




Physik in Beispielen







Vorwort

Aus dem Vorwort des slowakischen Originals

Im vorliegenden Buch wird an Hand von gelösten Beispielen und Aufgaben mit
Resultatangabe die Anwendung von Gesetzen und Rechenmethoden aus denjenigen
Bereichen der Physik erläutert, die den wesentlichen Inhalt der Kursvorlesung „Ex-
perimentalphysik“ an Technischen Hochschulen ausmachen. Obwohl das Buch in
erster Linie als Lehrmittel für Studierende technischer Disziplinen gedacht ist, wird es
aber auch den an naturwissenschaftlichen Fakultäten immatrikulierten Hörern der
ersten Studienjahre gute Dienste leisten. Es soll zur Verringerung der Schwierigkeiten
beitragen, denen die Studierenden bekanntermaßen bei der Anwendung physikalischer
Gesetze auf konkrete Beispiele begegnen.
Den einzelnen, in sich geschlossenen Teilen vorangestellt, faßten wir jeweils in Form
einer Einleitung die Definitionen der physikalischen Größen, Gesetze und Lehrsätze
zusammen, die sich auf den Lehrstoff des zugeordneten Teils beziehen, um dem Leser
bei der Bearbeitung der Beispiele die Möglichkeit zu geben, den Inhalt der erforder-
lichen Größen und Beziehungen unmittelbar zu rekapitulieren, ohne dabei andere
Bücher konsultieren zu müssen. Dennoch besteht wohl kein Zweifel daran, daß vor
der Lektüre dieses Werkes oder parallel dazu das Studium eines Lehrbuchs der
Physik erfolgen muß.

Vorwort der deutschsprachigen Ausgabe

Die Physik ist eine der wichtigsten Grundwissenschaften für die Ausbildung und
Arbeit des Ingenieurs. Als eine für die moderne Technik wesensbestimmende Natur-
wissenschaft durchläuft sie - zusammen mit der von ihr erfaßten und durchsetzten
Technik - einen tiefgreifenden und komplizierten Entwicklungsprozeß. Der Ingenieur
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in erster Linie - aber auch der Naturwissenschaftler, der aus der Praxis erwachsende
Probleme mit spezifisch physikalischen Mitteln und Methoden in Angriff nimmt,
benötigt in hohem Maße die Fähigkeit, allgemeine Erkenntnisse und Prinzipien von
Fall zu Fall auf ganz konkrete Sachverhalte anwenden zu können. Erfahrungsgemäß
aber bereitet gerade diese Aufgabe dem Studierenden und nicht minder dem jungen
Absolventen technischer und naturwissenschaftlicher Fakultäten besondere Schwierig-
keiten, während die allgemeinen Prinzipien an sich, in ihrer naturgesetzlich fixierten
Allgemeingültigkeit, durchweg zum lückenlos reproduzierbaren Wissensinhalt ge-
hören.
Die vorliegende Sammlung von Beispielen und Aufgaben erscheint geeignet, wesent-
lich zur Behebung dieser Schwierigkeit, allgemeine Prinzipien konkret anwenden zu
können, beizutragen. Vom Studierenden in Verbindung mit einem Lehrbuch und der
Vorlesung benutzt, sollen die Bücher „Physik in Beispielen“ Mittler und Wegweiser
zwischen den „reinen Höhen“ der Theorie und den mühsam, aber unumgänglich
notwendig zu beherrschenden Ebenen der wissenschaftlichen Praxis sein.
Der deutschsprachigen Ausgabe liegt die 2. Auflage des slowakischen Originals zu-
grunde. Entsprechend den lUPAP-Regeln wurden gegenüber dem Original Ände-
rungen der Größen und Einheiten vorgenommen. Für die neue Ausgabe wurden alle
Rechnungen weitestgehend auf SI-Einheiten umgesXellt, deren umfassende Anwen-
dung sich mehr und mehr durchsetzt. Als Sl-fremde Einheit wurde nur das in der
Atomphysik zulässige Elektronvolt beibehalten. Die zu den einzelnen Aufgaben an-
gegebenen Resultate entsprechen von Fall zu Fall den mit Schul-Logarithmentafeln
oder Rechenstab erzielbaren Genauigkeitsansprüchen. Lediglich einige Beispiele und
Aufgaben der Abschnitte 4. und 5. erfordern die Benutzung von genaueren Log-
arithmentafeln oder Rechenmaschinen.
In Anlehnung an die im Original vorgegebene Dreiteilung im Aufbau - theoretische
Grundlage, Beispiele, Aufgaben - wurde das Werk durch Beiträge zu den Gebieten
Quantentheorie und Relativitätstheorie ergänzt, die von Herrn Prof. Dr. Heinz
Schilling verfaßt wurden.
Einem vielfach geäußerten Wunsch entsprechend, wurde die bisherige einbändige
Ausgabe in zwei selbständige Teile zerlegt. Der Band „Elektrik - Optik - Quanten-
theorie“ enthält die Abschnitte 3. bis 7. der früheren Fassung. Die vorhergehenden
Abschnitte erscheinen unter dem Titel „Mechanik und Wärmelehre“ unabhängig
von diesem Buch in einem weiteren Band.

Bearbeiter und Verlag
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L Elektrische und magnetische Vorgänge

1.1. Elektrostatik

Gemäß dem Coulombschen Gesetz wirkt eine Punktladung Q ± auf eine Punktladung Q 2
mit der Kraft

p _ 1
? 1.2 ----A-----------ä r

4 to r -

0 ,2  ist der Ortsvektor der Ladung Q 2 bezüglich ß i ,  r der Abstand zwischen beiden
Ladungen und e die Dielektrizitätskonstante des Mittels, in dem sich die Ladungen be-
finden. Man kann e in  der Forme = e oer ausdrücken, wobei e0 = 8,854- 10~ 12  AsV_1  m _1

als elektrische Feldkonstante (bisher auch Influenzkonstante genannt) und er als
Dielektrizitätszahl bezeichnet wird. Für das Vakuum gilt er = 1 .
Unter der elektrischen Feldstärke E in einem beliebigen Punkt des Feldes verstehen
wir den Quotienten der Kraft F, die im gegebenen Punkt auf irgendeine Ladung Q'
wirkt, und der Ladung selbst. In der Umgebung einer Punktladung ist

1 Q
,-3

E = —
Q’ 4 TO 0 £r

r ist der Ortsvektor des Punktes, in dem die Feldstärke in bezug auf den Punkt
herrscht, der die Ladung enthält. In der Umgebung einer größeren Zahl von Punkt-
ladungen Qi ,  Q 2 , . . .  herrscht eine Feldstärke, die wir nach der Beziehung

P = \E t =—
4 TO 0 £ r rf

berechnen, d. h. als die Vektorsumme der elektrostatischen Feldstärken, die im
gegebenen Punkt die einzelnen Ladungen jeweils selbst für sich erzeugen würden.
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Im Falle, daß die Ladung innerhalb eines bestimmten Volumens kontinuierlich ver-
teilt ist, kann die Stärke des elektrostatischen Feldes in der Umgebung durch

C $ dr ->E = / —- ------- r
J 4to ov 3

angegeben werden, in der q die Volumendichte der Ladung, dr das Volumenelement
und r den Ortsvektor desjenigen Punktes bedeutet, in dem E, bezogen auf das be-
trachtete Volumenelement, gemessen werden soll. Dabei erfaßt die Integration das
gesamte Volumen, in dem sich die elektrische Ladung befindet.
Wenn die elektrische Ladung auf der Oberfläche eines leitenden Körpers mit einer
Flächendichte a verteilt ist, dann ist die Stärke des von dieser Ladung erzeugten elek-
trischen Feldes durch

E = ------ / ------ r
4tze J r 3

gegeben, in der dA das Flächenelement der Leiteroberfläche und r der Ortsvektor des
Punktes, in dem die Feldstärke E herrscht, bezüglich des Flächenelements dA ist.
Die Arbeit, welche die Kräfte des elektrischen Feldes verrichten, wenn in ihm eine
Ladung Q von einem Punkt 1 zu einem anderen Punkt 2 verschoben wird, ist durch
die Beziehung

W = - W 2

angegeben, in der W 1 bzw. W 2 die potentielle Energie der Ladung Q in den Punkten 1
bzw. 2 darstellt. Im Falle, daß es sich um die Verschiebung einer Ladung Q' handelt,
die in einem Feld erfolgt, das von einer Punktladung Q herrührt, ist

w= Wi -  W 2 = -
4 to \ r r

r t und r2 kennzeichnen den Anfangs- bzw. Endpunkt der von der Ladung Q' zurück-
gelegten Wegstrecke, bezogen auf den Ort der Ladung Q.
Die potentielle Energie einer Ladung Q r im elektrischen Feld einer Ladung Q wird
auf unendliche Entfernung bezogen und beträgt

w = —
4 to r

1
r 2

(r Abstand zwischen den Ladungen Q und ö').
In einem bestimmten Punkt des Feldes ist das Potential des elektrostatischen Feldes
durch den Quotienten aus der potentiellen Energie einer Versuchsladung und dieser
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Ladung Q’ selbst definiert, d. h.,

Wenn es sich um das elektrostatische Potential einer Punktladung Q handelt und wenn
potentielle Energie und also auch das Potential selbst auf Unendlich bezogen wird
(sog. absolutes Potential), dann kann auch geschrieben werden

u = — —
4to r

(r Abstand des Punktes, in dem das Potential bestimmt wird, von der Ladung Q).
Wenn das elektrostatische Feld durch eine größere Anzahl von Ladungen ß i  , ß 2 , • • •,
Qn erzeugt wird, so gilt für das absolute Potential in einem bestimmten Punkt des
Feldes:

u=i  u t = -x—
t=i 4to r t

(r f Abstand des Punktes, in dem das Potential bestimmt wird, von der Ladung ß f).
Wenn die die Quelle des elektrostatischen Feldes bildende Ladung in einem bestimm-
ten Volumen mit der Volumendichte q bzw. auf einer bestimmten Oberfläche mit der
Flächendichte a kontinuierlich verteilt ist, können wir für das absolute Potential in
einem bestimmten Punkt des elektrostatischen Feldes schreiben

U-  T
J 4TOr

bzw.

J 4 toz*

Die Gesamtheit aller Punkte, die im elektrischen Feld durch das gleiche Potential
ausgezeichnet sind, liegt auf einer Fläche, die wir als Äquipotentialfläche bezeichnen.
Für den Zusammenhang zwischen Potential und Feldstärke gilt im elektrostatischen
Feld die Beziehung

r a t t  ( dU ~ L 
du  * , ÖUAE = — grad U = — I —— i 4------- j 4------- k .

\ öx öj> öz J
Da weiterhin

dU = grad U dr = — E dr

ist, kann man das Potential in einem Punkt des Feldes mit dem Ortsvektor r, in dem
die Feldstärke den Wert £hat, in bezug auf einen Punkt mit dem Ortsvektor f 0 gemäß
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folgender Beziehung ausdrücken:

r

U= - f Edr .
ro

Unter dem elektrischen Kraftfluß eines elektrostatischen Feldes der Stärke E durch
eine in sich geschlossene Fläche der Größe A verstehen wir den Ansatz

V = f EdA ,

wobei dA den Normalenvektor des zugehörigen Flächenelements dA bedeutet.
Gemäß dem Lehrsatz von Gauß-Ostrogradski ist der Kraftfluß iP eines elektrostati-
schen Feldes durch eine geschlossene Fläche gleich dem Quotienten aus der im Innern
der Fläche enthaltenen Elektrizitätsmenge Q und der Dielektrizitätskonstante e des
Mediums, in dem das Feld erzeugt wurde, d.  h.,

xp _ ß
£

Die Stärke eines elektrostatischen Feldes in der Nähe der Oberfläche eines Leiters
können wir gemäß dem Coulombschen Gesetz als Quotient aus der Flächendichte a der
Ladung im gegebenen Punkt der Leiteroberfläche und der Dielektrizitätskonstante 8
des den Leiter umgebenden Mediums bestimmen zu

£ £0 £r

Die Gültigkeit des CouLOMBschen Gesetzes kann man mit Hilfe des Lehrsatzes von
Gauss-Ostrogradski nachweisen. Mit seiner Hilfe läßt sich weiterhin zeigen, daß
das elektrostatische Feld in der Umgebung einer Ladung, die das Volumen einer Kugel
homogen ausfüllt, genau das gleiche ist wie in der Umgebung einer elektrischen
Punktladung gleicher Stärke, die in ihrem Mittelpunkt liegt. Analog verhält es sich
mit dem elektrostatischen Feld in der Umgebung eines Kugelleiters, dessen Ladung
sich gleichmäßig über seine Oberfläche verteilt.
Die Verschiebungsdichte D hängt mit der Stärke des elektrostatischen Feldes E
durch die Beziehung

D = eE = (s 0 + E = 8q8tE

zusammen, in der % die elektrische Suszeptibilität bedeutet.
Unter der elektrischen Kapazität C eines einzelnen Leiters verstehen wir den Quotienten
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aus der Gesamtladung Q und dem Potential U des Leiters, also

U

Die Kapazität eines Kondensators wird durch die Beziehung

definiert, worin Q die Ladung auf einer Elektrode des Kondensators und U das Po-
tential dieser Elektrode bezüglich der anderen Elektrode des Kondensators darstellt.
Bei der Parallelschaltung von Kondensatoren der Kapazitäten C15  C 2 , Cn finden
wir die resultierende Kapazität C als Summe der Kapazitäten, d. h.,

n

C = Cj + C2 + ••• + Cn = Ci.
i=l

Für die resultierende Kapazität C einer Batterie in Serie geschalteter Kondensatoren
gilt die Beziehung

d. h.,

Die Energie eines elektrischen Feldes, das durch einen geladenen Leiter erzeugt wird
oder das sich zwischen den Elektroden eines Kondensators befindet, ist gegeben durch

w = — cu 2
2

(C absolute Kapazität des Leiters bzw. Kondensators, U das absolute Potential des
Leiters bzw. das Potential einer Kondensatorplatte bezüglich einer anderen).
Unter der Energiedichte in einem elektrostatischen Feld verstehen wir die Energie, die
auf eine Volumeneinheit des Mediums, in dem das Feld besteht, entfällt. Für einen
aus zwei Platten der Größe A bestehenden Plattenkondensator, dessen Platten von-
einander den Abstand d haben, gilt

W eE 2
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Es läßt sich nachweisen, daß dieser Ausdruck für die Dichte der elektrostatischen
Feldenergie nicht nur für das homogene Feld, sondern auch für jedes andere
inhomogene Feld gilt.

R Beispiele

1. Zwei gleich große Kügelchen tragen die elektrischen Ladungen ßi  = 24 • 10~ 6 C und
Q 2 = — 18 • 10~ 6 C.
a) Mit welcher Kraft ziehen sich die beiden Kugeln bei 6 cm Abstand inr Vakuum an?
b) Mit welcher Kraft würden sie sich bei gleichem Abstand abstoßen, wenn sie vorher
miteinander in Berührung gebracht worden wären?

Lösung

a) Entsprechend dem CouLOMBschen Gesetz können wir schreiben

_ 1 Qißi  _ 24 • IO’ 6 C • 18 • IO" 6 C _
72 4k • 8,854 • IO -12  As V’ 1 m" 1 0,06 2 m 2 “

= 2,4 ' l’S VAs m- 1 = 1,078 • 10 3 N.
4k • 8,854 • 3,6 - -------: -------

b) Bei der Berührung würden sich die beiden Ladungen ausgleichen, so daß die auf beide
Kugeln entfallende Gesamtladung sich zu

q 12  = 24 • IO" 6 C — 18 • IO" 6 C = 6 • IO" 6 C
ergibt. Nach vollzogener Trennung wird nunmehr jede die gleiche Ladung haben,
nämlich

Qi  = ß 2 = +3  • IO" 6 C.

4k£0

Demzufolge beträgt die Kraft, mit der sich beide Kugeln im Abstand r = 6 cm ab-
stoßen,

3 • IO" 6 C • 3 • IO’ 6 C1 ßiß  2 . _ ~ _
F = ------ = -----------------; -------------------------------- = 22 46 N .

4ks 0 r 2 4k • 8,854 • IO" 12  As V" 1 m" 1 0,06 2 m 2 — ------

2. Zwei positive Ladungen der Größe ß und 4ß wurden im <? q'
Abstand l fest angeordnet. Auf der Verbindungslinie beider ------ --------
Ladungen soll eine dritte Ladung ß' so angeordnet werden, x 

(
daß auf sie keine Kräfte ausgeübt werden. An welcher Stelle
zwischen ß und 4ß muß ihr Ort sein? Bild 1

4Q.

Lösung

Die im Beispiel angegebene Bedingung wird erfüllt, wenn die Kräfte, mit denen die
beiden Ladungen ß und 4ß auf die Ladung ß' einwirken, von gleicher Größe und ent-



151.1. Elektrostatik

gegengesetzter Richtung sind. Gemäß Bild 90 können wir schreiben

QQ' Q'4Q
4v:ex2 4 (1 - x )  2 9

d. h., 1 _ 4

ÄT “ (Z - x) 2 ’

Nach einer Umformung erhalten wir die quadratische Gleichung
3x 2 + 2lx - l 2 = 0

mit den Lösungen
________ J_

_ ~2l ± V4/ 2 + 12Z2

X1  ’ 2 -------- 6 •

Da uns der zwischen beiden Ladungen liegende Punkt interessiert, verwenden wir die
Lösung Xi = 1/3 . Somit befindet sich der Punkt, in dem auf die Ladung Q' keine Kräfte
ausgeübt werden, in 1 / 3 des Abstands beider Ladungen, gemessen von der kleineren
Ladung aus.

3. Zwei Kugeln mit gleichen elektrischen Ladungen und je
5 • 10" 4 kg Masse werden im Vakuum an einem Punkt mit
zwei Fäden von je 1 m Länge befestigt. Durch gegenseitige
Abstoßung entfernen sie sich voneinander auf einen Abstand
r = 4 cm. Wie groß sind ihre Ladungen?

Lösung

Für eine in der Ruhelage befindliche Kugel hat die Resultie-
rende/! aus der elektrischen Kraft Fund dem Gewicht der
Kugel G die Richtung der Aufhängung. Die resultierende
Kraft wird durch die Gegenwirkung der Aufhängung F a
kompensiert. Aus Bild 2 finden wir

F
tan <p = — .

Gleichzeitig können wir bei nur kleinem Winkel <p schreiben

2
tan (p ~ sm <p = —

r
21

und somit

F r
G""2i'
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Entsprechend dem CouLOMßschen Gesetz ist die Kraft F definiert zu

' F ____1 QQ >
4k£ 0 r 2 9 .

und so ergibt sich

_1 1 ß = _r_
G 4k£ 0 r 2 21

Damit erhalten wir für die Ladung einer Kugel

/ 0 04 3 m 3

= J 9 4-  3,14 • 8,854 • IO"12  As V’ 1 m’ 1 • 0,5 • 981 • 10" 5 N =
V *2 • 1 m

= 4,177 40~ 9 C.

4. Vier freie, gleich große, positive Punktladungen e befinden sich an den Eckpunkten
eines Quadrats mit der Seitenlänge a (Bild 92). Welche Ladung müßte im Mittelpunkt
des Quadrats angeordnet werden, damit das System aller Ladungen im Gleichgewicht
ist?

Lösung

Die Gesamtdarstellung des Falles sehen wir in Bild 3. Auf
eine Ladung e im Punkt 1 wirken die Ladungen der
Punkte 2, 3 und 4 mit den Kräften F 2 , A und A-  Die re-
sultierende Kraft P, mit der diese drei Ladungen auf die
eine Ladung im Punkt 1 wirken, ist durch die Vektorsum-
me der drei angegebenen Kräfte bestimmt. Die im Zentrum
des Quadrats, im Punkt 5 anzuordnende Ladung soll so
beschaffen sein, daß durch sie das gesamte System der La-
dungen im Gleichgewicht ist. Sie muß also gegenüber
den Ladungen in den Punkten 1 bis 4 entgegengesetztes Vorzeichen haben. Sie muß
weiter groß genug sein, damit die Kraft F s , mit der sie auf die Ladung im Punkt 1 ein-
wirkt, von gleicher Größe - jedoch bei umgekehrtem Vorzeichen - ist wie die Resultie-
rende F. Wir können also schreiben

lAl = l |.
Bei Benutzung der in Bild 92 vorgenommenen Bezeichnungen können wir die vor-
stehende Gleichung auf die Form bringen

r + F 3 =F 5 , (1)

wobei F' = y!F 2 + F 2 die Resultierende der Kräfte F2 und F 4 bedeutet. Gemäß dem
CouLOMßschen Gesetz ist
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e 2

4-rzea2r 2 = r 4 =

e2 J2
4nea2

Weiterhin können wir nach dem CouLOMßschen Gesetz schreiben

F = ß2 = e2 ■ F = = 
e Q3 

Ä / 2a \ 2 8nea2 ’ 5 
A / a \ 2 2reea2

4k£ ( — | 4k£ I —-= |
w 2 / w 2 /

Nach Einsetzen dieser Beziehungen in Gl. (1) erhalten wir

e2 y/2 e2 _ eQ
4tzeü 2 8k£<22 2k£ö 2

woraus für den absoluten Wert der Ladung Q, die, wie bereits erläutert, umgekehrtes
Vorzeichen gegenüber den Ladungen ei_ 4 haben muß, folgt:

Ö=  j ( l  +2V2) .

Die gleiche Erwägung gilt natürlich für jede andere Ladung der Größe e in den Eck-
punkten des vorgegebenen Quadrats.

5. Wie groß ist die elektrische Feldstärke in einem Punkt (Bild 4), der mitten zwischen
zwei elektrischen Ladungen Qi = +50 p.C und Q 2 = +70 p.C liegt, die voneinander
einen Abstand r = 0,2 m haben? Die Ladungen befinden sich vollständig in Petroleum
mit der Dielektrizitätszahl £r = 2.

Lösung

Die resultierende Feldstärke E in der Mitte zwischen bei-
den Ladungen ist gleich der Summe der beiden Feldstär-
ken Ei und E 2 , mit der die beiden Ladungen am gegebenen
Ort wirken. Es ist also

E = Ei + E 2 i
d. h.,

1 61 . 1 Q2 .
47r2e0 4tv2£ 0 rf

Bild 4

wobei ri = r2 = — = 0,1 m und fi = — rj, r 2 = r2 i ist, wenn 1 den Einheitsvektor in

Richtung der x-Achse darstellt. Damit wird es möglich, zu schreiben

1 / ß i  62
4tt2£ 0 \ r2 r2E =

2 Hajko, Elektrik
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. woraus für den absoluten Betrag der Feldstärke folgt

4k2e0 \ rl rj )

_ 1 / 70 -10 -  6 C 50 -10 -  6 C\
~ 8k • 8,854 • IO" 12  As V’ 1 nr 1 \ O,l 2 m 2 O,l 2 m 2 /

20 • IO'  6
------------------------------- V m8k • 8,854 • IO" 12  • IO’ 2 = 8,988 »106 Vm~  1 .

Die Feldstärke hat die Richtung des Einheitsvektors i.

6. Bestimmen Sie in einem im Vakuum gelegenen Punkt A die Stärke eines elektrostatischen
Feldes, das durch die beiden elektrischen Punktladungen ßi  = —4 • 10“ 7 C und
Q2 = 5 • 10“ 7 C erzeugt wird (Bild 5) ; r± = 0,4 m, r2 — 0,3 m, r = 0,5 m. 4

Lösung

Für die Gesamtstärke des elektrostatischen Feldes im Punkt A
können wir schreiben

E = Ei + E 2 .

Hierbei sind Ei und E 2 die Beiträge der beiden Ladungen
zur Gesamtfeldstärke. Nach Bild 94 können wir für den ab-
soluten Betrag der Gesamtfeldstärke schreiben

E = + E i -  2EiE 2 cos (180 - y).

Da es möglich ist, den eingeschlossenen Winkel <p aus der Beziehung
r 2 = rj 4- — 2rt r2 cos <p

zu bestimmen, finden wir
r? + r2 - r 2 40 2 + 302 - 50 2

cos (p = -----— ------- = ------ — -----  = 0 ,2r± r2 2-40 -30

woraus sich der Winkel zu <p = 90° ergibt. Es ist demnach

E = + E%.

Der Feldanteil E r läßt sich errechnen zu
1 Qi = 1 4 • 10- 7 (

1 4ne0 rf 4k • 8,854 • 10’ 12 As V' 1 nv 1 0,4 2 m 2

desgleichen der Anteil E 2 zu
1 ß 2 = 1 5 • 10- 7 C

2 ~ 4ire0 ri - 4k • 8,854 • IO’ 12  As V’ 1 m" 1 0,3 2 m 2
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Daraus ergibt sich E zu

E = V22457 2 + 49905 2 V m- 1 = 54725 Vm'  1 .

7. Berechnen Sie Potential und Stärke des elektrostatischen Feldes einer kreisförmigen
Leiterplatte vom Radius r = 0,1 m in einem nach Bild 6 zu messenden Abstand
r± = 0,2 m für den Fall, daß die Platte eine Ladung der Stärke Q = 1 p.C aufweist und
daß sie sich im Vakuum befindet.

Lösung

Da es sich hier um das Feld einer elektrischen La-
dung handelt, die gleichförmig auf der Oberfläche
eines Leiters verteilt ist, können wir das Potential
gemäß dem Ansatz

£ /=  f 1 4
J 47re0 r2

berechnen. Dabei bedeutet die Flächendichte der
Ladung, für die im vorliegenden Fall gilt

ß

Das Flächenelement dA stellt hier einen Kreisring der Breite dx dar, so daß d/4 = 2Kxdx
ist. Für das im Punkt A zu messende Potential können wir also schreiben

, — v 2kx dx _ '
& r 1 7er 2 Q C x dx

J 4tce 0 r2 27VEO r 2 J + x z
o

= -2 -p tV ri + <To = (V + r2 - r j .

Nach Einsetzen der Werte erhalten wir

U - 2 . .  8 , 8 54-10 - ‘  OAsV-m- .O .Pn . -  C/o.2 + 0.P - 0,2 m)
£7 = 4,252 • IQ4 V.

Die Feldstärke bestimmen wir mit Hilfe der Beziehung

T* i r r  dU . ÖUE= — grad C7 = - I  — i + — j+— k ) .
\ dx dy dz J

Da die Feldstärke im Punkt A nur eine Funktion der Veränderlichen darstellt, können
wir auch schreiben

j? _ ÖC7
dr?" 0 ’

2*
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wobei f 0 den Einheitsvektor in der in Bild 6 dargestellten Richtung bedeutet. Es wird
demnach

d. h.,

£ = ( 1 — ~ — "l f 02n80 r 2 y J r 2 r 2 j  0’

10- 6 C / 0,2 m
“ 27V • 8,854 • 10“ 12  As V" 1 m" 1 0,l  2 m2 ( x/o,l 2 m 2 + 0,2 2 m 2

£ = 1,897- lO oVm-  1 .

8. Bestimmen Sie das Potential und die Feldstärke in der Umgebung eines kugelförmigen,
positiv geladenen Leiters, dessen Radius die Größe r' und dessen Ladung die Flächen-
dichte <r hat.

Lösung

Mit Hilfe des Lehrsatzes von Gauss-Ostrogradski kann man nachweisen, daß Feld-
stärke und Potential in der Umgebung der geladenen Kugel als Feldstärke und Potential
einer in ihrem Mittelpunkt gelegenen Punktladung verstanden werden können. Deshalb
ist für den Fall

Q aA (pfrv/ 2 ar' 2
a) r > r U = -- ------ = -- ------ = —------- = ------ ,

47veo r 47reo r 47ve o r so r

wobei A die Kugeloberfläche und a die Flächendichte der darauf befindlichen Ladung
bedeutet.
Für die Feldstärke gilt die Beziehung

dU
E = — grad U = —— p,dr

r
wobei Q = — der Einheitsvektor in Richtung r ist. Dann gilt

b) Im Falle r < r' ist das Potential im Innern des kugelförmigen Leiters das gleiche
wie auf seiner Oberfläche, also für r = r'. Daraus ergibt sich

ar'2 ar' 2 ar'
U = ------ = ------ = ----- .w EO r €q

Da das Potential im Kugelinnem überall gleich ist, d. h. U = const, wird die elektro-
statische Feldstärke in ihrem Innern überall den Wert E = — grad U = 0 haben.



211.1. Elektrostatik

9. Eine elektrisch leitfähige Seifenblase vom Radius r = 2 cm ist auf ein Potential von
U = 10000 V aufgeladen. Durch Zerplatzen bildet sie sich in einen Wassertropfen mit
dem Radius ri = 0,05 cm um. Wie groß ist das elektrische Potential Li dieses Tropfens?

Lösung

Vor dem Zerplatzen hatte das Potential der Seifenblase den Wert

cz=  _ l_ß .
47T£O r

Auf der Oberfläche befindet sich also die Ladung

Q = 4tc UreQ .
Das Potential der nach dem Zerplatzen entstandenen kleinen Kugel ergibt sich dann zu

IQ  Ur • 4ne 0 r 0,02 m
t/i = ------- — - — -------- = u— = 10000 V— — = 4 • 10 5 V.

4k£ 0 fi 4tt£ 0 i r Y 0,0005 m ------------

10. Zwei Punktladungen Qi = —3 jxC und Q 2 = +2 [iC haben voneinander den Abstand
d = 5 cm. Es ist diejenige Äquipotentialfläche des resultierenden Feldes zu bestimmen,
auf der überall das Potential Null herrscht.

Lösung

Nach den in Bild 7 gewählten Bezeichnungen kann man das Potential im Punkt A/
wie folgt beschreiben:

u = ------- g l  + --------T 
Q * .

4k£ 0 V x 2 + y2 4k£ 0 \J(d — x) 2 + y2

Wenn M auf der gesuchten Äquipotentialfläche liegen soll, dann muß dort U = 0 sein:

Ql Ö2u ------------ ------ + --------- - -  ■ = 0 .
4k£ 0 yj x 2 4- y2 4tc£o y/ (d — x) 2 + y2

Nach Umformung erhalten wir daraus die Beziehung

(Ö? - Öl) x 2 + (Q2 - Q2 ) y2 - 2Q2xd + Q2d 2 = 0 . (1)

Das ist die Gleichung einer Äquipotentialkurve des
Potentials Null, die in derselben Ebene liegt, in der
sich auch die beiden Ladungen ßi  und Q 2 befinden.
Es ist offenbar eine Kreislinie, deren Mittelpunkt
auf der x-Achse, d. h. auf der Verbindungsgeraden
der beiden Ladungen liegt. Um den Radius dieses
Kreisbogens zu bestimmen, suchen wir den Punkt,
in dem der Kreisbogen die x-Achse schneidet. Für
y = 0 wird aus Gl. (1):



22 1. Elektrische und magnetische Vorgänge

(ß? - - 2Q}xd + Q2d 2 = 0
d h.,

-3  • IO’ 6 C • 5 • IO’ 2 m
-5  ■ IO’ 6 C

- 3 • IO- 6 C • 5 • IO" 2 m 2= 15 • 10 2 m = 15 cm.

Qid
Qi — Q2

ßl
X2 fli+ßz -1 -1O-  6 C

Der gesuchte Kreisradius ergibt sich dann zu

— 3 • IO" 2 m = 3 cm;

x 2 — Xlr = ------ -----  = 6 cm
2

Der Mittelpunkt dieses Kreises befindet sich im Abstand x 0 = Xi + r = 9 cm von der
Ladung Q r entfernt. Als die gesuchte Äquipotentialfläche ergibt sich die Kugel, die
durch Rotation der angegebenen Kreislinie um die x-Achse entsteht.

11. In einem elektrischen Feld besteht im Punkt A ein Potential der Größe U A = 300 V,
im Punkt B ein solches der Größe U B = 1200 V. Welcher Arbeitsbetrag muß aufgebracht
werden, um eine positive Ladung der Größe Q = 3 • 10“ 8 C vom Punkt A zum Punkt B
zu transportieren?

Lösung

Die aufzubringende Arbeit wird dem Zuwachs an potentieller Energie gleich sein. Wir
können also schreiben

W = W B - W A = QUb -QU a = Q(Ub - UA ) *= (1200 - 300) V • 3 • 10“ 8 C =
= 27 • IO“ 6 J .

Zur Lösung dieser Aufgabe haben wir den Ansatz W = QU verwendet, der sich aus der
Definition des Potentials ergibt.

12. Es ist die auf eine Punktladung Q wirkende Kraft zu ermitteln, die auftritt, wenn sich
die Punktladung im Feld einer elektrisch geladenen, unendlich großen Metallplatte mit
der Flächendichte er befindet für den Fall, daß die Platte von einem Vakuum umgeben
ist.

Lösung

Unter Benutzung der Definition der elektrostatischen Feldstärke können wir für die
gesuchte Kraft schreiben

F = EQ.
Unter der gegebenen Voraussetzung, daß es sich um eine unendlich große, elektrisch
geladene Platte handelt, wird das Feld über der Platte homogen sein. Wir können in
diesem Fall die Feldstärke ermitteln, indem wir für den Wert der elektrostatischen Feld-
stärke, die wir im Beispiel 207 für eine Kreisscheibe bestimmten, den Grenzwert für
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r oo bilden. Dann wird

Z v a is  T1 \ -* a ->E = hm — 1 ------ . . Ho- = t— Ho,
r-> oo 2ßo \ yjr 2 4~ r2 )

wobei Ho den Einheitsvektor darstellt, der senkrecht auf der Plattenebene steht. Auf die
Ladung Q wird dann in einem beliebigen Punkt dieses Feldes die Kraft

F = EQ = — r 102co

wirken.

13. Zwei unendlich große, elektrisch leitende, ebene Wände stehen elektrisch isoliert
senkrecht aufeinander (Bild 8). Wie groß ist die elektrische Feldstärke in ihrer Nähe,
wenn auf der einen eine Ladungsdichte <r und auf der anderen die doppelte Ladungs-
dichte, also 2<t, besteht und wenn in ihrer Umgebung ein Vakuum herrscht?

Lösung

Die Wände werden selbständig jede für sich elektrische Felder
erzeugen, die senkrecht zueinander gerichtet sind und Feld-
stärken mit den Beträgen

a , 2cr a
Ei = - — und E 2 = - — = —

2cq 2e0 
e o Bild 8

haben. Das resultierende Feld ergibt sich in jedem Punkt aus der Vektorsumme von Ei
und E 2 . Unter der Voraussetzung, daß Ei und E 2 senkrecht aufeinander stehen, können
wir für die resultierende Feldstärke schreiben

'a2 ff2 _ /Sc 2 Ja
4«o + e o V 4eJ 2 e0

e = Je 2 + e* =

14. Eine elektrisch leitende Kugel vom Durchmesser 2r = 1 m hat ein negatives absolutes
Potential von U = IO6 V. Sie befindet sich an einem Punkt im Vakuum, wo das elek-
trische Erdfeld gerade die Stärke E = IO4 V m -1  aufweist, im Schwebezustand. Wie
groß ist ihr Gewicht?

Lösung

Wenn die elektrisch geladene leitfähige Kugel im Vakuum an einem bestimmten Punkt
des elektrischen Erdfeldes gerade schwebt, dann müssen die beiden auf die Kugel
wirkenden Kräfte Gewicht G und die Kraft F des elektrischen Erdfeldes gerade gleich
groß und einander entgegengerichtet’ sein. Wir können deshalb schreiben

G = F.
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Für F gilt dabei F = EQ. Die auf der Kugel enthaltene Ladung Q können wir mit dem
Ansatz für das absolute Potential der Kugel ermitteln

woraus sich ergibt

Q = U-  4neo r .

Wegen des negativen Potentials muß auch die Ladung Q negatives
Vorzeichen haben. Der Vektor der Feldstärke des irdischen Erdfeldes
ist auf den Erdmittelpunkt hin gerichtet. Deshalb hat die auf die Kugel
wirkende Kraft F die Richtung senkrecht aufwärts. Für das gesuchte
Gewicht der Kugel ergibt sich somit die Beziehung

G = F = EQ = 4 eo r UE =
= 4 • 8,854 • IO -12  As V" 1 m“ 1 0,5 m • 106 V • 104 Vnr 1 =
= 0,555 N = 56,74 • 10’ 3 kp .

Bild 9

15. Zwischen zwei ebenen, parallel zueinander vertikal im Abstand d = 0,5 cm angeord-
neten, elektrisch geladenen Platten befindet sich ein elektrisch geladenes Tröpfchen der
Masse m = IO -9  g (Bild 9). Wenn die Platten bis zu einer Potentialdifferenz von
U = 400 V aufgeladen werden, fällt das Tröpfchen im freien Fall unter einem Winkel
<P = 7° 25' gegen die Vertikale herab. Bestimmen Sie die auf dem Tröpfchen befindliche
Ladungsmenge.

Lösung

Bei der Berechnung gehen wir von der Tatsache aus, daß das Tröpfchen in der Richtung
der resultierenden Kraft fällt. Diese resultierende Kraft ist aus der Vektorsumme der
beiden Kräfte F e = QE und G = mg gebildet. Die Ladung des Tröpfchens sei Q.
Da das elektrische Feld zwischen den beiden Platten bestehen soll, gilt

U = Ed,
also

Unter Berücksichtigung der in Bild 98 gewählten Bezeichnungen können wir schreiben

Q-
d = QU

mg mgd
tan <p = ------

mg
d. h. also,

mgd tan <p
Q = Ü

= 1,596- IO’ 17  C.

IO’ 9 • IO" 3 kg- 9,81 ms’  2 • 0,5 • IO -2  m • tan 7° 25'
400 V



251.1. Elektrostatik

16. Eine Kugel der Masse m = 10 g trägt die elektrische Ladung Q = 5 / 3 • 10~ 9 C. Mit
welcher Beschleunigung wird sich diese Kugel in einem elektrischen Feld der Stärke
E = 3 • 104 Vm -1  bewegen?

Lösung

Entsprechend der Definition der elektrischen Feldstärke gilt

und somit

F=EQ.

Andererseits gilt allgemein nach dem II. NEWTONschen Gesetz

F = ma.

Infolgedessen können wir nach Vergleich der beiden letztgenannten Gleichungen
schreiben

FQ = ma.

Für den gesuchten Wert der in Feldrichtung wirkenden Beschleunigung erhalten wir
demnach

„„ 300 • 10 2 Vm- 1 • 4- • IO’ 9 C
EQ 3 . _ . .

17. Zwischen den Platten eines Kondensators befindet sich ein Dielektrikum aus Glas von
0,1 cm Dicke. Wie groß muß die Belagfläche des Kondensators sein, damit er eine Ka-
pazität von 150 pF annimmt?

Lösung

Die Kapazität des Kondensators ist durch die Beziehung C = Ql U definiert. Dabei ist Q
die auf einer Platte des Kondensators befindliche Ladung und die im Zähler der
angegebenen Beziehung auftretende Größe U das Potential dieser Kondensatorfläche
in bezug auf die gegenüberliegende Fläche. Da wir bei einem Plattenkondensator das
zwischen den Platten bestehende Feld als homogen ansehen können, gilt für das Po-
tential die Beziehung

U= Ed

(d Abstand der beiden Platten, E Stärke des homogenen elektrischen Feldes). Für die
Feldstärke liefert das CouLOMßsche Gesetz den Ansatz: E = <r/e = QjeA (A Fläche einer
Kondensatorplatte). Für die Kapazität des Plattenkondensators können wir dann end-
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gültig schreiben

g_g_  Q _eA
U Ed Q J d '

7Ä d

Hieraus erhalten wir für die gesuchte Fläche des Plattenkondensators
150 • 10- 12  F • 1 • 10- 3 m ,

8,854 • 10- 12  As V- 1 m- 1 • 7 “ ’418  -------— '
A = —e

18. Berechnen Sie die Kapazität eines Plattenkondensators von
200 cm 2 Belagfläche. Zwischen den Belägen befindet sich Glas
der Dicke di =0 ,1  cm, das beiderseits mit einer Paraffinschicht
der Dicke d 2 = 0,02 cm bedeckt ist. Die Dielektrizitätszahlen be-
tragen für Glas ei = 7, für Paraffin e 2 = 2.

Lösung

Gemäß Bild 10 ist die dielektrische Verschiebung in allen Dielek-
trika gleich groß, so daß wir finden IHHI -

C? Cf Cp-

d. h.,
D = e o e t E = = e0 e 2 2 .

Wenn wir die Potentialdifferenzen zwischen den einzelnen Schichten mit Hilfe der je-
weiligen elektrostatischen Feldstärken ausdrücken, erhalten wir

C7qi = E2 d2 = Ei — d2 ,e 2
Ui 2 = Eidi ,

U23  — E 2 d2 — Ei — d2 .S2
Für die resultierende Potentialdifferenz können wir dann schreiben :

U = Uqi 4- Ui 2 + U2 3 = Eidi + 2E2 d2 = Eidi 4~ 2Ei — d 2 ,e 2

U = Ei (di 4-2  — 2 == ----  (d± 4~ 2 — d2
\ 6 2 / e O e l \ e 2

Für die Kapazität des Plattenkondensators erhalten wir
Q AD A 8qEiE 2 A

U D / Ei \ di d2 2sid2 4~ di----- [di 4- 2 — d2 \ -------F 2 -----
60 e l \ ---------

e 2 / e O e l £ 0 e 2



27LI .  Elektrostatik

Da die vorletzte Gleichung auch in der Form
1 1

Ci C 2

C , 2  ,

geschrieben werden kann, wird ersichtlich, daß die Kapazität eines derartigen Platten-
kondensators auch als die dreier in Serie geschalteter einzelner Plattenkondensatoren
berechnet werden kann, wie es aus der Darstellung in Bild 99 hervorgeht. Die drei
Einzelkondensatoren sind mit den Symbolen C 2 , Ci , C 2 gekennzeichnet. Wenn wir die
zugehörigen Zahlenwerte einsetzen, erhalten wir schließlich

8,854 • 10~ 12  As V" 1 nr 1 7 • 2 • 200 • 10 -4  m 2

~ 26 2 + e 2 (L 2 • 7 • 0,2 • IO" 3 m + 2 -  1 • 10 -3  m
= 516,8 • IQ- 12  F .

19. Ein Luftkondensator mit ebenen Platten hat bei einem Plattenabstand d = 1 cm
die Kapazität C o = 10 pF. Zwischen die beiden Kondensatorplatten werde ein Stück
Blech der Dicke A = 0,1 cm eingeschoben, das so groß ist, daß jegliche Randwirkungen
vernachlässigt werden können. Wie groß ist die sich dann einstellende Kapazität?

Lösung

Durch das Einschieben der Platte der vorgenannten Dicke wird der Kondensator von
der ursprünglichen Kapazität

r s oA
C ° = ~d~

in zwei Kondensatoren mit den Kapazitäten

(1)

SqA _ e0 A
d-A  ~ 2 d-A

2

zerlegt, die in Serie geschaltet sind (Bild 11). Die resultierende
Kapazität dieser Kombination erfüllt sodann die Bedingung

£ - J_ _ l -£c ~ c + c' ~ c ’ Bild 11

so daß sich ergibt
_ C _ e oA
“ T “ ~d ~Ä ’

Aus Gl. (1) geht aber hervor, daß
£oA = Cod
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ist, so daß wir nach Einsetzen der vorgegebenen Werte erhalten

c = Co -T -7 = 10 pF — -----1 ------- = 10 -L pF = 11,11 pF .d — A 1 cm — 0,1 cm 0,9 ------------

20. Auf welches Potential U x muß ein Kondensator der Kapazität Ci = 2 p.F aufgeladen
werden, damit er die gleiche Ladung trägt, die von einer Leydener Flasche der Kapazi-
tät C 2 = 900 pF bei einer Spannung vom Betrag U2 = 30000 V gespeichert wird?

Lösung

Für die Ladungen auf den Platten der beiden Kondensatoren können wir schreiben

Qi  = CiUi '9 Q 2 = C 2 U2 .
Da entsprechend der Aufgabenstellung ß i  = Q 2 sein soll, gilt

Cit/i = C 2 U2 i

woraus wir für das gesuchte Potential erhalten
C 2 900 • 10" 12  F

u. = U 2 ~ = 30000 V - -6_g-- = 13,5 V .
Cz 1 Z * 1U P

21. Berechnen Sie die Kapazität eines aus zwei koaxialen Zylin-
dern bestehenden Kondensators der Abmessungen Höhe
h = 20 cm, Plattenradien r r = 3 cm, r2 = 4 cm, dessen Di-
elektrikum ein Vakuum ist (Bild 12).

Lösung

Für die Berechnung der Kapazität muß zunächst das Po-
tential zum Beispiel einer (positiven) inneren gegenüber
einer äußeren Platte ermittelt werden. Dieses Potential ist
gleich dem Quotienten aus der Arbeit W, die wir bei dem Transport der Ladung ent-
gegen den Kräften dieses Feldes von der äußeren auf die innere Platte zu verrichten
haben, und der übertragenen Ladung selbst. Wir können demnach schreiben

u - £ ■ 'äf f d f  ~ df - f™-- /™'’r2 r2 r2
da die Feldstärke und die infinitesimale Vektorgröße dr einander entgegengerichtet
sind und da dr = — dr' ist. Den Wert der elektrostatischen Feldstärke erhalten wir mit
Hilfe des Lehrsatzes von Gauss-Ostrogradski, wonach der Strom durch die Ober-
fläche eines angenommenen Zylinders vom Radius r' dem Quotienten der im Innern des
Zylinders enthaltenen Ladung und der Dielektrizitätskonstante des umgebenden Me-
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diums gleich ist. Es ist daher
Q

E-lvr 'h  = - ,

da der Strom durch die Zylindergrundfläche in Richtung der Feldstärke gleich Null ist.
Daraus ergibt sich

E = — - — .
2T:r'h£0

Für das Potential U erhalten wir damit

dr Q . r2
—r = - ----- In — .r 2neo h rr

U= [ -Edr '=-  —
J 2t:8qH

Schließlich erhalten wir die Kapazität des Zylinderkondensators zu

Q 2™Qh 2t: • 8,854 • 10~ 12  As V" 1 m’ 1 • 0,2 m
C “ U „ , 0,04 m2,31In —

ri

= 38,7 * IO -12  F .

22. Berechnen Sie die Kapazität eines Kugelkondensators, der aus zwei konzentrisch an-
geordneten, elektrisch leitenden Flächen mit den Radien und r2 gebildet wird,
zwischen denen sich ein Dielektrikum mit der Dielektrizitätskonstanten e befindet.

Lösung

Wir gehen ganz analog wie im Beispiel des Zylinderkondensators vor, indem wir die
Feldstärke E unter Anwendung des Lehrsatzes von Gauss-Ostrogradski bestimmen.
Wir können also schreiben

4w' 2£ = — ,
£

wobei r' den Radius einer beliebigen gedachten Kugelfläche zwischen den beiden Kugel-
elektroden bedeutet, mit denen sie den Mittelpunkt gemein hat. Das Potential bestim-
men wir wie vordem gemäß der Beziehung

*2 r2 r2

g / 1 ______1 \ 6 2 - n

4tv£ \ r t r2 / 4tc£ rr r2

weil auch hier dr = — dr' ist.
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Die Kapazität des Kugelkondensators ergibt sich damit zu

23. Wie groß sind die Kapazitäten der in den Bildern 13 a bis d dargestellten Kondensator-
kombinationen? Die einzelnen auf den Bildern 13 a bis c eingesetzten Kapazitäten
haben folgende Werte:

Ci = 6 pF,

Ci = 2 pF,

Ci = 6 pF,

a)

b)

c)

C2 = 2 pF,

C 2 
= 4 pF,

C 2 = 2 pF,

C4 = 3 pF, C s = 3 pF ;

C 3 = 4 pF, C4 = 2 pF ;

C 3 = 1 pF, C4 = 3 pF.

Bild 13a Bild 13 b

Bild 13 c Bild 13d

Lösung

Wir verfahren in der Weise, daß wir die in Serie oder die parallelgeschalteten Konden-
satoren zusammenfassen und mit dieser Zusammenfassung ein Ersatzschaltbild schaffen,
das wir weiterhin vereinfachen können. Dabei wird uns die Berechnung erleichtert,
wenn uns bekannt ist, daß zwei gleiche, in Serie geschaltete Kondensatoren eine resul-
tierende Kapazität haben, die gleich der halben Kapazität jeweils eines einzelnen ist,
während zwei gleiche, parallelgeschaltete Kondensatoren eine resultierende Kapazität
haben, die der doppelten Kapazität je eines der beiden Kondensatoren gleich ist. Bei
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der Serienschaltung ist also
1 - 1 _L-  2 r - C

~ct ~~c + ~c ~~c ’ g-  T’
und bei der Parallelschaltung

Cg = C + C = 2C.
Analog läßt sich nachweisen, daß bei drei in Serie geschalteten Kondensatoren die
resultierende Kapazität Cg = C/3 ist, wogegen bei der Parallelschaltung Cg = 3C  ist.
Die einzelnen in Bild 102 dargestellten Fälle werden demnach wie folgt behandelt:

Ci 6 [zF
a) Drei Kapazitäten von je 6 [zF ergeben in Serie geschaltet C1 = — = —— = 2 [zF.

Diese resultierende Kapazität ist mit der Kapazität C 2 parallelgeschaltet, also ist
C3 = + C 2 = (2 + 2) [zF = 4 [iF. Diese Kapazität C3 ist mit den beiden außen
liegenden je 3 (zF großen in Serie geschaltet, so daß sich ergibt

1 1 1
“Q ~~c7 + ~Ci

Ce=  ~ir F = 1 ,09 txF  -

1 1 1 1 1 11

T + "c? 3 F + 4pT + T F “ 12 p.F ’

b) Die Kapazitäten C 2 sind in Serie geschaltet, so daß ihre resultierende Kapazität den
Wert C 2 = C 2 /2 = 2 [zF annimmt. Auf der linken Seite des Schaltbildes befinden sich
somit die beiden parallelgeschalteten Kapazitäten und C 2 , so daß deren resultierende
Kapazität C z = C x + C 2 = (2 + 2) [zF = 4 [zF wird. Analog kann man leicht er-
mitteln, daß die resultierende Kapazität C" der rechten Seite der Schaltung ebenfalls
den Wert C" = 4 [zF annehmen muß. Da C' und C" in Serie geschaltet sind, ist offen-
kundig, daß die resultierende Kapazität der gesamten Schaltung Cg — 2 (zF sein wird.
Die Ersatzschaltbilder, die zur Berechnung herangezogen wurden, sind in dem unteren
Teil des Bildes 102 b dargestellt.
c) Die Kapazitäten und C 2 können wir durch die resultierende Kapazität C{ er-
setzen:

i i 1 1 L
c[ ~ Ci + 77 “ 2[ZF + 3 (zF ’

also

C ;=y  txF = l,5 [xF.

Da die Kapazitäten Cf und C4 parallelgeschaltet sind, können wir sie durch die resul-
tierende Kapazität

C2 = C{ + C4 = 1,5 [zF + 3 [zF = 4,5 [zF

ersetzen. Die Kapazitäten C 3 und C2 sind nunmehr in Serie geschaltet, so daß die ge-
suchte resultierende Kapazität Cg der gesamten Schaltung sich ergibt zu

1 ! | 1 i 1 5,5
Cg “ 77 + 77 ” 4,5 [zF + 1 [zF “ 4,5 [zF ’
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d. h.,
4,5 (iF

C8 =-  y- = 0,82 p.F t

d) Ci ist mit C 2 parallelgeschaltet, ebenso sind C 3 und C4 parallel angeordnet. Das
Kapazitätenpaar Ci und C 2 und das Paar C3 und C4 sind in Serie geschaltet, so daß für
die resultierende Kapazität gilt

1 1 1 _ Ci + C 2 + c 3 + c 4
= G + c 2 

+ C 3 + C4 
= (Cx + C 2 ) (C 3 + C4 ) ’

d. h.,
_ CiC3 + C X C4 + C2 C 3 + c 2 c 4

Ci + c 2 + c 3 + c 4

I

24. Ein luftgefüllter Plattenkondensator besteht aus zwei Platten mit dem
Flächeninhalt A = 1000 cm 2 , die voneinander in einem Abstand x =
= 0,1 cm angeordnet sind. Mit welcher Kraft ziehen sich die beiden Plat-
ten an, wenn sie auf ein Potential von U = 1000 V aufgeladen werden?

Lösung

a) Das angegebene Beispiel betrachten wir zunächst unter dem Gesichts-
punkt energetischer Vorstellungen. Wir bezeichnen die Kraft, mit der sich
die beiden Platten anziehen, mit dem Symbol E Aus dem Gesetz von der
Erhaltung der Energie ergibt sich, daß die Arbeit, welche die Kraft F bei
einer Annäherung der beiden Platten um das infinitesimale Wegelement dx verrichtet,
genau der Abnahme der Energie des zwischen den beiden Platten liegenden elektrosta-
tischen Feldes gleich sein muß. (Das Feld soll vollständig zwischen den Kondensator-
platten gelegen sein.) Nach Bild 14 können wir schreiben

I
Bild 14

F dx = A dx,

wobei PFe die Energie des elektrostatischen Feldes im Gesamtvolumen des Dielektri-
kums und V das Volumen des Dielektrikums bedeutet, so daß die Energiedichte des
elektrostatischen Feldes mit WJ V angegeben wird. Für die Energie des elektrostatischen
Feldes eines Kondensators gilt jedoch die Beziehung = 1 /2 CU 2 , so daß wir finden

4-CC/  2
2

F dx = ---------- A dx,
Ax

wenn wir auch das Volumen durch die Beziehung V = Ax ausdrücken. Für die gesuchte
Kraft finden wir dann
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und nach einer Umformung

x _8ÄU 2 _s 0 et AU 2

2x 2x 2 ~~ 2x 2

Mit den gegebenen Werten ergibt sich schließlich
8,854 • 10- 12  As V" 1 m -1  • 1 • 1000 • IO" 4 m 2 • 1000 2 V 2

2(1 • 10- 3 ) 2 m 2

8,854 • 10~ 7 N m 2
- - - -—— — — ----- = 0,4427 N .

2 • IO" 6 m 2 —---------

b) Das Beispiel läßt sich auch durch die direkte Berechnung der gesuchten Kraft be-
arbeiten. Die Ladung +ß der einen wirkt auf die Ladung — Q der anderen Platte durch
eine Anziehungskraft vom Betrag

F=E q Q,
wobei Eq die elektrische Feldstärke des nur durch die eine Ladung +ß erregten Feldes
darstellt. Das homogene Feld zwischen beiden Kondensatorplatten wird durch die
Feldstärke E = 2EQ gekennzeichnet, da das resultierende Feld sowohl durch die La-
dung +ß als durch die — Q gleicherweise erregt wird und beide Ladungen am Entstehen
des Gesamtfeldes durch gleiche Beiträge beteiligt sind. Da weiterhin (entspr. Beispiel 217)
E = cr/e ist, können wir auch schreiben

r. E ~ a „ Iß  2 1 cu2
F = E q Q =—Q=—Q=— = — -------2 2s 2 eA 2 x

unter der Voraussetzung, daß wir bei der Umformung des Ausdrucks für die Kraft F
die Beziehungen <r = Q/A , Q = CU und C = eA/x verwenden.

25. Ein luftgefüllter Plattenkondensator der Kapazität C± = 500 pF ist auf eine Spannung
Ui = 5000 V aufgeladen. Der Kondensator enthält als Dielektrikum eine Platte, deren
Material durch die Dielektrizitätszahl eT = 5 charakterisiert ist. Welche Arbeit muß
man verrichten, um diese Platte aus dem Kondensator zu entfernen, und wie verändert
sich nach Entfernen der Isolierplatte die am Kondensator anliegende Spannung?

Lösung

Wir stellen zunächst fest, um welchen Betrag sich die Kapazität des Kondensators durch
das Entfernen der Isolierplatte verringert. Da die Dielektrizitätszahl das Verhältnis der
beiden Kapazitäten des Kondensators mit und ohne Dielektrikum angibt, also Ci bzw.
C2 , können wir schreiben

d. h.,
C± = 8r C2 •

3 Hajko, Elektrik
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Da weiter die auf den Kondensatorplatten enthaltene Ladungsmenge durch die Ent-
fernung der Isolierplatte nicht verändert wird, gilt

Cit/i = C 2 U2 .
Somit wird sich nach Herausziehen der Platte aus dem Kondensator die neue Spannung

U2 = = 8, Ui = 5 • 5000 V = 25000 Vc2 -------
einstellen.
Die für das Herausziehen der Isolierplatte erforderliche Arbeit bestimmen wir als die
Differenz der Energie des elektrostatischen Feldes zwischen den Kondensatorplatten
mit und ohne Isolierplatte, so daß sich ergibt

w = 1 C 2 Ul - 1 CiUl = 1 — (ec Ui) 2 - ± CiU* =
2 2 2 £r 2

= y CiUfa - 1 CiUf = 1 CiUf (er - 1) =

= 4- 500 -10“ 12  F • 50002 V2 (5 - 1) = 25 • 10~ 3 J .2 ------------

26. Zwischen den beiden Platten eines Kondensators mit dem Flächeninhalt A = 500 cm 2 ,
die voneinander einen Abstand d = 1 cm haben, besteht eine Spannung der Größe
Ui = 5000 V. Welche Arbeit muß verrichtet werden, damit sich der Abstand der beiden
Kondensatorplatten auf d' = 4 cm vergrößert?

Lösung

Die gesuchte Arbeit muß gleich der Energiedifferenz des zwischen den beiden Konden-
satorplatten bestehenden elektrostatischen Feldes bei den Abständen d' = 4 cm und
d = 1 cm sein. In den beiden Stellungen sind diese Energien gegeben durch

PF1 =yC 1 C/12 ; fF2 =yC 2 C72
2 .

Die Kapazität C 2 können wir mittels Ci und die Spannung U2 mittels Ui ausdrücken.
Wir erhalten dann

0 1 S M £ 0 Gl
1=  “7" ; 2 = 'V = ~4dr = "T' •

Da sich die auf den Kondensatorplatten enthaltene Ladung bei einer Veränderung des
Abstands nicht mit ändert, sondern konstant bleibt, ist

CiUi = c2 u2 .
d. h.,

u 2 = Ui - - Ui = 4Ui .
Ü2 Ci

T
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Daraus ergibt sich

w = W1 - W 2 = ± C 2 Ul - 1 C 2 Ul = ± Ci 1(4C7 1 )2 - 1 CW 2 =

= 4 Ci ul - 1 QU 2 = 4 CiC/2 = | Ul =
o Z Z Z u

= ± 8,854 • 10~ 22  As 500 - lO m 2 
= .

2 0,01 m —--------------

Aufgaben

1. Zwei gleich große, auf zwei kleinen Ku-
geln aufgebrachte Ladungen sind 10 cm
voneinander entfernt und wirken im Va-
kuum durch eine Kraft von 4,9 • 10 -4  N
aufeinander. Berechnen Sie die Größe
der beiden Ladungen.

2. Zwei Ladungen wirken in einem Me-
dium mit der Dielektrizitätszahl eT = 1
im Abstand 11 cm mit der gleichen
Kraft aufeinander wie in Terpentin in
einem Abstand von nur 7,4 cm. Berech-
nen Sie die Dielektrizitätszahl des Ter-
pentins.

3. In den Eckpunkten eines ebenen gleich-
seitigen Dreiecks sind Punktladungen
der Größe e angeordnet. Wie groß
müßte eine im Mittelpunkt des Drei-
ecks liegende Punktladung sein, damit
sich die Ladungen im Gleichgewicht be-
finden?

4. Welche Ladungen Q müssen auf zwei
gleich großen Kugeln von je 10 g Masse
angebracht werden, damit die zwischen
den Kugeln wirkenden Massenanzie-
hungskräfte durch die elektrostatischen
Abstoßungskräfte kompensiert werden?

5. Vergleichen Sie die zwischen zwei Elek-
tronen wirkenden Massenanziehungs-
und elektrostatischen Abstoßungs-
kräfte.

6. Bestimmen Sie die Flächendichte der
auf einer Kugel von 5 cm Radius ent-

haltenen Ladung ß = 0,1 ptC.
7. Welche Stärke hat das elektrische Feld

einer Punktladung ß = 144 • 10 -6  C in
einem Abstand von r = 6 cm, 12 cm,
18 cm im Vakuum?

8. Zwei Punktladungen gleichen Vor-
zeichens der Stärken ß. x = 8 p.C und
ß 2 = 5 p.C haben voneinander den Ab-
stand d = 20 cm.
a) In welchem auf ihrer Verbindungs-
linie gelegenen Punkt ist die elektro-
statische Feldstärke gleich Null?
b) In welchem auf ihrer Verbindungs-
linie gelegenen Punkt sind die durch
beide Ladungen hervorgerufenen Poten-
tiale gleich groß?

9. Eine Ladung ß = 5 • 10 -7  C erregt im
Vakuum ein elektrostatisches Feld. Die
Punkte A und B liegen mit der Ladung ß
auf einer Geraden und haben von ß den
Abstand r ± = 2 cm bzw. r2 = 10 cm.
Wie groß ist die zwischen A und B be-
stehende Spannung?

10. Wie groß müßte der Radius einer Kugel
gewählt werden, auf die eine Ladung
ß = 1 C gebracht werden kann, ohne
daß Sprüheffekte auftreten? (Die maxi-
male Feldstärke, bei der in Luft gerade
noch kein Sprühen beobachtet wird, be-
trägt 25 kV cm -1  .)

11. Auf welches absolute Potential würde
sich die Erde (r = 6318 km) auf laden,

3*
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wenn auf ihre Oberfläche gleichmäßig
eine Ladung von einem Coulomb auf-
gebracht würde?

12. Wie groß ist die Spannung zwischen
zwei Punkten in einem homogenen elek-
trostatischen Feld der Stärke E =
= 150 V cm -1  , deren Abstand in Rich-
tung der Feldlinien 6 cm beträgt?

13. Wie groß müßte der Radius einer Kugel
sein, die sich durch das Aufbringen
einer elektrischen Ladung Q = 5 • 10 -6  C
auf das absolute Potential U =
= 100000 V auflädt?

14. Wie groß ist das absolute Potential in
einem Abstand s = 10 cm von der
Oberfläche einer leitfähigen Kugel mit
dem Radius r = 5 cm, auf die eine La-
dung der Größe Q = 2 • 10" 7 C ge-
bracht wurde?

15. Es ist die elektrostatische Feldstärke
zwischen zwei koaxialen kreiszylindri-
schen Flächen mit den Radien rr und
r2 , die praktisch unendlich lang sind, zu
berechnen, wenn der innere Zylinder
auf das Potential Uo gegenüber dem ge-
erdeten äußeren Zylinder aufgeladen ist.

16. Ein Leiter, der in die Form einer ebenen
Kreislinie mit dem Radius r gebogen
wurde, trägt die Ladung Q. Berechnen
Sie die Feldstärke des durch diese La-
dung erregten elektrostatischen Feldes
für
a) den Mittelpunkt des Kreises mit dem
Radius r,
b) einen Punkt auf der zur Kreislinie
senkrechten Mittelpunktsachse, der vom
Mittelpunkt den Abstand s hat.

17. Es sind die Potentiale U19  U2 , U3 ,
in vier nebeneinander gelegenen Punk-
ten, die nicht in einer Ebene liegen, be-
kannt. Wie bestimmen wir die Feld-
stärke im ersten dieser Punkte, der von
den drei anderen mit bekanntem Poten-
tial jeweils die Abstände x 12  , *i 3 ,
hat, wenn wir mit e i  2 , £13 , 14 die Ein-
heitsvektoren jeweils in den Richtungen

von Punkt 1 zu den Punkten 2, 3 und 4
bezeichnen?

18. Ein Punkt A hat von einer unendlich
ausgedehnten, leitenden ebenen Fläche,
die mit einer Ladung der Flächen-
dichte aufgeladen und von Vakuum
umgeben ist, den Abstand d. Wie groß
ist das Potential des elektrischen Feldes
im Punkt A in bezug auf die geladene
ebene Fläche?

19. Eine ebene Platte der Fläche A ist mit
einer elektrischen Ladung der Größe
+2 e aufgeladen. Ihr gegenüber befindet
sich im Abstand d eine zweite von glei-
cher Größe, die, von der ersten durch
ein Vakuum getrennt, die Ladung +e
trägt. Wie groß ist das Potential der
erstgenannten Platte gegenüber der
zweiten?

20. Auf einem kugelförmigen Leiter mit
dem Radius r = 10 cm befindet sich
eine elektrische Ladung der Größe
Q = 60 |iC. Bestimmen Sie die Radien
der Äquipotentialflächen des durch
diese Ladung erregten elektrischen Fel-
des, deren Potentiale sich um jeweils
1 • 10 5 V unterscheiden. Als erste Äqui-
potentialfläche betrachten wir die Ober-
fläche des Leiters selbst.

21. Berechnen Sie die auf der Erdoberfläche
enthaltene Gesamtladung und deren
Flächendichte, wenn der Potential-
gradient des elektrischen Feldes der
Erdatmosphäre an der Erdoberfläche
den Wert 100 V m -1  hat. Der Erdradius
beträgt 6378 km.

22. Die Platten eines Kondensators sind
durch eine Porzellanscheibe von 0,5 cm
Dicke und eine Luftschicht gleicher
Dicke voneinander isoliert. Es sind die
elektrostatischen Feldstärken in der
Luft und im Porzellan (sr = 6) zu be-
rechnen, wenn bekannt ist, daß die Po-
tentialdifferenz der Kondensatorplatten
10 kV beträgt. Wie groß ist die Span-
nung in der Luftschicht und in der Por-
zellanscheibe?
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30. Um das Wievielfache verändert sich die
zwischen zwei Kondensatorplatten wir-
kende Anziehungskraft, wenn statt
Vakuum Äthylalkohol (er = 26) zwi-
schen ihnen ist?

31. Welche Kapazität hat der Erdkörper,
dessen Radius die Größe r = 6378 km
hat?

32. Welche Kapazität hat ein Körper, der
sich durch die Ladung ß = 0,5 C auf
ein Potential U = 3000 V auf lädt?
Welchen Radius hat eine Kugel der
gleichen Kapazität, wenn das um-
gebende Medium ein Vakuum ist?

33. Ein Leiter der Kapazität C = 1 nF wird
mit einer Ladung ß = 100 • 10" 6 C auf-
geladen. Wie groß ist sein Potential?

34. Wie groß ist die Kapazität eines Platten-
kondensators der Flächengröße A =
= 200 cm 2 , zwischen dessen Belägen
Glas der Dicke d = 0,2 cm und der
Dielektrizitätszahl er = 7 liegt?

35. Wie groß muß die Belagfläche eines
Plattenkondensators sein, zwischen des-
sen Platten sich als Dielektrikum eine
Glasschicht von 0,1 cm Dicke befindet,
damit der Kondensator eine Kapazität
von 150 pF hat? Die Dielektrizitätszahl
des Glases ist er = 7.

36. Eine Leydener Flasche hat folgende
Abmessungen: äußerer Bodendurch-
messer d = 15 cm, Höhe der Beläge
h = 20 cm, Dicke der Glaswand di =
= 0,2 cm. Berechnen Sie die Kapazität
dieser Leydener Flasche gemäß der für
den Plattenkondensator angegebenen
Formel. (Da die Dicke der Glaswan-
dung gegenüber dem Flaschendurch-
messer vernachlässigt werden kann, ist
es nicht erforderlich, die genauere For-
mel des Zylinderkondensators anzu-
wenden.)

37. Ein Kondensator besteht aus drei Me-
tallplättchen, deren jedes eine Fläche
von 6 cm 2 hat. Die Plättchen sind durch
zwei Glimmerschichten getrennt, die je
eine Dicke von 0,01 cm haben. Die

23. Zwei Platten eines Kondensators haben
den Abstand d = 1,05 cm. Zwischen
beide Platten bringen wir, parallel zu
beiden liegend, eine weitere Metall-
scheibe der Dicke A = 0,05 cm, die
von der nächstgelegenen Kondensator-
platte den Abstand dY = 0,4 cm haben
soll. Das Potential der nächstgelegenen
Kondensatorplatte habe den Wert
Ui = +50 V, das der anderen den Wert
U2 = —60 V. Berechnen Sie das Poten-
tial der eingeschobenen Metallscheibe.

24. Welche Kraft wirkt auf ein Elektron im
homogenen elektrischen Feld zwischen
zwei Kondensatorplatten, die im Ab-
stand d = 1 cm angeordnet sind und
zwischen denen eine Spannung U =
= 10000 V besteht?

25. Welche Arbeit muß verrichtet werden,
um eine Elektrizitätsmenge Q = 5 C
von einem Punkt des Potentials
Ui = — 5 V zu einem anderen mit dem
Potential U2 = +5  V zu übertragen?

26. Welche Arbeit wird gewonnen, wenn
eine Ladung Q = 4 C auf einem Wege
verschoben wird, zwischen dessen End-
punkten eine Potentialdifferenz von
U = 6 V besteht?

27. Welche Arbeit verrichten die Kräfte
eines homogenen elektrostatischen Fel-
des der Feldstärke E = 200000 V m -1  ,
wenn in ihm eine Ladung ß = 4 C in
Richtung der Feldlinien um einen Weg
j = 0,3 m verschoben wird?

28. Welche Arbeit muß verrichtet werden,
um in einem homogenen elektrostati-
schen Feld der Stärke E = 200000 Vm  -1

eine Ladung ß = 5 C längs eines Weges
s = 0,15 m zu verschieben, wenn der
Weg mit der Richtung der Feldlinien
den Winkel <p = 45° einschließt?

29. Wie groß ist die auf das Unendliche be-
zogene potentielle Energie einer Ladung
Q 2 = 2 • 10" 7 C, die von einer anderen
Ladung ß i  = 3 • 10" 7 C den Abstand
s = 4 cm hat?
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inhalt des elektrischen Feldes dieses
Kondensators.

41. Eine Kugel mit dem Radius r trägt die
elektrische Ladung Q. Sie hat im Va-
kuum eine bestimmte potentielle Ener-
gie. Es ist zu untersuchen, wie sich die
potentielle Energie der Kugel verändert,
wenn sie in eine Flüssigkeit mit der
Dielektrizitätszahl er gebracht wird.

42. Zwei Kondensatoren mit Ci = 1 pF und
C 2 = 10 fxF' sind in Serie geschaltet.
An die Klemmen der Kondensator-
batterie wird eine Spannung C7 = 200V
angelegt. Wie groß ist der Energieinhalt
jedes Kondensators?

43. Welche elektrische Energie ist in einem
Volumen von einem Kubikkilometer der
Erdatmosphäre enthalten, wenn der
Gradient des elektrischen Erdfeldes den
Wert 104 V m -1  aufweist?

beiden außen liegenden Metallplättchen
sind leitend miteinander verbunden. Die
Dielektrizitätszahl des Glimmers ist

= 7. Welche Kapazität hat der
, solcherart aufgebaute Kondensator?

38. Wie groß ist die Kapazität eines Kon-
densators, der aus n = 20 Platten be-
steht, die auf einer Fläche von 20 cm 2

Inhalt so übereinanderliegen, daß zwi-
schen jeweils zweien ein Vakuumspalt
von 0,1 cm Dicke bleibt?

39. Zwei Leydener Flaschen mit den Kapa-
zitäten Ci = 300 pF und C 2 = 500 pF
haben hintereinandergeschaltet eine
Spannung von U = 12000 V. Berech-
nen Sie die auf die erste und auf die
zweite Flasche entfallenden Spannungs-
anteile.

40. Ein Kondensator der Kapazität C=  l F
ist auf eine Spannung U = 200 V auf-
geladen. Bestimmen Sie den Energie-

1.2. Elektrodynamik

Unter dem Begriff elektrischer Strom I verstehen wir diejenige Elektrizitätsmenge, die
in der Zeiteinheit durch einen Leiterquerschnitt fließt,

z=Ö_  bzw 1 = 0 - ,
t dr

wobei dß die infinitesimale Elektrizitätsmenge darstellt, die in der gleichfalls infinitesi-
malen Zeit dz durch den Leiterquerschnitt fließt.
Der Ausdruck

d/ = JdJ

bedeutet diejenige Elektrizitätsmenge, die in der Zeiteinheit durch ein infinitesimales
Flächenelement d/1 senkrecht zu seiner Orientierung fließt, wobei das Symbol 7 den
sog. Vektor der Stromdichte darstellt. Wenn beide Vektoren in die gleiche Richtung
weisen, kann man die Stromdichte aus der Beziehung berechnen:

dZ
dA
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Wenn die Dichte im gesamten, vom Strom I durchflossenen Querschnitt A gleich
groß ist, dann gilt

A

Nach dem Ohmschen Gesetz gilt:
Der elektrische Strom Z, der durch einen Leiter fließt, ist gleich dem Quotienten aus der
Potentialdifferenz U r — U2 (der Spannung U) an den Leiterenden und dem elektrischen
Widerstand des Leiters:

j _ ~

R R ’

Der elektrische Widerstand eines Leiters hängt von seinen geometrischen Abmes-
sungen (der Länge l und dem Querschnitt A) und dem spezifischen Widerstand o
gemäß folgender Beziehung ab :

Nach den SI-Einheiten (Einheiten des „Systeme International d’Unites“) hat der
spezifische Widerstand o die Maßeinheit £2 m. Dagegen setzte sich in der Praxis die
Gewohnheit durch, die Länge l in Metern und den Querschnitt A in Quadratmiili-
metern (mm 2 ) anzugeben. Da auch in diesem Fall der Widerstand R in £2 angegeben
werden muß, folgt für den spezifischen Widerstand die Maßeinheit Qmm  2 m -1  .
Die Abhängigkeit des elektrischen Widerstands eines Leiters von der herrschenden
Temperatur wird innerhalb eines nicht allzu breiten Temperaturbereichs mit aus-
reichender Genauigkeit durch die Beziehung dargestellt:

R t = 7? 0 [ l  + a( t  - Zo )]
(R t Widerstand bei der Temperatur t, R o Widerstand bei der Temperatur t0 und
Temperaturkoeffizient).
Unter der Quellenspannung U12  (auch elektromotorische Kraft, EMK) verstehen wir
den Wert des Integrals

2

U i 2  = f Eids,
i

wobei Ei die elektrische Feldstärke bedeutet. Die Integration wird längs des Weges
vorgenommen, auf dem die Quellenspannung bestimmt werden soll. Die Quellen-
spannung einer offenen Spannungsquelle (einer Spannungsquelle, aus der kein elek-
trischer Strom entnommen wird) ist ihrer elektrischen Spannung gleich.
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Zur Behandlung komplizierter elektrischer Stromkreise verwenden wir die Kirch-
hoffschen Gesetze.
Das 1. KiRCHHOFFsche Gesetz besagt:
In jedem Verzweigungspunkt eines Leiternetzes ist die algebraische Summe aller Ströme
gleich Null, also

Das 2. KiRCHHOFFsche Gesetz besagt:
In jedem geschlossenen Kreis eines Leiternetzes ist die Summe der Quellenspannungen
gleich der Summe der Spannungsabfälle in diesem Kreis, also

m m

E = E 4 -fc=l fc=l
Bei der Bearbeitung der konkreten Beispiele werden wir uns an die folgenden Ab-
machungen halten:
1 . Wir zeichnen den Richtungspfeil des Stroms so ein, wie er wahrscheinlich fließen
wird. Wenn sich aus unserer Berechnung ein negativer Strom ergibt, so bedeutet das,
daß der Strom entgegengesetzt zu der von uns gewählten Richtung fließt.
2. Wir wählen die positive Umlaufrichtung eines Stromkreises beliebig.
3. Wir geben jeweils die Richtung der Quellenspannung an. In einer Gleichung wird
die Quellenspannung dann positiv sein, wenn die Umlaufrichtung des Kreises und
die Richtung der Quellenspannung gleich sind.
4. Bei der Addition der ohmschen Spannungen wird sich dann ein positives Vorzei-
chen ergeben, wenn die Umlaufrichtung des Kreises und die Richtung des Stroms, der
den ohmschen Widerstand hervorruft, übereinstimmen.
Bei der Serienschaltung von ohmschen Widerständen gilt für den resultierenden
Widerstand

n

R = Rt + R 2 + . . .  + Rn = £ Rf
i=l

Dagegen gilt bei der Parallelschaltung der ohmschen Widerstände für den resultieren-
den Widerstand

111  1 " 1— = ------1--------F .. .  H --------- — 9

R Ri R 2 Rn Ri
d.h.,
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Die Arbeit, die beim Durchgang des elektrischen Stromes I durch einen Leiter in der
infinitesimalen Zeitspanne df verrichtet wird, ist, wenn an den Leiterenden die Span-
nung U besteht, durch die Beziehung gegeben :

dW  = Uldt.

Bei konstanter Spannung U und konstanter Stromstärke I können wir für die Arbeit
auch schreiben

W = Ult.

Für die Leistung eines Stromes I, der durch einen Widerstand R fließt, an dessen
Enden die Spannung U besteht, gilt

dPF U 2— = UI = —— = I 2 R.
dt R

Die Wärmeaufnahme eines Leiters, der vom Strom durchflossen wird, können wir
durch Umrechnen der Stromarbeit

W = Ult
bestimmen.
Die Menge des durch Elektrolyse an einer Elektrode ausgeschiedenen Stoffes ist ent-
sprechend dem Faradayschen Gesetz durch

m = ÄQ = Alt

gegeben (m Masse des ausgeschiedenen Stoffes, Q die durch den Elektrolyten fließende
Ladung, I die Stromstärke und t die Dauer des Elektrolyseprozesses). Das elektro-
chemische Äquivalent Ä des betreffenden Stoffes wird in kg A“ 1 s~ 1 angegeben.
Wenn das elektrochemische Äquivalent eines Stoffes nicht angegeben ist, können
wir es mit Hilfe des zweiten FARADAYschen Gesetzes aus

1
V F

berechnen (pc/v das Verhältnis der Molmasse und der Wertigkeit des Elements
bzw. der Molmasse und der Wertigkeit des Radikals, F = 96494 C die sog. Faraday-
Konstante).
Unter dem Begriff Klemmenspannung U verstehen wir die Potentialdifferenz an den
Klemmen eines galvanischen Elements (der Quelle der EMK), wenn ihm der Strom I
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entnommen wird, also

U = U 12 - RJ,

(1712  Quellenspannung eines Elements, innerer Widerstand).

Beispiele

27. Welche Menge an elektrischer Ladung Q fließt während der Zeitspanne t = 10 s durch
einen Leiter, wenn
a) der Strom den konstanten Wert I = 5 A hat,
b) der Strom gleichmäßig vom Wert Null auf den Endwert von 3 A steigt?

Lösung

a) In Übereinstimmung mit der Definition der Stromstärke können wir schreiben
q = i t  = 5 A-  10s  = 50 C .

b) Die infinitesimale elektrische Ladung dß, die während der Zeit d/ durch einen Leiter
fließt, ist bei einem Strom I

dQ=Id t ,
i/K

wobei I eine lineare Zeitfunktion I = kt (Bild 15) darstellt, 5
in der 4

k =2  - = 0,3 As -  1 3

10 s 2

ist. Nach Einsetzen dieser Größe in den Ausdruck für dQ er- 1

halten wir c

dQ = ktdt  Bild 15
und durch Integration

10s

Q = kjtdt  = y [z2 ]J°’ = -’ 3- S 1 10 2 s 2 = 15 C .
0

28. Ein Akkumulator wird in der Zeit t x = 10 h mit dem Strom der Stärke = 7 A auf-
geladen. Wie lange dauert seine Entladung, wenn ihm kontinuierlich ein Entladestrom
Ze = 0,5 A entnommen wird und wenn wir den Wirkungsgrad des Akkus mit 100%
annehmen?

Lösung

Die Berechnung setzt voraus, daß wir wegen des 100%igen Wirkungsgrades des Akkus
die beim Aufladen zugeführte elektrische Ladung im Entladevorgang wieder zurück-
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erhalten. Es gilt also

l\t\ = Ze 4*

Demnach finden wir für die gesamte Entladungszeit des Akkus

t. = = 140 h .

29. Aus einer Platte von sehr geringer Dicke 7z, die aus einem Werkstoff mit dem spezifischen
Widerstand q gefertigt wurde, wird ein Kreisring mit dem Innenradius r t und dem
Aüßenradius r2 herausgeschnitten. Wie groß ist der Widerstand dieses Kreisrings, wenn
wir
a) den Kreisring auseinanderschneiden und als Zuführung die beiden Schnittränder be-
lassen und wenn
b) als Stromzuführungen die beiden begrenzenden Kreislinien benutzt werden?

Lösung

a) Wenn wir den Kreisring radial aufschneiden und als Zuführung die Schnittränder
verwenden (Bild 16), dann hat das dort dargestellte differentielle Leiterelement die
Länge 2nr und den Querschnitt h dr. Sein elektrischer Leitwert ist dann

Durch Integration erhalten wir den gesamten Leitwert des Kreisrings
r 2

h C dr h r2G = — / — = - — in — .
J r Tir i

Als Widerstand des angegebenen Kreisrings erhalten wir dann den reziproken Wert des
Leitwerts

p 12  1K = - - -  = ---------------- .
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b) Zunächst ermitteln wir den Widerstand des infinitesimalen Kreisrings wie in Bild 17.
Es ist dies der Widerstand eines Leiters der Länge dr und der Querschnittsfläche l rh

dr
2nrh ’

AR =

Den Gesamtwiderstand erhalten wir durch Integration von rY bis r2 :
r 2

Q C & o q r2R = — - / — = —— (In r2 — In r r ) = —— In — .
Znh J r 2tcä 2nh r±

30. Berechnen Sie den Temperaturkoeffizienten für den Wider-
stand eines Leiters, der sich aus einem Aluminiumdraht mit
dem Widerstand 7?i 0 = 3 ß (04 = 4,2 • 10" 3 K" 1 ) und aus
einem Eisendraht mit dem Widerstand Ä20  = 2 ß (a 2 =
= 6 • 10" 3 K -1  ) zusammensetzt, indem beide Drähte hinter-
einandergeschaltet sind. (Die angegebenen Widerstandswerte
beziehen sich auf eine Temperatur von 0 °C.)

Lösung

Die hintereinandergeschalteten Widerstände aus Aluminium
Ä 10  und aus Eisen Ä20  ergeben bei einer Temperatur von
0 °C einen resultierenden Widerstand R o gemäß

Ro = *10 + *20 -
Bild 17

Beim Ansteigen der Temperatur um den Wert At können wir für denselben resultierenden
Widerstand auch schreiben

R — Ri + Ri»
wobei R± und R 2 die Widerstände des Aluminium- bzw. des Eisendrahtes nach Eintreten
einer Temperaturerhöhung um den Wert At darstellen. Wir können daher auch
schreiben

*o(l 4~ <%4f) = jRio(1 + oci4f) 4- 7?2o(1 + a 24f) 9
d. h.,

Ro 4~ RoocAt = jR 10  4“ 4~ R20 4~ R 2 Qoc 24 t  .
Da die Summe der Widerstände *i 0 4- R20 auf der rechten Seite der Gleichung gleich
dem Widerstand R o auf der linken Seite ist, können wir weiterhin schreiben

jRQexZh = R o At 4- R 2 q0c 2 A t .

Daraus ergibt sich dann

_ *10*1 4- *20 2 3 - 4,2 • 10- 3 K" 1 4- 2 Q • 6 • 10~ 3 K“ 1

Ro (3 4- 2) D
= 4,92 • 10" 3 K" 1 .
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31. Zwei Stäbchen von gleichem Durchmesser, das eine aus Kohlenstoff (qc = 4 • 10 -3  £2 cm,
a c = —8 • IO -3  K -1  ) und das andere aus Eisen (qFc = 12 • 10" 6 D cm, a Fe =
= 6 • 10“ 3 K -1  ), sind miteinander verbunden. Es ist das Verhältnis beider Längen zu
ermitteln, bei dem die so gebildete Kombination einen temperaturunabhängigen Wider-
stand hat.

Lösung

Da beide Stäbchen hintereinandergeschaltet sind, addieren sich ihre Widerstände.
Unter der angegebenen Voraussetzung, daß sich der resultierende Widerstand mit der
Temperatur nicht verändert, kann man die Summe der Widerstände bei einer beliebigen
Temperatur und die Summe der Widerstände bei einer Temperatur von 0 °C gleich-
setzen (die Indizes bedeuten C für Kohlenstoff, Fe für Eisen), so daß sich ergibt

jRc(1 + + jRFe (l + ocFcAt) = R c + R Fc,
d. h.,

Rc + Fe 4- R t + Rpe Fe t = Rc + -RFe .
Nach einer Vereinfachung der Gleichung drücken wir die Widerstände des Kohlen-
stoffs R c und des Eisens ÄFe mit Hilfe der spezifischen Widerstände qc , gFe , der Längen
Sc, sFe und der Querschnitte A c = A Fe = A aus:

*$0 * Fe
Qc — occ At=  — £Fe — - a FQAt .A A

Aus dieser Gleichung entnehmen wir das Längenverhältnis

sFe ec «c 4 • 10 -3  ß cm (— 8 • 10~ 3 ) K -1  32 ■ 10“ 6----- = ------------- - -  ------------------------------------------ - -  ------------ = 444
Sc Qfc *Fe 12 • 10- 6 £1 cm • 6 • IO -3  K" 1-------72 • IO“ 9 — -

Die Eisenstange muß 444 mal so lang wie das Stäbchen aus Kohlenstoff sein.

_ R_2
32. Ein Normalwiderstand wurde so hergestellt, daß sein Wert genau j—i j—

0,102 £1 beträgt. Durch Anschließen eines geeigneten Nebenschluß- fr _
Widerstands soll er auf den exakten Wert von 0,1 Q einreguliert wer- “ R ___
den. Welcher Nebenschlußwiderstand wird dazu erforderlich sein? M

Bild 18

Lösung

Wir gehen von der Beziehung für die Parallelschaltung von Widerständen aus, wonach
gilt (Bild 18):

J___  1 _1_.
R ~ /?! +

daraus folgt
„ 1 1 RRl  0,1 £1 • 0,102 £1R - -  -------------- = ------------ = ------- = _2 --------’ -------- = 5 1 Q

1 1 R1 . -R  R t -R  0 ,102Q-0 , lQ  — — -
R Ä? RR t



46 1. Elektrische und magnetische Vorgänge

33. Der Gesamtwider stand zweier parallelgeschalteter Leiter beträgt 1 / 7 ß. Wenn wir die
beiden Leiter hintereinanderschalten, so ergibt sich ein resultierender Widerstand von
0,7 D. Berechnen Sie den Widerstand jedes der beiden Leiter.

