(A
Q
Q

AL T

g
3

LLR)

Q

REM % GRAPH ZEICHNEM %

FOR X=-14 T0 14

Y=8GNM (X)) A=d

IF AS="INT" THENM Y=INT(X/D)I1A=3
PRINT AT {13-AXY (12+X);"%"

NEXT X

‘REPM ¥ PROGRAMM-ENDE %

RPAUSE 50

CLS:PRINT

PRINT " NEUER PROGRAMMLAUF 2 <J/N>"
YE=INKEY$:IF ¥Y$="" THEN 430

IF ¥$="J" OR Y&="j" THEN 110

EMD

Kleincomputer-Fibel

Von Jiirgen Groh

2_Auflage

Akademie-Verlag Berlin 1988

Verfasser:

Dr. sc. nat. Jirgen Groh
Friedrich-Schiller-Universitat Jena

Der Titel wurde vom Originalmanuskript des Autors reproduziert,

ISBN 3-05-500033-1

Erschienen im Akademie-Verlag Berlin,

DDR-1086 Berlin, Leipziger StraBe 3-4

(:) Akademie-Verlag Berlin 1986

Lizenznummer: 202 + 100/509/88

Printed in the German Democratic Republic

Druck: VEB Druckerei "Gottfried wWilhelm Leibniz",
4450 Grafenhainichen

Buchbinderische Weiterverarbeitung: VEB Druckhaus K&then
Einband: Annemarie Wagner

Lektor: Dipl,-Math, Gesine Reiher

LSv 1089, 3059

Bestellnummer: 763 539 6 (6922)

01950

Vorwort

Zunehmend werden wir in allt¥glichen Situationen, ob in Ausbil-
dung, Berufsleben oder Freizeit, mit Kleincomputern konfrontiert.
Wir begegnen diesen Ger#dten zumeist von aussen als einer Anlage
mit Tasten, Bildschirm und Kassetten ohne Kenntnisse fiber das In-
nenleben und die theoretischen Grundlagen solcher Computer. Der
vorliegende Text entstand aus dem Wunsche, Nicht-Fachleuten eine
Hilfe bei der Beschiftigung mit Kleincomputern und ihrer Nutzung
zu geben. Dazu werden liber die Allgemeinbildung hinaus keine
theoretischen oder technischen Spezialkenntnisse vorausgesetzt.
So wie die Fibel als unser erstes Lesebuch, soll dieses BH#ndchen
die ersten Schritte des Weges in eine sich beim Umgang mit Com-
putern 8ffnende neue Sprach- und Denkwelt begleiten.

Ein Grossteil Anregungen habe ich in Arbeitsgemeinschaften und
bei Vortr#gen vor Jenaer Schiilern, Studierenden und Lehrern im
Rahmen der URANIA erhalten. Gerade das erfrischend wache Inter-
esse der jfingeren Generation an moderner Mikrorechentechnik und
Mathematik war mir ein hoher Ansporm bei dem Versuch, auch iber
zuweilen Komplizierteres in mdglichst einfacher Sprache zu
schreiben. Hierbei wurde ich durch eine Vielzahl von Kollegen und
Freunden in mannigfaltiger Hinsicht untersttitzt, woflir ich mich
herzlich bedanke. Besonderer -Dank gebithrt meinem Chef, Herrn
Prof. Dr. Kurt Nawrotzki. Als Direktor der Sektion Mathematik der
Friedrich-Schiller-Universitét Jena hat er mein Vorhaben unter-
stliitzt und mir in grossziigiger, versténdnisvoller Weise Arbeits-
m8glichkeiten gewl#hrt. Herr Prof. Dr. Karl Hinderer fithrte mich
am Institut fiir Mathematische Statistik der Universit#t Karlsruhe

4 Vorwort

und auch daheim in die Anfangsgriinde des Umgangs mit Personalccem-
putern ein. Seit diesem Zusammentreffen hat mich die Begeisterung
an der Anwendung kleiner Computer in Theorie una Praxis nicht
mehr verlassen, Herzlichen Dank mdchte ich auch Herrn Prof. Dr,
Horst Volz vom Zentralinstitut fiir Kybernetik und Informations-
prozesse der Akademie der Wissenschaften der DDR ih Berlin und
-Herrn Dr. Wolfgang Burmeister, Sektion Mathematik der TU Dresden,
fiir freundlich gewdhrte Hilfe sagen. Ebenfalls unterstiitzt wurde
ich durch eine Reihe von Firmen im In- und Ausland, speziell
danke ich diesen fiir die bereitwillige Uberlassung von Produkt-
beschreibungen und Daten,

Dem Lektorat Mathematik des Akadémie-Verlages und insbesondere
Frau Dipl.-ilath, Gesine Reiher danke ich sehr fiir die iiberaus
verstdndnisvolle und kameradschaftliche Zusammenarbeit sowie
Ermutigung in schwierigen Arbeitsphasen,

Nicht zuletzt schulde ich grossen Dank meiner Familie, die das
Leben eines von Terminen und anderen Widrigkeiten gestressten
Schreibers mit viel Geduld und Verstédndnis geteilt und mitgetra-
gen hat.

Ich hitte in diese PFibel gerne noch viele weiterfiihrende Fra-
gen aufgenommen. Weil aber gerade jetzt ein grosser Bedarf an
populédrwissenschaftlicher Literatur besteht und dieses Gebiet
ohnehin in einer stiirmischen Entwicklung begriffen ist, michte
ich es zunichst bei den vorgelegten Kapiteln bewenden lassen, Um
den Lesern den Titel méglichst schnell zur Verfiigung zu stellen,
haben Verlag und Autor sich auch entschlossen, ihn im Offsetver-
fahren zu drucken. Eventuelle Anregungen, Kritiken und auch Wiin-
sche zu besonders interessierenden weiteren Themen sind mir im
Blick auf die Weiterentwicklung dieser Fibel stets willkommen,

Jena, im Herbst 1985 Jiirgen Groh

Inhalt

1.

4.

5.

Einleitung
Wie fing alles an? (7), Computer iiberall (7), Computer am Ar-
beitsplatz (8), Frith bt sich ... (9), Zu diesem Buch (10)

Inbetriebnahme des Computers

Der Kleincomputer (12), Unser Fernseher als Monitor (12), Be-
triebssystem (14), Interpreter (15), Der Kassettenrecorder
als extermer Speicher (16), Organisation des Arbeitsplatzes
(18), Noch ein paar Tips (20)

Wie reden wir mit unserem Micro?

Der Rechner meldet sich (23), Sprechen Sie BASIC? (24), Start
des Interpreters (25), Irgend etwas klappt nicht (28), Die
ersten Gehversuche (30), Mehr zur Arithmetik (33), Gleit-
punktdarstellung (39), Vom Runden (44), Ein paar Rechenilbun-
gen (46)

Das Alphabet des Computers

In gutem Kontakt (50), Alphanumerische Tastatur (51), Funk-
tions- und Steuertasten (52), Graphikzeichen (54), Program-
mierbare Funktionstasten (55), Geh heimwérts, Micro (55)

Von Zahlen und Varieblen
Zahlen (57), Variablen (57), Die Schrift auf dem Bildschirm
(62)

Unser erstes BASIC Programm

Viele Befehle sind noch kein Programm (65), Wir multiplizie-
ren (66), Verschénerungen (67), Struktur ins Programm (68),
Eine Graphik (69), Der externe Speicher (71), Machen Sie eine
Eingabe (73), Im Dialog mit dem Micro (75), Am Scheideweg
(76), Tu das noch einmal (79), Fakultdt (82), Der Nachste bit-
te (85), Eine Warnung (89), Noch eine Warnung (90), Der Zei-
chensatz (90), Matrjoschka-Piippchen (91), Grosse Spriinge (95),
Kleine Schritte (96), Unterprogrammtechnik (97), Hilfe, unser
Micro stlrzt ab! (99), Kommando oder Anweisung? (100)

70

10.

Inhalt

{ber die Programmiersprache BASIC

Sprache (103), Zeichen und SchlfisselwSrter (104), Konstanten
(105), Variablen (107), Funktionen (108), Operatoren (109),
Kusdriicke (110), Priorit&ten (112), Format eines Befehles
(113), Vereinbarungen (113), Kommentare (115), Programm
(116), Das BASIC Programmiersystem (117), Kommandos (120),
Steuerbefehle (121), Bildschirmbefehle (122), Editor-Befehle
(126), Befehle zur Speicherverwaltung (128), Vom Umgang mit
dem Liicro (131)

BASIC Anweisungen

Ausgabe von Daten (133), Zuweisungen (137), Dateneingabe
(140), Programmverzweigung (147), Schleifensteuerung (155),
Programmsegmente (158), Dateien (163), Formatierte Ausgeabe
(168), Programmstops (171)

Numerische Funktionen

Was ist eine Funktion? (175), Standardfunktionen (177), Tri-
gonometrische Funktionen (177), Zyklometrische Funktionen
(182), Quadratwurzel (183), Exponentialfunktion (184), Log-
arithmen (185), Betrags-, Entier- und Signumfunktion (186),
Benutzerdefinierte Punktionen (191), Kler gur Landung (197),
Zufallszahlen (200)

Textfunktionen

Nochmals zum Funktionsbegriff (20l1), Stringslice Funktionen

(202), Vervielfdltigung (205), Lénge eines Textes (206), Der
ASCII Code (209), Transformation des Datentyps (216), Text-

Suche (221), Grosse Zahlen (223)

Anhang

Vereinbarung weiterer Standardfunktionen (227), Der ASCII
Code (228), Daten einiger Kleincomputer (229), likfoprozes-
soren (234), Abkiirzungen und Kunstworte (238), Computer-
Englisch (242)

Literatur (246)

Index (249)

Einleitung 1

Wie fing alles an?

Als es eingangs der siebziger Jahre gelang, auf einem einzigen
integrierten Schaltkreis alle Funktionen von Steuer- und Rechen-
werk eines Computers zu vereinigen, schlug die Geburtsstunde des
Mikroprozessors. Mit dem Beginn der Massenproduktion und damit
einhergehend drastisch gesunkenen Herstellungskosten begann der
Eintritt universell nutzbarer Mikrochips in so viele Bereiche
unseres Lebens, dass es heute schwerf¥llt, mit Bestimmtheit zu
sagen, wo dieses zum Symbol gewordene Ergebnis wissenschaftlich-
technischen Fortschrittes keine Rolle spielt oder demnéchst spie-
len wird. Zuseammen mit einer damals bereits verfiligbaren wirt-
schaftlichen Technologie zur Herstellung elektronischer Speicher-
schaltkreise war der Weg zur Konstruktion kleiner, vergleichs-
welse billiger und dennoch leistungsfihiger Computer offen. Die-
se Entwicklung liess dann auch nicht lang auf sich warten, und
schon in der Mitte des Jahrzehnts waren die ersten Computer 'zum
Anfassen' gebaut. Diese Microcomputer wurden neben den Geriten
der Unterhaltungselektronik zu den gegenwdrtig wohl populHrsten
Produkten der Elektronikindustrie.

Computer iiberall

Der nunmehr einsetzende Entwicklungsschub beruhte ganz wesentlich
darauf, dass der Einsatz von Computern keineswegs auf den Bereich

8 1. Einleitung

des maschinellen Rechnens beschrénkt ist, wie das ihr Name viel-
leicht vermuten liesse. Schon seit geraumer Zeit werden sie zur
Verarbeitung auch nichtnumerischer Daten genutzt, unter anderem
mit dem Ziel einer hdheren Effizienz der Arbeit in Bliros und Ver-
waltungen. Doch mindestens ebenso wirkungsvoll lassen sich die
nun 'klein' gewordenen Computer zur Kontrolle und Regelung &us-
serer matérieller Prozesse einsetzen. Und gerade hierauf beruht
das Vordringen der Mikroelektronik in so viele Zweige des Produk-
tions- und Reproduktionsprozesses. Gegebenenfalls massenhaft an-
fallende Daten eines real ablaufenden Prozesses konnen in hin-
lénglich kurzer Zeit verarbeitet werden um - entsprechend inter-
pretiert - im Echtzeitbetrieb auf denselben Prozess steuernd ein-
zuwirken. So wére die Ausprigung der gegenwdriig als Basistech-
nologien apostrophierten modernen Methoden der Mess- und Steuer-
technik im allgemeinen, der Telekommunikation, der Biotechnik,
der rechnergestiitzten Konstruktion und Produktion einschliess-
lich der Entwicklung und Herstellung neuer mikroelektronischer
Bauelemente ohne den Einsatz leistungsféhiger Computer nicht mdg+
lich gewesen.

Computer am Arbeitsplatz

Infolge dieser Entwicklung wird ein stetig wachsender Anteil von
Werktdtigen in Industrie und Landwirtschaft, in der Forschung
oder auch im Verkehrs- und im Gesundheitswesen mit der Notwendig-
keit des Umganges mit Computern und Computertechnik konfrontiert,
In vergleichbaren Industrieléndern Uberschreitet der Anteil die-
ser Beschiéftigtengruppen demndchst die Fiinfzigprozentmarke. Dabey
kann und darf nicht erwartet werden, dass dieser Prozess unkom-
pliziert und problemfrei vonstatten geht. Nicht jeder ruft beim
Anblick eines Arbeitsplatzcomputers oder eines Laborautomaten
'Chip-Chip Hurra' und beginnt folgenden Tags mit dem systemati-~
schen Erlernen einer Programmiersprache. Im Gegernteil, in der
Regel bedarf es eines der jeweiligen Situation angepassten Ubver-
zeugungs- und Lernprozesses, um die Akzeptanz der neuen Technik
zu erreichen. Hierbei erscheint mir die Vermittlung von Sach-
kenntnissen der einzig richtige Weg, die nicht selten zu beob-
achtende Schwellenangst vor einer aktiven Nutzung der Computer-
technik iiberwinden zu helfen. Das Auftreten derartiger Angste

Prih iibt sich ... 9

und Hemmungen ist debei ein natilrlicher und keineswegs auf unse-
re Epoche beschridnkier Vorgang, man denke nur an die Bedenken
gegentiber einer explosionsartigen Verbreitung gedruckter Blicher
als Massenprodukt im 18. Jahrhundert oder die Anfénge der nun
150j8hrigen Historie deutscher Eisenbahnen.

Frtth 4bt sich ...

In dieser Situation ist es nur folgerichtig, unsere Schuljugend
bereits heute so zu bilden, dass die zitierte Schwellenangst
spiter gar nicht erst aufkommt. Mit dazu notwendigen Schritten
wurde begonnen, und men kann annehmen, dass kiinftig ein anwen-
dungsbezogenes Grundwissen iiber Computertechnik wie auch das Er-
lernen einer einfachen Programmiersprache zur Allgemeinbildung
gehbren. Gegenwldrtig wird dies in fakultativen Arbeitsgemein-
schaften, an Speziaischulen oder den Stationen Junger Techniker
mit gutem Erfolg und hohem Engagement aller Beteiligten prakti-
ziert. Die zunehmende Verfiligberkeit von Kleincomputern f8rdert
diesen Prozess wesentlich. Solche Gerdte funktionieren nach ge-
nau denselben Prinzipien wie ihre 'grossen Briider', und die in-
zwischen erreichte Leistungsfdhigkeit gestattet schon die L¥sung
schwierigerer Aufgabenklassen, so dass ihr Einsatz auch im wis-
senschaftlich-technischen Bereich durchaus interessant ist. Zu-
gleich tritt mit zunehmender Verbreitung die Problematik teurer
Rechenzeit in den Hintergrund, und es kann auch fiir 'Nicht-Pro-
fis' effektiver sein, Aufgaben am Arbeitsplatz vollsténdig selbst
zu ldsen, als die Hilfe eines Rechenzentrums in Anspruch zu neh-
men. Unterstiitzt wird dieser Prozess durch die Dialogfdhigkeit
vieler Kleincomputer, die gerade dem Neuling den Einstieg sehr
erleichtert. In der Regel wird dies durch die dialogorientierte,
fir Anfé&nger entwickelte Programmiersprache BASIC realisiert. Da-
bei ist es mdglich, beginnend mit der Kenntnis eines Bruchteiies
des Sprachumfanges dieses Programmiersystems, bereits kleinere
lauffthige Programme zu schreiben. Der Umgang mit dem Micro kann
somit schrittweise und verbunden mit den nicht zu unterschéitzen-
den Erfolgserlebnissen erlernt werden. Auch kleinere Systeme sind
enorm nutzerfreundlich ausgelegt und ebnen gegebenenfalls durch
eine Vielzahl ausgekliigelter, sanft mehnender Fehlermeldungen den
Weg zum korrekten Programm.

10 1. Einleitung
Zu diesem Buch

Den geschilderten Lernprozess mbchte die Computerfibel hilfreich
begleiten. So werden im zweiten Kapitel der Aufbau und die Inbe-
triebnahme eines einfachen Kleincomputersystems einschliesslich
Bildschirm und Recorder ausfihrlich behandelt. Danach lernen wir
im dritten Kapitel die ersten Worte der Programmiersprache BASIC,
un den Rechner zur Ldsung einfacher wie auch komplizierterer Auf-
gaben im Direktbetrieb als Tischrechner einsetzen zu kénnen. An-
schliessend schauen wir uns im vierten Kapitel grtindlicher auf
der Tastatur des Micro um und lernen die Bedeutung der Steuerta-
sten kennen. Das fiinfte Kapitel ist den unterschiedlichen
Schreibweisen von Zahlen gewidmet und erkl#rt ausfiihrlich den
Begriff der Variablen. Damit sind wir so weit vorbereitet, um
unsere ersten eigenen Programme schreiben zu kdnnen. Wieder be-
ginnen wir mit sehr einfachen Beispielen, die ausschliesslich
Ubungscharakter haben. Danach entwerfen wir auch schon mal eine
Graphik oder schreiben ein ganz einfaches Spiel, dies alles unter
dem Gesichtspunkt eines m¥glichst zwanglosen Anfreundens mit den
Funktionen und Fhihigkeiten unseres Computers. Stets sind Sie da-
zu eingeladen, es auch mit eigenen Programmen gu versuchen und
insbesondere genau zu liberlegen, was Sie da gerade tun. So ganz
nebenbei lernen Sie den Wert eines FPlussdiagrammes oder auch
Struktogrammes f{ir Thre Arbeit kennen, und ab und an wird auch
an die Schulmathematik erinnert. Alle Programme sind durch List-
ings direkt aus dem Drucker angegeben und, wo es sinnvoll schien,
durch einen Programmleuf dokumentiert. Die angegebenen Programme
sind auch deshalb einfach gehalten, damit sie auf mdglichst vie-
len Typen vorn Kleincomputern lauffahig/sind.

Damit kommen wir zu einem durchaus problematischen Punkt die-
ser Darstellung. Die Programmiersprache BASIC existiert gegen-
wédrtig in etwa sovielen Versionen oder Diamlekten, wie es Compu-
tertypen gibt. Obwohl alle abgedruckten Programme auf zumeist
mehreren verschiedenen Micros getestet wurden, ist es mbglich,
dass das eine oder andere Programm Anweisungen enthdlt, die auf
Threm Micro einer Modifizierung bedurrén. Generell ist in solchen
Pdllen das speziell fiir Ihren Computer geschriebene Handbuch zu-
sténdig, das ohnehin Ihre tatséchlich erste Lektlire sein sollte
und natfirlich Ihr wichtigstes Nachschlagewerk bleibt, wenn Sie
diese Fibel léngst ausgelesen haben.

Zu diesem Buch 11

Die ersten sechs Kaepitel dieses Buches bilden einen zusammen-
hiingend lesbaren, einfithrenden Part. Wenn Sie nach dessen Lesen
noch Lust oder die Pflicht haben, sich weiter mit Ihrem Rechner
zu befessen, so konnen Sie. im siebenten Kapitel mit einer syste-
matischer angelegten Einfithrung in BASIC beginnen. Dort lermen
Sie die Grundbegriffe dieser Programmiersprache kennen. Im achten
Kapitel werden die auf Kleincomputern gebrduchlichsten BASIC An-
weisungen nach ihrer Funktion geordnet vorgestellt. Zu jedem neu
besprochenen Befehl sind ein oder zwei Programmbeispiele angege-
ben. Im neunten Kapitel wird beschrieben, wie die in der Mathe-
matik liblichen Standardfunktionen in BASIC benutzt werden. Das
abachliessende zehnte Kapitel ist den in vielen BASIC Versionen
vorhandenen Funktionen zur Bearbeitung von Wortern und Texten ge-
widmet.

Gelegentlich auftretende Wiederholungen bei der systematischen
Darstellung einzelner Befehle wie auch {berschneidungen zu den
ersten Kapiteln werden dabei bewusst in Kauf genommen. Damit's
auch in diesem Teil nicht ganz so trocken zugeht, sind zuweilen
etwas lingere Programme eingefligt worden in der Hoffnung, dass
Ihnen das Ausprobieren des einen oder anderen Spass bereitet.
Sicher werden Sie viele Programme zur Kritik herausfordern, und
Sie beginnen, sich an schéneren, eleganteren und den Verhdltnis-
sen Ihres Rechners angepassten Versionen zu versuchen. Und bald
wenden Sie sich gHnzlich dem Schreiben eigener Programme zu.

Dann hat die Fibel ihren Dienst getan, und Sie werden sich nach
welterfithrender Literatur umschauen.

Um diesen Weg zu erleichtern, werden im Anhang eine Reihe der
allseits beliebten Abklirzungen entschliisselt und eine Liste ge-
brHuchlicher englicher Fachausdrficke angegeben. Uberdies sind Te-
bellen mit h#ufig benutzten Zahlencodes sowie der Zuriickfithrung
mathematischer Standardfunktionen auf solche in BASIC verfiigbareu
enthalten. Endlich werden ausgewhhlte Daten konkreter Kleincom-
putersysteme wie auch zweier auf 8 bit Kleincomputern iorwiegend
eingesetzter Mikroprozessoren zitiert. Der Text endet mit einer
Auswahl weiterfithrender und vertiefender Literatur.

Inbetriebnahme des Computers 2

Der Kleincomputer

Entsprechend seinen Funktionen besteht ein Kleincomputer aus dem
Grundgerét, das die Zentraleinheit und die internen Speicher
enthélt, einer schreimaschinendhnlichen Testatur ftir Eingaben
'per Hand', einem Bildschirm als Ausgabeeinheit und der Strom-
versorgung. Fur Erweliterungen sowie Ein-~ und-Ausgaben kdnnen
sich am Grundger#t noch eine Reihe zusétzlicher Anschliisse oder
*Schnittstellen' befinden, von denen uns hier nur der Anschluss
fiir den als externen Speicher vorgesehenen Kassettenrecorder in-
teressiert. Bereits in diesen Kusserlichkeiten besteht eine
grosse Vielfalt industriell gefertigter Kleincomputer. So ist es
mbglich, dass alle aufgezihlten Komponenten in einhem einzigen
Gerédt zusammengefasst oder nur das Netzteil oder die Tastatur
ins Grundger¥t integriert sind. In der Regel werden die zum Zu-~
sammenschluss aller Einheiten bendtigten Kabelverbindungen mit-
geliefert. Wenn Sie sich beim Aufbau Ihres Computers genau an
die im Handbuch gegebenen Vorschriften halten, kann eigentlich
nichts passieren. Zudem sind durch unterschiedliche Steckerfor-
men Fehlanschliiase weitestgehend ausgeschlossen oder bleiben zu-
mindest ohne Folgen.

Unser Fernmseher als Monitor

Eine feine Sache ist, dass die meisten Micros so konstruiert
sind, dass einige bg;eits vorhandene elektronische Gerdte

Unser Pernseher als Monitor 13

ins System integriert werden konnen. Insbesondere trifft das auf
die Ausgabeeinheit des Computers, den auch 'Monitor' oder 'Dis-
play' genannten Bildschirm und die ihn zur Steuerung umgebende
Elektronik, zu. Punktionell konnen wir den Monitor als ein Gerat
ansehen, das es uns gestattet, in einen bestimmten 'aktuellen'
Bereich des Speichers hineinzuschauen. Hierzu kénnen wir bei
vielen Micros unseren Fernsehapparat benutzen.

Ist Ihr Computer fiir den Anschluss eines iiblichen Fernsehge-
rdtes vorgesehen, so besitzt er intern einen Modulator zur Er-
zeugung und Codierung eines hochfrequenten Signales, das dem
Pérnseher iiber die Antennenbuchse zugefiihrt und von ihm ohne
weitere Zusatzgeriite 'verstanden' wird. Es handelt sich dabei
also um eine Art Kabelfernsehen, dessen Programm-Macher der Mi-
cro und Sie selbst sind. Dem Handbuch entnehmen Sie, welcher Ka-
nal zur Ubertragung benutzt wird. Das kann sowohl im VHF-Bereich,
etwa der Kanal 3, oder auch im UHPF-Bereich sein; hier ist Kanal
36 besonders beliebt.

Falls Sie iiber ein modernes Fernsehger#t mit einer 75 Ohm
Koaxial-Antennenbuchse verfiigen, sq dlirfte es beim Anschluss
keine Probleme geben. Sind sowohl Ihr Micro als auch der Fern-
seher farbtiichtig, dann miissen sie natiirlich in der benutzten
Farbfernsehnorm SECAM oder PAL einander entsprechen, um ein
Farbbild zu produzieren. Beaitzt Ihr Pernsehgeré&t ein Sender-
schnellwahl-Aggregat, so reservieren Sie von nun an einen Kanal
fir Ihren Computer. Bei einem Farbgerét werden Sie bemerken,
dass nicht jede Kombination von Vorder- und Hintergrundfarbe zur
Ausgabe von Texten geeignet ist. Am besten eignet sich Weiss als
Zeichenfarbe und Blau fiir den Hintergrund. Bei monochromen Moni-
toren sind Griin und neuerdings auch Bernsteingeld oder Amber auf
dunklem Untergrund zur augenschonenden Textausgabe iiblich.

Nun erscheint es durchaus verstdndlich, dass nech Abklingen
der ersten Begeisterung Ihre Femilie etwas dagegen hat, dass Sie
just zur Hauptsendezeit den Fermseher als Monitor missbrauchen
mdchten. Da kommt dann schnell der Gedanke auf, den léngst
ausgser Dienst gestellten Schwarzweiss-Empfénger zu reaktivieren,
um den Familienfrieden zu sichern. Und das funktioniert auch,
falls der Oldtimer iiber den geeigneten Kanal verfigt; bei vielen
Micros bedeutet das schlicht die M6glichkeit zum Empfang des
2. Programmes.

Gewiss bringt es mehr Spass, das neueste Video-Spiel in Farbe

14 2. Inbetriebnahme

laufen zu lassen, aber fiir die eigentliche Arbeit am Computer
tut es ein Schwarzweiss-Bildschirm auch, Im Gegenteil, es ist
moglich und durch Nahaufnahmen auch belegt, HC lagazin, 3 (1984),
dass die Struktur der liaske einer Farbbildrohre unter Umsténden
mit der des vom Computer erzeugten Bildes schlecht harmoniert
und aus diesen und anderen Grunden das Bild unruhig und nicht
scharf ist. In solchen Féllen ist ein flimmerfreies Schwarz-
weiss-Bild vorzuziehen, insbesondere bei léngeren Sitzungen am
Rechner.

Falls sowohl Thr Computer als auch der Fernseher iiber einen
sogenannten Video-, Monitor- oder RGB-Anschluss verfiigen, so
konnen Sie durch Nutzung dieser Kontakte eine deutliche Verbes-
serung der Bildqualitdt erzielen. Hierbei wird das die eigentli-
che Bildinformation enthaltende BAS oder FBAS Videosignal nicht
erst im Computer einem hochfrequenten Trégersignal qurmbduliert,
um dann im Fernsehgerdt viele Empfangsstufen zu’durchlaufen,
sondern es wird auf direktem Wege zur Synchronisation und Bild-
austastung genutzt. Verfiigt nur Ihr Computer i{iber einen solchen
Video-Ausgang, so kann Ihnen vielleicht ein Fermsehtechniker
helfen. Aber bitte, lassen Sie selbst unbedingt die Hinde vom
Inneren der elektronischen Ger#dte, im Computer konnten Sie ein
vielleicht unersetzliches Bauteil zerstdren, und der Fernseher
fiihrt auch noch lange nach dem Ausschalten lebensgef#hrliche
Hochspannung.

Betriebssystem

Alle bislang erwdhnten Einheiten geh8ren zur sogenannten Hard-
ware unseres Computers. Insbesondere z#hlen alle im Grundger#t
enthaltenen Innereien hierzu, also die Leiterplatte mit Wider-
stédnden, Kondensatoren und den inzwischen berihmt gewardenen Si-
lizium-Chips. Fir sich genommen, stellt die Hardware eine Anh#u-
fung hochkomplizierter, aber noch nicht betriebsféahiger Materie
dar. Dafiir, dass diese entsprechend unseren Wiinschen .funktioniert
und organisiert arbeitet sowie liber die Ein- und Ausgabe Infor-
mationen fliessen kénnen, ist in Form von Programmen die auch in
der Uffentlichkeit immer héufiger zitierte Software - wenn Sie
80 wollen, der 'Lebenssaft' des Computers - zustéandig. Einfach
gesagt, wird die Hardware durch Aufprédgung von Software intelli-

Interpreter 15

gent gemacht.

Hier ist an erster Stelle das Betriebssystem zu nennen, wel-
ches wie die Bildschirmeinheit oft ebenfalls als Monitor be-
zeichnet wird. Der Monitor bildet ein System von Programm-Routi-
nen, die kurz nach dem Einschalten des Grundgeridtes zu arbeiten
beginnen und alle Komponenten des Computers iiberwachen und steu-
ern. So wird durch den Monitor die Ubefgabe von Informationen
von der Tastatur an die Zentraleinheit sowie von dieser zu den
internen und externen Speichern oder zum Bildschirm ilberhaupt
erst moglich.

Physikalisch ist das Betriebssystem in gewisse, zum sogenann-
ten ROM Bereich des internen Speichers gehtrende Chips fest ein-
gebrannt, also in Gestalt .von Hardware realisiert. Hier erkennt
man deutlich den oft nahtlosen {ilbergang von Software und Hard-
ware. Das zeigt auch das Beispiel der Schaltkreise unseres Micreo.
Natiirlich gehSren das Siliziumplittchen eine’s Chips und die auf
ihm realisierten vielen Tausend Transistorfunktionen zur Hard-
ware, aber das Layout, die Art und Weise, wie diese Transistoren
auf dem Chip zu einer Schaltung verbunden sind, kann man unter
Umstiénden auch zur Software rechnen. Wédren die Speicher des Com-
puters nach dem Einschalten v&llig blank, also ohne jede im ROM
abgelegte Information, so miissten alle zum Betrieb erforderli-
chen Routinen jedesmal in Form ellenlanger Folgen von Nullen und
Einsen im Rechner mithsam codiert werden. Mithin stellt das im
ROM gespeicherte Betriebssystem eine grosse Arbeitserleichterung
und Vereinfachung dear, ja es ermdglicht dem Nichf—Spezialistén
iberhaupt erst den Umgang mit dem Micro.

Interpreter

Zur weiteren Anpassung an die Arbeitsweise des Menschen verfigt
der Kleincomputer in der Regel iiber ein dialogféhiges Program-
hierungssystem, das die recht einfache Nutzung einer hBheren
Programmiersprache gestattet. Durch diese enorm nutzerfreundli-
che Einrichtung wird ein unkomplizierter, ohne technische De-
tails belasteter Umgang mit dem Micro m&églich - neben dexr nun-
mehr massenhaften Verfiigbarkeit billiger Mikroprozessoren der
zweite Grund filir die wachsende Akzeptanz und Beliebtheit von Mi-
crocomputern auch bei Nicht~Fachleuten.

16 2. Inbetriebnahme

Das die Programmiersprache umfassende Programmierungssystem
gehort ebenfalls zur Software und ist im sogenannten Interpreter
realisiert oder 'implementiert'. Bel einigen Micros finden Sie
das Interpreterprogramm ganz gegenst&ndlich in Form codierter
Impulsfolgen im Hérfrequenzbereich auf eine Tonbandkassette auf-
gespielt. In diesem Falle muss bei jeder Inbetriebnahme des
Rechners der Interpreter in einen genau festgelegten Teil des
mit RAM bezeichneten Arbeitsspeicher des Micro liberspielt wer-
den. Dieser Vorgang wird durch das fest programmierte Betriebs-
system unterstiitzt.

Das geschilderte Verfahren ist ohne Zweifel etwas umst#nd-
lich. Andererseits kann man spdter einmal bei nicht bendtigtem
Programmierungssystem den dafilr reservierten Speicherbereich an-
derweitig nutzen. Auch wird der Umstieg auf eine andere Program-
miersprache oder die Benutzung eines Compilers technisch sehr
vereinfacht, men ben8tigt hierzu lediglich eine (relativ billige)
Kagsette mit dem geeigneten Programm.

Die andere Mdglichkeit besteht darin, dass auch der Interpre-~
ter fest im ROM, also dem nichtflichtigen Teil des Speichers
programmiert ist. In diesem Falle meldet sich der Interpreter in
der Regel sofort nach dem Einschalten des Computers, oder er
wird geméss Handbuch durch ein einfaches Kommando von der Taste-
tur aus aufgerufen. Danach kénnen Sie unmittelbar mit der Arbeit
eam Micro beginnen.

Der Kassettenrecorder als extermer Speicher

Der Kassettenrecorder ist des zweite Gerédt aus dem Bereich der
Heimelektronik, das in unser Computersystem integriert werden
kann. Wie schon erwiéhnt, erfordern einige Kleincomputer, bei Be-
triebsbeginn den Interpreter von einer Kassette in den Speicher
zu laden. Hierfiir ist ein Recorder ﬂotwendig, falls er nicht
ohnehin, wie bei einigen Gerdten iiblich, in den Computer phy-
sisch integriert ist. Aber auch zum Uberspielen anderer, indu-
striell produzierter Computerprogramme oder zum Sichern und La-
den selbstentwickelter Programme ist bei der gegenwdrtig aktuel-
len Generation von Kleincomputern ein Recorder als externer
Speicher am gebréduchlichsten und eigentlich unverzichtbar. Das
liegt daran, dass nach Einschalten des Computers zwar ein gros-

Externer Speicher 17

ser Bereich des internen Speichers dem Nutzer als Arbeitsspeicher
oder RAM vdllig frei zur Verfiigung steht. Der Inhalt ist indessen
von der Aufrechterhaltung der Betriebsspannung abhéngig, geht al-
8o nach dein Ausschalten des Gerites verloren. Ein auf Kassette
gespeichertes Programm kann dagegen innerhald der langen Lebens-
dauer einer Kassette beliebig oft vom Band gelesen werden, bela-
stet aber sonst das System nicht.

Ein Eachteil der als externe Speicher benutzten Recorder be-
steht in den recht langen Zugriffszeiten, die wegen des nétigean
Umspulens im Minutenbereich liegen, so dass eine dialogorien-
tierte Arbteit mit Zugriffen auf den externen Speicher nicht mog-
lich ist.

Viele Micros verfiligen zur Verbindung mit dem Kassettenrecorder
iiber einen genormten Mono-Diodenanschluss. Hat der Recorder
ebenfalls eine solche Buchse, was die Regel ist, s0 macht der An-
schluss kaum Probleme, wenn Sie einfaches dreiadriges Diodenkabel
- kein Uberspielkabel - verwenden.

Einige Kleincomputer benutzen zum Laden und Sichern von Pro-
grammen getrennte Klinkenstecker-Buchsen, die jeweils mit der
Chrh8rerbuchse beziehungsweise dem Mikrophonanschluss des Recor-
ders zu verbinden sind. In diesem Falle l#uft der Signalweg im
Recorder auch iiber den vom Lautstdérkeregler und eventuell vor-
handenen Tonhéhenreglern abhidngigen Verstirkerteil, daher ist
hier der Wahl einer geeigneten Wiedergabe- beziehungsweise Auf-
nahmelautstéirke grosse Aufmerksamkeit zu schenken; einige Micros
reagieren in diesem Punkte sehr empfindlich. Zur Vermeidung von
Rickkopplungen im Recoxrder darf stets nur eine der Mikrophon-
oder Ohrhdrsrbuchsen beschaltet werden.

Nicht jeder Kassettenrecorder besitzt einern separaten Mikro-
phonanschiuss. In diesem Palle kénnen Sie zich eventuell durch
den Bau eines geeigneten 'Interface' helfen oder helfen lassen.
Dies ist nichts weiter als ein Stiick Dicdenkebel, das an beiden
Enden mit den passenden Steockern korrekt geschaltet wird.

Als Recorder genligt ein Monoger#t ohne besonderen Komfort. Ein
Bandzdhlwerk sollte allerdings vorhanden sein, da es die kiinftige
Arbeit mit Progremmdateien wesentlich erleichitert. Von einem Her-
steller wird die Verwendung ders 'Ceracord' empfohlen. Als recht
nitzlich erweist sich ein auf manchen Recordern installiertes
'Auto Program Search System' (AP3S). In Abhédngigkeit von dem je-
weils benutzten Dateniiberiragungaverfabren kenn es erforderlich

18 2. Inbetriebunahme

sein, die auf den meisten Recordern vorhandene Aussteuerungs-
Automatik abzuschalten und den Pegel per Hand einzustellen. Dabei
sollte man nicht zu schwach aussteuern. Irgendwelche Rauschunter-
driickungsvérfahren oder MPX-Filter des Recorders sind in jedem
Palle stérend und sollten abgeschaltet werden.

Bezliglich des verwendeten Bandmaterials ist nur wichtig, dass
es im Typ zum Recorder passt und insbesondere frei von 'drop
outs' sein muss. Whhrend beli der Wiedergabe von Musikaufnahmen
kleinere 'LOcher' in der Magnetschicht des Tonbandes kaum ins
Gewichtﬁfallen, sind sie bei einer Nutzung als Datenband sehr
stérend, dea hierdurch wertvolle Information verloren gehen kann.
Auch sollten Sie magnetische Datentrlger nicht in unmittelbarer
Nthe starker Netztransformatoren oder von Dauermagneten abgslegt
werden,

Organisation des Arbeitsplatzes

Vor Einrichtung Ihres Bildschirmarbeitsplatzes, eventuell auch
daheim, sollten Sie einiges.bedenken. Am besten wkr's, Sie fénden
ein Pldtzchen fiir einen kleinen Tisch oder Schreibtisch, auf den
alles benotigte Gerat passt. Dabei kUnnen zwischen den einzelnen
Einheiten gewisse liindestabsténde erforderlich sein, da sich die
elektronischen Gerdte durch Stdrstrahlungen eventuell gegenseitig
beeinflussen. Dies betrifft in Sonderheit den Fernseher, der aber
zum Zwecke eines gunstigen Betrachtungsabstandes ohnehin im Hin-
tergrund bleiben sollte.

Fast alle Gerdte bezitzen einen separaten Netzanschluss. Um
des dadurch entstehende Kebelgewirr in Grenzen zu halten, sollten
Sie diese Leitungen am Tischende in einer vorschriftsgeméssen
Netzverteilerleiste zusammenfassen. Seien Sie in diesem Punkte
nicht knickrig und gewéhrleisten durch einen industriell gefer-
tigten Verteiler die elektrische Betriebssicherneit Ihrer Anlage.
Sorgen 3ie durch Aufrollen fiir eine sichere Kabelfihrung, wie
schnell ibt durch Stolpern liber eine provisorische 'Freileitung'’
ein vielleicht unersetzbares Gerét zu Boden gegangen. Also, las-
sen Sie keine Kabelschleifen herumh&@ngen und achten von Anfang an
auf diese 'Kleinigkeiten'. Sie wissen doch, nichts ist haltbarer,
als ein Provisorium. Dies trifft natilirlich auch auf die ndtige

Arbeitsplatzorganisation 19

Verbindung der Ger#éte untereinander zu, auch hier sollten Sie
nur einwandfreies, intaktes Material verwenden und jeden Wackel-
kontakt vermeiden.

Ingbesondere'Micros mit eingebautem Netztell sind sehr emp-
findlich gegeniiber Warmestaus. Sorgen Sie &afﬁr, dess alle am
Gerdt vorhandenen Liiftungsschlitze stets frei sind und auch
nicht durch ein 'schnell mal abgelegtes Handbuch' verdeckt wer-
den.

Lassen Sie sich auf dem Arbeitstisch genligend Pletz zum
Schreiben und auch fiir das Handbuch, das stets griffbereit sein
muss. Uberhaupt sollten Sie bei der Gestaltung des Arbeitsplatzes
nicht nur an die Technik, sondern auch an sich und Ihr Wohlbe-
finden denken. Insbesondere dann, wenn Sie mehrstiindige Sitzun-
gen am Rechner beabsichtigen, wozu es ganz schnell kommen kann.
So ist die rechte Bildschirmergonomie durchaus ein Kapitel fir
sich; DIN-Taschenbuch 194 (1984), Koch,H. (1980). Das Bild soll-
te mdglichst ruhig stehen und nicht flimmern; und dass ein
scharfabbildender Schwarzweiss~Schirm einem schlechten Farbgerdt
vorzuziehen ist, wurde schon gesagt. Achten Sie auf Blendfrei-
heit und stellen den Fernseher wie iivlich schrég gegen des Fen-
ster. Dann kdnnen Sie unbewusst immer mal das Auge heben und
durch einen Blick zum Fernpunkt entspannen. Stellen sich Kopf-
schmerzen oder trédnende Augen ein, so wird es hdéchste Zeit, die
Sitzung am Schirm zu unterbrechen und durch Entspannung sowie
Verénderungen des Arbeitsplatzes fiir Abhilfe zu sorgen.

Falls Sie die Wahl haben, so geben Sie einem Rechner mit be-
dienerfreundlicher Schreibmaschinentastatur den Vorzug. Durch
die richtige Wahl der HOhe von Sitz- und Arbeitsfldche konnen
Sie dazu beitragen, Verspanrungen im Bereich der WirbelsHule zu
vermeiden. Wenn Sie nun noch darauf achten, dass durch die neue
Beschédftigung Ihre insgesamt vor Bildschirmen verbrachte Lebens-
zeit nicht wesentlich verldngert wird, dann haben Sie schon mal
was fiir Thre Gesundheit getan.

Apropes, wir sprachen schon vom Haussegen. Lassen Sie sich
bei einer'Beschﬁftigung am Computer daheim ruhig in die Karten -
sprich den Monitor ~ schauen. Falls Sie die Computerei wirklich
packt ~ und wie alle Beobachtungen zeigen, wiren Sie mit diesem
Protlem durchaus nicht aellein suf der Welt - kann dies 2zu ganz
erheblichen Verschiebungen in Ihrem Freéizeitverhalten fidhren.
Und dies machen Sie Ihrer Familie doch wohl am ehesten verstand-

20 2. Inbetriebnahme

lich, wenn Sie sich mit dem Micro nicht verkriechen, sondern al-
le an Ihren Erfolgen teilhaben lassen. Noch besser, Sie schrie-
ben Ihrem Partner ab und an mal ein Programm, das er wirklich
brauchen kann.

Und Ihren Kindern konnte tatsdchlich nichts Besseres passie-
ren, als dass sie mit Ihnen gemeinsam die neue Technik verstehen
und begreifen lernen. So kommt in ihnen eine Schwellenangst vor
Computern gar nicht erst auf. Ubrigens ist kein Pall bekannt ge-
worden, dass Kindern das friihzeitige Erlernen einer einfachen
Programmiersprache geschadet hdtte. Das heisst ja nicht, dass
Sie Ihren Jiingsten keine Miérchen mehr erzihlen. Gerade M#rchen
haben viel mit Phantasie zu tun, und diese brauchen unsere Kin-
der gewiss. Ganz gleich, wie Sie es sehen, die von uns allen ge-
wollte und erarbeitete friedliche Entwicklung vorausgesetzt,
werden sich. spitestens unsere Kinder in einer weitgehend von
Automation und Computertechnik dominierten Welt zurechtfinden
miissen. Und wenn wir wollen, dass sie diese ihre Welt nicht nur
erleben, sondern aktiv gestalten und beherrschen, so ist heute
die Uverlassung eines Taschenrechners schlicht zu wenig.

Noch ein paar Tips

1. Besitzt Ihr Pernsehgerét keinen modernen 75 Ohm Koaxialan-
schluss, sondern einen symmetrischen Antenneneingang, so benéti-
gen Sie einen Antennenstecker mit eingebautem Symmetrierglied,um
Geisterbilder zu vermeiden. Handelsilblich sind folgende Ausfiih-
rungen:

ESY 1 - Ubergang von Koax auf Bananensteckerkontakte
ESY 3 - Ubergang von Koax auf symmetrischen VHF-Kontakt fiir
Kandle des l.Programmes (zum Beispiel Kanal 3)
ESY 4 - {bergang von Koax auf symmetrischen UHF-Kontakt fiir
Kan#le des 2.Programmes (zum Beispiel Kanal 36)
Streng genommen stellt das Anschrauben eines neuen Steckers an
ein Originalkabel bereits einen technischen Eingriff ins Geri#t
dar, den Sie aus Garantiegriinden meiden sollten. Zudem bleiben
Sie flexibel, wenn Sie sich mit einem geeigneten der genannten
Stecker, einem Stiick Koaxialantennenkabel und einem Koaxial-Ver-
léingerungsstecker ein kleines Ubergangskabel bauen. Bei sehr al-
ten Fernsehgeréten sollten Sie wirklich ganz sicher sein, dass

Ein paar Tips 21

der Antenneneingang gleichspannungsfrei ist, bevor Sie ihn an den
Micro schalten.

2. Benutzen Sie Ihr TV-Gerdt als Monitor, so ziehen Sie bitte
alle Fernsehantennenstecker ab. Auch eine zusdtzliche Antennen-
weiche sollten Sie nicht benutzen. Zwar liesse sich damit das 1l&-
stige Umstdpseln vermeiden, doch k¥nnte eventuell das vom Compu-
ter abgegebene Bildsignal in das Antennensystem abgestrahlt wer-
den. Dies wlHre unzul#ssig und kdnnte zu Empfangsstdrungen bei an-~
deren Rundfunk- und Fernsehgerdten fihren. Der Anschluss zweier
Fernsehgerdte an den Computer ist in aller Regel unproblematisch.
Zum Beispiel kénnen Sie ein kleines Ger#t als Arbeitsschirm und
einen grossen Bildschirm zur Demonstration kombinieren. Hierzu
ist die im Handel erh#ltliche Antennenweiche Nr. 3024 aus dem
Universal-Verstdrker-System in geschirmter Technik geeignet.

3. Maenche Kleincomputer lassen durch Verstellen gewisser von
aussen. zugdnglicher Trimmpotentiometer eine Feinregulierung des
Modulators fiir das Fernsehsignal zu. Tun Sie das erst, wenn Sie
bereits einige Erfahrungen im Umgeng mit dem Micro gesammelt ha-
ben und wissen, wie Sie die Farben des Bildschirms programmieren.
Dann regulieren Sie entsprechend den Angaben in Ihrem Handbuch
so, dass Sie ein stabiles, flimmerfreies Bild mit nicht ausge-
fransten, scharfen Ré&ndern erhalten. Mit einem eventuell vorhan-
denem zweiten Trimmer sorgen Sie fir ausreichenden Kontrast zwi-
schen den Bildschirmfarben Weiss und Gelb, Besitzt Ihr TV-Emp-
fénger eine AFC-Taste, so stellen Sie diese wihrend der Einregu-
lierung des Bildes auf 'aus',

4. Auch wenn Ihr Micro z2um Anschluss des Kassettenrecorders ei-~
ne finf- oder gar siebenpolige Diodenbuchse besitzt, kann es er-
forderlich sein, zur Verbindung des Micro mit dem Recorder ein
Kabel mit dreipoligen Steckern zu benutzen.

Mono-Buchse: Stereo-Buchse:
2

455
1 3 1@31
1 - Aufnahme, 2 - Masse, 3 - Wiedergabe

Der Grund ist, dass die liberzdhligen Kontakte im Micro oft fiir
endere Zwecke, beispielsweise zum Anschluss eines Zweitlautspre-
chers oder flir eine automatische Motorsteuerung des Recorders,be-
schaltet sind. Ist der Recorder ein Monoger#t, so sind in aller
Regel im Gerdt die Kontakte 3 und 5 sowie oft auch 1 und 4 kurz-

22 2. Inbetriebnahme

geschlossen, was bei Verwendung eines fiinfpoligen Kabels zu Kom-
plikationen im Micro fithren kann. Die oben angegebene Numerie-
rung der Kontakte fiir Diodenanschliisse ist beim Blick von aussen
auf die Buchse gililtig.

5. Gewdhnlich enth#lt das vom Computer abgegebene Videosignal
kein Tonsignal. Deshalb kann auch keine Tonwiedergabe iUber den
Lautsprecher des Fernsehgerédtes erfolgen. Viele Micros indessen
verfiigen zur Ausgabe von Ton- oder Ger#duscheffekten iiber einen
kleinen eingebauten Lautsprecher. Me}stens ist ein Anschluss fiir
einen zweiten Lautsprecher oder einen Verstarker vorgesehen, mit
dem Sie dann die erzeugten Tonsignale in HIFI-Qualitdt abhdren
kdonnen, wenn Sie das wollen.

6. Einige licros tolerieren auch geringfiigige Abweichungen von
der Sollnetzspannung nicht. Es kann dann zum Rollen oder zu an-
deren Deformationen des ausgegebenen Fernsehbildes kommen oder
sogar der Mikroprozessor aus dem rechten Takt geraten. In sol-
chen Féllen hilft ein am besten per Hand regulierbarer Stell-
transformator zur Stabilisierung der Netzspannung. Diese Gerédte
sind filr verschiedene Anschlussbelastungen erh#ltlich. Seien Sie
nicht kleinlich und dimensionieren Sie die Nennleistung so, dass
alle Netzanschliisse Ihres Computersystems ilber den Stelltrafo
versorgt werden kSnnen. Nicht zuletzt Ihrem Fernseher tuen Sie
deamit etwas Gutes in puncto Lebenserwartung an.

7. Bei einigen Systemen ist die Reihenfolge des Einschaltens
der einzelnen Gerédte von Belang. Nach dem Einschalten des Micro
wird auf den Fernseher kurzzeitig ein Balken- oder Quadratmuster
ausgegeben, das dann in die normale Bildausgabe tibergeht. Bei
Gerdten mit externer Stromversorgung kenn es sein, dass das Bal-
kenmuster stehenbleibt. In diesem Falle sollten Sie zuerst die
Stromversorgung ans Netz legen und danach die abgegebene Gleich-
spannung auf den Micro schalten. Damit vermeiden Sie das Durch-
schlagen eines Induktionsstosses auf den Micro, das diesen bei
der Ausgabe des Balkenmusters hlngen l&sst. Bei Ger#ten mit ein-
gebautem Netzteil tritt dieses Problemlnicht auf.

Einen eventuell angeschlossenen Drucker sollten Sie stets zu-
letzt einschalten. Dadurch vermeiden Sie, dass durch Einschalt-
vorgénge verursachte Pseudo-Informationen zu Fehldrucken filhren.

Wie reden wir mit unserem Micro? 3

Der Rechner meldet sich

Nach dem Einschalten wird sich unser Computer-System auf dem
Bildschirm melden - vorausgesetzt, wir haben beim Aufbau alles
richtig gemacht und den Fernseher sauber ab*estimmt. Die Art und
Weise dieser Meldung héngt vom konkreten Rechnertyp ab und wird
etwa 80

Computer-System
#* Monitor - 1985 ¥*
b |

oder auch so

EXTENDED BASIC V3.0
(C) 1985 COMPUTER SYSTEM
47870 BYTES FREE

Ready

a

ausschauen. Der Micro teilt uns hierdurch mit, dass er sich im
Grundzustand befindet und dass seine Systeme funktionieren. Das
Hirn des Rechners - die Zentraleinheit - sowle seine Speicher
und Peripheriebausteine wurden nach Anliegen der internen Ver-
sorgungsspannungen initialisiert, das heisst in einen genau defi-
nierten Anfangszustand gebracht. Danach arbeitet der Micro be-
reits nach einem fest vorgegebenem Programm, dem Monitor oder

24 3. Wie reden wir mit unserem Micro?

Betriebssystem, englisch auch 'operating system' abgeklirzt 03,
genannt. Das ebenfalls aus dem Englischen stammende Wort Monitor
ldsst sich in diesem Zusemmenhang mit 'Aufpasser' oder 'Aufsicht-
filhrender' {ibersetzen, was die technische Funktion recht zutref-
fend charakterisiert.

Zu den Aufgaben des Monitcr gehSrt - fiir uns im Resultat er-
kennbar - die Steuerung aller Signale zum Bildschirm scowie die
Kontrolle oder Abfrage der Tastatur, die nun betriebsfélig ist.
Auf diese Weise schafft der Monitor - nicht zu verwechseln mit
der ebenso genannten Bildschirm-Ausgabeeinheit - die Grundvoraus-
setzuﬁg fiir einen Dialog mit dem Rechner, der jetzt auf unsere
erste Eingabe wartet. iAuf dem Bildschirm wird dies durck das
kleine, bei den meisten Systemen blinkende Quadrat signalisiert.
Alle diese VorgH#nge laufen unabhéingig von uns ab, nach einem dem
Rechner ein filr allemal fest eingeprigtem Schema.

Sprechen Sie BASIC?

In der PFriihzeit der Rechentechnik wurden die filr den Rechner be-
stimmten Informationen, in langen Folgen von Nullen und Einsen
codiert, etwa iliber die Tastatur oder mittels der wohlbekennten
Lochkarten und eines Lochkartenlesers ilbergaben. Besonders komfore
tabel war dies gerade nicht. Zuerst eine gute Nachricht, unser
Micro versteht eine richtige Sprache, in der wir ihn iiber seine
Tastatur ansprechen kénnen. Und nun die schlechte, diese Sprache
ist eine kiinstliche, elso insbesopdere nicht etwa Deutsch.

Die Worter dieser Kunstsprache bestehen aus einzelnen Zeichen
sowie Abkiirzungen und Worten, die der englischen Sprache ent-
lehnt sind. Letzteres hat historische Grilinde. Wichtig ist, dass
sowohl der Sprachumfang als auch die zugehdrige Gremmatik sehr
begrenzt und, bezogen auf einen konkreten Rechner, v8llig fest-
gelegt sind.

Die Sprache unseres Micro heisst BASIC, das ist ein Kunstwort
und bedeutet Beginners All-purpose Symbolic Instruction Code, zu
deutsch etwa 'Allzweck-Programmiersprache fiir Anf#nger'. Erfunden
wurde BASIC von den Mathematikern John G. Kemeny und Thomas E.
Kurtz im Jahre 1964 am Dartmouth College Hanover im US-Staat
New Hampshire. Urspriinglich als ein Provisorium geschaffen, um
Studierenden verschiedenster Fachdisziplinen den ersten Umgang

Start des Interpreters 25

mit der damals neuen Rechentechnik zu erleichtern, hat sich BASIC
zu eirer hochentwickelten Frogrammiersprache gemeusert und sich
als 'erste' dialogorientierte Sprache fiir Microrechner mit seinen
vielen Vorziigen und ~ leider auch - Schwiéchen weltweit durchge-
setzt. Streng genommen gibt es inzwisghen 8o viele Versionen oder
Dialekte von BASIC, wie es technisch ausgereifte Typen von Micro-
rechnern gibt. Parallel zu der dadurch provozierten Sprachverwir-
rung gab und gibt es Bestrebungen zu einer Vereinheitlichung der
vielen existierenden BASIC Dialekte. Zu einem gewissen Standard
ist das weit verbreitete (interpretierte) BASIC der Firma Micro-
soft geworden. Neuestes Kind dieser durchaus von handfesten &ko-
nomischen Interessen bestimmten Entwicklung ist deas sogenannte
Microsoft Extended BASIC derselben Software-Firma. Diese neueste
Sprachversion umfasst das alte Microsoft BASIC und gehdrt zu ei-
nem mit MSX bezeichneten Computer-Standard, der auch wesentliche
Elemente der Hardwarekonfiguration und des Betriebssystems von
Microcomputern beriihrt, Radio Fernsehen Elektronik, 2 (1985),
Steffens, E. (1935). Wichtigster Vorteil eines allgemein akzep-
tierten Standards wire die Ubertragbarkeit von BASIC Programmen
auf Kleincomputer unterschiedlicher Hersteller, wovon heute
leider keine Rede sein kann.

Es sei noch bemerkt, dass eine gewisse Kenntnis des Engli-
schen nicht nur beim Erlermen von BASIC hilft, sondern auch fir
das Verstindnis des gesamten Microcomputer-Systems recht niitzlich
ist, da eine Vielzahl von Bezeichnungen und Abkidrzungen der Mikro-
rechentechnik dieser Sprache entstemmt.

Start des Interpreters

Damit unser Micro die Sprache BASIC versteht, muss er entspre-
chend programmiert sein. Hierfiir ist der Interpreter zustdndig.
Wie schon besprochen, ist bei einigen Kleincomputern zu Betriebs-
beginn das Programm des BASIC Interpreters von einer Kassette zu
laden. Diesen Fall wollen wir zuerst besprechen. Der Micro meldet
sich dann so wie eingangs dieses Kapitels dargestellt, etwa mit
Ausgabe der Zeile ** Monitor ** oder auch der Buchstaben 0S tir
'Operating System'. Hierdurch wird angezeigt, dass der Monitor
arbeitet. Auf vielen Micros wird nun in der n#chsten Zeile das
'Prompt' genannte Zeichen > ausgegeben und rechts daneben ein

26 3, Wie reden wir mit unserem Kicro?

blinkendes Quadrat, der Cursor. oder Positionsanzeiger. Dieser
meldet die Bereitschaft zur Annaehme einer Eingabe iiber die Tasta-
tur in der sogenannten Betriebssystem-Ebene des Rechners. Ein
eingetipptes Zeichen wird unmittelbar auf der aktuellen Position
des Cursors ausgegeben, wobei der Cursor dann um eine Position
weiterriickt.

Zum Laden des Interpreters verfahren Sie wiederum genau nach
den Angaben Ihres Handbuches. In jedem Falle miissen Sie zuerst
die Kassette mit dem BASIC Interpretér in den ‘Recorder einlegen
und das Band an den Beginn der entsprechenden Aufzeichnung fah-
ren. Auf einigen Micros geben Sie nun den Befehl LOAD ein, indem
Sie nacheinander die Buchstaben (L) {0} {(A)> {D> in die Tastatur
tippen. Dabei verfolgen Sie auf dem Bildschirm, ob auch alles
stimmt. Jetzt schliessen Sie diese Eingabezeile ab, indem Sie
die mit ENTER, RETURN, CR oder manchmal auch mit einem Pfeilwin-
kel ‘J gekennzeichnete Taste driicken, was hier in der Folge mit
{ENTER) ausgedriickt wird. Im Rechner wird jetzt ein dem Befehls-
wort LOAD entsprechehdes Kommando ausgefiihrt, und auf dem Bild-
schirm erscheint eine Aufforderung zum Start des Datenbandes,
etwa l PLAY oder 'start tape'. Hierauf betdtigen Sie die {PLAY)
Taste Ihres Recorders, worauf der Interpreter in den Arbeits-
speicher des Computers geladen wird. Dies ist deutlich an dem
nunmehr ertdnenden, wenig melodischen GerHusch erkennbar, da die
zu iibertragende, das Programm des Interpreters enthaltende Infor-
mation ja in Impulsfolgen des Hﬁrfrequenzbefeiches codiert ist.
Falls Sie einen Recorder mit Diodenausgang verwenden, kbnnen Sie
die akustische Wiedergebe auf ein ertriigliches Mass reduzieren.
Insbesondere des Nachts sollten Sie dabei auch Ihres Nachbarn
gedenken.

Ist die Intensitit des Ausgangssignales Ihres Recorders von
der Stellung des Lautstdrkereglers abh¥ngig, so finden Sie die
richtige Einstellung durch Probieren etwa in Mittelstellung. Den
Hbhenregler drehen Sie dabei bitte voll auf. Manche Rechner tei-
len die fehlerfreie Ubertragung gelesemer Datembl¥cke durch Aus-
gabe der jeweiligen Block-Nummer mit. Die ﬁbertragung des gesam-
ten Interpreter-Programms nimmt circa zwei bis drei Minuten in
Anspruch. Falls alles funktioniert hat, teilt dies der Rechner
auf dem Bildschirm mit, zum Beispiel durch Ausgabe eines OK. Nun
sollten Sie das Band - wohl das dem stérksten Verschleiss unter-
liegende Teil Ihres gegenwlrtigen Sysiems - gleich wieder zuriick-

-Start des Interpreters 27

spulen, da es im aufgerollten Zustand die grosste Lebensdauer ga-
rantiert. Deponieren Sie die Kassette umgehend fern aller elek-
tronischen Gerdte, insbesondere des Fernsehers. Schliesslich ent-
h#lt die Kassette Ihre gegenwirtig wichtigsfe Systemsoftware, de-
ren Verlust fatale Folgen hitte. Einige Interpreter sind selbst-
startend und melden sich nun sofort, andere werden durch Eingabe
eines Befehlswortes, etwa BASIC und anschliessendes Driicken von
<{ENTER), von der Monitor-Ebene aus gestartet. Auch hierbei gibt es
wiederum Unterschiede, so fordern viele Micros mit der Ausgabe
von MEMORY SIZE? dazu ‘auf, die obere Grenze des zur Speicherung
von BASIC Programmen vorgesehenen Bereiches im Arbeitsspeicher
oder RAM festzulegen. Mit diesen Feinheiten belasten wir uns je-
doch vorldufig nicht, sondern antworten hierauf sofort mit
{ENTER), wodurch gewdhnlich der maximale, flir Programme verfiigba-
re Speicherbereich zugewiesen wird.

Der Micro ist jetzt von der Monitor-Ebene in die Interpreter-
Ebene iibergegangen: Genauer gesagt, befindet er sich im sogenann-
ten Kommando-Modus des Interpreters. Dies bedeutet, dass nunmehr
ilber die Tastatur erfolgende Eingaben als Befehlsworte der 'hohe-
ren', problemorientierten, maschinenfernen Programmiersprache
BASIC interpretiert werden. Bei dem von der Firma Zilog fir den
Mikroprozessor Z80 entwickelten Interpreter - den man als 'Ahn-
herrn' fir viele spdtere Entwicklungen ansehen kann - wird dieser
Betriebszustand durch erneute Ausgabe des 'Prompt' oder Bestéti-
gungszeichens > gemeldet. Der hiernach ausgegebene blinkende Cur-
sor signalisiert, auf welcher Bildschirmposition die ndchste Aus-
gabe erfolgt. In diesem Kommando-Modus oder Direktbetrieb werden
eingegebene BASIC Worte als Kommando interpretiert. Die entspre-
chende Aktion wird unmittelbar nach Betdtigung von {ENTER) intern
ausgefihrt und der korrekte Abschluss durch die Ausgabe eines OK
oder auch des Wortes Ready, zu deutsch 'fertig', mitgeteilt.

Bei Gerdten mit fest im ROM gespeichertem Interpreter ist al-
les etwas einfacher, da das Einlesen von der Kassette entfdllt.
Entweder meldet sich der Interpreter sofort nach Einschalten des
Micro, oder man muss ihn von der Monitor-Ebene aus, etwa durch
Eingabe von (B) (A) (5) (I) {C), {ENTER) starten.

Wieder andere Kleincomputer geben unmittelbar nach dem Ein-:
schaltén iiber den Bildschirm zeilenweise ein sogenanntes Menii
aus, Hier kdnnen Sie sich wie auf einer Speisekarte fiir eine Be-
triebsart entscheiden, indem Sie - entsprechend den Anweisungen

28 3. Wie reden wir mit unserem Micro?

des Hendbuches - den Cursor mit Hilfe der durch Pfeile gekenn-
zeichneten Cursorfiihrungstasten an den Anfang der gewlinschten
Zeile positionieren und anschliessend {ENTER) eingeben.

Irgend etwas kiappt nicht

Es ist gar keine Frage, dass bei einem relativ komplizierten
Vorgang wie dem Einlesen des Interpreters von der Kassette ins
RAM auch mal was schiefgehen kann. Dies ist iiberhaupt kein Grund,
gleich nervds zu werden. Vorab ist es trostlich zu wissen, ‘dass
anfangs in aller Regel ein Fehler zuerst bei uns, seltener im Re-
corder und so gut #ie gar nicht im Micro auftritt. Am besten, Sie
lesen in einem solchen Felle die betreffende Passage in Ihrem
Handbuch nochmal griindlich und in aller Ruhe durch, in einigen
Handblichern sind richtige Check-Listen zur Fehlersuche angegeben.
Zuerst sollten Sie en den korrekten Sitz der Steckkontakte an Mi-
cro und Recorder denken.

Geirrt haben kdnnen wir uns bereits bei der Eingabe des Be--
fehlswortes LOAD. Bemerkicn wir diesen Fehler schon beim Eintip-
pen, 8o kdnnen wir ihn vor Driicken der ENTER-Taste zumeist ganz
einfach korrigieren. Viele Micros besitzen hierfiir eine Losch-
taste, die es erlaubt, das links vom Cursor stehende Zeichen zu
loschen. Bei einigen Micros besitzt in der Monitor-Ebene des
Rechners die mit dem Pfeil ¢ gekennzeichnete Cursorfiihrungsta-
ste diese Punktion. So kdnnen wir durch Loschen und anschliessen-
de Neueingabe falsch getippte Zeichen vor Betdtigung der ENTER
Taste korrigieren. Haben Sie ein Befehlswort falsch eingegeben
und mit {ENTER) abgeschlossen, so wird es der Monitor nicht ver-
stehen konnen und teilt dies durch Ausgabe einer codierten Feh-
lermeldung mit. Danach wird das Bestdtigungszeichen ausgegeben,
und Sie kdnnen es nochmal versuchen. Schwieriger ist es, wenn Sie
versehentlich ein anderes, zum Befehlsvorrat des Monitor gehGren-
des Wort eingegeben und abgeschlossen haben., Dies wird dann ir-
gendeine vollig unbeabsichtigte Reaktion des Micro ausltsen. In
einem solchen Fall knnen Sie durch Driicken der auf vielen Micros
vorhandenen RESET Taste 'die Notbremse ziehen' und den Computer
intern zum sogenannten Warmstart, etwa in den Anfangszustand kurs
nach dem Einschalten, zuriicksetzen. Fehlt eine solche Taste, hilft
oft nur noch die radikale Methode einer Unterbrechung der Strom-

Fehlersuche 29

zufuhr.

Erwéhnt sei noch, dass in der Monitor-Ebene des Rechners der
Vorrat akzeptierter Befehlsworte sehr begrenzt ist, gleichgiltig
ob diese durch sukzessives Driicken von Buchstabentasten cder
mittels einer einzigen Befehlstaste aufgerufen werden. Insbeson-
dere sind hier Worte der Sprache BASIC nicht zugelassen, sie
kann der Micro in diesem Betriebszustand nicht verstehen, da der
BASIC Interpreter ja noch gar nicht arbeitet.

Grinde fir einen fehlerhaften Ladevorgang liegen oft im Re-
corder. Schon ein paar Staubfussel am Tonkopf kdnnen die Uber-
tragung eines Datenblockes so st¥ren, dess der Micro den Lese-
vorgang einstellt - unabhéngig davon, dass das Band im Recorder
weiterliuft und 'Datenger#usch' ertdnt. In diesem Palle stoppen
Sie das Band und fahren es zurlick. Bei blockweiser Datentlbertra-
gung geniigt es oft, dem Micro das Band ab dem fehlerhaft gelese-
nen Block nochmal vorzuspielen. Da die Datenbltcke mittels eines
Code numeriert sind, findet sich der Micro dsbei allein zurecht.

Bei anderen Systemen spulen Sie das Band bis zum Anfang zu-
riick. Falls der Micro keine andere Hilfe bietet, gehen Sie nun
mit RESET zurlck zum Warmstart und wiederholen die gesamte Lade-
prozedur noch einmal.

Sollte bei mehrmaligen Ladeversuchen ein {bertragungsfehler
stets im selben Datenblock auftreten - eventuell erkenntlich an
den auf dem Bildschirm ausgegebenen Blocknummern oder auch an der
aktuellen Position des Cursors - so liegt der btse Verdacht eines
Pehlers im Datenband nahe, das vielleicht an der betreffenden
Stelle einen Knick abbekommen hat. Viele Datenb&nder besitzen ei-
ne zweite, als Sicherheitskopie dienende Aufzeichnung des Inter-
preters, auf die Sie nun probeweise ausweichen kdnnen. Funktio-
niert auch das nicht, so besteht vieleicht ein grundsétzlicher
Anschlussfehler, verursacht durch eine ungeeignete Kabelverbin-
dung, oder der Recorder ist zur Zusammenarbeit mit Ihrem Computer
nicht geeignet. Dies kann an nicht richtig angepassten Signalpe-
geln oder - in ganz seltenen Féllen - an einer gegensinnigen
Kopfpolaritﬁ% im Recorder liegen. Bevor Sie nun einer Fehler in
Ihrem Micro vermuten, sollten Sie unbedingt verschiedene Recor-
dertypen, eventuell mit unterschiedlichen Anschlussformen, aus-
probieren. Bei einigen Rechnertypen héngt das korrekte Funktio-
nieren der Dateniibertragung sehr von der Wahl des passenden Re-
corders ab.

30 3. Wie reden wir mit unserem Micro?

Die erwidhnten Schwierigkeiten' beim Kassettenbetrieb sind ein
Grund, nochmals auf einen sehr pfleglichen Umgang mit der den In-
terpretér enthaltenden Systemkassette hinzuweisen., Vielleicht
denken Sie schon mal dariber nach, wie Sie sich eine zusdtzliche
Sicherheitskopie Ihres Interpreters auf einer anderen Kassette
verschaffen kénnen. Dabei kann Ihnen die Kenntnis der Tatsache
helfen, dass nach Einlesen des Interpreters dieser - eventuell
erst nach einer gewissen, 'bank-switching' genannten intermen
Verlagerung - schliesslich in einem genau definierten Bereich des
RAM gespeichert wird. Auf vielen Micros besteht die Miglichkeit,
mittels eines systemabhdéngigen Schreibbefehls SAVE Daten aus einem
vorgebbaren Speicherbereich zu lesen und auf Band zu sichern.

Die ersten Gehversuche

Wird nicht ausdricklichk anderes gesagt, so gehen wir von nun an
stets davon aus, daB der Micro bereits in der'Interpreter-Ebenc
arbeitet.

Falls notwendig, wurde also der Interpreter béreits_erfolg—
reich geladen und das Interpreter-Programm gestartet. Unser Mi-
ero versteht jetzt die auf ihm implementierte Progremmiexrsprache
BASIC. Eine iiber die Tastatur eingegebene Information oder auch
ein bereits im Arbeitsspeicher des Micro befindliches Programm
kann demit im Sinne der Sprache BASIC interpra=tiert werden. So
wird ein dem Rechner {ibergebenes Wort vom Interpreter mit dem ei-
genen, fest definierter Wortschatz verglichen und, nachdem es er-
kannt ist, ein entsprechendes Kommando als 'Maschinenroutine' in-
tern realisiert. Bei einem einzigen eingegebenen Befehl geht dies
alles so ‘schnell vonstattern, dass Sie augenblicklich das Resultat
wahrnehmen und der Micro bereits die néichste Eingabe erwartet.
Selbstverstdndlich bendtigt der Computer zur Verarbeitung von
BASIC Befehlen eine endliche Zeitspanne, die etwa im Killisekun-
den-Bereich liegt. Spéater werden wir seher, dass der Rechner zur
Interpretation eines viele Befehle enthaltenden Programmes unter
Umstédnden recht viel Zeit bendtigt, einer der wenigen Nachteile
von BASIC Interpreterm.

