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Vorwort

Aus dem Vorwort des slowakischen Originals

Im vorliegenden Buch wird an Hand von gelGsten Beispielen und Aufgaben mit
Resultatangabe die Anwendung von Gesetzen und Rechenmethoden aus denjenigen
Bereichen der Physik erldutert, die den wesentlichen Inhalt der Kursvorlesung ,,Ex-
perimentalphysik‘‘ an Technischen Hochschulen ausmachen. Obwohl das Buch in
erster Linie als Lehrmittel fiir Studierende technischer Disziplinen gedacht ist, wird es
aber auch den an naturwissenschaftlichen Fakultiten immatrikulierten Horern der
ersten Studienjahre gute Dienste leisten. Es soll zur Verringerung der Schwierigkeiten
beitragen, denen die Studierenden bekanntermaBen bei der Anwendung physikalischer
Gesetze auf konkrete Beispiele begegnen.

Den einzelnen, in sich geschlossenen Teilen vorangestellt, falten wir jeweils in Form
einer Einleitung die Definitionen der physikalischen GréBen, Gesetze und Lehrsitze
zusammen, die sich auf den Lehrstoff des zugeordneten Teils beziehen, um dem Leser
bei der Bearbeitung der Beispiele die Moglichkeit zu geben, den Inhalt der erforder-
lichen GréBen und Beziehungen unmittelbar zu rekapitulieren, ohne dabei andere
Biicher konsultieren zu miissen. Dennoch besteht wohl kein Zweifel daran, dal vor
der Lektiire dieses Werkes oder parallel dazu das Studium eines Lehrbuchs der
Physik erfolgen muB.

Vorwort der deutschsprachigen Ausgabe

Die Physik ist eine der wichtigsten Grundwissenschaften fiir die Ausbildung und
Arbeit des Ingenieurs. Als eine fiir die moderne Technik wesensbestimmende Natur-
wissenschaft durchlduft sie — zusammen mit der von ihr erfaiten und durchsetzten
Technik —~ einen tiefgreifenden und komplizierten Entwicklungsprozef3. Der Ingenieur



6 Vorwort

in erster Linie - aber auch der Naturwissenschaftler, der aus der Praxis erwachsende
Probleme mit spezifisch physikalischen Mitteln und Methoden in Angriff nimmt,
benétigt in hohem Mafe die Fahigkeit, allgemeine Erkenntnisse und Prinzipien von
Fall zu Fall auf ganz konkrete Sachverhalte anwenden zu konnen. Erfahrungsgemas
aber bereitet gerade diese Aufgabe dem Studierenden und nicht minder dem jungen
Absolventen technischer und naturwissenschaftlicher Fakultdten besondere Schwierig-
keiten, wihrend die allgemeinen Prinzipien an sich, in ihrer naturgesetzlich fixierten
Allgemeingiiltigkeit, durchweg zum liickenlos reproduzierbaren Wissensinhalt ge-
“hoéren.

Die vorliegende Sammlung von Beispiclen und Aufgaben erscheint geeignet, wesent-
lich zur Behebung dieser Schwierigkeit, allgemeine Prinzipien konkret anwenden zu
konnen, beizutragen. Vom Studierenden in Verbindung mit einem Lehrbuch und der
Vorlesung benutzt, sollen die Biicher ,,Physik in Beispielen** Mittler und Wegweiser
zwischen den ,,reinen Ho6hen‘* der Theorie und den miihsam, aber unumginglich
notwendig zu beherrschenden Ebenen der wissenschaftlichen Praxis sein.
Der deutschsprachigen Ausgabe liegt die 2. Auflage des slowakischen Originals zu-
grunde. Entsprechend den IUPAP-Regeln wurden gegeniiber dem Original Ande-
rungen der GréBen und Einheiten vorgenommen. Fir die neue Ausgabe wurden alle
Rechnungen weitestgehend auf SI-Einheiten umgestellt, deren umfassende Anwen-
dung sich mehr und mehr durchsetzt. Als SI-fremde Einheit wurde nur das in der
Atomphysik zuldssige Elektronvolt beibehalten. Die zu den einzelnen Aufgaben an-
gegebenen Resultate entsprechen von Fall zu Fall den mit Schul-Logarithmentafeln
oder Rechenstab erzielbaren Genauigkeitsanspriichen. Lediglich einige Beispiele und
Aufgaben der Abschnitte 4. und 3. erfordern die Benutzung von genaueren Log-
arithmentafeln oder Rechenmaschinen.

In Anlehnung an die im Original vorgegebene Dreiteilung im Aufbau — theoretische
Grundlage, Beispiele, Aufgaben — wurde das Werk durch Beitriige zu den Gebieten
Quantentheorie und Relativitidtstheorie erginzt, die von Herrn Prof. Dr. HEINZ
ScHILLING verfafit wurden.

Einem vielfach geduBerten Wunsch entsprechend, wurde die bisherige einbédndige
Ausgabe in zwei selbstindige Teile zerlegt. Der Band ,,Elektrik — Optik — Quanten-
theorie* enthilt die Abschnitte 3. bis 7. der fritheren Fassung. Die vorhergehenden
Abschnitte erscheinen unter dem Titel ,,Mechanik und Warmelehre** unabhéngig
von diesem Buch in einem weiteren Band.

Bearbeiter und Verlag
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1. Elektrische und magnetische Vorgdnge

1.1. Elektrostatik

GemiB dem Coulombschen Gesetz wirkt eine Punktladung O, auf eine Punktladung Q,
mit der Kraft
P L 0.0

4dne 3

4 .
1,25

71, ist der Ortsvektor der Ladung Q, beziiglich Q,, r der Abstand zwischen beiden
Ladungen und ¢ die Dielektrizititskonstante des Mittels, in dem sich die Ladungen be-
finden. Man kann ein der Form ¢ = gy, ausdriicken, wobeie, = 8,854-10-*2 AsV-Im-?
als elektrische Feldkonstante (bisher auch Influenzkonstante genannt) und e, als
Dielektrizititszahl bezeichnet wird. Fiir das Vakuum gilt e, = 1.

Unter der elektrischen Feldstirke E in einem beliebigen Punkt des Feldes verstehen
wir den Quotienten der Kraft F, die im gegebenen Punkt auf irgendeine Ladung Q’
wirkt, und der Ladung selbst. In der Umgebung einer Punktladung ist

7 ist der Ortsvektor des Punktes, in dem die Feldstirke in bezug auf den Punkt
herrscht, der die Ladung enthilt. In der Umgebung einer groferen Zahl von Punkt-
ladungen Q, @,, ... herrscht eine Feldstirke, die wir nach der Beziehung

berechnen, d.h. als die Vektorsumme der elektrostatischen Feldstdrken, die im
gegebenen Punkt die einzelnen Ladungen jeweils selbst fiir sich erzeugen wiirden.

o]



10 1. Elektrische und magnetische Vorginge

Im Falle, daB die Ladung innerhalb eines bestimmten Volumens kontinuierlich ver-
teilt ist, kann die Stidrke des elektrostatischen Feldes in der Umgebung durch

o L
-4 Tege,r?

angegeben werden, in der ¢ die Volumendichte der Ladung, dr das Volumenelement
und 7 den Ortsvektor desjenigen Punktes bedeutet, in dem E, bezogen auf das be-
trachtete Volumenelement, gemessen werden soll. Dabei erfalt die Integration das
gesamte Volumen, in dem sich die elektrische Ladung befindet.

Wenn die elektrische Ladung auf der Oberfliche eines leitenden K&rpers mit einer
Flachendichte o verteilt ist, dann ist die Stdrke des von dieser Ladung erzeugten elek-
trischen Feldes durch

= 1 f odA P
4 e r3
gegeben, in der d4 das Fliachenelement der Leiteroberfliche und 7 der Ortsvektor des
Punktes, in dem die Feldstirke E herrscht, beziiglich des Flichenelements d4 ist.
Die Arbeit, welche die Krifte des elektrischen Feldes verrichten, wenn in ihm eine

Ladung Q' von einem Punkt 1 zu einem anderen Punkt 2 verschoben wird, ist durch
die Beziehung

W=W,—W,

angegeben, in der W; bzw. W, die potentielle Energie der Ladung Q" in den Punkten 1
bzw. 2 darstellt. Im Falle, daB es sich um die Verschiebung einer Ladung Q' handelt,
die in einem Feld erfolgt, das von einer Punktladung Q herriihrt, ist

r; und r, kennzeichnen den Anfangs- bzw. Endpunk‘t der von der Ladung Q' zuriick-
gelegten Wegstrecke, bezogen auf den Ort der Ladung Q.

Die potentielle Energie einer Ladung Q' im elektrischen Feld einer Ladung Q wird
auf unendliche Entfernung bezogen und betrégt

w1 22

dme F

>

(r Abstand zwischen den Ladungen Q und Q).
In einem bestimmten Punkt des Feldes ist das Potential des elektrostatischen Feldes
durch den Quotienten aus der potentiellen Energie einer Versuchsladung und dieser
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Ladung Q' selbst definiert, d. h.,

v-2.

Ql
Wenn es sich um das elektrostatische Potential einer Punktladung Q handelt und wenn
potentielle Energie und also auch das Potential selbst auf Unendlich bezogen wird
(sog. absolutes Potential), dann kann auch geschrieben werden

(r Abstand des Punktes, in dem das Potential bestimmt wird, von der Ladung Q).
Wenn das elektrostatische Feld durch eine groflere Anzahl von Ladungen @4, Q,, ...,
0, erzeugt wird, so gilt fiir das absolute Potential in einem bestimmten Punkt des
Feldes:

(r, Abstand des Punktes, in dem das Potential bestimmt wird, von der Ladung Q;).
Wenn die die Quelle des elektrostatischen Feldes bildende Ladung in einem bestimm-
ten Volumen mit der Volumendichte g bzw. auf einer bestimmten Oberfliche mit der
Fldchendichte ¢ kontinuierlich verteilt ist, kénnen wir fiir das absolute Potential in
einem bestimmten Punkt des elektrostatischen Feldes schreiben

UZdet
4 ey
szadA.

4 ey

Die Gesamtheit aller Purikte, die im elektrischen Feld durch das gleiche Potential
ausgezeichnet sind, liegt auf einer Flache, die wir als Aquipotentialfiiche bezeichnen.

Fiir den Zusammenhang zwischen Potential und Feldstdrke gilt im elektrostatischen
Feld die Beziehung

E= -grad U = —(

bzw.

I+ —j+—kj.

O_U- oU oU »
0x oy 0z

Da weiterhin

dU = grad Ud# = —EdF

ist, kann man das Potential in einem Punkt des Feldes mit dem Ortsvektor 7, in dem
die Feldstirke den Wert £ hat, in bezug auf einen Punkt mit dem Ortsvektor 7, gemib
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folgender Beziehung ausdriicken:

Unter dem elektrischen KraftfluB ¥ eines elektrostatischen Feldes der Stirke E durch
eine in sich geschlossene Fliche der GrofBle A verstehen wir den Ansatz

&U:fﬁd?i,

wobei d4 den Normalenvektor des zugehorigen Flachenelements dA4 bedeutet.
Gemil dem Lehrsatz von GauB-Ostrogradski ist der KraftfluB ¥ eines elektrostati-
schen Feldes durch eine geschlossene Flache gleich dem Quotienten aus der im Innern
der Flache enthaltenen Elektrizititsmenge Q und der Dielektrizitdtskonstante ¢ des
Mediums, in dem das Feld erzeugt wurde, d. h., 4

w2

&

Die Starke eines elektrostatischen Feldes in der N&he der Oberfliche eines Leiters
konnen wir gemaB dem Coulombschen Gesetz als Quotient aus der Fliachendichte o der
Ladung im gegebenen Punkt der Leiteroberfliche und der Dielektrizititskonstante &
des den Leiter umgebenden Mediums bestimmen zu

E=2=
g Eo&;

Die Giiltigkeit des CouLomBschen Gesetzes kann man mit Hilfe des Lehrsatzes von
GAUSS-OSTROGRADSKI nachweisen. Mit seiner Hilfe 14Bt sich weiterhin zeigen, daB
das elektrostatische Feld in der Umgebung einer Ladung, die das Volumen einer Kugel
homogen ausfiillt, genau das gleiche ist wie in der Umgebung einer elektrischen
Punktladung gleicher Stiarke, die in ihrem Mittelpunkt liegt. Analog verh&lt es sich
mit dem elektrostatischen Feld in der Umgebung eines Kugelleiters, dessen Ladung
sich gleichmdBig iiber seine Oberfliche verteilt.

Die Verschiebungsdichte D hiangt mit der Stirke des elektrostatischen Feldes E
durch die Bezichung ‘

D =¢F = (e + %) E = eoe,E

zusammen, in der x die elektrische Suszeptibilitit bedeutet.
Unter der elektrischen Kapazitit Ceines einzelnen Leiters verstehen wir den Quotienten
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aus der Gesamtladung Q und dem Potential U des Leiters, also

definiert, worin Q die Ladung auf einer Elektrode des Kondensators und U das Po-
tential dieser Elektrode beziiglich der anderen Elektrode des Kondensators darstelit.
Bei der Parallelschaltung von Kondensatoren der Kapazititen C,, C,, ..., C, finden
wir die resultierende Kapazitidt C als Summe der Kapazititen, d. h.,

C=C1+C2+--'+C,,=ZC;.

Fiir die resultierende Kapazitit C einer Batterie in Serie geschalteter Kondensatoren
gilt die Beziehung

1 1 1 1 =1
— =t — 4 o+ =5y —,
C C1 Cz C" i=1 Ci
d. h,
C= !
|
i=1 Ci

Die Energie eines elektrischen Feldes, das durch cinen geladenen Leiter erzeugt wird
oder das sich zwischen den Elektroden eines Kondensators befindet, ist gegeben durch

W=iCU2
2

(C absolute Kapazitit des Leiters bzw. Kondensators, U das absolute Potential des
Leiters bzw. das Potential einer Kondensatorplatte beziiglich einer anderen).
Unter der Energiedichte in einem elektrostatischen Feld verstehen wir die Energie, die
auf eine Volumeneinheit des Mediums, in dem das Feld besteht, entfillt, Fiir einen
aus zwei Platten der GroBe A4 bestehenden Plattenkondensator, dessen Platten von-
einander den Abstand d haben, gilt

W eE?

Qe = — =

Ad 2




14 1. Elektrische und magnetische Vorgdinge

Es 148t sich nachweisen, dal3 dieser Ausdruck fiir die Dichte der elektrostatischen
Feldenergie nicht nur fiir das homogene Feld, sondern auch fiir jedes andere
inhomogene Feld gilt.

B Beispiele

© 1. Zwei gleich groBe Kiigelchen tragen die elektrischen Ladungen Q; =24 -10-% C und
Q, = —18-10"%C.
a) Mit welcher Kraft ziechen sich die beiden Kugeln bei 6 cm Abstand im' Vakuum an?
b) Mit welcher Kraft wiirden sie sich bei gleichem Abstand abstoBen, wenn sie vorher
miteinander in Berithrung gebracht worden wiren?

Losung

a) Entsprechend dem CourLomBschen Gesetz konnen wir schreiben

1 00, 24-10-6C-18-10-5 C B

" dmey r? 4m-8,854-10"2AsV-1m-10,062m?
2,4-1,8-10°

=27 > "~ VAsm-!' = 1,078 10 N.

4= 885436 o TR

b) Bei der Beriihrung wiirden sich die beiden Ladungen ausgleichen, so daB die auf beide
Kugeln entfallende Gesamtladung sich zu

01,=24-100°C —18-100°C=6-10"°C

ergibt. Nach vollzogener Trennung wird nunmehr jede die gleiche Ladung haben,
ndmlich .

Q1 =0, = +3-10"°C.
Demzufolge betrdgt die Kraft, mit der sich beide Kugeln im Abstand » = 6 cm ab-

stof3en,
.10-6C -3 - 10-6
_ 1 Q1Q2= 3:10-C-3-10-¢C — 2246N.
4reg 1?2 4 - 8,854-10712 AsV-*m™* 0,06° m* ————
2. Zwei positive Ladungen der GréBe Q und 4Q wurden im qQ qQ 44

Abstand / fest angeordnet. Auf der Verbindungslinie beider -&- *é—“ ==
Ladungen soll eine dritte Ladung Q" so angeordnet werden, -l / ]
daB auf sie keine Krifte ausgeiibt werden. An welcher Stelle ,
zwischen Q und 40 muB ihr Ort sein? ) Bild 1

Losung

Die im Beispiel angegebene Bedingung wird erfiillt, wenn die Krifte, mit denen die
beiden Ladungen Q und 4Q auf die Ladung Q’ einwirken, von gleicher Grofe und ent-
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gegengesetzter Richtung sind. Gemif Bild 90 k6nnen wir schreiben

00’ (Y

dmex? dme(l— x)2°

d. h,
1 4

2 d—x?7
Nach einer Umformung erhalten wir die quadratische Gleichung
3x2+2x —2=0
mit den Losungen
1
—2 g Jar+12r 3

b 6 Nt

Da uns der zwischen beiden Ladungen liegende Punkt interessiert, verwenden wir die
Losung x; = //3. Somit befindet sich der Punkt, in dem auf die Ladung Q" keine Kriifte

ausgeiibt werden, in !/; des Abstands beider Ladungen, gemessen von der kleineren
Ladung aus.

. Zwei Kugeln mit gleichen elektrischen Ladungen und je
5-10-% kg Masse werden im Vakuum an einem Punkt mit
zwei Fdden von je 1 m Lénge befestigt. Durch gegenseitige
AbstoBung entfernen sie sich voneinander auf einen Abstand
r = 4 cm. Wie gro8 sind ihre Ladungen?

Losung

Fiir eine in der Ruhelage befindliche Kugel hat die Resultie-
rende F', aus der elektrischen Kraft Fund dem Gewicht der
Kugel G die Richtung der Aufhingung. Die resultierende
Kraft wird durch die Gegenwirkung der Aufhingung F;
kompensiert. Aus Bild 2 finden wir

AN Lo
5 2em 7 2em

3

F .
N Bild 2
me =3

Gleichzeitig kénnen wir bei nur kleinem Winkel ¢ schreiben

r

2/

NIN'\

tan @ & singp =
und somit

rF_r
G 2
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Entsprechend dem CouLomBschen Gesetz ist die Kraft F definiert zu

‘ 1 Q0

F=
4req 12 7 .

und so ergibt sich

Damit erhalten wir fiir die Ladung einer Kugel
3
Q = A/ % drne G =

0,04> m?
= N/ﬁ4 +3,14-8,854- 10712 AsV-*m=: 0,5 - 981 - 10-° N =

= 4,177 -10~° C.

4. Vier freie, gleich groBe, positive Punktladungen e befinden sich an den Eckpunkten
eines Quadrats mit der Seitenlidnge a (Bild 92). Welche Ladung miiite im Mittelpunkt
des Quadrats angeordnet werden, damit das System aller Ladungen im Gleichgewicht
ist?

Losung

Die Gesamtdarstellung des Falles sehen wir in Bild 3. Auf
eine Ladung e im Punkt / wirken die Ladungen der
Punkte 2, 3 und 4 mit den Kriften 7, F; und F,. Die re-
sultierende Kraft F, mit der diese drei Ladungen auf die
eine Ladung im Punkt 7 wirken,ist durch die Vektorsum-
me der drei angegebenen Krifte bestimmt. Dieim Zentrum
des Quadrats, im Punkt 5 anzuordnende Ladung soll so ¢
beschaffen sein, daB3 durch sie das gesamte System der La-  Bjld 3
dungen im Gleichgewicht ist. Sie mufl also gegeniiber

den Ladungen in den Punkten 7 bis 4 entgegengesetztes Vorzeichen haben: Sie mufl
weiter groB genug sein, damit die Kraft F, mit der sie auf die Ladung im Punkt 7 ein-
wirkt, von gleicher Grofle — jedoch bei umgekehrtem Vorzeichen — ist wie die Resultie-
rende F. Wir konnen also schreiben

|Fs| = |F].

Bei Benutzung der in Bild 92 vorgenommenen Bezeichnungen konnen wir die vor-
stehende Gleichung auf die Form bringen

F' + F3 = Fs, ¢y

wobei F' =+/F 2 + F% die Resultierende der Krifte F, und F, bedeutet. GemiB dem
CouLomaschen Gesetz ist
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F . . e
2Tt T Unea®
F/=\/F2+F2 — € '\/5
2 ¢ 4rea®

Weiterhin konnen wir nach dem CouLoMBschen Gesetz schreiben

e? et eQ eQ

(2T ()T T
2

F3=

Fs =
V2

1 Nach Einsetzen dieser Beziehungen in Gl. (1) erhalten wir

e? \/E e2 . eQ

4req? 8mea? 2neq

2

woraus fiir den absoluten Wert der Ladung Q, die, wie bereits erldutert, umgekehrtes
Vorzeichen gegeniiber den Ladungen e, _ 4 haben muB, folgt:

0=2(1+2v2).

Die gleiche Erwédgung gilt natiirlich fiir jede andere Ladung der GréBe e in den Eck-
punkten des vorgegebenen Quadrats.

5. Wie grof} ist die elektrische Feldstirke in einem Punkt (Bild 4), der mitten zwischen
zwei elektrischen Ladungen Q; = +50 uC und Q, = +70 ¢C liegt, die voneinander
einen Abstand » = 0,2 m haben? Die Ladungen befinden sich vollstindig in Petroleum
mit der Dielektrizititszahl e, = 2.

e y

Losung
Die resultierende Feldstirke E in der Mitte zwischen bei- P R {5’ L
den I:adunggn ist gleich der Summe der beiden Feldstir- r
ken E; und E,, mit der die beiden Ladungen am gegebenen d
Ort wirken. Es ist also Bild 4

E= E, + Ez,
d. h,

= 1 O 1 Q. ,

E= —_ — P2,

4r2ey 13 ot 4m2e 13 C
¥

wobei ry = r; = 5= 0,1 m und 7y = —r4i, 7, = r,l ist, wenn i den Einheitsvektor in

Richtung der x-Achse darstellt. Damit wird es moglich, zu schreiben

L1 0 0.
E_47r280( _+_2>Z’

r ra

2 Hajko, Elektrik
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. woraus fiir den absoluten Betrag der Feldstédrke folgt

1 (_Qi _ &) -
4n2eq \ 12 r}

_ 1 70-10-C  50-10-°¢ C) _

T 8m-8,854-1012AsV-im-1\ 0,12m? 0,12m? |

20-10-¢

— -1 . 106 -1

87 8854 1012102 Vm 8,988 IO‘Vm .
Die Feldstiarke hat die Richtung des Einheitsvektors .
6. Bestimmen Sie in einem im Vakuum gelegenen Punkt A4 die Stédrke eines elektrostatischen

Feldes, das durch die beiden elektrischen Punktladungen Q; = —4-10-7 C und
Q, = 5-10"7 C erzeugt wird (Bild 5); r; = 0,4m, ¥, = 0,3m, » =0,5m.

Losung

Fiir die Gesamtstirke des elektrostatischen Feldes im Punkt 4
konnen wir schreiben

E=E, +E,.
Hierbei sind E; und E, die Beitrige der beiden Ladungen

zur Gesamtfeldstdrke. Nach Bild 94 konnen wir fiir den ab-
soluten Betrag der Gesamtfeldstirke schreiben Bild 5

E =/ E? + E} — 2EE; cos (180 — ¢).

o) r=50cm @

Da es moglich ist, den eingeschlossenen Winkel ¢ aus der Beziehung
r2=r}+r:—2rr,cos ¢
zu bestimmen, finden wir
1413 —r?  40% 4 30% — 507

oS =~ 24030 %
woraus sich der Winkel zu ¢ = 90° ergibt. Es ist demnach
E=./E? + EZ.
Der Feldanteil E; 148t sich errechnen zu
1 0 1 4-10°7 C
_—— = =22 -1
dree 2 4m-8854-10-2 AsV-m' 0,47 m? BTV m,
desgleichen der Anteil E, zu
1 1 5-10°7
= 2 107 ¢ = 49905V m-1!,

2" Une, 12 4n-8,854 1002 AsV-'m* 032m?
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Daraus ergibt sich E zu

E = \/224572 + 499052 Vm-! = 54725Vm-1,

. Berechnen Sie Potential und Stirke des elektrostatischen Feldes einer kreisfGrmigen

Leiterplatte vom Radius » = 0,1 m in einem nach Bild 6 zu messenden Abstand
r1 = 0,2 m fiir den Fall, daB3 die Platte eine Ladung der Stdrke Q = 1 uC aufweist und
daB sie sich im Vakuum befindet.

Losung

Da es sich hier um das Feld einer elektrischen La-
dung handelt, die gleichférmig auf der Oberfliche 4
eines Leiters verteilt ist, konnen wir das Potential T : BT —e
gemil dem Ansatz '

1
U = / odAd
4TC€0 ra
berechnen. Dabei bedeutet o die Flichendichte der Bild 6
Ladung, fiir die im vorliegenden Fall gilt

0
w2

Das Fldachenelement d A stellt hier einen Kreisring der Breite dx dar, so daf3 d4 =2rxdx
ist. Fiir das im Punkt A zu messende Potential kénnen wir also schreiben

o =

—5 2mx dx r
f e Q xdx
U= = ~ —
47T€o ¥a 27'{.'50}" J \/r% + x2

G WAt = s (VA + 7 —n).

Nach Einsetzen der Werte erhalten wir
10~ C .
T 278854 102 AsV-'m-1-0,1? m?
U =4,252-10*V.

27':8 r?

(/0,22 m? + 0,12 m* — 0,2m)

Die Feldstirke bestimmen wir mit Hilfe der Beziehung
L oU oU oU
By (2420, 20 8

Da die Feldstidrke im Punkt 4 nur eine Funkt1on der Verdanderlichen r; darstellt, konnen
wir auch schreiben

oU
E
OFy 0

E=-
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wobei 7, den Einheitsvektor in der in Bild 6 dargestellten Richtung bedeutet. Es wird
demnach
_ o) (1 2r, 1) :
2meor? \ 2 \/rz + 2 0
d. h.,
2o 0 r1
E*‘znsorz ( \/r2+r%)r05
E = 105 C ) 0,2m .
T 2r-8,854-10"12 AsV-'m-10,1? m? \/0’12 m? + 0,22 m? )r°’
E =1,897 105 7% Vm-'.
8. Bestimmen Sie das Potential und die Feldstiarke in der Umgebung eines kugelférmigen,

positiv geladenen Leiters, dessen Radius die Gré8e +” und dessen Ladung die Flichen-
dichte o hat.

Losung

Mit Hilfe des Lehrsatzes von GaAUss-OSTROGRADSKI kann man nachweisen, daB3 Feld-
stirke und Potential in der Umgebung der geladenen Kugel als Feldstidrke und Potential
einer in ihrem Mittelpunkt gelegenen Punktladung verstanden werden kénnen. Deshalb
ist fiir den Fall

‘ 0 oA od4mr'? or’?

s

a) r>r U=

4rmegr dmeor 4rmegr goF

wobei A die Kugeloberfliche und o die Flachendichte der darauf befindlichen Ladung
bedeutet.
Fiir die Feldstdrke gilt die Bezichung

. oU
E=—gradU=——9,
or

R C R .. .
wobei § = — der Einheitsvektor in Richtung 7 ist. Dann gilt
r

ar'? or’?

é:

E "
= 7.
gor? g

b) Im Falle » < ¢’ ist das Potential im Innern des kugelférmigen Leiters das gleiche
wie auf seiner Oberfliche, also fiir » = ¢’. Daraus ergibt sich

or'? or'?  or

goF g’ £

Da das Potential im Kugelinnern iiberall gleich ist, d. 11 U = const, wird die elektro-
statische Feldstidrke in ihrem Innern {iberall den Wert E = — grad U = 0 haben.
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9. Eine elektrisch leitfihige Seifenblase vom Radius » = 2 cm ist auf ein Potential von
U = 10000 V aufgeladen. Durch Zerplatzen bildet sie sich in einen Wassertropfen mit
dem Radius r; = 0,05 cm um. Wie grof3 ist das elektrische Potential U, dieses Tropfens?

Liosung

Vor dem Zerplatzen hatte das Potential der Seifenblase den Wert

! 9
4meg v’
Auf der Oberfliche befindet sich also die Ladung
QO = 4m Ure,.

Das Potential der nach dem Zerplatzen entstandenen kleinen Kugel ergibt sich dann zu

1 Q Ur - 4re I3 0,02 m
U, = - = =U—=10000V ——-—
! 4mey 1y dmegr ry 0,0005 m

=4-105V.

10. Zwei Punktladungen @; = —3 uC und Q, = +2 uC haben voneinander den Abstand
d = 5cm, Es ist diejenige Aquipotentialfliche des resultierenden Feldes zu bestimmen,
auf der iiberall das Potential Null herrscht.

Losung

Nach den in Bild 7 gewidhlten Bezeichnungen kann man das Potential im Punkt M
wie folgt beschreiben:

Ql Q2
+ .
dreo/X* + 3> Ameo/(d — )2 + y?
Wenn M auf der gesuchten Aquipotentialfliche liegen soll, dann muB dort U = 0 sein:
U — Ql + QZ — 0'
dreo \/xz + ¥ dmeg \/(d —x)* +y?

Nach Umformung erhalten wir daraus die Beziehung
(0} — 0 x* + (0} — 0} »* — 20%xd + Q3d* = 0. O

Das ist die Gleichung einer Aquipotentialkurve des

Potentials Null, die in derselben Ebene liegt, in der M
sich auch die beiden Ladungen Q; und Q, befinden.

Es ist offenbar eine Kreislinie, deren Mittelpunkt @ @ s
auf der x-Achse, d. h. auf der Verbindungsgeraden * |
der beiden Ladungen liegt. Um den Radius dieses X
Kreisbogens zu bestimmen, suchen wir den Punkt,
in dem der Kreisbogen die x-Achse schneidet. Fiir \
y =0 wird aus Gl (1): Bild 7

U=
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11.

12.

(Q1 — 0)x* — 20ixd + Qid* =0,

d h,
Q.d —3:10°C-5-102m
= = =3:10-2 =3 .
i 0, — Q. —5-10-¢C m cm,
0.d —3.10C-5-102m
= - = =15:102m =15 .
=0 + 0 17 10°C m = 15 om

Der gesuchte Kreisradius ergibt sich dann zu

Xy — X3
=2 "1 —6cm.
r 5 cm
Der Mittelpunkt dieses Kreises befindet sich im Abstand xo = x; + ¥ = 9 cm von der
Ladung Q, entfernt. Als die gesuchte Aquipotentialfiiche ergibt sich die Kugel, die
durch Rotation der angegebenen Kreislinie um die x-Achse entsteht.

In einem elektrischen Feld besteht im Punkt A ein Potential der GroBle Uy, = 300V,
im Punkt B ein solches der Grofle Uy = 1200 V. Welcher Arbeitsbetrag muf} aufgebracht
werden, um eine positive Ladung der Grofle Q = 3 - 10-8 C vom Punkt A zum Punkt B
zu transportieren?

Losung

Die aufzubringende Arbeit wird dem Zuwachs an potentieller Energie gleich sein. Wir
konnen also schreiben
W=Wy— Ws=QUzg—QU,=0(Us~ Uy = (1200 —300) V- 3 -10-8C =
=27-10"°7J.
Zur Losung dieser Aufgabe haben wir den Ansatz W = QU verwendet, der sich aus der
Definition des Potentials ergibt.

Es ist die auf eine Punktladung Q wirkende Kraft zu ermitteln, die auftritt, wenn sich
die Punktladung im Feld einer elektrisch geladenen, unendlich groBen Metallplatte mit
der Flidchendichte o befindet fiir den Fall, daB3 die Platte von einem Vakuum umgeben
ist.

Losung

Unter Benutzung der Definition der elektrostatischen Feldstirke konnen wir fiir die
gesuchte Kraft schreiben

F=Eo.
Unter der gegebenen Voraussetzung, daf3 es sich um eine unendlich grofle, elektrisch
geladene Platte handelt, wird das Feld tiber der Platte homogen sein. Wir kénnen in

diesem Fall die Feldstirke ermitteln, indem wir fiir den Wert der elektrostatischen Feld-
stirke, die wir im Beispiel 207 fiir eine Kreisscheibe bestimmten, den Grenzwert fiir
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13,

14.

r = 0o bilden. Dann wird
- g
E=lim — (1 — —=—2— #10 = = F10,
\/ 22 2¢,
wobei 7, dén Einheitsvektor darstellt, der senkrecht auf der Plattenebene stght. Auf die
Ladung Q wird dann in einem beliebigen Punkt dieses Feldes die Kraft

wirken.

Zwel unendlich grofBe, elektrisch leitende, ebene Winde stehen elektrisch isoliert
senkrecht aufeinander (Bild 8). Wie grof83 ist die elektrische Feldstidrke in ihrer Nihe,
wenn auf der einen eine Ladungsdichte ¢ und auf der anderen die doppelte Ladungs-
dichte, also 20, besteht und wenn in ihrer Umgebung ein Vakuum herrscht?

Losung 29
Die Winde werden selbstdndig jede fiir sich elektrische Felder Z .
erzeugen, die senkrecht zueinander gerichtet sind und Feld- &
stdrken mit den Betréigen A
N c 20 c §
= ——  und E = — = — I
1 2¢, 27 20 Bild 8

haberl. Das resultierende Feld ergibt sicy_ in jedgm Punkt aus der Vektorsumme von E}
und E,. Unter der Voraussetzung, dal} £, und E, senkrecht aufeinander stehen, konnen
wir fiir die resulticrende Feldstirke schreiben

—_— o2 c? 502 5 s
E=\/Ef+E§=A/ + 5 = —=\/——.

4e2 4e2 2 &

Eine elektrisch leitende Kugel vom Durchmesser 2r = 1 m hat ein negatives absolutes
Potential von U = 108 V. Sie befindet sich an einem Punkt im Vakuum, wo das elek-
trische Erdfeld gerade die Stirke E = 10* V m~! aufweist, im Schwebezustand. Wie
groB3 ist ihr Gewicht?

Losung

Wenn die elektrisch geladene leitfahige Kugel im Vakuum an einem bestimmten Punkt
des elektrischen Erdfeldes gerade schwebt, dann miissen die beiden auf die Kugel
wirkenden Krifte Gewicht G und die Kraft F des elektrischen Erdfeldes gerade gleich
grof} und einander entgegengerichtet sein. Wir konnen deshalb schreiben

G=F.
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15.

Fiir F gilt dabei F = EQ. Die auf der Kugel enthaltene Ladung Q konnen wir mit dem
Ansatz fiir das absolute Potential der Kugel ermitteln

__Lre
o 4Tr€0 ¥ ’ 2 am
O
woraus sich ergibt 'A
Q = U - 4meor. ,:-’g
Wegen des negativen Potentials muB auch die Ladung Q negatives p
Vorzeichen haben. Der Vektor der Feldstérke des irdischen Erdfeldes ||
ist auf den Erdmittelpunkt hin gerichtet. Deshalb hat die auf die Kugel :/I
wirkende Kraft F die Richtung senkrecht aufwirts. Fiir das gesuchte !
Gewicht der Kugel ergibt sich somit die Bezichung Bild 9

G =F = EQ = 4neor UE =
=47-:8,854- 10712 AsV-'m-105m-10°V.10* Vm~! =
= 0,555 N = 56,74 - 10-3 kp.

Zwischen zwei ebenen, parallel zueinander vertikal im Abstand d = 0,5 cm angeord-
neten, elektrisch geladenen Platten befindet sich ein elektrisch geladenes Tropfchen der
Masse m = 10-° g (Bild 9). Wenn die Platten bis zu einer Potentialdifferenz von
U = 400 V aufgeladen werden, filit das Tropfchen im freien Fall unter einem Winkel
@ = 7° 25’ gegen die Vertikale herab. Bestimmen Sie die auf dem Tropfchen befindliche
Ladungsmenge.

Losung

Bei der Berechnung gehen wir von der Tatsache aus, daB3 das Tropfchen in der Richtung
der resultierenden Kraft fillt. Diese resultierende Kraft ist aus der Vektorsumme der
beiden Krifte F, = QEund G = m?gebildet‘ Die Ladung des Tropfchens sei Q.
Da das elektrische Feld zwischen den beiden Platten bestehen soll, gilt

U=Ed,
also
U
E=—.
d
Unter Beriicksichtigung der in Bild 98 gewihlten Bezeichnungen kénnen wir schreiben
U
o -
. QE d QU
tan ¢ = = = s
mg mg mgd
d. h. also,
0 mgdtane  1072-103kg-9,81ms™2.0,5-10?m- tan7° 25" _

U 400V
1,596 - 10-17 C.

I
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16.

17.

Eine Kugel der Masse m = 10 g triigt die elektrische Ladung Q = 5/5 - 10-° C. Mit
welcher Beschleunigung wird sich diese Kugel in einem elektrischen Feld der Stérke
E=3-10*Vm~! bewegen?

Losung

Entsprechend der Definition der elektrischen Feldstérke gilt

_F
(0]
und somit
F=EQ.

Andererseits gilt aligemein nach dem II. NEwToNschen Gesetz

F = ma.
Infolgedessen konnen wir nach Vergleich der beiden letztgenannten Gleichungen
schreiben

FQ = ma.

Fiir den gesuchten Wert der in Feldrichtung wirkenden Beschleunigung erhalten wir
demnach

PR
300+ 102 Vm-1 - 3 10-°C

= =5-10"3ms-2,

a= 10-10-° kg

EQ
m

Zwischen den Platten eines Kondensators befindet sich ein Dielektrikum aus Glas von
0,1 cm Dicke. Wie groB3 muB} die Belagfliche des Kondensators sein, damit er eine Ka-
pazitidt von 150 pF annimmt?

Losung

Die Kapazitdt des Kondensators ist durch die Beziechung C = Q/U definiert. Dabei ist Q
die auf einer Platte des Kondensators befindliche Ladung und die im Zihler der
angegebenen Beziehung auftretende GréBe U das Potential dieser Kondensatorfliche
in bezug auf die gegeniiberliegende Fliche. Da wir bei einem Plattenkondensator das
zwischen den Platten bestehende Feld als homogen ansehen konnen, gilt fiir das Po-
tential die Beziehung

U= Ed

(d Abstand der beiden Platten, E Stirke des homogenen elektrischen Feldes). Fiir die
Feldstdrke liefert das CourLomBsche Gesetz den Ansatz: E = o/e = QJsA (4 Flidche einer

Kondensatorplatte). Fiir die Kapazitit des Plattenkondensators kénnen wir dann end-
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giiltig schreiben
c=2_¢2_ ¢ _
U FEd Qo d d
eAd

18.

Hieraus erhalten wir fiir die gesuchte Fliche des Plattenkondensators

cd  150-10-2F-1-10*m
= — 24188 - 103 m?.
T T SSd 10 T Asv g g 24188 107 m

4=

Berechnen - Sie die Kapazitit eines Plattenkondensators von
200 cm? Belagfliche. Zwischen den Beldgen befindet sich Glas
der Dicke d; = 0,1 cm, das beiderseits mit einer Paraffinschicht
der Dicke d, = 0,02 cm bedeckt ist. Die Dielektrizitidtszahlen be-
tragen fiir Glas ¢; = 7, fiir Paraffin ¢, = 2.

Losung

Gemal Bild 10 ist die dielektrische Verschiebung in allen Dielek- IH HI

trika gleich groB, so daf3 wir finden

Q
D===D _—D,
l 1 2

d. h,
D = ege.E = e9e  E1 = €9&,F;.

Wenn wir die Potentialdifferenzen zwischen den einzelnen Schichten mit Hllfe der je-

weiligen elektrostatischen Feldstdrken ausdriicken, erhalten wir

&1

UOI = E2d2 = El - d27
&2

Uy, = E1d1 s
€1

U23 = E2d2 == E1 _ dz.
&2

Fiir die resultierende Potentialdifferenz kénnen wir dann schreiben:

&
U=Ups + Uiz + Ups = E1d1 + 2E2d2 = E1d1 + 2E, ;i dz,
2

D
U=E (d1+2i_1d2> ——<d1 +2——d2>
2

&0€1
Fiir die Kapazitit des Plattenkondensators erhalten wir
0 AD A _ £081624

&

&

dy

)

23

cC=2%2= =
U D
€08y

(d1+2—d2> I

01 €02

d, dy  2e1ds + edy

G

23

Bild 10
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19.

Da die vorletzte Gleichung auch in der Form

co 1 B 1

T4 d, 1 1
2 — 2=
+ ot

eo81 A £0€2A 1 Cs

geschrieben werden kann, wird ersichtlich, daB3 die Kapazitit eines derartigen Platten-
kondensators auch als die dreier in Serie geschalteter einzelner Plattenkondensatoren
berechnet werden kann, wie es aus der Darstellung in Bild 99 hervorgeht. Die drei
Einzelkondensatoren sind mit den Symbolen C,, Cy, C, gekennzeichnet. Wenn wir die
zugehdrigen Zahlenwerte einsetzen, erhalten wir schlieBlich

oo fotead 8,854-10"2 AsV-1m="7-2-200- 10-*m? _
T 2eid, + endi 2:7:02:10°m +2-1-10°m n
= 516,8- 1012 F,

Ein Luftkondensator mit ebenen Platten hat bei einem Plattenabstand d = 1 cm
die Kapazitit C, = 10 pF. Zwischen die beiden Kondensatorplatten werde ein Stiick
Blech der Dicke 4 = 0,1 cm eingeschoben, das so groB ist, daB3 jegliche Randwirkungen
vernachldssigt werden konnen. Wie grof} ist die sich dann einstellende Kapazitidt?

Losung

Durch das Einschieben der Platte der Vorgénalmten Dicke wird der Kondensator von
der urspriinglichen Kapazitit

eoA
Co = 07 (1)
in zwei Kondensatoren mit den Kapazititen
;o 6'0A . EOA 14
C=i—i=%7=a
2
zerlegt, die in Serie geschaltet sind (Bild 11). Die resultierende A / ° A
Kapazitit dieser Kombination erfiillt sodann die Bedingung
) d-4 d-A
1 1 1 2 27 s
+ = == Bild 11

c oo v
so daB sich ergibt

Aus Gl (1) geht aber hervor, dal
EoA = Cod
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20.

21.

ist, so daB wir nach Einsetzen der vorgegebenen Werte erhalten

‘ 1cm 1
_ - M _ 10— pF=11,11pF.
a=a  OPF i m ~ 105 PF =1LILpE.

C=C0

Auf welches Potential U; mul} ein Kondensator der Kapazitdt C; = 2 uF aufgeladen
werden, damit er die gleiche Ladung trigt, die von einer Leydener Flasche der Kapazi-
tdt C, = 900 pF bei einer Spannung vom Betrag U, = 30000 V gespeichert wird?

Losung

Fiir die Ladungen auf den Platten der beiden Kondensatoren konnen wir schreiben
Q1=C1U1; Q2=C2U2.
Da entsprechend der Aufgabenstellung Q; = Q sein soll, gilt

C U, = Cz U. 2,
woraus wir fiir das gesuchte Potential erhalten
C, 900 - 102 F
=U,— =30000V———— =135V,
U o 2-10°F
Berechnen Sie die Kapazitit eines aus zwei koaxialen Zylin- :
dern bestehenden Kondensators der Abmessungen Hohe ] . I
= 20 cm, Plattenradien »; = 3 cm, r, = 4 cm, dessen Di- | ‘_"I,,I drt
elektrikum ein Vakuum ist (Bild 12). : ]
< |
} Q| |4
£
Losung II }""
| |

Fiir die Berechnung der Kapazitit mufl zundchst das Po-
tential zum Beispiel einer (positiven) inneren gegeniiber
einer duleren Platte ermittelt werden. Dieses Potential ist
gleich dem Quotienten aus der Arbeit W, die wir bei dem Transport der Ladung ent-
gegen den Kriften dieses Feldes von der duBeren auf die innere Platte zu verrichten
haben, und der iibertragenen Ladung selbst. Wir kdnnen demnach schreiben

Fy ry ri r
U=£—V=1§fﬁudf=léf(—EQ)dF=fEdr=—fEdr’,
r2 r rz T2

da die Feldstirke und die infinitesimale VektorgroBe d7 einander entgegengerichtet
sind und da dr = —d#’ ist. Den Wert der elektrostatischen Feldstirke erhalten wir mit
Hilfe des Lehrsatzes von GAUss-OSTROGRADSKI, wonach der Strom durch die Ober-
fliche eines angenommenen Zylinders vom Radius r” dem Quotienten der im Innern des
Zylinders enthaltenen Ladung und der Dielektrizititskonstante des umgebenden Me-

Bild 12
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22.

diums gleich ist. Es ist daher

E2nr'h = —Q— s
€o
da der Strom durch die Zylindergrundfidche in Richtung der Feldstiarke gleich Null ist.
Daraus ergibt sich

0

- 2nr'hey

Fiir das Potential U erhalten wir damit
ri Fy
0 / dr ) r
U= | —EdV = - = In—.
f r 2neoh . v 2neoh n I
r2 r2

SchlieBlich erhalten wir die Kapazitit des Zylinderkondensators zu

% _ 2meh _ 27:-8,854-10'121350:7‘1m‘1 02m _ 387 10-12 F,
r , m —_—
In = 231g

ry 0,03 m

Berechnen Sie die Kapazitit eines Kugelkondensators, der aus zwei konzentrisch an-
geordneten, elektrisch leitenden Flichen mit den Radien r; und r, gebildet wird,
zwischen denen sich ein Dielektrikum mit der Dielektrizititskonstanten e befindet.

Losung

Wir gehen ganz analog wie im Beispiel des Zylinderkondensators vor, indem wir die
Feldstdrke E unter Anwendung des Lehrsatzes von GAUss-OSTROGRADSKI bestimmen.
Wir konnen also schreiben

4ni’?E = —Q— ,
&
wobei ¥’ den Radius einer beliebigen gedachten Kugelfldche zwischen den beiden Kugel-
elektroden bedeutet, mit denen sie den Mittelpunkt gemein hat. Das Potential bestim-
men wir wie vordem geméaf der Beziehung

ry ry Ty
R 1
sz——Edfz Edrz/—Q —dr =
4ne r'?
r2 rz r2
_ Q < 1 1 ) Q0 rn-n
T 4me \r, ra)  4me  rir,

weil auch hier dr = —dr’ ist.
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Die Kapazitit des Kugelkondensators ergibt sich damit zu

Fir2

C=%—=4ﬂ:s

Fa —F

23. Wie groB sind die Kapazitidten der in den Bildern 13a bis d dargestellten Kondensator-
kombinationen? Die einzelnen auf den Bildern 13a bis c eingesetzten Kapazititen
haben folgende Werte:

a) Cp=6pF, C,=2pF, Ci,=3pF, Cs=3uF;
b) C,=2pF, C,=4pF, C;=4uF, (C;=2uF;
¢) C,=6uF, C,=2uF, C;=1uF, C,=3uF.

4 A & i i
chz ' Hl
Bild 13a Bild 13b
_C‘gl 0y [# C;
G Ic: ‘E’:l—‘_l:j'
T Ak
Bild 13¢ Bild 13d

Losung

Wir verfahren in der Weise, daB3 wir die in Serie oder die parallelgeschalteten Konden-
satoren zusammenfassen und mit dieser Zusammenfassung ein Ersatzschaltbild schaffen,
das wir weiterhin vereinfachen konnen. Dabei wird uns die Berechnung erleichtert,
wenn uns bekannt ist, daB3 zwei gleiche, in Serie geschaltete Kondensatoren eine resul-
tierende Kapazitit haben, die gleich der halben Kapazitit jeweils eines einzelnen ist,
wihrend zwei gleiche, parallelgeschaltete Kondensatoren eine resultierende Kapazitit
haben, die der doppelten Kapazitit je eines der beiden Kondensatoren gleich ist. Bei
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der Serienschaltung ist also

1t 1 _2 . _C
. C Cc ¢’ 2

und bei der Parallelschaltung
C,=C+C=2C.

Analog 1468t sich nachweisen, dal bei drei in Serie geschalteten Kondensatoren die
resultierende Kapazitdt C, = C/3 ist, wogegen bei der Parallelschaltung C, = 3C ist.
Die einzelnen in Bild 102 dargestellten Fille werden demnach wie folgt behandelt:

C;y 6uF

2

Diese resultierende Kapazitdt C; ist mit der Kapazitit C, parallelgeschaltet, also ist
Cy = C, + C, = (2 + 2) puF = 4 uF. Diese Kaparzitit C; ist mit den beiden auBen
liegenden je 3 uF groBen in Serie geschaltet, so daB sich ergibt

1~1+1+1_1 1 111

C. C, C. "'Cs 3uF ' 4uF ' 3uF 12uF’
12

C, = —lTyF = 1,09 uF.

b) Die Kapazitidten C, sind in Serie geschaltet, so daB ihre resultierende Kapazitit den
Wert C; = C»/2 = 2 pF annimmt. Auf der linken Seite des Schaltbildes befinden sich
somit die beiden parallelgeschalteten Kapazititen C; und Cj4, so daB deren resultierende
Kapazitit ¢’ = C; + C; = (2 + 2) uF = 4 uF wird. Analog kann man leicht er-
mitteln, daB die resultierende Kapazitidt C” der rechten Seite der Schaltung ebenfalls
den Wert C” = 4 uF annehmen mufB}. Da C’ und C” in Serie geschaltet sind, ist offen-
kundig, daB die resultierende Kapazitit der gesamten Schaltung C; = 2 F sein wird.
Die Ersatzschaltbilder, die zur Berechnung herangezogen wurden, sind in dem unteren
Teil des Bildes 102b dargestellt.

¢) Die Kapazititen C; und C, kénnen wir durch die resultierende Kapazitit Cj er-
setzen:

1 1 1 1 1

TG TG T T3
also

3
c; =7y.F = 1,5 uF.

Da die Kapazititen C; und C, parallelgeschaltet sind, k6nnen wir sie durch die resul-
tierende Kapazitét
C;=C;+ Cy=15uF +3uF =45uF
ersetzen. Die Kapazititen Cs; und Cj sind nunmehr in Serie geschaltet, so daB die ge-
suchte resultierende Kapazitit C, der gesamten Schaltung sich ergibt zu
1 1 1 1 1 55

G TG TG T aser T TeF  dser’
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24,

d) C; ist mit C, parallelgeschaltet, ebenso sind C3 und C. parallel angeordnet. Das
Kapazititenpaar Cy und C, und das Paar C; und C, sind in Serie geschaltet, so daB fiir
die resultierende Kapazitit gilt

1 1 1 G+ C+C+C

FoA oA AN N (o RIGA Y (ARG

d. h,
o _ GG + GG+ GG + GG
i C:i+C+C+Cy )
Ein luftgefiillter Plattenkondensator besteht aus zwei Platten mit dem

Fldcheninhalt 4 = 1000 cm?, die voneinander in einem Abstand x =
= 0,1 cm angeordnet sind. Mit welcher Kraft ziehen sich die beiden Plat-
ten an, wenn sie auf ein Potential von U = 1000 V aufgeladen werden?

Losung

a) Das angegebene Beispiel betrachten wir zunidchst unter dem Gesichts-
punkt energetischer Vorstellungen. Wir bezeichnen die Kraft, mit der sich
die beiden Platten anziehen, mit dem Symbol F. Aus dem Gesetz von der gjiq 14
Erhaltung der Energie ergibt sich, daB3 die Arbeit, welche die Kraft F bei
einer Anndherung der beiden Platten um das infinitesimale Wegelement dx verrichtet,
genau der Abnahme der Energie des zwischen den beiden Platten liegenden elektrosta-
tischen Feldes gleich sein muB. (Das Feld soll vollstindig zwischen den Kondensator-
platten gelegen sein.) Nach Bild 14 konnen wir schreiben

174

° Adx,
V X

Fdx =

wobei W, die Energie des elektrostatischen Feldes im Gesamtvolumen des Dielektri-
kums und ¥ das Volumen des Dielektrikums bedeutet, so daB die Energiedichte des
elektrostatischen Feldes mit W./V angegeben wird. Fiir die Energie des elektrostatischen
Feldes eines Kondensators gilt jedoch die Beziehung W, = 1/, CU?, so daB} wir finden

1
—CU?

Fdx = Adx,

wenn wir auch das Volumen durch die Beziehung V' = Ax ausdriicken. Fiir die gesuchte
Kraft finden wir dann

_cu?

F
2x
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und nach einer Umformung

eA N
Fe x _ 8AU? =.sos,AU2
2x 2x2 2x2

Mit den gegebenen Werten ergibt sich schlieBlich
Fe 8,854 1012 AsV-tm~!.1-1000 - 10-* m? - 10002 V2 _
N 2(1-10-3)2 m? -

8,854 - 10-7 N'm?
= 3105 2 = 0,4427 N,
b) Das Beispiel 148t sich auch durch die direkte Berechnung der gesuchten Kraft be-
arbeiten. Die Ladung -Q der einen wirkt auf die Ladung —Q der anderen Platte durch
eine Anziehungskraft vom Betrag
F= EOQ:
wobei E, die elektrische Feldstirke des nur durch die eine Ladung +Q erregten Feldes
darstellt. Das homogene Feld zwischen beiden Kondensatorplatten wird durch die
Feldstirke E = 2 E, gekennzeichnet, da das resultierende Feld sowohl durch die La-
dung +Q als durch die —Q gleicherweise erregt wird und beide Ladungen am Entstehen
des Gesamtfeldes durch gleiche Beitrige beteiligt sind. Da weiterhin (entspr. Beispiel 217)
E = o/e ist, k6nnen wir auch schreiben
o 10 1 CU?

2% 24 2 x

E
F=E0Q=7Q=

unter der Voraussetzung, daB3 wir bei der Umformung des Ausdrucks fiir die Kraft F
die Bezichungen ¢ = Q/4, Q = CU und C = ¢A4/x verwenden.

25. Ein luftgefiillter Plattenkondensator der Kapazitit C; = 500 pF ist auf eine Spannung
U; = 5000 V aufgeladen. Der Kondensator enthilt als Dielektrikum eine Platte, deren
Material durch die Dielektrizititszahl e, = 5 charakterisiert ist. Welche Arbeit muB
man verrichten, um diese Platte aus dem Kondensator zu entfernen, und wie verdndert
sich nach Entfernen der Isolierplatte diec am Kondensator anliegende Spannung?

Losung

Wir stellen zunichst fest, um welchen Betrag sich die Kapazitit des Kondensators durch
das Entfernen der Isolierplatte verringert. Da die Dielektrizititszahl das Verhiltnis der
beiden Kapazititen des Kondensators mit und ohne Dielektrikum angibt, also C, bzw.
C,, kOnnen wir schreiben

. C1
t C2 3 \
d. h,
C1 =81C2.

3 Hajko, Elektrik
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26.

Da weiter die auf den Kondensatorplatten enthaltene Ladungsmenge durch die Ent-
fernung der Isolierplatte nicht verdndert wird, gilt

C1 U 1= Cz Uz .
Somit wird sich nach Herausziehen der Platte aus dem Kondensator die neue Spannung

c
U, = 1C—‘= & Uy = 5-5000V = 25000V

2

einstellen.
Die fiir das Herausziehen der Isolierplatte erforderliche Arbeit bestimmen wir als die
Differenz der Energie des elektrostatischen Feldes zwischen den Kondensatorplatten
mit und ohne Isolierplatte, so daB sich ergibt

1 1 1 C

W=—C2U22——2—C1U12=? c

(Er[]l)2 - —;' Cl U12 =

1 1
C‘1(]12'5} - E’CIUIZ ='5C1U12(5r - l) =

500-10-12F-5000> V2 (5 — 1) =25-1073J.

D= N~

Zwischen den beiden Platten eines Kondensators mit dem Fliacheninhalt 4 = 500 cm?,
die voneinander einen Abstand d = 1 cm haben, besteht eine Spannung der GrofSie
U, = 5000 V. Welche Arbeit muB verrichtet werden, damit sich der Abstand der beiden
Kondensatorplatten auf d° = 4 cm vergroflert?

Losung

Die gesuchte Arbeit muB} gleich der Energiedifferenz des zwischen den beiden Konden-
satorplatten bestehenden elektrostatischen Feldes bei den Abstdnden d’ = 4 cm und
d = 1 cm sein. In den beiden Stellungen sind diese Energien gegeben durch

1 1
W1='§'C1U12; W2=—2—C2U22

Die Kapazitit C, konnen wir mittels C; und die Spannung U, mittels U; ausdriicken.
Wir erhalten dann

Sog . EQA EoA C1

1= 7’ Co=—p=—y=—.

Da sich die auf den Kondensatorplatten enthaltene Ladung bei einer Verdnderung des
Abstands nicht mit dndert, sondern konstant bleibt, ist

CU;, = G U,.
d. h.,
C1 C1
Uy, = U — — Uy — = 4U,.
2 1 C, 1 C, 1

4
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A

. Zwei gleich groBe, auf zwei kleinen Ku-

3*

Daraus ergibt sich
1

1
W= W1 - W2 =—C2U22'_'—C1U12:~'

2 2
1

16 3

3 8,854-10"? As-V-tm=!-500-10~* m?

1 1 1
3C1Z(4U1)2 —?C1U12=
3 EoA 2 _.

3 a i

2 0,01 m

Aufgaben

geln aufgebrachte Ladungen sind 10 cm
voneinander entfernt und wirken im Va-
kuum durch eine Kraft von4,9 - 10~ N
aufeinander. Berechnen Sie die GroBe
der beiden Ladungen.

. Zwei Ladungen wirken in einem Me-

dium mit der Dielektrizitdtszahl ¢, = 1
im Abstand 11 cm mit der gleichen
Kraft aufeinander wie in Terpentin in
einem Abstand von nur 7,4 cm. Berech-
nen Sie die Dielektrizitdtszahl des Ter-
pentins.

. In den Eckpunkten eines ebenen gleich-

seitigen Dreiecks sind Punktladungen
der GroBe e angeordnet. Wie grol3
miite eine im Mittelpunkt des Drei-
ecks liegende Punktladung sein, damit
sich die Ladungen im Gleichgewicht be-
finden?

. Welche Ladungen Q miissen auf zwei

gleich groBen Kugeln von je 10 g Masse
angebracht werden, damit die zwischen
den Kugeln wirkenden Massenanzie-
hungskrifte durch die elektrostatischen
AbstoBungskrifte kompensiert werden?

. Vergleichen Sie die zwischen zwei Elek-

tronen wirkenden Massenanziehungs-
und elektrostatischen AbstoBungs-
krifte.

. Bestimmen Sie die Fldchendichte der

auf einer Kugel von 5 cm Radius ent-

10.

11.

. Zwei

50002 V2 = 1,661 - 10-2J.

haltenen Ladung Q = 0,1 C.

. Welche Stidrke hat das elektrische Feld

einer Punktladung Q = 144-10-°C in
einem Abstand von r = 6cm, 12 cm,
18 cm im Vakuum?
Punktladungen gleichen Vor-
zeichens der Stirken Q; = 8 uC und
2 = 5 uC haben voneinander den Ab-
stand d = 20 cm.
a) In welchem auf ihrer Verbindungs-
linie gelegenen Punkt ist die elektro-
statische Feldstidrke gleich Null?
b) In welchem auf ihrer Verbindungs-
linie gelegenen Punkt sind die durch
beide Ladungen hervorgerufenen Poten-
tiale gleich groB3?

. Eine Ladung Q@ = 5-10-7 C erregt im

Vakuum ein elektrostatisches Feld. Die
Punkte 4 und B liegen mit der Ladung Q
auf einer Geraden und haben von Q den
Abstand »; = 2cm bzw. r, = 10 cm.
Wie grof} ist die zwischen 4 und B be-
stechende Spannung?

Wie grof3 miiBte der Radius einer Kugel
gewdhlt werden, auf die eine Ladung
QO =1 C gebracht werden kann, ohne
daB Spriiheffekte auftreten? (Die maxi-
male Feldstdrke, bei der in Luft gerade
noch kein Spriihen beobachtet wird, be-
triagt 25kVcm-1.)

Auf welches absolute Potential wiirde
sich die Erde (+ = 6378 km) aufladen,
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12.

13.

14.

15.

16.

17.

wenn auf ihre Oberfliche gleichméaBig
eine Ladung von einem Coulomb auf-
gebracht wiirde?

Wie groB ist die Spannung zwischen
zwei Punkten in einem homogenen elek-
trostatischen Feld der Stirke E =
= 150 Vcm™!, deren Abstand in Rich-
tung der Feldlinien 6 cm betrégt?

Wie grofl miiBBte der Radius einer Kugel
sein, die sich durch das Aufbringen
einer elektrischen Ladung Q =5-10-°C
auf das absolute Potential U =
= 100000 V aufladt?

Wie groB} ist das absolute Potential in
einem Abstand s =10cm von der
Oberfliche einer leitfdhigen Kugel mit
dem Radius ¥ = 5 cm, auf die eine La-
dung der GroBe Q =2-10"7C ge-
bracht wurde?

Es ist die elektrostatische Feldstédrke
zwischen zwei koaxialen kreiszylindri-
schen Fldachen mit den Radien r, und
2, die praktisch unendlich lang sind, zu
berechnen, wenn der innere Zylinder
auf das Potential U, gegeniiber dem ge-
erdeten duBeren Zylinder aufgeladen ist.
Ein Leiter, der in die Form einer ebenen
Kreislinie mit dem Radius r gebogen
wurde, trdgt die Ladung Q. Berechnen
Sie die Feldstidrke des durch diese La-
dung erregten elektrostatischen Feldes
fiir

a) den Mittelpunkt des Kreises mit dem
Radius r,

b) einen Punkt auf der zur Kreislinie
senkrechten Mittelpunktsachse, der vom
Mittelpunkt den Abstand s hat.

Es sind die Potentiale U;, U,, Us, U,
in vier nebeneinander gelegenen Punk-
ten, die nicht in einer Ebene liegen, be-
kannt. Wie bestimmen wir die Feld-
stdrke im ersten dieser Punkte, der von
den drei anderen mit bekanntem Poten-
tial jeweils die Abstdnde x5, X13, X14
hat, wenn wir mit é12, é13 . 514 die Ein-
heitsvektoren jeweils in den Richtungen

18.

19.

20.

21.

22.

von Punkt 1 zu den Punkten 2, 3 und 4
bezeichnen?

Ein Punkt A hat von einer unendlich
ausgedehnten, leitenden ebenen Fldche,
die mit einer Ladung der Flichen-
dichte ¢ aufgeladen und von Vakuum
umgeben ist, den Abstand d. Wie grof3
ist das Potential des elektrischen Feldes
im Punkt A in bezug auf die geladene
ebene Flache?

Eine ebene Platte der Fliche A ist mit
einer elektrischen Ladung der GroBe
+2 e aufgeladen. Ihr gegentiber befindet
sich im Abstand d eine zweite von glei-
cher GroBe, die, von der ersten durch
ein Vakuum getrennt, die Ladung e
trigt. Wie grof3 ist das Potential der
erstgenannten Platte gegeniiber der
zweiten?

Auf einem kugelformigen Leiter mit
dem Radius » = 10 cm befindet sich
eine elektrische Ladung der GrofBe
Q = 60 uC. Bestimmen Sie die Radien
der Agquipotentialfiichen des durch
diese Ladung erregten elektrischen Fel-
des, deren Potentiale sich um jeweils
1+ 10° V unterscheiden. Als erste Aqui-
potentialfiiche betrachten wir die Ober-
fliche des Leiters selbst.

Berechnen Sie die auf der Erdoberfliche
enthaltene Gesamtladung und deren
Flachendichte, wenn der Potential-
gradient des elektrischen Feldes der
Erdatmosphidre an der Erdoberfliche
den Wert 100 V m~? hat. Der Erdradius
betrigt 6378 km.

Die Platten eines Kondensators sind
durch eine Porzellanscheibe von 0,5 cm
Dicke und eine Luftschicht gleicher
Dicke voneinander isoliert. Es sind die
elektrostatischen Feldstdrken in der
Luft und im Porzellan (¢, = 6) zu be-
rechnen, wenn bekannt ist, da3 die Po-
tentialdifferenz der Kondensatorplatten
10 kV betrigt. Wie groB ist die Span-
nung in der Luftschicht und in der Por-
zellanscheibe?
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23.

24,

25.

26.

27.

28.

29.

Zwei Platten eines Kondensators haben
den Abstand d = 1,05cm. Zwischen
beide Platten bringen wir, parallel zu
beiden liegend, eine weitere Metall-
scheibe der Dicke 4 = 0,05 cm, die
von der nichstgelegenen Kondensator-
platte den Abstand d; = 0,4 cm haben
soll. Das Potential der nichstgelegenen
Kondensatorplatte habe den Wert
U, = +50V, das der anderen den Wert
U, = —60 V. Berechnen Sie das Poten-
tial der eingeschobenen Metallscheibe.

Welche Kraft wirkt auf ein Elektron im
homogenen elektrischen Feld zwischen
zwei Kondensatorplatten, die im Ab-
stand d = 1 cm angeordnet sind und
zwischen denen eine Spannung U =
= 10000 V besteht?

Welche Arbeit mul3 verrichtet werden,
um eine Elektrizitdtsmenge Q = 5C
von einem Punkt des Potentials
U, = —5V zu einem anderen mit dem
Potential U, = +5 V zu iibertragen?

Welche Arbeit wird gewonnen, wenn
eine Ladung Q = 4 C auf einem Wege
verschoben wird, zwischen dessen End-
punkten eine Potentialdifferenz von
U = 6V besteht?

Welche Arbeit verrichten die Krifte
eines homogenen elektrostatischen Fel-
des der Feldstdrke E = 200000 V m-1!,
wenn in ihm eine Ladung Q =4 C in
Richtung der Feldlinien um einen Weg
s = 0,3 m verschoben wird?

Welche Arbeit mul} verrichtet werden,
um in einem homogenen elektrostati-
schen Feld der Stirke E=200000Vm~!
eine Ladung O = 5 C lings eines Weges
s = 0,15m zu verschieben, wenn der
Weg mit der Richtung der Feldlinien
den Winkel ¢ = 45° einschlie3t?

Wie gro8 ist die auf das Unendliche be-
zogene potentielle Energie einer Ladung
0, = 2-10-7 C, die von einer anderen
Ladung Q; = 3-10-7 C den Abstand

‘s = 4 cm hat?

30.

31

32.

33.

34.

35.

36.

37.

Um das Wievielfache verdndert sich die
zwischen zwei Kondensatorplatten wir-
kende Anziehungskraft, wenn statt
Vakuum Athylalkohol (& = 26) zwi-
schen ihnen ist?

Welche Kapazitit hat der Erdkorper,
dessen Radius die GroBe » = 6378 km
hat?

Welche Kapazitdt hat ein Korper, der
sich durch die Ladung Q = 0,5 C auf
ein Potential U = 3000V aufladt?
Welchen Radius hat eine Kugel der
gleichen Kapazitdt, wenn das um-
gebende Medium ein Vakuum ist?

Ein Leiter der Kapazitit C = 1 uF wird
mit einer Ladung Q@ = 100 - 10-¢C auf-
geladen. Wie groB ist sein Potential?
Wie gro8 ist die Kapazitit eines Platten-
kondensators der Flichengréfie 4 =
= 200 cm?, zwischen dessen Beldgen
Glas der Dicke d =0,2cm und der
Dielektrizititszahl e, = 7 liegt?

Wie groB muBl die Belagfliche eines
Plattenkondensators sein, zwischen des-
sen Platten sich als Dielektrikum eine
Glasschicht von 0,1 cm Dicke befindet,
damit der Kondensator eine Kapazitit
von 150 pF hat? Die Dielektrizitédtszahl
des Glases ist ¢, = 7.

Eine Leydener Flasche hat folgende
Abmessungen: &duBlerer Bodendurch-
messer d = 15c¢m, Hohe der Belidge
h = 20 cm, Dicke der Glaswand d; =
= 0,2 cm. Berechnen Sie die Kapazitit
dieser Leydener Flasche gemal3 der fiir
den Plattenkondensator angegebenen
Formel. (Da die Dicke der Glaswan-
dung gegeniiber dem Flaschendurch-
messer vernachlidssigt werden kann, ist
es nicht erforderlich, die genauere For-
mel des Zylinderkondensators anzu-
wenden.)

Ein Kondensator besteht aus drei Me-
tallpldttchen, deren jedes eine Fliche
von 6 cm? hat. Die Plittchen sind durch
zwei Glimmerschichten getrennt, die je
eine Dicke von 0,01 cm haben. Die
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beiden auBen liegenden Metallplidttchen inhalt des elektrischen Feldes dieses
sind leitend miteinander verbunden. Die Kondensators.
Dielektrizitdtszahl des Glimmers ist 41. Eine Kugel mit dem Radius r tragt die
g, = 7. Welche Kapazitit hat der elektrische Ladung Q. Sie hat im Va-
. solcherart aufgebaute Kondensator? kuum eine bestimmte potentielle Ener-
38. Wie groB ist die Kaparzitidt eines Kon- gie. Es ist zu untersuchen, wie sich die
densators, der aus » = 20 Platten be- potentielle Energie der Kugel verdndert,
steht, die auf einer Fldche von 20 cm? wenn sie in eine Fliissigkeit mit der
Inhalt so lbereinanderliegen, daB3 zwi- Dielektrizitdtszahl e, gebracht wird.
schen jeweils zweien ein Vakuumspalt 42, Zwei Kondensatoren mit C; =1 pF und
von 0,1 cm Dicke bleibt? C, = 10 ¢F sind in Serie geschaltet.
39. Zwei Leydener Flaschen mit den Kapa- An die Klemmen der Kondensator-
zitdten C; = 300 pF und C, = 500 pF batterie wird eine Spannung U=200V
haben hintereinandergeschaltet eine angelegt. Wie grof3 ist der Energieinhalt
Spannung von U = 12000 V. Berech- jedes Kondensators?
nen Sie die auf die erste und auf die  43. Welche elektrische Energie ist in einem
zweite Flasche entfallenden Spannungs- Volumen von einem Kubikkilometer der
anteile. Erdatmosphire enthalten, wenn der
40. EinKondensator der Kapazitit C = 1uF Gradient des elektrischen Erdfeldes den
ist auf eine Spannung U = 200 V auf- _ Wert 10* V. m~! aufweist?

geladen. Bestimmen Sie den Energie-

1.2, Elektrodynamik

Unter dem Begriff elektrischer Strom 7 verstehen wir diejenige Elektrizitdtsmenge, die
in der Zeiteinheit durch einen Leiterquerschnitt flieBt,

do

I== bzw. [=—7Z,
t dr

wobei dQ die infinitesimale Elektrizitdtsmenge darstellt, die in der gleichfalls infinitesi-
malen Zeit d¢ durch den Leiterquerschnitt flieBt.
Der Ausdruck

dl = JdA

bedeutet diejenige Elektrizititsmenge, die in der Zeiteinheit durch ein infinitesimales
Flichenelement dA senkrecht zu seiner Orientierung fliet, wobei das Symbol / den
sog. Vektor der Stromdichte darstellt, Wenn beide Vektoren in die gleiche Richtung
weisen, kann man die Stromdichte aus der Beziehung berechnen:

dI

J=—1.
d4
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Wenn die Dichte im gesamten, vom Strom 7 durchflossenen Querschnitt 4 gleich
grof3 ist, dann gilt

Nach dem Ohmschen Gesetz gilt:

Der elektrische Strom I, der durch einen Leiter fliefit, ist gleich dem Quotienten aus der
Potentialdifferenz U, — U, (der Spannung U) an den Leiterenden und dem elektrischen
Widerstand des Leiters.

Der elektrische Widerstand eines Leiters hangt von seinen geometrischen Abmes-
sungen (der Linge / und dem Querschnitt 4) und dem spezifischen Widerstand ¢
gemal folgender Beziehung ab:

!
R=g—.
‘a1

Nach den SI-Einheiten (Einheiten des ,,Systéme International d’Unités‘) hat der
spezifische Widerstand p die MaBeinheit Q m. Dagegen setzte sich in der Praxis die
Gewohnheit durch, die Liange / in Metern und den Querschnitt 4 in Quadratmilli-
metern (mm?) anzugeben. Da auch in diesem Fall der Widerstand R in Q angegeben
werden muf}, folgt fiir den spezifischen Widerstand die Mafleinheit Q mm?2 m-1,
Die Abhéngigkeit des elektrischen Widerstands eines Leiters von der herrschenden
Temperatur wird innerhalb eines nicht allzu breiten Temperaturbereichs mit aus-
reichender Genauigkeit durch die Bezichung dargestellt:

R, = Ryl + «(t — ty)]
(R, Widerstand bei der Temperatur ¢, R, Widerstand bei der Temperatur to und «
Temperaturkoeffizient).

Unter der Quellenspannung U, , (auch elektromotorische Kraft, EMK) verstehen wir
den Wert des Integrals

2
m2=IEAa

wobei E; die elektrische Feldstirke bedeutet. Die Integration wird lings des Weges
vorgenommen, auf dem die Quellenspannung bestimmt werden soll. Die Quellen-
spannung einer offenen Spannungsquelle (einer Spannungsquelle, aus der kein elek-
trischer Strom entnommen wird) ist ihrer elektrischen Spannung gleich.
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Zur Behandlung komplizierter elektrischer Stromkreise verwenden wir die Kirch-
hoffschen Gesetze.

Das 1. KircHHOFFsche Gesetz besagt:

In jedem Verzweigungspunkt eines Leiternetzes ist die algebraische Summe aller Strome
gleich Null, also

Z Ik = 0-
k=1

Das 2. KircHHOFFsche Gesetz besagt:

In jedem geschlossenen Kreis eines Leiternetzes ist die Summe der Quellenspannungen
gleich der Summe der Spannungsabfiille in diesem Kreis, also

m m
Y U= ) LR.
k=1 1

Bei der Bearbeitung der konkreten Beispiele werden wir uns an die folgenden Ab-
machungen halten:

1. Wir zeichnen den Richtungspfeil des Stroms so ein, wie er wahrscheinlich flieBen
wird. Wenn sich aus unserer Berechnung ein negativer Strom ergibt, so bedeutet das,
daB der Strom entgegengesetzt zu der von uns gewéhlten Richtung flieBt.

2. Wir wihlen die posibtive Umlaufrichtung eines Stromkreises beliebig.

3. Wir geben jeweils die Richtung der Quellenspannung an. In einer Gleichung wird
die Quellenspannung dann positiv sein, wenn die Umlaufrichtung des Kreises und
die Richtung der Quellenspannung gleich sind.

4. Bei der Addition der ohmschen Spannungen wird sich dann ein positives Vorzei-
chen ergeben, wenn die Umlaufrichtung des Kreises und die Richtung des Stroms, der
den ohmschen Widerstand hervorruft, iibereinstimmen.

Bei der Serienschaltung von ohmschen Widerstinden gilt fiir den resultierenden
Widerstand

n

R=R, +R,+..+ R, =) R,

i=1
Dagegen gilt bei der Parallelschaltung der ohmschen Widersténde fiir den resultieren-
den Widerstand

d.h.,
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Die Arbeit, die beim Durchgang des elektrischen Stromes I durch einen Leiter in der
infinitesimalen Zeitspanne d¢ verrichtet wird, ist, wenn an den Leiterenden die Span-
nung U besteht, durch die Beziehung gegeben:

dW = Ul d:.

Bei konstanter Spannung U und konstanter Stromstérke / kénnen wir fiir die Arbeit
auch schreiben

W = Ul.

Fiir die Leistung eines Stromes I, der durch einen Widerstand R flieBit, an dessen
Enden die Spannung U besteht, gilt

2

= I*R.

Die Wiarmeaufnahme eines Leiters, der vom Strom durchflossen wird, kdnnen wir
durch Umrechnen der Stromarbeit

W= Ult
bestimmen.

Die Menge des durch Elektrolyse an einer Elektrode ausgeschiedenen Stoffes ist ent-
sprechend dem Faradayschen Gesetz durch

m= A0 = AIt

gegeben (m Masse des ausgeschiedenen Stoffes, Q die durch den Elektrolyten flieBende
Ladung, 7 die Stromstérke und ¢ die Dauer des Elektrolyseprozesses). Das elektro-
chemische Aquivalent A des betreffenden Stoffes wird in kg A-1s~! angegeben.
Wenn das elektrochemische Aquivalent eines Stoffes nicht angegeben ist, kdnnen
wir es mit Hilfe des zweiten FARADAYschen Gesetzes aus

k:

|

1

F

berechnen (x/v das Verhiltnis der Molmasse und der Wertigkeit des Elements
bzw. der Molmasse und der Wertigkeit des Radikals, F = 96494 C die sog. Faraday-
Konstante).

Unter dem Begriff Klemmenspannung U verstehen wir die Potentialdifferenz an den
Klemmen eines galvanischen Elements (der Quelle der EMK), wenn ihm der Strom I
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entnommen wird, also
U = U12 - RiI,

(U;> Quellenspannung eines Elements, R; innerer Widerstand).

B Beispiele

27. Welche Menge an elektrischer Ladung Q flieBt wédhrend der Zeitspanne ¢ = 10 s durch
einen Leiter, wenn
a) der Strom den konstanten Wert I = 5 A hat,
b) der Strom gleichméBig vom Wert Null auf den Endwert von 3 A steigt?

Losung

a) In Ubereinstimmung mit der Definition der Stromstirke kénnen wir schreiben
Q=1It=5A-10s =50C.

b) Die infinitesimale elektrische Ladung dQ, die wdhrend der Zeit dz durch einen Leiter
flieBt, ist bei einem Strom I

dQ = Idt, ” y
A
wobei I eine lineare Zeitfunktion I = k¢ (Bild 15) darstellt, 5 .9
in der ok
3A
k=—"=03As"! s
10s 2t b)
ist. Nach Einsetzen dieser GroBe in den Ausdruck fiir dQ er- 7f o
halten wir h + - A
dQ = ktde Bild 15
und durch Integration -
10s
k 3As?
0 =kfzdz=—[z2]g,°= JO3AST e _isc.
2 2 e
0

28. Ein Akkumulator wird in der Zeit #; = 10 h mit dem Strom der Stirke I, = 7 A auf-
geladen. Wie lange dauert seine Entladung, wenn ihm kontinuierlich ein Entladestrom
I, = 0,5 A entnommen wird und wenn wir den Wirkungsgrad des Akkus mit 100 %
annehmen?

Losung

Die Berechnung setzt voraus, dafl wir wegen des 100 %igen Wirkungsgrades des Akkus
die beim Aufladen zugefiihrte elektrische Ladung im Entladevorgang wieder zuriick-
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erhalten. Es gilt also
Lty = It..

Demnach finden wir fiir die gesamte Entladungszeit des Akkus

I
:e:zl—;-: 140 k.

e

29. Aus einer Platte von sehr geringer Dicke 4, die aus einem Werkstoff mit dem spezifischen
Widerstand o gefertigt wurde, wird ein Kreisring mit dem Innenradius »; und dem
AuBenradius r, herausgeschnitten. Wie groB ist der Widerstand dieses Kreisrings, wenn
wir
a) den Kreisring auseinanderschneiden und als Zufiihrung die beiden Schnittrander be-
lassen und wenn -

b) als Stromzufiithrungen die beiden begrenzenden Kreislinien benutzt werden?

Losung

a) Wenn wir den Kreisring radial aufschneiden und als Zufithrung die Schnittrander
verwenden (Bild 16), dann hat das dort dargestellte differentielle Leiterelement die
Léinge 2mr und den Querschnitt /# dr. Sein elektrischer Leitwert ist dann

1 1 hdr
i =—=—-—= .
d 27k o2mr
¢ hdr
2nr e ¥
Bild 16

Durch Integration erhalten wir den gesamten Leitwert des Kreisrings

r2
h dr h ¥a
— =—In—.
2mp r 2mp F1

ry

Als Widerstand des angegebenen Kreisrings erhalten wir dann den reziproken Wert des
Leitwerts
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30.

b) Zunéchst ermitteln wir den Widerstand des infinitesimalen Kreisrings wie in Bild 17.

Es ist dies der Widerstand eines Leiters der Linge dr und der Querschnittsfléiche 2nrh
dr

onrh

Den Gesamtwiderstand erhalten wir durch Integration von r; bis r,:
r2
4 dr 4 e T2
=— | —=—_( —1 =—In—.
2h f = e (02 T o) = 5opin =

LS

dR=o¢

Berechnen Sie den Temperaturkoeffizienten fiir den Wider-
stand eines Leiters, der sich aus einem Aluminiumdraht mit
dem Widerstand Ry =3 Q (¢; =4,2- 1073 K-!) und aus
einem Eisendraht mit dem Widerstand R,o =2 Q (5, =
=6 1073 K-!) zusammensetzt, indem beide Drihte hinter-
einandergeschaltet sind. (Die angegebenen Widerstandswerte
beziehen sich auf eine Temperatur von 0 °C.)

Losung

Die hintereinandergeschalteten Widerstinde aus Aluminium 1 i
R;o und aus Eisen R,o ergeben bei einer Temperatur von
0 °C einen resultierenden Widerstand R, gemif

Ro = Rio + Razo.

dr

Bild 17

Beim Ansteigen der Temperatur um den Wert 4z konnen wir fiir denselben resultierenden
Widerstand auch schreiben

R=R1+R2,

wobei R; und R, die Widerstinde des Aluminium- bzw. des Eisendrahtes nach Eintreten
einer Temperaturerhohung um den Wert A4z darstellen. Wir kOnnen daher auch
schreiben

Ro(1 + adf) = Rio(1 + x141) + Rao(1 + x,41),
d. h,
Ro 4 Roxdt = Ryo -+ Ryox14t 4+ Ry -+ Ryo0,4t.

Da die Summe der Widerstdnde Ry, + R»o auf der rechten Seite der Gleichung gleich
dem Widerstand R, auf der linken Seite ist, konnen wir weiterhin schreiben

Roodt = Ryox14t + Ryox,At.
Daraus ergibt sich dann
a- _ Ryooy + Rz 3Q:42-103K"14-2Q-6-10°K"* _
Ro B+2)Q
=4,92-10"3 K-,
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31.

32.

Zwei Stébchen von gleichem Durchmesser, das eine aus Kohlenstoff (oc = 4 - 10~3 Qcm,
ac = —8+10"3* K1) und das andere aus Eisen (gre = 12-10-°Qcm, op. =
= 6+10-3 K1), sind miteinander verbunden. Es ist das Verhiltnis beider Lingen zu
ermitteln, bei dem die so gebildete Kombination einen temperaturunabhéngigen Wider-
stand hat.

Losung

Da beide Stdbchen hintereinandergeschaltet sind, addieren sich ihre Widerstinde.
Unter der angegebenen Voraussetzung, dafB3 sich der resultierende Widerstand mit der
Temperatur nicht verdndert, kann man die Summe der Widerstédnde bei einer beliebigen
Temperatur und die Summe der Widerstdnde bei einer Temperatur von 0 °C gleich-
setzen (die Indizes bedeuten C fiir Kohlenstoff, Fe fiir Eisen), so daB sich ergibt

Rc(l + o‘cAt) + RFe(l + aFeAt) = Rc + RFe’
d. h.,

R. + Rge + RexAt + Rpoopedt = R; + Rpe.
Nach einer Vereinfachung der Gleichung driicken wir die Widerstinde des Kohilen-
stoffs Rc und des Eisens Ry, mit Hilfe der spezifischen Widerstiande oc, gr., der Lingen
Sc, Sre Und der Querschnitte Ac = Ag. = A aus:

Qc%o‘cdt = —0Ore je “FeAt-
Aus dieser Gleichung entnehmen wir das Lingenverhiltnis
Sre 0 % 4-103%Qcm(—8:103) K _ 32-10-¢ — .
Se OFe Ore 12:10-*Qcm-6-10"3 K- 72-107° —

Die Eisenstange muB 444 mal so lang wie das Stibchen aus Kohlenstoff sein.

« R
Ein Normalwiderstand wurde so hergestellt, daB sein Wert genau -
0,102 Q betrdgt. Durch AnschlieBen eines geeigneten NebenschluB3- “

‘widerstands soll er auf den exakten Wert von 0,1 Q einreguliert wer- “

den. Welcher NebenschluBwiderstand wird dazu erforderlich sein? Bild 18
i

Losung

Wir gehen von der Beziehung fiir die Parallelschaltung von Widerstinden aus, wonach
gilt (Bild 18):
1 1 1

R R, R’
daraus folgt
1 1 RR, 0,1Q-0,1020
R, = = = = > =
S 1 Ri—R R, —R 0,102Q—-0,1Q EARLE

R R, RR,
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33.

34.

Der Gesamtwiderstand zweier parallelgeschalteter Leiter betrigt !/, Q. Wenn wir die
beiden Leiter hintereinanderschalten, so ergibt sich ein resultierender Widerstand von
0,7 Q. Berechnen Sie den Widerstand jedes der beiden Leiter.