Lösung

Für die Parallelschaltung der beiden Widerstände und R 2 gilt

Ri + R 2

und für die gleichen, in Serie geschalteten Widerstände gilt
* x + r 2 =0 ,7D.  (2)

Aus (1) folgt

R 1 7 - 1 '
Das erlaubt uns die Eliminierung von R r in (2):

Nach einer Umformung erhalten wir für R 2 die quadratische Gleichung
10* 2 ß"  2 - 1R 2 q- 1 + 1 = 0

mit den Lösungen
CP x _ /0,5 D

Für R t erhalten wir gleichfalls zwei Wurzeln, und zwar (*i)i >2 = 0,2 £2; 0,5 ß. Die
gesuchten Widerstände sind demnach 0,2 ß und 0,5 ß.

34. Berechnen Sie den Widerstand eines Drahtgestells, das die Form
eines Rechtecks mit den Seiten a und b hat und das diagonal durch-
strömt wird (Bild 19 a), indem der Strom von dem einen Eckpunkt
A zum gegenüberliegenden B fließt. Der Widerstand einer Längen-
einheit des verwendeten Drahtes ist durch den Wert y gegeben. Bild 19a

Lösung

Da wir den Widerstand zwischen den beiden Punkten A und B berechnen wollen, kann
man die Situation in Bild 19a vereinfacht wie in Bild 19b darstellen. Die angeführten
Widerstände R 19  R 2 , R 3 sind also parallel zueinander geschaltet, so daß sich der
resultierende Widerstand R errechnen läßt aus

_ ______1 _________ RiR2 R 3
- _1_ 1 1 “ R 2 R 3 + R1R3 + *1*2 ’

Ri + R 2 
+ * 3
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Wenn wir die Ausdrücke für Ri , R 2 und R 3 in die letztgenannte Beziehung einsetzen,
ergibt sich

R _ ___________y(a +b)y  s Ja 2 + b2 y(a  + b) ____________ _
y 2 (a + b)y/a 2 + b 2 + y2 (a + b) 2 + y 2 (a + b)y]a 2 + b 2

_ + b)y/a 2 + b 2

(g + Z>) + 2y/a 2 + b 2

35. Das Gerüst eines Würfels setzt sich aus gleich großen
Widerständen vom Wert R o = 6ß  so zusammen, daß
jede Kante des Würfels einen solchen Widerstand dar-
stellt. Berechnen Sie den Widerstand R zwischen den beiden gegenüberliegenden Wür-
felecken A und B gemäß Bild 20 a.

/?z = rfa+b)
R2 = /Va 2 +b  2
R3 =y(a+b)

Bild 19 b

Lösung

Der Würfel stellt ein räumliches Gebilde dar. Wenn wir ihn nach Bild 20 b auf eine
ebene Darstellung umskizzieren, dann wird ersichtlich, daß wir in Hinsicht auf Strom-
verzweigung und Widerstandsverteilung ein symmetrisches Gebilde erhalten. Der in die

Widerstände a, b9 c eintretende Strom / verzweigt sich dreimal auf jeweils Z/3 und danach
nochmals sechsfach auf je Z/6. Beim Austritt aus dem Würfel vereinigen sich die Zweig-
ströme wieder auf dreimal Z/3. Die Berechnung des zwischen den beiden Würfelecken
resultierenden Widerstands gründen wir auf die Überlegung, daß die Leistung eines
beliebigen Stroms Z, der durch eine Kombination von Widerständen fließt, ebenso groß
sein muß wie die desselben Stroms, der durch einen Ersatzwiderstand R fließt (Bild 20c).
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Wegen des Umstands, daß der Strom Z/3 durch 6 Widerstände und der Strom Z/6 eben-
falls durch 6 Widerstände fließt, können wir schreiben (Bild 20 b)

/Z \  2
JU2 = 6R 0 l—  \ +6Ä 0

d. h.,

R p _ 6R °12 + 6Ä°/2

Aus dieser Gleichung erhalten wir den resultierenden Widerstand

2 1 5
— R o + — R 0 = — -6£2 = 5£2.
3 6 6 -----

36. In einer Schaltung (Bild 21) ist der Strom Z zu bestim-
men, wenn = 10 □, R 2 = 5 £2, R 3 = 10 £2,
Ri = 10ß,Ä5 = 10 £2 und U = 24 V betragen. Der in-
nere Widerstand der Stromquelle ist zu vernachlässigen.

Lösung

Wir setzen die einzelnen Gruppen der parallelen Widerstände des Stromkreises zu-
sammen, wodurch wir erhalten

x—™! ___5JU2£__» fl _ 3,33Q,
R 2 + R 3 5 £2 + 10 £2 15

_ R+Rs __ 10 £1 • 10 £1 __ 100
“ä 4 + Ä5 ~ 10 £2 + 10 £2 “ "20 “

Die Widerstände R', R" und Ri sind in Serie geschaltet. Daher wird der Widerstand
dieses Kreises

R = R' + R" + Rl = 3,33 ß + 5£2 + 10£2 = 18,33 £1.
Für den Strom Z erhalten wir damit

37. Ein Gleichstrommotor nimmt den Strom I = 10 A auf und benötigt zu seinem Betrieb
eine Spannung von 220 V. Welche Spannung Uo muß man am Leitungsanfang haben,
wenn der Gesamtwiderstand der Zuleitung den Wert R = 1 £2 annimmt?

Lösung

Die am Leitungsanfang anliegende Spannung muß nicht nur die für den Betrieb des
Motors notwendige Größe U haben, sondern auch den durch die Zuleitung bedingten
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Spannungsabfall berücksichtigen (Bild 22) :

Uo = Um + RI = 220 V + 1 ü • 10 A = 230 V .

I

Uo

u
. Ui . . U2 . . u3 -

l l l

■1
Bild 22 Bild 23

38. Ein elektrischer Stromkreis enthält drei Leiter gleicher Länge Z, die, aus gleichem
Material bestehend, hintereinandergeschaltet sind (Bild 23). Die Querschnitte der drei
Leiter sind = 1 mm2, A 2 = 2 mm2 , A 3 = 3 mm2 . Die Potentialdifferenz an den
Enden des Systems beträgt U = 12 V. Bestimmen Sie den Spannungsabfall in jedem
einzelnen Leiter.

Lösung

Es ist zunächst der Widerstand der einzelnen Leiter aus der Beziehung zwischen geome-
trischen Größen (Z, A) und dem spezifischen Widerstand q zu bestimmen:

n 
1 

n Z ' Z
Ri=e-—\  R 2 =Q-—;  R 3 =q-—.A i  A 2 A 3

Der Gesamtwiderstand aller drei in Serie geschalteten Leiter ist demnach
Z Z Z 7 1 1 1 \

Ai  /i2 A 3 \ A i  /i2 A 3 /
_ t AiA 2 + AiA 3 A 2 A 3
= e 2 3 ’

Durch jeden Leiter fließt gemäß Bild 112 der Strom
u _ UAiA 2 A 3
R qI(AiA  2 + /12 3 + AiA  3 )

Die Spannungsabfälle (ohmsche Verluste) längs der einzelnen Leiter sind entsprechend
dem OHMSchen Gesetz durch die folgende Beziehung gegeben:

Ql  UA A * _ 1 1 2 3
2I1 qI(AiA 2 + + y / a)  Ai  AiA 2 + 241 3 + A 2 A 3

v 1 12 V » 1 mm 2 - 2 mm 2 * 3 mm 2

1 1 mm 2 1 mm 2 • 2 mm 2 + 1 mm 2 • 3 mm 2 + 2 mm 2 • 3 mm 2

72 V
= -yp = 6,545 V ,

1 72 36 1 72 24
= T -77V =—V = 3,273V, U3 = - — V = — V = 2,182V.

2» 1 1 11  O J. 1. xx

4 Hajko, Elektrik
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39. Zwei Elemente haben je eine Quellenspannung von 1,5 V und einen inneren Widerstand
Äi = 1,4 ü. Sie sollen so miteinander verbunden werden, daß sie an einen Stromkreis
mit dem Widerstand R = 0,2 O einen möglichst großen Strom abgeben können.

Lösung

Bei einer Serienschaltung wird die Quellenspannung der gesamten Batterie

1Z12B = 2J712,

und der innere Widerstand wird

= 2jRi .
Es ergibt sich demnach ein Strom

2tZ12 2 • 1,5 V
2Ri + R 2-1 ,40  + 0 ,20

Bei einer Parallelschaltung ergeben sich die folgenden Verhältnisse:

t l2B = U12, Rüi — “2“ 9

T - - 1 ,5  V - 1 A
ä, o,7 n + 0,2 ß --  ------’
— +7?

Es ist also ersichtlich, daß man zur Erfüllung der in der Aufgabe gestellten Bedingung
die beiden Elemente parallelschalten muß.

40. Auf welche Höchstspannung lädt sich ein Kondensator C auf, wenn die an das Netz
geschaltete konstante Quellenspannung mit dem Wert U 12  angegeben ist (Bild 24)?

Lösung

Durch den Kreis U 12  — Ri — R2 fließt der Strom

U12
Rl + R 2 ’

der an den Klemmen des Widerstands R 2 (Klemmen
a — b) die OnMsche Spannung

D

hervorruft. Auf die gleiche Spannung lädt sich auch der Kondensator C auf, da der
Widerstand R 3 keinerlei Spannungsverlust bedingt, denn der Kondensator C unter-
bricht den Stromkreis, so daß zwischen den Klemmen a und b kein Strom fließt.
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41. Ein prismatischer Körper aus Retortenkohle vom Querschnitt bc = 3 cm • 2 cm und
einer Länge a = 10 cm ist an eine Spannung vom Wert U = 10 V angeschlossen
(Bild 25). Es ist die elektrische Feldstärke und die Stromdichte im Innern des Prismas
zu bestimmen. (Die spezifische Leitfähigkeit der Retortenkohle wird mit n = 160 ß“  1
cm -1  angegeben.)

Lösung

Die elektrostatische Feldstärke berechnen wir als den
auf die Längeneinheit bezogenen Spannungsabfall

U 10 V— ----  = lOOVm- 1 .
a 0,1 m --------—

Die Stromdichte ist im Sinne ihrer Definition durch

A bc
gegeben. Für den Strom selbst können wir schreiben

j U U Hübe
Ria  a '

n bc
Für die Stromdichte erhalten wir dann

I Hübe hU 160 Q-  1 cm- 1 - 10 V __
- — = — .— = = ----------— -------------- = 160 A cm“ 2 .
bc abc 10 cma

42. Wieviel Trockenbatterien, deren jede eine Quellenspannung von Ui 2 = 4,5 V bei
einem inneren Widerstand R, = 3 Q hat, muß man in Serie schalten, damit ein im
Stromkreis enthaltenes Relais mit dem Widerstand R = 3000 anspricht, wenn dazu
eine Stromstärke des Wertes I = 0,025 A erforderlich ist?

Lösung

Für den angegebenen Stromkreis können wir entsprechend dem 2. KiRCHHOFFSchen
Gesetz schreiben

nU l 2  = IR + InR,
und nach Umformung

n(U12  — IR,) = IR,
d. h.,

IR 0,025 A-  3000 D 75
n = ------------- = ----------------------------- = ---------------- = 16,95.

U12  - IR, 4,5 V - 0,025 A • 3 Q 4,5 - 0,075
Für die Realisierung der gestellten Aufgabe sind also 17 Trockenbatterien erforderlich.

4*
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43. Welchen Widerstand R muß man mit einer Akkumulatorenbatterie in Serie schalten,
die sich aus n = 20 Elementen mit der jeweiligen Quellenspannung U12  — 1,9 V und
dem inneren Widerstand Rj = 0,01 £2 zusammensetzt und die mit einem Gleichstrom
der Spannung U= 110 V aufgeladen werden soll, wobei der vorgeschriebene Ladestrom
den Wert I = 4 A annimmt (Bild 26)?

Lösung

Für die Quellenspannung bzw. den inneren Widerstand der gesamten Batterie können
wir schreiben

i2g = nü 12  , R S i = nRi.
Gemäß dem 2. KiRCHHOFFSchen Gesetz gilt für den Stromkreis in Bild 26

IR si  +IRl = U -  U12s .
Daraus erhalten wir den gesuchten Widerstand

_ U — U12s  - IR s i  U-nU -InRi
*L = ----7 - --  = ----1 ----------- =

110 V -20 -  1,9 V — 4A-20-  0,01 Q
= -------------------- ----------------------- ------- = 17,8 Q .

4 A --------

Bild 26

44. Es sind die Ströme in den einzelnen Verzweigungspunkten eines Stromkreises zu be-
rechnen für den Fall, daß L7X = 12 V, U2 = 4 V, U3 = 6 V, R t = 20 £1, R 2 = 12 £1
und R 3 = 10 £2 beträgt (Bild 27).

Lösung

Wir wählen die positive Umlaufrichtung entgegen dem Uhrzeigersinn für die Schleifen I
und II. Weiterhin wählen wir die wahrscheinliche Richtung der Ströme Z19  Z2 , Z3 und
bezeichnen die positiven Richtungen der Quellenspannung so, daß sie im Kreis einen
Strom vom positiven zum negativen Pol hervorrufen. Dann schreiben wir das 2. Kirch-
HOFFsche Gesetz so um, daß die Spannungen und die Ströme in der Richtung des
gewählten positiven Umlaufs der betreffenden Schleife positiv sind. Das bedeutet für die
Schleife I

Ui - U 2 = RJi + R 2 Z2 ,
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Schleife II
U2 4“ U3 = R3I3 — R2I29

Stromverzweigungspunkt A
Ii — I 2 — I3 — 0 (1. KiRCHHOFFSches Gesetz)

Wenn wir die vorgegebenen Zahlenwerte einsetzen, ergibt sich:
Schleife I

12V -4V = 20QZx + 12QZ2 ,
Schleife II

4V  + 6V = i onz 3 - 12ftZ 2 .
In der Beziehung für die Schleife I drücken wir den Strom Zi mittels Z2 , in der Beziehung
für Schleife II den Strom Z3 ebenfalls mittels Z2 aus:

/] = ™2A = 1ä  + 1 . 2/!

und setzen die so erhaltenen Werte in die Beziehung für den Verzweigungspunkt A ein,
wodurch wir eine Gleichung zur Bestimmung der unbekannten Größe Z2 erhalten:

0,4 A - 0,6 12 - Z2 -(1 A + 1,2 Z2) = 0 ,
woraus folgt

I 2 = - 0,2143 A .

Das negative Vorzeichen deutet an, daß der Strom tatsächlich in umgekehrter Richtung
fließt, als wir zu Anfang annahmen. Die übrigen Ströme berechnen wir, indem wir den
so gewonnenen Wert für I2 in die entsprechenden Ausdrücke für Zx und Z3 einsetzen, also

4 = 0,4 A - 0,6 (-0,2143) A = 0,5286 A ,

h = 1 A + 1,2 (-0,2143) A = 0,7429 A .

45. Welchen Wert muß der Widerstand eines Shunts haben, durch den der Meßbereich
eines Amperemeters mit dem inneren Widerstand Z? = 0,2 Q auf das n = 5 fache ver-
größert wird?

Lösung

Wir können für den Verzweigungspunkt mit Hilfe des 2. Kirch-
HOFFSchen Gesetzes schreiben (Bild 28)

nl = I + I'.
Für die Schleife I gilt entsprechend dem 2. KiRCHHOFFschen Gesetz

0 = RJ - RI'.
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Aus beiden Beziehungen ergibt sich nach erfolgter Umstellung

RJ = Ri' = R(nl - / ) ,
RJ = I(n - 1) /? ,
jRj = (n - 1)Ä,

wobei n bedeutet, einen wieviel mal so großen Strom wir messen wollen, als das Instru-
ment selbst es ermöglichen würde. Daher hat der erforderliche Shunt den Widerstand

46. Wie kann man den Meßbereich eines Voltmeters, das einen Innenwiderstand von
= 100 Q hat, so erweitern, daß der Grundmeßbereich mit dem Maximalwert U= 10 V

auf den zehnfachen Wert U' = 100 V gesteigert wird?

Lösung

Wir wollen eine n mal so große Spannung (U' = nU) messen, als durch U angegeben
wird. Dabei ist U diejenige Spannung, für die das Voltmeter berechnet ist. Dazu ist es
notwendig, einen solchen Widerstand Ä mit dem Gerät in Serie zu schalten, der es er-
laubt, in Übereinstimmung mit dem OnMschen Gesetz die Beziehung

nU = IR + ZRj (Bild 29)

zu erfüllen. Da wir die Spannung U des Voltmeters mit dem Meßbereich von 10 V und
einem inneren Widerstand R im ÜHMSchen Gesetz durch die Beziehung

U = RJ
ausdrücken, können wir weiter schreiben

nRJ = IR + IR t

und erhalten also
R — (n — l)Äj.

Da wir im vorliegenden Fall den Meßbereich des Volt-
meters um Bild 29

100
U 1Ö“

erweitern wollen, ist ein in Serie zu schaltender Widerstand
R = (10 - 1) 100 Q = 900 n

erforderlich.
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47. Ein Rheostat mit dem Gesamtwiderstand R, an den eine Spannung U angelegt wurde,
soll als Potentiometer zur Speisung eines Stromverbrauchers mit dem Widerstand R'
verwendet werden. Eine Verschiebung des Schleifkontakts um die Strecke x verursacht
bei einer Gesamtlänge l eine lineare Veränderung des Widerstands, nämlich

oder das Potentiometer muß so geeicht werden, daß an einer bestimmten Stellung des
Schleifkontakts die am Verbraucher anliegende Spannung abgelesen werden kann.

Lösung

Unter Verwendung der Bezeichnungen in Bild 119 können wir gemäß dem OnMschen
und dem KiRCHHOFFSchen Gesetz schreiben

U = I,R X + Z(Ä - R x ),
0 = I2 R' - I t R X9

I h+12-
Mit Hilfe der ersten Gleichung drücken wir I, mit der zweiten I2 aus und setzen die so
gewonnenen Ausdrücke in die dritte Gleichung ein, wodurch wir erhalten

T _ U - I r R x T __ I r R x

R-R x ' 2 R' ’
U - IiR x _ T IA
R-Rx  ~ I1 + ~R r '

Daraus folgt

11 = U (R' + R ) (R  R ’ R )  + R R'(A -b R X ){R — R x ) + J<XK
und schließlich

Ux = hRx = u R , + + R *R , .

Wenn wir hier für R x den Ausdruck R x = Rx/l einsetzen, erhalten wir nach Umformung
schließlich als Endergebnis

x l x \  2 ’
~ K h)
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48. Welche Bedingungen müssen die in Bild 31 dargestellten Widerstände R t i  R 2 i  R3
und R4. erfüllen, damit in der WHEATSTONEschen Brücke durch den in der Diagonalen
liegenden Widerstand R 5 kein Strom fließt?

Lösung

Für die beiden Stromkreise I und II in Bild 31, in denen wir die jeweils positive Umlauf-
richtung der Schleife entgegen dem Uhrzeigersinn gewählt haben, wenden wir das
2. KiRCHHOFFsche Gesetz an. Wir setzen dabei voraus, daß der durch den Widerstand R
fließende Strom ein Nullstrom ist, d. h., daß hier 1 = 0 ist. Demnach gilt für den Strom-
kreis I

0 — R3I3 — R1 2 + R5 ’ 0»
für den Stromkreis II

0 = R4I3 — R2I2 + R5 * 0 .
Daraus erhalten wir zwei weitere Gleichungen

R1I2 ~ R3I3) R2I2 ~ R4I3
und durch deren gegenseitige Division

Ri R
R 2 Ra

Das ist nunmehr die Bedingung, die erfüllt sein muß, da-
mit durch den Widerstand R s kein Strom fließt.

49. Wie kann der Widerstand R G eines Galvanometers G, das entsprechend Bild 32 a in
einer WHEATSTONEschen Brücke sitzt, gemessen werden, wenn kein anderes Galvano-
meter zur Verfügung steht?

Lösung

Die üblicherweise verwendete Schaltung der WHEATSTONEschen Brücke in Bild 32 a
verändern wir nach Bild 32 b, oder wir schließen das Galvanometer dort an, wo sich
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sonst der unbekannte Widerstand X befindet, und ordnen dafür in der Diagonalen einen
weiteren Schalter V2 an.
Wenn wir die Widerstände R± und R 2 so verändern, daß sich der Ausschlag des Galvano-
meters G beim Ein- und Ausschalten des Schalters V2 nicht ändert, dann fließt in der
Diagonalen offensichtlich kein Strom, und es gilt - wie das vorhergegangene Beispiel
zeigt - die Beziehung

R G R
Ri R 2

Daraus ergibt sich für den Widerstand des Galvanometers die folgende Beziehung:

— 1

50. An einer Netzspannung von U = 220 V sind in einem Schulhaus n = 20 Glühlampen
installiert, deren jede eine Leistung von P = 60 W aufnimmt. Die Anschlußleitung hat
eine Länge l = 25 m. Wie groß muß die Querschnittsfläche A des Anschlußkabels
sein, damit der von ihm hervorgerufene Spannungsabfall p = 1,5% nicht übersteigt?
Die Leitung soll aus Kupfer bestehen.

Lösung

Der am Widerstand R der Zuleitung auftretende Spannungsabfall A U kann mit Hilfe
des hindurchfließenden Stroms ausgedrückt werden

AU -RI .
Dabei berechnen wir den Widerstand der Anschlußleitung aus der doppelten Länge der
Leitung (Bild 33)

(Z Länge, A Querschnitt, q spezifischer Widerstand).
Der Strom I kann wie folgt definiert werden:

/=  P 8 nP
U U ’

wobei die Gesamtleistungsaufnahme aller Stromverbraucher darstellt, so daß wir
nach dem Einsetzen von R und I für die Spannungsabnahme die Beziehung

erhalten. Die Spannungsabnahme A U können wir auch mit Hilfe der Prozentangabe p
durch die Beziehung ausdrücken

u —
100

AU
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Wenn wir beide die Spannungsabnahme enthaltenden Ausdrücke gleichsetzen, finden
wir

2/ Pn p
* A U 100

Daraus ergibt sich
gZlPn 0,0178 £1 mm 2 m- 1 • 2 • 25 m • 60 W • 20

A = -777— • 100 = — --------------- ------------------ • 100 =
U 2 p

= 1,47 mm2 .
220 2 V 2 • 1,5

In der Praxis würden wir den nächsthöheren serienmäßig produzierten Querschnitt von
1,5 mm  2 verwenden.

51. Der Widerstand der Heizspirale in einem elektrischen Kocher hat den Wert R = 16 ü.
Nach wieviel Minuten beginnt eine Wassermenge der Masse m = 0,6 kg im Kocher zu
sieden, wenn die Anfangstemperatur des Wassers mit = 10 °C angegeben ist? Der
Wirkungsgrad des Kochers wird mit rj = 60% und die Netzspannung mit U = 120 V
angegeben.

Lösung

Die Wärmemenge, die für das Erhitzen von 600 g Wasser um eine Temperaturdifferenz
von A& = 100 °C — 10 °C = 90 K bei hundertprozentigem Wirkungsgrad des Kochers
benötigt würde, ist

Q' = c/wzl#,
wobei c die spezifische Wärmekapazität des Wassers darstellt. Bei einem nur 60 %igen
Wirkungsgrad des Kochers ist die Gesamtwärme, die vom Kocher geliefert wird, größer,
nämlich

Q' cmA'd'
Q = - = -------- .n n

Andererseits berechnen wir die elektrische Energie aus
U U 2W = Ult = U - t  = — t .
R R

Durch Gleichsetzen von Gl. (1) u. Gl. (2) und Berücksichtigung von
V2 11 = 1 w = — — cal s’ 1 = 0,239 cal s" 1
Ü 4,1868

ergibt sich
cmA&R 1 cal g -1  K -1  • 600 g • 90 K • 16 <3 .t = ____ ___— _________— __________ = 41 9 s äj 7 mm

r/U 2 0,6 ■ 1202 V2 • 0,239 cal W“ 1 s" 1 -------

(1)

(2)

52. Wenn eine Glühlampe bei einer Spannung U = 120 V mit einer Leistungsaufnahme
P = 100 W betrieben wird, so ist der Widerstand ihres Glühfadens zehnmal so groß wie
bei einer Temperatur von 0 °C. Wie groß ist der Widerstand der Glühlampe bei 0 °C,



591.2. Elektrodynamik

und welcher Wert ergibt sich für den Temperaturkoeffizienten des Widerstands, wenn
die Betriebstemperatur des Glühfadens bei t = 2000 °C liegt und wenn wir eine lineare
Temperaturabhängigkeit des Widerstands annehmen können?

Lösung

Den Ausdruck für die Leistung eines elektrischen Stroms können wir mit Hilfe des
OHMschen Gesetzes wie folgt umformen :

U U 2
P=UI=U — = —.

Rt R t

Daraus ergibt sich der Widerstand des Glühfadens der Lampe im Betriebszustand zu
U 2 120 2 V 2 14400 .

R t = — = -----— = -------- H = 144
P 100 W 100

Da der Widerstand des Glühfadens bei 0 °C nur ein Zehntel dieses Wertes betragen soll,
gilt

R 144
7? ° = ro = ß =-

Den Temperaturkoeffizient a des Widerstands erhalten wir aus der bekannten Be-
ziehung zwischen den Widerständen R t und R Q

R t = R o (1 + at).
Wenn wir berücksichtigen, daß R t = 10 R o ist, gilt

10P = R (1 + a • 2000 K)
und daraus

10 - 1
<* = ■ = 4,5 • IO’ 3 K’ 1 .2000 K —----------------

53. Ein Staubsauger, dessen Typenschild eine Netzspannung von U' = HO V und eine
Leistung von P = 190 W angibt, soll an ein Netz mit der Spannung U = 220 V an-
geschlossen werden. Wie groß muß der vorgeschaltete Widerstand sein (Bild 34)?

Lösung

Durch den Motor des Staubsaugers darf nur ein Strom
vom Betrag

(1)

fließen. Er soll am gesuchten Widerstand R den Spannungsabfall RI bewirken, der
seinerseits gleich der Differenz zwischen Netzspannung U und Betriebsspannung U'
sein muß, also

U - U' = R I .
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Durch Einsetzen von (1) in (2) folgt

Daraus erhalten wir den Wert des Widerstands zu
(U - U')U'

R ~ p ~
(220 V-  110 V) 110 V _- ----------------------------- = 63,68 ß .

190 W — -------

54. In welcher Weise muß man n = 24 Elemente mit jeweils einer Quellenspannung vom
Wert U12  = 1,5 V und dem inneren Widerstand Ri = 0,8 Q in einem Stromkreis mit
dem Widerstand R = 1,2 £1 schalten, damit ein angeschlossener Stromverbraucher eine
maximale Leistung aufnimmt? Welcher Strom fließt dann durch den Verbraucher?

Lösung

Wir setzen voraus, daß die resultierende Anordnung einer Batterie entspricht, die aus
insgesamt m Reihen besteht, die zueinander parallelgeschaltet sind. Jede Reihe besteht
ihrerseits aus n in Serie geschalteten Elementen (Bild 35). Die unbekannten Zahlen-
werte m und n wird man unter Berücksichtigung der in der Aufgabe gestellten Bedingung
ermitteln müssen.
Jede Reihe wird dann durch die Quellenspannung

CZ12E = nU12  (1)
und den inneren Widerstand

Ri* = nRi
gekennzeichnet sein.
Da die einzelnen Reihen parallelgeschaltet sind, wird auch
die resultierende Quellenspannung der gesamten Batterie
durch Gl. (1) angegeben sein. Jedoch wird der resultierende
innere Widerstand der gesamten Batterie

R? nRi
JK.ls  ------- = ----m m

Die Batterie wird imstande sein, an einen Stromkreis den Strom
I _ nU12  _ nU12  _ nU 12  __ nNUi 2

~ R i ß  + R “ nR{ , D - w 2 , D ~ n 2 Ri + NR-------HA — Ai + Am --------------N
abzugeben.
Die Leistung am Stromverbraucher wird durch folgende Beziehung ausgedrückt:

p pp ..." .. .
tfB, + JVA)2

Für das Maximum der Leistung gilt
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Demnach ist auch

{n2 Ri + NR) 2 2nN 2 Ul 2 R - n 2 N 2 Ut 2 R(4n 3 Rf + 4nR t NR)
(yi2 Rt + NR)*

Daraus folgt
-n 4 Ä? + N 2 R 2 = 0 ;

. N 2 R 2 INR /24 • 1,2 „

Unter diesen Bedingungen ergibt sich für die Stromstärke
nNE 4 -24 -1 ,5V

I = -------------- — ----------------------------- = 3,75 A .
n2 Ei + NR 16 • 0,8 ß + 24 • 1,2 Ü - -  ------

55. Welche Kupfermenge wird innerhalb einer Zeit von 24 h durch einen Strom von 100 A
Stärke aus einer Kupfervitriollösung ausgeschieden? (Das elektrochemische Äquivalent
des Kupfers wird mit Ä = 0,328 mg A“ 1 s -1  angegeben.)

Lösung

Durch Verwenden des ersten FARADAYschen Gesetzes und Einsetzen der gegebenen
Größen erhalten wir

m = Alt = 0,328 mg A“ 1 s“ 1 • 100 A • 24 • 3600 s = 2833920 mg = 2,834 kg

(Z Stromstärke, t Zeit, m Masse des abgeschiedenen Stoffes, Ä elektrochemisches
Äquivalent des abzuscheidenden Stoffes).

56. Ein Metallgegenstand, der eine Oberfläche von 120 cm 2 hat, wurde galvanisch ver-
nickelt, wobei ein Strom von 0,3 A während einer Zeit von 5 h floß. Berechnen Sie die
Dicke der aufgetragenen Nickelschicht. (Nickel ist zweiwertig.)

Lösung

Wir wenden das FARADAYsche Gesetz an:
m = Ält.

Ä läßt sich durch die folgende Beziehung ausdrücken:
.. aA = Tf

(a relative Atommasse, v Wertigkeit, F FARADAYsche Zahl). Der Quotient a/v ist das
chemische Grammäquivalent.
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Für die Masse des abgeschiedenen Metalls gilt
316 926 g
193000

58,69 g
2 • 9,65 • IO4 C

0,3 A • 60 • 60 s • 5 = = 1,643 g .m = — It =
vF

Da wir die Masse m (in Gramm) als das Produkt aus der bekannten Fläche A (in cm 2 ),
der spezifischen Dichte q (in gern -3 ) und der gesuchten Schichtdicke d (in cm) aus-
drücken können, wird

m = Ade,
so daß wir schließlich die gesuchte Schichtdicke erhalten

1,643 g _
Tq == —— - —— ---------- = 1,557 • 10“ 3 cm.

120 cm 2 • 8,8 g cm -3  ---------------------

57. Ein Gegenstand mit der Oberfläche A = 20 dm2 soll auf galvanischem Wege mit einer
Silberschicht von d = 0,2 mm Dicke versehen werden. Wieviel Silber muß dazu auf-
gebracht werden, und wie lange wird der Galvanisierungsprozeß dauern, wenn man
jeden Quadratdezimeter der Fläche mit einem Strom der Dichte J = 0,4 A dm-2 belasten
kann?

Lösung

Zunächst ermitteln wir die notwendigerweise abzuscheidende Masse des Silbers. Für
sie gilt

m = Ado = 20 cm 2 • 10 2 • 0,2 • 10“ 1 cm • 10,5 g cm -3  = 420 g = 420000 mg.

Die für den Galvanisierungsprozeß notwendige Zeitspanne bestimmen wir nach dem
FARADAYSchen Gesetz aus

_ m _ 420000 mg — 46958
* ÄJA 1,1 18mg A“ 1 s“ 1 ’ 0,4 Adm  -2  « 20dm 2 ------—

Aufgaben

44. Welche elektrische Ladungsmenge lie-
fert ein galvanisches Element, dem 20 h
lang ein Strom von Z = 0,5 A entnom-
men wird?

45. Wie lange dauert es, bis durch einen
Strom von I = 1,5 A eine elektrische
Ladung von 7000 C transportiert wird?

46. Die Wicklung eines elektrischen Gerätes
wurde aus einem Leiter mit dem Quer-
schnitt A hergestellt und soll den Strom
I = 3 A aufnehmen. Wie groß muß der
Querschnitt des Leiters sein, wenn die

Stromdichte in ihm den Wert i =
= 2,5 A mm  -2  nicht überschreiten soll?

47. Es soll ein Rheostat mit einem Wider-
stand von 0,2 Q gebaut werden. Als
Werkstoff steht ein Nickelinstreifen
von 10 mm Breite und 0,5 mm Dicke
zur Verfügung. Welche Länge muß
der Nickelinstreifen erhaltende = 4 x
x IO -5  Q cm)

48. Wie groß ist der spezifische Widerstand
eines Leiters von 6 mm  2 Querschnitt,
wenn wir auf l = 500 m Länge beim



1.2. Elektrodynamik 63

Durchfluß des Stroms I = 6 A eine
Spannung von U = 14 V messen?

49. Zur Herstellung einer elektrischen Lei-
tung wurden 400 m Kupferdraht von
6 mm  2 Querschnitt verwendet. Welchen
Widerstand hat diese Leitung?

50. Eine Leitung aus Kupferdraht hat bei
einem Querschnitt von 0,1 mm2 eine
Masse von 0,3 kg. Berechnen Sie den
Widerstand dieses Leiters, wenn der
spezifische Widerstand des Kupfers mit
1,7 • 10 -6  ß cm und die Dichte mit
8,9 g cm -3  angegeben wird.

51. In welchem Verhältnis stehen die Mas-
sen einer Kupfer- und einer Aluminium-
leitung, die bei gleicher Länge gleichen
elektrischen Widerstand aufweisen
sollen?

52. Eine Kupferleitung hat einen Quer-
schnitt At  = 25 mm2 . Welchen Quer-
schnitt A 2 muß eine Aluminiumleitung
haben, damit sie den gleichen elektri-
schen Widerstand bekommt?

53. Bei einer Temperatur von 15 °C hat
eine Kupferleitung einen Widerstand
von 21 ß. Wie groß ist ihr Widerstand
bei 30 °C?

54. Damit ein elektrischer Kocher die ge-
forderte Leistung erreicht, muß er bei
einer Betriebstemperatur t = 700 °C
einen Widerstand R = 24 ß haben. Wie
groß ist der Widerstand der Heizspirale
bei t0 = 20 °C, wenn der Temperatur-
koeffizient des Widerstands den Wert
a = 0,00002 K- 1 hat?

55. Welche Temperatur hat eine Spule, die
aus Kupferdraht von 350 m Länge und
1 mm2 Querschnitt gewickelt wurde,
wenn sie im Betriebszustand einen
Widerstand von R t = 10,5'0 aufweist?

56. Die Wicklung des Elektromagneten
einer Dynamomaschine ist aus Kupfer-
draht hergestellt, der bei einer Tempe-
ratur Zi = 10 °C einen Widerstand
R t = 14,2 ß hat. Im Betriebszustand
vergrößert sich der Widerstand der
Wicklung auf den Wert R 2 = 16,5 ß.

Wie hoch ist die Betriebstemperatur?
57. a) Es ist die Differenz des Widerstands

einer Telegrafenleitung für maximale
Sommer- und minimale Wintertempe-
ratur von 4-30 °C bzw. —30 °C zu er-
rechnen. Der Leiter besteht aus einem
100 km langen Eisendraht von 10 mm  2

Querschnitt mit dem spezifischen Wider-
stand q = 8,7 • 10~ 6 ß cm, der Tem-
peraturkoeffizient beträgt = 6 x
X 10- 3 K" 1 .
b) Wie ändert sich das Resultat der vor-
hergehenden Rechnung, wenn wir die
bei der Erwärmung im Sommer ein-
tretende Verlängerung des Drahtes be-
rücksichtigen, die unter dem Einfluß
eines Längenausdehnungskoeffizienten
von a' = 12 • 10 -6  K -1  erfolgt?

58. Vier Widerstände mit den Werten
Ri = 1 ß, R 2 = 2 ß, R 3 = 3 ß, =
= 4 ß sind einmal in Serie, einmal par-
allel zu schalten. Es ist der jeweils resul-
tierende Widerstand zu bestimmen.

59. Wie groß ist der resultierende Wider-
stand von 7 nach Bild 36 geschalteten
Widerständen?
(Ri = 10 ß, R 2 = 10 ß,  R 3 = =
= 100 ß, R 5 = R 6 = Ri = 5 ß)

60. Wie groß ist der Gesamtwiderstand der
in Bild 37 dargestellten Widerstands-
kombination?

61. Ein 6-V-Autoakku versorgt eine Lampe
mit 12 ß, die Hupe mit 2 ß und einen
Scheinwerfer mit 1 ß Widerstand. Wei-

Bild 37
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eher Gesamtstrom wird dem Akku bei
gleichzeitiger Betätigung der drei paral-
lelgeschalteten Verbraucher entnom-
men?

62. Eine Klingelbatterie versorgt über eine
85 m lange Doppelleitung von 0,9 mm
Durchmesser (Kupferdraht) einen
Wecker, dessen Spule einen Widerstand
von 6 ß hat und dabei einen Strom von
0,35 A aufnimmt. Wie groß muß die
Spannung der Klingelbatterie sein?

63. Eine aus 50 hintereinandergeschalteten
Elementen bestehende Batterie speist
ein äußeres Netz, das aus einem 20 km
langen Eisendraht von 3 mm2 Quer-
schnitt besteht und das einen Verbrau-
cher mit einem Widerstand von 90 Q
enthält. Die Quellenspannung und der
innere Widerstand jedes einzelnen Bat-
terieelements betragen 1,4 V bzw. 0,4 £2.
Zu berechnen ist die Stromstärke unter
der Maßgabe, daß Eisendraht vom
spezifischen Widerstand 8,7 • 10“ 6 Q cm
verwendet wird.

64. Die Pole eines LECLANCHE-Elements
sind über einen Widerstand R o =3 ,1Q
miteinander verbunden. Der innere
Widerstand des Elements hat den Wert
Ri = 0,5 Q, und seine Quellenspannung
beträgt 1,5 V. Welche Stromstärke stellt
sich ein?

65. Eine Doppelleitung aus Kupferdraht
mit einem Querschnitt A = 10 mm2

überträgt auf eine Entfernung von
/ = 500 m einen Strom von Z = 5 A.
Die Klemmenspannung am Anfang der
Leitung hat den Wert U = 220 V. Wie
groß ist die Klemmenspannung am
Verbraucher? Wie groß ist der Span-
nungsverlust?

66. Ein Kupferseil besteht aus sieben Einzel-
drähten von je 1,7 mm Durchmesser.
a) Wie groß ist der gesamte Widerstand
des Seils bei einer Länge von 1000 m?
b) Aus dem Seü wird eine Doppelleitung
hergestellt, die an ihrem Anfang eine
Spannung von U r = 220 V aufweist.

Wie groß wird die Spannung U2 am
Leitungsende sein, wenn durch den
Leiter ein Strom von 10 A fließt?
c) Welche Stromstärke Zk wird diese
Doppelleitung aufnehmen, wenn an
ihrem Ende ein Kurzschluß eintritt?

67. Ein Voltmeter, das mit einem Wider-
stand R = 104 ü in Serie geschaltet
wird, zeigt, an eine Spannungsquelle von
Uo = 120 V angeschlossen, eine Span-
nung vom Betrag Ui = 50 V an. Wenn
das gleiche Voltmeter mit einem un-
bekannten Widerstand R x an gleicher
Spannungsquelle in Serie geschaltet
wird, zeigt es nur noch eine Spannung
U2 = 10 V an. Berechnen Sie den un-
bekannten Widerstand R x .

68. Zwei Voltmeter mit gleichem Meß-
bereich, aber unterschiedlichem innerem
Widerstand, und zwar Än = 17300 Q
und R i 2  = 5200 ß, sind hintereinander-
geschaltet und an eine Spannung von
220V angeschlossen. Welche Ausschläge
werden die beiden Voltmeter zeigen?

69. Eine Salzlösung mit dem Widerstand
Ri = 1 ß ist durch Kupferdrähte, deren
Gesamtwiderstand R 2 = 2 £1 beträgt,
an ein DANiELL-Element mit einer
Quellenspannung von 1,1 V und dem
inneren Widerstand R t = 0,5 Q ange-
schlossen. Welcher Strom fließt im
Stromkreis, und wie groß ist die Klem-
menspannung des Elements?

70. Drei galvanische Elemente mit den Ur-
spannungen Ui = 1,3 V, U2 = 1,5 V
und U3 = 2 V haben die inneren Wider-
stände Rn = R i 2  = Ri 3 = 0,2 Q und
sind gemäß Bild 38 miteinander ver-
bunden. Der Widerstand beträgt R =
= 0,55 Q. Es sind die Teilströme Zi , I2 ,
Z3 zu ermitteln.

71. Welche Ströme fließen durch die ein-
zelnen Widerstände der in Bild 39 dar-
gestellten Schaltanordnung, wenn Ri =
= 5 £2, R 2 = 2 £2, J? 3 = 4 £2 und Ei =
= 4,5 V, E 2 = 2 V groß ist? Welche
Spannung liegt am Widerstand R 3 an?
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stand von 3000 £1 hat einen Meßbereich
bis 150 V und eine in 150 Teilstriche
unterteilte Skale. Welcher Strom fließt
durch das Voltmeter bei vollem Zeiger-
ausschlag? Welcher Widerstand müßte
vorgeschaltet werden, um den Meß-
bereich des Instruments auf 600 V zu
erweitern? Welchen Wert zeigt dann ein
einzelner Teilstrich noch an?

76. Welche Ladungsmenge fließt durch
einen Leiter mit dem Widerstand R =
= 10 Q innerhalb einer Zeit von 20 s,
wenn zwischen den Leiterenden eine
Spannung von 12 V besteht? Welche
Arbeit verrichtet dabei der Strom?

77. In einer Wohnung wird eine 25- W-
Lampe täglich für die Dauer von vier
Stunden betrieben. Was muß dafür
monatlich bezahlt werden, wenn wir den
Monat mit 30 Tagen ansetzen und der
Preis für die Kilowattstunde Elektro-
energie 0,08 M beträgt?

78. Welche Wärmemenge setzt ein elektri-
scher Kocher frei, der, an 120 V Span-
nung angeschlossen, drei Stunden lang
von einem Strom der Stärke I = 8,3 A
durchflossen wird?

79. Zwei Glühlampen von 100 bzw. 60 W
Leistung sind an die gleiche Spannung
angelegt. Welche von ihnen hat den
größeren Widerstand?

80. Wie lange war ein elektrischer Kocher
von 600 W Leistungsaufnahme ein-
geschaltet, wenn der Zähler einen Strom-
verbrauch von 1,8 kWh anzeigt?

81. Wie groß muß die Leistung eines
elektrischen Kochers sein, wenn er zwei
Liter Wasser von 10 °C innerhalb von
25 min auf 1 00 °C erhitzen soll, wobei von
der vom Kocher aufgenommenen elek-
trischen Leistung nur 70% für die Er-
wärmung des Wassers wirksam werden?

82. Wie groß muß der Widerstand eines
Stromverbrauchers sein, der bei einer
Spannung von 220 V stündlich 3690 kJ
Wärme freisetzen soll?

83. Welcher Strom fließt durch einen elek-

72. Ermitteln Sie die Stromstärken in den
Verzweigungen der Schaltanordnung in
Bild 40, wenn die Quellenspannung
eines Elements den Wert U r — 1,5 V
hat und wenn die drei Elemente in
Serie geschaltet sind. Der innere Wider-
stand eines Elements beträgt 0,5 Q. Die
Widerstände in den Abzweigungen sind
Ri  = 4 Q und R 2 = 12 Q.

73. Ein Milliamperemeter, dessen Skale
100 Teilstriche enthält, hat einen inneren
Widerstand = 10 ß und soll bei einer
Stromstärke Z' = 10 mA a) als Volt-
meter bis zur Spannung U = 300 V
und b) als Amperemeter bis zur Strom-
stärke 1 = 20 A verwendet werden.
Welcher Vorschaltwiderstand bzw.
Shunt wird dazu erforderlich?

74. Ein Amperemeter hat einen Innenwider-
stand von 0,02 D und erlaubt, Ströme bis
zu 1,2 A Stärke zu messen. Wie muß ein
Nebenwiderstand bemessen sein, damit
man mit dem so veränderten Instrument
Ströme bis zu einer Stärke von 6 A
messen kann?

75. Ein Voltmeter mit einem Innenwider-
5 Hajko, Elektrik
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trischen Kocher, der, mit einer Span-
nung von 120 V betrieben, innerhalb
von drei Stunden 25 1 Wasser um 50 °C
erwärmt, wenn der Wirkungsgrad des
Kochers mit 100% angenommen wird?

84. Wie groß ist der Wirkungsgrad eines
elektrischen Kochers, der, mit 220 V
betrieben, bei einem Strom von 3 A
einen Liter Wasser innerhalb 11 min
von 18 °C bis zum Sieden erhitzt?

85. Die Leistung eines unbekannten Elek-
tromotors soll ohne Verwendung eines
Wattmeters bestimmt werden. Der Mo-
tor war im Gleichstrombetrieb 10 min
angeschlossen, und ein Zähler zeigte
einen Stromverbrauch von 0, 1 kWh an.

86. Ein Elektromotor hat eine Leistung von
1,1 kW. Bei einer Spannung von 120 V
nimmt er einen Strom von I = 10 A auf.
Wie groß ist sein Wirkungsgrad? Was
kostet der Stromverbrauch bei 8 h Be-
trieb, wenn für die Kilowattstunde ein
Preis von 0,08 M berechnet wird?

87. Wie groß ist die Stromstärke, die ein
5,9-kW-Motor bei 220 V dem Netz ent-
nimmt, wenn er voll belastet wird und
sein Wirkungsgrad 82 % erreicht?

88. Ein Elektromotor ist einem 440-V-Netz
angeschlossen, dem er einen Strom von
20 A entnimmt. Wie groß ist seine Lei-
stung, und was wird ein fünfstündiger
Betrieb kosten, wenn eine Kilowatt-
stunde mit 0,04 M berechnet wird?

89. An ein elektrisches Gleichstromnetz
von 220 V Spannung ist ein 100-ß-
Widerstand angeschlossen. Welche Lei-
stung nimmt er auf, und welche Menge
Wasser könnte theoretisch innerhalb

1.3. Elektromagnetismus

einer Stunde damit von 18 °C bis zum
Sieden erhitzt werden?

90. Die zulässige Belastung eines Wider-
stands von 2000 Q beträgt laut Angabe
des Herstellerbetriebes P = 4 W. Wel-
chen Strom darf man durch den Wider-
stand leiten?

91. Was kostet die elektrische Erwärmung
eines Liters Wasser von 10 auf 100 °C,
wenn der Preis für eine Kilowattstunde
mit 0,08 M angegeben ist und der Wir-
kungsgrad derVorrichtung 90 % beträgt?

92. Wie muß man 48 gleichartige Elemente,
jedes mit einem inneren Widerstand von
0,2 Q, zu einer Batterie vereinigen, da-
mit ein Außenwiderstand von 2,4 Q eine
maximale Leistung aufnehmen kann?

93. Welche Kupfermenge wird elektroly-
tisch aus einer Kupfervitriollösung aus-
geschieden, durch die 24 h lang ein
Strom von 100 A fließt?

94. Welche Stromstärke fließt durch einen
Elektrolyten der Art CuSO 4 , wenn in-
nerhalb von 15 min 3 g Kupfer aus-
geschieden werden?

95. Es sollen 25 Löffel, jeder mit einer Ober-
fläche von 0,8 dm 2 , auf elektrolytischem
Wege versilbert werden, wobei jeder
Löffel eine Silbermenge von 5 g auf-
nimmt. Die zulässige Stromdichte be-
trägt 0,3 A dm -2  . Mit welcher Strom-
stärke muß gearbeitet werden, und wie
lange dauert der Prozeß?

96. Ein zu versilbernder Gegenstand hat
eine Oberfläche von 200 cm 2 . Es wird
mit einer Stromstärke von I = 0,5 A
gearbeitet. Nach welcher Zeit erreicht
die Silberschicht eine Dicke von 0,02 cm?

Die Kraft P12  , mit der zwei stromdurchflossene Leiter aufeinander wirken, kann man
entsprechend den Vorstellungen von Ampere aus der Beziehung errechnen (Bild 41):

e t t £ £ dj 2 x(d  x f 1>2)f, 2 =-v 2 ---------- ---------- ,
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( 0 = 4tu • 10~ 7 Vs A -1  m -1  magnetische Feldkonstante, bisher auch absolute Permea-
bilität oder Induktionskonstante genannt; und I2 die Ströme in den beiden Leitern,
dj x und ds2 Leiterelemente, r l t 2  der Ortsvektor des einen Leiters in bezug auf das
entsprechende Element des anderen Leiters).
Dabei muß die Integration vollständig um beide Leiter ausgeführt werden.
Die magnetische Induktion, die der Strom I in einem bestimmten Raumpunkt, der
durch den Ortsvektor r bezeichnet wird, erzeugt, wenn sich dieser Raumpunkt im
Vakuum befindet, wird durch

B =
4n J r 3

angegeben, das sog. Biot-Savart-Laplacesche Gesetz.
Dabei ergibt sich für die Größe B die Einheit Vs m -2  =
= Wbm-2  — T (Tesla), wenn die einzelnen eingehenden
Größen im Internationalen Einheitensystem ausgedrückt
werden. Die Beziehung zwischen Wbm-2  und der bislang oft angewendeten Einheit
des CGS-Systems Gauß (G) ist wie folgt definiert:

1 G = 10~ 4 Wb m- 2 .
Auf das Element d eines Leiters, das vom Strom / durchsetzt wird, wirkt ein Magnet-
feld mit der Induktionsflußdichte (Induktion) B durch die Kraft

dF = Id sxB .

Der Zusammenhang zwischen dem Vektor der magnetischen Induktion B und dem
Vektor der magnetischen Feldstärke H wird durch die Beziehung

B = fiH

angegeben, wobei /u, die Permeabilität des betreffenden Stoffes

1 + — ) = Ojur ,
PoJ

h die magnetische Suszeptibilität des Mediums und /z r die Permeabilitätszahl (bisher
auch relative Permeabilität genannt) des Mediums bedeutet.
Im Internationalen Einheitensystem ist die Einheit der magnetischen Feldstärke das
Am -1  . Jedoch wird oft auch noch die aus dem CGS-System stammende Einheit
Oersted (Kurzzeichen Oe) verwendet, wobei der Zusammenhang beider Einheiten
wie folgt definiert ist:

10 31 Oe = ----- Am  -1  .
47t

5*
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Unter dem Begriff magnetischer Fluß (Induktionsfluß) durch eine bestimmte Fläche
verstehen wir die Größe

0 = JSdA ,

wobei B die magnetische Induktion und dA der Flächenvektor ist, der zum Flächen-
element d t gehört. Wenn der Vektor B senkrecht zum Flächenelement dA gerichtet
ist (d. h. parallel mit dem Vektor d 4 verläuft), kann man schreiben

d0 = BdA.

Für den Fall, daß die magnetische Induktion B in jedem Punkt der Fläche A den-
selben Wert hat, gilt

0 = BA.

Dabei ergibt sich, wenn wir B und A gemäß, dem Internationalen Einheitensystem
einsetzen, für 0 die Einheit Weber (Wb). Bisher wurde auch noch die aus dem CGS-
System stammende Einheit Maxwell (Mx) verwendet, für die gilt

1 Mx = IO-8  Wb.

Wenn ein geschlossener Integrationsweg mit einem geschlossenen elektrischen Strom-
leiter gekoppelt ist, gilt die Durchflußgleichung

<£ B ds = Np 0 I

(ds Wegelement, I Stromstärke im Leiter, p 0 magnetische Feldkonstante, wenn der
Leiter im Vakuum angeordnet ist, N Zahl, die ausdrückt, wie oft der Integrationsweg
den Leiter umschließt).
Die Durchflußgleichung kann man auch in der Form

jHds = NI

schreiben, wobei H die magnetische Feldstärke bedeutet. Den Wert des angegebenen
Integrals bezeichnen wir auch als magnetomotorische Kraft,
Den magnetischen Widerstand eines magnetischen Kreises berechnen wir nach der
HoPKiNSschen Formel

p A

(p Permeabilität des Mediums, aus dem der magnetische Kreis gebildet wurde, / seine
Länge, A sein Querschnitt). Wenn ein Leiter der Länge l sich mit der Geschwindig-
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keit v in einem homogenen magnetischen Feld der Induktion B senkrecht zu dieser
bewegt, wird in ihm eine elektrische Spannung induziert, die gegeben ist durch

= Blv.

Allgemein wird in einem geschlossenen Leiter immer dann eine Spannung induziert,
wenn sich der Induktionsfluß, der durch die vom Leiter umschlossene Fläche strömt,
verändert. Dabei ist die induzierte Spannung gleich dem negativen Wert der zeit-
lichen Ableitung des Induktionsflusses, der durch die vom Leiter umschlossene Fläche
hindurchtritt, also

dr

Beim Anwenden dieser Beziehung muß man in Übereinstimmung mit ihrer Ableitung
den magnetischen Induktionsfluß dann als negativ bezeichnen, wenn er auf die Seite
der vom Leiter umschlossenen Fläche fließt, von der aus gesehen der Strom im Leiter
entgegen dem Uhrzeigersinn gerichtet ist. Im anderen Fall ist der Induktionsfluß
positiv.
Die Selbstinduktionsspannung, die durch zeitliche Änderung der Stromstärke I indu-
ziert wird, berechnen wir entsprechend der Beziehung

u si = ~ L ~’
dr

wobei L die Induktivität des Leiters ist, in dem die Selbstinduktion auftritt. Wir be-
rechnen sie aus der Formel

L = —

so daß L eigentlich die Proportionalitätskonstante zwischen dem magnetischen Induk-
tionsfluß 0 durch die von einem Leiter umschlossene Fläche und dem Strom Z, der
durch diesen Leiter fließt, darstellt.
Wenn in der Nähe eines Leiters 1 ein anderer Leiter 2 angeordnet ist, so wird in diesem
eine Induktionsspannung U12  auftreten, wenn sich im Leiter 1 der Strom zeitlich
ändert:

U - -L  d/1
< 12 ~ 12  ~ — 9

dt

wobei L 12  die Wechselinduktivität ist ; sie ist eigentlich die Proportionalitätskonstante
zwischen dem magnetischen Induktionsfluß 0 12  , der infolge der Existenz des Stroms
im Leiter 1 durch die von Leiter 2 umschlossene Fläche tritt, und dem Strom selbst.
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Deshalb gilt

Völlig analog wird im Leiter 1 bei einer Änderung des Stromes im Leiter 2 infolge
der Wechselinduktivität die Spannung

induziert, wobei

Li2 — L 2 i
ist.
Die Energie des Magnetfeldes eines elektrischen Stromes I, der durch einen Leiter
fließt, dessen Induktivität mit L angegeben wird, berechnen wir aus

W = — LI 2 .
2

B Beispiele

58. Bestimmen Sie die magnetische Induktionsflußdichte und die magnetische Feldstärke
im Abstand l = 5 cm von einem sehr langen, geraden Leiter, durch den ein Strom
Z = 5 A fließt.

Lösung

Wir gehen zunächst von der Definition der magnetischen Induktion aus

B = C x ?= 4k J r 3 *
Da es sich um einen theoretisch unendlich langen Leiter handeln i;
soll, können wir in Übereinstimmung mit den in Bild 42 ver-
wendeten Bezeichnungen für den Wert der magnetischen Induk-
tion schreiben : **

Pol f ds sin <p
B 4k J Bild 42

Aus Bild 42 folgt, daß

s — d — l cot 9?,
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woraus sich ergibt

, l ,
ds = — dg?.

sm2 (p

Des weiteren finden wir

l
r = — ---- ,

sm <p

so daß wir für den Wert der magnetischen Induktion erhalten :

l A .-r-z — dg? sm (psm2 rp

—V—
sin2 <p

o
Mit den gegebenen Werten ergibt sich

C . ■. Pol— / sm dg? = — .
4kZ J 2tcI

o

4rc-10- 7 VsA- 1 m- 1 -5A
2k • 0,05 m = 200 • IO’ 7 Wb m" 2 .

Die magnetische Feldstärke im Punkt A wird damit

H = - = 3- = Am-  1 = 15,915 Am-  1 .
p 2tzI 2k 0,05 m 2k ------------------

Magnetische Induktion und Feldstärke sind senkrecht zur Zeichenebene orientiert und
weisen im Punkt A in die Richtung hinter die Zeichenebene.

5A

59. Bestimmen Sie die Werte der magnetischen Induktion und der
Feldstärke im Zentrum eines ebenen, kreisförmigen Leiters vom
Radius r = 5 cm, in dem ein Strom I = 5 A fließt.

Lösung

In Bild 43 betrachten wir zunächst die magnetische Induktion
in einem Punkt A (=  Kreismittelpunkt), die von einem infinitesi-
malen Leiterelement ds herrührt : Bild 43

Pol d sx  r
4k r 3

dB =

Da der Vektor des infinitesimalen Ringelements d und der Ortsvektor r immer den-
selben Winkel von 90° einschließen, können wir schreiben

, _ Polds-r po l ds
dB - ------ ----  .

4k r 3 4k r 2
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Die vom gesamten Leiter im Punkt A erzeugte Induktion nimmt den Wert
2nr

D 1 f , o7B = -— - / ds = — -
4nr 2 J 2r

o

an und ist senkrecht zur Zeichenebene gerichtet.
Nach Einsetzen der gegebenen Werte erhalten wir

4k -  10- 7 Vs- A-  1 m- 1 - 5 A
2 • 0,05 m

= 0,2k • IO -4  Wb m- 2 =

= 628 • IO- 7 Wbm-  2 .

Die magnetische Feldstärke im Punkt A beträgt

5 A
2 • 0,05 m

B _ l
= 50 Am-  1 .

60. Berechnen Sie den Wert der magnetischen Induk-
tion im Mittelpunkt einer einzigen Drahtwindung,
welche die Form eines ebenen Quadrats mit der Sei-
tenlänge / hat, durch die der Strom I = 5 A fließt.

Lösung

Wir gehen wieder von der allgemeinen Beziehung für
die Definition der magnetischen Induktion in Hin-
sicht auf einen Punkt A mit dem Ortsvektor r aus,
wobei die magnetische Induktion von einem infinitesimalen Leiterelement ds herrührt:

Bild 44

- jUoZ ds x r
4k r 3

Wenn wir den Winkel, den die beiden Vektoren ds und r einschließen, mit <p bezeichnen,
wird

_ C r sin <p ds C sin tp ds
= 4k 1 J 7 = 47 1 J r 2 *

Aus Bild 44 wird ersichtlich, daß

1 j z; l dtp
s = -- ----  vco t  tp; ds = — d?? = --. - 9 - ;2 sin 2 <p 2 sm2 tp

v v l
sm tp = — ; r = - — = .r sm <p 2 sm <p



731.3. Elektromagnetismus

Damit nimmt der von einer Seitenlänge l des Quadrats herstammende Anteil an der
Gesamtinduktion den Wert an :

3

Z dg?
sin (p - ~

2 sin 2 <p 2p 0
i 2 = 4 7

4 sin 2 (p
7t_
4

Z oZ \ a/ Z oZ
2 Z \ 2~ + ~ ~ 2vl

Aus Gründen der Symmetrie können wir für die von dem ganzen Quadrat erzeugte
Gesamtinduktion auch schreiben

d —40 — 4 2 2 p 0 I

Daraus erhalten wir nach dem Einsetzen der vorgegebenen Werte das Ergebnis für die
im Zentrum des Quadrats wirkende Gesamtinduktion zu

2y/2 • 4 n • io-  7 Vs A- 1 m- 1 • 5 A
= 0,56 - IO" 4 Wb m~ 2 .Bges 7v • 0,1 m

Die magnetische Induktion ist senkrecht zur
Zeichenebene orientiert und zielt hinter diese.

61. Durch einen kreisförmigen Leiter mit dem
Radius r = 10 cm fließt ein Strom I = 2 A.
Berechnen Sie die Induktion des Magnetfel-
des in einem Punkt A,  der auf der Achse des
kreisförmigen Leiters in einem Abstand
Z = 10 cm von diesem entfernt liegt (Bild 45).

Lösung

Wir gehen wieder von der Beziehung
/VdS x r

AB = 4«?’

aus. Da der Vektor ds und der Ortsvektor r' stets einen Winkel von 90° einschließen,
können wir schreiben

__ Poldsr'  sin 90° _ z*oZds
4tc r' 3 4tc r' 2
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Der angegebene Ausdruck gilt für die magnetische Induktion, die von einem im oberen
Teil des kreisförmigen Leiters befindlichen Leiterelement ds ausgeht. Da die Vektoren
der magnetischen Induktion, die im kreisförmigen Leiter zu symmetrisch liegenden
Längenelementen ds gehören, gleich groß und symmetrisch zueinander sind, können wir
den auf sie entfallenden Beitrag zur Induktion zusammenfassen im Ausdruck

~ o o /ds s inßdB = 2 dB sin ß = — - — .
2k r 2

Aus Bild 45 wird auch die Richtung der resultierenden Induktion erkenntlich.
Die vom gesamten kreisförmigen Leiter herrührende Induktion erhalten wir durch
Integration, wobei wir die aus dem Bild ersichtlichen Beziehungen

r' = Jr 2 + l 2 und sin ß = — -
Jr 2 + P

verwenden. Dann finden wir

„ Hol sin ß f , Hol sin ßB = - - -7T~ I ■ = —X---- ™
2k r 2 J 2k r 2

o
r

Hol
Jr 2 +P _ Holr 2

2(r 2 + P) r 2(r 2 + Z2)3' 2

4k • 10- 7 Vs A- 1 m- 1 • 2 A • 0,l 2 m 2

2 (0,l 2 m 2 + 0,l 2 m 2)3'2
= 4,444. 10- 6 Wb m- 2 .

62. Es ist die magnetische Induktion und die
Feldstärke in der Mitte (Punkt 0) und an
einem Ende (Punkt B) einer Spule der Län-
ge l = 1 m zu berechnen, wenn die Anzahl
der Windungen N = 2000 beträgt, der Ra-
dius der Windung r = 2 cm ist und ein
Stromfluß von Z = 5 A angenommen wird
(Bild 46). Bild 46

Lösung

Gemäß der im vorherigen Beispiel resultierenden Beziehung für die magnetische Induk-
tion eines kreisförmigen Leiters können wir ansetzen, daß ein Spulenelement der Dicke dx
in einem beliebigen, auf der Spulenachse gelegenen Punkt A eine magnetische Induktion
von der Größe

Mir 2 N
dB 2( r  2 +x 2)3'2 l

hervorruft. Dabei ist x die Entfernung des Punktes A vom Ort des Spulenelements dx,
auf der Spulenachse gemessen, und N)l stellt die auf die Längeneinheit der Spule ent-
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fallende Zahl von Windungen dar. Die gesamte Spule erzeugt mithin im Punkt A,  dessen
Abstand vom Spulenmittelpunkt mit s angegeben ist, eine magnetische Induktion vom
Betrag

r fair A
J 2 ( r  2 +x  2 )3/2 l
i

Wenn wir die Formel für die resultierende Induktion in einem allgemeinen Punkt
5 = 0 bzw. 5=7 /2  einsetzen, so erhalten wir die entsprechenden Ausdrücke für die
magnetische Induktion an den Orten O bzw. B.

a) 5 = 0 :
4k • 10 -7  Vs A"  1 m" 1 • 5 A • 2000

4k- 10~ 3 Wbm~  2 ;
2 • 0,02 m\

Im /

H = —
P'Q

5 A • 2000
10 4 Am -1  ;

b )5  =

4?r • IO" 7 Vs A’ 1 m" 1 • 5 A • 2000

2k Wb
- T — T = 2k • IO -3  Wbm  -2  ;
10 3 m 2 ----------------------

5 A • 2000 *
0,5 • IQ4 Am-  1 .

Es ist ersichtlich, daß im Falle b) die Werte für die magnetische Induktion bzw. die
Feldstärke annähernd halb so groß sind wie in der Spulenmitte.

63. Eine Tangentenbussole mit z = 5 Windungen und einem Radius R = 10 cm befindet
sich im Magnetfeld der Erde, das eine Horizontalkomponente der Stärke H 2 = 16 A/m
hat. Dabei ist die Tangentenbussole so angeordnet, daß die Richtung der irdischen
Horizontalkomponente gerade in die Ebene der Bussolenwicklung fällt. Nach Ein-
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schalten des Stroms weicht die Magnetnadel aus ihrer ursprünglichen Lage um einen
Winkel <p = 45° ab (Bild 47). Berechnen Sie den Strom, der durch die Windungen der
Bussolenwicklung fließt.

Lösung

In dem Moment, wo durch die Bussolenwicklung ein Strom fließt,
wirkt auf die in ihren! Innern gelagerte Magnetnadel außer der Hori-
zontalkomponente H 2 der Feldstärke des irdischen Magnetfeldes
auch noch ein Magnetfeld der Stärke Hl , das durch den Strom
hervorgerufen wird, der die Wicklung der Bussole durchfließt.
Der Feldstärkevektor des Magnetfeldes ist senkrecht zur Ebene
der Windungen orientiert und damit auch senkrecht zur irdischen
Horizontalkomponente ff 2 • Die Magnetnadel richtet sich also in
die Richtung der resultierenden Gesamtfeldstärke H aus.
Sie weicht aus ihrer Anfangslage um einen Winkel <p ab, für den gilt

tan <p = — .
272

In Beispiel 62 haben wir für die Feldstärke im Innern einer Spule (5 = 0) die Beziehung

IN

Jl 2 + (2r) 2

abgeleitet. Für eine sehr kurz gebaute Spule können wir aber
die Größe l 2 gegenüber (2r) 2 vernachlässigen. Wir finden
deshalb

(ATZahl der Windungen, / durch die Bussole fließender Strom, r Spulenradius). Für den
gesuchten Strom erhalten wir demnach den Ausdruck

__ 2H2 r tan 99
“ N

* A
2-  16— -0 ,1m-  tan 45°m

= -------------------------------- = 0,64 A .

64. Wie groß ist der magnetische Induktionsfluß 0 durch eine Fläche von der Form eines
rechtwinkligen Dreiecks, die sich in einem Magnetfeld befindet, dessen Induktionsfluß-
dichte B sich mit dem Abstand gemäß der Beziehung B = C/x (Bild 48) ändert? Das
Dreieck habe die Katheten b = 10 cm und c = 10 cm. Die Kathete c ist a = 8 cm von
der Ordinatenachse entfernt. Es ist C = 10~ 4 Vs m -1  . Das Magnetfeld soll senkrecht
zur x,y-Ebene, in der das Dreieck liegt, orientiert sein.
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Lösung

Da die magnetische Induktion sich hier von Punkt zu Punkt ändert, müssen wir von der
Beziehung ausgehen

d0= B dA.

Der Vektor B und der Vektor dA (senkrecht zur Dreiecksfläche gerichtet) verlaufen
parallel zueinander, so daß wir schreiben können

d0 = Bd / l cos0  o = BdA .

Da gemäß Bild 137 B = C/xund dA = h dx ist, können wir auch schreiben

d0 = — h dx.
x

Die Größe h ermitteln wir aus der Proportion
h'.c = (a + b — x):b,

d. h.,
c(a + b — x)

‘ -----------5 ------- •
so daß sich ergibt

C c(a + b -x )
d<P = ------------■-------- dx.

x b

Damit können wir jetzt den gesamten Induktionsfluß, der durch die Dreiecksfläche tritt,
bestimmen :

a+b a+b a+b
, f C c(a + b — x) , Cc(a + b) f dx Cc r

J x b b J x b J
a a a

Cc(a + b) a + b Cc ■ [a  + b .  a + b \
b ab  \ b a /

1A4WR 2 A1 /0 ,08m + 0 , lm  0,08 m + 0,1 m \= 10 -4 Wb nr 2 • 0,1 m -------— ---------- 2,3 1g ------- ---------------- 1 =
\ 0 ,1m 0,08 m j

= 0,458- IO" 5 Wb.

65. Es ist der magnetische Induktionsfluß zu bestimmen, der durch die Querschnittsfläche
eines Stahlreifens tritt, wenn dieser nach Bild 49 die Abmessungen a = 2 cm, b = 3 cm,
r' = 49 cm hat. Der Induktionsfluß soll durch einen Kurzschlußstrom von I = 300 A
hervorgerufen werden, der durch einen Leiter in der Symmetrieachse des Reifens fließt.
Im gesamten Reifenquerschnitt soll die magnetische Feldstärke denselben Wert haben,
den sie auch in der Reifenmitte hat.
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Lösung

Wir bestimmen zunächst die magnetische Feldstärke in der Umgebung eines Leiters,
durch den ein Strom I fließt, für einen Punkt, der vom Stromleiter den Abstand
(r' + a/2) hat, also für einen Punkt in der Mitte der Reifendicke :

2kf / a \  2tc (0,49 m + 0,01 m)27V r ' + —

Bei dieser Feldstärke entsteht im Stahl eine magnetische Induktion B ä; 0,2 Wb m -2  =
= 0,2 T. Diesen Wert erhalten wir aus der Magnetisierungskurve des entsprechenden
Werkstoffs (Bild 50). Damit finden wir den magnetischen Induktionsfluß zu

66. Durch zwei lange, gerade, parallel zueinander verlaufende elektrische Leiter fließen zwei
gleich große Ströme mit entgegengesetzter Richtung, jeder vom Betrag I = 400 A. Die
beiden Leiter haben voneinander den Abstand d = 0,3 m. Bestimmen Sie die Größe und
die Richtung der jeweils auf eine Drahtlänge von 10 m wirkenden Kraft.

Lösung

Ausgehend von Bild 51 lösen wir die Aufgabe so, daß wir zunächst die auf den Leiter 2
wirkende Kraft bestimmen, die auftritt, wenn durch ihn der Strom I 2 fließt, während er
sich in einem Magnetfeld mit der Induktion B befindet, die durch den im Leiter 1
fließenden Strom Zi hervorgerufen wird. Für diesen Fall ist die auf ein Leiterelement ds 2
wirkende Kraft durch folgende Beziehung angegeben:

dF = (Z2 ds 2 X Bi) .
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Weiter ist uns bekannt, daß die magnetische Induktion in der Umgebung eines sehr
langen Leiters (vgl. Beispiel 58) den Wert

_ 1*qIi
1 2nd

annimmt. Das in der Formel für die Kraft stehende Vektorprodukt können wir aus-
rechnen, wenn wir berücksichtigen, daß die kreisförmigen magnetischen Feldlinien in
der Umgebung des Leiters 1 senkrecht zum Leiter 2 orientiert sind, also daß auch df 2
und Bt senkrecht aufeinander stehen, so daß sich ergibt

F = [ (I 2 ds 2 X Bi) = [ I 2 ds2 Br sm 90 Q = p> QIiI 2 —~r Q,
J J Ina
o o

wobei q der Einheitsvektor in Richtung der wirkenden Kraft ist. Da die Ströme gleich
sind, Zi = I 2 — 400 A betragen, erhalten wir nach Einsetzen aller Größen

F = • IO" 7 Vs A" 1 m- 1 • 400 A • 400 A -----— — = 1,066 N .
2tt • 0,3 m --  -------

Die Richtung der Kraft und ihres Einheitsvektors ist durch die Richtung des Resultats
der Vektormultiplikation gegeben

I2 d*y2 X Bi,
d. h., die resultierende Kraft ist senkrecht sowohl zum Leiterelement df 2 als auch senk-
recht zu Bi gerichtet, was auch mit der „Linke-Hand-Regel“ übereinstimmt. Die Rich-
tung der Kraft ist also derart, daß die beiden stromdurchflossenen Leiter auseinander-
gedrückt werden.

67. Welche Kraft wirkt auf einen Leiter der effektiven Länge s = 0,3 m, der in einem homo-
genen Magnetfeld mit der Induktionsflußdichte B = 0,8 Vs m -2  von einem Strom
I = 150 A durchflossen wird, wenn er senkrecht zur Richtung der magnetischen Induk-
tion angeordnet ist?

Lösung

Die Kraft, mit der ein Magnetfeld der Induktion B auf ein Leiterelement der Länge d.y
wirkt, das von einem Strom I durchflossen ist, wird durch die Beziehung

dF = Ids  x B
angegeben. Wenn der gerade Leiter senkrecht zu einem homogenen Magnetfeld an-
geordnet ist, vereinfacht sich die Beziehung zu

F = Bis.
Nach Einsetzen der gegebenen Werte erhalten wir

Vs
F = 0,8 — 150 A-  0,30 m = 36N.m 2 . ------
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68. In einem homogenen Magnetfeld mit der Induktion B = 0,2 T befindet sich eine
flache, rechteckige Spule, die 50 Windungen trägt. Die Abmessungen der Spule sind
a = 3 cm, b = 2 cm. Das Magnetfeld verläuft parallel zur kürzeren Spulenseite
(Bild 52). Wie groß ist das Moment des auf die Spule einwirkenden Kräftepaares,
wenn durch die Spule ein Strom der Stärke I = 4 A fließt?

Lösung

Die auf die einzelnen Leiterabschnitte wirkende Kraft ist

dF = I ds x B.

Auf die Leiter der Länge b wirkt keinerlei Kraft ein, da sie genau in Feldrichtung gelegen
sind. Aber auf die Leiter der Länge a wirken gleich große Kräfte aus entgegengesetzten
Richtungen, wodurch ein Kräftepaar entsteht, das die Spule um die Achse 00, die durch
die Mitten der Seitenlängen b verläuft, zu drehen bestrebt ist.
Die auf den Leiter der Länge a, der senkrecht zur Richtung der magnetischen Induktion
orientiert ist, wirkende Kraft hat den Wert

F = Bla, ____

und auf 50 solcher Leiter wirkt dann insgesamt
0 ~ --o

Fso  = 50 Bla. '

Die Größe des Moments eines Kräftepaares ist durch das ---------
Produkt einer Kraft und des senkrecht gemessenen Ab-
Stands zweier Kräfte gegeben, also in unserem Falle Bild 52

M = Fso  b .

M = 50 Blab = 50 • 0,2 Vs m~ 2 • 4 A • 0,03 m • 0,02 m =
= 240 • IO" 4 Nm = 0,024 Nm.

69. Eine kreisförmige Leiterwindung vom Radius r = 6 cm wird vom Strom Z = 50 A
durchflossen, während sie sich in einem Magnetfeld der Stärke H = 478 000 A/m befindet.
Es ist das auf die Spule wirkende Drehmoment für zwei verschiedene Stellungen zu
bestimmen :
a) die Spulenebene liegt parallel zur Feldrichtung,
b) die Normale der Spulenebene schließt mit der Feldrichtung einen Winkel ß = 30° ein.

Lösung

Wir gehen wieder von der Beziehung

dF = Ids  x B
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aus bzw. von

dF = I ds B sin <p.

Aus Bild 53 a entnehmen wir ds • sin <p = dx, können also weiter schreiben

dF = IBdx.

Da eine gleich große Kraft von entgegengesetzter Richtung auf das bezüglich der O-Achse
symmetrisch gelegene Leiterelement wirkt, das vom gleichen Strom in umgekehrter
Richtung durchflossen wird, wirkt auf beide mechanisch verbundene Leiterelemente ein
Kräftepaar mit dem Moment

dM = dFy = IBy dx = IBdA,

wobei dA = y dx die in Bild 53 a schraffiert gezeichnete Fläche ist.
Das Moment der auf die gesamte Windung wirkenden Kräfte erhalten wir durch Inte-
gration zu

M = IBA = pQ HIA,

wobei A die gesamte, von der Leiterschleife umschlossene Fläche darstellt. Der ab-
geleitete Ausdruck gilt für den Fall, daß die Windungsebene in die Richtung der magne-
tischen Induktion fällt. x
Wenn aber der Vektor der magnetischen Induktion B mit dem Normalenvektor A der
Fläche den Winkel ß einschließt (Bild 53 b), müssen wir den Vektor der Induktion in
zwei Komponenten zerlegen: in die Richtung des Normalenvektors (B A) und in die
Richtung der Fläche selbst Während die Komponente B A solche Kräfte hervor-
ruft, welche die Windung einem allseitigen Druck aussetzen, also keinerlei Drehwirkung
auslösen, gilt für die Komponente Sy

|B||| = Bs inß .

Den Wert dieser Komponente setzen wir an Stelle von B in den Ausdruck für das Dreh-
moment M ein und erhalten

M = IAB sin ß = p QHIA sin ß.
6 Hajko, Elektrik
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Durch Einsetzen der gegebenen Werte ergeben sich für die beiden in der Aufgabe ge-
nannten Sonderfälle folgende Rechnungen:

a) M = HoHIA = 4k • IO'  7 Vs A' 1 m’ 1 • 478000 — • 50 A • k • 0,06 2 m 2 =
m

= 0,339 Nm;

b) M = ßoHIA sin ß = 4 k • 10’ 7 Vs A“ 1 m’ 1 • 478000 A • 50 A • k X
m

x 0,06 2 m 2 • 0,5 = 0,169 Nm.

70. Ein Leiter in Gestalt zweier kreisförmiger Windungen mit dem Radius r = 5 cm liegt
in einem Magnetfeld, dessen Induktion den Wert B = 0,6 Wb m~ 2 hat, senkrecht
zur Richtung der magnetischen Induktion. Welche Spannung wird in einem solchen
Leiter induziert, wenn das Magnetfeld innerhalb einer Zeitspanne von 0,5 s gleich-
förmig abgebaut wird?

Lösung

Da entsprechend dem Induktionsgesetz die induzierte Spannung gleich der negativen
Änderung des Induktionsflusses in der Zeit ist, wird

J0  0 — 0 OUi - -  -------- = ------------- .
At At

Nach Ablauf der Zeit At ist 0 = 0 .  Zu Beginn des Vorgangs, da die beiden Windungen
sich noch im vollen Magnetfeld befinden, gilt

0 O = NAB

(N Windungszahl, A Fläche der Windung). Es ergibt sich somit
0 O = 2 r2 B = 2 • 3,14 • 0,05 2 m 2 • 0,6 Wb m’ 2 = 0,00942 Wb.

Für den Wert der induzierten Spannung erhalten wir schließlich

(0 - 0 00942) Wb = v

0,5 s - ----------

71. Eine rechteckig geformte Leiterschleife (Bild 54)
wird, in einem Magnetfeld der Feldstärke
H = 5000 Oe liegend, mit einer Frequenz
f = 30 s -1  um ihre Seite a gedreht. Welche
mittlere Spannung wird während einer halben
Umdrehung in der Leiterschleife induziert?
(a = 0,3 m, b = 0,2 m) Bild 54
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Lösung

Eine halbe Umdrehung wird in der Zeit
1 111t = — T = ------  = —
2 2 /2 /

ausgeführt. Während dieser Zeitspanne ändert sich der Induktionsfluß vom Wert
auf den Wert — 0 m , also um den Betrag

= 0 m - ( - 0 m) = 20 m ,
so daß wir, entsprechend dem Induktionsgesetz, die gesuchte mittlere Induktions-
spannung wie folgt erhalten :

TT 20 -

2f
Da = B m A und die Gesamtfläche A = ab ist, erhalten wir für die mittlere induzierte
Spannung

Ui ,=  4fB m ab = 4abfp. QH = 4 • 30 s -1  • 0,3 m -0,2m • 4rc • 10 -7  Vs A -1  m -1  x
10 3 A

x 5000- -------- = 3,6 V.
4tt m ------

72. Ein Trommelanker, der sich in einem Magnetfeld mit der Induktion B = 0,8 Wb m -2

dreht, enthält in einer Rille 20 in Serie geschaltete Leiter von je j = 20 cm Länge. Der
Trommelanker hat einen Durchmesser d = 10 cm und rotiert mit
einer Tourenzahl n — 1300 min -1  . Es soll bestimmt werden, welche
Maximalspannung in der gesamten Ankerwicklung induziert wird.
Es ist weiter die Richtung der Spannung zu ermitteln für den Fall,
daß die Trommel eine Rechtsdrehung im senkrecht gerichteten Ma-
gnetfeld ausführt (Bild 55).

Lösung

Wir gehen von der Beziehung Bild 55
Ui = Blv

aus, welche die Größe der induzierten Spannung in einem Leiter, der sich mit der Ge-
schwindigkeit v im Magnetfeld der Induktion B bewegt, angibt. Da die einzelnen Leiter
am Trommelumfang angeordnet sind, ist die Geschwindigkeit, mit der der Leiter durch
das Magnetfeld bewegt wird, gleich der Umfangsgeschwindigkeit, die der Trommelanker
mit dem Durchmesser d bei gleichförmiger Kreisbewegung hat, nämlich

3,14 • 0,1 m • 1300 min -1

60 s min -1v = Tzdn = 6,807 ms

6*
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Demnach wird die maximale, in einem Leiter induzierte Spannung den Wert
= Bi v = 0,8 Vs m" 2 • 0,2 m • 6,8 m s" 1 = 1,089 V

annehmen. Da die einzelnen Leiter in Serie geschaltet sind, addieren sich die induzierten
Spannungen, so daß die gesamte maximale Induktionsspannung, die der Dynamo er-
zeugt, den Wert

= 20 Uu = 20 • 1,089 V = 21,78 V

hat. Die Richtung der induzierten Spannung bestimmen wir entsprechend der Ableitung
des Induktionsgesetzes aus dem Vektorprodukt

(v x B)

oder entsprechend der bekannten Rechte-Hand-Regel, die eigentlich aus dem an-
geführten Vektorprodukt von Geschwindigkeit und Induktionsflußdichte resultiert. Die
Richtung der in den einzelnen Leitern induzierten Spannung entspricht der in Bild 55
angegebenen. Dabei bedeutet das Symbol (+ )  den Strom, der in Richtung vom Be-
trachter wegfließt.

73. Ein gerader Leiter der Länge l = 15 cm rotiert in einem
homogenen Magnetfeld, dessen Induktion den Wert
B = 0,5 T hat, mit einer Frequenz f = 60 s -1  in einer
senkrecht zur magnetischen Feldrichtung gelegenen Ebene
um eine durch seinen Endpunkt verlaufende Achse
(Bild 56). Welche Spannung wird dabei in ihm induziert?

Lösung

Wir wenden das Induktionsgesetz an in der Form

Ui = B xv

(B magnetische Induktion, x Länge des Leiters, v seine Geschwindigkeit). In Bild 56
hat das im Abstand x von der Drehachse liegende Leiterelement dx bei der Frequenz f
eine Geschwindigkeit, die der Umfangsgeschwindigkeit einer Kreisbewegung gleich ist,
nämlich

v = Znxf.

Daher nimmt die im Leiterelement dx induzierte Spannung den Wert

dUj = Bv dx = B • 2ttxw dx

an. Für die gesamte im Leiter der Länge l induzierte Spannung erhalten wir demnach
i

U i=2-nnB  xAx = icfBl 2 = 3,14 • 60 s’ 1 • 0,5 Vs nr 2 • 0,15 2 m 2 = 2,12 V.
0

74. Es soll die mit einer FoRBESschen Maschine erzeugte Induktionsspannung berechnet
werden. Es handelt sich hierbei um eine Metallscheibe, die in einem durch einen Spezial-
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magneten geschaffenen homogenen Magnetfeld rotiert. Der homogene Bereich des
Magnetfeldes erstreckt sich auf einen Streifen zwischen r = 5 cm und r' = 15 cm, von
der Drehachse aus gemessen. Die Induktion hat hier den Wert B = 1 Wb m -2  . Die
Scheibe rotiert mit einer Tourenzahl n — 2000 min -1  (Bild 57).

Lösung

Wir denken uns die Metallscheibe in lauter radial liegende Leiter zerlegt, in denen in-
folge ihrer Bewegung mit der Geschwindigkeit v im Magnetfeld mit der Induktion B
eine Spannung induziert wird. In einem Leiterelement der Länge do beträgt die indu-
zierte Spannung

dL7j = Bv d@.
Wir drücken die Geschwindigkeit des in einem Abstand q von der Drehachse liegenden
Leiterelements durch die Tourenzahl aus:

v = 2nQn.
Dann wird

dCTi = IngnB do,
und die in einem ganzen (gedachten) Leiter der Länge Z = r' — r induzierte Spannung
erreicht den Wert

U[ = 2nnB j* q d@ = 2n:nB [-y-j = nBn (r' 2 — r 2 ) .
r

Nach Einsetzen der gegebenen Werte erhalten wir für die induzierte Spannung
2000Ui = re • 1 Vs irr 2 — — (0,15 2 m 2 — 0,05 2 m 2) = 2,094 V.
60 s ----------

75. Eine geschlossene Spule hat die Form eines Ringes. Auf einen ringförmigen Eisenkern
(mittlerer Durchmesser d = 0,2 m, Permeabilität = 700 / 0 , Querschnittsfläche
Ai = 25 cm 2 ) sind N = 1000 Windungen aufgewickelt, durch die ein Strom Z = 1 A
fließt. Wie groß ist die Induktivität einer solchen Ringspule (Bild 58)?
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Lösung

Um die Induktivität ausrechnen zu können, müssen wir zunächst den Wert der magne-
tischen Feldstärke kennen. Das Magnetfeld entsteht durch eine Spule mit dem Radius r
und der Windungszahl N unter Einfluß der Stromstärke L Wir gehen von der Durchfluß-
gleichung aus, wobei wir berücksichtigen, daß der Integrationsweg mit dem Leiter
yV-mal gekoppelt ist. Das bedeutet also

NI= <j>Hds,

wobei die Integration über die gesamte geschlossene mittlere Feldlinie des Magnet-
kreises erfolgen muß. Nach Integration über die Kreislinie vom Radius r = d/2 er-
halten wir

NI = 2tt rH,
also die Feldstärke

Der Induktionsfluß 0 durch die von einer Leiterwindung umschlossene Fläche wird
0 = LI.

