatoren geméf Bild 5.1.3.

Werden Atome der dritten Spalte des Periodensystems eingebaut, z. B. Aluminium, Gallium oder
Indium, die in ihrer AuBenschale drei Elektronen aufweisen, so wirken diese als Akzeptoren. Sie
nehmen Elektronen von den Wirtsgitteratomen auf (vgl. Bild 5.1.4).

Fremdhalbleiter, die durch den Einbau von Donatoren entstehen, heifen Uber-
schui- bzw. n-Halbleiter. Dagegen werden Fremdhalbleiter, die durch den Einbau
von Akzeptoren entstehen, als Mangel- oder Defekt- bzw. p-Halbleiter bezeichnet.
Die physikalischen Eigenschaften des realen Kristalls hingen von der Besetzung
der Energieniveaus mit Elektronen bzw. Defektelektronen ab. Es bezeichnet im
folgenden:

n  Konzentration der Elektronen im Leitungsband (Zahl je m?)

p XKonzentration der Defektelektronen im Valenzband

np Konzentration der mit einem Elektron besetzten Donatoren (besetzte bzw.
neutrale Donatoren)

pp Konzentration der unbesetzten Donatorplatze (positiv geladene Donatoren)

Np Konzentration der Donatoren,

n, Konzentration der mit einem Elektron besetzten Akzeptorplitze (negativ ge-
ladene Akzeptoren)

pa Konzentration der unbesetzten Akzeptorplitze (neutrale Akzeptoren)

N, Konzentration der Akzeptoren.

np und p, charakterisieren elektrisch neutrale Storstellen, pp positiv geladene,
n, negativ geladene. Es bestehen die Beziehungen

np + pp = Np, mns + pa = N,.

Statistik der Storstellen-Elektronen

Elektronenzustéinde kénnen einfach besetzt oder leer sein. Sie verhalten sich nach der
Fermi-Dirac-Statistik. Fiir das statistische Gewicht der Verteilung von n Elektronen
auf N Niveaulinien erhélt man danach auf Grund der Gleichung (3.1.1./1)

N!

W= N —n)lal’

(1)
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Hieraus ergibt sich durch Variation iiber sdmtliche Besetzungsmoglichkeiten als
Gleichgewichtsverteilung die FERMI-DIrAc-Verteilung mit der Zustandsdichte

for = 1oV — £) = g ) @

e T +1

(vgl. [3] 4.1.).
Die Besetzbarkeit eines Storstellenplatzes hingt von den Eigenschaften der Storstelle
“und ihrer Stellung im Béndersystem des Kristalls ab. Hierdurch ergeben sich in den
Gleichungen (1) und (2) Modifikationen. Vielfach konnen diese auf den Spin der
Elektronen zuriickgefiihrt werden. Fiir Donatoren und Akzeptoren treten dabei
unterschiedliche Abweichungen auf.
In einem Donator der fiinften Gruppe des Periodensystems, der also fiinf Auflen-
elektronen besitzt, kann die Spinquantenzahl des Elektrons im Donatorterm zwei

1 . . . .
Werte :]:E haben. Bei np besetzten Donatoren in einem Niveau mit Ny Plidtzen
tritt dadurch ein zusétzlicher Faktor 270 auf:

Np!

P i N
Mo = 2 o gy T

3)
Fiir einen Akzeptor der dritten Gruppe des Periodensystems ist der Spin des vom
Valenzband auf das Stérstellenniveau iibergehenden Elektrons vorgegeben. Von den
drei AuBenelektronen des Akzeptors bilden stets zwei ein Elektronenpaar mit ent-
gegengesetzten Spins. Das auf den Akzeptorterm iibergehende Elektron muB einen
Spin besitzen, der dem des unpaarigen Elektrons entgegengerichtet ist, so daff im
Akzeptor zwei Elektronenpaare entstehen. Fiir das statistische Gewicht und die
Zustandsdichte der Verteilung gelten daher die Formeln (1) und (2). Dagegen ergeben
sich fiir die Entstehung unbesetzter Elektronenzustdnde im Akzeptorniveau wieder
zwei Moglichkeiten. Vom Akzeptorterm kann sowohl ein Elektron mit der Spin-

1
quantenzahl —|——%— als auch ein Elektron mit der Spinquantenzahl Y auf das

Valenzband iiberwechseln. Als statistisches Gewicht der Verteilung von p,
= N, —n, unbesetzten Zustéinden im Akzeptorniveau erhdlt man daher

4)
Die aus (3) bzw. (4) folgenden Gesetze fiir die Dichte der Elektronenverteilung in
den Storstellenniveaus kénnen in der Formel

fom )

yse T 41

zusammengefalt werden mit § = D fiir Donatoren, S = A fiir Akzeptoren. Fiir die
Zustandsdichte fp der Elektronen in einem Donatorterm ergibt sich

1
7/D=-2— ’ (6)
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dagegen fiir die Zustandsdichte f, der Elektronen in einem Akzeptorterm

[7a=2] (7)

ya und yp heiBen Entartungsfaktoren der Stoérstellenniveaus. Héngt die Ent-
artung nicht nur mit dem Elektronenspin zusammen, sondern ist strukturbedingt,
so ergeben sich von (6) und (7) abweichende Werte. Sie lassen sich im allgemeinen nur
experimentell bestimmen.

An Stelle von (5) kann man fiir die Dichtefunktionen auch

1

fo =folWs — £+ kT Inyg) = B0 (8)

schreiben. Die Abweichung von der Zustandsdichte freier Elektronen 148t sich somit
durch Einfithrung effektiver Storstellenniveaus

Wseff = Ws + ICT ln vs (Sa)

umgehen.

Konzentration der- Ladungstriger tn den Energiebindern

Um zunédchst die Konzentration der Elektronen im Leitungsband zu bestimmen,
wird ein differentieller Abschnitt der Breite dW betrachtet. Seine Besetzung mit
Elektronen ergibt sich als Produkt aus der Verteilungsdichte f, und der Zahl dv der
Energiezustinde im Energieintervall dW nach (4.2.8./5), wenn 2 = 1 m3 gesetzt
wird :

1
dn = fodv = 1 fol W — 0) @y ©)
Hieraus erhélt man durch Integration fiir die Elektronenkonzentration im Leitband

1
"= f 1o — £) doky. (10)

Leitband

Das Differential d%k, des reziproken Raumes geht aus (4.2.8./10) hervor. Setzt man
dieses in (10) ein, folgt fiir kugelférmige Energieflichen

W=Wg+e=Wy +hk‘*

als Konzentration der Elektronen

T3

_ 2o ffOW—cVW Wy, dW = V—m/ffoe—C+WL)Ved8 (11)
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Das Integral

tde
= m+1>f1 Fo

(12)

heit Fermi-Integral. Darin bedeutet I' die Gammafunktion. Im Falle j = —;—

]/'n'

der Elektronen im Leltungsband

erhdlt man T’ % . Mit dem FErMi-Integral ergibt sich fiir die Konzentration

n = #Fy, (C — WL) (13)

mit der Entartungskonzentration

3/2
7 — (kTP (13a)
V2w

Bei nicht zu hohen Dotierungen mit Fremdatomen und bei nicht zu niedrigen Tempe-
raturen kann das Elektronengas als nichtentartet angesehen werden. Fiir das nicht-
entartete Elektronengas kann man von der FErmI-Dirac-Statistik zur Boltz-
mann-Statistik iibergehen und den Summanden 1 im Nenner der Verteilungsdichte
vernachldssigen:

Wit
follWy — ) —e KT, (14)
S WA B G I o
Fype (T)_)-]/_;fe ]/tdt e . (15)
0
Damit folgt nach (13) und (13a)
WL—C
n —fe T | (16)

Diese Gleichung fiir die Elektronenkonzentration im Leitungsband gilt auch bei
Anwesenheit von Stérstellen, jedoch ist zu berticksichtigen, daf diese den Parameter
¢ verdndern (vgl. 5.1.2.).

Betrachtet man an Stelle besetzter Elektronenzustinde die Locher bzw. Defekt-
elektronen, so sind die Ubertragungsgesetze (4.2.7./6) zu beriicksichtigen. An die
Stelle der Verteilungsfunktion f, = fo(W — ¢) fiir die Elektronen nach (2) bzw.
(3.3./23) tritt bei Defektelektronen die Verteilungsdichte

=1 _fn(W—C):
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d. h.
1
h=—=—— =h—W). (17
e T 1

W kennzeichnet die Energie der Elektronen auf den unbesetzten Plitzen. Die Anzahl
der Defektelektronen im Valenzband erhélt man durch Integration

1
p=gs [ hE—W)d%, (18)

Valenzband

woraus analog (13) und (13a)

Wy —¢
p—— D — 1

p=pF 1/2( T ) (19)
folgt. Im Gegensatz zu den Elektronen, die im Leitungsband bevorzugt die unteren
Plitze besetzen, treten im Valenzband unbesetzte Platze insbesondere im oberen
Bandbereich auf. Wy kennzeichnet dementsprechend die obere Kante des Valenz-
bandes.
Im Grenzfall der BorrzMANN-Statistik ergibt sich

—Wv

p=pe T | (20)

Die Entartungskonzentration der Defektelektronen ist durch

k 3/2 |-
P = M (20 a)
V2o
definiert.
Fiir die Anzahl der Elektronen im Donatorterm folgt aus (9)
Np
np = Npfo(Wp — £ + kT In yp) = —m—pm—> (21a)
e kT +1
fiir die Anzahl der Elektronen im Akzeptorterm
N
na = Nufo(Wa — &+ kT Iny,) = : (21b)

Wa—C+EkTInya

e kT +1
Der Grenzfall der BorTzMANN-Statistik liegt fiir

Wp —C+ETInypy>ET bzw. Wo—(+EkTIny,>1

vor. Fiir die Anzahl der Elektronen im Donatorterm, d. h. fiir die Anzahl neutraler
Donatoren, ergibt sich damit im Grenzfall der BoLrzMANN-Statistik

_ Wp—¢+kTlnyp

np=DNp e kT
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Die Anzahl unbesetzter Elektronenplétze im Donator betragt
Pp = Np(1 — fo) ~ Np.

Als Verhiltnis zwischen den besetzten und den unbesetzten Elektronenzustdénden
im Donator ergibt sich daher

n _ Wo—t+kTinyo
2 =e kT . (22a)
Po

Ebenso folgt aus (21b) fiir die Anzahl der negativ geladenen zur Anzahl neutraler
Akzeptoren

n _ Wa—{+kTInya
A _ e &T . (22b)

Pa

Durch die Storstellen ist auch der Parameter { gegeniiber dem Wert fiir den idealen
Kristall verdndert. Um ¢ in den Formeln (17) und (21) zu bestimmen, benutzt man
die Neutralititsbedingung. Da fiir 77 = 0 im Leitungsband und im Akzeptorterm
keine Elektronen, im Valenzband und im Donatorterm keine Defektelektronen vor-
handen sind, fordert die Neutralitétsbedingung

n+ny=p+pp | (23)

Konzentration der Elektronen und Defektelekironen

Eigenleitung wird durch Band-Band-Uberginge hervorgerufen. Bei Eigenleitern
ist die Konzentration ng der Elektronen im Leitungsband gleich der Konzentration
pg der Defektelektronen im Valenzband:

Bei fehlender Entartung folgt hieraus nach (20) und (13)

C=CE=M+

- 3 ¥rin % (25)

4 n
speziell am absoluten Nullpunkt und fiir hinreichend niedrige Temperaturen

w W
LA LLAY (25a)

Dieser Wert kann im allgemeinen auch noch bei Zimmertemperatur benutzt werden.
Fiir das Verhéltnis der effektiven Massen von Elektronen und Defektelektronen er-
hilt man aus (25)

4E—2(WL—Wv)

e P 26)

Mp
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Fiir die Konzentration von Elektronen und Defektelektronen ergibt sich

_ _Aaw
ng = pg = Jipe *T|. 27)

Darin kennzeichnet
AW =Wy — Wy (27a)

die Energieliicke.
An Stelle von (27) kann man

(=W

ng = fie kT | (28a)
Wy—tz .

pg = Ppe *T (28Db)

schreiben.

Beispiel 5.1.2. Eigenleitendes Silizium

Fir den reinen Siliziumkristall mit AW = 1,14 eV bei Zimmertemperatur, m, = 1,08 m,,
my = 0,59 me nach Tab. 5.1.4 folgt nach (13a) und (20a) fir 7' = 300 K

_ (mymy)3/s (RT)3/2 (1,08 - 0,59)3/4 - (9,11 - 10-31)3/2 . (1,38 - 10-22 . 300)3/2
V23243 V273/2(1,05 - 10-34)3 '
=1,81-10% m™3.

3

i m-3

Daraus ergibt sich nach (27)

_1,14-1,60-10-1
21,38 102 - 300

ng = pg =1,81 - 10 m—3 exp ( ) =5.10m-3,

Sind im Kristall Storstellen vorhanden, so kann man in (16) und (20) Wy und Wy
gemiB (28a) und (28b) durch (g ausdriicken. Damit folgt fiir die Konzentrationen

(e

n=nge kT | (29)
{s—¢

p=pge *T . (30)

Daraus ergibt sich als Zusammenhang zwischen den Konzentrationen fiir beliebige
Storstellen und den Konzentrationen fiir den Eigenleiter

np = ngpg = N |- (31)

Fermi-Niveau ¢

Der Parameter ¢ wird als Fermi-Niveau bezeichnet. Das FErMi-Niveau ist, wenn
keine Raumladungen vorliegen (vgl. 5.3.), bis auf eine Konstante mit dem in 3.3.
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eingefithrten Fermi-Potential { und damit mit dem in der Statistischen Physik
definierten Chemischen Potential x¢ identisch (vgl. [3] (3.3./6)). In den Untersuchun-
gen der Abschnitte 3. und 4. wird das FeErmi-Potential { (auch als FERMI-Energie
bezeichnet) ebenso wie die Energie ¢ von der unteren Kante Wy, des Leitungsbandes
an gerechnet. Dagegen bezieht sich das FErMI-Niveau ¢ in Abschnitt 5. ebenso wie
die Energie W auf Vakuum-Potential. Man erhélt also das FErmMI-Niveau, wenn das
FrrMI-Potential zur unteren Kante des Leitungsbandes addiert wird.

Beweglichkeit der Ladungstriger

Zwischen Stromdichte j und spezifischer Leitfahigkeit ¢ besteht bei Halbleitern
ebenso wie bei Metallen fiir Elektronen und Defektelektronen das Oumsche Gesetz

jn = UnE: jp = GpE (32)
mit der resultierenden Stromdichte

J=Jn+Jjo=(on+ o) E. (33)

Die Leitfahigkeit hingt von den Konzentrationen n und p der Ladungstriger und
von ihren Beweglichkeiten b, und b, ab:

an = enbp, oy = epby. (34)

by und b, ergeben sich aus den St68en der Elektronen mit den oszillierenden Gitter-
bausteinen und aus der Streuung an~Gitterfehlstellen. Bei Zimmertemperatur wird
die Beweglichkeit der Ladungstriger ebenso wie bei Metallen maBgeblich durch
die StoBe mit den Gitterbausteinen bestimmt. Fiir die Abhéngigkeit der Beweglich-
keit von der Temperatur ergeben sich fiir nicht zu tiefe Temperaturen Gesetze der Form
— o =

bn - W" bp - (kT)3/2 * (35)
Die Stofifrequenz der Leitbandelektronen mit dem Gitter weicht von der der Valenz-
bandelektronen ab. oy und «;, sind daher voneinander verschieden.

Beispiel 5.1.3. Beweglichkeit der Defektelektronen in Germanium als Funktion der
Temperatur

Nach Tab. 5.1.4 betragt die Beweglichkeit der Defektelektronen in Germanium bei 300 K
bp, = 0,180 m? V- 571, Fiir die Beweglichkeit bei 400 K folgt nach (35)

T,\3 300\3
(bp)r =(bp)r, ‘/(7") = 0,180 V(m) m2V-1s1 = 0,117 m2V-1571,

Mit abnehmender Temperatur wird die Oszillation der Gitterbausteine immer
weniger angeregt. Bei tiefen Temperaturen tiberwiegt daher die Streuung an Stor-
stellen, und Gleichung (35) tiber die Temperaturabhingigkeit der Beweglichkeit ver-
liert ihre Giiltigkeit.

Konzentration und Beweglichkeit der Quasiteilchen in Halbleitern werden ebenso
wie in Metallen aus der elektrischen Leitfahigkeit und aus dem Havr-Effekt bestimmt
(vgl. 3.3.).
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Elektmnenfallen

Neben den Storstellen mit Energieniveaus in der Nahe des Leitungs- oder des Valenz-
bandes treten in realen Kristallen auch Stérstellen auf, die Energieniveaus weitab
vom Bandrand erzeugen, z. B. in der Mitte der Energieliicke. Allgemein werden diese
Storstellen als Elektronenfallen (traps) bezeichnet. Sie fangen vornehmlich aus ande-
ren Storstellen Elektronen ein und geben diese in einem Sekundérprozefl wieder an
ein Band ab. Die Elektronenfallen kénnen dabei als Rekombinationszentren wirken,
in denen sich die Elektronen vor dem Bandiibergang anhidufen koénnen (vgl. 5.2.
und 5.4.). Vielfach wird auch von einer Elektronenfalle gesprochen, wenn die Existenz
einer Storstelle auf Grund experimenteller Ergebnisse vermutet wird, ohne daf ihr
Charakter oder die genaue Ursache der Stérung bekannt sind.

P Probleme

5.1.1. Eigenleitung

Bei Halbleitern tritt die Eigenleitung insbesondere bei hohen Temperaturen gegeniiber der
Fremdleitung vielfach als unerwiinschter Storeffekt in Erscheinung. Bestimmen Sie fir einen
Germanium-Halbleiter die Anderung der spezifischen Leitfahigkeit auf Grund von Band-Band-
Ubergiingen, wenn die Temperatur von 7, = 300 K auf 7' = 450 K erhoht wird.

Losung:

Fur die Untersuchung wird ein Eigenhalbleiter ohne Storstellen vorausgesetzt. Die Rechnung
erfolgt nach der Boltzmann-Statistik, da bei hohen Temperaturen die Entartung des Elektronen-
gases aufgehoben ist. Nach (5.1./27) folgt in Verbindung mit (5.1./27a) fiir die Konzentration
der Elektronen im Leitungsband und der Defektelektronen im Valenzband

A
(mmg)9/s (KTYS2 =57

E = PE 72 noleis (
Fur das Verhiltnis der Konzentrationen ergibt sich daraus
AW(1 1
ner _ (T\2 ~% (7 7)
= e . (2)
NET, T,

Mit den vorgegebenen Werten und nach Tab. 5.1.1 erhalten wir

3/2 . . 1019
TEaso _ (@) exp (0,67 1,60 - 10 [ 1 1 ]) — 137.

P \300 2.1,38-10-3 |300 450
Fiir die Anderung der Beweglichkeiten folgt nach (5.1./35)
b 3/2
’r _ 112 s (3)
bre \T

mit den vorgegebenen Werten

buso _ (300)87% _ 0,544.
bae  \450
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Bei einem Eigenhalbleiter mit gleichen Konzentrationen ng = pg der Ladungstriger ergibt sich
or _ "gr(bar + bpr) @
or,  nEry(bar, — bpr0)

Im betrachteten Fall ist also

Ja50 _ 1,37.102. 0,544 = 74,7.
O300

5.1.2. n-Leitung

Ein Fremdhalbleiter mit Silizium als Wirtskristall enthalte als Stérstellen nur Donatoren. Eigen-
leitung werde vernachlissigt. Es erfolge nur n-Leitung. Der Abstand

AWp = Wy, — Wp 1

zwischen dem unteren Rand des Leitungsbandes und dem Donatorterm betrage AWp = 0,044 eV.
Die effektive Masse der Elektronen kann durch den Mittelwert m = 1,08 m, nach Tab. 5.1.4 ge-
nihert werden. Berechnen Sie die Konzentration der Elektronen im Leitungsband und der
Defektelektronen im Donatorterm bei T' = 100 K. Wie vergroBert sich dieser Wert bei 7' = 800 K?
Der relative Anteil der Fremdatome betrage 10-¢.

Losung:

Da Band-Band-Ubergiéinge vernachlissigt werden kénnen, kommt auch Ubergingen vom Valenz-
band in den dicht unter dem Leitungsband befindlichen Donatorterm keine Bedeutung zu. Die
Elektronen stammen daher aus Ubergéingen vom Donatorterm. Nach der Neutralitdtsbedingung
(5.1./23) folgt

n = Pp. (2)

Die Elektronenkonzentration im Leitungsband ist durch (5.1./16) gegeben. Um die Konzentration
der Defektelektronen im Donatorterm aus (5.1./21a) zu bestimmen, schreiben wir

N
#p = Np[t — fo(Wp — £ + kT Inyp)] = ———2— (3a)
e kT +1
Damit folgt aus (2)
Wi—¢
- N,
4 kT D
ne {—Wp—kTInyp * (3)
e kT +1
In dieser Gleichung ist nur das FErmI-Niveau { unbekannt, nach dem wir auflésen konnen:
AWp
c=WD+kT1n[V—D—V1+"‘,ﬂekT —1] @)
2 yp

AWD = WL_ WD'
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Bei tiefen Temperaturen ist AWy groB gegen die thermische Energie. Daher kann in (4)
AW > kT (5a)
und im Zusammenhang damit

AWp
o ¥ 4 (5b)
nYp

angesetzt, d. h. der Summand 1 vernachlissigt werden. Wir erhalten

Wt Wp

¢ 2

+Lrrmiorn (6)
2 7

Am absoluten Nullpunkt 7' = 0 liegt somit das FermI-Niveau {, = {(0) in der Mitte zwischen

dem Donatorterm und der unteren Kante des Leitungsbandes, d. h. in der Mitte zwischen den

besetzten und den unbesetzten Zustinden. Bild 5.1.5 zeigt die FermI-Kante ¢, bei UberschuB-

Leitungsband

Akzeptorterm

- -3,
ORIV ®
Valenzband PRI ®l Valenzband

)

Bild 5.1.5. Besetzung des n-Halbleiters fiir Bild 5.1.6. Besetzung des p-Halbleiters fiir
T=0 T=0

PRIV
[IRSLRRKANA

leitung: Der Einbau der Donatoren hat o von der Mitte zwischen der Valenzbandkante Wy und
der Leitungsbandkante Wy, in die Mitte zwischen dem Donatorterm Wp und der Leitungsband-
kante W 1 verschoben.

In der gleichen Weise kann das FermI-Niveau bei Mangelhalbleitung berechnet werden. Bild
5.1.6 zeigt die FErMI-Kante {, bei einem mit Akzeptoren dotierten Halbleiter. Der Einbau der
Akzeptoren verschiebt die FErMI-Kante in die Mitte zwischen der Valenzbandkante Wy und dem
Akzeptorterm Wy.

Wir setzen das FErMI-Niveau (6) in (5.1./16) ein und erhalten die Konzentration der Elektronen
im Leitungsband

AWp AWp
n=ne Kk y—D(l/l-F‘l,N—D e kT —1), 7)
2 yp
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d. h. bei tiefen Temperaturen unter der Voraussetzung (5)

_AWp

n=YViNpype *T . (8)
Bei hohen Temperaturen kann

AW L kT (9a)
nebst

AWp
Mo o7 <1 (9h)
YD

angesetzt werden. Durch Reihenentwicklung

AWp AWp 2AWD
l_i_4~NDekT :1+2‘ND o KT _%ane ATy
fiyp Ayp Afyp?
erhilt man aus (7)
N AWp
n=ND(1—_—De"T)NND. (10)
nYp
Der zweite Summand liefert die Konzentration der neutralen Donatoren
AWp
np = Np _N—D e *T | (10a)
nYp

Wihrend bei tiefen Temperaturen die Elektronenkonzentration im Leitband mit der Tempera-
tur zunichst nach einem Exponentialgesetz ansteigt, tritt bei hoheren Temperaturen Sattigung
ein, und jeder Donator liefert ein Elektron in das Leitungsband.

Bei T' = 800 K folgt fur die Storstellen in Silizium (vgl. Tab. 2.2.2 nebst (5.1./13a))

AWp _ 0,044-160-10%
kT 1,38-.10-3.800
(1,08 -9,11 - 10-31 . 1,38 - 10-23 . 800)?/2
V2 73i2 - (1,05 - 10%4)
AWp
4Np S _ 4-1070-4,5-10%.2
fiyp 1,2 - 10%

i = m3=12.10%m>3,

€08 — 0,0057.

Voraussetzung (9b) ist erfillt. Wir kénnen daher nach (10) mit

00 = Ppgoo = Np = 4,5 - 102 m~3
rechnen.

Dagegen ist bei 7 = 100 K unter den Voraussetzungen (5a) und (5b) zu rechnen. Es ergibt sich
nach (5.1./13a)

7 =5,6-102%m2

und aus (8) mit yp = % nach (5.1./6)

Nygo = Ppioo = V5,6 - 1024 .4,5 . 102 . 0,551 m=3 = 2,2 . 102 m~3.
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Bei Zimmertemperatur 7' = 300 K kann man im vorliegenden Fall ngy, in der GréBenordnung
1022...10% m—3 ansetzen.

Die Eigenleitung kann, wie durch Rechnung nach Beispiel 5.1.2 nachzuweisen ist, auch bei
T = 800 K hier noch vernachléssigt werden.

5.1.3. Massenwirkungsgesetz der Quasiteilchen des Halbleiters

Die Elektronen und Defektelektronen in den Energiebéindern und Stértermen kénnen als ver-
schiedenartige Teilchen eines idealen Gases behandelt werden, die miteinander reagieren und sich
dabei umwandeln. }

a) Leiten Sie aus den Formeln iiber die Besetzung der Energiebidnder und Storterme eine all-
gemeingiltige Gleichung fiir die gegenseitige Verkniipfung zwischen den Konzentrationen in den
Bindern und Stortermen ab.

b) Stellen Sie die Formel fiir die Konzentration der Quasiteilchen in einem p-Halbleiter ent-
sprechend dem zugrunde liegenden Modell als ideales Gas auf.

c¢) Berechnen Sie die Konzentrationen fir die folgenden Daten:
T=300K, #=1,5-102m3, p=2,5-102m=3, AW =Wy — Wy =1,00eV,
AWA = WA —_ Wv = 0,01 eV, NA =5-.102m=3

Losung:
a) Ableitung des Massenwirkungsgesetzes fir die Quasiteilchen des Halbleiters

Als Quasiteilchen werden eingefiihrt: die Elektronen des Leitungsbandes, die Defektelektronen
des Valenzbandes; die neutralen bzw. besetzten Donatoren, die negativ geladenen bzw. besetzten
Akzeptoren. Fiir ihre Konzentrationen n, p, np, ny werden im folgenden auch die Bezeichnungen
n; (1 =1, 2, 3, 4) verwendet.

Die Reaktionen zwischen diesen Teilchen vollziehen sich so lange, bis sich der Gleichgewichts-
zustand einstellt. Er hingt von der Temperatur und von der Konzentration bzw. nach dem Modell
des idealen Gases vom Druck der Quasiteilchen ab. Dieser wird im Halbleiter durch die Elektronen
des Wirtskristalles und durch die Dotierung mit Fremdatomen bestimmt.

Ein System verschiedenartiger Teilchen befindet sich bei konstanter Temperatur und konstantem
Druck im Gleichgewicht, wenn seine Freie Enthalpie G ein Minimum annimmt (vgl. [3] 5.1.):

3G¢(P,T)<0, 3P=0, 3T =0. (1)
Die Freie Enthalpie ergibt sich als Summe der FErmI-Niveaus aller Masseteilchen

G == %: nka. (2)

Nach (1) ist der Gleichgewichtszustand durch !

8 ml,=0 bzw. X §dn =0 @)
k k

bestimmt. Darin kennzeichnet 3z, die Abweichung vom Gleichgewichtszustand. Gleichung (3)
kann man durch ¥7' dividieren und den sich ergebenden Ausdruck in die Potenz zur Basis e
erheben. Die Gleichgewichtsbedingung lautet somit

b\ _ .
exp (% T ) =1. (3a)

{8 Schilling, Festkérperphysik



274 5. Bindertheorie realer Kristalle

Das Fermi-Niveau der Elektronen entnehmen wir der nach der BoLrzMaNN-Statistik giiltigen
Gleichung (5.1./16). Wenn wir diese nach { auflosen, folgt

fa=C= Wi+ kT'ln

s

. (4)

Bei der Festlegung des Fermi-Niveaus der Defektelektronen ist die Vorzeichenumkehr nach
(4.2.7./6) zu beriicksichtigen. Nach (5.1./20) ergibt sich

Cp=—C=—WV+len%. (5)
"Fiir die Elektronen des Donatorniveaus erhilt man aus (5.1./22a)
n
tap =2 = Wp +47In (3o 22}, ®)
Pp
fir die Elektronen des Akzeptorniveaus aus (5.1./22b)
Laan=C=Wa+*In (’VA :—A) (7
A

Wir setzen die FErMI-Niveaus nach (4) bis (7) in die Gleichgewichtsbedingung (3a) ein und be-
riicksichtigen 8n; = 3n, 3n, = 3p, dng = dnp, dn, = dn,. Damit erhalten wir

- 3nWrL—8pWv+dnpWp-+8naWa
n\on 8p nn \ 97D 7, \97a -

(T) (?%) (VD '2) (VA —A) =e kT . (8)

n p Pp Pa .

In Form des Massenwirkungsgesetzes geschrieben, folgt

281 P3P 0370 1, 87s = Ke _%, ©)
mit der Massenwirkungskonstanten
K — ion v (p_D)anD (&)SM 92)
YD YA
und der Energiekonstanten -
W = SnWy, — SpWy + SnpWp + SnyWy. (9Db)

b) Konzentration bei einem p-Halbleiter

Wir betrachten den Elektroneniibergang vom Leitungsband in den Akzeptorterm. Er verringert
die Konzentration der Leitungsbandelektronen und die Konzentration der unbesetzten Akzeptor-
platze. Im gleichen Mafle wird die Konzentration negativ geladener Akzeptoren erhoht. Es gilt
daher

—dn = —3py = Ony. (10)
Nach (8) ergibt sich
Wr—Wa
npa kT

PA _ e = yany. (11)

LON
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n, und p, sind mit der Konzentration 'V, der Akzeptoren gemil
np + pa = Ny (12)
verkniipft, woraus
7
pa =N, 1A (11a)
7+ Yan
folgt.

In gleicher Weise kann der ProzeB der Rekombination eines Defektelektrons im Valenzband
durch einen Elektroneniibergang aus dem Akzeptorterm behandelt werden. Hierfiir gilt

—3p = —3n, = 3p,. (13)

Daraus folgt nach dem Massenwirkungsgesetz (8)

1 _WA—WV
pry L pe T _ Ve (14)
Pa YA YA <
und in Verbindung mit (12)
Py

ny = Ny —YA (14a
A = Ny . )

Do + B

Y4

n, und p, stellen temperatui‘abhé,ngige HilfsgréBen dar, die durch (11) bzw. (14) definiert sind.
Aus (11) und (14) erhalten wir in Verbindung mit (5.1./27)

Wi—Wv
kT

n,p, = fiie = ng? = np. (15)
Zur Losung des vorgelegten Problems iiber die Konzentration der Elektronen im Leitband und-
im Akzeptorterm sind zwei voneinander unabhéngige Gleichungen erforderlich. Da (11) und (14)
miteinander iiber (12) verkniipft sind, geniigt es, aus dem Massenwirkungsgesetz eine Gleichung,.
z. B. (14), herauszuziehen. Ersetzt man hierin p, gemaf (12), ergibt sich

P _ P (16)

Ny—mny  ya
Die zweite Gleichung folgt aus der Neutralitidtsbedingung (5.1./23), wenn man pp = 0 beriick-
sichtigt:

n+ny, =p. 17)
Durch (17) wird n als zusétzliche Variable eingefiithrt. Sie kann mittels (5.1./31) bzw. mittels

(15) wieder eliminiert werden. Aus (17) und (16) in Verbindung mit (15) erhalten wir fir p die
algebraische Gleichung

°

p3+&p2—(&+nnz)p—&nﬁ= . (18)
YA YA YA

Kennt man p aus (19), so 148t sich » mittels (15), n, mittels (17) berechnen.

18*
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c) Numerische Rechnung
Mit den vorgegebenen GréBen folgt nach (11)

_1,00-1,60 - 10-1°

—2.15.10%
At =P ( 1,38 10-% - 300

) m3=4,9.10°m3,

1

. . 10-19
RIS Y DYV (_0,01 1,60 - 10
VA 2

m—3 = 845101 m—3,
1,38 - 102 . 300 -
Fir die Konzentration ng der Elektronen des Eigenhalbleiters ergibt sich nach (15)

ng = 14,9 -10°- 8,44 - 10> m—3 = 6,4 - 10¥* m~3,

Wegen der kleinen Energiedifferenz AW, = 0,01 eV und der relativ hohen Temperatur kann man
annehmen, daf p die GroBenordnung der Akzeptordichte N, erreicht. Wir vernachlissigen daher

in (18) den Summanden 21 ng?. Fir p ergibt sich damit eine quadratische Gleichung. IThre

YA
Lésung fiir Ny p, > ng? lautet

7a 7a  dpa®
mit den vorgegebenen Werten

p=1,58-102m3,

p= P ]//M iy (19)

Fur die Konzentration der Elektronen im Leitungsband ergibt sich nach (17) ein Wert in der
GréBenordnung 105 m=3, so dal mit p = n, gerechnet werden kann.

5.1.4. Gemischte Fremdleitung

Silizium sei mit Donatoren in der Konzentration Ny = 4 - 102 m—2 und mit Akzeptoren in der
Konzentration Ny = 8-102m—3 dotiert. Berechnen Sie die elektrische Leitfahigkeit bei
T =300 K.

Losung:

Um das umfangreiche Gleichungssystem zu vereinfachen, fithren wir folgende Betrachtung durch:
Am absoluten Nullpunkt 7' = 0 werden siamtliche Energiezustéinde bis zum FrerMI-Niveau (,
lickenlos besetzt. Aus den Donatoren fallen fiir 7' — 0 solange Elektronen in den tieferliegenden
Akzeptorterm, bis dieser vollstindig besetzt ist. Der Donatorterm kennzeichnet daher fiir
Np > N, das Fermi-Niveau {, (vgl. Bild 5.1.7). Wir nehmen an, da8 {(T') nicht stark von {,
abweicht.
Nach der Neutralitdtsbedingung (5.1./23) besteht zwischen den Konzentrationen der Ladungs-
trager die Beziehung :

n+ny =p + Pp. (1)
Fiir die Konzentration der Elektronen im Akzeptorterm erhélt man nach (5.1./21b)
{ N,

ny = ——-——AWA_C. )

14 yppe #T
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Wegen
Wy—C Wy— Wy AW
~ = _—— <& - 3
kT kT kT < ®
kann an Stelle von (1)
ny =~ Ny (4)

geschrieben werden. Aus dem gleichen Grund ist » zu vernachlidssigen, wihrend fiir pp nach’
(5.1./21a) bzw. (5.1.2./3a)

Ny

Pp = We (5)

1+—£e kT
7D

R

)OOOOOOO

folgt.