Versuchen wir nun in einem ersten Anlauf, unseren Micro wie
einen Taschenrechner zy betreiben, etwa um die Addition 5 + 2
ausfiihren zu lassen./Also geben wir ein:

Die. ersten Gehversuche 31

(5> ¢+ (2 (=)
Das Driicken einer bestimmten Taste symbolisieren Qir hier wieder
durch Setzen spitzer Klammern. Auf dem Bildschirm erscheint die
Zeichenfolge 5 + 2 = , gefolgt von dem blinkenden Cursor, der
uns signalisiert, dass 'dort' auf die néchste Eingabe gewartet
wird. Mehr geschieht indessen nicht. Jetzt erinnern wir ums,
dass Eingaben mit (ENTER) abzuschliessen sind, also driicken wir
nun noch voller Erwartung auf diese Taste. Ja, und jetzt stellen
wir fest, dass der Micro mit dieser Eingabe nichts snfangen kann.
Entweder reagiert er iiberhaupt nicht erkennbar, oder es wird eine
Fehlermeldung, etwa 'SN' ausgegeben. Dem Handbuch entnehmen wir,
dass dies SYNTAX ERROR bedeutet, wir also einen syntaktischen
Fehler gemacht haben. Viele Micros sind so freundlich und teilen
uns derartige. Fehlermeldungen verbal auf Englisch mit.

Das Resultat der Addition von 5 und 2 haben wir aus dem Rech-
ner allerdings noch immer nicht herausbekommen. Dies liegt daran,
dass sich die Arbeitsweise unseres Micro auch im Direktbetrieb
grundlegend von der eines normalen Taschenrechners unterscheidet.
Soll uns der Kleincomputer bei der LUsung unserer Additionsaufgea-
be helfen, so miissen wir die Eingabe in einer dem Rechner ver-
sténdlichen Form vollziehen, in unserem Palle also die Program-
miersprache BASIC benutzen. Jetzt nun lerner wir unsere erste
BASIC Vokabel, némlich das fiir die Ausgabe von Resultaten zustén-
dige Wort PRINT, abgeleitet von to print, zu deutsch 'drucken'.
Die Bedeutung dieses Wortes ist historisch zu verstehen, da vor
der Einfiihrung von Bildschirmen oder Bildschirm-Terminals die
Ausgaben eines Computers zumeist idber einen Pernschreiber oder
Drucker erfolgten.

Starten wir also einen weiteren Versuch, Wir wilnschen das Er-
gebnis einer Addition auf dem Bildschirm zu sehen, versuchen wir
es daher mit folgender Eingabe:

<Y (B (I (B) (7> <) (55> &) (2)
Dabei bezeichnen wir mit {) eine Betatigung der Leertaste - of%
und besser auch Space-~Taste gensnnt - ganz unten auf der Tastatur.
Durch Dricken dieser Taste geben wir keineswegs etwa richts, son-
dern ein 'blankes' Zeichen ein, das sich in der Feinstruktur eben
aus lauter Punkten in der Hintergrundfarbe des Schirmes zusammen-
setzt. Puir den Rechner ist es ilbrigens ein Zeichen wie jedes an-

32 3. Wie reden wir mit unserem Micro?

dere. Das ist auch daran erkenntlich, dass der Cursor nach einer
Eingabe um eine Position weiterriickt. Von den drei in der Litera-
tur gebréuchlichen Bezeichnungen Leerzeichen, Space oder Blank
ist - wie leider bei vielen anderen Fachausdriicken auch - das
deutsche Wort am wenigsten zutreffend. Durch Eingabe eines Leer-
zeichens wird keinesfalls eine 'leere' Information an den Rechner
ibergeben; auf letzteres kommen wir spdter noch mal zu sprechen.

Solange noch geniigend Platz im Speicher ist, sollten Sie die
Space-Taste fleissig benutzen. Das Schreiben von Zwischenrdumen
verbessert die Lesbarkeit und erhéht damit auch die Pehlersicher-
heit Ihrer Programme. Einige BASIC Versionen fordern sogar das
Setzen von Blanks vor und nach BASIC Schliisselwortern oder Opera-
tionszeichen. '

Doch noch blinkt der Cursor am Schluss der Bildschirmausgabe
und fordert uns zum Abschluss dieser Befehlszeile durch (ENTER)
auf. Na endlich, jetzt hat es geklappt - in der ndchsten Zeile
steht das gewiinschte Ergebnis. Der Bildschirm sieht nun etwa fol-
gendermassen aus, eventuell mit zusé@tzlicher Ausgabe einiger
Prompts > an Zeilenanflingen:

Ready

PRINT S + 2 <ENTER>
7

Ready

b |

Hierbei ist (ENTER)D nur zur Erkldrung der auszufithrenden Hendlun-
gen auf der Tastatur hinzugefiigt. Diese Taste realisiert die Ein-
gabe eines nicht darstellbaren Steuerzeichens, das also auch
nicht auf dem Bildschirm ausgegeben werden kenn.

Jetzt haben wir im Handumdrehen bereits zwei Dinge gelernt.
Einmal wissen wir nun, wie man per Befehl - also nicht bloss
durch einfaches Eintippen - Zahlen auf den Bildschirm ausgeben
kann, hier das Ergebnis von 5 ¢ 2. Zum arderen sehen wir, wie
einfach in der Programmiersprache BASIC die arithmetische Opera-
tion der Addition gehandhabt wird.

Auf der Tastatur mancher Heimcomputer miissem Sie zum Errei-
chen des Zeichens + gleichzeitig die SHIPT Taste betéitigen. Dies
funktioniert wie bei einer richtigen Schreibmaschinentastatur.
Zuerst drickt man den Umschalter SHIFT und h< ihn fest. An-
schliessend tippt man das gewlinschte Zeichen aus der 'oberen Rei-
he' ein.

Arithmetik 33

Bei einigen Kleincomputeru, so etwa dem Sinclair Spectrum,
wird die oben beschrisbene Aufgabe eiwas anders geltst., Hier ge-
ben Sie durck eiumaliges Drilcken einzelner Tasten gesamte BASIC
Schifisselworte ein. So wird beim Spectrum durch Tippen von {P)
bereits das gesamte Schlilsselwort PRINT eingegebten. Wir erkennen
dies an der Reakticn auf dem Bildschirm, wo sofort des Wort PRINT
erscheint, gefolgt von einem Blenk. Dieses Verfehren ist etwas
einfacher und reduziexrt die Fehlermdglichkeiten, da 2in BASIC
Wort in einem elzigen Tastendruck nicht fehlerheft eingegeben
werden kann., Ericuft wird diessr Vorteil durck eine Vielfachbele-
gung faat aller Tasten. Bei soichen Micros miissen Sie stets sehr
genau darauf achten, in welcheir Modus dle Tastatur gerade betrie-
ben wird. Nach Eingabe des Schliisselwortes PRINT wachselt der
Spectrum automatisch den Eingabemcdus und erwartet nun einzelne
Zeichan. Der aktuelle Modus wird dabei durch die zusZtzliche Aus-
gabe eires Buchstaben in dem blinkenden Cursor signalisiert. Auch
bei diesem Rechnexriyp wird der Abschluss einer Befehlszeile durch
Driicken von {ENETER) erreicht.

Solche und sndere Besonderheiten Ihres Rechners entnehmen Sie
im Detail dem 2zugehtrigen Handbuch, mi}{ dem Sie sich Abschnitt
fir Abschnitt griindlich vertraut machen. In Bélde gehen wir in
uvagerem Text zu einer neutralen‘Schreibﬁeise {iber, die dann fiir
alle mit einem 'minimalien' BASIC ausgestatteten Kleincomputer in
etwa giiltig ist.

Mehr zur Arithmetik

Die auf unserem Micro implementierte Programmieraprache BASIC
kennt finf einfache arithmetische Operationen zur Verkniipfung von
Zehlen, ndmlich:

Addition +
Subtrektion -
Multiplikation *
Division /
Potenzierung 4

Die neu hinzugekommenen Operationen werden in BASIC genauso ein-
fach wie die Addition realisiert, was wir uns gleich sn ein paer
genz leichten Aufgaben klarmachen wollen. Beachten Sie, dass auf

34 3. Wie reden wir mit unserem Micro?

Computern die sonst iiblichen Rechenzeichen Punkt und Doppelpunkt
fir Multiplikation beziehungsweise Division nicht gebréuchlich
sind. Iare Anwendung wirde zu Fehlermeldungen oder - schlimmer
noch - zu Fehlinterpretationen der betreffenden Befehle fiihren.
Auch das sonst iibliche Fortlassen des Multiplikationszeickens ist
nicht statthaft, ein Befehl zur Multiplikation zweier Zahlen muss
stetc das Rechienzeichen * enthalten. Programmiersprachen werdeh
sequentiell niedergeschrieben, die Befehle also in Zeilen formu-
liert. Deshalb ist fiir die Potenzierung oder Exponentiation ein
eigenes Rechenzeichen erforderlich. Insbesondere auf dlteren ﬁi—
cros sind’ anstelle des Hochpfeiles 4 zwei hintereinandergeschrie-
bene Sterne ** iiblich. Bei der Ausgabe iiber einen Drucker wird
das Potenzzeichen ilibrigens nur als Dach ~ geschrieben.

Stellen wir nun zum Kennenlernen dem Micro einige Aufgaben
und verfolgen unser Tun auf dem Bildschirm.

Subtraktion:

&Y ®RY A I e) {HLRYN-YB) (ever)

PRINT 21 - 4 <ENTER>
17

Ready

e |

Multiplikation:

¢PY RS (I) () (Y L DL 2D 1Y (BFTER)

/
PRINT 7 % 221 <ENTER>
1542
Ready
>80

Division:
&Y RY (1> (MY (2> L DA LB>{/¥K8> (ENTER)

PRINT 20 / 8 CENTER>

2.5

Ready

>B
Das Resultat dieser Division wird vom Rechner korrekt als Dezi-
malbruch dargestellt. Dabei ist 2zu beachten, dass entsprechend
der amerikanischen Schreibweise zwischen Einer- und Zehntelstelle
statt des Kommas ein Punkt geschrieben wird. Das gleiche gilt
auch bei der Eingabe gebrochener Dezimalzahlen, auch hier muss

das Komma durch einen Punkt ersetzt werden. Auf keinen Fall diir-

Arithmetik 35

fen Sie die Null mit dem Grossbuchstaben O verwechseln. Zur Ver-
meidung von Irrtiimern wird auf dem Bildschirm die Null oft mit
Strich @ ausgegeben.

Potenzieren:

(B> (RY <I> () (DL DY (X1 6> (ENTER)

PRINT 2 ~ 16" <ENTER>
65536

Ready

>R

Wurzelziehen:

Entsprechend den arithmetischen Regeln fiir das Potenzieren und
das Radizieren kdnnen wir auf dem Micro auch Wurzeln ziehen, in-
dem wir Potenzen mit. gebrochenen Exponenten benutzen.

&> RY &) AN (1) < D> 6> (5D (5 (3) (6D) Lp) {.H (5D
(ENTERY

PRINT 45536 ~ 0.5 CENTER>

256

Ready

>a
Steht in einem Dezimelbruch vor dem Dezimalpunkt nur eine Null,
80 braucht diese auf den meisten Micros nicht 2ingegeben zu wer-
den und entf#llt dann auch bei der Ausgabe. Wir kbnnten im obi-
gen Beispiel auch PRINT 65536 T .5 schreiben. Natiirlich ver-
kraftet unser Micro hier auch einen Bruch, nur dass wir diesen
dabei in Klammern setzen miissen, PRINT 65536 4 (1/2). In BASIC
werden arithmetische Ausdriicke entsprechend genau festgelegter
Vorrangregeln eusgewertet, wobei der Hochpfell eine h&here Pri-
oritdt als der Bruch besitzt. Diese Rangfolge kdunen wir durch
Schreiben von Klammern durchbrechen, de diesen eine noch hthere
Priorit#ét zugeordnet ist. Am besten, Sie probieren dies gleich
aus:

PRINT 45536 ~ 1/2 CENTER>

32748

Ready

e |
ﬁbrigens, sicher sind auch Sie der Meinung, dass die Eingabe sol-
cher einfacher BASIC Befehle nun klar ist und wir des lsstige

Schreiben der ‘vielen spitzen Klammern fortan sein lassen k&nnen.

36 3. Wie redenr wir mit unserem Micro?

Nur en den korrekten Abschluss von Befehlszeilen durch {BETER)
wollen wir noch eine Weile erinnern, bald lassen wir auch dies.
Selbstverstdndlich kann der Mizrc nur Befehle mit aritbme-
tisch sinnvollen Operationen verarbeiten, so wiirde eine Diviasion
durch Null auf die Ausgabe der Fehlermeldung /¢ oder DIVISION BY
ZERO fihren. Auch Befehle, die aus dem Bereich der reellen Zah-
len hinausfiihrende arithmetische Cperationen enthalten, sind un-

zulé@ssig. So ergibt beispielsweise die Eingabe von PRINT

(-4) 1 (1/2) die Fehlermeldung FC oder ILLEGAL QUANTITY ERROR.
Natlirlich konnen auf dem Micro auck Probleme bearbeitet werden,
die auf komplexe Zahlen fiihren. Nur, dass cdabei entsprechend den
hierfiir giiltigen Rechenregeln Real- und Imaginﬁrteilg getrennt zu
behandeln sind.

Aver auch die Eingabe von PRINT (-27) ¢ (1/3) wird vom Miero
uicht akzeptiert. Dies liegt daran, dass eir Potenzausdruck AT B
mit gebrochenem Exponenten -im Rechner entsprechend der Formel
ATB = exp(B-1n A) ausgewertet wird. Da der Logarithmus nur fiir
positives Argument definjert ist, muse in diesem Fall die Basis
A positiv sein.

Jetzt versuchen wir, einige 'vermischte' Aufgaben zu l&sen,
Beginnen wir mit der Eingabe von

PRINT 3 + 5 * 4 {ENTER)

Sind Sie mit dem Brgebnis 23 zufrieden? Klar, der Micro hat be-~
ricksichtigt, dass zuerst die Multiplikation und danach die Addi-
tion auszufiihren ist, unabhingig von der angegebenen Reihenfolge
dieser Operationen. In der Schule haben wir zu diesem hierar-
chischen Prinzip 'Punktrechnung geht vor Strichrechnung' gesagt..
Wollen wir eine endere Reihenfolge der Abarbeitung in einem sol-~
chen Ausdruck erzwingen, 3o setzen wir wieder Klammern:

PRINT (3 + 5) % 4 ¢ENTER)>

32

Ready

>a
Man muss stets ebensoviele Klammern schliessen, wie man getffnet
hat. Anderenfalls wird eine Fehlermeldung ausgegeben, de der Com-
puter sich die einzelnen, durch Klammern gebildeten Ebenen merkt
und automatisch darauf achtet, dass 'alles aufgeht'. Bei der Um-
wandlung komplizierterer Formeln in das BASIC Format ist hohe

Aufmerksamkeit geboten, ein inkorrekt gesetztes Klammerpaar kann

Arithmetik 37

ein Ergebnis total verf&lschen.

Hier einige Beispiele fiir das libertragen von Formeln in BASIC
Befehle. Beginnen wir mit (3 + 19)(17 - 4), wobei wir in BASIC
daes Multiplikationszeichen nicht vergessen diirfen.

PRINT (3 + 19) ¥ (172 - 4) <ENTER>
286

Ready

>8 @

2
Der Ausdruck é%g_:_il_____ igt schon etwas komplizierter umzu-
27(9,3 + 0,7)
formen.

PRINT 6 % (2 + 5)°2 / (2*3 % (9.3 + .7))
3.675
Ready
>
M g
Schliesslich berechnen wir - +1a7:8,3 _ l, .
3 2

PRINT -i1.7 # 8.9 7 3 - 2~-2
-34.%96

Ready

>0

In den obigen Beispielen ist auf die Hierarchie der einzelnen
Rechenarten zu achten, Die vollsténdige Reihenfolge der Priorité-
ten aller bisher beschriebenen Operationen lautet:

Klammerung G)
Vorzeichen +, -
Potenzieren 1

Multiplikation und Division *, /
Addition und Subtraktion 4+, -

Gleichrangige Operationen werden in der Reihenfolge ihrer Einga~
be, also von links nach rechts, bearbeitet.

Versuchen Sie, mit ein paar weiteren Eingeben die Arbeitswei-
se Ihres Micro zu verstehen. Dass alle Eingaben zeilenweise je~
weils nmit {ENTER) abzuschliessen sind, ist uns nun so geldufig,
dass wir es nicht mehr jedesmal dazuschreiben.

PRINT 2 * 3 * 4
PRINT 4 + 3 * 2
PRINT 4 / 2 - 3
PRINT 2 + 3/ 4

38 3. Wie reden wir mit unserem Micro?

PRINT 2 * 3 / 4
PRINT 2 / 4 * 3
PRINT 3 + 2 T 4
PRINT 3 - 4 1 2
PRINT 2 + 4 ¢+ 3 * 2

Sind Sie sich bei einem Problem iiber die Wirkung der Vorrangre-
geln noch nicht ganz sicher, so konnen Sie dies durch §etzen von
Klammern testen.

Angenommen, Sie haben sich bei der Eingabe solch eines Befehls
mal vertan und mochten den Fehler korrigieren. Vor Abschluss der
Befehlszeile durch die ENTER Taste ist das kein Problem. Auch
einfache Micros besitzen hierfiir eine 2zumeist mit DELETE oder
auch RUBOUT gekennzeichnete Taste. Durch Driicken dieser Taste
wird das links vor dem Cursor stehende Zeichen gelbscht, wobei
der Cursor anschliessend auf die Position des geldschten Zeichens
rickt. Danach ist die Ldschung eines weiteren Zeichens oder auch
die Eingabe eines neuen Zeichens auf der Position des eben ge-
ldschten moglich. Fehlerhafte Befehlszeilen werden hier also
'von hinten' korrigiert.

Komfortablere Systeme verfiigen Uber erweiterte Korrekturmig-
lichkeiten. Dann kdnnen einzelne Zeichen auf einer beliebigen
Position der Programmzeile korrigiert oder geldscht werden, ohne
debei die ilibrige Zeile zu beeinflussen. Hierzu bewegt man durch
Benutzung der mit Pfeilen gekennzeichneten Cursor-Filhrungstasten
den Cursor auf die Position des zu éndernden Zeichens. In der
Regel dient hier die DELETE Taste (DEL)» dazu, das unter dem Cur-
sor befindliche Zeichen zu l6schen, wobei anschliessend die Zei-
le verdichtet, also nach links zusammengeschoben wird.

Mittels der oft vorhandenen INSERT Taste (INS)> kidnnen Sie in
eine noch nicht abgeschlossene Programmzeile ein oder auch mehre-
re Blanks (Leerzeichen) einfiigen. Dabei werden das Zeichen unter
dem Cursor sowie alle rechts folgenden Zeichen jeweils um eine
Position nach rechts verschoben. Anschliessend kann das einge-
schobene Blank durch irgendein anderes Zeichen iiberschrieben wer-
den.

Mittels einer mit CLEAR LINE bezeichneten Taste {CL LN) kann
eine eingegebene Befehlszeile vor dem Abachluss vollstdndig ge-
10scht werden. Nach erfoigtem Loschen springt der Cursor an den
Anfang dieser Zeile und erwartet dort eine Neueingabe.

Gleitpunkidarstellung 39

Schliessen wir nun eine korrigierte oder ergtnzte Befehlszei-
le mit Betdtigung der ENTER Taste ab. Dann wird die aktuelle
Zeile verlassen, und wir konnen an dem eingegebenen Befehl nichts
mehr #ndern. Warum ist das so? Nun, im Gegensatz zu einem Ta-
schenrechner zeigt auch beim Direktbetrieb des Micro nicht jeder
einzeln eingegebene Tastendruck eine sofortige Wirkung. Die zwi-
schen dem Bereitschaftazeichen und {ENTER) eingegebéne Zeichen-
folge wird als ein Genzes verarbeitet. Solange die Zeile noch
nicht abgeschlossen ist, gelangen die aktuell eingegebenen Zei-
chen der Reihe nach von der Tastatur - wo sie abgefragt und co-
diert werden - in den sogenqnnten Tastaturpuffer. Hier werden
sie vorlaufig géspeichert und sind iiber das unentwegt t&tige Be-~
triebssystem auf die oben beschriebene Weise fiir Anderungen
und Ergénzungen leicht zugénglich. Erst bei Ausfiihrung von
(ENTER) wird der Tastaturpuffer 'auf einen Schlag' entleert und
sein Inhalt dem Interpreter zur Verarbeitung iibergeben. Dann ent-
scheidet es sich, ob der Befehl syntaktisch korrekt formuliert
war und die entsprechende Routine vom Rechner realisiert werden
kann.

Es leuchtet ein, dass der Tastaturpuffer wie jeder andere
Speicher eine begrenzte Kapazitdt besitzt. Dadurch wird die mexi-
mal mogliche 'logische' Lénge einer Eingabezeile festgelegt, die
bei vielen Micros etwas weniger als 80 Zeichen betridgt. Das hat
nichts mit der Lidnge einer Bildschirmzeile zu tun, die oft nur
40fZeichen fasst.

Gleitpunktdarstellung

Der Okonomische Umgang mit dem verfiligbaren Speicherplatz legt es
nahe, die Stellenzahl der vom Rechner verarbeiteten sowie der
ausgegebenen Zahlen zu begrenzen. Ausserlich wird das an der An-
zahl der auf dem Bildschirm angezeigten 'signifikanten' Stellen
sichtbar. Diese betrdgt bei vielen Micros sechs, oft aber auch
acht, neun Stellen, je nach dem Format, in welchem der Rechner
Zahlen intern verarbeitet. ﬁbrigens, in der Praxis haben zuviele
'‘mitgeschleppte' Dezimalen keinen Nutzen. So bieten komfortablere
Micros die Mbglichkeit der Umschaltung von einer normalen, rela-
tiv’niedrigen Stellenzahl auf 'doppelte Genauigkeit'. Dann kann
mit einer wesentlich hdheren Stellenzahl ge;echnﬁt werden, was

40 3. Wie reden wir mit unseren Micro?

aber den Speicher stidrker belastet und die Rechengeschwindigkeit
mindert. Da sich die Wextsprospekte mancher Hersteller iiber die
Genauigkelt ihrer Rechner in vormehmes Schweigen hiillen, enp-
fieklt ey wich, anf dlesen Punk* besonders zu achten,

Die maximale Anzahl der von unserem Micro anczeigbaren Dezima-
len ermitteln wir durch Ausfitlhrung einer einfachen Divisicn.

PRINT 1 / 3

. 333333333

Ready

b |
Offensichtlich bleibt jedem Rechner bei der Lisung dieser Auifgabe
gar anichts anderes ilibrig, als das Ergebnis in gerundeter Form an-
zuzeigen. Im konkreten Fall arbeitet der Rechner mit eincr Genau-
igkeit von etwa neuneinhalb Dezimalen uud gibt ein Ergebnis mit
neun wertaenzeigenden Stellev aus. Die Null vor dem Komma auszu-
geben ware vyllig iiberflilssig und wilrde eine Stelle verschenken.
Schauen wir uns eine weitere einfache Aufgabe an:

PRINT § + {/3

~ 1.33333333

Ready

>R
detzt 1st die Stelle vor dem Komma bedeutungevoll und wird selbst-
versténdlich ausgegeben. Da hier aber insgesamt nur neun Stellen
angezeigt werden kdnnen, kostet dies die Genauigkeit einer Stelle
nach dem Komms - pardon, nach dem Punkt sagen wir besser,

Eben sprachen wir iiber eine Gensuigkeit von 'neuneinhalb' De-
zimalstellen. Der Grund fiir diese unrunde Angabe liegt darin,
dass der Rechner intermegrundsétzlich bindér arbeitet, also Daten
in nur zwel Zustédnden ausdriicken und verarbeiten kann. Dies
driickt sich mathematisch dadurch aus, dess bei Kleincomputern
die arithmetischen Operationen .in der Regel im zweiwertigen Dual-
zehlensystem ausgefithrt werden. Da unser Micro sehr nutzerfreund-
lich konstruiert ist und die Eingabe von Zahlen in dem uns ver-
trauten Dezimalsystem akzeptiert sowie diese liblicherweise auch
80 ausgibt, sind also stets Umrechnungen oder Konvertierungen
zwischen diesen Zahlensystemen nétig. Dabei gehen zur Darstellung
von Zshlen die jeweils benutzten Stellen nicht immer auf, so er-
gibt beispielsweise der endliche Dezimalbruch 0.2 sogar einen pe-
riodischen Dualbruch. Dies fihrt bei der Konvertierung zu Run-
dungsfehlern mit zuweilen iiberraschenden Konsequenzen. Die Pro-

Gleitpunktdarsteliung 41

blemetik ist so grundsttzlich mit der Arbeitsweise unseres Rech-
ners verbunden, dass sie auch in unserem einfilhrenden Text immer
mal wiedexr zur Sprache kommen wird.

In den bteiden Beispielen oben konnten wir sehen, dass der De~
zimalpurkt vom Micro an eine Stelle gesetzt wurde, welche die
Ausgabe einer maximelen Anzahl wertdarstellexnder Ziffern ermog-
lisht. Dieses Verfahren hat Prinzip, und wir wollen uns noch et-
was néher damit befassen. Angenommen, wir baben es mit einer
grossen, sagen wir zwanzigstelligen Zahl zu tun:

51090942171709445046

Dann sind prektisch oft nur wenige filhrende Stellern von Belang,
widkrend alle folgenden Stellen durch Mess- oder Rundungsfehler
so ‘verrauscht' sicd, dass man sie sich eigentlich gar nicht
merken muss. Eine Methode wire, geeigriet zu runden und die nicht
bedeutsamen (signifikenten) Stellen durch Nullen zu ersetzen:

$1030942200000000000

Aber nach wie vor wiirden wir mit diesem Zehlen-Ungetilm die Spei-
cher des Computers belasten, dem ist es schliesslich egal, ob er
sich am Ende dieser Darstellung eine Sechs oder eine KNull merken
muss. Wesentlich eleganter wire es, sich lediglich um die Anzehl
‘der fiir eine korrekte Zahlenangabe bendtigten Nullen zu kiimmern.
Hierzu wéire nur die zus&tzliche Speicherung einer ein- oder
zwei-stelligea Zahl erforderlich. Dieses Verfehren ist uns von
der Angabe von Vielfachen einfacher Masseinheiten wohlbekannt.
So wird die Leistung eines Kraftwerksblockes gewShnlich in Mega-
watt angegeben, und jeder weiss, dass durch das Wort Mega der
Paktor 1000000 = 10~ ausgedriickt wird, mit dem die nachfolgende
Masszahl zu multiplizieren ist, um auf die Leistung in Watt zu
kommen. Und genauso macht das unser Micro, nur dass er den bend-
tigten Fektor nicht durch ein Wort, sondern gleich als Zehnerpo-
tenz ausgibt. Probieren wir das sofort an unserem Beispiel aus:

PRINT 510909421717093445046

5.10909422E+19

Ready

>8
Was bedeutet diese Ausgabe? Die eingegebene Zahl ist zu gross,
als dess sie nach Ubergabe an den Interpreter so, wie sie ist,
verarbeitet werden kdnnte. Daher wird die Zahl intern in das so-
genannte Gleitpunktformat umgesetzt und auch so auf dem Bild-

42 3. Wie reden wir mit unserem Micro?

schirm ausgegeben. Diese, auch wissenschaftliche Notation oder
Exponentendarstellung genannte Form einer Zahlenangabe ist Ihnen
gewiss schon von Ihrem Taschenrechner bekannt.

Im ersten Teil des Ausdruckes

5.10909422E+19

der sogenannten Mantisse, werden alle signifikanten Stellen aus-
gegeben - im konkreten Fall ein Dezimalbruch mit neun Stellen.
Danach erfolgt die Angabe des durch den Buchstaben E gekennzeich-
neten Exponenten (zur Basis 10). Dieser gibt die Zehnerpotenz an,
mit der die Mantisse zu multiplizieren ist, um auf die hier dar-
gestellte zwanzigstellige Zahl zu kommen:

Exponent

—~—

5.10909422E+419 = 5.10909422 + 1017
P ot

Mantisse Basis

Auf vielen Micros erfolgt die Ausgabe von Gleitpunktzahlen
in dieser Weise normalisiert. Vollkommen gleichwertig wére die
Darstellung:)

0.510909422E+20 = 0.510909422 « 102°

Sinngemdsses gilt auch fiir Rechner mit einer anderen Zahl maxi-
mel ausgegebener signifikanter Stellen, zum Beispiel:

5.10909E+19 = 5.10909 - 109

Die geschilderte Technik erlaubt also eine problemlose Verar-
beitung sehr grosser Zahlen auf dem Rechner, falls es nicht auf
die letzte Genauigkeit ankommt. Will men sich dagegen etwa davon
iberzeugen, dass die oben eingegebene Zahl die Summe dreier Fa-
kultdten 21! + 7! + 3! ist, genligt die Gleitpunktarithmetik
uniseres Micro nicht mehr und man muss andere Methoden benutzen.
Doch davon mehr im 10. Kapitel.

Das Problem der Verarbeitung sehr kleiner (positiver) Zahlen
wird mit Hilfe der Gléitpunktdarstellung ebenso elegant durch Be-
nutzung von Zehnerpotenzen mit negativem Exponenten gelbst. Be-
trachten wir das Ergebnis der Multiplikaetion zweier kleiner Zeh-
len:

PRINT 0.007513 ¥ 0.000314
2.359082E-06

Ready

>R

Gleitpunktdarstellung 43

Die Ausgabe erfolgt wiederum in normalisierter Form, wobei es
zwischen einzelnen Rechnern Unterschiede gibt. Das Ergebnis lau-
tet

-6

2.359082E-06 = 2.359082 - 10"~ = 0,000002359082

wobei relative Fehler bei einer solchen Gleitpunktoperation etwa
.in der gleichen Gr¥ssenordnung bleiben.

Wir bemerken, dass in der Exponentendarstellung einer Zahl
zwel Vorzeichen auftreten kbnnen, eines vor der Mantisse, das an-
dere vor dem Exponenten. Bei Eingaben kann ein positives Vorzei-
chen vor dem Exponenten auf vielen Micros auch entfallen.

PRINT -1.17E+28 % 7.14E-12

-8.3538E+16

Ready

b |
Natiirlich hat auch die Darstellung im Gleitpunktformat ihre Gren-
zen, Ublicherweise lassen sich auf Kleincomputern positive Zahlen
etwa im Bereich von 1.7E-38 bis 1.7E+38 darstellen und verarbei-
ten. Dies ist fiir viele Zwecke v8llig ausreichend, wann hat man
es schon mit aschtunddreissigstelligen Zaehlen zu tun?

Liegt eine positive Zehl innerhalb des Bereiches absoluter Ge-
nauigkeit und ist sie nicht kleiner als 0,01, so wird sie auf dem
Bildschirm in Form einer Dezimalzahl oder eines Dezimalbruches
ausgegeben. Intern dndert sich dabei an der Darstellung im Gleit-
punktformat nichts, diese ist durch die Konstruktion des Inter-
preters ein flir allemal festgelegt. So wHre es zum Beispiel nicht
m¥glich, eine Zahl in Gleitpunktdarstellung mit gebrochenmem Expo-
nenten einzugeben -~ das 1lHsst das Format nicht zu. Das BASIC man-
cher Micros akzeptiert nicht einmal das Pluszeichen + al; Vorzei~-
chen der Mantisse oder einer gewBhnlichen Dezimalzahl.

Andere Micros dagegen besitzen zusétzlich die M¥glichkeit der
Verarbeitung von Zahlen im Ganzzahlformat. Die ganzen Zahlen oder
Integers lassen sich aufgrund ihrer einfachen Struktur wesentlich:
weniger aufwendig speichern und verarbeiten. Damit kdnnen unter
Umsté#nden erheblich kiirzere Rechenzeiten sowie eine geringere
Speicherbelastung erreicht werden, nur dlirfen bei der dann benutz-
ten Ganzzahlarithmetik die arithmetischen Operationen nicht aus
dem Bereich der ganzen Zahlen hinausfiihren. Die Kennzeichnung
ganzzahliger Ausdriicke wie auch arithmetischer Ausdriicke bei dop-
pelter Genauigkeit ist nicht standardisiert und muss gegebenen-

44 3. Wie reden wir mit uwaserem Micro?

falls dem Handbuch entnommen werden.

Vom Runden

Eben schon sprachen wir von Fehlern, die durch das zuweilen not-
wendige Auf- oder Abrunden von Zahlen entstehen. Hierfiir beste-
hen zwei Grilnde. Einmel muss eine zu umféngliche Zshl bei der
Eingabe oder der Verarbeitung gerundet werden, damit sie ins
Gleitpunktformat passt, also fechnerabhsngig eine etwa sechs-
oder neunstellige Man*isse hat. Die Arithmetik der meisten Micros
vasiert auf dem System der Dualzshlen. Bei den dazu erforderli-
chen Konvertierungen zwischen Dezimal--und Dualzshlen erfolgexn
weitere Rundungen, die neuerliche kleine Pehler nach sich zie-
hen. Das liegt eben daren, dass keineswegs jeder eingegebene De-
zimalbruch auf dem Micro ein exaktes bin#res Aquivalent besitzt.
Dies trifft nur filir die sogenannten Meschinenzahlen zu, die eine
rechft ungleichméssig verteilte Teilmenge der reellen Zahlen bil-
den. Mehr hieriiber findet man in d2m schdnen Buch von G. kiaep
(1984) im Kapitel 1.

Schauen wir uns zur Erlduterung ein paear Belspiele an. Zuerst
kiimmern wir uns um den erstgenannten, leichter zu durchschauen-
den Typ ven Eundungsfehlern.

PRINT 1E+10 + 1 - 1E+10

:'ady

>a
Nsnu, hier kommt Null heraus? Ja, wobei das Ergebnis dieser Auf-
gabe wesentlich von der Reihenfolge der eingegebenen Summanden
abhiingt. Die arithmetisthen Operationen + und - besitzen die
gleiche PrioritBt, also wird der Ausdruck iblicherweise vom In-
terpreter von links nach rechts ausgewertet. Nun ist eine Zahl
der Grdssenordnung 1E+10 = 10lo bereits zu gross, um stets exskt
gespeichert werden zu kUnnen. Das heisst, solche Zahlen sind mit
einer Ungenauigkeit, die in unserem Falle grésser els 1 ist, be-
haftet. So kann der Interpreter die Auswertung des Ausdrucks
1E+10 + 1 nicat von 1E+10 unterscheiden, und dies erkldrt dann
das Ergebnis der Rechnung. Mindestens ebenso bemerkenswert ist
folgendes Resultat bei einem Rechner mit acht oder neun ange-
zeigten Stellen:

Vom Runden 45

PRINT SE+9 + 1 - SE+¢9
2

Ready

e |

Die Ungenauigkeit bei der Darstellung der Zahl 5E+9 liegt bei +1.
Wird zu dieser Zshl eire Eins addiert, 30 wird in der letzten
Stelle euf eine Zwei gerundet, dies erklBrt des Ergebnis. So ist
also der Wert von SE+9 + 2 nicht von 5E+9 4 i, wohl aber von

S5E+9 unterscheidbar.

Aber auch bei Operationen mit Zahlen ‘'normaler' Gr¥ssenord~
nung k¥nnen idberraschende und nur aschwer zu durchschauende Fehler
auftreten, Sie beruhen, wie gesagt, auf den Besonderheiten der
Gleitpunktarithmetik fiir Dualzahlen sowie den erforderlicken Kon-
vertierungen. Auch hierzu einige Beispiele, wobei auf verschisde-
nen Micros unterschiedliche Ergebanisse suftreten ktnnen.

PRINT 3 ~ 4
81.0000001
Ready

>8

PRINT 0.1 - 1/10

1.45519152E-11

Ready

pe |
¥an hat also allen Grund, bei den Ergebnissen numerischer Rech-
nungen stets kritisch zu sein, Keinesrfalls darf man seinem Xicro
alle Ausgsben bis auf die letzte Stelle glauben!

Es kann auch qoch schlimmer kommen, So ist es aufgrurd von
Rundungen und der begrenzten Genamuigkeit von Zahlendarstellungen
moglich, dass der Micrc auf dem Bildschirm ein exaktes Ergebnis
ausgibt, intern aber mit einem fehlerhaften Wert operiert. Hier-
zu ein sehr einfach ersacheinenrdes Beispiel

PRINT 1/100 % 100

1

Ready

>8
Das Ergebnis dieser Rechnung ist {iterzeugend klar, und wir sind's
zufrieden. Doch nun rechnen wir im n#chsten Beispiel weiter und
subtrahieren noch eine Eins. Alles klar? Leider nein, wie der
folgende Test zeigt:

46 3. Wie reden wir mit unserem Micro?

PRINT 1/100 % 100 - 1

-2.32830544E-10

Ready

]
Zugegeben, der auftretende absolute Fehler ist sehr klein. Doch
stellen wir uns beispielsweise vor, dass der Lauf eines Program-
mes von dem Ausgang des Tests einer berechneten Zahl auf den ex-
akten Wert Eins abhéingt. Dann kbnnen derartige Ungenauigkeiten
zu einer ginzlich unerwiinschten Deformation der Programmlogik
fiihren, was unter Umst#nden recht erhebliche Fehler zur Folge hat,
nach dem Prinzip 'Kleine Ursache -~ grosse Wirkung'.

Ein paar Rechenilbungen

Zum Abschluss dieses Kapitels geben wir einige zumeist recht ein-
fache arithmetische Ausdriicke an. Diese werden dann in der Spra-
che BASIC formuliert, um sie durch den Rechner auswerten zu las-
sen, Klar, dass es hierbei nur auf's Prinzip ankommt; auch kiinf-
tig werden wir Vier und Fiinf ohne Hilfe unseres Micros zusammen-
zéhlen. Die komplizierteren Aufgaben habe ich dem lehrrzichen
Buch von Friedrich A. Willers (1962) entnommen. Beginnen wir mit
etwas Leichtem:

1. Mathematischer Ausdruck: 231 + 813
Formulierung in BASIC: PRINT 231 +.813
Entsprechend fahren wir fort.

2. 4713 - 846 3. 19. 38

PRINT 4713 - 846 PRINT 19 * 33
4. 576 : T2 5. -}

PRINT 576 / T2 PRINT 7 / 5
6. 219 7. =111 + 8

PRINT 2 1 19 PRINT -111 & 8
8. -88 -7 9. 15 : (=3)

PRINT -88 * 7 PRINT 15 / -3 ,
10, 272 11. -(39)

PRINT 2 P -2 PRINT -3 T 2

Rechenfibungen 47

12. (-6)° 13. 916 - 3,174

PRINT (-6) 4 2- PRINT 916 * 3.174
14. 728,293 - 583,62 15. 12,5 : 2,5

PRINT 728.293 - 583.62 PRINT 12.5 / 2.5
16. -3,88516 - 1010 17. 17,233

PRINT -3.88516 * 10 ¢ 10 PRINT 17.23 T 3
18, 73 312 19. 224 . 1013

PRINT 7T 13 * 3 4 11 PRINT 2 4 24 * 1E+13
20, 4294967295 - 4294967294

PRINT 4294967295 - 4294967294

Bemerkung: Auf vielen Micros mit acht- oder neunstelliger An-
zeige ist zumeist 4294967295 = 232 1 ate griogste
exakt zu verarbeitende Zahl; bei Micros mit sechs-
stelliger Anzeige ist es 16777215 = 224 _ 3,

21, 16777215 - 16777210
PRINT 16777215 - 16777210
22, 5:10% + 7+20" 4+ 3.20° 4 9.207t - 2.1072
PRINT 5 * 104 2+ 7 * 10 + 3 + 9/10 - 2E-2
23. 2{300763
PRINT 300763 4 (1/3)
24. 41096
PRINT 4096 T .25
25, wiy

PRINT 9 / (5 * 3)

Bemerkung: Der Ausdruck 9 / 5 / 3 ist formal gleichwertig,
kenn aber aufgrund unterschiedlicher Reihenfolge
in der Auswertung zu geringfiigig differierenden
Resultaten fiihren.

26. 3;5 - % : 5

PRIRT 7 / (3 *5) =7/3/5
270 3’5'7 - 5’8,9

PRINT 3.5 * 7 - 5 * 8.9
28, 2,5 - 3° : 4

PRINT 2.5 - 343/ 4

48 3. Wie reden wir mit unserem Micro?

-2
290 “igu-z}-'
27(5 & 3}
PRINT 3 * (4 ¢+ ©
PRINT 3 * (4 + 5
03 « 2 6

24 3*(5+3))
+3/7 G+ 3{

n ~

30. -

3. 442326

PRINT (1 +24+3)/ (4+5)*6

32. {—:—-g
PRINT (7 + 8) / (1 + (2/3))

33.5[74-6(7-3)-;'.—_%’7] + 17

PRINT 5 * (7T + 6 * (7T =3) =9/ (7 - .2)) + 17
34. (3:0,22 + 52 = (4-0,22 - 3)% - (120,22 - 15)2
PRINT (3%.22 4 5)92 - (4%,22 - 3)%2 - (12*,22 - 15)¢2
35. (25-3,1% 4+ 0,22.73,12 4 25.0,2%):(5-3,1%47-0,23,145.0,29)
PRINT (25%3.1%4 + .212%3.112 + 25%.2%4)/
(5%3.102 4 T*.2%3.1 4 5%,2¢2)

36. % + ;

1

344 ,

PRINT (3/4 + 5/7) / (1/2 + 4/5)
37. 51,8 - 32

1,82 - 11+ 1,8 + 28
PRINT (5 * 1.8 -~ 32) / (1.8 %2 - 12 * 1.8 ¢+ 28)

38, 27. 374
PRINT 27 * 3 1 -4
39. 99+ 19233 - 54 - 4T
PRINT -99 * 24.5 + 192 * 38(1/3) - 54 * T4(1/3)
s0. 21G13
PRINT 3 4 (13/27)
Die folgenden arithmetischen Ausdricke formulieren Sie bitte

selbst in BASIC.

1.

5.

7.

9.
11.
13.
15.
17.
19.
21.
23.

25.

27.

28.7
25.

36.

28,
40.

17 + 4
3.7

642

17(-128)

-7 + 1763

1026,32 = 739,447
0,9135 - 0,0237 + 0,1368
~25,19%

9,28° « 7,91°

16777217 - 16777216
3,14159 - 10°

&

(W)

wine
+
ol
(=
1].,
(V]

(=212 -

N

220
24.

26.

Rechenfibungen

-3-1i1

517,81 : 0,9382
2.3 -4

=Ts1 + 2,3 - 4,1
231 » 1011

4294967297 ~ 4294967295

2\]601692057
(1 + 2+ 3)5
Yy

2 (2 + 3)]2

(6:1,3 -4 -(5.1,2° = 2.1,12 - (7-2,3'¢ 2)7

(97,33 -2.592-7.7,2.5,9%) : (3-7,2=2.5,9)

+

[os Tl

&

[

0,63+ (-0,14)"2

—
=
3%)
[e2)
N]
(W)
N

(W)
O
w

-2}

N
<+
[

31.

3t1.

9.

49

Das Alphabet des Computers 4

In gutem Kontakt

Bei der gegenwdrtigen Generation von Micros ist die wohl wich-
tigste Schnittstelle zwischen Mensch und Computer durchaus ire-
ditionell konzipiert, némlich als Tastatur - uns von der Schreib-
maschine her wohlvertraut. Tastaturen sind aber bereits viel l#n-
ger gebrduchlich, gibt es doch eine grosse Familie klassischer
Husikinstrumente, bei denen per Tastendruck geeignet codierte Be-
fehle an den eigentlichen Tonerzeuger libergeben werden.

Auf vielen Micros lehnt- sich die Tastatur in der Form deut-
lich an diejenige einer Schreibmaschine an, es sind aber zusétz-
lich noch mehr oder weniger viele Sondertasten vorhanden. Man
kann dabtei vier Tastengruppen mit jeweils unterschiedlichen Funk-
tionen unterscheiden:

Buchstabenfeld

Jiffernfeld

Steuertasten

Programmierbare Funktionstasten

Die Tasten selbst sind bei den einzelnen Computern in recht un-
terschiedlicher Wéise ausgebildet, von der einfachen Folientasta-
tur, der von vielen Taschenrechnern bekannten Gummitaste bis zur
professionellen Schreibmaschinentaste. Wichtig ist, dass Sie
recht bald ein gutes Gefithl fiir dem Druckpunkt Ihres Systems be-
kommen. Dann k¥nnen Sie Zeichen sicher eihgeben, ohne sténdig
gur Kontrolle auf den Bildschirm starren zu miissen. Bei komfor-

Alphanumerische Tastatur 51

tableren Systemen wird das sogenannte Prellen der Tasten, des ei-
ne unerwiinschte Mehrfachausgabe von Zeichen bei einem einzigen
Tastendruck zur Folge hat, durch konstruktive und auch elektro-
nische Mittel unterdriickt. Auch sorgt die Elektronik fiir eine
klare Entscheidung, wie mehrere gleichzeitige Tastendriicke ver-
arbeitet werden. So ist es mbglich, dass die Tastatur die Annah-
me neuer Informationen verweigert, solange eine (normale) Taste
noch nicht wieder losgelassen wurde.

Alphanumerische Tastatur

Wir haben bereits kleinere Aufgaben mit dem Micro geldst und ken-
nen uns auf einem Teil der Tastatur schon ganz gut aus. Dazu ge-
htrt das auf den ersten Blick erkennbare alphanumerische Tasten-
feld. Wie bei einer Schreibmaschine gibt es oben eine Reihe mit
Ziffern - den numerischen Zeichen, sowie darunter alle Buchsta-
ben - die sogenannten Alphazeichen. Die Buchstaben sind in der
auf Schreibmaschinen iiblichen Weise angeordnet - links oben mit
Q beginnend bis zum M unten rechts. Auf Maschinen mit interna-
tionalem Zeichensatz ist im Urnterschied zur deutschen Anordnung
lediglich das Y mit dem Z vertauscht. Man spricht dann von einer
QWERTY-Tastatur. Wichtig ist eine deutliche Unterscheidung der
einzelnen Zeichen, insbesondere des Buchstabens O von der Null,
Letztere wird auf der Tastatur und dem Bildschirm zumeist durch-
gestrichen ausgegeben, @, wihrend bei der Ausgabe auf Schreibma-
schine oder Drucker eine Unterscheidung oft nur aus dem Kontext
kler wird.

Weiter finden wir die iiblichen Satzzeichen sowie vielleicht
die Unterstreichung und natirlich mathematische Zeichen. Von den
letzteren haben wir nur die 'kleiner als' und 'grosser als' Zei-
chen < beziehungsweise > noch nicht benutzt. Die grosse Space-
Taste ganz unten filr das Schreiben wvon Blanks kennen wir auch
schon. Dann gibt es eventuell noch ein paar Tasten mit Sonder-
zeichen, so das Nummernzeichén oder Doppelkreuz #, das Wehrungs-
zeichen §, Prozentzeichen %, den Trennstrich|, das Keufmenns-Und
& oder das Kaufmanns-a @, auch Klammeraffe odexr Schnecke ge-
nannt, Auf manchen Tastaturen sind noch.eckige und geschweifte
Klammern []{ } , Gravis ', linker Schrégstrich \ und weitere
Sonderzeichen nationaler Zeichensétze, £ (Grossbritannien) oder

52 4. Das Aliphabet des Computers

auch X (Schweden; verfligbar.

Zumeist links unten befindet sich die Umschalttaste SHIFT
(engl. shift - Wechsel), ﬁit der wir die Zweitbelegung der Tasten
erreichen., Wie bel der Schreibmaschine drickt man zuerst den Um-
schalter, hdlt fest und tippt dann das gewiinschte 'obere' Zeichen
ein, Bei vielen Micros werden auf diese Weise die weniger wich-
tigen Kleinbuchstaben erreicht. Auf einigen lMicros kana iiber die
Zweitbelegung der Space-Taste das Blank invers, also als Veollzei-
chen B ausgegeben werden., Die eventuell vorhandene Taste SHIFT
LOCK (engl. lock - Schloss, Riegel) wirkt als elektronischer
Feststeller des Umschalters SHIFT. Schwierigkeiten bereiten oft
die Umlaute und das f; diese Zeichen sind auf vielen Micros nicht
verfiighar. Bei Rechnern mit frei definierbaren Graphikzeichen
kann man d;esem Hangel durch eine geeignete Programmierurg -~ also
mittels Software ~ abhelfen. Gegenwdrtig ist dieses Problem (fiir
uns mindestens eine Nummer zu gross.

Damit ist das gesamte auf dem Bildséhirm ausgebbare oder
druckbare Alphebet des Computers aufgez#hlt. Wie bei jedem Alpha-
bet besteht eine genaue Reihenfolge dieser Zeichen. Diese wird
durch einen Code festgelegt, mit dem unser Micro die Zeichea in-
tern verarbeitet.

Viele Micros besitzen eine automatische Repetiereinrichtung
fiir die mehrfache Ausgabe eines Zeichens. Hilit man eine Zeichen-
Taste nach dem Driicken fest, so wird nach circa einer Sekunde die
Ausgabe des Zeichens sutomatisch wiederholt - solange die Taste
gedrickt bleibt. Kennt man die entsprechende Systemadresse, so
kann die Verzdgerungszeit bis zum Einsetzen des Repetierens pro-
grammiert wexrden.

Funktions- und Steuertasten

Eine der wichtigsten Steuertasten ist die mit ENTER, RETURN, CR,
NEW LINE oder';J gekennzeichnete Taste zum Abschluss von Eingsben;
wir haben sie schon oft benutzt. Hier steht CR fir Carriage Re-
turn, das bezeichnet eine Funktion bei mechanischen Schreibma-
schinen und bedeutet dort soviel wie Wagenriicklauf plus Zeilen-
vorschub. Nachstwichtig sind die mit Pfeilen gekennzeichneten
Cursor-Fiihrungstasten; deren Beschriftung ist selbsterkldrend.
Dabei ist der Aufwartspfeil nicht mit dem Potenzzeichen © zu ver-

Funktions- und Steuertasten 53

wechseln.

Auf einigen Micros sind die Cursor~Filhrungstasten in der
Zweitbelegung als spezielle Funktionstasten wirksam. Viele Rech-
ner besitzen besondere Funktionstasten wie DELETE und INSERT. Mit
STOP oder BREAK kann ein laufendes Programm angehalten werden.
Durch Betdtigung der HOME Taste wird der Cursor in die linke obe-
re Bildschirmecke heimgeschickt, also auf den Bildschirmenfang
gesetzt, Die CLS Taste hat die gleiche Funktion, wobei zus#tzlich
der Bildschirm gel¥scht wird. Die Abkiirzung CLS steht fiir engl.
clear screen. Weiterhin kenn noch eine INVERSE Taste fiir die in-
verse Darstellung aller nachfolgend ausgegebenen Zeichen vorhan-
den sein. Die Inversion besteht dabei oft in einer lokaler Ver-
fauschung der Rolle von Vorder- und Hintergrundfarbe eines ausge-~
gebenen Zeichens., Durch Betdtigung der NORMAL Taste wird die Aus-
gabe wieder normalisziert. Ausserdem besitzen einige Micros spe-
zielle COLOR Tasten zur Steuerung von Vorder- und Hintergrundfar-
be des Bildschirmes.

Auf der Tastatur vieler Micros befindet sich noch eine mit
CTRL oder Control bhezeichnete Kontrolil-Taste. Diese Taste funk-
tioniert wie ein Umschalter und erlaubt ipn Verbindung mit gewis-
sen Buchstabentasten die Ausgabe von Steuerzeichen im Direktbe-
trieb. In der Bedeutung dieser Taste gibt es gewisse Uberein-
stimmungen auf den einzelnen Microcomputertypen. So fiihrt in al-
ler Regel die Zingabe von CTRL L zum Loschen des Bildschirmes,
CTRL M 18st ein Carriage Return aus, oder CTRL X bewirkt eine An-
nullierung der aktuellen Eingabezeile bei Rilcksetzung des Cursors.
Der Grund fiir eventuelle libereinstimmungen besteht darin, dass
der bereits erwiBhnte Zahlencode nicht nur filir Textzeichen, son-
dern auch fir eine grossere Anzahl von Steuerzeichen gilt. Der
Zahlencode ist standardisiert, wobei sich die Hersteller von Mi-
crocomputern mehr oder weniger an diesen Standard halten. Die
Steuerzeichen sind nicht druckbar, besitzen aber einen zusétzli-
chen Buchstabencode, iliber den sie in Verbindung mit der CTRL Ta-
ste erreicht werden kdnnen.

Weiterhin besitzen viele Micros eine mit ESC bezeichnete
ESCAPE Taste (engl. to escape - entweichen). Nach Driicken dieser
Taste wird des nsichste eingegebene Zeichen vom Micro als ein so-
goenanntes Attribut interpretiert. Damit kdnnem zum Beispiel die
Vorder- und Hintergrundfarbe, doppelte ZeichenhBhe oder Blinken
nachfolgend ausgegebener Zeichen gesteuert werden.

54 4. Das Alphabet des Computers

Nach dem Einachaiten des Micro befindet sich die Bildschirm-
ausgabe im soéénannten Scroll-Modus (engl. scroll - Rolle,
Spruchband). Ist der Bildschirm vollgeschrieben und hat der Cur-
sor also den unteren Bildschirmrand erreicht, so wird bei Verlas-
sen dieser Zeile der gesamte Bildschirminhalt um eine Zeile nach
oben gerollt. Es wird also unter Verlust der Kopfzeile erst ein-
mel Platz flir die néchste neue Zeile geschaffen. Auf einigen Mi-
cros kann man durch Bet&tigung einer bestimmten Taste oder auch
durch Eingabe eines BASIC Befehles den Scroll-kKodus ausschalten
und die Bildschirmausgebe in den sogenennten Page-Modus versetzen
(engl. page - Seite). Dann springt der Cursor bei vollgeschriebe-
nem Schirm von der letzten Zeile zum Bildschirmanfang oben links.
Damit wird der Beginn einer neuen Bildschirmzeile markiert. Kun
kann der bisherige Bildschirminhalt zeilenweise iberschrieben
werden. Natiirlich gibt es dann auch einen inversen Befehl, mit dem
die Bildschirmausgabe wieder in den Scroll-Modus gebracht werden
kann.

Graphikzeichen

Viele Computer verfiigen neben den bereits beschriebenen alphanu-
merischen Zeichen und Sonderzeichen iiber einen zweiten Zeichen-
satz. Hierbei handelt es sich um ebenfalls fest programmierte so-
genannte Graphikzeichen. Dienen die ilblichen Zeichen zur Ausgabe
von Texten im weitesten Sinne, so lassen sich mit Hilfe der Gra-
phikzeichen Blockgraphiken oder auch kompliziertere Figuren auf
dem Bildschirm ausgeben., Dies hat nicht zuletzt fiir die Xonstruk-
tion von Spielprogrammen Bedeutung, bei einigen Micros kdénnen
aber auch recht komplizierte Kurven ausgegeben werden.

Die Graphikzeichen selbst sind nicht standardisiert, und ihre
Handhabung ist auf jedem Computertyp etwas anders. In der Regel
konnen diese Zeichen nach einer Umschaltung in den sogenannten
Graphik-Modus wie die Textzeichen iiber die Tastatur erreicht und
auf dem Bildschirm ausgegeben werden. Zur Umschaltung dient oft
eine mit GRAPHIC, MOD SEL (Mode Selection) oder #hnlich gekenn-
zeichnete Sondertaste. Nach erneuter Bet#dtigung des Graphik-Um-
schalters kdnnen dann wieder normale Textzeichen ausgegeben wer-
den. Bei einigen Micros kann die Umschaltung in den Graphik-Modus
wie auch zuriick zum Text-Modus jeweils nur iliber einen speziellen

Geh heimwAirts, Micro 55

BASIC Befehl erfolgen.

Wie die Textzeichen werden auch die Graphikzeichen intern mit-
tels eines Zahlencodes verarbeitet, sie bilden sozusagen noch ein
weiteres, zusdtzliches Alphabet. lleist sind die Tasten mit den
entsprechenden Graphikzeichen beschriftet, dann ist die korrekte
Ausgabe auf den Bildschirm vdllig problemlos. Bei anderen Micros
gind die Tabellen des Handbuches zu nutzen, um die gewlinschten
Zeichen auszugeben. Es kann vorkommen, dass das Alphabet des
zweiten Zeichensatzes sehr umfangreich ist und trotz Umschaltun-
gen nicht alle Graphikzeichen iiber die Tastatur ausgegeben wer-
den kdSnnen. Die librigen Zeichen sind dann nur iiber einen speziel-
len BASIC Befehl und die entsprechende Codenummer zu erreichen.

Programmierbare Funktionstasten

Neben der Haupttastatur befinden sich bei vielen Rechnern noch
einige, oft mit Fl, F2, ... bezeichnete Tasten. Das sind die pro-
grammierbaren Tasten des Micro. Auf verschiedenen Ger#ten haben
diese bereits im Grundzustand eine Funktion und erlauben es, be-
stimmte BASIC Befehle mittels eines einzigen Tastendruckes einzu-
geben. Wichtiger ist die M¥glichkeit, diese Tasten mit selbst de-
finierten Befehlen belegen zu k¥nnen. Das kann einmal zur Abkiir-
zung komplizierter, oft benutzter Eingaben dienen. Bei einigen
Gerdten wird iiber die Funktionstasten zum anderen eine M8glich-
keit erdffnet, eigene, noch nicht im BASIC vorhandene Befehle zu
implementieren und in den Interpreter einzubinden. Die Details
dieser Technik sind auf jedem Micro anders und stets dem Handbuch
zu entnehmen.

Geh heimwdarts, Micro

Manchmal entsteht bei der Abarbeitung eines Programmes eine Situa-
tion, die man als Aufhiingen bezeichnet, Der Micro hat sioch durch
eine fehlerhafte Programmlogik derartig verfranzt oder ist in ei-
ne Endlos-Schleife geraten, so dass das Programm zu keinem Ende
findet und oft der Rechner liberhaupt keine Reaktion mehr zeigt.
Viele liicros besitzen die iliberaus nfitzliche RESET Taste (engl.

to reset - rilcksetzen). Durch Bet#tigung dieser Taste kann in

56 4. Des Alphabet des Computers

vielen, nicht allzu bYsartigen Fdllen die Zentraleinheit des Mi-
cro intern in den Anfangszustend zuriickgestellt werden, ohne da-
bei irgendwelche bereits im RAM gespeicherte BASIC Programme und
Dateien zu zerstdren; man spricht auch von einer Rilickkehr zum
Warmstart. Der Micro meldet sich daun mit CX oder Ready und Aus-
gebe dee Prompt >.

Hilft auch das Driicken von RESET nicht oder ist diese Taste
gar nicht vorhenden, bleibt als Ausweg nur ein Abschalten der
Versorgungsspannung. Das schadet dem Micro nicht weiter, aber al-
le im RAM gespeicherten Programme und Daten gehen dabei verloren.

Von Zahlen, Zeichenketten und Variablen 5

Zahlen

{iber die Darstellung und Verarbeitung von Zahlen haben wir schon
gesprochen. Sc wissen wir, dass der Rechner reelle Zahlen intern
im Gleitpunktformat verarbeitet. Zur Ausgabe auf den Bildschirm
sind verschiedene Darstellungen maglich.‘ln Abhi4ngigkeit von ih-
rer Grogse wird eine reelle Zahl als ganze Zahl mit oder chne
Vorzeichen, als Dezimalbruch mit oder ohne Vorzeichen oder in
wissenschaftlicher Notation, also der Exponentenschreibweise, aus-
gegeben,

Haben Sie bei der Eingabe giner Zahl im Gleitpunktformat ndch
Sckwierigkeiten, =o kann IThnen der Micro dabei helfen. Geben Sie
die betreffenden Zashlen mittels des PRINT Befehles einfach in de-
zimaler Schreibweise ein:

PRINT 537.8008411
PRINT 0.000000236606

In Abhéngigkeit von der auf dem Micro verfiigbaren Stellenzehl
wird die eingegehene Zahl intern verarbeitet, dabei eventuell ge-
rundet und anschliessend in normalisierter Gleitpunktdarstellung
auf dem Bildschirm ausgegeben.

Variablen

Jetzt probieren wir etwas Neues. Geben Sie ein:
PRIRT A

58 5. Von Zahlen, Zeichenketten und Variablen

Nun erscheint keineswegs der Buchstabe A auf dem Bildschirm, son-
dern bei den meisten Micros die Zahl ¢. Wie ist das zu erkléren?
Unser liicro interpretiert den Buchstaben A nach dem Schliisselwort
PRINT nicht als 'zu druckendes' Zeichen, sonderm als Platzhalter
fiir eine Zahl. Die Zuweisung eines Wertes fiir diesen Platz er-
folgt mit Hilfe eines weiteren BASIC Befehles; geben wir ein:

LET A = 17

Nach Abschluss dieses Befehles mit {ENTER) passiert rein Husser-
lich auf dem Bildschirm gar nichts weiter, lediglich der Cursor
springt an den Anfang der nHchsten Zeile, wo eine neue Eingabe
erwartet wird. Wiederholen wir nun nochmals den Befehl:

PRINT A

Aha, wenn alles géklappt hat, erscheint jetzt die dem Platzhalter
A zugewiesene Zahl 17 euf dem Bildschirm. Also spielt hier das
Zeichen A yie bei der 'Buchstabenrechnung' in der Schule die Rol-
le einer Variablen, und so wollen wir es kiinftig auch nennen.

Apropos Schule, von Rechnen war ja noch gar nicht die Rede.
Geben wir also weiter ein

LET X = 4
und in der n#dchsten Zeile:
PRINT A + X

Richtig, ‘da'steht 21, das funktioniert also, wie wir es uns wiin-
schen; wir kbnnen mit Variablen rechnen. .

Auf diese Weise kbnnen wir Zahlen speichern und sie beliebig
oft abrufen, um sie bei weiteren Rechnungen benutzen zu kdnnen.
Intern wird beim ersten Auftreten einer Variablen in einem eigens
dafiir vorgesehenen Bereich des Arbeitsspeichers RAM der Name der
Variablen eingetragen und Platz filr die Zuweisung eines Wertes
bereitgehalten. Ohne explizite Zuweisung wird dabei der Wert der
Variablen auf Null gesetzt.

LET B = 2.1 : IBT Y = -4

Das Schreiben des Doppelpunktes erlaubt uns, in einer einzigen
Zeile mehrere Befehle unterzubringen. Die beiden Zuweisungen wer-
den also mit einem einzigen (ENTER) dem Interpreter iibergeben.
Geben wir nun weiter ein:

PRINT 8 * A - 12 * B *# X - 1.8% Y + 1

Variablen 59

Wollen wir diesen Ausdruck fir einen anderen Wert X, sagen wir
X = 3,12, berechnen, so geben wir ein:

LET X = 3.12

Dabei wird der Variablen X, die wir vordem mit dem Zahlenwert 4
belegt hatten, nun der Wert 3.12 zugewiesen. Wiederholen wir den
obigen PRINT Befehl, so wird der angegebene arithmetische Aus-
druck mit dem nun giiltigen - aktuellen - Wert der Variablen X be-
rechnet. Mit .diesem Verfahren werden wir uns spéter viel Arbeit
speren, lassen §ich doch derartige Vorgidnge sehr leicht in einem
Rechenschema - vornehﬁer auch Algorithmus genannt - vereinheit-
lichen und programmgesteuert vom Rechner bearbeiten.

Bei der Zuweisung darf - auf den meisten Micros das BASIC
Schliisselwort LET weggelhssen werden:

X = 3,14 : PRINT X

Es sei nochmals ausdriicklich festgestellt, dass das Zeichen =
hierbei der Variablen X den Wert 3.14 zuweist und nicht etwa
wie beim mathematischen Gleichheitszeichen die Gliltigkeit der
Relation X = 3,14 ausgesagt wird. Noch deutlicher wird dieser
Unterschied in dem Beispiel

X=@g,7:PRINTX : X=X 4+ @.3 : PRINT X

Hierbei wird also im dritten Schritt der Variablen X als neuer
Wert das Ergebnis der Berechnung von X + @#.3 mit dem bislang giil-
tigen Wert fir X zugeordnet. Dagegen wire X = X + #.3 als mathe-
matische Relation gelesen stets falsch.

Es dilrfen also auf der rechten Seite einer Zuweisung bereits
erkl¥rte Variable stehen. So kSnnen wir zum Beispiel den etwas
komplizierteren Ausdruck in einem der obigen PRINT Befehle zu ei-
ner einzigen Variablen zusammenfassen:

Dus g8 % A ~12%B*X-1.8*Y4+1
und das Ergebnis durch Eingabe von
PRINT D

testen. Jetzt allerdings wiirde eine weitere Anderung des Wertes
fir X an dem Wert von D nichts mehr Hndernm.

Auch beim Umgang mit Variablen sollten wir stets kritisch
sein., Die Ursache fiir die Ende des 3. Kapitels beschriebenen Run-
dungsfehler 1ldsst sich bei Benutzung von Variablen noch besser

60 5. Von Zeahlen, Zeichenketten und Variablen

'tarnen'. So sieht die Zelle
A=1E1f : D= A 4+ 1 =-A

doch ganz korrekt aus. Allerdings ist unter dieser Variablenbele-
gung der Befehl

PRINT 2 /D

nichkt zuldssig, denn eine Division durch Null ist weder ir der
Mathematik 'noch auf unserem Micro erlaubt. Gerade bei der Bil-
dung von Differenzen grisserer Zahlen muss men auf dem Rechner
besonders vorsichtig sein. Sind in der Gleitpunktarithmetikﬁzwar
die relativen Fehler oft klein, trifft dies nicht fiir die absolu-
ten Fehler zu. Und dies kann bei der Bildung kleiner Differenzen
groeser Zahlen fatale Folgen haben,

Als Name fir eine Variable kann jeder Buchstabe gewihlt wer-
den. Falls diese nichi ausreichen, komnen auf neueren Micros wie
bei den Autonummern ein weiterer Buchstabe oder auch eine Zahl
zur Unterscheidung geschrieben werden. Probieren wir das gleich
aus:

LET XA = 5 : LET X1 = 6

PRINT XA - X, X1 - X

Durch Setzen eines Kommas oder auch eines Semikolons in einem
PRINT Befehl kbnnen also mehrfache Ausgaben in einer Bildschirm-
zeile realisiert werdea.
0ft sind auch lédngere Worte als Name filir eine Variable zuge-
lassen:
LET SEITE = 60

Von vielen Rechnern konnen lidngere Zeichenreihen jedoch nur
durch die beiden ersten Zeichen als Variasblen unterschieden wer-
den. Testen wir das auf unserem Micro durch Eingabe von

PRINT SEITENNUMMER, SE

Ein Nutzen dieser Moglichkeit besteht darin, dass durch geeigne-
te Wahl des Namens einer Varisblen diese - natfirlich nur fiir uns,
nicht fiir den Rechner - eine zus#dtzliche Bedeutung tragen kann.
Auf diese Weise wird ein umfangreiches Progremm mit vielen einge-
fiihrten Variatlen leichter lesbar, wenn da beispielsweise anstel-
e von S eben jeweils das Wort SEITE steht. Die Varieblen werden
durch geeignet gewHhlte Namen selbsterklérend.

Solange noch freier Platz im Speicher ist, k®nnen wir uns die-

Variablen 61

sen Luxus leisten, allerdings ist nicht jedes Wort els Name fiir
eine Variable zugelassen. So wird die Zuweisung

LET ANDREAS = 1

in der Regel vom Micro nicht akzeptiert. Das liegt daraun, dass
der Interpreter nach Abschluss eines Befehles den eingehenden
Detenstrom sukzessive liest und ebarbeitet. St¥sst er jetzt auf
die Zeichenreihe AND, so stellt er beim Durchmustern seiner in-
ternen ‘Kartei' fest, dass es sich hierbei um ein reserviertes
BASIC Schliisselwort handelt, Gleich daresuf ger8t er in Schwierig-
keiten, denn den Eefehl PRINT AND kann er nicht deuten. Und jetzt
tut der Interpreter das Schlauesie, was er tun kann. Er reagiert
sofort, also noch vor Verarbeitung der restlichen Zeichenreihe
REAS, mit einer Fehlermeldung. Danach wartet der Micro auf eine
neue Eingabe, wozu wir -durch den blinkenden Cursor aufgefordert
sind. Dieses Verfehren ist typisch filr das Punktionieren des In-~
terpreters. Es erm¥glicht und unterstiitzt den Dialog mit dem Ki-
cro wesentlich, was nicht nur fiir uns Anfdnger von hohem Nutzen
sein kann. Natiirlich hat diese Technik auch Nachteile. So ist der
Interpreter, unterstiitzt durch das Betriebssystem, auch im Di-
rektbetrieb stindig damit beschdftigt, Eingalben ~ also Inicrma-
tionsstrbme - zu analysierer und muss sie Schritt flr Schritt
{ibersetzen und erkennen. Klar, dass dies eliles seine Zeit breucht
und dsher eine interpretierte Sprache im Beitrieb auf dem Micro
nicht die schnellsie sein kann, Dies sifrt uns gegenwhrtig indes
iberhaupt nicht, wir sind vielmehr an einem zum Dielog bereiten,
uns freundlich und nit immerwlhrender Geduld auf unsere Fehler
hinweisenden Micro interessiert.

Noch ein Wort zum Sprachgebrauch. Des Bfteren habe ich nun
schon von 'ihm', dem Rechner oder dem Interpreter, gesprochen.
Natiirlich wissen wir, dass unser Micro eine Unperson ist und
nicht ilber Intelligenz im bionlogischen Sinne verfligt. Aber offen~-
sichtlich beweist der Rechner schon bei der obigen Fehlermeldung
die Anf#nge klinstlicher Intelligenz. So scheue ich daver zuriick,
mich landldufigen lieinungen anzuschliessen und hier zu verklinden,
dess Computer zwar perfekte programmgesteuerte Automaten, aber
sonst v8llig 'dumm' seien. Auch bremst mich ‘eine auch nur spora-
dische Kenntnisnahme der, sagen wir, zwei letzten Dekaden techni-
scher Entwicklung, irgendwelche Frognosen bezliglich des bis zur
Jahrtausendwende erreichbaren technischen Fortschrittes zur

62 5. Von Zshlen, Zeichenketten und Variablen

kiinstlichen Intelligenz zu wagen. Da halte ich ein Nachdenken
iiber die gesellschaftspolitischen Konsequenzen der gegenwidrtigen
Entwicklung ftir wichtiger.

5tort es Sie, wenn ich zuweilen einen solchen Gedanken ein-
flechte? Ein Grund ist, dass ich Sie nicht dem 'Hacker-Syndrom'
verfallen lassen mbchte. Darunter versteht man den wachsenden
psychischen Zweng, st@ndig am Rechner zu sitzen und, meist ohne
weitere Reflektionen, Tasten zu drlicken oder im besten Falle vor-
fabrizierte Programme abzutippen. Da ist es schon besser, jeden
Schritt vorher zu liberlegen, bei umfangreicheren Aufgaben unbe-
dingt erst mal mit Bleistift und Papier zu arbeiten und dsnach
am Computer Richtiges und auch Falsches zu tun. Dann denken Sie
in Ruhe iiber den letzten ERROR nach - aus Fehlern lernt man -
und weiter geht's, nun eber auch in unserem Text.