Daraus erhalten wir die gesuchte Induktivität
0 BA BNA r _ pHNAi

(B magnetische Induktion, A Gesamtflächeninhalt, durch den der Strom fließt, A t Flä-
cheninhalt einer einzelnen Leiterwindung, N Windungszahl). Die magnetische Induk-
tion B haben wir als Produkt der magnetischen Feldstärke H und der Permeabilität

= jt4 Oji4r ausgedrückt. Nach Einsetzen der vorgegebenen Werte erhalten wir schließlich

T _ iWtHNA! _
L ---------J—-

4k • IO-7  Vs A- 1 m- 1 • 700 • — • 103 A nr 1 • 1000 • 25 • 10~4 m 2

7V
= 1Ä =

= 4 • 7 • 5 • 25 • IO" 3 H = 3,50 H .

76. Berechnen Sie die Spannung, die in einer Spule mit der Induktivität L = 0,06 H indu-
ziert wird, wenn ein sie durchsetzender Strom gleichförmig so anwächst, daß er in jeder
Sekunde um die Differenz AI = 10 A zunimmt.

Lösung

Für die Selbstinduktionsspannung gilt die folgende Beziehung:
dZ AI

Ui = — L — - bzw. Ui = —L .
dt At
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Wenn wir die gegebenen Werte hier einsetzen, erhalten wir

Ui - -0,06 = -0,6 V .
1s ----------

Das negative Vorzeichen im Resultat bedeutet, daß die induzierte Spannung dem Er-
zeugerstrom entgegengerichtet ist.

77. Eine kreisringförmige Spule besteht aus einem Kern mit rechteckigem Querschnitt
(Bild 59), auf den dicht übereinander zwei Wicklungen, eine mit der Windungszahl AG

2tw

Durch eine infinitesimale Querschnittsfläche des Spulenkerns
dA = hdr

fließt ein Induktionsfluß, den wir als homogen ansehen können und der die Stärke

d0 = B d/4 = p.Qg>THh dr = jU Ojur h dr27tr
hat. Durch den gesamten rechteckigen Querschnitt des Spulenkerns tritt ein Induktions-
fluß mit der Gesamtstärke

Ar r L dr Ar t 1 1Njljh ---- = — Nxlih In — .
r 2tt r t

Dieser Induktionsfluß durchsetzt auch die N 2 Windungen der zweiten Wicklung, so daß
durch sie der Induktionsfluß

«.2 = Wi* In —
27T
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tritt. Die gesuchte gegenseitige Induktion der beiden Spulen wird im Sinne der Definition
durch folgende Beziehung angegeben:

T &L1.2 ®L2,l P'OP'T Ä r iL = — — = — — = — — N l N 2 h In — .
Zi I2 rr

78. Eine Spule der Länge Z = 0,5 m wird aus N = 10000 Windungen gebildet, deren jede
einen Durchmesser d = 6 cm hat. Die Spule wird von einem Strom der Stärke I = 2 mA
durchflossen. Es ist der Energieinhalt des an der Spule entstehenden Magnetfeldes zu
berechnen.

Lösung

Für die Energie des Magnetfeldes eines elektrischen Stroms gilt die Beziehung

W — -LI 2 .
2

Wir müssen also zur Berechnung des Energieinhalts des Feldes die Induktivität L der
Spule kennen. Sie ist durch

T ges

■ r

gegeben, wobei 0 ges der gesamte, durch alle Windungen der Spule tretende Induktions-
fluß ist. Es gilt weiter der Zusammenhang

0 ges = N<D = NBA = Np.QHA,

wobei 0 der durch die Fläche einer einzigen Windung tretende Induktionsfluß und H
die magnetische Feldstärke der Spule ist, die wir aus Gründen der Vereinfachung im
Querschnitt einer jeden Windung als gleich groß ansehen dürfen. Für die Feldstärke gilt
nach dem Durchflußgesetz

NI
Hl = NI, d.h . ,  H = — ,

so daß sich für L ergibt

_ 0 ges NpqHA _ [i q N 2 A
~ ~T~ ~ ~~i i ~

4 K • 10- 7 Vs A- 1 IXT 1 • 10 000 2 71 ' 0,062 m2

4
= -------------------------— ---------------------------- = 0,71 H .0,5 m

Für den gesuchten Wert der Energie des Magnetfeldes erhalten wir somit

W = IlI  2 =4-0 ,71  H • 0.002 2 A 2 = 1,42 • IO* 6 J .
2 2 - -  -------------
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79. Der Eisenkern eines Elektromagneten hat eine Querschnittsfläche von 6 • 4 cm2 . An der
Berührungsfläche mit einer anhängenden Last erreicht die magnetische Induktion den
Wert B = 0,3 Wb m -2  . Es ist eine Beziehung für die Tragfähigkeit des Elektromagneten
zu ermitteln und diese für den angegebenen Fall in Zahlen auszudrücken.

Lösung

Wenn wir in Bild 60 den Anker um ein infinitesimal kleines
Wegelement dx vom Magnetpol entfernen und dabei gleich-
zeitig den Spulenstrom in der Weise erhöhen, daß sich der
Induktionsfluß im Kreis nicht ändert, sondern konstant ge-
halten wird, dann ändert sich auch nicht die Kraft F, mit
welcher der Anker an den Pol herangezogen wird und die
wir bei der Bewegung überwinden müssen. Dabei verrichten
wir die Arbeit

dPT = Fdx.

Damit sich der Induktionsfluß bei einer Vergrößerung der mittleren Länge der Feld-
linien um den Betrag dx nicht ändert, ist es erforderlich, den Strom um genau den Betrag
zu erhöhen, der dem Produkt H dx entspricht. Im entstehenden Luftspalt erhöht sich
dabei die Energie des Magnetfeldes, die gegeben ist durch

W = -LI 2 .
2

Da weiter

ist, wobei 0 L = V0 den gesamten Induktionsfluß durch alle Windungen der Spule und
0 den Induktionsfluß durch eine einzige Windung darstellt, wird

1 10 ,  1
W = — LI 2 - — -±I 2 = —INI'.

2 2 1 2

Unter Einbeziehung der magnetischen Feldstärke erhalten wir die Beziehung

Hx = IN,

wobei x die Länge einer Feldlinie bedeutet, so daß wir weiterhin schreiben können

W = ±-Hx<I>.
2

Die erwähnte Vergrößerung der Energie des Magnetfeldes infolge einer Stromstärke-
steigerung entsprechend H dx hat den Wert

2
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Hieraus entsteht durch Umformung der Ausdruck

B 2 A dx
2?o

dW  =

wenn wir voraussetzen:

$ = BA und H = —
/*0

In diesem Falle ist B die magnetische Induktion im Luftspalt zwischen den Berührungs-
flächen. Das Gesetz von der Erhaltung der Energie, verlangt im vorliegenden Falle, daß
die zum Entfernen des Ankers aufgewendete Arbeit gleich der Vergrößerung der im
Magnetfeld enthaltenen Energie ist. Das heißt

B 2 A ,
Fdx = —— dx.

2 0

Daraus erhalten wir eine Beziehung für die Tragkraft des Magneten, nämlich

F-  — ,2po

wobei A die Berührungsfläche, der Querschnitt des Pols ist. Nach Einsetzen der ge-
gebenen Werte finden wir

/ Vs \ 2
0,3 2 / — \ 24-10-  4 m 2

2 • 4k - IO“ 7 Vs A -1  m -1
0,09 • 24

25,12
10 3 N 86 N .

80. Wie groß ist der magnetische Widerstand eines gußeisernen Magnetkreises mit den Ab-
messungen r = 15 cm und A = 5 cm 2 (Bild 61), wenn durch die Spule mit N ?= 200
Windungen der Strom Z = 3 A fließt?

Lösung

Die Durchflußgleichung hat für unseren Fall die Form

H-2nr  = IN.

Wir finden also, daß der durch die N Windungen
fließende Strom I im Kem eine Feldstärke

Bild 61
IN 3 A • 200

H = —~-
2nr = ä ----  = 637 A m -1

0,942 m

hervorruft. Dieser Feldstärke entspricht auf der Magnetisierungskurve des Gußeisens
(Bild 50) eine magnetische Induktion B = 0,46 Wb m -2  .
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Für den magnetischen Widerstand erhalten wir gemäß der HoPKiNSSchen Formel

15  1 2nr H 2nr
= --------- = — ------- = ------------- =

fi A B_ A B A
~H

637 Am-  1 -2  re- 0,15 m
0,46 Wb m"  2 • 5 • 10 -4  m 2 = 2,61 - 10 6 A Wb- 1 .

81. Welcher Strom muß durch eine Spule mit der Windungszahl N = 300 fließen, die auf
einen Kern aus Trafoblech (4%- Si-Gehalt) gewickelt wurde, damit in dem 0,5 mm
breiten Spalt ein magnetischer Induktionsfluß der
Stärke 0 = 0,00066 Wb auftritt? (Die Maße in
Bild 62 sind in Millimetern angegeben.)

Wir bestimmen zunächst die Stärke der magneti-
schen Induktion

0D ____________
A 20 • IO -3  m • 30 • IO -3  m “

= 1,1 Wb m- 2 .
Aus der Magnetisierungskurve des Trafobleches
(Bild 50) entnehmen wir, daß zur Induktion B = 1,1 Wbnr 2 die Feldstärke H
« 400 Am -1  gehört. Im Luftspalt ist die Feldstärke

0,00066 Wb

Lösung

B 1 1,1
HsP = — = . i n  7 B = - -A  m“ 1 = 8,75 • 10 5 A m“ 1 .ßo 471 10~ 7 47T 10 7

Für unseren Fall nimmt die Durchflußgleichung folgende Form an:

ZA = HpeSp + ffsp <5.

Daraus ergibt sich

T __  TZpe Fe + ZZs p <3

N 9

wobei 5Fe die Länge der mittleren Feldlinie im Eisen bedeutet, also

5Fe = [2 (40 + 20) + 2 (80 + 20) - 0,5] • IO’ 3 m = 319,5 • IO" 3 m.

Nach Einsetzen der gegebenen Werte und des Ergebnisses für die Länge sFe finden wir

r 400 A m" 1 • 319,5 • IO" 3 m + 8,75 • 10 5 A nr 1 • 0,5 • IO" 3 mI = ---------------------------------------- ------------------------------------- - -  1 .884 A .
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82. Ein Hufeisen-Elektromagnet mit den in Bild 63 angegebenen Maßen in mm soll aus
einer Entfernung <5 = 1 cm einen Anker anziehen können, der eine Last von 250 kg

, trägt. Welche Stromstärke muß dazu in der Spule, deren Windungszahl N = 500 be-

2 • 4k -  10 -7  • 250 • 9,81
-- - -  o/t o/x / Wb m- 2 ~ 0,7 Wb m- 2 .

2 • 80 • 80 • 10 -6

Um diese Induktion im Eisen zu erzielen, ist eine Feldstärke notwendig, für die wir aus
der Kurve für Eisenblech in Bild 50 entnehmen:

FfFe = 140 Am  -1  .

Dagegen wird im Luftspalt zur Erzielung der magnetischen Induktion die Feldstärke

B 1
H Sp = — = - ----  B 8 • 10 5 B = 8 • 0,7 • 10 5A m“ 1 = 5,6 . 10 5 A m’ 1

juo 4k • 10" 7

erforderlich sein. Aus der Durchflußgleichung resultiert für unser Beispiel die Beziehung

IN — H FeSFe + Hsp Sp ,

wobei die Länge der mittleren Feldlinie in Luft den Wert

sL = 2 • 10 • IO" 3 m = 20 • IO -3  m

und in Eisen

iyFe = [2 (190 + 80) + 2 • 230] • 10" 3 m = 1 m

hat. Wir finden somit für die Stromstärke den Wert

H F*sFe + H LsL 140 A m -1  • 1 m + 5,6 • 10 5 A m -1  • 20 • IO -3  m
N 5ÖÖ

= 22,68 A
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Aufgaben

1 00. Welcher Strom fließt durch einen langen,
geraden Leiter, wenn in einem senkrecht
gemessenen Abstand von 20 cm im
Vakuum eine Induktion vom Betrag
B = 15 • 10" 4 Wb irr 2 gemessen wird?

97. Ein sehr langer gerader Leiter, durch
den ein Strom I = 10 A fließt, bildet
in einem bestimmten Punkt eine kreis-
förmige Windung mit dem Radius
r = 4,28 cm aus, die mit dem Strom-
leiter zusammen in einer Ebene liegt
(Bild 64). Berechnen Sie die Stärke der

Bild 65

101. Ermitteln Sie den Wert der magneti-
schen Induktion im Mittelpunkt einer
Spule, die 20 Windungen bei einer
Länge von 10 cm hat und dabei vom
Strom Z = 5 A durchflossen wird. Wie
groß ist der gesamte, durch die Win-
dungen tretende Induktionsfluß bei
einem Spulenquerschnitt von >4 = 5 cm 2 ?

102. Zwei gerade, parallele Leiter haben
voneinander den Abstand 5 = 1 cm.

. Der eine von beiden ist sehr lang und
wird vom Strom = 250 A durch-
flossen, der andere hat nur eine Länge
von Z = 20 cm und wird vom Strom
I 2 = 300 A durchflossen. Beide befinden
sich im Vakuum. Welche anziehende
Kraft wirkt zwischen ihnen?

103. Ein gerader Leiter von 10 cm Länge,
durch den ein Strom von 10 A fließt, be-
findet sich, senkrecht zur Feldrichtung
liegend, in einem Magnetfeld, dessen
Induktion den Wert B = 1 T hat.
Welche Kraft wirkt auf den Leiter?

104. In einem homogenen Magnetfeld mit
horizontaler Feldlinienrichtung ist senk-
recht zum Feld, aber gleichfalls hori-

Induktion im Mittelpunkt der dar-
gestellten Windung.

98. Zwei unendlich lange, gerade, parallel
zueinander verlaufende Leiter sind 10 cm
voneinander entfernt. Sie werden beide
vom gleichen Strom Z = 2 A in gleicher
Richtung durchflossen. Es ist die Stärke
der Induktion in einem Punkt zu be-
stimmen, der auf der senkrechten Ver-
bindungslinie beider Leiter, 4 cm von
dem einen entfernt, gelegen ist.

99. Zwei ebene, kreisförmige Leiter mit den
Radien n = 10 cm, r2 = 15 cm sind
koaxial angeordnet (Bild 65). Sie wer-
den von den Strömen =2 A , I 2 = 5 A
gleichsinnig durchflossen. Die beiden
Ströme erregen in ihrer Umgebung ein
Magnetfeld. Berechnen Sie die magne-
tische Feldstärke in einem Punkt P
auf der Verbindungsachse beider Leiter
mit den Koordinaten x ± — 5 cm, x 2 =
= 10 cm.
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zontal orientiert, ein Leiter aufgehängt,
der je Zentimeter Länge eine Masse
von 0,1 kg hat. Er wird von einem Strom
von 1 A Stärke durchflossen. Welchen
Wert muß die magnetische Induktion
des Feldes annehmen, damit der strom-
führende Leiter gerade in der Schwebe
gehalten wird?

105. Eine kreisrunde Kupferscheibe mit dem
Radius r = 10 cm ist, um eine horizon-
tale Achse drehbar, so gelagert, daß ihr
äußerster Rand gerade in ein Queck-
silberbad eintaucht (Bild 66). Das

wenn die magnetische Feldstärke den
Wert 77=  15700 A/m hat.

108. Ein kreisförmiger Magnetring aus Stahl
wurde für einen Induktionsfluß 0 =
= 1,5 • 10" 3 Wb aus zwei Teilen von
unterschiedlichem Querschnitt projek-
tiert: Ar = 1,25- 10" 3 m 2 und A 2 =
= 1,5 • IO" 3 m 2 (Bild 67). Auf der

Bild 67

Bild 66 einen Ringhälfte vom Durchmesser
d = 0,318 m wurde eine Spule mit der
Windungszahl z = 200 gewickelt. Wel-
cher Strom I muß durch diese Spule
fließen, damit der geforderte Induktions-
fluß 0 erreicht wird, wenn das Material
Stahlguß ist?

109. Auf einen Stahlkern von der Form eines
zylindrischen Ringes mit einer mittleren
Feldlinienlänge s = 0,628 m und mit
dem konstanten Querschnitt A =
= 0,0012 m 2 sind N = 100 Windungen
aufgewickelt. Welcher Strom I muß in
der Wicklung fließen, damit ein Induk-
tionsfluß der Stärke 0 = 1,4 • 10 -3  Wb
auftritt?

110. Auf einen Stahlkem konstanten Quer-
schnitts mit einer mittleren Feldlinien-
länge s = 0,625 m und einem Luftspalt
der Dicke ö = 0,003 m sind 77=100
Windungen aufgewickelt. Welcher
Strom I muß in der Wicklung fließen,
damit die magnetische Induktion den
Wert B = 1 Wb m -2  annimmt?

111. In einem homogenen Magnetfeld mit
der Induktion B = 0,2 T rotiert in

Quecksilber im Gefäß und ein Kontakt
auf der Achse der Scheibe sind mit
einer Akkubatterie verbunden. Die
Scheibe befindet sich in einem senkrecht
zu ihrer Ebene orientierten Magnetfeld
mit der Induktion B = 0,2 T. Durch
den so geschaffenen Stromkreis fließt
ein Strom I = 1 A. Wie groß ist das
Drehmoment der auf die Scheibe wir-
kenden Kräfte, und in welcher Rich-
tung wird sich die Scheibe drehen, wenn
die Richtung der Induktion vom Be-
trachter fortweist?

106. Die magnetische Induktion eines homo-
genen Magnetfeldes hat den Wert B =
= 15 Wb m -2  . Ermitteln Sie die Stärke
des Induktionsflusses, der durch eine
Fläche von 1 dm 2 Größe tritt, deren
Normale mit der Feldstärkerichtung
einen Winkel <p = 30° einschließt.

107. Bestimmen Sie den magnetischen In-
duktionsfluß in einem eisernen Werk-
stück von A = 4 cm 2 Querschnitt, des-
sen Permeabilitätszahl /zr = 5000 ist,
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der zu B senkrechten Ebene ein leiten-
der Stab der Länge Z = 10 cm gleich-
förmig. Die Drehachse ist senkrecht
zum Stab gerichtet und verläuft durch
ein Ende des Stabes. Mit welcher Tou-
renzahl muß der Stab rotieren, damit
in ihm eine Induktionsspannung
tZj = 0,628 V induziert wird?

112. Ein Stabmagnet, durch dessen End-
querschnitt ein Induktionsfluß der
Stärke 0 = 0,0015 Wb tritt, dreht sich
um eine senkrechte Achse, und zwar so,
daß der Induktionsfluß eine Spule mit
N = 10000 Windungen schneidet
(Bild 68). Eine halbe Umdrehung voll-
führt der Stabmagnet innerhalb 0,02 s.
Bestimmen Sie den Durchschnittswert
der in der Spule induzierten Induktions-
spannung.

Magnetfeld, dessen Feldlinien senk-
recht auf der Leiterebene stehen. Die
Induktion des Magnetfeldes nimmt
linear mit der Zeit ab. Zur Zeit t = 0
hat die Induktion den Wert B = Bo ,
zur Zeit t = ist B = 0 .  Welche Span-
nung wird in dem Leiter induziert?

116. Ein 30 cm langer, gerader Leiter bewegt
sich mit einer Geschwindigkeit v =
= 8 m s -1  senkrecht zur Richtung
eines homogenen Magnetfeldes der
Induktion B = 0,55 T. Welche Span-
nung wird in dem Leiter induziert?

117. Eine rechteckige Leiterwindung mit den
Abmessungen a = 25 cm, b = 30 cm
rotiert um eine durch die Mitten der
langen Seiten gehende Achse, die in
Bild 69 senkrecht zur Richtung eines

113. Ein Elektromagnet mit N = 1000 Win-
dungen wird durch einen Strom I =
= 0,5 A gespeist. Der Widerstand der
Wicklung hat den Wert R = 10 ß. Die
magnetische Induktion im Eisenkern
ist B = 1,2 T. Der Kern hat einen
Querschnitt A = 100 cm 2 . Wie groß ist
die durch Selbstinduktion hervorgeru-
fene Spannung, wenn der Strom für eine
Zeit von 0,01 s unterbrochen wird?

114. Eine Spule hat die Induktivität L =
= 0,06 H. Ermitteln Sie die durch
Selbstinduktion hervorgerufene Induk-
tionsspannung für den Fall einer Strom-
änderung, wobei der Strom innerhalb 1 s
um 1 1 000 A ansteigt.

115. Ein kreisförmiger Leiter mit dem Ra-
dius r befindet sich in Ruhe in einem

homogenen Magnetfeldes orientiert ist,
mit einer Tourenzahl n = 1200 min -1  .
Die Feldstärke hat den Wert H =
= 478000 A/m. Bestimmen Sie den
zeitlichen Mittelwert der dabei in der
Windung induzierten Spannung.

118. Wie groß ist die Kraft, mit der ein Anker
an den Polen eines Hufeisenmagneten
festgehalten wird, dessen einer Pol eine
Fläche A = 0,01 m 2 hat, wenn die
magnetische Induktion im Spalt zwi-
schen Polen und Anker den Wert B =
= 1,2 Wb m~ 2 aufweist?

119. Stellen Sie eine Formel auf, aus der die
Induktivität einer Ringspule von recht-
eckigem Querschnitt hervorgeht, die
N Windungen hat. Die Spule entspricht
der in Bild 59 dargestellten.
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1.4. Wechselstrom und elektrische Schwingungen

Die Entstehung der induzierten elektrischen Wechselspannung verdeutlichen wir uns
gewöhnlich an Hand einer einfachen Vorrichtung, in der sich ein rechteckiger, ebener
Leiter mit dem Flächeninhalt A mit konstanter Winkelgeschwindigkeit co in einem
Magnetfeld der Induktion B dreht. Er rotiert um eine Achse (Bild 70), welche die
Mittelpunkte seiner gegenüberliegenden Seiten verbindet
und senkrecht zur Richtung der magnetischen Induktion
orientiert ist.
Für den Momentanwert der elektrischen Wechselspannung
U, die in einem derartigen Rahmen induziert wird, gilt
die Beziehung

e

U — Uo sin cot Bild 70

(co Winkelgeschwindigkeit des rotierenden Rahmens, zugleich auch die Kreisfrequenz
der induzierten Spannung, Uo Höchstwert der induzierten Spannung). Der Höchst-
wert ist definiert durch

Uo = &co,

wobei 0 wiederum den Höchstwert des magnetischen Induktionsflusses darstellt, der
durch die Fläche des Rahmens tritt, also 0 = BÄ. Der Momentanwert des elektrischen
Stromes 7, der in einem Leiter durch die elektrische Wechselspannung hervorgerufen
wird, ist durch

I = IQ sin (a>t — 9?)

gegeben. Dabei ist mit dem Symbol 9? die Phasenverschiebung zwischen der Spannung
und dem Strom ausgedrückt. Sie hängt von der Art des Stromverbrauchers (d. h. der
Belastung) ab.
Die Leistung des harmonischen Wechselstroms P ist durch

P = UI cos 9?

gegeben (U Effektivwert der Spannung an den Leiterenden, I Effektivwert des durch
den Leiter fließenden Stromes, cos 99 Leistungsfaktor des Stromverbrauchers, d. h.
der Cosinus der Phasenverschiebung zwischen Spannung und Strom).
Den Effektivwert der Spannung U bzw. des Stromes / berechnen wir aus den jeweiligen
Höchstwerten UQ bzw. Zo gemäß folgender Beziehung:

0 .

V2 ’

eff
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Die Leiterspannung Us eines Dreiphasenstroms berechnen wir aus der Phasen-
spannung U f bei der Sternschaltung gemäß der Beziehung

U s = U f V3 .

Die entsprechenden Stromwerte erfüllen bei dieser Schaltung die Beziehung

Dagegen gelten bei der Dreieckschaltung die Beziehungen

U,= U f ; I s = I f 41 .

Für die Leistung des Dreiphasenstroms gilt ohne Bezugnahme auf die Art der Schal-
tung eines Stromverbrauchers die Beziehung

P = V3 Us I s cos(p.

(U s und I s Effektivwerte der Leiterspannung und des verketteten Stromes, cos<p
Leistungsfaktor des jeweiligen Stromverbrauchers).
Da wir den Momentanwert der induzierten elektrischen Spannung

U = Uo sin (ot

durch einen Komplexausdruck

£7* = Uo cos tot + i Uo sin a>t

ersetzen und somit in der GAUSSschen Zahlenebene ausdrücken können, ist es möglich,
den Wert der induzierten Spannung als rotierenden Zeiger darzustellen. Das trifft für
alle harmonisch veränderlichen Größen gleichermaßen zu, ohne Rücksicht darauf,
ob sie einer Sinus- oder Cosinusfunktion folgen. Aus diesen Erwägungen heraus wurde
die grafische Darstellung der harmonisch veränderlichen Größen entwickelt, deren
wichtige Regeln wir im folgenden Beispiel veranschaulichen wollen.
Wir haben den Wechselstrom

I = I o sin (cot + (p).

Man kann ihn durch einen Zeiger darstellen, der als Vektor in der komplexen Zahlen-
ebene aufgefaßt werden kann, dessen Absolutbetrag den konstanten Wert I o hat, der
zur Zeit t '  = 0 in bezug auf die horizontale Achse eine Neigung unter dem Winkel 99
(Phasenverschiebung) hat und mit der Winkelgeschwindigkeit o> um eine Achse ro-
tiert, die senkrecht zur Zeichenebene durch den Anfangspunkt 0 verläuft. Wir be-
trachten dabei die Umlaufrichtung entgegen dem Uhrzeigersinn als die positive. Der
7 Hajko, Elektrik
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Momentanwert des Stromes ist dann zu einem bestimmten Augenblick gleich der
Projektion des rotierenden Zeigers auf die Vertikale (Bild 71).
Der Momentanwert der Spannung

U = Uo sin cot

wird zur Zeit t = 0 als Zeiger der konstanten Größe ü 0 in Richtung einer horizontalen
Achse dargestellt. Auch der Zeiger w* rotiert mit der Winkelgeschwindigkeit co, wo-
bei Z* bezüglich ü* denselben konstanten Wert der Phasenverschiebung beibehält.

I o
 s

in
 (

a>
t+

pg
>)

Komplexe Ausdrücke addieren wir, indem wir gesondert ihre jeweils reellen und
imaginären Bestandteile addieren. Der resultierende komplexe Ausdruck hat daher
einen Realteil, der sich aus den reellen Komponenten, und einen Imaginärteil, der sich
aus den imaginären Komponenten zusammensetzt. Deshalb erhalten wir den resul-
tierenden Zeiger Z* aus zwei rotierenden Zeigern Z* und Z 2 in einem gegebenen
Augenblick durch die Addition beider Zeiger wie bei gewöhnlichen Vektoren
(Bild 72):

z* = zt + Z*=  Z l x  + j Z l y  + Z 2x + j z 2y = (Z l x  + Z 2x) +

+ j + 2y)-
Wenn die Wechselspannung

U = Uo sin cot

einem Reihenstromkreis mit dem ohmschen Widerstand R, der Induktivität L und
der Kapazität C zugeleitet wird, dann fließt in diesem ein Strom vom Höchstwert

/ / i V
R 2 +[coL  -------- )

V \ coC /
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wobei der Strom gegenüber der Spannung um einen Phasenwinkel (p verzögert ist,
der sich aus der Beziehung ergibt

T 1coL --------
coCtano? = -------------

R

Der Momentanwert des Stromes, der durch einen so aufgebauten Stromkreis fließt,
folgt der Beziehung

I = Io sin (cot — <p) = — — - (sin cot — cp) =
/ / IVR 2 +(  coL - — )

V \ coC J
UQ . , '= sm (cot — cp) .

Die Größe

Z = R 2 + ( a>L - — )
V \ (oCj

bezeichnen wir als die Impedanz (den Scheinwiderstand) des Kreises. Wenn sich aber
in einem Stromkreis nur der ohmsche Widerstand R befindet, d. h., L = 0 ,  C -> oo,
dann ist

Z = R, q> = 0°, I = — sincoZ.
, 7?

Für den Fall, daß der Stromkreis nur die Induktivität L enthält, d. h., R = 0 ,

I =* Uo coC sin (cot + 99).

In Bild 73 sind die Spannungszeiger (Spannungsabfälle) für die Größen R, L und C,
also Ur, U* und U* (gestrichelt) grafisch dargestellt, desgleichen die Zeiger der
7*
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Klemmenspannungen Ur',  U*' und U*' (ausgezogene Linien), die für die Über-
windung der angegebenen Widerstände erforderlich werden.
Nach dem in Bild 73 angedeuteten Dreieck erfüllen demnach die Impedanz des
Stromkreises sowie der Tangens der resultierenden Phasenverschiebung die folgenden
Beziehungen:

/ 1 \ 2 / / 1 \ 2

Z 2! 2 = I 2 R 2 + I 2 lcoL - — ] , Z=  R 2 +lcoL  -------- ) ,
\ coC J v \ coC J

T 
1 A T 1/ (oL -------- ) coL -------

\ ft)C J coCtan (p = — -------------— = ------------- .
IR R

Wenn durch einen Stromkreis, der aus einer Spule mit der Induktivität L, einem
Kondensator mit der Kapazität C und einem ohmschen Widerstand R, alle in Serie
geschaltet, besteht, ein Strom der Kreisfrequenz co r fließt, welche die Bedingung
erfüllt

ojt L -----— = 0, d. h., coT = — ," r C y/LC

dann bedeutet das, daß im Serienstromkreis Resonanz eintritt, und wir bezeichnen cor

als die sog. Resonanzfrequenz. Der dabei im Serienstromkreis fließende Strom stellt
ein Maximum dar und folgt der Beziehung

Der Widerstand des gesamten Stromkreises ist in diesem Fall gleich dem ohmschen.
In einem Transformator bestehen zwischen den Stromstärken, den Spannungen und
den Windungszahlen von Primär- und Sekundärwicklung (Zi , C7i , bzw. I2 , U2 , N2 )
die folgenden Beziehungen:

U. _ I2 _
U2 f n 2 ’

Für die Periodendauer T einer elektrischen Schwingung in einem Oszillatorkreis, der
aus dem ohmschen Widerstand R, der Induktivität L und der Kapazität C besteht,
gilt die Beziehung

_ 2tcT = -
/ 1  ____

V LC 47?
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Wenn der ohmsche Widerstand so klein ist, daß er gegenüber dem kapazitiven bzw.
induktiven vernachlässigt werden kann, läßt sich die Periodendauer bzw. Frequenz
der Schwingung gemäß der Beziehung

T o = 2tu >/ LC bzw. n 0 = -----\ __
2nVLC

ausdrücken.

B Beispiele

83. Ein Drahtrahmen vom Flächeninhalt A = 100 cm 2 rotiert nach Bild 74 in einem
homogenen Magnetfeld mit der Induktion B = 0,05 Wb m -2  so, daß er in einer Se-
kunde f = 300 Umdrehungen ausführt. Bestimmen Sie die in dem Drahtrahmen indu-
zierte elektrische Spannung bei den Winkelstellungen <p = 0°, 45°, 90°, 135°, 180°, 225°,
270 Q , 315° und 360°.

Lösung

Der Induktionsfluß, der in einem
bestimmten Augenblick durch
die Windungsfläche tritt, ist durch
die Beziehung

0 = B dA = BA cos cot

gegeben, wobei cd die Winkelge-
schwindigkeit des rotierenden
Rahmens bedeutet.
Entsprechend dem Induktionsgesetz können wir aber für die induzierte Spannung auch
schreiben

d0Ui - - - --— = BA cd sin cot.
dz

Da cd = 2nn und cot = cp ist, ergibt sich

Ui = 2tt nBA sin cp ,

und nach Einsetzen der gegebenen Werte erhalten wir

U = 27t . 300 s-  1 • 0,05 Vs m" 2 • 100 • 10’ 4 m 2 sin cp = 0,942 V sin cp.
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Wenn wir für den Winkel 9? die jeweils vorgegebene Gradzahl einsetzen, erhalten wir die
gesuchten Induktionsspannungen zu

UiQ = 0,942 sin 0° =0V;
C/i45 = 0,942 sin 45° = 0,667 V;
tf i 90  = 0,942 sin 90° = 0,942 V;
CA135  = 0,942 sin 135° = 0,667 V;
t/ i l 80  = 0,942 sin 180° = 0V;
t/1225 = 0,942 sin 225° = -0,667 V;
t/ 1270 = 0,942 sin 270° = -0,942 V;
171315 = 0,942 sin 315° = -0,667 V;
tfi36o = 0,942 sin 360° = 0 V.

84. In einer kurzen Spule der Querschnittsfläche A = 0,5 in 2 und einer Windungszahl
N = 60 wird durch ein harmonisch veränderliches Magnetfeld der Frequenz f = 10 6 s -1

eine Induktionsspannung mit dem Höchstwert U i 0  = 30 mV induziert. Wie groß ist der
Maximalwert der magnetischen Induktion im Mittelpunkt der Spule?

Lösung

Für die induzierte Wechselspannung, die in einem Feld mit dem Gesamtinduktionsfluß
(Höchstwert 0 gm) bei der Kreisfrequenz cd induziert wird, gilt

Ui = sin cot = Uiq sin cor,
wobei

Ui 0  = 0 gmco = &m N2nf

die Amplitude dieser Wechselspannung darstellt. Dabei wird der Höchstwert des ge-
samten Induktionsflusses mit Hilfe der Windungszahl N und des für eine einzige Win-
dung möglichen Maximalflusses ausgedrückt, also

gm •

Aus der Gleichung für die Amplitude der induzierten Wechselspannung können wir 0 m
berechnen

U i 0

2nfN ‘
0

Damit sind wir in der Lage, den gesuchten Maximalwert der magnetischen Induktion zu
berechnen. Dieser ist

Bm = = = _____3 ° -  10  ~ 3V _____ = 1 59 • IO- Wb m- ,
A 2nfNA 2k • 10 6 s -1  • 60 • 0,5 m2 -------------------------

85. In einem Trafokern entsteht unter der Wirkung eines in der Primärspule fließenden
elektrischen Stromes ein Induktionsfluß mit dem Maximalwert = 2 • 10" 3 Wb. Wie
groß ist der in der Sekundärspule mit N = 100 Windungen induzierte Effektivwert der
Induktionsspannung, wenn sich der Induktionsfluß mit einer Frequenz von f — 50 s -1

ändert?
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Lösung

Für den Maximalwert der Induktionsspannung, die in N Windungen bei der Frequenz f
und einem Maximalwert des Induktionsflusses 0 m induziert wird, haben wir in Bei-
spiel 84 eine Beziehung abgeleitet:

Daraus ergibt sich der Effektivwert der induzierten Spannung zu

U,tt = s»4,44/0 mlV= 4,44 -50 s -1  -2- 10“ 3 Vs • 100 = 44,4 V .
V2 <2 - - -

86. Berechnen Sie die von einem Wechselstrom I = Io sin a>t in einem Leiter mit dem
ohmschen Widerstand R während der Dauer einer Periode T verrichtete Arbeit.

Lösung

Für die Leistung eines Gleichstroms gilt

P' = UI,

wobei U die Spannung und I den Strom bedeutet. Da sich beim Wechselstrom sowohl
Stromstärke als auch Spannung periodisch gemäß einer Sinusfunktion ändern, ist der
Momentanwert der Leistung durch die Beziehung

P' = Uo sin cot • Io sin cot = UQI0 sin 2 cot = RIq sin2 cot

gegeben, denn die Spannung und der Strom sind bei rein ohmscher Belastung nicht
phasenverschoben und außerdem ist U° = RI 0 . Die Durchschnittsleistung P des
Wechselstroms ist der mittlere Wert der
während einer ganzen Periode veränder- pA

liehen Leistung. Deshalb können wir -
unter Verwendung der in Bild 75 einge-
tragenen Symbole - für die Durchschnitts- ~
leistung schreiben p

Bild 75

wobei / eff = - =- den Effektivwert des Stromes darstellt, dessen Maximalwert selbst mit
" V2

Io angegeben ist.
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Die während einer ganzen Periode T verrichtete Arbeit erhalten wir in Übereinstimmung
mit der Definition für die Arbeit als Produkt von Durchschnittsleistung und Periode,
also

W RI&T.

87. Ein Klingeltransformator liefert sekundärseitig bei einer Spannung U2 = 4 V einen
Strom I 2 = 200 mA. Welcher Strom Zi fließt in der Primärwicklung, wenn diese mit
einer Spannung U± = 220 V gespeist wird und wir eventuelle Trafo Verluste vernach-
lässigen können?

Lösung

Unter der Voraussetzung, daß Verluste vernachlässigt werden können, ist die Arbeit des
in der Zeitspanne t in der Primär- und in der Sekundärwicklung fließenden Stroms die
gleiche, also

UJS = U2 I2 t .

Das ergibt

U2 4 V 0,8
A = l2 = 2 oo • 1 0-  ’ A — = A = 0,0036 A .

88. Welchen Strom nimmt ein Wechselstrommotor auf, der bei einer Spannung U = 220 V
eine Leistung P = 2,2 kW liefert, wenn der Leistungsfaktor cos q> = 0,88 und der
Wirkungsgrad des Motors ?? = 0,89 beträgt?

Lösung

Für die Leistung des Wechselstroms gilt die Beziehung

Pi = UI cos (p.

Wir können also für den Wirkungsgrad schreiben

wobei die von der Maschine aufgenommene (input) und P o die von ihr abgegebene
(output) Leistung darstellt.
Für den gesuchten Wert der Stromstärke erhalten wir demnach die Beziehung

I = — P° = 2200 W = 1 2 77 A
rjU cos <p 0,89 • 220 V • 0,88 —------- ’

89. Ein Kondensator mit der Kapazität C hat zur Zeit t = 0 das Potential Uo . Wir entladen
ihn über einen Widerstand P. Wie sieht der zeitliche Verlauf des Stromes aus?
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Lösung

Für die Behandlung des Stromkreises in Bild 76 verwenden wir das 2. KiRCHHOFFsche
Gesetz. Dabei ist die einzige Spannungsquelle unser Kondensator mit der Kapazität C,
der die Ladungsmenge Q enthält. Auf Grund des durch den Widerstand fließenden
Stromes I tritt am Widerstand R der ohmsche Spannungsabfall auf. Es ist deshalb

Uc = IR
oder

ß

Wir können diese Gleichung nach der Zeit ableiten und er-
halten

Bild 76
dß

dt
1 „ dZ „— - R— = 0 .C dt

Da mit dem Symbol Q die auf den Kondensatorplatten enthaltene Ladung bezeichnet
ist, gilt

-4g=z
d/

und also

I „ dZ
— + *— = 0 .cit

Die Lösung dieser Differentialgleichung lautet

Z = Ke  RC ,

wobei K die Integrationskonstante bedeutet.
Wir bestimmen sie unter Berücksichtigung der Bedingung, daß zu Beginn der Konden-
satorentladung, also nach Betätigen des Schalters S (Bild 76), der Kondensator noch
das Potential Uo besaß, so daß für die Zeit t — 0 gilt QIC = UQ . Wenn wir das in die
ursprüngliche Gleichung einsetzen, erhalten wir

Uo = IR = 0
t

Uo - RKe' = 0 ,

und für den Fall t = 0 erhalten wir

Uo -ÄK = 0 ,
d. h.,

Uo
R
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Damit ist der zeitliche Verlauf des Stroms im angegebenen Stromkreis durch folgende
Beziehung wiedergegeben :

I = - . e‘Rc = Ioe "Kc .

90. Die Platten eines Kondensators der Kapazität C = 0,1 [xF sind auf eine bestimmte
Potentialdifferenz aufgeladen. In welcher Zeit entlädt sich der Kondensator auf die
Hälfte seines Anfangswertes, wenn die Platten durch einen hochohmigen Leiter mit dem
Widerstand R = 2 • 10 6 £1 verbunden werden?

Lösung

Für diesen Stromkreis gilt analog zum vorhergegangenen Beispiel die Beziehung

Da jedoch I = — dß/dz ist (ß bedeutet die Ladung auf den Platten des Kondensators,
deshalb ist das Vorzeichen negativ), kann man auch schreiben

Q dß dß 1
= d.h.» ß .C dz dz AG

Das ergibt nach einer Umformung

Ldr.
Q RC

Durch Integration dieser Gleichung erhalten wir die Beziehung

hiß = + l n  ß 0 .KL

Für die Zeitabhängigkeit der an den Elektroden vorhandenen Ladungen erhalten wir
t

ß=ßo  e“ ,

wobei ß 0 die maximale Ladung bedeutet, das ist diejenige Ladungsmenge, die zur Zeit
Z = 0 auf den Elektroden sitzt. Für die in der Aufgabe gesuchte Zeit Z*, in der sich der
Kondensator um die Hälfte entlädt, gilt bezüglich der Ladung ß = ß 0 /2. Wirschreiben
deshalb

<k=ß o e" ,

1 - —~ RC
T - e  •

d. h.
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Also erhalten wir die gesuchte Zeit zu

t* = RC  In 2 = 0,1 • 10- 6 F • 2 • 10 6 Q • 2,3 1g 2 = 0,14 s.

91. Wie verändert sich der Strom Z in einem Leiter mit dem Widerstand R und der Induk-
tivität L in der Zeit, wenn wir ihn an eine Quelle mit der konstanten Spannung U an-
schließen?

Lösung

Für die Berechnung des in Bild 77 dargestellten Stromkreises verwenden wir das
2. KiRCHHOFFSche Gesetz, wobei wir berücksichtigen, daß in der Spule durch die Ände-
rung des Stroms eine Spannung induziert wird, für die gilt

dZ
U - L d t -

Es wird also

U+U RI, U-L  - = RI,
dr

dZL — + RI — U== 0.
dr

Wenn wir von der letzten Gleichung die Ableitung nach der Zeit bilden, erhalten wir

L dt 2 +R  dt
= 0.

Dieser Typ der Differentialgleichungen hat die allgemeine Lösung

I = Ci + C 2 e a *f ,

wobei Ci und C 2 Integrationskonstanten und «i  , a 2 die Wurzeln der quadratischen
Gleichung

Loc2 + R<x + 0 = 0 )

sind. Für sie gilt

/°
ai ’ 2 = \ £ ’

“ L

Damit nimmt die Lösung die Form

- — t
I — C*i 4~ C 2 e

an.
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Die Integrationskonstanten bestimmen wir aus zwei Grenzbedingungen, und zwar
für t = 0 :  I = 0 -> 0 = Ci + C 2 ;

U U
für t = oo : Z = - ->  — = Ci + 0.

R R
Aus den angegebenen beiden Gleichungen erhalten wir für und C2

U U
Ci = - ;  C 2 = -C l = ~ -

und damit nach Einsetzen beider Konstanten als endgültige Lösung

92. Durch Betätigen des Schalters S (Bild 78) wird der Kondensator über den Wider-
stand R an die Klemmenspannung UQ angeschlossen. In welcher Zeit, vom Beginn
des Auf ladens eines Kondensators der Kapazität C an gerechnet, erreicht die Spannung
auf den Kondensatorplatten den Wert Uc ?

Lösung

Gemäß dem 2. KiRCHHOFFSchen Gesetz können wir für den an-
gegebenen Stromkreis in jedem Augenblick die Beziehung

Q + U0 =IR

anwenden. Dabei ist Q der Momentanwert der auf den Kondensatorplatten gespeicher-
ten Ladung. Da wir für den Strom I = —dQ/dt schreiben können, erhalten wir nach
Umformung die Beziehung

dQ = £o
dz CR U R * (1)

Wenn wir die Substitution

ß 0
CR + R X

einführen, wird
dx 1 dß dß dx
—— = _ —:— , d.  h., —-— = CR —— ,dz CR dt dt dz

so daß wir nach Einsetzen in Gl. (1) erhalten
dx 1
d7 “ CR X '
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Durch Integration dieser Gleichung finden wir

x = k e CR , d. h., = k e CR .
CR R

Die Integrationskonstante k bestimmen wir aus der Bedingung, daß zur Zeit t = 0 auch
die Ladung Q = 0 ist, so daß sich ergibt

Da Q/C = ~U C die am Kondensator anliegende Momentanspannung ist, die gegen die
Klemmenspannung UQ gemessen wird, ergibt sich

-U c + Uo = Uo e~ 55 , d. h., e~  55 = U ° tUo

so daß für die gesuchte Zeit 7, zu der am Kondensator die Spannung Uc besteht, die
Beziehung gilt:

93. Ein Stromkreis enthält in Serie geschaltet einen ohmschen Widerstand R = 10 ß, einen
Kondensator der Kapazität C = 2 [1F und eine Induktionsspule der Induktivität
L = 0,1 H. Er ist an eine Wechselspannung U = 220 V mit der Netzfrequenz f = 50 s -1

angeschlossen. Welcher Strom fließt in dem angegebenen Stromkreis?

Lösung

Der Scheinwiderstand des Stromkreises aus dem ohmschen Widerstand R, der Induk-
tivität L und der Kapazität C wird bei der Kreisfrequenz angegeben durch

Demnach wird entsprechend dem OHMschen Gesetz bei der Kreisfrequenz cd = 2k/ =
= 2k 50 s" 1 = 314 s“ 1 der Strom einen Effektivwert annehmen, für den gilt

J R2  + (" L -

J 10 2 n 2 + ( 314 s-  1 • 0,1 H — — — r * -■ V
V \ 314 s-  1 -2- 10~ 6 F )

94. Eine Drosselspule und ein Kondensator der Kapazität C = 10 p.F, die hintereinander-
geschaltet sind, werden von einem Strom I = 1 A durchflossen. Sie sind an ein Netz der
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Spannung U = 120 V und der Frequenz f = 50 s -1  angeschlossen. Der ohmsche Wider-
stand der Drosselspule hat den Wert E = 120 Q. Berechnen Sie die Induktivität der
Spule.

Lösung

Aus der Beziehung
U

erhält man die gesuchte Induktivität und kann sie wie folgt ausdrücken :

/120 2 V2 1/ izu_v  ---- --------1 --------

N 1 2 A 2 314 s" 1 - 10- 10’ 6 F
= 1,013 H .

314 s-  1

95. Ein Kondensator soll einen kapazitiven Widerstand X = 500 D haben. Wie groß muß
demnach seine Kapazität bei einer Frequenz von a) 50 s"  1 und b) 50000 s -1  sein?

Lösung

Den kapazitiven Widerstand können wir mit Hilfe der Kapazität C und der Kreis-
frequenz co = 2k/ ausdrücken, d. h.,

Die gesuchte Kapazität berechnen wir aus

C= läa = 2nfX'

Für die einzelnen vorgenannten Frequenzen ermitteln wir dann die entsprechenden
Kapazitäten wie folgt:

c =° 2 . .  50 A .  500 n - M7 ' 10 ~* F

C " ““ - 2 . . 50000*s - .500  0 « 7 ' >
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96. Ein Kondensator der Kapazität C = 16 und ein ohmscher Widerstand der Größe
R = 200 Q sind, in Serie geschaltet, an ein Wechselstromnetz der Spannung U = 220 V
und der Frequenz f = 50 s -1  angeschlossen. Es sind für diesen Fall folgende Größen zu
bestimmen: die Impedanz des Stromkreises, die Stromstärke, die Phase zwischen
Spannung und Strom, die am Kondensator und die am ohmschen Widerstand anliegende
Spannung.

Lösung

Wir wenden die für einen Wechselstromkreis der angegebenen Art gültigen Beziehungen
an und finden

Z = Ir2 + (J_ V = /2OO2 ß 2 + f-------------5 ----------— ) = 282,1 ß ;
V \coCj V \2k • 50 s-  1 • 16 • 10“ 6 F/ ----------

R 200 ß
C0S9 ,=  Z = 282ß  = °’ 707; y=  -44 -’

" 2 . -50

U R = IR = 0,78 A • 200 Q = 155,97 V.

97. Ein Stromverbraucher mit einer Leistungsaufnahme P = 3 kW und einem Leistungs-
faktor cos = 0,6 ist an ein elektrisches Netz der Spannung U = 220 V und der Fre-
puenz f = 50 s -1  angeschlossen.
a) Welchen Kondensator müßten wir in Parallelschaltung an die Klemmen des Strom-
verbrauchers anschließen, um eine Erhöhung des Leistungsfaktors auf den Wert
cos 9?i = 0,9 zu erreichen?
b) Wie müßte ein Kondensator beschaffen sein, dessen zusätzlicher Anschluß keine
Phasenverschiebung ergibt, so daß cos <p2 = 1 wird?

Lösung

Die ohmsche Komponente des durch den Stromver-
braucher fließenden Stroms IR zeigt bezüglich der Span-
nung U keine Phasenverschiebung. Wir bezeichnen sie
deshalb mit dem Zeiger I R , der mit der Richtung des
Spannungszeigers w* zusammenfällt (Bild 79). Wenn wir
als positive Richtung die Richtung der Phasenverschiebung
entgegen dem Uhrzeigersinn bezeichnen, dann sind die
induktive und die kapazitive Stromkomponente durch die
Vektoren /* und 7* zu definieren. Der resultierende Zeiger
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wird vor dem Anschluß des Zusatzkondensators die Größe 7* und nach dessen An-
schluß die Größe 7* haben.
Zwischen der alten Stellung des resultierenden Stromzeigers 12 und des neuen 13 wird
nach Bild 168 die Beziehung

23 = 12 - 13

gelten. Für die Größen der Zeiger bedeutet das

Ic = 4 tan — IR tan <?2 ,
U P—j— = — (tan - tan <?2 ).

cdC

Daraus ergibt sich
P

Ci= —— (tan <P1 — tan 9>2).
CDU 2 '

a) Da cos = 0,6 dem in den Tabellen angegebenen Wert tan = 1,3333 entspricht
und für cos (p2 = 0,9 sich tan (p2 = 0,4843 ergibt, erhalten wir die Kapazität des erforder-
lichen Kondensators zu

3000 W
C = 2tc • 50 s -1  • 2202 V2" (1 ’ 3333  - °’4843) = 167 » 6 - 10 - 6F -

b) Wenn wir die Phasenverschiebung auf den Wert cos <p2 = 1 ausgleichen wollen,
setzen wir in die oben abgeleitete Beziehung tan <p2 = 0 ein, so daß sich ergibt

P 3000 WC “ tan = 2tc • 50 s -1  • 2202 V2 U333 = 3 >2 - 10 ~ 6R

98. Welcher Strom fließt durch einen Stromkreis, der aus einer Induktivität L = 4 H und
aus einer Kapazität C = 16 [iF besteht, die, in Parallelschaltung angeordnet, an eine
Wechselstromquelle der Spannung £7 = 220 V und der Frequenz /=50s  -1  an-
geschlossen sind?

i

Lösung

Der angegebene Stromkreis ist in Bild 80 a dargestellt, sein Zeigerdiagramm in Bild 80 b.
Der in der Spule fließende Strom ist um 90° gegenüber der Spannung U verzögert, wo-

Bild 80a Bild 80b
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durch sich ergibt, daß der Kondensatorstrom seinerseits der Klemmenspannung um 90°
vorauseilt. Aus dem dargestellten Zeigerdiagramm resultiert die Größe der Zeiger zu

Da jedoch

I - u I - u
C ~J~’  l ~ l

cüC
ist, wird

1
s-  1 • 16 • 10~ 6 F - - — —— r — -2k • 50 s -1  • 4 HcoC —

= 0,93 A.

99. Ein in Bild 81 dargestellter Serienresonanzkreis, bestehend aus einer Spule mit dem
ohmschen Widerstand. R = 0,2 D, der Induktivität L — 50 (xH und einem Kondensator
der Kapazität C — 300 pF, ist an eine Spannung U = 4 V angeschlossen. Ermitteln Sie
die Resonanzfrequenz, den Resonanzstrom und die bei Resonanz an Induktivität bzw.
Kapazität anliegende Spannung.

Lösung

Für die Resonanzfrequenz gilt die Beziehung

/ r=  — ? _____________
2k y/LC 2k V 50 - 10 -6  H • 300 • 10" 12  F

Bild 81

= 1,299 • 10 6 s-  1 .

Der im Resonanzfall fließende Strom entspricht dem, der nur bei Vorhandensein eines
ohmschen Widerstands aufträte, nämlich

u 4V
' - - i r = o,2 n=  2-

Die an Induktivität und Kapazität anstehende Spannung erhalten wir aus dem OHMschen
Gesetz für Wechselstrom zu

UL = I t cot L = 20 A • 2tz • 1,299 • 10 6 s’ 1 • 50 • 10 -6  H = 8,165 • IQ 3 V;

= 8,165 • 10 3 V.Uc Ir a>r C 20 A 2k • 1,3 • 106 s- 1 • 300 • 10’ 12  F

100. Ein Schwingkreis besteht aus einer Spule der Induktivität L = 0,07 H und einem Platten-
kondensator mit dem Flächeninhalt A = 0,45 m 2 , der als Dielektrikum Paraffinpapier
der Dicke d = 0,1 mm (er = 2) enthält. Es ist die Maximalstärke und die Periode des
Resonanzstroms zu bestimmen für den Fall, daß der Kondensator anfangs auf die Span-
nung UQ = 100 V aufgeladen wurde und daß der ohmsche Widerstand des Kreises zu
vernachlässigen ist.

8 Hajko, Elektrik
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Lösung

In Anwendung des 2. KiRCHHOFFSchen Gesetzes können wir für diesen Stromkreis
schreiben

dZ
ÄZ = U -L—,

dt

eine Beziehung, die in Hinsicht auf die Voraussetzung, daß R = 0 ist, vereinfacht werden
kann zu

dl
0 = £7 — L — . (1)

df

Da aber auch U = QIC ist, ergibt sich

Indem wir die vorstehende Gleichung nach der. Zeit differenzieren, können wir sie unter
Verwendung des Ausdrucks dQ/dt = — Z in die Form

bringen, wobei wir 1 /ZC = co 2 gesetzt haben. Wir lösen die angegebene Differential-
gleichung und erhalten

I = Io sin (cot 4- 9?), (2)

worin Zo die Maximalamplitude des im Schwingkreis fließenden Stroms und <p seine
Phasenkonstante darstellt. Beide Größen können wir aus den Anfangsbedingungen er-
mitteln. Da für die Zeit t = 0 auch I = 0 und U = Uo gilt, ergibt sich aus Gl (2) (p = 0 .
Aus Gl. (1) jedoch folgt

0 — Uq — L(oIq 9

d. h.,
Uo
LeoZo

Da die Kapazität eines Plattenkondensators durch die Beziehung

A A
C = eo eT — = e —

d d

angegeben wird, erhalten wir nach Einsetzen der gegebenen Werte

l cA_  0 /2-8,85 - IO" 12  »0,45
N'Ld~  ° V 0,07 • 0,0001

AZo = Uo « 0,107 A.



1.4. Wechselstrom und elektrische Schwingungen 115

Für die Periodendauer der ungedämpften Schwingung des Kreises finden wir schließlich

27C /— . I LeA / 0,07 • 2 • 8,85 • 10“ 12  • 0,45T = — = 2- JLC = 2tü /— — = 2 • 3,14 / —----------- - -------- —(o y N d N 0,0001

4,7- IO“ 4 s .

101. Wie groß ist die Phasenspannung eines Drehstromgenerators, dessen Spulen in Stern-
schaltung stehen, wenn die Leiterspannung 220 V beträgt?

Lösung

Da die Spulen des Generators um jeweils einen Winkel von 120° gegeneinander gedreht
sind, müssen auch die in ihnen induzierten Spannungen jeweils um 120° gegeneinander
elektrisch verschoben sein. Wenn wir die Phasenspannungen w* als umlaufende Zeiger
darstellen, dann werden auch sie um 120° gegeneinander verdreht sein. Die Leiter-
spannung u* stellt dann die Differenz zweier Phasen-
spannungszeiger dar; also ist ü* der die Spitzen der
Zeiger ü* verbindende Zeiger.
Aus Bild 82 ist zu entnehmen, daß entsprechend dem
Teildreieck 00 'C die Zeiger bestimmt sind zu

Us J3
= U f cos 30° = U f .

2 J J 2
Damit ist

Us 220 V
Uf ~ 7T = T73 Ö5 Bild 82

102. In der Speiseleitung eines elektrischen Drehstromofens, der für 3 • 380 V in Dreieck-
schaltung ausgelegt ist, wird ein Strom Is = 6 A gemessen. Wie groß ist
a) der Phasenstrom,
b) der Widerstand in einer Phase,
c) die Ofenleistung?

Lösung

a) Bekanntlich ist die Beziehung zwischen Phasenstrom und verkettetem Leiterstrom
bei der Dreieckschaltung analog der Beziehung zwischen den Spannungen bei der Stern-
schaltung, also

Is 6I f = - =- = = 3,464 A .
y/3 y/3 ---------

b) Da im Falle der Dreieckschaltung gilt

U f = US9

8*
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erhalten wir
U f 380 V= — = 3 ,47 A = 109, 7 Q.

c) Die Leistung berechnen wir aus den angegebenen Werten, die in die Beziehung für die
Leistung des Drehstroms eingesetzt werden. Diese erhalten wir als den dreifachen Wert
der mit einer einzigen Phase übertragenen Leistung, also

P = 3U f If cos 92.

Diese Beziehung wird allgemein in der Weise angewendet, daß alle Werte verkettete
Werte darstellen. Für den Fall der Sternschaltung bedeutet das

UsP = 3 —7=- Is cos (p = J3  USIS cos <p ,
V3

Das gleiche gilt im Falle der Dreieckschaltung, also

4 /-P = 3US — cos <p = J3  U SIS cos <p .
V3

In unserem Falle ergibt das

P = 3 • 380 V • 6 A • 1 = 3949 W = 3,949 kW,

103. Mit welchem Leistungsfaktor arbeitet ein Drehstrommotor, der bei einer Leiterspan-
nung von U = 6000 V und einer Leistungsaufnahme Pi = 200 kW den Strom
I = 23,4 A aufnimmt? Welche Spannung entfiele auf eine einzige Phase, wenn die
Motorwicklung in Sternschaltung ausgeführt würde?

Lösung

Den Leistungsfaktor bestimmen wir aus der Beziehung für die Drehstromleistung des
Motors zu

P = >/3 44 cos <p

(Us , Is  verkettete Werte der Spannung und des Stromes, cos 99 Leistungsfaktor des
Motors). Daraus folgt

P 200- 1000 W
cos <p = —= ----- =3 ■ , ■ . = 0,8224.

V3 USIS 1,73205 • 6000 V • 23,4 A --  ------

Für die Beziehung zwischen Phasen- und Leiterspannung gilt bei der Sternschaltung

Us 6000 V
U f = - -  3464 V.f 3 1,73205 --------
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Aufgaben

Wert U = 110 V hat. Der Strom ist
gegenüber der Spannung um den
Winkel 9? aus cos <p = 0,8 verschoben.
Es ist die Leistung des Wechselstroms
zu berechnen.

125. Berechnen Sie, welchen Strom ein Ein-
phasenelektromotor der Leistung P =
= 1,47 kW aus einem Wechselstromnetz
mit der Spannung U = 220 V ent-
nimmt, wenn der Leistungsfaktor
cos <p = 0,8 und der Wirkungsgrad
q = 90% beträgt.

126. Ein Motor für Dreiphasenstrom ist an
eine Netzspannung Us = 380 V an-
geschlossen. a) Wie groß ist die Span-
nung zwischen dem Leiter und dem
Nullpunkt der Motorwicklung? b) Wie
groß ist der Strom in der Spule des
Motors, wenn er in der Zuleitung den
Wert Is = 6 A hat?

127. Welche Leistung hat ein Drehstrom-
motor mit den Angaben U = 380 V,
I = 30 A, cos (p = 0,8 und r) = 0,85?

128. Ein Drehstromgenerator gibt bei einer
Spannung U = 6300 V einen Strom
I = 200 A bei cos <p = 0,8 ab. Wie groß
ist seine Leistung?

129. Ein Drehstrommotor, dessen Spulen
in Dreieckschaltung angeordnet sind,
ist an ein Netz der Spannung Us = 220V
angeschlossen. Die Netzfrequenz be-
trägt f = 50 s -1  . Er gibt bei einem
Leistungsfaktor cos <p = 0,75 und einem
Wirkungsgrad rj = 90% eine Leistung
von P = 27,1 kW ab. Welcher Strom I s
fließt in den Speiseleitem (verketteter
Strom) ?

130. Ein Kondensator ist nach Bild 84 ge-
schaltet. Die Kenngrößen sind U =
= 220V,R = 10ß ,C=  1 pF,L = 2H
und (o = 2rc • 50 s -1  . Es ist die an den
Klemmen des Kondensators auftretende
Effektivspannung zu berechnen.

120. In einem Magnetfeld der Induktion
B = 50 • 10“ 4 Wb m -2  rotiert mit einer
Frequenz n = 3000 min" 1 ein Leiter,
der aus N = 400 Windungen besteht
und die Gestalt eines Rechtecks hat,
dessen Abmessungen a = 0,15 m und
h = 0,2 m sind. Wie groß ist der Ma-
ximalwert der im Leiter induzierten
Spannung?

121. Eine rechteckige Spule mit den Abmes-
sungen 2,0 cm • 2,5 cm besteht aus
100 Windungen und rotiert gleich-
mäßig in einem homogenen Magnetfeld
der Induktion B = 0,1 T um die zur
Feldrichtung senkrecht orientierte Achse

(Bild 83). In ihr wird dabei eine Span-
nung mit der Maximalamplitude Uo =
= 1,57 V induziert. Wie groß ist die
Winkelgeschwindigkeit der rotierenden
Spule?

122. Eine elektrische Maschine gibt bei 220V
einen Strom von 109 A ab und hat laut
Wattmeteranzeige eine Leistungsauf-
nahme Pi = 20 kW. Wie groß ist ihr
Leistungsfaktor?

123. Wie groß ist die Effektivspannung eines
Wechselstroms, dessen Maximalspan-
nung den Wert Uo = 170 V aufweist?

124. Ein Wechselstromverbraucher nimmt
laut Meßanzeige einen Strom 1 = 2 A
auf, wenn die Klemmenspannung den
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131. Ein Serienstromkreis, bestehend aus
einem Kondensator der Kapazität
C = 8 (zF, einer Spule der Induktivität
L = 2 H und einem ohmschen Wider-
stand R = 30 Q, ist an eine Quelle der

bestimmen: der Scheinwiderstand des
gesamten Stromkreises, der im Kreis
fließende Strom, der im Widerstand
und der im Kondensator fließende Strom
sowie die Phasenverschiebung zwischen
Spannung und Strom.

134. Welcher Strom fließt in dem in Bild 86
dargestellten Stromkreis, wenn L = 9H,

Bild 84

Spannung U = ,1 10 V und der Frequenz
f = 50 s -1  angeschlossen. Es sind zu be-
stimmen: die Impedanz des gesamten
Stromkreises, der im Kreis fließende
Strom, die am Kondensator und an der
Spule anliegende Spannung sowie der
Leistungsfaktor des Stromkreises.

132. Eine Spule der Induktivität L = 0,5 H
ist mit einem ohmschen Widerstand
Ä = 157 O zusammen in Serie geschal-
tet und an ein Netz der Spannung
U = 220 V und der Frequenz f = 50 s -1

angeschlossen. Es sind zu bestimmen:
die Impedanz dieser Kombination, die
Phasenverschiebung zwischen Span-
nung und Strom, die Stromstärke sowie
die an Spule und Widerstand anliegende
Spannung.

133. Ein ohmscher Widerstand R = 3 Q und
ein Kondensator der Kapazität C, des-
sen kapazitiver Widerstand bei einer
Frequenz von f = 50 s -1  den Wert
Äc =l / coC  = 5Q hat, sind parallelge-
schaltet und an eine Wechselspannungs-
quelle U = 10 V und f = 50 s -1  an-
geschlossen (Bild 85 a). Es sind zu

Bild 86

Ri — 200 ß, C — 1 (zF, R 2 — 58 £2,
U = 220 V und f = 50 s -1  ist?

135. Durch eine Spule der Induktivität
L = 0,25 H fließt ein Strom I = Io sin cot
mit Io = 1 A und co = 3140 s -1  . Be-
stimmen Sie den Maximalwert der in
der Spule induzierten Spannung.

136. Wie groß muß der Maximalwert des
Induktionsflusses im Kem eines Trans-
formators bei der Frequenz f = 50 s -1

sein, damit in einer Windung der Sekun-
därwicklung eine Spannung mit dem
Effektivwert = 0,25 V induziert
wird?

137. Die Primärwicklung eines Transforma-
tors hat Ni = 880 Windungen, die Se-
kundärwicklung N 2 = 1200 Windun-
gen. Welche Spannung wird in der Se-
kundärwicklung induziert, wenn die
Primärwicklung an eine Spannung vom
Betrag UY =220V angeschlossen wird?

138. Eine Batterie von in Serie geschalteten
Kondensatoren mit den Kapazitäten Ci
und C 2 (Bild 87) enthält zur Zeit t = 0
die Spannung UQ . Welche Funktion

Bild 85 a Bild 85 b Bild 87



1.4. Wechselstrom und elektrische Schwingungen 119

140. Eine Spule der Induktivität L = 1 H
soll zusammen mit einem ohmschen
Widerstand R = 1 Q zur Zeit t = 0
an eine konstante Spannung U ange-
schlossen sein. Es ist die Zeitspanne
zu bestimmen, nach deren Ablauf
der durch den Stromkreis fließende
Strom seinen konstanten Endwert er-
reicht hat, wobei die Genauigkeit l° /00
betragen soll.

nimmt der zeitliche Stromverlauf nach
Schließen des Schalters S an?

139. Ein Kondensator der Kapazität C =
= 1,5 • 10“ 6 F ist auf die Spannung
U = 500 V aufgeladen. Er ist Teil eines
Stromkreises der Induktivität L =
= 5 • 10“ 5 H. Wie groß wird der Maxi-
malwert des ungedämpften Schwing-
kreisstroms, und in welcher Zeit wächst
er vom Nullwert bis zum Maximum an?





2. Optik

2.1. Photometrie

Eine Lichtquelle sendet Lichtstrahlung einer bestimmten Energie nach allen Seiten
aus. Unter Strahlungsfluß 0 e verstehen wir gewöhnlich diejenige Lichtenergie (all-
gemein: Strahlungsenergie), die in der Zeiteinheit durch irgendeine Fläche strömt.
Mit Lichtstrom 0 bezeichnen wir den Strahlungsfluß, der von einem normalen mensch-
lichen Auge wahrgenommen wird. Das photometrische Strahhmgsäquivalent K stellt
das Verhältnis des Lichtstroms 0zum zugehörigen Strahlungsfluß 0 C durch dieselbe
Fläche dar.
Der Lichtstrom, den eine Strahlungsquelle in den gesamten umgebenden Raum aus-
sendet, wird als die Gesamtlichtstärke einer Lichtquelle bezeichnet.
Wenn eine punktförmige Lichtquelle in den Raumwinkel dco einen Lichtstrom d0
aussendet, dann heißt der Quotient

d0
dco

Richtlichtstärke einer Quelle in der betreffenden Richtung. Die Gesamtlichtstärke
einer Lichtquelle ist

0 = J Zdco.
o

Wenn ihre Richtstärke in alle Richtungen gleich groß ist, wird

0 = 4tc L
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Unter der Beleuchtungsstärke E einer Fläche A verstehen wir den Quotienten aus dem
Lichtstrom d0 und dem Flächenelement dA, auf das er trifft, also

77E = ----- .
dA

Wenn auf eine Fläche dyf Lichtstrahlen einer im Abstand s entfernt stehenden Punkt-
quelle der Lichtstärke I auftreffen und wenn die Lichtstrahlen gegenüber der Flächen-
normalen mit dem Winkel <p einfallen, dann wird die Beleuchtungsstärke der Fläche
durch folgende Beziehung bestimmt:

„ I cos cpE = -------- .
s 2

.D Beispiele

104. In einem Projektionsapparat wird eine Glühlampe mit einem Gesamtlichtstrom der
Größe 0 O = 4800 Im verwendet. Bei der Projektion ist die Bildfläche in Gestalt eines
Rechtecks mit den Seiten a = 2 m und b = 1,5 m gleichmäßig mit einer Beleuchtungs-
stärke E = 4 Ix ausgeleuchtet. Welcher Anteil des von der Glühlampe ausgesandten
Lichtstroms trifft auf die Projektionsfläche?

Lösung

An einer Stelle einer beleuchteten Fläche, an der die Beleuchtungsstärke den Wert E Ix
annimmt, fällt auf das Flächenelement dA der Lichtstrom

d0 = EdA

und damit auf die Fläche A der Lichtstrom

0 = J EdA.

Unter der Voraussetzung, daß die Beleuchtungsstärke auf der gesamten Bildfläche
überall gleich groß ist, gilt für die Beleuchtungsstärke E = const, und es wird

0 = EA,

wobei A der Flächeninhalt der Bildfläche ist.
Vom gesamten von der Glühlampe ausgesandten Lichtstrom 0 O entfällt auf die Bild-
fläche der Anteil

0
u — •

0o
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Nach Einsetzen der gegebenen Werte erhalten wir als Ergebnis

» -  4 ' X : ? " , ' '  5 " -0 .002S .  d .h„  0,25%.48001m —— -

105. Eine Wand wird durch zwei gleichartige Kerzen beleuchtet, die im Abstand d = 1 m
von der Wand dicht nebeneinander aufgestellt sind. Berechnen Sie, um welche Strecke
wir die eine Kerze an die Wand heranrücken müssen, wenn nach Erlöschen der anderen
die Wand ebenso wie vordem beleuchtet sein soll.

Lösung

Für die Beleuchtungsstärke einer Fläche bei Beleuchtung durch eine Punktquelle gilt
die Beziehung

IE = — cos <?.
r 2

Da beide Kerzen von der Wand den gleichen Abstand d und gleiche Lichtstärken
Zi = I2 haben und die Lichtstrahlen von beiden senkrecht auf die Wand auftreffen, ist
die Gesamtbeleuchtungsstärke der Fläche wegen der gleichzeitigen Beleuchtung mit
beiden Kerzen durch die Beziehung

gegeben. Nach dem Auslöschen der einen Kerze müssen wir die zweite bis auf einen
solchen Abstand x an die Wand heranrücken, daß die Beleuchtungsstärke der Wand
ebenso groß ist wie vorher, damit also die Beziehung

2Z __ 1

erfüllt wird. Daraus finden wir

X 2 '

Nach Einsetzen der gegebenen Größen erhalten wir

x = 0,7 m .

Die Kerze muß demnach 30 cm an die Wand herangerückt werden.
106. In der Mitte über einer kreisrunden Tischplatte vom Radius r = 1 m hängt eine (punkt-

förmige) Lichtquelle. Berechnen Sie, in welcher Höhe über der Tischplatte sie hängen
muß, damit die Beleuchtungsstärke am Tischrand einen maximalen Wert annimmt.
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Lösung

Wenn sich wie in Bild 88 die Lichtquelle in einem Abstand l von dem Rand der Tisch-
platte befindet und der Einfallswinkel des Lichtes mit <p angegeben ist, so ist in jedem
Punkt des kreisrunden Tischrandes die Beleuchtungsstärke durch die Beziehung

Icos<pE ~—p—
gegeben. Ist die Lichtquelle in einer Höhe h = x über dem Mittelpunkt der Tischplatte
angeordnet, dann gilt

cos <p = — und Z=  /x 2 
r +r  2 ., \

so daß sich ergibt I \ {xl \
_ Ix I
“WW j ___  \i

Wenn die Beleuchtungsstärke einen Maximalwert annehmen soll,
so muß die Bedingung Bild 88

erfüllt sein. Das führt zu folgender Gleichung:

1 x2 _ n
(y/x 2 + r 2)3 (V 2 + r2 )5

Nach Umformung und Auflösung dieser Gleichung erhalten wir

Die Lampe muß also in einer Höhe von 70 cm über der Mitte des Tisches aufgehängt
werden.

107. Ein Tisch wird durch zwei Glühlampen beleuchtet, die in einer Höhe h = 2 m über der
Tischfläche und in einem gegenseitigen Abstand d = 1 m voneinander aufgehängt sind.
Berechnen Sie die Beleuchtungsstärken
a) in den senkrecht unter den Lampen gelegenen Punkten und
b) in der Mitte zwischen diesen beiden Punkten
unter der Voraussetzung, daß jede der beiden Glühlampen die Lichtstärke Zo = 200 cd
hat.
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Lösung

In jedem beliebigen Punkt der Tischplatte wird die Beleuchtungsstärke E gleich der
Summe der von den beiden Lichtquellen herrührenden Beleuchtungsstärken sein, also

E = Ei + E2 • (1)

Im Fall a) gilt entsprechend den in Bild 89 angewendeten Bezeichnungen

„ Io „ /o cos (pi
---- &2 ---------2----- •h2------------------r2

Da

cos <pi = — und ri = Jd 2 + h 2
ri

ist, geht Gl. (1) in die folgende Form über:

E _ Io , loh
h 2

Nach Einsetzen der Werte erhalten wir

£” = 86 Ix.

Bild 89

Im Fall b) bildet der Punkt B, der mitten zwischen den beiden Fußpunkten A und C
liegt, die Spitze eines gleichschenkligen Dreiecks, dessen Seiten r2 , r2 und d sind. In
diesem Dreieck gilt

h a Iu2 6/2

cos = — und r 2 = / /r H— — .
r2 M 4

Für die von den einzelnen Lichtquellen herrührende Beleuchtungsstärke folgt daraus

Nach Einsetzen dieses Ausdrucks für die Teilbeleuchtungsstärke in Gl. (1) erhalten wir
für die Gesamtbeleuchtungsstärke im Punkt B

Nach Einsetzen der Werte ergibt sich

E = 91,2 Ix.
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Aufgaben

141. Berechnen Sie die Beleuchtungsstärke
einer Fläche in einem Punkt, auf den
aus einer Lichtquelle der Lichtstärke
I = 50 cd, die im Abstand r = 4 m von
diesem Punkt angebracht wurde, Licht-
strahlen unter einem Winkel <p = 25°
einfailen.

142. Über dem Mittelpunkt einer quadrati-
schen Tischplatte hängt in der Höhe
h = 1 m eine Lampe der Lichtstärke
1 = 30 cd. Berechnen Sie die Beleuch-
tungsstärke auf der Tischplatte
a) im Mittelpunkt,
b) in den einzelnen Ecken, wenn die
Seitenlänge des quadratischen Tisches
2 m beträgt.

143. Berechnen Sie, welcher Lichtstrom aus
einer Quelle der Lichtstärke I = 200 cd
auf eine Fläche der Größe A = 10 cm 2

einfällt, die senkrecht zum Lichteinfall
im Abstand d = 2 m von der Licht-
quelle angeordnet ist.

144. Über einer hohlen Halbkugelfläche mit
dem Radius R = 1 m befindet sich in
einer Höne, die gleich dem Kugel-
durchmesser ist, eine punktförmige
Lichtquelle (Bild 90). Sie hat nach allen
Seiten die gleiche Lichtstärke und sendet
einen Gesamtlichtstrom von 600 Im aus.
Berechnen Sie die Beleuchtungsstärke
an einem Punkt im Innern der Halb-
kugelfläche, auf den das Licht unter dem
Winkel (p = 30° einfällt.

145. Eine punktförmige Lichtquelle L be-
leuchtet eine waagerechte Ebene
(Bild 91). Ermitteln Sie, wie sich die

Bild 90

Bild 91

Beleuchtungsstärke in einem Punkt A,
in den der Lichtstrahl senkrecht einfällt,
ändert, wenn wir seitlich zur Lichtquelle
einen Planspiegel S so aufstellen, daß
dieser gleich weit von L wie L von A
entfernt ist. Der Spiegel, von dem wir
voraussetzen, daß er das Licht verlust-
los reflektiert, ist so eingestellt, daß er
den von L kommenden Lichtstrahl nach
A weiterleitet.

2.2. Geometrische Optik

Reflexionsgesetz
Ein Lichtstrahl, der auf die Grenzfläche zweier Medien auftrifft, wird so reflektiert,
daß er in der Einfallsebene verbleibt. Dabei schließt er mit dem Einfallslot einen
Winkel a' ein, der gleich dem Winkel a ist, den der einfallende Strahl mit dem Ein-
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fallslot bildet. Die Einfallsebene wird durch den einfallenden Strahl und das Einfallslot
bestimmt.

Brechungsgesetz
Wenn ein Lichtstrahl in ein anderes Medium eintritt, verläuft er, vorausgesetzt, daß
das andere Medium isotrop ist, weiter in der Einfallsebene, wird aber aus seiner ur-
sprünglichen Richtung abgelenkt. Wenn der Einfallswinkel mit ot 1 und der Brechungs-
winkel mit oc 2 angegeben wird, dann ist der Quotient

sinai
- -  ----- = « 1 2
sm (% 2

unabhängig vom Einfallswinkel. Er wird relative Brechzahl n 12  genannt. Unter der
absoluten Brechzahl n eines Stoffes verstehen wir den Quotienten

sin <x 0
------- = « >s ina

wobei a 0 den Einfallswinkel im Vakuum und oc den Brechungswinkel des Licht-
strahls im gegebenen Medium darstellt.
Den Zusammenhang zwischen der relativen Brechzahl zweier Medien und ihren ab-
soluten Brechzahlen liefert die Beziehung

«2
« 1 2  = —

« i

(n 2 Brechzahl des zweiten, optisch dünneren und n ± die des ersten, optisch dichteren
Mediums).
Von den beiden Medien wird dasjenige als das optisch dichtere angesehen, dessen
absolute Brechzahl die größere ist.
Beim Übertritt eines Lichtstrahls aus einem optisch dichteren in ein optisch dünneres
Medium ist der Brechungswinkel größer als der Einfallswinkel.
Als Grenzwinkel bezeichnen wir den Einfallswinkel e, dessen zugehöriger Brechungs-
winkel den Wert 90° hat. Für den Grenzwinkel gilt die Bedingung

«2sine = « 12  = — .
« i

Wenn der Einfallswinkel größer als der Grenzwinkel ist, dann findet kein Übertritt in
das andere Medium statt, und es kommt zur Totalreflexion.
Wenn ein Lichtstrahl durch ein Prisma verläuft, verläßt er dieses nach zweimaliger
Brechung aus der ursprünglichen Richtung, um den Winkel d (den sog. Ablenkwinkel)
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abgelenkt. Dieser Winkel ist dann ein Minimum, wenn der gebrochene Strahl im
Innern des Prismas einen Weg beschreibt, der senkrecht zur Winkelhalbierenden des
brechenden Winkels orientiert ist. Den Zusammenhang zwischen der minimalen Ab-
lenkung ö und dem brechenden Winkel y des Prismas und der Brechzahl des Materials,
aus dem das Prisma besteht, liefert die Gleichung

. y + ösm--------
2n = ------------

• 7sm —
2

Die Brechzahl eines Stoffes ist für Licht unterschiedlicher Farbe, d.  h. für Licht unter-
schiedlicher Wellenlänge, verschieden groß.
Kugelspiegel und brechende Kugelflächen sind Bauelemente zur optischen Abbildung,
mit denen durch Reflexion bzw. Brechung von Lichtstrahlen, die in einem engen
Bündel nahe der optischen Achse verlaufen, jedem Punkt einer Lichtquelle ein be-
stimmter Bildpunkt, einer Geraden eine Gerade und einer Ebene eine Ebene zu-
geordnet werden kann. Unter der optischen Achse eines Spiegels oder einer brechen-
den Kugelfläche verstehen wir eine Gerade, die durch den Krümmungsmittelpunkt
des Spiegels oder der brechenden Kugelfläche und den jeweiligen Scheitelpunkt ver-
läuft. Das Bild, das einem auf der optischen Achse im Unendlichen hegenden Punkt
zugeordnet ist, heißt Bildbrennpunkt F'; ein Punkt auf der optischen Achse, dessen
zugeordneter Bildpunkt im Unendlichen liegt, wird Gegenstandsbrennpunkt F ge-
nannt.
Die Abbildungsgleichung hat für einen Kugelspiegel die Form

1 1 1- -j - -  = —
a-----b ----f

(a bzw. b Abstand des Gegenstands bzw. Bildes vom Scheitelpunkt des Spiegels,
f Abstand des Brennpunkts vom Scheitelpunkt des Spiegels). Für letzteren Abstand
gilt

r
2

Den Krümmungsradius der Kugelfläche eines Konkavspiegels kennzeichnen wir
durch ein positives, den eines Konvexspiegels durch ein negatives Vorzeichen.
Für eine Abbildung mit Hilfe einer brechenden Kugelfläche vom Radius r, durch die
ein Medium mit der Brechzahl n r von einem anderen mit der Brechzahl n 2 abgegrenzt



1292.2. Geometrische Optik

wird, gilt die Beziehung

a b r

und für den Abstand ihres Bildbrennpunktes F' bzw. Gegenstandsbrennpunktes F
vom Scheitelpunkt gelten die Gleichungen

/•/ n 2 r r n t r

Der Abbildungsmaßstab eines Kugelspiegels bzw. einer brechenden Kugelfläche, der
als Quotient der Bildgröße y' und der Gegenstandsgröße y definiert wird, ergibt sich
aus den Beziehungen

7 _ /_  / _  X’
y~  x "  7 ’

wobei x bzw. x' die Abstände des Gegenstandes bzw. des Bildes vom Gegenstands-
bzw. Bildbrennpunkt bedeuten. Für sie gilt

x = a - /, x' = b -

Bei Kugelspiegeln fallen Gegenstands- und Bildbrennpunkt zusammen, also wird

/=/'.
Für die Festlegung des Vorzeichens von Abstandsangaben halten wir uns an die
folgenden Regeln:
a) Den Abstand des Gegenstands vom Scheitelpunkt eines Spiegels oder einer bre-
chenden Kugelfläche berechnen wir positiv im Sinne der auf die Kugelfläche auf-
treffenden Lichtstrahlen.
b) Den Abstand eines Bildes vom Scheitelpunkt eines Spiegels oder einer brechenden
Kugelfläche berechnen wir positiv im Sinne der Lichtausbreitung des von der Kugel-
fläche ausgehenden reflektierten oder gebrochenen Lichtstrahls.
c) Den Radius der reflektierenden oder brechenden Kugelfläche versehen wir mit
einem Vorzeichen so, als ob der Mittelpunkt der Kugelfläche das Bild darstelle.
Als Linse bezeichnen wir einen lichtdurchlässigen optischen Körper, der von zwei
Kugelflächen oder einer Kugelfläche und einer ebenen Fläche begrenzt wird.
Eine Linse bezeichnen wir dann als dünne Linse, wenn ihre Dicke d vernachlässigbar
klein gegenüber ihrem Durchmesser ist.
9 Hajko, Elektrik
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Die Abbildungsgleichung für eine dünne, allseitig von demselben Medium umgebene
Linse hat die Form

wobei n die relative Brechzahl des Linsenmaterials in bezug auf ihre Umgebung ist,
und r2 sind die Radien der Kugelflächen, durch welche die Linse begrenzt wird.

Den Abstand des Gegenstandes a bzw. den des Bildes b (Gegenstandsweite, Bildweite)
messen wir vom Linsenmittelpunkt aus.
Gegenstands- und Bildbrennweite einer derartigen Linse sind gleich und werden durch
die Beziehung

D = 1 = (n - 1)(-L +
f \ r i r2 J

ausgedrückt. Die Größe D wird als Brechkraft der Linse bezeichnet.
Der Abbildungsmaßstab, die Vergrößerung einer dünnen Linse wird mit Hilfe folgen-
der Beziehungen berechnet:

7 _ y' _ b _ x' _ /
X-/ — ---- — — * — — ““ — •

y a f x

Die Abbildungsgleichung einer Linse nimmt in den Brennpunktkoordinaten die
Gestalt

xx' = f 2

an, wobei
x = a — /, x' = b — f

ist.

Eine Linse nennen wir dann dicke Linse, wenn ihre Dicke d nicht vernachlässigbar
klein ist. Die mit einer solchen Linse erzielbare Abbildung ist völlig durch die Lage
der Hauptebenen und durch die Brennweite bestimmt. Die Abstände der Hauptebene
des Gegenstands vom vorderen Scheitelpunkt der Linse Fbzw. der der Hauptebene
des Bildes vom hinteren Scheitelpunkt der Linse V' sind durch folgende Beziehungen
gegeben :

. n — \ d r n — 1 d rh = -- --------- —f, h -- ----------------f.
n r2 n

Die Abstände des Gegenstandsbrennpunktes von der Gegenstandshauptebene sowie
die des Bildbrennpunktes von der Bildhauptebene sind gleich groß und werden nach
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folgender Beziehung berechnet : \

f Vi r2 J n r 1 r2

Ein zentriertes Linsensystem setzt sich aus zwei oder mehr Linsen zusammen, die eine
gemeinsame optische Achse haben. Die Brechkraft eines aus zwei dünnen Linsen be-
stehenden zentrierten Systems, dessen beide Linsen in einem Abstand v voneinander
angeordnet sind, ist durch die Beziehung

gegeben, in der /i und f2 die Brennweiten der beiden das System bildenden Linsen
darstellen.
Unter der Winkelvergrößerimg eines optischen Systems oder Gerätes verstehen wir
den Quotienten

Z = - ,
u

wobei ü den Blickwinkel angibt, unter dem der Gegenstand bei Verwendung des
Gerätes gesehen wird, während u den Blickwinkel angibt, unter dem das unbewaffnete
Auge denselben Gegenstand wahrnimmt, wenn dieser in einer dem Auge optimal
angemessenen Entfernung, der sog. deutlichen Sehweite, angebracht ist.
1. Die Winkelvergrößerung einer Lupe ist durch die Beziehung

gegeben, wenn der Gegenstand im Unendlichen abgebildet wird, oder durch

wenn das Bild dem Auge in der deutlichen Sehweite l erscheint.
2. Ein Mikroskop stellt ein zentriertes optisches System dar, das aus einem Objektiv
und einem Okular zusammengesetzt ist. Das Objektiv erzeugt das Bild eines Gegen-
stands y' 9 gewöhnlich in der Brennebene des Okulars, und das vom Okular entworfene,
im Unendlichen gelegene Bild wird dann durch ein nichtangepaßtes Auge wahr-
genommen.
Die mit dem Mikroskop erreichbare Vergrößerung ist

2 = 21 2 ,

9*
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wobei Zi = A //i die Linearvergrößerung des Objektivs und Z 2 = Z//2 die Vergröße-
rung des Okulars - beide als Einzellinsen betrachtet - darstellt. A ist dabei die sog.
optische Tubuslänge des Mikroskops, welche die Entfernung zwischen der hinteren
Brennebene des Objektivs und der vorderen Brennebene des Okulars angibt.
Das Auflösungsvermögen eines Mikroskops d beurteilen wir auf Grund des geringsten
Abstands zweier Punkte, die bei der Mikroskopbeobachtung gerade noch getrennt
wahrgenonunen werden können. Wenn im Licht einer Wellenlänge 2 beobachtet wird,
ergibt sich die Beziehung

2n sin u

wobei n die Brechzahl desjenigen Stoffes bedeutet, in dem das Objekt eingebettet ist,
und u der Winkel zwischen der optischen Achse und einem Grenzstrahl ist, der vom
beobachteten Objekt aus in die dem Objekt zugekehrte Objektivlinse eintritt.
Der Ausdruck

A = n sin u

wird als die numerische Apertur bezeichnet.
3. Ein astronomisches Fernrohr (KEPLERsches Fernrohr) ist ein zentriertes System
aus Objektiv und Okular, dessen optische Tubuslänge gleich Null ist. Objektiv und
Okular sind Sammellinsen. Die Vergrößerung eines derartigen Fernrohres ist

(/] Brennweite des Objektivs, f2 Brennweite des Okulars).

o Beispiele

108. Auf eine ebene Glasplatte mit der Brechzahl n = 1,5 fällt ein Lichtstrahl. Unter welchem
Winkel fällt der Strahl ein, wenn der gebrochene Strahl mit dem auf der Begrenzungs-
fläche reflektierten einen Winkel y = 60° einschließt?