Losung

Fiir die Parallelschaltung der beiden Widerstinde R; und.Rz gilt
1 1
1 -7 S
R, R,
und fiir die gleichen, in Serie geschalteten Widerstdnde gilt
R, + R, =07Q. (2)
Aus (1) folgt '
R,
Ri=—a g, —1°
Das erlaubt uns die Eliminierung von R; in (2):
R,
7Q° 'R, — 1
Nach einer Umformung erhalten wir fiir R, die quadratische Gleichung
10R3Q-2 —7TR, Q1 +1=0

mit den Losungen
_050Q
(R2)1,2 \O,ZQ.
Fiir R, erhalten wir gleichfalls zwei Wurzeln, und zwar (Ry);» = 0,2 Q; 0,5 Q. Die
gesuchten Widerstidnde sind demnach 0,2 Q und 0,5 Q.

+ R, =0,7Q.

Berechnen Sie den Widerstand eines Drahtgestells, das die Form 4
eines Rechtecks mit den Seiten ¢ und b hat und das diagonal durch-
stromt wird (Bild 19a), indem der Strom von dem einen Eckpunkt
A zum gegeniiberliegenden B flie3t. Der Widerstand einer Léngen-
einheit des verwendeten Drahtes ist durch den Wert y gegeben.

a 8
Bild 19a

Losung

Da wir den Widerstand zwischen den beiden Punkten 4 und B berechnen wollen, kann
man die Situation in Bild 19a vereinfacht wie in Bild 19b darstellen. Die angefiihrten
Widerstdnde R;, R,, R; sind also parallel zueinander geschaltet, so dafl sich der
resultierende Widerstand R errechnen 1483t aus

1 RiR2R3
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35.

Wenn wir die Ausdriicke fiir R;, R, und R; in die letztgenannte Beziehung einsetzen,
ergibt sich

_ y@+b)yJa +b2y(a+b) _
Y2 (a +b)\a* + b* + 92 (a + b)? + v (a + b)Ja® + b?

2 2
_. (a +b)Ja* + b A £y = pla+b)
2 2 R.= 24 b2
(@+b)+2Ja>+b By
Das Geriist eines Wiirfels setzt sich aus gleich grofien 5 .
Bild 19b

Widerstdnden vom Wert Ry =6 so zusammen, dal
jede Kante des Wiirfels einen solchen Widerstand dar-
stellt. Berechnen Sie den Widerstand R zwischen den beiden gegeniiberliegenden Wiir-
felecken 4 und B gemiB Bild 20a.

Losung

Der Wiirfel stellt ein rdumliches Gebilde dar. Wenn wir ihn nach Bild 20b auf eine
ebene Darstellung umskizzieren, dann wird ersichtlich, daB wir in Hinsicht auf Strom-
verzweigung und Widerstandsverteilung ein symmetrisches Gebilde erhalten. Der in die

%

Bild 20

Widerstdnde a, b, ¢ eintretende Strom 7 verzweigt sich dreimal auf jeweils 1/3 und danach
nochmals sechsfach auf je 7/6. Beim Austritt aus dem Wiirfel vereinigen sich die Zweig-
strome wieder auf dreimal 7/3. Die Berechnung des zwischen den beiden Wiirfelecken
resultierenden Widerstands griinden wir auf die Uberlegung, daB die Leistung eines
beliebigen Stroms 7, der durch eine Kombination von Widerstinden flieBit, ebenso grof3
sein muf} wie die desselben Stroms, der durch einen Ersatzwiderstand R flief3t (Bild 20c).
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36.

37.

Wegen des Umstands, daB der Strom /3 durch 6 Widerstinde und der Strom I/6 eben-
falls durch 6 Widerstinde flieBt, kénnen wir schreiben (Bild 20b)
I\? I\?
2 il -
RI 6R0<3> +6R0<6),
d. h,
6RoI? 6RoI?

2=_.__-
RI 9+36'

Aus dieser Gleichung erhalten wir den resultierenden Widerstand

2 1 5
== —Ry=—-6Q=5Q,
R 3R0+6R0 ; 6 5

In einer Schaltung (Bild 21) ist der Strom 7 zu bestim-
men, wenn R; =10Q, R, =5Q, R; =10Q, Un
R, =10Q,Rs = 10 Q und U = 24V betragen. Der in- T

nere Widerstand der Stromquelle ist zu vernachlissigen. Bild 21

Losung

Wir setzen die einzelnen Gruppen der parallelen Widerstinde des Stromkrelses Zu-
sammen, wodurch wir erhalten

Rl= R2R3 _ SQ'IOQ __—:_5.9.9:3’339’
R; + Rs 50+10Q 15
R’ = R4Rs — 10Q2-10Q =IOOQ=5Q'

Ri+Rs 10Q410Q 20

Die Widerstinde R’, R” und R; sind in Serie geschaltet. Daher wird der Widerstand
dieses Kreises

R=R +R’"+ R, =333Q+5Q 4100 =18,33Q.

Fiir den Strom [ erhalten wir damit

Ein Gleichstrommotor nimmt den Strom I = 10 A auf und benoétigt zu seinem Betrieb
eine Spannung von 220 V. Welche Spannung U, mull man am Leitungsanfang haben,
wenn der Gesamtwiderstand der Zuleitung den Wert R = 1 Q annimmt?

Losung

Die am Leitungsanfang anliegende Spannung muB nicht nur die fiir den Betrieb des
Motors notwendige GroBe U haben, sondern auch den durch die Zuleitung bedingten
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Spannungsabfall beriicksichtigen (Bild 22):
Uo=Un +RI=220V+1Q-10A =230V.

L Y
Y o .U
!
b N
R "
o
Bild 22 Bild 23

38. Ein elektrischer Stromkreis enthidlt drei Leiter gleicher Linge J, die, aus gleichem
Material bestehend, hintereinandergeschaltet sind (Bild 23). Die Querschnitte der drei
Leiter sind 4; = 1 mm?, 4, = 2mm?, 4; = 3 mm? Die Potentialdifferenz an den
Enden des Systems betrdgt U = 12 V. Bestimmen Sie den Spannungsabfall in jedem
einzelnen Leiter.

Losung

Es ist zundchst der Widerstand der einzelnen Leiter aus der Beziehung zwischen geome-
trischen GroBen (/, A) und dem spezifischen Widerstand ¢ zu bestimmen :
) A f
R =0—; R, =0— ; Ry =0 —
1 4 A, 2 [ A, 3 Q 4
Der Gesamtwiderstand aller drei in Serie geschalteten Leiter ist demnach
! l 1
R=p— = ol — =
e~ -I- e—= + e—-=e < R + + R )
A1A2 + A1A3 +A2A3

=d A, A4
Durch jeden Leiter flieBt gem&f Bild 112 der Strom
U _ UAA,A4;

I = — .
R ol(A14; 4 AxA3 + A, 43)

Die Spannungsabfille (ohmsche Verluste) lings der einzelnen Leiter sind entsprechend
dem Onmschen Gesetz durch die folgende Bezichung gegeben:

Uy = R = ol UA1 A, A5 1’ UA1A,A45
! A, 0l(414, + A1A5 +A2A3) Ay Aids + AiA; + A2A3°
U, = 1 12V -1 mm? -2 mm? - 3 mm? _
YImm® Tmm? - 2mm? + 1 mm? - 3mm? + 2 mm? - 3 mm?
72V
—— =6,545V,
11
1 72 36 1 72 24
U, =~ 2y_20%y_ Us=— 2V ="2v=218V.
T2 =3By, =74 11 bt

4 Hajko, Elektrik
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39.

40.

Zwei Elemente haben je eine Quellenspannung von 1,5 V und einen inneren Widerstand
R, = 1,4 Q. Sie sollen so miteinander verbunden werden, daB sie an einen Stromkreis
mit dem Widerstand R = 0,2 Q einen mdoglichst groBen Strom abgeben kénnen.

Losung

Bei einer Serienschaltung wird die Quellenspannung der gesamten Batterie
U 12B = 2U. 12,

und der innere Widerstand wird
Rp; = 2R;.

Es ergibt sich demnach ein Strom
I= 2R21UJI:R T2 151 Ql’i\(;,z o= 1A

Bei einer Parallelschaltung ergeben sich die folgenden Verhéltnisse:

R,
Uiz = Ui, Ry = —,
2
Uia 1,5V
I = = = 1,66 A.
Ry 0,7Q +0,2Q -—

2+R

Es ist also ersichtlich, daB man zur Erfillung der in der Aufgabe gestellten Bedingung
die beiden Elemente parallelschalten muB.

Auf welche Hochstspannung 14dt sich ein Kondensator C auf, wenn die an das Netz
geschaltete konstante Quellenspannung mit dem Wert U;. angegeben ist (Bild 24)?

Losung

Durch den Kreis U, 1.2 — R; — R, flieBt der Strom yoa

a
Uiz
[=—212 il
Ry + R, Un ¢
- [ %

der an den Klemmen des Widerstands R, (Klemmen
a — b) die Oamsche Spannung

R
U= IR, = Uy ——— o
R, + R, Bild 24

hervorruft. Auf die gleiche Spannung ladt sich auch der Kondensator C auf, da der
Widerstand R keinerlei Spannungsverlust bedingt, denn der Kondensator C unter-
bricht den Stromkreis, so daB3 zwischen den Klemmen a und b kein Strom flieBt.



1.2. Elektrodynamik 51

41.

42.

4%

Ein prismatischer Korper aus Retortenkohle vom Querschnitt ¢ = 3 c¢m - 2 cm und
einer Lidnge a = 10cm ist an eine Spannung vom Wert U = 10 V angeschlossen
(Bild 25). Es ist die elektrische Feldstirke und die Stromdichte im Innern des Prismas
zu bestimmen. (Die spezifische Leitfihigkeit der Retortenkohle wird mit » = 160 Q-1
cm ! angegeben.)

Losung
Die elektrostatische Feldstidrke berechnen wir als den IE
auf die Langeneinheit bezogenen Spannungsabfall 2 5
U 10V
_ae— = e— _1 b -
E~— oim 100 Vm-1, —If 1}——
. . L. . . . Bild 25
Die Stromdichte ist im Sinne ihrer Definition durch
I I
J = —_— = —
A bc
gegeben. Fiir den Strom selbst kénnen wir schreiben
= u v xUbc
"R 1l a < a °
% bc
Fiir die Stromdichte erhalten wir dann
1 U 160 Q-1 -1.10V
g L _ #Ubc 2U _ cm = 160 A cm™2.

bc abc a 10 cm

Wieviel Trockenbatterien, deren jede eine Quellenspannung von U;, = 4,5V bei
einem inneren Widerstand R; = 3 Q hat, muB man in Serie schalten, damit ein im
Stromkreis enthaltenes Relais mit dem Widerstand R = 3000 Q anspricht, wenn dazu
eine Stromstirke des Wertes 7 = 0,025 A erforderlich ist?

Losung

Fiir den angegebenen Stromkreis konnen wir entsprechend dem 2. KIRCHHOFFschen
Gesetz schreiben

nU;2 = IR + InR;
und nach Umformung

n(Uy, — IR)) = IR,
d. h,
IR 0,025 A - 3000 © 75

T U —IR, 45V —0025A-3Q 45 —0,075

Fiir die Realisierung der gesteliten Aufgabe sind also 17 Trockenbatterien erforderlich.

n = 16,95.
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43. Welchen Widerstand R; muB3 man mit einer Akkumulatorenbatterie in Serie schalten,

44.

die sich aus 7 = 20 Elementen mit der jeweiligen Quellenspannung U, = 1,9 V und
dem inneren Widerstand R; = 0,01 Q zusammensetzt und die mit einem Gleichstrom
der Spannung U = 110V aufgeladen werden soll, wobei der vorgeschriebene Ladestrom
den Wert I = 4 A annimmt (Bild 26)?

Losung
Fiir die Quellenspannung bzw. den inneren Widerstand der gesamten Batterie konnen
wir schreiben
U12g =nU12, Rgi =flR1.
GemiB dem 2. KircHHOFFschen Gesetz gilt fiir den Stromkreis in Bild 26
IRg1 + IR]_ = U - UlZg-
Daraus erhalten wir den gesuchten Widerstand

U — UlZg - IRgi U— nUlz - InRi
R, = - -

I I
p— . —_ . . Q
_ 110V —20-19V —4A-20-0,01 —17580.
4A
+ ——— —
S
T
Bild 26 Bild 27

Es sind die Stréme in den einzelnen Verzweigungspunkten eines Stromkreises zu be-
rechnen fiir den Fall, daB U; =12V, U, =4V, Us =6V, R; =20Q, R, =12Q
und R; = 10 Q betragt (Bild 27).

Losung

Wir wihlen die positive Umlaufrichtung entgegen dem Uhrzeigersinn fiir die Schleifen I
und II. Weiterhin wihlen wir die wahrscheinliche Richtung der Strome I, I, I3 und
bezeichnen die positiven Richtungen der Quellenspannung so, dal3 sie im Kreis einen
Strom vom positiven zum negativen Pol hervorrufen. Dann schreiben wir das 2. KircH-
worrsche Gesetz so um, dall die Spannungen und die Stréme in der Richtung des
gewihlten positiven Umlaufs der betreffenden Schleife positiv sind. Das bedeutet fiir die
Schleife I

Ul e U2 = .R111 + R212,
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45.

Schleife 1T

U, + Us = R3ls — Rol,
Stromverzweigungspunkt A

I, — I, — Iy = 0 (1. KircHHOFFsches Gesetz)

Wenn wir die vorgegebenen Zahlenwerte einsetzen, ergibt sich:
Schleife I

12V -4V =20Q1, +12Q1I,,
Schieife II
4V +6V=10QI; —12Q1,.

In der Beziehung fiir die Schleife I driicken wir den Strom I; mittels I, in der Beziehung
fiir Schleife IT den Strom 75 ebenfalls mittels 7, aus:

8V —12Q1,
Il ———‘—‘20T——0,4A—0,612,
10V+12Q1,
- T ez 121
5 10Q 1A+ 121

und setzen die so erhaltenen Werte in die Beziehung fiir den Verzweigungspunkt A ein,
wodurch wir eine Gleichung zur Bestimmung der unbekannten Grofle I, erhalten:

04A—-06I, - —(1A+12L)=0,
woraus folgt
I, = —0,2143 A.

Das negative Vorzeichen deutet an, daB der Strom tatséchlich in umgekehrter Richtung

flieBt, als wir zu Anfang annahmen, Die iibrigen StrO0me berechnen wir, indem wir den

so gewonnenen Wert fiir I, in die entsprechenden Ausdriicke fiir 7, und 15 einsetzen, also
I; =04A—0,6(—0,2143) A = 0,5286 A,

I, =1A+1,2(—0,2143) A = 0,7429 A.

Welchen Wert muB3 der Widerstand eines Shunts haben, durch den der MeBbereich
eines Amperemeters mit dem inneren Widerstand R = 0,2 Q auf das n = 5fache ver-
groBert wird?

Losung

Wir konnen fiir den Verzweigungspunkt mit Hilfe des 2. KircH-
HOFFschen Gesetzes schreiben (Bild 28)

nl=I+1I.
Fiir die Schleife gilt entsprechend dem 2. KiIrcHHOFFschen Gesetz
0=RI—RI.
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Aus beiden Beziehungen ergibt sich nach erfolgter Umstellung
RI=RI'=R(nl —1),
RI=I(n—-1R,
Ri=(n—-—1R,

R,
n—1

R =

3

wobei n bedeutet, einen wieviel mal so groflen Strom wir messen wollen, als das Instru-
ment selbst es ermdglichen wiirde. Daher hat der erforderliche Shunt den Widerstand

Wie kann man den MeBbereich eines Voltmeters, das einen Innenwiderstand von
R, = 100 Q hat, so erweitern, daB3 der GrundmeBbereich mit dem Maximalwert U =10V
auf den zehnfachen Wert U’ = 100 V gesteigert wird?

Losung

Wir wollen eine » mal so groB3e Spannung (U’ = rnU) messen, als durch U angegeben
wird. Dabei ist U diejenige Spannung, fiir die das Voltmeter berechnet ist. Dazu ist es
notwendig, einen solchen Widerstand R mit dem Gerit in Serie zu schalten, der es er-
laubt, in Ubereinstimmung mit dem OHMschen Gesetz die Beziehung

nU = IR + IR, (Bild 29)

zu erfiillen. Da wir die Spannung U des Voltmeters mit dem MeBbereich von 10 V und
einem inneren Widerstand R, im Onmschen Gesetz durch die Beziehung
U= Rl
ausdriicken, kOnnen wir weiter schreiben
nRI = IR + IR,
und erhalten also

R=(n—1DR:.
Da wir im vorliegenden Fall den MeBbereich des Volt-
meters um Bild 29
U 100
=T =10

erweitern wollen, ist ein in Serie zu schaltender Widerstand
R = (10 — 1) 100 ©Q = 900 Q

erforderlich.
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47. Ein Rheostat mit dem Gesamtwiderstand R, an den eine Spannung U angelegt wurde,
soll als Potentiometer zur Speisung eines Stromverbrauchers mit dem Widerstand R’
verwendet werden. Eine Verschiebung des Schleifkontakts um die Strecke x verursacht
-bei einer Gesamtlinge / eine lineare Verdnderung des Widerstands, ndmlich

Iy
II

R. = > R.

I °
Ry
Es muB demnach (Bild 30) die am Stromverbraucher R* | ¢ _l 5
anliegende Spannung als Verhéltnis der Strecken x//zu x )

bestimmen sein:
x Ii=1 &
Ux = f("') s : — !
l b=1, Bild 30

oder das Potentiometer mufl so geeicht werden, dal3 an einer bestimmten Stellung des
Schleifkontakts die am Verbraucher anliegende Spannung abgelesen werden kann.

Losung
Unter Verwendung der Bezeichnungen in Bild 119 kénnen wir gemidf dem Onmschen
und dem KircHHOFFschen Gesetz schreiben

U=ILR,+I(R—R)),

0 = LR — IR,

I=1I +1I,.

Mit Hilfe der ersten Gleichung driicken wir I, mit der zweiten I, aus und setzen die so
gewonnenen Ausdriicke in die dritte Gleichung ein, wodurch wir erhalten

U“—Il.Rx Ile
I=—"2= I =%
R—R, T R
U — IR, LR,
R — R, =L+ %

Daraus folgt
14
= U R
(-R’ + -Rx)(-R - Rx) + -RxR/
und schlieBlich

U, = Il-Rx =

I

U R'R,
(R + RJ)(R — R:) + R.R

Wenn wir hier fiir R, den Ausdruck R, = Rx/! einsetzen, erhalten wir nach Umformung
schlieBlich als Endergebnis
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48. Welche Bedingungen miissen die in Bild 31 dargestellten Widerstinde R;, R,, Rs

49.

und R, erfiillen, damit in der WHEATSTONEschen Briicke durch den in der Diagonalen
liegenden Widerstand Rs kein Strom fliefit?

Losung

Fiir die beiden Stromkreise I und II in Bild 31, in denen wir die jeweils positive Umlauf-
richtung der Schleife entgegen dem Uhrzeigersinn gewdhlt haben, wenden wir das
2. KircHHOFFsche Gesetz an. Wir setzen dabei voraus, dafl der durch den Widerstand R
flieBende Strom ein Nullstrom ist, d. h., daf} hier 7 = 0 ist. Demnach gilt fiir den Strom-
kreis I

0= R313 - Rllz "I— .R5 * 0,

fiir den Stromkreis 11
0 = Ryls — R,I;, + Rs-0.

Daraus erhalten wir zwei weitere Gleichungen
Ril, = R3I3; Rol; = Ryl

und durch deren gegenseitige Division
Ry R;

R.  Rs’

Das ist nunmehr die Bedingung, die erfiilit sein muB, da-
mit durch den Widerstand Rs kein Strom flieBt. Bild 31

Wie kann der Widerstand Rg eines Galvanometers G, das entsprechend Bild 32a in
einer WHEATSTONEschen Briicke sitzt, gemessen werden, wenn kein anderes Galvano-
meter zur Verfiigung steht?

Losung

Die iiblicherweise verwendete Schaltung der WreaTsTONEschen Briicke in Bild 32a
verdndern wir nach Bild 32b, oder wir schlieBen das Galvanometer dort an, wo sich

Bild 32a Bild 32b
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50.

sonst der unbekannte Widerstand X befindet, und ordnen dafiir in der Diagonalen einen
weiteren Schalter V., an.

Wenn wir die Widerstdnde R; und R, so verdndern, daf sich der Ausschlag des Galvano-
meters G beim Ein- und Ausschalten des Schalters V, nicht dndert, dann flieBt in der
Diagonalen offensichtlich kein Strom, und es gilt — wie das vorhergegangene Beispiel
zeigt — die Bezichung

Rs R
R, R,
Daraus ergibt sich fiir den Widerstand des Galvanometers die folgende Beziehung:
R;
Rs =R —.
G R,

An einer Netzspannung von U = 220 V sind in einem Schulhaus » = 20 Gliihlampen
installiert, deren jede eine Leistung von P = 60 W aufnimmt. Die AnschluBlleitung hat
eine Linge / = 25 m. Wie grol muB3 die Querschnittsfliche 4 des AnschluBkabels
sein, damit der von ihm hervorgerufene Spannungsabfall p = 1,59 nicht tibersteigt?
Die Leitung soll aus Kupfer bestehen.

Losung

Der am Widerstand R der Zuleitung auftretende Spannungsabfall AU kann mit Hilfe
des hindurchflieBenden Stroms ausgedriickt werden

AU = RI.

Dabei berechnen wir den Widerstand der AnschluBleitung aus der doppelten Linge der
Leitung (Bild 33)
21 I ZUXEOW_ _
R = 0 —
A
(! Lange, A Querschnitt, o spezifischer Widerstand).
Der Strom [ kann wie folgt definiert werden:

Pg nP {(=25m

I=-%=_"" .
T U’ Bild 33

wobei P, die Gesamtleistungsaufnahme aller Stromverbraucher darstellt, so dal wir
nach dem Einsetzen von R und [ fiir die Spannungsabnahme die Beziehung

y=220V

W=eg7

erhalten. Die Spannungsabnahme 4U kénnen wir auch mit Hilfe der Prozentangabe p
durch die Beziehung ausdriicken

p
AU =U —.
100
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51

52.

Wenn wir beide die Spannungsabnahme enthaltenden Ausdriicke gleichsetzen, finden
wir

2] Pn ¥4
3T T "100°
Daraus ergibt sich
02IPn 0,0178 Qmm?m-*-2-25m-60 W - 20
A== - 100 = - 100 =
U?p 2202 V21,5
= 1,47 mm?2.

In der Praxis wiirden wir den ndchsthoheren serienméBig produzierten Querschnitt von
1,5 mm? verwenden.

Der Widerstand der Heizspirale in einem elektrischen Kocher hat den Wert R = 16 Q.
Nach wieviel Minuten beginnt eine Wassermenge der Masse m = 0,6 kg im Kocher zu
sieden, wenn die Anfangstemperatur des Wassers mit ¢#; = 10 °C angegeben ist? Der
Wirkungsgrad des Kochers wird mit # = 60%; und die Netzspannung mit U = 120V
angegeben.

Losung

Die Wirmemenge, die fiir das Erhitzen von 600 g Wasser um eine Temperaturdifferenz
von 44 = 100 °C — 10°C = 90 K bei hundertprozentigem Wirkungsgrad des Kochers
bendstigt wiirde, ist

Q" = cmdd,
wobei ¢ die spezifische Warmekapazitit des Wassers darstellt. Bei einem nur 60 %igen

Wirkungsgrad des Kochers ist die Gesamtwirme, die vom Kocher geliefert wird, gro3er,
namlich

o’ cmAdd
Q= — = . 1)
1 n
Andererseits berechnen wir die elektrische Energie aus
U U2
W=Ult=U—1t=—1. 2
? R @
Durch Gleichsetzen von Gl. (1) u. Gl. (2) und Beriicksichtigung von
V2 1
—_— = = -1 =02 1s-1
1 o 1 2,1368 cals 0,239 cal s

ergibt sich

,_CcmA9R _ 1calg ' K~'-600g-90K-16Q _ oo . .
T qU?  0,6-1202V2-0239cal W-is 1 = :

Wenn eine Gliithlampe bei einer Spannung U = 120 V mit einer Leistungsaufnahme
P =100 W betrieben wird, so ist der Widerstand ihres Gliihfadens zehnmal so grof3 wie
bei einer Temperatur von 0 °C. Wie groB ist der Widerstand der Glithlampe bei 0 °C,
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53.

und welcher Wert ergibt sich fiir den Temperaturkoeffizienten des Widerstands, wenn
die Betriebstemperatur des Gliithfadens bei ¢ = 2000 °C liegt und wenn wir eine lineare
Temperaturabhingigkeit des Widerstands annehmen kénnen?

Losung

Den Ausdruck fiir die Leistung eines elektrischen Stroms konnen wir mit Hilfe des
Onmschen Gesetzes wie folgt umformen:
U U?
P=Ul=U—=—.
R, R
Daraus ergibt sich der Widerstand des Glithfadens der Lampe im Betriebszustand zu
U? 1202 v2 14400
= = = _ Q= Q,
R P 100 W 100 144
Da der Widerstand des Glithfadens bei 0 °C nur ein Zehntel dieses Wertes betragen soll,
gilt
R, 144
10 10 -
Den Temperaturkoeffizient « des Widerstands erhalten wir aus der bekannten Be-
ziehung zwischen den Widerstanden R, und R,

R, = Ry (1 + o).

Wenn wir beriicksichtigen, dal R, = 10 R, ist, gilt
10R =R (1 + «-2000 K)

und daraus

Ro

10 —1 4,5-1073 K1
® = —— = . .
2000 K 22—

Ein Staubsauger, dessen Typenschild eine Netzspannung von U’ = 110V und eine
Leistung von P = 190 W angibt, soll an ein Netz mit der Spannung U = 220 V an-
geschlossen werden. Wie groB3 muB} der vorgeschaltete Widerstand sein (Bild 34)?

R
Losung T}
Durch den Motor des Staubsaugers darf nur ein Strom vz o Ry
vom Betrag
4 .
= 1 Bild 34

flieBen. Er soll am gesuchten Widerstand R den Spannungsabfall RI bewirken, der
seinerseits gleich der Differenz zwischen Netzspannung U und Betriebsspannung U’
sein muB, also

U—-U =RI
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Durch Einsetzen von (1) in (2) folgt

P

7

Daraus erhalten wir den Wert des Widerstands zu

(U-U0)0"  (220V —110V) 110V
P - 190 W

U—-U =R

R = = 63,68 Q.

In welcher Weise muBl man » = 24 Elemente mit jeweils einer Quellenspannung vom
Wert U;, = 1,5 V und dem inneren Widerstand R, = 0,8 Q in einem Stromkreis mit
dem Widerstand R = 1,2 Q schalten, damit ein angeschlossener Stromverbraucher eine
maximale Leistung aufnimmt? Welcher Strom flieBt dann durch den Verbraucher?

Losung

Wir setzen voraus, daf3 die resultierende Anordnung einer Batterie entspricht, die aus
insgesamt m Reihen besteht, die zueinander parallelgeschaltet sind. Jede Reihe besteht
ihrerseits aus # in Serie geschalteten Elementen (Bild 35). Die unbekannten Zahlen-
werte m und »n wird man unter Beriicksichtigung der in der Aufgabe gesteliten Bedingung
ermitteln miissen.

Jede Reihe wird dann durch die Quellenspannung

Uppe =nUs,
und den inneren Widerstand
R;k = nRi
}‘ -1 I

gekennzeichnet sein. i |
Da die einzelnen Reihen parallelgeschaltet sind, wird auch |, l_|l>__| |
R

nly,

F =
-

die resultierende Quellenspannung der gesamten Batterie
durch GI. (1) angegeben sein. Jedoch wird der resultierende —

innere Widerstand der gesamten Batterie Bild 35
Rf nR
Ry=— =+
m m
Die Batterie wird imstande sein, an einen Stromkreis den Strom
I— nUi» . nUj» _ nUyz _ nNU;,
" Ry+R nR o2 " n?R, + NR
ig T nR; TR n R + R n“R; +
m N
abzugeben.
Die Leistung am Stromverbraucher wird durch folgende Beziehung ausgedriickt:
PRI = m?*N2UZ%R

(n*R; + NR)?
Fiir das Maximum der Leistung gilt
oP

— =0‘
on
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55.

56.

Demnach ist auch
(n*R, + NR)? 2nN2U%R — n*N2*UZLR(4n*R? + 4nR\NR) _
(ani + N.R)4

Daraus folgt
—n*R? + N2R? = 0;

o NR O [NR A/24-1,2_

- RE R, 0,8 =

N 24

=—=—=4

" n 6 —
Unter diesen Bedingungen ergibt sich fiir die Stromstirke
N, 2415V

1=—"NE___ 4-24-1, =3,75 A.

WR, - NR 16-08Q +24-120 =222

Welche Kupfermenge wird innerhalb einer Zeit von 24 h durch einen Strom von 100 A
Starke aus einer Kupfervitriolldsung ausgeschieden? (Das elektrochemische Aquivalent
des Kupfers wird mit 4 = 0,328 mg A1 s-! angegeben.)

Lgsung

Durch Verwenden des ersten FArRADAYschen Gesetzes und Einsetzen der gegebenen
Gro6fen erhalten wir

m=AIt = 0,328 mg A~ s~! - 100 A - 24-3600s = 2833920 mg = 2,834 kg

(I Stromstirke, ¢ Zeit, m Masse des abgeschiedenen Stoffes, 4 elektrochemisches
Aquivalent des abzuscheidenden Stoffes).

Ein Metallgegenstand, der eine Oberfliche von 120 cm? hat, wurde galvanisch ver-
nickelt, wobei ein Strom von 0,3 A wihrend einer Zeit von 5 h flo3. Berechnen Sie die
Dicke der aufgetragenen Nickelschicht. (Nickel ist zweiwertig.)

Liosung

Wir wenden das FARADAYsche Gesetz an:
m = Alt.
A 14Bt sich durch die folgende Beziehung ausdriicken:
24
v F

(« relative Atommasse, v Wertigkeit, F FARADAYsche Zahl). Der Quotient «/» ist das
chemische Grammaéquivalent. _
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Fiir die Masse des abgeschiedenen Metalls gilt

I3 58,69 g 316926 g
== %8 03A.60-60s-5 =28 _ 6435,
m= =556 10°¢ > 60 193000 _ 048

Da wir die Masse m (in Gramm) als das Produkt aus der bekannten Fliche A (in cm?),
der spezifischen Dichte ¢ (in gcm~3) und der gesuchten Schichtdicke 4 (in cm) aus-
driicken konnen, wird

m = Adp,
so daB wir schlieBlich die gesuchte Schichtdicke erhalten
m 1,643 g

= — = = 1,557 -10°3 .
Ao 120cm?-8,8gcm3 2Rl T O

Ein Gegenstand mit der Oberfliche 4 = 20 dm? soll auf galvanischem Wege mit einer
Silberschicht von d = 0,2 mm Dicke versehen werden. Wieviel Silber muf3 dazu auf-
gebracht werden, und wie lange wird der Galvanisierungsproze3 dauern, wenn man
jeden Quadratdezimeter der Flidche mit einem Strom der Dichte J = 0,4 A dm™2 belasten
kann?

Losung

Zundchst ermitteln wir die notwendigerweise abzuscheidende Masse des Silbers. Fiir
sie gilt

m = Ado =20 cm?-102-0,2- 10" cm - 10,5 g cm~3% = 420 g = 420000 mg.
Die fiir den Galvanisierungsprozef3 notwendige Zeitspanne bestimmen wir nach dem
Farapayschen Gesetz aus

m 420000 mg

"= T4 T {118mgA'sT04Adm 2 20dm® 46938 5.
A Aufgaben

44, Welche elektrische Ladungsmenge lie- Stromdichte in ihm den Wert i =
fert ein galvanisches Element, dem 20 h == 2,5 A mm~2 nicht iiberschreiten soll?
lang ein Strom von I = 0,5 A entnom- 47. Es soll ein Rheostat mit einem Wider-
~ men wird? stand von 0,2 Q gebaut werden. Als
45, Wie lange dauert es, bis durch einen Werkstoff steht ein Nickelinstreifen
Strom von I = 1,5 A cine elektrische von 10 mm Breite und 0,5 mm Dicke
Ladung von 7000 C transportiert wird? zur Verfiigung. Welche Linge mul
46. Die Wicklung eines elektrischen Gerates der Nickelinstreifen erhalten? (¢ = 4 x

wurde aus einem Leiter mit dem Quer- x 1075 Q cm)
schnitt A hergestellt und soll den Strom 48. Wie groB ist der spezifische Widerstand
I = 3 A aufnehmen. Wie gro3 muf} der eines Leiters von 6 mm? Querschnitt,

Querschnitt des Leiters sein, wenn die wenn wir auf / = 500 m Lidnge beim
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49.

50.

51

52.

53.

54,

55.

56.

DurchfluB des Stroms I =6 A eine
Spannung von U = 14 V messen?

Zur Herstellung einer elektrischen Lei-
tung wurden 400 m Kupferdraht von
6 mm? Querschnitt verwendet. Welchen
Widerstand hat diese Leitung?

Eine Leitung aus Kupferdraht hat bei
einem Querschnitt von 0,1 mm? eine
Masse von 0,3 kg. Berechnen Sie den
Widerstand dieses Leiters, wenn der
spezifische Widerstand des Kupfers mit
1,7-10°Qcm und die Dichte mit
8,9 g cm~? angegeben wird.

In welchem Verhiltnis stehen die Mas-
sen einer Kupfer- und einer Aluminium-
leitung, die bei gleicher Linge gleichen
elektrischen Widerstand aufweisen
sollen?

Eine Kupferleitung hat einen Quer-
schnitt 4; = 25 mm?2. Welchen Quer-
schnitt 4, muB} eine Aluminiumleitung
haben, damit sie den gleichen elektri-
schen Widerstand bekommt?

Bei einer Temperatur von 15 °C hat
eine Kupferleitung einen Widerstand
von 21 Q. Wie groB} ist ihr Widerstand
bei 30 °C?

Damit ein elektrischer Kocher die ge-
forderte Leistung erreicht, mul} er bei
einer Betriebstemperatur ¢ = 700 °C
einen Widerstand R = 24 Q haben. Wie
groB ist der Widerstand der Heizspirale
bei £, = 20 °C, wenn der Temperatur-
koeffizient des Widerstands den Wert
o = 0,00002 K-! hat?

Welche Temperatur hat eine Spule, die
aus Kupferdraht von 350 m Léinge und
1 mm? Querschnitt gewickelt wurde,
wenn sie im Betriebszustand einen
Widerstand von R, = 10,5Q aufweist?
Die Wicklung des Elektromagneten
einer Dynamomaschine ist aus Kupfer-
draht hergestellt, der bei einer Tempe-
ratur f; = 10 °C einen Widerstand
R; = 142 Q hat. Im Betriebszustand
vergroBert sich der Widerstand der
Wicklung auf den Wert R, = 16,5 Q.

57.

58.

59.

60.

61.

Wie hoch ist die Betriebstemperatur?
a) Es ist die Differenz des Widerstands
einer Telegrafenleitung fiir maximale
Sommer- und minimale Wintertempe-
ratur von +30 °C bzw. —30 °C zu er-
rechnen. Der Leiter besteht aus einem
100 km langen Eisendraht von 10 mm?
Querschnitt mit dem spezifischen Wider-
stand ¢ = 8,7-10-¢ Q cm, der Tem-
peraturkoeffizient betrdgt o = 6 X
x 1073 K-

b) Wie dndert sich das Resultat der vor-
hergehenden Rechnung, wenn wir die
bei der Erwdrmung im Sommer ein-
tretende Verlidngerung des Drahtes be-
riicksichtigen, die unter dem Einfluf3
eines Léingenausdehnungskoeffizienten
von o’ = 12 - 10-¢ K- erfolgt?

Vier Widerstinde mit den Werten
R1 =1Q,R2=2Q,R3=3~Q,R4 =
= 4 Q sind einmal in Serie, einmal par-
allel zu schalten. Es ist der jeweils resul-
tierende Widerstand zu bestimmen.
Wie groB3 ist der resultierende Wider-
stand von 7 nach Bild 36 geschalteten
Widerstianden?

(Ry =10Q, R, =10Q, R; =R, =
= IOOQ, _R5 =R5 =R7 =5Q)

Wie groB ist der Gesamtwiderstand der
in Bild 37 dargestellten Widerstands-
kombination?

Ein 6-V-Autoakku versorgt eine Lampe
mit 12 Q, die Hupe mit 2 Q und einen
Scheinwerfer mit 1 Q Widerstand. Wel-

Rs

Bild 36
302
609
38 48 6Q
Bild 37
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62,

63.

64.

65.

66.

cher Gesamtstrom wird dem Akku bei
gleichzeitiger Betétigung der drei paral-
lelgeschalteten Verbraucher entnom-
men?

Eine Klingelbatterie versorgt iiber eine
85 m lange Doppelleitung von 0,9 mm
Durchmesser (Kupferdraht) einen
Wecker, dessen Spule einen Widerstand
von 6 Q hat und dabei einen Strom von
0,35 A aufnimmt. Wie groB muB die
Spannung der Klingelbatterie sein?
Eine aus 50 hintereinandergeschalteten
Elementen bestehende Batterie speist
ein dulleres Netz, das aus einem 20 km
langen Eisendraht von 3 mm? Quer-
schnitt besteht und das einen Verbrau-
cher mit einem Widerstand von 90 Q
enthélt. Die Quellenspannung und der
innere Widerstand jedes einzelnen Bat-
terieclements betragen 1,4V bzw. 0,4 Q.
Zu berechnen ist die Stromstirke unter
der MalBgabe, daB Eisendraht vom
spezifischen Widerstand 8,7 -10-°Qcm
verwendet wird.

Die Pole eines LecLANCHE-Elements
sind iiber einen Widerstand R, =3,1Q
miteinander - verbunden. Der innere
Widerstand des Elements hat den Wert
R; = 0,5 Q, und seine Quellenspannung
betrdgt 1,5 V. Welche Stromstirke stellt
sich ein?

Eine Doppelleitung aus Kupferdraht
mit einem Querschnitt 4 = 10 mm?
ibertrdgt auf eine Entfernung von
[/ =500m einen Strom von I =5 A.
Die Klemmenspannung am Anfang der
Leitung hat den Wert U = 220 V. Wie
grofl ist die Klemmenspannung am
Verbraucher? Wie grof3 ist der Span-
nungsverlust?

Ein Kupferseil besteht aus sieben Einzel-
drdhten von je 1,7 mm Durchmesser.
a) Wie groB ist der gesamte Widerstand
des Seils bei einer Linge von 1000 m?
b) Aus dem Seil wird eine Doppelleitung
hergestellt, die an ihrem Anfang eine
Spannung von U; = 220V aufweist.

67.

68.

69.

70

71.

Wie grofl wird die Spannung U, am
Leitungsende sein, wenn durch den
Leiter ein Strom von 10 A flie3t?

c) Welche Stromstdrke I, wird diese
Doppelleitung aufnehmen, wenn an
ihrem Ende ein KurzschluB eintritt?
Ein Voltmeter, das mit einem Wider-
stand R = 10*Q in Serie geschaltet
wird, zeigt, an eine Spannungsquelle von
U, = 120 V angeschlossen, eine Span-
nung vom Betrag U; = 50 V an. Wenn
das gleiche Voltmeter mit einem un-
bekannten Widerstand R, an gleicher
Spannungsquelle in Serie geschaltet
wird, zeigt es nur noch eine Spannung
U, = 10V an. Berechnen Sie den un-
bekannten Widerstand R..

Zwei Voltmeter mit gleichem MeB-
bereich, aber unterschiedlichem innerem
Widerstand, und zwar R;; = 17300 Q
und R;, = 5200 Q, sind hintereinander-
geschaltet und an eine Spannung von
220V angeschlossen. Welche Ausschlidge
werden die beiden Voltmeter zeigen?
Eine Salzlosung mit dem Widerstand
R; = 1 Qist durch Kupferdrihte, deren
Gesamtwiderstand R, = 2 Q betrigt,
an ein DANELL-Element mit einer
Quellenspannung von 1,1 V und dem
inneren Widerstand R; = 0,5 Q ange-
schlossen. Welcher Strom flieit im
Stromkreis, und wie groB ist die Klem-
menspannung des Elements?

. Drei galvanische Elemente mit den Ur-

spannungen U; =1,3V, U, =15V
und Uz = 2V haben die inneren Wider-
stande Ril = Ril = R13 = O,ZQ und
sind gemdB Bild 38 miteinander ver-
bunden. Der Widerstand betragt R =
= 0,55 Q. Es sind die Teilstréme I, I,,
I zu ermitteln.

Welche Strome flieBen durch die ein-
zelnen Widerstinde der in Bild 39 dar-
gestellten Schaltanordnung, wenn R; =
=5Q, R, =20Q,R; =4Qund E; =
=4,5V, E, =2V grol ist? Welche
Spannung liegt am Widerstand R; an?
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Bild 38

Bild 39

72. Ermitteln Sie die Stromstirken in den

73.

74.

75.

Verzweigungen der Schaltanordnung in
Bild 40, wenn die Quellenspannung
eines Elements den Wert U; =1,5V
hat und wenn die drei Elemente in
Serie geschaltet sind. Der innere Wider-
stand eines Elements betrdgt 0,5 Q. Die
Widerstdnde in den Abzweigungen sind
R1 =4Q und R, = 12 Q.

LIE
il

3R;

Bild 40

Ein Milliamperemeter, dessen Skale
100 Teilstriche enthilt, hat einen inneren
Widerstand R; = 10 Q und soll bei einer
Stromstidrke I’ = 10 mA a) als Volt-
meter bis zur Spannung U = 300V
und b) als Amperemeter bis zur Strom-
stirke I = 20 A verwendet werden.
Welcher Vorschaltwiderstand  bzw.
Shunt wird dazu erforderlich?

Ein Amperemeter hat einen Innenwider-
stand von 0,02 Q und erlaubt, Strome bis
zu 1,2 A Stdrke zu messen. Wie muB3 ein
Nebenwiderstand bemessen sein, damit
man mit dem so verdnderten Instrument
Strome bis zu einer Stirke von 6 A
messen kann?

Ein Voltmeter mit einem Innenwider-

5 Hajko, Blektrik

76.

71.

78.

79.

80.

81.

82.

83.

stand von 3000 Q hat einen MeBbereich
bis 150 V und eine in 150 Teilstriche
unterteilte Skale. Welcher Strom fliefit
durch das Voltmeter bei vollem Zeiger-
ausschlag? Welcher Widerstand miifite
vorgeschaltet werden, um den MeB-
bereich des Instruments auf 600 V zu
erweitern? Welchen Wert zeigt dann ein
einzelner Teilstrich noch an?

Welche Ladungsmenge flieBt durch
einen Leiter mit dem Widerstand R =
= 10 Q innerhalb einer Zeit von 20 s,
wenn zwischen den Leiterenden eine
Spannung von 12V besteht? Welche
Arbeit verrichtet dabei der Strom?

In einer Wohnung wird eine 25-W-
Lampe téglich fiir die Dauer von vier
Stunden betrieben. Was mull dafiir
monatlich bezahlt werden, wenn wir den
Monat mit 30 Tagen ansetzen und der
Preis fiir die Kilowattstunde Elektro-
energie 0,08 M betridgt?

Welche Wiarmemenge setzt ein elektri-
scher Kocher frei, der, an 120 V Span-
nung angeschlossen, drei Stunden lang
von einem Strom der Stirke I = 8,3 A
durchflossen wird?

Zwei Glithlampen von 100 bzw. 60 W
Leistung sind an die gleiche Spannung
angelegt. Welche von ihnen hat den
groBeren Widerstand?

Wie lange war ein elektrischer Kocher
von 600W Leistungsaufnahme ein-
geschaltet, wenn der Zéhler einen Strom-
verbrauch von 1,8 kWh anzeigt? ‘
Wie groB mufl die Leistung eines
elektrischen Kochers sein, wenn er zwei
Liter Wasser von 10 °C innerhalb von
25min auf 100 °Cerhitzensoll, wobeivon
der vom Kocher aufgenommenen elek-
trischen Leistung nur 709%; fir die Er-
wirmung des Wassers wirksam werden?
Wie groB8 muf3 der Widerstand eines
Stromverbrauchers sein, der bei einer
Spannung von 220 V stiindlich 3690kJ
Wirme freisetzen soll?

Welcher Strom flieBt durch einen elek-
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84,

trischen Kocher, der, mit einer Span-
nung von 120 V betrieben, innerhalb
von drei Stunden 251 Wasser um 50 °C
erwiarmt, wenn der Wirkungsgrad des
Kochers mit 1009, angenommen wird?
Wie gro3 ist der Wirkungsgrad eines
elektrischen Kochers, der, mit 220 V

90.

einer Stunde damit von 18 °C bis zum
Sieden erhitzt werden?

Die zuldssige Belastung eines Wider-
stands von 2000 Q betrigt laut Angabe
des Herstellerbetricbes P = 4 W. Wel-
chen Strom darf man durch den Wider-
stand leiten?

betrieben, bei einem Strom von 3 A 91. Was kostet die elektrische Erwidrmung
einen Liter Wasser innerhalb 11 min eines Liters Wasser von 10 auf 100 °C,
von 18 °C bis zum Sieden erhitzt? wenn der Preis fiir eine Kilowattstunde
85. Die Leistung eines unbekannten Elek- mit 0,08 M angegeben ist und der Wir-
tromotors soll ohne Verwendung eines kungsgrad derVorrichtung 90 9/ betrigt?
Wattmeters bestimmt werden. Der Mo- 92. Wie mull man 48 gleichartige Elemente,
tor war im Gleichstrombetrieb 10 min jedes mit einem inneren Widerstand von
angeschlossen, und ein Zihler zeigte 0,2 Q, zu einer Batterie vereinigen, da-
einen Stromverbrauchvon0,1 kWhan. mit ein AuBenwiderstand von 2,4 Q eine
86. Ein Elektromotor hat eine Leistung von maximale Leistung aufnehmen kann?
1,1 kW. Bei einer Spannung von 120V 93. Welche Kupfermenge wird elektroly-
nimmter einen Strom von I = 10 A auf. tisch aus einer Kupfervitriollosung aus-
Wie groB ist sein Wirkungsgrad? Was geschieden, durch die 24h lang ein
kostet der Stromverbrauch bei 8 h Be- Strom von 100 A flieB3t?
trieb, wenn fiir die Kilowattstunde ein 94. Welche Stromstirke flieBt durch einen
Preis von 0,08 M berechnet wird? Elektrolyten der Art CuSO,, wenn in-
87. Wie groB ist die Stromstirke, die ein nerhalb von 15min 3 g Kupfer aus-
5,9-kW-Motor bei 220 V dem Netz ent- geschieden werden?
nimmt, wenn er voll belastet wird und 95. Es sollen 25 Loffel, jeder mit einer Ober-
sein Wirkungsgrad 829} erreicht? fliche von 0,8 dm?, auf elektrolytischem
88. Ein Elektromotor ist einem 440-V-Netz Wege versilbert werden, wobei jeder
angeschlossen, dem er einen Strom von Loffel eine Silbermenge von 5 g auf-
20 A entnimmt. Wie groB ist seine Lei- nimmt. Die zuldssige Stromdichte be-
stung, und was wird ein fiinfstiindiger tragt 0,3 A dm-2, Mit welcher Strom-
Betrieb kosten, wenn eine Kilowatt- stirke muB gearbeitet werden, und wie
stunde mit 0,04 M berechnet wird? lange dauert der Prozef3?
89. An ein elektrisches Gleichstromnetz 96. Ein zu versilbernder Gegenstand hat

1.3.

von 220V Spannung ist ein 100-Q-
Widerstand angeschlossen. Welche Lei-
stung nimmt er auf, und welche Menge
Wasser konnte theoretisch innerhalb

Elektromagnetismus

eine Oberfliche von 200 cm?2. Es wird
mit einer Stromstidrke von [ = 0,5 A
gearbeitet. Nach welcher Zeit erreicht
die Silberschicht eine Dicke von0,02¢cm?

Die Kraft F,,, mit der zwei stromdurchfiossene Leiter aufeinander wirken, kann man
entsprechend den Vorstellungen von AMPERE aus der Beziehung errechnen (Bild 41):

. di, x (ds,; x ¥
Fi, = &11123€§ > X (d§; 1.2),
47 r3
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(4o = 4m - 1077 Vs A~'m~! magnetische Feldkonstante, bisher auch absolute Permea-
bilitdt oder Induktionskonstante genannt; /; und I, die Strome in den beiden Leitern,
d3; und ds, Leiterelemente, 7, , der Ortsvektor des einen Leiters in bezug auf das
entsprechende Element des anderen Leiters).
Dabei muB} die Integration vollstindig um beide Leiter ausgefithrt werden.
Die magnetische Induktion, diec der Strom I in einem bestimmten Raumpunkt, der
durch den Ortsvektor # bezeichnet wird, erzeugt, wenn sich dieser Raumpunkt im
Vakuum befindet, wird durch

Z? _ Mo 7 § di x#

4r r?

angegeben, das sog. Biot-Savart-Laplacesche Gesetz.
Dabei ergibt sich fiir die GroBe B die Einheit Vsm=2 =
= Wbm-2 = T (Tesla), wenn die einzelnen eingehenden
GroBen im Internationalen Einheitensystem ausgedriickt

werden. Die Beziehung zwischen Wb m~2 und der bislang oft angewendeten Einheit
des CGS-Systems GauB} (G) ist wie folgt definiert:

1G =10"*Wbm-~2,
Auf das Element ds eines Leiters, das vom Strom 7 durchsetzt wird, wirkt ein Magnet-
feld mit der InduktionsfluBdichte (Induktion) B durch die Kraft

dF = Id§ x B.

)

Bild 41

Der Zusammenhang zwischen dem Vektor der magnetischen Induktion B und dem
Vektor der magnetischen Feldstirke A wird durch die Beziehung

B =y

angegeben, wobei u die Permeabilitdt des betreffenden Stoffes

x
# = pho <1 + —) = folhrs
Ho

% die magnetische Suszeptibilitit des Mediums und u, die Permeabilititszahl (bisher
auch relative Permeabilitdt genannt) des Mediums bedeutet.

Im Internationalen Einheitensystem ist die Einheit der magnetischen Feldstirke das
Am~!, Jedoch wird oft auch noch die aus dem CGS-System stammende Einheit
Oersted (Kurzzeichen Oe) verwendet, wobei der Zusammenhang beider Einheiten
wie folgt definiert ist:

3
10e = ﬁA m-1.
4

5%
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Unter dem Begriff magnetischer FluB (InduktionsfiuB) durch eine bestimmte Fliache
verstehen wir die GroBe

® = [Bdd,
wobei B die magnetische Induktion und d4 der Flachenvektor ist, der zum Fléchen-

element d4 geh6rt. Wenn der Vektor B senkrecht zum Flichenelement d.4 gerichtet
ist (d. h. parallel mit dem Vektor d4 verlduft), kann man schreiben

d® = BdA.

Fiir den Fall, daB die magnetische Induktion B in jedem Punkt der Fliche 4 den-
selben Wert hat, gilt

d = BA.

Dabei ergibt sich, wenn wir B und 4 gemiB dem Internationalen Einheitensystem
einsetzen, fiir @ die Einheit Weber (Wb). Bisher wurde auch noch die aus dem CGS-
System stammende Einheit Maxwell (Mx) verwendet, fiir die gilt

1 Mx = 10-8 Wh.

Wenn ein geschlossener Integrationsweg mit einem geschlossenen elektrischen Strom-
leiter gekoppelt ist, gilt die DurchfiuBgleichung

56 Bds = Nuol
(ds Wegelement, I Stromstdrke im Leiter, u, magnetische Feldkonstante, wenn der
Leiter im Vakuum angeordnet ist, N Zahl, die ausdriickt, wie oft der Integrationsweg

den Leiter umschlieBt).
Die Durchflubgleichung kann man auch in der Form

5§Hds = NI

schreiben, wobei H die magnetische Feldstdrke bedeutet. Den Wert des angegebenen
Integrals bezeichnen wir auch als magnetomotorische Kraft.
Den magnetischen Widerstand R, eines magnetischen Kreises berechnen wir nach der

Hopkinsschen Formel
R Ll
u A

(u Permeabilitdt des Mediums, aus dem der magnetische Kreis gebildet wurde, / seine
Linge, A sein Querschnitt). Wenn ein Leiter der Linge / sich mit der Geschwindig-
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keit v in einem homogenen magnetischen Feld der Induktion B senkrecht zu dieser
bewegt, wird in ihm eine elektrische Spannung induziert, die gegeben ist durch

Ul = Bl.

Allgemein wird in einem geschlossenen Leiter immer dann eine Spannung induziert,
wenn sich der Induktionsfiuf, der durch die vom Leiter umschlossene Fldche stromt,
verdndert. Dabei ist die induzierte Spannung gleich dem negativen Wert der zeit-
lichen Ableitung des Induktionsflusses, der durch die vom Leiter umschlossene Fléache
hindurchtritt, also

Beim Anwenden dieser Beziehung muf8 man in Ubereinstimmung mit ihrer Ableitung
den magnetischen Induktionsfiul dann als negativ bezeichnen, wenn er auf die Seite
der vom Leiter umschlossenen Flache flieBt, von der aus gesehen der Strom im: Leiter
entgegen dem Uhrzeigersinn gerichtet ist. Im anderen Fall ist der Induktionsflu3
positiv.
Die Selbstinduktionsspannung, die durch zeitliche Anderung der Stromstirke I indu-
ziert wird, berechnen wir entsprechend der Beziehung

Usl = —'L-Ell N

det

wobei L die Induktivitdt des Leiters ist, in dem die Selbstinduktion auftritt. Wir be-
rechnen sie aus der Formel

L=-2,

/

so daf} L eigentlich die Proportionalititskonstante zwischen dem magnetischen Induk-
tionsflu} @ durch die von einem Leiter umschlossene Fliche und dem Strom 7, der
durch diesen Leiter flieBt, darstellt.
Wenn in der Néhe eines Leiters I ein anderer Leiter 2 angeordnet ist, so wird in diesem
eine Induktionsspannung U,, auftreten, wenn sich im Leiter 7 der Strom I, zeitlich
dndert:

U= =Ly >
Ydr
wobei L, , die Wechselinduktivitit ist; sie ist eigentlich die Proportionalititskonstante
zwischen dem magnetischen InduktionsfluB @, ,, der infolge der Existenz des Stroms I,
im Leiter I durch die von Leiter 2 umschlossene Fliche tritt, und dem Strom I, selbst.
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Deshalb gilt

QIZ

1

Ly, =

Véllig analog wird im Leiter / bei einer Anderung des Stromes im Leiter 2 infolge
der Wechselinduktivitdt die Spannung

dr,

U21 = —L21 5 L21 = ==

induziert, wobel

Ly, =Ly
1st.
Die Energie des Magnetfeldes eines elektrischen Stromes I, der durch einen Leiter
flieBt, dessen Induktivitdt mit L angegeben wird, berechnen wir aus

W= lLIZ.
2

B Beispiele

58. Bestimmen Sie die magnetische InduktionsfluBdichte und die magnetische Feldstdrke
im Abstand / == 5cm von einem sehr langen, geraden Leiter, durch den ein Strom
I =75 A flief3t.

Losung

Wir gehen zunichst von der Definition der magnetischen Induktion aus

E _ {t_o—l f ds x 7 )
4r r3
Da es sich um einen theoretisch unendlich langen Leiter handeln
soll, kénnen wir in Ubereinstimmung mit den in Bild 42 ver-
wendeten Bezeichnungen fiir den Wert der magnetischen Induk-
tion schreiben:

ds

+©

ol f dssin ¢

B = 4—‘ 3 -
T T Bild 42

Aus Bild 42 folgt, daB

s=d —I[cote,
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59.

woraus sich ergibt

ds = de.

sin? ¢
Des weiteren finden wir

/
¥ = — s
sin @

so daB wir fiir den Wert der magnetischen Induktion erhalten:

T

I
—— dpsin ~
p o Ml sirg 0T ol sin o do = Fof
T am Iz " i =
— 0
sm- @
V]

Mit den gegebenen Werten ergibt sich

4m-10-7VsA-Im - 5A
- — 200 - 10-7 Wb m-2.
B 270,05 m 200 o

Die magnetische Feldstirke im Punkt 4 wird damit

1
g=B_ L _ A 10, 15015 Am.
- 15915 Am~*,

Magnetische Induktion und Feldstidrke sind senkrecht zur Zeichenebene orientiert und
weisen im Punkt A4 in die Richtung hinter die Zeichenebene.

Bestimmen Sie die Werte der magnetischen Induktion und der
Feldstarke im Zentrum eines ebenen, kreisférmigen Leiters vom
Radius » = 5c¢m, in dem ein Strom I = 5 A flieB3t.

Losung

In Bild 43 betrachten wir zundchst die magnetische Induktion
in einem Punkt A (= Kreismittelpunkt), die von einem infinitesi-
malen Leiterelement ds§ herriihrt:

fd ,UoI d§ X 7
dB = -> """
4 p3
Da der Vektor des infinitesimalen Ringelements d§ und der Ortsvektor # immer den-
selben Winkel von 90° einschlieBen, kdnnen wir schreiben
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60.

Die vom gesamten Leiter im Punkt A4 erzeugte Induktion nimmt den Wert

2nr

I I
p= Yo fdsz‘i
47cr? 2r

0

an und ist senkrecht zur Zeichenebene gerichtet.
Nach Einsetzen der gegebenen Werte erhalten wir

B_4Tr-10‘7Vs-A‘1 m?t-5A

=027-10"* Wbm2 =
2-0,05m

= 628 - 10" Wbm~2.

Die magnetische Feldstdrke im Punkt 4 betrdgt

B I SA
H=—=_=_—""_ =50Am"!
we 2 2-0,05m T
“\»-i\;\
Berechnen Sie den Wert der magnetischen Induk-
tion im Mittelpunkt einer einzigen Drahtwindung,
welche die Form eines ebenen Quadrats mit der Sei- I
tenlidnge / hat, durch die der Strom I = 5 A flieBt. - vet . L
%
Losung W% S

Wir gehen wieder von der allgemeinen Beziechung fiir
die Definition der magnetischen Induktion in Hin- Bild 44
sicht auf einen Punkt 4 mit dem Ortsvektor 7 aus,

wobei die magnetische Induktion von einem infinitesimalen Leiterelement d§ herriihrt:

- Hold§XF
B=

Wenn wir den Winkel, den die beiden Vektoren d§ und # einschlieBen, mit ¢ bezeichnen,
wird
o rsin ¢ ds Mo sin ¢ ds
p=rto 2272 oy .
4 f r3 4r f r?

Aus Bild 44 wird ersichtlich, daB

/ v lde
s=-— —vcoty; ds= — dp = — 3
2 ? sin? @ 7 2sin? ¢
. v v )
Sing = —; r=— = —
¥ sin @ 2sing
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Damit nimmt der von einer Seitenldnge / des Quadrats herstammende Anteil an der
Gesamtinduktion den Wert an:

3
-

4
sin ¢ 3
= #ol 2 sin® L. 2% I/ sin p de = #ol [—cos ]4 i
s R 4 2 Pleo
4sin? ¢ @

»A

ﬂo] (\/2 + \/E) ~ '\/Z_Ho[
T2\ 2 2 2l

Aus Griinden der Symmetrie konnen wir fiir die von dem ganzen Quadrat erzeugte
Gesamtinduktion auch schreiben

2n] el ’

By = 4B =4

Daraus erhalten wir nach dem Einsetzen der vorgegebenen Werte das Ergebnis fiir die
im Zentrum des Quadrats wirkende Gesamtinduktion zu
22471007 Vs A"lm1-5A

Bges = = 0,56 . ]0_4 Wb m‘2.
70,1 m

Die magnetische Induktion ist senkrecht zur
Zeichenebene orientiert und zielt hinter diese.

61. Durch einen kreisformigen Leiter mit dem
Radius r = 10 cm flieBt ein Strom I = 2 A.
Berechnen Sie die Induktion des Magnetfel-
des in einem Punkt A, der auf der Achse des
kreisformigen Leiters in einem Abstand
! =10cm von diesem entfernt liegt (Bild 45).

Bild 45
Losung

Wir gehen wieder von der Beziehung
- ,uoI d5 X ? ’
dB’ = ——

4 '3

aus. Da der Vektor d§ und der Ortsvektor / stets einen Winkel von 90° einschlief3en,
konnen wir schreiben
ol ds ¥’ sin 90° _ Mol ds

dB’ = =
4r p3 4r p2
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62.

Der angegebene Ausdruck gilt fiir die magnetische Induktion, die von einem im oberen
Teil des kreisformigen Leiters befindlichen Leiterelement ds ausgeht. Da die Vektoren
der magnetischen Induktion, die im kreisformigen Leiter zu symmetrisch liegenden
Lingenelementen ds gehoren, gleich groB3 und symmetrisch zueinander sind, kdnnen wir .
den auf sie entfallenden Beitrag zur Induktion zusammenfassen im Ausdruck

ol ds sin /3
2w 2
Aus Bild 45 wird auch die Richtung der resultierenden Induktion erkenntlich.

Die vom gesamten kreisférmigen Leiter herriihrende Induktion erhalten wir durch
Integration, wobei wir die aus dem Bild ersichtlichen Beziehungen

dB=2dB’'sinf =

S E— r
r=./r*+ I? und sin ﬂ = ——
\/ N

verwenden. Dann finden wir

,uOI sin $ f ds Uol sin ﬁ

2m r'? 2m r'?

\/r + 2 . uolr?
2+ 1) 20+ 12y
47-107 Vs A"'m 1.2 A - 0,12 m?

B = — 4,444 -10-° Wb m"2.
20,12 m2 + 0,12 m2)~ bm

Es ist die magnetische Induktion und die |

Feldstirke in der Mitte (Punkt 0) und an pOSca F : = |
einem Ende (Punkt B) einer Spule der Lin- 7] 2 ’
ge [ = 1 m zu berechnen, wenn die Anzahl —‘%b 1 —%
der Windungen N = 2000 betrigt, der Ra- = L =]]
dius der Windung r =2cm ist und ein n - =
Stromflul von I = 5 A angenommen wird
(Bild 46). Bild 46

2r

Losung

GemdB der im vorherigen Beispiel resultierenden Beziehung fiir die magnetische Induk-
tion eines kreisformigen Leiters konnen wir ansetzen, daB ein Spulenelement derDicke dx
in einem beliebigen, auf der Spulenachse gelegenen Punkt A eine magnetische Induktion
von der GroBle

uolr? N
2(r2 +x»)¥ |
hervorruft. Dabei ist x die Entfernung des Punktes 4 vom Ort des Spulenelements dx,
auf der Spulenachse gemessen, und N// stellt die auf die Lingeneinheit der Spule ent-

dB =
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fallende Zahl von Windungen dar. Die gesamte Spule erzeugt mithin im Punkt 4, dessen
Abstand vom Spulenmittelpunkt mit s angegeben ist, eine magnetische Induktion vom
Betrag

polr? N
B= “dx =
/ 202 i

+ x2)3/2 [
s
! L,
 wolN 2~ ° 2

+
21 JZ / z /2 l 2
t(grs) ez

Wenn wir die Formel fiir die resultierende Induktion in einem allgemeinen Punkt
s = 0 bzw. s = /2 einsetzen, so erhalten wir die entsprechenden Ausdriicke fiir die
magnetische Induktion an den Orten O bzw. B.

a)s=0:
IN 10-7VsA~'m™-5A-2000
Bt LA s ~ 47-10-3 Wbm-2;
2r\2 2 002m
[ 1+(— 1m
l ;
B IN 5 A -2000
H=—~= 0 ~ 10* Am;
Ho o 2r\? 2 002m
[ 1+<—— Im )
)
b)s = —:
)s 2
B HeIN ___ 4m-107VsAT'ml-SA 2000
2 0,02 m)\?2
2’~/1+<L> 2-1mA/1+<’—E)
[ Im
2= Wb
SRTE F:Zn-lO‘g’Wbm‘z;
IN SA-2000 -~
= 20 ~ 0,5-10* Am-".

2
21J1+(§ 2- 1mA/ 002m

Es ist ersichtlich, dal im Falle b) die Werte fur die magnetische Induktion bzw, die
Feldstdrke annihernd halb so groB sind wie in der Spulenmitte.

63. Eine Tangentenbussole mit z = 5 Windungen und einem Radius R = 10 cm befindet
sich im Magnetfeld der Erde, das eine Horizontalkomponente der Stirke H, = 16 A/m
hat. Dabei ist die Tangentenbussole so angeordnet, dal die Richtung der irdischen
Horizontalkomponente gerade in die Ebene der Bussolenwicklung fillt. Nach Ein-
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64.

schalten des Stroms weicht die Magnetnadel aus ihrer urspriinglichen Lage um einen
Winkel ¢ = 45° ab (Bild 47). Berechnen Sie den Strom, der durch die Windungen der
Bussolenwicklung flief3t.

Losung

[
In dem Moment, wo durch die Bussolenwicklung ein Strom flieB3t, ‘
wirkt auf die in ihrem Innern gelagerte Magnetnadel auBler der Hori-
zontalkomponente H, der Feldstirke des irdischen Magnetfeldes ‘ L}\/j
auch noch ein Magnetfeld der Stirke H;, das durch den Strom 5—»/" -
hervorgerufen wird, der die Wicklung der Bussole durchflie3t. “ !
Der Feldstirkevektor H, des Magnetfeldes ist senkrecht zur Ebene
der Windungen orientiert und damit auch senkrecht zur irdischen
Horizontalkomponente H,. Die Magnetnadel richtet sich also in
die Richtung der resultierenden Gesamtfeldstirke A aus. 1
Sie weicht aus ihrer Anfangslage um einen Winkel ¢ ab, fiir den gilt Bild 47

H

H,

tan ¢ =
2

In Beispiel 62 haben wir fiir die Feldstdrke im Innern einer Spule (s = 0) die Bezichung

Y
e IN _ IN . s
1J1 + (E)z VI @y )
l - dA;
abgeleitet. Fiir eine sehr kurz gebaute Spule kénnen wir aber °
die GroBe 2 gegeniiber (2r)? vernachlidssigen. Wir finden
deshalb
X dx
_IN 0 =
T Bild 48

(N Zahl der Windungen, I durch die Bussole flieBender Strom, » Spulenradius). Fiir den
gesuchten Strom erhalten wir demnach den Ausdruck

>

A
2:16— 0,1 m-tan45°
m

2H,rtan ¢
= ~ = 5 = 0,64 A.

Wie grof ist der magnetische Induktionsflul @ durch eine Fliche von der Form eines
rechtwinkligen Dreiecks, die sich in einem Magnetfeld befindet, dessen InduktionsfluB3-

dichte B sich mit dem Abstand gemiB der Bezichung B = C/x (Bild 48) dndert? Das
Dreieck habe die Katheten 5 = 10 cm und ¢ = 10 cm. Die Kathete c ist 2 = 8 cm von
der Ordinatenachse entfernt. Es ist C = 10~* Vs m~1. Das Magnetfeld soll senkrecht
zur x,y-Ebene, in der das Dreieck liegt, orientiert sein.
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65.

Losung
Da die magnetische Induktion sich hier von Punkt zu Punkt dndert, miissen wir von der
Beziehung ausgehen
— -

d®= B dA.
Der Vektor B und der Vektor d4 (senkrecht zur Dreiecksfliche gerichtet) verlaufen
parallel zueinander, so daf3 wir schreiben kénnen

d® = BdA cos 0° = BdA.
Da gemiB Bild 137 B = C/xund d4 = A dx ist, konnen wir auch schreiben

do = < hdx. il
x ‘
Die Grofie h ermitteln wir aus der Proportion lg r e
hic=(a+b—x):b, 1 K
d. h, g
cla+b—x) L'——z—"
h= :
b i
so daB sich ergibt Bild 49
do = Cc@ro=%,.
X b

Damit kénnen wir jetzt den gesamten InduktionsfiuB, der durch die Dreiecksfiiche tritt,
bestimmen:
b

a+ a+b a+b
ou [ i Ig CeiD o o,

b x
=Cc(a+b)lna+b—g—b=Cc<a+b1na+b—1>=
b a b b
0,08m + 0,1 m 0,08m 4+ 0,1 m
=10"*Wbm~2-0,1 2,31 —1]=
10 m ’m< 0,1 m 2 8508 m l)
— 0,458 - 10-5 Wb.

Es ist der magnetische Induktionsflufl zu bestimmen, der durch die Querschnittsfiiche
eines Stahlreifens tritt, wenn dieser nach Bild 49 die Abmessungen ¢ =2cm, b =3cm,
¥ = 49 cm hat. Der Induktionsfluf} soll durch einen Kurzschlufistrom von 7 = 300 A
hervorgerufen werden, der durch einen Leiter in der Symmetrieachse des Reifens flieB3t.
Im gesamten Reifenquerschnitt soll die magnetische Feldstdrke denselben Wert haben,
den sie auch in der Reifenmitte hat.
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Losung
Wir bestimmen zunidchst die magnetische Feldstirke in der Umgebung eines Leiters,
durch den ein Strom 7 flieBt, fiir einen Punkt, der vom Stromleiter den Abstand
(*" 4+ a/2) hat, also fiir einen Punkt in der Mitte der Reifendicke:
I I _ 300 A 9554 A m-t
2nr ( a) 27 (0,49m + 0,01m) AT
2n | 4+ —
2
Bei dieser Feldstédrke entsteht im Stahl eine magnetische Induktion B ~ 0,2 Wbm~=2 =
= 0,2 T. Diesen Wert erhalten wir aus der Magnetisierungskurve des entsprechenden
Werkstoffs (Bild 50). Damit finden wir den magnetischen Induktionsflull zu
®=BA=02Wbm2-0,02m-0,03m = 1,2-10"* Wb
B/Worm?
72 T
e P
v
70 '/ 1
N | X seaviech d
08 /' /, p Transformatorenblech (4 % Si
‘/ // y StahlguB T
/ / GuBeisen D x| xx
06 e o o x| x |x >
1/ / [ e B0 ® x| ds, ,—dF
S/ EEEE= ol b
: Lo, 1,
02 L
Pi=
1|
4 200 400 600 800
— > H/Am™? ) 2)
Bild 50 Bild 51
66. Durch zwei lange, gerade, parallel zueinander verlaufende elektrische Leiter flieBen zwei

gleich groBe Stréme mit entgegengesetzter Richtung, jeder vom Betrag I = 400 A. Die
beiden Leiter haben voneinander den Abstand d = 0,3 m. Bestimmen Sie die Grofie und
die Richtung der jeweils auf eine Drahtlinge von 10 m wirkenden Kraft.

Losung

Ausgehend von Bild 51 16sen wir die Aufgabe so, da wir zunéchst die auf den Leiter 2
wirkende Kraft bestimmen, die auftritt, wenn du:ch ihn der Strom 7, fheBt wihrend er
sich in einem Magnetfeld mit der Induktion B befindet, die durch den im Leiter I
flieBenden Strom I; hervorgerufen wird. Fiir diesen Fall ist die auf ein Leiterelement d3,
wirkende Kraft durch folgende Beziehung angegeben:

= (I, d3, x B,).
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67.

Weiter ist uns bekannt, daB die magnetische Induktion in der Umgebung eines sehr
langen Leiters (vgl. Beispiel 58) den Wert

Holy
2nd

annimmt. Das in der Formel fiir die Kraft stehende Vektorprodukt kdnnen wir aus-
rechnen, wenn wir beriicksichtigen, daB die kreisformigen magnetischen Feldlinien in
der Iimgebung des Leiters 7 senkrecht zum Leiter 2 orientiert sind, also daB auch ds,
und B; senkrecht aufeinander stehen, so daB sich ergibt

BI=

1 !

{
F f(]z dSz X Bl) —flg ngBl sin 90° Q = ,uolllz 5oed Q,
0
wobei g der Einheitsvektor in Richtung der wirkenden Kraft ist. Da die Stréme gleich
sind, I; = I, = 400 A betragen, erhalten wir nach Einsetzen aller Groflen
£ 10 m
F=47-10"7Vs A~ 'm!-400 A - 400 A ——— = 1,066 N.
27 0,3 m

Die Richtung der Kraft und ihres Einheitsvektors ist durch die Richtung des Resuitats
der Vektormultiplikation gegeben

I, ds, X By,

d. h., die I esultierende Kraft ist senkrecht sowohl zum Leiterelement dJ, als auch senk-
recht zu B, gerichtet, was auch mit der ,,Linke-Hand-Regel* iibereinstimmt. Die Rich-
tung der Kraft ist also derart, daB die beiden stromdurchflossenen Leiter auseinander-
gedriickt werden.

Welche Kraft wirkt auf einen Leiter der effektiven Lange s = 0,3 m, der in einem homo-
genen Magnetfeld mit der InduktionsfluBdichte B = 0,8 Vs m~2 von einem Strom
I = 150 A durchflossen wird, wenn er senkrecht zur Richtung der magnetischen Induk-
tion angeordnet ist? '

Losung

—_—
Die Kraft, mit der ein Magnetfeld der Induktion B auf ein Leiterelement der Linge d§
wirkt, das von einem Strom 7 durchflossen ist, wird durch die Beziehung

dF =1d3 x B

angegeben. Wenn der gerade Leiter senkrecht zu einem homogenen Magnetfeld an-
geordnet ist, vereinfacht sich die Bezichung zu

F = BIs.

Nach Einsetzen der gegebenen Werte erhalten wir

—-08 150A 030m~36N
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68.

69.

In einem homogenen Magnetfeld mit der Induktion B = 0,2 T befindet sich eine
flache, rechteckige Spule, die 50 Windungen tridgt. Die Abmessungen der Spule sind
a=23cm, b =2cm. Das Magnetfeld verlduft parallel zur kiirzeren Spulenseite
(Bild 52). Wie groB ist das Moment des auf die Spule einwirkenden Kriftepaares,

‘wenn durch die Spule ein Strom der Stirke [ = 4 A flie3t?

Losung

Die auf die einzelnen Leiterabschnitte wirkende Kraft ist
dF = 1d3 x B.

Auf die Leiter der Linge b wirkt keinerlei Kraft ein, da sie genau in Feldrichtung gelegen
sind. Aber auf die Leiter der Linge a wirken gleich groBe Krifte aus entgegengesetzten
Richtungen, wodurch ein Kriftepaar entsteht, das die Spule um die Achse 00, die durch
die Mitten der Seitenlidngen b verlduft, zu drehen bestrebt ist.

Die auf den Leiter der Linge a, der senkrecht zur Richtung der magnetischen Induktion
orientiert ist, wirkende Kraft hat den Wert

F = Bla,

und auf 50 solcher Leiter wirkt dann insgesamt 5 T
Fso = 50 Bla. TR
a

Die GroBe des Moments eines Kriftepaares ist durch das
Produkt einer Kraft und des senkrecht gemessenen Ab-
stands zweier Krifte gegeben, also in unserem Falle Bild 52

M = F5Qb.

/7

.

M =50Blab =50-0,2Vsm=2-4A-0,03m-0,02m =
= 240-10-* Nm = 0,024 Nm.

Eine kreisformige Leiterwindung vom Radius » = 6 cm wird vom Strom I = 50 A
durchflossen, wihrend sie sich in einem Magnetfeld der Stiirke H = 478000 A /m befindet.
Es ist das auf die Spule wirkende Drehmoment fiir zwei verschiedene Stellungen zu
bestimmen:

a) die Spulenebene liegt parallel zur Feldrichtung,
b) die Normale der Spulenebene schliefit mit der Feldrichtung einen Winkel 8 = 30° ein.

Losung

Wir gehen wieder von der Beziehung

dF =1d§ x B
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aus bzw. von
dF = Ids Bsin ¢.
Aus Bild 53a entnehmen wir ds - sin ¢ = dx, konnen also weiter schreiben

dF = IBdx.

ir

dx] /xl'/ﬂ/

-~

Bild 53

=4

Daeine gleich groBe Kraft von entgegengesetzter Richtung auf das beziiglich der O-Achse
symmetrisch gelegene Leiterelement wirkt, das vom gleichen Strom in umgekehrter
Richtung durchflossen wird, wirkt auf beide mechanisch verbundene Leiterelemente ein
Kriftepaar mit dem Moment

dM = dFy = IBy dx = IBdA,

wobei d4 = y dx die in Bild 53a schraffiert gezeichnete Fldche ist.
Das Moment der auf die gesamte Windung wirkenden Krifte erhalten wir durch Inte-
gration zu

M = IBA = uoHIA,

wobei A die gesamte, von der Leiterschleife umschlossene Fliche darstellt. Der ab-
geleitete Ausdruck gilt fiir den Fall, daB3 die Windungsebene in die Richtung der magne-
tischen Induktion fAllt.

Wenn aber der Vektor der magnetischen Induktion B mit dem Normalenvektor A der
Fliache den Winkel 8 einschlieBt (Bild 53b), miissen wir den Vektor der Induktion in
zwei Komponenten zerlegen in die Richtung des Normalenvektors (BA) und in die
Richtung der Fldche selbst (B”) Wihrend die Komponente BA solche Krifte hervor-
ruft, welche die Windung einem allseltlgen Druck aussetzen, also keinerlei Drehw1rkun g
ausldsen, gilt fiir die Komponente B i

|By| = Bsin g.

Den Wert dieser Komponente setzen wir an Stelle von B in den Ausdruck fiir das Dreh-
moment M ein und erhalten

M = IABsin f = uoHIA sin 8.

6 Hajko, Blektrik
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70.

71.

Durch Einsetzen der gegebenen Werte ergeben sich fiir die beiden in der Aufgabe ge-
nannten Sonderfille folgende Rechnungen: "
: A
a) M = poHIA = 4 - 107" Vs A~ m~* - 4780005 +50A - 7-0,062m? =
= 0,339 Nm;

b) M =poHIAsinf =4=-1007 VsA~tm™*- 478000%- S0A -7 X
% 0,06> m? - 0,5 = 0,169 Nm,

Ein Leiter in Gestalt zweier kreisférmiger Windungen mit dem Radius » = 5 cm liegt
in einem Magnetfeld, dessen Induktion den Wert B = 0,6 Wb m~2 hat, senkrecht
zur Richtung der magnetischen Induktion. Welche Spannung wird in einem solchen
Leiter induziert, wenn das Magnetfeld innerhalb einer Zeitspanne von 0,5s gleich-
formig abgebaut wird?

Losung

Da entsprechend dem Induktionsgesetz die induzierte Spannung gleich der negativen
Anderung des Induktionsflusses in der Zeit ist, wird
Ad D — @,

Ul=—_=—_

At At

Nach Ablauf der Zeit 4t ist @ = 0. Zu Beginn des Vorgangs, da die beiden Windungen
sich noch im vollen Magnetfeld befinden, gilt

&, = NAB
(N Windungszahl, 4 Fliche der Windung). Es ergibt sich somit

Dy == 2nr?B = 2+ 3,14 - 0,05> m? - 0,6 Wb m~2 = 0,00942 Wb.
Fiir den Wert der induzierten Spannung erhalten wir schlieBlich

(0 — 0,00942) Wb

U= 05s

= 0,01884 V.

Eine rechteckig geformte Leiterschleife (Bild 54) 5 .
wird, in einem Magnetfeld der Feldstirke + + ++++ ++ + ++ -5
H = 5000 Oe liegend, mit einer Frequenz % *&+ttd+d++ I
f=30s"! um ihre Seite @ gedreht. Welche : : : : : : : I : Z+ -
mittlere Spannung wird wihrend einer halben ¢ +[++ + ++ ++/++ 6 =5
Umdrehung in der Leiterschleife induziert? f}_ ’ 7 ) TR

(@a=0,3m, b =0,2m) Bild 54
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72.

6%

Losung

Eine halbe Umdrehung wird in der Zeit
1 11 1
T2 T27 S
ausgefiithrt. Wahrend dieser Zeitspanne dndert sich der Induktionsflul vom Wert &,
auf den Wert — @, also um den Betrag
40 = &, — (—Dy) = 2D,
so dall wir, entsprechend dem Induktionsgesetz, die gesuchte muittlere Induktions-
spannung wie folgt erhalten:
49 20,

U= —"—=—

ds

=4f D,

0= 37

Da @, = B,,A und die Gesamtfliche 4 = ab ist, erhalten wir fiir die mittlere induzierte
Spannung
U= 4fBnab = dabfu.H = 4-30s1-03m-02m- 4w 1077 Vs A~*m! x
10° A
— =3,6V.

T —_

X 5000

Ein Trommelanker, der sich in einem Magnetfeld mit der Induktion B = 0,8 Wbm~?
dreht, enthdlt in einer Rille 20 in Serie geschaltete Leiter von je s = 20 cm Liange. Der
Trommelanker hat einen Durchmesser d = 10 cm und rotiert mit
einer Tourenzahl » = 1300 min~!. Es soll bestimmt werden, welche
Maximalspannung in der gesamten Ankerwicklung induziert wird.
Es ist weiter die Richtung der Spannung zu ermitteln fiir den Fall,
daB} die Trommel eine Rechtsdrehung im senkrecht gerichteten Ma-
gnetfeld ausfithrt (Bild 55).

Losung

Wir gehen von der Beziehung Bild 55
Ui = Blv

aus, welche die Grofle der induzierten Spannung in einem Leiter, der sich mit der Ge-
schwindigkeit v im Magnetfeld der Induktion B bewegt, angibt. Da die einzelnen Leiter
am Trommelumfang angeordnet sind, ist die Geschwindigkeit, mit der der Leiter durch
das Magnetfeld bewegt wird, gleich der Umfangsgeschwindigkeit, die der Trommelanker
mit dem Durchmesser d bei gleichformiger Kreisbewegung hat, ndmlich

3,14-0,1 m- 1300 min—!

— ndn — — 6,807 ms 1.
b= man 60 s min-1 UL mS
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73.

74.

Demnach wird die maximale, in einem Leiter induzierte Spannung den Wert
Uy =Bbv=08Vsm2:02m-68ms! =108V

annehmen. Da die einzelnen Leiter in Serie geschaltet sind, addieren sich die induzierten
Spannungen, so daB die gesamte maximale Induktionsspannung, diec der Dynamo er-
zeugt, den Wert

Uy=20U;; =20:1,089V = 21,78V

hat. Die Richtung der induzierten Spannung bestimmen wir entsprechend der Ableitung
des Induktionsgesetzes aus dem Vektorprodukt

@ x B)
oder entsprechend der bekannten Rechte-Hand-Regel, die eigentlich aus dem an-
gefiihrten Vektorprodukt von Geschwindigkeit und InduktionsfluBdichte resultiert. Die
Richtung der in den einzelnen Leitern induzierten Spannung entspricht der in Bild 55

angegebenen. Dabei bedeutet das Symbol (+) den Strom, der in Richtung vom Be-
trachter wegflief3t.

Ein gerader Leiter der Lidnge / = 15 cm rotiert in einem
homogenen Magnetfeld, dessen Induktion den Wert
B =0,5T hat, mit einer Frequenz j'= 60s~! in einer
senkrecht zur magnetischen Feldrichtung gelegenen Ebene
um eine durch seinen Endpunkt verlaufende Achse
(Bild 56). Welche Spannung wird dabei in ihm induziert?

L]
.
]
.
.
3
L]
.
.
0
D

® e 0o 00 0o eme
oo e 00 e 00000

Liosung Bild 56

Wir wenden das Induktionsgesetz an in der Form
U =Bxv

(B magnetische Induktion, x Linge des Leiters, v seine Geschwindigkeit). In ‘Bild 56
hat das im Abstand x von der Drehachse liegende Leiterelement dx bei der Frequenz f
eine Geschwindigkeit, die der Umfangsgeschwindigkeit einer Kreisbewegung gleich ist,
nidmlich

v = 2nxf.
Daher nimmt die im Leiterelement dx induzierte Spannung den Wert
dU; = Bvdx = B+ 2=xxndx

an, Fiir die gesamte im Leiter der Linge / induzierte Spannung erhalten wir demnach

!
U =2r anxdx =nfBIl*=314-605"1-0,5Vsm2-0,152m? = 2,12 V.
o

Es soll die mit einer ForBEsschen Maschine erzeugte Induktionsspannung berechnet
werden. Es handelt sich hierbei um eine Metallscheibe, die in einem durch einen Spezial-
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magneten geschaffenen homogenen Magnetfeld rotiert. Der homogene Bereich des
Magnetfeldes erstreckt sich auf einen Streifen zwischen » = 5 c¢cm und ' = 15 cm, von
der Drehachse aus gemessen. Die Induktion hat hier den Wert B =1 Wb m~2. Die
Scheibe rotiert mit einer Tourenzahl » = 2000 min-* (Bild 57).

o+
- .
q

= =5 C -
i

8

Bild 57 Bild 58
Losung

75.