Die Schrift auf dem Bildschirm

Haben Sie es sich auch schon gewiinscht, das Ergebnis einer Rech-
nung in aussagekrdftigerer Form, etwa in einer Schlusszeile

17 ¢+ 4 = 21' auf den Bildschirm zu bringen? Dazu eignen sich die
sogenannten Zeichenketten oder Strings. Diese gestatten es, bis
auf eine einzige Ausnahme alle druckbaren Zeichen per Befehl -
also nicht bloss durch Tastendruck - auf den Schirm zu schreidben.
Befassen wir uns, wie bei der Zahlen, zuerst mit den 'Konstan-
ten'. Diese werden durch Einschliessen in Anfithrungsstriche ge-
kennzeichnet und ktnnen mit dem PRINT Befehl verarbeitet und aus-
gegeben werden. Geben Sie ein:

PRINT "ANDREAS"
Sie erinnern sich, dass die Zeichenreihe ANDREAS als nymerische
Variable nicht zul¥ssig ist. Solche Schwierigkeiten treten bei
Strings nicht auf, Sie k¥nnen jede als String gekennzeichnete
Zeichenreihe benutzen, lediglich eingeschrinkt durch die vom
Rechnertyp abhéingige meximale Zeichenzahl, die beiden Anfilhrungs-
striche inbegriffen. Die bereits exrwdhnte Ausaashme bildet auf dea
meisten Micros der Anfithrungsstrich selbst. Logisch, denn wie
sollte der Befehl PRINT """ interpretiert werden? Der Interpre-
ter arbeitet sequentiell und erkennt nach dem Schlisselwort
PRINT die beiden ersten Anftlhrungszeichen, die schlechthin

Die Schrift auf dem Bildschirm 63

nichts, némlich die leere Zeichenreihe - nicht zu verwechseln
mit dem Blank (Leerzeicheh) - einschliessen. Es wird also tat-
s#dchlich nichts auf den Bildschirm ausgegeben. Das nun folgende
dritte Anfithrungszeichen gestattet keine Interpretation und wird
von vielen Micros ignoriert, hei anderen fliihrt es zu einer Feh-
lermeldung.

Nun wollen wir Zahlen und Strings in einer Zeile mischen, Das
wird durch Setzen elnes Semikolens erreicht. Dleses erlaubt es,
mehrere, jewells durch PRINT ausgegebene Zeilen - egal, ob Zah-
len oder Strings - auf dem Bildschirm in einer Zeile zusammenzu-
fessens

PRINT *SEITE"§ : PRINT A
SEITE 17

Ready
>R’

Der hier tei der Ausgabe erwiinschte Platz zwischen dem Wort SEITE
und der Seitennummer (A =) 17 entsteht dadurch, dass bei den mei-~
sten Micros Zshlen mit einem fiihrenden und auch einem nachfolgen-

den Blank ausgegeben werden. Hat Ihr Rechner nicht diese Eigen-~
schaft, so beriicksichtigen Sie den Zwischenraum durch Eingabe von

FRINT "SEITE "; X

Wir sehen dabei auch, dass sich die beiden PRINT Befehle in einen
einzigen zusammenfassen lassen; gleich noch ein paar Beispiele:

PRINT 13.5;7;8.1;3
PRINT 17; "UND"; 4
PRINT "DAS";" ";"REICHT"

Selbstverstindlich lassen sich auch Ziffernzeichen in Strings
verarbeiten. Das erm¥glicht die Lbsung der eingangs gestellten
Aufgabe:

PRINT *17 + 4 =";17 + 4

17 ¢+ 4 = 21

Ready
>8

Auch die Ausgabe der aktuellen Werte von Variabien oder anderer
arithmetischer Ausdriicke 1¥sst sich in dieser Techknik nutzer-
freundlich gestalten.

A=10 : B=.1 ! PRINT "A + B =";A+B

A +B=10.1

Ready
>8

64 5. Von Zahlen, Zeichenketten und Variablen

Strings lassen sich durch Benutzung des Pluszeichens + mitein-
ander verkniipfen oder 'konkatenieren'.
PRINT *VER® + "KETTEN"
VERKETTEN

Ready
e |

Dies ist dann neben Vorzeichen und Additionszeichen die dritte
Bedeutung von + als Konkatenationrscperator.

Es gibt auf vislen Micros eine Punktion, mit deren Hilfe Zsh-
len in Strings umgewandelt werder: k¥nnen. Diese Punktion wird
durch das BASIC Schlidsselwort STR$ realisiert. Der Vorteil ist,
dass sich Strings gegeniiber Zahlen differenzierter verarbeiten
lassen. Unter anderen kann die STR$ Funktion auf einigen Micros
dezu benutzt werden, Zahlen bei der Bildschirmausgebe von den
mitunter léstigen zusHtzlichen Blanks zu befreiern,

X = 21,7
PRINT *(B + X) = (B + ";STR&{X);")"
B+ X) = (B + 21,7)

Resady
bd |

Ganz schon kcmpliziert, nicht wahr? Machen Sie es wie der Inter-
preter und anslysieren Sie die Bedeutung jedes einzelnen nach
PRINT eingegebenen Zeichens der Rzihe nach. Dann lernen Sie deten
Wirkungsweise und Zusemmenspiel schnell.

Analog zu den Zahlen gibt es euch Platzhalter filr Strings, das
sind die sogenasmmnten String-, Zeichenketten~ oder Textvariablen.
Sie werden zur Unterscheidung von den numerischen Variablen mit
einem nachgestellten Dollsar-Zeichen geschrieben:

At = “OFT AUSZUGEBENDE TEXTZEILE"
PRINT AS:PRINT:PRINT A®
OFT AUSZUBEBENDE TEXTZEILE

OFT AUSZUGEBENNE TEXTZEILE
Ready
>8

Wihrend die Verkettung zweier Stringkonsterten bel der Ausgabde
auch durch Setzen eines Semikolons realisiert werden kann, ist
zur Bildung zusammengesetzter Stringvariablen der Konkatenierungs-
operator notwendig:

A% = "GERD* : BS = "A" : C$ = AS + B% : PRINT C%

GERDA

Ready
b |

Unser erstes BASIC Programm 6

Viele Befehle sind noch kein Programm

2isleng haben wir unseren Micro fiir den unmittelbsren Dialog ge~
uutzt. Dabel arbeitete der Interpreter stets im sogenannten Di-
rektbeirieb oder Kommandomodus. Jeder Befehl wurde divekt in die
Testatur eingegeben und dann hei Driicken von (ENTER) an den Ip-
terpreter zur ummittelbaren Ausfiiurung Ubermitieli. In diesem
Sinne waren alle bisherigen Eingaben Fommendos. Typisch fiir die-
se Betriebsart ist, dees jadexr befzhl scfort und pur einmel aus-
gefilhrt wird. Da lediglich dis erfoigien Zuweisungen filr dis Va-
risblen nicht fllichtig sind, kann die Wiederhoiurg der L¥sung
2in und derselben Aufgabe nur durch ermeute Eingebe der n¥tigen
Befehle erreicht werden. Dies crscheirnt zu fBocht als ein sehr
umsténdliches Verfahren. Weun der Umfeng aller notwendigen Xe-
fehle grosser ist, -so kbnnten diese - schon um Kingabefehier zu
vermeiden -~ auf eine Liste geschrieben werden, wn sie dann vom
Blatt weg jeweils neu einzutippen. Hisrbei koumen uns die ausge-
zeichneten technischen Muglichkeiten des Kleincomputers entge-
gen. Wir sind in der Lage, die eben zitierte Liste von Befehlen
als ein 'Frogramn' Uiher die Tastatur in den Speicher des Micro
zu schreiben. Von dort aus k¥nnen wir dann - sooft wir m¥gen und
solange der Computer eingeschaltet bleibt - die Befehlsfolge ab-
rufen und vom Interpreter bearbeiten lassen. Unser Micro wird
demit{ zum programmgesteuerten Automatenr mit Steuwerwerk, Rechen-
werk und dem Arbeitsspeicher, der das Programm sowie die bend-
tigten Daten enthHlt.

66 6. Unser erstes BASIC Programm
Wir multiplizieren

Beginnen wir mit dem einfachen Beispiel einer Multiplikation

40 A = 2,16479 : B = 3,23357
720 A= A% B
80 PRINT : PRINT *A # B ="3jA

Ersichtlich ist des Programm aus numerierten Programmzeilen auf-
gebaut, dies ist der wesentliche Unterschied zu den im Direktmo-
dus benutzten Befehlsfolgen. Die Befehle hinter der Zeilennummer
heissen Anwelsungen, Sie setzen sich aus den BASIC Schliisselwdr-
tern (z.B. PRINT) und weiteren Zeichen zusammen und bilden sozu-
segen die SHtze der Programmiersprache. Dabei k¥nnen wie in Zei-
le 80 mehrere, durch Doppelpunkt getrennte Anweisungen in einer

einzigen Zeile zusammengefasst werden; die erste PRINT Anweisung
steht hier solo und fiihrt zum Ausdruck einer Leerzeile.

Wie bekommen wir nun unser Programm in den Speicher? Ganz ein-
fach, wir'schreiben es zeilenweise in die Tastatur, wobei wir
jede Zeile mit {ENTER) (oder auch {RETURN)) abschliessen. Der
Interpreter erkennt an der Zeilennummer, dess es sich um eine
Programmzeile und nicht etwa um einen Direktbefehl handelt.

Geben wir das kleine Programm nun ein und verfolgen dabei al-
les auf dem Bildschirm. Haben wir uns in einer Zeile beim Ein-
tippen vertan, so kiYnnen wir vor Ausfiihrung von <ENTER) die An-
weisung wie einen Direkt-Befehl korrigieren. Nur die Zeilennum-
mer selbst ist bei manchen Rechnern einer Anderung nicht mehr zu-
glnglich.

Falls Sie eine Zeilennummer - und demit die gesamte Programm-
zeile - luschen wollen, so geben Sie in einer neuen Zeile die be-
treffende Nummer ein und schliessen sofort mit {ENTER) ab. Damit
wird unter dieser Zeilennummer eine leere Anweisung libergeben
und der bisherige Eintrag faktisch gel8scht. Auf diese Weise kbn-
nen Sie Programmzeilen auch dndern - einfach nach der Zeilennum-
mer die neue Anweisung schreiben, CENTER) drticken, fertig. Wie
man eine eingegebene und mit (ENTER) abgeschlossene Programmzeile
S8konomisch, insbesondere ohne vbllige Neueingabe #ndern kann,
wird im 7. Kapitel 2zusammen mit dem EDIT Befehl erkllrt.

So, nun stimmt offenbar alles mit unserem kleinen Programm.
Jetzt starten wir es im Direktmodus, in dem sich der Interpreter
noch befindet, durch Eingabe des Kommendos RUN , das wir durch
{ENTER) abschliessen.

Verschdnerungen 67

RUN
A% B=7

g‘ady

Das Ergebnis sollte etwa 7 lauten. fiver geringfiigige Abweichun-
gen werden wir uns nach dem bisher zu Rundungsfehlern Gesagten
nicht mehr wundern. Das Programm selbst ist uns klar; die einzel~
nen Anweisungen werden vom Interpreter in aufsteigender Folge

der Zeilennummern abgearbeitet.

Verschdnerungen

Nach erfolgter Programmausfilhrung meldet sich der Interpreter
wieder im Direktmodus. Dann kdnnen wir das Programm mit dem Kom-
mendo RUN erneut starten. Wenn uns dabei der teilweise beschrie-
bene Bildschirm stdrt, geben wir zuvor das Kommando CLS ein und
'gstiubern' den Schirm; CLS ist die Abkiirzung fir engl. clear
screen - Bildschirm ldschen. Sie kdnnen aber auch - und das ist
eine ganz feine Eigenschaft des BASIC Interpreters - das Pro-
gramm um die Zeile

20 CLSs

erweiterr: einfach eintippen und {BNTER) driicken, fertig. Damit
liegt der durch das Programm gesteuerte Bildaufbau vollst#ndig
in Ihrer Hand, beginnt doch der Rechner nach der Anweisung CLS
den Bildschirm stets genau oben links zu beschreiben. Die neue
Programmzeile wird autometisch ins bestehende Programm eingebun-
den und vom Interpreter in der richtigen Reihenfolge, hier also
zuerst, bearbeitet - iliberzeugen Sie sich davon.

Wollen Sie sich das erweiterte Programm anschauen? Dazu geben
Sie das Kommando LIST ein ((ENTER) nicht vergessen), der Inter-
preter sorgt dann im Direktmodus fiir die Auflistung auf dem Bild-
schirm, Es ist eine gute Idee, auch vor Eingabe von LIST mit CLS
fiir einen sauberen Bildschirm zu sorgen.

Unser BASIC Programm schliessen wir nun noch mit der Anwei-
sung

%0 END
ab, Bei einem 'Geradeausprogramm' wie diesem kann die Zeile auch
entfallen, falls nicht ein weiteres Programm in den Speicher ge-

68 6. Unser erstes BASIC Programm
schrieben wird, ohne das alte zu l1lbschen.
Struktur ins Programm

Eben haben wir den ersten Algorithmus auf unserem Micrc imple~
mentiert. Klingt ziemlich hochtrabend, ist aber so. Wichtig der-
an ist, dass wir bereits jetzt ein gut Stlick der Arbeitweise mit
Computern verstanden haben, die sich schematisch in der Abfolge

EINGABE - VERARBEITUNG -~ AUSGABE

charskterisieren 1¥sst. Die Verarbeifung erfolgt nach dem von
uns fesigeiegten Algorithmus. Allgemein ist das eine prHzise
Vorschrift, welche kleinsten Einzelachritte zur Lisung einer
Aufgube erfolgen sollen. Die Eniwicklung des Algorithmus besteht
glso in der Zerlegung einer Aufgabe in Teilprozeduren (bei uns
els BASIC Anweisungen formuliert) sowie der Angabe des sequen-
tiellen Ablaufes, also der Kontrollstruktur. Auch bei kleinen
Aufgaben ist es sinnvoll, oft sogar unumglnglich, die festgeleg-
te Kontrollstruktur whhrend der Entwicklung mittels eines in der
Regel graphischen Verfshremns zu dokunmentieren. Sicher baben Sie
schon einen Programmablaufplen in Form eines Flussdisgrammes gze-
sehen, in jiingerer Zeit bedient men sich auch gern sogenannter
Struktogramme. Unser Beispilel beszitzt die denkbar einfachste
Kontrollstruktur, n¥fmlich die einer 'Sequenz’'.

Plusgdiegramn Struktogramm

A = 2,14647°

B = 3.23357

A = 2,14479

R = 3.23357

A= A%*B

Ausgabe:
Produkt A+ B

Eine Graphik 69

Die benutzten Symbole und Bezeichnungen sind seltsterkl#rend;
das Rechteck im Flussdiagramm bezeichnet irgendeine Operation,
das Parallelogramm dient zur Darstellung der Ein- und Ausgabe
ven Daten. Das Struktogremm: verzichtet auf alles 'schmickende
Beiwerk' und beschreibt lediglich den Algorithmus.

Eive Graphik

Haben Sie 'zwischendurzh' Lust auf ein SpHsachen? Dann lassen
wir mal eben die Arbeit am Multiplikationsprogramm und beginnen
¢4was ganz anderes, 'aicherheitshalber' mit einer gr8sseren Zei-
lernummer,

500 REM ##% GROSS-SCHRIFT #%%
501 :

510 B=3 : REM 3 BESTIMMT POSITION DES LINKEN RANDES
520 CLS:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT

$30 PRINT SPC(BI"% % % % * *r %
540 PRINT SPC(B)"% % # % % * P I I Y
550 PRINT SPC(B}I"% % % ¥ % * L 2 2]
560 PRINT SPCIB) *#¥¥4% % % # »* * ¥
520 PRINT SPC(B) "# % #HLEE # * % ¥ X"
580 PRINT SPC(B)“% % % # % * % %"

S90 FRINT SPC(B)*# # % ¥ 3EHEE HEENE ¥ *°

660 PAUSE SO

610 END
Grben wir das Progremm nun zeilenweise ein und versuchen dabei,
die Anweisungen zu verstehen. Gleich ¥n Zeile 500 begegnet uns
das neue BASIC Schliisselwort REM, abgeleitet von engl. remark -
Bemerkung. Die REM Anweisung erlaubt die Einschaltung von Kommen-
taren zur Verbesserung der Lesbarkeit eines Programmes. Bei der
Programmausfiibrung wird diese Anweisung vom Interpreter igroriert;
sie besitzt keinerlei Wirkung auf den Programmverlauf. Der bes-
neren Lesbarkeit sollen auch die (unvermeidlichen) Sternchen so-
wie h8ufig benutzte Leerzeichen dienen. kit Zeile 501 wird der
Programmtitel hervorgehoben. Der Doppelpunkt sorgt dafilr, dess
die 3onst leere Programmzeile beim LISTen mit erscheint. Erwth-
nen miissen wir noch die in Zeile 530 nach PRINT auftretende
Funktion SPC(), durch die eine definierte Anzaehl von Blanks,
hier B = 3, auf dem Bildschirm ausgegeben wird. Der PAUSE Befehl
in Zeile 600 ist selbsterkl&#rend; er dient dazu, fir eine Weile
die Ausgabe des die Graphik sttrenden Prompt zu unterdrlicken.

So, haben Sie nun alles eirgetippt? Preunde, ich weiss, wie

70 6. Unser erstes BASIC Programm

das ist, aber wenn es auch noch so sehr in den Fingern juckt,
das Programm sofort zu starten, geben Sie ruhig noch mal CLS und
LIST ein und iliberpriifen Ihr Programm. Insbesondere nach erfolgtea
Korrekturen - und wer macht schon keine Fehler - ist es m¥glich,
dess das 'Bildschirm-Protokoll' nicht mehr mit dem tats#{chlich
im Speicher befindlichen Programm ilbereinstimmt. Apropos, wie
starten wir dieses Programm eigentlich? Die Frage ist nicht un-
erheblich, steht doch unter den Zeilennummern 10 bis 90 noch das
Multiplikationsprogramm im Speicher. Hier hilft uns, dass das
Programmstart-Kommando auch in dem Format RUN n benutzt werden
kann, wobei n fiir die gewiinschte Start-Zeilennummer steht. Geben
wir also ein

RUN S00

und schon leuchtet uns vom Bildschirm ein fr&hliches

ML L

Die Zeichen der Graphik haben ﬁir nach derselben Methode kon-
struiert, wie sie im Zeichengenerator fiir den Bildschirm vorbe-
reitet werden. Wenn wir geneu hinsehen, setzt sich ein per Ta-
stendruck ausgegebener Buchstabe aus kleinen Punkten oder Pixeln
zusammen, oft in einem Feld von 5 mal 7 Pixeln. NatUrlich hHtten
Sie statt der Sterne jedes andere druckbare Zeichen, so auch das
bel einigen Micros iiber SHIPT und SPACE Taste erreichbare Voll-
zeichen, nehmen k¥nnen.

Mit der Variablen B in Programmzeile 510 bestimmen wir die
Position des 'HALLO!' in waasgerechter Richtung, die Anzahl der
eingegebenen PRINT Anweisungen in Zeile 520 definiert seine ver-
tikale Position. So k¥nnen wir die Graphik an das unserem Micro
eigene Bildschirm-Format anpassen.

Das kleine Programm ist insofern ganz interessant, dass es
verdeutlicht, wie die (unterstellte) semantische Deutung der
Graphik HALLO! auf dem Bildschirm mit dem Programm selbst nichts
zu tun hat.

Der externe Speicher 71

Der externe Speicher

Und noch eines haben wir gelernt, Programmieren ist Arbeit.
Schon die Aufstellung einer solch einfachen Sequehz von Anwei-
sungen bereitet einige Milhe, bis alles 'in Schbnschrift' klappt.
{ibrigens, drgern Sie sich nicht itber die Fehler, die Ihnen dabei
unterliefen, sondern versuchen Sie lieber die Reaktion Ihres Mi-
cro auf inkorrekte Eingaben zu verstehen - um daraus zu lernen.
Danach ist es fiir Sie keine Hiirde, mit einem eigenen Programm
eine perstnliche Botschaft auf den Bildschirm zu bringen - ver-
suchen Sie's mal mit einem Zweizeiler?

So, nun-haben Sie also was 'ganz Feines' produziert, doch
Jjammerschade, bei Beendigung der Computersitzung schalten Sie
mit dem Netzschalter auch die dynamischen Speicher Ihres Micro
ab, und - welch deprimierender Gedanke - Ihr schines Progreamm
ist dahin. Hier hilft uns der Recorder. So, wie beim Laden des
Interpreters Daten vom Band in den Speicher des Micro eingelesen
wurden, besitzt der Computer eine Binrichtung, die den aktuellen
Inhalt eines Speicherbereiches in solch eine Impulsfolge codiert,
die vom Recorder aufgenommen werden kann.

Hier nun das Rezept. Legen Sie eine unbespielte Kassette in
Ihren ordnungsgemBss angeschlossenen Recorder. Tippen Sie das

Kommando
CSAVE "GRAPHIK®

in die Tastatur, vorl#ufig noch ohne {ENTER) zu driicken. Hierbei
bedeutet engl. to save soviel wie sichern,und das C davor erin-
nert an Cassette. Auf einigen Micros lautet das entsprechende
BASIC Schlilsselwort etwas anders, so etwa SAVE beim Spectrum. In
den Anfiihrungsstrichen erscheint der Dateiname, unter dem Sie
das Programm abspeichern wollen. Hier sind Namen mit einer ge-
wissen maximalen Wortlénge, etwa 8 oder 16, zugelassen. Alle b~
lichen Zeichen, einschliesslich des Blanks, sind erlaubt.

Jetzt starten Sie den Recorder zur Aufnahme durch gleichzei-
tiges Driicken seiner Tasten {PLAY> und {RECORD). Lassen Sie das
Vorspannband ablaufen und geben nun ohne Hast {ENTER) ein. Bei
méssig aufgedrehtem Lautstlrkeregler konnen Sie sich nach Ertd-
nen des Vorspanntones Ihr GRAPHIKprogremm anhfren, das nun unter
diesem Namen auf der Kassette gespeichert wird.

Beim 'Uberspielen' auf Band wird das im Rechner befindliche
Programm nicht zerstbdrt. Da wir die GRAPHIK jetzt nicht mehr
brauchen, l¥schen wir das unter den Zeilennummern 500 bis 610

72 6. Unser erstes BASIC Programm

gespeicherte Programu., Auf eircigen Micros kann dies mittels Ein-
gabe des Kommandos

DELETE 500-4610

erreicht werden. Besitzt Ihr Micro diesen sehr niitzlichen Refehl
nicht, so bleibt Ihnen nur, des Programm zeilenweise durch suk-
zessive Eingabe aller betreffeuden Zeilernummern zu l¥schen. Auf
diese Weise k®nnen Sie den 'Rest'!, nlso bei uns die Zeilen 20 bis
90, im Speicher erheiten. Oder Sie l8schen nit dem Kommandoc

NEW

radikel sowohl den gesamten BASIC Frogrammspeicher wie auch alle
gesetzten Variablen.

Das Gegenstiick zu der oben besprocheren CSAVE Routine wird
mittels des Kommarndos CLOAD reslisiert. Damit kbnnen wir ein auf
Band gespeichertes Prograpm in dez Arbeitasspeicher des Computers
laden. Hierzu spulen wir das Band an den Anfang des gewlinschten
Progremms. Danach geoten wir zusammen mit CLOAD den entsprechen-
den Dateinamer eir; in unserem Beispiel wire das also:

CLOAD "GRAPHIK"

Der eingegzbene Texzi muss dabei exakt dem Dateinamen entsprechen,
einschliesslick eventuell zugenlriger Blanks oder Sonderzeichen.
Wie Ublich wird des Kommando mit {ENTER)> abgeschlossen. Danach
driicken Sie die (PLAY) Taste des Recorders. Nach {ibernahme des
Frogramrs meldet sich der Interpreter im Direktmodus mit Reedy
oder OK, falls das geladene BASIC Frogramm nicht selbststartend
ist.

Palls Sie den Dateinsmen nicht mehr gensu wissen, k¥nnen Sie
auf vielen Micros anstelle des Namnens die leere Zeichenreihe ""
eingeben. Denn wird in der Regel das unmittelbar nkichste auf
Bend gespeicherte Programm geladen.

Die eben besprochene Prozedur gleicht sekr der im dritten Ka-
pitel zum Leden des Interpreters beschriebenen. Allerdings gibt
es dabei einen wesentlichen Unterschied. Wihrend es sich bedi
dieser um des Lader eines FProgrammes in Meschinensprache auf der
Monitor-Ebene des Rechners handelte, werden die oben eingefiihrten
CSAVE und CLOAD Routinen auf der Interpreter-Ebene, also im
BASIC realisiert.

kachen Sie eine Eingabe 73

Machen Sie eine Eingabe

Zurick zu unserem Multiplikationsprogramm, das - vorausgesetzt,
wir hatten den Rechner nicht ausgeschaltet - noch immer unter
den Zeilennummern 20 - 90 im Arbeitsspeicher stent. Wenn nicht,
20 tippen wir den Flinfzeiler nochmal ein und lassen das Prcgramm
laufen.

Sonderlich nutzerfreundlick ist unser Produkt gerade nicht.
Jedesmal, wenn wir andere als die fest programmierten»Zahleﬂ
-miteiraender multiplizieren wollen, miissen wir das Programm in
Zeile 40 #ndern und -~ per Anweisupg - die Variablen A und B neu
setzen.

Hier bietet die dielogorientierte Sprache BASIC ‘eine elegante-
re Losung an. Wir kbtnnen die BASIC Anweisung INPUT benutzen, die
éen Rechner veranlasst, guf eine Eingabe des Benutzers zu war-
ten. Zur INPUT Anweisung gehtrt die Variable, der ein (xeuer)
Wert per Tastetur zugewiesen werden -soll. Geben Sie die neue
Programmzeile

S0 INPUT B

ein und starten das Programm mit RUN. Bei der Ausflihrung des
Programms erscheint auf dem Bildschirm meist ein Pragezeichen
und dahinter der blinkende Cursor. Der Micro geht in Wartestel-
lung, und jetzt sind Sie am Zug. Geben Sie den gewlinschten Wert
ein. Das ktnnen Sie am Bildschirm verfolgen und jetzt auch noch
korrigieren. Nach Bet#itigung von {ENTER) wird der Variablen B
der eingegebene Vert automatisch zugewiesen, und das Programm
wird weiter ausgefiihrt.

Das probieren wir gleich noch einmal. Versuchen Sie, der Va-
riablen B einen nichi-numerischen Wert zuzuweisen, zum Beispiel
RUN. Doch diese Eingabe verenlasst den Micro (nach {ENTER)) zum
Ausdruck der Nachricut

?PREDO FROM START

zu deutsch etwa soviel wie 'noch mal von vorn'. Was bedeutet das
nun? Der Computer erwartet programmgemiiss in Zeile 50 die Einga-.
be einer Zahl, soll ddch der numerischen Variablen B ein Wert
zugewiegen werden. Jede Eingabe wird vom Rechner gepriift und ge-
gebenenfalls abgewiesen. Dies geschieht auf durchaus nutzer-

T4 6. Unser erstes BASIC Programm

freundliche Weise; das zweite Fragezeichen fordert zu einer er-
neuten Eingabe auf. Kompliziertere arithmetische Ausdriicke, etwa
1/9 sind ilbrigens auch nicht zugelassen.

Es ist guter Programmierstil, durch Hinweise auf dem Bild-
schirm prézise Eingaben zu unterstiltzen, etwa durch eine voran-
gestellte PRINT Anweisung. Komfortablere BASIC Versionen gestat-
ten die Eingabe eines Hinweises in der INPUT Anweisung. Geben
Sie ein

S0 INPUT ® EINGABE VON FAKTOR B: “JB

und begutachten Sie das Resultat dieser Programméinderung. Nach
Hinzufiigen 'beziehungsweise Andern der Zeilen

30 INPUT " EINGABE VON FAKTOR A: "3A
40 PRINT

erhalten Sie ein gebrauchsfihiges Multiplikationsprogramm. Um
das Programm ein paar Tage spdter noch zu verstehen und es auch
.anderen zeigen zu kbnnen, erginzen wir es zu der verbesserten
Version

10 REM ¥¥% KLEINES MULTIPLIKATIONSPROGRAMM %

20 CLS:PRINT

30 PRINT * DIESES PROGRAMM MULTIPLIZIERT®
32 PRINT " ZWEI ZAHLEN A UND B*

40 PRINT:PRINT

50 INPUT * EINGABE VON FAKTOR A: "jA

54 PRINT

60 INPUT * EINGABE VON FAKTOR B: "B

70 PRINT:PRINT

80 PRINT " DAS PRODUKT A % B LAUTET: *;A%B
84 PRINT:PRINT

90 END

Programmlauf

RUN

DRSS ARERRP AN T 1P T IERT

EINGABE VON FAKTOR A: ? 437
EINGABE VOM FAKTOR B: ? 1354

DAS PRODUKT A * B LAUTET: 67298

§‘ady

Im Dialog mit dem Micro 75

Die eingeffigten Blanks sowie Leerzeilen dienen der verbesserten
Lesbarkeit auf dem Bildschirm. Zeile 84 sorgt dafiir, dass nach
dem Programmlauf der Cursor nicht unmittelbar unter dem Ergebnis
flackert.

Wir kdnnen iUber die INPUT Anweisung auch mehrere Eingaben in
einer Zeile titigen. Doch nun #ndern wir nichts mehr an unserem
Programm, sondern schreiben lieber ein neues, das alles erklidrt.

10 REM #¥%% ARITHMETISCHES MITTEL ¥

11 ¢

18 CLS:PRINT

20 PRINT * GEBEN SIE BITTE - JEWEILS DURCH®
24 PRINT

26 PRINT * KOMMAS GETRENNT - DREI ZAHLEN EIN®
30 PRINT

40 -INPUT A,B,C

50 M=(A+B+C)/3

60 PRINT

70 PRINT * MITTELWERT ="jM

80 PRINT:PRINT

90 END

Im Dialog mit dem Micro

Auch Zeichenketten lassen sich mittels der INPUT Anweisung wih-
rend des Programmlaufs eingeben, wenn dies entsprechend program-
miert wird. Das erlaubt dann ein tatsfichlich interaktives Arbei-
ten mit dem Computer. Wir wollen dies an dem folgenden netten
Beispiel entwickeln, es stammt aus Scriven, J. (1983).

100 REM 3¥¥% KOMPLIMENT ¢
101 @

110 CLS:PRINT

120 INPUT " WIE HEISST DU "jNAMES

130 PRINT

140 PRINT " GRUESS DICH, ";NAMES

150 PRINT

160 INPUT * GIB DEIN GEBURTSJAHR EIN"} JAHR

170 LET ALTER = 1986-JAHR

180 PRINT

280 PRINT " °;NAMES$;", DU BIST ETWA";ALTER}; "JAHRE ALT"
290 PRINT

300 END

Programmleuf

RUN ... WIE HEISST DU ? FRIEDEMANN
GRUESS DICH, FRIEDEMANN
GIB DEIN GEBURTSJAHR EIN? 1974
FRIEDEMANN, DU BIST ETWA 12 JAHRE ALT e §'ady

76 6. Unser erstes BASIC Programm

Am Scheideweg

Von Komplimenten ist in diesem Prograrm bisleng ja ncch nicht die
Rede, wir milssen dem Micro erst beibringen, eine Entscheidung zu
fdllen. Dazu konstruieren wir mit der BASIC Anweisung IF ... THEN
einen bedingten Sprung. Die Anweisung ist wie folgt konstruiert

IF (logischer Ausdruck} THEN {Anweisung}

Mit dem 'logischen Ausdruck' wird eine entscheidbare Bedingung
formuliert. Ist diess erfillli ~ der logische Ausdruck alsc wahr -
80 wird vom Programm die naclh: THEN stehende Anweisung auagefiihrt.
Anderenfalls fdhrt das Programm mit der Ausfilhrung der Anweisung
in der folgenden Zeile fort. Wir wollen diese Myglichkeit zu ei-
ner qualitativen Verbesserung unserss Progreammes nutzen.

100 REM %% KOMPLIMENT ¥

101

140 CLS:IPRINT

120 INPUT ° WIE HEJSST LU “j;NAMES

130 PRINT

140 PRINT * GRUESS DICH, "jNAMES

150 PRINT

160 INPUT * GIB DEIN GERURTSJAHR EIN"$JAHR
170 LET ALTER = 1986-JAHR

180 PRINT

190 PRINT * “;NAME®;", ENTSCHULIGE BITTE DIE FRAGE"
260 PRINT

210 INPUT * BIST DU WEIBLICH <(J/N> "1AS

220 FRINT

230 IF A%="N" THEN GOTO 280

240 PRINT * NUN "j;NAMES;", EIN HUEBSCHES MAEDEL"

250 PRINT

250 PRINT " WIE DU MUSS ETWA 17 SEIN !'*

270 PRINT:PRINT:END

289 PRINT " “;NAMES;“, DU BIST ETWA "jALTERI“JAHRE ALT"
290 PRINT

300 ‘END

RUN

WIE HEISST DU ? UTA

GRUESS DICH, UTA

GIB DEIN GEBURTSJAHR EIN? 1964
UTA, ENTSCHULDIGE BITTE DIE FRAGE
BIST DU WEIBLICH <J/N> ? 3

NUN' UTA, EIN HUEBSCHES MAEDEL

WIE DU MUSS ETWA 17 SEIN!

§'ady

Am Scheideweg 7

In Zeile 210 erkundigt sich der Micro rach Yhrer Geschlechtszu-
geh¥rigkeit. Ihre Antwoert wird in Zeile 230 getestet. Fells (IF)
Sie {N)> fiir minnlich eingegeben hatten, so ist der logische Aus-
druck A$ = "N" wahr. Denn (THEN) wird die intuitiv klare Anwei-
sung GOTO 280 (gehe zu ...) ausgefithrt und des Programm in Zeile
280 wie gehabt fortgesetzt. Interzssanter ist natiirlich die Al-
ternative. Falls Sie algo eine Dame sind, mithin in Zéile 210
der String-Variablen A$ den Wert "J zugewiésen heben, ist dexr
Ausdruck A$ = "N" falach und der Interpretszr ignoriert die nach
THEFR formulierte Anweisung. Danach druckt er unter Benutzung Ih~
res Ramens das vorgegebene Scherzchen aus und heendet in der
nHchstern Zeile die Programmausfilbrung. Die susétzliche END An-
weisung in Zeile 270 ist bei dieser Progrsmmkonstruktion notwen-
dig, sonst wlirde in Zeile 280 der Fsuxpas doch noch begangen.

Bel einer eventuellen Fehlbediemung, segen wir bei Eingabe
einer Ziffer oder irgendeines enderen druckbaren Zeicheuns susser
N, rcagiert der Micro - programmgesteuert - freundlich. Das ein-
gegebene Zeichen wird der Variablen A$ zugewicsen, der Test in
Zeile 230 geht negetiv aus; das Programm wird in der n¥chsten
Zeile fortgesetzt. Und nocl eine kleine Feinheit; da wir vor
Ausgabe einexr Aptwort in jedem Palle eine Leerzeile auf dsm Bild-
schirm wiinschen, ist es tkoromisch, diesz bereits in Zeile 220,
also vor Verzweigung des Programmes, zu veranlsssen,

Auch sel erwdhnt, dass 23 die Syntex unseres Interpreters er-
leubt, Zeile 230 etwas eianfecher zu schreiben:

«230 IF A% = *N" GOTO 280
Manche Interpreter lassen -auchk diese Form zu,
=230 IF A% = "R® THEN 230

probieren Sie es.

Die Pdhigkeit des Computers, aufgrund von Logik und Wertzuwei-
sungen Entscheidungen zu treffen, gehdrt zu seinen wichtigsten
Eigenschaften. So besitzen diese Anwelsungen eine eigene Symbolik
in der graphischen Darstellung der Programmstruktur. Schauen wir
uns dies am Beigpiel unseres Progrummes sowohl beim Flussdia-
gramm als auch beim Struktogramm an.

78 6. Unser erstes BASIC Programm

EINGABE:
NAME

EINGABE: NAME

TEXT AUSGEBEN

TEXT EINGABE: GEBURTSJAHR
DRUCKEN

TEXT AUSGEBEN

EINGABE: EINGABE: GESCHLECHT
GEBURTSJAHR
WEIBLICH?
J N
TEXT
DRUCKEN AUSGABE AUSGABE

KOMPLIMENT | ALTER

EINGABE:
GESCHLECHT

ENDE ENDE

AUSGABE: AUSGABE:
KOMPL IMENT ALTER

Beim Flussdisgramm wird die Programmverzweigung durch eine Raute,
dem 'Entscheidungsdiamanten' mit den beiden Ausgiingen fiir die
Antworten J oder N symbolisiert. Der Programmsprung nach positiv
ausgegangenem Test wird durch einen zus&tzlichen Pfeil charakte-
risiert.

Wesentlich sparsemer ist die Darstellung im Struktogramm.
Deutlich erkennt man drei Programmblécke. Der erste, 'grosse!’
stellt den Anfang des Programmes. bis zu der abgefragten alterna-~
tiven Entscheidung dar, Auf die Verzweigung folgen - vollkommen
gleichberechtigt ~ die beiden 'Antwortbldcke'. Deutlich erkennt
man, dass diese Bltcke fiir sich gemommen jeweils eindeutig defi-
nierte Bin- und Ausginge besitzen,

Tu das noch einmal 79

Tu das nociu einmal

Jetzt setzen wir alle neu erlernten BASIC Anweisungen zur Kon-
gtruktion eines kleinen Spielprogrammes ein. Dabei erfahren wir
eine weitere wesentliche Eigenschaft unseres Micro., Er kann
nicht nur innerhalb eines Programmleufes Entscheidungen f#llen,
sondern auch in AbhHngigkeit vom Ergebnis solcher Entscheidungen
genau festgelegte Programmteile mehrfach abarbeiten.

100 REM %% ZAHLENRATEN 3%
101 :

110 CLS:PRINT

120 PRINT SPC(12) “% ZAHLENRATEN *"

130 PRINT:PRINT SPC€(10) "EIN SPIEL FUER ZWEI"

140 PRINT:PRINT

150 PRINT® DER ERSTE SPIELER GIBT JETZT, VERDECKT®
152 PRINT

160 INPUT" FUER DEN ZWEITEN, EINE ZAHL EIN: “jA
170 CLS:PRINT:PRINT

199 :

200 PRINT" TIP DES ZWEITEN SPIELERS "j

202 INPUT TIP

210 PRINT

220 IF TIP>A THEN PRINT * ZU HOCH GETIPPT"

230 IF TIP<A THEN PRINT ® ZU NIEDRIG GETIPPT"

240 IF TIP<>A THEN PRINT" NOCH EIN VERSUCH ";:G0OTO 202
299 :

300 PRINT " RICHTIG GETIPPT"

310 PRINT

320 END

RUN

% ZAHLENRATEN *
EIN SPIEL FUER ZWEI

PERREDENE-GEITERT BINL ZANETeNERREEST

TIP DES ZWEITEN SPIELERS ? S

RYcNTEIR™GeREILETY 24
RBcHOETNCOLAEELN - 12

RocHTERR'GeRELETT 17

RICHTIG GETIPPT!

§.ady

60 6. Unser erstes BASIC Programm

Schauen wir une das Programm an. In den Zeilen 100 bis 199 wird
das Spiel initialisiert. Im ndchsten Block von Zeile 230 bis 299
wird nach erfolgter Wertzuweisung flir die Varisble TIP diese mit
dem vorgegetenen Wert von A durch sukzessives Testen der logi-
schen Ausdriicke TIP>A, TIP <A und TIT <¢>A (das bedeutet TIP
ungleich 4) verglichen und der abgegebene TIP des zweiten Spie-
lers bewertet. Da sich die dreil logischen Ausdriicke paarweise
angschliessen, ist dieseg 'lineare' Vorgehen korrekt. im wich-
tigaten ist Zeile 240, Eier wird auf 'Misserfolg' getestet und
in diesem Psall der Interpreter amgewiesgen, nach Ausdruck der
Aufforderung NCCH EIR VERSUCH ? zuriick zu Zeile 202 zu gehen,
also eine 'Programmschleife auszufilhren. Es sind also nach THEN
mehrfache, durch Doppelpunkt getrenute Anweisungen zullissig. Der
dritte, abachliessende Programmbtlock 300 ~ 320 ist klar,

Das Prirzip der Konstruktion von Frogrammsckleifem ist so
wichtig, dass wir es wisder graphisch veranschaulichen wollen.
Bedm Strukitogramm gitt es dafir ein eigenes, neuwes Symbol.

)

GPIELERKLARUNG
VORGARE : AKTION SPIELER 1:
ZAML A VORGABE A

cLs
ANTION SPIELER 2:
EINGABE® TIP
TIP
TIP > A
N 3
[BEWERTUNG: -
*ZU GROSS® ZU GROSS
TIP < A
N 3
TEST 1| BEwERTUNG: ZU KLEIN
TIP <A *2U KLEIN®
BIS TIP=A
0
RICHTIG
TEST) BEWERTUNG: ENDE
TIPCOA RICHTIG!
1
NEUER TIP! (_Enpe)

Tu das noch einmal 8l

In dem Flussdiagramm werden mit O beziehungsweise 1 die Wahr-
heitswerte 'Falsch' oder 'Wehr' der logischen Ausdriicke inner-
halb der Entscheidungsdiemanten charakterisiert. Im Mittelblock
des Struktdgramms erkennen wir an der L-Form des 'Hakens' sehr
schbn, dass es sich in unserem Programm um eine sogenannte an-
nehmende Schleife handelt. Der 'Schleifenrumpf' wird auf jeden
Fall einmal durchlaufen; daraufhin wird unter 'BIS' auf eine et-
waige Wiederholung getestet.

Selbstverstéindlich lassen sich auch Programme mit abweisender
Schleife konsiruieren, deren Struktogramm dann die.folgende Ge-
stalt besitzt: '

INITIALISIERUNG DES
SPIELES

'SOLANGE TIP<>A

SCHLEIFEN-
RUMPF

BEWERTUNG

ENDE

Und jetzt sind Sie am Zug. Schreiben Sie -~ ausgehend von der im
Struktogramm vorgegebenen Programmstruktur unter weiiestgelhiender
Nutzung der Programmblicke des Listings unseres Progrummes
ZAHLENRATEN - ein eigenes Programm und testen Sie es gritiadlich.
Damit arbeiten Sie iibrigens in der angemessenen Reihenfolge: Zu-
erst das Problem formulieren, daqn ein Struktogremm - erst in
Blockstruktur, dann immer verfeinerter -~ aufzeichnen. Danach er-
folgt die (erste) Niederschrift des Programmes, je nach Komple-
xit&t ebenfalls in Bl¥cken. Jetzt schlégt beim Programmtest die
Stunde der Wahrkeit. Lassen.Sie sich bitte durch Misserfolge,
auch viele, nicht entmutigen. Dass ein eben niedergeschriebenes
Progremm beim ersten Lauf auf Anhied funktioniert, ist die sel-
tene Ausnahme und nicht der Normalfall.

2 6. Unser erstes BASIC Programm
Fakultit

Die Fakult#t N! einer positiven genzen Zahl N ist das Produkt

der natlirlichen Zehlen von 1 bis N. Bevor wir uns einen Algorith-
mus zur Berechnung von Fakulté@dten iiberlegen, prézisieren wir die-
se Definition und formulieren sie in mathematischen Symbolen mit-
tels der Rekursionsformel

1! =1
N!-N'(N-l)! (N.2,3,ouo)o

Die Bedeutung dieser rekursiven Definition ist intuitiv klar. Im
Prinzip kann die Fakult#t einer jeden positiven ganzen Zahl durch
fortgesetztes Multiplizieren gewonnen werden. Allerdings wiirde
uns bald das Papier ausgehen, wollten wir uns tatsichlich dieser
Arbeit unterziehen. Mit steigendem N wdchst die Fakult#t zu enorm
grossen Zahlen an. Auch unser Micro muss bereits nach wenigen
Schritten runden und geht zur Exponenten-Darstellung liber. So
hoch hinaus wollen wir aber gar nicht; iiberlegen wir uns einen
Algorithmus zur Berechnung-der Fakultéten von 1 bis 9. Es leuch-
tet ein, dass sich das erforderliche sukzessive Multiplizieren
sehr schdn und auch tkonomisch mit einer Progremmschleife bew#l-
tigen l#sst. Wir iberlegen uns das an dem folgenden Struktogramm,
wobel wir wieder eine abweisende Schleife konstruieren.

'

BERECHNUNG DER FAKULTATEN
VON 1 - 9 .

INITIALISIEREN
A=0: FAK = 1

SOLANGE A<(9

SCHLEIFENZEHLER
A = A+l

FAKULTAT
FAK = FAK¥A

AUSGABE
A! = FAK

ENDE

Nech der hier unverzichtbaren Initialisierung kommt der die
Schleife umfassende Block, wobei - wie verabredet - der Test auf

Fakultit 83

Fortsetzung am Eingang der Schleife ausgefiihrt wird. Im Schlei-
fenrumpf treten zwei Variablen auf. Mit A werden die Schleifen-
durchl¥ufe gezéhlt, whhrend FAK den aktuellen Wert der Fakultdt
von A aufnimmt und bis zum néchsten Durchlauf speichert. Alles
klar? Denn fHllt uns die Umsetzung des Struktogramms in ein
BASIC. Programm nicht mehr schwer.

100 REM 3% FAKULTAETEN VON 1-9 %%
101 :

110 CLS:PRINT

120 A=0:FAK=1

199 :

200 IF A>=9 GOTO 300

210 : A=A+l

220 : FAK=FAK#A

230 : PRINT * *jA;"! ="FAK
240 GOTO 200

250 PRINT

299 :

300 END

RUN

! §§gao

Durch den Einschub zus8tzlicher, nur den Doppelpunkt enthmlten-
der Zeilen wird die Progremmstruktur im Listing hervorgehoben.
Dem dient euch das Einricken in den Zeilen 210 bis 230, die dem
Schleifenrumpf entsprechen. Natilrlich wird durch diese 'Verscho-
nerungen' der Programmlauf nicht verbessert. Im Gegenteil, sie
verlangsamen das Programm und verbrauchen zusitzlichen Speicher-
platz. Doch das ist bei den in diesem Kapitel betrachteten klei-
nen Programmen nicht unser Problem. Hier kommt es suf die Erstel-
lung leicht durchscheuwbarer, einfach strukturierter und schliess-
lich auch laufender Programme an. Diese Methode ist keineswegs
sltmodisch oder dem Formalisten vorbehalten. Stellen Sie sich
ein, sagen wir, hundertseitiges professionelles Programm vor.
Ohne besondere Vorkehrungen ist dieses hdchstens noch dem Pro-
grammierer verstdndlich und ansonsten Verbesserungen und Erwei-
‘terungen nicht mehr zugénglich. So erscheint der erhdhte Aufwend

84 6. Unser erstes BASIC Programm

einer sauberen Dokumentation auch dkonomisch sinnvoll, ja sogar
notwendig. Die enorm gewachsenen technischen Mdglichkeiten von
Produktion und Einsatz immer billigerer Speicher stilitzen diese
Forderung, so ist weltweit nicht mehr die Beschaffung von schnel-
len Rechnern mit grossen Speichern das Problem, sondern die Yko-
nomisch sinnvolle Nutzung dieser M8glichkeiten, d.h. die Produk-
tion entsprechender Programme. Dramatisierend und wohl nicht
genz uneigenniitzig wird diese Situation von einigen Leuten als
'Software-Krise' bezeichnet.

Doch noch mal zurlick zu den Fakult#iten; versuchen wir, die
gestellte Aufgabe mit Verwendung einer annehmenden Schleife zu
l6sen. Hier das Ergebnis.

500 REM 3% FAKULTAETEN VON 1-12 6%
S01 :

510 CLS:PRINT

520 A=0:FAK=1

599 :
600 @ A=A+1}
610 : FAK=FAK¥*A
620 ¢ PRINT " "jA;"! ="FAK FAKULTATEN BIS 12
&30 IF A<12 GOTO 4600
640 PRINT INITIALISIEREN
699 ¢ A=0: FAK = |
700 END .
SCHLEIFENZAHLER
A = A+l
RUN S00
FAKULTAT
FAK = FAK*A
I =
l -
: = AUSGABE
1 = A!' = FAK
i =
[
; = BIS A>12
; =
g 12 f5eRieng, [evoe
§indy

In beiden Schleifentypen wird die Schleifenabbruchbedingung in
der Schleife selbst berechnet. Dies bringt grosse Vorteile, so
ktnnen mit dieser llethode Programme konstruiert werden, bei de-
nen die Anzahl der durchlaufenen Schleifen nicht von vorneherein
festgelegt ist, sondern sich - zum Beispiel aufgrund eingegebe-
ner Daten - erst wihrend des konkreten Programmlaufes ergibt.

Der Nichste, bitte 85
Der Néchste, bitte

Liegt jedoch die Anzahl der Schleifendurchgtinge vorher fest -
man spricht denn auch von einer iterativen Schleife - so steht
mit dem FPOR ... NEXT Befehl hierfiir eine spezielle BASIC Anwei-
sung zur Verflgung. Machen wir uns diese leistungsféhige Anwei-
sung wieder an einem Beispiel klar.

10 REM %% SCHLEIFEN DEMO %

12 PRINT

20 .FOR N=1 TO 8

30 ¢ PRINT "SCHLEIFENDURCHLAUF“§N
40 NEXT N

S50 PRINT

40 END

Mit der Anweisung in Zeile 20 ist die automatische Schleife er-
offnet., Dabei wird in dem hier benutzten Format die ZKXhlvariable
N auf 1 gesetzt. Anschliessend folgt das Programm den Anweisungen
des Schleifenrumpfes, hier also der Zeile 30. Die NEXT Anweisung
in Zeile 40 veranlasst automatisch einen Sprung zuriick zur Zeile
20. Es wird die Z#hlvariable um 1 erhtht und anschliessend ge-
testet, ob der Endwert; hier also 8, fiberschritten wurde. Ist
dies der Fall, so wird die Schleife nicht mehr durchlaufen, son-
dern das Programm in der auf NEXT folgenden Zeile fortgesetzt,
in unserem Beispiel also nach Ausgabe einer Leerzeile beendet.
Ein Programmlauf demonstriert den geschildertern Ablauf. Am Aus-
gang der Schleife steht der Schleifenzdhler auf 9. Sie kdnnen
das nach dem Programmlauf durch Eingabe des Direkt-Befehls

PRINT N nachpriifen,

il

giady

IPPBPIDDD
ccccccco

Jetzt stellen wir durch einen simplen Test fest, ob der FOR
... NEXT Befehl - wie bei den meisten Micros - als annehmende
oder aber als abweisende Schleife im Interpreter realisiert ist.
Dazu vertauschen wir einfach in Zeile 20 die dem Schleifenanfang
beziehungsweise dem Schleirenen&e entsprechenden Werte:

86 6. Unser erstes BASIC Progreamm

20 FOR N=8 TO 1.

Fihrt nun der Programmlauf zu dem Ausdruck SCHLEIFENDURCHLAUF 8 ,
80 ist die Schleife jedenfalls einmal durchlaufen worden, um da-
nach durch den Test N > 8 beendet zu werden. Mithin handelt es
sich eindeutig um eine annehmende Schleife. Nach dem Programm-
lauf steht der Schleifenzdhler wiederum auf 9.

Es kann aber auch sein, dass auf Ihrem Micro der FOR ... NEXT
Befehl als abweisende Schleife implementiert ist. In diesem Fall
wird bei unserem Test nichts ausgedruckt.

Dieser kleine Unterschied muss beim Programmieren unbedingt
beachtet werden. Es sei nicht verschwiegen, dass generell durch
die weithin verbreiteten annehmenden Schleifenkonstruktionen dem
Programmierer Fallen gestellt sind. So ist beispielsweise der Pall
denkbar, dass die Anzahl der ausgufilhrenden Schleifendurchgiénge
von einer vom bisherigen Programmverlauf abhiingigen Variablen M
festgelegt wird:

20 FOR N=1 TO M
Wird nun durch irgendeinen -~ oft unvorhergesehenen - Fall die
Variable M vor Ausfilhrung von Zeile 20 auf O gesetzt, so erfolgt
bei der liblichen FOR ... NEXT Anweisung wie beschrieben ein
Schleifendurchlauf, und dies kann innerhalb des Gesamtprogrammes
zu etwas g#nzlich Unsinnigem fUhren. Doch lernen wir die FOR ...
NEXT Anweisung weiter im Normalbetrieb kennen.

10 PRINT "SUMME DER ERSTEN N NATUERLICHEN ZAHLEN"
20 INPUT "EINGABE VON N™"jN

30 LET S=0

40 FOR K=1 TO N

S0 : S=S+K

60 NEXT K

62 PRINT

70 PRINT "DIE SUMME IST GLEICH "iSi"."

80 END

§3uns DER ERSTEN N NATUERLICHEN ZAHLEN
EINGABE VON N? 100
DIE SUMME IST GLEICH 5030 .

S

Probieren Sie die Eingabe verschiedener Werte fiir N. Sie werden
bemerken, dass auch der Computer Zeit zum Rechnen braucht. So
lehrt uns hier die Eingabe einer sechsstelligen Zahl in puncto

Der KHchste, bitte 87

Rechenzeit das Flirchten. Die Geschichte von dem kleinen Carl
Friedrich Gauss kennen Sie doch? Heute wiirde er sich an seinen
Kleincomputer setzen und den Direktbefehl

N=100 : PRINT N¥(N+1)/2 <ENTER>

eintippen oder gleich N = 100000, deann hHtte er sich so um die
12 Minuten Wartezeit erspart, von den Rundungsfehlern mael ganz
abgesehen. Die genaue Zeit hinge natiirlich von dem verfiigbaren
Micro ab. Wenn Sie es so sehen wollen, war das ein weiterer Bei-
trag zum Thema Kiinstliche Intelligenz (KI); der Rechner ist so
schlau wie wir ihn machen,

Eine andere Prage ist die Sicherung unseres Programms gegen
Fehlbedienung. So filhrt die Eingabe von O oder gar einer negati-
ven Zahl N zu einem falschen bzw. sinnlosen Resultat. Dagegen
konnen wir das Summationsprogremm durch Einfiigen der Zeile

22 IF N<1 THEN PRINT *>)> WAHLE N > O™ : GOTO 20

schiitzen. Bliebe noch die M¥glichkeit der Eingabe einer nicht
ganzen Zahl, aber davon spdter.

Sehr schdn eignet sich die FOR ... NEXT Anwe;sung zur Tabel-
lierung von Funktionen.

RUN

10 CLS:PRINT reen

20 PRINT * X®,"Xx~2* x XA2

30 PRINT

40 FOR X=1 TO 10 é

S0 Y=X~2 ég

60 PRINT X,Y

70 NEXT X 8 3§.0001

0

80 END 10 g&bOOOI
§‘§dy

Durch Abéndern der Anweisung in Zeile 50 kdnnen Sie sich natlir-
lich auch Kubikzaehlen Y = X 4 3 oder andere Ausdriicke, zum Bei-
spiel Y = 1/(1 + X), Y = (X - 5)*%(X - 17), ¥ = X © X tabellieren
lassen; #&ndern Sie dann auch den Tabellenkopf entsprechend.
Etwas komplizierter erweist sich die n#herungsweise Berech-
nung von Werten der Exponentialfunktion. In der h¥heren Mathema-
tik werden die Funktionswerte exp(x) fiir jede reelle Zahl x als
Grenzwert der konvergenten unendlichen Reihe
2 3 5

b 4 x x
14+ 11 + Yl + 31 + e + N + e

88 6. Unser erstes BASIC Programm

definiert. Pir praktische Berechnungen miissen wir uns mit der-
Summation der ersten N-1 Glieder (N positiv, ganz) dieser Reihe
begniigen. Wdhlen wir fiirs erste N = 7 und schreiben ein Programm.

100 REM %% EXPONENTIALFUNKTION 3%

101

110 CLS:PRINT

120 PRINT " BERECHNUNG DER EXPONENTIALFUNKTION AN"
130 PRINT

140 PRINT " DER STELLE X MITTELS TAYLORFORMEL."
199

200 E=1:F=1

210 PRINT:PRINT

220 INPUT " EINGABE DES ARGUMENTES X: "iX

299 :

300 FOR I=1 TO ?

310 : F=F#X/I

320 : E=E+F

330 NEXT I

399 @

400 PRINT:PRINT |

410 PRINT * X ="jX,"E~X. ="{E

420 PRINT:PRINT

430 PRINT " VERGLEICH MIT DER FEST PROGRAMMIERTEN"
440 PRINT " FUNKTION EXP(.):"

450 PRINT

460 PRINT " EXP(X) =";EXP(X)

470 PRINT

480 END

RUN

BERECHNUNG DER EXPONENTIALFUNKTION AN
DER STELLE X MITTELS TAYLORFORMEL

EINGABE DES ARGUMENTES X: ? 1.35
X = 1.38 E~X = 3.85710

gﬁﬁﬁ*fﬁﬁ"zﬂ&f.?gR FEST PROGRAMMIERTEN

EXP({X) = 3.85743
§‘ady

Der Algorithmus zur Berechnung der Ndherungswerte fQOr die Expo-
nentialfunktion wird in der FOR ... NEXT Schleife ab Zeile 300
realisiert. Zuerst wird in Zeile 310 der aktuelle Summand F be-
stimmt und anschliessend in Zeile 320 zur bereits berechneten
Partialsumme E addiert. Falls Sie das nicht sofort {iberblicken,
ist es hilfreich, die ersten Runden der Schleife per Hand mitzu-
rechnen, beginnend mit den in Zeile 200 fixierten Startwerten
fir E und P.

Eine Warnung 89
Eine Warnung

Probieren Sie nun das Programm fiir verschiedene Werte von X aus.
Puir X = 0 muss sich natiirlich der exakte Wert 1 ergeben, sonst
ist irgend etwas faul an unserem Programm. Und fiir X = 1 sollte
ein Wert in der N&he von 2,71828... herauskommen. Zur Beurtei-
lung der Glite unserer Néherung an anderen X-Stellen benutzen wir
die fest im BASIC programmierte Funktion EXP(.), von der wir an-
nehmen kdnnen, dass sie in etwa korrekt gerundete Funktionswerte
liefert. So stellen wir fest, dass fiir X~-Werte etwa zwischen

-1.5 und 1.5 recht brauchbare Ndherungen fiir exp(X) berechnet
werden. Erh¥hen wir in Zeile 300 die Zahl der Iterationsschritte
von 7 auf 50, so ist die Approximation an der Stelle X = 20 ak-
zeptabel, wohingegen bei X = <20 ein katastrophal falsches Ergeb-
nis erzielt wird. Eine weitere Erhdhung der Zehl der Iterationen,
sagen wir auf 500, verschlimmert alles nur noch. Auf manchem Mi-
cro kommt jetzt ein sogar negativer Wert hereaus. Es sind also
nicht nur alle Stellen vom Ergebnis, sondern sogar das Vorzeichen
falach. Woran liegt das? Wir sind hier auf ein Standard-Problem
der numerischen liathematik gestossen. Schreiben wir uns den An-
fang der Exponentialreihe filr X = -1 auf,.

N
elmy L L L, (L

1t " 2t 3! Nt ’

8o erkennen wir, dess dies eine Reihe mit alternierenden Vorzei-
chen ist. Wahrend in der HBheren Analysis solche Reihen zu Recht
beliebt sind, da sie eine recht einfache Abschétzung des Reihen-
restes und damit Aussagen iliber Konvergenz oder Divergenz erlau-
ben, fithrt eine kritiklose Anwendung rein analytischer liethoden
auf unsere auf der Gleitpunktarithmetik basierenden Rechnungen
wie eben demonstriert zu fatalen Fehlergebnissen. Der Grund liegt
natiirlich wieder bei der gef#hrlichen Operation der Differenzbil-
dung, die bei einer alternierenden Reihe ja sténdig auftritt.

Doch so, wie die abstrakte Analysis uns bOse Fallen stellen
kann, kommt sie uns - zweckentsprechend angewendet - auch zu Hil-
fe. Das obige Problem 18st sich bei Anwendung der Formel

exp(x) = 1/exp(-x)

fiir negative Werte von x in Wohlgefallen auf. Wir berechnen zu-
erst - auf der stabilen 'Seite', -x ist positiv - den Wert von
exp(-x) und dividieren anschliessend.

90 6. Unser erstes BASIC Programm
Noch eine Warnung

Da dies Thema so wichtig ist, noch ein Beispiel solcher Art.
Es ist bekannt, dass die harmonische Reihe

1 1.,1.1 1
1+_*-*_ S 4 e s soe
2*3%3*5 *ut

divergiert, also beli fortgesetzter Summation {iber jede vorgegebe-
ne Grenze wichst. Wie sieht das nun unser Micro mit seiner Gleit-
punktarithmetik? Offenbar nehmen die Glieder der harmonischen
Reihe monoton ab. Pir jede beliebig gewdhlte kleine Zahl ldsst
sich ein solcher Wert N finden, dass 1/N kleiner als diese vor-
gegebene Zahl ausfdllt. Das bedeutet, dass der Rechner bei fort-
gesetzter Addition der Reihe auf Summanden st8sst, die aufgrund
seiner begrenzten Genauigkeit keinen Beitrag zu der erreichten
Partialsumme mehr leisten. Mithin berechnet der Computer fiir die
harmonische Reihe einen endlichen Wert, was schlicht falsch ist.
Ausfiihrlich erklédrt wird diese Problematik in Kermer, I1.0. (1970).

Der Zeichensatz

Wenden wir uns nun wieder anschaulicheren Problemen zu. Wie wer-
den eigentlich die druckbaren Zeichen vom Rechner gespeicherf
und verarbeitet? Jedes Zeichen besitzt entsprechend dem sogenann-
ten ASCII Code (gesprochen Askey-Code; vgl. Anhang) eine Nummer.
Im BASIC Interpreter, aber auch in dem fiir Bildschirm-Informa-
tionen zustdindigen Graphik-Generator wird jedes druckbare Zeichen
unter dieser Code-Nummer geflihrt. So besitzt bespielsweise das
Zeichen A die ASCII Nummer 65. Mittels der im BASIC verfiigbaren
Funktion CHR$() (abkiirzend fir engl. character, auch CARS ge-
sprochen), die jeder Code-Nummer das entsprechende Zeichen zu-
ordnet, l#sst sich der gesamte auf Ihrem Micro verfiigbare Zei-
chensatz angeben.

10 REM #¥%% ZEICHENSATZ ¥%¥

20 FOR N=32 TO 127
30 PRINT N,CHRS(N)
40 PRINT

S0 PAUSE 3

60 NEXT N

70 END

Matrjoschka-Plippchen 91

Mit Hilfe dieses Progremms k&nnen Sie eVentuelle Abweichungen
von der ASCII Norm feststellen, die insbesonderé bei den Sonder-
zeichen mit grosser Code-Nummer aﬁftreten. Beim KC 85/2 sind die
im ASCII Code fiir die Kleinbuchstaben reservierten Nummern 97
bis 122 nochmals mit Grossbuchstaben belegt worden. Dann fithrt
sowohl CHR$(65) als auch CHR$(97) zu dem Zeichen A. Auf anderen
Rechnern sind unter hbheren Code-Nummern weitere Zeichen verflig-
bar. So erreicht man beim KC 85/1 mittels des Befehls PRINT
CHR$(N) (N - 160, ... ,255) die Graphikzeichen.

Matrjoschka~Pippchen

Bei Beachtung bestimmter Regeln diirfen mehrere Schleifen inein-
ander geschachtelt werden. Beginnen wir mit einem Beispiel, das
die Wirkung des Befehls CLS nachbildet.

100 REM 3¥¥%* CLEAR SCREEN (1) %%

101 :

103 : ¢ REM FALLS AUF IHREM MICRO VERFUGBAR,
104 H=16 : REM HIER CODE FUR STEUERZEICHEN

105 : REM 'HOME'® WAHLEN. SONST ZEILE
107 : : REM 160 STREICHEN
109

110 FOR Y=0 TO 2S5 REM LAUFBEREICHE AN IHREN

120 : FOR X=0 TO 38 REM MICRO ANPASSEN
130 : PRINT AT (Y,X)3"* "

140 : NEXT X

150 NEXT Y

160 PRINT CHRS(H)

170 END

Wichtig ist, dass die Z#&hlvariablen der einzelnen Schleifenebe-~
nen exakt auseinandergehalten werden. Gegebenenfalls miissen Sie
die Laufanweisungen FOR ... NEXT Ihrem Bildschirmformat anpassen.
Der Steuercode 16 fiir Cursor HOME ist auf dem KC 85/2 giiltig.

M8chten Sie den Bildschirm nicht von oben nach unten, sondern
sagen wir von links nach rechts lbdschen, so geniigt es nicht, nur
die Zeilen 110 und 120 miteinander zu tauschen. Es miissen auch
die Schleifen-Abschliisse NEXT Y und NEXT X in die richtige Rei-
henfolge gebracht werden.

Dauert Ihnen die Ausfiilhrungszeit dieser CLS Routine zu lange?
Dann kénnen Sie durch Weglassen aller iiberfllissigen Leerzeichen
und Schndrkel im Programm sowie durch Schreiben mehrerer Anwei-
sungen in einer Zeile die Laufzeit geringfiigig senken.

92 6. Unser ergtes BASIC Programm

200 FORY=0T025:FORX=0T038

210 PRINTAT(Y,X);">":NEXTX,Y:END
Eine weitere Laufzeitverkiirzung brfchte die Benutzung eventuell
auf dem Micro vorhandener Ganzzahlvariablen fiir X und Y. Wirklich
'schnelle' Routinen kbnnen iiber einen BASIC Interpreter nicht
realisiert werden., Der Interpreter muss die Anweisungen des BASIC
Programmes Zeile fiur Zeile lesen, um sie in Maschinen-Befehle zu
Ubersetzen. Das trifft auch auf den Schleifenrumpf zu, der bei
jedem Durchlauf erneut interpretiert werden muss, und das braucht
halt Zeit.

Zur Konstruktion weiterer Routinen benutzen wir wiederum den
auf vielen Kleincomputern vorhandenen Befehl PRINT AT (engl. at -
an), der es gestattet, ein Zeichen an eine vorgegebene Stelle
X,Y des Bildschirmes zu schreiben, wobei X und Y die Koordinaten
des gewilnschten Ortes bezeichnen. Um die Funktion der Programme
zu demonstrieren, benutzen wir anstelle des Blanks leserlichere
Zeichen.

300 REM %% FLIMMERN %%
301 :
310 FOR Y=0 TO 13
320 : FOR X=1 TO 38
330 : PRINT AT(13-Y,X)§">"
340 : PRINT AT(39-X,13+Y)§" <"
350 : NEXT X
360 NEXT Y g
370 PAUSE 20
380 END
E

MAWWWWWVW

.
%S

AAAAAAAAAAAAANAN N NANAANANNA
AAAAAANAANANS NN NN NN NN

Nun wollen wir uns die Zahlenpaare eines Satzes Dominosteine mit
maximal 6 Punkten ausdrucken lassen, vgl. Sinclair (1980). Die
STR$ Funktionen benutzen wir, um die Ausgabe zus#tzlicher Blanks
bei den Variablen M und N zu unterdriicken.

10 REM 3% DOMINO-STEINE ¥%¥

14 PRINT

20 FOR M=0 TO 6

30 FOR N=0 TO M

40 PRINT STRE(M)§":";STRS&(N)3" "}
S0 NEXT N

60 PRINT

70 NEXT M

80 END

Matrjoschka-Plippchen 93

Programmlauf

|

Vertauschen wir in diesem Progremm die Anweisungen der Zeiien 50
und 70. Dies quittiert uns der Computer nach dem Programmstert
mit einem korrekten Ausdruck der ersten Zeile und danach mit der
Fehlermeldung NF:

b.]
c
z

cesssasnsacace

It beaptbate
OUADLIN

sssscassrece
aseennnsa

g 38

';.ad y

RUN

0:0 1:0 2:0 3:0 4:0 5:0 6:0
’NE}T WITHOUT FOR ERROR IN 20
(el

Was ist geschehen? Nachdem der Interpreter beide Schleifenerdff-
nungen abgearbeitet hat, kann er die sich iiberleppenden Schlei-
fen nicht mehr unterscheiden. Solch eine Konstruktion liésst die
Syntex von BASIC nicht zu. Verschiedene Schleifen milssen entwe-
der vollsténdig ineinander verschachtelt oder v6llig voneinander
getrennt sein.

Verschachtelte Schleifen:

einzeln Reihe verschgchtelt verboten
r—> —>

FT—: r—>

YR
Ir—1ll
4

e t—
So ist es nicht zuldssig, dass Anfang und Ende einer Schleife in
zwei verschiedenen Schleifen liegen,

Studieren wir ein etwas komplizierteres Beispiel. Wir mSchten
ein rechtwinkliges, gleichaschenkliges Dreieck aus Sternen auf
dem Bildschirm 'aufschichten'. Der rechte Winkel mdge in der un-
teren linken Ecke liegen. Die Aufgabe l¥sen wir in mehreren
Schritten.

24

1.
2.
3.
4.
5.

6. Unser erstes BASIC Programm

Position des ersten auszugebenden Sternes festlegen
Lédnge der Zeile festlegen
Anzehl der Zeilen festlegen

Stern drucken

Schleifenenden fixieren

Aus diesen Vorgaben schreiben wir‘einen Algorithmus in Form eines
Struktogrammes auf. Nachdem der Initialisierungsblock klar ist,
wird eine Doppelschleife, beginnend mit dem Schleifenrumpf, auf-
gebaut. Da die Strukturbl&cke jeweils genau einen Ein- und einen
Ausgang besitzen und aufgrund der Konstruktion eines Strukto-
grammes schon auf dem Papier in der richtigen Weise ineinander-
geschachtelt sind, wird durch diese Methode die Konstruktion
syntektisch korrekter Verschachtelungen im Algorithmus erzwungen.

AN DER POSITION
(X,Y) EINEN

STERN DRUCKEN

Die {ibertragung des Struktogramms
in ein syntaktisch korrektes BASIC
Programm ist nun nicht mehr schwie-
rig. Wir nutzen dabei die Mdglich-
keit, die Zdhlvariable einer Schlei-
fe von 'oben nach unten', also mit
negativer Schrittweite, abzuarbeiten.
Dies wird durch des Format der An-

BIS X>v weisung in Zeile 30 realisiert. Be-
merkenswert ist nur noch, dass die
BIS Y<1 Laufenweisung der inneren Schleife
ENDE unmittelbar vom aktuellen Y-Wert
abhéngig ist.
10 REM %#% DREIECK AUFSCHICHTEN ¥##¥% RUN
11 A
20 CLS !
30 FOR Y=25 TO 1 STEP -1 I
40 : FOR X=1 TO Y
S0 : PRINT AT(Y,X)j"%"

¢ NEXT X
NEXT Y
PAUSE 20
END

HORMORCCHCIE NCHCROK

Fogok
Ao

*

Sae

Grosse Spriinge 95
Grosse Spriinge
Wéhrend in einem Programm daes Springen in eine FOR ... NEXT

Schleife strikt untersagt ist, ldsst die Syntax von BASIC ein
vorzeitiges Verlassen der Schleife zu.

erlaubt nicht zulédssig
—> —— —
— —
L —>
| W e
S .

Es ist allerdings kein guter Programmierstil und fihrt oft zu
unerwerteten Resultaten. Uberlegen Sie sich hierzu die Arteits-
weise des nachstehenden Programmes, bevor Sie es laufen lassen.