Lösung

Wenn ein Lichtstrahl unter einem Winkel a auf eine Trennfläche einfällt, wird er unter
dem Winkel a' = a reflektiert und unter dem Winkel ß gebrochen. Nach dem
Brechungsgesetz gilt dabei

s ina  = nsin/?. (1)
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Der reflektierte Strahl schließt mit dem gebrochenen den Winkel y ein, deshalb gilt nach
Bild 92

ß = 2R - (a + y).

Nach Einsetzen in Gl. (1) gilt offensichtlich

sin <x = n sin [2R — (<% + 7)] = n sin (a + 7),

und weiter
1

sin x = n (sin x cos y + cos x sin y) . (2)

Wenn wir beide Seiten von Gl. (2) durch cos x dividieren und die Gleichung nach tan a
auflösen, erhalten wir für den gesuchten Einfallswinkel

Wir setzen in die so gefundene Beziehung die gegebenen Werte ein und erhalten

3
— sin 60°

tan x = ------------------- - -  3 a/3 ,
1 — — cos 60°

2

also schließlich

a = 79° 06'.

109. Ein Lichtstrahl, der sich zunächst in Luft ausbreitet, durchdringt nacheinander drei
unterschiedlich brechende Substanzen, die durch parallele, ebene Begrenzungsflächen
voneinander und von der Umgebung getrennt sind, und tritt nach Durchdringen dieser
Stoffe erneut in die Luft ein (Bild 93). Es ist nachzuweisen, daß der in die Luft aus-
tretende Strahl nach mehrfacher Brechung gegenüber dem einfallenden Strahl nur
parallel verschoben ist, und es ist das Maß dieser Parallelverschiebung zu bestimmen.
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Die Brechzahlen der einzelnen Medien sind«! = 1,5; n2 = 1,3; n 3 = 1,4; die Dicken
der aufeinanderfolgenden planparallelen Schichten sind d r = 2 cm; d2 = 3 cm;
d3 = 4 cm. Der Primärstrahl fällt auf die oberste Fläche unter dem Winkel a = 60° ein.

Lösung

Nach Bild 93 gilt für die erste Brechung

s ina  = 7/i
sin ßi n 0

(n0 Brechzahl der Luft).
Auf das zweite Medium fällt der Strahl unter dem Winkel ßi ein, hier wird er unter dem
Winkel ß2 gebrochen. Das Brechungsgesetz lautet hierbei

(2)
sm ß2 «1

Analog gilt für die Brechung im dritten Medium

4=  . ' <3)sin ß3 n2

Wenn wir voraussetzen, daß der Strahl unter einem Winkel a' in die Luft austritt, dann
gilt das Brechungsgesetz

sin ß3 = 7/q

sin a' w3

Wir multiplizieren die Gin. (1) bis (4) miteinander und erhalten nach Umformung
sin a
sin a'

was bedeutet, daß a = a z ist.
Der Lichtstrahl tritt nach mehrmaliger Brechung nur parallelverschoben aus. Aus den
Gin. (1) bis (3) ermitteln wir durch Einsetzen der für die Brechzahlen angegebenen
Werte ohne weitere Mühe die zugehörigen Winkel

£1=35°  16'; 0 2 =41  O 46'; 0 3 = 38° 13'. (5)

Die Gesamtverschiebung des austretenden Strahls (Nr. 5) gegenüber dem einfallenden
(Nr. 1) beträgt nach Bild 93:

x — AD  ± = ABi 4- B iCi  (717 )1 .  (6)
Jedoch ist

di
ABl = AB sin (<x — 0i) mit AB = -----— ,

COS 01
d2

BxCi = BC' = BC sin (a — 0 2 ) mit BC = -----—
COS 02
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und
d3

CjDi = CD' = CD sin (<x — ß3 ) mit CD = -----— .
COS ß3

Nach Einsetzen dieser Beziehungen in Gl. (6) erhalten wir

J iS in (a  — ßi) J 2 sm(a  - ß2 ) J 3 sm(a — ß3 )x = ----------- ---------1 ------------- ----------1 ------------- -------
COS ßi COS p 2 COS ß3

Mit den gegebenen Werten ergibt sich für die Verschiebung

2 sin (60° - 35° 16') 3 sin (60° - 41° 46') 4 sin (60° - 38° 13')
x COS 35° 16' + cos 41° 46' 1 cos 38° 13'
x = 4,8 cm.

110. Ein Lichtstrahl fällt unter einem Winkel a so auf die Frontfläche eines optischen Prismas
ein, daß der nach der Brechung durch das Prisma verlaufende Strahl die Rückfläche
gerade unter dem Grenzwinkel trifft und deshalb nicht mehr austreten kann. Berechnen
Sie die Brechzahl des Glases, aus dem das Prisma hergestellt wurde, wenn der brechende
Winkel mit <p angegeben ist.

Lösung

Nach den in Bild 94 gewählten Bezeichnungen gilt

ßi + ßi = <P»

Für die Brechung auf der Frontfläche gilt nach
Brechungsgesetz

sin a
sin ßi (2)= n .

Unter Berücksichtigung der Bedingung, daß der Winkel ß2 auch der Grenzwinkel ist,
können wir für die auf der Rückfläche eintretende Brechung schreiben

sin ß2 = —
n (3)

Gemäß Gl. (1) ist
cos (p = cos (ßi + ß2 ) = cos ßi cos ß2 — sin ß ± sin ß2 .

Wenn wir in diese Beziehung die aus den Gin. (2) u. (3) gewonnenen Werte für sin ßi
und sin ß2 einsetzen, können wir aus den trigonometrischen Beziehungen die ent-
sprechenden Größen für cos ßi und cos ß2 finden:

o Jn 2 —sin2 <x Jn 2 — 1COS ßi = — ---------------- , cos ß2 = —---------- .
n n
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Daraus erhalten wir

Jn 2 — sin2 a J n 2 — 1 sin a
COS <p = —-------------------- ------------------— .

n n n2

Nach einer Umformung finden wir die Gleichung

w4 (cos 2 (p — 1) + n 2 (1 4- sin 2 a + 2 sin a cos <p) = 0 ,

als deren Lösung wir schließlich die gesuchte Beziehung für die Brechzahl erhalten :

+ sin 2 a + 2 sin a cos <p
n = —---------------; -------------------- .

sm (p

111. Zwei unterschiedliche optische Medien mit den Brechzahlen und n2 sind durch eine
ebene Begrenzungsfläche getrennt. Ermitteln Sie den Weg eines Lichtstrahls, der von
einem gegebenen Punkt A im ersten Medium zu einem ebenfalls gegebenen Punkt B im
zweiten in kürzestmöglicher Zeit gelangt.

Lösung

Wir setzen nach Bild 95 voraus, daß der Lichtstrahl auf dem Wege ACB verlaufen wird,
wobei C einen auf der Trennfläche beider Medien liegenden Punkt darstellt. Wenn wir
diesen Punkt als Ausgangspunkt eines rechtwinkligen Koordinatensystems wählen,
dessen x-Achse in der Trennebene liegt, dann hat der Punkt A die Koordinaten (x, d)
und der Punkt B die Koordinaten (d — x, b), wenn wir den konstanten Abstand der
beiden Fußpunkte von A und B, d. h. die Strecke A , mit d bezeichnen.
Wenn die Lichtgeschwindigkeiten in den einzelnen Medien v r bzw. v 2 sind, dann ist die
zum Durchlaufen des Weges AC erforderliche Zeit gegeben durch die Beziehung

und die für das Durchlaufen des Weges CB durch

t _ J(d - X) 2 + b 2
t 2 ------------------------ .

V 2
Die Gesamtzeit

, t , , s/x 2 +a 2 J (d -x ) 2 +b 2
1 = 11 12 --------------- ”1------------------------------------------

Vi V 2

soll ein Minimum sein. Das ist dann der Fall, wenn

£=0
dx
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ist. Wir bilden diese Ableitung und finden

dr x d — x _ o
dx " V1 Jx* + a

2 t>2 -j(d - x) 2 + b 2 ~

Nach Bild 95 ist

x . , d — x . n—: ----  - = sin ft und . ----- = sm ß, (2)
y/x 2 + a 2 y/(d - x) 2 + b 2

wobei a bzw. ß die Winkel darstellen, unter denen der Lichtstrahl auf die Trennfläche
einfällt bzw. an ihr gebrochen wird. Nach Einsetzen von Gl. (2) in Gl. (1) erhalten wir

sin a sin ß
Vi v2

sin a. v ±
sin ß v 2 ’

oder
sin a n2

sin ß ni '

. n2
mit — = «12  = —

v 2 «1

Das aber ist das bereits bekannte Brechungsgesetz. Beim Durchtritt aus einem Medium
in ein anderes legt das Licht in kürzester Zeit eine Strecke zurück, die den Bedingungen
des Brechungsgesetzes entspricht.

112. Ein durch Luft gehender Lichtstrahl fällt auf einen kugelförmigen Wassertropfen, wird
in diesem gebrochen und tritt nach der Reflexion an der inneren Rückseite wieder aus.
Berechnen Sie, unter welchem Winkel der Strahl einfallen muß, damit die Gesamt-
ablenkung des roten Lichts, d. h. der Winkel zwischen einfallendem und austretendem
Strahl, ein Maximum ist. Wie groß ist diese Ablenkung? Für rotes Licht hat der Wasser-
tropfen eine Brechzahl «rOt = 1,331.

Lösung

Aus Bild 96 ist leicht zu ersehen, daß der
Winkel a, unter dem der Strahl aus dem
Tropfen heraus und in die Luft übertritt, ge-
nausogroß ist wie der Winkel, unter dem der
Lichtstrahl, aus der Luft kommend, in den
Tropfen eindringt. Wenn wir die Gesamt-
ablenkung zwischen eintretendem und aus-
tretendem Strahl mit dem Symbol <5 bezeich-
nen, ergibt sich für diesen Wert aus A BCM die Beziehung

<5 — 2R — (<x — ß e) , (1)
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Andererseits haben wir für den Winkel e aus /\ADC die Beziehung
2R — e 4- a — ß 2R — 2ß = 2R.

Das nach £ aufgelöst und in Gl. (1) eingesetzt, ergibt
ö = 4ß - 2a.  (2)

Wenn dieser Winkel ein Maximum sein soll, muß die Bedingung

=0
da

erfüllt sein. Das führt uns zu einer Gleichung
dß4-  - - 2  = 0 .  (3)
da

Entsprechend dem Brechungsgesetz ist sin a = n sin ß. Wenn wir beide Seiten dieser
Gleichung nach a ableiten, erhalten wir mit Hilfe einer Umformung

dß cos a
da n cos ß

und nach Einsetzen in Gl. (3)
2 cos a = n cos ß.

Als Lösung der beiden Gleichungen

2 cos a = n cos ß und sin a = n sin ß

ermitteln wir den Winkel a, indem wir diese beiden Gleichungen quadrieren und
addieren :

4 cos 2 a + sin 2 a = n 2 .

Nach Umformung ergibt das

/4 - n 2

Durch Einsetzen der Brechzahl für rotes Licht wrot = 1,331 erhalten wir damit für den
gesuchten Einfallswinkel

q = 59° 32z \T\

Der rote Lichtstrahl wird unter dem Winkel ft ot gebrochen. Dieser gehorcht der Glei-
chung

. n sin a
sin ft ot  = ------ ,

rot

woraus wir erhalten

ft ot =40°21 '  40".
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Für die Ablenkung des roten Strahles ergibt sich gemäß der Gl. (2) der Wert

<3 = 4£ ot - 2a = 42° 22 z 06 zz .

113. Ein Beobachter steht am Rand eines Wasserbassins, dessen Wasserstand die Höhe
h = 2,81 m hat, und betrachtet einen auf dem Grund des Bassins liegenden Gegenstand
(Bild 97). In welcher Tiefe h' erscheint das Bild des beobachteten Gegenstandes, wenn
die Richtung, in welcher der Beobachter das Bild sieht,
mit der zum Wasserspiegel Senkrechten einen Winkel
a = 60° einschließt?

Lösung

Wir wählen aus dem Strahlenbündel, das vom Gegenstand
P ausgeht und nach Brechung an der Trennfläche Wasser-
Luft ins Auge des Beobachters trifft, zwei Strahlen (1) und
(2) aus, die den sehr kleinen Winkel d/? einschließen. Die
gebrochenen Strahlen (l  z) und (2 Z), die, vom Scheinbild P'
ausgehend, zum Auge kommen, schließen den Winkel da
ein.
Nach den in Bild 97 angegebenen Bezeichnungen gilt

ÄP 7 = -L- (1) un d ~BP = (2)
COS a COS ß

und in /\BDP' nach dem Sinussatz

BD _ sin da
’BP' sin y

Da sin da ä da, y — R — (a + da) und sin y = sin [R — (a + da)] = cos (a 4- da)
« cos a ist, können wir Gl. (3) auch in der Form

(4)
BP' cos a

schreiben. Auf analoge Weise erhalten wir aus /\BDP die Gleichung

(5)
BP cos ß

Wenn wir die beiden Gin. (4) u. (5) dividieren und das Resultat mit dem Ausdruck
BPIBP' vergleichen, der sich aus den Gin. (1) u. (2) ergibt, dann erhalten wir

h' da h äß
----F“ = ----FF • Wcos 2 a -----cos 2 ß

(3)
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Den Quotienten da/dß ermitteln wir aus dem Brechungsgesetz. Durch Ableiten der
Gleichung sin a = n sin ß nach dem Winkel a erhalten wir

R dß
cos a = n cos ß — ,da

woraus folgt

da cos ß
dß cos a *

Nach Einsetzen dieses Ausdrucks in Gl. (6) finden wir für die scheinbare Tiefe

(7)
n cos 3 ß

Den unbekannten Winkel ß bestimmen wir aus dem Brechungsgesetz

. n sin asm ß = ------ ,
n

womit wir nach Umformung erhalten

ß Jn 2 — sin2 acos ß = __________ e
n

Für die scheinbare Tiefe folgt damit aus Gl. (7)

/ COS a \ 3h = hrr - -----
\y/n 2 — sin 2 a/

Nach Einsetzen der Werte ergibt sich schließlich
„ / cos 60° \ 3

h' = 2,81 m • 1 ,33 2 ------- = 0,6 m .
V/1,33 2 - sin 2 60°/ -------

114. Aus einer punktförmigen Lichtquelle fällt ein Lichtstrahl senkrecht auf einen Plan-
spiegel, von dem aus er auf einen 5 m entfernt stehenden Leuchtschirm reflektiert wird.
Der Planspiegel rotiert um eine zur Leuchtschirmebene parallele Achse, so daß der
reflektierte Lichtpunkt auf dem Leuchtschirm eine Spur zieht. In jeder Sekunde werden
10 Umdrehungen ausgeführt. Berechnen Sie, mit welcher Geschwindigkeit sich die
Lichtspur auf dem Leuchtschirm bewegt und welchen Wert die Geschwindigkeit in dem
Punkt des Leuchtschirms annimmt, der dem Planspiegel am nächsten liegt.

Lösung

Wenn der Spiegel mit der konstanten Frequenz v rotiert, ist auch seine Winkelgeschwin-
digkeit konstant gleich

(O = 2tw.
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Wir messen den Einfallswinkel des Lichtstrahls gegenüber dem Einfallslot auf der
Spiegelfläche. In der Ausgangsstellung ist a = 0 .  Nach der Drehung des Spiegels um
den Winkel a = cot (Bild 98) weicht der unter einem Winkel a einfallende Strahl um
den doppelten Wert 2« = 2(ot ab, und die Leuchtspur auf
dem Bildschirm verschiebt sich um den Betrag x, für den
gilt

x = dtan2*>t. x

Die Momentangeschwindigkeit des die Lichtspur zeich-
nenden Lichtpunktes ist f __________

r v «
dx 2cod

v = — = — — — .
dz cos 2 2cot

Immer wenn die Lichtspur durch den Punkt des Leucht- ?8
schirms geht, der dem Spiegel am nächsten gelegen ist,
fällt der Lichtstrahl unter einem Winkel a = 2nk ein, wobei k = 0, 1, 2, 3, . . .  ist. Die
Geschwindigkeit des Lichtpunktes in dieser Stellung ist

v = 200 Tcms“ 1 = 628 ms-1 .

115. Vor einem Konkavspiegel befindet sich in 60 cm Abstand eine Kerze. Wenn wir sie um
10 cm näher an den Spiegel heranrücken, so vergrößert sich der Abstand ihres Bildes
vom Spiegel um 80 cm. Welche Brennweite hat der Spiegel?

Lösung

Wenn wir die Abbildungsgleichung des Spiegels in der Form

_1_ £_  £
~ä + ~b ~ 7

anwenden, dann ist in der erstgenannten Stellung die Gleichung

111
-------F -7- = -7 (1)60 cm b r f

erfüllt, während in der darauffolgenden Stellung gilt

111----------1----------------- - -  — . (2)50 cm b + 80 cm f

Durch Gleichsetzen der Gin. (1) u. (2) erhalten wir

+ 1 = + — 1 ____  ,
60 cm b 50 cm b + 80 cm

woraus wir nach Umformung die quadratische Gleichung

b2 + 80Z> - 24000 = 0
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erhalten, die auf die Lösungen b± = 120 cm und b2 = —200 cm führt. Durch Einsetzen
dieser Werte in eine der Gin. (1) oder (2) erhalten wir für die Brennweiten die 2 Lö-
sungen

/i = 40 cm, f 2 = 85,7 cm .

116. Ein Konvex- und ein Konkavspiegel mit gleichem Krümmungsradius r0 sind mit ihren
Spiegelflächen einander so gegenübergestellt, daß ihre optischen Achsen zusammen-
fallen und ihre Scheitel den Abstand d = 2r 0 haben (Bild 99). Es soll ein auf der
gemeinsamen optischen Achse gelegener
Punkt gesucht werden, für den gilt, daß die
von einer hier aufgestellten Lichtquelle aus-
gehenden Strahlen nach Reflexion auf
Konvex- und Konkavspiegel wieder im
Ausgangspunkt Zusammentreffen. s 7"'

Lösung

Den auf der Achse liegenden Lichtpunkt
bilden wir zunächst durch den Konvex-
spiegel, das so entstandene Bild durch den Konkavspiegel ab. Danach formulieren wir
die Bedingung, daß das resultierende Bild im Ausgangspunkt entworfen wird.
Wenn wir den Lichtpunkt P in einem Abstand a = x vor dem Konvexspiegel aufstellen,
so entwirft dieser ein virtuelles Bild P' im Abstand b = ~y (y > 0) hinter dem Scheitel-
punkt des Spiegels. Für diese Abbildung gilt

Bild 99

Der Abstand des vom Konvexspiegel entworfenen Bildes P' vom Scheitelpunkt des
Konkavspiegels hat die Größe a2 = 2r0 + Wenn das resultierende Bild P* wieder
im Ausgangspunkt P erscheinen soll, muß seine vom Scheitelpunkt des Konkavspiegels
aus gemessene Bildweite

b 2 = 2r0 — x
sein. Nach der Abbildungsgleichung für Spiegel gilt weiter

+ = (2)
2r 0 + y 2r0 — x r0

Die Kombination der Gin. (1) u. (2) führt zu einer quadratischen Gleichung
2x 2 — 2ro x — r 2 = 0 ,

deren Wurzeln x r = 1,35 r0 und x 2 = — 0,35 r0 sind. Physikalisch sinnvoll ist nur die
erste der beiden Lösungen. Demzufolge muß die Lichtquelle vom Konvexspiegel in der
Entfernung

= 1,35 r0

angeordnet sein.
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117. Eine dünne, plankonkave Linse ist in horizontaler Stellung so in Wasser getaucht, daß
der unter der Konkavfläche liegende Raum mit Luft gefüllt ist. Die Gesamtbrechkraft
des optischen Systems hat den Wert D = —2,6 dpt. Bestimmen Sie den Krümmungs-
radius der Linse (Bild 100).

Lösung

Es handelt sich hier um ein zentriertes optisches System,
das sich aus zwei dicht aneinanderliegenden Linsen zu-
sammensetzt. Die Brechkraft eines solchen Systems ist
gleich der Summe der Brechkräfte der beiden das System
bildenden Einzellinsen.

Bild 100

Die erste Linse aus Glas ist plankonkav und befindet sich in Wasser. Ihre Brechkraft ist

P !=y-  = (n - l ) (— + — ) ,
fi \ r i  r2 ) (1)

wobei n die relative Brechzahl des Glases gegenüber dem umgebenden Wasser bedeutet.
Wenn n Y bzw. n 2 die absoluten Brechzahlen des Glases bzw. des Wassers selbst sind,
so ist

n = — .
n 2

Da es sich im vorliegenden Fall um eine plankonkave Linse handelt, ist r t = — r0 und
r2 = oo. Aus Gl. (1) wird damit

Die zweite Linse kann als eine aus Luft bestehende Plankonvexlinse angesehen werden,
die sich in einer Wasserumgebung befindet. Ihre Krümmungsradien sind n = rQ und
r2 = oo. Ihre Brechkraft wird

wobei n 3 die absolute Brechzahl der Luft bedeutet. Die Brechkraft des gesamten aus
zwei Linsen bestehenden Systems wird

Nach einer Umformung erhalten wir

n2 r0

woraus sich der gesuchte Krümmungsradius der Linse berechnen läßt:

«3 ~ 1
r ° n2 D ’
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Mit den gegebenen Werten ergibt sich

2 lm  < ,
r 0 = ----- ---------- = 14,42 cm.4 — 2,6 -----------

T

118. Beweisen Sie, daß bei einer Sammellinse der Brennweite f der kleinste Abstand zwischen
Gegenstand und Bild den Wert s = 4/ haben muß.

Lösung

Gemäß der Bedingung, daß der Abstand Gegenstand - Bild, d. h. s = g + b, ein Mini-
mum darstellt, ist

A ( g + />) = (), ( i)
dg

wobei g der Abstand des Gegenstands und b der des Bildes von der Linse ist. Aus der
Abbildungsgleichung der Linse

ergibt sich für b die Beziehung

Für den Abstand Bild - Gegenstand s erhalten wir demnach

p/ g 2
s=g  + b=g+-  — = -±—.  (2)

g- f  g - f

Somit kann die Minimumbedingung (1) geschrieben werden in der Form

d (g  — /) _ 2 g(g ~ f )  ~g  2 _Q
dg (g - f )  2

Daraus folgt nach Umformung unter der Voraussetzung, daß g 4= f ist, die Gleichung

-2g /=0 ,

mit der Lösung g = 2f.
Wenn wir die zweite Ableitung bilden, können wir uns leicht davon überzeugen, daß der
gefundene Wert g = 2/ tatsächlich der geforderten Minimumbedingung gerecht wird.
Aus Gl. (2) resultiert für die kleinste Entfernung zwischen Bild und Gegenstand

s = g + b = 4/.
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119. Eine Lichtquelle befindet sich im Abstand l von einem Bildschirm. Es ist zu berechnen,
in welchem Abstand von der Lichtquelle eine dünne Sammellinse der Brennweite f an-
geordnet sein muß, damit auf dem Bildschirm ein reelles Bild der Lichtquelle entsteht.
Die Bedingung, unter der das möglich ist, soll in Worten ausgedrückt werden.

Lösung

Da der Abstand des Bildschirms von der Lichtquelle mit l vorgegeben ist, entspricht
dem Abstand g des Gegenstands von der Linse das Bild im Abstand b = l — g .  Nach
Einsetzen in die Abbildungsgleichung für die Linse erhalten wir

1 1 1
-----F "t - - -  = •
g -----l -g ------ f

Wir lösen diese Gleichung nach g auf und erhalten

' l ±J l 2 -4lf
S = --------2 --------

Wenn die Differenz l 2 — Alf > 0 ist, was sicher erfüllt ist, solange / > 4/ ist, so gibt es
zwei verschiedene Stellungen für die Linse, bei denen für konstant gehaltenen Abstand
Gegenstand - Bildschirm auf letzterem ein scharfes Bild entsteht. Dies sind die Stellungen

l l 2 
r l l 2 ,

+ S2 = ~

Im Falle, daß l = 4/ ist, gibt es nur eine derartige Stellung, nämlich

/
2

und für den Fall, daß l <A f  ist, existiert gar keine.

120. Ein auf der optischen Achse einer Sammellinse beweglicher Punkt nähert sich der Linse
mit der konstanten Geschwindigkeit . Mit welcher Geschwindigkeit bewegt sich dabei
sein Bild?

Lösung

Wenn wir den Abstand des Gegenstands vom Gegenstandsbrennpunkt mit x und den
Abstand des Bildes vom Bildbrennpunkt mit x' bezeichnen, dann können wir die Ab-
bildungsgleichung in folgender Form schreiben:

xx' = f 2 .
10 Hajko, Elektrik

(1)
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Die Momentangeschwindigkeit des Bildes v2 ist durch die erste Ableitung seines Weges
nach der Zeit definiert, also

dx'
1,2

Entsprechend Gl. (1) ist x' = f 2!x, und deshalb wird

d — d — L <2 A_ \ x ) _ \ x J dx _ f 2 dx
V2 dt dx dr x 2 dr

Unter der Berücksichtigung, daß dx/dt = die Momentangeschwindigkeit des Gegen-
stands ist, erhalten wir nach einer Umformung die Bildgeschwindigkeit

v 2 = - - -  » i .

121. Im Innern einer Glaskugel des Radius r0 = 10 cm befindet sich im Glasfluß eine Luft-
blase. Ein Beobachter, der die Luftblase in der Richtung der optischen Achse der
brechenden Kugelfläche erblickt, hat den Eindruck, daß die Luftblase in einem Ab-
stand b0 = 2,5 cm unter der Kugeloberfläche sitzt. Bestimmen Sie den tatsächlichen
Abstand der Luftblase von der Kugeloberfläche.

Lösung

Für die Brechung an einer Kugelfläche, die zwei Stoffe mit den absoluten Brechzahlen
und n 2 trennt, gilt die Beziehung

g b r
Der Gegenstand, ein Lufteinschluß, befindet sich im Innern des Glases. Wir suchen
seinen Abstand g vom Scheitelpunkt der Kugeloberfläche. An der konvexen Kugel-
oberfläche kommt es zur Brechung, bei welcher der Lichtstrahl aus dem Glas mit der
Brechzahl = n in die Luft mit der Brechzahl n2 = 1 übertritt. Das dabei entstehende
Bild ist virtuell.
Unter Beachtung der Vorzeichen können wir schreiben

b = — b 09 r = — r0 .
Dies - in Gl. (1) eingesetzt - führt auf

n 1 _ 1 — n
g b0 rQ

und - nach g aufgelöst -

nrQbQ
g r0 + b0 (n — 1)
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Mit den gegebenen Werten erhalten wir für die gesuchte Gegenstandsweite des Luft-
einschlusses

1 ,5-10-2 ,5
10 + 2,5 • 0,5

cm = 3,3 cm.g =

122. Ein Glasstab mit der Brechzahl n = 3 / 2 ist an seinen beiden Enden durch Kugelschliffe
mit dem gleichen Radius r0 begrenzt. Der Stab hat die Länge 3r0 , die Kugelflächen
haben eine gemeinsame optische Achse, die mit der Längsachse des Stabes identisch ist.
In einem Abstand von rQ vor der vorderen konkaven Kugelfläche befindet sich eine
punktförmige Lichtquelle auf der optischen Achse. Es ist zu berechnen, in welchem
Abstand von der hinteren konvexen Kugelfläche das Bild entsteht.

Lösung

Das resultierende Bild der Punktquelle erhalten wir durch eine schrittweise Abbildung
des Gegenstands durch die erste und dann durch die zweite Kugelfläche. Das durch die
erste Abbildung entstandene Bild betrachten wir als den für die zweite Abbildung vorzu-
sehenden Gegenstand. Die zweite Abbildung erzeugt dann das endgültige Bild. Für die
Brechung an einer Kugelfläche mit dem Radius r, die zwei Stoffe mit den absoluten
Brechzahlen n r und n 2 trennt, gilt die Beziehung

ni_ = n 2 — n Y
g b r '

Bei der Brechung an der ersten Kugelfläche tritt der aus der Luft kommende Strahl ins
Glas ein, die Kugelfläche ist hier konkav. Daher ist = 1 ,  n2 = n ,  r = r0 ; und da
auch g = r0 ist, finden wir nach Einsetzen in Gl. (1)

1 n n — 1
----- ~ ’r0 b rQ

woraus sich ergibt

Das durch die erste Kugelfläche entworfene Bild hat vom Scheitelpunkt der zweiten den
Abstand

g' = 3r0 - b = 2r 0 -- - ---  •n — 2
Bei der Brechung an der zweiten, hinteren Kugelfläche tritt der Strahl aus dem Glas in
die Luft aus. Hier ist n r = n 9 n2 = 1 ,  r = — r0 . Nach Einsetzen dieser Größen in
Gl. (1) finden wir

n 1 1 — n
------------Ö" “Ä7 ~ ----------- ’~ n — 3 b r02r 0- — rn — z

10*
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wobei wir den Abstand des durch die zweite Kugelfläche entworfenen Bildes vom
Scheitelpunkt der zweiten Kugelfläche mit b' bezeichnen. Daraus ergibt sich

, ,  - 3
r ° n 2 — 6n + 6 *

Wir setzen für n den Wert 3 / 2 ein und erhalten

b' = 4r 0 .

123. Ermitteln Sie die Dicke einer bikonvexen Glaslinse, die in Luft als Zerstreuungslinse
wirken soll. Die Radien der die Linse begrenzenden Kugelflächen sind = r2 = 1 cm.

Lösung

Für die Brechkraft einer dicken Linse, die auf beiden Seiten vom gleichen Medium um-
geben ist, gilt die Beziehung

\ r2 / n
d

rir2
D = y = (« -

Als Zerstreuungslinse wird eine Linse dann wirken, wenn dieser Ausdruck negativ wird.
Da hier n > 1 , > 0 und auch r2 > 0 ist, kann diese Bedingung nur erfüllt sein, wenn

n rjr2 Vn r2 )

ist. Diese Ungleichung läßt sich vereinfachen in

n — 1 ,
-------- d>  + r2 .n

Daraus ergibt sich für die gesuchte Dicke die Bedingung

d> —n — 1

Nach Einsetzen der Werte erhalten wir

d > J (1 + 1) cm = 6 cm;

d > 6 cm .

124. Ein zentriertes optisches System besteht aus zwei dünnen Linsen mit den Brechkräften
Di = 2 dpt und D 2 = 5 dpt, die voneinander einen Abstand d = 10cm haben. Es ist zu
berechnen, in welchem Abstand vom Mittelpunkt der ersten Linse der Bildbrennpunkt
des gesamten Systems liegt.
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Lösung

Ein auf der optischen Achse des Systems liegender Punkt, der von der ersten Linse den
Abstand g t hat, wird vom Linsensystem in einem ebenfalls auf der optischen Achse
liegenden Punkt abgebildet. Dieser hat von der zweiten Linse den Abstand b 2 . Bei
schrittweiser Abbildung in der Art, daß der Gegenstand zunächst durch die erste Linse
dargestellt wird und das so entstandene Zwischenbild als Gegenstand für die zweite
Linse dient, entwirft diese dann das resultierende Bild. Die Brechung an der ersten Linse
läßt sich dann wie folgt beschreiben :

1 1 1
-----1“ = 7“ •bi fi

Hieraus erhalten wir eine Beziehung für den Abstand des durch die erste Linse ent-
worfenen Zwischenbildes von ihrem Scheitelpunkt

bi = -------— .
gi -fi

Für die an der zweiten Linse stattfindende Brechung gilt
1 1 1
-----1" Ä“ = 7“ ’gi -----b2 f2

wobei g2 den Abstand des durch die erste Linse entworfenen Zwischenbildes von der
zweiten Linse darstellt. Nach Gl. (1) gilt offenbar

gz = d -b 1 d- -  -7 -
gl - fl

und nach einer Umformung

. f dfl
d — fi ---------

gi

(1)

(2)

Sz ------------------7~
i-A

gi

Entsprechend Gl. (2) gilt für die Bildweite b2

1 = 1 _____gl
b 2 f 2 , . df t ’

d — fi --------
gi

(3)

Im Bildbrennpunkt des Systems wird der auf der optischen Achse im Unendlichen
liegende Punkt abgebildet. Wenn wir seinen Abstand von der zweiten Linse mit dem
Symbol /o kennzeichnen, resultiert für g t = oo die Bildweite b2 —f 0 . Nach Einsetzen
in Gl. (3) und nach einer Umformung erhalten wir dafür

f _ fz(f i-d)
f ° f i+ f z -d ’
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Mit den gegebenen Werten ergibt sich
0,2 m (0,5 m — 0,1 m)

/o = -77-z ----— — --------—----- = 0,133 m.0,5 m -f- 0,2 m — 0,1 m

Der Abstand des Bildbrennpunkts vom Mittelpunkt der ersten Linse ist
5 = d + f 0 = 0,233 m.

135. Eine Lupe mit der Brennweite f = 5 cm entwirft von einem Gegenstand ein Bild in der
Bildweite |5| =40  cm. Welche Vergrößerung liefert die Lupe, wenn das beobachtende
Auge sich im Abstand |c| = 2 cm befindet?

Lösung

Das von der Lupe entworfene Bild ist auf-
recht, virtuell und vergrößert (Bild 101). Der
abzubildende Gegenstand befindet sich in-
nerhalb der Brennweite der Lupe. Die ge-
suchte Winkelvergrößerung der Lupe hat
den Wert

Z = —
u

wobei u' den Winkel darstellt, unter dem sich das von der Lupe entworfene Bild dem
Auge O bietet, während u den Winkel darstellt, unter dem das unbewaffnete Auge den
Gegenstand innerhalb der deutlichen Sehweite l sehen würde. Entsprechend der Ab-
bildung können wir schreiben

, / y yu « tan u = —-----— , u ä tan w = — .
1*1 + |c| /

Für die Vergrößerung gilt dann

= 1 . (1)
« y 1*1 + kl

Die Linearvergrößerung y'/y der Linse bestimmen wir aus der Gleichung
y' _ x ' _ b ~ f _ — 40 cm — 5 cm
y f f 5 cm’

und nach Einsetzen dieser Werte in Gl. (1) erhalten wir für die Vergrößerung der Lupe

z - 9 m 
25 " --------- 5,36.

40 cm + 2 cm -----

126. Die Brennweite eines Mikroskopobjektivs beträgt f± = 0,3 cm, die des Okulars
f2 = 3 cm, die optische Tubuslänge 5 = 16 cm. Es ist zu ermitteln, in welchem Abstand
vor dem Objektiv sich ein Gegenstand befinden muß, damit das durch das Mikroskop
beobachtende Auge das Bild des Gegenstands in der deutlichen Sehweite Zo = 25 cm
erblicken kann.
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Lösung

Das Objektiv entwirft von dem Gegenstand, der sich vor ihm im Abstand d befindet,
ein Zwischenbild im Abstand b r hinter dem Objektiv. Entsprechend der Abbildungs-
gleichung gilt danach

~d + bl ~Ä‘
Das vom Objektiv entworfene Zwischenbild befindet sich im Abstand

82 = s - bi (2)
vom Okular und wird von diesem so dargestellt, daß es von einem dicht dahinter befind-
lichen Auge als in der deutlichen Sehweite l0 stehend wahrgenommen wird. Dieses Bild
selbst ist virtuell und befindet sich vom Okular in der Entfernung

b2 = — Iq.

Aus der für das Okular geltenden Abbildungsgleichung
1’1  1
-----1“ T“ = 7”gi b2 f2

erhalten wir nach Einsetzen der Gin. (2) u. (3)

, Zo/2bi = s — - ------—
/o + / 2

und nach Einsetzen der gegebenen Werte
bi = 13,32 cm.

Mit Hilfe der Gl. (1) erhalten wir eine Beziehung für die gesuchte Entfernung Gegen-
stand - Objektiv

bi -fi
bzw. mit den gegebenen Werten

d = 0,307 cm.

(1)

(3)

Aufgaben

146. Berechnen Sie den Winkel, um den ein
Lichtstrahl aus seiner ursprünglichen
Richtung abweicht, wenn er, aus dem
Wasser kommend, a) in Glas und b) in
die Luft übertritt und sein Einfalls-
winkel einmal 15° und einmal 75° be-
trägt.

147. Unter welchem Winkel müßte ein Licht-
strahl auf eine Glasplatte mit der Brech-
zahl n = 1,57 einfallen, damit reflek-
tierter und gebrochener Strahl senk-
recht aufeinanderstehen?

148. Unter welchem Winkel müßte ein Licht-
strahl auf die Trennfläche von Glas und
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Luft entfallen. damit er nicht mehr in
die Luft austreten kann?

149. Ein Lichtstrahl trifft unter dem Winkel
<P = 70° auf eine planparallele Glas-
platte von 10 cm Dicke und der Brech-
zahl n — 1,5. Berechnen Sie den Betrag
der Parallelversetzung, die der durch-
gehende Strahl erleidet.

150. Unter einer 12 cm dicken Glasplatte be-
findet sich eine Münze. Sie wird von
einem Beobachter gesehen, dessen Auge
senkrecht auf die Glasplatte schaut; es
ist von dieser 10 cm entfernt. In welcher
Entfernung, vom Auge des Beobachters
aus gemessen, erscheint das Bild der
Münze?

15L Auf ein Prisma mit dem brechenden
Winkel y = 54° fällt ein monochromati-
scher Lichtstrahl, für dessen Wellen-
länge die Brechzahl des Prismas den
Wert n = 1,63 hat. Wie groß ist die
minimale Ablenkung des Lichtstrahls
beim Durchgang durch das Prisma?

152. Ein optisches Prisma, dessen brechen-
der Winkel 50° ist, erlaubt für einen
durchgehenden Lichtstrahl eine mini-
male Ablenkung von 35°. Wie verändert
sich dieser Winkel, wenn das Prisma
ganz in Wasser untergetaucht wird?

153. Auf einPrisma mit der Brechzahl« = 2
fällt ein Lichtstrahl so, daß er auf die
vordere Fläche des Prismas senkrecht
auftrifft. Berechnen Sie, wie groß der
brechende Winkel dieses Prismas
höchstens sein darf, damit der aus-
tretende Lichtstrahl an der rückwärti-
gen Fläche gebrochen wird.

154. Zwei Planspiegel schließen miteinander
den Winkel <p ein. Auf einen der beiden
Spiegel fällt ein Lichtstrahl, der in einer
senkrecht zur Schnittlinie beider Spiegel
orientierten Ebene liegt. Der Strahl wird
erst auf dem ersten, dann auf dem zwei-
ten Spiegel reflektiert und weicht dabei
gegenüber seiner ursprünglichen Rich-
tung um den Winkel ab. Ermitteln Sie,
wie groß dieser Winkel ist und in wel-

cher Weise er vom Einfallswinkel ab-
hängt.

155. Von einem Felsen aus, der in einer Höhe
h = 76 m über der spiegelnden Ober-
fläche eines Sees liegt, wird eine Wolke
unter einem Höhenwinkel <p = 56° be-
obachtet. Ihr Spiegelbild erscheint im
See unter einem Winkel y> = 58° gegen-
über der Horizontalen nach unten ge-
messen. Wie groß ist die tatsächliche
Höhe der Wolke?

156. a) Auf der optischen Achse eines Kon-
kavspiegels befindet sich eine punkt-
förmige Lichtquelle. Ihr Abstand vom
Scheitelpunkt des Spiegels ist gleich 3 /2
des Spiegelradius. Bestimmen Sie die
Lage des Bildes.
b) Auf einer optischen Achse eines
Konvexspiegels befindet sich eine punkt-
förmige Lichtquelle im «-fachen Ab-
stand seiner Brennweite vom Spiegel-
scheitel entfernt. Bestimmen Sie auch
hier die Lage des Bildes.

157. Gegeben ist ein sphärischer Konkav-
spiegel mit einem Krümmungsradius
von 56 cm. In welchem Abstand vom
Scheitelpunkt des Spiegels muß man
einen Gegenstand aufstellen, damit sein
Bild
a) reell und viermal vergrößert,
b) virtuell und viermal vergrößert
erscheint? Ermitteln Sie die Lage des
Bildes.

158. Ein Gegenstand von 1,5 cm Höhe be-
findet sich 32 cm vom Scheitelpunkt
eines Konkavspiegels entfernt, dessen
Krümmungsradius 48 cm beträgt. Be-
stimmen Sie die Art des entstehenden
Bildes, seine Bildweite und Bildgröße.

159. Ein Spiegelgalvanometer enthält einen
kleinen Konkavspiegel. Im Abstand
/ = 1 m vor diesem befindet sich eine
waagerechte Skale und unmittelbar dar-
unter ein beleuchteter Spalt. Berechnen
Sie, welchen Krümmungsradius der
Galvanometerspiegel haben muß, damit
auf der Skale ein reelles Bild des Spalts
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entworfen wird. Berechnen Sie weiter,
um welchen Betrag die Lichtspur des
Spalts auf der Skale ausgelenkt wird,
wenn der Spiegel sich um den kleinen
Winkel 9? dreht.

160. Ein Konkavspiegel hat eine Brennweite
f = 16 cm. In welchen Abstand von
diesem Spiegel muß ein Beobachter sein
Auge bringen, damit er das Abbild
seines eigenen Auges in der deutlichen
Sehweite 24 cm erblickt?

161. Ein Konkav- und ein Konvexspiegel mit
derselben Brennweite f = 20 cm stehen
einander in einem Abstand l =' 50 cm
so gegenüber, daß ihre beiden optischen
Achsen zusammenfallen. In einem Ab-
stand g = 30 cm vom Konkavspiegel
befindet sich ein punktförmiger leuch-
tender Gegenstand. Wo wird sein Bild
entstehen, wenn das Licht a) zuerst auf
dem Konkavspiegel, dann auf dem Kon-
vexspiegel und b) zuerst auf dem Kon-
vexspiegel, dann auf dem Konkavspiegel
reflektiert wird?

162. Ein mit Quecksilber gefülltes Gefäß
rotiert mit der konstanten Winkel-
geschwindigkeit co um die vertikale
Achse und bildet dabei einen Konkav-
spiegel. Berechnen Sie die Brennweite
dieses Spiegels.

163. Eine dünne Sammellinse bildet einen
20 cm vor ihr gelegenen Gegenstand in
einer Entfernung von 35 cm hinter sich
ab. Wie groß ist ihre Brennweite, und
welche Vergrößerung tritt auf?

164. Eine Sammellinse der Brennweite f =
= 42 cm entwirft von einem Gegen-
stand ein dreifach vergrößertes, virtu-
elles Bild. Bestimmen Sie Gegenstands-
und Bildweite.

165. Eine dünne Bikonvexlinse der Brech-
kraft D entwirft von einem Gegenstand
ein Bild mit der Vergrößerung Z. Be-
rechnen Sie Gegenstands- und Bild-
weite.

166. In einem Punkt P konvergiert ein Strah-
lenbündel, das vor Erreichen dieses

Punktes durch eine Zerstreuungslinse
aufgefangen wird, deren Brechkraft den
Wert D = — 10 /e dpt hat. Bestimmen
Sie rechnerisch die Bildweite, wenn die
auffangende Zerstreuungslinse von dem
Punkt 90 cm entfernt ist.

167. Eine plankonvexe Glaslinse mit einem
Krümmungsradius rr = 14 cm entwirft
von einem Gegenstand ein Bild in der
Bildweite b9 die um 1,05 m kleiner ist als
die Gegenstandsweite. Wie groß ist die
Gegenstandsweite und Bildweite für
n = 1,5?

168. Die Brechkraft einer bikonvexen Glas-
linse hat in Luft den Wert DQ = 12 dpt.
Welchen Wert nimmt die Brechkraft an,
wenn die Linse in Wasser getaucht ist?

169. Eine dünne bikonvexe Glaslinse ent-
wirft von einem Gegenstand ein Bild in
der Bildweite = 10 cm. Gegenstand
und Linse seien auf einer optischen
Bank montiert, die ohne Veränderung
der Gegenstandsweite vollständig in
Wasser getaucht wird. Dabei verändert
sich die Bildweite auf einen Wert
b 2 = 60 cm. Wie groß ist die Brenn-
weite dieser Linse in Luft?

170. Eine optische Bank trägt Lichtquelle,
Sammellinse und Schirm. Die Sammel-
linse entwirft auf dem Schirm das Bild
der Lichtquelle, deren Abstand vom
Schirm Z = 1 m beträgt. Wenn wir, ohne
die Lage von Lichtquelle und Schirm zu
verändern, die Linse 20 cm näher an
den Schirm verschieben, so wird in die-
ser zweiten Stellung die Lichtquelle er-
neut auf dem Schirm scharf abgebildet.
Wie groß ist die Brennweite der
Linse?

171. Auf einem Schirm wird durch eine
Sammellinse ein Gegenstand so ab-
gebildet, daß die Bildgröße den Wert
Bi = 9 cm hat. Bei Fixierung von Ge-
genstand und Schirm wird die Linse an
den Schirm herangefahren, wobei sich
herausstellt, daß in einer zweiten Stel-
lung ein scharfes Bild der Größe B 2 =
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stand hintereinander befestigt. Berech-
nen Sie, in welchem Abstand vor der
ersten, als Objektiv wirkenden Linse
man einen Gegenstand aufstellen muß,
damit das System vom Gegenstand ein
virtuelles Bild entwirft, das sich in der
deutlichen Sehweite befindet. Das Auge
des Beobachters sei dicht an die zweite,
als Okular wirkende Linse gerückt.

179. Ein KEPLERSches Fernrohr besteht aus
einem Objektiv mit der Brennweite
/i = 42 cm und einem Okular mit der
Brennweite f 2 — 1,4 cm. Wie lang ist
das Fernrohr, und welche Winkelvergrö-
ßerung erlaubt es?

180. Das Objektiv eines GALiLEischen Fern-
rohrs besteht aus einer dünnen Bi-
konvexlinse mit den Krümmungsradien
ri = r2 = 24 cm und der Brechzahl
n = 1,5. Die Brechkraft des Okulars hat
den Wert D = —20 dpt. Berechnen
Sie, in welchen Abstand vom Objektiv
man das Okular bringen muß, damit ein
Beobachter mit der deutlichen Sehweite
l = 25 cm einen Gegenstand scharf
sieht, der 30 m vor dem Objektiv steht.

181. Ein Mikroprojektor, dessen Objektiv
eine Brennweite /i = 3 cm, dessen
Okular eine Brennweite f 2 = 6,5 cm hat
und dessen Baulänge d = 28 cm be-
trägt, soll auf einer Mattscheibe das
scharfe Bild eines Gegenstands entwer-
fen, der in der Gegenstandsweite g =
= 3,6 cm vor dem Objektiv steht. Be-
rechnen Sie, in welchem Abstand vom
Okular die Mattscheibe angebracht sein
muß und welchen Wert die Vergröße-
rung annimmt.

182. Berechnen Sie den kleinsten Abstand
zwischen zwei Strichen, die durch ein
Mikroskop noch getrennt wahrgenom-
men werden sollen, wenn im blauen
Licht der Wellenlänge A = 450 nm be-
obachtet wird und die numerische Aper-
tur des Objektivs den Wert A = 0,55
hat. Ermitteln Sie weiter, um wievielmal
kleiner diese Entfernung ist als die, die

= 4 cm entsteht. Berechnen Sie die
wahre Gegenstandsgröße G.

172. Die Brennweite einer Sammellinse ist f
Berechnen Sie, in welchem Abstand von
der Linse eine Lichtquelle aufgestellt
werden muß, damit sich die Bildweite
des entstehenden Bildes um weniger als
p°/Q von der Brennweite f unterscheidet.

173. Eine Glaskugel hat den Krümmungs-
radius r. In welcher (mit r als Einheit
ausgedrückten) Entfernung muß ein
Gegenstand vor der Kugelfläche auf-
gestellt werden, damit das hinter der
Kugelfläche entworfene Bild in gleicher
Entfernung wie der Gegenstand er-
scheint?

174. Eine dicke bikonvexe Glaslinse hat die
Krümmungsradien = r2 = 10 cm
und die Dicke d — 5 cm. Berechnen Sie
die Brennweite dieser Linse und die Lage
ihrer Hauptebenen. Ermitteln Sie des
weiteren die Bildweite für den Fall, daß
die Gegenstandsweite g = 20 cm be-
trägt.

175. Ein Gegenstand wird durch eine 2 cm
vom Auge entfernt gehaltene Lupe be-
trachtet. Berechnen Sie die Brennweite
der Lupe, wenn bei sechsfacher Ver-
größerung die Bildweite den Wert b =
= 30 cm annimmt.

176. Eine Lupe hat die Brechkraft D =
= 10 dpt. Berechnen Sie, in welchem
Abstand von der Lupe ein Gegenstand
anzubringen ist, damit ein Beobachter,
der die Lupe dicht vors Auge hält, ein
scharfes Bild erblickt. Für den Beobach-
ter hat die deutliche Sehweite den Wert
Z = 25 cm. Welche Vergrößerung hat
die Lupe?

177. Berechnen Sie die mit einem Mikroskop
erreichbare Vergrößerung, dessen Ob-
jektiv 0,5 cm, dessen Okular 2,0 cm
Brennweite hat und dessen Tubuslänge
12 cm beträgt.

178. Zwei Sammellinsen mit den Brenn-
weiten 3 cm bzw. 4 cm sind, als opti-
sches System vereinigt, in 15 cm Ab-
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ein unbewaffnetes Auge in der deutli-
chen Sehweite Z = 25 cm gerade noch
trennen kann, wenn wir berücksich-
tigen, daß der kleinste Auflösungs-
winkel des unbewaffneten Auges den
Wert a = 1 ' hat.

183. Die Brechzahl des Glases, aus dem eine

Sammellinse hergestellt ist, hat für rotes
Licht den Wert wrot  = 1,51 und für vio-
lettes den Wert wV ioi = 1,531. Wie weit
fallen die Brennpunkte für rote und vio-
lette achsenparallele Strahlen ausein-
ander, wenn die Krümmungsradien der
Linse r r = r2 = 15 cm sind?

2.3. Wellenoptik

Wenn zwei mechanische Wellen, die von verschiedenen Quellen ausgehen, sich in
irgendeinem Bereich überlagern, so kommt es in diesem Bereich zur Interferenz. Die
resultierende Wellenamplitude ist dann gleich der Vektorsumme der Amplituden der
beteiligten Teilwellen. Wenn aber die Quellen, von denen die Wellen ausgehen, mit
der gleichen Frequenz schwingen und gleiche Schwingungsrichtung sowie gleiche,
konstante Phasendifferenz haben, so handelt es sich dann um sog. kohärente Quellen.
Die Amplitude der resultierenden Schwingung ist dann in jedem Punkt des betreffen-
den Mediums völlig bestimmt und hängt nur von den Abständen des Punktes von den
beiden Quellen ab.
Eine Maximalamplitude bildet sich in all den Punkten aus, in denen für die Weg-
differenz der Wellen, d2 — dr , die Beziehung

d2 d t ~ k2

erfüllt ist. Eine Minimalamplitude entsteht überall da, wo für die Wegdifferenz gilt

2d2 - dY = (2k +1)— (k = 0, 1, 2, 3, ...)
2

(2 Wellenlänge, d t bzw. d2 Abstände des angenommenen Punktes von den beiden
Quellen).
Auch bei elektromagnetischen Wellen kann Interferenz eintreten, wenn die Wellen
kohärent sind und Überlagerungen entsprechend den vorgenannten Bedingungen auf-
treten.
Der Abstand A s zwischen zwei benachbarten Maxima der Beleuchtungsstärke auf
einem Schirm, der von zwei kohärenten Lichtquellen beleuchtet wird, die sich vom
Schirm im Abstand l und voneinander im Abstand a (mit a < Z) befinden, genügt
folgender Beziehung:

As = *2 ,
a

wobei 2 die Wellenlänge des verwendeten monochromatischen Lichtes bedeutet.
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Interferenz von Lichtstrahlen kann man auch auf einer dünnen, durchsichtigen Schicht
beobachten. Wenn die dünne Schicht mit einem parallelen Bündel monochromatischen
Lichtes der Wellenlänge 2 bestrahlt wird, dann wird das Licht von der Schicht mit
maximaler Intensität reflektiert, wenn die Bedingung

2nd cos ß = (2k + 1) —

erfüllt ist. Dagegen wird das Licht mit minimaler Intensität reflektiert, wenn gilt

2nd cos ß = kl (k = 0, 1, 2, 3, ...)

(n Brechzahl der reflektierenden Schicht, d ihre Dicke, ß Winkel, unter dem die Licht-
welle in die Schicht hinein gebrochen wird).
Die Tatsache, daß Licht sich nicht immer nur geradlinig ausbreitet, sondern durch
Beugung Richtungsänderungen erfährt, wird durch verschiedene Experimente be-
stätigt, so z. B. die Beugung am Spalt und die Beugung am optischen Gitter. Stellen wir
uns vor, daß auf einen engen Spalt in einem sonst undurchsichtigen Hindernis oder
auf ein optisches Gitter ein monochromatisches Bündel paralleler Strahlen senkrecht
einfällt. Es tritt Beugung auf, und an einem geeignet angeordneten Schirm können die
Interferenzen beobachtet werden.
Bei Beugung des Lichtes am Spalt werden die durch die Gleichung

d sin a = kX (k = 0, 1, 2, 3, . . .)

bestimmten Richtungen dadurch ausgezeichnet, daß in ihnen kein Licht ausgebreitet
wird. Auf dem Schirm entspricht das der Beleuchtungsstärke Null, d ist hier die
Spaltbreite.
Bei der Beugung des Lichtes am Gitter entstehen auf einem Schirm Maxima der Be-
leuchtungsstärken in all den Punkten, die den Richtungen entsprechen, die durch die
Gleichung

d sin a = kl

bestimmt werden, wobei d die Gitterkonstante ist. Sie ist gleich dem Abstand der
Mittelpunkte zweier benachbarter Striche des Gitters. Der Zahlenwert k kann nur
ganzzahlige positive Werte annehmen und bezeichnet die Ordnung des zugehörigen
relativen Maximums.
Für die Untersuchung von Beugungserscheinungen an Röntgenstrahlen sind räum-
liche Kristallgitter geeignet. Wenn auf die ebene Oberfläche eines Kristalls ein paral-
leles Bündel von Röntgenstrahlen einfällt, so wird das Röntgenlicht dann mit maxi-
maler Intensität reflektiert, wenn für seinen Einfallswinkel a die Bragg-Wulfsche
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Bedingung
2d sin oc = kX

erfüllt ist. Der Winkel a wird von der Kristallebene aus gemessen, d ist die Gitter-
konstante des Kristallgitters, der Zahlenwert k stellt wieder die Ordnung des zu-
gehörigen relativen Maximums dar.
Wenn ein Lichtstrahl auf die Trennfläche zweier verschiedener Stoffe mit den ab-
soluten Brechzahlen n r und n 2 unter einem Winkel oc einfällt, welcher der Gleichung

tana=— (1)

genügt, so wird er vollständig polarisiert reflektiert, wobei seine Polarisationsebene
mit der Einfallsebene zusammenfällt. Der Strahl, der in das zweite Medium eindringt,
ist in der zur Einfallsebene senkrechten Ebene teilweise polarisiert und schließt mit
dem reflektierten Strahl einen Winkel von 90° ein. Die Gl. (1) drückt das
Brewstersche Gesetz aus.

Beispiele

127. Aus einer Lichtquelle, die vor
der Schnittlinie zweier Fresnel-
scher Spiegel im Abstand r =
10 cm aufgestellt ist, fällt mono-
chromatisches Licht der Wellen-
länge A = 0,6 pm auf die beiden
Spiegel Si  und S 2 (Bild 102).
Das von den beiden Spiegeln
reflektierte Licht erzeugt auf
einem Schirm, der im Abstand
/0 = 270 cm von der Schnitt-
linie entfernt steht, ein Inter-
ferenzbild. In ihm ist der Ab-
stand zweier benachbarter
Streifen As = 0,29 cm. Berech-
nen Sie, welchen Winkel die
beiden FRESNELSchen Spiegel
zwischen sich einschließen.

Lösung

Das von der Lichtquelle L ausgehende Licht wird auf den Spiegeln Si  und S 2 reflek-
tiert, und die scheinbar von zwei virtuellen Strahlenquellen Li und L 2 ausgehenden
Strahlen interferieren miteinander. Das Interferenzbild, das auf dem Schirm entsteht,
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der von den beiden virtuellen Quellen den Abstand Z hat, ist von der Weglängendifferenz
abhängig, die zwischen den beiden Strahlen besteht. Zum Beispiel entsteht im Punkt M
des Schirms ein relatives Maximum dann, wenn die Weglängendifferenz

d2 - = kl (1)
ist, wobei A die Wellenlänge des verwendeten Lichtes ist und k = 0, 1, 2, 3, . . . .
Die Lage der beiden virtuellen Lichtquellen Li und L 2 finden wir ohne Mühe aus den
bekannten Eigenschaften des Planspiegels. Wenn wir ihren gegenseitigen Abstand mit 2a
und den Abstand des Punktes M vom Mittelpunkt O des Schirmes mit 5 kennzeichnen,
wie in Bild 102 vorgesehen, dann gilt offenbar

dl - l 2 + (5 - a) 2 , d 2 = l 2 +(s  + a) 2 , d 2 -d 2 = 4sa. (2)
Da die Abstände s und 2a gegenüber den Abständen d ± und d2 klein sind, kann die
Beziehung

di -f- d 2 ~ 21
als annähernd erfüllt gelten. Nach Einsetzen in Gl. (2) erhalten wir

dl _ dl = .

Nach Gl. (1) soll im Punkt M ein relatives Maximum sein, wenn

H (3)

ist. Für den Abstand zweier benachbarter relativer Maxima As resultiert daraus

As = sk - sk . i  = . (4)

Aus Bild 102 können wir ohne weiteres ermitteln, daß S X OS 2 gleich dem doppelten
Winkel ist, den die beiden FRESNELschen Spiegel einschließen. Durch eine Drehung des
Spiegels S x um den Winkel a würde sich der auf ihm reflektierte Strahl um den Winkel 2a
drehen, und das Bild der virtuellen Lichtquelle L x würde sich nach L 2 verschieben;
deshalb können wir auch schreiben:

2a = 2r sin a, Z = Zo 4- r cos a

und wegen der Kleinheit des Winkels a auch

a « m, bzw. Z « Zo + r .

Nach Einsetzen in Gl. (4) finden wir

a zo + r .As = — ----  A2ra

woraus für den gesuchten Winkel, den die beiden FRESNELschen Spiegel einschließen,
resultiert:

Zo
2Asr

l .a
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Die Berechnung mit den gegebenen Werten ergibt schließlich

270 cm + 10 cm
2 • 0,29 cm • 10 cm

0,6 • 10- 4 cm = 3 • 10- 3 rad = 10'.a

128. Eine ebene Seifenwassermembran erscheint bei Beobachtung im reflektierten Licht von
klar grüner Färbung. Das Auge beobachtet die Membran unter einem (gegen die Nor-
male gemessenen) Winkel a = 35°. Berechnen Sie die Dicke der Membran und in
welcher Farbe sie erscheinen muß, wenn das Auge senkrecht auf die Membran blickt
(a = 0°). Die Seifenwassermembran hat die Brechzahl n = 1,33, und die Wellenlänge
des grünen Lichtes ist Agr = 500 nm.

Lösung

Eine dünne Schicht reflektiert monochromatisches Licht dann am intensivsten, wenn
die Gleichung

A
2 Zcos£ = (2£ + l )y  (1)

erfüllt ist, wobei ß den zugehörigen Brechungswinkel des Lichtstrahls darstellt. Wenn
wir in diese Beziehung den Einfallswinkel mit aufnehmen, erhalten wir entsprechend
dem Brechungsgesetz

sin a = wsinß,

woraus folgt
y]n 2 —sm 2 oc

cos ß = - ---------------- .n

Das ermöglicht die Formulierung der Beziehung

Zdyjn 2 — sin 2 a = (2k + 1) — .

Wenn die dünne reflektierende Schicht mit weißem Licht bestrahlt wird, so verstärken
sich im reflektierten Licht diejenigen Farben am meisten, für welche Gl. (1) erfüllt ist.
In unserem Falle ist die intensivste Farbe das Grün mit der Wellenlänge Agr . Für die
Dicke der reflektierenden Schicht erhalten wir folgende Beziehung:

(2k + 1) Agr
ä - -  ----  . . ■ . (2)

4 /n 2 — sin2 *

Da die Zahl k beliebige ganze, positive Werte annehmen kann, läßt sich die Dicke d
so noch nicht eindeutig bestimmen. Für die kleinstmögliche Dicke aber gilt sicher k = 0.
Nach Einsetzen der gegebenen Werte erhalten wir damit

d = 104,1 nm.
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Wenn die reflektierten Strahlen unter dem Winkel a = 0° einfallen, dann gilt nach
Gl. (2)

2nd = (2k + 1) y

und für k = 0
A = And = 554 nm.

Diese Wellenlänge entspricht einer gelbgrünen Farbe.

129. Zwei sorgfältig geschliffene, ebene Plättchen sind so aufeinandergelegt, daß sie sich an
einem Ende mit ihren Kanten berühren, während am anderen Ende, in einem Abstand
von a = 10 cm von der Berührungslinie, ein Stückchen Metallfolie der Dicke h = 1 /50  mm
zwischen sie geschoben ist (Bild 103; a :  Grundlinie). Bestimmen Sie den Abstand von

, zwei nebeneinanderliegenden Interferenzstreifen, dieent-
stehen, wenn auf die Anordnung monochromatisches
Licht der Wellenlänge A = 589 nm einfällt, a) bei senk- ..
rechtem Einfall und b) unter einem Winkel a = 60°
(gegen die Normale gemessen). p

h
d2

L. ____ ►
Lösung Bild 103

Im Prinzip handelt es sich hierbei um die Brechung in einer dünnen Schicht, deren Dicke
sich von Ort zu Ort ändert. In unserem Fall wird die dünne Schicht durch die zwischen
den beiden Plättchen eingeschlossene Luftschicht gebildet.
Wenn die Luftschicht vollkommen planparallel wäre, dann würde sie diejenige Strah-
lung maximal reflektieren, für die gilt

A
2nd cos ß = (2k + 1) —

bzw. nach Einführen des Einfallswinkels (vgl. Beispiel 128)

2dy]n 2 — sin 2 
üx = (2k + 1) .

Da es sich hier um eine Luftschicht handelt, können wir n ~ 1 setzen und erhalten

2d cos a = (2k + 1) — .

Die Dicke der Schicht möge an den Stellen, an denen zwei benachbarte helle Interferenz-
streifen auftreten, mit d r bzw. d 2 angegeben sein ; dann sind offenbar folgende Beziehungen
erfüllt:

A A
2 1 cos a = (2k + 1) — , 2d2 cos a = (2k + 3) — . (1)

Weiterhin ist in Bild 103

= Xi tan d 2 = x 2 tan 92, (2)
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wobei
h

tan <p = — (3)
a

ist. Für den Abstand zweier benachbarter Streifen ergibt sich aus den unter (2) stehenden
Gleichungen

x 2 — Xi = (d 2 — di) cot (p.
Mit Hilfe der Beziehungen (1) und (3) erhalten wir die Differenz

a A
x 2 - Xl = — ------ .h 2 cos a

Mit den gegebenen Größen wird für den Fall

a) a = 0
a

x 2 - Xi = —■h
589 • 10- 7 cm

2
A 10 cm
T = 2 • IO" 3 cm

= 0,147 cm;

b) a = 60°
a

x 2 - x  t = —
h

2
2 cos 60° = 0,294 cm.

130. Auf eine ebene Glasplatte wird eine plankonvexe Linse mit dem Krümmungsradius n
gelegt, und zwar mit der konvexen Seite nach unten (Bild 104). Wenn auf dieses System
senkrecht ein Bündel monochromatischer Lichtstrahlen einfällt, so entsteht auf der
Glasplatte eine Interferenzerscheinung in Form konzentrischer Kreisringe, die ab-
wechselnd dunkel und hell sind, die sog. NEWTONsc/ze/z
Ringe. Erläutern Sie die Entstehungsursache dieser Er-
scheinung, und bestimmen Sie die Radien derjenigen Kreise,
die jeweils maximale Helligkeit aufweisen.

Lösung

Zwischen der Linse und der Glasplatte befindet sich eine
dünne Luftschicht, deren Dicke sich vom Zentrum, dem
Berührungspunkt von Linse und Platte, zum Rande hin
vergrößert. Die Luftschicht hat an all jenen Stellen dieselbe
Dicke, die gleich weit von der optischen Achse OO' (die durch den Berührungspunkt
geht) entfernt sind. Wir wollen diesen Abstand mit r bezeichnen. Die Interferenz-
erscheinung kommt dadurch zustande, daß die an der unteren Trennfläche von Luft
und Glas reflektierten Lichtstrahlen mit den von der oberen Trennfläche reflektierten
interferieren.
An einer dünnen Schicht, die überall dieselbe Dicke d hat, entstehen Maxima der Be-
leuchtungsstärke, wenn die Bedingung

A
2nd cos ß = (2k + 1) y (1)

11 Hajko, Elektrik
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erfüllt ist. Wenn wir berücksichtigen, daß im vorliegenden Fall die Lichtstrahlen senk-
recht einfallen und daß sich die Reflexion in einer Luftschicht abspielt, ist ß = 0 und
n « 1 , und Gl. (1) nimmt damit eine einfachere Form an, nämlich

2J = (2£ + l )y .  (2)

Nach Bild 104 gilt offensichtlich

d = n - ~ r2 .
Wenn wir das zweite Glied in dem vorstehenden Ausdruck entsprechend der binomischen
Entwicklung behandeln und die Glieder höherer Ordnung vernachlässigen (unter der
Voraussetzung, daß > r ist), erhalten wir

, / 1 r 2 \ r 2
— — = — ,

\ 2 r t / 2r t

und unter Berücksichtigung der Gl. (2) wird

woraus sich ergibt:

r = J ri (2k+l ) -  k = 0, 1 ,2 ,3 ,  ... (3)

Demnach liegen die Maxima der Beleuchtungsstärken auf Kreislinien, deren Radien
Gl. (3) erfüllt.

131. Wenn auf einen optischen Spalt ein paralleles Strahlenbündel blauen Lichtes der Wellen-
länge Ab l  = 450 nm senkrecht einfällt, so entsteht auf einem genügend weit entfernten
Schirm ein Interferenzbild, bei dem die Mitte des zweiten dunklen Streifens um einen
Winkel a bl  = 5° 14' gegenüber der kürzesten Verbindungsgeraden Spalt - Schirm ab-
weicht. Unter welchem Winkel wird die Mitte des vierten Dunkelstreifens erscheinen,
wenn der Spalt an Stelle des blauen mit rotem Licht der Wellenlänge 2r = 700 nm be-
leuchtet wird?

Lösung

Ein Helligkeitsminimum zweiten Grades entsteht für den Fall des blauen Lichtes in all
den Punkten des Schirmes, für welche die Bedingung

d sin a b i = 2Ab l  (1)

erfüllt ist. Für den Fall roten Lichtes lautet die Bedingung für ein Helligkeitsminimum
vierten Grades

ds ina r = 4L„ (2)
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Aus den Gin. (1) u. (2) erhalten wir durch Eliminieren von d
2Ar .

Sin a r = —— sm a b i ,
Abi

und durch Einsetzen der gegebenen Größen
2 • 7 • IO" 5 cm

sm a r = —- ——--------
4,5 • 10“ 5 cm

sin 5° 14',

d. h.,
a r = 16° 29'.

132. Auf ein optisches Strichgitter, das auf einem Millimeter 100 Striche hat, fällt ein paral-
leles Bündel weißen Lichtes senkrecht ein. Mit Hilfe einer dicht hinter dem Gitter an-
geordneten Sammellinse von 30 cm Brennweite wird auf einem geeignet angebrachten
Schirm ein Spektrum erzeugt. Berechnen Sie, unter welchen gegenseitigen Abständen
auf dem Schirm
a) die Farben Rot und Violett im Spektrum zweiter Ordnung,
b) das Ende des Spektrums erster und der Anfang des Spektrums zweiter Ordnung
nebeneinander erscheinen. Die Wellenlänge an der roten Spektrumgrenze beträgt 760 nm
und die an der violetten 400 nm.

Lösung

a) Die Beugungserscheinung wird in der Brennebene der Linse, im Abstand von / = 30 cm
hinter dem Gitter, scharf dargestellt. Für die Ablenkung des roten Lichtes im Spektrum
zweiter Ordnung gilt

sm a r = 2 — ,
d

und für die Ablenkung des violetten Lichtes entsprechend

s ina v = 2 — .d
Da die Gitterkonstante den Wert d = 10" 3 cm hat, ergeben sich nach Einsetzen dieser
Größe für die Ablenkung des roten bzw. violetten Lichtes im Spektrum zweiter Ordnung
die Winkel

a r = 8° 45', a v = 4° 35'.
Der Abstand der roten bzw. violetten Farbe vom Maximum nullter Ordnung ist

x r = l tan a r = 4,62 cm
bzw.

x y = l tan a v = 2,40 cm.
Ihr Abstand voneinander beträgt

x = xT — x y = 2,22 cm .

11*
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b) Die Ablenkung des roten Lichtes im Spektrum erster Ordnung wird aus der Gleichung

sm aT = —d
bestimmt. Nach Einsetzen der gegebenen Größen ergibt sich

= 4° 22'.
Für den Abstand des roten Lichtes vom Maximum nullter Ordnung erhalten wir

x' = l tan a' = 2,30 cm.
Der Beginn des Spektrums zweiter Ordnung, der vom violetten Licht markiert wird,
hat vom (roten) Ende des Spektrums erster Ordnung den Abstand

x' = x y — x' = 2,40 cm — 2,30 cm = 0,1 cm.

133. Ein optisches Beugungsgitter wird senkrecht durch ein paralleles Bündel weißen Lichtes
beleuchtet. Untersuchen Sie, ob sich irgendeine Farbe aus dem Spektrum erster Ord-
nung mit irgendeiner Farbe des Spektrums zweiter Ordnung überdecken kann.

Lösung

Im Spektrum erster Ordnung möge eine Spektrallinie der Wellenlänge 2 X unter einem
Winkel erscheinen und im Spektrum zweiter Ordnung eine Spektrallinie der Wellen-
länge 22 unter dem Winkel a 2 . Offensichtlich sind dann die Beziehungen

d sin Äj. = Ai und d sin a 2 = 222

erfüllt, wobei d die Gitterkonstante bedeutet.
Wenn beide Spektrallinien einander überdecken sollen, müßte die Bedingung

= a 2
erfüllt sein, was zu der weiteren Bedingung führt

2i = 222 .
Die durch das Auge wahrnehmbaren Farbkomponenten des weißen Lichtes haben
Wellenlängen im Bereich von 400 nm bis 700 nm. Deshalb kann die vorstehende Be-
dingung nicht erfüllt werden.

134. Bestimmen Sie den höchsten Ordnungsgrad eines Spektrums, das bei Beugung von Licht
der Wellenlänge 2 durch ein Gitter mit der Gitterkonstanten d gerade noch entstehen
kann.

Lösung

Die Maximalintensität A>ter Ordnung tritt in derjenigen Richtung auf, für die folgende
Bedingung erfüllt ist:

2
sin a = k— . (1)

d
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Da die Winkelfunktion sin a dem Wert 1 sehr nahekommt, muß auch die rechte Seite
der Gl. (1) die Bedingung

4 s i

erfüllen, woraus sich für die höchstmögliche Ordnung des Spektrums ergibt

‘4 -

wobei k ganzzahlig sein muß

135. Berechnen Sie die Gitterkonstante von a-Eisen. Diese Kristallform ist durch eine Dichte
q = 7860 kg m -3  bestimmt, wobei das Eisen in einem kubisch-raumzentrierten Gitter
vorliegt.

Lösung

In einem kubischen Kristallgitter entfallen auf jede Elementarzelle n Atome eines Ele-
ments; M sei die Masse eines Grammatoms dieses Elements und N die Zahl der Atome
im Grammatom. Dann hat ein einzelnes Atom des Elements die Masse

M
mo= -N’

und auf eine Elementarzelle entfällt die Masse
M

m ~~ n N ’
Mit der Gitterkonstanten d und der Dichte q ergibt sich die Masse einer Elementarzelle
zu

m = d 3 Q. (2)
Durch Vergleich der Gin. (1) u. (2) erhalten wir für die gesuchte Gitterkonstante den
Ausdruck

, 3 I~m
“-r l x -

In einem kubisch-raumzentrierten Gitter entfallen auf jede Elementarzelle n = 2 Atome,
und für die Gitterkonstante ergibt sich schließlich

(1)

(3)

2 -55,8 g mol" 1

6,03 • 10 23  mol- 1 - 7,86 g cnv 3 2 ’ 87 ‘ 10 ~8cm -
d =

136. Auf einen Kaliumchloridkristall fällt eine Röntgenstrahlung der Wellenlänge 2 =
= 0,1537 nm (Kupfer-K a -Strahlung) und wird gegenüber der (OOl)-Ebene unter einem
Winkel oc = 18° 03' als Reflex zweiter Ordnung reflektiert. Wie groß ist die Gitter-
konstante des KCl-Kristalls?



166 2. Optik

Lösung

Die auf die ebene Oberfläche des Kristalls auftreffende Röntgenstrahlung wird mit
maximaler Intensität dann reflektiert, wenn die BRAGG-WuLFsche Bedingung

2d sin a = kl
erfüllt ist. Da das beobachtete reflektierte Strahlenbündel einen Reflex zweiter Ordnung
darstellt, ist k = 2 ,  und für die gesuchte Gitterkonstante ergibt sich der Wert

137. Auf eine planparallele Glasplatte fällt ein Lichtstrahl unter einem solchen Winkel ein,
daß der in die Luft reflektierte Strahl vollständig polarisiert ist. Beweisen Sie, daß auch
der ins Glas hinein gebrochene und an der unteren Begrenzungsfläche ins Glas reflek-
tierte Strahl vollständig polarisiert ist.

Lösung

Wenn die absoluten Brechzahlen von Luft bzw. Glas und n2 sind, dann wird die Be-
dingung, daß der reflektierte Strahl (1) (Bild 105) vollständig polarisiert ist, durch die
BREWSTERsche Beziehung ausgedrückt, also

(1)tan a = —
»i

Um festzustellen, ob der an der unteren Begrenzungs-
fläche unter dem Brechungswinkel ß ins Glas zurückre-
flektierte Strahl (2) vollständig polarisiert ist, untersuchen
wir den Tangens des Brechungswinkels

cos ß
(2)

Gemäß dem Brechungsgesetz ist Bild 105

sm ß = ---- sm a .
n2

Durch Vergleich mit Gl. (1), die auf die Form

ni .cos a = ---- sm a
n2

gebracht wird, erhalten wir

sin ß = cos a

und weiter

cos ß = sin a,
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was nach Einsetzen in Gl. (2) ergibt:

n 1 W1
tan ß = cot oc = ------- = — .

tan oc n2

Diese Beziehung drückt die Bedingung dafür aus, daß der an der Begrenzungsfläche
Glas - Luft reflektierte Strahl vollständig polarisiert ist.

Aufgaben

184. Bei dem Versuch von Young treten die
kohärenten, interferierenden Strahlen
aus Spalten aus, deren Abstand 0,06 cm
beträgt. Die auf dem 1 m dahinter ste-
henden Schirm erscheinenden Inter-
ferenzstreifen haben einen Abstand
Al = 0,1 cm. Wie groß ist die Wellen-
länge des verwendeten Lichtes?

185. Zwei als kohärente Lichtquellen die-
nende Spalte haben voneinander einen
Abstand von 0,045 cm. Im Abstand
0,5 m dahinter ist ein Schirm angebracht.
Es wird weißes Licht verwendet. Be-
rechnen Sie, in welchem Abstand vom
zentralen Maximum die erste rote Auf-
hellung (Ai = 700 nm) und in welchem
die erste blaue Aufhellung (22 = 400 nm)
auftritt.

186. Zwei FRESNELSche Spiegel, die den
Winkel a = 9'10" einschließen, werden
mit monochromatischem Licht der
Wellenlänge 2 = 0,56 (zm beleuchtet.
Der Abstand der Lichtquelle von der
Schnittlinie beider Spiegel beträgt s =
= 10 cm, der Abstand des Schirmes
l0 = 1 m. Berechnen Sie den Abstand
des dritten Intensitätsmaximums vom
Zentrum des Interferenzbildes.

187. Eine Seifenwassermembran mit der
Brechzahl n = 4 / 3 wird mit monochro-
matischem Licht der Wellenlänge 2 0 =
— 540 nm senkrecht beleuchtet. Wie
dünn muß die Membran sein, damit im
reflektierten Licht auf ihrer Oberfläche
kein Interferenzmaximum auftritt?

188. Eine Glasmembran der Dicke d = 0,3 pm

wird mit einem parallelen Bündel wei-
ßen Lichtes senkrecht beleuchtet. Be-
stimmen Sie die im sichtbaren Teil des
Spektrums liegende Wellenlänge, die im
reflektierten Licht a) am meisten ver-
stärkt und b) am meisten geschwächt
wird.

189. Zwischen zwei Glasplatten befindet sich
eine Luftschicht von 1 (zm Dicke, die mit
weißem Licht senkrecht beleuchtet wird,
wobei es zur Reflexion kommt. Bestim-
men Sie die im sichtbaren Teil des Spek-
trums liegende Wellenlänge, die im re-
flektierten Licht a) am meisten verstärkt
und b) am meisten geschwächt wird.

190. Eine sehr dünne, keilförmige Glasplatte
wird mit monochromatischer Strahlung
der Wellenlänge 2 = 0,5 um senkrecht be-
leuchtet. Die in der Keilplatte auftre-
tende Interferenzerscheinung wird im re-
flektierten Licht beobachtet, wobei sich
zeigt, daß der Abstand zweier benach-
barter Dunkelstreifen 0,56 cm beträgt.
Berechnen Sie den Winkel, den die bei-
den Oberflächen des Keils einschließen.

191. Der Zwischenraum einer optischen An-
ordnung zur Erzeugung NEWTONscher
Ringe ist mit Wasser ausgefüllt. Die
plankonvexe Linse hat einen Krüm-
mungsradius r = 1 m, die Ringe er-
scheinen im reflektierten Licht der Wel-
lenlänge 2 = 600 nm, die Brechzahl des
Wassers beträgt n = 4 / 3 . Berechnen Sie
den Abstand zwischen dem dritten und
dem vierten NEWTONschen Ring.

192. Bei Beobachtung NEWTONscher Ringe
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im reflektierten Licht der Wellenlänge
Arot = 700 nm zeigt sich, daß der
5. Ring einen Durchmesser von 0,354cm
hat. Bestimmen Sie die Brennweite der
verwendeten Plankonvexlinse. Wie groß
wäre der Durchmesser des 5. Ringes bei
Beobachtung im blauen Licht der Wel-
lenlänge Abl = 450 nm?

193. NEWTONsche Ringe werden in einer An-
ordnung bei senkrecht einfallendem,
einfarbigem, reflektiertem Licht beob-
achtet. Wie groß ist die Wellenlänge des
verwendeten Lichtes, wenn der erste
Dunkelring einen Durchmesser von
0,152 cm hat und der Krümmungs-
radius der verwendeten Plankonvex-
linse 1 m beträgt?

194. Ein paralleles Bündel monochromati-
schen Lichtes der Wellenlänge A =
= 450 nm fällt senkrecht auf einen
0,1 cm breiten Spalt. Dicht hinter dem
Spalt befindet sich eine Linse mit
f = 100 cm Brennweite, die auf einem
in der Brennebene aufgestellten Schirm
ein Beugungsbild entwirft. Bestimmen
Sie den Abstand des ersten, zweiten und
dritten Intensitätsminimums vom Ma-
ximum nullter Ordnung.

195. Auf einen Spalt von 0,05 cm Breite fällt
ein monochromatisches Bündel paral-
leler Strahlung senkrecht ein und er-
zeugt auf einem 3,5 m hinter dem Spalt
stehenden Schirm ein FRAUNHOFERSches
Beugungsbild. Berechnen Sie die Wel-
lenlänge des verwendeten Lichtes für
den Fall, daß die Mitte des ersten Dun-
kelstreifens der Beugungsfigur von der
Mitte des Spaltbildes einen Abstand von
0,42 cm hat.

196. Ein schmaler Spalt wird durch ein senk-
recht einfallendes, paralleles Bündel
weißen Lichtes beleuchtet. Ermitteln
Sie, für welche Wellenlänge die Mitte
des dritten Dunkelstreifens mit der
Mitte des zweiten Dunkelstreifens einer
anderen Wellenlänge zusammenfällt,
wenn der zweite Dunkelstreifen einer

roten Farbe der Wellenlänge Arot =
= 690 nm entspricht.

197. Auf ein Beugungsgitter mit 100 Strichen
je Millimeter fällt ein paralleles Bündel
roten Lichtes der Wellenlänge rot
= 700 nm senkrecht ein. Berechnen Sie
den Abstand zwischen erster und dritter
Aufhellung, wenn der Auffangschirm
1 m hinter dem Gitter aufgestellt wird.

198. Ein optisches Gitter mit 300 Strichen je
Millimeter wird mit Licht der Wellen-
länge A = 700 nm beleuchtet. Bestim-
men Sie die höchste Ordnung des mit
dieser Anlage erzielbaren Spektrums.

199. Auf ein optisches Gitter mit 310 Strichen
je Millimeter fällt ein paralleles Bündel
weißen Lichtes senkrecht ein. Auf einem
Schirm wird ein farbiges Beugungsbild
entworfen. Unter welchem Winkel er-
scheint dabei eine grüne Farbe von
540 nm Wellenlänge, die sich mit einer
violetten Farbe von 405 nm Wellen-
länge des Spektrums nächsthöherer
Ordnung überlagert?

200. Auf die ebene Oberfläche eines NaCl-
Kristalls fallen Röntgenstrahlen, die
unter einem Winkel a = 5,9° (gemessen
gegen die Oberfläche mit k = 1) reflek-
tiert werden. Die Dichte des NaCl ist
g = 2170 kgm  -3  . Bestimmen Sie die
Wellenlänge der einfallenden Röntgen-
strahlung.

201. Berechnen Sie, unter welchem Winkel
ein Lichtstrahl auf eine unter Wasser
liegende Glasplatte auftreffen muß, da-
mit der reflektierte Strahl vollständig
polarisiert ist.

202. Auf eine Flintglasplatte fällt ein Licht-
strahl unter einem Winkel = 56° 12'
ein. Der reflektierte Strahl ist vollständig
polarisiert. Wie groß ist die Brechzahl
des Flintglases?

203. Berechnen Sie, unter welchem Winkel
ein Lichtstrahl auf die Trennfläche von
Glas und Wasser fallen muß, damit der
ins Glas reflektierte Strahl vollständig
polarisiert ist.
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3.1. Strahlung des schwarzen Körpers

Festkörper und Flüssigkeiten, die auf eine bestimmte Temperatur erhitzt werden,
emittieren eine elektromagnetische Strahlung.
Unter der Strahlstärke I verstehen wir den Quotienten des vom Flächenelement dA
in den gesamten Halbraum emittierten Strahlungsflusses d0 e und dieser Fläche
selbst, also

d0 e

dA ’

Von der Strahlstärke / entfallt auf das Wellenlängenintervall 2 bis 2 + d2 der Anteil
dZ. Der Ausdruck

wird als die Strahldichte bezeichnet. Die Strahlstärke I kann man dann auch durch
folgende Beziehung ausdrücken:

00

I = fLd2..
0

Als idealen schwarzen Körper bezeichnen wir eine Substanz, die alle auf sie fallende
Strahlung vollkommen absorbiert,
Entsprechend dem Stefan-Boltzmannschen Strahlungsgesetz ist die Strahlstärke eines
idealen schwarzen Körpers durch die Beziehung

Ze = </T4
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gegeben, wobei Tdie absolute Temperatur des Körpers bedeutet. Die in der Gleichung
auftretende Konstante er hat den Wert

<r = 5,7 • 10“ 8 Jm- 2 s- 1 K- 4 .

Entsprechend dem Wienschen Verschiebungsgesetz ist die Wellenlänge, bei der ein
idealer schwarzer Körper sein (auf das Wellenlängenintervall bezogenes) Intensitäts-
maximum hat, umgekehrt proportional zur Temperatur, nämlich

= — , b = 0.00289 mK.
T

Die Strahldichte der monochromatischen Strahlung eines idealen schwarzen
Körpers wird durch das Plancksche Strahlungsgesetz bestimmt. Es hat die Form

/I eAr — 1
he \

= 1,19 k -  10- 16  Jm  2 s- 1 , C2 = — = 0,0143mK).
k /

Beispiele

138. Beweisen Sie, ausgehend vom PLANCKschen Strahlungsgesetz, die Gültigkeit a) des
WiENschen Verschiebungsgesetzes und b) des STEFAN-BoLTZMANNSchen Strahlungs-
gesetzes.