Wir denken uns die Metallscheibe in lauter radial liegende Leiter zerlegt, in denen in-
folge ihrer Bewegung mit der Geschwindigkeit v im Magnetfeld mit der Induktion B
eine Spannung induziert wird. In einem Leiterelement der Linge de betrigt die indu-
zierte Spannung

dU, = Bv do.

Wir driicken die Geschwindigkeit des in einem Abstand ¢ von der Drehachse liegenden
Leiterelements durch die Tourenzahl aus:

v = 2mpn.
Dann wird
dU, = 2nonB dp,

und die in einem ganzen (gedachten) Leiter der Linge / = #* — r induzierte Spannung
erreicht den Wert
”

2qr’
U, = 2=nB fg do = 2mnB [%} = nBn (r'? — r?).
r
r

Nach Einsetzen der gegebenen Werte erhalten wir fiir dic induzierte Spannung
_, 2000

60s
Eine geschlossene Spule hat die Form eines Ringes. Auf einen ringférmigen Eisenkern
(mittlerer Durchmesser d = 0,2m, Permeabilitit u = 700 po, Querschnittsfliche

A, = 25cm?) sind N = 1000 Windungen aufgewickelt, durch die ein Strom I =1 A
flieBt. Wie groB ist die Induktivitit einer solchen Ringspule (Bild 58)?

U=n-1Vsm (0,152 m* — 0,052 m?) = 2,094 V.
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76.

Losung

Um die Induktivitdt ausrechnen zu kdonnen, miissen wir zunichst den Wert der magne-
tischen Feldstirke kennen. Das Magnetfeld entsteht durch eine Spule mit dem Radius »
und der Windungszahl N unter Einflul der Stromstirke I. Wir gehen von der Durchflu3-
gleichung aus, wobei wir berilicksichtigen, daB der Integrationsweg mit dem Leiter
N-mal gekoppelt ist. Das bedeutet also

N1=§Hds,

wobei die Integration iiber die gesamte geschlossene mittlere Feldlinie des Magnet-
kreises erfolgen muB. Nach Integration iiber die Kreislinie vom Radius » = d/2 er-
halten wir

NI = 2rn rH,
also die Feldstirke

Der Induktionsflu @ durch die von einer Leiterwindung umschlossene Fldche wird
D = LI.
Daraus erhalten wir die gesuchte Induktivitdt
[e7] BA BNA, pHNA,
TTTT T T
(B magnetische Induktion, 4 Gesamtflicheninhalt, durch den der Strom flieBt, 4, Fla-
cheninhalt einer einzelnen Leiterwindung, N Windungszahl). Die magnetische Induk-

tion B haben wir als Produkt der magnetischen Feldstirke H und der Permeabilitét
u = uop, ausgedriickt. Nach Einsetzen der vorgegebenen Werte erhalten wir schlielich
L= ot HNA; _
I .
5
47-10-"Vs A~ m-1-700 - —-10% A m-! - 1000 - 25 - 10~* m?
™
= N =
=4-7-5-25-10"3H = 3,50 H.

Berechnen Sie die Spannung, die in einer Spule mit der Induktivitit L = 0,06 H indu-
ziert wird, wenn ein sie durchsetzender Strom gleichférmig so anwéchst, daB3 er in jeder
Sekunde um die Differenz 4 = 10 A zunimmt.

Lisung

Fiir die Selbstinduktionsspannung gilt die folgende Beziehung:

ds A1
U, = —LTt- bzw. Ui = —LZI—.
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71.

Wenn wir die gegebenen Werte hier einsetzen, erhalten wir

U, = —0,06Hllos—A = —0,6V.

Das negative Vorzeichen im Resultat bedeutet, dafl die induzierte Spannung dem Er-
zeugerstrom entgegengerichtet ist.

Eine kreisringférmige Spule besteht aus einem Kern mit rechteckigem Querschnitt
(Bild 59), auf den dicht tibereinander zwei Wicklungen, eine mit der Windungszahl N,
und eine mit der Windungszahl N,, aufgebracht sind. Es
soll eine Beziehung fiir die gegenseitige Induktion dieser
beiden Wicklungen hergestellt werden.

Losung

Wir gehen von der Durchfluigleichung fiir den Fall aus,
daB durch die Spule mit der Windungszahl N; der Strom
I, flieBt, es ist also

fﬁ Hds ’: N. 11 1.

Wir miissen entlang der ganzen mittleren magnetischen

Feldlinie, die einen Kreis darstellt, integrieren. Das ergibt : i1 g IS
ff;HdszH'an. L - lar

Fiir die Stdrke, die das Magnetfeld auf einer beliebigen Bild 59
Kreislinie im Kern annimmt, kénnen wir schreiben

N,
=200
2y

Durch eine infinitesimale Querschnittsfliche des Spulenkerns
dA4 = hdr
flieBt ein InduktionsfluB, den wir als homogen ansehen konnen und der die Stirke
NI
d® = BdA = pou.Hh dr = popi. 2;: hdr
T

hat. Durch den gesamten rechteckigen Querschnitt des Spulenkerns tritt ein Induktions-
fiul mit der Gesamtstirke

r
@=f
F1

Dieser Induktionsflufl durchsetzt auch die N, Windungen der zweiten Wicklung, so daB
durch sie der Induktionsflul
HO;ur

Dr1, = PN, = NlNzllh Inr—2
2n ry

\

2

T d T
oke a3 Hott
2m ¥

NiLhlan 2.
7y

2r
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tritt. Die gesuchte gegenseitige Induktion der beiden Spulen wird im Sinne der Definition
durch folgende Beziehung angegeben:

L — Dryz _ Dy — Hoks

r2
NN, hln—.
11 12 2r 12 ni‘l

Eine Spule der Linge / = 0,5 m wird aus N = 10000 Windungen gebildet, deren jede
einen Durchmesser d = 6 cm hat. Die Spule wird von einem Strom der Stirke / = 2 mA
durchflossen. Es ist der Energieinhalt des an der Spule entstehenden Magnetfeldes zu
berechnen.

Losung

Fiir die Energie des Magnetfeldes eines elektrischen Stroms gilt die Beziehung

1
W = —LI>.
2

Wir miissen also zur Berechnung des Energieinhalts des Feldes die Induktivitdt L der
Spule kennen. Sie ist durch

Dies
I

L =

gegeben, wobei @, der gesamte, durch alle Windungen der Spule tretende Induktions-
fluB ist. Es gilt weiter der Zusammenhang

Byes = N® = NBA — NuoHA,

wobei @ der durch die Fldche einer einzigen Windung tretende Induktionsflul und H
die magnetische Feldstirke der Spule ist, die wir aus Griinden der Vereinfachung im
Querschnitt einer jeden Windung als gleich grof3 ansehen diirfen. Fiir die Feldstédrke gilt
nach dem DurchfluBBgesetz

NI

Hl=NI, d. h., H=—l—',

so daB sich fiir L ergibt

@ges _N”OHA_ luONZA _
r T

L=

_ = - 0,06% m?
47107 Vs A-1m1 - 100002 — 0 T

—_ = 0,71 H.
0,5m

Fiir den gesuchten Wert der Energie des Magnetfeldes erhalten wir somit

1 1
W = ELIZ =—2-0,71 H-0,0022 A> =1,42-10-67J.
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79. Der Eisenkern eines Elektromagneten hat eine Querschnittsfliche von 6 - 4 cm?. An der
Beriihrungsfliche mit einer anhiingenden Last erreicht die magnetische Induktion den
Wert B = 0,3 Wb m~2. Es ist eine Beziehung fiir die Tragfdhigkeit des Elektromagneten
zu ermitteln und diese fiir den angegebenen Fall in Zahlen auszudriicken.

.o /'
Lésung E////’\‘
/// _ ‘A_ -
Wenn wir in Bild 60 den Anker um ein infinitesimal kleines /,/// 3
Wegelement dx vom Magnetpol entfernen und dabei gleich- =
zeitig den Spulenstrom in der Weise erhohen, daB sich der 8

" InduktionsfluB3 im Kreis nicht dndert, sondern konstant ge-
halten wird, dann &dndert sich auch nicht die Kraft F, mit PP
welcher der Anker an den Pol herangezogen wird und die | l l ! I

l

wir bei der Bewegung iiberwinden miissen. Dabei verrichten
wir die Arbeit

dW = Fdx.

Bild 60

Damit sich der Induktionsflu bei einer VergroBerung der mittleren Linge der Feld-
linien um den Betrag dx nicht dndert, ist es erforderlich, den Strom um genau den Betrag
zu erhohen, der dem Produkt H dx entspricht. Im entstehenden Luftspalt erhoht sich
dabei die Energie des Magnetfeldes, die gegeben ist durch

1

W = —LI?,
2
Da weiter
9%
L =_=
1

ist, wobei @, = N@ den gesamten Induktionsflul durch alle Windungen der Spule und
@ den Induktionsfiu durch eine einzige Windung darstellt, wird

1 1 o, 1
W=—LI*=— —=]> = — IN®.
2 7 1= I

Unter Einbezichung der magnetischen Feldstidrke erhalten wir die Beziehung
Hx = IN,

wobei x die Lange einer Feldlinie bedeutet, so daB3 wir weiterhin schreiben kénnen
1
= — Hx®.
2

Die erwidhnte Vergroflerung der Energie des Magnetfeldes infolge einer Stromstirke-
steigerung entsprechend H dx hat den Wert

Hdx D

W =
d 2
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Hieraus entsteht durch Umformung der Ausdruck

B%44d
daw = g
2u0
wenn wir voraussetzen:
B
®=BA und H=—.
Ho

In diesem Falle ist B die magnetische Induktion im Luftspalt zwischen den Beriihrungs-
flichen. Das Gesetz von der Erhaltung der Energie verlangt im vorliegenden Falle, daB
die zum Entfernen des Ankers aufgewendete Arbeit gleich der VergréBerung der im
Magnetfeld enthaltenen Energie ist. Das heifit

B*4

Mo

Fdx = dx.

Daraus erhalten wir eine Beziehung fiir die Tragkraft des Magneten, ndmlich

_ B4

2u0 ’

wobei 4 die Beriihrungsfliche, der Querschnitt des Pols ist. Nach Einsetzen der ge-
gebenen Werte finden wir
Vs \?
2(_ "2 c10-4 m2
- 0,3 (m2> 24-10"*m _0’09_241
T 2-47-107 VsA-'m-t 2512

0* N ~ 86 N.

Wie gro8 ist der magnetische Widerstand eines guBeisernen Magnetkreises mit den Ab-
messungen ¥ = 15cm und 4 = 5 cm? (Bild 61), wenn durch die Spule mit N = 200
Windungen der Strom I = 3 A flieBt? ’

Losung

Die Durchfluigleichung hat fiir unseren Fall die Form
H - 2nr = IN.

Wir finden also, daB3 der durch die N Windungen
flieBende Strom I im Kern eine Feldstirke

Bild 61

hervorruft. Dieser Feldstdrke entspricht auf der Magnetisierungskurve des GuBeisens
(Bild 50) eine magnetische Induktion B = 0,46 Wb m-2.
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Fiir den magnetischen Widerstand erhalten wir geméB der Hopkinsschen Formel

1 = 1 2nr  H 2mr

_ 637Am-27-0,15m
T 0,46 Wom-2-5-10* m?

=2,61-10° A Wb?,

Welcher Strom muB3 durch eine Spule mit der Windungszahl N = 300 flieBen, die auf
einen Kern aus Trafoblech (49 Si-Gehalt) gewickelt wurde, damit in dem 0,5 mm
breiten Spalt ein magnetischer Induktionsflu der

Stirke @ = 0,00066 Wb auftritt? (Die Male in i5Z /
Bild 62 sind in Millimetern angegeben.) m t
o %3
Losung ! E/
1200 |80 &I /
Wir bestimmen zunichst die Stdrke der magneti- V=308 .
schen Induktion -
20 ;317
_%_ 0,00066 Wb — 20| 40 |20
A 20-10*m-30-10"3m 0
j— -2
= LIWbm™=. Bild 62

Aus der Magnetisierungskurve des Trafobleches
(Bild 50) entnehmen wir, daB3 zur Induktion B = 1,1 Wb m~2 die Feldstirke H ~
~ 400 A m~! gehort. Im Luftspalt ist die Feldstirke

B 1 1,1

He =— = =
¥ e 4w 1077 471077

Am™*=2875-10° Am!,

Fir unseren Fall nimmt die Durchflu3gleichung folgende Form an:
IN = HFeSFe + Hsp d.
Daraus ergibt sich

I= HyeSre - HSpé
N >
wobei sg. die Lange der mittleren Feldlinie im Eisen bedeutet, also
Spe = [2(40 + 20) +2(80 + 20) — 0,5]1-10-*m = 319,5- 10" m,

Nach Einsetzen der gegebenen Werte und des Ergebnisses fiir die Linge sg. finden wir

_400Am™.319,5-10*m + 8,75- 10 Am-1-0,5-10-*m
300

1

= 1,884 A.
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82. Ein Hufeisen-Elektromagnet mit den in Bild 63 angegebenen MafBlen in mm soll aus

einer Entfernung 6 = 1 cm einen Anker anziehen konnen, der eine Last von 250 kg

. trdgt. Welche Stromstidrke muB dazu in der Spule, deren Windungszahl N = 500 be-
trigt, flieBen?

ar]

Losung T
230
Nach der Beziehung, die wir in Beispiel 79 fiir die _j\_o
Tragkrafteines Elektromagneten abgeleitet haben, Ly %717
148t sich die magnetische Induktion wie folgt aus- ( T V 1, 30
driicken: L
Zqu F
B= —7= Bild 63

2 4r-10-7 - 250 - 9,81
=A/ i * Wbm-2~ 0,7Wbm-2.

2-80-80-10"°

Um diese Induktion im Fisen zu erzielen, ist eine Feldstirke notwendig, fiir die wir aus
der Kurve fiir Eisenblech in Bild 50 entnehmen:

Hg. = 140 Am-1,
Dagegen wird im Luftspalt zur Erzielung der magnetischen Induktion die Feldstdrke

B 1

He =— e
" ug 4w 1077

B~8-10°B=28-0,7-10°Am™ =5,6-10°A m™!

erforderlich sein. Aus der DurchﬁuBgleichung resultiert fiir unser Beispiel die Beziechung
IN = HreSpe + HspSsp,

wobei die Liange der mittleren Feldlinie in Luft den Wert
st =2-10-103*m =20-10"3m

und in Eisen
sre = [2(190 + 80) +2-230]-10*m =1m

hat. Wir finden somit fiir die Stromstidrke den Wert

_ Hresre + Hise  140Am™-1m+56-10°Am=1-20-10%m
a N o 500 -

I

= 2268 A
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A

97.

98.

99.

Aufgaben

Ein sehr langer gerader Leiter, durch
den ein Strom I = 10 A flieBt, bildet
in einem bestimmten Punkt eine kreis-
formige Windung mit dem Radius
r = 4,28 cm aus, die mit dem Strom-
leiter zusammen in einer Ebene liegt
(Bild 64). Berechnen Sie die Stdrke der

Bild 64

Induktion im Mittelpunkt der dar-
gestellten Windung,

Zwei unendlich lange, gerade, parallel
zueinander verlaufende Leiter sind 10cm
voneinander entfernt. Sie werden beide
vom gleichen Strom [ = 2 A in gleicher
Richtung durchflossen. Es ist die Stirke
der Induktion in einem Punkt zu be-
stimmen, der auf der senkrechten Ver-
bindungslinie beider Leiter, 4 cm von
dem einen entfernt, gelegen ist.

Zwei ebene, kreisformige Leiter mit den
Radien r; =10cm, r, = 15¢cm sind
koaxial angeordnet (Bild 65). Sie wer-
denvonden Stromen/, =2 A, [, = 5A
gleichsinnig durchflossen. Die beiden
Strome erregen in ihrer Umgebung ein
Magnetfeld. Berechnen Sie die magne-
tische Feldstirke in einem Punkt P
auf der Verbindungsachse beider Leiter
mit den Koordinaten x; = 5cm, x,
= 10cm.

100.

10

—_

102.

103.

104.

Welcher Strom flieB3t durch einen langen,
geraden Leiter, wenn in einem senkrecht
gemessenen Abstand von 20cm im
Vakuum eine Induktion vom Betrag
B =15-10"* Wb m~2 gemessen wird?

oo L

1 (44

Bild 65

. Ermitteln Sie den Wert der magneti-

schen Induktion im Mittelpunkt einer
Spule, die 20 Windungen bei einer
Linge von 10cm hat und dabei vom
Strom I = 5 A durchflossen wird. Wie
groB} ist der gesamte, durch die Win-
dungen tretende Induktionsflul bei
einem Spulenquerschnitt von 4 = 5¢m?2?
Zwei gerade, parallele Leiter haben
voneinander den Abstand s = 1cm.

. Der eine von beiden ist sehr lang und

wird vom Strom J; = 250 A durch-
flossen, der andere hat nur eine Linge
von [ =20cm und wird vom Strom
I, = 300 A durchflossen. Beide befinden
sich im Vakuum. Welche anziehende
Kraft wirkt zwischen ihnen?

Ein gerader Leiter von 10cm Linge,
durch den ein Strom von 10 A flieBt, be-
findet sich, senkrecht zur Feldrichtung
liegend, in einem Magnetfeld, dessen
Induktion den Wert B = 1T hat.
Welche Kraft wirkt auf den Leiter?

In einem homogenen Magnetfeld mit
horizontaler Feldlinienrichtung ist senk-
recht zum Feld, aber gleichfalls hori-
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10s.

106.

107.

zontal orientiert, ein Leiter aufgehingt,
der je Zentimeter Lénge eine Masse
von 0,1kg hat. Er wird von einem Strom
von 1 A Stidrke durchflossen. Welchen
Wert mull die magnetische Induktion
des Feldes annehmen, damit der strom-
fithrende Leiter gerade in der Schwebe
gehalten wird?

Eine kreisrunde Kupferscheibe mit dem
Radius » = 10'cm ist, um eine horizon-
tale Achse drehbar, so gelagert, da3 ihr
duBerster Rand gerade in ein Queck-
silberbad eintaucht (Bild 66). Das

Bild 66

Quecksilber im Gefd3 und ein Kontakt
auf der Achse der Scheibe sind mit
einer Akkubatterie verbunden. Die
Scheibe befindet sich in einem senkrecht
zu ihrer Ebene orientierten Magnetfeld
mit der Induktion B = 0,2 T. Durch
den so geschaffenen Stromkreis fliefit
ein Strom I =1A. Wie grof} ist das
Drehmoment der auf die Scheibe wir-
kenden Krifte, und in welcher Rich-
tung wird sich die Scheibe drehen, wenn
die Richtung der Induktion vom Be-
trachter fortweist?

Die magnetische Induktion eines homo-
genen Magnetfeldes hat den Wert B =
= 15 Wb m~2. Ermitteln Sie die Stérke
des Induktionsflusses, der durch eine
Fldche von 1dm? GroBe tritt, deren
Normale mit der Feldstdrkerichtung
einen Winkel ¢ = 30° einschlieBt.
Bestimmen Sie den magnetischen In-
duktionsfluB in einem eisernen Werk-
stiick von 4 = 4 cm? Querschnitt, des-
sen Permeabilititszahl g, = 5000 ist,

108.

109.

110.

111.

wenn die magnetische Feldstirke den
Wert H = 15700 A/m hat.

Ein kreisformiger Magnetring aus Stahl
wurde fiir einen Induktionsflul @ =
=1,5-10"3 Wb aus zwei Teilen von.
unterschiedlichem Querschnitt projek-
tiert: 4; = 1,25-10"3m? und A4, =
= 1,510 m? (Bild 67). Auf der

Bild 67

einen Ringhilfte vom Durchmesser
d = 0,318 m wurde eine Spule mit der
Windungszahl z = 200 gewickelt. Wel-
cher Strom I mull durch diese Spule
flieBen, damit der geforderte Induktions-
fluB @ erreicht wird, wenn das Material
StahlguB ist?

Auf einen Stahlkern von der Form eines
zylindrischen Ringes mit einer mittleren
Feldlinienldnge s = 0,628 m und mit
dem konstanten Querschnitt A4 =
= 0,0012 m?2 sind N = 100 Windungen
aufgewickelt. Welcher Strom 7 muB} in
der Wicklung flieBen, damit ein Induk-
tionsfluB der Stirke @ = 1,4 - 103 Wb
auftritt?

Auf einen Stahlkern konstanten Quer-
schnitts mit einer mittleren Feldlinien-
linge s = 0,625 m und einem Luftspalt
der Dicke 6 = 0,003 m sind N=100
Windungen aufgewickelt. Welcher
Strom I muB in der Wicklung flieBen,
damit die magnetische Induktion den
Wert B = 1 Wb m~2 annimmt?

In einem homogenen Magnetfeld mit
der Induktion B = 0,2 T rotiert in
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112,

113,

114.

115.

der zu B senkrechten Ebene ein leiten-
der Stab der Lénge / = 10 cm gleich-
formig. Die Drehachse ist senkrecht
zum Stab gerichtet und verlduft durch
ein Ende des Stabes. Mit welcher Tou-
renzahl muf3 der Stab rotieren, damit
in ihm eine Induktionsspannung
U; = 0,628 V induziert wird?

Ein Stabmagnet, durch dessen End-
querschnitt ein Induktionsflul der
Stiarke @ = 0,0015 Wb tritt, dreht sich
um eine senkrechte Achse, und zwar so,
daB der InduktionsfluBl eine Spule mit
N = 10000 Windungen schneidet
(Bild 68). Eine halbe Umdrehung voll-
fiithrt der Stabmagnet innerhalb 0,02 s.
Bestimmen Sie den Durchschnittswert
der in der Spule induzierten Induktions-
spannung.

Bild 68

Ein Elektromagnet mit N = 1000 Win-
dungen wird durch einen Strom I =
= 0,5 A gespeist. Der Widerstand der
Wicklung hat den Wert R = 10 Q. Die
magnetische Induktion im Eisenkern
ist B=1,2T. Der Kern hat einen
Querschnitt 4 = 100 cm?2. Wie grof ist
die durch Selbstinduktion hervorgeru-
fene Spannung, wenn der Strom fiir eine
Zeit von 0,01 s unterbrochen wird?
Eine Spule hat die Induktivitit L =
= 0,06 H. Ermitteln Sie die durch
Selbstinduktion hervorgerufene Induk-
tionsspannung fiir den Fall einer Strom-
dnderung, wobei der Strom innerhalb 1 s
um 11000 A ansteigt.

Ein kreisférmiger Leiter mit dem Ra-
dius r befindet sich in Ruhe in einem

116.

117.

118.

119.

Magnetfeld, dessen Feldlinien senk-
recht auf der Leiterebene stehen. Die
Induktion des Magnetfeldes nimmt
linear mit der Zeit ab. Zur Zeit t =0
hat die Induktion den Wert B = B,
zur Zeit t = t; ist B = 0. Welche Span-
nung wird in dem Leiter induziert?

Ein 30 cm langer, gerader Leiter bewegt
sich mit einer Geschwindigkeit v =
=8 ms-! senkrecht zur Richtung
eines homogenen Magnetfeldes der
Induktion B = 0,55 T. Welche Span-
nung wird in dem Leiter induziert?

Eine rechteckige Leiterwindung mit den
Abmessungen a =25cm, b = 30cm
rotiert um eine durch die Mitten der
langen Seiten gehende Achse, die in
Bild 69 senkrecht zur Richtung cines

+ o+ + o+ o+ o+
+ 1+ + + +
G o) RS S oy ]
n o+ |+ + + +]+
+ ]+ + + o+ |+
+ |+ + _+ |+ .
. a Bild 69

homogenen Magnetfeldes orientiert ist,
mit einer Tourenzahl » = 12060 min~*.
Die Feldstirke hat den Wert H =
= 478000 A/m. Bestimmen Sie den
zeitlichen Mittelwert der dabei in der
Windung induzierten Spannung.

Wie grof} ist die Kraft, mit der ein Anker
an den Polen eines Hufeisenmagneten
festgehalten wird, dessen einer Pol eine
Fliche A4 = 0,01 m* hat, wenn die
magnetische Induktion im Spalt zwi-
schen Polen und Anker den Wert B =
= 1,2 Wb m~? aufweist?

Stellen Sie eine Formel auf, aus der die
Induktivitit einer Ringspule von recht-
eckigem Querschnitt hervorgeht, die
N Windungen hat. Die Spule entspricht
der in Bild 59 dargestellten.
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1.4. Wechselstrom und elektrische Schwingungen

Die Entstehung der induzierten elektrischen Wechselspannung verdeutlichen wir uns
gewohnlich an Hand einer einfachen Vorrichtung, in der sich ein rechteckiger, ebener
Leiter mit dem Fldcheninhalt 4 mit konstanter Winkelgeschwindigkeit w in einem
Magnetfeld der Induktion B dreht. Er rotiert um eine Achse (Bild 70), welche die
Mittelpunkte seiner gegeniiberliegenden Seiten verbindet

und senkrecht zur Richtung der magnetischen Induktion tor ot
orientiert ist. Ho+ o+ o+ [+
Fiir den Momentanwert der elektrischen Wechselspannung 51« & o
U, die in einem derartigen Rahmen induziert wird, gilt I I

die Beziehung

+ o+ o+

+ +84+ + o+ 4+
U = U, sinwt Bild 70

(w Winkelgeschwindigkeit des rotierenden Rahmens, zugleich auch die Kreisfrequenz
der induzierten Spannung, U, Hochstwert der induzierten Spannung). Der Hochst-
wert ist definiert durch

U, = Dw,

wobei @ wiederum den Hochstwert des magnetischen Induktionsflusses darstellt, der
durch die Fliche des Rahmens tritt, also @ = BA. Der Momentanwert des elektrischen
Stromes I, der in einem Leiter durch die elektrische Wechselspannung hervorgerufen
wird, ist durch

I = I, sin (wt — ¢)

gegeben. Dabei ist mit dem Symbol ¢ die Phasenverschiebung zwischen der Spannung
und dem Strom ausgedriickt. Sie hdngt von der Art des Stromverbrauchers (d. h. der
Belastung) ab.

Die Leistung des harmonischen Wechselstroms P ist durch

P = Ulcosg

gegeben (U Effektivwert der Spannung an den Leiterenden, I Effektivwert des durch
den Leiter fliecBenden Stromes, cos ¢ Leistungsfaktor des Stromverbrauchers, d. h.
der Cosinus der Phasenverschiebung zwischen Spannung und Strom).

Den Effektivwert der Spannung U bzw. des Stromes / berechnen wir aus den jeweiligen
Hochstwerten U, bzw. I, gemiB folgender Beziehung:

U, 1,
Ugt = —=; Lt = —=.
\/2 \/2
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Die Leiterspannung U, eines Dreiphasenstroms berechnen wir aus der Phasen-
spannung U, bei der Sternschaltung gemil der Beziehung

Us = Uf \/5.
Die entsprechenden Stromwerte erfiillen bei dieser Schaltung die Beziehung
Is = If .

Dagegen gelten bei der Dreieckschaltung die Beziehungen
Ug=Us; I, =1I3.

Fiir die Leistung des Dreiphasenstroms gilt ohne Bezugnahme auf die Art der Schal-
tung eines Stromverbrauchers die Bezichung

P =+/3U,1Icosp.

(Us und I Effektivwerte der Leiterspannung und des verketteten Stromes, cos ¢
Leistungsfaktor des jeweiligen Stromverbrauchers).
Da wir den Momentanwert der induzierten elektrischen Spannung

durch einen Komplexausdruck
U* = U, coswt + 1 Uy sin ot

ersetzen und somit in der Gaussschen Zahlenebene ausdriicken kénnen, ist es. moglich,
den Wert der induzierten Spannung als rotierenden Zeiger darzustellen. Das trifft fiir
alle harmonisch verinderlichen GréBen gleichermaBen zu, ohne Riicksicht darauf,
ob sie einer Sinus- oder Cosinusfunktion folgen. Aus diesen Erwidgungen heraus wurde
die grafische Darstellung der harmonisch verdnderlichen Gréf8en entwickelt, deren
wichtige Regeln wir im folgenden Beispiel veranschaulichen wollen.

Wir haben den Wechselstrom

I = I;sin (0t + ¢).

Man kann ihn durch einen Zeiger darstellen, der als Vektor in der komplexen Zahlen-
ebene aufgefalt werden kann, dessen Absolutbetrag den konstanten Wert I, hat, der
zur Zeit ' = 0 in bezug auf die horizontale Achse eine Neigung unter dem Winkel ¢
(Phasenverschiebung) hat und mit der Winkelgeschwindigkeit w um eine Achse ro-
tiert, die senkrecht zur Zeichenebene durch den Anfangspunkt O verlduft. Wir be-
trachten dabei die Umlaufrichtung entgegen dem Uhrzeigersinn als die positive. Der

7  Hajko, Elektrik
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Momentanwert des Stromes ist dann zu einem bestimmten Augenblick gleich der
Projektion des rotierenden Zeigers auf die Vertikale (Bild 71).
Der Momentanwert der Spannung

wird zur Zeit ¢ = 0 als Zeiger der konstanten GroBe il in Richtung einer horizontalen
Achse dargestellt. Auch der Zeiger #* rotiert mit der Winkelgeschwindigkeit w, wo-
bei I* beziiglich #* denselben konstanten Wert der Phasenverschiebung ¢ beibehilt.

Ve

/25 y

/Z7y
3

Bild 71 Bild 72

Komplexe Ausdriicke addieren wir, indem wir gesondert ihre jeweils reellen und
imaginiren Bestandteile addieren. Der resultierende komplexe Ausdruck hat daher
einen Realteil, der sich aus den reellen Komponenten, und einen Imaginérteil, der sich
aus den imagindren Komponenten zusammensetzt. Deshalb cerhalten wir den resul-
tierenden Zeiger Z* aus zwei rotierenden Zeigern Zl und Zz in einem gegebenen
Augenblick durch die Addition beider Zeiger wie bei gewohnlichen Vektoren
(Bild 72):

2* = ZT + 2:—_—' le +jZIy + sz +jZ2y = (le + ZZX) +
+j(Zly + ZZy)-
Wenn die Wechselspannung
U = U, sin wt

einem Reihenstromkreis mit dem ohmschen Widerstand R, der Induktivitit L und
der Kapazitit C zugeleitet wird, dann fliet in diesem ein Strom vom Héchstwert

Uo

2 1 2,
R* 4+ (oLl — —
wC

IO=
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wobei der Strom gegeniiber der Spannung um einen Phasenwinkel ¢ verzogert ist,
der sich aus der Bezichung ergibt

oC

tang =
v R

Der Momentanwert des Stromes, der durch einen so aufgebauten Stromkreis flieBt,
folgt der Beziechung
Uo‘

D

I = I,sin(wt — p) =

(sinwt — @) =
2

U, .
= —sIn (wt — .
~ ( ®)
Die Grole

2
Z:\/R’l+<wL———l )
oC

bezeichnen wir als die Impedanz (den Scheinwiderstand) des Kreises. Wenn sich aber
in einem Stromkreis nur der ohmsche Widerstand R befindet, d. h.,, L = 0, C — oo,
dann ist

Z=R, p=0° Iz%(—)-sinwt.

Fiir den Fall, daB der Stromkreis nur die Induktivitit L enthélt, d.h., R = 0,
C — oo, dann ergibt sich

w=rwl
Z=wl, @=090°,
v AN e
I = _——sin(wt — ¢). [ e
wL _‘_U/i__ | 2 ¥ I~
Fiir den Fall, daB im Stromkreis nur die Kapa- %-z G=IR
zitdt C enthalten ist, daB also R = 0, L = 0, o L
udt= =
gilt schlieBlich e
}
1 90° i
e T Bild 73

I = U, oC sin (ot + ).

In Bild 73 sind die Spannungszeiger (Spannungsabfille) fiir die GréBen R, L und C,
also Ux, Uf und UZ (gestrichelt) grafisch dargestellt, desgleichen die Zeiger der

T*
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Klemmenspannungen Up’, Up’ und UZ’ (ausgezogene Linien), die fiir die Uber-
windung der angegebenen Widerstdnde erforderlich werden.

Nach dem in Bild 73 angedeuteten Dreieck erfiillen demnach die Impedanz des
Stromkreises sowie der Tangens der resultierenden Phasenverschiebung die folgenden
Beziehungen:

2 2
Z2I? = I?’R?* + I? cuL—L s Z=\/R2+ wL——l— ,
wC wC

IR R

Wenn durch einen Stromkreis, der aus einer Spule mit der Induktivitit L, einem
Kondensator mit der Kapazitdt C und einem ohmschen Widerstand R, alle in Serie
geschaltet, besteht, ein Strom der Kreisfrequenz w, flieBt, welche die Bedingung
erfiillt

1 =0, d.h, cu,=——1

0, C Jic’

ol —

dann bedeutet das, dafl im Serienstromkreis Resonanz eintritt, und wir bezeichnen w,
als die sog. Resonanzfrequenz. Der dabei im Serienstromkreis fliecBende Strom stellt
ein Maximum dar und folgt der Beziehung

-2
R

Der Widerstand des gesamten StromKreises ist in diesem Fall gleich dem ohmschen.
In einem Transformator bestehen zwischen den Stromstérken, den Spannungen und
den Windungszahlen von Primdr- und Sekundirwicklung (I, Uy, N, bzw.I,, U,, N;)
die folgenden Beziehungen:

Up L _ Ny
v, I, N,

Fiir die Periodendauer T einer elektrischen Schwingung in €inem Oszillatorkreis, der
aus dem ohmschen Widerstand R, der Induktivitit L und der Kapazitat C besteht,
gilt die Beziehung
2%
1 R?

LC 4L2

T =
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Wenn der ohmsche Widerstand so klein ist, da3 er gegeniiber dem kapazitiven bzw.
induktiven vernachldssigt werden kann, 146t sich die Periodendauer bzw. Frequenz
der Schwingung geméaf der Bezichung ‘

1

To =27 \/Z;C—' bzw. Ho = —————
2m/LC

ausdriicken.

B Beispiele

83. Ein Drahtrahmen vom Flicheninhalt 4 = 100 cm? rotiert nach Bild 74 in einem
homogenen Magnetfeld mit der Induktion B = 0,05 Wb m~2 so, daB er in einer Se-
kunde f = 300 Umdrehungen ausfiihrt. Bestimmen Sie die in dem Drahtrahmen indu-
zierte elektrische Spannung bei den Winkelstellungen ¢ = 0°, 45°, 90°, 135°, 180°, 225°,
270°, 315° und 360°.

Losung

Der Induktionsflu}, der in einem
bestimmten Augenblick durch
die Windungsfliche tritt, ist durch oyt
die Bezichung O+ o+ o+ o+

,@:EdZ=BAcoswt
& + +  + o+

gegeben, wobei o die Winkelge- Bild 74
schwindigkeit des rotierenden

Rahmens bedeutet.
Entsprechend dem Induktionsgesetz kdnnen wir aber fiir die induzierte Spannung auch
schreiben
do .
U = —— = BAwsin ot.
dr

Da w = 27nn und ot = ¢ ist, ergibt sich
U, =27 nBAsin g,
und nach Einsetzen der gegebenen Werte erhalten wir

Uy =2n-300s"1.0,05 Vsm~2-100 - 10~*m?sin ¢ = 0,942 V sin ¢.
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84.

85.

Wenn wir fiir den Winkel ¢ die jeweils vorgegebene Gradzahl einsetzen, erhalten wir die
gesuchten Induktionsspannungen zu

Uo =0942sin0° =0V;

Uiss = 0,9425in45° = 0,667 V;
Uiso = 0,942 5in 90° = 0,942 V;
Uii1as = 0,942 sin 135° = 0,667 V;
Unso = 0,942 sin 1800 =0 V;

Uiz2s = 0,942 sin 225° —0,667 V;
U|270 = 0,942 sin 270° _0,942 V,
Uiass = 0,942 sin 315° = —0,667 V;
Uiaso = 0,942 Sil’l 360° =0V.

I

In einer kurzen Spule der Querschnittsfliche 4 = 0,5 m? und einer Windungszahl
N = 60 wird durch ein harmonisch verdnderliches Magnetfeld der Frequenz f = 10° s-!
eine Induktionsspannung mit dem Hochstwert U;o = 30 mV induziert. Wie gro8 ist der
Maximalwert der magnetischen Induktion im Mittelpunkt der Spule?

Losung

Fiir die induzierte Wechselspannung, die in einem Feld mit dem Gesamtinduktionsflufl
(Hochstwert @,,,) bei der Kreisfrequenz o induziert wird, gilt

U; = @y sin wt = Uy, sin i,
wobei
Uip = Ognev = N 21

die Amplitude dieser Wechselspannung darstellt. Dabei wird der HOchstwert des ge-
samten Induktionsflusses mit Hilfe der Windungszahl N und des fiir eine einzige Win-
dung méglichen Maximalflusses @, ausgedriickt, also ‘

ng = qij-

\

Aus der Gleichung fiir die Amplitude der induzierten Wechselspannung koénnen wir @,
berechnen
By =20
2nfN

Damit sind wir in der Lage, den gesuchten Maximalwert der magnetischen Induktion zu
berechnen. Dieser ist
D, U, 30-103V

B, = 2m _ _ — 1,59 - 1010 Wb m-2.
A4 27fNA  27-10°51-60-05m2 o

In einem Trafokern entsteht unter der Wirkung eines in der Primérspule flieBenden
elektrischen Stromes ein Induktionsflul mit dem Maximalwert @, = 2 - 103 Wb. Wie
groB ist der in der Sekundéirspule mit N = 100 Windungen induzierte Effektivwert der
Induktionsspannung, wenn sich der Induktionsflufl mit einer Frequenz von f = 50 s~
dndert?
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86.

Losung

Fiir den Maximalwert der Induktionsspannung, die in N Windungen bei der Frequenz f
und einem Maximalwert des Induktionsflusses &, induziert wird, haben wir in Bei-
spiel 84 eine Beziechung abgeleitet:

Ui =D,N2r f.
Daraus ergibt sich der Effektivwert der induzierten Spannung zu

U, DN 2
U. o _ PaN2E 44410, N=4,44-5051-2.10- Vs- 100 =444 V.

rr=\/5— \/5

Berechnen Sie die von einem Wechselstrom I = /; sin wt in einem Leiter mit dem
ohmschen Widerstand R wahrend der Dauer einer Periode T verrichtete Arbeit.

Losung

Fiir die Leistung eines Gleichstroms gilt
P = Ul,

wobei U die Spannung und 7 den Strom bedeutet. Da sich beim Wechselstrom sowohl
Stromstirke als auch Spannung periodisch gemif einer Sinusfunktion dndern, ist der
Momentanwert der Leistung durch die Beziehung

P’ = Uy sin ot - I sin wt = Upl, sin? ot = RIZ sin® wt

gegeben, denn die Spannung und der Strom sind bei rein ohmscher Belastung nicht
phasenverschoben und auflerdem ist U9 = RI,. Die Durchschnittsleistung P des
Wechselstroms ist der mittlere Wert der
wihrend einer ganzen Periode verdnder-

lichen Leistung. Deshalb kOnnen wir — -
unter Verwendung der in Bild 75 einge-
)

o

tragenen Symbole - fiir die Durchschnitts-

leistung schreiben 4 <
t

T 0 \ /
7 r

TP =f~RIOZSin2 wt dt = ngi’
0 Bild 75
RIZ I, \?
P=_20—=R(7§—) = RI%,
. I, . . .
wobei I;y = —= den Effektivwert des Stromes darstellt, dessen Maximalwert selbst mit

7

I, angegeben ist.
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Die withrend einer ganzen Periode T verrichtete Arbeit erhalten wir in Ubereinstimmung
mit der Definition fiir die Arbeit als Produkt von Durchschnittsleistung und Periode,
also

Wy = RI%T.

87. Ein Klingeltransformator liefert sekundéirseitig bei einer Spannung U, = 4 V e¢inen
Strom I, = 200 mA. Welcher Strom /; flieBt in der Primédrwicklung, wenn diese mit
einer Spannung U; = 220 V gespeist wird und wir eventuelle Trafoverluste vernach-
ldssigen k6nnen?

Ldsung

Unter der Voraussetzung, dal Verluste vernachldssigt werden konnen, ist die Arbeit des
in der Zeitspanne ¢ in der Primir- und in der Sekundirwicklung flieBenden Stroms die
gleiche, also

Ulllt = Uzlzt.
Das ergibt

U, 4v 0,8
=02 =200-103A = —-A =0,0036 A,
L=k U, A0V — 20 0,006 A.

88. Welchen Strom nimmt ein Wechselstrommotor auf, der bei einer Spannung U = 220V
eine Leistung P = 2,2 kW liefert, wenn der Leistungsfaktor cos ¢ = 0,88 und der
Wirkungsgrad des Motors n = 0,89 betrigt?

Losung

Fiir die Leistung des Wechselstroms gilt die Beziehung
P, = Ul cos ¢.
Wir konnen also fiir den Wirkungsgrad schreiben

__._Po
=5

i

wobei P, die von der Maschine aufgenommene (input) und P, die von ihr abgegebene
(output) Leistung darstellt.
Fiir den gesuchten Wert der Stromstidrke erhalten wir demnach die Beziehung

I P, 2200 W
" pUcosg  0,89-220V-0,88

89. Ein Kondensator mit der Kapazitit C hat zur Zeit ¢ = 0 das Potential U,. Wir entladen
ihn tiber einen Widerstand R. Wie sieht der zeitliche Verlauf des Stromes aus?

= 12,77 A.
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Losung

Fiir die Behandlung des Stromkreises in Bild 76 verwenden wir das 2. KIRCHHOFFsche
Gesetz. Dabei ist die einzige Spannungsquelle unser Kondensator mit der Kapazitit C,
der die Ladungsmenge Q enthilt. Auf Grund des durch den Widerstand flieBenden
Stromes [ tritt am Widerstand R der ohmsche Spannungsabfall auf. Es ist deshalb

Uc=1IR 7 r
oder

0 N qC

e [

Wir koénnen diese Gleichung nach der Zeit ableiten und er-
halten

dg 1 dr

—~ — —R—=0.

dt C dt
Da mit dem Symbol Q die auf den Kondensatorplatten enthaltene Ladung bezeichnet
ist, gilt

do
- =1
ds
und also
I drs
— — =0.
C +R dr

Die Losung dieser Differentialgleichung lautet

t
I=Ke %,

wobei K die Integrationskonstante bedeutet.

Wir bestimmen sie unter Beriicksichtigung der Bedingung, dall zu Beginn der Konden-
satorentladung, also nach Betitigen des Schalters S (Bild 76), der Kondensator noch
das Potential U, besafl, so dal fiir die Zeit # = 0 gilt Q/C = U,. Wenn wir das in die
urspriingliche Gleichung einsetzen, erhalten wir

Ug=IR=0

t

U, — RKe RC =9,
und fiir den Fall ¢ = 0 erhalten wir

Uo—~RK =0,
d h,
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90.

Damit ist der zeitliche Verlauf des Stroms im angegebenen Stromkreis durch folgende
Beziehung wiedergegeben:

t t
I=%B_R—-C=Ioe-R_c‘

Die Platten eines Kondensators der Kapazitit C = 0,1 uF sind auf eine bestimmte
Potentialdifferenz aufgeladen. In welcher Zeit entlddt sich der Kondensator auf die
Hilfte seines Anfangswertes, wenn die Platten durch einen hochohmigen Leiter mit dem
Widerstand R = 2 - 10° Q verbunden werden?

Losung

Fiir diesen Stromkreis gilt analog zum vorhergegangenen Beispiel die Beziehung

Q
— — IR =0.
C

Da jedoch I = —dQ/d¢ ist (Q bedeutet die Ladung auf den Platten des Kondensators,
deshalb ist das Vorzeichen negativ), kann man auch schreiben
Qo dg dQ

< +R—==0, d.h,
-+

1
dr F TR Tk

Das ergibt nach einer Umformung

d 1
R
Q RC
Durch Integration dieser Gleichung erhalten wir die Beziechung
1
InQ = —'—R?t + IHQ().

Fiir die Zeitabhingigkeit der an den Elektroden vorhandenen Ladungen erhalten wir

t
0 =0 e-R >
wobei Q, die maximale Ladung bedeutet, das ist diejenige Ladungsmenge, die zur Zeit
t = 0 auf den Elektroden sitzt. Fiir die in der Aufgabe gesuchte Zeit #*, in der sich der

Kondensator um die Hélfte entlddt, gilt beziiglich der Ladung Q@ = Q,/2. Wir schreiben
deshalb

—in=Qo e-RE >
d. h,
t*
! =¢ RC

2
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91.

Also erhalten wir die gesuchte Zeit zu

*=RCIn2=0,1-10F-2-10Q-2,31g2 = 0,14s.

Wie veréindert sich der Strom I in einem Leiter mit dem Widerstand R und der Induk-
tivitdt L in der Zeit, wenn wir ihn an eine Quelle mit der konstanten Spannung U an-
schliefen?

Losung

Fur die Berechnung des in Bild 77 dargestellten Stromkreises verwenden wir das
2. Kircuuorrsche Gesetz, wobei wir beriicksichtigen, daB in der Spule durch die Ande-
rung des Stroms eine Spannung induziert wird, fiir die gilt
ds L R
U =—-L—.
! dr

Es wird also

dI ~—O O
U=RIl, U—L=— =
v+ b ’ dt RL Bild 77

Lg—i-RI—U:O.
dr .

Wenn wir von der letzten Gleichung die Ableitung nach der Zeit bilden, erhalten wir

2y
Tird o

L —
dr? de

Dieser Typ der Differentialgleichungen hat die allgemeine Losung

I=C;e*t + C, e*??,

wobei C; und C, Integrationskonstanten und «,, «, die Wurzeln der quadratischen
Gleichung

La? + Rx +0=0 '
sind. Fiir sie gilt
0
X152 = < R
-

Damit nimmt die Losung die Form
R

-2
I= C1 + Cz 54

an.
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Die Integrationskonstanten bestimmen wir aus zwei Grenzbedingungen, und zwar
fiirt = 0: I=O‘*0=C1+Cz;

U
fl'irt=OO:> =—E—)'E=C1+O
Aus den angegebenen beiden Gleichungen erhalten wir fiir C; und C,
U U
C1=E; Cz=—C1=—1—e‘

und damit nach Einsetzen beider Konstanten als endgiiltige L6sung

R R

U Uu -+t U - =t

I=———¢ L =—(1—eL).
R R R

92. Durch Betitigen des Schalters S (Bild 78) wird der Kondensator tber den Wider-
stand R an die Klemmenspannung U, angeschlossen. In welcher Zeit, vom Beginn
des Aufladens eines Kondensators der Kapazitit C an gerechnet, erreicht die Spannung
auf den Kondensatorplatten den Wert Uc?

R

Losung [ , [,

Uy I [y
. .o [
Gemil dem 2. KircHHOFFschen Gesetz konnen wir fiir den an- I“—{ k

gegebenen Stromkreis in jedem Augenblick die Beziehung Bild“ 78

Q
— U, = IR
C+ 0

anwenden. Dabei ist Q der Momentanwert der auf den Kondensatorplatten gespeicher-
ten Ladung. Da wir fiir den Strom I = —dQ/dr schreiben konnen, erhalten wir nach
Umformung die Beziechung

@ __1,_ W
TR A (1)

Wenn wir die Substitution

0 Us
RT®R™*

einfiihren, wird

dx 1 do do dx
& ~cera Y @ TRy
so daB wir nach Einsetzen in Gl. (1) erhalten

dx_ lx
d¢  CR™
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Durch Integration dieser Gleichung finden wir

t
- s 0
=ke °R, d.h
x ¢ ’ > CR

t

U -t
+—E°=ke CR |

Die Integrationskonstante k bestimmen wir aus der Bedingung, da3 zur Zeit ¢ = 0 auch
die Ladung Q = 0 ist, so daB sich ergibt

Uo
k=—.
R
Da Q/C = — U, die am Kondensator anliegende Momentanspannung ist, die gegen die
Klemmenspannung U, gemessen wird, ergibt sich

t t
- - Up—U
~UC+U0=U08 CR, d.h.,e CR — —OTJ-—C-
4]

s

so daB fiir die gesuchte Zeit 7, zu der am Kondensator die Spannung Ug besteht, die
Beziehung gilt:

U
t=CRIn °

Uy — Uc *

93. Ein Stromkreis enthilt in Serie geschaltet einen ohmschen Widerstand R = 10 Q, einen
Kondensator der Kapazitdt C =2 uF und eine Induktionsspule der Induktivitit
L = 0,1 H. Erist an eine Wechselspannung U = 220 V mit der Netzfrequenz f = 50 s~*
angeschlossen. Welcher Strom flieBt in dem angegebenen Stromkreis?

Losung

Der Scheinwiderstand des Stromkreises aus dem ohmschen Widerstand R, der Induk-
tivitdt L und der Kapazitidt C wird bei der Kreisfrequenz o angegeben durch

J o)

= R? L ——].

VA + <w : wC)

Demnach wird entsprechend dem Oumschen Gesetz bei der Kreisfrequenz o = 2rf =
= 21 50 s~! = 314 s~! der Strom einen Effektivwert annehmen, fiir den gilt

o U
2
R IL——
A/ +<°° c>
220V
- 1 — =044,
10°Q2 + (314501 H —
x/ +( S5 3145'1'2'10‘5F)

94. Eine Drosselspule und ein Kondensator der Kapazitit C = 10 uF, die hintereinander-
geschaltet sind, werden von einem Strom I = 1 A durchflossen. Sie sind an ein Netz der
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Spannung U = 120 V und der Frequenz f = 50 s~! angeschlossen. Der ohmsche Wider-
stand der Drosselspule hat den Wert R = 120 Q. Berechnen Sie die Induktivitdt der
Spule.

Losung

Aus der Beziehung

U
1=

JR2+ oL — 1>2
oC

erhdlt man die gesuchte Induktivitdt und kann sie wie folgt ausdriicken:

U? 1
Z _ R
_ I? - wC
= ~ =
1202 y2 1
- — 1202 Q%
A/ 12 A2 + 314s-*-10-10-°F

_ = 1,013 H.
314 st ,_3_

95. Ein Kondensator soll einen kapazitiven Widerstand X = 500 Q@ haben. Wie groBB mul3
demnach seine Kapazitit bei einer Frequenz von a) 50 s~ und b) 50000 s-! sein?

Losung

Den kapazitiven Widerstand kénnen wir mit Hilfe der Kapazitit C und der Kreis-
frequenz w = 2rf ausdriicken, d. h.,

1
oC’

Die gesuchte Kapazitit berechnen wir aus

1 1

‘=Y "

Fiir die einzelnen vorgenannten Frequenzen ermitteln wir dann die entsprechenden
Kapazititen wie folgt:
1
2+ 5051 - 500 Q
1
27+ 50000 s~ - 500 Q

Cso = = 6,37-10-°F = 6,37 uF;

= 6,37+ 107° F = 0,00637 uF.

Csoo000 =
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96. Ein Kondensator der Kapazitit C = 16 wF und ein ohmscher Widerstand der Grofle

97.

R = 200 Q sind, in Serie geschaltet, an ein Wechselstromnetz der Spannung U = 220 V
und der Frequenz f = 50 s~* angeschlossen. Es sind fiir diesen Fall folgende Gréfien zu
bestimmen: die Impedanz des Stromkreises, die Stromstidrke, die Phase zwischen
Spannung und Strom, die am Kondensator und die am ohmschen Widerstand anliegende
Spannung.

Losung :

Wir wenden die fiir einen Wechselstromkreis der angegebenen Art giiltigen Beziehungen
an und finden

1 2
Z = A/R2 JzoZgz ( )=282,1Q;
0 T \3r 5057-16-10°F —_—

= ~220V—0779A
T Z 2820 = ’

R 200Q

=_=______=0 . — o ’
cos @ Z 2850 ,707; @ = 44°50,

1 0,78 A
Ug=— = : = 155,15 V;

oC 2%-50s87*16-10°5F
Ug =IR =0,78 A-200Q = 15597 V.,

Ein Stromverbraucher mit einer Leistungsaufnahme P = 3 kW und einem Leistungs-
faktor cos ¢; = 0,6 ist an ein ¢lektrisches Netz der Spannung U = 220 V und der Fre-
puenz f = 50 s~! angeschlossen.

a) Welchen Kondensator miifiten wir in Parallelschaltung an die Klemmen des Strom-
verbrauchers anschlieBen, um eine Erhoéhung des Leistungsfaktors auf den Wert
cos ¢; = 0,9 zu erreichen?

b) Wie miifite ein Kondensator beschaﬁ‘en sein, dessen zusitzlicher Anschlufl keine
Phasenverschiebung ergibt, so daB3 cos ¢, = 1 wird?

Losung

Die ohmsche Komponente des durch den Stromver-
braucher flieBenden Stroms I zeigt beziiglich der Span-
nung U keine Phasenverschiebung. Wir bezeichnen sie
deshalb mit dem Zeiger f;, der mit der Richtung des
Spannungszeigers #I* zusammenfillt (Bild 79). Wenn wir
als positive Richtung die Richtung der Phasenverschiebung
entgegen dem Uhrzeigersinn bezeichnen, dann sind die
induktive und die kapazitive Stromkomponente durch die
Vektoren I¥ und J* zu definieren. Der resultierende Zeiger ~ Bild 79
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wird vor dem Anschlul des Zusatzkondensators die GroBe I ¥ und nach dessen An-
schluB die GréBe I haben.

. - —
Zwischen der alten Stellung des resultierenden Stromzeigers 12 und des neuen 13 wird
nach Bild 168 die Beziehung '

- - =

23 =12—-1
gelten. Fiir die GroBen der Zeiger bedeutet das
I = Iy tan ¢, — I tan gz,
v = il (tan tan @;)
1= U P1 P2)-
oC
Daraus ergibt sich

Ci=

P
e (tan @; — tan @3).
a) Da cos ¢; = 0,6 dem in den Tabellen angegebenen Wert tan ¢; = 1,3333 entspricht
und fiir cos ¢, = 0,9sichtan ¢, = 0,4843 ergibt, erhalten wir die Kapazitit des erforder-
lichen Kondensators zu

3000 W
= 1,3333 — 0,4843) = 167,6 - 10-° F.
¢ 27 - 50512202 V2 . ’ )= 1676 10°F

b) Wenn wir die Phasenverschiebung auf den Wert cos ¢, = 1 ausgleichen wo]len,'
setzen wir in die oben abgeleitete Beziehung tan ¢, = 0 ein, so daB sich ergibt

3000 W
27 - 50812202 V2

C= tan ¢y = 1,3333 = 263,2- 10" F.

oU?

98. Welcher Strom flieBt durch einen Stromkreis, der aus einer'induktivitéit L =4H und
aus einer Kapazitit C = 16 uF besteht, die, in Parallelschaltung angeordnet, an eine
Wechselstromquelle der Spannung U =220V und der Frequenz f = 50s-! an-
geschlossen sind?

|
Losung

Der angegebene Stromkreis ist in Bild 80a dargestellt, sein Zeigerdiagramm in Bild 80b.
Der in der Spule flieBende Strom ist um 90° gegeniiber der Spannung U verzdgert, wo-

7 [;

IX

Q
<
~

Ix

LIX

Bild 80a Bild 80b
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durch sich ergibt, daB der Kondensatorstrom seinerseits der Klemmenspannung um 90°
vorauseilt. Aus dem dargestellten Zeigerdiagramm resultiert die GroBe der Zeiger zu

f=1I.—1,.
Da jedoch
U U
.= — -
c=—71 L=7p
oC
ist, wird
1 1
- -\ = . -1.16-10-6F — — ——  } .
I=UlwC wL) 220V<27r 50s 16-10-°F 2n-50s‘1-4H>
= 0,93 A.

99. Ein in Bild 81 dargesteliter Serienresonanzkreis, bestehend aus einer Spule mit dem
ohmschen Widerstand R = 0,2 Q, der Induktivitdt L = 50 uH und einem Kondensator
der Kapazitdt C = 300 pF, ist an eine Spannung U = 4 V angeschlossen. Ermitteln Sie
die Resonanzfrequenz, den Resonanzstrom und die bei Resonanz an Induktivitit bzw.
Kapazitit anliegende Spannung. )

Losung
u .

Fiir die Resonanzfrequenz gilt die Bezichung Bild 81
. 1 _ 1
2m/LC  2m/50-10-SH-300-10-2 F

T

= 1,299 - 10° 571,

Der im Resonanzfall flieBende Strom entspricht dem, der nur bei Vorhandenscin eines
ohmschen Widerstands auftrite, ndmlich

Die an Induktivitdt und Kapazitdt anstehende Spannung erhalten wir aus dem Ormschen
Gesetz fiir Wechselstrom zu

U, =LowL =20A 271,299 -10°s1-50-10-°H = 8,165 - 10° V;

1
=20A = 8,165 10° V.

Us =1,
¢ ,C 27-1,3-10°s71-300-10-12F

100. Ein Schwingkreis besteht aus einer Spule der Induktivitdt L = 0,07 Hund einem Platten-
kondensator mit dem Fldcheninhalt 4 = 0,45 m?, der als Dielektrikum Paraffinpapier
der Dicke d = 0,1 mm (¢, = 2) enthélt. Es ist die Maximalstirke und die Periode des
Resonanzstroms zu bestimmen fiir den Fall, dal der Kondensator anfangs auf die Span-
nung U, = 100 V aufgeladen wurde und daBl der ohmsche Widerstand des Kreises zu
vernachldssigen ist.

8 Hajko, Elektrik



114

1. Elektrische und magnetische Vorgdnge

Losung

In Anwendung des 2. KiRcHHOFFschen Gesetzes konnen wir fiir diesen Stromkreis

schreiben
ds
RI=U—L—,
dr
eine Bezichung, die in Hinsicht auf die Voraussetzung, dal R = 0ist, vereinfacht werden

kann zu

dI
0=U—L—. 1
U—L+ @

Da aber auch U = Q/C ist, ergibt sich

o drs
0=——L—.
C det
Indem wir die vorstehende Gleichung nach der, Zeit differenzieren, kénnen wir sie unter
Verwendung des Ausdrucks dQ/d¢ = —1I in die Form
d27
T
bringen, wobei wir 1/LC = w? gesetzt haben. Wir 16sen die angegebene Differential-
gleichung und erhalten

I = I, sin (ot + @), @)

worin I, die Maximalamplitude des im Schwingkreis flieBenden Stroms und ¢ seine
Phasenkonstante darstellt. Beide GréBen konnen wir aus den Anfangsbedingungen er-
mitteln, Da fiir die Zeitt = Oauch I = Ound U = U, gilt, ergibt sich aus G1(2) ¢ = 0.
Aus Gl (1) jedoch folgt

0= Uo _ L(DIo,
d. h,

Da die Kapazitit eines Plattenkondensators durch die Beziehung

C=€Oe,—=eA

d d

angegeben wird, erhalten wir nach Einsetzen der gegebenen Werte

ed 2.8,85.10712. 0,45
I, = = = OA/ 2 ? ~ .
o="Uo A/ za = 1° 0,07 - 0,0001 AR 0I07A
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101,

102.

8*

Fiir die Periodendauer der ungedimpften Schwingung des Kreises finden wir schlieBlich

2 — LeA 0,07-2-8,385-10"12-0,45
=-w—=27r\/LC=27rN/7——2 3,14J 5,001 s~

~4,7-107%s.

Wie groB ist die Phasenspannung eines Drehstromgenerators, dessen Spulen in Stern-
schaltung stehen, wenn die Leiterspannung 220 V betrégt?

Losung

Da die Spulen des Generators um jeweils einen Winkel von 120° gegeneinander gedreht
sind, miissen auch die in ihnen induzierten Spannungen jeweils um 120° gegeneinander
elektrisch verschoben sein. Wenn wir die Phasenspannungen #i} als umlaufende Zeiger
darstellen, dann werden auch sie um 120° gegeneinander verdreht sein. Die Leiter-
spannung i stellt dann die Differenz zweier Phasen-
spannungszeiger dar; also ist # der die Spitzen der
Zeiger ii} verbindende Zeiger.

Aus Bild 82 ist zu entnehmen, daB entsprechend dem
Teildreieck 00 ’C die Zeiger bestimmt sind zu

U, J3

= U,cos 30° = Uy, 5
Damit ist
U, 220V .
U= —==—-—=127V. .
/3 Lmws T —— Bild 82

In der Speiseleitung eines elektrischen Drehstromofens, der fiir 3 - 380 V in Drejeck-
schaltung ausgelegt ist, wird ein Strom 7, = 6 A gemessen. Wie grof ist

a) der Phasenstrom,

b) der Widerstand in einer Phase,

¢) die Ofenleistung?

Losung

a) Bekanntlich ist die Beziehung zwischen Phasenstrom und verkettetem Leiterstrom
bei der Dreieckschaltung analog der Beziehung zwischen den Spannungen bei der Stern-
schaltung, also

b) Da im Falle der Dreieckschaltung gilt
U 5= Us,
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erhalten wir

¢) Die Leistung berechnen wir aus den angegebenen Werten, die in die Bezichung fiir die
Leistung des Drehstroms eingesetzt werden. Diese erhalten wir als den dreifachen Wert
der mit einer einzigen Phase iibertragenen Leistung, also

P = 3U,lI,cos .

Diese Beziehung wird allgemein in der Weise angewendet, dal alle Werte verkettete
Werte darstellen. Fiir den Fall der Sternschaltung bedeutet das

Us =
—=1I;cos¢p =\/3 UsL;cos ¢ .

J3

Das gleiche gilt im Falle der Dreieckschaltung, also

P=3

s

I —_
P=3Us—=cos ¢ =\/3 Uy cos ¢ .

V3

In unserem Falle ergibt das

P=1/3-380V-6A-1=3949W = 3,949 kW,

103. Mit welchem Leistungsfaktor arbeitet ein Drehstrommotor, der bei einer Leiterspan-
nung von U =6000V und einer Leistungsaufnahme P; =200kW den Strom
I = 23,4 A aufnimmt? Welche Spannung entfiele auf eine einzige Phase, wenn die
Motorwicklung in Sternschaltung ausgefiihrt wiirde?

Losung

Den Leistungsfaktor bestimmen wir aus der Beziehung fiir die Drehstromleistung des
Motors zu

P =\/3_ Ul cos ¢

(Us, Is verkettete Werte der Spannung und des Stromes, cos ¢ Leistungsfaktor des
Motors). Daraus folgt
P 200 - 1000 W

=== =0,8224,
o J3 U, 1732056000 V- 234 A 08224

Fiir die Beziehung zwischen Phasen- und Leiterspannung gilt bei der Sternschaltung
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A

Aufgaben

120. In einem Magnetfeld der Induktion

121.

122.

123.

124,

B = 50-10-* Wb m~2 rotiert mit einer
Frequenz »# = 3000 min-! ein Leiter,
der aus N = 400 Windungen besteht
und die Gestalt eines Rechtecks hat,
dessen Abmessungen a = 0,15 m und
b = 0,2m sind. Wie grof} ist der Ma-
ximalwert der im Leiter induzierten
Spannung?

Eine rechteckige Spule mit den Abmes-
sungen 2,0cm-2,5cm Dbesteht aus
100 Windungen und rotiert gleich-
miBig in einem homogenen Magnetfeld
der Induktion B = 0,1 T um die zur
Feldrichtung senkrecht orientierte Achse

] Bild 83

(Bild 83). In ihr wird dabei eine Span-
nung mit der Maximalamplitude U, =
= 1,57 V induziert. Wie grol3 ist die
Winkelgeschwindigkeit der rotierenden
Spule?

Eine elektrische Maschine gibt bei 220V
einen Strom von 109 A ab und hat laut
Wattmeteranzeige eine Leistungsauf-
nahme P; = 20 kW. Wie grofB ist ihr
Leistungsfaktor?

Wie grof} ist die Effektivspannung eines
Wechselstroms, dessen Maximalspan-
nung den Wert U, = 170 V aufweist?
Ein Wechselstromverbraucher nimmt
laut MeBanzeige einen Strom [ =2 A
auf, wenn die Klemmenspannung den

125.

126.

127.

128,

129,

130.

Wert U = 110V hat. Der Strom ist
gegeniiber der Spannung um den
Winkel ¢ aus cos ¢ = 0,8 verschoben.
Es ist die Leistung des Wechselstroms
zu berechnen.

Berechnen Sie, welchen Strom ein Ein-
phasenelektromotor der Leistung P =
= 1,47kW aus einem Wechselstromnetz
mit der Spannung U =220V ent-
nimmt, wenn der Leistungsfaktor
cose = 0,8 und der Wirkungsgrad
1 = 909 betrigt.

Ein Motor fiir Dreiphasenstrom ist an
eine Netzspannung Us =380V an-
geschlossen. a) Wie grof3 ist die Span-
nung zwischen dem Leiter und dem
Nullpunkt der Motorwicklung? b) Wie
grof3 ist der Strom in der Spule des
Motors, wenn er in der Zuleitung den
Wert Is= 6 A hat?

Welche Leistung hat ein Drehstrom-
motor mit den Angaben U =380V,
I=30A, cosp = 0,8 und n» = 0,857
Ein Drehstromgenerator gibt bei einer
Spannung U = 6300V einen Strom
I = 200 A beicos ¢ = 0,8 ab. Wie grol
ist seine Leistung?

Ein Drehstrommotor, dessen Spulen
in Dreieckschaltung angeordnet sind,
ist an ein Netz der Spannung Us =220V
angeschlossen. Die Netzfrequenz be-
trigt f=50s"'. Er gibt bei einem
Leistungsfaktor cos ¢ = 0,75 undeinem
Wirkungsgrad # = 909 eine Leistung
von P =27,1 kW ab. Welcher Strom Z,’
flieBt in den Speiseleitern (verketteter
Strom)?

Ein Kondensator ist nach Bild 84 ge-
schaltet. Die Kenngrofen sind U =
=220V,R=10Q,C =1pF,L=2H
und o = 2n - 50s-1, Es ist die an den
Klemmen des Kondensators auftretende
Effektivspannung zu berechnen.
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131.

132.

133.

Ein Serienstromkreis, bestehend aus
einem Kondensator der Kapazitdt
C = 8 uF, einer Spule der Induktivitdt
L = 2 H und einem ohmschen Wider-
stand R = 30 Q, ist an eine Quelle der

UC
R [ L
) Bild 84

Spannung U =110 V und der Frequenz
f = 50 s~ angeschlossen. Es sind zu be-
stimmen: die Impedanz des gesamten
Stromkreises, der im XKreis flieBende
Strom, die am Kondensator und an der
Spule anliegende Spannung sowie der
Leistungsfaktor des Stromkreises.

Eine Spule der Induktivitit L = 0,5 H
ist mit einem ohmschen Widerstand
R = 157 Q zusammen in Serie geschal-
tet und an ein Netz der Spannung
U = 220 Vund der Frequenz f = 50s~1!
angeschlossen. Es sind zu bestimmen:
die Impedanz dieser Kombination, die
Phasenverschiebung zwischen Span-
nung und Strom, die Stromstédrke sowie
die an Spule und Widerstand anliegende
Spannung.

Ein ohmscher Widerstand R = 3 Q und
ein Kondensator der Kapazitit C, des-
sen kapazitiver Widerstand bei einer
Frequenz von f= 50s"! den Wert
Re = 1/oC = 5 Q hat, sind parallelge-
schaltet und an eine Wechselspannungs-
quelle U =10V und f= 50s"! an-
geschlossen (Bild 85a). Es sind zu

7 7

c I
o\ Ik

Bild 85D

Bild 85a

134.

135.

136.

137.

138.

bestimmen: der Scheinwiderstand des
gesamten Stromkreises, der im Kreis
flieBende Strom, der im Widerstand
und derim Kondensator flieBende Strom
sowie die Phasenverschiebung zwischen
Spannung und Strom.

Welcher Strom flieit in dem in Bild 86
dargestellten Stromkreis, wenn L =9H,

“,y Bild 86

R; =200Q, C=1uF, R, =584,
U=220Vund f= 50s"1 ist?

Durch eine Spule der Induktivitit
L = 0,25 H flieB3t ein Strom I = I,sinwt
mit I, =1A und o = 3140s-. Be-
stimmen Sie den Maximalwert der in
der Spule induzierten Spannung.

Wie groB mufl der Maximalwert des
Induktionsflusses im Kern ¢ines Trans-
formators bei der Frequenz f = 50s-!
sein, damit in einer Windung der Sekun-
ddrwicklung eine Spannung mit dem

Effektivwert Uer = 0,25V induziert
wird?
Die Primidrwicklung eines Transforma-

tors hat N; = 880 Windungen, die Se-
kundidrwicklung N, = 1200 Windun-
gen. Welche Spannung wird in der Se-
kundidrwicklung induziert, wenn die
Primédrwicklung an eine Spannung vom
Betrag U; =220V angeschlossen wird?
Eine Batterie von in Serie geschalteten
Kondensatoren mit den Kapazitidten C,
und C, (Bild 87) enthilt zur Zeit t = 0
die Spannung U,. Welche Funktion

T

Bild 87
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139.

nimmt der zeitliche Stromverlauf nach
SchlieBen des Schalters S an?

Ein Kondensator der Kapazitit C =
=1,5-10"¢F ist auf die Spannung
U = 500 V aufgeladen. Er ist Teil eines
Stromkreises der Induktivitit L =
= 5-10-5 H. Wie grof3 wird der Maxi-
malwert des ungeddmpften Schwing-
kreisstroms, und in welcher Zeit wéchst
er vom Nullwert bis zum Maximum an?

140. Eine Spule der Induktivitit L =1 H

soll zusammen mit einem ohmschen
Widerstand R = 1 Q zur Zeit ¢t = 0
an eine konstante Spannung U ange-
schlossen sein. Es ist die Zeitspanne
zu bestimmen, nach deren Ablauf
der durch den Stromkreis flieBende
Strom seinen konstanten Endwert er-
reicht hat, wobei die Genauigkeit 1°/50
betragen soll.






2. Optik

2.1. Photometrie

Eine Lichtquelle sendet Lichtstrahlung einer bestimmten Energie nach allen Seiten
aus. Unter Strahlungsfluf @, verstehen wir gewohnlich diejenige Lichtenergie (all-
gemein: Strahlungsenergie), die in der Zeiteinheit durch irgendeine Flache strémt.
Mit Lichtstrom @ bezeichnen wir den Strahlungsflu3, der von einem normalen mensch-
lichen Auge wahrgenommen wird. Das photometrische Strahlungsiiquivalent K stellt
das Verhiltnis des Lichtstroms @ zum zugehdrigen Strahlungsflu @, durch dieselbe
Flache dar.

Der Lichtstrom, den eine Strahlungsquelle in den gesamten umgebenden Raum aus-
sendet, wird als die Gesamtlichtstirke einer Lichtquelle bezeichnet.

Wenn eine punktférmige Lichtquelle in den Raumwinkel dw einen Lichtstrom d@
aussendet, dann heiBt der Quotient

_ do

do

Richtlichtstirke einer Quelle in der betreffenden Richtung. Die Gesamtlichtstérke
einer Lichtquelle ist

4

¢=Ofldw.

Wenn ihre Richtstdrke in alle Richtungen gleich groB ist, wird

O =4n ]
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Unter der Beleuchtungsstiirke E einer Fliche A verstehen wir den Quotienten aus dem
Lichtstrom d® und dem Flichenelement dA4, auf das er trifft, also

p-92
dA4
Wenn auf eine Fliche d4 Lichtstrahlen einer im Abstand s entfernt stehenden Punkt-
quelle der Lichtstédrke 7 auftreffen und wenn die Lichtstrahlen gegeniiber der Flachen-

normalen mit dem Winkel ¢ einfallen, dann wird die Beleuchtungsstarke der Fliche
durch folgende Beziehung bestimmt:

E Icosgo'

S2

B Beispiele

104. In einem Projektionsapparat wird eine Glithlampe mit einem Gesamtlichtstrom der
GroBe @, = 4800 Im verwendet. Bei der Projektion ist die Bildfliche in Gestalt eines
Rechtecks mit den Seiten ¢ = 2 m und » = 1,5 m gleichméBig mit einer Beleuchtungs-
stirke E = 41x ausgeleuchtet. Welcher Anteil des von der Glithlampe ausgesandten
Lichtstroms trifft auf die Projektionsfliche?

Losung

An einer Stelle einer beleuchteten Fliche, an der die Beleuchtungsstidrke den Wert E Ix
annimmt, f4llt auf das Fldchenelement dA4 der Lichtstrom

d® = Ed4

und damit auf die Fliche 4 der Lichtstrom

¢=fEM.
A

Unter der Voraussetzung, daBl die Beleuchtungsstirke auf der gesamten Bildfldche
iiberall gleich gro8 ist, gilt fiir die Beleuchtungsstirke £ = const, und es wird

D =FEA,
wobei A4 der Fldcheninhalt der Bildfliche ist.

Vom gesamten von der Glithlampe ausgesandten Lichtstrom @, entfillt auf die Bild-
fliche der Anteil

(]

u=—-:.,
D
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1085.

106.

Nach Einsetzen der gegebenen Werte erhalten wir als Ergebnis

_41x'2m-1,5m

=0,0025, d.h, 0,259%.
4800 Im —_—

Eine Wand wird durch zwei gleichartige Kerzen beleuchtet, die im Abstand d = 1 m
von der Wand dicht nebeneinander aufgestellt sind. Berechnen Sie, um welche Strecke
wir die eine Kerze an die Wand heranriicken miissen, wenn nach Erloschen der anderen
die Wand ebenso wie vordem beleuchtet sein soll.

Lésung

Fiir die Beleuchtungsstirke einer Fldche bei Beleuchtung durch eine Punktquelle gilt
die Beziehung

I
E=—Zcosq7.
F

Da beide Kerzen von der Wand den gleichen Abstand 4 und gleiche Lichtstdrken
I, = I, haben und die Lichtstrahlen von beiden senkrecht auf die Wand auftreffen, ist
die Gesamtbeleuchtungsstirke der Fldche wegen der gleichzeitigen Beleuchtung mit
beiden Kerzen durch die Beziehung

27

E0=F

gegeben. Nach dem Ausldschen der einen Kerze miissen wir die zweite bis auf einen

solchen Abstand x an die Wand heranriicken, daf3 die Beleuchtungsstdrke der Wand
ebenso grof ist wie vorher, damit also die Bezichung

erfiillt wird. Daraus finden wir

Nach Einsetzen der gegebenen Grofien erhalten wir
x =0,7m.

Die Kerze mull demnach 30 cm an die Wand herangeriickt werden.

In der Mitte iiber einer kreisrunden Tischplatte vom Radius ¥ = 1 m hingt eine (punkt-
formige) Lichtquelle. Berechnen Sie, in welcher Hohe iiber der Tischplatte sie hingen
muB, damit die Beleuchtungsstirke am Tischrand einen maximalen Wert annimmt.
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107.

Losung

Wenn sich wie in Bild 88 die Lichtquelle in einem Abstand / von dem Rand der Tisch-
platte befindet und der Einfallswinkel des Lichtes mit ¢ angegeben ist, so ist in jedem
Punkt des kreisrunden Tischrandes die Beleuchtungsstirke durch die Bezichung

Icosg
E= B

gegeben. Ist die Lichtquelle in einer Hohe 2 = x iiber dem Mittelpunkt der Tischplatte
angeordnet, dann gilt

cos ¢ =; und l=\/x2,+ rZ,

so daf sich ergibt
. Ix
W*+r7)

Wenn die Beleuchtungsstirke einen Maximalwert annehmen soll,

E

so muB die Bedingung Bild 88
dE
—— =90
dx

erfiillt sein. Das fiihrt zu folgender Gleichung:

1 _ 3x? —o
e +r) (=2 +r?)

Nach Umformung und Auflésung dieser Gleichung erhalten wir

X ==+

rJ2
5

Die Lampe muB also in einer H6he von 70 cm iiber der Mitte des Tisches aufgehidngt
werden.

Fin Tisch wird durch zwei Glithlampen beleuchtet, die in einer Hohe 2 = 2 m tliber der
Tischfliche und in einem gegenseitigen Abstand d = 1 m voneinander aufgehéingt sind.
Berechnen Sie die Beleuchtungsstirken

a) in den senkrecht unter den Lampen gelegenen Punkten und

b) in der Mitte zwischen diesen beiden Punkten

unter der Voraussetzung, daB jede der beiden Glithlampen die Lichtstdrke 7, = 200 cd
hat.
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Losung

In jedem beliebigen Punkt der Tischplatte wird die Beleuchtungsstirke E gleich der
Summe der von den beiden Lichtquellen herrithrenden Beleuchtungsstirken sein, also

E=E, +E,. (1)

Im Fall a) gilt entsprechend den in Bild 89 angewendeten Bezeichnungen

I, Iy cos ¢, d
E =", E,=—""77%", I
S : rt A | A7
Da Y b7/
h _— LA L s / :
cos 1 = —= und r; =+/d* + K? /7; ~ /}/ /o "
1 o |
. L e SRS
ist, geht GI. (1) in die folgende Form tiiber: L7 N/ I
A !
I Ih A B c
E 0 [¢]
(sz w2y Bild 89

Nach Einsetzen der Werte erhalten wir
"E = 861x.

Im Fall b) bildet der Punkt B, der mitten zwischen den beiden FuBpunkten 4 und C
liegt, die Spitze eines gleichschenkligen Dreiecks, dessen Seciten r,, ¥, und d sind. In
diesem Dreieck gilt

h d?
COS @, =7— und r, = N/hz +
2

Fiir die von den einzelnen Lichtquellen herrithrende Beleuchtungsstidrke folgt daraus

Lk
d2\3
hz
~/ )
Nach Einsetzen dieses Ausdrucks fiir die Teilbeleuchtungsstirke in Gl. (1) erhalten wir
fiir die Gesamtbeleuchtungsstdrke im Punkt B

E1=E2=

Ioh
2.3
T

Nach Einsetzen der Werte ergibt sich

E=2E, =2

E=912Ix.
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A

141.

142,

143.

144.

2.2,

Aufgaben

Berechnen Sie die Beleuchtungsstirke
einer Flidche in einem Punkt, auf den
aus einer Lichtquelle der Lichtstirke
I = 50 cd, die im Abstand r = 4 m von
diesem Punkt angebracht wurde, Licht-
strahlen unter einem Winkel ¢ = 25°
einfallen.

Uber dem Mittelpunkt einer quadrati-
schen Tischplatte hidngt in der Hohe
h =1m eine Lampe der Lichtstdrke
I = 30 cd. Berechnen Sie diec Beleuch-
tungsstidrke auf der Tischplatte

a) im Mittelpunkt,

b) in den einzelnen Ecken, wenn die
Seitenldnge des quadratischen Tisches
2 m betrigt.

Berechnen Sie, welcher Lichtstrom aus
einer Quelle der Lichtstirke 7 = 200 cd
auf eine Fldche der GroBe 4 = 10 cm?
einfillt, die senkrecht zum Lichteinfall
im Abstand d = 2m von der Licht-
quelle angeordnet ist.

Uber einer hohlen Halbkugelfliche mit
dem Radius R = 1 m befindet sich in
einer Hone, die gleich dem Kugel-
durchmesser ist, eine punktformige
Lichtquelle (Bild 90). Sie hat nach allen
Seiten die gleiche Lichtstéirke und sendet
einen Gesamtlichtstrom von 600 Im aus.
Berechnen Sie die Beleuchtungsstirke
an einem Punkt im Innern der Halb-
kugelflache, auf den das Licht unter dem
Winkel ¢ = 30° einfillt.

Geometrische Optik

Reflexionsgesetz
Ein Lichtstrahl, der auf die Grenzfliche zweier Medien auftrifft, wird so reflektiert,
daB er in der Einfallsebene verbleibt. Dabei schlieBt er mit dem Einfallslot einen
Winkel &’ ein, der gleich dem Winkel « ist, den der einfallende Strahl mit dem Ein-

145, Eine punktférmige Lichtquelle L be-

leuchtet eine waagerechte Ebene
(Bild 91). Ermitteln Sie, wie sich die

Bild 90

Bild 91

Beleuchtungsstirke in einem Punkt A,
in den der Lichtstrahl senkrecht einfillt,
dndert, wenn wir seitlich zur Lichtquelle
einen Planspiegel S so aufstellen, dal3
dieser gleich weit von L wie L. von A4
entfernt ist. Der Spiegel, von dem wir
voraussetzen, dall er das Licht verlust-
los reflektiert, ist so eingestellt, daf3 er
den von L kommenden Lichtstrahl nach
A weiterleitet.
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fallslot bildet. Die Einfallsebene wird durch den einfallenden Strahl und das Einfalislot
bestimmt. !

Brechungsgesetz

Wenn ein Lichtstrahl in ein anderes Medium eintritt, verlduft er, vorausgesetzt, daf
das andere Medium isotrop ist, weiter in der Einfallsebene, wird aber aus seiner ur-
spriinglichen Richtung abgelenkt. Wenn der Einfallswinkel mit «, und der Brechungs-
winkel mit x, angegeben wird, dann ist der Quotient

unabhingig vom Einfallswinkel. Er wird relative Brechzahl #,, genannt. Unter der
absoluten Brechzahl » eines Stoffes verstehen wir den Quotienten
sinog

sin o
wobei «, den FEinfallswinkel im Vakuum und « den Brechungswinkel des Licht-
strahls im gegebenen Medium darstellt.
Den Zusammenhang zwischen der relativen Brechzahl zweier Medien und ihren ab-
soluten Brechzahlen liefert die Beziehung

Ry = —
ny

(n, Brechzahl des zweiten, optisch dilnneren und n, die des ersten, optisch dichteren
Mediums).
Von den beiden Medien wird dasjenige als das optisch dichtere angesehen, dessen
absolute Brechzahl die gréBere ist.
Beim Ubertritt eines Lichtstrahls aus einem optisch dichteren in ein optisch diinneres
Medium ist der Brechungswinkel grofler als der Einfallswinkel.
Als Grenzwinkel bezeichnen wir den Einfallswinkel &, dessen zugehoriger Brechungs-
winkel den Wert 90° hat. Fiir den Grenzwinkel gilt die Bedingung

My

sing = ny, = —.
ny

Wenn der Einfallswinkel groBer als der Grenzwinkel ist, dann findet kein Ubertritt in
das andere Medium statt, und es kommt zur Totalreflexion.

Wenn ein Lichtstrahl durch ein Prisma verlduft, verlaBt er dieses nach zweimaliger
Brechung aus der urspriinglichen Richtung, um den Winkel d (den sog. Ablenkwinkel)
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abgelenkt. Dieser Winkel ist dann ein Minimum, wenn der gebrochene Strahl im
Innern des Prismas einen Weg beschreibt, der senkrecht zur Winkelhalbierendén des
brechenden Winkels orientiert ist. Den Zusammenhang zwischen der minimalen Ab-
lenkung 6 und dem brechenden Winkel ¥ des Prismas und der Brechzahl des Materials,
aus dem das Prisma besteht, liefert die Gleichung

Die Brechzahl eines Stoffes ist fiir Licht unterschiedlicher Farbe, d.h. fiir Licht unter-
schiedlicher Wellenldnge, verschieden grof3.

Kugelspiegel und brechende Kugelfléichen sind Bauelemente zur optischen Abbildung,
mit denen durch Reflexion bzw. Brechung von Lichtstrahlen, die in einem engen
Biindel nahe der optischen Achse verlaufen, jedem Punkt einer Lichtquelle ein be-
stimmter Bildpunkt, einer Geraden eine Gerade und einer Ebene eine Ebene zu-
geordnet werden kann. Unter der optischen Achse eines Spiegels oder einer brechen-
den Kugelfliche verstehen wir eine Gerade, die durch den Kriimmungsmittelpunkt
des Spiegels oder der brechenden Kugelfiache und den jeweiligen Scheitelpunkt ver-
lauft. Das Bild, das einem auf der optischen Achse im Unendlichen liegenden Punkt
zugeordnet ist, heiBBt Bildbrennpunkt F’; ein Punkt auf der optischen Achse, dessen
zugeordneter Bildpunkt im Unendlichen liegt, wird Gegenstandsbrennpunkt F ge-
nannt.