Leitungsband

20:"»

S
0
%
QR
)

AN

b

LS
g.

P4

X

Valenzband

Bild 5.1.7. Besetzung eines gemischten Halbleiters
mit Donatoreniiberschuf} fir 77 = 0

Die Elektronenkonzentration im Leitungsband ist nach (5.1./16) genéhert durch
¢—Wi
n=me kT (6)

gegeben mit % nach (5.1./13a). Anstelle (5) kann daher fiir pp auch

N;
= @)
1+__1‘l’__e kT
YD ®

geschrieben werden.
Wir setzen (4) und (7) zusammen mit p = 0 in die Neutralitétsbedingung (1) ein und erhalten

Ny+n= (8)
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mit

a=—e T | 9)

Nach (5.1./13a) folgt mit den vorgegebenen Werten (irgl. 5.1.2.)

#i = 2,85 - 102 m—2
und damit
0,044-1,60-10-1°

2 =
e 138107300 .3 _ 3,85 . 10-25 m3.

4= ——
2,85 . 10%

Die weitere Rechnung erfolgt unter der Voraussetzung

(Npa + 1> 4(Np — Ny @ (10)
und ergibt
n= Np — Ny (11)
NA(Z -+ 1
bzw.

410 —8-10%

n = m-3 =3,1.108 m3.
8.10%2.3,85-10"% 1

Die Leitfahigkeit kommt im betrachteten Fall allein durch Elektronenleitung zustande. Der
Beitrag der Defektelektronen ist zu vernachlissigen. Fiir die elektrische Leitfahigkeit folgt daher
nach (3.3.1./5a)

o = neby,. (12)
Mit den Zahlen nach Tab. 5.1.4. erhilt man

c=3,1-102-1,6.10"1°.0,145Q0'm 1 ="7,2-10* Q1 m.

5.1.5. Effektive Masse der Zustandsdichte

Das Leitungsband der Standard-Halbleiter Silizium und Germanium ist entartet. Es setzt sich
aus mehreren Energiezonen zusammen, die einander iiberlappen. Thre Anzahl betragt bei Silizium
@ = 6, bei Germanium @ = 8. Die Energiefunktion W = W(k,) hat fir jede Energiezone die
Gestalt

1)

Wit =, + e (AR ).

zmnt 2m‘n1

mpy heiBt longitudinale, m,; transversale Masse. Sie sind in Tab. 5.1.2 fiir Silizium und fiir Ger-
manijum tabelliert.

Leiten Sie die Formel fiir die Konzentration der Elektronen im Leitband eines Halbleiters ab,
wenn dieses aus mehreren Energiezonen besteht und die Energieflichen Rotationsellipsoide
entsprechend (1) sind. Vergleichen Sie das Ergebnis mit der Konzentration nach (5.1./13) fiir
einen Halbleiter mit nur einer Energiezone. Untersuchen Sie die effektive Masse der Leitungs-
bandelektronen.

Der numerischen Rechnung sind die Daten nach Tab. 5.1.2 fiir Silizium zugrunde zu legen. -
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Losung:.

Die Elektronen verhalten sich in jeder der @ Energiezonen des Leitungsbandes nach der FErmI-
Dirac-Statistik. Fiir die Konzentration der Elektronen ergibt sich daher

_9 f Lhea @)
4 NN Y A
1+ exp { kT [WL Ct & ( 2mp + 2mn1)]}

Die Integration wird wie in 4.2.8. iiber die FErRMI-Flichen als den Flidchen konstanter Energie im
reziproken Raum durchgefiihrt. Es ist also

dow dW
grady, W'

&y = (3)

wobei doy das Differential einer FErmI-Fliche bedeutet. Da nach der Fermi-Dirac-Statistik
die oberen Energiezustinde des Leitbandes nur schwach besetzt sind, kann die Integration bis
unendlich erstreckt werden, ohne daB ein wesentlicher Fehler eintritt.

Wir fithren im reziproken Raum Polarkoordinaten ein und schreiben

k; = asin$ cos g,
ky = asin® sin @, 4)
ks = b cos 9.

Die Halbachsen o und b der Rotationsellipsoide sind nach (2)

a=V2mTr:8" (5)
b l/?%i ®)

wobei
e=W — WL (7)
den Abstand von der unteren Kante des Leitungsbandes bezeichnet. Damit folgt
2
fradn, W) = i (0, 2 )| — e V L e g ®)
Mg mnt Mpy Mpg M1

dow = a sin® Va2 cos? & + b2 sin® & d9 de
— e ——
_ V8empym?, sin Vsm 9 4 oot ¥ cos? 9

2
h Mng my;

dd de. 9

Beriicksichtigt man

21t T

[ [ sin® a9 dp = 4r, (10)
0 o0

so ergibt sich damit aus (2)

p = QVmiem (610 5 (c - WL). (1)
ﬁns/zha kT
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Definiert man daher die effektive Masse der Zustandsdichte im Leitungsband

. 3
Mgy = V@Pmiymy (12)

-

so ergibt sich fiir die Konzentration der Elektronen Ubereinstimmung mit (5.1./13).
Mit den Zahlen nach Tab. 5.1.2 folgt

3 ce——————
Man = V36 - 0,192 - 0,98 me = 1,08 me.

5.1.6. Leichte und schwere Locher

Fir die Energiefunktion der Eigenhalbleiter Germanium und Silizium erhilt man durch quanten- -
mechanische Rechnung nach der Stérungstheorie am oberen Rand des Valenzbandes zwei Energie-
zonen )

hz
Wialks) = Wy — o [Aky* F VB + C¥es%” + By -+ k%)) (1)
e

nebst einer weiteren, im Inneren des Bandes befindlichen dritten Zone

27 2
W3=WV—~WS—“CAA. @)
2me

A, B und C sind hierin konstante Faktoren, Wy ist eine konstante Energiegrofle.

Berechnen Sie die effektive Masse der Zustandsdichte im Sinne der Definition nach 5.1.5. sowie
den Anteil der beiden verschiedenartigen Locher an der Gesamtkonzentration der Defekt-
elektronen.

In nuliter Néherung kann itber simtliche Richtungen im reziproken Raum gemittelt werden und
fir den Koeffizienten C in (1) ein konstanter Zahlenwert eingesetzt werden. Berechnen Sie diesen
und bestimmen Sie danach die effektiven Massen der Defektelektronen im Valenzband des
Germaniums. Fir dieses haben die Konstanten in (1) und (2) die Werte 4 = 13,1, B = 8,3,
C =12,5.

Losung:
Wir fithren im reziproken Raum Kugelkoordinaten ein:
k, = ks sind cos g,
k, = ky sin 9 sin g, (3)
k, = ky cos .
Damit folgt aus (1)
hZ

2m,

Wiolks) = Wy — [Ak,2 F ky2 VB2 4 C%sin2d(sin? & sin? @ cos? @ + cos? 9)].
e

@
Bei der Mittelung iiber den richtungsabhéngigen Summanden transformieren wir

t = cos ¢ (5)
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und erhalten

sin? J(sin? J sin? @ cos? ¢ + cos? #) sin &
2 T

= ?}- f f sin? §(sin? & sin? ¢ cos? ¢ + cos® ) sin ¢ dd de
T
0o 0

2 +1

— % f f [sin? @ cos? (1 — #2)2 + (1 — ¢2) 2] d¢ dg
TC
0 —1
2m
1 16 4 1 (16 = 4.2n 1
== [ (2 sin? 2 ap== (21T =—. 6
in (15smrpcos¢p+15) ? 47:(154+ 15) 5 (©)
0
Dieser Mittelwert wird in (3) eingesetzt. Es folgt
, 72k C?
Wig=Wy — 2 (Aﬂ/Bw—)‘ (M
2me 5
Hierfiir kann man
h2k 2
Wi =Wy — 5 A (8)
M9
schreiben mit den effektiven Massen
m,
my,e = _— . 9)
02
ATF ]/ B4+ =

Aus (2) ergibt sich

my = 22 (10)

A
Mit den vorgegebenen Zahlen erhalten wir

Me

—_—2 ’
18,1 F 1/8,32 + %5—

my = 0,323 me = 2,94 - 1091 kg,  m, = 0,043 m, = 0,39 - 10-3 kg.

My, =
d. h.

Defektelektronen mit der Masse m; heilen schwere, mit der Masse m, leichte Locher.
Fir die effektive Masse der Defektelektronen in der dritten Zone folgt

mg = 0,076m, = 0,695 - 10-3 kg.

Sie sind wegen der tiefen Lage dieser Energiezone nur in verschwindend kleiner Konzentration
vorhanden.
Die Konzentrationen p, und p, der schweren bzw. leichten Locher folgt nach (5.1./20) und

(5.1./21):
_ (mkT)? Wy —C .
=P F ( v ) G=1,2). (11)
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Schreibt man zusammenfassend
k)32 Wy —
p=p+py = LD (Wv —E)
V2 323 kT
so folgt fiir die effektive Masse der Zustandsdichte im Valenzband

Myap = (my312 4 my3I2)203, (13)

(12)

mit den vorgegebenen Zahlen
mgp = (0,323%2 4- 0,043%/2)23 mg = 0,334 m,.

Der genaue Wert nach Tab. 5.1.4 liegt etwas hoher.
Fir das Verhéltnis der leichten Locher an der Gesamtkonzentration folgt aus (11)

P my3 /2

7+ Do o mdp3/2.

(14)

Zahlen eingesetzt, ergibt
3/2
P (0’0_43) = 0,046.
Py + P2 0,334

Der Anteil leichter Locher im Valenzband macht nur reichlich 49, aus.

5.1.7. Energieniveaus wasserstoffdhnlicher Storstellen

In das Kristallgitter des Germaniums seien als Donatoren fiinfwertige Fremdatome eingebaut.
Leiten Sie aus der SCHRODINGER-Gleichung eine Formel fiir den Abstand des Stoérterms von der
unteren Kante des Leitungsbandes ab. Schitzen Sie diesen mit den Werten nach Tab. 5.1.1 und
Tab. 5.1.4 ab.

Losung:

Die ScHRODINGER-Gleichung in der Einelektronenndherung lautet

Hy = Wy 1)
mit
53
H=——A+ W+ W. (2)
2m
W’ gibt das Storpotential infolge des eingebauten Fremdatoms an. Die UberschuBladung erzeugt

ein kugelsymmetrisches elektrisches Feld mit dem CourLomBschen Potential

W= 2

®3)

4meye, T

Bei fehlender Stérung kénnen wir

W= Wy (4)
setzen.
Die nach (3) und (4) sich ergebende ScERODINGER-Gleichung
fl2
—o Ay — y=(W—-Wyiy (%)

2m 4mege,r
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ist mit der Gleichung des umlaufenden Elektrons im Wasserstoffatom identisch. Ihre Losung
liefert als Eigenwerte die diskreten Energieniveaus )

me* 1
Wp=Wy, — ——— — =1,23,... 6
n 'L 32nPhPegte,? 12 (n ) (6)
(vgl. [2] 4.3./214). Tm Grundzustand hat daher das UberschuBelektron von der unteren Bandkante
den Abstand
m meet m

AWy =Wy — Wy = = 13,6 eV. (1)

2 272.2 o2
elme 32m2hZe, &.2Mg

Mit den Werten nach Tab. 5.1.1 und Tab. 5.1.4 ergibt sich

0,56
P (156

13,6 eV = 0,031 eV.

Dieser Wert hat nur die Bedeutung einer nullten Naherung. Genauere Naherungen erfordern,
den Tensorcharakter der Masse zu beriicksichtigen.

A Aufgaben

A5.1.1. Welche Wirkung ist von Zwischengitteratomen beziiglich des Verhaltens ihrer
dulleren Elektronen zu erwarten? Betrachten Sie bei der Beantwortung dieser Frage
Zwischengitteratome als Storstellen.

A5.1.2. Wie wirken Liicken im Kristallgitter, wenn diese als Storstellen betrachtet werden?

A5.1.3. Die Temperatur eigenleitenden Siliziums ohne Stérstellen werde von —50°C auf
200°C erhoht. Wie @ndert sich die Elektronenkonzentration? Berechnen Sie den
Quotienten beider Konzentrationen!

A5.1.4. In einem Eigenhalbleiter werde durch Messung des Harr-Effektes bei 100°C die
Elektronenkonzentration n = 7,8 - 1022 m=3, bei 150°C die Elektronenkonzentra-
tion n = 2,4 - 10?2 m—3 festgestellt. Berechnen Sie die Breite der Energieliicke.

A5.1.5. Leiten Sie die Formel fiir die Fermi-Kante bei reiner p-Leitung ab. Welches
FerMi-Niveau ergibt sich in Abhéngigkeit von der Temperatur?
A5.1.6. Silizium enthalte Donatoren in der Konzentration Np = 5 - 102 m—3. Wie ver-

schiebt sich das FermI-Niveau, wenn die Temperatur vom absoluten Nullpunkt
auf 7' = 100 K erhoht wird? Fir die effektive Masse der Zustandsdichte ist der
Wert nach Tab. 5.1.4 einzusetzen.

A5.1.7. Diskutieren Sie die Abhingigkeit des FErMI-Niveaus von der Temperatur bei
Eigen- und bei Storstellenleitung.

A5.1.8. Stellen Sie die Formel fiir die Konzentration der Defektelektronen im Valenzband
bei reiner p-Leitung auf.

A5.1.9. Wie grof ist die Konzentration der Defektelektronen in Germanium bei einer

Dotierung mit Akzeptoren in der Konzentration N, = 2,5-10% m=3, wenn die
Temperatur 300 K betragt? Welche spezifische elektrische Leitfahigkeit besitzt
der p-Halbleiter? Die Rechnung ist nach der BorrzmanN-Statistik durchzu-
fithren.

A 5.1.10. In Silizium werde bei Zimmertemperatur 7' = 300 K als Folge der Dotierung mit
Fremdatomen im Leitungsband die Elektronenkonzentration n = 2,5 - 1022 m—3
festgestellt. Wie grof ist die Konzentration der Defektelektronen im Valenzband?
(Werte nach Tab. 5.1.1 und Tab. 5.1.4)
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A5.1.11. Bestimmen Sie die Konzentration der Elektronen im Leitungsband von Silizium,
wenn der relative Anteil der Donatoren 10-¢ betrigt. Dabei kann pp, = » angenom-
men werden. (Werte nach Tab. 5.1.2)

A 5.1.12. Das Massenwirkungsgesetz in der Form (5.1.3./8) mit den Elektronen im Leitungs-
band und in den Stértermen sowie den Defektelektronen im Valenzband als Quasi-
teilchen ist zu erweitern, indem auch die Defektelektronen in den Stértermen als
Quasiteilchen behandelt werden. Vergleichen Sie die sich ergebende Formel mit dem
Massenwirkungsgesetz nach (5.1.3./8).

A5.1.13. Stellen Sie die Formel fiir die Konzentration der Leitungsbandelektronen in einem
gemischten Fremdhalbleiter bei mittleren Temperaturen und mittleren Konzen-
trationen der Fremdatome auf. (BoLTzMANN-Statistik kann angewandt werden.)

A5.1.14. Germanium sei mit Donatoren in der Konzentration Ny = 8 - 102 m~2 und mit
Akzeptoren in der Konzentration Ny = 7,5 - 10%* m~2 dotiert. Wie gro8 sind die
Konzentration der Elektronen im Leitungsband und die elektrische Leitfdhigkeit
bei T' = 300 K? (Werte nach Tab. 5.1.2 und 5.1.4) 7

A5.1.15. Wo liegt das Fermi-Niveau in einem gemischten Fremdhalbleiter, bei dem die
Konzentration der Akzeptoren gréBer als die der Donatoren ist?

A 5.1.16. Stellen Sie die Formeln fiir die Konzentrationen der Elektronen im Leitungsband

' und der Defektelektronen im Valenzband in einem gemischten Fremdhalbleiter auf.

A5.1.17. Berechnen Sie die effektive Masse der Zustandsdichte fiir das Leitungsband in
Germanium (@ = 8, my; = 1,58m,, my, = 0,08m,).

A 5.1.18. Untersuchen Sie fiir einen mit Donatoren dotierten Halbleiter, fiir welche Kon-
zentration Ny, die BorrzMANN-Statistik an Stelle der FErRMI-Dirac-Statistik an-
gewandt werden kann. Hierbei sei eins als vernachlissigbar klein gegen zehn an-
gesehen. Fithren Sie die Rechnung speziell fiir Silizium bei 7' = 300 K durch.

5.2, Rekombination, Diffusion und Drift der Ladungstriger

E Einfiihrung

Generation und Rekombination quasifreier Ladungstrdger

Die in 5.1. abgeleiteten Gleichungen fiir die Konzentration der Elektronen und
Defektelektronen kennzeichnen den thermisehen Gleichgewichtszustand, d.h. die
Verteilung im Gleichgewicht bei fehlender Einwirkung von auBen. Quasifreie La-
dungstriger werden dabei nur thermisch erzeugt. Thre Konzentration hingt bei
vorgegebenem Material allein von der Temperatur 7' ab. Im folgenden wird das
thermische Gleichgewicht zum Unterschied gegen zeitlich verdnderliche Zustinde
durch den Index Null gekennzeichnet. Es bedeutet also z. B. n, die Elektronen-
konzentration, p, die Locherkonzentration im thermischen Gleichgewicht nach 5.1.
n(t) und p(¢) geben momentane Konzentrationen an, die sich mit der Zeit ¢ ver-
dndern konnen. Die Abweichungen vom thermischen Gleichgewichtszustand sind
durch

An = An(t) = n(f) — ny, Ap = Ap(t) = p(t) — po 1)
definiert.
AuBere Felder stéren das thermische Gleichgewicht. Temperatur- und statische
elektrische Felder bewirken im wesentlichen nur eine Umverteilung der Ladungs-



5.2. Rekombination, Diffusion und Drift der Ladungstriger 285

trager auf andere Niveaulinien innerhalb eines Energiebandes. Dagegen injizieren
elektromagnetische Strahlungsfelder mit Frequenzen etwa vom Bereich des sicht-
baren Lichtes an bis hin zu den Réntgen- und y-Strahlen sowie Korpuskularstrahlen
zusétzliche quasxfrele ‘Ladungstréger. Diese Injektion der Ladungstriger erfolgt
durch Ubergiinge in das Leitungsband, im wesentlichen aus dem Valenzband, weniger
aus tieferliegenden Béindern. Bei Ubergiingen aus dem Valenz- in das Leitungsband,
die im folgenden nur beriicksichtigt werden, bildet sich mit dem Elektron im Lei-
tungsband gleichzeitig ein Defektelektron im Valenzband.

Die Anzahl quasifreier Teilchenpaare, die durch &uBere Einwirkung entstehen, wird
auf die Raum- und Zeiteinheit bezogen und als duBere Erzeuger- bzw. duflere Gene-
rationsquote G' bezeichnet. Sie ist von der Art der Einwirkung und von den Struktur-
eigenschaften des Halbleiters abhéngig, jedoch unabhingig von der Temperatur 7'
und von den Konzentrationen » und p.

Durch thermische Prozesse entstehende quasxfrele Teilchen werden durch die ther-
mischen Generationsqueten g, und g, angegeben. Da Ubergéinge in das Leitungsband
oder aus dem Valenzband bei thermischen Prozessen auch iiber Stérterme erfolgen
sind die Quoten der Elektronen und der Defektelektronen im allgemeinen vonein-
ander verschieden. Nur bei Eigenhalbleitern stimmen g, und g, iiberein.

Der Generation wirkt die Rekombination entgegen. Sie findet ihre Ursache in den
StoBen der Elektronen mit oszillierenden Gitterbausteinen und in der Streuung an
Gitterfehlstellen. Die Rekombination wird durch die Rekombinationsraten R, fiir
Elektronen bzw. R, fiir Defektelektronen gekennzeichnet.

Bei Elgenhalbleltern stimmen R, und R, iiberein, da nur Band-Band-Ubergiinge,
d. h. Uberginge zwischen dem Valenz- und dem Leitungsband, erfolgen In Fremd-
halbleitern kann dagegen ein Elektron, das aus dem Leitungsband in einen tiefer-
liegenden Energiezustand fallt, sich fiir kiirzere oder lingere Zeit in einem Stérterm
aufhalten. Derartige Energieterme werden dann als Rekombinationszentren be-
zeichnet. Sie bewirken, daB R, und R, in Fremdhalbleitern im allgemeinen vonein-
ander verschieden sind.

Im thermischen Gleichgewicht stimmen thermische Generation und Rekombination
iiberein. Fiir die Quoten der thermischen ‘Generation folgt daraus

gn = Boo(T), gp = Byo(T). (2)

Die Differenz zwischen Rekombinationsquote und thermischer Generationsquote
heifit Rekombinationsiiberschuf:

Uy = Ry — ¢, UD=RD—gD‘ 3)

Im thermischen Gleichgewicht sind U, und U, gleich Null.

Als schwache duBere Storung definiert man ein Einwirken von auBlen, bei dem die
Abweichung An bzw. Ap klein gegen die Konzentration n, bzw. p, im thermischen
Gleichgewicht ist:

AnLny, Ap<Lp,.

Dabei kann man U, bzw. U, gendhert proportional An bzw. Ap und entgegengesetzt
proportional der Lebensdauer oder Relaxationszeit 7, bzw. 7, des injizierten Elek-
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tronenzustandes voraussetzen:
An Ap

Un = T_n’ Up = ;. (4:)
Die als Proportionalititsfaktoren eingefiihrten GréBen 7, ynd 7, haben die MaB-
einheit Sekunde und kennzeichnen Relaxationszeiten. Sie sind nicht nur vom Mate-
rial, sondern auch von der Art der Stérung abhingig.
Bei einer linger andauernden &duBleren Stérung bildet sich ein stationdirer Gleich-
gewichtszustand aus. Zeitliche Anderungen finden nicht mehr statt:

0

% 0.
Die Rekombinationsiiberschiisse Uy, und U, stellen' sich im stationiren Gleich-~
gewichtszustand auf die dulere Erzeugerquote @ ein. Bei fehlendem Stromfluf§ gilt

Up=U,=U=G. 5)

Driffusion und Drift
Unterschiedliche Konzentrationen innerhalb eines Festkorpers

n=mn(r), p=2p) (6)

fithren zu Diffusionsstromen. Die Dichte des von diffundierenden Elektronen und
Defektelektronen erzeugten elektrischen Stromes setzt sich additiv zusammen:

Joiss = Japitt + Jppist- (7
Elektronen- und Defektelektronenstrom sind der transportierten Ladung pro-
portional und flieBen von Orten héherer zu Orten niedrigerer Konzentration. Daher
gilt '

jnDiff = eDn gl‘ad n, jlefi = —'er gl‘ad p. (8)

D, und D, sind die Diffusionskoeffizienten. Sie konnen bei einem nichtentarteten
Halbleiter nach der BoLrzmanN-Statistik berechnet und aus der EINsTEIN-Beziehung
nach (3.1.4./10) entnommen werden:

bnkT bpkT

D, = — D, = Pt (8a)

Beispiel 5.2.1. Diffusionskoeffizienten in Silizium

In Silizium folgt bei Zimmertemperatur aus den Werten nach Tab. 5.1.4

. .10-23.
D, — QU5 L38-102:300 L gon o
1,60 - 10719
0,050 - 1,38 - 10-2 - 300
D, =
1,60 - 10-29

m2st=1,29.102 m2s1,



5.2. Rekombination, Diffusion und Drift der Ladungstriger 287

Ein von auflen angelegtes elektrisches Feld

E = —grad &
16st den elektrischen Strom der Dichte

Joritt = Japrite + Jpprite 9)
aus, wobei

Joonsy = enbnE,  joprgy = epbpE (10)

ist. Er heit Driftstrom.
Der Diffusions- und der Driftstrom iiberlagern sich geméf

J = Joitt + Jonist- . (11)
Fiir die einzelnen Ladungstriger gilt
Jn = Jupitt + Joonite, Jp = Jobitt + Joorite- (12)

Bilanzgleichung der Elektronen und Defektelektronen

Unterliegt der Festkérper keinen duBeren Stérungen oder befindet er sich im statio-
niren Gleichgewicht, so kann sich eine Anderung der Konzentration seiner Ladungs-
trager nur als Folge von Strémen ergeben. Dafiir gilt nach der Kontinuitétsgleichung

op 0Ap 1 .. . on o An 1 .. .

A —_— == . 1

a8~ ot g Wi = =5 4V 13)
Wenn die duBere Generationsquote G gréBer als der Rekombinationsiiberschufl
U, bzw. Uy ist, wird das stationdre Gleichgewicht gestort. Es entstehen zusétzliche
Ladungstrager Im entgegengesetzten Falle verringert sich die Konzentration der
Ladungstriger. Allgemein erhilt man fiir die Anderung der Konzentratlonen die
Bilanzgleichungen

op 8Ap 1

%= ¢ U AV

0 oA 1 (14)
n n

2 ¢ Unt S divia

Beispiel 5.2.2. Generationsprozefl

In einem Fremdhalbleiter wird durch Strahlung mit der suBeren Generationsquote G = 102 m—3 g1
ein rdumlich konstanter, stationdrer Gleichgewichtszustand mit einer Abweichung vom ther-
mischen Gleichgewicht An = 10%® m~3 erzeugt. An ist klein gegen die Elektronenkonzentration n,
im thermischen Gleichgewicht. Es liege kein duBleres Feld an, so dal kein Driftstrom und wegen
der gleichmiBigen Strahlung auch kein Diffusionsstrom vorhanden ist. Der stationdre Gleich-

gewichtszustand ist durch —:;— = 0 gekennzeichnet. Daher folgt aus der Bilanzgleichung (14)

G—U,=0 (15)
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bzw. auf Grund der Gleichung (4)

¢—v,=2" (16)

n

Fir die Relaxationszeit ergibt sich hieraus

An 101
Tp — E=1O—2°S= 10-%s.

Beispiel 5.2.3. Zeitlicher Ausgleich nach Storung

Nach Ausschalten der Strahlungsquelle stellt sich der thermische Gleichgewichtszustand wieder
ein. Die hierfiir giiltige Relaxationszeit wird als Abklingzeit bezeichnet. Sie weicht in der Regel
von der Relaxationszeit im stationdren Gleichgewichtszustand ab. Es seien auch im vorliegenden
Fall keine elektrischen Stréme vorhanden. Die duBere Erzeugerquote ist gleich Null. Dagegen

treten zeitliche Verinderungen auf, so daf mit % = 0 zu rechnen ist. Fiir das Abklingen der
schwachen Stérung erhilt man daher aus den Bilanzgleichungen (14) in Verbindung mit (4)
o0Ap _ _Ap 2An _  An

at n # 1 an
Diese Gleichungen stimmen mit (4.3./12) iiberein. Als Lésung folgt
-t
Ap(t) =Apee ™, (18)

wobei Ap, und An, die Abweichungen vom thermischen Gleichgewicht im stationdren Gleich-
gewichtszustand angeben.

Beispiel 5.2.4. Dielektrische Relaxationszeit der Elektronen

Ein Kristall trage iiber sein gesamtes Volumen gleichméBig verteilt Raumladungen. Sie erzeugen
starke elektrische Krifte. Gegen die von ihnen in der Bilanzgleichung verursachten Glieder kann
der Rekombinationsiiberschufl vernachldssigt werden. Es finde keine Erzeugung von Ladungs-
tragern durch duBere Einwirkung statt, so da mit @ = 0 zu rechnen ist. Dagegen treten zeit-
liche Anderungen auf. Nach dem Ohmschen Gesetz ist

Jn =_O'nE' (19)
Damit ergibt sich nach (13)
98n_ % givg —o. (202)
ot e

Nach Multiplikation mit der Elementarladung folgt wegen e An = —p

% + 0, divE = 0. 20)
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Die Raumladungsdichte g ist mit der elektrischen Erregung D bzw. mit dem elektrischen Feld
E durch die MaxwELLsche Gleichung

divD =cdivE =9 (21)
verkniipft (vgl. [4] (1.4./3)). Damit erhdlt man aus (20) die Differentialgleichung

9 0,
g + e =0. (22)
Thre Losung lautet
_t
e = Qe " (23)

mit der Relaxationszeit

(24)

Sie heiBt dielektrische Relaxationszeit.
Fir n-leitendes Silizium mit n = 10% m—3 folgt nach Tab. 5.1.1 und Tab. 5.1.4

11,8 . 8,85 - 1012

= s=4,5-1015.
1,60 - 1079 . 10% . 0,145

Tn

Die dielektrische Relaxationszeit 7 ist um mehrere Grofenordnungen kieiner als die mit dem
Rekombinationsiiberschufl nach (4) verkniipften Relaxationszeiten 7:

7L, (25)

P Probleme

5.2.1. Diffusionslinge

Durch Dauerstrahlung wird in der diinnen Oberflichenschicht eines Fremdhalbleiters auf Sili-
ziumbasis ein zeitlich konstanter UberschuB an Ladungstrigerpaaren erzeugt. Die Absorption
der Strahlung sei so groB, daf im Kristallinneren keine Tréigerpaare durch &duBere Einwirkung
entstehen. Es bildet sich eine inhomogene Dichteverteilung aus (vgl. Bild 5.2.1).

Untersuchen Sie die rdumliche Verteilung der Trégerpaare, wenn die Relaxationszeit im statio-
niren Gleichgewicht fiir Elektronen und Defektelektronen gleich 20 ws ist. Die Temperatur be-
trage 7' = 300 K.

Losung:

Zur Behandlung des Problems gehen wir von der Bilanzgleichung nach (5.2./14) aus. Wir setzen
schwache Abweichungen vom thermischen Gleichgewicht voraus, so daf nach (5.2./4) fir den
Rekombinationsiitberschufl

An _Ap

U, = =%, 1
iy =, (1)

19 Schilling, Festkorperphysik
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geschrieben werden kann. Durch Einsetzen von (1) in die Bilanzgleichungen (5.2./14) ergibt
sich

94p =G — Ap 1 div jp,

ot Tp e @)
L

ot Tn e

Im Inneren des Kristalls gilt fiir die dulere Erzeugerquote G = 0. Nach (5.2./8) folgt bei fehlen-
dem elektrischem Feld E

Jo = eDy grad An, j, = —eD, grad Ap. 3)
Wir sehen von Randstérungen ab und wihlen die Richtung senkrecht zur Kristalloberfliche

. - dz
als z-Achse. Der LarrLacE-Operator kann unter diesen Bedingungen durch e ersetzt werden.
z

hy
++*++++++H 0 %=£e£ an
Tt —F—F+—+ ap
F oLt L, an .
:+ -T- + + L ap
Kristall ~ +

Y

V4
Bild 5.2.1. Verteilung der Ladungen in einem Kristall bei der
Ladungstragerinjektion an der Oberfldche

Die Ladungsverteilung dndert sich rdumlich, ist jedoch zeitlich konstant. Daher folgt aus (2) fir
das Innere des Kristalls

2 2
_%’4.1% ddzAf:o, —,‘:—:‘4-1),1 ddztn —o0. @)
Als Losung erhélt man durch Exponentialansatz
z 2
Ap =Apge T2, An = Ange In, (5)
wobei
Ly=V& Dy, Ly=1Vr,D, (6)
ist.

Mit der vorgegebenen Relaxationszeit v = 7, = 7, = 20 - 10~ s und den Werten nach Beispiel
5.2.1 folgt

L,=7120.10%.375-10°m = 0,27mm, L, = }20.10-%.1,29- 102 m = 0,51 mm.
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Die raumlichen Stérungen klingen tiber sehr kurze Entfernungen ab. L, bzw. L, heiBlen Diffu-
sionslinge der Elektronen bzw. der Defektelektronen.

5.2.2. Debye-Linge

In der diinnen Oberflichenschicht eines n-leitenden Siliziumkristalls wird ein zeitlich konstantes
Raumladungsfeld erzeugt. Bestimmen Sie das rdumliche Abklingen der inhomogenen Verteilung
im stationéren Zustand, wenn die Gleichgewichtskonzentration » = 10'® m—3 betrégt. Die Tempe-
ratur sei 7' = 300 K.

Wie klingt die inhomogene Verteilung rdumlich ab? Untersuchen Sie das Abklingen bel eigen-
leitendem Silizium. Die Werte sind Tab. 5.1.4 zu entnehmen.

Losung:

Der stationdre Zustand ist durch 582 = 0 gekennzeichnet. Die dullere Erzeugerquote G' und der

Rekombinationsiiberschu8 U werden gleich Null gesetzt. Aus den Bilanzgleichungen (5.2./14)
ergibt sich damit

divj, = 0. 1)

Das bedeutet, die mit den Raumladungen auftretenden elektrischen Feldern erzeugen einen
Driftstrom, der im stationiren Gleichgewicht durch einen entgegengerichteten Diffusionsstrom
ausgeglichen wird. Nach (5.2./8) und (5.2./10) fithrt das auf

eD, div grad An + ¢, divE = 0. (2)
Wir beriicksichtigen
divD =¢divE = o, (3)

wobei D die elektrische Verschiebungsdichte (Erregung) kennzeichnet. Wahlt man die Richtung
senkrecht zur Kristalloberfliche als z-Achse, so folgt aus (2) und (3) die Differentialgleichung

d2An | o
= HTQ =90 “
Thre Losung lautet
-2
e=ge . (3)

Die GréBe Lp, gibt die DEBYE-Lénge der Elektronen im Medium an. Sie ist nach (4) und (5)
gleich

D,
Lp, = o V""n n ' (6)
oy :
bzw. nach (5.2./8a)
kT
LDn =.| T (7)
e*n

19*
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Bei eigenleitendem Material erhélt man firr das rdumliche Abklingen der Ladungsdichte ebenso

e=ge (52)
jedoch mit
ekT
2e’ng (7a)

Fir den Fremdhalbleiter folgt nach (7)

. L1012 L1023 .
Lnn=V11’8 8,85.10-12. 1,38 . 10 300m=1’3pm,

(1,6 - 10719)2 . 1019
fir den Eigenhalbleiter nach (7a) und Beispiel 5.1.2

. . —12 | . —23 .
LD=V11,8 8,85 - 10 1,38 - 10 300=41 um.