Lösung

a) Ableitung des WiENschen Verschiebungsgesetzes
Wir wollen den Wert für diejenige Wellenlänge aufsuchen, bei der die in der mono-
chromatischen Strahlung eines schwarzen Körpers emittierte Energie, ausgedrückt
durch das PLANCKSche Strahlungsgesetz, ein Maximum ist.
Dazu muß die Bedingung

erfüllt sein. Einsetzen des aus dem PLANCKschen Gesetz folgenden Ausdrucks führt auf

d [G  1 ]
dÄ Y

eAT - 1J

Indem wir die vorgegebene Ableitung ausführen, erhalten wir
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Wir dividieren durch den Bruch Ci/A6 (e AT — 1) und erhalten

C 2e* T

Dieser Ausdruck wird durch die Substitution

in die einfache Form übergeführt:

Durch eine Abschätzung können wir ermitteln, daß diese Gleichung eine reelle Wurzel
hat, die annähernd gleich 5 ist. Durch Lösen der Gleichung mit Hilfe bekannter Me-
thoden der Algebra ergibt sich, daß der Ausdruck nur eine reelle Wurzel hat, und zwar

X1 = 4,965.

Wenn wir diese Lösung in Gl. (1) einsetzen, erhalten wir für die gesuchte Wellenlänge
die Aussage

C 2 hc const
max “ ~xf = 4,965 kT = T 9

mit const = 0,00289 m K .

b) Ableitung des STEFAN-BoLTZMANNschen Gesetzes
Zunächst ermitteln wir den Wert der Strahlstärke 7e eines idealen schwarzen
Körpers. Wenn die Strahldichte eines idealen schwarzen Körpers mit L e angegeben
ist, ist sicher auch

00

It = f L e dA.
0

Dieses Integral läßt sich leicht berechnen, wenn wir im PLANCKSchen Strahlungsgesetz,
das den Verlauf der Funktion L e angibt, die Wellenlängen durch die Frequenzen er-
setzen. Für die in einem Frequenzintervall ausgestrahlte Energie können wir die Be-
ziehung

Wdv = L e dA
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angeben. Und wenn wir noch berücksichtigen, daß 2 = cv“ 1 und demnach |d2| =
= cv~ 2 |dv| ist, resultiert aus dem PLANCKSchen Strahlungsgesetz die Folgerung

1
— dA = — cv d ” :

e AT —1 e cT  — 1

1

und die gesamte Strahlstärke wird

Die Substitution

2 , cT——- = x, av = dx
cT C2

führt auf

CC± c 3 T 3 x 3 cT
j e 4 C 3

2 e* - 1 C dx

o

Das uneigentliche Integral hat den Wert

Damit wird
£j_ T

4

C 4 15 '

Nach Einsetzen der Werte für die Konstanten ergibt sich

Ik 4* 5

15c 2h 3 T 4 = aT 4 ,

und das ist ein Ausdruck für das STEFAN-BoLTZMANNsche Gesetz. Die Konstante

_ 2k4 rc5

15c 2 A3

hat den Zahlenwert o = 5,7 • 10“ 8 J m -2  s“ 1 K -4 .

139. Der von der Sonne kommende, auf die Erdoberfläche auftreffende Energiestrom über-
trägt auf einen Quadratzentimeter in der Minute etwa 1,94 cal. Berechnen Sie die
Oberflächentemperatur der Sonne unter der Voraussetzung, daß sie wie ein idealer
schwarzer Körper strahlt.
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Lösung

Die Entfernung Sonne - Erde beträgt d = 1,49 • 10 8 km, der Sonnenradius ist
r = 695550 km. Wir sehen die Sonne als eine Kugel mit dem Radius r an und setzen
voraus, daß die von der Oberflächeneinheit in der Zeiteinheit ausgehende Gesamt-
energie für alle Punkte der Sonnenoberfläche gleich ist. Demnach strahlt die gesamte
Sonnenoberfläche in der Zeiteinheit die Energie

07g = 47rr2 
c

aus. Diese von elektromagnetischen Wellen übertragene Energie ist auf einer kugel-
förmigen Wellenfläche verteilt. In Erdentfernung entfällt davon auf die Flächeneinheit
der Anteil

Hierbei bedeutet d den Abstand Sonne -Erde. Daraus finden wir
d 2

W. = W— . (1)r 2

Unter der Voraussetzung, daß die Sonne wie ein idealer schwarzer Körper strahlt,
können wir den Wert der Strahlstärke I mit Hilfe des STEFAN-BoLTZMANNschen Ge-
setzes in der Form

I = crT4 (2)
ausdrücken. Durch Vergleich der Gin. (1) u. (2) ergibt sich

Durch Einsetzen der gegebenen Größen finden wir
4 / 1,94-4,2 T _ 2

= / 1,495 • IQ8 km / 60 Cm S 
= •

V 6,9555 • 10 5 km *4 5,7 • 10~ 12  J cm -2  s -1  K -4  --------- *

140. Ein Metallfaden vom Durchmesser d = 0,01 cm befindet sich in einem evakuierten
Kolben. Er soll durch einen elektrischen Strom auf die konstante Temperatur
T = 2500 K erhitzt werden. Der Faden soll wie ein idealer schwarzer Körper strahlen;
Wärmeleitungsverluste können vernachlässigt werden. Der spezifische Widerstand des
verwendeten Drahtes ist q = 2,5 • 10 -4 ß cm. Berechnen Sie die erforderliche Strom-
stärke.

Lösung

Wenn der Metallfaden wie ein idealer schwarzer Körper strahlt, dann geht von einem
Quadratzentimeter seiner Oberfläche entsprechend dem STEFAN-BoLTZMANNschen
Gesetz in der Sekunde die Gesamtenergie

= <tT4
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aus. Die Energie, die der Faden mit der Oberfläche A während der Zeit t abstrahlt,
ist dann

W* = W'At = oT ldt,
wobei l seine Länge bedeutet.
Damit der Metallfaden auf der konstanten Temperatur T gehalten werden kann, ist es
notwendig, den durch Abstrahlung bewirkten Energieverlust durch diejenige Energie zu
ersetzen, die beim Durchfluß des elektrischen Stromes frei wird. Wenn durch einen
Leiter mit dem Widerstand R ein Strom der Stärke Zel  fließt, so erhöht sich seine Energie
in der Zeit t um den Betrag

AW = RI c 
2 t ,

was sich durch Temperaturerhöhung äußert. Wenn diese zugeführte Energie für die
Deckung der abgestrahlten aufgewendet werden soll, muß die Bedingung erfüllt sein

RI a 
2 t = aT ldt. (1)

Wenn wir für den Widerstand eines Leiters der Länge l und des Querschnitts A die
Formel

l l
A d 2

7T ----
4

einführen, dann läßt sich Gl. (1) umformen in
r _ aT 2d 2

_ ndT 2 / ad
e l  = 2 V ~

Nach Einsetzen der gegebenen Größen ergibt sich

7t. 10“ 4 m-2,5  2 • 10 6 K 2 / 5,7 • IO" 8 J s“ 1 m“ 2 K“  4 • IO“ 4 m 4 ,
/el 2 7 2,5 -IO-  6 Qm

141. Ein Metallfaden mit dem Durchmesser d = 0,02 cm erwärmt sich unter der Wirkung
eines elektrischen Stromes auf eine Temperatur 7\ = 3000 K. Der Faden soll wie ein
idealer schwarzer Körper strahlen und von seiner Umgebung keinerlei weitere Energie
aufnehmen. Er gibt seine Energie nur auf dem Wege der Strahlung ab. Berechnen Sie,
welche Zeit vergeht, bis nach Abschalten des Stromes die Temperatur des Fadens auf
den Wert T 2 = 800 K abgesunken ist. Die Dichte des Stoffes, aus dem der Faden be-
steht, ist q = 19000 kgm“  3 , seine spezifische Wärmekapazität ist c = 0,037 kcal kg -1  K’ 1 .

Lösung

Wenn der Faden wie ein idealer schwarzer Körper strahlt und aus seiner Umgebung
keine Energie aufnimmt, so strahlt entsprechend dem STEFAN-BoLTZMANNSchen Gesetz
1 cm 2 seiner Oberfläche in der Sekunde die Energie

W e = oT 4
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ab, und der Faden mit der Gesamtoberfläche A = idd strahlt die Energie
W = cnldT* (1)

ab. In der infinitesimalen Zeitspanne dz nimmt die Temperatur des Fadens vom Wert T
auf T — dT ab, und der Faden emittiert die Energie

Wdt=-mcdT  (2)
(m Masse, c spezifische Wärmekapazität des Fadens).
Wenn wir in Gl. (2) den aus Gl. (1) folgenden Ausdruck für die Energie einsetzen, er-
halten wir

Gizld dT
mc dt ~ ~ ~T* ’

und durch Integration
*' t2
f crnld ,/ ------- dr =

J mc
o

und nach Auflösung

f mc / 1 1 \
1 = \T[ ~ '

Wenn wir hier noch die Masse m des Fadens ersetzen durch
d 2

m = Vq = 7T-  - Iq 9

so erhalten wir

, dgc [1  11
* = J

Mit den gegebenen Größen ergibt sich für die gesuchte Zeit

, 2 • IO*4 m • 19 • 10 3 kg m- 3 • 37 • 4,18 J kg K*  1
f 12 • 5,7 • IO" 8 J s _1  m’ 2 K- 4

“ 3 3 • 109 K 3 ] = 1 2 -

1
8 3 . 10 6 K 3

142. Ein schwarzer Körper wird erhitzt a) auf eine Temperatur Ta = 10 6 K und
b) T b = 10 3 K. Berechnen Sie, auf welche Wellenlänge jeweils das Maximum der
emittierten Strahlungsenergie entfällt.

Lösung

Entsprechend dem WiENschen Verschiebungsgesetz ist die Wellenlänge, bei der ein
idealer schwarzer Körper maximal Energie abstrahlt, umgekehrt proportional der
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absoluten Temperatur, also

A -A/l max •

Nach Einsetzen der gegebenen Werte ergibt das :

„ 0,00289 mK _
■*max = ----------77 -7;------ = 2,89 • 10“ 9 m = 2,89 nm.

1U Jx -------
a)

0,00289 mK
— KPK  ---------maxb)

Aufgaben

204. Ein Metallfaden von 0,02 cm Durch-
messer und 10 cm Länge, der sich im
Vakuum befindet und wie ein idealer
schwarzer Körper strahlt, ist durch elek-
trischen Strom auf eine Temperatur von
3000 K erhitzt worden. Wie groß ist die
in der Minute abgestrahlte Energie?

205. Der durchschnittlich von der Erdober-
fläche abgestrahlte Energiestrom be-
trägt 0,13 cal cm” 2 min -1  . Welche Tem-
peratur müßte ein idealer schwarzer
Körper haben, um die gleiche Energie- ‘
menge abstrahlen zu können?

206. In ein schwarzes, würfelförmiges Gefäß,
dessen dünne Wände eine Tempera-
tur nahe dem absoluten Nullpunkt ha-
ben, wird 1 kg Wasser von 50 °C ge-

3.2. Verhalten von Elementarteilchen

gossen, so daß das Würfelvolumen
damit ausgefüllt ist. Berechnen Sie, in
welcher Zeit sich das Wasser auf eine
Temperatur von 10 °C abkühlt.

207. Von der Sonne wird ein maximaler
Energiestrom bei der Wellenlänge 2 =
= 4,75 • 10” 5 cm des Sonnenspektrums
abgestrahlt. Es sei angenommen, daß
die Sonne wie ein idealer schwarzer
Körper strahlt. Berechnen Sie die Ober-
flächentemperatur der Sonne.

208. Ein idealer schwarzer Körper hat eine
Temperatur T = 5000 K. Berechnen
Sie, wieviel mal so groß der auf die
Wellenlänge 2 X = 580 nm entfallende
Energiestrom ist gegenüber dem auf die
Wellenlänge Z2 = 760 nm entfallenden.

In einem elektrischen Feld der Feldstärke E wirkt auf ein Elektron eine Kraft, die
gegeben ist durch

F = -eE.

In einem Magnetfeld der Induktion B wirkt auf ein mit der Geschwindigkeit v bewegtes
Elektron die Kraft

F = — e(v x B).
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Wenn das Magnetfeld homogen und die Geschwindigkeit des Elektrons senkrecht
zur Richtung der Induktion orientiert ist, nimmt die auf das Elektron wirkende Kraft
einen konstanten Wert an:

F = evB.

Sie ist stets zum Krümmungsmittelpunkt der momentan durchlaufenen Bahn ge-
richtet. In diesem Falle bewegt sich das Elektron auf einer Kreisbahn, und die an-
gegebene Kraft gewinnt die Bedeutung einer Zentripetalkraft.
Gemäß den Aussagen der speziellen Relativitätstheorie besteht zwischen der Masse m
eines beliebigen materiellen Objekts (Körper, Teilchen, Feld) und seiner Energie E
der Zusammenhang

E = mc 2
}

wobei c die Vakuumlichtgeschwindigkeit bedeutet. Wenn sich die Energie eines Ob-
jekts ändert, verändert sich also auch seine Masse. Für den Fall der mechanischen
Bewegung besteht eine Abhängigkeit der Masse m von der Geschwindigkeit v gemäß
der Beziehung

wobei m Q die Ruhmasse des Körpers ist, d. h. seine Masse bei der Geschwindigkeit
v = 0 . Gemäß dieser Theorie beträgt die kinetische Energie eines Körpers

£ k = c 2 (m — = m Q c 2 ( — ■ ■- — 1 \  .

A--\V  c2 /

Für den Impuls eines Teilchens mit der Geschwindigkeit v gilt in der relativistischen
Mechanik

Im Vergleich zur klassischen Physik bietet die spezielle Relativitätstheorie auch neue
Einsichten in die Raum-Zeit-Eigenschaften von materiellen Objekten. Aus ihr muß
auch die Folgerung der sog. Zeitdilatation gezogen werden. Wenn auf irgendeinem
Körper, der sich in einem Bezugssystem in Ruhe befindet, ein Prozeß in der Zeit-
spanne t0 abläuft, dann benötigt der gleiche Prozeß auf einem anderen Körper, der
12 Hajko, Elektrik
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sich gegenüber dem Bezugssystem mit der Geschwindigkeit v bewegt, eine andere
Zeitspanne t, gegeben durch

Das Lichtquant einer elektromagnetischen Strahlung der Wellenlänge A und der
Frequenz v ist durch die Energie

W = hv

und den Impuls

gekennzeichnet, wobei h die Plancksche Konstante, das Plancksche Wirkungsquantum,
darstellt.
Für die Geschwindigkeit der Photoelektronen, die von manchen Substanzen unter der
Einwirkung von Licht bestimmter Frequenz emittiert werden (äußerer lichtelektrischer
Effekt), gilt

hv = W o + W A + — m v2 ,
2

( PF0 lonisationsarbeit, W A Ablösearbeit, v Frequenz des verwendeten Lichtes, h Planck-
sches Wirkungsquantum, m Masse eines Elektrons, v Geschwindigkeit, mit der es
aus der betreffenden Substanz austritt).
Bei den Metallen ist W o sehr klein, so daß man W o = 0 setzen kann. Deshalb kann
man die vorstehende Gleichung für Metalle in der Form schreiben:

hv = W A + —mv  2 .
2

Wenn sich Teilchen mit einer Geschwindigkeit v bewegen, können wir ihnen eine
de BROGLiE-Welle zuordnen, deren Wellenlänge A durch die Beziehung

2=Ä
mv

gegeben ist (m Masse des Teilchens, h PLANCKsches Wirkungsquantum).
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Unter lonisationspotential eines bestimmten chemischen Elements verstehen wir das-
jenige Potential, das, mit der Elementarladung multipliziert, die zur Ionisation eines
Atoms des betreffenden Elements notwendige Arbeit angibt.
Wenn auf eine Substanz Röntgen- oder Gammastrahlen fallen, so tritt eine
Streuung auf, und die gestreute Strahlung enthält neben der Komponente mit der
Wellenlänge der Primärstrahlung auch Strahlungsanteile mit größerer Wellenlänge 2'.
Entsprechend den Erkenntnissen von Compton handelt es sich bei diesem Streu-
prozeß um Wechselwirkungen von Lichtquanten und Elektronen, bei denen es zum
Impulsaustausch kommt. Die Quanten der Röntgen- oder Gammastrahlung treffen
auf freie oder schwach gebundene Elektronen und werden entsprechend den Gesetzen
der klassischen Stoßmechanik reflektiert. Für die dabei auftretende Wellenlängen-
vergrößerung AX = 2' — 2 gilt die Beziehung

d2  = 22c sin 2 —
2

(Die Konstante 2C , die CoMPTON-Wellenlänge des Elektrons, wird mit 2C = hlm Q c =
= 2,426 • 10“ 12  m angegeben, m 0 Ruhmasse des Elektrons, h PLANCKsches Wirkungs-
quantum, c Vakuumlichtgeschwindigkeit, & Winkel, den der abgelenkte Strahl mit
der Richtung des primären einschließt).
Wenn wir die Frequenz einer elektromagnetischen Strahlung in bezug auf zwei ver-
schiedene Inertialsysteme S und S' angeben, wobei sich das System S' gegenüber dem
System S mit der Geschwindigkeit v bewegt, dann gilt für die in den beiden Systemen
auftretende Frequenz gemäß der DoppLERschen Beziehung

v = v -----
2

(2 Wellenlänge der angenommenen Strahlung, v ihre Frequenz im System S, v' Fre-
quenz im System S').

n Beispiele

143. Unter dem Einfluß der Kräfte eines elektrostatischen Feldes, das durch eine negative
Punktladung der Größe Q = 10“ 10  C erregt wird, durchläuft ein Elektron eine Bahn,
deren Anfangspunkt 5 cm und deren Endpunkt 10 cm von der angegebenen Punkt-
ladung entfernt ist. Welche Geschwindigkeit und welche kinetische Energie erreicht das
Elektron auf dieser Bahn, wenn es im Anfangspunkt die Geschwindigkeit Null hatte?

12*
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Lösung

Aus dem Energiegesetz ergibt sich für den vorliegenden Fall, daß die Arbeit, welche die
Kräfte eines elektrostatischen Feldes auf einer bestimmten Strecke verrichten, gleich
der Zunahme der kinetischen Energie eben auf dieser Strecke sein muß, d. h.,

1 , eQ l 1 1 \ 1,602 • 10- 19  • 10" 10  / 1— mv 2 = — ----- I ----------- 1 = --------------------------- I ------
2 4 o r2 ) 4 • 3,14 • 8,86 • 10“ 12  \ 0,05

9 • 1,602 • IO’ 19  J = 9 eV,

/ 2 • 9 • 1,602 • IO" 19  J _
V = / --- ' 1------- = l / 78 ’ 10  m s •N 9,109 • IO" 31 kg ---------------------

144. In einem Katodenstrahloszillographen wird die Ablenkung der Elektronen durch ein
homogenes elektrisches Feld bewirkt, das zwischen den Platten eines Kondensators be-
steht. In dieses Feld treten Elektronen mit einer Geschwindigkeit vQ = 10 7 m s“ 1 senk-
recht ein (Bild 106). Bestimmen Sie die auf dem Schirm sichtbare Ablenkung des
Elektronenstrahls gegenüber seiner ursprünglichen Richtung, wenn die Spannung
zwischen den Kondensatorplatten 100 V
beträgt. Die Platten haben eine Länge von
3 cm, ihr Abstand ist 1 cm, und der Schirm
befindet sich 30 cm hinter ihnen.

Lösung

Hierbei handelt es sich um die Bewegung
von Elektronen in einem homogenen elek-
trischen Querfeld der Stärke

U 100 V
1 cm

= 100 V cm- 1 .
d

Unter Verwendung der Bezeichnungen in Bild 106 kann die Bewegung der Elektronen
im Kondensatorfeld dargestellt werden durch

d x . d 2 j _m — - =0 ,  m —r = eE.
dr2 dr 2

Hieraus ergibt sich

1 eE .2x = vo t, y = —----- r .2 m

Die in diesem Feld durchflogene Parabelbahn wird durch die Gleichung beschrieben:

_ 1 eE?
y 2 m Vq '
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An der Stelle, wo die Elektronen das Kondensatorfeld verlassen, ist x = Z, und deshalb
ergibt sich

_ L —yi 2 m v% '
Für den Winkel (p, den an dieser Stelle die Richtung der Elektronengeschwindigkeit mit
der x-Achse einschließt, gilt

eE eE l
vy m m v Q eEl

tan <p = - = ------ = ------- = — z .
vx vQ v Q mvQ

In diesem Punkt ist die Tangente zur Parabelbahn durch die Gleichung

y — yi = tan 9? (x — Z)
gegeben. Aus ihr können wir die gesuchte Größe h berechnen. Für x = Z + h ergibt
sich nämlich y = h 9 so daß gilt:

, , eEl 2 eElh
h = yi htSLinp = - — H-------r

2/7Wq mvQ
eEl / Z
mvQ \ 2 1

1,602- IO’ 19 - - 3 • 10“ 2

' 9,109 • IO’ 31 • 10 14 • 0,315 m = 0,166 m.

145. Ein Elektron mit einer kinetischen Energie = 5 • 10 3 eV bewegt sich in einem homo-
genen Magnetfeld der Induktion B = 5 mT so, daß Bewegungsrichtung und Induktions-
richtung senkrecht zueinander stehen. Wie groß ist der Radius der entstehenden Bahn-
krümmung?

Lösung

Für die Bewegung eines langsamen Elektrons in einem homogenen Magnetfeld, dessen
Induktionsrichtung senkrecht zur Bewegungsrichtung des Elektrons orientiert ist, gilt

v 2m — = evB,
r

so daß wir für den gesuchten Krümmungsradius

mv m IlW
eB eB N m

erhalten. Hierin haben wir die Geschwindigkeit mit Hilfe der Beziehung W k = | mv 2
ausgedrückt. Damit ist

9,109 • 10- 31  kg /2 • 5 • 10 3 • 1,602 • 10 -19  J
r ~ 1,602 • IO’ 19 C • 5 • 10 • 10- 4 Wb m- 2 V 9,109 • 10' 31 kg

= 4,77 • IQ- 2 m.

In diesem Lösungsgang wurde für die Masse m die Ruhmasse des Elektrons eingesetzt.



182 3. Atomphysik

146. Ein Elektron fliegt mit der Geschwindigkeit v = 104 m s -1  in ein homogenes Magnet-
feld der Induktion B = 0,01 Wb m -2  so ein, daß seine Geschwindigkeitsrichtung mit
der Richtung von B den Winkel <p = 30° einschließt. Bestimmen Sie den Radius der
Windung jener Spirale, auf der sich das Elektron nun bewegen wird, die Höhe einer
Windung sowie die Zeitspanne, in der das Elektron in Richtung der Spiralachse eine
Strecke s = 1 m zurückgelegt haben wird.

Lösung

Wir wollen die Geschwindigkeit v0 , mit der das Elektron in das Magnetfeld eintritt, in
zwei Komponenten zerlegen; *?O i in Richtung der Induktion B und 02  senkrecht dazu:

*>oi = *>o cos 9?, r 0 2 = *>o sin <p.
Die Bewegung des Elektrons erfolgt so, als ob sie aus zwei Bewegungskomponenten
zusammengesetzt sei; einer gleichförmig geradlinigen Bewegung in Richtung der Induk-
tion mit der Geschwindigkeit r O i (auf diese Bewegungskomponente hat das Magnetfeld
keinerlei Einfluß) und einer Bewegung auf einer Kreisbahn in der zur Induktions-
richtung senkrechten Ebene mit der Geschwindigkeit v0 2- Letztere Komponente der
Elektronenbewegung ist genau derjenigen gleich, die in Beispiel 145 dargestellt wurde.
Demzufolge wird sich die resultierende Bewegung des Elektrons auf einer Spirale voll-
ziehen, deren Achse mit der Induktionsrichtung des gegebenen Magnetfeldes zusammen-
fällt. Für den Windungsradius r der resultierenden Spirale gilt ganz analog zu Bei
spiel 145 die Bedingung

"»02 o----- — eBVQ2 .

Daraus ergibt sich

9,109 • IO'  31 • 104 • 4-
mv 02  _ mvQ sm <p 2
eB eB 1,602 10- 10-

Die Zeit T, in der das Elektron einen Umlauf um die Spiralachse ausführt, ergibt sich
aus der Beziehung

27tr 2nr 2 • 3,14 • 2,84 • 10 -6  m
T = — = ----- ---- = -----  ------- -------- ------- = 3,57 • 10" 9 s .

*>02 *>o sm <p 1 ---------10 4 m s -1  • 4-
2

Für die Höhe einer einzelnen Windung gilt

•s/Th = voiT = v0 cos <pT= 10 4 • 3,57 • 10’ 9 m = 3,09 * IQ- 5 m.

Die Zeit t, in der das Elektron längs der Spiralachse eine Strecke s = 1 m zurücklegt,
ist schließlich

5 1 1
t = — = --------- = -------— s = 0,115 • 10" 3 .

*>oi t>o cos 9? /3 -------------
104 —

2
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147. Ein Magnetron bestellt aus einer Diode, deren Anode die Form eines Kreiszylinders
hat, in dem koaxial der Katodenfaden liegt. Auf den Glaskolben dieser Diodenröhre
wird eine Zylinderspule gewickelt, deren Achse mit der der Anode zusammenfällt. Die
draußen aufgesetzte Spule ist lang genug, so daß das von ihr erzeugte Magnetfeld längs
der Katode als homogen angesehen werden kann. Die vom Katodendraht emittierten
Elektronen stehen unter gleichzeitigem Einfluß des elektrischen Feldes zwischen Katode
und Anode und unter dem des Magnetfeldes, das von dem die Spulenwindungen durch-
fließenden elektrischen Strom erzeugt wird. Berechnen Sie den Mindestwert der In-
duktion der erreicht werden muß, um die Elektronen daran zu hindern, die Anode zu
erreichen. Der Radius der Anode ist rA = 4 cm, die Spannung zwischen den Elektroden
der Diode beträgt U = 1000 V.

Lösung

Die Bewegungsgleichung eines Elektrons, das gleichzeitig dem Einfluß eines elektrischen
und eines magnetischen Feldes unterliegt, hat die Form

ma = Fc + Fm (1)
(A Kraft des elektrischen Feldes auf das Elektron, Fm Kraft des magnetischen Feldes).
In Bild 107 ist der Sachverhalt in einem Schnitt dargestellt, der senkrecht zur koaxialen
Anordnung gelegt wurde. Demnach ist

F e = —eE\ Fm = — e(v x 5).

Aus dem Bild ist ersichtlich, daß Fe in jedem Augenblick eine
radiale Richtung und Pm dagegen eine axiale Richtung hat.
Deshalb zerlegen wir die Beschleunigung in eine radiale und
eine axiale Komponente, so daß wir schreiben können :

- d d dr d £v = Ji7 = = 77 6 + r Ä7 ’dz dz dz dz

so daß für die Beschleunigung folgt

d 2 r d 2 r . d2 p dr dp
a = d? = d 5 + r d?- +2  d7‘d7 ’

(p Einheitsvektor, der von der Katode zur derzeitigen Momentanlage des Elektrons hin
gerichtet ist). Ferner ist

d£ _ .
— = CO X Ö = cor
dt

(co die momentane Winkelgeschwindigkeit des Elektrons, f Einheitsvektor in axialer
Richtung). Damit wird dann

d 2 p d dö5 dp
== (cü 

x 
e ) == 

x p + cox  =
dzx dz dz dz

= 8 X g + CO X (CO X p) = £ X p 4- Co(cd§) — O)2 Q = fif — C0 2 p ,
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denn die Vektoren co und q stehen senkrecht aufeinander, so daß cog = 0 ist. Für die
Beschleunigung des Elektrons erhalten wir also

_ /d  2 r / dr \
a = — “ ro} H? + re + 2 — co r .

\dr2 / \ dr /

Wenn wir weiterhin bedenken, daß
/dr \ _► i dr

Fm — —e(v x B) = —e 1 1 g 4- rcor I X B = eB — f + ercoBg
L\dr / J dz

ist, dann wird es möglich, aus Gl. (1) zwei weitere Beziehungen zu erhalten, nämlich
/d2 r \

m I -jjy — reo 2 I = eE + ercoB, und

/ dr \ drwre  + 2 — co = eB — .
\ dr / dr

Die zweite Beziehung können wir in eine andere Form bringen :
I d  dr
- - - -  - (wr 2 co) = eB — ,
r dr dr

woraus wir nach Multiplikation mit dr und Integration erhalten

mr 2 co = -i- eBr 2 ,

so daß sich ergibt

eB
2m

co =

Im Grenzfall, wo die Stärke des Magnetfeldes dem Elektron gerade noch das Erreichen
der Anode gestattet, tangiert die Elektronenbahn an die zylindrische Anode, und für

dr
den Wert r = rA wird —— = 0 .  Die kinetische Energie des Elektrons erfüllt im Be-dr
rührungspunkt die Bedingung

— mv 2 = — zwr?co 2 = eU.
2 2 A

Wenn wir für die Winkelgeschwindigkeit co den angegebenen Ausdruck einsetzen, er-
halten wir

1 2 eß2 rr-TT r A ----- = U.8 m
— rwrA = eU, d. h.,
2 \2m /

Daraus können wir die gesuchte Größe B bestimmen zu

= 0,53 • 10" 2 Wb m-  2 .B =
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Sobald wir die Induktion des Magnetfeldes über diesen Wert hinaus erhöhen, kön-
nen die von der Katode emittierten Elektronen die Anode nicht mehr erreichen.

148. Zwischen den Duanten eines Zyklotrons herrscht eine Spannung der Form U = t/ o sinw/,
wobei Uo = 2 • 10 4 V und die Frequenz f = 2,25 • 10 7 s -1  beträgt. Im Zyklotron sollen
einwertige Ionen beschleunigt werden, deren Masse etwa 1800 mal so groß ist als die
Ruhmasse des Elektrons. Die Anordnung ist in Bild 108 wiedergegeben. Das Ion be-
ginne seine Bewegung'im Punkt A des Bildes, und nachdem
es eine gewisse Zahl aufeinanderfolgender Halbkreise durch-
laufen hat, erreicht es die Geschwindigkeit v 0 = 4,4 • 10 7 m
s -1  . Ermitteln Sie die Zahl der notwendigerweise zu durch-
laufenden Halbkreise sowie den Radius des ersten und des
letzten Halbkreises unter der Voraussetzung, daß der Abstand
zwischen den Duanten jeweils im Moment maximaler Span-
nung durchlaufen wird. Bild 108

Lösung

Die Zeit, in der das Ion einen beliebigen Halbkreis durchläuft, ist immer gleich groß
und also vom jeweiligen Bahnradius unabhängig. Sie muß stets einer halben Perioden-
dauer der Wechselspannung entsprechen, also

T 1 1 1
T = — = — = ---------------— T = — !------ s = 0,222 • 10" 7 s .

2 2/ 2 • 2,25 • 10 7 s" 1 4,5 • 10 7

Für die Geschwindigkeit des Ions nach Absolvieren von n Halbkreisen erhalten wir
denselben Wert, als ob das Ion in einem linearen elektrischen Feld mit der Potential-
differenz A <p = nU 0 beschleunigt worden wäre. Deshalb ist

~ mvl = QnU Q ,

mvl 1800 • 9,109 • 10" 31  • 19,36 • 10 14

" “ 2QU0 “ 2 • 1,602 • 10 -19  • 2 • 104, “
Der Radius der letzten durchlaufenen Halbkreisbahn ist

r 0T 4,4 -IO 7 -0,222 -IO" 7 „ 4r0 = = ----------— - ---------- m = 0,31 m = 31 cm.
3,14

Der Radius der ersten Bahn ist dementsprechend

2ß£o

— —— = 0,014 m = 1,4 cm.
T1T

= -----

149. Bestimmen Sie Masse und Geschwindigkeit eines Elektrons, dessen kinetische Energie
200 keV beträgt.
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Lösung

Die spezielle Relativitätstheorie liefert für die Masse eines beliebigen Körpers in Ab-
hängigkeit von seiner Geschwindigkeit die Beziehung

(mQ die Ruhmasse des betreffenden Körpers bei der Geschwindigkeit v = 0). Diese
Beziehung können wir umformen in

Wo = / _ ~ _ _1_ r 2

m \ c2 ) ~ 2 c2 ’
woraus wir für die kinetische Energie eines Körpers bei der Geschwindigkeit v die Be-
ziehung erhalten

W k = mv 2 = (m — m Q ) c\

Entsprechend der vorgegebenen Aufgabenstellung ist also
(w - m 0 ) c2 = 2 • 10 5 eV = 2 • 10 5 • 1,602 • 10" 19  J,

und demnach
2 • 10 5 • 1,602 • 10- 19  , tm = m 0 d-----------/ o  ■ --------- kg = 9,109 • 10" 31 kg + 3,56 • IO" 31  kg ä

(3 • 10 8 ) 2

« 12,7 • IO’ 31  kg.

Seine Geschwindigkeit ist

l2W k /2 • 2 • 10 5 • 1,602 • IO" 19

7 ~rn “ N 12,7 • IO" 31 m s -1  = 2,25 • 10 8 m s -1  .v

150. Welche Spannung müßte ein elektrostatisches Feld aufweisen, damit ein in ihm be-
schleunigtes Elektron gemäß den klassischen, d. h. vorrelätivistischen Vorstellungen
die Lichtgeschwindigkeit erreichen kann? Welche Geschwindigkeit erreicht es rela-
tivistisch?

Lösung

Gemäß der klassischen Theorie können wir schreiben

TT 1 2eU = — w o tr,&
wobei w 0 die Ruhmasse des Elektrons bedeutet. Im Falle v = c wird

eU = — w0 c2 ,
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woraus sich für die Spannung ergibt

m Q c 2 _ 9,109 • 10~ 31  kg • 9 • 10 16  m 2 s -2

~~2e 2 • 1,602 • IO’ 19  C
ä 256 kV.

Entsprechend den Aussagen der relativistischen Mechanik können wir für die kinetische
Energie eines Elektrons schreiben (vgl. auch Beispiel 149):

und für die gesuchte Geschwindigkeit ergibt sich

» = y « « 0,75 c.

Bei dieser Geschwindigkeit nimmt die Masse des Elektrons den Wert

w 0 3m = — -p = — m Q = 1,5 w0

an.
Demnach stieg die relativistische Masse des Elektrons gegenüber seiner Ruhmasse um
50% an.

151. Aus einer Silberfläche, die durch monochromatisches Licht der Wellenlänge A = 150 nm
beleuchtet wird, werden Photoelektronen ausgelöst. Wie groß ist ihre Geschwindigkeit,
wenn wir voraussetzen, daß bei Silber der lichtelektrische Effekt erst unterhalb der
Wellenlänge Ao = 260 nm einsetzt?

Lösung

Die Geschwindigkeit der Photoelektronen folgt der Beziehung

hv = wu2 ,
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wobei PFa = hvQ die Ablösearbeit des Elektrons aus dem betreffenden Metall bedeutet.
Da

c c
V = — und VO = —A Ao

ist, können wir unter Berücksichtigung der gegebenen Aufgabe schreiben

h (für A = Ao gilt ja v = 0).
A o

Ä + 7 mv 2 ,Z 2

so daß sich ergibt

c c 1h — = h - — F mv.A Ao 2

Für die gesuchte Geschwindigkeit erhalten wir daraus

2 • 6,62 • 10 -34  Js • 3 • 10 8 m s -1  / 1 1 \
“ V 9,109 • 10 -31  kg \1500* 10“ l o  m 2600 • IO’ 10 m/ “

= 1,109- IQ 6 ms-  1 .

152. Wie groß ist die Wellenlänge der de BROGLiEschen Wellen, die einem Elektron zu-
zuordnen sind, dessen kinetische Energie 10 6 eV beträgt?

Lösung

Für die Wellenlänge dieser Wellen gilt die Beziehung

mv

(m Masse des Elektrons, v Geschwindigkeit, h PLANCKSches Wirkungsquantum). Da

2. mv
2 

=

ist, können wir schreiben

/2W*
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und das ergibt
h h 6,62 • IO -34  JsA = ------ -----  = — = , =
2Wk y/2mW k V 2 * 9 > 109  * 10-31  k S * 106  * t 602 * 10-19  J

N m
= 1,22» 10~ 12  m = 1,22 pm.

Hierbei wurde mit der Ruhmasse des Elektrons gerechnet.

153. Ein Röntgenlichtquant, dem eine Wellenlänge A = 0,1 nm zukommt, tritt in Wechsel-
wirkung mit dem schwach gebundenen Elektron eines Atoms niederer Ordnungszahl
und erleidet dabei eine Richtungsabweichung um den Winkel # = 90°. Berechnen Sie,
welchen Energiebetrag das Elektron bei diesem Prozeß aufnimmt und in welcher Rich-
tung es sich danach bewegen wird.

Lösung

Ein schwach gebundenes Elektron können wir als frei betrachten. Bei der Wechsel-
wirkung des Photons mit dem Elektron geht ein Teil der Energie des Photons an das
Elektron über, so daß das Photon mit verminderter Energie und (im allgemeinen) ver-
änderter Richtung seinen Weg fortsetzt. Wir bezeichnen die Energie des Photons vor
dem Prozeß der Wechselwirkung mit W = hv und nach dem Prozeß mit W' = hv'. Dann
gilt die Beziehung

hv' < hv
bzw.

v' < v.

Wir drücken die Frequenz gemäß der Beziehung v = c/2 durch die Wellenlänge aus
und finden

A' > A.
Demnach ist die Wellenlänge des aus der ursprünglichen Richtung abgelenkten Photons
größer als die, die es vor der Wechselwirkung hatte. Aus der Theorie des Compton-
Effekts ergibt sich die mit der Wechselwirkung verbundene Wellenlängenänderung zu

i &
JA = A' - A=2Ac sin 2 y (1)

mit der Coraptow-Wellenlänge

2C = — = 2,426 • 10~ 12  mm o c

(rn 0 Ruhmasse des Elektrons).
Wenn wir diese Art der Wechselwirkung von Photon und Elektron unter dem Gesichts-
punkt des elastischen mechanischen Stoßes behandeln, dann nimmt das Elektron bei der
Wechselwirkung die Energie

W. = W — W' = h(y - v') = Äc (-1- - -?-)
\ A Ao /
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auf. Nach Umformung dieser Gleichung mit Hilfe von Gl. (1) erhalten wir für den
vom Elektron aufgenommenen Energiebetrag die Aussage

_ 22c sm2 —hc 2

2 + 22c sm2 y

Nach Einsetzen der gegebenen Größen ergibt das
6,62 • IO“ 34  • 3 • 10 8 2 • 2,426 -10  -12  sin2 45°

W * IO -10  10“ 10  + 2 • 2,426 • IO -12  sin2 45° “
= 4,8 • IO" 17  J ä 300 eV.

Den Winkel der angibt, wie weit das Elektron in seiner Bewegung gegenüber der ur-
sprünglichen Bewegungsrichtung des Photons abweicht, können wir unter Hinzuziehung
des Impulserhaltungssatzes bestimmen. Wir wenden diesen Satz auf das System Photon -
Elektron an, indem wir den Impuls des von links einfallenden Photons mit p, den des
abgelenkten Photons mit p' und den des Elektrons mit pz = mv bezeichnen. Danr gilt
der Impulserhaltungssatz in der Form

P' + p e = P-
In Bild 109 ist das Vektordiagramm der hierbei beteiligten Impulse dargestellt.
Der Impuls des Photons vor und nach der Wechselwirkung kann durch seine Absolut-
beträge

A , . h
p = — und p = ■—

A A

dargestellt werden. Da der Impuls des Elektrons p e = mv ist, können wir auf das Impuls-
dreieck in Bild 109 den Sinussatz anwenden:

Mit Hilfe des Additionstheorems für sin (9? 4- &) ergibt sich
2' — 2 cos 0

cot = — — •2 sm v
Wir berücksichtigen ferner, daß 1 — cos # = 2 sin 2 &/2 und sin $ = 2 sin #/2 cos &/2
ist, und wenden diese Winkelbeziehungen auf Gl. (1) an. Dann erhalten wir nach Um-
formung

&
tan ~ (2 + 2c)

cot <p = ---------- ---------- .
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Nach Einsetzen der gegebenen Größen finden wir den Winkel
y = 45°41 z.

154. Welche Wellenlänge muß ein Photon haben, das ein Zäsiumatom ionisieren soll, wenn
das lonisationspotential des Cs-Atoms mit Ui = 3,88 V angegeben ist?

Lösung

Für die Ionisierung des Cs-Atoms muß die Arbeit
W = eüi = 1,602 • 10" 19  As • 3,88 V = 6,216 • 10" 19  J

verrichtet werden.
Ein Photon, das diese Ionisation bewirken soll, muß mindestens eine Energie haben,
die der vorgenannten Arbeit entspricht. Deshalb muß gelten

hv = W.

n c hc
Da x = — und —- — W ist, wirdv X

, hc 6,624 • 10" 34  • 3 • 10 8A = ~iv = ----6,216-10-» -----  m = 3496  ' 10 m ~ 31  -Dm -

155. Ein Elektron hat die Ruhmasse m 0 = 9,109 • 10" 31  kg. Wie groß ist die dieser Masse
entsprechende Ruhenergie des Elektrons?

Lösung

Der Zusammenhang zwischen Masse und Energie wird durch die EiNSTEiNsche Be-
ziehung ausgedrückt:

E = mc 2 .
Nach Einsetzen der Werte für die Größen erhalten wir

E o = 9,109 • IO" 31  kg • 9 • 10 16  m 2 s" 2 = 8,2 • 10“ 14  J.
Da 1 eV = 1,6 • 10" 19  J ist, wird die Ruhenergie des Elektrons

E o = 5,12 • 10 5 eV = 0,51 MeV.

156. Bestimmen Sie die Energie, den Impuls sowie die relativistische Masse eines Röntgen-
lichtquants der Wellenlänge A = 0,1 nm.

Lösung

Für die Energie des Photons können wir schreiben
c 6,624 • 10" 34  • 3 • 10 8

FT = hv = h— = — ------------- ------------ J = 1,987 • IO" 15  J = 12,7 keV.A m-ioio- 10
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Für seinen Impuls gilt

p = Ä = 6,624 ~ 10 ~ 34  kgm s- 1 = 6,624 • 10“ 24 kgm s“ 1 .
Ä IO -10  — ---------------- --------

Die relativistische Masse des Photons bestimmen wir gemäß der Beziehung E = mc\
die den Zusammenhang zwischen Energieeinheit und Masse beliebiger Objekte aus-
drückt. Da im vorliegenden Fall W = hv = hc/Ä ist, gilt

2 K Cmr = h — ,

so daß wir für die relativistische Masse des Photons den Ausdruck finden :

157. Energie und Impuls eines Lichtquants betrachten wir zunächst bezogen auf ein Inertial-
system S und danach bezogen auf ein zweites Inertialsystem S', das sich gegenüber dem
erstgenannten mit der konstanten Geschwindigkeit v bewegt. Es ist die Differenz zu be-
stimmen, durch die sich die beiden Wertepaare unterscheiden, die einmal in bezug auf S
und zum anderen in bezug auf S' gelten.

Lösung

Wenn wir die Größe der Energie, des Impulses und der Frequenz des Photons be-
züglich S mit den Symbolen FF, p und v, bezüglich des Systems S' aber mit W' 9 p' und v'
bezeichnen, können wir schreiben

hv
W = hv, p = — ;

c

» / h v'W = hv *, p = ----- .c

Diese Größen werden sich demnach durch die folgenden Differenzen unterscheiden:

AW  = W — W' = h(y Ap =p  - p' = — (y - v ' ) .
c

Der Zusammenhang zwischen den Frequenzen v und v' ist entsprechend dem Doppler-
Prinzip durch die Beziehungen

v vvv' = v ------ - -  v -------
A c

und
, vv — v = v —

c
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gegeben. Damit erhalten wir
v v

AE = h(y — v') = hv — = E — ,
c c

h , hv v vAp = — (y — v )  = -------- = p — .
c c c c

158. Ein Elektron bzw. ein Proton bewege sich durch eine optisch durchsichtige Substanz
mit der relativen Brechzahl n = 1,6. Wie groß muß die kinetische Energie jedes der
beiden Elementarteilchen sein, damit es Quelle von TscHERENKOW-Strahlung werden
kann?

Lösung

Elementarteilchen, die Träger elektrischer Ladung sind, können dann zur Quelle von
TscHERENKOW-Strahlung werden, wenn ihre Geschwindigkeit in einem bestimmten
Medium größer ist als die Phasengeschwindigkeit des Lichtes in eben diesem Medium.
In einem Medium mit der Brechzahl n ist die Phasengeschwindigkeit c' des Lichtes durch
die Beziehung c' = c/n gegeben, wobei c die Vakuumlichtgeschwindigkeit bedeutet. Es
gibt demnach für Elementarteilchen, die Träger einer elektrischen Ladung sind, eine
Grenzgeschwindigkeit v, die dadurch charakterisiert ist, daß die Teilchen Quelle von
TscHERENKOW-Strahlung werden, sobald sie sich in einem Medium mit einer Ge-
schwindigkeit bewegen, die größer als v ist. Es gilt also

, c
v = c = — .

n

Die kinetische Energie des Teilchens hat bei dieser Geschwindigkeit den Wert

= w0 c2 / — - — 1 \  = m Q c 2 — 1 .
I / . _ v 2- \y/n 2 - 1 /
\V 1 /

a) Für das Elektron ergibt das

W k = 9,109 • IO" 31 • 9 • 10 16  ( - - 1 V = 2,295 • 10~ 14  J 143 keV.
\V1,6 2 - 1 / ---------

Demnach wird im angegebenen Medium jedes Elektron zu einer Quelle von Tscheren-
Kow-Strahlung, dessen Inhalt an kinetischer Energie größer oder mindestens gleich
143 keV ist.
b) Für das Proton gilt

W k = 1,6722 • 10~ 27  • 9 • 10 16  (-■, 1 ,6  ■ - l'l J =
Wl ,6  2 - 1 /

= 4,21 • 10-“ J 263 MeV.

Demnach wird im angegebenen Medium jedes Proton zur Quelle von Tscherenkow-
Strahlung, dessen kinetische Energie gleich oder größer als 263 MeV ist.

13 Hajko, Elektrik
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159. In einem durch das Laboratorium definierten Bezugssystem haben K-Mesonen eine
kinetische Energie W k = 7 m Q v 2 , wobei m Q die Ruhmasse eines re-Mesons ist. In diesem
Zustand beträgt ihre mittlere Lebensdauer t = 1,76 • IO -5  s. Ermitteln Sie hieraus die
Ruhlebensdauer dieser Mesonen.

Lösung

Die Mesonen bewegen sich mit hoher Geschwindigkeit gegenüber dem Labor-Bezugs-
system. Es tritt deshalb eine relativistische Zeitdehnung auf; die Mesonen existieren
gegenüber dem Bezugssystem, in dem sie sich bewegen, länger als in dem, in welchem
sie ruhen, d. h. relativ zu dem sie sich in Ruhe befinden. Deshalb verstehen wir unter
dem Begriff Ruhlebensdauer ihre Lebensdauer in dem System, relativ zu welchem sie
ruhen. Zwischen Ruhlebensdauer t 0 und der gemessenen Lebensdauer r besteht der
Zusammenhang

Da für die kinetische Energie

gilt, können wir schreiben

v 2 m 0 c 2
= FTk + w 0 c 2 ’

woraus folgt

v 2 
t T

= EFk +/noc  2==  W k

m Q c2 m Q c2

Aufgaben

zustand, daß Gravitation und elektri-
sche Kraft im Gleichgewicht sind. Wie-
viel Elementarladungen trägt das Staub-
teilchen?

210. Ein Elektron durchläuft, beginnend aus
der Ruhelage, in einem elektrostatischen

209. EinStaubteilchen der Masse m = 10 11-  g
befindet sich zwischen den horizontal
liegenden Platten eines Plattenkonden-
sators, deren Abstand 0,5 cm beträgt
und zwischen denen eine Potentialdiffe-
renz 4<p = 76,5V liegt, so im Schwebe-
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219. Ermitteln Sie die Wellenlänge der beim
CoMPTON-Effekt auftretenden Streu-
strahlung, wenn die Beobachtung senk-
recht zum einfallenden Röntgenstrah-
lenbündel der Wellenlänge A = 0,05 nm
vorgenommen wird.

220. Lichtquanten mit der Wellenlänge A =
= 0,05 nm treffen auf freie Elektronen.
Berechnen Sie den Winkel der Bewe-
gungsrichtung der dabei getroffenen
Elektronen für den Fall, daß die Licht-
quanten gegenüber ihrer ursprünglichen
Richtung um einen Winkel # = 30°,
60°, 90° bzw. 180° abgelenkt werden.

221. Wie groß ist das lonisationspotential
von verdampften Natriumatomen,
wenn die Ionisation bei Beleuchtung mit
monochromatischem Licht der Wellen-
länge A = 0,242 pm einsetzt?

222. Das lonisationspotential eines Queck-
silberatoms hat den Wert V t = 10,4 V.
Welche Minimalgeschwindigkeit müßte
ein Elektron haben, das beim Zusam-
menstoß das Hg-Atom zu ionisieren
vermag?

223. Welche kinetische Energie hat ein Pro-
ton, wenn die Wellenlänge der ihm zu-
zuordnenden DE-BROGLiE-Welie den
Wert A = 9,04 • 10“ 4 nm hat?

224. Bestimmen Sie Energie, Impuls und
relativistische Masse eines Quants
der y-Strahlung, dessen Wellenlänge
0,001 nm beträgt.

225. Eine bestimmte Art von Elementarteil-
chen löst, wenn ihre kinetische Energie
mehr als 38 MeV beträgt, in einem Me-
dium mit der Brechzahl n = 1,5 Tsche-
RENKOW-Strahlung aus. Um welche Art
Elementarteilchen handelt es sich?

226. In einer Röntgenröhre bewegen sich
Elektronen mit einer Geschwindigkeit,
die gleich der halben Vakuumlicht-
geschwindigkeit ist. Berechnen Sie die
Grenzwellenlänge der beim Aufprall auf
die Anode freiwerdenden Röntgen-
bremsstrahlung.

Feld eine Potentialdifferenz der Größe
dtp = 100 V. Welche Endgeschwindig-
keit erreicht es, wenn wir eine relativisti-
sche Massenveränderung vernachlässi-
gen?

211. Ein Elektron mit der kinetischen Ener-
gie W* = 5 keV tritt in ein zu seiner Ge-
schwindigkeitsrichtung senkrecht ste-
hendes, homogenes elektrostatisches
Feld mit der Feldstärke vom Betrag
E = 10 3 V cm -1  ein. Wie groß wird
seine Richtungsänderung beim Durch-
fliegen der Strecke x 0 = 2 cm?

212. Ein Elektron tritt mit einer Geschwin-
digkeit v0 = 1500 km s -1  in ein homo-
genes Magnetfeld ein, dessen Feldstärke
H = 1600 A/m senkrecht zur ursprüng-
lichen Bewegungsrichtung des Elektrons
orientiert ist. Berechnen Sie den Radius
der vom Elektron im Magnetfeld be-
schriebenen Kreisbahn.

213. Zwischen den Polen eines Zyklotrons,
mit dem Deuteronen beschleunigt wer-
den, besteht ein Magnetfeld mit der In-
duktion B = 1,4 T. Berechnen Sie die
Frequenz des elektrischen Feldes.

214. Bestimmen Sie Masse und kinetische
Energie eines Elektrons, das sich mit
der Geschwindigkeit v = 0,6 c bewegt
(c Vakuumlichtgeschwindigkeit).

215. Bestimmen Sie Masse und Geschwindig-
keit eines Protons, dessen kinetische
Energie mit 10 8 eV angegeben ist.

216. Ein frei fliegendes Elektron hat eine ki-
netische Energie von 1 MeV. Berechnen
Sie die Geschwindigkeit, mit der es sich
bewegt.

217. Aus einer Platinfläche, die mit Licht der
Wellenlänge A = 150 nm bestrahlt wird,
treten Photoelektronen mit einer Ge-
schwindigkeit v = 827 km s -1  aus. Be-
rechnen Sie die Austrittsarbeit des Pla-
tins.

21 8. Bei der Streuung von Licht an Protonen
wird eine maximale Wellenlängenände-
rung zlA = 2,6 • 10 -6  nm gemessen. Wie
groß ist die Masse des Protons?

13*
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227. Experimentell wurde festgestellt, daß
7u-Mesonen, deren Impuls im Bezugs-
system des Laboratoriums den Wert
p = 54 MeV c -1  hat, vom Ort ihrer
Entstehung bis zum Ort ihres Zerfalls

eine durchschnittliche Wegstrecke von
Z = 3 m zurücklegen. Bestimmen Sie die
Ruhlebensdauer dieser Art Mesonen.
Ihre Ruhmasse ist wn0 = 276 m Q , wobei
w0 die Ruhmasse des Elektrons angibt.

3.3. Physik der Elektronenhülle

Die Bohrsche Theorie des At'omaufbaus, das Bohrsche Atommodell, beruht auf drei
BoHRSchen Postulaten über die Bewegung der Elektronen um den Atomkern:
1. Die Elektronen können den Atomkern nicht auf beliebigen Bahnen umlaufen, sondern
nur auf bestimmten, sog. Quantenbahnen, die besondere Bedingungen erfüllen müssen.
Für den Fall, daß wir uns auf Kreisbahnen beschränken, kann ein Elektron nur auf
solchen Bahnen umlaufen, die der Bedingung genügen :

2itmrv = nh

(m Masse des Elektrons, v seine Geschwindigkeit, r Bahnradius, h PLANCKsches
Wirkungsquantum, n Hauptquantenzahl, die jeden beliebigen positiven, ganz-
zahligen Wert außer Null annehmen kann). Es ist ersichtlich, daß mrv gleich dem
Bahndrehimpuls des Elektrons ist, bezogen auf die durch die Bahnmitte gehende,
senkrecht auf der Elektronenbahn stehende Achse. Je nach dem von der Haupt-
quantenzahl n angenommenen Wert sprechen wir von höheren oder niedrigeren
Quantenbahnen.
2. Auf den angegebenen Quantenbahnen können Elektronen strahlungslos umlaufen.
3. Unterschiedliche Quantenbahnen entsprechen unterschiedlichen Energiezuständen.
Beim Übergang von einer höheren auf eine niedriger gelegene Quantenbahn emittiert
das Elektron ein elektromagnetisches Strahlungsquant, ein Lichtquant der Frequenz v,
wobei die Beziehung erfüllt ist:

hv = W 2 - W r .

W\ bzw. W 2 sind die Energien des Elektrons auf denjenigen Quantenbahnen, zwischen
denen der Übergang erfolgte.
Ganz analog kann ein Elektron, wenn ihm eine genügend große Anregungsenergie
zugeführt wird, den Übergang von einer niedrigeren auf eine höher gelegene Quanten-
bahn ausführen, wobei die Größe des Quantensprunges vom Maß der zugeführten
Energie abhängig ist.
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Die Wellenzahl v einer bestimmten Spektrallinie stellt den Kehrwert der zugehörigen
Wellenlänge A dar: v = 1 /A. Für die Wellenzahl der Spektrallinien des Wasserstoffs
gilt die Beziehung

(«! = ! ,  2, 3, 4, 5 und n 2 = n ± + 1 ,  + 2, R die RYDBERG-Zahl). Unter der
Voraussetzung, daß die Masse des Atomkerns gegenüber der des Elektrons als un-
endlich groß angenommen wird, hat R den Wert 1,097373 • 10 7 m" 1 .
Ein Satz von Spektrallinien, die einem bestimmten Wert n ± zugehören, stellt eine
Serie dar, für die n 2 = n r + 1 ,  n r + 2 ,  . . .  ist. Diejenige Wellenzahl, die bei einem
Quantensprung entsteht, der bei n 2 = oo beginnt, entspricht einer Spektrallinie, die
wir als Seriengrenze bezeichnen. Die Quantensprünge (Elektronenübergänge) der
BALMER-Serze enden bei n r = 2 .
Entsprechend der verallgemeinerten BoHRschen Atomtheorie wird der Zustand eines
Elektrons in der Elektronenhülle durch vier Quantenzahlen bestimmt: die Haupt-
quantenzahl n, die Nebenquantenzahl /, die magnetische Quantenzahl m und die
Spinquantenzahl s. Diese Quantenzahlen werden gemäß folgenden Festlegungen
normiert:
1. Für einen bestimmten Wert der Hauptquantenzahl n kann die Nebenquantenzahl /
folgende Werte annehmen:

l = 0, 1 ,2 ,  . . . , n  - 1.

2. Für einen bestimmten Wert der Nebenquantenzahl l kann die magnetische Quanten-
zahl m folgende Wejjte annehmen:

m = 0, ±1 ,  ±2 ,  . . . ,  ±(Z - 1), + / .

3. Die Spinquantenzahl kann nur die beiden Werte = ± 1 / 2 annehmen.
Gemäß dem PAULischen Ausschließungsprinzip kann ein Atom niemals zwei Elek-
tronen enthalten, die in allen ihren durch die vier Quantenzahlen bestimmten Eigen-
schaften übereinstimmen.

Beispiele

160. Berechnen Sie den Radius der kernnächsten Bahn eines Elektrons, das gemäß der
BoHRschen Atomtheorie um den Kern eines Wasserstoffatoms umläuft. Berechnen Sie
auch die Geschwindigkeit des Elektrons auf dieser Bahn.
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Lösung

Im BoHRschen Atommodell bewegt sich das Elektron um den Atomkern unter dem
Einfluß von CouLOMB-Kraft und Fliehkraft, so daß die folgende Beziehung gilt:

v 2 e 2
m 0 — =----- .

r 47V60

Gemäß dem BoHRschen Postulat muß weiter gelten
2nrm Q v = nh9

wobei n = 1, 2, 3, ••• die Hauptquantenzahl und h das PLANCKsche Wirkungsquantum
bedeutet. Für den Radius der w-ten Bahn ergibt sich aus den angeführten Gleichungen

e0 Ä 2 
2r = --------n  2 .

TrniQ e 2

Für den Radius der ersten Bahn (n = 1) finden wir
eQ h 2 8,854 • IO" 12  • (6,63) 2 • IO" 68

ri ~ nm 0 e 2 ~ 3,14 ■ 9,109 • 10 -31  ■ (l,602) 2 • IO’ 38  m ~ ’ m -

= O,53 A.

Für die Geschwindigkeit v des Elektrons entnehmen wir aus den angeführten Gleichungen
nh nh e 2V = ---:- = --:----—--- = ---- .

ZnrmQ ~ e0 h 2 _ 2eo nh
2 m Q ------- - n 2

r:mQe2

Für die Bahn mit n = 1 wird
e2 (1.602)2 • IO’ 38  • ,

- - -2 ~ 2'- 3,834 ■ 6,63 ■ 10-»~ m s ~ 2 - 188  ' 10  m s '
Q

161. Mit welcher Kraft ziehen sich gemäß dem BoHRschen Atommodell Kern und Elektron
eines Wasserstoffatoms an, wenn das Elektron sich auf der ersten Bahn befindet? Be-
rechnen Sie, wievielmal so groß diese Kraft ist als die zwischen beiden Teilchen wirkende
Massenanziehung.

Lösung

Für die Kraft der CouLOMB-Anziehung gilt

F 
1 e2

1 4ne0 r2

wobei n = 0,53 • 10 -10  m den Radius der ersten Quantenbahn bedeutet. Mit ihm wird

(l,602) 2 • IO’ 38

F > = 4 -  3 ,14-8  >8 - ,5 3 ) 10- N = °’ 0821 - 10  - 6N -
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Die Gravitationskraft, mit der Proton und Elektron in der gleichen Entfernung auf-
einander wirken, ergibt sich zu

f , 6.685 . 1O .„ _
r j r i v ,u j  ) iv

= 3,63 • 10’ 47 N.

= 8,21 • 10~ 8
F/ 3,63 - IO’  47  --  ---------- *

Demnach ist die CouLOMB-Kraft 2,26 • 1039mal so groß wie die hier wirkende Massen-
anziehung.

162. Berechnen Sie die Gesamtenergie eines Elektrons, das sich auf der zweiten Quanten-
bahn im BoHRSchen Atommodell des Wasserstoffatoms bewegt.

Lösung

Die Gesamtenergie des Elektrons setzt sich aus den Anteilen der potentiellen und der
kinetischen Energie zusammen. Wenn wir den Radius der w-ten Quantenbahn mit dem
Symbol rn kennzeichnen, können wir für die potentielle Energie des Elektrons auf dieser
Quantenbahn - bezogen auf Unendlich, d. h. in unendlicher Entfernung; denn im
Zustand der Abgelöstheit, der Ionisation, ist die potentielle Energie des Elektrons gleich
Null - schreiben

1 ' r e2 1 Fe2

4ke 0 [ r
e2

4ns o rn

Für die kinetische Energie erhalten wir unter Hinzuziehung der Gleichung
v 2 1

w? 0 — = - - - - -rn 47re0

Wk = -y rn0 v2 = --------- .2 87teo r„
Damit beträgt die Gesamtenergie des Elektrons

e2 e2 e2

+ = - -  ------- + - ------- = - -  ------- .
4 s0 rn 8K£0 rn 6Tce0 rn

_ e0 n 2h 2 . .Da rn = -------— ist, wird
7vmQ e2

m o e*

e2

' n

e 2

W - -  -------------
8eo« 2 A 2 ’

Für den Fall n = 2 erhalten wir

rTZ 7w 0 e4 9,109 • IO’ 31  • (l,602) 4 • 10 -76

32e2 Ä 2 32 • (8,86) 2 • 10~ 24 • (6,63) 2 • IO" 68

= -5 ,45 -  10- 19 J = -3,4 eV.

J.
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163. Bestimmen Sie die Wellenlänge des Lichtquants, das beim Übergang des Wasserstoff-
Elektrons von der vierten auf die zweite Quantenbahn emittiert wird.

Lösung

Für die Energie, die beim Quantensprung von der vierten auf die zweite Bahn frei wird,
gilt

o£qt- ft o£qZ> n \
In Beispiel 362 fanden wir für W 2 = —5,45 • 10~ 19 J. Damit wird

hv = 4,09 • IO" 19  J,
und

4,09 • IO* 19

6*62 • 10~ 34  s ~* = 6,178 • 10 14 s~*.
Für die Wellenlänge des emittierten Quants gilt

c 3 • 10 8 m s -1

A = — = — ————— - = 0,485 • IO -6  m = 0,485 |xm.
v 6,178 • 10 14  s -1  - -  -----—

V =

164. Wie groß ist die Wellenlänge des Lichtes, das beim Elektronensprung von der sechsten
auf die zweite Quantenbahn im BoHRschen Atommodell des Wasserstoffs freigesetzt
wird? Welche Wellenlänge gehört zur Seriengrenze der BALMER-Serie?

Lösung

Für die Wellenzahl des freigesetzten Lichtes gilt

? = -Rh - i) = Ä H (-T - i) = 4 = 1.097373 • 10 7 • 0,2222 m’ 1 = ■\22 6 2 / \ 4 36/ 9
= 2,438363 • 10 6 m" 1 .

Demnach erhalten wir für die Wellenlänge die Angabe

A = — = 0,410 • 10‘ 6 m = 0,410 (xm.
v ------------

Die zur Seriengrenze der BALMER-Serie gehörige Wellenzahl ist

p zn
- Y’

Die zur Seriengrenze der BALMER-Serie gehörige Wellenlänge ist daher
1 4Aoo = — = — = 0,364 • IO -6  m = 0,364 (zm.oo Rh ------

165. Wie groß ist, entsprechend der BoHRschen Atomtheorie, das magnetische Bahnmoment
des Elektrons im Wasserstoffatom, das sich im Grundzustand befindet?
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Lösung

Das magnetische Moment einer Stromschleife mit dem Flächeninhalt A, durch die ein
Strom der Stärke I fließt, hat den Wert

m = PqIA
(ju o magnetische Feldkonstante).
Das Elektron durchläuft die Bahn, die dem Grundzustand entspricht, x-mal, also ist
der Strom I = xe. Da der Radius dieser Bahn n ist, wird die umlaufene Fläche
A = 7rrJ, so daß für das magnetische Bahnmoment folgt:

2 
V l 2m = p Qxenri = jUq - — QTzr{ = .

2Ttr i 2
Da entsprechend Beispiel 360

e0 h2 e 2
------- und v t = — —7zm o ez 2so h

ist (m 0 Ruhmasse des Elektrons, e0 elektrische Feldkonstante), gilt

1 e0 h 2 e2

2 nm Q e 2 2eo h
= 1,165 • 10~ 29  Vsm.

166. Bestimmen Sie die höchstmögliche Anzahl von Elektronen, die auf Grund des Pauli-
Prinzips in einem Atom gleichzeitig den w-ten Quantenzustand einnehmen können, für
den Fall, daß n = 4 ist.

Lösung

Da die einzelnen Quantenzahlen der Bedingung folgen, daß für ein bestimmtes n

l = 0, 1 ,2 , . . . ,«  - 1,

m = 0, ±1 ,  ±2 ,  - ,  + (Z — 1), +Z,

sein kann, folgt für

n Z m s
maximale

Elektronenzahl

0 0 2
4 1 -1 ,  o, +1 , 1

+ — 6 l 32
2 —2, -1 ,  0, +1 ,  +2, “ 2 10
3 -3 ,  —2, -1 ,  0, +1 ,  +2,  +3 14
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Dabei haben wir auf Grund des PAULi-Prinzips vorausgesetzt, daß sich die Quadrupel
aller vier Quantenzahlen, die den Zustand jedes einzelnen Elektrons charakterisieren,
in jedem Einzelfall um mindestens eine Kenngröße unterscheiden muß.

Aufgaben

die Wellenlänge der von den Queck-
silberatomen emittierten Strahlung,
wenn bei den Stoßprozessen die gesamte
Energie der Elektronen auf die Queck-
silberatome übertragen wird?

232. In welchem Verhältnis stehen magneti-
sches Moment und Bahndrehimpuls
für ein Elektron des Wasserstoffs, das
sich gemäß der BoHRSchen Atom-
theorie auf der w-ten Quantenbahn be-
findet?

233. Mit Hilfe des PAULi-Prinzips ist nach-
zuweisen, wieviel Elektronen maximal
auf einer Elektronenschale der Haupt-
quantenzahl n = 3 enthalten sein kön-
nen.

228. Berechnen Sie die Umlaufgeschwindig-
keit des Elektrons auf der dritten
Quantenbahn im BoHRSchen Atom-
modell eines Wasserstoffatoms.

229. Wie groß ist die Umlaufperiode des
Elektrons auf der dritten Quantenbahn
im BoHRSchen Atommodell des Wasser-
stoffatoms?

230. Berechnen Sie die Wellenlängen der
ersten drei Linien der BALMER-Serie des
Wasserstoffspektrums (R = 1,097373 x
x 10 7 m~ 1 ).

231. In einem Glaskolben eingeschlossener,
verdünnter Quecksilberdampf wird mit
Elektronen bestrahlt, deren kinetische
Energie 4,88 eV beträgt. Wie groß ist

3. 4. Physik des Atomkerns

Natürliche radioaktive Substanzen können drei Arten von Strahlung emittieren:
a-, ß- und y-Strahlung.
Die a-Strahlung besteht aus einem Strom von Atomkernen des Elements Helium,
ß-Strahlung ist ein Strom von Elektronen, y-Strahlung kann sowohl als eine elektro-
magnetische Strahlung sehr kurzer Wellenlänge sowie auch als ein Strom von Photonen
sehr hoher Frequenz angesehen werden. Bei der Emission eines oc- oder ß-Teilchens
verwandelt sich der radioaktive Kern eines Elements in den eines anderen Elements.
Im Prozeß der radioaktiven a-Umwandlung verschiebt sich ein Atomkern im
Proton-Neutron-Diagramm (Abszisse: Protonenzahl = Ordnungszahl, Ordinate:
Neutronenzahl) der Kerne um zwei Stellen nach links, seine Masse verringert sich um
vier Kernmasseneinheiten.
Im Prozeß der radioaktiven ß-Umwandlung verschiebt sich der betreffende Kern bei
konstant bleibender Masse um eine Stelle nach rechts, zum Element nächsthöherer
Ordnungszahl hin. Die Wegstrecke, die ein ß-Teilchen bei seiner Bewegung in irgend-
einem Medium zurücklegt, wird als die Reichweite der ß-Strahlung bezeichnet.
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Die radioaktive Umwandlung der instabilen Kerne verläuft selbständig und folgt
dabei bestimmten Gesetzmäßigkeiten:
Von einer radioaktiven Substanz, die zur Zeit t noch eine Anzahl n nichtzerfallener
Kerne enthält, verwandeln sich während des Zeitintervalls d/ genau dn Kerne gemäß
der Beziehung

dn = —Xndt,

wobei 2 die Zerfallskonstante der betreffenden Kernart bedeutet. Der Ausdruck

dn „----- = — An
dz

bezeichnet die Geschwindigkeit, mit welcher der Zerfall des betreffenden radioaktiven
Stoffes verläuft.
Die Zeitabhängigkeit der Zahl noch nicht zerfallener Kerne einer radioaktiven Sub-
stanz wird durch die Exponentialbeziehung

n = n 0 e“  At

/ ausgedrückt, in der n 0 die Anzahl der zur Zeit t = 0 noch nicht umgewandelten Kerne
bedeutet.
Als Halbwertzeit wird diejenige Zeitspanne bezeichnet, in der die Hälfte einer an-
fänglich vorhanden gewesenen Zahl von Kernen ihre radioaktive Umwandlung voll-
zieht. Den Zusammenhang zwischen der Halbwertzeit Ti /2 und der Zerfallskonstanten 2
einer radioaktiven Kernart bezeichnet die Beziehung

_ In 2 0,693
Tl ' 2 ~~x

Für die aufeinanderfolgenden Glieder einer radioaktiven Zerfallsreihe gilt, daß sie
sich dann im radioaktiven Gleichgewicht befinden, wenn die Zerfallsgeschwindigkeit
der Glieder der Reihe gleich groß ist.
In einem Gemisch von Kernen, das sich im Zustand des radioaktiven Gleichgewichts
befindet, ist die Zahl der vorhandenen Kerne proportional zu ihren jeweiligen Halb-
wertzeiten, also

n i :n 2 '-n 3 : ... = Ti /21  :Ti /2 2:7’i /23  : . . .

Die Kernladungszahl Z eines Elements bestimmt die elektrische Ladung des Atom-
kerns und ist gleichbedeutend mit der Ordnungszahl des betreffenden Elements im
Periodensystem von Mendelejew. Die Kernmassenzahl A gibt die Masse eines
Kernes, ausgedrückt in ganzzahligen Kernmasseneinheiten, an. Kerne mit gleicher
Kernladungszahl, aber unterschiedlicher Massenzahl, werden Isotope genannt.
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Der Kern eines Elements mit der Ordnungszahl Z und der Kernmassenzahl A setzt
sich aus Z Protonen und A — Z Neutronen zusammen.
Als künstliche Kernumwandlung wird ein Prozeß bezeichnet, bei dem ein mit Elementar-
teilchen oder Photonen (Lichtquanten) beschossener Kern in einen anderen um-
gewandelt wird. Bei diesen Reaktionen können Veränderungen des Energieinhalts
oder der Ruhmasse eines Kerns auftreten. Unter Massendefekt versteht man den Ver-
lust an Masse, den die Summe der Ruhmassen aller am Kernaufbau beteiligten
Elementarteilchen erleidet: Die Summe der Ruhmassen der einzelnen Teilchen ist
größer als die der gleichen Teilchen, wenn sie zu einem Kern vereinigt sind. Der im
Verlauf einer Kernreaktion frei werdende Energiebetrag A E hängt mit dem im Laufe
dieser Reaktion auftretenden Massendefekt zusammen, was durch die Gleichung

AE = Amc 2 (1)

ausgedrückt wird (c die Vakuumlichtgeschwindigkeit).
Dem Massendefekt um eine Kernmasseneinheit (Masse eines Nukleons) entspricht
eine Energiedifferenz der Größe AE = 931,8 MeV.
Aus genauen Messungen ergibt sich, daß die Masse eines Atomkerns stets kleiner ist
als die Summe der Massen der isolierten Protonen und Neutronen, aus denen der Kern
sich zusammensetzt. Diese Massendifferenz ermöglicht die Berechnung der Kernbin-
dungsenergie E B entsprechend der Beziehung

E B = Amc 2 .

Beispiele

167. Der Kern Uran 2|*U erleidet nacheinander vier oc- und zwei ß-Umwandlungen, wobei
er sich in den Kern eines anderen Elements umwandelt. Bestimmen Sie die nach den
Umwandlungen resultierende Kernart.

Lösung

Wir können die Umwandlung schematisch darstellen :
2i lU-4*He  + 2_?e + SZ.

Da die Gesetze von der Erhaltung der Massenzahl und der elektrischen Ladung gelten,
müssen für die Bestimmungsgrößen a und b die Gleichungen

a + 0 + 16 = 238,
6 -2  + 8 =92
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erfüllt sein. Daraus ergibt sich
a = 222,
Z> = 86.

Durch diese Umwandlung entsteht also ein Kern Rn des Elements Radon. Er enthält
Z = 86 Protonen und N = A — Z = 136 Neutronen.

168. Durch den Beschuß der Kerne des stabilen Phosphorisotops 15P mit Deuteronen wird
ein radioaktives Phosphorisotop J§P* gebildet, dessen Halbwertzeit T1/2 = 14,3 Tage
beträgt. Die Reaktion verläuft gemäß folgender Darstellung:

“P + -> 1*P* + }H.
Berechnen Sie, welche Menge an radioaktiven Kernen des Phosphorisotops 15P* zwölf
Stunden nach Abbruch der Deuteronenbestrahlung noch vorhanden ist.

Lösung

Für den radioaktiven Zerfall des künstlich aktivierten Phosphorisotops ifP* gelten die
gleichen Gesetzmäßigkeiten wie für den der natürlichen radioaktiven Isotope. So ver-
bleiben nach Ablauf der Zeitspanne t von einer ursprünglich vorhandenen Kernanzahl nQ
des radioaktiven Isotops noch n nichtzerfallene Kerne. Dabei ist die Bedingung

n = nQ e -A/

erfüllt. Da
In 2

Z — ---
Ti/2

ist, ergibt sich

Nach Einsetzen der gegebenen Größen erhalten wir für die relative Anzahl noch nicht
zerfallener radioaktiver Kerne

n 12 h-0,693

— = e ' 343 -2h  = 0,98.
n 0 ------

169. Eine radioaktive Substanz mit der Halbwertzeit Ti/ 2 = 3 min liegt in einer Ausgangs-
menge m Q = 50 [ig vor. Bestimmen Sie die Zeit, innerhalb der die Teilmenge Am = 10 [ig
zerfällt.

Lösung

Nach Ablauf der Zeit t verbleiben von den ursprünglich vorhandenen nQ Kernen noch
n = wo e -A' (1)

nichtzerfallene Kerne
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Da die Masse einer bestimmten Menge radioaktiver Substanz proportional zur Anzahl
der in ihr enthaltenen Kerne ist, kann Gl. (1) auch in die Form

m = m 0 e -A/ (2)
gebracht werden (m0 Masse der Ausgangsmenge, m Masse der nach Ablauf der Zeit t
noch nicht zerfallenen Kerne). Da weiter

In 2
m = m 0 — Am und Z = ——

71 /2

ist, resultiert aus Gl. (2)
m Q — Am------------ = e r i/2 9

m Q

woraus wir nach einer Umformung erhalten
__ _ Ti/ 2 m Q — Am

l g2  g THo ’
Nach Einsetzen der gegebenen Größen ergibt sich

180 s , 40
t = ------------- 1g — =58  s.

0,30103 5 50 -----

170. Berechnen Sie, welche Anzahl von Kernen innerhalb einer Sekunde in einem Kilogramm
Uran des Isotops 2||U zerfallen, wenn dessen Halbwertzeit mit 7i/2 = 4,5 • 109 Jahre
gegeben ist.

Lösung

Zur Zeit t möge die angegebene Substanz noch n unzerfallene Kerne enthalten. Von
diesen erleiden in einem Zeitintervall dz

dw = — «Z dz
und in der Zeiteinheit >

dw
Z = - — = nk (1)dz

ihren Zerfall.
Ein Kilomol Uran 2||U enthält 10 3 N A = 6,02 • 10 26  Atome. Da ein Kilogramm Uran
1 /238  Kilomol enthält, sind in einem Kilogramm Uran

n0 = 1P2? 6,02 • 10“ Atome (2)238
zur Zeit t = 0 enthalten. Innerhalb der Zeiteinheit zerfallen von ihnen gemäß Gl. (1)

Z = nQ X
Kerne. Wenn wir noch berücksichtigen, daß die Gleichung

0,693Z — ------
r./,
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den Zusammenhang zwischen der Zerfallskonstanten 2 und der Halbwertzeit Ti/ 2 angibt,
erhalten wir aus Gl. (2)

z - 6 ' 02 10 ” s “ -

171. Berechnen Sie, welche Mengen Radium 2||Ra und Radon 2g|Rn sich mit einem Gramm
Uran 2||U im Gleichgewicht befinden. Die Halbwertzeiten der beteiligten Substanzen
Uran, Radium und Radon sind jeweils Ti/ 2 i = 4,4 • 10 9 a, 7\ 22  = 1590a, Tt/23  = 3,825d.

Lösung

Die Atomkerne “fRa und Rn sind Glieder einer Zerfallsreihe, deren erstes Glied
der Kern 2||U ist.
Die Elemente einer bestimmten Reihe radioaktiver Substanzen, einer ,Zerfallsreihe‘,
sind dann miteinander im Gleichgewicht, wenn die Zahl dWj der im Zeitintervall zwischen
t und t + d/ zerfallenden Kerne für die Muttersubstanz und für die Elemente ihrer
Zerfallsreihe gleich groß ist. Es gilt also die Bedingung

d«i = dn2 = ••• = dwfc . (1)

Wenn wir die Zahl der zur Zeit t noch intakten Kerne eines Elements mit dem Symbol n
kennzeichnen, dann wird die Beziehung

d«i = — df

erfüllt, und wir können Gl. (1) umschreiben in

Ai«! = A2 w2 = . . .  = AÄwfc . (2)

An Stelle der Zerfallskonstanten Aj setzen wir entsprechend der Gleichung

die Halbwertzeiten Ti/2 l  ein und erhalten die Bedingung für radioaktives Gleichgewicht

Mi = n 2 = = nk

T1 l 2±  /2 2 Tl{ 2k

In unserem Fall stehen «i Urankerne mit n2 Radiumkernen und n 3 Radonkernen im
radioaktiven Gleichgewicht und erfüllen deshalb die Beziehung

«1  n 2 _ n 3
1 Ti l2  2 Tl/ 23  '

Daraus resultiert

/ 2 2 , Tlj 23n 2 = «1 yp— und n 3 = «i - — .
7112  1 T l /21
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Für die n Kerne eines Elements, dessen Grammatom die Masse M hat, gilt, daß ihnen
eine Masse

M
m =-  r-n gN a

zukommt. Wir berücksichtigen weiter, daß ein Gramm Uran 2| 3U
6,02 -IO 23  

A
«i = ----- ----- Atome

enthält, und finden unter Verwendung der Gl. (3) eine Beziehung für die Radium-
menge m 2 und die Radonmenge m 3 , die sich mit einem Gramm der Muttersubstanz im
radioaktiven Gleichgewicht befinden, zu

M 2 Ti] 22  M 3 Tif 23

n a Ti / 21  n a 
l f i\ l 21

Nach Einsetzen der gegebenen Größen erhalten wir schließlich
226 6,02 -10  23  1590

------------------ ----------------------- 2 = 33 -1  0 -6  e
6,02 -IO  23  238 4,4 • 10 9 ö —— -------
222 3,825 12

- 238 4,4 IO' -365 g " S '

(3)

m 2 =

172. Mit Hilfe von Zählrohrmessungen ist festgestellt worden, daß 1 g Radium in einer Se-
kunde 3,7 • 10 10  a-Teilchen emittiert. Bestimmen Sie den Wert der AvoGADROschen
Zahl unter Verwendung der weiteren Angaben, daß die Halbwertzeit des Radiums
1590 Jahre und seine relative Atommasse 226,05 beträgt.

Lösung

Wir gehen von der Zerfallsgleichung in der Differentialform
dn = —An dr

aus, die wir umformen in
dn = In .
dz

dw
Im vorstehenden Fall bedeutet der Bruch — die Zahl der in der Zeiteinheit in einemdz
Gramm Radium stattfindenden Zerfallsakte. Dabei ist n die Zahl der in 1 g Ra ent-
haltenen Atome. Für die AvoGADROSche Zahl jVa , d. h. für die im Grammatom
Radium enthaltenen Atome, gilt dann

2Va = 226,05 n = 226,05 4 =A d/

0,693 ----------—
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Zu diesem Ergebnis gelangen wir unter der Voraussetzung, daß wir den Zusammenhang
zwischen Zerfallskonstante A und Halbwertzeit Ti/ 2 entsprechend der Gleichung
l = O,693/Ti/2 berücksichtigt haben.

173. Im Innern einer Kapsel, deren Wandmaterial für a-Strahlung völlig undurchlässig ist,
befindet sich 1 g Radium. Berechnen Sie den Betrag der Gesamtenergie, die innerhalb
einer Stunde im Innern der Kapsel freigesetzt wird, wenn wir voraussetzen, daß die
Energie jedes bei den Zerfallsakten frei werdenden a-Teilchens den Wert 2Ta = 4,7 MeV
hat.

Lösung

Wir beschränken uns auf den durch die a-Strahlung transportierten Energieanteil. Bei
der Emission des a-Teilchens erhält der emittierende Kern einen Rückstoß, wodurch er
sich mit der Geschwindigkeit r K in entgegengesetzter Richtung zum emittierten a-Teil-
chen bewegt. Entsprechend dem Satz von der Erhaltung des Impulses bleibt der Ge-
samtimpuls des Systems Kem + a-Teilchen konstant. Unter Beschränkung auf die
Absolutbeträge können wir schreiben

tmk »k = m ava . (1)
Nach der Emission ist die gesamte freigesetzte Energie gleich der Summe der Be-
wegungsenergie von Kem und emittiertem a-Teilchen, also

E = EK + E a = y + y wX-

Unter Einbeziehung der Gl. (1) erhalten wir für die Energie den Ausdruck

Das a-Teilchen ist ein Heliumkern He; durch seine Emission verringert sich die Kern-
masse des emittierenden Kerns um vier Masseneinheiten. Wir berücksichtigen, daß die
Massenzahl A des Kerns zu seiner Masse proportional ist, und finden demnach

Diese Voraussetzung erlaubt uns, Gl. (2) in die Form

zu bringen (A Massenzahl des radioaktiven Mutterkerns). Im Verlauf einer Stunde
werden von einem Gramm Radium n a-Teilchen emittiert. Also ist die während dieser
Zeit freigesetzte Gesamtenergie

£' = « -  y£ a . (3)

14 Haiko. Elektrik
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Die Zahl der in einem Gramm Radium während einer Stunde stattfindenden Zerfalls-
akte läßt sich leicht durch Vergleich mit der Lösung von Beispiel 370 ermitteln:

n = 3,7 -IO  10  -3600 h" 1 .
Durch Einsetzen der gegebenen Größen in Gl. (3) finden wir

3,7 • IO 10  • 3600 h" 1 - 226 J
E' = - ----------- • 4,7 • IO 6 eV • 1,6 • IO" 19  — = 102 Jh" 1 .

eV ----------222

174. Berechnen Sie, welche Energiemenge bei der Reaktion
“B + ?D ”B + }H

frei wird, wenn die Kernmasse des Isotops B mit 10,01618 und die des Isotops “B
mit 11,01284 Kernmasseneinheiten angegeben wird.

Lösung

Wir gehen von der Summe der Ruhmassen der in die Reaktion eingehenden Teilchen
aus. Danach ist

m r m2 = 10,01618 u + 2,01472 u = 12,03090 u .
Demgegenüber haben die aus der Reaktion hervorgehenden Teilchen die Ruhmassen

m 3 + n?4 = 1 1,01284 u + 1,00813 u = 12,02097 u .
Im Verlauf der Reaktion tritt ein Massendefekt auf von

Am = 0,009 930 u .
Es handelt sich hierbei ausschließlich um einen Massendefekt des Kerns, denn die Zahl
der beteiligten Elektronen ändert sich im vorliegenden Fall nicht.
Bei der Reaktion wird ein Energiebetrag AE  frei, die Reaktion ist exotherm. Mit dem
Massendefekt hängt der freigesetzte Energiebetrag durch die Beziehung

AE = Amc2

zusammen. Der auftretende Massendefekt kann leicht in Masseneinheiten ausgedrückt
werden, wenn wir berücksichtigen, daß die nukleare Masseneinheit 1 u = 1,66 •
10“ 27  kg ist. Damit wird

ks
Am = 1,66 • 10" 27  — • 0,00993 u ,u

und für die freigesetzte Energie erhalten wir
AE = 1,64839 • 10" 29  kg • 9 • 10 16  m 2 • s" 2 = 1,4843 • 10" 12  J = 9,28 MeV.

175. Das Ergebnis der Kernreaktion
7Li + -> 2 *He,

bei der Lithium mit Protonen beschossen wird, die eine Energie von 600 keV haben,
sind zwei a-Teilchen, die sich mit einer kinetischen Energie von 8,94 MeV bewegen.
Bestimmen Sie aus den bekannten Kernmassen von Proton und a-Teilchen die Kern-

‘ mässe des Isotops jLi.
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Lösung

Im Verlauf dieser Reaktion tritt ein Massendefekt Am auf; er ist gleich der Differenz der
Ruhmassen der in die Reaktion eintretenden und der aus ihr hervorgehenden Teilchen :

Am = 7wL i + — 2zwHe ,
woraus für die Masse eines Lithiumkerns resultiert

tmli = Am — zmh + 2wHe - (1)
Im Verlauf der exothermen Reaktion wird die Gesamtenergie

AE = 2 • 8,94 MeV - 0,6 MeV = 17,28 MeV
frei. Der dieser Energiedifferenz entsprechende Massendefekt errechnet sich gemäß der
EiNSTEiNschen Relation zu

. AEAm = —
c 2

Wie oben in 5.4. erwähnt, entspricht dem Massendefekt von einer Kernmasseneinheit ME
(=  Nukleonenmasse) eine Energie von 931,8 MeV. Demzufolge gilt für den mit der
Energiedifferenz AE = 17,28 MeV verbundenen Massendefekt

17,28 MeV
Am = = 0,018 54 u .

n MeV
931,8 -------

u
Für die Kernmasse des angegebenen Lithiumisotops finden wir also

wL1 = 0,01854 u - 1,00813 u + 8,00772 u = 7,018 13 u .