Die Abbildungsgleichung hat fiir einen Kugelspiegel die Form

1 1 1
—_ + —_ = —
a b f
(a bzw. b Abstand des Gegenstands bzw. Bildes vom Scheitelpunkt des Spiegels,
f Abstand des Brennpunkts vom Scheitelpunkt des Spiegels). Fiir letzteren Abstand
gilt

r

f= 5

Den Kriimmungsradius der Kugelfidiche eines Konkavspiegels kennzeichnen wir
durch ein positives, den eines Konvexspiegels durch ein negatives Vorzeichen.
Fiir eine Abbildung mit Hilfe einer brechenden Kugelfliche vom Radius r, durch die
ein Medium mit der Brechzahl n, von einem anderen mit der Brechzahl n, abgegrenzt
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wird, gilt die Beziehung

ny Ny ny, — ny
+ —_—

a b r

und fiir den Abstand ihres Bildbrennpunktes F’ bzw. Gegenstandsbrennpunktes F
vom Scheitelpunkt gelten die Gleichungen

fr=——, s=

hy — ny hy — ny

nr

Der Abbildungsmafistab eines Kugelspiegels bzw. einer brechenden Kugelfliche, der
als Quotient der BildgroBe ' und der GegenstandsgréBe y definiert wird, ergibt sich
aus den Beziehungen

f/
wobel x bzw. x’ die Abstinde des Gegenstandes bzw. des Bildes vom Gegenstands-
bzw. Bildbrennpunkt bedeuten. Fiir sie gilt

Z =

H

< =

f X'
x

x=a—f, xX=0b-f.
Bei Kugelspiegeln fallen Gegenstands- und Bildbrennpunkt zusammen, also wird
f=r.

Fiir die Festlegung des Vorzeichens von Abstandsangaben halten wir uns an die
folgenden Regeln:

a) Den Abstand des Gegenstands vom Scheitelpunkt eines Spiegels oder einer bre-
chenden Kugelfliche berechnen wir positiv im Sinne der auf die Kugelfliche auf-
-treffenden Lichtstrahlen.

b) Den Abstand eines Bildes vom Scheitelpunkt eines Spiegels oder einer brechenden
Kugelfliche berechnen wir positiv im Sinne der Lichtausbreitung des von der Kugel-
fliche ausgehenden reflektierten oder gebrochenen Lichtstrahls.

¢) Den Radius der reflektierenden oder brechenden Kugelfliche versehen wir mit
einem Vorzeichen so, als ob der Mittelpunkt der Kugelfliche das Bild darstelle.

Als Linse bezeichnen wir einen lichtdurchldssigen optischen Korper, der von zwei
Kugelflichen oder einer Kugelfliche und einer ebenen Flidche begrenzt wird.

Eine Linse bezeichnen wir dann als diinne Linse, wenn ihre Dicke d vernachlassigbar
klein gegeniiber ihrem Durchmesser ist.

9 Hajko, Elektrik
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Die Abbildungsgleichung fiir eine diinne, allseitig von demselben Medium umgebene
Linse hat die Form

i+71)-=(n—1)<—1—+i),

a ¥y ¥y

wobei n die relative Brechzahl des Linsenmaterials in bezug auf ihre Umgebung ist,
ry und r, sind die Radien der Kugelflichen, durch welche die Linse begrenzt wird.
Den Abstand des Gegenstandes a bzw. den des Bildes b (Gegenstandsweite, Bildweite)
messen wir vom Linsenmittelpunkt aus.

Gegenstands- und Bildbrennweite einer derartigen Linse sind gleich und werden durch
die Beziehung

D=Lf=(n—-1)<—1-+—l->

ry ra

ausgedriickt. Die GroBe D wird als Brechkraft der Linse bezeichnet.
Der AbbildungsmaBstab, die VergroBerung einer diinnen Linse wird mit Hilfe folgen-
der Beziehungen berechnet:

Die Abbildungsgleichung einer Linse nimmt in den Brennpunktkoordinaten die
Gestalt

xx' = f?
an, wobei

ist.

Eine Linse nennen wir dann dicke Linse, wenn ihre Dicke d nicht vernachléssigbar
klein ist. Die mit einer solchen Linse erzielbare Abbildung ist vollig durch die Lage
der Hauptebenen und durch die Brennweite bestimmt. Die Abstadnde der Hauptebene
des Gegenstands vom vorderen Scheitelpunkt der Linse ¥ bzw. der der Hauptebene
des Bildes vom hinteren Scheitelpunkt der Linse V'’ sind durch folgende Beziehungen
gegeben:

n—1 i 7.

ry

pe =1 if, o= —
noory,

Die Abstinde des Gegenstandsbrennpunktes von der Gegenstandshauptebene sowie
die des Bildbrennpunktes von der Bildhauptebene sind gleich grol und werden nach
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folgenaer Beziehung berechnet: N

=(n-—l)<i+i>_(n_ﬁ_d__.

n 121

Ein zentriertes Linsensystem setzt sich aus zwei oder mehr Linsen zusammen, die eine
gemeinsame optische Achse haben. Die Brechkraft eines aus zwei diinnen Linsen be-
stehenden zentrierten Systems, dessen beide Linsen in einem Abstand v voneinander
angeordnet sind, ist durch die Beziehung

1 1 1 v
—=—+
S h 2 Af

gegeben, in der f; und f, die Brennweiten der beiden das System bildenden Linsen
darstellen.
Unter der WinkelvergroBerung eines optischen Systems oder Gerdtes verstehen wir
den Quotienten

o

z=2"2,
U

wobei u' den Blickwinkel angibt, unter dem der Gegenstand bei Verwendung des
Gerites gesehen wird, wihrend u den Blickwinkel angibt, unter dem das unbewaffnete
Auge denselben Gegenstand wahrnimmt, wenn dieser in einer dem Auge optimal
angemessenen Entfernung, der sog. deutlichen Sehweite, angebracht ist.

1. Die WinkelvergroBerung einer Lupe ist durch die Beziehung

z=¥_1
u f
gegeben, wenn der Gegenstand im Unendlichen abgebildet wird, oder durch

Z==+1,

wenn das Bild dem Auge in der deutlichen Sehweite / erscheint.

2. Ein Mikroskop stellt ein zentriertes optisches System dar, das aus einem Objektiv
und einem Okular zusammengesetzt ist. Das Objektiv erzeugt das Bild eines Gegen-
stands y’, gewOhnlich in der Brennebene des Okulars, und das vom Okular entworfene,
im Unendlichen gelegene Bild wird dann durch ein nichtangepaBtes Auge wahr-
genommen.

Die mit dem Mikroskop erreichbare VergroBerung ist

Z =7,2Z,,
g%
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wobei Z, = A/f; die Linearvergroferung des Objektivs und Z, = //f, die VergrofBe-
rung des Okulars — beide als Einzellinsen betrachtet — darstellt. 4 ist dabei die sog.
optische Tubuslinge des Mikroskops, welche die Entfernung zwischen der hinteren
Brennebene des Objektivs und der vorderen Brennebene des Okulars angibt.

Das Auflgsungsvermégen eines Mikroskops d beurteilen wir auf Grund des geringsten
Abstands zweier Punkte, die bei der Mikroskopbeobachtung gerade noch getrennt
wahrgenommen werden kénnen. Wenn im Licht einer Wellenldnge 4 beobachtet wird,
ergibt sich die Beziehung

i=—t
2nsin u

wobei n die Brechzahl desjenigen Stoffes bedeutet, in dem das Objekt eingebettet ist,
und u der Winkel zwischen der optischen Achse und einem Grenzstrahl ist, der vom
beobachteten Objekt aus in die dem Objekt zugekehrte Objektivlinse eintritt.

Der Ausdruck

A =nsinu
wird als die numerische Apertur bezeichnet.
3. Ein astronomisches Fernrohr (KEPLERsches Fernrohr) ist ein zentriertes System

aus Objektiv und Okular, dessen optische Tubuslidnge gleich Null ist. Objektiv und
Okular sind Sammellinsen. Die VergréBerung eines derartigen Fernrohres ist

i
/>

(f, Brennweite des Objektivs, f, Brennweite des Okulars).

B Beispiele

108. Auf eine ebene Glasplatte mit der Brechzahl » = 1,5 fillt ein Lichtstrahl. Unter welchem
Winkel fillt der Strahl ein, wenn der gebrochene Strahl mit dem auf der Begrenzungs-
fliche reflektierten einen Winkel ¥ = 60° einschlief3t?

Z =

Losung

Wenn ein Lichtstrahl unter einem Winkel « auf eine Trennfliche einfillt, wird er unter
dem Winkel «" = & reflektiert und unter dem Winkel B8 gebrochen. Nach dem
Brechungsgesetz gilt dabei

sin « = nsin f. 1)
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109.

Der reflektierte Strahl schlieft mit dem gebrochenen den Winkel ¥ ein, deshalb gilt nach
Bild 92 ’

B=2R —(x+7).
Nach Einsetzen in Gl. (1) gilt offensichtlich
sina = nsin 2R — (¢ + )] = nsin (« + ),
und weiter
sin o« = 7 (sin « cos ¥ + cos « sin y). Q)

Wenn wir beide Seiten von Gl. (2) durch cos « dividieren und die Gleichung nach tan «
auflGsen, erhalten wir fiir den gesuchten Einfallswinkel

nsiny

tano = ——m .,
1 —ncosy

Wir setzen in die so gefundene Beziehung die gegebenen Werte ein und erhalten

%sin 60° _
tanox =——— =3 \/3 |
1— > cos 60°
also schlieBlich
« = 79° 06",

»
.
O
A
2/ <
w
o
S
> &

Bild 92 Bild 93

Ein Lichtstrahl, der sich zunidchst in Luft ausbreitet, durchdringt nacheinander drei
unterschiedlich brechende Substanzen, die durch parallele, ebene Begrenzungsflichen
voneinander und von der Umgebung getrennt sind, und tritt nach Durchdringen dieser
Stoffe erneut in die Luft ein (Bild 93). Es ist nachzuweisen, daB der in die Luft aus-
tretende Strahl nach mehrfacher Brechung gegeniiber dem einfallenden Strahl nur
parallel verschoben ist, und es ist das MaB dieser Parallelverschiebung zu bestimmen.
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Die Brechzahlen der einzelnen Medien sind n; = 1,5; n, = 1,3; n3 = 1,4; die Dicken
der aufeinanderfolgenden planparallelen Schichten sind d; = 2cm; d, = 3 cm;
ds = 4 cm. Der Primérstrahl fallt auf die oberste Fliche unter dem Winkel & = 60° ein.

Losung

Nach Bild 93 gilt fiir die erste Brechung

S‘ln [0 4 _ _ni (1)
sin B, Ho

(no Brechzahl der Luft).

Auf das zweite Medium fillt der Strahl unter dem Winkel 8, ein, hier wird er unter dem

Winkel 8, gebrochen. Das Brechungsgesetz lautet hierbei

sin B4 o

. 2
sin f, ny 2

Analog gilt fiir die Brechung im dritten Medium
Sinfa _ ns . ‘ 3)

sin ﬁ3 Ny

Wenn wir voraussetzen, daB der Strahl unter einem Winkel «” in die Luft austritt, dann
gilt das Brechungsgesetz
sin B Ho

— = @
sin o n3 .

Wir multiplizieren die Gln. (1) bis (4) miteinander und erhalten nach Umformung

sin o

sin «’

2

was bedeutet, dall « = «” ist.

Der Lichtstrahl tritt nach mehrmaliger Brechung nur parallelverschoben aus. Aus den
Gln. (1) bis (3) ermitteln wir durch Einsetzen der fiir die Brechzahlen angegebenen
Werte ohne weitere Miihe die zugehdrigen Winkel

B =35°16"; B, =41°46"; f; = 38°13". o)

Die Gesamtverschiebung des austretenden Strahls (Nr. 5) gegeniiber dem einfallenden
(Nr. 1) betrdgt nach Bild 93:

X = AD1 = AB1 + Blcl —+ C1D1. (6)
Jedoch ist
dy

AB, = ABsin (x — ;) mit AB = ,
cos B,

dz

B.C, = BC' = BCsin(x — 8,) mit BC =
cos 3,
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110.

und
ds

C.D; = CD’ = CDsin(x — ;) mit CD = .
cos f3

Nach Einsetzen dieser Beziehungen in Gl. (6) erhalten wir

dl sin (OC — ﬂl) d2 sin (OC - ﬁz) d3 sin (0‘- — /33)
X = .
cos f; cos B, cos f3

Mit den gegebenen Werten ergibt sich fiir die Verschiebung
2 sin (60° — 35°16") 3 sin (60° — 41° 46") 4 sin (60° — 38° 13%)
X = .
cos 35° 16’ cos 41° 46’ cos 38° 13’ ?

x = 4,8 cm.,

Ein Lichtstrahl fillt unter einem Winkel « so auf die Frontfliche eines optischen Prismas
ein, daB der nach der Brechung durch das Prisma verlaufende Strahl die Riickfliche
gerade unter dem Grenzwinkel trifft und deshalb nicht mehr austreten kann. Berechnen
Sie die Brechzahl des Glases, aus dem das Prisma hergestellt wurde, wenn der brechende
Winkel mit ¢ angegeben ist.

Losung

Nach den in Bild 94 gewéhlten Bezeichnungen gilt

B1 + B2 =o@. Y]
Fiir die Brechung auf der Frontfliche gilt nach dem
Brechungsgesetz Bild 94
sin «
=n. 2
sin ,31 " ( )

Unter Beriicksichtigung der Bedingung, daB3 der Winkel 8, auch der Grenzwinkel ist,
konnen wir fiir die auf der Riickfliche eintretende Brechung schreiben -

sin f, = —:7 . 3)

GemdB Gl (1) ist
cos ¢ = cos (f; + f2) = cos f; cos B, — sin f; sin f,.

Wenn wir in diese Beziehung die aus den Gln. (2) u. (3) gewonnenen Werte fiir sin £,
und sin f, einsetzen, kénnen wir aus den trigonometrischen Beziehungen die ent-
sprechenden GrofBen fiir cos £, und cos §, finden:

21
, cosﬁ2=\/nT.

2 2
ns — SIin”- «
COSﬁlz—\L——-
n
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111.

Daraus erhalten wir

cos p =

Jn* —sin?a /n* —1 sina
n n n?
Nach einer Umformung finden wir die Gleichung

n*(cos?@p — 1) +n*(1 +sin?« + 2sinacos¢) =0,

als deren Losung wir schlieBlich die gesuchte Beziehung fiir die Brechzahl erhalten:

J1 +sin?« 4 2sinxcos ¢
n= - "
sin ¢

Zwei unterschiedliche optische Medien mit den Brechzahlen #, und #, sind durch eine
ebene Begrenzungsfliche getrennt. Ermitteln Sie den Weg eines Lichtstrahls, der von
einem gegebenen Punkt 4 im ersten Medium zu einem ebenfalls gegebenen Punkt B im
zweiten in kiirzestmoglicher Zeit gelangt.

Losung

Wir setzen nach Bild 95 voraus, da3 der Lichtstrahl auf dem Wege ACB verlaufen wird,
wobei C einen auf der Trennfliche beider Medien liegenden Punkt darstellt. Wenn wir
diesen Punkt als Ausgangspunkt eines rechtwinkligen Koordinatensystems wéhlen,
dessen x-Achse in der Trennebene liegt, dann hat der Punkt 4 die Koordinaten (x, a)
und der Punkt B die Koordinaten (d — x, b), wenn wir den konstanten Abstand der
beiden FuBpunkte von 4 und B, d. h. die Strecke 4,B;, mit d bezeichnen.

Wenn die Lichtgeschwindigkeiten in den einzelnen Medien v, bzw. v, sind, dann ist die
zum Durchlaufen des Weges AC erforderliche Zeit gegeben durch die Bezichung

- \/ x2 + a2
1 = o1 A
und die fiir das Durchlaufen des Weges CB durch {
|
- a
Jd—x? + b2 J
ly, =—. i &
vy 14 3
T
Die Gesamtzeit “X—d i
\/XZ L g2 \/(d X)2 + b2 ﬁ\lb
t=1 1= - + \i
U1 123 8
soll ein Minimum sein. Das ist dann der Fall, wenn Bild 95
dt
=0

dx
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112.

ist. Wir bilden diese Ableitung und finden

dr _ X _ d—x _ )
& e t@ nJd-0 b
Nach Bild 95 ist
d—
- * - sina wund d = sin g, 2)

NEE J@d =7 + b2

wobei « bzw. f§ die Winkel darstellen, unter denen der Lichtstrahl auf die Trennfldche
einfdllt bzw. an ihr gebrochen wird. Nach Einsetzen von GI. (2) in Gl. (1) erhalten wir

sinx  sin f

— 0,
U1 1223
sSin « [ vy n2
= — t — =Ny, = —
sinf8 v, U2 ny
oder
sin « na
sinf  ny

Das aber ist das bereits bekannte Brechungsgesetz. Beim Durchtritt aus einem Medium
in ein anderes legt das Licht in kiirzester Zeit eine Strecke zuriick, die den Bedingungen
des Brechungsgesetzes entspricht,

Ein durch Luft gehender Lichtstrahl fillt auf einen kugelformigen Wassertropfen, wird
in diesem gebrochen und tritt nach der Reflexion an der inneren Riickseite wieder aus.
Berechnen Sie, unter welchem Winkel der Strahl einfallen muB, damit die Gesamt-
ablenkung des roten Lichts, d. h. der Winkel zwischen einfallendem und austretendem
Strahl, ein Maximum ist. Wie groB ist diese Ablenkung? Fiir rotes Licht hat der Wasser-
tropfen eine Brechzahl n,,, = 1,331.

Losung

Aus Bild 96 ist leicht zu ersehen, daB3 der
Winkel «, unter dem der Strahl aus dem
Tropfen heraus und in die Luft iibertritt, ge-
nausogrof ist wie der Winkel, unter dem der
Lichtstrahl, aus der Luft kommend, in den
Tropfen eindringt. Wenn wir die Gesamt-
ablenkung zwischen eintretendem und aus- Bild 96
tretendem Strahl mit dem Symbol 8 bezeich-

nen, ergibt sich fiir diesen Wert aus /A BCM die Beziehung

0=2R —(x—p +¢). 1
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Andererseits haben wir fiir den Winkel e aus /A ADC die Beziehung

2R — e +oa —f+2R — 28 =2R.
Das nach ¢ aufgelést und in Gl. (1) eingesetzt, ergibt

6 =4 — 2a. @
Wenn dieser Winkel ein Maximum sein soll, muf} die Bedingung

dé

& =0

erfiillt sein. Das fiihrt uns zu einer Gleichung

dg B
4-——2=0. 3

Entsprechend dem Brechungsgesetz ist sin « = nsin §. Wenn wir beide Seiten dieser
Gleichung nach « ableiten, erhalten wir mit Hilfe einer Umformung
dg cos &

do ncosf

und nach Einsetzen in Gl. (3)

2cos o« = ncos f.
Als Losung der beiden Gleichungen
2cosx =ncosf und sinc =mrnsinf

ermitteln wir den Winkel «, indem wir diese beiden Gleichungen quadrieren und
addieren:

4 cos? & -+ sin? o = n?,

Nach Umformung ergibt das

. A/4 —n?
sin o = .
3 ,
Durch Einsetzen der Brechzahl fiir rotes Licht #,,, = 1,331 erhalten wir damit fiir den

gesuchten Einfallswinkel
o = 59°32"17".

Der rote Lichtstrahl wird unter dem Winkel f,,, gebrochen. Dieser gehorcht der Glei-
chung
sin o

sin ﬁrot = ’
Hyot

woraus wir erhalten

Bror = 40° 21" 40”.
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113.

Fir die Ablenkung des roten Strahles ergibt sich gemé8 der Gl. (2) der Wert
d = 4ﬂrm — 200 =42°22°06".

Ein Beobachter steht am Rand eines Wasserbassins, dessen Wasserstand die Hohe
h = 2,81 m hat, und betrachtet einen auf dem Grund des Bassins liegenden Gegenstand
(Bild 97). In welcher Tiefe A" erscheint das Bild des beobachteten Gegenstandes, wenn
die Richtung, in welcher der Beobachter das Bild sieht,
mit der zum Wasserspiegel Senkrechten einen Winkel
o = 60° einschlief3t?

Losung

Wir wéhlen aus dem Strahlenbiindel, das vom Gegenstand
P ausgeht und nach Brechung an der Trennfliche Wasser—
Luftins Auge des Beobachters trifft, zwei Strahlen (1) und
(2) aus, die den sehr kleinen Winkel dg einschliefen. Die
gebrochenen Strahlen (17) und (2°), die, vom Scheinbild P’ Bild 97
ausgehend, zum Auge kommen, schlieBen den Winkel do

ein.

Nach den in Bild 97 angegebenen Bezeichnungen gilt

’

(1) und BP = _h [0))
COS & cos B

und in /A BDP’ nach dem Sinussatz

BP =

BD sin do

BP siny *

3

Dasinde ~ do,y = R — (¢ + dx)undsiny = sin [R — (& + d«)] = cos (& + d«) &~
~ cos « ist, konnen wir Gl. (3) auch in der Form

BD do
BD @
BP’ COS &

schreiben. Auf analoge Weise erhalten wir aus /A BDP die Gleichung
BD d
B9 ®)
BP cos B

Wenn wir die beiden Gln. (4) u. (5) dividieren und das Resultat mit dem Ausdruck
BPJBP’ vergleichen, der sich aus den Gln. (1) u. (2) ergibt, dann erhalten wir
K d hd
x _ hd8 (6)

cos?a  cos?f
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Den Quotienten d«/df ermitteln wir aus dem Brechungsgesetz. Durch Ableiten der
Gleichung sin « = nsin f nach dem Winkel « erhalten wir

d
coso =ncosf —,
doe
woraus folgt

do cos B

—_—=p

d cosc

Nach Einsetzen dieses Ausdrucks in Gl. (6) finden wir fiir die scheinbare Tiefe

h cos® o
BWo=——. O]
n cos® g
Den unbekannten Winkel g bestimmen wir aus dem Brechungsgesetz

. sin «
sin 8 = s
n

womit wir nach Umformung erhalten

2 _ 2
cosﬂ=‘/n sin® o
n

Flir die scheinbare Tiefe folgt damit aus Gl. (7)

¥ — h? ( cos & >3

Jn* —sin?«
Nach Einsetzen der Werte ergibt sich schlielich
cos 60° )3 _

/1,332 — sin? 60°

114, Aus einer punktformigen Lichtquelle fillt ein Lichtstrahl senkrecht auf einen Plan-
spiegel, von dem aus er auf einen 5 m entfernt stehenden Leuchtschirm reflektiert wird.
Der Planspiegel rotiert um eine zur Leuchtschirmebene parallele Achse, so daf3 der
reflektierte Lichtpunkt auf dem Leuchtschirm eine Spur zieht. In jeder Sekunde werden
10 Umdrehungen ausgefiihrt. Berechnen Sie, mit welcher Geschwindigkeit sich die
Lichtspur auf dem Leuchtschirm bewegt und welchen Wert die Geschwindigkeit in dem
Punkt des Leuchtschirms annimmt, der dem Planspiegel am néchsten liegt.

0,6 m.

A =2,81m-1,332 (

Losung

Wenn der Spiegel mit der konstanten Frequenz » rotiert, ist auch seine Winkelgeschwin-
digkeit konstant gleich

w = 2mv,
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115.

Wir messen den Einfallswinkel des Lichtstrahls gegeniiber dem Einfallslot auf der
Spiegelfiiche. In der Ausgangsstellung ist « = 0. Nach der Drehung des Spiegels um
den Winkel o = wr (Bild 98) weicht der unter einem Winkel o einfallende Strahl um
den doppelten Wert 2o« = 2wt ab, und die Leuchtspur auf
dem Bildschirm verschiebt sich um den Betrag x, fiir den

gilt
x = dtan 2wt. et ¥
Die Momentangeschwindigkeit des die Lichtspur zeich- ©
nenden Lichtpunktes ist K i \R
d

dx 2wd

V= — = ——
dr cos? 2wt

Immer wenn die Lichtspur durch den Punkt des Leucht- Bild 98

schirms geht, der dem Spiegel am nidchsten gelegen ist,

fillt der Lichtstrahl unter einem Winkel « = 2rk ein, wobei £k = 0, 1, 2, 3, ... ist. Die
Geschwindigkeit des Lichtpunktes in dieser Stellung ist

v=200rms!=628ms"L,

Vor einem Konkavspiegel befindet sich in 60 cm Abstand eine Kerze. Wenn wir sie um
10 cm niher an den Spiegel heranriicken, so vergroBert sich der Abstand ihres Bildes
vom Spiegel um 80 cm. Welche Brennweite hat der Spiegel?

Losung

Wenn wir die Abbildungsgleichung des Spiegels in der Form

1 + 1 1
a b f
anwenden, dann ist in der erstgenannten Stellung die Gleichung
1 1 1
= 1
60 cm + b - f @
erfiillt, wihrend in der darauffolgenden Stellung gilt
1 1 1
H - @

50cm ' b+80cm [
Durch Gleichsetzen der Gln. (1) u. (2) erhalten wir

1 1 1 1
Gem B 0em b+ 80cm

woraus wir nach Umformung die quadratische Gleichung

b* + 80b — 24000 =0
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erhalten, die auf die Losungen b; = 120 cm und b, = —200 cm fiihrt. Durch Einsetzen
dieser Werte in eine der Gln. (1) oder (2) erhalten wir fiir die Brennweiten die 2 Lo-

116.

sungen
fl =40Cm, f2=85,7cm.

Ein Konvex-~ und ein Konkavspiegel mit gleichem Kriimmungsradius r, sind mit ihren
Spiegelflichen einander so gegeniibergestellt, daB ihre optischen Achsen zusammen-
fallen und ihre Scheitel den Abstand d = 2r, haben (Bild 99). Es soll ein auf der
gemeinsamen optischen Achse gelegener
Punkt gesucht werden, fiir den gilt, daB die
von einer hier aufgestellten Lichtquelle aus-
gehenden Strahlen nach Reflexion auf
Konvex- und Konkavspiegel wieder im
Ausgangspunkt zusammentreffen. 5

Losung

Den auf der Achse liegenden Lichtpunkt Bild 99

bilden wir zunichst durch den Konvex-

spiegel, das so entstandene Bild durch den Konkavspiegel ab. Danach formulieren wir
die Bedingung, daB das resultierende Bild im Ausgangspunkt entworfen wird.

Wenn wir den Lichtpunkt P in einem Abstand a = x vor dem Konvexspiegel aufstellen,
so entwirft dieser ein virtuelles Bild P’ im Abstand & = —y (¥ > 0) hinter dem Scheitel-
punkt des Spiegels. Fiir diese Abbildung gilt

— =X M

Der Abstand des vom Konvexspiegel entworfenen Bildes P’ vom Scheitelpunkt des
Konkavspiegels hat die GroBle a, = 2ro -+ y. Wenn das resultierende Bild P* wieder
im Ausgangspunkt P erscheinen soll, muB} seine vom Scheitelpunkt des Konkavspiegels
aus gemessene Bildweite

b, =2ry — x
sein, Nach der Abbildungsgleichung fiir Spiegel gilt weiter

1 1 2
= . 2

2ro +y 2r0——x_x

Die Kombination der Gln. (1) u. (2) fiihrt zu einer quadratischen Gleichung

2x2 — 2rox — 1?2 =0,
deren Wurzeln x; = 1,35 round x, = — 0,35 ro sind. Physikalisch sinnvoll ist nur die
erste der beiden Losungen. Demzufolge muB} die Lichtquelle vom Konvexspiegel in der
Entfernung

s=135r,

angeordnet sein.
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117. Eine diinne, plankonkave Linse ist in horizontaler Stellung so in Wasser getaucht, daB
der unter der Konkavfliche liegende Raum mit Luft gefiillt ist. Die Gesamtbrechkraft
des optischen Systems hat den Wert D = —2,6 dpt. Bestimmen Sie den Kriimmungs-
radius der Linse (Bild 100).

Losung

%
o

Es handelt sich hier um ein zentriertes optisches System,
das sich aus zwei dicht aneinanderliegenden Linsen zu-
sammensetzt. Die Brechkraft eines solchen Systems ist Bild 100

gleich der Summe der Brechkrifte der beiden das System

bildenden Einzellinsen.

Die erste Linse aus Glas ist plankonkav und befindet sich in Wasser. Ihre Brechkraft ist

D1=fil=(n—l)(i+i), | {1

ry ra

wobei n die relative Brechzahl des Glases gegeniiber dem umgebenden Wasser bedeutet.
Wenn n; bzw. n, die absoluten Brechzahlen des Glases bzw. des Wassers selbst sind,

so ist
ny
n [ J—
ny
Da es sich im vorliegenden Fall um eine plankonkave Linse handelt, ist r; = —r und

ry = 0o0. Aus Gl. (1) wird damit

-2 (-2)

Die zweite Linse kann als eine aus Luft bestehende Plankonvexlinse angesehen werden,
die sich in einer Wasserumgebung befindet. IThre Kriitmmungsradien sind r; = ro und
r, = 00. Ihre Brechkraft wird

wobei n; die absolute Brechzahl der Luft bedeutet. Die Brechkraft des gesamten aus
zwei Linsen bestehenden Systems wird

1 1
== R )
n;
Nach einer Umformung erhalten wir

ny —ng 1
D=3 1

n2 ro’
woraus sich der gesuchte Kriimmungsradius der Linse berechnen 148t:

n3 — Ny 1

173 D’

Fo =
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Mit den gegebenen Werten ergibt sich

3
1—=
2 1m

4 —26

3

Fo =

= 14,42 cm.

118. Beweisen Sie, daf3 bei einer Sammellinse der Brennweite f der kleinste Abstand zwischen
Gegenstand und Bild den Wert s = 4f haben muB.

Losung

Gemil der Bedingung, daB der Abstand Gegenstand - Bild, d. h. s = g + b, ein Mini-
mum darstellt, ist

L=, W
g

wobei g der Abstand des Gegenstands und & der des Bildes von der Linse ist. Aus der
Abbildungsgleichung der Linse

r,1r_1
g b f
ergibt sich fiir 4 die Beziehung
__ &
g—f"
Fiir den Abstand Bild —- Gegenstand s erhalten wir demnach
g g
s=g+b=g+g_f=g_f. (2)
Somit kann die Minimumbedingung (1) geschrieben werden in der Form
gl
4f?> )
e—f] _28e—-N—-2& _,
dg (g—=1)?
Daraus folgt nach Umformung unter der Voraussetzung, dal} g = fist, die Gleichung
g2 —2gf=0, N

mit der Losung g = 2f.

Wenn wir die zweite Ableitung bilden, konnen wir uns leicht davon iiberzeugen, daf3 der
gefundene Wert g = 2f tatsédchlich der geforderten Minimumbedingung gerecht wird.
Aus Gl. (2) resultiert fiir die kleinste Entfernung zwischen Bild und Gegenstand

s=g+ b =4f.
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119.

120.

Eine Lichtquelle befindet sich im Abstand / von einem Bildschirm. Es ist zu berechnen,
in welchem Abstand von der Lichtquelle eine diinne Sammellinse der Brennweite f an-
geordnet sein muB3, damit auf dem Bildschirm ein reelles Bild der Lichtquelle entsteht.
Die Bedingung, unter der das moglich ist, soll in Worten ausgedriickt werden.

Losung

Da der Abstand des Bildschirms von der Lichtquelle mit / vorgegeben ist, entspricht

dem Abstand g des Gegenstands von der Linse das Bild im Abstand b =/ — g. Nach
Einsetzen in die Abbildungsgleichung fiir die Linse erhalten wir
1 1 1

—_— .
g I—g¢ f
Wir 16sen diese Gleichung nach g auf und erhalten

£ —alf
A R

Wenn die Differenz /2 — 4If > 0 ist, was sicher erfiillt ist, solange / > 4fist, so gibt es

zwei verschiedene Stellungen fiir die Linse, bei denen fiir konstant gehaltenen Abstand

Gegenstand - Bildschirm auf letzterem ein scharfes Bild entsteht. Dies sind die Stellungen
12

! A/12 i
31—74' T_f, é’z—z‘— —4—‘—fa

Im Falle, daB3 / = 4fist, gibt es nur eine derartige Stellung, nimlich

l

g=7,

und fiir den Fall, daB3 / < 4f ist, existiert gar keine.

Ein auf der optischen Achse einer Sammellinse beweglicher Punkt nihert sich der Linse
mit der konstanten Geschwindigkeit v, , Mit welcher Geschwindigkeit bewegt sich dabei
sein Bild?

Losung

Wenn wir den Abstaﬁd des Gegenstands vom Gegenstandsbrennpunkt mit x und den
Abstand des Bildes vom Bildbrennpunkt mit x” bezeichnen, dann kdnnen wir die Ab-
bildungsgleichung in folgender Form schreiben:

xx’' = f2, a3

10 Hajko, Elektrik



146

2. Optik

121.

Die Momentangeschwindigkeit des Bildes v, ist durch die erste Ableitung seines Weges
nach der Zeit definiert, also
dX'

vz=_-

dr

Entsprechend Gl. (1) ist x” = f?/x, und deshalb wird
f2 f2
~ ¢(%) ~ (%) & f dx
de dx dr x2 dt

Unter der Beriicksichtigung, daBl dx/d¢ = v, die Momentangeschwindigkeit des Gegen-
stands ist, erhalten wir nach einer Umformung die Bildgeschwindigkeit

’

X
Uy = — V.
X

Im Innern einer Glaskugel des Radius ro = 10 cm befindet sich im Glasflul eine Luft-
blase. Ein Beobachter, der die Luftblase in der Richtung der optischen Achse der
brechenden Kugelfliche erblickt, hat den Eindruck, dal die Luftblase in einem Ab-
stand by = 2,5 cm unter der Kugeloberfliche sitzt. Bestimmen Sie den tatsidchlichen
Abstand der Luftblase von der Kugeloberfliche.

Losung

Fiir die Brechung an einer Kugelfidche, die zwei Stoffe mit den absoluten Brechzahlen 7,
und n, trennt, gilt die Beziehung

elpen, g

Der Gegenstand, ein LufteinschluB3, befindet sich im Innern des Glases. Wir suchen
seinen Abstand g vom Scheitelpunkt der Kugeloberfiiche. An der konvexen Kugel-
oberfliche kommt es zur Brechung, bei welcher der Lichtstrahl aus dem Glas mit der
Brechzahl n; = nin die Luft mit der Brechzahl n, = 1 iibertritt. Das dabei entstehende
Bild ist virtuell.

Unter Beachtung der Vorzeichen kénnen wir schreiben

b = —'bo, ¥ = —rp.
Dies — in Gl. (1) eingesetzt — fiihrt auf

n 1 1—n

und - nach g aufgeldst —

nr, obo

&€= ro + bo(n — 1) °
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122,

10*

Mit den gegebenen Werten erhalten wir fiir die gesuchte Gegenstandsweite des Luft-
einschlusses
1,5-10-2,5
g =

-2 0 33 em.
10+25-05 =220

Ein Glasstab mit der Brechzahl n = 3/, ist an seinen beiden Enden durch Kugelschliffe
mit dem gleichen Radius r, begrenzt. Der Stab hat die Linge 3r,, die Kugelflichen
haben eine gemeinsame optische Achse, die mit der Langsachse des Stabes identisch ist.
In einem Abstand von r, vor der vorderen konkaven Kugelfliche befindet sich eine
punktformige Lichtquelle auf der optischen Achse. Es ist zu berechnen, in welchem
Abstand von der hinteren konvexen Kugelfliche das Bild entsteht.

Losung

Das resultierende Bild der Punktquelle erhalten wir durch eine schrittweise Abbildung

des Gegenstands durch die erste und dann durch die zweite Kugelfliche. Das durch die

erste Abbildung entstandene Bild betrachten wir als den fiir die zweite Abbildung vorzu-

sehenden Gegenstand. Die zweite Abbildung erzeugt dann das endgiiltige Bild. Fiir die

Brechung an einer Kugelfliche mit dem Radius r, die zwei Stoffe mit den absoluten

Brechzahlen n; und n, trennt, gilt die Beziehung
ni Rz Ry — Ny

g b ¥

®

Bei der Brechung an der ersten Kugelfliche tritt der aus der Luft kommende Strahl ins
Glas ein, die Kugelfliche ist hier konkav. Daher ist ny = 1, n, = n, r = ry; und da
auch g = r, ist, finden wir nach Einsetzen in Gl. (1)

1 n n—1

o b re
woraus sich ergibt

n
°n—2"

Das durch die erste Kugelfliche entworfene Bild hat vom Scheitelpunkt der zweiten den
Abstand

=r

n—3

g =3r,—b=2r

Bei der Brechung an der zweiten, hinteren Kugelfliche tritt der Strahl aus dem Glas in
die Luft aus. Hier ist n; = n, n, = 1, ¥ = —ry. Nach Einsetzen dieser GroBen in
Gl. (1) finden wir

n 1 1—n
n—3 b’ o
n—2

27‘0
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wobei wir den Abstand des durch die zweite Kugelfiiche entworfenen Bildes vom
Scheitelpunkt der zweiten Kugelfliche mit " bezeichnen. Daraus ergibt sich

n—3

e et

Wir setzen fiir # den Wert 3/, ein und erhalten

b, = 4"0.

123, Ermitteln Sie die Dicke einer bikonvexen Glaslinse, die in Luft als Zerstreuungslinse
wirken soll. Die Radien der die Linse begrenzenden Kugelflichen sind r; = r, = 1 cm.

Losung

Fiir die Brechkraft einer dicken Linse, die auf beiden Seiten vom gleichen Medium um-
geben ist, gilt die Bezichung

L_{_i)_(n—l)z d

1
D=7=(n'—1)( p rlrz.

\ F'1 r2

Als Zerstreuungslinse wird eine Linse dann wirken, wenn dieser Ausdruck negativ wird.
Dahier » > 1, r; > 0und auch r, > 0ist, kann diese Bedingung nur erfiillt sein, wenn

(n —1)?

n ri¥,

><n—1)<%+i)

ra

ist. Diese Ungleichung 148t sich vereinfachen in

n—1

d>r1 +r2¢

Daraus ergibt sich fiir die gesuchte Dicke die Bedingung

n

d> (ry +r2).

n—1
Nach Einsetzen der Werte erhalten wir

1,5
1,5 -1

a> (1+1)cm=6cm;

d>6¢cm.
124. Ein zentriertes optisches System besteht aus zwei diinnen Linsen mit den Brechkriften
D, = 2dpt und D, = 5dpt, die voneinander einen Abstand 4 = 10cm haben. Es ist zu

berechnen, in welchem Abstand vom Mittelpunkt der ersten Linse der Bildbrennpunkt
des gesamten Systems liegt.
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Losung

Ein auf der optischen Achse des Systems liegender Punkt, der von der ersten Linse den
Abstand g, hat, wird vom Linsensystem in einem ebenfalls auf der optischen Achse
liegenden Punkt abgebildet. Dieser hat von der zweiten Linse den Abstand b,. Bei
schrittweiser Abbildung in der Art, daf3 der Gegenstand zunidchst durch die erste Linse
dargestellt wird und das so entstandene Zwischenbild als Gegenstand fiir die zweite
Linse dient, entwirft diese dann das resultierende Bild. Die Brechung an der ersten Linke
148t sich dann wie folgt beschreiben:

1 1 1

—_ - =,
81 by fi

Hieraus erhalten wir eine Beziehung fiir den Abstand des durch die erste Linse ent-
worfenen Zwischenbildes von ihrem Scheitelpunkt

&1f1
T n A o
Fir die an der zweiten Linse stattfindende Brechung gilt
Lyl l @
82 b, f2 ’

wobei g, den Abstand des durch die erste Linse entworfenen Zwischenbildes von der
zweiten Linse darstellt. Nach Gl. (1) gilt offenbar

gr=d—b, —d— &
& — N
und nach einer Umformung
d
i—fi-L
g2 — g1
1=
81
Entsprechend Gl (2) gilt fiir die Bildweite &,
11 ! _Z_l
A @
d —fi ——
g1

Im Bildbrennpunkt des Systems wird der auf der optischen Achse im Unendlichen
liegende Punkt abgebildet. Wenn wir seinen Abstand von der zweiten Linse mit dem
Symbol f; kennzeichnen, resultiert fiir g, = oo die Bildweite b, = fo. Nach Finsetzen
in Gl (3) und nach einer Umformung erhalten wir dafiir

fo =D
T htf—d’
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126.

Mit den gegebenen Werten ergibt sich

0,2m (0,5m — 0,1 m)
fo=GsmTozm—0im

Der Abstand des Bildbrennpunkts vom Mittelpunkt der ersten Linse ist
s=d+ fo = 0,233 m.

= 0,133 m.

. Eine Lupe mit der Brennweite f = 5 cm entwirft von einem Gegenstand ein Bild in der

Bildweite |b| = 40 cm. Welche VergroBerung liefert die Lupe, wenn das beobachtende
Auge sich im Abstand |¢| = 2 cm befindet?

Losung
\\\\\\\

Das von der Lupe entworfene Bild ist auf- e \\\\\\;\_ A
recht, virtuell und vergroBert (Bild 101). Der N2 T N
abzubildende Gegenstand befindet sich in- s F e £
nerhalb der Brennweite der Lupe. Die ge- 1,‘\‘I§Q
suchte WinkelvergroBBerung der Lupe hat
den Wert

P Bre—_, Bild 101

u

wobei #’ den Winkel darstellt, unter dem sich das von der Lupe entworfene Bild dem
Auge O bietet, wihrend u# den Winkel darstellt, unter dem das unbewaffnete Auge den
Gegenstand innerhalb der deutlichen Sehweite / sehen wiirde. Entsprechend der Ab-
bildung konnen wir schreiben

’

p , y y
Wwaxtany = —, uxtanu= =,
6] + le] ]
Fiir die VergroBerung gilt dann
u ¥y I
Z=—= " @
u y [bl+ el
Die LinearvergroBerung y’/y der Linse bestimmen wir aus der Gleichung
y’__x’_~b~f_ —40cm — S5cm
y f f 5cm ’
und nach Einsetzen dieser Werte in Gl. (1) erhalten wir fiir die Vergroerung der Lupe
25 cm
Z =9 —— —— =536,
40 cm 4+ 2 cm —’§—

Die Brennweite eines Mikroskopobjektivs betrdgt f; = 0,3 cm, die des Okulars
f2 = 3 cm, die optische Tubusldnge s = 16 cm. Es ist zu ermitteln, in welchem Abstand
vor dem Objektiv sich ein Gegenstand befinden muB, damit das durch das Mikroskop
beobachtende Auge das Bild des Gegenstands in der deutlichen Sehweite I, = 25 cm
erblicken kann.
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Losung

Das Objektiv entwirft von dem Gegenstand, der sich vor ihm im Abstand 4 befindet,
ein Zwischenbild im Abstand b, hinter dem Objektiv. Entsprechend der Abbildungs-
gleichung gilt danach

1 1 1

— =, 1

IR W
Das vom Objektiv entworfene Zwischenbild befindet sich im Abstand

g2=5—b @

vom Okular und wird von diesem so dargestellt, daf es von einem dicht dahinter befind-
lichen Auge als in der deutlichen Sehweite /, stehend wahrgenommen wird. Dieses Bild
selbst ist virtuell und befindet sich vom Okular in der Entfernung

by = —lo. (3)
Aus der fiir das Okular geltenden Abbildungsgleichung
11 1
P
erhalten wir nach Einsetzen der Gln. (2) u. (3)
- bofs
by =5 —- A
und nach Einsetzen der gegebenen Werte
by = 13,32 cm.

Mit Hilfe der Gl. (1) erhalten wir eine Beziehung fiir die gesuchte Entfernung Gegen-
stand - Objektiv

b1 fi
d =
by —fi
bzw. mit den gegebenen Werten
d = 0,307 cm.

A Aufgaben

146. Berechnen Sie den Winkel, um den ein 147, Unter welchem Winkel miiB3te ein Licht-

Lichtstrahl aus seiner urspriinglichen strahl auf eine Glasplatte mit der Brech-
Richtung abweicht, wenn er, aus dem zahl n = 1,57 einfallen, damit reflek-
Wasser kommend, a) in Glas und b) in tierter und gebrochener Strahl senk-
die Luft tbertritt und sein Einfalis- recht aufeinanderstehen?

winkel einmal 15° und einmal 75° be- 148, Unter welchem Winkel miilte ein Licht-
trigt. strahl auf die Trennfliche von Glas und
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149.

150.

151.

152.

154.

Luft einfallen, damit er nicht mehr in
die Luft austreten kann?

Ein Lichtstrahl trifft unter dem Winkel
@ = 70° auf eine planparallele Glas-
platte von 10 cm Dicke und der Brech-
zahl n = 1,5. Berechnen Sie den Betrag
der Parallelversetzung, die der durch-
gehende Strahl erleidet.

Unter einer 12 cm dicken Glasplatte be-
findet sich eine Miinze. Sie wird von
einem Beobachter gesehen, dessen Auge
senkrecht auf die Glasplatte schaut; es
ist von dieser 10 cm entfernt. In welcher
Entfernung, vom Auge des Beobachters
aus gemessen, erscheint das Biid der
Miinze?

Auf ein Prisma mit dem brechenden
Winkel y = 54° fillt ein monochromati-
scher Lichtstrahl, fiir dessen Wellen-
linge die Brechzahl des Prismas den
Wert » = 1,63 hat. Wie grof3 ist die
minimale Ablenkung des Lichtstrahls
beim Durchgang durch das Prisma?
Ein optisches Prisma, dessen brechen-
der Winkel 50° ist, erlaubt fiir einen
durchgehenden Lichtstrahl eine mini-
male Ablenkung von 35°. Wie verindert
sich dieser Winkel, wenn das Prisma
ganz in Wasser untergetaucht wird?

. Auf ein Prisma mitder Brechzahln =\/ 2

fallt ein Lichtstrahl so, daB er auf-die
vordere Fldche des Prismas senkrecht
auftrifft. Berechnen Sie, wie gro3 der
brechende Winkel dieses Prismas
héchstens sein darf, damit der aus-
tretende Lichtstrahl an der riickwérti-
gen Fldche gebrochen wird.

Zwei Planspiegel schlieBen miteinander
den Winkel ¢ ein. Auf einen der beiden
Spiegel fillt ein Lichtstrahl, der in einer
senkrecht zur Schnittlinie beider Spiegel
orientierten Ebene liegt. Der Strahl wird
erst auf dem ersten, dann auf dem zwei-
ten Spiegel reflektiert und weicht dabei
gegeniiber seiner urspriinglichen Rich-
tung um den Winkel y ab. Ermitteln Sie,
wie grofB3 dieser Winkel ist und in wel-

155.

156.

157.

158.

i59.

cher Weise er vom Einfallswinkel ab-
hédngt.

Von einem Felsen aus, der in einer Hohe
h =76 m iber der spiegeinden Ober-
flache eines Sees liegt, wird eine Wolke
unter einem Hohenwinkel ¢ = 56° be-
obachtet. Thr Spiegelbild erscheint im
See unter einem Winkel y = 58° gegen-
iiber der Horizontalen nach unten ge-
messen. Wie grof3 ist die tatsichliche
Hohe der Wolke?

a) Auf der optischen Achse eines Kon-
kavspiegels befindet sich eine punkt-
férmige Lichtquelle. Ihr Abstand vom
Scheitelpunkt des Spiegels ist gleich 3/,
des Spiegelradius. Bestimmen Sie die
Lage des Bildes.

b) Auf einer optischen Achse eines
Konvexspiegels befindet sich eine punkt-
formige Lichtquelle im n-fachen Ab-
stand seiner Brennweite vom Spiegel-
scheitel entfernt. Bestimmen Sie auch
hier die Lage des Bildes.

Gegeben ist ein sphirischer Konkav-
spiegel mit einem Kriimmungsradius
von 56 cm. In welchem Abstand vom
Scheitelpunkt des Spiegels muBl man
einen Gegenstand aufstellen, damit sein
Bild

a) reell und viermal vergroBert,

b) virtuell und viermal vergroBert
erscheint? Ermitteln Sie die Lage des
Bildes.

Ein Gegenstand von 1,5 cm Hohe be-
findet sich 32cm vom Scheitelpunkt
eines Konkavspiegels entfernt, dessen
Kriimmungsradius 48 cm betrdgt. Be-
stimmen Sie die Art des entstehenden
Bildes, scine Bildweite und Bildgré8e.
Ein Spiegelgalvanometer enthilt einen
kleinen Konkavspiegel. Im Abstand
/ = 1m vor diesem befindet sich eine
waagerechte Skale und unmittelbar dar-
unter ein beleuchteter Spalt. Berechnen
Sie, welchen Kriimmungsradius der
Galvanometerspiege! haben muf, damit
auf der Skale ein reelles Bild des Spalts
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160.

161.

162.

163.

164.

165.

166.

entworfen wird. Berechnen Sie weiter,
um welchen Betrag die Lichtspur des
Spalts auf der Skale ausgelenkt wird,
wenn der Spiegel sich um den kleinen
Winkel ¢ dreht.

Ein Konkavspiegel hat eine Brennweite
f=16cm. In welchen Abstand von
diesem Spiegel mulB ein Beobachter sein
Auge bringen, damit er das Abbild
seines eigenen Auges in der deutlichen
Sehweite 24 cm erblickt?

Ein Konkav- und ein Konvexspiegel mit
derselben Brennweite f = 20 cm stehen
einander in einem Abstand / = 50 cm
so gegeniiber, daf} ihre beiden optischen
Achsen zusammenfallen. In einem Ab-
stand g = 30cm vom Konkavspiegel
befindet sich ein punktférmiger leuch-
tender Gegenstand. Wo wird sein Bild
entstehen, wenn das Licht a) zuerst auf
dem Konkavspiegel, dann auf dem Kon-
vexspiegel und b) zuerst auf dem Kon-
vexspiegel, dann auf dem Konkavspiegel
reflektiert wird?

Ein mit Quecksilber gefiilltes Gefi3
rotiert mit der konstanten Winkel-
geschwindigkeit « um die vertikale
Achse und bildet dabei einen Konkav-
spiegel. Berechnen Sie die Brennweite
dieses Spiegels.

Eine diinne Sammellinse bildet einen
20 cm vor ihr gelegenen Gegenstand in
einer Entfernung von 35 cm hinter sich
ab. Wie groB ist ihre Brennweite, und
welche VergroBlerung tritt auf?

Eine Sammellinse der Brennweite f =
=42 cm entwirft von einem Gegen-
stand ein dreifach vergroBertes, virtu-
elles Bild. Bestimmen Sie Gegenstands-
und Bildweite.

Fine diinne Bikonvexlinse der Brech-
kraft D entwirft von einem Gegenstand
ein Bild mit der VergroBerung Z. Be-
rechnen Sie Gegenstands- und Bild-
weite.

In einem Punkt P konvergiert ein Strah-
lenbiindel, das vor Erreichen dieses

167.

168.

169.

170.

171.

Punktes durch eine Zerstreuungslinse
aufgefangen wird, deren Brechkraft den
Wert D = —19/5 dpt hat. Bestimmen
Sie rechnerisch die Bildweite, wenn die
auffangende Zerstreuungslinse von dem
Punkt 90 cm entfernt ist.
Eine plankonvexe Glaslinse mit einem
Kriimmungsradius ¥; = 14 cm entwirft
von einem Gegenstand ein Bild in der
Bildweite b, die um 1,05 m kleiner ist als
die Gegenstandsweite. Wie grof ist die
Gegenstandsweite und Bildweite fiir
n =157
Die Brechkraft einer bikonvexen Glas-
linse hat in Luft den Wert Dy, = 12 dpt.
Welchen Wert nimmt die Brechkraft an,
wenn die Linse in Wasser getaucht ist?
Eine diinne bikonvexe Glaslinse ent-
wirft von einem Gegenstand ein Bild in
der Bildweite b; = 10 cm. Gegenstand
und Linse seien. auf einer optischen
Bank montiert, die ohne Verdnderung
der Gegenstandsweite vollstindig in
Wasser getaucht wird. Dabei verdndert
sich die Bildweite auf einen Wert
, = 60cm. Wie grof3 ist die Brenn-
weite dieser Linse in Luft?
Eine optische Bank trdgt Lichtquelle,
Sammellinse und Schirm. Die Sammel-
linse entwirft auf dem Schirm das Bild
der Lichtquelle, deren Abstand vom
Schirm/ = 1 m betrdgt. Wenn wir, ohne
die Lage von Lichtquelle und Schirm zu
verindern, die Linse 20 cm nidher an
den Schirm verschieben, so wird in die-
ser zweiten Stellung die Lichtquelle er-
neut auf dem Schirm scharf abgebildet.

Wie grof8 ist die Brennweite der
Linse?
Auf einem Schirm wird durch eine

Sammellinse ein Gegenstand so ab-
gebildet, daf3 die BildgroBe den Wert
B; = 9 cm hat. Bei Fixierung von Ge-
genstand und Schirm wird die Linse an
den Schirm herangefahren, wobei sich
herausstellt, daf} in einer zweiten Stel-
lung ein scharfes Bild der GroBe B, =
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172.

173.

174.

175.

176.

177.

178.

=4 cm entsteht. Berechnen Sie die
wahre Gegenstandsgrofie G.

Die Brennweite einer Sammellinse ist f
Berechnen Sie, in welchem Abstand von
der Linse eine Lichtquelle aufgestellt
werden muB, damit sich die Bildweite
des entstehenden Bildes um weniger als
p % von der Brennweite f unterscheidet.
Eine Glaskugel hat den Kriimmungs-
radius ». In welcher (mit r als Einheit
ausgedriickten) Entfernung muf3 ein
Gegenstand vor der Kugelfliche auf-
gestellt werden, damit das hinter der
Kugelfliche entworfene Bild in gleicher
Entfernung wie der Gegenstand er-
scheint?

Fine dicke bikonvexe Glaslinse hat die
Kriimmungsradien #; =r, = 10cm
und die Dicke d = 5 ¢m. Berechnen Sie
die Brennweite dieser Linse und die Lage
ihrer Hauptebenen. Ermitteln Sie des
weiteren die Bildweite fiir den Fall, dal3
die Gegenstandsweite g = 20cm be-
tragt.

Ein Gegenstand wird durch eine 2 cm
vom Auge entfernt gehaltene Lupe be-
trachtet. Berechnen Sie die Brennweite
der Lupe, wenn bei sechsfacher Ver-
groferung die Bildweite den Wert b =
= 30 cm annimmt.

Eine Lupe hat die Brechkraft D =
= 10 dpt. Berechnen Sie, in welchem
Abstand von der Lupe ein Gegenstand
anzubringen ist, damit ein Beobachter,
der die Lupe dicht vors Auge hilt, ein
scharfes Bild erblickt. Fiir den Beobach-
ter hat die deutliche Sehweite den Wert
!l = 25cm. Welche Vergréferung hat
die Lupe?

Berechnen Sie die mit einem Mikroskop
erreichbare Vergroferung, dessen Ob-
jektiv 0,5 cm, dessen  Okular 2,0 cm
Brennweite hat und dessen Tubuslinge
12 cm betrigt.

Zwei Sammellinsen mit den Brenn-
weiten 3 cm bzw. 4 cm sind, als opti-
sches System vereinigt, in 15cm Ab-

179.

180.

181.

182,

stand hintereinander befestigt. Berech-
nen Sie, in welchem Abstand vor der
ersten, als Objektiv wirkenden Linse
man einen Gegenstand aufstellen muB,
damit das System vom Gegenstand ein
virtuelles Bild entwirft, das sich in der
deutlichen Sehweite befindet. Das Auge
des Beobachters sei dicht an die zweite,
als Okular wirkende Linse geriickt.

Ein KepLERsches Fernrohr besteht aus
einem Objektiv mit der Brennweite
f1 = 42 cm und einem Okular mit der
Brennweite f, = 1,4 cm. Wie lang ist
das Fernrohr, und welche Winkelvergro-
Berung erlaubt es?

Das Objektiv eines GALILEISchen Fern-
rohrs besteht aus einer "diinnen Bi-
konvexlinse mit den Kriimmungsradien
i =r; =24cm und .der Brechzahl
n = 1,5. Die Brechkraft des Okulars hat
den Wert D = —20 dpt. Berechnen
Sie, in welchen Abstand vom Objektiv
man das Okular bringen muB, damit ein
Beobachter mit der deutlichen Schweite
[ =25cm einen Gegenstand scharf
sieht, der 30 m vor dem Objektiv steht.
Ein Mikroprojektor, dessen Objektiv
eine Brennweite f; = 3cm, dessen
Okular eine Brennweite f> = 6,5 cm hat
und dessen Baulinge d = 28 cm be-
trdgt, soll auf einer Mattscheibe das
scharfe Bild eines Gegenstands entwer-
fen, der in der Gegenstandsweite g =
= 3,6 cm vor dem Objektiv steht. Be-
rechnen Sie, in welchem Abstand vom
Okular die Mattscheibe angebracht sein
mull und welchen Wert die VergroBe-
rung annimmt.

Berechnen Sie den kleinsten Abstand
zwischen zwei Strichen, die durch ein
Mikroskop noch getrennt wahrgenom-
men werden sollen, wenn im blauen
Licht der Wellenldnge 2 = 450 nm be-
obachtet wird und die numerische Aper-
tur des Objektivs den Wert 4 = 0,55
hat. Ermitteln Sie weiter, um wievielmal
kleiner diese Entfernung ist als die, die



2.3. Wellenoptik

155

ein unbewaffnetes Auge in der deutli-
chen Sehweite / = 25 cm gerade noch
trennen kann, wenn wir beriicksich-
tigen, daBl der kleinste Auflosungs-
winkel des unbewaffneten Auges den
Wert &« = 1’ hat.

Sammellinse hergestellt ist, hat fiir rotes
Licht den Wert #,,, = 1,51 und fiir vio-
lettes den Wert r,40; = 1,531, Wie weit
fallen die Brennpunkte fiir rote und vio-
lette achsenparallele Strahlen ausein-
ander, wenn die Kriimmungsradien der

183. Die Brechzahl des Glases, aus dem eine Linse ¥y = ¥, = 15 cm sind?

2.3. Welleroptik

Wenn zwei mechanische Wellen, die von verschiedenen Quellen ausgehen, sich in
irgendeinem Bereich iiberlagern, so kommt es in diesem Bereich zur Interferenz. Die
resultierende Wellenamplitude ist dann gleich der Vektorsumme der Amplituden der
beteiligten Teilwellen. Wenn aber die Quellen, von denen die Wellen ausgehen, mit
der gleichen Frequenz schwingen und gleiche Schwingungsrichtung sowie gleiche,
konstante Phasendifferenz haben, so handelt es sich dann um sog. kehiirente Quellen.
Die Amplitude der resultierenden Schwingung ist dann in jedem Punkt des betreffen-
den Mediums vollig bestimmt und hangt nur von den Abstéinden des Punktes von den
beiden Quellen ab.

Eine Maximalamplitude bildet sich in all den Punkten aus, in denen fiir die Weg-
differenz der Wellen, d, — d,, die Bezichung

dz—dlzk).

erfiillt ist. Eine Minimalamplitude entsteht {iberall da, wo fiir die Wegdifferenz gilt

d, —d, = 2k + 1)% k=0,1,2,3,..)

(A4 Wellenldnge, d; bzw. d, Abstinde des angenommenen Punktes von den beiden
Quellen).

Auch bei elektromagnetischen Wellen kann Interferenz eintreten, wenn die Wellen
kohérent sind und Uberlagerungen entsprechend den vorgenannten Bedingungen auf-
treten.

Der Abstand 4s zwischen zwei benachbarten Maxima der Beleuchtungsstirke auf
einem Schirm, der von zwei kohdrenten Lichtquellen beleuchtet wird, die sich vom
Schirm im Abstand / und voneinander im Abstand a (mit a < [) befinden, geniigt
folgender Beziehung:

As = ;».—1‘,
a

wobei A die Wellenlidnge des verwendeten monochromatischen Lichtes bedeutet.
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Interferenz von Lichtstrahlen kann man auch auf einer diinnen, durchsichtigen Schicht
beobachten. Wenn die diinne Schicht mit einem parallelen Biindel monochromatischen
Lichtes der Wellenldnge A bestrahlt wird, dann wird das Licht von der Schicht mit
maximaler Intensitit reflektiert, wenn die Bedingung

2nd cos B = (2k + 1)%

erfiillt ist. Dagegen wird das Licht mit minimaler Intensitit reflektiert, wenn gilt
2nd cos f = ki k=0,1,2,3,..)

(n Brechzahl der reflektierenden Schicht, d ihre Dicke, 8 Winkel, unter dem die Licht-
welle in die Schicht hinein gebrochen wird).

Die Tatsache, daB Licht sich nicht immer nur geradlinig ausbreitet, sondern durch
Beugung Richtungsanderungen erféhrt, wird durch verschiedene Experimente be-
stétigt, so z. B. die Beugung am Spalt und die Beugung am optischen Gitter. Stellen wir
uns vor, daB auf einen engen Spalt in einem sonst undurchsichtigen Hindernis oder
auf ein optisches Gitter ein monochromatisches Biindel paralleler Strahlen senkrecht
einfallt. Es tritt Beugung auf, und an einem geeignet angeordneten Schirm kénnen die
Interferenzen beobachtet werden.

Bei Beugung des Lichtes am Spalt werden die durch die Gleichung

dsine =kA (k=0,1,2,3,..)

bestimmten Richtungen dadurch ausgezeichnet, daB in ihnen kein Licht ausgebreitet
wird. Auf dem Schirm entspricht das der Beleuchtungsstirke Null, d ist hier die
Spaltbreite.
Bei der Beugung des Lichtes am Gitter entstchen auf einem Schirm Maxima der Be-
leuchtungsstérken in all den Punkten, die den Richtungen entsprechen, die durch die
Gleichung

dsino = ki

bestimmt werden, wobei d die Gitterkonstante ist. Sie ist gleich dem Abstand der
Mittelpunkte zweier benachbarter Striche des Gitters. Der Zahlenwert k& kann nur
ganzzahlige positive Werte annehmen und bezeichnet die Ordnung des zugeh6rigen
relativen Maximums.

Fiir die Untersuchung von Beugungserscheinungen an Rontgenstrahlen sind rdum-
liche Kristallgitter geeignet. Wenn auf die ebene Oberfliche eines Kristalls ein paral-
leles Biindel von Rontgenstrahlen einfallt, so wird das Réntgenlicht dann mit maxi-
maler Intensitdt reflektiert, wenn fiir seinen Einfallswinkel « die Bragg-Wulfsche
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Bedingung
2dsin x = kA

erfiillt ist. Der Winkel o« wird von der Kristallebene aus gemessen, d ist die Gitter-
konstante des Kristallgitters, der Zahlenwert & stellt wieder die Ordnung des zu-
gehorigen relativen Maximums dar.

Wenn ein Lichtstrahl auf die Trennfliche zweier verschiedener Stoffe mit den ab-
“soluten Brechzahlen 7, und #, unter einem Winkel x einfillt, welcher der Gleichung

tano = 22 €3]
n;

geniigt, so wird er vollstindig polarisiert reflektiert, wobei seine Polarisationsebene
mit der Einfallsebene zusammenfallt. Der Strahl, der in das zweite Medium eindringt,
ist in der zur Einfallsebene senkrechten Ebene teilweise polarisiert und schlieBt mit
dem refiektierten Strahl einen Winkel von 90° ein. Die Gi. (1) driickt das
Brewstersche Gesetz aus. '

B Beispiele

127. Aus einer Lichtquelle, die vor
der Schnittlinie zweier FRESNEL-
scher Spiegel im Abstand r =
10 cm aufgestellt ist, fallt mono-
chromatisches Licht der Wellen-
linge 4 =0,6 um auf die beiden
Spiegel S; und S, (Bild 102).
Das von den beiden Spiegeln
reflektierte Licht erzeugt auf
einem Schirm, der im Abstand
lo =270 cm von der Schnitt-
linie entfernt steht, ein Inter-
ferenzbild. In ihm ist der Ab-
stand zweier benachbarter
Streifen 4s = 0,29 cm. Berech-
nen Sie, welchen Winkel die
beiden FRESNELschen Spiegel
zwischen sich einschlieBen.

Sz

Bild 102

Losung

Das von der Lichtquelle L ausgehende Licht wird auf den Spiegeln S; und S, reflek-
tiert, und die scheinbar von zwei virtuellen Strahlenquellen L, und L, ausgehenden
Strahlen interferieren miteinander. Das Interferenzbild, das auf dem Schirm entsteht,
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der von den beiden virtuellen Quellen den Abstand / hat, ist von der Weglidngendifferenz
abhingig, die zwischen den beiden Strahlen besteht. Zum Beispiel entsteht im Punkt M
des Schirms ein relatives Maximum dann, wenn die Weglingendifferenz

dz haad d 1 = kl (1)

ist, wobei 4 die Wellenldnge des verwendeten Lichtes istund £k =0, 1, 2, 3, ....

Die Lage der beiden virtuellen Lichtquellen L; und L, finden wir ohne Miihe aus den
bekannten Eigenschaften des Planspiegels. Wenn wir ihren gegenseitigen Abstand mit 2a
und den Abstand des Punktes M vom Mittelpunkt O des Schirmes mit s kennzeichnen,
wie in Bild 102 vorgesehen, dann gilt offenbar

di=P+(—a? =P+ (+a? di—di=dsa. ()]

Da die Abstinde s und 2a gegeniiber den Abstinden d; und d, klein sind, kann die
Beziehung

d1+d2z21

als anndhernd erfiillt gelten, Nach Einsetzen in GL (2) erhalten wir
d, —dy = —.

Nach GI. (1) soll im Punkt M ein relatives Maximum sein, wenn

2
=4 ka 3)
l
ist. Fiir den Abstand zweier benachbarter relativer Maxima 4s resultiert daraus
A
AS=Sk—Sk_1=—. (4)
2a

Aus Bild 102 kénnen wir ohne weiteres ermitteln, daB < S;0S, gleich dem doppelten
Winkel ist, den die beiden FresNELschen Spiegel einschlieBen. Durch eine Drehung des
Spiegels S; um den Winkel & wiirde sich der auf ihm reflektierte Strahl um den Winkel 2«
drehen, und das Bild der virtuellen Lichtquelle L; wiirde sich nach L, verschieben;
deshalb kénnen wir auch schreiben:

2g =2rsinx, [ =1y} rcosa
und wegen der Kleinheit des Winkels « auch
a~xrx, bzw. &y +r.
Nach Einsetzen in Gl. (4) finden wir

otr,

4
$ 2ra

woraus fiir den gesuchten Winkel, den die beiden FrEsNELschen Spiegel einschlieBen,
resultiert:

lo +r
= A

24sr
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128.

Die Berechnung mit den gegebenen Werten ergibt schlieSlich

_ 270 cm + 10cm 14 a.1n-3 Y
o = 3029 om - 10 om 0,6-10"*cm = 3-107°rad = 10",
Eine ebene Seifenwassermembran erscheint bei Beobachtung im reflektierten Licht von
klar griiner Farbung. Das Auge beobachtet die Membran unter einem (gegen die Nor-
male gemessenen) Winkel &« = 35°, Berechnen Sie die Dicke der Membran und in
welcher Farbe sie erscheinen muB, wenn das Auge senkrecht auf die Membran blickt
(o« = 0°). Die Seifenwassermembran hat die Brechzahl » = 1,33, und die Wellenldnge
des griinen Lichtes ist 4, = 500 nm.

Lésung

Eine diinne Schicht reflektiert monochromatisches Licht dann am intensivsten, wenn
die Gleichung

2ndcos B = 2k + 1) ;:— 09

erfiillt ist, wobei § den zugehorigen Brechungswinkel des Lichtstrahls darstellt. Wenn
wir in diese Beziehung den Einfallswinkel mit aufnehmen, erhalten wir entsprechend
dem Brechungsgesetz

sinx = nsinf,
woraus folgt
\/n2 —sin? «
~ .

cos f =

Das erméglicht die Formulierung der Bezichung
_— 2
2d\/n* —sin?a = (2k + 1) -

Wenn die diinne reflektierende Schicht mit weilem Licht bestrahlt wird, so verstirken
sich im reflektierten Licht dicjenigen Farben am meisten, fiir welche GL (1) erfiillt ist.
In unserem Falle ist die intensivste Farbe das Griin mit der Wellenlédnge A,.. Fiir die
Dicke der reflektierenden Schicht erhalten wir folgende Bezichung:

g Gk DI
4\/712 —sin? o

@

Da die Zahl k beliebige ganze, positive Werte annehmen kann, 148t sich die Dicke d
so noch nicht eindeutig bestimmen. Fiir die kleinstmdgliche Dicke aber gilt sicher £ = 0.
Nach Einsetzen der gegebenen Werte erhalten wir damit

d = 104,1 nm.
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129.

Wenn die refiektierten Strahlen unter dem Winkel « = 0° einfallen, dann gilt nach
Gl (2)

i
2nd = 2k + 1) >
und fiir k =0
A = 4nd = 554 nm.,

Diese Wellenldnge entspricht einer gelbgriinen Farbe.

Zwei sorgfiltig geschliffene, ebene Pléttchen sind so aufeinandergelegt, daf3 sie sich an
einem Ende mit ihren Kanten beriihren, wihrend am anderen Ende, in einem Abstand
von a = 10 cm von der Beriihrungslinie, ein Stiickchen Metallfolie der Dicke # =1/5o mm
zwischen sie geschoben ist (Bild 103; a: Grundlinie). Bestimmen Sie den Abstand von

. zwei nebeneinanderliegenden Interferenzstreifen, die ent-

stehen, wenn auf die Anordnung monochromatisches
Licht der Wellenldnge 4 = 589 nm einféllt, a) bei senk-

rechtem Einfall und b) unter einem Winkel « = 60° d
. dz
(gegen die Normale gemessen). s, |
L%
Losung Bild 103

Im Prinzip handelt es sich hierbei um die Brechung in einer diinnen Schicht, deren Dicke
sich von Ort zu Ort dndert. In unserem Fall wird die diinne Schicht durch die zwischen
den beiden Pldttchen eingeschlossene Luftschicht gebildet.

Wenn die Luftschicht vollkommen planparallel wire, dann wiirde sie diejenige Strah-
lung maximal reflektieren, fiir die gilt

2ndcos p = 2k + 1) -g—
bzw. nach Einfithren des Einfallswinkels (vgl. Beispiel 128)
2d/n? — sin? o = (2k + 1) % )
Da es sich hier um eine Luftschicht handelt, kénnen wir » & 1 setzen und erhalten
2d cos « = (2k + 1)—;—.
Die Dicke der Schicht moge an den Stellen, an denen zwei benachbarte helle Interferenz-

streifen auftreten, mit d; bzw. d, angegeben sein ; dann sind offenbar folgende Bezichungen
erfiillt: '

A A
2d,cosa =2k + 1) 5 2d;, cos o« = (2k + 3) 5 1)

Weiterhin ist in Bild 103
di =x;tang d, = x,tan g, )
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130.

11

wobei

h
tan g = — 3)
a
ist. Fiir den Abstand zweier benachbarter Streifen ergibt sich aus den unter (2) stehenden
Gleichungen
X, — x1 = (dy — dy) cot p.
Mit Hilfe der Beziehungen (1) und (3) erhalten wir die Differenz
_a A
T Y T ces e

Mit den gegebenen GrofBen wird fiir den Fall

a)a=0
a A 10ecm  589:10"7cm
— Xy = = =0,1 .
M S T 2 0% em 2 9,147 em;
b) & = 60°
A Y
e A iy

Auf eine ebene Glasplatte wird eine plankonvexe Linse mit dem Kriimmungsradius »,
gelegt, und zwar mit der konvexen Seite nach unten (Bild 104). Wenn auf dieses System
senkrecht ein Biindel monochromatischer Lichtstrahlen einfillt, so entsteht auf der
Glasplatte eine Interferenzerscheinung in Form konzentrischer Kreisringe, die ab-
wechselnd dunkel und hell sind, die sog. NEwTONschen

Ringe. Erldutern Sie die Entstehungsursache dieser Er-

scheinung, und bestimmen Sie die Radien derjenigen Kreise, Bild 104
die jeweils maximale Helligkeit aufweisen. |

A

Lisung

el
Zwischen der Linse und der Glasplatte befindet sich eine \d% /
diinne Luftschicht, deren Dicke sich vom Zentrum, dem - > ]

Beriihrungspunkt von Linse und Platte, zum Rande hin
vergrofert. Die Luftschicht-hat an all jenen Stellen dieselbe
Dicke, die gleich weit von der optischen Achse OO’ (die durch den Berithrungspunkt
geht) entfernt sind. Wir wollen diesen Abstand mit r bezeichnen. Die Interferenz-
erscheinung kommt dadurch zustande, daB3 die an der unteren Trennfliche von Luft
und Glas reflektierten Lichtstrahlen mit den von der oberen Trennfliche reflektierten
interferieren.

An einer diinnen Schicht, die iiberall dieselbe Dicke d hat, entstehen Maxima der Be-
leuchtungsstirke, wenn die Bedingung

2ndcos B = 2k + 1) —;— (1)

Hajko, BElektrik
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erfiillt ist. Wenn wir beriicksichtigen, dal im vorliegenden Fall die Lichtstrahlen senk-
recht einfallen und daB sich die Reflexion in einer Luftschicht abspielt, ist # = 0 und
n ~ 1, und GIL (1) nimmt damit cine einfachere Form an, nimlich '

2d=(2k+1)%. )

Nach Bild 104 gilt offensichtlich
d=r; —\/r,z—r".
Wenn wir das zweite Glied in dem vorstehenden Ausdruck entsprechend der binomischen

Entwicklung behandeln und die Glieder hoherer Ordnung vernachldssigen (unter der
Voraussetzung, dall r; > r ist), erhalten wir

1 2 2
der_(rl__r_>=_r_,
2r;

2 r
und unter Beriicksichtigung der Gl. (2) wird

r? A
2—=QRk+1)—,
2}'1 ( + ) 2
woraus sich ergibt:

A
r=/r1(2k+1)7 k=0,1,2,3, ... €))

Demnach liegen die Maxima der Beleuchtungsstdrken auf Kreislinien, deren Radien
Gl. (3) erfiillt.

Wenn auf einen optischen Spalt ein paralleles Strahlenbiindel blauen Lichtes der Wellen-
linge 4,; = 450 nm senkrecht einféllt, so entsteht auf einem geniigend weit entfernten
Schirm ein Interferenzbild, bei dem die Mitte des zweiten dunklen Streifens um einen
Winkel «p; = 5° 14’ gegeniiber der kiirzesten Verbindungsgeraden Spalt — Schirm ab-
weicht. Unter welchem Winkel wird die Mitte des vierten Dunkelstreifens erscheinen,
wenn der Spalt an Stelle des blauen mit rotem Licht der Wellenldnge 4, = 700 nm be-
leuchtet wird?

Liosung
Ein Helligkeitsminimum zweiten Grades entsteht fiir den Fall des blauen Lichtes in all
den Punkten des Schirmes, fiir welche die Bedingung

dSin Kpp = 21],; (1)

erfiillt ist. Fiir den Fall roten Lichtes lautet die Bedingung fiir ein Helligkeitsminimum
vierten Grades

dsin o, = 41, @
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132.

11*

Aus den Gln. (1) u. (2) erhalten wir durch Eliminieren von d

. T .
sin o = ——sin oy,
b1

und durch Einsetzen der gegebenen Gréflen

. 2:7-10%em , _, .,

sin &, =msm5 14,
d. h,,

o = 16°29".

Auf ein optisches Strichgitter, das auf einem Millimeter 100 Striche hat, fillt ein paral-
leles Biindel weillen Lichtes senkrecht ein. Mit Hilfe einer dicht hinter dem Gitter an-
geordneten Sammellinse von 30 cm Brennweite wird auf einem geeignet angebrachten
Schirm ein Spektrum erzeugt. Berechnen Sie, unter welchen gegenseitigen Abstdnden
auf dem Schirm

a) die Farben Rot und Violett im Spektrum zweiter Ordnung,

b) das Ende des Spektrums erster und der Anfang des Spektrums zweiter Ordnung
nebeneinander erscheinen. Die Wellenldnge an der roten Spektrumgrenze betridgt 760 nm
und die an der violetten 400 nm.

Loseng

a) Die Beugungserscheinung wird in der Brennebene der Linse, im Abstand von /= 30cm
hinter dem Gitter, scharf dargestelit. Fiir die Ablenkung des roten Lichtes im Spektrum
zweiter Ordnung gilt

. T
smoc,=27,

und fiir die Ablenkung des violetten Lichtes entsprechend
. A,
sino, =2 —.

d

Da die Gitterkonstante den Wert d = 10-3 cm hat, ergeben sich nach Einsetzen dieser
GroBe fiir die Ablenkung des roten bzw. violetten Lichtes im Spektrum zweiter Ordnung
die Winkel

o, = 8°45, «,=4°35",
Der Abstand der roten bzw. violetten Farbe vom Maximum nullter Ordnung ist

x. = Iltan &, = 4,62 ¢cm
bzw.
x, = [tan &, = 2,40 cm.

Ihr Abstand voneinander betrigt

X =x — Xy =222 cm.

&
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b) Die Ablenkung des roten Lichtes im Spektrum erster Ordnung wird aus der Gleichung

A
sin o] = —-

d
bestimmt. Nach Einsetzen der gegebenen GroBen ergibt sich
ol = 4022
Fiir den Abstand des roten Lichtes vom Maximum nullter Ordnung erhalten wir
xi = Itan o) = 2,30 cm.

Der Beginn des Spektrums zweiter Ordnung, der vom violetten Licht markiert wird,
hat vom (roten) Ende des Spektrums erster Ordnung den Abstand

x =x, — xf =240cm — 2,30 cm = 0,1 cm.
Ein optisches Beugungsgitter wird senkrecht durch ein paralleles Biindel weilen Lichtes

beleuchtet. Untersuchen Sie, ob sich irgendeine Farbe aus dem Spektrum erster Ord-
nung mit irgendeiner Farbe des Spektrums zweiter Ordnung iiberdecken kann.

Lisung

Im Spektrum erster Ordnung mége eine Spektrallinie der Wellenldnge 4; unter einem
Winkel «; erscheinen und im Spektrum zweiter Ordnung eine Spektrallinie der Wellen-
ldnge 1, unter dem Winkel «,. Offensichtlich sind dann die Beziehungen

dsino; = 24; und dsinoa, = 24,

erfiillt, wobei d die Gitterkonstante bedeutet. )
Wenn beide Spektrallinien einander iiberdecken sollen, miifite die Bedingung

Xy = &gy
erfiillt sein, was zu der weiteren Bedingung fiithrt
Z‘ = 2}.2 .

Die durch das Auge wahrnehmbaren Farbkomponenten des weilen Lichtes haben
Wellenldngen im Bereich von 400 nm bis 700 nm. Deshalb kann die vorstehende Be-
dingung nicht erfiillt werden.

. Bestimmen Sie den hochsten Ordnungsgrad eines Spektrums, das bei Beugung von Licht

der Wellenlidnge 4 durch ein Gitter mit der Gitterkonstanten d gerade noch entstehen
kann.

Losung

Die Maximalintensitit k-ter Ordnung tritt in derjenigen Richtung auf, fiir die folgende
Bedingung erfiillt ist:

. 2
smoc—k—d—. 1
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135.

136.

Da die Winkelfunktion sin « dem Wert 1 sehr nahekommt, muf} auch die rechte Seite
der Gl. (1) die Bedingung
A
- =1
k 7=
erfiillen, woraus sich fiir die héchstmégliche Ordnung des Spektrums ergibt
d

<
k_i’

wobei k ganzzahlig sein muB

Berechnen Sie die Gitterkonstante von x-Eisen. Diese Kristallform ist durch eine Dichte
o = 7860 kg m~3 bestimmt, wobei das Eisen in einem kubisch-raumzentrierten Gitter
vorliegt.

Liosung

In einem kubischen Kristallgitter entfallen auf jede Elementarzelle » Atome eines Ele-
ments; M sei die Masse eines Grammatoms dieses Elements und N die Zahl der Atome
im Grammatom. Dann hat ein einzelnes Atom des Elements die Masse

M

N ’

und auf eine Elementarzelle entf#llt die Masse

mo =

m=n7v—. (1)

Mit der Gitterkonstanten ¢ und der Dichte g ergibt sich die Masse einer Elementarzelle
zu
m = d%. 2

Durch Vergleich der Gln. (1) u. (2) erhalten wir fiir die gesuchte Gitterkonstante den
Ausdruck

3
M
d= —_. 3
n N 3)
In einem kubisch-raumzentrierten Gitter entfallen auf jede Elementarzelle n = 2 Atome,
und fiir die Gitterkonstante ergibt sich schlieBlich

d_3/2M_i/ 255,83 gmol!
TV Ne V60310 mol!-7,86gcm3

= 2,87 - 10%cm.

Auf einen Kaliumchloridkristall fillt eine Rontgenstrahlung der Wellenlinge A =
= 0,1537 nm (Kupfer-K ,-Strahlung) und wird gegeniiber der (001)-Ebene unter einem
Winkel « = 18° 03’ als Reflex zweiter Ordnung reflektiert. Wie groBl ist die Gitter-
konstante des KCl-Kristalls?
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Losung

Die auf die ebene Oberfliche des Kristalls auftreffende Rontgenstrahlung wird mit
maximaler Intensitdt dann reflektiert, wenn die BRAGG-WULFsche Bedingung

2dsin « = kA

erfiillt ist. Da das beobachtete reflektierte Strahlenbiindel einen Reflex zweiter Ordnung
darstellt, ist £ = 2, und fiir die gesuchte Gitterkonstante ergibt sich der Wert
gk _2-15374
~ 2sino 2sin 18°03’

= 0,496 nm.

Auf eine planparallele Glasplatte fillt ein Lichtstrahl unter einem solchen Winkel ein,
daB der in die Luft reflektierte Strahl vollstdndig polarisiert ist. Beweisen Sie, daf3 auch
der ins Glas hinein gebrochene und an der unteren Begrenzungsfliche ins Glas reflek-
tierte Strahl vollstdndig polarisiert ist.

Lésung

Wenn die absoluten Brechzahlen von Luft bzw. Glas n; und »; sind, dann wird die Be-
dingung, daB der reflektierte Strahl (1) (Bild 105) vollstidndig polarisiert ist, durch die
BrEwsTERsche Beziehung ausgedriickt, also

n
tan x = 2 R 6)) (1)
ny
Um festzustellen, ob der an der unteren Begrenzungs- ¢

fliche unter dem Brechungswinkel § ins Glas zuriickre-

flektierte Strahl (2) vollstdndig polarisiert ist, untersuchen a

wir den Tangens des Brechungswinkels’ sh2)
. nz
sin
tan g = £ . 2) n
cos f
Gemil dem Brechungsgesetz ist Bild 105

. ny .
sin f = —sin «.
A2

Durch Vergleich mit GI. (1), die auf die Form

.
COS & = —SIn «
12

gebracht wird, erhalten wir
sin f = cos &
und weiter

cos f = sin «,



2.3. Wellenoptik 167

A

was nach Einsetzen in Gl. (2) ergibt:

ny

tan « Ho

tan § = cot o =

Diese Beziehung driickt die Bedingung dafiir aus, daB der an der Begrenzungsfliche
Glas — Luft reflektierte Strahl vollstindig polarisiert ist.

Aufgaben

184. Bei dem Versuch von YOUNG treten die wird mit einem parallelen Biindel wei-
kohédrenten, interferierenden Strahlen Ben Lichtes senkrecht beleuchtet. Be-
aus Spalten aus, deren Abstand 0,06 cm stimmen Sie die im sichtbaren Teil des
betrdgt. Die auf dem 1 m dahinter ste- Spektrums liegende Wellenldnge, die im
henden Schirm erscheinenden Inter- reflektierten Licht a) am meisten ver-
ferenzstreifen haben einen Abstand stirkt und b) am meisten geschwicht
41 = 0,1 cm. Wie groB ist die Wellen- wird.
lange des verwendeten Lichtes? 189. Zwischen zwei Glasplatten befindet sich

185. Zwei als kohdrente Lichtquellen die- eine Luftschicht von 1 pm Dicke, die mit
nende Spalte haben voneinander einen weiBem Licht senkrecht beleuchtet wird,
Abstand von 0,045cm. Im Abstand wobei es zur Reflexion kommt, Bestim-
0,5mdahinter ist ein Schirm angebracht. men Sie die im sichtbaren Teil des Spek-
Es wird weiBles Licht verwendet. Be- trums liegende Wellenldnge, die im re-
rechnen Sie, in welchem Abstand vom flektierten Licht a) am meisten verstirkt
zentralen Maximum die erste rote Auf- und b) am meisten geschwicht wird.
hellung (4; = 700 nm) und in welchem 190, Eine sehr diinne, keilformige Glasplatte
die erste blaue Aufhellung (1, = 400nm) wird mit monochromatischer Strahlung
auftritt. der Wellenldnge A = 0,5 umsenkrecht be-

186. Zwei FrEsNELsche Spiegel, die den leuchtet. Die in der Keilplatte auftre-
Winkel & = 9710” einschlieBen, werden tende Interferenzerscheinung wird im re-
mit monochromatischem Licht der flektierten Licht beobachtet, wobei sich
Wellenldnge 4 = 0,56 um beleuchtet. zeigt, dal der Abstand zweier benach-
Der Abstand der Lichtquelle von der barter Dunkelstreifen 0,56 cm betrigt.
Schnittlinie beider Spiegel betrigt s = Berechnen Sie den Winkel, den die bei-
= 10 cm, der Abstand des Schirmes den Oberflichen des Keils einschlieBen.
lo = 1 m. Berechnen Sie den Abstand 191. Der Zwischenraum einer optischen An-
des dritten Intensititsmaximums vom ordnung zur Erzeugung NEwTONscher
Zentrum des Interferenzbildes. Ringe ist mit Wasser ausgefiillt. Die

187. Eine Seifenwassermembran mit der plankonvexe Linse hat einen Kriim-
Brechzahl n = 4/; wird mit monochro- mungsradius » = 1 m, diec Ringe er-
matischem Licht der Wellenldnge 1, = scheinen im reflektierten Licht der Wel-
= 540 nm senkrecht beleuchtet. Wie lenldinge A = 600 nm, dic Brechzahl des
diinn muB} die Membran sein, damit im Wassers betrigt n = 4/5. Berechnen Sie
reflektierten Licht auf ihrer Oberfliche den Abstand zwischen dem dritten und
kein Interferenzmaximum auftritt? dem vierten NEwTONschen Ring.