2(1,6 - 10-19)2. 5,0 - 10%

5.2.3. Photoleitiihigkeit

In einem n-Halbleiter betrage die Konzentration der Elektronen des Leitungsbandes im ther-
mischen Gleichgewicht ny = 5,0 - 102 m—3. Wird auf den Halbleiter Licht der Frequenz » =
3 .10 Hz mit der Bestrahlungsstirke £, = 60 W m~2 gerichtet (vgl. Bild 5.2.2), so erhoht sich die
spezifische elektrische Leitfdhigkeit des Mediums um 229%,. Die Halbleiterprobe sei so diinn, dafl
iberall mit der gleichen Strahlungsintensitit gerechnet werden kann. Es werde angenommen,
dafB} jedes absorbierte Quant ein Ladungstrigerpaar injiziert.

dinner Halbleiter

Bild 5.2.2. Schaltung zur Messung der Photoleitfahigkeit

Berechnen Sie die mittlere Lebensdauer der Ladungstriger im stationdren Gleichgewicht sowie
die dullere Erzeugerquote G. Der Absorptionskoeffizient des Materials fiir die betrachtete Wellen-
linge sei f=2,5-10°m=1. Das Verhiltnis der Beweglichkeiten von Defektelektronen und

b
Elektronen betrage b_p = 0,19. Bei der Untersuchung kann vorausgesetzt werden, daf der

n
Storterm keinen Einflu auf die Rekombination der Ladungstriager hat.

Losung:

Im stationdren Gleichgewicht bei fehlenden Stromen besteht zwischen der duBeren Erzeuger-
quote G und der mittleren Lebensdauer 7, der Elektronen im Leitungsband nach (5.2./5) die Be-
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ziehung

G=Un=-A—n. 1)
Tn

Eine gleichwertige Beziehung gilt fiir die Defektelektronen mit An = Ap, 7, = 7,, wenn sich die
Existenz der Storterme nicht auf die Relaxationszeiten auswirkt.

Die Anzahl N der je Raum- und Zeiteinheit absorbierten Quanten folgt aus der Bestrahlungs-
" stirke B¢, dem Absorptionskoeffizienten § und der Frequenz »:

N = @. (2a)
hy
Jedes absorbierte Quant erzeugt im Mittel y Ladungstrigerpaare. y heilt die Quantenausbeute.
Zwischen der Zahl N absorbierter Quanten und der duBleren Erzeugerquote @ besteht die Be-
ziehung

@ =N, (2b)
woraus
B
¢ =10 — 5 @
folgt. Die GroBe
B
I=== 2
. (2e)

gibt die Quantenflufidichte an.
Wir kénnen (1) und (2) gleichsetzen und nach An auflésen:

An =

E By,
— T = 1By, ®
v

Die gegeniiber dem thermischen Gleichgewicht zusitzlich vorhandenen Ladungstriger ver-
grofern die spezifische elektrische Leitfahigkeit. Hierfiir erhalten wir nach (3.3.1./5a)

Ao = e(Anb, + Apby) = e An(b, + b,). 4)
Dagegen ist die spezifische Leitfdhigkeit im thermischen Gleichgewicht durch

o = engb, (5)
gegeben, wenn man die geringe Eigenleitung vernachlissigt. Fiir die relative Anderung folgt

Eophpond) o

Aus ibrer Messung li8t sich, wenn die Beweglichkeiten der Ladungstriger bekannt sind, An
bestimmen. Wie aus (6) hervorgeht, hiingt die relative Anderung der Leitfahigkeit nur vom Ver-
héltnis der Beweglichkeiten fiir Elektronen und Defektelektronen ab.
Mittels (1) und (2) kann bei bekanntem Az die mittlere Lebensdauer 7, berechnet werden.
Mit den vorgegebenen Werten erhalten wir fir Az nach (6)

An =n, Ao 1 _ 5,0 -1020.0,22 1—11—9 m—3 =9,2.10m3,

142 ’

bl
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Fiur die dulere Generationsquote folgt aus (2)

60-1-2,5-10°

N=@@= —- "o———
6,63 - 103¢.3 .10

m3s1="75.102m3g1.

Damit ergibt sich nach (1) fiir die mittlere Lebensdauer

. 1019
T, = 9.2 10% s=1,2-10"*s.
7,5.10%
5.2.4. Abklingen einer starken Stérung

Die Konzentration der Elektronen im Leitungsband betrage fiir einen reinen Kristall
ng = 102 m~3, Nach Dotierung mit Fremdatomen werde n, = 10'® m—* gemessen. Eine inten-
sive Strahlung erzeuge @ = 1026 m—3s~! Trigerpaare. Im stationiren Gleichgewicht seien
Any = Ap, = 1021 m—2 Trigerpaare mehr als im thermischen Gleichgewicht vorhanden.
Untersuchen Sie den Rekombinationsprozefl nach Ausschalten der Lichteinwirkung. Nach
welcher Zeit ist der Ladungstrigeriiberschul auf den Anteil 1/e abgesunken? Die Rekombination
erfolge durch Band-Band-Uberginge.

Losung:

Durch die Abweichungen Any, Ap, vom thermischen Gleichgewicht tritt ein Rekombinations-’
iberschufl

U=R—g (1)
auf. Wird die dulere Einwirkung ausgeschaltet, so klingt dieser ebenso wie der Ladungstriger-
itberschuf ab.

Die Rekombinationsrate ist sowohl der Elektronenkonzentration % als auch der Locherkonzen-
tration p proportional:

R(t) = Ron(t) p(t). 2)
Fur die Rate der thermischen Generation kénnen wir nach (5.2./2)

g = Rynypo = Rong? (3)
schreiben. Damit ergibt sich fiir den Rekombinationsiiberschufl eine Darstellung der Form

U = U[n(t) p(t) — nop,]- 4)

U mit der MaBeinheit m—3 s~ kann als Reaktionsgeschwindigkeit gedeutet werden. U, mit
der Einheit m? s~* wird daher als Geschwindigkeitskoeffizient bezeichnet.
Nach Ausschalten der duleren Stérung erhidlt man auf Grund der Bilanzgleichung (5.2./14)

JAn
~Ta = U = Uyln(t) p(t) — nopo]. (5)
Dieselbe Gleichung besteht fir Ap(t).
Im Produkt der zeitlich abhingigen Grofen beriicksichtigen wir An = Ap und schreiben

w(t) plt) = (o + An) (’;i + An) : )
0
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Die Elektronenkonzentration ny im Eigenhalbleiter ist bei Zimmertemperatur nur sehr klein
(vgl. Beispiel 5.1.2). Fiir starke Stérungen

2
An> "B — g, (7)
Mo
folgt damit aus (1)
_oan _ Uylne + An(t)] An(t). (®)

ot
Diese Differentialgleichung fiir An(t) 188t sich durch Trennung der Variablen lésen:

Uot=i1n"f_°ﬂ_{_o_ 9)
g

An(t)
Die Festlegung von C erfolgt durch die Anfangsbedingung

An(0) = Ang. (10)

Damit ergibt sich
An,
An(ty = . 11
n(t) Ny (Ang + 7g) onolot — Ang (11a)
und nach Umformung
e—noUot
An(t) = An, A . (11)
1+ 220 (1 — enolst)
n

Zur Zeit t = 0, wenn die duBere Einwirkung ausgeschaltet wird, ist
G = Uy[n(0) p(0) — ng?], (12)
wofiir wir wegen Ang>> n,, Any, = Ap, auch

G =UyAnyAp, bzw. U, = S (13)
Ang?
schreiben konnen.
Mit den vorgegebenen Werten erhalten wir
26
U, = 10% m? st = 10" m3s1.
1042
Damit ergibt sich aus (11)'
An(t) e~10%

Ang 1 4 100 (1 —e20%)°
Fiir t < 1 ms setzen wir
t" = 10%,
t’ gibt also die Zeit in ms an. Durch Reihenentwicklung folgt

An(t) 1 —t 4 .-
Any 1 4+ 100t — .-




296 5. Bandertheorie realer Kristalle

Dieser Wert ist auf 1/e fir

e = =De ms = 45 ms
e -+ 100
abgesunken.
5.2.5. Rekombination iiber Zwischenbandterme

In Halbleitern erfolgt die Rekombination vorwiegend iiber Stérterme. Band-Band-Uberginge
bei der Rekombination kénnen vernachlissigt werden (vgl. Bild 5.2.3).

Ein Halbleiter sei mit Akzeptoren dotiert. a) Untersuchen Sie allgemein den Aufbau und den
Abbau des stationiren Gleichgewichtes beim Einschalten und beim Ausschalten des Strahlungs-
feldes. b) Wie erfolgt die Rekombination der Ladungstriger, wenn die Konzentration N, der

Leitungsband

0O ® O O 0 0O ®
® olo ® ® 0 O

Akzeptorterm

(] K &

3
® O O O ® ® ®
® O ® O O O Q

Valenzband
Bild 5.2.3. Rekombination iiber einen Akzeptorterm

1 Injektion eines Ladungstrigerpaares
2 Rekombination eines Elektrons
3 Rekombination eines Defektelektrons

Rekombinationszentren gering ist? Stellen Sie unter dieser Voraussetzung die Bedingung fiir eine
vollstindige Kopplung zwischen der Rekombination der Defektelektronen und der Rekombina-

tion der Elektronen auf. Dabei ist ein p-Halbleiter mit y,n, = 4,0 - 1017 m~3, 1 p,=9,0.10m™3

A
(vgl. 5.1.3.) zugrunde zu legen. Welche Konzentration der Akzeptoren ist bei dem vorliegenden
Halbleiter zulédssig, wenn eine vollstdndige Kopplung der Rekombinationen gefordert wird?

Lésung:

Es ist mit unterschiedlichen Relaxationszeiten 7, bzw. 7, und mit voneinander abweichenden
Rekombinationsiiberschiissen U, bzw. U, zu rechnen. Fiir j, = j, = 0 erhalten wir nach den
Bilanzgleichungen (5.2./14)

n_84n _g_y, B2 _g4 g, (1)
at ot ot ot
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Beim Ubergang vom thermischen in den stationdiren Gleichgewichtszustand verindert sich die
Elektronenkonzentration im Akzeptorterm. Hierfiir erhalten wir

AnA = Np — Npg- (2)

Die Verinderung Ap der Locherkonzentration ergibt sich als Summe der Anderungen An im
Leitungsband und An, im Akzeptorterm:

Ap = An + An,. &)

Die Rekombinationsquote R, ist nach dem Massenwirkungsgesetz (5.1.3./8) proportional der
Elektronenkonzentration » im Leitungsband und der Locherkonzentration p, im Akzeptor-
term:

B, = Rygnpy. 4)

Bei der Quote g, der thermischen Generation aus dem Akzeptorterm ist eine Proportionalitit mit
n, anzusetzen:

In = Gnoa- (%)
Da andererseits nach (5.1.3./11) im thermischen Gleichgewicht die Beziehung

TyPAo = MacYa™1 (6)
besteht, ergibt sich fir den Rekombinationsiiberschull der Elektronen

Up = Uno(nps — yamany)- (7)

Ebenso folgt fiir den Rekombinationsiiberschufl der Defektelektronen mittels (5.1.3./14)
1
Up = Upo (pnA - plPA) . (8)
YA

Wie aus (7) und (8) hervorgeht, verschwinden U, und U, im thermischen Gleichgewicht.
Wir setzen n = ny + An, p = py + Ap, Py = P — ANy, ny = nyg + Any in (7) bzw. (8) ein und
erhalten ’

Un = Upno(Pao An — [mp -+ yany] Any — An Any), 9)

1
Uy = Uin (madp + [po+ 1] Ama + 8p 8y ). (10)
A
Die Abweichungen vom thermischen Gleichgewicht seien nur klein:

An L ny+ yany,  bzw. Any <L pyo,

1 11
Ap < po + y_}”l bzw. Any < npo. (11)
A

Unter diesen Voraussetzungen koénnen in (9) und (10) die Glieder zweiter Ordnung in den Ab-
weichungen vernachldssigt werden. Wir setzen (9) und (10) in die Bilanzgleichungen (1) ein,
beriicksichtigen (11) und driicken An, gemi8 (3) aus. Es folgt

9A
Ttn = G —Upo [(pa0 + m + yam) An(t) — (ny + yany) Ap(t)],
oA 1 1 (12)
710 =G — Uy [— (1’0 +— pl) An(t) + (nAo + 2o+ — pl) Ap(t)].
YA YA
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Fir den Aufbau des stationdren Zustandes gelten die Anfangsbedingungen

An(0) =0, Ap(0) = 0;

San) =a (Zap) =—e
ot t=0 ot t=0

Der Abbau ist durch die Anfangsbedingungen
An(0) = Ang, Ap(0) = Apy;

(—An) - @, (iAp) = ¢
ot t=0 ot. " Ji=o

bestimmt.

(13)

(14)

Die Werte fiir An, und Ap, im stationdren Gleichgewichtszustand ergeben sich, wenn in (12) die
zeitlichen Ableitungen verschwinden. Man erhilt ein System zweier inhomogener linearer alge-
braischer Gleichungen. Ihre Wurzeln stellen partikulire Losungen des inhomogenen Gleichungs-

systems (12) dar:
Any = (An)stay = Gty APy = (Ap)stat = G-
Fir 7, und 7, folgt

1
Upo(no + yany) + Uy (po + ; P+ ""Ao)

Ty =

1
UnoUpy [(”o + yany) nao + (po + Z.’Ih + "Ao) PAO]

1 1
Uno (PAo + n + — nl) + Upo (po + _‘Pl)
_ YA YA

Ty =

: T .
UnoUpo [(”o + van) nao + (Po + y_‘Pl + nAo) PAo]
A

Der Nenner la8t sich mittels (5.1.3./12) und (5.1.3/11) bzw. (5.1.3./14) vereinfachen:

. 1
(mg + yam1) Ra0 + (Po + ;; p»+ nAo) Pao = Paao + (Do + 7)) Ny

Die Losung des homogenen Gleichungssystems erfolgt durch Exponentialansatz
An = Ay e, Ap= A4, et

und ergibt als allgemeine Losung
¢ t

(An)homogen = Ay e ™+ Ape 2
t t

(Ap)homogen = Apl e "4 Apz e
mit

LN "‘Ip—
|
vo| b
H-

|\
|
W

ll

1
Uno(ng "‘ Yan + Pao) + Upo (Po + ;‘ P+ "Ao) >
A

B = UnoUpo[.’PAo”Ao + (po + mp) Nal,
v‘in_2___7n_71 éﬂ=7n—‘72
Ay T—1 Ay 1

(15)

(16)

(17)

(18)

(19)

(20)
(20a)
(20b)

(20¢)
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Fiir den Aufbau des stationdren Gleichgewichtssystems erhélt man auf Grund der Anfangs-

bedingungen (13)

-
An(t) = G |7, + e

t t

Tty — T) e T _ To(Tn — T1) —,_,]

9
Ta— T Te— T

L

r ¢ ¢
Ap(t) = G |7, + an = T _nhon), ’3]. v
T, — Ty T, — 7

1)

Der Abbau des stationdiren Gleichgewichtssystems ist durch die Anfangsbedingungen (14)

bestimmt und wird durch

t t
An(t) = @ _Tl(Tn — T5) e © + T_z('[n — %) e T2 ,
Ta— T Ta— T

B t ' t
Ap(t) — 6| =T % T =), ]
T, — Ty T, — 7

wiedergegeben.
Bei schwacher Konzentration NV, der Rekombinationszentren kann

1
npo L P + P Pa LKy + Yamy
N ,

angenommen werden. Nach (20a) und (20b) foigt

A2> B
und damit
1

1 .
Uno(ne + yam1) + Upo (Pn + ﬁ Pl)

> =

Fir 7, ergibt sich aus (20) der gleiche Wert wie fiir 7, und z;, aus (16) und (17)

1

Do+ — 1
— 1 o + Yamy + YA
Ny (ng + D) Upn Uno

Damit folgt aus (21) fir den Aufbau des stationiren Gleichgewichtes

W =T, =T, =1,.

An(t) = Ap(t) = G, (1 —e 't')

far den Abbau
¢

An(t) = Ap(t) = Groe .

(22)

(23)

(23a)

(23b)

(24)

(25)

(26)

Bei schwacher Dichte der Storstellen ist die Rekombination der Elektronen mit der Rekombi-
nation der Defektelektronen vollstindig gekoppelt; es gilt fiir den Aufbau wie fiir den Abbau

Ant) = Ap(t).

27)

Die Bedingungen (23) fiir vollstéindige Kopplung bedeuten nach (5.1.3./11 a) und (5.1.3./14a)

P1\?
" )
N ( ’ YA N (no + yami)®
AL ———p R < —“n .
P1 1

YA

(28)
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Wir setzen wegen der geringen Dichte der Stérstellen gendhert

Ng A Po A g = Vrgpy = V4 - 1017 -9 - 10® m3 = 6 - 1018 3

und erhalten mit den vorgegebenen Werten aus der ersten Bedingung (28)

(6,0 - 10 - 9,0 - 1019)2
m

- — 1,0 102 m-3,
9,0 - 10 e

Ny <L

Die gleiche obere Schranke ergibt sich aus der zweiten Bedingung (28). N, darf hiernach héchstens
die Grofienordnung 10%®...10'® m—2 erreichen, wenn die Rekombination der Ladungstriger ge-
koppelt sein soll.

5.2.6. Entkopplung der Rekombination von Elektronen und Defektelektronen

Untersuchen Sie den Auf- und Abbau des stationdren Gleichgewichtes fiir sehr tiefe Tempera-
turen nahe dem absoluten Nullpunkt. Die Konzentration der Rekombinationszentren sei so
groB3, daB die Voraussetzungen (5.2.5./23) nicht erfiillt sind. ’

Bestimmen Sie die Koeffizienten Uy und Uy, der Rekombinationsiiberschiisse U, und U}, fir
einen Halbleiter mit der Stoérstellendichte N, = 5-10 m=3, wenn die Relaxationszeiten
7, = 0,5 ms, 7, = 2 ms betragen, wihrend das Verhiltnis der unbesetzten zu den besetzten Stor-

stellenplétzen Ba 0,01 ist.
Pa

Losung:

Bei Temperaturen nahe dem absoluten Nullpunkt sind auch die Zwischenbandterme nur wenig
besetzt, so daBl mit

nao LK Na, Pao= Ny 1)
gerechnet werden kann. Die Konzentration der Elektronen im Leitungsband ist klein gegen die
Konzentration der Defektelektronen:

7o L Po.- @)
Ebenso gilt

m <L Py 3)
Nach (5.1.3./14) folgt aus (1)

BP0 ¢ p,. ()

YA Pao

Die Konzentration der Defektelektronen kann gleich der Konzentration der Elektronen im
Akzeptorterm gesetzt werden:

a0 = Po- (’)
Damit ergibt sich auf Grund der allgemeinen Losungen in 5.2.5. nach (5.2.5./16) bis (5.2.5./18)

bei nicht zu groBen Differenzen in den GréBenordnungen der Geschwindigkeitskoeffizienten U,
und Up,

, (6)

()
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Aus (5.2.5./20) erhélt man
=T Ty=Tp (8)

Wir setzen diese Beziehungen in (5.2.5./21) und (5.2.5./22) ein. Es folgt fiir den Aufbau des
stationdren Gleichgewichtes

An(t) = Gt (1 —e 'il), 9

¢
Ap(t) = Gr, (1 —e ) (10)
Fiir den Abbau erhalt man

¢

An(t) = Grie ™, (11)
_t

Ap(t) = Grze "= (12)

Elektronen- und Defektelektronenkonzentration fallen mit getrennten Relaxationszeiten ab.
Ihre Rekombination ist véllig entkoppelt. Mit den vorgegebenen Werten ergibt sich aus (6)

Upo = 1 = 1 m3sl=4.40"1mds1,
LN 5-10%.5.10
Upo = ) = ! mist=5.10"5mds1.
ny 2.2.10%.102.5-.10
21, = Ny

Pa

A Aufgaben

A5.2.1. Die Elektronenstreuung an Gitterfehlstellen zeigt in bezug auf die Beweglichkeit
der Ladungstriger unterschiedliche Auswirkungen, je nachdem, ob die Streuung
an neutralen oder geladenen Fehlstellen erfolgt. Uberlegen Sie, welche Art von
Fehlstellen nahe dem absoluten Nullpunkt fiir die elektrische Leitfdhigkeit ma@-
geblich ist.

A5.22, Bestimmen Sie fur den Siliziumkristall die Vakuumwellenldnge des Lichtes, das
einen Elektroneniibergang vom Donatorterm in das Leitungsband hervorruft
(AWp = 0,045 eV).

A5.23. Untersucht wird die Abnahme der Elektronenkonzentration nach Aufhebung einer
duBeren Storung. Die Kurzzeitmessungen ergeben eine Abnahme der Elektronen-
konzentration auf 2,5%, in der Zeit zwischen 0,1 ms und 0,5 ms nach Ausschalten
der Storung. Bestimmen Sie die Relaxationszeit unter der Voraussetzung einer
schwachen Storung.

Ab524. Wie grof ist die dullere Erzeugerquote in einem Halbleiter mit der Absorptions-
konstanten § = 4,5 mm~! fir die Frequenz v = 2,5 - 10 Hz bei einer Bestrah-
lungsstérke von 0,02 W em=2 (y = 1)?

A 5.2.5. Berechnen Sie die DEBYE-Lénge der Elektronen in n-leitendem Silizium bei Zim-
mertemperatur 300 K, wenn die Elektronenkonzentration » = 10?' m—3 betréigt.
(Werte nach Tab. 5.1.4).
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A 5.2.6.

A5.27.

A528.

A5.29.

A 5.2.10.

A5.2.11.

A5.2.12.

A 5.2.13.

A 5.2.14.

A 5.2.15.

A 5.2.16.

A 5.2.17.

A 5.2.18.

A 5.2.19.

In einem Halbleiter betrigt die dullere Erzeugerquote G = 10* m—2 s~1, die Relaxa-
tionszeit fiir die Trigerpaare 7 =5-10-%s. Wie groB ist die UberschuBkonzen-
tration im stationdren Gleichgewicht?

Durch Lichteinwirkung werden in einem Halbleiter G = 5 - 10% m—3 s~ Trager-
paare injiziert. Die Halbwertzeit fir das Abklingen betrigt 250 us. Rekombina-
tionszentren seien nicht vorhanden. Berechnen Sie die Abweichung vom thermi-
schen Gleichgewicht unter der Einwirkung der Strahlung.

Vergleichen Sie auf Grund der Relaxationszeiten die Diffusionslénge und die DEBYE-
Linge miteinander.

Wie gro8 ist die dielektrische Relaxationszeit der Defektelektronen in p-leitendem
Silizium fir p = 1020 m~3?

Durch Lichteinwirkung werden in einem p-Halbleiter 6,5 - 1022 m—2 s~ Tréigerpaare
erzeugt. Die Relaxationszeit ist fur Elektronen und Defektelektronen gleich
7 = 0,2 ms, das Verhéltnis der Beweglichkeiten b,/b, = 0,15. Wie grof8 ist die
Anderung der spezifischen elektrischen Leitféhigkeit, wenn im thermischen Gleich-
gewicht die Konzentration der Defektelektronen p, = 2,5 - 102° m~2 betragt?
Berechnen Sie nach der EINsTEIN-Beziehung den Diffusionskoeffizienten fiur die
Elektronen und fir die Defektelektronen in Germanium bei 300 K (Werte nach
Tab. 5.1.4).

Bestimmen Sie die dielektrische Relaxationszeit der Elektronen bei Zimmer-
temperatur in einem n-Halbleiter auf Siliziumbasis mit der Elektronenkonzen-
tration n = 10%* m—2 (vgl. Tab. 5.1.4 und Tab. 5.1.1).

Wie grof} ist bei 300 K die Diffusionsldnge der Elektronen in einem n-Halbleiter
auf Siliziumbasis, wenn die Relaxationszeit T = 5 - 106 s betrigt?

An der Oberfliche eines Halbleiters nach Bild 5.2.1 werden durch Strahlung
Ladungstragerpaare injiziert. Untersucht wird die Verteilung der Defektelektronen.
Ihre Diffusionslénge sei L, = 2,5 mm, ihr Diffusionskoeffizient D, = 40 cm?s1.
An der Halbleiteroberfliche sei im stationdren Gleichgewicht die Dichte des
elektrischen Stromes der Defektelektronen j, = 1,6 mA cm~2. Bestimmen Sie die
Dichte der injizierten Defektelektronen im stationdren Gleichgewicht an der Ober-
flache des Halbleiters, wenn angenommen wird, dal kein duBeres Feld anliegt.
Wie groB ist in der vorangegangenen Aufgabe die_elektrische Feldstirke an der
Oberfliache des Kristalls, wenn die spezifische elektrische Leitféhigkeit der Probe
0o = 5,0Q'm™, das Verhiltnis der Beweglichkeiten b,/b, = 3,5 betrigt. Die
Stromdichte sei j = j; 4 j, = 3,2 mA cm~2. Der Driftstrom der Defektelektronen
kann vernachldssigt werden, ebenso die Konzentration der Defektelektronen. Es
seien keine Rekombinationszentren vorhanden.

In einem p-Halbleiter wird Do = 0,2 beobachtet. Ferner seiy, n; = 8,0-10m=3,
Do .

L P, = 2,0.102 m—3, die Akzeptordichte N, = 10 m~3. Fiir die Relaxations-

Y.

A
zeit wird v = 0,5 ms gemessen. Berechnen Sie daraus die Geschwindigkeitskoeffi-
zienten Up, und Up.
Geben Sie zur vorangegangenen Aufgabe die Storstellendichte an, bis zu der mit
einer vollstindigen Kopplung der Rekombinationsprozesse gerechnet werden
kann. '
Untersuchen Sie die Rekombination der Ladungstriager in einem p-Halbleiter bei
sehr hohen Temperaturen und sehr groBen Konzentrationen der Rekombinations-
zentren unter der Voraussetzung n, > py .
Wie sind die Formeln nach 5.2.5. abzuidndern, wenn die Rekombination uber
Donatoren erfolgt?
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5.3. Kontakt- und Oberflicheneffekte
E Einfiihrung
Diffusionspotential

Beim Kontakt zwischen zwei verschiedenen Festkorpern I und II flieBen Elektronen
wechselseitig von einem Medium in das andere. Sie haben dabei unterschiedliche
Anziehungskrifte zu iiberwinden. Diese werden durch die Austrittspotentiale W
bzw. W 411 charakterisiert. Infolge der voneinander verschiedenen Austrittspotentiale
kommt es auf der einen Seite zur Elektronenanreicherung, auf der anderen zur
Elektronenverarmung. Es bildet sich eine elektrische Dipolschicht nach Bild 5.3.1

Bild 5.3.1. Dipolschicht an der Kontaktstelle
zweier Festkorper

aus. Sie erzeugt ein elektrisches Feld E, das die weitere Anreicherung elektrischer
Ladung unterbindet. Die Dipolschicht wird als ScmoTTEYsche Sperrschicht be-
zeichnet.

Das von der Dipolschicht erzeugte elektrische Potential uy ist an der Kontaktstelle
gleich der Differenz zwischen den beiden Austrittsarbeiten, dividiert durch die
Elementarladung:

_ Wa —Wun
e

uy heiflt Volta-Spannung. Sie ist der direkten Messung zugénglich.

Auch im Gleichgewicht, nach Aufbau der ScHoTTKYSschen Sperrschicht, fliet ein
schwacher Elektronenstrom von I nach II. Er wird durch einen gleich starken Strom
von II nach I ausgeglichen. _

Das elektrische Feld E der Dipolschicht kann durch ein elektrostatisches Potential
dargestellt werden:

E = —grad Pp. (1)

@p heifit Diffusionspotential. Seine GroéBe wird nicht nur durch die unterschied-
lichen Austrittsarbeiten bestimmt; auch Fremdsubstanzen und die Beschaffenheit
der Oberfliche sind fiir seine funktionelle Abhingigkeit @p = Pp(r) von Bedeu-
tung.
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Die potentielle Energie —e®p der Elektronen im Raumladungsfeld addiert sich
zur Energie W(r) der Elektronen im Kristallgitter. Wegen der Ortsabhingigkeit des
Diffusionspotentials ist auch die Energie W(r) im Raumladungsfeld ortsabhingig:

W) =W — edp(r) |. 2)

Wie aus (2) hervorgeht, werden im Raumladungsfeld die Energiebénder als Be-
reiche zuldssiger Energie um —e®p(r) verschoben. Das gleiche gilt fiir die Stor-
terme:

WL->WL——6¢D, Wv~—>WV——6¢D,
WD-—>WD——6¢D, WA—>WA—€¢D.

Die Konzentration der Elektronen und Defektelektronen im Raumladungsfeld ist
ortsabhangig. Nach (5.1./16) bzw. (5.1./20) folgt

_ Wi—e®Pp—¢ e(’i‘

nr) =ne L =mnekl (3a)
_t—Wv+edo _edp

p(r)=pe . =pe . (3D)

Darin bedeuten n bzw. p die Konzentrationen im thermischen Gleichgewicht nach
der BorrzManN-Statistik ohne Diffusionspotential. Der Parameter { ist wie bei
nichtvorhandenem Diffusionspotential aus den Gleichgewichtsbedingungen zu er-
mitteln. Er ist fiir alle Teilchen gleich.

Wie aus (3a) und (3b) hervorgeht, ist auch bei vorhandenen Raumladungen Glei-
chung (5.1./31) erfiillt:

n(r) p(r) = np = ng®.

Die Verarmung an der einen Trigersorte ist mit der gleichzeitigen Anreicherung der
anderen verbunden.
Fiir die Konzentration negativ geladener Akzeptoren ergibt sich nach (5.1./21b)

Ny
(") = s i Tira ’ (3¢)
e kT + 1
fiir die Dichte geladener Donatoren
Np
Pp(r) = ~ Wo—ePo—t+iTinyo (3d)
e kT 41

Das Diffusionspotential @p(r) wird aus der Poissonschen Gleichung bestimmt.
Nach den MaxwELLschen Gleichungen besteht die Beziehung

divD = edivE = o, (4a)
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wobei ¢ die Raumladungsdichte kennzeichnet. Hieraus folgt nach (2) die PorssoNsche
Gleichung

divgrad ® = — 21 bow. NAPp=— 2. (4)
€

€

Die elektrische Ladungsdichte im Raumladungsgebiet efgibt sich aus
e = ¢[p(r) + pp(r) — n(r) — ny(r)]. (5)

Bei verschwindendem Diffusionspotential @y, geht auch die Raumladungsdichte auf-
Grund der Neutralititsbedingung (5.1./23) gegen Null.. Dagegen ist (5.1./23) im
Raumladungsfeld nicht erfiillt.

Kontakt zweier Festkorper

Beim Kontakt zweier Festkorper ohne Raumladungen gleichen sich nach einem
Grundgesetz der Statistischen Physik ihre Chemischen Potentiale ucr und e aus

I He=%
L
;I

L W,
;.r LT

eu

I I

Bild 5.3.2. Elektrochemisches Potential und GALvANI-Spannung
beim Kontakt zweier Metalle

(vgl. [3] 3.3.). Raumladungen erzeugen ein zusitzliches elektrostatisches Potential
—e®Dp. Wird es zum Chemischen Potential uc addiert, so ergibt sich das elektro-
chemische Potential

‘uce = ¢ — equ- (6)

Der Parameter ¢ in (3a) bis (3d) ist mit dem elektrochemischen Potential identisch.
Bezeichnet (T das nach (5.1./32) auf die untere Kante des Leitungsbandes bezogene
FEerMI-Potential, so gilt unter Beriicksichtigung der Bandverschiebung

{=pc® = Wy + (&= Wy — e®p + (& (M
Zwei Festkorper, an deren Begrenzung sich ein Raumladungsfeld bildet, besitzen

20 Schilling, Festkorperphysik
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im Gleichgewicht fiir simtliche Teilchen dasselbe elektrochemische Potential

\ e = pen | bzw. | Wi+ =W + & |- (8)

Die Differenz der FrrmI-Potentiale (¥ und ¢ beim Kontakt zweier Festkorper
stimmt daher, abgesehen vom Vorzeichen, mit dem Abstand der Leitungsbandkanten
Wy, tiberein:

Ol — (= Wi — Wi = eug (8a)

(vgl. Bild 5.3.2.). ug heiit Galvani-Spannung. Sie ist der direkten Messung nicht
zugénglich. Der Nachweis der GALvANI-Spannung erfolgt mit Hilfe unterschiedlicher
Temperaturen nach 4.3.4.
Das Metall als idealer Leiter besitzt in seinem Leitungsband einen praktisch un-
erschopflichen Vorrat an Elektronen. Im Innern des idealen . Leiters sind makro-
skopisch keine Ladungs- und Potentialunterschiede moglich. Raumladungen treten
daher beim Metall nur an der Oberfliche auf. (T ist fiir das gesamte Metall vom.
Inneren bis zur Oberfliche konstant. Die Raumladungen bewirken, daB der Uber-
gang zwischen zwei Metallen durch einen Sprung des elektrostatischen Potentials
von der GroBe euy = W,y — Wy gekennzeichnet ist (vgl. Bild 5.3.3).

W T Aewr

Wor
———————————————— pi=5
W — Bild 5.3.3. Austrittsarbeiten
LI und Vorra-Spannung beim Kontakt
W zweier Metalle
LI
I I

Dagegen liegt bei Halbleitern nur ein begrenzter Vorrat an Ladungstrigern vor.
Die Raumladungen an der Oberfliche konnen nicht vollstdndig ausgeglichen werden
und pflanzen sich mit dem zugehérigen Potential in das Innere fort. Die Tiefe dieser
Ausdehnung der Stérung héangt von der DEBYE-Lénge des Materials ab (vgl. 5.2.2.).
Metall-Halbleiter- und Halbleiter-Halbleiter-Kontakte sind daher durch eine Rand-
schicht in den Halbleitern gekennzeichnet, in denen ein Diffusionspotential auf-
tritt.

Das Diffusionspotential @p, verdndert nach (3) die Konzentration der Ladungstrager,
verbiegt die Béander und veréndert (& = L(r).