176. Die Quanten der harten Gammastrahlung des Radiothors können bei der Wechsel-
wirkung mit einem Deuteriumkern diesen zur Zerlegung in Proton und Neutron ent-
sprechend der Reaktion

?D + y + Jn
bringen. Bei der Zerlegung erhält das Proton die kinetische Energie AEr =0,21  7 MeV.
Die Energie der einfallenden y-Quanten beträgt AE2 = 2,62 MeV. Die Massen von
Proton und Deuteron sind bekannt. Berechnen Sie die Masse des Neutrons.

Lösung

Im Verlauf dieser Reaktion tritt ein Massendefekt
Am = — ( h + n)

auf, wobei wD , und m n die Ruhmassen von Deuteron, Proton bzw. Neutron be-
deuten. Zwischen ihnen besteht der Zusammenhang

m n = m D — m H — Am. (1)
Wir können voraussetzen, daß die Massen von Proton und Neutron nur unwesentlich
voneinander abweichen. Deshalb werden die beiden Zerlegungsprodukte des Deuterons,
Proton und Neutron, praktisch die gleiche Energie haben. Bei der Reaktion wird die

14* .
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Energie
AE = 2AEt - AE2

frei. Dieser Energiedifferenz entspricht ein Massendefekt

Am = —r-
c2

Demnach ergibt sich für die Masse des Neutrons nach Gl. (1)
2zUS\ —

m n = mQ — m n ------------ ------- .
c 2

Nach Einsetzen der bekannten Größen erhalten wir

2,186 MeV • 1,6 • IO -13  —
MeV

m a = 2,01472 u - 1,008 13 u + ----------- — r— ---------- .
9 • 10 16  m 2 s" 2

Wenn wir berücksichtigen, daß die Kernmasseneinheit gleich 1,66 • IO -27  kg ist, er-
halten wir für die Neutronenmasse

kg
m a = 1,00659 u • 1,66 • IO -27  + 0,389 • 10‘ 29  kg = 1,6748 • 10~ 27  kg .

177. Berechnen Sie die Bindungsenergie a) für ein Deuteron, b) für ein a-Teilchen.

Lösung

Ein Ausdruck für die Bindungsenergie ist der bei der Bildung der angegebenen Teilchen
aus ihren elementaren Bestandteilen auftretende Massendefekt. Massendefekt und Bin-
dungsenergie stehen in dem einfachen Zusammenhang

AE = Amc2 . (1)

a) Das Deuteron ist der Kern des schweren Wasserstoff isotops, der sich aus je einem
Proton und Neutron auf baut. Wir bezeichnen mit m p , m n und m D die Massen von
Proton, Neutron und Deuteron und erhalten für den bei der Bildung des Deuterons auf-
tretenden Massendefekt den Ausdruck

Am = m n + m p — m o — 1,00895 u + 1,00758 u — 2,01418 u =
= 0,00235 u .

Gemäß dem Zusammenhang in Gl. (1) entspricht einer Kernmasseneinheit u eine
Energie von 931,8 MeV; daraus folgt, daß dem Massendefekt Am die Bindungsenergie

MeV
AE = 0,00235 u • 931,8 ------- = 2,19 MeV

u ------------
zukommt.
b) Das a-Teilchen ist der Kern des Heliumatoms; es besteht aus je zwei Protonen und
Neutronen. Bei seiner Bildung tritt ein Massendefekt

Am = 2mn 4- 2wp — m a
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auf. In Zahlen ausgedrückt, hat er den Wert

Am = 2,01790 u + 2,015 16 u - 4,00276 u = 0,0303 u .

Damit ergibt sich für das a-Teilchen eine Bindungsenergie

MeV
AE = 0,0303 u • 931,8 ------- = 28,2 MeV.

u --------------

178. Radon wird durch radioaktiven Zerfall des Radiumisotops 2|fRa gebildet. Dabei
emittiert der Radiumkern ein a-Teilchen der Energie AE = 4,9 MeV. Der der Bindungs-
energie des a-Teilchens zukommende Massendefekt hat den Wert Am = 0,0303 u.
Berechnen Sie aus den vorgegebenen Angaben die Differenz der Massendefekte von
Mutterkern (Radium) und Tochterkern (Radon).

Lösung

Da der Mutterkern Ra aus 88 Protonen und 138 Neutronen besteht, kommt ihm
ein Massendefekt

= 88 m p 4- 138 m a — m Ra

zu. Dagegen hat der Massendefekt des Tochterkerns “ 2Rn, der aus 86 Protonen und
136 Neutronen besteht, den Wert

dzwRn = 86 m p + 136 m a — mRn .

Die beiden Massendefekte unterscheiden sich somit um

Am = zh Ra — -d/wRn = 2/h p + 2w n — (wRa — mRn).

Bei der Umwandlung des Radiums in Radon entsprechend der Reaktion
226 Ra - ->222 R n +  4 a (2)

wird die Energie AE = 4,9 MeV frei, die dem a-Teilchen zukommt. Dieser Energie
entspricht ein Massendefekt

(1)

. , AE 4,9 MeVAm = — — = ----- — -—— = 0,00526 u .
c 2 

o MeV
931,8 -------u

Wenn wir diesen Massendefekt mit der in Gl. (2) angegebenen Reaktion in Beziehung
setzen, ergibt sich

Am' = 7wRa - (m Rp + m ).

Wir können mit Hilfe dieser Beziehung die Massendifferenz der Kerne mRa — wRn aus-
drücken und damit in Gl. (1) hineingehen. Das ergibt

Am = 2/np + 2mn — m a — Am'.
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Hierbei bedeutet 2m p + 2ma — m a den Massendefekt Ama i  der bei der Bildung des
a-Teilchens auftritt, in Zahlen:

Am = Ama — Am' = 0,03030 u — 0,00526 u = 0,025 u .

179. Berechnen Sie, wie groß die Wellenlänge einer elektromagnetischen Strahlung höchstens
sein darf, wenn diese Strahlung die Bildung von Elektron-Positron-Paaren verursachen
soll.

Lösung

Paarbildung vollzieht sich durch die Wechselwirkung von genügend energiereichen
Photonen im Feld schwerer Kerne. Die Ruhmasse des gebildeten Paares ist gleich der
Summe der Ruhmassen von Elektron (w e) und Positron (m e+ ). Die Erzeugung dieser
Ruhmassen erfolgt auf Kosten der Energie eines Photons. Der Zusammenhang zwischen
den beteiligten Größen wird durch die EiNSTEiNsche Gleichung angegeben:

AE = Amc  2 . (1)
Die Energie des Photons hat den Wert AE = hv.  Daraus folgt, wenn wir Gl. (1) um-
stellen, für die Frequenz des Photons

Amc2

V ’
und wegen der Beziehung 2 = c/v für die Wellenlänge

(2)Amc

Wenn wir die entsprechenden Größen einsetzen, ergibt sich

Am = 5,489 • 10~ 4 u + 5,489 • 10 -4  u = 10,978 • 10“ 4 u .

Da eine Kernmasseneinheit gleich 1,66 • 10 -27  kg ist, hat der oben errechnete Massen-
defekt, in absoluten Einheiten ausgedrückt, den Wert

Am = 18,22 • IO" 31 kg.

Diesen Wert in Gl. (2) eingesetzt, ergibt die erforderliche Höchstwellenlänge

6,62 • IO’ 34  Js
18,22 • 10“ 31 kg • 3 • 10 8 ms-  1

= 12 • 10" 13  m = 1,2 pm.

180. Urankerne des Isotops 2flU zerlegen sich unter Beschuß mit thermischen (langsamen)
Neutronen exotherm in 2 annähernd gleich schwere Kernbruchstücke. Bei dieser Art
Kernspaltung wird eine Energiemenge von ungefähr AE = 200 MeV freigesetzt. Be-
rechnen Sie, welche Energiemenge bei der vollständigen Spaltung von 1 kg Uran frei-
gesetzt würde. Berechnen Sie, welche Masse an spaltbarem Uranbrennstoff ein mit einer
Leistung von 1 MW betriebener Kernreaktor innerhalb 24 Stunden verbrauchen würde.
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Lösung

Bei der Spaltung von 1 kg Uran wird die Energie

E = n AE (1)

freigesetzt. Dabei ist AE die bei der Spaltung eines Kerns freigesetzte Energie und n die
Zahl der in der Masseneinheit enthaltenen Urankerne. Für diese Zahl gilt

n = 2222. . 6,02 • 10 23  kg- 1 .
235

Demnach ergibt sich die gesamte, bei der Spaltung von 1 kg Uran freigesetzte Energie zu

E = 2222_ 6,02 • IO23  kg- 1 • 200 MeV • 1,6 • IO'  13 —L- = 8,2 • 10 13  Jkg’ 1 .
235 MeV --------------------

Unter der Voraussetzung eines idealen Wirkungsgrades würde der Reaktor bei einer
Leistung P = 1 MW = 106 W innerhalb von 24 Stunden die Energie

E o = 10 6 W - 86400 s = 8,64 • 10 10  J

freisetzen. Da bei der Spaltung von 1 kg Uran die Energie E = 8,2 • 10 13  J frei wird
würde der Reaktor bei der angegebenen Leistung einen Brennstoff bedarf von

8 64 • 10 10  J
m = 8,2* 1013 Jkg -1 = 1)05 ' 10-3  kg X

haben.

Aufgaben

234. Als Endprodukt der Zerfallsreihe des
Thoriums, die mit dem Isotop 29oTh
beginnt, erscheint das Bleiisotop 2g|Pb.
Berechnen Sie die Zahl der im Verlauf
der ganzen Zerfallsreihe emittierten a-
und ß-Teilchen.

235. Berechnen Sie, innerhalb welcher Zeit
die Hälfte der Kerne eines Radium-
präparats zerfällt, wenn die Zerfalls-
konstante des betreffenden Radiums
mit!  = 1,42 • 10" 11  s -1  angegeben wird.

236. Berechnen Sie, wieviel Prozent der
Kerne eines Poloniumpräparats mit der

Halbwertzeit Ti/ 2 = 40 min innerhalb
von 5 min zerfallen.

237. Die Halbwertzeit eines Aktiniumiso-
tops beträgt 13,5 a. Berechnen Sie,
innerhalb welcher Zeit von 10 7 Kernen
einer seinen Zerfall ausführt.

238. Berechnen Sie, wieviel a-Teilchen von
einem Gramm Radium mit der Halb-
wertzeit Pi/ 2 = 1590 a innerhalb einer
Sekunde emittiert werden.

239. Entsprechend dem Geiger-Nuttall-
schen Reichweitegesetz kann man die
Reichweite (d) eines von einem radio-
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aktiven Präparat emittierten a-Teil-
chens mit der für dieses Präparat
charakteristischen Zerfallskonstanten A
in Beziehung setzen. Das erfolgt ange-
nähert durch die empirische Formel

lg J  = lgA + B,
in der A und B Konstanten sind. Be-
rechnen Sie die Reichweiten der a-
Strahlung des Urans 2| 2U und des Ra-
diums 2HRa, deren Halbwertzeiten be-
kannt sind. Für die Zerfallsreihe des
Urans gelten die Zahlenwerte A =
= 0,0167 und B = 0,7059, wobei die
Reichweite in cm und die Zerfalls-
konstante in s -1  gemessen sind.

240. Ein Poloniumpräparat der Aktivität
3,7- 10" 11  s -1  befindet sich in einem
Kalorimeter, dessen Wärmekapazität
4,19 JK“ 1 beträgt. Die vom Polonium
emittierten a-Teilchen haben eine Ener-
gie von 5,3 MeV. Die Rückstoßenergie
der emittierten Kerne wird vernachläs-
sigt. Berechnen Sie die im Kalorimeter
innerhalb einer Stunde auftretende
Temperaturerhöhung.

241. Durch natürlichen radioaktiven Zerfall
des Uranisotops 2| 2U bildet sich das
Uranisotop 2| 2U. Das natürliche Uran
ist ein Isotopengemisch von 1U,
2 U und U, das 99,3% des 2 U-
Isotops und nur 0,006% des 2|£U-
Isotops enthält. Die Halbwertzeit des
Uranisotops 2 j2U beträgt 4,4 • 10 9

Jahre. Berechnen Sie die Halbwertzeit
des Uranisotops 2| 2 U.

242. Berechnen Sie, welches Volumen des
radioaktiven Edelgases Radon sich bei
einer Temperatur von 0 °C und einem
Druck von 1 bar mit der Menge von 1 g
Radium im radioaktiven Gleichgewicht
befindet.

243. Berechnen Sie, mit welcher Geschwin-
digkeit sich ein frei beweglicher Kern
des Radiums nach der Emission eines
a-Teilchens von der Energie E« =
= 4,7 MeV bewegen wird.

244. Berechnen Sie - in J und eV ausge-
drückt -, welcher Energie die nukleare
Masseneinheit ME entspricht.

245. Berechnen Sie die bei der Kernreaktion
2JA1 + jHe -> l°Si + }H

frei werdende Energiemenge. Die Kern-
massen betragen: raA i = 26,9899 u,
zmsi = 29,9832 u.

246. Berechnen Sie den auf das Mol bezoge-
nen Massendefekt, der bei der chemi-
schen Reaktion

2 H 2 + O 2 —> 2 H 2 O

eintritt, wenn bei einer Reaktions-
temperatur von 25 °C je Mol entste-
henden Wassers eine Energie vom Be-
trag W = 286 kJ frei wird.

247. Im Verlauf der Kernreaktion
“N + Jn  ----->“C  + 1H

wird ein Energiebetrag von 0,6 MeV
freigesetzt. Die Kemmasse des Stick-
stoffisotops beträgt 14,00756 u.
Berechnen Sie die Kemmasse des
Kohlenstoffisotops C.

248. Im Verlauf der Kernreaktion
“N + *He ----->}H + ”O

wird je Grammatom des gebildeten
Sauerstoffisotops eine Energiezufuhr
von 12,5 • 10 10  J notwendig. Die Kem-
masse des Stickstoffisotops be-
trägt 14,00756 u. Wie groß ist dem-
nach die Kernmasse des Sauerstoff-
isotops ”O?

249. Berechnen Sie die Bindungsenergie der
Kerne a) des Stickstoffisotops N,
b) des Bleiisotops 2g2Pb. Wie groß ist die
jeweils auf ein Nukleon bezogene Bin-
dungsenergie? Die Kemmassen der ge-
nannten Isotope betragen 14,00756 u
für ’“N, 207,21 ME für 2$Pb.

250. Berechnen Sie den bei der Bildung von
einem Gramm Helium aus Protonen
und Neutronen frei werdenden Energie-
betrag.
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4.1. Welleneigenschaften der Materie

Von Davisson und Germer wurde 1927 nachgewiesen, daß auch Teilchen, die mit
einer Ruhmasse behaftet sind, Welleneigenschaften zeigen können. Sie untersuchten
die Reflexion von Elektronen an einem Nickel-Einkristall und fanden, daß die Elek-
tronen entsprechend wellenoptischen Gesetzmäßigkeiten gestreut
wurden (Bild 1 10). Mit diesem Experiment wurde eine 1924 von
de Broglie aufgestellte Hypothese bestätigt, wonach jedes sich
frei bewegende Teilchen mit einer ebenen Welle der Form

T(r,t) =

verknüpft ist (r Ortsvektor, t Zeit). Die Amplitude C der de-
Broglie-Welle bleibt vorläufig unbestimmt.
Im Falle, daß sich die de-Broglie- Welle im Vakuum ausbreitet,
sind ihre Kreisfrequenz co = 2iw und ihr Wellenzahlvektor k
mit der Energie E und dem Impuls p des Teilchens durch die
de-Broglieschen Gleichungen

E — hat, p = hk

E Elektronenquelle
IK Ionisationskammer
K Kristall

Bild 110. Versuch
von Davisson und
Germer

verknüpft. Wellenzahlvektor £ und Geschwindigkeit v sind demnach gleichgerichtet.

Mit der Wellenzahl k ist gemäß der Beziehung |£| = 2k -L auch die Wellenlänge 2 der
2

DE-BROGLiE-Welle bestimmt. Die Konstante h hat den Wert

hh = — = 1,05 • 10 -34  Js .
2k

(h = 6,63 • 10 -34  Js PLANCKsches Wirkungsquantum).
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In einem Kristall ist die Wellenlänge Z der de-Broglie -Welle vom Gitterpotential E p

abhängig. Bei einem Übertritt der de-Broglie -Wellen aus dem Vakuum in den Kristall
gilt für die Brechzahl n die Beziehung (Bild 111) .

------------------------- I • Vakuum

A sm « V E

Aus den Welleneigenschaften der Materie haben wir [Ja Krista// \
nach Schrödinger und Heisenberg die Konsequenz 1 \ \
zu ziehen, daß sich die Quanten- oder Wellen- \
mechanik als Mechanik der atomaren Prozesse in m
ihren Grundlagen und Vorstellungen gegenüber
der klassischen Mechanik prinzipiell unterscheidet. Insbesondere läßt sich der Begriff
der Bahnkurve eines Teilchens aus der klassischen Mechanik nicht in die Quanten-
theorie übertragen. An die Stelle genau fixierter Größen für die Ortskoordinate q und
die Impulskoordinate p eines Teilchens tritt in der Wellenmechanik eine Wahrschein-
lichkeitsverteilung, Orts- und Impulskoordinate sind demzufolge mit prinzipiellen
Ungenauigkeiten Aq und Ap behaftet. Nach Heisenberg besteht zwischen diesen Un-
genauigkeiten der Zusammenhang

--------- h 2Ap 2 Aq 2 —,
4

der auch in der Form

ApAq ä h

geschrieben wird.
Durch diese Heisenbergsche Unbestimmtheitsrelation wird weder die Genauigkeit
der Ortsbestimmung noch die der Impulsbestimmung für sich allein begrenzt. Eine
Beschränkung besteht dagegen insofern, als die genauere Bestimmung der einen
Größe unvermeidlich mit einer Zunahme des Fehlers der konjugierten Größe verbunden
ist.

Beispiele

181. Das Wasserstoffatom hat die Masse m H = 1,67 • 10~ 27  kg. Wie groß ist die Wellen-
länge der de-Broglie- Welle des Teilchens, wenn es sich mit der Geschwindigkeit
v = 1000 m s -1  bewegt?
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Lösung

Die Wellenlänge 2 der DE-BROGLiE-Welle bestimmt sich aus der Beziehung i
2k h h
k p mv '

Hieraus folgt

6,62 • 10 -34

1,67 • IO" 27  • 10 3
m = 3,96 - IQ- 10  m.A =

Die Wellenlänge der DE-BROGLiE-Welle liegt also in der Größenordnung des Atom-
durchmessers.

182. Ein Elektron bewegt sich im homogenen elektrischen Feld. Die das Elektron beschleuni-
gende Potentialdifferenz hat den Wert U = 1000 V. Es wird vorausgesetzt, daß die
resultierende Endgeschwindigkeit des Elektrons klein gegenüber der Lichtgeschwindig-
keit c bleibt, so daß ohne Berücksichtigung relativistischer Korrekturglieder gerechnet
werden kann.
Wegen v < c kann die Masse des Elektrons mit seiner Ruhmasse m 0 = 9,11 • 10~ 31 kg
gleichgesetzt werden. Die Elementarladung des Elektrons ist e = 1,6 • 10“ 19  As. Wie
groß ist die Wellenlänge A der DE-BROGLiE-Welle des Elektrons am Ende des Beschleu-
nigungsvorgangs?

Lösung

Für die Wellenlänge der DE-BROGLiE-Welle des Elektrons gilt

, 2k h h
A ----- — = — = ----- .

k p nw

Zwischen der Geschwindigkeit des Elektrons und seiner kinetischen Energie besteht der
Zusammenhang

andererseits ist die kinetische Energie gemäß E k = eU durch die Potentialdifferenz
des vorliegenden elektrischen Feldes bestimmt. Hieraus erhalten wir für die Wellen-
länge der DE-BROGLiE-Welle

; h h

yj 2mE k y/ 2meU

Setzt man für h 9 m, e die gegebenen Größen ein, so folgt

„ 6,63 • 10" 34  1,225 • 10" 9

A = —r -------------- ------ — .. . ■ m = — z— . — m,
V2  • 9,11 • IO’  31  • 1,6 • 10~ 19  (7/Volt V tf/Volt
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womit eine allgemeine Zahlenwertgleichung für die Abhängigkeit der Wellenlänge von
der Potentialdifferenz U in Volt gefunden ist. Setzt man für U den Zahlenwert 10 3 ein,
ergibt sich schließlich

1 225 • 10" 9
A = m = 0,387 • 10~ 10  m.

x/10 3 --------------------

183. Es ist die Wellenlänge 2 der DE-ßROGLiE-Welle eines Elektrons im starken elektrischen
Feld U = 10 5 V zu bestimmen. Dabei sind die relativistischen Korrekturglieder in erster
Näherung zu berücksichtigen, wobei für den Impuls p und für die kinetische Energie E k
die Ausdrücke p = mv ,  E k = (m — m Q )c2 zu verwenden sind (vgl. Beispiel 149!).

Lösung

Nach den DE-BROGLiEschen Grundgleichungen besteht zwischen dem Betrag des Im-
pulses p und der Wellenlänge A die Beziehung

p
Andererseits ist

(1)

m Q v

Für nicht zu große Werte der Geschwindigkeit v können wir schreiben

= 1 -----—
2c 2

p = mv = (2)

(3)

und erhalten damit
m o v

P = ---------—
1 ----—

2c2 (4)

Wir beachten den Zusammenhang zwischen kinetischer Energie Ek und Potential-
differenz U :

1
— 1 \ m Q c 2 = eUE k — (m — m 0 ) c 2 = (5)

und finden
/ v 2 m 0 c 2

V 1 c2 eU + m Q c 2 *
Daraus erhalten wir durch Umformung

(6)

c.v =
eU m o c
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Wenn wir berücksichtigen, daß

eU < m Q c 2

ist, so läßt sich die Geschwindigkeit v auch schreiben

(7)

Aus den Gin. (1), (4), (7) ergibt sich für die Wellenlänge 2 der DE-ßROGLiE-Welle

= -=—(1-4 - )=  - ’ (8 >p m o v \ c 2 J y ]2m Q eU \ 4w 0 c2 /

Wir setzen die bekannten Werte für die Konstanten m Qi e, h und c in Gl. (8) ein und
erhalten

A _ _________6,63 - IQ- 34  _________ / _ 1,6 • IQ- 19  U \ m _

72-9 ,11  • 10~ 31  • 1 ,6-  IO" 19  U \ 4 -9 ,11  • IO" 31  • 9 • 10 16  / m “

1,225 • IO’ 9
= - - - - -7= ----- (1 - 0,49 • IO" 6 U) m.  (9)

Vtz
Für die angegebene Potentialdifferenz U = 10 5 V ergibt sich

1,225 • IO -9

A = — — — (1 - 0,049) m = 0,368 • IO" 11  m.
V10 5 ------------------

184. Es ist die Beziehung für die Wellenlänge A der DE-BROGLiE-Welle des Protons im starken
elektrischen Feld zahlenwertmäßig aufzustellen, wobei die relativistischen Korrekturen
in erster Näherung zu berücksichtigen sind. Welche Grenzen ergeben sich für die Span-
nung, wenn die Gültigkeit der entwickelten Formel auf Werte des Korrekturgliedes
zwischen 0,1 % und 10% des Hauptgliedes begrenzt ist? Für die Ruhmasse des Pro-
tons ist Wp = 1,67 • 10~ 27  kg zu setzen.

Lösung

Wir gehen von Gl. (8) in Beispiel 183 aus. An die Stelle der Ruhmasse m Q des Elektrons
tritt aber die des Protons w p . Das Verhältnis beider Massen ist

m p _ 1,67 -10 -  27  _
m 0 0,91 • IO’  30

Unter Bezugnahme auf Gl. (9) in Beispiel 183 erhalten wir somit

A _ 1,225 • IQ-9

V1836 U
-0 ,49 -10 -  6 — - )m,

1836/
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bzw.
9 £7 • 10-11

A = ’ gl — (1 - 0,27 • 10’ 9 U) m.

Wenn das Korrekturglied 0,27 • 10" 9 U im Bereich
0,001 0,27 • IO" 9 U 0,1

liegen soll, so muß die Spannung U ihrerseits Werte zwischen 3,7 • 106 V und 3,7 • 10 8 V
annehmen. Unterhalb einer Beschleunigungsspannung von 3,7 • 10 6 V kann somit eine
relativistische Korrektur des Protons vernachlässigt werden. Dagegen müssen oberhalb
einer Spannung von 3,7 • 10 8 V Korrekturglieder höherer Ordnung in die Berechnung
einbezogen werden.

185. Aus den DE-BROGLiEschen und aus den relativistischen Grundgleichungen ist der Zu-
sammenhang zwischen der Phasengeschwindigkeit u = einer DE-BROGLiE-Welle und
der Geschwindigkeit v des substantiellen Teilchens abzuleiten. Wie groß sind Phasen-
geschwindigkeit und Teilchengeschwindigkeit für ein Elektron, das seine kinetische
Energie im elektrischen Feld der Potentialdifferenz U = 100 V erhält?

Lösung

Es werden die relativistischen Grundgleichungen
E = mc 2, p = mv

und die DE-BROGLiEschen Gleichungen in der Form
h

E — hat = hv9 p = mv = —

herangezogen. Aus den letzten beiden Beziehungen ergibt sich
E o h
h p

Damit erhalten wir
, EU = Av = - - -

P
und unter Verwendung der relativistischen Grundgleichungen

WC 2

u = ------ bzw. uv = c .mv

Da entsprechend der Relativitätstheorie für die Geschwindigkeit v eines materiellen
Teilchens die Beziehung

v c
gelten muß, folgt für die Phasengeschwindigkeit u = der DE-BROGLiE-Welle

u c.
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Für den Fall eines Elektrons im elektrischen Feld U = 100 V erhalten wir aus

die Geschwindigkeit

v = J2—U= Ums- 1 = 0,593 ■ 10« Vt/ms“ 1 ,
N m Q N 9,1 • 10 31

d. h.,
v = 0,593 • 10 7 ms -1  .

Hieraus ergibt sich für die Phasengeschwindigkeit

c 2 9*10  16

u = — = m s’ 1 = 1,52 • 10 10  m s -1  . 6
v 0,593 • 10 7 —---------------------

1 86. Berechnen Sie die Wellenlänge einer DE-BROGLiE-Welle von Elektronen in einem Kristall.
Das Gitterpotential des Kristalls hat den Wert E p = —15 eV, die betrachteten Elek-
tronen haben im Vakuum eine kinetische Energie von 100 eV.

Lösung

Im Fall nichtrelativistischer Rechnung gilt für die Gesamtenergie der Teilchen im
Vakuum

E = —— r 2
2 (1)

und im Kristall

E — E p +-y -£  2 (2)

Dabei gibt v die Geschwindigkeit der materiellen Teilchen im Kristall an. Aus Gl. (1)
u. (2) folgt für die jeweiligen Geschwindigkeiten

/M,  w
V m 0 N m Q

und daraus wegen u = = c 2 /v für das Verhältnis der Phasengeschwindigkeiten

u I e - e p _
ü J N E NE’ (4)

wobei n als die Brechzahl der DE-BROGLiE-Welle zu bezeichnen ist. Für die Wellenlänge 2
der DE-BROGLiE-Welle im Kristall erhalten wir demnach

' E
E — E p

(5)2 =
n
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Im vorliegenden Fall ergibt sich aus Gl. (4) die Brechzahl zu

/ 100 + 15
n ~ N 100

1,072.

Die Wellenlänge 1 der de-Broglie- Welle im Vakuum ergibt sich zu

a = 2 ______
mv -JlmE '

Wir berücksichtigen die Umrechnung
1 eV = 1,6 • 10* 19 J

und erhalten für die Wellenlänge im Vakuum

6,63 • 10* 34

A = ■ - ------ -----  m = 12,2 • 10* 11  m.
> V 2 ’ ’ 10-31 ’ 100 ’ t 6 * 10-19

Für die Wellenlänge im Kristall erhalten wir
- 12 2
A = ----- — IO -11  m = 11,4 • IO* 11  m.

1,072 —----------------

(6)

187. Röntgenstrahlen und DE-BROGLiE-Wellen gleicher Vakuum- Wellenlänge A zeigen bei
einem Übergang zwischen Vakuum und Kristall unterschiedliches Brechungs verhalten.
Während der Röntgenstrahl praktisch keine Brechung erfährt, erfolgt für den Elek-
tronenstrahl eine Brechung gemäß

A sin e
n = — = ———

2 sm e

(Bild 112). Aus der hierdurch sich ergebenden Zuordnung von Röntgenstrahlen und
gebeugten Elektronenstrahlen werde eine Brechzahl n = 1,044 gemessen. Die Wellen-
länge im Vakuum beträgt A = 10* l o  m. Welcher Wert folgt daraus für das Gitter-
potential?

Lösung

Zwischen der gemessenen Wellenlänge A und
dem Potential U des beschleunigenden elek-
trischen Feldes besteht die Beziehung (vgl.
Beispiel 182)

, 1,225 • 10* 9
A = -------= ----- m ,

Ju
woraus folgt

A
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Im vorgegebenen Falle 2 = 1O~ 10  m ergibt sich demnach eine kinetische Energie der
Elektronen von

1,5 • 10 -18

’ 10 _ 20 eV = 150eV,

die mit der Gesamtenergie E identisch ist.
Aus

folgt für das gesuchte Gitterpotential

E p = £ (1  ~n  2 ),
d. h.,

E p = 150 (1 - l,044 2) eV = -150 • 0,09 eV = -13,5 eV.

188. Ein Elektronenstrahl falle senkrecht auf einen Spalt Sp der Breite a = 0,1 jzm und werde
an diesem gebeugt. Es soll die Ungenauigkeit bei der Festlegung der Geschwindigkeit
bestimmt werden. Dabei können alle Teilchen, die außerhalb des ersten Beugungs-
minimums liegen, unberücksichtigt bleiben.

Lösung

Die Ausbreitungsrichtung vor dem Spalt Sp wählen wir als z-Achse; die Spaltebene
wird als x,y-Ebene festgelegt (Bild 113). Der Teilchenimpuls vor dem Spalt hat deshalb
die Komponenten

Px = 0, py = 0, p2 = p.
Beim Durchgang durch den Spalt wird die de-Broglie-
Welle gebeugt, d. h., der Teilchenimpuls wird verändert.
Für die in der y, z-Ebene liegenden Strahlen ergibt sich
gemäß den Aussagen der Beugungsoptik das erste Beu-
gungsminimum aus

A
sm ymin = ± —a

(A Wellenlänge der DE-BROGLiE-Welle). Für die Strahlen
in der y, z-Ebene gilt

Bild 113

Py = P sin y.

Die zu berücksichtigenden Teilchen haben demnach Impulse mit -Komponenten im
Bereich

pX pX
—p sm ymin - -  ----------- H------ =psm ymin .a a

15 Hajko, Elektrik
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Nach den DE-BROGUEschen Gleichungen ist

h
P = T’

somit folgt
4 . Ä A h

Apy = p sin ymln = ------- = — .a a a

Ferner ist die Ungenauigkeit des Ortes durch die Spaltbreite bestimmt, d. h., es gilt

Ay = a.

Somit folgt

Apy Ay = h.

Dap  = mv ist, ergibt sich auch Ap = mAv. Daraus erhalten wir schließlich

. h h 6,63 * 10-34  i
y mAy ma 9,1 • IO’ 31  • IO" 7 ------------

189. Bei der Untersuchung des Mössbauer-£ ?£/s wird häufig die Strahlung des 57  Fe-Kernes
beobachtet. Dieser Kern emittiert beim Übergang vom ersten angeregten Kernniveau
eine y-Strahlung der Energie E = 14,4 keV. Welcher Mindestwert ergibt sich nach der
HEiSENBERGschen Unschärferelation für die Meßzeit At ,  in deren Verlauf eine Ent-
scheidung über eine erfolgte Emission nicht möglich ist?

Lösung

In die HEiSENBERGsche Unschärferelation

ApAq « h

wird Aq = vAt eingesetzt.
Aus der relativistischen Massenveränderlichkeit

erhalten wir die Beziehung

und daraus für die Gesamtenergie

E 2 = m 2c* = /ngc4 + m 2 v2c2 = (wgc2 + p2 ) c2 .
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Hieraus finden wir durch Differentiation (AE = dE, Ap = dp gesetzt)

, EAE2EAE = 2c2 pAp9 Ap = — -— .
c2 p

Mit E = mc 2 und p = mv ergibt sich

EAE
Aq Ap = v At — -— = At AE « h.

c2p

Wir setzen die gegebenen Größen ein

AE = E = 14,4 keV = 14,4 • 10 3 • 1,6 • IO -19  J = 2,3 • IO" 15  J

und finden für die Emissionszeit den Wert

h 6,63 -IO" 34  _ 1O

JE “ 2,3 • IO'  15  S “ --------- -

190. Entsprechend der Hypothese von March-Foradori gibt es sowohl eine Elementarlänge
(kleinste Länge)

Zo « 3 • IO -15  m,

als auch eine Elementarzeit

t0 = - K. IO’ 23  S.
c

Welche oberen Grenzen ergeben sich aus dieser Hypothese für Impuls- und Energie-
änderungen bei elementaren Prozessen, wenn man die HEiSENBERGsche Unschärfe-
relation in der Form ApAq & h voraussetzt?

Lösung

Orts- und Zeitmessungen sind mit Fehlern behaftet, die mindestens ±Z0 bzw. ±Z0 be-
tragen. Hieraus folgt

Aq 2l0 , At 2t Q .
Aus der HEiSENBERGschen Unschärferelation ergibt sich damit

h ä Ap Aq Ap 2lQ

und daraus für eine Impulsänderung

6,63 -10"  34  Js
2 • 3 • 10 -15  m

jp A =P ~ 2lQ
« 10~ 19  kgm s"  1 .

Ebenso folgt

h « AEAt  AE2tO9

15*
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und damit für die Energieänderung
6,63 • IO -34  Js

2 • IO" 23  s2 o
3 • IO -11  J.

In anderen Einheiten ausgedrückt finden wir
3 . IO“ 11  J = 3 • IO- 11  • 6,25 • IO 12  MeV « 200 MeV.

Dieser Wert entspricht der größten experimentell bekanntgewordenen Energie-
ausbeute bei einem Elementarprozeß.

191. Nach March besteht zwischen der Impulsänderung 4p und der hierdurch bedingten
Energieänderung ein Zusammenhang der Form

c *MpI 2 - l l 2 ■ (1)
\Z/o/

Es ist zu berechnen, welche obere Grenze sich daraus für die Energie eines Quants der
Elektronenbremsstrahlung ergibt.

Lösung

Für die Elektronenbremsstrahlung gilt die Beziehung

eU = (m - mo) c2 = — v 2 = hvmax . (2)

(m Masse, m Q Ruhmasse des Elektrons, v max obere Grenze der ausgestrahlten Frequenz,
U Potentialdifferenz des Beschleunigungsfeldes).
Die bei der Abbremsung eines Elektrons maximal auftretenden Werte der Impuls- bzw.
der Energieänderung sind

m Q v
(3)

(4)

4p = mv =

und

4E = E k = (m — zwo) c 2 = m Q c2

Wenn wir diese Ausdrücke in Gl. (1) von March einsetzen, ergibt sich

(5)
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(6)

Aus dem Vergleich von Gl. (4) u. (6) erhalten wir

(7)

d. h., für die bei der Elektronenbremsstrahlung frei werdende Energie gilt die Un-
gleichung

h 2 (6,63 • IO" 34 )2

« - 8.9,1 .o -o . /o -y  1 - 6 ’ 72 ■ 10  ” 1

Hiernach muß die Anfangsenergie von Elektronen bei der Bremsstrahlung unterhalb
einer Grenze von rd. 10 5 MeV liegen.

192. Es sind die strahlungsfreien Kreisbahnen im BoHRSchen Atommodell, die zugehörigen
Umlauffrequenzen und die Gesamtenergie E zu berechnen. Dabei ist vorauszusetzen,
daß die DE-BROGLiEschen Gleichungen für freie Teilchen auch für die im Atom ge-
bundenen Elektronen gültig sind und daß nur solche Bahnen möglich sind, auf denen
die DE-BROGLiEsche Welle längs der Kreisbahn mit sich selbst zur Interferenz kommt.

*

Lösung

Die DE-BROGLiEsche Welle eines Elektrons kann nur dann entlang der gesamten Umlauf-
bahn mit sich selbst zur Interferenz kommen, wenn deren Länge ein ganzzahliges Viel-
faches der de-Broglie- Wellenlänge A ist. Hieraus folgt für die möglichen Bahnradien r
die Beziehung

= wA, n = 1, 2*3, ... (1)

Setzt man hierin die Wellenlänge der de-Brogeie-WcIIc des Elektrons aus

_> » hp = mv, p = hk = (2)A

ein, so folgt mit v = reo (co Kreisfrequenz)

A = - = — (3)p mreo

und weiter aus Gl. (1) u. (3)

27vr = n — = — bzw. 2nrp = (£> p dq = nh. (4)
p mreo T
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Die letzte Gleichung drückt die Phasenintegralbedingung von Bohr aus.
Aus dem Zusammenhang von CouLOMB-Kraft und Fliehkraft ergibt sich

ze2 
2- -----  - = mraS

4k£0 H

(e0 = 8,854 • 10" 12  As V" 1 m -1  elektrische Feldkonstante, z Zahl der Elementar-
ladungen im Kern). Löst man Gl. (4) u. Gl. (5) nach dem Bahnradius r und nach der
Kreisfrequenz w auf, so ergibt sich

47r£0 /i 2 « 2 z 2 e4,m
rn ze2m ’ " 16tc 2 £2« 3 ä 3

Für die Gesamtenergie E folgt
_ ra _ _ ze 2 z2 e4rmJ7 — _ _ ____ — _ _ - - -

2 47ceo r 32tv2 £qW2 ä2

Setzt man die für das Wasserstoffatom geltenden Daten ein, so erhält man für den
Grundzustand (n = 1)

4 • 3,14 • 8,85 • IO -12  « (1,05 • 10" 34 ) 2 in

(1,6 ■ 10— 9 ) z ■ 9,1 ■ 10— 1 m - °- 52 ’ ' 10 ”•

(1,6 • 10" 19  )4 -9,1 -10" 31

(5)

(6)

(7)

ri =

________________________________ s - i  =416 .  i n  16 s' 1
16 (3,14 • 8,85 • IO* 12 ) 2 • (1,05 • IO’ 34) 3 - -------------- ’

(1,6 • IO'  19 )4 • 9,1 • 10- 31  • 6,25 • 10 18  „ , „ , , r

32 (3,14 • 8,85 • IO -12 ) 2 • (1,05 -IO" 34) 2 — -------’

«1 =

Ei =

193. Nach der BoHRjcAew Quantisierungsregel gilt für jede Ortskoordinate q und für den
dazugehörigen verallgemeinerten Impuls

d£ k

die Phasenintegralbedingung

Pq = n qh, nq = 0, 1, 2, 3, . . .

Auf der Grundlage dieser BoHRschen Theorie ist nachzuweisen, daß auch auf einer
elliptischen Umlaufbahn die Zahl der ihr entsprechenden DE-BROGLiE-Wellen ganz-
zahlig ist.

Lösung

Gemäß der BoHRschen Theorie gelten für die elliptischen Bahnen (Bild 114) die beiden
Bedingungen

pr dr = nrh, nr = 0, 1, 2, 3, ...

<p Pq> &P = n<ph9 n? = 0, 1, 2, 3, ...
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Dabei wird nr als die radiale, n? als die azimutale Quantenzahl bezeichnet. Die ver-
allgemeinerten Impulse sind durch die Beziehungen

dE k dEk
Pr = • > Ptp “ a •or *

bestimmt. Für die kinetische Energie ergibt sich (Bild 115) demnach

nach Bohr

Damit erhält man aus den Phasenintegralbedingungen

<j> pr dr + <£ py d<? = j) (p rr + pv (p) dt = 2 <£ E k dt = (n r + n*) h.

Wenn wir die kinetische Energie in der Form
„ m m ds
*~2  ’ “2  ’S

schreiben (s Länge der durchlaufenen Bahnkurve, v Bahngeschwindigkeit), dann er-
halten wir aus

2 Ek dt = (n r + nv ) h = nh

die Beziehung
f ds f

d) mv — dz = (b mv ds = nh.
J J

Durch Einsetzen der DE-BROGLiEschen Gleichung
h

p=mv  = y
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erhalten wir das Resultat

d = wA, n = nr + n? = 0, 1, 2, 3, ...

194. Die elliptische Umlaufbahn eines Elektrons um einen Atomkern wird in Polarkoordi-
naten durch die Gleichung

r = — -------1—e cos <p

dargestellt (Bild 116). Dabei bedeutet

(1)

2L 2E(4tc£0 ) 2

z2 e4 m (2)e =

F1 , F2 Brennpunkte der Ellipse
Eß -0F 2 =e
PO =0A  =a
Po Ellipsenpunkt
P Perihel
A Aphel

Bild 116. Elliptische Umlauf-
bahn eines Elektrons unreinen
Atomkern

die numerische Exzentrizität der Bahn,

L 24 e 0Po = - -2 ----ze z m
den Parameter der Ellipse, E die Gesamtenergie und

L = mr 2 (p = p? (4)
den nach dem Flächensatz konstanten Drehimpuls.
Es sind die sich aus den BoHRSchen Quantisierungsbedingungen ergebenden Halbach-
sen a und b der Bahnellipse zu bestimmen. Welcher Ausdruck ergibt sich für die
Gesamtenergie E?

(3)

Lösung

Die BoHRSchen Quantisierungsbedingungen (s. Beispiel 193) lauten
2tt

dg? = Ldtp = 2tzL = n h bzw. L = n h ,
o

f C dr
®p rd/- = />, — df = nrh .
J J d<P

0

Dabei ist
dEk . dr L dr

Pr = = mr = m — <j> =— — .dr dtp r z d<p

(5)

(6) ,

(7)

(8)

Wenn wir die Gin. (7) u. (1) in Gl. (6) einsetzen, so finden wir
2k
f sin 2 <p d?> ,

7i -------------v = n ' h -J (1— ecosy)
o

Pr dr =
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Die Auswertung des Integrals ergibt

2tcL ( 1 ■ — l \=n rh ,  (9)
W1-® 2 /

sowie unter Berücksichtigung von Gl. (5) nach Umformung

/ n \ 2 i n \ 2
i _  e 2 = _ = Zk (10)

\n<p + n r f \ n /
mit n r + n(p = n .  Aus Gl. (10) erhalten wir unter Hinzuziehung der Gin. (2) u.  (5) einen
Ausdruck für die Energie

z 2 e Arm
Sh2 e2n 2

Demnach ist die Gesamtenergie E nur von der Hauptquantenzahl n = n r n ab-
hängig. Es ergibt sich der gleiche Ausdruck wie bei der Annahme von Kreisbahnen.
Zur Bestimmung der gesuchten Halbachsen erhalten wir nach Bild 116 aus Gl. (1) für
tp = 0 und <p — k

a — yja 2 — b 2 = - , a + y/a 2 — b 2 = —
1 + 8 v 1 — £

und daraus
Po 4ne 0 n2 h 2

sowie unter Verwendung von Gl. (10)

b = a yj 1 — e2 = . (12)
n

Die großen Halbachsen a = an der Ellipsen stimmen hiernach mit den Radien der
strahlungsfreien Kreisbahnen überein. Im Fall n = 3 ergibt sich für das Wasserstoff-
atom

4 • 3,14 • 8,85 • 10’ 12  • 9 (1,05 • 10" 34 ) 2
«3 = ---------TFT— n 1— TTÄZTi --------- m = 4,74 • 10~ 10  m(1,6 • 10" 19 ) 2 • 9,1 • 10“ 31

b 31  =4,74-  10- 10  . ym

2
Z>32  = 4,74-10-  l o  -y  m

b Z3  = 4,74 • IO’ 10 m.

= 1,58- IO’ 10  m,

= 3,16- 10- 10  m,

Der Sonderfall n = 0 ist offensichtlich auszuschließen, denn er führt zu einer
Pendelbewegung, bei der das Elektron durch den Atomkern hindurchgehen müßte.



234 4. Quantentheorie

Aufgaben

251. Die Wellenlänge der DE-BROGLiE-Welle
eines Deuteriumatoms ist für den Fall
zu bestimmen, daß die Geschwindigkeit
des Teilchens v = 400 ms  -1  beträgt.
Die Masse des Deuteriumatoms ist
m d = 3,34 • 10 -27  kg.

252. Wie groß wäre die Wellenlänge der
DE-BROGLiE-Welle eines Geschosses von
1 g Masse, das sich mit einer Geschwin-
digkeit v = 100 ms -1  bewegt?

253. Es ist die Wellenlänge der de-Broglie-
Welle eines Protons im elektrischen Feld
zu bestimmen, dessen beschleunigendes
Potential den Wert 1 V hat. Die Masse
des Protons ist m p = 1,67 • 10 -27  kg.

254. Berechnen Sie die Wellenlänge der
DE-BROGLiE-Welle eines Elektrons im
elektrischen Feld mit der beschleunigen-
den Potentialdifferenz U = 2,5 • 10 5 V.

255. Welche Potentiale sind erforderlich,
damit die DE-BROGLiE-Welle eines Deu-
teriumatoms die Wellenlängen A x =
= 10" 11  m, A2 = 10“ 12  m und A3 =
= 10" 13  m annimmt?

256. Stellen Sie eine Formel auf, nach der
die Wellenlänge der DE-BROGLiE-Welle
eines a-Teilchens in Abhängigkeit von
der Feldspannung zu berechnen ist.
Welche Wellenlänge ergibt sich dem-
nach für die Spannung 10 6 V? /wa =
= 4w p , Ladung Q = 2 e + .

257. Berechnen Sie die Phasengeschwindig-
keit der DE-BROGLiE-Welle für ein
Elektron im elektrischen Feld der
Spannung 1 kV.

258. Zur Messung des Gitterpotentials eines
Nickelkristalls werden Elektronen der
folgenden Energien betrachtet:
E= 160; 185; 210; 235; 260; 285 eV.
Für die gebrochene Welle werden dabei
die folgenden Wellenlängen gemessen:
A = (0,921 ; 0,861 ; 0,811 ; 0,769; 0,735;
0,703)- 10" 10  m.

Wie groß sind die jeweils zugeordneten
Röntgenwellenlängen? Welche Brech-
zahlen folgen daraus? Welche Gitter-
potentiale ergeben sich? Geben Sie das
mittlere Gitterpotential für Nickel an.

259. Bei der Reflexion eines Elektronen-
strahls an einem Aluminiumgitter
(E’p = — 17,0eV) soll sich eine Brech-
zahl n = 1,2 ergeben. Bestimmen Sie
die dafür notwendige beschleunigende
Potentialdifferenz sowie die Wellen-
länge der DE-BROGLiE-Welle der Elek-
tronen.

260. Es werde vorausgesetzt, daß bis hinauf
zu einer Geschwindigkeit v = 1 / 1Q c =
= 3 • 10 7 m s" 1 nichtrelativistisch ge-
rechnet werden darf. Welcher Bereich
der DE-BROGLiE-Wellen und welcher
Spannungsbereich für Elektronen läßt
sich damit erfassen?

261. Wie groß muß die Öffnung eines Spalts
mindestens sein, damit bei der Beugung
langsamer Elektronen, Neutronen, a-
Teilchen, die prinzipielle Ungenauig-
keit der Geschwindigkeitsbestimmung
den Wert + 100 m s" 1 nicht übersteigt?

262. Welche Spaltbreite müßte man wählen,
wenn sich beim Durchgang von oc-Strah-
len und von ß-Strahlen ein Beugungs-
fleck mit dem Radius r = 1cm (1. Mini-
mum) ergeben soll. Der Schirmabstand
betrage 10 cm. Die Energie der Teilchen
werde durch ein elektrisches Feld mit
dem Potential cp = 100V erzeugt.

263. Die Energie eines a-Teilchens beträgt
bei der Emission 4,8 MeV. Es werde
vorausgesetzt, daß bei einer Impuls-
messung Abweichungen von einem
Prozent auftreten. Welche Genauigkeit
ergibt sich daraus für die Lagebestim-
mung?

264. Wie groß ist beim Elektron im Wasser-
stoffatom die Ungenauigkeit der Ge-
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schwindigkeit Avn im Verhältnis zur
Geschwindigkeit vn9 wenn die Unge-
nauigkeit des Ortes mit Aq = 2rn an-
gesetzt wird?

265. Die Strahlung eines gepulsten Lasers
der Wellenlänge 2 = 6943 • IO’ 10  m
erzeugt in der Targetsubstanz einen
Krater von 3 • 10 -3  cm Durchmesser.
Bei einer Impulsdauer von 5 ns (1 ns =
= 10 -9  s) wird dabei eine Energie-
dichte von 5 • 10 17  Wm~ 2 festgestellt.
Berechnen Sie ein Energiequant hv9 die
emittierte Gesamtenergie, die Zahl der
emittierten Quanten und die Unge-
nauigkeit der gemessenen Energie.
Wie groß ist der Impuls eines Quants,
und wie groß ist die Ungenauigkeit des
Impulses?

266. Die Halbwertbreite A2. einer Spektral-
linie und die mittlere Lebensdauer
eines angeregten Atoms ergeben sich
nach der klassischen Theorie strahlen-
der Dipole entsprechend den Formeln

.0  e 2 . * 2, At = --------- .
3eQ mc 2 2ttcJ2

des angeregten Zustands angenommen
wird?

267. Bei Verwendung von 14,4-keV-y-
Quanten des 57Fe-Kerns im Möss-
BAUER-Effekt hat die Frequenzunge-
nauigkeit den Wert

Av— = 3 . 10‘ 13  .
v

Berechnen Sie daraus die Ungenauig-
keit der Energiebestimmung AE und die
mittlere Lebensdauer des angeregten
Zustands, die, entsprechend dem
HEiSENBERGSchen Prinzip, der Zeit-
ungenauigkeit gleichzusetzen ist.

268. Die Hohlraumstrahlung kann als eine
ständige Hin- und Herreflexion von
Strahlungsquanten des Impulses p =

h
= — aufgefaßt werden. Welche untere

Grenze für die Wellenlänge und welche
obere Grenze für die Frequenz ergeben
sich aus dieser Annahme unter Be-
rücksichtigung der Hypothese von
March-Foradori?

269. Bei Elementarakten können Strahlungs-
quanten zur Erzeugung ruhmasse-
behafteter Teilchen führen. Wo liegt
die obere Grenze der Masse von solcher-
art erzeugten Teilchen?

270. Berechnen Sie die Halbachsen der
Elektronenbahnen des einfach ioni-
sierten Heliumatoms für den Fall
tz = 2.

Berechnen Sie daraus die mittlere
Lebensdauer eines im angeregten Zu-
stand befindlichen Wasserstoffatoms
vor dessen Aussendung eines Quants
der 2Za-Linie. Wie groß ist die Unge-
nauigkeit AE bei der Bestimmung des
Energiequants, wenn die Zeitungenauig-
keit gleich der mittleren Lebensdauer

4.2. Grundlagen der Quantentheorie

M. Born gab den de-Broglie- Wellen V7 = eine statistische Deutung. Sie
verknüpft den Atomismus der Elementarteilchen mit ihren Welleneigenschaften.
Wenn tf7* den konjugiert komplexen Wert der Größe V7 und dr das Volumen eines
Raumelements bezeichnet, dann gibt

d(PFx; y ;  z ;  t) = | Vr| 2 dz = S7!/7* dr
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die Wahrscheinlichkeit an, das betrachtete Teilchen im Raumelement dr anzutreffen.
Da sich das Teilchen mit Sicherheit irgendwo im Raum befindet, hat man die
DE-BROGLiEsche Wellenfunktion V7 so zu normieren, daß das Integral über S7? 7*, über
den gesamten Raum erstreckt, gleich eins wird:

J* ipy* dr = 1 . (Normierungsbedingung)

Der physikalische Zustand eines Quantensystems sei durch die Wellenfiinktion
S7 = (x; y ; z ;  t) charakterisiert. Der Mittelwert einer physikalischen Zustands-
größe L in diesem Quantensystem ergibt sich dann aus der Wellenfunktion S7 durch
die Beziehung

L =f'P*L'l'dT.

Dabei gibt L den für die betreffende physikalische Größe L charakteristischen
Operator an.
Die in der Quantentheorie auftretenden Operatoren sind Hermitesche Operatoren.
Als solche werden Operatoren bezeichnet, die linear und selbstadjungiert sind. Für
lineare Operatoren gilt die Beziehung

HciUi + c2 « 2 ) = CiÄWi + c2Lu 2 \

als selbstadjungiert wird ein Operator bezeichnet, der die Bedingungsgleichung

y wt£w2 dr = u 2 L*u* dr

erfüllt. Das Integral ist dabei über den gesamten Bereich der Variablen zu erstrecken.
Die u r und u 2 sind quadratisch integrierbare Funktionen.
Die wichtigsten Operatoren der Quantentheorie sind (in Ortskoordinatendarstellung)
der Operator des Impulses:

. > /ö  ö ö \p = —m\7 = —in ------1--------1------ ,
\ öx öy dz /

der Operator der kinetischen Energie:

„ P 2 h 2 h 2 ( ö 2 ö 2 ö 2 \
2m 2m 2m \ öx 2 dy 2 dz 2 J

der Operator des Ortsvektors, der eine Multiplikation mit dem Ortsvektor vollzieht:

r = r (x ;y ;  z),
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der Operator der potentiellen Energie, der gleichfalls in einer Multiplikation

E p = E v (x;y; z)

besteht, sowie der Hamilton-Operator der Gesamtenergie

H = Ek + Ep

und der zeitliche Operator der Gesamtenergie

E = i/z — .
dt

Die Gleichung

LW = EP

wird als Eigenwertgleichung des Operators L bezeichnet. Es besteht die Forderung,
daß die sich ergebenden Lösungen eindeutig, stetig und endlich sein müssen. Daraus
folgt, daß im allgemeinen nur für spezielle Eigenwerte L = ••• nichttriviale
Lösungen existieren. Diese Lösungen werden als Eigenfunktionen bezeichnet.
Wenn die Operatoren L und M kommutativ sind, so daß für alle Funktionen S7 die
Beziehung

(LM - ML) V7 = 0

gilt, so gehören zu den beiden Operatoren gleiche Eigenfunktionen. In diesem Fall
sind die physikalischen Größen L und M prinzipiell gleichzeitig mit beliebiger Ge-
nauigkeit meßbar. Dagegen sind für nichtvertauschbare Operatoren der Art

LM - ML + 0

die physikalischen Zustandsgrößen L und M im Sinne der HEiSENBERGschen Un-
schärferelation nicht gleichzeitig meßbar.
Für die verschiedenen Quantenzustände, in denen sich die Elementarteilchen befinden,
wird die zugehörige Wellenfunktion S7 = (x; y; z; t) durch die Schrödinger-
Gleichung

HW = EW

bestimmt. Im Fall stationärer Zustände geht diese Gleichung über in

Hy) = Ey), y) = y)(x;y;z),

wobei E die Gesamtenergie angibt. Aus ergibt sich die Massendichte des Teilchen-
stroms gemäß

j = ■ (y) — y)* Ay>).
2m
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Beispiele

195. Die Multiplikation mit einer komplexen Zahl c = a + ib stellt eine Operation dar. Es
ist zu bestimmen, unter welchen Bedingungen die Multiplikation eine HERMirEsche
Operation ist.

Lösung

Die Multiplikation mit einer komplexen Zahl ist linear, denn es gilt

C (ClUi + C2 U2 ) = CiCUi + c2 cu 2 .

Wenn die Zahl c = a + ib einen selbstadjungierten Operator darstellen soll, dann
muß. gelten

j* uf(a + ib) u 2 dx = J* u 2 (a — ib) uf dx,

d. h.

(a + ib) j* u* u 2 dx = (a — iZ>) J uf u 2 dx.

Diese Beziehung ist nur für b = 0 erfüllt, d. h., nur die Multiplikation mit einer reellen
Zahl stellt eine HERMirEsche Operation dar.

196. Unter der Voraussetzung, daß die betrachteten Funktionen im Unendlichen ver-
schwinden, ist nachzuweisen, daß der Operator

ein HERMiTEScher Operator ist.

Lösung

Die Differentation stellt eine lineare Operation dar. Um den Nachweis zu führen, daß
der Operator selbstadjungiert ist, gehen wir aus von

+ oo + oo

r * j /■ * du 2 jI u$p x u 2 dx = — / ui ih dx .
— oo —oo

Durch partielle Integration wird die rechte Seite gleich

+ oo

r 1 + « r öw J— ihüfu 2 + / iÄw2 -r — dx .
1 J -oo J dx

— 00
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Da Ui und u2 im Unendlichen verschwinden, verbleibt lediglich noch das zweite Glied,
das auch in der Form

+ OO + 00

r .. M , c * * .
I U21" ~dx~ = / U2 Px u i d*

— 00 — 00

geschrieben werden kann. Es gilt also
+ 00 + o o

j* ufp xu2 dx = j* u2 p*uf dx,
— oo — o o

womit der Nachweis der Hermitizität des Operators px erbracht ist.

197. Auf Grund der Definition des Impulsoperators

P = — i h V = ■
/ ö d d \

+ + (D\ dx oy dz /
und des Ortsoperators

r = r ( x ;  y; z) = (*; y ;  z) (2)
ist nachzuweisen, daß gleich gerichtete Komponenten des Impulses und des Ortsvektors
nicht gleichzeitig mit beliebiger Genauigkeit gemessen werden können.

Lösung

Wir greifen für diesen Nachweis die x-Komponente heraus. Es gilt

px =—ih-  - , x=x .  (3)
dx

Wenn zwei physikalische Größen L und M gleichzeitig meßbar sein sollen, so muß für
ihre Operatoren gelten

LMip — MLip = 0 .
Dagegen erhalten wir im vorliegenden Fall

. d z . dtpPx xy> = — 1 ß — (*V>) = -1 hx -- -----  1 h ,ox ox

/ . d \ . dy>xp xW = x — 1 h — = — 1 hx — ,\ dx / dx
d. h.,

(xp x — px x) ip = i hy .

Es können also die Größen x und px nicht gleichzeitig mit beliebiger Genauigkeit ge-
messen werden.

198. Es soll untersucht werden, ob die Ortskoordinate y und die Impulskoordinate px gleich-
zeitig gemessen werden können.
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Lösung

Es ist
. -  d

Px = - i h  — , y = y .dx
Daraus folgt

/ ö d \
(jw — ypx ) v = -i h — — y— v>.\ dx dx /

Da x und y voneinander unabhängige Variablen sind, folgt
d dy>

und damit

(ypx —p x y )v  = o»

Demnach sind die Ortskoordinate y und die Impulskoordinate px gleichzeitig mit be-
liebiger Genauigkeit meßbar.

—
199. Es soll untersucht werden, ob die Komponenten L Xi  L y , L z des Drehimpulses L =rXp

gleichzeitig gemessen werden können.

Lösung

Die Koordinaten des Drehimpulsoperators folgen aus

Px Py Pz

Hieraus erhalten wir

Lx = yPz — ZPy,
Ly — zp x — XPX ,
L x = xpy - yp x .

Weiter ergibt sich
L x Ly - (yp z — zpy ) (zp x — xp 2 ) =

= yPz ZPx — Z2PxPy - XyPx + XZPyP z .

Dagegen folgt
LyL x = (zp x - xp z ) (yp z - ZPy) =

= yzPxPx — xyp — z2px py .+ xp xzpy.
Damit erhalten wir

— L yL x = yp-.zpx — yzpx pz + xzp ypz — xp 2zpy .
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Beachten wir, daß

pzz — zPz = - i  h nebst yzpx pz = ypx zpz ,

so folgt
Ex L y LyLx — i h (xpy ypx) = i hLz .

Ebenso ergibt sich
LyLz L Ly — 1 hLx y

L ZL X L X L Z — 1 hLy .

Die Komponenten des Drehimpulses sind also nicht gleichzeitig meßbar.

200. Berechnen Sie den Operator der kinetischen Energie und untersuchen Sie, ob die
kinetische Energie gleichzeitig mit dem Impuls gemessen werden kann.

Lösung

Aus

folgt
_ P2 _ ( - iAV)  2 _ ,_ 2 A

2m 2m 2m
mit

\öx dy öz/ \öx2 dy 2 dz2 /

Wenn wir entscheiden wollen, ob beide Größen gleichzeitig gemessen werden können,
müssen wir berechnen:

-> > A / A
Ek p — pEk = — h 2 — (— i h V) — (— i h V) ( — h2 —

2m \ 2m
i ft? _

= — (AV-VA) .
2m

Die Reihenfolge, in der die Operatoren A und V auf eine Funktion angewandt werden,
ist ohne Einfluß auf das Resultat. Damit folgt

E k p - pEk = 0.

Kinetische Energie und Impuls eines Teilchens sind gleichzeitig meßbar.

201. Es soll die ScHRÖDiNGER-Gleichung aus der allgemeinen Form
HT(x\ y;  z; t) = E<P(x; y;  z; t) (1)

für den Fall des Potentials E p == E p (x;y;z)  abgeleitet werden.
16 Hajko, Elektrik
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Lösung

Der HAMiLTON-Operator H hat die Gestalt

£f = E k + E p . (2)

Für den Operator der kinetischen Energie ist zu schreiben:

E = pL-_k 2m 2m 2m

während für den Operator der potentiellen Energie gilt

E p = E p(x; y;  z).

Ferner ist
d

E = ih  — .dt

Damit folgt aus Gl. (1) die ScHRÖDiNGER-Gleichung

d¥z h 2
i h  — + — AW - E p(x; y ; z )W  = 0. (4)

202. Ermitteln Sie eine Lösung der ScHRÖDiNGER-Gleichung für den Fall, daß keine zeitlich
veränderlichen äußeren Kräfte wirken und daher der HAMiLTON-Operator H nicht von
der Zeit abhängt.

Lösung

Zur Lösung der ScHRÖDiNGER-Gleichung

VF
ih— =H(x- 9 y , z )¥  (1)

wird der Produktansatz

y;  z;  t) = (t) y> (x; y; z) (2)

verwendet. Wir setzen diesen in die ScHRÖDiNGER-Gleichung ein und erhalten

i/ty(x;y;*) = <p(t)Hy>(x;y;z). (3)dz

Wir separieren Gl. (3) nach den Variablen t und x,y,z und erhalten

1 h —-— „ , xdz Hy>(x;y;z)
-----TV- = — 7 --------r -  (4)9>(z) y>(x;y;z)
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Wenn wir die Separationskonstante mit E bezeichnen, so folgen aus Gl. (3) die beiden
Differentialgleichungen

dato)
i h —-— = E<p(t\ y ; z )  = Ey>(x; y; z) .  (5,1) (5,2)

d£

Gl. (5,1) hat die Lösung

- iAr
9>(0 = e * , (6)

Gl. (5,2) lautet, nach den einzelnen Summanden des HAMiLTON-Operators aufgelöst,

-h 2

—— Ay = E py> = £y. (7)
2m

Diese Gleichung wird als ScHRÖDiNGER-Gleichung für stationäre Zustände bezeichnet.
Wenn man ihre Lösung = Vn(x',y’,z) kennt, so läßt sich damit die Lösung der
ScHRÖDiNGER-Gleichung (1) schreiben:

( x ; y ;  z ; t )  = e h y>n ( x ;y ; z ) .  (8)

203. Der Grundzustand des Wasserstoffatoms wird durch die Lösungsfunktion der Schrö-
DiNGER-Gleichung

V = C e = 0,529 • 10“ 10 m (1)

beschrieben. Diese Funktion ist zu normieren. Wie groß ist nach Gl. (1) die Wahr-
scheinlichkeit, das umlaufende Elektron innerhalb einer Kugel vom Radius 4öi anzu-
treffen?

Lösung

Entsprechend der Normierungsvorschrift muß

j w * dz = 1 (2 )

sein, wobei das Integral über den gesamten Bereich, in
dem sich das Elektron auf halten kann, zu erstrecken ist.
Wir unterteilen diesen Raum in Kugelschalen (Bild 117)
mit dem Volumen

dr = 47rr 2 dr. (3)
Demnach muß gelten

00 2r

4rc |C| 2 J e ~ r 2 dr = 1. (4)
0

16*
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Zur Berechnung dieses Integrals verwenden wir die Formel
00

f x" e ~ fix ~ <5 )
0

und erhalten aus Gl. (4)

7T |C|  2 Gj = 1 bzw. C = !_  . (6)

Die Aufenthaltswahrscheinlichkeit innerhalb einer Kugel mit dem Radius 4gi ergibt
sich aus

4ai

J' dr = — 3 j* e ä? 4rrr 2 dr. (7)
o

Wenn wir transformieren

so ergibt sich
8

y w * dr = 1 J e - f  I 2 dl = 1 [e- l 2 + 21 + 2)]® =
0

- 0,00034 (64 + 16 + 2) + 2 A nor
= -------------------------------------------------------------- = lL9oü.

In 98,6% aller Fälle befindet sich das durch die Lösungsfunktion nach Gl. (1) be-
schriebene Teilchen innerhalb einer Kugel mit dem Radius 4gi.

204. Wie groß ist die Wahrscheinlichkeit für den durch die Lösungsfunktion
r

_ 1 äi

beschriebenen Grundzustand des Wasserstoffatoms, das Elektron innerhalb einer
Kugelschale mit dem Radius und der Dicke dr = 0,1 Gi anzutreffen (Bild 117)?

Lösung

Wegen der geringen Dicke der Kugelschale dr = 0,1 Gi ist eine Integration nicht er-
forderlich. Wir können daher schreiben :

2r
1 — dr

w* dr = e O1 4w 2 dr = 4 e* 2 — = 4 • 0,135 • 0,1 = 0,054.7TG1 Gl
Mit einer Wahrscheinlichkeit von 5,4 % befindet sich das Teilchen in der angegebenen
Kugelschale.
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205. Die Funktion

y„ = CÄ©e 2 (1)
mit den HERMiTEschen Polynomen

dne _ £2 n(n — D
Htf) = (-1)" e<2 — — = (2f)" + 7- (2I)- 2 + - (2)

d£ 1 !
sowie

& x h
Z = — ; Xo = J -------

x 0 ma)Q
stellt eine Lösung der ScHRÖDiNGER-Gleichung für den harmonischen Oszillator dar
(m Masse, co o Eigenfrequenz, x Auslenkung). Gl. (1) ist normieren.

Lösung

Zur Normierung der Funktion yn muß die Bedingung

y VW* dx = y dx = 1 (3)

erfüllt werden. Es gilt zunächst
+ OO + 00

y e-bS2 = C %~V n f df - <4 >
— 00 — 00

Der letzte Ausdruck ergibt nach partieller Integration
+ 00

(T d"“ 1 e“£2 
1 + o ° C d" -1  e - 2 1

«-v  | [a«)  -------44  (5)

— oo

Hierin verschwindet der erste Summand beim Einsetzen der Integrationsgrenzen, da
der Exponentialfaktor für das Verhalten der gesamten Funktion bestimmend ist. Der
zweite Summand wird weiter partiell integriert. Wenn wir dieses Verfahren «-mal an-
wenden, ergibt sich schließlich

+ 00

y yfä) df = C*(-l)" (-1)" y e 2 df. (6)

Aus Gl. (2) folgt

_ 2 .„ ,
df"

Ferner ist
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Wegen

vfö) dl = - l'y>2
n -dx=  2" n !

XqJ  x o
(8)

erhalten wir schließlich unter Beachtung von

(9)

für die gesuchte Normierungskonstante den Ausdruck

C. = - 1 =
y/2"nl y] ith ’

(10)

206. Der Quantenzustand eines in der ersten Grundschwingung befindlichen harmonischen
Oszillators wird durch die Lösungsfunktion der ScHRÖDiNGER-Gleichung

V>i = -CJT e 2

beschrieben. Wie groß ist die Wahrscheinlichkeit, das betrachtete Teilchen, ein Proton
mit der Masse m p = 1,67 • 10 -27  kg, im Intervall 2x 0 < x < 2 , lx0 anzutreffen? Es ist
w 0 = 5,21 • 10 14  s -1  . Die Bezeichnungen wurden wie in Beispiel 205 verwendet.

Lösung

Nach Beispiel 405, Gl. (2), gilt

mit
h

HAS) = 21, S = —

Wir erhalten damit für die gesuchte Aufenthaltswahrscheinlichkeit

Dabei ist
1,05 • 10~ 34

1,67 • 10" 27  • 5,21 • 10 14

xo =0 ,11  - IO’ 10  m.

Demnach hat der betrachtete Oszillator mit einer Wahrscheinlichkeit von 0,413% eine
Auslenkung zwischen 0,22 • 10“ 10  m und 0,231 • 10“ 10  m.
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207. Nach dem Greenschen Satz gilt

yyy av* — v* a%) d* = >k — v, da. o)

Dabei gibt u die Richtung der äußeren Normalen auf die Oberfläche a an. Es ist nachzu-
weisen, daß die Lösungsfunktionen y’i der ScHRÖDiNGER-Gleichung orthogonal sind.

Lösung

Das Integrationsgebiet wird über den gesamten Raum erstreckt. Da im Unendlichen
die Lösungsfunktionen yk und verschwinden, muß auch das Oberflächenintegral
verschwinden.
Nach Schrödinger gelten im stationären Fall die Gleichungen

2m 2m
Affin = (Ep ~ (E, - Ek j)rtj. (2)

Ek und Ei geben dabei die Gesamtenergien E in den Quantenzuständen k und / an.
Wenn wir die Gl. (2) in den GREENschen Satz einsetzen, erhalten wir

(E p — Et ) j'J'j' dr = (E p — Ek ) f W* dr (3)

und daraus
(E k — Ei) j’j’j’ VkV* d* = 0.

Für Ek 4= E t folgt somit die Orthogonalitätsbeziehung

// / W * dT = °’

208. An Hand der ScHRÖDiNGER-Gleichung für stationäre Zustände ist nachzuweisen, daß
die erste Ableitung der Wellenfunktion stetig ist, auch dann, wenn die potentielle
Energie sich sprunghaft verändert. Dieser Nachweis ist unter der Voraussetzung zu
führen, daß nur von der Ortsvariablen x eine Abhängigkeit besteht.

Lösung

Bei ausschließlicher Abhängigkeit von der Variablen x lautet die Schrödinger-
Gleichung für stationäre Zustände

h2 d2w
“ = (1)2m dx 2 ___________

Die potentielle Energie sei an der Stelle x = 0 unstetig
(Bild 118). Wenn man die ScHRÖDiNGER-Gleichung über --------------I-----------------
einen Bereich von x = —e bis x = 4-e integriert, so Bild 118



248 4. Quantentheorie

folgt

h 2 C d2q>
2m J dx 2 — E) dx = 0. (2)'p

Auf Grund der Beziehung

d (+e) d (— e)
dx dx

ergibt sich aus Gl. (2)

dy(+s) _ dy(— e)
dx dx = f <Et> ~ V dx-

Im Grenzfall e -> 0 verschwindet das rechts stehende Integral, und es bleibt

dy(+g) _ dy(— e)
dx dx

d. h., die erste Ableitung der Wellenfunktion ist stetig.

209. Aus der Kontinuitätsgleichung soll auf die Dichte des Teilchenstroms geschlossen
werden.

Lösung

Wir wenden die Kontinuitätsgleichung in der Form

zy + div J =0  (1)dt

an. Dabei bezeichnen wir mit q = q (x;y;z; t )  die mittlere Dichte der Teilchenzahl, mit J
die mittlere Dichte des Teilchenstroms. In der Quantentheorie haben wir zu setzen

e = !P!P*. (2)

Die Wellenfunktionen !P und *P* genügen den ScHRÖDiNGER-Gleichungen
Q!P h2

i h — + — A’P - EP = 0 (3)
dt 2m

und
a<P* ft2

— i ft ----- + — A«7* - E pP* = 0. (4)
dt 2m p

Wir multiplizieren Gl. (3) mit !P* und Gl. (4) mit !P und subtrahieren, so daß sich ergibt

/ 0!P ß!P*\ h2

i h P* — + V7 ----- + — (!P* A"P - •PA1 7*) = 0. (5)
\ dt dt 2m
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Auf Grund von Gl. (2) folgt weiter

— — — (!P* AS 7 - ¥ AS7*) = o. (6)dt 2m
Durch Vergleich mit der Kontinuitätsgleichung (1) ergibt sich somit

—> —> i/j
div J = v • j = — A * “ A 1 ). (7)2m

Hieraus folgt

7=  — (WS 7* - ¥7*V¥'). (8)
2m

Wir differenzieren Gl. (8) und erhalten

v7 = — (Vs 7Vsz* + W 2 s / * — Vs7*Vs 7 — s z*V 2 s7),2m
d. h.

—> \fi
X/J = — ( AS7* - V* AS7),2m

wie es gemäß Gl. (7) sein muß. J hat daher den Charakter einer Massenstromdichte.
Um die mittlere Dichte J des elektrischen Stromes zu erhalten, müssen wir J mit der
Elementarladung e multiplizieren. Es folgt für die elektrische Stromdichte

—>
j = eJ = — ( W* - *P* W).

210. Potentialschwelle. Die potentielle Energie sei wie folgt
vorgegeben :

I Ep = 0 für x < 0,
II Ep = E q für 0 x Z,
III Ep = 0 für x > Z.

(1) Bild 119

Eine derartige Potentialverteilung wird als Potentialschwelle bezeichnet. Es soll lediglich
eine Abhängigkeit des Potentials von der räumlichen Variablen x bestehen.
Von links falle ein Elektronenstrahl ein (Bild 119). Für die einzelnen Bereiche
von x sind die Quantenzustände zu berechnen. Insbesondere ist der reflektierte und der
durch die Potentialschwelle hindurchgehende Anteil des Elektronenstrahls zu be-
stimmen. Die Elektronenenergie sei E = 100 eV, die Höhe der Potentialschwelle
Eq = 50 eV, ihre Breite Z = 10“ 10  m.

Lösung

Die ScHRÖDiNGER-Gleichung für stationäre Zustände bei Abhängigkeit von nur einer
Variablen x lautet

d 2w 2m
-4 + — (E-Ep)y> = 0.dx2 h 2 (2)
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Wir setzen
, IlmE iE — E p
k - - " - J -E-

und erhalten für die Bereiche I und HI

(3)

n = 1,

dagegen für den Bereich II

! e - e q

N E (4)n = Wo

Für die Bereiche I und III ergibt sich somit die ScHRÖDiNGER-Gleichung zu

d 2w
= 0 ,dx 2

dagegen für den Bereich II

- k 2n& = 0 .  (6)dx

Die Lösungen in den einzelnen Bereichen lauten:

I y=  Vl (x) = Ai e ikx + B, e“  Ikx , x
II y = Vn  (x ) = A u e ikn ° x + B n e“  lfc"°x , (7)

III V = vm(x) = e lkx + B i n  e“  lkx .

Bis auf den nicht aufgeführten Zeitfaktor e 1CÜ/ erhalten wir also ebene de-Broglie-
Wellen.
Dem von links einfallenden Teilchenstrom entspricht im Bereich I eine von links nach
rechts fortschreitende de-Broglie- Welle. Es wird daher Af = 1 gesetzt. Ferner können
wir B ra = 0 annehmen, da 2?m + 0 eine von rechts einfallende Welle bedeuten würde.
Zur Bestimmung der Amplituden B19 An , Bn , Am verwenden wir die Stetigkeit der
Lösungsfunktion und ihrer ersten Ableitung. Es muß also erfüllt sein :

Vi(0) = n(0), V>n(D = m(Z),

<fyi(0) = dy n (0) dyn(Z) = dym(Z)
dx dx ’ dx dx ’

Daraus folgt:
1 + Bi = A n + BU9

An  e ikn° l + Bn = A n i Q l k l  ,

1 — Bi = n0 (An ~ Bii)9

An  e 1*"0 ’ — B t l  e~ ikn o l = a 1u  n0 e lft
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Hieraus erhalten wir die Lösung
_ — 2 i (1 — n2) sin kn o l , 2 e -1 *"0 '(l + n0 )
B t = ----------------------------- , An  = -----------■: ----------

zi\ ZL
2 e1'"’»' (1 - n0 ) , 4rao e - i , t I

Bji ------------------------ , Am -----r - - -  9
&

mit
A = e”  Ifc"° z (1 4- wo) 2 - e ikn° l (1 - w 0 ) 2 .

Für den Elektronenstrom der einfallenden Welle ergibt sich
iA iA / dp  ixk \

Je =— (yiW* - viW = 7--------- Q - ikx —r~ ’2m 2m \ dx dx /
d. h.,

_ A/c
Je ------- •m (10)

In gleicher Weise erhalten wir für den Elektronenstrom der reflektierten Welle B& {kx

und für den der gebrochenen Welle cikx

hk „ x hk
---- BiB* , Jd -------m--------------------m (11)

(12)

(13)

(14)

Als Reflexionskoeffizient r und als Durchgangskoeffizient d finden wir somit

Wir setzen E > E Q voraus. Aus den Gin. (9) u. (12) folgt dann
_ (1 — «o) 2 sin 2 kn o l

2«o(l + cos 2 kn Ql) + sin 2 kn Q lQ. + wjj) ’

d=  _______________4»o _______________
2«q(1 + cos 2 kn Q l) + sin 2 kn Ql(\ + wjj)

Wir setzen die vorgegebenen Größen ein und finden aus Gl. (4) die Brechzahl

I e - e q
N E

Aus Gl. (3) folgt für die Wellenzahl

2mE / 2 • 9,1 • 10" 31 • 100 • 1,6 • 10" 19

- V h 2 ~ N (1,05 • 10- 34 )2 m

= 5,39 -10-  24

1,05 -10-  34 ’ ’

(1,05 • 10- 34 ) 2

Weiter erhalten wir
kn o l = 5,14 • 10 10  • 0,707 • IO’ 10  = 3,634,
sin kn o l = sin 208,2° = —sin 28,2° = —0,475,
sin2 kn o l — 0,226, cos 2 kn o l = 0,774.
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Daraus ergibt sich
(1 - 0,5) 2 • 0,226 0,0565

r ~ 2 • 0,5 (1 + 0,774) + 0,226 (1 + 0,25) “ 2,056

Es werden also weniger als drei Prozent reflektiert; der weitaus größere Teil des Strahls
geht durch die Potentialschwelle hindurch.

211. Es liege eine Potentialschwelle wie in Beispiel 210 vor, jedoch sei die Höhe E Q der
Schwelle größer als die Teilchenenergie E. Wie lauten die Ausdrücke für den reflek-
tierten, wie für den gebrochenen Teil des einfallenden Strahls? Welche Zahlenwerte er-
geben sich für den Fall E = 10 eV, E o = 20 eV?

Lösung

Gemäß Gl. (4) in Beispiel 210 wird die Brechzahl n0 imaginär:

/ 2? Eq , / Eq E . -
«o =7— = E~ = 1 |Ko1 -

Damit folgt aus Gl. (9) von Beispiel 210, wenn wir beachten, daß sin i <p — i sinh 92 ist,
2(1 + |n0 | 2) sinh k |w 0 | lBi = ------------------------------ ,

A
4i|rt 0 | e “  i k I

A ’
mit

A = (1 + i |»ol)2 - e- Äl”ol t (1 - i |n 0 |) 2 •
Hieraus erhalten wir

= ß __________(1 + |w0 | 2) 2 sinh 2 £|w0 | l __________
11  (1 — |«o| 2) 2 sinh 2 &|«o| l + 4 |»ol 2 cosh 2 k |n 0 | l ’

d=A A* = __________________4 __________________1,1 111 (1 — |»o| 2) 2 sinh 2 k |»ol l + 4 |w0 1 2 cosh 2 k |w0 | l '
Mit den gegebenen Größen folgt

Daraus folgt weiter

sinh£|«o| l = sinh 1,63 = 2,45, sinh 2 1,63 = 6,01,
cosh £|« 0 | l = cosh 1,63 = 2,65, cosh 2 1,63 = 7,01,
e 2ft|n0 | i  = e 3,26 = 26,1.
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Diese Werte, in die Formeln für r und d eingesetzt, ergeben

(l + l 2)2 -6,01 _
4 - P -  7,01

r =

4-1
4 1 =

Demnach durchlaufen 14,3 % der einfallenden Elektronen die Potentialschwelle, obwohl
ihre Energie E kleiner als das zu überwindende Potential E o ist (quantenmechanischer
Tunneleffekt).

212. Wie groß ist der Anteil der eine Schwelle durchlaufenden Elektronen, wenn wie im
vorhergehenden Beispiel E = 10 eV, E o = 20 eV, die Schwellenlänge aber l = 10 -9  m
beträgt?

Lösung

Für die Werte nQ und k ergibt sich wie in Beispiel 211

w0 =i ,  k = 1,63 • 10 10  m" 1 .
Damit folgt

k |»o| Z = 1,63 • 10 10  • IO’ 9 = 16,3 > 1.
Nach Definition der hyperbolischen Funktionen gilt

e <p _ q-<p e
?’+  q-v

sinh <p = ------ -----  , cosh <p = ------ -----  .
2 2

Für (p > 1 kann der Summand e -9’ vernachlässigt werden. Damit folgt
e fc l"oP

sinh £|« 0 1 Z ä cosh k \n  Q \ l  ä — -— .

Der im vorhergehenden Beispiel abgeleitete Durchlässigkeitskoeffizient

4|«o|  2 .d= _______________________________________
(1 — |« 0 1 2) 2 sinh2 A;|w0 | Z + 4 |w0 | 2 cosh 2 k |« 0 | Z

geht damit wegen k\n Q \l > 1 über in
16 |w0 | 2 e- 2fc l"ol z

(1 + M 2) 2 *

Mit den gegebenen Zahlen folgt

Der quantenmechanische Tunneleffekt tritt nur auf, wenn die Schwellenbreite von
atomarer Größenordnung ist. Mit zunehmender Schwellenbreite nimmt die Durch-
lässigkeit der Potentialwelle sehr stark ab.
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213. An eine Wolframkatode wird ein elektrisches Feld gelegt. Es ist abzuschätzen, von
welcher Feldstärke an die entstehende „kalte Emission“ einen nachweisbaren Elek-
tronenstrom ergibt. Für die effektive Austrittsarbeit W sei der Wert W = 4 eV an-
genommen.

Lösung

Die Austrittsarbeit W muß aufgewendet werden, um ein Elektron aus dem Metall frei-
zusetzen. Die potentielle Energie des Elektrons ist im Metall kleiner als im Vakuum. Sie
sei im Metall gleich Null angesetzt. Wenn kein äußeres Feld anliegt, so ist außerhalb
des Metalls die potentielle Energie gleich der Austrittsarbeit W.
Das angenommene äußere Feld wirkt auf das Elektron mit der Kraft eE senkrecht zur
Metalloberfläche (Bild 120). Die Richtung dieser Kraft wählen
wir als x-Achse. An der Grenzfläche des Metalls ist x = 0 .
Als Potential der äußeren Kraft ergibt sich —e\E\x. In dem
vom elektrischen Feld erfüllten Vakuum beträgt die poten-
tielle Energie

E» = W—e\E \x .  (1)
Nach Beispiel 412 ergibt sich als Durchlässigkeitskoeffizient für eine Schwelle der Breite l

l n ° !  2 
e -2k |n0 p

(1 + l«o| 2) 2
d = (2)

Im vorliegenden Fall kann die Gesamtenergie E der Elektronen gegenüber der poten-
tiellen Energie vernachlässigt werden. Somit folgt

/2mE l~E p — E /2m /2m- a/ 2 7 £ J ( E P ~ E) & J E P ■ <3 )

Ebenso wird die infolge Elektronenemission induzierte Kraft vernachlässigt, da ihr
Potential in der effektiven Austrittsarbeit enthalten ist.
Die potentielle Energie ist nicht konstant, sie nimmt linear ab. Wir zerlegen die Potential-
verteilung in Schwellen konstanten Potentials der Breite dx. Für die Durchlässigkeit
folgt

d = d r e“ 2fc l n ° (X1)  l dX1 = d 2 e -  2ft l n o( ) |dx2 = j e “/ fci " o(x ) |dJC 
<

Dabei ist das Integral im Exponenten von x r = 0 bis zu einem Wert x n zu erstrecken, für
den das Potential E p = 0 wird. Aus Gl. (1) ergibt sich

PF
j->7 • (5)

Wir setzen die Gin. (3) u. (5) in Gl. (4) ein und erhalten
w

2

d = dexp [ -  - y/2 y J w _ e g| x (6)
0
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Zur Auswertung des Integrals setzen wir

e \ E \
W

und erhalten
w

3 2 W 2

3 <PI ’o

Somit folgt

x dx = -j

Metallplatte (Wo)

< e"
___ _3_T

_ 4 yilm W 2

3 Jzrl
d = d exp

Wir verwenden die Schaltung nach Bild 121, und es
ergibt sich ein gleichmäßig fließender Emissions-
strom. Aus seiner Stärke läßt sich die Emissions- _
dichte /bestimmen. Für sie erhalten wir nach Ausrechnung des Faktors d, die hier nicht
wiedergegeben wird,

H.l 2,48- 10- 17  lzF f
14= ---------

Bild 121

_ _  2/i

4 y/2m_ W 2

3 h J ' r l
Am-2  .

Mit den entsprechenden Zahlenwerten für e, h, m (W  in eV ausgedrückt) folgt
___________ 3_-

4 • V2 • 9,1 • 10~ 31 (l ,6 • IQ- 19 W) 2

3 • 1,05 • 10 -34 • 1,6 • 10- 19 |k|

Hl 2,48 • 10- 17  | r
| j |  ~ 1 ,6 - io - i r  “ p Am' 2

bzw.