188. Eine Glasmembran der Dicke d =0,3um  192. Bei Beobachtung NEwTONscher Ringe
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193.

194.

195.

196.

im reflektierten Licht der Wellenldnge
Aot = 700 nm zeigt sich, daB der
5.Ring einen Durchmesser von 0,354cm
hat. Bestimmen Sie die Brennweite der
verwendeten Plankonvexlinse. Wie grof3
wiére der Durchmesser des 5. Ringes bei
Beobachtung im blauen Licht der Wel-
lenldnge A, = 450 nm?

NewToONsche Ringe werden in einer An-
ordnung bei senkrecht einfallendem,
einfarbigem, reflektiertem Licht beob-
achtet. Wie groB ist die Wellenldnge des
verwendeten Lichtes, wenn der erste
Dunkelring einen Durchmesser von
0,152 cm hat und der Krimmungs-
radius der verwendeten Plankonvex-
linse 1 m betragt?

Ein paralleles Biindel monochromati-
schen Lichtes der Wellenlinge A =
= 450 nm féllt senkrecht auf einen
0,1 cm breiten Spalt. Dicht hinter dem
Spalt befindet sich eine Linse mit
f =100 cm Brennweite, die auf einem
in der Brennebene aufgestellten Schirm
ein Beugungsbild entwirft. Bestimmen
Sie den Abstand des ersten, zweiten und
dritten Intensitdtsminimums vom Ma-
ximum nullter Ordnung.

Auf einen Spalt von 0,05 cm Breite félit
ein monochromatisches Biindel paral-
leler Strahlung senkrecht ein und er-
zeugt auf einem 3,5 m hinter dem Spalt
stehenden Schirm ein FRAUNHOFERsches
Beugungsbild. Berechnen Sie die Wel-
lenlinge des verwendeten Lichtes fiir
den Fall, daB die Mitte des ersten Dun-
kelstreifens der Beugungsfigur von der
Mitte des Spaltbildes einen Abstand von
0,42 cm hat.

Ein schmaler Spalt wird durch ein senk-
recht ecinfallendes, paralleles Biindel
weiBlen Lichtes beleuchtet. Ermitteln
Sie, fiir welche Wellenldnge die Mitte
des dritten Dunkelstreifens mit der
Mitte des zweiten Dunkelstreifens einer
anderen Wellenldnge zusammenfillt,
wenn der zweite Dunkelstreifen einer

197.

198.

199.

200.

201.

202.

203.

roten Farbe der Wellenldinge 4., =
= 690 nm entspricht.

Auf ein Beugungsgitter mit 100 Strichen
je Millimeter fallt ein paralleles Biindel
roten Lichtes der Wellenldnge 4., =
= 700 nm senkrecht ein. Berechnen Sie
den Abstand zwischen erster und dritter
Aufhellung, wenn der Auffangschirm
1 m hinter dem Gitter aufgestellt wird.
Ein optisches Gitter mit 300 Strichen je
Millimeter wird mit Licht der Wellen-
linge A = 700 nm beleuchtet. Bestim-
men Sie die héchste Ordnung des mit
dieser Anlage erzielbaren Spektrums.
Auf ein optisches Gitter mit 310 Strichen
je Millimeter fallt ein paralleles Biindel
weiBen Lichtes senkrecht ein. Auf einem
Schirm wird ein farbiges Beugungsbild
entworfen. Unter welchem Winkel er-
scheint dabei eine griine Farbe von
540 nm Wellenlidnge, die sich mit einer
violetten Farbe von 405 nm Wellen-
linge des Spektrums néchsthoherer
Ordnung liberlagert?

Auf die ebene Oberfliche cines NaCl-
Kristalls fallen Rontgenstrahlen, die
unter einem Winkel « = 5,9° (gemessen
gegen die Oberfliche mit & = 1) reflek-
tiert werden, Die Dichte des NaCl ist
0 = 2170 kg m~3. Bestimmen Sie die
Wellenldnge der einfallenden Rontgen-
strahlung.

Berechnen Sie, unter welchem Winkel
ein Lichtstrahl auf eine unter Wasser
liegende Glasplatte auftreffen mul}, da-
mit der reflektierte Strahl vollstdndig
polarisiert ist.

Auf eine Flintglasplatte fillt ein Licht-
strahl unter einem Winkel ¢ = 56° 12’
ein. Der reflektierte Strahl ist vollstdndig
polarisiert. Wie groB ist die Brechzahl
des Flintglases?

Berechnen Sie, unter welchem Winkel
ein Lichtstrahl auf die Trennfliche von
Glas und Wasser fallen muf}, damit der
ins Glas reflektierte Strahl vollstindig
polarisiert ist.
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3.1, Strahlung des schwarzen Korpers

Festkorper und Fliissigkeiten, die auf eine bestimmte Temperatur erhitzt werden,
emittieren eine elektromagnetische Strahlung.

Unter der Strahlstirke 7 verstehen wir den Quotienten des vom Flichenelement d A4
in den gesamten Halbraum emittierten Strahlungsflusses d®, und dieser Fliche
selbst, also

I= d2. .
d4

Von der Strahlstirke I entfillt auf das Wellenliingenintervall 4 bis 4 4 d4 der Anteil
dI. Der Ausdruck
_dr

di

wird als. die Strahldichte bezeichnet. Die Strahlstirke I kann man dann auch durch
folgende Beziehung ausdriicken:

-]
1=JLM.

Als idealen schwarzen Kérper bezeichnen wir cine Substanz, die alle auf sie fallende
Strahlung vollkommen absorbiert,

Entsprechend dem Stefan-Boltzmannschen Strahlungsgesetz ist die Strahlstiarke eines
idealen schwarzen Korpers durch die Bezichung

I, = oT*
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gegeben, wobei T die absolute Temperatur des Kérpers bedeutet. Die in der Gleichung
auftretende Konstante o hat den Wert

0=>57-10"8 Jm—2s1 K4,
Entsprechend dem Wienschen Verschiebungsgesetz ist die Wellenlidnge, bei der ein

idealer schwarzer Korper sein (auf das Wellenlingenintervall bezogenes) Intensitits-
maximum hat, umgekehrt proportional zur Temperatur, ndmlich
Amax = —;):, b =0,00289 m K.

Die Strahldichte der monochromatischen Strahlung eines idealen schwarzen
Korpers wird durch das Plancksche Strahlungsgesetz bestimmt. Es hat die Form

Le=f()'7T)=_'_

(Cl = 2mhe? = 1,197+ 10" T m?2s~!, C, = % = 0,0143 m K)

B Beispiele

138. Beweisen Sie, ausgehend vom PrLaNcKschen Strahlungsgesetz, die Giiltigkeit a) des
WieNschen Verschiebungsgesetzes und b) des STEFAN-BoLTzMaNNschen Strahlungs-
gesetzes. :

Losung

a) Ableitung des WieNschen Verschiebungsgesetzes

Wir wollen den Wert A, fiir diejenige Wellenldnge aufsuchen, bei der die in der mono-
chromatischen Strahlung eines schwarzen Kdrpers emittierte Energie, ausgedriickt
durch das PLaNcksche Strahlungsgesetz, ein Maximum ist.

Dazu muf} die Bedingung

drL.
da

erfiillt sein. Einsetzen des aus dem PLANcKschen Gesetz folgenden Ausdrucks fiihrt auf

d 1C, 1
a|FE =
elT — 1

=0

Indem wir die vorgegebene Ableitung ausfiihren, erhalten wir
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/ Ca
/ C: gr
-5 T2?
Cl _C_z N ‘+‘ E_Z_ 2 =0 .
A6 (e}.T — 1) A5 (elT — 1)
c2
Wir dividieren durch den Bruch Cl/ls(e” - 1) und erhalten
9_2‘
Czeﬁ.T

5= G
AT (e” - 1)
Dieser Ausdruck wird durch die Substitution

C:
ar O

in die einfache Form iibergefiihrt:

xe*

=5,
et —1

Durch eine Abschitzung kOnnen wir ermitteln, daB3 diese Gleichung eine reelle Wurzel
hat, die anndhernd gleich 5 ist. Durch Losen der Gleichung mit Hilfe bekannter Me-
thoden der Algebra ergibt sich, daf3 der Ausdruck nur eine reelle Wurzel hat, und zwar

x; = 4,965,

Wenn wir diese Losung in Gl. (1) einsetzen, erhalten wir fiir die gesuchte Wellenldnge
die Aussage
C, he const -

XT ~ 4965k T °
mit const = 0,00289 m K.

;‘max =

b) Ableitung des STEFAN-BoLTZMANNSchen Gesetzes

Zundchst ermitteln wir den Wert der Strahistirke I, eines idealen schwarzen
Korpers. Wenn die Strahldichte eines idealen schwarzen Korpers mit L, angegeben
ist, ist sicher auch

1, =fL,dz.
[s]

Dieses Integral 148t sich leicht berechnen, wenn wir im PLANCKschen Strahlungsgesetz,
das den Verlauf der Funktion L, angibt, die Wellenldngen durch die Frequenzen er-
setzen. Fiir die in einem Frequenzintervall ausgestrahlte Energie kénnen wir die Be-
ziehung

Wdv =L.dA
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139.

angeben. Und wenn wir noch beriicksichtigen, daB i = ¢»-! und demnach |d4| =
= ¢v~2|dv| ist, resultiert aus dem PLANCKschen Strahlungsgesetz die Folgerung
C1 1 C1 »5 1 _
-1_5 C2 2 = c? Cov er* v,
erT —1 e°T —1

und die gesamte Strahlstdarke wird

@

o] @©
C 3
I= [ Ldi= [de= _CT‘C_Z”__dv.
eT —1
o 0

0

Die Substitution

Cr oy odv = Lax
cT C.

fihrt auf

I _f‘Cl 3T* x® T dx
e )t ¢ er—1C,
0

Das uneigentliche Integral hat den Wert

«©
x3 *
— dx =,
f e" —1 15
(o]
Damit wird
C1 TC4
I, = —T*—.
° C3 15
Nach Einsetzen der Werte fiir die Konstanten ergibt sich
2k*n% . "
e = e L =L

und das ist ein Ausdruck fiir das STEFAN-BoLTZMANNSChe Gesetz, Die Konstante
2k*rS
0 = ————
15¢2h3
hat den Zahlenwert ¢ = 5,7+ 108 T m~2s-1 K-4.

Der von der Sonne kommende, auf die Erdoberfliche auftreffende Energiestrom iiber-
trdgt auf einen Quadratzentimeter in der Minute etwa 1,94 cal. Berechnen Sie die
Oberflichentemperatur der Sonne unter der Voraussetzung, daB3 sie wie ein idealer
schwarzer Kérper strahlt.
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140.

Losung

Die Entfernung Sonne — Erde betrdgt d = 1,49 - 10® km, der Sonnenradius ist

‘r = 695550 km. Wir sehen die Sonne als eine Kugel mit dem Radius » an und setzen

voraus, daB3 die von der Oberflicheneinheit in der Zeiteinheit ausgehende Gesamt-
energie W, fiir alle Punkte der Sonnenoberfliche gleich ist. Demnach strahlt die gesamte
Sonnenoberfliche in der Zeiteinheit die Energie

W, = 4rr*W,
aus. Diese von elektromagnetischen Wellen iibertragene Energie ist auf einer kugel-

formigen Wellenfiiche verteilt, In Erdentfernung entfillt davon auf die Fldcheneinheit
der Anteil

_ "
T 4md?
Hierbei bedeutet d den Abstand Sonne—Erde. Daraus finden wir
d2
we=w<_. )
¥

Unter der Voraussetzung, dafl die Sonne wie ein idealer schwarzer Korper strahlt,
konnen wir denn Wert der Strahlstdrke I mit Hilfe des STEFAN-BoLTzMANNschen Ge-
setzes in der Form

I=oT? ()]
ausdriicken. Durch Vergleich der Gln. (1) u. (2) ergibt sich

_4/7_1/7“/737
T=y7 N7 N7 V7 -

Durch Einsetzen der gegebenen Groflen finden wir
4

19442 o
e »\/ 1,495 - 10° km 60 _ sesdk
" AN 76,9555 - 10° km 57-10012Jcm2s 1 K4 ’

Ein Metalifaden vom Durchmesser d = 0,01 cm befindet sich in einem evakuierten
Kolben. Er soll durch einen elektrischen Strom auf die konstante Temperatur
T = 2500 K erhitzt werden. Der Faden soll wie ein idealer schwarzer Korper strahlen;
Wirmeleitungsverluste konnen vernachlédssigt werden. Der spezifische Widerstand des
verwendeten Drahtes ist ¢ = 2,5 - 10~* Q ¢cm. Berechnen Sie die erforderliche Strom-
stdrke.

Losung

Wenn der Metallfaden wie ein idealer schwarzer Korper strahlt, dann geht von einem
Quadratzentimeter seiner Oberfliche entsprechend dem STEFAN-BoOLTZMANNsChen
Gesetz in der Sekunde die Gesamtenergie

W, =oT*
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141.

aus. Die Energie, die der Faden mit der Oberfliche 4 wihrend der Zeit ¢ abstrahlt,
ist dann

W, = W At = oT*rldt,

wobei / seine Linge bedeutet.

Damit der Metallfaden auf der konstanten Temperatur 7 gehalten werden kann, ist es
notwendig, den durch Abstrahlung bewirkten Energieverlust durch diejenige Energie zu
ersetzen, die beim Durchflul des elektrischen Stromes frei wird. Wenn durch einen
Leiter mit dem Widerstand R ein Strom der Stirke I, flieBt, so erhoht sich seine Energie
in der Zeit t um den Betrag

AW = RI*t,

was sich durch Temperaturerhhung duflert. Wenn diese zugefiihrte Energie fiir die
Deckung der abgestrahlten aufgewendet werden soll, mufl die Bedingung erfiillt sein

RI%t = oT*nldt. 0

Wenn wir fiir den Widerstand eines Leiters der Linge / und des Querschnitts 4 die
Formel

R = ' I
0T
T —
4
einfiihren, dann 148t sich Gl. (1) umformen in
L2 = oT*n2d? ’
4o
xdT? [od
=N

Nach Einsetzen der gegebenen GroBen ergibt sich

7-10~*m-2,52-10° KZN/ 5710875 1m2K-4-10-*m
2

I, =

=147A.
2,5-107°Qm -

Ein Metallfaden mit dem Durchmesser d = 0,02 cm erwdrmt sich unter der Wirkung
eines elektrischen Stromes auf eine Temperatur 7; = 3000 K. Der Faden soll wie ein
idealer schwarzer Korper strahlen und von seiner Umgebung keinerlei weitere Energie
aufnehmen. Er gibt seine Energie nur auf dem Wege der Strahlung ab. Berechnen Sie,
welche Zeit vergeht, bis nach Abschalten des Stromes die Temperatur des Fadens auf
den Wert 7, = 800 K abgesunken ist. Die Dichte des Stoffes, aus dem der Faden be-
steht, ist o = 19000 kg m~3, seine spezifische Wirmekapazitit ist ¢ = 0,037 kcal kgt K1.

Losung

Wenn der Faden wie cin idealer schwarzer Korper strahlt und aus seiner Umgebung
keine Energie aufnimmt, so strahlt entsprechend dem STEFAN-BoLTZMANNschen Gesetz
1 cm? seiner Oberfliche in der Sekunde die Energie

W, =oT*
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142.

ab, und der Faden mit der Gesamtoberfliche 4 = n/d strahlt die Energie

W = onldT* 1)
ab. In derinfinitesimalen Zeitspanne d# nimmt die Temperatur des Fadens vom Wert T
auf T'— d7T ab, und der Faden emittiert dic Energie

Wdt = —medT )

(m Masse, ¢ spezifische Warmekapazitit des Fadens).
Wenn wir in Gl (2) den aus Gl. (1) folgenden Ausdruck fiir die Energie einsetzen, er-
halten wir

orid dr — dr
mc I
und durch Integration
v T,
onld dr — dTr
mec N A
° T,

und nach Aufldsung
t = _’K (L . L)
3onld \T3 T:)°
Wenn wir hier noch die Masse m des Fadens ersetzen durch

2
=Vo=mn—oI,
m (4 1-:49

30 erhalten wir

Mit den gegebenen GroBen ergibt sich fiir die gesuchte Zeit

2-107*m-19-10%kgm=3-37-4,18 Tkg-*K-! 1
12-57-108 s 'm2 K~* 83105 K3

v =

1
~ | = LSS

Ein schwarzer Korper wird erhitzt a) auf eine Temperatur 7, = 10°K und

b) T, = 103 K. Berechnen Sie, auf welche Wellenlinge jeweils das Maximum der
emittierten Strahlungsenergie entfallt.

Losung

Entsprechend dem WiENschen Verschiebungsgesetz ist die Wellenldnge, bei der ein
idealer schwarzer Korper maximal Energie abstrahlt, umgekehrt proportional der
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A

204.

205.

206.

3.2.

absoluten Temperatur, also

=2,8910"° m = 2,89 nm.

= 2890 nm.

Amax - i .
T
Nach Einsetzen der gegebenen Werte ergibt das:
2) P 0,00289 m K
R T
0,00289 m K
Amay = ————— "
0 103K
Aufgaben

Ein Metallfaden von 0,02 cm Durch-
messer und 10 cm Linge, der sich im
Vakuum befindet und wie ein idealer
schwarzer Korper strahlt, ist durch elek-
trischen Strom auf eine Temperatur von
3000 K erhitzt worden. Wie grof ist die
in der Minute abgestrahlte Energie?
Der durchschnittlich von der Erdober-
fliche abgestrahlte Energiestrom be-
trdgt 0,13 cal cm~2 min—. Welche Tem-
peratur miite ein idealer schwarzer
Korper haben, um die gleiche Energie-
menge abstrahlen zu kénnen?

In ein schwarzes, wiirfelf6rmiges Gefif,
dessen diinne Winde eine Tempera-
tur nahe dem absoluten Nullpunkt ha-
ben, wird 1 kg Wasser von 50 °C ge-

Verhalten ven Elementarteilchen

207.

208.

gossen, so daB das Wirfelvolumen
damit ausgefiillt ist. Berechnen Sie, in
welcher Zeit sich das Wasser auf eine
Temperatur von 10 °C abkiihit.

Von der Sonne wird ein maximaler
Energiestrom bei der Wellenldnge 2 =
= 4,75+ 10~3 cm des Sonnenspektrums
abgestrahlt. Es sei angenommen, daf3
die Sonne wie ein idealer schwarzer
Korper strahlt. Berechnen Sie die Ober-
flichentemperatur der Sonne.

Fin idealer schwarzer Korper hat eine
Temperatur 7 = 5000 K. Berechnen
Sie, wieviel mal so grof der auf die
Wellenldnge 4; = 580 nm entfallende
Energiestrom ist gegenliber dem auf die
Wellenldnge 1, = 760 nm entfallenden.

In einem elektrischen Feld der Feldstirke E wirkt auf ein Elektron eine Kraft, die
gegeben ist durch

F= —eE.

In einem Magnetfeld der Induktion Bwirkt auf ein mit der Geschwindigkeit ¥ bewegtes
Elektron die Kraft

F=—e(@x B)
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Wenn das Magnetfeld homogen und die Geschwindigkeit des Elektrons senkrecht
zur Richtung der Induktion orientiert ist, nimmt die auf das Elektron wirkende Kraft
einen konstanten Wert an:

F = evB.

Sie ist stets zum Kriimmungsmittelpunkt der momentan durchlaufenen Bahn ge-
richtet. In diesem Falle bewegt sich das Elektron auf einer Kreisbahn, und die an-
gegebene Kraft gewinnt die Bedeutung einer Zentripetalkraft.

GeméB den Aussagen der speziellen Relativititstheorie besteht zwischen der Masse m
eines beliebigen materiellen Objekts (Korper, Teilchen, Feld) und seiner Energiec E
der Zusammenhang

E = mc?,

wobei ¢ die Vakuumlichtgeschwindigkeit bedeutet. Wenn sich die Energie eines Ob-
jekts andert, verdndert sich also auch seine Masse. Fiir den Fall der mechanischen
Bewegung besteht eine Abhéngigkeit der Masse m von der Geschwindigkeit v gemil
der Beziehung

Mo

/ 2

V'tE

C2

wobei m, die Ruhmasse des Korpers ist, d. h. seine Masse bei der Geschwindigkeit

v = 0. GemiDB dieser Theorie betrdgt die kinetische Energie eines Korpers

1

iz
cZ

Fiir den Impuls eines Teilchens mit der Geschwindigkeit v gilt in der relativistischen
Mechanik

m =

3

E, = c*(m — my) = myc? -1

mol
I
02
Im Vergleich zur klassischen Physik bietet die spezielle Relativititstheorie auch neue
Einsichten in die Raum-Zeit-Eigenschaften von materiellen Objekten. Aus ihr muf}
auch die Folgerung der sog. Zeitdilatation gezogen werden. Wenn auf irgendeinem

Korper, der sich in einem Bezugssystem in Ruhe befindet, ein ProzeB in der Zeit-
spanne ?, ablduft, dann benstigt der gleiche ProzeB auf einem anderen Korper, der

= >
p:mv:

12 Hajko, Elektrik
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sich gegeniiber dem Bezugssystem mit der Geschwindigkeit v bewegt, eine andere
Zeitspanne ¢, gegeben durch

Zo

=
CZ

Das Lichtquant einer elektromagnetischen Strahlung der Wellenldnge A und der
Frequenz v ist durch die Energie

t=

‘W= hy

und den Impuls
p= h
A

gekennzeichnet, wobei /4 die Plancksche Konstante, das Plancksche Wirkungsquantum,
darstellt.

Fiir die Geschwindigkeit der Photoelektronen, die von manchen Substanzen unter der
Einwirkung von Licht bestimmter Frequenz emittiert werden (duBerer lichtelektrischer
Effekt), gilt

1
h = Wy + Wa -i-Eva,

(W, Ionisationsarbeit, W, Abldsearbeit, v Frequenz des verwendeten Lichtes, # PLANCK-
sches Wirkungsquantum, m Masse eines Elektrons, » Geschwindigkeit, mit der es
aus der betreffenden Substanz austritt).

Bei den Metallen ist W, sehr klein, so daBB man W, = 0 setzen kann. Deshalb kann
man die vorstehende Gleichung fiir Metalle in der Form schreiben:

hy = Wy + %‘-muz.

Wenn sich Teilchen mit einer Geschwindigkeit v bewegen, kénnen wir ihnen eine
DE BROGLIE-Welle zuordnen, deren Wellenldnge A durch die Beziehung

Z:‘_
mv

gegeben ist (m Masse des Teilchens, # PLANCKsches Wirkungsquantum).
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Unter Ionisationspotential eines bestimmten chemischen Elements verstehen wir das-
jenige Potential, das, mit der Elementarladung multipliziert, die zur Ionisation eines
Atoms des betreffenden Elements notwendige Arbeit angibt.

Wenn auf eine Substanz Roéntgen- oder Gammastrahlen fallen, so tritt eine
Streuung auf, und die gestreute Strahlung enthélt neben der Komponente mit der
Wellenlinge der Primédrstrahlung auch Strahlungsanteile mit gréBerer Wellenldnge A'.
Entsprechend den Erkenntnissen von ComPTON handelt es sich bei diesem Streu-
prozeB um Wechselwirkungen von Lichtquanten und Elektronen, bei denen es zum
Impulsaustausch kommt. Die Quanten der Rontgen- oder Gammastrahlung treffen
auf freie oder schwach gebundene Elektronen und werden entsprechend den Gesetzen
der klassischen StoBmechanik reflektiert. Fiir die dabei auftretende Wellenldngen-
vergréfBerung 44 = A’ — A gilt die Bezichung

AN = 22 sin? ?
2

(Die Konstante 4., die CoMmpTON-Wellenlinge des Elektrons, wird mit A¢c = hfmgc =
= 2,426 - 1012 m angegeben, m, Ruhmasse des Elektrons, # PLANCKsches Wirkungs-
quantum, ¢ Vakuumlichtgeschwindigkeit, ¢ Winkel, den der abgelenkte Strahl mit
der Richtung des priméiren einschlieft).

Wenn wir die Frequenz einer elektromagnetischen Strahlung in bezug auf zwei ver-
schiedene Inertialsysteme .S und S’ angeben, wobei sich das System S’ gegeniiber dem
System S mit der Geschwindigkeit v bewegt, dann gilt fiir die in den beiden Systemen
auftretende Frequenz gemiB der DopPPLERschen Beziehung'

, v
YLy — —

A

(A Wellenldnge der angenommenen Strahlung, » ihre Frequenz im System S, »* Fre-
quenz im System S’).

B Beispiele

143. Unter dem Einflul der Krifte eines elektrostatischen Feldes, das durch eine negative
Punktladung der Gréfie O = 10-1° C erregt wird, durchliuft ein Elektron eine Bahn,
deren Anfangspunkt 5 cm und deren Endpunkt 10 cm von der angegebenen Punkt-
ladung entfernt ist. Welche Geschwindigkeit und welche kinetische Energie erreicht das
Elektron auf dieser Bahn, wenn es im Anfangspunkt die Geschwindigkeit Null hatte?

12%
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144,

Losung

Aus dem Energiegesetz ergibt sich fiir den vorliegenden Fall, daB} die Arbeit, welche die
Krifte eines elektrostatischen Feldes auf einer bestimmten Strecke verrichten, gleich
der Zunahme der kinetischen Energic eben auf dieser Strecke sein mu8, d. h.,

L a_ €0 (L 1)_ 1,602 - 10-19 - 10-1° < 1 1 )J
2 4z "~ 4-3,14-8,86-10-12 10,05 0,1

~9-1,602-107*°J =9eV,

~

ry ra

9. 5 .10-19 J
v—A/ 2°9-1,602- 10 =1,78+-105ms-1.

9,109 - 10-31 kg

In einem Katodenstrahloszillographen wird die Ablenkung der Elektronen durch ein
homogenes elektrisches Feld bewirkt, das zwischen den Platten eines Kondensators be-
steht. In dieses Feld treten Elektronen mit einer Geschwindigkeit vo = 107 m s~ senk-
recht ein (Bild 106). Bestimmen Sie die auf dem Schirm sichtbare Ablenkung des
Elektronenstrahls gegeniiber seiner urspriinglichen Richtung, wenn die Spannung
zwischen den Kondensatorplatten 100 V
betrdgt. Die Platten haben eine Lénge von
3 cm, ihr Abstand ist 1 cm, und der Schirm
befindet sich 30 cm hinter ihnen.

Liosung

Hierbei handelt es sich um die Bewegung N L
von Elektronen in einem homogenen elek- Bild 106
trischen Querfeld der Stérke

E=-—=——=100Vcm.
cm
Unter Verwendung der Bezeichnungen in Bild 106 kann die Bewegung der Elektronen
im Kondensatorfeld dargestellt werden durch
2 dZ
m d—i =0, m &y eE.

dr? dr?

Hieraus ergibt sich

Die in diesem Feld durchflogene Parabelbahn wird durch die Gleichung beschrieben:

1 eE x?

= — > .
2 muvg
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145.

An der Stelle, wo die Elektronen das Kondensatorfeld verlassen, ist x = /, und deshalb
ergibt sich
1 eE?

y‘—?mvg'

Fiir den Winkel ¢, den an dieser Stelle die Richtung der Elektronengeschwindigkeit mit
der x-Achse einschlief3t, gilt

eE eE |

4 i
y m m vo eEl
tang = - = —— = —x = —,
Ux Vg Vo muvy

In diesem Punkt ist dic Tangente zur Parabelbahn durch die Gleichung

y—y =tangx —1)
gegeben. Aus ihr kOnnen wir die gesuchte Grofle .2 berechnen, Fiir x = [ + I ergibt
sich ndmlich y = &, so daB} gilt:

b=y + I tan __eElz_i_eEIZl_eEl(l_'_l)_
Thmhtne= 2mt | ot o2 \2 !
100
1,602 - 10-1°. -3-10°2
’ 102

=~ oo on %3ISm = 166 m.

Ein Elektron mit einer kinetischen Energie Wy = 5 - 10® eV bewegt sich in einem homo-
genen Magnetfeld der Induktion B = 5 mT so, daBl Bewegungsrichtung und Induktions-
richtung senkrecht zueinander stehen. Wie grof3 ist der Radius der entstehenden Bahn-
kriimmung?

Losung

Fiir die Bewegung eines langsamen Elektrons in einem homogenen Magnetfeld, dessen
Induktionsrichtung senkrecht zur Bewegungsrichtung des Elektrons orientiert ist, gilt
UZ
m — = evB,
¥

so daB wir fiir den gesuchten Kriimmungsradius

_mw m 2Wy

eB eB m

erhalten. Hierin haben wir die Geschwindigkeit mit Hilfe der Bezichung W, = 1 mv?
ausgedriickt. Damit ist

, - 9,109 - 10-3! kg A/2 ©5-10%-1,602- 107
1,602-10-*°* C-5-10-10~* Wbm-2 9,109 - 10-3t kg n
=4,77-10"? m.

In diesem Losungsgang wurde fiir die Masse m die Ruhmasse des Elektrons eingesetzt.
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146. Ein Elektron fliegt mit der Geschwindigkeit v = 10* m s~! in ein homogenes Magnet-
feld der Induktion B = 0,01 Wb m~2 so ein, daB seine Geschwindigkeitsrichtung mit
der Richtung von B den Winkel ¢ = 30° einschlieBt. Bestimmen Sie den Radius der
Windung jener Spirale, auf der sich das Elektron nun bewegen wird, die Hohe einer
Windung sowie die Zeitspanne, in der das Elektron in Richtung der Spiralachse eine
Strecke s = 1 m zuriickgelegt haben wird.

Losung

Wir wollen die Geschwindigkeit vo, mit der das Elektron in das Magnetfeld eintritt, in
zwei Komponenten zerlegen; voy in Richtung der Induktion B und vo, senkrecht dazu:

Voy = ¥p COS @, Ugz = U Sin @.

Die Bewegung des Elektrons erfolgt so, als ob sie aus zwei Bewegungskomponenten
zusammengesetzt sei; einer gleichformig geradlinigen Bewegung in Richtung der Induk-
tion mit der Geschwindigkeit v, (auf diese Bewegungskomponente hat das Magnetfeld
keinerlei EinfluB) und einer Bewegung auf einer Kreisbahn in der zur Induktions-
richtung senkrechten Ebene mit der Geschwindigkeit vo,. Letztere Komponente der
Elektronenbewegung ist genau derjenigen gleich, die in Beispiel 145 dargestellt wurde.
Demzufolge wird sich die resultierende Bewegung des Elektrons auf einer Spirale voll-
ziehen, deren Achse mit der Induktionsrichtung des gegebenen Magnetfeldes zusammen-
fillt. Fiir den Windungsradius » der resultierenden Spirale gilt ganz analog zu Bei
spiel 145 die Bedingung

mugk

= eroz .

Daraus ergibt sich

1
o oo sin @ 9,109 - 10731 - 10% - —
02 0
= = = =2,84-10"%m.
=B B 1602-10-9- 102 -2 &7
Die Zeit T, in der das Elektron einen Umlauf um die Spiralachse ausfiihrt, ergibt sich
aus der Beziehung
2nr 2y 2-3,14-2,84:10"°m
Vo2 Vo sin (4 o

=3,57-10"%s.
10*ms-!- —
2

Fiir die Hohe einer einzelnen Windung gilt

J3

h =v0,T = vy cos pT =10* 5 3,57+10° m = 3,09 - 10-° m.

Die Zeit ¢, in der das Elektron lings der Spiralachse eine Strecke s = 1 m zuriicklegt,
ist schlieBlich
1 1
vo COS @
° 00 ¥

3
2

== _ s =0,115-10"" .
Vot —_—
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147. Ein Magnetron besteht aus einer Diode, deren Anode die Form eines Kreiszylinders
hat, in dem koaxial der Katodenfaden liegt. Auf den Glaskolben dieser DiodenrGhre
wird eine Zylinderspule gewickelt, deren Achse mit der der Anode zusammenfilit. Die
drauBen aufgesetzte Spule ist lang genug, so dal das von ihr erzeugte Magnetfeld ldngs
der Katode als homogen angesehen werden kann. Die vom Katodendraht emittierten
Elektronen stehen unter gleichzeitigem Einflu} des elektrischen Feldes zwischen Katode
und Anode und unter dem des Magnetfeldes, das von dem die Spulenwindungen durch-
flieBenden elektrischen Strom erzeugt wird. Berechnen Sie den Mindestwert der In-
duktion B, der erreicht werden muf3, um die Elektronen daran zu hindern, die Anode zu
erreichen. Der Radius der Anode ist 4, = 4 cm, die Spannung zwischen den Elektroden
der Diode betragt U = 1000 V,

Losung

Die Bewegungsgleichung eines Elektrons, das gleichzeitig dem EinfluB eines elektrischen
und eines magnetischen Feldes unterliegt, hat die Form

md = F, + Fy m

(F, Kraft des elektrischen Feldes auf das Elektron, Fm Kraft des magnetischen Feldes).
In Bild 107 ist der Sachverhalt in einem Schnitt dargestellt, der senkrecht zur koaxialen
Anordnung gelegt wurde. Demnach ist

+ o+ 4+ o+ o+ 4+
F.= —eE; F,=—e@® X B). + +7 + T +
Aus dem Bild ist ersichtlich, da83 F.in jedem Augenblickeine + f + +%+ +
radiale Richtung und £,, dagegen eine axiale Richtung hat. . [, 4
Deshalb zerlegen wir die Beschleunigung in eine radiale und
eine axiale Komponente, so daf3 wir schreiben kénnen: R +
+ + +
L dF dg
'TE T ( 0= 9 T Bild 107
so daB fiir die Beschleunigung fo]gt
d*#  d*r d%g dr dg
a _e— = —— 0 — 2 —_— Y
dr*  de? Q_Hdtz + dr dt

(0 Einheitsvektor, der von der Katode zur derzeitigen Momentanlage des Elektrons hin
gerichtet ist). Ferner ist

(@ die momentane Winkelgeschwindigkeit des Elektrons, 7 Einheitsvektor in axialer
Richtung). Damit wird dann
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denn die Vektoren & und g stehen senkrecht aufeinander, so daB @g = 0 ist. Fiir die
Beschleunigung des Elektrons erhalten wir also

R d2r . dr .
a= (— —rw2>g+ (ra—f—,’l—w)r.
de

Wenn wir weiterhin bedenken, daf

— - d 4 - d

F,= —e(@ X B) = —e [(—} 0 —{—rw"r’) X B =eB——':’E+erwB§

dz dz

ist, dann wird es moglich, aus Gl. (1) zwei weitere Bezichungen zu erhalten, ndmlich

dzr 2
m <Et7 — ro ) = eE + erwB, und
< +2dr > B dr
re — | = _—.
" dr “Ca

Die zweite Beziehung konnen wir in eine andere Form bringen:
dr
de’

woraus wir nach Multiplikation mit d¢ und Integration erhalten

1d
Py (mr’w) = eB

1
mr?w = — eBr?,
2

so daB sich ergibt

eB
0= —,
2m

Im Grenzfall, wo die Stiarke des Magnetfeldes dem Elektron gerade noch das Erreichen
der Anode gestattet, tangiert die Elektronenbahn an die zylindrische Anode, und fiir

d
den Wert » = r, wird d—: = 0. Die kinetische Energie des Elektrons erfiillt im Be-

rithrungspunkt die Bedingung

1 1

5 mv? = 5 mrin? = eU.
Wenn wir fiir die Winkelgeschwindigkeit w den angegebenen Ausdruck einsetzen, er-
halten wir

1 ., [eB\? 1 eB?

— —) =eU, d.h, —ri—=

3 mry ( Zm) eU, 3 Fa — U

Daraus kénnen wir die gesuchte Gréfle B bestimmen zu

smU _ 2 [2mU
B=Jm2 =2 /22— 053102 Wbm™2.
er? Fa e
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148.

149.

Sobald wir die Induktion des Magnetfeldes iiber diesen Wert hinaus erhéhen, kon-
nen die von der Katode emittierten Elektronen die Anode nicht mehr erreichen.

Zwischen den Duanten eines Zyklotrons herrscht eine Spannung der Form U = Upsinwt,
wobei Uy = 2 - 10* Vund die Frequenz f = 2,25 - 107 s~! betrdgt. Im Zyklotron sollen
einwertige Ionen beschleunigt werden, deren Masse etwa 1800mal so grof8 ist als die
Ruhmasse des Elektrons. Die Anordnung ist in Bild 108 wiedergegeben. Das Ion be-
ginne seine Bewégung'im Punkt 4 des Bildes, und nachdem
es eine gewisse Zahl aufeinanderfolgender Halbkreise durch-
laufen hat, erreicht es die Geschwindigkeit v, = 4,4+ 10" m
s~L. Ermitteln Sie die Zahl der notwendigerweise zu durch-
laufenden Halbkreise sowie den Radius des ersten und des
letzten Halbkreises unter der Voraussetzung, daB3 der Abstand
zwischen den Duanten jeweils im Moment maximaler Span- ¢

nung durchlaufen wird. Bild 108

Losung

Die Zeit, in der das Ion einen beliebigen Halbkreis durchlduft, ist immer gleich grof3
und also vom jeweiligen Bahnradius unabhédngig. Sie muB stets einer halben Perioden-
dauer der Wechselspannung entsprechen, also

T 1 1

T=— =

1
= — —=0,222-10~7s,
2 2 2°225-107s 45-107° 7 s

Fiir die Geschwindigkeit des Tons nach Absolvieren von n Halbheisen erhalten wir
denselben Wert, als ob das Ion in einem linearen elektrischen Feld mit der Potential-
differenz A = nU, beschleunigt worden wire. Deshalb ist

% mvy = QnU,,
v mv} _ 1800 - 9,109 - 10-3t - 19,36 - 1014 = 557,
20U, 2+1,602-107*° 210 :
Der Radius der letzten durchlaufenen Halbkreisbahn ist
ro = % LN 107;?1"2‘22‘ 107 m = 0,31 m = 31 cm.

Der Radius der ersten Bahn ist dementsprechend

\/ZQ U,
m

pe=2 e X 0014m = 1,4 cm.
- - : L4cm,

Bestimmen Sie Masse und Geschwindigkeit eines Elektrons, dessen kinetische Energie
200 keV betrigt.
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Losung

Die spezielle Relativitdtstheorie liefert fiir die Masse eines beliebigen Korpers in Ab-
hingigkeit von seiner Geschwindigkeit die Bezichung

(mo die Ruhmasse des betreffenden Korpers bei der Geschwindigkeit v = 0). Diese
Beziehung kénnen wir umformen in

2y 1 2
@=(1_v_)7m_iv_,
2 ¢?

woraus wir fiir die kinetische Energie eines Korpers bei der Geschwindigkeit v die Be-
ziehung erhalten

1
Wi = 5 mv?® = (m — mp) c2.

Entsprechend der vorgegebenen Aufgabenstellung ist also
(m—mo)c?=2-105eV =2-10%-1,602-10-1° 7,

uﬁd demnach
2-10%-1,602-10-1°
@3- 108)2
~ 12,7 - 10-31 kg.

m = mp kg = 9,109 - 103t kg + 3,56+ 10-3'kg =

Seine Geschwindigkeit ist

2w, [2:2:105-1,602- 10 .
YT Nl =A/ 12,7103t ms™ =225 10°ms-".

150. Welche Spannung miiite ein elektrostatisches Feld aufweisen, damit ein in ihm be-
schleunigtes Elektron gemiB den klassischen, d. h. vorrelativistischen Vorstellungen
die Lichtgeschwindigkeit erreichen kann? Welche Geschwindigkeit erreicht es rela-
tivistisch?

Losung
GemaiB der klassischen Theorie konnen wir schreiben
1
eU = 7 movz,
wobei my die Ruhmasse des Elektrons bedeutet. Im Falle v = ¢ wird

1
U= — 2
e 2moc,
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151.

woraus sich fiir die Spannung ergibt

moc? _ 9,109 10-31 kg-9-101° m?s-2
2¢ 2-1,602-10"1° C

U= ~ 256 kV.

Entsprechend den Aussagen der relativistischen Mechanik kdnnen wir fiir die ki_netische
Energie eines Elektrons schreiben (vgl. auch Beispiel 149): /

1
> mu? = (m — mo) ¢ = mpc?

Dann ist

elU = myc?

!

] _—
EE
(4

und fiir die gesuchte Geschwindigkeit ergibt sich

also

w

S
=-—cx0,75c.
v 3 c
Bei dieser Geschwindigkeit nimmt die Masse des Elektrons den Wert

3
m='__v’n_o_.—=—mo=l,5mo

c
an.

Demnach stieg die relativistische Masse des Elektrons gegeniiber seiner Ruhmasse um
509 an.

Aus einer Silberfldche, die durch monochromatisches Licht der Wellenldnge 4 = 150 nm
beleuchtet wird, werden Photoelektronen ausgelost. Wie gro8 ist ihre Geschwindigkeit,
wenn wir voraussetzen, daB bei Silber der lichtelektrische Effekt erst unterhalb der
Wellenldnge 4, = 260 nm einsetzt?

Losung
Die Geschwindigkeit der Photoelektronen folgt der Bezichung

hy = W, + %mv",
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152,

wobei W, = hvo die Ablosearbeit des Elektrons aus dem betreffenden Metall bedeutet.
Da :

c c
- und %:l—o

Yy =

ist, k6nnen wir unter Beriicksichtigung der gegebenen Aufgabe schreiben

h{— = Wa (fiir 2 = Ao gilt ja v = 0).
o]

c 1
g 2
hl WA+2mv,

so daf3 sich ergibt

c c 1
- =} — —_ 2
h}. hzo—{—zmu.

Fiir die gesuchte Geschwindigkeit erhalten wir daraus

. Jth(l 1) B

TN m\A %)
A/2-6,62-10~34Js-3-1osms-x 1 1 )_
9,109 -10~** kg (1500-10-1°m 2600-10-°m/

= 1,109 - 10 m s~1.

Wie groB ist die Wellenldnge der pE BroGLiEschen Wellen, die einem Elektron zu-
zuordnen sind, dessen kinetische Energie 10° eV betrigt?

Losung

Fiir die Wellenlidnge dieser Wellen gilt die Beziehung

ik
mv

(m Masse des Elektrons, v Geschwindigkeit, # PLaNcksches Wirkungsquantum). Da

1
= m? = Wy

ist, konnen wir schreiben

JZWK
v = )
m
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153.

und das ergibt
h h 6,62 10734 Js

mN/zm  J2mW,  J2-9,109-10-3'kg-10°-1,602-10-°]
m

A=

= 1,22-107**m = 1,22 pm.

Hierbei wurde mit der Ruhmasse des Elektrons gerechnet.

Ein Rontgenlichtquant, dem eine Wellenldnge 4 = 0,1 nm zukommt, tritt in Wechsel-
wirkung mit dem schwach gebundenen Elektron eines Atoms niederer Ordnungszahl
und erleidet dabei eine Richtungsabweichung um den Winkel ¢ = 90°, Berechnen Sie,
welchen Energiebetrag das Elektron bei diesem ProzeB aufnimmt und in welcher Rich-
tung es sich danach bewegen wird.

Losung

Ein schwach gebundenes Elektron kénnen wir als frei betrachten. Bei der Wechsel-
wirkung des Photons mit dem Elektron geht ein Teil der Energie des Photons an das
Elektron-iiber, so daB3 das Photon mit verminderter Energie und (im allgemeinen) ver-
dnderter Richtung seinen Weg fortsetzt. Wir bezeichnen die Energie des Photons vor
dem Prozef3 der Wechselwirkung mit ¥ = Ay und nach dem Proze8 mit W’ = hy’. Dann
gilt die Beziechung

hv' < hv
bzw.
v < v,
Wir driicken die Frequenz gemdB der Beziehung » = ¢/4 durch die Wellenldnge aus
und finden
N> A
Demnach ist die Wellenldnge des aus der urspriinglichen Richtung abgelenkten Photons

groBler als die, die es vor der Wechselwirkung hatte. Aus der Theorie des CoMPTON-
Effekts ergibt sich die mit der Wechselwirkung verbundene Wellenldingenidnderung zu

4
A = ¥ — b =2)csin? = o)
mit der Compton-Wellenldnge
h
Jo=— =2,426-10"12m
mgpcC

(mo Ruhmasse des Elektrons).

Wenn wir diese Art der Wechselwirkung von Photon und Elektron unter dem Gesichts-
punkt des elastischen mechanischen StoBes behandeln, dann nimmt das Elektron bei der
Wechselwirkung die Energie

We=W—W’=h(v-v’)=hc<-;——%o->

V
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auf. Nach Umformung dieser Gleichung mit Hilfe von GI. (1) erhalten wir fiir den
vom Elektron aufgenommenen Energiebetrag die Aussage

s
2}.(; sin? —
c 2
Wc = —_— —19 .
A + 2Acsin? >

Nach Einsetzen der gegebenen Grofien ergibt das
_6,62:103*-3-10° 22,426 - 10-12 sin? 45°

10-1° 10-10 + 2-2,426 - 1012 sin? 4Z°
= 4,8-10-17J ~ 300 eV.

We

Den Winkel ¢, der angibt, wie weit das Elektron in seiner Bewegung gegeniiber der ur-
spriinglichen Bewegungsrichtung des Photons abweicht, kénnen wir unter Hinzuziehung
des Impulserhaltungssatzes bestimmen. Wir wenden diesen Satz auf das System Photon -
Elektron an, indem wir den Impuls des von links einfallenden Photons mit p, den des
abgelenkten Photons mit p” und den des Elektrons mit p, = mv bezeichnen. Danr gilt
der Impulserhaltungssatz in der Form

P +pe=p
In Bild 109 ist das Vektordiagramm der hierbei beteiligten Impulse dargestelit.
Der Impuls des Photons vor und nach der Wechselwirkung kann durch seine Absolut-

betrige
_h d o= h
p=7 wer=y
dargestellt werden. Da der Impuls des Elektrons p. = mv ist,kénnen wir auf das Impuls-
dreieck in Bild 109 den Sinussatz anwenden:

i P»’=£ R=mv
Sn2R—(p+9)] _ Z 28 ~

sin ¢ lﬁ/ ’ s P
sin(p +9) X
~sing =7 Bild 109
Mit Hilfe des Additionstheorems fiir sin (¢ + &) ergibt sich
cot g = A — Acos
Asin &

Wir beriicksichtigen ferner, daB 1 — cos & = 2 sin? /2 und sin & = 2 sin /2 cos 9#/2
ist, und wenden diese Winkelbezichungen auf Gl. (1) an. Dann erhalten wir nach Um-
formung

D)

coty = 7
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154.

155.

156.

Nach Einsetzen der gegebenen Gréfien finden wir den Winkel
@ = 45°41°.

Welche Wellenldnge muB3 ein Photon haben, das ein Zdsiumatom ionisieren soll, wenn
das Ionisationspotential des Cs-Atoms mit U; = 3,88 V angegeben ist?

Losung

Fiir die Ionisierung des Cs-Atoms muf die Arbeit
W =eU =1,602-10"1° As- 388V = 6,216-10"1°7J
verrichtet werden.

Ein Photon, das diese Ionisation bewirken soll, mufl mindestens eine Energle haben,
die der Vorgenannten Arbeit entspricht. Deshalb muf3 gelten

hy =
h
Da 1= iund—;— = W ist, wird
v

he 6,624 - 10734 -3 . 108
A= = = 3,196 - 10" m = 319,6 .
W 6,216 - 10-1° m ’ 1 m ’—nm

Ein Elektron hat die Ruhmasse m, = 9,109 - 10-3! kg. Wie groB ist die dieser Masse
entsprechende Ruhenergie des Elektrons?

Losung

Der Zusammenhang zwischen Masse und Energie wird durch die EinsTEINsche Be-
ziehung ausgedriickt:

E = mc>.
Nach Einsetzen der Werte fiir die Gré8en erhalten wir
Ey, =9,109-10"31kg-9-10'*m?s~2 = 8,2-10-14 ],
DaleV = 1,6-10-1°J ist, wird die Ruhenergie des Elektrons
E, = 5,12-10% eV = 0,51 MeV.

Bestimmen Sie die Energie, den Impuls sowie die relativistische Masse eines Rontgen-
lichtquants der Wellenldnge 4 = 0,1 nm.
Losung

Fiir die Energie des Photons konnen wir schreiben

¢ 6,624-10734-3+108 s
We=hr=h—= ET T =1,987-10"15] = 12,7 keV.
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Fiir seinen Impuls gilt

6,624+ 1073

T0-1 kgm s~* = 6,624 - 10~24 kgm s~*.

ok
r=7

Die relativistische Masse des Photons bestimmen wir gemdB der Beziehung E = mc?,
die den Zusammenhang zwischen Energieeinheit und Masse beliebiger Objekte aus-
driickt. Da im vorliegenden Fall W = v = hc/A ist, gilt

so daB wir fiir die relativistische Masse des Photons den Ausdruck finden:

b 66241073

e T o~ 221 10-32 kg,
Jc 10-10-3.708 SN LT X

157. Energie und Impuls eines Lichtquants betrachten wir zunéchst bezogen auf ein Inertial-
system S und danach bezogen auf ein zweites Inertialsystem S’, das sich gegeniiber dem
erstgenannten mit der konstanten Geschwindigkeit v bewegt. Es ist die Differenz zu be-
stimmen, durch die sich die beiden Wertepaare unterscheiden, die einmal in bezug auf .S
und zum anderen in bezug auf S” gelten.

Losung

Wenn wir die Grole der Energie, des Impulses und der Frequenz des Photons be-
ziiglich § mit den Symbolen W, p und v, beziiglich des Systems S’ aber mit ¥, p’ und +»’
bezeichnen, konnen wir schreiben

\
hy

W=hv; p=—3j,
C
hy'
Wo=h'; p=—.
vV p -

Diese Grofen werden sich demnach durch die folgenden Differenzen unterscheiden:
h
AW =W — W' =h(» —v), dp=p—p =-C—(v —).

Der Zusammenhang zwischen den Frequenzen » und #»’ ist entsprechend dem DoPPLER-
Prinzip .durch die Bezichungen

und
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gegeben. Damit erhalten wir

AE=h(r— =L =EZ,
4 C

h , hy v v
Ap=—@O—¥)=— —=p—,
c ¢ ¢ C

158. Ein Elektron bzw. ein Proton bewege sich durch eine optisch durchsichtige Substanz
mit der relativen Brechzahl n = 1,6. Wie grol muf} die kinetische Energie jedes der
beiden Elementarteilchen sein, damit es Quelle von TSCHERENKOW-Strahlung werden
kann?

Losung

Elementarteilchen, die Tréger elektrischer Ladung sind, kOnnen dann zur Quelle von
TSCHERENKOW-Strahlung werden, wenn ihre Geschwindigkeit in einem bestimmten
Medium gréBer ist als die Phasengeschwindigkeit des Lichtes in eben diesem Medium.
In einem Medium mit der Brechzahl # ist die Phasengeschwindigkeit ¢” des Lichtes durch
die Bezichung ¢’ = ¢/n gegeben, wobei ¢ die Vakuumlichtgeschwindigkeit bedeutet. Es
gibt demnach fiir Elementarteilchen, die Tréger einer elektrischen Ladung sind, eine
Grenzgeschwindigkeit v, die dadurch charakterisiert ist, daB die Teilchen Quelle von
TSCHERENKOW-Strahlung werden, sobald sie sich in einem Medium mit einer Ge-
schwindigkeit bewegen, die grofier als v ist. Es gilt also

v=c/..—__-_c_
n

Die kinetische Energie des Teilchens hat bei dieser Geschwindigkeit den Wert
1

n
— 1) = mec? [—— —1].
A/1. v? ° (x/nz—l )

[4

Wk = m062

a) Fiir das Elektron ergibt das

S W)
Wi = 9,109 - 10-31 . 9.10%¢ <—=
J1,62 —1
Demnach wird im angegebenen Medium jedes Elektron zu einer Quelle von TSCHEREN-
kow-Strahlung, dessen Inhalt an kinetischer Energie grofier oder mindestens gleich

— l) J =2295-10"1*J ~ 143 keV.

143 keV ist.
b) Fiir das Proton gilt
1
Wy = 1,6722-10-27 -9 - 10'¢ (—’6——— — 1) J =
J1,62 —1

= 4,21 - 10711 J ~ 263 MeV.

Demnach wird im angegebenen Medium jedes Proton zur Quelle von TSCHERENKOW-
Strahlung, dessen kinetische Energie gleich oder gréBer als 263 MeV ist.

13 Hajko, Elektrik
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159.

A

209.

In einem durch das Laboratorium definierten Bezugssystem haben w-Mesonen eine
kinetische Energie W, = 7 myv?, wobei m, die Ruhmasse eines n-Mesons ist. In diesem
Zustand betrigt ihre mittlere Lebensdauer v = 1,76 - 10-5 s, Ermitteln Sie hieraus die
Ruhlebensdauer dieser Mesonen.

Lésung

Die Mesonen bewegen sich mit hoher Geschwindigkeit gegeniiber dem Labor-Bezugs-
system. Es tritt deshalb eine relativistische Zeitdehnung auf; die Mesonen existieren
gegeniiber dem Bezugssystem, in dem sie sich bewegen, ldnger als in dem, in welchem
sie ruhen, d. h. relativ zu dem sie sich in Ruhe befinden. Deshalb verstehen wir unter
dem Begriff Ruhlebensdauer ihre Lebensdauer in dem System, relativ zu welchem sie
ruhen. Zwischen Ruhlebensdauer 7, und der gemessenen Lebensdauer t besteht der
Zusammenhang

Da fiir die kinetische Energie

1
Wk = mOCZ —_— 1

gilt, kbnnen wir schreiben

v? moc?
l—— =7,
c Wy -+ moc

woraus folgt

J 1 v? T T
To =T _——_— = = =
° c? Wy + moc? Wi
+1
m002 mocz
1,76 - 10-5
= T §=22-10"Cs.
741 § _.’—i
Aufgaben
EinStaubteilchen der Masse m =10**-g zustand, daB Gravitation und elektri-
befindet sich zwischen den horizontal sche Kraft im Gleichgewicht sind. Wie-
liegenden Platten eines Plattenkonden- viel Elementarladungen trigt das Staub-
sators, deren Abstand 0,5 cm betrégt teilchen?

und zwischen denen eine Potentialdiffe- 210. Ein Elektron durchliuft, beginnend aus
renz Ap = 76,5V liegt, so im Schwebe- der Ruhelage, in einem elektrostatischen
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211.

212.

213.

214.

217.

218.

13*

Feld eine Potentialdifferenz der Grofie
Ade = 100V. Welche Endgeschwindig-
keit erreicht es, wenn wir eine relativisti-
sche Massenverdnderung vernachldssi-
gen?

Ein Elektron mit der kinetischen Ener-
gie Wy =5 keV tritt in ein zu seiner Ge-
schwindigkeitsrichtung senkrecht ste-
hendes, homogenes elektrostatisches
Feld mit der Feldstirke vom Betrag
E=10*Vcm ein. Wie grol wird
seine Richtungsdnderung beim Durch-
fliegen der Strecke x, = 2 cm?

Ein Elektron tritt mit einer Geschwin-
digkeit vo = 1500 km s~! in ein homo-
genes Magnetfeld ein, dessen Feldstirke
H = 1600 A/m senkrecht zur urspriing-
lichen Bewegungsrichtung des Elektrons
orientiert ist. Berechnen Sie den Radius
der vom Elektron im Magnetfeld be-
schriebenen Kreisbahn.

Zwischen den Polen eines Zyklotrons,
mit dem Deuteronen beschleunigt wer-
den, besteht ein Magnetfeld mit der In-
duktion B = 1,4 T. Berechnen Sie die
Frequenz des elektrischen Feldes.
Bestimmen Sie Masse und kinetische
Energie eines Elektrons, das sich mit
der Geschwindigkeit v = 0,6 ¢ bewegt
(¢ Vakuumlichtgeschwindigkeit).

. Bestimmen Sie Masse und Geschwindig- -

keit eines Protons, dessen Kkinetische
Energie mit 108 eV angegeben ist.

. Ein frei fliegendes Elektron hat eine ki-

netische Energie von 1 MeV. Berechnen
Sie die Geschwindigkeit, mit der es sich
bewegt.

Aus einer Platinflache, die mit Licht der
Wellenldnge 4 = 150 nm bestrahlt wird,
treten Photoelektronen mit einer Ge-
schwindigkeit v = 827 km s~! aus. Be-
rechnen Sie die Austrittsarbeit des Pla-
tins.

Bei der Streuung von Licht an Protonen
wird eine maximale Wellenldngenidnde-
rung 44 = 2,6 - 10-° nm gemessen. Wie
grof} ist die Masse des Protons?

219.

220.

221.

222,

223,

224,

225.

226,

Ermitteln Sie die Wellenldnge der beim
ComproN-Effekt auftretenden Streu-
strahlung, wenn die Beobachtung senk-
recht zum einfallenden ROntgenstrah-
lenbiindel der Wellenlinge A = 0,05 nm
vorgenommen wird.

Lichtquanten mit der Wellenldnge 4 =
= 0,05nm treffen auf freie Elektronen.
Berechnen Sie den Winkel der Bewe-
gungsrichtung der dabei getroffenen
Elektronen fiir den Fall, daB die Licht-
quanten gegeniiber ihrer urspriinglichen
Richtung um einen Winkel ¢ = 30°,
60°, 90° bzw. 180° abgelenkt Werdep.

Wie grol3 ist das Ionisationspotential
von verdampften Natriumatomen,
wenn die Ionisation bei Beleuchtung mit
monochromatischem Licht der Wellen-
linge 4 = 0,242 um einsetzt?

Das Ionisationspotential eines Queck-
silberatoms hat den Wert V; = 10,4 V.,
Welche Minimalgeschwindigkeit miiite
ein Elektron haben, das beim Zusam-
mensto das Hg-Atom zu jonisieren
vermag?

Welche kinetische Energie hat ein Pro-
ton, wenn die Wellenldnge der ihm zu-
zuordnenden DE-BrRoGLIE-Welle den
Wert 4 = 9,04 - 10~* nm hat?
Bestimmen Sie Energie, Impuls und
relativistische Masse eines Quants
der +y-Strahlung, dessen Wellenldnge
0,001 nm betragt.

Eine bestimmte Art von Elementarteil-
chen 10st, wenn ihre kinetische Energie
mehr als 38 MeV betrigt, in einem Me-
dium mit der Brechzahl # = 1,5 T'scHE-
RENKOW-Strahlung aus. Um welche Art
Elementarteilchen handelt es sich?

In einer RontgenrShre bewegen sich
Elektronen mit einer Geschwindigkeit,
die gleich der halben Vakuumlicht-
geschwindigkeit ist. Berechnen Sie die
Grenzwellenlinge der beim Aufprall auf
die Anode freiwerdenden RoOntgen-
bremsstrahlung.
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227. Experimentell wurde festgestellt, daB eine durchschnittliche Wegstrecke von
7-Mesonen, deren Impuls im Bezugs- ! = 3 m zuriicklegen. Bestimmen Sie die
system des Laboratoriums den Wert Ruhlebensdauer dieser Art Mesonen.
p =54 MeV ¢c* hat, vom Ort ihrer Thre Ruhmasse ist #ro = 276 mg, wobei
Entstehung bis zum Ort ihres Zerfalls mgo die Ruhmasse des Elektrons angibt.

3.3. Physik der Elektronenhiille

Die Bohrsche Theorie des Atomaufbaus, das Bohrsche Atommeodell, beruht auf drei
Bonrschen Postulaten iiber die Bewegung der Elektronen um den Atomkern:

1. Die Elektronen kionnen den Atomkern nicht auf beliebigen Bahnen umlaufen, sondern
nur auf bestimmten, sog. Quantenbahnen, die besondere Bedingungen erfiillen miissen.
Fiir den Fall, daf3 wir uns auf Kreisbahnen beschrinken, kann ein Elektron nur auf
solchen Bahnen umlaufen, die der Bedingung geniigen:

2nmry = nh

(m Masse des Elektrons, v seine Geschwindigkeit, » Bahnradius, # PLANCKsches
Wirkungsquantum, »# Hauptquantenzahl, die jeden beliebigen positiven, ganz-
zahligen Wert auBer Null annehmen kann). Es ist ersichtlich, daBl mrv gleich dem
Bahndrehimpuls des Elektrons ist, bezogen auf die durch die Bahnmitte gehende,
senkrecht auf der Elektronenbahn stehende Achse. Je nach dem von der Haupt-
quantenzahl n angenommenen Wert sprechen wir von hoéheren oder niedrigeren
Quantenbahnen.

2. Auf den angegebenen Quantenbahnen konnen Elektronen strahlungslos umlaufen.

3. Unterschiedliche Quantenbahnen entsprechen unterschiedlichen Energiezustinden.
Beim Ubergang von einer hoheren auf eine niedriger gelegene Quantenbahn emittiert
das Elektron ein elektromagnetisches Strahlungsquant, ein Lichtquant der Frequenz v,
wobei die Beziehung erfiillt ist:

hy = WZ— Wl'

W, bzw. W, sind die Energien des Elektrons auf denjenigen Quantenbahnen, zwischen
denen der Ubergang erfolgte.

Ganz analog kann ein Elektron, wenn ihm eine geniigend groBe Anregungsenergie
zugefiihrt wird, den Ubergang von einer niedrigeren auf eine hoher gelegene Quanten-
bahn ausfithren, wobei die GroBe des Quantensprunges vom Mal der zugefiihrten
Energie abhingig ist.
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Die Wellenzahl » einer bestimmten Spektrallinie stellt den Kehrwert der zugehérigen
Wellenldnge A dar: v = /1. Fiir die Wellenzahl der Spektrallinien des Wasserstoffs
gilt die Beziehung

B} 11
V= R<—? - —2)
. ny n3

(ny =1,2,3,4,5 und n, =ny + 1,n, + 2, ..., R die RYDBERG-Zahl). Unter der
Voraussetzung, daBl die Masse des Atomkerns gegeniiber der des Elektrons als un-
endlich grofl angenommen wird, hat R den Wert 1,097373 - 10" m

Ein Satz von Spektrallinien, die einem bestimmten Wert s, zugehoren stellt eine
Serie dar, fiir die n, =n, + 1,1, 4+ 2, ... ist. Diejenige Wellenzahl, die bei einem
Quantensprung entsteht, der bei #, = o0 beginnt, entspricht einer Spektrallinie, die
wir als Seriengrenze bezeichnen. Die Quantenspriinge (Elektroneniibergidnge) der
BALMER-Serie enden bei n; = 2.

Entsprechend der verallgemeinerten BoHRschen Atomtheorie wird der Zustand eines
Elektrons in der Elektronenhiille durch vier Quantenzahlen bestimmt: die Haupt-
quantenzahl n, die Nebenquantenzahl /, die magnetische Quantenzahl » und die
Spinquantenzahl s. Diese Quantenzahlen werden gemidf folgenden Festlegungen
normiert:

1. Fiir einen bestimmten Wert der Hauptquantenzahl » kann die Nebenquantenzahl /
folgende Werte annehmen:

[=0,1,2,..,n— 1

2. Fiir einen bestimmten Wert der Nebenquantenzah! / kann die magnetische Quanten-
zahl m folgende Wejte annehmen:

m = O, il’ i29 tees i(l - 1)7 il-

3. Die Spinquantenzahl kann nur die beiden Werte s = 4 !/, annehmen.

GemiB dem PauLischen AusschlieBungsprinzip kann ein Atom niemals zwei Elek-
tronen enthalten, die in allen ihren durch die vier Quantenzahlen bestimmten Eigen-
schaften ibereinstimmen.

B Beispiele

160. Berechnen Sie den Radius der kernnédchsten Bahn eines Elektrons, das gemiB der
Bonrschen Atomtheorie um den Kern eines Wasserstoffatoms umliuft. Berechnen Sie
auch die Geschwindigkeit des Elektrons auf dieser Bahn.
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161.

Losung

Im Bonrschen Atommodell bewegt sich das Elektron um den Atomkern unter dem
EinfluB von Couroms-Kraft und Fliehkraft, so dal3 die folgende Beziehung gilt:

2 2
my— = ———.
r 4reegr?

e

GemiB dem BoHrschen Postulat muf3 weiter gelten
2nrmov = nh,

wobei n =1, 2, 3, --- die Hauptquantenzahl und 4 das PLaNcksche Wirkungsquantum

bedeutet. Fiir den Radius der n-ten Bahn ergibt sich aus den angefiihrten Gleichungen
_ eoh? 2
o Ttn’l()e2

Fiir den Radius der ersten Bahn (# = 1) finden wir

eoh? 8,854 -10-12.(6,63)% - 10-68
= = ~ 0,53-101°m =
T e 3,149,109 - 1031 - (1,602)7 - 10-38 o
=0,53 A.
Fiir die Geschwindigkeit v des Elektrons entnehmen wir aus den angefiihrten Gleichungen
nh nh e?
v = = = .
2rrmg eoh? 2eonh
2nmg > n?
TTH1o€

Fiir die Bahn mit » = 1 wird

e (1602107 - )
P R ¥ 7 R Vel R e L LA A

Ul‘
<Q

Mit welcher Kraft ziehen sich gemid3 dem BoHrschen Atommodell Kern und Elektron
eines Wasserstoffatoms an, wenn das Elektron sich auf der ersten Bahn befindet? Be-
rechnen Sie, wievielmal so groB3 diese Kraft ist als die zwischen beiden Teilchen wirkende
Massenanziehung.

Losung

Fiir die Kraft der CouLoMB-Anziehung gilt

1 &
Fi=—— ",
! dney 13
wobei r; = 0,53 - 10-'° m den Radius der ersten Quantenbahn bedeutet. Mit ihm wird

s (1,602) - 10-38
' T 4-3,14-8,854-1071%.(0,53)” - 10-2°

N =0,0821 - 10-¢ N.
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162.

Die Gravitationskraft, mit der Proton und Elektron in der gleichen Entfernung auf-

einander wirken, ergibt sich zu

1840m32
2

mom 1840-(9,109)% . 10-52

F! = L = 6,685 - 10-11 N =
A (0,53)% - 10-20
=3,63-10"%" N.
F, 821-10%
L d =2,26-10%°,

F] 3,63-107%
Demnach ist die Couroms-Kraft 2,26 - 103°mal so groB wie die hier wirkende Massen-
anziehung,

Berechnen Sie die Gesamtenergie eines Elektrons, das sich auf der zweiten Quanten-
bahn im Borrschen Atommodell des Wasserstoffatoms bewegt.

Losung

Die Gesamtenergie des Elektrons setzt sich aus den Anteilen der potentiellen und der
kinetischen Energie zusammen. Wenn wir den Radius der n-ten Quantenbahn mit dem
Symbol r, kennzeichnen, konnen wir fiir die potentielle Energie des Elektrons auf dieser
Quantenbahn ~ bezogen auf Unendlich, d. h. in unendlicher Entfernung; denn im
Zustand der Abgelostheit, der Ionisation, ist die potenticlle Energie des Elektrons gleich
Null - schreiben

n

1. 2 29r, 2
W, = — f%drz_ 1 [_e__} - ¢

4rey r dmteg | ¥ Joo 4regry
o0
Fiir die kinetische Energie erhalten wir unter Hinzuziehung der Gleichung
v? 1 e
mo _— =
n 4req 12
1 e?
Wk = — m0112 = .
2 8megrn

Damit betrédgt die Gesam{energie des Elektrons

2 2 2

e e
W =W, Wy = — = — .
W dregry Smegtsy 8megty
252
Dar, = ﬂ—hz-ist, wird
Mgé€
moe"'
== 8e2 n?h?
Fiir den Fall # = 2 erhalten wir
W = — moe* B 9,109 - 10~31-(1,602)* - 1076
2 32e2p2 R (8,86)% - 10-2* . (6,63)>- 10798 °~

= —545-10"1°J = —3,4eV.
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163. Bestimmen Sie die Wellenlidnge des Lichtquants, das beim Ubergang des Wasserstoff-
Elektrons von der vierten auf die zweite Quantenbahn emittiert wird.

Losung

Fiir die Energie, die beim Quantensprung von der vierten auf die zweite Bahn frei wird,
gilt

h‘V=W4—W2=—

moe* moe* _ 1y 3,
s R Wz(l T>_ 7"

In Beispiel 362 fanden wir fiir W, = —5,45 - 10-1° J. Damit wird
hv =4,09-10-1° ],

und
4,09 - 10-1°
= 51 =6,178- 101571,
'S 62 10 ’ s
Fiir die Wellenldnge des emittierten Quants gilt
3-108 -1
A== 2 TS 04851075 m = 0,485 um

164. Wie groB ist die Wellenldnge des Lichtes, das beim Elektronensprung von der sechsten
auf die zweite Quantenbahn im BoHrschen Atommodell des Wasserstoffs freigesetzt
wird? Welche Wellenldnge gehort zur Seriengrenze der BALMER-Serie?

Losung
Fiir die Wellenzahl des freigesetzten Lichtes gilt

1 1 1 1 2
7 = Ry (F - §> = Ry (— —-—) = — Ry = 1,097373 - 107 - 0,2222 m~* = -
= 2,438363 - 10 m~*.

4 36 9
Demnach erhalten wir fiir die Wellenldnge die Angabe
A= —1— = 0,410 -10° m = 0,410 pm.
7 bt Rl it

Die zur Seriengrenze der BALMER-Serie gehorige Wellenzahl ist

_ 1 Ry
Vo =RH (2—2'> = T.
Die zur Seriengrenze der BALMER-Serie gehdrige Wellenldnge ist daher
1 4
Ao =— = — =20,364-10"°m = 0,364 pm.
o  Ru E—

165. Wie groB ist, entsprechend der BoHrschen Atomtheorie, das magnetische Bahnmoment
des Elektrons im Wasserstoffatom, das sich im Grundzustand befindet?
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166.

Losung

Das magnetische Moment einer Stromschleife mit dem Fldcheninhalt 4, durch die ein
Strom der Stdrke 7 flieBt, hat den Wert

m = uolA

(uo magnetische Feldkonstante).

Das Elektron durchlduft die Bahn, die dem Grundzustand entspricht, x-mal, also ist
der Strom I = xe. Da der Radius dieser Bahn r; ist, wird die umlaufene Fliche
A = ™3, so daB fiir das magnetische Bahnmoment folgt:

m = uoxewr® = u UL emr? — U Drae
= 0 T = Up = _—
! 2y ! )
Da entsprechend Beispiel 360
eoh? e?
Fi = > und o, =
e 2e0h

ist (mo Ruhmasse des Elektrons, ¢, elektrische Feldkonstante), gilt

1 &h?  e? to he
= —pge —2 & ol 165-10-2° Vsm.
" 2 Ho€ nee? 2e0h A mg —0m8M8M8—————

Bestimmen Sie die hochstmégliche Anzahl von Elektronen, die auf Grund des PAULI-
Prinzips in einem Atom gleichzeitig den #-ten Quantenzustand einnehmen konnen, fiir
den Fall, daB » = 4 ist.

Losung

Da die einzelnen Quantenzahlen der Bedingung folgen, daB fiir ein bestimmtes n
/I =0,1,2,...n—1,
m=0,+1, £2, -, £( = 1), £,
1

s =+

2
sein kann, folgt fiir

maximale
n ! m s Elektronenzahl
0 0 2
4 1 -1,0, +1, 1 61 35
2 _'29 _'19 07 +19 +2’ i 2 10
3 =3, =2, —1,0, +1, +2, +3 14
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Dabei haben wir auf Grund des PAULI-Prinzips vorausgesetzt, dal3 sich die Quadrupel
aller vier Quantenzahlen, die den Zustand jedes einzelnen Elektrons charakterisieren,
in jedem Einzelfall um mindestens eine Kenngrofe unterscheiden muf3.

A Aufgaben

228. Berechnen Sie die Umlaufgeschwindig- die Wellenldnge der von den Queck-
keit des FElektrons auf der dritten silberatomen emittierten Strahlung,
Quantenbahn im BoHRschen Atom- wenn bei den StofSprozessen die gesamte
modell eines Wasserstoffatoms. Energie der Elektronen auf die Queck-

229. Wie groB3 ist die Umlaufperiode des silberatome iibertragen wird?
Elektrons auf der dritten Quantenbahn  232. In welchem Verhiltnis stehen magneti-
im BoHRrschen Atommodell des Wasser- sches Moment und Bahndrehimpuls
stoffatoms? ' fir ein Elektron des Wasserstoffs, das

230. Berechnen Sie die Wellenldngen der sich gemdB der Bommrschen Atom-
ersten drei Linien der BALMER-Serie des theorie auf der n-ten Quantenbahn be-
Wasserstoffspektrums (R = 1,097373 X findet?

X 107 m-1). 233. Mit Hilfe des PAuLI-Prinzips ist nach-

231. In einem Glaskolben eingeschlossener, zuweisen, wieviel Elektronen maximat
verdiinnter Quecksilberdampf wird mit auf einer Elektronenschale der Haupt-
Elektronen bestrahlt, deren kinetische quantenzahl » = 3 enthalten sein k&n-
Energic 4,88 eV betrdgt. Wie grof3 ist nen.

3.4. Physik des Atomkerns

Natiirliche radioaktive Substanzen konnen drei Arten von Strahlung emittieren:
o-, #- und y-Strahlung.

Die a-Strahlung besteht aus einem Strom von Atomkernen des Elements Helium,
B-Strahlung ist ein Strom von Elektronen, y-Strahlung kann sowohl als eine elektro-
magnetische Strahlung sehr kurzer Wellenldnge sowie auch als ein Strom von Photonen
sehr hoher Frequenz angesehen werden. Bei der Emission eines o~ oder -Teilchens
verwandelt sich der radioaktive Kern eines Elements in den eines anderen Elements.
Im ProzeB der radioaktiven «-Umwandlung verschiebt sich ein Atomkern im
Proton-Neutron-Diagramm (Abszisse: Protonenzahl = Ordnungszahl, Ordinate:
Neutronenzahl) der Kerne um zwei Stellen nach links, seine Masse verringert sich um
vier Kernmasseneinheiten. _

Im ProzeB der radioaktiven B-Umwandlung verschiebt sich der betreffende Kern bei
konstant bleibender Masse um eine Stelle nach rechts, zum Element nichsthSherer
Ordnungszahl hin. Die Wegstrecke, die ein 3-Teilchen bei seiner Bewegung in irgend-
einem Medium zuriicklegt, wird als die Reichweite der B-Strahlung bezeichnet.
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Die radioaktive Umwandlung der instabilen Kerne verliuft selbstindig und folgt
dabei bestimmten GesetzmaBigkeiten:

Von einer radioaktiven Substanz, die zur Zeit ¢ noch ’eine Anzahl » nichtzerfallener
Kerne enthélt, verwandeln sich wahrend des Zeitintervalls ds genau dn Kerne gemil3
der Bezichung

dn = —Ands,

wobei A die Zerfaliskonstante der betreffenden Kernart bedeutet. Der Ausdruck
4 a
dt

bezeichnet die Geschwindigkeit, mit welcher der Zerfall des betreffenden radioaktiven
Stoffes verlduft.
Die Zeitabhéngigkeit der Zahl noch nicht zerfallener Kerne einer radioaktiven Sub-
stanz wird durch die Exponentialbeziehung

n=nge "
+ ausgedriickt, in der n, die Anzahl der zur Zeit ¢ = 0 noch nicht umgewandelten Kerne
bedeutet.
Als Halbwertzeit wird diejenige Zeitspanne bezeichnet, in der die Hélfte einer an-
fanglich vorhanden gewesenen Zahl von Kernen ihre radioaktive Umwandlung voll-
zieht. Den Zusammenhang zwischen der Halbwertzeit T, und der Zerfallskonstanten A
einer radioaktiven Kernart bezeichnet die Beziehung

r, =12 _ 069

A Y

Fiir die aufeinanderfolgenden Glieder einer radioaktiven Zerfallsreihe gilt, daB sie
sich dann im radioaktiven Gleichgewicht befinden, wenn die Zerfallsgeschwindigkeit
der Glieder der Reihe gleich groB ist.
In einem Gemisch von Kernen, das sich im Zustand des radioaktiven Gleichgewichts
befindet, ist die Zahl der vorhandenen Kerne proportional zu ihren jeweiligen Halb-
wertzeiten, also

Ny N3 ... = T‘/ZI:TI/IZ:T1/23:"‘

Die Kernladungszahl Z eines Elements bestimmt die elektrische Ladung des Atom-
kerns und ist gleichbedeutend mit der Ordnungszahl des betreffenden Elements im
Periodensystem von MENDELEJEW. Die Kermmassenzahl 4 gibt dic Masse eines
Kernes, ausgedriickt in ganzzahligen Kernmasseneinheiten, an. Kerne mit gleicher
Kernladungszahl, aber unterschiedlicher Massenzahl, werden Isotope genannt.
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Der Kern eines Elements mit der Ordnungszahl Z und der Kernmassenzahl 4 setzt
sich aus Z Protonen und 4 — Z Neutronen zusammen.

Als kiinstliche Kernumwandlung wird ein ProzeB bezeichnet, bei dem ein mit Elementar-
teilchen oder Photonen (Lichtquanten) beschossener Kern in einen anderen um-
gewandelt wird. Bei diesen Reaktionen kénnen Verdnderungen des Energieinhalts
oder der Ruhmasse eines Kerns auftreten. Unter Massendefekt versteht man den Ver-
lust an Masse, den die Summe der Ruhmassen aller am Kernaufbau beteiligten
Elementarteilchen erleidet: Die Summe der Ruhmassen der einzelnen Teilchen ist
grofer als die der gleichen Teilchen, wenn sie zu einem Kern vereinigt sind. Der im
Verlauf einer Kernreaktion frei werdende Energiebetrag A E hangt mit dem im Laufe
dieser Reaktion auftretenden Massendefekt zusammen, was durch die Gleichung

AE = Amc? (D

ausgedriickt wird (¢ die Vakuumlichtgeschwindigkeit).

Dem Massendefekt um eine Kernmasseneinheit (Masse eines Nukleons) entspricht
eine Energiedifferenz der GroBe AE = 931,8 MeV.

Aus genauen Messungen ergibt sich, dafl die Masse eines Atomkerns stets kleiner ist
als die Summe der Massen der isolierten Protonen und Neutronen, aus denen der Kern
sich zusammensetzt. Diese Massendifferenz ermoglicht die Berechnung der Kernbin-
dungsenergie Eg entsprechend der Beziehung

EB = Amcz.

B Beispiele

167. Der Kern Uran 25U erleidet nacheinander vier a- und zwei 8-Umwandlungen, wobei
er sich in den Kern eines anderen Elements umwandelt. Bestimmen Sie die nach den
Umwandlungen resultierende Kernart.

Losung

Wir kénnen die Umwandlung schematisch darstellen:
%2U -~ 43He +2 e + 5X.

Da die Gesetze von der Erhaltung der Massenzahl und der elektrischen Ladung gelten,
miissen fiir die BestimmungsgroBen e und b die Gleichungen

a-+ 0+ 16 = 238,
b—2+8 =92
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168.

169.

erfiillt sein. Daraus ergibt sich

a =222,

b= 86.
Durch diese Umwandlung entsteht also ein Kern 222Rn des Elements Radon. Er enthilt
Z = 86 Protonen und N = 4 — Z = 136 Neutronen.

Durch den BeschuB der Kerne des stabilen Phosphorisotops 3P mit Deuteronen wird
ein radioaktives Phosphorisotop 32P* gebildet, dessen Halbwertzeit 772 = 14,3 Tage
betrdgt. Die Reaktion verlduft gemif folgender Darstellung:

P 4-3H - $IP* + {H.
Berechnen Sie, welche Menge an radioaktiven Kernen des Phosphorisotops 32P* zwolf
Stunden nach Abbruch der Deuteronenbestrahlung noch vorhanden ist.

Losung

Fiir den radioaktiven Zerfall des kiinstlich aktivierten Phosphorisotops 32P* gelten die
gleichen GesetzmiBigkeiten wie fiir den der natiirlichen radioaktiven Isotope. So ver-
bleiben nach Ablauf der Zeitspanne ¢ von einer urspriinglich vorhandenen Kernanzahl n
des radioaktiven Isotops noch # nichtzerfallene Kerne. Dabei ist die Bedingung

n = Rg C—h
erfiillt. Da
© In2
I=—-
T1)2
ist, ergibt sich
tin2
i = - Tus .
no

Nach Einsetzen der gegebenen GréBen erhalten wir fiir die relative Anzahl noch nicht
zerfallener radioaktiver Kerne

n 12 h-0,693

— — e . 3432h — 0,98.
Ho

Eine radioaktive Substanz mit der Halbwertzeit 71, = 3 min liegt in einer Ausgangs-
menge m, = 50 p.g vor. Bestimmen Sie die Zeit, innerhalb der die Teilmenge 4m =10 g
zerféllt.

Losung

Nach Ablauf der Zeit ¢ verbleiben von den urspriinglich vorhandenen n, Kernen noch
n=noe™ (1)

nichtzerfallene Kerne
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170.

Da die Masse einer bestimmten Menge radioaktiver Substanz proportional zur Anzahl
der in ihr enthaltenen Kerne ist, kann GIl. (1) auch in die Form

m = mgy e~ @

gebracht werden (m, Masse der Ausgangsmenge, m Masse der nach Ablauf der Zeit ¢
noch nicht zerfallenen Kerne). Da weiter

In2
m=my—A4dm und i =
T1)2
ist, resultiert aus GI. (2)
o — Am _tln2
To — =™ e Tue
)

woraus wir nach einer Umformung erhalten

f= Tl/z I mo_Am‘

N lg 2 my
Nach Einsetzen der gegebenen Grofien ergibt sich
180 s 40
= — ———1Ig — = 58s.
0,30103 ©50 =

Berechnen Sie, welche Anzahl von Kernen innerhalb einer Sekunde in einem Kilogramm
Uran des Isotops 23U zerfallen, wenn dessen Halbwertzeit mit T3,z = 4,5 - 10° Jahre
gegeben ist.

Losung

Zur Zeit t moge die angegebene Substanz noch n unzerfallene Kerne enthalten. Von
diesen erleiden in einem Zeitintervall d¢

dn = —ni de
und in der Zeiteinheit
dn
Z=—— =nk 1
@ " 1)

ihren Zerfall.
Ein Kilomol Uran %U enthilt 103 Ny =6,02 - 102¢ Atome. Da ein Kilogramm Uran

1/,35 Kilomol enthilt, sind in einem Kilogramm Uran

no == %%) 6,02 - 102® Atome )
zur Zeit ¢ = 0 enthalten. Innerhalb der Zeiteinheit zerfallen von ihnen gemiB GI. (1)
Z = nok
Kerne. Wenn wir noch beriicksichtigen, daBl die Gleichung

0,693

A
Tl/,
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171.

den Zusammenhang zwischen der Zerfallskonstanten 4 und der Halbwertzeit 771/, angibt,
erhalten wir aus Gl. (2)
1000 0,693

Z=——6,02-10%*

_00 1 125107 s,
233 14-1007 > TP S

Berechnen Sie, welche Mengen Radium %25Ra und Radon ?22Rn sich mit einem Gramm

Uran #8U im Gleichgewicht befinden. Die Halbwertzeiten der beteiligten Substanzen
Uran, Radium und Radonsind jeweils Ty, ; = 4,4+ 10% a, T1y,, = 1590a, Ty, 5 = 3,825d.

Losung

Die Atomkerne 2$Ra und 2%2Rn sind Glieder einer Zerfallsreihe, deren erstes Glied
der Kern 23U ist.