Beispiel 5.3.1. Kontakt n-Halbleiter-Metall
Befinden sich in einer Randschicht an der Kontaktstelle zwischen einem Metall und einem Halb-

leiter Donatoren, von denen stets einige positiv geladen sind, so ist die Randschicht im Halb-
leiter nach (1) durch ein negatives Potential @ < 0 gekennzeichnet (vgl. Bild 5.3.4). Positive



5.3. Kontakt- und Oberflicheneffekte 307

Raumladungen und Donatoren an einer Kontaktstelle fithren daher nach (2) zu einer Verbiegung
der Energiebiander nach oben und nach (3) zur Elektronenverarmung bei gleichzeitiger Anreiche-
rung mit Defektelektronen.

w
A
7
ed,
Halbleiter
Metall
~ef, (o)
- Leitungsband
Leitungs - :t+\+ == - = - /WL
3 . Fermi - Kante
band 3 b —t— +—-|\W
3 Donatorterm 0
e—f£
M
+ .
+ - WV
\ Valenzband

Bild 5.3.4. Diffusionspotential, Verbiegung der Energieniveaus und
Ladungsverteilung beim Kontakt Metall -n-Halbleiter

Beispiel 5.3.2. Kontakt p-Halbleiter - Metall

Negative Raumladungen und Akzeptoren in der Randschicht des Halbleiters bewirken beim
Kontakt p-Halbleiter - Metall eine Verbiegung der Energiebénder nach unten, die Anreicherung
mit Elektronen und die Verarmung an Defektelektronen (vgl. Bild 5.3.5).

d Leitungsband
Metall = W,
Halbleit
albleiter W,

¥

Leitungs- * _ _Akzeptorterm 4 W,
+ Fermi - Kante
t + +

+ +
Valenzband

band +

Bild 5.3.5. Energiebdnder und Ladungen beim Kontakt Metall-p- Halbleiter

20*
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Beispiel 5.3.3. Grofle der Bandverschiebung, des elektrischen Feldes und der Elektronen-
anreicherung bzw. -verarmung

Fir einen n-Halbleiter mit der Elektronenkonzentration n = 10'® m—2 betrage bei Zimmer-
temperatur die DEBYE-Léinge Ly = 1,3 um. Das Diffusionspotential an den Kontaktstellen
habe die GréBe @p = —0,33 V (vgl. 5.3.2.). Rechnet man zur Abschétzung mit einem linearen
Anstieg des Potentials, so ergibt sich die elektrische Feldstérke

do 0,33

E=—2%_ __ 98 v _95.105Vm.
a 13-108 ' © w

Das negative Vorzeichen kennzeichnet die Orientierung entgegen der z-Achse, aus dem n-Halb-
leiter heraus.
Als Bandverschiebung nach oben folgt fir die Kontaktstelle

AW = e®p(0) = 0,33 V.

Sie ist mit einer Verringerung der Elektronenkonzentration um den Faktor

edp _ 1,60-10-1-0,33
ekT — ¢ 1,38:107%:300 _ 2,9.10-8,
d. h. auf
n(0) = 1019-2,9 - 10 m—2 = 2,9 - 108 m—3
verbunden.

Oberfliicheneffekte an Halbleitern

Elektrische Ladungen an der Oberfliche eines Halbleiters gegen Vakuum oder ein.
anderes isolierendes Medium fithren ebenso wie beim Kontakt zwischen leitenden
Medien zur Verbiegung der Energiebénder. ‘

Ist das angrenzende Medium ladungsfrei und der Halbleiter elektrisch neutral, so
verlaufen die elektrischen Feldlinien des von den Raumladungen an der Oberfldche

+ > —
+——
+E ——> — Halbleiter
-+ — > —

+—> —

Vakuum

Bild 5.3.6. Potential und Feld in einem
'-’(60 Eigenhalbleiter mit Donatoren an der
z Oberfliache gegen Vakuum

erzeugten Feldes im Halbleiter von den Orten positiver zu den Orten negativer
Ladung (vgl. Bild 5.3.6). Bei positiven Ladungen bzw. einem Uberschuff an Donatoren
auf der Kristalloberfliche hat das elektrische Feld die Richtung der z-Achse, ins
Kristallinnere weisend. Da E dem Gradienten des Diffusionspotentials entgegen-
gerichtet ist, fillt @ daher mit wachsenden Werten z ab. Fiir z — co geht @y, gegen
Null. An der Kristalloberfliche gegen einen Isolator ist @p daher im Falle positiver
Oberflichenladungen, d. h. fiir Donatorzusténde, positiv und das Energieband damit
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nach unten verschoben. Dagegen fithren Akzeptoren an der Oberfliche gegen Va-
kuum zur Bandverschiebung nach oben.
Ein elektrisches Feld, das im isolierenden Medium senkrecht auf die Oberfliche des
Halbleiters gerichtet ist, hat beziiglich der Energiebinder dieselbe Wirkung wie
elektrische Ladungen auf der Oberflidche.

Beispiel 5.3.4. Verbiegung der Energiebinder durch ein aufgeprigtes Feld

An reinem Silizium liege senkrecht zur Oberfldche ein konstantes elektrisches Feld der Stirke
E, = 250 V m~? (vgl. Bild 5.3.7). Nach der PorssoN-Gleichung (4) mit der Ladungsdichte nach (5)
folgt

. . ( _e9p e&)
dzzD =__.E_nE e kT __ekT . (9)
Ep
_*K_W‘/
——
- E Halbleiter
Vakuum
_
w
A
%
> Z .
- Bild 5.3.7. Verbiegung der
Energieband Energiebdander an der Oberfldche
/ gegen Vakuum durch ein duBeres
/ &= ﬂg elektrisches Feld
Unter der Voraussetzung
le@p| L kT (10)
kann hierfir
d2Pp  2eny
a2 el “n
geschrieben werden. Durch Einsetzen der DEBYE-Liinge nach (5.2.2./7a) ergibt sich
d2dp Dy
ke L_D? (12)
mit der Losung
z
&p = Cye o, (13)

da @p im Kristall nicht iiber alle Grenzen wachsen kann.
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Die beiden Normalkomponenten der elektrischen Verschiebung sind gleich:

glly = ¢E. (14)
Darin bedeutet E das elektrische Feld im Halbleiter. Es hat an der Oberfliche des Kristalls die
Grofe
&F, do C,
(B)ymo = 22 = —(=2) =t (15)
& dz 2=0 LD

Aufgelost nach C; folgt mit den vorgegebenen Daten (vgl. 5.2.2.)

¢, — afo 250

0 Lp = = 40,3-10~¢V = 0,85 mV.
€ 11,8
Als Losung der Poissonschen Gleichung ergibt sich das Potential

z

wbo f o Tn, (16)

€

@Dz

Es nimmt seinen groften Wert an der Kristalloberfliche an:
Dp(0) =C, = 0,85mV.
Die Bandverbiegung an der Oberfldche betrigt

_ eEoLDE

AWy = 17

€
mit den vorgegebenen Werten
AWy = —0,85-103¢€V.

Das negative Vorzeichen kennzeichnet die Bandverbiegung nach unten.

P Probleme

5.3.1. Oberflichendonatoren in einem Eigenhalbleiter

Die Oberfliache eigenleitenden Siliziums sei mit Donatoren dotiert. Im thermischen Gleichgewicht
betrage die Anzahl der positiv geladenen Donatoren bei Zimmertemperatur N = 4 - 10'® m—2,
Der Kristall grenze an Vakuum, das feldfrei sei.

Untersuchen Sie die Verbiegung der Energiebénder infolge der Oberflichenladungen und be-
stimmen Sie die Anderung der Austrittsarbeit (vgl. Bild 5.3.8).

~—

Losung:

Die positiven Ladungen in der Randschicht des Halbleiters sind Ausgangspunkt elektrischer
Feldlinien (vgl. [4] 1.4./15). Sie enden in den negativen Ladungen des Kristalls, die durch die
positive Aufladung der Donatoren gebildet werden.

An der Ubergangsstelle zwischen Halbleiter und Vakuum tritt in den Normalkomponenten der
elektrischen Verschiebungsdichte D ein Sprung von der Grofie der Oberflichenladungsdichte
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auf. Daraus folgt fiir die elektrische Feldstédrke an der Oberfliche

E=w»ﬂ=(g)w=ﬁﬂ )

& €

Damit ist der Randwert fiir z = 0 bestimmt.
Wir setzen die vorgegebenen Grofien und fiir ¢ den Wert nach Tab. 5.1.1 ein:

4-10%.1,60 - 10—1°

E=(E),_og=
B0 11,8 - 8,85 - 1012

Vm?1=6,13-10"Vm1.

Dieser Wert ist so groB3, dal eine Erfiillung der Voraussetzung (5.3./10) nicht erwartet werden
kann. Als Porssonsche Gleichung wird daher nicht die vereinfachte Form nach (5.3./11) ange-
setzt, sondern die kompliziertere Gleichung (5.3./9) verwendet. '

Vakuum Halbleiter

Leitungsband
e —— 4 Bild 5.3.8. Verbiegung der Energie-

biander durch Oberfldchendonatoren
L a7 an der Oberfliche gegen Vakuum

/7 Valenzband

Zwischen ihrer Losung @p = @p(z) und dem elektrischen Feld des Kristalls besteht nach (5.3./1)
die Beziehung
dd
Biz) = ——2. (2)
dz

Wir nahern das Potential, indem wir fiir eine Randschicht
022, =— (3a)

des Kristalls den linearen Ansatz E
Dp(z) = Dy — Ez 3)

machen, in der Randschicht also mit einem konstanten elektrischen Feld E rechnen. Fiir z = z,
sei das Potential konstant, E(z) also gleich Null.
Die Gleichgewichtskonzentrationen sind auf Grund der Bandverschiebung
e®dp(2) _e®n(2) ’
n(z) =nge ¥, pl)=nge *T . (4)

Nach der Neutralitidtsbedingung mufl

N = [ [n() — p(:)] dz ®)
0



312 5. Bindertheorie realer Kristalle

sein. Wir setzen (4) zusammen mit (3) in (5) ein und beriicksichtigen, daf die Feldlinien bei z,
enden. Damit folgt

®/E bo/E

N = 2np [ sinh 222&) g, — 9 [ sinh AP —F2) 4, ©6)
xT T

Die Auswertung des Integrals kann elementar erfolgen und ergibt

N=M cosh&—l . 7
ek kT

In dieser Gleichung ist nur @, unbestimmt, das somit berechnet werden kann. Unter der Voraus-
setzung '

edD,

20y 1 8

> ®
kéunen wir in (7) die Exponentialfunktion einfithren und den Summanden —1 vernachlissigen
Durch Auflésen nach @, erhalten wir mittels (1)

2 A2
@, = L SN
e EkT?’LE

)

Mit den vorgegebenen Werten und nach Beispiel 5.1.2 folgt

_1,38-10-%.300 n (1,60 - 10-1%)2 (4 . 1016)2
o 1,60 - 107 11,8-.8,85-1072.1,38 - 10-%. 300 - 5,2 - 101®

V=0611V.

Die Energieflichen werden an der Kristalloberfliche um
AW = —ed, = —0,611 €V,

d. h. um knapp zwei Drittel Elektronenvolt, nach unten verschoben. Um diese GroSe verringert
sich die Elektronenaustrittsarbeit.

Fiir die Breite der Randschicht, innerhalb der eine lineare Veranderung erfolgt, ergibt sich nach
(3a)

Az—zo—g’—ﬂ =1,0-10%m
E 6,13-107
5.3.2. Bandverbiegung an der Oberfliche cines n-Halbleiters

Die Oberflache eines an Vakuum grenzenden n-Halbleiters enthalte Donatoren in der Dichte
N = 106 m~2. Sie seien alle ionisiert. Bestimmen Sie die Bandverbiegung an der Oberfliche des
Kristalls bei Zimmertemperatur. Die Konzentration der Elektronen im Leitungsband betrage
n = 10 m~3. Der Kristall habe die relative Dielektrizitdtszahl ¢, = 8. Die Eigenleitung sei zu
vernachlédssigen.

Losung:
Nach der Poissoxschen Gleichung (5.3./4) schreiben wir

%:_@ (1)

dz? e
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mit der Ladungsdichte nach (5.3./5)
o(z) = elpp(?) + p(2) — n(2)]- @)

Die Konzentration der Defektelektronen im Donatorterm setzen wir gendhert gleich der Kon-
zentration Ny, der Donatoren. Nach (5.3./3) sind die Konzentrationen der Elektronen und Defekt-
elektronen durch

soo _eoo
) =ne™, pl)=pe 3)
gegebeigl mit
n—p=pp =~ Np (4)

nach der Neutralititsbedingung. Wir beriicksichtigen

n ng

—IE (5)
"g P
nach (5.1./31) und setzen (4) in (3), (3) in (2) ein. Damit folgt
edp _e9p
(z)—enE[ (l—e"T)—l—n—-E(e kT —1)}. (6)
ng n
Wir substituieren
_ G(DD(Z) ]
?E) =— ™
und setzen (6) in die Porssonsche Gleichung (1) ein. Es folgt
d2p e2ng _
§=—8k—T[—(l—eW)'—(e¢-—1)J (8)
Fir (8) kann man als erstes Integral
dp\? _ 2eng .
4 — —p — s} 9
(B) =Gz e-n-Zer—a)] ®

schreiben, wie sich durch Differentiation nachweisen .liBt. Das Potential und die elektrische

Feldstirke verschwinden fiir z — oo. Damit verschwinden auch @ und :—Z . Die Konstante C

wird gleich 2
__2¢%ng ng
C= - —=). i0
kT ( * n) (10)
Somit folgt nach (9)
2 2.
de)*_2¢me[m o )4 E(ew—rl)—l-(p —E_i> . (1)
dz kT |ng ng

Aus (11) wird die Wurzel gezogen, und die Substitution (7) wird wieder riickgéngig gemacht. Es

ergibt sich
¢Pp - edp
oy _ _‘/2”E’“TV (67 — o) pme(e% _ ) “’l("—ki). (12)
ng n n  ng

€ kT
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Die Vorzeichenfestsetzung gewiahrleistet, dafl @p mit zunehmender Eindringtiefe z abnimmt.
Als Randbedingung erhalten wir

do
(D)sco = e(B)smo — ~e( D) = Ne. (13)
dz ;=0
Einsetzen von (12) in (13) liefert
2% _ % &
Ne = V2enghT ﬁ(e"T—1)+@(e kT—1)+e—° E_ 1), (14)
ng n ET \n ng N

Darin ist @, = @ (0) das Potential an der Kristalloberfliche, nach dem (14) aufgelost werden
kann. Mit @, ist auch die Bandverschiebung an der Kristalloberfliche bekannt.

Da im vorgegebenen Fall Eigenleitung gegen Fremdleitung vernachlissigt werden kann, rechnen
wir mit > ng. Ferner konnen wir wegen der hohen Stérstellenkonzentration an der Kristall-
oberfliche

@

1 15
> (15)
annehmen. Unter diesen Voraussetzungen schreiben wir an Stelle von (14)
e,
Ne = V2enkT e2+T (16)

und erhalten durch Auflsen nach e®,

e®y — 2T In —2°_. (17)

I/ZenkT

Mit den vorgegebenen Werten folgt als Bandverschiebung an der Oberfliche
2.1,38-10-% . 300 n 106 . 1,60 - 101
1,60 - 10-% V2-8-8,85-102.10%. 1,38 - 10-% - 300

AW = —e®y = — eV

= —0,336 V.
Mit diesem Wert ist (15) erfallt.

5.3.3. Oberflidchenleitfihigkeit

Bei grofier Dichte der Oberflichenladungen liefern diese einen mef3baren Beitrag zur elektrischen
Leitfahigkeit des Kristalls. Man definiert als spezifische Oberflichenleitfihigkeit

y = e(by An + bp Ap), (1)
wobei

An = f [n(z) —n]dz, Ap= f [p(z) — pldz 2)
0 0

die UberschuBkonzentrationen in der Randschicht kennzeichnen. An und Ap haben die MaB-
einheit m—2.

Berechnen Sie die Oberflichenleitfdhigkeit in einem p-Halbleiter mit der Storstellendichte
N, = 102 m=3, wenn durch Adsorption von Akzeptoren die Energiebdnder an der Oberfliche
um 0,35 eV nach oben verschoben sind. Ferner sei b, = 0,80 m® V-1s71, ¢, = 8,0, 7' = 300 K.
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Die Beitrdge der Elektronen im Leitungsband seien zu vernachléissigen. Simtliche Akzeptoren
kénnen als ionisiert angenommen werden.

Losung:

Die Akzeptoren sind negativ geladen. Daher ist die Ladungsdichte in der Oberflichenschicht
—Ne. Das Diffusionspotential wird negativ: @p < 0. Die Bénder verschieben sich nach oben:

AW = —e®p > 0. (3)

Es liegt nur bei den Defektelektronen eine UberschuBkonzentration vor. Fiir diese kénnen wir
nach (5.3./3) schreiben:

(o) e o]
_eo»

Ap =0f [p(z) — pl dz =p0f(e o~ 1) dz. @
Nach der Neutralitdtsbedingung erhalten wir genihert

Ny =p. ()]
Wir setzen (4) in (1) ein und beachten die Randbedingungen

Dp(0) = Dy, Dp(z) >0 fir z—o0. (6)
Damit folgt fiir die Oberflachenleitfahigkeit

£ Do
0 _eop
_ek_; e KT _ 1
y=ebyNy e —1)dz= —eb,Ny ——— d9Pp. (7)
ddp
dz
Die PorssoNsche Gleichung (5.3./4) nimmt die Form
. _eoo

d(pzzi&(e lcT_l) (8)

dz? €
an. Als erstes Integral dieser Differentialgleichung folgt

2 -~
(_‘M’D) _ 2¢Na f (e W7 _ 1) 99D g, ©)
dz & dz
Wie man sieht, kann die Integration iiber @y, erstreckt werden. Als unbestimmtes Integral ergibt
sich
. _eop
(—d%) _ 20 (E e T _op 4. (10)
dz & e
Die Forderungen
ddy .

&dp — 0, ?—)O fir z—> o0 (11)
fihren auf

o=_* (12)

e
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und damit auf

edp
dPp _ _ /2NiRT [ % _¢Pp _ ) (13)
dz P kT

Wir setzen ( 13) in (7) ein und erhalten

e¢D )
dd
y= —ebyN, e L., (14)
2NAkT —.;D _ePp
kT

Mit den vorgegebenen Werten ergibt sich an der Kristalloberfldche

_eDy _ 1,60-10719.0,35

= ~13>1.
kT 1,38 - 10-23 . 300 >

Die maBgeblichen Beitrage fiir das Integral (14) stammen aus dem Bereich der Kristalloberfliche,
wo wir allgemein mit

~2osy (15)

rechnen kénnen. Damit folgt

eo
€ e T _1
y = —eb, N ]/2NA T —os ddp, (16)
e KT
Do
und durch Auswerten des Integrals
_ s

y= l/éLpeprAe 2T 17

mit der DEBYE-Lénge
kT
Lp = V oy (18)

Mit den vorgegebenen Gréfen folgt nach (18)

. . 10-12. . 10-23 .
Iy = ]/8,0 8,85.10~2.1,38 - 1023 . 300 m = 0,107 gm

(1,60 - 10-19)2. 1022

und damit nach (17) fiir die gesuchte Oberfldchenleitfihigkeit

. —19 ,
y = 1,41 -1,07- 107 - 1,60 - 10-1°. 0,80 - 10% . exp (M Q-1 — 0,017 Q1.
21,3810 - 300
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5.3.4. ‘Metall-Halbleiter-Kontakt nach der Diffusionstheorie

Ein Metall wird mit einem n-Halbleiter zum Kontakt gebracht und die Kontaktstelle an eine
elektrische Spannung gelegt (vgl. Bild 5.3.9a). In der Randschicht des n-Halbleiters falle das
elektrische Potential von der Kontaktstelle in Richtung des Halbleiters um A® = u ab. Unter-
suchen Sie den elektrischen Widerstand des Kontaktes aus Metall und n-Halbleiter. Dabei ist
vorauszusetzen, daB der Potentialabfall im Metall und im Halbleiter gegen den Potentialabfall
in der Raumladungsschicht vernachlissigt werden kann. Die Dicke d der Randschicht an der
Kontaktstelle sei gro gegen die mittlere freie Weglidnge 1 der Elektronen nach 3.3.1.:

a> . 1

Bestimmen Sie auf Grund der entwickelten Theorie die maximale Stromdichte (den Sperrstrom),
wenn die Spannung vom n-Halbleiter zum Metall gerichtet wird.

Daten nach Beispiel 5.3.3: »=10°"m=3, =»(0)=2,9-10®m=3,
Lp=13pum, E=—25-10°Vm™, b, = 0,29 m? V=151,

£o-9%
dz
-+ D
F Metar  Z n-Hatbieiter |—/@(—
_\.l\Raumladungsschicht
A¢ =y ( Sperrschicht )

Bild 5.3.9.a) Kontakt Metall—n-Halbleiter mit dem Spannungsabfall  in der
Raumladungsschicht

In
A

—»U Bild 5.3.9.b) Strom-Spannungs-Kennlinie
beim Kontakt Metall—n-Halbleiter. Der
Spannungsabfall im Metall und im n-Halb-
leiter auBerhalb der Raumladungsschicht sei
zu vernachlédssigen.

Losung:

Die Elektronen kénnen wegen (1) die Randschicht nicht frei durchfliegen. Infolge der inhomo-
genen Elektronendichte » = n(r) bildet sich ein Diffusionsstrom aus, der sich auf den durch das
angelegte elektrische Feld E verursachten Driftstrom iiberlagert. Nach (5.2:/12) erhalten wir fiir
die Dichte des von den Elektronen verursachten elektrischen Stromes

Jn =Jnpitr + Juprist = €(Dy grad n + nbyE). @)
Der Strom flieit senkrecht zur Kontaktfliche. Bei ebenen Kontaktflichen kénnen wir n = n(z)
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ansetzen. Das elektrische Feld E 148t sich als Gradient eines Potentials

D(2) = Pp(2) + u(?) ®3)
darstellen mit
u(0) = u. (3a)
Im Unendlichen sei @ gleich Null. Es gilt also
E = — % . 4)
dz

Wird die EinsTEIN-Beziehung nach (5.2./8a) beriicksichtigt, so folgt aus (2) als Differential-
gleichung der Elektronenkonzentration

dn e do Tn

d& kT dz b kT

®)

Die Koeffizienten dieser linearen Differentialgleichung erster Ordnung sind Funktion der Orts-
koordinate 2.
Als allgemeine Losung folgt, wie man sich durch Differenzieren iiberzeugt,

oo

ed(z) . _eP()
nz) =e T 0+bn%fe KT gy |. (6)
0

Fur z = 0, die Kontaktstelle, ergibt sich aus (6)

e®(0)
n(0) = Ce T | (7)

Damit ist die Integrationskonstante C festgelegt.
Im Halbleiterinnern, fiir z — co, muB n(z) in den Gleichgewichtswert n iibergehen. Das be-
deutet nach (6) und (7)

b kT
)

_e‘b(O) . ~ _e¢(z)
n=n(0)e F*T +Lfe T gy (8)

bzw. wenn nach j, aufgelost wird,

_e2(0)

j _kan—n(O)e kT
n — “n!

©)

oo

_ew(z)
e *T g

0

Durch das angelegte Feld werde die Elektronenverteilung nach (5.3./3) nicht gestort. Es gilt also
unverindert

__e¢D(0)
Lo T, (10)
n(0)
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Ersetzt man in (9) » gema8 (10) und beriicksichtigt die Beziehung (3), so folgt fiir z = 0

KT _ g

i = bakT'(0) — (1)

Die Funktion @(z) ist nur am Rande und im Halbleiterinneren, d. h. fiir z = 0 und fiir z - oo,
bekannt. Das Integral im Nenner der Gleichung (11) kann daher nur abgeschétzt werden.

Am Rande verschwindet der Exponent im Nenner der Gleichung (1). Im Halbleiterinnern ver-
schwindet das Potential @(z). Das nach oben verbogene Leitungsband werde durch das aufge-
priagte Feld nur so wenig veridndert, daB @(0) sein Vorzeichen beibehilt. In diesem Falle wird das
Integral in (11) maBgeblich durch das Verhalten der Funktion @(z) in der Umgebung der Kontakt-
stelle z = 0 bestimmt. Zur gendherten Berechnung des Integrals kann @(z) daher in die Reihe

<D(z)=d5(0)—|—z(d@> + oo =®D0) — Bz + --- (12)

dz /o

entwickelt werden. E gibt die elektrische Feldstirke an der Kontaktstelle an. Das elektrische
Feld ist der z-Achse entgegen gerichtet (vgl. Bild 5.3.9a). Bild 5.3.4 zeigt die Potentialverhalt-
nisse.

Nach (12) ergibt sich mit £ < 0

oo e o]

e eEz ~
—[9(0)—P(2)] —
fe’” dz=fe“ de= XL (13)
el
0 0

Wir setzen (13) in (11) ein und erhalten

Jn = —eEn(0) b, (e% — 1). (14)

Die in Richtung der z-Achse, vom Metall zum Halbleiter, gerichtete duBlere Spannung % fithrt
zu einem mit groBen Werten u exponentiell ansteigenden Strom. Dagegen liefert eine duBere
Spannung in der Gegenrichtung, d. h. # < 0, maximal nur den Sperrstrom mit der Stromdichte

(ju)Sperr= eE"'(O) bn < 0. (15)

E héngt nur wenig von » ab. Gendhert gilt

_ _ (d9p
E = ( = )0. (16)

Mit den Daten nach Beispiel 5.3.3. und der vorgegebenen Beweglichkeit folgt aus (15)
(jn)spers = —1,60 - 10719 2,5 . 105 - 2,9 - 1013 . 0,290 Am~2 = 0,34 Am~2.

Der Metall -n-Halbleiter-Kontakt wirkt als Gleichrichter. Elektrische Stréme von Metall zum
n-Halbleiter werden durchgelassen, elektrische Strome in der Gegenrichtung gesperrt. Die Rich-
tung vom Metall zum n-Halbleiter heiit Durchlafirichtung, die Gegenrichtung vom n-Halbleiter
zum Metall Sperrichtung. Bild 5.3.96 zeigt die Kennlinie der Anordnung.
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5.3.5. Metall-Halbleiter-Kontakt nach der Diodentheorie

Beim Kontakt eines Metalles mit n-Silizium oder n-Germanium ist die mittlere freie Weglinge
der Elektronen groB gegen die Dicke der Randschicht. Die Voraussetzung (5.3.4./1) ist daher
nicht erfiillt. In der Randschicht kann sich kein Diffusionsstrom ausbilden, da sie von den Elek-
tronen in der Regel frei durchflogen wird.

Beim Wechsel vom n-Halbleiter in das Metall ist eine Potentialschwelle zu tiberwinden. Die
Verhéltnisse entsprechen denen in einer Diode (vgl. 5.3.6.); daher wird die zugrunde liegende
Theorie als Diodentheorie bezeichnet.

Leiten Sie danach die Strom-Spannungs-Kennlinie ab, und berechnen Sie den Sperrstrom fiir
den Kontakt von n-Silizium mit einem idealen Leiter. Die Konzentration der Elektronen an der
Kontaktstelle betrage wie in 5.3.4. n(0) = 2,9 - 10 m~3.

Losung:
Die vom Halbleiter auf das Metall zustromenden Elektronen miissen bei fehlender duflerer
Spannung, wenn sie die Kontaktstelle erreichen sollen, das Diffusionspotential —e®p, > 0 iiber-

winden. Durch die an die Randschicht angelegte Spannung in Richtung zum Halbleiter erniedrigt
sich die Potentialschwelle auf

AW = —e(Dp + u). (1)
Die erforderliche Energie
W= WL — e(qu + u) (2)

wird nur von einem kleinen Teil der Elektronen aufgebracht. Die iibrigen kénnen den Kontakt
zum Metall nicht passieren. Der auf Grund dessen sich ergebende Strom folgt nach den Gesetzen
der Statistik. Das Problem der Uberwindung von Potentialschwellen ist in [2] behandelt. Nach
der von RICHARDSON abgeleiteten Formel (vgl. [3] (4.3.3./16)) erhdlt man fur die Dichte des
Stromes expandierender Elektronen

_ Wa—¢
mek2T2e KT | 3)

. 2mge
7= 78

Darin bedeutet W, die dullere, { = W; die innere Austrittsarbeit bzw. das FErRMI-Niveau. W, ist
ebenso wie { auf Vakuum bezogen.

Beim Ubergang der Elektronen vom Halbleiter zum Metall tritt an die Stelle der duBeren Aus-
trittsarbeit W, die erforderliche Energie nach (2):

Wa— Wy — e(DPp + u). 4)

An Stelle der Elektronenmasse ist bei Kontaktproblemen die effektive Masse 7 einzusetzen. Fir
die Stromdichte der vom Halbleiter zum Metall iibergehenden Elektronen folgt damit
Wi—(e®Pp+eu+?)
, 2rgmk?T? ——— 0 ———
Jr = —Lha— e kr . (5)

Der Elektronenstrom vom Metall zum Halbleiter ist dagegen von der angelegten Spannung u
unabhéngig, da das Metall als idealer Leiter vorausgesetzt wird. Im elektrostatischen Fall wird
der Elektronenstrom vom Halbleiter zum Metall durch einen gleich groflen entgegengerichteten
Strom ausgeglichen. Fiir die Dichte des elektrischen Stromes der vom Metall zum Halbleiter
flieBenden Elektronen folgt damit unabhingig von »
2rgmk>T? o WL—(;;??;E)

- (6)

j-=
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Die Stromdichte

j=ir+i- ™
des resultierenden Stromes la8t sich mittels (5.3./3a), (5.1./16) sowie (5.1./13a) in der Form
e eu
j = en0) ]/ﬁ (7 — 1) ®)
2nm

darstellen, wobei #(0) die Elektronenkonzentration an der Kontaktstelle angibt.
Fiir die Stromdichte erhilt man somit einen Ausdruck, der dem nach der Diffusionstheorie ab-
geleiteten entspricht. Als Sperrstrom folgt

. *T
Jsperr = —en(0) Fm 9)

Mit den vorgegebenen Werten und nach Tab. 5.1.4 folgt

1,38 - 1022 - 300

Am—2 = —0,12 Am—2.
2.3,14-1,08-9,11-10-3t

jsperr = —1,60 - 1019 2,9 . 101 V

5.3.6. Stromlose pn-Diode

In einem Halbleiter iiberwiege fiir ein bestimmtes Gebiet die Donatorenkonzentration Np,
fiir das benachbarte die Akzeptorenkonzentration N,. Ein derartiger Halbleiter heit pn-Diode.
Zur Untersuchung der elektrischen Eigenschaften einer pn-Diode wird folgendes Modell betrachtet:
Ein kurzer diinner Stab bestehe zur einen Hélfte (z > 0) nur aus n-leitendem, zur anderen nur aus
p-leitendem Material. Die Storstellen seien alle ionisiert, und es sei Ny = Np.
Der abrupt wechselnden Storstellenverteilung koénnen die freibeweglichen Ladungen nicht
folgen. Es bildet sich daher beiderseits z = 0 ein Ubergangsgebiet mit groBem Dichtegradienten
der freien Ladungstriger und dementsprechend starken Diffusionsstrémen aus. Fiir das Uber-
gangsgebiet

—2, < 2 < 2
sind die Konzentrationen

n=mn(z), p=2p()
sowie das Diffusionspotential

Pp = Dp(2)

verinderlich (vgl. Bild 5.3.10). Dagegen konnen die Halbleiterbereiche links und rechts des Uber-
gangsgebietes als elektrisch neutral mit konstanten Konzentrationen der Ladungstriger und
mit konstantem Diffusionspotential behandelt werden:

n="ny, Pp=0py, Pp=@, fir z< —z,
n=mn,, p=~7p, Pp=D, fir 2> z,.

Berechnen Sie die zwischen den beiden neutralen Halbleiterbereichen auftretende Diffusions-
spannung, wenn folgende Daten bekannt sind: ng = 10% m=3, p, = n, = 102 m=3, T' = 300 K.

Losung:
Wegen (5.1./31) besteht die Beziehung

nppp = 0(2) P(2) = NyPp = ng’. n

21 Schilling, Festkorperphysik
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Das Fermi-Niveau  ist in der gesamten pn-Diode konstant. Nach (5.3./3a) folgt fiir die Kon-
zentration der Elektronen
_ Wi—ed(x)—¢

n(z) ="%e kT s (2)
[}
pp nn
ny P
-2, 2, -
p - Bereich n- Bereich
9,
A
4,
Qp > z
Raumladungsgebiet

Bild 5.3.10. Konzentrationen 7, p und Diffusionspotential in einer pn-Diode

speziell fur die neutralen Bereiche

_ Wr—edp—{

np=ge ®)
_ Wi—e®n—3
n, = fie kT . (4)

Aus diesen Gleichungen kann { zusammen mit Wy, eliminiert werden. Man erhilt z. B. aus den
letzten beiden Gleichungen

—WL+C=—e¢p—i—len% = —e®, + kT 3:_7“- )

Fir die Diffusionsspannung zwischen den beiden Bereichen ergibt sich daraus

qsn—qsp:’i—Tln%. (6)
P
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Wegen (1) folgt weiter
@, — 0, = Ly Ry Py KT pate @
e np e Pn e nEg
Mit den vorgegebenen Werten erhalten wir
1,38 - 10-23 . 300 n 102 . 10%
1,60 - 1072 1030

D, — Dp = V=09V.

Um den genauen Verlauf der Trigerdichte in der Raumladungsschicht und die Dicke der Schicht
zu bestimmen, ist die Losung der Poisson-Gleichung erforderlich. Gendhert kann mit einer
linearen Veridnderlichkeit des Potentials und daraus folgend einer exponentiellen Verdanderlichkeit
der Tréagerdichte gerechnet werden.

5.3.7. pn-Gleichrichter

Leiten Sie fiir eine pn-Diode die Strom-Spannungs-Kennlinie ab. Wie groB ist die Sperrspannung
(vgl. 5.3.4.) fir eine pn-Diode, fiir die folgende Daten bekannt sind:
Auf beiden Seiten ist die Konzentration der Minoritétstriger, der Elektronen im Leitungsband
der p-Schicht und der Defektelektronen im Valenzband der n-Schicht gleich: n, = p, = 101 m-3,
Desgleichen sind die Diffusionslingen und die Diffusionskoeffizienten fiir die Minoritétstrager
gleich:

L,=L;,=0,1mm, D,=D,=102m?s7.

Berechnen Sie auf Grund dieser Angaben den Sperrstrom.
Losung:
Bei der elektrischen Leitung iiber die pn-Diode sind im Gegensatz zur Leitung iiber den Kontakt
zwischen Metall und n-Halbleiter auch die Defektelektronen zu beriicksichtigen:
j=1a+ jp- (1)

_Ist die angelegte elektrische Spannung von der p- zur n-Schicht gerichtet, so flieBen Elektronen
aus der n-Schicht, Defektelektronen aus der p-Schicht auf die Kontaktstelle zu. In ihrer Um-
gebung bildet sich ein UberschuB von Ladungstrigern beider Sorten. Hierdurch treten im ver-
stirkten Mafle Rekombinationsprozesse auf. Sie erfolgen paarweise; fiir die Rekombinations-
tiberschiisse gilt Uy, = U, = U.