6,85 • 10 9 W 2i l Isl2

7 = 1,55 • 10 2 !—L expvv
Am  -2  .

Wir setzen die effektive Austrittsarbeit W = 4 eV ein und finden

6,85- 10 9 *4 2
j = 1,55 • 10 2 k exp4

Am-2 =

54,8-109

10 l*lIn 10  = Am" 2_ , i-±p r 54 >8 • io9

= 38,7 |jEj ex P ------- —

23,8-109

= 38,7 R • 10 1*1 Am" 2 .
Hiernach ist zu erwarten, daß erst von Feldstärken der Größenordnung |E| = 10 8
••• 10 9 V m -1  an bei Wolfram eine kalte Emission nachweisbar wird.
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Aufgaben

280. Untersuchen Sie, ob das Quadrat des
Drehimpulses gleichzeitig mit einer
Komponente des Drehimpulses gemes-
sen werden kann.

281. Lösen Sie die ScHRÖDiNGER-Gleichung
unter der Voraussetzung, daß die
betrachteten Teilchen keinen äußeren
Kräften unterliegen, d. h., daß die
potentielle Energie E p = 0 ist. Weiter
sei vorausgesetzt, daß eine räumliche
Abhängigkeit nur von der Variablen x
besteht.

282. Der Grundzustand des Wasserstoff-
atoms sei durch die Funktion

271. Untersuchen Sie, ob der Operator
d 2A = — z-einHERMiTEscher Opera-

torist. 8x

272. Untersuchen Sie, ob die folgenden
Operatoren HERMiTESche Operatoren
sind:

273. Zeigen Sie, daß die Anwendung des

Operators x auf die Funktion ex

dx
ein anderes Ergebnis liefert als die

d
Anwendung des Operators x —— .dx

274. Zu welchem Ergebnis führt die An-
/ d VWendung des Operators L = —— f- x\ dx /

auf die Funktion u (x) = sin x?
275. Unter welcher Bedingung ist es ge-

stattet, den Operator F2 — G 2 in
(F + G)(F — G) umzuformen?

276. Untersuchen Sie, ob die kinetische
Energie und eine Ortskoordinate
gleichzeitig gemessen werden können.
Was folgt daraus zur Frage der gleich-
zeitigen Meßbarkeit von kinetischer
und potentieller Energie?

277. Untersuchen Sie, mit welchen Orts-
koordinaten die Komponente L x des
Drehimpulses gleichzeitig gemessen
werden kann.

278. Untersuchen Sie, mit welchen Impuls-
koordinaten die Komponente L x des
Drehimpulses gleichzeitig gemessen
werden kann.

279. Berechnen Sie das Quadrat des Dreh-
impulses in cartesischen Koordinaten.

1

bestimmt. Errechnen Sie die Wahr-
scheinlichkeit, das Elektron im Bereich
dr = ßi + 3 • 10 -12  m anzutreffen
(Ö1 = 0,529 • 10" 10  m).

283. Wie groß ist die Wahrscheinlichkeit, im
Grundzustand des Wasserstoffatoms
das Elektron im Abstand r > 2«i an-
zutreffen?

284. Wie groß ist die Wahrscheinlichkeit, im
Grundzustand des Wasserstoffatoms
das Elektron im Abstand a r < r < 2a i
anzutreffen?

285. Normieren Sie die Lösungsfunktion der
ScHRÖDiNGER-Gleichung

y = C 2 -  e -5  -

286. Berechnen Sie die Wahrscheinlichkeit,
für den in Aufg. 542 angegebenen
Quantenzustand das Elektron im Raum
4«i < r < 4,05 anzutreffen.

287. Wie groß ist die Wahrscheinlichkeit,
bei einem in der ersten Grundschwin-
gung befindlichen harmonischen Oszil-
lator das betrachtete Teilchen im Inter-
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Stöße an, die ein im Kem enthaltenes
a-Teilchen je Sekunde auf den Poten-
tialwall ausübt; die Geschwindigkeit v
folgt aus der Wellenlänge der de-Bro-
GLiE-Welle. Die Wellenlänge ist größen-
ordnungsmäßig gleich dem Kern-
durchmesser 2r 0 2 • 10“ 14  m. Zur
Ableitung der Halbwertzeit beachte man
das Zerfallsgesetz N(t) = N o e -A*.

294. Die effektive Austrittsarbeit des Nickels
werde W ef{ = 10 eV gesetzt. Welche
Spannung muß angelegt werden, um
einen durch kalte Emission entstehenden
Elektronenstrom nachweisen zu können?

295. Bestimmen Sie die Energieniveaus und
die Lösungsfunktionen für das in
Bild 122 dargestellte Potential unter
der Voraussetzung E < Eq.

I fp
---------------------------- ----------------------------

vall x Q < x < 1,1 x 0 anzutreffen?

Xo=  J ------- .V ma)Q

288. Für einen in der ersten Grundschwin-
gung befindlichen Oszillator sei co o =
= 2,95 - IO 14  s“ 1 . Die reduzierte Masse
zweier gegeneinander schwingender
Sauerstoffatome ist m = 13,3 • 10“ 27  kg.
Wie groß ist die Wahrscheinlichkeit,
eine Auslenkung im Bereich
1,55 • IO“ 11  m < x < 1,60 • 10" 11  m
anzutreffen?

289. Berechnen Sie die Durchlässigkeit d
einer Potentialschwelle der Höhe E o =
= 300 eV, der Breite Z = 10" 10  m für
Elektronen mit der Energie/? = 400eV.

290. Berechnen Sie die Durchlässigkeit d
und das Reflexionsvermögen r einer
Potentialschwelle der Höhe E o =
= 300eV und der Breite l = 10“ 11 m
für Elektronen der Energie E = 100 eV.

291. Wie verändert sich die Durchlässigkeit
der Schwelle in Aufgabe 290, wenn
sich die Schwellenbreite auf l = 10 -10  m
verändert?

292. Eine Potentialschwelle habe die Höhe
Eq = 200 eV, die Elektronenenergie sei
E = 100 eV. Welche Breite l müßte die
Schwelle haben, damit 50 % der einfal-
lenden Elektronen reflektiert werden?

293. Eine Potentialschwelle habe die Höhe
Eq = lOMeV, die Breite/ = 3 • 10“ 14  m.
Wie groß ist ihre Durchlässigkeit für
a-Teilchen der Energie E = 4,8 MeV?
Schätzen Sie die Zerfallskonstante
A = nff und die Halbwertzeit Ti/2 ab.
Die Größe n3 = v/2r0 gibt die Zahl der

Bild 122

296. Aus der allgemeinen Formel für den Mit-
telwert einer Quantengröße L ist die zeit-
liche Ableitung des zugeordneten Her-
MiTESchen Operators L zu bestimmen.

297. Bestimmen Sie die zeitliche Ableitung
eines von der Zeit t nicht explizit ab-
hängigen HERMiTESchen Operators
L = AB.

298. Berechnen Sie die zeitliche Ableitung
der Koordinaten x, y, z.

299. Berechnen Sie die zeitliche Ableitung
des Impulsoperators.

4.3. Das Spektrum des Wasserstoffs und der wasserstoffähnlichen Atome

Für die Untersuchung kugelsymmetrischer Probleme wird der Laplace-Operator in
Kugelkoordinaten dargestellt:

A A 1 AA = A r + — A . v ,r 2

17 Hajko, Elektrik
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. 1 ö / 2 d \ A 1 d / . Q ö \ , 1 ö 2A r = -------- 1 r 2 — I ,  A# „ = ------------ 1 sm# — I d----------------- .
r 2 dr \ ör J * sin & d& \ d& J sin 2 & d(p 2

Zwischen den verwendeten cartesischen Koordinaten x, y, z und den eingeführten
Kugelkoordinaten r, <p bestehen dabei (Bild 123) die Beziehungen

x = r sin cos cp, y = r sin ft sin <p, z = r cos ft.

Aus der Darstellung des LAPLACE-Operators in Kugelkoordinaten folgt für den
Operator T r des nur vom Radius r abhängigen Anteils der kinetischen Energie

Ä 2
T r = T r(r) =

2m

während das Quadrat des Drehimpulses mit dem Operator

L 2 = L 2 (ft,<p) = -h  2 A &t<p

verknüpft ist.

Bild 123 Bild 124

Bei Verwendung dieser beiden Operatoren erhält die ScHRÖDiNGER-Gleichung für
stationäre Zustände die Form

Ttf + “V + (E p - E )y  = 0 .2mr z

Beim Wasserstoff und bei den wasserstoffähnlichen Atomen wird die Kernladung ze +

von einem Elektron e“ umkreist (Bild 124). Die potentielle Energie des Elektrons ist

ze 2

47t8 0 r
p = -
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Zur Berücksichtigung der Kernmasse wird im folgenden die Elektronenmasse m
durch die reduzierte Masse

mm k
Z* = -----m + m k

ersetzt. Des weiteren wird die Variable

2zr
Q h

eingeführt, wobei

4to 0 
2

a i -------- - - -pLe z

den Radius der innersten Elektronenbahn des Wasserstoffs nach der BoHRschen
Theorie angibt.
Damit erhält die Lösung der ScHRÖDiNGER-Gleichung die Form

-3.
V = 9?) = (costf) e*’”’’ e 2

Hierin bedeutet

L ) =
d£

na r

das LAGUERREsche Polynom, wobei
jfc

ein Polynom fc-ten Grades ist. Der Ausdruck
, , W d ,m |

- f 2 ) 2 — p ( (£)
d<?

gibt die zugeordnete (tesserale) Kugelfunktion der (zonalen) Kugelfunktion Z-ten
Grades

an.
Die Hauptquantenzahl n bestimmt das Energieniveau

- z 2 e4 u 1 1 „E = E n -- ------------ ----------- 9 n = l ,  2, 3
(4tu8 0 ) 2 2ä 2 n 2

17*
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die Nebenquantenzahl l das Quadrat des Drehimpulses

L 2 = Li = h 2 l(l +1) ,  l = 0, 1, 2, 3,

die magnetische Quantenzahl m die z-Komponente des Drehimpulses

L z = hm, m = 0, ±1 ,  + / .

Das Eigenwertproblem

L 2 y> =

wird durch die Eigenwerte L 2 = L 2 und durch die Eigenfunktionen

y = = / (/ ~ l ?w | ) !  + 1 )  -p r  i ( cos  ) e iw

V (l + |w?|)! 4k

gelöst. DerFaktor vor der Klammer ist dabei so gewählt, daß die Eigenfunktionen ipi tTn

auf der Kugeloberfläche mit dem Wert 1 normiert sind. Es gilt
2tC 7t

J y ?>) sin# d# d<p = <5 1>r
0 0

Dabei bedeutet
„ / + 1 m = n

m ' n “ \ 0 m + n
das Kroneckersymbol.
Zur Charakterisierung der Quantenzustände verwendet man Kurzbezeichnungen:
Die erste Größe gibt die Hauptquantenzahl n an. Die zweite Bezeichnung steht für
die Nebenquantenzahl /. Der Zustand l = 0 wird mit dem Symbol s, l = 1 mit p,
l = 2 mit d, l = 3 mit /, l = 4 mit g usw. bezeichnet.

Beispiele

214. Fertigen Sie eine Skizze der Spektrallinien des Wasserstoffatoms an.

Lösung

Das Energieniveau des Elektrons im Atom ist durch die Formel

„ „ z2 e*!* 1
E “ n “ (47T€0 ) 2 2h 2



4.3. Das Spektrum des Wasserstoffs und der wasserstoffähnlichen Atome 261

bestimmt, wobei für Wasserstoff z = 1 zu setzen ist. Im Falle n = 1 erhalten wir

(1,6 • IO -19 )4 • 9,1 • IO -31

E1 (4 -3,14- 8,854- 10“ 12 ) 2 ■ 2 • (1,05 • 10~ 34 ) 2 J 21 >8 ’ 10 J

= -21,8 • IO'  19  • 6,25 • 10 18 eV = -13,6 eV.

Dabei wurde in erster Näherung die reduzierte
Masse gleich der Elektronenmasse gesetzt.
Die Energie von 13,6 eV ist aufzuwenden, um
das Elektron vom Wasserstoffatom abzutren-
nen, es ist die lonisienmgsenergie des Wasser-
stoffs.
Für den Fall n = 2 erhalten wir demgemäß

_ z 2 e*i* £ =
2 (47T£0 ) 2 2fc2 2 2

-13,6
= eV = -3,4 eV,

4

das ist ein Viertel des Wertes für n = 1 . In glei-
cher Weise folgen die Energiewerte für die
Hauptquantenzahlen n = 3, 4, 5, •••. Für eine
graphische Darstellung der Energiezustände
wählen wir das Niveau des Zustandes n = 1
als Nullinie. Der Fall n = 2 entspricht somit
einem Energieniveau von —3,4 — (— 13,6)eV=
= 10,2 eV. Für n -► oo nähert sich das Energie-
niveau dem Grenzwert 13,6 eV (Bild 125).
Wenn das Elektron aus einem Zustand n = wa

in einen anderen Zustand n = springt, wird bei wa > ne Strahlung emittiert. Die
Frequenz der emittierten Strahlung ergibt sich nach dem Bohrschen Postulat zu

Lymanserie

Bild 125

, _ _ z 2 e*p / 1 1 \hv = E a - E e = ----— -z H -----j .
(47ve0 ) 2 h 2 \n 2 n 2 )

Nach ihrem Endzustand we werden die emittierten Spektrallinien in Serien zusammen-
gefaßt. In Bild 125 ist auch die BALMER-Serie dargestellt, die alle auf dem Zustand we = 2
endenden Spektrallinien enthält.

215. Berechnen Sie die Wellenlänge der H a -Linie in Luft unter Normalverhältnissen. Die
Brechzahl der Luft beträgt dabei n = 1,000293.

Lösung

Nach Beispiel 214 ist die Frequenz der emittierten Linie durch die Beziehung

_ z 2 e*p / 1 1 \
(4k£ 0 ) 2 2A2 \n 2 n2 )

hv = Ea — E e (1)
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bestimmt. Wir legen der Berechnung die Wellenzahl v = v]c zugrunde und erhalten

v 1
V = — = -Tc Ä

(2)

wobei
& _ 27T2 eV

(4k£0 ) h 3 c 8e2 h 3 c

die RYDBERG-Zahl angibt.
Wir berücksichtigen, daß für Wasserstoff gilt

1
m

1
- m - —

+ 1836

= ------;—w H + m
= m

(3)

(4)

und es folgt
(1,602 • 10 -19 )4 • 9,109 • 10’ 31

R„ = _____________________ __________________
8 (8,854 • IO'  12  ) 2 (6,624 • 10" 34 ) 3 • 2,997 • 10 8

1
~F m

1836

(5)

Als genauer Wert für die RYDBERG-Zahl des Wasserstoffatoms im Vakuum ergibt sich
hiermit

R H = 1,09677 • 10 7 m- 1 . (6)

Die Wellenlänge der emittierten Linie werde im Vakuum mit 2, in Luft dagegen mit 2j
bezeichnet. Aus den Gin. (2) u. (3) folgt damit

2 _ _ J?hl
4 ~ nL ~~R '

(7)

Dabei bezeichnet R n die RYDBERG-Zahl für Strahlung im Vakuum, R Hl für Strahlung
in Luft.
Wir erhalten damit aus den Gin. (6) u. (7)

Rhl = = 1,000293 • 1,09677 • 10 7 m" 1 = 1,09709 • 10 7 m’ 1 .

Bei Emission der H a -Linie ist wa = 3 ,  we = 2 ,  ferner z = 1 . Damit folgt

V = 4- = Ahl = 1,09709 • 10 7 • m’  1 = 0,152374 • 10 7 m’ 1 (9)
ä \2  3 v 36

(8)

und
7,2 • 10" 7

Ah “ = 1,09709 m = 6562 » 8 - 1Q  ~ 1Om - (10)

216. Für einfach ionisiertes Helium werde eine Linie der Wellenlänge AHe = 6560,4 • 10" 10  m
gemessen. Sie entspricht dem Übergang von wa = 6 auf we = 4 .  Die Messung der
H a -Linie ergebe die Wellenlänge = 6563,1 • 10 -10  m. Berechnen Sie daraus die
RYDBERG-Zahl für das Spektrum des einfach ionisierten Heliums. Für Vakuum ist
Rh = 1,09677 • 10 7 m- 1 .
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Lösung

Die Wellenlänge der vom Helium emittierten Strahlung bestimmt sich aus

£ = z2* He (k - ) =4Rae  ~ = ÄHe (4 - 1) = ä

Für die H a -Linie gilt die Beziehung
1 „ l 1 11  5

77"  36

Hieraus folgt

Ah __ -Rhc

He -Rh

Korrekturen infolge der Einwirkung des umgebenden Mediums heben sich auf. Die
RYDBERG-Zahl des einfach ionisierten Heliums im Vakuum ergibt sich damit zu

A 6563 1
7?He = Rh ~ = 1,09677 • IO7 ' ’m-  1 = 1,09722 • 10 7 m" 1 .xHe 6560,4 ----------------------

217. Aus den Werten der RYDBERG-Zahl für Wasserstoff und für einfach ionisiertes Helium
ist die Elektronenmasse zu bestimmen.
Die Kernmasse des Heliumatoms ist zwHe = w a = 6,6447 • 10~27  kg, die Kernmasse des
Wasserstoffatoms m n = m v — 1,6726 • 10“ 27 kg. Für die betreffenden RYDBERG-Zahlen
gelten die genauen Werte RH = 1,0967757 • 107 m“ 1 , RHe = 1,0972226 • 107 nF 1 .

Lösung

Die RYDBERG-Zahl ist durch den Ausdruck

definiert, wobei

mm k
;—m 4- m k

die reduzierte Masse angibt.
Wir bestimmen das Verhältnis der RYDBERG-Zahlen von einfäch ionisiertem Helium
und Wasserstoff :

-Rrc _ He _ He + _ fflHe ( H + #0

*h jWh mmn m H (wHe + ™) ‘
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Wir lösen diese Beziehung nach m auf und erhalten

_ - He — Rh
Rh Rhc
fnH

in Zahlen
1,0972226— 1,0967757 t

" - (0,65573 - 0,16513) -10»  118 -2112L22212S:

218. Bestimmen Sie den Operator L z der z-Komponente des Drehimpulses in Kugel-
koordinaten.

Lösung

Gemäß Beispiel 199 gilt in cartesischen Koordinaten

L z = xp y — ypx = — ih \ x  —

Wenn wir voraussetzen, daß r und # konstant sind und nur <p sich ändert, so folgt

dv> dvr dx dy dy [ dy dz
d<p dx dy dy dy dz dy '

Wir setzen den Zusammenhang von cartesischen und Kugelkoordinaten ein und er-
halten

dy dy z • q • x , öy . a dy , dy
dT dx dy dx dy

d. h.
d d d

o(p oy ox
Daraus folgt

r ö ö \ . .  dL z = -ih x — -----  y— = -iä — .
\ dy dx / d(p

219. Lösen Sie die Eigenwertgleichung L ztp = L z y und bestimmen Sie die Eigenwerte L,

Lösung

Es ist
d

L z = iÄ — .
dg?

Somit lautet die Eigenwertgleichung

—ih — = Ljp.
o<p
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Die Lösung mit Hilfe eines Exponentialansatzes bringt das Resultat

+ r iL  i= const • exp ------- .[ h J
Wenn diese Funktion eindeutig sein soll, muß der Bruch L z /h ganzzahlig sein. Daraus
folgt

L z = mh, m = 0, ±1 ,  ±2, .. .

220. Es ist zu zeigen, daß die Lösung 9>) der Eigenwertgleichung L 2w = L 2 v
auch eine Lösung der Eigenwertgleichung L z y = L z y ist. Was folgt daraus bezüglich L 2
und L z ?

Lösung

Der Ausdruck

9>) = const Pj ml  (cos #) e0”9’
— —>

ist eine Lösung der Differentialgleichung L 2ip = L 2 y .  Wenn wir diese Lösungsfunktion
in die Gleichung L z y = L z y einsetzen, erhalten wir

-ih [const (cos ff) e*'”’’] = L z const P{m|  (cos ff) e" 9 ,
O(p

d. h. auf beiden Seiten gekürzt,

=£ 2 e im’’
d(p

oder
hm = L z . —►

Das Quadrat des Drehimpulses L 2 und die Komponente L z sind also in dem durch
repräsentierten Quantenzustand gleichzeitig meßbar.

221. Untersuchen Sie, ob die durch den HAMiLTON-Operator H dargestellte Gesamtenergie
—>

und das Quadrat des Drehimpulses L 2 gleichzeitig gemessen werden können. Welche
Schlußfolgerungen ergeben sich daraus für die ScHRÖDiNGER-Gleichung?

Lösung

Es gilt
h 2H = E k +E p = - A+ p(r, , 9>).

Der LAPLACE-Operator A wird zerlegt in

A = A. + L A*„.
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Damit ergibt sich

H = - ( Ar + - ) + E,(r, &, <py = T r(f) + + E,(r, &, V ) .
\ r / AP*

Da L 2 nur von den Winkelvariablen # und g?, T r dagegen von r abhängt, folgt

HL 2 - ~L2 H = E PL 2 - L 2 EP .
Dieser Ausdruck ist Null, wenn die potentielle Energie nicht von den Winkelvariablen #
und (p abhängt. Das gilt z. B. für Zentralkräfte. Bei Zentralkräften mit einem Potential
E p = Ep(r) ist also

HL 2 —~L2 H = 0.
In diesem Falle sind Gesamtenergie und der Betrag des Drehimpulsvektors gleichzeitig
meßbar. Das bedeutet, daß auch die Eigenfunktionen der beiden Eigenwertgleichungen

Hip = Eip und L 2 tp = L 2 tp
übereinstimmen. Die erste der beiden Beziehungen ist die ScHRÖDiNGER-Gleichung für
stationäre Zustände:

L 2ip
TrV + - -  V’ = 0 .2 r 2

Hierin kann man also wegen der zweiten Eigenwertgleichung den Differentialausdruck
—> —>
L 2 tp durch L 2tp = 1(1 + l)/z 2 y> ersetzen. Für den Fall E p = E p(r) folgt damit die Schrö-
DiNGER-Gleichung

TrV + —t~2 h" y> + (E p - E)y> = 0 .2pr 2

Sie enthält nur noch r als unabhängige Variable.

222. Es ist die ScHRÖDiNGER-Gleichung für ein wasserstoffähnliches Atom mit dem Potential

47r€O r

zu lösen. Dabei ist vorauszusetzen, daß y>(0) einen endlichen Wert annimmt und
lim y = 0 gilt. Der Bahndrehimpuls sei Null.
r->oo

Lösung

Wegen l = 0 sowie
h2

2p
h2 d 7 2 d

2{Jtr 2 dr \ dr
erhalten wir die ScHRÖDiNGER-Gleichung in der Form

d 2y 2 dtp 2ju
dr 2’ + 7 d7 + "F

ze2

4 eo r
+ E ]tp = 0 .
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Weiter definieren wir zur Vereinfachung
2E/jl ze 2[JL

2 — ---7T~ , a .
h 2 4k£0 h 2

Damit ergibt sich
d 2 y> 2 dtp
dr 2 r dr

Aus dem Lösungsansatz
tp = Q~ßr

folgt

tp = 0 .

2J3 2oc
ß2 - — + — + A = 0 .

Hieraus erhalten wir durch Koeffizientenvergleich
a = ß, 2=  -ß  2 = -a  2 .

Wir setzen

4k£ 0 
2 , 2zra ± = — ---- und q = - -  .

e 2 p «i

Dabei gibt a gemäß der BoHRschen Theorie den Radius der innersten Elektronenbahn
des Wasserstoffatoms an (vgl. Beispiel 192). Die reduzierte Masse

mm k mp, = ----  ----- = ---------
m + m k i | m

m k

kann in erster Näherung der Elektronenmasse m gleichgesetzt werden, da für Wasserstoff

m k 1836
ist.
Wir schreiben die gefundene Lösungsfunktion der ScHRÖDiNGER-Gleichung in der Form

- -  2z
tp = Cc  a i  = Ce  2 , q = — r .

Die Normierungsbedingung erfordert wegen
dr = 4tcf 2 dr

/
r ~ 2iyjy)* dr = 4tc |C| 2 / e a i  r 2 dr = 4k |C|  2 = 1 .

o
Hieraus folgt
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Aus der Beziehung A = — <x1 2* 4 ergibt sich das Energieniveau

E _
(47re0 ) 2 2A 2 *

Nach der BoHRSchen Theorie entspricht das dem Grundzustand.

223. Es ist die Aufenthaltswahrscheinlichkeit für den Grundzustand des Wasserstoffatoms
zu bestimmen. In welchem Abstand hat die Wahrscheinlichkeitsdichte w(r) ihr Maxi-
mum?

Lösung

Der Grundzustand des Wasserstoffs wird für die Quantenzahlen n = 1 ,  l = 0 ,  m = 0
angenommen. Für diesen Fall lautet die allgemeine Lösung der ScHRÖDiNGER-Gleichung

Vi.o.o = Ci,o,o-P2 (cos &) e 2 Z}(o)
mit

(4ne0 ) 2 2h  2 '

Für das LAGUERREsche Polynom folgt nach Definition
, d d

L\(ß) = — £i(e), £i(e) = ee — (e-6e) = 1 — Q.de de
Damit erhalten wir

Lj(e) = -1.
Die Kugelfunktion Pq ist gleich eins. Somit ergibt sich

Vh.o.o = “■C'1,0,0© 2 •
Diese Funktion stimmt mit der in Beispiel 222 direkt aus der ScHRÖDiNGER-Gleichung
abgeleiteten Lösung überein.
Als Normierungskonstante erhalten wir

|Cl,O,o| = V ----3“ •'N TMi

Wir berechnen die Aufenthaltswahrscheinlichkeit im Volumen einer Kugelschale
dr = 4nr 2 dr. Für die gesuchte Aufenthaltswahrscheinlichkeit erhalten wir

1 4tptp* dr = e“e 4tw* 2 dr = —r e fll r 2 dr = w(r) dr .
aj

Die Wahrscheinlichkeitsdichte w (r) nimmt Extremwerte an für

4
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Daraus folgt die Beziehung
2r

e~2r 1 - — ) = 0 .
\ «i /

Für die Fälle r = 0 und r = oo ergibt sich w (r) = 0 ,  d. h., die Wahrscheinlichkeitsdichte
nimmt hier ihre geringsten Werte an. Dagegen erhalten wir für

r = «i

das Maximum.
Der innerste Bahnradius nach der BoHRSchen Theorie ergibt also gerade das Maximum
der Wahrscheinlichkeitsdichte für den Grundzustand.

224. Wo liegt das Maximum der Wahrscheinlichkeitsdichte bei Wasserstoff im Quanten-
zustand 2s (n = 2 ,  1 = 0)?

Lösung

Bei der Untersuchung der Wahrscheinlichkeitsdichte y>y>* interessieren nur die r-ab-
hängigen Glieder. Entsprechend der allgemeinen Lösung werden diese durch die
Quantenzahlen n und l bestimmt. Daher ist die magnetische Quantenzahl m ohne Ein-
fluß auf w*. I111 « = 2 ,  Z = 0 erhalten wir

_Q_
2 ,o ,o  = const e 2 L q)

mit
r

Q = — •

Das LAGUERRESche Polynom ergibt sich aus

= -v- [e® («'« e2)] = 2e - 4 .de [ de j
Somit folgt

¥>2,0,0 — • (e — 2) e 2- ,
/ r \ 2 ~~

V2 ,o ,o  ¥>2.0.0 r 2 dr -------  2 r 2 e ° l dr = n> (r) dr .
\ /

Die Forderung

L = o
dr

führt zu

Wir setzen die ermittelten Nullstellen der Gleichung in die zweite Ableitung ein und
erhalten als Lösung ein Minimum bei

r = rmin  = 2a x ,



270 4. Quantentheorie

ein kleineres Maximum bei

r = rmaxl  = 0,764

und ein größeres Maximum bei

r = rmax2 = 5,236 (Bild 126).

225. Berechnen Sie den Mittelwert r des Elektronenabstandes Bild 126
im Grundzustand des Wasserstoffatoms.

Lösung

Der Mittelwert L einer physikalischen Größe ergibt sich aus

L = J' tj)*Ly dr.

Wir setzen für y die Lösungsfunktion der ScHRÖDiNGER-Gleichung

1,0,0 = . /  - - -  0 1

N naf

ein. Für den Operator L der Ortskoordinate haben wir die Ortskoordinate selbst einzu-
setzen : r. Damit folgt

00 00

c 4 r —r = I Iv’i.o.ol 2 r4nr  2 dr = — l e  fll r 3 dr .
o %

Den Wert des bestimmten Integrals erhalten wir aus

00
f n\

o

Damit ergibt sich

4 3’ 3 3r=—— - —ar = — • 0,529 • 10~ 10  m = 0,793 -10-  10  m.
a\ / 2 \ 4 2 2 1 ------------------

\ «1 /

Der Mittelwert des Elektronenabstands unterscheidet sich also vom Abstand der
größten Wahrscheinlichkeitsdichte.

226. Berechnen Sie den Mittelwert der z-Komponente des Drehimpulses beim Wasserstoff-
atom im Zustand « = 2 ,  Z = 1 , w = 1 .
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Lösung

Die Lösungsfunktion der ScHRÖDiNGER-Gleichung lautet

2,1,1 = C 2 ,i,iP[u (cos &) el9? e 2 qL3
3 (q).

Für die Kugelfunktion folgt

«> - 4 (4 [fI -
P}(cos#) = s i n# .

Das LAGUERREsche Polynom ergibt

Lite) = -Sr -Sr (e” e 3)] = -6 .de L de J

:2

r
Wegen q = — lautet also die Lösung der ScHRÖDiNGER-Gleichung

ai

2 ,1 ,1  - - -  ------ s | n # r e 2«1  .ai
Wir bestimmen die Normierungskonstante C2 , i , i-
Für das Raumelement dr müssen wir wegen der Abhängigkeit von # und <p setzen

dz = r 2 sin # d# d(p dr.
Es folgt damit die Bedingungsgleichung

oo 2n tc

J dr = |C2 , i , i |  2 J* J* J sin3 # r 4 e 01 d# dg? dr = 1 .
0 0 0

Wir erhalten
TC 27t oo

J* sin 3 # d# = y , J d<p = 2tv, J r*e  a i  dr = 24«i .
o oo

Aus der Bedingungsgleichung für C 2 ,i,i folgt demnach

IQ . i . J  = - — y== .
48 yj naf

Die Lösungsfuhktion lautet somit

y 2 , i , i  = -----?=- sin # e l9> r e 2fll .
8 y/

Entsprechend Beispiel 218 lautet der Operator L z in Kugelkoordinaten

L z =
0<p
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Für den gesuchten Mittelwert erhalten wir damit den Ausdruck
2tc 00 7V

L z = I dr = I | I sin3 # r 4 e a i  e -l9> — el<p d# dr dcp .
J 64xal J J J dtp

0 0 0

Die beiden inneren Integrale werden analog dem Verfahren bei der Normierung aus-
gewertet. Demnach verbleibt

2tt 2tc

L z - lh
5 -2401 f e- i’’- - e i’’d?> = - fid<p = h .64xa\ 3 J dtp 2x J

o o
Mit der vorgegebenen magnetischen Quantenzahl m = 1 folgt also

L z = h.

227. Ein Elektron befinde sich im Quantenzustand l = 1 , m = 1 . Berechnen Sie die Wahr-
scheinlichkeit dFF, das Elektron im Winkelbereich # = 90° ±3°  anzutreffen.

Lösung

Wir verwenden den von # und <p abhängigen Teil der Lösungsfunktion die
Funktion

<p) = p! "" (cos d) e,m”V (Z -F |m|)!
In der vorliegenden Darstellung erfüllt diese Funktion die Normierungsbedingung

2tc n
J" J* v) YtmW, <P) sin & d# d<p = 1.
0 0

Für den Fall l = 1 , m = 1 erhalten wir wegen 0 !  = 1 den Ausdruck

dW  = <p) v>) 2tv sin # d#
mit

7V 7V
# = — , d& = — .

2 30
Damit folgt für die Wahrscheinlichkeit

3 3 1
dW  = — sin2 # sin # d# = — —- 7v = 0,078,

8tv 4 30

also sind 7,8 % aller Teilchen im Quantenzustand Z = 1 , m = 1 hiernach unter einem
Winkel # = 90° + 3° anzutreffen.

228. Berechnen Sie die Wahrscheinlichkeit W, das Elektron im Zustand Z = 1 , m = 1 unter
einem Winkel zwischen = —60° und = +60° anzutreffen.



4.3. Das Spektrum des Wasserstoffs und der wasserStoff ähnlichen Atome 273

Lösung

Wir verwenden wieder die Lösungsfunktion

<P)

Wegen der Symmetrie bezüglich # = 0 können wir schreiben:
7t

2k T

W = 2 j J* V>i,i(#, <p) sin # d# d«? =
o o

TV TV

2tv T 3"

= 2 j* J* sin3 # d& dg? = ~ J* sin 3 # d# =
oo  o

7V 7V

cos # sin2# 1

Wenn wir
cos 60° = 0,5 und sin 2 60° = 0,75

einsetzen, so folgt

W = - 4- 0,5 (2 + 0,75) + 4- • 1 • 2 = 1 - 0,6875 = 0,3125.
2 2

Es befinden sich also 31,25% aller Elektronen mit l = 1 ,  m = 1 im angegebenen
Winkelbereich —60° < # < + 60°.

229. Bestimmen Sie die Extremwerte der Winkelverteilung im Zustand Z = 3 ,  m = 2 .

Lösung

Die Wahrscheinlichkeit, ein Elektron unter dem Raumwinkel dß = sin # d# dg?
anzutreffen, ist

dW  = w dß = ynp* dß.

Zur Lösung dieser Aufgabe haben wir also das Maximum der Funktion w = w* zu
bestimmen.
In der Lösungsfunktion können wir die Normierungskonstante unberück-
sichtigt lassen und schreiben

<p) ~ F| 21 e2i9) ~ sin 2 # cos # e2i<p,
w = 3..2(#, g>) <P) ~ sin 4 # cos 2 #.

18 Hajko, Elektrik
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Aus der Forderung, daß die erste Ableitung verschwinden muß, folgt
2 sin 3 # cos # (2 cos 2 # — sin 2 #) = 0.

Für # = 0 und für # = tt/2 hat die Wahrscheinlichkeitsdichte w den Wert Null. Diese
Winkel ergeben also Minima der Winkelverteilung. Das dazwischenliegende Maximum
ist durch

2 cos 2 & — siri2 # = 0
bestimmt.
Man erhält hiernach für

& = arctan y/2 = 54°44'

das Maximum der Winkelverteilung.

230. Wegen des Elektronenspins s = ±h/2 gehören zu jedem Wertetripel n, l, m zwei
Elektronenzustände. Weisen Sie aus den Lösungen der ScHRÖDiNGER-Gleichung

?) nach, daß zu jeder Hauptquantenzähl n insgesamt 2 n 2 Zustände gehören.

Lösung

Die drei Quantenzahlen n, Z, m bestimmen die Lösung der ScHRÖDiNGER-Gleichung
Q

y>n,i m ~ P’r 1 (COS e * e"  2 <?' £*?(!>).
Hierin gibt bis auf einen konstanten Faktor die \m\. Ableitung der Kugelfunktion Pi
an. Aus der Definition

d z

d£*
folgt, daß Pt ein Polynom Z. Grades ist. Die magnetische Quantenzahl m darf daher nur
den Wertebereich

m = -Z, -Z+  1, . . . ,0 ,  . . . ,Z -  1, Z
durchlaufen.
Für \m\ > l wird identisch Null. Wir erhalten also als Wahrscheinlichkeit dafür,
einen Zustand \m\ > Z anzutreffen, den Wert Null. Zu jeder Quantenzahl Z gehören
somit 2Z 4- 1 Werte von m. Das LAGUERREsche Polynom L 2/

+
+/ ergibt sich aus der

(2Z +1 ) .  Ableitung eines Polynoms Zn+z . Dieses ist vom Grade n + Z. Es muß demnach
2Z + 1 n + Z bzw. Z n — 1

sein. Zudem ist die Quantenzahl Z auf ganzzahlige positive Werte sowie den Wert Null
beschränkt * sie durchläuft also den Wertebereich

Z = 0, 1 ,2 ,  ..., w — 1.
Demnach ist die Zahl der zu einer Hauptquantenzahl n gehörenden Quantenzustände
gleich

n— 1
N„ = 27  (21 + 1) = 2 (1 + 3 + - + 2n - 1) = 2h 2 .

i =o  “ —



4.3. Das Spektrum des Wasserstoffs und der wasserstoffähnlichen Atome 275

231. Berechnen Sie die Wahrscheinlichkeitsdichten der Winkelverteilung für alle Zustände
l = 3, und zeichnen Sie dazu die Polardiagramme

Lösung

Zu l = 3 gehören die Zustände m = — 3 ,  —2, —1, 0, 1, 2, 3. Die dazugehörenden
Lösungsfunktionen und die Wahrscheinlichkeitsdichten sind

m nm

± $
35 . Ä n—— sm6 0

64tt

±2 Sin 2 # cos £ Q itp

4y/2Tt
sin 4 # cos 2

32tt

± 1 — •■■L sin # (5 cos 2 # — 1) e ±i9>

8
21

— — sin 2 # (5 cos 2 # — l )  264n

0
/ 7

■ V (5 cos 3 # — 3 cos #)
4Vk

4
— — (5 cos 3 # — 3 cos &) 21O7T

In Bild 127 sind die dazugehörenden Polardiagramme dargestellt.

Bild 127

18*
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A Aufgaben

300. Berechnen Sie die Wellenlänge der
Hß-Linie in Luft. (wa = 4, we = 2, Brech-
zahl n L = 1,000293)

301. Welche Wellenzahl hat die erste Linie
der LYMAN-Serie im Vakuum?
(n a = 2, we = 1)

302. Welche Wellenzahl bezeichnet die
Seriengrenze der PASCHEN-Serie im
Vakuum? (wa = oo, nQ = 3)

303. Welche RYDBERG-Zahl ergibt sich für
das Spektrum des Deuteriums im
Vakuum? (m D = 3,34 • 10 -27  kg)

304. Berechnen Sie die RYDBERG-Zahl für
den Fall einer unendlich großen Kern-
masse. Ausbreitungsmedium sei
Vakuum.

305. Berechnen Sie die Wellenlänge der
H T-Linie des Deuteriumatoms in Luft.
(wa = 5, ne = 2)

306. Wie lauten die Operatoren L x und L y in
Kugelkoordinaten?

307. Untersuchen Sie, ob und für welche
Quantenzahl die Funktion s i n#e  i 9’
eine Lösung der Eigenwertgleichung
—►
L 2 y = L 2 tp ist.

308. Zeigen Sie, daß sin # sin 92 — i cos #
Eigenfunktion des Operators L 2 ist.
Für welche Operatorkomponente des
Drehimpulses ist die Funktion
sin 'd' sin 99 — i cos &
zugleich Eigenfunktion?

309. Untersuchen Sie, zu welchen Opera-
toren des Drehimpulses oder seiner
Komponenten der Ausdruck sin # cos 99
Eigenfunktion ist.

310. Wie lautet die Lösungsfunktion der
ScHRÖDiNGER-Gleichung für n = 2,
l — 1, m = 1? Bestimmen Sie die Nor-
mierungskonstante.

311. In welchem Abstand hat die Wahr-
scheinlichkeitsdichte w (r) im Zustand
2p (n = 2, l = 1) ihr Maximum?

312. Bestimmen Sie den Abstand größter
Wahrscheinlichkeitsdichte w (r) in den
Zuständen 3d (n = 3, Z = 2) und
4/ (n = 4, Z = 3).

313. Bestimmen Sie den Mittelwert r im
Zustand 2p (n = 2, Z = 1). , *

314. Bestimmen Sie den Mittelwert I — 1 im
Zustand 2p (n = 2, Z = 1). ' r '

315. Leiten Sie eine allgemeine Formel für
den Mittelwert r für Wasserstoff und
wasserstoffähnliche Atome im Quan-
tenzustand n, l ab.

316. Berechnen Sie die Mittelwerte des
Elektronenabstands für einfach ioni-
siertes Helium und für zweifach ioni-
siertes Lithium im Quantenzustand 2p.

317. Wie groß ist die Wahrscheinlichkeit,
das Elektron des Wasserstoffs im
Quantenzustand 2p in einem Intervall
4fli < r < 4,1 anzutreffen?

318. Berechnen Sie die Wahrscheinlichkeit,
das im 2p-Zustand befindliche Elektron
des Wasserstoffatoms in meinem Ab-
stand r > 9ßi anzutreffen.

319. Es ist die Wahrscheinlichkeit dafür zu
bestimmen, das Elektron des Wasser-
stoffatoms unter der Richtung # = tv/2,
99 = 7t/6 im Raumwinkel

dQ = sin # d# d9?, d& = d99 =
18 18

im Quantenzustand Z = 1, m = — 1
anzutreffen.

320. Welche Winkelverteilung ergibt sich
für den Fall /=  0, m = 0?

321. Berechnen Sie die Wahrscheinlichkeits-
dichten der Winkelverteilung für alle
Fälle Z = 2.

322. Bestimmen Sie die Extremwerte der
Winkelverteilung für alle Fälle Z = 2.

323. Wie groß ist die Wahrscheinlichkeit,
ein Elektron des Quantenzustands
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zu bestimmen. Die Stromdichte wird
gesucht für die Werte # = 0 und
& = 7r/2, r = 4«i .

326. Das durch den Strom des umlaufenden
Elektrons hervorgerufene magnetische
Moment M ist durch Integration zu
berechnen.

Z = 2, m = 0 in einem Winkelbereich
54°43' < # < 90° anzutreffen?

324. Bestimmen Sie unter Verwendung von
Kugelkoordinaten die Komponenten
der Stromdichte im Atom.

325. Es ist die mittlere Stromdichte in einem
Wasserstoffatom, das sich im Quanten-
zustand n = 2, l = m = \ befindet,

4.4. Das Spektrum des zweiatomigen Moleküls — der starre Rotator und der
harmonische Oszillator

In einem zweiatomigen Molekül (Bild 128) führen die Atome gegeneinander syn-
chrone, harmonische Schwingungen aus (harmonischer Oszillator), wobei sie gleich-
zeitig mit konstanter Winkelgeschwindigkeit um eine
durch den gemeinsamen Schwerpunkt gehende Achse
rotieren (Rotator).
Somit setzt sich die Energie eines Elektrons im Mole-
kül gemäß der Beziehung

aus dem Energieniveau £ el  des Elektrons in der Elek-
tronenhülle, dem Energieniveau EO3 der Oszillation
und dem Energieniveau £ rot der Rotation zusammen.
Für Wasserstoff und wasserstoffähnliche Atome ist
das Energieniveau Ea aus 6.3. bekannt. Für das Energieniveau der Oszillation und
für das der Rotation gelten die Formeln

£ — E'el + Eos + ETQt

£*os = Zzft) 0 (n + |),

_Ä 2 Z( /+1)
■fcrot ------ö 2 ’2/*r 2

n = 0, 1,2,

Z = 0, 1, 2 :

Hierin wurde mit n die Quantenzahl der Oszillation, mit l die der Rotation bezeichnet.
co o gibt die Kreisfrequenz der Oszillationsschwingung an, p, die reduzierte Masse des
Moleküls, r den Kernabstand.
Als Wellenzahl der emittierten oder absorbierten Spektrallinie erhalten wir

1
V el + os 4“ rot •

2
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Dabei gilt
- E't i - Eei  - E'n — En - E'i — Ei
el • > os j rot

hc hc hc

Gestrichene Größen gelten für den Zustand nach vollzogenem Quanten sprung. Die
Beobachtung der Rotations- und der Rotationsschwingungsbanden erfolgt im all-

L monochromatische Lichtquelle
5t Streukörper
SSp Spektrometerspalt

Bild 130. Smekal-Raman- Effekt

gemeinen über das Absorptionsspektrum, doch ist es für die Darstellung der Theorie
zweckmäßig, von der Emission auszugehen.
Für die reinen Rotationsbanden, bei denen nur eine Änderung der Rotationsenergie
erfolgt, gilt die Auswahlregel

Al = V — l = +1.

Bei den Rotationsschwingungsbanden ändern sich Rotations- und Oszillationsenergie,
wobei das Oszillationsquant im allgemeinen um eine Größenordnung über dem
Rotationsquant liegt (Bild 129). Für die Emission gelten daher die Auswahlregeln

An = +1 ;  Al = ±1 .

Der Smekal-Raman-Effekt (Bild 130) läßt sich quantentheoretisch deuten, indem man
annimmt, daß die eingestrahlte Erregerfrequenz das getroffene Molekül unter Ver-
änderung der Rotationsquantenzahl um ± 1 auf ein höheres Energieniveau hebt. Bei
der nachfolgenden Ausstrahlung ändert sich die Rotationsquantenzahl erneut um
+ 1. Hiermit ergeben sich die Auswahlregeln

Al = — 2 (P-Zweig),

Al = 0 (ß-Zweig),

Al = +2  (R-Zweig).
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Durch einen Elektronensprung, d. h. durch Änderung der Elektronenanordnung im
Molekül, kann das Bandenspektrum in den sichtbaren und in den ultravioletten
Bereich verschoben werden. Mit dem Elektronensprung verändert sich im allgemeinen
auch das Massenträgheitsmoment des Moleküls. Entsprechend der Auswahlregel

J /=  ±1 ,0

ergeben sich drei Zweige von Spektrallinien, deren systematische Ordnung im Dia-
gramm von Fortrat angegeben wird.
Als Übergangswahrscheinlichkeit A mtn definieren wir die Wahrscheinlichkeit dafür,
daß das Atom aus dem Zustand Em spontan in den Zustand En übergeht. Indem wir
diese Größe auf die Zeit von einer Sekunde beziehen, ergeben sich für A mt1i

die im allgemeinen größer als eins sind. Für die Übergangswahrscheinlichkeit gilt die
Beziehung

A m , n 
= l £ ’"> “ dT ) 2 -

3to 0 « c v 7

Darin werden die Komponenten

Xm ,„ = dr, ym ,„ = J’vmyy>„ dr, zm ,„ = J ip*zyn dr

als Matrixelemente des betreffenden Übergangs bezeichnet. Aus diesen Elementen
lassen sich die Auswahlregeln für die Quantenübergänge sowie für die Intensitäts- und
Polarisationsverhältnisse der Strahlung berechnen. Wenn wir A mtn mit der Energie
hvmtn und mit der Zahl der angeregten Atome multiplizieren, die aus statistischen
Überlegungen folgt, so können wir daraus die mittlere Strahlungsleistung bestimmen.
Die Formeln zur Berechnung der Matrixelemente Lmtn aus den Eigenfunktionen y>m9 y n

der Eigenwertgleichung

Ly> = Lip

stellen die Verbindung zwischen der von Heisenberg auf die Matrizenrechnung ge-
gründeten Quantenmechanik und der von Schrödinger entworfenen Wellen-
mechanik her. Beide Darstellungsweisen, die wellenmechanische und die matrizen-
mechanische, werden in der Quantentheorie parallel angewandt.
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Beispiele

232. Berechnen Sie die Quantenzustände für einen linearen harmonischen Oszillator nach
der ScHRÖDiNGER-Gleichung. Für die Oszillationen eines O 2 -Moleküls mit der Kreis-
frequenz ö) 0 = 2,95 • 10 14  s -1  sind die möglichen Energiewerte zu bestimmen.

Lösung

Wir setzen stationäre Zustände voraus. Es soll lediglich eine räumliche Abhängigkeit
von der reduzierten Variablen x bestehen. Wir bezeichnen die reduzierte Masse mit

mim  2F = ------ -  -----
TMi + m 2

und die Kreisfrequenz der Eigenschwingung mit co o . Daraus folgt für die potentielle
Energie des Oszillators ganz analog der klassischen Theorie

2E p = — o) 0 x 2 .

Die ScHRÖDiNGER-Gleichung lautet

d 2 y> 2w
+(£ -F p) v = 0.

Unter Verwendung der Ausdrücke

/jl > ±
X ° N 9 Xq

können wir Gl. (3) umformen in

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Diese Differentialgleichung wird durch den Ansatz

- f!
V = Vn(£) = C nH n(g) e 2

gelöst, wobei wir für das HERMiTEsche Polynom H n schreiben:

v = 0

Wir bilden die zweite Ableitung
d 2 H
- = 4v (v - l )a v(2 - 2
U? v =2

und setzen diese in Gl. (5) ein. Es folgt die Gleichung
n r / 2E \ 1
2 (2f)J 4 (y + 2) (y + 1) a r+2 — 2va, + ( -  ------- 1 aj = 0.„=o l \na> 0 / J



2814.4. Das Spektrum des zweiatomigen Moleküls

Damit diese Bedingung erfüllt ist, müssen sämtliche Koeffizienten verschwinden, das
bedeutet

2 ,
«r+2 = i n  a”' < 10>4 (y + 2) (V + 1)

Wenn diese Reihe für v = n abbrechen soll, dann muß

ön + 2 = Gn+4 = ••• = 0
sein. Das aber ist nur möglich für

2E
2n + 1 --------- = 0,na>Q

woraus folgt

E = E n = y- (2n + 1) = hco0 (n + y) ; « = 0 ,1 ,3 , . . .  (11)

Hiernach tritt die Energie des harmonischen Oszillators gequantelt auf, wobei die
Nullpunktenergie den Wert ftco0 /2 hat.
Wir legen an = 1 fest und setzen Gl. (11) in Gl. (10) ein. Dann ergibt sich

HM _ (25) - _ (2e)-. + -<--l)(--2)fri-3> (2{r . ± ...
Dieser Ausdruck kann zusammengefaßt werden zu

d”
(- l )“e« 2 — e 2 . (12)

d£
Als Lösungsfunktion der ScHRÖDiNGER-Gleichung erhalten wir damit

d"
V„ = C,Ä(f)e 2 = C„ ( - l ) " e«2 — e-« 2 . (13)

df n

Aus Beispiel 205 entnehmen wir, daß die Normierungskonstante den Wert

c . - '  (14)
y/2 n n\

hat. Wir berechnen abschließend die Energiewerte E n entsprechend Gl. (11).
Setzen wir die gegebenen Größen ein, so ergibt sich

£■ = £■„ = 1,05 • 10- 34  • 2,95 • 10 14  (« + y) J = 3.09 • 10* 20  (n + yj J =

= 3,09 • 10- 20  • 6,25 • 10 18  (n + yj eV = 0,193 (n + yj eV.

Hiernach hat das Quant des Oszillators den Wert
= 3,09 • IO“ 20  J = 0,193 eV.

Für die Nullpunktenergie erhalten wir 0,096 eV, für die Energie der ersten Grund-
schwingung dagegen 0,289 eV.
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233. Berechnen Sie die Wellenlänge der von einem Sauerstoffmolekül infolge seiner Oszil-
lation emittierten Strahlung. Als zulässige Änderung der Quantenzahl ist An = 1 zu
setzen. co o = 2,95 • 10 14  s -1

Lösung

Nach dem BoHRSchen Postulat gilt für die Frequenz der Strahlung
hv = Ea — E e = /zcoqZIw = ha>Q.

Wie wir sehen, ist die Frequenz v gleich der Oszillationsfrequenz w 0 /2k, mit der die
beiden Sauerstoffatome gegeneinander schwingen. Hieraus ergibt sich

A 2kcA = ----- = 2 • 3,14 ■ 3 • 10 8

" ‘» -WälS:

Die Strahlung liegt also im infraroten Spektralbereich,

234. Nach der klassischen Theorie und nach der Quantentheorie ist die Wahrscheinlich-
keit zu berechnen, beim harmonischen Oszillator für die Auslenkung einen Wert zwi-
schen den Grenzen x und x 4- dx anzutreffen. Wie groß ist diese Wahrscheinlichkeit bei
einem Wasserstoffmolekül, das sich in der ersten Grundschwingung mit (o0 = 8,04 x
x 10 14  s -1  befindet, für die Werte x = 20 • 10" 12  m,  dx = 5 ♦ 10“ 12  m?

Lösung

Als Lösungsfunktion der ScHRÖDiNGER-Gleichung für den harmonischen Oszillator
hatten wir bereits erhalten

1 4 /  0 _ (-1)" 4 Ma>o yd ' e - ’ 11

Vn ----- / A/ x e — I — e — j

mit
x h m Y m 2£=— , *0=  / - - -  = : ------ •
x 0 y j«ö>o Mi + rn 2

Im Fall n = 1 folgt

/ 2 x -—r
= / -----7= — e 2x o •

yj xo y/n x o
Hieraus ergibt sich

2 X 2 - —
w (x) = |y (x)| 2 = -----= j e  »ä .

Xo v 7*
Für die zu untersuchende Oszillation des Wasserstoffmoleküls erhalten wir

A* = o
2tmh 2 2

*0 = J ----- ■-
/ 1,05 • 10~ 34

V 0,84 • IO’ 27 • 8,04 • 10 14  12,5 10
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Somit folgt
X

Xq

20 • IO’ 12  , , x 2 _: -------------- = 1.6, —— = 2.56
12,5 • IO’ 12  ’ ’ x?

und daraus
2 x 2 _ iLdx  2 5 • 10" 12

w(x)dx=  e = ü7 -  2’ 56 -°’077 i2jnö =
Bei der klassischen Rechnung ist die Auslenkung durch

x = a sin a> Q t
bestimmt, wobei sich die Amplitude a gemäß der Beziehung

/2Ea = a/ ------2A/ pco2

aus der Energie E ergibt.
Wir bezeichnen die Periodendauer mit T = 27r/a> 0 , die Zeitspanne für das Durchlaufen
der Strecke dx mit df. Da das Teilchen sich sowohl beim Hin- als auch beim
Rücklauf im Bereich x ••• x + dx befindet, erhalten wir für die klassische Wahrschein-
lichkeit

df
dPPklass = Wklass(*V) dx = 2 — .

Somit folgt wegen
dx
— = aa) 0 cosa) 0 t 9

dPPklass — Wkiass — 2 — - — — =r2tc aCD 0 COSCD 0 t TU __ x 2 9

also ist
, x 1 1

WklassCv) --------------- --------==" •
” -Ja 2 - x 2

Im vorliegenden Fall ist das Oszillationsquant der Schwingung
E = ho>o = 1,05 • 10’ 34 • 8,04 • 10 -14 J = 8,44 • IO’ 20  J.

Es folgt weiter

' 2E _ I 2h _ / 2 -1,05 -10-  34

juco3 N ~ 4 0,84 • 10- 27  • 2,95 • 10 14 29,1 • 10- 12  m.

Hieraus ergibt sich für die klassische Wahrscheinlichkeit

dx 5 • 10- 12  _________
Wkiass dx = k _ x2 ~ 3 14  . 10 _ 12  (29>1)2 _ (20)2 “ -2 — •

Also ergibt sich gegenüber der quantenmechanischen Rechnung ein beträchtlicher
Unterschied.
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In Bild 131 wurde die Wahrscheinlichkeitsdichte entsprechend klassischer und quanten-
theoretischer Berechnung aufgetragen. In Übereinstimmung mit dem quantenmechani-
schen Tunneleffekt können auch Auslenkungen der Größe |x| > a auftreten, die gemäß
klassischer Betrachtung nicht möglich sind.

235. Gemäß der HEiSENBERGSchen Unschärferelation gilt zwischen der Ungenauigkeit des
Ortes und der Ungenauigkeit des Impulses die
Beziehung

0- a

Bild 131

__________ h 2
(Ax) 2 (4p x ) 2 — .

Berechnen Sie nach Maßgabe dieses Zusam-
menhangs das Energieminimum des harmo-
nischen Oszillators.

(1)

Lösung

Die Gesamtenergie beträgt im Mittel

E = x 2

2p 2 (2)

Für den Mittelwert der Ortskoordinate erhalten wir

(3)

Da | „| 2 eine gerade Funktion ist, ergibt sich für x|y n | 2 eine ungerade Funktion, also
verschwindet das Integral (3), und es wird x = 0.
Weiter erhalten wir mit = yn für die Impulskoordinate den Ausdruck

y>n dx = — ih

Dieser ergibt gleichfalls den Wert Null, denn yn verschwindet im Unendlichen. Somit
können wir schreiben

x 2 = Ax 2, p2 = 4p 2 ,

und an Stelle von Gl. (1) erhalten wir

- h2
x p* - 7 (4)

oder
h2

(5)
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Wenn wir Gl. (5) in Gl. (2) einsetzen, so folgt für die Energie

P 2X , > Px
2p P 2 “ 2p

pco2h 2

2*4 /5*
(6)

Das Minimum erhalten wir durch Null-Setzen der ersten Ableitung, wöbei p 2 als un-
abhängige Variable aufgefaßt werden kann. Für den Extremwert erhalten wir den Aus-
druck

1 p a>Qh 2 _ _ pa) o h
2 - T ’ Px 27 ■ (7)

Wir setzen den so gefundenen Ausdruck Gl. (7) in Gl. (6) ein, und es folgt
— ho) o hco o hcüQ

Demnach ist die Nullpunktenergie fao o /2 die kleinste Energie des harmonischen Oszil-
lators, die mit der HEiSENBERGschen Unschärferelation verträglich ist.

236. Berechnen Sie die Zf-Matrix des harmonischen Oszillators.

Lösung

Die Elemente H mn der /f-Matrix ergeben sich aus

H m ,„ = y y*(x)£ty,,(x) dx.

Entsprechend der ScHRÖDiNGER-Gleichung für stationäre Zustände gilt
Hy)n = Enyn .

Demnach können wir, da die Lösungsfunktionen ip* normiert und orthogonal sind,
schreiben

Vm nVn dx = E„ J V*y>„ dx = E„ömi „ - hm 0 (n + yj <5ra ,„;

dabei bedeutet ömn das KRONECKER-Symbol. Wir erhalten die Matrix
htüQ

0 0 0 . . .

H =
0 2

0 0 . . .

0 0 t.h(üo
2 0 . . .

237. Berechnen Sie die Matrix der Ortskoordinaten für den harmonischen Oszillator. Wie
groß ist die Übergangsfrequenz für Sprünge vom Zustand m = 2 in den Zustand n = 1
bei einem Wasserstoffmolekül mit der Kreisfrequenz co o = 8,04 • 10 14  s -1  ? Die redu-
zierte Masse hat den Wert p = 0,84 • 10 -27  kg.
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Lösung

Die mittlere Zahl der pro Sekunde stattfindenden Übergänge aus dem Zustand m in den
Zustand n beträgt

I*» - S.I 3 (f w»dxj  2 . (1)

Wir berechnen die Matrixelemente

Xm . n=  f XVmVn dX = xg J (£>„(£) df =
+ 00

= Cm C nx 2 f df. (2)
— 00

Für den Fall m = n erhalten wir im Integranden wegen des Faktors £ eine ungerade
Funktion. Da sich die Integration von — oo bis H-oo erstreckt, folgt somit

Xm.m = 0 .
In den weiteren Überlegungen setzen wir m > n voraus.
Die Funktion wird in eine Reihe der Funktionen Hfä) entwickelt, wobei für i
gilt: i = 0, 1, 2, •••, n + 1 ,  also

= £(2£)” ± = c„+1  (2£)" +1  + . (3)
i = 0

Hieraus folgt
1

Cn+1 “ ~2 ’

Indem wir Gl. (3) in Gl. (2) einsetzen, erhalten wir

n+ 1 + °°
x m , n = Cni Cnx 2

0 "s c t f e- mÜ) Ü) d£. (4)
i = 0 J

Wegen der vorausgesetzten Orthogonalität der Lösungsfunktion verschwindet jedes
Glied für i =|= m .  Da i alle ganzzahligen Werte von 0 bis n + 1 durchläuft, kann in
Gl. (4) nur für den Fall n + 1 = m ein von Null verschiedener Summand auftreten. In
allen anderen Fällen m > n folgt x m , n = 0 .  Haben wir dagegen m = n 4- 1 , so ergibt
sich aus Gl. (4)

+ 00

x„+ i.„ = C„+1  C„x§c„+1  J e H 2 (S) dl =
— oo

+ oo

ün 1 2 C —T tt2 f \ A * °
= — Xo -X- c 2

+1  / e X* H 2
+1(x) dx = — - —ü n+ l Z J Z C n+ i

— oo

Xo V2" +1  (n + 1)!
2 V2""!*

wegen der geltenden Normierungsbedingung.



2874.4. Das Spektrum des zweiatomigen Moleküls

Damit folgt
x 0 Jn + 1 Kn + 1) h

x„+ i, „ = ----- ------ = / — ------- . (5)

Ebenso erhalten wir
_ Xo y/m + 1 _ l(m + 1) h

Xm,m+1 --------j= (6)

Demzufolge muß die Ortsmatrix des harmonischen Oszillators das folgende Aussehen
annehmen:

Dabei wurde die Numerierung der Zeilen und Spalten mit Null begonnen. Im harmoni-
schen Oszillator sind demnach nur solche Übergänge möglich, bei denen sich die
Quantenzahl um

ändert.
Für den Übergang vom Zustand m = 2 auf den Zustand n = 1 folgt gemäß Gl. (5)
bzw. Gl. (7)

*2,1 = x 0

Die Anzahl der in der Sekunde erfolgenden Übergänge des Oszillators erhalten wir
danach zu

e 2 o>oe
N 2 ,i = - - -  (En - En )3 -

3K£ 0 /z c 3 3tC£0 C

= (1 ’ 6 1Q  - 19 ) 2 ' (8/M ‘ IO  14 )2 
g-i = 8 73 10 s s _t

3 • 3,14 • 8,85 • 10~ 12  • (3 • 10 8) 3 • 0,84 • 10“ 27  - --------------'
Wenn auf Grund statistischer Untersuchungen die Besetzungszahlen für die einzelnen
Quantenzustände bekannt sind, kann mit dem vorstehend angewandten Verfahren die
Intensität der einzelnen Spektrallinien errechnet werden.

238. In einem zweiatomigen Molekül sei der Abstand beider Atome unveränderlich, so daß
nur Rotationsbewegungen auftreten können (starrer Rotator). Leiten Sie aus der all-
gemeinen Gleichung Hy = Ey die ScHRÖDiNGER-Gleichung in Kugelkoordinaten für
den starren Rotator ab, und bestimmen Sie aus dem Vergleich mit der Eigenwert-
gleichung L 2 y = L 2 y die Energiestufen. Wie groß ist das Rotationsquant für das
Wasserstoffmolekül? Der Abstand der beiden Wasserstoffatome ist r = 0,75 • 10 -10  m.
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Lösung

Wegen des unveränderlichen Abstands beider Atome ist die potentielle Energie des
Moleküls eine konstante Größe; wir können sie gleich Null setzen. Im Hamilton-
Operator

L 2

H=T r( r )+-— (1)
2 r 2

ist ebenfalls T r gleich Null zu setzen, da sich nur die Winkelvariablen & und <p ändern.
Nach einer Multiplikation mit dem konstanten Faktor 2[ir 2 ergibt sich danach

L 2 y> = 2pr 2 Ey> (2)
bzw.

1 d / . . dy>\ 1 d 2 V> 2pr 2 (3)

als ScHRÖDiNGER-Gleichung des starren Rotators.
Aus der Einleitung zu 4.3. ist uns bekannt, daß die Differentialgleichung

L 2 yl = Lfyl (4)

nur für die Eigenwerte

L 2 = h 2 l (l 1 = 0 ,1 ,2 , . . .  (5)

physikalisch sinnvolle Lösungen zuläßt.
Vergleichen wir Gl. (2) u. (4), so erkennen wir, daß die Differentialgleichung des starren
Rotators mit den Eigenwerten

2pr 2 E = h 2 l (Z .+ 1); Z = 0, 1, 2, ...

lösbar ist. Die Energie E des Rotators tritt also gequantelt auf, und zwar ist

A 2 Z(Z+1)_  h 2 7 1 \  2 ___h 2-
1 2pr 2 2fir 2 \ + 2]  8fir 2 * (6)

Wenn wir die Energiedifferenz E r — E o als Rotationsquant definieren, so folgt

h 2 (1 05 • 10“ 34 l 2
E > - Eo = = 0,84- 10 (0,75.10 J = .

Das Rotationsquant erweist sich also um etwa eine Größenordnung kleiner als das
Oszillationsquant.

239. Für den Abstand zweier Rotationslinien des Sauerstoffmoleküls wurde als Mittelwert

A (-L = 291 m- 1

gemessen. Berechnen Sie daraus den mittleren Kernabstand und das Massenträgheits-
moment des Sauerstoffmoleküls.



4.4. Das Spektrum des zweiatomigen Moleküls 289

Lösung

Gemäß dem BoHRschen Postulat ergibt sich die Wellenlänge der Strahlung aus

Hierbei ist berücksichtigt, daß Übergänge im starren Rotator entsprechend der Auswahl-
regel

dZ = ±1
erfolgen.
Setzen wir aus dem vorhergehenden Beispiel 238 die Gl. (6) hier in Gl. (1) ein, so er-
halten wir den Übergang vom Quantenzustand l + 1 in den Zustand l gemäß

(t) = W + 1) = 2B (/ + 1).  (2)\ / i,i+i üircpr
Es folgt also als Differenz der Wellenzahlen benachbarter Rotationslinien

= = ' (3)W/  \ Ji,i+i \ h , i - i  4n 2 cpr 2

Demnach ist der Frequenzabstand benachbarter Rotationslinien konstant.
Für das Massenträgheitsmoment des Sauerstoffmoleküls erhalten wir den Wert

- ---------- ksm2 "
4k 2 c A ( — 1

Die reduzierte Masse des Sauerstoffmoleküls ist p = 8 • 1,673 • 10 -27  kg = 13,4 • 10" 27  kg.
Daraus finden wir den Kernabstand zu

1,92 • IO’ 46

13,4 • IO’ 27r R -Zweig
-7 12  3 4

A
bs

or
pt

io
n 

in
 %= 1,19- 10~ 10  m.

240. Es wird die Rotationsschwingungsbande des
CO-Moleküls (Bild 132) untersucht. Für die
erste Linie des P-Zweiges werde die Wellenzahl

—---------1 ----------1 ----------1 ------
215000 216000 217000 218000

iLi = = 2,1654 • 10 5 irr 1 ,
Bild 132

für die erste Linie des P-Zweiges die Wellenzahl

r + i = (4-) = 2,1730 • 10 5 m- 1

gemessen. Berechnen Sie aus diesen Angaben das Schwingungsquant Aco o , die Oszilla-
tionsfrequenz und das Trägheitsmoment des CO-Moleküls. Wie groß ist der Kern-
abstand?

19 Hajko, Elektrik
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Lösung

Rotationsschwingungsbanden treten auf, wenn das Molekül sowohl Oszillations- als
auch Rotationsschwingungen ausführt. In diesem Fall erhalten wir die Gesamtenergie E
als die Summe von Rotations- und Oszillationsenergie [vgl. Gl. (6) in Beispiel 238 sowie
Gl. (11) in Beispiel 232]:

. .  l(l + l )h 2

\ho>o H ------— .2jur 2

Für die Wellenzahl der Strahlung ergibt sich nach dem BoHRschen Postulat

1 E n ',i' — Ent iv = — = --------- -------
2 hc

wobei die Übergangsregeln

An = n' — « = ± 1 , 1 = 1' — / = ± 1

zu berücksichtigen sind.
Eine Emission erfolgt für den Fall An = +1 ,  und - da das Rotationsquant etwa eine
Größenordnung kleiner als das Oszillationsquant ist - für Al = + 1 . Aus Gin. (1) u. (2)
erhalten wir somit

(1)En t l

(2)

(3)

1 i rV = — = haj Q +2 hc I (4)

Für die Oszillationsquantenzahl l haben wir ganzzahlige Werte

1 = 0 ,1 ,2 ,  . . .

einzusetzen. Wenn wir in Gl. (4) das obenstehende positive Vorzeichen annehmen, so
finden wir für die Wellenzahlen des R-Zweiges

v+ + 1) + 2(1 + t) B .
2kc 4 c/j,r 2 2kc

Bei Wahl des negativen Vorzeichens in Gl. (4) erhalten wir für die Wellenzahlen des
P-Zweiges

(5)

2nc 4n cpr 2 2nc

Dabei berücksichtigen wir, daß für die Rotationsquantenzahl 1 = 0 ein Übergang in
Rotationsbewegungen mit negativer Quantenzahl Z — 1 = — 1 nicht möglich ist. Der
Wert 1 = 0 tritt daher in Gl. (6) nicht auf, vielmehr haben wir zu schreiben

(6)

1 = 1,2 ,  3, . . . .

Wir ersehen hieraus, daß die erste Linie des jR-Zweiges die Wellenzahl

ö>o
2tcc



2914.4. Das Spektrum des zweiatomigen Moleküls

die erste Linie des P-Zweiges die Wellenzahl
co oV_1 = - -------- 2B
2nc

aufweist. Eine Linie mit der Wellenzahl

v o = —2kc

tritt dagegen nicht auf.
Aus der Messung der Linien v +1 und finden wir die Wellenzahl der fehlenden
Linie zu

~Vo = = . 0 4-2,1654 10S m _ 1 = 2 )1692  . 105
2 2

Hieraus erhalten wir für die Oszillationsfrequenz

O)q

2k
cv0 = 3 • 10 8 • 2,1692 • 10 5 s" 1 = 6,5076 • 10 13  s" 1 .

Das Oszillationsquant beträgt

hco 0 = hcv 0 = 6,62 • 10" 34  • 6,51 • 10 13  J = 4,31 • 10~ 20  J .

Aus dem Abstand beider Linien entnehmen wir

■ = (2,1730 - 2,1654) • 10 5 nr 1 = 760 m" ;

2ncpr

und daraus für das Trägheitsmoment des CO-Moleküls den Wert

6,62 • 10 -34

J 2rt2 c(v+1  - p_i) 2(3,14) 2 • 3 • 10 8 • 760 kgm2

= 1,47 • IO -46 kgm 2 .

Die reduzierte Masse des CO-Moleküls beträgt

= m} mi = 12 16 3 w _ 27 = ? 1() _ 26

m Y + m 2 12 + 16

Für den Kernabstand finden wir also

1 47 • 10" 46

Ü4771ö m =

241. Von einer Quecksilberdampflampe wird eine Linie der Wellenlänge 2 = 2536 • 10" 10  m
emittiert. Berechnen Sie die SMEKAL-RAMAN-Streuung in einer H 2 -Atmosphäre, wenn
der Kernabstand der beiden Wasserstoffatome r = 0,77 • 10" 10  m und die Masse eines
Wasserstoffatoms 1,673 -10  -27  kg beträgt.

19*
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Lösung

Die Einstrahlung des Quecksilberlichts bedeutet für das getroffene Molekül, daß seine
Energie auf ein Zwischenniveau angehoben wird. Dabei kann die Rotationsquantenzahl
um +1  verändert werden. Bei der Wiederausstrahlung kann ebenfalls eine Änderung
um ±1  eintreten. Für den SMEKAL-RAMAN-Effekt ergeben sich damit die folgenden
Auswahlregeln :

Al = -1  - 1 = -2  (P-Zweig),
Al = -1  + 1 = 0 (fl-Zweig),
Al = +1  + 1 = +2 (R-Zweig).

Aus dem Energieniveau für die Rotationsschwingungszustände

E n ,i = \ n + — I ha>Q H ------- — ----\ 2 / 2/zr 2

erhalten wir demnach die Wellenzahlen :
1. Al = —2 (P-Zweig):

-2 — Ent i
hc

1 = 2, 3,4 ,  . . . ;
2. Al = 0 (ß-Zweig):

E n+ i,i — Ent i
= -------7--------hc

3. Al = +2 (P-Zweig):

V. = ~ E "-' = -  - + 2 (21 + 3) + 2 (2/ + 3)B;2nc üiircpr 2 . 2ttc

-2 (2 /  - 1) — h— = - 2(21 - 1)B;v_ =

__ 0)0

2nc

hc
l = 0 , \  f 2> . . . .

Bei der numerischen Rechnung müssen wir die reduzierte Masse des Wasserstoff-
moleküls, nämlich

H = y = 0,836 • 10* 27  kg

einsetzen. Wir erhalten damit zunächst
_ h _ 6,62 - IO '  34

B ~ 8n2 cfir 2 ~ 8 • (3,14) 2 • 3 • 108 • 0,836 • IO" 27  • (0,77 • IO’ 10 ) 2 “
-- 5644 m- 1 .

Ferner ist

= 4- = * 10' m-1  = 3,9432 • 106 m- 1 .
2kc A 2536 • 10 10
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Für die Wellenzahlen v und die Wellenlängen 2 der gestreuten Strahlung ergeben sich
somit die in folgender Tabelle dargestellten Werte (s. auch Bild 133):

P-Zweig ß-Zweig P-Zweig

z 4 3 2 Ö 1 2

Zusatzglied -14 B -10 B -6P 6P 10 B 14 B

2 10- 10  m 2588,0 2572,8 2558,0 2536,0 2514,4 2500,2 2486,2

V 10« m- 1 3,8642 3,8868 3,9093 3,9432 3,9771 3,9996 4,0222

242. Die Auswertung eines FoRTRAT-Diagramms für das AlH-Spektrum ergibt einen Banden-
kopf des Ä-Zweiges für die Quantenzahl
Z = 4 , l ,  einen Bandenkopf des P-Zweiges
für die Quantenzahl l = —5,1. Als Differenz
4 = (i’rotK ~ »’roto) — ( ? ro«2 ~ rotp) Wird Un-
abhängig von der Quantenzahl Z ein Wert
A = 920 m -1  ermittelt. Bestimmen Sie das
Trägheitsmoment des AlH-Moleküls vor und
nach dem Quantensprung (Bild 134).

/ = > ■

4B

3 ;

4B

7

6B

(

6B

7 :

4B

1 2

4B

V0
P -Zweig Q -Zweig R-Zweig
A!—2 AI = 0 A l  = +2

Bild 133

Bild 134

Lösung

Die Änderung der Elektronenanordnung im Molekül, ist mit einer Änderung seines
Trägheitsmoments verbunden. Wir bezeichnen mit J das Trägheitsmoment vor, mit J'
das Trägheitsmoment nach Veränderung des Quantenzustands. Demzufolge erhalten
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wir für die Rotationsenergie vor und nach dem Quantensprung die Ausdrücke
_ / (Z+D _ l'(l' + l)ft*

‘ 2J  ’ v 2J’
Die Änderung des Rotationszustands bewirkt eine zusätzliche Strahlungskomponente.
Für die Wellenzahl dieser zusätzlichen Komponente erhalten wir

mit den Auswahlregeln
Al = /' - l = 0, ± 1 .

Wir setzen
- h / 1 4 \ - h ( 1 1 \

“ 8n 2 c \ r  + ~JJ’ j) ( )

und erhalten für Al = 4-1 (R-Zweig)

i'rotK = B (l 4- 1) + C (l + l )  2 , (3)

für Al = 0 (ß-Zweig)

rotQ = C(Z + Z2) (4)

und für Al = —1 (P-Zweig)

i'rotP = — Bl + CI 2 . (5)

Die Zusammendrängung der Spektrallinien erfolgt am Parabelscheitel des betreffenden
Zweiges. Wir erhalten den Scheitelwert des R-Zweiges aus der Beziehung

= B + 2C (l + 1) = 0 ,
dZ (6)

woraus folgt

z=  -X- -  1 .
2C

(6.1)

Für den ß-Zweig ergibt sich

= c ( l  + 21) = 0
dZ (7)

und daraus

/=  -T -
(7.1)

Für den P-Zweig schließlich gilt

—J°tP = -5+ 2CI = 0 ,
dZ (8)
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d. h.

Z = X .  (8.1)
2C

Aus den Häufungsstellen des P-Zweiges und des P-Zweiges entnehmen wir

-5,1 =X,  4,1 = — - i— 1 .  (9)
2C 2C

Die Ergebnisse der Messung für den P-Zweig und für den P-Zweig zeigen also Über-
einstimmung miteinander.
Für die Differenz A erhalten wir aus den Gin. (3), (4) u. (5)

A = (vrot  R — roto) — G'rotQ ~ rotp) = B + C (10)
und somit durch Auswertung der Messung

P + C = 920m’ 1 . (11)
Aus den beiden Bestimmungsgin. (9) u. (11) entnehmen wir schließlich die Werte für

B = 1020m-  1 , C=-100m-  1 . (12)

Wir verwenden für die Ermittlung des Trägheitsmoments vor dem Quantensprung die
Definitionsgl. (2) und finden

7 _ h 1 _ 6,62 -10"  34  1 2 _
4tt 2 c 5 — C 4-(3,14) 2 -3-10  8 1120

5 10 • 10“ 44

= * ■ _ —-kgm 2 = 4,55 • IO’ 47 kgm2 . (13)
1120 - --------------- ------

Als Trägheitsmoment nach Vollzug des Quantensprungs ergibt sich
» i C 1 A 1 44

P = -r~T~ - ------— = ~ ----- kg m2 = 5 ’ 54 ‘ 10-47  kgm2 • (14)
4tt 2 c b 4- C .920 -----------------------

/■V Aufgaben

327. Vergleichen Sie das Quant der Ha-
Linie mit dem Schwingungs- und mit
dem Rotationsquant des HCl-Mole-
küls. Die Kreisfrequenz der inneren
Schwingung ist co o = 5,21 • 10 14  s" 1 ,
der Kemabstand r = 1,30 • 10" 10  m,
die Wellenlänge der H a -Strahlung
Ah <x = 6564 • 10" 10  m;  die relative
Atommasse des CI wird mit 35 ange-
setzt.

328. Berechnen Sie für das HCl-Molekül,
welche Wellenlänge der Strahlung des
Oszillationsquants und welche der des
Rotationsquants entspricht. Kreis-
frequenz und Kernabstand wie in
Aufg. 327.

329. Berechnen Sie die Formel der Wahr-
scheinlichkeitsdichte für den harmoni-
schen Oszillator, der sich in der zweiten
Grundschwingung befindet. Verglei-
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340. Die Energie des eindimensionalen Os-
zillators ist E = kT (k = 1,38 • 10~ 23  J
grd“ 1 , T abs. Temperatur). Berechnen
Sie die Quantenzahl des harmonischen
Oszillators in Aufg. 339, und zeigen Sie,
daß die Energieänderung praktisch
stetig erfolgt.

341. Für den Abstand zweier Rotations-
linien des NO-Moleküls wird als

Mittelwert A = 339 rrr 1 gemes-

sen. Berechnen Sie daraus das Träg-
heitsmoment, den Kernabstand und
das Rotationsquant des NO-Mole-
küls.

342. Berechnen Sie den Abstand der Rota-
tionslinien des J 2 -Moleküls. Der Kern-
abstand ist r = 2,66 • 10 -10  m, die
relative Atommasse 126. Es stehe ein

Ä
Spektralapparat der Auflösung — =

zjÄ
= 10000 zur Verfügung. In welchem
Bereich muß die Trägerstrahlung liegen,
damit die Rotationslinien noch ge-
trennt werden können?

343. Es werden die Rotationsschwingungs-
bande des Br 2 -Moleküls untersucht.
Wie groß muß das Auflösungsvermögen

A
— des Spektralapparats sein, um die

Linien voneinander zu trennen? Dabei
ist vorauszusetzen, daß nur Rotations-
bzw. Oszillationsenergie des Moleküls
verändert wird. Die Kreisfrequenz ist
w 0 = 6,11 • 10 13  s -1  , das Trägheits-
moment J = 3,42 • 10" 45  kgm 2 .

344. Berechnen Sie, wie groß das Auflösungs-
vermögen einer Apparatur sein muß, um
den in Beispiel 241 berechneten
SMEKAL-RAMAN-Effekt erkennbar wer-
den zu lassen.

345. Berechnen Sie Trägheitsmoment und
Kernabstand für ein N 2 -Molekül aus
den Angaben der Smekal-Raman-
Streuung, wenn das Spektrum im
Zentrum durch folgende Wellenzahlen

chen Sie das Resultat mit der klassi-
schen Theorie. Wie groß ist die Wahr-
scheinlichkeit dafür, bei einem Chlor-
molekül in der zweiten Grundschwin-
gung eine Auslenkung x = 0, dx =
= 2 • 10~ 12  m anzutreffen? Die Kreis-

frequenz der inneren Schwingung ist
w 0 = 1,07 • 10 14 s -1  .

330. Bestimmen Sie, wieviel Nullstellen die
einzelnen Lösungsfunktionen = VnW
des harmonischen Oszillators haben.

331. Wie groß ist die Wahrscheinlichkeit
dafür, bei einem in der Grundschwin-
gung befindlichen harmonischen Os-
zillator einen Kernabstand anzutreffen,
welcher gemäß der klassischen Theorie
nicht zulässig ist?

332. Berechnen Sie x 2 für den Fall des har-
monischen Oszillators, der sich in der
ersten Grundschwingung befindet.
Welchen Wert erhalten Sie für den Fall
des Wasserstoffmoleküls?

333. Berechnen Sie die Impulsmatrix des
harmonischen Oszillators.

334. Berechnen Sie die Matrix px — xp.
335. Berechnen Sie die Energiematrix

+ -|-/4CO?X 2 .

336. Berechnen Sie für die einzelnen Quan-
tenzustände des harmonischen Oszil-
lators das mittlere Schwankungsqua-
drat Ax 2 des Ortes und das mittlere
Schwankungsquadrat Ap 2 des Impul-
ses.

337. Bestimmen Sie die Übergangsfrequenz
eines HCl-Moleküls für Übergänge
aus dem Zustand n = 3 in den Zu-
stand n = 2. Die Kreisfrequenz ist
w 0 = 5,21 • 10 14  s’ 1 .

338. Wie groß ist während einer Perioden-
dauer für das HCl-Molekül die Über-
gangswahrscheinlichkeit 3 -> 2?

339. Berechnen Sie die Nullpunktenergie
eines Oszillators von 10 g Masse in
einem Feld der Stärke 1 Nm -1  .
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und die linearen Matrixelemente
27V 7V

J | COS # X

0 0

x sin # d# d«?
zu berechnen.
Dabei besteht zwischen f, 77, t und
r, #, q> der Zusammenhang zwischen
cartesischen und Kugelkoordinaten:

£ ± b? = r sin tfe* 1*’,
C = r cos# .

Welche Schlußfolgerungen ergeben sich
aus der Lösung für die Linienintensität,
welche Auswahl- und Polarisations-
regeln gelten, was folgt daraus für den
ZEEMAN-Effekt?

charakterisiert ist:
v = 3,9452 • IO 6 nr 1 ,

3,9444 -IO6 m“ 1 ,
3,9432 - IO6 m" 1 ,
3,9420- IO 6 m“ 1 ,
3,9412- IO6 nr 1 .

346. Aus den Lösungen (&, 92) der
ScHRÖDiNGER-Gleichung für den
starren Rotator sind die zirkularen
Matrixelemente

“I“ l' t m' ==

27T 7V

= r J J smde  ±1’’x
0 0

X vZnVi'.m’ sin & d& dtp



5. Relativitätstheorie

5.1. Spezielle Relativitätstheorie

Messungen von Michelson ergaben im Jahre 1881, daß auf der bewegten Erde das
Licht - unabhängig von seiner Ausbreitungsrichtung - stets die gleiche Geschwindig-
keit aufweist. Hierauf gründet sich die von Einstein im Jahre 1905 entwickelte
spezielle Relativitätstheorie. In ihrem speziellen Relätivitätsprinzip geht sie davon aus,
daß für jedes Inertialsystem das Licht in allen Richtungen die gleiche Geschwindigkeit
hat. Als Inertialsystem bezeichnet man ein Bezugssystem, in welchem jeder Körper,
der keinen äußeren Kräften unterliegt, sich mit konstanter Geschwindigkeit bewegt.
Jedes gegenüber einem Inertialsystem S mit konstanter Geschwindigkeit fortschreitende
Koordinatensystem S r bildet gleichfalls ein Inertialsystem.
Die experimentelle Bestätigung für das spezielle Relativitätsprinzip wurde nach
unterschiedlichen Methoden u. a. 1912 von Harres, 1914 von Sägnac und im selben
Jahr von Wien erbracht.
Im folgenden seien zwei Koordinatensysteme 27 und 27' betrachtet. Das System 27 ist
durch seine räumlichen Koordinaten x r = x ,  x 2 = y ,  x 3 = z sowie durch die mit
der Zeit t verbundene Koordinate x4 = ict definiert. In der gleichen Weise wird das
System 27' durch die vier Koordinaten x'15  x'2 , x 3 , x 4 repräsentiert. Gegenüber 27
bewegt sich 27' mit der konstanten Geschwindigkeit v. Ohne Einschränkung der
Allgemeingültigkeit kann man die Ursprungspunkte 0(0, 0, 0, 0) und 0'(0, 0, 0, 0)
beider Systeme als identisch voraussetzen.
Es wird die Ausbreitung einer zur Zeit t = / '  = 0 vom Punkte 0(0, 0, 0) ausgehenden
Kugelwelle betrachtet. Entsprechend dem Relativitätsprinzip erhält man für die
Wellenfronten die Ausdrücke

4
Xi + X2 + *3 ” C 2 t 2 =Y X J — 0-

J = 1
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Vom System 27' aus beurteilt, gilt in gleicher Weise
4

x' 2 + X 2 + *32 — C 2 t' 2 = X J2 = O’
J=1

Hieraus ergeben sich die Transformationsformeln von Lorentz. Wenn man als Rich-
tung, unter der sich 27' gegen 27 fortbewegt, die x-Achse beider Systeme wählt
(Bild 135), so folgt nach Lorentz

Vt ------  X

t ~ /-------
VI  -ß  2

Dabei ist ß = v/c.
Nach Maßgabe der Lorentz -Formeln wird auch die Zeit transformiert. Eine Zeit f,
die von einer mit dem System 27' bewegten Uhr festgestellt wird, bezeichnet man als
die Eigetizeit des Systems 27'. Die Geschwindigkeit substantieller Teilchen kann nicht
größer als die Lichtgeschwindigkeit c sein. Für die Grenzwertbetrachtung c oo geht
die Lorentztransformation in die Galileitransformation der klassischen Physik über.
Das relativistische Additionstheorem der Geschwindigkeiten ergibt sich, wenn man die
Geschwindigkeitskomponenten eines Körpers

dx f , dx‘
<lj = — L >d£ dZ

Bild 135

j = 1, 2, 3

x — vt
■ , y = y, z = z,

/ l  - ß 2

in die Formeln für die LoRENTZ-Transformation einsetzt. Man erhält dann

, _ qi - v  , _q 2 'h ~ ß2 „> _qs  'S 1 ~ ß 2q ± -------------- , q2 ------------------ , <13 ------------------ •
1 i 1

c 2 c 2 c2

Wenn sich ein Körper mit der Geschwindigkeit v bewegt und dabei unter einem
Winkel # gegen seine Bewegungsrichtung Lichtstrahlen der Frequenz r 0 aussendet,
so nimmt ein ruhender Beobachter eine Frequenz

r = v0 ---------------1 — ß cos #
wahr.
Die Koordinaten x 1?  x 2 , x 3 , x 4 eines Ereignisses können nach Minkowski als
Komponenten eines Vektors im vierdimensionalen Raum aufgefaßt werden. Wenn man
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die MAXWELLschen Gleichungen der Elektrodynamik in einem derartigen vier-
dimensionalen Raum formuliert, so ergibt sich als Beziehung zwischen der Masse
und der ihr äquivalenten Energie

E = mc 2 (EiNSTEiN-Gleichung).