10 FOR I=80 TO 90

20 FOR J=80 TO 100

30 PRINT J;

40 IF J=1I THEN PRINT:GOTO &0
50 NEXT

60 PAUSE 10

70 NEXT

80 END

Nun, hatten Sie das Ergebnis erwartet? Der Grund fiir die 'ver-
schlungenen' Wege des Programmlaufes liegt in dem bedingten
Sprung in Zeile 40. Im Falle der Wahrheit des Ausdruckes J = I
wird die innere Schleife verlassen. Eine weitere Komplikation
tritt dadurch ein, dass die beiden NEXT Anweisungen nicht iden-
tifiziert sind. St0sst der Interpreter auf eine solche NEXT An-
weisung, so akzeptiert er sie ungepriift als zur gerade durchlau-~
fenen Schleife gehérig. So fiihrt die Anderung der Zeilen

50" NEXT J
70 NEXT I

zu dem gewlinschten Programmverlauf:

96 6. Unser erstes BASIC Programm

"
! gg%ﬁgn

'ady

Der Interpreter 'merkt sich' die Anfénge erdffneter Schleifen
in einem Stapelspeicher oder Stack, der nach dem Last-In-First-
Out Prinzip arbeitet. Diesen kann man sich wie einen Stapel Tel-
ler vorstellen, der stets von oben benutzt wird: Die Teller k&n-
nen nur in der umgekehrten Reihenfolge ihrer Ablage entnommen
werden. Mit diesem technischen Kniff ist der Interpreter bei mi-
nimalem Speicherplatzbedarf in der Lage, sich in mehreren sukzes-
sive erdffneten Schleifen gurechtzufinden. Bei Beendigung einer
Schleife wird der entsprechende Eintrag (oberster Teller) ge-
18scht und so wieder Platz im Speicher geschaffen., Der Umfang des
Stapelspeichers bestimmt die maximale Verschachtelungstiefe der
FOR ... NEXT Schleifen; auf vielen Micros liegt sie bei 10.

Wird eine begonnene Schleife durch Herausspringen mittels ei-
ner GOTO Anweisung verlassen, so verbleibt die Anfangsadresse der
Schleife im Stack. Wiederholt sich diese Prozedur mehrmals inner-
halb eines Programmleufes, so kann der Speicherplatz im Stack
schnell verbraucht sein und der Interpreter bricht die Programm-
ausfliihrung mit der Fehlermeldung OM: OUT OF MEMORY ERROR ab. Dies
ist ein Grund mehr - falls irgend mdglich - Sprlinge aus Schleifen
zu vermeiden.

Kleine Schritte

Bei dem FProgramm DREIECK AUFSCHICHTEN lernten wir die FOR ...
NEXT Anweisung mit negativer Schrittweite kennen. Im BASIC der
meisten Kleincomputer ist diese Anweisung noch erheblich variab-
ler, als wir sie bislang nutzten. Es ist sogar die Konstruktion
von Schleifen mit beliebiger positiver oder negativer Schrittwei-
te mbglich. Wir benutzen dies, um uns eine Wertetabelle der Si-
nusfunktion per Bildschirm ausgeben zu lassen, Dabei verwenden
wir die im Interpreter fest programmierte Standardfunktion SIN()
sowie die ebenfalls programmierte Konstante PI = 3,14159265, eine

Unterprogrammtechnik 97

Rundung der transzendenten Ludolfschen Zahl iU,

10 REM 3tk SINUS %

11

20 FOR X=0 7O PI/2 STEP 0.1
30 PRINT *SIN"jX;"=";SIN(X)
40 NEXT X

SO0 END

Allerdings kdnnen bei Verwendung gebrochener Dezimelzshleu Run~
dungsfehler auftreten, wie das folgende Beispiel belegt.

10 FOR X=-2 TO 2 STEP .4
20 PRINT X, ,SGN{(X)

30 NEXT

40 END-

¥N
8
:2&328306445'10
}:2

e

e o BN DN B I]

Beim sechsten Schleifendurchlauf trifft die Variable X auf einen
zwar sehr kleinen, aber doch negativen Wert. Nun werden Sie mei-
nen, dess ein Fehler der Grdssenordnung 10'10 nicht weiter tra-
gisch ist. Ja und nein, fihrt doch dieser Fehler bei Anwendung
der 3ignumfunktion SGHN() dann bereits auf einen absoluten Feh-
ler 1, da diese Funktion im Nullpunkt O, fiir jeden negativen
Wert jedoch gleich -1 ist.

Unterprogrammtechnik

Wie wir beil der Komstruktion von Programmschleifen gelernt haben,
besitzt unser Micro die hervorragende Eigenschaft, zykliache Wie-
derholungen von Programmabschnitten mit leistungsfédhigen Anwei-
sungen selbst zu organisieren. Was tun wir jedoch, wenn gleich-
artige Progrommebschnitte verstreut im Programmr suftreten? Es er-~
scheint als unbkonomische Speicherverschwendung, in solchen Fi#l-
len jedesmal die gleiche Anweisungssequenz ins Progremm zu
schreiben. Hier bietet BASIC die Technik des Unterprogrammes an.
Das in Frage kommende Programmstiick wird einmalig als Unterprec
gramm an einer geeigneten Stelle des Gesamiprogrammes plaziert
und dann vom Hauptprogramm mit einer Anweisung socoft als ndtig

98 6. Unser erstes BASIC Programm

aufgerufen., Nach Abarbeitung des Unterprogrammes wendet sich der
Interpreter wieder dem Hauptprogramm zu und fahrt dort mit der ‘
Bearbeitung der jeweils néchsten Anweisung fort.

Aufgerufen wird ein Unterprogramm durch die Anweisung GOSUB
mit nachfolgender Zeilennummer, welche die Startzeile des Unter-
programmes’ markiert. Der Interpreter merkt sich die Zeilennummer
der GOSUB Anweisung des Heuptprogrammes. Dort setzt er das Pro-
gremm mit der néchsten Anweisung fort, wenn er im Unterprogramm
auf die Riickkehranweisung RETURN st8sst.

In einem Programm ist die Verwendung mehrerer Unterprogramme
zuldssig. Geeignet organisiert, konnen Unterprogramme wesentlich
dazu beitragen, ein Programm ilibersichtlich und gut strukturiert
zu gestalten. Auch die - fast étets notwendige - Fehlersuche
wird durch Unterprogramme ‘erheblich vereinfacht, da die einzel-
nen Programmsegmente erst mal separat getestet werden k¥nnen.

Bei der Programmiersprache BASIC werden in den Unterprogram-
men dieselben Variablen wie im Heuptprogramm verwendet; damit ist
die Ubernahme gitltiger Daten vom Hauptprogremm ins Unterprogramm
und zuriick automatisch gewdhrleistet.

Im folgenden Beispiel wird vom Unterprogramm eine Rundungs-
routine ausgefiihrt, die unndtige Stellen nach dem Punkt abschnei-
det. Das Unterprogramm wird vom Hauptprogramm vor Ausgabe eines
Ergebnisses aufgerufen. Das Runden von Nachkommastellen ist zum
Beispiel vor Ausgabe von Wihrungsbetirdgen nttig und wird allge-
mein dazu benutzt, um die Vort#duschung einer unrealistischen Ge-
nauigkeit nach Multiplikation bzw., Division von Dezimalzahlen zu
unterdriicken.

100 A=17:B=4.5:C=21.5
110 R=A/B

120 GGSUB 500

130 PRINT:PRINT R,RU
140 T=R/C

150 R=T:GOSUB 500

160 PRINT:PRINT R,RU
200 END

499

500 REM %% SUBROUTINE: RUNDUNG ¥*¥*
510 RU=INT(R*100+.5)/100

520 RETURN

RUN

3.77777778 3.78
. 175710594 .18

l;iady

Hilfe, unser Micro stiirzt ab! 99

Die in Zeile 510 auftretende Punktion INT() rundet jede Zahl X
auf die ganze Zahl X-1 < INT(X) ¢ X ab. Das Hauptprogramm muss

in Zeile 200 mit der Anweisung END abgeschlossen werden. Anderen-
falls wirde nach seiner Abarbeitung unerwinschterweise das Unter-
programm anlaufen. Hierbei stiesse der Interpreter auf die Anwei-
sung RETURN, was er mit Ausgabe der Fehlermeldung RG: RETURK
WITHOUT GOSUB quittieren wiirde,

Hilfe, unser Micro stiirzt ab!

Ist Ihnen das auch schon passiert? Sie arbeiten an einem Programm
und vergessen dabei, eine ge#nderte Zeile abzuschliessen. Nun
starten Sie das Programm mit Eingabe des Kommandos RUN, Komisch,
denken Sie, es tut sich gar nichts, also gleich nochmal RUN ein-
geben. Und nun geschieht Seltsames. Das Programm arbeitet anfengs
ganz normal, doch dann kommt es zu einer unabldssigen Wiederho-
lung eines bestimmten Programmabschnittes., Und was das Schlimmste
ist, der Micro reagiert nicht mehr auf Eingaben von der Tastatur.
Was ist geschehen? Nun, Sie hatten an 'geeigneter' Stelle den Di-
rektbefehl RUN als Anweisung in die zuletzt bearbeitete Zeile
‘eingebaut. Ist dabel eine syntaktisch korrekte Anweisung entstan-
den, so wird RUN beim Abarbeiten des Frogramms vom Interpreter
akzeptiert und er startet das Programm an dieser Stelle neu; das
Programm hat sich aufgehiingt., Schauen wir uns ein Beispiel an,
das die geschilderte Situation simuliert.

10 PRINT "HILFE® 3
20 PRINT; :RUN

Dieser Aufh@nger ist ausgesprochen harmlos. Das Programm kenn
durch Driicken der Break-Taste BRK, auf anderen lMicros durch STOP
oder CTRL C ebgebrochen werden., Dies trifft auch fiir viele mit-
tels der GOTO Anweisung konstruierte Endlos-Schleifen zu.

In schwierigeren F#llen hilft die Betdtigung der RESET Taste.
Hierdurch wird das Programm des Licro bis ins Betriebssystem zu-
riickgesetzt. Von hier aus ist durch Eingabe des entsprechenden
Kommandos ein Neustart des BASIC Interpreters mbglich, da dessen
Programm wie auch das BASIC Anwender-Programm bei dieser Prozedur:
im Speicher verbleibt. Bei Micrcs mit 'festverdrahtetem' BASIC
Interpreter erfolgt dessen iNeustart gewdhnlich autcmatisch. Es

100 6. Unser erstes BASIC Programm

ist klar, dass man vor erneutem Siarten des BASIC Programaes das
Listing grundlich studiert und nach dem den Absturz verursachen-
den Fehler - mitunter sind es gleich mehrere - durchfltht. Wir
wollen ‘unseren Micro ja nicht gleich wieder ins Aus schicken.

Und nun gibt es noch den ganz iliblen Fall. Unser BASIC besitzi
eine Schnittstelle, iliber die man programmgesteuert die 'Interma!’
des Rechners erreichen und auch beeinflussen kann. Das ist eine
feine Sache, kénnen doch damit die Raffinessen des Betriebssysie-
mes eber auch des BASIC Interpreters (spHdter einmel) studiert
werden - es gibt in diesem Punkte also prinzipiell keine Firmen-~
geheimnisse. Insbesondere kdnnen auf diese Weise iiber BASIC in
den Spéicher des Rechners Routinen in ﬁhschinencode, der 'Mutter-
sprache' des lMicro, eingelesen und denn auch genutzt werden. Es
leuchtet ein, dass dies einen schon tieferen Eingriff in die in-
neren Abl#dufe des Rechners darstellt - und dies kenn auch mal da-
nebengehen, d.h. den Interpreter und eventuell auch den Monitor
derart vom rechten Weg abbringen, dass auch ein Versuch, iber
RESET alles wieder ins Lot zu bringen, versagt. Dann bleibt als
tatsdchlich allerletzter Ausweg der Griff zur Stromversorgung.
Das kann sehr bitter sein, werden doch dabei alle fliichtigen
Speicher des Micro geldoscht. Mithin muss bei neuerlicher Inbe-
triebnahme gegebenenfalls cder Interpreter geladen werden. Doch,
und das ist das eigentlich Trauxrige, wir heben auch unser mithsam
eingegebenes Anwender-Programm verloren. Das gleiche kann natir-
lich auch bei einem kurzzeitigen Netzspannungsausfell passieren.
So ist es eine gute Idee, léngere Programmentwicklungen zwischer-
durch und insbesondere vor dem Start immer mal auf Kagsette zu
sichern.

Kommando oder Anweisung?

Dem aufmerxsamen lLeser wird nicht entgengen sein, dass es in un-
serem Text mit‘der Benutzung der Begriffe Kommando, Anweisung und
Befehl etwas durcheinandergeht, Dies hat zuerst einen ganz simp-
len Grund. Die Frogrammiersprache BASIC wurde in der natiirlichen
Sprache Englisch unter Benutzung der beiden Termini Command und
Statement verfasst, die jeweils verschiedene Ubersetzungen ge-
statten. Uberdies wird im Deutschen seit den Prithzeiten der mo-
dernen Rechentechnik, die in den dreissiger Jahren mit der Ent-

Kommando oder Anweisung? 101

wicklung der programmgesteuerten elektromechanischen Automaten
21 und Z2 durch den Bau-Ingenieur Konrad Zuse in Berlin begann,
der Begriff Befehl benutzt.

In unserem Text gilt durchgéngig folgende Regel. In Programm-
zeilen stehende Befehle werden zumeist Anweisung, niemals aber
Kommando genannt. Umgekehrt heissen im Direkt-Modus eingegebene
Befehle niemels Anweisung, sondern Kommando. Die Benutzung des
Wortes Befehl erfolgt offensichtlich uneingeschrénkt.

Gefvrdert wird diese Sprachverwirrung durch die ansonsten
héchst erfreuliche Tatsache, dass unser Interpreter fast alle
BASIC Befehle sowohl als Kommando im Direkt-Modus wie auch als
Anweisung im Progremm-Modus akzeptiert. Man muss schon suchen,
um 'reine' Anweisungen und Kommandos zu finden. So ist der Befehl
CONT ausschliesslich einer Verwendung im Direkt-Modus vorbehal-
ten, wihrend INPUT nur als Anweisung benutzt werden darf.

Hier nun schliesst unsere anhand von Beispielen gegebene erste
Einfiihrung in den Umgang mit dem Kleincomputer. Wir heben ihn in
einigen seiner wesentlichen Funktionen kennengelernt, finden uns
euf dem Tastenfeld immer besser zurecht und sind ermutigt worden,
uns en eigenen kleinen BASIC Programmen zu versuchen, m¥glichst
entsprechend dem ganzheitlichen Schema

Problem - Algofithmus = Programm - Computer -
Programmkorrektur - Problemldsung - Interpretation

was und eigentlich erst der stets verfiigbare 'Personal'-Computer
erlaubt. Doch bleibt es dabei nicht aus, dass wir auf Situationen
stossen, in denen unsere Kenntnisse nicht ausreichen, um einen
von uns beabsichtigten Programmveriauf per Anweisung zu erzwin-
gen - oder auch einen unbeabsichtigten zu verstehen. Auch mSchten
wir natlirlich die zahlreich in der Literatur vorhandenen BASIC
Programme lesen kdnnen und sie auf unserem Micro umsetzen.

Aus diesen Grlinden ist es unerléisslich, die Programmiersprache
BASIC systematisch zu studieren, und Sie, lieber Leser sind ein-
geladen, im folgenden Kapitel diesen Weg zu beschreiten, falls
Ihnen der Umgang mit dem Micro noch Spass macht. Da wir nun
schon konkrete Vorstellungen vom Funktionieren eines Programmes
haben und uns auch etwas im Jargon der Computerei auskennen, wird
uns dies nicht mehr schwerfallen.

Natiirlich soll das Gesagte Sie zum Weiterlesen veranlassen.
Keinesfalls darf aber der Eindruck entstehen, dess die Kenntnis

102 6. Unser erstes BASIC Programm

vieler Programmbeispiele geringzuschiitzen sei, bilden diese doch
den eigentlichen Erfahrungsschatz des Programmierers. Auch hier
gilt der Leitspruch des Verleges 'theoria cum praxi', Schliessen
wir das Kapitel mit einem léngeren Programm, Es handelt sich um
eine Demonstration des klassischen Bubble-Sort Verfahrens. Mit .
Hilfe der RND Funktion wird eine Liste von Zahlen erzeugt, um
sie danach in aufsteigender Ordnung zu sortieren. Jedes Element
wird mit allen anderen verglichen und gegebenenfalls vertauscht.
Die Variable TELP dient als Zwischenspeicher. Der Name des Ver-
fahrens leitet sich davon ab, dass die Elemente wie Bliéschen -
engl. bubbles - in einem Glas aufsteigen. Sonderlich schnell ist
die Routine gerade nicht.

100 REM #%% NUMERISCHES BUBBLE SORT VERFAHREN %%
101 :

111 REM # GENERIERUNG DES ZAHLENFELDES %

113

120 N=099:DIM NUM(N)

130 CLS:PRINT

140 FOR K=0 TO N

150 NUM(K)=INT (PO00#RND (1)) +100

160 PRINT NUM(K) 3

/170 NEXT K
19S5
197 REM % SORTIER ROUTINE ¥
199 :

200 BEEP : REM Tonausgabe, auf einigen Micros PING
210 FOR I=0 TO N-1

220 FOR J=I TO N

230 IF NUM(I)<NUM(J) THEN 270

240 TEMP=NUM(I)

250 NUM(I)=NUMI(J)

260 NUM(J)=TEMP

270 NEXT J

280 NEXT I

290 BEEP : REM Tonausgabe, kann auch entfallen
295 :

297 REM % AUSGABE DER SORTIERTEN LISTE #
299 :

300 CLS:PRINT

310 FOR K=1 TO N

320 PRINT NUM(K) 3

330 NEXT K

340 PRINT

399

400 END

SS5 REM Maschinenabhdngig ca. 2 min Laufzeit

Uber die Programmiersprache BASIC 7

Sprache

Aus unserer bisherigen Programmierpraxis wissen wir, dass es in
einer Programmiersprache wie BASIC tatséchlich auf jedes einzel-
ne Komma ankommt. Um den korrekten Umgang mit BASIC zu erlernen,
ist es notwendig, mehr von der Konstruktion dieser Sprache zu
verstehen.

Wie die meisten geschriebenen Sprachen baut sie auf einem Al-
phabet von Zeichen auf. Aus diesen Zeichen werden Zeichenreihen
oder Worter gebildet. Durch syntaktische Vorschriften werden aus
allen mit dem Alphabet bildbaren Wortern ganz bestimmte als zu-
lHdssig ausgesondert. Grob gesprochen werden dann aus diesen wie-
derum nach syntaktischen Regeln die Sdtze der Sprache BASIC,
némlich Anweisungen und Kommandos, gebildet. Im Gegensatz zu na-
tirlichen Sprachen ist die Anzahl der zuldssigen Wirter eng be-
grenzt und genau festgelegt. So zeichnet sich eine derartig for-
malisierte Sprache einerseits durch tiefe Armut des Wortschatzes,
zum anderen aber durch gr¥sgere Exaktheit und v3llige Eindeutig-
keit aus. Eine Programmiersprache erlaubt es, an Stelle des Ope-
rierens mit Gedanken das Operieren mit Zeichen zu setzen. Damit
wird die Denkarbeit ganz erheblich erleichtert sowie ein forma-
ler Rahmen zur prézisen Formulierung von Algorithmen gegeben, ja
der Kontakt zu dem auf physikalischen Prinzipien arbeitenden
Computer erst mdglich.

Wie bei natiirlichen Sprachen definiert die Syntax die zugelas-
senen sprachlichen Konstruktionen unabhéngig von deren Bedeutung.

104 7. Uber die Programmiersprache BASIC

Darum kimmert man sich in der Semantik, die den Konstruktionen
einen zweckentsprechenden Sinn verleiht. Schliesslich werden in
der Fragmatik Aussagen iiber die Effektivitat von Sprachelementen
sawie anlagenbedingte Einschrénkungen getroffen.

Es leuchtet ein, daess die Definition der Syntax einer Pro-
grammiersprache sowie auch alle semantischen oder pragmatischen
Aussagen nicht in dieser Sprache selbst formuliert werden kénnen.
Dazu wird in einer Theorie der Progremmiersprachen zweckm#éssig
eine weitere formalisierte Sprache, die sogenannte Metasprache
eingefilhrt, wobei diese - bereits in ihrem Alphasbet - streng von
der Programmiersprache zu unterscheiden ist.

Ubrigens treten #hnliche, wenn nicht erheblich kompliziertere
Probleme beim Studium einer natiirlichen Sprache auf. Dies sei an
den ersten Sdtzen des 'Der Satz' iiberschriebenen Hauptabschnittes
aus einer deutschen Sprachlehre belegt, vergleiche Erben, J.
(1966). Dort heisst es: "Als kleinste relativ selbstiéndige Rede-
einheit erscheint der Satz. In einem abgeschlossenem Sprech-
(oder Schreib-) Akt des Sprechers fir einen Horer (Leser) geprigt
(Fussnote: Der sprachliche Satz ist das, was sich in dem einheit-
lichen Stoss des sprachlichen Hinsetzens verwirklicht.) - vermag
er ein Geschehen oder Sein als tatsédchlich statthabend oder
stattgehabt, mbglich, erwinscht, notig oder fraglich zu bezeich-
nen, je nach Erfordernis der Sprech- (Schreib-) Situation, auf
die er zugeschnitten ist. Daraus wird deutlich: jeder Satz hat
eine besondere (situationsgebundene) Leistung zu erfiillen, und
weiterhin: der besonderen Leistung entspricht als Funktionstriger
eine besonders geprdgte Setzform, deren Einzelbestandteile auch
bei Vielgliedrigkeit der Setzung als funktionale Einheit, d.h. im
gleichzeitigen Miteinander wirken."

Zeichen und Schliisselwdrter

Beginnen wir den (informellen) Aufbau der Sprache BASIC mit der
Angabe eines Alphabetes, das aus den folgenden Zeichen gebildet
wird:
Grossbuchstaben A Dbis
Ziffern 0O bis 9
waitere Volltextzeichen + -

(3]

Konstanten 105

Sonderzeichen "l #$F& 0@ () ' _~%,/:;<=>7 _

Bemerkungen. Der tatsédchlich verfligbare Zeichenvorrat htingt von
dem auf Ihrem Rechner implementierten BASIC ab; so sind oft auch
Kleinbuchstaben zugelassen. Eine Sonderstellung nimmt das Zei-
chen " ein, es dient spdter zur Kenntlichmachung eines Textes,
ohne selbst als Textzeichen erlaubt zu sein. Abgesehen von dem
drucktechnischen Problem der Darstellung des Blanks oder Leer-
zeichens ausserhaldb eines Kontextes ist dieses fir uns ein Zei-
chen wie jedes andere. Wir benutzen es hier bevorzugt als Trenn-
zeichen.

Aus den Grossbuchstaben werden folgende besonders reservierte
Schliisselwdrter gebildet:

AND DATA DIM - DEF END FN FOR GOTO IF INPUT LET

NEXT NOT ON OR PI PRINT READ REM RESTORE SPC STEP

STOP TAB THEN TO
Bemerkungen. 1. Blanks sind innerhalb von Schliisselwtrtern nicht
erlaubt; die hier verwendeten Blanks dienen zur Abgrenzung. In
manchen BASIC Versionen muss allerdings vor jedem Schliisselwort
ein Blank stehen sowie auch danach, falls dort nicht gerade eine
logische Zeile beginnt beziehungsweise endet.
2. Die Listg der BASIC Schliisselwdrter wird spHdter erweitert; die
hier angegebenen bilden den Grundstock filr ein Minimal BASIC, das
von fast allen Micros verstanden wird.
3. Implementierungsabhiéingig gehdren neben den darstellbaren Zei-
chen noch weitere Kontrollzeichen fiir technische Zwecke wie 'Wa-
genriicklauf' oder ENTER zum Alphabet. Die Kontrollzeichen selbst
sind nicht auf dem Bildschirm ausgebbar, sie existieren im BASIC
nur als Code.

Konstanten

Die numerischen Konstanten sind eine in ihrem Umfang implemen-
tierungsabhédngige Teilmenge der reellen Zahlen. Sie werden in de-
zimaler Form dargestellt unter Benutzung der Ziffern und eventu-
ell weiterer Volltextzeichen + - . sowie des Buchstabens E mit
oder ohne Vorzeichen

als ganze Zahl,

als Dezimalbruch,

in de# Exponentendarstellung.

106 7. Uber die Programmiersprache BASIC

Beispiele. -3141 =17
3.141 -0,.0000017
3.141E-12 ~-3141E-8

Bemerkungen. 1. Eventuell tritt in der Exponentendarstellung der
Dezimalpunkt in der Mantisse nur implizit auf, wird dann also
nicht geschrieben. In diesem Sinne sind hier die ganzen Zahlen
Dezimalbriiche mit implizitem Punkt.
2. Konkret wird die durch numerische Konstanten auszudriickende
Teilmenge der reellen Zahlen durch die auf dem Rechner anzeigba-
re maximele Anzahl signifikanter Stellen sowie durch die kleinste
positive darstellbare Zahl EPS (Epsilon) sowie die grbsste dar-
stellbare Zahl INF (engl. infinite - unendlich) fixiert. In .BASIC
sind mindestens sechs signifikante Dezimalziffern vorgesehen, und
es muss gelten EPS £ 10720 und INF 2 10738, Auf dem Rechner selbst
werden noch wesentlich mehr Zahlen als auf dem Bildschirm anzeig-
bar verarbeitet. Dies hdngt auch mit der internen Darstellung im
Dualzahlsystem zusammen.
3. Ergibt sich durch Eingabe oder Berechnung ein positiver Wert
kleiner als EPS, so wird der Wert Null angenommen. St¥sst der
Rechner auf eine Zahl grUsser als INF, so meldet er den Fehler
OV: OVERFLOW ERROR.
4., Sind in BASIC verschiedene Darstellungen ein und derselben
Zahl durchaus zul#ssig, so werden diese vom Rechner in normali-
gierter Form verarbeitet und ausgegeben. Sie kdnnen das durch
Eingabe von

PRINT 123.,-123.00,0123

PRINT 3141E-8,0.0000017

nachpriifen. Steht lediglich eine Null vor dem Dezimalpunkt, so
kann diese bei vielen Rechnern entfallen; geben Sie ein:

PRINT 0.17,.17

Obwohl aufeinanderstossende Vorzeichen in BASIC unzuldssig sind,
werden sie trotzdem von vielen Computern verkraftet; testen Sie
das auf Ihrem Micro durch Eingabe von

PRINT + =1, - + - 3

oder &hnlichem.

Unter einem Text verstehen wir eine aus beliebigen Zeichen
ausser dem Anfilhrungszeichen " gebildete Zeichenreihe. Eine Text-
konstante ist ein beliebiger, durch zwei Anfilhrungszeichen einge-

Variablen 107

schlossener Text.
Beispiele. "OXO" "KC 85/2" "17E-3" nyn Hewon

Bemerkungen. 1. Entsprechend dem englischen Sprachgebrauch
heisst eine Textkonstante auch String.

2. Der Wert - besser Textwert - einer Textkonstanten ist der von
Anfithrungszeichen eingeschlossene Text selbst, in den zuletzt
aufgefilhrten Beispielen also die Zeichenreihe 17E-3 beziehungs-
weise die Ziffer 7, nicht etwa die dargestellten Zahlen. Die An-
fdhrungsstriche gehdren nicht zum Wert des Textes und werden bei
einer eventuellen Ausgabe nicht dargestellt.

3. Unter der Linge einer Textkonstanten wird die Anzahl der
durch die Anfiihrungszeichen eingeschlossenen Zeichen verstanden.
Durch die kein Zeichen enthaltende Zeichenreihe wird die leere
Textkonstante "" definiert, sie besitzt die L#nge Null. Die ma-
ximale Linge einer Textkonstanten ist maschinenabhéngig.

Variablen

Eine numerische Variable wird aus einem oder zwei Buchstaben
oder einem Buchstaben mit einer nachgestellten Ziffer gebildet.

Beispiele., A B AC DA Al CT

Eine Textvariable wird wie eine numerische Variable mit zusitz-
lich angehlingtem Zeichen $ gebildet.

Beispiele. A$ B$ AC$ DA Al$ CT$

Indizierte numerische Variablen oder Textvariablen werden durch
Kachstellen eines in Klammern geschriebenen Index gebildet. Der
Index ist eine ganzzahlige nichtnegative (numerische) Konstante
oder Variable. Sollen Indizes mit einem Wert grdsser als Zehn
benutzt werden, so bedarf dies einer besonderen Vereinbarung.
Auch zweifach indizierte Variablen, bei vielen Rechnern sogar
mehrfach indizierte Variablen sind zuldssig.

Beispiele. A$(3) B$(I) AC(1¢) DA(@) Al1$(Al) C78(5)
A(1,3) D(5,I) E$(I,J) BC(5,3,K) T%(I1,J,L)

Bemerkungen. 1. Variablen sind Platzhalter fiir numerische Kon-
stanten bzw. Textkonstanten, deren Werte wiahrend eines Programm-
laufes festgelegt oder auch gedndert werden kdnnen. Dabei kann

108 7. Uber die Programmiersprache BASIC

mit ihnen wie in der 'Buchstabenrechnung' der Mathematik operiert
werden.

2. Der Typ einer Variablen ist unmittelbar an ihrer Bezeichnung
ablesbar. So kdnnen beispielsweise die Variablen C und C$, bei
grundsétzlich verschiedener Bedeutung, unabhéngig voneinander be-
nutzt werden.

3. Viele Rechner akzeptieren auch Variablen, die eus mehr Buch-
staben und Ziffern als hier angegeben gebildet sind. So sind in
den meisten FHllen Zeichenreihen wie

VARIABLE BASICS A1B3(I)

zuldssig, werden dann aber oft nicht von den Variablen VA, BA$
beziehungsweise Al(I) unterschieden. Die Anzahl signifikanter
Zeichen ist also maschinenabhéngig. Die Namen fiir beide Typen
von Variablen diirfen keine BASIC Schliisselwdrter enthaltfen. So
gind die Zeichenreihen

KONRAD ZIFFER$ 5MID$

keine Variablen und fiihren bei Benutzung zu der Fehlermeldung
SN: SYNTAX ERROR.
4. Als susserordentlich flexibel erweist sich die Mdglichkeit,
Variablen wiederum durch Variablen zu indizieren. So ldsst sich
zum Beispiel die indizierte Variable A(I) mit I = 1,...,5 als
Platzhalter fiir einen fiinfdimensionelen Vektor auffassen, und
entsprechend dient die zweifach indizierte Variable A(I,K) mit
I=1,2,3und K= 1,...,5 als Platzhalter flir eine 3 x 5-dimen-
sionale Matrix. Selbst die in der Mathematik oft verwendete Dop-
pelindizierung ist m8glich, viele Micros akzeptieren Variablen
der Form

A(I(K)) 7$(A(I,K),B(I1,K))

Funktionen

Mit den Standardfunktionen stehen in BASIC Nachbildungen oft be-
nétigter reeller Funktionen der Mathematik zur Verfiligung. Hierzu
gehtren beispielsweise EXP() fir die Exponentialfunktion oder
SGN() fir die Signumfunktion. Ausfiihrlich werden diese Funktio-
nen im neunten Kepitel behandelt.

Operatoren 109
Operatoren

Die arithmetischen Operatoren werden durch die Zeichen

- * ~
, + /

ausgedriickt.

Bemerkung. Diese Operatoren besitzen die in der Mathematik ibli-
che Bedeutung. Auf einigen Rechnern wird statt des Potenzzeichens
~ die Zeichenreihe ** benutzt.
Die Vergleichsoperatoren werden durch die Zeichen beziehungsweise
Zeichenreihen

< > = £> >d= <=
ausgedriickt.

Bemerkungen. 1. Die Vergleichsoperatoren besitzen in der angege-
benen Reihenfolge die Bedeutung von 'kleiner als', 'grésser als',
tgleich', 'ungleich', 'grit'sser oder gleich' sowie 'kleiner oder
gleich'.

2. Anstelle von >=, <= oder <> ist oft auch die Schreibweise =>,
=< beziehungsweise >< zuldssig.

3. Vergleichsoperatoren dienen dem jeweiligen Vexrgleich von Tex-
ten oder von Zahlen.

Die logischen Operatoren werden durch die SchlUsselwbrter

NOT AND CR
ausgedriickt.

Bemerkungen. 1. Diese Operatoren dienen der Verarbeitung von in
BASIC definierten Ausaagen;

2. Die logischen Operatoren besitzen in dexr oben engegebenen
Reihenfolge die Bedeutung von ‘micht', 'und', 'oder'.

3. Auf einigen Micros lassen sich die logischen Operatoren auch
zur Verarbeitung von durch Zahlen reprdsentierten Bit-Mustern
verwenden.

Dér Konkatenations- oder Textverimiipfungsoperator wird durch das
Zeichen + ausgedrfickt.

Bemerkungen. 1. Der Konkatenationsoperator dient zum Verketten
von Texten.

2. Dies ist neben der Bedeutung als Vorzeichen oder arithmeti-
scher Operator die dritte mogliche Interpretation des Zeichens %
in der Programmiersprache BASIC. Worum es sich dabei in einem

110 7. Uber die Programmiersprache BASIC

konkreten Programm handelt, geht eindeutig aus dem Kontext her-
vor.

Ausdriicke

Ein arithmetischer Ausdruck ist eine aus numerischen Konstanten,
numerischen Variablen, Standardfunktionen sowie arithmetischen
Operatoren gebildete Zeichenreihe. Die Konstruktion eines arith-
metischen Ausdrucks erfolgt stufenweise unter Beachtung der iib-
lichen algebraischen Rangordnung:

” hdchste Prioritdt, danach
/ gleichrangig,
+ =~ gleichrangig,

Diese Priorioritiéiten kbtnnen durch Setzen von Klammern () durch-
brochen werden. Bei gleichrangigen Operatoren erfolgt die Bear-
beitung von links nach rechts. Bereits gebildete Ausdrficke sind
geklammert ebenfalls zur Konstruktion zugelassen.

Beispiele. A 1.7 B(3) F(I) EXP(3) 14C =3.5%7
D+F(I) 3*PI A"3 =774 (-3.3) "-5
C ~-2.1 A(I,K) * B(K,L) 4 + B(3*K) B(3,2)
ACI+#1,K+1) 4 + 3 %2 4/ 3 +2 (4-3)*2
A/B/C 14*3/7T A~37C 2°(3 "34)
N* (N+2)/3 T/2%3/5 2-4"3%2 5 ~(2%)
3.8 * X*3 - 2%X*2 - 17X + 4.7 SIN(3*X - PI/3)

Bemerkungen. 1. Arithmetische Ausdriicke gestatten es, iibliche
mathematische Formeln in der Programmiersprache BASIC zu formu-
lieren.

2. Die syntaktischen Regeln zur Konstruktion arithmetischer Aus-
driicke sind mit mathematischen Regeln vertréglich. So besitzt
der Ausdruck A * B den Wert 1, falls B den Wert O hat. Nicht de-~
finiert, also unzuldssige Ausdriicke, sind

A"B falls A nicht positiv, B nicht ganz ist,
A/B falls B den Wert O hat.

3. Ob die Zeichen + und - *'monadisch' als Vorzeichen oder 'dia-
disch’ zur Verknilpfung von Operanden asuftreten, wird esus dem Zu-
sammenhang klar. Und ob beim Aufeinanderstossen solcher Zeichen
geklammert werden muss, hingt vom benutzten Rechner ab., Sie kon-

Ausdrticke 111

nen das durch Eingabe von
PRINT 3 *- 4, 3 +- 4

testen. In niedergeschriebenem BASIC sollten der besseren Lesbar-
keit halber in solchen Fiéllen Klammern gesetzt werden.
4., Die Auswertung eines arithmetischen Ausdrucks besteht in der
Abarbeitung der Zeichen des Ausdrucks entsprechend der vorgege-
benen syntaktischen Struktur. Zum Zeitpunkt der Auswertung miis-
sen alle auftretenden Variablen definiert sein, erst danach kann
in der Regel vom Wert eines Ausdrucks gesprochen oder iiber seine
Zul#ssigkeit entschieden werden, etwa bei C “ 2,1,

Ein Textausdruck ist eine Textkonstante, eine Textvariable
allein oder wird durch Verknlipfung dieser Objekte mittels des
Konkatenationsoperators + gebildet.

Beispiele. "TEXT" T1$ A$(T) ED$(I) "KC" & "85" & w/2n
T$ + AD$ T$ + C$(K) "BASIC"+"-"4"INTERPRETER"

Ein elementarer logischer Ausdruck sind zwei durch einen Ver-
gleichsoperator verknmiipfte arithmetische Ausdriicke oder auch
Textausdriicke,

Beispiele. 1 <2 X <@ B>A A" >=T*BiC X*2 +Y¥%2 =1
EXP(A*PI) < 10 "MEYER" <> "MEIER" A$ = "STADT"
T$ <> "1984" A$ = B$ "AA" < "AB" A$ < "I
c$ > "g" AB$ = ABCS UPA L P L

Bemerkungen. 1, Die mittels Vergleichsoperatoren gebildeten Aus-
driicke sind logische Aussagen, die den Wahrheitswert 'Wahr' oder
'Palsch' besitzen, Wihrend die Aussage 1 < 2 natiirlich wahr ist,
héingt der Wahrheitswert der Aussege X < @ von der Definition der
Variablen X ab,

2. Bei den Textvergleichen sind die mit dem Gleichheits- oder Un-
gleichheitazeichen gebildeten Ausdriicke ebenfalls sofort ver-
stdndlich. Etwas sonderbar muten die durch die Ausdriicke wie

A$ < "Z" oder C$ > "@g" gebildeten Aussagen an. Wir wissen, dass
jedes BASIC Zeichen eine Code-Nummer besitzt. Dadurch ist eine
vollstiindige Ordnung des auf dem Micro verfiigbaren Alphabetes ge-
geben, Da die Buchstaben durch den Code entsprechend dem Alphabet
der Schriftsprache geordnet sind, lassen sich mit den Vergleichs-
operatoren lexikographische Ordnungen von Texten feststellen oder

112 7. Uber die Programmiersprache BASIC

erzeugen., Somit erhalten Aussagen der Gestalt "AA" < "AB" einen
Sinn und sind entscheidbar.

Logische Ausdriicke sind entweder elementare Ausdriicke oder
werden aus solchen mittels Verknlipfung durch logische Operatoren
gebildet. Hierbei ist das Setzen von Klammern zugelassen.

Beispiele. NOT A < B NOT A$ = "WAHR"+"HEIT" A <3 OR A>=7
A<BAND (D<AORD>=B) (NOT A<1) OR A<= 3
(A <3) =(B$ <>"T") (B<A)=1 X=(Y§="")

Bemerkungen. 1. Im Rechner wird den Wahrheitswerten Wahr oder
Falsch jeweils eine Zahl, oft sind es 1 (manchmal auch -1) bezie-
hungsweise 0,zugeordnet. In den beiden letzten Beispielen werden
durch das Gleichheitszeichen Wahrheitswerte miteinander vergli-
chen.

2, Mit dem Operator NOT wird der Jeweilige Wahrheitswert des
nachfolgenden Ausdrucks invertiert. Ein mittels des Operators
AND gebildeter Ausdruck ist wahr, wenn beide Operanden wahr sind,
sonst ist er falsch. Zwei durch OR verkniipfte Operanden ergeben
einen wehren Ausdruck, falls wenigstens einer der beiden wahr
ist. Anderenfalls ist der Ausdruck falsch.

Prioritdten

Alle aufgefiihrten Operatoren sind hierarchisch geordnet. Begin-
nend mit der hdchsten, bestehen folgende Prioritdten:

() Klammerbildung
Standardfunktionen

+ = monadisch Vorzeichen

~ Potenzieren

* / Multiplizieren und Dividieren
+ =~ diadisch Addition und Subtraktion

alle Vergleichsoperatoren

NOT Negaticn

AND Konjunktion

OR Disjunkticen

Operatoren in gleicher Zeile besitzen gleiche Prioritiét.

Bemerkungen. 1. In Klammern stehende Operationen werden zuerst
ausgefiihrt.

Vereintarungen 113

2. Operationen hdherer Prioritdt werder vor denen mit niedrigerer
Prioritdt ausgefiihrt.

3. Operationen gleicher Prioritdt werden von links nach rechts
abgearbeitey,

Format eines Befehles

Zum Zweck einer einheitlichen und pr#zisen Gestaltung der syn-~
taktischen Vorschriften zur Bildung von BASIC Anweisungen und
Kommandos -~ des sogenennten Formats - verabreden wir den folgen-
den Formalismus.

- In eckige Klamnern geschriebene Objekte diirfen entfallen.,

~ Von den in geschweiften Kiammern vertikal aufgezéhlten Mog-
lichkeiten muss genau eine gew#hlt werden.

- Nicht in Klammern stehende Objekte miissen genau so wie aufge-
fihrt geschrieben werden.

- Drei Punkte symbolisieren, dass die unmittelbar zuvorstehen-
den Objekte mehrmals wiederholt werden kénnen.

Vereinbarungen
DIM

Pormat. DIM Feldname(azithm. Ausdruck [.arithm. Ausdruck]...)
[,Peldname(arithm. Ausdruck[,arithm.Ausdruci...)]

eeoe

Funktion. Die Dimensionierungsanweisung DIM dient zur vorsorgli-
chen Vereinbarung des Umfanges des Indexbereiches in-
dizierter Variaebler oder Felder durch PFestlegung der
jeweiligen oberen Bereichsgrenzen. Es kitnrnen sowohl
Text- als auch numerische Felder vereinbart werden. Zur
Dimensionierung sind nichtnegativ ganzzehlige arithme-
tische Ausdrlicke zugelassen., Die untere Grenze des In-~
dexbereiches ist zumeist auf Null, bei einigen Micros
auch auf Eing festgelegt.

Beispiele., DIM A(15) DIM A$(4) DIM A(K-2), B$(5)
DIM C¢(3,7) DIM €(3,7), D$(5,I,N-1), A(12)

114 7. Uber die Programmiersprache BASIC

Bemerkungen. 1. Mittels der DIM Anweisung wird im Arbeitsspeicher
des Rechners unter dem Namen des Feldes ein entsprechender Spei-
cherplatz reserviert. So kann zum Beispiel nach Vereinbarung von
DPIM A(15) durch den Nutzer stets iiber die Variablen A(®), A(1),.
eey A(15) verfiigt werden. Dabei darf eine mit dem Micro getrof-
fene DIM Vereinbarung nicht gebrochen werden. So wilirde in dem
Beispiel die Benutzung der Variablen A(16) im giinstigsten Falle
auf eine Fehlermeldung BS: BAD SUBSCRIPT ERROR fiihren. Index-
ilberschreitungen gehdren zu den schlimmen Programmierfehlern und
sind strikt zu meiden. Ersichtlich sind negative Indizes eben-
falls nicht zugelassen.

2. Werden indizierte Variablen oder Felder ohne diese Vereinba-
rung benutzt, so erfolgt bei ihrem ersten Auftreten automatisch
eine implizite Dimensionierung des oberen Index auf 10. Wird
dieser Bereich iiberschritten, so erfolgt wiederum die Fehlermel-
dung BS: BAD SUBSCRIPT ERROR.

3. Falls es eng im Speicher wird, erkenntlich an OUT OF MEMORY
Meldungen, so kann durch sachgemésse Benutzung der DIM Anweisung
Speicherplatz gespart werden. Ist zum Beispiel von vornherein be-
kannt, dass die obere Grenze des Indexbereiches einer indizier-
ten Variablen A(I) nicht grosser als 4 ist, so wird durch die
Anweisung DIM A(4) fiir dieses Feld nur der unbédingt notige
Speicherplatz reserviert. Ohne vorherige Dimensionierungsanwei-
sung wirde Platz fir 11 Variablen verbraucht.

4. Bel der Dimensionierung mehrfach indizierter Variabler oder
Felder ist sehr sorgféltig zu verfahren, da durch die dabei er-
folgende Reservierung enorm viel Speicherplatz verbraucht wird.
So sollte man stets iiberlegen, ob der durch die (eventuell impli-
zite) Vereinbarung DIM(10,10) belegte Speicherplatz fiir 10%10 nu-
merische (Gleitpunkt-) Variablen tatsachlich bendtigt wird. Oft
geniigt bereits die Vereinbarung einiger eindimensionaler Felder.
Zudem werden Programme durch Vereinbarung mehrdimensionaler Fel-
der deutlich langsamer.

5. Die Zulassung (nichtnegativer ganzzahliger) arithmetischer
Ausdricke zur Festlegung des Indexbereiches ermoglicht eine fle-
xible Feldvereinbarung. Damit kann die Dimensionierung 'dynamisch’
aufgrund bislang berechneter oder eingegebener \erte erfolgen,
was zu einer rationellen Speicherausnutzung beitragen kann. Eini-
ge Micros lassen auch nichtganzzahlige Ausdriicke zu. Die jeweili-
gen Werte werden dann intern auf die niéchstkleinere ganze Zahl

Kommentare 115

gerundet,

6. Im Falle der Uberdimensionierung eines Feldes erfolgt (erst)
wihrend des Programmlaufes die Fehlermeldung OM: OUT OF MEMORY
ERROR. Wir wollten dann mehr Platz im Speicher reservieren, als
dafiir vorhanden ist,

7. Innerhalb eines Programmes werden die Dimensionierungsanwei-
sungen zweckmissig &n den Anfang gestellt. Wahrend des Programm-
laufes darf bei den meisten Micros eine einmal vereinbarte Di-
mensionierung nicht mehr geéindert werden -~ widrigenfalls fiihrt
das zur Fehlermeldung DD: REDIM'D ARRAY ERROR. Unter Umst#nden
hilft hier der CLEAR Befehl weiter. Allerdings werden denn glle
Variablen geldscht.

Kommentare

Format. REM Text

Funktion. Die REM Anweisung dient zum Einfiigen kommentierender
Bemerkungen in ein BASIC Programm. Der Programmverlauf
wird durch eine REM Anweisung nicht beeinflusst.

Beispiele. REM * KOMMENTAR *
REMARK Kleinbuchstaben sind hier zugelassen
REMINDER "Anfilhrungszeichen auch"

Bemerkungen. 1. Kommentare gehdren zu einem gut dokumentierten
Programm. Sie erhthen wesentlich die Lesbarkeit und machen das
Programm spdteren Ergidnzungen und Anderungen leichter zugénglich.
2. Die REM Anweisung einschliesslich der nachstehenden Bemerkung
werden im Listing des Programmes komplett wiedergegeben. Im Pro-
grammverlauf werden vom BASIC Interpreter sémtliche dem Schliis-
selwort REM folgenden Zeichen dieser Zeile ignoriert. Aus diesem
Grunde sind fiir Kommentare tatséchlich alle verfiigbaren Zeichen
zugelassen.

3. Eine REM Anweisung kann eine eigene Progremmzeile bilden oder
an des Ende einer beliebigen anderen Programmzeile angefiigt wer-
den.” Die REM Anweisung darf jedoch nicht etwa an den Anfang einer
Programmzeile gesetzt werden, in der noch weitere BASIC Anweisun-
gen folgen. In diesem Falle wiirden sémtliche Anweisungen dieser
Zeile vom Interpreter als Kommentar betrachtet und m;thin igno-

116 7. Uber die Programmiersprache BASIC

riert,

4, Auf vielen Micros lasst sich das Schliisselwort REM durch ein
Hochkomma ' oder auch durch ein Ausrufungszeichen ! abkilrzen. Bei
einigen dieser Rechner konnen Kommentare ohne Setzen des Doppel-
punktes einer Befehlszeile einfach durch Schreiben des Hochkom-
mas nachgestellt werden.

5. Es wird Sie liberraachen, wie schnell man Details eines gelbst-
geschriebenen Programms vergisst. Daher sollte man mit Kommenta-
ren nicht sparen, solange geniigend FPlatz im Arbeitsspeicher ist.
Man kann auch Programme in zwei Versionen schreiben, eine aus-
fihrlich dokumentiert fiir's Archiv, die andere - von allen iiber-
fliissigen REMs und Blanks befreit - fiir schnelle und Speicher-
platz sparende Programme.

Programm

Ein BASIC Progremm besteht aus einer Folge geordneter Programm-

zeilen. Jede BASIC Progremmzeile beginnt mit einer Zeilennummer,
gefolgt von einer Vereinbarung, einem Kommentar oder irgendeiner
anderen BASIC Anweisung. Das Programm wird mit der END Anweisung
abgeschlossen.

Bemerkungen. 1. Welcher Bereich fiir die Zeilennummern benutzt
werden kann, héngt vom Rechner éb; er beginnt bei O oder 1 und
endet bei etwa 64000. Die Zeilennummern miissen ir dezimaler Form
geschrieben werden.

2. Eine Programmzeile darf bis zu etwa 78 Zeichen lang sein; dies
hédngt von der maximalen Lénge einer logischen Zeile auf dem kon-
kreten Micro ab und hat nichts mit der Lénge einer Bildschirm-
zeile zu tun. Sie muss mit einem Schlusszeichen, zumeist CR
(Cerriage Return), abgeschlossen werden. Auf dem Rechner wird
dies durch Driicken der mit EATER oder #dhnlich bezeichneten Taste
realisiert.

3. Durch aufsteigende Zeilennummern werden die Programmzeilen
vollsténdig geordnet. Eine Vorschrift zur Einhaltung bestimmter
Abstiénde zwischen aufeinanderfolgenden Zeilennummern besteht
nicht. Dabei ist es sinnvoll, stets etwas Platz fiir eventuell
spdter einzufiigende Programmzeilen zu lassen,

4. Manche Programmierer arbeiten durchweg mit dem gleichmissigen
Zeilenabstand 10; auf einigen Micros wird dies durch den AUTO

Das BASIC Programmiersystem 117

Befehl unterstiitzt. Ausser Schonheitsgriinden beateht jedoch keine
Notwendigkeit gleichméssiger Zeilenabstdnde. Ganz niitzlich ist
es, alle nicht mit einer REM Anweisung beginnenden Programmzeilen
auf gerade Zeilennummern zu setzen, dagegen alle REM Anweisungen
ungeradzehlig zu numerieren. Milssen bei einer Programmrevision,
eventuell durch akuten Speicherplatzmangel bedingt, die REM Zei-
len entfernt werden, braucht man sich dann nur auf die ungeraden
Zeilennummern zu konzentrieren. Wenn wir spédter einmal etwas
mehr iiber die Speicherung eines BASIC Progremmes im RAM verste-
hen, kidnnen wir diese oft recht mithselige Aufgabe sogar dem Micre
iibertragen.

5. Wohl werden durch Einfilhrung solch eben beschriebener frei-
williger Konventionen die schier unbegrenzten Méglichkeiten von
BASIC formal etwas eingeschrénkt, doch erhdht das die Lesbarkeit
und auch Fehlersicherheit eines Programmes ganz erheblich, wenn
man von Anfang an auf eine gewisse Struktur im Programm achtet.
So gehort es auch zum guten Programmierstil - und ist in Hinsicht
auf kiinftige Programmrevisionen auch sinnvoll - Progremme niemsls
zu REM Zeilen verzweigen zu lassen, obwohl das syntektisch zu-
ldassig ist.

6. Auch die Benutzung von Blanks dient zur Verbesserung der Les-
barkeit von Programmen, verbraucht aber ebenfalls Speicherpleatz.
Bei manchen BASIC Versionen muss zwischen Schliisselwértern und
anderen Zeichen ein Blank stehen.

T. In einer Frogrammzeile diirfen mehrere durch Doppelpunkt ge-
trennte Anweisungen stehenf

8. Die Abarbeitung eines Programmes beginnt stets mit der Austith-
rung der zur niedrigsten Zeilennummer gehdrenden Programmzeile.
Die n#chste Anweisung wird entweder durch die néchsthbhere Zei-
lennummer im Listing festgelegt oder aber durch die in der ak-
tuellen Anweisung realisierten Programmlogik entschieden.

Das BASIC Programmiersystem

In diesem Kapitel haben wir bislang BASIC als eine Programmier-
sprache beschrieben. Dies geschah in Form eines Kompromisses in
informeller Weise., Zum einen ist unsere Fibel nicht der rechte
Ort, um die Sprache BASIC zu definieren. Dieses Problem wiirde
uns, wie eingangs dieses Kapitels angedeutet, in die Theorie for-

118 7. Uber die Programmiersprache BASIC

maler Sprachen und damit in die Grundlagen von Mathematik und Ma-
thematischer Logik fiihren. Andererseits méchten wir mbglichst
viel Zusammenhéinge kennenlernen und begreifen - und dies liesse
sich etwa in Form reiner Kochbuchrezepte schwerlich réalisieren.
Nichts gegen Kochblicher, doch wie jeder gute Koch mdchten wir
gern ab und zu auch mal was Neues anrichiten, wozu halt ein gewis-
ser Uberblick nttig ist.

Wir sind nun - zumindest theoretisch - in der Lage, bestimmte,
aus konkreten Problemen abgeleitete Algorithmen in BASIC zu for-
mulieren. Dies hat mit unserem Micro eigentlich gar nichts zu
tun, alles in diesem Kapitel Erlernte kdnnen wir trocken, also
nur mit Bleistift und Papier, ausiiben. Dies ist ein grosser Vor-
teil. Einmal sind wir unabhéngig von einem speziellen Rechnertyp,
zum anderen erweist es sich in der Praxis als hdchst niitzlich,
die Logik umfangreicherer Programme vor dem Eintippen grindlich
zu iliberdenken. Durch allzu ungeduldiges Draufloshacken kénnen
nachgerade unentwirrbare Programm-Kn#uel entstehen, die bereits
kurz nach ihrer Erschaffung nicht mal mehr ihrem Sch¥pfer ver-
stdndlich sind. Tretén dann auch noch Fehler auf - das ist der
Normalfall - oder soll ein Programm weiterentwickelt werden, so
steht man vor schier unldsbaren Problemen und vertut auf jeden
Pall viel, viel Zeit.

Auch 801l das jetzt Gesagte denjenigen ermutigen, der bislang
am Arbeitsplatz oder daheim itber keinen eigenen Micro verfiigt und
nur zu gewissen Zeiten - vielleicht in einer Arbeitsgemeinschaft
oder bei einem Kollegen oder Freund - an einen Rechner kommt, Sie
kénnen wirklich viel 'trocken' enfwickeln, um dann gut vorberei-
tet die kostbaren Stunden am Rechner effektiv zu nutzen. Letzt-
endlich allerdings ist ein direkter, wenn auch nur gelegentlicher
Kontakt mit dem Rechner notwendig. So f&éllt die Entscheidung, ob
denn ein geschriebenes Programm auch tats@chlich funktioniert,
natiirlich nur dort.

Es gibt aber noch einen Grund, der im Gegensatz zu manchen an-
deren Systemen den direkten Umgang mit dem Micro zwingend erfor-
derlich macht. Denn BASIC ist in einem weiteren Sinne nicht nur
eine Programmiersprache, in der numerierte Listen von Anweisungen
zur spateren Ausfithrung durch den Computer niedergeschrieben wer-
den, sondern ein ganzes Programmiersystem, das dem unmittelbaren
. Kontakt zwischen Mensch und Computer dient; wir lehnen uns hier
der Darstellung von Haase, V., und Stucky, W. (1977) an.

Das BASIC Programmiersystem i19

Durch das BASIC Programmiersystem wird ein Dialog mit dem Mi-
cro iiber die folgenden Themen ermdglicht:

- Beginn oder Beendigung bestimmter Arbeitsviorgange im Computer,
zum Beispiel die Ausfiihrung eines Programmes betreffend.

- Bearbeitung von Texten, speziell von BASIC Programmen und de-
ren Erstellung, Modifizierung oder Formetierung.

- Handhabung von Dateien, in denen Programme oder andere Daten-
bestédnde niedergelegt sind, insbesondere den Datenfluss von
von und zu externen Speichern (Recorder, Floppy Statinn) be-
treffend.

Das Arbeiten mit dem Programmiersystem erfolgt im interaktiven
Betrieb, also in der Regel iiber Tastatur und Bildschirm,und wird
mittels der schon frither besprochenen Kommandos realisiert. Da-
bei geniigt bereits eine kleine Anzahl von Kommandos, um den Dia-
log mit dem Computer zu fiihren. Man braucht also nicht viel mehr
dazuzulernen, einer der grossen Vorteile von BASIC. Auch iiber
die interne Steuersprache (Job Control Language) braucht der Nut-
zer nichts zu wissen. Allerdings sind die Kommandos nicht stan-
dardisiert und kSnnen auf jedem Micro etwas anders aussehen. Das
betrifft auch die Art und Weise ihrer Eingabe - einige werden
iiber eigens dafiir vorgesehene Tasten eingegeben, andere miissen
buchstabenweise eingétippt werden. Es ist nicht zweckm#ssig,
hier auf die Details einzelner Micros einzugehen -~ fiir alle die-
se Fragen ist selbstversténdlich das speziell zu Threm Reehner
geschriebene Handbuch zust#ndig.

Die Objekte, mit denen Sie bei diesem interaktiven Teil der
Programmierung zu tun haben und deren Bearbeitung das Program-
miersystem erheblich erleichtert, sind natiirlich Programme und
Dateien. Die Programme werden zeilenweise geschrieben und direkt
iiber das Tastenfeld des Rechners eingegeben® oder - entsprechend
codiert und eventuell in noch unfertiger Form - aus einem exter-
nen Speicher eingelesen. Auch Daten kdénnen in einen entsprechen-
den Speicherbereich auf diese Weise iibertragen werden. Danach
kdnnen Daten und Programme im Kommandobetrieb beliebig geédndert,
erganzt oder berichtigt werden. Ein im Speicher des Rechners be-
findliches Programm kann jederzeit und - zum Beispiel fiir Test-
zwecke - beliebig oft gestartet sowie - eventuell auf unter-
schiedlichen Daten basierend - ausgefiihrt werden. Dabei kann es
auch wéhrend der Ausfithrung mit Daten versorgt werden, die ent-

120 7. Uber die Programmiersprache BASIC

weder in Form von DATA Anwelsungen im Programm selbst enthalten
sind oder auch zum Beispiel mittels einer INPUT Anweisung zur
Eingabe iiber das Testenfeld angefordert werden. Das macht eine
weitere Besonderheit von BASIC aus. Nicht nur die Programmerar-
beitung erfolgt im Dialog, auch der Programmlauf selbst kenn in-
teraktiv gesteltet werden. Zwischen den einzelnen Programmléufen
ktnnen beliebvige Anderungen an Programm und maschinell gslesenen
Daten vorgenommer werdern.

Kommandos

Wie schon gesagt, sind die Kommandos des BASIC Programmiersystems
im Direktbetrieb des Interpreters ummitielbar suszufilhrende Be-
fehle. Obwohl stark maschinenabh#ngig und nicht zur Programmier-
sprache BASIC gehdrig, hat sich eine Reihe einheitlicher mnemc-
technisch engepasster Kommandes in den verschiedenen BASIC Pro-
gremmiersystemen eingeblirgert. Dies dient dem einfacheren (bver-
gang von einem Rechnersystem auf das andere, aber auch insbeson-
dere der Vaertrdglichkeit mit der bislang eingefiihrten Program-
miersprache BASIC. So wird der Sprachvorret des Programmiersy-
stems um die den Kcummandos entsprechenden Schliisselwdrter erwei-
tert, und es ist sogar mdglich, einen grossen Teil der implemen-
tierten Kommandos als Anweisungen in BASIC Programme zu integrie-
ren. Damit kenn men die Programmiermdglichkeiten auf dem eigenen
Micro unter Umsténden geanz erheblich erweitern. 5o werden saubar
definierte Schnittstellen zwischen BASIC Frogrammen und Inter-
preter oder sogar Monitor-Routinem und Speicher miglich. Der
Nachteil ist, dass solcherart 'gestylte' Programme mit Sicherheit
dann nur auf einem bestimmten Rechnertyp, oft nur auf einem spe-
zifischen Modell laufen, also nicht mehr allgemein eustauschbar
sind.

Wir fiilhren nun einige weitverbreitete Kommandos nach ihren
Funktionen geordnet auf. Da die meisten von ihnen tatséchlich als
Anweisungen in BASIC Programmen zul#ssig sind, einigen wir uns
wieder auf den neutralen Begriff 'Befehl'.

Steuerbefehle 121

Steuerbefehle

RUN
Format. RUN Zeilennummer

Funktion. Der Befehl RUN startet ein im Arbeitsspeicher befind-
liches BASIC Programm an seiner ersten Programmzeile.
Soll das Progremm an einer definierten Programmzeile
mit hsherer Nummer starten, so wird diese im Befehl
angegeben. Nach der Eingabe dieser Befehle 1l8scht der
Interpreter zun#chst alle Variablen und Variablenfel-
der, setzt elle Zelger im Arbeitsspeicher zurlick und
{ibergibt dann die Steuerung an das BASIC Programm.

Bemerkungen. 1. Existiert die angegebene Zeilennummer im Programm
nicht, so fithrt das bei vielen Rechnern zu der Fehlermeldung UL:
UNDEFINED STATEMENT.

2. Der Befehl RUN kann auch innerhalb eines Programmes benutzt
werden. Hierdurch wird der bisherige Programmlauf wiederholt,
nachdem alle Variablen geldscht und die Zeiger zuriickgesetzt wur-
der.

Verwandtschaften. GOTO, CONT, STOP, END

CONT
Format. CONT

Funktion. Mit diesem Kommando kann ein mit STOP oder eventuell
auch CTRL C unterbrochenes Programm fortgesetzt werden.

Bemerkungen. 1. Das Paar von Befehlen STOP und CONT wird vorteil-
haft zum Programmtesten und Fehlereingrenzen benutzt. Dabei kon-
nen nach einem STOP die Werte gesetzter Variabler mit Hilfe des
PRINT Befehls itiberpriift werder. Mittels Eingabe des LIST Befehles
kann man sich das Programm zwischendurch auch noch mal ansehen.
2. Andert man dagegen wiéhrend einer Unterbrechung das Programm
durch Loéschen, Modifizieren oder Hinzufiigen von Prograrmzeilen,
so fithrt die Anwendung des Kommandos CONT zu der Fehlermeldung
CN: CAN'T CONTINUE. Da das Programm in der urspriinglichen Form
nicht mehr existiert, kann es auch nicht einfach fortgesetzt wer-
den., Hier hilft nur ein Neustart mit RUN oder GOTO weiter.

Verwandtschaften. RUN, STOP, GOTO

122 7. Uber die Programmiersprache BASIC

BYE

Format. BYE

Funktion. Mit diesem Befehl wird das Interpreterprogramm verlas-
sen und die alleinige Steuerung des Rechners an den
Monitor iibergeben.

Bemerkungen. 1. Rechner, bei denen sich nach dem Einschalten so-
gleich der BASIC Interpreter meldet, besitzen diesen Befehl in
der Regel nicht.

2. Nach Ausfithrung von BYE reagiert der Micro nur noch auf Moni-
tor-Befehle. Will man wieder mit BASIC. arbeiten, so muss zuvor
der Inierpreter neu gestartet werden.

Bildschirmbefehle

CLS
Format. CLS

Funktion. Dieser Befehl 16scht den Bildschirminhalt und gibt die
aktuelle Farbe filr den Hintergrund aus.

Bemerkungen. 1. CLS ist die Abklirzung von CLear Screen. Auf eini-
gen Micros kann der Bildschirm auch mit der Tastenfolge CTRL L
geldscht werden.

2. Mit diesem Befehl wird lediglich der Inhalt des sogenannten
Bildwiederholspeichers geldYscht, nicht etwa Belegungen des Ar-
beitsspeichers. Diese bleiben erhalten und kdnnen mit geeigneten
Befehlen jederzeit wieder auf dem Bildschirm dargestellt werden.
3. In der Regel sollten alle Programme, die irgendwelche Bild-
schirminhalte ausgeben, zuvor den Befehl CLS ausfilhren.

4, Ist der aktuelle Bildschirmausgabebereich durch einen WINDOW
Befehl oder anderweitig begrenzt worden, so wirkt CLS nur auf
diesen Bereich.

Verwandtschaften. BORDER, WINDOW

Bildschirmbefehle 123

HOME

Format. HOME

Punktion. Mit diesem Befehl wird der Cursor in die linke obere
Ecke, die sogenannte Home-Position des Bildschirmes,
zuriickgesetzt.

Bemerkung. Die Funktion des HOME Befehles kann oft iiber ein ma-
schinenabhéingiges Steuerzeichen realisiert werden.

PAPER

Format. PAPER h
h Farbcode

Funktion. Mit dem PAPER Befehl wird die Hintergrundfarbe des
Bildschirmes eingestellt. Der maschinenabhlingige Farb-
code h legt die spezielle Farbe und eventuell auch den
Grauwert fest.

Bemerkungen. 1. Dieser Befehl ist natiirlich nur auf farbtiichti-
gen Rechnern implementiert. Benutzen Sie als Ausgabeeinheit ein
Schwarzweiss-Gerdt, so kann mit PAPER der Grauwert des Hinter-
grundes eingestellt werden.

2. Der Farbcode ist auf jedem Micro etwas anders. In jedem Falle
sind die Grundfarben des Bildschirmes Rot, Griin und Blau sowie
einige Mischungen dieser Farben einschliesslich Schwarz und Weiss
ansprechbar.

3. Auf einigen Micros wird die eingestellte Hintergrundfarbe erst
bei Ausgabe eines Zeichens oder nach Eingabe von CLS (wirksam, an-
dere andern unmittelbar nach Eingabe des PAPER Befehls die Hin-
tergrundfarbe des Schirmes.

Verwandtschaften. INK, COLOR, CLS

Format. INK v
v Farbcode

Funktion. Mit dem INK Befehl wird die Vordergrund- oder Zeichen-
farbe eingestellt. Durch den maschinenabhéngigen Farb-
code v ist die spezielle Farbe definiert.

124 7. Uber die Programmiersprache BASIC

Bemerkungen. 1. Wie bei der Hintergrundfarbe ist der genaue Farb-
code dem Handbuch zu entnehmen.,

2. Viele Hersteller empfehlen Blau sls Hintergrund- und Weiss als
Zeichenfarbe. Viele Gerdte sind nach dem Einschalten in diesem
Zustand. Benutzen Sie einen Schwarzweiss-Bildschirm, so sollten
Sie die Zeichenfarbe Schwarz auf weissem Hintergrund einstellen.

Verwandtschaften. PAPER, COLOR

COLOR

Format. COLOR v,h
v,h Farbcodes fiir Vorder- bzw. Hintergrundfarbe

Funktion. Mit diesem Befehl kdnnen Vorder- und Hintergrundfarbe
eufgrund der maschinenabhéngigen Farbcodes v und h si-
wultan gesetzt werden.

Bemerkung. Alles unter PAPER und INK Gesagte gilt sinngemHss
auch fiir den COLOR Befehl.

Verwandtschaften. INK, PAPER, CLS

WINDOW

Format. WINDOW za,ze,38,ge
za erste Zeile des Fensters, ze 1letzte Zeile
sa erste Spalte des Fensters, se 1letzte Spalte

Funktion. Mit dem WINDOW Befehl kann der aktuelle Ausgabebereich
des Bildschirmes verkleinert werden. Alle angezeigten
Ein- und Ausgaben erfolgen dann in dem festgelegten
rechteckigen Bereich. Die Eingabe des WINDOW Befehles
ohne Zahlenangaben bewirkt eine Umschaltung auf den
meximalen Ausgabebereich.

Beispiel. A$ - MHERREERERN
CLS
WINDOW 10,19,15,24 : PRINT A$ + A$ + AS

oo

WINDOW

Bemerkungen. 1. Der WINDOW Befehl ist nicht auf allen Micros ime
plementiert. Gegebenenfalls kann er sowohl - wie in dem obigen
Beispiel - im Direktbetrieb als auch innerhaldb von Programmen be-

Bildschirmbefehle 125

nutzt werden.
2. Die angegebenen Zeilen- und Spaltennummern unterliegen netiir-
gemass folgenden Einschrénkungen

0 % za % ze £ Anzahl aller Bildschirmzeilen,
O S sa S se % Anzahl aller Bildschirmspalten,

wobel die Zéhlung von Zeilen und Spaltén des Biidschirms in der
Regel bei Null beginnt. Andere Eingaben sind unzul#ssig und fiih-
ren zu der Fehlermeldung SN: SYNTAX ERROR.

3. Der'CLS Befehl wirkt nur auf das aktuelle Bildschirmfenster;
HOME setzt den Cursor asuf den Anfeng des Fensters links oben.

4. Ist ein WINDOW Befehl gegeben, so bleiben die iibrigen Bild-
schirmgebiete von allen weiteren Ein- und Ausgaben unbteeinflusst,
werden also auch nicht weggerollt. Auf diese Weise lassen sich
zum Beispiel Tabellenkdpfe autf dem Bildschirm sichern.

5. Fehlt der WINDOW Befehl auf Ihrem Micro, so kdnnen Sie bei
Kenntnis der zusténdigen Systemsdressen die GrUsse des aktuellen
Ausgabefensters eventuell durch direkten Eintrag geeigneter Wer-
te in das RAM beeinflussen,

WIDTH

Format. WIDTH 2z
2 Zellenbreite

Funktion. Der Befehl WIDTH legt die Anzahl der Zeichen einer
Bildschirmzeile fest.

Bemerkungen. 1. Der Parameter z bestimmt die Maximalzshl der Zei-
chen einer Ausgabezeile.

2., Auf einigen Micros kann mit dem WIDTH Beéfehl (engl. width -
Weite) die Zeilenlinge bei der Ausgabe iiber einen Drucker fest-
gelegt werden.

BORDER

Format. BORDER fc
fc Farbcode

Funktion. Mit diesem Befehl kann die Farbe beziehungsweise bei
Schwarzweissgertiten der Grauwert des nicht zum Ausga-
bebereiches gehlrenden Teiles des Bildachirmes beein-

126 7. Uber die Programmiersprache BASIC

flusst werden.

Bemerkung. Dieser Befehl ist nicht auf allen Micros implementiert.
Der PFarbcode igt gegebenenfalls dem Handbuch zu entnehmen,

Editor-Befehle

Die Gruppe dieser Befehle unterstlitzt das Erstellen und Korrigie-
ren von Programmen, Bereits eingegebene Programmzeilen kdnnen
ver#ndert werden, ohne sie g&nzlich neu eingeben zu miissen. Die
Editor-Befehle sind stark maschinenabhiéngig, wir beschreiben zu-
erst einen Befehl, der auf wohl allen Micros implementiert ist.

LIST

Pormat. LIST
LIST za - ze
LIST za-
LIST -ze
LIST =
za, ze, z Zeilennummern

Funktion. Mit diesem Befehl kinnen beliebige Programmzeilen eines
im Arbeitsspeicher befindlichen Programmes auf den
Bildschirm ausgegeben werden. Im ersten angegebenen
Format wird das gesamte Programm gelistet, im zweiten
das Programm von der Zeilennummer za bis zu ze. Im
dritten Format wird das Programm von der Zeilennummer
za bis zum Programmende sowie snalog im nédchsten For-
mat vom Programmanfang bis zur Zeilennummer ze gelistet.
Im letzten Format wird nur die Programmzeile mit der
angegebenen Zeilennummer 'z ausgegeben,

Bemerkungen. 1. Auf einigen Micros fiihrt dieser Befehl im Format
LIST 2z zur sukzessiven Ausgabe aller Programmzeilen, beginnend
mit der Zeilennummer z, oft in Bl&cken zu jeweils zehn Zeilen.

2. Die Ausgabe des Listings auf dem Bildschirm kann durch Driicken
der Taste STOP (oder BREAK) oder der Tastenfolge CTRL C abgebro-
chen werden.