Da nur die stationdren Verhiltnisse interessieren, konnen wir E = 0 ansetzen. Im eindimen-

sionalen Falle sind der Gradient und die Divergenz durch — zu ersetzen. Damit ergibt sich aus
den Bilanzgleichungen (5.2./14) dz ‘

djp djn
G _ Gy, 2
az dz ¢ @

Die Dichte des Gesamtstromes j ist daher konstant.
Nach (5.2./12) folgt in Verbindung mit (5.2./10) und (5.2./8)

. dn do
In = eDn E —_ ebnn E—, (3)
. dp do
——eD, L _opp .
o el dz €0p, dz (4)
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Bei der Bestimmung der fiinf unbekannten Funktionen n(z), p(2), ju(2), jp(2), DP(2) ist ferner die
Poissonsche Gleichung (5.3./4) zusammen mit (5.3./5) zu beriicksichtigen.

Wir fithren die Rechnung fiir den Grenzfall schwacher Rekombination durch. Dabei ist der
Rekombinationsiiberschul noch so gering, dal in den dinnen Raumladungsschichten die Re-
kombinationen vernachlissigt werden konnen, diese also nur in den Zonen links und rechts davon
zu beriicksichtigen sind. Nach (2) ergeben sich in diesem Falle in der Raumladungsschicht
p=2r=2 fiir Elektronen und Defektelektronen konstante Stréme

7p(z) = fp(zp) = jp(zn)’ In(2) = ?.n(zp) = Ju(2n)- 5)

Infolge der Rekombinationen wird auch in den bei fehlender duBerer Spannung homogenen
Zonen z < z, und z > z, die Konzentration der Ladungstriger ortsabhingig. Bei den Majori-
titstriigern, den Defektelektronen im p-Bereich und den Elektronen im n-Bereich, sind die rela-
tiven Abweichungen nur klein. Dagegen tritt bei den Minorititstriigern ein sehr groBer Gradient
auf. Bei ihnen wird daher der Driftstrom vernachléssigt, dagegen bei den Majoritétstrigern der
Diffusionsstrom. Fiir die Stromdichten der Minoritétstrager, j,(® der Defektelektronen in
der n-Schicht bzw. j,(P) der Elektronen in der p-Schicht, kénnen wir nach (2) und (4) bzw. (3)
schreiben

djp(n) . dp

o — ey, j = _ep, 2, 6

dz ¢ T o dz ©)

dj, @ . dn

" _ ey, @ =eD, %, 7
dZ e 7[1 e n dz ( )

Der Strom der Majoritatstrager im Gebiet auBlerhalb der Raumladungsschicht ist nach (3) und (4)
durch
do

. do .
7n(n) = —ebyn 3, 7p(p) = —-ebpp E (8)

gegeben. Da die Spannung in der Raumladungsschicht abfillt, setzen wir auBerhalb dieser in
erster Naherung

do
— =0. 9
i 9)
Der Driftstrom der Majoritdtstréger bleibt daher im folgenden unberiicksichtigt. j( gibt somit
fiir z > 2, genihert die Stromdichte in der n-Schicht, j,(P) fiir z < z, die Stromdichte in der
p-Schicht an. Die Stromdichte wird also durch die Minorititstriger bestimmt. Den Rekombi-
nationsiiberschuf} schreiben wir nach (5.2./2)

n — n,

U= L fiir 2 < 2y, (10)

Tn
U=2"ntirz> o, (11)
T

Damit folgt aus (6) bzw. (7)

_(P_pz_i(iLl,("z:i:p—pn (12a)
dz2 eD, dz D, D, ’
&en 1 din U _n—m (12Db)

dz eD, dz D, TyDy
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An Stelle des Diffusionskoeffizienten und der Relaxationszeit kann nach (5.2.2./6) die Diffusions-
lange eingefithrt werden:

2 _ 2, —
d2p P — Pn (132) dn _ n np.

- , & (13b)
dz? L2 dz? L2
Als allgemeine Losung der Gleichungen (12a) bzw. (13a) erhalten wir
£ £
P=p+ 4, ele 4 4,e e, (14a)
Z_ _ z
n=mn, + Bieln 4 Be In, (14Db)

Wegen p — p,, fiir z — oo bzw. n — n, fiir 2 — —oo miissen 4, und B, verschwinden.

Das anliegende Feld und der mit ihm verbundene Potentialabfall in der Raumladungsschicht
bedingen eine Veridnderung der Ladungstrigerkonzentrationen. Ist die Temperatur nicht zu
niedrig und sind die Konzentrationen der Ladungstriger nicht zu hoch, so kann die BoLTZMANN-
Statistik angewandt werden. Man erhélt nach (5.3./3a) und (5.3. /3b) bei einem Potentialabfall
u fur die Locherkonzentration

eu
p(zn) ::pnekT (15a)
und fiir die Elektronenkonzentration

eu

n(zp) = ny kT (15Db)

Diese Randbedingungen sind auf die Porssonsche Gleichung begriindet. Um sie zu erfiillen, setzen
wir

o I
Ay =pa (e” - 1) elr, (162)

£ _ e
B, = n, (e"T — 1) e Im. (16b)

Damit folgt aus (14a) bzw. (14b)

P(2) = o + [P(z) — Pal e 2 , (17a)
n(z) = 7p + [n(zp - np] e~Ln . (17b)

Fiir die Strome ergibt sich nach (6) bzw. (7)

o™ (z) = e =& [p(zn) ATE (18a)

W) = ¢ 22 ney) g 6 T (18b)

n
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Als konstanten Gesamtstrom § erhalten wir wegen (5) aus (18a) und (18b) in Verbindung mit
(15a) und (15b) a

eu
. gt . D D -
§ = )+ P e) = e (—L-p pot 22 n,,) (e“ - 1). (19)
D “n

Wie aus (19) hervorgeht, zeigt die Strom-Spannungs-Kennlinie der pn-Diode den gleichen Ver-
lauf wie die Kennlinie beim Kontakt zwischen n-Halbleiter und Metall. DurchlaBrichtung fir
den elektrischen Strom ist die Richtung von der p- zur n-Schicht (# > 0). In dieser Richtung
steigt der Strom fir groBe Werte u exponentiell an. In der Sperrichtung (z < 0), von der n- zur
p-Schicht weisend, erreicht der Strom bereits fir sehr kleine Werte |u| einen Grenzwert. Er wird
als Sperrstrom bezeichnet (vgl. Bild 5.3.11).

Durchlafirichtung
—_—

Durchlalistrom

§ u
Sperrstrom

Bild 5.3.11. Schaltung einer pn-Diode in Durchlafirichtung
mit der Strom-Spannungs-Kennlinie

Nach (i1) kann man bei Spannungen % < 0 fiir j den Sperrstrom einsetzen, wenn {u| Werte
oberhalb

erreicht, mit den vorgegebenen GréBen fiir

. —23 |
[uo| = 138 1077300  _ 0,026 V.
1,60 - 10-12

Als Sperrstrom erhilt man aus (19)

. D D, 5
Jsperr = —€ ('L—p Pn + Tn np)' (20)
D n
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Die vorgegebenen Werte eingesetzt, folgt

—2
Jsperr = —1,60 - 10712 . 2 . %8—4 100 A m—2 = —0,32 pA m~2.

5.3.8. pnp-Transistor in Basisschaltung

Der Transistor enthélt als wesentliche Bestandteile seiner Verstarkerfunktion zwei pn-Uberginge.
Er kann als pnp-Transistor nach Bild 5.3.12 mit einem n-Bereich in der Mitte und je einem
p-Bereich an den beiden Enden oder als npn-Transistor nach Bild 5.3.13 aufgebaut sein.

E c
E Ugp>0 Ug<0 C ——[ n P n
P P B
8
il - | . 1

- kil — {HHH

- + - =
Blid 5.3.12. pnp-Transistor in Basis- Bild 5.3.13. npn-Transistor in Basisschaltung
schaltung.

E Emitterelektrode, B Basiselektrode,
C Kollektorelektrode

Von den beiden pn-Ubergingen des Transistors ist stets einer in DurchlaBrichtung, der andere
in Sperrichtung gepolt. Auf der in Durchlafirichtung gepolten Seite wird die duBere Schicht als
Emitter (E) definiert. Die duBere Schicht auf der in Sperrichtung gepolten Seite heifit Kollektor
(C). Beide duflere Schichten haben eine Dicke, die groB gegen die Diffusionslénge der Minoritéts-
triger ist. Dagegen besitzt die mittlere Schicht, die Basis (B), nur eine geringe Dicke, die klein
gegen die Diffusionsldange ist. Infolgedessen beeinflussen sich die beiden pn-Ubergéi.nge.

Der Stromkreis iiber Emitter und Basis mit dem Spannungsabfall wgg am pn-Ubergang heifit
Emitterkreis, der Stromkreis iiber Basis und Kollektor mit dem Spannungsabfall ucg Kollektor-
kreis. |ucp| wird in der Regel bedeutend gréBer gewahlt als lugp|.

Stellen Sie die Gleichungen firr die Stréme und Spannungen in einem .pnp-Transistor auf. Be-
rechnen Sie den Strom und die Spannung auf der Kollektorseite infolge eines auf die Emitterseite
iibertragenen Wechselspannungssignals. Berechnen Sie die Wechselstromiibersetzung bei kollek-
torseitigem KurzschluB sowie die Spannungsverstirkung bei kollektorseitigem Leerlauf.

Den Rechnungen ist ein pnp-Transistor in Basisschaltung nach Bild 5.3.12 zugrunde zu legen,
fiir den folgende Daten vorgegeben sind: Die Dicke der Basisschicht betrigt d = 0,1 mm, die
Ditffusionslénge der Minoritatstriger in der Basis ist L, = 0,6 mm. Fir die Minoritétstriger
seien die Diffusionslingen L,g = L;c = 1 mm. Die Konzentrationen der Minoritdtstriger im
Emitter bzw. im Kollektor seien ng = ng = 102 m=3. Das Verhaltnis der Beweglichkeiten be-
trage by /b, = 10.

Berechnen Sie die Wechselstromiibersetzung bei kollektorseitigem Kurzschlu. Welche Potential-
differenz Ugg wird zwischen Emitter und Kollektor wirksam, wenn bei kollektorseitigem Leerlauf
zwischen dem Ausgangs- und dem Eingangssignal die Spannungsiibersetzung 90 gemessen wird?
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Losung:

Der StromfluB durch einen pn-Ubergang wird nach 5.3.7. in erster Naherung aus dem Verhalten
der Minoritéitstriager berechnet. Auch die Strome beim Transistor ergeben sich aus der Injektion
der Minorititstrager. Nach (5.3.7./18b) bzw. (5.3.7./19) folgt fiir die von Elektronen im Emitter
des pnp-Transistors verursachte elektrische Stromdichte

eUEB

. eD, -

g = —2 ng (e” - 1)- (1)
LnE

Fiir die von Elektronen im Kollektor verursachte Stromdichte folgt

eD ( wla)
fnc = o \L —e*7 ). @)
nC

In der Basis ist der Strom der Defektelektronen als den Minorititstrigern von Interesse. Das
Raumladungsgebiet erstreckt sich iiber die gesamte Basis. Die Ergebnisse nach 5.3.7., wo aus-
gedehnte Bereiche vorausgesetzt werden, kénnen daher nicht unmittelbar iibernommen werden.
Wir gehen von (5.3.7./13) aus, wo wir p, durch pp ersetzen. Als allgemeine Losung folgt fiir die
Locher in der Basis

3 z
p(2) =pg +del»  Be Ir. 3)
An der Kontaktstelle z = z¢ zum Kollektor muf3
eUCB
p(zc) = ppe *T 4)

an der Kontaktstelle z = zg zum Emitter
CUEB
p(zg) =pge *T (5)

erfiillt sein. Damit sind zwei Gleichungen zur Bestimmung der Koeffizienten 4 und B gegeben.
Werden die Wurzeln in (3) eingesetzt, ergibt sich

eucs CUEB
(e kT —1) sinhzZ—zE+(e KT l)sinhz—CL——z
plz)=pp | 1+ L 3 . (6)
sinh —
P

Darin gibt d = zg —zg die Dicke der Basis an. Durch Differenzieren erhalten wir gemif (5.2./8)
den Basistrom fiir 2 = 2g

eucs
. eD o T _ 1 ( e ) d
7p(zE) = — TEZ’B —d —\e ¥T — 1) coth - | (7)
P sinh — )
D
Fiir z = z¢ ergibt sich aus (6)
i " euEs
euUcB
, eD, d ekl _1
olzc) = — - PB (e W — 1) ooth —— — ———— 1. ®)
P P sinh —
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Die Diffusionskoeffizienten lassen sich mittels der EinsTeIN-Relation (5.2./8a) ausdriicken. Der
gesamte Emitter- bzw. Kollektorstrom folgt als Summe des Stromes der Elektronen und der
Locher:

b d b CUEB b €UCB
jE:(L—ppBCOthL_+In nE)kT(ekT —1)+—I)—I—7B_d(1—'ekT),
P P “nE L,sinh —
L, 9)
CUEB €UCB
jc=_bl’@k_T_(ekT _1)+ bpﬂcothi_FM IcT(I—ekT).(IO)
L, L, Lyc

Ly sinh —
D

Strom und Spannung in einem Transistor kénnen in den Betriebsanteil Jg, J¢ bzw. Ugg, Ucp
und den Signalanteil Jygel®t, Jogel®t bzw. Uygpel®t, U,cpel®t zerlegt werden:

ie =Jg + Jogel*t, jo=Jc¢ + Joce®l; }

ugp = Ugp + Uogpe®!, ucp = Ucp + Uycpel®’.

(11)

Die Betriebsspannungen und -stréme sind fiir den Betrieb des Transistors erforderlich. Dagegen
geben Uyppei®t bzw. Uycpel®t und Jygei®t bzw. Jycei®t Spannungs- und Stromabweichungen
von den Betriebswerten an. Die Signale treten in der Regel als Wechselvorginge auf, worauf der
Faktor ei®t hinweist.

Zur Berechnung der Signalgrofen entwickeln wir

eu e eU
T - (U+ Ut - iwt
kT _ kT — e kT (1—{—%‘_’;—-&-“)- (12)
Damit folgt aus (9) und (10) fir die Amplituden
eUss eUcs
b d b —7 eb T
Jog =¢ (Tp Pp coth T L" nE) e FT Upgp — — 2B e T [y,
p p nk L, sinh —
L, (13)
eUEB eUcs
b —_—
Jog= —2BL __ kT oo e (EPP_B coth _d_+ ﬁ'_"_g) e T Uyp. (14)
L, L, Ly

L,sinh &
LP

Die Kurzschluistromiibersetzung gibt das Verhiltnis der Stromamplituden bei ausgangsseitigem
Kurzschlul Uycp = 0 an. Hierfiir erhalten wir

( JoC) _ 1
JoE /Uscn=0 coshi—l— Ly TE by

. d
—& sinh —
i) LnE PB bp Lp

(15)

Fur die Leerlaufspannungsverstirkung, die Spannungsverstirkung bei ausgangsseitigem Leer-
lauf Joc = 0, ergibt sich aus (13) und (14)
e(Ues—Ucg)
( UOCB) _ e kT (16)
Uoes /sie=0 cosh 4 + Lo 7 b sinh 4
L, Ly 7B b L,
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Wegen

cosh —d— >1
P

ist der Nenner sowohl in (15) als auch in (16) gréBer als eins. Die KurzschluBstromiibersetzung
bleibt daher in der Basisschaltung nach den Bildern 5.3.12 und 5.3.13 stets unter eins. Dagegen

kann wegen

Ucp <0

die Exponentialfunktion in (16) auf sehr grofe Werte ansteigen und eine groBe Spannungs-
itbersetzung erfolgen.
Aus (16) folgt durch Auflésen nach Ugg — Ucp = Ugc

Ugc = * [(@) (cosh A + Lo mc b ogon i)] . (162)
e UOEB Joc=0 Lp LnC PB bp Lp

Mit den vorgegebenén Daten erhalten wir aus (15)

aus (16a)

(_J oc - ! — 0,97
Jor)Uscs=0 1,02 4-0,5-0,01 - 10 - 0,20 =

1,38 - 10-22 . 300

Unee —
EC 1,60 - 101

In [90(1,02 + 0,5 - 0,01 - 10 - 0,20)] V = 120 mV..

Anmerkung: Der Transistor als aktiver Vierpol, die Grundlagen der Verstirkung fiir die ver-
schiedenen Schaltungen eines Transistors, sind in [4] 4.5. dargestellt.

A

A53.1.
A53.2.
A 5.3.3.

A5.34.

A 5.3.5.

Aufgaben

An n-leitendes Silizium mit der Elektronenkonzentration n = 10 m—3 wird
senkrecht zur Oberfliche ein elektrisches Feld der Stirke F = 2,5.10*V m™!
gelegt. Wie gro8 ist die Bandverbiegung an der Oberfliche des Kristalls?

Durch den Einbau von Akzeptoren an der Oberfliche von Silizium gegen Vakuum
erfolgt eine Verschiebung der Eneérgiebénder um 0,1 eV. Ein'auf den Kristall ge-
richtetes elektrisches Feld soll diese Bandverschiebung an der Oberfliche aufheben.
Welche GroBle und welche Richtung mufl dieses haben, wenn die DeBYE-Lénge
1 pum betragt?

Eigenleitendes Silizium enthalte an seiner Oberfliche Akzeptoren; von denen bei
T =300K N = 10’ m~% negativ geladen seien. Stellen Sie die Formel fiir die
Bandverbiegung auf und bestimmen Sie diese fiir die Oberfliche des Kristalls
gegen Vakuum.

Welche Oberflichenkonzentration geladener Donatoren ist in eigenleitendem
Silizium bei 300 K erforderlich, um an der Oberfliche gegen Vakuum eine Band-
verschiebung von 0,5 eV zu bewirken?

Die Obertlache eines Halbleiters gegen Vakuum sei mit Molekiilen dotiert, die das
Dipolmoment m, = 1,0 - 10-30 Asm besitzen. Bestimmen Sie die Bandverbiegung,
wenn die Fremdmolekiile in der Konzentration N = 10'® m~2 auftreten.
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A53.7.

A 5.38.

A 53.9.

A 5.3.10.
A 5.3.11.

A 5.3.12.

A 5.3.13.

A 5.3.14.

A 5.3.15.

A 5.3.16.

A 5317,

A 5.3.18.

A 5.3.19.
A 5.3.20.

A 53.2t.

Ein n-Halbleiter mit der Elektronenkonzentration n = 10'® m—2 enthélt auf seiner
Oberfliche geladene Donatoren in der Dichte N = 10'? m~2. Die Dielektrizitdtszahl

" des Halbleiters ist' &, =12. Berechnen Sie die Bandverbiegung an- der Oberfliche

gegen Vakuum bei 300 K.
Stellen Sie die Neutralitdtsbedingung fiir einen Halbleiter mit der Oberflichen-
ladungsdichte —Ne auf.
Die Oberflichenleitfihigkeit in einem Eigenhalbleiter sei y = 2,0.-10-7 Q. Be-
rechnen Sie das Oberflichenpotential, wenn folgende Daten bekannt sind:
by =0,12m2? V151 b, = 0,06 m2V-1s e = 12,75 = 2,5 - 10 m=3, 7 = 300 K.
An einen n-Halbleiter mit der-Oberflichenleitfdhigkeit 4 wird ein elektrisches Feld
Ey=2-10°Vm? in Richtung der Oberflichennormalen angelegt und dabei
y = 2.10-% Q1 gemessen. Fernersein = 2 - 101® m=3, ¢,.= 8,0,b, = 0,40 m2 V-1 571,
= 300 K. Bestimmen Sie die Ladungsdichte und das Diffusionspotential an der
Oberfla,che des Halbleiters.
Die Bandverbiegung in einem n-Halbleiter betrage bei 300K an der Kontakt-
stelle gegen die p-Schicht 0,4 eV. Berechnen Sie den Faktor der Elektronenver-
armung.
In einer pn-Diode sei an der Kontaktstelle bei 7' = 300 K_die Elektronenkonzen-
tration um den Faktor 10~ gegeniiber dem Inneren der n-Schicht verringert. Be-
rechnen Sie das Diffusionspotential und die Bandverschiebung.
In einem n-Halbleiter trete an der Kontaktstelle gegen Metall eine Bandverschie-
bung von 0,25 eV auf. Die DEBYE-Linge sei 2,5 um, die Elektronenkonzentration
im Innern des Halbleiters 5 - 108 m—3. Schitzen Sie die Dichte des Sperrstromes
ab, wenn die Elektronenbeweglichkeit b, = 0,7 m? V-t 571 betragt (7' = 300 K).
Berechnen Sie die Diffusionsspannung zw1schen der p- und der n-Schicht in einer
pn-Diode aus Silizium, wenn die Elektronenkonzentration der p- Schlcht
2,4 - 108 m~3, die der n-Schicht 6,5 - 10*2 m—3 betragt.
Berechnen Sie zur vorangegangenen Aufgabe die Elektronenkonzentration in der
Mitte der Diode am Ubergang zwischen p- und n-Schicht. '
Berechnen Sie den Sperrstrom einer pn-Diode, wenn die Konzentration der Ak-
zeptoren in der p-Schicht N, = 10% m~—3, die Konzentration der Donatoren in der
n-Schicht Np = 2 -'10% m—3 betrigt. Sdmtliche Fremdatome seien ionisiert. Fir
den Eigenhalbleiter sei ng = 10 m—3; ferner sei D, =2 - 10 m?s™, D, =
4.103m?s7?, L, = 0,8 mm, L, _05mm
In einer pn- Dlode wird der Sperrstrom 0,01 wA m—2 gemessen. Die Konzentra,tlon
der Minoritatstrager betrigt 10°m-3; die Diffusionskoeffizienten sind D, = D
=5-10"*m?s1. Berechnen Sie die D]fqulonsla,nge unter der Voraussetzung,
daB diese fiir die beiden Sorten der Minorititstrager iibereinstimmt.
Die Relaxationszeit der Minoritétstriger betrage auf beiden Seiten einer pn-Dlode
0,1 ms. Die Konzentrationen seien n, = p, = 10°m—3. Dagegen seien die Beweg-
lichkeiten verschieden: b, = 0,1 m2 V-1g, b, = 0,6 m? V-1 sI. Berechnen Sie
den Sperrstrom. -
Berechnen Si¢ nach der Diodentheorie den Sperrstrom beim Kontakt n-leitenden
Germaniums mit einem ideal leitenden Metall. Die Elektronenkonzentration an
der Kontaktstelle sei n'= 1012 m—3 (vgl Tab. 5.1.4).
Stellen Sie die Formeln fiir die Signalspannurig und fiir den Signalstrom bei einem
npn-Transistor in Basisschaltung auf.
Stellen Sie die Formeln fiir die KurzschluBstromiibersetzung und fiir die Leerlauf-
spannungsverstirkung bei einem npn-Transistor auf.

“Leiten Sie die Formel fiir die Spannungsiibérsetzung eines kollektorseitigen Signals

bei emitterseitigem Leerlauf in einem basisgeschalteten pnp-Transistor ab.
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A 5.3.22. Wie groB ist die Stromiibersetzung in einem basisgeschalteten Transistor bei
emitterseitigem Kurzschluf Uygp = 0?

A 5.3.23. Stellen Sie die Formel fiir den kollektorseitigen Eingangswiderstand bei ermitter-
seitigem KurzschluB Uggg = 0 auf, wenn ein pnp-Transistor in Basisschaltung

vorliegt.
5.4. Strahlungseffekte in idealen und realen Kristallen
E Einfiihrung
Lumaneszenz

Durch Anregung in Form von Licht- oder Korpuskularstrahlen werden Elektronen
auf ein hoheres Energieniveau gehoben. Ihre Riickkehr zu tieferen Energiezusténden
erfolgt entweder strahlungslos, z. B. wenn die iiberschiissige Energie in Form von
Wirme an das Kristallgitter abgegeben wird, oder ist mit der Emission von Licht-
wellen verbunden. Die Ausstrahlung von Licht durch einen Kristall nach vorher-
gehender Anregung von auflen heiflt Lumineszenz.

Man unterscheidet zwischen zwei Erscheinungsformen der Lumineszenz. Setzt die
Emission bereits wahrend der Anregung ein, wobei Verzogerungen bis zur GroBen-
ordnung von 10 ns zugelassen werden, so wird sie als Fluoreszenz bezeichnet. Die
Zeit 10 ns entspricht etwa der Lebensdauer eines atomaren Zustandes bei Ladungs-
iibergdngen mit Ausstrahlung im sichtbaren bzw. nahe benachbarten infraroten oder
ultravioletten Bereich. .

Die Emission mit groBeren Verzogerungszeiten (bis zu mehreren Stunden), praktisch
die Emission nach Ausschalten der dulleren Anregung, heilt Phosphoreszenz bzw.
Nachleuchten.

Lumineszenz tritt in einer grofen Zahl von Kristallen auf.

Der Wirkungsgrad, das Verhédltnis zwischen der aufgewandten Strahlungsenergie
und der nutzbaren Emissionsstrahlung, ist jedoch meist nur klein. Besonders fiir
die Phosphoreszenz von groBler Bedeutung sind Verbindungen zwischen Elementen
der zweiten und der sechsten Spalte des Periodensystems. Dazu gehoren insbesondere
Zinksulfid ZnS und Kadmiumsulfid CdS. Die Struktur dieser beiden Stoffe entspricht
der der III-V-Halbleiter.

Der Wirkungsgrad héngt im starken Mafle von Fremdsubstanzen ab. Werden z. B. in
den reinen II-VI-Kristall als Fremdsubstanzen in geringem MafBe einwertige Kupfer-,
Silber- oder Goldatome anstelle der zweiwertigen Zink- oder Kadmiumatome ein-
gebaut, so bleibt im Gitter ein Elektronenzustand unbesetzt. Infolgedessen entsteht
wie bei den Akzeptoren des Germanium- oder Siliziumkristalls ein Stérterm nahe
der oberen Kante des Valenzbandes. Durch ihn wird die Lumineszenz aktiviert.
Die Fremdatome, deren Einbau das Auftreten von Leuchteffekten sichtlich férdert
bzw. aktiviert, heiBen daher Aktivatoren, die erzeugten Stérterme Aktivatorniveaus.
Sie werden mit W, gekennzeichnet. Der gleiche Effekt 148t sich mit Elementen der
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fiinften Spalte erzielen, wenn diese an Stelle eines sechswertigen Schwefelatoms in das
Gitter eingebaut werden.

Beim Einbau eines Elementes der dritten Spalte an Stelle eines zweiwertigen Zink-
atoms oder eines Elementes der siebenten Spalte an Stelle eines sechswertigen
Schwefelatoms tritt wie bei Donatoren ein UberschuBelektron auf. Der erzeugte Stor-
term W, liegt nahe der Leitungsbandkante Wy. Fiir die Lumineszenz haben diese

/\/\/\/
I Leitungsband
Aktivatorterm
1
MJ Valenzband

Bild 5.4.1. Elektroneniibergénge bei der Fluoreszenz.

a) Grundgitterabsorption

b) Ubergang in den Aktivatorterm unter Strahlungsaussendung
(Fluoreszenzstrahlung)

c) strahlungsloser Ubergang in das Valenzband

Stoérterme die Eigenschaft von Haftstellen. Sie fangen Elektronen aus dem Leitungs-
band ein, verzogern ihre Riickkehr in den Aktivatorterm bzw. in das Valenzband und
speichern damit Energie.

Bild 5.4.1 und Bild 5.4.2 zeigen das Energieschema zur Erkldrung der Lumineszenz.
Vielfach werden verschiedene Fremdstoffe verwandt, so daB mehrere Aktivator-
und Haftstellenniveaus auftreten.

Fluoreszenz

Bei den Strahlungsprozessen sind eine Vielzahl von Varianten moglich. Die Fluores-
zenz vollzieht sich in der Regel in folgenden Schritten nach Bild 5.4.1:

a) Durch Aufnahme von Anregungsenergie gelangen Elektronen vom Valenz- in das
Leitungsband (Grundgitterabsorption). Die eingestrahlte Quantenenergie muB so
grof sein, dafl die Energieliicke iiberwunden wird und freie Plitze im Leitungsband
besetzt werden konnen. Durch die Anregung werden Elektronenplitze im Valenz-
band frei. Daher gehen im verstidrkten Mafe Elektronen aus dem Aktivatorniveau
in das Valenzband tiber und fiillen dieses wieder auf.

b) Nach kurzer Verweilzeit im Leitungsband fallen die Elektronen in einen Aktivator-
term, wobei Strahlung emittiert wird (Fluoreszenz). Da in den meisten Féllen das
Valenzband nach der Anregung kurzzeitig wieder mit Elektronen aus dem Aktivator-
term aufgefiillt wird, stehen hier nur im beschrénktem Umfang Elektronenplitze
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zur. Verfiigung. Aktivatorterme sind daher bei den Elektroneniibergingen unter
Aussendung von Strahlung gegeniiber dem Valenzband bevorzugt. Infolgedessen
weist die emittierte gegeniiber der anregenden Strahlung eine kleinere Quanten-
energie, d. h. eine Rotverschiebung auf. Sie wird als Stokessche Verschiebung be-
zeichnet.

¢) Vom Aktivatorniveau kehren die Elektronen in das Valenzband zuriick, solange
hier durch duBere Anregung freie Plitze erzeugt werden. Der Ubergang vom Akti-
vatorniveau in das Valenzband erfolgt strahlungslos.

— T —

[ (3) Leitungsband
(Anregungsniveau)

(2) Haftstellenterm

(metastabiles Zwischenniveau )

d > (1) Aktivatorterm

(0) Valenzband
(Ausgangsniveau)

Bild 5.4.2. Elektroneniibergdnge béi der Phosphoreszenz und bei der Laser-
strahlung.

a) Grundgitterabsorption (Pumpen)

b) strahlungsloser Ubergang vom Leitungsband (Anregungsniveau 3) in Haftstellen
(metastabiles Zwischenniveau 2)

¢) Ubergang vom Haftstellenniveau (2) in das Aktivatorniveau (I). Beim Laser
lawinenartiger Proze8. Emission von Strahlung

d) strahlungsloser Ubergang auf das Ausgangsniveau (0)

Phosphoreszenz

Die Phosphoreszenz vollzieht sich in der Regel

a) in der Anregung durch die Grundgitterabsorption wie die Fluoreszenz. Im Gegen-
satz dazu gehen die Elektronen danach jedoch

b) in eine Haftstelle iiber. Hier kénnen sie fiir lingere Zeit verweilen. In den aktiven
Medien der Laser (vgl. 5.4.2.) werden dabei fiir die Elektronenkonzentration der
Haftstellenniveaus so groBe Werte erreicht, dafl damit die Besetzung der Aktivator-
niveaus iibertroffen wird. Der hiermit erzeugte metastabile Zustand wird als Be-
setzupgsumkehr bezeichnet. Aus den Haftstellenniveaus gehen die Elektronen

¢) in einen Aktivatorterm iiber, wobei Strahlung emittiert wird. Bei den Lasern voll-
zieht sich dieser ProzeB infolge der erzeugten Besetzungsumkehr lawinenartig. Aus
den Aktivatorniveaus kehren die Elektronen

d) strahlungslos in das Valenzband zuriick.

Bild 5.4.2 zeigt den ProzeB der Phosphoreszenz graphisch.
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Farbe der Kristalle

Von der Lumineszenz ist die Farbe der Kristalle zu unterscheiden. Lumineszenz
wird durch Strahlungsiibergéinge der Ladungstriger nach duBerer Anregung ver-
ursacht. Im Gegensatz dazu entsteht die Farbe eines Kristalls als Folge der Ab-
sorption im Auf- oder Durchlicht. Die Spektralbereiche der absorbierten Strahlung
werden durch die Energiebidnder und Stérstellenniveaus sowie durch die Wahr-

a) V'\/T/\/* b) A

maligeblich
far Farbe

e

Intensitat

.

I blau_ A, rot
sichtbar

/_,_»\__’_/\J Wellenlinge A

Bild 5.4.3. a) Elektroneniibergéinge b) Absorptionskante A, im durchgehenden Licht

scheinlichkeiten fiir Ubergéinge bestimmt. Bezeichnet AW die Energiedifferenz
zwischen einem Stérterm und einem breiten Energieband bzw. zwei Energiebéndern,
so werden alle Frequenzen '

v>vu=—Ah—W (1)

bzw. alle Wellenldngen unterhalb der Absorptionskante 4, absorbiert:

he
AW

(vgl. Bild 5.4.3). Die nichtabsorbierten Wellen des sichtbaren Bereiches bestimmen
die Farbe des Kristalls.
Bei farblosen bzw. durchsichtigen Kristallen diirfen keine Elektronen- oder Schwin-
gungsiibergénge stattfinden, die Licht der Wellenldnge 4 > 4, = 360 nm absorbieren.
Der Wellenldnge 4, entspricht eine Breite der Energieliicke

he

AW ===, (1b)

A<y = (1a)

in Zahlen
6,63 -10-34.3.108

AW = =505 1,60 - 10-19

eV =3,46eV.:

Soll sichtbares Licht nicht absorbiert werden, so muf8 der Abstand der Energiebénder
groBer als 3,45 eV sein. Die groBe Differenz zwischen dem Valenz- und dem Leitungs-
band bei farblosen Kristallen bedingt, daf diese in bezug auf ihre elektrische Leit-
fahigkeit Isolatoren sind.
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Beispiel 5.4.1. Diamant

Fir Diamant betragt die Energieliicke nach Tab. 5.1.1 AW = 5,3 eV, uberschreitet also die
Schranke nach (1). Diamant ohne Zusétze ist daher farblos und ein Isolator.

Soll in einem Halbleiter der gesamte sichtbare Bereich Elektroneniibergénge hervor-
rufen kénnen, so muB fiir die Energieliicke die Ungleichung

h
AW < = (2)
Ao B
bestehen. Darin gibt 1y = 740 nm die obere Grenze des sichtbaren Bereiches an.
Mit den vorgegebenen Werten folgt AW < 1,84 eV.

Beispiel 5.4.2. Silizium und Germanium, metallisch glinzende Kristalle

Fir Silizium betriagt die Bandliicke nach Tab. 5.1.1 AW = 1,14 eV, fur Germanium AW = 0,67 eV.
Beide Stoffe sind im sichtbaren Bereich lichtundurchlissig. Thre Farbe entspricht der der Metalle.
In Metallen konnen alle Wellenlédngen des sichtbaren Bereiches zu Elektroneniibergingen fiithren.
Sie sind daher bereits in diinnen Schichten lichtundurchléssig. Bei ihrem metallisch glinzenden
Aussehen kommt das gute Reflexionsvermogen infolge der Gitterstruktur zur Wirkung.