Die Elemente einer bestimmten Reihe radioaktiver Substanzen, einer ,Zerfallsreihe’,
sind dann miteinander im Gleichgewicht, wenn die Zahl dr,; der im Zeitintervall zwischen
t und ¢ + dr zerfallenden Kerne fiir die Muttersubstanz und fiir die Elemente ihrer
Zerfallsreihe gleich groB ist. Es gilt also die Bedingung

dny =dn, = ... = dn. )

Wenn wir die Zahl der zur Zeit # noch intakten Kerne eines Elements mit dem Symbol n
kennzeichnen, dann wird die Beziechung

dn; = — Ap; de
erfiillt, und wir konnen Gl. (1) umschreiben in

Ang = Aoty = ... = L. )
An Stelle der Zerfallskonstanten 4, setzen wir entsprechend der Gleichung

In2

A=
Tijn

die Halbwertzeiten T,; ein und erhalten die Bedingung fiir radioaktives Gleichgewicht

ng on R
Ty Ty N Ty )

In unserem Fall stehen n; Urankerne mit #, Radiumkernen und #; Radonkernen im
radioaktiven Gleichgewicht und erfiillen deshalb die Beziehung

Ry . Hy _ n3
Tiy1 T2 T1/23'

Daraus resultiert

T: T
22 und g = n =22
1/21 121

Hy = Ny
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172,

Fiir die » Kerne eines Elements, dessen Grammatom die Masse M hat, gilt, daB3 ihnen
eine Masse

m = —]%-n g 3)

zukommt. Wir beriicksichtigen weiter, daB ein Gramm Uran 23U

_ 6,02-10%
238

enthilt, und finden unter Verwendung der Gl. (3) eine Beziehung fiir die Radium-

menge m, und die Radonmenge m3, die sich mit einem Gramm der Muttersubstanz im
radioaktiven Gleichgewicht befinden, zu

Mz T1/2 2 M3 T1/2 3
= ny und mz = ny .

NA 7‘1/2 1 NA I‘l/2 1
Nach Einsetzen der gegebenen Gréfen erhalten wir schlieBlich
_ 226 6,02 1023 1590
T602-102% 238 44-10°°
222 3825
T 238 4,4-10°-365°

ny Atome

msy

my =33-10"°%g,

ms

=22-10"1% g,

Mit Hilfe von Zéhlrohrmessungen ist festgestellt worden, dafl 1 g Radium in einer Se-
kunde 3,7 - 10'° a-Teilchen emittiert. Bestimmen Sie den Wert der AvoGaDRoschen
Zahl unter Verwendung der weiteren Angaben, dafl die Halbwertzeit des Radiums
1590 Jahre und seine relative Atommasse 226,05 betrdgt.

Losung

Wir gehen von der Zerfallsgleichung in der Differentialform

dn = —Ands
aus, die wir umformen in
dn
—| = 2n.
de

Im vorstehenden Fall bedeutet der Bruch % die Zahl der in der Zeiteinheit in einem

Gramm Radium stattfindenden Zerfallsakte. Dabei ist n die Zahl der in 1 g Ra ent-
haltenen Atome. Fiir die Avocaprosche Zahl N,, d. h. fiir die im Grammatom
Radium enthaltenen Atome, gilt dann

1 dn
Na = 226,05 n = 226,05 yirrin
= 226,05 w 3,7-10'° = 6,02 - 1023,

0,693
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173.

Zu diesem Ergebnis gelangen wir unter der Voraussetzung, dal wir den Zusammenhang
zwischen Zerfallskonstante 4 und Halbwertzeit 73, entsprechend der Gleichung
A = 0,693/Ty;, berticksichtigt haben.

Im Innern einer Kapsel, deren Wandmaterial fiir «-Strahlung véllig undurchléssig ist,
befindet sich 1 g Radium. Berechnen Sie den Betrag der Gesamtenergie, die innerhalb
einer Stunde im Innern der Kapsel freigesetzt wird, wenn wir voraussetzen, dafl die
Energie jedes bei den Zerfallsakten frei werdenden «-Teilchens den Wert E, = 4,7 MeV
hat.

Losung

Wir beschrdnken uns auf den durch die «-Strahlung transportierten Energieanteil. Bei
der Emission des a-Teilchens erhilt der emittierende Kern einen Riickstof3, wodurch er
sich mit der Geschwindigkeit vk in entgegengesetzter Richtung zum emittierten «-Teil-
chen bewegt. Entsprechend dem Satz von der Erhaltung des Impulses bleibt der Ge-
samtimpuls des Systems Kern -+ «-Teilchen konstant. Unter Beschrinkung auf die
Absolutbetrdge konnen wir schreiben

Mg = MY, a

Nach der Emission ist die gesamte freigesetzte Energie gleich der Summe der Be-
wegungsenergie von Kern und emittiertem o«-Teilchen, also

1 1
E=EK +Ea=—2—mxvlz< +7mav";.

Unter Einbeziehung der Gl. (1) erhalten wir fiir die Energie den Ausdruck

by L i
2 g

m
=F, (1 + °‘> . )
mg
Das a-Teilchen ist ein Heliumkern $He; durch seine Emission verringert sich die Kern-
masse des emittierenden Kerns um vier Masseneinheiten. Wir beriicksichtigen, daB3 die
Massenzahl 4 des Kerns zu seiner Masse proportional ist, und finden demnach
mll Ad

mg AK ’

Diese Voraussetzung erlaubt uns, Gl. (2) in die Form

A 4 A
E=E|1+-%)=E_[1 =——F
°‘<+AK) °‘<+A—4> A—47"
zu bringen (4 Massenzahl des radioaktiven Mutterkerns). Im Verlauf einer Stunde
werden von einem Gramm Radium # o-Teilchen emittiert. Also ist die wihrend dieser
Zeit freigesetzte Gesamtenergie

A

E = H-T__—L{Ea. (3)

14 Hajko, Elektrik
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174.

Die Zahl der in einem Gramm Radium wéihrend einer Stunde stattfindenden Zerfalls-
akte 148t sich leicht durch Vergleich mit der Losung von Beispiel 370 ermitteln:

n=3,7-10*°-3600 h-*.

Durch Einsetzen der gegebenen GréBen in Gl. (3) finden wir

3,7+10%° - 3600 h-1.226
- 222

’

5 .
-4,7-10%¢V-1,6-10"1° — =102 Jh-1,
eV

Berechnen Sie, welche Energiemenge bei der Reaktion

B +ID — B + H
frei wird, wenn die Kernmasse des Isotops !B mit 10,01618 und die des Isotops 1B
mit 11,01284 Kernmasseneinheiten angegeben wird.

Losung

Wir gehen von der Summe der Ruhmassen der in die Reaktion eingehenden Teilchen

“aus. Danach ist

175.

my; +m, = 10,01618 u + 2,01472u = 12,03090 u.

Demgegeniiber haben die aus der Reaktion hervorgehenden Teilchen die Ruhmassen
ms + my = 11,01284u + 1,00813 u = 12,02097 u.

Im Verlauf der Reaktion tritt ein Massendefekt auf von
Am = 0,009930 u.

Eshandelt sich hierbei ausschlieSlich um einen Massendefekt des Kerns, denn die Zahl
der beteiligten Elektronen dndert sich im vorliegenden Fall nicht.

Bei der Reaktion wird ein Energiebetrag 4FE frei, die Reaktion ist exotherm. Mit dem
Massendefekt hiingt der freigesetzte Energiebetrag durch die Beziehung

AE = Amc?

zusammen. Der auftretende Massendefekt kann leicht in Masseneinheiten ausgedriickt
werden, wenn wir beriicksichtigen, daB die nukleare Masseneinheit 1 u = 1,66 -
10727 kg ist. Damit wird

K
Am = 1,66 - 10-27 Tg .0,00993 u,

und fiir die freigesetzte Energie erhalten wir
AE = 1,64839 - 1029 kg - 9 - 101 m? - 572 = 1,4843 - 10-12J = 9,28 MeV.

Das Ergebnis der Kernreaktion
i + 1H - 2 4He,
bei der Lithium mit Protonen beschossen wird, die eine Energie von 600 keV haben,

sind zwei o-Teilchen, die sich mit einer kinetischen Energie von 8,94 MeV bewegen.
Bestimmen Sie aus den bekannten Kernmassen von Proton und «-Teilchen die Kern-

" masse des Isotops JLi.
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176.

Losung

Im Verlauf dieser Reaktion tritt ein Massendefekt 4m auf; er ist gleich der Differenz der
Ruhmassen der in die Reaktion eintretenden und der aus ihr hervorgehenden Teilchen:

Adm = myy 4+ my — 2mye,
woraus fiir die Masse eines Lithiumkerns resultiert

myy = Am — my + 2mye. 1
Im Verlauf der exothermen Reaktion wird die Gesamtenergie

A4E =2-8,94 MeV — 0,6 MeV = 17,28 MeV

frei. Der dieser Energiedifferenz entsprechende Massendefekt errechnet sich gemif3 der
EmstEINschen Relation zu

AE
Am = 7 .
Wie oben in 5.4. erwihnt, entspricht dem Massendefekt von einer Kernmasseneinheit ME
(= Nukleonenmasse) eine Energie von 931,8 MeV. Demzufolge gilt fiir den mit der

Energiedifferenz 4E = 17,28 MeV verbundenen Massendefekt

17,28 MeV

Am =
M
031, MV
u

=0,01854 u.

Fiir die Kernmasse des angegebenen Lithiumisotops finden wir also
my; = 0,01854u — 1,00813 u + 8,00772u = 7,01813 u.

Die Quanten der harten Gammastrahlung des Radiothors kénnen bei der Wechsel-
wirkung mit einem Deuteriumkern diesen zur Zerlegung in Proton und Neutron ent-
sprechend der Reaktion

Dty-lH
bringen. Bei der Zerlegung erhélt das Proton die kinetische Energie 4E; =0,217MeV.

Die Energie der einfallenden vy-Quanten betrdgt 4E, = 2,62 MeV. Die Massen von
Proton und Deuteron sind bekannt. Berechnen Sie die Masse des Neutrons.

Losung

Im Verlauf dieser Reaktion tritt ein Massendefekt

Am = mp —(my + my)
auf, wobei mp, my und m, die Ruhmassen von Deuteron, Proton bzw. Neutron be-
deuten. Zwischen ihnen besteht der Zusammenhang

My = my — my — Am. 6y
Wir konnen voraussetzen, daB3 die Massen von Proton und Neutron nur unwesentlich

voneinander abweichen. Deshalb werden die beiden Zerlegungsprodukte des Deuterons,
Proton und Neutron, praktisch die gleiche Energie haben. Bei der Reaktion wird die

14% .
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177.

Energie
AE = 24E, — AE,
frei. Dieser Energiedifferenz entspricht ein Massendefekt

A4E

Adm = ——.
cZ

Demnach ergibt sich fiir die Masse des Neutrons nach Gl. (1)
24E, — AE,

My = Mp — My — P

Nach Einsetzen der bekannten Grofen erhalten wir

2,186 MeV - 1,6 - 10-13 3 _
MeV
my = 2,01472u — 1,00813u + .

9-101° m2s-2
Wenn wir beriicksichtigen, daB3 die Kernmasseneinheit gleich 1,66 - 10-27 kg ist, er-
halten wir fiir die Neutronenmasse

k
m, =1,00659 u - 1,66 - 10-27 —u—g + 0,389 - 10-2° kg = 1,6748 - 10-27 kg.
Berechnen Sie die Bindungsenergie a) fiir ein Deuteron, b) fiir ein «-Teilchen.

Losung

Ein Ausdruck fiir die Bindungsenergie ist der bei der Bildung der angegebenen Teilchen
aus ihren elementaren Bestandteilen auftretende Massendefekt. Massendefekt und Bin-
dungsenergie stehen in dem einfachen Zusammenhang

AE = Amc?. ¢y
a) Das Deuteron ist der Kern des schweren Wasserstoffisotops, der sich aus je einem
Proton und Neutron aufbaut. Wir bezeichnen mit m,, m, und mp die Massen von

Proton, Neutron und Deuteron und erhalten fiir den bei der Bildung des Deuterons auf-
tretenden Massendefekt den Ausdruck

Adm = my, 4 m, — mp = 1,00895 u + 1,00758 u — 2,01418 u =
= 0,00235 u.

GemidB dem Zusammenhang in GI. (1) entspricht einer Kernmasseneinheit u eine
Energie von 931,8 MeV; daraus folgt, dall dem Massendefekt Am die Bindungsenergie

MeV
u

A4E = 0,00235u - 931,8

= 2,19 MeV
zukommt.

b) Das «-Teilchen ist der Kern des Heliumatoms; es besteht aus je zwei Protonen und
Neutronen. Bei seiner Bildung tritt ein Massendefekt

Am = 2my, 4 2my, — m,
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178.

auf. In Zahlen ausgedriickt, hat er den Wert

4dm =2,01790u 4 2,01516 u — 4,00276 u = 0,0303 u.

Damit ergibt sich fiir das «-Teilchen eine Bindungsenergie

v
AE = 0,0303u - 931,8 1°

= 28,2 MeV.

Radon wird durch radioaktiven Zerfall des Radiumisotops %5Ra gebildet, Dabei
emittiert der Radiumkern ein «-Teilchen der Energie AE = 4,9 MeV. Der der Bindungs-
energie des a-Teilchens zukommende Massendefekt hat den Wert 4m = 0,0303 u.
Berechnen Sie aus den vorgegebenen Angaben die Differenz der Massendefekte von
Mutterkern (Radium) und Tochterkern (Radon).

Losung
Da der Mutterkern 22$Ra aus 88 Protonen und 138 Neutronen besteht, kommt ihm
ein Massendefekt

Aimga = 88 my + 138 my — mga

zu. Dagegen hat der Massendefekt des Tochterkerns 222Rn, der aus 86 Protonen und

136 Neutronen besteht, den Wert
Amgy = 86 my, + 136 my — mg,.
Die beiden Massendefekte unterscheiden sich somit um
Am = Amg, — Amgn = 2w, + 2m — (Mga — Mgy). ey
Bei der Umwandlung des Radiums in Radon entsprechend der Reaktion :
HRa — TRn +3a @
wird die Energic 4E = 4,9 MeV frei, die dem «-Teilchen zukommt. Dieser Energie

entspricht ein Massendefekt

Am’ = — = ——+—— =0,00526u.

Wenn wir diesen Massendefekt mit der in GI. (2) angegebenen Reaktion in Beziehung
setzen, ergibt sich

Am’ = mg, — (mga + m,).

Wir konnen mit Hilfe dieser Beziehung die Massendifferenz der Kerne mg, — mg, aus-
driicken und damit in GI. (1) hineingehen. Das ergibt

Am = 2my, + 2my — my, — Adm'.



214

3. Atomphysik

179.

180.

Hierbei bedeutet 2m, + 2m, — m, den Massendefekt 4dm,, der bei der Bildung des
a-Teilchens auftritt, in Zahlen:

dm = Am, — Am’ = 0,03030u — 0,00526 u = 0,025 u.

Berechnen Sie, wie gro3 die Wellenlinge einer elektromagnetischen Strahlung héchstens
sein darf, wenn diese Strahlung die Bildung von Elektron-Positron-Paaren verursachen
soll.

Losung

Paarbildung vollzieht sich durch die Wechselwirkung von geniigend energiereichen
Photonen im Feld schwerer Kerne. Die Ruhmasse des gebildeten Paares ist gleich der
Summe der Ruhmassen von Elektron (m.) und Positron (#,). Die Erzeugung dieser
Ruhmassen erfolgt auf Kosten der Energie eines Photons. Der Zusammenhang zwischen
den beteiligten GroBen wird durch die EinsTEINsche Gleichung angegeben:

AE = Amc2. ¢y)]

Die Energie des Photons hat den Wert 4E = hy. Daraus folgt, wenn wir GI. (1) um-
stellen, fiir die Frequenz des Photons

Amc?
p =
h s

und wegen der Beziehung 42 = ¢/v fiir die Wellenldnge

A= h . (2)

" dme

Wenn wir die entsprechenden GrofBen einsetzen, ergibt sich
Am = 5,489 -10~%u + 5,489 - 10-*u = 10,978 - 10~* u.

Da eine Kernmasseneinheit gleich 1,66 - 10~27 kg ist, hat der oben errechnete Massen-
defekt, in absoluten Einheiten ausgedriickt, den Wert

Am = 18,22 - 1031 kg.
Diesen Wert in Gl. (2) eingesetzt, ergibt die erforderliche Hochstwellenlinge

6,62+ 1073* Js

A= —12-10%m = 1,2 pm.
1§22 109 kg 3. 10°msT | m=_cpn

Urankerne des Isotops 233U zerlegen sich unter BeschuB mit thermischen (langsamen)

Neutronen exotherm in 2 anndhernd gleich schwere Kernbruchstiicke. Bei dieser Art
Kernspaltung wird eine Energiemenge von ungefidhr 4E = 200 MeV freigesetzt. Be-
rechnen Sie, welche Energiemenge bei der vollstindigen Spaltung von 1 kg Uran frei-
gesetzt wiirde. Berechnen Sie, welche Masse an spaltbarem Uranbrennstoff ein mit einer
Leistung von 1 MW betriebener Kernreaktor innerhalb 24 Stunden verbrauchen wiirde,
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Losung

Bei der Spaltung von 1'kg Uran wird die Energie
E=ndE m

freigesetzt. Dabel ist AE die bei der Spaltung eines Kerns freigesetzte Energie und » die
Zahl der in der Masseneinheit enthaltenen Urankerne. Fiir diese Zahl gilt

1000
= 602-102% kg,
"= 35 &

Demnach ergibt sich die gesamte, bei der Spaltung von 1 kg Uran freigesetzte Energie zu

1000 J
E=——602-102"kg-! - 200 MeV - 1,6 - 103 —— = 8,2-10'* Jkg"1.
535 002+ 1022 kg™" - 200 MeV - 1,6 - 10712 g

Unter der Voraussetzung einés idealen Wirkungsgrades wiirde dér Reaktor bei einer
Leistung P = 1 MW = 10° W innerhalb von 24 Stunden die Energie '

E, = 10° W - 86400 s = 8,64 - 104°J

freisetzen. Da bei der Spaltung von 1 kg Uran die Energie E = 8,2 - 1013 J frei wird
wiirde der Reaktor bei der angegebenen Leistung einen Brennstoff bedarf von

8,64 -10'°7J

M= 82 100 Tkg !
haben.

=1,05-10"%kg ~ 1 g Uran 35U

A Aufgaben

234.

235.

236.

Als Endprodukt der Zerfallsreihe des Halbwertzeit T1;, = 40 min innerhalb
Thoriums, die mit dem Isotop 232Th von 5 min zerfallen,

beginnt, erscheint das Bleiisotop 23%Pb.  237. Die Halbwertzeit eines Aktiniumiso-
Berechnen Sie die Zahl der im Verlauf tops betrdgt 13,5a. Berechnen Sie,
der ganzen Zerfalisreihe emittierten o- innerhalb welcher Zeit von 107 Kernen
und 3-Teilchen. einer seinen Zerfall ausfiihrt.

Berechnen Sie, innerhalb welcher Zeit 238. Berechnen Sie, wieviel a-Teilchen von
die Hailfte der Kerne eines Radium- einem Gramm Radium mit der Halb-
priparats zerfallt, wenn die Zerfalls- wertzeit Ti/, = 1590 a innerhalb einer
konstante des betreffenden Radiums Sekunde emittiert werden.

mitA = 1,42-10-11s-! angegeben wird.  239. Entsprechend dem GEIGER-NUTTALL-
Berechnen Sie, wieviel Prozent der schen Reichweitegesetz kann man die

Kerne eines Poloniumpréparats mit der Reichweite (d) eines von einem radio-
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240.

241.

242,

243,

aktiven Prdparat emittierten o-Teil-
chens mit der fiir dieses Préparat
charakteristischen Zerfallskonstanten 4
in Beziehung setzen. Das erfolgt ange-
néhert durch die empirische Formel

lgd=Alg 4 + B,

in der 4 und B Konstanten sind. Be-
rechnen Sie die Reichweiten der «-
Strahlung des Urans 25U und des Ra-
diums %2§Ra, deren Halbwertzeiten be-
kannt sind. Fiir die Zerfallsreihe des
Urans gelten die Zahlenwerte A =
= 0,0167 und B = 0,7059, wobei die
Reichweite in cm und die Zerfalls-
konstante in s~! gemessen sind.

Ein Poloniumpridparat der Aktivitit
3,7-10-11s-1 befindet sich in einem
Kalorimeter, dessen Wéirmekapazitit
4,19 JK-1 betrdgt. Die vom Polonium
emittierten o-Teilchen haben eine Ener-
gie von 5,3 MeV. Die RiickstoBenergic
der emittierten Kerne wird vernachlés-
sigt. Berechnen Sie die im Kalorimeter
innerhalb einer Stunde auftretende
Temperaturerhohung.

Durch natiirlichen radioaktiven Zerfall
des Uranisotops 25U bildet sich das
Uranisotop %3U. Das natiirliche Uran
ist ein Isotopengemisch von 25U,
25U und #3U, das 99,3% des %35U-
Isotops und nur 0,006% des Z%3U-
Isotops enthilt. Die Halbwertzeit des
Uranisotops %5U  betrigt 4,4 -10°
Jahre. Berechnen Sie die Halbwertzeit
des Uranisotops 235 U.

Berechnen Sie, welches Volumen des
radioaktiven Edelgases Radon sich bei
einer Temperatur von 0 °C und einem
Druck von 1 bar mit der Menge von1g
Radium im radioaktiven Gleichgewicht
befindet.

Berechnen Sie, mit welcher Geschwin-
digkeit sich ein frei beweglicher Kern
des Radiums nach der Emission eines
a-Teilchens von der Energie Eq =
= 4,7 MeV bewegen wird.

244.

245.

246.

247.

248.

249,

250.

Berechnen Sie — in J und eV ausge-
driickt -, welcher Energie die nukleare
Masseneinheit ME entspricht.

Berechnen Sie die bei der Kernreaktion

Z7A1 + 4He — 33Si + 1H
frei werdende Energiemenge. Die Kern-
massen betragen: ma, = 26,9899 u,
Mmsy = 29,9832 .
Berechnen Sie den auf das Mol bezoge-
nen Massendefekt, der bei der chemi-
schen Reaktion

2H2 +02—)2H20

eintritt, wenn bei einer Reaktions-
temperatur von 25 °C je Mol entste-
henden Wassers eine Energie vom Be-
trag W = 286 kJ frei wird.

Im Verlauf der Kernreaktion

YN +on—%C + 1H

wird ein Energiebetrag von 0,6 MeV
freigesetzt. Die Kernmasse des Stick-
stoffisotops N betrigt 14,00756 u.
Berechnen Sie die Kernmasse des
Kohlenstoffisotops 1£C.

Im Verlauf der Kernreaktion

¥N +$He —> JH + 1O

wird je Grammatom des gebildeten
Sauerstoffisotops eine Energiezufuhr
von 12,5 - 101° J notwendig. Die Kern-
masse des Stickstoffisotops YN be-
trdgt 14,00756 u. Wie grof ist dem-
nach die Kernmasse -des Sauerstoff-
isotops 170? ‘

Berechnen Sie die Bindungsenergie der
Kerne a) des Stickstoffisotops 4N,
b) des Bleiisotops %3;Pb. Wie grofB ist die
jeweils auf ein Nukleon bezogene Bin-
dungsenergie? Die Kernmassen der ge-
nannten Isotope betragen 14,00756 u
fiir 4N, 207,21 ME fiir 23Pb.
Berechnen Sie den bei der Bildung von
einem Gramm Helium aus Protonen
und Neutronen frei werdenden Energie-
betrag.
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4.1. Welleneigenschaften der Materie

Von DAvissoN und GERMER wurde 1927 nachgewiesen, dall auch Teilchen, die mit
einer Ruhmasse behaftet sind, Welleneigenschaften zeigen kénnen. Sie untersuchten
die Reflexion von Elektronen an einem Nickel-Einkristall und fanden, daB die Elek-
tronen entsprechend wellenoptischen GesetzmaBigkeiten gestreut
wurden (Bild 110). Mit diesem Experiment wurde eine 1924 von
DE BROGLIE aufgestellte Hypothese bestétigt, wonach jedes sich
frei bewegende Teilchen mit einer ebenen Welle der Form

(7, 1) = Ce @ kn

verkniipft ist (7 Ortsvektor, ¢ Zeit). Die Amplitude C der de-
Broglie-Welle bleibt vorlaufig unbestimmt.
Im Falle, daB sich die DE-BROGLIE-Welle im Vakuum ausbreitet, £ Eekironenquetle
. . . . = K fonisationskammer
sind ihre Kreisfrequenz w = 2wy und ihr Wellenzahlvektor k K ristoit
mit der Energie E und dem Impuls 7 des Teilchens durch die Bild 110. Versuch

de-Broglieschen Gleichungen von DavissoN und
R GERMER
E=how, p=nrhk
verkniipft. Wellenzahlvektor £ und Geschwindigkeit & sind demnach gleichgerichtet.

Mit der Wellenzahl k ist gemaf der Beziehung |k| = 27?% auch die Wellenlidnge 4 der

DE-BROGLIE-Welle bestimmt. Die Konstante 7 ' hat den Wert
h= —-}f— = 1,05 10-34 Js.
2r

(h = 6,63 - 10~3* Js PLANCKsches Wirkungsquantum).
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In einem Kristall ist die Wellenldnge 4 der DE-BROGLIE-Welle vom Gitterpotential £,
abhingig. Bei einem Ubertritt der bE-BROGLIE-Wellen aus dem Vakuum in den Kristall
gilt fiir die Brechzahl n die Bezichung (Bild 111)

n:i:ﬂ:\/l—_@._
1 sine E

Aus den Welleneigenschaften der Materie haben wir
nach SCHRODINGER und HEISENBERG die Konsequenz
zu ziehen, dafl sich die Quanten- oder Wellen-
mechanik als Mechanik der atomaren Prozesse in
ihren Grundlagen und Vorstellungen gegeniiber
der klassischen Mechanik prinzipiell unterscheidet. Insbesondere 148t sich der Begriff
der Bahnkurve eines Teilchens aus der klassischen Mechanik nicht in die Quanten-
theorie iibertragen. An die Stelle genau fixierter GroBen fiir die Ortskoordinate g und
die Impulskoordinate p eines Teilchens tritt in der Wellenmechanik eine Wahrschein-
lichkeitsverteilung. Orts-- und Impulskoordinate sind demzufolge mit prinzipiellen
Ungenauigkeiten 4q und 4p behaftet. Nach HEISENBERG besteht zwischen diesen Un-
genauigkeiten der Zusammenhang

Vakuum

Bild 111

gzl
4

der auch in der Form
Apdq ~ h

geschrieben wird.

Durch diese Heisenbergsche Unbestimmtheitsrelation wird weder die Genauigkeit
der Ortsbestimmung noch die der Impulsbestimmung fiir sich allein begrenzt. Eine
Beschriankung besteht dagegen insofern, als die genauere Bestimmung der einen
GroBe unvermeidlich mit einer Zunahme des Fehlers der konjugierten Grifle verbunden
ist.

B Beispiele :

181, Das Wasserstoffatom hat die Masse my = 1,67 - 10-27 kg. Wie groB ist die Wellen-
linge der DE-BROGLIE-Welle des Teilchens, wenn es sich mit der Geschwindigkeit
v = 1000 m s~* bewegt?



4.1. Welleneigenschaften der Materie 219

182.

Losung

Die Wellenldnge A der pE-BROGLIE-Welle bestimmt sich aus der Beziehung

Hieraus folgt
_ 6,62-1073*
T 1,67-10727-103

Die Wellenldnge der De-BroGLIE-Welle liegt also in der GréBenordnung des Atom-
durchmessers.

m = 3,96 - 10-1°m,

Ein Elektron bewegt sich im homogenen elektrischen Feld. Die das Elektron beschleuni-
gende Potentialdifferenz hat den Wert U = 1000 V. Es wird vorausgesetzt, da die
resultierende Endgeschwindigkeit des Elektrons klein gegeniiber der Lichtgeschwindig-
keit ¢ bleibt, so daBl ohne Beriicksichtigung relativistischer Korrekturglieder gerechnet
werden kann. )

Wegen v <€ ¢ kann die Masse des Elektrons mit seiner Ruhmasse m, = 9,11 + 10-3' kg
gleichgesetzt werden. Die Elementarladung des Elektrons ist e = 1,6 - 10-1° As. Wie
groB ist die Wellenldnge A der DE-BROGLIE-Welle des Elektrons am Ende des Beschleu-
nigungsvorgangs?

Losung

Fiir die Wellenldnge der pE-BRoGLiE-Welle des Elektrons gilt

Zwischen der Geschwindigkeit des Elektrons und seiner kinetischen Energie besteht der
Zusammenhang

m
Ek =702;

andererseits ist die kinetische Energie gemiB E, = eU durch die Potentialdifferenz
des vorliegenden elektrischen Feldes bestimmt. Hieraus erhalten wir fiir die Wellen-
lange der DE-BROGLIE-Welle

ok
V2mE,  f2meU

Setzt man fiir 4, m, e die gegebenen GrofBen ein, so folgt
6,63 - 10734 _ 1,225-107°

A= m=
\/2 ©9,11-10-3t- 1,6 - 10-1° U/Volt \/U/VOIt
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183.

womit eine allgemeine Zahlenwertgleichung fiir die Abhédngigkeit der Wellenlidnge von
der Potentialdifferenz U in Volt gefunden ist. Setzt man fiir U den Zahlenwert 103 ein,
ergibt sich schlieBlich

_1,225-10°°
10°

A m = 0,387 -10"*° m.

Es ist die Wellenldnge 4 der DE-BROGLIE-Welle eines Elektrons im starken elektrischen
Feld U = 10° V zu bestimmen. Dabei sind die relativistischen Korrekturglieder in erster
Niherung zu beriicksichtigen, wobei fiir den Impuls 7 und fiir die kinetische Energie Ex
die Ausdriicke § = mb, E, = (m — myp)c? zu verwenden sind (vgl. Beispiel 149!).

Losung

Nach den pe-BrocLieschen Grundgleichungen besteht zwischen dem Betrag des Im-
pulses 7 und der Wellenldnge 4 die Beziehung

PR o))
P

Andererseits ist
Mov

v
~/1‘7

Fiir nicht zu groBe Werte der Geschwindigkeit » konnen wir schreiben

v? v?
Jl—?=1”7 ®)

2

p=mw=

1—— 4

Wir beachten den Zusammenhang zwischen Kkinetischer Energie E, und Potential-
differenz U:

1
E, =(m— my)c? = ———2—1 moc? = eU 5)
v
A/ ==
und finden
v? mgc?
= 6
A/l 2 eU+ moc? ©

Daraus erhalten wir durch Umformung

\/eZU2 -+ 2mgc? eU
r= c.

elU -+ mgyc?
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184.

Wenn wir beriicksichtigen, daf3
eU < mypc?

ist, so 14Bt sich die Geschwindigkeit v auch schreiben

,\/Zm czeU<l —{———i)
N 2moc® ) A/2eU . (1 3eU ) -
e (1 n eU2 > mqy 4myc?
MigC
Aus den Gin. (1), (4), (7) ergibt sich fiir die Wellenldnge 4 der DE-BROGLIE-Welle
h 2 h U
a=t_ <1—_”2-)= (1— d 2). ©®)
P MoV c \/ 2meelU 4moc

Wir setzen die bekannten Werte fiir die Konstanten m,, e, 2 und ¢ in GI. (8) ein und
erhalten

6,63 - 1034 ( 1,6-10-° U >
A= — m =
\/2 -9,11-1073* - 1,6-10-° U 4-9,11-10731-9.1016

1,225 -10-°
=" (1-049-10~° U)m. )]

Ju

Fiir die angegebene Potentialdifferenz U = 105 V ergibt sich

225-10-°

A= 1,_\/___:0_ (1 — 0,049)m = 0,368 - 10~ m.
10 -

Es ist die Beziehung fiir die Wellenldnge A der DE-BROGLIE-Welle des Protons im starken
elektrischen Feld zahlenwertmiBig aufzustellen, wobei die relativistischen Korrekturen
in erster Ndherung zu beriicksichtigen sind. Welche Grenzen ergeben sich fiir die Span-
nung, wenn die Giiltigkeit der entwickelten Formel auf Werte des Korrekturgliedes
zwischen 0,19, und 10 %, des Hauptgliedes begrenzt ist? Fiir die Ruhmasse des Pro-
tons ist m, = 1,67 - 10-27 kg zu setzen.

Lﬁsung

Wir gehen von Gl. (8) in Beispiel 183 aus. An die Stelle der Ruhmasse m, des Elektrons

tritt aber die des Protons m,. Das Verhéltnis beider Massen ist
m,  1,67-10727
mo 0,91 1075 1%

Unter Bezugnahme auf Gl. (9) in Beispiel 183 erhalten wir somit
_1,225-10°° (

A=t
J1836 U

U
_— 0 9 . 10—6_
1 =04 1836)m’
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185.

bzw.

_ 2,87-1071

= —\/—5

Wenn das Korrekturglied 0,27 - 10~ U im Bereich
0,001 £0,27-10° U = 0,1

liegen soll, so muB die Spannung U ihrerseits Werte zwischen 3,7 - 106 Vund 3,7 - 108 V
annehmen. Unterhalb einer Beschleunigungsspannung von 3,7 - 10 V kann somit eine
relativistische Korrektur des Protons vernachldssigt werden. Dagegen miissen oberhalb
einer Spannung von 3,7 - 102 V Korrekturglieder hoherer Ordnung in die Berechnung
einbezogen werden.

A (1—-0,27-10° U)m.

Aus den De-BroGLIEschen und aus den relativistischen Grundgleichungen ist der Zu-
sammenhang zwischen der Phasengeschwindigkeit u = iv einer DE-BROGLIE-Welle und
der Geschwindigkeit v des substantiellen Teilchens abzuleiten. Wie grof3 sind Phasen-
geschwindigkeit und Teilchengeschwindigkeit fur ein Elektron, das seine kinetische
Energie im elektrischen Feld der Potentialdifferenz U = 100 V erhdlt?

Losung

Es werden die relativistischen Grundgleichungen
E=mc* p=mb

und die pE-BrogGLiEschen Gleichungen in der Form

E.—:hw:hv, p=mv=—

A
herangezogen. Aus den letzten beiden Beziehungen ergibt sich
E h
Yy = 7 = ; .
Damit erhalten wir
u=~A= —E—
p

und unter Verwendung der relativistischen Grundgleichungen
mc?

U= bzw. wv = c2.

Da entsprechend der Relativititstheorie fiir die Geschwindigkeit » eines materiellen
Teilchens die Beziehung

v=c
gelten muB, folgt fiir die Phasengeschwindigkeit # = A» der DE-BrROGLIE-Welle

u=c.
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186.

Fiir den Fall eines Elektrons im elektrischen Feld U = 100 V erhalten wir aus
Ek = —”;—0' v2 =eU
die Geschwindigkeit

e 2:1,6-107° _
U=J2EU=JWUms1=0,593~105\/Ums 1,

d. h,
v=10,593-10" ms*.

Hieraus ergibt sich fiir die Phasengeschwindigkeit
c? 9.1016

= T 0593107

ms!=1,52-101ms"%.°

Berechnen Sie die Wellenldnge einer DE-BROGLIE-Welle von Elektronen in-einem Kristall.
Das Gitterpotential des Kristalls hat den Wert E, = —15 eV, die betrachteten Elek-
tronen haben im Vakuur eine kinetische Energie von 100 eV.

Losung

Im Fall nichtrelativistischer Rechnung gilt fiir die Gesamtenergie der Teilchen im
Vakuum

E=—n;—°v2 )

und im Kristall

E=E, + 225 @

Dabei gibt & die Geschwindigkeit der materiellen Teilchen im Kristall an. Aus Gl. (1)
u. (2) folgt fiir die jeweiligen Geschwindigkeiten

v = E, 5=A/2(_E;EP_) 3)

mo mg

und daraus wegen u = Av = ¢2/v fiir das Verhiltnis der Phasengeschwindigkeiten

u A A/E—Ep J E,
——= = [1—2F
T T E E @

wobei # als die Brechzahl der DE-BROGLIE-Welle zu bezeichnen ist. Fiir die Wellenlinge 2
der DE-BroOGLIE-Welle im Kristall erhalten wir demnach

- A A/ E
A=—=2 .
n E— E, ©
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Im vorliegenden Fall ergibt sich aus Gl. (4) die Brechzahl zu

100 + 15
= [ZZ 2 1072,
" '\/ 100 ’

Die Wellenlidnge 4 der DE-BROGLIE-Welle im Vakuum ergibt sich zu
h h
A== T (6)
Wir beriicksichtigen die Umrechnung
1eV=16-10"°J
und erhalten fiir die Wellenldnge im Vakuum
6,63 - 10-34

A= m=12,2-10"'' m.
J2+:9,1-10731-100- 1,6 - 10-1°

Fiir die Wellenldnge im Kristall erhalten wir
12,2

1 =
1,072

10-"'m = 11,4-10-** m.

187. Rontgenstrahlen und De-BROGLIE-Wellen gleicher Vakuum-Wellenldnge 24 zeigen bei
einem Ubergang zwischen Vakuum und Kristall unterschiedliches Brechungsverhalten.
Wihrend der Rontgenstrahl praktisch keine Brechung erfdhrt, erfolgt fiir den Elek-
tronenstrahl eine Brechung geméifl

A sin ¢

n=—=

1 sine

(Bild 112). Aus der hierdurch sich ergebenden Zuordnung von Réntgenstrahlen und
gebeugten Elektronenstrahlen werde eine Brechzahl » = 1,044 gemessen. Die Wellen-
linge im Vakuum betrigt 4 = 10-1° m. Welcher Wert folgt daraus fiir das Gitter-
potential?

Losung

Zwischen der gemessenen Wellenldnge 4 und
dem Potential U des beschleunigenden elek-

trischen Feldes besteht die Beziehung (vgl. Bild 112
Beispiel 182)
1,225-10°
L 5 _10 ,
JU
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188.

Im vorgegebenen Falle 4 = 10-1° m ergibt sich demnach eine kinetische Energie der
Elektronen von

1,5-10718
Ek = —’lo_—meV = 1506V,

die mit der Gesamtenergie E identisch ist.

Aus
E,
= [1—-2
" «/ E

folgt fiir das gesuchte Gitterpotential

E,=E( — n?),
d.h.,
E, =150 (1 — 1,044%) eV = —150 - 0,09 eV = —13,5 V.

Ein Elektronenstrahl falle senkrecht auf einen Spalt Sp der Breite a = 0,1 pm und werde
an diesem gebeugt. Es soll die Ungenauigkeit bei der Festlegung der Geschwindigkeit
bestimmt werden. Dabei kénnen alle Teilchen, die auBerhalb des ersten Beugungs-
minimums liegen, unberiicksichtigt bleiben.

Losung

Die Ausbreitungsrichtung vor dem Spalt Sp wihlen wir als z-Achse; die Spaltebene
wird als x, y-Ebene festgelegt (Bild 113). Der Teilchenimpuls vor dem Spalt hat deshalb
die Komponenten
1—7:: =0, ﬁy =0: ﬁz =D

Beim Durchgang durch den Spalt wird die DE-BROGLIE-
Welle gebeugt, d. h., der Teilchenimpuls wird verdndert.
Fiir die in der y,z-Ebene liegenden Strahlen ergibt sich T o1
gemilB den Aussagen der Beugungsoptik das erste Beu- '
gungsminimum aus

sin Ymin = + —
a

(4 Wellenldnge der DE-BROGLIE-Welle). Fiir die Strahlen Bild 113
in der y,z-Ebene gilt

py =psiny.
Die zu beriicksichtigenden Teilchen haben demnach Impulse mit y-Komponenten im
Bereich

. pi pA .
—P S Ymip = — —— & — = P Sl Ymia-
a a

15 Hajko, Elektrik
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Nach den DE-BroGLIEschen Gleichungen ist

h
p =75
somit folgt
. h 2 h
Ap, = p sin Ymiq =7 ;=;

Ferner ist die Ungenauigkeit des Ortes durch die Spaltbreite bestimmt, d. h., es gilt
dy = a.
Somit folgt

A4p, Ay = h.
Da p = mw ist, ergibt sich auch 4p = mdv. Daraus erhalten wir schlieBlich
h h 6,63 - 10734
Ay — = ——=———  — — _ms!=727Tms"'.

mdy ma  9,1-10-3*-10"7

189. Bei der Untersuchung des MOsSBAUER-Effekts wird hiufig die Strahlung des 3"Fe-Kernes
beobachtet. Dieser Kern emittiert beim Ubergang vom ersten angeregten Kernniveau
eine y-Strahlung der Energie E = 14,4 keV. Welcher Mindestwert ergibt sich nach der
HersenBerGschen Unschirferelation fiir die MeBzeit 4¢, in deren Verlauf eine Ent-

scheidung iiber eine erfolgte Emission nicht méglich ist?
A}

Losung
In die HeiseNBERGsche Unschérferelation
Apdg =~ k

wird 4q = vAt eingesetzt.
Aus der relativistischen Massenverdnderlichkeit

und daraus fiir die Gesamtenergie

E? = mPc* = mic* + mPvic® = (mc® + p?) c2.
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190.

15%

Hieraus finden wir durch Differentiation (4E = dE, 4dp = dp gesetzt)
EAE

2

2EAE = 2c%pdp, Ap = .
c’p

Mit E = mc? und p = mv ergibt sich

EAE

Wir setzen die gegebenen Grofien ein
AE =E = 14,4keV =14,4-10%-1,6 - 10-1°J = 2310157
und finden fiir die Emissionszeit den Wert

B 663-103

Aty — =
AE ~ 23-10715

s =28-10"15,

Entsprechend der Hypothese von MARCH-FORADORI gibt es sowohl eine Elementarlinge
(kleinste Lénge)

lp &% 3-107"5 m,

als auch eine Elementarzeit
I}

to == ~ 10-23s,
c

Welche oberen Grenzen ergeben sich aus dieser Hypothese fiir Impuls- und Energie-
anderungen bei elementaren Prozessen, wenn man die HEISENBERGsche Unschiirfe-
relation in der Form dpdq ~ h voraussetzt?

Losung

Orts-und Zeitmessungen sind mit Fehlern behaftet, die mindestens =/, bzw. 47, be-
tragen. Hieraus folgt

dq = 2l,, At = 2t,.
Aus der HElsENBERGschen Unschirferelation ergibt sich damit

h~ Adp Adq = Ap 2l,

und daraus fiir eine Impulsdnderung

h 6631073 Js
= e ~ 10~ kgm 5~1.
2 231005 2 Xems .

A

4p

Ebenso folgt
h =~ AE At = AE 2t,,
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191.

und damit fiir die Energiedinderung
h 6,63 - 10734 Js
4dE 5 T =5 0% ~ 3107117,
In anderen Einheiten ausgedriickt finden wir
3-10-11J =3-10"11-6,25-10'2 MeV = 200 MeV.
Dieser Wert entspricht der groSten experimentell bekanntgewordenen Energie-
ausbeute bei einem Elementarprozef3.

Nach MARcH besteht zwischen der Impulsinderung 4p und der hierdurch bedingten
Energiednderung ein Zusammenhang der Form

< (;’76) W

0

dp|* — [AE!?

Es ist zu berechnen, welche obere Grenze sich daraus fiir die Energie eines Quants der
Elektronenbremsstrahlung ergibt.

Losung

Fiir die Elektronenbremsstrahlung gilt die Beziehung
eU = (m — mg) ¢* = —”; 02 = hVpax. @)

(m Masse, mo Ruhmasse des Elektrons, »,,, obere Grenze der ausgestrahlten Frequenz,

U Potentialdifferenz des Beschleunigungsfeldes).
Die bei der Abbremsung eines Elektrons maximal auftretenden Werte der Impuls- bzw.

der Energiednderung sind

dp=mp = — L 3)
Ji-%

und

AE = Ex = (m — mp) ¢ = moc? —1&2—1 . é)

Ji-5

Wenn wir diese Ausdriicke in Gl. (1) von MARCH einsetzen, ergibt sich

Aplt —UER = moc® [T et [~ 1 2] =

= 2mic* ! —-113, 4)
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192,

d. h,

2 2 2 2.4 1 hc 2
¢? |dp|? —|AE)? =2m2c* [——xo — 1\ < [—] . ©)
2 21y
A/l s

Aus dem Vergleich von Gl. (4) u. (6) erhalten wir

. 1 2

AE = Ey = mo? [ ——— — 1 <——1—<—h—) s @)
! 172 2m0 2[0

=

d. h., fiir die bei der Elektronenbremsstrahlung frei werdende Energie gilt die Un-

gleichung
h? (6,63 - 10-34)2
AE = d J=6,72-10"°J = 4,2 -10* MeV.
< 8molz  8.9,1-10731(3.1071%)2 ’ AL A

Hiernach muB die Anfangsenergie von Elektronen bei der Bremsstrahlung unterhalb
einer Grenze von rd. 10° MeV liegen.

Es sind die strahlungsfreien Kreisbahnen im BoHRschen Atommodell, die zugehorigen
Umlauffrequenzen und die Gesamtenergie £ zu berechnen. Dabei ist vorauszusetzen,
daBB die pe-BroGLEschen Gleichungen fiir freie Teilchen auch fiir die im Atom ge-
bundenen Elektronen giiltig sind und daB nur solche Bahnen mdglich sind, auf denen
die pE-BROGLIESche Welle léngs der Kreisbahn mit sich selbst zur Interferenz kommt.

.

Losung

Die pe-BroGriesche Welle eines Elektrons kann nur dann entlang der gesamten Umlauf-
bahn mit sich selbst zur Interferenz kommen, wenn deren Linge ein ganzzahliges Viel-
faches der DE-BROGLIE-Wellenldnge 4 ist. Hieraus folgt fiir die moglichen Bahnradien #
die Beziehung

2nr = nl, n=1,2.73, .. )

Setzt man hierin die Wellenldnge der bE-BROGLIE-Welle des Elektrons aus

h
ein, so folgt mit v = rw (w Kreisfrequenz)
h h
A= — = 3)
P mro

und weiter aus Gl (1) u. (3)

2nr = n —:17 = bzw. 2mrp = §p dg = nh. 4)

mrw
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193.

Die letzte Gleichung driickt die Phasenintegralbedingung von BoHR aus.
Aus dem Zusammenhang von CouLoMs-Kraft und Fliehkraft ergibt sich

ze?

- 2

4regr? mre )
(e0 = 8,854 - 10712 As V- m~! elektrische Feldkonstante, z Zahl der Elementar-
ladungen im Kern). Lost man Gl (4) u. Gl. (5) nach dem Bahnradius » und nach der
Kreisfrequenz w auf, so ergibt sich

4reghin? z%e*m ©)
= = — W=Wy = ——5>51 5 -
r=r ze’m " 16n%endhd
Fiir die Gesamtenergie E folgt
m ze? z%e*m
E=_—rw* — = — . 7
2 dregr 32r2eln?h? ™

Setzt man die fiir das Wasserstoffatom geltenden Daten ein, so erhilt man fiir den
Grundzustand (n = 1)

~4-3,14-8,85-1072.(1,05 - 1073%)*

= 0,529 - 10-1°
Fy (1,6 . 10-19)2 . 9,1 -10-31 m _’._____EZ
(1,6 - 10-19)%-9,1 -10-31 .
= -t = 4’16 - 1016 _1’
@1 16 (3,14 . 8,85 . 10'12)2. (1’05 . 10—34)3 S __—S
(1,6 - 10-1%)*- 9,1 - 103! - 6,25 - 10'
E1 =

T 32(3,14 - 8,85 - 10-12)2. (1,05 -10-3%)2 eV = Z13,6¢eV.

Nach der BouRrschen Quantisierungsregel gilt fiir jede Ortskoordinate g und fiir den
dazugehorigen verallgemeinerten Impuls

) 2
Dq = g
die Phasenintegralbedingung
ffipqdq:nqh, ng=0,1,2,3, ..

Auf der Grundlage dieser Bourschen Theorie ist nachzuweisen, daf3 auch auf einer
elliptischen Umlaufbahn die Zahl der ihr entsprechenden DE-BROGLIE-Wellen ganz-
zahlig ist.

Liosung

GemiB der Bourschen Theorie gelten fiir die elliptischen Bahnen (Bild 114) die beiden
Bedingungen

<£p,dr=n,h, n=20,1,2,3, ...

fﬁp(p dp = ngh, n,=20,1,2,3, ...
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Dabei wird n, als die radiale, n, als die azimutale Quantenzahl bezeichnet. Die ver-
allgemeinerten Impulse sind durch die Beziechungen

_ 0K _ 0K
pr - ar ’ pqz - 6@
bestimmt. Fiir die kinetische Energie ergibt sich (Bild 115) demnach
. . 1
E = ;ﬁvz = ;ﬁ(r2 + r2g?) = > (D + p).

Fe4
dr .
dr
F1d7,
c
A
K Atomkern im Kreismittelpunkt bzw. Brennpunkt v s dpfedr?
F; derElljpse 171 =r
£, Ellpsenbrennpunkt X
Bild 114. Darstellung der Quantenbahnen Bild 115

nach BoHR

Damit erhilt man aus den Phasenintegralbedingungen
%p,dr + quq,dzp = 3€ (p.¥ -l—pq,gb)dt=29€Ekdt = (n, + ny) h.

Wenn wir die kinetische Energie in der Form
m m ds
E — — p?2 = — p —
S T NP
schreiben (s Lénge der durchlaufenen Bahnkurve, v Bahngeschwindigkeit), dann er-
halten wir aus
2§ Eedt = (e + np) h = nh

die Beziehung

jgmvgfdt=§mvds=nh.
dr .

Durch Einsetzen der DE-BroGLIEschen Gleichung
h

=mp= —
P 7
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194.

erhalten wir das Resultat

fﬁds=n2, n=r +n,=0,1,2,3, ...

Die elliptische Umlaufbahn eines Elektrons um einen Atomkern wird in Polarkoordi-
naten durch die Gleichung
Rrypl

-2 M)
1 —ecose /
dargestellt (Bild 116). Dabei bedeutet p < 0 A
A 3
2 2 b
. J 2L*E(4reo)* - ‘//
Z e m

Fy, F, Brennpunkte der Elljpse

die numerische Exzentrizitit der Bahn, £0 =0F; =€
PO =0A =a
2 Po Ellipsenpunkt
TE
Do = LP4neo 3) P’ perihel
ze’m A Aphel

Bild 116. Elliptische Umlauf-

bahn eines Elektrons um einen
L =mr*¢ = p, @) Atomkern

den nach dem Fldchensatz konstanten Drehimpuls.

Es sind die sich aus den Bonrschen Quantisierungsbedingungen ergebenden Halbach-

sen ¢ und b der Bahnellipse zu bestimmen. Welcher Ausdruck ergibt sich fiir die

Gesamtenergie E?

den Parameter der Ellipse, E die Gesamtenergie und

Losung

Die BoHrschen Quantisierungsbedingungen (s. Beispiel 193) lauten

2t

fp,pdtp =/Ld¢=2nL=n¢h bzw. L =nyh, (5)
0
2
d;
ffp,dr = [ po-dg = n,h. ®),
do .
0
Dabei ist
OEk dr L dr
, = — = = —_— ' =— —, 7
P or i = m dzp r* de M

Wenn wir die Gln. (7) u. (1) in Gl (6) einsetzen, so finden wir

27

1 /dr\? sin® ¢ dop
dr =L [ — () dp —pe2 [ S P9P .
fﬁp & fr2<d<p> dy “ ) T—ccosep " ®
0
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Die Auswertung des Integrals ergibt

2nL (——— - 1) = mh, ©)

1
\/ 1 — &2
sowie unter Berlicksichtigung von GI. (5) nach Umformung
2 g 2
1—82=< "o ):(ﬁ> (10)
Ny + Ry n

mit 7, + 1, =n. Aus Gl. (10) erhalten wir unter Hinzuziehung der Gln. (2) u. (5)einen
Ausdruck fiir die Energie

2,4
po_ Zem
8hein?
Demnach ist die Gesamtenergie £ nur von der Hauptquantenzahl n = n, + n,, ab-
héngig. Es ergibt sich der gleiche Ausdruck wie bei der Annahme von Kreisbahnen.
Zur Bestimmung der gesuchten Halbachsen erhalten wir nach Bild 116 aus Gl. (1) fiir
p=0undeg=nmn

a—+Jat —b? = Po , a-i-\/az—bz:.-———po

1 +e¢ 1—e¢
und daraus
Po 4regnh?
= = 11

a 1 —&? ze’m an
sowie unter Verwendung von Gl. (10)

b=a\/1—sz=ﬂ"’—. (12)

n

Die groBen Halbachsen a = a, der Ellipsen stimmen hiernach mit den Radien der
strahlungsfreien Kreisbahnen iiberein. Im Fall » = 3 ergibt sich fiir das Wasserstoff-
atom

~4-3,14-8,85-107%2-9 (1,05 - 10-3%)2
B (1,6 - 10°)2- 9,1 - 10-31

as

m = 4,74 -10-°m,
1
b31 =4,74' 10-10. —3—1’11 = 1,58 - 10-10 m,

2
ba2=4,74-107%- = m = 3,16 - 10" m,

b33 = 4,74 . 10‘10 m.

Der Sonderfall n, = 0 ist offensichtlich auszuschlieBen, denn er fiihrt zu einer
Pendelbewegung, bei der das Elektron durch den Atomkern hindurchgehen miifite.
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A

251.

252.

253.

254.

253.

256.

257.

258.

Aufgaben

Die Wellenldnge der peE-BrROGLIE-Welle
eines Deuteriumatoms ist fiir den Fall
zu bestimmen, daB die Geschwindigkeit
des Teilchens v = 400m s~! betrigt.
Die Masse des Deuteriumatoms ist
mg = 3,34+ 10-27 kg.

Wie gro wire die Wellenldnge der
DE-BROGLIE-Welle eines Geschosses von
1 g Masse, das sich mit einer Geschwin-
digkeit v = 100 ms~! bewegt?

Es ist die Wellenldnge der DE-BROGLIE-
Welle eines Protons im elektrischen Feld
zu bestimmen, dessen beschleunigendes
Potential den Wert 1 V hat. Die Masse
des Protons ist m, = 1,67 - 10?7 kg.
Berechnen Sie die Wellenldnge der
DE-BROGLIE-Welle eines Elektrons im
elektrischen Feld mit der beschleunigen-
den Potentialdifferenz U = 2,5+ 10° V.
Welche Potentiale sind erforderlich,
damit die DE-BROGLIE-Welle eines Deu-
teriumatoms die Wellenldngen i, =
=10""m, 4, =10"2m und 4; =
= 10-*3 m annimmt?

Stellen Sie eine Formel auf, nach der
die Wellenldnge der DE-BROGLIE-Welle
eines «-Teilchens in Abhéngigkeit von
der Feldspannung zu berechnen ist.
Welche Wellenlinge ergibt sich dem-
nach fiir die Spannung 10°V? m, =
= 4m,, Ladung Q = 2 ¢*.

Berechnen Sie die Phasengeschwindig-
keit der DE-BROGLIE-Welle fiir ein
Elektron im elektrischen Feld der
Spannung 1 kV.

Zur Messung des Gitterpotentials eines
Nickelkristalls werden Elektronen der
folgenden Energien betrachtet:

E = 160; 185; 210; 235; 260; 285 eV.
Fiir die gebrochene Welle werden dabei
die folgenden Wellenldngen gemessen:
A = (0,921; 0,861; 0,811; 0,769; 0,735;
0,703)- 10-1° m.

259.

260.

261.

262.

263.

264.

Wie grof} sind die jeweils zugeordneten
Rontgenwellenldingen? Welche Brech-
zahlen folgen daraus? Welche Gitter-
potentiale ergeben sich? Geben Sie das
mittlere Gitterpotential fiir Nickel an.
Bei der Reflexion cines Elektronen-
strahls an einem Aluminiumgitter
(E, = —17,0eV) soll sich eine Brech-
zahl n = 1,2 ergeben. Bestimmen Sie
die dafiir notwendige beschleunigende
Potentialdifferenz sowie die Wellen-
linge der DE-BrOGLIE-Welle der Elek-
tronen.

Es werde vorausgesetzt, dafl bis hinauf
zu einer Geschwindigkeit v = /0 ¢ =
= 3+10" ms-! nichtrelativistisch ge-
rechnet werden darf. Welcher Bereich
der DE-BrROGLIE-Wellen und welcher
Spannungsbereich fiir Elektronen laft
sich damit erfassen?

Wie groB muB die Offnung eines Spalts
mindestens sein, damit bei der Beugung
langsamer Elektronen, Neutronen, o-
Teilchen, die prinzipielle Ungenauig-
keit der Geschwindigkeitsbestimmung
den Wert +4-100 m s-! nicht iibersteigt?
Welche Spaltbreite miifite man wihlen,
wenn sich beim Durchgang von a-Strah-
len und von (B-Strahlen ein Beugungs-
fleck mit dem Radius » = lcm (1. Mini-
mum) ergeben soll. Der Schirmabstand
betrage 10cm. Die Energie der Teilchen
werde durch ein elektrisches Feld mit
dem Potential ¢ = 100V erzeugt.

Die Energie eines «-Teilchens betrdgt
bei der Emission 4,8 MeV. Es werde
vorausgesetzt, dal bei einer Impuls-
messung Abweichungen von einem
Prozent auftreten. Welche Genauigkeit
ergibt sich daraus fiir die Lagebestim-
mung?

Wie grof3 ist beim Elektron im Wasser-
stoffatom die Ungenauigkeit der Ge-
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265.

266.

4.2.

schwindigkeit A4v, im Verhiltnis zur
Geschwindigkeit v,, wenn die Unge-
nauigkeit des Ortes mit 4¢g = 2r, an-
gesetzt wird?

Die Strahlung eines gepulsten Lasers
der Wellenldnge 4 = 6943-10"'°m
erzeugt in der Targetsubstanz einen
Krater von 3 -10-3 cm Durchmesser.
Bei einer Impulsdauer von 5 ns (1 ns =
= 10"%s) wird dabei eine Energie-
dichte von 5-10'7 Wm~2 festgestellt.
Berechnen Sie ein Energiequant 4w, die
emittierte Gesamtenergie, die Zahl der
emittierten Quanten und die Unge-
nauigkeit der gemessenen Energie.
Wie groB} ist der Impuls eines Quants,
und wie groB ist die Ungenauigkeit des
Impulses?

Die Halbwertbreite 44 einer Spektral-
linie und die mittlere Lebensdauer
eines angeregten Atoms ergeben sich
nach der klassischen Theorie strahlen-
der Dipole entsprechend den Formeln
2 }'2

t= 2wedi’

A =—2
3eomc?

Berechnen Sie daraus die mittlere
Lebensdauer eines im angeregten Zu-
stand Dbefindlichen Wasserstoffatoms
vor dessen Aussendung eines Quants
der H,-Linie. Wie groB ist die Unge-
nauigkeit 4F bei der Bestimmung des
Energiequants, wenn die Zeitungenauig-
keit gleich der mittleren Lebensdauer

Grundlagen der Quantentheorie

267.

268.

269.

270.

des angeregten Zustands angenommen
wird?

Bei Verwendung von 14,4-keV-vy-
Quanten des °*"Fe-Kerns im Mdss-
BAUER-Effekt hat die Frequenzunge-
nauigkeit den Wert

4
o310,
Vv

Berechnen Sie daraus die Ungenauig-
keit der Energiebestimmung 4F und die
mittlere Lebensdauer des angeregten
Zustands, die, entsprechend dem
HersenBeRGschen  Prinzip, der Zeit-
ungenauigkeit gleichzusetzen ist.

Die Hohlraumstrahlung kann als eine
stindige Hin- und Herreflexion von
Strahlungsquanten des Impulses p =

h
== aufgefaBt werden. Welche untere

Grenze fiir die Wellenldnge und welche
obere Grenze fiir die Frequenz ergeben
sich aus dieser Annahme unter Be-
riicksichtigung der Hypothese von
MARCH-FORADORI?

Bei Elementarakten konnen Strahlungs-
quanten zur Erzeugung ruhmasse-
behafteter Teilchen fithren. Wo liegt
die obere Grenze der Masse von solcher-
art erzeugten Teilchen?

Berechnen Sie die Halbachsen der
Elektronenbahnen des einfach ioni-
sierten Heliumatoms fiir den Fall
n=2.

M. BorN gab den DE-BROGLIE-Wellen ¥ = ¥(x;y;z;t) eine statistische Deutung. Sie
verkniipft den Atomismus der Elementarteilchen mit ihren Welleneigenschaften.
Wenn ¥* den konjugiert komplexen Wert der GroBe ¥ und dr das Volumen eines
Raumelements bezeichnet, dann gibt

d(Wx; y;z;t) = |¥P]*2dr = P¥P*dr
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die Wahrscheinlichkeit an, das betrachtete Teilchen im Raumelement dz anzutreffen.
Da sich das Teilchen mit Sicherheit irgendwo im Raum befindet, hat man die
DE-BroGLIEsche Wellenfunktion ¥ so zu normieren, daB3 das Integral iiber ¥'P*, iiber
den gesamten Raum erstreckt, gleich eins wird:

/ PYP*dr = 1. (Normierungsbedingung)

Der physikalische Zustand eines Quantensystems sei durch die Wellenfunktion
VY = ¥ (x;y;z;t) charakterisiert. Der Mittelwert einer physikalischen Zustands-
groBe L in diesem Quantensystem ergibt sich dann aus der Wellenfunktion ¥ durch
die Beziehung

L =f9’*LY’dr.

Dabei gibt L den fiir die betreffende physikalische Groe L charakteristischen
Operator an.

Die in der Quantentheorie auftretenden Operatoren sind Hermitesche Operatoren.
Als solche werden Operatoren bezeichnet, die linear und selbstadjungiert sind. Fiir
lineare Operatoren gilt die Beziehung

L(Cxul + Czuz) = ClLul + CzLuz;

als selbstadjungiert wird ein Operator bezeichnet, der die Bedingungsgleichung
fu’fLuz dr = fuzL*u’f dr

erfiillt. Das Integral ist dabei liber den gesamten Bereich der Variablen zu erstrecken.
Die u, und u, sind quadratisch integrierbare Funktionen.

Die wichtigsten Operatoren der Quantentheorie sind (in Ortskoordinatendarstellung)
der Operator des Impulses:

p=—iny = —ih<§—+i+i),

2 h2 hZ 2 2 2
Ek=p_=____..A=__ 0 +a_.+6_,
2m 2m 2m\0x%2  Oy? 0z

der Operator des Ortsvektors, der eine Multiplikation mit dem Ortsvektor vollzieht:

r=#x;y;z2),
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der Operator der potentiellen Energie, der gleichfalls in einer Multiplikation
E, =E,(x;y;2)

besteht, sowie der Hamilton-Operator der Gesamtenergie
H=E, + E,

und der zeitliche Operator der Gesamtenergie

E = ifzi.
ot

Die Gleichung
LY = LY

wird als Eigenwertgleichung des Operators L bezeichnet. Es besteht die Forderung,
daB die sich ergebenden Losungen eindeutig, stetig und endlich sein miissen. Daraus
folgt, daB im allgemeinen nur fiir spezielle Eigenwerte L = Ly, L,, ... nichttriviale
Losungen existieren. Diese Losungen werden als Eigenfunktionen bezeichnet.

Wenn die Operatoren L und M kommutativ sind, so daB fiir alle Funktionen ¥ die

Beziehung
(LM — ML)V =0

gilt, so gehdren zu den beiden Operatoren gleiche Eigenfunktionen. In diesem Fall
sind die physikalischen GrdBen L und M prinzipiell gleichzeitig mit beliebiger Ge-
nauigkeit meBbar. Dagegen sind fiir nichtvertauschbare Operatoren der Art

LM — ML #+ 0

die physikalischen Zustandsgrofen L und M im Sinne der HEISENBERGschen Un-
schirferelation nicht gleichzeitig meSbar.

Fiir die verschiedenen Quantenzustande, in denen sich die Elementarteilchen befinden,
wird die zugehdrige Wellenfunktion ¥ = ¥ (x;y;z;f) durch die Schridinger-

Gleichung
HY = E¥Y

bestimmt. Im Fall stationdrer Zustdnde geht diese Gleichung iiber in
Hy = Ep, v=1y(x;y;2),

wobei E die Gesamtenergie angibt. Aus ypergibt sich die Massendichte des Teilchen-
stroms gemil

T
J=—@Ayp* —p* Ay).
2m
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B

195.

196.

Beispiele

Die Multiplikation mit einer komplexen Zahl ¢ = a -+ ib stellt eine Operation dar. Es
ist zu bestimmen, unter welchen Bedingungen die Multiplikation eine HERMITESChe
Operation ist.

Losung

Die Multiplikation mit einer komplexen Zahl ist linear, denn es gilt
¢ (cruy + cauz) = cicuy + cacus.

Wenn die Zahl ¢ = a + ib einen selbstadjungierten Operator darstellen soll, dann
mulf gelten

fu;"(a + i) uy dx =fu2(a — i) uf dx,
d. h.
(a-i—ib)fu;“uzdx=(a—ib)fu’fu2dx.

Diese Beziehung ist nur fiir b = 0 erfiillt, d. h., nur die Multiplikation mit einer reellen
Zahl stellt eine HERMITEsche Operation dar.

Unter der Voraussetzung, dal die betrachteten Funktionen im Unendlichen ver-
schwinden, ist nachzuweisen, dal3 der Operator
i 0
= —Iin—
P=x %

ein HermrTescher Operator ist.
Losung

Die Differentation stellt eine lineare Operation dar. Um den Nachweis zu fiihren, daB
der Operator selbstadjungiert ist, gehen wir aus von

+® +o©
., Ouy
uf, dx = — ¥ih dx.
f 1PxU2 f”ll %
- -

Durch partielle Integration wird die rechte Seite gleich

+ o0
a %
[—l'hu’,"uz]-'.uu +fihuz “ dx.
- ox
- a0
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197.

198.

. Da u; und 4, im Unendlichen verschwinden, verbleibt lediglich noch das zweite Glied,

das auch in der Form
+ o +o

a %k
f waih a”; dx = f upptut dx

— o -

geschrieben werden kann. Es gilt also

+ o + o
f utpsu, dx = f up¥uf dx,
- -

womit der Nachweis der Hermitizitdt des Operators p, erbracht ist.

Auf Grund der Definition des Impulsoperators
d ) )

17——1fz§7=——1h<0—+a +az) )

und des Ortsoperators
F=r(x;7;2) = (x;5;2) )

ist nachzuweisen, daB gleich gerichtete Komponenten des Impulses und des Ortsvektors
nicht gleichzeitig mit beliebiger Genauigkeit gemessen werden kénnen.

Losung

Wir greifen fiir diesen Nachweis die x-Komponente heraus. Es gilt
0
DPx=—1h—, x=2x. 3
ax’

Wenn zwei physikalische GroBen L und M gleichzeitig meBbar sein sollen, so muf fiir
ihre Operatoren gelten

LMy — MLy = 0.
Dagegen erhalten wir im vorliegenden Fall
., O ., 0y
XY = —ih—(xy)=—1hx— —1ihy,
Dxxy bx( ) % 7
., O ., Oy
W =X|—lh—|y=—1hx—,
Xy x( i ax)t/) lxbx
d. h,
(xpx —px)yp =iy

Es konnen also die GroBen x und p; nicht gleichzeitig mit beheblger Genaulgkelt ge-
messen werden.,

Es soll untersucht werden, ob die Ortskoordmate y und die Impulskoordinate p, gleich-
zeitig gemessen werden kOnnen.
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Losung

Es ist
)
=—jih—, =y,
Dx ox y=y
Daraus folgt

. 0 o)
(pxy —yp)p = —i h(—y - y—)w.
ox 0x

Da x und y voneinander unabhingige Variablen sind, folgt

0 _ oy
ox W=y ox
und damit

(ypx —Px)’) v =0.

Demnach sind die Ortskoordinate y und die Impulskoordinate p, gleichzeitig mit be-
liebiger Genauigkeit meBbar.

-
199. Es soll untersucht werden, ob die Komponenten Ly, L,, L, des Drehimpulses L =7# X p
gleichzeitig gemessen werden kdnnen.

Losung

Die Koordinaten des Drehimpulsoperators folgen aus
i Jj ok
Z =rXxp=|x y z
Dx Dy D:
Hieraus erhalten wir
L. =yp. — zp,,
L, = zp: — xp:,
L. = xp, — ypx.
Weiter ergibt sich
L.L, = p: — zpy) (zpx — Xp) =
= P 2px — Z°P<Py — XIP3 + XZpyD..
Dagegen folgt
L,L. = (zpx — xpz) (p: — zp,) =
= yzp:p: — XYP: — Z°PsPy ~+ XD:2P,.
Damit erhalten wir
L.L, — L,L; = yp;2px — VZPsP: + XZDyP: — XP:2ZPy.
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200.

201.

16

Beachten wir, dal

Pz — 2zp. = —ih nebst yzp.p. = ypxzp,
so folgt

L.L, — L,L.=1i#4(xp, — ypx) =1i#L,.
Ebenso ergibt sich

L,L, —LL,=1i#L,,

L.L,— L,L, =ihL,.

Die Komponenten des Drehimpulses sind also nicht gleichzeitig mef3bar.

Berechnen Sie den Operator der kinetischen Energie und untersuchen Sie, ob die
kinetische Energie gleichzeitig mit dem Impuls gemessen werden kann,

Losung
Aus
m p?
E, == —p2 = 2
=2 T om
folgt N
g B _ iV A
T om 2m a 2m
mit
d o 0\? o2 92 o2
2 A ={—, =, ) =[— —- —_—
v <Ox’ oy’ az) <6x2 + y? + bzz>'

Wenn wir entscheiden wollen, ob beide Gréfien gleichzeitig gemessen werden konnen,
miissen wir berechnen:

SN A ) A
Ekp—pEk=—hzﬂ(—lizV)—(—1hV)<~—h227)=
= (a7,
2m

Die Reihenfolge, in der die Operatoren /\ und V/ auf eine Funktion angewandt werden,
ist ohne EinfluB} auf das Resultat. Damit folgt
Ep — PE, = 0.

Kinetische Energie und Impuls eines Teilchens sind gleichzeitig mel3bar.

Es soll die SCHRODINGER-Gleichung aus der allgemeinen Form
H¥(x;y;2;0) =E¥(x; 5,2, 0 )

fiir den Fall des Potentials E, = E, (x;y;z) abgeleitet werden.
Hajko, Blektrik
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202,

Losung

Der HaMiLToN-Operator H hat die Gestalt
H=F, +E,. 2

Fiir den Operator der kinetischen Energie ist zu schreiben:

Py . 8 3)

E = m 2m 2m

N

wihrend fiir den Operator der potentiellen Energie gilt

E, = E)(x; y; z):

Ferner ist
0
E=ih—.
Y
Damit folgt aus Gl (1) die SCHRODINGER-Gleichung
o n?
ih— + — A¥Y — E(x;y;2) ¥ =0. @
ot 2m

Ermitteln Sie eine Losung der SCHRODINGER-Gleichung fiir den Fall, daf3 keine zeitlich
verdnderlichen duBeren Krifte wirken und daher der HamMiLTON-Operator H nicht von
der Zeit abhingt.

Losung

Zur Lésung der SCHRODINGER-Gleichung

ih%¥7]=H(x;y;z)‘P €Y
wird der Produktansatz

Pxsy;z;0 =9 vx;¥;2) )
verwendet. Wir setzen diesen in die SCHRODINGER-Gleichung ein und erhalten

ify (x;3;2) Q%L:) = @O Hy(x;y;2). 3

Wir separieren Gl. (3) nach den Variablen ¢ und x,y,z und erhalten

a0
dr  Hy(x;y;2)

10) w(x;y;2) “
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203.

16*

Wenn wir die Separationskonstante mit E bezeichnen, so folgen aus Gl. (3) die beiden
Differentialgleichungen

d
i %’l = Ep(t), Hy(x;y; 2) = Byp(x; y; 2). G,1) (5,2)

Gl. (5,1) hat die Losung

-1 _E.. t
pt)y=e ", ©)
Gl. (5,2) lautet, nach den einzelnen Summanden des HaMILTON-Operators aufgeldst,
Y
3 Ay = Ep = Ey. @
m

Diese Gleichung wird als SCHRODINGER-Gleichung fiir stationidre Zustinde bezeichnet.
Wenn man ihre Losung y = y,(x;y;z) kennt, so 1dt sich damit die Loésung der
ScHRODINGER-Gleichung (1) schreiben:

E
-
Vix;y;z;) =e * tw,.(x;y;z). )]

Der Grundzustand des Wasserstoflatoms wird durch die Losungsfunktion der SCHRG-
DINGER-Gleichung

r

p==Ce %, g =0,529.-10"1°m e}

beschrieben. Diese Funktion ist zu normieren. Wie grof} ist nach Gl. (1) die Wahr-
scheinlichkeit, das umlaufende Elektron innerhalb einer Kugel vom Radius 4a, anzu-
treffen?

Losung

Entsprechend der Normierungsvorschrift muf3

f yy*dr =1 2)

sein, wobei das Integral {iber den gesamten Bereich, in
dem sich das Elektron aufhalten kann, zu erstrecken ist.
Wir unterteilen diesen Raum in Kugelschalen (Bild 117)
mit dem Volumen

dv = 4=r? dr. 3)

Demnach mufl gelten

[oe] 2r >
4= |CJ2 f e W prdr=1. @ .
g Bild 117



244 4. Quantentheorie

Zur Berechnung dieses Integrals verwenden wir die Formel

[ o)
n!

j x”e"ﬂ" = W ’ (5)
0
und erhalten aus Gl. (4)

1
n|Cl?a} =1 bzw. C=

Jrd

Die Aufenthaltswahrscheinlichkeit innerhalb einer Kugel mit dem Radius 4a; ergibt

®

sich aus
4a;
1 _ 2
f‘ww* dr = — [e a; 4nr? dr, @)
Ta )
[
Wenn wir transformieren
2r
§= —,
ax

so ergibt sich

8
1 1
[wrar= g [etea— et + 22 =
o]

—0,00034
_ , (64+16+2)+2=0,986.
2
In 98,6% aller Fille befindet sich das durch die Losungsfunktion nach Gl. (1) be-

schriebene Teilchen innerhalb einer Kugel mit dem Radius 4a;.

204. Wie groB ist die Wahrscheinlichkeit fiir den durch die Losungsfunktion

_ r
1 ar

=——2=¢C

e
beschriebenen Grundzustand des Wasserstoffatoms, das Elektron innerhalb einer
Kugelschale mit dem Radius a; und der Dicke dr = 0,14, anzutreffen (Bild 117)?

Y

Losung

Wegen der geringen Dicke der Kugelschale dr = 0,14, ist eine Integration nicht er-
forderlich. Wir konnen daher schreiben:
2r

1 - d
pp*dr = —e “ dmridr=4de 2 — =4-0,135-0,1 = 0,054,

Tay a
Mit einer Wahrscheinlichkeit von 5,4 % befindet sich das Teilchen in der angegebenen
Kugelschale.
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205. Die Funktion

_£
Y = Can(E) € 2 (1)
mit den HERMITEschen Polynomen
d?e- nn — 1)
— nef n —_— L (252 2
Hy(&) = (=1) T = (28" + T 282 + 2

sowie

X [ h
= —13 Xo =
Xo mwe

stellt eine LOsung der SCHRODINGER-Gleichung fiir den harmonischen Oszillator dar
(m Masse, w, Eigenfrequenz, x Auslenkung). Gl. (1) ist normieren.

Losung

Zur Normierung der Funktion y, muB die Bedingung

fwnw"; dx = fwi dx =1 3
erfiillt werden. Es gilt zundchst
+ o
2 2, —£2 2, n d"e &
pAOdE=C2 | HA)) e S ds = CA—1)" | Hu(§) ——— d&. )

Der letzte Ausdruck ergibt nach partieller Integration

dr-te-¢*

c:-(—1>"{[ H®) —5—,,7]_ +(=1y

= oo

d" 1g-8 dHn(é') d’:} )

et de

Hierin verschwindet der erste Summand beim Einsetzen der Integrationsgrenzen, da
der Exponentialfaktor fiir das Verhalten der gesamten Funktion bestimmend ist. Der
zweite Summand wird weiter partiell integriert. Wenn wir dieses Verfahren n-mal an-
wenden, ergibt sich schlieBlich

+ o0
f YaE) d§ = CA(—1y (=1 f et dni",,@ dé. ©6)

Aus Gl. (2) folgt
d"H,(&)
d&

Ferner ist

= 2"n!

+ o

f e dt =/, @

- o
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Wegen
+ 0 +
1 -
[ = [ Za=-c-trzna ®
Xo Xo
- —
erhalten wir schlieBlich unter Beachtung von
+
(2] e
Xo
—®

fiir die gesuchte Normierungskonstante den Ausdruck

1 1 4 lmw
C,= - mog
JomlJrx, N2'n! \/ wh (10)

206. Der Quantenzustand eines in der ersten Grundschwingung befindlichen harmonischen
Oszillators wird durch die Lésungsfunktion der SCHROGDINGER-Gleichung

- 62
y, = —CiHi(®e ?2

beschrieben. Wie groB3 ist die Wahrscheinlichkeit, das betrachtete Teilchen, ein Proton
mit der Masse m, = 1,67 - 10-27 kg, im Intervall 2x, < x < 2,1x, anzutreffen? Es ist
wy = 5,21 - 10'* s~*. Die Bezeichnungen wurden wie in Beispiel 205 verwendet.

Losung

Nach Beispiel 405, Gl. (2), gilt

-1 _&
Y = ——= Hi(§) e z
~/2\/7TXO
mit L
X x ]
Hy (&) = 2§, é=;, xo=~N/mco .
0 0

Wir erhalten damit fiir die gesuchte Aufenthaltswahrscheinlichkeit

x2
2 - — N )
2x2dx T3 8 Ol s 4010018 _ 5043,

2 — —_ e —
"”‘dx‘\/;xge J= 2 € 1,77

Dabei ist

P J 1,05 10734 S
- | 2 = /1211022 m,
o '\/ma)g 1,67-1027 - 521 - 100 v

Xo == 0,11-10"1%m,

Demnach hat der betrachtete Oszillator mit einer Wahrscheinlichkeit von 0,413 9 eine
Auslenkung zwischen 0,22 - 10-1° m und 0,231 - 10-'° m.
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207.

208.

Nach dem Greenschen Satz gilt
oyf oy¥
/:/ W AvF — vf Ayy) de = (V"k 'li— — Y ”—é) 9o ¢))
J ou ou

Dabei gibt # die Richtung der duBeren Normalen auf die Oberfliche ¢ an. Es ist nachzu-
weisen, daBl die Losungsfunktionen v, v, der SCHRODINGER-Gleichung orthogonal sind.

Losung

Das Integrationsgebiet wird iiber den gesamten Raum erstreckt. Da im Unendlichen
die Losungsfunktionen %, und y, verschwinden, mul3 auch das Oberflichenintegral
verschwinden.

Nach SCHRODINGER gelten im stationdren Fall die Gleichungen
2m 2m
Ay = hT (Ep - Ek,l) Y15 A%’:J = _h_z (Ep - Ek.l) wii‘,,- (2)

E, und E, geben dabei die Gesamtenergien E in den Quantenzustinden & und / an.
Wenn wir die Gl. (2) in den GreeNschen Satz einsetzen, erhalten wir

& =5 ([t ar = & =8 [[[ watr e @

und daraus

(B, — E) ffftpkw;" dr = 0.

Fiir E, == E, folgt somit die Orthogonalitiitsbeziehung

[/ vyl dr = 0.

An Hand der SCHRODINGER-Gleichung fiir stationdre Zustdnde ist nachzuweisen, dal
die erste Ableitung der Wellenfunktion stetig ist, auch dann, wenn die potentielle
Energie sich sprunghaft verdndert. Dieser Nachweis ist unter der Voraussetzung zu
fithren, daB3 nur von der Ortsvariablen x eine Abhéngigkeit besteht.

Losung

Bei ausschlieBlicher Abhingigkeit von der Variablen x lautet die SCHRODINGER-
Gleichung fiir stationdre Zustinde

K2 d% £,
_— E,—E)y=0. 1
o T2 +(E, —E)y 1
—
Die potentielle Energie sei an der Stelle x = 0 unstetig
(Bild 118). Wenn man die SCHRODINGER-Gleichung iiber

X
einen Bereich von x = —e bis x = +¢ integriert, so Bild 118
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folgt
d v
- dxzdx+ (E—E)zpdx~0 @
Auf Grund der Beziehung
+e
d?y d = [dw]“ _ dy(+e)  dy(—9)
dx? T ldx)-, dx dx

ergibt sich aus Gl. (2)

+e
dy(+¢ dy(—e) 2m

Im Grenzfall ¢ - 0 verschwindet das rechts stehende Integral, und es bleibt

dy(+¢) _ dy(—9)
dx dx

d. h., die erste Ableitung der Wellenfunktion ist stetig.

209. Aus der Kontinuitdtsgleichung soll auf die Dichte des Teilchenstroms geschlossen
werden,

Losung
Wir wenden die Kontinuitidtsgleichung in der Form
0 -
a—;" +div] =0 (1)

an. Dabei bezeichnen wir mit ¢ = ¢ (x;y;z;¢) die mittlere Dichte der Teilchenzahl, mit J
die mittlere Dichte des Teilchenstroms. In der Quantentheorie haben wir zu setzen

o = WY, 1))
Die Wellenfunktionen ¥ und ¥* geniigen den SCHRODINGER-Gleichungen

ik %—ff + ﬁ A¥Y —E¥ =0 €))
und

—in W* + ﬁ AY* — EW* =0, @

Wir multipli21eren GL (3) mit ¥* und Gl. (4) mit ¥ und subtrahieren, so daB sich ergibt

2
ih(?’*———}—‘{’-a—gl—)+h—(¥'*A¥’—¥’AW*)=O. (5)
ot 2m



4.2. Grundlagen der Quantentheorie 249

210.

Auf Grund von Gl (2) folgt weiter
ih
00 _ 1% yw aw — w Ay — 0, (6)
ot 2m

Durch Vergleich mit der Kontinuitétsgleichung (1) ergibt sich somit
— — i

diVJ=V-J=§,—n(?’AEP*—'I’*AW). @)
Hieraus folgt

> A

J = — (PV¥* — PE7P), @

2m

Wir differenzieren Gl. (8) und erhalten

TJ = 21_”;_ (VEVE* 4+ B2 — VPP — PH/2P),
d h

>

VI = 21—:1 (¥ AW* — W+ AW),

>
wie es gemiB Gl. (7) sein muB. J hat daher den Charakter einer Massenstrcll)ndichte.
Um die mittlere Dichte j des elektrischen Stromes zu erhalten, miissen wir J mit der
Elementarladung e multiplizieren. Es folgt fiir die elektrische Stromdichte

N - inhe

j=el = m PVP* — PEJP).

Potentialschwelle. Die potentielle Energie sei wie folgt g

vorgegeben: &
I E,=0 fir x<0, ! "
II E,=FE, fir 0=x==1, (49 Bild 119

Il E, =0 fiir x> L

Eine derartige Potentialverteilung wird als Potentialschwelle bezeichnet. Es soll lediglich
eine Abhingigkeit des Potentials von der rdumlichen Variablen x bestehen.

Von links falle ein Elektronenstrahl ein (Bild 119). Fiir die einzelnen Bereiche
von x sind die Quantenzustinde zu berechnen. Insbesondere ist der reflektierte und der
durch die Potentialschwelle hindurchgehende Anteil des Elektronenstrahls zu be-
stimmen. Die Elektronenenergie sei E = 100¢eV, die Hohe der Potentialschwelle
E, = 50 eV, ihre Breite / = 10~*° m.

Losung

Die ScHRGDINGER-Gleichung fiir stationdre Zustdnde bei Abhingigkeit von nur einer
Variablen x lautet
d3y

2m
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Wir setzen

2mE E—E )
- 2 n=J E . @

und erhalten fiir die Bereiche I und IIT

n=1,

dagegen fiir den Bereich II

E —E
n=ny = / 5 °. “)
Fiir die Bereiche I und III ergibt sich somit die SCHRODINGER-Gleichung zu
dzy
oz TKv=0, )

dagegen fiir den Bereich 1T
d2%y
de

— k*ndy = 0. ©6)

Die Losungen in den einzelnen Bereichen lauten:
I py=up® =d4e"+Be ¥,
I y=yulx) = Ay el*"* 4 By e~inox, €]
I p = pu(x) = A e!** + Bje™ 1,
Bis auf den nicht aufgefiihrten Zeitfaktor e~ erhalten wir also ebene DE-BROGLIE-
Wellen.
Dem von links einfallenden Teilchenstrom entspricht im Bereich I eine von links nach
rechts fortschreitende DE-BROGLIE-Welle. Es wird daher 4; = 1 gesetzt. Ferner konnen
wir By; = 0 annehmen, da By = 0 eine von rechts einfallende Welle bedeuten wiirde.