Außerdem erhält man die LoRENTZ-Gleichung

F = e (E + v x B),

Sie gibt die Kraft F an, die auf eine im elektrischen Feld E und im magnetischen
Feld B mit der Geschwindigkeit v bewegte elektrische Ladung e einwirkt.

n Beispiele

243. In einem System E finden in den Punkten und x 2 zur Zeit t = t0 gleichzeitig zwei
Ereignisse statt. Der Abstand der beiden Punkte ist x 2 — x t = 10000 m. Das System E
bewegt sich gegen ein System E' mit der Geschwindigkeit v = 3 • 10 5 ms -1  . Wie werden
beide Ereignisse im System E' registriert?

Lösung

Entsprechend der LoRENrz-Transformation ergeben sich für E' die Zeitkoordinaten
v v

to -----tX i  tQ -----tX 2
t c t c

t l=  ’ t 2=  F-r  ■
Hieraus folgt

_ v x 2 - x  t

c2 F-ß 2 '
Mit den vorgegebenen Werten erhalten wir

, _ , _ 3 -IO5 _________IQ4 _ ________1 _______
tl t2 ~ <3 • io 8) 2 

r p . \Qs  
s 3 • io7 Vi - io- 6 s **

V 1 \ 3 • 10® 7

Demnach finden die in der Eigenzeit t des Systems E gleichzeitig auftretenden Ereignisse
in der Eigenzeit f des Systems E' nicht gleichzeitig, sondern zu verschiedenen Zeit-
punkten statt (Relativität der Gleichzeitigkeit).
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244. In einem Koordinatensystem 27 gebe eine Uhr an der Stelle x = x 0 Zeitsignale, die in
einem Abstand dt  = t 2 — = 1 s aufeinanderfolgen. Ein anderes Koordinaten-
system 27z bewege sich gegenüber 27 mit einer Geschwindigkeit v = 3 • 105 ms“ 1 . Wie
groß erscheint die zeitliche Intervallänge in der Eigenzeit des Systems 27'?

Lösung

Entsprechend der LoRENrz-Transformation gilt für die Eigenzeit t' die Beziehung

v
t ------ xc 2

(i)t' =

Daraus folgt
v

und hieraus

y / i -ß 2 J i -ß *
Im vorliegenden Fall ist v <£ c, so daß wir für Gl. (2) auch schreiben können:

(3)

In Zahlen :

Im bewegten System 27z erscheinen die Intervalle dt  gedehnt. Dieser Effekt läßt sich auch
in der Art deuten, daß der Gang einer gegen das Bezugssystem 27z bewegten Uhr ver-
langsamt erscheint.

245. Ein Körper der Länge l bewegt sich gegenüber einem Beobachter mit der Geschwindig-
keit v. Wie groß muß v sein, damit der 100 m lange Körper eine Lorentzkontraktion
von einem Millimeter erfährt?

Lösung

Der bewegte Körper sei mit einem Koordinatensystem 27 verbunden. Als Bewegungs-
richtung wählen wir die x-Achse. Für die Länge l des Körpers, gemessen im mitbewegten
System 27, schreiben wir

l = x 2 — . (1)
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Dabei geben x r und x 2 die beiden Endpunkte des Körpers an. Der Beobachter befindet
sich im Koordinatensystem 2'. Entsprechend der LoRENTZ-Transformation gilt

v
t -----

x — vt f er

Vi -£  2 ’ * ~ V'i - ß2 '
(2)

Aus Gl. (1) folgt
r _ x < , x 2 - x  x - v ( t 2 - ti)
! - x’ -  x --------------- p ■ ( )

Die Punkte x r und x 2 sind dabei, betrachtet vom Beobachter in 2", gleichzeitig anzu-
visieren. Es muß also gelten: t{ = t f

2 . Damit erhalten wir aus Gl. (2)
v

t2—t i  ----- - (x 2 - Xt)
t2 - t  ri=  = ------------7= = ---------- ,

woraus sich
v

t 2 — tt = — (x 2 — Xjl) (4)
c2

ergibt. Wir setzen Gl. (4) in Gl. (3) ein und erhalten

l' = x'2 - x ' x = (x 2 - xjy/l - ß 2 = ijl - ß2 . (5)

Der in 2' befindliche, nicht mitbewegte Beobachter nimmt eine Längsverkürzung wahr.
Wenn wir v < c voraussetzen, dann folgt

Im vorliegenden Fall soll

l - r = l— = 1 mm = IO -3  m
2

sein. Damit ergibt sich wegen / = 100 m

2AI / 2 -10 -  3
v = c / —— = 3 • 10 8 / — — — ms -1  = 1,34 • 10 6 ms -1  .NI  N 10 2 --------------------

Ein experimenteller Nachweis dieses Effekts war wegen der hohen, zur Längskontraktion
erforderlichen Geschwindigkeiten, bislang noch nicht möglich.

~v7 (-v-,,0,0)

Vf = 0,6 c P

= %(V2 ,0,0)

V2 = 0,8c

S S'

Bild 136

246. Gegenüber einem festen Bezugspunkt P bewegt
sich ein Körper mit der Geschwindigkeit v± = 0,6 c
nach links. Ein zweiter Körper bewegt sich dagegen
mit der Geschwindigkeit v2 = 0,8 c nach rechts
(Bild 136). Wie groß ist, beurteilt von einem der
beiden Körper aus, ihre Relativgeschwindigkeit q'
gegeneinander?
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Lösung

Gemäß dem relativistischen Additionstheorem der Geschwindigkeiten gilt für die
Relativgeschwindigkeit q', beobachtet vom System 2' aus (Bild 136), die Beziehung

qi —v

1 vqi

c 2
q' = =

Wir setzen das System 27 als ruhend voraus. Es befindet sich jedoch in ihm ein Körper,
der sich, von 27 aus beurteilt, mit der Geschwindigkeit v qt , 0, 0), q± = — v Y = —0,6 c
bewegt. Von dem mit der Geschwindigkeit v = v2 = 0,8 c gegen 27 bewegten System 27'
aus gesehen, stellen wir die Geschwindigkeit

, (-0,6 - 0,8) c
q 1 + 0,8 • 0,6

1,4 c = -0,946 c
1,48 ---------

fest. Im Gegensatz zu den Aussagen der klassischen Physik wird also eine Relativ-
geschwindigkeit registriert, die kleiner als die Lichtgeschwindigkeit ist. Auch dieser
Effekt läßt sich durch eine Längskontraktion erklären.

247. Zwei kohärente Lichtstrahlen der Wellenlänge 2 = 6 • 10 2 nm werden über eine Strecke
der Länge l = 10 m durch eine strömende Flüssigkeit mit der Brechzahl n = 1,33 ge-
leitet (Bild 137). Im ersten Fall sind Flüssigkeitsströmung und Lichtstrahl einander

Bild 137. Zur Berechnung der Geschwindigkeit
eines Strahlung emittierenden Wasserstoffatoms

entgegengesetzt, im zweiten Fall einander gleich gerichtet. In beiden Fällen sei die Ge-
schwindigkeit der Strömung dem Betrage nach gleich groß. Wie groß muß die Strömungs-
geschwindigkeit v sein, wenn die zwei Lichtstrahlen gegeneinander eine Phasenver-
schiebung von einer halben Periode erhalten sollen?

Lösung

In der ruhenden Flüssigkeit beträgt die Lichtgeschwindigkeit cF = c/n. Wir ver-
knüpfen eine der beiden Flüssigkeiten mit dem Koordinatensystem 27, den Beobachter
aber mit dem System 27'. Gemäß dem relativistischen Additionstheorem der Geschwin-
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digkeiten ergibt sich für den gegenüber der strömenden Flüssigkeit ruhenden Beobachter
als Relativgeschwindigkeit c r des Lichts

, CF + v Cf — Vzz= ______ Q~ =; _________

i j_ ' i VCf '
c2 c 2

Wegen der Voraussetzung v < cF = ein können wir hierfür schreiben :

Wenn wir die Glieder zweiter Ordnung vernachlässigen, folgt daraus

Der Faktor (1 — l/« 2) wird als Fresnelscher Mitführungskoeffizient bezeichnet. Er ist
um so größer, je größer die optische Dichte des bewegten Mediums ist, und verschwindet
im Fall n — 1 (Vakuum). Längs einer Flüssigkeitsstrecke l haben wir eine bestimmte
Anzahl Wellen (A). Für N gilt

Dabei gibt A die Vakuumwellenlänge, AF die Wellenlänge in der Flüssigkeit an. Für die
in Strahlrichtung strömende Flüssigkeit messen wir demzufolge als Wellenzahl längs
der Strecke l

für die entgegen der Strahlrichtung strömende Flüssigkeit aber

Wenn die Differenz beider Wellenzahlen gerade eine halbe Periode sein soll, so muß
gelten :

Hieraus erhalten wir für die gesuchte Geschwindigkeit v der strömenden Flüssigkeit die
Aussage

1 A c 1 600 • 10“9 • 3 • 10 8 i 81 i
r / 4 \  2-------— ms -1  = — ms -1  = l l  STjns .
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Die Relativgeschwindigkeit, mit der die beiden Flüssigkeitsströme sich gegeneinander
bewegen, muß also 2v = 23,14 ms -1  sein.

248. In einem Kanalstrahl bewegt sich ein Wasserstoffatom und sendet dabei Licht aus. Ein
ruhender Beobachter mißt für die in Richtung des Kanalstrahls emittierte H a -Linie eine
Wellenlänge = 6532,44 • 10 -10  m, für den entgegengesetzt emittierten Lichtstrahl eine
Wellenlänge A + = 6593,22 • IO -10  m. Die Messung wird so ausgeführt, daß man das
primäre Licht des Kanalstrahls mit dem an einem Spiegel reflektierten Licht des in ent-
gegengesetzter Richtung emittierten Strahls vergleicht. Wie groß ist die Geschwindigkeit
des die Strahlung emittierenden Wasserstoffatoms? 1 ) 2Ha = 6562,76 • 10" 10  m

Lösung

Wir bezeichnen mit v0 die in der Eigenzeit des Wasserstoffatoms gemessene emittierte
Frequenz, wie sie ein mit dem Atom zusammen bewegter Beobachter wahrnimmt.
20 = gibt die emittierte Wellenlänge an. Das Atom bewege sich mit der Geschwindig-
keit v und sende unter dem Winkel # gegen seine Bewegungsrichtung einen Lichtstrahl
aus (Bild 138). Ein ruhender Beobachter mißt die Frequenz der emittierten Strahlung zu

Vi
V° 1 — cos & '

Für die Wellenlänge ergibt sich

1 — cos #A — Aq ■■

Vi -ß 2 KS Kanalstrahl
L5 Lichtstrahl
ß Beobachter

(2) Bild 138

Erfolgt die Strahlung in Richtung des Kanalstrahls, so ist # = 0 .  Für die Wellen-
länge der emittierten Strahlung erhalten wir aus Gl. (2) die Beziehung

A ’ = Ao 7FT75 - a/tT7 = M 1 “ + T ± (3)

Hingegen stellen wir für einen dem Kanalstrahl entgegengesetzt emittierten Lichtstrahl
eine Wellenlänge

/1  4- ß / ß2 \
= =20(1+  + + . ._1±£_2 + — Ao (4)

x ) Ives, H. L, Stillwell, G. R . :  Joum. Opt. Soc. 28, 215, 1938; 29, 183 und 294, 1939. -
Otting, G. : Diss. München, Phys. Z. S. 40, 681, 1939. Die relativistische Deutung des Effekts
wurde von Otting gegeben
20 Hajko, Elektrik
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fest Das primäre Licht ist also nach Blau, das sekundäre nach Rot verschoben. Der
Mittelwert

A~ + A+
(5)2

weist gegenüber der Strahlung des nichtbewegten Wasserstoffatoms eine geringe Rot-
verschiebung auf (relativistische Rotverschiebung). Im vorliegenden Fall ist

2" + 2 + 6532,44 + 6593,22
2

. IO- 10  m = 6562,83 • 10“ 10  m. (6)2

Gegenüber der H a -Linie des ruhenden Atoms tritt also gemäß Gl. (5) eine relativistische
Rotverschiebung

-----1 -------- Ao = (6562,83 - 6562,76) • IO" 10  m = 0,070 • 10‘ 10  m

— A V2 (7)

auf.
Aus der Verschiebung

A- + A+ »
A — ----  Ao — —

= (6593,22 - 6562,83) • 10’ 10  m = 30,39 • IO -10  m = 6562,76 • IO" 10

(8)
v

m —
c

erhalten wir
30,39

v = c — 4,63 • IO -3  c = 1389 kms -1  .
6562,76 ---------------

Der gleiche Wert ergibt sich aus der Verschiebung
2" + 2 +
-----— - - - -  — A — AoP*

Wir berechnen zur Probe

ß 2
20 y = 6562,76 • IO" 10  m

und erhalten
ß 2

2 0 y = 0,070- IO" 10  m

in Übereinstimmung mit Gl. (7).

(1,389 • 10 6 ) 2

2(3 • 10 8 ) 2

(9)

249. Die Lebensdauer des .-Mesons wurde von Rasetti durch Messung der Zeitdifferenz At
zwischen dem Einfallen des Mesons und dem Auftreten des beim Zerfall entstehenden
Sekundärelektrons bestimmt. Hierfür ergibt sich At  2 • 10 -6  s. Aus Absorptions-
messungen an .-Mesonen der kosmischen Strahlung muß man auf einen Zerfalls weg von
etwa 20 km Länge schließen. Welches Massenverhältnis (Masse des bewegten Teilchens
gegen Ruhmasse) folgt hieraus? Wie groß ist die Geschwindigkeit der .-Mesonen?
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Lösung

Wir setzen zunächst in erster Näherung die Geschwindigkeit v der Mesonen mit der
Lichtgeschwindigkeit c gleich. Aus dem Zerfallsweg von 20 km Länge folgt damit eine
Zerfallszeit

. , 20 • 10 3 2 A

'* -TTÖä- ’ -T  10  s -

Sie wird von einem gegenüber dem Meson bewegten Beobachter gemessen. Wenn wir
dagegen die Messung der Zerfallszeit in der Eigenzeit des Mesons ausführen, so folgt

df  = 2*10-  6 s .
Wegen

4t '  =

ergibt sich

4t '
4 t  2 -IO’  6

Hieraus erhalten wir
v 2

1 - — = 9 • 10’ 4 ,
c2

also für die Geschwindigkeit der .-Mesonen den Wert

v = yJ l -9 -  10~4 c = (1 - 4,5 • IQ-4 ) c ,

d. h. nur eine geringfügige Abweichung gegenüber der Lichtgeschwindigkeit.
Aus der Beziehung

folgt für das Verhältnis der bewegten Masse zur Ruhmasse

— = - - j- 1 = -- - -  1 = = 1 io  2 ~ 30.
Wo / _ c 2 V 1 - (1 “ 9 - 10 " 4 ) 3 —

V 1 " ?

Infolge der hohen Geschwindigkeit hat also die bewegte Masse den dreißigfachen Wert
der Ruhmasse.
Weitere Beispiele zur Abhängigkeit der Energie von der Masse und zur relativistischen
Massenveränderlichkeit sind in den Beispielen 173 bis 179 enthalten.

20*
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Aufgaben

347. Wie groß ist die Längskontraktion für
einen mit der Geschwindigkeit v = 0,1 c
bewegten Körper von l = 1 m Länge?

348. Welche Geschwindigkeit muß ein be-
wegter Körper haben, damit eine Lo-
rentz- Verkürzung auf die Hälfte der
ursprünglichen Länge eintritt?

349. In einem Bezugssystem I werden im Ab-
stand At = 4 s Signale ausgesandt. In
dem gegen I bewegten System II werden
diese Signale aber im Abstand At' = 5 s
registriert. Welche Geschwindigkeit hat
das System II gegenüber dem System
I?

350. Ein Wasserstoffatom bewegt sich mit
der Geschwindigkeit v = 0,01 c und
emittiert dabei die H a -Linie. Berechnen
Sie die wahrzunehmende Wellenlänge
für die Bewegungsfälle
a) auf den Beobachter zu,
b) vom Beobachter weg,
c) gegen die Beobachtungsrichtung
unter einem Winkel # = 90°.

351. Zwei Raketen bewegen sich gegenüber
einem festen Bezugspunkt: die eine mit
der Geschwindigkeit = 0,9 c nach
links, die andere mit der Geschwindig-
keit v2 = 0,9 c nach rechts. Wie groß
ist die Relativgeschwindigkeit, mit wel-
cher sich beide Raketen gegeneinander
bewegen für die Fälle
a) vom festen Bezugspunkt aus,
b) von einer der beiden Raketen aus be-
urteilt?

352. Von der in Aufgabe 351 dargestellten,
nach rechts fliegenden Rakete wird ein
Geschoß abgefeuert, das, von der Ra-
kete aus beurteilt, wiederum mit einer
Geschwindigkeit von 0,9 c gleichfalls
nach rechts fliegt. Welche Relativ-

geschwindigkeit wird von der nach links
fliegenden Rakete gemessen?

353. Ein bewegter Körper besitze die Ge-
schwindigkeitskomponenten qx = 0, 1 c ;
qy = 0,2 c\ qz = —0,1 c. Gegen das
verwendete Koordinatensystem bewege
sich ein zweites mit der Geschwindig-
keit v = vx = 0,4 c. Welche Geschwin-
digkeitskomponenten hat der betrach-
tete Körper, vom bewegten Bezugs-
system aus gemessen?

354. In einem Bezugssystem bewegt sich ein
Körper mit der Geschwindigkeit v l t
Ein zweites Bezugssystem ist gegen das
erste mit der Geschwindigkeit v 2 be-
wegt. Welcher Betrag der Relativ-
geschwindigkeit ergibt sich für den be-
wegten Körper, vom zweiten Bezugs-
system aus beurteilt? Berechnen Sie hier-
nach für Aufgabe 353 den Betrag der
Relativgeschwindigkeit.

355. Welche Energie ist notwendig, um ein
Elektron der Ruhmasse m Q = 9,1 x
x IO -31  kg ausder Ruhelage bis auf die
Geschwindigkeit v = 0,99 c zu bö-
schleunigen?

356. Wie groß ist die Masse eines Elektrons,
das eine Bewegungsenergie von 10 keV
hat?

357. Bei der Elektronenbeschleunigung im
Betatron werden die Teilchen durch ein
Magnetfeld der Induktion B auf einer
Kreisbahn gehalten. Im Endzustand be-
trage der Kreisbahndurchmesser 0,15m,
die Amplitude des Induktionsflusses sei
0 = 1,5 • 10 -2  Vs. Berechnen Sie Ge-
schwindigkeit, Masse und Energie der
beschleunigten Elektronen. Anfangs-
geschwindigkeit und Anfangsinduktion
können gleich Null gesetzt werden.
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5.2. Allgemeine Relativitätstheorie

Die von Einstein im Jahre 1915 geschaffene allgemeine Relativitätstheorie formuliert
die physikalischen Gesetze in kovarianten Gleichungen, die unabhängig vom Inertial-
system gelten. Sie befreit damit die Physik von der Notwendigkeit, spezielle Inertial-
systeme einzuführen, für die allein die bisher formulierten Gesetze gültig waren. Mit
dieser Theorie eröffnet sich ein Zugang zur Lösung grundlegender kosmologischer
Fragen. Obgleich beim gegenwärtigen Stand der Entwicklung weder die astronomi-
schen noch die theoretischen Kenntnisse ausreichend sind, um endgültige Aussagen
über den Aufbau des Universums zu gestatten, lassen sich doch bereits weitreichende
Schlußfolgerungen ziehen.
Die allgemeine Relativitätstheorie gründet sich auf den Begriff des Feldes als eines
selbständigen, nicht reduzierbaren Grundbegriffs, wobei sie die Gleichheit von träger
und schwerer Masse postuliert:

Kraft x .. . . Kraft---------------------- = trage Masse = schwere Masse = ------------------ .
Beschleunigung Feldintensität

In einem mit konstanter Beschleunigung g bewegten Bezugssystem ergeben sich danach
grundsätzlich die gleichen physikalischen Erscheinungen wie im Erdschwerefeld.
Aus einer Diskussion der kovarianten Feldgleichungen geht hervor, daß für astrono-
mische Abmessungen im Weltraum die ebene Euklidische Geometrie nicht anzu-
wenden ist, sondern daß hier eine schon von Gauss, Riemann und Levi-Civitä
entwickelte Geometrie gekrümmter Flächen und Räume Gültigkeit hat. Es erweist sich
als zweckmäßig, von geometrischen Analogien auszugehen.
Nach der GAUSSschen Flächentheorie läßt sich die Krümmung einer zweidimensio-
nalen Fläche, z. B. der Erdoberfläche, allein aus Messungen auf dieser Fläche be-
stimmen. In gleicher Weise kann die Geometrie des dreidimensionalen Raumes als
Geometrie auf einer Hyperfläche in einem fiktiven vierdimensionalen Raum gedeutet
werden. Auch die Krümmung der dreidimensionalen Sphäre läßt sich nach der
RiEMANNschen Geometrie allein aus Messungen in dieser Sphäre bestimmen.
Die Krümmungsverhältnisse in den Bahnen der Massenpunkte, die sonst keinen
äußeren Kräften unterliegen, wirken sich wie Kräfte physikalischen Ursprungs aus.
Auf diese Weise finden die Gravitationskräfte ihre physikalische Erklärung.
Entfernt sich ein Lichtstrahl von einem das Gravitationsfeld erzeugenden Körper,
nimmt also in Richtung des Strahles der Betrag des Gravitationspotentials cp ab, so ver-
ringert sich die Frequenz des ausgesandten Lichts. Für schwache Gravitationsfelder,
d. h. für I99I < c 2 , ergibt sich folgende Beziehung: Wird in einem Punkt mit dem
Potential (p 0 eine Schwingung der Frequenz v 0 erzeugt, so nimmt der Beobachter an
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einem Punkt mit dem Potential cp die Frequenz

\ c

wahr. Die an verschiedenen Punkten des Weltalls ausgestrahlten Spektren haben also
bei ihrer Entstehung überall das gleiche Aussehen. Bei ihrer Wahrnehmung auf der
Erde zeigen sich jedoch infolge der unterschiedlichen Gravitationsfelder Frequenz-
verschiebungen.
Aus den von Friedman im Jahre 1922 abgeleiteten Lösungsfunktionen der all-
gemeinen Relativitätstheorie ergibt sich, daß das Universum eine zeitlich veränderliche
Ausdehnung hat. Allgemeine Untersuchungen von Lifschitz führten 1946 zu dem
Ergebnis, daß eine expandierende Welt stabil, eine kontrahierende dagegen instabil
ist. Diese Theorie des expandierenden Weltalls findet ihre Bestätigung durch umfang-
reiche astronomische Beobachtungen, die erstmalig von Hubble ausgeführt wurden.
Nach diesen Untersuchungen zeigen die extragalaktischen, nicht mehr zu unserem
Milchstraßensystem gehörenden Spiralnebel eine Rotverschiebung, welche darauf
zurückzuführen ist, daß sich diese Nebel von uns weg bewegen. Als Beziehung zwischen
dem Abstand r eines solchen Spiralnebels, seiner Radialgeschwindigkeit v und der
Frequenzverschiebung Av ergeben sich die beiden Gleichungen

Av 7 Av 7-------- -- kr, v = — c ----  = kcr.
v--------------------------v

Die HuBBLE-Konstante k ist bisher nur größenordnungsmäßig bekannt. Ihr Wert
liegt bei

k « 10 -26  m- 1 .

Wichtige experimentelle bzw. beobachtbare Bestätigungen für die allgemeine Relativi-
tätstheorie sind außer der Spektralverschiebung auch die Perihelbewegung des Planeten
Merkur und die Ablenkung des Lichtstrahls in starken Gravitationsfeldern.

i-4\ c 2V = ----  ----------
1

c 2

Beispiele

250. In einer Höhe H = 21 m über der Erdoberfläche befindet sich eine Strahlungsquelle.
Ihre Strahlung wird an der Erdoberfläche registriert. Berechnen Sie die Frequenz-
verschiebung infolge der Gravitationswirkung des Erdschwerefeldes (Bild 139).
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Lösung

Wir denken uns ein Atom im Grundzustand mit der Energie E auf der Erdoberfläche.
Durch Energiezufuhr wird dieses Atom angeregt und dabei in den Energiezustand E'
versetzt. Danach bringen wir das Atom auf die Höhe
H = 21 m. Da Gravitationsfeld

die gesamte Masse des Atoms im angeregten Zu-
stand darstellt, haben wir gegen das Gravitations-
feld der Erde die Energie

, w E'gHmgH= — —
c 2 (1) Bild 139

aufzubringen, die dem System zugeführt wird.
Das angeregte Atom emittiere in der Höhe /fein Photon und gehe bei diesem Elementar-
akt wieder in den energetischen Grundzustand E über. Die emittierte Frequenz g> 0 ,
gemessen in der Eigenzeit des Atoms, folgt aus

Wir transportieren nunmehr das jetzt im Grundzustand befindliche Atom wieder zur
Erdoberfläche zurück, wobei das System die Energie

mgH=- 2 gH (3)
c2

abgibt. Durch Absorption des in der Höhe IT emittierten Photons, dem wir an der Erd-
oberfläche die Energie zuordnen, wird das Atom aus dem Grundzustand wieder in
den angeregten Zustand überführt. Nach dem Energieerhaltungsgesetz ergibt sich aus
den Gin. (1) u. (3)

E'gH EgH
E' + —V - - -V + hco = (4)

c 2 c2

d. h.
E — E'

h(ü = hat* H -------- — gH. (5)
c

Hieraus erhalten wir nach Division durch h und unter Verwendung der Gl. (2)
. t l  I ZH \

w gH = o>o 1 1 + - -1 . (6)

Demnach wird auf der Erdoberfläche eine höhere Frequenz registriert als in der Höhe ff
(Blauverschiebung). Mit den vorgegebenen Zahlenwerten erhalten wir eine relative
Frequenzzunahme

9,81 • 21
(3 • 10 8) 2

co — ö>0 _ gH
C0 0 c2 = 0,229» IO" 14  . (7)
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Erstmalig durch Anwendung des Mößbauereffekts wurde ein experimenteller Nachweis
dieses Effekts der allgemeinen Relativitätstheorie möglich. 1 )

251. Im Gravitationsfeld der Erde bewegt sich eine Uhr mit der Anfangsgeschwindigkeit
vQ = 10 4 ms -1  senkrecht nach oben. Die Erdbeschleunigung werde im Verlauf des Auf-
steigens und während des nachfolgenden freien Falls konstant g = 9,81 ms“ 2 gesetzt.
Luftreibung ist zu vernachlässigen. Wie groß ist die Zeitdifferenz gegenüber einer auf der
Erdoberfläche ruhenden Uhr, wenn die bewegte Uhr wieder zurückkehrt?

Lösung

Infolge der Wirkung des Gravitationsfeldes zeigt eine Uhr, die sich - von der Erd-
oberfläche aus beurteilt - für das Zeitintervall dz in der Höhe H auf hält, in der Eigenzeit
das Zeitintervall

dz' = dz (1)

Die Bewegung mit der Geschwindigkeit v bedingt andererseits, daß ein auf der Erd-
oberfläche zurückbleibender Beobachter die Zeit

dz'
dz = (2)

registriert, wenn die bewegte Uhr das Zeitintervall dz' anzeigt (Beispiel 444). Für kleine
Geschwindigkeiten v < c folgt hieraus

>2 \

Wenn wir beide Korrekturen zusammenfassen, so finden wir, daß die in der Höhe H
mit der Geschwindigkeit v bewegte Uhr das Zeitintervall

dd  _ d , [  1 + J?_£
[ c 2 2c 2

anzeigt, während die auf der Erdoberfläche ruhende Uhr das Zeitintervall dz angibt.
Zur Berechnung des von der bewegten Uhr während des Auf- und Absteigens an-
gezeigten Zeitintervalls At' berechnen wir das Integral

At At

c 2 2c 2 
t

dz' (3)

(4)

(5)At
o o

Dabei haben wir entsprechend den Gesetzen des freien Falls zu schreiben :
g

H= — — t 2 + vo t, v = v0 — gt. (6)

x ) Versuch von Pound und Rebka, HARVARD-Universität 1959
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Wir setzen Gl. (6) in Gl. (5) ein und erhalten
At

4t' = At + y [ -  y t 2 + gvo t — 2 
gf '> j dz. (7)

0

Wir bestimmen die von beiden Uhren angegebenen Zeiten, wenn die bewegte Uhr
wieder auf der Erdoberfläche auftrifft. Für die imbewegte Uhr folgt aus der ersten
Gleichung in Gl. (6), wenn wir H = 0 setzen,

t = At = — . ' (8)
g

Wir integrieren Gl. (7), setzen den gefundenen Wert in Gl. (8) ein und erhalten

Im vorliegenden Fall ergibt sich aus Gl. (8)
2 -  104

zlr = - s = 2038,7 s
9,81 ------—

und aus Gl. (9)
/ 10 8 \At' = 2038,7 1 + -y J s = 2038,7 (1 + 1,85 • 10~ 10 ) s .

Die Abweichung liegt also in einer Größenordnung, die für einen experimentellen Nach-
weis die Anwendung des MössBAUER-Effekts oder der Lasertechnik erfordert.
Zur Behandlung der Beispiele 250 und 251 hätte auch von vornherein die Theorie des
schwachen Gravitationsfeldes entsprechend der Einführung in die allgemeine Relativi-
tätstheorie herangezogen werden können.

252. Der Begleiter des Sirius hat die Masse m = 1,68 • 10 30  kg, sein Radius ist r = 1,88 x
x 104 km. An der Oberfläche dieses Sterns wird die H a -Linie emittiert (2Ha = 6564,68 x
x 10" 10  m). Berechnen Sie die auf der Erdoberfläche gemessene Wellenlänge und den
Betrag der Rotverschiebung. Welche Radialgeschwindigkeit müßte der Siriusbegleiter
haben, wenn die auftretende Rotverschiebung ohne Gravitationsfeld, nur als Doppler-
Effekt, auftreten sollte?

Lösung

Wir wenden die für das schwache Gravitationsfeld gültigen Formeln an. Die Gravita-
tionskonstante hat den Wert y = 6,67 • 10 -11  m 3 kg -1  s~ 2 . Für das Gravitations-
potential <po an der Oberfläche des Siriusbegleiters gilt

m 6,67 • 10 -11  • 1,68 • 10 30  
t l n l2  2 2

<Po = - y  — = -------------T- oö— ---------- Jkg  -1  = —5,96 • 10 12  m 2 s 2 .1,88 • 10 7

Dagegen müssen wir für das Erdpotential <p schreiben

<p = -y  — = -gr E = -9,81 • 6,37 • 106 mV 2 = -6,25 • 10 7 m 2s-  2 .
rE
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Dabei bedeutet g die Erdbeschleunigung, rE und raE Erdradius bzw. Erdmasse. Wir
finden |??| < |g?0 | • Für die auf der Erde gemessene Frequenz der H a -Linie erhalten wir
somit

5,96 • 10 12  - 6,25 - IO 7 \
(3 • IO8 )2 / “ ”° (1 6,6 • IO'  5 ) .= *o 1 -

Für die Wellenlänge der H a -Linie folgt also

A = — = — (1 + 6,6 • IO- 5 ) = 6564,68 • 10- 10 (1 + 6,6 • IO -5 ) m =
VVq

= 6565,11 - 10~ 10  m.

Demnach tritt eine Rotverschiebung
JA = 0,43 - IO“ 10  m

auf.
Nach der Theorie des DoppLER-Effekts zeigt eine mit der Geschwindigkeit v bewegte
Lichtquelle die Wellenlängenverschiebung

vJA = A — Ao == Ao — •
c

Hieraus folgt
JA 0 43 • IO -10

v = c = ’ 3 • 10 8 ms -1  = 19,6 • 10 3 ms -1  .
A o 6564,68 • IO“ 10  — ----------------

Die infolge des Gravitationsfeldes auftretende Rotverschiebung entspricht demnach
einer Geschwindigkeit der bewegten Lichtquelle von 19,6 kms“ 1 .

253. Die Strahlung eines extragalaktischen Nebels zeige für die H a -Linie des Wasserstoff-
atoms die Wellenlänge A = 6630 • 10“ 10  m. Berechnen Sie aus dieser Angabe Ent-
fernung und Radialgeschwindigkeit des Nebels. Die Wellenlänge der H a -Linie auf der
Erde beträgt A = 6564 • 10“ 10  m.

Lösung

Für die mittlere relativistische Frequenzverschiebung und den Abstand r besteht nach
Hubble die Beziehung

Av
-------- - -  kr.v (1)

Ferner gilt für den Zusammenhang zwischen Frequenzverschiebung und Geschwindig-
keit des Nebels die Beziehung

Av
— c ----- = v = kcr. (2)

v
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Hierin ist k « IO" 26  m -1  die HuBBLE-Konstante.
Im vorliegenden Fall ist

Av A l  6630 — 6564 66
— = ------------— = ------- & 0,01 .
A 6564 6564v (3)

Aus den Gin. (1) u. (3) erhalten wir damit für den Abstand des Nebels die Angabe

Av 1 °>°1
r - -  -------- = 10 m ,v k IO" 26  -------- (4)

das sind etwa 10 8 Lichtjahre. Für die Geschwindigkeit des Nebels in radialer Richtung
erhalten wir aus den Gin. (2) u. (4)

_ c
= IÖÖ *v = kcr IO’ 26  • 3 • 10 8 • IO24 ms -1  = 3 • IO6 ms -

Aufgaben

358. Eine Uhr wird im Erdschwerefeld mit
der Anfangsgeschwindigkeit
v0 = 1 km s -1

senkrecht nach oben geworfen. Welche
Zeitdifferenz gegenüber einer auf der
Erdoberfläche ruhenden Uhr zeigt sich,
wenn die bewegte Uhr die Erdoberfläche
wieder erreicht?

359. Eine Uhr wird mit der konstanten Be-
schleunigung a = gj2 und der Anfangs-
geschwindigkeit vq = 1 kms  -1  senk-
recht nach oben bewegt. Welche Zeit-
differenz wird gegenüber einer auf der
Erdoberfläche ruhenden Uhr festge-
stellt, wenn die bewegte Uhr die Erd-
oberfläche wieder erreicht?

360. Von einer auf der Erdoberfläche stehen-
den Lichtquelle wird die H a -Linie aus-
gestrahlt (A = 6562,7 • 10" 10  m). Wel-
che Wellenlängenverschiebung stellt ein
Beobachter in 10 km Höhe fest? Wel-
cher DoppLER-Geschwindigkeit ent-
spricht diese Verschiebung?

361. Welche Wellenlängenverschiebung zeigt
die auf der Sonnenoberfläche ausge-

strahlte H a -Linie bei ihrer Registrierung
auf der Erdoberfläche?
(Sonnenmasse w© = 1,98 • IO 30  kg,
Sonnenradius r© = 6,95 • 10 8 m,
AHä = 6564,7 • 10" 10  m,
y = 6,67 • 10" 11  m 3 kg -1  s -2 )

362. Welche Wellenlängenverschiebung
würde eine auf der Sonnenoberfläche
ausgestrahlte H a -Linie zeigen, wenn sie
auf dem Siriusbegleiter registriert wer-
den könnte? (Masse des Siriusbegleiters
m = 1,68 • IO 30  kg, Radius r = 1,88 x
x 107 m)

363. Im intergalaktischen Raum, fern von
allen Gravitationsfeldern, strahlt ein
Wasserstoffatom die H a -Linie aus. Wel-
che Wellenlängenverschiebung wird auf
der Erdoberfläche gemessen?

364. Als Krümmungsradius des Universums
wird ein Wert R = 5 • 10 25  m ge-
schätzt. Berechnen Sie, welche Rotver-
schiebung das Licht eines Spiralnebels
erleidet, der sich im Abstand r = 2R
befindet. Wie groß ist die Radialge-
schwindigkeit des Nebels? (Hubble-
Konstante k « 10 -26  m“ 1 )
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1. ß = 23,36 • IO-9  C
2. e't = 2,21

3.  ß= -4=
V3

4. ß = 0,86 • IO -12  C
5. Die elektrostatische

Abstoßung ist 41,8 x
x 1047 mal so groß wie
die Massenanziehung

6. cr = 3,1832- 10- 6 Cm" 2
7. E6 = 359,3 -106 Vm- 1 ;

E 12  =89,8 -10 6 Vnr 1 ;
E18  = 39,9 10 6 Vm- 1

8. a) Im Abstand
11,17 cm von der
größeren Ladung ist
E = 0

b) Die Potentiale sind
im Abstand
12,31 cm von der
größeren Ladung
gleich groß

9. U = 178,7 • 10 3 V
10. r = 59,9 m
11. 1408 V
12. £7 = 900 V
13. r = 0,449 m
14. £7=  11977 V

15. E = -
, rirm  —

r2

16. a) E = 0 ;
eb)E  = ----------=

87vs0 
2 
5/2

_ £7 __ u
17. £ = — --------£12  +

*12
, £71 - £73

H ----------------- £13 +
*13

t C7i - £74
H ----------------- £14

*i

u=-  -
2s0

2/4 £q

18.

19.

29. PFp = 0,01347 J
30. F' = 26 F
31. C = 710 pF
32. C = 166 pF;

r = 1495 km
33. £7=  100 V
34. C = 620,13 • IO -12  F
35. A = 24,2 cm 2
36. C = 3335 • IO -12  F
37. C = 744 pF
38. C = 336,6 pF
39. £7i = 7500 V;

U2 = 4500 V
40. PF = 0,02 J

e 241. dpF=-  — x
87VF£q20. ri

r2
r3

1,02 r ;
ea 1,04 r ;  . . . ;

5,4 • 10 6 r
” 5,6 • 106 - n • 10 s

21. ß 4 ,5-105 C;
o = 8,88 • IO" 10 Cm- 2

22. Et = 1714 - 10 3 Vm-‘;
E 2 = 2857 • 10 2 Vm- 1 ;
Ui = 8571 V;
U2 = 1429 V

23. U=6V
24. F = 1,6- 10- 13  N
25.
26.
27.
28.

W = 50 J
FF = 24J
W = 240 kJ
W = 106 kJ

\ c r /
42. PFi = 16,53- 10- 3 J ;

W 2 = 1,653 • IO -3  J
43. W = 4,43 • 10 5 J km- 3
44. Q = 10 Ah
45. t = 1 h 17 min 46,7 s
46. A = 1,2 mm 2
47. I = 2,5 m
48. q = 0,028 £1 mm 2 rrr 1

49. Ä = 1,133 Q
50. R = 57,3 ß
51. wCu : ai ~ 2 :1
52. A 2 =42,56  mm 2
53. Ä30  = 22,23 Q
54. R = 23,6 ß
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55. t = 215,1 °C
56. t 2 = 51,91 °C
57. a) AR = 313 Q;

b) AR' = 0,63 Q
58. P s = 10 Q;

R p = 0,48 n
59. P = 120,76 ß
60. R = 15 n
61. Z=9 ,5A
62. U = 3,69 V
63. 1 = 101,45 mA
64. 1 = 0,375 A
65. U = 211,5 V;

AU = 8,5 V
66. R = 107 Ü;

U2 = 198,6 V ;
Zk = 102,81 A

67. R x k 78,6 W
68. U± = 169 V;

U2 = 51 V
69. Z=  0,314 A;

U = 0,943 V
70. Zx = 1,5 A ;

Z2 = 2,5 A ;
Z3 = 4,0 A

71. Zx = 0,789 A;
Z2 = -1,278 A ;
Z3 = 0,486 A;
U3 = 1,944 V

72. 1 = 1 A ;
Zi = 0,75 A ;
Z2 = 0,25 A

73. R a = 29,99 kO ;

80. t = 3 h
81. P = 717,6 W
82. R = 46,7 ß
83. Z = 4,037 A
84. = 78,5 %
85. P = 0,6 kW
86. = 92%;

Preis « 0,77 M
87. Z = 32,6 A
88. P = 8,8kW;

Preis: 1,76 M
89. P = 484 W;

V = 5,076 1
90. Z = 0,042 A
91. Preis ä 0,01 M
92. je 24 in Reihe,

2 Reihen parallel
93. m = 2,83 kg
94. Z=  10,16 A
95. Z=6A;

t = 5 h 10 min 34 s
96. t = 20 h 50 min

97. B ~ ~ =
2w

= 10~ 4 T
98. B = 3,333 • IO’ 6 T
99. H - 16,75 Am" 1

100. Z=  1500 A
101. 5 = 1112- IO’ 6 T;

0 = 6,672 • 10- 7 Vs
102. F = 0,3 N
103. F = 1 N

104. 5 = -y- = 98,1 T

IBr 2

105. M = — — = 0,01Nm;
2

die Scheibe rotiert ent-
gegen Uhrzeigersinn

106. 0 = 0,13 Vs
107. 0=4-  10“2 Wb
108. Z = 2,575 A
109. Z = 2,512 A
110. Z = 26,5 A

in. « = JL = io s- 1

112. Ut = 1500 V
113. Ui = 1200 V
114. Ui =660V

116. Ui = 1,32 V
117. Ui = 3,6 V
118. F = 11460 N

119. £ = A 2Äln-
2k rx

120. Umax = 18,85 V
121. a> = 314 s" 1
122. cos (p = 0,843
123. Ue f f  = 120,2 V
124. P = 176 W
125. Z = 9,29 A
126. a) U f = 219,4 V ;

b)Zz = 6A
127. P = 13,4 kW
128. P = 1746 kW
129. Zs = 105,2 A
130. Uc = 274V
131. Z = 232 ß ;

Z = 0,47A;
Uc = 187 V;
U L = 295 V;
cos (p = 0,129

132. Z = 222ß ;
cos <p = 0,707 ;
<P = 45°;
Z = 0,99A;
U L = 155,6 V;
UR = 155,6 V

133. Z = 2,57 O ;
Z=  3,89 A ;
ZR = 3,33 A ;
Ic = 2 A ;
tan <p = 0,6;
(p = 31°

134. Z = 0,5 A
135. Umax = 785 V
136. 0 max = 1,126 • 10~ 3 Vs
137. u 2 = 300 V

74. R = 0,005 Q
75. Z = 0,05 A ;

R = 9000 Ü;
4 V/Teilstricl

76. ß = 24C;
W = 288 J

77. Preis: 0,24 M
78. ß = 2570 kcal =

= 10,08 MJ
79. Äi = 0,6 • R 2
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189. a) A = 571,4 nm,
444 nm;

b) A = 666,6 nm,
500 nm, 400 nm

190. <p = 6"
191. Ar = 0,19 mm
192. /=2m;

2r = 2,84 mm
193. A = 578 nm
194. 0,45 mm; 0,90 mm;

1,35 mm
195. A = 600 nm
196. A = 460 nm
197. x = 14,4 cm
198. 4. Ordnung
199. « = 30°
200. A = 0,058 nm
201. a = 48°26'
202. n = 1,5
203. a = 41°38'
204. E = 17,4 kJ
205. T = 200 K
206. t = 1 h 38 min
207. T = 6084 K
208. Ej t = 1,17 Em.
209. n = 40
210. v = 5930 kms  -1

211. y0 = 0,2 cm
212. r « 4,2 mm
213. /=  1,068 • 10 7 s’ 1

214. m = 11,384 • 10~ 31  kg;
E = 1,25 • 10 5 eV

215. m = 1,8504- 10" 27  kg ;
v = 1,316- 10 8 ms’ 1

216. v = 0,96 c
217. PFa = 6,323 eV
218. m p = 1,692- 10 -27  kg
219. A' = 0,05243 nm
220. oct = 74°15';

a 2 = 58°50';
a 3 = 43°35';
« 4 = 0

221. UT = 5,12 V
222. v = 1912 kms-  1
223. E k = 10 3 eV

139. Zmax =t / | / |=86 ,6A;

zo = — \/ LC =

= 1,36 • IO" 5 s
140. t0 = 6,9 s
141. E = 2,83 Ix
142. Et = 30 lx£

77 10  A

143. 0 = 0,05 Im
144. E = 13,8 Ix

145. -fA 1,12
Eo

146. a) dat  = 1°42';
J« 2 = 15°51';

b ) J« i  = 5 O 11';
der Winkel
£ = 48°35' ist der
Grenzwinkel

147. a = 57°30'
148. £ = 41°49'
149. x = 6,65 cm
150. x = 18 cm
151. ö = 41°30'
152. <3 = 10°55'
153. <p = 45°
154. y> = 2<p
155. x = 2000 m

3
156. a) Z? = —- r ;

162. /=  A2co 2

163. /=  13,73 cm;
Z = -1,75

164. g = 28 cm;
b = —84 cm

—
-44

166. b = —1,8 cm
167. gl

g2
bt
b 2

168. D 2 = 3 dpt
169. ft = 9 cm
170. / =24  cm
171. G = BtB2 = 6 cm

172. zx±
p

173. g = 5 r
174. /= / '  = 10,9 cm;

h = h' = —1,82 cm;
b = 23,95 cm

175. / =4 ,5  cm
176. g = 7,14 cm;

Z = 3,5
177. Z = 273,5
178. g = 4,05 cm
179. Z = 43,4 cm;

Z = 30
180. d= 17,95 cm
181. x = 18,6 cm;

Z = 9,3
182. d 4,1 - IO“ 5 cm;

4- = 178d
183. Af = 0,58 cm
184. 2 = 0,0006 mm
185. 0,78 mm; 0,44 mm
186. As = 3,5 nun
187. J < 101,25 nm
188. a) A = 600 nm;

b) A = 450 nm

= 140 cm;
= 21 cm;
= 35 cm;
= -84  cm

157. a) g = 35 cm;
b = 140 cm;

b) = 21 cm;
b = —84 cm

158. Das Bild ist reell und
umgekehrt;
B = 4,5 cm;
b = 96 cm

159. r = 1 m;  x Hy
160. x = 8 cm
161. a), b) b = 30 cm vom

Konvexspiegel entfernt



319Lösungen zu den Aufgaben

224. E = 1,978- IO" 13  J ;
P =
= 6,624- 10 -22  kgms _1  ;
m = 2,21 • IO -30  kg

225. Es handelt sich um ge-
ladene Teilchen, deren
Ruhmasse kleiner als
213 m Q ist, z. B. jz-
Mesonen, deren Ruh-
masse den Wert =
= 207 m 0 hat.
* h226. 2gr = ------ x

m Q c

d 3,97- IO '  9 m;
a-Teilchen:
d 9,97 • 10- 10  m

262. d a = 10,05 - 10- 12  m;
= 1,23 • IO'  9 m

263. 4q = 0,655 • IO’ 12  m

247. w c = 14,00829 u =
= 23,25 • IO -27  kg

248. m o = 17,0047 u
249. a) JE n = 104,4 MeV;

b )dE Pb = 1467,9MeV;
AE  pro Nukleon :
7,1 MeV

250. E =
= 57-  10 10  kJ kg- 1

251. A =0,496-  IO -9  m
252. A = 6,62 • IO -33  m
253. A = 2,87 - IO’  11  m
254. A = 0,21 • IO’ 11  m

265. E = 3,58 J;
hv = 2,85 • IO- 19  J ;

L = 0,125 • 10 20  ;hv
AE = 1,32 • IO" 25  J ;
p = 9,54- 10 -28  kgms -1  ;
4p = 2,2- 10“ 29  kgms -1

266. J r  = 2,l-10-  8 s ;
AE =3,1 • IO -26  J

267. AE = 4,3 • IO“ 9 eV;
At = 0,96 • IO’ 6 s

268. 2 > 10- 14  m;
v < 3 • IO 22  s-  1

255. U r = 4,11 V;
U2 =411  V;
U3 = 41 100 V

10“ 11

256. 2 = — — m;
y/u

A = IO -14  m
257. u = 4,80 • 10 9 ms
258. 2 = 0,964 • IO'  10

2 = 0,897 • IO -10

A = 0,841 • IO’ 10

A = 0,796 • IO’ 10

A = 0,758 • IO- 10

A = 0,723 • IO’ 10

n = 1,047;
n = 1,042;
n = 1,037;
n = 1,035;
n = 1,031;
n = 1,028;
E p = -15,4 eV;
E p = -15,8 eV;
E p = -15,8 eV;
E p = -16,3 eV;
Eb = -16,4 eV;
E p = -16,2 eV;
Ep = -16,0 eV

259. U = 38,6 V ;

= 0,0156 nm

-= 2,62 • IO" 8 s
228. v 3 = 729 km s“ 1

229. T 3 « 4,1 • IO’ 15  s
230. Ai = 656 nm;

2 2 = 486 nm;
2 3 = 434 nm

231. 2 = 254 nm

232 M -
G 2w 0

233. N= 18
234. n a = 6 ;  w ß = 4
235. Ti /2 = 1550 a
236. p = 8,3%
237. t = 60 s
238. Z = 3,7 • 10 10  s" 1
239. dr = 2,72 cm;

<72 = 3,35 cm
240. dz  = 2,7 Kh"  1
241. T = 2,7 • 10 5 a
242. V = 0,67 mm 3
243. v = 2,7 • 10 5 ms- 1
244. E= 14,94 • IO" 11  J =

= 933 MeV
245. AE = 2,26 MeV
246. Am = 3,2 • 10“ 9 g mol -1

8 
S 

g 
8 

E 8

« 3,6 • IO’ 28  kg ä
ä 380 u, Meson

270. a 2 — b22  ~
= 1,06 • IO“ 10  m;
b21  = 0,53 • IO -10  m

27 1 . Linearität folgt aus Dif-
ferentiationsregeln,
Selbstadjungiertheit
durch einmalige par-
tielle Integration

272. A und B sind nicht
HERMiTEsche Opera-
toren, A ist zudem
nicht linear; dagegen
sind C und D HERMi-
TEsche Operatoren
d

273. — xe x = ex + xe x ;
dx

A = 1,97 • IO’ 10  m
260. A > 0,242 • IO’ 10  m;

U < 2541 V
261. Elektronen:

<Z 7,28-10- 6 m;
Neutronen :

x ex = x e*
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d d
+ - — x + x - - - -F x 2 ;dx dx
L u(x) = 2x cos x +
+ x 2 sin x

275. Wenn F und G ver-
tauschbar sind

276. Ebenso wie die kineti-
sche Energie und eine
Ortskoordinate nicht
gleichzeitig gemessen
werden können, sind
auch kinetische und
potentielle Energie
nicht zugleich meßbar.
Demnach ist die Ge-
samtenergie nur als
Ganzes, meßbar; die
Kenntnis der Gesamt-
energie schließt mithin
die gleichzeitige genaue
Kenntnis der poten-
tiellen und der kine-
tischen Energie aus

277. L x ist nur mit x gleich-
zeitig meßbar

278. L x ist nur mit px
gleichzeitig meßbar.
Quantenzustände, in
denen L x und x gleich-
zeitig gemessen werden
können, gestatten es
nicht, auch px gleich-
zeitig zu messen. Eben-
so ist bei gleichzeitiger
Meßbarkeit von L x und
px die Komponente x
im Sinne der Heisen-
BERGschen Unschärfe-
relation nicht meßbar

279 - £2 7f /  ö ' öv— tl {pT ----- J'T- +l \  dy dz /
/ d ö \ 2

+ Ur  ----- z — \ +\ dz dx]
( d d \ 2 1

0 5g x 5g a:280. L 2 ist mit allen cartesi-
schen Komponenten
des Drehimpulses
gleichzeitig meßbar

281. de-Broglie- Welle

= Ce -1  r " ft- *)
282. W = 0,061
283. W = 0,238
284. W = 0,438

285. C = —
4 2 1

286. dJV = 0,00733
287. W = 0,0414
288. W = 0,00012
289. d = 0,68
290. r = 0,41 ; d = 0,59
291. <Z = 0,16- IO’ 5
292. I = 2,6 • 10- 11  m
293. 3 • 10 -26  ;

h
Hs = ~A - - -2 =4znro
= 0,25 -10  21  s-  1 ;
A ä; 0,75 • IO -5  s -1  ;
t ä 0,9 • 10 5 s ä 1 Tag.
Die genaue Theorie
der Radioaktivität er-
fordert die Unter-
suchung des räumli-
chen Potentials

294. Wegen des Faktors
0/3/2

. beträgt die er-
. I £ l
forderliche Feldstärke
nur etwa das (2,5) 3 /2 -
fache gegenüber Wolf-
ram. Es ist also die
vierfache Feldstärke
notwendig, d.  h., sie
muß in der Größen-
ordnung 10 9 Vm" 1 lie-
gen

295. x < 0 :  y = Q efc x ,
. /2m(E0 - E)

= J ------TT -----

V> =
= Cnsin(£  n fliiX + <3);
Ln«n folgt aus der
transzendenten Glei-
chung
bkunu
y/ZmEo

. »ii —= sm ---------------- .
2

Aus den diskreten Lö-
sungen &n »n folgen die
gesuchten Energien

2&n»n
ih = -------

2m
x a:y> = Cin

TTT»TTT ~ ____________

l2m(E0 - E)
V ft 2

dL ÖL
296. — = ------

dz dt
- vh(LH - HL) =

ö£
= — + [H,L]

ot
dL

297. — = [H, AB} =
dz
= \H ,A}B  +

+ AIH,B]=~B +
Ä dB At

+ A Tt
dx dx298. 77 = T. = *1 =
dz dz
_ Px

2m
dp x öL p

dz öx ’
ebenso für die anderen
Komponenten

300. AH0 = 4861,3 • 10 -10  m

301. 4- = 0,82258 • 10 7 nv 1

302. 4- = 1,2193 • 106 m- 1
Ä



321Lösungen zu den Aufgaben

dagegen nach der klas-
sischen Theorie
dFFklass = WkW** =

2yhjL(OQ äX
Ttyjsh — 4pui>0 x 2

für den angeführten
Spezialfall ist dFF =
= 0,098, dFF =
= 0,098

330. Die Anzahl der Null-
stellen ist gleich n

4
331. x

321.
Vl.m V>tm

15  . 49— -sin4 #32

m ±2
15  ’ 2 Q,sm 2

87T cos 2 #

±1

303. ÄD = 1,097076 X
x 10 7 m- 1

304. = 1,097374 x
x IO 7 m -1

305. 2 = 4339,27 • IO -10  m

306. L x = ih fsin cp 4-
\ d#

+ cot & cos (p
dg? /

/ ö
L y = —ih cos —

\ O#

— cot # sin (p —
og?/

307. Für die Quantenzahl
Z=  1

5
(3cosM - l)  2

322.
0

m max min

±2 90° 0°
±1 45° 0°, 90°

0, 0°, 90° 54° 43'308. Für den Operator L x ,
nicht aber für die Ope-
ratoren L y und L z

309. L 2 und L x

310. 211  =
1 / z \ 3 ' 2

= -------7=~ ----- X
8 a/tt \ a i /

_ ZT

x — e 201 sin # e19>

311. r = 4«!
312. ri = 9öi ;  r2 = 16ai
313. r — 5öi

323. W = 0,192
324. Ä = 0;y# = 0 ;

V3
= 0,095 J- 0(oo) -
-<P(x/3) =0,095 +
+ 1 - 0,986 = 0,108;
0(x): Fehlerintegral

325. = 0 für & = 0 ;
jv = 0,84 • 10 15  Am" 2

für 2

326. M = = 1,165 X
2m

x 10“ 29  Vsm (Bohr-
sches Magneton)

327. H a -Linie:
hv = 3,04- 10" 19  J ;
Oszillation: ha> Q =
= 5,47 • 10- 20  J ;
Rotation :
h 2

— - = 4,02 • 10“ 22  J

328. Aos = 3,62 • 10" 6 m;
Arot = 494 • 10" 6 m

329. Nach der Quanten-
theorie ist i
dFF= wdx = ------y=x

2xQyJ 7C
/ x 2 \ 2 —

x(2 - s -  1 )  » - - . dx ,

x y* £4 e _ *’d£ = -|-x 2 ;
o

für H 2 :
x = 2,34 • 10- 22  m 2

, i [ (z + i)Z n
+ 2 L n 2 J j

316. rHe = 1,32- 10- 10  m;
rLi  = 0,88 • 10“ 10  m

317. d FF = 0,019
318. W = 0,054
319. d FF = 0,0036
320. Kugelsymmetrie;

Wahrscheinlichkeit für
alle Richtungen gleich
groß

x dx = — WoX m,„
334. In Übereinstimmung

mit der Heisenberg-
sehen Vertauschungs-
relation ergibt sich

21 Hajko, Elektrik
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A> 13,3- 10- 6 m;
infraroter Bereich

343. Oszillations-
schwingung mit
A = 30,8 • 10 -6  m;
Abstand der Rotations-
linien

j = 16,3 irr 1 ;

im Zentrum ist

ist. Das geschieht im
Falle des Zeeman-
Effekts durch Auf-
spaltung der Spektral-
linien in einem äuße-
ren Magnetfeld

347. I' = 0,995 m;
Verkürzung Z — /' =
= 0,005 m

348. v = 0,866 c
349. v = 0,6 c
350. a) A = 6497,46 x

x 10~ l o  m;
b) A = 6628,71 x

x 10- 10  m;
c) A = 6563,09 x

x 10 -10  m
351. a )y  = 1,8 c ;

b) v = 0,9944 c
352. v = 0,9997 c
353. q rx = - 0,312 c ;

q'y = 0,191 c ;
q'z = - 0,0955 c

354. |yrel | =

1//- - v x ] 2
p l  - V 2 ---------? ------

1 V 1 ” 2
c 2

= 0,378 c

355. E = (m — m Q ) c 2 =
= 4,986 • IO’ 13  J

356. m = 1,02 m 0 =
= 9,29 • IO" 31  kg

357. Aus dem Induktions-
gesetz ro _
Ö0 f dB J— = 2k / — r dr =
ör J öt

= — 2TzrQ E
folgt für die beschleu-
nigende Kraft

e Ö0
— eE = -------— .

2kz*o dt

px — xp =

(
1 0 0 0 . . . \
0 1 0 0 . . .  |
0 0 10  . . .  I

335. In Zusammenhang mit
der HEiSENBERGSchen
Vertauschungsrelation
folgt (vgl.436)

(
1 0 0 . . . \
0 3 0 . . .  |
0 0 5 . . .  I

336. zix 2 = — (n + -J-Vpcoo \ 2 /

= jutoo (n + y j

337. 3.2 = 2860 s’ 1* **

338. W = 0,343 • 10~ 10

339. 2 = 0,52 • IO* 33  J ;
2

demnach nimmt die
Nullpunktenergie nur
für atomare Verhält-
nisse bedeutsame
Werte an

340. n = 3,94 • 10 12  . In-
folge der kleinen
Energiestufen scheint
sich die Energie, ver-
glichen mit der Ge-
samtenergie Äft) 0 =
= 1,05 • IO" 33  J, stetig
zu verändern

341. J=  1,65 - IO’ 46  kgm 2 ;
r = 1,15* 10 -10  m;
h 2
— = 0,667 • 10’ 22  J

342. J f-J-j = 7,5 m- 1 ;
\ 2 /

Auflösungsvermögen
> 1960, im Zentrum
> 980
2

344. — 180, im Zentrum
JA

345. J = 1,39 -10 -  46 kgm 2 ;
r = 1,09- 10- l o  m

346. (£+ ii?)z,w; r, m±1 4= 0 ;

4= 0.
Für alle anderen Indi-
zes sind die Matrix-
elemente Null. Daraus
ist zu folgern, daß
Emission nur für
Am — 0, +1  statt-
findet, wobei Am =
= ±1  rechts- bzw.
linkszirkular polari-
sierte Strahlung liefert
(cr-Komponente), da-
gegen liefert Am = 0
die linear polarisierte
Strahlung der K-Kom-
ponente. Diesen Re-
geln kommt nur dann
eine Bedeutung zu,
wenn die C-Achse phy-
sikalisch ausgezeichnet
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362. JA = — 4,22 • 10 -11  m;
JA = -6,43 • IO -5  ;
A

Blauverschiebung.
Das Licht des Sirius-
begleiters eignet sich
hiernach wesentlich
besser für einen Nach-
weis der relativisti-
schen Verschiebung als
das Licht der Sonne

363. JA = — 4,56 • 10“ 16  m;

= -6 ,94 -  IO’ 10  ;
A

Blauverschiebung
Av

364. — = — 1 ; v — c
V

Hieraus erhält man
weiter

e
mv = - ----- 10| =2nr 0
= 24,8 7wo c ;

1

At' -A t  = 3,77 X
X IO" 10  s

359. At' = 101,94 (1 +
+ 1,85 • IO“ 12 ) s ;

At' — At = 1,88 x
x 10’ 10  s

360. JA = 7,15 • IO" 19  m;
Ak
— = 1,09 - IO" 12  ;A
v = 3,27- IO" 4 ms" 1 ;
Rotverschiebung

361. JA = 1,38 -IO’  12  m;
JA
— = 2,11 • IO -6  ;A
Rotverschiebung

m — 24,8 m 0 =
= 2,26 • IO" 29  kg;

eU = (m — zw0 ) c2 =
= 1,218 • 10 7 eV

358. At' = 203,87 (1 +
+ 1,85 • IO" 12 ) s ;

21*
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Tabelle 1 : Wichtige physikalische Konstanten

Mittlere Fallbeschleunigung
Näherungswert g

= 9,80665 m s“ 2
= 9,81 m s" 2

Gravitationskonstante y = 6,67 • IO" 11  m 3 kg“ 1 s~ 2
Allgemeine Gaskonstante R = 8,314 J K" 1 mol" 1 =

AvoGADROsche Konstante n a

= 0,08205 1 atm K -1 mol -1  =
= 1,986 cal K -1  mol" 1

= 6,022 • 10 23  mol“ 1

Molvolumen v 0 = 22,4141
BoLTZMANN-Konstante k = RIN = 1,3806 • 10- 23  J K" 1

Mechanisches Wärmeäquivalent J = 4,186 J cal“ 1
Elektrische Feldkonstante e0 = 8,854 • IO" 12  As V- 1 m- 1

Magnetische Feldkonstante Po = 1,257 • IO’ 6 Vs A- 1 m“ 1
FARADAY-Konstante F = 96485 As mol" 1

Vakuumlichtgeschwindigkeit c = 2,99792- 10 8 ms“  1
PLANCKsches Wirkungsquantum h = 6,626 • 10" 34  Js
STEFAN-BOLTZMANN-Konstante a = 5,67 • IO’ 8 J irr 2 s“ 1 K~4

Konstante im WiENschen
Verschiebungsgesetz b = 0,00289 m K

Elementarladung des Elektrons e 0 = -1,602 • 10“ 19  As
Ruhmasse des Elektrons m 0 = 9,109 • IO-31  kg = 5,498 • 10~4

Ruhmasse des Protons m p = 1,6726 • IO" 27  kg = 1,00758 u
Ruhmasse des Neutrons m a = 1,6749 • 10“ 27  kg = 1,00895 u
Ruhmasse des a-Teilchens = 6,6428 • 10 -27  kg = 4,002763 u
Ruhmasse des Deuterons m d = 3,342 • IO" 27  kg = 2,014172 u
Masse des H-Atoms m a = 1,6734 • IO"27  kg = 1,008128 u
BoHRsches Magneton Pb = 1,165 -10-  29  J mA“  1

RYDBERG-Zahl R = 10973732 m" 1

Atomare Masseeinheit l u = 1,66053 • 10“ 27  kg
Energieäquivalent der atomaren

Masseeinheit lE iu = 931,8 MeV
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Tabelle 2: Bezeichnungen und Einheiten der verwendeten physikalischen Größen

Bezeich- Einheit im
nung der Internat. Kurzzeichen der Einheit
Größe System

Größe

Länge, Wegstrecke
Masse
Zeit
Fläche
Volumen
Dichte
Spezifisches Volumen
Geschwindigkeit
Beschleunigung
Winkelgeschwindigkeit
Winkelbeschleunigung
Frequenz
Peripdendauer
Kraft, Gewichtskraft
Druck
Arbeit, Energie
Leistung
Impuls, Bewegungsgröße
Drehmoment
Massenträgheitsmoment
Drehimpuls
Zugelastizitätsmodul
Schubelastizitätsmodul
Oberflächenspannung
Viskosität
Grammolekül
Temperatur
Wärmemenge
Spezifische Wärmekapazität
Molwärme
Umwandlungswärme
Innere Energie
Enthalpie
Entropie
Freie Energie
Potentielle thermodynamische

Energie
Osmotischer Druck
Wärmeleitfähigkeit

Z, s Meter m
m Kilogramm kg
t Sekunde s
A m2

V m3

e
v
V, c

a>
oc

f,v s“ 1
T s
f, g Newton N = kg m s-2

P Pascal Pa = N m" 2
W 9 E Joule J = kg m 2 s” 2, Nm
P Watt W = J s"‘
P Ns
M J, Nm
J kgm2

L kgm2 s” 1
E Nm"  2
G N m" 2
a N m“ 1 , J m-2

n kgm-1  s“ 1
M kg mol“ 1
T, t Kelvin K, °C
Q Joule J, kJ
C9 Cp> Cv Jkg - 'K’  1
c, c„ c„ J K -1  mol- 1

l Jkg-  1
u J
H J
S JK-  1
F J

G J
n N m“ 2
A Jm- ' s ’  1 !- 1
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Bezeich- Einheit im
nung der Internat. Kurzzeichen der Einheit
Größe System

Größe

J m“ 2 s“ 1 K“ 1
Coulomb C = As

Vnr  1

Cm"  2
Cm"  3

Volt V = J A“ 1 s“ 1
Vm
As m- 2

As V“ 1 m“ 1

As V- 1 m“ 1
Farad F = As V“ 1

Jn r  3

Ampere A
V
Am -2

Ohm Q = V A“ 1
Qm
q- 1 nr 1

K“ 1
V
kg A“ 1 s“ 1

Weber Wb = Vs
Tesla T = Vs m“ 2 = Wb m“ 2

Am“  1
Vs A“ 1 m“ 1

Vs A“ 1 m“ 1
AWb“  1

Henry H = Vs A“ 1
Lumen Im
Candela cd
Lux Ix

m
Dioptrie dpt = m“ 1

s
S“ 1

Wärmeübergangszahl
Elektrische Ladung/
Elektrische Feldstärke
Ladungsdichte

der Fläche
des Volumens

Elektrisches Potential
Elektrischer Kraftfluß
Dielektrische Verschiebung
Elektrische Feldkonstante
Dielektrizitätszahl
Dielektrizitätskonstante
Kapazität
Energiedichte im

elektrischen Feld
Elektrische Stromstärke
Potentialdifferenz
Stromdichte
Elektrischer Widerstand
Spezifischer Widerstand
Spezifische Leitfähigkeit
Temperaturkoeffizient des

elektrischen Widerstands
Elektromotorische Kraft
Elektrochemisches Äquivalent
Magnetischer Induktionsfluß
Magnetische Induktion
Magnetische Feldstärke
Magnetische Feldkonstante
Permeabilitätszahl
Permeabilität
Magnetischer Widerstand
Induktivität
Lichtstrom
Lichtstärke
Beleuchtungsstärke
Brennweite
Brechkraft
Brechzahl
Halbwertzeit
Zerfallskonstante

oc
Q, <1, e
E

a
Q
V
V
D
e o
£ r
£ = £o e r
c

<?E
I
U, <p
J
R
Q
K

j 
eo

 s 
hl

 *

Pr
= fZ0 /lT

Rm
L
0
I
E
f
D
n
Tl/2
A
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Tabelle 3 : Dielektrizitätszahlen et

Äthylalkohol 26,0 Glas 7,0
Paraffin 2,0 Glimmer 7,0
Petroleum 2,0 Wasser 81,0
Porzellan 6,0 Luft

(bei normalem Druck) 1,0006

Tabelle 4 : Spezifischerwiderstand (1 0 6 g) undTemperaturwiderstandszahl ( 1 0 3a) einiger Stoffe

bei 0 °C Q m K- 1

Aluminium 0,029 Aluminium 4,2
Kupfer 0,017 Kupfer 3,92
Messing 0,08 Messing 1,5
Blei 0,21 Blei 4,2
Quecksilber 0,958 Quecksilber 0,99
Nickel 0,07 Nickel 6,7
Platin 0,107 Platin 3,9
Zink 0,06 Zink 4,2
Eisen (Stahl) 0,12 Eisen (Stahl) 6,0
Kohlenstoff 40,0 Kohlenstoff —8,0

Tabelle 5 : Elektrochemisches Äquivalent Ä in g A -1  s“ 1

Kupfer 328 • IO'  6
Silber 1118 • IO’ 6

Tabelle 6 : Mittlere Brechzahlen n für das sichtbare Spektrum

Glas 1,52 Wasser 1,33
Die deutliche Sehweite ist l = 0,25 m.

Tabelle 7 :  Halbwertzeiten Ti/ 2 radioaktiver Kerne

Aktinium 13,5 Jahre
Radium 1590,0 Jahre
Radon 3,825 Tage
Uran (Isotop 238  U) 4,4 • 109 Jahre
Kobalt (Isotop 60  Co) 5,2 Jahre
Chlor (Isotop 38 C1) 38,5 Minuten
Phosphor (Isotop 32P) 14,3 Tage
Strontium (Isotop 90  Sr) 30 Jahre
Natrium (Isotop 42 Na) 14,8 Stunden
Kohlenstoff (Isotop 14 C) 5700 Jahre
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Tabelle 8 :  Tabelle der chemischen Elemente

(nach ihren chemischen Zeichen alphabetisch geordnet)

chem.
Zei-
chen

Element
Ord-
nungs-
zahl

relative
Atom-
masse

chem.
Zei-
chen

Element
Ord-
nungs-
zahl

relative
Atom-
masse

Ac Aktinium 89 227,05 Hf Hafnium 72 178,5
Ag Silber 47 107,87 Hg Quecksilber 80 200,59
Al Aluminium 13 26,98 Ho Holmium 67 164,93
Am Amerizium 95 243 In Indium 49 114,82
Ar Argon 18 39,948 Ir Iridium 77 192,2
As Arsen 33 . 74,92 J Jod 53 126,904
At Astatin 85 210 K Kalium 19 39,10
Au Gold 79 196,97 Kr Krypton 36 83,80
B Bor 5 10,81 Ku Kurtschatovium 104 264
Ba Barium 56 137,34 La Lanthan 57 138,91
Be Beryllium 4 9,012 Li Lithium 3 6,941
Bi Wismut 83 208,98 Lr Lawrenzium 103 257*
Bk Berkelium 97 245 Lu Lutetium 71 174,97
Br Brom 35 79,904 Md Mendelevium 101 256*
C Kohlenstoff 6 12,011 Mg Magnesium 12 24,305
Ca Kalziumm 20 40,08 Mn Mangan 25 54,938
Cd Kadmiu 48 112,40 Mo Molybdän 42 95,94
Ce Zer 58 140,12 N Stickstoff 7 14,0067
Cf Kalifornium 98 246 Na Natrium 11 22,9898
CI Chlor 17 35,453 Nb Niob(ium) 41 92,906
Cm Curium 96 243 Nd Neodym 60 144,24
Co Kobalt 27 58,93 Ne Neon 10 20,179
Cr Chrom 24 51,996 Ni Nickel 28 58,71
Cs Zäsium 55 132,91 No Nobelium 102 254*
Cu Kupfer 29 63,546 Np Neptunium 93 237
Dy Dysprosium 66 162,50 O Sauerstoff 8 15,9994
Er Erbium 68 167,26 Os Osmium 76 190,2
Es Einsteinium 99 254* P Phosphor 15 30,9738
Eu Europium 63 151,96 Pa Protaktinium 91 231
F Fluor 9 19,00 Pb Blei 82 207,2
Fe Eisen 26 55,85 Pd Palladium 46 106,4
Fm Fermium 100' 253* Pm Promethium 61 145
Fr Franzium 87 223 Po Polonium 84 210,0
Ga Gallium 31 69,72 Pr Praesodym 59 140,908
Gd Gadolinium 64 157,25 Pt Platin 78 195,09
Ge Germanium 32 72,59 Pu Plutonium 94 242
H Wasserstoff 1 1,008 Ra Radium 88 226,05
He Helium 2 4,003 Rb Rubidium 37 85,47
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Tabelle 8 : Fortsetzung

ehern.
Zei-
chen

Element
Ord-
nungs-
zahl

relative
Atom-
masse

ehern.
Zei-
chen

Element
Ord-
nungs-
zahl

relative
Atom-
masse

Re Rhenium 75 186,2 Tc Technetium 43 98,913
Rh Rhodium 45 102,905 Te Tellur 52 127,60
Rn Radon 86 222 Th Thorium 90 232,038
Ru Ruthenium 44 101,07 Ti Titan 22 47,90
S Schwefel 16 32,064 TI Thallium 81 204,37
Sb Antimon 51 121,75 Tm Thulium 69 168,934
Sc Skandium 21 44,959 U Uran 92 238,03
Se Selen 34 78,96 V Vanadin 23 50,941
Si Silizium 14 28,086 W Wolfram 74 183,85
Sm Samarium 62 150,4 Xe Xenon 54 131,3
Sn Zinn 50 118,69 Y Yttrium 39 88,905
Sr Strontium 38 87,62 Yb Ytterbium 70 173,04
Ta Tantal 73 180,948 Zn Zink 30 65,37
Tb Terbium 65 158,925 Zr Zirkonium 40 91,22

*) Bei den so bezeichneten Atommassen
handelt es sich jeweils um die Kernmassen-
zahl des stabilen Isotops

Tabelle 9 :  Wellenlängen Ä der Balmerserie des Wasserstoffatoms (n e = 2)

na

gemessen
in Luft

berechnet
für Luft

berechnet
für Vakuum

• 10~ 10  m • 10- 10  m • 10“ 10  m
3 6562,80 6562,76 6564,68
4 4861,33 4861,31 4862,73
5 4340,47 4340,45 4341,72
6 4101,74 4101,73 4102,93
7 3970,07 3970,07 3971,23
8 3889,05 3889,05 3890,18



330 Tabellenanhang

Tabelle 10:  Erste Linie und Seriengrenze der verschiedenen Spektralserien des Wasserstoff-
atoms im Vakuum

Name der Serie
erste Linie
• 10- 10  m

Seriengrenze
• 10- 10  m

LYMAN-Serie 1 1215,68 911,76
BALMER-Serie 2 6564,68 3647,05
PASCHEN-Serie 3 18756,24 8205,85
BRACKEiT-Serie 4 40522,74 14588,18
PFUND-Serie 5 74598,67 22794,04

Tabelle 1 1 : Mittlere Gitterpotentiale E p verschiedener Metalle in eV

Ag Al Cu Fe Ni Zn
-14  — 17 -13,5 -14  -16  -16

Tabelle 12 : Austrittsarbeit A verschiedener Metalle in eV bei kalter Emission

Ag K Na Ni Pt W
5,6 2,1 3,2 11,7 6,0 5,7

Tabelle 13 :  Massenveränderlichkeit des Elektrons bei Energieaufnahme im elektrischen Feld

Energie
in eV

Massen-
verhältnis
mlm Q

Masse
m ■ IO’ 31  kg

10 3 1,002 9,13
10 4 1,020 9,29
10 s 1,195 10,89
10 6 2,95 26,91
10 7 20,5 187,08
10 8 196,3 1788,84
10 9 1953,6 , 17795,3
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—Veränderung,

relativistische 195
—Verhältnis 306
—zahl 204
Matrix der Ortskoordinaten

285
—element 279
— , lineares 297
— , zirkulares 297
Maximum der Wahrschein-

lichkeitsdichte 269
MAXWELLsche Gleichungen

300
Meson 196, 306
Michelson 298
Mikroskop 131, 150
Milchstraßensystem 310
Minkowski 299

Mittelwert der Orts-
koordinate 284

- des Elektrönenabstandes
276

- einer physikalischen
Größe 270

- Quantengröße 257
- Zustandsgröße 236
MössBAUER-Effekt 226, 312
Molekül, zweiatomiges 287

Nebel, extragalaktischer
314

Nebenquantenzahl 197
Nebenschlußwiderstand

45
Neutron 214
NEWTONsche Ringe 161
Normierung 245
Normierungs-bedingung

236, 286
—konstante 246
—Vorschrift 253
Nullpunktenergie 285

Oberflächenintegral 247
Objektiv 131
Oersted (Oe) 67
OHMSches Gesetz 39, 54
Okular 131
Operator 236, 258
- der Gesamtenergie 237
-, HERMiTEscher 236
-, kommutativer 237
-, selbstadjungierter 238
Optik, geometrische 126
Orthogonalität 286
Orthogonalitätsbeziehung

247
Orts-koordinate 218, 256
—matrix des harmonischen

Oszillators 287
—Operator 239
Oszillation 277
Oszillationsfrequenz 282,

291

Oszillations-energie 278
—quant 278
Oszillator, harmonischer

245, 246, 277, 281
—kreis 100
Otting 305

-Komponente 326
—Meson 194
Parallelschaltung 40, 112
- von Kondensatoren 13
PASCHEN-Serie 276
PAULisches Ausschließungs-

prinzip 197, 201
Perihelbewegung 310
Periodendauer 101
Phasengeschwindigkeit 222
—integralbedingung 230 ff.
—Spannung 97, 115
—Verschiebung 96, 111, 303
Photoelektronen 178, 187,

195
Photometrie 121
PLANCKsche Konstante 178
PLANCKsches Strahlungs-

gesetz 170
- Wirkungsquantum 178
Planspiegel 140
Plattenkondensator 25
Polardiagramm 275
Polarisations-ebene 157
—regel 297
Polarkoordinaten 232
Polynom 259
Potential 10
—schwelle 249
—Verteilung 254
Pound 312
Prisma 127, 135
Proton, Masse 195

Quanten-bahnen 146, 199
—mechanik 218
—theorie 235
—zahl, azimutale 231
-- - -  der Oszillation 277
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Quanten-zahl der Rotation
277

— , magnetische 196, 260
— , radiale 231
Quelle, kohärente 155

Radialgeschwindigkeit 310
Radioaktivität 202 ff.
Radius der Bahn eines

Wasserstoffatoms 267
Radon 213
Rasetti 306
Raum, extragalaktischer

314
-, intergalaktischer 315

vierdimensionaler 299
—winkel 121
Rebka 312
Reflexions-gesetz 126
—koeffizient 251
—vermögen 257
Relativgeschwindigkeit 302
Relativität der Gleich-

zeitigkeit 303
Relativitäts-prinzip,

spezielles 298
—theorie 222
— , allgemeine 309
— , spezielle 298
Resonanz 100
—frequenz 100
Richtlichtstärke 121
RiEMANNsche Geometrie

309
Röntgen-bremsstrahlung

195
—lichtquant 189
—röhre 195
—strahlen 156
—Strahlung 165
Rotation 277
Rotations-bande 278
—energie 278
—quant 278
—schwingungsbande 278
Rotator 277

Rotator, starrer 277
Rotverschiebung 310
-, relativistische 316
Ruh-energie 191
—lebensdauer 196
--mässe 177, 306
RYDBERG-Zahl 197, 262

o-Komponente 336
Sammellinse 144ff.
Scheinwiderstand 99, 109
Scheitelpunkt 128
Schrödinger 279
ScHRÖDiNGER-Gleichung

237, 241 f., 256f., 266,
280, 282

- - - -  des starren Rotators
288, 297

— für stationäre Zustände
247

Schwarzer Körper 169 x
— , idealer 169, 173
Schwellen-breite 253
—länge 253
Schwingkreis 113
Schwingung, elektrische 100
Schwingungsquant 289, 295
Sehweite, deutliche 131
Sekundärelektron 306
Selbstadjungiertheit 323
Selbstinduktionsspannung

69, 86
Serien-grenze 197, 200, 336
—resonanzkreis 113
—Schaltung 40
Siriusbegleiter 213
SMEKAL-RAMAN-Effekt 278,

296
------Streuung 291
Spalt, optischer 162
Spannung, Effektivwert 96
-, elektrische 39
-, induzierte 69, 101
Spannungs-abfall 49, 57, 59
—Verlust 64
Spektrallinien 261

Spektral-linien des Wasser-
stoffs 197, 260

—Verschiebung 310
Sphäre 309
Spinquantenzahl 197
Spiralnebel, extragalak-

tischer 310
STEFAN-BOLTZMANNSCheS

Strahlungsgesetz 170,
173 ff.

Sternschaltung 97, 115, 116
Stoßprozesse der Elek-

tronen 202
Strahldichte 169, 170
Strahlstärke 169
Strahlung, kosmische 306
Strahlungs-äquivalent,

photometrisches 121
—energie 121
—fluß 121, 169
—leistung 279
—quant 196
Streuprozeß 279
Streuung 195
Strichgitter, optisches 163
Strom, elektrischer 38
-, Leistung 60
-, verketteter 97
—dichte 62
— , elektrische 149
Suszeptibilität, magnetische

67

Teilchen-geschwindigkeit 222
—ström 237
Temperaturkoeffizient 63
Tesla (T) 67
Theorie des expandierenden

Weltalls 310
- strahlender Dipole 235
Totalreflexion 127
Trägheitsmoment des Mole-

küls 279
Transformator 100, 104
TscHERENKOW-Strahlung

193, 195
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Tubuslänge, optische 132
Tunneleffekt, quanten-

mechanischer 253, 284

Übergangs-frequenz 285
—Wahrscheinlichkeit 279
Uhr, bewegte 312
Umlauf-bahn, elliptische

230
r-geschwindigkeit des

Elektrons im BoHRSchen
Atommodell 203

Universum 310
Aufbau 309

Vektor der Stromdichte 38
Vergrößerung 131
Verschiebung, dielektrische

12 /
Volumendichte der Ladung

10
Vorschaltwiderstand 65

Wärmemenge 58
Wahrscheinlichkeit 236
-, klassische 283

Wahrscheinlichkeitsdichte
284

Wasser-stoff-atom 197
-------, Radius 197
-----molekül 282, 285, 292,

296
Weber (Wb) 68
Wechsel-induktivität 69
—Spannung, elektrische 96
----, induzierte 102
—ström, Leistung 103
—Wirkung des

Photons mit dem Elektron
189

Welle, elektromagnetische
155

Wellenfront 298
—funktion 236
—länge 200
—mechanik 218
—zahl 197
-----vektor 217
Welt, expandierende 310
WHEATSTONEsche Brücke

56
Widerstand 43 ff., 62 ff.

Widerstand, elektrischer
eines Leiters 39

-, innerer 42, 48, 64
-, kapazitiver 110
-, magnetischer 68, 90
-, spezifischer 39, 62
-, Temperaturabhängigkeit

59
WiENsches Verschiebungs-

gesetz 170, 175
Winkelvergrößerung 131
—Verteilung 273

ZEEMAN-Effekt 297
Zeiger, rotierender 97
Zeit-dilatation 177
—koordinaten 300
Zerfall, natürlicher radio-

aktiver 216
Zerfalls-gesetz 257
—konstante 257
—weg 307
—zeit 307
Zustand 260
Zyklotron 185, 195



Wenn Sie eine naturwissenschaftliche oder
technische Fachrichtung studieren, werden Sie
ständig mit Aufg.iben konfrontiert, für die Sic
Lösungen finden sollen. Die Fähigkeit,
Probleme physikalisch-technischer Art zu
erkennen und zu lösen, erwerben Sie aber nicht
durch Besuch einer Vorlesung und können
Sie auch nur in beschränktem Umfange
aus dem Lehrbuch erlernen - es kommt vor
allem auf intensives, ständiges Üben an.
Ein Hilfsmittel für derartige Übungen will
dieses Buch sein; es versucht, eine Brücke
zwischen der Theorie des Lchrgebietes und der
Praxis des Aufgabenrechnens zu schlagen.
In ihm sind 617 Beispiele und Aufgaben
zu den Gebieten elektrische und magnetische
Vorgänge, Optik, Atomphysik, Quanten- und
Relativitätstheorie enthalten. Etwa 40% davon
werden als Beispiele ausführlich durch-
gercchnct, während Sie zu den übrigen Auf-
gaben die Ergebnisse am Schluß des Buches
nachschlagen können. Jedem Abschnitt ist
ein kurzer Lehrtext vorangcstellt, in dem die
wichtigsten Begriffe, Definitionen und Gesetze
des betreffenden Gebietes zusammengefaßt
werden. Damit ist Ihnen die Möglichkeit
gegeben, sich den im Unterricht angeeigneten
Stoff ins Gedächtnis zurückzurufen, ohne daß
Sie erst in anderen Büchern suchen müssen.
Für die Beispiele wurden nach Möglichkeit
solche Themen gewählt, die nicht nur die
physikalische Idee oder einen geschickten
Lösungsweg demonstrieren, sondern auch für
Sic als Wissenschaftler oder Techniker von
praktischer Bedeutung sind.
Das Werk wurde von sechs Dozenten am
Lehrstuhl für Physik der Universität Kosicc
unter Leitung von Prof. Dr. rer. nat.
Vladimir Hajko verfaßt und ist nicht nur
in der ÖSSR sehr gefragt. - Die Beiträge zur
Quanten- und Relativitätstheorie schrieb
Prof. Dr. rer. nat. habil. Heinz Schilling,
Bcrlin-Adlershof.