Verwandtschaften., EDIT, LLIST

Editor-Befehle 127

EDIT

Format. EDIT 2z
z Zeilennummer

Funktion. Durch den EDIT Befehl wird die angegebene Programmzei-
le zusammen mit dem Cursor auf dem Bildschirm ausgege-
ben. Mittels der Cursor-Fiihrungstasten sowie der even-
tuell vorhandenen INSert- und DELete-Tasten kdnnen dann
Zeichen ge#indert, eingefiigt beziehungsweise gelﬁséht
werden. Die korrigierte Zeile wird mit ENTER abge-
schlossen.

Bemerkung. Die Anwendung des Befehls EDIT differiert auf den ver-
schiedenen Micros stark. Bei einigen Rechnern wird nach Abschluss
einer kor}igierten Zeile durch ENTER die Programmzeile mit der
néchsthéheren Zeilennummer ausgegeben. Der Interpreter kehrt

dann erst nach Bearbeitung aller vorhandenen Programmzeilen oder
nach Betdtigung der STOP oder BREAK Taste in den normalen Komman-
do-Modus zuriick.

TRON

Format. TRON

Funktion. Dieser Befehl dient zur Programmverfolgung. Nach Ein-
gabe von TRON wird bei jeder durch den: Interpreter ak-
tuell bearbeiteten Anweisung eines Programmes auf dem
Bildschirm die zugeh®drige Zeilennummer in eckigen oder
spitzen Klammern ausgegeben.

Bemerkung. Der TRON Befehl bildet eine grosse Hilfe beim Aufspii-
ren logischer Programmfehler, auch verschlungene Programmléufe
lessen sich mit seiner Hilfe entwirren. Der Name des Befehls
leitet sich von TRace ON (engl. trace - Spur) ab.

TROFF

Format. TROFF

Funktion. Mit diesem Befehl wird die durch TRON erdffnete Pro-
grammverfolgung wieder ausgeschaltet.

Bemerkungen. 1. Das Paar TRON und TROFF kann auch innerhalb eines

N

128 7. Uber die Programmiersprache BASIC

Programmes benutzt werden, um durch Ein- und Ausschalten des
Trace gezielt nur ganz bestimmte Programmabschnitte zu verfolgen.
2. Der Name TROFF ist die Abklirzung von TRace OFF.

Auf verschiedenen Kleincomputern gibt es weitere, die Program-
mierung unterstiitzende Befehle. So kann mit Hilfe des DELETE Be-
fehls ein bestimmter Abschnitt von Programmzeilen gel&scht wer-
den, der AUTO Befehl gestattet das automatische Numerieren von
Programmzeilen,und mit RENUMBER konnen die Zeilennumrern eines
Programmes gileichabstindig neu geordnet werden.

Befehle zur Speicherverwaltung

NEW
Format. NEW

Punktion. Dieser Befehl 1¥scht das aktuelle BASIC Programm sowie
eventuelle Dateien im Arbeitsspeicher. Ebenso werden
alle vereinbarten Variablen und Felder gelBscht sowie
alle Zeiger im Arbeitsspeicher zurickgesetzt.

Bemerkungen. 1. Vor Eingabe eines neuen BASIC Programmes ist es
ratsam, den BASIC Arbeitsspeicher mit dem Kommando REW zu 1l8schen,
damit das neue Programm nicht von 'vergessenen' Frogrammzeilen
eines frilheren Programmes iiberlappt wird. Auch kann es sonst bel
kleineren Rechnern zu Problemen mit dem Speicherplatz kommen.

2. Bel einigen Micros mit etwas gr@sserem Arbeitsspeicher wird
durch den Befehl NEW keineswegs das alte Programm im Speicher ge=-
ldscht, sondern ledigiich ein auf den Beginn des alten BASIC Pro-
grammsﬁgesetzter Zeiger verstellt. Bei n#herer Kenntnis des eige-
nen Rechnersystems kann man eventuell durch eine erneute Manipu-
lation dieses Zeigers ein irrtiimlich gegebenes Kommando NEW wie-
jer zuriicknehmen und ein sonst verlorenes Programm noch retten.
3. In der Hegel wirkt der NEW Befehl nur auf den eventuell durch
CLEAR oder HIMEM vom Anwender definierten Arbeitsspeicherbereich.
4. Der Befehl NEW ist flir den Direktbetrieb gedacht. Innerhalb
eines Programmes benutzt, wiirde NEW zur Selbstzerstdrung dessel-
ben fiihren.

Verwandtschaften. CLEAR, HIMEM

Speichervexrwaltung 129

CLEAR

Format. CLEAR
CLEAR arithm. Ausdruck [,arithm. Ausdruck)

Punktion, Mit dem Befehl CLEAR werden alle vereinbarten Varia-
blen und Felder einschliesslich getroffener Dimensionie-
rungsanweisungen geldscht. Gleichzeitig wird RESTORE
ausgefilhrt, also der DATA Zeiger auf den Anfang der
Datel gesetzt.

Bei dem zweiten angegebenen,auf einigen Rechnern zulds-
sigen Format wird zus#tzlich mit dem ersten Ausdruck
die Grosse des Zeichenkettenspeichers in byte und mit
dem zweiten die (dezimale) Adresse der oberen Grenze
(RAMTOP) des BASIC Arbeitsspeichers featgelegt.

Bemerkungen. 1. Durch CLEAR werden elle bereits vereinbarter nu-
merischen Variablen auf Null gesetzt und den Textvariablen die
leere Zeichenkette zugeordnet.

2. Ein iiberbelegter Zeichenkettenspeicher wird durch die Fehler-
meldung 0S: OUT OF STRING SPACE signalisiert. Dann kann mit dem
CLEAR Befehl in dem zweiten angegebenen Format der Speicherplatz
tir Strings vergrdssert werden. Bei vielen Micros wird dieser
Speicherbereich 'dynamiech' verwaltet, dann ist dieser Befehl
nicht nétig.)

3. Der CLEAR Befehl darf nicht in einem mit GOSUB aufgerufenen
Unterprogremm benutzt werden. Anderenfalls 'vergtisse' der Inter-
preter die Rilckkehradresse und reagierte mit der Fehlermeldung
RG: RETURN WITHOUT GOSUB.

4., Beim Start eines BASIC Frogrammes durch RUN wird die Funktion
des CLEAR Befehls autonatisch realisiert. Will man dies gerade
vermeiden, so starte man das Programm mit GOTO z, wobel z die
Nummer der gewiinschien Startzeile bezeichnet.

Verwandtschaften, NEW, RESTORE, HIMEM, RUN

FRE

Format. FRE(®)

‘Funktion, Mit diesem Befehl kann der im RAM noch verfiigbare Spei-
cherplatz ermittelt werden..

130 7. Uber die Programmiersprache BASIC

Beispiel. PRINT FRE(®)

Bémerkungeh. 1. Sie kinnen die durch ein Programm verursachte
Speicherbelastung testen, indem Sie vor und nach Eingabe des Pro-
gramms sowie nach dessen Lauf jeweils die obige Zeile eingeben.

2. Anstelle des Argumentes Null kdYnnen Sie jede andere natiirliche
Zahl zwischen @ und 255 benutzen. Es handelt sich hier um ein so-
genanntes Dummy-Argument (engl. dummy - Strohmann, Statist), das
nur aus formalen Griinden geschrieben werden muss.

3. Auf verschiedenen Micros gestattet FRE noch andere Anwendungen.
So kann eventuell durch Eingabe von

PRINT FRE("")

der verfiigbare Platz im Stringspeicher ermittelt werden. Bei Mi-
cros mit dynamischer Stringspeicherverwaltung kann durch obiges
Kommando oder eber auch durch eine geeignet eingefiigte Programm-
zeile der Form

500 A = FRE("")

eine Reorganisation dieses Speicherbereiches erzwungen werden.
Wird bei solchen Rechnern an eine bereits vereinbarte Textvaria-
ble ein neuer Textwert libergeben, welcher kiirzer ist als der zuvor
gespeicherte, so verbleibt der restliche Platz im Speicher. Dann
werden redundante Zeichen gespeichert und mithin Speicherplétze
verschwendet. liit obigem Befehl werden die Zeichenketten im Spei-
cher 'zusammengeschoben'. Dieser Vorgang wird auch als 'garbage
collection' (Hilllrdumung) bezeichnet.

Mit einer weiteren Gruppe von Befehlen, némlich
PEEK POKE CALL USR

sind prézise Schnittstellen vom BASIC zum gesamten Speicher des
Rechners und zu allen Maschinenroutinen des Betriebssystems sowie
des BASIC Interpreters selbst definiert. So kann mit PEEK der ak-
tuelle Inhalt jedes Speicherplatzes gelesen werden, POKE erlaubt
sogar das Schreiben in den RAM Bereich. Mit CALL {ibergibt der In-
terpreter den Steuerfluss im Rechner an eine Maschinenroutine.
Entsprechend abgeschlossen ist von einer solchen Routine die
Riuckkehr ins BASIC mdglich. Der Befehl USR leistet das gleiche,
wobei zusdtzlich noch Parameter in 'beiden Richtungen' iibergeben
werden konnen. Mit diesen summarischen Bemerkungen wollen wir es
bewenden lassen; ein effektiver Gebrauch der Befehle setzt mehr

Umgang mit dem Micro 131

Kenntnisse {iber die Architektur des Rechners voraus, als wir sie
hier vermitteln.

Vom Umgang mit dem Micro

Wir haben es schon angedeutet, dass unsere Beziehung zum Rechner
zwei Seiten - eine statische und eine dynamische - hat. Der sta-
tische Teil kann sich fern vom Rechner vollziehen und besteht in
der Umsetzung des Algorithmus in ein Programm. Hierbei herrscht
von vornherein Klarheit beispielsweise iiber die Vereinbarung von
Variablen, und die logische Struktur wird, ausgehend von groben
Strukturbldcken, immer weiter verfeinert. Solcherart vorbereitet,
wenden Sie sich dann dem dynamischen Teil, der interaktiven Ar-
beit mit dem Rechner zu. Das Programm wird - erstmalig - dem
Rechner eingegeben und auf seine Lauff#higkeit liberpriift. Nun
werden Sie es durch Laufversuche solange entwickeln, bis es Ihren
Vorstellungen entspricht, also in der Lage ist, das algorithmisch
aufbereitete Problem zu l¥sen. Sie werden das Programm mit unter-
schiedlichen Datensiétzen testen, um es in allen gewiinschten Situa-
tionen laufféhig zu gestalten. Es ist nicht ungewtdhnlich, dass
Ihnen bei diesem dynamischen Teil viele Verbesserungen Ihres Pro-
grammes .oder sogar des zugrundeliegenden Algorithmus oder auch
ganz neue interessante Probleme einfallen. Dabei sollten Sie alle
Moglichkeiten nutzen, die Thnen das BASIC Programmiersystem an
Unterstiitzung bietet. Es ist zweckmidssig, ilbersichtliche, kurze
Programmstiicke zu schreiben und zu bearbeiten. Dabei kbnnen Sie
viel experimentieren: So lédsst sich Uber zus#itzlich eingebaute
PRINT Anweisungen der gesamte Programmverlauf dokumentieren. Nach
erfolgreicher Arbeit nehmen Sie diese Testanweisungen aus dem
Programm wieder heraus.

Wo Sie in Ihrer eigenen Arbeit den Schwerpunkt setzen - im dy-
namischen oder im statischen Teil - das héngt von Ihren Mdglich-
keiten und Neigungen ab. Filhlen Sie sich durch das eben Gesagte
in keiner Weise eingeengt, nichts liegt mir fermer, als bei so
einer interessanten und kreativen Beschiftigung,wie sie das Ent-
wickeln lauffiéhiger Programme bietet, sauertdpfisch mit didak-
tisch erhobenem Zeigefinger danebenzustehen, Wichtig ist nur,
daess Sie liber der aufregenden Arbeit am Rechner njicht versdumen,
gelegentlich iiber die Ziele Thres Handelns zu reflektieren. So

132 7. Uber die Programmiersprache BASIC

bald Sie letzteres tun, beginnen Sie, systematisch zu arbeiten.
Und dann ist die Zeit nicht mehr fern, wo Sie Ihren eigenen pro-
duktiven Programmierstil gefunden haben und schliesslich der Um-
gang mit Ihrem Rechner in der Balance zwischen purer Preude und
zielgerichtetem Erfolgsstreben Sie mit tiefer Befriedigung erfiil-
len wird.

In den folgenden Kapiteln wenden wir uns einer systematischen
Beschreibung der auf Micros gebréduchlichsten Anweisungen der Pro-
grammiersprache BASIC zu. Damit es beim Durcharbeiten nicht gar
so langweilig zugeht, sind gelegentlich auch mal etwas umfangrei-
chere Programme eingestreut.

BASIC Anweisungen 8

Ausgabe von Daten

PRINT

Format.

arithm. Ausdruck H
FRINT [,] [Textausdruck] [{:}

arithm. Ausdruck H
Textausdruck N

Funktion. Diese Anweisung gestattet die Ausgabe des Viertes eines

Beispiel.

beliebigen Ausdrucks auf dem Bildschirm, beginnend ab
der aktuellen Cursorposition. Eine PRINT Anweisung al-
lein bewirkt die Ausgebe einer Leerzeile. Mittels Set-
zen von Semikolon oder Komme kann die Ausgabe mehrerer
PRINT Zeilen auf einer Bildschirmzeile realisiert wer-
den; die Trennzeichen selbst werden nicht ausgegeben.
Das Komma dient oft als Tabulator.

In Verbindung mit dem Schliisselwort CHR$ ermdglicht die
PRIRT Anweisung die Ausgabe (nicht druckbarer) Steuer-
zeichen.

100 REM ¥%% PRINT %% 199 :
101 200 FOR I=1 TO 3
110 A=567890 210 PRINT T$;1I,
120 T$="TAB" 220 NEXT

130 CLS:PRINT 230 PRINT

140 PRINT " % PRINT-ANWEISUNG %" 240 PRINT

142 PRINT 250 PRINT -1,-2,-3
150 PRINT 123456 260 PRINT

160 PRINT ,A 299 :

170 PRINT 1234; 300 FOR Z=0 TO 7
180 PRINT Aj 310 FOR I=0 TO 2
190 PRINT 1;2;3 320 PRINT 24(Z+1),

192 PRINT:PRINT 330 NEXT 1

134 8. BASIC Anweisungen

340 PRINT : REM BEI EINTEILUNG RUN

343 : : REM DES SCHIRMES

345 : : REM 1IN 3 PRINT

347 : : REM ZONEN ZEILE % PRINT-ANWEISUNG *

349 : : REM 340 STREICHEN 123456

350 NEXT Z 1234 s563888°° 2 3

360 PRINT

399 @ TAB 1 TAB 2 TAB 3

400 END 1 -2 -3
g]
1 4]

4, Egs é?%
l;\"ady

Bemerkungen. 1. Der PRINT Befehl kann - wie fast alle hier be-
schriebenen Befehle - sewohl direkt als auch im Programm-Modus
benutzt werden. Im Direktbetrieb kdnnen alle druckbaren Zeichen
sowie die Werte numerischer und Text-Ausdriicke ausgegeben werden.
Bis auf das Anfilihrungszeichen " gilt dasselbe fiir den Programm-
Modus. Nach Ausfiihrung eines PRINT Befehles springt der Cursor
an den Anfang der ndchsten Bildschirmzeile.

2. Innerhalb einer PRINT Anweisung sind weitere Anweisungen zur
Tabulation und auch zur Farbsteuerung zugelassen.

3. Auf vielen Micros kann das Schreiben des PRINT Befehles durch
ein Fragezeichen ? abgekiirzt werden. Intern benutzt der Rechner
fiir beide Schliisselworter denselben Code. Deshalb gibt der Rech-
ner beim Listen stets PRINT aus.

4. Wie aus der Angabe des Formates ersichtlich, ist das Schliis-
selwort PRINT auch allein stehend zugelassen. Diese Anweisung be-
wirkt einen Zeilenvorschub.

5. Wird eine PRINT Anweisung mit Semikolon abgeschlossen, so un-
terdrickt dies den Zeilentransport und die Ausgabe neuer Zeichen
schliesst an der Position des zuletzt ausgegebenen Zeichens an.
Dabei ist zu beachten, dass numerische Konstanten mit einem ab-
schliessenden Leerzeichen ausgegeben werden. Méchte man, zum
Beispiel nach einem FOR ... NEXT Block,die Wirkung des abschlies-
‘senden Semikolomns aufheben, so fiigt man nach der NEXT Anweisung
eine allein stehende PRINT Anweisung ins Programm ein,

6. Die Verwendung des Kommas dient der Tabulation, Eine Bild-
schirmzeile ist in PRINT Zonen konstanter Breite (maschinenabhén-
gig 8 bis 14 Zeichen) eingeteilt. Das Setzen eines Kommas bewirkt,
dass die Ausgabe des n#ichsten Zeichens zu Beginn der n#chsten

Ausgabe von Daten 135

PRINT Zone erfolgt. Durch Setzen mehrerer Kommata k¥nnen Druck-
zonen lbersprungen werden. Sinngemidsses gilt auch fiir die Ausga-
be iliber einen Drucker.

7. Ubersteigt die Anzahl der auszugebenden Zeichen die Kapazitdt
der Druckzonen, d.h. der Bildschirmzeile, so wird die Ausgabe auf
der néchsten Zeile fortgesetzt. Dabei ist die Maximallénge einer
durch die PRINT Anweisung auszugebenden Zeichenreihe in der Regel
nur durch den fiir das Schreiben einer Anweisung zur Verffigung
stehenden Platz sowie die Maximall&nge einer Textkonstante be-
grenzt.

8. Die meisten Micros arbeiten im sogenannten Scroll-Modus. Nach
Abschluss eines Eintrags in die unterste Bildschirmzeile rollt
das Bild unter Verlust der obersten Zeile um eine Zeile nach
oben. Einige Micros kdnnen nach einer Umschaltung auch im 'Page-
Modus' betrieben werden; der Bildschirm wird dabei seitenweise
beschrieben. Ist eine Seite voll, so springt der Cursor- 'heim'

in die linke obere Bildschirmecke und die ndchsten auszugebenden
Zeichen iiberschreiben das bisherige Bild.

9. Ist der Ausgabebereich des Bildschirmes durch einen WINDOW Be-
fehl o.8. eingeengt, so wirkt die PRINT Anweisung - an die aktu-
elle Cursorposition gebunden - nur innerhalb des Bildschirmfen-
sters. Das Rollen des Bildes erfolgt dann innerhaldb dieses Fen-
sters.

Verwandtschaften. PRINT AT, PRINT USING, SPC, TAB, INK, PAPER,
COLOR, CHR$, WINDOW

PRINT AT
. Jarithm. Ausdruck ar.Ausdr.
Format. PRINT AT(x,¥); {Eextausdruck }' L{&extausdr.}]

x Zeilenposition
y Spaltenposition

Funktion. Diese Anweisung gestattet es,unabhéngig von der aktuel-
len Cursorposition, Ausgaben an beliebiger Stelle des
Bildschirmes zu positionieren. Das Semikolon dient hier
nur als Trennzeichen.

136

8. BASIC Anweisungen

Beispiele.

10
11
20
30
40
S0
60
70
80
82
90

100
101
110
120
130

REM %¥X PRINT AT ¥¥%
R=10

X0=19:Y0=11

FOR T=.001 TO 2¥P1 STEP PI1/50
X=XO0+R*¥CAZ(T)

v=YO+R¥SIN(T)

PRINT AT(Y,X);"Q"

NEXT

PRINT

END

REM #%% KLEINE LAUFSCHRIFT #¥%%

w=1
T$="KLEINE HAUFSCHRIFT
L=LEN{(TS)

139 @

140
150
160
170
180
190
206
201
210
220
221
23¢
240

100
101
103
105
107
109
110
120
130
140
150
151
160
170
180
190
191
200
2i0
220

cLs

PRINT AT(12,3)3"%"*
PRINT AT(12,36)"%"
PRINT AT(12,5);Ts$
PAUSE W

AS=MIDS (T$,1,1)
TH=MIDS (TS, 2,L-1) +AS

Y&=INKEYS

IF y®="" THEN 170

CLs
END

REM
REM
REM
REM

CLS

FOR R=1 TO 38

PRINT AT(1,R);"H"
PRINT AT (24,39-R);"WR"
NEXT R

FOR R=1 TO 24

PRINT AT(R,1);"R"
PRINT AT(25-R,38);°"R"
NEXT F

PAUSE 64
cLs
END

3% RPAHMEN ZEICHNEN %%

ZEILEN 1-24 UND SPALTEN
1-38 DES BILDSCHIRMES
BENUTZT

RUN

RUN 300000000 :
00 800

Ready
>R (2}]

8 8

0000000000

8 8

0
s} 00

a]e]
00000000080

S8

Zuweisungen 137

Bemerkungen. 1. Diese anweisung ist maschinenabhiingig, und auf
vielen Micros gibt es sie gar nicht. Andere mdgliche Formate

sind: PRINT @ y,x; Ausgabeliste

PRINT @ z; Ausgabeliste

Hierbei bedeuten x und y wieder die Bildschirmkoordinaten, ge-
rechnet von der linken oberen Bildschirmecke. Bei anderen Rech-
nern sind die Bildschirmpositionen fortlaufend numeriert, darauf
bezieht sich das zuletzt angegebene Format. \

2. Fir die benutzten Koordinaten sind auch arithmetische Ausdriik-
ke zulédssig; so diirfen sie durch einen vorangehenden Programmteil
berechnet sein. Fallen dabei die Koordinatenwerte ausserhaldb des
Bildschirmes, so meldet der Micro einen ILLEGAL QUANTITY ERROR.
3. Der PRINT AT Befehl kann mit lokal wirkenden Farbsteueranwei-
sungen oder eventuell auch mit Attributen kombiniert werden.

4, Die PRINT AT Anweisung gestattet das teilweise Loschen oder
Uberschreiben einer bereits esusgegebenen Bildschirmzeile. Zu die-
sem Zweck werden die betreffenden Bildschirmpositionen mit dem
Blank oder mit anderen Zeichen neu belegt.

5. Die PRINT AT Anweisung ist unabhéngig vom sktuellen Bild-
schirmfenster fiir alle Schirmpositionen zulassig.

6. Steht diese Anweisung auf Ihrem Micro nicht zur Verfiagung, so
ist es eine reizvolle und auch realistische Aufgaebe, den PRINT AT
Befehl mit Hilfe einer'selbstgeschriebenen Maschinencode-Routine
zu implementieren.

Verwandtschaften. PRINT @, PLOT, INK, PAPER, COLOR

Zuweisungen
LET

Format LET ﬁnd.] numer. Variable - arithm. Ausdruck}

(ind.] Textvariable - Tetrtausdruck

Funktion. Die Anweisung ges}attet'es, Variablen einen Wert vom
entsprechenden Typ zuzuweisen. Dabei sind auch indi-
zierte Variablen, also Feldelemente, zugelassen.

138

8. BASIC Anweisungen

Beispiele.

100
101
110
130
140
150
160
170
199
200
210
220
230
240
250
260
270
280
282
290
300

100
101
103
105
102
109
111
119
120
130
132
134
140
150
160
170
122
180
190
200
210
220
230
240
250
260
270
280
290

REM #¥% ZUWEISUNGEN %%

LET S$="EINLESEN VON TESTGROESSEN A(I,K)"
LET Te=" % *

LET Te=TH+SSE+TS

CLS:PRINT

PRINT T&

PRINT:PRINT

DIM A(18,%)
FOR I=1 TO 18 RUN

FOR K=1 TO 9

LET A=RND(1)

LET A=A%¥900 % EINLESEN VON TESTGROESSEN #

LET A=100+INT(A) 5 g é %

LET A(I,K)=A
! !

PRINT A(I,K);
6

NEXT K
L

PRINT
§‘ady

\NOOO

\IOCLNOUR

o}

11
Lol
1eegngagtetsiningl

NEXT I
END

(RN U R)
L OOV O oo
OO
[RO R R
(U
N\I\P=4-2

AU B0\
Q=000 NIOUNIAOS!

LU= UI0N= UTNOO0M

3

REM ¥%% PRIMZAHLEN 3%

REM EINE ZAHL HEISST PRIMZAHL, WENN SIE NUR UNECHTE

REM TEILER HAT, ALSO NUR DURCH 1 UND SICH SELBST TEILBAR
REM IST. DIE EINS RECHNET MAN NICHT ZU DEN PRIMZAHLEN.
REM HAT P KEINEN TEILER D MIT 1<(D<(=SAR(P), SO IST P

REM EINE PRIMZAHL.

CLS:PRINT

PRINT "EINGABE EINER NATUERLICHEN ZAHL N>4*
PRINT

INPUT N

IF NCS OR NCOINTIN) THEN 120

PRINT

PRINT "DIE PRIMZAHLEN BIS®;iN;"LAUTEN:®
PRINT

PRINT 2,3,

LET P=5

LET S@=SGR(P)

FOR T=3 TO S@ STEP 2

LET @=P/T

LET I=INT(@)

IF I=@ THEN T=5S@+1:REXT %:{60TO 260
NEXT T

PRINT P,

LET P=P+2

IF P<=N THEN 190

PRINT:PRINT

END

Zuweisungen 139
RUN

EINGABE EINER NATUERLICHEN ZAHL N>4
? 380
DIE PRIMZAHLEN BIS 380 LAUTEN:

§ :

L
|

i;'ady

Kilrzlich wurde auf einem Computer die Primzahl 2216091 _ 1 ormit-
telt, eine Zahl mit 65050 Ziffern. Wollen Sie es nachpriifen?

"Bemerkungen. 1. Beide Seiten der Wert-Zuweisung miissen einander
im Typ entsprechen. So kann einer numerischen Variablen nur eines
Zahl oder, allgemeiner, ein numerischer Ausdruck zugewiesen wer-
den. Soll einer Textvariablen eine Ziffer zugewiesen werden, so
muses diese in Anfiihrungszeichen geschrieben werden. Zuwiderhand-
lungen fiihren auf die Fehlermeldung TM: TYPE MISMATCH ERROR.

2. Die Syntax der meisten Interpreter gestattet es, das Schliissel-
wort LET entfallenzulassen,

3. Die Wert-Zuweisung wird von links nach rechts gelesen und ent-
spricht damit nicht der symmetrischen Gleichheitsrelation der Ma-
thematik. So ergidbe es Nonsens, die Zuweisung C = B/A etwa in die

Form A * C = B auflésen zu wollen. Die Variable der linken Seite
muss tatsdchlich 'solo' dastehen; auch eine mittelbare Zuweisung
etwa der Form EXP(X) = 10 ist unzuléssig und fiihrt zu einem
SYNTAX ERROR.

4, Moehrere Wert-Zuweisungen miissen getrennt geschrieben werden,
So wiirde etwa LET A = B = 1 in der Regel auf gHnzlich unerwartete

Resultate fiihren., In den meisten BASIC Versionen wird diese An-
weisung als LET A = (B = 1) interpretiert. Hierbel erhilt dann
die Variable A den Wahrheitswert der logischen Aussage B = 1,
der natiirlich vom aktuellen Wert der Variablen B abhdngt.

140 8. BASIC Anweisungen
Dateneingabe
INPUT
Format. INPUT [Textkonstante;] {Sgtvgraﬁgﬁe}
’[num. Variable}]
’|Textvariable

Funktion. Diese Anweisung erlaubt es, widhrend des Programmlaufes

dem Rechner von der Tastatur aus Daten zu {ibergeben.
Stdsst der Interpretetr auf die INPUT Anweisung, so wird
das Programm angehalten und eine Eingabe entsprechend
den angegebenen Variaeblen abgewartet. Diese werden,
durch Komma getrennt, nacheinander eingegeben und auf
dem Bildschirm angezeigt. Die gesamte Eingabe wird mit
ENTER abgeschlossen.

Beispiele.

100
101
110
120
130
131
150
160
170
180
190
194
199
200
210
220
228
230
240
250
260
299
300
310
312
320
330

340

350
360
370
380
390
400

REM #% EINLESEN EINER LISTE #%%
CLS:PRINT

INPUT °“UMFANG DER LISTE "iM

DIM NAS(M)

PRINT

FOR I=1 TO M

PRINT "NAME "3;I;" ";
INPUT NAS(I)

NEXT I

PAUSE 20

CLS:PRINT .

INPUT "AUSGABE DER LISTE GEWUENSCHT *;As
IF A$¢>"J" AND A$<>“JA" THEN GOTO 390
CLS:PRINT

FOR I=1 TO M

PRINT I,NAS(I)

NEXT I

PRINT

INPUT "KORREKTUR GEWUENSCHT ";AS$
IF A®<>"J" AND A%<>"JA" THEN GOTO 400
PRINT

INPUT "WELCHE POSITION";K

IF K<1 OR K>M THEN 312

PRINT

PRINT "AENDERUNG VON POSITION®;K;
INPUT NAS(K)

PAUSE 20

GOTO 200

PRINT

END

Dateneingabe 141
RUN

‘UMFANG DER LISTE ? 11

2 8=BIV PROZESSOREN:
E g UNKWERK ERFURT
N

§B ngRK ERFURT
AUSGABE DER LISTE GEWUENSCHT ? NEIN

DDODDDODLDDD:

~cPl
i¢ '?Ez 2522.3 e

§iady

160 REM ¥#% SICHERUNG %%

101 :

110 CLS

120 PRINT

130 PRINT "GEBEN $IE BITTE DAS KENNWORT EIN:"
140 PRINT y

150 INPUT K$

160 IF K$ (> "GUELTIGES PASSWORD" THEN GOTO 120
170 CLS:PRINT:PRINT

180 PRINT "WILLKOMMEN. DAS PROGRAMM STEHT"
190 PRINT

200 PRINT "ZU IHRER VERFUEGUNG BEREIT %"
210 PAUSE 20

220 PRINT

230 END

RUN

GEﬁEN SIE BITTE DAS KENNWORT EIN:
? GUELTIGES PASSWORD

WILLKOMMEN. DAS PROGRAMM STEHT
ZU IHRER VERFUEGUNG BEREIT ¥#3¥%

§‘ady

Bemerkungen. 1. Mittels der INPUT Anweisung kSnnen auch indizier-
ten Variablen Werte zugewiesen werden.

2. Die Eingebe muss stets dem abgefragten Varisblentyp entspre-
chen. Handelt es sich um eine numerische Veriable, so akzeptiert
der Rechner nur zur Beschreibung von Zehlen benutzte Zeichen
einschliesslich des Vorzeichens. Anderenfalls fordert er Sie mit
der Meldung REDO FROM START zu einer erneuten, korrigierten Ein-

142 8. BASIC Anweisungen

gabe auf.

3. Wird bei der Eingabe einer Dezimalzehl ein Komma statt des
vorgeschriebenen Dezimalpunktes verwendet, so iibernimmt der Rech-
ner die Ziffern hinter dem Komma nicht und meldet EXTRA IGNORED,
ohne das Programm abzubrechen. Folgt im INPUT Befehl eine weitere
Variable, so wird der Wert nach dem Komma dieser zugewiesen - was
zu einiger Verwirrung in IThrem Programm fithren kann.

4. Bei einer Textvariablen sind alle Textzeichen zugelassen, auf
vielen Micros kdnnen die Anfiihrungsstriche hierbei entfallen.

5. Wie im obigen Format angegeben, kann auf den meisten Micros
die INPUT Anweisung mit der Ausgabe einer Bildschirminformation
gekoppelt werden. Gegebenenfalls leistet eine vor die INPUT An-
weisung geschriebene und mit Semikolon abgeschlossene PRINT Zeile
den gleichen Dienst. In jedem Falle sollte man den Nutzer eines
Programmes bei einem INPUT darauf hinweisen, welcher Variablen-
typ gerade gefragt ist. Als Nutzer kOnnen Sie getrost auch sich
selbst betrachten, in spdtestens vierzehn Tagen haben Sie die
Feinheiten eines heut' geschriebenen Programms vergessen.

6. Der INPUT Befehl kann nicht als Kommando benutzt.werden. Eine
Eingabe im Kommando-Modus f{ihrt zu der Fehlermeldung ID: ILLEGAL
DIRECT ERROR. .

Verwandtschaften, INKEY$, KEY$, GET

INKEY$S
Format. INKEY$

Funktion. Diese Anweisung dient dazu, dem Rechner ohne Programm-
unterbrechung Informationen vom Tastenfeld aus zu {ber-
geben., Wird zum Zeitpunkt der Ausfiihrung von INKEY$
keine Taste betdtigt, so wird die leere Zeichenkette
iibernommen. Die von INKEY$ eingelesenen Daten erschei-
nen nicht auf dem Bildschirm.

Beispiele.

10 REM ¥¥% FINGERUBUNG %%
11

20 FOR X=1 TO 100

30 PRINT INKEYS

40 NEXT X

S0 END

Dateneingabe 143

100 REM #¥¥ LORES SCHREIBER ¥¥¥

101 :

110 CLS:PRINT

120 PRINT *“MIT DIESEM PROGRAMM KOENNEN SIE GROSSE"
122 PRINT

130 PRINT "BLOCKBUCHSTABEN ODER GRAPHIKEN MIT DEM*
132" PRINT

140 PRINT "VOLLZEICHEN SCHREIBEN"

150 PRINT:PRINT

160 PAUSE 30

199 ¢

200 CLS:PRINT

210 PRINT "START IN DER LINKEN OBEREN"

220 PRINT "BILDSCHIRMECKE"

230 PRINT:PRINT

240 PRINT "TASTEN: <U> - AUF"

242 PRINT

250 PRINT * <H> - LINKS"

252 PRINT

260 PRINT * <J> - RECHTS"

262 PRINT

270 PRINT * <{N> - AB"

272 PRINT

280 PRINT * <{SPACE> -~ VOLLZEICHEN ODER BLANK"
282 PRINT

290 PRINT * <S> - PROGRAMMENDE

294 PAUSE 30

299 :

300 X=1 :REM X-KOORDINATE

310 Y=1 :REM Y-KOORDINATE

320 C=1 :REM ZEICHENSTEUERUNG

330 V=91 :REM CODE FUER VOLLZEICHEN WAEHLEN

340 CH=V

350 CLS

400 K$=INKEYS

410 IF K$="S" THEN END

420 IF K$="U®" THEN IF Y>1 THEN Y=Y-1 :REM KORDINATEN-
430 IF Ke="H" THEN IF X>1 THEN X=X-1 :REM GRENZEN AN
440 IF K®="J* THEN IF X<38 THEN X=X+1 :REM BILDSCHIRM
450 IF Ke="N" THEN IF Y<24 THEN Y=Y+1 :REM ANPASSEN
460 IF K$=" " THEN C=1-C:CH=C%V + (1-C)%32

470 PRINT AT(Y,X); CHRS(CH)

480 PAUSE 1

490 PRINT AT(Y,X); "#"

500 PAUSE 1

510 PRINT AT(Y,X)§ CHR$(CH)

520 GOTO 400

S30 END

Bemerkungen. 1. Mit dieser Anweisung kann ein beliebiges Zeichen
von der Tastatur aus eingelesen werden. Dabei sind auch das
durch die Space-Taste erreichbare Blank sowie die den Cursor-
Flihrungstesten zugeordneten Steuerzeichen zugelassen. Das Pro-
gramm wird dabei nicht angehalten,

2. Die Eingabe erfolgt weitgehend automatisiert, insbesodere ist
ein Abschluss durch ENTER nicht erforderlich. Dies hat aber zur

144 8. BASIC Anweisungen

Folge, dass winrend des Programmlaufes der rechte Zeitpunkt zur
Eingabe 'erwischt' werden muss. Verpasst man diesen, so {iber-
nimmt INKEY$ den Wert der leeren Zeichenkette "". Auch besteht
nach erfolgtem Tastendruck keinerlei Korrekturmbglichkeit.

3. Eine Moglichkeit zur Konstruktion einer ‘'Eingabe mit Warten'
bietet die foligende, unter Benutzung der IF Anweisung geschrie-
bene Frogremmzeile

100 YS=INKEYVS$: IF Y&="" GOTC 100
110 PRINT Y$

In Zeile 100 wird eine Schleife konstruiert, die erst verlassen
werden kann, wenn die Bedingung Y$ - "" nicht erfiillt ist, also
irgendein Zeichen - das Blsnk " " eingeschlossen - eingegeben
wird.

4. Durch das beschriebene Verhalten ist die INKEY$ Anweisung her-

vorragend zur Steuerung dynamischer Spiele geeignet.
5. Zur Nutzung im Direkt-Modus ist die Anweisung nicht geeignet.

Verwandtschaften. KEY$, INPUT, GET

KEY$S

Format. EKEY$

Funktion. Diese Anweisung ist in der Wirkung mit INKEY$ iden-
tisch.

Beispiele,
10 REM #¥¥% EINGABE MIT KEYS ¥¥%

16 PRINT

20 PRINT

30 PRINT "EINGABE EINES ZEICHENS ERWARTET:*
40 Y$=KEYS$:IF Y$="" GOTO 40 !
SO0 PRINT

60 PRINT "EINGABE VON *jY%; " QUITTIERT"

70 PRINT

80 END

RUN

EINGABE EINES ZEICHENS ERWARTET:
EINGABE VON # QUITTIERT

giady

Dateneingabe 145

10 REM ¥¥¥% PROGRAMMSTEUERUNG PER TASTATUR *¥%

11

13 REM ABWEISUNG NICHT VEREINBARTER TASTEN

15 @

20 CLS

30 PRINT

40 PRINT *> PROGRAMMLAUF <*

50, PRINT

60 PRINT "PROGRAMMLAUF WIEDERMOLEN ? <J/N>*

70 K$=KEYS$:IF K$="J" THEN 30 ELSE IF K$<>"N* THEN 70 ELSE END

RUN

> PROGRAMMLAUF <
PROGRAMMLAUF WIEDERHOLEN ? <J/N>
> PROGRAMMLAUF <

PROGRAMMLAUF WIEDERHOLEN ? <J/N>
Rgad

N

100 REM #¥%¥ PAUSE MIT ABBRUCHMOEGLICHKEIT 3%
101 :

103 REM P DEFINIERT MAXIMALE LAENGE DER PAUSE
107

110 CLS:PRINT

114 PRINT

120 PRINT "PAUSE MIT ABBRUCHMOEGLICHKEIT®

130 PRINT ‘

140 PRINT "DRUECKE <SPACE)> FUER ENDE DER PAUSE®"
149 :]

200 P=1000:D=P

201 @

210 FOR I=1 TO P

220 AS=KEYS

230 IF As=" " THEN D=I:I=P

240 NEXT

230 PRINT

260 PRINT "DAUER DER PAUSE:"

270 PRINT

280 PRINT Dj "SCHLEIFENDURCHGAENGE"

290 END

299 :

300 REM NOCHMAL ALS EINZEILER 7

301 :

303 :REM (BELASTET EVENTUELL DEN STACK)

308 :

310 FORI=1T09999:AS=KEYS: IFA$=""THENNEXT

320 END

/

RUN.

PAUSE MIT ABBRUCHMOEGLICHKEIT
DRUECKE <SPACE> FUER ENDE DER PAUSE
DAUER DER PAUSE:

483 SCHLEIFENDURCHGAENGE

§‘ady

146 8. BASIC Anweisungen

GET

Format.

Textvariable }
GET {num. Variable

Funktion. Diese Anweisung fiihrt zu einer Unterbrechung der Pro-

grammausfiihrung, die solange endauert, bis ein Zeichen
von der Tastatur eingelesen worden ist. Der Wert des
Zeichens wird der hinter dem Schlilsselwort GET formu-
lierten Variablen zugewiesen.

Beispiele,
100 REM %% GET (mit Warten) *¥%
101 :
110 CLS
120 PRINT:PRINT "DRUECKEN SIE EINE TASTE®
140 GET AS
150 PRINT:PRINT *"SIE HABEN "jAS;" GEDRUECKT"
160 PRINT:PRINT *"ASCII CODE VON ";A$;": ";ASC(AS)
180 PRINT:PRINT "NOCHMAL ? <0,1>"
200 GET A
201 :
203 REM EINGABE EINES NICHTNUMERISCHEN ZEICHENS
205 REM FUEHRT ZU EINER FEHLERMELDUNG
207 :
210 IF A=1 THEN 120
220 END
RUN
DRUECKEN SIE EINE TASTE
SIE HABEN # GEDRUECKT
ASCII CODE VON #: 35
NOCHMAL ? <0,1>
DRUECKEN SIE EINE TASTE
SIE HABEN GEDRUECKT
ASCII CODE VON : 32
NOCHMAL ? <0,1>
H
10 REM %% AUFHENGER %¥%¥%
11 ¢
13 REM AUF VIELEN MICROS IST DIESES PROGRAMM

IS R
19 @
20 C
30 P
40 P
S0 G
&0 P
70 P
80 G

EM NUR MIT RESET ZU STOPPEN

LS

RINT

RINT "TASTE ?*
ET AS

RINT

RINT AS

0TO 30

Programmverzweigung 147

Bemerkungen. 1. Neben der INPUT Anweisung sowie KEY$ oder INKEY$
bietet auf manchen Kleincomputern der GET Befehl eine weitere
programmgesteuerte Eingabembglichkeit und dient wie diése der
Gestaltung interaktiver Programme.

2. Im Gegensatz zur INPUT Anweisung, wo mehrstellige Zahlen oder
Zeichenketten eingegeben werden k¥nnen, wird bei GET nur ein Zei-
chen {ibergeben. Unmittelbar darauf wird das Programm mit der
nHchsten Anweisung fortgesetzt. Die Eingabe braucht also nicht
mit ENTER abgeschlossen zu werden; eventuell eingegebene weitere
Zeichen werden ignoriert. Eine Anzeige des eingegebenen Zeichens
auf dem Bildschirm erfolgt nicht.

3. In Abhéngigkeit vom Typ der hinter dem Schliisselwort GET ste-
henden Variablen wird ein eingegebenes Ziffernzeichen entweder
als Zahl oder als Ziffer interpretiert. Wird ein numerischer
Wert erwartet, so fitlhrt jede andere Eingabe zu einem SYNTAX
ERROR.

4. Etwas lax gesprochen entspricht die GET Anweisuhg einem KEY$
Befehl 'mit Warten'. Steht GET auf Ihrem Micro nicht zur Verfii-
gung, sSo k&nnen sie den Befehl mit KEY$ oder INKEY$ wie dort be-
schrieben nachbilden.

5. Auf einigen Rechnern (z.B. Commodore) wird beim GET Befehl
nicht auf die Eingabe gewartet. Gegebenenfalls ist hier wie bei
-der KEY$ Anweisung zu verfahren.

Verwandtschaften. INPUT, INKEY$, KEY$

Programmverzweigung
GOTO

Format. GOTO 2
z Zeilennummer, arithmetischer Ausdruck

Funktion. Mit dieser Anweisung kann der entsprechend den aufstei-
genden Zeilennummern ableufende Programmfluss ge#ndert
werden. Das Programm unterbricht die sequentielle Ab-
arbeitung und springt zu der angegebenen Zeilennummer.

Beispiele. 10 REM #¥% GOTO #%¥%

11

20 PRINT

30 PRINT “PROGRAMM MIT CTRL C ODER BREAK STOPPEN"
40 GOTO 20

148 8. BASIC Anweisungen

RUN

PROGRAMM MYT CTRL C ODER BREAK STCQPPEN

PROGRAMM MIT CTRL C ODER BREAK STOPPEN

PROGRAMM MIT CTRL € ODER BREAK STOPPEN
BREAK IN 30

giaﬁy

10 REM ¥#%% NUTZERFUHRUNG %3¢

11

20 CLS:PRINT

30 GOTO &0

40 PRINT ">> POSITIVE GANZE ZAHL EINGEBEN"
SO PRINT:PRINT:PRINT

60 INPUT "> ANZAHL DER DATENPUNKTE *"iN

70 PRINT

80 IF NC1 OR N{(>INT(N) GOTO 40

90 END

RUN
> ANZAHL DER DATENPUNKTE ? O
>> POSITIVE GANZE ZAHL EINGEBEN

> ANZAHL DER DATENPUNKTE ? 9.7
>> POSITIVE GANZE ZAHL EINGEBEN

> ANZAHL DER DATENPUNKTE ? 1?7

3"4’

100 REM ¥%% SYMBOLISCHE SPRUNGADRESSEN ¥

101 :

103 REM SYMBOLISCHE ADRESSEN GESTATTEN

105 REM FLEXIBLERES PROGRAMMIEREN

107 REM UND UNTERDRUCKEN FEWLER BEI

109 REM ADRESSENANDERUNGEN

111

113 REM SYMBOLISCHE ADRESSEN SIND NICHT

115 REM AUF ALLEN MICROS ZULXSSIG

119 ¢

120 LET ADRESSE1=300

130 LET MARKE=400

140 LET PROGRAMM=170

141 ¢

150 PRINT

160 GOTO ADRESSE1

170 PRINT "PROGRAMM = 170°

180 PRINT

190 GOTO MARKE

199 : _

300 PRINT "ADRESSEI = 300* RUN

302 PRINT ADRESSE1 = 300
35 S0TO PROGRAWN PROGRAMM = 170
400 PRINT *MARKE = 400° MARKE = 400

410 PRINT
S00 END §‘.‘y

Programmverzweigung 149

100 REM %%% SPAGHETTI #¥%#

101 :
108 PRINT

110 PRINT “ZEILE 110* : GOTO 180

120 PRINT “ZEILE 120" : GOTO 140 RUN
130 PRINT "ZEILE 130" : GOTO 170

140 PRINT *ZEILE 140" : GOTO 190 E
150 PRINT *ZEILE 150" : GOTO 120

160 PRINT "ZEILE 180° : GOTO 130 E
170 PRINT "ZEILE 170" : GOTO 150

180 PRINT "ZEILE 180" : GOTO 160 RgadY

190 END

Bemerkungen. 1. Die angegebene oder berechnete Zeilennummer soll,
im Programm vorhanden sein. Anderenfalls meldet der Micro UL:
UNDEF'D STATEMENT ERROR; bei einigen Rechnern wird kommentarlos
das Programm mit Ausfﬁhrung der ndchsthSheren vorhandenen Zeile
fortgesetzt.

2. Wie im Pormat beschrieben, gestatten einige Micros die Angabe
berechneter Sprungziele in Form arithmetischer Ausdriicke.

3. Damit wird dann auch die Verwendung symbolischer Sprungadres-
sen mdglich. Die Sprungziele werden mittels numerischer Variab-
len festgelegt. Dabei benutzt man mnemotechnisch giinstige Nemen
(weniger vornehm k&nnte man auch Eselsbriicken sagen), muss hier
nur aufpassen, dass keiné reservierten Schliisselwdrter enthalten
sind. Zu Beginn des Programms werden dann mittels Wertzuweisung:
fiir diese Variablen alle Sprungziele vereinbart. Damit hat man
die unbedingten Spriinge fest im Griff und kann insbesondere auf
infolge Programménderungen wechselnde Sprungziele (die Crux des
GOTO Programmierers) flexibel und vor allem fehlerarm reagieren.
Wéhrend des Progremmierens kann man zu einer symbolischen Adres-
se verzweigen, die konkret noch gar nicht existiert.

4., Ergibt sich bei einem berechneten Sprungziel ein nicht ganzer
Wert, so rundet der Rechner - wie in solchen F#llen iiblich - zur
ndchstniedrigeren ganzen Zehl ab.

5. Es ist guter Programmierstil, keine REM Zeilen anzuspringen.
Wird es im Speicher knapp, so fallen einer Sduberung zuerst die
REMs zum Opfer und dann tappt die GOTO Anweisung ins Leere.

6. Nicht ohne Grund gehdrt es zum guten Ton, darauf hinzuweisen,
dass man mit der Anwendung der GOTO Anweisung recht sparsam sein
soll. Eine eingefiigte GOTO Anweisung bewirkt erhebliche Anderun-
gen der Logik des Programms. Benutzt man viele GOTOs, so kann
die Logik schnell vdllig uniibersichtlich werden - es entstehen
die gefiirchteten unleserlichen Spaghetti-Programme. (Wenn man an

150 8. BASIC Anweisungen

einer.Nudel zieht, kann es i{iberall wackeln, men weiss 'nur nicht,
wo.)

7. Bezeichnet n die niedrigste Zeilennummer eines Programmes, so
kann mit dem Direkt-Befehl GOTO n das Programm ohne L3¥schen der
gesetzten Variablen gestartet werden - wie natiirlich auch an je-
der anderen Zeile des Programms.

Verwandtschaften. GOSUB, ON, RUN

ON ... GOTO

Format. ON i GOTO Zeilennummer [,Zeilennummer] oo
0 % i & 255 gonzzahlige Variable

Funktion., Diese Anweisung ermdglicht die Konstruktion einer Viel-
fachverzweigung oder Mehrfachauswahl in einer Programm-
struktur. In dem angegebenen Format verzweigt das Pro-
gramm zur i-ten angegebenen Zeilennummer. Ist i gleich
Null oder grdsser als die Anzehl der nach GOTO angege-
benen Zeilennummern, so geht das Programm zur Ausfiih-
rung der nachfolgenden Anweisung fiber.

Beispiel.

100 REM ¥%¥ MENU %%

101 ¢

110 CLS:PRINT

120 PRINT "% PROGRAMMSTEUERUNG %"

130 PRINT:PRINT:PRINT *BITTE GEBEN SIE EIN"
140 PRINT:PRINT * <1> - PROGRAMM FORTSETZEN"
150 PRINT:PRINT * <2> - LADEN NEUER DATEN"
160 PRINT:PRINT * <3> - SICHERN AUF KASSETTE"
170 PRINT:PRINT * <4> - PROGRAMM BEENDEN"
200 PRINT

210 PRINT "EINGABE: ";

220 INPUT N

230 PRINT

240 ON N GOTO 300,400,500,600

250 PRINT "UNGUELTIGE EINGABE"

260 GOTO 200

299 :

300 PRINT "PROGRAMMFORTSETZUNG ..."

310 6QTO 600

399 :

400 PRINT °"LADEROUTINE ..."

410 REM EVENTUELL: CLOAD "DATEN",A$400,ES$4FF
420 GOTO 200

499

500 PRINT "SICHERN AUF KASSETTE ..."

510 REM EVENTUELL CSAVE BENUTZEN

S99 &

600 PRINT:END

Programmverzweigung 151

Programmlauf. Struktur des Menii.

RUN KOMMENTAR

* PROGRAMMSTEUERUNG ¥ F\\“ﬁ
P-\\

BITTE GEBEN SIE EIN [
<1> - PROGRAMM FORTSETZEN N=2 N
<2> - LADEN NEUER DATEN
{3> - SICHERN AUF KASSETTE
<4> - PROGRAMM BEENDEN

EINGABE: ? 2

LADERQUTINE ...

EINGABE: ? 1

PROGRAMMFORTSETZUNG ...

-4
[

b4
]
-
zZ
H
u
"
ES
z
~
=
Zz
v
[

WWYH90¥d

N3avI

NY3HOIS

3aN3

Od2IW S3a
JEVYONII
JOILINONN LINIdd

N3Z13S180d
ONNATIWNITHIS

§iady

Bemerkungen. 1. Dieser Befehl gehdrt bereits zu einem 'gehobenen
BASIC' und ist nicht euf jedem Liicro implementiert. Falls ndtig,
konnen Sie ihn mit den Anweisungen GOTO und IF ... THEN nachbil-
den.

2. Bei der Formulierung der Anweisung sind auch arithmetische
Ausdriicke zugelassen. Ergeben sich dabei nichtganze Werte, so
wird zur néchstkleineren ganzen Zahl abgerundet.

3. Bei einem negativen Wert der in der obigen Formatangabe mit i
bezeichneten Zéhlvariablen meldet der Rechner FC: ILLEGAL
QUANTITY ERROR.

4. Die ON ... GOTO Anweisung wird vorteilhaft in meniigesteuerten
Programmen genutzt, um entsprechend einer Nutzereingabe den Pro-
grammfluss zu verzweigen.

Verwandtschaften. GOTO, IF ... THEN, ON ... GOSUB

IF ... THEN
Format. IF logischer Ausdruck THEN Anweisung

Funktion. Diese Anweisung ermdglicht die Konstruktion von Ent-
scheidungsstrukturen innerhalb eines Programms. Er-
kennt der Interpreter den nach IF formulierten logi-
schen Ausdruck als wahr, so wird unmittelbar darauf
die nach THEN stehende Anweisung ausgefiihrt. Anderen-
falls wird das Programm mit der néchsten Zeile fortge-
setzt.

152

8. BASIC Anweisungen

Beispiele.
REM

R

100
101
103
105
107
109
111
119
120
130
1490
150
160
170
180
197
199
200
240
220
230
240
250
260
270
280
297
299
300
310
320
330
340

UN

R
R

EM
EM

REM
REM

R

EM

% QUADRATWURZEL 3¢

LOESUNG DER GLEICHUNG X*2 - N = O

NACH DEM NEWTON VERFAHREN

AKZEPTABLE NAEHERUNGEN FUER N>1
VERGLEICHEN SIE DAS ERGEBNIS MIT S&R(N)

% EINGABE *

CLS:PRINT
GOTO 160
PRINT
PRINT
INPUT
PRINT

IF N(=0 THEN GOTO 140

"POSITIVE ZAHL EINGEBEN"

“EINGABE EINER POSITIVEN ZAHL"jN

REM % ITERATION %
LET X=N

LET Xi=X

LET X=0.5*(X+N/X)

IF X1-X<0.00001 THEN GOTO 260
PRINT X

GOTO 210
PRINT
PRINT
PRINT:PRINT X:PRINT

“NAEHERUNG DER QUADRATWURZEL VON";N;":

REM % PROGRAMMSCHLUSS *
PRINT
INPUT As

IF AS="]" OR A$="JA"
PRINT

E

ND

“NOCHMAL

CI/N> "3

THEN GOTO 120

EINGABE EINER POSITIVEN ZAHL? ?

943
§:§§g§§%§?
NAEHERUNG DER QUADRATWURZEL® VON 7 :

2.64575131
NOCHMAL

CI/NY 23

EINGABE EINER POSITIVEN ZAHL ? 33.1

:

&7

:

158

8

3

i

o0

NAEHERUNG DER QUADRATWURZEL VON 33.1
5.75325995
NOCHMAL

Sgee

CJ/IN> 2 N

Programmverzweigung 153

10 REM ¥%% TEST 3%k

11

20 CLS:PRINT

30 PRINT "GIB EINE NATUERLICHE ZAHL"®
32 PRINT "ZWISCHEN 1 UND 9 EIN:"

40 Z$=INKEYS

SO0 IF Zs="" OR Z$<{"1" OR Z%>"9° THEN GOTO 40
60 Z=VAL (Z%)

70 PRINT

80 PRINT Zs,2Z

90 END

Bemerkungen. 1. Mit der IF ... THEN Anweisung ldsst sich der Pro-
grammfluss in Abhéngigkeit vom bisherigen Verlauf erheblich be-
einflussen, es werden bedingte Verzweigungen mbglich.

2. Ist die auf THEN folgende Anweisung ein Sprungbefehl, so kann
das Schliisselwort GOTO entfallen. Man kann dann aber auch THEN
durch GOTO ersetzen.

10 IF A=0 THEN 30 10 IF A=0 GOTQ 30
20 PRINT 10/A 20 PRINT 10/A
30 END 30 END

3. Nach THEN diirfen mehrere durch Doppelpunkt getrennte Anweisun-
gen formuliert werden.

10 INPUT “GEBEN SIE EINE POSITIVE ZAHL EIN";N

20 IF N<¢=0 THEN CLS:GOTO 10

30 PRINT:PRINT N
4. Nach dem Schliisselwort THEN ist jede Anweisung zugelessen, so
konnen kompliziertere Bedingungen durch gestaffelte IF ... THEN
Konstruktionen realisiert werden.

10 IF I=0 THEN IF K<>0 THEN PRINT K

5. Die in der IF ... THEN Anweisung euftretende Bedingung wird
zumeist mittels Vergleichsoperatoren in Gestalt eines logischen
Ausdrucks formalisiert. Je nachdem, ob die Bedingung erfiillt ist
oder nicht, besitzt dieser logische Ausdruck den Wahrheitswert
Wahr oder Palsch.

6. Naturlich handelt es sich hier um einen sehr verkiirzten Wahr-
heitsbegriff. Einmal lassen sich keineswegs alle realen Bedin-
gungen iiber Vergleichsoperatoren als logische Ausdriicke formu-
lieren,und zum anderen ist die zweiwertige mathematische Logik
nur einem begrenzten Teil der Realitat addquat. Die an anderer
Stelle formulierte Frage 'Was ist Wahrheit?' ist durch den Com-
puter nicht entscheidbar.

7. Der Interpreter verarbeitet die Wehrheitswerte Falsch und

154 8. BASIC Anweisungen

Wahr als Zahlen O beziehungsweise 1 (auf einigen Micros auch -1
fir Wahr). Das e\rlaubt, die IF ... THEN Anweisung in der folgen-
den,auf den ersten Blick unverstiéindlichen Form zu benutzen.

10 FOR X=-5 7O S

20 PRINT X,

30 IF X THEN PRINT "UNGLEICH NULL";
40 PRINT

SO NEXT X

Der Wert der in Zeile 30 nach IF stehenden Variablen X wird als
Wahrheitswert interpretiert, welcher beim Test nur im Falle X=0
als Falsch gilt. Man sollte diesen Trick zumindest kennen, um
enderer Leute Programme zu verstehen.

Verwandtschaften. GOTO, IF...THEN...ELSE, AND, OR, NOT, TRUE,
FALSE

IF ... THEN ... ELSE

Format. IF logischer Ausdruck THEN {Zeﬂem‘mer} ELSE {z.-m-..}

Anweisung Anweis

Funktion. Diese Anweisung erlaubt eine sehr einfache Konstruk-
h tion von Alternativen. Ist der logische Ausdruck wahr,
so wird als n#chstes die unmittelbar hinter THEN ste-

hende Anweisung ausgefilhrt, die auf ELSE folgende An-

weisung dagegen ignoriert. Ist der logische Ausdruck

falsch, so kommt die nach BLSE formulierte Anweisung

zur Ausfiihrung.
Beispiel.

100 REM 3% ALTERNATIVE ¢

101 :

110 CLS

120 PRINT

130 PRINT "PROGRAMMSPRUNG ZU ZEILE 200 <2>"
132 PRINT

140 INPUT "ODER ZU ZEILE 300 <3> "jA
130 PRINT

160 IF A=3 THEN 300 ELSE 200

170 REM

180 REM ANDERES PROGRAMMSEGMENT

190 REM

200 PRINT "PROGRAMMZEILE 200"

210 REM

290 GOTO S00

300 PRINT “PROGRAMMZEILE 300"

310 REM

S00 END

Schleifensteuerung 155

10 REM #%% GERADE ODER UNGERADE? ¥¥%

11 ¢

20 PRINT

30 FOR I=0 TO 20

40 PRINT I,

50 K=1/2

60 IF K<¢>INT(K) THEN PRINT "UNGERADE" ELSE PRINT *GERADE"

70 NEXT I

80 PRINT

90 END
Bemerkungen. 1. Diese Anweisung stellt eine wirksame Erweiterung
des IF ... THEN Befehles dar, gehdrt aber nicht mehr zum tiblichen
BASIC Sprachschatz. Sie kann stets mittels einer Kombination von
IP ... THEN und GOTO Anweisungen ersetzt werden. Bel einigen In-
terpretern sind die nach THEN und ELSE zuldssigen Anweisungen
eingeschrénkt.
2. Ist die auf THEN oder ELSE folgende Anweisung ein GOTO Befehl,
s0 kann das Schliisselwort GOTO entfallen. Auch darf dann anstelle
von THEN das Schliisselwort GOTO benutzt werden.
3. Viele Interpreter lassen auch gestaffelte IF ... THEN ... ELSE
Konstruktionen zu.

10 PRINT “"PROGRAMM":PRINT
20 PRINT “PROGRAMMWIEDERHOLUNG GEWUENSCHT? <J/N>*
30 K$=INKEY®:IF K$="J* THEN 10 ELSE IF K®<>"N" THEN 30 ELSE END

Verwandtschaften. IF ... THEN

Schleifensteuerung

FOR ... NEXT

Format. FOR vea TO e [STEP s]
a,e,8 arithmetische Ausdriicke

eo o

NEXT v
v numerische Variable

Punktion. Dieser Befehl bewirkt, dass alle zwischen FOR und NEXT
stehenden Anweisungen in definierter Anzahl mehrfach -
mindestens einmal - hintereinander ausgefithrt werden.
Durch den arithmetischen Ausdruck a vor dem Schlfissel-
wort TO wird der Anfangswert der mit v bezeichneten
Zahlvariablen festgelegt, der folgende Ausdruck e fi-
xiert den Endwert. Mit dem arithmetischen Ausdruck s

156 8. BASIC Anweisungen

nach dem Schlisselwort STEP wird die Schrittweite fest-
gelegt, die auch negativ sein darf. Entf#llt dieser
Teil der Anweisung, so wird die Schrit{tweite automa-
tisch gleich Eins gesetzt,

Beispiele,

. 100 REM %% FOR ... NEXT #%¥ 500 FOR M=1 TO 10
101 : S10 FOR X=M TO 10%M STEP M
110 PRINT 520 PRINT X;
120 FOR X=1 TO 10 530 NEXT X
130 PRINT X§ 540 PRINT
140 NEXT X 550 NEXT M
150 PRINT 560 PRINT
160 PRINT 599 :
199 : 600 END
200 FOR €=3 TO 30 STEP 3
210 PRINT C;
220 NEXT € RUN
gig gz::; 123456789 10
299 - 369 12 15 18 21 24 27 30
300 FOR C=30 70 3 STEP -3 30 27 24 21 18 15 12 9 6 3
310 PRINT C; 10.3 10.4 10.5 10.6 10.7 10.8 10.9
320 NEXT € $0512 9.7,10
330 PRINT é ,% é
340 PRINT AR AL RN
399 : :
400 FOR K=10.3 TO 10.91 STEP .1 3
410 PRINT K; ;
420 NEXT K 10 20 30 40 0 70 80 %0 100
430 PRINT
440 PRINT:PRINT 1
3499

10 REM ¥%¥% AUS DEM GROSSEN 1x1 ¥#%¥

14 PRINT

20 FOR X=12 TO 20
30 FOR Y=12 TO 20
40 PRINT X*Y;

SO NEXT Y
60 PRINT RUN

70 PRINT 144 156 168 180 192 204 216 228 240
80 NEXT 156 169 182 195 208 221 234 247 260
90 END 168 182 196 210 224 238 252 266 280

180 195 210 225 240 255 270 2835 300
192 208 224 240 256 272 288 304 320
204 221 238 255 272 289 306 323 340
216 234 232 270 288 306 324 342 360
228 247 266 285 304 323 342 361 380
240 260 280 300 320 340 360 380 400

l';"ndy

Schleifensteuerung 157

100 REM #¥%¥% SCREEN FILL k&
101 :
110 FOR I=0 TO 11

120 : FOR X=1+I TO 38-1

130 ¢ PRINT AVII,X)p7#Y

140 : NEXT X

150-: FOR Y=1+1 TO 22-1

160 ¢ PRINT ATI(Y,38-I);°%"
170 : NEXT Y

180 : FOR X=37-1 TO 1+1 STEP -1
190 PRINT AT(22-I,X);"%"

210 FOR Y=21-1I 7O 1+1I STEP -1

200 : NEXT X
220 : PRINT AT(Y,1+4I);"%"

230 : NEXT Y

240 NEXT I

250 PAUSE 32

260 END
Bemerkungen. 1. Zusammen mit FOR ... TO und NEXT bilden alle da-
zwischen stehenden Anweisungen einen Anweisungsblock, den man
auch als einen einzigen Befehl ansehen kann.
2. In 'nichtpathologischen' PHllen kann die Anzahl der Schleifen-
durchléufe n#herungsweise nach der Formel

Endwert von v~ Anfengswert von v _ 1
Schrittweite

berechnet werden. Die Schrittweite Kull fithrt auf eine Endlos-
schleife.

3. Die Variablen in den den FOR und NEXT Anweisungen milssen je-~
wells iUlbereinstimmen, doch darf die Angabe in der NEXT Anweisung
entfallen. Dadurch wird der Programmlauf etwas schneller, da ein
Test auf diese Varieble bei jedem Schleifendurchgang entfdllt.
Im Interesse einer gut lesbaren, selbsterklidrenden Programmdoku-
mentation ist es jedoch sch¥ner, die Variable aufzuschreiben,

4. Auf einigen Micros kbtnnen Sie die Laufzeit von FOR ... NEXT
Schleifen durch Benutzung von Genzzahlvariablen (Integers) ver-
kirzen.

5. Es ist nicht zul#éssig, in das Innere eines FOR ... NEXT Blok-
kes hineinguspringen. Tut man es dennoch, so meldet sich der Mi-
cro mit NF: NEXT WITEHOUT POR ERROR.

6. Mehrfache Schleifen sind zul#ssig, mlissen aber korrekt ge-
schachtelt sein. Die 3chleifen-Ein- und Ausglnge verschiedener
Schleifen diirfen einander nicht {iberlappen; ein 'innerer' FOR...
NEXT Block muss vollstdéndig im 'Zusseren' enthelten sein. Die
maiimale Verschachtelungstiefe héngt vom Interpreter ab.

158 8. BASIC Anweisungen

7. Bei Mehrfach~-Schleifen sollte man die Variablen in den NEXT
Anweisungen euffiihren. Stossen mehrere NEXT Anweisungen unmittel-
bar aufeinander, so ktnnen alle Zdhlvariablen unter Beachtung
der korrekten Reihenfolge durch Komme getrennt in einer einzigen
NEXT Anwéisung zusammengefasst werden.

6., Es ist zuldssig, FOR ... NEXT Schleifen durch einen Sprung zu
verlassen. Dies sollte korrekt geschehen, indem der Z#hlvariab-
len ein Wert ausserhalb des definierten Bereiches zugewiesen
wird. Damit wird beim Test durch NEXT der bei Erdffnung der
Schleife im Stapelspeicher erfolgte Eintrag wieder geléscht. An-
derenfalls kann der begrenzte Stapel unzuldssig belastet werden,
was zu einem Ausstieg mit der.Meldung OM: OUT OF MEMORY ERROR
fithrt.

Verwandtschaften. REPEAT, URTIL

Progremmsegmente

GOSUB

Format. GOSUB Zeilennummer

Funktion. Diese Anweisung gestattet die Benutzung von Unterpro-
grammen oder Subroutinen. Der Programmfluss verzweigt
zu der Programmzeile mit der angegebenen Zeilennummer,
Dort wird des Programm fortgesetzt, bis es auf eine
RETURN Anweisung stosst. Diese libergibt die Programm-
ausfithrung an die dem GOSUB Befehl unmittelbar folgen-
de Anweisung.

Beispiele.

100 REM ¥¥#¥% GOSUB *#%
101 @

110 CLS:PRINT

130 PRINT "MEHRFACHER AUFRUF EINES UNTERPROGRAMMS®
140 PRINT

150 FOR I=1 TO0 9

160 GOSUB 500

170 PRINT "(*3I3")"

180 NEXT I

190 PRINT

200 END

49S :

497

499 REM * SUBROUTINE *

500 PRINT "AUFRUF DER SUBROUTINE",

510 RETURN

RUN
MEHRF

H

v PPIIDDIDDID

iady

100
104
110
120
130
140
160
180
190
200
210
220
230
992
999
1000
1010
1020

100
101
103
105
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
497
499
500
S10
520
530
5S40
530
560

Programmsegmente

ACHER AUFRUF EINES UNTERGRAMMS

g {

b BEC &

REM %% MULTIPLIZIEREN &% RUN

CLS:PRINT

159

T=1 EINGABE VON FAKTOR 1 ? 12.7
GOSUB 1000 EINGABE VON FAKTOR 2 ? 24.9

A=B: T=2 12.7 % 24.9 = 316.23
GOSUB 1000

PRINT:PRINT Aj"%#";Bj"="jA¥B NOCH EINMAL ? <J/N>
PRINT:PRINT

PRINT “NOCH EINMAL ? <J/N>* Rg2dy

Y$=INKEY$:IF Y$="" THEN 210

IF Y$="J* THEN 110

END

:REM ¥ SUBROUTINE: EINGABE *
PRINT:PRINT “"EINGABE VON FAKTOR"; T}
INPUT B
RETURN

REM #3% RAHMEN ZEICHNEN 3%

REM KC 85/2 Version

PRINT CHR$(17) ZREM PAGE MODE

WINDOW 0,31,0,3% :REM BILDSCHIRM VOLL GFFNEN
PAPER 1 tREM HINTERGRUND BLAU

INK & tREM VORDERGRUNDFARBE GELB
CLS A

CH=91 tREM CODE FUR VOLLZEICHEN
GOSUB 500 :REM RAHMEN ZEICHNEN

PAUSE 64

CH=32 tREM ASCII CODE FUR BLANK
GOSUB 500 :REM RAHMEN LGSCHEN

INK 2 tREM VORDERGRUNDFARBE WEISS
cLS

WINDOW tREM BILDSCHIRM ’NORMALISIEREN’
PRINT CHRS$(18) :REM SCROLL MODE

cLs

END

REM ¥ SUBROUTINE RAHMEN *

FOR R=0 TO 39

PRINT AT{(0,R);CHRS(CH) :PRINT AT(31,39-R);CHR$(CH)
NEXT R

FOR R=0 TO 31

PRINT AT(R,0);CHRS(CH) :PRINT AT(31-R,39)iCHRS(CH)
NEXT R ’

RETURN

160 8. BASIC Anweisungen

Bemerkungen. 1. Im Gegensatz zur GOTO Anweisung wird bei GOSUB
die Zeilennummer gespeichert, um nach Erreichen von RETURN den
Ricksprung ins Hauptprogremm realisieren zu kénnen.

2. Anstelle einer Zeilennummer kann in der GOSUB Anweisung mit-
unter ein arithmetischer Ausdruck geschrieben werden,

3. Mittels der Unterprogrammtechnik kenn ein einmal geschriebener
Programmteil iiber dem Aufruf durch GOSUB beliebig oft genutzt
werden. Uberdies wird durch Unterprogramme die Gliederung eines
kompliziertén Programmes in einzelne, leichter iberschaubare

und zu testende Abschnitte mdglich, die vom Hauptprogramm aus
verwaltet werden. Auf diese Weise fiihrt der Gebrauch von Unter-
programmen zu grosserer Klarheit von Programmen und htherer Ef-
fektivitdt beim Programmieren.

4. Subroutinen konnen weitere Subroutinen aufrufen, allerdings
sinkt dadurch die Ubersichtlichkeit eines Progremmes. So ist es
schoner, von einem Unterprogramm zuerst ins Hauptprogramm zuriick-
zuspringen, bevor weitere Subroutinen aufgerufen werden.

5. Es ist vorteilhaft, den Beginn eines Unterprogrammes in einem
BASIC Programm durch eine REM Anweisung optisch zu markieren.
Auch das physische Ende eines Unterprogrammes ist mitunter
schwer zu erkennen, da bei einer komplizierten Programmlogik die
RETURN Anweisung mdglicherweise woanders steht. Weiterhin sind
in einem Unterprogramm mehrere Ausghnge mittels RETURN denkbar
und erlaubt.