Zur Bestimmung der Amplituden B;, Ay, By, A verwenden wir die Stetigkeit der
Loésungsfunktion und ihrer ersten Ableitung. Es muB also erfiillt sein:

v1(0) = yu(0), yu) = vy,

dy1(0) — dy(0) dy(D) - dyi()
dx dx ° dx dx

®

Daraus folgt:
14+ By = Ay + By,
Ay etnol 1 B e~lknol — 4 olki
1 — By = no(An1 — Bn),

A" eiknol - B, e—ikngl — Aln Ho elk
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Hieraus erhalten wir die Losung

—2i(l — n?)sin knol 2 e~ Hnmol(1 4 py)
B[ = ’ AI] =——
A A ©)
B 2 eiknol 1 — no) e 4n, eIkl l
11 > IIr A ]
mit
& — e—lknol (1 + n0)2 _ elknol (1 — no)z.
Fiir den Elektronenstrom der einfallenden Welle ergibt sich
i ik de ik d el*k
J. = S (Wi VyE — V) = m (eikx B e~ ikx rrak
d. h,,
J, = jli . (10)
m

In gleicher Weise erhalten wir fiir den Elektronenstrom der reflektierten Welle Be™**

und fiir den der gebrochenen Welle Ay, ¢**

hk hk
J, = ——B\Bf, Jy=—AiuAfy. an
m m
Als Reflexionskoeffizient r und als Durchgangskoeffizient d finden wir somit
J, 7,
r = 4—t = B;B¥, = I_,—"! = A AY;. (12)
7, A

Wir setzen E > E, voraus. Aus den Gln. (9) u. (12) folgt dann
(1 — nd)? sin? knol
¥ = 2 2 ry a0 (1 3)
2n3(1 + cos? knol) 4 sin? knol(l + ng)
d= 4
2n3(1 + cos? knol) + sin? knol(1 + nd)
Wir setzen die vorgegebenen GréBen ein und finden aus Gl. (4) die Brechzahl

3 E—EO_A/IOO—SO_A/—I-
"°_A/ E TR AR |

Aus Gl. (3) folgt fiir die Wellenzahl

2mE 2-9,1-1031-100-1,6 - 10-t°
k= = m!=

14

" (1,05 - 10-3%)2
5,39 - 10-24
=105 oM =514-10%m™.

Weiter erhalten wir
knol = 5,14 - 1010 - 0,707 - 10-1° = 3,634,
sin knol = sin 208,2° = —sin 28,2° = —0,475,
sin? knol = 0,226, cos? knol = 0,774.
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211.

Daraus ergibt sich

L (1 — 0,520,226 _ 00565 oo
T 2°05(1+0,774) + 0,226 (1 + 025 2056
2
d = ~5se =093,

Es werden also weniger als drei Prozent refiektiert; der weitaus groBere Teil des Strahls
geht durch die Potentialschwelle hindurch.

Es liege eine Potentialschwelle wie in Beispiel 210 vor, jedoch sei die Hohe E, der
Schwelle grofer als die Teilchenenergie E. Wie lauten die Ausdriicke fiir den reflek-
tierten, wie fiir den gebrochenen Teil des einfallenden Strahls? Welche Zahlenwerte er-
geben sich fiir den Fall E = 10eV, E; = 20eV?

Losung

GemiB Gl. (4) in Beispiel 210 wird die Brechzahl n, imaginir:

A/E—E0 iJEo—E il
Ho = = = .
° E E 0

Damit folgt aus GI. (9) von Beispiel 210, wenn wir beachten, daB sin i ¢ = isinh ¢ ist,
_ 2(1 + |nol*) sinh k [no] I
A ’
41 |no| e~ 1*t
Axn = —-IOA—I— ’
A\ = Hmlt (1 i o) — e7HImalt (1 — i [mo 2.

Hieraus erhalten wir

By

mit

(1 + [ro]?)? sinh? k|ng| [
(1 — [no}»? sinh? klno| { + 4 [no|? cosh? k |no| I’
4 |nol?
(1 — |n0|®)? sinh? k |no| I -+ 4 |no]? cosh? k |uo| [ *
Mit den gegebenen GroBen folgt

. _iA/Eo~E_iA/20——10__i
0 — - 10 ]

E
2mE J2-9,1-10-31-10-1,6-10-19 . ot
k_/\/ = 1,05 1059y m~! =1,63-10"°m-*.

Daraus folgt weiter
sinh klno| / = sinh 1,63 = 2,45, sinh? 1,63 = 6,01,
cosh k|no| I = cosh 1,63 = 2,65, cosh? 1,63 = 7,01,
e2kinoll — g3.26 — 26,1.

7‘=.BIBik =

d = A"]Afkn =
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Diese Werte, in die Formeln fiir » und d eingesetzt, ergeben
e (14 1%»2-6,01

T roan 28
4-1
d= 0 =10,143.
4-12-701 ==

Demnach durchlaufen 14,3 9/ der cinfallenden Elektronen die Potentialschwelle, obwohl
ihre Energie E kleiner als das zu iiberwindende Potential E, ist (quantenmechanischer
Tunneleffekt).

212, Wie groB ist der Anteil der eine Schwelle durchlaufenden Elektronen, wenn wie im
vorhergehenden Beispiel £ = 10 eV, E, = 20 eV, die Schwellenlidnge aber / = 10-° m
betriagt?

Losung

Fiir die Werte no und & ergibt sich wie in Beispiel 211
no =1, k=1,63-10°m-t,
Damit folgt
k [nol 1 =1,63-101°-10-° = 16,3 > 1.
Nach Definition der hyperbolischen Funktionen gilt
e? —e? e?+ e ?
— cosh ¢ = —

Fiir ¢ > 1 kann der Summand e~? vernachldssigt werden. Damit folgt
ek[ng[l

sinh ¢ =

sinh k|no| I &~ cosh k |no| I ~

Der im vorhergehenden Beispiel abgeleitete Durchldssigkeitskoeffizient
_ 4 |nol?
(1 — |no|?)? sinh? k|no| I + 4 |nel? cosh? k [ny]
geht damit wegen k|no|/ > 1 iiber in
i 16 |12 e~ 2KInolt
(1 + nol*)?
Mit den gegebenen Zahlen folgt
16 -1
BECRD
Der quantenmechanische Tunneleffekt tritt nur auf, wenn die Schwellenbreite von

atomarer Groflenordnung ist. Mit zunehmender Schwellenbreite nimmt die Durch-
lassigkeit der Potentialwelle sehr stark ab.

d

e 326 =3-10714,
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213.

An eine Wolframkatode wird ein elektrisches Feld gelegt. Es ist abzuschitzen, von
welcher Feldstirke an die entstehende ,,kalte Emission‘ einen nachweisbaren Elek-
tronenstrom ergibt. Fiir die effektive Austrittsarbeit W sei der Wert W = 4 eV an-
genommen.

Losung

Die Austrittsarbeit # muBl aufgewendet werden, um ein Elektron aus dem Metall frei-
zusetzen. Die potentielle Energie des Elektrons ist im Metall kleiner als im Vakuum. Sie
sei im Metall gleich Null angesetzt. Wenn kein duBleres Feld anliegt, so ist auBerhalb
des Metalls die potentielle Energie gleich der Austrittsarbeit . R

Das angenommene duBere Feld wirkt auf das Elektron mit der Kraft e~ senkrecht zur
Metalloberfliche (Bild 120). Die Richtung dieser Kraft wihlen

£
wir als x-Achse. An der Grenzfliche des Metalls ist x = 0. #@/ 17 Vo
Als Potential der duBleren Kraft ergibt sich —e|E|x. In dem S W-elfix
vom elektrischen Feld erfiillten Vakuum betrédgt die poten- .
tielle Energie o
E, = W — ¢|E| x. ) Bild 120
Nach Beispiel 412 ergibt sich als Durchldssigkeitskoeffizient fiir eine Schwelle der Breite /
16 |no]?
d=—— 0 o 2kt 2
A+ InoP? @

Im vorliegenden Fall kann die Gesamtenergie E der Elektronen gegeniiber der poten-
tiellen Energie vernachlidssigt werden. Somit folgt

2m 2m
A/,2(,,—E)~A/—,17Ep. ©

Ebenso wird die mfolge Elektronenemission induzierte Kraft vernachlissigt, da ihr
Potential in der effektiven Austrittsarbeit enthalten ist.

Die potentielle Energie ist nicht konstant, sie nimmt linear ab. Wir zerlegen die Potential-
verteilung in Schwellen konstanten Potentials der Breite dx. Fiir die Durchlissigkeit
folgt

ZmE
kino| =

—  — | kjno(x)|dx
d = d1 e-zk[ng(x1)|dx1 — dz e—2k|ng(x;h)]dxz ..=de f I . (4)

Dabei ist das Integral im Exponenten von x; = 0 bis zu einem Wert x, zu erstrecken, fiir
den das Potential E, = 0 wird. Aus Gl. (1) ergibt sich

(%)
IEI
Wir setzen die Gln. (3) u. (5) in GL (4) ein und erhalten
w
e[E]
- 2 — _
d =dexp [—7‘/2mfA/W—e‘axdx ' 6)
: o
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Zur Auswertung des Integrals setzen wir

[E]

W

und erhalten
w

ofE|

/~/W || xax =2 '[Jl «Sdé—éT‘.

Somit folgt Metallplatte (Wo)

x =§

3
)

P €
d = Fexp _4\/2mW i — |
3oh || i
Wir verwenden die Schaltung nach Bild 121, und es T
ergibt sich ein gleichmifBig flieBender Emissions- Bild 121
strom. Aus seiner Stdrke 14Bt sich die Emissions-
dichte j bestimmen. Fiir sie erhalten wir nach Ausrechnung des Faktors 4, die hier nicht
wiedergegeben wird,

” 2,48 - 10'17'E,2 4 \/Zm W;
= 2 7 i N ~2
= exp 3% et Am

Mit den entsprechenden Zahlenwerten fiir e, #, m (W in eV ausgedriickt) folgt

| 2102 xp[ 4‘\/2-9,1-10-“(1,6-10-*9””)2] Am—
Lot 341,05 107 1,6 - 10|

bzw.

s
i = 1,55 - 102 7 exp [ %} Am-2,

Wir setzen die effektive Austrittsarbeit W = 4 eV ein und finden

£ 6,85 10° - 4%
j = 1555 - 102 T €Xp | — ,—_>—-— Am™2 =

lE‘ _ 54,8109
Efz exp[_ 54’]8:[2109JAm—2=38,7lE|2 10 |Eheto — Am-
E

23,8109
—387E[ 10 Bl am—,

—
Hiernach ist zu erwarten, daB erst von Feldstirken der GréBenordnung [E| = 108 ...
--10° V.m~! an bei Wolfram eine kalte Emission nachweisbar wird.
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A

271,

272,

273.

274.

275.

276.

271.
278.

279.

Aufgaben

Untersuchen Sie, ob der Operator

2
A= - —

2
tor ist. ox

Untersuchen Sie, ob die folgenden
Operatoren HerMITEsche Operatoren
sind:

ein HerMITEscher Opera-

D i% 0
= —ih —.
ox

Zeigen Sie, daB die Anwendung des
d . .

Operators ™ x auf die Funktion e*

ein anderes Ergebnis liefert als die

d
Anwendung des Operators x T

Zu welchem Ergebnis fithrt die An-

d 2
wendung des Operators L = <d_x + x)

auf die Funktion u (x) = sin x?

Unter welcher Bedingung ist es ge-
stattet, den Operator F? — G? in
(F + G)(F — G) umzuformen?
Untersuchen Sie, ob die kinetische
Energie und eine Ortskoordinatz
gleichzeitig gemessen werden konnen.
Was folgt daraus zur Frage der gleich-
zeitigen MeBbarkeit von kinetischer
und potentieller Energie?

Untersuchen Sie, mit welchen__)Orts-

koordinaten die Komponente L, des
Drehimpulses gleichzeitig gemessen
werden kann.

Untersuchen Sie, mit welchen Ir_r&puls-
koordinaten die Komponente L. des
Drehimpulses gleichzeitig gemessen
werden kann,

Berechnen Sie das Quadrat des Dreh-
impulses in cartesischen Koordinaten.

280.

281.

282.

283.

284,

285.

286.

287.

Untersuchen Sie, ob das Quadrat des
Drehimpulses gleichzeitig mit einer
Komponente des Drehimpulses gemes-
sen werden kann.

Losen Sie die SCHRODINGER-Gleichung
unter der Voraussetzung, daBl die
betrachteten Teilchen keinen &uBeren
Kriften unterliegen, d.h., daB die
potentielle Energie E, = 0 ist. Weiter
sei vorausgesetzt, daB eine rdumliche
Abhéngigkeit nur von der Variablen x
besteht.

Der Grundzustand des Wasserstoff-
atoms sei durch die Funktion

Ll .=
NET
bestimmt. Errechnen Sie die Wahr-
scheinlichkeit, das Elektron im Bereich
dr = a; + 3-10"12m anzutreffen
(a; = 0,529 - 10~1° m).
Wie grof ist die Wahrscheinlichkeit, im
Grundzustand des Wasserstoffatoms
das Elektron im Abstand » > 2a; an-
zutreffen?
Wie groB ist die Wahrscheinlichkeit, im
Grundzustand des Wasserstoffatoms
das Elektron im Abstand a, < » < 2a,
anzutreffen?

Normieren Sie die Losungsfunktion der
SCHRODINGER-Gleichung

w:

w=C <2 — L) e 241,
a

Berechnen Sie die Wahrscheinlichkeit,
fiir den in Aufg 542 angegebenen
Quantenzustand das Elektron im Raum
da; < r < 4,05 a; anzutreffen.

Wie grof3 ist die Wahrscheinlichkeit,
bei einem in der ersten Grundschwin-
gung befindlichen harmonischen Oszil-
lator das betrachtete Teilchen im Inter-
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288.

289.

290.

291.

292.

293.

4.3.

vall xo < x < 1,1 x, anzutreffen?

\/ h
Xo = .
mwo

Fiir einen in der ersten Grundschwin-~
gung befindlichen Oszillator sei wo =
= 2,95 - 10** s~1, Die reduzierte Masse
zweier gegeneinander schwingender
Sauerstoffatomeistm = 13,3 - 10727kg.
Wie groB ist die Wahrscheinlichkeit,
eine Auslenkung im Bereich

1,510 m < x < 1,60+ 10~*' m
anzutreffen?

Berechnen Sie die Durchlédssigkeit d
einer Potentialschwelle der Hohe E; =
= 300 eV, der Breite / = 10-1°m fir
FElektronenmitderEnergic E =400¢V,
Berechnen Sie die Durchlédssigkeit d
und das Reflexionsvermogen r einer
Potentialschwelle der Hohe E, =
= 300eV und der Breite /= 10"11m
fiir Elektronen der Energie £ = 100eV.
Wie verdndert sich die Durchlédssigkeit
der Schwelle in Aufgabe 290, wenn
sich die Schwellenbreite auf/ = 10-1°m
verdndert?

Eine Potentialschwelle habe die Hohe
E, = 200 eV, die Elektronenenergie sei
E = 100 eV. Welche Breite / miifite die
Schwelle haben, damit 509 der einfal-
lenden Elektronen reflektiert werden?
Eine Potentialschwelle habe die Hohe
E, = 10MeV, die Breite/ =3 - 10-14m.
Wie grof ist ihre Durchldssigkeit fiir
«-Teilchen der Energie E = 4,8 MeV?
Schitzen Sie die Zerfallskonstante
A = n,d und die Halbwertzeit Ty, ab.
Die GroBe ny = v/2ry gibt die Zahl der

294,

295.

296.

297.

298.

299.

StoBe an, die ein im Kern enthaltenes
«-Teilchen je Sekunde auf den Poten-
tialwall ausiibt; die Geschwindigkeit v
folgt aus der Wellenldnge der DE-Bro-
GLIE-Welle. Die Wellenlidnge ist grof3en-
ordnungsmiBig gleich dem Kern-
durchmesser 2ro ~ 2-10"*m. Zur
Ableitung der Halbwertzeit beachte man
das Zerfallsgesetz N(7) = N, e~*,

Die effektive Austrittsarbeit des Nickels
werde W = 10 eV gesetzt. Welche
Spannung muf} angelegt werden, um
einen durch kalte Emission entstehenden
Elektronenstromnachweisen zukénnen?
Bestimmen Sie die Energieniveaus und
die Losungsfunktionen fiir das in
Bild 122 dargestellte Potential unter
der Voraussetzung E < E,.

&

&

X

Bild 122

Ausder allgemeinen Formel fiir den Mit-
telwert einer QuantengrofBe L ist die zeit-
liche Ableitung des zugeordneten HER-
mrTEschen Operators L zu bestimmen.
Bestimmen Sie die zeitliche Ableitung
eines von der Zeit ¢ nicht explizit ab-
hdngigen HermiTEschen Operators
L = AB.

Berechnen Sie die zeitliche Ableitung
der Koordinaten x, y, z.

Berechnen Sie die zeitliche Ableitung
des Impulsoperators. '

Das Spektrum des Wasserstoffs und der wasserstoffdhnlichen Atome

Fiir die Untersuchung kugelsymmetrischer Probleme wird der Laplace-Operator in
Kugelkoordinaten dargestellt:

1
A - A,- + r—lAg.o,,

17  Hajko, Elektrik
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2
A,=ii rz—a— y D= 1 i simﬁ‘i + 1 o .
r? or or sind 0 0 sin?¥ g2

Zwischen den verwendeten cartesischen Koordinaten x, y, z und den eingefiihrten
Kugelkoordinaten 7, %, ¢ bestehen dabei (Bild 123) die Bezichungen

x =rsindcosp, y=rsindsing, z =rcosd

Aus der Darstellung des LapPLACE-Operators in Kugelkoordinaten folgt fiir den
Operator T, des nur vom Radius » abhingigen Anteils der kinetischen Energie

Tr = Tr(r) = __Ar,
2m

wihrend das Quadrat des Drehimpulses mit dem Ope/rator
L* = 120, ¢) = —#2 D,

verkniipft ist.

-Bild 123 Bild 124

Bei Verwendung dieser beiden Operatoren erhilt die SCHRODINGER-Gleichung fiir
stationdre Zustdnde die Form

-

L2
Ty +—Y +(E, — E)y = 0.
2mr?

Beim Wasserstoff und bei den wasserstoffdhnlichen Atomen wird die Kernladung ze*
von einem Elektron e~ umkreist (Bild 124). Die potentielle Energie des Elektrons ist

ze?

E, = — .
dregr
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Zur Beriicksichtigung der Kernmasse m, wird im folgenden die Elektronenmasse m
durch die reduzierte Masse

mmiy
H = ee———
m+ my
ersetzt, Des weiteren wird die Variable
2 \/ —2uE
Q = — =
f na,

2

eingefiihrt, wobei

dmeyh?
al = _—
pe’
den Radius der innersten Elektronenbahn des Wasserstoffs nach der BOHRschen
Theorie angibt.
Damit erhilt die Losung der SCHRODINGER-Gleichung die Form

2141

. ~2
Y= 11Un,l,m(r5 ’9: <P) = Cn,[,mP!lm} (COS ﬁ) e e 2QlLrl+l (@)

Hierin bedeutet
ds
L&) = — L (&
(&) aF (&)

das LAGUERREsche Polynom, wobei
¢ d*

dé*
ein Polynom k-ten Grades ist. Der Ausdruck

PlE — (1 — £33 O
1 - dfll

gibt die zugeordnete (tesserale) Kugelfunktion der (zonalen) Kugelfunktion I~ten
Grades

L§) = ¢ (e™%")

Py(&)

P =S e - 1y
2 ag
an.
Die Hauptquantenzahl » bestimmt das Energieniveau
E=E=-——2¢F L o123,
(4meo)? 2% n?

17*
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die Nebenquantenzahl / das Quadrat des Drehimpulses
L2=T7=rI0+1), 1=01,23 ..,

) dic magnetische Quantenzahl 1 die z-Komponente des Drehimpulses
L,=mm, m=0,+1,.., +I

Das Eigenwertproblem
Ly = Lty

wird durch die Eigenwerte 17 = Z,z und durch die Eigenfunktionen

[ = 1m0+ 1)

=y, @, @) = Pi™l (cos ) '™
Y =y, p) \/ d 1 |m])! 4= b ( )

gelost. Der Faktor vor der Klammer ist dabei so gewdhlt, daB3 die Eigenfunktionen ¥, ,,
auf der Kugeloberfliche mit dem Wert 1 normiert sind. Es gilt

2w

[ [ 1m0, @) 01,00, @) 5in 0 46 dp = 61,0 O
o0

Dabei bedeutet

P +1 m=n

™TNO0 mEn
das Kroneckersymbol.
Zur Charakterisierung der Quantenzustdnde verwendet man Kurzbezeichnungen:
Die erste GroBe gibt die Hauptquantenzahl # an. Die zweite Bezeichnung steht fiir
die Nebenquantenzahl /. Der Zustand / = 0 wird mit dem Symbol s, / = 1 mit p,
Il =2 mitd, [ = 3 mitf, ] = 4 mit g usw. bezeichnet.

B Beispiele

214, Fertigen Sie eine Skizze der Spektrallinien des Wasserstoffatoms an.
Losung

Das Energieniveau des Elektrons im Atom ist durch die Formel
z2e*u 1

BB " Grgron 7
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21s.

bestimrﬁt, wobei fiir Wasserstoff z = 1 zu setzen ist. Im Falle n = 1 erhalten wir
(1,6 - 10-19)*.9,1 - 10731
(4-3,14-8,854-10712)2 - 2 - (1,05 - 10~34)2

= —21,8-10"1% - 6,25 - 1018 eV = —13,6¢eV.

E, = J=-21,8-10"1°J =

Dabei wurde in erster Ndherung die reduzierte

Masse gleich der Elektronenmasse gesetzt. 6 oo L
Die Energie von 13,6 eV ist aufzuwenden, um 5, ,.5 ]
das Elektron vom Wasserstoffatom abzutren- gz r ”f‘; Ty
nen, es ist die Ionisierungsenergie des Wasser- [ 7~ Paschen-
stoffs. Ha| Hg| Hyf serie
Fiir den Fall # = 2 erhalten wir demgemés 102k n=2 ‘B /
ailmer-
z2e% 1 serie
Bt
(dmeo)? 242 2
—13,6
== 4’ eV = —34¢V,

das ist ein Viertel des Wertes fiir n = 1. In glei-
cher Weise folgen die Energiewerte fiir die
Hauptquantenzahlen » = 3, 4, 5, ---. Fiir eine
graphische Darstellung der Energiezustdnde
wihlen wir das Niveau des Zustandes n = 1
als Nullinie. Der Fall n = 2 entspricht somit
einem Energieniveau von —3,4 — (—13,6)eV= ok nes
= 10,2 eV. Fiir n — co ndhert sich das Energie- Lymanserie

niveau dem Grenzwert 13,6 eV (Bild 125). Bild 125

Wenn das Elektron aus einem Zustand #» = n,

in einen anderen Zustand » = n, springt, wird bei n, > n. Strahlung emittiert. Die
Frequenz der emittierten Strahlung ergibt sich nach dem Bohrschen Postulat zu

2,4
hw—E, — E, _Z_QL_<1 - 1_)

T @reg)r B2 \n2 2

Nach ihrem Endzustand #. werden die emittierten Spektrallinien in Serien zusammen-
gefaBt. In Bild 125 ist auch die BALMER-Serie dargestellt, die alle auf dem Zustand 7. = 2
endenden Spektrallinien enthélt.

Berechnen Sie die Wellenldnge der H,-Linie in Luft unter Mormalverhiltnissen. Die
Brechzahl der Luft betrdgt dabei 7, = 1,000293.

Losung

Nach Beispiel 214 ist die Frequenz der emittierten Linie durch die Beziehung

2,4
e Em Fom it (L 1) o

T @neo)2 2 \i2 w2
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bestimmt, Wir legen der Berechnung die Wellenzahl » = »/c zugrunde und erhalten

B v 1 1 1
V=?=7=22R<;1—§——§>, )]
wobei
I 3)
T (4meo) K¢ 82 K¢
die RYDBERG-Zahl angibt.
Wir beriicksichtigen, daB fiir Wasserstoff gilt
1 1
[P .. B, —m , @)
my +m - m 14 1
und es folgt
1,602 - 10-1%)* - 9,109 - 10-31 1
Ry = ( ) Z m-t. (5)
8 (8,854 - 10-1%)2 (6,624 - 107343 - 2,997 - 108 1 1
1836
Als genauer Wert fiir die RYDBERG-Zahl des Wasserstoffatoms im Vakuum ergibt sich
hiermit
Ry = 1,09677 - 10" m~1, (6)

Die Wellenldnge der emittierten Linie werde im Vakuum mit 4, in Luft dagegen mit 4
bezeichnet. Aus den GlIn. (2) u. (3) folgt damit

A Ry

T R @
Dabei bezeichnet Ry die RYDBERG-Zahl fiir Strahlung im Vakuum, Ry fiir Strahlung
in Luft.
Wir erhalten damit aus den Gln. (6) u. (7)

Ry = ne Ry = 1,000293 - 1,09677 - 107 m~* = 1,09709 - 10" m~*. ®)

Bei Emission der H,-Linie ist n, = 3, n, = 2, ferner z = 1. Damit folgt

- 1 1 1 5 B
V= T = Ry (5-5 — 3—2) = 1,09709 - 107 - ggm‘l = 0,152374-10" m~! (9)
und
7,2-10°7
=2 - — . 10-10
Ho 1,09709 m = 6562,8 - 10 m, 10)

216. Fiir einfach ionisiertes Helium werde eine Linie der Wellenlidnge Ay, = 6560,4 - 10~1°m
gemessen, Sie entspricht dem Ubergang von n, = 6 auf n. = 4. Die Messung der
H,-Linie ergebe die Wellenldnge Ay = 6563,1-10-'°m. Berechnen Sie daraus die
RYDBERG-Zahl fiir das Spektrum des einfach ionisierten Heliums. Fiir Vakuum ist
Ry = 1,09677 - 10" m~1.
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217.

Losung
Die Wellenldnge der vom Helium emittierten Strahlung bestimmt sich aus

1 11 11 11 5
— 2 — — — = — — —— = — — — = ——
y (ni ’:) 4Ry. (42 62) Rue (4 9> 35 Roe-

Fiir die H,-Linie gilt die Beziehung

1 (1 1) 5
— = Ru|=y — =) = —Ru.

Au 22 32 36
Hieraus folgt

AH _ RHe

j'l-le o -RH )

Korrekturen infolge der Einwirkung des umgebenden Mediums heben sich auf. Die
RYDBERG-Zahl des einfach ionisierten Heliums im Vakuum ergibt sich damit zu

Ay 6563,1
= 1,09677 - 107 ’
Ay 0 6560,4

Ry = Ry m-! =1,09722 - 107 m~?.

Aus den Werten der RYDBERG-Zahl fiir Wasserstoff und fiir einfach ionisiertes Helium
ist die Elektronenmasse zu bestimmen.

Die Kernmasse des Heliumatoms ist my, = m, = 6,6447 - 10727kg, die Kernmasse des
Wasserstoffatoms my = m, = 1,6726 - 10727 kg. Fiir die betreffenden RYDBERG-Zahlen
gelten die genauen Werte Ry = 1,0967757 - 107 m™, Ry, = 1,0972226 - 10" m™".

Losung

Die RYDBERG-Zahl ist durch den Ausdruck
T 8
definiert, wobei

mniy,
m -+ my

die reduzierte Masse angibt.
Wir bestimmen das Verhiltnis der RYDBERG-Zahlen von einfach ionisiertem Helium
und Wasserstoff:

mmniye
Rpe tpe  Mpe+m  mype(ma+m)
Ry Yu mmy my (Mue + )

my + m
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Wir 16sen diese Beziehung nach m auf und erhalten

RHe - RH
m=—————
Ra _ Ruc
my Mye
in Zahlen

" 1,0972226 — 1,0967757
"~ (0,65573 — 0,16513) - 10*7

kg =9,109-10"31kg.

218. Bestimmen Sie den Operator L. der z-Komponente des Drehimpulses in Kugel-
koordinaten.

Losung
GemaiB Beispiel 199 gilt in cartesischen Koordinaten
L, =xp, — ypx= — ih(x——-y— .

Wenn wir voraussetzen, daBl ¥ und & konstant sind und nur ¢ sich dndert, so folgt
X _wox ww
dp 0xdp Oy 0p 0z Op

Wir setzen den Zusammenhang von cartesischen und Kugelkoordinaten ein und er-

halten
oy oy . . oy . oy oy
— = —(—rsin?® sing) + —rsindcospg = — y — + x—,
op  Ox » oy i Yo% oy
d. h.
0 0 0

219. Losen Sie die Eigenwertgleichung L,y = L,y und bestimmen Sie die Eigenwerte L.

Losung

Es ist
0
L, =in—.
op
Somit lautet die Eigenwertgleichung
oy

—ih— = L.y.
PP 2
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220.

221,

Die Losung mit Hilfe eines Exponentialansatzes bringt das Resultat

]
¥ = const * exp 7 .

Wenn diese Funktion eindeutig sein soll, muBl der Bruch L./# ganzzahlig sein. Daraus
folgt
L,=mh, m=0,+1, 42, ...

. - —
Es ist zu zeigen, daB die Losung v = y,.(9, ¢) der Eigenwertgleichung L2y = L%y
auch eine Losung der Eigenwertgleichung L.y = L,y ist. Was folgt daraus beziiglich L*
und L,?

Losung
Der Ausdruck
Vim(®, @) = const P™! (cos #) &9

- —
ist eine Losung der Differentialgleichung L2y = L?p. Wenn wir diese Losungsfunktion
in die Gleichung L.y = L.y einsetzen, erhalten wir

., O ;
—i# o [const P|™! (cos &) e™¥] = L, const P{™! (cos ) e"?,
P
d. h. auf beiden Seiten gekiirzt,

in i em? = [, eime
0

oder
hm = 1L,.

.
Das Quadrat des Drehimpulses L? und die Komponente L, sind also in dem durch v,
reprasentierten Quantenzustand gleichzeitig meBbar.

Untersuchen Sie, ob die durch den HamiLToN-Operator H dargestellte Gesamtenergie

—
und das Quadrat des Drehimpulses L? gleichzeitig gemessen werden kénnen. Welche
Schluffolgerungen ergeben sich daraus fiir die SCHRODINGER-Gleichung?

Losung
Es gilt
h2
H=Ek+Ep = _ﬂA'}'Ep(r,ﬁ, gy)_
Der LApLACE-Operator A wird zerlegt in

1
A = Ar +7 Aﬂ,q)'
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222,

Damit ergibt sich

72 129,
He — —(A, Lo ) + B o) =T0) + 20 L p6 ).
2u r 2ur

Da L2 nur von den Winkelvariablen ¢ und ¢, T, dagegen von r abhingt, folgt
— - - —
HL? — L*H = E,L* — L?E,.
Dieser Ausdruck ist Null, wenn die potentielle Energie nicht von den Winkelvariablen &
und ¢ abhidngt. Das gilt z. B. fiir Zentralkrifte. Bei Zentralkriften mit einem Potential
E, = E,(r) ist also ’
— —_
HL?> — L*H = (.
In diesem Falle sind Gesamtenergie und der Betrag des Drehimpulsvektors gleichzeitig
mef3bar. Das bedeutet, daBl auch die Eigenfunktionen der beiden Eigenwertgleichungen
—_ —_
Hy = Ep und L% = L%
iibereinstimmen. Die erste der beiden Beziehungen ist die SCHRODINGER-Gleichung fiir
stationdre Zustdnde:
L%y

T,
v 2ur?

+(E,— E)yp =0.

Hierin kann man also wegen der zweiten Eigenwertgleichung den Differentialausdruck

— —>
L?yp durch Ly = (I 4+ 1)y ersetzen. Fiir den Fall E, = E,(r) folgt damit die SCHRG-
DINGER-Gleichung

I+ 1A
Trw+(—2)—w + (B, — E)y = 0.
2ur
Sie enthilt nur noch r als unabhédngige Variable.

Es ist die SCHRODINGER-Gleichung fiir ein wasserstoffdhnliches Atom mit dem Potential

ze?

E, = —
" dregr

zu l6sen. Dabei ist vorauszusetzen, daBl y(0) einen endlichen Wert annimmt und
lim ¢ = 0 gilt. Der Bahndrehimpuls sei Null.

r— 00

Losung

Wegen ! = 0 sowie
#? #? 0 o]
Tr = e—— r —_ — ——— 2 —
2u A 2ur? or (r or >
erhalten wir die SCHRGDINGER-Gleichung in der Form
d?y 2 dy 2u ( ze?

e T tE

+E>w=0.

4regr
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Weiter definieren wir zur Vereinfachung

2Eu ze*u
A= — = —
h? 4mey h?
Damit ergibt sich
d?%y 2 dw ( )
a2 (i )y=0.
dr? + r + r ™
Aus dem Losungsansatz
y=eF
folgt
26

B* — p —+l—0

Hieraus erhalten wir durch Koeffizientenvergleich
x=p A= —p2= —a2
Wir setzen
4meoh? 2zr

und
elu °¢=

a, =
a1
Dabei gibt a; gemidB der BoHRschen Theorie den Radius der innersten Elektronenbahn
des Wasserstoffatoms an (vgl. Beispiel 192). Die reduzierte Masse

mmy m

”=m+n;‘_

14+ =

my

kannin erster Néiherung der Elektronenmasse m gleichgesetzt werden, da fiir Wasserstoff

m LI
ist.
Wir schreiben die gefundene Lésungsfunktion der SCHRODINGER-Gleichung in der Form
zr 0
s -2 2
y=Ce 1=Ce 2, =22,

Die Normierungsbedingung erfordert wegen
dz = 4nr? dr

©
2zr 2'

wprdr = 4n [C]2 [ e @ r2dr=4n|CP ——5 =1

&)

Hieraus folgt

CRNES
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223,

Aus der Bezichung 4 = —«? ergibt sich das Energieniveau
2,4
E=—2°F
(4neo)? 2h2

Nach der Borrschen Theorie entspricht das dem Grundzustand.

Es ist die Aufenthaltswahrscheinlichkeit fiir den Grundzustand des Wasserstoffatoms
zu bestimmen. In welchem Abstand hat die Wahrscheinlichkeitsdichte w(r) ihr Maxi-
mum?

Losung

Der Grundzustand des Wasserstoffs wird fiir die Quantenzahlenn =1,/=0,m =0
angenommen. Fiir diesen Fall lautet die allgemeine Losung der SCHRODINGER-Gleichung

Qe
¥1,0,0 = C1,0,0Pg (cos &) e 2 Li(o)
mit
eu
(4meo)? 2027

Fiir das LAGUERREsche Polynom folgt nach Definition

E=E1=

d d
Li(@) = ——Li(@), Li(e) =e®— (%) =1 —p¢.
do de

Damit erhalten wir
Lo = —1.
Die Kugelfunktion P ist gleich eins. Somit ergibt sich
4
¥1,00 = —Ci,0,0 e-?
Diese Funktion stimmt mit der in Beispiel 222 direkt aus der SCHRODINGER-Gleichung

abgeleiteten LoOsung iiberein.
Als Normierungskonstante erhalten wir

1
|C1,o,o] = /\/—_3 .
Tay

Wir berechnen die Aufenthaltswahrscheinlichkeit im Volumen einer Kugelschale
dr = 4xr? dr. Fiir die gesuchte Aufenthaltswahrscheinlichkeit erhalten wir
2r

1 A
yyp* dr = e e 4nr2dr = = e % r2dr =w()dr.
1 1

Die Wahrscheinlichkeitsdichte w (¥) nimmt Extremwerte an fiir

% (r2 e_i_lr) =0.
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Daraus folgt die Beziehung
2r

e”712r<1 —L) —o0.
a

Fiir die Falle r = Ound r = o0 ergibt sich w(¥) = 0, d. h., die Wahrscheinlichkeitsdichte
nimmt hier ihre geringsten Werte an. Dagegen erhalten wir fiir

¥ = a;

das Maximum.
Der innerste Bahnradius nach der BoHrschen Theorie ergibt also gerade das Maximum
der Wahrscheinlichkeitsdichte fiir den Grundzustand.

224, Wo liegt das Maximum der Wahrscheinlichkeitsdichte bei Wasserstoff im Quanten-
zustand 2s (n = 2,1 = 0)?

Losung

Bei der Untersuchung der Wahrscheinlichkeitsdichte ypyp* interessieren nur die r-ab-
hingigen Glieder. Entsprechend der allgemeinen Losung werden diese durch die
Quantenzahlen # und / bestimmt. Daher ist die magnetische Quantenzahl m ohne Ein-
fluB auf ypy*. Im Fall » = 2, / = 0 erhalten wir

o
¥2,0,0 = const ¢ 2 L)

r

a

Das LAGUERREsche Polynom ergibt sich aus

L0 = 5 [er g e en] =20~ 4
z do de? )
Somit folgt
- _e
Y200~ (@ —2)e 2 s
2 T
¥2,0,0 Y300 r> dr ~ (Tr_ — 2) r2e 4 dr =w(r)dr.
1 /
Die Forderung

v _
dr
fiihrt zu
r? r ¥
— —6—+4||——2]=0.
(a% a1+ )(al )

Wir setzen die ermittelten Nullstellen der Gleichung in die zweite Ableitung ein und
erhalten als Losung ein Minimum bei

¥ = Fmin = 2ay,
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ein kleineres Maximum bei vy
¥ = Fmax1 = 0,764 a,
und ein groferes Maximum bei

¥ = Fmax2 = 5,236 a4 (Bild 126).

a, 3a;, Sa 10a.

225. Berechnen Sie den Mittelwert 7 des Elektronenabstandes Bild 126
im Grundzustand des Wasserstoffatoms.

Losung
Der Mittelwert L einer physikalischen GroBe ergibt sich aus
L= f p*Ly dz.

Wir setzen fiir y die Losungsfunktion der SCHROGDINGER-Gleichung

¥1,0,0 =,/ —3 €
Tay

ein. Fiir den Operator L der Ortskoordinate haben wir die Ortskoordinate selbst einzu-
setzen: . Damit folgt

@« =]
4 2r
F=| lyroolfrdnr?dr=— [e “ r*dr.
a
6 0

Den Wert des bestimmten Integrals erhalten wir aus

@

" n!
- __n
fe x"dx = presal

o

Damit ergibt sich

! 3
—_—— - = 5 0,529 - 1071°m = 0,793 - 10-1° m.

Der Mittelwert des Elektronenabstands unterscheidet sich also vom Abstand der
groften Wahrscheinlichkeitsdichte.

226. Berechnen Sie den Mittelwert der z-Komponente des Drehimpulses beim Wasserstoff-
atom im Zustand n =2, /=1, m = 1.
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Lésung
Die Losungsfunktion der SCHRODINGER-Gleichung lautet

4]
Y211 = Ca,1,1 Pl (cos D e e 2 9Li(0).
Fiir die Kugelfunktion folgt
—— d /1 d —
P& =Jl — 22— [ &2 —1])=+/1- &
1) =/ édE(z S ]) J1-¢
P} (cos §) = sin &.

Das LaGguerrEsche Polynom ergibt

a3 a3
L3(0) = e e p3)| = —6.
3@ e [e i (e o )]
Wegen ¢ = L lautet also die Losung der SCHRODINGER-Gleichung
a;

r

6C2,1,1
a

sinde?re 291,

Y2,1,1 =

Wir bestimmen die Normierungskonstante C, ; ;.
Fir das Raumelement dr miissen wir wegen der Abhédngigkeit von & und ¢ setzen
dr = r?sin ¢ d do dr.

Es folgt damit die Bedingungsgleichung

© 21T ®

36 -
fw,u* dr =—2|C2,1,1!2ff fsine‘ﬁr“e adddpdr=1.
ay
00 o

Wir erhalten

T 27 ©
4 L
J.sin”}‘dﬁ =3 qup = 2m, J rte %1 dr =244,
0 0 0
Aus der Bedingungsgleichung fiir C, ;,; folgt demnach
1
C _=——— .
G20l 48\/7ca31’
Die Losungsfunktion lautet somit
1 r

Ya,1,1 = ——sin#e®re 291,
8 \/mas

Entsprechend Beispiel 218 lautet der Operator L, in Kugelkoordinaten

0
L, = —ii—.
i 5
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Fiir den gesuchten Mittelwert erhalten wir damit den Ausdruck

2n © T

A . - d
L, = fw*L,tp dr =64—r:a§—f f fsm%?r‘e a e"¢$e1¢d0 dr de.
0 0 0

Die beiden inneren Integrale werden analog dem Verfahren bei der Normierung aus-
gewertet. Demnach verbleibt

227. Ein Elektron befinde sich im Quantenzustand / = 1, m = 1. Berechnen Sie die Wahr-
scheinlichkeit d W, das Elektron im Winkelbereich ¢ = 90° + 3° anzutreffen.

Losung

Wir verwenden den von ¢ und ¢ abhingigen Teil der Losungsfunktion y,,,,, die
Funktion

(—=|m' @I +1)
(+ Im)! 4
In der vorliegenden Darstellung erfiillt diese Funktion die Normierungsbedingung

P\™l(cos &) ™.

Yi,m(, @) =

2w ™
[ [ 910, 9 vnt, @) sin 0 08 dp = 1.
0 0
Fiir den Fall / = 1, m = 1 erhalten wir wegen 0! = 1 den Ausdruck

dW = 1,18, ¢) v¥.(9, ¢) 2n sin & 49
mit
T d'ﬁ‘ . T
2 T 30°

Damit folgt fiir die Wahrscheinlichkeit

¢ =

3 . 31
W=-— dsind dd = = — ® = 0,078
d o sin? & sin 7 3011: ,078,

also sind 7,8 % aller Teilchen im Quantenzustand / = 1, m = 1 hiernach unter einem
Winkel ¢ = 90° 4+ 3° anzutreffen.

228. Berechnen Sie die Wahrscheinlichkeit W, das Elektron im Zustand / = 1, m = 1 unter
einem Winkel zwischen ¢ = —60° und ¢ = -+60° anzutreffen.
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Losung

Wir verwenden wieder die Losungsfunktion

2 .
v, p) = N/gr sin ¢ e'¢

Wegen der Symmetrie beziiglich ¢ = 0 konnen wir schreiben:

™
2m3

W=2 / [ 11(8, 9) vy (0,9) sin 6 46 dp —
0 0

i
2x 3

3 3
=2 — sin3z9dz9d(p:—/sin3z9dz9=
8m 2
0 0 0
T

Tl'
3

= T
T T T

3 9 sin26 2 1 \
=7H~c°s—;m—— + —3—fsin0 dﬁ} -— [cosﬁ(Z—l— sinzﬁ)}'
0 [¢] 1]

Wenn wir
cos 60° = 0,5 und sin? 60° = 0,75

einsetzen, so folgt
1 1
W= — 70,5(2 + 0,75) + 5 1-2=1—0,6875 = 0,3125.

Es befinden sich also 31,259 ailer Elektronen mit / =1, m =1 im angegebenen
Winkelbereich —60° < & < 4 60°.

229. Bestimmen Sie die Extremwerte der Winkelverteilung im Zustand [ = 3, m = 2.
Losung

Die Wahrscheinlichkeit, ein Elektron unter dem Raumwinkel d2 = sin 9 dd dg
anzutreffen, ist

dW = w dQ = py* dQ.
Zur Loésung dieser Aufgabe haben wir also das Maximum der Funktion w = pp* zu
bestimmen,

In der Losungsfunktion %, .(%, ¢) konnen wir die Normierungskonstante unberiick-
sichtigt lassen und schreiben

v3.2(9, @) ~ P e?? ~ sin® ¢ cos ¢ €2?,
W = 93.2(8, @) ¥¥(0, @) ~ sin* & cos? B,

18 Hajko, Elektrik
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230.

Aus der Forderung, da3 die erste Ableitung verschwinden muB, folgt

2sin® # cos & (2 cos? & — sin? #) = 0.
Fiir 4 = 0 und fiir ¥ = =/2 hat die Wahrscheinlichkeitsdichte w den Wert Null. Diese
Winkel ergeben also Minima der Winkelverteilung. Das dazwischenliegende Maximum
ist durch

2c0s8? 9 —sin?9 =0
bestimmt.
Man erhilt hiernach fiir

& = arctan /2 = 54°44’

das Maximum der Winkelverteilung.

Wegen des Elektronenspins s = 4#/2 gehoren zu jedem Wertetripel n, [, m zwei
Elektronenzustinde. Weisen Sie aus den LoOsungen der ScHRODINGER-Gleichung
Ynrm(ts ¥, @) nach, daBl zu jeder Hauptquantenzahl » insgesamt 2 n? Zustéinde gehdren.

Losung

Die drei Quantenzahlen #, /, m bestimmen die Lésung der SCHRODINGER-Gleichung

2

Ynim ~ P (cos 9) e e™ 27 o L241(o).
Hierin gibt P! bis auf einen konstanten Faktor die [n1]. Ableitung der Kugelfunktion P,
an. Aus der Definition
dl
dgt
folgt, daB P, ein Polynom /. Grades ist. Die magnetische Quantenzahl m darf daher nur
den Wertebereich

m=—I —l+1,..,0,.,1—1,1

durchlaufen. )

Fiir |m| > I wird P/™ identisch Null. Wir erhalten also als Wahrscheinlichkeit dafiir,
einen Zustand |m| > [ anzutreffen, den Wert Null. Zu jeder Quantenzahl / gehéren
somit 2/ + 1 Werte von m. Das LAaGUERREsche Polynom L2 ergibt sich aus der

(2! -+ 1). Ableitung eines Polynoms L,,,,. Dieses ist vom Grade # - /. Es mufl demnach
2041 =n+1 bzw. [En—1
sein. Zudem ist die Quantenzahl / auf ganzzahlige positive Werte sowie den Wert Null
beschrinkt: sie durchliuft also den Wertebereich
1=0,1,2,....,n— 1.
Demnach ist die Zahl der zu einer Hauptquantenzahl » gehOrenden Quantenzustinde
gleich

P~ — (& - 1)

n—1

Ny=2Y Q@ +1)=2(1+3+ .. +2n—1)=2r2
1=0 . e
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231. Berechnen Sie die Wahrscheinlichkeitsdichten der Winkelverteilung fiir alle Zustédnde
I = 3, und zeichnen Sie dazu die Polardiagramme

Losung

Zu ! = 3 gehoren die Zustdnde m = —3, —2, —1,0, 1, 2, 3. Die dazugehOrenden
Losungsfunktionen v, ,, und die Wahrscheinlichkeitsdichten sind

m Yim Yim ’/)tm
3 35
+3 — sin3 & e*3® —sin® ¢
8/ 64r
105 105
+2 v — sin? & cos & e¥2% —sin* & cos? §
4 \/ o . 32r
21 . 21
+1 \/ =sin? (5 cos? & — 1)e™? sin® @ (5 cos? & — 1)2
8/ ™ 647
J7 4
0 — (5cos®# — 3 cos?) ——(5cos® ¥ — 3 cos H)?
4/~ 167

In Bild 127 sind die dazugehdrenden Polardiagramme dargestellt.

/=3 (f - Elsktronen |

Bild 127

18*
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A

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

Aufgaben

Berechnen Sie die Wellenldnge der
Hg-Linie in Luft. (7, = 4, n. = 2, Brech-
zahl n, = 1,000293)

Welche Wellenzahl hat die erste Linie
der Lyman-Serie im Vakuum?

(na = 2, ne = 1)
Welche Wellenzahl bezeichnet die
Seriengrenze der PASCHEN-Serie im

Vakuum? (n, = o0, ne = 3)

Welche RYDBERG-Zahl ergibt sich fiir
das Spektrum des ‘Deuteriums im
Vakuum? (mp = 3,34 - 10727 kg)
Berechnen Sie die RypserGg-Zahl fiir
den Fall einer unendlich groBen Kern-
masse. Ausbreitungsmedium sei
Vakuum.

Berechnen Sie die Wellenldnge der
H,-Linie des Deuteriumatoms in Luft.
(e =5, n.=2)

Wie lauten die Operatoren L, und L, in
Kugelkoordinaten?

Untersuchen Sie, ob und fiir welche
Quantenzahl die Funktion sin ¢ ¢e'®
eine LoOsung der Eigenwertgleichung
Zzw = L2y ist.

Zeigen Sie, dall sin @ sin ¢ — icos &
Eigenfunktion des Operators L2 ist.
Fiir welche Operatorkomponente des
Drehimpulses ist die Funktion
sin & sin ¢ — i cos &

zugleich Eigenfunktion?

Untersuchen Sie, zu welchen Opera-
toren des Drehimpulses oder seiner
Komponenten der Ausdruck sin ¢ cos ¢
Eigenfunktion ist.

Wie lautet die Losungsfunktion der
SCHRODINGER-Gleichung fiir n = 2,
! =1, m = 17 Bestimmen Sie die Nor-
mierungskonstante.

In welchem Abstand hat die Wahr-
scheinlichkeitsdichte w (¥) im Zustand
2p (n = 2, [ = 1) ihr Maximum?

312,

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

Bestimmen Sie den Abstand groBter
‘Wahrscheinlichkeitsdichte w () in den
Zustinden 3d(nr =3, /=2) und
4f (n =4, 1= 3).

Bestimmen Sie den Mittelwert 7 im
Zustand 2p (n = 2,/ = 1). 1
Bestimmen Sie den Mittelwert (—) im
Zustand 2p (n =2, ] = 1). r
Leiten Sie eine allgemeine Formel fiir
den Mittelwert 7 fiir Wasserstoff und
wasserstoffdhnliche Atome im Quan-
tenzustand #, [ ab.

Berechnen Sie die Mittelwerte des
Elektronenabstands fiir einfach ioni-
siertes Helium und fiir zweifach ioni-
siertes Lithium im Quantenzustand 2p.

Wie grofl ist die Wahrscheinlichkeit,
das Elektron des Wasserstoffs im
Quantenzustand 2p in einem Intervall
da, < r < 4,1a; anzutreffen?
Berechnen Sie die Wahrscheinlichkeit,
das im 2p-Zustand befindliche Elektron
des Wasserstoffatoms in einem Ab-
stand » > 9a, anzutreffen.

Es ist die Wahrscheinlichkeit dafiir zu
bestimmen, das Elektron des Wasser-
stoffatoms unter der Richtung ¢ = =/2,
¢ = ©/6 im Raumwinkel

= sin & do § = " do= —
dQ = sin?d dd de, d 13 ® 13
im Quantenzustand /=1, m = —1

anzutreffen.

Welche Winkelverteilung ergibt sich
fiir den Fall /=0, m = 0?

Berechnen Sie die Wahrscheinlichkeits-
dichten der Winkelverteilung fiir alle
Fille [ = 2.

Bestimmen Sie die Extremwerte der
Winkelverteilung fiir alle Fille / = 2.
Wie groB ist die Wahrscheinlichkeit,
ein Elektron des Quantenzustands
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[ =2, m =0 in einem Winkelbereich zu bestimmen. Die Stromdichte wird

54°43" < # < 90° anzutreffen? gesucht fliir die Werte ¢ =0 und
324, Bestimmen Sie unter Verwendung von ¢ = n/2,r =4a,.

Kugelkoordinaten die Komponenten 326. Das durch den Strom des umlaufenden

der Stromdichte im Atom. Elektrons 1_1>ervorgerufene magnetische
325. Es ist die mittlere Stromdichte in einem Moment M ist durch Integration zu

Wasserstoffatom, das sich im Quanten- berechnen.

zustand n =2, I = 1, m = 1 befindet,

4.4. Das Spektrum des zweiatomigen Molekiils — der starre Rotator und der
harmonische Oszillator

In einem zweiatomigen Molekiill (Bild 128) filhren die Atome gegeneinander syn-
chrone, harmonische Schwingungen aus (harmonischer Oszillator), wobei sie gleich-
zeitig mit konstanter Winkelgeschwindigkeit um eine

durch den gemeinsamen Schwerpunkt gehende Achse

rotieren (Rotator).

Somit setzt sich die Energie eines Elektrons im Mole- Y2 ror
kil geméB der Beziehung / Yios Yoos

E=E, + Ey + Eo

aus dem Energieniveau E,, des Elektrons in der Elek-

tronenhiille, dem Energieniveau E,, der Oszillation

und dem Energieniveau E,, der Rotation zusammen. Bild 128
Fiir Wasserstoff und wasserstoffihnliche Atome ist

das Energieniveau E., aus 6.3. bekannt. Fiir das Energieniveau der Oszillation und
fiir das der Rotation gelten die Formeln

Eos = hwo (l’l + %)! n= 05 15 2’ L)

2
AR e TR 1
2ur?

Hierin wurde mit # die Quantenzahl! der Oszillation, mit / die der Rotation bezeichnet.
wo gibt die Kreisfrequenz der Oszillationsschwingung an, 4 die reduzierte Masse des
Molekiils, » den Kernabstand. ‘

Als Wellenzahl der emittierten oder absorbierten Spektrallinie erhalten wir

v = = Ye1 + Vos + Vrot»

L
7
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Dabei gilt
- Eq—Eq - E, - E, - E; — E
Vel:'_“—’ 1}05:——5 ,pl'(”.:—___-'
he he he
Gestrichene GroBen gelten fiir den Zustand nach vollzogenem Quantensprung. Die
Beobachtung der Rotations- und der Rotationsschwingungsbanden erfolgt im all-

P
Onw

/= n=2
IS
3
<
4
H
1=0 n-1
ol
3
<
,:t monochromatische lichtquelle
e o, St Streukérper
/=0 > S3p Spektrometerspalt

Bild 129 Bild 130. SMekarL-Raman- Effekt

gemeinen iiber das Absorptionsspektrum, doch ist es fiir die Darstellung der Theorie
zweckmiBig, von der Emission auszugehen.

Fiir die reinen Rotationsbanden, bei denen nur eine Anderung der Rotationsenergie
erfolgt, gilt die Auswahlregel

Al=1—1=+1.

Bei den Rotationsschwingungsbanden dndern sich Rotations- und Oszillationsenergie,
wobei das Oszillationsquant im allgemeinen um eine GréBenordnung iiber dem
Rotationsquant liegt (Bild 129). Fiir die Emission gelten daher die Auswahlregeln

An = +1; Al = +1.

Der Smekal-Raman-Effekt (Bild 130) 146t sich quantentheoretisch deuten, indem man
annimmt, daB die eingestrahlte Erregerfrequenz das getroffene Molekiil unter Ver-
dnderung der Rotationsquantenzahl um +1 auf ein h6heres Energieniveau hebt. Bei
der nachfolgenden Ausstrahlung dndert sich die Rotationsquantenzahl erneut um
+ 1. Hiermit ergeben sich die Auswahlregeln

Al = =2 (P-Zweig),
Al=0 (Q-Zweig),
Al = +2 (R-Zweig).
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Durch einen Elektronensprung, d. h. durch Anderung der Elektronenanordnung im
Molekiil, kann das Bandenspektrum in den sichtbaren und in den ultravioletfen
Bereich verschoben werden. Mit dem Elektronensprung verdndert sich im allgemeinen
auch das Massentrdgheitsmoment des Molekiils. Entsprechend der Auswahlregel

A4l = +1,0

ergeben sich drei Zweige von Spektrallinien, deren systematische Ordnung im Dia-
gramm von Fortrat angegeben wird.

Als Ubergangswahrscheinlichkeit A,, , definieren wir die Wahrscheinlichkeit dafiir,
daBl das Atom aus dem Zustand E,, spontan in den Zustand E, iibergeht. Indem wir
diese GroBe auf die Zeit von einer Sekunde beziehen, ergeben sich fiir 4, , Werte,
die im allgemeinen groBer als eins sind. Fiir die Ubergangswahrscheinlichkeit gilt die
Beziehung (

2
A= s |Ey = EJ* ( [vhron dr).

3mehted

Darin werden die Komponenten
Xom.m =fw;’ian 4%, Vmn =fwiﬁywn AT, Zp,n =fwiizwn dr

als Matrixelemente des betreffenden Ubergangs bezeichnet. Aus diesen Elementen
lassen sich die Auswahlregeln fiir die Quanteniiberginge sowie fiir die Intensitits- und
Polarisationsverhéltnisse der Strahlung berechnen. Wenn wir 4, , mit der Energie
hv, , und mit der Zahl der angeregten Atome multiplizieren, die aus statistischen
Uberlegungen folgt, so konnen wir daraus die mittlere Strahlungsleistung bestimmen.
Die Formeln zur Berechnung der Matrixelemente L,, , aus den Eigenfunktionen v,,, ¥,
der Eigenwertgleichung

Ly =Ly

stellen die Verbindung zwischen der von HEISENBERG auf die Matrizenrechnung ge-
grindeten Quantenmechanik und der von SCHRODINGER entworfenen Wellen-
mechanik her. Beide Darstellungsweisen, die wellenmechanische und die matrizen-
mechanische, werden in der Quantentheorie parallel angewandt.
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B

232,

Beispiele

Berechnen Sie die Quantenzustdnde fiir einen linearen harmonischen Oszillator nach
der ScHRODINGER-Gleichung. Fiir die Oszillationen eines O,-Molekiils mit der Kreis-
frequenz wo, = 2,95 - 10* s~! sind die moglichen Energiewerte zu bestimmen.

Losung

Wir setzen stationdre Zustdnde voraus. Es soll lediglich eine rdumliche Abhédngigkeit
von der reduzierten Variablen x bestehen. Wir bezeichnen die reduzierte Masse mit
mims,
-1 1
b= , 03]
und die Kreisfrequenz der Eigenschwingung mit w,. Daraus folgt fiir die potentielle
Energie des Oszillators ganz analog der klassischen Theorie

E, = £ wox, )
2
Die SCHRODINGER-Gleichung lautet
d?y 2p
Unter Verwendung der Ausdriicke
n x
Xo=  [—, &=— 1C))
Hwo Xo

konnen wir Gl. (3) umformen in

dzy 2E »

il = _ =0. S

d£2+<hwo 5>w )
Diese Differentialgleichung wird durch den Ansatz

-

v =y&) = CG:Hy(S)e 2 ©®
geldst, wobei wir fiir das HErMiTEsche Polynom H, schreiben:

HA(& =) a,28)". 0]

»=0

Wir bilden die zweite Ableitung

d2H, _

FE 524” (v — 1) a, (282 ®)

und setzen diese in Gl. (5) ein. Es folgt die Gleichung

%(25),{ 4@ +2)(» + Dayyz — 2va, + <h2E - l)ay} = 0. ©®)
y=0 (7))
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Damit diese Bedingung erfiillt ist, miissen simtliche Koeffizienten verschwinden, das

bedeutet
2F
2y — ( — 1>
hwo

4+ @+ 1

Wenn diese Reihe fiir » = 1 abbrechen soll, dann muf3

a,. (10)

ay+2 =

An+2 = dntga = - =0

sein. Das aber ist nur moglich fiir

2F
2n+1 — =0,
hwgy
woraus folgt
Ao 1
E=E, = 5 @2n + 1) = hw, (n—l—z) ; n=0,1,3,... (1

Hiernach tritt die Energie des harmonischen Oszillators gequantelt auf, wobei dic
Nullpunktenergie den Wert /wo/2 hat.
Wir legen a, = 1 fest und setzen GIl. (11) in Gl. (10) ein. Dann ergibt sich

n(n—1 nn—1H(m—2)(n —3
a© = o — 10D gepes  MOZDODUZI e
Dieser Ausdruck kann zusammengefaf3t werden zu
dn
Hy &) = (—1)e? —e 4. 12
(§) = (—1re & © 12)
Als Losungsfunktion der SCHRODINGER-Gleichung erhalten wir damit
_& 4r
Yo = Can(E) € 2 = Cn (—1)” 6'52 @ C—Ez. (13)
Aus Beispiel 205 entnehmen wir, da die Normierungskonstante den Wert
Cp = 4 [H00 a4)
J2rnt Nomh

hat. Wir berechnen abschlieBend die Energiewerte E, entsprechend Gl. (11).
Setzen wir die gegebenen GréBen ein, so ergibt sich

E =E, =1,05-10-3*-2,95 - 10 (n + %) J =3,09-10-2° <n + %) J=

= 3,09 -10-2°. 6,25 - 10'8 (n + %) eV = 0,193 <n -+ %) ev.
Hiernach hat das Quant des OsziHators den Wert
howo = 3,09 -1072° J = 0,193 eV.

Fiir die Nullpunktenergie erhalten wir 0,096 eV, fiir dic Energie der ersten Grund-
schwingung dagegen 0,289 eV.
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233,

234,

Berechnen Sie die Wellenldnge der von einem Sauerstoffmolekiil infolge seiner Oszil-
lation emittierten Strahlung. Als zuldssige Anderung der Quantenzahl ist 4» = 1 zu
setzen. wy = 2,95 - 101451

Losung

Nach dem Bonrschen Postulat gilt fiir die Frequenz der Strahlung
h = Ea — Ee = h(DoAn = fla)o.

Wie wir sehen, ist die Frequenz v gleich der Oszillationsfrequenz wo/2w, mit der die
beiden Sauerstoffatome gegeneinander schwingen. Hieraus ergibt sich

wo 2,95-10*4
Die Strahlung liegt also im infraroten Spektralbereich,
Nach der klassischen Theorie und nach der Quantentheorie ist die Wahrscheinlich-
keit zu berechnen, beim harmonischen Oszillator fiir die Auslenkung einen Wert zwi-
schen den Grenzen x und x -+ dx anzutreffen. Wie groB ist diese Wahrscheinlichkeit bei

einem Wasserstoffmolekiil, das sich in der ersten Grundschwingung mit w, = 8,04 x
x 10'*s-1 befindet, fiir die Werte x =20+ 10"*2m, dx = 5- 1012 m?

Losung

Als Losungsfunktion der SCHRODINGER-Gleichung fiir den harmonischen Oszillator
hatten wir bereits erhalten

1 oy -e 1) 4 [uwe £ dne-£
pom 4B gy T G fre 0
\/2,,”! wh \/2"71! nh dén

mit .
X A/ I3 mym;
&= —, Xo= y M= .
Xo Hwo my + m;,
Im Fall » = 1 folgt
2 x -
Y = — e 2%},
Xo \/TE Xo

Hieraus ergibt sich

X

2 x?
—e
o dm A

Fiir die zu untersuchende Oszillation des Wasserstoffmolekiils erhalten wir

*o

wx)=lyP =

=" TH 22 kg=084-10"2"kg,

# 2mH 2
[ # 1,05 - 10-5* )
TN g ~/0,84- 1077 -g,04 - JorF T~ 1257107 m.
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Somit folgt

X 20-10-2 x
T T 1,6, Z= 2,56
und daraus
2 x2 _* dx 2 5-10-t2
dx=-"="e 7 = —— 2,560,077 ———-—— = 0,089.
W) dx N A W T 1251012 2222

Bei der klassischen Rechnung ist die Auslenkung durch
X = asin wot
bestimmt, wobei sich die Amplitude ¢ gemiB der Bezichung
2E

“T N
aus der Energie E ergibt.
Wir bezeichnen die Periodendauer rmt T = 27/w,, die Zeitspanne fiir das Durchlaufen
der Strecke dx mit dr. Da das Teilchen sich sowohl beim Hin~ als auch beim
Riicklauf im Bereich x --- x + dx befindet, erhalten wir fiir die klassische Wahrschein-
lichkeit
dt

delass e Wklass(x) dx = 2 ?

Somit folgt wegen

— = g wq COS wgt,

dr

AWitass = Witass dx =2 — ————— = = —
Klass lass 21 a wo oS wot ™ \/a2_x2’

also ist
1 1

BN
Im vorliegenden Fall ist das Oszillationsquant der Schwingung

E = hwo = 1,05-10734.8,04 - 10-*4 J = 8,44 - 10-2° ],
Es folgt weiter

2-1,05- 103+
- 2 = . 10-12
=Nz «/Wo ~/o,s4- 1077 2,95 101 @ = 1107 m.

Hieraus ergibt sich fiir die klassische Wahrscheinlichkeit
dx 5-10-12

g dxt == ——— = = 0,075.

M OX = L@ — 2 3141072 J@9,1)7 — (202 ——

Also ergibt sich gegeniiber der quantenmechanischen Rechnung ein betrichtlicher
Unterschied.

Winass(X) =
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235.

In Bild 131 wurde die Wahrscheinlichkeitsdichte entsprechend klassischer und quanten-
theoretischer Berechnung aufgetragen. In Ubereinstimmung mit dem quantenmechani-
schen Tunneleffekt k6nnen auch Auslenkungen der GroBe |x| > a auftreten, die gemif
klassischer Betrachtung nicht moglich sind.

Gemil der HesenBERGschen Unschérferelation gilt zwischen der Ungenauigkeit des
Ortes und der Ungenauigkeit des Impulses die
Beziehung

w

2

@ @y = % a

Berechnen Sie nach MaBgabe dieses Zusam-
menhangs das Energieminimum des harmo-
nischen Oszillators.

Losung .
Die Gesamtenergie betrdgt im Mittel Bild 131
2 2
= _Pi | Mo —;
E=" 4+ —x% 2
on + 7 )]

Fiir den Mittelwert der Ortskoordinate erhalten wir

+ +ow

f=fw2‘andx=flwn|2xdx- 3)
= -

Da |y,|? eine gerade Funktion ist, ergibt sich fiir x|y,|2 eine ungerade Funktion, also
verschwindet das Integral (3), und es wird x = 0.
Weiter erhalten wir mit ¢} = v, fiir die Impulskoordinate den Ausdruck

+ o
.0 +
f),=ftp,, (——ih —) ypdx = —ik [!/J,z,] .
0x —»
-

Dieser ergibt gleichfalls den Wert Null, denn y, verschwindet im Unendlichen. Somit
konnen wir schreiben

x* = d4x?, p}=4p},
und an Stelle von Gl. (1) erhalten wir

hZ
4

"
Y
v

“@

oder

HNI
[\
I

N
!
N

)
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236.

237.

Wenn wir Gl. (5) in Gl. (2) einsetzen, so folgt fiir die Energie

_ 2 w2x2 2 w2h2
E=fyp=tzh g 2, ®
2u 2 20 2-4p2

Das Minimum erhalten wir durch Null-Setzen der ersten Ableitung, wobei p2 als un-
abhingige Variable aufgefafit werden kann. Fiir den Extremwert erhalten wir den Aus-
druck

1 u wih? —  Hwoh

— = ==0, p 5 - @)

Wir setzen den so gefundenen Ausdruck Gl. (7) in Gl. (6) ein, und es folgt
— _ hwo hwo hwgy
Ez—+ —=—.
=74 T4 2

Demnach ist die Nullpunktenergie Awo/2 die kleinste Energie des harmonischen Oszil-
lators, die mit der HEiseNBERGschen Unschérferelation vertrdglich ist.

Berechnen Sie die A-Matrix des harmonischen Oszillators.

Losung

Die Elemente H,,, der H-Matrix ergeben sich aus

Hyn = [ w8COHY) dx.
Entsprechend der SCHRODINGER-Gleichung fiir stationdre Zustdnde gilt

Hwn = Lp¥n.
Demnach kénnen wir, da die Losungsfunktionen »,, ¥* normiert und orthogonal sind,
schreiben '

" 1
Fp,n = [ vaEwLdx = F, f Vivn dx = Eydy 5 = hovo (n + 7) S

dabei bedeutet d,,, das KRONECKER-Symbol. Wir erhalten die Matrix

7
o o o o0...
2
hwo
3% o9 o ...
g=|| ° 332
ha)o
0 0 5220 o, ..
2

Berechnen Sie die Matrix der Ortskoordinaten fiir den harmonischen Oszillator. Wie
groB ist die Ubergangsfrequenz fiir Spriinge vom Zustand m = 2 in den Zustand # = 1
bei einem Wasserstoffmolekiil mit der Kreisfrequenz wo = 8,04 - 1014 s~*? Die redu-
zierte Masse hat den Wert 4 = 0,84 - 10-27 kg,
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Losung

Die mittlere Zahl der pro Sekunde stattfindenden Ubergénge aus dem Zustand m in den
Zustand n betrégt

o2
3nehtc?

Wir berechnen die Matrixelemente

= [ i = [ £vm @mae) at =

2
N, n = |Em — Eaf? (fxw,,.w,. dx) . 1)

+

= CuCo2 f fe~8 HL(8)H(E) d&. @)

Fiir den Fall m = n erhalten wir im Integranden wegen des Faktors £ eine ungerade
Funktion. Da sich die Integration von —oo bis + oo erstreckt, folgt somit ’
X, m = 0.

In den weiteren Uberlegungen setzen wir m > n voraus.
Die Funktion &éH,(&) wird in eine Reihe der Funktionen H(£) entwickelt, wobei flir /
gilt:i=0,1,2, -, n+ 1, also

EH(§) = 528" & - =:=§:cin(E) = 1 (2E)* 4 e (3
Hieraus folgt
1
Crey = > -

Indem wir Gl. (3) in Gl. (2) einsetzen, erhalten wir

+
n+1 ®

Xmn = CnCo2 3 €, f -8 H, (S H,(E) d. @)
i=0

—w

Wegen der vorausgesetzten Orthogonalitdt der Losungsfunktion verschwindet jedes
Glied fiir i &= m. Da i alle ganzzahligen Werte von 0 bis # + 1 durchliuft, kann in
Gl. (4) nur fiir den Fall n 4+ 1 = m ein von Null verschiedener Summand auftreten. In
allen anderen Fillen m > n folgt x,, , = 0. Haben wir dagegen m = n + 1, so ergibt
sich aus Gl. (4)

+co

xn+1_n = CUng1 Cnxgcn+1 fe_fz H3+1 (5) dé =

—©
+w N /
C" 1 X Xo Cn X0 2"“(}2 + 1)!
:_x_—cnz fe 2Hr|2 X)dx =7 o = — —————
C"+1 0 2 +1 x5 +1( ) 2 Cn+1 2 N/2" 0

— ™

wegen der geltenden Normierungsbedingung.
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238.

Damit folgt
Xo \/ n—+1 n+ Dt
Xnyl, n = — = > . (5)
V2 uwo
Ebenso erhalten wir
xo \/m + 1 (m+ 14
Xmmel = — = . (6)
\/ 2 2uwg
Demzufolge muf} die Ortsmatrix des harmonischen Oszillators das folgende Aussehen
annehmen:
1
o JL
3 0 0
1 2
x=xoln' 7 © A/? o ™
2 3
0 -0 =
2 2

Dabei wurde die Numerierung der Zeilen und Spalten mit Null begonnen. Im harmoni-
schen Oszillator sind demnach nur solche Ubergidnge méglich, bei denen sich die
Quantenzahl um

dn = +1

andert. f
Fiir den Ubergang vom Zustand m = 2 auf den Zustand »n = 1 folgt gemiB Gl. (5)
bzw. Gl (7)

JZ J A
x :x [ -
2,1 0 5 S

Die Anzahl der in der Sekunde erfolgenden Ubergiinge des Oszillators erhalten wir
danach zu '

e? e2w?
Noy=—— (Epor — E)* X2 =—— 2 =
217 Bregh*c (e ) X2 3mepcdu

_ (1,6 10-1%)2. (8,04 - 1014)2

©3.3,14-8,85-10712. (3. 10%)3.0,84.10-27
Wenn auf Grund statistischer Untersuchungen die Besetzungszalilen fiir die einzelnen
Quantenzustinde bekannt sind, kann mit dem vorstehend angewandten Verfahren die
Intensitét der einzelnen Spektrallinien errechnet werden.

s7! = 8,73.103s" L.

In einem zweiatomigen Molekiil sei der Abstand beider Atome unverdnderlich, so dafl
nur Rotationsbewegungen auftreten konnen (starrer Rotator). Leiten Sie aus der all-
gemeinen Gleichung Hy = Ey die SCHRODINGER-Gleichung in Kugelkoordinaten fiir
den starren Rotator ab, und bestimmen Sie aus dem Vergleich mit der Eigenwert-
gleichung L%y = L?p die Energiestufen. Wie grof3 ist das Rotationsquant fiir das
Wasserstoffmolekiil? Der Abstand der beiden Wasserstoffatome ist r = 0,75 - 10-1° m.
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239.

Lésung

Wegen des unverdnderlichen Abstands beider Atome ist die potentielle Energie des
Molekiils eine konstante GroBe; wir konnen sie gleich Null setzen. Im HAMILTON-

Operator
2

L
H =T\ +2—,ur2— 4))

ist ebenfalls 7, gleich Null zu setzen, da sich nur die Winkelvariablen ¢ und ¢ dndern.
Nach einer Multiplikation mit dem konstanten Faktor 2ur? ergibt sich danach

L%y = 2ur?FEy @
bzw.
1 o /. oy 1 0%y 2ur?
— b—)F—5— — +—FEp =0
sind o9 (Sm a@) oz o2 T BV ®

als SCHRODINGER-Gleichung des starren Rotators.
Aus der Einleitung zu 4.3. ist uns bekannt, daB die Differentialgleichung

Lyl = Lyl C))
nur fiir die Eigenwerte

L,Z=hfl (¢+1; 1=0,12,.. (5)
physikalisch sinnVolle Ldsungen zuldBt.
Vergleichen wir Gl. (2) u. (4), so erkennen wir, daB3 die Differentialgleichung des starren
Rotators mit den Eigenwerten )

urlE=#r1(1+1); [=0,1,2,..
1osbar ist. Die Energie E des Rotators tritt also gequantelt auf, und zwar ist
R+ w7 < 1)2_ H?

2

I+ — . 6
2ur? 2ur + 2 8ur? ©

E:EI

Wenn wir die Energiedifferenz E; — E, als Rotationsquant definieren, so folgt

h? (1,05 - 10-3%)2

— Ey =— =
E °© 7wz 0,84-10-27 (0,75 - 10-1°)2

J=1232-10"%*17.

Das Rotationsquant erweist sich also um etwa eine GroBenordnung kleiner als das
Oszillationsquant. '

Fiir den Abstand zweier Rotationslinien des Sauerstoffmolekiils wurde als Mittelwert
4 ( L ) =291 m-?!
-] =

gemessen. Berechnen Sie daraus den mittleren Kernabstand und das Massentrédgheits-
moment des Sauerstoffmolekiils.
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240.

Losung

Gemil dem BoHRrschen Postulat ergibt sich die Wellenldnge der Strahlung aus

€y
Hierbei ist beriicksichtigt, daB Uberginge im starren Rotator entsprechend der Auswahl-
regel

=41

erfolgen.
Setzen wir aus dem vorhergehenden Beispiel 238 die Gl. (6) hier in Gl. (1) ein, so er-
halten wir den Ubergang vom Quantenzustand / + 1 in den Zustand / gemi8

1 h
— =—204+1)=2B{U+1). 2
(l)”“ s 2+ D =28 () @
Es folgt also als Differenz der Wellenzahlen benachbarter Rotationslinien
1 1 1 h
al=)=(=) =[5 = = 2B. e
(»1) <A>1,1+1 <}~>1,1_1 4r2cur® ®

Demnach ist der Frequenzabstand benachbarter Rotationslinien konstant.
Fiir das Massentriagheitsmoment des Sauerstoffmolekiils erhalten wir den Wert

h 6,62 - 10734
J=urt= - : kgm? = 1,92 - 10-*6 kgm?.
“r 1 4-(3,14)2-3 - 10% - 291 gm ’_9—_im_
7
Die reduzierte Masse des Sauerstoffmolekiils ist g = 8+1,673-10-27kg = 13,4-10-27 kg,
Daraus finden wir den Kernabstand zu

= A/l 92 - 107 i = P -Zweig R~ Zweig

"= 13,4-1027 0 = R
= 1,19 -10-1%m, _"\;ao
Es wird die Rotationsschwingungsbande des 'ij’iso
CO-Molekiils (Bild 132) untersucht. Fiir die §
~<C 20

erste Linie des P-Zweiges werde die Wellenzahl

; . T — v/m
215000 216000 217000 218000

1
Py = (—) =2,1654 - 105 m~* _
Ao Bild 132

fiir die erste Linie des R-Zweiges die Wellenzahl

1
V= (—) =2,1730 - 10° m™*
)i
gemessen. Berechnen Sie aus diesen Angaben das Schwingungsquant Aw,, die Oszilla-
tionsfrequenz und das Triagheitsmoment des CO-Molekiils. Wie groB ist der Kern-
abstand?

19 Hajko, Elektrik
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Losung

Rotationsschwingungsbanden treten éuf, wenn das Molekiil sowohl Oszillations- als

" auch Rotationsschwingungen ausfiihrt. In diesem Fall erhalten wir die Gesamtenergie E

als die Summe von Rotations- und Oszillationsenergie [vgl. Gl. (6) in Beispicl 238 sowie
Gl. (11) in Beispiel 232]:

I+ 1)#°

1
E, = (71 + 7)?1(1)0 + 20r? . 1)

Fiir die Wellenzahl der Strahlung ergibt sich nach dem Bonrschen Postulat
1 Ey v — En

1 ’ 2
Y 2 he @
wobei die Ubergangsregeln
An=n"—n=4+1, I=0—-1=+1 3)

zu beriicksichtigen sind.

Eine Emission erfolgt fiir den Fall 4n = +1, und — da das Rotationsquant etwa eine
GroBenordnung Kleiner als das Oszillationsquant ist ~ fiir 47 = +1. Aus Gln. (1) u. (2)
erhalten wir somit

LS S PY S 1)] 4)
=T e Mo T G IED] (

Fiir die Oszillationsquantenzahl / haben wir ganzzahlige Werte
1=0,1,2, ...

einzusetzen. Wenn wir in GIl. (4) das obenstehende positive Vorzeichen annehmen, so
finden wir fiir die Wellenzahlen des R-Zweiges
wg h w

o ko _
e i T D S g THA DS ®

Bei Wahl des negativen Vorzeichens in Gl. (4) erhalten wir fiir die Wellenzahlen des
P-Zweiges

)y =—— ———— ] =—" —2IB, (6)
Dabei beriicksichtigen wir, daB fiir die Rotationsquantenzahl / = 0 ein Ubergang in

Rotationsbewegungen mit negativer Quantenzahl / — 1 = —1 nicht mdglich ist. Der
Wert / = 0 tritt daher in Gl. (6) nicht auf, vielmehr haben wir zu schreiben

1=1,2,3, ...

Wir ersehen hieraus, daf3 die erste Linie des R-Zweiges die Wellenzahl

= Wo
P, = e + 2B,
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241.

19*

die erste Linie des P-Zweiges die Wellenzahl

aufweist. Eine Linie mit der Wellenzahl

Wo

o= 2ne
tritt dagegen nicht auf.
Aus der Messung der Linien #,; und »_; finden wir die Wellenzahl der fehlenden
Linie zu

- vt 21730 42,1654

- — 105 m-t = 2,1692 - 105 m
vo 2 2

Hieraus erhalten wir fiir die Oszillationsfrequenz
w—; = o =3 - 108 - 2,1692 - 10° 5! = 6,5076 - 1013 5-1.
Das Oszillationsquant betrigt
hwo = hcvy = 6,62 - 10734 - 6,51 - 1013 J = 4,31 - 10-2°7J,

Aus dem Abstand beider Linien entnehmen wir

= (2,1730 — 2,1654)- 10° m~! = 760 m™!

1_}+1 '—'1—/_1 =4B =

2m2cur?
und daraus fiir das Triagheitsmoment des CO-Molekiils den Wert

; h 662-10-%% .,
= r = =
o g, — ) T 2(G1473-10°- 760 g

— 1,47 - 10-%% kgm?2.

Die reduzierte Masse des CO-Molekiils betrigt

mimy 12-16
= = +1,673 - 10~27 kg = 1,147 - 10~26 kg.
b Tm 12116 =114 £

Fiir den Kernabstand finden wir also

1,47 - 10-4¢
_ . —-10
¥ —A/ A/] T 1o = 1,13 -10"1°m.

Von einer Quecksilberdampflampe wird eine Linie der Wellenldnge 4 = 2536 - 10-*°m
emittiert. Berechnen Sie die SMEKAL-RAMAN-Streuung in einer H,-Atmosphére, wenn
der Kernabstand der beiden Wasserstoffatome r = 0,77 - 10-1°m und die Masse eines
Wasserstoffatoms 1,673 - 10-27 kg betrigt.



292

4. Quantentheorie

Lidsung

Die Einstrahlung des Quecksilberlichts bedeutet fiir das getroffene Molekiil, daf3 seine
Energie auf ein Zwischenniveau angehoben wird. Dabei kann die Rotationsquantenzahl
um =1 verdndert werden. Bei der Wiederausstrahlung kann ebenfalls eine Anderung
um =1 eintreten. Fiir den SMEKAL-RAMAN-Effekt ergeben sich damit die folgenden
Auswahlregeln:

Al = —1 — 1 = =2 (P-Zweig),

Al=—1+1= 0 (Q-Zweig),

Al = +1+1= 42 (R-Zweig).
Aus dem Energieniveau fiir die Rotationsschwingungszustinde

1 I(+1)4%
E,. =<n+7>ﬁwo +T

erhalten wir demnach die Wellenzahlen:
1. 4l = —2 (P-Zweig):

- Ey102— Ei Wo h Wo
7 =—“T——=E-2(21~1)W=% — 21— 1)B;
1=2,3,4, ..
2. 41 = 0 (Q-Zweig):
To =En+1,l = Lmr _ _20_;
he 2re
3, Al = +2 (R-Zweig):

1=0,1,2, ...

Bei der numerischen Rechnung miissen wir die reduzierte Masse des Wasserstoff-
molekiils, ndmlich

b= _'2'1 — 0,836 - 10-27 kg,

einsetzen. Wir erhalten damit zunédchst

h 6,62 - 1073+ »
T Brlcpr®  8-(3,14)2-3-10°-0,836-10-27-(0,77-10- 102 1~ ~
= 5644 m-1,
Ferner ist
Wo 1 1

- m-1 =39432-105m"!.
e~ 7 2536100 1 =394 m
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Fiir die Wellenzahlen 7 und die Wellenlingen A der gestreuten Strahlung ergeben sich
somit die in folgender Tabelle dargestellten Werte (s. auch Bild 133):

P-Zweig Q-Zweig R-Zweig
/ 4 3 2 0 1 2
Zusatzglied —14B —10B —6B 6B 10 B 14 B
i 1071°m 2588,0 2572,8 2558,0 2536,0 | 25144 2500,2 2486,2
7 10 m-* 3,8642 13,8868 3,9093 3,9432 13,9771  3,9996  4,0222

242. Die Auswertung eines FORTRAT-Diagramms fiir das AIH-Spektrum ergibt einen Banden-
kopf des R-Zweiges fiir die Quantenzahl _
[l = 4,1, einen Bandenkopf des P-Zweiges '~ # 3 2 0 1 2

fiir die Quantenzahl / = — 5,1. Als Differenz
~ ~ _ _ . 48 | 48 68 68 48 | 48
A = (Protr — Prot@) — (Prorq — Prore) Wird un-
abhidngig von der Quantenzahl / ein Wert - v -
. . . - 0 +
A =920 m~?! ermittelt. Bestimmen Sie das P-Zwsig  Q-Zwsig  R-Zweig
Trigheitsmoment des AIH-Molekiils vor und ar=-2 at=0 al=+tz
nach dem Quantensprung (Bild 134). Bild 133
8 S,
7 J\
6 % ‘\\
—— M) ; ‘ }r\\
N Q-Zweig 4 | U R-zweig
i _
j :\ 3 ! l i
] AT
TT—— | J’\ 2 | { Il
| pozweg Tl N\U- ! il
1 T i T | { i
| J P I B w0
-3000 ~2500 -2000 —~1500 1-7000 -500 1 0 500 7000 7500 | 2000 | 2500
I | ! Il | Vs m il I [
| | I Il ! j e [ I [
| \ | I | (| . I I
! |
Bild 134

Losung

Die Anderung der Elektronenanordnung im Molekiil ist mit einer Anderung seines
Tréagheitsmoments verbunden. Wir bezeichnen mit J das Tréigheitsmoment vor, mit J’
das Tridgheitsmoment nach Verdnderung des Quantenzustands. Demzufolge erhalten
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wir fiir die Rotationsenergie vor und nach dem Quantensprung die Ausdriicke
_d+ 142 , P+ DR?