Farbige Kristalle sind entweder durch die Breite der Energieliicke oder durch Zu-
sitze von Fremdstoffen zu begriinden.

Beispiel 5.4.8. Kadmiumsulfid

Die Energieliicke bei CdS betragt AW = 2,42 eV. Das entspricht der Wellenlénge

6,63 - 103 .3.108
2,42 - 1,60 - 107°

A= fcﬁ bzw. 4, = m = 513 nm."

Reines CdS ist daher gelb. Licht der Wellenlinge A << 562 nm wird absorbiert; die nichtabsor-
bierten Wellen ergeben die gelbe Féarbung.

Beispiel 5.4.4. Rubin und Saphir

In reinem Zustand ist Al,O; farblos. Das Gitter des Rubins enthilt mit einem Anteil von 0,5%,
an Stelle von Al*+-Ionen Cr*+-Tonen. Dadurch tritt ein Stérterm auf, der eine im Roten liegende
Absorptionsbande und damit die Rotfarbung des Kristalls hervorruft.

Die Blaufirbung des Saphirs entsteht durch einen Stérterm infolge von Ti+-Zusétzen.

Bilanzgleichungen der Strahlungsprozesse
Im folgenden werden fiir die Wahrscheinlichkeiten von Ubergéingen eines Elektrons
wahrend einer Sekunde folgende GréfBen eingefiihrt:

oy Leitungsband — Haftstelle,
Bn Leitungsband — Aktivator,
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yn Haftstelle — Leitungsband,
op Aktivator — Valenzband,
Bp Haftstelle — Valenzband,
yp Valenzband — Aktivator.

Ng bezeichnet im folgenden die Konzentration der Haftstellen, N, die der Akti-
vatoren. Ferner gibt ng die Konzentration der Elektronen in Haftstellen, p, die der
Defektelektronen in Aktivatoren an. Die Wahrscheinlichkeit fiir andere Ubergéinge
sei Null.

Mit der duBeren Erzeugerquote bzw. Anregungsintensitdit G nach 5.2. ergibt sich
unter Beriicksichtigung des Pauri-Prinzips analog den Bilanzgleichungen (5.2./14)
fiir die Anderung der Konzentration in den Béndern und Stérstellenniveaus

dn
-at— =G — ocnn(NH — nH) + Yoty — ﬁnnpry
dp
ke G — app(Ny — Pa) + yoPa — PoPrm,
: (3)
n
T;I‘ — ocnn(NH — nH) — Yam — ﬁpan’
d
% = opP(Na — Pa) — ypPa — Banpa-
J

Dabei ist vorausgesetzt, daBl die duBere Anregung nur in Form der Grundgitter-
absorption vor sich geht.

In der Regel ist nur der Ubergang vom Leitungsband zu einem Aktivatorniveau
mit einer Strahlungsemission verbunden. Die anderen Uberginge erfolgen strahlungs-
los.

(3) kann als System von vier Gleichungen zur Bestimmung der vier Unbekannten
n, P, ng, pa aufgefaBt werden. Losungen existieren fiir Spezialfalle. ‘
Im stationiren Fall

d

erhdlt man durch Addition der vier Gleichungen (3) und Aufl6sen nach der An-
regungsintensitit
G = fanpa + Bppna. (5)

Die Anregung wird danach einmal fiir Uberginge vom Leitungsband zum Aktivator-
niveau verwandt, die im allgemeinen unter Strahlungsemission verlaufen, das andere
Mal dient sie strahlungslosen Ubergéingen der Defektelektronen vom Valenzband zur
Haftstelle.

Fiir die Leuchtintensitéit erhilt man

L = Bunp,. 6)

292 Schilling, Festkérperphysik
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Bezeichnet man das Verhéltnis der Strahlungsenergie zur Energie der strahlungslosen
Prozesse mit ¢, so gilt

Bunps
= tofa ()
Boprm
Nach (4) und (6) kann man fiir die Leuchtintensitét
e
= 8
L e+ 1 ¢ (8)

schreiben. Als Wirkungsfaktor bzw. Wirkungsgrad folgt daraus

__& _ Banpa
e+ 1  punpa + foprm

n

P Probleme

5.4.1. Wirkungsgrad und Ubergangswahrscheinlichkeit

Fir den Wirkungsgrad einer stationdren Fluoreszenzstrahlung ergibt sich durch Messung der
Intensitdt des anregenden und der des emittierten Lichtes = 0,2. Das Medium sei mit Akti-
vatoren in der Konzentration Ny = 5 - 10?2 m—3, mit Haftstellen in der Konzentration Ny =
2.10%22 m~2 dotiert. Die Absténde der Stérterme von den Energiebandkanten betragen W, — Wy
=0,02eV, Wy, — Wy = 0,01 eV. Es werde bei Zimmertemperatur 7' = 300 K gemessen. Zu
berechnen ist das Verhiltnis der Ubergangswahrscheinlichkeiten zwischen den Elektronen-
iibergingen vom Leitungsband zum Aktivator und den Ubergingen der Defektelektronen vom
Valenzband in eine Haftstelle.

Losung:

Nach der dritten und vierten Gleichung (5.4./3) bestehen im stationidren Falle die Beziehungen
oan(Nyg — ng) n — ﬁpnﬂp = Vn"H> (1)
—Pnpan + op(Ny — Da) P = VpPa- (2)

Hieraus folgt fiir das Verhaltnis zwischen den Konzentrationen der Elektronen und der Defekt-
elektronen
2 _ spynnu(NVa — pa) T Boypnupa
» onyp(Nu — ng) -+ Buyanupa
Weichen Wy von Wy, und W, von Wy nur wenig ab, so sind bei Zimmertemperatur die Haft-
stellen nur schwach mit Elektronen, die Aktivatoren nur schwach mit Defektelektronen besetzt.
Daran dndert sich auch bei schwacher Einwirkung einer dufleren Strahlungsquelle nichts. Wir

setzen dementsprechend voraus, dafl durch die Einwirkung von auflen die im thermischen Gleich-
gewicht stehenden Beziehungen

ng LNy, paL DNy (4)

®3)
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nicht verindert werden. Damit erhilt man fiir das Verhiltnis der Elektronen- zur Locherkon-
zentration

2 _ opvunmula + Boyonupa )

p o‘n'}’ppAN H + BoYnuPA

Wir nehmen an, daB8 &y, etwa die gleiche GroBenordnung wie Byyp, ony, etwa die gleiche GréBen-
ordnung wie f,y, hat. Damit ergibt sich durch Einsetzen von (5) in (5.4./7) fiir das Verhiltnis
zwischen den Energien bei emittierenden und bei nichtemittierenden Prozessen

£ == ‘xpﬁn'ynNA A (6)

onPpypNu
Da bei schwacher Anregung nur geringfiigige Abweichungen vom thermischen Gleichgewicht
auftreten, kann man davon ausgehen, dafl im stationdren Gleichgewicht gendhert auch die Anzahl

der Elektroneniibergéinge zwischen dem Leitungsband und dem Haftstellenniveau in beiden
Richtungen gleich ist. Das bedeutet '

Yoty = oqn(Nyg — ny) bzw. Sn _  TH (7)
n nNy
Fir » kann der Gleichgewichtswert nach (5.1./16), fir ny der Gleichgewichtswert ny, nach (5.1./
21a) mit Ng = Np eingesetzt werden. Es folgt

1 Wi— Wa— kTlnyr

0.9

=—e & ®)
Yn n

mit Wg = Wp,yg =yp = —;— sowie 7 nach (5.1./13a).

Als Verhiltnis der Ubergangswahrscheinlichkeiten bei den Defektelektronen ergibt sich in gleicher
Weise:
1 Wa—Wv+kTlnya
» _ Lo wm ©)
p n
Wir setzen (8) und (9) in (6) ein und erhalten
(Wa—Wv)—(Wr—Wv)+kTIn 2=
A

e S kT . (10)

£ = ﬂnN A
BuNu
Diese Gleichung kann nach dem Verhiltnis der gesuchten Ubergangswahrscheinlichkeiten auf-
gelost werden. In Verbindung mit (5.4./9) folgt
. (Wa—Wy)—(Wr—Wz)+kTIn 2=
Bo _Nu_m - kT -~ “, (11)

e
Bo Nyl1—nq

Das Verhiltnis der Ubergangswahrscheinlichkeiten zwischen emittierenden und strahlungslosen
Ubergéingen hingt nicht nur vom gemessenen Wirkungsgrad 7, sondern auch von den Kon-
zentrationen der Haftstellen und der Aktivatoren sowie von den Energieabstinden W, — Wy
und Wy, — Wy ab. Mit den vorgegebenen Zahlen folgt

Bo _ 2-10% 0,2 ox [(0,02 —0,01)-1,60-10-1° — 1,38.10-23.300In 4

= =0,037.
Bo 5-10% 0,8 1,38 - 10-23 - 300 ]

22%
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5.4.2. Prinzip des Lasers

Strahlungsquellen, die durch induzierte Emission einen intensiven, scharf gebiindelten, ko-
hérenten Lichtstrahl erzeugen, heifien Laser. Der Frequenzbereich, fiir den Laser angeboten
werden, erstreckt sich vom Infraroten iiber das Sichtbare bis zum Ultravioletten. Nach dem
gleichen Prinzip konnen elcktromagnetische Wellen bis zum Meterbereich verstidrkt werden. Die
hierzu entwickelten Geréte heifen Maser.

Energiequelle
( Pumpe )

]

]
—_t F——— g~

aktives Medium : Laserimpuls

—_—f———— —— ] —_—

]

- i

Spiegel Resonator Spiége(

(undurchldssig) (teildurchldssig)

Bild 5.4.4. Priniipieller Aufbau des Lasers

Laser bzw. Maser bestehen nach Bild 5.4.4 aus dem Resonatorraum mit dem aktiven Medium und
der aufleren Energiequelle. Das aktive Medium befindet sich im elektromagnetischen Feld des
Resonators, der z. B. von zwei Spiegeln gebildet wird. Er ist so auf die von der Energiequelle
eingestrahlte Welle abgestimmt, daf3 die Phase der im aktiven Medium induzierten Strahlung
mit der Phase der auslosenden Welle iibereinstimmt und das emittierte Licht wieder in das aktive
Medium zuriickgekoppelt wird. Damit 148t sich erreichen, daB die Ausstrahlung der Lichtquanten
durch das aktive Medium in Form kurzzeitiger, verstarkter Impulse erfolgt.

Bei der induzierten Emission finden im aktiven Medium Elektroneniibergéinge zwischen vier
Energieniveaus statt (vgl. Bild 5.4.2). Durch die einfallende Energie werden die Elektronen vom
Grundzustand 0 auf das Anregungsniveau 3 gepumpt (a). Auf dem Anregungsniveau verweilen
die Elektronen nur kurze Zeit (Grofenordnung 10~7 s). Sie werden durch Haftstellen eingefangen
und fallen dabei auf das metastabile Zwischenniveau 2 herab (b). Der Zustand 2 kann bis zu
mehreren Millisekunden aufrechterhalten werden. Bei starker Pumpleistung vom Niveau 0 in
das Niveau 3 148t sich dadurch eine Uberbesetzung des metastabilen Niveaus 2 erreichen. In
diesem Zustand reichen bereits wenige von auflen zugefiilhrte Photonen zur Induzierung des
lawinenartig ablaufenden Strahlungsprozesses (c). Dabei gehen die Elektronen in das Aktivator-
niveau 1 iiber. Von hier kehren sie strahlungslos auf das Ausgangsniveau 0 zuriick (d).

Die Wahrscheinlichkeit fir einen Elektroneniibergang zwischen zwei Energiezusténden 1 und 2
unter dem EinfluB eines elektromagnetischen Strahlungsfeldes mit der magnetischen FluB3-
dichte B ist nach der quantenmechanischen Storungsrechnung im stationdren Gleichgewicht,
bezogen auf die Zeiteinheit und je Elektron,

s — ™n'B? 1
T RN N

(1

Darin geben
AW, =t Aw,, AW, =1%Aw, 2)
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die Breite der Energieniveaus an, my bedeutet das magnetische Moment des Elektrons im
Energiezustand I, y, kennzeichnet die magnetische Feldkonstante. Bestimmen Sie den Beset-
zungsiiberschuf fir einen Laser mit den folgenden Daten:

Aw, =Awy, =2 -10% s, mpy =1,5-1002%Vsm.
Der Gittefaktor des Hohlraumresonators (vgl. [4] 5.3.6.) sei

Q—2~v: ]‘:(»1—102"
Py
Darin gibt W die Energie im Resonatorraum ¥V, Py die Verlustleistung, somit Py/f (f Licht-
frequenz) die verlorene Energie wihrend einer Periode an. Das Resonatorvolumen sei V = 105 m?.
Berechnen Sie den fiir den Betrieb des Lasers erforderlichen BesetzungsiiberschuB.

Losung:

Wir betrachten die Energieniveaus I und 2 nach Bild 5.4.2 mit W, > W,. n, gebe die Anzahl
besetzter Plitze im oberen, n; im unteren Niveau an. Das einzelne Photon hat die Energie %w.
Die von den Atomen des aktiven Mediums nach auBlen abgegebene Energie ist proportional der

)@thwz

(2)

(1)

AW, hd o,
Bild 5.4.5. Zur Breite AW, und AW, der Energieniveaus I und 2

Differenz n, — n, zwischen den Atomen, die ein Photon %w emittieren, und denen, die ein Photon
fo absorbieren konnen. Nach (1) erhdlt man somit fir die je Sekunde vom aktiven Medium
abgegebene Energie
m2B?
= (ny — ny) b0 ———. 3
R TN A VA @
Darin ergibt sich
o=22="M (4)
[
aus der Differenz der Energieniveaus 7 und 2 nach Bild 5.4.5. An der Begrenzung des Resona-
tors geht Energie verloren. Die Grofle dieser Verlustleistung 148t sich aus dem Gitefaktor @ des
Resonators berechnen. Nach [4] 5.3.6. und nach der Gleichung fir die Energie des elektromagne-
tischen Feldes (vgl. [4] (1.4./21a)) erhdlt man
o B2
Py=——7V. (5)
V0 2,

Die ausgestrahlte Energie mu8l die Energieverluste iibertreffen:

P > Py. (6)
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Wir formen diese Forderung in eine Bedingungsgleichung fiir die Besetzungszahlen z, und n, um.
Es folgt
£
Ny — my > AW, 4 ?Wz v — (Aw; + Aw,) 7. ™
2u9m*Q 2u0m*Q

Fiir den Betrieb des Lasers ist somit erforderlich, daB das héher gelegene Niveau gegeniiber dem
tiefer liegenden einen hinreichend grofien Besetzungsiiberschufl aufweist.
Unter den vorgegebenen Bedingungen folgt

1,05 - 10-3¢- 4 - 1012

Ny — 1y > 1075 = 7,5- 10%.
2T ™M 91257105 (1,5~ 10-2)2 - 102

5.4.3. Mottsches Exziton

Die bei der Grundgitterabsorption gebildeten Quasiteilchen Elektron und Defektelektron ziehen
sich infolge ihrer entgegengesetzten Ladungen an. Hierdurch kann ein gebundenes Paar aus
Elektron und Defektelektron entstehen, das als Exziton bezeichnet wird. Es bewegt sich als
elektrisches neutrales Quasiteilchen durch den Kristall und transportiert dabei Energie. Sie
wird bei der Rekombination, wenn das Elektron in die Elektronenliicke des Valenzbandes zuriick-
kehrt, wieder abgegeben. Die Anregungsenergie fiir die Bildung eines Exzitons ist kleiner als die
Energieliicke zwischen Valenz- und Leitungsband.

Im Grenzfall des MoTTschen bzw. schwach gebundenen Exzitons ist die Anziehungsenergie

e2

Ulr) = — 1)
4TegEL T,
so klein, dal der mittlere Abstand 27, zwischen Elektron und Defektelektron groB gegen die
Gitterkonstante ist.
Messungen (vgl. [39] bis [42]) des Exzitonenspektrums von GaAs bei 7' = 21 K zeigen eine Serie,
die durch die Formel

=l —5— 2 m=1,23..) @
(4
mit
5o =1,225-10°m™1, 7 =2,74.103 m? (22)

wiedergegeben wird.
Bestimmen Sie daraus die Breite AW der Energieliicke und den Exzitonenradius 7,.

Losung:

Die Energieniveaus des Exzitons befinden sich zwischen dem Valenz- und dem Leitungsband.
Bei Zufithrung ausreichender Energie an das Exziton kénnen sich beide Teilchen unabhingig
voneinander durch den Kristall bewegen, und das Exziton zerfillt in ein Elektron und ein Defekt-
elektron.

Verglichen mit dem Wasserstoffatom, entspricht das Niveau der Ionisierungsenergie der Kante W,
des Leitungsbandes. An die Stelle des Wasserstoffkernes tritt beim Exziton die effektive Masse
my, an die Stelle der Elektronenmasse die effektive Masse m,. Fiir die Energieniveaus des Ex-
zitons erhilt man damit (vgl. [2] (4.3./214) bzw. (5.1.7./6))

W= Wy — —PY 12,3, ..) )
o 3224262 e, 2n? =123 ...).
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Darin bedeutet
L @

die reduzierte Masse des Exzitons. Der Grundzustand ist durch n = 1 gegeben. Bild 5.4.6 zeigt
die Energieniveaus des Exzitons.

o~ .
Teitungsband |
l n=3 G
n=2—1 Exzitonenniveaus
4
(]
S X ”
2
&
&
& D}
Valenzband w

Bild 5.4.6. Energieniveaus des MorTschen Exzitons

In der Regel werden Ubergiinge zwischen der oberen Valenzbandkante W+ und einem Exzitonen-
niveau beobachtet. Die aufzuwendende Energie betriagt dabei, wie aus dem Vergleich mit (5.1.7./7)
bzw. dem Wasserstoffatom folgt,
4
AW, =AW — —T% A~ 1

222, 25 2092 2, 2
32n2h2ey2e 2N &2mg W

13,6 eV. (5)

Darin bedeutet AW = Wy — Wy die Breite der Energieliicke.
Wegen .
13,6 - 1,60 - 10—1°

mt=1,09-10"m1
6,626 - 1073 .3 - 108

erhélt man als Wellenzahl der Absorptionslinien

AW “

= — —

2,
he &M

©1,09 - 107 m—1 . L. (6)
nz

Durch Vergleich mit (2) folgt fiir die Breite der Energieliicke
AW = hewy, (7
mit den vorgegebenen Werten

_6,626-10-%. 3. 108 - 1,225 - 10°
- 1,60 - 10-19

AW eV = 1,52 eV

(vgl. Tab. 5.1.1).
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Die Bindungsenergie des Exzitons ergibt sich aus dem zweiten Summanden in (5) mit » = 1.
Sie setzt sich nach der allgemeinen Theorie der Kreisbewegung aus der negativ zu zdhlenden
potentiellen Energie und der positiven kinetischen Energie zusammen. Im Gleichgewicht ist die
potentielle Energie dem Betrage nach doppelt so groB wie die Gesamt- bzw. Bindungsenergie.
Aus (1) und (5) folgt daher
2 4
Ulry) = — 7—— = L ®)

dreyer, 16m2h%)%e,%

bzw.
—e?
U(ry) = —2hev; =

©)

4megery

Durch Auflésen nach 7, ergibt sich der Radius des Exzitons

. .
ro = 2200 (—1— + i) (10)
e my My
Aus der Messung der Wellenzahlen nach (2) folgt fiir den Radius des Exzitons
&
= — 11
o 8rmeye hcvy ()

Mit den vorgegebenen GroBen erhalten wir

. (1,60 - 10-19)2
® " 8r-10,24-8,85-10-12. 6,626 - 10-%4. 3 - 108 - 2,74 - 10°

m = 20,6 nm.

5.4.4. Photospannung im Halbleiter

Durch Bestrahlung eines Halbleiters wird in diesem eine Photospannung erzeugt. Es werde eine
Probe untersucht, in der durch Bestrahlung nach Bild 5.4.7 die Photospannung U = 8,5 mV

Bild 5.4.7. Photospannung U bei der
% | Bestrahlung eines Halbleiters

U

> Z

hervorgerufen wird. Die Anderung der spezifischen elektrischen Leitfahigkeit in der bestrahlten
Zone betrage A¢ = 25 - 103 Q~2 m~1. Im thermischen Gleichgewicht sei die spezifische elektrische
Leitfahigkeit an der Stelle 4 6,4 = 5,0 - 103 Q-1 m~1. Das Verhaltnis der Beweglichkeiten von
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Elektronen und Defektelektronen sei l;—“ = 2,4. Welcher Wert ergibt sich auf Grund der ge-
P .
messenen Photospannung fiir die spezifische elektrische Leitfdhigkeit an der Stelle B?

Losung:

Nach der Gleichung (3.3.1./5) fur die elektrische Leitfahigkeit und der Gleichung (5.2./7) fir die
Dichte des Diffusionsstromes erhalten wir auf Grund des OaEMschen Gesetzes fir die elektrische
Feldstéarke
E— Dy, grad p — Dy grad n )
by + byp
Wir beschrinken uns auf den eindimensionalen Fall nach Bild 5.4.7. Werden die Diffusions-
koeffizienten nach der EInsTEIN-Beziehung eingesetzt, so folgt durch Integration fiir die erzeugte
Photospannung

1

dp dn
P 3, “ng "
v=F 4 4 4 @)
e ’ byn + bpp

Das Integral ist iiber den gesamten geschlossenen Stromkreis zu erstrecken. Beachtet man in (2)
P=p +Ap, n=nmg+An

nebst
An = Ap, pegno = ng?

und daraus folgend

dp, = — Do dn,,
o
so ergibt sich
U=——E~ bppo‘f'bn’”'o“%dz_!_ﬂ by —b, dAn . 3)
e ny(byn + byp) dz e by + byp dz
Wegen
$a=o0 (4)
kann man
_ bppo + bymy dn, = (by + Bp) An dny ®)
no(bym + bpp) ng(bpn + byp)
schreiben und erhélt damit aus (2)
U=0U,+U, (6)
mit
U, = E M _A_n_ dny, (6a)
e by + bpyp m,
U, = L8 bp—bn dAn. (6D)
e byn + bpp

Der erste Summand verschwindet, wenn im Stromkreis keine Inhomogenititen und im Zusam-

menhang damit keine Schwankungen der Elektronenkonzentration n, = ny(z) auftreten. Mit

dem zweiten Summanden werden die Schwankungen in der Elektronenkonzentration infolge

unterschiedlicher Intensitét bei der Bestrahlung bzw. unterschiedlicher Lumineszenzeigenschaften
- des Materials erfaf3t.



346 5. Bindertheorie realer Kristalle

Wir erstrecken die Integration iiber den bestrahlten Anteil des Stromkreises. Die Gleichgewichts-
konzentration p, kann an den bestrahlten Stellen gegen die Abweichung Ap = An vernachlissigt
werden. Damit folgt aus (6a)

B B
kT by + by An kT b, + b, dn,
U, =— = dng = — .
€ bn”o + (bn + bp) An Ny e bn g (n0+ bn + bp A’lb)
bn
(7

Beachtet man die Verkniipfung zwischen der Konzentrationsinderung und der Leitfahigkeits-
anderung nach (3.3.2./5)

Ao = e(b, + by) An, (8)
so erhélt man durch Auswertung des Integrals
o 1 + ’A_U‘
U, = % I —%4 9)
1+ —
OoB

U, ist nur dann von Null verschieden, wenn die elektrischen Leitfdhigkeiten im thermischen
Gleichgewicht an den beiden Grenzen der Bestrahlung voneinander abweichen.

Das Integral (6b) liefert wesentliche Beitrige an den Stellen stirkster Anderung der Elektronen-
konzentration, d. h. an den Bestrahlungsgrenzen. Demzufolge wird (6b) in zwei Teilintegrale
von A — Az bis 4 4+ Az und B — Az bis B + Az zerlegt. Die iibrigen Beitrige werden vernach-
lassigt. Es folgt

A+Az B+Az -
U, =.k_T bp — by d An n dAn ) (10)
F A"erbfob A”erbfob
L A—Az £ P B—Az " v
Im Grenzfall Az — 0 ergibt sich durch Auswertung der Integrale
b
A —n
S B N e Y
T e by+b, by Moa
; An + —B—n
by + by 0B
Durch Umformung erhélt man hieraus, wenn die Verkniipfung (8) beriicksichtigt wird,
ET b, —b 1+ =
U, =-——2"nj Jod_ (11)
e b,+ by 14 Ao
OoB

Damit ergibt sich aus (6) fir die gesamte Photospannung

Ac

‘ + 22
U2 FT ., % (12)

b+ b, e Ao

1+ =2
OoB
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Durch Auflésen nach gyp folgt.

o [+ 4] 5
D

oy = Ac o 3 - (13)
4 2 e (|14 32 v )
Wir setzen die vorgegebenen Werte ein und erhalten
P (3’4 85107 o 113’2? .1;?2:? 300 )
o = 25100 —— 5 ’ Te0.10m o
T (3’4 85107 S g5 10m. 300)

A54.5.

A54.6.

=10,3-10* Q1 m-t.

Aufgaben

In einem Kristall betrdgt der Abstand zwischen Valenz- und Leitungsband
AW = 2,85 eV. Bei welcher Wellenlénge liegt die Absorptionskante?

Die Intensitdt des durchgehenden Lichtes zeigt bei 4, = 0,469 pm eine Absorp-
tionskante. AuBerdem tritt bei 4 = 0,863 um ein Intensitdtsminimum auf. Deuten
Sie dieses Mefergebnis.

In einem Kristall liegt das Haftstellenniveau 0,035 eV unterhalb der Leitungs-

" bandkante, das Aktivatorniveau 0,025 eV oberhalb der Valenzbandkante. Die

Absorptionskante liegt bei 4, = 0,645 pm. Berechnen Sie die Frequenzen der durch
strahlungslose Uberginge erzeugten Phononenschwingungen, die GréBe der
StoxEsschen Verschiebung sowie die Wellenlidnge der fluoreszierenden Strahlung.
Der Wirkungsgrad einer stationdren Fluoreszenzstrahlung betrigt n = 0,65, die
Konzentration der Haftstellen Ny = 810?21 m=3, die der Aktivatoren N, =
5-10%2 m—2. Zu berechnen ist das Verhiltnis der Ubergangswahrscheinlichkeiten
zwischen emittierenden und strahlungslosen Prozessen, wenn der Abstand des
Haftstellenniveaus von der Leitungsbandkante gleich dem Abstand des Aktivator-
niveaus von der Valenzbandkante ist.

Welchen Giitefaktor mu3 der Resonator in einem Laser mindest erreichen, wenn
fiir den Betrieb ein Besetzungsiiberschul n, — n; = 10'* erforderlich ist. Das
magnetische Moment eines Elektrons im Festkorper betrigt mpy = 5 - 10~2° Vsm,
die Frequenzbreite der beiden Energieniveaus iibereinstimmend Aw = 4 - 101t 571,
Der Resonatorraum hat das Volumen V = 20 cm?®.

Stellen Sie aus den Werten nach Tab. 5.1.1 und Tab. 5.1.4 die quantitative Formel
fur die Wellenzahlen des Spektrums der MorTschen Exzitonen in GaAs am abso-
luten Nullpunkt auf. Vergleichen Sie das Ergebnis mit den MeBwerten

=5y — %12— Bp=1,22-10°m~1; 7 = 2,74 - 103 m—1

und begriinden Sie die Abweichung.
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5. Bindertheorie realer Kristalle

A5.4.7.

A54.8.

A5.49.

A 54.10.

A5.4.11.

A5.4.12.

In Kupfer(I)-oxid wird fiir die Wellenzahlen des Exzitonenspektrums die Serie

7= (1,7508 - 108 — §20;0) m—t
n?

gemessen. Berechnen Sie die Breite der Bandliicke und die Bindungsenergie des
Exzitons. .

Berechnen Sie zur vorangegangenen Aufgabe den Exzitonenradius. Die Dielektri-
zitdtszahl betragt e, = 10.

Berechnen Sie die erzeugte Photospannung zwischen den Punkten 4 und B eines
Halbleiters bei Zimmertemperatur 7' = 300 X, wenn im bestrahlten Teil der Probe
die Anderung der spezifischen elektrischen Leitfahigkeit Ao = 0,15 Q-1 m~ ge-
messen wird. Ohne Bestrahlung sei die elektrlsche Leitfahigkeit im Punkte A
Op4 0,75 Q1 m~1, im Punkte B g,3 = 0,90 Q' m

Das Verhiltnis der Elektronenbeweglichkeiten betrigt Z—“ =1,5.

Fntwickeln Sie die Formeln fiir die Photospannung unter den Voraussetzungen
< L1lu > 1.

In n- Germamum werde bei 7' = 300 K der mittlere Teil der Probe derart bestrahlt,
daf} die Leitfahigkeitsinderung Ac = 500 Q1 m~! beobachtet wird. Die spezifische
elektrische Leitfahigkeit betrigt ohne Bestrahlung am Querschnitt Aoy,
=2Qtm™1, am Querschnitt B o, = 0,2Q1m1. Wie groB ist die erzeugte
Photospannung zwischen den Punkten 4 und B (Werte nach Tab. 5.1.4)?

Wie groB ist in n-Germanium bei 7' = 300 K die Photospannung zwischen zwei
Punkten 4 und B fiir 6,4 == 200 Q1 m™, gop = 250 Q' m~1, A = 0,5 Q"1 m™1?



Al.1.1.
Al.1.2.
A1.13.
Al14.

A1.1.5.

A1.1.6.

A1.1.7.

A1.18.

A1.1.9.

A 1.1.10.
A1.1.11.
A1.1.12.

A1.1.13.

Al.1.14.

A 1.1.15.

A 1.1.16.

A1.1.17.

Losung der Aufgaben

a = 0,408 nmi.
a = 0,287 nm.
a = 0,629 nm..

Infolge der Verschachtelung zweier Gitter sind in einer Elementarzelle zwei Gitter-
bausteine, ein Natrium- und ein Chlorion, enthalten.

a = ]/4(mZn+ms) a = 0,542 nm.
02, = 2,11 10" m

Va2 = ? V2a = 0,399 nm (i = 1, 2, 3).

Natrium: 0, 0,0;i, s 0;i,0,—1-; O,i-,i;
2 2 2 272

Mlt—k

Chlor: —1—, i, i; 0, 0, -—1—; 0,i, 0;—1-, 0, 0.
2 2 2 2 2 2

0,273 nm.

kubisch-raumzentriert 0,68, kubisch-flichenzentriert 0,74 (dichteste Kugelpackung).
0,34.

d = 3,51 g cm—3, Abstand nichster Nachbarn 0,154 nm.

kubisch-flichenzentriert z = 12, kubisch-raumzentriert z = 8, hexagonal dichteste
Kugelpackung z = 12.

Es sind die Losungen der Gleichung a2 + y2 4 22 = 72 mit ganzzahligen Werten
zu bestimmen: z; = 6, z, = 12, z; = 8, 2, = 6, 2, = 24, 2z, = 24.

% V2@ = 0,288 nm.

V3

T = -—a—0433a

7o = 0,234 nm.
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Losung der Aufgaben

A1.1.18.

A1.1.19.
Al1.241.
A1.22.

A1.23.

Al124.

A1.25.
A1.2.6.
A1.27.
A128.
A1.29.
A 1.2.10.
A1.2.11.

A1.2.12.

A21.1.

A21.2.

A2.13.

A2.1.4.

A21.5.
A21.6.

A2.1.7.

A2.18.

k= (k- -b)a, + (k-b,) a, + (k- b;) a,,
_ (k-a)b, + (- ay) b, + (k- ay) bs.
2n
2y =1,57- 10t m=3,
A = 0,408 nm, 0,273 nm, 0,163 nm, 0,131 nm, 0,091 nm.
(hy by g) = (2 2 1).

k

cosoc’—L cosp’ = — cosy’ = 5
135° V35~ V35
8155 = O1g5 = —— = 0,069 nm.
35

(100).

9 = 17,84°; 25,67°; 32,04°; 37,78°; 43,24°; 48,61°; 60,04°; 66,78°; 75,63°.

A =0,1225 nm. '

n = 1,08, Wpoy = —17 eV.

A=84-10"m<La.

Wyin = 0,08 eV, v < 3,9-10° m s

a)l =2:222°1=3:424° 1= 4:70,5°.

b)l=1:14,4°1=2:29,9°,1 = 3:48,4°, | = 4:83,8°.

|F|? = f2[|1 + cos m(h; + k) + cos m(hy + hg) + cos w(hy + hy)|?

—+ |sin w(hy + hy) + sinw (By + kg) + sin w(hy, — hg)|?].

Sind Ay, kg, hy teilweise gerade und teilweise ungerade, so ist F' = 0. Sind
hys by, hy entweder alle gerade oder alle ungerade, so ist F &= 0; F(1 1 0) = 0,
Fil11)=F0.

s-Zustinde mit antiparallelen Spins, abgesittigt; die zwei p-Zustinde mit n = 2,
l=1,m=1,0, —1, s= :t% sind nicht abgesattigt und konnen jeder an einer

Elektronenpaarbildung teilnehmen. Im Grundzustand wére C daher zweiwertig.
s-Zustdnde abgesittigt; die drei 2p-Zustéinde konnen mit parallelen Spins auf-
treten und daher jeder an einer Elektronenpaarbildung teilnehmen. Stickstoff ist
daher dreiwertig.

Silizium: (3s)2, (3p)?, vierwertig; Germanium: (4s)2, (4p)2, vierwertig; Zinn: (5s)2,
(5p)? vierwertig.

Gallium: (4s)2, (4p)?, Arsen: (4s)?, (4p)?, insgesamt vier Elektronen im s-Zustand,
vier Elektronen im p-Zustand, die kovalente Bindungen eingehen kénnen.
Indium: (5s)2, (5p)!, Antimon: (5s)?, (5p)?, vier kovalente Bindungen wie beim GaAs.
= —42¢€V.

1 eV/Molekiil = 23,0 keal mol-* = 96,3 kJ mol-1,

1 kcal mol-! = 4,19 kJ mol—! = 0,0434 eV/Molekiil,

1 kJ mol-! = 0,0104 eV/Molekiil.

61,0 kcal mol—! = 255 kJ mol—! bzw.

103,0 kcal mol~t = 431 kJ mol—1.

N Z%2 1 1
D = — 2l — == F ) = —
dre, 7 ( 2+3$ )

o =2In2 = 1,386.

N 72

drey, T

2In2,
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A219. 7o = 0,433a, — U, = 711 kecal mol~! = 2977 kJ mol-.