Verwandtschaften.+RETURN, GOTO, ON ... GOSUB, POP, PULL

RETURN
Format. RETURN

Punktion. Mit dieser Anweisung wird die Austiihrung eines Unter-
progremmes beendet. Stvsst der Interpreter auf RETURR,
so setzt er die Abarbeitung des Programms mit der dem
zuletzt durchlaufenen GOSUB folgenden Anweisung fort,

Beispiel. 100 REM %¥% RETURN ¥
101 :
110 PRINT
130 GOSUB 300
140 PRINT
150 GOSUB 200
180 PRINT
190 END

Programmsegmente 161

197 REM % SUBROUTINEN %
199 :

200 PRINT "UNTERPROGRAMM®

210 : RUN

240 PRINT UNTERPROGRAMM-SEGMENT
290 : UNTERPROGRAMM

300 PRINT *UNTERPROGRAMM-SEGMENT® UNTERPROGRAMM-SEGMENT
310 :

400 RETURN RgadY

Bemerkungen. 1. Die beiden Anweisungen GOSUB und RETURN bilden
zusammen mit den logisch dazwischen stehenden Anweisungen einen
Anweisungsblock, der sich als ein einziger Befehl auffassen
lidsst. R

2. Oft sind Unterprogramme am physischen Programmende plaziert.
Dann ist das Hauptprogramm durch eine END Anweisung 2bzuschlies-~
sen. Sonst wiirde nach dem Hauptprogremm das erste Unterprogranm
anleufen und mit der Fehlermeldung RG: RETURN WITHOUT GOSUB ge-
stoppt. Kommt =s indessen auf hohe Ausflthrungsgeschwindigkeit an,
so gibt man den Unterprogrammen m8zlichst niedrige Zeilennummern.
3. In einem Unterprogramm sind mehrere logische Ausgange mittels
RETURN m¥glich. Auch kann es sein, dess ein .und dasselbe RETURN
fiir den Abschluss verschiedener Unterprogramme zustindig ist.

4, Bei Ausfihrung der GOSUB Anweisung wird die Riickkehradresse
im Stapelspeicher oder Stack des Interpreters gespeichert. Dieser
darf bis zur RETURN Anweisung nicht durch unsymmetrisches 'Geben
und Nehmen' durch=inendergebracht werden. Auch ist é¢s nicht ohne
weiteres mdglich, von einer Sub-Subroutine direkt - also unter
Umgehung der die Sub-Subroutine aufrufenden Subroutine - ins
Heuptprogramm zurfickzuspringer.. Einige Micros gestaetten Manipula-
tionen des Stapelzeigers oder Stack-Pointers mittels der Anwei-
surgen POP und PULL.

Verwandtschaften. GOSUB, ON ... GOSUR, PCP, PULL

ON ... GOSUB

Format. ON i GOSUB Zeilennummer [,Zeilennummer] ...
i ganzzahlige nichtnegative Variable

Punktion. Die Anweisung ermdglicht eine Mehrfachverzweigunsz des
Progrearmes zu verschiedenen Unterprogrammen. Durch den
aktuellen Wert der mit i bezeichneten Steuerveriablen
wird entsprechead der Reihenfolge aller nach GOSUB auf-
gefilhrten Zeilennummern entschieden, zu welcher Pro-

162 8. BASIC Anweisungen

grammzeile der Programmfluss nach dieser Anweisung ver-
zweigt. Nach Abarbeitung der jeweils angesprungenen
Subroutine wird zu der auf ON ... GOSUB folgenden An-
weisung des Hauptprogramms zuriickgekehrt.

Beispiel.

100 REM ##% ON ... GOSUB ¥%¥
101 :

110 CLS

120 PRINT

130 PRINT "WAHL EINES PROGRAMMZWEIGES <1)> - <5)>,"

140 INPUT *(99> FUER ENDE ";1I

150 IF I=99 THEN 210

160 PRINT)
170 IF I<i OR I>S THEN PRINT *"BITTE KORREKTE EINGABE'!":GOTO 120
180 ON 1 GOSUB 1000, 2000,3000,4000,5000

190 PRINT

200 GOTO 120

210 PRINT

220 END

997 ::

998 :REM % SUBROUTINEN %

999 ::

1000 PRINT “SUBROUTINE 1”":RETURN

2000 PRINT ®"SUBROUTINE 2°:RETURN

3000 PRINT "SUBROUTINE 3":RETURN

4000 PRINT "SUBROUTINE 4*:RETURN

5000 PRINT "SUBROUTINE S5":RETURN

RUN

?gg% EaEESEﬂBEGBAQNZUEIGES <1> - <S>,
SUBROUTINE 4

?sg% 6EESE§§EG§AQMZUEIGES <1> - (5>,

BITTE KORREKTE EINGABE!

WAHL EINES PROGRAMMZWEIGES <1> - <5>
{995 EUER ENDE ? 93 ’

Igiady

Bemerkungen. 1. Die AXhnlichkeit dieses Befehls zur ON ... GOTO
Anweisung ist offensichtiich. Der wesentliche Unterschied besteht
darin, dass der Interpreter sich die Absprungstelle merkt, um
beim ndchsten RETURN das Programm dort fortzusetzen,

2. Ist dieser Befehl auf Threm Micro nicht implementiert, so kon-
nen Sie ihn eventuell mit der Entscheidung IF ... THEN und der
GOSUB Anweisung nachbilden.

3. Die meisten Micros lassen fiir die mit i bezeichnete Steuerva-
rieble auch erithmetische Ausdriicke zu. Dabei wird im Falle ge-

Dateien 163

brochener Werte automatisch zur nHichstkleineren ganzen Zahl abge-
rundet.

4, Ergibt sich fir i ein Wert gleich Null, so wird die GOSUB An-
weisung ignoriert und das Programm mit der unmittelbar folgenden
Anweisung fortgesetzt. Das gleiche trifft zu, falls der (eventu-
ell abgerundete) Wert fiir die Variable i grdsser als die Anzehl
der nach GOSUB angegebenen Zeilennummern ausfillt.

5. Uberschreitet der Wert von i einen Maximalbetrag - meist 255 -
so fiihrt das wie auch ein negatives i zu der Fehlermeldung
ILLEGAL QUANTITY.

Verwandtscheften. GOSUB, RETURN, ON ... GOTO

Dateien
DATA

numer. Konstante numer. Konstante
Formaet. DATA {Textkonstante } [’ Textkonstante }] oo

Funktion. Diese Anweisung gestattet innerhalb eines Programmes
den Aufbau einer Datei, iiber die wahrend des Programm-
laufs sequentiell verfiigt werden kann. In der Datei
kénnen Zahlen, Texte und auch einzelne Zeichen in be-
liebiger Reihenfolge durch Komme getrennt niedergelegt
werden. Bei den Textkonstanten kenn auf das Setzen von
Anfithrungszeichen verzichtet werden, falls diese keine
Kommata, Doppelpunkte oder filhrende und abschliessende
Blanks enthalten.

Beigpiele.

100 REM ¥¥% DATA #%¥
101 :
110 ZEIGER=0

120 PRINT RUN

130 ZEIGER=ZEIGER+1

140 READ A

150 IF A=999 THEN 220

160 PRINT ZEIGER,A

170 GOTO 130

180 PRINT

190 DATA 997,991,983,977,971 §

200 DATA 967,953,947,941,937

210 DATA 929,919,911,907,999
220 END

N-AONTNI-= NN =N

§‘ady

164 8. BASIC Anweisungen

100 REM ¥#¥ EINLESEN EINER MATRIX X#%
101

110 DIM A(?,6)

197 :

159 REM % EINLESEN %

200 FOR I=1 TO 7

210 FOR K=1 TO 6

220 READ A(1,K)

230 NEXT K, I

297 :

299 REM % AUSGABE *

300 PRINT

310 FOR I=1 TO ?

320 FOR K=1 TO &

330 PRINT A(I,K)5" *3

340 NEXT K

350 PRINT:PRINT

360 NEXT I

370 END

397 :

399 REM % DATEN *

400 DATA 34.8,19.2,67.8,33.2,67.3,17.1
410 DATA 17.3,56.8,12.9,23.1,78.3,45.3
420 DATA 48.1,37.6,47.7,38.9,31.5,97.1
430 DATA 37.6,13.2,37.8,23.2,82.4,26.6
440 DATA 21.5,10.1,73.3,28.4,17.7,44.7
450 DATA 86.9,78.5,13.4,56.4,19.1,38.7
460 DATA 19.1,37.2,55.2,27.1,28.4,47.3

RUN

34.8 19.2 67.8 33.2 67.3 17.1
17.3 56.8 12.9 23.1 78.3 45.3
48.1 37.6 47.7 38.9 .31.5 97.1
37.6 13.2 37.8 23.2 82.4 26.6
21.5 10.1 273.3 28.4 17.7 44.7
86.9 78.5 13.4 56.4 19.1 38.7
19.1 37.2 55.2 27.1 28.4 47.3
S

Bemerkungen. 1. DATA Anweisungen konven an jeder beliebigen Stel-
le eines Progremmes plaziert werden, ungeachtet an welcher Pro-
grammstelle sie mittels der READ Anweisung gelesen werden. Das
liegt daren, dass die DATAs bereits unmittelbar nach Eingabe

oder Einlesen des Programmes im BASIC Programm-Text zur Verfiigung
stehen.

2. Es ist streng darauf zu echten, dess die Daten mit dem Typ der
Veriablen, an die sie beim Programmleuf iibergeben werden, exakt
iibereinstimmen.

3. Die Anzahl der in einer DATA Anweisung enthaltenen Konstanten
wird lediglich durch die maschinenabhéngige Meximalldnge einer
Programmzeile begrenzt.

Dateien 165

4. In ein Programm ktnnen mehrere DATA Anweisungen geschrieben
werden. Der Interpreter bildet aus all diesen entsprechend der
Reihenfolge ihres Aufiretens im BASIC Programm-Text eine Gesamt-

datei.
5. Die Daten werden mittels READ Anweisungen in exakt der Reihen-
folge, wie sie in der Leteil niedergelegt sind, gelesen.

Verwandtachaften. READ, RESTCRE

READ

numer. Variable numer. Variable
Format. READ Textveriable } [' Textvariable }]

Funktion. Diese Anweisung veramlasst den Interpreter, dié im Pro-
gramm durch DATA Anweisungen abgelegien Informationen
zu lesen und den nach dem Schliisselwort READ niederge-
schriebenen Variasblen zuzuweisen. Dabei wird streng
sequentiell - der Reihe nach -‘'verfahren.

Beispiele.

100 REM ¥¥% READ #%¥
101 @

110 DIM M®(12),TA(12)

119

199 REM % EINLESEN %

200 FOR I=1 TO 12

210 READ M$(I)

220 READ TA(I)

230 NEXT

239 :

299 REM % DIALOG *

300 CLS:PRINT

310 PRINT "WIEVIEL TAGE HAT EIN MONAT ?°

320 PRINT

330 PRINT:INPUT "MONAT <1> - <12> *;M

332 IF M<1 OR M>12 THEN 300

350 PRINT:PRINT *DER MONAT *jM$(M);* HAT®;TA(M); "TAGE"
360 PRINT:END

397

399 REM % DATEN ¥

400 DATA JANUAR, 31,FEBRUAR, 28, MAERZ, 31, APRIL, 30

410 DATA MAI,31,JUNI,30,JULI,31,AUGUST,31

420 DATA SEPTEMBER, 30, 0KTOBER, 31,NOVEMBER, 30, DEZEMBER, 31

RUN

WIEVIEL TAGE HAT EIN MONAT ?
MONAT <1> - <12> ? 8

DER MONAT AUGUST HAT 31 TAGE

l;.nd y

166

100
101

110
111

199
200
210
220
221
299
300
310
320
330
340
350
360
370
372
380
390
400
410
420
430
440
430
460
470
480
497
499
500
510
520
530
540
550
560
S70
571
599
600
610
620

8. BASIC Anweisungen

REM ¥¥%% ROSMISCHE ZAHLEN %

DIM ROM®(13),DEC(13)

.
.

REM ¥ EINLESEN DER DATEN ¥
FOR I=1 TO 13

READ ROM%(I),DEC(I)

NEXT

REM ¥ DIALOG %
CLS:PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT DEC

“IN ROEMISCHE 33H6¢"

“EINGABE EINER NATUERLICHEN"®
“ZAHL ZWISCHEN 1 UND 4999:"

"UMWANDLUNG VON DEZIMALZAHLEN"®

IF DEC>4999 OR DEC<1 OR DEC<>INT(DEC) THEN 330

PRINT
GOSUB 500

PRINT “DARSTELLUNG ALS ROEMISCHE ZAHL:*

PRINT

PRINT ROMS

PRINT:PRINT

PRINT °®NOCH EINE ZAHL ? <J/N>*"
Y$=INKEYS®: IF Y&$="" THEN 450
IF Y$="J" THEN 360

PRINT

END

REM # SUBROUTINE: RECHNUNG %
ROM&=""

FOR I=1 TO 13

IF DECKDEC(I) THEN 560
ROM&=ROMS + ROMS&(I)
DEC=DEC-DEC(I)

GOTO S20

NEXT

RETURN

REM % DATEN %

DATA M, 1000,CM,900,D,500,CD,400
DATA C,100,XC,%0,L,50,XL,40
DATA X,10,1IX,9,V,5,1V,4,1,1

RUN

?nUQEEhyggngog*RszIMALZAHLEN
SANCABE EENER YATNBRRISYEN

? 44

DARSTELLUNG ALS ROEMISCHE ZAHL:
XLIV

NOCH EIN ZAHL ?
? 1878
DARSTELLUNG ALS ROEMISCHE ZAHL:
MDCCCLXXVITI

<J/N>

NOCH EINE ZAHL ?
? 1984
DARSTELLUNG ALS ROEMISCHE ZAHL:
MCMLXXXIV

CI/N>

NOCH EINE ZAHL ?
§‘ady

CI/N>

Dateien 167

Bemerkungen. 1. Beim erstmaligen Auftreten einer READ Anweisung
in einem Programm wird das erste Datum aus der Datei gelesen.
Dies kann solange fortgesetzt werden, bis die gesamte Datei aus-
gelesen, also verbraucht ist. Eine weitere READ Anweisung wiirde
dann zu -der Fehlermeldung OD: OUT OF DATA fithren.

2. Numerische wie auch Text-Werte konnen in beliebig vorgegebener
Anordnung in der Datei abgelegt werden. Beim Lesen ist dabei zu
beachten, dass Daten und Variablen jeweils im Typ zueinander pas-
sen miissen.

3. Grundsdtzlich wird durch die Gestalt der READ Anweisung ent-
schieden, ob ein eventuell nicht durch Anfiihrungsstriche spezi-
fiziertes Datum als Text- oder numerische Konstante zu gelten
hat.

Verwandtschaften. DATA, RESTORE

RESTORE
Format. RESTORE

Funktion. Sollen wihrend eines Programmlaufes die in der Datei
niedergelegten Daten erneut von vorn gelesen werden,
8o kann man dies mit Hilfe von RESTORE realisieren.
Dabei ist es gleichgiiltig, wieviele Daten bereits ge-
lesen worden sind.

110 FOR M=10 TO 1 STEP -1
120 RESTORE

130 FOR K=1 TO M

140 READ A

150 PRINT A" "3

160 NEXT K

170 PRINT

180 NEXT M

190 DATA 1,2,3,4,5,6,7,8,9,0
192 PRINT

200 END

Beilspiel.
100 REM #%% RESTORE #¥%% RUN
101 : 2 9 0
102 PRINT § i §]

i

4

[e e e

i;'ad Y

Bemerkungen. 1. Um das Geflige von DATA, READ und RESTORE inner-
haldb eines Programmes zu beherrschen, ist es niitzlich, die Ar-
beitsweise des Rechners hierbei zu verstehen. Bereits beim Ein-
lesen des frogramms - nicht erst widhrend des Programmlaufes -

168 8. BASIC Anweisungen

stehen die Daten einer DATA Anweisung im gespeicherten BASIC Pro-
gramm-Text als Datei zur Verfiigung. Durch eventuelle weitere DATA
Anweiéungen wird der Inhalt dieser Datei 'der Reihe nmach' aufge-
stockt. Auf diese Weise besteht also bereits nach Eingabe des
Prograumes eine Gesamtdatei. Sie wird mit Hilfe zweier Zeiger -
der DATA Pointer ~ verwaltet. Ein Zeiger weist auf die erste Pro-~
gremmzeiles mit einer DATA Anweisung, der andere auf das erste Dé—
tum in dieser Zeile. Tritt jetzt eine READ Anweisung auf, so wird
das 'gezeigerte' Datum gelesen und die Zeiger werden automatisch
entaprechend weitergeriickt. So steht stets das 'aktuelle' Datum
zur Verfiigung.

2. Nun ist auch klar, wie bei 'ausgelesener' Datei eine PFehler-
meldung zustande kommt; die Zeiger finden kein Datum mehr.

3. Die Punktion der RESTORE Anweisung besteht einfach darin, die
DATA Pointer wieder auf den Anfang der Datei zu setzen. Auf eini-
gen Micros ist diese Anweisung in dem wesentlich flexibleren For-
mat RESTORE n verfiigbar. Damit lassen sich die Zeiger auf das
erste Datum der mit n spezifizierten Zeilennummer zuricksetzen.

Verwandtschaften. DATA, READ

Formatierte Ausgabe

SPC

Format. PRINT [Text;] SPC(n) [;Text] [;SPC(m);Text] ...
n,m ganzzahlig, positiv

Funktion. Die Anweisung SPC(n) wird in Verbindung mit dem PRINT
oder PRINT AT Befehl benutzt und dient dazu, n Blanks
oder Leerzeichen auf den Bildschirm auszugeben. Dies
kenn am Anfang, aber auch inmitten einer Zeile gesche-
hen.

Beilspiele.

10 REM %¥% SPC %

11 @

20 PRINT

30 PRINT “ZEHN";SPC(10){ "BLANKS"
40 PRINT:END

RUN
ZEHN BLANKS

l;iady

Pormatierte Ausgabe 169

100 REM ¥¥% RHOMBUS #%¥ 100 REM *%% SECHS RHOMBEN #¥%X%
101 : 101 @
110 K=-5 110 PRINT
120 CLS:PRINT 120 K=-2
130 FOR M=6-K TO 6+K STEP SGN(K) 130 Z=I+1
140 GOSUB 500 140 FOR M=3-K TO 3+K STEP SGN(K)
150 PRINT SPC(2%(11-M)) 150 FOR §=1 TO 3
160 GOSUB 500 160 GOSUB 400
120 PRINT 170 NEXT S
180 NEXT M 180 PRINT
190 IF K=-5 THEN K=5:GOTO 130 170 NEXT M
200 PRINT 200 K=-K
210 END 210 IF 2<4 THEN 130
211 211
213 : 220 END
499 REM % SUBROUTINE # 229 :
500 FOR I=1 TO M 399 REM % SUBROUTINE I +
510 PRINT “%"; 400 GOSUB 500
S20 NEXT I 410 PRINT SPC(2¥#(5-M))
S30 RETURN 420 GOSUB S00
430 RETURN
439

499 REM % SUBROUTINE II #
S00 FOR I=1 TO M
S10 PRINT "&#°;

520 NEXT I
RUN 530 RETURN
RUN
1 3 P NP
> = L& Sl & 4 v & Sl & 4 & Sl & 2
(58 b 3 ' 4 4 o &4
o pe
> s
La e
33 : §
% oy Lss
1 ¥ &4 4 3
poid Sy
be 2 3
L2 g b
7 s s ¥
¥, Gk Be o3HEte ofREs of
AR RER i an?l s & PPN 4 & PPN & 3
§iady Riady
b

Bemerkungen. 1. Recht flexibel wird die SPC Anweisung dadurch,
dass auch mit variablem Argument n programmiert werden kann. Ge-
gebenenfalls rundet der Rechner dabei auf die n#@chstkleinere gan-
ze Zahl ab.

2. Es lassen sich wesentlich mehr Blanks ausgeben, als eine Bild-
schirmzeile fasst, oft bis zu 25%. So kdnnen mit einer Anweisung
mehrere Leerzeilen auf den Bildschirm ausgegeben werden. Bei gros-
serem Argument, wie auch fir negatives n wird der Fehler FC:
ILLEGAL QUANTITY gemeldet.

170 8. BASIC Anweisungen

3. Die SPC Anweisung kann auch in Verbindung mit dem PRINT AT Be-
fehl sowie bei der Ausgabe auf einen Drucker .verwendet werden.

Verwandtschaften. PRINT, PRINT AT, TAB, LPRINT

TAB

Format. PRINT [Text;] TAB(n) [;Text] [;TAB(m);Text] ...
n,m ganzzahlig, positiv

Funktion. Die Tabulatorfunktion wird in einem PRINT Befehl ver-
wendet, um Ausgaben beginnend an einer durch das Argu-
ment n vorgegebenen Stelle der Bildschirmzeile zu posi-
tionieren. Es diirfen mehrere TAB Anweisungen innerhalb
eines PRINT Befehles benutzt werden.

Beispiel.

10 REM X%¥¥% TAB *¥%

11 :

20 CLS:PRINT

30 PRINT TAB(4)3"x";TAB(12)§ "Arctan x"

40 FOR I=1 TO 20:PRINT CHR%(95);:NEXT

43 REM 95 - ASCII CODE FUR UNTERSTREICHUNG
SO PRINT:PRINT

60 FOR X=1 TO 1.5S5 STEP .025

70 PRINT TAB(3)iX;TAB(11)3ATN(X)

80 NEXT X
82 PRINT
90 END
RUN
x Arctan x
. 9!
;5 .
0%s L
s .
7

Programmstops 171

Bemerkungen. 1. Wdhrend die SPC Anweisung die Ausgabe einer defi-
nierten Zahl von Blanks zwischen zwei Textstlicken ermdglicht,
rechnet die TAB Anweisung stets vom linken Bildschirmrand. Damit
ist es mbglich, auf den Bildschirm mehrere, jeweils linksbiindig
geschriebene Kolonnen auszugeben.)

2. Die Tabulatorfunktion kann mit gleicher Wirkung bei der Aus-
gabe auf einen Drucker verwendet werden.

Verwandtschaften. PRINT, PRINT AT, Komma ',', SPC, LPRINT, POS

Programmstops

PAUSE

Format. PAUSE [n]
n nichtnegativ, ganzzahlig

Funktion. Diese Anweisung bewirkt ein Anhalten des Programmlaufes
fiir eine durch n vorgegebene Anzahl von Zeiteinheiten,
oft Zehntelsekunden.

Beispiel.
10 REM #%% PAUSE ¥*¥%
11
20 FOR X=1 TO 10
30 CLS

40 PRINT:PRINT:PRINT

S0 PRINT SPC(12);X; "SEC PAUSE"
60 PAUSE X¥10

70 NEXT X

80 CLS

90 END

Bemerkungen. 1. Die Unterbrechung erfolgt programmgesteuert,
wéhrenddessen der Interpreter im Programm-Modus verbleibt.

2. Das Anhalten des Programms kann beispielsweise dazu benutzt
werden, Bildschirmausgaben eine gewisse Zeit 'stehenzulassen'),
um sie besser lesen zu konnen. So kann man am Programmende ein
schones Schlussbild ausgeben und die storende Ready Meldung des
Computers eine Weile verzdgern.

3. Auch im Zusemmenhang mit den Musik-Befehlen hat die PAUSE An-
weisung Bedeutung. In Spielen oder Simulationen kénnen Zeittakte
definiert werden.

4.-Die maximale Dauer einer durch den PAUSE Befehl veranlassten
Unterbrechung ist maschinenabhiéingig. Auf einjgen Micros kann die

172 8. BASIC Anweisungen

Programmunterbrechung durch Driicken einer Taste vorzeitig beendet
werden.

5. Oft kdnnen f{ir das Argument n auch arithmetische Ausdriicke be~
nutzt werden. Das Argument n = Q0 oder auch fehlendes Argument
fithrt wie die STOP Anweisung zu einer endauernder Unterbrechung
mit Verlassen des Programm-Modus.

Verwandtschaften. STOP, MUSIC, SOUND, PLAY

WAIT

Format. WAIT n
n positiv

Funktion. Die Anweisung bewirkt ein Anhalten des Programmlaufes
fir eine der Zahl n proportionalen Zeitspanne.

Bemerkungen. 1. Die WAIT Anweisung ersetzt auf einigen Micros
den PAUSE Befehl und ist in der Wirkung sehr d@hnlich, die benutz-
te Zeiteinheit betrégt oft etwa 1/100 Sekunden.

2, Im Unterschied zur PAUSE sind whdhrend einer durch WAIT pro-
grammierten Unterbrechung Eingaben vom Tastenfeld wirkungslos.
Insbesondere ist ein vorzeitiger Abbruch der Wartezeit nicht még-
lich.

3, Eine jederzeit zu unterbrechende Wartezeit kenn liber die An-
weisungen INKEY$, KEY$ oder GET programmiert werden.

4. Bei anderen Kleincomputern wird die WAIT Anweisung zum Warten
auf ein gewisses externes Ereignis benutzt.

Verwandtschaft. PAUSE

sSTOP
Format. STOP

Funktion. Diese Anweisung bewirkt die Unterbrechung der Ausfiih-
rung eines Programmes. Der Interpreter geht vom Pro-
gramm-Modus in den Kommando-Modus {iber. Das Programm
kann durch Eingabe des Kommando CONT oder CONTINUE an
der néchstfolgenden Anweisung fortgesetzt werden.

Programmstops 173

Beispiel.
10 REM %%k STOP *%¥ RUN

‘ STOP . 1
20 FOR X=1 TO 2
30 PRINT PEBRRAMHLERSTBRTIL T EORE N TR®

40 PRINT "STOP*;X BREAK IN 70
42 PRINT Reaty

50 FRINT "PROGRAMM GESTOPPT: GEBEN SIE" ;T 2
60 PRINT ®"’CCNT} FUER FORTSETZUNG EIN® sTOP

70 sTOP PEONT "R BRRORTIL T IERE ETR®

80 NEXT X

BREAK IN 70
82 PRINT R 5
96 END YEBNT

Qiady

Bemerkungen. 1. Bei einigen Micros wird die Ausfiihrung der STOP
Anweisung mit der Meldung BREAK IN n, n aktuelle Zeilennummer,
quittiert.

2. Die STOP Anweisung kenn sehr wirkungsvoll beim Testen von Pro-
grammen gcwie zur Fehlersuche eingesetzt werden. Durch Einbau zu-
sdtzlicher STOPs ins Progremm kann man sich - eventuell in Ver-
bindung mit dem Kommando GOTO Zeilennummer - vom korrekten

Lauf einzelner Programmaebschnitte ulberzeugen sowie vorhandene
Fehler eingrenzen.

Verwandtschaften. PAUSE, WAIT, END

Format. END

Funktion. Durch diese Anweisung wird die Ausfilhrung des Progrem-
mes beendet; der Interpreter geht in den Kommando-Modus
iilber und meldet dies auf dem Bildschirm.

Beispiel.
100 REM 3% END %3¢ RUM
101 : PROGRAMMENDE <I/M> ? M
:;g :‘3 . > PROGRAMM ¢
=Y+
?
130 PRINT PR?GRAMMENDE CI/N> ? N
140 PRINT "PROGRAMMENDE <J/N> *j > FROGRAMM <
150 INPUT Y$ PROGRAMMENDE <J/N> ? J
160 IF Y$="3" THEN END Qiady
170 PRINT ;

180 PRINT °> FROGRAMM <*
190 IF X{4 THEN 120

200 PRINT

210 END

174 8. BASIC Anweisungen

Bemerkungen. 1. Steht die END Anweisung in der physisch letzten
Programmzeile, darf sie im BASIC der meisten Kleincomputer ent-
fallen. In eine klare Programmdokumentation nimmt man sie natiir-
lich auf.

2. Entsprechend der Logik eines Programmes mit Verzweigungen kann
die END Anweisung an mehreren Stellen des Programms auftreten.

3. Mit einer END Anweisung verhindert man, dass ein Programm in
an das physische Programmende gestellte Unterprogramme hinein-
lauft.

4. Der hier beschriebene Gebrauch der END und STOP Anweisungen
weicht von der 'reinen Lehre' des BASIC etwas ab. Wird ein Pro-
gramm nicht - wie hier stets unterstellt - zeilenweise interpre-
tiert, sondern als Ganzes in Maschinen-Befehle compiliert (iiber-
setzt), so dient die END Anweisung als Mitteilung an den Compiler,
die Ubersetzung einzustellen. In diesem Fall muss die END Anwei-
sung genau einmal,und zwar am physischen Ende des Quellprogramms,
geschrieben stehen. Will man an anderer Stelle ein logisches En-
de programmieren, benutzt man dann die STOP Anweisung.

Verwandtschaften. STOP, PAUSE, WAIT

Numerische Funktionen 9

Was ist eine Funktion?

Funktionen gehdren zu den am meisten untersuchten Objekten der
Mathematik. Sie besitzen mannigfaltige wissenschaftlich-techni-
sche Anwendungen,'und man kenn sagen, dass die Entwicklung der
Mathemgtik der Neuzeit untrennbar mit derjenigen des Funktions-
begriffes verbunden ist. Eine Funktion kann auf einfache Weise
innerhalb des Geb#udes der Mengenlehre als eine eindeutige Zuord-
nungsvorschrift von Elementen aus einer Menge in Elemente einer
weiteren Menge definiert werden. Die Zuordnung oder Funktion wird
debei als Menge geordneter Paare aufgefasst und kann praktisch
in vielfdltiger Weise realisiert werden, zum Beispiel in Form
einer Wertetabelle, in der alle Korrespondenzen explizit aufge-
fihrt sind.

Wir werden es hier hauptsachlich mit Punktionen f zu tun ha-.
ben, die reellen Zahlen x wiederum reelle Zahlen f(x) zuordnen.
Die geforderte Eindeutigkeit bedeutet, dass den Elementen der
ersten Menge - des sogenannten Definitionsbereiches - jeweils
nur ein Element der zweiten Menge - des Wertebereiches - zugeord-
net wird. Dass es sich hierbei jeweils um die gleiche Menge, die
reellen Zahlen oder zumindest gewisse Teilmengen der reellen Zah-
len, handelt, stdrt nicht.

Oft sind diese reellen Funktionen f durch eine Formel oder
Funktionsgleichung definiert. Dabeil wird den Elementen x eines
vorgegebenen Definitionsbereiches mittels einer expliziten Re-
chenvorschrift jeweils ein Wert f(x) zugeordnet. Alle diese Werte

176 9. Numerische Funktionen

bilden dann den Wertebereich. Man tut gut daran und es ist auch
logisch zwingend, streng zwischen der Punktion f - also der Zu-
ordnungsvorschrift - und f(x) - den Funktionswerten - zu unter-
scheiden. Traditionell bezeichnet man das x in dem Ausdruck f£(x)
als Argument. .

Nicht zu komplizierte reelle Funktionen f, deren Definitions-
bereich eine beschrénkte Teilmenge der reellen Achse ist, lassen
sich - wie von der Schule wohlbekannt - in einem Koordinatensy- '
stem graphisch darstellen. Fiir alle Argumente x des Definitions-
bereiches werden die geordneten Paare (x,f(x)) gebildet und als
Funktionsikurve - auch Graph genannt - im Koordinatensystem ver-
angchaulicht.

Bevor wir uns nun den guf unserem Micro verfugbaren Funktionen
zuwenden, noch eine Bemerkung zur Derstellung mathematischer
Funktionen auf digitalen Rechenautomaten allgemein. Aufgrund der
stets endlichen Speicherkapezitét und der daraus resultierenden
begrenzten Stellenzahl fiir die Darstellung reeller Zahlen kann
auf dem Rechner eine zwar umfengreiche und fUr viele praktische
Belange vollkommen ausreichende, doch auf jeden Fall endliche
Teilmenge der reellen Zahlen ausgedriickt werden. Dies trifft na-
tirlich auch filr die Definitions- und Wertebereiche von auf dem
Rechner nachgebildeten reellen Funktionen zu, die entsprechend
den technischen Gegebenheiten fiir die Zahlendarstellung gerastert
sind. Ebenso wird aus diesen Grunden auch die Berechnungsvor-
schrift fiir Funktionswerte oft nﬁr in einer N&herung realisier-
bar. Dies sollte man beim Umgang mit Funktionen auf dem Rechner
stets beachten, insvesondere dann, wenn man versucht, solche Be-
griffe der Hoheren Analysis wie Stetigkeit oder Differenzierbar-
keit auf im Rechner definierte Funktionen anzuwenden.

In dem auf unserem Micro implementierten BASIC konnen wir liber
eine ganze Relhe fest programmierter Standardfunktionen verfligen.
Diese sind durch einen Punktionsnamen identifiziert, wobei der
BASIC Wortschatz der reservierten Schliisselwdrter um diese Namen
erweitert wird. Dariiber hinaus kann man entsprechend der Syntax
von BASIC eigene, benutzerdefinierte Funktionen einfiihren, die
ebenfalls einen Namen erhalten. Der Aufruf all dieser Funktiomen
erfolgt im BASIC Programm durch Angabe des Namens, gefolgt von
dem in Klammern geschriebenen Argument. Die Funktionen sind debei
fest in die Gléitkommaarithmetik eingebunden. Dies betrifft so-
wohl ihre Argumente, die numerische Konstanten, aber auch - we-

Trigonometrische Funktionen 177

sentlich allgemeiner - arithmetische Ausdriicke sein dlirfen, als
auch die den Argumenten zugeordneten Funktionswertie, die zur Bil-
dung arithmetischer Ausdriicke zugelassen sind.

Standardfunktionen

In den meisten Versionen von BASIC wird dem Nutzer eine ganze
Reihe in wissenschaftlich-technischen Problemea h#ufig auftreten~
der numerischer Standardfunktionen zur Verfligung gestellt. Dies
erspart dem Anwender den Entwurf oft recht komplexer Progremme
zur Berecknung der entsprechenden Funktionswerte. Auss2rdem sind
diese Routinen - so wie der gesamte Interpreter - selbst nicht
in BASIC, sondern 'systemnah' in Maschinensprache geschrieben.
Dabei werden die technischen Gegebenheiten des konkreten Systems
voll genutzt und insbesondere extrem kurze Laufzeiten bei der
Ausfiihrung dieser Routinen mdglich. Jede dieser Standardfunktio-
nen wird durch ein dreibuchstabiges Schliisselwort angesprochen,
daes von dem in Klammern geschriebenen Argument gefolgt wird. Die
Schliisselworter entsprechen debei weitgehend dem iibliclen mathe-
matischen Sprachgebrauch. Die Standardfunktionen kbnnen in die
Bildung arithmetischer Ausdriicke und mithin auch in Zuweisungen
fiir numerische Variablen einbezogen werden. Nachstehend geben
wir die gebrauchlichsten Standardfunktionen an.

Trigonometriasche Funktionen.
SIN COS TAN

Format. SIN(arithmetischer Ausdruck)
COS(arithmetischer Ausdruck)
TAN{ arithmetischer Ausdruck)

Funktion. Mit diesen BASIC Wdrtiern k¥nnen an beliebiger Stelle
im Programm entsprechende Funktionswerte der trigono-
metrischen Funktionen Sinus, Cosinus und Tangens n#-
herungsweise aufgerufen werden. Als Argument kdnnen
numerische Konstanten, aber auch allgemeiner beliebige
vereits bewertete arithmetische Ausdriicke geschrieben
werden. Das Argument ist im Bogenmass anzugeben.

178 9. Numerische Funktionen

Beispiel.

100
101
110
120
130
140
150
150
170
186
190
200
210
220
230
240
250

260
270
280
497
499
S00
S10

RUN

REM *#¥ WINKELFUNKTIONEN 3%
CLS:!PRINT

PRINT " X SIN X cos X TAN X*
FRINT " "j

FOR I=1 TO 35

PRINT CHR%(95)3

NEXT I

PRINT:PRINT

FOR X=1 TO 1.55 STEP .02S

PRINY " *j3X3}

F=SIN(X) :GOSUB 500

PRINT TAB(10);F}

F=C0S{X)} :GOSUB S00

PRINT TAB(19);F}

F=TAN (X) : GOSUB 500

PRINT TAB(27);F

NEXT X

PRINT

END

REM % SUBROUTINE KOMMASTELLEN *

F=INT (1E4%F+.5) 71E4
RETURN

TAN

R

Y

B8 BULIAINNAIN 2O 00

§iady

NUN AN NN NON
o
oge
QU0
NOONO~

A
o

aa
GONUINDUOU!

0
9

aa
gh‘»:om
0L,

NN
o

00

as

OO NI~ N Bame
IO BN

B BUKN

o
S5
o

RO

UIAS LA ANNININON bt b

u

[

Qs
* * NIONDS OONONUTANO SO

O HL3= GHRDONONNOWO0-DH &N
NOROV-RINGON= U0 NINRUI 0L | X

NNOODO NI U= DU BRI DI\

Bemerkungen. 1. In der Mathematik ist es iiblich, einen Winkel x
im Bogenmass anzugeben. Stellen wir uns einen Kreis mit dem Ra-
dius r vor, dessen Mittelpunkt im Scheitel S des Winkels x liegt.,
Der dadurch eingeschlossene Xreisbogen besitze die Lénge b, Dann
ist das Bogenmass des Winkels x als das Verhdltnis b/r definiert.
In dieser Definition ist der Winkel dimensionslos, also eine rei-

Trigonometrische Funktionen 179

ne Zahl. Nimmt men den Redius als Léngenein-
heit: r'= 1, so ist das Bogenmass des Winkels
, gleich der Masszahl des Bogens b. Der Vollwin-
s kel hat das Bogenmass 2x, den Umfang des Ein-
¥ heitskreises, und der rechte Winkel das Bogen-
mass */2. Traditionell wird als praktische
Masseinheit fiir Winkel der 36C. Teil des Vollwinkels (mit dem Bo-
genmass 2%/360) benutzt und mit 1° (1 Grad) bezeichnet. Aufgrund
der getroffenen Vereinbarungen lassen sich Bogen- und Gradmass
leicht ineinander umrechnen, es gilt ’

1° =/180 ® 0.017453 und 1 = ¥

o
120 w57.296° .

In dieser Auffassung ist 1° lediglich eine Abkiirzung fiir die rei-
ne Zahl &£/180, und wir brauchen uns bei Umrechnungen nicht mit
Gberfliissigen Dimensionen zu plagen.

2. In einem rechtwinkligen Dreieck ABC werden durch die trigono-
metrischen Funktionen die Seitenverh#ltnisse bestimmt. Im Bei-
spiel bezeichnen die Strecken AB die <

Hypotenuse sowie BC und AC Ankathete

beziehungsweise Gegenkathete beziig-

lich des Winkels x. Es gilt dann A x 8
%% = gin x, %% = cos X, %% = tan x

3. Sowohl aus technischen, wie auch aus mathematischen Griinden
kdnnen fast alle Werte der (transzendenten) trigonometrischen
Punktionen mittels der BASIC Worte SIN, COS und TAN nur ndherungs-
weise angegeben werden. (berdies ist die Tangensfunktion an den
Stellen x =%%x/2, *3%x/2, ... nicht definiert. Sie besitzt dort Un-
endlichkeitsstellen, das heisst, bei hinreichender Anntherung
des Argumentes x an diese Stellen werden die zugehtrigen PFunk-
tionswerte tan x iiber jede vorgegebene Schranke dem Betrage nach
wachsen. Auch wenn Sie mit diesem Kapitel Hoherer Analysis nicht
viel im Sinn haben, konnen Sie sich das fiir x = %/2 am obigen
Beispiel des rechtwinkligen Dreieckes klarmachen., Falls Sie dort
versuchen, x einem rechten Winkel anzun#hern, so wird die Anka-
thete immer kleiner wund das Verhdltnis von Gegenkathete zu An-
kathete widchst unbeschrénkt.

Flir unseren Micro hat dies eine wichtige Konsequenz. Da an dem
genannten Stellen wenn auch grosse, so doch endliche Funktions-
werte berechnet werden, miissen diese notwendigerweise in allen

180 9. Numerische Funktionen

angezeigten Dezimalen felsch sein. Das gleiche trifft auch fiir
alle Argumente in gewissen maschinenabhéngigen Umgebungen dieser
kritischen Punkte zu.

10 REM ¥¥%¥ TAN-WERTE ¥%¥*

20 FOR D=0 TO 360

30 X=D#PI1/180

40 PRINT D, TAN(X)

S0 IF D/12=INT(D/12) THEN PAUSE 10
60 NEXT D

70 END

Mit diesem Programm kdénnen Sie die Werte fiir TAN(X) auf Ihrem Mi-
cro tiberpriifen. In Zeile 30 erfolgt die Umrechnung ins Bogenmass.
Die Anweisung in Zeile 50 sorgt fiir kurze Unterbrechungen bei der
Ausgabe der Werte. Eventuell miissen Sie auf Ihrem Micro die An-
weisung PAUSE 10 durch WAIT 100 ersetzen. Lessen Sie das Programm
laufen, so erkennen Sie die kritischen Werte bei 90° und 270°.
Auch die Werte fir 180° und 360° sind interessent, dort misste

Ja aufgrund der Periodizitét der Tangensfunktion thecretisch Null
herauskommen

4, Mit dem folgenden Programm kenn men sich ein ungef#éhres Bild
von den Graphen der trigonometrischen Funktionen auf dem Inter-
vall F-a;:] machen. Dazu werden die Argumente in Zeile 190 und
die Punktionswerte in Zeile 230 geeignet skaliert, um sie mittels
der PRINT AT Anweisung auf den Schirm zu bringen. Die IF Anwei-)
sung in Zeile 240 dient dazu, ein Uberschreiten der zuldssigen
Koordinatenwerte in der folgenden PRINT AT Anweisung zu unter-
driicken. Falls der PRINT AT Befehl auf Ihrem Micro nich% vorhan-
den ist, kdnnen Sie eventuell eine PLOT Anweisung anwenden (zum
Beispiel auf dem Oric). Geht auch das nicht, besteht stets die
Moglichkeit, das Koordinatensystem zu drehen und Graphen von
Funktionen mittels des einfachen PRINT Eefehls 'von oben nach un-
ten' auf den Schirm auszugeben, darauf kommen wir noch zu spre-
chen.

100 REM. ¥#% GRAPH VON SIN,C08 ODER TAN IM INTERVALL [-PI,PIJ] %%k
101

110 CLS:PRINT

112 INFUT "SIN, CO8 ODER TAN <1,2,3>"jA

114 CLS

120 FOR X=1 TO 3?7

130 PRINT AT(13,X)§"-"

140 NEXT X -

150 FOR Y=1 70 23

160 PRINT AT(Y,19)8"1"

Trigonometrische Funktionen 181

170 NEXT Y

180 FOR X=-P1 TO PI STEP .!
190 X1=19+3#X

200 IF A=1 THEN B=aSIN(X)

210 IF A=2 THEN B=CQ0S(X)

220 IF A=3 THEN B=TAN(X)

230 Y1=13+10%B

240 IF Yi1<i OR Y1>23 THEN 260
250 PRINT AT(Y§,X1))"%#"

260 NEXT X

270 PAUSE 30

280 CLS:PRINT

290 INPUT "NQCH EIN PROGRAMMLAUF <J/N>"iY®
300 IF Y$="J" THEN 110

310 END

5. Die Werte fiir die Cotangensfunktion lassen sich entsprechend
der Formel
cot x = 1/tan x, x$0,*x, *t2x, ...

gendhert berechnen.
6. Schauen wir uns das folgende kleine Programm an:

10 REM %#% IDENTITAT ¥

20 FOR X=0 TO 2%PI STEP 0.2
30 PRINT SIN(X)~2 + CQS{X)~2
40 NEXT X

S50 PRINT

60 END

Es ist nicht verwunderlich, dass der Ausdruck in Zeile 30 bis
auf geringfigige Rundungsfehler stets den Wert Eins hat. Gehdrt
doch die Gleichung

2 2

sin“x - cos“x = 1

neben den Additionstheoremen zu den goniometrischen Beziehungen,
die wir in der Schule auswendig lermen mussten. Der Micro hat
nichts weiter getan, als diese Beziehung flir die in der Schleife
angegebenen Argumente x verifiziert. Es erhebt sich die Frage,

ob der Rechner die zitierte Identit#t nicht gleich hétte berick-
sichtigen kénnen. Dass dies nicht funktioniert, liegt lediglich
daran, dass der BASIC Interpreter hierfir nicht programmiert ist.
Die Rechentechnik ist heute durchaus in der Lage, weitaus kompli-
ziertere Formelmanipulationen unter Einbeziehung von Gleichungen
der hdheren Analysis auf dem Computer ausfthren zu kdnnen, ver-
gleiche hierzu Mdtzel, K., und Nehrkorn, K. (1985).

182 9. Numerische Funktionen

Zyklometrische Funktionen

ATN
Format. ATN(arithmetischer Ausdruck)

Funktion. Dieses Schliisselwort erlaubt den Aufruf der Arkustan-
gensfunktion. Als Argument kénnen numerische Konstan-
ten oder allgemeiner beliebige arithmetische Ausdriicke
geschrieben werden. Die entsprechenden Funktionswerte
werden im Bogenmass ausgegeben.

Beispiel.

100 REM %% ATN #¥%
101 :

110 CLS:PRINT

120 PRINT " X*"§SPC(11)3"ATN(X) *§SPC(7) 5 "ATN(-X) "
130 PRINT * *

140 FOR I=1 TO 34

150 PRINT CHRS$(95)}

160 NEXT I

170 PRINT:PRINT

180 FOR Y=0 TO 3

190 FOR X=2%10~Y TO 10~(Y+1) STEP 2%10°Y

200 PRINT * *";X,ATN(X) ,ATN(-X)

202 PRINT

210 NEXT X

220 PRINT

230 PAUSE 10

240 NEXT Y

250 END

RUN

. [

1838

g
i
;
$

s

Bemerkungen. 1. Die zyklometrischen oder Arkusfunktionen sind als
Umkehrfunktionen der trigonometrischen Funktionen definiert. Da

o

tia
ERER
RURA
0 O,
O
[
w

ey

“ee
OO0
000N
OU-LID
(L 7]

=OOHN =OOHN =OOBN | X

00000 Q0000 00000
00000

00BN
00000
80000 °

l;‘ady

Quadratwurzel 183

aufgrund der Periodizitdten der trigonometrischen Funktionen die
zugehbrigen Umkehrfunktionen unendlich vieldeutig sind, werden
oft nur die sogenannten Hauptwerte betrachtet. Piir den Arkustan-
gens wird dabei der Funktionszweig mit

-§<Arctanx<+§, -0 < X £ 00

gewtihlt, In BASIC ist mit ATN(X) eine gute Niherung dieser Funk-
tionswerte gegeben.

2, Die Funktionswerte ATN(X) werden im Bogenmass ausgegeben. Um
das Ergebnis in Grad zu erhalten, muss man die Werte jeweils mit
dem Faktor 180/PI multiplizieren.

3. Die Hauptwerte der librigen zyklometrischen Funktionen lassen
sich entspréchend den Beziehungen

x
Arc sin x = Arc tan ——————— , -l¢<x<«l,
2
1=-x
x x
Arc cos x = 5 - Arc tan) -l1<x<1,
1~ x2
Arc cotx-g-Arctanx, -00 < X & 00,

aus den Werten ATN(X) berechnen. Diese Funktionen kénnen in BASIC
auch mittels der Anweisung DEF FN vom Nutzer definiert und dann
innerhalb eines Programmes beliebig aufgerufen werden.

Quadratwurzel

SQR

Format. SQR(x)
X nichtnegativer arithmetischer Ausdruck

Funktion. Durch Aufruf dieses Ausdrucks wird die Quadratwurzel
des aktuellen Wertes von x berechnet.

Beispiele.

10 REM &% SQUARE ROOTS #¥#
11

20 CLS:PRINT

30 FOR N=36 TO 16 STEP -1

40 PRINT N,S@R(N)

SO NEXT N

60 END

i84 9. Numerische Funktionen

100 REM %%% QUADRATISCHE GLEICHUNG ¥

101 : ’

110 CLS:PRINT

120 PRINT *"BERECHNUNG DER WURZELN DER GLEICHUNG"
130 PRINT

14Q PRINT *X~2 + P¥X + @ = 0"

150 PRINT:PRINT

160 INPUT "KOEFFIZIENT P"3P

170 PRINT

180 INPUT *KOEFFIZIENT Q@

190 PRINT

200 D=(P/2)~2-@

210 IF D<O THEWN PRINT *KEINE REELLE LBSUNG":END
220 IF D<(.0G001 THEN PRINT *X =";-P/2,"DOPPELLBSUNG":END
230 X1=-P/24S@R(D)

240 “i2=-P/2-SAR(D)

250 PRINT "Xi =*j;X1

260 PRINT "X2 ="j§X2

270 E£ND

Bemerkungen. 1. Ist der Wert des Argumentes x in dem Ausdruck
3QR(x) negativ, so filhrt .ein Aufruf zu der Fehlermeldung FC:
ILLEGAL QUANTITY.

2. Die Syntax von BASIC 1l#sst die Verwendung mittelbarer Funktio-
nen zur Konstruktion von Ausdriicken zu, man muss nur darauf ach;
ten, dass die auftretenden Argumente zum Definitionsbereich der
Punktion gehtren und zuldssige Ausdriicke gebildet weréen.

10 INPUT *A ="jA : REM - NULL FUR ENDE

20 B=A#A-COS(A)

30 IF BCO THEN PRINT *AUSDRUCK NICHT ZULAESSIG":END

40 PRINT "S@R(A*A - COS(A)) =";S@R{B)

50 RUN
3, Selbstverstindlich kann zum Ziehen der Quadratwurzel Y aus ei-
ner positiven Zahl X auch die Potenzoperation benutzt werden:

Y = X1(1/2)

Exponentialfunktion
EXP

Format. EXP(arithmetischer Ausdruck)

Funktion. Mit dem Aufruf von EXP(x) kann man den Wert der Expo-
nentialfunktion fiir das aktuelle Argument x berechnen.

Logarithmen 185

Beispiel.
10 REM *¥¥ WERTE DER EXFONENTIALFUNKTION ¥#¥

20 LET 1=0

30 FOR ¥=-20 TG @7

40 LET I=T+1

S0 PRINT X,EXP (X)

&0 IF 1=10 THEN I=0:PAUSE 10

70 NE®T ¥

R0 END
Bemerkungen, 1. Ldsst man dieses Demo laufen, so kann man erken-
nen, wie scknell die Exponentialfunktion fir grésserwerdendes
Argument wéichst. So ist auf vielen Micros der Wert EXP(89) be-
reits nicht mehr darsteilbar, also ein unzul#issiger Ausdruck.
2. Fiir X = 1 erhalten wir eine N#herung der (transzendenten)
Zahl e.
3. Mit Hilfe der Exponentialfunktion kdnnen weitere Funktionen
nachgebildet werden, so ist zum Beispiel (EXP(X) - EXP(-X))/2
eine Darstellung fiir den Wert des Sinus hyperbolicus an der Stel-
le X,

Logarithmen

LN
Format. LN(x)

Funktion. Mit dem Ausdruck LN(x) kann der natiirliche Logarithmus
des Numerus x berechnet werden.

Beispiel.

10 REM #¥% UMKEHRFUNKTION DER EXPONENTIALFUNKTION ¥*#%

11 :

20 FOR %X=0,1 TO 2 STEP O.1

30 PRINT X,EXP(LN(X))

40 NEXT X

S0 END
Bemerkungen. l. Der-natilirliche Logarithmus 1ln b einer positiven
Zahl b ist die eindeutig bestimmte Zahl x,fir die b = X gilt.
Mithin ist die Logerithmusfunktion die Umkehrfunktion der Expo-
nentialfunktion.
2. Um den Logarithmus loga(x) zur Basis a (a > 0, a # 1) zu be-

rechnen, kann man die Formel
logg(x) = 1n(x)/1n(a), x>0,

186 9. Numerische Funktionen

benutzen.

3. Auf einigen Micros ist auch die dekadische Logarithmusfunktion
implementiert und wird dann gewdhnlich mit dem Schliisselwort LOG
angesprochen. Allerdings kann es auch vorkommen, dass dieses
Schliisselwort fiir den natiirlichen Logarithmus reserviert ist. Im
Zweifelsfall kbnnen Sie dies mit der Eingabe von

PRINT LOG(EXP(1)), LOG(10)

testen.

4. Komplizierte Potenzen werden auf dem Micro entsprechend der
Formel
=¥ lnx 5 x > 0 (y nicht ganz),

ausgewertet.

Betrags-, Entier- und Signumfunktion

ABS
Format. ABS(arithmetischer Ausdruck)

Punktion. Diese Standardfunktion berechnet den absoluten Betrag
des aktuellen Wertes des in Klammern stehenden arith-
metischen Ausdruckes.

Beispiel.

10 REM ***"ABS DEMO %%

11

20 FOR X=-10 TO 10 .

30 PRINT "X =";X,"ABS(X) ="jABS(X)
40 NEXT X

S0 END

Bemerkungen. 1. Die BASIC Funktion ABS entspricht der Betrags-
bildung |x| fiir reelle Zahlen x.

2. Betragsbildungen werden vorteilhaft bei der Abschdtzung von
Fehlern benutzt, wo es nur auf Absténde, nicht auf das Vorzei--
chen ‘ankommt.

3. Mit dem né@chsten Programm kbnnen wir uns ein Bild vom Graphen
der Betragsfunktion machen. Dabei versuchen wir, die Ausgabe auf
den Bildschirm zeilenweise von oben nach unten zu organisieren,
um nur mit dem einfachen PRINT Befehl auskommen zu k&nnen. Des-
halb sind die Koordinatenachsen anders als iiblich gewihlt. In
Zeile 180 wird der Graph der Funktion ausgegeben, wobei die Funk-

Betragsfunktion 187

tionswerte ABS(X) im Maszstab 1:1 in die 8PC Funktion geschrieben
werden, um den Stern an der richtigen Stelle zu plazieren.

100

101 :

110
120
130
140
1S0
160
170
180
190
200
210
220

REM %%% GRAPH DER BETRAGSFUNKTION ¥

CcLsS
PRINT " BETRAGSFUNKTION®
PRINT

PRINT SPC{(4);"0";SPC(8);"10"1SPC(4) "ABS(X)"

FOR X=1 TO 27:PRINT "-";:NEXT
PRINT ">*

FOR Y=-10 TO 10

PRINT " | "jSPC(ABS(Y))}"%"
NEXT Y

PRINT "X*

PAUSE' 50

‘END

RUN

BETRAGSFUNKTION
ABS (X)

X
I§‘ady

Entsprechend dem Ausgabe-Schema ist der Bildschirm vorwiegend in
vertikaler Richtung strukturiert. Falls Sie die fehlende Angabe
des Nullpunktes der X-~Achse stort, konnen Sie die zweite Schlei-
fe teilen und bei X = O eine fest programmierte Zeile ausgeben.
Oder Sie benutzen innerhalb der Schleife eine IF Anweisung, um
auf X = 0 zu testen und dann eine die Nullpunktangabe enthalten-
de Zeile auszugeben.

INT
Format. INT(arithmetischer Ausdruck)

Funktion. Mit dieser Standardfunktion wird zu jedem Argument die
grosste darin enthaltene ganze Zahl gebildet.

188 9, Numerische Funktionen

Beispiel.

10 REM ##%% INTEGER ##¥
11
20 FOR X=3.2 TO -3.2 STEP -.32
30 PRINT *X =*iX,*INT(X) =" INT(X)
40 NEXT X
S0 END
Bemerkungen. 1. Das BASIC Schlilsselwort INT ist von engl. infeger
- Ganzzahl abgeleitet. Ist X eine ganze Zahl, so gilt INT(X) = X,
sonst wird durch INT stets zur nichstkleineren ganzen Zahl abge-
rundet; such £Or negative Zahlen gilt INT(X) <= X. Es wird also
der ganzzahlige Anteil (entier) gebildet.
2. Da die INTeger-Funktion alle Nachkommastellen 'abschneidet',
kann man sie vorteilhaft fir Rundungsroutinen nutzen. Im folgen-
den Beispiel wird zur Angabe von Mark-Betrlgen auf zwei Nachkom-
mastellen gerundet.
100 REM ¥%¥% PREIS-BILDUNG ¥&*
101 :
110 LET A=1.13 : REM STUCKPREIS
120 PRINT)
- 130 INPUT "STUECKZAHL®jN
140 LET S=N#A
150 GOSUB 200
160 PRINT
170 PRINT *"GESAMTPREIS:®i1S)"M*
180 END
189 :
199 REM #* RUNDUNGSROUTINE %

200 LET S=INT(S#100 + .5)/100
210 RETURN

In einem realen Programm muss mtglicherweise zur Angabe von Prei-
sen sehr oft gerundet werden. Dann wird die hier etwas gekiinstelt
wirkende Unterprogrammtechnik sehr effektiv. Dem Unterprogramm
wird mit der Variablen S jeweils ein aktueller Wert tibergeben,
den dieses gerundet wiederum der Variablen S zuweist. Da im
Haupt- und Unterprogremm alle Variablen gleichermassen gllltig
sind, bringt die Riickgabe ans Hauptprogramm keine Probleme mit
sich. In der Rundungsroutine selbst wird S zuerst mit 190 multi-
pliziert, um zwei Nachkommastellen zu konservieren. Die Addition
von 0.5 bewirkt, dass bei der INTeger-Bildung die urspringliche
Zahl ‘gerecht' auf- bzw. abgerundet wird., Mit der Division durch
100 wird die Zahl dann auf das gewiinschte Format gebracht.

3. Die INT Funktion kann auch genutzt werden, um durch eine

INPUT Anweisung abgefragte Eingaben zu testen.

Signumfunktion 189

10 REM %¥% GANZZAHL-TEST ¥k

11 ’

20 CLS

30 PRINT

40 INPUT " GEB&N SIE EINE GAMZE ZoHe ETN "3N

S0 IF NCOINTAN) THEN CLS:PRINT:PRINT ")>INKORREKTE EihGABE,
BITTE":60T0 30

60 END

SGN
Format. SGN(arithmetischer Ausdruck)

Funktion. Dies ist die Vorzeichen- oder Signum-Funktion. Ihr Wert
ist +1, wenn des Argument positiv, O, wenn das Argument
Null, und -1, wenn das Argument negativ ist.

Beispiel.

10 REM #3#% WERTE DER SGN-FUNKTION ##¥
13

20 FOR X=-3 TO S STEP .S

30 PRINT "X =®*}X,"SGN(X) =®;SGN(X)

40 NEXT X

S0 END

Bemerkungen. 1. Mit der SiGNum-Funktion kann man abfragen, ob ei-
ne Zahl negativ, Null oder positiv ist. Als 'Auskunfi' erhalten
wir entsprechend die Zahlen -1, O oder 1.

2. Des folgende Programm gibt wahlweise den Graphen der Signum-
oder der Integer-Funktion wuf den Bildschirm aus.

100 REM *¥#% GRAPH VON INT ODER SGN AUF [-3,3] *¥%
101 ’

110 CLS:PRINT

120 PRINT " GRAPH DER FUNKTION"

130 PRINT

140 INPUT " <(SGN)> ODER <INT> "jAS

150 CLs

160 FRINT " GRAPH DER “+AS+" FUNKTION®
1%@ :

199 REM % KOORDINATEN-SYSTEM ZEICHNEN #*
200 FOR X=2 TO 36

210 PRINT AT(13,X)§"*-"

220 NEXT X

230 FOR Y=2 TO 23

240 PRINT AT(Y,19)¢"4"

250 NERT Y

260 PRINT AT (3,18)¢"X"

270 PRINT AT(14,30)3AS+" (X)"

280 IF A3="SGN" THEN C=7 ELSE C=9%

29C PRINT AT(14,18)3"0":PRINT AT(C,18)3"1"
298

190 9. Numerische Funktionen

299 REM * GRAPH ZEICHNEN ¥

300 FOR X=--14 TO 14

310 Y=SGN(X):A=&

320 IF AS="INT" THEN Y=INT(X/5):A=3
330 PRINT AT(13-A%Y,19¢X); “*"

340 NEXT X

398 :

399 REM ¥ FROGRAMM-ENDE *

400 PAUSE SO

410 CLS:PRINT

420 PRINT " NEUER PROGRAMMLAUF ? (J/N>"
430 YS=INKEY®:IF Y&="" THEN 430

440 IF Y€="J* OR Y#="j" THEN 110
450 END

Auch die grobstrukturierte Bildschirmausgabe lidsst erkennen, dass
die Signumfunktion im Nullpunkt beidseitig Spriinge hat, wahrend
die Integerfunktion jeweils in den genzen Zahlen springt. Im Ge-
gensatz zu den bislang behandelten Funktionen ist das ein quali-
tativ neuer Effekt - die den BASIC Wortern SGN und INT zugrunde-
liegenden mathematischen Funktionen sind unstetig.

GRAPH DER SGN FUNKTION
x
1§ 3306363 30

o SGN (X)

63633333 3

GRAPH DER INT FUNKTION

X

R et o 2
t I
------------------ W= — - mm
o INT(X)
#3330
R a2 s 2

Benutzerdefinierte Funktionen 191
Benutzerdefinierte Funktionen

Neben dem auf dem Micro verfiligbaren Satz fest programmierter
Standardfunktionen besteht in BASIC die M&glichkeit, Funktions-
ausdriicke selbst zu erkldren. Die Funktionen miissen dazu durch
eine einzeilige FPormel ausdriickbar sein. Wie die Standardfunk-
tioren werden sie durch drei Buchstaeben bezeichnet, wobei die
ersten zwei mit FN fest vorgegeben sind. Einmal definiert, k&nnen
diede Funktionen in einem Programm beliebig oft aufgerufen werden
und auch.zur Bildung arithmetischer Ausdriicke und sogar weiterer
Funktionen herangezogen werden.

DEF FN

Format. DEF FNb(numerische Variable) - arithm. Ausdruck
b {(Gross-)Buchstabe

Funktion. Mit dieser Anweisung kOnnen innerhalb eines BASIC Pro-
grammes numerische Funktionen vereinbart werden. Der
Name der Furktion wird dabei durch die drei Buchstaben
FNb festgelegt. Die darauf folgende, in Klammern ge-
schriebene Variable dient als Argument und wird auch
in dem rechts vom Gleichheitszeichen stehenden arith-
metischen Ausdruck benutzt. Dieser wird entsprechend
den syntaktischen Regeln ven BASIC gebildet und darf
weitere Variablen als Parameter enthalten.

Beispiel.

100 DEF FNF(X) = (1 - X~2)/{1 + X~2)

110 DEF FNG(Y) = A%Y"2 + B#Y~2 + C
Bemerkungen. 1. Die Vereinbarung von Funktionen eréffnet eine
Mtglichkeit, innerhalb eines Programms viel Schreibarbeit zu
sparen. Hdufig benutzte aufwendige arithmetische Ausdrficke wer-
den als Funktionen am Programmbeginn vereinbart und dann an den
Stellen, wo sie im Programm benétigt werden, jeweils aufgerufen.
Dabei muss die Formelfunktion in einer Anweisung ausgedriickt wer-
den kénnen. Filr kompliziertere Konstruktionen benutzt man die
Unterprogrammtechnik.
2. Mit der Festlegung des Funktionsnamen durch den Buchstaben b
ergibt sich die Mdglichkeit, bis zu 26 verschiedene Funktionen
zu vereinbaren. Einige BASIC Interpreter lassen fur b die Benut-

192 9. Numeriache Funktionen

zung allgemeinerer mehrstelliger Variablennamen zu.

3. Die als Argument dienende Varisble in der DEF Anweisung ist
frei wdhlbar. Sie dient ledigiich als Plafzhalter und hat nur lo-
kale Bedeutung. Zu irgendeiner anderen Variablen ausserhalb der
DEF Anweisung, die eventuell den gleichen Namen trégt, besteht
kein Zusammenhang. Auch beim spéteren Aufruf der Funktion wird
kein Bezug auf diesen Namen genommenr, es kann dann jeder zuldssi-
ge Variablenname benutzt werden. Aus diesen Grunden spricht man
von einer Scheinvariablen oder einem formalen Parameter, im Ge-
gensatz zur aktuellen Variablen, die beim FPunktionsaufruf als
Grundlage der Berechnung des Funktionswertes dient.

4. Zweckméssigerweise werden alle Funkticnsvereinbarungen zu Be-
ginn eines Progremme in einem Block von Anweisungen zusammenge-
fasst. SpHtestens Jjedoch vor dem ersten Aufruf einer Funktion
muss ihre Vereinberung erfolgt sein. Es gibt allerdings BASIC
Interpreter, bei denen die Vereinbarung von Funktionen an jeder
beliebigen Stelle, so auch am Programmende, erfolgen kann. Das
ist nur insofern von Belang, als in der Literatur derartig kon-
zipierte Progremme auftreten und diese in der Originalfassung

auf unserem Micro eventuell nicht laufen.

5. Bel der Vereinbarung von Furtktionen diirfen wie in jedem arith-
metischen Ausdruck Standardfunktionen und endere, bereits im Pro-
gramm vereinbarte Funktionen benutzt werden.

150 DEF FNY(X) = 1,7%#SIN(X) - 3.S5#X + SE@R(ABS(X) + 1) + FNF(X)

Auch logische Ausdriicke k&rnen sehr effektiv zur Definition kom-
plizierterer, stiickweise konstruierter Funktionen eingesetzti wer-
den, wie das folgende Beispiel zeigt.

160 DEF FNW(X) = (X ¢ O)¥X + (X >= O)¥X~2

Es sei hierbei der Wert von X negativ. Dann ist der logische Aus-
druck (X »= 0) falsch und besitzt den Zahlenwert O. Der Wert von
(X < 0) ist 1 (oder maschinenebhdingig auch -1), mithin 1ist die
vereinbarte Funktion PNW links vom Nullpunkt linear und aanalog
rechts davon quadratisch.

6. Rekursive Vereinbarungen sind sowohl direkt als auch indirekt
nicht zugelassen. Das bedeutet, dass zur Vereinbarung einer Funk-
tion diese-selbst weder direkt noch liber eine Reihe anderer da-
zwischen liegender Funktionssufrufe und Operationen benutzt wer-
den darf. Funktionen diirfen sich nicht selbst aufrufen.

Benutzerdefinierte Punktionen 193

7. Wir haven hier die Vereinbaruhg von Funktionen mit einer Va-
riablen besprochen. Auf einigen Micros, so dem Spectrum, lascsen
sich in analoger Weise auch Punktionen mehrerer Variablen defi-
nieren.

8. In einigen BASIC Versionen ist es nicht zuldssig, einmal ge--
4roffene Vereinbarungen von Funktionen innerhalb eines Programms
‘zu #ndern.

9. Es ist nicht m6glich, eine Funktion im Direkt-Modus zu verein-
baren. Gegebenenfalls flihrt dies zu der Fehlermaldung ID:

ILLEGAL DIRECT ERRCR.

FN

Format. FNbt(arithmetischer Ausdruck)
t Buchstabe

Funktion. Nach erfolgter Vereinbarung kann eine Funkticn unter
ihrem Namen beliebig oft im Programm/aufgerufen werden.
Anstelle des formelen Platzh<ers wird dabei als Argu-
ment ein arithmetischer Ausdruck zur Jbergabe des aktu-
ellen Wertes eingesetzt,

Beispiel.
10 REM *¥% FORMEL -FUNKTION #&#

20 DEF FNY(X) = X*2 - 87.85%X - 13.43
30 FOR A=10 TG 100 STEP S

4N PRINT FNY (A)

S0 NEXT A

60 END

Bemerkungen. 1. Die Auswertung des Argumentes, das ein beliebi-
ger zulgssiger aritumetischer Ausiruck sein darf, eriolgt erst
beim jeweiligen Aufruf der Punkticn. Der berechnete Wert wird
dern als Parameter an die entsprechende Vereinbarungsanweisung
iibergeben, wo die Berechnung des Funktionsweries erfolgt. An-
schliessend wird das Programm nach dem Funktioncuufruf fortge-
setzt,

2. Demnach ist durch Vereinbarung die Konstruktion mitcelbarer
Funkticnen zuldssig. Die maximale Verschachtelungstiefe hingt
vom Interpreter =ab.

194 9. Numerische Funktionen

10 REM ¥¥% MITTELBARE FUNKTION #¥#

11

20 DEF FNF(X)=(1-X*2)/(14X"2)

30 DEF FNG(X)=(X+SIN(X)) /SAR (14X~2)

40 DEF FNH(X)=FNF (FNG (X))

S0 FOR Z=0 TO 2 STEP .1

60 PRINT FNH(Z),FNH(Z+.05)

70 NEXT 2

80 END
3. Nicht erlaubt dagegen ist die rekursive Vereinbarung einer
Punktion. So fiihren folgende Programmzeilen

10 DEF FNA(X) = FNB!(Y)
20 DEF FNB(Y) = FNA{X)

eéntweder zu einer Endlos-Schleife oder spétestens beim Aufruf ei-
ner dieser Funktionen zu einer Fehlermeldung.
4. 0ft gebraucht wird die Rundungsroutine

10 DEF FNR(X) = INT(X + ,5)

Wihrend die INTeger-Funktion stets zur néchsten ganzen Zahl ab-
rundet, wird durch die Funktion FNR zur jeweils n#chstgelegenen
Zahl gerundet.

20 FOR X=1 TO -1 STEP -.{
30 PRINT X, INT(X), FNR(X)
40 NEXT X

SO0 END

Sie kBnnen sich das am Graphen dieser Funktion klarmachen; mo-
difizieren Sie dazu das entsprechende Programm fiir die SGN und
INT Funktion.

5. Auf den meisten Micros ist die Definition von Funktionen nur
einer Varieblen mbglich. Will man trotzdem mit Funktionen mehre-
rer Variablen arbeiten, so bleibt als ein mdglicher Kompromiss
die Benutzung verschiedener Parameter bei der Funktionsdefinitiom.
Die Parameter besitzen dann allerdings nicht die vorteilhafte Lo-
kaelitét des formalen Argumentes einer Funktion. Wir kdnnen uns
dies am folgenden Programmbeispiel klarmechen, wobei mittels der
PRINT AT Anweisung recht komplizierte Muster auf dem Bildschirm
erzeugt werden. In Abhéngigkeit von den Koordinaten X,Y einer
Bildschirm~Position wird tiber eine der in den Zeilen 130 - 150
definierten Funktionen festgelegt, ob dort Jjeweils ein Leer-
oder Vollzeichen auszugeben ist. Dazu wird in Zeile 200 festige-
stellt, ob der betreffende Funktionswert ungerede beziehungsweise
gerade ist.

Benutzerdefinierte Funktionen 195

100 REM ¥¥% TEPPICH-MUSTER ¥¥¥

101 :

110 CLS

120 FOR Z=1 TO 3

130 IF Z=1 THEN DEF FNF (Z)=INT(ABS(SIN(X/2) +COS(Y))*#5.3)
140 IF Z=2 THEN DEF FNF (Z)=INT (ABS(EXP(X/6) +SIN(Y/2))%6.2)
150 IF Z=3 THEN DEF FNF (Z)=INT(ABS(SIN(X/4) +SIN(Y/S))*6.5)
160 FOR X=0 TO 18

170 FOR Y=0 TO 13

180 Cs=" *

190 I=FNF(Z)/2

200 IF I=INT(I) THEN Cs="R"

210 A=20+X

220 B=13+Y

230 C=20-X

240 D=13-Y

250 PRINT AT (B,A); C$%

260 PRINT AT (D,C); CS

270 PRINT AT (D,A); CS$

280 PRINT AT (B,C)} CS

290 NEXT Y

300 NEXT X

310 PAUSE SO

320 NEXT 2Z

330 END

Wohl in jedem Falle werden Sie dieses Programm den Verhdltnissen
auf Ihrem Bildschirm durch eine geeignete Wahl der Koordinaten
des Bildmittelpunktes in den Zeilen 210 - 240 sowie an die maxi-
mal verfiighare Zeilen~ und Spaltenzahl in den Laufanweisungen
der Zeilen 160,170 anpassen miissen. Auch ist die Anweisung zur
Ausgabe‘eines Vollzeichens auf jedem Micro etwas anders. Im Bei-
spiel wurde dies durch Inversion des Blanks erreicht, auf dem
2 9001 konnen Sie das Vollzeichen durch die Zuweisung'cs =
= CHR$(127) in der Programmzeile 200 realisieren. Falls Sie noch
Schwierigkeiten mit der Ausgabe des Vollzeichen haben, so benut-
zen Sie einfach irgendein anderes leichter erreichbares Zeichen,
vielleicht ein "O" oder den beliebten Stern.