S22 T ar

Die Anderung des Rotationszustands bewirkt eine zusétzliche Strahlungskomponente.
Fiir die Wellenzahl dieser zusitzlichen Komponente erhalten wir

E,

ps — E,’,h— E, - h2 [l'(zf + D 10+ 1)} )
c 8n2c J J

mit den Auswahlregeln

Al =1V —1=0,4+1.
"Wir setzen

el 2] e (33
und erhalten fiir A/ = +1 (R-Zweig)

Pon =B+ 1)+ C U+ 12, 3)
fiir 41 = 0 (Q-Zweig)

Frorg = C (I + %) @
und fiir 47 = —1 (P-Zweig)

Frotp = —BI + CI2. )

Die Zusammendringung der Spektrallinien erfolgt am Parabelscheitel des betreffenden
Zweiges. Wir erhalten den Scheitelwert des R-Zweiges aus der Beziehung

d-ro = =
%=B+2C(Z+l):0, (6)
woraus folgt
B
-2 6.1)
2C
Fiir den Q-Zweig ergibt sich
d;rotQ — .
——=C({1 +2) = 7
] a+25=0 )
und daraus
1
= —— . 7.1
> (7.1)

Fiir den P-Zweig schlieSlich gilt

di;r otP

o= —Bt+2C=0, ®
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d. h.
B
-2 @1
2C
Aus den Hiufungsstellen des P-Zweiges und des R-Zweiges entnehmen wir
B B
—51l=—, 41 =———1. )]
2C 2C

Die Ergebnisse der Messung fiir den P-Zweig und fiir den R-Zweig zeigen also Uber-
einstimmung miteinander.
Fiir die Differenz 4 erhalten wir aus den Gln. (3), (4) u. (5)

A = Grotr — Vr010) — (Frotg —Prore) = B+ C (10)
und somit durch Auswertung der Messung

B+ C=920m". an
Aus den beiden Bestimmungsgln. (9) u. (11) entnehmen wir schlieBlich die Werte fiir

B=10200m"!, C= —100m-!. (12)

Wir verwenden fiir die Ermittlung des Trigheitsmoments vor dem Quantensprung die
Definitionsgl. (2) und finden

h 1 6,62 - 103+ 1
J= — — = kgmz =
4=%¢c B _ ¢ 4-(3,14)*-3-10% 1120
5,10 - 10-44
=2 kgm? = 4,55 10~*7 kgm?. 1
1120 gm , 10-%7 kgm 13
Als Trédgheitsmoment nach Vollzug des Quantensprungs ergibt sich
h 1 5,10 - 1044 :
' = =2 kg m? = 5,54 - 10-%7 kgm?. 14
e 5o C Gap e’ =34 1077 kgm a4

A Aufgaben )

327. Vergleichen Sie das Quant der H,- 328. Berechnen Sie fir das HCI-Molekiil,

Linie mit dem Schwingungs- und mit welche Wellenldnge der Strahlung des
dem Rotationsquant des HCIl-Mole- Oszillationsquants und welche der des
kiils. Die Kreisfrequenz der inneren Rotationsquants entspricht. Kreis-
Schwingung ist we = 5,21 - 101%s-1, frequenz und Kernabstand wie in
der Kernabstand » =1,30-10"1%m, Aufg. 327.

die Wellenlinge der H,-Strahlung 329. Berechnen Sie die Formel der Wahr-
g = 6564-10"1°m; die relative scheinlichkeitsdichte fiir den harmoni-
Atommasse des Cl wird mit 35 ange- schen Oszillator, der sich in der zweiten

setzt. Grundschwingung befindet. Verglei-
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330.

331.

333.

334,
33s.

336.

337.

338.

339.

chen Sie das Resultat mit der klassi-
schen Theorie. Wie grof ist die Wahr-
scheinlichkeit dafiir, bei einem Chlor-
molekiil in der zweiten Grundschwin-
gung eine Auslenkung x =0, dx =
= 210712 m anzutreffen? Die Kreis-
frequenz der inneren Schwingung ist
wo = 1,07 - 10 s-1,

Bestimmen Sie, wieviel Nullstellen die
einzelnen Losungsfunktionen ¢ = y,(x)
des harmonischen Oszillators haben.
Wie grofl ist die Wahrscheinlichkeit
dafiir, bei einem in der Grundschwin-
gung befindlichen harmonischen Os-
zillator einen Kernabstand anzutreffen,
welcher gemif der klassischen Theorie
nicht zuléssig ist?

. Berechnen Sie 2 fiir den Fall des har-

monischen Oszillators, der sich in der
ersten  Grundschwingung  befindet.
Welchen Wert erhalten Sie fiir den Fall
des Wasserstoffmolekiils?

Berechnen Sie die Impulsmatrix des
harmonischen Oszillators.

Beréchnen Sie die Matrix px — xp.
Berechnen Sie die Energiematrix

1 1
E=—p*+ —uwis?.
2”}7 + 5 pag
Berechnen Sie fiir die einzelnen Quan-
tenzustinde des harmonischen Oszil-
lators das mittlere Schwankungsqua-

drat 4x? des Ortes und das mittlere

Schwankungsquadrat 4p? des Impul-
ses.

Bestimmen Sie die Ubergangsfrequenz
eines HCIl-Molekiils fiir Uberginge
aus dem Zustand » =3 in den Zu-
stand » = 2. Die Kreisfrequenz ist
wo = 5,21 - 10** 571,

Wie groB ist wihrend einer Perioden-
dauer fiir das HCIl-Molekiil die Uber-
gangswahrscheinlichkeit 3 — 2?
Berechnen Sie die Nullpunktenergie
eines Oszillators von 10 g Masse in
einem Feld der Stirke 1 Nm~1,

340.

341.

342.

343.

344,

345.

Die Energie des eindimensionalen Os-
zillators ist E = kT (k = 1,38 - 10~23)
grd-!, T abs. Temperatur). Berechnen
Sie die Quantenzahl des harmonischen
Ostzillators in Aufg. 339, und zeigen Sie,
daBl die Energiednderung praktisch
stetig erfolgt.

Fiir den Abstand zweier Rotations-
linien des NO-Molekiils wird als

Mittelwert A4 <%) =339 m-! gemes-

sen. Berechnen Sie daraus das Trig-
heitsmoment, den XKernabstand und
das Rotationsquant des NO-Mole-
kiils.

Berechnen Sie den Abstand der Rota-
tionslinien des J,-Molekiils. Der Kern-
abstand ist r=2,66-10"1"m, die
relative Atommasse 126. Es stehe ein

A
Spektralapparat der Auflosung TR

= 10000 zur Verfiigung. In welchem
Bereich muB die Trigerstrahlung liegen,
damit die Rotationslinien noch ge-
trennt werden kénnen?

Es werden die Rotationsschwingungs-
bande des Br,-Molekiils untersucht.
Wie groBl muf das Auflosungsvermdogen

A . .
i des Spektralapparats sein, um die

Linien voneinander zu trennen? Dabei
ist vorauszusetzen, dafl nur Rotations-
bzw. Oszillationsenergie des Molekiils
verindert wird. Die Kreisfrequenz ist
we = 6,11 - 103 s~*  das Trigheits-
moment J = 3,42 - 1045 kgm?.
Berechnen Sie, wie grol3 das Auflosungs-
vermogen einer Apparatur sein muB3, um
den in Beispiel 241 berechneten
SMeEkAL-RAMaN-Effekt erkennbar wer-
den zu lassen.

Berechnen Sie Tridgheitsmoment und
Kernabstand fiir ein N,-Molekiil aus
den Angaben der SMEKAL-RAMAN-
Streuung, wenn das Spektrum im
Zentrum durch folgende Wellenzahlen
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charakterisiert ist:
v=3,9452-10°m™,
3,9444 - 10° m-1,
3,9432.10°m™,
3,9420- 10° m™,
3,9412.10°m1.

346. Aus den Losungen ;. (9,9) der
SCHRODINGER-Gleichung  fiir den
starren Rotator sind die zirkularen

Matrixelemente
(5 + i77)Lm;l’,m’ =
2t w
= rf J sin 9 e£1? x
0 0

X Yf v sin 9 dd de

und die linearen Matrixelemente

2t w

(C)l,m;l‘.m'=rf fcosﬁ X
0 0

X wlﬁ.‘mﬂ)l’,m' sin ¢ d¢ d(p

zu berechnen.

Dabei besteht zwischen &, 5, { und
r, #, @ der Zusammenhang zwischen
cartesischen und Kugelkoordinaten:

& 4 in = rsin #etl?,
§ = rcosd.

Welche SchlufBfolgerungen ergeben sich
aus der Losung fiir die Linienintensitét,
welche Auswahl- und Polarisations-
regeln gelten, was folgt daraus fiir den
ZEeMAN-Effekt?



5. Relativitdtstheorie

5.1. Spezielle Relativitiitstheorie

Messungen von MICHELSON ergaben im Jahre 1881, daB3 auf der bewegten Erde das
Licht — unabhéingig von seiner Ausbreitungsrichtung — stets die gleiche Geschwindig-
keit aufweist. Hierauf griindet sich die von EINSTEIN im Jahre 1905 entwickelte
spezielle Relativitéitstheorie. In ihrem speziellen Relativitdtsprinzip geht sie davon aus,
daB fiir jedes Inertialsystem das Licht in allen Richtungen die gleiche Geschwindigkeit
hat. Als Inertialsystem bezeichnet man ein Bezugssystem, in welchem jeder Korper,
der keinen duBeren Kréften unterliegt, sich mit konstanter Geschwindigkeit bewegt.
Jedes gegenilber einem Inertialsystem X mit konstanter Geschwindigkeit fortschreitende
Koordinatensystem X' bildet gleichfalls ein Inertialsystem.

Die experimentelle Bestdtigung fiir das spezielle Relativitidtsprinzip wurde nach
unterschiedlichen Methoden u. a. 1912 von HARRES, 1914 von SAGNAC und im selben
Jahr von WIEN erbracht.

Im folgenden seien zwei Koordinatensysteme X und 27 betrachtet, Das System 2 ist
durch seine rdumlichen Koordinaten x; = x, x, = y, x3 = z sowie durch die mit
der Zeit ¢ verbundene Koordinate x, = ict definiert. In der gleichen Weise wird das
System X" durch die vier Koordinaten xi, x5, x5, x, reprisentiert. Gegeniiber %
bewegt sich 2" mit der konstanten Geschwindigkeit 3. Ohne Einschrankung der
Allgemeingiiltigkeit kann man die Ursprungspunkte 0(0, 0,0, 0) und 0°(0, 0, 0, 0)
beider Systeme als identisch voraussetzen.

Es wird die Ausbreitung einer zur Zeit t = ¢’ = 0 vom Punkte 0(0, 0, 0) ausgehenden
Kugelwelle betrachtet. Entsprechend dem Relativititsprinzip erhdlt man fiir die
Wellenfronten die Ausdriicke

4
2 2 2 2
Xi+ x5+ x5 — %2 =) x; =0.
=1
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Vom System X" aus beurteilt, gilt in gleicher Weise

4
X Ay = = § A = 0.
Jj=1
Hieraus ergeben sich die Transformationsformeln von LORENTZ. Wenn man als Rich-
tung, unter der sich X’ gegen X fortbewegt, die x-Achse beider Systeme wéhlt
(Bild 135), so folgt nach LORENTZ

x,:__\/x—vt , YV =y z =z z ¥

1 —p2 —
t—ix 0 Iod ,

o e e
NS Bild 135

Dabei ist § = v/c.
Nach MaBgabe der LorENTZ-Formeln wird auch die Zeit transformiert. Eine Zeit ¢/,
die von einer mit dem System 2’ bewegten Uhr festgestellt wird, bezeichnet man als
die Eigenzeit des Systems X", Die Geschwindigkeit substantieller Teilchen kann nicht
groBer als die Lichtgeschwindigkeit ¢ sein. Fiir die Grenzwertbetrachtung ¢ — oo geht
die Lorentztransformation in die Galileitransformation der klassischen Physik iiber.
Das relativistische Additionstheorem der Geschwindigkeiten ergibt sich, wenn man die
Geschwindigkeitskomponenten eines K&rpers

dx; , dxj

j = T = N '=19233
q; dr q; dr’ J

in die Formeln fiir die LorRENTZ-Transformation einsetzt. Man erhilt dann

’ -0 ’ \/1'_ 2 7 \/1_ 2
o= BT @NI-F V15
1 =Y b4y 1 =Y

c? c? c?

Wenn sich ein Korper mit der Geschwindigkeit v bewegt und dabei unter einem
Winkel ¢ gegen seine Bewegungsrichtung Lichtstrahlen der Frequenz v, aussendet,
so nimmt ein ruhender Beobachter eine Frequenz

_, Ni-p
ol—ﬁcosﬁ

wahr.
Die Koordinaten x,, X5, X3, X4 eines Ereignisses konnen nach MINKOWSKI als
Komponenten eines Vektors im vierdimensionalen Raum aufgefalBt werden. Wenn man
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die MaxweLLschen Gleichungen der Elektrodynamik in einem derartigen vier-
dimensionalen Raum formuliert, so ergibt sich als Beziehung zwischen der Masse
und der ihr d4quivalenten Energie

E = mc* (EINSTEIN-Gleichung).
AuBerdem erhélt man die LoreENTZ-Gleichung

F=e(E+7xB).
Sie gibt die Kraft F an, die auf eine im elektrischen Feld £ und im magnetischen
Feld B mit der Geschwindigkeit ¥ bewegte elektrische Ladung e einwirkt.

B Beispiele

243. In einem System X finden in den Punkten x; und x, zur Zeit ¢ = ¢, gleichzeitig zwei
Ereignisse statt. Der Abstand der beiden Punkte ist x, — x; = 10000 m. Das System 2
bewegt sich gegen ein System X" mit der Geschwindigkeit v = 3 - 10° ms~!. Wie werden
beide Ereignisse im System X2’ registriert?

Losung

Entsprechend der LorenTZ-Transformation ergeben sich fiir £ die Zeitkoordinaten

v v
to _L‘_le to —— X2

= , =
1 \/1 T 2 \/1 s
Hieraus folgt
’ r U X2 Xy
h—t=— ————\/1__5 .

Mit den vorgegebenen Werten erhalten wir

g 3-10% 10+ S 1 S
i — = _
YT 3108y Jl 3.105\2 3-1074/1 — 10-6
"(3~108)
1
’&;’?10-75.

Demnach finden die in der Eigenzeit # des Systems X gleichzeitig auftretenden Ereignisse
in der Eigenzeit ¢’ des Systems 2’ nicht gleichzeitig, sondern zu verschiedenen Zeit-
punkten statt (Relativitdt der Gleichzeitigkeit).
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244, In einem Koordinatensystem X gebe eine Uhr an der Stelle x = x, Zeitsignale, die in

245,

einem Abstand 4 =, — ¢ty = 1 s aufeinanderfolgen. Ein anderes Koordinaten-
system Z” bewege sich gegeniiber X mit einer Geschwindigkeit v = 3 - 10° ms~1, Wie
groB erscheint die zeitliche Intervalldnge in der Eigenzeit des Systems 27?

Losung

Entsprechend der LorenTz-Transformation gilt fiir die Eigenzeit " die Bezichung

t/='———-. (1)

b g b=t At
iF JiE

Im vorliegenden Fall ist v <€ ¢, so daB wir fiir Gl. (2) auch schreiben kénnen:
At 2
a¢ = (1 + = i ) &
Ji-g
In Zahlen:
173-10°% ]2 1
AV = = — - 10n-6
¢ =11+ [3_108] )s (1+510 )s

Im bewegten System £’ erscheinen die Intervalle 4¢ gedehnt. Dieser Effekt 148t sich auch

in der Art deuten, dafl der Gang einer gegen das Bezugssystem 27 bewegten Uhr ver-
langsamt erscheint.

@

Ein Korper der Lange / bewegt sich gegeniiber einem Beobachter mit der Geschwindig-
keit v. Wie gro8 muf} v sein, damit der 100 m lange K&rper eine Lorentzkontraktion
von einem Millimeter erfahrt?

Losung

Der bewegte Korper sei mit einem Koordinatensystem X verbunden. Als Bewegungs-
richtung wihlen wir die x-Achse. Fiir die Linge / des Korpers, gemessen im mitbewegten
System Z, schreiben wir

l=x2—x1. (1)
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246.

Dabei geben x; und x, die beiden Endpunkte des Korpers an. Der Beobachter befindet
sich im Koordinatensystem Z”. Entsprechend der LorRENTZ-Transformation gilt
v
¥ = x —ut t,:t_—ch @)
N N

Aus Gl. (1) folgt
; Xy —Xx; —v(t, — ty)

V' =x, — xy = . 3)
2 1 \/1 — ‘32
Die Punkte x; und x, sind dabei, betrachtet vom Beobachter in X”, gleichzeitig anzu-
visieren. Es muB also gelten: ¢; = ¢,. Damit erhalten wir aus Gl. (2)

v
I — 1y —c—z(xz — X1)

Ji-# ’

th—t;=0=

woraus sich

v
t =t = = (x2 — x1) 4)

ergibt. Wir setzen Gl. (4) in Gl (3) ein und erhalten
V=xh—xi=(x2—x)J1 — 2 =1J1—p2. (5)

Der in 2’ befindliche, nicht mitbewegte Beobachter nimmt eine Langsverkiirzung wahr.
Wenn wir v <€ ¢ voraussetzen, dann folgt

rifi-£).

Im vorliegenden Fall soll

‘52

l—l’=l—2—=1mm=10‘3m

/

sein. Damit ergibt sich wegen / = 100 m

241 2-10-3
v=c - = 3-108 N/Tms_l =1,34-10°ms~*.

Ein experimenteller Nachweis dieses Effekts war wegen der hohen, zur Lingskontraktion
erforderlichen Geschwindigkeiten, bislang noch nicht moglich.

Gegeniiber einem festen Bezugspunkt P bewegt

sich ein Ko6rper mit der Geschwindigkeit v; =0,6¢ | % (4,00) V=75 (y,00)
nach links. Ein zweiter Korper bewegt sich dagegen v,=06c P v, = 08¢

mit der Geschwindigkeit v, = 0,8 ¢ nach rechts
(Bild 136). Wie groB ist, beurteilt von einem der
beiden Korper aus, ihre Relativgeschwindigkeit g’
gegeneinander? Bild 136

[z
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247.

Losung

GemiB dem relativistischen Additionstheorem der Geschwindigkeiten gilt fiir die
Relativgeschwindigkeit ¢’, beobachtet vom System X’ aus (Bild 136), die Beziehung

’

r qr — 0
¢ =q=——

vq1
CZ

1 —

Wir setzen das System X als ruhend voraus. Es befindet sich jedoch in ihm ein Ko6rper,
dersich, von X aus beurteilt, mit der Geschwindigkeit v;(g;, 0, 0), g; = —v; = —0,6 ¢
bewegt. Von dem mit der Geschwindigkeit v = v, = 0,8 ¢ gegen X bewegten System 2’
aus gesehen, stellen wir die Geschwindigkeit

’

_ (—0,6 —0,8)c Ldc 0.946
T 140806 148 =22

fest. Im Gegensatz zu den Aussagen der klassischen Physik wird also eine Relativ-
geschwindigkeit registriert, die kleiner als die Lichtgeschwindigkeit ist. Auch dieser
Effekt 148t sich durch eine Lingskontraktion erkldren.

Zwei kohdrente Lichtstrahlen der Wellenlinge 4 = 6 + 102 nm werden {iber eine Strecke
der Lange / = 10 m durch eine strdmende Fliissigkeit mit der Brechzahl z = 1,33 ge-
leitet (Bild 137). Im ersten Fall sind Flissigkeitsstromung und Lichtstrahl einander

L 5p - Sp
i
Sp
Sp <
Bild 137. Zur Berechnung der Geschwindigkeit

eines Strahlung emittierenden Wasserstoffatoms

entgegengesetzt, im zweiten Fall einander gleich gerichtet. In beiden Fillen sei die Ge-
schwindigkeit der Strdmung dem Betrage nach gleich groB. Wie groB3 muf die Strémungs-
geschwindigkeit v sein, wenn die zwei Lichtstrahlen gegeneinander eine Phasenver-
schiebung von einer halben Periode erhalten sollen?

Losung

In der ruhenden Fliissigkeit betrdgt die Lichtgeschwindigkeit ¢ = c/n. Wir ver-
kniipfen eine der beiden Fliissigkeiten mit dem Koordinatensystem 2, den Beobachter
aber mit dem System 2’. GemiB dem relativistischen Additionstheorem der Geschwin-
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digkeiten ergibt sich fiir den gegeniiber der strémenden Fliissigkeit ruhenden Beobachter
als Relativgeschwindigkeit ¢, des Lichts

. Cr + 0 _ Cp — 0
Cr: vc, l': e .
F F

1+ ==

Wegen der Voraussetzung v <€ ¢g = ¢/n kOnnen wir hierfiir schreiben:

c,+=(cF+v)(1—”C—c;>, c;=(cF—u)<1+”—§§).

Wenn wir die Glieder zweiter Ordnung vernachléssigen, folgt daraus

2 1
cj=c,.-+v—ﬁ—;v=£+v(1——2),
c n n

2
_ CE c 1
= cp — —v=——v{l ——=].
c crp — U+ o v n v ( n2>
Der Faktor (1 — 1/n2) wird als Fresnelscher Mitfiihrungskoeffizient bezeichnet. Er ist
um so groBer, je groBer die optische Dichte des bewegten Mediums ist, und verschwindet
im Fall n = 1 (Vakuum). Lings einer Fliissigkeitsstrecke / haben wir eine bestimmte
Anzahl Wellen (N). Fiir N gilt
1 c 1
N=l—=]——,
! A A
Dabei gibt 4 die Vakuumwellenldnge, A die Wellenldnge in der Fliissigkeit an. Fiir die
in Strahlrichtung strémende Fliissigkeit messen wir demzufolge als Wellenzahl lings
der Strecke /

c 1 ¢ 1 I 7 v 1
Nt=] ——=]— =n—|1 ——n|l — =
Ao A oc 1 nlh cn< n2>]’
n n
fiir die entgegen der Strahlrichtung stromende Fliissigkeit aber
c 1 c 1 [T v 1
g
n n
Wenn die Differenz beider Wellenzahlen gerade eine halbe Periode sein soll, so muf3
gelten:
SNt Y ( B SR
N N ! T nil pe i (n ) 5
Hieraus erhalten wir fiir die gesuchte Geschwindigkeit v der stromenden Fliissigkeit die
Aussage
1 600-107°-3-108
b= A = & mst = 11,57 ms-1.

A
e — = ms -
2 1ln 1 2 10[(%) _1] 7
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248.

Die Relativgeschwindigkeit, mit der die beiden Fliissigkeitsstrome sich gegeneinander
bewegen, muB also 2v = 23,14 ms~! sein.

In einem Kanalstrahl bewegt sich ein Wasserstoffatom und sendet dabei Licht aus. Ein
ruhender Beobachter miBt fiir die in Richtung des Kanalstrahls emittierte H-Linie eine
Wellenldnge A~ = 6532,44 - 10-1% m, fiir den entgegengesetzt emittierten Lichtstrahl eine
Wellenlidnge A* = 6593,22 - 10-1° m. Die Messung wird so ausgefiihrt, daB man das
primére Licht des Kanalstrahls mit dem an einem Spiegel reflektierten Licht des in ent-
gegengesetzter Richtung emittierten Strahls vergleicht. Wie gro8 ist die Geschwindigkeit
des die Strahlung emittierenden Wasserstoffatoms?!) A5, = 6562,76 - 10~1°m

Lésung

Wir bezeichnen mit v, die in der Eigenzeit des Wasserstoffatoms gemessene emittierte
Frequenz, wie sie ein mit dem Atom zusammen bewegter Beobachter wahrnimmt.
2o = Auq gibt die emittierte Wellenldnge an. Das Atom bewege sich mit der Geschwindig-
keit v und sende unter dem Winkel ¢ gegen seine Bewegungsrichtung einen Lichtstrahl
aus (Bild 138). Ein ruhender Beobachter mit die Frequenz der emittierten Strahlung zu

V= v —— ) LS 8

1 —cos? Ks
A=l \/ 1 —p = KS Kanaistroh!
LS Lichtstrahl
{ B Beobachter
— 4 <l—ﬁcosz9+—2—ﬂ2i-~>. @ Bild 138

Erfolgt die Strahlung in Richtung des Kanalstrahls, so ist ¢ = 0. Fiir die Wellen-
lange der emittierten Strahlung erhalten wir aus Gl (2) die Beziehung

., 1= A/lﬂt s B
e l+ﬁ—z.o<1 ! )

Hingegen stellen wir fiir einen dem Kanalstrahl entgegengesetzt emittierten Lichtstrahl
eine Wellenlinge

1+8 A/1+ﬁ p?
M=l =g [ —— =1 LT
iy e L (R @

1) Ives, H. L, StiLLweLr, G. R.: Journ. Opt. Soc. 28, 215, 1938; 29, 183 und 294, 1939. -
OTTING, G.: Diss. Miinchen, Phys. Z. S. 40, 681, 1939. Die relativistische Deutung des Effekts
wurde von OTTING gegeben

20 Hajko, Elektrik
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fest. Das primére Licht ist also nach Blau, das sekundire nach Rot verschoben. Der
Mittelwert
A- + A £
=25 (1 1+ = 5
> 0 < + 2) )]
weist gegeniiber der Strahlung des nichtbewegten Wasserstoffatoms eine geringe Rot-
verschiebung auf (relativistische Rotverschiebung). Im vorliegenden Fall ist
A+ AF 6532,44 + 6593,22
T C = * . 1071 m = 6562,83 - 10-1° m. 6)
2 2
Gegeniiber der H ,-Linie des ruhenden Atoms tritt also gema8 Gl. (5) eine relativistische
Rotverschiebung
A+ At
— Ao = (6562,83 — 6562,76) - 10-1°m = 0,070 - 10-° m
vz
= Ay — 7
oy 0]
auf.
Aus der Verschiebung
A - At
P Sy S ®)
2 c
= (6593,22 — 6562,83) - 10~1°m = 30,39 - 10~1°m = 6562,76 - 10~ m —Z—
erhalten wir
30,39 s 1
v = m ¢ = 4,63 1073 ¢ = 1389 kms~*. (9)
Der gleiche Wert ergibt sich aus der Verschiebung
- +
A + ? — A" = 106.
Wir berechnen zur Probe
2 (1,389 - 10%)
Ao — = . ~-10 >
0> 6562,76 - 10~1°m 2G - 109
und erhalten
‘82
Ao 5 = 0,070 - 10-*°m
in Ubereinstimmung mit G1. (7).
249, Die Lebensdauer des p-Mesons wurde von RASETTI durch Messung der Zeitdifferenz At

zwischen dem Einfallen des Mesons und dem Auftreten des beim Zerfall entstehenden
Sekundirelektrons bestimmt. Hierfiir ergibt sich 4¢~ 2-10-¢s. Aus Absorptions-
messungen an p-Mesonen der kosmischen Strahlung mufB3 man aufeinen Zerfallsweg von
etwa 20 km Linge schlieBen. Welches Massenverhéltnis (Masse des bewegten Teilchens
gegen Ruhmasse) folgt hieraus? Wie gro8 ist die Geschwindigkeit der pu-Mesonen?
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20%

Losung

Wir setzen zunidchst in erster Ndherung die Geschwindigkeit v der Mesonen mit der
Lichtgeschwindigkeit ¢ gleich. Aus dem Zerfallsweg von 20 km Linge folgt damit eine
Zerfallszeit

20- 108 2
= ———5=—10"%*s,

3-10° ° 3 s
Sie wird von einem gegeniiber dem Meson bewegten Beobachter gemessen. Wenn wir
dagegen die Messung der Zerfallszeit in der Eigenzeit des Mesons ausfiihren, so folgt

At =2-10"%s.

’

Wegen

ergibt sich

[\

Z 104
at’ 3 0 1

At~ 2-10°° 02
1l ==
C

Hieraus erhalten wir
2

v
1= 5 =910,

also fiir die Geschwindigkeit der u-Mesonen den Wert

v=1+/1=9-10% ¢ =(1 —45-10%c,
d. h. nur eine geringfiigige Abweichung gegeniiber der Lichtgeschwindigkeit.
Aus der Beziechung

1

U2
~/1—§

folgt fiir das Verhdltnis der bewegten Masse zur Ruhmasse
m 1 1 1

m = Mo

= = — 102 ~ 30.
o ~/1 0 JI—(1—=9-10% 3 —
cz

Infolge der hohen Geschwindigkeit hat also die bewegte Masse den dreilligfachen Wert
der Ruhmasse.

Weitere Beispiele zur Abhéngigkeit der Energie von der Masse und zur relativistischen
Massenverdnderlichkeit sind in den Beispielen 173 bis 179 enthalten.
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A

347.

348.

349.

350.

351,

352

Aufgaben

Wie grof3 ist die Lidngskontraktion fiir
einen mit der Geschwindigkeit v =0,1¢
bewegten Korper von / = 1 m Lénge?
Weiche Geschwindigkeit mul3 ein be-
wegter KOrper haben, damit eine Lo-
RENTZ-Verkiirzung auf die Hilfte der
urspriinglichen Lange eintritt?

In einem Bezugssystem I werden im Ab-
stand 4t = 4 s Signale ausgesandt. In
dem gegen I bewegten System II werden
diese Signale aber im Abstand 4+ =5s
registriert. Welche Geschwindigkeit hat
das System II gegeniiber dem System
1?

Ein Wasserstoffatom bewegt sich mit
der Geschwindigkeit » = 0,01 ¢ und
emittiert dabei die H -Linie. Berechnen
Sie die wahrzunehmende Wellenldnge
fiir die Bewegungsfille

a) auf den Beobachter zu,

b) vom Beobachter weg,

c) gegen die Beobachtungsrichtung
unter einem Winkel ¢ = 90°,

Zwei Raketen bewegen sich gegeniiber
einem festen Bezugspunkt: die eine mit
der Geschwindigkeit v; = 0,9 ¢ nach
links, die andere mit der Geschwindig-
keit v, = 0,9 ¢ nach rechts. Wie grof3
ist die Relativgeschwindigkeit, mit wel-
cher sich beide Raketen gegeneinander
bewegen fiir die Fille

a) vom festen Bezugspunkt aus,

b) von einer der beiden Raketen aus be-
urteilt? .

Von der in Aufgabe 351 dargestellten,
nach rechts fliegenden Rakete wird ein
GeschoB3 abgefeuert, das, von der Ra-
kete aus beurteilt, wiederum mit einer
Geschwindigkeit von 0,9 ¢ gleichfalls
nach rechts fliegt. Welche Relativ-

353.

354,

355.

356.

357.

geschwindigkeit wird von der nach links
fliegenden Rakete gemessen?

Ein bewegter Korper besitze die Ge-
schwindigkeitskomponenten ¢, =0,1¢;
g, =02c¢; g, = —0,1c. Gegen das
verwendete Koordinatensystem bewege
sich ein zweites mit der Geschwindig-
keit v = v, = 0,4 c¢. Welche Geschwin-
digkeitskomponenten hat der betrach-
tete KoOrper, vom bewegten Bezugs-
system aus gemessen?

In einem Bezugssystem bewegt sich ein
Korper mit der Geschwindigkeit v;.
Ein zweites Bezugssystem ist gegen das
erste mit der Geschwindigkeit v, be-
wegt. Welcher Betrag der Relativ-
geschwindigkeit ergibt sich fiir den be-
wegten Korper, vom zweiten Bezugs-
system aus beurteilt? Berechnen Sie hier-
nach fiir Aufgabe 353 den Betrag der
Relativgeschwindigkeit.

Welche Energie ist notwendig, um ein
Elektron der Ruhmasse mo = 9,1 X
x 10731 kgausder Ruhelage bis auf die
Geschwindigkeit » =0,99¢ zu be-
schleunigen?

Wie grof ist die Masse eines Elektrons,
das eine Bewegungsenergie von 10 keV
hat?

Bei der Elektronenbeschleunigung im
Betatron werden die Teilchen durch ein
Magnetfeld der Induktion B auf einer
Kreisbahn gehalten. Im Endzustand be-
trage der Kreisbahndurchmesser 0,15m,
die Amplitude des Induktionsflusses sei
@ = 1,5-10"2Vs. Berechnen Sie Ge-
schwindigkeit, Masse und Energie der
beschleunigten Elektronen. Anfangs-
geschwindigkeit und Anfangsinduktion
konnen gleich Null gesetzt werden.
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5.2. Allgemeine Relativititstheorie

Die von EINSTEIN im Jahre 1915 geschaffene allgemeine Relativititsiheorie formuliert
die physikalischen Gesetze in kovarianten Gleichungen, die unabhingig vom Inertial-
system gelten. Sie befreit damit die Physik von der Notwendigkeit, spezielle Inertial-
systeme einzufiihren, fiir die allein die bisher formulierten Gesetze giiltig waren. Mit
dieser Theorie ertfinet sich ein Zugang zur Losung grundlegender kosmologischer
Fragen. Obgleich beim gegenwirtigen Stand der Entwicklung weder die astronomi-
schen noch die theoretischen Kenntnisse ausreichend sind, um endgiiltige Aussagen
iiber den Aufbau des Universums zu gestatten, lassen sich doch bereits weitreichende
SchluBfolgerungen ziehen.

Die allgemeine Relativitdtstheorie griindet sich auf den Begriff des Feldes als eines
selbstidndigen, nicht reduzierbaren Grundbegriffs, wobei sie die Gleichheit von triger
und schwerer Masse postuliert:

Kraft = tridge Masse = schwere Masse = Kraft

Beschleunigung Feldintensitit

In einem mit konstanter Beschleunigung g bewegten Bezugssystem ergeben sich danach
grundsitzlich die gleichen physikalischen Erscheinungen wie im Erdschwerefeld.
Aus einer Diskussion der kovarianten Feldgleichungen geht hervor, daB fiir astrono-
mische Abmessungen im Weltraum die ebene Euklidische Geometrie nicht anzu-
wenden ist, sondern dafB3 hier eine schon von GAuUss, RIEMANN und LEvi-CiviTA
entwickelte Geometrie gekriimmter Flichen und Riume Giiltigkeit hat. Es erweist sich
als zweckmaBig, von geometrischen Analogien auszugehen.

Nach der Gaussschen Flidchentheorie 148t sich die Kriimmung einer zweidimensio-
nalen Fliche, z. B. der Erdoberfliche, allein aus Messungen auf dieser Flache be-
stimmen. In gleicher Weise kann die Geometrie des dreidimensionalen Raumes als
Geometrie auf einer Hyperfliche in einem fiktiven vierdimensionalen Raum gedeutet
werden. Auch die Kriimmung der dreidimensionalen Sphédre 148t sich nach der
RieMANNschen Geometrie allein aus Messungen in dieser Sphére bestimmen.

Die Kriimmungsverhiltnisse in den Bahnen der Massenpunkte, die sonst keinen
duBeren Kriften unterliegen, wirken sich wie Kréfte physikalischen Ursprungs aus.
Auf diese Weise finden die Gravitationskrifte ihre physikalische Erkl4rung.
Entfernt sich ein Lichtstrahl von einem das Gravitationsfeld erzeugenden Korper,
nimmt also in Richtung des Strahles der Betrag des Gravitationspotentials ¢ ab, so ver-
ringert sich die Frequenz des ausgesandten Lichts. Fiir schwache Gravitationsfelder,
d. h. fiir |p] < c?, ergibt sich folgende Beziehung: Wird in einem Punkt mit dem
Potential ¢, eine Schwingung der Frequenz v, erzeugt, so nimmt der Beobachter an



310 5. Relativititstheorie

einem Punkt mit dem Potential ¢ die Frequenz

wahr. Die an verschiedenen Punkten des Weltalls ausgestrahlten Spektren haben also
bei ihrer Entstehung iiberall das gleiche Aussehen. Bei ihrer Wahrnehmung auf der
Erde zeigen sich jedoch infolge der unterschiedlichen Gravitationsfelder Frequenz-
verschiebungen.

Aus den von FRIEDMAN im Jahre 1922 abgeleiteten Losungsfunktionen der all-
gemeinen Relativititstheorie ergibt sich, daB das Universum eine zeitlich verdnderliche
Ausdehnung hat. Allgemeine Untersuchungen von LifscHITZ fiihrten 1946 zu dem
Ergebnis, daf eine expandierende Welt stabil, eine kontrahierende dagegen instabil
ist. Diese Theorie des expandierenden Weltalls findet ihre Bestitigung durch umfang-
reiche astronomische Beobachtungen, die erstmalig von HUBBLE ausgefiihrt wurden.
Nach diesen Untersuchungen zeigen die extragalaktischen, nicht mehr zu unserem
MilchstraBensystem gehorenden Spiralnebel eine Rotverschiebung, welche darauf
zuriickzufiihren ist, daB sich diese Nebel von uns weg bewegen. Als Beziehung zwischen
dem Abstand r eines solchen Spiralnebels, seiner Radialgeschwindigkeit » und der
Frequenzverschiebung Av ergeben sich die beiden Gleichungen

—ﬂ:kr, v = —céizkcr.
v v

Die HuBBLE-Konstante k ist bisher nur groBenordnungsméiBig bekannt. Thr Wert
liegt bei
k ~ 1026 m-1.

Wichtige experimentelle bzw. beobachtbare Bestditigungen fiir die allgemeine Relativi-
tétstheorie sind auller der Spektralverschiebung auch die Perihelbewegung des Planeten
Merkur und die Ablenkung des Lichtstrahls in starken Gravitationsfeldern.

B Beispiele

250. In einer Hohe H = 21 m iiber der Erdoberfliche befindet sich eine Strahlungsquelle.
Thre Strahlung wird an der Erdoberfliche registriert. Berechnen Sie die Frequenz-
verschiebung infolge der Gravitationswirkung des Erdschwerefeldes (Bild 139).
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Losung

Wir denken uns ein Atom im Grundzustand mit der Energie E auf der Erdoberfliche.
Durch Energiezufuhr wird dieses Atom angeregt und dabei in den Energiezustand E’
versetzt. Danach bringen wir das Atom auf die Héhe

H=21m. Da R Gravitationsfeld
E £
mo= :i haw,
die gesamte Masse des Atoms im angeregten Zu- +mgH -mgh|
stand darstellt, haben wir gegen das Gravitations-
feld der Erde die Energie mh‘o
! £’ £
E'gH Z
mgH = =2 M

Bild 139

aufzubringen, die dem System zugefiihrt wird.

Das angeregte Atom emittiere in der Hohe H ein Photon und gehe bei diesem Elementar-

akt wieder in den energetischen Grundzustand E iiber. Die emittierte Frequenz w,,

gemessen in der Figenzeit des Atoms, folgt aus
E —E

W = P

Wir transportieren nunmehr das jetzt im Grundzustand befindliche Atom wieder zur
Erdoberflache zuriick, wobei das System die Energie

@

E
mgH = = gH 3)

abgibt. Durch Absorption des in der Héhe H emittierten Photons, dem wir an der Erd-
oberfliche die Energie #w zuordnen, wird das Atom aus dem Grundzustand wieder in
den angeregten Zustand iiberfithrt. Nach dem Energieerhaltungsgesetz ergibt sich aus
den Gln. (1) u. (3)

EgH FgH
E+280 oo — 22 Lo =F, @
4 C
d.h
E—F
Ao = hwy - o gH. ®

Hieraus erhalten wir nach Division durch # und unter Verwendung der Gl. (2)
%) H
w=w0—|—Z22gH:wo<1+é;—2>. ©)
Demnach wird auf der Erdoberfliche eine hohere Frequenz registriert als in der Hohe H
(Blauverschiebung)., Mit den vorgegebenen Zahlenwerten erhalten wir eine relative
Frequenzzunahme

- " 981-21
e 0229101, %)
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251.

Erstmalig durch Anwendung des MoBbauereffekts wurde ein experimenteller Nachweis
dieses Effekts der allgemeinen Relativitétstheorie méglich.?)

Im Gravitationsfeld der Erde bewegt sich eine Uhr mit der Anfangsgeschwindigkeit
vo = 10* ms~! senkrecht nach oben. Die Erdbeschleunigung werde im Verlauf des Auf-
steigens und wéhrend des nachfolgenden freien Falls konstant g = 9,81 ms~2 gesetzt.
Luftreibung ist zu vernachldssigen. Wie groB ist die Zeitdifferenz gegeniiber einer auf der
Erdoberfliche ruhenden Uhr, wenn die bewegte Uhr wieder zurtickkehrt?

Losung

Infolge der Wirkung des Gravitationsfeldes zeigt eine Uhr, die sich - von der Erd-
oberfldche aus beurteilt - fiir das Zeitintervall d7 in der Hohe H aufhilt, in der Eigenzeit
das Zeitintervall

, 424
dr =dt(1+22—). )
Die Bewegung mit der Geschwindigkeit v bedingt andererseits, daf ein auf der Erd-

oberfldche zuriickbleibender Beobachter die Zeit

dt = _L )

U2
-z

registriert, wenn die bewegte Uhr das Zeitintervall d¢’ anzeigt (Beispiel 444). Fiir kleine
Geschwindigkeiten v <€ ¢ folgt hieraus

2 2
dt’=th/1—%=dt(l—§Dc—z>. 3)

Wenn wir beide Korrekturen zusammenfassen, so finden wir, daf3 die in der Hohe H
mit der Geschwindigkeit v bewegte Uhr das Zeitintervall

2
dr = dr [1+%€-{—v—} @

2c?

anzeigt, wihrend die auf der Erdoberfliche ruhende Uhr das Zeitintervall d¢ angibt.
Zur Berechnung des von der bewegten Uhr wihrend des Auf- und Absteigens an-
gezeigten Zeitintervalls 4¢” berechnen wir das Integral

t

ar 4 i
gH v
At = dt’=[1 — — — | ds. 5
f . < + c? 202> )
o [}
Dabei haben wir entsprechend den Gesetzen des freien Falls zu schreiben:

H=———‘g—r2+vot, v =y, — gt. 6)

1y Versuch von Pounp und Reka, HARVARD-Universitit 1959
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252,

Wir setzen Gl. (6) in Gl. (5) ein und erhalten

(wo — g1)*

5 dr. @)

4t
, 1 &
At =At+?f[—?t2+gvot—
0o

Wir bestimmen die von beiden Uhren angegebenen Zeiten, wenn die bewegte Uhr
wieder auf der Erdoberfliche auftrifft. Fiir die unbewegte Uhr folgt aus der ersten
Gleichung in Gl (6), wenn wir H = 0 setzen,

21)0

t=dr =2, ) ®
g
Wir integrieren Gl. (7), setzen den gefundenen Wert in Gl. (8) ein und erhalten )
1 [v? g24r? v3
At =4t (1 — = | = — gvodt =411 4+ —}. 9
( ‘62[2 goodt + 58] ) = ar (14 ) ©
Im vorliegenden Fall ergibt sich aus Gl. (8)
04-
= s = 2038,7 s
und aus Gl. (9)
108

At = 2038,7 <1 + > s =2038,7 (1 + 1,85- 10719 s.

6 (3 - 10%)2
Die Abweichung liegt also in einer GréBenordnung, die fiir einen experimentellen Nach-
weis die Anwendung des MOsseaUER-Effekts oder der Lasertechnik erfordert.

Zur Behandlung der Beispiele 250 und 251 hitte auch von vornherein die Theorie des
schwachen Gravitationsfeldes entsprechend der Einfiihrung in die allgemeine Relativi-
tdtstheorie herangezogen werden konnen.

Der Begleiter des Sirius hat die Masse m = 1,68 - 103° kg, sein Radius ist » = 1,88 x
x 10*km. An der Oberfliche dieses Sterns wird die H ~Linie emittiert (A, = 6564,68 X
x 10~1°m). Berechnen Sie die auf der Erdoberfliche gemessene Wellenlinge und den
Betrag der Rotverschiebung. Welche Radialgeschwindigkeit miifite der Siriusbegleiter
haben, wenn die auftretende Rotverschiebung ohne Gravitationsfeld, nur als DOPPLER-
Effekt, auftreten sollte?

Losung

Wir wenden die fiir das schwache Gravitationsfeld giiltigen Formeln an. Die Gravita-
tionskonstante hat den Wert y = 6,67 - 10~ m® kg-! s~2. Fiir das Gravitations-
potential @, an der Oberfliche des Siriusbegleiters gilt
_ m _ 6,67-107'"-1,68-10%°
Po= Vo= 1,88- 10
Dagegen miissen wir fiir das Erdpotential ¢ schreiben

Jkg ! = —596 1012 m25-2,

o= —y B — er = —981-637 10 m2s-2 — —6,25 - 107 m%s-2.
Fg
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253.

Dabei bedeutet g die Erdbeschleunigung, rg und mg Erdradius bzw. Erdmasse. Wir
finden |p| < |po|. Fiir die auf der Erde gemessene Frequenz der H,-Linie erhalten wir

somit
Yo ' P — Po
Yy = 1——|=»(l————]| =
fl’o( CZ) 0( c? )

1 po
( 5,96 - 1012 — 6,25 - 107
= Y9 1—
(3-10%)2
Fiir die Wellenldnge der H -Linie folgt also

) =1 (1 — 6,6-1075).

¢ ¢ (1 + 6,6 - 10-5) = 6564,68 - 10-°(1 + 6,6 10~5) m =
(o]

Vo
— 6565,11 - 10-1°m.
Demnach tritt eine Rotverschiebung
42 =0,43-10"1°m

auf,
Nach der Theorie des DopPLER-Effekts zeigt eine mit der Geschwindigkeit v bewegte
Lichtquelle die Wellenldngenverschiebung

A=A —dy = do—.
[4
Hieraus folgt
,_ 4L 04310
T o ¢ T 6564,68 - 1010

Die infolge des Gravitationsfeldes auftretende Rotverschiebung entspricht demnach
einer Geschwindigkeit der bewegten Lichtquelle von 19,6 kms~1.

-3-1085ms~! = 19,6 - 103 ms~1.

Die Strahlung eines extragalaktischen Nebels zeige fiir die H,-Linie des Wasserstoff-
atoms die Wellenlinge A = 6630 - 10-1°m, Berechnen Sie aus dieser Angabe Ent-
fernung und Radialgeschwindigkeit des Nebels. Die Wellenldnge der H ,-Linie auf der
Erde betrigt 4 = 6564 - 10-1° m,

Losung

Fiir die mittlere relativistische Frequenzverschicbung und den Abstand r besteht nach
HuBsBLE die Beziehung

Ay
——=kr. €]
v
Ferner gilt fiir den Zusammenhang zwischen Frequenzverschiebung und Geschwindig-

keit des Nebels die Bezichung

A
—c———v =y = kcr. @
v
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Hierin ist £ &~ 1026 m-! die HusBLE-K onstante.
Im vorliegenden Fall ist

Ay AA 6630 — 6564 66

= = = A . 3
y A 6564 6564 0,01 @
Aus den Gin. (1) u. (3) erhalten wir damit fiir den Abstand des Nebels die Angabe
a1 0,01 2

das sind etwa 108 Lichtjahre. Fiir die Geschwindigkeit des Nebels in radialer Richtung
erhalten wir aus den GIn. (2) u. (4)

v = ker ~ 10726 -3 10° - 10 ms™! = 3 - 105 ms™! = —— .
100
A Aufgaben
358. Eine Uhr wird im Erdschwerefeld mit strahlte H-Linie bei ihrer Registrierung
der Anfangsgeschwindigkeit auf der Erdoberfliche?
vo = 1 km s~? (Sonnenmasse mgo = 1,98 - 10°° kg,

359.

360.

361.

senkrecht nach oben geworfen. Welche Sonnenradius ro = 6,95 10° m,

— . -10
Zeitdifferenz gegeniiber einer auf der Ao = 6564,7-107°° m,

— <10~ -1 o~
Erdoberfiiche ruhenden Uhr zeigt sich, v =6,67-10"" ﬁn;llfg %) hieb
wenn die bewegte Uhr die Erdoberfliche 302 Yelche — Wellenkingenverschiebung
wiirde eine auf der Sonnenoberfliche

. . . ausgestrahlte H -Linie zeigen, wenn sie
Eine Uhr wird mit der konstanten Be- auf dem Siriusbegleiter registriert wer-

schleumgu nga =g /2 und der Anfangs- den konnte? (Masse des Siriusbegleiters
geschwindigkeit 2o = 1km s senk- m = 1,68 - 10%° kg, Radius r = 1,88 X
recht nach oben bewegt. Welche Zgit- % 107 ,m) ’ ’

differenz .‘.Vlrd gegentiber einer auf der 363. Im intergalaktischen Raum, fern von
Erdoberﬁache. ruhenden Uhr 'festge- allen Gravitationsfeldern, strahlt ein
stellt, vennt .d1e bewegt e Uhr die Erd- Wasserstoffatom die H,-Linie aus. Wel-
oberfliche wieder erreicht? che Wellenldngenverschiebung wird auf

wieder erreicht?

Von einer auf der Erdoberfliche stehen- der Erdoberfliche gemessen?

den Lichtquelle wird die H,-Linie aus- 364, Als Kriimmungsradius des Universums
gestrahlt (4 = 6562,7 - 10-1° m). Wel- wird ein Wert R=15-10*m ge-
che Wellenldngenverschiebung stellt ein schitzt. Berechnen Sie, welche Rotver-
Beobachter in 10 km H'éhe? fes.t? Wel- schiebung das Licht eines Spiralnebels
cher DoppLER-Geschwindigkeit ent- erleidet, der sich im Abstand r = 2R
spricht diese Verschiebung? befindet. Wie groB ist die Radialge-
Welche Wellenldngenverschiebung zeigt schwindigkeit des WNebels? (HUBBLE-

die auf der Sonnenoberfliche ausge- Konstante k & 10-26 m~1)
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1.0 = 23,36-10-° C

[\

3.
4.
5

10.
11.
12.
13.
14.

15.

. 8: =221
e
NE
0 =0386-10"12C
. Die elektrostatische

AbstoBung ist 41,8 x
x 10*"mal so groB wie
die Massenanziehung

.0=3,1832-10"Cm-2
. Es=1359,3-10°Vm~!;

E;,=89,8-10°Vm~1;
Ei3=399-10°Vm-!

.a)Im Abstand

11,17 cm von der
grofBeren Ladung ist
E=0

b) Die Potentiale sind
im Abstand
12,31 cm  von der
groBeren Ladung

gleich groB
.U=178,7-103V

r=1599m
U~ 1408 V
U=900V
F=0,449 m

U=11977V

=

rln2
Fa

16.

18.

19.U
20.

21.

22.

23.
24,
25.
26.
27.
28.

E=

a) E=0;

8TE€052\/2
U, —U.
2o, +

X12

U, —U.

e +
X13

n U, —U,

X1

€14

od
20
_ed
a 2Ae,
Fy=r;
r2 A 1,02 7;
rs~ 1,04 r; ...;
_ 54-10%r
" 5,610 — - 10°
0~ 45-105C;
o = 8,88-10"19 Cm2
E, =1714-10® Vm™1;
E, =2857-102Vm™!;

U=

Fn

U, =8571V;
U, =1429V
U=6V
F=16-10"**N
W=507J

W =247

W = 240KkJ

W =106 kJ

29

30.
31.
32.

33.
34,
3s5.
36.
37.
38.
39.

40.
41,

42,

43,
44.
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.

. W, =0,01347J
F'=26F
C =710 uF
C = 166 uF;
r = 1495 km
U=100V
C =620,13-10"12F
A = 24,2 cm?
C =3335-10-12F
C = 744 pF
C = 336,6 pF
U, =17500V;
U, =4500V
W =20,027
2
AW = Q
8rreg
1

W, = 16,53 - 10-3 J;
W, = 1,653 -10-3J

W =443-105J km-3

QO =10 Ah
=1h17min 46,7 s

A = 1,2 mm?

I=25m

o = 0,028 Q mm2 m-?!

R=1,133Q

R=5730Q

Myt My & 2:1

Az = 42,56 mm?
R30 = 22,23 Q
R=23,6Q
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55. t = 215,1 °C 80.f==3h 112. U, = 1500 V
56. t, = 51,91 °C 81. P =T17,6 W 113. U, = 1200V
57.a) AR = 313 Q; 82. R = 46,7Q 114. U, = 660 V

b) AR = 0,63 Q 83.1=4,037 A 72 By
58. R, = 10Q; 84.7 = 78,5 % WS- U =——

R, =048Q 85. P = 0,6 kW 116. U, = 1,32V
59. R = 120,76 & 86. 1 =92%; 117. U, = 3,6 V
60. R =15Q Preis ~ 0,77 M 118. F = 11460 N
61.1=95A 87.1=326A Lol Fa
62. U =369V 88. P = 8,8 kW; 19. L=—"-Nhln—=
63. I = 101,45 mA Preis: 1,76 M 120. Uo. = 1885V
64.1=0375 A 89. P = 484 W; 121, 0 = 314 -1
65. U =211,5V; V' =5,0761 122. cos ¢ = 0,843

AU =85V 90. 1 =0,042 A 123, Ueee = 1202V
66. R = 107 Q; 91. Preis ~ 0,01 M 124. P = 176 W

U, =1986V; 92. je 24 in Reihe, 125.7=9,29 A

I, = 102,81 A 2 Reihen parallel 126.a) U, = 219,4V;
67. R: ~ 78,6 kQ 93. m = 2,83 kg I, =6A
68. U, = 169 V; 94.1=10,16 A 127. P = 134 kW

U, =51V 95.I=6A; 128. P = 1746 kW
69. I = 0,314 A; t=5h10min34s 129. 1, = 1052 A

U=0,943V 96. ¢ = 20 h 50 min 130. Ue = 274V
70. 1 = 1,5 A; 97 p— Pl =1 _ 131. Z = 232.0;

L =25A; 2mr = 0,47 A;

I, =40A =10"*T Ues = 187V;
71. I, = 0,789 A; 98. B =3,333-10"°T U, =295V;

I, = —1278 A: 99, H = 16,75 Am~! cos ¢ = 0,129

I, = 0,436 A; 100. I = 1500 A 132, Z = 222 Q;

Us; = 1,944V 101. B=1112-10"°T; cos ¢ = 0,707;
T2.I=1A; P = 6,672-1077 Vs @ = 45°;

I, = 0,75 A; 102. F=0,3N I=099A;

L =025A 103 F=1N U, ='155,6 V;
73. R, = 29,99 kQ: 104 B — Ot _ 98.1T Ur = 1556V

e

1999 v . =3,89A;

74. R = 0,005 Q 105. M 0.01Nm; In =333 A;
75.1=0,05A; die Scheibe rotiert ent- Ic =2A;

R =9000 Q; gegen Uhrzeigersinn tan ¢ = 0,6;

4 V/Teilstricl 106. @ = 0,13 Vs p =31°
76.0 = 24 C; 107. @ =4-10"2 Wb 134.I=0,5A

W = 2887 108. I =2575 A 135, Upax = 785V
77. Preis: 0,24 M 109. 71 =2,512 A 136. Dy = 1,126 - 10-3Vs
78.0 = 2570 keal = 110. I = 26,5 A 137. U, = 300\{: .

= 10,08 MJ U, _ Uo -
79. R =06+ Ry UL = — = 10%s 138.1_Te c
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139.

140.
141.
142.

143.
144,

145.
146.

147.
148.
149.
150.
151.
152.
153.
154.
155.

156.

157.

158.

159.
160.
161,

Inax = UVE =86,6A;
L

fo =%\/l—46=

=1,36-10"%s
to = 6,9 S
E=2831Ix
E; = 301x;
Ez = M Ix
3
@ = 0,051Im
E =1381x
E
E 1,12
a) do; = 1°427;
Ao, = 15°517;
b) Aoy = 5°11%;
der Winkel
e = 48°35" ist der
Grenzwinkel
o = 57°30/
& = 41°49’
X = 6,65 cm
x =18 cm
d = 41°30’
d = 10°55’
@ = 45°
y=2p
x = 2000 m
3

a)b=z-l’,

nf
n+1
a)g =35cm;

b =140 cm;
b)g =21cm;

b= —84cm
Das Bild ist reell und
umgekehrt;
B =4,5cm;
b =96 cm
r=1m;x~2p
x = 8cm
a),b)b =30cm vom
Konvexspiegel entfernt

b)b =

g
162, f = e
163. f = 13,73 cm;
Z = —1,75
164. g = 28 cm;
= —84 cm
zZ—1 1
165. g = 7 o
11—z
D
166. b = —1,8cm
167. g, = 140 cm;
g, = 21 cm;
by = 35cm;
bz = —84 cm
168. D, = 3 dpt
169. fi =9cm
170. f =24 cm
171. G = /BB, = 6 cm
172.¢ = fﬁgﬂ
173.¢g=5r
174. f = f’ = 10,9 cm;
h=h = —1,82cm;
b=2395cm
175. f = 4,5cm
176. g = 7,14 cm;
Z =235
177. Z = 273,5
178. g = 4,05 cm
179. ] = 43,4 cm;
Z =730
180.d = 17,95 cm
181. x = 18,6 cm;
Z=9,3
182. d = 4,1-107° cm;
d/
i 178
183. 4= 0,58 cm
184. 2 = 0,0006 mm
185. 0,78 mm; 0,44 mm
186. 4s = 3,5 mm
187. d < 101,25 nm
188. a) 4 = 600 nm;
b) A = 450 nm

189.

190.
191.
192.

193.
194.

195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
. 206.
207.
208.
209.
210.
211.
212.
213.
214.

215.

216.
217.
218.
219.
220.

221.
222.
223.

a) A = 571,4 nm,
444 nm;

b) 2 = 666,6 nm,
500 nm, 400 nm

g =6"

4r = 0,19 mm
f=2m;

2r = 2,84 mm
A =578 nm
0,45 mm; 0,90 mm;
1,35 mm

A = 600 nm

4 =460 nm

x =144 cm
4, Ordnung

a = 30°

4 = 0,058 nm
o = 48°26
n=15

o = 41°38’
E=174k]
T=200K

t = 1h 38 min
T = 6084 K
E'u = 1,17 EAZ
n =40

v ==5930kms-!
yo = 0,2 cm

r ~ 4,2 mm

f=1,068 - 107 s~1

m = 11,384 - 10-3'kg;
E; = 125-10%eV

m = 1,8504 - 10~27kg;
v =1,316-10% ms~1
v=0,96¢

Wa = 6,323 eV

my = 1,692 - 10727 kg

A =0,05243 nm
oy = 74°15’;

&, = 58°507;

a3 = 43°35’;

xg =0

U; =512V
v=1912kms-1!
E, =103V
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224,

225.

E=1978-10"1*7];

p =
=6,624-10-22kgms~1;
m=221-10"3%kg
Es handelt sich um ge-
ladene Teilchen, deren
Ruhmasse kleiner als
213 m, ist, z. B. u-
Mesonen, deren Ruh-
masse den Wert m, =

= 207 m, hat.
226. Ay = X
mgocC
I 2 1=
v
Vl T

= 0,0156 nm
27, v = 10 =

-=2,62-10"%s
228.v3; = 729 km s~!
229. T3 ~ 4,1 - 107155
230. 4; = 656 nm;

Ay = 486 nm;

A3 = 434 nm
231. A = 254 nm
230, M _ toc

G 2my
233. N =18
234. 1, = 6305 = 4
235. T1j, = 1550 a
236.p = 8,3%
237.t=60s
238. Z = 3,7-10%s"!
239.d, = 2,72 cm;

d, = 3,35 cm
240. 4r =2, 7K h"?
241.T=2,7-10%a
242, V = 0,67 mm?3
243. v =2,7-105ms"?
244, FE = 14,94 - 10-11J =

= 933 MeV
245, AE = 2,26 MeV
246, Am=3,2-10-° gmol*

247.

248.
249,

250.
251.
252.
253.

254.
255.

256.

257.
258.

259.

260.

261.

mc = 14,00829 u =
= 23,25-10"27 kg

mo = 17,0047 u

a) AEx=104,4MeV;

b) AEp, =1467,9MeV;

AE pro Nukleon:

7,1 MeV

E =

=57 -101%kJ kg-!

A=0,496-10"°m
=6,62-10"%3m

A=287-10""'m

A=021-10""'m

Ui =411V,
U, =411V,
U; =41100V
0 11
A= —=m;

U
A=10""m
u=4,80-10°ms*!
A=0964-10"1"m
/4 =0,897 - 10-1° m;
A=0,841-10"1"m
A =0,796-10""m;
A = 0,758 - 10-1° m;
A=0,723-10"1°m;
n = 1,047,
n=1,042;

n = 1,037;

n = 1,035;

n = 1,031;

n = 1,028;

E, = —154¢eV;
E, = —158¢eV;
E,= —158¢V;
E, = —16,3¢eV;
E, = —16,4¢€V;
E, = —16,2¢€V;
E, = —16,0eV
U .

A>0,242-10"1°m
U<2541V
FElektronen:
d=7,28-10"°m;
Neutronen:

262.

263.
264.
265. E

266.
267,

268.

269. m <

270.

271.

272.

273.

274,

d=3,97-10"°m
a-Teilchen:
d=9,97-10"1°m

d,=10,05-10"2m

dy =1,23-10°m

Ag = 0,655 -10-12m
Av, Eid

Un n
= 3,587;

hv =2,85-10"1°J;

E = . 20.
o 0,125 - 102°;

AE =1,32-10725J;
7=9,54-10"2%kgms~1;
4p=2,2-10"?°kgms~!
At=2,1-10"%s;

AE =3,1-10-2%]
AE =43 -10"°eV;
At =0,96-10"%s

A> 10"**m

v < 3-10%25t

557

2¢%tw
~ 3,6 10728 kg ~

=~ 380 u, Meson

a, = by, =
=1,06-10"°m;

by =0,53-10-%m
Linearitit folgt aus Dif-
ferentiationsregeln,
Selbstadjungiertheit
durch einmalige par-
tielle Integration

A und B sind nicht
HermiTesche  Opera-
toren, A ist zudem
nicht linear; dagegen
sind C und D HERMI-
TEsche Operatoren

d
axe"=e"+xe";

(& "

e¥ =x¢*

dx
d 2 2
> x2+
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275.

276.

2717.

278.

279.

d d 2.
+ e x +x P + x%;
Lu(x) =2xcosx +
4+ x2sin x

Wenn F und G ver-
tauschbar sind

Ebenso wie die kineti-
sche Energie und eine
Ortskoordinate nicht
gleichzeitig gemessen
werden konnen, sind
auch kinetische und
potentielle Energie
nicht zugleich mefBbar.
Demnach ist die Ge-
samtenergie nur als
Ganzes, meBbar; die
Kenntnis der Gesamt-
energie schlieft mithin
die gleichzeitige genaue
Kenntnis der poten-
tiellen und der Kine-
tischen Energie aus

L, ist nur mit x gleich-
zeitig mef3bar

L, ist nur mit p,
gleichzeitig  meBbar.
Quantenzustdnde, in
denen L, und x gleich-
zeitig gemessen werden
kdnnen, gestatten es
nicht, auch p, gleich-
zeitig zu messen. Eben-
so ist bei gleichzeitiger
MeBbarkeit von L, und
px die Komponente x
im Sinne der HEISEN-
BERGSchen Unschérfe-
relation nicht meBbar

280.

281.

282.
283.
284.

285.

286.
287.
288.
289.
290.
291.
292.
293.

294.

Zz ist mit allen cartesi-
schen Komponenten
des Drehimpulses
gleichzeitig mefibar
DE-BROGLIE-Welle

w _ Ce‘i(ET"%")

W = 0,061
W = 0,238
W = 0,438
1
C=—
4 \/27d}

dw = 0,00733
W = 0,0414
W = 0,00012
d = 0,68
r=0,41;d = 0,59
d=0,16 - 105
[=2,6-10"1'm
d~ 3-10°2%%;

_ h
s = amr2

= 0,25.102 s-1;

A 0,75-10"%s"1;
72 0,9-105s ~ 1 Tag.
Die genaue Theorie
der Radioaktivitit er-
fordert die Unter-
suchung des rdumli-
chen Potentials

Wegen des Faktors
3/2

||

betrigt die er-

forderliche Feldstirke

nur etwa das (2,5)3/2-
fache gegeniiber Wolf-
ram. Es ist also die
vierfache = Feldstirke
notwendig, d.h., sie
muBl in der GroBen-
ordnung 10° Vm-1 lie-
gen

Lx <00y = G efimr,

A/Zm(E0 — E)
kim = | =g

296.

297.

298.

299.

300.
301.

302.

0=x=<a:

11[) =

= Cpsin (kynx + 6);
knny folgt aus der
transzendenten Glei-
chung

fike 1y

/2mE,
ni — kunna
2

Aus den diskreten Lo-
sungen kq folgen die
gesuchten Energien
h2 kg

2m
x Zaiy = Cy, efurur,

= sin

E=

OF,
dr ox’
ebenso fiir die anderen

Komponenten
App = 4861,3 - 1071°m

=0,82258 - 10" m"*

N N e

=1,2193 - 105m~!
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303.

304.

305.
306.

307.

308.

309.
310.

311.
312.
313.

314.

315.

316.

317.
318.
319.
320.

Rp = 1,097076 X

X 107 m~*

R, = 1,097374 x

x 107 m~*

A =4339,27-10"°m

0
L, =ih(sinp——r
1 <smzpd0+
0
+cotﬁcosq:—)
op

. 0
L, = —iA (cos 35

0
—cotdsing ——)

op
Fir die Quantenzahl
I=1
Fir den Operator L,,

nicht aber fiir die Ope-
ratoren L, und L,

—
L?und L,
Y211 =
1 ( z )3’2
= —] x
8/m \ad1
zr
zZr T .
X —e * ginde?
a
r :4a1
¥y = 9ay; r, = 16a;

F = 5a;

)_1
_4[21

n2a,

/_\\
\-|._.

Ty =

i+
z

1 U+l
t3 {1 n? H
Fre = 1,32 - 10-1%° m;
;Li = 0,88 . 10—10 m
dw = 0,019

W = 0,054

dW = 0,0036
Kugelsymmetrie;
Wahrscheinlichkeit fiir
alle Richtungen gleich
grof3

21 Hajko, Elektrik

321.

322.

323,
324.

325.

326.

327.

328.

329.

15 .,
—> sin* 8
3281]:1

Yim Viom

m I +2
;sin2 & cos? &

+1

5
- 29 — 1)2
T6m (3 cos 1)

0

m  max min

+2  90° 0°
+1  45° 0°,90°
0. 0°,90° 54°43

W =0,192
Jr=05j5s =0;

ehm
. emm 2
.]1;7 ur Sin'ﬁ lwn,l,ml
Jo = 0fir & =0;
Jo = 0,84 - 101 Am-2
k1
2
ueh

fiir ¢ =

1,165 x

%X 1072° Vsm (BOHR-
sches Magneton)
H,-Linie:

hv = 3,04-10-1°7J;
Oszillation: Awg =
= 5,47-10-2°7];
Rotation:

h2

— =4,02-10722J
ur

Aos = 3,62 10~°m;
Aot =494 -10-°m
Nach der Quanten-
theorie ist
dW=wdx=—~
2x0\/ﬂ: %
x2? 2 _."i
X (2—2— 1) e *odx,

Xo

330.

331.

332,

333.

334.

dagegen nach der klas-

sischen Theorie

delass = wklassdx =
2/ pog dx

ﬂ:\/Sh — dpwex? ’
fiir den angefiihrten
Spezialfall ist dW =
= 0,098, AW e =
= 0,098

Die Anzahl der Null-
stellen ist gleich »

4
=_—_x
7
% f e fds =
3
4 [Ee“f’}m
Jr|L 2 13
@
1
-5 [ ore =
73
= 0,095 + P(o0) —

— ®(\/3) = 0,095 -
+ 1 — 0,986 = 0,108;
@(x): Fehlerintegral

2
- 4x0

NE:
X f54e‘5’d§ =vix2'
2 0>
0

fur Hz:
x2 =234-10"22m?

f : ( ihb)

Pmpn= | Y| ——/— | X
ox

Xy, dx = — iuwoxp

In Ubereinstimmung
mit der HEISENBERG-
schen Vertauschungs-
relation ergibt sich
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px —xp = A>13,3-10"°m; ist. Das geschieht im
1000... infraroter Bereich Falle des ZgeMAN-
_fo1oo0.. 343, Oszillations- Effekts durch Auf-
i 0010 schwingung it spaltung der Spektral-
SR 2 — 308 -10-° m: linien in einem &uBe-
Abstand der Rotations- ren Magnetfeld
335. In Zusammenhang mit linien 347. I’ = 0,995 m;
der HEISENBERGschen 13 . Verkiirzung I — I’ =
Vertauschungsrelation A\ /= 16,3m"!; = 0,005 m
folgt (vel.436) im Zentrum ist 348.v = 0,866 ¢
E= 1 349. v = 0,6
100 ... A(_>=33,0m-1; - =00¢
A 350. a) 1 = 6497,46 x
hwo [0 30
- 70 Auflosungsvermégen X 10-1%m;
2 loos .. > 1960, im Zentrum b) 2 = 6628,71 x
: > 980 X 10719 m;
e 4 1 2 ¢) A = 6563,09 x
336, AxZ = _<n + _>; 344, - 2 180, im Zentrum % 1019 m
pwo 2 Vaps
L 1 ! 351.a)v = 1,8¢;
A% — pheog <n X 7) R 15 b) v = 0,9944 ¢
a6 ) 352. v = 0,9997 ¢
337. A5, = 2860 s~ 345. S KM 353.4) = —0312¢;
338. W = 0,343 - 101 .’ q;, = 0,191 c;
hoog 346. ¢+ in)ymarmes + 0; g, = —0,0955 ¢
339. —= = 0,52 10-33 J; Comermer = 0; 354. [Beet] =

340.

341.

342.

demnach nimmt die
Nullpunktenergie nur
fiir atomare Verhélt-
nisse bedeutsame
Werte an

n = 3,94-1012, In-
folge der kleinen
Energiestufen scheint
sich die Energie, ver-
glichen mit der Ge-
samtenergie Aw, =
= 1,05 - 10-33 J, stetig
zu veriandern

J = 1,65 - 10745 kgm?;

r=1,15-10"1"m;
2

h
— = 0,667 -10-%2J
J

1
A4 (7) =75m™"!;

(E"]' in)l.m;l’.m = 0,
Cl.m:l’.m =I= 0.

Fiir alle anderen Indi-
zes sind die Matrix-
elemente Null. Daraus
ist zu folgern, daB
Emission nur fir
Adm = 0, +1 statt-
findet, wobei d4dm =
= <1 rechts- bzw.
linkszirkular  polari-
sierte Strahlung liefert
(c-Komponente), da-
gegen liefert dm =0
die linear polarisierte
Strahlung der n-Kom-
ponente. Diesen Re-
geln kommt nur dann
eine Bedeutung zu,
wenn die ¢-Achse phy-
sikalisch ausgezeichnet

01 X D,P

V(El - 52)2 - "_Cz_

355.

356.

357.

= 0,378 ¢

E = (m — my) c* =
= 4,986 -10-137J

m= 1,02 my =
=9,29-10"31 kg

Aus dem Induktions-
gesetz ro

oD OB
—=2Trf—rdr=
Y

o]
= ’_ZﬂroE
folgt fiir die beschleu-
nigende Kraft
N e 0O
—eE = —_
5T o ot
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358.

21*

Hieraus erhdlt man
weiter
e

3
"= 27rg 2] =
= 24,8 mqc;

1

i+ (5]
1 -
+(z3)
1
= l‘ T 230
m=24,8my =
= 2,26+ 10-2° kg;
elU = (m — mp) ¢? =
= 1,218 - 107 eV
At = 203,87 (1 +
+ 1,85-10-12) s;

v = c==

E

359.

360.

361.

a4t — At = 3,77 x

X 10-1%g

4 =101,94 (1 +
+ 1,85-10-12)s;

At — At = 1,88 x
X 10-1%g

A2 =17,15-10"Ym;

4k
— = 1,09-1012;

v =327-10"%ms™!;

Rotverschiebung

42 =1,38-10"*2m;
AA

_— . -6.

7 2,11 -10-°%;

Rotverschiebung

362. 42 = —4,22- 10~ m;

a7 _ 6,43 - 10-3;
7 - s 3
Blauverschiebung.

Das Licht des Sirius-
begleiters eignet sich
hiernach wesentlich
besser fiir einen Nach-
weis der relativisti-
schen Verschiebung als
das Licht der Sonne

363. 44 = —4,56 - 10~15m;
ar_ 6,94 - 10-1°;
7 - 2 ’
Blauverschiebung
Ay

364, — = —1; v=c
v
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Tabelle 1: Wichtige physikalische Konstanten

Mittlere Fallbeschleunigung
Niherungswert

Gravitationskonstante

Allgemeine Gaskonstante

AvoGaDrosche Konstante
Molvolumen
BoLrzManN-Konstante
Mechanisches Wiarmedquivalent
Elektrische Feldkonstante
Magnetische Feldkonstante
FaraDAY-KOnstante
Vakuumlichtgeschwindigkeit
PLaNCksches Wirkungsquantum
STEFAN-BoLTZMANN-K onstante
Konstante im WIENschen
Verschiebungsgesetz
Elementarladung des Elektrons
Ruhmasse des Elektrons
Ruhmasse des Protons
Ruhmasse des Neutrons
Ruhmasse des «-Teilchens
Ruhmasse des Deuterons
Masse des H-Atoms
Bonrsches Magneton
RYDBERG-Zahl
Atomare Masseeinheit
Energieidquivalent der atomaren
Masseeinheit

oy

n

$NmRZ PUREIY

=

o

Q o Ny

]

lu

= 9,80665 m s—2

= 9,81 ms™2

= 6,67 10"t m3 kg~1s2
=8,314T Kt mol ! =

= 0,082051 atm K~ mol-! =
= 1,986 cal K~ mol~?

= 6,022 - 1023 mol~*

= 22,4141

= R/N =1,3806 - 1023 JK~!
= 4,186 J cal™*

= 8,854 10712 As VI m!
=1,257-107°* Vs A=t m~!

= 96485 As mol~!

=2,99792 108 ms~!

= 6,626 - 1034 Js
=567-1078Im2s K

=0,00289 mK

= —1,602 - 10-1° As
9,109 - 10-3! kg = 5,498 - 10~* u
=1,6726 - 1027 kg = 1,00758 u
=1,6749 - 1027 kg = 1,00895 u
= 6,6428 - 10~27 kg = 4,002763 u
=3,342-10"2" kg = 2,014172u
=1,6734- 102" kg = 1,008128 u
=1,165+10"2° Tm A~!
=10973732m™!

= 1,66053 - 10~27 kg

i

4E;, = 931,8 MeV
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Tabelle 2: Bezeichnungen und Einheiten der verwendeten physikalischen Grofien
Bezeich- Einheit im
GroBe nung der Internat. Kurzzeichen der Einheit
GroBe System

Léange, Wegstrecke L s Meter m
Masse m Kilogramm kg
Zeit t Sekunde s
Fliche A m?
Volumen 14 m?
Dichte 0 kgm™3
Spezifisches Volumen v m? kg!
Geschwindigkeit v, € ms™!
Beschleunigung a, g ms™?
Winkelgeschwindigkeit ) st
Winkelbeschleunigung o s2
Frequenz fiv st
Periodendauer T s
Kraft, Gewichtskraft F, G Newton N = kgms~?
Druck P Pascal Pa = Nm™?
Arbeit, Energie W, E Joule J =kgm?s 2 Nm
Leistung P Watt W =7Js?
Impuls, Bewegungsgrofle )4 Ns
Drehmoment M J, Nm
Massentrigheitsmoment J kgm?
Drehimpuls L kgm? s~
Zugelastizititsmodul E Nm2
Schubelastizititsmodul G Nm™2
Oberflichenspannung c Nmt, Jm™?
Viskositit 7 kgmts?
Grammolekiil M kg mol™*
Temperatur T, ¢t Kelvin K, °C
Wirmemenge Q Joule J, kI
Spezifische Wirmekapazitit C, Cp, Cy Jkg 1 K!
Molwéirme C, Cp, C, J K~ mol™!
Umwandlungswirme ! Jkg!
Innere Energie U J
Enthalpie H J
Entropie S JK!
Freie Energie F J
Potentielle thermodynamische

Energie G J
Osmotischer Druck 7 Nm-2
Wirmeleitfahigkeit A JmtstK?
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Bezeich- Einheit im
GroBe nung der Internat. Kurzzeichen der Einheit
Grolle System

Wéirmeiibergangszahl o Jm2st K-
Elektrische Ladung: 0,q,¢e Coulomb C = As
Elektrische Feldstirke E Vm?
Ladungsdichte

der Fliache c Cm2

des Volumens 0 Cm™3
Elektrisches Potential @ Volt V=JA 151
Elektrischer KraftfluB v Vm
-Dielektrische Verschiebung D Asm™2
Elektrische Feldkonstante &0 AsV-imt
Dielektrizitatszahl &
Dielektrizititskonstante £ = £06; AsV-1m?
Kaparzitit - C Farad F=AsV1!
Energiedichte im

elektrischen Feld o Jm™3
Elektrische Stromstirke I Ampere A
Potentialdifferenz U, ¢ \%
Stromdichte J A m™2
Elektrischer Widerstand R Ohm Q=VA!
Spezifischer Widerstand 0 Qm
Spezifische Leitfihigkeit % O tm™t
Temperaturkoeffizient des

elektrischen Widerstands o K-t
Elektromotorische Kraft E A\
Elektrochemisches Aquivalent A kg A~1s™t
Magnetischer Induktionsflu ()] Weber Wb = Vs
Magnetische Induktion B Tesla T=Vsm?2=Wbm™?
Magnetische Feldstirke H Am?
Magnetische Feldkonstante o Vs A 'm™*
Permeabilitdtszahl He
Permeabilitit H = fols Vs A~ 'm™!
Magnetischer Widerstand R A Wb?
Induktivitit L Henry H=VsA
Lichtstrom /] Lumen Im
Lichtstirke I Candela cd
Beleuchtungsstiarke E Lux Ix
Brennweite f m
Brechkraft D Dioptrie dpt = m™!
Brechzahl n
Halbwertzeit T2

—1

~
%)

Zerfallskonstante
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Tabelle 3: Dielektrizitéitszahlen &,
Athylalkohol 26,0 Glas 7,0
Paraffin 2,0 Glimmer 7,0
Petroleum 2,0 Wasser 81,0
Porzellan 6,0 Luft
(bei normalem Druck) 1,0006
Tabelle 4: SpezifischerWiderstand (10°¢) und Temperaturwiderstandszahl (103x)einiger Stoffe
bei 0 °C Qm K-
Aluminium 0,029 Aluminium 4,2
Kupfer 0,017 Kupfer 3,92
Messing 0,08 Messing 1,5
Blei 0,21 Blei 4,2
Quecksilber 0,958 Quecksilber 0,99
Nickel 0,07 Nickel 6,7
Platin 0,107 Platin 3,9
Zink 0,06 Zink 4,2
Eisen (Stahl) 0,12 Eisen (Stahl) 6,0
Kohlenstoff 40,0 Kohlenstoff —8,0
Tabelle 5:  Elektrochemisches Aquivalent 4 in g A~ s™*
Kupfer 328-10-¢
Silber 1118 - 10-¢
Tabelle 6: Mittlere Brechzahlen » fiir das sichtbare Spektrum
Glas 1,52 Wasser 1,33
Die deutliche Sehweite ist / = 0,25 m.
Tabelle 7: Halbwertzeiten T1/, radioaktiver Kerne

Aktinjum

Radium

Radon

Uran (Isotop 238U)
Kobalt (Isotop °°Co)
Chlor (Isotop *2Cl)
Phosphor (Isotop 32P)
Strontium (Isotop °°Sr)
Natrium (Isotop “?*Na)
Kohlenstoff (Isotop 14C)

13,5 Jahre
1590,0 Jahre
3,825 Tage
4,4 - 10° Jahre
5,2 Jahre
38,5 Minuten
14,3 Tage
30 Jahre
14,8 Stunden
5700 Jahre
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Tabelle 8:

Tabelle der chemischen Elemente

(nach ihren chemischen Zeichen alphabetisch geordnet)

chem. Ord- relative chem. Ord- relative
Zei- Element nungs- Atom- Zei- Element nungs- Atom-
chen zahl  masse chen zahl  masse
Ac Aktinium 89 227,05 Hf Hafnium 72 178,5
Ag  Silber 47 107,87 Hg Quecksilber 80 200,59
Al Aluminium 13 26,98 Ho Holmium 67 164,93
Am Amerizium 95 243 In Indium 49 114,32
Ar Argon 18 39,948 Ir Iridium 77 192,2
As Arsen 33, 7492 J Jod 53 126,904
At Astatin 85 210 K Kalium 19 39,10
Au Gold 79 196,97 Kr Krypton 36 83,80
B Bor 5 10,81 Ku Kurtschatovium 104 264

Ba Barium 56 137,34 La Lanthan 57 138,91
Be Beryllium 4 9,012 Li Lithium 3 6,941
Bi Wismut 83 208,98 Lr Lawrenzium 103 257*
Bk Berkelium 97 245 Lu Lutetium 71 174,97
Br Brom 35 79,904 Md Mendelevium 101 256%*

C Kohlenstoff 6 12,011 Mg Magnesium 12 24,305
Ca Kalziumm 20 40,08 Mn Mangan 25 54,938
Cd Kadmiu 48 112,40 Mo Molybdin 42 95,94
Ce Zer 58 140,12 N Stickstoff 7 14,0067
Cf Kalifornium 98 246 Na Natrium 11 22,9898
Cl Chlor 17 35,453 Nb Niob(ium) 41 92,906
Cm Curium 96 243 Nd Neodym 60 144,24
Co Kobalt 27 58,93 Ne Neon 10 20,179
Cr Chrom 24 51,996 Ni Nickel 28 58,71
Cs Zgsium 55 132,91 No Nobelium 102 254%
Cu Kupfer 29 63,546 Np Neptunium 93 237
Dy Dysprosium 66 162,50 (o) Sauerstoff 8 15,9994
Er Erbium 68 167,26 Os Osmium 76 190,2
Es Einsteinium 929 254% P Phosphor 15 30,9738
Eu Europium 63 151,96 Pa Protaktinium 91 231

F Fluor 9 19,00 Pb Blei 82 207,2
Fe Eisen 26 55,85 Pd Palladium 46 106,4
Fm Fermium 100 253* Pm Promethium 61 145

Fr Franzium 87 223 Po Polonium 84 210,0
Ga Gallium 31 69,72 Pr Praesodym 59 140,908
Gd Gadolinium 64 157,25 Pt Platin 78 195,09
Ge Germanium 32 72,59 Pu Plutonium 94 242

H Wasserstoff 1 1,008 Ra Radium 88 226,05
He Helium 2 4,003 Rb Rubidium 37 85,47
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Tabelle 8: ‘ Fortsetzung

chem. Ord- relative chem. Ord- relative
Zei- Element nungs- Atom- Zei-  Element nungs- Atom-
chen zahl  masse chen zahl = masse

Re Rhenium 75 186,2 Tc Technetium 43 98,913
Rh Rhodium 45 102,905 Te Tellur 52 127,60
Rn Radon 86 222 Th Thorium 90 232,038
Ru Ruthenium 44 101,07 Ti Titan 22 47,90
S Schwefel 16 32,064 Tl Thallium 81 204,37
Sb Antimon 51 121,75 Tm Thulium 69 168,934
Sc Skandium 21 44,959 U Uran 92 238,03

Se Selen 34 78,96 v Vanadin 23 50,941
Si Silizium 14 28,086 w Wolfram 74 183,85

Sm Samarium 62 150,4 Xe Xenon 54 131,3

Sn Zinn 50 118,69 Y Yttrium 39 88,905
Sr Strontium 38 87,62 Yb Ytterbium 70 173,04
Ta Tantal 73 180,948 Zn Zink 30 65,37
Tb Terbium 65 158,925 Zr Zirkonium 40 91,22

*) Bei den so bezeichneten Atommassen
handelt es sich jeweils um die Kernmassen-
zahl des stabilen Isotops

Tabelle 9:

Wellenliingen A der Balmerserie des Wasserstoffatoms (#, = 2)

gemessen berechnet berechnet

n, in Luft fir Luft fiir Vakuum
-107*°m +1071°m +10-1°m

3 6562,80 6562,76 6564,68

4 4861,33 4861,31 4862,73

5 4340,47 4340,45 4341,72

6 4101,74 4101,73 4102,93

7 3970,07 3970,07 3971,23

8 3889,05 3889,05 3890,18
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Tabelle 10:

Tabelle 11:

Tabelle 12:

Tabelle 13:

Erste Linie und Seriengrenze der verschiedenen Spektralserien des Wasserstoff-
atoms im Vakuum

Name der Serie n, erls(;ci IISIII;: © .Se;,g? ?Ogrn;:nze

LyMAN-Serie 1 1215,68 911,76 A
BALMER-Serie 2 6564,68 3647,05

PASCHEN-Serie 3 18756,24 8205,85

BRACKETT-Serie 4 40522,74 14588,18

PrunD-Serie 5 74598,67 22794,04

Mittlere Gitterpotentiale E, verschiedener Metalle in eV

Ag Al Cu Fe Ni Zn
—14 —17 -13,5 —14 —16 —16

Austrittsarbeit 4 verschiedener Metalle in eV bei kalter Emission

Ag K Na Ni Pt A
5,6 2,1 3,2 11,7 6,0 5,7

Massenverdnderlichkeit des Elektrons bei Energieaufnahme im elektrischen Feld

Energie Massen- Masse
ineV verhéltnis m-10-31 kg
mimg

103 1,002 9,13
104 1,020 9,29
105 1,195 10,89
10° 2,95 26,91

107 20,5 187,08
108 196,3 1788,84

10° 1953,6 . 17795,3
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