A 2.1.10. % = 1,64 - 1071t m2 N-1,

A2111  a)a =1,46,b) o = 1,75.

A21.12. U = 769 kecal mol~* = 3220kJ mol-1, MeBwert 852 kcal mol~! = 3570kJ mol-*.
A21.13 6 =1,18 - 1075, » nach 2.1.2.

1 ' .
A21.14.  Ug = — N,a*xP? Ug = 0,47 J kmol-2.

8
A2115. Sy — S §,—-2 1 L t
Cu 390, — Cy 3 Yo, + 20,

1 1 1
8y = 3 — .
VOu+2C.  V0u — Ci/
A 2.1.16. Die «-Achse wird gegen die z-Achse um 0,038° verschert.

1 dv 1 d2U
A 2.1.17. =—— — W dU——Pdelt-—:V .
% > qp Wegen olg E
&U ,, . w au . .
=12 *(a) W’ (W) = 0 ist. Es folgt
- [ , m+2 A + ron+ ] ]‘2( 97\'79 4 "
A 2.1.18. ,26 - 10~ m2 N1,
A2L19.  u = ugenitoxt-KD), o — ]/Cu C;.
(ot Oy
A 2.1.20. v = vyei(@xt-K2) p . = =

A2121. Vg = % =4,4km s, v = %‘ =2,9km s,

A2122. vy, = V %4 = 2,9km s1.

A22.1. e=1,16-10-18J
A222. 2 1,00 10 Hz, = = 1,52 - 10-5.
27 w
A223. p=iKK=2,p=205-10"kgms?
Vs
A224. 2ﬂ =f=4,32-10°Hz, vy = 1450 m 1.
u3

A225. « = 6,0-10-5.

117252
A2.26. dn= — 22 0y,

180rtkeqr,

A227. f() dv = 3100.
A2.28. dv = 1022...10% Hz (gesamter Frequenzbereich).
A 2.209. U, = 354R = 704 kcal kmol~! == 2945 kJ kmol-1.

A2210. v, =375-102Ha.
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A22.11,
A22.12.

A 2.2.13.
A 22.14.

A 2.2.15.

A 2.2.16.

A 2217,

A2.2.18.
A 2.2.19.
A 2.2.20.

A3.1.1.

A3.1.2.

A3.1.3.

A3.14.

A3.1.5.
A3.1.6.

A3.1.7.

A3.1.8.

A3.1.9.

A 3.1.10.
A 3.1.11.
A 3.1.12.
A3.1.13.

A3.2.1.
A3.22.
A3.23.
A3.24.
A 3.2.5.

A3.2.6.
A3.2.7.
A3.28.

C == 5,943 kcal kmol~! K-1 = 24,88 kJ kmol—! K-1,

C = 0,456 R = 0,906 kcal kmol* K1 = 3,79 kJ kmol-! K-,
¢ = 0,0336 kecal kg~ K- = 0,141 kJ kg~ K1,

£ =6,62-10"%0]J.

C =1,1.10"2%kcal kmol™! = 4,6 - 103 kJ kmol-1.

AC _ h003s. ’

C
L 9T _ i1 ms, 3D 507 108 K m-s.
T, av 7

(&),
oT o

C, —Cp = —T P —— TV7T.

S AN

oP |

A = 54,5 nm.
y = 1,03.
AT, = 0,45 K.
257102
N
2 24.10.
N

n
Z 88105, 2n = 2,8 - 105,
N
Z = 1,44 - 105, 20 = 4,6 - 105.
N

-4 Zwischengitterplitze je Elementarwiirfel, N' = N.
6 Zwischengitterplitze je Elementarwiirfel, N’ = 1,5N.

2 —48.10-.

N

KC: 22 144105, Agal: 22 _ o,
e 0

ep =1,8eV, Dy =4,1-10"4m?s%,

y = 1,4 .10 Hz.

D=1,5.-10"1"m2s1,

b=24-10"12m2s1V-1,

&g = 0,10 eV.

P = 3,26 - 10~8 Asm—2, m, = 2,03 - 10-3¢ Asm, r = 1,27 - 10~ m.
o« =9,35-10"2t m3, oy, = 4,64 - 10~2° m3,

me == 3,563 - 10735 Asm.

P =5,82-.10712 Asm2.

0,4 ym: » = 1,567, 0,7 um: n = 1,635, 5 pm: n = 1,521;
MeBwerte: 1,568, 1,539, 1,519.

o = 8,36 - 1072 m?, org; = 4,23 - 1072 m3.

Wy = 2,42 - 1018 571, @y == 9,30 - 1023 571,

NaBr: w, = 2,51 - 10% 571, KCl: @y = 5,70 - 1013 51,
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A3.2.9. wyy = 2,73 - 1016 g1,
5,072

A 3.2.10. 2o g4 20
" T 576 — 3.5

, A in pm.

A32.11. & = 288.
A3.212.  Ap, =834 1085

A3213.  Aly, — 2max A, 894 nm.
[

A 3.2.14. 0==9,5.10¢s"1, k.. =42,2m™%,
A 3.2.15. o = 4nR3.

A 3.2.16. 2R == 0,4 nm.

A3.2.17. me = 1,8 - 1029 Asm.

A33.1. Bei jedem StoB wird die Energie 7—:— (2vpyity)? tibertragen. Die Gesamtzahl der StoBe

o

in der Volumeneinheit ist —:
T

N .,
Q= g?m”Drift =ja.

A3.3.2. T=206,6-10"4s.

A333. Vytax = /2?" , Uyax = 1,05+ 10° m &1,
e
A334. ep = 5,50V,
A3.3.5. 1) N = 586102 m=>, 2) N = 17,35 10% m=,
A3.3.8. 1)b=716-10"%m2s1 V-, 2)b=57110"m?s1 V-1
A337. :=336V.
A338.  Ey=12-105Vm™, Uy = 1,8uV.
A3.39. & =1,0021-3,3 V.

(o)
3/3 —a—— Uk
A3310. § =4—V§LZ:“”— Vo fﬁ In (1 +e " kT)de—}—zkaVo + —T-V0
0

(o<}
mit szedN, Vo =1m3;
0

oo

3/2 5/2 32
F o= — SR tETSE Ry,
308 °J et 1

10 drg T 73 \sn§ B

P E _ ]Lﬁ 3N 2/3£ 1 + 5.’.:2 ﬂ 4/3 m2k2T2 .

a oV )y 5\4ng) m 3 \3N mo|
P = 2,206 - 1071 N m~2, Am Schmelzpunkt erh6ht sich P gegeniiber dem absoluten
Nullpunkt um 0,15%.

3h? v ( 3N ')‘-’-/3 N [ { 512 (47rg )4/3 mzszz:l
0 f— o s
m

28 Schilling, Festkorperphysik
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A3311. & = —53, =255(1 4 0,0075)eV,
A3312. o =4,310%keal kgt K- = 1,8 . 102 kJ kg? K1, Z& — 0,0077.
. (9

A3.3.13.  Nach (3.3./7) bedeutet e 7 > 1:

T _fr _ B (3N 2/3‘
¢ 4y

A 3.3.14. T, = 54600 K.

A 3.3.15. 7=28,15.10ms%

A 3.3.16. A=44-10"%m.

A 3.3.17. Vppigt = 3,2 mm s~ AW = 7,8 . 10717 eV.

A 3.3.18. C. = 8,3 - 102 kcal kol K1 = 34,8 J kmol- K1

A33.19. m=190.10"%kg, { = 048.

A4.1.1. AW, = W:,l’ = 2,64 eV, Wy’ = 8,59 eV, AW, = 10,6 €V.

A4.1.2. AW, = Wy = 0,05eV, Wy," = 8,59V, AW, = 0,20eV.

A4.13. Die Breite der Energiebinder bleibt unverindert. Anstelle der durch ky, = ‘na—n
fir U, < 0 festgelegten unteren Bandgrenzen erhélt man firr diese Werte die oberen
Bandgrenzen

Foop = —=  fitr Uy > 0.
a

Ad.14. =37 U;;; = —15,06V.
A4.1.5. F =442,
. . g . . —7Ze? (1 1
A4.1.6. Die potentielle Energie fur r > ry ist Null, fir r <9rg U = ——|— — —].
) 4dre, \ 7 Ty

Durch Mittelwertbildung folgt

To

2
Uy=— -—-Za— L — X 4nr2 dr,
411'8.390 r ro SR

0

. eoa 1. - . — 1
daraus bei Beriicksichtigung der Quantenverteilung 7,2 — 7,% nebst Yequ, = —
5 ; P

o
Ze%ry? Y
U, = 6!20:0 = 4rmecy®x.
A4ln. U, = 8,4 V.
A4.1.8. rg = 0,262 nm.
A4.109. Die Transformation £ = l/ h fithrt auf
mw, -
d2y .. 2W
—_— A—E&)y=0 t A= .
g2 =+ ( Sy mi g

Randbedingung (1):

po | >

Y(&) =X cné" o= 1,¢,=¢3=10,¢, = —
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A4.1.10.

Ad4.2.1.
A4.22.

A423.

Ad4.24.

A 4.25.

A426.

A427.

A428.

A4.2)9.

(1) bedeutet ) _ 0 fir g — 31 .
0k /&, ¢ 2’
1+ L
2
[ . . . 2w
rg = |/ — ist identisch & = 1 mit dem Eigenwert A = — = 0,353. Dagegen
mwg ha,
52
fithrt Randbedingung (2) auf »(§) = e . 2 mit dem Eigenwert 1 == 1,000.
bz
Iyb < —
A0 < 5
2 <2
hl"A mit k2 =3i,kiM —_lgff-—_—:'}
2m a? . a? gy

kp = 5,14 - 10° m=1, T'p = 11600 K, vp = 5,93 - 105 m s~1.
4
G = |/ 14 ]/i G = 2,81 - 107; mit by, b,, b; nach (1.1./8) folgt

3 b

kA= 2 %,mi.:o,l,...,a—l-
=1 @

aw

dk,

L
h

F,.

dv;  d[1 oW(ky,kyk,) 1 1 V‘i >*w dk, 1 3 W
da At | & ok; Tk 2 ok, ok, ar &2 ,Zy ok; ok,
Nach dem zweiten NEwToNschen Axiom gilt fiir die Kraft F

F=m E
di
Daraus folgt fiir den Massentensor
*W W W
ok, ok, Ok, Ok, Ok,
1 >*W W . W
#% ) Ok, ok, Oky® Ok, Ok,
>*W W W
Ok, Ok Ok, 0k;  0Okg?

= 0.

dw
v =0 wegen
: dk,

Cu, Al, Na je halbbesetzte Leitungsbénder, Leiter; Si, Ge, Ar vollbesetzte oberste
Binder, Isolatoren.
E = 108...10°V m1,

Ausv = % dw

folgt wegen W — —W: ky — —k,.
Wertevorrat k, ist fir Elektronen und Defektelektronen gleich.
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Losung der Aufgaben

A 4.2.10.

A42.11.
A4.212.
A4.213.
A42.14.

Nach der FErnI-Dirac-Statistik gilt fir die Vefteilungsdichte der Elektronen
1
e—¢
1 +e kT

fa=he—=0) =

Fir die Verteilungsdichte der Defektelektronen folgt

fomt—fy=tm —t— e 0.

14+ebT  14e ET

Mit der Energie kehrt auch das Fermi-Potential £ — —¢ beim Ubergang von Elek-
tronen zu Defektelektronen sein Vorzeichen um.

fu=1,6-10"f, =1 — 1,6 - 10-°.

L2 403109 me.
8

y = 1,6 1022 eV-1,

Mittels A(zp) =a;Ap + 2 gﬂ
x;

T

folgt durch Ableitung der SCHRODINGER-Gleichung

ow . dp ih oy
—— H— W)elkar L — L =0

8k,~ v + ( ) © ak, m 61:,-
Auflésen nach dem ersten Summanden, Multiplikation mit y* und Integratibn
iiber das Grundgebiet 2 ergibt

. op .k . O
—= *(H — ikar ——~ 4V — i — ¥ L qy
i fw (H W) e ak,, ! m fw 395,»
Q Q

Aus den Eigenschaften der Losungsfunktion folgt, daB sich das erste Integral in

f oikar 22 _ yyxay
0.’6;

8

umformen l4Bt. Dieses Integral kann nach dem GRrREENschen Satz in ein Ober-

flichenintegral umgeformt werden, das auf Grund der periodischen Randbedin-

gungen verschwindet. Es verbleibt

ow 2 4 R0
—_—= i ¥y dV = | —i——)ydV.
ok; m) Y or; v f ¥ ( Y 8:ci)w

Q Q ’

Darin gibt
.h 0

—_] —

m Bxi

=Vi

den quantenmechanischen Operator der Geschwindigkeitskomponente »; an, so daf3
man /
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A4.3.1.

A43.2.
A433.
A434.
A43.5.
A 4.3.6.

A 4.3.7.

A 43.8.
A4309.

A 4.3.10.
A43.11.

A43.12.
A 4.3.13.

A 43.14.

A 4.3.15.

Ad4.1.

A4.42.

A443.

Ad444.

A445.

A44.6.

bzw.

v =%gra,dkA w

erhilt.
of Q

—) = P, oley’, kp) (f' — o) d3kea.
(at )S 8 f n,n( A A) (f fo) A
@ =0.
¢p=—24-10"% ¢ = —2,6-10-°.

@ = 101121,
o =0.
c=236-106Q1m1
B _op.

Jtn
E =024 Vm

i = 5,0 - 102 I m—2 1,

Je = 0,8 J mm~—2s~! in Richtung des Temperaturgefilles.

Ls2 _ 0,354, T'>> Ty, schlecht erfiillt.

J273,2
oc="74-10%Q1m1,
T=23-10"1g,

T>Tp: oc=TL0, TLTy: o= Tio.

Bei longitudinalen Schwingungen ist die Abstandséinderung proportional der Aus-
lenkung " — r = Az, — Ax,, bei transversalen 7" — r = W nur pro-
portional dem Quadrat der Auslenkung. Transversale Schwingungen konnen daher
Svtiirtlfi::iner Amplitude in erster Naherung gegen die longitudinalen vernachlissigt

r = iLF =17,8-10"¢m.
eB

— = —2,5-1075.

eTStoh 93 10-2.
2r ’

we = 1,05 101 57, m, = 1,52 - 10~ kg.

24 Schilling, Festkorperphysik
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Losung der Aufgaben

A4.4.7.

A4.4.8.
A449.

A 4.4.10.
Addld.
Ad412.
Addq3.

Ad4.14.

A4.4.15.

A4.4.16.

A 4.4.i7.

WeT = —1— = 0,577.

mg = 1,45 - 10730 kg.
Die Periode 7', des Elektronenumlaufs mufl ein ganzzahliges Vielfaches n der

Periode E— des elektrischen Feldes sein:
w

T, = 2 _ ngﬁ
we w
bzw.
B=2"c (n=1,2,3,..).

ne

Die Maxima der Funktion gﬁ folgen daher auf der Bg—-Skale (Bc = wmc) wie
e e
die Folge i n=1,2,3,...).
n

7 = 4 entspricht 0,75 Vsm=2; B, = 3 Vsm=2, m, = 1,13m,.
Ay =4,6-100m=2, 4, = 1,6 - 109 m~2.
me = 9,3 - 103 kg, m, == 3,2 . 10-32 kg.
4 =1,9-100m2, m, = 3,8 - 10~ kg.

A L =3,7-10"5V-1s1m?
B

Oeg = 9,0-10¢Qtm=1, 2 = 2,8 105 m.

Aus dky = Ydr? + 7* dg? und 7, nach (4.4./12) folgt wegen
ew - = oW

AW Bannkurve = v dr + ™ dp=10

die allgemeine Beziehung

2r
1 rdr
w, 2reB ow|. ’
or
0

Es wird ein k,, k,, k,-Koordinatensystem eingefiihrt, bei dem die k,-Achse die Rich-
tung des Magnetfeldes, die k,-Achse die Richtung %, hat:

ky 1 0 0\ ky
ks |=1 0 cos? —sind k,
kg 0 sind  cosé k,

Driickt man W = W(k,) mit Hilfe der GréBen

ky=rcosg, k,=rsing,k,
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As.1.1.
A5.1.2.

A5.13.

A5.1.4.

A5.1.6.

A5.1.7.

A5.1.8.

A5.1.9.

A 5.1.10.
A5.1.11.

A 5.1.12.

24%*

aus, folgt
2 72 2 B2 .
W =W+ r2 cos? @ + cos? ¥ + sin? &) 72 sin? ¢
2mpg 2mpg 2mp ‘
2
+ 2rcosq)sintpcosz95in19§—( t _ 1 )
2 My Mt
hZ
+ k2 ( sin? & + cos? ﬁ) .
2ming My

Wird W in die Losung zu A 4.4.16 eingesetzt, folgt nach elementaren Integrationen

B /cos 29 511120 . — 1
l/ mhy my T C ] /coszz? sin2 &

L My
Darin sind m; bzw. my; die Zyklotronmassen fiur ¢ = 0 bzw. ¢ = % (vgl. 5.1.5.).

Abgabe tiberschiissiger Elektronen und damit Wirkung als Donatoren.
Wegen der Aufnahme von Elektronen als Akzeptoren.

Tume _ 99 107,

Moo3,2
AW = 0,51 V.
AWa : y
C=Wy+ kT[22 (/1 L 2N " —1 L=yt Wa
2 Pya 2
1 N
E—b = 27,‘: = —0,0134 eV.

{ steigt bei Eigenleitung nach (5.1./25) fiir m, > m, mit der Temperatur linear an.
Bei Fremdleitung wéchst { nach (5.2.2./4) bzw. A 5.1.5 zunichst ebenfalls. Mit
weiter zunehmender Temperatur geht (5.2.2./4) in (5.2.2./6) iiber. Solange hierin
Npyp > n, wichst { mit 7. Da 7% nach (5.1./13) jedoch proportional 73/2 wichst,
uberwiegt schlie8lich 7 gegeniiber ypNp, und ¢ fillt mit zunehmender Temperatur.

_AWs AWa \
p=pe T IA(1[yy 2 Ty
Bya

bzw. fir AW, > kT
_ AWa
p==VpNyyse *T .
=2,2.10% m—3, c=6,3-10°Q1m1
p=1,1- 109
n = 4,42 - 1022 m“".
n \8n P 3p np 3np D 8pp ng Sna Da \dpa
(ﬁ) (25) (ND) (VDND) (J’ANA ) (NA)
_ 3nWL—3pWv+38npWp+38naWa
kT

=e
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A 5.1.13.

A 5.1.14.
A 5.1.15.

A 5.1.16.

A 5.1.17.

A 5.1.18.

A5.2.1.

A5.22.
A523.
A5.24.
A5.25.
A5.2.6.
A 5.2.7.

A 5.2.8.

A5.29.

A 5.2.10.

A5.2.11.
A 5.2.12.
A5.2.13.

A 5.2.14.

A 5.2.15.

tibereinstimmend mit (5.1.3./8).

_ 2(WL—Wn) 9 _ WL—Wp 1
n=-"D |/aze KT L = @Np— Nyie T 4—— N
2 ¥D YD

WL—Wbp
s _Na
2 2
n = 5,7-102 m-3,

Auf dem Akzeptorniveau.

2(Wa—Wv) Wa—Wv
— Yy kT 2 . kT 1
?—ﬁl e + - (@Ny —Np) pe + — Np?
A

2 YA
Wa—Wv
_ A pe kT _ _N_D
2
Mgy = 0,86m,, der genaue Wert liegt tiefer.
AWp

Np< —e *  Np<1,8.10%ms.
20
Neutrale Fehlstellen, da geladene Fehlstellen erst bei geniigend hohen Temperaturen
auftreten.
A = 27,6 pm, infrarot.
7 = 0,11 ms.
G=54-102m—3g1
Lp, = 0,133 pm.
An = 5108 m-3,
An = 1,810 m-3,

_"=w=ﬁﬁ(1 +”_n) = 0,40.
) epoby Po D

Dy, = 0,983 - 10-% m? V-1 s1, Dp = 0,466 - 10~3 m2 V-1g1,
T=4,5.10"123,

L, = 137 pm.
N -2 dAp
Ap =Ap(0)e Ie, j, = —eD, M
jp(O) = M s Ap(O) = 6,25 - 101° m-3,
L,
. dA . d A .
jp = —eD, p,7n=anE+eDn id =00E——“—7p

by
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A 5.2.16.
A5.2.17.

A 5.2.18.

A 5.2.19.

A53.1.
A5.3.2.

A533.
A5.34.

A 5.3.5.

A 5.3.6.
A53.7.

A 5.3.8.

A539.

A 5.3.10.

A53.11.
A53.12.

mit 6, = enyb,. An der Oberfliche des Kristalls ist

j=1Jp+ jn=0E — oy Jps =L+i b—“—1)y'p,E=14,4Vm—1.
by G b

g \ bp
Upo =5,61-108m?s, Uy = 1,12 1078 m3 572,

Ny <2,1-108 m-3,

t
Aufbau: 3z = Gr, (1 —e ™ ),
_t
Sp:Grp(l —e ™/

_t Lty
Abbau: 3 = Grpe ™, T, =1, = “——}rl,
UnoPolN s
t P
3p=Grpe ™; 7 =Y
? UnopolNa

Pao —> Ppo» "a0 = Do YA > VD-

Lp = 1,3 um, AWy, = 2,75- 103 V.

E = 1,18 - 108 V m™, zum Kristallinneren gerichtet.
z

W) = W + 042¢e @ eV, Ly = 40,3 um.

N = 4,65 10 m—2,

Die Doppelschicht bewirkt einen Sprung des elektrischen Potentials AD =

damit folgt die Verschiebung der Bénder

AW = — B A — 0,103 - 100 V.
o

AW = —0,522 eV.

JedV — Ne=o0.

Nge
y = V 2kET e(by + by) By, B, = 0,12V

Nm,
&

Die Porssonsche Gleichung ist mit der Randbedingung &,E, = ¢E = eN zu lsen.

Damit folgt
S .7 V. R N
eb, ne Ly by
@, = 0,17V, N = 17,9 - 10%* m~2,
edn

e*T —193.10-".

Dp = —0,358 V, AW = 0,358 V.
Jn = 3,6 pA mm—2,
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A 5.3.13. D, — D, =086V.

A 5.3.14. n(0) = 4,0 - 10 m—3,

A 53.15. Jsperr = —1,04 - 1078 Am~—2,
A 5.3.16. L, = L, = 0,16 mm.

A 53.17. Jsperr = —2,6 - 107° Am—2.
A 5.3.18. jsperr = —5,756 mA m~2.

A 5.3.19. Gegeniiber (5.3.8/13) und (5.3.8/14) ist zu ersetzen e — —e, m— p, p —> n. Diese
, Ubergiinge gelten fiir GroBen und Indizes. :

A 5.3.20. (%) — — 1 - -
JEJAuca=0 oo & 4 o PE b gnp 2
n Lyg ng by L,
_&Ues—Ucs)
(AuCB) _ (<] kT
Augg/aj=0 cosh 4 + Lo pe by sinh.
Ly LpC ng by Ly
_e(Uen—Uszc)
kT
A5.3.21. CU]"EB = y ° 77 - -
9B  cosh — 4 —2- ZE 0 ginh 2
Lp LnE PB bp Lp
A5.3.22. (%) - — - 1 -
¥ 0C /Uozs=0 cosh — + —2 JeOn ginh -2
L, Ly B b, Ly,
_ eUcs
_ kT
A5.3.23. Uscn _ ° :
Joc ( bypp d by )
e coth — + No
L, L, Iy
A54.1. Ay = 0,436 pm.
A54.2. Energieliicke AW = 2,65 eV zwischen Valenz- und Leitungsband, Elektronenfalle
W — Wy = 1,44 eV oberhalb der Valenzbandkante.
A54.3. v, = 8,45 . 102 Hz, v, = 6,04 - 1012 Hz, 1 = 0,666 pm, A1 = 0,021 pm.
As544. B = 0,0743.
P
A54.5. Q> 2,7.10%,
A54.6. ¥y = 1,22 - 10 m~1, 5, = 6,25 - 10> m~L.
A 5.4.7. AW = 2,17 eV, Bindungsenergie 0,99 - 10-2 eV.
A54.8. 1o =T7,2-10"8 m.

A549. U =058 mV.
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A 5.4.10.

A54.11.
A54.12,

) U= 2kT by Aa< 1 1 ),
e by+by Ood OoB
b) U = 2T by 1 OoB )
e by,+ b, Og4 -
U= —0,038V.

U =083uV.
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Tabelle 1.1.1. Gitterkonstante wichtiger Kristalle bei Zimmertemperatur

Stoff Gitterkonstante ¢ in nm

a) kubisch-flichenzentriertes Gitter (kfz-Gitter)

Ag 0,408
Al 0,404
Au 0,407
Ca 0,556
Cu 0,361
v-Fe 0,363
Ni 0,352
Pb 0,494
Pt 0,391

b) Steinsalz-Struktur

AgBr 0,577
KCl 0,629
LiH 0,408
MgO 0,420
MnO 0,443
NaCl 0,564
PbS 0,592

c) kubisch-raumzentriertes Gitter (krz-Gitter)

Cr 0,288
Cs 0,605
«-Fe 0,286
K 0,533
Li 0,350
Mo 0,341
Na 0,452
Ta 0,332

w 0,316



Tabellen 365

Tabelle 1.1.1. (Fortsetzung)

Stoff Gitterkonstante @ in nm

d) Diamantstruktur

C 0,356
Ge 0,565
Si 0,543
Sn (grau) 0,646

e) Zinkblende-Struktur

Zwei kfz-Gitter, gegeneinander wie beim Diamantgitter um eine
viertel Raumdiagonale verschoben, mit verschiedenen Ionen besetzt.

Koordinai‘;enl:O,O,O;O,i,i;i,O,i;i,i H
2727 2 27272
.+t 1+ 1 3 3 3 13 3 3 1
474747474747 474747474 4"
AgJ 0,647
AIP 0,542
CuCl 0,541
CuF 0,426
SiC 0,435
ZnS 0,565

f) CsCl-Struktur

Zwei verschobene krz-Gitter, ein Ion I im Zentrum, acht Ionen II
in den Ecken, vgl. Bild. 1.1.10, S. 28

AgMg 0,325
AINi 0,288
BeCu 0,270
CsCl 0,411
CuZn 0,294
LiHg 0,329
NH,C1 0,387
RbCl 0,374

g) CaF,-Struktur

kfz-Gitter mit Ca in 0, 0, 0 und F in L , l, L sowie in ~§— , E—, 3
4 4 4 4 4 4

BaF, 0,619

CaF, 0,545

K,0 0,644

PbMg, 0,684

PtGa, 0,591
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Tabelle 1.1.1. (Fortsetzung)

Stoff

Gitterkonstante ¢ in nm Gitterkonstante ¢ in nm

h) Hexagonal dichteste Kugelpackung (hdp-Gitter)

Be

Cd

Co

Gd

He (bei 2 K)
Mg

Os

Ti

Zn

0,228
0,297
0,251
0,362
0,357
0,320
0,271
0,295
0,266

0,361
0,561
0,407
0,575
0,583
0,520
0,431

0,473

0,494

Tabelle 2.1.1. Ionisierungsenergie Jy; und Elektronenaffinititen Ey in eV

Stoff E X J M Stoff E X J M

H 0,76 13,54 Ti 6,81
He 24,48 A% 6,74
Li 5,37 Cr 6,7
Be 9,30 Mn 7,41
B 8,28 Fe 7,83
c 11,24 Co 7,8
N . 0,04 14,51 Ni 7,6
(6] 2,73 13,57 Cu 0,99 7,67
F 3,94 17,46 Zn 9,37
Ne —1,20 21,47 Ga 5,97
Na 0,08 5,09 Ge 8,10
Mg —0,9 7,63 As 10,05
Al 0,09 5,94 Se 9,75
Si 0,60 8,14 Br 3,64 11,82
P 0,9 10,43 Ag 1,1 7,58
S 2,06 10,42 J 3,30 10,43
Cl 3,70 13,01 Cs 3,86
Ar —1,0. 15,68 Au 2,4 9,20
K 4,32 '

Ca 6,25

Tabelle 2.1.3. Madelung-Konstante

Stoff * Stoff «
Zinkblende 1,64 CaF, 2,562

NaCl 1,75 CuO 4,12

CsCl 1,76 . Al,O4 4,17

TiO, 2,40
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Tabelle 2.1.2. Kiirzester Abstand, Gitterenergie, Kompressibilitit, Schmelzpunkt
fiir Festkorper der verschiedenen Bindungszustinde

Stoff Kiirzester MeBwert der Gitter- Kompressibilitdt Schmelzpunkt
Abstand 7, energie — U, bei 0 K in % in N=1 m? in °C
in nm

keal/mol kJ/mol

Ionenkristalle

LiF 0,2014 242,3 1014 0,15 848

LiCl 0,2570 198,9 833 0,32 614

LiBr 0,2751 189,8 795 0,41 550

LiJ 0,3006 177,7 744 0,64 449

NaF 0,2317 214,4 898 0,21 1012

NaCl 0,2820 182,6 765 0,41 -~ 800

NaBr 0,2989 173,6 727 0,49 741

NaJ 0,3237 163,2 683 0,68 662

KF 0,2674 189,8 795 0,32 1502

KCl1 0,3147 165,8 694 0,54 772

KBr 0,2989 158,5 664 0,65 732

KJ 0,3533 * 149,9 628 0,82 685

AgF 0,246 209,4 877 435

AgCl 0,277 235,7 987 0,24 455

AgBr 0,288 201,2 842 0,27 430

Kristalle mit iiberwiegend kovalenter Bindung (3. bis 5. Gruppe)

B 134 561 0,54 2030

C 0,154 170 712 0,16 3800

Si 0,235 107 448 0,10 1423

Ga 0,355 64,2 269 0,19 30

Ge 0,244 89,3 374 0,14 937

As 69 289 0,64 815

Metalle

Cr 0,249 94,3 395 0,08 1903

Ni 0,249 102,3 428 0,051 1455

Cu 0,255 80,8 338 0,070 1083

Mo 0,272 157,1 658 0,033 2620

Ag 0,288 68,3 286 0,095 961

Sn 0,279 71,9 301 0,18 '+ 232

Ta . 0,285 186,6 781 0,046 2996

Pt 0,277 135,0 565 0,050 1769

Au 0,288 87,3 366 0,065 1064

Pb 0,349 47,0 . 197 0,041 327

U 0,276 124,7 522 0,079 1130

Alkalimetalle

Li 0,303 38,0 159 0,42 180

Na 26,0 109 1,34 - 98

K 21,7 91 2,35 63

Rb 0,487 19,8 83 0,034 39

Cs 0,524 19,1 80 0,75 29
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Tabelle 2.1.2. (Fortsetzung)

Stoff Kirzester MeBwert der Gitter- Kompressibilitidt Schmelzpunkt
Abstand 7, energie — U, bei 0 K in % in N-1 m? in °C
in nm

keal/mol kJ/mol

Erdalkalimetalle

Be 0,222 76,9 322 0,076 1283

Mg 0,319 35,3 148 0,29 649

Ca 0,393 42,1 176 0,57 850

Edelgaskristalle

Ne 0,320 0,45 1,9 —249

Ar 0,383 1,85 7,8 —189

Kr 2,67 11,2 —156

Xe 0,441 3,83 16 —112

Tabelle 2.1.5. Elastizititskoeffizienten und Dichte kubischer Kristalle

Stoff Cu Cyy Cy d T
in 101 N m—2 ing cm™ in K
w 5,326 2,049 1,631 19,3 0
5,233 2,045 1,067 19,3 300
Cu 1,762 1,249 0,818 9,02 , 0
1,684 1,214 0,754 8,9 300
Ag 1,315 0,973 0,511 10,63 0
1,240 0,937 0,461 10,5 300
Al 1,143 0,619 0,316 2,73 0
1,068 0,607 0,282 2,70 300
Pb 0,555 0,454 0,194 11,60 0
0,495 0,423 0,149 11,30 300
KCl1 0,483 0,054 0,066 2,04 4
0,403 0,066 0,063 1,98 300
NaCl 0,487 0,124 0,126 2,16 300
Si 1,66 0,639 0,796 2,3 300
Ge 1,285 0,483 0,680 300
Diamant 10,76 1,25 5,76 3,5 300
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Tabelle 2.1.6. Elekfronenanordnungen im Grundzustand

N

Element

2s 2p 3s 3p ad 4s 4p 4d 4f 5s 5p

1s

— N MmO ©
A ANANNNAN
AANANNNNAN

- D ()
HARAMOZOR A

M HIWO O~ 0O
-~

— M H OO

Al B o) o o) B ol

© OO OO OWDO

AN NNANANN

AN ANANANNNN

Na
Mg
Al
o1
P
S
Cl
Ar

11
12
13
14
15
16
17
18

e M H IO ©
HAANANN-S-ANNNNSNNANNNNN
mEeReereg9899299
OOV VOV DOV OVOWOLOVOLOLLOLOOD
NAANANAANNANAANNANANEAEANAN® S
DO OOV OV VOV OVOVOLLOLYWOOLOLOD
22222;,2222222222222

AN

~

S O H O OB g 8 O w g &
MERELSSRSESISS 484
SO AN IO 0D D =Y ©
FARNANNNARANNANDMMMDMm®

— 1 O G v v

& 10 ©
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NN NNNANN

C O PO OO OO

AN ANANNNNRN

OO OO OO O

NN ANANANANN

NN ANNNNN

2 ., o 0 o
RaHNZ=H
>0 O v M
N MMt HHH
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Tabelle 2.1.6. (Fortsetzung)

Element K L M N (0]
1s 2s 2p 3s 3p 3d  4s 4p 4d 4f 5s 5p
44 Ru 2 2 6 2 6 10 2 6 7 1
45 Rh 2 2 6 2 6 10 2 6 8 1
46 Pd 2 2 6 2 6 10 2 6 10
47 Ag 2 2 6 2 6 10 2 6 10 1
48 Cd 2 2 6 2 6 10 2 6 10 2
49 1In 2 2 6 2 6 10 2 6 10 2 1
50 Sn 2 2 6 2 6 10 2 6 10 2 2
Tabelle 2.1.4. Parameter von Edelgaskristallen
Stoff Gitterenergie € c Kiirzester Abstand 7,
kcal mol-*  kJ mol—? 102 J nm nm
Ne 0,45 1,9 0,50 0,274 0,313
Ar 1,85 7,8 1,67 0,340 0,376
Kr 2,67 11,2 2,256 0,365 0,401
Xe 3,83 16,0 3,20 0,398 0,415