Die erzeugten Muster werden durch die Periodizititen der
zur Definition der Funktion FNF benutzten Standardfunktionen be-
stimmt. Hier kUnnen Sie viel experimentieren, so zum Beispiel
bei der Wahl des Verhéltnisses der Argumente der Standardfunk-
tionen SIN, COS, EXP. Aber auch gegeniiber Anderungen des gemein-
samen Faktors ist die Struktur des Musters sehr empfindlich.

Die pachstehenden Bildschirmausdrucke entsprechen den Schlei-
fendurchgtngen fiir 2 = 1,2,3. Zur Auflockerung wurden verschie-
den Graphikzeichen beim Ausdruck benutzt.

¢

4 00

P
¢
P4

44

L 4

466

¢ o O

Py
o

2309 5 200 5 000 0 2000 m%

[d
*0

(24

®

(3664

0222244

L 6.4

&

¢ 0
(664
LIR223

s
666
*9 ¢

L

*
&

b4

L 664

0 4

*
$.33
400 & ¢ 0

*6

4664

9. Numerische Funktionen
322224

*
.
b4
*040

Od” *4

196

CTR R
mvo nooow nnu*mﬂnnm*nn
-
R e Ly by
O MR
. e000e ® 20000 00 & O ©_00 SIOPS O m m
b4 bood b > o 9 . - . 8
0 944 o o 44 wvvﬂm ”OO" 43 m
'3 35 30404 05 0.0 5. 90 .90 .6 0.0 5.9
$ ”Mwo o.o»ooovoo o:vooow ooooooo.oo
“ * m 99 " " $9
P A>3 9B+ 8 o ®s 38 m
“ Fx-qooo ®_00009 50 5 9 & 99 *
Mo»: ot 'O * m Ovm mvv m > 'v
0 400 o ® . » > ."
$e 3 3°3° s 83882 3% n oos 33332 2
*e 0<¢H¢Ho m (13 e m
WO MAXvW010 m m .',mm mm m
330030 « 2000 5 200 -0 ®o® o so0e
$ 3333 32
* ¢ oo
b4 3
> ”»0 .
b & & o
b 406 o
o ss0e
¢ st

Aufgrund des grisseren Formates erscheinen die Muster auf dem

Bildschirm eindrucksvoller,

Klar zur Landung 197
Klar zur Landung

Fun zitieren wir noch ein etwas léngeres FProgramm, in dem viele
der bisher beschriebenen Anweisungen benutzt werden. Es handelt
8ich um eine Version der woihl in keiner Programmasammlung fehlen-
den Simulation des Anfluges einer Mondf#hre auf die Oberfldche
deg Trabanten unter Handsteuerungsregime. Das Programm wurde in
schwach nodifizierter Form von Menzel, K. (1984) iibernommen.

Als Ausgangswerte fiir den Anflug werden vorausgesetzt: Entfer-
nung A = 192 km, Geschwindigkeit V = 1600 m/sec, Gesamimasse
M =33 t, davon 17.5 t Treibstoff. Die Mondarnziehung wird mit
G = 1.6 m/sec2 als konstant angenommen. Die Austrittsgeschwindig-
keit des Treibstoffes relativ zur Fihre betrdgt Z = 2880 m/sec.
Die Steuerung der F#hre erfolgt durch intervallweises Ziinden des
Raketenmotors zur Verminderung der Geschwindigkeit. Dabei kbnnen
der eingesetzte Treibstoff als Bremsschub K (in 1/sec) sowie die
jeweilige Brenndauer T (in sec) eingestellt werden. Der Meximal-
schub sollte nicht gr¥sser als K = 300 1/sec gewdhlt werden. Ent-
sprechend dem verbrauchten .Treibstoff verringert sich die Gesamt-~
massq der F¥hre. Aus den vorgegebenen Daten wird die Position
der Mondf#hre aus den Bewegungsgleichungen unter Benutzung des
Impulssatzes bestimmt. Dabei ist es aufgrund des begrenzten
Treibstoffvorrates sinnvoll, in gewissen Zeitintervallen die F&h-
re durch Vorgabe von K = O dem freien Fall zutuberlassen. Nach
erfolgter Landung wird die erreichte Qualitédt entsprechend der
Aufprallgeschwindigkeit der Féhre kommentiert. Und nun viel
Spess beim Abstieg.

100 REM ¥%% MONDLANDUNG %%¥

101 :

102 REM (C) Klaus Menzel (1584)

103 :

109 REM % LISTE DER VARIABLEN %

110 REM A: HBHE (alt) UBER MONDOBERFLACHE
120 REM I: HBHE (neu) UBER MONDOBERFLACHE
130 REM J: GESCHWINDIGKEIT (neu)

140 REM L: ZEIT (in sec) NACH BEGINN

150 REM M: GESAMTMASSE LANDEKAPSEL

160 REM N: MASSE KAPSEL OHNE BRENNSTOFF
170 REM S: ZEITINTERVALL (sec)

180 REM V: GESCHWINDIGKEIT (alt)

198 :

199 REM % DATEN %

200 CLS:PRINT

210 READ A,V,M,N,G,Z,L

198 9. Numerische Funktionen

220 PRINT "ZEIT" TAB(?7) "HOEHE® TAB(15) *V"j

230 PRINT TAB(18) "BRENNSTOFF" TAB(27) "SCHUB?®" TAB(34) "T?"
240 PRINT “SEC" TAB(7) "METER" TAB(13) "KM/H"}

250 PRINT TAB(20) °"LITER" TAB(27) °"L/SEC" TAB(34) ®"SEC"
260 PRINT INT(L+.5) TAB(6) INT(A) TABI14) INT(3.6%V)}
270 PRINT TAB(20) INT(M-N) TAB(27)3

280 INPUT K, T:REM SCHUB, BRENNZEIT

290 IF M-N>0.001 THEN S20

298 :

299 REM % LANDUNG *

300 PRINT "BRENNSTOFF ZU ENDE NACH"JINT(L+.%5)j"SEC*"
310 S=(-V+SAR(VEV+2%A%G)) /G

320 V=V+G¥S

330 L=L+S

340 W=3.6%V

350, PRINT

360 PRINT "LANDUNG NACH®; INT(L+.5)3"SEC MIT"; INT(W+.5)§ "KM/H"
370 IF W>3.5 THEN 390

380 PRINT "BRAVO, WIE EIN SCHMETTERLING!"

390 IF W>8 THEN 420

400 PRINT "WEICHE LANDUNG, PILOT PIRX GRATULIERT!"
410 GOTO S10

420 IF W>16 THEN 450

430 PRINT "LANDUNG HART, ABER AKZEPTABEL."

440 GOTO S10

3450 IF W>60 THEN 480

460 PRINT "HARTE LANDUNG, AUF RETTUNG WARTEN."

470 GOTO S10

480 PRINT "KNALLHARTE LANDUNG OHNE UEBERLEBENDE. "
490 PRINT "DER NEUE MONDKRATER IST"}§

S00 PRINT INT(SGR(WX(N+M)/M)) "METER TIEF!!'"

510 PRINT

S12 PRINT “NOCH EIN LANDUNGSVERSUCH <J/N> ?°"

S14 Y$=INKEYS$:IF Y$="" THEN 514

S16 IF YE="N" OR Y$="n" THEN 990

518 RESTORE:GOTO 200

519 : .

S20 IF T<0.001 THEN 260 :REM ZEITENDE

530 S=T

540 IF M>=N+S¥K THEN S60

5§50 S=(M-N)/K

560 GOSUB 800 :REM BEWEGUNGS-GL.

570 IF I<=0 THEN 620 :REM NEUE HGHE

580 IF V<=0 THEN 600: REM ALTE GESCHW.

590 IF J<O THEN 680 :REM NEUE GESCHW.

600 GOSUB 900 :REM DATEN ANDERN

610 GOTO 290

620 IF S<0.005 THEN 340

630 D=V+SAR(VIV+2%AX (G-ZXK/M))

640 S=2%A/D

650 GOSUB 800

660 GOSUB 900

670 GOTO 620

680 W=(1-MXG/(Z¥K)) /2

690 S=MIV/ (ZHKX (W+SAR (WHW+V/2Z))) + 0.00S5

700 GOSUB 900

710 s=T

720 IF I<=0 THEN 620

730 GOSUB 900

740 IF J>0 OR V<=0 THEN 290

Klar zur Landung

750 IF V>0 THEM 680

760 Q=S¥K/M

770 J=U+GXS+ZRLN(1-@)
798

799 REM % SUBROUTINE %
300 @=S*K/M

810 J=V+GRS+ZELN(1-8)
820 B=A

830 IF @<0.0001 THEN 850
840 B=A+SHZ/Q¥((1-Q)¥LN(1-8) +@)
850 I=B-UXS-GXS%S/2

860 RETURN

898 :

899 REM % SUBROUTINE #
900 L=L+S

910 T=T-8

920 M=M-S*K

930 A=I

940 v=J

950 RETURN

960 :

970 DATA 192000, 1600, 33000, 15500
980 DATA 1.6,2880,0

990 END

ZEIT HOEHE V BRENNSTOFF SCHUB? T?
SEC METER KM/H LITER L/SEC SEC

[o] 192000 5759 17500 ? 0,150
LANDUNG NACH 114 SEC MIT 6414 KM/H
KNALLHARTE LANDUNG OHNE UEBERLEBENDE.
DER NEUE MONDKRATER IST 97 METER TIEF'

NOCH EIN LANDUNGSVERSUCH <J/N> ?

ZEIT HOEHE V BRENNSTOFF SCHUB? T?
SEC METER KM/H LITER L/SEC SEC

o] 192000 S759 17500 ? 0,80
80 58880 6220 17500 ? 300,40
120 12559 1265 SS500 ? 200,S
125 10436 1287 4S00 ? 0,19
142 4123 1385 4500 ? 200,10
152 1684 351 2500 ? 0,10
162 629 408 2500 ? 100,8
170 189 -17 1700 ? 0,8
178 17S 29 1700 ? 20,5
183 136 -3 1600 ? 0,10
193 82 S5 1600 ? 20,5
198 27 23 1500 ? 0,S

LANDUNG NACH 201 SEC MIT 40 KM/H
HARTE LANDUNG, AUF RETTUNG WARTEN.

NOCH EIN LANDUNGSVERSUCH <(J/N> ?

199

200

9. Numerische Funktioqen

ZEIT HCEHE v BRENNS;OFF SCHUB? T?

SEC METER KH/H LITE L/SEC SEC
0 192000 S$759 17500 ? 0,85.3
85 49699 6251 17500 ? 300,51
136 87 86 2200 ? 40,2.5
139 42 42 2100 ? 20,5

144 S 11 2000 ? 15,2

146 O S 1970 ? 15,1

LANDUNG NACH 146 SEC MIT 4 KM/H.
WEICHE LANDUNG, PILGT PIRX GRATULIERT!

NOCH EIN LANDUNGSVERSUCH <(J/N> ?

Die folgende LUsung wird vom Bordcomputer empfohlen. Eine sol-

che knallharte Umschaltung vom freien Fall auf vollen Bremsschub

ist typisch fur die optimalé Losung derartiger Steuerprobleme,
nimmt aber wenig Riicksicht auf das in der F#hre befindliche Per-
sonal.

ZEIT HOEHE V BRENNSTOFF SCHUB? T?
SEC METER KM/H LITER L/SEC SEC

(o] 192000 S759 127500 ? 0,85.3447
8s 49621 6251 17500 ? 300,51.515

LANDUNG NACH 137 SEC MIT 2 KM/H.
BRAVO, WIE EIN SCHMETTERLING!
WEICHE LANDUNG, PILOT PIRX GRATULIERT!

1+3CH EIN LANDUNGSVERSUCH <J/N> ?

Zufallszahlen

RND
Format. RND(i)

i ganzzahliger arithmetischer Ausdruck

Funktion. Diese Anweisung erzeugt eine Pseudozufallszahl zwischen

Null und Eins. Fiir positives Argument kann durch sukzes-
sives Aufrufen der Funktion RND eine Folge solcher Zah-
len generiert werden. Der Aufruf von RND(#) reproduziert
die zuletzt ausgegebene Zahl. Bei negetivem Argument
wird der Generator zuriickgesetzt und eine neue Folge be=-
gonnen. Unterschiedliche negative Argumente fithren zu
verschiedenen Folgen.

Beispiel. 10 REM #¥¥ ZUFALLSZAHLEN %¥%%

11 @

20 PRINT:PRINT "SERIE VON 10 ZUFALLSZAHLEN: ":PRINT
30 FOR X=1 TO 10

40 PRINT “ZIEHUNG";X;"-",RND(1)

SO PRINT

62 NEXT X

70 END

Textfunktionen 1 O

Nochmals zum Funktionsbegriff

Bei den im vorigen Kapitel behandelten numerischen Funktionen
werden entsprechend einer genau definierten Vorschrift gewissen
reellen Zahlen wieder reelle Zahlen zugeordnet. Der mengentheo-
retisch begriindete Funktionsbegriff ist aber viel allgemeiner
und erlaubt die Zuordnung genz unterschiedlicher Objekte. Welche
Objekte sind auf unserem Micro verfiigbar? Nun, ganz elementar
sind das die durch Ziffern repr#sentierten Zahlen sowie alle
durch Zeichen darstellbaren Texte. Dementsprechend gibt es in
der Programmiersprache BASIC Funktionen, mit denen Texte umge-
formt werden konnen, aber euch die Transformation von Textkon-
stanten in gewisse Zahlen und umgekehrt ist moglich. Dies ge-
schieht - wie bei den numerischen Funktionen - entsprechend be-
stimmten, in eindeutiger Weise festgelegten Zuordnungsvorschrif-
ten. Demit werden in BASIC die durch den alphanumerischen Zei-
chenvorrat gegebenen Mdglichkeiten - also die simultane Verfiig-
barkeit von Ziffern, Buchstaben und Sonderzeichen - auf dem Mi-
cro voll erschlossen. Dies betrifft unter anderem sowohl die Ver-
arbeitung von Texten, die Verwaltung von Datenbestédnden als auch
erweiterte Dialogmbglichkeiten bei komplizierteren Anwenderpro-
grammen,

Im folgenden wird eine Reihe von Text- oder Stringfunktionen
vorgestellt, wie sie im BASIC vieler Kleincomputer zumindest
teilweise vorhanden sind. Zuerst wenden wir uns einer Gruppe von
Funktionen zu, die einer unmittelbaren Manipulation von Texten
dienen.

202 10. Textfunktionen

Stringslice Funktionen

LEFTS

Format. LEPT$(Textausdruck,i)
i ganzzahlig, nichtnegativ

Funktion. Diese Anweisung ermdglicht das Abtrennen von i Zeichen
aus einem vorgegebenen Text, der auch als Wert eines
Textausdruckes vorgegeben sein darf. Der neue Text wird
debei der Reihe nach aus den ersten i Zeichen des ange-
gebenen Textes gebildet. Fiir i ist auch ein geeigneter
arithmetischer Ausdruck zugelassen.

Beispiel.

10 REM ¥%# FUNKTION LEFTS ¥#¥¥
11 ¢

20 LET AS = "MICROCOMPUTER"

30 LET B$ = LEFT$(A$,3)

40 PRINT

SO PRINT Bs$

60 END

RUN
MICRO
Ready
>l

Bemerkungen. 1. #Wir erinnern uns daran, dass Textausdriicke aus
Textkonstanten und Textvariablen sowie aus Verkniipfungen dersel-
ben durch den Konkatenationsoperator + gebildet werden. Die zur
Darstellung von Textkonstanten benutzten Anfiihrungsstriche geht-
ren nicht zum Textwert und werden folglich bei der Auswahl der
ersten i Zeichen nicht mitgezéhlt. Die Werte der Funktion LEFT$
gehdren ebenfalls zu den Textausdriicken und kénnen zur Konstruk-
tion weiterer Ausdrﬁéke benutzt werden. Darauf wird auch durch
die dussere Form des Schliisselwortes LEFT$ mit dem abschliessen-
den Dollarzeichen hingewiesen.

2. Als Argument der LEPT$ Funktion tritt das geordnete Paar
(Textausdruck,i) auf, man kann sie also als Funktion zweier Ya—
riablen verschiedenen Typs auffassen.

3, Die leere Zeichenkette "" ist als Textargument zugelassen und
tritt dann als Wert der LEPT$ Funktion auf; dies auch dann, wenn
der Wert von i gleich Null ist. Die Maximallénge eines zu verar-
beitenden Textes ist maschinenabhangig und entspricht der maxi-

Stringslice Funktionen 203

malen Zeichenzahl einer Textvariablen, oft 255. Auftretende
Blanks werden wie alle anderen Zeichen behandelt und entsprechend
mitgezdhlt.

4., Ist der Wert von i grdsser als die Anzahl der Zeichen des vor-
gegebenen Textausdrucks, so ergibt sich als Funktionswert von
LEFT$ der Textwert des Ausdruckes selbst.

5. Die Syntax von BASIC 1#sst zu, dass fiir das Argument i eine
numerische Variable geschrieben wird. FOr einen nicht ganzen Wert
wird denn auf die n#chstkleinere ganze Zahl abgerundet. Sie kén-
nen das durch Direkteingabe von

PRINT LEFT$("PI" - "PI",PI)

nachpriifen. Einen negativen Wert i quittiert der Micro mit der
Fehlermeldung FC: ILLEGAL QUANTITY ERROR.

6. Die Anweisung LEFT$ erwartet im Argument die Datentypen Text
und Zshl in dieser Reihenfolge. Abweichungen hiervon, zum Bei-
spiel verursacht durch vergessene Anfithrungsstriche bei einer
Textkonstanten oder auch durch Vertauschungen, fithren zu der Feh-
lermeldung TM: TYPE MISMATCH ERROR.

7. Ein fehlendes Argument fithrt zur Meldung SN: SYNTAX ERROR. Bei
vergessenem $ Zeichen interpretiert der Rechner das Wort LEFT als
Name einer numerischen Variable.

RIGHTS

Format. RIGHT$(Textausdruck,i)
i ganzzahlig, nichtnegativ

Funktion. Die Anweisung gestattet das Abtrennen des rechten Endes
eines vorgegebenen Textes. Dieser kann als Textkonstan-
te oder Textveriable gegeben sein, und fiir i ist eine
nichtnegative numerische Konstante oder Variable zuge-
lassen. Als PFunktionswert von RIGHT$ ergibt sich der
aus den letzten i Zeichen des vorgegebenen Textes ge-
bildete Teiltext. Ubertrifft der Wert von i die Anzahl
der Zeichen des vorgegebenen Textes, so ergibt sich als
Funktionswert der Gesamttext.

Beispiel. 10 REM ¥¥%¥ FUNKTION RIGHTS ¥*¥%¥

1 S
20 AS=" AXNXFIHHEHHEHE "
30 PRINT

204 10. Textfunktionen

40 FOR I=1 TO iS

50 PRINT SPC(15-1)3RIGHTS(AS, I}
60 NEXT 1

70 END

RUN

. FEERREHAFRRE
R R IR FIRE
A3 K RN RE
AN XN RE

Ready
>l

Bemerkungen. 1. Es besteht eine weitgehende Anamlogie zur LEFT$
Furktion, alle dort formulierten Bemerkungen bleiben sinngeméss
giltig.

2. Mit Hilfe von RIGHT$ und LEFT3 Funktion sowie des Kcnkatena-
tionsoperstors + kbénnen Texte gemischi werden, wie das folgende
einfache Beispiel zeigt.

10 REM %% TEXTMISCHER ¥ RUN

11

20 AS=">>>3>335>)" 3333333338
30 BH="<ICLCLCCLCn 33333333
40 FOR I=0 TO 10 REEEESoPH
S0 PRINT LEFT$(A$,10-1) + RIGHTS(BS,I) 3335 eccce
60 NEXT I IEINLLLLLL
70 END YLLK

IICLCLLLLLL
LA

Format. MID$(Textausdruck,i [,j])
iw»l, j a0 ganzzahlig

Funktion. Diese Anweisung erlaubt des Auskoppeln einer beliebi-
gen zusammenhéngenden Teilkette von Zeichen aus einem
als Textkonstante oder -variable vorgegebenen Text. Die
ausgewlhlte Teilzeichenkette beginnt ab Position i des
vorgegebenen Textes und ist j Zeichen lang. Wird die

Vervielf#ltigung 205

Angabe des Wertes von j unterlassen, so ergibt sich
als Punktionswert von MID$ die gesamte Zeichenkette ab
der i-ten Position. Fir i und j sind auch geeignete
arithmetische ausdriicke zugela-:in,

Beispiel.
RUN

10 REM %% MIDE FUNKTION #*¥%¥ -8,
11 Qf‘pp
20 PRINT RoSOMaY
30 A%="MICROCOMPUTER"® M{§§§j5~=J$ER
40 FOR K=-6 TOQ 6 ISE ;;:;d¥
50 I=ABS(K)+! g::,,u
60 PRINT SPC(I);MIDS (A%, I, 15-2%I) canp
70 NEXT K ’E
80 END Eiady

Bemerkuugen. 1. Ubersteigt der Wert von i die Anzahl der Zeichen
des Textes, so ergibt sich als Funktionswert von MID$ die leere
Zeichenkette. Ist die geforderte Zeichenanzahl j gr@sser als die
Anzahl der Zeichen des vorgegebenen Textes ab Position 1, 'so
wird dem Funktionswert von MID$ der gesamte restliche Text zuge-~
wiesen.

2. Pir i und j sind aerithmetische Ausdriicke zugelassen, falls
fiir deren Werte die Eeziehungen i 2 1 und j & O gelten, andere
Werte fithren zu der Fehlermeldung FC: ILLEGAL QUANTITY ERROR.

3. Pir N a 1 gibt der Punktionswert MID$(A$,1,N) das N-te Zei-
chen des Textwertes von A$ an, und der Ausdruck MID$(A$,1,N) be-
sitzt denselben Textwert wie LEFT$(A$,N).

Vervielfdl tigung

STRINGS

Format. STRING$(1i,Textausdruck)
i al, ganzzahlig

Funktion., Diese Anweisung gestattet das Vervielfachen eines vor-
gegeberen lextes. Der Funktionswert von STRINGS ist
ein neuer Text, der durch i-malige Ancipanderreihung
des Textargumeni2a enteteht.

Beispiel. 10 PEM #¥% STRINGS FUNKTION *#¥

11
20 LET A% = "#x"
30 LET B$ = "¥4"

206 10. Textfunktionen

40 FOR K=1 TO 4 RUN
SO0 PRINT STRINGS (4,A%)
60 PRINT STRINGS (4, BS)
70 NEXT K

80 END

?iady

Bemerkungen. 1. Die Anzahl der Zeichen eines durch die STRING$
Funktion erzeugten Textes darf die maximale Ldnge einer Textvaria-
blen nicht fiberschreiten.

2. Auf einigen Micros darf anstelle des Textargumentes auch die
ASCII Nummer eines Zeichens geschrieben stehen. Dann wird durch
die STRING$ Funktion das entsprechende Text- oder Graphikzeichen
vervielfdltigt. Auf diese Weise werden auch iiber die Tastatur
nicht zugéngliche Zeichen einzeln fiir die STRING$ Operation ver-
fiigbar.

Lénge eines Textes

Wenn wir in den eber beschriebenen Funktionen Textausdriicke als
Argument benutzen, so kann es wiinschenswert sein, die zahlenwer-
tigen Argumente i,j von der tatsdchlichen Lidnge des vereinbar-
ten Textwertes abhingen zu lassen, die zu Beginn eines Programms
eventuell noch gar nicht festgelegt ist. Dieses Problem fithrt uns
zur Besprechung der folgenden, auf fast allen Micros vorhandenen
Funktion, welche Texten die entsprechenden Zahlen zuordnet.

LEN
Format. LEN(Textausdruck)

Funktion. Diese Anweisung ermittelt die Anzahl der Zeichen
eines vorgegebenen Textes.

Beispiel. 10 REM ¥¥#% LEN FUNKTION %¥¥
11 :
20 PRINT
30 PRINT * GEBEN SIE SITTE THREN NAMEN EIN®
40 PRINT

S0 INPUT N$

60 LET L = LEN(NS)

70 PRINT

80 PRINT " ";N$j}", IHR MAME IST"iLj"- BUCHSTABIG®
90 END

Lénge eines Textes 207

RUN

GEBEN SIE BITTE IHREN NAMEN EIN

? HENRIETTE R

HENRIETTE, IHR MAME IST 9 - BUCHSTABIG

g‘ady

Bemerkungen. 1. Die Funktionswerte von LEN sind Zahlen und kbn-
nen als arithmetische Ausdriicke behandelt werden. Die Werte sind
nichtnagativ, ganzzahlig und durch die Maximallénge der auf dem
Micro verfiigharen Textvariablen, in der Regel 255, beschriénkt.

2. Der leeren Zeichenreihe wird durch LEN die L#nge Null zugeord-
net. Kommen im Textargument Blanks oder auch (durch ASCII Nummern
repridsentierte) Steuerzeichen vor, so z#hlen diese bei der Bewer-
tung der Linge des Textes mit.

3. Die LEN Funktion gestattet einen flexiblen Umgang mit den bis-
lang besprochenen Textfunktionen. So ist sie recht niitzlich beim
Formatieren von Bildschirmausgeben, wenn durch den Nutzer Texte
eingelesen werden, deren Lénge nicht vorhersagbar ist. Ebenso
zweckmiissig kann diese Anweisung in FOR ... NEXT Schleifen ein-
gesetzt werden, wenn eine Blockanweisung soviele Durchgénge be-~
sitzt, wie ein Text Zeichen hat.

10 REM #%#¥ RUCKWARTS LESEN ¥*¥¥
11 @

14 PRINT

20 INPUT "EINGABE EINES WORTES: ";Ws

30 PRINT

40 PRINT "RUECKWAERTS GESCHRIEBENES WORT: "
SO PRINT

60 FOR P=LEN(W®) TO 1 STEP -1
70 PRINT MIDS(Us,P, 1)}

80 NEXT P

82 PRINT

90 END

RUN

EINGABE EINES WORTES: ? BASICODE
RUECKWAERTS GESCHRIEBENES WORT:
EDOCISAB

gaady

100 REM ¥¥¥ ROTATION *¥%¥

101 :

111 REM % EIMGABE %

120 CLS:PRINT

130 PRINT “"GEBEN SIE EIN WORT MIT MINDESTENS 3
140 PRINT *UND HOECHSTENS 20 RUCHSTABREN EIN"
150 PRINT:INPUT WS:L=LEN(WS)

170 IF L<3 OR L>20 THEN 120

190 W1s=UWs$

208 10. Textfunktionen

219D PRINT

220 INPUT *ROTVATION LINKS <(1)> ODER RECHTS (2> ?73R
298 :

299 REM % BILDSCHIRM-AUSGAEE ¥

320 CLS

310 PRINT AT(23,7); "DRUECKE (SPACE} FUER ENDE"
320 PRINT:PRINT

322 H=INT(L/2)

330 FOR K=-H TO H

340 I=ABS(K)+1

350 PRINT SPC(L17-H+I) jMIDE (WS, I,L+2-2%1)
360 NEXT K

370 ON R GOSUR 500,600

380 PAUSE 1

390 PRINT AT(2+H,19-H)jus

400 IF IMKEYS="* GOTO 370

410 PRINT AT(2+H,19-H)jW1ls

420 END

498 :

499 REM % SUBROUTINE: ROTIERE LINKS %
SO0 WS=RIGHTS(WE,L-1)+LEFTS (WS, 1)

S$10 RETURN

598 @

599 REM ¥ SUBROUTINE: ROTIERE RECHTS *
600 WE=RIGHTS (WS, 1) +LEFTS(UWS,L~-1)

610 RETURN

4. Wir beschliessen die Besprechung der Funktion LEN mit einem
Programm, das einen in DATA Zeilen abgeiegten Text .zwz Mitlesen
auf den Bildschirm ausgibt. Der Text wird durch die READ Anwei-
sung zeilenweise gelesen und in Zeile 170 in einzelne Zeichen
zergliedert ausgegeben. Die PRIRT Anweisung in Zeile 200 hebt die
Wirkung des verbindenden Semikolon am Schluss der vorhergehenden
Zeile auf, die folgende PRINT Anweisung sorgt fiir den Zeilenab-
stand.

100 REM #%% TEXT LESEM %¥
108 ¢

110 €13

120 PRINT:PRINT:PRINT

130 FOR Z=1 TO 9: REW ZEILE
140 READ Z$

150 L=LEN(2%)

160 FOR P=1 TO L: REM POSITION
170 PRINT MIDS(Z$,P,1);

180 PAUSE 1

190 NEXT P

200 PRINT 740 DATA " SEID GEGRUSST' LASST EUCH EMPFANGEN"
210 PRINT 7250 DATA " ‘JON DES FRIEDENS MELODIE'~

220 MNEXT Z 260 DATA " UNSER HERZ IST NOCH VOLL BANGEM, *
230 END 27¢ DATA " UWOLKEN DICHT AM HIMMEL ZIEHN."®

=39 Z30 DATA ®" ABER MEUE LIEDER TGNEN, *

290 DATA " UND BER JUGEND TANZ UND SPIEL*®

300 DATA " ZEUGT vOM WAHREN UND VOM SCHSMEN, "
310 DATA " ORDNET SICH ZU HOHEM ZIEL."

320 DATA " JOHANNES R. BECHER"

Der ASCII Code 209
Der ASCII Code

Man darf nicht denken, dess unser Micro intern etwa mit Ziffern
und ‘Buchstaben operieren wiirde. Wie sollte er such, funktioniert
sein Innenleben doch im Zusammenspiel einer Reihe wohl aufeinan-
der abgestimmter elektronischer Schaltkreise, deren kleinste Zel-
len jeweils einen veon gwei Zustiénden annehmen kénnen je nachdem,
ob sie innerhaldb der Gesamtschaltung Spannung fiihren oder nicht.
Die Arbeit des Computers besteht nun in einer weitgehend von ihkm
selbst orgenisierten zeitlichen Abfolge derartiger Zusidnde, wo-
bei in den.heute vorherrschenden Kleincomputern jeweils acht Zu-
stl¥nde parallel, das heisst also gleichzeitig verarbeitet wer-
den. Bislang hat das mit Rechnen und’ dem Verarbeiten alphanume-
rischer Daten lberhaupt nichts zu tun. Man kann aber dem jewei-
ligen physikalischen Zustand einer Zelle im Rechner ein abstrak-
tes Bin#irzeichen eindeutig zuordnen. Ein solches Bindrzeichen
wird Bit genannt. Eine geordnete Zusammenfassung von.acht solcher
Bindrziffern wird mit dem Kunsiwort Byte bezeichnet. Daneben
kennzeichnet marr mit dem (kleingeschriebenen) Wort bit die klein-
ste Einheit von Information, némlich eine solche, die - auf ir-
gendeine Weise - durch eine Ja/Nein-Entscheidung ausgedriickt wer-
den kann., So énthﬂlt also ein Byte die Infcrmation von acht bit,
letzteres bezeichnet man auch als 6yte (kleingeschrieben). Alles
ein bisschen verwirrend fir den Anfeng? Stimmt, und es sei auch
nicht verschwiegen, dass es im deutschen Sprachgebrauch mit die~
sen Bezeichmungen recht durcheinender geht.

Im Moment wichtig fiir uns ist das Folgende. Die im Computer
elektronisch realisierien und verarbeiteten 'Bitmuster' bediirfen
der Interpretation, um sie in einer fiir den Nutzer sinnvollen
Weise zu verwerten. Dazu sind einem gewisgen Satz solcher (phy-
sikalischer) Bitwmuster die durch Aneinanderreihurng der entspre-
chenden Bits entstehenden (abstrakten) Binirzahlen zugeordnet.
Diese Zanlen werden benuizt, um den gesamten auf dem Micro ver-
fligbaren Zeichersatz, alac alle Ziffern, Buchstaben und Sonder-
zeichen zu codieren. Auf diese Weise s3ind die 'Aussenuzi*e' des
Rechners, also alle dem Nutzer {iber die Tastatur zugdnglichen
Zeichen, und das eigentliche Geschehen in seinen Schaltkreisen
miteinander verkniipft. Glicklicherweise lassen sich die Code-~
Nummern auch in dem uns gewohnten Dezimalsystem ausdrficken, so
dass uns vorldufig das Operieren mit Bindérzahlen erspart bleibt.

210 10. Textfunktionen

Zur Codierung selbst sind verschiedene Systeme iiblich. Fir
Kleincomputer hat sich der international anerkannte ASCII Code
weitgehend durchgesetzt. Zu seiner Darstellung werden zunkchst
sieben Bits benutzt, was Code-Nummern zwischen O und 127 erlaubt.
Damit kdnnen alle Ziffern, Gross- und Kleinbuchstaeben sowie alle
Sonderzeichen codiert werden, und es bleibt sogar noch Raum fiir
die Codierung der Steuerzeichen. Der vollstédndige ASCII Code wird
im Anhang angegeben. Man erkennt dort, dass den Code-~Nummern 32
bis 126 alle darstellbaren Zeichen zugeordnet sind sowie den Num-
mern O bis 31 und 127 die Steuerzeichen. Insbesondere fiir letzte-
re gibt es bei verschiedenen Micros mehr oder weniger grosse Ab-
weichungen von der ASCII Norm.

Da unser Micro mit einer Datenbreite von acht bit arbeitet,
bleibt noch ein Bit {ibrig. Wird dieses bei kommerziell orientier-
ten Gerdten oft fir Priifzwecke genutzt, so dient es bei Kleincom-
putern meist zur Erweiterung des Zeichenvorrates um eine Reihe
von Graphikzeichen. In diesem Falle stehen zus#tzliche Code-Num-
mern von 128 bis 255 zur Verfiigung, deren Verwendung allerdings
nicht standardisiert und praktisch auf jedem kicro anders ist.

Es sei noch bemerkt, dass sich das-eben Besprochene nur auf
die Ubertragung von Informationen vonm der Tastatur zum Rechner
bezieht sowie auf die Verarbeitung und Speicherung von Texten.
Eine Zeichenkette wird also im Rechner als eine Folge der den
einzelnen Zeichen entsprechenden Code-lummern beziehungsweise
Bitmustern verarbeitet. Eine Zahl hingegen wird ganz anders be-
handelt und den Erfordernissen der Gleitpunktarithmetik entspre-
chend umgeformt und gespeichert. Wir miissen also zwischen einer
Ziffer, ihrer ASCII Nummer sowie einer eventuellen Darstellung
als Gleitpunktzahl unterscheiden.

Selbstverstiéndlich werden alle diese Dinge vom Rechner selbst
organisiert, und der Anwender braucht sich in der Regel nicht
darum zu kiimmeirn. Warum haben wir denn mit diesen technischen
Details die Beschareibung der Sprache BASIC unterbrochen? Der
Grund ist, dass die auf den meisten Micros implementierten BASIC
Versionen einen Zugriff auf die durch Codenummern reprdsentier-
ten Bitmuster unterstiitzen. So ist es mbglich, durch Aufruf einer
Funktion und einer ASCII Nummer des entsprechende Zeichen oder
auch zu einem Zeichen die entsprechende Code-Nummer zu ermitteln.
Des weitersn besveht die Mdzlichkeit, eine als Text gespeicherte
Folge von Ziffern in eine Zehl im Gleitpunktformat @berazutiihren

Der ASCII Code 211

und umgekehrt. All diese Funktionen ktnnen mit der folgenden
Gruppe von BASIC Anweisungen realisiert werden.

ASC
Format. ASC(Textausdruck)

Funktion. Diese Anweisung ordnet dem ersten Zeichen des Textwer-
tes des Argumentes die entsprechende ASCII Nummer zu.

Beispiel.

10 REM ¥*¥#% ASC FUNKTION 36

11

20 PRINT

30 READ T

40 IF ASC(T®)=42 THEN END

SO PRINT "TEXTZEICHEN: ";T$;

60 PRINT " ASCII NUMMER: ";ASC(TS)

70 GOTO 30

80 DATA A,B,C,D,E,F,%

20 END

PUN ‘
§E*i§*§ﬂ§ﬂ g Rl Eﬂﬂﬂgﬂ 2
EXISEICHEN: B ASCl} Nimmer: 88
§iady

Bemerkungen. 1. In diesem Programm werden zu den in der DATA Zei-
le 70 abgelegten Zeichen die entsprechenden ASCII Nummern ermit-
telt. Dabei dient der Stern zur Abbruchsteuerung; dazu wird in
Zeile 30 suf seine Code-Nummer 42 getestet. Natilirlich k¥nnen Sie
durch Anderungen der DATA Anweisung den Code anderer Zeichen aus~
geben lassen.

2. Wie jedes andere Zeichen besitzt auch das Blank eine Code-Num~
mer, némlich 32, Die leere Zeichenreihe hingegen trégt keine In-
formation und besitzt auch keine Code-Nummer. Die Anweisung
ASC("") ist unzuldssig und fiihrt zu der Fehlermeldung FC:

ILLEGAIL: QUANTITY ERRCR.

3. Im folgenden Programm wird das zur aktuell gedriickten Taste
gehdrige Zeichen mittels der INKEY$ (oder KEY$) Anweisung ausge-
wertet und die entsprechende ASCII Nummer mitgeteilt.

212 1C. Textfunktionen

100 REM %% ASCII CODE #*¥%%
101 :

110 AS=INKEY$

120 IF As="" THEN 110

130 A=ASC (A$) -

140 B$=AS

150 IF A<32 OR A=127 THEN B$="NICHT DARSTELLBAR"
160 PRINT

170 PRINT "ZEICHEN: "iBs$

180 PRINT “ASCII CODE: “:iA
190 GOTO 110

AELYYERone: &
AEL§YEMipe: %4

Egé??ig&ns: ?sCHT DARSTELLBAR

zg&??Eg&DE_ ?LSHT DARSTELLBAR
EB&E:K IN 120

Um den Code moglichst vieler Zeichen ermitteln zu k¥nnen, ist
dieses Programm - nicht ganz stilecht -'nur durch die STOP (BRK)
Taste oder CTRL C zu beenden. Dagegen ist es sehyr schi¥n geeignet,
die Code-Nummern der iiber die Tastatur ansprechbaren Steuerzei-
chen festzustellen. So ist beispielsweise der ENTER (oder RETURN)
Taste stets die ASCII Nummer 13 sowie der ESCape Taste die Num-
mer 27 zugeordnet, wihrend DELete die hBchate ASCII Code-Nummer
127 besitzt. Hier kbnnen Zie vieél experimentiereu, um die Codie-
rung Ihrer Tastatur kennenzulernen. Dabei ist zu beachten, dess
die meisten Steuerzeichen keine eigenen Testen hesituen, sondern
mittels der Control-Taste CTRL und einer gleichzeitig zu drficken-
den weiteren Taste, eventuell sogar verbunden mit SHiFT, erreich-
bar sind. Haben Sie keine Scheu, &lles auszuprobieren; durch
Driicken von Tasten ist der Micro nicht zu zerstoren. Schlimmsten-
falls bleibt er *héngen', was iiber ein RESET zum Warmstaert zu
kompensieren ist. Nur die Code-Nummer des liber CTRL C erreichbe-
ren Steuerzeichens ist mit diesem Programm nicht zu ermittelr,

da die dadurch ausgeldste Programmunterbrechung eine sekr hohe
Prioritdt besitzt und ausgefiihrt wird; dieses Steuerzeichen be-
sitzt die Code-Nummer 3.

In der Tabelle zum ASCII Code ist zusdtzlich eine der tiblichen
Control-Codes fiir Steuerzeichen angegeten. Die funktionelle Be-
deutung der Steuerzeichen auf Ihrem Hicro kénnen Sie dem Handbhuch
entnehmen; sie differieren stark.

Der ASCII Code 213

Um mit dem Prograemm die Code-Nummern eventuell vorhandener Gra-
phikzeichen zu knacken, kann es eventuell erforderlich sein, vor
dem Programmstart durch RUF den Rechner in den Graphik-iodus zu
bringen, dies kann eventuell auch durch eine zusi#tzliche (maschi-
nenabhlingige) Anweisung progfammgesteuert erfolgen,

4. Im folgenden Programm wird ein {iber INPUT eingegebener Text
analysiert und in eine Folge entsprechender ASCII Code-Nummern
zerlegt. Man erkennt deutlich das Zusammenspiel der ASC Anwei-
sung mit anderen Textfunktionen.

10 REM #¥% TEXT CODIERUNG ¢

20 CLS:PRINT

30 PRINT "EINGABE EINES TEXTES:"
32 PRINT ’

40 INPUT Ts

42 PRINT:PRINT

50 FOR I=1 TO LEN(TS)
60 C=ASC(MIDS(TS,1,1))
70 PRINT C;* “3

80 NEXT I

82 PRINT

90 END

RUN

gt 2?5C5§25§E;Exrobotron KC 8571

ig ;14 8?115311§§ 3;247;?1237932 é? é

Riady

e

Nach der Eingabe des zu analysierenden Textes beginnt in Zeile
50 eine Schleife, deren Z¥hlvariable I die Werte von 1 bis zur
Anzahl der Zeichen des Textes T$ durcaléuft. In Zeile 60 wird
mit der Textfunktion MID$ jeweils ein Zeichen ausgefiltert, wel-
ches dann durch die ASC Funktion in die der ASCII Norm entspre-
chende Code-Nummer abgebildet und anschliessend in Zeile 70 aus-
gegeben wird. Deutlich erkennt man die den Blanks entsprechende
Code-Nummer 32 sowie die zu den Kleinbuchstaben gehbrigen 'gros-
sen' Code-Nummern. i

Lassen Sie das Programm noch einmal laufen und geben Sie die
Textkonstante "A" ein. An der Ausgebe der einzigen Codé-Nummer
65 erkennen Sie deutlich, dass die das Zeichen A einschliessen-
den Anfiihrungszeichen " " nicht zum Textwert gehdoren und also

214 10. Textfunktionen

auch nicht entschlfisselt werden.

CHRS
Format. CHR$(arithmetischer Ausdruck)

Funktion. Diese Anweisung erzeugt dasjenige Zeichen, das den ak-
tuellen Wert des arithmetischen Ausdrucks als ASCII
Code-Nummer besitzt. Fir das Argument sind ganzzahlige
Werte zwischen O und 255 zugelassen.

Beispiel.

‘10 REM ¥## CHRS FUNKTION ¥&%¢

11

20 CLS

22 PRINT:PRINT

30 PRINT "GEBEN SIE ZAHLEN ZWISCHEN O UND*
32 PRINT “25S5 EIN - 999 FUER PROGRAMMENDE*
34 PRINT

40 INPUT “CODENUMMER"3A

S0 IF A=999 THEN END

60 IF A<O OR A>255 THEN 20

70 C$=CHRS(A)

80 PRINT "ZUGEHOERIGES ASCII ZEICHEN: ";Cs
90 GOTO 34

Bemerkungen. 1. Mit diesem Programm erreichen Sie unter den Code~
Nummern O bis 127 alle darstellbaren Zeichen und die Steuerzei-
chen, wobei mehr oder weniger grosse Abweichungen vom ASCII Code
nicht untiblich sind. Ist die Ausgabe eines darstellbaren Zeichens
durch dieses Programm v¥llig unproblematisch, s¢ kann der Aufruf
eines Steuerzeichens den Bildschirm erheblich verdndern; so fiihrt
beispielsweise die Eingabe der Code-Nummer 12 zum LUschen des
Bildschirmes. Vergleichen Sie dies mit der im Anhang angegebenen
ASCII Norm sowie mit den Angaben Ihres Handbuches. Letzteres

gibt Ihnen auch Auskunft iliber die Bedeutung der Code-Nummern iiber
127 euf Ihrem Micro, hierflir gibt es keinen Standard.

2. Das obige Progremm lehrt, wie man das auf vielen Micros
3schwier1ge' Anfihrungszeichen " mittels seiner ASCII Code-Num-
mer 34 Giber die Anweisung PRINT CHR$(34) auf den Bildschirm be-
kommt.

3. Die Zeichenfolge des BASIC Schliisselwortes CHR$ ist von dem
englischen Wort character abgeleitet, mit dem die Buchstaben ei-
nes Alphabetes bezeichnet werden.

4. Als Funktion ordnet die CHR$ Anweisung Zahlen zwischen O und

Der ASCII Code 215

255 die entsprechenden Text- und Steuerzeichen zu, somit z&hlt
sie zu den Textfunktionen. In der Wirkung ist CHR$ die Umkehr-
funktion zu ASC, so ergibt

PRINT ASC(CHR$(I))
den aktuellen Wert von I, und
PRINT CHR$(ASC(A$))

fihrt zur Ausgabe des ersten Zeichens des Wertes von A$ entspre-
chend dem ASCII Code.

4. Fells Ihr Micro {iber eine ESCape Umschaltung zum Setzen von
Attributen verfiigt, so kénnen Sie mit Hilfe der CHR$ Funktion
eine programmgesteuerte Ausgabe sogenannter Attribute realisie-
ren. Das ist moglich, weil mit CHR$(27) die Wirkung der Steuer-
taste ESC angesprochen wird. Dies bedeutet, dass das néchstfol-
gende Zeichen nicht dargestellt wird, sondern die Bedeutung eines
Attributes hat, das zum Beispiel die Vordergrundfarbe aller auf
derselben Bildschirmzeile folgenden darstellbaren Zeichen steu-
ert. Auch zur Ausgabe von Steueranweisungen an einen angeschlos-
genen Drucker kann CHR$(27) benutzt werden. Da die Codierung
eventueller Attribute iiberall anders ist, begniigen wir uns hier
mit einem Demonstrationsbeispiel, das in dieser Version nur auf
einem ganz bestimmten Rechnertyp l&uft.

10 REM #¥% GRAPHIKZEICHEN AUF DEM Oric ¢

20 FOR N=32 TO 128

30 PRINT N,CHR$(27)3"I"jCHRS(N)
40 FRINT

50 WAIT 100

60 NEXT N

70 END

Schauen wir uns die PRINT Anweieung in Zeile 30 an. Zuerst wird
der aktuelle Wert der Zéhlvariesvblen N ausgegeben. Anschliessend
bewirkt CHR$(27) eine ESCape Umschaltung. Die folgende Textkon-
stante "I", und nur diese, wird deshalb als Attribut interpre-~
tiert, dessen Wirkung hier darin besteht, dass der Rechner in
den Graphik-Modus iibergeht. Demzufolge wird mit Hilte der CHR$
Funktion als ndéchstes Zeichen das unter dem Wert von N codierte
Graphikzeichen ausgegeben. Bei diesem Rechnertyp sind die Gra-
phikzeichen also nicht Ulber die 'grossen' Code-Nummern iiber 127
erreichbar; diese sind hier anderen Zwecken vorbehalten.

216 10. Textfunktionen

Trarneformation des Datentyps

VAL
Pormat. VAL(Textausdruck)

Funktion. Diese Anweisung realisiert eine Textfunktion, welche
als Textausdriicke formulierte Zahlen in das fiir arith-
metische Operationen zugingliche Gleitpunktformat um-
wandelt. Ist das erste Zeichen des Textwertes des Argu-
mentes eine Ziffer, ein Vorzeichen oder ein Dezimal-
punkt, so wird die Zeichenkette sukzessive in eine
Gleitpunktzahl umgewandelt so lange, bis das erste
nichtnumerische Zeicken auftritt oder alles transfor-
miert ist. Ist.bereits das erste .Zeichen der Zeichen-
kette nicahtnumerisch oder ist die Zeichenkette leer,
80 ergibt sich der Funktionswert Null.

Beispiel.

10 REM ¥¥% VAL DEMQO &%
11

20 As="128"

30 A=VAL (A%}

32 PRINT

40 PRINT "A$ = "jAS,

5C PRINT "AS+AS = "jAS+AS
&0 PRINT

70 PRINT "A ="3jA,

80 PRINT "A+A ="A+A

82 PRINT

%0 END

RUN
AS = 128 AS+As = 128128
A= 128 A+A = 256
§iady

Bemerkungen. 1. Im Programmlauf dieses Beispiels wird fiir beide
« Variablen A$ und A der Wert 128 ausgegeben. Wo ist also der Un-
terschied? Diesen erkenren Sie bel der Ausgabe der Werte der Aus-
driicke A$+A$ sowie A+A. Wahrend die erste Operation zu einer An-
einenderreihung - Konkatenation - der Zeichenreihen °fithrt, bein-
haltet der zweite Ausdruck eine wesentlich abstraktere arithmeti-
sche Operation. Das Schliisselwort VAL ist vom englischen Wort
value - Zahlenwert abgeleitet.
2. Es erhebt sich die Frage, warum Zahlen {iberhaupt in Form von ’

Transformationen 217

Textvariablen gespeichert werden sollen. Dies hat zum einen den
Grund, dass man fir gine flexible Textverarbeitung tatséchlich
den gesamten alphanumerischen Zeichenvorrat ausschdpfen mbchte.
So konnen in einer Textvariablen gleichberechtigt alle ASCII Zei-
chen stehen: Ziffern, Buchstaben, Sonderzeichen und sogar die
nicht darstellbaren Steuerzeichen. Jedes Zeichen wird entspre-
chend dem ASCII Code in einem Byte gespeichert. Dies gilt auch
fir Ziffern, mit denen man natiirlich nicht rechnen kann. Eine
Gleigpunktzahl hingegen wird maschinenabhBngig je nach der Anzahl
signifikanter Stellen meist in vier oder fiinf Bytes gespeichert,
auch wenn es sich um eine nur einstellige Zahl handelt.
3. Im folgenden Programm wird die Punktion VAL auf recht unter-
schiedliche Argumente angewandt, Sie kdnnen das Programm durch
weitere DATAs ergénzen.

100 REM ¥#% VAL FUNKTION #¥%

101 :

110 CLS:PRINT

120 C$=CHR$(34)

130 READ Ts

140 A=VAL (TS)

150 IF A=0 THEN END

160 PRINT *"T$ = ";CS+T$+Cs,

170 PRINT "VAL(T$) ="3A

180 GOTO 130

190 DATA 1985,-13,3.14159," 1*

200 DATA 132,1.23E5,+17.23,1009Z
210 DATA S+¢14-6%3,P1

RUN
s = r19g5" VAL (T8) = 1985
$ = ::1 { :
$ = i3 jaisen ya (s) = 3.1a189
$ = 1132 VAL (1%) = 3

= r1-53gse VAL (8] = i 00
A Brig © (38
s - 4003%6xse VAt 13) =

l;'ady

4.Abschliessend benutzen wir die VAL Funktion, um die Quersumme
einer positiven ganzen Zahl zu berechnen. Die eingegebene Zahl
wird intern als Textausdruck gespeichert und ist daher nicht an
die auf dem jJeweiligen Micro verfligbare Anzahl signifikanter
Stellen des Gleitpunktformats gebunden, sondern nur an die Maxi-
mallénge einer Eingabezeile. Die Berechnung der Quersumme erfolgt
in dem FOR ... NEXT Block durch fortgesetzte Addition der mittels
VAL gewandelten und durch MID$ ausgefilterten Ziffern der vorge-

218 10. Textfunktionen

gebenen Zahl. Die Eingabe nicht ganzer Zahlen wird in Zeile 150
abgewiesen, negative Zahlen werden stillschweigend akzeptiert,
wobei dem Minuszeichen entsprechend der Definition von VAL eine
Null zugeordnet wird. Letzteres gilt auch fir alle anderen nicht-
numerischen Eingaben. \

100 REM % QUERSUMME BILDEN &%

101 @

110 sS=0

120 PRINT

130 PRINT "EINGABE EINER POSITIVEN GANZEN ZAHL:"®
132 PRINT

140 INPUT AS

150 IF VAL (AS)<>INT(VAL(AS)) THEN CLS:GOTO 120
160 L=LEN(AS)

170 FOR I=1 TO L

180 S=S+VAL (MIDS(AS,I,1))

190 NEXT I

200 PRINT

210 PRINT "DIE QUERSUMME VON ";AS;" BETRAEGT:"
220 PRINT

230 PRINT S

240 END

STRS
Format. STR$(arithmetischer Ausdruck)

Funktion. Diese Anweisung bewirkt, dass der aktuelle Wert des im
Argument stehenden arithmetischen Ausdrucks in eine
Zeichenreihe umgewandelt wird.

Beispiel.

10 REM ¥#¢ QUADRIEREN %

11

20 T$="DAS QUADRAT DIESER ZAHL IST GLEICH "
30 PRINT

40 INPUT "EINGABE EINER ZAHL "32
S0 Z=2~2

60 Z$=STR®(2Z)

70 TE=TE+Z$

72 PRINT

80 PRINT Ts

90 END

Bemerkungen. 1. Der Name der STR$ Funktion leitet sich von dem
englischen Wort string - Zeichenkette ab. Es werden also Zahlen
in einen entsprechenden Text tramnsformiert. Damit sind die Funk-
tionen STR$ und VAL in der Wirkung einander entgegengesetzt.

2. Wie in dem obigen einfachen Beispiel kann die STR$ Funktion

Transformationen 219

benutzt werden, um die Ausgabe von Informatiouen auf den Bild-
schirm einheitlich in Form von Texten zu gestalten. Die STR$
Funktion ldsst sich aber auch zur Analyse vorgegebener arithme-
tischer Ausdriicke verwenden, zum Beispiel bei der Zerlegung ei-
ner Zahl in einzelne Ziffern.

10 REM #%% ZERLEGUNG EINER ZAHL *&%
11

20 PRINT

30 PRINT "EINGABE EINER GANZEN ZAHL KLEINER ALS"
38 INPUT "1E+09 ";A

40 A=ABS(A)

42 IF AC>INT(A) OR A>=1E+09 THEN CLS:GOTO 20

50 A$=STRS(A)

60 FOR I=1 TO LEN(AS)

70 PRINT MIDS(AS,I,1)

80 NEXT 1

90 END

RUN
fégggng E%EEgog?QZEN ZAHL KLEINER ALS

§
VA N=0ONDUIN

iad v

In Zeile 40 dieses Programms wird ein eventuell auftretendes ne-
gatives Vorzeichen durch Bildung des absoluten Betrages elimi-
niert und in Zeile 42 eine nicht ganze oder zu grosse Zahl abge~
wiesen. In Zeile 50 erfolgt ein Ubergang von der numerischen Va-
riablen A zur Textvariablen A$ = STR$(A). Der Textwert von A$
wird denn mittels der Textfunktion MID$ ausgewertet.

3. Die STR$ Funktion kenn auch zur Formatierung der Ausgabe von
Zahlen dienen, etwa um Geldbetr#ge mit zwei Nachkommastellen aus-
zugeben.,

10 REM %% ZAHLEN FORMATIEREN ¥¥#%
11

20 PRINT

3I0 INPUT "EINGABE EINER DEZIMALZAHL “;X
40 GOSUB 1000

S0 GOSUR 2000

&0 PRINT

7C¢ PRINT X$

20 END

999 :REM ¥ SUBROUTINE: RUNDEN ¥*
1000 X=INT(100%X+.5) /100

1010 RETURN

220 10. Textfunktionexn

1999 REM % SUBROUTIME: FORMATIEREN %
2000 K=0

2010 X&=STR&{(X)

2020 L=LEN(XS)

2030 FOR J=1 70O L

2040 IF MIDS(X%,J,13="." THEN K=J

2050 NEXT J

2060 IF K=0 THEN X$=X$+",00":GOTD 20€0
207C IF MIDS(XS,K+2,1)="" THEN X$=X%+"0"
2080 RETURN

RUN
EINGABE EINER DEZIMALZAHL ? 12.453
12.45

ad
B8R

FINGABE EINER DEZIMALZAHL ? 101
101.00

Rgad

Y ind

Eine eingegebene Dezimalzehl wird durch die erste Subroutine mit
der INT Funktion auf zwedi Nachpunktstellen gerundet. Anschlies-
send werden der eventuell fehlende Dezimalpunkt sowie ein oder
zwei Nullen erginzt, so dass als Ergebnis in jedem Falle eine De-
zimalzah)l mit zwei Nachpunktstellen susgegeben witd. Die Stellen-
zahl der eingegebenen Zahl sollte die auf dem Micro verfiigbare
Zahl signifikenter Stellen aicht iiberschreiten.
4. lit dieser Technik ist es auch moglich, bei einer Ausgabe von
Mark-Betridgen (auch auf einen Drucker) den Dezimalpunkt gegen das
ibliche Komma zu tauschen. Hierfilir erganzen wir obiges Programm
um eine weitere Subroutine.

S2 GOSUB 3000

2999 REM % SUBROUTINE: KOMMA SETZEN %*

3000 Y$=X$

30106 Xg=""

3020 L=LEN(YS)

3030 FOR J=1 TO L

3040 M$S=MIDS(YS,J, 1)

3050 IF ASC (M®)=46 THEN M$=CHRS(44)

3060 X$=X$+M$

3070 NEXT J
3080 RETURN

RUM
EINGABE EINER DEZIMALZAHL ? 23.7
23,70

l;iady

In Zeile 3040 wird die Zeichenkette zerlegt, und der eigentliche
Tauschvorgang erfolgt in der Anweisung von Zeile 3050. Hierbei

Transformationen 221

wird benutzt, dass der Punkt die ASCII Code-Nummer 46, des Komme
hingegen 44 besitzt.

5. Bei der Trensformetion einer Zahl in eine Zeichenkette wird
ein negatives Vorzeichen in den Textausdruck ilberrnommen, ein pe-
sitives Vorzeichen hingegen auf vielem Micros unterdriicki. Auch
die {ilbernahme des fiihrenden Rlanks einer Zshl ohne explizit an-
gegebenes Vorzeichen in die Zeichenkette wird auf einzelnen Rech-
nertypen unterschiedlich gehandhabt. Sie kénnen das auf Threm Mi-
cro durch Direkt-Eingabe folgender Befehle teuten:

PRINT LEN(STR$(17.4))
PRINT LEN(STR$(+17.4))
PRINT LEN(STR$(-17.4))

6. Auf einigen Micros lassen sich durch die STR$ Funktion auszu-
gebende Zahlen von den zuweilen l#stigen filhrenden und nachfol-
genden Blanks befreien. Dies ist zum Beispiel bei der Ausgabe
von Punkticnswerten oder indizierten Varieblen ganz mniitzlich,
allerdings funktioniert dieser Trick nicht suf jedem Computer.

10 REM #%% AUSGABE VON FUNKTIONSWERTEN %

20 DEF FNF (X) = SIN(X"Z)

30 PRINT

40 FOR X=1.1 TO 1.71 STEP 0.1

SO PRINT *"F(Y+STRE&(X)+") =";FNF (X)
60 NEXT X

70 PRINT

80 END

T
———
ILTIEL]
NUINOO00
BBINGOU
BAP-C
OULI=CID0
e
N =N

Text-Suche

Wir beschliessen die Besprechung der Textfunktionen mit einer
euf verschiedemen Micros verfigbaren anweisung, die das Suchen
eines "Stichwortes" in einem vorgegebenen Text gestattet.

222

INSTR

Format.

10. Textfunktionen

INSTR(a$,b$)
a$,b$ Textausdriicke

Funktion. Mit dieser Anweisung wird festgestellt, ob der aktuelle

Wert des Textausdruckes a$ vollsténdig in demjenigen
von b$ enthalten ist. In diesem Falle wird der Funk-
tionswert von INSTR gleich der Startposition der Teil-
kette innerhalb des Textwertes von b$ gesetzt. wird der
Teiltext nicht gefunden, so ergibt sich Null als Funk-
tionswert.

Beispiel..
10 REM #%% TEILTEXT SUCHEN %
11
20 Bs = °"BLUMENTOPFERDE"
30 A$ = "PFERD"
40 PRINT
SO0 PRINT "STARTPOSITION DES TEILTEXTES:*;
60 PRINT INSTR(AS,RS)
70 END
RUN
STARTPOSITION DES TEILTEXTES: ¢
Read
N

Bemerkung. Falls die Textfunktion INSTR auf Threm Micro.nicht
vornanden ist, kfnnen Sie diese Anweisung durch folgendes Pro-
gramm nachbilden.

100
101
110
120
130
140
150
160
170
180
190
200
210
220
230
297

REM %% NACHBILDUNG DER INSTR FUNKTION &%

CLS:PRINT

PRINT "EINGABE DES (LANGEN) TEXTES B%:*"

INPUT BS

PRINT

PRINT "EINGABE DES GESUCHTEN TEILTEXTES A%:"

INPUT AS

PRINT

IF LEN{(A%) >LEN(B%) THEN PRINT "TEILTEXT ZU LANG":GQTO 140
GOSUR 300

IF P=0 THEN PRINT “DER TEXT A% IST IN B$ NICHT ENTHALTEN":END
PRINT"DER TEILTEXT A% BEGINNT AUF POSITION"

PRINT P;"DES TEXTES BS%."

END

.
B

Grosse Zahlen 223

299 REM ¥ SUBROUTINE: TEILTEXT SUCHEN ¥
300 P=0

310 FOR I=1 TO LEN(B$)-LEN(A®)+1

320 IF A$=MID&(B$,I,LEN(A%)) THEN P=I
330 NEXT 1

340 RETURN

RUN

DeE Bal T IR OR koRERR SRR sTev e
gl%gﬁ AD gungSUCHTEN TEILTEXTES AS:

PEROIE T rZEXI A4 PECINNT AUF POSITION

RER>

5TYGRRGrBRPosbANRR e TEXTES B

glygngERxﬁﬁ GESUCHTEN TEILTEXTES AS!

DER TEXT A% IST IN B% NICHT ENTHALTEN
sibdy

Das VerstHndnis dieses Programms macht Ihnen nun keine Schwierig-
keiten mehr. Der eigentliche Suchvorgang erfolgt in dem FOR ...
NEXT Anweisungsblock der Subroutime., Die Eingabe leerer Zeichen-
ketten "" fir A$ oder B$ ist in diesem Programm méglich, fihrt
aber zu fehlerhaften Interpretationen. Falls Sie das stort, kén-
nen Sie die Eingaben von "" durch das Programm ausschliessen
oder mit einer Fehlermeldung quittieren lassen.

Grosse Zahlen

Wir schliessen mit zwei recht nfitzlichen Progremmen, die der ex-
ekten Multiplikation sehr grosser Zahlen dienen, mit denen die
Gleitpunkterithmetik unseres Micro aufgrund der begrenzten Zahl
signifikanter Stellen {liberfordert wlre; beide wurden mit freund-
licher Cenehmigung des Autors aus dem Band Mittelbach, H. (1984)
“ibernommen.

Das erste Programm simuliert das iibliche schriftliche Multi-
plikationsverfahren auf dem Rechner. Maximal zwanzigstellige Fake
toren werden nach der Eingebe als Textwerte gespeichert und mit-
tels der MID$ Funktion in einzelne Ziffern zerlegt. Diese werden
durch Anwendung der VAL Funktion in einstellige Zahlen gewandelt

224 10. Textfunktionen

und in den Feldern A() beziehungsweise B() abgelegt. Anschlies~
send wird das Rechenscheme mit elemetaren Multiplikationen, Be-
achtung des Zehneriibertrags sowie Addition dsr Zwischensummen ab-
gearbeitet und das Ergebnis in dem Feld C() gespeichert. Von
dort wird es denn unter Abtrennung fiihrender Nullen susgegeben.
Die STR$ Funktion dient dazu, stirende Blanks zu unterdrlicken.
Wird daes Programm mehrfech durchlaufen, so ist es notwendig, zu
Beginn alle drei Pelder zu lbschen,

Die maximsle Stellenzahl 20 fiir die Faktoren wurde nur deswe-
gen gewdhlt, um das Ergebnis gerade noch in einer Bildschirmzei-
le von 40 Zeicher unterbringen zu konnen. Nach Anderung des In-
1tialisierungsteiles kéonen 'Sie mit diesem Programm auch weitaus
gréssere Zahlen exakt multiplizieren, lediglich begrenzt durch
die Maximelléinge einer Eingabezeile. Allerdings fallen dann be-
reits die Laufzeiten des BASIC Interpreters ins Gewicht. Die Ein-
gebe nichtnumerischer Daten verirdgt das Programm in der angege-
benen Form {ibrigens nicht. Wenn Sie midgen, k¥nnen Sie es vor der-
artigen Pehleingaben duyrchk weitere Tests schiitzen.

100 REM #¥% GROSS-MULTI #¥%%

ig; l.!EM (C) Henning Mittelbach (1984)

:g: REM % INITIALISIERUNG ¥

110 N=20

120 DIM A(20),B(203,C(40)

130 CLS

140 FOR I=1 TO 20
150 A(I)=0:B(1)=0

160 NEXT I

170 FOR I=1 TO 40
180 C(I)=0

190 NEXT 1

197 ¢ .
195 REM # EINGABE ¥*
200 PRINT

210 INPLT "ERSTER FAKTOR: "jAS$

220 IF A$="0" THEN END

230 IF LEN(AS)>20 THEN PRINT:PRINT *FAKTOR ZU GROSS":GOTO 200
240 PRINT

250 INPUT "“ZWEITER FAKTOR: ";BS

250 IF LEN(BS$)>20 THEN PRINT:PRINT °“FAKTOR ZU GROSS":GOTO 240
270 PRINT

297 @

299 REM % RECHNUNG ¥

300 PRINT:FRINT AS:PRINT

310 PRINT "MAL":

320 PRINT:PRINT BS:FRINT

330 PRINT "IST GLEICH®

340 FOR I=N-LEN(AS)+1 TO N

350 A(I)=VAL (MIDS (A%, I1+LEN(AS)~-N,1))

360
370
380
390
400
410
420
430
440
450
460
470
480
490
S00
310
597
S99
600
610
620
630
640
697
699
700
710
720
730

RUN

Grosse Zahlen

NEXT 1

FOR I=N-LEN(BS)+1 TO N
B(I)=VAL (MIDS(BS, I+LEN(BS)-N,1))
NEXT 1

FOR I=N-LEN(B$)+1 TO N

FOR K=N TO N-LEN(AS)+1 STEP -1
CUI+K)=C(T+K) + A(K) % B(I)
NEXT K, I

FOR I=2%N TO 1 STEP -1

C(I-1) = C(I-1) + INTIC(I)/10)
C(I) = C(I) - 10 # INT(C(I)/10)
NEXT I

FOR I=1 TO 2%N

IF C(I)=0 THEN S=1I

IF C(I)¢>0 THEN I=2%N

NEXT I

REM % AUSGABE %
PRINT

FOR I=S+¢i TO 2%N
PRINT STR$(C(I));
NEXT I

PRINT

REM % ENDE %
PRINT:PRINT

INPUT "WIEDERHOLUNG <J/N> "jJis
IF J$="J* THEN 130
END

ERSTER FAKTOR: ? 57290278521734829347
ZWEITER FAKTOR:? 478363384%082736938&

§$7290278521754829347

MAL

62836358490827369386

IST

GLEICH

3599912479232333943301177886829362170942

WIEDERHOLUNG <(J/N> ? N
d
l;in ¥

225

Das zweite Programm berechnet die Fakultdten N! = 1-2:3-...°N
fir positive ganze Zahlen bis etwa 50. Aufgrund des einfacheren
Algerithmus kommt man hiexr mit einem Feld P() aus. Filir gr¥ssere
Zahlen N ist zu beachten, dass die suftretencden Faktoren schnell
anwachsen und die Dimension des Feldes der tatséichlichen Stellen-
zahl engepasst werden muss. So ist zur Berechnung von 100! ein
Feld P{) der Dimension 200 nbtig. Auch wird die Programmausfiih-
rungszeit dann recht lang, und es k¥nnen Probleme mit dem verfilg-
baren Speicherplatz auftreten., Im Beispiel wurde N = 30 gewdhlt.

226

100
101
102
103
110
120
130
140
150
160
170

10. Textfunktionen

180°

1590
200
210
220
230
2490
250
260
270
280

290

300
310
320
330
340
350
360

REM ¥#¥ GROSSE FAKULTAETEN %%
REM (C) Henning Mittelbach (1984)
M=60

DIM P(M)

P(M)=1

CLS:PRINT:PRINT

PRINT "FAKULTAETEN BIS "jM/2
PRINT "-----e--ecrcencaa ®":PRINT
FOR I=1 TO M/2

PRINT STRE(I)3§*! "} TAB(4)}" ="}
FOR K=M TO 1 STEP -1

P(K) = P(K) #* I

NEXT K

FOR K=M TO 1 STEP -1

P(K-1) = P(K-1) + INT(P(K)/10)
P(K) = P(K) - 10 # INT(P(K)/10)
NEXT K

FOR K=1 TO M

IF P(K)=0 THEN S=K

IF P(K)>0 THEN K=M

NEXT K

PRINT TAB(?)}

FOR K=S+1 TO M

PRINT STR&(P(K)) 3}

NEXT K

PRINT

NEXT I

END

FAKULTAETEN BIS 30

B0mH 0RO NN

24

120

720

S040

40320

362880

3628800

39916800

479001600

6227020800

87178291200

1307674368000

20922789888000

355687428096000
6402373203728000
121645100408832000
2432902008176640000
$1090942171709440000
1124000727777607680000
25852016738884976640000
620448401733239439360000
15511210043330985984000000
403291461126603635584000000
10888869450418352160768000000
304888344611713860301304000000
8841761993739701954543616000000
265252859812191058636308480000000

Anhang

Vereinbarung weiterer Standardfunktionen x — F(x)

Cotangens
cot x DEF
Arkusfunktionen
Arc sin x DEF
Arc cos x DEF
Arc cot x DEF
Hyperbelfunktionen
sinh x DEF
cosh x DEF
tanh x DEF
coth x DEFP
Areafunktionen
ar sinh x DEF
er cosh x DEF
ar tanh x DEF
ar coth x DEF
Modulofunktion
a mod b DEP

FNF(X)

PNP(X)
FRP(X)
PRP(X)

FNF(X)
FNF(X)
PEF(X)
FNF(X)

FNF(X)
FNF(X)
FNP(X)
FNF(X)

FNP(A)

1/TAN(X)

ATN(X/SQR(1 - X*X))
PI/2 - ATN(X/SQR(1 - X*X))
PI/2 - ATN(X)

(BXP(X) - EXP(-X))/2
(EXP(X) + EXP(-X))/2
1 -~ EXP(-X)/(EXP(X) + EXP(-X))*2
1 + EXP(-X)/(EXP(X) - EXP(-X))*2

LN(X + SQR(X*X + 1))
LN(X + SQR(X*X - 1))
LN((1 + X)/(1 - X))/2
LN((X + 1)/¢X - 1))/2

INT((A/B-INT(A/B))*B+@..0@5)*SGN(A/B)

228

Anhang

Der ASCII Code

Code Zei CTRL Bedeutung

O OOV W N O

W AN NMNRDNNDNODNONDMNDKFEEFERERRKFRRF B
OW OO0V WMNHMHFKOWODENOoOWMb>WN KO
<] 2]
BIEES
s NN g DO NWOZEEXRGGHIIDGRSW WO QW>0

31

NUL
SOH
STX
ETX
EoT
ENQ
ACK
BEL

CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
Us

Null

Start of Heading
Start of Text

End of Text

End of Transmission
Enquiry

Acknowledge

Bell

Backspace
Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed

Carriage Return
Shift Out

Shift In

Date Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle
End of Transmiss. Block
Cancel

End of Medium
Substitute

Escape

File Separator
Group Separator
Record Separator
Unit Separator

Code Zei Code Zei Code Zei

32 blank 64
33 . 65
34 v 66
35 # 67
36 §$ 68
37 % 69
38 & 70
39 ¢ 71
40 (72
41) 73
42 = T4
43 - 75
44 , 76
45 - 17
46 78
47 / 79
48 O 80
49 81
50 2 a2
51 3 83
52 4 84
53 5 85
54 6 86
55 17 87
56 8 88
57 9 89
58 90
59 3 91
60 < 92
61 = 93
62 > 94
63 2 95

<SR DO NWOEEBEBEXROMHIID®®®BEODOQW M

=

Pl Ly M

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127 DEL

4 & ¢t @ B 0D OB BB K PR OO OP

£

1‘4"—-1-"-\&&4]

Code: ASCII Nummer, Zei: zugeh¥riges Zeichen, davon unter den

Nummern 32 - 126 alle darstellbaren Zeichen. Die Nummern O - 31
entsprechen den Steuerzeichen und sind fiber die CTRL Taste er-
reichbar. DEL besitzt eine eigene Taste.

Kleincomputer 229

Daten einiger Kleincomputer

robotron Z 9001

Kleincomputer auf der Basis des Mikroprozessors U880. Der BASIC
Interpreter wird wahlweise von Kassette ins RAM eingelesen oder
als ROM Modul gesteckt. Nachstehend ein Plan der Speicherbelegung
des Rechners; die Angaben in Klammern beziehen sich auf des ROM
BASIC. Die Zeiger verwalten den BASIC Arbeijtsspeicher.

Hex DPec Hex Dec
EFFF 65 53T ZEIGER? 2BBO(O3IR0O) 11184(00944)
ZEIGERS 2BC4(03C4) 11204(00964)
ROM ZEIGERS 2BSA(0356) 11094(00854)
Monitor ZEIGER4 2BDB(O3DB) 11227(00987)
(4K) ZEIGER3 2BD9(03D9) 11225(00985)
ZEIGER2 2BD7(03D7) 11223(00983)
FO0O00 61440 ZEIGER1 2RBSF(03%F) 11103100863
eree| T T T Tle1z7s 16383
IRM (1K) freies
ECOO 60416 RAM
eppF[— T T T—-Jeo3s: Strings ¢ --ZE1GER?
Farbattri- aktuell <--ZEIGER6
bute (1K) reserviert
E800 39392 <--ZEIGERS
Stack
ROM BRASIC
Interpreter <--ZE1GER4
t10K) Array-
Tafel
€000 49152 < --ZEIGERZJ
Erweiterung - Variablen-
RAM od ROM Tafel
(16K) <{--ZE1GER?2
BASIC Text
8000 32768
Erweiterung <(--ZEIGER}
RAM od ROM (0400) 2C00 - 11264(1024)
(16K
BASIC
Systemzellen —
4000 (Q0300) 2R00 11008(0768)
Anwender 2400 j@——Start ——e|00216.
RAM RAM BASIC
€15, 3K) Interpreter
(10K)
020C N0S24 03I00 00768
0200}6 Interruptadr JOOS12
Arbeitszellen . frei
0000 |Monitor (.SK) J00000 020C 00524

230 Anhang

KC 85/2
Kleincomputer mit dem Mikroprozessor U880. Der BASIC Interpreter
wird bei Betriebsbeginn von Kassette eingelesen.

Speicherbelegung Hex Dec

. Z2EIGER? 2ABO 10928
Hex Dec ZEIGER6 2AC4 10948
FFFF| nicht belegt [65535 ZE{gEsg gzgg iggg?
Faoo 63488 JETGERS 2AD9 10969
ROM 2 (2K) 63488 ZEIGER2 2AD7 10967
FOO0O| 61440 ZEIGER1 2ASF 10847
nicht beleqgt Hex Dec
E800; BYFF| fur 47615
ROM 1 (2K) B980| Fenstervektoren|47488
EO00 Funktionstasten
B900| 47360
Erweiterung Modulsteuerung
RAM bd PROM B80O, 47104
18K Monitor RAM
C000| B780| 46976
Anwender RAM Kassettenpuffer
(1.5K) B700 46848
BAOO|
spez. Adressen
B700 3FFF] 16383
Video RAM freies RAM
(1.25K)
B200 Strings <--ZEIGER?
| aktueld __ __I<--ZEIGERé
Color RAM reserviert
(2.5K) Stack <--ZE1GERS
ABOO|
<--ZEI1GER4
Pixe) RAM Arraye
(10K) <(--ZEIGER3
L]
8000 Variablen
<--ZEIGER2
nicht belegt
BASIC Text
4000
<--ZEIGER!
Anwender RAM 2B0OO| 11008
(15.5K) BASIC
2A00] Systemzellen 10752
RAM BASIC
0200 00512 Interpreter
Monitor RAM (10K)
0180 Stack |00384
bed. frei
000 00000 0200 00812

Dezimale Adressen n iUber 32767 sind dem Rechner in komplement#rer
Form fi = -(65536 - n) zu iUbergeben. Bei den Befehlen VPEEK und
VPOKE beginnt die Z¥hlung ab Adresse 32768 mit Null aufwarts.

Kleincomputer 231

Systemadressen

0180-01D4 Monitor-Stack, Beginn bei 01D4

O01E4-01EF Interruptadressen

B7?9C-B79D WINON Fensteranfang: Spalte (0...39dec), Zeile (0...31dec)

B79E WINLG relative Fenstergrétsse, Spaltenzahl (1...max.40dec)
B79F WINLG+1 relative Fenstergridsse, Zeilenzahl (1...max.32dec)
B7A0-B7A1 CURSO Cursofpositinn: Spalte, Zeile

B7A2 STBT Steuerbyte

B7A3 COLOR Farbbyte; Bits O:bH, 1:rH, 2:g9H, 3:bV, 4:rV, S:gV

(b-blau, r-rot, g-griin, V-Vordergrund ,H-Hintergrund),
6:30° Drehung im Farbkreis, 7:Blinkbit

B?D3-B7D4 Graphik Cursor X-Koordinate (0...31%9dec)
B?DS Graphik Cursor Y-Koordinate (0...255dec)
B?7Dé6 Farbbyte fur Graphic-Routinen

1/0 Adressen 0088-008B P10, O008C-008F CTC

Einige Rufnummern fir ROM Routinen

04 Tasteneingabe mit Warten, Zeichen in A} Einblendung des Cursors

1A Ausgabe des Inhaltes von Register HL als Hex-Zahl

30 Setzen eines Bildpunktes; X-Koordinate in B7D3 (low byte) und
B?’D4 (high byte), Y-Koordinate in B?DS, Farbbyte in B7Dé6

Aufruf der Routinen durch CALL FO03 (CD 03 FO); Beispiel: Erweiterung

des MENU um ein Unterprogramm 'ASCII' zur Ausgabe von 15 Zeichen -

1. Aufruf von MODIFY in der Monitor-Ebene

2. Eingabe folgender Code-Zahlen in den Speicherbereich 0000-0016:

?F ?F ,A ,S8 ,C ,1 ,1 O1 08 06 OF CD 03 FO 04 CD 03 FO 00 10 F6 08 C9

3. Aufruft MENU, dann Aufrut von ASCII, Z-ichen.ingabe tiiber Tastatur

Beispiel 2: Erweiterung des MENUs durch die Routine CLS: ?F ?F ,C ,L

+S 01 08 D9 3E 00 01 FF 27 11 01 80 21 00 80 7?7 ED BO 08 D9 C9

Demonstrationsprogramme zur Struktur des Graphik-Schirms

10 REM ¥#% DEMO1 PIXEL RAM ¥%* 100 REM #¥% DEMO3 FARBE %*#¥%
20 WINDOW 0,31,0,39: !FENSTER AUF 110 WINDOW 0,31,0,39 : CLS
30 CLS : FOR X=0 TO 10239 120 PRINT "3¢% FARBCODE %"
40 VPOKE X,255 : NEXT X : END 130 FOR FB=0 TO 25S

S0 REM ¥#% DEMO2 BIT-MUSTER ### 140 FOR P=10240 TO 10399

60 CLS:C$="BYTE M =":FOR M=0 TO 255 150 VPOKE P,FB

70 PRINTAT(12,6)3C$jM:FORX=1TO26STEP2 160 PRINT AT(1,15)3FB
80 FOR X=1 TO 26 STEP2 :VPOKE 453+X,M 170 NEXT P,FB
90 VPOKE&?77+X,M:NEXTX:PAUSEZ:NEXTM:END 180 END

Eingabe zweier Maschinencode-Routinen durch ein BASIC Hilfsprogramm
(mit RUN starten). Aufruf der Routinen durch CALL¥3F00 (Rollen des
Schirmes nach links) bzw. CALL¥3FBA (Pixel-Scrolling, Spalten 0-31)
10 CLEAR 256,16127:FOR X=16128 TO 16292 :READ M:POKE X,M:NEXT X:END
20 DATA 221,229,253, 229,245,197,213,229,001,255,031,017,000, 128,033
30 DATA 001%1.,128,237,176,001,000,000,017,032,000,033,031,128,112,025
40 DATA 013,032,251,017,000,160,253,033,031,128,014,004,033, 000,000
50 DATA 006,004,229,221,225,221,025,217,017,000,000,006,016,221,229
60 DATA 225,025, 126,253, 119,000,235,213,017,032,000,025, 253,025,209
70 DATA 235,016,236,217,213,017,008,000,025,209,016,216,235,213,017
80 DATA 000,002,025, 209, 235,013,032, 200,001, 255,007,017,000, 160,033
90 DATA 001,160,237,176,001,000,000,017,008,000,033,007,160,113,025
92 DATA O1¢,252,225,209,193,241,253,225,221,225,201,203,200,184,177
94 DATA 174,185,18%9,217,008,033,000, 128, 022,000,006,031,035, 126,007
98 DATA 043,203,022,035,016,247,203,038,035,021,032,239,217,008,201

10 REM %% LEFT SCROLL DEMO *¥% 10 REM %% PIXEL SCROLLING 3#%¥*
20 PRINT CHR$(1?) 20 FORY=20T0235:PSET255, Y, 7:NEXT
30 PRINTAT(INT(32%RND(1)),39)i"#" 30 Y=128-100%#SIN(X) : X=X+.03

40 PRINTAT(INT(32%#RND(1)),39) " %" 40 PSET 25S5,128,7:PSET 255,Y,7

50 CALL¥3F00:IF INKEY®="" THEN 30 S0 CALL %3FBA:IF X<(2%PI THEN 30

232 Anhang

Oric-1
Computer auf Basis des Mikroprozessors 6502. Die Ein- und Ausgabe
wird durch die VIA 6522 gesteuert.

Spreirherbelegung

TEXT Mode HIRES Mode
Hex Dec Hex Dec
FFFF 65535 FFFF 65535
ROM ROM
[ofalela) 49152 [ofalele) 49152
BFEO frei 49120 BFEO| frei 49120
Rildschirm- BF é& Text-Fenster 49000
BRAR Text 48040]
EREO Statuszeile 48000 BF 3F| 48959
B&00| Graphik-Zeichen |47104 Graphik
B40O| 1.Zeichensatz]46080
Freigabe durch AOQQH 40960
GRAR Befehl 9CO0| Graphik-Zeichen {39936
9800 38912 9800 1.Zeichensatz [|38912
Anwender RAM
frei \U/—\
Strings <{--MEMSI1Z Nutzer 1/0 01023
<--STREND ORA/IRA 00763
030! IER 00782
030 IFR 00781
Felder <--ARYTAR 030C PCR 00780
Varijablen <-~VARTAB 030 ACR 00779
030A| SR 00778
BASIC Text 030 T2C-H 00777
/ 030 T2C-L 00776
0307 TiL-H 00773
<--TXTTAB 0306 TIiL-L 007724
0500 01280 030S| TiC-H 00773
0400 frei 01024 0304 TiC-L 00772
0300] Input/Output 00768 0303 DDRA 00771
0200] Systemadressen [00512 0302 DDRB 00770
0100 “Stack 00256 ‘\\\\\\\\>0301 ORA/IRA 00769
0000 Systemadressen [|00000 0309 ORB/IRB 00768

Auf den Adressen 0300-030F am Ende von Seite 3 liegen die Regi-
ster der VIA 6522, vergleiche Rockwell Data Book (1984) oder
Zaks,R. (1983).

Im ROM sind einige Fehler enthalten. So wird MEMSIZ falsch ge-
setzt; dies lisst sich durch Eingabe von HIMEM #97FF korrigieren,
Das zweite Argument in POKE muss dezimal oder als Variable ge-
schrieben werden. Vor Druckerausgaben sollte mit CALL #EDO1 der
regelméssige Interrupt abgeschaltet werden; wieder eingeschaltet
wird mit CALL #ECCT.

Herrn Ekkehard Otto, Witten, denke ich sehr fir detaillierte
Mitteilungen iiber das ROM dieses Rechners.

Kleincomputer 233

Systemadressen im RAM

0000-000B frei

0031 LINWID Zeilenbreite bei Druckerausgabe

00%A-009B TXTTAB Zeiger auf Anfang BASIC Text (low,high)

009C-00%9D VARTAB Zeiger auf Reginn Variablen (= Ends BASIC Programm)
O09E-00%9F ARYTAR Zeiqer auf Reginn der Array-Tafel

00A0-00A1L Zeiger auf Ende der Array-=Tafel
00A2-00A3 STREND Zeiger auf Ende des letzten String
00A4-00AS Z2eiger auf Anfang des letzten String
00A6-00A7 MEMSIZ Zeiger auf héchste RAM Adresse (HIMEM)
00AC-00AD Zeiger auf nichsten BASIC Befehl
O0AE-00AF Nummer der aktuelien DATA Zeile
O0BO-00B1 Zeiger auf ndchstes DATA

00D0-00DS FACC Gleitpunktakkumulator #1i
rOODB—OODD FACC2 Gleitpunktakikumulator #2

0208 KEYAD aktuell gedrickte Taste (Sondercode)

0209 -KBSTAT akt.gdr. Steuertaste A?,A4,A2 entspr. ->,<(-,CTRL
0212 FB (foreground/backgr.) Wert fir Graphik-Routinen
0213 PAT Bitmuster #ir PATTERN Routine

0219 CURX Graphik Cursor X-Koordinate

021A CURY Graphik Cursor Y-Koordinate

0220 SXTNK RAM Flag: O - 48K, 1 - 15K Maschine

0228-022A INTFS Sprung zur IRG Routine in ECO3
022B-022D NMIJP Sprung zur NMI Routine in F430

0268 CURROW Cursorposition Zeile

0?69 Cursorposition Spalte ,

026A MODEO Statusflags Bit0=0 Cursor aus,Bit3=1 Tastklick aus
Bitd=1 letzt.Zei ESC,Bit5=0 Spalten 1,2 geschutzt

026B BGND Hintergrundfarbe, PAPER+16

026C FGND Vordergrundtarbe, INK

026D-026E vDLU Bildschirmfenster-Startadresse

026F NOROWS Zeilenzahl Bildschirmfenster

0270 CURON Cursor @in/aus Flag

0271 CURINV Cursor invers Flag

0276-0277 TIMER3 freier Ziéhler, zéh!t 10 min rickw. in 17100 sec

02DF ICHAR zuletzt gedrickte Taste (ASCII + #80)

O2EO0-02E7 PARAMS Parameteriibergabe fiir Graphik und Sound

02FS5-02F6 Adresse fir ! Routine (nutzerdef. BASIC Befehl)

02FC-02FD Adresse fiir & Routine (nutzerdef. BASIC Funktion)

Startadressen fir ROM Routinen

CO000 Sprung zum Kaltstart *in EAS? DF34 Vergleich Var(A,Y) mit FACC
C003 Sprung zum Warmstart in C475 EO072 FAKK + A -> FAKK

CSF8 Taste -> A mit Warten E&630 RDBYTE Read Byte from tape
€CC12 Zeich.in A -)> Schirm, 2F1=0 E®05 GTORKB Taste -> A (o.Warten)
D3ED 16 bit Integer (A,Y) -> FACC FO2D CURSET, PARAMS=0,PARAMS+1=X

D867 Zahl in FACC -> 33,34 Integ. PARAMS+3=Y, PARAMS+5=FB

DCB? Variable(A,Y) % FACC F064 CURMOV Parameter wie CURSET
DCBA 'FACC2 # FACC FO?% DRAW Parameter wie CURSET
DD4D Variable(A,Y) -> FACC2 FO93 PATTERN PARAMS=0,PARAMS+1=B
DDA3 FACC ¥ 10(dec) FOAS CHAR PARAMS=0,PARAMS+1=ASCII
DDBF FACC/10{dec) PARAMS+3=CharSet, PARAMS+5=FB
DDEOC Variable(A,Y)/FACC F1ES FILL PARAMS=0, PARAMS+1=Zeil
DDE3 FACC2/FACC PARAMS+3=Zell, PARAMS+S=Attr
DE?3 Variable(A,Y) -> FACC F2ES CIRCLE PARAMS=0,PARAMS+1=rad
DE’8 FACC -> CB,CC,...,CF PARAMS +3=FB

DE9B FACC -> C6,C7,...,CA F43C Zeichen von Tastatur nach X
DEA8 FACC -> Variable(X,Y) F?3F VDU, Zeichen in X -)> Schirm
DEED FACC2 -> FACC F?SR PRTCHR Ausg. A -)> Centronics
DEDD FACC -> FACC2 F7E0 Berechnung alt. Zeichensatz

DF04 Vorzeichen FACC FFFC RESET Adresse F42D

v

234 Anhang
Mikroprozessoren

U880/280 CPU

Der U880 ist ein in NMOS Technologie gefertigter LSI Schaltkreis,
Die Datenbreite betrtigt 8 bit, so dass jeweils ein Byte simultan
verarbeitet werden kann. Der 16 bit breite Adressbus erlaubt das
direkte Ansprechen von 64K Speicherstellen. Im Speicher sind
gleichberechtigt Daten wie auch codierte Maschinenbefehle abge-
legt. Diese Befehle werden vom Prozessor schritiweise gelesen
und entsprechend seines fest vorgegebenen Befehlssatzes interpre-
tiert. Der U880 ist kompatibel zu dem international weit verbrei-
teten Mikroprozessor 280 (1983: 24% aller eingesetzten 8 bit Pro-
zessoren, Tendenz steigend). Dieser ist eine Weiterentwicklung
des Intel 8080 und umfasst dessen Befehlssatz vollstidndig. Das
erlaubt die uneingeschrdnkte Nutzung des fir den 8080 geschrie-

benen Standard-Betriebssystems CP/M.
Blockschaltbild Daten

|patenbus-Steuerung]

interner Datenbus

[Befehisregister] A F A’ F’
B C B’ c’
D [D’ E’

ALU Steuereinheit H L H’ L
1 R
X
1Y
SP
PC
Adressbus-Steuerung
Versorgung Steueranschliisse Adre‘:sen

Befehle werden entsprechend dem Stend des Befehlszdhlers PC vom
Speicher geholt, im Befehlsregister zwischengespeichert und dann
dekodiert und verarbeitet. Hierdurch wird das Lesen und Schreiben
von Daten im Registersatz gesteuert wie auch die arithmetischen
und logischen Operationen in der ALU kontrolliert. Zum Hauptregi-
stersatz gehbren der Akkumulator A, das die Prozessorstatus-Bits
enthaltende Flagregister F sowle die allgemeinen Register B - L.
Diese 8 bit Register kdnnen paarweise zu den 16 bit Registern BC,
DE und HL kombiniert werden. Wahlweise, aber nicht simultan, kann
auch der Wechselregistersatz A'-L' mit identischen Funktionen ge-

Mikroprozessoren 235

nutzt werden. Das Interruptregister I wird bei bestimmten Unter-
brechungen der Arbeit des Prozessors benutzt. Schliesslich unter-
stlitzt das Refreshregister R die Arbeit mit externen dynamischen
Speichern. Die 16 bit Indexregister IX,IY sind zur indirekten
Adressierung und allgemein zur Verarbeitung 16 bit breiter Daten
vorgesehen. Der 16 bit breite Stackpointer SP ermbglicht die An-
laege des Stacks an einer beliebigen Stelle des gesamten Adress-
raumes. Im Anfangszustdand zeigt der Befehlszidhler auf 0000,

Zum U880/Z280 ist umfangreiche Literatur erschienen, so findet
man den vollstéindigen Befehlssatz ausfithrlich dokumentiert und
erklért in Kieser,H., und Meder,M. (1985) oder Zeaks,R. (1982).

6502

Auch dieser Mikroprozessor ist ein LSI Schaltkreis in NMOS Tech-
nologie mit 8 bit Datenbreite. I Vergleich zum Z80 zeichnet er
sich weniger durch eine Vielzahl von Registern und verfligbaren
internen Operationen aus, sondern eher durch effektive Adressie-
rungsarten und eine hochentwickelte BCD Arithmetik. 1983 hatte
er einen Anteil von 34% aller 8 bit Prozessoren. Der 6502 ist
aufwiirtskompatibel zum 16 bit Bus der 68000 Familie.

Pegistersatz

[A JAkkumulater A [MUVIEDIZ7(] Processor Status Req P
K4 (] I—Carry fiibertrag)
[T] indexregister Y | Zero (Null)
? [a] ITnterrupt Flag
Tndexregicter % L Dezimalmodus
15 ? Q bke—80—= BRK Flag
[PCHigh | PCLow] Retehlszihler PC
a 0 L——-— lberlauf-Rit
[f[S]Stackpointer S Negativ-Rit

Adressierungsarten:
Accumulater (Acc) - Ein-Byte Befehl, Inhalt ven A betreffend

Tmmediate (Imm) - Zweites Ryte enthdlt Konstante als Qperanden

Absolute (Abs) - Zweites Byte gibt niederwertiges, das dritte héher-
wertiges Ryte einer Arbeitsadresse an)

Zeroc Page (ZP) - Kurzform, zweites Byte enthialt Adresse in Seite Null

Indéxed Absolute (Abs ¥ od Y) - Adresse wird durch Addition des ¥ oder
Y Register-Inhalts zur angegebenen Adresse gebildet (low,high)
Indexed Zero Page (ZP,¥% od ¥) - Kurzform, Adresse in Seite Null
Tmplied (Ipl) - Tm Code ist Angabe des Cperanden implizit enthalten
Relative (RPel) - 2.Byte gibt Abstand zum Sprungziel (Zweierkomplement)
Absolute Tndirect (Ind) - Angeg. Adr. weist auf Speicherzelle,in der
niederw. Byte eines Sprungzieles steht, hoherw. Byte in folg. Zelle
Indexed Indirect (Ind,X) - Die Summe aus dem zweiten Byte des Befehls
und dem Inhalt des ¥ Registers zeigt auf die erste zweier aufeinan-
derfolgender Zellen in Seite 0, welche die Arbeitsadresse enthalten
Indirect Indexed ((Ind),Y) - 2.Byte zeigt auf erste von zwei Zellen in
Seite O, die eine Adr. enthalten} Addition von Y ergibt Arbeitsadr.

236

Anhang

Befehlssatz

Mnemonic

ADC
AND
ASL
BCC
RCS
BE®
RIT
BMI
BNE
BPL
BRK
BVC
RVS
CcLC
CLD
CLI
cLv
CHMP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
IMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEIX
STA
STX
STY
TAX
TAY
JIsx
TXA
TXS
TYA

Add with Carry
Logical AND
Arithmetic Shift Le+t
Branch on Carry Clear
BRranch on Carry Set
Branch on Result Zero
Test Bits
Branch con Result Minus
Branch on Result not O
Branch on Result Plus
Force BRreak

Branch on Overtlow Clear
Brancdh on Overflow Set
Clear Carry Flag

Clear Decimal Mode

Clear Interupt »ask
Clear Overflow Flag
Compare with Accumulator
Compare with X Register
Compare with Y Register
Decrement Memory
Decrement X Register
Decrement Y Register
Logical Exclusive OR
Increment Memory
Increment X Reygister
Increment Y Register
Jump to new location
Jump to Subroutine

Load Accumulator

Load X Register

Load Y Register

Logical Shift Right

No Operation

Logical OR

Push Accumulator

Push Processor Status
Pull Accumulator

Pull Processor Status
Rotate Left

Rotate Right

Return from Interrupt
Return from Subroutine
Subtract with Carry

Set Carry Flag

Set Decimal Mode
Set Interrupt Flag
Store Accumulator
Store X Register
Store Y Register
Transfer Acc to X
Transfer Acc to Y
Transfer PSR to X
Transfer X Reg to
Transfer X Reg to
Transfer Y Reg to

Reg
Reg
Reg
Acc
PSR
Acc

Aktion
A+M+C->A

Verzweige falls C=0
Verzweige falls Cal
Verzveige falls Z=i

M7->NiM6->ViAA M und aktualisiere Z

Verzweige falls N=1
Vorzuotgo falls Z=0
Verzweige falls N=0O

PC+2,P->STACK}B=1} (FFFE,FFFF) ->PC

Verzweige falls V=0
Verzweige falls V=i
0->C

0->D

0->1

0->V

A~M und aktualisiere
X-M und aktualisiere
Y-M und aktualisiere
M-1->M

X=1->%X

Y-1->Y

AM M->A

M+1-OM

X+1->X

Y+1-)Y

ADDRESS-)>PC
PC+2->STACK; ADDRESS-)>PC
M->A

M->X

M->Y

il] en——

keine

AvM-)A

A->STACK3 SP-1->SP
P->STACK3SP-1->SP
STACK->A§SP+1-)>SP

STACK-)>P}SP+1~->SP
e —E

N,Z,C
N,Z,C
N,Z,C

EC:!%; F:;g
ACK->P,8P+1-)8P,STACK->PC,SP+2-)>8P

STACK+1-)>PC, 8P+2->SP
A-M-C->A
1->¢
1->D
1->1
A->M
X->M
Y->M
A->X
A->Y
P->X
X->A
X->P
Y->4

Mikroprozessoren 237

Code Matrix
o] 1 2 4 S & 8 9 A (o D E
IBRK! ORA | 1 IORA |ASL JIPHP! CRA (ASL! | ORA | ASL !

O 1IplitInd,X)! ! P ZP 4 ZP !Ipl. lmm !Accl i Abs | Abs | O
11 21 26 | | 123 12 5 11 3 2.2 11 2} P34 361
{BPL! ORA ! ! {ORA !ASL {CLC! ORA | { | ORA | ASL !

1 iRol.(Ind) Yi 1 1ZP,X1ZP,XiIpi i1AbS, Y!i] iAbs,X1Abs, X! 1
12 21 2 i ! 124 12 6 11 21 3 4 ' {1 341 3714
ISR AND § IBIT IAND {POL !PLP! AND (ROL{ BIT | AND | ROL |

2 lAbs! (Ind,X)! } ZP 1 2P } ZP !lpl! Imm iAcc! Abs | Abs | Abs | 2
13 68 26 1 12 3123 1295 11 41 22 i1 20 341 341 361
{BMI! AND |} ! {AND {ROL !SEC! AND ! i { AND | ROL |

I IRell (Ind),Y! ! 1ZP,X12P, xtlpllAbs,Yl ! i{Abs,XIAbs,X! 3
1221 28 ! ' 12 4 12 & 11 3 4 ! 1 341 372
IRTI! EOR ! H tEOR ILSR !PHAI EOR !LSR! JMP ! EOR ! LSR |

4 1IplitInd,X)! [} t 2P t ZP iIpll Imm (Accl Abs | Abs | Abs | 4
11 6f 26 1 ! 12 3125 41 31 22 1121 3348 341 36!
{BVC! EOR ! ! {EOR ILSR ICLII EOR | i { EOR ! LSR |

S iRel! (Ind),Y! t 1 2P, x!ZP s X1Ipli Ab-,Yt 1 tAbs,XiAbs,X! S
1221 25 1 | 124 12 56 112! 3 4 i 1341351
IRT8! ADC |] {ADC IROR IPLA! ADC IROR! JMP | ADC | ROR |

6 '!p!l(lnd X) !] 1 2P { 2P iIpl! Imm lAcc! Ind | Abs | Abs | &
i1 61 26 |}] 123 125 11 41 22 11 2 35 341 36!
1BVSI ADC |] {ADC {ROR {SEI! ADC | § ! ADC | ROR !

7 lRoll(Ind) Yi ! 2P, X12ZP, X'IpllAb., Y] 1Abs, X{Abs, X! 7
12 25 1 ! 12 4 12 & 11 21 3 4 ' 1341 3 ? }

! l STA | {STY ISTA ISTX IDEY! ITXAl STY | STA | STX |

8 ! 1(Ind,X) ! I 2P { 2P | 2P 11pli 1Ipl! Abs | Abs | Abs ! 8
[} 1 26 12 3 12 3 12 3 11 21 11 20 341 341 341
IBCC! STA | ISTY ISTA I1STX ITYA! STA (TXS! 4 STA | i

9 IRel!i(Ind),Y! 1ZP,X12P,XiZP,Y!Ipl 1Abs llpll 1Abs, X1 19
12 20 2 } 124124 124 11 21 3 511 2 1351 i
ILDY! LDA ILDXILDY !LDA iLDX ITAY! LDA lTAxl LDY ! LDA | LDX |

A 1Tmm!(Ind,X)iImm]l 2P | ZP | ZP iIpl! Imm JIpl! Abs | Abs ! Abs | A
122! 26 122123 123 123 11 21 22 112 344 341 341
i{BCS! LDA | ILDY ILDA {LDX ICLV! LDA {TSX! LDY | LDA | LDX !

B IReli(Ind),Y! t2P,X12P,X12ZP,YiIpl iAbs,Y!Ipl iAbs,X!Abs,XiAbs,Y! B
122 25 1 124 124124 11 21 34 i1 2 341 341 341
ICPY! CMP | ICPY ICMP IDEC !INY! CMP IDEX! CPY | CMP ! DEC !

C i{Immi! (INnd,X)!| 1 2P i 2P | 2P i1pl! Imm iIpl! Abs | Abs | Abs | C
122, 26 ! 123 123 125 11 21 22 1121 341 341 361!
IBNE! CMP |] ICMP IDEC ICLDI CMP | ! ! CMP | DEC !}

D IRel! (Ind),Y!] 1ZP.Xi2P, xllpllAbs, i { 1Abr, X:Abs, X! D
1221 295 | ! 12 4 12 6 11 2 3 ! ! 1 341 37214
I1CPXI SBC ! 1CPX ISBC JINC IINX! SBC INOP! CPX | SBC ! INC |

E 1Immi(Ind,X)! 't 2P 1 2P | ZP iIplt Imm iIpll Abs | Abs { Abs | E
12 20 26 | 12 3 12 3 125 1t 21 22 !1 2, 34 341 361!
I{BE@! SBC ! | ISBC IINC ISEDI SBC !] 1 SBC 1 INC !

F !Rell(lnd) Yi ! 1ZP.X12P, X1 Ipl IAbS, Y} H IAbs,X!Abs,X! F
12 21 2 ! ! 124 12 6 11 21 3 4 ! 1 341 3 5

4
o 1 2 a s 6 8 9 A c D E
1 Code: AL
! LDA ! Mnemonic: Load Accumulator

A l(Ind X)I Adressierung: Indexed Indirect

{ 6 Anzahl Bytes,Maschinenzyklen: 2,6

Bemerkung. Der Prozessor hat einen Maskenfehler. Ist das zweite Byte
in einen indirekten Sprungbefehl gleich FF, so wird falech adressiert.
Reispiel! Der Code fir IJMP (O7FF) ist 6C FF 07. Die Zieladresse miisste
aus den Zellen O07FF und 0800 geholt werden. Der Prozessor liest indes-
sen O7FF und 0700,

238

Anhang

Abkiirzungen und Kunstworte

Ada

ADC
AFC
AI
ALGOL

ALU
APSS
ASCII
AV
BAS
BASIC

Baud

BCD
BDOS
BIOS
BTX

CAD
CADAM
CAE
CAI

CAL
CAM
CAM
CAP
CAQ

[¢{03
Centro-
nics
CIM

hdhere Programmiersprache, benannt nach Lady Augusta
Byron, Countess Lovelace, Assistentin von Charles Babbage
Analog to Digitel Converter, Analog/Digital-Wandler
Automatic Fine-Tuning Control, automat. Scharfabstimmung
Artificial Intelligence, Kiinstliche Intelligenz
Algorithmic Language, hShere Programmiersprache fir wis-
senschaftliche Anwendungen

Arithmetic and Logic Unit, Rechenwerk

Auto Progrem Search System, automatisches Suchsystem
American Standard Code for Information Interchange
Fernsehempflngereingang flir Videorecorder 4
Bild-Audtast-Synchronisiersignal

Beginners All-purpose Symbolic Instruction Code,
dialogorientierte hohere Programmiersprache, gegenwdrtig
auf Kleincomputern besonders genutzt

liasseinheit flir Ubertragungsgeschwindigkeit: 1 bit/sec,
benannt nach dem Ingenieur Emile Baudot (1845-1903)
Binary Coded Decimal, bindr kodierte Dezimalzahl

Basic Disk Operating System, Programm im Betr.-Syst. CP/M
Basic Input/Output System, Programm im Betr.-Syst. CP/M
Bildschirmtext

moderne hohere Programmiersprache

Computer Aided Design, computergestiitzte Entwurfstechnik
Computer Graphics Augmented Design and Manufacturing
Computer Aided Engineering

Computer Assisted Instruction, computerunterstiitztes
Unterrichten

Computer Assisted Learning, computerunterstiitztes Lermen
Computer Aided Manufacturing, computergestiitzte Fertigung
Computer Aided Management, computergest. Betriebsfithrung
Computer Aided Planning, computergestiitzte Planung
Computer Aided Quality Assurance, computergestiitzte
Qualitédtssicherung

Console Command Processor, Teil des Betriebssystems CP/M
Firmenname, Norm fiir eine Schnittstelle zur parallelen
Dateniibertragung

Computer Integrated Manufacturing, komplexes Entwurfs-
und Produktionssystem

CMOS

CNC

COBOL

COPICS

CP/M.

CPU
CRT
CRTC
CIC
DAC

DIP

DRC

DOS
DRAM

EARCM
EBCDIC
EPROM
FBAS
FDC
PET
Porth

Portran

IC

1%

IRM
KByte
LAN

Abkiirzungen und Kunstworte 239

Complementary Metal Oxide Silicon, Technologie fiir strom-
sparende Transistoren und Chips

Computerized Numerical Control, Computersteuerung (von
Werkzeugmaschinen)

Common Business Oriented Language, héhere Programmier-
sprache fiir vorwiegend kommerzielle Zwecke
Communication Oriented Production Information and
Control System

Centrol Program for Microprocessors, Betriebssystem der
Pirma Digital Research, Standard ftir 8-bit-Microrechner
Central Processing Unit, Zentraleinheit

Cathode Ray Tube, KathodenstrahlrBhre, Monitor

CRT Controller, Bildrdhren-Steperung

Counter Timer Circuit, Zxhler/Zeitgeber-Schaltkreis
Digital to Analog Converter, Digital/Analog-Wandler
Direct Current, Gleichstrom

Dual-In-Line Package, GehHuse fiir Chips mit zwei An-
schlussreihen

Direct Memory Access, direkter Speicherzugriff

Direct Numerical Control, direkte numerische Steuerung
(mehrerer Werkzeugmaschinen)

Disk Operating System, Betriebssystem fiir Plattenspeicher
Dynamical RAM, dynamisches RAM, kapazitiver Speicher
Earphone, Ohrhbrer

Electrically Alterable ROM, elektrisch #nderbares ROM
Extended Binary Coded Decimal Interchange Code

Erasable Programmable ROM,l8schbares programmierbares ROM
PFarb-Bild-Austast-Synchronisiersignal

Ploppy Disk Controller, Ploppy-Steuerung

Field Effect Transistor, Peldeffekttransistor
Programmiersprache, fourth - 'die Vierte', urspriinglich
entwickelt zur Steuerung astronomischer GerHte
Formula Translator, hShere Programmiersprache fiir wis-
senschaftlich-technische Anwendungen

Integrated Circuit, integrierter Schaltkreis

Integrated Injection Logic, Halbleitertechnologie fiir
schnelle Schaltkreise

Image Repetition Memory, Bildwiederholspeicher

210 = 1024 Bytes

Local Area Netmork, lokales Computer-Kommunikationsnetz

240
LCD
LED
LIFO

LSB
LSI

MIC
MIPS

MNOS
Modem

MOS

NP/M

FAL

Pascal

PC
PEARL

PIA

PIO

PL/1

Anhang

Liquid Crystal Display, Fliissigkristallanzeige

Light Emitting Diode, Luminiszenzdiode
Last-In-First-Out, Priorit#tsprinzip in einem Bedienungs-
system: Der zuletzt gekommene Kunde wird zuerst bedient
Least Significant Bit, Bit mit niedrigstem Stellenwert
Lerge Scale Integration, Integrationsgred von in Klein-
computern eingesetzten Mikroprozessoren, ca. 10000
Bauelemente~Funktionen pro Chip

¥Byte, 2°0 = 10242 = 1048576 Bytes

Microphone '

Million Imnstructions Per Second, 10~ Befehle pro Sekunde
Memory Management Unit, Speicherverwaltungsbaustein
Metal Nitride Oxide Semiconductor, Halbleitertechnologie
Modulator-Demcdulator, Telefonkoppler fiir Rechner

Metal Oxide Semiconductor, Halbleitertechnologie fir
spannungsgesteuerte Transistoren

Multi-Programming Monitor Control Program for Micropro-
cessors, Mehrbenutzer-Betriebssystem von Digital Research
Microprocessor Unit, Mikroprozessor

Most Significant Bit, Bit mit htchstem Stellenwert
Microsoft Disk Operating System

Medium Scale Integretion, mittlerer Integrationsgrad
Microsoft Extended BASIC, Kleincomputerstandard
Numerical Control, Steuerung von Werkzeugmaschinen
n-Channel Metal Oxide Semiconductor, Halbleitertechnolo-
gie fir mittelschnelle Schaltkreise

Phase Alternation Line, zeilenfrequenter Phasenwechsel,
Farbfernsehnorm

hohere Programmiersprache, benannt nach dem Mathematiker
Blaise Pascal (1623-1662)

Personal Computer

Process and Experiment Automation Real Time Language,
Programmiersprache .fiir die Prozessrechentechnik
Peripheral Interface Adepter, Schaltkreis fiir parallele
Datenlibertragung

Parallel Input Output Controller, Scheltkreis fiir paral-
lele Ein- und Ausgabe

Programming Language 1, universelle hdhere Programmier-
sprache

6

FL/M

PMOS
.PROM

RGB
ROM
RS 232

SECAM
SIO

SLSI
S0s

TPA

TTL

TTY
UART

ULSI

Unix

USRT

VDU

VIA

VLSI

VVISI
V.24

Abktirzungen und Kunatworte 241

Prograunming Language for Microcomputer, hdhere Program-
miersprache fir Micros

p-Channel Metal Oxide Semiconductor,Hslbleitertechnologie
Programmable ROM, programmierbares ROM

Random Access Memory, Schreib-/Lesespeicher

Red Green Blue signal, Monitoranschlusa

Read Only Memory, Nur-Lese-Speicher

internationale Norm fiir eine Schnittstelle zur seriellen
Datenlibertragung

Séquentiel 4 Mémoire, Parbfernsehnorm

Serial Input/Output Controller, Schaltkreis fur serielle
Ein- und Ausgabe

Super Large Scale Integration, siehe ULSI

Silicon On Saphire, Halbleitertechnologie flir schnelle
Schel tkreise

Transient Program Aree, Bereich fiir Nutzerprogramme im
Betriebssystem CP/M

Transistor Transistor Logic, mittelechnelle digitsle
Schaltkreise mit 5 Volt Versorgungsspannunrg

Tele Typewriter, Fernschreiber

Universal Asynchronous Receiver/Tramnsmitter, universeller
Kommunikations-Chip Zur asynchronen Datenilbertragung
Ultre High Frequency, Frequenzbereich der zweiten Fern-
sehprogramme

Ultra Large Scale Integration, Integretionsgrad der ge-
genwirtig neuesten Chip-Generation mit tiber 100000 Beu-
elemente-Funktionen

Betriebssystem fiir Mini- und Microcomputer

Universal Synchronous Receiver/Transmitter, universeller
Kommunikations-Chip - tiir synchrone Datenibertragung
Visual Display Unit, optische Anzeige

Very High Frequency, Preguenzbereich der ersten Fernseh-
programme

Versatile Interface Adapter, Komnunikations-Chip zur
parallelen Daieniibertragung

Very Large Scale Integration, Integationsgrad von Chips
mit bis zu 100000 Bauelemente-Funktionen

Very Very Large Scale Integration, siehe ULSI

Norm fiir eine 2x12 Volt Schnittstelle zur seriellen Da-

teniibertragung, entspricht praktisch RS 232

242 Anhang
Computer-Englisch

access - Zugriff

to acknowledge - bestdtigen,
quittieren

to add - addieren

aerial - Antenne

amber - bernsteinfarben

ampersand - Keufmanns-Und

arcade - Spielhalle

array - Feld

assembler - Assembler, Uber-
setzerprogramm

asterisk - Sternchen

background - Hintergrund

background program - Hauptpro-
gramm

backspace - Riicktaste

backup - Sicherheitskopie

bank switching - Speicherum-
schaltung

batch - schubweise

batch system - Stapelversarbei-
tung

baud rate - Baud Rate, Ge-
schwindigkeit bei serieller
Dateniibertragung

benchmark test - Bewertungs-
programm

binary digit - Bin#rziffer, Bit

bit pettern - Bitmuster

bootstraep loader - Urlader

to borrow - (Ubertrag) borgen

brace - geschweifte Klemmer

bracket - (eckige) Klammer

to branch - verzwzigen

to break - abbrechen

bubble - Blase

buffer - Puffer

bug - Wanze, Programmfehler

bus - Bus, Sammelschiene

button - Knopf, Taste

byte - Byte, byte

to call ~ rufen, aufrufen

capital - Grossbuchstabe

carriage return - Wagenriicklauf

carry - Ubertrag

character - Zeichen, Symbol

to check - iiberpriifen

chip - Chip, Halbleiter-
kristallpléttchen

to chop - abtrennen

circuit - Schaltung

to clear - kldren, 1ld6schen

clock - Takt

colon -~ Doppelpunkt

column - Spalte

command - Kommando

to compare -~ vergleichen

compatible - vertrdéglich,
vereinbar

compiler - Ubersetzungsprogramm

concatenation - Verkettung

condition - Bedingung

control character - Steuerzei-
chen

control unit - Steuereinheit

to count - zdhlen

crash - Absturz, Zusemmenbruch

cursor - Positionszeiger,
Schreibmarke

cyan - blaugrin

cycle -« Zyklus, Periode

date bus - Datenbus

debugging - PFehlerbeseitigung

to decrement - schrittweise
vermindern

delay -~ Verzdgerung

to delete -~ streichen

device - Ger#t, Vorrichtung

digit - Ziffer, Stelle

directory - Dateiverzeichnis

display - optische Anzeige

drain - Senke

to draw - Linie ziehen

driver - Treiber

dummy - Statist, Strohmann,
Blindzeichen,Scheinargument

to edit - zusammenstellen,
neuordnen, edieren

emulation - Nachbildung

enable signal - Freigabesignal

to enter - eintreten

envelope - Einhiillende

to erase - radieren, l&schen

to escape - entweichen, néch-
stes Zeichen als Attribut
zu interpretieren

etched screen - gedtzter Schirm

exclusive - ausschliessend

factorial - Fakult#dt

feasible - zuldssig

file - Datei, File

flag - Flagge, Zustandsmarke

to flash - blinken

£1ip flop - statische
Speicherzelle

floating point - Fliesspunkt,
Gleitkomma

floppy disk - Magnetscheiben-
speicher

flow chart - Flussdiagramm

foreground - Vordergrund

garbage collection - Berei-
nigung redundanter Spei-
cherbelegungen

graphic character - Grephik-
zeichen

Computer-Englisch 243

ground - Masse, Nullpotential

hand shaking - Quittungsbetried

hardcopy - Ausdruck

hard disk - Festplatte

hardware - Bauteile und Gerdte

high byte - hherwertiges Byte

high level language - hdhere
Programmiersprache

immediate - unmittelber

to implement - implementieren,
durchfithren

implied - implizit

to increment -~ schrittweise
erh8hen

indexed ~ indiziert

ink - Tinte, Vordergrundfarbe

input - Eingang, Eingabe

instruction - Befehl

interface - Schnittstelle,
Anpassungsschaltung

interrupt - Unterbrechung

item - Einzelheit, Dateneinheit

Jjoystick - Steuerhebel fir
Spiele

jump - Sprung

key - Taste

keyboard - Tastatur

key word - Schliisselwort

kit - Bausatz

label - Marke, Kennzeicnen

latch - Signalauffangspeicher

lead - Leitung

library function - festpro-
grammierte Standardfunktior

light pen - Lichtgriffel

line - Zeile

to link - verbinden'

listing - Auflistung, Liste

to load - laden, einlesen

loop - Schleife

244 Anhang

low byte - niederwertiges Byte

machine code - Maachinencode

machine language - Maschinen-
sprache

megenta - rotviolett

main switch - Hauptschalter

mains = Stromnetz

mask - Maske, Bitmuster

memory - Speicher

memory map - Speicherbelegungs-
plan

menu - Menil

to merge - mischen,verschmelzen

mismatch - Fehlanpassung

mpnemonic - Mnemonik, Gedanken-
stiitze

node - Modus, Betriebsart

monitor - 1. Betriebssystem

2. Bildschirm~Einheit

to move - bewegen

multiple precision - mehrfache
Genauigkeit

multitasking - Parallelbetrieb

nesting - Verschachtelung

network - Netzwerk

new line - Neue Zeile,
Zeilenvorschub

nibble - Halbbyte

odd - ungerade

off - aus

off-line - ungekoppelt

on - ein.

on-line - (Rechner-)gekoppelt

opcode - Operationscode

overflow - Uberlauf

paddle - Spielhebel

rege - Seite, Speicherabschnitt

paper - Papier, Hintergrundfarbe

parity - Yaritit

pixel - Bildpunkt

to plot - plotten, graphisch
darstellen

plug - Stecker

pointer - Zeiger

to pop -~ holen

port - Tor, Kanal

power socket - Steckdose

power supply - Netzanschluss

power unit - Stromversorgung

to print - drucken

prompt - Bereitschaft

priority - Prioritat

to protect - schiitzen

to pull - aufnehmen, auskellern

to push - wegstossen,einkellern

question mark - Fragezeichen

random - zuf#éllig

to read - lesen

ready - bereit, fertig

real - reelle Zahl

real time - Echtzeit

record block - Aufzeichnungs-
block

to refresh - auffrischen

relational operator - Ver-
gleichsoperator

remote control ~ Fernbedienung

to repeat - wiederholen

to request - anfordern,anfragen

to reset - rickstellen,
neu setzen

resolution - Auflésung

to rotate - umlaufen

10w - Reihe, Zeile

to rubout - susraedieren

to save - aichern

screen - Bildschirm

scrolling - Rollen

to search - suchen

sequence - Folge

to shift - verschieben

shriek - Audrufungszeichen

significance - Bedeutsamkeit

gilicon - Siliziun

size - Grdase, Format

slice - Prozessorscheibe

small letter - Kleinbuchstabe

socket - Buchse, Sockel

softkey - programmierbare
Funktionstaate

source - Quelle

source code - Quellcode

space - Raum, Zwischenraum

special character - Sonder-
zeichen

square oot - Quadratwurzel

stack - Stapel, Kellerspeicher

statement - Anweisung

status - Zustand

storage - Speicher

to store - speichern

string - Zeichenreihe

string slice function - Text-~
funktion

subroutine - Unterprogramm

subscript - Index

tape - Band

terminal - Datenstation,
Endstelle

time sharing =~ Zeitteilung

toggle switch - Kippschelter

token - Codierung filir Befehle

toolkit - Programmierhilfe

top down design - Entwurf vom
Ganzen zum Detail

touch panel -~ Kontaktbildschirm

trace - Spur, Ablaufverfolgung
transfer - iibertragen
truncation - abschneiden

Computer-Englisch 245

twos complement - Zweier-
komplement

until -~ bis

to update - aktualisiéren

user defined -~ nutzerdefiniert

to verify - priifen

volatile - fliichtig

wafer = Siliziumscheibe, viele
Chips éines Typs enthaltend

while - wihrend, solenge

width - Breite, Zeilenléinge

word processing - Textwer-
arbeitung

word size - Wortlénge

worst case - ungiinstigster Fall

to write - schreiben

yield - Ausbeute

zero - Null

Literatur

Adamson, I.: The ORIC ATMOS Manual, Pan Books, London 1984,

Adler, H., Jenke, H.: Programmierung von Rechenanlagen - Eine
Einflihrung, Fachbuchverlag, Leipzig 1985. ‘

Barthold, H., Bdurich, H.: Mikroprozessoren - Mikroelektronische .
Schaltkreise und ihre Anwendung 1,2; Amateurreihe electronica
222/223 und 224/225, 3.Aufl., Deut. Militdrverl., Berlin 1985,

Bennewitz, W., Podszuweit, H.: Programmierung von Einchipmikro-
rechnern U881 , Automatisierungstechnik 215, VEB Verlag
Technik, Berlin 1985.

Busch, H.-J., Hesse, J., Keller, G., Nowottne, H.-J.: Program-
mierhandbuch Kleincomputer Z 9001, VEB Robotron-Messelektronik
"Otto Schdn", Dresden 1985.'(Bezugsquelle: robotron Vertried
Erfurt und Berlin)

CleBen, L.: Programmierung des Mikroprozessorsystems U880-K 1520,
Automat.-Tech. 192, 4.Aufl., VEB Verlag Technik, Berlin 1984.

DIN-Taschenbuch Nr. 194: Bildschirmarbeitsplatze, Beuth-Verlag
GmbH, Berlin und Kéln 1984.

Erben, J.: Abriss der deutschen Grammatik, 9.Aufl., Akademie-
Verlag, Berlin 1966.

Franke, K.: Einfithrung in die Mikrorechentechnik, VEB Verlag
Technik, Berlin 1984.

Gref, L., Jacob, H., lieindl, W., Weber, W.: Keine Angst vor dem
Mikrocomputer, VDI Verlag GmbH, Disseldorf 1934,

Hease, V., Stucky, W.: BASIC Programmieren fiir Anfénger, Hoch-
schultaschenbuch 744, Bibliographisches Institut, Mannheim
1977.

HC Magazin 3(1984), 30-32: Fiinfunddreissig Monitore im Uberblick.

Heyder, F.: Amateurcomputer ACl, Funkamateur 12(1983) - 1(1985).

Hoffmann, P., Strelocke, K.: Die Dialogprogrammiersprache BASIC,
Verlag Die Wirtschaft, Berlin 1981.

Hopfer, R.: Mikrorechner - eine Herausforderung 1-3, Funkamateur
3-5(1983).

-: Experimentier-Mikrorechner 1-8, Funkemateur 8(1983)-3(1984).

-: Progremmierung von einfachen Mikrorechnern mit Usosp, 1-5,
Funkamateur 7-11(1984).

Hoyer, H.: ABC Mikroprozessortechnik, Jugend+Technik, ab 1(1984).

Jugel, A.: Mikroprozessorsysteme, 2.Aufl., VEB Verlag Technik,
Berlin'1980.

Kerner, I.0.: Numerische Mathematik und Rechentechnik I, B.G.
Teubner Verlag, Leipzig 1970.

Kieser, H., Meder, M.: Mikroprozessortechnik - Aufbau und Wir-
kungsweise des Mikroprozessorsystems U880, 3.Aufl., VEB Ver-
lag Technik, Berlin 1985.

Koch, H.: Ergonomische Grenzwerte flir die Anordnung von Bild-'
schirmen, Feinwerktechnik und Messtechnik 89,3(1980), 105-110.

Kreul, H., Leupold, W., Horn, T. (Hrsg.): Kleinstrechner-TIPS,
1-4, Fachbuchverlag, Leipzig 1984/85.

Lampe, B., Jorke, G., Wengel, N.: Algorithmen der Mikrorechen-
technik - Maschinenprogrammierung und Interpretertechniken
des U880, 2.Aufl., VEB Verlag Technik, Berlin 1985.

Leventhal, L.A.: 6502 Programmieren in Assembler, te-wi Verlag
GmbH, Miinchen 198l1.

Loll, F., Schulze, W. (Hrsg.): Burocomputer A 5110, A 5120, A 5130
Systembeschreibung, Nutzererfahrung, Verlag Die Wirtschaft,
Berlin 1984.

MaeB, G.: Vorlesungen iber numerische Mathematik I, Akademie-~
Verlag, Berlir 1984.

M#tzel, K., Nehrkorn, K.: Formelmanipulation mit dem Computer,
Akademie-Verlag, Berlin 1985.

Meximowitsch, G.W.: Kybernetik Computer Gesellschaft, Verlag Mir
und VEB Verlsgz Technik, Moskau und Berlin 1979.

Meiling, W.: Mikroprozessor - Mikrorechner, Funktion und Anwen-
dung, 2.Aufl., Akademie-Verleg, Berlin 1979. 4

Menzel, K.: BASIC in 100 Beispielen, B.G. Teubner, Stuttgart 1984.

Mittelbuch, H.: Simulationen in BASIC, B.G. Teubner, Stuttgart
1984.

248 Literatur

MYschwitzer, A.: Grundkurs Mikroelektronik - Standardschaltkreise,
Kundenschaltkreise, VEB Verlag Technik, Berlin 1984.

Efiller, S.: Programmieren mit BASIC, Automatisierungstechnik 216,
VEB Veriag Technik, Berlin 1985.

Oefler, U., ClaQen, L.: Mikroprozessor-Betriebssysteme, Problem-
orientierte Programmierung U880(K 1520), Automeatisierungstech-
nik 201, 3.Aufl., VEB Verlag Technik, Berlin 1984,

Otto, E.: ORIC-ROM geknackt 1-2, c¢'t magazin 5-6(1984).

Pawlizki, P.: Auswerten der Flags des U880, rfe 7(1985), 462.
Paulin, G.: Kleires Lexikon der Mikrorechentechnik, Automatisie-
rungstechnik 206, 2.Aufl., VEB.Verlag Technik, Berlin 1985.

radio fermsehen electronic 34,2(1985), 68: Computerstandard MSX.

Rockwell: Data Book, Newport Beach, Calif. 1984,

Roth, M.: Mikroprozessoren, 4.Aufl., Sonderheft Wissenschaftliche
Zeitschrift TH Ilmenau, 1979.

Schnabel, U., BrHduning, G., Heinold, H.: Informationsverarbeitung
filr Ingenieure, VEB Verlag Technik, Berlin 1982.

Seriven, J.: Oric-1 BASIC Programming Manual, Sunshine Publ.' Ltd.,
London 1983.

Schwerz, W., Meyer, G., Eckhard%, D.: Mikrorechner - Wirkungswei-
se, Programmierung, Appliketion, 3.Aufl,, VEB Verlag Technik,
Berlin 1984.

Sinclair Research Ltd.: ZX 81 BASIC Programmierung, Cambridge 1980.

Steffens, E.: MSX - das Thema des Jahres 19857 Ein Blick euf den
neuen Standard, c't magazin fiir computertechnik 2(1985).

Vickers, S.: ZX Spectrum BASICsProgrammierung, Sinclair Research
Ltd., Cambridge 1982,

Warme, G., Otto, V., Graffunder, B.: Mikrorechneranwendung - Ge-
ratetechnik U8E0, 2..iufl., Inst. f. Nachr.-Tech., Berlin 1984.

Werner, D.: Programmierung von Mikrorechnern, VEB Verlag Technik,
Berlin 1983.

Wilke, M.: Im Zeichen der Roboter, Deut. Verl. Wiss., Berlin 1984.

Willers, F.A.: Elementar-llathematik, 11l.Aufl., Verlag von Theodor
Steinkopff, Dresden und Leipzig 1962.

Wittig, S.: BASIC-Brevier, 6.Aufl., Heise-Verlag, Hannover 1984,
Woschni, E.~-G.: Kleines Lexikon der Mikroelektronik, Automatisie-
rungstechnik 207, 2.Aufl., VEB Verlag Technik, Berlin 1985.

Zaks, R.: 6502 Anwendungen, Sybex-Verlag, Dilsseldorf 1983.

-: Programmierung des 280, 5.Aufl., Sybex-Verlag, Dilsseldorf 1984.

-t Programmierung des 6502, 3.Aufl., Sybex-Verl., Dlsseldorf 1985.

Index

AB3 186

absoluter Fehler 60
abweisende Schleife 81
Addition 31

Adressierung 235
Akkumulator 234

Algorithmus 68

Alphabet 52,103
alphanumerische Zeichen 51
Alphazeichen 51

Alternative 154
alternierende Reihe 89

AND 109

Anfiihrungsstriche 62,105
annehmende Schleife 81,86
Antennenanschluss 13
Antennenweiche 21

Anweisung 66,100

Anweisung, mehrfache 58,80,117
Arbeit am Rechner 131
Arbeitsplatz 18
Areafunktionen 227
arithmetische Operatoren 109
arithmetischer Ausdruck 110
arithmetisches Mittel 75
Arkusfunktionen 182,227

Arkustangens 182

ASC 211

ASCIT Code 90,209,228

ATN 182

Attribut 53,215

Aufruf einer nutzerdefinierten
Funktion 193

Ausgabe 68,133

Ausrufungszeichen 116

Auswertung eines arithmeti-
schen Ausdrucks 111

AUTO 116,128

Balkenmuster 22
Bandsorte 18
Bandz#&hlwerk 17

BASIC 24,103

BASIC Dialekte 25

BASIC Programm 72,116
BASIC Programmiersystem 118
BASIC Schliisselwort 66
BASIC Schnittstellen 130
bedingte Verzweigung 153
Befehl 30,100
Befehlszdhler 234
benutzerdefinierte

250 Index

Funktion 176,191 CSAVE 71
berechnetes Sprungziel 149 CTRL Taste 53
Betragsfunktion 186 Cursor 26
Betriebssystem 15,24 Cursor-Flihrungstasten 52
Betriebssystem CP/M 234
Bildschirm 1&schen 122
Bildschirm-Muster 169,195
Bildschirmfenster 124
Bildschirmkoordinaten 135
Bildschirmrand 125
Bildschirmzeile 39
Bindrzahl 209
Bit, bit 209
Bit-Muster 109,209
Blank 32,105,168

darstellbare Zeichen 53,105,214
DATA 120,163

DATA Zeiger 168

Dateiname 71

Daten 119,163

Datenband 26

Datenblock 26

Dateneingabe 140

Datentyp transformieren 216
DEF FN 191

Blinken 53 Definitionsbereich 175
Bogenmass 178 dekadischer Logarithmus 186
BORDER 125 DELETE 38,128

BREAK Taste 53 DELETE Taste 53,127
bubtle-sort 102 Dezimalbruch 57,105
Buchstabenrechnung 58,108 Dezimalkomma setzen 220
BYE 122 Dezimalpunkt 34,106,142,220
Byte, byte 209 diadisch 110

Dialog 75,119

CALL 130 Diamant 78

Carriage Return 52 Differenzen 89

CHR$ 90,214 Differenzen grosser Zahlen 60
CLEAR 129 DIM 112

CLEAR LINE 38 Dimensionierungsanweisung 113
Clear Screen 91 Diodenanschluss 17,21
CLOAD 72 Diodenkabel 17

CLs 67,122 Direktbefehl 38
CLS Taste 53 Direktbetrieb 31
Code~-Nummer 210 Display 13
COLOR 124 Divicieren 34

COLOR Tasten 53

Computer, Arbeitsweise 68
CONT 121

cos 177

CR Taste 52

Division durch Null 36
Dokumentation 84,115
Domino-Steine 92
Doppelkreuz 51
Doppelpunkt 58,80,117,153

Doppelschleife 94,158
doppelte Genauigkeit 39
doppelte Indizierung 108
doppelte Zeichenhdhe 53
Dreieck, rechtwinkliges 179
Druckpunkt 50

Druckzone 134

Dualzahlen 40,106

Dummy Argument 130

e 185

EDIT 127

Eingabe 68,73

Eingabe mit Warten 144
Eingabe, Strings T5
Einlesen einer Liste 140
Einschaltreihenfolge 22
END 67,116,173
Endlos-Schleife 99,157,194
ENTER 26

entier 188

Entscheidung 76,151
Entscheidungsdiamant 78.
Ergonomie 19

ESCAPE 215

ESCAPE Taste 53

EXP 89,184
Exponentendarstellung 42,105
Exponentialfunktion 87,184
EXTRA IGNORED 142

Pekultéat 82,225
Falsch 111,153
Farbbildrthre 14
Parbcode 123
Farbeinstellung 21
Farbfernsehnorm 13
Farbsteuerung 134
Fehlermeldung 31
Fehlersuche 98

Index 251

Feld 113

Fernsehgertt 13
Fernsehkanel 13
Flagregister 234
Flussdiagremm 68,78,80

FN 193

FQR ... NEXT ... STEP 155
FOR ... NEXT 85

formaler Parameter 192
formalisierte Sprache 103
Format eines BASIC Befehls 113
Formatieren von Zahlen 219
formatierte Ausgabe 168
Pormelmanipulation 181
Formeln 110

Pragezeichen 73,134

FRE 129

fithrendes Leerzeichen 63
Funktion 175

Funktion mehrerer Variabler 194
Funktion vereinbaren 191
Funktionskurve 176
Funktionsname 176,191
Funktionstasten 50
Punktionswert 176

ganze Zahlen 43,105
Ganzzahlvariable 92,157
garbage collection 130
Gauss, Carl PFriedrich 87
Geradeausprogramm 67

GET 146
Gleichheitszeichen 59,139
Gleitpunktformat 41,57
Gleitpunktzaehl 210

GOSUB 98

GOTO 77,147

GRAB 232

Gradmass 179

Graph einer Punktion 176

252 Index

Craph zeichnen 180,187,190
GRAPHIC Taste 54
Craphik~-Generator 90
Graphik-liodus 215
Craphik-Zeichen 54,91
Grossbuchsteten 104

gross2 Fakultiiten 226

grosse Zahlen 2232

.Grosses Einmaleins 156
gr8sste darstellbare Zahl 106

Hacker-Syndrom 62
Hardware 14

harmonische Reihe 90
Hauptwerte 183
Hierarchie der Rechenarten 37
HIMEM 128,232
Hintergruundfarbe 53,3123
Hochkomma 116
H¥henregler 26

HOME 123

HOME Taste 53
Home-Fosition 123
Hyperbelfunktionen 227

IF ... THEN 76,151

IF ... THEN ... ELSE 154
implizite Dimensionierung 114
impliziter Dezimalpunkt 106
Indexbereich 113
Indexregister 235
Indexiiberschreitung 114
indizierte Variable 107

INK 123

INKEY$ 142

INPUT 73,120,140

INSERT Taste 38,53,127

INSTR 222

INT 99,187

interaktiver Betrieb 119,147

Interpreter 16,25
Interpreter laden 26
Interpreter starten 27
Intarpreter, Arbeitsweise 61
Interpreter-Ebene 27

INVERSE Taste 53

Invexrsion 53

Iteration 89

Kegsettenrecorder 16
Kaufmanns-a S1
Kaufmanns-Und 51

Kemeny, John G. 24

KEY$ 144

Klammern setzzn 36
Kleinbuchstaben 52,105
Kleincomputer 12,229
Kleincomputer KC 35/2 230

kleinste positive darstellbare

Zahl 106
Komma 60,133
Kommando 65,100,120
Kommando-Modus 27
Kommentar 69,115
komplexe Zahlen 36
Konkatenation 64
Konkatenationsoperator 109
Kontroll-Taste 53
Kontrollstruktur 68
Kontrollzeichen 105
Xonventionen 117
Korrektur, Direktbefehl 38

Korrektur, Programmzeile 66,127

Kurtz, Thomas E. 24

Ladefehler 28

Laden des Interpreters 26

Laden, BASIC Programm 72

Lénge einer Textkonstanten
107,206

Last-In-First-Out Prinzip 96
Laufzeit 91,257,177,224
Lautstdrkeregler 26

leere Arnweisung 66

leers Zeichenreihe 632,107,211

Leerzeichen 32,168

Leerzeile 66,70,134

LEFT$ 202

LEN 206

LET 58,137

lexikographische Ordaung 111

LIST 67,126

Listen 126-

LN 185

LOAD 26

LOG 186

Logarithmen 185

logische Operatoren 109

logische Zeile, Linge 39

logischer Ausdruck 76,112,
153,192

logisches Programmende 174

Léschen, BASIC Programm 128

Toschen, Variable 129

Lgschen, Zeichen 38

Mantisse 42,106
Maschinenbefehl 234
Maschinencode~Routinen 100
Matrizen 108
Mehrfach-Schleifen 158
Mehrfachanweisung 58,80,
117,153
Mehrfachverzweigung 150
Meni 27,150,162
Metasprache 104
MID$ 204
Mikrophonenschluss 17
Mikroprozessor 234
mittelbere Funktion 1393

Index 253

Modulator 13
Mcdulefunktion 227
mounadisch 110
Mondlandung 197
Monitcr. 13,15,24
Monitor-Befehle 29
Nonitor-Ebene 27
Monitoranschluss 14
Monc-Diodenanschluss 21
Multiplikation grosser Zahlen
223
Multiplizieren 34,66,74

natiirlicher Logaerithmus 185

negative Schrittweite 94

Netzuanschliisse 18

Netzspannung 22

Netzteil 12

NEW 128

NEW LINE 52

NEXT 85,155

NORMAL Taste 53

normalisierte Gleitpunktiar-
stellung 42,57,106

NCT 10¢

Null 3%,51

nunerische Konstante 105

numerische Variable 73,107

numerische Zeichen 51

Nummernzeichen-.51

nutzerdefinierte Funktion 176,

191
Nutzerfihrung 148

Chrhorerbuchse 17
ON ... GOTO 150
OR 109

Oric 232

Page-diodus 54,134

254 Index

PAPER 123

PAUSE 69

PEEK 130

physisches Programmende 174

PI 96

Pixel 70

Pluszeichen 64

POKE 130

Potenzieren 35,186

Potenzzeichen 109

Pragmatik 104

Prellen 51

Primzahlen 138

PRINT 31,133

PRINT @ 137

PRINT AT 92,135

PRINT Zone 134

Prioritdt algebreischer Opera-
tionen 37,110

Prioritdt von Operatoren 112

Programm 65,116

Programm 16schen 128

Progremm sichern 71,100

Progremmablaufplan 68

Programmblock 78

Programmende 174

Programmfortsetzung 121

programmierbare Funktions-
tasten 55

Progremmiersprache 103

Programmschleife 80

Programmsegmente 153

Programmsprung 147

Programmstart 66,70,121,150

Progremmstruktur 83

Programmunterbrechung 146,172

Progremmverfolgung 127

Progremmverzweigung 147

Programmzeile 66,116

Programmzeile korrigieren 66

Prompt 25,69
Pseudozufallszahl 200

Quadratwurzel 152,183
Quersumme 217

Radizieren 35

Rahmen zeichnen 136,159

RAM 16

Rangordnung algebraischer
Operationen 110

Rauschunterdriickung 18

READ 165

Ready 27

Rechenfehler 60,89

reelle Funktion 175

reelle Zahl 57,106

Registersatz' 234

relativer Fehler 60

REM 69,115,117

RENUMBER 128

Repetiereinrichtung 52

RESET 146

RESET Taste 28,55,99

RESTORE 167

RETURN 26,98

RIGHT$ 203

RND 102,200

robotron Z 9001 229

ROM 15

rémische Zehlen 166

RUBOUT Taste 38

riickwéirts lesen 207

RUN 66,70,121

Rundungsfehler 40,44,97

Rundungsroutine 98,188,219

SAVE 30
Schleifendurchgénge 85,157
Schleifenrumpf 81

Schleifensteuerung 155

Schliisselwbrter 105

Schrittweite bei Schleifen
96,156

Schwarzweiss-Empfénger 13,124

Scroll-Modus 54,134

Semantik 70,104

Semikolon 60,133,208

Sequenz 68

SGN 97,189

SHIFT 32,52

SHIFT LOCX 52

Sicherheitskopie 29

Sichern eines Programms 71,100

signifikante Stellen 39,106

Signumfunktion 189

SIN 96,177

Sinus hyperbolicus 185,227

Software 14

Sonderzeichen 105

Sortieren 102

Space~Taste 31,51

Spaghetti-Programm 149

SPC 69,168°

Spectrum 33,193

Speicherbelastung 130

Speicherbelegung 229

Speicherverwaltung 128

Spriinge 147

Sprtinge aus Schleifen 95,158

SQR 183

Stack 235,96

Stackpointer 235

Standardfunktionen 108,177

Stapel 96,158

Stapelspeicher 96,158,235

Start eines Programms 66,70,
121,150

Stellenzahl 39

Stelltransformator 22

Index 255

STEP 155

Steuerbefehle 121

Steuertasten 52

Steuerzeichen 105,133,210

Stichwort suchen 221

STOP 172

STOP Taste 53

S?R$ 64,218

String 62,107

STRING$ 205

Stringfunktionen 201

Stringslice Funktionen 202

Stringspeicher 129

Stringvariable 64

Struktogramm 68

Struktogramm, Alternative T8

Sfruktogramm, Mehrfachverzwei-
gung 151

Struktogramm, Schleife 80,82

Struktogramm, Sequenz 68

Struktur 68

Subroutine 158

Subtrahieren 34

symbolische Sprungadressen 148

symmetrischer Antenneneing. 20

Syntax 103

TAB 170

Tabulator 133,170

TAN 177

Tastatur 19,50
Tastatur-Codierung 212
Tastaturpuffer 39
Teiltext 203

Teiltext suchen 223
Testgrdssen einlesen 138
Text 106

Textausdruck 111
Textausgabe 208

Texte mischen 204

256 Index

Textfunk%ionen 201
Textkconstente 106
Textvariable 64,107
Textverkniipfung 109
Textwert 107
Tonbendkassette 16
Tonwiedergabe 22

Trace 127
trigonometrische Funktionen 177
TROFF 127

TRON 127

?yp einer Variablen 108

U880 234
Uberdimensionierung 115
{veriaut 106
Umscheltieate 52
unstetige Funktion 190
Unterprograma 97,158
unzul#ssige Ausdrlicke 110
USR 130

VAL 216

Variable 58

Variable luschen 125
Variablenneme 6C

Variablentyp 1C€

Vektoren 108

Vereinbarung eiu2s Feldes 113
Vercinbarurng ven Funktionen 151
Verzleichsoperatoren 109,153
Verkettung 64

verschachtelte Schleifen 93,157
Verschachtelungstiefe 96,157
Verzweigung 78

Video-Anschiuss 14
Vielfachverzweigung 150
Volitextzeichen 104
Vollzeichen 52,195
YordergrundZarve 53,123

Vorcangregeln 37
Vorzeichen 43,106,110,221

Wahr 111,153

wehrer Ausdruck 76
Wahrheitswert 81,111,153
wdhrungszeichen 51
Wdrmestau 19

Warmetart 56

We:t einer V¥ariablen 58,107
Wert eines Ausdrucks 111
Wert-Zuweisung 137
Wertebereich 175
Wertetabelle 175

WIDTH 125

WINDOW 124
Winkelfunktionen 178
wissenscheftliche Notation 42
Worter 103

Wurzelziehen 35

280 234

Zehlendarstellung 57

Zeichen 104

Zeichencode 53

Zeichenfarbe 123

Zeichenkette 62

Zeichenreihe 106

Zeile 18schen 66

Zeilenbreite 125

Zeilennummer 66,116

Zeilenvorschub 134

Ziffer 104,210

Zutallszahlengenerator 200

Zuse, Konrai 101

Zuweisung 58,137

Zweitbelegung 52

zweitex Zeichensatz 54

2yklcometrische Fuuktionen 182,
227