Tab. 2.2.1. Debye-Temperatur T, und obere Grenze der Schwingungs-

frequenzen

Stoff Tpin K wg in 104 571 fg in 102 Hz
Ag 239 0,313 4,98
Al 430 0,563 8,96
C 1320 1,73 27,5
CCl, 76 0,099 1,58
CH, 78 0,102 1,63
o, 140 0,183 2,92
CS, 90 0,118 1,88
Cl, 115 0,151 2,40
Cu 315 0,412 6,56
KBr 180 0,236 3,75
KCl1 233 0,305 4,85
NaCl 322 0,422 6,71
Ne 64 0,084 1,33
NH, 210 0,275 4,38
0, 90,9 0,119 1,89
Pb 90 0,118 1,88
S 165 0,216 3,44
Xe 55 0,072 1,15



Tab. 2.2.2. Atomare und thermische Eigenschaften der Metalle bei Zimmertemperatur

Metall Relative Dichte Spezifische Warmekapazitit Léangenaus- Wirmeleitfahigkeit Konzentration

Atommasse din cin ) dehnungs- %’ in N in

koeffizient

A, gem=3 kealkg? K-t kJkg?K! o« in10%K! calm?K?ls! WmlK?! 10%m-3
Ag 107,87 10,5 0,056 0,234 19 98,9 414 5,86
Al 26,98 2,7 0,217 0,909 25 57,8 242 6,02
Au 196,97 19,29 0,031 0,128 14 71,6 300 5,90
Be 9,01 1,84 0,425 1,780 12 47,8 200 12,37
Co 58,93 8,7 0,104 0,435 12 22,2 93 8,99
Cr 52,00 7,1 0,110 0,460 7.4 20,8 87 7,38
Cu 63,55 8,89 0,092 0,385 16,7 91,5 383 8,46
Ga 62,72 5,93 0,090 0,377 -19,2 8,1 34 5,67
Hg 200,59 13,55 0,033 0,139 18,1 2,1 9 4,07
K 39,10 0,86 0,189 0,790 80 23,1 97 1,32
Li 6,94 0,534 1,092 4,573 60,0 17 71 4,63
Na, 22,99 0,97 0,283 1,184 70 32,1 134 2,54
Ni 58,71 8,8 0,109 0,456 13 14,2 59 9,13
Os 190,2 22,5 0,031 0,130 7 20,8 87 7,12
Pb 207,2 11,34 0,030 0,127 29 8,6 36 3,30
Pt 195,09 21,45 0,032 0,135 9,0 17,0 71 6,62
Si 28,09 2,33 0,169 0,706 2,5 41,8 175 4,50
Sn 118,69 7.3 0,054 0,225 23 15 63 3,69
Ta 180,95 16,6 0,036 0,151 6,5 13,4 56 5,53
w 183,85 19,3 0,034 0,142 4,3 44,2 185 6,32
Zn 65,37 7,1 0,092 0,387 29 26,5 111 6,57

u9[eqer,

TLE
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Tab. 2.2.3. Mittlere Schallgeschwindigkeit bei Zimmertemperatur

Stoft vgin km st Stoff vg in km s
Ag 2,7 Sn 2,6
Al 5,1 Zn 3,7
Pb 1,3 Messing 3.4
Pt 2,8 Stahl 5,1

Tab. 2.2.4. Griineisen-Parameter y

Stoff ¥ Stoff ¥
Ag 2,2 KCl1 1,66
Al 0,94 KF 1,93
Co 1,8 Na 1,50
Cu 1,63 NaCl 3,0
K 2,32 Ni 1,9
KBr 1,29

Tabelle 3.1.1. Aktivierungsenergie &g
zur Bildung von Schottky-Defekten

Metall eggineV
Cu 0,90

Ag 0,8

Au 0,67

Tabelle 8.1.2. Aktivierungsenergie ¢, zur Bildung von Leerstellenpaaren
(Schottky-Defekten) in Ionenkristallen

Kristall ep in eV Kristall epin eV
LiF 2,68 NaCl 2,06
LiCl 2,12 NaBr 1,66
LiBr 1,80 KCl 2,01
LiJ 1,34

Tabelle 3.1.3. Bildungsenergie &y fiir
Metallionen auf Zwischengitterplitzen

Kristall epin eV

AgCl 1,4
AgBr 1,1
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Tabelle 3.1.5. Ionenradien

Ion 7 in nm Ton 7 in nm
Agt 0,126 K+ 0,133
Agtt 0,089 Lit 0,068
Alt++ 0,038 I\L%Igl: 8,068
Aut 0,137 ,08
B+++ 0,023 Mnt+t 0,066
Bett 0,035 N+++ 0,016
Bit++ 0,096 N5+ 0,013
Br- 0,195 Nat 0,097
CHt++ 0,016 Nit+ 0,069
Catt 0,099 (O 0,014
Cd++ 0,097 0s+ 0,010
Cl- 0,181 Pbt+ 0,120
Cls+ 0,034 Pbtttt 0,084
Cl+ 0,027 Ratt 0,143
Cot+t 0,072 S— 0,185
Cot++ 0,063 Sttt 0,037
Cst 0,161 Se+ 0,030
Cut 0,096 Sht++ 0,076
Cutt 0,072 Shé+ 0,062
F- 0,133 Se— 0,196
F+ 0,008 Sett+ 0,078
Fett 0,074 Sit+++ 0,042
Fet++ 0,064 Sntt++ 0,100
Gattt 0,062 Snttt+ 0,071
Gett 0,073 Tit+ 0,080
Get+++ 0,053 Uttt 0,097
H- 0,136 Us+ 0,080
Hgt+ 0,110 W+ 0,070
J- 0,219 Weé+ 0,062
Jr 0,050 Zntt 0,074

Tabelle 3.1.6. Bildungsenergie &g
fiir die Erzeugung von F-Zentren

Kristall eg in eV
KCl1 0,10
KBr 0,25
KJ 0,11

25 Schilling, Festkorperphysik
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Tab. 3.1.4. Leittdhigkeitskonstante fiir Ionenleituhg ¢ =Ae

Material Bedingungen A B
in Q1m- in K
NaCl Eigenleitung unterhalb
Schmelzpunkt 800°C 1.108 2,2 .10
550..-700°C 4,1-107 2,16 - 104
Einkristall
550---800°C 4,3 - 108 2,05 - 10*
PreBzylinder
KCl1 Eigenleitung unterhalb
Schmelzpunkt 768°C 2.108 2,37 - 10¢
500---725°C 1,1.108 2,35 - 10%
Einkristall
500.--725°C
PreBzylinder 1,5-108 2,35 - 10*

Tab. 3.2.1. Statische Dielektrizititszahl, optische Brech-
zahl im Sichtbaren, charakteristische Eigenfrequenz
im Infraroten fiir Alkali- und Silberhalogenide

Stoff £:(0) n WIR,
in10® g1
LiF 8,9 14 5,8
LiCl 12,0 1,6 3,6
LiBr 13,2 1,8 3,0
NaF 5,1 1,3 4,6
NaCl 5,9 1,5 3,1
NaBr 6,4 1,6 2,5
KF 5,5 1,2 3,6
KCl1 4,85 1,45 2,7
KJ 5,1 1,6 1,9
RbF 6,5 1,4 2,9
RbJ 5,5 1,6 1,4
CsCl 7,2 1,6 1,9
AgCl 12,3 2,0 1,9
AgBr 13,1 2,15 1,5
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25%

Tab. 3.2.2. Brechzahlen fiir NaF bei 20°C

Ain pm n Ain pm. n

0,240 1,35792 0,700 1,32379
0,300 1,34272 0,800 1,32280
0,400 1,33224 0,900 1,32210
0,500 1,32772 1,000 1,32158
0,600 1,32528 1,100 1,32118

Tabelle 3.2.3. Eigenfrequenzen einiger Alkalihalogenide
_im Infraroten und Ultravioletten

Wellenzahl Wellenldnge Intensitat
Zin em? A in pm
c
NaF
246 40,6 stark
294 34 mittel
345 29 schwach
556 18 schwach
0,117 stark
NaBr
134 74,6 mittel
152 66 schwach
0,125 stark
0,145 stark
0,175 stark
0,189 stark
KCl
58 172 schwach
88 114 schwach
100---130 100-..77 stark, breit
154 65 mittel
179...216 56.--46 mittel, breit
280 35,7 mittel
141,5 70,7 mittel
167 60 schwach
213 47 sehr schwach
235 42.5 schwach
244 41 schwach
303 33 sehr schwach
0,131 stark
0,162 stark
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Tab. 3.2.4. MeBwerte iiber die Absorption von F-Zentren in Alkalihalogenid-Kristallen bei 20 °C

Stoff Lage des Halbwerts- Konzentration = Konzentration der Farbzentren
Maximums breite der Alkali- fir kpax = 1 mm— =103 m™1
molekiile
absolut relativ
Apax in nm H in eV N in 10 m—3 N, in 102 m—2  N,/N in 10-¢
LiF 250 0,82 6,14 9,0 1,5
LiCl 385 0,62 2,94 5,6 1,9
NaF 340 0,62 4,00 7,2 1,8
NaCl 465 0,47 2,24 4,6 2,1
NaBr 549 0,62 1,87 4,7 2,6
KF 455 0,41 2,57 4,7 1,8
KcCl 563 0,35 1,61 3,6 2,3
KBr 630 0,345 1,39 3,4 2,4
RbCl 624 0,31 1,39 3,2 2,3
RbBr 720 0,28 1,22 2,8 2,3
RbJ 775 0,35 1,01 3,2 3,2
Tab. 3.3.1. Spezifische elektrische Leitfihigkeit fester Korper
bei Zimmertemperatur
Leiter
Bezeich- oin Bezeich- o in Bezeich- oin
nung 108 Q-1 m—t nung 108 Q1m™? nung 108Q1m—t
Ag 67,1 Co 17,9 Os 10,5
Al 40 Cr 7,09 Pb 5,2
As || ¢ 2,81 Cs 5,52 Pt 10,2
Le 3,92 Cu 64,5 Sb |le 3,14
Au 48,5 Graphit 0,20 1l e 2,59
Be || ¢ 279 Hg 1,06 Sn || ¢ 9,09
Le 320 K 16,4 lec 10,78
Bi || ¢ 0,769 Li 11,7 U 3,45
Lle 0,980 Mg || ¢ 28,7 w 20,4
od || ¢ 12,0 Le 239 Zn || ¢ 17,9
Le 14,6 Na 23,4 Le 18,6
Halbleiter
Bezeichnung ¢in Q- tm-1 Bezeichnung 0in Qtm
Ge 2,2.10°8 Se 4,0.10-14
Si 4,3.10712 InSb 5.10-°
Te || ¢ 1,8.10-5 CuO 5.10°°
le 6,7 - 10 FeO 1.10-2
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Tabelle 8.3.1. (Fortsetzung)

Isolatoren
Bezeichnung cin Q1m? Bezeichnung oin Q-1 m—?
Diamant 1014 Polystyrol 10-27...10-18
Glimmer 10-15 Polytetra-
Quarz 10-17...10-1% fluordthylen 10—
Paraffin 1014
Tab. 3.3.2. Freiheitszahl f
(Verhiiltnis von Elektronenruhmasse
und effektiver Masse)
Bezeichnung f
Ag 1,0
Cu 0,67
Mg 0,75
Na 1,67
Pb 0,48
Tab. 3.3.3. Hall-Konstante bei Zimmertemperatur
Material R Material R
in 10710 m?3 As™? in 1019 m3 As™
Ag —0,846 Cu (technisch) —0,533
Al —0,34 " (gewalzt) —0,49
Au —0,697 (rein) —0,496
Ca —1,78 As 45,2
Cs —17,8 Be 7,7
Gd —4,48 Cd 0,6
K —4,2 Ce 1,81
Li —1,70 Cr 3,63
Mg —0,84 Ir 0,318
Na —2,1 Sb 213
Rb —5,92 Ta 0,971
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Tabelle 3.8.3. (Fortsetzung)
Bi (Einkristall) im Grenzfall B — 0

T R R
in 10719 m3 As? in 10710 m? Ag!

in K (B ] e) (Ble

65 —103000 +6000
125 —57000 +2000
230 —22000 ca.0
290 —15000 0
300 —13500 1450

Tab. 4.1.1.. Funktionelle Abhiingigkeit W = W (k) nach dem Kronig-Modell

fiir Kupfer

WineV cos kya ky in 10° m~? Win eV cos kya ky in 10°m™
0,50 —1,449 11,0 0,733 2,07

1,00 —1,214 12,0 0,543 2,76

1,20 —1,116 13,0 0,330 342

1,40 —1,016 14,0 0,106 4,06

14,47 0,000 4,35

1,432 —1,000 8,70 15,0 —0,007 437 £
1,50 —0,966 7,98 16,0 —0,329 528 M
2,00 —0,713 6,55 17,0 —0,520 586 &
2,50 —0,464 5,69 18,0 —0,685 6,44

3,00 —0,225 4,98 19,0 —0,818 17,01
3,502 0,000 435 g 20,0 —0,917 17,57

4,00 0206 378 § 21,0 —0,981 8,16

4,50 0,389 3,25 21,52 —1,000 8,70

5,00 0,550 2,74

6,00 0,799 1,79

7,00 0,948 0,89 23,12 —1,000 870 E
7,50 0,987 0,44 31,63 0,000 435 &
7,79 1,000 0,00 42,2 1,000 0,00 5
8,52 1,000 0,00 42,5 1,000 0,00
9,00 0,978 058 & ... g
9,50 0938 098 A A

10,00 0,888 1,32 ~
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Tab. 4.1.2. Atomformfaktor F

Element Z sin 6
A
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,80 1,00

Na 11 11,00 9,76 8,34 6,9 5,47 4,29 3,40 2,31 1,78
Al 13 13,00 11,23 9,16 7,88 6,77 5,69 4,71 3,21 2,32
Cu 29 29,00 27,19 23,63 19,90 16,48 13,65 11,44 8,61 7,13
Ag 47 47,00 43,88 37,68 31,78 27,17 23,81 21,37 17,96 15,16
w 74 74,00 69,07 61,58 54,59 48,27 4283 38,12 30,46 24,68

Tab. 4.2.1. Charakteristische GroBen nach dem Bloch-Theorem

Metall ep kg Tw vp

in eV in 101 m—1 in10*K in 108 m st

Li 4,7 1,1 5,5 1,3

Na 5,2 0,90 6,2 1,8

K 2,1 0,73 2.4 0,85

Rb 1,8 0,68 2,1 0,79

Cs 1,5 0,63 1,8 0,73

Cu 4,7 1,36 54 1,05

Ag 5,5 1,19 6,4 1,38

Au 5,5 1,20 6,4 1,39

Tab. 4.3.1. Temperaturkoeffizient ¢ des elektrischen Widerstandes

or+AT = op (1 — xAT)

Material Spez. Leitwert oyy5 o bei Temperaturkoeffizient «
' 0°C in 10 Q-1 m1 bei 0°C in 10-3 K1

Al 40,0 4,60

Au 48,5 4,02

Cs 5,62 5,03

Cu 64,5 4,30

K 16,4 6,73

Na 23,4 5,46

Pb 5,21 4,28

w 20,4 5,10
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Tab. 4.3.2. Elektrische Leitfdhigkeit in Abhingigkeit von der Temperatur

Material T - Material T o
0313,2 0273,2
Na 273,2 1,00 Cu 20,5 568
polykristallin 87,8 4,34 polykristallin 14,26 781
Verunreinigung 77,6 5,33 getempert 4,23 840
< 0,19 20,4 149 sehr kleine 1,55 565
4,2 312 Verunreinigung
13 285 373,2 0,6987
1,2 270 473,2 0,5360
573,2 0,4334
K 87,8 3,80 673,2 0,3623
polykristallin 77,6 4,41 773,2 0,3101
sehr kleine 20,4 37,0
Verunreinigung 4,2 143 Ag . . 195 1,462
1,2 145 polykristallin 81 4,828
getempert 20 185
Pb 88,6 3,45 10,8 347
polykristallin 73,1 4,31 6,0 373
getempert 20,5 33,2 4,2 376
sehr kleine 14,3 88,5
Verunreinigung 7,26 10% 373,2 0,7093
473,2 0,5467
7,25 573,2 0,4420
supraleitend 673,2 0,3690
773,2 0,3156
Tab. 4.4.1. Freie Elektronen je Atom
Cu Ag Au Sn Hg Al
N
A 1,00 0,68 0,60 1,10 0,13 0,37
0

Tab. 5.1.1. Energieliicken und Dielektrizititszahlen

Stoff AW in eV &
0K 300 K

Diamant 54 5,3 5,67
Si 1,17 1,14 11,8
Ge 0,74 0,67 15,6
AlSb 1,65 1,72 9,03
GaP 3,32 2,26 + 8,41
GaAs 1,52 1,43 10,24
GaSb 0,81 0,78 13,69
InP 1,29 1,35 9,00
InAs 0,36 0,35 10,56

InSb 0,23 0,18 16,15
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Tab. 5.1.2. Mittelwerte der Energiedifferenzen zu Storstellenniveaus bei Zim-
mertemperatur 300 K sowie transversale und longitudinale Massen

Bezeichnung Stoff: Si Ge InAs  InSh
AWy = Wy, — Wp

in eV 0,044 0,011 0,005

AWy =Wy — Wy 0,055 0,011 0,004 0,007
in eV

AW =Wy — Wy

in eV 1,14 0,67 0,35 0,18

Mgy /e 0,98 1,58 0,024 0,015
Mg/ 0,19 0,08 0,024 0,015
My [0 0,50 0,32 0,41 0,18

Mg/ 0,15 0,04 0,025 0,015

Tab. 5.1.3. EinfluB der Fremdsubstanzen auf die Lage
der Storstellenterme in Silizium und Germanium

AWp in eV Phosphor Arsen Antimon

Silizium 0,045 0,049 0,039

Germanium 0,012 0,0127 0,0096

AW, in eV Bor Aluminium Gallium Indium
Silizium 0,045 0,065 0,16
Germanium 0,0104 0,0108 0,0112

Tab. 5.1.4. Effektive Masse der Zustandsdichte und Beweglichkeit

Man/Me Migp/Me by by
in m2 V-1s1 bei 300 K

Ge 0,56 0,37 0,380 0,180
Si 1,08 0,59 0,145 0,050
InSb- 0,013 0,4 7,8 0,075
InAs 0,023 0,41 3,3 0,046
GaSb 0,047 0,23 0,40 0,14

GaAs 0,068 0,50 0,88 0,040
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Tabelle 7. Bezeichnung der wichtigsten Gréfien

Flache
relative Atommasse

Somaepn

QaQ

Sl ~BSASRN
O

SR

N
>
=

Tabelle 6. Physikalische Konstanten

Elektrische Feldkonstante
Magnetische Feldkonstante
Borrzman~-Konstante
Elektrisches Elementarquantum
Lichtgeschwindigkeit im Vakuum
Avocaprosche Konstante
Ruhmasse des Elektrons
Ruhmasse des Protons
Ruhmasse des Neutrons
Allgemeine Gaskonstante
Prancksches Wirkungsquantum

Gitterkonstante

Basisvektor im direkten Gitter
magnetische FluBdichte (Induktion)
Beweglichkeit

Basisvektor im reziproken Gitter
molare Warmekapazitit
Elastizitdtskoeffizient
Diffusionskoeffizient
Dissoziationsenergie
DEepyE-Funktion

dielektrische Verschiebung

Dichte

Abstand, Dicke
Elektronenaffinitit

elektrische Feldstarke
Verzerrungskoeffizient
Einheitsvektor

Freie Energie

Kraft

Strukturamplitude
Verteilungsfunktion
Zustandsfunktion
Zustandsfunktion nach der FErMI-
Dirac-Statistik

Generationsquote (dullere Erzeuger-
quote)

Quote der thermischen Generation
magnetische Feldstirke
Hamrrron-Operator

MrrLERscher Index

imaginédre Einheit

Laufzahl

Einheitsvektor in z-Richtung
Ionisierungsenergie

h

Ry RS W

3

8,8542-1012 AsV-1m-1
1,257 - 106 Vs A1m?
1,3807 - 10-28 J K1
1,602 - 10-1°C

2,99792 - 108 m s
6,0220 - 102 kmol—?
9,109 - 1031 kg

1,6726 - 10-2" kg

1,6749 - 10~%7

8,3144 - 10® J kmol-1 K1
6,6262 -103¢J s

Laufzahl

Einheitsvektor in y-Richtung
Stromdichte

Wirmestromdichte
Wellenzahlvektor der Phononen
Einheitsvektor in z-Richtung
Wellenzahlvektor
Ausbreitungsvektor

Diffusionslinge

LorEeNTZ-Z2hl

DesyE-Linge

Masse

effektive Masse

Exponent

Zyklotronmasse

elektrisches Moment

magnetisches Moment

Teilchenzahl

Konzentration

Konzentration der Akzeptoren
Konzentration der Donatoren
Brechzahl

Anzahl der Fehlordnungen
Konzentration der Leitungsbandelek-
tronen Exponent
Entartungskonzentration der Elek-
tronen im Leitungsband
Einheitsvektor in Normalenrichtung
Druck

o n(les’, Bey) Ubergangswahrscheinlichkeit

(n, kA) - (n” kA/)

Polarisation

Konzentration der Defektelektronen im
Valenzband

Entartungskonzentration

der Defektelektronen
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p Impuls ) B Winkel

Q Reaktionsenergie isochorer Druckkoeffizient
Wirmeenergie Ubergangswahrscheinlichkeit
Gitefaktor I'(x) Gammafunktion

q Ladung Y Winkel

q Pseudoimpuls GRUNEISEN-Parameter

R réumliche Periode Ubergangswahrscheinlichkeit
Radius 6 relative Lingeninderung
Havr-Konstante On1,h2,na Abstand zwischen benachbarten Netz-
Rekombinationsquote ebenen

r Abstandskoordinate € Energiegrofie

N Entropie Dielektrizitdtskonstante

Sm  Sublimationsenergie Parameter

S;;  elastische Konstante ¢ Fermi-Potential, FErMI-Niveau

s Achsenabschnitt ¢y  FErmi-Kante

T  thermodynamische Temperatur d Glanzwinkel

Tp Desye-Temperatur % elektrische Leitfahigkeit

t Zeit isotherme Kompressibilitdt

U  Potential %', A Warmeleitfahigkeit
Gitterenergie 2 Wellenlénge
Innere Energie u Permeabilitiat
Rekombinationsiiberschufl te  Chemisches Potential

u Geschwindigkeit v Frequenz

V. Volumen vg  Grenzfrequenz

Vs molares Volumen II  Peltier-Koeffizient

vg  Schallgeschwindigkeit 0 Radius

v Geschwindigkeit Reibungskoeffizient
Driftgeschwindigkeit Ladungsdichte

W  Energie X Seebeck-Koeffizient
statistisches Gewicht (Wahrschein- c spezifische elektrische Leitfahigkeit
lichkeit) Parameter

W1 Leitungsbandkante o;  Spannungskomponente

Wy Valenzbandkante T StoBzeit

AW Energielicke Relaxationszeit

w Kreisfrequenz der Phononen Periode

x Ortskoordinate &  Potential

y Ortskoordinate @p Diffusionspotential

Z  Kernladungszahl @ Winkel
Zustandssumme Abweichung der Verteilungsfunktion

z Ortskoordinate von der FERMI-DIrAcC-Verteilung

o  Winkel vy  Wellenfunktion
MapEeLUNG-Konstante Brocr-Welle
Ubergangswahrscheinlichkeit 2  Grundgebiet
Raumausdehnungskoeffizient Q, Volumen der Elementarzelle
Temperaturkoeffizient des Q,’ reduzierter Bereich des reziproken
Widerstandes Raumes
Polarisierbarkeit w Kreisfrequenz der Photonen

o’  Léangenausdehnungskoeffizient w, Zyklotronfrequenz (Kreisfrequenz)
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232

Defekt-elektron 190, 205, 258,
264, 268, 280, 304

— -halbleiter 261

Diamantstruktur 23

Diffusion 113, 284, 286

Diffusionskoeffizient 286

— -potential 303

— -linge 289

— -theorie 317

. Diode 320

Diodentheorie 320
Dipolschicht 303
Dispersion 89, 131, 141
Donatoren 260, 262
Donator-niveau 274

— -term 260, 265, 274
Drift 284, 287

— -geschwindigkeit 157
— -strom 287

DrubpEische Formel 127

DrUDE-SOMMERFELDSche
Elektronentheorie 143

DurchlaB-richtung 326

— -strom 326

effektive Masse 153, 162, 192,
204

— — der Zustandsdichte
2781f., 381

effektives Feld 126

Eigen-frequenzen 130, 374f.

— -halbleiter 259, 310

— -leitung 259, 269

— -schwingung 135

Einelektronennaherung 164

EinsTEIN-Beziehung 115, 286

elastische Welle 75

Elastizitatskoeffizienten 368

elektrische Leitfahigkeit 155,
228, 233, 241, 376, 380

— Leitung 146, 218

elektrischer Strom 224

elektrisches Feld 213

elektrochemisches Potential
305

Elektronen-affinitat 54, 366

— -falle 269

—-gas 147, 159, 161, 264

— -leitung 147

— -liicke 258, 380

— -polarisation 123

— -potential 180

— -spin 262

— -strahlen 44

— -iibergédnge 229

elektrovalente Bindung 53
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Elementarzelle 14

Emitter 327

Energie-band 166, 173, 198

— -dichte-Funktion 220

— -liicke 166, 189

— -strom 225

Entartungs-faktor 263

— -integral 150, 180

— -konzentration 264

— -temperatur 163

Entkopplung der Rekombi-
nationen 300

Erzeugerquote 285

Ewarpsche Kugel 37

Exziton 342

Farbe der Kristalle 335
Farbzentrum 118, 139, 373,

376

Fehlstelle 107

Fermi-Flache 236, 240, 252,
257

— -Dirac-Statistik 148, 261,
264

— -Energie 152

— -Integral 264

— -Kante 148, 152

— -Kugel 216

— -Niveau 267, 274

— -Potential 268

Fluoreszenz 332f.

Freiheitszahl 153, 377

Freie Enthalpie 273

Fremd-halbleiter 259

— -leitung 259, 270, 276

— -substanzen 332

Frenkel-Defekt 108, 112

F-Zentrum — Farbzentrum

Galvani-Spannung 306

Gammafunktion 151, 264

Generation 284

Generations-prozef 287

— -quote 285

Germanium 259, 336

Geschwindigkeits-koeffizient
294

— -komponente 231

Gitter-energie 61, 64, 367, 370

— -konstante 16, 44, 364 ff.

— -potential 51

— -schwingung 80, 88, 229

Gleich-gewichtszustand,
stationdrer 286

— -richter 323

Grenz-energie 148

— -frequenz 86, 232

Grundgitterabsorption 333

GRUNEISEN-Beziehung 103

— -Parameter 104, 371

DE-HaAs-vaAN-ALPHEN-Effekt
248

Haftstelle 333

Halb-leiter 258

— — -metall 3061.

— -wertzeit 302

Hauvv-Effekt 154

— -Konstante 156, 377

HamiLToN-Operator 165

heteropolare Bindung 53

hexagonal dichteste Kugel-
packung 25, 366

homéopolare Bindung 53

Hundeknochenbahn 257

Injektion von Ladungstrd-
gern 296

Innere Energie 159

Ionen-bindung 53, 147

— -kristall 61

— -leitfghigkeit 115, 374

ionische Polarisation 123

Ionisierungsspannung 199

Isolator 199, 258

Kollektor 327

Kompressibilitat 61, 74, 367

Kontakteffekt 303

kovalente Bindung 53, 56

Kristall-gitter 13, 68

— -pulververfahren 42

Kronig-Modell 176, 378

kubisches Gitter 14

kubisch-flichenzentriertes
Gitter 15, 185

— -raumzentriertes Gitter 16,
22, 185

Kugelpackung 25, 366

KurzschluBstromiibersetzung
329

Ladungstragerinjektion 290
LanGEVIN-Funktion 144

Laser 334, 340

Lavue-Bild 39

— -Verfahren 39

Lavugsche Interferenzbedin-
gungen 30

Lebensdauer 213

Leiter 191, 199, 258

Leitfahigkeit 147, 210

Leitungsband 189

LENNARD-JONES-Potential 52

Leuchtintensitit 337

Loch 258, 280

LorenTz-Feld 136

— -Gleichung 237

LoreNz-LorENTZsche Formel
128

— -Zahl 226

Lumineszenz 332

MapeLUNG-Konstante 59,
366

Magnetfeld 241, 248

magnetische Krifte 237

Majoritatstrager 324

Mangelhalbleiter 261

Maser 340

Massen-tensor 153, 355

— -wirkungsgesetz der Quasi-
teilchen 273

Medium, aktives 340

Metall-bindung 53, 58, 66

— -Halbleiter-Kontakt 320

metastabiler Zustand 334

Mimrersche Indizes 31

Minoritatstrager 324

Mittelwert 233

mittlere freie ‘Weglinge der
Elektronen 236

— — — — Phononen 99

MorTsches Exziton 342

Netzebenen 31
Neutralitdtsbedingung 266
Neutronenstreuung 89
n-Halbleiter 261, 271, 3086,
312,317
Niveauliicke 189
npn-Transistor 327
Nullpunktenergie 86

Oberflachen-donatoren 310
— -effekt 303, 308
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Oberflachen-ladung 290

— -leitfahigkeit 314 .

Ohmsches Gesetz 154, 225

optische Schwingung 86

Orientierungspolarisation
123, 142

PerTIER-Effekt 226
Periodizitat 164
Periodizitdtsbedingung 165
— nach BorN und v. Kagr-
MAN 194f.
p-Halbleiter 261, 271, 307
Phononen 80, 88f., 93, 97,
99, 234 '
Phosphoreszenz 332, 334
Photoleitfahigkeit 292, 344
Photonen 88
Photospannung 344
pn-Diode 321
pn-Gleichrichter 323
pnp-Transistor 327
Boissonsche Gleichung 304
Polarisation 122, 135
Polarisierbarkeit 124, 129
Potential, Chemisches 268
—, elektrochemisches 305
potentielle Energie 45
Pseudoimpuls 80

Quanten-ausbeute 293
— -fluBdichte 293

— -zustinde 189, 198
Quasiteilchen 80, 273

Randbedingung nach Borx
und v. KaARMAN 1941,
Raumladungsschicht 303, 317
Reaktionsgeschwindigkeit

294

reduzierter Bereich 167

Rekombination 284, 296, 300,
324

Rekombinationsrate 285

Relaxationszeit 213, 242,286,
288

reziproker Raum 19, 240

reziprokes Gitter 19

Rontgenwelle 29

Schallgeschwindigkeit 371

ScHoTTEY-Defekt 108f., 372

ScHOTTEYSche Sperrschicht
303

SCHRODINGER-Gleichung 164

SeEBECK-Effekt 226

Silizium 259, 267, 286, 336

Skin-Effekt 253

Spannungskoeffizient 70

Sperr-bereich 133

— -richtung 326

— -schicht 303, 317

— -strom 326

Spin 262

stationdrer Fall 337

Steinsalz 55

— -gitter 20

StokEssche Verschiebung 334

Storstelle 261 £., 267, 282, 381

StoBglied der BOLTZMANN-
Gleichung 211f.

Strahlungseffekte 332

strukturabhingige Eigen-
schaften 107

Strukturamplitude 48

strukturunabhéngige Eigen-
schaften 107

Temperatur-abhingigkeit
der Leitfahigkeit 228, 233,
379

Temperatur-feld 218
Thermospannung 227
Transistor 327

traps 269

Ubergangs-gebiet 321

— -wahrscheinlichkeit 212,
229, 338

UberschuBhalbleiter 261

Untergitter 14

Valenzband 189
Verformung 68
Verteilungs-dichte 150

— -funktion 152, 210
Verzerrungskoeffizient 70
Vorra-Spannung 303, 316

VAN-DER-WaALs-Bindung 53

— — — -Kristall 64

Wiérme-ausdehnung 101

— -kapazitiat 79, 162

— -leitfahigkeit 100

— -strom 224

Wechselwirkungskrafte 51

Wellen 83

WieDEMANN-FrANZsches Ge-
setz 226

WiGNER-SEITZ-Zelle 167, 185

Wirkungsgrad, 332, 338

Zellenmethode nach WIGNER-
SEirz 183

zusammengesetztes Gitter 14

Zustandsdichte 207, 278, 282

Zwischenbandtherme 296

Zyklotron-frequenz 238

— -masse 238, 246

— -Resonanz 246
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Die Festkorperphysik untersucht die
physikahschen Eigenschaften fester Korper
auf Grund ihres kristallinen Aufbaues und
der Fehlstellen. Sie bildet nicht nur die
wichfigste Grundlage der Werkstoffwissen-
schaft, sondern ist auch fiir Probleme der
Linergieleitung, der elektromagnetischen Bild-
und Ubertragungstechnik, der Informations-
spercheriechnik, der Kernspallung, der
Kernfusion und der Plasmaphysik von
Bedeutung,.

Das Buch erlautert die grundlegenden Ver-
fahren der Shrukturanalyse, gibt eine Uber-
sicht @tber dic am haufigsten auftretenden
Kristallstrukiuren und leitet die zwischen
den Flementarteilchen wirkenden Krifte ab.
Es werden die thermodynamischen Eigen-
schaften fiir die verschiedenen Temyperatur-
bereiche und das optische Verhalten in
Abhingiglkeit von der Wellenlange behandelt.
Zur Wiedergabe der elekirischen Eigenschaften
— wie etwa der spezifischen elektrischen
Leitfahigkeit, des Potentials, der Elektronen-
bahnen — werden vereinfachte Modelle tiber
das qualitative Verhalten und exakte
Methoden fiir die maschinelle Durchrechnung
abgeleitet. Der letzte Hauptabschnitt
behandelt das elektrische und optische
Verhalten der Halbleiter.

Das Buch gliedert sich in 5 Hauptabschnitte
mit insgesamt 15 Abschnitten. Jeder Ab-
schnitt ist dreigeteilt: Dem Einfahrungstezt
itber die theoretischen Grundlagen, in dem
auch eine Reihe Beispicle enthalten sind,
folgt die Behandlung ausgewdhiler Probleme
von der Darstellung der Theorie bis zur
numerischen Durchrechnung. Daran
schliefen sich Aufgaben an, deren Ergebnisse
am Schlufl des Buches zusammengestellt
sind. Zahlreiche Tabellen liefern die fiir
Berechnungen erforderlichen Werte.

Dag Buch wendet sich an Studenten,
Lehrkrifte und Ingenieure in den Fach-
richtungen Physik, Werkstoffwissenschaft,
Elektrotechnil, Chemie, Mathematilk,
Rechentechnik.



